
Ulm University | 89069 Ulm | Germany Fakultät für Ingenieurwissenschaften,
Informatik und Psychologie

Institut für Künstliche Intelligenz
Institutsdirektorin: Prof. Dr. Susanne Biundo-Stephan

Pascal Tobias Bercher, geboren in Baden (Schweiz)

Kumulative Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Ingenieurwissenschaften, Informatik und Psychologie der Universität Ulm

Hybrid Planning

— From Theory to Practice

2017

Amtierender Dekan: Prof. Dr. Frank Kargl

Gutachter: Prof. Dr. Susanne Biundo-Stephan
Gutachter: Prof. Dr. Malte Helmert
Gutachter: Prof. Dr. Jörg Hoffmann

Tag der Promotion: 4. Dezember 2017

2

Acknowledgement

I owe my largest gratitude to my supervisor Prof. Dr. Susanne Biundo who has given
me the opportunity to work in a highly interdisciplinary research field that addresses
up-to-date research questions that are of general relevance for our today’s society. The
research questions raised by this field are, on the one hand, motivated by problems that
many people face during their daily life; on the other hand, answering these questions
does not only focus on developing actual running systems, however. Instead, it also
requires to address foundational theoretical research questions that are both interesting
and important by themselves, and additionally form the basis for future foundational
research in the respective field – Artificial Intelligence (AI) planning. I am thankful for
any advice and support during the last years.

I want to thank Prof. Dr. Malte Helmert and Prof. Dr. Jörg Hoffmann for being my exter-
nal expert witnesses of this thesis. I also thank Prof. Dr. Uwe Schöning, Prof. Dr. Birte
Glimm, and Prof. Dr. Dr. Wolfgang Minker for agreeing being members of the board of
examiners.

An innumerable number of quite controversial discussions with my former colleague
Thomas Geier have influenced my work, which I appreciate a lot. Most notably, some of
the most influential results of this thesis were done by us. I thank my former colleague
Bastian Seegebarth for his contributions to the hybrid planning system Panda2, which
is used for the empirical analysis of many of the techniques that are part of this thesis.
Relatedly, my colleague Gregor Behnke is the main developer of Panda3, the successor of
the previous system. Panda3 is used as the basis for the most recent results. Countless
discussions with him and my colleague Daniel Höller have further resulted in many
publications showing foundational, but practically relevant, results in the field of AI
planning – many publications are yet to be written by us and I am looking forward for
further collaboration. I especially appreciate any feedback by Gregor and Daniel for this
thesis. I also want to thank Dr. Ron Alford for a successful collaboration that resulted
into many interesting publications, which are directly related to this thesis.

I also want to thank students that I was or am currently supervising. Eduard Bichel was
the main developer of a graphical tool that serves as basis for displaying and investigat-
ing the plan generation process, which I used to debug Panda2 and for presentational
purposes. I thank Shawn Keen for assisting in the empirical evaluations of the data
produced by Panda2. Mario Schmautz continued his work and adapted it to be used
by Panda3. I am still thankful for his high discipline and reliability.

Lastly, I thank my family for supporting me over the years, most notably my mother
Evelyn Preiser for any encouragement and backup I needed. I am also thankful for any
emotional backup from my passed-away cat, Momo – to whom I dedicate my thesis.

3

Abstract

This work lays fundamental groundwork for the development of so-called Companion
Systems – cognitive technical systems that are capable to reason about themselves, their
users and environment, and to plan a course of action to achieve their users’ goals.
They are intelligent devices that assist their users in operating them: instead of the
user having to learn how to operate the respective system, the system is intelligent and
flexible enough to provide its functionality in a truly user-friendly way.

To fully meet a user’s demands, Companion Systems rely on a multi-facet of capabil-
ities that stem from different disciplines, such as Artificial Intelligence (AI) planning,
knowledge representation and reasoning, dialog management, and user interaction man-
agement, to name just a few. This thesis focuses on the relevant aspects of AI planning
technology that are of importance for such systems. AI planning is the central technol-
ogy for many Companion Systems as it allows to compute a course of action that, if
followed by its user, achieves his or her goals and therefore serves as a basis of providing
advanced user assistance. This thesis is concerned with hybrid planning – a hierarchical
planning formalism that is especially suited for the basis of providing assistance to hu-
man users. Based on this formalism we will investigate the full endeavor of developing
Companion Systems – from theory to practice.

The thesis presents a novel formalization for hierarchical planning problems, which has
become a standard in the field. We present a categorization of different problem classes
into which hybrid planning as well as other well-known problem classes fall. This formal-
ization allowed to prove a series of novel complexity results that are of interest both for
theoretical and practical considerations. For many of the identified classes we introduce
novel heuristics that are used to speed up the solution generation process. Some of them
are the very first for the respective problem class, and some are the first admissible ones,
thereby allowing to find optimal solutions – which is especially important when plans
are generated for human users. We apply hybrid planning in a prototypical Companion
System. It assists a user in the task of setting up a complex home entertainment system.
Based on a declarative (planning) model of the available hardware and its functionality,
the assistant computes a sequence of actions that the user simply needs to follow to com-
plete the setup task. Several so-called user-centered planning capabilities are applied in
this system, such as a technique for generating user-friendly linearizations of non-linear
plans or the capability to answer questions about the necessity of actions – an essential
property to ensure transparency of the system’s behavior.

In conclusion: Most modern technical devices are still lacking true intelligence – since
no research such as AI planning is sufficiently applied, so there is still huge potential
in making such devices really smart by implementing them as cognitive systems that
effectively assist their human users. Applying the research presented in this thesis is one
step towards achieving this goal.

5

Table of Contents

1 Introduction 9

2 Theoretical Foundations 13
2.1 STRIPS Planning Problems . 17
2.2 POP and POCL Planning Problems . 18
2.3 HTN and TIHTN Planning Problems . 22
2.4 Hybrid Planning Problems . 33

3 Search and Heuristics 39
3.1 Search Algorithm . 42
3.2 Heuristics for POP and POCL Planning Problems 46
3.3 Heuristics for HTN and Hybrid Planning Problems 51

4 Practical Application 59
4.1 Companion Technology . 61
4.2 User Assistance Based on AI Planning . 62

5 Conclusion 75

6 References 77
6.1 Core Contributions . 77
6.2 Related Work . 79

7 Core Contributions in Full Length 91
7.1 Theoretical Foundations . 91
7.2 Search and Heuristics . 92
7.3 Practical Application . 93

To make clear which of the cited publications are core contributions of the thesis that
are summarized in detail, we use just numbers to cite them; for related work from the
author, the respective citations are preceded by an “A”; related work from the literature
is preceded by an “L”.

7

Planning is the art and practice
of thinking before acting.

Patrik Haslum [L50]

1 Introduction
Technical devices are becoming more and more complex. Usually, no single user is aware
of the full spectrum of the functionality of a typical modern technical device. Even more
importantly, many systems of our daily lifes do not focus on user-friendliness – at best,
they have a well-structured menu or set of buttons, but the user still has to learn how
to use them in order to achieve his or her goals. One of the few counter-examples are
smartphones, for which assistants are available that allow to operate the phone or to
execute certain web services like search engines via speech input. However, for most other
every-day technical devices no scientific technologies, such as AI planning or dialog and
user interaction management are being used to enhance the way in which they provide
their functionality to the user. The underlying technology of most technical devices
is still quite simple and does not at all exploit the full spectrum of today’s scientific
capabilities.

Companion Technology [3, L3, L9] aims at making technical devices really smart. Such
systems, called Companion Systems, are equipped with a knowledge base storing rel-
evant information about themselves, the application, the surrounding, and the user.
Based on a multitude of capabilities stemming from different research disciplines, these
systems are able to adapt to their current user and current situation and to assist him
or her in a fully automated and user-friendly way. They do so by relying on domain-
independent techniques, so that the resulting assistance functionality is not tailored to
one specific application domain such as smartphones, but it can be deployed in many
different contexts. Further details are provided in Sec. 4.1.

In this thesis we will address some of the most fundamental research questions related to
pursuing the endeavor of creating Companion Systems. As Haslum stated, “Planning is
the art and practice of thinking before acting” [L50]. Thus, planning is the pivotal means
for goal-directed behavior of any kind of agent – be it human or artificial. Automated
Planning, one of the main streams of AI, is concerned with finding a course of action
that transforms a given situation into a desired one. It is easy to see that AI planning
is a canonical way to enhance the functionality of technical devices, as they have a
well-defined functionality: They are basically deterministic automata and can hence
be modeled using states and actions – the most fundamental ingredients of planning.
Partially ordered sets of actions form partial, non-linear plans. Those partial plans that
are executable and achieve the problem’s goals (i.e., that lead from an initial situation to
one satisfying the goals) are called plans or solutions. These plans are used as the basis

9

1 Introduction

for Companion Systems: their actions can either control the behavior of the system itself
or they are instructions that the user simply needs to follow.

Using AI planning as the heart of any Companion System requires to answer several
research questions:

• Which planning paradigm is best suited as a basis for Companion Systems? What
planning-related capabilities are important when interacting with a human user?
• What are the foundational theoretical properties of the chosen planning formalism?

How can these properties be exploited in theory and practice?
• How can problems be solved quickly? Can we give optimality guarantees for the

plans generated?
• Which practical issues do arise when constructing an actual Companion System?

We propose to use hybrid planning [4, 11] as the basis for providing user assistance
(Sec. 4). Hybrid planning is a planning formalism in which standard hierarchical task
network (HTN) planning [12, L56, L76] is fused with concepts from partial order causal
link (POCL) planning [L57, L89].

Using this formalism provides several benefits when being applied in the presence of a
human user. First, using a hierarchical formalism allows to model the application do-
main in a hierarchical manner. Presumably because hierarchical planning shows many
similarities with the way in which humans solve their problems [L44, L51, L72], many
real-world planning applications are modeled hierarchically [L10, L54, L56]. Using a
hierarchical model further allows to use synergies between the planning model and a
corresponding ontology thereby allowing, among others, to semi-automatically assist in
the process of creating the model [A16]. Using a hybrid model in particular further facil-
itates the modeling process because hybrid models differ from standard HTN models in
the way abstract tasks look like. In hybrid planning, these have preconditions and effects,
which are used to further restrict the models in a way that coincides with the modeler’s
intent [4]. Second, hybrid planning allows the application of various user-centered plan-
ning capabilities. These are, among others, the generation of plan explanations [2, 6, 11,
L28] as well as to repair plans that failed during execution [2, 6, 11, L41]. The former
makes explicit use of the task hierarchy to generate justifications of any executed actions
– using different levels of abstraction (Sec. 4.2).

First, in Sec. 2, the thesis lays the theoretical groundwork for our endeavor. For this, we
give a classification of a wide spectrum of hierarchical problem classes, into which the
hybrid planning formalism falls as well as several special cases that arise from posing
additional restrictions. We present a novel formalization of these problem classes [12],
which has already become an established standard, as it is regularly used and adopted
both by us and other research groups working on hierarchical planning. We give a se-
ries of novel complexity results – both regarding the so-called plan existence problem

10

(“How hard is it to decide whether there exists a solution?”) [4, 12, A12, A13] and
the so-called plan verification problem (“Given a plan and a planning problem, does the
plan solve the problem?”) [4]. Most notably, prior to this work, most theoretical results
for hybrid planning were unknown and only a few were known for HTN planning. We
transferred the latter as well as some novel results to hybrid planning [4]. The classifica-
tion of these problems as well as their theoretical investigation lays the groundwork for
a deeper understanding of these problem classes and their interconnections [A10, A20].
It is exploited in many different ways, e.g., for compilation techniques that transform
these problems into each other [A7], for the construction of heuristics [1, 7, L18], or for
addressing user requests to change plans according to their preferences [A8].

Given a model of the application domain and the problem that the user wants to solve, we
need to investigate how such problems are solved practically. Especially when interacting
with human users, it is of crucial importance that waiting times are reduced as much as
possible. We are thus interested in how hybrid planning problems and their sub classes
can be solved quickly. Answering this question is not only of practical relevance, but also
theoretically interesting, because at the time being, there is only very limited research
how to solve hierarchical problems automatically [1]. The thesis proposes an algorithm
that is suited for generating solutions for humans quickly [7]. Its search procedure allows
to easily incorporate the user into the plan generation process if he or she so desires, and
– more importantly – it allows to generate optimal solutions if provided with admissible
heuristics. For many of the investigated problem classes, we do provide heuristics [1, 7,
8, 9, 10], many of them are the first well-informed heuristics for the respective problem
class [1, 7] or the first admissible ones [1, 8]. We analyze those heuristics both from
a computational point of view and empirically. All matters concerning solving hybrid
planning problems (and their sub classes) are investigated in Sec. 3.

So far, we have identified that we will use the hybrid planning formalism for providing
advanced user assistance in the form of Companion Systems; we laid the theoretical
groundwork by analyzing its computational complexity; we have specified an algorithm
that is suited for solving these problems automatically; and we provided heuristics to
speed up the solving process and that guarantee to find optimal solutions. We now
show how these ingredients can be used and extended to be deployed in a prototypical
Companion System, see Sec. 4. For this purpose, we first give a short introduction into
the research vision and history of Companion Technology [3] and then explain the user-
centered planning capabilities that were developed, improved, or deployed practically
in the context of this thesis [2, 11]. We then introduce our assistant that helps a user
to set up his or her home entertainment system [5, 6, A5, A22]. The system features
components from several different research disciplines, including AI planning, knowl-
edge representation and reasoning, and dialog and interaction management. Based on a
declarative model of the available cables and devices, the system fully automatically gen-
erates a sequence of plug actions that its user simply needs to follow. At any time during
execution, the user may ask questions about the purpose of the currently presented in-

11

1 Introduction

struction. The system then generates – again, fully automatically – explanations, which
do explain this purpose to the user. This explanation is presented in form of natural
language (both written and spoken). At any time during execution, execution failures
can be reported to the system, which will then derive a new plan that compensates the
unexpected failures. We also present an empirical evaluation of the system with a special
focus on the plan explanations.

The remainder of the thesis is structured as follows. The three lines of research sum-
marized above – that is, theoretical foundations, search and heuristics, and the practical
application of hybrid planning – are presented in Secs. 2 to 4. Each of these sections
starts with a motivation for the main questions addressed in the respective section,
followed by a brief summary of the main contributions including a list of summarized
publications. We then explain these contributions in more detail and show how they fit
into the field of research. Sec. 5 concludes the thesis and Sec. 6 lists the references. As
mentioned before: To make clear which of the cited publications are core contributions
of the thesis that are summarized in detail, we use just numbers to cite them; for related
work from the author, the respective citations are preceded by an “A”; related work from
the literature is preceded by an “L”. In the beginning of Sec. 7, we give a table of con-
tents for the core contributions of the thesis, which are appended in full length at the
end of this document.

12

First, you have to understand the problem.
After understanding, then make a plan.

George Pólya [L95]

2 Theoretical Foundations

Motivation. As Pólya stated: “First, you have to understand the problem.” – i.e.,
the theoretical understanding of the given problem at hand should always be the very
first step before attempting to solve it. After that very first step, we can choose an
adequate formalism in which the given problem can be expressed. To pick the most-
appropriate formalism in which the problem can be adequately represented, we also
need a comprehensive understanding of the potential formalisms that may be chosen.
We have already argued in the last section that we deem hierarchical planning especially
suited for providing user assistance. Moreover, we choose hybrid planning, because it
allows the deployment of several user-centered planning capabilities (see Sec. 4), and
because it allows the automatic verification of the model during the stage of creating it
(see Sec. 2.4).

Knowing about the theoretical foundations of a formalism is not only relevant for picking
the most-suitable formalism, but also for a series of practical considerations. For one,
the domain modeler is responsible for making sure that the modeled problem is actually
representing (the practically relevant aspects of) the actual problem one wants to solve.
If this was violated, the consequence can be that desired solutions cannot be generated or
that solutions to the modeled problem are generated that do not correspond to solutions
of the actual problem the model is supposed to represent (so-called “false witnesses”).
Further, knowing about foundational properties of the respective formalism (and those
related to it) often reveals manifold applications. For example, it often allows to give
compilations that transform a problem expressed in one formalism into an equivalent
problem expressed in another formalism. This is of practical relevance because it allows
a rich language to be used by the domain modeler on the one hand, while the deployed
techniques can focus on a lower-level description language on the other, so existent
techniques do not need to be adopted after new language features are developed and
used. It further allows to design specialized algorithms that exploit structural properties
of the given problem (heuristics are prominent examples for this) or pruning techniques
that speed-up the solution generation process, to name just a few.

Summary of Core Contributions. One of the most important contributions of this
thesis is the development of a novel formalization of HTN planning problems [12]. As
we will see later, there is a huge number of different hierarchical planning formalisms

13

2 Theoretical Foundations

and only for one of them, a limited number of theoretical properties was known prior to
this work. Since its publication in 2011, our proposed formalism has been the basis for a
number of theoretical investigations, not only by our research group at Ulm University
[4, A8, A10, A20, L2, L14], and in cooperation with other research groups [A7, A12, A13,
A14], but also by others [L7, L8, L18, L26]. It was also influencing hierarchical planning
formalizations that were used for purposes other than proving foundational properties
[L11, L15, L16]. We hence consider it an established new standard for hierarchical
planning. We will detail the strengths of this novel formalization in Sec. 2.3.

Another major contribution of the thesis is the investigation of the impact of task in-
sertion on the computational complexity of the plan existence problem for hierarchical
planning. In a nutshell, solving a hierarchical planning problem requires to refine an
initial partial plan into an executable plan consisting only of primitive tasks. In typical
hierarchical planning, this refinement process has to adhere strictly to the task hierar-
chy. That is, one is only allowed to apply so-called (decomposition) methods to modify
a given partial plan – no tasks may be inserted into partial plans if they are not intro-
duced as the consequence of applying a method. A method is simply a pair mapping an
abstract task to pre-defined partial plan, which can be interpreted as an implementation
(or “standard recipe”) for that abstract task. Applying a method to its abstract task
replaces that task by the method’s partial plan and adds the constraints posed on the
decomposed task. In our 2011 paper [12], we were the first to systematically investigate
the theoretical impact of allowing tasks to be inserted into partial plans arbitrarily (i.e.,
independently of applying methods). We call the respective problem class TIHTN plan-
ning (HTN planning with task insertion). Theoretical properties of TIHTN planning
were studied both by us [12, A10, A20], in collaboration with other research groups
[A13, A14], but also independently of us [L7, L8, L18]. The general interest in this class
is older than its first theoretical foundation [11, L61, L68, L71, L86], mostly due its
practical advantages [2, L71]. One important reason for allowing task insertion is that
it makes the modeling process easier. Due to task insertion, one can specify a model
that is only partially hierarchical, where some actions that ensure executability can be
inserted by the planner, so the modeler does not have to ensure this via exploiting the
hierarchy alone. Our main result was that TIHTN problems are decidable – which is in
contrast to HTN problems, which are only semi-decidable. We have shown that cyclic
method applications are not required in TIHTN planning, which limits the influence of
recursive method structures. This makes task insertion a relaxation for HTN problems
that can be exploited to obtain (more) tractable heuristics [1, L18].

We extended our novel HTN planning formalism to obtain a new formalization for hybrid
planning as well [4]. Hybrid planning extends HTN planning in two directions: First,
abstract tasks also use preconditions and effects, which are used, among others, to restrict
the set of decomposition methods to those that adhere specific criteria. Second, both
the initial partial plan as well as all partial plans in the model (i.e., in the decomposition
methods) may contain causal links – a concept known from partial order causal link

14

(POCL) planning [L57, L89]. We will give details in Sec. 2.2. Our novel formalization of
hybrid planning allows to transfer many results from HTN planning to the hybrid setting.
More specifically, we were able to transfer most complexity results for HTN planning
concerning the so-called plan existence problem [12, A12, L76] as well as concerning the
plan verification problem [L14] to hybrid planning [4]. In fact, prior to this work, no
computational complexity results were known for hybrid planning. Now, (almost) all
hardness results could be transferred (membership results remain future work).

Another contribution is the investigation of the impact of specifying preconditions and
effects for abstract tasks [4]. Many researchers have used formalizations in which abstract
tasks have preconditions and effects [11, L19, L20, L44, L48, L61, L62, L68, L79, L85,
L86, L87, L90]. Some of them exploit these preconditions to pose additional constraints
on the set of decomposition methods that may be specified for the respective abstract
task. We call these constraints legality criteria (or, synonymously: implementation cri-
teria). These preconditions and effects – in combination with the related legality criteria
– can be exploited for modeling support, since a tool can make sure that decomposition
methods are actual implementations of the given abstract task. This is especially im-
portant for the endeavor of applying planning technology in practice, as modeling the
domain is always one of the very first steps. In our paper, we provided a survey on these
criteria that were posed in the literature, provided another one, analyzed their impact on
the computational complexity (as reported above), and discussed the practical benefits
of these criteria for modeling hierarchical planning domains.

When investigating the model’s structure and solution criteria of the problem classes
discussed so far, we can obtain a clear classification of the different planning problems
[A17]. The two essential dimensions are whether task insertion is allowed and whether
the model may contain causal links (in the latter, abstract tasks also have preconditions
and effects in combination with legality criteria). This results in four problem classes:
HTN planning and hybrid planning, each with and without task insertion. If we further
take into account whether the initial partial plan contains abstract tasks, we get two
further problem classes: partial order planning (POP) problems and partial order causal
link (POCL) planning problems (see Fig. 2.1 for all six classes and their relationship).
This classification allows a systematic view on various planning formalisms and shows
their interrelations. This, in turn, shows for which of these classes results are still missing.
For the POP and POCL problem classes, for instance, only limited results were known
prior to this thesis. We summarize our findings for these classes next.

Considering the POP and POCL planning problem classes allows to investigate the
computational hardness of turning a search node consisting only of primitive tasks into a
solution [A17]. This is of practical importance to come up with well-informed heuristics
for search nodes in which there are no abstract tasks. This is both the case if the
problem was specified in a non-hierarchical manner in the first place, or simply because
all abstract tasks have already been decomposed to a primitive level, but no executable

15

2 Theoretical Foundations

hierarchical? yes

task insertion? no

hierarchical? yes

task insertion? yes

hierarchical? no
task insertion? yes

causal links? no yes

Hybrid

HybridTI

POCLPOP

TIHTN

HTN

Figure 2.1: Overview of the investigated problem classes. The right side depicts the problem
classes in which the initial partial plan or any partial plan of the model’s methods may contain
causal links. In the case of hybrid planning problems, abstract tasks also use preconditions
and effects. The left side depicts the respective classes, where causal links are not part of the
formalism. The bottom-most classes POP and POCL do allow task insertion. In the middle,
task insertion is still allowed, but the initial partial plan may contain abstract tasks. On top, we
see the hierarchical problems, where task insertion is prohibited.

plan was found yet. For such problems, we investigated the problem of partial delete
relaxation, proving that the respective plan existence problem is NP-complete. With
partially delete-relaxed, we mean that all negative effects of the actions in the domain
are ignored whereas the given (initial) partial plan remains unaltered [9]. Besides of
providing more insights into the cause of computational hardness of such problems, that
result directly laid to the development of a new heuristic that we investigate in Sec. 3.2.

The above-mentioned core contributions are published in the following publications:

[4] P. Bercher, D. Höller, G. Behnke, and S. Biundo. “More than a Name? On
Implications of Preconditions and Effects of Compound HTN Planning Tasks”.
In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI
2016). IOS Press, 2016, pp. 225–233. doi: 10.3233/978-1-61499-672-9-225

[9] P. Bercher, T. Geier, F. Richter, and S. Biundo. “On Delete Relaxation in
Partial-Order Causal-Link Planning”. In: Proceedings of the 2013 IEEE 25th In-
ternational Conference on Tools with Artificial Intelligence (ICTAI 2013). IEEE
Computer Society, 2013, pp. 674–681. doi: 10.1109/ICTAI.2013.105

[12] T. Geier and P. Bercher. “On the Decidability of HTN Planning with Task In-
sertion”. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011). AAAI Press, 2011, pp. 1955–1961

16

http://dx.doi.org/10.3233/978-1-61499-672-9-225
http://dx.doi.org/10.1109/ICTAI.2013.105

2.1 STRIPS Planning Problems

2.1 STRIPS Planning Problems

Before we start summarizing the thesis’ contributions concerning the investigated prob-
lem classes, we first give some basic definitions to explain the most fundamental concepts
of planning. In general, mathematical notation is made use of only occasionally to high-
light some of the most important features. For a complete, coherent, formal description,
please refer to the cited papers and articles.

In its most simple form, planning problems are given in a non-hierarchical way. The
best-known (and least expressive) formalization is that of (propositional) STRIPS prob-
lems [L94]. All problem classes investigated later on can be regarded extensions of this
formalism [A10, A20]. STRIPS problems are given in terms of a finite set of proposi-
tional state variables V , a finite set of actions A, an initial state s0 ∈ 2V , and a goal
description g = (g+, g−) with g+, g− ⊆ V . The state variables are used to model states,
which are elements of 2V – they describe how the world looks like in that respective state.
The goal description g is a compact description of all states s ⊇ g+ with s ∩ g− = ∅
that are considered goal states – they are the states one wants to end up in after exe-
cuting a plan. Actions are used to transform states into each other. Actions are tuples
(pre+, pre−, eff +, eff −) ∈ (2V)4 – they specify the positive and negative preconditions
pre+ and pre− that need to hold (resp. are not allowed to hold) in a state in order for the
action to be executable (or applicable) in that state as well as the positive and negative
effects eff + and eff − stating which state variables are added and removed from the cur-
rent state. The objective is to find a sequence of actions that is executable in the initial
state and ends up in a goal state. Often, one distinguishes between a so-called domain
model D, which describes just the underlying “physics” of the application scenario, and
the actual problem instance1 P one wants to solve (which references the domain). In
STRIPS, we get D = 〈V,A〉 and P = 〈D, s0, g〉. Such STRIPS planning problems are
ordinarily referred to as classical planning problems.

Due to the relative simplicity of non-hierarchical planning problems, there is a general
consensus about how such problems syntactically look like and what semantics they
underly. More specifically, such problems are often specified either in variants of the
STRIPS formalism as presented above, or in SAS+ [L78], where state variables are not
propositional, but multi-valued (i.e., each variable has a finite set of possible values).
The success of the STRIPS formalism has further been fostered by the planning domain
description language PDDL [L66], which has been developed for the first International
Planning Competition in 1998 and that was continuously extended to include additional
language features. Such features are outside the scope of this thesis, however. That is,
we always assume full observability and deterministic effects – similar to STRIPS. We
further assume a ground (i.e., propositional, non-lifted) representation. We want to note

1The problem instance is also often referred to as planning task. We are not using that terminology
here to avoid confusion, since in hierarchical planning the term task refers to actions.

17

2 Theoretical Foundations

that we only do so for the sake of readability. In most of the presented publications, we
have investigated a lifted problem class.

We will start with the non-hierarchical problem classes POP and POCL, then investigate
HTN and TIHTN problems, and finally consider the fusion thereof, hybrid planning.

2.2 POP and POCL Planning Problems

One of the reasons to investigate the computational complexity of a specific problem
class is to come up with (tractable) problem relaxations that can be used as a basis for
heuristics during search. The implicit assumption behind this motivation is that the
search nodes of the deployed algorithm are of the same structure than the problem class
itself.

For instance, all HTN planning algorithms that solve the respective problem via search
perform this search in the space of partial plans – and the problem description is also
given in terms of an initial partial plan (as we will see in Sec. 2.3), so investigating the
computational complexity of HTN planning problems directly shows us the hardness of
turning a search node in HTN planning algorithms into a solution. The similar situation
is given for solving classical planning problems: the de-facto standard algorithm for
solving such problems performs progression search in the space of states2 – and the
problem description is also given in terms of a state, so again complexity results for
classical planning problems can be exploited for the search nodes of these procedures.

For POP or POCL planning procedures, the situation is different. To the best of our
knowledge, the computational complexity of POP and POCL problems was not investi-
gated in detail prior to this work. The reason for this lies in the fact that the literature
only considered POP and POCL algorithms for solving classical planning problems, but
the plan existence problem for a given partial plan was not investigated. So, one of the
thesis’ contributions is to investigate these problem classes as a basis for a deeper un-
derstanding required to come up with heuristics for the respective problem class/search
node. As a consequence from these investigations, we have developed a novel POCL
heuristic as well as a technique that allows to use heuristics known from state-based
forward search in POCL planning. We will present them in Sec. 3.2.

Investigating these classes is not only important from a purely scientific point of view,
or for the development of heuristics for POP and POCL search procedures, but also for
solving hierarchical problems: When solving TIHTN problems or hybrid problems with
task insertion, partial POP and POCL plans are produced after every abstract task has

2We will use the terms forward search and progression search synonymously.

18

2.2 POP and POCL Planning Problems

been decomposed. So, applying standard POP and POCL heuristics to these search
nodes is (likely to be) more informed than using heuristics that are mainly focusing on
the abstract tasks rather than on the task insertion aspect.

POP and POCL Planning Systems (Related Work). There are various algorithms
to solve classical planning problems. The best-known is forward search using primitive
grounded actions, which is therefore also referred to as classical planning. In this ap-
proach, search is done in the space of states that are reachable from the initial state by
applying executable actions. The search space is a tree (or a graph, in case duplicates
are eliminated), its nodes are states, and its arcs are actions. The search ends successful
as soon as a goal state is found. Then, a solution can be extracted from a path leading
from the tree’s root node to a goal leaf node.

Before several well-informed heuristics made this the superior planning approach, a very
popular approach was planning in the space of partial plans [L91]. Here, each search node
corresponds to a partial plan, i.e., to a partially ordered set of uniquely labeled actions –
so-called plan steps (unique labeling is required to differentiate different occurrences of
the same action). The search space is again a tree (graphs are ordinarily not maintained
[L26], probably because it is computationally too hard to check whether two partial
plans are isomorphic [L14]), its nodes are partial plans, and its arcs are modifications to
these partial plans. Modifications to partial plans are, e.g., inserted actions or inserted
orderings. The search ends successful as soon as a solution plan is found. In this
search approach, each partial plan is partially ordered and regarded a solution if every
linearization of its actions that is compatible with the ordering constraints forms a
solution.

For this, some early partial order planners like TWEAK [L91] and UA [L82] insert
constraints into a plan until every action precondition is necessarily true. To make the
commitment, which precondition is necessarily true, explicit, the concept of so-called
causal links was developed [L88, L89]. A causal link is a 3-tuple (ps, ϕ, ps′) consisting of
the producer plan step ps, the consumer plan step ps′, and the protected condition ϕ,
which is a precondition of ps′. Plan steps are uniquely labeled actions (again, the
unique label is necessary to differentiate multiple occurrences of the same action from
each other) and ϕ is a literal, i.e., a state variable v ∈ V that is either positive in case it
is a positive precondition of ps′ and a positive effect of ps, or it is negative in case it is a
negative precondition of ps′ and a negative effect of ps. Action preconditions that are not
protected by a causal link raise so-called open precondition flaws, and POCL planners
insert causal links and required actions until no such flaws exist. Such planners further
raise a so-called causal threat flaw when ever the partial ordering allows a plan step
ps′′ to be ordered between two plan steps ps and ps′ sharing a causal link (ps, ϕ, ps′)
in case ps′′ has an effect ¬ψ, such that ψ and ϕ can be unified. This causal threat
represents the violation of the commitment that the protected condition ϕ is guaranteed

19

2 Theoretical Foundations

to hold after the execution of ps until ps′ was executed. It can be resolved by adding
ordering constraints (ordering ps′′ either before ps or after ps′) or by adding a variable
constraint that prevents that ψ and ϕ can be unified [L88, L89]. Partial plans that do
not raise any flaw are considered solutions. It is easy to see that any linearization of
a solution’s plan steps corresponds to an executable action sequence in the standard
STRIPS sense. The before-mentioned planners TWEAK and UA do not (yet) rely on
causal links, however. So, planners of this kind are also referred to as non-causal link
planners [L80]. Analogously, planners that do rely on causal links, such as SNLP [L89],
UCPOP [L88], RePOP [L64], VHPOP [L59], or CPT [L52] are referred to as partial
order causal link (POCL) planners [L80].

Complexity Results. We now interpret a given POP or POCL search node as a problem
of the respective class. That is, instead of having just an initial state and a goal descrip-
tion, we have given an arbitrary (but finitely large) initial partial plan. As in STRIPS,
the planning domain is given by D = 〈V,A〉. In contrast to STRIPS, where the problem
is given by a tuple P = 〈D, s0, g〉, we now have P = 〈D, PI〉, where PI is an initial partial
plan (that contains two special actions encoding the initial state s0 and the goal descrip-
tion g). We call the respective problem class POP in case PI does not contain causal
links and POCL in case it does. It is easy to see that these classes subsume STRIPS
problems as before, since we can simply define an initial partial plan that is empty except
for the two artificial actions that encode the initial state and the goal description. A
subtle difference between an actual STRIPS problem and a STRIPS problem encoded as
POP/POCL problem is the solution criterion. In STRIPS, solutions are totally ordered
action sequences, whereas solutions to POP and POCL planning problems may also be
partially ordered (as long as every linearization is a solution). This does, however, not
have any impact on the computational complexity (also, any totally ordered solution
can be turned into a partially ordered one [L30]).

It is easy to see that POP and POCL problems have the same computational complexity
as classical problems, i.e, they are PSPACE-complete. Hardness is trivial, since the two
classes extend classical problems. Membership can be shown in different ways, e.g., via
translating a given partial plan into a classical problem [8]3. A more direct proof consists
of the following steps: First, guess a linearization of the partial plan’s actions as well as
complete states right before these actions (that are compatible with their preconditions).
Then, apply the actions to these states, which gives us new (initial) states. This results
in n + 1 classical problems for n actions in the partial plan, the solutions of which
can be concatenated to a solution of the entire problem. Then, in each sub problem,
reduce the action set according to the causal links. Solving the resulting problems
each in PSPACE gives us an NPSPACE=PSPACE decision algorithm. Thus, both POP

3In our paper, we only gave a polynomial translation for partial plans without causal links. Our
translation for causal links is fixed-parameter tractable and can thus not serve for the reduction [8].
Meanwhile, we have also found a polynomial time compilation, but did not yet publish it.

20

2.2 POP and POCL Planning Problems

and POCL problems have the same computational complexity as classical planning –
which is non-surprising, since they stem from algorithms used to solve classical planning
problems. While this is the case, it is still not clear whether problem relaxations show a
similar behavior. Consequently, we investigated the plan existence problem for one of the
most successful problem relaxations known from classical planning: delete relaxation.

When no action in the model uses negative preconditions (this can easily be achieved by a
compilation technique [L73]), then ignoring the negative effects of the available actions
is a problem relaxation that makes the plan existence problem for STRIPS problems
decidable in P [L81]. This observation was exploited by the successful and therefore
well-known (progression-based) FF planning system and its delete relaxation-based FF
heuristic [L63]. The similar problem relaxation was never studied in POP or POCL
planning. On the one hand, there are two well-known heuristics for POCL planning that
do rely on delete relaxation (and can also be computed in P), but on the other hand
they also relax the delete effects of the given partial plan and they are also ignoring its
causal links to a large extent [L59, L64] – and it was not clear whether these additional
relaxations are actually necessary to obtain a tractable problem. There is a subtle but
important difference about what exactly is relaxed in classical planning and by these
two heuristics: in state-based forward search, the entire search progress is encoded in
the current state. Thus, delete-relaxing the available actions has no impact on anything
that was already achieved, i.e., the current state is not affected. In POP and POCL
planning, it is the current partial plan that encodes the search progress, so relaxing
parts of it means to also ignore information that was already obtained during search.
We were thus investigating whether just ignoring the delete-effects of the available actions
in the domain while not relaxing the current partial plan results in a tractable problem
class as well. Interestingly, this is not the case: While this problem is in P for classical
problems, it turned out to be NP-complete for POCL planning [9, Thm. 1] (technically,
we only showed this result for POCL planning problems, but it can easily be transferred
to POP problems, because the proof does not inherently rely on causal links). To
show the result, we adopted a proof by Nebel and Bäckström [L84, Thm. 15]) that
shows NP-hardness of deciding whether a partially ordered set of actions does possess
an executable linearization of its tasks (a similar proof was given independently by Erol
et al. [L76, Thm. 8]). All these proofs reduce from the NP-complete SAT problem [L92,
Thm. 13.1]. We can thus observe that the source of hardness stems from the problem
of finding such an executable action sequence – and this problem does, as shown by our
result, not become easier when we are allowed to insert delete-relaxed actions.

From this result we can conclude that it is actually required to perform delete relax-
ation for the given initial partial plan in order to come up with a tractable problem.
On the other hand, as argued above, that partial plan encodes the progress of the
search, so it might also be beneficial not to ignore this information and to cope with the
NP-completeness. In Sec. 3.2, we will see some possibilities how this can be done – and
we will see that exploiting this information is beneficial in certain situations.

21

2 Theoretical Foundations

2.3 HTN and TIHTN Planning Problems

As mentioned in the beginning of the section, complexity results can be exploited in
various ways. The most fundamental one is a deeper understanding of the respective
problem. This is particularly important in hierarchical planning, as there is a huge
variety of different formalizations. Apart from providing deeper insights, such results
can also be exploited for various practical purposes, such as for (the selection of or
improving) algorithms, pruning techniques, heuristics, and problem compilations. For
this, we are interested in identifying the most important factors that might influence the
computational complexity of hierarchical problems.

To systematically analyze hierarchical planning, we are in need of a formalism that satis-
fies certain requirements: First, it needs to be simplistic and second, the solution criteria
should be given explicitly to make it perfectly transparent under which circumstances a
partial plan is regarded a solution. We believe that simplicity is especially important for
mathematical formalisms, because it makes it easier to understand the respective formal-
ism and therefore contributes to making mistakes or misinterpretations less likely. We
believe that the simplicity of the STRIPS formalization as given in Sec. 2.2 contributed
significantly to its general acceptance4. The explicit specification of the solution criteria
is especially important in hierarchical planning, because – as we will see later – there are
many different interpretations and opinions about the nature and purpose of hierarchical
planning. Only when it is perfectly clear under which circumstances a partial plan is
regarded a solution we can state the (non-)equivalence between two problem classes, can
decide whether a problem relaxation is solution-preserving, or give criteria that allow
pruning partial plans during search.

Hierarchical Planning Formalisms (Related Work). Hierarchical planning is centered
around the idea of hierarchical refinement in form of task decomposition. For that pur-
pose, hierarchical planning problems define a hierarchy on the available actions dividing
them into two different sets, namely the already known actions (which are now also
referred to as primitive tasks) and abstract (or, synonymously: compound) tasks. Ab-
stract tasks are considered not directly executable. Instead, they are compound, i.e.,
abstract representations of further primitive and/or abstract tasks. For that purpose,
the domain model contains for each such task a set of so-called decomposition methods,
which specify by which partial plan its abstract task can get refined by replacing it with
the respective partial plan. We give a more formal description later on.

In contrast to classical planning problems, there is neither a standard description lan-
guage for hierarchical problems, nor a generally accepted semantics. Relatedly, the term

4Antoine de Saint-Exupéry once wrote: “Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.” [L96]

22

2.3 HTN and TIHTN Planning Problems

“hierarchical planning” sometimes refers to the technique deployed to solve problems and
sometimes to the respective problem class. Already in 1996, Erol et al. [L76] stated:

There appears to be some general confusion about the nature and role of
tasks in [hierarchical] planning. This appears largely due to the fact that
[hierarchical] planning emerged, without a formal description, in implemented
planning systems. [...] Many ideas introduced in [hierarchical] planning [...]
were formalized only as they were adapted to STRIPS-style planning, and
only within that context. Those ideas not adapted to STRIPS-style planning
(such as compound tasks and task decomposition) have been dismissed as
mere efficiency hacks.

Some hierarchical planning approaches, like the hybrid planning approach by Kamb-
hampati et al. [L68] or the angelic semantic planning approach by Marthi et al. [L48],
just use the hierarchy to find solutions quicker than without hierarchy or to be able
to produce abstract solutions, i.e., solutions that still contain abstract tasks. From a
theoretical (i.e., computational) point of view, the problem that they solve is basically
still a non-hierarchical one, as they only aim at finding an action sequence that satisfies
the goal description – the hierarchy is just intended as advice to speed up the solution
generation process of a classical problem.5

There is still an enormous amount of further hierarchical planning formalisms, which
cannot all be mentioned here. The only survey for hierarchical planning that we are
aware of is that of Georgievski and Aiello [L15]. We do want to mention, however, that
there are various works that combine task decomposition with task insertion [11, L19,
L20, L61, L68, L71, L86], i.e., in these approaches tasks can also be inserted into partial
plans without decomposing an abstract task for this purpose. We will investigate this
feature in more detail below.

Even though hierarchical planning can be used to speed up the solution generation
process, its goal is usually not to find an action sequence that reaches a certain state,
but to find an action sequence that is obtained in a certain way. The goal in hierarchical
planning is hence often (depending on the chosen formalization) not given as a set of

5For Marthi et al.’s angelic semantics approach, the situation is slightly more complicated: the planning
problem does go beyond a non-hierarchical problem description, as it also contains a set of abstract
tasks (which they call high-level actions) that should be refined and their algorithm can only find
plans that result from decomposing them. However, their definition of which action sequences are
regarded a solution [L48, Def. 2] does not require those sequences to be a refinement of the initial
abstract tasks. In their later paper, which proposes optimal algorithms for solving such problems
[L44], their problem definition (right before Def. 1) does not contain initial abstract tasks anymore
(i.e., it is, apart from the definition of the abstract tasks in the domain model, a non-hierarchical
problem). Instead, the initial abstract tasks are directly handed to the search algorithm without
formally being part of the problem that is solved. That is, they do not exploit the hierarchy to
restrict the set of solutions [A10, A20], but to find solutions faster as well as to be able to generate
abstract solutions, in which not every task in a solution needs to be primitive.

23

2 Theoretical Foundations

state variables that should hold after executing a plan, but as a set of (abstract) tasks
that should be achieved. This is also pointed out by Ghallab et al. [L56]:

[Hierarchical] planners differ from classical planners in what they plan for
and how they plan for it. In [a hierarchical] planner, the objective is not to
achieve a set of goals but instead to perform some set of tasks.

So, the definition of a hierarchical planning problem must include an initial partial
plan that needs to be refined (where the latter requirement is captured by the solution
criteria). Erol et al. developed a formalization of this, called hierarchical task network
(HTN) planning, and studied its computational complexity along several dimensions
[L75, L76]. In their formalization, partial plans (which are referred to as task networks
in HTN planning – and from now on within this context), solutions also have to be
a refinement of an initial partial plan/task network. However, they did not explicitly
state so in terms of declarative solution criteria stating under which circumstances a
task network is regarded a solution. Instead, they define the set of solutions via giving a
recursive function that computes it [L76, Sec. 2.4]. That function basically mimics typical
hierarchical planning procedures, since it computes the set of all refinements of the initial
task network and extracts the set of executable action sequences from the set of task
networks that only contain primitive tasks. Erol et al.’s formalism is quite expressive,
allowing a boolean formula for each task network in which various constraints can be
specified, such as ordering constraints, variable bindings, and constraints demanding
that a state feature holds directly before or after a task, or for the complete sequence
of states between two tasks (the latter constraint can be used to simulate causal links,
but is more general). In this detail, Erol et al.’s formalism is closely related to the
HTN formalism described by Ghallab et al. [L56, Sec. 11.5], which also allows to express
these constraints. While these formalisms are quite expressive and therefore useful from
a practical point of view, they are also quite technical, which makes it hard getting
familiar with them. In contrast to Erol et al.’s formalism, Ghallab et al. give the criteria
under which a task network is regarded a solution declaratively, requiring that there
exists a sequence of decompositions that transforms the initial task network into one
that is executable [L56, Sec. 11.5.3, Def. 11.12]6.

One of the more recent developments in hierarchical planning is a new formalism called
hierarchical goal network (HGN) planning [L17, L29]. Rather than being concerned with
the decomposition of tasks, that formalism is concerned with the decomposition of goals.
That is, rather than using task networks as the basic structure, HGN planning relies on
goal networks, i.e., partially ordered sets of goals. Consequently, decomposition methods
do not state how to decompose abstract tasks, but goals. Later, HGN planning was
further extended to include both goal and task decomposition; the resulting formalism
is called goal-task network (GTN) planning [L8].

6Such explicit definitions were also given before, e.g., by Lotem et al. [L67].

24

2.3 HTN and TIHTN Planning Problems

A Novel Formalization for Hierarchical Planning Problems. We have proposed a
novel formalization for hierarchical planning problems [12], for which we have basically
stripped away many of the features available in Erol et al.’s formalization. The resulting
formalism is closely related to the simple task network (STN) formalism by Ghallab
et al. [L56, Sec. 11.2], since here task networks are also simply partially ordered sets of
tasks – without the possibility of expressing constraints other than ordering constraints7.
Our formalization is further distinguished from both by presenting it in a fully propo-
sitional way (but extensions to a lifted presentation were introduced later [A12, A13]).
In contrast to Erol et al.’s formalization [L76], and in accordance to the one by Ghallab
et al. [L56] and Lotem et al. [L67], we state the criteria under which a task network is
regarded a solution in a declarative way.

The two main strengths of our formalism are as follows: it requires only a few easy-to-
grasp definitions while it is still mathematically concise, and it uses declarative solution
criteria that transparently define the circumstances under which a task network is re-
garded a solution. We refer to our formalism as HTN planning formalism [12]. When
extending the solution criteria to allow inserting tasks, the respective formalism is re-
ferred to as TIHTN planning8 (HTN planning with task insertion). The formalization
presented here is just slightly adopted compared to the published variant. We also do
not give the full formalism, but only its most important definitions.

The most fundamental concept is that of task networks, which are simply partially
ordered sets of tasks [12, Def. 1].

Definition 2.3.1. A task network tn = (T,≺, α) is a 3-tuple, where:

• T is a finite set of symbols, so-called task task identifiers,
• ≺ ⊆ T × T is a strict partial order on T , and
• α : T → N , where N is a finite set of task names, is called a task instance mapping.

The set of all task networks using only names in N are referred to by TNN .

In this definition, the partial order ≺ is defined on a set of so-called task identifier
symbols T , which are just arbitrary symbols used for the purpose of differentiating
multiple occurrences of the same task. Using the mapping α, we get the actual task
given a task identifier. More precisely, α maps to the name of the respective task, which
is part of the domain model. In case the respective name α(t), for t ∈ T , is a primitive
task name, then we get its action by relying on a further mapping δ, which is part of
the domain model.
7We can also express variable binding constraints in case of a lifted formalism [A12, A13].
8Please note that the abbreviation “TIHTN planning” was introduced later in the paper by Alford

et al. [L18]. In our first paper on that problem class, we were referring to it as “HTN planning with
task insertion” or, synonymously, as “hybrid planning” [12]. However, after that paper we used the
term “hybrid planning” as done in this thesis: it refers to the fusion of HTN/TIHTN planning with
concepts from POCL planning.

25

2 Theoretical Foundations

Two task networks tn = (T,≺, α) and tn′ = (T ′,≺′, α′) are defined to be isomorphic,
written tn ∼=′, if and only if there is a bijection σ : T → T ′, such that for all t, t′ ∈ T it
holds that (t, t′) ∈ ≺ if and only if (σ(t), σ(t′)) ∈ ≺′ and α(t) = α′(σ(t)).

The domain model is given as follows [12, Def. 2].

Definition 2.3.2. A planning domain is a 5-tuple D = (V,NC , NP , δ,M), where:

• V is a finite set of propositional state variables,
• we require NC ∩NP = ∅ and define N := NC ∪NP , where:

– NC is a finite set of compound task names,
– NP is a finite set of primitive task names,

• δ : NP → A is the task name mapping function, A is a finite set of actions, and
• M ⊆ NC × TNNC∪NP

is a finite set of decomposition methods

An HTN planning problem can now be defined as follows [12, Def. 2].

Definition 2.3.3. A planning problem is a 3-tuple P = (D, sI, tnI), where:

• D is the planning domain,
• sI ∈ 2V is the initial state, and
• tnI ⊆ TNNC∪NP

is the initial task network

As stated before, the solution to a task network is one that is executable and that
is obtained via decomposition from the initial task network. Thus, we first need to
define under which circumstances one task network is the successor of another given the
application of a decomposition method [12, Def. 3].

Definition 2.3.4. A decomposition method m = (c, tnm) ∈ M decomposes a task
network tn1 = (T1,≺1, α1) into tn2 = (T2,≺2, α2) by replacing label t ∈ T1, writ-
ten tn1 −−→t,m tn2, if and only if t ∈ T1, α1(t) = c, and there exists a task network
tn′ = (T ′,≺′, α′) with tn′ ∼=m and T ′ ∩ T1 = ∅, and

tn2 = (T2,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′)|T2 with

T2 := (T1 \ {t}) ∪ T ′
≺X := {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′}

We write tn1 →∗TD tn2, if tn2 can be decomposed from tn1 by using an arbitrary number
of method applications.

The definition simply requires that the decomposed task t is being removed from the
task network and in its stead the tasks and their orderings of the method’s task network
tnm are added to the resulting network. Further, all orderings that were incorporating t

26

2.3 HTN and TIHTN Planning Problems

prior to decomposing it are “inherited down” to all tasks that get added. Note that the
operator |T2 is defined as a restriction of the respective sets to elements in T2 thereby
removing all elements that reference the decomposed task t.

Having defined the essential means to modify task networks in hierarchical planning
would already allow us to define the criteria under which a task network is considered a
solution. However, one of the major contributions – and in fact our main goal – of our
paper was to investigate the theoretical impact of being allowed to insert tasks into task
networks [12]. For that reason, we also need to define the circumstances under which
one task network is the successor of another given the insertion of a task [12, Def. 4].

Definition 2.3.5. Given a task network tn1 = (T1,≺1, α1) and a primitive task name
p, then tn2 can be obtained from tn1 by insertion of the task name p, if and only if
tn2 = (T1 ∪ {t},≺1, α1 ∪ {(t, p)}) for some t /∈ T1.

We write tn1 →∗TI tn2 if tn2 can be obtained from tn1 via the insertion of an arbitrary
number of task insertions.

In hierarchical planning, a solution must satisfy two criteria: it needs to be executable
and it needs to be a refinement of the initial partial plan. We now formally define both
requirements.

Definition 2.3.6. A task network tn = (T,≺, α) is called executable in a state s0 ∈ 2V

if and only if it is primitive (i.e., tn ∈ TNNP
) and there exists a linearization of its tasks

t1, . . . , tn, n = |T | that is compatible with ≺ and there is a sequence of states s0, . . . , sn,
such that γ(si, δ(α(ti+1))) = si+1 for all 0 ≤ i < n.

Note that according to this definition, a task network is regarded executable if there
exists an executable linearization of its actions. We decided to use this definition, since
it is the one being used by Erol et al. for their formalization [L76]. Also, it further
simplified the formalization, because we do not have to define ordering insertions that
way. In hybrid planning (see next section), in contrast, every linearization needs to be
executable – we will discuss this later on.

All that is left to obtain the solution criteria is defining under which circumstances a
task network is regarded a refinement of the initial task network.

Definition 2.3.7. A task network tnS is a solution to a planning problem P if and only
if tnS is executable in sI and one of the following holds:

• either tnI →∗TD tnS
• or there is a task network tn′, such that tnI →∗TD tn′ →∗TI tnS

In the first case, tnS is called an HTN solution and an TIHTN solution in the second.

27

2 Theoretical Foundations

Note that we have two different notions of a solution, one that only allows decomposition
as a means to modify task networks and one that also allows task insertions. In both
cases, the syntactical representation of the domain and problem is identical – only the
solution criteria are different. Still, we refer to a planning problem according to Def. 2.3.3
as HTN planning problem if we are interested in obtaining HTN solutions, and we refer
to it as TIHTN planning problem if we are interested in obtaining TIHTN solutions.

As noted in the beginning of this section, the proposed formalism was used or adopted
as the basis for several further theoretical results. We will give some details below (most
notably about our main result on the influence of task insertion). Apart from these
theoretical investigations, it was also influencing some other works in the literature
[L11, L15, L16].

Complexity Results. HTN planning is generally known to be more expressive than
typical classical planning – e.g., in the form of STRIPS as presented in Sec. 2.2. This
was shown by Erol et al. by encoding the undecidable problem whether two context-
free grammars produce a common word [L92, Thm. 8.10] as an HTN planning problem
[L76]. It is easy to see that this can be achieved canonically by relying on a hierarchical
planning problem via exploiting the close relationship between non-terminal symbols and
compound tasks as well as between grammar rules and decomposition methods. Due
to Erol et al.’s encoding with the property that the respective HTN planning problem
has a solution if and only if the given (but arbitrary) context-free grammars produce
a common word, the undecidability of HTN planning was shown. To show that our
simplification of Erol et al.’s formalism is still expressive enough to encode undecidable
problems, we replicated their proof in our formalism [12, Thm. 1] – thereby confirming
the undecidability result for our formalization of HTN planning.

We give an example to illustrate their proof graphically, in particular to use the example
for demonstrating the impact of task insertion. Let us consider the two context-free
grammars G = ({H,Q}, {a, b}, R,H) and G′ = ({H ′, Q′}, {a, b}, R′, H ′). H,Q,H ′, and
Q′ are the non-terminal symbols of G and G′, respectively. They use the same terminal-
symbols a and b. The start symbol of G is H and that of G′ is H ′. The grammars’
production rules are given by R and R′:

Production rules R: H → aQb Q→ aQ | bQ | a | b
Production rules R′: H ′ → aQ′H ′ | ab Q′ → a | b

The grammars’ languages, i.e., the set of words produced by them, are L(G) = a(a|b)+b
and L(G′) = (a(a|b))∗ab, respectively.

In the proof that reduces the language intersection problem of two context-free grammars
to the HTN plan existence problem [12, L76], the initial task network contains the start
symbols of the two grammars, which are used as compound task names in the respective

28

2.3 HTN and TIHTN Planning Problems

H → a Q b

Q→ a Q

Q→ b Q

Q→ a

Q→ b

H ′ → a′ Q′ H ′

H ′ → a′ b′

Q′ → a′

Q′ → b′

Figure 2.2: The figure shows the graphical illustration of the decomposition methods translated
from the grammars’ production rules. Blue boxes with rounded corners are compound task
names, and white boxes with angled corners are primitive task names. (The source code of this
graphic was created by both Thomas Geier and the thesis’ author, Pascal Bercher.)

planning problem. All production rules are directly translated to HTN planning in the
canonical way by introducing one totally ordered decomposition method per rule, and
each symbol is replaced by either a compound or a primitive task name (see Fig. 2.2).
Note that we can assume that the two grammars use different non-terminal symbols
(otherwise: rename). Also, we can assume that they have at least one terminal symbol
in common (otherwise: the answer to the problem is no, except if both grammars produce
the empty word, which can be tested separately). Since we require different preconditions
and effects for a primitive task encoding a terminal σ stemming from G and the same
terminal σ stemming from G′, we use two different primitive tasks with names σ and
σ′, respectively. We do not want to reproduce the full proof here, so we also do not give
details how exactly the preconditions and effects look like. It suffices to mention that
they ensure that a primitive task network is executable if and only if it contains two
identical primitive task name sequences.

We now take a look at the example search space depicted in Fig. 2.3 to discuss the
impact of task insertion. We can see that the task network tn6 is an HTN solution,
because it was produced by only using decompositions and because it contains two
primitive task name sequences that encode the same word. However, we can also see
that using the TIHTN solution criterion creates solutions that do not form witnesses
for the intended language intersection problem. When looking at the non-solution task
network tn8, we can observe that it can be turned into the task networks tn9 and tn10.
The task network tn9 is equivalent to tn6, so it forms a witness. However, the task
network tn10 is executable as well (and hence forms an TIHTN solution), but it is no
HTN solution, because no sequence of decomposition methods can introduce the task
sequence a′a′b′ (because aab /∈ L(G′)). Thus, this task network is a false witness for
positively answering the language intersection problem. So, what we can observe from
this example is that task insertion is a powerful capability to achieve executability (as,

29

2 Theoretical Foundations

H

H ′

a Q b

H ′

a b Q b

H ′

a b a b

H ′

a b a b

a′ Q′ H ′

a b a b

a′ b′ H ′

a b a b

a′ b′ a′ b′

decompose H ′

decompose Q′

decompose H ′

decompose Q

decompose Q

a a b

H ′

a a b

a′ b′

a a b

a′ a′ b′

insert a′

decompose H ′

decompose Q

decompose H

a b a b

a′ b′ a′ b′

insert b, a′, b′

tnI (initial task network)

tn1

tn2

tn3

tn4

tn5

tn6

tn7

tn8

tn9

tn10

Figure 2.3: The tree depicts a fragment of a search space for the planning problem P with the
initial task network tnI. Primitive tasks are shown in white, compound tasks in blue. Newly
introduced tasks are marked by a thick border. Task networks with gray background color are
either HTN or TIHTN solutions. (The source code of this graphic was created by both Thomas
Geier and the thesis’ author, Pascal Bercher.)

30

2.3 HTN and TIHTN Planning Problems

e.g., it can turn tn8 into a solution), but care must be spent what this means with
respect to the set of intended solutions. In fact, we have shown that the influence of task
insertion is so severe to make the resulting formalism decidable [12, Cor. 2], which means
that the TIHTN planning formalism is – in contrast to the HTN planning formalism –
not expressive enough to express the intended language intersection problem.

The reason for decidability is that there is no necessity anymore to use cyclic decomposi-
tions. Instead of applying the same method several times to introduce the required tasks
in HTN planning, we can also apply it only once in TIHTN planning and introduce the
remaining actions via task insertion. For instance, in our example shown in Fig. 2.3, we
need to decompose Q and H ′ twice each to obtain tn6, but relying on task insertion,
we can also decompose them just once, leading to tn8, which can then be turned into
tn9
∼= tn10 via task insertion. The key observation here is that, due to the undecidability

of HTN planning, there cannot be a known bound on the number of required decomposi-
tions, but we can compute such a bound for the number of additionally inserted actions,
because at some point inserting actions does produce a cycle in the state space.

Complexity Results (Related Work). With the previous result, we laid the ground-
work of several further investigations of task insertion – both by us and by others. In
our first work concerning TIHTN planning, we “only” showed EXPSPACE member-
ship for TIHTN problems [12, Cor. 1]9, since our main intention was providing insights
into a completely new way to obtain decidability in hierarchical planning. Later, tight
complexity bounds were provided for both totally ordered problems (where the initial
task network as well as the task networks in all decomposition methods are totally or-
dered) and partially-ordered ones. For both, Alford et al. gave complexity results for
the propositional formalization as described above, and for a lifted representation, where
the model relies on a quantifier-free first-order predicate logic [A13]. We do not give any
further details here, as it is outside the main scope of the thesis. Task insertion was also
studied by Alford et al. who proved that TIHTN problems become solvable in P when
being delete-relaxed and having no negative preconditions (while delete-relaxed HTN
problems are NP-complete) [L18, L21]. Recently, TIHTN problems were further studied
by Xiao et al. [L7]. They showed that extending TIHTN planning by state constraints
does not make the plan existence problem harder (or easier). State constraints were one
of the constraints present in Erol et al.’s formalism, which we have stripped away (see
above).

Based on our formalization of HTN (and TIHTN) planning, Alford et al. also proved
a series of tight complexity results for HTN planning. As done in the analog paper
that investigates the TIHTN planning complexity [A13], the respective paper about
the HTN bounds [A12] bases its analysis on a lifted representation and investigates the

9Although our proof only states EXPSPACE membership, it requires only minimal adjustments to show
the (presumably) lower bound of NEXPTIME membership.

31

2 Theoretical Foundations

impact of variables. Further, the impact of structural restrictions is investigated, such as
considering partially and totally ordered problems as well as further restrictions on the
hierarchy, such as acyclicity, to name just one example. Most of the these investigated
restrictions were identified by Alford et al. [L21, L26]. For one of them, tail-recursive
problems (which are problems, where recursion can only occur through the very last task
in any task network)10, Alford et al. developed a technique that translates these problems
into classical planning [A7]. Tail-recursion limits the impact of cyclic method structures
enough to show that there is a maximum size of any task network that can possibly be
generated when performing forward progression search [L26]. Alford et al. showed how
this bound can be approximated in P to be exploited for an automatic translation into
classical planning [A7]. Details are out of the scope of this thesis, however.

Alford et al. further studied the computational complexity of both HGN problems and
their extension to GTN problems [L8]. In their analysis, they addressed both task
insertion as well as task sharing, which allows two tasks to be “fused together” given
they are identical and totally unordered with respect to each other. Task sharing is a
feature that can be expressed in the Action Notation Markup Language (ANML), which
is a language for describing temporal planning problems with hierarchical aspects [L45].
In their investigation, Alford et al. gave solution-preserving compilations and complexity
results for the plan existence problem for many of the resulting problem classes.

Further related work that is based upon our formalization is concerned with deciding the
plan verification problem. It is concerned with deciding whether a given task network is
a solution for a given HTN planning problem. This problem is much more complicated
than in non-hierarchical planning, because not only is the verification of a task network’s
executability harder than that of a totally ordered action sequence, but additionally we
need to check whether such a network can be obtained from the initial task network by
applying the available decomposition methods. Behnke et al. [L14] showed that this test
is NP-complete under several restrictions (e.g., when also an executable witness of the
task network’s executability is given, which is by itself NP-complete to find [L76, L84]).
This result was exploited by encoding this problem in a SAT problem thereby obtaining
the very-first validator for HTN planning [L2]. Behnke et al. further used the theoretical
HTN plan verification results as the basis for investigating the computational complexity
of change requests in hierarchical mixed-initiative planning (MIP) [A8]. Here, a human
user is incorporated in the plan generation process and he or she can request changes to
the current task network presented to him or her. The results obtained help to develop
MIP systems that can address such requests. This is outside of the scope of this thesis,
however.

The last presented direction of related work within hierarchical planning is concerned

10Please note that the name tail-recursive problem was introduced in a later paper [A12], and not in the
one where this class has originally been described [L26]. Here, tail-recursive problems do not have a
name yet and are defined by the formal criterion that they must be ≤r-stratifiable.

32

2.4 Hybrid Planning Problems

with a direct investigation of a planning problem’s expressivity. The most common way
to investigate the expressivity of a planning problem is via the investigation of the com-
plexity of its plan existence problem. Using this indirect way of measurement ignores
certain aspects of a problem’s complexity, however. In particular, the plan existence
problem is only interested in the computational hardness of deciding whether there ex-
ists a solution. However, two problems could have the same computational complexity,
whereas their sets of solutions can still differ – and we argue that two planning prob-
lems can be regarded equivalent if and only if they posses the very same set of solutions
(formally: there needs to be an isomorphism between the two sets). Therefore, we
investigated the relationship between different planning formalisms (based on our for-
malization) and to the Chomsky Hierarchy [A10, A20]. Details are out of the scope of
this thesis, however.

Finally, we used our novel formalization as a basis for a novel formalization for hybrid
planning. Thereby, we were able to transfer many results for HTN planning to the hybrid
setting, as explained next [4].

2.4 Hybrid Planning Problems

When planning technology is applied in practice, we are facing many new problems and
interesting questions. For instance, one of the problems that has attracted only very
little attention in the planning community is the issue of modeling support. Even if
we have carefully picked our planning formalism of choice and are fully aware of its
theoretical properties, it is still a tedious and, more importantly, error-prone task to
model the actual problem at hand. We are thus interested in the question whether
automated modeling support can be provided to prevent making modeling mistakes.

Non-surprisingly at this point, using the hybrid planning formalism as a basis is central to
our answer to that question. Hybrid planning problems fuse HTN problems with POCL
problems in the way that abstract tasks contain preconditions and effects. Further, the
partial plans used in the model’s decomposition methods may use causal links. Both
features are being used to ensure that the model adheres the modeler’s intent. However,
hybrid problems thereby differ both from HTN as well as from POCL problems (both in
terms of the syntactical problem representation, and in terms of the solution criteria),
so it is not clear which theoretical properties this problem class has. As argued before,
knowing about such foundational properties is not just an essential first step, but it can
be exploited in many ways, so we are interested whether the results for HTN planning
can be transferred to the hybrid setting.

33

2 Theoretical Foundations

Hybrid Planning Formalism (Related Work). By hybrid planning [4, 11], we refer to a
hierarchical planning problem class that fuses HTN planning problems with POCL plan-
ning problems. The name “hybrid planning” goes back to Kambhampati et al. [L68]
and Biundo and Schattenberg [L61], but related ideas have been promoted by several
research groups [4]. In particular, many hierarchical planning formalisms use a formal-
ization of abstract tasks in which they have preconditions and effects [11, L19, L20, L44,
L48, L61, L62, L68, L79, L85, L86, L87, L90] – this is in contrast to the HTN formaliza-
tion by Erol et al. [L76] or us [12], for which most theoretical investigations have been
done.

These preconditions and effects are exploited in different ways, e.g., in combination with
task insertion to be able to insert also abstract tasks into partial plans [11, L68]. Marthi
et al. exploit them to describe the set of states in which an abstract task is applicable, as
well as to describe the set of states reachable by some refinement of that abstract task
[L44, L48]. This is in contrast to the semantics of preconditions and effects in our hybrid
formalism, in which they can be used more flexible, but also less restrictive with regard
to the set of states reachable [4]. In hybrid planning, as well as in other formalisms,
in which abstract tasks use preconditions and effects, they are used to clearly state the
circumstances under which a decomposition method is regarded a legal implementation
of its abstract task [L61, L86, L90]. These so-called legality or implementation criteria
can be exploited to prevent modeling mistakes, because they can be automatically tested
and relate the preconditions and effects of the abstract task to those of the tasks used in
its decomposition methods [4]. These criteria pose additional restrictions on the model,
so excluding non-legal methods can, potentially, influence the computational complexity
of these models. A systematic investigation of this question was not possible up to this
point, however, because of the large amount of different formalizations. To systematically
analyze the impact of these criteria, we hence need a unified formalism in which all these
criteria can be expressed.

A Novel Formalization for Hybrid Planning Problems. To obtain a hybrid planning
formalism that is well-suited for the investigation of computational aspects – under con-
sideration of the legality criteria from the literature [L61, L86, L90] – we have adapted
the previously introduced formalization of HTN planning [12] by the necessary POCL
concepts [4]. Again, we do not give all the technical details here, but just the most im-
portant concepts. Further, we again slightly adopted the formalization for presentational
purposes.

We start giving the definition of partial plans [4, Def. 1], which are similar to those
known from POCL planning, but they may now also contain abstract tasks. It extends
Def. 2.3.1 by a set of causal links. Thus, partial plans and task networks coincide given
the set of causal links is empty.

34

2.4 Hybrid Planning Problems

Definition 2.4.1. A partial plan P is a 4-tuple (PS,CL,≺, α), where:

• PS is a finite set of symbols, so-called plan steps,
• CL ⊆ PS×V ×PS is a set of causal links. If (ps, v, ps′) ∈ CL, then v ∈ prec+(ps′)

and v ∈ eff +(ps) or v ∈ prec−(ps′) and v ∈ eff −(ps). We also require that every
precondition variable of all plan steps is protected by at most one causal link,
• ≺ ⊆ PS × PS is a strict partial order. If (ps, v, ps′) ∈ CL with α(ps) and α(ps′)

being primitive, then (ps, ps′) ∈ ≺,
• α : PS → N labels every plan step with its task name.

The set of all partial plans using only names in N are referred to by PN .

The domain model of a hybrid problem [4, Def. 2] is almost identical to those of HTN
problems, but the decomposition methods rely on partial plans rather than on task
networks. Further, the definition of δ, which maps task names to their preconditions
and effects is now defined for all task names – not just the primitive ones.

Definition 2.4.2. A hybrid planning domain is a 5-tuple D = (V,NC , NP , δ,M), where:

• V is a finite set of state variables,
• we require NC ∩NP = ∅ and define N := NC ∪NP , where:

– NC is a finite set of compound task names,
– NP is a finite set of primitive task names,

• δ : N → A ∪ AC is the task name mapping function, A is a finite set of actions,
AC ⊆ (2V)4 describes the compound tasks’ preconditions and effects, and

• M ⊆ NC × PN\{init ,goal} is a finite set of (decomposition) methods.

As noted before, we only want to include decomposition methods that adhere the mod-
eler’s intent. This can be achieved by defining criteria that must hold for the model’s
methods – otherwise the respective domain is not regarded valid and hence rejected. We
do not give these criteria here, but discuss them in the next part (after having introduced
the formalism) that is concerned with modeling assistance.

The definition of a planning problem [4, Def. 2] does, as it is the case for POCL problems,
extend the domain by an initial partial plan.

Definition 2.4.3. A hybrid planning problem is a pair P = (D, PI), where:

• D is the planning domain and
• PI ∈ PN is the initial partial plan.

As it is also done for POCL planning problems, the initial state and goal description are
specified in terms of two special actions encoding the initial state s0 and the goal descrip-
tion g. Thus, in contrast to HTN or TIHTN problems, hybrid problems also specify a

35

2 Theoretical Foundations

goal description. However, this is merely a formalization choice (motivated by practical
considerations), because adding a goal description does not influence expressivity in any
way. It can easily be expressed relying on the hierarchy [12].

We have now given all the syntactic definitions that differentiate hybrid problems from
typical HTN/TIHTN problems. It remains to give the semantic changes, i.e., the solution
criteria. Due to the more expressive syntax (compound tasks have preconditions and
effects, and the model may contain causal links in the decomposition methods), both
the definition of refinement needs to be adapted as well as the definition of executability.
In case of refinement, one needs to clearly define in which way causal links that involve
a compound task are inherited down upon decomposition of that task. This is a quiet
technical question that has often be ignored in other formalisms or just been mentioned
in informal text. A clear mathematical definition is important, however, to answer
questions related to the computational complexity. We do not give a technical definition
here, however, but only state informally that every causal link involving a compound
task is inherited to each compatible sub task in the method’s partial plan, branching over
the different possibilities [4, Def. 3]. The definition of executability is taken from POCL
problems: there are no open preconditions and no causal threats. Thus, in contrast to
HTN planning, it does not suffice that there exists an executable linearization, but all
linearizations need to be executable [4, Def. 6].

Providing Modeling Assistance. While many hierarchical planning approaches use
preconditions and effects for abstract tasks [11, L19, L20, L44, L48, L61, L62, L68,
L79, L85, L86, L87, L90], only a few give explicit criteria under which a partial plan
is regarded a legal implementation of its abstract task [L61, L86, L90]. Without such
criteria, we can basically specify arbitrary decomposition methods for any partial plan
– which is a possible source of modeling mistakes: entire tasks can be forgotten, or
single preconditions or effects. Even the interaction of tasks within a method can be
in a different way than intended, preventing the modeled decomposition method from
serving the intended purpose. As long as compound tasks are just names, it is hard to
come up with an automated way to assist in finding such mistakes.

Consider the example depicted in Fig. 2.4. It shows a compound move task that is
supposed to move an object (represented by the variable ?obj) from one location (repre-
sented by the variable ?from) to another location (represented by the variable ?to). The
task is considered not directly executable, so there is a decomposition method that states
which primitive tasks implement it. Executing the two tasks pick and place after each
other is intended as an implementation of the compound task. Since we use the hybrid
planning formalism, we are able to specify preconditions and effects for the move task.
Based on them, different legality criteria can ensure that the given method is fulfilling
its purpose. As indicated by the lines dotted in blue, we can see that all preconditions
of move are also used as preconditions in some tasks of the method. Further, all ef-

36

2.4 Hybrid Planning Problems

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)

move(?obj,?from,?to)
at(?obj,?to)

¬at(?obj,?from)
at(?obj,?from)

decomposes to

Figure 2.4: Example for a compound task (move) with preconditions and effects and one of its
methods. The method’s partial plan consists of the primitive tasks pick and place and a causal
link protecting the condition holding. The dotted blue lines indicate how the preconditions and
effects of the tasks in the method’s partial plan are related to their more abstract representation.
(The graphic is taken from earlier work with adjusted colors [4, Fig. 1].)

fects of move are used as effects of some tasks in the method. This criterion (which we
called downward compatible [4, Def. 7]) is quite unrestrictive, but it already reduces the
probability that preconditions, effects, or even tasks are forgotten to be modeled. Other
criteria are more restrictive, as they take the interconnection between preconditions and
effects into account. The criteria by Biundo and Schattenberg [L61], for example, would
also check that the compound task’s effects hold in the state that is produced after exe-
cuting the method’s tasks. For a deeper discussion on the investigated criteria we refer
to our paper [4].

Complexity Results. Although hybrid planning is a hierarchical planning formalism,
it was not clear whether Erol et al.’s and Alford et al.’s complexity results apply to
it. So, it was not even clear whether hybrid planning is expressive enough to encode
undecidable problems. The main reason for this is that the legality criteria restrict the
set of methods that may be specified: only legal methods are allowed, so it might be
that this restriction influences expressivity.

We start by investigating the computational complexity of the plan verification problem.
We were able to transfer the recently published result for HTN planning [L14] to the
hybrid setting: We showed that deciding whether a partial plan is a solution to a given
hybrid problem is NP-complete [4, Thm. 3]. This holds independent of the demanded
legality criteria. The reason is that the hardness proof constructs a hybrid planning
problem in which no state variables are required, so all legality criteria are automatically
satisfied. Interestingly, plan verification for hybrid problems without compound tasks
is in P [4, Lem. 3], whereas the same problem is NP-complete in HTN planning [L14,
Cor. 2]. The reason for this difference lies in the different solution criteria: for a task
network being an HTN planning solution, it must possess an executable linearization
(which is alone NP-complete to determine [L76, L84]), but for a partial plan being a
solution, all linearizations need to be executable, which is easier to test.

37

2 Theoretical Foundations

We have also investigated the plan existence problem. For this purpose, we have shown
that, independent of which of the considered legality criteria is used, any HTN planning
problem can be encoded as a hybrid planning problem in a solution-preserving manner
[4, Thm. 1]. The first step in the proof is not to use any preconditions and effects for
the compound tasks and not to use any causal links – then, hybrid planning domains
syntactically coincide with HTN planning domains. However, we still need to ensure
that all legality criteria hold, which does not follow from the fact that compound tasks
do not have preconditions and effects. For instance, the criterion by Yang requires,
related to the concept of causal links, that no precondition of a method’s partial plan is
threatened by another effect [L90, p. 14]. We can ensure that no criterion is violated by
simply “moving” each primitive task in a method on its own and introducing an effect-
and precondition-free compound task that is associated with exactly this method. That
way, each partial plan contains either only compound tasks or just a single task. In both
cases, all legality criteria hold. However, due to the different solution criteria, there is
no 1-to-1 correspondence between the set of solutions of the given HTN problem and
the hybrid problem that encodes it. Instead, for each executable action sequence in any
HTN solution task network there exists a solution plan containing the same sequence
[4, Thm. 1]. From this we can conclude that hybrid planning is as expressive as HTN
planning in the general case, i.e., semi-decidable and undecidable [4, Thms. 4 and 5]. We
can also conclude that many structural special cases of hybrid planning (such as totally
ordered problems) are as hard as in HTN planning (namely those structures that are
not affected by the encoding; see the paper for details).

With this analysis, we have provided the first theoretical investigation of hybrid plan-
ning. At the time being, we did only investigate the purely hierarchical solution criteria.
Considering hybrid planning with task insertion is future work.

38

There is more to life than forward search
using primitive grounded actions.

Stuart Russell, Invited Talk at ICAPS 2015

3 Search and Heuristics

Motivation. Hierarchical planning is computationally hard (see Sec. 2). Both HTN
planning as well as hybrid planning is in the general case undecidable. Even though
this worst-case complexity does not always occur in practice, problems are ordinarily
still too complex to solve them with blind, uninformed algorithms. So, we are in need
of an informed algorithm that is able to solve hybrid problems and all its sub classes
mentioned in the last section heuristically. Solving planning problems as quickly as
possible is especially important if the respective system is applied for our endeavor of
assisting human users, since we want to reduce waiting times as much as possible.

The algorithm should further be able to generate optimal solutions, which is of particular
importance for assisting human users. Sup-optimal planners are often quite good in
solving problems quickly, but the solutions they produce might be counter-intuitive to a
human user in case they contain obvious redundancies (which often happens in practice),
such as plugging in a cable, then unplugging it again, followed by plugging it in again.

Both efficiency as well as optimality can be guaranteed by providing the search algorithm
with heuristics with certain properties: they need to be well-informed to find solutions
quickly, and they need to be admissible to find optimal solutions.

Summary of Core Contributions. The first contribution for solving hierarchical prob-
lems quickly is the development of a heuristic search algorithm, called Panda, for hybrid
planning problems [7]1. It can solve the full spectrum of problem classes elaborated on in
the last section (cf. Fig. 2.1), i.e., hybrid planning problems without and with task inser-
tion, HTN and TIHTN problems, as well as POCL and POP problems. In its core, the
algorithm is a standard POCL planning procedure – but extended in a way that allows
to cope with abstract tasks. As such, it performs search in the space of partially ordered
partial plans, which rely on causal links to ensure applicability of its tasks. The re-
spective planner is one of the very few domain-independent heuristic search planners for
hierarchical planning problems. Its performance is evaluated empirically and compared
to standard search strategies from the literature in several benchmark domains.

1The proposed algorithm is an improvement of an earlier version of the respective system [L38].

39

3 Search and Heuristics

As a basis for informed heuristics, we exploit the so-called Task Decomposition Graph
(TDG) [1, 10], which represents the AND/OR structure underlying any hierarchical
planning problem. We introduced the concept of so-called local hierarchical landmarks
of an abstract task t, which are all tasks (primitive or abstract) that occur in any
sequence of decompositions leading from a partial plan containing t to a solution. These
local landmarks are used as the basis for informed search strategies to provide a ranking
for the usefulness of different plan refinements [10]. These landmark strategies have
been particularly designed for the use in a specialized version of the Panda system, a
predecessor of the one proposed in this thesis. We have adopted the core ideas behind
the landmark-based ranking strategies for that particular system and transferred them
to the novel hybrid planning algorithm in the form of standard heuristics that estimate
the effort of turning a partial plan into a solution [7]. The heuristics are applicable to
all hierarchical problem classes, i.e., independent of whether task insertion is allowed or
not, and independent of whether causal links are present in the domain and problem
description.

The heuristics mentioned before estimate the remaining effort to turn a partial plan into
a solution – based on landmarks [7]. However, such landmarks do not always exist, even if
the problem is solvable. Further, even if landmarks do exist, the extraction procedure is
not always capable of identifying all of them. We have thus developed further heuristics
that are also well-informed in the complete absence of any landmarks. We introduce two
such heuristics, which both share the same general idea of how estimates are computed,
but they are different in what kind of goal distance they estimate. They both traverse
the TDG exploiting its AND/OR structure in the canonical way by minimizing over
the available methods for estimating the effort of an abstract task, and by summing
over the effort of the tasks in a method’s partial plan for estimating the effort of such
a method [1]. The first heuristic based on this idea is called modification-aware TDG
heuristic. It estimates the least number of modifications (i.e., causal link insertions and
task decompositions) the Panda planner needs to perform to turn a partial plan into
a solution. The second heuristic is called cost-aware TDG heuristic. It estimates the
costs of the actions that need to be inserted into the given partial plan to turn it into
a solution. This estimate is admissible thereby allowing to find optimal solutions. In
fact, this is the very first admissible heuristic for both hybrid and for HTN planning
problems. The resulting planner configuration is thus the very first planner that can
find optimal solutions for standard HTN and hybrid problems heuristically2.

We have also shown that recomputing the TDG during planning can improve heuris-
tic accuracy [1]. The key observation here is that the heuristics as proposed above are
preprocessing heuristics, because the TDG is computed only once prior to planning.
Recomputing the TDG during planning can remove parts of it that have become un-

2Note that there are further optimal heuristic search planners for hierarchical panning in the literature.
However, they assume that admissible heuristic estimates are given in the input, or they are defined
for different hierarchical problem classes, as mentioned in Sec. 3.3.

40

reachable due to a different action set that is reachable from the current search node.
We have shown in which situations during planning rebuilding a TDG might be benefi-
cial to avoid recomputations that would not lead to increased heuristic accuracy. Since
the recomputation comes at the cost of additional runtime overhead, the recomputation
does not always pay off in terms of runtime. The achieved search space reductions vary
in different problem instances; the largest reductions are up to 93%, which coincide with
runtime reductions of 40%.

We have also developed heuristics for the special case of hierarchical planning that
arises in situations, in which all abstract tasks have already been decomposed and we
end up in partial plans, in which all tasks are primitive. These are the problem classes
POP and POCL – assuming that task insertion is allowed. The first heuristic that we
have developed is called SampleFF [9]. It is based upon the well-known FF heuristic
from classical planning [L63]. In contrast to the FF heuristic, which estimates the goal
distance for a given current state, the SampleFF heuristic estimates the goal distance for
a given current partial, non-linear plan. In contrast to other state-of-the-art heuristics
that estimate the goal distance of such partial plans [L59, L64], SampleFF exploits causal
links, the partial order, and the negative effects of the plan steps in the given partial
plan to a large extent. To be able to do so, it samples a fixed number of linearizations
of these tasks and computes, based on the FF heuristic, a delete-relaxed plan in which
all these sampled tasks are contained. Due to the exploitation of all the information
that is available in a given partial plan, the heuristic is very well informed. Among
all evaluated heuristics, it was the only one being able to prove the unsolvability of an
unsolvable problem instance – all other evaluated heuristics incurred timeouts. However,
it requires more time per search node, which makes it less efficient in terms of solving
time compared to the least informed, but extremely fast, POCL heuristics from the
literature [L59, L64]. It does, however, show great potential for reducing the search
space by pruning search nodes that cannot be turned into solutions.

We have come up with another technique for estimating the goal distance of a primitive
partial plan. This technique is more general than one particular heuristic, as it makes
heuristics from state-based classical planning directly applicable to POCL planning [8].
It works as follows: we encode a given partial plan for which a heuristic should be
computed into the given planning problem, such that we do not rely on that partial
plan anymore. Instead, every solution to the altered problem is a refinement of that
partial plan. That way, we can use any heuristic from state-based planning3 to estimate
the goal distance from the initial state of the altered problem and use it as heuristic
for the partial plan. Using this technique gives us the first well-informed admissible
heuristics for POCL planning, since any admissible state-based heuristic serves as an
admissible heuristic for POCL planning. Our empirical results were quite promising:
the well-known (admissible) LM-cut heuristic for state-based planning [L36] produced

3Since heuristics perform problem relaxations, not every heuristic will be suited for our encoding, as
they might relax the information that encodes the given partial plan within the new problem [8].

41

3 Search and Heuristics

significantly smaller search spaces than the currently best-performing (non-admissible)
heuristics for POCL planning.

The above-mentioned core contributions are published in the following publications:

[1] P. Bercher, G. Behnke, D. Höller, and S. Biundo. “An Admissible HTN
Planning Heuristic”. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence (IJCAI 2017). AAAI Press, 2017, pp. 480–488. doi:
10.24963/ijcai.2017/68

[7] P. Bercher, S. Keen, and S. Biundo. “Hybrid Planning Heuristics Based on
Task Decomposition Graphs”. In: Proceedings of the 7th Annual Symposium on
Combinatorial Search (SoCS 2014). AAAI Press, 2014, pp. 35–43

[8] P. Bercher, T. Geier, and S. Biundo. “Using State-Based Planning Heuristics
for Partial-Order Causal-Link Planning”. In: Advances in Artificial Intelligence,
Proceedings of the 36th German Conference on Artificial Intelligence (KI 2013).
Springer, 2013, pp. 1–12. doi: 10.1007/978-3-642-40942-4_1

[9] P. Bercher, T. Geier, F. Richter, and S. Biundo. “On Delete Relaxation in
Partial-Order Causal-Link Planning”. In: Proceedings of the 2013 IEEE 25th In-
ternational Conference on Tools with Artificial Intelligence (ICTAI 2013). IEEE
Computer Society, 2013, pp. 674–681. doi: 10.1109/ICTAI.2013.105

[10] M. Elkawkagy, P. Bercher, B. Schattenberg, and S. Biundo. “Improving
Hierarchical Planning Performance by the Use of Landmarks”. In: Proceedings
of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012). AAAI
Press, 2012, pp. 1763–1769

3.1 Search Algorithm

In this section, we introduce our heuristic hybrid planning system Panda (Planning
and Acting in a Network Decomposition Architecture) that is able to solve all problem
classes that were introduced in the last section (cf. Fig. 2.1).

Panda is a planning framework that also features components for linearizing plans [2,
A21], repairing plans [2, 6, 11, L41], explaining plans [2, 6, 11, L28], and verifying plans
[L2, L14]. For a more detailed discussion on these user-centered planning capabilities,
we refer to Sec. 4.2. Here, we focus on Panda’s search routine.

Panda has a development history of approximately 15 years. Before introducing it and
its history, we give a short overview of related work.

42

http://dx.doi.org/10.24963/ijcai.2017/68
http://dx.doi.org/10.1007/978-3-642-40942-4_1
http://dx.doi.org/10.1109/ICTAI.2013.105

3.1 Search Algorithm

Solving Hierarchical Planning Problems (Related Work). As noted in Sec. 2.2, the
currently most-pursued planning approach is solving classical planning problems via
forward search in the space of states using primitive grounded actions. In hierarchical
planning, there is a similar approach based on progressing a current state. The respective
system is called SHOP2 [L58] – it solves a slight variation of the standard HTN problems
as they were presented in Sec. 2.3. The most important difference is that the HTN prob-
lems that SHOP2 solves supports so-called method preconditions, which are especially
designed for this progression-based planner: they specify the circumstances under which
a decomposition method may be used to decompose an abstract task. These precondi-
tions further allow to specify a precedence of the available methods and are a means to
encode domain- and/or problem-specific control knowledge. Due to these powerful pre-
conditions, SHOP2 is no heuristic search planner. Instead, it performs blind depth-first
search. Its efficiency completely depends on the hand-tailored expert knowledge that is
given in terms of the task hierarchy and, particularly, the method preconditions. This
makes the modeling process especially complex and important, as the modeler needs to
ensure that the respective control knowledge allows solving the problem quickly. The
formalism presented in Sec. 2.3, upon which our planner relies, comes without such
hand-tailored knowledge. Instead, the performance of any planning system solving such
problems stems entirely from the search strategy and domain-independent heuristics.

The angelic semantic planning approach by Marthi et al. is able to generate “abstract
solutions” – solutions that may still contain abstract tasks, but are guaranteed to have a
primitive refinement that solves the given problem [L44, L48]. Their approach performs
search in the space of partial plans, similar to Panda. It is also capable of finding optimal
solutions, but they rely on optimistic estimates for their abstract tasks that are given
in the input. Finding such estimates in a fully automated and domain-independent way
remained future work.

We do not want to give a complete overview of related hierarchical planning systems here,
but only mention the ones closest related to ours (which are still in use). Instead, we
mention overviews that are concerned with hierarchical planning systems. A theoretical
perspective is taken by Alford et al. [L26]. They characterize HTN planning as search in
a problem space and identify four kinds of these problem spaces. We have already seen
two of them: search in the progression space (which SHOP2 is performing) and search in
the decomposition space (which Panda is performing). Only a few actually implemented
systems are mentioned as related work in this categorization. A more practical view is
taken by Georgievski and Aiello [L15]. They give an overview of some of the very first
hierarchical systems, starting with the planner NOAH (Nets of Action Hierarchies) that
was first described in 1975 [L93]. A more recent overview of HTN and TIHTN planning
systems is given by us [1].

Apart from these “standard” planning systems to solve hierarchical problems, there is
also a technique that solves such problems based on non-hierarchical planners. Alford

43

3 Search and Heuristics

et al. developed a compilation technique that translates a given totally ordered HTN
problem into a solution-preserving PDDL problem [L21, L35]. Despite the decidability
of that problem class [A12, L76], that translation still requires an additional parameter
specifying the maximal decomposition depth – they later showed how this parameter can
be computed automatically [L26]. In a recent paper, Alford et al. extended the previous
translation to being able to cope with tail-recursive HTN problems [A7]. However, also
non-tail-recursive problems may be translated into non-hierarchical problems. Due to
the undecidability of HTN planning, this requires the translation into a (possibly infinite)
sequence of non-hierarchical problems, however.

The PANDA Algorithm. The planner Panda meanwhile exists in three different ver-
sions. Based on an initial version, Panda1 [L38], there have been two reimplementations,
which also differ from Panda1 on the level of pseudo code, i.e., they are not just technical
improvements. Panda1 and Panda2 are implemented in Java, Panda3 is implemented
in Scala (mainly the preprocessing routines) and in Java (mainly the search routines).
Both Panda2 and Panda3 conceptually work in the same way, i.e., they are identical on
the level of pseudo code [7, Alg. 1]. We mention the differences of these planners to each
other, and to their ancestor Panda1, below. All versions are so-called decomposition-
based planners [L26], i.e., they perform search in the space of partial plans. They do
so by relying on techniques known from POCL planning, i.e., they use causal links to
ensure the executability of the partial plans and maintain only a partial order of its plan
steps to follow the principle of least commitment.

The newest versions, Panda2 and Panda3, both extend the standard POCL planning
procedure by Williamson and Hanks [L77] for non-hierarchical planning in such a way
that it can handle abstract tasks. As such, they can handle the full spectrum of planning
problems that was introduced in Sec. 2 (see also Fig. 2.1). The search procedure [7,
Alg. 1] has two decision points: first, a most-promising partial plan is selected among
all partial plans that were generated so far (and that were not already processed). This
selection is based on a search strategy (such as breadth first, depth first, etc.) as well on
heuristics (which are used by informed search strategies such as greedy search or A∗).
For the selected partial plan, all its flaws are computed. In Sec. 2.2, we have already
seen two types of flaws: open precondition flaws and causal threat flaws. Since the
hybrid planning procedure extends standard POCL planning, both flaw types are also
used for solving hybrid (or HTN and TIHTN) problems. In addition, we need the new
flaw type abstract task flaw, which is raised for each abstract task in the current partial
plan. Given a selected partial plan and the set of its flaws, the planner chooses one of
these flaws to address it. Note that this choice point is – contrary to the selection of a
partial plan – not a backtrack point. All flaws need to be addressed at some point and
the order in which they are chosen does neither influence correctness nor completeness.
It can, however, have tremendous influence on performance, so several flaw selection
strategies were proposed in the literature [L74]. For the selected flaw, a set of so-called

44

3.1 Search Algorithm

modifications is computed; they describe how the respective flaw can be addressed. The
mapping which modification addresses which flaw for a hybrid planning problem is given
in our paper [7].

We now briefly summarize the development history of the different Panda versions.
The full pseudo code of the initial version, Panda1, is given in Algorithm 2.2 (page 70)
in the dissertation of Schattenberg [L38]. A slightly more compact description is given
by Elkawkagy et al. [L33]. We later simplified the description of the algorithm signif-
icantly [10]. Note, however, that Panda1 also features scheduling capabilities, which
are only reflected in its full pseudo code description [L38]. Panda1 was designed as a
comprehensive experimental platform to be as easily extendable as possible – at the cost
of runtime. Panda2 [7] is the first reimplementation with focus on efficiency – at the
cost of being less easily extendable. The main search procedure changed in three major
aspects: First, Panda1 relies on two different ranking functions; one that orders all
partial plans and one that orders all modifications of all flaws of the given partial plan.
Instead, Panda2 (as well as Panda3) relies on just a single search fringe as it is done
by standard POCL planning procedures [L77]. Second, Panda1 addressed always all
flaws4 of the given partial plan [11, L33, L38], whereas Panda2 only addresses a single
one [7]. That way we have eliminated an unnecessary choice point in the algorithm,
thereby reducing the branching factor in the search space significantly without loosing
solutions. This further enables the use of standard flaw selection strategies known for
POCL planning [L74]. Third, Panda1 always computes flaws from scratch, although
most flaws of a parent search node are unaffected by the performed modifications. In-
stead, Panda2 performs an incremental flaw computation that reuses the flaws of its
parent node and removes and adds flaws that might have been resolved or that were
raised as a consequence of the last applied modification. This technique is not reflected
in the published pseudo code, however [7]. The search time reductions from Panda1 to
Panda2 were significant. Problems that needed 15 to 20 minutes to be solved relying on
informed search strategies with with Panda1 [10] can often be solved in less than one
second when relying on uninformed breadth first search with Panda2 [7]. We assume
that these speed improvements cannot only be attributed to eliminating a branching
point, but also significantly to a highly optimized implementation5. Panda3 is a further
reimplementation, which fuses the best of the two previous extremes: it is almost as fast
as Panda2 while being as easily extendable as Panda1. Its search procedure Panda3

is the same as the one of Panda2 – except for the incremental flaw computation, which
is at the moment only partially implemented in Panda3.

Only a few of the empirical results of this thesis were done with Panda1 [10]; most of of

4We want to note that the implementation of Panda1 featured an approximation of addressing just
a single flaw. Let m1, . . . ,mn be the (ordered) sequence of modifications that resulted from the
modification ordering function. Then, Panda1 can remove all modifications mi, i > j, given that
there is a flaw, for which all modifications are contained in the sequence m1, . . . ,mi.

5In addition, the evaluation based upon Panda2 [7] was done 2 years after the evaluation based on
Panda1 [10], so there have also been hardware improvements.

45

3 Search and Heuristics

the techniques were implemented within Panda2 [7, 8, 9]; our most-recent heuristics for
hybrid and HTN planning are implemented within Panda3 [1]. We are currently in the
process of making Panda3 available as an open source project. The code will be made
publicly available at www.uni-ulm.de/en/in/ki/panda/.

3.2 Heuristics for POP and POCL Planning Problems

The core algorithmic principles behind our hybrid planning system Panda are those
of standard POCL planning algorithms – extended by a further flaw class and further
modifications to being able to cope with abstract tasks. This makes improving techniques
for POCL planning problems a canonical first step to improve the overall performance
of the system. In particular, POCL planning problems coincide with hybrid planning
problems with task insertion, given that all abstract tasks have already been decomposed.
So, applying specialized POCL heuristics to such search nodes might be more efficient
than applying heuristics that are applicable to partial plans containing abstract tasks.
Well-informed POCL heuristics may also serve as the basis to develop heuristics for
hybrid planning problems, e.g., by computing the set of landmarks for each abstract
task (see Sec. 3.3), replacing the respective abstract tasks by their primitive landmarks,
and computing the heuristic based on the resulting partial POCL plan.

We want to emphasize that even apart of our main intention of improving our hybrid
planning system, improving the state of the art in POCL planning is an important means
of its own: namely for solving classical, non-hierarchical planning problems. Back in the
late 1980’s, POCL techniques have been “known” as the superior approach to planning
[L91]; at the moment, however, their usefulness for solving classical problems is generally
doubted, as bluntly pointed out by Nebel in a key note at the German AI conference
2013: “Search in the space of incomplete, partially ordered plans is inefficient, there are
no good heuristics available – and it is obsolete.”. However, the only evidence for the
inefficiency of POCL techniques is the – today’s – superiority of the highly optimized
state-based planning approaches, for which exist a wide variety of different planning
heuristics. Almost no researchers are working on POCL planning for about a decade
now, which we deem one of the main reasons for its current inferiority to state-based
planning techniques. Our work in that field, both theoretically (see Sec. 2.2), as well as
practically [8, 9, A23], may be one of many steps in turning the current situation into
the opposite.

Heuristics for POCL Planning (Related Work). A brief introduction and overview of
some of the existing POCL planning systems has already been given in Sec. 2.2. Here,
we focus on related work that is concerned with automatically deriving well-informed
heuristics for POCL planning. Please note that, due to the large amount of work in the

46

www.uni-ulm.de/en/in/ki/panda/

3.2 Heuristics for POP and POCL Planning Problems

field of improving POCL planning systems, we are focusing on the most-successful ones
that do – similar to well-informed heuristics in classical planning – perform some form
of problem relaxation.

One of the most successful planners based on POCL techniques is CPT (Constraint Pro-
gramming Temporal planner), which combines the flaw-based branching scheme of POCL
planning with powerful pruning rules that are implemented via constraint programming
techniques based upon heuristics [L52]. CPT is an optimal planner for temporal classi-
cal planning, i.e., it finds plans that minimize the makespan (the completion time when
parallel action execution is allowed). The heuristics that are used for the constraints are
based upon the admissible hm heuristic(s) for classical planning [L50, L65].

The planner RePOP (Reviving Partial Order Planning) [L64] has introduced the relax
heuristic, hrelax, for POCL planning. It is an adaptation of the FF heuristic known
for classical planning [L63] to work on partial plans rather than on states. The relax
heuristic basically extends the standard FF heuristic by an additional step: Given a
partial plan and its open preconditions, it uses these open preconditions as the goal
state that it passed on to the (state-based) FF heuristic, which then computes a delete-
relaxed plan for it. The cost of this delete-relaxed solution serves as heuristic value for
the given partial plan. The actions that are already present in the given partial plan are
accounted for by excluding those preconditions that are already protected by a causal
link, and by not accounting for the costs of those actions in the delete-relaxed solution,
which have a non-delete-relaxed pendent in the given partial plan.

The planner VHPOP (Versatile Heuristic Partial Order Planner) [L59] uses ideas similar
to those of RePOP to exploit classical planning heuristics for POCL planning. It extends
the state-based Add heuristic [L70] to be used for partial plans. The add heuristic
computes the heuristic estimate of an action based on its action cost plus the sum of the
heuristic estimate of its precondition literals, thereby assuming subgoal independence.
Each precondition literal is estimated by the heuristic estimate of its cheapest achiever
(i.e., action) [L70]. The Additive heuristic for POCL planning, hadd, is defined in same
way; however, similar to the relax heuristic, it uses the open preconditions of the given
partial plan as goal description, i.e., as input for that heuristic. To account for actions
that are already within the given partial plan, they propose the Additive heuristic for
POCL planning reusing actions, hradd. This heuristic is distinguished from hadd by an
additional filter: instead of using all open preconditions in the given partial plan as goal
description, hradd uses only those for which there is no action within the plan that can,
according to the partial order and the variable constraints, possibly serve as a producer.
In this regard, hradd does, in contrast to hrelax, exploit the partial order order of the given
partial plan as well as the effects of the actions that are already present to a limited
extent.

47

3 Search and Heuristics

The SampleFF Heuristic. We have just seen two of the very few existing heuristics for
POCL planning; the relax and add heuristic. They both rely on delete relaxation and,
more importantly, as explained in Sec. 2.2, they ignore parts of the information obtained
during search; recall that the complete search progress is encoded in the current search
node, which in POCL planning is the current partial plan. Still, both the relax heuristic
as well as the add heuristics ignore a large amount of information in the given partial
plan: the partial order is ignored completely (except by hradd, which exploits it by some
extent – as explained above), the effects of the present actions are ignored (again: except
by hradd, which uses them to “filter” out preconditions of unprotected preconditions – as
explained above), and, most importantly, the pruning power of causal links is completely
ignored: they are just used to “filter” out preconditions, which are already supported,
but not to restrict the applicable actions6.

In Sec. 2.2, we have seen that maintaining all this information and delete-relaxing only
the actions in the domain results in an NP-complete problem. However, it becomes
trivially decidable in P when the partial plan is totally ordered [9]. We have developed
a heuristic that exploits this result to have a tractable heuristic on the one hand while
still being well-informed due to exploiting all effects of the actions present in the current
partial plan and, more importantly, exploiting the present causal links’ pruning power
by respecting their protected conditions. In particular by exploiting the pruning power
of causal links, we were aiming at more informed heuristic estimates.

The SampleFF heuristic [9] consists of three steps:

1. Uniformly sample a fixed number of linearizations.
2. For each linearization compute a delete-relaxed solution (if one exists).
3. Combine the different heuristic values. Cope with the special case that none of the

linearizations admits a solution.

Step 1. The sampling part approximates the computationally hard task of finding a
linearization that admits a delete-relaxed solution. We have experimented with different
numbers of samples. The computation effort scales approximately linearly in the number
of linearizations with the benefit of being more informed for every additional linearization
and with an increased likelihood of finding linearizations that actually do admit a delete-
relaxed solution. For the latter, we have also implemented a technique that reuses
successful linearizations from a parent search node for the current one.

Step 2. For a given linearization, all available delete-relaxed actions are applied to the
initial state and the succeeding ones until a fix point state is reached. This is essentially
the same as building a mutex-free planning graph [L69], as it is done by the FF heuristic
[L63]. We then check whether the first plan step in the linearization is applicable in that

6As explained in Sec. 2.2, each causal link (ps, ϕ, ps′) between the plan steps ps and ps′ prevents to
insert any action between them that has an effect which undoes the protected condition ϕ.

48

3.2 Heuristics for POP and POCL Planning Problems

state. It not, the linearization can be discarded – no heuristic (smaller than infinity) can
be extracted for it. If it is, the linearization’s first plan step’s effects are applied to that
state. Then, again, all available delete-relaxed actions are applied to reach another fix
point. This is repeated until all actions of the given linearization have been applied and
the goal description is captured. For two plan steps ps1 and ps2 (ps1 preceding ps2) that
share a causal link with the (positive) protected variable v, no action with the negative
effect v can be placed in between ps1 and ps2. Note that this also holds for delete-relaxed
actions (i.e., even if the threatening delete effect has been relaxed away), because such
actions can not possibly be used at the respective position in the non-relaxed partial
plan. So, the more causal links are within a partial plan, the more (delete-relaxed)
actions can be excluded to be used for solving the delete-relaxed problem, and the more
accurate the heuristic becomes. This is in contrast to the relax and add heuristics for
POCL planning, where more causal links make the problem easier, although it is actually
becoming more restricted. So, given the respective sets of available delete-relaxed actions
(which may be different for the different layers of the planning graph), a delete-relaxed
solution is extracted by the FF heuristic [L63], the cost of which serves as heuristic for
the given linearization.

Step 3. The different heuristic estimates can be combined in different ways. So far, we
have taken the minimum. In the special case where none of the linearizations admits a
delete-relaxed solution it might be that there still exists such a linearization but that
was not drawn by the sampling procedure. However, it might also be the case that the
partial plan is a dead-end altogether; however, this cannot be formally proved unless
the number of samples is at least as high as the number of existing linearizations. So, if
this is not the case we currently return the number of open conditions to prevent being
uninformed in such situations.

Results. In our empirical evaluation we have compared different variants of our heuristic
with the current state-of-the-art heuristics in POCL planning. Different variants are
obtained from different numbers of samples and from different possibilities of which
causal links are exploited. The results are giving a mixed picture. Regarding coverage
(number of solved problems within a given time window), relax and add show better
results than the best-performing variant of SampleFF. This can be attributed to the
high computation times that SampleFF requires on the one hand and one important
finding on the other: The most informed variant of SampleFF (which uses the highest
number of generated samples and all causal links) was able to disprove the existence of
a delete-relaxed solution for all linearizations in 36% of all created search nodes (being
summed over all runs of all problems). This means that in these cases the respective
partial plans might actually be dead-ends. Only in a few cases, however, the respective
plan could be discarded – due to the non-exhaustive number of sampled linearizations.
This still shows the great potential of using the pruning power of causal links to reduce
the search space. Most interestingly, for one (unsolvable) problem instance, only the

49

3 Search and Heuristics

SampleFF heuristic was able to prove the problem’s unsolvability7; all other heuristics
incurred timeouts.

Exploiting Classical Planning Heuristics in POCL Planning. As we have seen in
Sec. 2.2, POCL problems have the same computational complexity as classical plan-
ning problems. Thus, it must be possible to compile one into the other in polynomial
time. We have given such an encoding that enables us to use classical state-based plan-
ning heuristics in the context of POCL planning [8]. The transformation is an extension
of the one given by Ramı́rez and Geffner [L37] which they developed for a totally or-
dered sequence of observations in the context of plan recognition. We can encode a
given partial plan P within the given classical planning problem. Then, we define h(P)
by means of h′(s) with h′ being some state-based heuristic and s being the initial state
of the altered problem. We do so by adding the plan steps of P as additional actions
to the problem, where these additional actions extend their original preconditions and
effects by means of additional state variables that ensure that these additional actions
are executable exactly once and only in an order that is compatible with the one given
in the respective partial plan. Further, the goal description is extended by these addi-
tional state variables to ensure that any solution contains these actions. Taken together,
the encoding ensures that any solution to the new classical planning problem encodes a
solution to the POCL planning problem (that is induced by the given partial plan)8.

Care must be taken in choosing the respective state-based heuristic: Since every heuristic
performs a relaxation of the given planning domain, it might be that certain heuristics
work better than others – or not at all. For instance, imagine a so-called pattern database
(PDB) heuristic that restricts the set of available state variables to a subset thereof [A25,
A26]. If such a pattern (i.e., the restricted variable set) does not contain any of the
additional state variables, the current partial plan will consequently be ignored. Other
issues arise for heuristics that spend a lot of time for preprocessing (but make up for it
by having better-informed heuristic values per search node), such as PDB heuristics or
their generalization merge & shrink [L47], because the preprocessing has to be re-made
(or adapted) for each search node due to the changed action set.

Results. For our empirical evaluation, we wanted to test a wide variety of state-based
heuristics without the need to implement all of them. We thus modified the planning
system Fast Downward [L51], since it features most of the known classical planning

7Despite the non-exhaustive number samples, proving unsolvability was possible, because the deployed
search strategy favors addressing flaws that result into partial plans that only have a single lineariza-
tion for as long as possible. Hence, even “sampling” just a single linearization can prove that this
partial plan may not be refined into a solution. Further, as noted before, partial plans may also be
discarded if all linearizations are considered, which is feasible as long as there are just a few.

8As already noted in Sec. 2.2, our published encoding for causal links is only fixed-parameter tractable,
namely in the size of the largest precondition plus the size of the largest effect [8]. We have also
developed an encoding for causal links that runs in polynomial time, but it is not yet published.

50

3.3 Heuristics for HTN and Hybrid Planning Problems

heuristics, to return the heuristic of the initial state and shut down afterwards. We
then created the respective PDDL files from the given search nodes and passed them on
(via a RAM disc) to the modified planner to use its heuristic for the respective partial
plan. Due to the overhead of creating the PDDL files for each search node and starting
Fast Downward for each of them, we were not comparing run times, but focusing on
the produced search space size. Two heuristics were doing particularly well: merge &
shrink [L47] and LM-cut [L36]. Although merge & shrink is doing well in terms of
the produced search space, we do not expect it to scale well in terms of runtime for
the reasons explained above. LM-cut, in contrast, does not rely on a time-consuming
preprocessing step, so we are slightly optimistic that it works well for our approach when
being natively implemented (which is currently ongoing work).

The results look quite promising: although LM-cut is an admissible heuristic and re-
lax and add are not, it still produces smaller search space sizes, so it acts more in-
formed [8]. We further want to emphasize that the here described technique forms the
first well-informed admissible heuristic for POCL problems9 – if the compilation is used
in combination with a well-informed admissible state-based heuristic such as LM-cut and
thus allows to find optimal solutions. This becomes especially important when a POCL
algorithm is used for providing user assistance (see Sec. 4), since in some application
domains it might be important to present an optimal plan to the user – rather than just
some plan.

3.3 Heuristics for HTN and Hybrid Planning Problems

We are now considering how domain-independent heuristics for HTN and hybrid plan-
ning problems can be derived. In addition to our main intention of having well-informed
heuristics for solving the respective problems as quickly as possible, we are furthermore
interested in finding optimal solutions – which requires the respective heuristics to be
admissible.

Heuristics for Hierarchical Planning Problems (Related Work). As mentioned in the
related work part of Sec. 3.1, there are only a quite limited number of hierarchical
planning systems [1, L15]. Only a few of them are standard heuristic search planners, in
which search nodes are ranked relying on automatically computed domain-independent
heuristics. Instead, in some approaches, no heuristics are required because search control
knowledge is encoded into the model itself [L58] or because a specialized algorithm is
used [L42, L67]; other approaches do rely on heuristics, but they are not concerned

9Please note that the temporal POCL planner CPT [L52] also relies on an admissible heuristic. It does,
however, minimize the makespan instead of action costs (or their number).

51

3 Search and Heuristics

with solving standard HTN planning problems, but with variations thereof, such as, for
example, HGN problems [L6, L13, L25].

In contrast to the previously mentioned works, only few publications are concerned with
solving standard hierarchical problems (such as HTN and hybrid problems) relying on
a standard heuristic search planner. Schattenberg gives quiet a number of heuristics
for hybrid planning problems10, but they do not yet exploit the hierarchical nature of
abstract tasks [L38]. That is, these heuristics do not perform an analysis about the
effort that the decomposition of an abstract task will entail; they are thus likely to be
less informed than heuristics that investigate the effort imposed by abstract tasks. This
lack of information was addressed later by exploiting hierarchical landmarks – which are
computed based on analyzing the hierarchy of abstract tasks – as a means for search
control [10]. Both Bercher et al. and Bechon et al. exploit the AND/OR structure of the
abstract tasks’ hierarchy for the construction of heuristics for hybrid planning [7, L19].
These ideas were further extended to obtain an admissible heuristic for both HTN and
hybrid planning problems [1].

The Task Decomposition Graph. All of the heuristics and strategies for hierarchical
planning proposed in this thesis are based upon the so-called Task Decomposition Graph
(TDG) [1, 10], a (finite) data structure that represents all of the decomposition meth-
ods of the domain, their tasks, and their interplay (for a graphical illustration, consider
Fig. 3.1). It is an improvement of the so-called Task Decomposition Tree (TDT) by
Elkawkagy et al. [L33]. In contrast to the TDT, the TDG can cope with cyclic decom-
positions without becoming infinitely large. A TDT-like structure was also introduced
before by Lotem et al. [L67], which they called planning tree. All these structures are
closely related to the decomposition tree (see Sec. 2.3) that is tree-like representation of
the decomposition methods required to obtain a specific task network/partial plan. In
contrast, the TDGs are representing all decomposition methods of the domain that are
reachable from the initial task network/partial plan.

A TDG is an AND/OR graph consisting of two types of nodes: task nodes and method
nodes. Task nodes are the tasks (primitive or abstract) that are reachable from the
initial partial plan. If a task node is abstract, then its methods form its children. Since
one is allowed to choose a method during planning, task nodes can be considered OR
nodes. Given a method node, the tasks of its partial plan form its children in the TDG.
Since all tasks of a method have to be introduced into a partial plan after the respective
method is chosen, method nodes are considered AND nodes (cf. Fig. 3.1).

Pruning the TDG. Elkawkagy et al. [L33] show how reachability information about the
primitive tasks can be exploited to remove provably irrelevant parts from the TDT. We

10In his work, the terminology “heuristic” is not used; he defines plan and modification ranking functions
for the hybrid planner Panda1.

52

3.3 Heuristics for HTN and Hybrid Planning Problems

t1

m2m1

t2

m3 m4

t7 t8

t4 t5 t6t3

m5 m6

t9 t10

Figure 3.1: Example TDG. The nodes labeled with
t1, . . . , t10 represent tasks. Tasks with outgoing edges
(i.e., t1, t2, t3) are abstract. The nodes labeled with
m1, . . . ,m6 represent methods. The AND structure
of methods is indicated by a circular arc connecting
their outgoing edges.

As described in the next paragraph about landmark-
aware strategies, the tasks t3 and t4 are local
landmarks of t1, the task t7 is a local landmark of
t2, and t9 is a local landmark of t3. The only “real”
landmarks (i.e., tasks that occur on any sequence of
decompositions to a solution) are t3, t4, and t9.

(The graphic is a modification of previously published
examples [10, Fig. 1] [7, Fig. 1].)

have adopted and improved their technique to be used for TDGs [1]: It first performs a
top-down reachability analysis, collecting all primitive tasks reachable from the abstract
tasks in the initial partial plan (relying on a parameter-relaxed TDG, where only the
names of reachable actions are taken into account, but all reachable groundings). Using
only these primitive tasks, a relaxed planning graph is built to identify the set of ground
primitive actions that are reachable from the initial state. Then, the TDG is built
and restricted to a connected subgraph, in which no method contains an unreachable
primitive ground task or an infeasible abstract task. Abstract tasks are infeasible if
they either have no method associated (which can happen during pruning the TDG) or
if they cannot be decomposed into a primitive set of actions (which can also happen
during pruning the TDG due to cyclic method definitions).

The overall pruning technique assumes the typical HTN criterion that does not allow
tasks to be inserted arbitrarily. This assumption is manifested by the first step that
restricts the planning graph construction to those primitive tasks that are given in the
initial partial plan or reachable from its abstract tasks. If the TDG-based heuristics are
to be extended to being able to cope with problems that allow task insertion, then this
first step is omitted and all primitive tasks are being used for the relaxed reachability
analysis. This way, all of the heuristics introduced in the remainder become applicable
for the respective problem class in which task insertion is allowed.

Search Strategies and Heuristics Based on the TDG. Traversing a TDG allows to estimate
how hard an abstract task is, i.e., which further tasks will be introduced into a partial
plan when decomposing it. We will now see various possibilities of how to do so.

Landmark-based Search Strategies. Elkawkagy et al. [L33] exploited the TDT to ex-
tract so-called hierarchical landmarks: tasks that occur in any sequence of decomposi-

53

3 Search and Heuristics

tions leading from the initial partial plan to any solution (e.g., the tasks t3, t4, and t9 in
Fig. 3.1). They introduced a procedure that identifies such landmarks and, at the same
time, prunes the domain model based on a reachability analysis of the primitive tasks.
For the identification of landmarks they perform an over-approximation: they intersect
the (ground) tasks of the decomposition methods that belong to the same abstract task.
That way, they identify all tasks that will inevitably be introduced when decomposing
the respective abstract task. This kind of landmarks was later called local landmarks of
their parent task to highlight the fact that tasks computed in that way do not necessarily
fulfill the requirement that they occur in any sequence of decompositions leading to a
solution, but rather in any decomposition rooted in the decomposed task [10]. In the
example given in Fig. 3.1, the tasks t3 and t4 are local landmarks of t1, t7 is a local
landmark of t2, and t9 is a local landmark of t3. “Real” landmarks as defined above can
be identified by recursively intersecting the local landmarks of all tasks that are part
of the initial partial plan [7]. Assuming that t1 is the only task in that partial plan,
we can identify t3, t4, and t9 as such landmarks (that is, the local landmark t7 is not a
landmark).

Elkawkagy et al. [10] exploited the information about which tasks are local landmarks for
search guidance. The proposed approach was specifically designed for Panda1, which
uses two different ranking functions: one that orders the partial plans of the search
fringe and one that orders the modifications of all flaws (see Sec. 3.1). In our paper,
the landmarks are used to rank modifications. Four strategies are proposed, which all
base upon so-called optional task sets, which are those sets of tasks that are not local
landmarks. When considering the example given in Fig. 3.1, the optional task sets of t1
are {t2} and {t5, t6}, the optional task sets of t2 are ∅ and {t8, t2}, and for the task t3,
the optional task sets are ∅ and {t10, t4}. These optional tasks are exploited to prefer
one decomposition (modification) before another if the respective number of optional
tasks for that modification is smaller than for the other. The general idea behind these
strategies is that the number of optional tasks tells more about the refinement effort of
an abstract task than the overall number of its methods’ tasks, since the non-optional
tasks (i.e., the local landmarks) have to be introduced into resulting refinements, anyway.
For further details, we refer to the paper [10]. We have later extended these ideas to
be used by standard heuristics [7]; instead of ranking different refinement options, we
defined a standard heuristic that estimates the goal distance of a given partial plan. This
distance does not base upon local landmarks or optional tasks, but rather upon actual
landmarks, thereby also giving a lower bound on the refinement effort of a given partial
plan [7].

Results. Both the empirical evaluation of Elkawkagy et al.’s landmark-aware strategies
[10] (that bas been done with Panda1) as well as our adaptations to landmark-aware
heuristics [7] (that bas been done with Panda2) was done on four hybrid planning
domains. We have compared our techniques with several standard strategies from the
literature. There are no significant differences between the different strategies concerning

54

3.3 Heuristics for HTN and Hybrid Planning Problems

coverage (i.e., number of solved problem instances), so we have shown the required search
time (and, in case of our subsequent paper [7], also produced search space) per problem
instance. There were no clearly superior strategies/heuristics that outperform all others
in all the problem instances, but in the majority of the instances, the proposed strategies
and heuristics were among the best-performing ones.

Admissible TDG-based Heuristics. The previously mentioned landmark-based heuris-
tics exploit the TDG in order to compute the number of landmark tasks of a given
abstract task as an estimate of the number of further tasks that will unavoidably be
added at some point. Relying on just these landmarks will, however, ignore all non-
landmark tasks in a TDG. Consider, for instance, a planning problem where no two
decomposition methods that belong to the same abstract task have any task in com-
mon. As a consequence, no landmarks can be detected and the respective heuristic
becomes blind. We have thus developed a generalization of the landmark concept that
takes all tasks into account – landmark or not. It exploits the AND/OR structure of
a TDG: The refinement effort of a partial plan (an AND node) is given by the sum
of the refinement efforts of its tasks, and the effort of an abstract task (an OR node)
is given by the effort of its cheapest decomposition method, the effort of which is the
effort of its partial plan11. We have developed two heuristics that are based upon this
idea, one estimates the refinement effort of a partial plan, i.e., the number of required
modifications to turn that partial plan into a solution, and the other estimates the cost
of a resulting solution plan.

Modification-aware TDG heuristic. The modification-aware TDG heuristic, TDGm, is
a hybrid planning heuristic [1]. That is, it is tailored to hybrid planning systems such
as Panda [7] or HiPOP [L19], as it estimates the number of required modifications
a hybrid planner needs to perform to turn a search node (i.e., a partial plan) into a
solution. It estimates the number of decompositions and causal link insertions. The
heuristic is applicable to both hybrid problems without task insertion as well as to HTN
problems.

Let 〈VT , VM , ET→M , EM→T 〉 be a TDG, where VT and VM are the task and method
vertices, respectively, and ET→M and EM→T are the TDG’s edges. Then, each node
vt ∈ VT and vm ∈ VM in the TDG is associated with an estimate computed as follows:

hT (vt) :=

|pre+(vt)|+ |pre−(vt)| if vt is primitive

1 + min
(vt,vm)∈ET→M

hM (vm) else

11Exploiting the AND/OR structure of abstract tasks in this way has first been proposed independently
of each other (and at the same time) by Bercher et al. [7] and Bechon et al. [L19].

55

3 Search and Heuristics

For a method vertex vm = 〈PS,CL,≺, α〉, we set:

hM (vm) :=
∑

(vm,vt)∈EM→T

hT (vt)− |CL|

According to these equations, we sum over the tasks within the same partial plan, while
minimizing over the different options for decomposing an abstract task. The heuristic
counts unprotected preconditions and abstract tasks, since for each at least one modifi-
cation (a causal link insertion or a decomposition) needs to be applied. Please note that
we can guarantee finite estimates even if the underlying TDG is cyclic. How this can be
achieved is explained in detail in our paper [1]. Please note that the TDGm heuristic is
actually an improvement of the Minimal Modification Estimate (MME) heuristic pro-
posed in an earlier paper [7]. In contrast to TDGm, the MME heuristic uses a visited list
of already processed abstract tasks; while this technique also ensures finite values in the
presence of cyclic decompositions, it produces less accurate heuristic estimates compared
to the technique used for TDGm, which uses strongly connected components.

Given a partial plan P that was produced during search, we use the TDG’s pre-computed
estimates for the heuristic of P :

Let P = 〈PS,CL,≺, α〉 be a partial plan. Then,

hTDGm(P) :=
∑

l:t(τ̄)∈PS
hT (t(τ̄))− |CL|

Please note that the heuristic proposed in our paper [1] is slightly more general than
the one described here. In the paper, we give a lifted variant of the heuristic, where
search nodes (i.e., partial plans) may still have variables that are not yet assigned to
constants. We give the ground variant here to coincide with the (ground) formalization
used throughout this thesis.

Cost-aware TDG heuristic. The former heuristic estimates the number of required mod-
ifications to turn a given partial plan into a solution. This sort of goal distance estimate
tells nothing about the quality of any solution plan that is found that way, however. An
expensive solution might only require a low number of modifications to be found, whereas
a cheap solution might require a large number of modifications. To give optimality guar-
antees on the solutions generated we have adopted the previous modification-aware TDG
heuristic to a cost-aware heuristic [1]. Both heuristics follow the very same idea of taking
the sum within a method while minimizing over different methods for the same abstract
task.

56

3.3 Heuristics for HTN and Hybrid Planning Problems

Let 〈VT , VM , ET→M , EM→T 〉 be a TDG as above. Then, each node vt ∈ VT and vm ∈ VM
in the TDG is associated with an estimate computed as follows:

hT (vt) :=

cost(vt) if vt is primitive

min
(vt,vm)∈ET→M

hM (vm) else

For a method vertex vm = 〈PS,CL,≺, α〉, we set:

hM (vm) :=
∑

(vm,vt)∈EM→T

hT (vt)

Let P = 〈PS,CL,≺, α〉 be a partial plan. Then,

hTDGc(P) :=
∑

l:t(τ̄)∈PS
t(τ̄) abstract

hT (t(τ̄))

Again, we here only give the ground version of the heuristic, whereas the one published
can also cope with search nodes that are lifted [1]. Please note that in the TDGc heuristic,
in contrast to TDGm, we only retrieve the TDG’s estimates for a partial plan’s abstract
tasks. The reason for this is that the costs of a partial plan’s primitive tasks are not
reflected by the heuristic, but by the cost of that partial plan.

TDG recomputation and incremental heuristic computation. As already noted, the
heuristics as described so far are pre-processing heuristics, because the TDG is only
built once prior to planning. The heuristics then merely retrieve the TDG’s values for
the tasks in the current partial plan. However, because the TDG takes the interaction of
its tasks to only a limited extent into account, rebuilding it during planning can improve
the accuracy of the heuristic [1]. We have given a domain-independent criterion stating
in which situations rebuilding a TDG has a chance of creating a different TDG, which
differs from its parent TDG due to removed parts that turned out to be infeasible. Recall
that we remove all parts from the TDG in which there are unreachable primitive tasks.
Since the delete-relaxed reachability analysis is based upon the set of primitive tasks
that are reachable from the current search node, we can obtain a different TDG if this
set changes – which happens as the result of applying decomposition methods. In all
other cases, i.e., if we know (according to our criterion) that TDG recomputation will
not result into a changed TDG, we can perform an incremental heuristic computation,
where we reuse the heuristic value of its parent node instead of retrieving the required
values from the TDG. This is especially important when we enable TDG recomputation,
because otherwise we would need to store multiple TDGs (for each of the search nodes)
in memory; this way, we only need to store one TDG – similar to the standard variant
in which we do not recompute the TDG.

57

3 Search and Heuristics

Results. We have performed an empirical evaluation with Panda, in which we have
compared the TDGm and TDGc heuristics with several heuristics and search strategies
from the literature. We run both heuristics with and without recomputation. In addition
to comparing coverage, we were particularly interested in the quality of the produced
solutions. In our paper [1], we describe the results in detail, so we just briefly summarize
the main findings here.

Both search algorithms that use the TDGm heuristic, i.e., A∗ and Greedy-A∗, are the best
performing system configurations in terms of coverage, each solving 57 of 59 problem in-
stances. Enabling recomputation has no effect on coverage for TDGm. The performance
of the TDGc heuristic depends significantly on the chosen algorithm. In combination
with the A∗ algorithm, TDGc solves only 52 problem instances. The most successful
uninformed system configuration, depth-first (DF) search, solves 53 problem instances;
however, the resulting solutions are often of lower quality than than those generated
by A∗ with TDGc. Whereas the latter guarantees to find optimal solutions, DF search
often finds solutions that are up to a factor of 2.09 as large as the optimal one. TDGc

in combination with Greedy-A∗ is comparable with the performance of TDGm. With-
out TDG recomputation, it solves 56 problem instances and if TDG recomputation is
enabled, it solves 57 problems.

Except for (uninformed) uniform cost search, A∗ in combination with TDGc is the
only system configuration that guarantees to find optimal solutions. In our empirical
evaluation, we can see that all other system configurations (except uniform cost search
and breadth first search) also find non-optimal solutions, which are often of significantly
worse quality.

The TDG recomputation does never increase the explored search space, but often reduces
it – sometimes significantly. Due to the overhead of recomputing the TDG, this search
space reduction does not always pay off in terms of runtime, however. In our evaluation,
we were able to improve coverage of the TDGc heuristic from 56 to 57 due to TDG
recomputation. It solves one additional problem instance in the so-called Woodworking
domain, in which the search space reductions were quite severe. In one problem instance,
the search space was reduced by 83% for TDGm and by 93% by TDGc, which coincides
with search time reductions of 46% and 40%, respectively.

58

Planning is at the heart of any
companion-able technical system.

Susanne Biundo, Invited Talk at ICAPS 2016

4 Practical Application

Motivation. Technical systems become more and more complex. The spectrum of
a modern technical system’s functionality is often diametrically opposed to its level
of user-friendliness and ease of operation. Often technical devices have a static user
interface and often a poorly written or even incomplete instruction manual. It is common
knowledge that most people are not even considering such instruction manuals and those
who do, often get frustrated by their quality. We want to exploit the today’s scientific
capabilities to increase the functionality of technical devices and the way it is presented to
its user. More precisely, we want to make them companion-able: trustworthy, competent
assistants that provide their functionality in an adaptive and truly user-friendly way.
Companion Technology aims at fulfilling that research vision based on a multitude of
different research disciplines – at its heart being AI planning.

With a planning component as a Companion System’s main decision making component,
we need to face various challenges, all of which can be addressed by relying on hybrid
planning:

• Plans need to be communicated in an adequate manner. Plans can become quite
complex. So, presenting such a complex plan at once might confuse the user (or
even be impossible due to its size). Instead, one might present it via showing one
plan step at a time. However, even then we need to decide which order suits the
respective user the most, and how a chosen plan step is presented (i.e., on which
level of abstraction it is presented and which modality should be used).

• Plan execution should be monitored for the identification of errors and failures. If
required, plans need to be repaired. One of the biggest challenges when applying
technology in practice is the influence of “the real world”. Many assumptions taken
for a model do not hold under real-world conditions. To have a robust system, we
need to be able to cope with execution errors, particularly with unforeseen failures.

• Plans and planning decisions should be explainable. This allows a user to ask
questions about the system behavior or any instruction presented to the user.
This capability directly contributes to the system’s transparency and the user’s
trust in that system. Plan explanations become particularly important if plans
change due to the result of repairing them.

• It should be possible to cooperatively develop plans together with the user. Devel-
oping plans cooperatively allows a user to directly influence the plans generated

59

4 Practical Application

by the system and therefore ensures fulfilling the user’s constraints and prefer-
ences. (While our planning procedure does support extensions for this form of
mixed-initiative plan generation, it is not within the focus of this thesis.)

Summary of Core Contributions. We have given the very first overview article for
Companion Technology [3]. Apart from explaining the vision of Companion Technology,
we mention further related surveys, explain what and how related research disciplines
contribute to the technology, and give a comprehensive list of application areas in which
the respective systems may enrich their functionality and user friendliness by Companion
Technology. Due to the high interdisciplinarity of Companion Technology, there are
countless research projects that address different aspects of the overall research vision; we
have given a comprehensive overview of these research projects and explain similarities
and differences to Companion Technology.

To enrich a technical system’s functionality by the use of AI planning, we have identified
various so-called user-centered planning capabilities [2, 11]. These are the (fast) gener-
ation of plans, presenting them in an adequate way, carrying them out (which includes
monitoring their execution), repair them if execution failures occur, and explain them to
the user if questions arise. In our work, we discuss the importance of these capabilities
for Companion Systems, give a short but sound overview of how they work, and show
how these capabilities serve as the basis for providing advanced user support in a broad
variety of application scenarios.

We have developed a prototypical Companion System [2, 5, 6, A5, A22] that implements
the user-centered planning capabilities mentioned above [2, 11]. The communication of
its various components (which implement techniques stemming from knowledge repre-
sentation and reasoning, AI planning, dialog management, and interaction management)
bases upon a generic system architecture [6]. To illustrate how implementing this ar-
chitecture for a specific application scenario results in a flexible and situation-adaptive
assistant, we developed an assistant for setting up a complex home entertainment sys-
tem. The system bases upon a declarative (planning) model of the available cables and
devices in order to fully automatically find a course of plug actions that the user simply
needs to execute in order to set up his or her system. The system implements all of the
before-mentioned capabilities of plan generation, finding a user-friendly linearization of
its plan steps, presenting these steps in an adequate way, monitoring their execution to
find repaired plans if unforeseen circumstances prevent standard plan execution, and ex-
plaining presented plan steps (i.e., plugin instructions) if the user wants to be informed
why he or she should execute them. In an empirical evaluation with 59 test subjects, we
evaluated how our assistant is perceived in general, and how plan explanations influence
this perception in particular [6].

60

4.1 Companion Technology

The above-mentioned core contributions are published in the following publications:

[2] P. Bercher, D. Höller, G. Behnke, and S. Biundo. “User-Centered Plan-
ning”. In: Companion Technology – A Paradigm Shift in Human-Technology
Interaction. Ed. by S. Biundo and A. Wendemuth. Cognitive Technologies. In
print. Springer, 2017. Chap. 5, pp. 79–100. isbn: 978-3-319-43664-7. doi:
10.1007/978-3-319-43665-4_5

[3] S. Biundo, D. Höller, B. Schattenberg, and P. Bercher. “Companion-
Technology: An Overview”. In: Künstliche Intelligenz 30.1 (2016). Special Issue
on Companion Technologies, pp. 11–20. doi: 10.1007/s13218-015-0419-3

[5] P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller, G. Behnke, F. Nothdurft,
F. Honold, W. Minker, M. Weber, and S. Biundo. “A Planning-based Assistance
System for Setting Up a Home Theater”. In: Proceedings of the 29th National
Conference on Artificial Intelligence (AAAI 2015). AAAI Press, 2015, pp. 4264–
4265

[6] P. Bercher, S. Biundo, T. Geier, T. Hörnle, F. Nothdurft, F. Richter, and B.
Schattenberg. “Plan, Repair, Execute, Explain - How Planning Helps to Assem-
ble your Home Theater”. In: Proceedings of the 24th International Conference on
Automated Planning and Scheduling (ICAPS 2014). AAAI Press, 2014, pp. 386–
394

[11] S. Biundo, P. Bercher, T. Geier, F. Müller, and B. Schattenberg. “Advanced
user assistance based on AI planning”. In: Cognitive Systems Research 12.3-4
(Apr. 2011). Special Issue on Complex Cognition, pp. 219–236. doi: 10.1016/

j.cogsys.2010.12.005

4.1 Companion Technology

Most of the technical devices that we use in our daily lifes are still quite simple concerning
their underlying control logic while still being too complex to be operated by a standard
user that just wants to use the device without being particularly interested in how it
works internally. As a consequence, most users are not aware of the full spectrum of a
modern technical device’s functionality. To address this lack of intelligence in today’s
systems, research is done aiming at creating cognitive technical systems. Cognitive
technical systems are technical systems that show cognitive capabilities such as planning
and reasoning. Most importantly, they have a knowledge base that allows planning and
reasoning, so that they “know, what they are doing” [L46]. Several recent research
projects are concerned with research in that general area. The most recent ones are
CoTeSys (Cognition for Technical Systems) [L32, L46], CITEC (Cognitive Interaction

61

http://dx.doi.org/10.1007/978-3-319-43665-4_5
http://dx.doi.org/10.1007/s13218-015-0419-3
http://dx.doi.org/10.1016/j.cogsys.2010.12.005
http://dx.doi.org/10.1016/j.cogsys.2010.12.005

4 Practical Application

Technology) [L34], and A Companion Technology for Cognitive Technical Systems [L9].

Companion Technology extends the idea of cognitive technical systems by addressing
various additional capabilities that differentiate Companion Systems from other cognitive
technical systems: Companion Systems are cognitive technical systems that adapt their
behavior completely to the individual user. For this, Companion Technology enhances
the functionality of a technical device to provide automated assistance in using it: Instead
of the user having to adapt to the system, the system adapts to its user. To achieve this
goal, research focuses on individuality, adaptability, availability, cooperativeness, and
trustworthiness [L9].

In the literature, the term “companion” is used in many different flavors, from being
meant in the literal sense (like a toy robot with only a very limited amount of interaction
capabilities) to the definition provided above. For a comprehensive overview of the
current state of the art and its history – from cognitive technical systems to Companion
Systems, we refer to our survey on Companion Technology [3]. It includes related research
projects, involved research disciplines, and possible application areas of the technology.
The wide spectrum of possible applications and research directions can also be seen in
a recently published KI special issue1 on Companion Technology, for which we were the
guest editors [A9]. A comprehensive overview of the latest research results that emerged
from the project A Companion Technology for Cognitive Technical Systems is given in
a recently published book [L3]. In this book, we also explain the user-centered planning
capabilities that were developed within the context of this project and show how they
can be exploited as the basis for intelligent assistants [2, A3, A5].

4.2 User Assistance Based on AI Planning

Here, we show how AI planning can be used as a basis for providing automated support
to a user for solving tasks that can be formulated as planning problems. Due to their
general nature, planning problems occur often in practice – whenever a sequence of
actions needs to be carried out in order to achieve a certain goal. Some examples are
robot control, project or (space) mission planning, or operating technical devices (as
we will see in our prototypical Companion System described below). When planning
technology is applied in a setting that involves human users, it is not only important
that (good or preferred) plans are generated fast, but various additional requirements
arise. We deem hybrid planning as adequate in this context [A19], since it allows to
address these requirements based on so-called user-centered planning capabilities [2, 11],
which we summarize below.

1The special issue is available at http://link.springer.com/journal/13218/30/1/page/1

62

http://link.springer.com/journal/13218/30/1/page/1

4.2 User Assistance Based on AI Planning

Planning-based Assistance Systems (Related Work). Despite the great potential and
large number of possible application scenarios for planning, the technology has not yet
become a standard technology to be applied in practice or even industry. To give some
examples where AI planning has already been successfully applied practically, we here
give a short overview starting with a system from 2002. Additionally, we want men-
tion (the website of) the Special Interest Group for Applications of AI Planning and
Scheduling (SIGAPS), which “aims to widen awareness of AI Planning and Schedul-
ing technology, promote its application outside academia, and provide resources for
researchers interested in tackling application problems” [L1].

The assistance system by Pollack bases on POCL planning techniques [L60]. In this re-
gard, the system’s planning approach is highly related to ours, since the hybrid planning
formalism extends POCL planning by means of a task hierarchy (see Sec. 2.4). Pollack’s
system is designed to assist elderly people and people with cognitive impairments in
routines of their daily life. Such routines include very fundamental ones, such as eating
and drinking or using the bathroom, but also less fundamental ones, such as managing
medicine or housekeeping. The general goal is that people relying on the developed as-
sistant can remain their independence for a longer time and therefore stay in their own
homes longer. The assistant runs on an autonomous mobile robot. One of the central
functionalities of the system is to remind its user about forgotten routines. For this, it
features a model of time: tasks can have a duration and a planned point in time when
they are supposed to start.

Closely related to this endeavor is the work by Boger et al. [L49, L53], who develop
techniques to assist people with dementia in daily routine tasks. While the former
approach focuses on maintaining and complying to the user’s schedule, this approach
focuses on assisting to carry out the respective tasks themselves in a correct way, i.e.,
that no sub actions were forgotten or carried out in a wrong order. The task that is used
as an example is washing hands, which consists of several sub steps, such as turning on
and off the water and taking the soap. As underlying planning model, they use Markov
Decision Processes (MDPs) and the generalization thereof to Partially Observable MDPs
(POMDPs).

The work by Beetz et al. is also motivated by assisting elderly people by duties of daily life
[L27]. By relying on their techniques, autonomous service robots should achieve “home
chore task intelligence”. These robots should be able to perform a series of different tasks
and are controlled by so-called “cognition-enabled robot control programs”, which use
cognitive mechanisms, such as learning, reasoning, and planning. They use a hierarchical
planning approach that they developed for their specific requirements.

Another real-world planning-based system is described by Petrick and Foster [L24]. Their
system is not directly aiming at providing assistance in every-day tasks, however. They
apply planning to control a robot with basic social skills that is able to interact with

63

4 Practical Application

multiple humans in a simple bartending domain. They show how they infer social states
from low-level sensors by relying on vision and speech input. They use a non-hierarchical
planning approach that can cope with partial observability and that supports so-called
sensing actions which allow to acquire missing information (e.g., the task of asking
whether a customer wants a drink).

The system by Bernardini and Porayska-Pomsta is designed to help children with Autism
Spectrum Conditions to acquire social communication skills [L22]. For doing so, it
maintains a user model of the child that reflects its current cognitive and affective state.
Their system is a virtual agent the child can interact with. Its behavior is based upon
automatically generated plans, created by a POCL planner. As our system does, their
system also receives direct user input via touch gesture and sensory information. They
also have an execution monitor that checks whether actions were successful or not; if
not, plans can be repaired.

User-Centered Planning Capabilities. As motivated in the beginning of this section,
the capability to generate plans is not the only one required for the design of flexible
Companion Systems. We need to address various further issues, such as:

• Which plans should be found? Is optimality important for the interaction with
human users? Are there preferences that need to be respected? Are there optional
goals?

• How to present the generated plans? How to cope with the partial order of plans?
Can we exploit the information that is given within those plans, i.e., the causal
links and the underlying task hierarchy?

• Can we cope with execution errors?
• How to ensure the user’s trust in the solution being carried out? Can we answer

questions about the purpose of presented instructions?

We have developed planning techniques that address these questions arising in the con-
text of planning with or for human users. Hence, we refer to them as user-centered
planning capabilities. Prior to the development and implementation of most of these
capabilities and, consequently, before their deployment in an actual running system, we
described our vision of how they can be exploited as the basis to provide assistance
in a variety of tasks – exemplified at the example of operating a modern smart phone
[11]. About six years later, after all of those capabilities have been fully developed and
published in individual papers, and after their deployment in a running system (see be-
low), we “re-visited” the topic of user-centered planning thereby explaining how these
techniques work and how their integration and interplay allows advanced assistance in a
broad variety of possible application scenarios [2]. Here, we give a brief summary of these
techniques. For doing so, we will present them in the same order they become important
in a system that exploits them, starting with the generation of plans, presenting them to

64

4.2 User Assistance Based on AI Planning

the user, repairing them if execution failures are detected, and answering questions upon
user request.

Generating Plans. In Sec. 3.1, we have introduced our planning procedure. Most im-
portantly for the sake of providing user assistance, we want to highlight that it is a
hierarchical planner that generates partially ordered plans, in which the causal structure
is explicitly represented. Plans being only partially ordered (while guaranteeing that any
of its linearizations is executable and satisfies the user’s goals) brings us more flexibility
with respect to execution: we can thus flexibly decide which of its linearizations is most
appropriate for the individual user in the current situation. This will be described in the
next part that is about linearizing plans. Both the causal structure and the hierarchy
can be exploited for such linearization strategies as well as for generating plan expla-
nations. Note that the causal structure of a plan can also be inferred from a totally
ordered action sequence [L31]; and also the partial order can be inferred [L30]. Thus,
in principle, one could also rely on a planning procedure that does not already generate
plans showing these desired properties.

The planning system described in Sec. 3.1 can further be provided with admissible
heuristics [1, 8] to find optimal plans thereby avoiding redundancies in plans that might
confuse the user (such as performing a plug action, just to unplug it again later). Con-
cerning finding preferred plans, i.e., plans that satisfy additional user requirements such
as optional goals that are not mandatory, but increase the user’s satisfaction with the
plan, we have proposed such a heuristic that works both for POCL and hybrid planning
problems [A24]. Other approaches for finding preferred plans in hierarchical planning
also rely on specialized heuristics for preferences [L39, L43].

Linearizing Plans. After a solution plan has been found, it has to be communicated
to the user in an adequate way. Presenting the entire plan at once does not seem an
appropriate solution, because it might be too large to comprehend. At least, techniques
would have to be developed that present an abstraction thereof. For this, the task
hierarchy can be exploited to find adequate abstractions of different levels. As a first
step, we chose to present all steps of a plan one by one.

Since plans are only partially ordered, the question arises which of the possible lineariza-
tions are most adequate for the respective user in the current situation [2, A21]. From
our solution criteria, we get that all linearizations are correct in the sense that they are
executable and achieve the user’s goals. However, there might still be a huge number
of possible linearizations of the given plan and some of them might be more useful or
intuitive than others. So, the question arises about the essence of so-called user-friendly
linearizations. As an example, consider the task of connecting various devices with ca-
bles. Assume that there is a cable in “T”-shape having two plugs at one end (like CINCH
audio and CINCH video) and one plug at the other (like SCART featuring audio and
video). The model foresees one individual plug action for each of its plugs, resulting in

65

4 Practical Application

three independent actions. Clearly, any order can be performed and other actions can
be executed in between. However, it would be odd to plug in just one of the two plugs
that belong together, perform some other – completely different – actions in between and
then come back for the other plug action(s) of the cable. To the best of our knowledge,
we are the very first addressing this issue of finding user-friendly linearizations [2, A21].
We discussed what linearizations can be considered more user-friendly than others and
have come up with three different domain-independent techniques to find them. One
relies on the similarity of the constants in the parameter-lists (idea: two actions are
manipulating the same object), one on two actions sharing a causal link (idea: one ac-
tion is causally relevant for the other), and one takes the distance in the decomposition
tree/task hierarchy into account (idea: actions are related if they are close to each other
in the task hierarchy).

We are currently collaborating with psychologists to evaluate, among others, how hu-
mans are solving problems to find the most adequate way to assist them [A1], e.g., by
adjusting our user-friendly linearization strategies to coincide with the findings from our
empirical studies.

Communicating Plans. After we have found a most-adequate linearization, we present
it step by step [2, 6, A5]. For this, each action has a dialog model attached. That model
makes use of all information and further media that is specified along with that action,
such as pictures and videos (which can be associated to the action parameters). It thus
decides, taking user knowledge into account, how the current plan step is displayed [A5].
Later, in Fig. 4.3, we will see an example taken from our assistant for setting up a home
theater.

Repairing Plans. When plans are carried out in the real world, it is quite likely that
something will happen that prevents that plan from being executed in the way it was
intended. In our running example of setting up a home entertainment system, a cable
might be broken, which the user only recognizes during plan execution. We are thus
in need of a repair mechanism that can cope with unforeseen events that influence plan
execution [2, 11]. Such a plan repair procedure for hybrid planning was first introduced
by Bidot et al. [L41] and improved later on [6, 11]. The repair mechanism is able to cope
with unforeseen state changes, for example, when a cable should be available according
to the sequence of actions applied so far, but during execution it gets revealed that it
is not. The causal links in a plan can be exploited for deciding whether repair must be
initiated or whether we can proceed executing the plan despite the unforeseen changes
to the world state. If the plan needs to get repaired, a new plan is found in which
this altered current state is taken into account. Because of the solution criterion that
demands that any solution plan needs to be a refinement of the initial partial plan, we
need to make sure that all actions that were already executed prior to the unforeseen
state change are again part of any repaired solution. This makes the difference between
re-planning (which starts planning from scratch after each execution failure) and plan

66

4.2 User Assistance Based on AI Planning

repair (which takes the already found solution into account for addressing execution
errors) more subtle in the hierarchical planning setting compared to non-hierarchical
planning, where this distinction is more clear. We discuss this matter in detail in our
latest publication about user-centered planning [2]. Finding repaired solutions relies on
so-called plan obligations, which are additional constraints posed on solutions. These
obligations are implemented as new flaw classes in our hybrid planner Panda [6].

Explaining Plans. Explaining system behavior is a key capability of intelligent systems
that provide support to their users, since unexpected or non-understandable behavior
can impact a user’s trust in a negative way [L12, L83]. Plans can not only serve as basis
for instructions presented to the user, but also for directly controlling system behavior
(like switching a light on or off) [2]. Since both types of plans/actions have the same
underlying structure, any plan explanation technique will be applicable to both types.

In our first work on plan explanations, we outlined what a user might possibly be inter-
ested in to know about a given plan and how we can make use of causal links and the
hierarchical structure to answer such questions automatically [11]. Seegebarth et al. [L28]
have then taken these ideas forward and showed how such questions can be answered
automatically. Possible questions include the necessity of an action (e.g., being phrased
as “Why should I do this?”) or the necessity of a certain order (e.g., being phrased as
“Why should I do this now? Can’t I do X first?”). The technique to answer such ques-
tions is based upon a proof in an axiomatic system that encodes the problem to solve
(i.e., the initial partial plan), the given solution, the history of its plan modifications,
and general justification rules stating why some action might be necessary in a given
partial plan. The latter exploits both the task hierarchy (a task is regarded necessary
if it is introduced as the consequence of decomposing an abstract task) and the causal
structure (a task is necessary if it provides a causal link for another action). The proof
can be regarded a formal explanation to the raised question. Since it corresponds to a
sequence of axioms, it can be directly translated into natural language [2, 6, L28].

To give an example, we make use of the assembly assistant for setting up a home theater.
Consider that the user asks about the purpose of a currently presented plug action. By
analyzing the causal structure of the plan, the respective formal proof can be translated
as follows. “This step serves the goal to transmit the video signal of the blu-ray player
to the TV. To this end, the video signal of the blu-ray player is transmitted over the
HDMI-to-DVI adapter and the HDMI-to-DVI cable to the amplifier. From there it is
transmitted over the video-cinch cable to the TV.”

We have done an empirical evaluation with 59 test subjects to study the usefulness
of plan explanations (and the explanation mentioned above is one of the explanations
presented to the test subjects) [6]. Since this study was done in the context of evaluating
our assistant for setting up a home entertainment system, we summarize our findings
below – after we have introduced the respective system.

67

4 Practical Application

Up to this point, we have seen all the main capabilities that allow to construct an
assistant system that provides support to a user in a large set of possible application
scenarios. We will now see one such system that has been implemented practically. The
system’s capabilities encompass all the ones mentioned above and complements them by
further capabilities stemming from knowledge representation and reasoning, and dialog
and interaction management.

A Planning-based Assistant for Setting Up a Home Entertainment System. We
have developed and implemented a generic system architecture to provide automated
planning-based assistance in wide variety of possible application scenarios [6, L23]. The
paper by Bercher et al. [6] describes the planning-related aspects of that architecture in
detail, whereas the paper by Honold et al. [L23] lies emphasis on the user interaction part.
That architecture is completely domain-independent – that is, its modules only rely on
the different models and further data (such as videos or pictures), but it is not specific
to a certain application area or device. Any system relying on that architecture provides
the following key capabilities for generating a course of instructions that, if followed by
the user in that order, fulfills his or her goals. There are planning modules for all of
the user-centered planning capabilities that we have mentioned above. That is, in case
something unforeseen happens during the execution of these instructions, the system can
adequately react to these failures by providing an adapted course of instructions2. The
system can explain its own behavior, i.e., for any presented instruction the user might
ask about the purpose of it, which then gets explained via natural language (both in
written as well as spoken text). In addition to the various modules for the user-centered
planning capabilities, there is a central knowledge base that stores and processes all
central information that is relevant for more than one system module. Further modules
from dialog and interaction management are responsible for presenting the instruction to
the user in an adequate manner (i.e., they choose how to present it and which modalities
and hardware to use).

To illustrate how our approach can be applied in practice, we have implemented a
prototypical Companion System for providing support in the task of setting up a complex
home entertainment system [5, 6, A5, A22]. A short overview of the complete system
(including a comprehensive list of all publications that were done in the context of
developing this system) is given in our most-recent description about the system [A5].

The Assembly Task. For our example scenario, we modeled a specific set of available
devices, which are known to the system in advance3. In our setting, the user’s home

2Adequate reaction to execution failures can only be guaranteed if the system is aware of these failures.
In our prototype, all unforeseen changes have to be reported to the system by the user.

3In a more general system, the user would be able to select the devices or cables that he or she possesses.
This can trivially be implemented by providing the system with the required model(s) and let the
user choose the available hardware. This has not yet been integrated into our demonstration system,
however.

68

4.2 User Assistance Based on AI Planning

SAT Blu-ray

TV AMP

(a) The task: an assortment of uncon-
nected devices and cables.

SAT Blu-ray

AMPTV

(b) A solution: the devices are
properly connected.

Figure 4.1: The figure schematically illustrates the available devices, some of the available
cables, and how they are compatible with respect to each other: The TV, amplifier, satellite

receiver, and Blu-ray player each have various female ports, where , , , and denote

HDMI, SCART, cinch video, and cinch audio ports, respectively. Black ports on cables denote
male ports. There are two HDMI cables and one SCART-to-cinch-AV cable. The devices should
be connected in such a way that the video signals of the Blu-ray player and the satellite receiver
reach the TV. The respective audio signals should be transported to the amplifier receiver, which
is connected to speakers. (The graphic is a slight modification of the one given by Richter and
Biundo [L5, Fig. 1]; see also the thesis of Richter [L4, Fig. 1.1].)

theater consists of four devices: a television, an audio/video receiver (also referred to as
amplifier), a blu-ray player, and a satellite receiver. For the system to be fully functional,
the video signals of the blu-ray player and the satellite receiver need to be transmitted
to the television and their audio signals must be transmitted to the audio/video receiver,
since the audio speakers are attached to it. For doing so, the user has various cables,
adapters, and adapter cables available. We give a graphical illustration in Fig. 4.1.

While that assembly problem seems easy at first glance, it is actually quite demanding
for many users. First, it highly depends on expert knowledge in this particular domain.
Without such knowledge about the available hardware, the high complexity of some of
the devices might act as a deterrent to some users. To get an impression of the hardware’s
complexity, we depict the back of the modeled audio/video receiver in Fig. 4.2. In
Fig. 4.3, we see how the user gets supported in using this device.

Figure 4.2: The
figure shows the
back panel of the
amplifier used
for our assistant.
(The graphic shows
Fig. 2 published
previously [6], but
with removed bar
code.)

69

4 Practical Application

Figure 4.3: The figure shows how
a plug action is presented as a
detailed instruction to the user.
It shows the involved cable, the
involved device, and it highlights
the device’s ports that need to
be used for plugging the cable
into the device. The “X” on
the left side opens a menu that
can be used for asking about the
necessity of the current instruction
or for reporting execution errors.
(The graphic shows Fig. 1 published previously [5], but with removed bar code.)

To successfully complete the task, one must know which cable transmits which kind of
signal (and, given quality is an issue, whether it is analog or digital). For example,
some cables are either audio or video cables, others can be used either as audio or video,
and others allow both signals to be transmitted at the same time. The task also shows
some combinatorial aspects, which become apparent if the number of available cables
gets limited – in such a case, it might be necessary to use adapters to a large extent.
The task is described in more detail in our paper; there, we also give an excerpt of
how it is modeled [6]. A non-deterministic version of this assembly task has also been
modeled, relying on a Partially Observable HTN (POHTN) planning approach, which
extends Partially Observable Markov Decision Processes (POMDPs) by a task hierarchy,
developed by Richter [L4, L5]. This model is not integrated into our system, however.

The System. We have set up and tested our system in an office environment. The
assistant runs on a separate device to instruct the user how to set up his home theater.
In our prototype system, there are two devices, the user can interact with. Both feature
speech and touch input; one of them further features input via pointing gestures. The
system is equipped with laser-range-finders for user localization; depending on the user’s
position, the system can decide which of the devices to use for interaction. The respective
setting is shown in Fig. 4.4.

The user gets supported by a sequence of detailed instructions. Fig. 4.3 shows how such
an instruction looks like. It shows which of the SCART-to-CHINCH cable’s plugs to
put into which of the amplifier’s ports. To get a more detailed impression of how our
assistant works, we refer to a video that we have produced [A22]. It introduces the
system and the underlying scientific techniques. The target audience of the video is the
general public, so the scientific techniques are only explained on an abstract level (in
English).

Evaluation. In our paper about the planning aspects of our assistant [6], we have per-
formed an empirical study with 59 test subjects. The study was not primarily intended

70

4.2 User Assistance Based on AI Planning

Figure 4.4: The figure shows the setting in which we have tested our assistant. The home
entertainment system can be seen on the right side: (3) shows the user interacting with the
blu-ray player, satellite receiver, and amplifier. On its right side, (4) shows the television. The
assistant runs ons separate devices. (1) shows the main interaction device, which is a large
touch screen that also features input via pointing gestures (for which it is equipped with a set
of cameras) and speech input. (2) is an additional device that also features input via touch and
speech. On the right side of the main interaction device, we can see one of two laser-range-
finders for localization of the user. (The picture is an edited version of a screenshot taken from
a video describing our system [A22]; see http://companion.informatik.uni-ulm.de/ie2014/

companion-system.mp4 at approx. 18:46/20:26.)

as an evaluation of the system as a whole, but to test the influence of plan explanations
on the users’ confidence in the correctness of the presented solutions. For this, we did
a controlled, randomized trial, where we have split all subjects, without them knowing,
into two groups. One was simply instructed to follow the presented instructions, whereas
the other group was presented a plan explanation for two of the presented instructions.
For reproducibility of our study, we did not use our actual system, but a seemingly
interactive HTML5 slide show that corresponded to a fixed course of actions from our
system. The results were giving a mixed picture. On the one hand, we were not able
to confirm our hypothesis that the presented plan explanations foster the users’ confi-
dence in the correctness of the presented solutions. In fact, the control group (which
was not presented any explanations) has a slightly lower confidence than the treatment
group. This difference was not statistically significant, however. We do believe that this
result can mainly be attributed to the experimental condition: the treatment group was
presented the explanations without asking for this (and without any necessity from the
point of view of the test subjects), so their presentation might have confused the respec-
tive test subjects. On the other hand, the overall perception of the system was perceived
very positively – by both groups. Despite the slightly negative results for the group that

71

http://companion.informatik.uni-ulm.de/ie2014/companion-system.mp4
http://companion.informatik.uni-ulm.de/ie2014/companion-system.mp4

4 Practical Application

was presented the plan explanations, we also received some positive comments by the
respective test subjects, such as “explanations were good and useful, but the presented
version was confusing due to the bad, automated voice” and “the explanations seem to
be unnecessary at first glance, but they increase the understanding of what one does and
strengthen the credibility of the system”. We also received several positive remarks about
the system, such as “assists in a useful way” [6]. We also found some interesting results
concerning the question for whom such a system might be more appealing. We found
that women rated the overall system better than men; also, the degree to which people
consider themselves unskilled in that application domain (we asked them about their
confidence that they would succeed in the task while only using instruction manuals)
predicts how much they like the system in a linear regression.

Conclusions. We have developed a domain-independent architecture that serves as the
basis for the construction of (planning-based) assistance systems. It integrates all of the
before-mentioned user-centered planning capabilities with advanced dialog and interac-
tion management components to enable multimodal communication of the system. In
particular, such a system is able to:

• automatically generate plans that achieve a user’s goals,
• present these plans in a step-by-step fashion exploiting the capabilities of advanced

dialog and interaction management for multimodal interaction,
• repair plans in case of execution failures, and
• to give justifications about the purpose of any instruction presented to the user.

Possible Extensions (Ongoing and Future Work). There are mainly two directions
of research that are directly motivated by our application system and our endeavor of
providing user support. The first one is concerned with modeling issues in systems as
ours that rely on different kinds of models stemming from different research disciplines.
The second is about directly integrating the user in the plan generation process.

In complex knowledge-based systems like the one proposed above, it is of crucial impor-
tance that there are no misconceptions, redundancies, or inconsistencies with/between
the different models. If there were, maintaining that knowledge becomes quickly in-
tractable and, in the worst case, the system might not work correctly anymore – or not
at all. Ensuring these consistencies and eliminating redundancies was a quite tedious
task in the development of our system and there was an inherent need for addressing
that issue. We have addressed it by an integrated approach that allows to use just a
single unified model – knowledge models for the system’s individual components are
automatically generated from that centralized model [A2, A15, A16]. The generation of
the individual models for the planning and dialog components is done using automated
reasoning relying on a centralized knowledge model in the form of an OWL ontology
[L40]. A key idea to make this work was to exploit the correspondence between sub-

72

4.2 User Assistance Based on AI Planning

sumption in ontologies and decomposition in hierarchical planning. For this, also tasks
(both primitive and abstract) are represented within the ontology. Relying on inference
mechanisms, we can further exploit the before-mentioned correspondence to infer new
decomposition methods for the planning model. For any such inferred method, the on-
tology reasoner provides us with further arguments why some task is a refinement of
an abstract task (which are basically the subsumption axioms that allow to infer the
method); standard plan explanations [2, 6, 11, L28], on the other side, can only state
that one task is within a decomposition method of another – without being able to give
further justifications why this is the case. We are currently working on extensions to this
approach that focus on the automatic generation of those parts of the planning model
that describe world objects and their properties [A6]. To this end, all objects that
the planning model’s tasks potentially manipulate are described in an ontology using
standard taxonomic structures. Properties and interconnections between these objects
are represented there as well. This information is automatically incorporated into the
planning model.

The second direction of ongoing research that is motivated by the construction of Com-
panion Systems is the direct integration of the user into the planning process – this is
called mixed-initiative planning (MIP). MIP is often a more adequate choice compared
to solving planning problems without direct user involvement, because it allows the user
to directly alter plans under development in the way he or she desires. An alterna-
tive to MIP is to specify the users’ preferences, according to which suitable plans are
generated. However, sometimes the users’ preferences are not fully known to them or
simply not easily expressible in the underlying planning language. For these reasons,
MIP techniques were successfully applied in several NASA missions [A11]. In a series of
publications, we have demonstrated how a dialog manager can be integrated into a MIP
system to interact with a human user incorporating his or her wishes into the currently
presented partial plan under development [A2, A3, A4, A18]. These systems are imple-
mented as extensions to our Panda planning system. More specifically, we let the user
choose between different refinements (decomposition methods) of a given partial plan
(abstract task). In a more general setting, a user would also be allowed to make changes
to a current partial plan, such as altering the partial order or including, removing, or
interchanging tasks. We have investigated the computational complexity of such change
request in the hierarchical planning setting [A8], but did not yet implement them in a
running system.

73

5 Conclusion

This thesis is concerned with hybrid planning – from theory to practice. Hybrid plan-
ning fuses hierarchical task network (HTN) planning with concepts known from partial
order causal link (POCL) planning. The approach is motivated by the endeavor of creat-
ing planning-based Companion Systems, cognitive technical systems that flexibly assist
their human users performing complex tasks [3, L9]. In this context, the thesis makes
contributions along three lines of research, Theoretical Foundations (Sec. 2), Search and
Heuristics (Sec. 3), and Practical Application (Sec. 4). We summarize the main con-
tributions below; for detailed summaries, we refer to the beginning of the respective
sections.

Theoretical Foundations. One of the thesis’ most foundational contributions is a novel
formalization of HTN planning problems [12]. The formalization has proved successful
for investigating several computational properties of hierarchical planning, most notably
regarding the plan existence problem. It was hence used as a basis for such investigations
both by us and other authors as well [4, 12, A7, A8, A10, A12, A13, A14, A20, L2, L7,
L8, L14, L18, L26]. Fragments of our formalization were also used for purposes other
than proving foundational properties, such as learning task hierarchies [L11, L16] or for
providing an overview for HTN planning [L15]. A second key contribution is studying
the impact of task insertion on the computational complexity of the plan existence
problem [12]. We have shown that the capability of task insertion limits the impact of
recursive method definitions, making the respective problem class, called HTN planning
with task insertion (TIHTN planning), decidable. Investigations of task insertion were
taken further later on [A10, A13, A14, A20, L7, L8, L18]. As a third key contribution, we
extended our HTN planning formalization to a novel formalization of hybrid planning [4].
Relying on this formalization, we were able to prove the first complexity results for hybrid
planning. We showed that most of the hardness results for the plan existence problem
in HTN planning also hold in hybrid planning. We further transferred an HTN planning
result concerning the plan verification problem to hybrid planning, thereby showing that
it is NP-complete to verify whether a given partial plan is a solution to a given planning
problem.

Search and Heuristics. To exploit AI planning in real-world applications, well-informed
heuristics are required to solve the given problems as quickly as possible. Whereas there
are several well-informed heuristics for classical, non-hierarchical planning, there are
only quite a few in hierarchical and POCL planning. Based on a theoretical analysis,

75

5 Conclusion

we created the prerequisites to exploit heuristics from classical planning in the POCL
setting [8] and identified what kind of problem relaxation needs to be performed in order
to obtain a tractable problem class and respective heuristic [9]. For the latter, we showed
that the plan existence problem for (partially) delete-relaxed POCL planning problems
is NP-complete. We have further developed heuristics and search strategies for HTN
and hybrid planning [1, 7, 10], including the first admissible heuristic for these problem
classes which thereby allows to find optimal solutions heuristically [1].

Practical Application. We have presented a prototypical Companion System [5, 6, A5,
A22] to illustrate how hybrid planning can be deployed as the basis for systems that
provide automated user assistance. The system assists its users in the task of setting up
a home theater. For such a system to act as a flexible, robust assistant, we identified
and realized various user-centered planning capabilities [2, 11], all of which are imple-
mented within our assistant. They encompass the generation of plans, the user-friendly
linearization and presentation of plans, their repair in case of execution failures, and the
explanation of plans.

76

6 References

The references are divided in three different lists: the core contributions of the thesis,
related work by the author, and related work from the literature.

6.1 Core Contributions

The references listed below are the core contributions of the thesis. They are also
included as full PDF in Sec. 7.

[1] P. Bercher, G. Behnke, D. Höller, and S. Biundo. “An Admissible HTN Plan-
ning Heuristic”. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI 2017). AAAI Press, 2017, pp. 480–488. doi: 10.
24963/ijcai.2017/68.

[2] P. Bercher, D. Höller, G. Behnke, and S. Biundo. “User-Centered Planning”.
In: Companion Technology – A Paradigm Shift in Human-Technology Interaction.
Ed. by S. Biundo and A. Wendemuth. Cognitive Technologies. In print. Springer,
2017. Chap. 5, pp. 79–100. isbn: 978-3-319-43664-7. doi: 10.1007/978-3-319-
43665-4_5.

[3] S. Biundo, D. Höller, B. Schattenberg, and P. Bercher. “Companion-Technology:
An Overview”. In: Künstliche Intelligenz 30.1 (2016). Special Issue on Compan-
ion Technologies, pp. 11–20. doi: 10.1007/s13218-015-0419-3.

[4] P. Bercher, D. Höller, G. Behnke, and S. Biundo. “More than a Name? On
Implications of Preconditions and Effects of Compound HTN Planning Tasks”.
In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI
2016). IOS Press, 2016, pp. 225–233. doi: 10.3233/978-1-61499-672-9-225.

[5] P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller, G. Behnke, F. Nothdurft,
F. Honold, W. Minker, M. Weber, and S. Biundo. “A Planning-based Assistance
System for Setting Up a Home Theater”. In: Proceedings of the 29th National
Conference on Artificial Intelligence (AAAI 2015). AAAI Press, 2015, pp. 4264–
4265.

77

http://dx.doi.org/10.24963/ijcai.2017/68
http://dx.doi.org/10.24963/ijcai.2017/68
http://dx.doi.org/10.1007/978-3-319-43665-4_5
http://dx.doi.org/10.1007/978-3-319-43665-4_5
http://dx.doi.org/10.1007/s13218-015-0419-3
http://dx.doi.org/10.3233/978-1-61499-672-9-225

6 References

[6] P. Bercher, S. Biundo, T. Geier, T. Hörnle, F. Nothdurft, F. Richter, and B.
Schattenberg. “Plan, Repair, Execute, Explain - How Planning Helps to Assemble
your Home Theater”. In: Proceedings of the 24th International Conference on
Automated Planning and Scheduling (ICAPS 2014). AAAI Press, 2014, pp. 386–
394.

[7] P. Bercher, S. Keen, and S. Biundo. “Hybrid Planning Heuristics Based on
Task Decomposition Graphs”. In: Proceedings of the 7th Annual Symposium on
Combinatorial Search (SoCS 2014). AAAI Press, 2014, pp. 35–43.

[8] P. Bercher, T. Geier, and S. Biundo. “Using State-Based Planning Heuristics
for Partial-Order Causal-Link Planning”. In: Advances in Artificial Intelligence,
Proceedings of the 36th German Conference on Artificial Intelligence (KI 2013).
Springer, 2013, pp. 1–12. doi: 10.1007/978-3-642-40942-4_1.

[9] P. Bercher, T. Geier, F. Richter, and S. Biundo. “On Delete Relaxation in
Partial-Order Causal-Link Planning”. In: Proceedings of the 2013 IEEE 25th In-
ternational Conference on Tools with Artificial Intelligence (ICTAI 2013). IEEE
Computer Society, 2013, pp. 674–681. doi: 10.1109/ICTAI.2013.105.

[10] M. Elkawkagy, P. Bercher, B. Schattenberg, and S. Biundo. “Improving Hi-
erarchical Planning Performance by the Use of Landmarks”. In: Proceedings of
the 26th AAAI Conference on Artificial Intelligence (AAAI 2012). AAAI Press,
2012, pp. 1763–1769.

[11] S. Biundo, P. Bercher, T. Geier, F. Müller, and B. Schattenberg. “Advanced
user assistance based on AI planning”. In: Cognitive Systems Research 12.3-4
(Apr. 2011). Special Issue on Complex Cognition, pp. 219–236. doi: 10.1016/
j.cogsys.2010.12.005.

[12] T. Geier and P. Bercher. “On the Decidability of HTN Planning with Task In-
sertion”. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011). AAAI Press, 2011, pp. 1955–1961.

78

http://dx.doi.org/10.1007/978-3-642-40942-4_1
http://dx.doi.org/10.1109/ICTAI.2013.105
http://dx.doi.org/10.1016/j.cogsys.2010.12.005
http://dx.doi.org/10.1016/j.cogsys.2010.12.005

6.2 Related Work

6.2 Related Work

The related work is divided in two separate lists. The first one lists publications that
were done by the author of the thesis, and the second one lists publications that were
not – i.e., related work from the literature.

Related Work by the Author

The related work from the author of this thesis is marked by a preceding “A”. Note that
only publications are listed (i.e., cited) that are closely related to the thesis.

[A1] G. Behnke, B. Leichtmann, P. Bercher, D. Höller, V. Nitsch, M. Baumann, and
S. Biundo. “Help me make a dinner! Challenges when assisting humans in action
planning”. In: Proceedings of the 2nd International Conference on Companion
Technology (ICCT 2017). IEEE, 2017.

[A2] G. Behnke, F. Nielsen, M. Schiller, P. Bercher, M. Kraus, W. Minker, B.
Glimm, and S. Biundo. “SLOTH – the Interactive Workout Planner”. In: Pro-
ceedings of the 2nd International Conference on Companion Technology (ICCT
2017). IEEE, 2017.

[A3] G. Behnke, F. Nielsen, M. Schiller, D. Ponomaryov, P. Bercher, B. Glimm,
W. Minker, and S. Biundo. “To Plan for the User Is to Plan With the User –
Integrating User Interaction Into the Planning Process”. In: Companion Tech-
nology – A Paradigm Shift in Human-Technology Interaction. Ed. by S. Biundo
and A. Wendemuth. Cognitive Technologies. In print. Springer, 2017. Chap. 7,
pp. 123–144. isbn: 978-3-319-43664-7. doi: 10.1007/978-3-319-43665-4_7.

[A4] F. Nothdurft, P. Bercher, G. Behnke, and W. Minker. “User Involvement
in Collaborative Decision-Making Dialog Systems”. In: Dialogues with Social
Robots: Enablements, Analyses, and Evaluation. Ed. by K. Jokinen and G. Wilcock.
This book chapter was accepted at the 7th International Workshop On Spoken
Dialogue Systems (IWSDS 2016). Springer, 2017, pp. 129–141. doi: 10.1007/
978-981-10-2585-3_10.

[A5] P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller, G. Behnke, F. Nielsen,
F. Honold, F. Schüssel, S. Reuter, W. Minker, M. Weber, K. Dietmayer, and
S. Biundo. “Advanced User Assistance for Setting Up a Home Theater”. In:
Companion Technology – A Paradigm Shift in Human-Technology Interaction.
Ed. by S. Biundo and A. Wendemuth. Cognitive Technologies. In print. Springer,
2017. Chap. 24, pp. 485–491. isbn: 978-3-319-43664-7. doi: 10.1007/978-3-
319-43665-4_24.

79

http://dx.doi.org/10.1007/978-3-319-43665-4_7
http://dx.doi.org/10.1007/978-981-10-2585-3_10
http://dx.doi.org/10.1007/978-981-10-2585-3_10
http://dx.doi.org/10.1007/978-3-319-43665-4_24
http://dx.doi.org/10.1007/978-3-319-43665-4_24

6 References

[A6] M. Schiller, G. Behnke, M. Schmautz, P. Bercher, M. Kraus, W. Minker, B.
Glimm, and S. Biundo. “A Paradigm for Coupling Procedural and Conceptual
Knowledge in Companion Systems”. In: Proceedings of the 2nd International
Conference on Companion Technology (ICCT 2017). An extended version with
additional authors will replace the paper referenced here. IEEE, 2017.

[A7] R. Alford, G. Behnke, D. Höller, P. Bercher, S. Biundo, and D. Aha. “Bound to
Plan: Exploiting Classical Heuristics via Automatic Translations of Tail-Recursive
HTN Problems”. In: Proceedings of the 26th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2016). AAAI Press, 2016, pp. 20–28.

[A8] G. Behnke, D. Höller, P. Bercher, and S. Biundo. “Change the Plan – How hard
can that be?” In: Proceedings of the 26th International Conference on Automated
Planning and Scheduling (ICAPS 2016). AAAI Press, 2016, pp. 38–46.

[A9] S. Biundo, D. Höller, and P. Bercher. “Special Issue on Companion Technolo-
gies”. In: Künstliche Intelligenz 30.1 (2016). (Editorial), pp. 5–9. doi: 10.1007/
s13218-015-0421-9.

[A10] D. Höller, G. Behnke, P. Bercher, and S. Biundo. “Assessing the Expressiv-
ity of Planning Formalisms through the Comparison to Formal Languages”. In:
Proceedings of the 26th International Conference on Automated Planning and
Scheduling (ICAPS 2016). AAAI Press, 2016, pp. 158–165.

[A11] P. Bercher and D. Höller. “Interview with David E. Smith”. In: Künstliche
Intelligenz 30.1 (2016). Special Issue on Companion Technologies, pp. 101–105.
doi: 10.1007/s13218-015-0403-y.

[A12] R. Alford, P. Bercher, and D. Aha. “Tight Bounds for HTN Planning”. In:
Proceedings of the 25th International Conference on Automated Planning and
Scheduling (ICAPS 2015). AAAI Press, 2015, pp. 7–15.

[A13] R. Alford, P. Bercher, and D. Aha. “Tight Bounds for HTN planning with
Task Insertion”. In: Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI 2015). AAAI Press, 2015, pp. 1502–1508.

[A14] R. Alford, P. Bercher, and D. Aha. “Tight Bounds for HTN planning with Task
Insertion (Extended Abstract)”. In: Proceedings of the 8th Annual Symposium
on Combinatorial Search (SoCS 2015). This is an extended abstract of the paper
[A13]. AAAI Press, 2015, pp. 221–222.

[A15] G. Behnke, P. Bercher, S. Biundo, B. Glimm, D. Ponomaryov, and M. Schiller.
“Integrating Ontologies and Planning for Cognitive Systems”. In: Proceedings
of the 28th International Workshop on Description Logics (DL 2015). CEUR
Workshop Proceedings, 2015.

[A16] G. Behnke, D. Ponomaryov, M. Schiller, P. Bercher, F. Nothdurft, B. Glimm,
and S. Biundo. “Coherence Across Components in Cognitive Systems – One
Ontology to Rule Them All”. In: Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI 2015). AAAI Press, 2015, pp. 1442–
1449.

80

http://dx.doi.org/10.1007/s13218-015-0421-9
http://dx.doi.org/10.1007/s13218-015-0421-9
http://dx.doi.org/10.1007/s13218-015-0403-y

6.2 Related Work

[A17] P. Bercher. “Hybrid Planning – Theoretical Foundations and Practical Appli-
cations”. In: Doctoral Consortium at ICAPS 2015 (ICAPS DC 2015). 2015.

[A18] F. Nothdurft, G. Behnke, P. Bercher, S. Biundo, and W. Minker. “The Inter-
play of User-Centered Dialog Systems and AI Planning”. In: Proceedings of the
16th Annual Meeting of the Special Interest Group on Discourse and Dialogue
(SIGDIAL 2015). Association for Computational Linguistics, 2015, pp. 344–353.

[A19] P. Bercher, D. Höller, G. Behnke, and S. Biundo. “User-Centered Planning
– A Discussion on Planning in the Presence of Human Users”. In: Proceedings
of the International Symposium on Companion Technology (ISCT 2015). 2015,
pp. 79–83.

[A20] D. Höller, G. Behnke, P. Bercher, and S. Biundo. “Language Classification of
Hierarchical Planning Problems”. In: Proceedings of the 21st European Confer-
ence on Artificial Intelligence (ECAI 2014). IOS Press, 2014, pp. 447–452. doi:
10.3233/978-1-61499-419-0-447.

[A21] D. Höller, P. Bercher, F. Richter, M. Schiller, T. Geier, and S. Biundo. “Finding
User-friendly Linearizations of Partially Ordered Plans”. In: 28th PuK Workshop
“Planen, Scheduling und Konfigurieren, Entwerfen” (PuK 2014). 2014.

[A22] F. Honold, P. Bercher, F. Richter, F. Nothdurft, T. Geier, R. Barth, T. Hörnle,
F. Schüssel, S. Reuter, M. Rau, G. Bertrand, B. Seegebarth, P. Kurzok, B. Schat-
tenberg, W. Minker, M. Weber, and S. Biundo. “Companion-Technology: To-
wards User- and Situation-Adaptive Functionality of Technical Systems”. In:
10th International Conference on Intelligent Environments (IE 2014). IEEE,
2014, pp. 378–381. doi: 10.1109/IE.2014.60.

[A23] P. Bercher and S. Biundo. “Encoding Partial Plans for Heuristic Search”. In:
Proceedings of the 4th Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS 2013). 2013, pp. 11–15.

[A24] P. Bercher and S. Biundo. “A Heuristic for Hybrid Planning with Preferences”.
In: Proceedings of the 25th International Florida Artificial Intelligence Research
Society Conference (FLAIRS 2012). AAAI Press, 2012, pp. 120–123.

[A25] R. Mattmüller, M. Ortlieb, M. Helmert, and P. Bercher. “Pattern Database
Heuristics for Fully Observable Nondeterministic Planning”. In: Proceedings of
the 20th International Conference on Automated Planning and Scheduling (ICAPS
2010). AAAI Press, 2010, pp. 105–112.

[A26] P. Bercher and R. Mattmüller. “Solving Non-deterministic Planning Problems
with Pattern Database Heuristics”. In: Advances in Artificial Intelligence, Pro-
ceedings of the 32nd German Conference on Artificial Intelligence (KI 2009).
Springer, 2009, pp. 57–64. doi: 10.1007/978-3-642-04617-9_8.

81

http://dx.doi.org/10.3233/978-1-61499-419-0-447
http://dx.doi.org/10.1109/IE.2014.60
http://dx.doi.org/10.1007/978-3-642-04617-9_8

6 References

Related Work from the Literature

The related work from the literature is marked by a preceding “L”.

[L1] Retrieved on Jule, 29th, 2017. url: http://sig-aps.org/.

[L2] G. Behnke, D. Höller, and S. Biundo. “This is a solution! (... but is it though?)
– Verifying solutions of hierarchical planning problems”. In: Proceedings of the
27th International Conference on Automated Planning and Scheduling (ICAPS
2017). AAAI Press, 2017, pp. 20–28.

[L3] S. Biundo and A. Wendemuth, eds. Companion Technology – A Paradigm Shift in
Human-Technology Interaction. Cognitive Technologies. In print. Springer, 2017.
isbn: 978-3-319-43664-7. doi: 10.1007/978-3-319-43665-4.

[L4] F. Richter. “Hierarchical Planning Under Uncertainty”. PhD thesis. Ulm Uni-
versity, Germany, 2017.

[L5] F. Richter and S. Biundo. “Addressing Uncertainty in Hierarchical User-Centered
Planning”. In: Companion Technology – A Paradigm Shift in Human-Technology
Interaction. Ed. by S. Biundo and A. Wendemuth. Cognitive Technologies. In
print. Springer, 2017. Chap. 6, pp. 101–121. isbn: 978-3-319-43664-7. doi: 10.
1007/978-3-319-43665-4_6.

[L6] V. Shivashankar, R. Alford, and D. Aha. “Incorporating Domain-Independent
Planning Heuristics in Hierarchical Planning”. In: Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI 2017). AAAI Press, 2017, pp. 3658–
3664.

[L7] Z. Xiao, A. Herzig, L. Perrussel, H. Wan, and X. Su. “Hierarchical Task Network
Planning with Task Insertion and State Constraints”. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI 2017). AAAI
Press, 2017, pp. 4463–4469. doi: 10.24963/ijcai.2017/623.

[L8] R. Alford, V. Shivashankar, M. Roberts, J. Frank, and D. W. Aha. “Hierarchical
planning: relating task and goal decomposition with task sharing”. In: Proceed-
ings of the 25th International Joint Conference on Artificial Intelligence (IJCAI
2016). AAAI Press, 2016, pp. 3022–3029.

[L9] S. Biundo and A. Wendemuth. “Companion-Technology for Cognitive Technical
Systems”. In: Künstliche Intelligenz 30.1 (2016). Special Issue on Companion
Technologies, pp. 71–75. doi: 10.1007/s13218-015-0414-8.

[L10] M. Ghallab, D. Nau, and P. Traverso. Automated Planning and Acting. Cam-
bridge University Press, 2016. isbn: 978-1-107-03727-4.

[L11] D. Lotinac and A. Jonsson. “Constructing Hierarchical Task Models Using In-
variance Analysis”. In: Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI 2016). IOS Press, 2016, pp. 1274–1282. doi: 10.3233/978-
1-61499-672-9-1274.

82

http://sig-aps.org/
http://dx.doi.org/10.1007/978-3-319-43665-4
http://dx.doi.org/10.1007/978-3-319-43665-4_6
http://dx.doi.org/10.1007/978-3-319-43665-4_6
http://dx.doi.org/10.24963/ijcai.2017/623
http://dx.doi.org/10.1007/s13218-015-0414-8
http://dx.doi.org/10.3233/978-1-61499-672-9-1274
http://dx.doi.org/10.3233/978-1-61499-672-9-1274

6.2 Related Work

[L12] F. M. Nothdurft. “User- and Situation-adaptive Explanations in Dialogue Sys-
tems”. PhD thesis. Ulm University, Germany, 2016.

[L13] V. Shivashankar, R. Alford, M. Roberts, and D. W. Aha. “Cost-Optimal Algo-
rithms for Planning with Procedural Control Knowledge”. In: Proceedings of the
22nd European Conference on Artificial Intelligence (ECAI 2016). IOS Press,
2016, pp. 1702–1703.

[L14] G. Behnke, D. Höller, and S. Biundo. “On the Complexity of HTN Plan Veri-
fication and its Implications for Plan Recognition”. In: Proceedings of the 25th
International Conference on Automated Planning and Scheduling (ICAPS 2015).
AAAI Press, 2015, pp. 25–33.

[L15] I. Georgievski and M. Aiello. “HTN planning: Overview, comparison, and be-
yond”. In: Artificial Intelligence 222 (2015), pp. 124–156. doi: 10.1016/j.

artint.2015.02.002.

[L16] A. Jonsson and D. Lotinac. “Automatic Generation of HTNs From PDDL”. In:
Proceedings of the 5th workshop on Planning and Learning (PAL 2015). 2015.

[L17] V. Shivashankar. “Hierarchical Goal Network: Formalisms and Algorithms for
Planning and Acting”. PhD thesis. University of Maryland, 2015.

[L18] R. Alford, V. Shivashankar, U. Kuter, and D. Nau. “On the Feasibility of Plan-
ning Graph Style Heuristics for HTN Planning”. In: Proceedings of the 24th In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2014).
AAAI Press, 2014, pp. 2–10.

[L19] P. Bechon, M. Barbier, G. Infantes, C. Lesire, and V. Vidal. “HiPOP: Hier-
archical Partial-Order Planning”. In: Proceedings of the 7th European Starting
AI Researcher Symposium (STAIRS 2014). IOS Press, 2014, pp. 51–60. doi:
10.3233/978-1-61499-421-3-51.

[L20] F. Dvorák, A. Bit-Monnot, F. Ingrand, and M. Ghallab. “A Flexible ANML Actor
and Planner in Robotics”. In: Proceedings of the 2nd Workshop on Planning and
Robotics (PlanRob 2014). 2014, pp. 12–19.

[L21] R. Alford. “Search Complexities for HTN Planning”. PhD thesis. University of
Maryland, 2013.

[L22] S. Bernardini and K. Porayska-Pomsta. “Planning-Based Social Partners for
Children with Autism”. In: Proceedings of the 23rd International Conference on
Automated Planning and Scheduling (ICAPS 2013). AAAI Press, 2013, pp. 362–
370.

[L23] F. Honold, F. Schüssel, M. Weber, F. Nothdurft, G. Bertrand, and W. Minker.
“Context Models for Adaptive Dialogs and Multimodal Interaction”. In: Proceed-
ings of the 9th International Conference on Intelligent Environments (IE 2013).
IEEE, 2013, pp. 57–64. doi: 10.1109/IE.2013.54.

83

http://dx.doi.org/10.1016/j.artint.2015.02.002
http://dx.doi.org/10.1016/j.artint.2015.02.002
http://dx.doi.org/10.3233/978-1-61499-421-3-51
http://dx.doi.org/10.1109/IE.2013.54

6 References

[L24] R. Petrick and M. E. Foster. “Planning for Social Interaction in a Robot Bar-
tender Domain”. In: Proceedings of the 23rd International Conference on Au-
tomated Planning and Scheduling (ICAPS 2013). AAAI Press, 2013, pp. 389–
397.

[L25] V. Shivashankar, R. Alford, U. Kuter, and D. Nau. “The GoDeL Planning Sys-
tem: A More Perfect Union of Domain-Independent and Hierarchical Planning”.
In: Proceedings of the 23rd International Joint Conference on Artificial Intelli-
gence (IJCAI 2013). AAAI Press, 2013, pp. 2380–2386.

[L26] R. Alford, V. Shivashankar, U. Kuter, and D. S. Nau. “HTN Problem Spaces:
Structure, Algorithms, Termination”. In: Proceedings of The 5th Annual Sympo-
sium on Combinatorial Search (SoCS 2012). AAAI Press, 2012, pp. 2–9.

[L27] M. Beetz, D. Jain, L. Mösenlechner, M. Tenorth, L. Kunze, N. Blodow, and D.
Pangercic. “Cognition-Enabled Autonomous Robot Control for the Realization
of Home Chore Task Intelligence”. In: Proceedings of the IEEE 100.8 (2012),
pp. 2454–2471. doi: 10.1109/JPROC.2012.220055.

[L28] B. Seegebarth, F. Müller, B. Schattenberg, and S. Biundo. “Making Hybrid Plans
More Clear to Human Users – A Formal Approach for Generating Sound Ex-
planations”. In: Proceedings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS 2012). AAAI Press, 2012, pp. 225–233.

[L29] V. Shivashankar, U. Kuter, D. Nau, and R. Alford. “A hierarchical goal-based
formalism and algorithm for single-agent planning”. In: Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2012). International Foundation for Autonomous Agents and Multiagent
Systems, 2012, pp. 981–988.

[L30] F. H. Siddiqui and P. Haslum. “Block-Structured Plan Deordering”. In: Advances
in Artificial Intelligence: 25th Australasian Joint Conference (AI 2012). Springer,
2012, pp. 803–814. doi: 10.1007/978-3-642-35101-3_68.

[L31] E. Karpas and C. Domshlak. “Living on the Edge: Safe Search with Unsafe
Heuristics”. In: Proceedings of the 2011 ICAPS Workshop on Heuristics for Do-
main Independent Planning (HDIP). 2011.

[L32] M. Buss and M. Beetz. “CoTeSys – Cognition for Technical Systems”. In: Künst-
liche Intelligenz 24.4 (2010), pp. 323–327. doi: 10.1007/s13218-010-0061-z.

[L33] M. Elkawkagy, B. Schattenberg, and S. Biundo. “Landmarks in Hierarchical Plan-
ning”. In: Proceedings of the 20th European Conference on Artificial Intelligence
(ECAI 2010). IOS Press, 2010, pp. 229–234. doi: 10.3233/978-1-60750-606-
5-229.

[L34] H. J. Ritter. “Cognitive Interaction Technology – Goals and Perspectives of Ex-
cellence Cluster CITEC”. In: Künstliche Intelligenz 24.4 (2010), pp. 319–322.
doi: 10.1007/s13218-010-0063-x.

84

http://dx.doi.org/10.1109/JPROC.2012.220055
http://dx.doi.org/10.1007/978-3-642-35101-3_68
http://dx.doi.org/10.1007/s13218-010-0061-z
http://dx.doi.org/10.3233/978-1-60750-606-5-229
http://dx.doi.org/10.3233/978-1-60750-606-5-229
http://dx.doi.org/10.1007/s13218-010-0063-x

6.2 Related Work

[L35] R. Alford, U. Kuter, and D. S. Nau. “Translating HTNs to PDDL: A Small
Amount of Domain Knowledge Can Go a Long Way”. In: Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJCAI 2009). AAAI
Press, 2009, pp. 1629–1634.

[L36] M. Helmert and C. Domshlak. “Landmarks, Critical Paths and Abstractions:
What’s the Difference Anyway?” In: Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS 2009). AAAI Press,
2009, pp. 162–169.

[L37] M. Ramı́rez and H. Geffner. “Plan Recognition as Planning”. In: Proceedings of
the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009).
AAAI Press, 2009, pp. 1778–1783.

[L38] B. Schattenberg. “Hybrid Planning & Scheduling”. PhD thesis. University of
Ulm, Germany, 2009. doi: 10.18725/OPARU-1045.

[L39] S. Sohrabi, J. A. Baier, and S. A. McIlraith. “HTN Planning with Preferences”.
In: Proceedings of the 21st International Joint Conference on Artificial Intelli-
gence (IJCAI 2009). AAAI Press, 2009, pp. 1790–1797.

[L40] W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.
2009. url: http://www.w3.org/TR/owl2-overview/.

[L41] J. Bidot, B. Schattenberg, and S. Biundo. “Plan Repair in Hybrid Planning”. In:
Advances in Artificial Intelligence, Proceedings of the 31st German Conference on
Artificial Intelligence (KI 2008). Springer, 2008, pp. 169–176. doi: 10.1007/978-
3-540-85845-4_21.

[L42] A. Gerevini, U. Kuter, D. S. Nau, A. Saetti, and N. Waisbrot. “Combining
Domain-Independent Planning and HTN Planning: The Duet Planner”. In: Pro-
ceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008).
IOS Press, 2008, pp. 573–577. doi: 10.3233/978-1-58603-891-5-573.

[L43] N. Lin, U. Kuter, and E. Sirin. “Web Service Composition with User Prefer-
ences”. In: ESWC’08: Proceedings of the 5th European Semantic Web Confer-
ence. Springer, 2008, pp. 629–643. doi: 10.1007/978-3-540-68234-9_46.

[L44] B. Marthi, S. Russell, and J. Wolfe. “Angelic Hierarchical Planning: Optimal
and Online Algorithms”. In: Proceedings of the 18th International Conference on
Automated Planning and Scheduling (ICAPS 2008). AAAI Press, 2008, pp. 222–
231.

[L45] D. E. Smith, J. Frank, and W. Cushing. “The ANML language”. In: In Proc. of
the Workshop on Knowledge Engineering for Planning and Scheduling (KEPS
2008). 2008.

[L46] M. Beetz, M. Buss, and D. Wollherr. “Cognitive Technical Systems – What Is the
Role of Artificial Intelligence?” In: Proceedings of the 30th German Conference on
Artificial Intelligence (KI 2013). Springer, 2007, pp. 19–42. doi: 10.1007/978-
3-540-74565-5_3.

85

http://dx.doi.org/10.18725/OPARU-1045
http://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1007/978-3-540-85845-4_21
http://dx.doi.org/10.1007/978-3-540-85845-4_21
http://dx.doi.org/10.3233/978-1-58603-891-5-573
http://dx.doi.org/10.1007/978-3-540-68234-9_46
http://dx.doi.org/10.1007/978-3-540-74565-5_3
http://dx.doi.org/10.1007/978-3-540-74565-5_3

6 References

[L47] M. Helmert, P. Haslum, and J. Hoffmann. “Flexible Abstraction Heuristics for
Optimal Sequential Planning”. In: Proceedings of the 17th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2007). AAAI Press, 2007,
pp. 176–183.

[L48] B. Marthi, S. J. Russell, and J. Wolfe. “Angelic Semantics for High-Level Ac-
tions”. In: Proceedings of the 17th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2007). AAAI Press, 2007, pp. 232–239.

[L49] J. Boger, J. Hoey, P. Poupart, C. Boutilier, G. Fernie, and A. Mihailidis. “A
planning system based on Markov decision processes to guide people with de-
mentia through activities of daily living”. In: IEEE Transactions on Information
Technology in Biomedicine 10.2 (2006), pp. 323–333. doi: 10.1109/TITB.2006.
864480.

[L50] P. Haslum. “Admissible Heuristics for Automated Planning”. PhD thesis. De-
partment of Computer and Information Science, Linköpings Universitet, 2006.

[L51] M. Helmert. “The Fast Downward Planning System”. In: Journal of Artificial
Intelligence Research (JAIR) 26 (2006), pp. 191–246.

[L52] V. Vidal and H. Geffner. “Branching and pruning: An optimal temporal POCL
planner based on constraint programming”. In: Artificial Intelligence 170 (2006),
pp. 298–335. doi: 10.1016/j.artint.2005.08.004.

[L53] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis. “A
decision-theoretic approach to task assistance for persons with dementia”. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005). Professional Book Center, 2005, pp. 1293–1299.

[L54] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman, H. Muñoz-Avila,
and J. W. Murdock. “Applications of SHOP and SHOP2”. In: Intelligent Sys-
tems, IEEE 20 (Mar. 2005), pp. 34–41. doi: 10.1109/MIS.2005.20.

[L55] M. Ghallab, D. S. Nau, and P. Traverso. Automated Planning: Theory and Prac-
tice. Ed. by D. E. M. Penrose. Morgan Kaufmann, 2004. isbn: 1558608567.

[L56] M. Ghallab, D. S. Nau, and P. Traverso. “Hierarchical Task Network Planning”.
In: Automated Planning: Theory and Practice. Ed. by D. E. M. Penrose. Morgan
Kaufmann, 2004. Chap. 11, pp. 229–261. isbn: 1558608567.

[L57] M. Ghallab, D. S. Nau, and P. Traverso. “Plan-Space Planning”. In: Automated
Planning: Theory and Practice. Ed. by D. E. M. Penrose. Morgan Kaufmann,
2004. Chap. 5, pp. 85–109. isbn: 1558608567.

[L58] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Ya-
man. “SHOP2: An HTN Planning System”. In: Journal of Artificial Intelligence
Research (JAIR) 20 (2003), pp. 379–404.

[L59] H. L. S. Younes and R. G. Simmons. “VHPOP: Versatile heuristic partial or-
der planner”. In: Journal of Artificial Intelligence Research (JAIR) 20 (2003),
pp. 405–430.

86

http://dx.doi.org/10.1109/TITB.2006.864480
http://dx.doi.org/10.1109/TITB.2006.864480
http://dx.doi.org/10.1016/j.artint.2005.08.004
http://dx.doi.org/10.1109/MIS.2005.20

6.2 Related Work

[L60] M. E. Pollack. “Planning Technology for Intelligent Cognitive Orthotics”. In:
Proceedings of the 6th International Conference on Artificial Intelligence Plan-
ning Systems (AIPS 2002). AAAI Press, 2002, pp. 322–332.

[L61] S. Biundo and B. Schattenberg. “From Abstract Crisis to Concrete Relief – A
Preliminary Report on Combining State Abstraction and HTN Planning”. In:
Proceedings of the 6th European Conference on Planning (ECP 2001). AAAI
Press, 2001, pp. 157–168.

[L62] L. A. Castillo, J. Fernández-Olivares, and A. González. “On the Adequacy of
Hierarchical Planning Characteristics for Real-World Problem Solving”. In: Pro-
ceedings of the 6th European Conference on Planning (ECP 2001). AAAI Press,
2001, pp. 169–180.

[L63] J. Hoffmann and B. Nebel. “The FF Planning System: Fast Plan Generation
Through Heuristic Search”. In: Journal of Artificial Intelligence Research (JAIR)
14 (May 2001), pp. 253–302.

[L64] X. Nguyen and S. Kambhampati. “Reviving Partial Order Planning”. In: Pro-
ceedings of the 17th International Joint Conference on Artificial Intelligence (IJ-
CAI 2001). Morgan Kaufmann, 2001, pp. 459–466.

[L65] P. Haslum and H. Geffner. “Admissible Heuristics for Optimal Planning”. In:
Proceedings of the 5th International Conference on Artificial Intelligence Plan-
ning Systems (AIPS 2000). AAAI Press, 2000, pp. 140–149.

[L66] D. McDermott. “The 1998 AI Planning Systems Competition”. In: AI Magazine
21.2 (2000), pp. 35–55.

[L67] A. Lotem, D. S. Nau, and J. A. Hendler. “Using planning graphs for solving
HTN planning problems”. In: Proceedings of the 16th National Conference on
Artificial Intelligence (AAAI 1999). AAAI Press, 1999, pp. 534–540.

[L68] S. Kambhampati, A. Mali, and B. Srivastava. “Hybrid Planning for Partially
Hierarchical Domains”. In: Proceedings of the 15th National Conference on Ar-
tificial Intelligence (AAAI 1998). AAAI Press, 1998, pp. 882–888.

[L69] A. L. Blum and M. L. Furst. “Fast Planning Through Planning Graph Analysis”.
In: Artificial Intelligence 90 (1997), pp. 281–300. doi: 10.1016/S0004-3702(96)
00047-1.

[L70] B. Bonet, G. Loerincs, and H. Geffner. “A Robust and Fast Action Selection
Mechanism for Planning”. In: Proceedings of the 14th National Conference on
Artificial Intelligence (AAAI 1997). AAAI Press, 1997, pp. 8–14.

[L71] T. A. Estlin, S. A. Chien, and X. Wang. “An Argument for a Hybrid HTN/Ope-
rator-Based Approach to Planning”. In: Proceedings of the 4th European Confer-
ence on Planning: Recent Advances in AI Planning (ECP 1997). 1997, pp. 182–
194.

87

http://dx.doi.org/10.1016/S0004-3702(96)00047-1
http://dx.doi.org/10.1016/S0004-3702(96)00047-1

6 References

[L72] M. Fox. “Natural Hierarchical Planning using Operator Decomposition”. In: Pro-
ceedings of the 4th European Conference on Planning: Recent Advances in AI
Planning (ECP 1997). Springer, 1997, pp. 195–207. doi: 10 . 1007 / 3 - 540 -

63912-8_86.

[L73] B. C. Gazen and C. A. Knoblock. “Combining the Expressivity of UCPOP with
the Efficiency of Graphplan”. In: Proceedings of the 4th European Conference on
Planning: Recent Advances in AI Planning (ECP 1997). Springer, 1997, pp. 221–
233. doi: 10.1007/3-540-63912-8_88.

[L74] M. E. Pollack, D. Joslin, and M. Paolucci. “Flaw Selection Strategies For Partial-
Order Planning”. In: Journal of Artificial Intelligence Research (JAIR) 6 (1997),
pp. 223–262.

[L75] K. Erol. “Hierarchical Task Network Planning: Formalization, Analysis, and Im-
plementation”. PhD thesis. University of Maryland, 1996.

[L76] K. Erol, J. A. Hendler, and D. S. Nau. “Complexity results for HTN planning”.
In: Annals of Mathematics and Artificial Intelligence 18.1 (1996), pp. 69–93. doi:
10.1007/BF02136175.

[L77] M. Williamson and S. Hanks. “Flaw Selection Strategies for Value-Directed Plan-
ning”. In: Proceedings of the 3rd International Conference on Artificial Intelli-
gence Planning Systems (AIPS 1996). AAAI Press, 1996, pp. 237–244.

[L78] C. Bäckström and B. Nebel. “Complexity Results for SAS+ Planning”. In: Com-
putational Intelligence 11.4 (1995), pp. 626–655. doi: 10.1111/j.1467-8640.
1995.tb00052.x.

[L79] M. Fox and D. Long. “Hierarchical planning using abstraction”. In: IEE Proc.
– Control Theory Appl. 142.3 (1995), pp. 197–210. doi: 10.1049/ip- cta:

19951848.

[L80] S. Kambhampati. “Admissible Pruning Strategies based on plan minimality for
Plan-Space Planning”. In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI 1995). Morgan Kaufmann, Aug. 1995, pp. 1627–
1633.

[L81] T. Bylander. “The Computational Complexity of Propositional STRIPS Plan-
ning”. In: Artificial Intelligence 94.1-2 (1994), pp. 165–204. doi: 10.1016/0004-
3702(94)90081-7.

[L82] S. Minton, J. Bresina, and M. Drummond. “Total-Order and Partial-Order Plan-
ning: A Comparative Analysis”. In: Journal of Artificial Intelligence Research
(JAIR) 2 (1994), pp. 227–262.

[L83] B. M. Muir. “Trust in automation: Part I. Theoretical issues in the study of trust
and human intervention in automated systems”. In: Ergonomics 37.11 (1994),
pp. 1905–1922. doi: 10.1080/00140139408964957.

88

http://dx.doi.org/10.1007/3-540-63912-8_86
http://dx.doi.org/10.1007/3-540-63912-8_86
http://dx.doi.org/10.1007/3-540-63912-8_88
http://dx.doi.org/10.1007/BF02136175
http://dx.doi.org/10.1111/j.1467-8640.1995.tb00052.x
http://dx.doi.org/10.1111/j.1467-8640.1995.tb00052.x
http://dx.doi.org/10.1049/ip-cta:19951848
http://dx.doi.org/10.1049/ip-cta:19951848
http://dx.doi.org/10.1016/0004-3702(94)90081-7
http://dx.doi.org/10.1016/0004-3702(94)90081-7
http://dx.doi.org/10.1080/00140139408964957

6.2 Related Work

[L84] B. Nebel and C. Bäckström. “On the Computational Complexity of Temporal
Projection, Planning, and Plan Validation”. In: Artificial Intelligence 66.1 (1994),
pp. 125–160. doi: 10.1016/0004-3702(94)90005-1.

[L85] S. Russell and P. Norvig. In: Artificial Intelligence – A modern Approach. 1st ed.
Prentice-Hall, 1994. Chap. 12: Practical Planning, pp. 367–376. isbn: 0133601242.

[L86] R. M. Young, M. E. Pollack, and J. D. Moore. “Decomposition and Causal-
ity in Partial-Order Planning”. In: Proceedings of the 2nd International Con-
ference on Artificial Intelligence Planning Systems (AIPS 1994). AAAI Press,
1994, pp. 188–193.

[L87] S. Kambhampati and J. A. Hendler. “A validation-structure-based theory of plan
modification and reuse”. In: Artificial Intelligence 55 (1992), pp. 193–258. doi:
10.1016/0004-3702(92)90056-4.

[L88] J. S. Penberthy and D. S. Weld. “UCPOP: A Sound, Complete, Partial Order
Planner for ADL”. In: Proceedings of the 3rd International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 1992). Morgan Kaufmann,
1992, pp. 103–114.

[L89] D. McAllester and D. Rosenblitt. “Systematic Nonlinear Planning”. In: Pro-
ceedings of the 9th National Conference on Artificial Intelligence (AAAI 1991).
AAAI Press, 1991, pp. 634–639.

[L90] Q. Yang. “Formalizing Planning Knowledge for Hierarchical Planning”. In: Com-
putational Intelligence 6.1 (1990), pp. 12–24. doi: 10.1111/j.1467-8640.1990.
tb00126.x.

[L91] D. Chapman. “Planning for Conjunctive Goals”. In: Artificial Intelligence 32.3
(July 1987), pp. 333–377. doi: 10.1016/0004-3702(87)90092-0.

[L92] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979. isbn: 0-201-02988-X.

[L93] E. D. Sacerdoti. “The Nonlinear Nature of Plans”. In: Proceedings of the 4th
International Joint Conference on Artificial Intelligence (IJCAI 1975). Morgan
Kaufmann Publishers Inc., 1975, pp. 206–214.

[L94] R. E. Fikes and N. J. Nilsson. “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving”. In: Artificial Intelligence 2 (1971),
pp. 189–208.

[L95] G. Pólya. How to Solve It. Princeton University Press, 1945. isbn: 0-691-08097-6.

[L96] A. de Saint-Exupéry. Wind, Sand and Stars. Reynal & Hitchcock, 1939.

89

http://dx.doi.org/10.1016/0004-3702(94)90005-1
http://dx.doi.org/10.1016/0004-3702(92)90056-4
http://dx.doi.org/10.1111/j.1467-8640.1990.tb00126.x
http://dx.doi.org/10.1111/j.1467-8640.1990.tb00126.x
http://dx.doi.org/10.1016/0004-3702(87)90092-0

7 Core Contributions in Full Length

This section includes the publications of the thesis’ core contributions in full length.
The reference numbers are the same as in the preceding of the thesis. We cluster the
publications according to the sections in which they have been described.

7.1 Theoretical Foundations

[4] P. Bercher, D. Höller, G. Behnke, and S. Biundo. “More than a Name? On
Implications of Preconditions and Effects of Compound HTN Planning Tasks”.
In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI
2016). IOS Press, 2016, pp. 225–233. doi: 10.3233/978-1-61499-672-9-225.

. 94 – 103

[9] P. Bercher, T. Geier, F. Richter, and S. Biundo. “On Delete Relaxation in
Partial-Order Causal-Link Planning”. In: Proceedings of the 2013 IEEE 25th In-
ternational Conference on Tools with Artificial Intelligence (ICTAI 2013). IEEE
Computer Society, 2013, pp. 674–681. doi: 10.1109/ICTAI.2013.105.

. .104 – 112

[12] T. Geier and P. Bercher. “On the Decidability of HTN Planning with Task In-
sertion”. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011). AAAI Press, 2011, pp. 1955–1961.

. .114 – 121

91

http://dx.doi.org/10.3233/978-1-61499-672-9-225
http://dx.doi.org/10.1109/ICTAI.2013.105

7 Core Contributions in Full Length

7.2 Search and Heuristics

[1] P. Bercher, G. Behnke, D. Höller, and S. Biundo. “An Admissible HTN Plan-
ning Heuristic”. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI 2017). AAAI Press, 2017, pp. 480–488. doi: 10.
24963/ijcai.2017/68.

. .122 – 131

[7] P. Bercher, S. Keen, and S. Biundo. “Hybrid Planning Heuristics Based on
Task Decomposition Graphs”. In: Proceedings of the 7th Annual Symposium on
Combinatorial Search (SoCS 2014). AAAI Press, 2014, pp. 35–43.

. .132 – 141

[8] P. Bercher, T. Geier, and S. Biundo. “Using State-Based Planning Heuristics
for Partial-Order Causal-Link Planning”. In: Advances in Artificial Intelligence,
Proceedings of the 36th German Conference on Artificial Intelligence (KI 2013).
Springer, 2013, pp. 1–12. doi: 10.1007/978-3-642-40942-4_1.

. .142 – 154

[9] P. Bercher, T. Geier, F. Richter, and S. Biundo. “On Delete Relaxation in
Partial-Order Causal-Link Planning”. In: Proceedings of the 2013 IEEE 25th In-
ternational Conference on Tools with Artificial Intelligence (ICTAI 2013). IEEE
Computer Society, 2013, pp. 674–681. doi: 10.1109/ICTAI.2013.105.

. .104 – 112

[10] M. Elkawkagy, P. Bercher, B. Schattenberg, and S. Biundo. “Improving Hi-
erarchical Planning Performance by the Use of Landmarks”. In: Proceedings of
the 26th AAAI Conference on Artificial Intelligence (AAAI 2012). AAAI Press,
2012, pp. 1763–1769.

. .156 – 163

92

http://dx.doi.org/10.24963/ijcai.2017/68
http://dx.doi.org/10.24963/ijcai.2017/68
http://dx.doi.org/10.1007/978-3-642-40942-4_1
http://dx.doi.org/10.1109/ICTAI.2013.105

7.3 Practical Application

[2] P. Bercher, D. Höller, G. Behnke, and S. Biundo. “User-Centered Planning”.
In: Companion Technology – A Paradigm Shift in Human-Technology Interaction.
Ed. by S. Biundo and A. Wendemuth. Cognitive Technologies. In print. Springer,
2017. Chap. 5, pp. 79–100. isbn: 978-3-319-43664-7. doi: 10.1007/978-3-319-
43665-4_5.

. .164 – 185

[3] S. Biundo, D. Höller, B. Schattenberg, and P. Bercher. “Companion-Technology:
An Overview”. In: Künstliche Intelligenz 30.1 (2016). Special Issue on Compan-
ion Technologies, pp. 11–20. doi: 10.1007/s13218-015-0419-3.

. .186 – 197

[5] P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller, G. Behnke, F. Nothdurft,
F. Honold, W. Minker, M. Weber, and S. Biundo. “A Planning-based Assistance
System for Setting Up a Home Theater”. In: Proceedings of the 29th National
Conference on Artificial Intelligence (AAAI 2015). AAAI Press, 2015, pp. 4264–
4265.

. .198 – 200

[6] P. Bercher, S. Biundo, T. Geier, T. Hörnle, F. Nothdurft, F. Richter, and B.
Schattenberg. “Plan, Repair, Execute, Explain - How Planning Helps to Assemble
your Home Theater”. In: Proceedings of the 24th International Conference on
Automated Planning and Scheduling (ICAPS 2014). AAAI Press, 2014, pp. 386–
394.

. .202 – 211

[11] S. Biundo, P. Bercher, T. Geier, F. Müller, and B. Schattenberg. “Advanced
user assistance based on AI planning”. In: Cognitive Systems Research 12.3-4
(Apr. 2011). Special Issue on Complex Cognition, pp. 219–236. doi: 10.1016/
j.cogsys.2010.12.005.

. .212 – 246

93

http://dx.doi.org/10.1007/978-3-319-43665-4_5
http://dx.doi.org/10.1007/978-3-319-43665-4_5
http://dx.doi.org/10.1007/s13218-015-0419-3
http://dx.doi.org/10.1016/j.cogsys.2010.12.005
http://dx.doi.org/10.1016/j.cogsys.2010.12.005

The following pages show the publication:

P. Bercher, D. Höller, G. Behnke, and S. Biundo. “More than a Name? On Implications
of Preconditions and Effects of Compound HTN Planning Tasks”. In: Proceedings of
the 22nd European Conference on Artificial Intelligence (ECAI 2016). IOS Press, 2016,
pp. 225–233. doi: 10.3233/978-1-61499-672-9-225

The paper is published online with Open Access by IOS Press and distributed under the
terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC
4.0).

The included PDF is a revised version. The modifications are noted in the acknowledge-
ments.

94

http://dx.doi.org/10.3233/978-1-61499-672-9-225

More than a Name? On Implications of Preconditions
and Effects of Compound HTN Planning Tasks

Pascal Bercher and Daniel Höller and Gregor Behnke and Susanne Biundo ∗

Abstract. There are several formalizations for hierarchical plan-
ning. Many of them allow to specify preconditions and effects for
compound tasks. They can be used, e.g., to assist during the model-
ing process by ensuring that the decomposition methods’ plans “im-
plement” the compound tasks’ intended meaning. This is done based
on so-called legality criteria that relate these preconditions and ef-
fects to the method’s plans and pose further restrictions. Despite the
variety of expressive hierarchical planning formalisms, most theoret-
ical investigations are only known for standard HTN planning, where
compound tasks are just names, i.e., no preconditions or effects can
be specified. Thus, up to now, a direct comparison to other hierar-
chical planning formalisms is hardly possible and fundamental the-
oretical properties are yet unknown. To enable a better comparison
between such formalisms (in particular with respect to their com-
putational expressivity), we first provide a survey on the different
legality criteria known from the literature. Then, we investigate the
theoretical impact of these criteria for two fundamental problems to
planning: plan verification and plan existence. We prove that the plan
verification problem is at most NP-complete, while the plan ex-
istence problem is in the general case both semi-decidable and
undecidable, independent of the demanded criteria. Finally, we
discuss our theoretical findings and practical implications.

1 Introduction
Hierarchical planning approaches are often chosen when it comes
to practical real-world planning applications [33]. Examples include
composition of web services [29], real-time strategy games [23, 35],
robotics [15, 28], or user assistance [11, 10]. While there are sev-
eral different formalizations for hierarchical planning, it is apparent
that most of the theoretical investigations are done for a standard for-
malization (called hierarchical task network (HTN) planning), where
compound (or abstract) tasks are just names or symbols [16, 19] –
they thus neither show preconditions nor effects. Those investiga-
tions include the complexity of the plan existence problem (“Is the
problem solvable?”) [16, 19, 5, 2, 3], plan verification (“Is the given
plan a solution to the problem?”) [9], changes to plans (“Is the plan
still a solution if I change X?”) [8], and expressivity analysis (“What
plan structures can be expressed using different language features?”)
[21, 22]. The answers to such questions, besides being of theoreti-
cal interest, are highly relevant to come up with tractable problem
relaxations for heuristics [5] or for problem compilations [4, 1].

For mainly practically motivated reasons, such as providing mod-
eling assistance or generating abstract solutions, several researchers
developed hierarchical planning formalizations in which compound

∗Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Ger-
many, {forename.surname}@uni-ulm.de

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)

move(?obj,?from,?to)
at(?obj,?to)

¬at(?obj,?from)
at(?obj,?from)

decomposes to

Figure 1. Example for a compound task (move) with preconditions and
effects and one of its methods. The method’s plan consists of two primitive

tasks (pick and place) and a causal link protecting the condition holding. The
dotted green lines indicate how the preconditions and effects of the tasks in

the plan’s method are related to their more abstract representation.

tasks are allowed to have preconditions and effects [40, 25, 37, 41,
18, 26, 12, 14, 30, 11, 7, 15] (cf. example given in Fig. 1). However,
the only theoretical investigations for such a formalization that we
are aware of are about the upward and downward refinement prop-
erties [40, 6, 30]. So, up to now, for many of such formalisms it is
not even clear how hard the respective problems are (given the typi-
cal HTN solution criteria), since the plan existence problem was not
studied for such a formalization. To close this gap, we investigate the
plan existence and the plan verification problems for our formaliza-
tion that allows to specify preconditions and effects for compound
tasks. We survey several legality criteria that define which decom-
position methods may be specified for which compound task, de-
pending on its preconditions and effects and take these criteria into
account in our complexity analysis. We conclude the paper by dis-
cussing our findings and its implications.

2 Problem Formalization

We introduce a hierarchical planning formalism that allows to spec-
ify preconditions and effects for compound tasks. In our complexity
analysis, we take into account several restrictions on the relation-
ship between compound tasks and the plans that are associated with
them via their decomposition methods. The investigated restrictions,
called legality criteria, are taken from the literature. To formally
study their impact on the complexity results, the formalism needs
to be rich enough to be capable of expressing these criteria. Most of
the formalisms that define them [40, 41, 37, 12] fuse standard HTN
planning [16, 20, 19] with Partial-Order Causal-Link (POCL) plan-
ning [31, 36, 20]. We assume this is because the concept of causal
links makes it easy to express the desired criteria. Thus, we also use
such an hybridization for our investigations. A variety of formalisms
fuse HTN with POCL planning [40, 25, 37, 41, 18, 14, 7, 15, 11].

95

However, none of these formalizations is both rich enough to allow
expressing all legality criteria while being simple enough to easily
serve as a basis for proofs. Since all HTN complexity results that
are relevant for the sake of this paper have been shown or repro-
duced in the simplistic (propositional) HTN formalism by Geier and
Bercher [19], extending it allows an easy comparison. We therefore
extend it by the necessary POCL concepts. In accordance to the liter-
ature [26, 11], we refer to the resulting formalism as hybrid planning.

Let V be a finite set of state variables (or proposition symbols). In
POCL planning, actions are typically 2-tuples consisting of a precon-
dition and effect, both being conjunctions of literals. Here, we use
an equivalent set-based formalization: Actions (or primitive tasks)
are 4-tuples (prec+, prec−, eff +, eff −), where prec+ and prec−

denote the positive and negative preconditions and eff + and eff −

denote the positive and negative effects. They describe single state
transitions as usual. The compound (or abstract) tasks have a dif-
ferent underlying meaning, as they need to be decomposed into pre-
defined plans by relying on so-called decomposition methods. De-
spite that fact, we allow compound tasks to use preconditions and
effects as well (cf. Fig. 1 for an example). Every task has a task
name. The set of names for the primitive tasks is given by Np and
those of the compound ones by Nc. We define N := Np∪̇Nc. The
mapping between task names and their actual tasks (i.e., 4-tuples) is
established using the function δ : N → (2V)4. For convenience,
we also write prec+(n), prec−(n), eff +(n), and eff −(n) to refer
to n’s positive and negative preconditions and effects, respectively†.
We call a sequence of tasks δ(n1), . . . , δ(nk) executable in a state
s0 ∈ 2V if and only if there is a corresponding sequence of states
s0, . . . , sk, such that for all 1 ≤ i ≤ k holds prec+(ni) ⊆ si−1 and
prec−(ni)∩si−1 = ∅ as well as si = (si−1\eff −(ni))∪eff +(ni).
The state sk is called the state generated by δ(n1), . . . , δ(nk).

In non-linear planning approaches, plans are only partially or-
dered. For a set of ordering constraints ≺, we denote its transitive
closure by≺∗. To differentiate multiple occurrences of the same task
within a plan, the partial order is defined over a set of so-called plan
steps PS, which then map to the actual task name, α : PS → N .
When we mention a linearization of the plan steps of a plan, we
refer to a total order of PS that does not violate the partial or-
der ≺. Plans may also contain so-called causal links. A causal link
(ps, v, ps′) ∈ PS×V ×PS indicates that the precondition v of the
consumer plan step ps′ is supported by the producer plan step ps.
The condition v is also said to be protected by the causal link. This
means, if v is a positive (resp. negative) precondition of ps′, then no
task with v as negative (resp. positive) effect is allowed to be ordered
between ps and ps′.

Definition 1 (Plan). A plan P over a set of task namesN is a 4-tuple
(PS,CL,≺, α), where:

• PS is a finite (possibly empty) set of plan steps,
• CL ⊆ PS×V ×PS is a set of causal links. If (ps, v, ps′) ∈ CL,

then v ∈ prec+(ps′) and v ∈ eff +(ps) or v ∈ prec−(ps′) and
v ∈ eff −(ps). We also require that every precondition variable
of all plan steps is protected by at most one causal link,

• ≺ ⊆ PS×PS is a strict partial order. If (ps, v, ps′) ∈ CL with
α(ps) and α(ps′) being primitive, then (ps, ps′) ∈ ≺‡,
†To simplify upcoming definitions, we require that for all primitive tasks

np, prec+(np) ∩ prec−(np) = eff +(np) ∩ eff−(np) = ∅.
‡As usual in POCL planning, any causal link between primitive tasks

implies an ordering. If one of these tasks was compound, this would not be
reasonable: Consider the example depicted in Fig. 1 and assume there is a
causal link from move’s effect ¬at to another task’s precondition. If that link

• α : PS → N labels every plan step with its task name.

PN denotes the set of all plans over the task namesN . Two plans are
called isomorphic if they are identical except for plan step renaming.

Based on the concept of plans, we define decomposition methods.
The set of all decomposition methods M ⊆ Nc×PN is given in the
planning domain and defines how compound tasks can be decom-
posed. That is, a method (nc, P) ∈ M indicates that the compound
task (name) nc can be decomposed into the plan P .

Definition 2 (Hybrid Planning Problem). A hybrid planning problem
is a 6-tuple π = (V,Nc, Np, δ,M, P i), where:

• V is a finite set of state variables,
• we require Nc ∩Np = ∅ and define N := Nc ∪Np, where:

– Nc is a finite set of compound task names,

– Np is a finite set of primitive task names,

– {init , goal} ⊆ Np denote two special primitive task names,

• δ : N → (2V)4 is a function mapping the task names to their
preconditions and effects†§,

• M ⊆ Nc×PN\{init,goal} is a finite set of (decomposition) meth-
ods, and

• P i = (PSi , CLi ,≺i , αi) ∈ PN , is the initial plan. We require
that there are plan steps ps, ps′ ∈ PSi such that:

– αi(ps) = init and αi(ps′) = goal , and

– ps ≺ ps′ and for all ps′′ ∈ PSi with {ps′′} ∩ {ps, ps′} = ∅
holds ps ≺ ps′′ ≺ ps′.

The actual problem that one would like to have solved is given in
terms of the initial plan P i . As done in POCL planning, this plan
contains two artificial actions that encode the initial state and the
goal description, respectively§. Since hybrid planning is a hierarchi-
cal setting, P i usually contains a set of compound tasks for which
one needs to find an executable refinement. We added the specifica-
tion of a goal description for practical reasons: It is especially inter-
esting if one allows the arbitrary insertion of tasks into the plan apart
from decomposing compound tasks [19] (not considered in this pa-
per), since hybrid planning then directly captures both classical and
POCL planning. Independent of whether task insertion is allowed or
not, adding a goal description is not required from a purely theoreti-
cal point of view, since one can easily simulate it [19, Sec. 2].

In HTN planning, only those plans are regarded solutions that can
be obtained from the initial plan by successively applying decom-
position methods to compound tasks. We thus need to define how
applying a method transforms one plan into another. Since the de-
composed task might serve as a producer or consumer of causal links,
we have to decide how such links will be passed down to sub tasks
and whether this is mandatory or not (i. e., we could even allow that
such links may be deleted upon decomposition). Adding a causal link
to a compound task means to commit that the state variable of that
link is protected for the complete sequence of states over which this
link spans. Allowing to remove that link upon decomposition would
remove this constraint and violate the refinement principle [24]. If

would imply an ordering, then after move was decomposed, the consumer
task had to be ordered behind place, which is overly restrictive.
§The initial state and goal description are specified in terms of the task

names init and goal and their tuple representation using δ. As usual in POCL
planning, the action for init does not show a precondition and uses the initial
state as effect and, analogously, the action for goal has no effects and uses
the goal description as precondition.

96

causal links do have to be passed down to sub tasks, then the respec-
tive formalism satisfies the so-called monotonic property [27]. If this
property does not hold, hierarchical planning systems cannot exploit
such causal links to prune plans from the search space, as the con-
straint imposed by these links could disappear upon decomposition
[14]. We hence require that causal links are not allowed to disappear
upon decomposition. How causal links are passed down has yet to be
decided – and different conventions exist [25, p. 204]. We follow the
canonical approach by Yang [40] and pass down every causal link to
each “compatible” sub task. In other words, if there is a link to a com-
pound task’s precondition/effect v, then for each precondition/effect
v in its sub tasks, one successor plan is generated in which the link
is passed down to the respective task. In case there is more than one
matching sub task, it is not required that the causal link is duplicated
to support all these tasks (or a sub set thereof), since the respective
plan can be obtained via link insertions from the other plans.

The following definitions formally capture the decomposition of
compound tasks and the inheritance of causal links. We first define
two functions inP , outP : PS → 2CL that return the set of incom-
ing, respectively outcoming, causal links of a plan step ps ∈ PS in
a plan P = (PS,CL,≺, α) as inP : ps 7→ {(ps′, v, ps) ∈ CL |
ps′ ∈ PS} and outP : ps 7→ {(ps, v, ps′) ∈ CL | ps′ ∈ PS}.
Definition 3 (Decomposition). A method m = (nc, P) ∈ M de-
composes a plan P ′ = (PS′, CL′,≺′, α′) into another plan P ′′ by
replacing plan step ps ∈ PS′ with α′(ps) = nc if and only if:

• there is a plan P̃ = (P̃S, C̃L, ≺̃, α̃) that is isomorphic to P , such
that P̃S ∩ PS′ = ∅,

• for each causal link (ps′, v, ps) ∈ inP′(ps) there is a plan step
p̃s(ps′,v,ps) ∈ P̃S, such that:

– v ∈ prec+(α̃(p̃s(ps′,v,ps))) in case v ∈ prec+(α′(ps)), or

– v ∈ prec−(α̃(p̃s(ps′,v,ps))) in case v ∈ prec−(α′(ps)),

• for each causal link (ps, v, ps′) ∈ outP′(ps) there is a plan step
p̃s(ps,v,ps′) ∈ P̃S, such that:

– v ∈ eff +(α̃(p̃s(ps,v,ps′))) in case v ∈ eff +(α′(ps)), or

– v ∈ eff −(α̃(p̃s(ps,v,ps′))) in case v ∈ eff −(α′(ps)),

• P ′′ = (PS′′, CL′′,≺′′, α′′) is given as follows:

PS′′ := (PS′ \ {ps}) ∪ P̃S
CL′′ := (CL′ \ (inP ′(ps) ∪ outP ′(ps))) ∪ C̃L

∪ {(ps′, v, p̃s(ps′,v,ps)) | (ps′, v, ps) ∈ inP ′(ps)}
∪ {(p̃s(ps,v,ps′), v, ps′) | (ps, v, ps′) ∈ outP ′(ps)}

≺′′ := (≺1 ∪ ≺̃ ∪ ≺2 ∪ ≺3)∗, with

≺1 := (≺′ \ {(ps′, ps′′) ∈ ≺′ | {ps} ∩ {ps′, ps′′} 6= ∅})
≺2 := {(ps′, ps′′) ∈ PS′ × P̃S | (ps′, ps) ∈ ≺′} ∪

{(ps′, ps′′) ∈ P̃S × PS′ | (ps, ps′′) ∈ ≺′}
≺3 := {(ps′, p̃s(ps′,v,ps)) | (ps′, v, p̃s(ps′,v,ps)) ∈ CL′′

and {α(ps′), α(p̃s(ps′,v,ps))} ⊆ Np} ∪
{(p̃s(ps,v,ps′), ps′) | (p̃s(ps,v,ps′), v, ps′) ∈ CL′′

and {α(p̃s(ps,v,ps′)), α(ps′)} ⊆ Np}
α′′ := (α′ \ {(ps, nc)}) ∪ α̃

As noted, we require that causal links involving the decomposed
plan step ps (i.e., inP ′(ps) and outP ′(ps)) are passed down upon

decomposition (cf. CL′′). For this, any compatible precondition that
is not yet protected by a causal link inside the method’s plan P̃ can
be used. The definition of the ordering constraints of the new plan
P ′′, ≺′′ comprises all ordering constraints of the original plan P ′

except the ones involving the decomposed plan step ps,≺1. It further
contains all ordering constraints of the method’s plan P̃ , ≺̃, as well
as those that are inherited from the orderings involving ps, ≺2. All
new causal links only involving primitive tasks are responsible for
adding further orderings, ≺3. Apart from the necessary extensions
to handle causal links, our definition of decomposition is identical to
the one from HTN planning [19, Def. 3].

In HTN planning, any solution to a planning problem (1) needs to
be obtainable from the initial task network via the application of a
sequence of decompositions and (2) needs to contain an executable
sequence of its actions [19, Def. 5, 6]. We consider the second cri-
terion as impractical: One is usually interested in executable action
sequences, but finding one from a “solution” task network is still
NP-hard [34, Thm. 15], [16, Thm. 8]. Further, such a sequence it-
self is in general not regarded a solution (but just the task network
in which this sequence occurs), which we regard contra-intuitive. In-
stead, we require that all linearizations are executable and that each
executable linearization is considered a solution as well. To support
this stronger notion of solutions, we also allow the insertion of causal
links and ordering constraints.

Definition 4 (Causal Link Insertion). Let P = (PS,CL,≺, α) and
P ′ = (PS,CL′,≺′, α) be plans. P ′ can be obtained from P by
insertion of a causal link (ps, v, ps′) /∈ CL with ps, ps′ ∈ PS if
and only if:

• v ∈ eff +(α(ps)) and v ∈ prec+(α(ps′)) or
v ∈ eff −(α(ps)) and v ∈ prec−(α(ps′)),

• CL′ = CL ∪ {(ps, v, ps′)}, and
• ≺′ = (≺ ∪ {(ps, ps′) | {α(ps), α(ps′)} ⊆ Np})∗

Definition 5 (Ordering Insertion). Let P = (PS,CL,≺, α) and
P ′ = (PS,CL,≺′, α) be plans. P ′ can be obtained from P by
insertion of an ordering constraint (ps, ps′) /∈ ≺, ps, ps′ ∈ PS if
and only if ≺′ = (≺ ∪ {(ps, ps′)})∗.

Definition 6 (Solution). A plan P = (PS,CL,≺, α) is a solution
to a planning problem π, if and only if:

1. P is a refinement of P i. That is, there is a sequence of decompo-
sitions (cf. Def. 3), causal link insertions (cf. Def. 4), and ordering
constraint insertions (cf. Def. 5) transforming P i into P ,

2. P is primitive, i.e., {α(ps) | ps ∈ PS} ⊆ Np, and
3. P is executable in the standard POCL sense:

• There are no unprotected preconditions. A precondition v ∈
prec+(α(ps)) (resp. v ∈ prec−(α(ps))) of a plan step ps ∈
PS is called unprotected, if and only if there is no plan step
ps′ ∈ PS with a causal link (ps′, v, ps) for v ∈ eff +(α(ps))
(resp. v ∈ eff −(α(ps))).

• There are no causal threats. A plan contains a causal threat
if and only if there is a causal link (ps, v, ps′) ∈ CL with
v ∈ prec+(α(ps′)) (resp. v ∈ prec−(α(ps′))) and a plan step
ps′′ ∈ PS with v ∈ eff −(α(ps′′)) (resp. v ∈ eff +(α(ps′′))),
such that neither (ps′′, ps) ∈ ≺ nor (ps′, ps′′) ∈ ≺ holds.

The first solution criterion corresponds to the standard HTN cri-
terion that requires every solution to be in the refinement space of
the initial plan. The second solution criterion demands the respective

97

plan to be primitive, as only primitive plans are typically regarded
executable. The third criterion requires executability as it is done in
POCL planning; these criteria ensure that every linearization of the
plan steps corresponds to a sequence of tasks that is executable in the
initial state and generates a state satisfying the goal description.

3 Legality Criteria – A Survey and Discussion
Provided the planning domain allows to specify preconditions and ef-
fects for compound tasks, there should be a clearly-defined criterion
stating which decomposition methods are allowed to be specified for
such compound tasks [17, 14]. When considering a compound task as
an abstraction of a certain plan, it does not seem to make much sense
to specify a precondition or effect of that task if it does not occur
anywhere in the plan. So, if the domain modeler decides to specify
preconditions and effects for a compound task, he or she has a cer-
tain idea on how the plans of the respective decomposition methods
should look like. Thus, several researchers have formalized possible
relations between a compound task’s preconditions and effects and
its methods’ plans. We call these criteria legality criteria and plans
that respect them implementations of their compound task. For each
criterion, we give a small example illustrating it. Further, we want to
note that the example depicted in Fig. 1 satisfies all of the legality
criteria discussed in this section¶.

The first and weakest criterion that we investigate is closely related
to the criteria that ensure that a compound task can be decomposed
(cf. Def. 3). We restrict to models where the plan of a compound
task’s method makes use of the task’s preconditions and effects.

Definition 7 (Downward Compatible). A method (nc, P) ∈M with
P = (PS,CL,≺, α) is called downward compatible if and only if:

• for each v ∈ prec+(nc) (resp. v ∈ prec−(nc)) there
is a plan step ps ∈ PS with an unprotected precondition
v ∈ prec+(α(ps)) (resp. v ∈ prec−(α(ps))).

• for each v ∈ eff +(nc) (resp. v ∈ eff −(nc)) there is a plan
step ps ∈ PS with the same effect v ∈ eff +(α(ps)) (resp. v ∈
eff −(α(ps))).

Downward compatible methods (nc, P) are always applicable to
a plan as long as it contains nc – a property shared with standard
HTN planning (without method preconditions). If the method was
not downward compatible, causal links involving nc influence its ap-
plicability, which also causes unintended “strange” behavior during
search: Let us assume a plan P ′ contains a plan step pswith the name
nc that has an unprotected effect v ∈ V . Now, assume that (nc, P)
does violate the legality criterion. Whether this method can be used
to generate a successor plan now depends on the planner’s choice
whether it first decomposes ps (this would work since all causal links
can be correctly passed down to sub tasks in P ′) or first adds a causal
link from ps ∈ PS protecting v (then, ps can not be decomposed be-
cause the newly inserted link cannot be passed down, which violates
the decomposition criteria given in Def. 3).

While this criterion clearly ensures that the “most obvious” mod-
eling errors are prevented, it is not yet clear whether the user’s intent
about the relationship between the compound task and its methods’
plans is actually satisfied. This is due to the fact that there are various
possibilities what the preconditions and effects of the compound task
are meant to entail. For example, if a primitive action np is within a
plan, we know that – assuming that plan is executable – there are also

¶For the sake of readability, the example is given with variables, whereas
our formalization assumes a ground (i.e., propositional) representation.

states s and s′, such that s satisfies np’s precondition and s′ satisfies
np’s effects. For compound tasks, this is not necessarily the case. In
particular for the downward compatibility, it is clear that the com-
pound task’s effects do not need to be true in one single state, but its
state variables might only hold in different states.

Several more restrictive criteria have been proposed in the liter-
ature. They can be categorized into two classes: one enforces that
compound tasks have non-empty preconditions/effects under certain
circumstances, and one where the specification thereof is optional.

We are only aware of one legality criterion that falls into the first
class: It was proposed by Russell and Norvig for their fusion of HTN
with POCL planning [37]. For each method (nc, P) and every effect
of nc, they require that “it [is] asserted by at least one step of P and
is not denied by some other, later step”. Further, they require that
“every precondition of the steps in P must be achieved by a step in
P or be one of the preconditions of nc”. This implies that every open
precondition in P needs to be a precondition of the compound task.
This, in turn, has further consequences: Consider the case where the
task nc has two decomposition methods (nc, P) and (nc, P

′). Ac-
cording to this criterion, nc must use all open preconditions of both
P and P ′. As a consequence, both the downward compatibility and
hence the monotonic property [27] may be violated. As argued in
Sect. 2 (motivation for Def. 3), in this paper, we do not allow that
commitments on an abstract level may be removed upon decomposi-
tion. We are thus not investigating this criterion in more detail.

The next criterion that we discuss was proposed by Biundo and
Schattenberg [12]. As their planning formalism shows substantial
differences to the one in this paper, we do not capture every detail, but
only the main ideas. Their formalism is based upon a many-sorted
first-order logic that features abstract state variables and so-called
decomposition axioms defining them. They enable abstract tasks to
make use of abstract state variables thereby fusing action abstraction
with state abstraction. Further, their definition of methods only fea-
tured totally ordered plans: there, a method contains a set of task se-
quences, each of which is an implementation of the compound task.
So, each method containing n sequences is a compact representation
of n methods with totally ordered plans. Allowing for methods with
partially ordered plans strictly increases expressivity (with respect to
the plan existence problem [16, 2] and the generated solutions [21]),
so legality should also be defined for such methods. We hence adapt
their definition to partially ordered plans.

They require that if a method’s task sequence is executable in a
state satisfying the compound task’s precondition, then it generates
a state that satisfies the compound task’s effects. They further re-
quire the compound task’s precondition to be an abstraction of the
task sequence’s first task’s precondition. Our generalization to par-
tial orders states that this property must hold for every lineariza-
tion that is induced by the given plan. However, we further demand
that there also needs to be a state in which all linearizations are
executable. As discussed earlier, causal links involving compound
tasks do not (directly) induce ordering constraints (cf. Def. 1). How-
ever, since we consider a plan legal if all its linearizations are le-
gal (which in turn need to respect the causal links), we here inter-
pret causal links as additional ordering constraints. We thus define
≺+ = (≺ ∪ {(psi, psj) | (psi, v, psj) ∈ CL})∗ and only consider
linearizations with respect to ≺+. Then, a plan step linearization is
said to respect a set of causal links CL if none of the protected con-
ditions is violated by the induced state sequence.

Definition 8 (along Biundo and Schattenberg [12]). A method
(nc, P)∈M , P = (PS,CL,≺, α), is called legal if and only if:

98

• (nc, P) is downward compatible,
• let Nfirst := {α(ps) | ps ∈ PS and there is no ps′ ∈ PS

with (ps′, ps) ∈ ≺+}. Then, prec+(nc) ⊆
⋂

n∈Nfirst
prec+(n)

and prec−(nc) ⊆
⋂

n∈Nfirst
prec−(n),

• for all states s ∈ 2V holds: if (a) s ⊇ prec+(nc) and s ∩
prec−(nc) = ∅, (b) every task sequence t corresponding to a
plan step linearization ps1, . . . , ps|PS| with respect to ≺+ is ex-
ecutable in s, and (c) respects CL, then (d) t generates a state s′,
such that eff +(nc) ⊆ s′ and eff −(nc) ∩ s′ = ∅. Further, there
needs to be a state s ∈ 2V , such that (a) to (d) hold.

Concerning the intention behind the compound task’s precondi-
tions and effects, this criterion is already much stronger than the sim-
ple downward compatibility criterion. As opposed to that criterion,
we here get the property that in any solution plan that is obtained
from decomposing a compound task nc, there is a single state in
which nc’s preconditions hold. This trivially follows from the fact
that the preconditions of nc are abstractions of any first task and any
compound task needs to be decomposed into a primitive plan. How-
ever, the criteria do not imply that there is a single state in which the
compound task’s effects hold – despite the restrictions imposed on
the relationship between nc’s effects and its methods’ plans. The rea-
son for this is that the criterion does not take into account additional
effects of the compound tasks that are in the method’s plan, other
than those explicitly specified in their preconditions and effects. This
issue is addressed by Marthi et al.’s possible effects [30]. They are,
however, restricting to totally ordered methods.

nA
ba nB

¬c

¬d
a nC

b
c

¬d

decomposes to

Figure 2. Illustration of a method that is supposed to implement the
compound task nA. The tasks nB and nC are primitive.

Concerning executability, Def. 8 requires that there is at least one
state in which the respective plan’s linearizations are executable,
which might be considered too restrictive. The example given in
Fig. 2 is not legal with respect to Def. 8, since – due to the variable c
– there cannot be a state in which nA’s method’s plan is executable.
Since other tasks could be ordered in between nB and nC to support
nC ’s precondition c, one could also relax this criterion. This is done
by the next legality criterion (for which the example is legal), as it al-
lows that open preconditions of a method’s plan may be supported by
tasks at an arbitrary “position” within a plan (i.e., it does not require
that a single state enables the execution of the plan’s tasks).

The criterion was proposed by Yang [40, p. 14] and consists of
three sub criteria. The first two imply downward compatibility, but
require more. Criterion 1 demands, similar to Def. 8, that none of the
tasks in the plan invalidates the compound task’s effects. Criterion 2
requires that every precondition variable of the compound task has to
occur in the plan in such a way that none of its sub tasks can be used
to establish it. Criterion 3 is closely related to the concept of causal
threats. Each precondition within the plan might not be violated by
a converse effect of another task. Note that this is neither equivalent
to stating that the respective plan must be free of causal threats (as
the criterion must also hold in the absence of any causal links) nor
that the plan is executable in any way (as none of the criteria ensures
preconditions to be supported).

Definition 9 (Yang [40]). A method (nc, P) ∈ M with P =
(PS,CL,≺, α) is called legal if and only if:

1. for all v ∈ eff +(nc) (resp. v ∈ eff −(nc)) there exists a ps ∈
PS with v ∈ eff +(α(ps)) (resp. v ∈ eff −(α(ps))), such that
for all ps′ ∈ PS, ps′ 6= ps holds: if v ∈ eff −(α(ps′)) (resp.
v ∈ eff +(α(ps′))), then (ps′, ps) ∈ ≺.

2. for all v ∈ prec+(nc) (resp. v ∈ prec−(nc)) there exists a ps ∈
PS with v ∈ prec+(α(ps)) (resp. v ∈ prec−(α(ps))), such that
for all ps′ ∈ PS, ps′ 6= ps holds: if v ∈ eff +(α(ps′)) (resp.
v ∈ eff −(α(ps′))), then (ps, ps′) ∈ ≺.

3. for all ps ∈ PS, for all v ∈ prec+(α(ps)) (resp. v ∈
prec−(α(ps))), and for all ps′ ∈ PS with ps′ 6= ps and
(ps, ps′) /∈ ≺ it holds: if v ∈ eff −(α(ps′)) (resp. v ∈
eff +(α(ps′))), then there exists a ps′′ ∈ PS, such that
{(ps′, ps′′), (ps′′, ps)} ⊆ ≺ and v ∈ eff +(α(ps′′)) (resp.
v ∈ eff −(α(ps′′))).

The next legality criterion is by Young et al. [41]. They argue that
Yang’s criterion of threat-free plans was too strong. Instead, their
only requirement is that any of the compound task’s preconditions
“contributes” to at least one of its effects (and vice versa), which they
ensure by requiring the existence of a chain of causal links within
the plans connecting them with each other [41, p. 191]. Thus, our
example illustrated in Fig. 2 also satisfies this criterion, but it would
not do so if both the variable d and the respective causal link were
not present (while assuming that nC is still ordered behind nB).

They model their criterion by including artificial start and end ac-
tions, which use the compound task’s precondition and effect as ef-
fect and precondition, respectively, and require the causal link chains
between them. Upon decomposition, those actions disappear, but the
causal links involving them are reused to be linked to the plan steps
that share causal links with the compound task. Those actions thus
do not imply that there are states, in which the compound task’s pre-
conditions and effects hold. In the following definition, we therefor
did not include the artificial start and end tasks.

Definition 10 (Young et al. [41]). A method (nc, P) ∈M with P =
(PS,CL,≺, α) is called legal if and only if:

• (nc, P) is downward compatible and
• for each v ∈ eff +(nc) (resp. v ∈ eff −(nc)), there is a se-

quence of plan steps ps1, . . . , psk with psi ∈ PS for 1 ≤
i ≤ k, v ∈ eff +(α(psk)) (resp. v ∈ eff −(α(psk))), v′ ∈
(prec+(α(ps1))∪ prec−(α(ps1)))∩ (prec+(nc)∪ prec−(nc)),
and a chain of causal links connecting them.

• for each v ∈ prec+(nc) (resp. v ∈ prec−(nc)), there is a se-
quence of plan steps ps1, . . . , psk′ with psi ∈ PS for 1 ≤
i ≤ k′, v ∈ prec+(α(ps1)) (resp. v ∈ prec−(α(ps1))),
v′ ∈ (eff +(α(psk′))∪eff −(α(psk′)))∩(eff +(nc)∪eff −(nc)),
and a chain of causal links connecting them.

Due to space restrictions, we cannot include all the work related
to formalisms that allow to specify preconditions and effects for
compound tasks. Concerning the surveyed legality criteria, we re-
stricted the presentation to approaches which explicitly mention the
demanded criteria. We further want to mention the work by Castillo
et al. [14], which also fuses HTN planning with POCL planning.
Since they infer the methods automatically, their plans also fulfill
certain criteria, which seem to be closely related to Def. 8. Further
attention deserves the angelic semantics by Marthi et al. [30]. Their
conditions (“high-level action descriptions”) take all states into ac-
count that are generated by any primitive plan that is reachable by

99

decomposing the respective compound task. In contrast, the legality
criteria surveyed before relate a compound task’s preconditions and
effects directly to its methods’ plans (in particular to the precondi-
tions and effects of its tasks).

4 Complexity Results
In this section we investigate the complexity of the plan verification
and the plan existence problem for the hybrid planning formalism.

For some of our hardness results, we reduce a certain set of HTN
planning problems to hybrid problems. Since all required results are
proved or reproduced in the HTN planning framework by Geier and
Bercher [19] (or based upon it), we first state a proposition that ev-
ery HTN planning problem can be expressed as a hybrid planning
problem with the same set of solutions and without violating any of
the legality criteria for decomposition methods. Concerning notation,
note that a task network (T,≺, α) [19, Def. 1] in HTN planning is
a special case of plans (cf. Def. 1), as task networks do not contain
causal links. What we call plan steps is referred to as tasks T in HTN
planning. We use both notations, depending on the context.

Theorem 1. Let P be an HTN planning problem according to Def. 2
by Geier and Bercher [19]. Then,P can be transformed into a hybrid
planning problem π according to Def. 2 that satisfies the legality
criteria in Defs. 7, 8, 9, and 10, such that:

1. Refinement Correspondence. Let tn be a (not necessarily prim-
itive) task network that can be obtained via decomposition in P .
Then, the plan P that is isomorphic to tn can be obtained via de-
composition in π. Conversely, let P be a primitive plan that can be
obtained via decomposition in π. Then, the task network tn that is
isomorphic to P can be obtained via decomposition in P .

2. Solution Correspondence. Let tn be a solution task network for
P . Then, for each executable task sequence t1, . . . , tn thereof
there is a solution plan P to π containing exactly this task se-
quence. Conversely, let P be a solution plan for π. Then, for all
linearizations ps of the plan steps of P there is a task network tn
that is a solution for P , such that ps is an executable linearization
of the tasks in tn.

Proof. Let P = (L,C,O,M, cI , sI) with L being a finite set
of proposition symbols and C and O finite sets of compound and
primitive task name symbols, respectively. Each primitive task name
o ∈ O has a unique operator (prec(o), add(o), del(o)) ∈ (2L)3 cor-
responding to an action without negative preconditions. M is a finite
set of methods mapping compound tasks to task networks. cI ∈ C is
the initial compound task name and sI ∈ 2L the initial state.

Transformation. We transform the HTN planning problem P
into a hybrid planning problem π = (V,Nc, Np, δ,M

′, P i).
We define V := L. The initial compound task cI and the
initial state sI of P are encoded in π by the initial plan
P i = (PSi , CLi ,≺i , αi). That is, PSi = {psinit , ps, psgoal},
CLi = ∅, ≺i = {(psinit , ps), (ps, psgoal)}∗, and αi =
{(psinit , init), (ps, cI), (psgoal , goal)}. The actions of init and
goal are given by δ(init) = (∅, ∅, sI , V \ sI) and δ(goal) =
(∅, ∅, ∅, ∅). We are now defining the tasks and methods of π in such a
way that all methods in M ′ satisfy all legality criteria. We construct
a model in which no compound task has preconditions or effects and
all methods contain only compound tasks or at most one task. We
do this by introducing an additional compound task oclone for ev-
ery primitive task o ∈ O and replace all primitive tasks in every
decomposition method’s plan by the respective compound task. To

ensure that this does not change the set of solutions, each of these
compound tasks oclone has exactly one decomposition method with
a plan containing exactly o: Let Nc := C ∪ {oclone | o ∈ O}
and for all nc ∈ Nc, let δ(nc) := (∅, ∅, ∅, ∅). For the primi-
tive tasks, let Np := O ∪ {init , goal} and for all o ∈ O, let
δ(o) = (prec(o), ∅, add(o), del(o)). The methods M ′ are given by

M ′ := {(c, (T, ∅,≺, α′)) | (c, (T,≺, α)) ∈M, with

α′ := {(t, c) | (t, c) ∈ α, c ∈ C} ∪
{(t, oclone) | (t, o) ∈ α, o ∈ O}}

∪ {(oclone , ({ps}, ∅, ∅, {(ps, o)})) | o ∈ O}

Legality. The downward compatibility (Def. 7) and legality criterion
that requires chains of causal links (Def. 10) trivially hold for all
methods, since none of the compound tasks have preconditions or
effects (so, the methods’ plans are not further restricted). The other
legality criteria (Defs. 8 and 9) require further restrictions on the
plans even if the (parent) compound task does not have precondi-
tions or effects. It is easy to see that all these restrictions hold, since
– by construction – plans only contain compound tasks or at most one
task. In the first case, there are no preconditions and effects, hence all
criteria hold. In the second, the preconditions or effects of the single
task do not violate any of the criteria as well.

Refinement Correspondence. Let tn1, . . . , tnk be a sequence of
task networks, such that tn1 = ({t}, ∅, {(t, cI)}), tnk = tn, and
any task network tnj can be obtained from tnj−1, 1 < j ≤ k,
via decomposition. Let the corresponding sequence of decomposed
task names be c1, . . . , ck−1. Since no compound task c ∈ C was re-
moved from any of the decomposition methods’ task networks, and
since none of them contains causal links, there is also a sequence of
plans P1, . . . Pk, such that P1 = P i and the plan Pj results from
decomposing cj−1 in Pj−1, 1 < j ≤ k. The resulting plan Pk is
isomorphic to the task network tnk except that Pk contains a com-
pound task oclone ∈ Nc \ C for any primitive task o ∈ O in tnk.
Thus, using the methods for those oclone ∈ Nc \ C, there is a se-
quence of decompositions that transform Pk into P ′k with P ′k being
isomorphic to tnk. For the other direction, let P be a primitive plan
that can be obtained via decomposition in π. Because the decom-
position of a compound task oclone ∈ Nc \ C does not introduce
further compound tasks, we can assume that first tasks c1, . . . , ck−1,
ci ∈ C, 1 ≤ i < k are decomposed leading to a plan Pk and then
only tasks in oclone ∈ Nc \ C leading to a primitive plan P ′k. When
decomposing c1, . . . , ck−1 in P , we obtain a task network tnk that
is isomorphic to P ′k.

Solution Correspondence. Let tn be a solution to P . It is thus
reachable via decomposition in P . Due to the refinement correspon-
dence, P being isomorphic to tn can be obtained via decomposition
in π. Thus, for any executable linearization of the tasks of tn, P can
be turned into a totally ordered solution plan P ′ containing exactly
that sequence via ordering and causal link insertions. For the other
direction, let P be a solution for π. Without loss of generality we can
assume that P can be generated by first decomposing, then inserting
causal links, then ordering constraints. Let P ′ be the last primitive
plan before any ordering or causal link insertion. Due to the refine-
ment correspondence, tn being isomorphic to P ′ is reachable via
decomposition in P . Then, tn contains all linearizations of the plan
steps of P ′ (in particular the executable ones).

Plan Verification. We now investigate how hard it is to ver-
ify whether a given plan is a solution to a hybrid planning prob-
lem. While in classical, non-hierarchical planning, this question can

100

be answered in linear time w.r.t. the size of the input plan [16,
Thm. 8], the corresponding problem is much harder in the HTN set-
ting. Behnke et al. [9] proved that the HTN plan verification problem
is NP-complete even under several restrictions.

We first investigate the special case where there is no hierarchy.
In HTN planning, this means to decide whether a primitive plan has
an executable linearization, which is already NP-complete [34,
Thm. 15], [16, Thm. 8]. In hybrid planning, all linearizations need to
be executable. The respective problem is hence equivalent to verify-
ing whether a POCL plan is a solution to a POCL planning problem,
which is commonly known to be tractable.

Theorem 2. Let P be a plan and π = (V,Nc, Np, δ,M, P i) a hy-
brid planning problem without hierarchy, i.e., Nc = M = ∅. Decid-
ing whether P is a solution to π is in P.

Proof. Checking that every precondition is supported by exactly one
causal link can be done in linear time w.r.t. the number of all pre-
conditions and causal links. Checking the absence of causal threats
can be done in quadratic time. Let P = (PS,CL,≺, α). For each
causal link (ps, v, ps′) ∈ CL iterate over all plan steps ps′′ ∈ PS,
ps′′ /∈ {ps, ps′}. If none of these ps′′ has an effect conflicting with v
and can be ordered between ps and ps′ without violating≺, continue
to the next causal link, otherwise fail.

Please note that the reason why this verification problem is eas-
ier than in HTN planning cannot be attributed to the fact that com-
pound tasks show preconditions and effects, but to the fact that in hy-
brid (and POCL) planning, all linearizations need to be executable,
whereas HTN planning only requires that there exists one.

Next we consider the general case, in which there are no restric-
tions on the hierarchy. We start by showing NP membership.

Lemma 1. Let P be a plan and π a hybrid planning problem. In-
dependently of the demanded legality criteria (Def. 7 to 10), it is in
NP to decide whether P is a solution to π.

Proof sketch: For HTN planning, we showed that the correspond-
ing verification problem is in NP [9, Thm. 1]. We show that the two
main proof steps (not emphasizing some special cases due to lack
of space) remain applicable despite the extension of the formalism to
hybrid planning: First, we show that any plan that can be obtained via
decomposition can be obtained by a polynomial number of methods.
Second, we give a guess-and-verify algorithm that runs in NP.

The first main step consists of five sub steps. First, we construct a
so-called ε-extended planning problem π′ from π that has the same
set of solutions as π, but allows for shorter decomposition sequences.
We call methods that contain an empty plan ε-methods. Now, for any
compound task name that can be transformed into an empty plan by
an arbitrary number of decomposition methods (due to ε-methods
already present in M), we introduce an additional ε-method in M ′

of π′. For HTN planning, this can be done in P [9, after Def. 1].
Since causal links are not allowed to disappear upon decomposition,
the same result applies to hybrid planning. Second, given a sequence
m1 of methods in M ′ leading from the initial plan to a plan P ′, the
methods are reordered as follows: all ε-methods immediately fol-
low the method that inserted the plan step they erase into the plan,
resulting in the sequence m2. Note that reordering these decompo-
sition methods is possible, since all legality criteria satisfy Def. 7,
downward compatibility (cf. footnote on page 4). Third, if for any
non-ε-method in m2, all plan steps of its plan are thereafter erased,
all those methods are replaced by one singe ε-method resulting in
a shorter sequence m3. Let P = P1, . . . , Pn with P1 = P i and

Pn = P ′ be the corresponding sequence of plans. Its subsequence
P
′

that consists of the plans to which non-ε-methods are applied
and P ′ forms a sequence with non-decreasing plan step size. Due
to plateaus (which can be caused, e. g., by so-called unit-methods,
which decompose a compound task into a single other task), P

′
can

still be arbitrary long. Step four is a preparation to obtain a bound
on their lengths: We reorder methods between the plateaus such that
in every plateau only methods remain that decompose the plan step
that is decomposed last in the respective plateau (as this step ends the
plateau) resulting into m4. As argued before, reordering is also pos-
sible in the hybrid planning setting. In step five we can now shorten
the new sequence of plans corresponding tom4. Every plateau in the
new plan sequence can now be limited to at most |Nc| plans, as other-
wise cycles must occur. Because there are at most k plateaus (k being
|PS| of P ′), we can state that the final sequence of methods m5 has
at most 2k(|Nc|+1) non-ε-methods‖ and thus 2k(|Nc|+1)∆ meth-
ods in total, ∆ being the maximal number of plan steps of the plans
in the methods and P i. We thereby conclude that if a plan P ′ can be
obtained via decomposition in π, it can be obtained by a polynomial
number of methods in π′.

For the second main step, we guess a polynomially bounded se-
quence of methods in π′ and calculate the resulting plan P ′. We then
guess additional ordering constraints (bounded by k2) and causal
links (bounded by k|V |), insert them into P ′ resulting in P ′′, guess
a bijection between the plan steps in P ′′ and P and verify isomor-
phism. We then verify executability of P in P (Thm. 2). �

We now show that the plan verification problem is also NP-hard.

Theorem 3. Let P be a plan and π a hybrid planning problem. In-
dependently of the demanded legality criteria (Def. 7 to 10), it is
NP-complete to decide whether P is a solution to π.

Proof. Membership is stated in Lem. 1. For hardness, we use a corol-
lary of HTN plan verification [9, Cor. 5]. According to this, it is
NP-complete to verify, given a sequence of tasks t̄ and a totally
unordered precondition- and effect-free HTN problem P , whether
there is a solution task network tn, such that t̄ is an (executable) lin-
earization of tn’s tasks. (Note that the complexity of the problem
does not stem from finding an executable linearization, as there are
no preconditions and effects, but from finding the right decomposi-
tions leading to the desired plan. The original proof reduces vertex
cover to HTN plan verification.)

Let π be a hybrid planning problem that is constructed from P
with the properties stated in Thm. 1. Further, let P be a totally or-
dered plan containing t̄ as plan step sequence. If there is a solution
tn of P , such that t̄ is an executable linearization of tn, then we can
conclude that P is a solution to π (Thm. 1). Conversely, if P is a
solution to π, then there exists a solution tn to P , such that P ’s plan
step linearization is an executable linearization of tn (Thm. 1).

Plan Existence. In general, HTN planning is undecidable [16,
19]. We now show that this also holds for hybrid planning.

Theorem 4. Hybrid planning is undecidable. That is, it is unde-
cidable to determine whether a hybrid planning problem has a solu-
tion – no matter, which of the legality criteria of Def. 7 to 10 hold.

Proof. Since we can encode any HTN planning problem into a
solution-conserving hybrid planning problem that satisfies all legal-
ity criteria (Thm. 1), we can reduce the undecidable plan existence
problem for HTN planning [19, Thm. 1] to hybrid planning.

‖We previously stated a bound of only |k|(|Nc| + 1) [9, Lem. 1], as we
handled a special case wrong (details omitted due to space restrictions).

101

From this theorem we can conclude that hybrid planning is as
expressive as HTN planning, since it allows to encode undecid-
able problems. However, HTN planning is also known to be semi-
decidable (or recursively enumerable, RE) [16, Thm. 1], which im-
plies that for any HTN planning problem, a solution can be eventu-
ally found if one exists (while the undecidability prevents one from
proving – in general – that there is no solution in case there actually
is none). We now show that this is also true for hybrid planning.

Theorem 5. Hybrid planning is semi-decidable. That is, the set
of all hybrid planning problems that possess a solution is in RE.

Proof. We give a partial recursive function f that, given a hybrid
planning problem π, returns true if π has a solution and that may
not halt, otherwise. We define f as the algorithm that enumerates all
plans and verifies whether they solve π. It may run infinitely long,
but as soon as it finds a solution, f returns true. Although there are
infinitely many plans, enumeration is possible by starting with all
plans of length two (the only tasks of which are the artificial init and
goal actions) and then successively incrementing plan length. For
each plan, verify in NP whether it is a solution (Thm. 3).

As a further corollary from Thm. 1, it also follows that many
sub classes of hybrid planning are as hard as the respective problem
classes in HTN planning. Such restrictions include syntactical ones
(such as totally ordered task networks [2] or delete-relaxed actions
[5]) and structural restrictions on the hierarchy (such as tail-recursive
or acyclic problems [2]). To formally prove this, we would have to
show that the respective restrictions still hold in the hybrid planning
problem after the translation process done in the proof of Thm. 1.

5 Discussion
As a corollary from the last section’s results, we can observe that
for the studied legality criteria, allowing preconditions and effects
for compound tasks does neither increase nor decrease the expres-
sivity of the formalism with regard to the plan existence problem in
the general case. We want to emphasize that this is caused by the
fact that none of the studied criteria (Def. 7 to 10) enforces to spec-
ify preconditions or effects for compound tasks (such as the one by
Russell and Norvig [37]). Legality criteria that enforce to specify
such preconditions or effects might influence the respective results
and therefore also reduce expressivity, as they might prevent to spec-
ify computationally hard problems. Having the option to model such
preconditions and effects still serves several practically relevant pur-
poses, however. We shortly discuss some of them in this section and
give pointers to the literature for further details.

As argued by Fox [17, p. 196], “one of the strongest motivations
for using some form of abstraction in planning is the observation
that people use it to great effect in their problem-solving”, which
is also backed up by psychological studies [13]. Consequently, peo-
ple should already be supported during the process of constructing
(hierarchical) planning domains. Modeling support has attracted in-
creased interest during the last years, which is one of the reasons that
lead to the establishment of the International Competition on Knowl-
edge Engineering for Planning and Scheduling (ICKEPS)∗∗. Never-
theless, there is still only very little research to automatically support
the modeling process, which is particularly true for hierarchical mod-
els. The tool by McCluskey and Kitchin [32] as well as GIPO [39]
for hierarchical models expressed in the modeling language OCLh

∗∗http://www.icaps-conference.org/index.php/Main/Competitions

checks certain properties and reports violations. In analogy to the re-
spective properties that these tools verify, the legality criteria allow
to automatically verify the relationship between compound tasks and
their methods’ plans. As Fox points out, “abstract plans have inten-
tional meaning” – and so do compound tasks. Thus, adhering some
desired legality criterion is a possible way to automatically verify
whether the model complies with the user’s intent.

Apart from providing modeling assistance, another main purpose
of being able to specify preconditions and effects for compound tasks
is to exploit them during search. Reasoning about these preconditions
and effects may result in a smaller search space, as irresolvable flaws,
such as open preconditions, can be detected earlier, i.e., before the re-
spective compound task is decomposed. This further allows to gen-
erate “solution” plans on different levels of abstraction. Such plans
look like ordinary (primitive) solutions with the difference that some
tasks are still compound. When the model fulfills further prerequi-
sites, it is guaranteed that such abstract solutions can be refined into
a primitive one [40, 30]. Then, the model is said to fulfill the down-
ward refinement property [6].

Preconditions and effects of compound tasks can also improve
plan explanations. Plan explanations as developed by Seegebarth et
al. [38] give a justification about the purpose of a primitive action
questioned by the user. It is based upon a sequence of arguments,
each being of the form (a) “action a is required as it supports a pre-
condition variable of another action a′ by a causal link” or (b) “action
a is required as it was introduced via decomposition of a compound
task c”. Necessity of the other task a′ (resp. c) is proved similarly.
Preconditions and effects of compound tasks now allow to combine
these two argument types [38]. Then, the causal chain argument (a)
can be extended from just primitive actions to compound tasks, as
they show preconditions and effects as well, which allows for much
shorter and more abstract explanations.

6 Conclusion
To finally answer the question whether compound tasks with precon-
ditions and effects are more than just names: We can state no in the
sense that for the criteria we studied in more detail, we were able
to show that in the general case, the formalism is equally expressive
(with respect to the plan existence problem) than the HTN formal-
ism, in which compound tasks are just names. For many sub classes,
however, we only showed lower bounds – upper bounds still need to
be proved. It might also be that other, more restrictive, legality crite-
ria influence the hardness of the problem, in which case we also had
to state yes. We can already answer the question with yes with regard
to practical considerations, such as modeling assistance: The precon-
ditions and effects, when combined with a desired legality criterion,
can be exploited to provide assistance to ensure that the methods
comply with the user’s intent – or at least to rule out some of the
modeling flaws.

ACKNOWLEDGEMENTS
We thank Thomas Geier for discussions that helped improving this
paper as well as Kathi Krammer for proof reading an early draft.
This work was done within the Transregional Collaborative Research
Centre SFB/TRR 62 “Companion-Technology for Cognitive Techni-
cal Systems” funded by the German Research Foundation (DFG).

We also thank Mario Schmautz for contributing to this revised ver-
sion, most notably in Defs. 3 and 10.

102

REFERENCES

[1] Ron Alford, Gregor Behnke, Daniel Höller, Pascal Bercher, Susanne
Biundo, and David Aha, ‘Bound to plan: Exploiting classical heuristics
via automatic translations of tail-recursive HTN problems’, in Proc. of
the 26th Int. Conf. on Automated Planning and Scheduling (ICAPS),
pp. 20–28. AAAI Press, (2016).

[2] Ron Alford, Pascal Bercher, and David Aha, ‘Tight bounds for HTN
planning’, in Proc. of the 25th Int. Conf. on Automated Planning and
Scheduling (ICAPS), pp. 7–15. AAAI Press, (2015).

[3] Ron Alford, Pascal Bercher, and David Aha, ‘Tight bounds for HTN
planning with task insertion’, in Proc. of the 25th Int. Joint Conf. on AI
(IJCAI), pp. 1502–1508. AAAI Press, (2015).

[4] Ron Alford, Ugur Kuter, and Dana S. Nau, ‘Translating HTNs to
PDDL: A small amount of domain knowledge can go a long way’, in
Proc. of the 21st Int. Joint Conf. on AI (IJCAI), pp. 1629–1634. AAAI
Press, (2009).

[5] Ron Alford, Vikas Shivashankar, Ugur Kuter, and Dana Nau, ‘On the
feasibility of planning graph style heuristics for HTN planning’, in
Proc. of the 24th Int. Conf. on Automated Planning and Scheduling
(ICAPS), pp. 2–10. AAAI Press, (2014).

[6] Fahiem Bacchus and Qiang Yang, ‘Downward refinement and the ef-
ficiency of hierarchical problem solving’, Artificial Intelligence, 71(1),
43 – 100, (1994).

[7] Patrick Bechon, Magali Barbier, Guillaume Infantes, Charles Lesire,
and Vincent Vidal, ‘HiPOP: Hierarchical partial-order planning’, in
Proc. of the 7th Europ. Starting AI Researcher Symposium (STAIRS).
IOS Press, (2014).

[8] Gregor Behnke, Daniel Höller, Pascal Bercher, and Susanne Biundo,
‘Change the plan – how hard can that be?’, in Proc. of the 26th Int. Conf.
on Automated Planning and Scheduling (ICAPS), pp. 38–46. AAAI
Press, (2016).

[9] Gregor Behnke, Daniel Höller, and Susanne Biundo, ‘On the complex-
ity of HTN plan verification and its implications for plan recognition’,
in Proc. of the 25th Int. Conf. on Automated Planning and Scheduling
(ICAPS), pp. 25–33. AAAI Press, (2015).

[10] Pascal Bercher, Susanne Biundo, Thomas Geier, Thilo Hörnle, Florian
Nothdurft, Felix Richter, and Bernd Schattenberg, ‘Plan, repair, exe-
cute, explain - how planning helps to assemble your home theater’, in
Proc. of the 24th Int. Conf. on Automated Planning and Scheduling
(ICAPS), pp. 386–394. AAAI Press, (2014).

[11] Susanne Biundo, Pascal Bercher, Thomas Geier, Felix Müller, and
Bernd Schattenberg, ‘Advanced user assistance based on AI planning’,
Cognitive Systems Research, 12(3-4), 219–236, (2011). Special Issue
on Complex Cognition.

[12] Susanne Biundo and Bernd Schattenberg, ‘From abstract crisis to con-
crete relief – a preliminary report on combining state abstraction and
HTN planning’, in Proc. of the 6th Europ. Conf. on Planning (ECP),
pp. 157–168. AAAI Press, (2001).

[13] Richard Byrne, ‘Planning meals: Problem solving on a real data-base’,
Cognition, 5, 287–332, (1977).

[14] Luis A. Castillo, Juan Fernández-Olivares, and Antonio González, ‘On
the adequacy of hierarchical planning characteristics for real-world
problem solving’, in Proc. of the 6th Europ. Conf. on Planning (ECP),
pp. 169–180. AAAI Press, (2001).

[15] Filip Dvor̆k, Arthur Bit-Monnot, Flix Ingrand, and Malik Ghallab, ‘A
flexible ANML actor and planner in robotics’, in Proc. of the 2nd Work-
shop on Planning and Robotics (PlanRob), pp. 12–19, (2014).

[16] Kutluhan Erol, James A. Hendler, and Dana S. Nau, ‘Complexity re-
sults for HTN planning’, Annals of Mathematics and Artificial Intelli-
gence, 18(1), 69–93, (1996).

[17] Maria Fox, ‘Natural hierarchical planning using operator decomposi-
tion’, in Proc. of the 4th Europ. Conf. on Planning (ECP), pp. 195–207.
Springer, (1997).

[18] Maria Fox and Derek Long, ‘Hierarchical planning using abstraction’,
IEE Proc. – Control Theory Appl., 142(3), 197–210, (1995).

[19] Thomas Geier and Pascal Bercher, ‘On the decidability of HTN plan-
ning with task insertion’, in Proc. of the 22nd Int. Joint Conf. on AI
(IJCAI), pp. 1955–1961. AAAI Press, (2011).

[20] Malik Ghallab, Dana S. Nau, and Paolo Traverso, Automated Planning:
Theory and Practice, Morgan Kaufmann, 2004.

[21] Daniel Höller, Gregor Behnke, Pascal Bercher, and Susanne Biundo,
‘Language classification of hierarchical planning problems’, in Proc. of
the 21st Europ. Conf. on AI (ECAI), pp. 447–452. IOS Press, (2014).

[22] Daniel Höller, Gregor Behnke, Pascal Bercher, and Susanne Biundo,
‘Assessing the expressivity of planning formalisms through the compar-
ison to formal languages’, in Proc. of the 26th Int. Conf. on Automated
Planning and Scheduling (ICAPS), pp. 158–165. AAAI Press, (2016).

[23] Éric Jacopin, ‘Game AI planning analytics: The case of three first-
person shooters’, in Proc. of the 10th AI and Interactive Digital En-
tertainment Conf. (AIIDE), pp. 119–124. AAAI Press, (2014).

[24] Subbarao Kambhampati, ‘Refinement planning as a unifying frame-
work for plan synthesis’, AI Magazine, 18(2), 67–98, (1997).

[25] Subbarao Kambhampati and James A. Hendler, ‘A validation-structure-
based theory of plan modification and reuse’, Artificial Intelligence, 55,
193–258, (1992).

[26] Subbarao Kambhampati, Amol Mali, and Biplav Srivastava, ‘Hybrid
planning for partially hierarchical domains’, in Proc. of the 15th Nat.
Conf. on AI (AAAI), pp. 882–888. AAAI Press, (1998).

[27] Craig A. Knoblock, ‘Automatically generating abstractions for plan-
ning’, Artificial Intelligence, 68, 243–302, (1994).

[28] Raphaël Lallement, Lavindra De Silva, and Rachid Alami, ‘HATP: An
HTN planner for robotics’, in Proc. of the 2nd Workshop on Planning
and Robotics (PlanRob), pp. 20–27, (2014).

[29] Naiwen Lin, Ugur Kuter, and Evren Sirin, ‘Web service composition
with user preferences’, in Proc. of the 5th Europ. Semantic Web Conf.
(ESWC), pp. 629–643. Springer, (2008).

[30] Bhaskara Marthi, Stuart J. Russell, and Jason Wolfe, ‘Angelic semantics
for high-level actions’, in Proc. of the 17nd Int. Conf. on Automated
Planning and Scheduling (ICAPS), pp. 232–239. AAAI Press, (2007).

[31] David McAllester and David Rosenblitt, ‘Systematic nonlinear plan-
ning’, in Proc. of the 9th Nat. Conf. on AI (AAAI), pp. 634–639. AAAI
Press, (1991).

[32] Thomas Lee McCluskey and Diane E. Kitchin, ‘A tool-supported ap-
proach to engineering HTN planning models’, in In Proc. of 10th IEEE
Int. Conf. on Tools with AI (ICTAI), pp. 272–279. IEEE, (1998).

[33] Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, Dan Wu,
Fusun Yaman, Héctor Muñoz-Avila, and J. William Murdock, ‘Appli-
cations of SHOP and SHOP2’, Intelligent Systems, IEEE, 20, 34–41,
(2005).

[34] Bernhard Nebel and Christer Bäckström, ‘On the computational com-
plexity of temporal projection, planning, and plan validation’, Artificial
Intelligence, 66(1), 125–160, (1994).

[35] Santiago Ontañón and Michael Buro, ‘Adversarial hierarchical-task
network planning for complex real-time games’, in Proc. of the 24th
Int. Conf. on AI (IJCAI), pp. 1652–1658. AAAI Press, (2015).

[36] J. Scott Penberthy and Daniel S. Weld, ‘UCPOP: A sound, complete,
partial order planner for ADL’, in Proc. of the 3rd Int. Conf. on Princi-
ples of Knowledge Representation and Reasoning (KR), pp. 103–114.
Morgan Kaufmann, (1992).

[37] Stuart Russell and Peter Norvig, Artificial Intelligence – A modern Ap-
proach, chapter 12: Practical Planning, 367–376, Prentice-Hall, 1 edn.,
1994.

[38] Bastian Seegebarth, Felix Müller, Bernd Schattenberg, and Susanne Bi-
undo, ‘Making hybrid plans more clear to human users – a formal ap-
proach for generating sound explanations’, in Proc. of the 22nd Int.
Conf. on Automated Planning and Scheduling (ICAPS), pp. 225–233.
AAAI Press, (2012).

[39] Ron M. Simpson, Diane E. Kitchin, and Thomas Lee McCluskey,
‘Planning domain definition using GIPO’, The Knowledge Engineering
Review, 22, 117–134, (2007).

[40] Qiang Yang, ‘Formalizing planning knowledge for hierarchical plan-
ning’, Computational Intelligence, 6(1), 12–24, (1990).

[41] Robert Michael Young, Martha E. Pollack, and Johanna D. Moore, ‘De-
composition and causality in partial-order planning’, in Proc. of the 2nd
Int. Conf. on AI Planning Systems (AIPS), pp. 188–193. AAAI Press,
(1994).

103

The following pages show the publication:

P. Bercher, T. Geier, F. Richter, and S. Biundo. “On Delete Relaxation in Partial-
Order Causal-Link Planning”. In: Proceedings of the 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence (ICTAI 2013). IEEE Computer Society,
2013, pp. 674–681. doi: 10.1109/ICTAI.2013.105

2013 IEEE. Reprinted, with permission, from Pascal Bercher and Thomas Geier and
Felix Richter and Susanne Biundo, On Delete Relaxation in Partial-Order Causal-Link
Planning, 2013

104

http://dx.doi.org/10.1109/ICTAI.2013.105

On Delete Relaxation in
Partial-Order Causal-Link Planning

Pascal Bercher, Thomas Geier, Felix Richter, Susanne Biundo
Institute of Artificial Intelligence

Ulm University
Ulm, Germany

e-mail: firstName.lastName@uni-ulm.de

Abstract—We prove a new complexity result for Partial-Order
Causal-Link (POCL) planning which shows the hardness of
refining a search node (i.e., a partial plan) to a valid solution
given a delete effect-free domain model. While the corresponding
decision problem is known to be polynomial in state-based search
(where search nodes are states), it turns out to be intractable
in the POCL setting. Since both of the currently best-informed
heuristics for POCL planning are based on delete relaxation, we
hope that our result sheds some new light on the problem of
designing heuristics for POCL planning.
Based on this result, we developed a new variant of one of these
heuristics which incorporates more information of the current
partial plan. We evaluate our heuristic on several domains of the
early International Planning Competitions and compare it with
other POCL heuristics from the literature.

I. INTRODUCTION

Partial-Order Causal-Link (POCL) planning [1], [2] is a
technique for solving classical planning problems via search
in the space of plans. The currently most prominent approach
for solving such problems is planning as search in the space
of states, although POCL planning has several advantages
compared to state-based planning: POCL planning follows a
least commitment principle, in which only necessary decisions
are performed like maintaining only a partial order on the plan
steps in a partial plan and maintaining only a partial variable
binding thereby avoiding unnecessary restrictions, which might
turn out as wrong later in the search. Since solutions are also
only partially ordered and all causal dependencies between
plan steps are explicitly represented, POCL planning allows
greater flexibility at plan execution time [3] and the explanation
of the structure of the solution at hand [4].

Despite these advantages, POCL planning has become
less attractive to many researchers, because planning systems
based on this approach are currently not competitive with
current state-of-the-art (state-based) planning systems in terms
of runtime. We assume this can be attributed to two main
reasons: first, there is a large number of highly informed
heuristics for state-based search [5], and, second, there is a
lot of theoretical work which helps designing new heuristics
or improving existing ones [5], [6]. For example, Bylander’s
result showing that the plan existence problem given a state
and a delete effect-free domain is polynomial [6] lead to the
development of several tractable heuristics based on delete re-
laxation. The probably most prominent one is the FF heuristic
as implemented in the Fast Forward (FF) planning system [7].
The success of these heuristically guided systems lead to a

paradigm shift from several approaches like POCL planning
and CSP-based approaches such as GraphPlan [8] to state-
based planning.

We are only aware of two well-informed heuristics for
domain-independent, non-temporal POCL planning: The Re-
lax heuristic [9] and the Additive heuristic for POCL plan-
ning [10]. Both heuristics are based on the same idea of
finding a solution using a delete-relaxed planning domain.
In contrast, heuristics used in state-based search also rely on
critical paths, abstractions, and landmarks [5]. We recently
developed an approach which enables the use of state-based
heuristics in POCL planning, but it did not yet result in a
system competitive with state-based planners [11]. We believe
that the small number of heuristics for POCL planning can
be attributed to the fact that it seems to be much more
complicated to estimate the goal distance for a partial plan
than to estimate the goal distance for a state. To shed some
light on that difficulty, we study the complexity of the plan
existence problem for POCL planning, when delete relaxation
is performed – analogously to the proposition of Bylander [6]
for state-based planning. Based on our results, we improve the
Relax Heuristic and present empirical results.

The remainder of the paper is structured as follows: Sec-
tion II is devoted to the formalization of POCL planning.
Section III shows our new complexity result. Section IV
presents our new heuristic including an empirical evaluation
and, finally, the last section concludes the paper.

II. PROBLEM FORMALIZATION

Although POCL planning is ordinarily done in a lifted
fashion [10], we base our formalization on a fully ground,
propositional representation.

A domain model 〈V,A〉 consists of a finite set of propo-
sitional state variables V implicitly defining the induced state
space S = 2V and a finite set of available actions A. Each
action a = 〈pre, add , del〉 ∈ A is a tuple from the set
2V × 2V × 2V and defines the action’s precondition pre, its
add list add , and its delete list del . It is applicable in a state
s ∈ S iff pre ⊆ s and, if applicable in that state, generates
the state (s \ del) ∪ add . The applicability and application of
action sequences is defined in the straight-forward way.

Partial plans are abstractions of totally ordered action
sequences in the sense of actions being only partially ordered;
furthermore, partial plans explicitly model effect/precondition
relations between different actions by means of so-called

105

causal links. More formally, a partial plan is a tuple
(PS ,≺, CL) with PS being a finite set of plan steps, l:a ∈ PS
consisting of an action a ∈ A ∪ {a0, a∞} and l being a
unique label symbol to identify the correct plan step in case the
partial plan contains multiple occurrences of a. The two special
actions a0 and a∞ encode the initial state of the problem
and its goal description, respectively. Thus, a0 has an empty
precondition, an empty delete list and the initial state as add
effect, and the action a∞ has an empty add and delete list, and
the goal description as precondition. The corresponding plan
steps l0:a0 and l∞:a∞ are called init and goal , respectively.
The ordering constraints are represented by the strict partial
order ≺ defined on the plan steps of PS . Every partial plan
satisfies (0,∞) ∈ ≺ and, furthermore, every plan step in PS
different from init and goal is ordered between these two plan
steps. The set CL specifies the causal links. A causal link l−→v l′
specifies that the precondition variable v ∈ V of the plan step
l′:a′ is provided by the add list of plan step l:a.

A POCL planning problem is a tuple π = 〈D, P 〉 with D
being a domain model and P being a partial plan. Typically, P
contains only the two plan steps init and goal without causal
links, since such a problem corresponds to an ordinary STRIPS
planning problem [12], where only an initial state and a goal
description is given in addition to the domain model.

A partial plan Psol = (PS sol ,≺sol , CLsol) is a solution to
a POCL planning problem π, called plan, if and only if:

(1) Psol is a refinement of P . That is, if P = (PS ,≺, CL),
then PS ⊆ PS sol , ≺ ⊆ ≺sol , and CL ⊆ CLsol .

(2) There are no open preconditions. That is, for every
plan step l:a ∈ PS sol , a = (pre, add , del) with v ∈ pre,
there is a causal link l′−→v l ∈ CLsol with l′:a′ ∈ PS sol , a′ =
(pre ′, add ′, del ′), and v ∈ add ′.

(3) There are no causal threats. That is, if there is a causal
link l−→v l′′ ∈ CLsol , then for all plan steps l′:a′ ∈ PS sol with
a′ = (pre ′, add ′, del ′) and v ∈ del ′ it holds that the set ≺sol ∪
{(l, l′), (l′, l′′)} is no strict partial order.

Criterion (1) relates solutions to the problem specification,
i.e., to the initial partial plan P . Criteria (2) and (3) ensure that
the solution is executable in the sense that any action sequence
induced by the ordering constraints is applicable in the initial
state and generates a state satisfying the goal condition.

POCL planning procedures perform plan-based search,
starting with the initial partial plan and refining it until a
solution is generated [10]. To that end, the violation of criteria
(2) and (3) is represented by so-called flaws; thus, a partial
plan is a solution iff it does not show any flaws. In a first
step, a most-promising partial plan is selected from a set of
candidates. For that partial plan, first, all its flaws are identified,
i.e., all its open preconditions and all causal threats. Then,
one of these flaws is selected and resolved using all available
possibilities (for instance, an open precondition flaw can be
resolved by inserting a causal link rooted either in a plan step
from the current partial plan or in a new plan step taken from
the domain). All resulting plans are then added to the set of
candidates and a new cycle starts over.

This procedure has two decision points: The selection of a
most promising partial plan and the selection of a flaw. In this
paper, we focus on the former by means of heuristics.

III. COMPLEXITY RESULTS

POCL procedures pick a most-promising partial plan from
a set of candidates based on some criteria; often, an informed
search procedure like A* using a heuristic function is chosen.
As noted in the introduction, several well-informed heuristics
have been developed for state-based planning [5], but we are
only aware of two heuristics for POCL planning: the Relax
heuristic [9] and the Additive heuristic for POCL planning [10]
(Add, for short). Both approximate the number of necessary
actions to solve a delete-relaxed version of the planning
problem. In state-based planning, ignoring delete lists is a
promising idea for constructing heuristics, as the plan existence
problem for a delete effect-free domain is known to be solvable
in polynomial time [6]. However, in POCL planning, that
problem has not yet been investigated in detail.

Let π = 〈D, P 〉 be a POCL planning problem with P being
an arbitrary partial plan, i.e., possibly containing more plan
steps than just init and goal and possibility containing causal
links and ordering constraints. Such problems are generated
during planning, as each search node is a new partial plan and
hence induces a new planning problem.

In state-based planning, performing delete-relaxation is
straight-forward, as simply all actions in the domain need to be
relaxed (although there are more elaborated approaches, which
ignore only some of the variables in the delete lists [13]).
However, in the POCL setting, in addition to the actions in the
domain, we have the actions/plan steps in the current partial
plan and the question arises whether these should be relaxed
as well. If not, the actions from the domain would still all be
delete-free, but the plan steps in P are not. We can motivate
leaving P unaltered by considering the analog question in
state-based planning: there, search nodes are states; hence,
every state completely reflects the entire information about the
search path from the initial state up to the current one. This
includes all applied actions leading to that state including their
negative effects. In POCL planning, this “planning progress”
is reflected in the current partial plan. Relaxing its actions
would mean to ignore information about the current progress
of the search. Thus, the question we would like to have
answered is: “Given P , how hard is it to refine it to a solution
given an easier planning domain?”. In the following, we study
the hardness of that problem where this “easier” domain is
obtained by performing delete relaxation.

Unfortunately, it turns out that relaxing only the actions
in the domain is NP−complete, whereas the problem is in
P, if also the actions in P are delete-relaxed. We prove the
first result formally, but omit a proof for the latter, since it is
trivially solvable in polynomial time in the size of |D|+ |P |.

Let us first define our notion of delete relaxation. We call a
POCL planning problem π = 〈D, P 〉 with D = 〈V,A〉 delete-
free, if and only if for each (pre, add , del) ∈ A, del = ∅. We
hence call a POCL planning problem π′ delete-relaxed if it is
obtained from a POCL planning problem π by ignoring the
delete lists of the actions in A (but leaving P unaltered).

The decision problem for determining whether a partial
plan has a solution using a delete-relaxed domain model is
then given by PLANSAT := {π|π is a delete-free POCL
planning problem and has a solution}.

106

Theorem 1. PLANSAT is NP−complete.

Proof: Membership. Fix an arbitrary delete-free POCL
planning problem 〈D, P 〉 with domain D = 〈V,A〉 and
P = (PS ,≺, CL). Guess a linearization of the plan steps in
PS , which respects the ordering constraints of P . We need
to show that it can be verified in polynomial time that such
a sequence init , l1:a1, . . . , ln:an, goal can be extended to an
applicable action sequence using (the delete-free) actions from
the domain. This is sufficient for membership, as a POCL
solution can be obtained from such a sequence by inserting
causal links, which can also be done in polynomial time.

First, we need to verify that the chosen linearization does
not violate any causal links present in P . This is the case if
and only if it does not have any causal threats, which can be
verified in polynomial time. Note that the causal links may
only be violated by the plan steps already present, but not by
the additional actions from the domain, as these actions do not
show delete lists and hence cannot cause new causal threats.

Afterwards, we build a saturated relaxed planning graph [8]
starting from init . This graph can be built in polynomial
time [7]. Furthermore, if the precondition of the plan step
l1:a1 is contained in the last fact layer L ⊆ V of this
planning graph, we have verified that we can find a sequence
of actions to support the precondition of that plan step (or
proved its non-existence, otherwise), since such a sequence
can be extracted from the planning graph without backtracking
due to the absence of negative effects [7]. Now, we apply
that plan step by removing the delete list from L and adding
its add list thereby generating a new state. From this state,
we build another saturated planning graph to test whether the
precondition of the plan step l2:a2 holds in its last fact layer.
We repeat that procedure thereby building |PS | − 1 planning
graphs, one between each tuple of two consecutive plan steps.
If the precondition of goal is contained in the last layer of
the last planning graph, we have verified that the chosen
linearization can be extended to an applicable action sequence
containing the plan steps of P in an order compatible with ≺
and respecting its causal links.

Hardness. To prove the hardness, we adapt a proof by
Nebel and Bäckström [14, Theorem 15], in which they proved
the NP completeness of deciding whether there exists an
applicable action sequence given a partial plan without causal
links and without the capability of inserting actions from the
domain; i.e., the problem studied was to find a suitable order
of the plan steps. We show that this problem does not become
easier when one is allowed to insert delete-relaxed actions,
independently of whether causal links are present or not. From
that observation follows hardness, since P can be refined1 to
a POCL solution if and only if there exists a linearization of
the plan steps in P which can be extended to an applicable
action sequence using actions from the domain.

The proof is done by reduction from CNF-SAT. Given a set
of boolean variables X = {x1, . . . , xn} and a set of clauses
C = {c1, . . . , cm}, each clause cj being a set of literals over
X representing a disjunction, we construct a delete-free POCL

1Please note that this question is different from verifying that P already
is a valid solution, which can be done in polynomial time using the POCL
solution criteria [14, Theorem 14].

init

. . .

xi?>

xi?⊥

. . .

in
it clear-C

¬c1
. . .

¬cm

A>i : xi 7→ >xi?>
¬xi?>
xi=>
¬xi=⊥

A⊥i : xi 7→ ⊥xi?⊥
¬xi?⊥
xi=⊥
¬xi=>

goal

c1

. . .

cm

goa
l

Fig. 1. The initial partial plan used by the hardness proof of Theorem 1.

planning problem, whose solutions are isomorphic to that of
the CNF-SAT problem. The general idea is that the initial
partial plan (depicted in Fig. 1) contains two plan steps/actions
A>i and A⊥i for each variable xi in X . The order in which these
plan steps occur in a solution encodes the truth assignment of
xi using the two state variables xi=> and xi=⊥.

For example, if A>i appears after A⊥i in a solution plan,
then xi=> does hold at the end of any action sequence derived
from that plan, and xi=⊥ does not. Note that every pair of two
actions A>i and A⊥i needs to be ordered w.r.t. each other, since
one plan step would threaten the other as soon as a causal link
is set over xi=> or xi=⊥, respectively.

Furthermore, adding the delete-relaxed variants of these
actions does not change which of these variables finally holds
for the following reasons: First, the delete-relaxed variant
of A>i , for example, cannot be applicable after A>i due its
precondition and delete effect xi?>, which encodes whether
this action has already been executed. Second, inserting it
before A>i does not change which of the variables xi=> and
xi=⊥ finally holds, because only the last applied non-relaxed
action determines the final outcome.

We still need to “use” these variables in order to determine
whether the resulting variable assignment satisfies the SAT
formula. To that end, the domain model contains one action for
each literal in any clause which serves the purpose of setting
a clause to true if one of its literals is true. Thus, if xi ∈ cj
and cj ∈ C, then C>ij := ({xi=>}, {cj}, ∅) ∈ A. The action
C⊥ij is defined analogously for ¬xi ∈ cj , cj ∈ C. Obviously,
these actions can be used to support the preconditions of the
goal plan step (and thus solve the SAT formula) if and only if
a satisfying variable assignment was chosen, i.e., if a correct
order of the actions A>i and A⊥i was found. However, since
these actions may be inserted at an arbitrary position in the
partial plan, and in every solution xi=> and xi=⊥ (which are
the preconditions of C>ij and C⊥ij , respectively) are both true
at some point, we need to ensure that the goal’s preconditions
are only supported by those actions C⊥ij and C>ij , which were
applied after the very last action from A := {A>i , A⊥i |i ∈
{1, . . . , n}}. We ensure this by means of the action clear-C,
which is ordered after the ones from A and deletes all state
variables cj . Since the actions C>ij and C⊥ij are already delete-
relaxed and the delete relaxation of clear-C is a no-op, there
are no further cases to consider.

See Appendix A for the formal problem specification.

The main result of our theorem is that performing delete-
relaxation only for the domain’s actions is not sufficient to
obtain a tractable problem class. Looking closer to the proof
reveals that the complexity lies in finding the correct order of
the plan steps. The possibility to insert delete-free actions into
a partial plan does not make this problem easier.

107

IV. SAMPLE-FF

In this section, we introduce Sample-FF, a heuristic greatly
inspired by the constructive proof of the NP membership
proof of Theorem 1 presented in the last section. Sample-
FF is based on the same ideas as the Relax heuristic [9],
which is an adaptation of the FF heuristic [7] for state-based
planning. However, Sample-FF incorporates more information
about the currently considered partial plan. In particular, it
does not ignore the negative effects of its plan steps and is
able to use the constraints implied by the causal links. Before
we explain how Sample-FF works in detail, we briefly review
the Relax heuristic to pinpoint the differences.

Given a partial plan P , the Relax heuristic estimates the
distance from the initial state (i.e., the postcondition of init) to
an “artificial” goal description, which is obtained by building
the union of all open preconditions of the plan steps of P . This
goal distance is obtained in the same way the FF heuristic
estimates the distance from a state to the goal description:
it solves a delete-relaxed version of the problem and uses the
number of actions of that solution as heuristic estimate2. Thus,
the Relax heuristic can be calculated very efficiently, since the
problems solved are in P. However, while tractable on the one
hand, the performed relaxation is quite severe on the other:
The heuristic uses only the set of open preconditions of the
plan steps in P , thereby ignoring their quantity, their negative
effects, and the constraints posed by the causal links.

However, although delete-relaxed planning with a non-
relaxed partial plan is NP−complete, there is no need to
ignore the negative effects and the causal links altogether. In
particular the causal links are of interest, since even a single
wrongly placed causal link can prevent that the respective
partial plan may be refined to a valid solution. Looking
at the NP membership part of the proof of Theorem 1
though, it becomes clear that the “hard” part of extracting a
solution is only guessing a suitable linearization. Given such a
linearization, the rest of the proof can be directly translated into
a deterministic polytime program consisting of the following
three phases.

First, we generate some linearizations of the partial plan
at hand. This is done using sampling and simulates the
“guessing” part of the NP membership proof.

Second, we estimate the cost of completing the lineariza-
tions sampled in the first phase into relaxed solution plans.
We look at each linearization separately and for each create a
sequence of relaxed planning graphs that reflect the argumen-
tation in the membership part of the proof of Theorem 1. The
number of required additional relaxed actions inserted in this
process yields a heuristic estimate for each linearization.

Last, we derive a heuristic estimate for a partial plan by
combining heuristic estimates for its linearizations, i.e., by
taking the minimum of the computed linearization estimates.
We will next take a closer look at the individual phases and
some possible optimizations of the basic idea.

2More precisely, only a subset of these actions is used: If an action in the
delete-relaxed solution corresponds to a (non-relaxed) plan step in the partial
plan, it does not count towards the cost estimate.

A. Sampling Linearizations

Since it is infeasible to consider all linearizations of a
given partial plan, we need to limit the number of consid-
ered linearizations to receive a practical heuristic, e.g., by a
constant. We also want to avoid choosing linearizations that
are too similar to each other to avoid introducing too much
bias into the heuristic. Therefore, we use a Markov Chain
Monte Carlo approach for approximately uniformly sampling
a constant number of linearizations [15].

We define a linearization graph whose nodes are lin-
earizations consistent with the partial order. There is an edge
between two nodes when their corresponding linearizations can
be converted into each other by swapping two adjacent plan
steps. Performing a random walk in the linearization graph thus
corresponds to a sequence of swappings thereby generating a
new linearization consistent with the ordering constraints. Let
d(z) be the degree of the node representing a linearization z
of the plan steps PS in the linearization graph. Thus, it holds
d(z) ≤ |PS |−1. We define the probability of proceeding from
a linearization z to its neighbor z′ as follows:

p(z, z′) =

1
2(|PS |−1) if z and z′ are adjacent,

1− d(z)
2(|PS |−1) if z = z′,

0 otherwise.

In other words, the fewer neighbors a linearization has (i.e.,
the lower the number of swaps consistent with the underlying
partial order), the more likely staying at the current lineariza-
tion becomes. It can be shown that a uniform distribution over
all linearizations is reached after polynomially many random
walks. By choosing an arbitrary consistent initial linearization
and doing enough random walks, we can thus uniformly
sample from the set of possible linearizations.

B. Estimating the Cost for Linearizations

Let z = init , l1:a1, . . . , ln:an, goal be a sampled lin-
earization of a partial plan which is not yet a solution. This
linearization represents a totally ordered partial plan with
”gaps” where some steps are still missing. Filling the gaps with
appropriate non-relaxed plan steps will create a solution plan.
Therefore, the number of relaxed plan steps required for filling
the gaps can serve as a heuristic estimate for that linearization.
We begin by building a saturated planning graph starting at the
postcondition of init . We then apply l1:a1 in its last fact layer,
yielding a ”state” s1. If l1:a1 cannot be applied in the last fact
layer, the linearization can be discarded, since it cannot be
completed into a solution. Otherwise a new saturated planning
graph is constructed starting in s1, in whose last layer l2:a2 is
applied, yielding s2, and so on. The last such planning graph is
built after applying ln:an. When goal is applicable in the last
fact layer of the last planning graph, we know that a relaxed
solution exists and we can proceed with extracting it.

For this, we traverse the constructed planning graphs last to
first. For the last graph, this amounts to doing standard relaxed
solution extraction in the same fashion of Relax. Then, the non-
relaxed plan step ln:an is applied in reverse, the second-last
graph is considered, and so on until the postcondition of init
is reached. The heuristic value for z is then defined as the
total number of relaxed plan steps required in all constructed
planning graphs.

108

C. Combining Estimates for Linearizations

The last phase is conceptually simple: take the minimum
of all estimates for the sampled linearizations.

An important corner case, however, is the situation where
none of the sampled linearizations can be completed to a
relaxed solution, because then the minimum of all estimates
does not represent a finite heuristic value. For other heuristics,
an infinite heuristic value does not pose a problem: It usually
means that a partial plan cannot be completed to a relaxed
solution, let alone a real solution, and can therefore be safely
discarded. In our setting, however, we cannot be sure of
this. It might just be coincidence that none of the sampled
linearizations could be completed to a relaxed solution, and
that the right linearization was missed in the sampling phase.
The question which value should be returned in this case is
hence not trivial. As pointed out, returning a high value might
be too pessimistic and, contrarily, returning zero might be too
optimistic; in fact, the partial plan might even be doomed
to become invalid, but given the non-exhaustive number of
samples, the heuristic was not able to prove that. Hence,
we choose a compromise and return the number of open
preconditions as estimate. Alternatively, we could return the
value of the Relax heuristic instead, but we did not evaluate
that variant.

D. Optimizations.

In the following, we present a few directions in which the
basic algorithm can be improved.

a) Enumerating all linearizations: In cases where the
number of linearizations is small, enumerating all of them
is desirable, as it yields more accurate heuristic values than
sampling. Additionally, this allows for safe pruning, as the
corner case described before cannot occur: A partial plan can
be discarded when all possible linearizations are proved un-
solvable in the relaxed setting, i.e., completeness is guaranteed.

We therefore want an estimate on the number of lin-
earizations a partial plan has and use it to decide whether
it is deemed feasible to look at all linearization for it. Un-
fortunately, determining the exact number of linearizations is
#P−complete [15], i.e., hard in the sense that there is
no known method substantially better than enumerating all
possible linearizations. Hence, we take the direct approach
and start enumerating linearizations until we have reached
a predefined maximum number of linearizations. If we have
not enumerated all linearizations at this point, we switch to
sampling, throwing away the linearizations enumerated thus
far. Experiments performed in a pre-evaluation indicate that
the benefits in precision and pruning power outweigh the effort
wasted for generating unused linearizations.

The impact of that optimization heavily depends on the
chosen flaw selection function. For example, always preferring
“old” flaws, i.e., flaws detected early in the given partial plan,
will produce partial plans with a high number of linearizations,
since new plan steps are inserted level-wise starting from goal ,
as the oldest flaws in the initial partial plan are the open
precondition flaws of goal (given that plan contains only the
representatives of the initial state and goal description, but no
other initial plan steps). If the converse strategy is applied, i.e.,

if always a flaw is preferred that was detected last, the number
of linearizations stays constantly 1 until a sequence of actions
has been found, which supports at least one state variable of
the goal description and roots in the initial state. Thus, up to
this point, enumerating n ≥ 1 linearizations will exhaustively
enumerate all possible linearizations.

b) Precomputing a fixed point for the initial state:
Since the forward phase of computing a heuristic value for
a linearization always starts at the initial state, the fixed point
reached by applying relaxed actions will always be the same.
This first fixed point can thus be precomputed once and be
reused each time the cost of a linearization is estimated. Note
that it is also likely that the extracted solutions contain more
relaxed steps before the first non-relaxed step than between
two later non-relaxed steps, because typically only a few
facts are deleted by applying a non-relaxed step. This makes
precomputing a fixed point for the initial state an attractive
idea for optimization.

c) Respecting causal links: We can also take a closer
look at the relaxed solutions generated for a given linearization.
It then becomes apparent that in many cases, these solutions
contain relaxed plan steps at places where the POCL planning
algorithm would not put non-relaxed plan steps due to the
presence of causal links. To illustrate this, let P be a partial
plan that contains a causal link l−→v l′ between l and l′ over
variable v. Let furthermore a be an action whose delete list
contains v. Adding a plan step l′′:a to P creates a causal threat
if l′′ can be ordered between l and l′ and thus prevents P from
being a solution. On the other hand, the relaxed version of a
can of course be inserted between l and l′ when a relaxed
solution is constructed. When this happens, the heuristic value
is a poor estimate of the true remaining search effort, as it is
certain that the relaxed solution conflicts with every potential
solution plan that can be generated from P .

We therefore modify the planning graph generation to re-
spect causal links. Let z = l0:a0, . . . , ln+1:an+1 with l0:a0 =
init and ln+1:an+1 = l∞:a∞ = goal be a linearization of
the plan steps of the partial plan P = (PS ,≺, CL). We
define the active causal links between li and li+1 to be the
set {ln−→v lm ∈ CL | n ≤ i and m ≥ i + 1}, i.e., the causal
links whose arcs cross an imaginary line drawn between li and
li+1 in a graphical representation of z. The set of active causal
links contains exactly the causal links that can potentially cause
a causal threat when an action is put between li and li+1.
To be more precise, an action put between li and li+1 will
lead to a causal threat if its delete list contains a variable
mentioned in an active causal link. Such actions are called
threatening, and we modify relaxed planning graph generation
to not use threatening actions. Identifying the active causal
links and filtering out actions which are threatening them can
obviously be done in polynomial time.

In summary, the improvement works by calculating the
set of threating actions each time before the relaxed planning
graph between two non-relaxed plan steps is built, and using
only non-threatening actions for building the relaxed planning
graph. Unfortunately, this optimization can not be used in
conjunction with precomputing the first fixed point: The causal
links that begin in init can change between linearizations for
different partial plans, and so can the computed fixed point
if only non-threatening actions are used. Our implementation

109

can therefore incorporate the causal links rooting in init
independently of the remaining causal links, s.t. one can
choose between the per-node runtime-improvement obtained
by precalculation of the first saturated planning graph versus
more informed heuristic values while still being able to incor-
porate the remaining causal links independently of that choice.

d) Reusing parent linearizations: In our early experi-
ments (before we implemented the following optimization), we
observed cases where linearizations with an estimated cost of
zero were found for some partial plan visited during search,
yet the planner was unable to generate a solution. This is an
undesirable and strange situation, since such a linearization
can easily be transformed into a POCL solution: Applying the
actions of the zero-cost linearization starting in the initial state
generates a state satisfying the goal description; that is, there
is no need to insert any additional action, neither relaxed nor
non-relaxed, only missing causal links and ordering constraints
need to be inserted, which can be done very efficiently.

The problem of that situation is the randomized nature of
the heuristic. Since in each node a fixed number of samples is
generated independently of the linearizations obtained by its
parent node, heuristic values may strongly vary between each
two consecutive partial plans. To obtain more “stable” heuristic
estimates, a partial plan P tries to reuse the best linearization
of its parent, “best” being defined as the first linearization for
which the smallest heuristic value was obtained. Whether such
a parent linearization z can be reused depends on the last
applied modification: In case of an insertion of an ordering
constraint or a causal link, it must be tested whether z is
compatible with the inserted ordering constraints. If it is, n+1
samples are used with n being the predefined fixed number of
samples, otherwise just n (new) samples are considered. In
case of an action insertion, the linearization z is extended to a
linearization of size |z|+ 1 by inserting the new action at an
arbitrary suitable position. Since z proved being successful for
the parent node, we do not only create one reused linearization,
but three – with randomly chosen positions for the new action.
Thus, in general, each partial plan uses n+m samples with n
new sampled linearizations and m ∈ {0, . . . , 3} linearizations
obtained from the best linearization of its parent node.

The described improvement “stabilizes” heuristic esti-
mates, since good linearizations remain being used for heuris-
tic estimation. Furthermore, it solves the problem concerning
the zero-cost linearizations: Since the POCL algorithm is
complete and zero-cost linearizations are applicable in the
initial state and satisfy the goal condition (otherwise, it would
not have cost zero), at least one modification m∗ compatible
with that linearization must exist for each remaining flaw.
Thus, reusing that linearization to compute the heuristic value
for the child plan created by applying m∗, the child plan
will in turn have a heuristic value of zero; hence, after a
partial plan with heuristic zero is found, a solution is obtained
shortly afterwards. Note that this does not mean that the
planner will return the linearization itself as a solution. Since
only a sufficiently small number of causal links and ordering
constraints is added in order to receive a solution, the least-
commitment principle of POCL planning is preserved.

E. Evaluation

We implemented the proposed heuristic within our POCL
planner, which is implemented in Java R©. As search strategy,
we used weighted A* using a weight of 2. That is, in each
cycle, a partial plan p is selected with minimal f value, f
given by f(p) = g(p) + 2 ∗ h(p), g being the unit cost of
the partial plan and h being its heuristic estimate. In case two
partial plans have the same f value, we break ties by preferring
a partial plan with higher cost, thereby preferring smaller
heuristic values. Remaining ties are broken using the LIFO
strategy thereby preferring newest partial plans. Concerning
the flaw selection strategy, we always select a newest flaw,
where all flaws detected in the same partial plan are regarded
equally new/old. Among these flaws, we break ties by pursuing
the Least Cost Flaw Repair selection [16], which prefers a
flaw for which there are the least number of modifications.
Remaining ties are broken by chance.

We compare the Sample-FF heuristic with the two cur-
rently best-informed heuristics for POCL planning: the Relax
heuristic [9] and the Additive heuristic for POCL planning
[10] (Add, for short). In addition to these heuristics from
the literature, we implemented a new variant of the Relax
heuristic. It only differs from the original version by a small
detail: All actions of a relaxed solution count towards the
heuristic estimate, whereas the original version ignores actions,
which already exist in the given partial plan. This variant,
called Relax∗ dominates the original version while being “more
inadmissible”. Performance is measured in terms of size of the
produced search space and number of solved problem instances
based on several benchmarks taken from the early International
Planning Competitions (IPCs).

The evaluated domains and problems are taken from the
IPC 1 to IPC 5 (cf. Tab. I). For each domain, we used n
consecutive problem instances, starting with the smallest ones.
We omitted domains for which all configurations timed out on
all problem instances. We used a time limit of 15 minutes CPU
time and a memory limit of 2 GB. We run our experiments
on a machine with two Intel Xeon R© processors, each having
8 physical cores running at 2,6 GHz.

When comparing the performance of Relax, Relax∗, and
Sample-FF with Add in terms of solved problems in total, we
see that Add clearly dominates all other heuristics. This comes
to our very surprise, as Add may heavily overestimate the
optimal relaxed goal distance. In fact, Relax can be regarded
as an improvement over Add, which avoids this overestimation.

As opposed to the other evaluated heuristics, Sample-FF
has parameters which need to be specified. To achieve a
polytime-bounded procedure, we fix the number of sampled
linearizations to a predefined constant. We evaluated 1, 3, 10,
and 30 samples per search node. The more samples are chosen,
the more accurate the heuristic becomes. However, clearly, the
calculation time becomes much more expensive as it scales
linearly with the number of samples. The optimizations of
trying to enumerate all linearizations and to reuse parent
linearizations are always turned on, as we observed a clear
improvement in terms of solved problem instances in a small
pre-evaluation. Concerning respecting causal links, the heuris-
tic features to respect no causal links at all, all causal links, or
just the ones which are not rooting in init (as was motivated in

110

TABLE I. THIS TABLE COMPARES THE DIFFERENTLY PARAMETRIZED VERSIONS OF Sample-FF. “front:” AND “end:” SPECIFY WHETHER CAUSAL LINKS
ROOTING IN init (OR not ROOTING IN init , RESPECTIVELY) WERE USED TO REDUCE THE SET OF APPLICABLE ACTIONS IN THE RESPECTIVE LAYERS OF THE

SAMPLED LINEARIZATIONS. THE DOMAINS ARE ORDERED BY THE IPC, IN WHICH THEY WERE FIRST USED. THE NUMBER n SPECIFIES THE NUMBER OF
USED PLANNING PROBLEMS IN THE RESPECTIVE DOMAIN. THE ENTRIES SPECIFY THE NUMBER OF SOLVED INSTANCES OF THE RESPECTIVE DOMAIN.

BOLD ENTRIES SPECIFY THE CONFIGURATION WITH THE LARGEST NUMBER AMONG ALL CONFIGURATIONS OF Sample-FF.

Domain n Add Relax∗ Relax
Sample-FF

front:⊥ end:⊥ front:⊥ end:> front:> end:>
1 3 10 30 1 3 10 30 1 3 10 30

grid 5 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
gripper 20 14 20 7 1 1 1 1 1 2 1 1 2 3 3 2
logistics 20 12 8 7 8 5 6 6 6 7 6 5 0 0 1 1
movie 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
mystery 20 8 8 9 10 11 9 9 10 11 10 9 12 12 11 11
mystery-prime 20 3 3 3 3 4 6 5 5 4 4 4 6 6 6 6

blocks 21 4 5 7 5 5 6 6 4 3 3 3 5 3 2 0
logistics 28 28 28 27 22 23 23 24 21 19 20 21 15 13 14 15
miconic 100 100 49 39 40 40 37 35 39 41 37 32 15 16 18 20

depot 22 2 2 1 1 1 1 1 0 1 1 1 2 2 3 2
driverlog 20 7 9 7 11 9 10 9 9 10 9 8 8 7 9 7
rover 20 20 18 19 13 14 15 15 11 11 12 11 7 9 9 9
zeno-travel 10 4 5 3 3 5 4 5 4 3 4 4 1 1 1 1

airport 20 18 15 9 10 11 11 11 7 10 10 10 7 8 6 4
pipesworld-noTankage 10 8 1 2 2 3 5 3 2 1 2 1 1 4 3 5
pipesworld-Tankage 10 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
satellite 20 16 7 7 7 5 6 6 5 5 7 5 1 2 3 3

pipesworld 10 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
storage 20 7 6 4 6 7 9 8 6 7 7 6 9 9 10 10
tpp 20 19 11 11 8 7 6 7 6 6 6 6 5 6 6 6

total 446 292 227 194 182 183 187 183 168 173 171 159 127 132 136 133

the last section). Again, we obtain a trade-off between accuracy
and calculation speed. While respecting all causal links is the
most informed variant, it is clearly the slowest one, as it has
to calculate the set of applicable actions between each two
plan steps in a sampled linearization, as explained in the last
section. We evaluated all possible combinations of the two
parameters leading to 12 variants of Sample-FF.

Investigating the use of causal links, our experiments seem
to suggest that the additional overhead incurred by respecting
them does not pay off in total: We clearly see that the variant
which does not respect causal links dominates the other two
configurations of Sample-FF. While this is true taking into
account the total number of solved problems, there are also
domains where the configuration respecting all causal links
solved more problems than all other heuristics. In one particu-
lar unsolvable problem instance, all Sample-FF configurations
respecting all causal links were able to prove that problem to
be unsolvable, whereas all other heuristics including Relax,
Relax∗ and Add incurred time-outs. Concerning the optimal
number of samples, there is not a clear result, but we can
observe that an optimal choice lies between 1 and 10.

Taking a look at the overall number of solved problems,
the best configuration is the one which does not respect
causal links and uses 10 samples. That configuration is clearly
competitive with Relax in terms of the number of solved
problems, as it solved 187 out of 446 problems, whereas Relax
solved 194 problems. Investigating the number of domains in

which one heuristic performed better than another, the data
reveals that the configuration using no causal links and just
a single sample is even better than Relax. In 6 out of 20
domains it solved strictly more problems than Relax, whereas
Relax strictly dominated Sample-FF in only 5 domains. While
it seems discouraging that using causal links seems not to pay
off, we see a potential in further improving the heuristic: We
evaluated the ratio of created partial plans to the ones for which
no heuristic value could be obtained due to infeasible samples.
As stated in the previous section, we return the number of open
preconditions in these cases to prevent being blind. That is, a
ratio of 100% would correspond to a heuristic which is entirely
based on the number of open preconditions. We discovered that
the mean ratio ranges from 4% to 1% (for increasing number
of samples) for the configurations which do not respect causal
links, from 7% to 3% for the configurations using only causal
links not rooting in init , and from astonishing 46% to 36% for
the configurations which respect all causal links. This clearly
indicates the impact of the constraints posed by the causal
links, as even for 30 samples, in 36% of all created nodes there
does not exist a delete-relaxed solution. While this proves our
assumption correct that causal links have a major impact on the
set of valid solutions which can be derived from partial plans,
we still need to find a way how to cope with these cases.
Note that it might also be that in many of these cases the
corresponding partial plans could actually have been pruned
from the search space given all linearizations but we cannot
decide this being the case in polynomial time.

111

Considering only the number of solved problem instances
does not tell how well-informed the respective heuristics are.
A larger number may also be attributed to the time a heuristic
needs to be evaluated, as faster heuristics allow for a larger
search space within the time limit. We hence investigated
the number of solved problem instances given the number of
generated search nodes. Heuristics which have a larger number
of solved instances given the same number of generated search
nodes can thus be regarded more accurate. Our data reveals that
adding more samples improves heuristic accuracy and that the
variant without respecting causal links is the most informed
one among all Sample-FF configurations. However, the last
result can be attributed to the large number of partial plans for
which no heuristic value could be calculated. If we figure out
how to solve this problem, the variant respecting causal links
will probably improve its performance significantly.

V. CONCLUSION

In this paper, we made two contributions to the field of
POCL planning: We proved that the plan existence prob-
lem given a search node in standard POCL planning (i.e.,
an arbitrary non-relaxed partial plan) and a delete-relaxed
planning domain is NP−complete. This is an interesting
observation, since the corresponding decision problem in state-
based planning is in P. Based on the constructive proof of
our main complexity result, we developed a new heuristic for
POCL planning and presented empirical results.

The presented heuristic can still be improved. In particular,
we want to solve the problem that for many plans no plan step
sequence was found that could be extended to a relaxed solu-
tion. Also, we want to adapt our heuristic to lifted planning,
s.t. it can evaluate partial plans which are not fully ground.

APPENDIX
PROBLEM FORMALIZATION OF HARDNESS PROOF

Given a CNF-SAT problem (i.e., a SAT formula given in
conjunctive normal form) with variables X = {x1, . . . , xn}
and a set of clauses C = {c1, . . . , cm}, we construct the delete-
free POCL planning problem π = 〈D, P 〉 with D = 〈V,A〉:
V = {xi?>, xi?⊥, xi=>, xi=⊥ | i ∈ {1, . . . , n}} ∪

{ci | i ∈ {1, . . . ,m}}
A = {dr-A>i , dr-A⊥i | i ∈ {1, . . . , n}} ∪ {dr-clear-C} ∪

{C>ij | cj ∈ C, xi ∈ cj} ∪ {C⊥ij | cj ∈ C,¬xi ∈ cj}
P = (PS ,≺, CL) and
PS = {l0:a0, l∞:a∞, lC :clear-C} ∪

{l>i :A>i , l⊥i :A⊥i | i ∈ {1, . . . , n}}
≺ = {(l>i , lC), (l⊥i , lC) | i ∈ {1, . . . , n}}
CL = ∅

The actions are given as follows:

a0 = (∅, {xi?>, xi?⊥ | i ∈ {1, . . . , n}}, ∅)
a∞ = ({ci | i ∈ {1, . . . ,m}}, ∅, ∅)
A>i = ({xi?>}, {xi=>}, {xi?>, xi=⊥})

dr-A>i = ({xi?>}, {xi=>}, ∅)
A⊥i = ({xi?⊥}, {xi=⊥}, {xi?⊥, xi=>})

dr-A⊥i = ({xi?⊥}, {xi=⊥}, ∅)

clear-C = (∅, ∅, {c1, . . . , cm})
dr-clear-C = (∅, ∅, ∅)

C>ij = ({xi=>}, {cj}, ∅)
C⊥ij = ({xi=⊥}, {cj}, ∅)

ACKNOWLEDGMENT

This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Research
Foundation (DFG).

REFERENCES

[1] D. McAllester and D. Rosenblitt, “Systematic nonlinear planning,” in
Proceedings of the Ninth National Conference on Artificial Intelligence
(AAAI 1991). AAAI Press, 1991, pp. 634–639.

[2] J. S. Penberthy and D. S. Weld, “UCPOP: A sound, complete, partial
order planner for ADL,” in Proceedings of the third International
Conference on Knowledge Representation and Reasoning. Morgan
Kaufmann, 1992, pp. 103–114.

[3] C. Muise, S. A. McIlraith, and J. C. Beck, “Monitoring the execution
of partial-order plans via regression,” in Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI 2011).
AAAI Press, 2011, pp. 1975–1982.

[4] B. Seegebarth, F. Müller, B. Schattenberg, and S. Biundo, “Making
hybrid plans more clear to human users – a formal approach for gener-
ating sound explanations,” in Proceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS 2012).
AAAI Press, 6 2012, pp. 225–233.

[5] M. Helmert and C. Domshlak, “Landmarks, critical paths and ab-
stractions: What’s the difference anyway?” in Proceedings of the
19th International Conference on Automated Planning and Scheduling
(ICAPS 2009), vol. 9, 2009, pp. 162–169.

[6] T. Bylander, “The computational complexity of propositional STRIPS
planning,” Artificial Intelligence, vol. 94, no. 1-2, pp. 165–204, 1994.

[7] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan
generation through heuristic search,” Journal of Artificial Intelligence
Research (JAIR), vol. 14, pp. 253–302, May 2001.

[8] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artificial Intelligence, vol. 90, pp. 281–300, 1997.

[9] X. Nguyen and S. Kambhampati, “Reviving partial order planning,”
in Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001). Morgan Kaufmann, 2001, pp. 459–466.

[10] H. L. S. Younes and R. G. Simmons, “VHPOP: Versatile heuristic
partial order planner,” Journal of Artificial Intelligence Research (JAIR),
vol. 20, pp. 405–430, 2003.

[11] P. Bercher, T. Geier, and S. Biundo, “Using state-based planning heuris-
tics for partial-order causal-link planning,” in Advances in Artificial
Intelligence, Proceedings of the 36nd German Conference on Artificial
Intelligence (KI 2013), 2013, pp. 1–12.

[12] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, pp. 189–208, 1971.

[13] M. Katz, J. Hoffmann, and C. Domshlak, “Who said we need to relax
all variables?” in Proceedings of the 23d International Conference on
Automated Planning and Scheduling (ICAPS 2013), 2013.

[14] B. Nebel and C. Bäckström, “On the computational complexity of tem-
poral projection, planning, and plan validation,” Artificial Intelligence,
vol. 66, no. 1, pp. 125–160, 1994.

[15] G. Brightwell and P. Winkler, “Counting linear extensions,”
Order, vol. 8, no. 3, pp. 225–242, 1991. [Online]. Available:
http://dx.doi.org/10.1007/BF00383444

[16] D. Joslin and M. E. Pollack, “Least-cost flaw repair: A plan refinement
strategy for partial-order planning,” in Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI 1994). AAAI Press, 1994,
pp. 1004–1009.

112

113

The following pages show the publication:

T. Geier and P. Bercher. “On the Decidability of HTN Planning with Task Insertion”.
In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI 2011). AAAI Press, 2011, pp. 1955–1961

Reprinted with kind permission of AAAI Press.

114

On the Decidability of HTN Planning with Task Insertion

Thomas Geier and Pascal Bercher
Ulm University, Institute of Artificial Intelligence, Ulm, Germany

forename.surname@uni-ulm.de

Abstract
The field of deterministic AI planning can roughly
be divided into two approaches — classical state-
based planning and hierarchical task network
(HTN) planning. The plan existence problem of
the former is known to be decidable while it has
been proved undecidable for the latter. When ex-
tending HTN planning by allowing the unrestricted
insertion of tasks and ordering constraints, one ob-
tains a form of planning which is often referred to
as “hybrid planning”.
We present a simplified formalization of HTN plan-
ning with and without task insertion. We show that
the plan existence problem is undecidable for the
HTN setting without task insertion and that it be-
comes decidable when allowing task insertion. In
the course of the proof, we obtain an upper com-
plexity bound of EXPSPACE for the plan exis-
tence problem for propositional HTN planning with
task insertion.

1 Introduction
Planning is known to be intractable in general. This
holds both for classical state-based planning and for hier-
archical planning. For the former, the complexity of the
plan existence problem (“Is there a plan that solves the
given planning problem?”) reaches from constant time
over EXPSPACE−complete to undecidable [Erol et al.,
1995] depending on various restrictions. The most expressive
“configuration” of classical planning that is still decidable1 is
thus intractable. Hierarchical task network (HTN) planning
was created to mitigate this complexity problem by introduc-
ing a hierarchy over operators and thereby including search
control knowledge into the planning process. Contrary to the
intuition that the introduced hierarchy makes planning easier,
it introduced undecidability even for the case in which clas-
sical planning is “only” PSPACE−complete2; this result

1Datalog (no function symbols and finitely many constant sym-
bols); operators are given in the input; allow delete lists and negated
preconditions [Erol et al., 1995].

2Propositional; operators are given in the input; allow delete lists
and negated preconditions [Erol et al., 1995].

was proved by Erol et al. [1996] for their formalization of
HTN planning [Erol et al., 1994].

The hierarchical aspect in HTN planning is achieved by
introducing the concept of compound tasks in addition to the
operators known from classical planning, which we call prim-
itive tasks in this context. Compound tasks can be decom-
posed into predefined partial plans using so-called decompo-
sition methods. The goal is to find an executable plan that was
obtained by decomposing compound tasks in the initial plan
until all tasks are primitive. Although the provision of de-
composition methods can speed up the search process, they
introduced undecidability. However, several restrictions can
be imposed on methods which make the plan existence prob-
lem decidable: for instance if the initial task network and all
methods are totally ordered or if all methods are acyclic [Erol
et al., 1996]. In this work, we show how decidability can be
achieved without restricting methods by altering the solution
criterion of HTN planning problems.

We investigate the decidability of the plan existence prob-
lem for HTN planning with task insertion, a planning for-
malism that lies between classical and HTN planning and is
therefore often referred to as hybrid planning: the idea is to
have an initial task network that needs to be decomposed, but
to allow the insertion of tasks without requiring them to be
inserted by the decomposition of compound tasks. This par-
ticular variant of fusing classical with HTN planning has been
addressed before by Estlin et al. [1997], Schattenberg and Bi-
undo [2006], and Gerevini et al. [2008]. The most important
argument for this planning paradigm is that it overcomes a
main criticism of HTN planning: “HTN planning reduces the
flexibility of an agent to respond to situations that are not an-
ticipated by the writer of the task reduction schemas” [Kamb-
hampati et al., 1998]. This argument is also the main moti-
vation for Kambhampati et al.’s formalization of hybrid plan-
ning. There, compound tasks also show preconditions and
effects like primitive ones and they can be inserted like oper-
ators in classical planning (which is also true for the work of
Schattenberg and Biundo [2006]). However, Kambhampati
et al. do not specify an initial task network. Hence, there is
no need to insert and decompose compound tasks and there-
fore, they are only an efficiency boost for solving classical
planning problems.

In the following sections we will first introduce our for-
malization of HTN planning with task insertion. We explain

115

why our formalism, although stripped of many technical as-
pects, is still susceptible to the original proof of undecidabil-
ity for HTN planning when disallowing insertion of tasks. We
then present a result that yields an upper bound on the length
of shortest solutions and derive from it an upper complexity
bound for the plan existence decision problem. In the end we
conclude our paper with a discussion of the presented results.

2 Formalism
In this section, we introduce our notion of HTN planning with
task insertion (or hybrid planning, for short). For the sake
of simplicity, we base our formalism on a ground state rep-
resentation. That is, there exist only boolean propositions.
The choice effects only the final complexity class but not the
decidability, as long as a potential first-order representation
does not introduce undecidability on its own, e.g., by the use
of functions.

During the rest of the paper, we consider relations and
functions as sets of tuples. We use the bar notation for re-
stricting relations and functions. Given a set of tuples Q ⊆
R×R, we define Q|X := {(q1, q2) ∈ Q | q1, q2 ∈ X} and for
a function f : R→ S, we define f |X :={(r, s) ∈ f |r ∈ X}.

We begin by describing a task network, which represents
a generalization of a task sequence in that it is only partially
ordered.

Definition 1 (Task Network). A task network tn = (T,≺, α)
over a set of task names X is a tuple, where

• T is a finite and non-empty set of tasks

• ≺ ⊆ T × T is a strict partial order on T (irreflexive,
asymmetric, and transitive)

• α : T → X labels every task with a task name

We write TNX for the set of all task networks over the task
names inX . Given a task network tn = (T,≺, α) and a set of
tasks T ′, we define its restriction tn|T ′ :=(T∩T ′,≺|T ′ , α|T ′).
Also we write T (tn) to refer to the tasks of tn.

Tasks serve the purpose of unique identifiers because task
names (like “move” or “open door”) may occur multiple
times in the same task network. This leads us to the next
definition: two task networks are isomorphic if they describe
the same arrangement of task names despite using different
identifiers.

We define two task networks tn = (T,≺, α) and tn′ =
(T ′,≺′, α′) as being isomorphic, written tn ∼= tn′, if and
only if there exists a bijection σ : T → T ′, such that for all
t, t′ ∈ T it holds that (t, t′) ∈ ≺ if and only if (σ(t), σ(t′)) ∈
≺′ and α(t) = α′(σ(t)).

Definition 2 (Planning Problem). A planning problem is a
6-tuple P = (L,C,O,M, cI , sI) and

• L, a finite set of proposition symbols

• C, a finite set of compound task names

• O, a finite set of primitive task names with C ∩O = ∅
• M ⊆ C×TNC∪O, a finite set of decomposition methods

• cI ∈ C, the initial task name

• sI ∈ 2L, the initial state

For each o ∈ O, (prec(o), add(o), del(o)) ∈ 2L × 2L × 2L

is called the operator of o and consists of a precondition, an
add-, and a delete list. By tnI := ({tI}, ∅, {(tI , cI)}) we de-
note a fixed initial task network which consists only of the
initial task tI mapping to the initial task name cI .

HTN planning formalizations usually feature an initial task
network instead of only a single initial task name. We would
like to note that our choice does not reduce the class of prob-
lems that can be expressed.

Both compound and primitive task names will be used to
label the elements of task networks. We refer to tasks that are
labeled with elements from C and O as compound tasks and
primitive tasks, respectively. We refer to a task network over
O as a primitive task network.

As during the rest of this paper there is always exactly one
planning problem under consideration, we do not write out
“P = (L,C,O,M, cI , sI)” each time. Thus, whenever any
of the symbols L, C, O, M , cI , and sI are used, then they are
part of the planning problem P .

After we have defined the basic components of a planning
problem, we continue by describing how an initial task net-
work can be transformed into a solution by decomposition
and task insertion.

The decomposition of a compound task results in its re-
moval from the task network, followed by an insertion of a
copy of the method’s task network. The ordering constraints
on the removed task are inherited by its replacement tasks (cf.
the set ≺X in the next definition).
Definition 3 (Decomposition). A method m = (c, tnm) de-
composes a task network tn1 = (T1,≺1, α1) into a new task
network tn2 by replacing task t, written tn1

−−→
t,m tn2, if and

only if t ∈ T1, α1(t) = c, and there exists a task network
tn′ = (T ′,≺′, α′) with tn′ ∼= tnm and T ′ ∩ T = ∅, and3

tn2 := ((T1 \ {t}) ∪ T ′,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′) with

≺X := {(t1, t2) ∈ T1 × T ′ | (t1, t) ∈ ≺1} ∪
{(t1, t2) ∈ T ′ × T1 | (t, t2) ∈ ≺1}

Given a planning problem P , we write tn1 →∗D tn2, if tn2

can be decomposed from tn1 by an arbitrary number of de-
compositions using methods from M .

Note that→∗D is reflexive and transitive. Also note that the
constructed set of ordering constraints≺1∪≺′∪≺X is again
a strict partial order.

Other formalizations of hybrid planning complement de-
composition with the insertion of both primitive and com-
pound tasks, where compound tasks also show preconditions
and effects [Kambhampati et al., 1998; Schattenberg and Bi-
undo, 2006]. Since the result of inserting a compound task
can be simulated by inserting a decomposed version directly,
we only allow the insertion of primitive tasks.
Definition 4 (Task Insertion). Given a task network tn1 =
(T1,≺1, α1) and a primitive task name o, then a task network
tn2 can be obtained from tn1 by insertion of o, if and only if
tn2 = (T1 ∪ {t},≺1, α1 ∪ {(t, o)}) for some t /∈ T1.

3For correctness, ordering and labeling of tn2 must be restricted
to (T1 \ {t}) ∪ T ′; omitted for better readability.

116

A task network tn2 = (T1,≺2, α1) can be obtained from
tn1 by insertion of an ordering constraint (t, t′), if and only
if t, t′ ∈ T1 and ≺2 is minimal and a strict partial order such
that ≺1 ∪ {(t, t′)} ⊆ ≺2.

Given a planning problem P , we say that tn2 can be ob-
tained from tn1 via task insertion, written tn1 →∗I tn2, if tn2

can be obtained from tn1 by an arbitrary number of insertions
of orderings and primitive task names from O.

Note that→∗I is reflexive and transitive.

Definition 5 (Executable Task Network). Given a planning
problem P , then a task network tn = (T,≺, α) is executable
in state s ∈ 2L, if and only if it is primitive and there exists
a linearization of its tasks t1, . . . , tn that is compatible with
≺ and a sequence of states s0, . . . sn such that s0 = s and
prec(α(ti)) ⊆ si−1 and si = (si−1\del(α(ti)))∪add(α(ti))
for all 1 ≤ i ≤ n. We call sn the state generated by tn.

Definition 6 (Solution). A task network tnS is a solution to
a planning problem P , if and only if (1) tnS is executable
in sI and (2) tnI →∗D tnS for tnS being an HTN solu-
tion to P or (2’) there exists a task network tnB such that
tnI →∗D tnB →∗I tnS for tnS being a hybrid solution to P .
SolHTN(P) and SolHYBRID(P) denote the set of all HTN and
hybrid solutions of P , respectively.

For the purpose of this paper, we refer to hybrid solutions
as solutions and use the term HTN solutions if necessary.

Note that the presented hybrid formalism is capable of cap-
turing ground classical planning. The only missing piece in
comparison to classical planning is the goal condition. This
can be simulated by having an initial task network that forces
an artificial final task, carrying the goal condition in its pre-
condition as the last task in every solution.

3 On the (Un-)Decidability of HTN Planning
When using the HTN solution criterion, we talk about HTN
planning, rather than hybrid planning. Although our formal-
ization of HTN planning is inspired by Erol et al.’s formal-
ization [1994], it is still a simplification of the latter. As we
are going to show the decidability of our hybrid planning for-
malism, the question arises whether this is due to these sim-
plifications or due to the addition of task insertion. To address
this question we reproduce Erol et al.’s proof of the undecid-
ability of the plan existence problem for HTN planning [Erol
et al., 1996] using our formalization, which requires only mi-
nor adaptations. In particular, their proof relies on the usage
of truth constraints, which are not available in our formaliza-
tion. And it turns out that they are not necessary for the proof.

We begin by defining the plan existence problem for
HTN planning as the set of planning problems that pos-
sess an HTN solution, i.e., PLAN-EXISTENCEHTN := {P |
P is a planning problem and SolHTN(P) 6= ∅}.
Theorem 1. PLAN-EXISTENCEHTN is undecidable

The proof bases on the fact that one can imitate the pro-
duction rules of context-free grammars (CFGs) by using de-
composition methods. We reduce the undecidable question of
whether the languages of two CFGs have a non-empty inter-
section [Hopcroft et al., 2000, page 407] to the plan existence

problem. The idea is to start with a task network that con-
tains the start symbols from both grammars in parallel. These
are decomposed into words from the respective grammar’s
language. The pre- and postconditions of the primitive tasks
enforce a final plan in which the symbols of both words are
mixed together like the teeth of a zipper. This allows us to
ensure that the decomposed task network is executable if and
only if the produced words are equal.

Proof. Let G1, G2 be two CFGs in Chomsky normal form
(each rule has either the formX→Y Z orX→a, whereX , Y ,
and Z are non-terminals and a is a terminal) defined over the
same set of terminal symbols Σ. For i ∈ {1, 2}, we denote
by Γi the non-terminal symbols of Gi with Si ∈ Γi being
the start symbol of Gi. We assume Γ1 ∩ Γ2 = ∅ and define
Γ := Γ1 ∪ Γ2. By L(Gi) we denote the language generated
by Gi and assume ε /∈ L(G1) ∪ L(G2). We refer to the
grammar rules ofGi by Ri and set R:=R1∪R2. We construct
P = (L,C,O,M, cI , sI) with cI /∈ Γ as follows:

• L := {turnG1 , turnG2} ∪ Σ

• C := Γ ∪ {cI}, O := {Gai | a ∈ Σ, i ∈ {1, 2}} ∪ {F}
• M := {(cI , tn)} ∪

{(X, tnX→Y Z) |X→Y Z ∈ R} ∪
{(X, tnX→a) |X→a ∈ Ri, i ∈ {1, 2}}, where

tn := ({s1, s2, f}, {(s1, f), (s2, f)},
{(s1, S1), (s2, S2), (f,F)})

tnX→Y Z := ({t, t′}, {(t, t′)}, {(t, Y), (t′, Z)})
tnX→a := ({t}, ∅, {(t, Gai)})

• sI := {turnG1
}

The operator of Ga1 ∈ O is defined as
({turnG1

}, {turnG2
, a}, {turnG1

}) and that of Ga2 ∈ O
as ({turnG2

, a}, {turnG1
}, {turnG2

, a}), respectively. This
construction ensures strict turn-taking and a matching
of the produced words. The operator of F is defined as
({turnG1}, ∅, ∅); it ensures that the plan finishes with an
operator of the second grammar. By construction, there is a
word ω ∈ L(G1)∩L(G2) if and only if P has a solution.

We have shown that one can express the CFG intersec-
tion problem within our HTN formalization, thus proving the
undecidability of our planning formalism without insertion.
Please note that a solution to the same planning problem us-
ing the hybrid solution criterion can produce solutions which
do not correspond to words in the intersection of L(G1) and
L(G2) due to the the arbitrary insertion of tasks.

4 On the Decidability of HTN Planning with
Task Insertion

We now present our proof that yields an upper bound on the
length of shortest solutions to a given planning problem. The
following paragraph summarizes its main idea.

Suppose there exists a solution tnS . This solution features
a decomposition tnB of the initial task network. In analogy
to the pumping lemma for CFGs [Hopcroft et al., 2000, page
274 ff.], we show that there exists also a “short” decomposi-
tion tn′B . It is obtained by “pumping-down” tnB , removing
all parts that were produced by cycles in the decomposition

117

process. We show that tn′B can be developed into tnB by task
insertion, which in turn can be developed into tnS .

Further we provide an upper bound on the number of tasks
that must be inserted in order to turn a given task network
into a solution, if possible. Applying this result to the short
decomposition tn′B , we can prove the existence of a short
solution tn′S . So in order to decide whether a solution to a
planning problem exists, it suffices to check all task networks
of a certain size.

4.1 Representing Task Decomposition
This section transfers the idea of a parse tree from formal
grammars to the area of task network decompositions, where
we call it a decomposition tree. It is a representation of how
the initial compound task can be decomposed into a primitive
task network.

Definition 7 (Decomposition Tree). Given a planning prob-
lem P , then a decomposition tree g = (T,E,≺, α, β) is a
five-tuple with the following properties. (T,E) is a tree with
nodes T and directed edges E pointing towards the leafs.
There is a strict partial order defined over the nodes, given by
≺. The nodes are labeled with task names by α : T → C∪O.
Additionally β : T →M labels inner nodes with methods.

We write T (g) to refer to the tasks of g and ch(g, t) to refer
to the direct children of t ∈ T (g) in g.

The following definition states under which circumstances
a decomposition tree encodes a decomposition of the initial
compound task. Note that a task network resulting from such
a decomposition is not necessarily executable.

Definition 8 (Validity of Decomposition Tree). A decompo-
sition tree g = (T,E,≺, α, β) is valid with respect to a plan-
ning problem P , if and only if the root node of g is labeled
with the initial task name cI and for any inner node t, where
(c, tnm) := β(t), the following holds:

1. α(t) = c

2. the task network induced in g by ch(g, t) and tnm are
isomorphic, i.e., (ch(g, t),≺|ch(g,t), α|ch(g,t)) ∼= tnm

3. for all t′ ∈ T and all c′ ∈ ch(g, t) it holds that

(a) if (t, t′) ∈ ≺ then (c′, t′) ∈ ≺
(b) if (t′, t) ∈ ≺ then (t′, c′) ∈ ≺

4. there are no ordering constraints in ≺ other than those
demanded by either 2. or 3.

The first criterion ensures the applicability of the meth-
ods, the inner nodes are labeled with; the second criterion
ensures that the method’s task networks are correctly repre-
sented within the decomposition tree; and the third criterion
ensures the inheritance of ordering constraints as demanded
by Definition 3. Please note that every task is uniquely used
by g, as we require (T,E) to be a tree.

Definition 9 (Yield of Decomposition Tree). The yield of a
decomposition tree g = (T,E,≺, α, β), written yield(g), is
a task network defined as follows. Let T ′ ⊆ T be the set of
all leaf nodes of g. Then, yield(g) := (T ′, α|T ′ ,≺|T ′).

Proposition 1. Given a planning problem P , then for any
task network tn ∈ TNC∪O the following holds. There exists
a valid decomposition tree g with yield(g) = tn, if and only
if tnI →∗D tn.

Proof Sketch. For the forward implication, make an induc-
tion over the number of inner nodes of g. Note that each inner
node corresponds to one method application. As base case,
we have the valid decomposition tree without inner nodes,
that must consist of only one task that is labeled with cI and
hence its yield is the initial task network tnI . For the induc-
tive step, fix a valid decomposition tree g with n + 1 inner
nodes. Let t be an inner node, for which all children ch(g, t)
are leafs. Then consider the tree g′ which has all children of
t removed. Show that g′ is valid based on the validity of g.
Then show that yield(g′)−−−→t,β(t) yield(g).

For the backward implication, make an induction over the
length of the decomposition sequence. The base case holds
due to the reflexivity of→∗D. In the inductive step, construct
the tree by adding newly inserted tasks as children of the re-
placed task.

Given a decomposition tree g = (T,E,≺, α, β) and a node
t ∈ T , we define the subtree of g induced by t, written g[t], as
g[t] := (T ′, E′,≺|T ′ , α|T ′ , β|T ′), where (T ′, E′) is the sub-
tree in (T,E) that is rooted at t. We now define the operation
of replacing a subtree by another subtree.

The result of this operation as defined by us is only reason-
able for our particular use-case. A general subtree substitu-
tion operation would have to create an isomorphic copy of the
inserted subtrees, which we have omitted for simplicity.

Definition 10 (Subtree Substitution). Let g = (T,E,≺,
α, β) be a decomposition tree and ti, tj ∈ T be two nodes
of g. If ti is the root node of g, then we define the re-
sult of the subtree substitution on g that substitutes ti by
tj , written g[ti ← tj], as g[ti ← tj] := g[tj]; otherwise,
g[ti← tj] := (T ′, E′,≺|T ′ , α|T ′ , β|T ′) with

• T ′ := (T \ T (g[ti])) ∪ T (g[tj])

• E′ := E|T ′ ∪ {(p, tj)}, where p is the parent node of ti
The following proposition states that the result of a subtree

substitution still describes decompositions if applied under
the right circumstances. Also refer to Figure 1 for an illustra-
tion of the operation.

Proposition 2. Given a valid decomposition tree g = (T,E,
≺, α, β) with respect to a planning problem P and two nodes
ti ∈ T , tj ∈ T (g[ti]) with α(ti) = α(tj), then g[ti← tj] is
also a valid decomposition tree with respect to P .

Proof Sketch. We have to show that g′ := g[ti ← tj] =
(T ′, E′,≺′, α′, β′) is still a tree, its root node is labeled with
cI , and that ≺ is minimal such that the first three criteria of
Definition 8 hold for all inner nodes of g′. For the remainder,
let p ∈ T be such that (p, ti) ∈ E.

For the special case of the subtree substitution, in which ti
is the root node of g, there is nothing to show, since g′ = g[tj]
is clearly a valid decomposition tree with respect to P . Thus,
let ti be different from the root node. It is also easy to see that
g′ is a tree and its root node is labeled with cI .

118

tI

ti

tj
g:

yield(g)

tI

tj

g[ti← tj]:

yield(g[ti← tj])

Figure 1: On the left, a decomposition tree g is depicted. The
result of the subtree substitution that replaces the subtree be-
low ti with the subtree below tj is shown on the right. The
gray area inside g corresponds to the tasks that get removed
during the substitution. Note how the subtree substitution af-
fects the yield of the tree by removing the contribution of the
gray area.

Criterion 1 holds for all inner nodes of g′ as both α′ and β′
are defined on the same nodes and α′ ⊆ α and β′ ⊆ β.

For criterion 2, we fix some inner node t ∈ T ′ and consider
the two cases that either t 6= p or t = p. The case in which t 6=
p is straight forward as the task network induced by ch(g, t)
in g is the same as the one induced by ch(g′, t) in g′. If t = p,
the induced task network in g′ is still isomorphic to the one
in g, because we substituted ti by tj and α(ti) = α(tj).

To show criterion 3 (considering only 3a, as 3b is analo-
gous), take some ordering constraint (t, t′) in≺′. It must also
occur in ≺ and thus (c′, t′) ∈ ≺ for all children c′ of t. Show
(c′, t′) ∈ ≺′ if c′ 6= ti and (tj , t

′) ∈ ≺′, otherwise.
Proving the minimality of ≺′ is the most difficult part. We

have to show for each (t1, t2) ∈ ≺′ that it is required by crite-
rion 2 or 3. Consider the cases that (t1, t2) ∈ ≺ is originally
produced by criterion 2 (case I) or 3 (case II).

For case I, show that as a consequence (t1, t2) is required
in≺′ because of criterion 2 with special treatment for t1, t2 ∈
ch(g′, p). Intuitively all decompositions in g′ have counter-
parts in g and they produce the same ordering in both trees.

For proving case II (again, we consider only 3a), let
(c′, t′) := (t1, t2). We know that there exists a node t ∈ T
with (t, c′) ∈ E and (t, t′) ∈ ≺, as this is the antecedent of
criterion 3a. Now consider the cases of t ∈ T ′ (case IIa) and
t 6∈ T ′ (case IIb). The proof for case IIa is straight forward.
For case IIb, we can conclude that c′ = tj since tj is the only
node in g′ that has lost its parent in g. Show that (p, t′) ∈ ≺′
and use this as premise to apply criterion 3a in order to show
that (c′, t′) must be in ≺′.

4.2 Bounding Solution Sizes by Eliminating Cycles
In order to prove our main theorem, which establishes a size
limit on the smallest solution of a planning problem, we first
need to prove three lemmas. The first one allows us to shorten

a decomposition sequence that contains a cycle over com-
pound task names. When doing so, we remain able to recre-
ate via task insertion what has been removed. This result is
used by the second lemma to give an upper bound on the size
of shortest task networks originated from decomposition that
can possibly be developed to a solution. Then the third lemma
allows us to find a limit to the number of tasks that have to be
inserted in order to turn a given task network into a solution.

The proof of the first lemma uses the idea of the proof
of the pumping lemma for CFGs to claim the existence of
a shorter version of a given decomposition.

Lemma 1. Given a planning problem P and a primitive task
network tn with valid decomposition tree g, for which there
exists a path t1, . . . , tn in g with α(ti) = α(tj) for some i
and j with i < j ≤ n (the path contains a cycle). Then it
holds that tnI →∗D yield(g[ti← tj])→∗I tn.

Proof. Fix the premises from the lemma. We notice that the
conditions for applying Proposition 2 are given. Thus, we
can state that g[ti ← tj] is valid. Therefore it generates a
task network, name it tn′ = (T ′,≺′, α′), that can be obtained
from tnI by decomposition. It remains to show that tn′ →∗I
tn. Since tn′ consists of the leafs of g[ti ← tj] and tn =
(T,≺, α) is induced by the leafs of g, and the substitution
only takes away nodes and ordering constraints from g and
does not create new leaf nodes, clearly T ′ ⊆ T and ≺′ ⊆ ≺
and also α|T ′ = α′. We can thus obtain tn from tn′ by adding
additional tasks and ordering constraints.

By using this result repeatedly, we are now able to remove
all cycles from a decomposition tree. This makes it possible
to formulate an upper bound on the size of the tree and thus
of the generated task network.

Lemma 2. Given a planning problem P , then for every task
network tn with tnI →∗D tn, there exists a task network tn′

with tnI →∗D tn′ →∗I tn and |T (tn′)| ≤ b|C|, where b is the
number of tasks inside the largest task network of the methods
from M .

Proof. Fix a planning problem P and a task network tn with
tnI →∗D tn. Fix a decomposition tree g of tn. If g contains a
cycle on one of its paths (i.e., two nodes labeled with the same
compound task symbol), then Lemma 1 allows us to remove
it, obtaining a new decomposition tree g1 and corresponding
task network tn1 = yield(g1) with tnI →∗D tn1 →∗I tn.

As long as the new decomposition tree still contains a cy-
cle, we can repeat the procedure. By doing so, we obtain a
sequence of decomposition trees g1, . . . , gn and correspond-
ing task networks tn1, . . . , tnn. The last decomposition tree
gn does not contain a cycle on any of its paths. The se-
quence is finite, since every subtree substitution removes at
least one task, thus n ≤ |T (g)|. For the sequence of task
networks, it holds that tnI →∗D tnn →∗I tnn−1 →∗I . . . →∗I
tn1 →∗I tn and by the transitivity of task insertion we get
tnI →∗D tnn →∗I tn. We choose tnn as the tn′ from the
lemma. It remains to show the size bound |T (tnn)| ≤ b|C|.

The size of tnn is limited because its decomposition tree
gn contains no cycle on any of its paths and is thus bounded
in depth by |C|. Taking the maximal branching factor b of g,

119

we get an upper bound of b|C| of the number of leaf nodes of
tnn and thus on the number of tasks of tnn = yield(g).

While the first two lemmas have somehow tamed the de-
composition aspect of the solution criteria, we still need to
care for executability. The idea is to take the tasks that have
been introduced by decomposition and connect them in an
executable way by using task insertion. Thus we obtain one
classical planning problem for each task inside the decom-
posed task network.
Proposition 3. Let P be a planning problem and s, s′ ∈ 2L.
If there exists a task network tn which is executable in s and
generates s′, then there is also a task network tn′ which is
executable in s, generates s′, and |T (tn′)| ≤ 2|L|.

Proof. As the size of the state space induced by P is 2|L|,
each task network longer than this value must traverse at least
one state twice and hence must contain a cycle in the task
sequence which can simply be omitted.

Lemma 3. Given a planning problem P and a task network
tn, that can be developed into a solution tnS ∈ SolHYBRID(P)
via task insertion tn →∗I tnS , then there exists a solution
tn′S ∈ SolHYBRID(P) with |T (tn′S)| ≤ |T (tn)| (2|L| + 1).

Proof. Since tnS is a solution toP , there exists an executable
linearization LinS of its tasks. Let Lin := t1, t2, . . . , tn be
the tasks of tn ordered as they appear inside LinS . Let si
and s′i be the states before and after the execution of ti when
applying LinS to the initial state sI .

In order to develop Lin into an executable task sequence,
we need to find the n− 1 task networks tni that transform s′i
into si+1 for 0 < i < n − 1 and the task network tn0 that
transforms sI into s1. Proposition 3 tells us that we can find
such task networks containing at most 2|L| many tasks each,
if these problems are solvable at all. And we can use LinS as
a witness, that they are solvable.

Putting it all together, we can construct a solution task
network illustrated by the sequence tn0t1tn1t2 . . . tnn−1tn.
This task network contains at most n2|L| + n many tasks and
can be constructed from tn via task insertion.

Theorem 2. Given a planning problem P with
SolHYBRID(P) 6= ∅, then there exists a solution
tn∗S ∈ SolHYBRID(P) with |T (tn∗S)| ≤ b|C|(2|L| + 1),
where b is the number of tasks inside the largest task network
of the methods from M .

Proof. A graphical presentation of this proof is given in Fig-
ure 2. Fix a solution tnS ∈ SolHYBRID(P). There exists a task
network tnB with tnI →∗D tnB and tnB →∗I tnS because of
the solution criteria. This task network marks the boundary
between the decomposition part and the insertion part of the
planning process. By Lemma 2 there exists a (not necessarily
different) task network tn′B with tnI →∗D tn′B →∗I tnB and
|T (tn′B)| ≤ b|C|. Because of transitivity of task insertion,
from tn′B →∗I tnB →∗I tnS , it follows that tn′B →∗I tnS .

Using Lemma 3, from tn′B →∗I tnS , it follows that there
exists a solution tn∗S with |T (tn∗S)| ≤ |T (tn′B)| (2|L| + 1)

and thus |T (tn∗S)| ≤ b|C|(2|L| + 1).

tnI tnB tnS

tnI tn′B tnB tnS

tnI tn′B tn∗S

L
em

m
a

2
L

em
m

a
3 decomposition

task insertion

Figure 2: This figure shows how the proof of Theorem 2 con-
structs a small solution tn∗S from a large solution tnS . The
task network tnB marks the boundary between task decom-
position and task insertion. The length of the arrows corre-
sponds to the number of applied modifications, and thus cor-
relates to the size of the resulting task network.

4.3 Complexity Results
In this section we will put the previous results to use in order
to obtain an upper complexity bound of EXPSPACE for
the plan existence problem for propositional, hybrid planning.

First we are going to define two decision problems. As
usual, these are represented by subsets of words over a given
alphabet Σ. We do not deal with the problem of encoding
the syntactical structures, such as task networks or problems,
into words over Σ. It is assumed that this process and the
rejection of malformed inputs is feasible and does not add to
the complexity of the problem. We denote the length of the
description of an object X in Σ by |X|Σ. As a remark about
task networks, note that the description of a task network tn

is bounded by O(|T (tn)|2) because of the possible number
of ordering constraints.

We define the decision problem SOLUTIONHYBRID as
all tuples of a planning problem and a correspond-
ing hybrid solution, i.e., SOLUTIONHYBRID := {(P, tn) |
P is a planning problem and tn ∈ SolHYBRID(P)}. Then we
can state the following proposition.

Proposition 4. SOLUTIONHYBRID ∈ PSPACE.

Proof. Take as input the tuple (P, tn). Since we demand
that a task network may not be empty, the application of a
decomposition to a task network never decreases its num-
ber of tasks |T (tn)|. This means that during a decompo-
sition tn1 →∗D tn2, the intermediate task networks never
exceed pol(|tn2|Σ). Obviously the same holds for a se-
quence of insertions. We can thus state the following non-
deterministic algorithm, that runs in polynomial space in the
size of |(P, tn)|Σ and thus in PSPACE. (1) Check if tn
is executable in sI ; reject if not. (2) The following works
in-place: non-deterministically decompose tnI into a prim-
itive task network tn′ with size of at most pol(|tn|Σ); then,
non-deterministically insert tasks and ordering constraints not
violating this size bound; check if tn was produced; accept if
so, otherwise reject.

We define the plan existence problem for hybrid plan-
ning as the set of planning problems that possess a

120

hybrid solution, i.e., PLAN-EXISTENCEHYBRID := {P |
P is a planning problem and SolHYBRID(P) 6= ∅}.
Corollary 1. PLAN-EXISTENCEHYBRID ∈ EXPSPACE.

Proof. Let the input be P and let n = |P|Σ be the length
of this input. Theorem 2 states that there exists a solu-
tion tn∗S with |T (tn∗S)| ≤ b|C|(2|L| + 1), if and only if
P has a solution at all. From the bound on the number
of tasks and by substituting b, |C|, and |L| by n, we can
estimate |tn∗S |Σ ≤ pol(nn(2n + 1)) . Thus, |tn∗S |Σ ≤
2pol(n) and the following non-deterministic algorithm runs
in exponential space. (1) Non-deterministically guess a task
network tn with |T (tn)| ≤ b|C|(2|L| + 1). (2) Check
whether (P, tn) ∈ SOLUTIONHYBRID using only space poly-
nomial in |(P, tn)|Σ ≤ n + 2pol(n); accept if the check
returns true, otherwise reject. The given algorithm decides
PLAN-EXISTENCEHYBRID using only space exponential in
the input length.

And as a direct consequence, we conclude:

Corollary 2. PLAN-EXISTENCEHYBRID is decidable.

5 Conclusion and Discussion
We have formalized a simplified, propositional version of
HTN planning with task insertion (or hybrid planning) that
allows for the insertion of tasks and ordering constraints.
We have established EXPSPACE as an upper complexity
bound of the corresponding plan existence problem. We have
also shown that plan existence is undecidable given our for-
malization without insertion. We conclude that the possibility
to insert tasks as an addition to task decomposition greatly re-
duces the computational complexity of HTN planning.

A direct application of the result to the established HTN
formalism by Erol et al. [1994] might not be possible, since
undecidability could have been “reintroduced” by a feature
that is not captured by us, like the formulation of truth con-
straints. But even then we would have eliminated at least one
source of undecidability.

Schattenberg and Biundo [2006] solve hybrid planning
problems close to the ones defined in this paper. However,
the initial task network and the decomposition methods may
contain causal links, thereby further restricting the set of pos-
sible solutions. Thus, it is not clear, whether our decidability
result also applies to their formalization.

However, our result seems to apply to the problems solved
by the Duet planning system [Gerevini et al., 2008]. It pro-
cesses problems as defined in this paper, but uses a lifted state
representation and features preconditions for decomposition
methods. Duet could be extended to prune plans that exceed
a certain size and achieve guaranteed termination without sac-
rificing completeness. Note that the complexity result is not
directly transferable, since the step from a propositional state
representation to a lifted one will most likely result in an ex-
ponential increase in complexity.

Since the focus of the paper lies on showing decidability,
we did not attempt to provide tight complexity bounds for
the plan existence problem. We have shown EXPSPACE
membership and can state PSPACE−hard as a trivial

lower bound. This is the case, because our formalization
captures ground, classical planning with negative effects and
operators given in the input, which has been proved to be
PSPACE−complete.

Acknowledgements
We want to thank our reviewers for their insightful questions
and suggestions that helped us improving this paper.

This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
[Erol et al., 1994] Kutluhan Erol, James Hendler, and

Dana S. Nau. UMCP: A sound and complete procedure
for hierarchical task-network planning. In Proceedings of
the 2nd International Conference on Artificial Intelligence
Planning Systems (AIPS 1994), pages 249–254, 1994.

[Erol et al., 1995] Kutluhan Erol, Dana S. Nau, and V. S.
Subrahmanian. Complexity, decidability and undecidabil-
ity results for domain-independent planning. Artificial In-
telligence, 76:75–88, 1995.

[Erol et al., 1996] Kutluhan Erol, James Hendler, and
Dana S. Nau. Complexity results for HTN planning. An-
nals of Mathematics and Artificial Intelligence, 18(1):69–
93, 1996.

[Estlin et al., 1997] Tara A. Estlin, Steve A. Chien, and Xue-
mei Wang. An argument for a hybrid HTN/operator-based
approach to planning. In Proceedings of the 4th European
Conference on Planning: Recent Advances in AI Planning,
pages 182–194, 1997.

[Gerevini et al., 2008] Alfonso Gerevini, Ugur Kuter,
Dana S. Nau, Alessandro Saetti, and Nathaniel Waisbrot.
Combining domain-independent planning and HTN
planning: The duet planner. In Proceedings of the 18th
European Conference on Artificial Intelligence (ECAI
2008), pages 573–577. IOS Press, 2008.

[Hopcroft et al., 2000] John E. Hopcroft, Rajeev Motwani,
and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation, volume 3. Addison-Wesley
Reading, MA, second edition, 2000.

[Kambhampati et al., 1998] Subbarao Kambhampati, Amol
Mali, and Biplav Srivastava. Hybrid planning for partially
hierarchical domains. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI 1998), pages
882–888. AAAI Press, 1998.

[Schattenberg and Biundo, 2006] Bernd Schattenberg and
Susanne Biundo. A unifying framework for hybrid plan-
ning and scheduling. In Advances in Artificial Intelligence,
Proceedings of the 29th German Conference on Artificial
Intelligence (KI 2006), pages 361–373. Springer, 2006.

121

The following pages show the publication:

P. Bercher, G. Behnke, D. Höller, and S. Biundo. “An Admissible HTN Planning
Heuristic”. In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI 2017). AAAI Press, 2017, pp. 480–488. doi: 10.24963/ijcai.

2017/68

Reprinted with kind permission of AAAI Press.

The included PDF is a revised version. Modifications are not explicitly mentioned, since
there were only minor corrections or improvements.

122

http://dx.doi.org/10.24963/ijcai.2017/68
http://dx.doi.org/10.24963/ijcai.2017/68

An Admissible HTN Planning Heuristic

Pascal Bercher, Gregor Behnke, Daniel Höller, Susanne Biundo
Institute of Artificial Intelligence, Ulm University, Ulm, Germany

{pascal.bercher, gregor.behnke, daniel.hoeller, susanne.biundo}@uni-ulm.de

Abstract
Hierarchical task network (HTN) planning is well-
known for being an efficient planning approach.
This is mainly due to the success of the HTN plan-
ning system SHOP2. However, its performance de-
pends on hand-designed search control knowledge.
At the time being, there are only very few domain-
independent heuristics, which are designed for dif-
fering hierarchical planning formalisms. Here, we
propose an admissible heuristic for standard HTN
planning, which allows to find optimal solutions
heuristically. It bases upon the so-called task de-
composition graph (TDG), a data structure reflect-
ing reachable parts of the task hierarchy. We show
(both in theory and empirically) that rebuilding
it during planning can improve heuristic accuracy
thereby decreasing the explored search space. The
evaluation further studies the heuristic both in terms
of plan quality and coverage.

1 Introduction
In contrast to classical planning, the goal in hierarchical plan-
ning is not to find a plan that satisfies a goal formula that
holds in the state produced by executing the plan, but to find
an executable refinement of an initial partial plan (a partially
ordered set of primitive and/or abstract tasks). This initial
plan is thus the “goal” – the set of tasks one wants to have
achieved. Partial plans consist of two kinds of tasks: primi-
tive and abstract ones. As it is the case in classical planning,
only primitive ground tasks (so-called actions) are directly
executable in a state, while abstract tasks need to be refined
into more primitive ones until an executable primitive (solu-
tion) plan is obtained.

The motivation for choosing a hierarchical problem class
as underlying framework is manifold, since the task hierarchy
can be exploited in several ways. In case a user is integrated
into the plan generation process, a hierarchical planning ap-
proach seems more natural, since it shows many similarities
with the way in which humans solve their problems [Byrne,
1977; Fox, 1997; Marthi et al., 2008]. For the same reason,
plan explanations (“Why do I have to perform this action?”)
can make use of the hand-designed hierarchy to give intuitive
explanations [Seegebarth et al., 2012; Bercher et al., 2014a].

The task hierarchy also allows to capture constraints restrict-
ing the set of plans that are regarded solutions, which can-
not be expressed without the hierarchy [Höller et al., 2014;
2016] (if no other expressive constructs such as functions are
available). This higher expressivity of hierarchical planning
problems comes at the cost of higher computational com-
plexities. That is, deciding whether there is a solution is
generally harder than in non-hierarchical planning – the pre-
cise complexity depends on structural properties of the task
hierarchy and is at most undecidable [Erol et al., 1994b;
Alford et al., 2015a; Bercher et al., 2016] – and even de-
ciding whether a partial plan is a solution is harder than in
non-hierarchical planning [Behnke et al., 2015; Bercher et
al., 2016]. Contrary to these seemingly negative results, the
hierarchy can also be exploited to reduce the time required to
find a solution. That is, instead of (or: in addition to) exploit-
ing the hierarchy to pose additional constraints on solutions,
it can be used to encode search control as exploited by the
well-known SHOP2 system [Nau et al., 2003].

Like in classical, non-hierarchical, planning, in some ap-
plication domains one wants to find optimal solutions or so-
lutions of a certain quality. Particularly in real-world ap-
plications this is of crucial importance, as plan quality of-
ten translates to costs in the real world, e.g., in terms of
money, time, or resource consumption. Several hierarchi-
cal planning approaches have addressed the issue of finding
optimal solutions [Lotem et al., 1999; Marthi et al., 2008;
Sohrabi et al., 2009; Shivashankar et al., 2016; 2017]. To
find such solutions, it suffices to use a suitable algorithm in
combination with an admissible heuristic. We propose such
an admissible heuristic for standard HTN planning.

Our heuristic is based upon the so-called task decomposi-
tion graph (TDG) – a representation of the AND/OR struc-
ture underlying the task hierarchy [Elkawkagy et al., 2012].
It exploits the TDG to find a least-cost set of primitive actions
into which the given abstract tasks can be decomposed. We
show after which plan modifications during search rebuild-
ing the TDG might lead to improved heuristic estimates. In
the empirical evaluation, we show that the heuristic performs
slightly worse than inadmissible ones when using A∗, but
finds plans of better quality. With Greedy-A∗, it becomes one
of the best configurations. The TDG-recomputation reduces
the search space in almost every problem instance, but also
increases the runtime for several instances.

123

2 Related Work

Independent of the purpose that hierarchical planning is de-
ployed for, it is always desirable to solve the respective prob-
lems as fast as possible. This is especially important if the
hierarchy is used for “physics” instead of “advice” (i.e., if
the domain is modeled in a hierarchical manner, but it does
not reflect search guidance). Several approaches were pro-
posed to find solutions fast. Some of these approaches pur-
sue the same basic approach than we do in this paper: using
a standard search procedure (such as progression search) in
combination with a domain-independent heuristic. Other ap-
proaches do not (only) rely on domain-independent heuris-
tics, but instead the information encoded in the task hierarchy
is exploited by the algorithm itself.

Marthi et al. [2008] propose several algorithms for their
angelic hierarchical planning semantics. They are concerned
with generating provably optimal “high-level plans” that may
still contain abstract tasks. In their framework, abstract tasks
are associated with preconditions and effects, the latter de-
scribing the set of states reachable by some refinement of the
respective task. They further assume a totally ordered prob-
lem (making the problem decidable, because it prevents in-
tertwining plans [Erol et al., 1994b; Alford et al., 2015a]).
To find optimal plans, they deploy A∗ that exploits optimistic
and pessimistic estimates of abstract tasks, which estimate
the cost of their reachable refinements. They note: “we will
assume that the descriptions are given along with the hierar-
chy. However, we note that it is theoretically possible to de-
rive them automatically from the structure of the hierarchy.”
We believe that our admissible heuristic values can serve as
their optimistic estimates that they rely on. Shivashankar
et al. [2016; 2017] developed an admissible landmark-based
heuristic for finding optimal solutions in Hierarchical Goal
Network (HGN) planning, a formalism closely related to stan-
dard HTN planning (the relationship is investigated in de-
tail by Alford et al. [2016b]). In standard HTN planning,
decomposition methods specify into which task networks (a
partially ordered set of tasks) an abstract task may be decom-
posed. In HGN planning, methods specify into which goal
networks (a partially ordered multiset of goals) a goal may
be decomposed. The proposed heuristic exploits the close re-
lationship between goal networks and the (partially ordered)
landmarks of a problem. Sohrabi et al. [2009] are concerned
with finding high-quality plans for HTN planning with prefer-
ences. They propose a branch-and-bound algorithm that first
finds some solution quickly (guided by inadmissible heuris-
tics) and then tries to find better solutions by pruning plans
that will lead to solutions of equal or worse quality (based
on an admissible heuristic). Most heuristics are specific to
both progression search (as they exploit that the current state
is changing) and to their approach how the preferences are
compiled away. One of their heuristics, lookahead metric
function, is closer related to ours as it is an estimate of the
metric of the best successor to the current partial plan. It does
so by first calculating all refinements up to a certain depth.
For each of them, a single primitive partial plan is computed
based on Depth First search. The best metric serves as heuris-
tic. The MME heuristic for hybrid planning [Bercher et al.,

2014b] is closely related to the one proposed here. We will
detail the precise relationship later in the paper.

The planning system Duet [Gerevini et al., 2008] com-
bines the HTN planner SHOP2 [Nau et al., 2003] with LPG
[Gerevini et al., 2003], a stochastic search planner for non-
hierarchical problems. Duet is not directly concerned with
calculating heuristics for partial plans, but it shows how hi-
erarchical problems can be solved efficiently without relying
on hand-coded search control. It is also notable that Duet is
not concerned with solving standard HTN problems, since it
allows to insert actions into partial plans (for achieving goals)
that do not stem from task decomposition as allowed in TI-
HTN planning (HTN planning with task insertion [Geier and
Bercher, 2011; Alford et al., 2015b]). The planner Graph-
HTN [Lotem et al., 1999] solves standard HTN problems
via combining the so-called planning tree with the planning
graph. The planning tree is an AND/OR tree that represents
all decompositions of the initial partial plan up to a certain
depth. We rely on a similar graph representation. GraphHTN
works by extending both the planning graph and the planning
tree until a solution is found. It guarantees to find a solution
with shortest makespan.

3 Problem Formalization
We rely on a problem formalization that extends standard
HTN planning [Erol et al., 1994b; Geier and Bercher, 2011]
with concepts known from partial order causal link (POCL)
planning [McAllester and Rosenblitt, 1991]. In accordance
to previous work, we refer to the respective framework as hy-
brid planning [Biundo and Schattenberg, 2001; Bercher et al.,
2016]. Hybrid models extend standard HTN models in two
directions: First, abstract tasks syntactically look like primi-
tive ones, i.e., they also have preconditions and effects. That
way, the planning model can be restricted to methods that ad-
here the semantics intended by the modeler [Bercher et al.,
2016]. Second, the model’s methods can contain causal links
that annotate which (abstract or primitive) task’s precondition
has been achieved by which other task of that method.

We want to emphasize that the the proposed heuristic is
neither inherently making use of the preconditions and ef-
fects of abstract tasks nor of the causal links, both of which
distinguish hybrid models from standard HTN models. As a
consequence, the proposed heuristic can cope both with hy-
brid and with HTN models – i.e., it can be regarded both an
HTN as well as a hybrid planning heuristic.

In hybrid planning, both primitive and abstract tasks are
3-tuples 〈t(τ̄), pre(τ̄), eff (τ̄)〉 consisting of a parametrized
name t(τ̄), a precondition pre(τ̄), and effects eff (τ̄) – the lat-
ter two are conjunctions of literals and depend on the task’s
parameter variables τ̄ . We will often refer to a task by just
mentioning its name t(τ̄). Partial plans are partially ordered
sets of primitive and/or abstract tasks. A partial plan P is
given by a tuple 〈PS,≺,CL, VC〉 consisting of its plan steps
PS, ordering constraints ≺, causal links CL, and variable
constraints VC. A plan step l : t(τ̄) ∈ PS is a uniquely labeled
task. Labeling is required because P maintains a partial or-
der of its plan steps, so multiple occurrences of the same task
are differentiated relying on the labels. The set ≺ is a strict

124

partial order on PS. A causal link ps →ϕ ps ′ ∈ CL repre-
sents that the precondition ϕ of plan step ps ′ is achieved by
the plan step ps . The set VC is defined over the variables τ̄
of the tasks of PS. It can co- or non-co-designate variables
with each other or with constants. With GroundVC(P) we
denote the set of all groundings of P under consideration of
the additional variable constraints VC.

Whereas primitive tasks have the same semantics as in
classical planning, abstract tasks are abstractions of several
primitive or abstract tasks. They can thus be regarded rep-
resentations of high-level activities that need to be refined
into more specific courses of action. This is accomplished
by a set of so-called (decomposition) methods. A method is
a tuple m = (t(τ̄), Pm, VCm) that maps an abstract task to
its pre-defined partial plan Pm. VCm denotes a set of vari-
able constraints that relates the variables τ̄ of t(τ̄) with the
variables of the partial plan Pm. In our formalism, meth-
ods are not associated with preconditions as it is the case in
other hierarchical planning formalisms (as exploited, e.g., by
SHOP2). That is, given a partial plan P contains a plan step
l : t(τ̄ ′) ∈ PS and τ̄ and τ̄ ′ can be unified, then m is ap-
plicable to P . Applying m to P results in a successor plan
P ′ in which t(τ̄) has been removed and replaced by Pm with
the according variable constraints. Any of the causal links in-
volving a precondition or effect of the decomposed abstract
task is inherited down to suitable tasks in Pm. Adhering to
legal methods ensures that this is always possible [Bercher et
al., 2016].

A hybrid planning domain D = 〈Tp, Ta,M〉 contains the
primitive and abstract tasks Tp and Ta, respectively, and
a set of methods M . A hybrid planning problem P =
〈D, Pinit , C〉 is then given by a domain D, an initial partial
plan Pinit , and a set of constants C. The problem’s initial
state and, if given, its goal description, are encoded in Pinit

as additional actions as done in POCL planning.
A partial plan P is a solution (plan) to a hybrid planning

problem, if and only if the following two criteria hold:
• P is a refinement of Pinit with respect to the decom-

position of abstract tasks and the insertion of ordering
constraints, variable constraints, and causal links.
• P is executable in the initial state in the sense of the

standard POCL solution criteria. That is, all tasks are
primitive and ground, for each precondition ϕ of some
plan step ps ′ there is a causal link ps →ϕ ps ′ from a
plan step ps in P , and there are no causal threats. A
plan step ps ′′ threatens a causal link ps →ϕ ps ′ if and
only if it has some effect ¬ψ, such that ψ and ϕ can be
unified and ps ′′ could be ordered between ps and ps ′.

Note that we do not allow the insertion of tasks (cf. first so-
lution criterion), except via decomposition of abstract tasks,
in order to stick to the standard HTN solution criteria [Erol et
al., 1994b; Alford et al., 2015a] as opposed to a relaxation
thereof, called HTN planning with task insertion, TIHTN
planning [Geier and Bercher, 2011; Alford et al., 2015b].

4 On the Task Decomposition Graph
The so-called task decomposition graph (TDG) [Elkawkagy
et al., 2012] represents the AND/OR structure of the task hi-

erarchy. Since it is a canonical representation of hierarchi-
cal problems, similar structures are used for various purposes
(e.g., as the basis for HTN planning systems [Lotem et al.,
1999]). We use it to ground the domain model and to es-
timate the remaining effort of turning a given abstract task
into a primitive plan. We first give a formal definition of
TDGs, which is equivalent to the one given by Elkawkagy
et al. [2012], but simplified and therefore more intuitive.

Definition 1 (Task Decomposition Graph (TDG)). Let P =
〈D, Pinit , C〉 be a hybrid planning problem with domain
D = 〈Tp, Ta,M〉. Without loss of generality, we assume
that Pinit contains just a single ground abstract task TOP for
which there is exactly one method in M .1

The bipartite graph G = 〈VT , VM , ET→M , EM→T 〉, con-
sisting of a set of task vertices VT , method vertices VM , and
edges ET→M and EM→T is called the TDG of P if it holds:

1. base case (task vertex for the given task)
TOP ∈ VT , the TDG’s root.

2. method vertices (derived from task vertices)
Let vt ∈ VT with vt = t(c̄) and (t(τ̄), Pm, VCm) ∈ M .
Then, for all vm ∈ GroundVCm∪{τ̄=c̄}(Pm) holds:
• vm ∈ VM • (vt, vm) ∈ ET→M .

3. task vertices (derived from method vertices)
Let vm ∈ VM with vm = 〈PS,≺, CL, VC〉. Then, for all
plan steps l : t(c̄) ∈ PS with vt = t(c̄), holds:
• vt ∈ VT • (vm, vt) ∈ EM→T .

4. tightness
G is minimal, such that 1. to 3. hold.

The definition works inductively by first requiring that the
problem’s initial ground task TOP1 is part of the TDG as its
root. The second criterion, one of the inductive steps, requires
that for all methods that are applicable to any task vertex of
the TDG, their respective ground partial plans are method ver-
tices of the TDG. The third criterion, the second inductive
step, requires any task in any of the TDG’s method vertices
to be a task vertex of the TDG. Finally, the last criterion en-
sures minimality of the graph, so that no vertexes or edges are
in the TDG other than the ones demanded by the previous cri-
teria. Graphical illustrations of example TDGs are provided
by Lotem et al. [1999], Elkawkagy et al. [2012], and in Fig. 1.

Due to the undecidability of HTN planning [Erol et
al., 1994b; Geier and Bercher, 2011] and hybrid planning
[Bercher et al., 2016], there cannot always be a limit on the
number of method applications to find a solution. However,
since the TDG contains each decomposition method and task
at most once, the TDG is always finite.

Def.1 incorporates all tasks that can be reached via de-
composing the initial partial plan. Instead, we deploy the
technique by Elkawkagy et al. [2010] that removes parts of
the TDG which are unreachable when considering a delete-
relaxed reachability analysis of the primitive tasks.

1If the problem specifies an initial partial plan Pinit we can ob-
tain the required form by adding a new artificial (parameter-free)
abstract task TOP that decomposes exactly into Pinit .

125

5 An Admissible Heuristic Based on the TDG
In case TDG-recomputation is not enabled, the proposed
heuristic is a pre-processing heuristic, since it calculates the
TDG only once before planning and assigns cost estimates to
each of its vertices that also do not change. During search,
these values are retrieved for a given search node. We as-
sume that we have given a TDG and show how these cost es-
timates are calculated. To ensure termination, we assume that
every primitive ground task t(c̄) has a non-negative action
cost cost(t(c̄)) ∈ R+ and that the TDG contains only abstract
tasks that can be refined into a set of primitive tasks. Abstract
tasks that do not fulfill the latter property can easily be iden-
tified in polynomial time by relying on a bottom-up reacha-
bility analysis (proof of Thm. 3.1 by Alford et al. [2014]).

We estimate the effort of refining an abstract task vertex
by minimizing over the estimated effort of its method ver-
tices. Analogously, the effort of refining a method vertex can
be estimated by summing over the estimates of the tasks it
contains. We do this for each task in the TDG. The seman-
tics behind this calculation can be regarded as the cost of the
least-expensive set of primitive tasks into which a given ab-
stract task can be refined. This implies that these tasks must
not necessarily form an executable plan, but they can all be
made applicable using delete-relaxed primitive tasks, as they
would not be in the TDG otherwise.
Definition 2 (TDG Cost Estimates).
Let 〈VT , VM , ET→M , EM→T 〉 be a TDG.

hT (vt) :=

{
cost(vt) if vt is primitive

min
(vt,vm)∈ET→M

hM (vm) else (1)

For a method vertex vm = 〈PS,≺, CL, VC〉, we set:

hM (vm) :=
∑

(vm,vt)∈EM→T

hT (vt) (2)

We want to emphasize that each cost estimate of the TDG’s
vertices is finite even though the TDG itself might be cyclic.
Intuitively spoken, it can never be optimal (or required) to run
into a cycle for the sake of minimizing the estimates.

We use the following algorithm to compute the cost esti-
mates. First, we identify all strongly connected components
(SCCs) of the TDG, which is possible in polynomial time.
All primitive tasks form an SCC on their own, since they do
not have outgoing edges. They can be assigned their cost
value according to hT . We then sort all SCCs topologically,
which is possible since their dependencies form a directed
acyclic graph. We then process them in their topological (pos-
sibly partial) order, starting with the SCCs containing prim-
itive tasks. For the remaining SCCs, we use an iterate-until-
fixpoint procedure. We start by initializing the estimates for
all vertices in an SCC with ∞. Then we iterate over these
vertices and use the formulae for hT and hM to update the re-
spective estimates. This iteration is repeated until no value in
the SCC has changed, i.e., until the correct estimates accord-
ing to Def. 2 have been computed. This fixpoint is reached
after a polynomial number of steps, because in each itera-
tion at least one vertex in the SCC is assigned its final value,
which can be proven as follows. If the SCC contains one

vertex, the claim is trivial. Otherwise, there are one or more
vertices in it with outgoing edges. Consider a method vertex
in an SCC: since it has been included, all other vertices are
reachable from this one, i.e., at least one of its edges points to
a vertex in the SCC. Thus, one of the outgoing edges of the
SCC must originate from a task vertex (otherwise there were
an infinite recursion and the SCC would have been pruned).
Since the costs of a method vertex are additive with respect
to its children, the method vertices will be at least as costly
as the cheapest task vertex in the SCC. One of the outgoing
edges of the SCC originating from a task vertex vt will lead
to a method vertex with minimal cost estimate c. As noted,
every recursion must leave the SCC via a task vertex, and we
have picked the cheapest task vertex, therefore this is the ver-
tex with minimal costs (in the fixpoint). Since all estimates
in the SCC must be greater (or equal) to c, the vertex vt gets
assigned c as its fixpoint cost in the first round of iterations.
Since we have found the edge that determines the value of vt,
all other outgoing edges can be ignored from now on. Ignor-
ing these edges, vt falls out of the SCC. As such, the size of
the SCC would decrease and, by induction, n iterations suf-
fice to reach the fixpoint for an SCC with n vertices.

Def. 2 and the procedure above further forms an improve-
ment of the so-called minimal modification effort (MME)
heuristic, which is designed for hybrid planning systems that
rely on POCL search techniques [Bercher et al., 2014b].
MME is also based on the idea to exploit a TDG via mini-
mizing over different methods and summing within the same
method. But instead of action costs, it estimates the num-
ber of required decompositions and causal link insertions a
hybrid planner needs to perform: in (1), primitive tasks are
estimated by the number of their preconditions and abstract
tasks by the minimum as given here plus 1 for performing a
decomposition. In (2), we subtract |CL| from the given sum
to account for causal links that are already in a partial plan.
But in contrast to Def. 2, MME relies on a visited list of ab-
stract tasks that are taken into account when calculating the
TDG estimates. This list ensures termination in the presence
of cycles (cf. Def. 3 by Bercher et al. [2014b]), but it also pro-
duces smaller and less accurate estimates in these cases. We
give the respective improved version of the MME heuristic
later in this section.

During search, given a current partial plan and one of its
abstract plan steps l : t(τ̄), we retrieve the estimate of one of
its compatible groundings in the TDG, comp(t(τ̄)). When
using the TDG cost estimates given in Def. 2, the resulting
heuristic is called cost-aware TDG heuristic, TDGc.

Definition 3 (TDGc Heuristic).
Let P = 〈PS,≺, CL, VC〉 be a partial plan. Then,

hTDGc(P) :=
∑

l:t(τ̄)∈PS
t(τ̄) abstract

(
min

vt∈comp(t(τ̄))
hT (vt)

)

TDGc basically relies upon the same mechanics as the def-
inition of the method vertex estimate in Def. 2, since both
inputs are partial plans. The heuristic for the costs of any
missing actions can be estimated by summing over the heuris-
tic estimates of its abstract tasks (which were pre-calculated,

126

cf. Def. 2). Since these tasks might still be lifted in the given
partial plan, we minimize over the possible groundings.

Since Def. 2 minimizes for each abstract task over its avail-
able methods, and again Def. 3 minimizes over all possible
groundings, the resulting heuristic is clearly admissible.
Prop 1. The cost-aware TDG heuristic hTDGc is admissible
with respect to action costs.

Note that removing unreachable parts of the TDG [Elka-
wkagy et al., 2010] does not influence admissibility. In fact,
such pruning makes the heuristic more accurate, which means
that it profits from any future research that is concerned with
identifying and removing more unreachable parts of the TDG.

When using the modification-aware estimates described
above, we obtain an improved variant of the MME heuristic,
which we call modification-aware TDG heuristic, TDGm.
Definition 4 (TDGm Heuristic).
Let P = 〈PS,≺, CL, VC〉 be a partial plan. Then,

hTDGm(P) :=
∑

l:t(τ̄)∈PS

(
min

vt∈comp(t(τ̄))
hT (vt)

)
− |CL|

5.1 Recomputing the TDG During Planning
All TDG-based search strategies or heuristics developed so
far are pre-processing heuristics [Elkawkagy et al., 2012;
Bercher et al., 2014b]. That is, they rely on a TDG that is
computed only once – prior search. However, decompositions
that are performed during search influence the TDG and, con-
sequently, the accuracy of any heuristic that is based upon it.
Therefore, we show after which plan modifications the TDG
could possibly change and after which it can not.

In order to understand in which situations a recomputation
of the TDG can result in a changed TDG, we need to explain
the TDG construction process. We do this only very briefly
and refer to the paper by Elkawkagy et al. [2010] for any fur-
ther details. Starting from the given initial partial plan, all
primitive tasks (i.e., actions) that are reachable via decompo-
sition are identified. Then, using only these actions, a relaxed
reachability analysis is performed. Afterwards, the TDG is
constructed and limited to partial plans in which all actions
are reachable via the relaxed reachability analysis.

Applying methods implies that certain actions may not be
reachable via decomposition anymore. The non-availability
of these actions might even prove further actions unreachable
via the relaxed reachability analysis. Thus, recomputing a
TDG after decompositions can improve heuristic estimates.
In the following, we only explain the technique for the pro-
posed heuristic, i.e., we assume h = hTDGc – but the recom-
putation can also be done for the TDGm heuristic.

Consider the example given in Fig. 1. When assuming
cost(p3) = i and hM (Pm4) = hT (p4)+hT (a3) = j > i, we
get hT (a2) = i. We now consider how the heuristic estimates
with and without TDG-recomputation differ after the abstract
task a1 in P

init
is decomposed. After decomposing a1 we get

two possible successor plans, P1 and P2. Since they both
contain the same abstract task a2, we get the same heuris-
tic value h(P1) = h(P2) = i without TDG-recomputation.
When recomputing the TDG, we can exploit updated reach-
ability information as follows. When assuming that the only

a1 a2

P
init

p1

m1

p2

m2

p3

m3

p4 a3

m4
Pm4

enables

a1 a2

P
init

p1 a2

P1

p2 a2

P2

use m1

use m2

Figure 1: On top, we show a fragment of a TDG and at the bottom
we show a fragment of a search space. Partial plans are denoted
by surrounding boxes, abstract tasks by round boxes, and primitive
tasks by square boxes.

action that enables the executability of p3 is p2 and further as-
sume that p2 cannot be reached via decomposing a3, then the
TDG for P1 will not include the sub graph that is introduced
via m3. Thus, we get h(P1) = j and h(P2) = i.

We can thus simply recompute the TDG after each decom-
position. In lifted planning, any new variable binding might
also influence the set of reachable tasks, but performing the
reachability analysis in all these cases turned out to be too
inefficient, so we assume a ground model. So, we can set
h(P ′) = h(P) for a partial plan P and its successor P ′ that
is obtained by a modification other than a decomposition.

Even when a decomposition has been performed, there is a
special case in which we can reuse the parent node’s heuris-
tic value. This is the case if an abstract task has just a single
decomposition method in its initial TDG for all its ground-
ings, since applying such a method does not influence the
set of reachable actions. In previous work, we analyzed the
structural properties of the planning benchmarks that we also
use in this evaluation. We observed that the average branch-
ing factor of the TDG is often smaller than 2 [Bercher et al.,
2014b], which means that this special case does occur in prac-
tice. Further details about how often this occurs in our prob-
lem set is given in the empirical evaluation.

Let t be the decomposed task and vm =
〈PSm,≺m,CLm, VCm〉 its single method vertex
in the initial TDG. Due to Def. 2, we get that
hT (t) = hM (vm) =

∑
l:t′∈PSm

hT (t′). Since all primitive
tasks that are introduced via decomposing t were previously
accounted for by the heuristic for P , but are now part of P
itself and therefore contribute to its cost, we get the new
heuristic value h(P ′) = h(P)−∑l:t′∈PSm,t′primitive cost(t

′).
Note that this incremental heuristic computation, which

calculates a heuristic h(P ′) based on its parent’s heuristic
h(P), also improves runtime of the TDG-based heuristics that
do not perform TDG-recomputation.

127

6 Evaluation
This section introduces the benchmark set, the search strate-
gies and heuristics, and presents the empirical results.

6.1 Domains
The empirical evaluation is done based on four different HTN
planning domains. Originally, these domains are hybrid plan-
ning domains. We converted them into standard HTN do-
mains by removing preconditions and effects from the ab-
stract tasks and by further removing all causal links that are
present in the methods’ partial plans.

The domains include all the ones used by Elkawkagy et
al. [2010; 2012] and Bercher et al. [2014b] for their evalua-
tions, which were also used by Alford et al. [2016a]. These
are the UM-Translog domain (originally designed specifically
for HTN planning), the SmartPhone domain (originally de-
signed for hybrid planning), and the Satellite and Woodwork-
ing domains (both were originally designed for the Interna-
tional Planning Competitions (IPCs), which were adapted to
hybrid planning). For further information about these four
domains, we refer to previous work [Bercher et al., 2014b].
In total, we have 59 problem instances. Note that all domains
use unit costs. Thus, for these domains, the proposed heuris-
tic estimates the length of a shortest solution.

6.2 Experimental Setting
We evaluate the proposed TDGc heuristic in terms of its
heuristic guidance power (in form of coverage) and investi-
gate whether its admissibility creates plans of better quality
for the evaluated problem set.

We implemented all strategies within the same system to
allow a fair comparison. We use the hybrid planner PANDA
[Bercher et al., 2014b, Alg. 1], which is capable of solving
HTN and hybrid planning problems. Its code will be made
available online (www.uni-ulm.de/en/in/ki/panda).

Search Strategies We evaluate the blind strategies Uniform
cost, Breadth First (BF), and Depth First (DF) search.

We also compare our heuristic search approach with other
search techniques (i.e., systems) from the literature. We have
simulated the UMCP algorithm [Erol et al., 1994a, Fig. 2]
within the used system. It always chooses some partial plan
according to a plan selection function based on BF, DF, or
a “heuristic” that greedily selects a partial plan with a least
number of abstract tasks. In case the selected partial plan is
primitive, UMCP turns it into a solution or dismisses it al-
together in case this is impossible. We also include a tech-
nique for solving HTN problems that is based on a transla-
tion into classical planning [Alford et al., 2016a]. Since HTN
planning is more expressive than classical planning, any such
translation requires a bound (for Alford et al.’s translation the
maximum size of a task network under progression). If the
resulting problem is solvable so is the original one (and a so-
lution can be extracted from the classical solution), but if not,
there might still be a solution requiring a higher bound. Al-
ford et al. [2016a] provided a mechanic to compute a lower
bound on the progression bound and showed empirically that
the smallest bound allowing for a solution is often near this

lower bound. We have therefore started with the translation
using Alford et al.’s lower bound and increased the bound
by one if no solution was found. The translated classical
problems are solved by existing PDDL planners. We use the
best-performing (non-optimal) planner of the evaluation by
Alford et al. [2016a], JASPER [Xie et al., 2014]. In addition,
we use the (optimal) SymBAStar∗-2 planner [Torralba et al.,
2014], the winner of the optimal track of the IPC 2014. Since
the compilation creates additional actions, action costs for the
original primitive tasks are unaltered and the costs for the new
ones are set to zero. Note that JASPER can handle an ADL
model, whereas SymBAStar∗-2 handles only STRIPS. The
two configurations are referred to as Compile and Compileopt,
respectively. We have set the time limit for runs of the plan-
ner of each translated problem to two minutes (increasing this
bound does not improve the results of the planner). The times
reported are the sum of run times for all runs until a solution
has been found. Please note that we did not include a com-
parison to SHOP2, because our models do not encode search
guidance and, consequently, their decomposition methods do
not specify preconditions on which the success of SHOP2 is
based. For these models, SHOP2 would basically perform a
blind DF progression search.

Additionally, we use both A∗ as well as Greedy-A∗, where
the heuristic is accounted for by factor 2, denoted by A∗2.
Because PANDA is a hybrid planner (i.e., it performs plan-
space-based search relying on POCL concepts), we can also
use the well-known POCL heuristics hadd and hradd [Younes
and Simmons, 2003] as well as hrelax and hOC [Nguyen and
Kambhampati, 2001]. Since these heuristics are designed
for (non-hierarchical) POCL problems, they only take the
primitive tasks in a given partial plan into account, but make
up for being less informed about the hierarchy by being ex-
tremely fast. In addition to the TDGc heuristic, we evaluate
our improved version of the hybrid planning heuristic MME
[Bercher et al., 2014b], TDGm. We refer to the variants with
recomputation as TDGc-rec and TDGm-rec, respectively.

For our experiments, we ground the models prior search
and deploy the TDG construction and domain model reduc-
tion technique by Elkawkagy et al. [2010].

Hardware We used a machine with Xeon E5-2660 v3
CPUs with 2.60 GHz base frequency, a memory limit of 10
GB, and a time limit of 10 minutes (CPU time) per run.

6.3 Results
Coverage Results are given in Tab. 1. We can observe that
already the uninformed, blind search strategies perform im-
pressively well with solving between 47 and 53 problems
out of 59. This can in part be attributed to our ground-
ing procedure [Elkawkagy et al., 2010], which reduces the
model based on the given problem instances. Bercher et
al. [2014b] showed that almost all resulting (grounded) prob-
lem instances become acyclic.

The UMCP strategies perform similarly to the uninformed
ones. They solve between 47 and 52 problems. The two con-
figurations based on the compilation technique are perform-
ing quite differently. The compilation in combination with

128

Table 1: Per domain and strategy, we present the number of solved
problem instances (#s), the number of optimally solved instances
(#o), and the maximal plan cost over all solved problem instances
relative to the optimal solution (cost).

Strategy
UM-Tr. SmartPh. Satellite Woodw. Summary

(21 inst.) (5 inst.) (22 inst.) (11 inst.) (59 inst.)
#s #o cost#s#o cost #s #o cost #s #o cost #s #o cost

bl
in

d Uniform 21 21 1.00 4 4 1.00 17 17 1.00 8 8 1.00 50 50 1.00
BF 21 21 1.00 4 4 1.00 15 15 1.00 7 7 1.00 47 47 1.00
DF 21 21 1.00 5 1 1.60 19 7 2.09 8 4 1.44 53 33 2.09

sy
st

em
s UMCPBF 21 21 1.00 4 4 1.00 15 15 1.00 7 7 1.00 47 47 1.00

UMCPDF 21 21 1.00 4 1 1.60 17 6 2.09 6 4 1.29 48 32 2.09
UMCPh 21 21 1.00 5 4 1.40 19 11 1.50 7 7 1.00 52 43 1.50
Compile 18 18 1.00 5 5 1.00 21 18 1.10 5 5 1.00 49 46 1.10
Compileopt 16 16 1.00 5 5 1.00 9 9 1.00 5 5 1.00 35 35 1.00

A
∗

ADD 21 21 1.00 4 1 1.20 21 21 1.00 10 9 1.17 56 52 1.20
ADD-r 21 21 1.00 5 5 1.00 19 18 1.08 9 4 1.25 54 48 1.25
Relax 21 21 1.00 5 5 1.00 18 18 1.00 10 8 1.17 54 52 1.17
OC 21 21 1.00 4 4 1.00 21 21 1.00 10 7 1.17 56 53 1.17
TDGm/-rec 21 21 1.00 5 5 1.00 22 21 1.31 9 9 1.00 57 56 1.31
TDGc/-rec 21 21 1.00 5 5 1.00 18 18 1.00 8 8 1.00 52 52 1.00

A
∗ 2

ADD 21 21 1.00 4 0 1.20 21 20 1.09 10 9 1.17 56 50 1.20
ADD-r 21 21 1.00 5 5 1.00 20 17 1.10 10 4 1.25 56 47 1.25
Relax 21 21 1.00 5 5 1.00 18 15 1.10 10 4 1.25 54 45 1.25
OC 21 21 1.00 4 4 1.00 22 21 1.09 10 7 1.22 57 53 1.22
TDGm/-rec 21 21 1.00 5 5 1.00 22 17 1.31 9 8 1.08 57 51 1.31
TDGc 21 21 1.00 5 5 1.00 20 20 1.00 10 10 1.00 56 56 1.00
TDGc-rec 21 21 1.00 5 5 1.00 20 20 1.00 11 11 1.00 57 57 1.00

JASPER performs similar to the previously discussed config-
urations: it solves 49 problems. The compilation that uses
the optimal planner SymBAStar∗-2 is performing worst with
solving only 35 instances. This can be attributed to two facts:
First, because it is an optimal planner, which are known to
incur extra search effort to guarantee optimality. Second, the
compilation used for SymBAStar∗-2 relies on a basic STRIPS
model, which is much larger than the ADL model that is used
for JASPER [Alford et al., 2016a].

Concerning the evaluated heuristics, we can make several
observations. First, they all perform very good, solving be-
tween 54 and 57 problems. We did not expect that the four
POCL heuristics perform so impressively well, since they are
completely unaware of the hierarchy and ignore all abstract
tasks (this would be different if we were using the original
hybrid formulations, in which also abstract tasks use precon-
ditions and effects). Similar to the good performance of the
uninformed strategies, we assume that this can in part be at-
tributed to our grounding procedure that eliminates much of
the problems’ difficulty. With A∗, all heuristics except for
TDGc perform similarly well. TDGc shows the lowest cov-
erage solving only 52 problems, which we attribute to its ad-
missibility. Best performing is the TDGm heuristic, which
solves 57 problems. With A∗2, TDGm remains being among
the best configurations, but additionally the TDGc heuristic is
among the best ones, which solves 56 problems when TDG-
recomputation is disabled and 57 if it is enabled.

Plan Quality In Tab. 1, we give for each strategy and do-
main the number of problems that were solved optimal as well
as the maximal solution cost relative to the optimal one. We
assume that many of our problem instances only allow for

Table 2: Per domain, we present the number of recomputations di-
vided by number of decompositions (rec/dec) and the number of
improved heuristic estimates divided by number of recomputations
(h-im/rec). For each of these values we report the minimum (min),
maximum (max), and mean of means (µ).

Strategy rec/dec h-im/rec rec/dec h-im/rec
min max µ min max µ min max µ min max µ

UM-Translog SmartPhone

A
∗ TDGm .027 .188 .086 .000 .333 .032 .300 .691 .476 .000 .117 .023

TDGc .027 .188 .086 .000 .333 .032 .300 .647 .473 .000 .041 .008

A
∗ 2TDGm .027 .188 .086 .000 .333 .032 .300 .713 .484 .000 .121 .024

TDGc .027 .188 .086 .000 .333 .032 .300 .647 .471 .000 .041 .008
Satellite Woodworking

A
∗ TDGm .857 1.00 .956 .110 .608 .248 .294 .932 .581 .000 .548 .246

TDGc .750 1.00 .913 .087 .592 .264 .294 .943 .600 .000 .592 .330

A
∗ 2TDGm .857 1.00 .953 .110 .617 .268 .294 .961 .611 .000 .721 .306

TDGc .814 1.00 .934 .049 .609 .256 .294 .943 .615 .000 .587 .333

solutions with the same number of actions, which makes the
comparison of plan quality for these instances meaningless.
We assume this being the case because for many instances,
all strategies found solutions of the same quality. This is the
case for all problems in UM-Translog, for 1 of 5 problems in
SmartPhone, for 6 of 22 problems in Satellite, and for 2 of 11
problems in the Woodworking domain.

The overall worst-quality plans are produced by DF, which
produces supoptimal solutions in 20 out of 53 cases. Their
size is up to a factor of 2.09 as large as the optimal one. We
can see that A∗ with the admissible TDGc heuristic is the least
successful A∗ variant in terms of coverage, but guarantees to
find optimal solutions. Other heuristics sometimes find so-
lutions of suboptimal quality, ranging up to 31%. However,
in total, non-optimal solutions are only found in a few cases
(see Tab. 1, summary column). E.g., TDGm, although being
inadmissible, solves 56 of 57 problems optimal with A∗. Us-
ing A∗2, TDGc/-rec belong to the best-performing heuristics –
solving 56 and 57 problems, respectively, all of them optimal.

TDG-Recomputation As indicated in Tab. 1, TDGm and
TDGm-rec produce exactly the same results in terms of cov-
erage and plan quality for A∗ and A∗2. The same holds for
TDGc and TDGc-rec for A∗, but for A∗2, TDGc-rec solves
one problem instance more than TDGc. The impact of the
recomputation can be summarized as follows: it increases
heuristic accuracy resulting into more-informed heuristics
(Tab. 2), which in turn results into smaller search spaces that
sometimes come at the cost of increased computation times
(Tab. 3) due to the overhead of recomputation.

Tab. 2 summarizes how often the TDG is recomputed and
how often these recomputations are beneficial in terms of
more accurate heuristic estimates. We report rec/dec, which
gives the ratio of TDG-recomputations to performed decom-
positions. A ratio of 1 indicates that the TDG is rebuilt each
time an abstract task is decomposed. We can see that in the
UM-Translog domain, the recomputation is almost never per-
formed, which goes back to the simplicity of the problem in-
stances, where the TDG often has an average branching fac-

129

Table 3: For each domain, we summarize in how many problem
instances the search space or time was deduced (<), unchanged (=),
or increased (>), due to TDG recomputation.

Strategy space time space time space time space time
<=><=><=><=><=><=><=><=>

UM-Translog SmartPhone Satellite Woodworking

A
∗ TDGm 2 19 0 1 15 5 1 4 0 1 4 0 22 0 0 0 17 5 7 2 0 1 6 2

TDGc 2 19 0 0 13 8 1 4 0 0 4 1 18 0 0 0 10 8 6 2 0 4 3 1

A
∗ 2TDGm 2 19 0 3 16 2 1 4 0 0 4 1 22 0 0 0 13 9 4 5 0 1 6 2

TDGc 2 19 0 4 11 6 1 4 0 1 4 0 20 0 0 0 11 9 5 5 0 4 3 3

tor near 1 [Bercher et al., 2014b]. All problems are solved
in less than 7 s by all strategies with only little deviation be-
tween them – so this domain does not provide much insights.
In the SmartPhone and Woodworking domains, recomputa-
tion is done in approximately 50% and 60% of all decompo-
sitions. In Satellite, this percentage ranges up to 95.6%. We
are also interested in the fact whether these recomputations
are beneficial, i.e., whether the heuristic estimates based on a
recomputed TDG are more accurate than compared to using
the TDG of its parent. That value is given by h-im/rec, the
ratio of improved heuristic estimates to performed recompu-
tations. A ratio of 1 means that every recomputation produced
an improved heuristic value. For UM-Translog, the mean is
relatively small, but this is due to the fact that only in 2 of 21
instances the recomputation improves the heuristic (in both
instances, the ratio is 33.3% for all strategies). Similarly for
SmartPhone: Here, the reduction increases heuristic accuracy
in only one problem instance (see table for its ratio). For the
others, we see a mean heuristic improvement in about 25%
to 33% of all cases. This tells us that further research should
investigate the issue of predicting when a recomputation will
result into smaller TDGs thereby increasing the ratio h-im/rec
(i.e., by reducing the number of non-beneficial recomputa-
tions). Interestingly, in nearly all cases the heuristic was in-
creased to∞ if it was increased at all. This means that in our
problem set, if any action that belongs to the set of least-cost
reachable actions becomes unreachable in the TDG, then so
does every action and the entire set becomes empty.

Tab. 3 summarizes how often the recomputation pays off
in terms of search space and search time. We can see that
the search space never becomes larger and that the impact of
recomputation depends severely on the specific domain. In
the UM-Translog and Smartphone domains the search space
is reduced in only a few instances, which is non-surprising
given the data reported above. In the respective SmartPhone
instance, the search space is reduced by 35% (both A∗ and
A∗2) for TDGm-rec and by 26% (A∗) and 28% (A∗2) for TDGc-
rec, whereas the runtimes are unaffected compared to the runs
without recomputation. In the Satellite and Woodworking do-
mains, search space reductions occur more frequently. Even
though every search space gets reduced in Satellite, these re-
ductions are usually quite small and do therefore not pay off
in terms of search time. E.g., in this domain, the highest
relative runtime increase is from 10 s to 20 s with a search
space reduction from 49.754 to 47.048 search nodes (5.4%).
In Woodworking, the reductions are usually larger. However,

also in this domain, they are not always severe enough to pay
off in terms of runtime. The worst result in terms of runtime,
e.g., is given in a problem instance where TDGm reduces the
search space from 121.661 nodes to 96.824 (by 20%). Due to
the overhead of recomputing the TDG, the runtime increases
here from 32 s to 71 s (factor 2.22). In total, the reduction
pays off in the majority of all instances in terms of runtime
in this domain (and it allows to solve one additional problem,
not reflected in Tab. 3). In one instance, search space was re-
duced from 86.935 to 15.213 (by 83%) coinciding with run-
time reduction from 15 s to 8 s (factor 0.46) for TDGm and for
TDGc from 2.360 to 158 (by 93%) coinciding with runtime
reduction from 5 s to 3 s (factor 0.4).

7 Summary and Conclusion
We presented one of the first admissible heuristics for hier-
archical planning. Our empirical evaluation reveals that, de-
spite its admissibility, the heuristic shows good performance
in terms of coverage when deployed with Greedy-A∗. With
A∗, it performs slightly worse than other evaluated heuris-
tics in terms of coverage, but it guarantees to find optimal
solutions – whereas other strategies also produce suboptimal
solutions. We further proposed a technique that improves
the heuristic quality. The evaluation shows that it often re-
duces the explored search space, but often at the cost of in-
creased solving time. The search space reductions vary sig-
nificantly between the different problem instances. The high-
est achieved search space reduction is 93%, which coincides
with a search time reduction of 40%.

Acknowledgements
We thank the reviewers for their comments and suggestions.
We also want to thank Mario Schmautz for his support with
the evaluation. This work was done within the Transregional
Collaborative Research Centre SFB/TRR 62 “Companion-
Technology for Cognitive Technical Systems” funded by the
German Research Foundation (DFG).

References
[Alford et al., 2014] Ron Alford, Vikas Shivashankar, Ugur

Kuter, and Dana Nau. On the feasibility of planning graph
style heuristics for HTN planning. In ICAPS, pages 2–10.
AAAI Press, 2014.

[Alford et al., 2015a] Ron Alford, Pascal Bercher, and David
Aha. Tight bounds for HTN planning. In ICAPS, pages 7–
15. AAAI Press, 2015.

[Alford et al., 2015b] Ron Alford, Pascal Bercher, and
David Aha. Tight bounds for HTN planning with task in-
sertion. In IJCAI, pages 1502–1508. AAAI Press, 2015.

[Alford et al., 2016a] Ron Alford, Gregor Behnke, Daniel
Höller, Pascal Bercher, Susanne Biundo, and David Aha.
Bound to plan: Exploiting classical heuristics via auto-
matic translations of tail-recursive HTN problems. In
ICAPS, pages 20–28. AAAI Press, 2016.

[Alford et al., 2016b] Ron Alford, Vikas Shivashankar,
Mark Roberts, Jeremy Frank, and David W. Aha. Hier-
archical planning: relating task and goal decomposition

130

with task sharing. In IJCAI, pages 3022–3029. AAAI
Press, 2016.

[Behnke et al., 2015] Gregor Behnke, Daniel Höller, and Su-
sanne Biundo. On the complexity of HTN plan verification
and its implications for plan recognition. In ICAPS, pages
25–33. AAAI Press, 2015.

[Bercher et al., 2014a] Pascal Bercher, Susanne Biundo,
Thomas Geier, Thilo Hörnle, Florian Nothdurft, Felix
Richter, and Bernd Schattenberg. Plan, repair, execute, ex-
plain - how planning helps to assemble your home theater.
In ICAPS, pages 386–394. AAAI Press, 2014.

[Bercher et al., 2014b] Pascal Bercher, Shawn Keen, and Su-
sanne Biundo. Hybrid planning heuristics based on task
decomposition graphs. In SoCS, pages 35–43. AAAI
Press, 2014.

[Bercher et al., 2016] Pascal Bercher, Daniel Höller, Gregor
Behnke, and Susanne Biundo. More than a name? On im-
plications of preconditions and effects of compound HTN
planning tasks. In ECAI, pages 225–233. IOS Press, 2016.

[Biundo and Schattenberg, 2001] Susanne Biundo and
Bernd Schattenberg. From abstract crisis to concrete relief
(a preliminary report on combining state abstraction and
HTN planning). In ECP, pages 157–168. AAAI Press,
2001.

[Byrne, 1977] Richard Byrne. Planning meals: Problem
solving on a real data-base. Cognition, 5:287–332, 1977.

[Elkawkagy et al., 2010] Mohamed Elkawkagy, Bernd
Schattenberg, and Susanne Biundo. Landmarks in hier-
archical planning. In ECAI, pages 229–234. IOS Press,
2010.

[Elkawkagy et al., 2012] Mohamed Elkawkagy, Pascal
Bercher, Bernd Schattenberg, and Susanne Biundo.
Improving hierarchical planning performance by the use
of landmarks. In AAAI, pages 1763–1769. AAAI Press,
2012.

[Erol et al., 1994a] Kutluhan Erol, James Hendler, and
Dana S. Nau. UMCP: A sound and complete procedure for
hierarchical task-network planning. In AIPS, pages 249–
254. AAAI Press, 1994.

[Erol et al., 1994b] Kutluhan Erol, James A. Hendler, and
Dana S. Nau. HTN planning: Complexity and expressiv-
ity. In AAAI, pages 1123–1128. AAAI Press, 1994.

[Fox, 1997] Maria Fox. Natural hierarchical planning us-
ing operator decomposition. In ECP, pages 195–207.
Springer, 1997.

[Geier and Bercher, 2011] Thomas Geier and Pascal
Bercher. On the decidability of HTN planning with task
insertion. In IJCAI, pages 1955–1961. AAAI Press, 2011.

[Gerevini et al., 2003] Alfonso Gerevini, Alessandro Saetti,
and Ivan Serina. Planning through stochastic local search
and temporal action graphs. JAIR, 20:239–290, 2003.

[Gerevini et al., 2008] Alfonso Gerevini, Ugur Kuter,
Dana S. Nau, Alessandro Saetti, and Nathaniel Waisbrot.
Combining domain-independent planning and HTN

planning: The Duet planner. In ECAI, pages 573–577.
IOS Press, 2008.

[Höller et al., 2014] Daniel Höller, Gregor Behnke, Pascal
Bercher, and Susanne Biundo. Language classification of
hierarchical planning problems. In ECAI, pages 447–452.
IOS Press, 2014.

[Höller et al., 2016] Daniel Höller, Gregor Behnke, Pascal
Bercher, and Susanne Biundo. Assessing the expressivity
of planning formalisms through the comparison to formal
languages. In ICAPS, pages 158–165. AAAI Press, 2016.

[Lotem et al., 1999] Amnon Lotem, Dana S. Nau, and
James A. Hendler. Using planning graphs for solving HTN
planning problems. In AAAI, pages 534–540. AAAI Press,
1999.

[Marthi et al., 2008] Bhaskara Marthi, Stuart Russell, and
Jason Wolfe. Angelic hierarchical planning: Optimal and
online algorithms. In ICAPS, pages 222–231. AAAI Press,
2008.

[McAllester and Rosenblitt, 1991] David McAllester and
David Rosenblitt. Systematic nonlinear planning. In AAAI,
pages 634–639. AAAI Press, 1991.

[Nau et al., 2003] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami,
Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Ya-
man. SHOP2: An HTN planning system. JAIR, 20:379–
404, 2003.

[Nguyen and Kambhampati, 2001] XuanLong Nguyen and
Subbarao Kambhampati. Reviving partial order planning.
In IJCAI, pages 459–466. Morgan Kaufmann, 2001.

[Seegebarth et al., 2012] Bastian Seegebarth, Felix Müller,
Bernd Schattenberg, and Susanne Biundo. Making hybrid
plans more clear to human users – a formal approach for
generating sound explanations. In ICAPS, pages 225–233.
AAAI Press, 2012.

[Shivashankar et al., 2016] Vikas Shivashankar, Ron Alford,
Mark Roberts, and David W. Aha. Cost-optimal algo-
rithms for planning with procedural control knowledge. In
ECAI, pages 1702–1703. IOS Press, 2016.

[Shivashankar et al., 2017] Vikas Shivashankar, Ron Alford,
and David Aha. Incorporating domain-independent plan-
ning heuristics in hierarchical planning. In AAAI, pages
3658–3664. AAAI Press, 2017.

[Sohrabi et al., 2009] Shirin Sohrabi, Jorge A. Baier, and
Sheila A. McIlraith. HTN planning with preferences. In
IJCAI, pages 1790–1797. AAAI Press, 2009.

[Torralba et al., 2014] Álvaro Torralba, Vidal Alcázar,
Daniel Borrajo, Peter Kissmann, and Stefan Edelkamp.
SymBA*: A symbolic bidirectional A* planner. In The
8th IPC, pages 105–108, 2014.

[Xie et al., 2014] Fan Xie, Martin Müller, and Robert Holte.
Jasper: The art of exploration in greedy best first search.
In The 8th IPC, pages 39–42, 2014.

[Younes and Simmons, 2003] Håkan L. S. Younes and
Reid G. Simmons. VHPOP: Versatile heuristic partial or-
der planner. JAIR, 20:405–430, 2003.

131

The following pages show the publication:

P. Bercher, S. Keen, and S. Biundo. “Hybrid Planning Heuristics Based on Task De-
composition Graphs”. In: Proceedings of the 7th Annual Symposium on Combinatorial
Search (SoCS 2014). AAAI Press, 2014, pp. 35–43

Reprinted with kind permission of AAAI Press.

The included PDF is a revised version. Modifications are not explicitly mentioned, since
there were only minor corrections or improvements.

132

Hybrid Planning Heuristics Based on Task Decomposition Graphs

Pascal Bercher and Shawn Keen and Susanne Biundo
Institute of Artificial Intelligence,

Ulm University, Germany,
firstName.lastName@uni-ulm.de

Revised Version
(18. August 2014)

Abstract
Hybrid Planning combines Hierarchical Task Network
(HTN) planning with concepts known from Partial-Order
Causal-Link (POCL) planning. We introduce novel heuristics
for Hybrid Planning that estimate the number of necessary
modifications to turn a partial plan into a solution. These es-
timates are based on the task decomposition graph that con-
tains all decompositions of the abstract tasks in the planning
domain. Our empirical evaluation shows that the proposed
heuristics can significantly improve planning performance.

Introduction
Hierarchical Task Network (HTN) planning relies on the
concept of task decomposition (Erol, Hendler, and Nau
1994). While the goal in classical (non-hierarchical) plan-
ning is to find an action sequence that satisfies a goal de-
scription, the goal in hierarchical planning is to find an ex-
ecutable course of action that is a refinement of an initial
partial plan. Partial plans may contain primitive and abstract
tasks. While primitive tasks correspond to operators known
from classical planning, abstract tasks represent complex
activities and must therefore be refined (decomposed) into
more concrete courses of action using so-called decomposi-
tion methods. The difficulty in solving hierarchical planning
problems is to choose the “correct” decomposition method
for an abstract task in a given partial plan.

To improve the performance of hierarchical planning sys-
tems, one can follow domain-specific approaches that en-
code a domain-specific search advice within the domain.
SHOP2 (Nau et al. 2003) is one of the best-known hierar-
chical planning systems following that technique. Another
approach is to design domain-independent search strategies
(Marthi, Russell, and Wolfe 2008; Shivashankar et al. 2013;
Elkawkagy et al. 2012). The hierarchical planning system
GoDel (Shivashankar et al. 2013), for instance, uses land-
marks known from classical planning (Porteous, Sebastia,
and Hoffmann 2001) for search guidance. The hierarchical
planning system by Elkawkagy et al. (2012) uses hierarchi-
cal landmarks to guide its search. These are abstract and
primitive tasks, which occur on any refinement process from
the initial partial plan to any solution plan. Such hierarchi-
cal landmarks can be extracted from a task decomposition

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

graph (TDG), which represents the decomposition hierarchy
of the planning problem at hand. They use these landmarks
in order to decide whether one decomposition method is pre-
ferred over another. For the selection of a most-promising
search node, however, conventional heuristics are used that
are unaware of the underlying hierarchy.

In this paper, we introduce novel heuristics that do take hi-
erarchical information into account. We use the Hybrid Plan-
ning paradigm (Kambhampati, Mali, and Srivastava 1998;
Biundo and Schattenberg 2001) that fuses hierarchical plan-
ning with concepts known from Partial-Order Causal-Link
(POCL) planning. We propose a novel variant of the Hi-
erarchical Decomposition Partial-Order Planner HD-POP
(Russell and Norvig 1994, edition 1, p. 374–375) suited for
Hybrid Planning. The resulting system, PANDA, guides its
search using informed heuristics. We propose such heuris-
tics that estimate the number of modifications necessary to
find a solution. To that end, the TDG is used to extract hi-
erarchical landmarks and further information about the hi-
erarchy. Our empirical evaluation shows that the proposed
heuristics can significantly improve planning performance.

Hybrid Planning
Planning problems are given in terms of a Hybrid Planning
formalization (Kambhampati, Mali, and Srivastava 1998;
Biundo and Schattenberg 2001), which fuses concepts from
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1994) with concepts from Partial-Order Causal-
Link (POCL) planning (McAllester and Rosenblitt 1991;
Penberthy and Weld 1992).

In Hybrid Planning, there are two kinds of tasks: primitive
and abstract tasks. Both primitive and abstract tasks t(τ̄) are
tuples 〈prec(τ̄), eff (τ̄)〉 consisting of a precondition and ef-
fect over the task parameters τ̄ . Preconditions and effects are
conjunctions of literals. As usual, states are sets of ground
atoms. Tasks are called ground if all variables are bound to
constants. Applicability of (sequences of) ground primitive
tasks is defined as usual.

Partial plans are tuples (PS ,≺,VC ,CL) consisting of the
following elements. The set of plan steps PS is a set of
uniquely labeled tasks l : t(τ̄). The set ≺ of ordering con-
straints induces a partial order on the plan steps in PS . The
set VC is a set of variable constraints that (non-)codesignate
the task parameters with each other or with constants. CL is

133

a set of causal links. A causal link l : t(τ̄) →ϕ(τi) l
′ : t′(τ̄ ′)

denotes that the precondition literal ϕ(τi) of the plan step
l′ : t′(τ̄ ′) is supported by the same effect of the plan step
l : t(τ̄). If there is no causal link to a precondition ϕ(τi) we
call it an open precondition.

Partial plans may also contain abstract tasks. These cannot
be executed directly. Instead, they need to be decomposed
into more specific partial plans using so-called (decompo-
sition) methods. A method m = 〈t(τ̄), P 〉 maps an ab-
stract task t(τ̄) = 〈prec(τ̄), eff (τ̄)〉 to a partial plan P that
“implements” that task (Biundo and Schattenberg 2001).
Thereby, causal links involving t(τ̄) can be passed down to
one of its sub tasks within P when decomposing t(τ̄).

Now, a Hybrid Planning Domain D is given by the tuple
〈Ta, Tp,M〉 consisting of a finite set of abstract and primi-
tive tasks Ta and Tp, respectively, and a set of methods M .
A Hybrid Planning Problem is given by a domain and an
initial partial plan Pinit . As it is the case in standard POCL
planning, Pinit contains two special primitive tasks that en-
code an initial state and a goal description. The task t0 has
no precondition and the initial state as effect. The task t∞
has the goal description as precondition and no effects.

A plan Psol is a solution to a hybrid planning problem if
and only if the following criteria are met:

1. Psol is a refinement of Pinit w.r.t. the decomposition of
abstract tasks and insertion of ordering constraints, vari-
able constraints, and causal links.

2. Psol needs to be executable in the initial state. Thus,
(a) all tasks are primitive and ground,
(b) there are no open preconditions, and
(c) there are no causal threats. That is, given a causal link

l : t(τ̄) →ϕ(τi) l
′ : t′(τ̄ ′), we call the task l′′ : t′′(τ̄ ′′) a

threat to that link if and only if the ordering constraints
allow it to be ordered between the tasks of the causal
link and it has an effect ¬ψ(τ ′′i) that can be unified with
the protected condition ϕ(τi).

Criterion 1 relates any solution plan to the initial partial
plan Pinit . This is necessary, since Pinit represents the ac-
tual planning problem. Note that one could also allow the in-
sertion of tasks into a partial plan without being introduced
via decomposition of an abstract task as one of the allowed
refinement options. In this paper, however, we do not allow
such insertions and thereby follow the typical HTN planning
approach (Erol, Hendler, and Nau 1994). Other hierarchical
planning approaches, such as the Hybrid Planning approach
by Kambhampati et al. (1998) or HTN Planning with Task
Insertion (Geier and Bercher 2011) do allow such insertions.

Criterion 2 is inherited from standard POCL planning. It
ensures that any linearization of the tasks in a solution plan is
executable in the initial state. Every linearization generates
a state which satisfies the goal condition.

Planning Algorithm
We search for solutions by systematically refining the initial
partial plan Pinit until it meets all the solution criteria. To
that end, we propose the following generic hybrid planning
algorithm (cf. Alg. 1). The corresponding planning system

PANDA (Planning and Acting in a Network Decomposition
Architecture) is based on earlier work (Schattenberg 2009).

Algorithm 1: Hierarchical Refinement Planning
1 F ← {Pinit}
2 while F 6= ∅ do
3 P ← planSel (F)
4 F ← F \ {P}
5 if Flaws(P) = ∅ then return P
6 f ← flawSel (Flaws(P))
7 F ← F ∪ { modify(m,P) | m ∈ Mods(f, P) }
8 return fail

The algorithm employs search in the space of partial
plans. It uses a search fringe F consisting of all created re-
finements of Pinit that have not yet been chosen for expan-
sion. First, it picks and removes a partial plan from the fringe
F (line 3, 4). This choice is done by means of the plan selec-
tion function planSel. This function can be implemented
in various ways and determines the actual search strategy.
For instance, choosing always an “oldest” plan results in a
breadth first search. More elaborated strategies like A∗ or
greedy search need heuristic functions to judge the quality
or goal distance of partial plans, such as the ones we propose
in this paper.

After a partial plan P has been chosen for refinement, we
calculate all its flaws Flaws(P). Flaws are syntactical rep-
resentations of violations of solution criteria. For instance,
every abstract task in P induces a so-called abstract task
flaw, since its existence violates the executability required
by solution criterion 2.(a). Further flaw classes are open pre-
condition flaws and causal threat flaws according to solution
criteria 2.(b) and 2.(c), respectively.

If P has no flaws, it is a solution and hence returned
(line 5). If there are flaws, they need to be removed in a
systematic manner. We follow the approach of the hierarchi-
cal planner HD-POP (Russell and Norvig 1994, edition 1,
p. 374–375) and pick one of its flaws (line 6) to be resolved.
To that end, the function Mods(f, P) calculates all modifi-
cations that modify the partial plan P , such that the flaw f is
addressed in the resulting refinement. Modifications specify
which plan elements are to be added to or removed from a
given partial plan (Schattenberg, Bidot, and Biundo 2007).
The application of a modification m to the partial plan P
by the function modify(m,P) generates the correspond-
ing successor plan. Abstract task flaws can only be resolved
by applying a decomposition method for the respective task.
Open precondition flaws can only be resolved by inserting
a causal link or by decomposing an abstract task that might
possibly introduce a task with a suitable effect. Finally, a
causal threat flaw can be resolved by promotion, demotion,
and separation, as well as by decomposition if one of the
involved tasks is abstract.

The selection of a specific flaw does not constitute a back-
tracking point. This is due to the fact that every flaw needs
to be resolved at some point and we generate all its possi-
ble successor plans (line 7). Hence, any partial plan can be

134

discarded if there is a flaw without modifications. Although
the choice of a flaw does not influence correctness or com-
pleteness, it heavily influences planning performance. This
choice point is one of the major differences to the hierarchi-
cal planner used by Elkawkagy et al. (2012). That planner
orders all modifications and therefore comes without an ex-
plicit choice point for flaws.

After all successor plans of the selected partial plan and
flaw have been inserted into the fringe, the loop starts over
until a solution is generated or the fringe becomes empty. In
case of an empty fringe, there is (provably) no solution and
fail is returned (line 8).

Exploiting Task Decomposition Graphs
We now give some basic definitions based on TDGs that can
be used to design heuristic functions.

Let G = 〈VT , VM , E〉 be a TDG in accordance to Def. 5
given by Elkawkagy et al. (2012). Hence, G is a directed
AND/OR graph with the following elements: VT is a set
of task vertices consisting of ground abstract and primitive
tasks that can be obtained by decomposing the initial partial
plan. VM is a set of method vertices consisting of ground
methods that decompose an abstract task within VT . E is
a set of edges connecting vertices from VT with vertices
from VM and vice versa. More precisely: If t(c̄) ∈ VT and
m = 〈t(c̄), P 〉 ∈ VM , then (t(c̄),m) ∈ E. Then, the method
node m has an edge for every one of the ground plan steps
in P to its respective tasks in VT : If t′(c̄′) ∈ VT , t′(c̄′) being
a task of the plan steps in P , then (m, t′(c̄′)) ∈ E. Fig. 1
shows a small example TDG.

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

Figure 1: Example TDG depicted as AND/OR graph. The
symbols t0, t1, t3 and t2, t4, . . . , t8 represent ground ab-
stract and ground primitive task vertices, respectively. The
symbols m1 through m6 depict method vertices for the ab-
stract tasks t0, t1, and t3.

Although TDGs are finite, they can still be quite large be-
cause of the huge number of ground task and method in-
stances that are possible in general. To be able to build TDGs
despite their potentially large size, we follow a technique
that allows to ignore certain irrelevant parts of the TDG
(Elkawkagy, Schattenberg, and Biundo 2010).

Some of our TDG-based estimates are based on the con-
cept of mandatory tasks. They have been introduced by
Elkawkagy et al. (2012, Def. 6) and serve as approxima-
tion for landmarks (cf. Def. 4). Mandatory tasks are ground
tasks that occur in all decomposition methods of the same
abstract task. Elkawkagy et al. need these tasks as an inter-
mediate step to calculate the set of optional tasks. In their
algorithm, they use the number of these optional tasks to de-
cide whether one decomposition method is preferred before
another. We only require the mandatory tasks and use them
to obtain an estimate for the modifications that need to be
performed when decomposing abstract tasks. In contrast to
Elkawkagy et al. (2012), we do not only count the tasks, but
also use the number of their preconditions for our estimates.

To define mandatory tasks, we first need to define the sub
task set S(t(c̄)) of a ground abstract task t(c̄), c̄ denoting a
sequence of constants the task’s parameters are codesignated
with. For each method m for a task t(c̄), S(t(c̄)) contains a
set with all tasks in the partial plan referenced by m:

S(t(c̄)) = {{t′(c̄′) | (m, t′(c̄′)) ∈ E} | (t(c̄),m) ∈ E}
For the TDG in Fig. 1, S(t0) = {{t1, t2, t3}, {t3, t4}},

S(t1) = {{t1, t5}, {t5, t6}}, and S(t3) = {{t7}, {t7, t8}}.
The set of mandatory tasks M(t(c̄)) of a ground abstract

task t(c̄) is then given by:

M(t(c̄)) =
⋂

s∈S(t(c̄))

s

The set M(t(c̄)) contains only tasks that inevitably will
be inserted into a partial plan when decomposing t(c̄). It
therefore serves as a lower bound for estimating the modifi-
cation effort for decomposing t(c̄). In our example, we have
M(t0) = {t3}, M(t1) = {t5}, and M(t3) = {t7}.

So far, we only consider the very next level of decom-
position. Recursively incorporating the next levels for all
tasks in M(t(c̄)) results in higher estimates which are still
lower bounds on the actual modification effort. The resulting
set, the closure of M(t(c̄)), denoted as M∗(t(c̄)) is given
by the following recursive equation having M∗(t(c̄)) =
M(t(c̄)) = ∅ for a primitive task t(c̄).

M∗(t(c̄)) = M(t(c̄)) ∪
⋃

t′(c̄′)∈M(t(c̄))

M∗(t′(c̄′))

Note that M∗(t(c̄)) is finite even if the underlying TDG
is cyclic. In our example, we have M∗(t0) = {t3, t7},
M∗(t1) = M(t1), and M∗(t3) = M(t3).

The setM∗(t(c̄)) can now be used to estimate the effort of
decomposing t(c̄). The easiest way is to take its cardinality,
because for each task in that set, the planner needs to apply
at least one modification (a task t′(c̄′) ∈ M∗(t(c̄)) needs to
be decomposed if t′(c̄′) is abstract and – assuming primitive
tasks have non-empty preconditions – at least one causal link
must be inserted if t′(c̄′) is primitive).
Definition 1 (Task Cardinality) Let t(c̄) be a ground ab-
stract task. Then, the task cardinality of t(c̄) is given by:

TC (t(c̄)) := |M∗(t(c̄))|

135

As argued before, TC (t(c̄)) can be regarded as a reason-
able estimate for the decomposition effort of t(c̄). However,
we can improve that estimate by taking their preconditions
into account. We know that every precondition of every task
needs to be supported with a causal link. Hence, we can as-
sume that the number of required modifications is at least as
large as the number of preconditions of the mandatory tasks.

Definition 2 (Precondition Cardinality) Let t(c̄) be a
ground abstract task. Then, the precondition cardinality of
t(c̄) is given by:

PC (t(c̄)) :=
∑

t′(c̄′)∈M∗(t(c̄)), t′(c̄′) primitive,
and t′(c̄′)=〈prec(c̄′),eff (c̄′)〉

|prec(c̄′)|

Note that we only incorporate the preconditions of the
primitive tasks to avoid counting preconditions twice: since
causal links to or from an abstract task are handed down to
their subtasks when decomposing that task, it suffices to in-
corporate the preconditions of their primitive sub tasks.

So far, we have introduced two estimates for the modifi-
cation effort of abstract tasks by focusing on the mandatory
ones. Only focusing on these tasks might be too defensive,
however. Consider a planning problem, where each abstract
task has at least two (ground) decomposition methods, but
only a few mandatory tasks. Our estimate does not consider
the remaining tasks and could therefore still be improved.
In our example, M∗(t0) ignores the tasks t1, t2, and t4, al-
though at least one of these is introduced when decompos-
ing t0 (they could be considered disjunctive landmarks). We
hence investigate a third estimate that judges the minimal
modification effort based on the entire TDG while combin-
ing the ideas of TC and PC .

Definition 3 (Minimal Modification Effort) Let V be an
arbitrary set of ground tasks. For a primitive task t(c̄) =
〈prec(c̄), eff (c̄)〉, we set h(t(c̄), V) := |prec(c̄)|.

For an abstract task t(c̄) = 〈prec(c̄), eff (c̄)〉 we set:

h(t(c̄), V) :=

1 + |prec(c̄)| if t(c̄) ∈ V, or else:
1 + min

s∈S(t(c̄))

∑
t′(c̄′)∈s

h(t′(c̄′), {t(c̄)} ∪ V)

Then, MME (t(c̄)) := h(t(c̄), ∅).

The basic idea of MME is to minimize the estimated
modification effort per decomposition method represented
by the different sets in S(t(c̄)). The effort for a set of tasks
within the same method is obtained by summing over the ef-
forts for the single tasks. If such a task is primitive, we take
the number of its preconditions as estimate, analogously to
the estimate PC . If such a task is abstract, we account for
its decomposition effort by 1 plus the effort of its “cheapest”
decomposition method. Since the traversed TDG might be
cyclic, we need to ensure termination. For that purpose, we
use a set V of already visited tasks. If we discover an abstract
task that was already decomposed and hence within V , we
estimate its modification effort by 1 (for its decomposition)
plus the number of its preconditions.

MME shows some similarities to the add heuristic (Bonet
and Geffner 2001) that estimates the number of actions re-
quired to achieve an atom. The add heuristic, however, is a
non-admissible heuristic w.r.t. the number of actions (due to
the assumption of sub goal independence), while MME is
admissible w.r.t. the number of modifications (while domi-
nating both TC and PC).

Please note that not only the TDG can be calculated in
a preprocessing step before the actual search, but also the
functions we have presented so far (Def. 1 to 3). Thus, dur-
ing search, no complicated calculations are necessary.

We still have to cope with the problem that the TDG con-
sists entirely of ground task instances while the actual search
process is done in a lifted fashion, where tasks are only par-
tially ground. Given a partial plan P = (PS ,≺,VC ,CL)
and one of its plan steps ps = l : t(τ̄), we define Inst(ps) as
a function that maps to a fixed, but arbitrary ground instance
t(c̄) of ps that is compatible with the variable constraints
VC . During search, we then use the task Inst(ps) when we
want to retrieve an estimate for t(τ̄) from the TDG. An al-
ternative would be to minimize or aggregate all (or some) of
the possible ground instances of t(τ̄). We did not yet evalu-
ate these possibilities, however.

Heuristic Functions
We want to estimate the number of necessary modifications
to turn a partial plan P into a solution. In standard POCL
planning, the heuristics for that purpose (Nguyen and Kamb-
hampati 2001; Younes and Simmons 2003; Bercher, Geier,
and Biundo 2013; Bercher et al. 2013) are based on the con-
cept of task insertion, rather than task decomposition and
hence not directly applicable in our setting. There are also
several heuristics for the hybrid planning approach (Schat-
tenberg, Bidot, and Biundo 2007; Schattenberg 2009). How-
ever, these heuristics incorporate the hierarchical aspects of
abstract tasks not to their full extent, in particular, because
they are not based upon a TDG.

A relatively simple hybrid and/or POCL heuristic is h#F

that returns the number of flaws. That heuristic might un-
derestimate the number of required modifications, however.
For example, estimating the number of modifications for an
abstract task flaw by one ignores that decomposing the re-
spective task introduces several new tasks thus raising new
flaws. We hence estimate the number of required modifica-
tions by h#F plus a value accounting for the hierarchy by
inspecting the TDG w.r.t. the abstract tasks in a partial plan.

We now give heuristics for partial plans based on Def. 1
to 3, i.e., TC , PC , and MME . For all definitions, assume P
to be a partial plan (PS ,≺,VC ,CL).

Definition 4 (Heuristic hTC+PC)

hTC+PC (P) :=
∑

ps∈PS
TC (Inst(ps)) + PC (Inst(ps))

While both TC (t(c̄)) and PC (t(c̄)) guarantee not to
overestimate the number of modifications for t(c̄), hTC+PC

does not show this property. First, the arbitrary compatible
instantiation of the plan step ps can be suboptimal. Second,
TC , which is simply the cardinality of all the mandatory

136

tasks of Inst(ps), contributes to the modification effort for
each primitive task by one, assuming that for every primitive
task, at least one causal link must be inserted. This effort,
however, is already reflected in PC (Inst(ps)), as it counts
the preconditions of the primitive tasks. We did not “fix” this
possible overestimation, because we believe that the heuris-
tics already underestimate the actual modification effort in
practice (most importantly because both TC and PC restrict
their estimates to the mandatory tasks).

The next heuristic, based on MME , incorporates the
whole TDG for its estimates.

Definition 5 (Heuristic hMME)

hMME (P) :=
∑

ps∈PS is abstract

MME (Inst(ps))

Evaluation
We evaluate the proposed TDG-based heuristics on four
hybrid planning domains and compare them with standard
search strategies that are not based on the TDG.

Planning Benchmarks
We use the same set of planning domains used by Elkaw-
kagy et al. (2012) for their evaluation. We shortly review
those domains and include information about the TDGs of
the evaluated problem instances. We only build the pruned
TDGs that incorporate reachability information of the re-
spective problem instances. One of the TDG-related infor-
mation is its maximal branching factor. Please note that this
number is different from the branching factor of the explored
search space, since not only decomposition methods need to
be chosen, but also open precondition and causal threat flaws
need to be resolved. In particular for inserting a causal link
there might be several refinement options during search.

The first planning domain is based on the well-known
UM-Translog (Andrews et al. 1995) domain for hierarchical
planning. UM-Translog is a logistics domain, where goods
of certain kinds need to be transported. It shows 48 primitive
and 21 abstract tasks for which there are 51 methods. The
domain contains recursive decompositions. In the conducted
experiments, the respective TDGs are acyclic and contain 7
to 22 ground primitive tasks and 12 to 30 ground abstract
tasks. The longest path within the TDG has length 11, while
the average branching factor of the abstract tasks is at most
1.11 indicating that the reachability analysis ruled out most
of the available decomposition options. The easiest problem
instance can be solved by applying 25 modifications, while
the hardest instance requires at least 76 modifications.

The Satellite domain is a hierarchical adaptation of a
domain taken from the International Planning Competition
(IPC) that features conducting orbital observations using a
certain number of satellites and modes. It consists of 5 primi-
tive and 3 abstract tasks with 8 methods in total. That domain
does also not contain recursive decompositions. Despite the
small number of tasks and the missing recursion, the do-
main is rather difficult due to the large number of reachable
ground task instances. Those vary from 7 to 87 for primitive
tasks and from 4 to 16 for abstract tasks. While the maximal

path length of these TDGs is always 4, the average branching
factor for decomposition ranges from 2.75 to 15.1. Depend-
ing on the problem instance, solutions require between 13
and 41 modifications.

The SmartPhone domain models a modern cell phone.
The tasks are concerned with sending messages and creat-
ing contacts or appointments. It is defined over 87 primitive
tasks, 50 abstract tasks, and 94 methods. The domain allows
for recursion. The TDGs contain between 10 and 19 prim-
itive ground tasks and 7 and 22 ground abstract tasks. The
maximal acyclic path length ranges from 4 to 6 with an av-
erage branching factor ranging from 1.42 to 1.95. Solutions
have a minimal depth of 18 to 54.

The last domain, Woodworking, is also based on a bench-
mark from the IPC and deals with cutting, planing, and fin-
ishing wood parts. The domain consists of 6 abstract tasks,
13 primitive tasks, and 14 methods. The domain does not
have cyclic method definitions. The TDGs of the problem
instances contain between 10 and 64 ground primitive tasks
and 15 to 492 ground abstract tasks. The depth varies from
2 to 4, and the average branching factor ranges from 2.53 to
7.21. Solutions require between 22 and 53 modifications.

Search Strategies
For the evaluation, we use greedy search with varying
heuristics. If some partial plans show the same heuristic
value, ties are broken by chance.

For the flaw selection function, we always use Least-Cost
Flaw-Repair (LCFR) (Joslin and Pollack 1994). LCFR min-
imizes the branching factor per search node by selecting a
flaw that has minimal “repair cost”, i.e., the least number of
modifications. Ties between flaws are broken by chance.

Besides our new TDG-based heuristics, we have also in-
cluded the Number of Flaws (h#F) of a partial plan and the
Number of Modifications (h#M) for all flaws1.

For every heuristic, we also evaluated a normalized ver-
sion thereof. Let P = (PS ,≺,VC ,CL) be a partial plan;
then ‖h(P)‖ is defined by h(P)

|PS | . Taking the ratio of a heuris-
tic (such as the number of flaws) to the number of plan steps
prevents heuristic values for two consecutive partial plans
from jumping too much. Consider two partial plans, P1 and
P2, P2 being the successor of P1 due to the decomposi-
tion of an abstract task. In general, P2 contains several new
plan steps and therefore several new flaws. According to the
heuristic h#F , for example, P2 looks much worse than P1

although the decomposition generating P2 was inevitable.
Normalizing tries to compensate that phenomenon.

In addition to greedy search using different heuristics, we
also include several base line configurations. These include
the uninformed Breadth First Search (BF) and Depth First
Search (DF). Furthermore, the core ideas behind the well-
known hierarchical planning systems UMCP (Erol, Hendler,
and Nau 1994) and SHOP2 (Nau et al. 2003) can be captured
by our hybrid planning framework (Schattenberg, Weigl,
and Biundo 2005).

1Greedy search using h#M corresponds to the search strategy
used in the evaluation by Elkawkagy et al. (2012). They called this
strategy Fewer Modifications First (fmf).

137

In case of UMCP, our emulation is very close to the origi-
nal system. We have employed all three variants of that sys-
tem described in Erol’s dissertation (1996, Chapter 6.1.2.1).
As proposed by Erol, we employ BF and DF as plan selec-
tion, as well as greedy search using a heuristic that always
selects a partial plan with the smallest number of abstract
tasks. UMCP always decomposes an abstract task before re-
solving open precondition flaws or causal threats.

To emulate SHOP2, we employ a depth first search with
the flaw selection earliest first. That function always prefers
a flaw associated with a plan element that is closest to the
initial task, i.e., closest to the execution horizon. Note that
our emulation of SHOP2 still shows some significant differ-
ences to the actual SHOP2 system. SHOP2 performs pro-
gression search in the space of states while our system is
based on POCL techniques. Furthermore, the actual SHOP2
system uses domain-specific search space information that is
encoded in the preconditions of methods while our approach
uses domain-independent search strategies.

System Configuration
In all experiments – including the ones for SHOP2 and
UMCP – we enable the TDG pruning technique described
by Elkawkagy et al. (2010). The explored search space is re-
duced by omitting decomposition methods that are not sup-
ported by the pruned TDG.

We conducted the experiments on a system with Intel
Xeon E5 2.5 Ghz processors. Because most of the problem
instances are solved within only a few seconds, we report
and focus on the number of expanded search nodes to ob-
tain a more accurate measure of search effort. Note that the
number of created search nodes is in general much larger.
We limited the available CPU time per problem instance to
10 minutes and the available memory to 2 GB.

To obtain statistically significant values, we run each ex-
periment 50 times and report the (rounded) mean number
of expanded search nodes µs, its relative standard devia-
tion σ/µs, and the (rounded) mean CPU time µt in seconds,
including preprocessing. We report the number of success-
ful runs in parentheses if some were not successful. The re-
ported values are based only on these successful runs.

Experimental Results
The results for the evaluated domains are shown in Tab. 1
to 4. The best result is highlighted in bold and the second
best in bold and italic.

UM-Translog In this domain, we did not find any signifi-
cant differences between the compared configurations.

The evaluated UM-Translog problem instances2 turn out
to be very easy, since even the uninformed BF and DF strate-
gies always found a solution very quickly. We attribute this
result to the TDG pruning that eliminates most of the choices

2We evaluated 20 problem instances while we report only 8 of
these in Tab. 1. The remaining instances turned out to be uninter-
esting for our evaluation, since all tested search strategies produce
the same number of search nodes with a standard deviation of 0.
Expanded search nodes vary from 25 to 55.

for different decomposition methods. Remember that the
pruned TDG has a branching factor of at most 1.11 in this
domain. Despite that observation, the experiments show that
the evaluated UMCP and SHOP2 configurations performed
much worse than the other strategies. Concerning the other
configurations, results have to be interpreted with care, since
the results do not differ significantly (cf. Tab. 1). We observe
that in all but one problem instances, greedy search using
h#F+hTC+PC and h#F+hMME , respectively, was among
the two best-performing configurations. Another interesting
result is that both h#F + hTC+PC and h#F + hMME dom-
inate the heuristic h#F in all problem instances. We can
hence conclude that adding the estimates based on the TDG
improves the estimate that is entirely based on h#F .

Satellite While the small problem instances can be solved
almost instantly, the problem instances in which three ob-
servations have to be taken require more than 100.000 node
expansions for many of the configurations. In this domain,
all our TDG-based heuristics appear to be quite well in-
formed. In 8 of 15 problem instances, ‖h#F + hTC+PC‖
and ‖h#F +hMME‖ are the two best-performing heuristics.
We can also observe that these normalized versions of our
heuristics expand less nodes than their non-normalized ver-
sions in all but a few cases. In 12 of the 15 evaluated prob-
lem instances, one of the proposed four heuristics is among
the two best-performing configurations. Our heuristics are
in general performing very well in this domain. Especially
in comparison to SHOP2 and UMCP, a much better search
efficiency can be observed for the proposed heuristics. In
some problem instances, for example in 3–1–1, 3–2–1, and
3–3–1, the proposed heuristics expand several hundred thou-
sand search nodes less than the SHOP2 and the BF and DF
versions of UMCP. The heuristic version of UMCP, how-
ever, works very well in that domain, but is still dominated
by our TDG-based heuristics in many cases.

Since the Satellite domain shows the largest deviation
among the different search strategies and heuristics, we have
included a plot (Fig. 2(a)) showing the number of solved in-
stances over the number of search node expansions. Higher
curves indicate that more solutions were found given the
same number of expansions. As a baseline, we included
BF, DF, and the SHOP2 configuration as well as UMCP-H,
which is the best-performing variant of UMCP in that do-
main, and h#M . Concerning our proposed heuristics, we in-
cluded ‖h#F + hMME‖ in the plot, as it is the one with
the best results. The heuristic ‖h#F + hTC+PC‖ shows a
similar behavior: its graph lies only slightly below that of
‖h#F + hMME‖. We also included the non-normalized ver-
sion of that heuristic, h#F + hMME . Again, the graphs of
h#F + hMME and h#F + hTC+PC are almost identical.

The plot clearly reveals the superiority of the normal-
ized versions compared to their non-normalized counter-
parts. Furthermore, the best configuration in that domain is
the one based on ‖h#F + hMME‖. Also, UMCP-H and DF
both perform very well in that domain.

Concerning CPU time, we also produced a plot corre-
sponding to Fig. 2(a) where the x-axis shows the CPU time.

138

Table 1 to 4: Strategy lists the used system configuration in the first six cases. In the remaining cases, it specifies the heuristic
used with greedy search and the flaw selection LCFR. Problem lists the used problem instances. The column µs reports the
rounded mean number of expanded search nodes over 50 runs, σ/µs its relative standard deviation, and µt the rounded mean
CPU time in seconds. The number of successful runs is reported in parentheses if it is not 50.

Table 1: Results for the UM-Translog domain.

Problem #06 #08 #09 #10 #11 #12 #13 #14
Strategy µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt

BF 71 0.06 0 93 0.29 0 765 0.54 5 34 0.00 0 33 0.00 0 85 0.03 1 77 0.03 1 78 0.03 1
DF 62 0.14 0 35 0.00 0 76 0.02 2 34 0.00 0 33 0.00 0 80 0.05 1 73 0.04 1 73 0.05 1
SHOP2 21121 2.43 6 35 0.00 0 80 0.37 2 34 0.01 0 33 0.00 0 94 0.25 1 71 0.08 1 83 0.28 1
UMCP-BF 205 0.19 1 84 0.04 0 1548 0.08 8 36 0.02 0 33 0.02 0 174 0.14 3 266 0.13 6 168 0.16 3
UMCP-DF 119 0.57 1 35 0.01 0 542 0.74 4 35 0.03 0 33 0.02 0 133 0.33 2 168 0.47 4 126 0.32 2
UMCP-H 93 0.55 0 38 0.14 0 315 1.08 4 34 0.02 0 33 0.02 0 99 0.29 1 132 0.49 3 90 0.25 1
h#M 58 0.10 0 35 0.00 0 81 0.07 3 34 0.00 0 33 0.00 0 84 0.02 2 75 0.02 2 77 0.02 2
‖h#M‖ 56 0.10 0 35 0.00 0 76 0.02 3 34 0.00 0 33 0.00 0 84 0.03 2 76 0.02 2 77 0.03 2
h#F 58 0.08 0 39 0.13 0 96 0.17 3 34 0.00 0 33 0.00 0 84 0.02 1 76 0.03 2 77 0.02 2
‖h#F ‖ 58 0.08 0 35 0.00 0 76 0.02 2 34 0.00 0 33 0.00 0 83 0.03 1 75 0.02 2 77 0.03 2
h#F + hTC+PC 54 0.05 0 35 0.00 0 76 0.02 1 34 0.00 0 33 0.00 0 78 0.03 1 75 0.03 2 71 0.03 1
‖h#F + hTC+PC‖ 57 0.11 0 35 0.00 0 76 0.03 1 34 0.00 0 33 0.00 0 80 0.04 1 75 0.03 2 73 0.04 1
h#F + hMME 55 0.07 0 35 0.00 0 76 0.02 1 34 0.00 0 33 0.00 0 78 0.04 1 75 0.03 2 71 0.04 1
‖h#F + hMME‖ 64 0.12 1 35 0.00 0 76 0.03 1 34 0.00 0 33 0.00 0 81 0.04 1 76 0.03 2 74 0.04 1

Table 2: Results for the Satellite domain. The caption X–Y–Z stands for X observations, Y satellites, and Z modes.

Problem 1–1–1 1–2–1 2–1–1 2–1–2 2–2–1 2–2–2 3–1–1 3–1–2
Strategy µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt

BF 21 0.18 0 44 0.10 0 292 0.22 1 4145 0.26 7 354 0.08 2 3012 0.31 8 10498 0.24 8 (7) 1670647 0.13 469
DF 16 0.20 0 24 0.46 0 72 0.68 0 521 0.57 2 57 0.70 0 442 0.74 2 1214 0.78 3 171006 1.16 31

SHOP2 15 0.13 0 25 0.55 0 399 1.38 1 376 0.76 1 238 2.10 1 653 0.90 2 246446 1.47 46 115096 1.35 28
UMCP-BF 16 0.11 0 39 0.11 0 673 0.20 1 1080 0.17 4 2021 0.25 5 2165 0.26 5 112686 0.18 26 368516 0.11 79
UMCP-DF 15 0.12 0 20 0.33 0 389 1.38 0 339 0.87 1 352 1.79 1 273 0.62 1 238745 1.26 33 35242 1.62 12
UMCP-H 15 0.12 0 24 0.28 0 75 0.39 0 344 0.66 1 89 0.36 0 443 0.47 2 413 1.53 1 6374 0.79 7
h#M 18 0.17 0 26 0.39 0 157 0.25 1 968 0.43 5 136 0.10 1 784 0.46 5 2557 0.20 6 29040 1.26 15
‖h#M‖ 14 0.08 0 14 0.00 0 42 0.11 0 620 0.62 3 43 0.30 1 325 0.76 2 1561 0.46 5 127033 1.52 31
h#F 17 0.16 0 26 0.40 0 111 0.25 0 793 0.30 4 86 0.16 1 620 0.43 3 1418 0.22 5 18236 0.74 12
‖h#F ‖ 14 0.09 0 15 0.08 0 72 0.28 0 450 0.29 2 33 0.14 0 252 0.59 1 3316 0.35 7 248677 0.84 45
h#F + hTC+PC 16 0.20 0 24 0.39 0 41 0.08 0 880 0.34 5 54 0.36 0 373 0.74 2 940 0.38 4 60745 1.80 18
‖h#F + hTC+PC‖ 13 0.00 0 17 0.40 0 22 0.03 0 92 0.30 1 31 0.30 0 123 1.07 1 46 0.42 0 21939 1.29 12
h#F + hMME 16 0.19 0 25 0.10 0 42 0.10 0 739 0.42 4 44 0.45 0 333 0.83 2 997 0.33 4 62353 1.77 18
‖h#F + hMME‖ 13 0.00 0 21 0.42 0 22 0.03 0 105 0.37 1 27 0.38 0 160 0.94 1 37 0.34 0 24459 1.30 12

Problem 3–1–3 3–2–1 3–2–2 3–2–3 3–3–1 3–3–2 3–3–3
Strategy µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt

BF — — — 15174 0.15 13 710661 0.34 140 — — — 36408 0.14 17 322284 0.32 69 (16) 1122746 0.25 338
DF 668416 0.77 109 940 0.99 4 106748 1.22 28 318515 0.96 61 1639 0.95 5 43456 1.18 16 239418 0.89 48

SHOP2 472177 0.88 99 (40) 333398 2.41 64 (37) 294693 1.37 77 (11) 532783 1.29 133 (39) 82194 1.87 22 (29) 339167 1.22 83 (13) 461074 1.66 101
UMCP-BF 605241 0.10 122 810422 0.21 17 — — — — — — (42) 1628608 0.17 374 — — — — — —
UMCP-DF 129381 0.89 32 (41) 113375 1.94 20 (48) 287016 1.52 63 762774 1.13 151 566905 1.72 80 (49) 350331 1.51 72 581613 0.68 133
UMCP-H 125524 0.77 33 1101 2.03 2 19992 1.03 11 (49) 636852 1.03 133 1206 1.36 3 24799 0.99 12 513303 0.58 122

h#M 219016 0.64 42 2208 0.14 9 36058 0.97 19 205674 0.63 46 2692 0.10 9 25465 0.97 15 247083 1.07 52
‖h#M‖ 354407 0.91 72 1149 0.34 6 88179 0.96 29 308752 0.95 66 617 0.16 4 5996 0.99 10 184650 2.34 41
h#F (42) 468944 0.73 101 1133 0.09 6 19827 0.48 17 122587 0.96 34 1162 0.14 5 30125 0.57 18 163326 0.93 37
‖h#F ‖ 245524 0.75 46 691 0.42 5 112265 1.12 31 126640 1.12 31 599 0.33 4 20535 2.22 13 64105 2.30 19
h#F + hTC+PC 599905 0.47 106 410 0.37 3 5174 1.54 10 84298 1.88 26 729 0.35 4 3972 0.86 11 50111 1.93 19
‖h#F + hTC+PC‖ 132639 0.81 44 242 0.56 2 14283 1.63 12 113607 1.37 36 474 0.90 3 9438 1.68 10 47144 1.40 20
h#F + hMME 807016 0.46 142 601 0.74 3 11600 1.42 11 179804 1.22 44 699 0.34 4 7477 2.02 8 85274 1.45 26
‖h#F + hMME‖ 145929 0.64 46 128 1.19 1 14862 2.46 11 59059 1.10 27 248 1.28 2 14435 2.03 10 51977 1.28 22

Table 3: Results for the SmartPhone domain.

Problem #1 #2 #3
Strategy µs σs/µs µt µs σs/µs µt µs σs/µs µt

BF 30 0.14 0 486980 0.24 103 — — —
DF 20 0.06 0 (12) 166 1.57 1 164 1.04 1
SHOP2 20 0.08 0 (8) 82 0.24 0 60486 2.30 22
UMCP-BF 58 0.24 0 — — — 375530 0.04 55
UMCP-DF 19 0.08 0 (5) 2033 1.27 2 15863 1.45 6
UMCP-H 18 0.00 0 — — — 15964 1.21 7

h#M 18 0.00 0 — — — 27114 0.04 17
‖h#M‖ 18 0.00 0 — — — 27111 0.04 17
h#F 19 0.05 0 — — — 1608 0.61 9
‖h#F ‖ 20 0.00 0 — — — 826 0.78 7
h#F + hTC+PC 22 0.08 0 — — — 112 0.40 2
‖h#F + hTC+PC‖ 21 0.02 0 (4) 120 0.11 1 67 0.15 1
h#F + hMME 18 0.00 0 (2) 139 0.13 1 164 0.30 2
‖h#F + hMME‖ 20 0.07 0 — — — 230 0.89 2

Table 4: Results for the Woodworking domain.

#1 #2 #3 #4 #5
µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt

23 0.02 0 48 0.01 0 60 0.05 0 565 0.25 1 474 0.27 1
23 0.02 0 47 0.01 0 46 0.18 0 210 0.41 1 168 0.43 1
30 0.59 0 96 1.90 1 332 1.56 2 (29) 198536 1.78 86 (30) 152786 1.93 59
26 0.18 0 54 0.19 0 74 0.15 0 1642 0.31 2 1612 0.18 2
24 0.11 0 48 0.07 0 51 0.25 0 164 0.32 1 167 0.34 1
25 0.11 0 49 0.10 0 50 0.25 0 115 0.34 1 106 0.39 0
23 0.02 0 47 0.01 0 37 0.07 0 99 0.17 1 74 0.19 1
23 0.02 0 47 0.01 0 37 0.07 0 103 0.24 1 71 0.23 1
23 0.02 0 47 0.01 0 37 0.02 0 89 0.20 1 67 0.12 1
23 0.02 0 47 0.01 0 37 0.02 0 90 0.27 1 62 0.10 1
23 0.02 0 47 0.01 0 37 0.03 0 92 0.24 1 71 0.18 1
23 0.02 0 47 0.01 0 37 0.03 0 101 0.51 1 72 0.27 1
23 0.02 0 47 0.01 0 36 0.02 0 82 0.47 1 84 0.43 1
23 0.02 0 47 0.01 0 37 0.07 0 171 0.47 1 175 0.37 1

139

0

200

400

600

750

1e+02 1e+04 1e+06
Expanded Search Nodes

S
ol

ve
d

P
ro

bl
em

 In
st

an
ce

s

Search Strategy

BF

DF

SHOP2

UMCP-H

h#M

h#F + hMME

||h#F + hMME||

(a) Satellite Domain

770

1000

1400

1800

2150

1e+02 1e+04 1e+06
Expanded Search Nodes

S
ol

ve
d

P
ro

bl
em

 In
st

an
ce

s

Heuristic

h#F

h#F + hTC+PC

h#F + hMME

||h#F||

||h#F + hTC+PC||

||h#F + hMME||

(b) All Domains

Figure 2: These plots show the number of solved problem instances (each run 50 times) over the number of expanded search
nodes. For Fig. (a) only results for the Satellite domain were used, while Fig. (b) shows results over all domains. For the latter,
we have omitted the data points below 750 solved instances for visual clarity.

We did not include it in the paper due to space restrictions,
but we can report that the two plots look very similar indi-
cating that the reduced search space pays off and comes with
no additional overhead w.r.t. computation time.

SmartPhone The SmartPhone domain is the hardest do-
main that we evaluated. The first problem instance looks
very similar to the UM-Translog instances: while our heuris-
tics are among the best-performing strategies, there is only
very little difference between the configurations. Even BF
and DF find solutions very quickly. In the third problem in-
stance, our strategies also perform very well. They expand at
most 229 search nodes on average, where the best version of
UMCP expands more than 150.000 nodes. Surprisingly, DF
performs very well with only 163 expanded search nodes
on average. The second problem instance seems to be the
hardest one. All configurations except BF and DF produced
timeouts or exceeded the memory limit in almost all runs.
The SHOP2 configuration was able to find a solution very
quickly (81 on average), but only in 8 out of 50 runs. Two of
our proposed heuristics also solve the problem very quickly,
but only in 2 and 4 runs, respectively.

Woodworking In all but one problems, h#F + hMME is
among the two best-performing heuristics. However, clear
conclusions cannot be drawn, since planning performance
does not significantly vary among the deployed strategies.

Summary In summary, we have seen that our TDG-based
heuristics need to expand the smallest number of search
nodes in order to find a solution. To investigate the dif-
ference between the proposed heuristics, we include a plot

(Fig. 2(b)) that shows the number of solved problem in-
stances given a number of expanded search nodes for all
problem instances among all domains.

We can draw several conclusions when investigating the
data. First, we can see that the heuristics that need to ex-
plore the largest part of the search space are the relatively
simple heuristics h#F and ‖h#F ‖. This is our most im-
portant finding, since we can see that taking the TDG into
account actually improves these heuristics significantly. It
comes to our surprise, however, that there are no signifi-
cant differences between the heuristics ‖h#F +hMME‖ and
‖h#F +hTC+PC‖. Another interesting result is that the nor-
malized version of a heuristic clearly performs better on av-
erage than the corresponding non-normalized one.

Conclusion
We have proposed novel heuristics for Hybrid Planning that
estimate the necessary number of modifications for a par-
tial plan to turn it into a solution. These heuristics are based
on a task decomposition graph and hence capable of incor-
porating the hierarchical aspects of the underlying domain.
We conducted experiments using a novel algorithm for Hy-
brid Planning. Our heuristics proved to be the most informed
ones in the evaluated problem instances.

Acknowledgment
We want to thank Thomas Geier and Bernd Schattenberg
for proofreading the paper. This work is done within the
Transregional Collaborative Research Centre SFB/TRR 62
“Companion-Technology for Cognitive Technical Systems”
funded by the German Research Foundation (DFG).

140

References
Andrews, S.; Kettler, B.; Erol, K.; and Hendler, J. A. 1995.
UM translog: A planning domain for the development and
benchmarking of planning systems. Technical Report CS-
TR-3487, Department of Computer Science, Institute of
Systems Research, University of Maryland.
Bercher, P.; Geier, T.; Richter, F.; and Biundo, S. 2013. On
delete relaxation in partial-order causal-link planning. In
Proceedings of the 2013 IEEE 25th International Confer-
ence on Tools with Artificial Intelligence (ICTAI 2013), 674–
681.
Bercher, P.; Geier, T.; and Biundo, S. 2013. Using state-
based planning heuristics for partial-order causal-link plan-
ning. In Advances in Artificial Intelligence, Proceedings of
the 36nd German Conference on Artificial Intelligence (KI
2013), 1–12. Springer.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – a preliminary report on combining state
abstraction and HTN planning. In Proceedings of the 6th
European Conference on Planning (ECP 2001), 157–168.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In Proceedings of the 26th National
Conference on Artificial Intelligence (AAAI 2012), 1763–
1769. AAAI Press.
Elkawkagy, M.; Schattenberg, B.; and Biundo, S. 2010.
Landmarks in hierarchical planning. In Proceedings of the
20th European Conference on Artificial Intelligence (ECAI
2010), volume 215, 229–234. IOS Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proceedings of the 2nd International Conference on
Artificial Intelligence Planning Systems (AIPS 1994), 249–
254. AAAI Press.
Erol, K. 1996. Hierarchical Task Network Planning: For-
malization, Analysis, and Implementation. Ph.D. Disserta-
tion, University of Maryland.
Geier, T., and Bercher, P. 2011. On the decidability of
HTN planning with task insertion. In Proceedings of the
22nd International Joint Conference on Artificial Intelli-
gence (IJCAI 2011), 1955–1961. AAAI Press.
Joslin, D., and Pollack, M. E. 1994. Least-cost flaw re-
pair: A plan refinement strategy for partial-order planning.
In Proceedings of the 12th National Conference on Artifi-
cial Intelligence (AAAI 1994), 1004–1009. AAAI Press.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
planning for partially hierarchical domains. In Proceedings
of the 15th National Conference on Artificial Intelligence
(AAAI 1998), 882–888. AAAI Press.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic hi-
erarchical planning: Optimal and online algorithms. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS 2008), 222–231. AAAI
Press.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proceedings of the 9th National Confer-
ence on Artificial Intelligence (AAAI 1991), 634–639. AAAI
Press.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research (JAIR)
20:379–404.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001),
459–466. Morgan Kaufmann.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proceedings of
the third International Conference on Knowledge Represen-
tation and Reasoning, 103–114. Morgan Kaufmann.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Proceedings of the 6th European Conference on Planning
(ECP 2001), 37–48.
Russell, S., and Norvig, P. 1994. Artificial Intelligence – A
modern Approach. Prentice-Hall, 1 edition.
Schattenberg, B.; Bidot, J.; and Biundo, S. 2007. On the con-
struction and evaluation of flexible plan-refinement strate-
gies. In Advances in Artificial Intelligence, Proceedings of
the 30th German Conference on Artificial Intelligence (KI
2007), 367–381. Springer.
Schattenberg, B.; Weigl, A.; and Biundo, S. 2005. Hybrid
planning using flexible strategies. In Advances in Artificial
Intelligence, Proceedings of the 28th German Conference on
Artificial Intelligence (KI 2005), 249–263. Springer.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. Dissertation, University of Ulm, Germany.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. 2013.
The GoDeL planning system: A more perfect union of
domain-independent and hierarchical planning. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2380–2386. AAAI Press.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research (JAIR) 20:405–430.

141

The following pages show the publication:

P. Bercher, T. Geier, and S. Biundo. “Using State-Based Planning Heuristics for Partial-
Order Causal-Link Planning”. In: Advances in Artificial Intelligence, Proceedings of the
36th German Conference on Artificial Intelligence (KI 2013). Springer, 2013, pp. 1–12.
doi: 10.1007/978-3-642-40942-4_1

https://link.springer.com/chapter/10.1007%2F978-3-642-40942-4_1

The final publication is available at link.springer.com

Reprinted with kind permission of Springer.

142

http://dx.doi.org/10.1007/978-3-642-40942-4_1
https://link.springer.com/chapter/10.1007%2F978-3-642-40942-4_1
link.springer.com

Using State-Based Planning Heuristics for
Partial-Order Causal-Link Planning

Pascal Bercher, Thomas Geier, and Susanne Biundo

Institute of Artificial Intelligence,
Ulm University, D-89069 Ulm, Germany,
email: firstName.lastName@uni-ulm.de

Abstract. We present a technique which allows partial-order causal-
link (POCL) planning systems to use heuristics known from state-based
planning to guide their search.

The technique encodes a given partially ordered partial plan as a new
classical planning problem that yields the same set of solutions reach-
able from the given partial plan. As heuristic estimate of the given partial
plan a state-based heuristic can be used estimating the goal distance of
the initial state in the encoded problem. This technique also provides
the first admissible heuristics for POCL planning, simply by using ad-
missible heuristics from state-based planning. To show the potential of
our technique, we conducted experiments where we compared two of the
currently strongest heuristics from state-based planning with two of the
currently best-informed heuristics from POCL planning.

1 Introduction

In most of today’s classical planning approaches, problems are solved by informed
(heuristic) progression search in the space of states. One reason for the success of
this approach is the availability of highly informed heuristics performing a goal-
distance estimate for a given state. In contrast, search nodes in plan-based search
correspond to partially ordered partial plans; thus, the heuristics known from
state-based planning are not directly applicable to plan-based search techniques.

One of the most important representatives of plan-based search is partial-
order causal-link (POCL) planning [13, 17]. POCL planning benefits from its
least-commitment principle enforcing decisions during planning only if necessary.
For instance, POCL planning can be done lifted thereby avoiding premature vari-
able bindings. POCL planning has greater flexibility at plan execution time [14]
and eases the integration for handling resource or temporal constraints and du-
rative actions [20, 3]. Its knowledge-rich plans furthermore enable the generation
of formally sound plan explanations [19].

However, developing well-informed heuristics for POCL planning is a chal-
lenging task [21]; thus, heuristics are still rare. To address this shortcoming, we
propose a technique which allows to use heuristics already known from state-
based search in POCL planning, rather than developing new heuristics.

143

2 Pascal Bercher, Thomas Geier, and Susanne Biundo

This technique works by transforming a current search node, i.e., a partially
ordered partial plan, into a new planning problem, into which the given partial
plan is completely encoded, s.t. solutions for the new problem correspond to so-
lutions reachable from the encoded search node. Then, we evaluate the heuristic
estimate of the transformed problem’s initial state using any heuristic known
from state-based search, and use it as heuristic estimate of the search node. As
it turns out, not every state-based heuristic works with our technique, but we
obtained promising empirical results for some of them.

The remainder of the paper is structured as follows: the next section is de-
voted to the problem formalization. Section 3 introduces the proposed trans-
formation. In Section 4, we discuss several issues and questions arising when
using the technique in practice. In Section 5, we evaluate our approach by com-
paring our POCL planning system using four different heuristics: two of them
are the currently best-informed heuristics known for POCL planning, whereas
the other two use state-of-the-art heuristics known from state-based planning in
combination with our problem encoding. Finally, Section 6 concludes the paper.

2 POCL Planning

A planning domain is a tuple D = 〈V,A〉, where V is a finite set of boolean
state variables, S = 2V is the set of states, and A is a finite set of actions, each
having the form (pre, add , del), where pre, add , del ⊆ V. An action is applicable
in a state s ∈ S if its precondition pre holds in s, i.e., pre ⊆ s. Its application
generates the state (s \ del) ∪ add . The applicability and application of action
sequences is defined as usual. A planning problem in STRIPS notation [5] is a
tuple π = 〈D, sinit , g〉 with sinit ∈ S being the initial state and g ⊆ V being
the goal description. A solution to π is an applicable action sequence starting in
sinit and generating a state s ⊇ g that satisfies the goal condition.

POCL planning is a technique that solves planning problems via search in
the space of partial plans. A partial plan is a tuple (PS ,≺, CL). PS is a set of
plan steps, each being a pair l:a with an action a ∈ A and a unique label l ∈ L
with L being an infinite set of label symbols to differentiate multiple occurrences
of the same action within a partial plan. The set ≺ ⊂ L×L represents ordering
constraints and induces a strict partial order on the plan steps in PS . CL is a
set of causal links. A causal link (l, v, l′) ∈ L× V × L testifies that the precon-
dition v ∈ V of the plan step with label l′ (called the consumer) is provided by
the action with label l (called the producer). That is, if l:(pre, add , del) ∈ PS ,
l′:(pre ′, add ′, del ′) ∈ PS , and (l, v, l′) ∈ CL, then v ∈ add and v ∈ pre ′. Further-
more, we demand l ≺ l′ if (l, v, l′) ∈ CL.

Now, π can be represented as a POCL planning problem 〈D, Pinit〉, where
Pinit := ({l0:a0, l∞:a∞}, {(l0, l∞)}, ∅) is the initial partial plan. The actions a0
and a∞ encode the initial state and goal description: a0 has no precondition and
sinit as add effect and a∞ has g as precondition and no effects. A solution to
such a problem is a partial plan P with no flaws. Flaws represent plan elements
violating solution criteria. An open precondition flaw is a tuple (v, l) ∈ V × L

144

Using State-Based Planning Heuristics for POCL Planning 3

specifying that the precondition v of the plan step with label l is not yet protected
by a causal link. A causal threat flaw is a tuple (l, (l′, v, l′′)) ∈ L×CL specifying
that the plan step l:(pre, add , del) with v ∈ del may be ordered between the
plan steps with label l′ and l′′. We say, the plan step with label l threatens the
causal link (l′, v, l′′), since it might undo its protected condition v.

If a partial plan P has no flaws, every linearization of its plan steps respect-
ing its ordering constraints is a solution to the planning problem in STRIPS
notation. Hence, P is called a solution to the corresponding POCL problem.

POCL planning can be regarded as a refinement procedure [12], since it
refines the initial partial plan Pinit step-wise until a solution is generated. The
algorithm works as follows [22]. First, a most-promising partial plan P is selected
based on heuristics estimating the goal-distance or quality of P . Given such a
partial plan P , a flaw selection function selects one of its flaws and resolves it. For
that end, all modifications are applied, which are all possibilities to resolve the
given flaw. A causal threat flaw (l, (l′, v, l′′)) ∈ FCausalThreat can only be resolved
by promotion or demotion. These modifications promote the plan step with
label l before the one with label l′, and demote it behind the one with label l′′,
respectively. An open precondition flaw (v, l) ∈ FOpenPrecondition can only be
resolved by inserting a causal link (l′, v, l) which protects the open precondition
v. This can be done either by using a plan step already present in the current
partial plan, or by a new action from A. The two-stage procedure of selecting a
partial plan, calculating its flaws, and selecting and resolving a flaw is repeated
until a partial plan P without flaws is generated. Hence, P is a solution to the
POCL planning problem and returned.

3 Using State-Based Heuristics for POCL Planning

We encode a partially ordered partial plan into a new STRIPS planning problem.
A similar encoding was already proposed by Ramı́rez and Geffner [18]. However,
their encoding was used in the context of plan recognition for compiling obser-
vations away and it does not feature a partial order, causal links, nor did they
state formal properties.

Given a planning problem in STRIPS notation π = 〈〈V,A〉, sinit , g〉 and
a partial plan P = (PS ,≺, CL), let encplan(P, π) = 〈〈V ′,A′〉, s′init , g′〉 be the
encoding of P and π with:

V ′ := V ∪ {l−, l+ | l:a ∈ PS , l /∈ {l0, l∞}}
A′ := A ∪ {encplanStep(l:a,≺) | l:a ∈ PS , l /∈ {l0, l∞}}, with

encplanStep(l:(pre, add , del),≺)

:= (pre ∪ {l−} ∪ {l′+ | l′≺ l, l′ 6= l0}, add ∪ {l+}, del ∪ {l−}),
s′init := sinit ∪ {l− | l:a ∈ PS , l /∈ {l0, l∞}}
g′ := g ∪ {l+ | l:a ∈ PS , l /∈ {l0, l∞}}

The resulting problem subsumes the original one and extends it in the follow-
ing way: all plan steps in P become additional actions in A′ (we do not encode

145

4 Pascal Bercher, Thomas Geier, and Susanne Biundo

the artificial start and end actions, since their purpose is already reflected by
the initial state and goal description). For each plan step l:a, we introduce two
indicator variables l− and l+ that encode that l:a has not or has been executed.
Initially, none of the actions representing the encoding of these plan steps are
marked as executed and the (additional) goal is to execute all of them. Further-
more, these actions use the indicator variables to ensure that they can only be
executed in an order consistent with the partial order of the partial plan.

Although the encoding can be done in linear time [1], the effort for evaluating
heuristics might increase as search progresses, since the resulting problem is of
larger size than the original one. We will discuss this issue in the next section.

For the sake of simplicity, the formally specified function encplan ignores causal
links. Since causal links induce additional constraints on a partial plan (cf. Sec-
tion 2), compiling them away, too, captures even more information. The com-
pilation can be done as follows: let (l1, v, l2) be a causal link, l1:a1 and l2:a2
the two corresponding plan steps, and a′1 and a′2 their encodings within A′. We
need to ensure that no action with v as delete effect can be inserted between
a′1 and a′2. To that end, we introduce a counter variable count(v) which counts
how many causal links with the protected condition v are “currently active”.1 To
update that counter correctly, any (encoded) action producing a causal link with
condition v has the precondition count(v) = i and the effect count(v) = i + 1.
Analogously, any (encoded) action consuming such a causal link has the precon-
dition count(v) = i and the effect count(v) = i − 1. Then, any (encoded and
non-encoded) action having v in its delete list has the precondition count(v) = 0.
Note that the original planning problem does not need to be changed for every
partial plan, although we need to add the precondition count(v) = 0 to each
action for which there is a causal link (l1, v, l2) in the current partial plan. We
can process the domain only once by adding the precondition count(v) = 0 to
any action for any state variable v in advance. Concerning the overall runtime
for compiling away causal links, assume a′ being a (compiled) action consuming
n and providing m causal links. Then, |CL|(n+m) actions must be created to
provide all possible combinations of the count variables, where CL is the set of
causal links of the partial plan to be encoded. The compilation is therefore expo-
nential in the maximal number of preconditions and effects of all actions. Hence,
assuming the planning domain is given in advance, our compilation is polyno-
mial. In practice, it is also polynomial if the domain is not given in advance,
because the maximal number of preconditions and effects is usually bounded by
a small constant and does not grow with the domain description.

Before we can state the central property of the transformed problem, we
need some further definitions. Let P = (PS ,≺, CL) be a partial plan. Then,
ref (P) := {〈PS ′,≺′, CL′〉 | PS ′ ⊇ PS ,≺′ ⊇ ≺, CL′ ⊇ CL} is called the set of all
refinements of P , i.e., the set of all partial plans which can be derived from P

1 For the sake of simplicity, we use functions to describe the counter. Since these
functions are simple increment and decrement operations, converting them into the
STRIPS formalism is possible in linear time w.r.t. their maximum value which is
bound by the number of causal links in the given partial plan.

146

Using State-Based Planning Heuristics for POCL Planning 5

by adding plan elements. Let sol(π) be the set of all solution plans of π. We call
sol(π, P) := sol(π) ∩ ref (P) the set of all solutions of π refining P .

Now, we define mappings to transform partial plans derived from the plan-
ning problem encplan(P, π) to partial plans from the original planning problem π.2

The functions decplanStep(l:(pre, add , del),V) := l:(pre ∩ V, add ∩ V, del ∩ V) and
decplan(〈PS ,≺, CL〉, π) := 〈{decplanStep(l:a,V) | l:a ∈ PS},≺, {(l, v, l′) ∈ CL | v ∈
V}〉 are called the decoding of a plan step and a partial plan, respectively. Thus,
given a partial plan P ′ from the planning problem encplan(P, π), decplan(P

′, π)
eliminates the additional variables and causal links used by the encoding.

The following proposition states that every solution of the original planning
problem, which is also a refinement of the given partial plan, does also exist
as a solution for the encoded problem and, furthermore, the converse holds as
well: every solution of the encoded problem can be decoded into a solution of
the original one, which is a refinement of the given partial plan, too. Thus, the
set of solutions of the transformed planning problem is identical to the set of
solutions of the original problem, reachable from the current partial plan.

Proposition 1 Let π be a planning problem and P a partial plan. It holds:

• if there is a partial plan Psol , s.t. Psol ∈ sol(π, P), then there exists a partial
plan P ′sol with P ′sol ∈ sol(encplan(P, π)) and decplan(P

′
sol , π) = Psol

• if there is a partial plan P ′sol , s.t. P ′sol ∈ sol(encplan(P, π)), then decplan(P
′
sol , π)

∈ sol(π, P)

Assuming the plan quality is based on action costs, we can use that propo-
sition to find a heuristic function h(π, P) that estimates the goal distance in π
from the partial plan P by transforming π and P into the planning problem
π′ = encplan(P, π) and setting h(π, P) := max{hsb(π′, s′init)− cost(P), 0}, where
hsb is any heuristic that takes a state as input. We need to subtract the action
costs of P , since a heuristic estimate for P excludes the actions already present in
P , whereas a heuristic estimate for s′init should detect the necessity of inserting
them and hence includes their cost as well. Taking the maximum of that value
and zero is done in case the heuristic is overly positive and returns an estimated
cost value lower than those of the actions already present in P .

Since, due to Proposition 1, the set of solutions of π is isomorphic to the
solutions of π′, even regarding action costs, using an admissible heuristic hsb
consequently makes h(π, P) admissible, too. This is an interesting property of our
approach, since there are no admissible POCL heuristics known to the literature.

Example. Let π = 〈〈V,A〉, sinit , g〉 be a planning problem with V := {a, b, c},
A := {({b}, {a}, {b}), ({a}, {c}, {a})}, sinit := {a, b}, and g := {a, c}. Let P be
a partial plan which was obtained by a POCL algorithm as depicted below:

l2:A1 l1:A2b
¬b
a

a
¬a
c

a

b

a
c

2 For the sake of simplicity, our decoding assumes that no causal links were compiled
away. Decoding the encoded causal links is straight-forward.

147

6 Pascal Bercher, Thomas Geier, and Susanne Biundo

The arrows indicate causal links and A1 and A2 the actions of A. P has only
one open precondition: (a, l∞), which encodes the last remaining goal condition.

The transformed problem, without compiling away causal links, is given by
encplan(P, π) = 〈〈V ′,A′〉, s′init , g′〉 with:

V ′ := {a, b, c, l1+, l1−, l2+, l2−}
A′ := {({b}, {a}, {b}}), // A1

({b, l2−}, {a, l2+}, {b, l2−}), // enc(l2:A1)

({a}, {c}, {a}), // A2

({a, l1−, l2+}, {c, l1+}, {a, l1−})} // enc(l1:A2)

s′init := {a, b, l1−, l2−}
g′ := {a, c, l1+, l2+}

A heuristic estimate based on the transformed problem may incorporate the
negative effects of l2:A1 and l1:A2 and has thus the potential to discover the
partial plan/state to be invalid and thus prune the search space.

4 Discussion

Relaxation. Not every state-based heuristic is suited for our proposed approach.
In order to determine how informed a chosen heuristic function is when used
with our technique, one has to investigate the effect of the (heuristic-dependent)
relaxation on the actions in Anew := A′ \A. The actions in Anew (together with
the additional goals) encode the planning progress so far, just like the current
state does in state-based planning. Thus, relaxing them can have a strong impact
on the resulting heuristic values. For instance, in our experiments, we noticed
that the FF heuristic [10] always obtains the same estimates for the encoded
problems of all search nodes making the heuristic blind.

Preprocessing. Some heuristics, like merge and shrink abstraction (M&S) [4, 9],
perform a preprocessing step before the actual search and make up for it when
retrieving each single heuristic value. Since we obtain a new planning problem
for each single partial plan, a naive approach using this kind of heuristics would
also perform that preprocessing in every search node, which is obviously not
beneficial (and no pre-processing). Thus, given a specific heuristic, one has to
investigate whether certain preprocessing steps can be done only once and then
updated per partial plan if necessary.

Runtime. Although the transformation itself can be done efficiently, the time
of evaluating heuristics might increase with the size of the encoded problem.
At first glance, this might seem a strange property, since one would expect the
heuristic calculation time either to remain constant (as for abstraction heuristics
[4, 9]) or to decrease (as for the add or FF heuristics [6, 10]), as a partial plan
comes closer to a solution. However, since partial plans are complex structures

148

Using State-Based Planning Heuristics for POCL Planning 7

and many interesting decision problems involving them are NP hard w.r.t. their
size [15], it is not surprising that evaluating heuristic estimates becomes more
expensive as partial plans grow in size.

Ground Planning. The presentation of the proposed transformation in the pa-
per assumes a ground problem representation. However, the approach also works
for lifted planning without alterations to the encoding function. In lifted plan-
ning [22], the given partial plan is only partially ground, i.e., some action param-
eters are bound to constants, and the remaining ones are either unconstrained,
codesignated or non-codesignated. Using the same encoding process but ignor-
ing these designation constraints already works as described, since the initial
state of the resulting encoded planning problem is still ground and evaluating
its heuristic estimate is thus possible without alterations. Encoding the designa-
tion constraints is also possible, but ignoring them is just a problem relaxation
as is ignoring causal links.

5 Evaluation

We implemented the described encoding without compiling away causal links in
our POCL planning system. We compare the performance of planning using the
encoding with two state-of-the-art state-based heuristics against the currently
best-informed POCL heuristics. We also show results for a state-based planner.

The used POCL planner is implemented in Java R©. As search strategy, we
use weighted A* with weight 2. That is, a partial plan p with minimal f value is
selected, given by f(p) := g(p) + 2 ∗ h(p) with g(p) being the cost of p and h(p)
being its heuristic estimate. In cases where several partial plans have the same f
value, we break ties by selecting a partial plan with higher cost; remaining ties
are broken by the LIFO strategy thereby preferring the newest partial plan.
As flaw selection function, we use a sequence of two flaw selection strategies.
The first strategy prefers newest flaws (where all flaws detected in the same
plan are regarded equally new). On a tie, we then use the Least Cost Flaw
Repair strategy [11], which selects a flaw for which there are the least number
of modifications, thereby minimizing the branching factor. Remaining ties are
broken by chance. We configured our system to plan ground, because our current
implementation only supports a ground problem encoding.

As POCL heuristics, we selected the two currently best-informed heuristics:
the Relax Heuristic [16] and the Additive Heuristic for POCL planning [22]. They
are adaptations of the FF heuristic [10] and the add heuristic [6], respectively.
Both heuristics identify the open preconditions of the current partial plan and
estimate the action costs to achieve them based on delete relaxation using a
planning graph [2]. These heuristics are implemented natively in our system.3

3 Our implementation of the Relax Heuristic takes into account all action costs in
a relaxed plan, whereas the original version assumes cost 0 for all actions already
present. We used our variant for the experiments, since it solved more problems than
the original version.

149

8 Pascal Bercher, Thomas Geier, and Susanne Biundo

As state-based heuristics, we chose the LM-Cut heuristic [8], which is a
landmark-based heuristic and an admissible approximation to h+, and the Merge
and Shrink (M&S) heuristic [4, 9], which is an abstraction-based heuristic.

To evaluate heuristics from state-based planning, we chose to use an existing
implementation. When planning using state-based heuristics, the POCL planner
creates a domain and problem PDDL file for each search node encoding the
corresponding partial plan, but ignoring causal links. We then use a modified
version of the Fast Downward planning system [7] that exits after calculating
the heuristic value for the initial state. While this approach saved us much
implementation work, the obtained results are to be interpreted with care, since
the process of calling another planning system in each search node is rather
time-consuming: while the average runtime of the Add and Relax heuristics is
at most 4 ms per search node over all evaluated problems, the LM-Cut heuristic
has a mean runtime of 958 ms and a median of 225 ms. For the M&S heuristic4,
the mean is 7,500 ms and the median 542 ms. The very high runtimes of M&S
are contributed to the fact that it performs a preprocessing step for every search
node. Of course, in a native implementation of that heuristic in combination with
our problem encoding, one would have to investigate whether an incremental
preprocessing is possible as discussed in the last section.

Thus, the results using the state-based configurations are bound to be dom-
inated by all others in terms of solved instances and runtime. Therefore, we
focus our evaluation on the quality of the heuristics measured by the size of the
produced search space in case a solution was found.

We evaluate on the non-temporal STRIPS problems taken from the Inter-
national Planning Competitions (IPC) 1 to 5. Domains from the IPC 6 and 7
use action costs, which our system does not support. Missing domains from the
IPC 1 to 5 use language features that cannot be handled either by our planner
or by Fast Downward. From each domain we chose a number of instances con-
secutively, beginning with the smallest ones. The used domains and problems
are given in Table 1; furthermore, the table contains the number of solved in-
stances per domain by any of the four configurations. We also included results
for the state-based planner Fast Downward. This planner, which is implemented
in C++, clearly dominates our Java based POCL planner. For one problem,
Fast Downward with M&S created 737 million nodes while our POCL planner
created at most 2.9 million nodes, both for Add and Relax heuristic. Despite
this discrepancy, the performance of the POCL planner using the Add heuristic
surpasses Fast Downward using M&S in some domains.

The POCL planner was given 15 minutes of CPU time and 2GB of memory
for each problem. For the configurations using the encoding, the call to Fast
Downward also counts towards the time limit (including time spent generating
the additional PDDL files), but not towards the memory limit. For the compar-
ison with Fast Downward, we used a 15 minute wall time limit and no memory
limit. All experiments were run on a 12 core Intel Xeon R© with 2.4GHz.

4 We chose f -preserving abstractions and 1500 abstract states. We chose a rather low
number of abstract states to speed up the calculation time.

150

Using State-Based Planning Heuristics for POCL Planning 9

0

100

200

300

1 100
Time [s]

(a) Solved instances over CPU time.

0

100

200

300

1e+02 1e+04 1e+06
Created Search Nodes

(b) Solved instances over created nodes.

0

50

100

150

200

10 100 1000 10000
Created Search Nodes

PBAdd PBRelax PBLM−Cut PBM&S

(c) Enlarged view of 1b; solved instances over created nodes.

Fig. 1: These plots show the number of solved instances on their y-axis, while the
x-axis shows either CPU time or the number of created nodes. The configura-
tions PBAdd and PBRelax stand for POCL planning using the Add or the Relax
heuristic, respectively. PBLM-Cut and PBM&S denote POCL planning using the
LM-Cut and the Merge and Shrink heuristic.

151

10 Pascal Bercher, Thomas Geier, and Susanne Biundo

Figure 1a shows the number of solved instances over the used CPU time. As
we can observe the transformation-based heuristics are severely dominated by
the natively implemented POCL heuristics, as we expected. Figures 1b and 1c
show the size of the explored search space over the number of solved instances.
This means that configurations with higher curves solve more problems using
the same number of visited nodes. We can observe that both transformation-
based heuristics act more informed than the existing POCL heuristics in the
beginning. The transformation-based heuristic using LM-Cut remains above the
best existing POCL heuristic (Add) for the complete range of problems it could
solve. When using M&S the performance deteriorates for the more complex
problems, which we attribute to the small number of abstract states. In fact, a
reasonable number of abstract states should be chosen domain dependently [9]. It
is also the case that many runs experienced time outs after having explored only
a small number of nodes. This means that the true curves of the transformation-
based heuristics are expected to lie higher than depicted.

In summary, we can state that the experiments offer a promising perspective
on the usefulness of the proposed transformation-based heuristics. In particular
the LM-Cut heuristic proved to act more informed than the currently best known
POCL heuristic, in addition to being the first known admissible one. Since the
calculation of LM-Cut does not rely on preprocessing, like the Merge and Shrink
heuristic does, we are optimistic that a native implementation of LM-Cut for
POCL planning will offer a significant performance boost for POCL planning.

6 Conclusion

We presented a technique which allows planners performing search in the space
of plans to use standard classical planning heuristics known from state-based
planning. This technique is based on a transformation which encodes a given
partial plan by means of an altered planning problem, s.t. evaluating the goal
distance for the given partial plan corresponds to evaluating the goal distance
for the initial state of the new planning problem.

We evaluated our approach by running our POCL planning system with two
of the currently best-informed heuristics for POCL planning and two state-of-
the-art-heuristics from state-based planning based on the proposed transforma-
tion. Whereas the first two heuristics are natively implemented in our system,
the latter two are obtained by running Fast Downward in each search node and
extracting its heuristic estimate for the initial state. The empirical data shows
that our encoding works well with the evaluated state-based heuristics. In fact,
one of these heuristics is even more informed than the best evaluated POCL
heuristic, as it creates smaller search spaces in order to find solutions.

In future work we want to implement the encoding of causal links and eval-
uate our technique using a native implementation of the (state-based) LM-cut
heuristic. Furthermore, we want to investigate whether the LM-cut heuristic can
be directly transferred to the POCL setting without the compilation.

152

Using State-Based Planning Heuristics for POCL Planning 11

Table 1: This table gives the number of used problems per domain (n) and
the number of solved instances per configuration and domain. The first config-
urations use our plan-based configurations and the right-most columns are the
results of the state-based Fast Downward planner. All problems in the same block
belong to the same IPC, from 1 to 5. A bold entry specifies the most number of
solved instances among all configurations of the POCL planning system.

Domain n PBAdd PBRelax PBLM-Cut PBM&S SBLM-Cut SBM&S

grid 5 0 0 0 0 2 2
gripper 20 14 20 1 1 20 8
logistics 20 16 15 6 0 16 1
movie 30 30 30 30 30 30 30
mystery 20 8 10 5 5 13 13
mystery-prime 20 3 4 2 1 12 12

blocks 21 2 3 3 5 21 21
logistics 28 28 28 27 5 28 15
miconic 100 100 53 65 29 100 68

depot 22 2 2 1 1 11 7
driverlog 20 7 9 3 3 15 12
freecell 20 0 0 0 0 6 6
rover 20 20 19 9 5 18 8
zeno-travel 20 4 4 3 5 16 13

airport 20 18 15 6 5 20 18
pipesworld-noTankage 20 8 5 1 1 18 19
pipesworld-Tankage 20 1 1 1 1 11 14
satellite 20 18 18 4 3 15 7

pipesworld 20 1 1 1 1 11 14
rover 20 0 0 0 0 18 8
storage 20 7 9 5 5 17 15
tpp 20 9 8 5 5 9 7

total 526 296 254 178 111 427 318

Acknowledgements

This work is done within the Transregional Collaborative Research Centre SFB/
TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by
the German Research Foundation (DFG).

References

1. Bercher, P., Biundo, S.: Encoding partial plans for heuristic search. In: Proceed-
ings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS 2013). pp. 11–15 (2013)

2. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
Intelligence 90, 281–300 (1997)

3. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning.
In: Proceedings of the 20th International Conference on Automated Planning and
Scheduling (ICAPS 2010). pp. 42–49. AAAI Press (2010)

153

12 Pascal Bercher, Thomas Geier, and Susanne Biundo

4. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-
preserving abstractions. In: Valmari, A. (ed.) SPIN. Lecture Notes in Computer
Science, vol. 3925, pp. 19–34. Springer (2006)

5. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

6. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proceedings
of the 5th International Conference on Artificial Intelligence Planning Systems
(AIPS 2000). pp. 140–149. AAAI Press (2000)

7. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research (JAIR) 26, 191–246 (2006)

8. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: Whats
the difference anyway? In: Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS 2009). vol. 9, pp. 162–169 (2009)

9. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for opti-
mal sequential planning. In: Proceedings of the 17th International Conference on
Automated Planning and Scheduling (ICAPS 2007). pp. 176–183 (2007)

10. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research (JAIR) 14, 253–302
(May 2001)

11. Joslin, D., Pollack, M.E.: Least-cost flaw repair: A plan refinement strategy for
partial-order planning. In: Proceedings of the 12th National Conference on Artifi-
cial Intelligence (AAAI 1994). pp. 1004–1009. AAAI Press (1994)

12. Kambhampati, S.: Refinement planning as a unifying framework for plan synthesis.
AI Magazine 18(2), 67–98 (1997)

13. McAllester, D., Rosenblitt, D.: Systematic nonlinear planning. In: Proceedings of
the Ninth National Conference on Artificial Intelligence (AAAI 1991). pp. 634–639.
AAAI Press (1991)

14. Muise, C., McIlraith, S.A., Beck, J.C.: Monitoring the execution of partial-order
plans via regression. In: Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011). pp. 1975–1982. AAAI Press (2011)

15. Nebel, B., Bäckström, C.: On the computational complexity of temporal projection,
planning, and plan validation. Artificial Intelligence 66(1), 125–160 (1994)

16. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proceedings
of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001).
pp. 459–466. Morgan Kaufmann (2001)

17. Penberthy, J.S., Weld, D.S.: UCPOP: A sound, complete, partial order planner for
ADL. In: Proceedings of the third International Conference on Knowledge Repre-
sentation and Reasoning. pp. 103–114. Morgan Kaufmann (1992)

18. Ramı́rez, M., Geffner, H.: Plan recognition as planning. In: Boutilier, C. (ed.)
Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009). pp. 1778–1783. AAAI Press (July 2009)

19. Seegebarth, B., Müller, F., Schattenberg, B., Biundo, S.: Making hybrid plans
more clear to human users – a formal approach for generating sound explanations.
In: Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS 2012). pp. 225–233. AAAI Press (6 2012)

20. Vidal, V., Geffner, H.: Branching and pruning: An optimal temporal POCL planner
based on constraint programming. Artificial Intelligence 170(3), 298–335 (2006)

21. Weld, D.S.: Systematic nonlinear planning: A commentary. AI Magazine 32(1),
101–103 (2011)

22. Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile heuristic partial order planner.
Journal of Artificial Intelligence Research (JAIR) 20, 405–430 (2003)

154

155

The following pages show the publication:

M. Elkawkagy, P. Bercher, B. Schattenberg, and S. Biundo. “Improving Hierarchical
Planning Performance by the Use of Landmarks”. In: Proceedings of the 26th AAAI
Conference on Artificial Intelligence (AAAI 2012). AAAI Press, 2012, pp. 1763–1769

Reprinted with kind permission of AAAI Press.

156

Improving Hierarchical Planning Performance by the Use of Landmarks

Mohamed Elkawkagy and Pascal Bercher and Bernd Schattenberg and Susanne Biundo
Institute of Artificial Intelligence,

Ulm University, D-89069 Ulm, Germany,
email: forename.surname@uni-ulm.de

Abstract

In hierarchical planning, landmarks are tasks that occur on
every search path leading from the initial plan to a solu-
tion. In this work, we present novel domain-independent
planning strategies based on such hierarchical landmarks.
Our empirical evaluation on four benchmark domains shows
that these landmark-aware strategies outperform established
search strategies in many cases.

1 Introduction
While landmarks are widely used to improve the perfor-
mance of classical planners, a different notion of land-
marks has recently been developed for HTN-based ap-
proaches (Elkawkagy, Schattenberg, and Biundo 2010). Un-
like the classical case where landmarks are facts that must
hold in some intermediate state of any solution plan, hierar-
chical landmarks are mandatory tasks – tasks that have to be
decomposed on any search path leading from the initial plan
to a solution of the planning problem.

Hierarchical task network (HTN) planning relies on the
concepts of tasks and methods (Erol, Hendler, and Nau
1994). While primitive tasks correspond to classical plan-
ning operators, abstract tasks are a means to represent com-
plex activities. For each abstract task, a number of (decom-
position) methods are available, each of which provides a
task network, i.e., a plan that specifies a predefined (ab-
stract) solution of the task. Planning problems are (initial)
task networks; they are solved by incrementally decompos-
ing the abstract tasks until the network contains only exe-
cutable primitive ones.

Strategies of HTN-based planners differ in the ways they
select appropriate methods and interleave the decomposi-
tion of tasks with measures to resolve causal interactions
between tasks. Systems of the SHOP family, like SHOP2,
expand tasks in the order in which they are to be executed
and consider causality only on primitive levels (Nau et al.
2003). Other strategies alternate task decomposition and
causal conflict resolution (McCluskey 2000) or comply with
the current state of the task network (Schattenberg, Bidot,
and Biundo 2007).

In this paper, we describe how the exploitation of land-
mark information leads to novel domain-independent search
strategies for HTN-based planning. A so-called landmark

table is extracted from the current planning problem in a
pre-processing step. It lists the landmark tasks and reveals
the various options at hand. Options are tasks that are not
mandatory, but may have to be decomposed depending on
the method that is selected to implement the respective land-
mark. This information is used to compute the expansion
effort of the problem – a heuristic to guide the selection of
methods and with that reduce the effective branching factor
of the search space.

We implemented the landmark-aware planning strategies
in our experimental setting and evaluated their performance
on four different benchmark domains. It turned out that our
novel strategies outperform their conventional counterparts
on practically all problems if the decomposition hierarchy of
the underlying domain is of non-trivial depth.

In classical state-based planning the concept of land-
marks (Porteous, Sebastia, and Hoffmann 2001) enabled
the development of strong heuristics (Helmert and Domsh-
lak 2009; Bonet and Helmert 2010). One of the cur-
rently best performing planners uses such a landmark heuris-
tic (Richter and Westphal 2010). The work of Zhu and Gi-
van (2004) generalized landmarks to so-called action land-
marks. Marthi, Russell, and Wolfe (2008) specify a seman-
tics for HTN planning in which the preconditions and effects
of abstract tasks can be interpreted as abstract landmarks,
as they are gained via incremental abstraction of more basic
tasks.

In the following, we briefly introduce the underlying plan-
ning framework and the concept of hierarchical landmarks.
We then define the landmark-aware strategies and describe
the experimental setting as well as the evaluation results.

2 Planning Framework
The planning framework is based on a formalization which
is the fusion of HTN planning with partial-order causal-link
(POCL) planning (Biundo and Schattenberg 2001). A task
(or task schema) t(τ) = 〈prec, eff〉 specifies preconditions
and effects via conjunctions of literals over the task param-
eters τ̄ = τ1 . . . τn. States are sets of literals. Applicability
of tasks and the state transformations caused by their execu-
tion are defined as usual. A (partial) plan P = 〈S,≺, V, C〉
consists of a set S of plan steps, i.e., uniquely labeled task
instances, a set ≺ of ordering constraints that impose a par-
tial order on S, a set V of variable constraints, and a setC of

157

causal links. V consists of (in)equations that associate task
parameters with other parameters or constants. We denote
by Ground(S, V) the set of ground tasks obtained by replac-
ing all parameters of all tasks in P with constants in a way
compatible with V. The causal links are adopted from POCL
planning: A causal link l:t(τ̄) →ϕ l

′:t′(τ̄ ′) indicates that ϕ
is implied by the precondition of plan step l′:t′(τ̄ ′) and at
the same time is a consequence of the effects of plan step
l:t(τ̄). Hence, ϕ is said to be supported this way. A task is
called abstract if at least one method is provided for refining
it, otherwise it is called primitive. A method m = 〈t(τ), P 〉
relates the abstract task t(τ) to the plan P, which is called
an implementation of t(τ).

An HTN planning problem Π = 〈D, sinit, Pinit〉 is com-
posed of a domain model D = 〈T,M〉, where T and M
denote finite sets of tasks and methods, an initial state sinit,
and an initial plan Pinit. A plan P = 〈S,≺, V, C〉 is a solu-
tion to Π if and only if: (1) P is a refinement of Pinit, i.e.,
a successor of the initial plan in the induced search space
(see Def. 1 below); (2) each precondition of a plan step in
S is supported by a causal link in C and no such link is
threatened, i.e., for each l:t(τ̄) →ϕ l′:t′(τ̄ ′) the ordering
constraints in ≺ ensure that no plan step l′′:t′′(τ̄ ′′) with an
effect that is unifiable with ¬ϕ can be placed between l:t(τ̄)
and l′:t′(τ̄ ′); (3) the ordering constraints are consistent, i.e.,
≺ respects the ordering implied by C and it does not induce
cycles on S; (4) the variable constraints are consistent, i.e.,
the (in)equations in V are not contradictory; and (5) all plan
steps in S correspond to primitive ground tasks.
SolΠ denotes the set of all solutions of Π.
Please note that we encode the initial state via the effects

of an artificial primitive “start” task, as it is usually done in
POCL planning. In doing so, criteria (2) to (5) guarantee that
the solution is executable in the initial state.

In order to refine the initial plan into a solution, there are
various refinement steps (or plan modifications) available; in
HTN planning, these are: (1) The decomposition of abstract
tasks using methods, (2) the insertion of causal links to sup-
port open preconditions of plan steps, (3) the insertion of
ordering constraints, and (4) the insertion of variable con-
straints. Given an HTN planning problem we can define the
induced search space as follows.

Definition 1 (Induced Search Space) The directed graph
PΠ = 〈VΠ , EΠ〉 with vertices VΠ and edges EΠ is called the
induced search space of the planning problem Π if and only
if (1) Pinit ∈ VΠ , (2) if there is a plan modification refining
P ∈ VΠ into a plan P ′, then P ′ ∈ VΠ and (P, P ′) ∈ EΠ ,
and (3) PΠ is minimal such that (1) and (2) hold.

For PΠ = 〈VΠ , EΠ〉, we write P ∈ PΠ instead of P ∈ VΠ .
Note that PΠ is in general neither acyclic nor finite. For
the former, consider a planning problem in which there are
the abstract tasks t(τ), t′(τ ′) as well as two methods, each
of which transforms one task into the other. For the latter,
consider a planning problem containing an abstract task t(τ)
and a primitive task t′(τ ′) as well as two methods for t(τ):
one maps t(τ) to a plan containing only t′(τ ′), the other
maps t(τ) to a plan containing t′(τ ′) and t(τ) thus enabling
the construction of arbitrary long plans.

In order to search for solutions the induced search space is
explored in a heuristically guided manner by the following
generic refinement planning algorithm:

Algorithm 1: Refinement Planning Algorithm
Input : The sequence Fringe = 〈Pinit〉.
Output : A solution or fail.

1 while Fringe = 〈P1 . . . Pn〉 6= ε do
2 F ← fFlawDet(P1)
3 if F = ∅ then return P1

4 〈m1 . . . mk〉 ← fModOrd(
⋃
f∈F

fModGen(f))

5 succ← 〈app(m1, P1) . . . app(mk, P1)〉
6 Fringe← fPlanOrd(succ ◦ 〈P2 . . . Pn〉)
7 return fail

The fringe 〈P1 . . . Pn〉 is a sequence containing all un-
explored plans that are direct successors of visited non-
solution plans in PΠ . It is ordered in a way such that a plan
Pi is estimated to lead more quickly to a solution than plans
Pj for j > i. The current plan is always the first plan of
the fringe. The planning algorithm iterates on the fringe as
long as no solution is found and there are still plans to refine
(line 1). Hence, the flaw detection function fFlawDet in line 2
calculates all flaws of the current plan. A flaw is a set of
plan components that are involved in the violation of a solu-
tion criterion. The presence of an abstract task raises a flaw
that consists of that task, a causal threat consists of a causal
link and the threatening plan step, for example. If no flaws
can be found, the plan is a solution and returned (line 3).
In line 4, the modification generating function fModGen cal-
culates all plan modifications that address the flaws of the
current plan. Afterwards, the modification ordering func-
tion fModOrd orders these modifications according to a given
strategy. The fringe is finally updated in two steps: First,
the plans resulting from applying the modifications are com-
puted (line 5) and put at the beginning of the fringe (line 6).
Second, the plan ordering function fPlanOrd orders the up-
dated fringe. This step can also be used to discard plans, i.e.,
to delete plans permanently from the fringe. This is useful
for plans that contain unresolvable flaws like an inconsistent
ordering of tasks. If the fringe becomes empty, no solution
exists and fail is returned.

In this setting, the search strategy appears as a combina-
tion of the plan modification and plan ordering functions. In
order to perform a depth first search, for example, the plan
ordering is the identity function (fPlanOrd(P) = P for any
sequence P), whereas the modification ordering fModOrd de-
termines which branch of the search space to visit first.

3 Landmarks
The landmark-aware planning strategies rely on hierarchical
and local landmarks – ground tasks that occur in the plan se-
quences leading from a problem’s initial plan to its solution.

Definition 2 (Solution Sequences) Let 〈VΠ , EΠ〉 be the in-
duced search space of the planning problem Π. Then, for

158

any plan P ∈ VΠ , SolSeqΠ(P) := {〈P1 . . . Pn〉 | P1 = P,
Pn ∈ SolΠ, and for all 1 ≤ i < n, (Pi, Pi+1) ∈ EΠ}.
Definition 3 (Landmark) A ground task t(τ) is called a
landmark of planning problem Π, if and only if for each
〈P1 . . . Pn〉 ∈ SolSeqΠ(Pinit) there is an 1 ≤ i ≤ n, such
that t(τ) ∈ Ground(Si, Vn) for Pi = 〈Si,≺i, Vi, Ci〉 and
Pn = 〈Sn,≺n, Vn, Cn〉.

While a landmark occurs in every plan sequence that is
rooted in the initial plan and leads towards a solution, a local
landmark occurs merely in each such sequence rooted in a
plan containing a specific abstract ground task t(τ).

Definition 4 (Local Landmark of an Abstract Task) For
an abstract ground task t(τ) let PΠ(t(τ)) := {P ∈ PΠ |
P = 〈S,≺, V, C〉 and t(τ) ∈ Ground(S, V)}.
A ground task t′(τ ′) is a local landmark of t(τ), if and only if
for all P ∈ PΠ(t(τ)) and each 〈P1 . . . Pn〉 ∈ SolSeqΠ

(P)
there is an 1 ≤ i ≤ n, such that t′(τ ′) ∈ Ground(Si, Vn)
for Pi = 〈Si,≺i, Vi, Ci〉 and Pn = 〈Sn,≺n, Vn, Cn〉.

Since there are only finitely many tasks and we assume
only finitely many constants, there is only a finite number of
(local) landmarks.

Given a planning problem Π, the relevant landmark in-
formation can be extracted in a pre-processing step. We use
the extraction procedure introduced in previous work of the
authors (Elkawkagy, Schattenberg, and Biundo 2010) and
assume that the information is already stored in a so-called
landmark table. Its definition relies on a task decomposition
graph, which is a relaxed representation of how the initial
plan of a planning problem can be decomposed.

Definition 5 (Task Decomposition Graph) The directed
bipartite graph 〈VT , VM , E〉 with task vertices VT , method
vertices VM , and edges E is called the task decomposition
graph (TDG) of the planning problem Π if and only if

1. t(τ) ∈ VT for all t(τ) ∈ Ground(S, V), for
Pinit = 〈S,≺, V, C〉,

2. if t(τ) ∈ VT and if 〈t(τ ′), 〈S,≺, V, C〉 〉 ∈ M s.t. τ is
compatible with τ ′ and V, then

(a) 〈t(τ), 〈S,≺, V ′, C〉〉 ∈ VM such that V ′ ⊇ V binds all
variables in S to a constant and

(b) (t(τ), 〈t(τ), 〈S,≺, V ′, C〉〉) ∈ E,
3. if 〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM , then

(a) t′(τ ′) ∈ VT for all t′(τ ′) ∈ Ground(S, V) and
(b) (〈t(τ), 〈S,≺, V, C〉 〉, t′(τ ′)) ∈ E, and

4. 〈VT , VM , E〉 is minimal such that (1), (2), and (3) hold.

Note that the TDG of a planning problem is always finite
as there are only finitely many methods and ground tasks.

Please also note that, due to the uninformed instantiation
of unbound variables in a decomposition step in criterion
2.(a), the TDG of a planning problem generally becomes in-
tractably large. We hence prune parts of the TDG which can
provably be ignored due to a relaxed reachability analysis of
primitive tasks. This pruning technique is described in our
earlier work (Elkawkagy, Schattenberg, and Biundo 2010).

The landmark table represents a (possibly pruned) TDG
plus additional information about local landmarks.

Definition 6 (Landmark Table) Let 〈VT , VM , E〉 be a
(possibly pruned) TDG of the planning problem Π. The land-
mark table of Π is the setLT = {〈t(τ),M(t(τ)), O(t(τ))〉|
t(τ) ∈ VT abstract ground task}, where M(t(τ)) and
O(t(τ)) are defined as follows:

M(t(τ)) := {t′(τ ′) ∈ VT | t′(τ ′) ∈ Ground(S, V) for all
〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM}

O(t(τ)) := {Ground(S, V) \M(t(τ)) |
〈t(τ), 〈S,≺, V, C〉 〉 ∈ VM}

Each landmark table entry partitions the tasks introduced
by decompositions into two sets: Mandatory tasks M(t(τ))
are those ground tasks that are contained in all plans in-
troduced by some method which decomposes t(τ); hence,
they are local landmarks of t(τ). The optional task set
O(t(τ)) contains for each method decomposing t(τ) the set
of ground tasks which are not in the mandatory set; it is
hence a set of sets of tasks.

Please note that the landmark table encodes a possibly
pruned TDG and is thus not unique. In fact, various local
landmarks might only be detected after pruning. For in-
stance, suppose an abstract task has three available methods,
two of which have some tasks in their referenced plans in
common. However, the plan referenced by the third method
is disjoint to the other two. Hence, the mandatory sets are
empty. If the third method can be proven to be infeasible and
is hence pruned from the TDG, the mandatory set will con-
tain those tasks the plans referenced by the first two methods
have in common.

Example
The following example will demonstrate how the TDG and a
landmark table of a planning problem looks like.

Let Π = 〈D, sinit, Pinit〉 an HTN planning problem with
D = 〈{t1(τ1), . . . , t5(τ5)}, {ma,m

′
a,mb,m

′
b}〉, Pinit =

〈{l1:t1(τ1)}, {τ1=c1}〉1, and constants c1 and c2, where:

ma :=〈t1(τ1), 〈{l1:t3(τ1), l2:t3(τ2), l3:t2(τ1)}, {τ1 6=τ2}〉〉
m′a :=〈t1(τ1), 〈{l4:t2(τ1), l5:t1(τ1)}, ∅〉〉
mb :=〈t3(τ1), 〈{l6:t4(τ1), l7:t5(τ1)}, ∅〉〉
m′b :=〈t3(τ1), 〈{l8:t4(τ1)}, ∅〉〉

The TDG for Π is given in Figure 1; the according
landmark table is given as follows:

Abs. Task Mandatory Optional
t1(c1) {t2(c1)} {{t3(c2), t3(c1)}, {t1(c1)}}
t3(c2) {t4(c2)} {∅, {t5(c2), t2(c2)}}
t3(c1) {t4(c1)} {∅, {t5(c1), t2(c1)}}

4 Landmark-Aware Strategies
Exploiting landmarks during planning is based on the idea of
treating landmarks as characteristic, “inevitable” elements
on the refinement paths to any solution. The mandatory sets

1As our example comes without ordering constraints and causal
links, we give plans as 2-tuples P = 〈S, V 〉.

159

t1(c1)

m′t1mt1

t3(c2)

mt3 m′t3

t4(c2) t5(c2) t2(c2)

t2(c1)t3(c1)

mt′3 m′t′3

t4(c1) t5(c1)

Figure 1: The TDG for the planning problem Π. The method
vertices are given as follows:
mt1 = 〈t1(c1),ma|τ1=c1,τ2=c2

〉, m′t1 = 〈t1(c1),m′a|τ1=c1
〉,

mt3 = 〈t3(c2),mb|τ1=c2
〉, m′t3 = 〈t3(c2),m′b|τ1=c2

〉,
mt′3 = 〈t3(c1),mb|τ1=c1

〉, m′t′3 = 〈t3(c1),m′b|τ1=c2
〉

in the landmark table do not contribute directly to the iden-
tification of a solution path. They do, however, allow to esti-
mate upper and lower bounds for the number of expansions
an abstract task requires before a solution is found: A land-
mark table entry 〈t(τ),M(t(τ)), O(t(τ))〉 denotes that all
tasks inM(t(τ)) are introduced into the refinement plan, no
matter which method is used for decomposing t(τ). With
the optional tasks at hand we can now infer that in the most
optimistic case a solution can be developed straight from the
implementation of the method with the “smallest” remains
according toO(t(τ)). Following a similar argument, adding
the efforts for all implementations stored in O(t(τ)) allows
to estimate an upper bound for the “expansion effort”.

From the above considerations, two essential properties of
our landmark-aware strategies emerge: First, since the land-
mark exploitation will be defined in terms of measuring ex-
pansion alternatives, the resulting strategy component has to
be a modification ordering function. Second, if we base the
modification preference on the optional sets in the landmark
table entries, we implement an abstract view on the method
definition that realizes the least-commitment principle.

Concerning the first two strategies below, we interpret the
term “expansion effort” literally and therefore define “small-
est” method to be the one with the fewest abstract tasks in
the implementing plan. To this end, we define the cardinal-
ity of a set of tasks in terms of the number of corresponding
entries that a given landmark table does contain.

Definition 7 (Landmark Cardinality) Given a landmark
table LT , we define the landmark cardinality of a set of tasks
o = {t1(τ1), . . . , tn(τn)} to be

|o|LT := |{t(τ) ∈ o | 〈t(τ),M(t(τ)), O(t(τ))〉 ∈ LT}|

A heuristic based on this information can heavily over-
estimate the search effort because the landmark table typi-
cally contains a number of tasks that turn out to be unachiev-
able in the given problem. The strategy also does not take
into account the refinement effort it takes to make an imple-
mentation operational on the primitive level by establishing
causal links, resolving causal threats, and grounding tasks.
For the time being, we assume that all methods deviate from
a perfect heuristic estimate more or less to the same amount.
We will see that this simplification actually yields a heuristic
with good performance.

Definition 8 (Landmark-aware strategy lm1) Given a
plan P = 〈S,≺, V, C〉, let ti(τ i) and tj(τ j) be ground
instances of two abstract tasks in S that are compatible
with the (in)equations in V and that are referenced by
two abstract task flaws fi and fj , respectively, that are
found in P. Let a given landmark table LT contain the
corresponding entries 〈ti(τ i),M(ti(τ i)), O(ti(τ i))〉 and
〈tj(τ j),M(tj(τ j)), O(tj(τ j))〉.

The modification ordering function lm1 orders a plan
modification mi before mj if and only if mi addresses fi, mj
addresses fj , and

∑

o∈O(ti(τ i))

|o|LT <
∑

o∈O(tj(τj))

|o|LT

This strategy implements the least commitment princi-
ple, as it favors those decomposition plan refinements that
impose fewer successor plans. It reduces the effective
branching factor of the search space (cf. fewest alternatives
first heuristic in HTN planning (Tsuneto, Nau, and Hendler
1997)). The proper choice of the ground task instances
ti(τ i) and tj(τ j) in the above definition is crucial for the ac-
tual performance, however, because the plan modifications
typically operate on the lifted abstract tasks and method def-
initions.

While the above heuristic focuses on the very next level
of refinement, a strategy should also take estimates for sub-
sequent refinement levels into account, thus minimizing the
number of refinement choices until no more decompositions
are necessary. To this end, for a given landmark table LT ,
let O∗(t(τ)) be the transitive closure of the optional sets on
a recursive traversal of the table entries, beginning in t(τ).

Definition 9 (Closure of the Optional Set) The closure of
the optional set for a given ground task t(τ) and a land-
mark table LT is the smallest set O∗(t(τ)), such that
O∗(t(τ)) = ∅ for primitive t(τ), and otherwise:

O∗(t(τ)) = O(t(τ)) ∪
⋃

o∈O(t(τ))

(⋃

t′(τ ′)∈o
O∗(t′(τ ′))

)

with 〈t(τ),M(t(τ)), O(t(τ))〉 ∈ LT
Note that O∗(t(τ)) is always finite due to the finiteness

of the landmark table, even for cyclic method definitions.
Considering the previous example, the closures for the

three abstract tasks of the planning problem Π are as fol-
lows: O∗(t1(c1)) = O(t1(c1)) ∪ O(t3(c2)) ∪ O(t3(c1)),
O∗(t3(c2)) = O(t3(c2)), and O∗(t3(c1)) = O(t3(c1)).

160

Definition 10 (Landmark-aware strategy lm∗1) Given the
prerequisites from Def. 8, the modification ordering function
lm∗1 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and

∑

o∈O∗(ti(τ i))

|o|LT <
∑

o∈O∗(tj(τj))

|o|LT

So far, the “expansion effort” is defined in terms of de-
compositions that have to be applied until a solution is ob-
tained. The following strategies take into account that prim-
itive tasks contribute to the costs for developing the current
plan into a solution, as well. The cost measure is thereby a
uniform one: Solving the flaws affecting a primitive task is
regarded as expensive as the expansion of an abstract one.

Definition 11 (Landmark-aware strategy lm2) Given the
prerequisites from Def. 8, the modification ordering function
lm2 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and

∑

o∈O(ti(τ i))

|o| <
∑

o∈O(tj(τj))

|o|

Like we did for the landmark-aware strategy lm1, we de-
fine a variant for strategy lm2 that examines the transitive
closure of the optional sets.

Definition 12 (Landmark-aware strategy lm∗2) Given the
prerequisites from Def. 8, the modification ordering function
lm∗2 orders a plan modification mi before mj if and only if mi
addresses fi, mj addresses fj , and

∑

o∈O∗(ti(τ i))

|o| <
∑

o∈O∗(tj(τj))

|o|

Since the landmark information can be extracted from any
domain model and problem in an automated pre-processing
step, the above strategies are conceptually domain- and
problem-independent heuristics. In addition, they are inde-
pendent from the actual plan generation procedure, hence
their principles can be incorporated into any refinement-
based hierarchical planning system.

5 Evaluation
We evaluated the performance of our novel strategies on four
hierarchical planning domains along two dimensions: (1) we
compared the time needed to find a solution in comparison
to conventional hierarchical search strategies and (2) these
benchmark tests were done on both the original planning do-
mains and the corresponding ones that resulted from apply-
ing our landmark-based domain reduction technique (Elka-
wkagy, Schattenberg, and Biundo 2010). Hence, we base
our evaluation on the same benchmark problems, but include
two additional domains.

Conventional Hierarchical Search Strategies
For the strategies SHOP and UMCP, we used plan and mod-
ification ordering functions that induce the search strate-
gies of these planning systems: In the UMCP system (Erol,
Hendler, and Nau 1994), plans are primarily transformed

into completely primitive plans in which causal interactions
are dealt with afterwards. The SHOP strategy (Nau et al.
2003) prefers task expansion for the abstract tasks in the or-
der in which they are to be executed.

In all other strategies the plan ordering function Fewer
Modifications First (fmf) was used. It prefers plans for which
a smaller number of refinement options is found, thereby
implementing the least commitment principle on the plan
ordering level. For the comparison to our landmark-aware
modification ordering functions, we also conducted experi-
ments with the following modification ordering functions:

The Expand-Then-Make-Sound (ems) procedure (Mc-
Cluskey 2000) alternates task expansion with other modi-
fications, which results in a “level-wise” concretization of
plan steps. We also include the well-established Least Com-
mitting First (lcf) paradigm, a generalization of POCL strate-
gies, which prefers those modifications that address flaws for
which the smallest number of alternative solutions is avail-
able. HotSpot strategies examine plan components that are
affected by multiple flaws, thereby quantifying to which ex-
tent solving one deficiency may interfere with the solution
options for coupled components (Schattenberg, Bidot, and
Biundo 2007). The Direct Uniform HotSpot (du-HotSpot)
strategy avoids addressing flaws that refer to HotSpot plan
components, and the Direct Adaptive HotSpot (da) strategy
does so by increasing problem-specific weights on binary
combinations of flaw types that occur in the plan. Finally,
the HotZone strategy takes structural connections between
HotSpots into account and tries to avoid modifications that
deal with these clusters.

Benchmark Problem Set
We conducted our experiments on three well-established
planning domains plus a domain taken from an ongoing
research project. Satellite is a benchmark from the Inter-
national Planning Competition (IPC) for non-hierarchical
planning. The hierarchical encoding of this domain regards
the original primitive operators as implementations of ab-
stract observation tasks. The domain model consists of
3 abstract and 5 primitive tasks, and includes 8 methods.
WoodWorking, also originally defined for the IPC in a non-
hierarchical manner, specifies the processing of raw wood
into smooth and varnished product parts. It uses 13 primi-
tive tasks, 6 abstract tasks, and 14 methods. UM-Translog is
a hierarchical planning domain that supports transportation
and logistics. It shows 21 abstract and 48 primitive tasks as
well as 51 methods. In addition to that, we also employed
the so-called SmartPhone domain, a new hierarchical plan-
ning domain that is concerned with the operation of a smart
phone by a human user, e.g., sending messages and creat-
ing contacts or appointments. SmartPhone is a rather large
domain with a deep decomposition hierarchy, containing 50
abstract, 87 primitive tasks, and 94 methods.

Evaluation of Experimental Results
Tab. 1 shows the time required to solve the problems in
our benchmark set for solving the original planning prob-
lem specification and the problem posed in a reduced do-
main model (Elkawkagy, Schattenberg, and Biundo 2010),

161

respectively. By doing so, we evaluate the search guidance
power of our landmark-aware strategies in relation to the do-
main reduction preprocessing technique.

In the UM-Translog domain (cf. Tab. 1a), at least one of
our landmark-aware strategies belongs to the two best per-
forming search strategies in all problem instances, at which
lm1 is clearly dominating the other landmark-based strate-
gies; in fact, in 6 of 14 cases it has the best performance, and
in 11 of 14 cases it is one of the two best strategies. This is
quite surprising, because the landmark table does not reveal
any information about causal dependencies on the primitive
task level and the strategies hence cannot provide a focused
guidance. A well-informed selection of the decomposition
refinements obviously compensates for poor choices on the
causality issues.

Our strategies show a similar behavior in the WoodWork-
ing domain (cf. Tab. 1b): In all problems but one either lm1

or lm∗1 is the best of the evaluated strategies. The similarity
of the results to the ones in the UM-Translog domain is not
surprising to us, as the depths of their decomposition hierar-
chies are similar.

The SmartPhone domain (cf. Tab. 1c) is the domain with
the deepest decomposition hierarchy. It therefore carries the
most information that is exploitable for landmarks, which
results in well-informed landmark-aware strategies. Not
surprisingly, in all but one problem instances one of our
landmark-aware strategies performed best or second-best; in
half of the instances, they performed best and second-best.
The best result achieved lm1, which was the best strategy in
four of five instances and the second-best in another one.

On the Satellite domain (cf. Tab. 1d) our landmark-aware
strategies do not clearly dominate any other strategy. Ob-
viously, there is hardly any landmark information available
due to the very shallow decomposition hierarchy in this do-
main. However, no other strategy in this domain dominated
any landmark-aware strategy; thus, all evaluated strategies
can be regarded as equally good.

An interesting facet of almost all problem instances
(even among different domains) is that while the strategies
lm∗1/lm∗2 are the better informed heuristics they repeatedly
perform worse than lm1/lm2. The same anomaly occurs
when comparing lm2/lm∗2 with the more abstract but also
more successful lm1/lm∗1. We suppose these phenomena re-
sult from two sources: First, the random choice of ground
candidates for the lifted task instances is relatively unreli-
able. This effect gets amplified by traversing along the land-
mark closures and into the primitive task level. Second, the
most important choice points are on the early decomposition
levels, i.e., once a method has been chosen for implement-
ing an abstract task, this refinement puts more constraints on
the remaining decisions than the strategy can infer from the
feasibility analysis underlying the landmark table.

6 Conclusion
We introduced four novel search strategies for hierarchical
planning which base their heuristic guidance on landmark
information. We ran experiments on several benchmark
domains and compared their performance with the perfor-
mance of standard search heuristics from the literature. The

results show that our landmark-aware strategies outperform
the established ones on almost all problems with a deep de-
composition hierarchy.

ACKNOWLEDGEMENTS
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – a preliminary report on combining state
abstraction and HTN planning. In Proc. of ECP 2001, 157–
168.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In Proc. of ECAI 2010, volume
215, 329–334. IOS Press.
Elkawkagy, M.; Schattenberg, B.; and Biundo, S. 2010.
Landmarks in hierarchical planning. In Proc. of ECAI 2010,
volume 215, 229–234. IOS Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Proc. of AIPS 1994, 249–254. AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. of ICAPS 2009, 162–169. AAAI Press.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic
hierarchical planning: Optimal and online algorithms. In
Proc. of ICAPS 2008, 222–231. AAAI Press.
McCluskey, T. L. 2000. Object transition sequences: A
new form of abstraction for HTN planners. In Proc. of AIPS
2000, 216–225. AAAI Press.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379–404.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Proc. of ECP 2001, 37–48.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Schattenberg, B.; Bidot, J.; and Biundo, S. 2007. On
the construction and evaluation of flexible plan-refinement
strategies. In Proc. of KI 2007, 367–381. Springer.
Tsuneto, R.; Nau, D. S.; and Hendler, J. A. 1997. Plan-
refinement strategies and search-space size. In Proc. of ECP
1997, volume 1348, 414–426. Springer.
Zhu, L., and Givan, R. 2004. Heuristic planning via
roadmap deduction. In IPC-4 Booklet, 64–66.

162

Table 1: These results show the impact of the deployed modification ordering functions on the planning process. While
SHOP and UMCP denote strategy function combinations that simulate the respective search procedures, all other strategy
implementations use fmf as the plan ordering function. The columns labeled with red show the time in seconds needed to
solve the problem if our domain reduction technique (Elkawkagy, Schattenberg, and Biundo 2010) is used, whereas columns
labeled with org show the time needed to solve the original (unreduced) problem, respectively. All times include time for
pre-processing. All values are the arithmetic means over three runs. Dashes indicate that no solution was found within a limit
of 150 minutes. The best result for a given problem is emphasized bold, the second best bold and italic.

Mod. ordering
function fModOrd

lcf
HotZone
lm1

lm∗
1

lm2

lm∗
2

UMCP
ems

da-HotSpot
du-HotSpot

SHOP

(a) UM-Translog: the problems differ in number and kind of locations and/or number of parcels to transport.

#1 #2 #3 #4 #5 #6 #7
org red org red org red org red org red org red org red

1878 225 198 173 3020 209 598 470 187 118 5047 1278 267 322
473 196 255 117 498 224 549 527 149 121 – – 171 137
243 180 221 135 447 184 512 434 121 111 – 1172 190 122
1772 212 593 112 370 205 1592 420 657 109 – 1162 1002 140
3311 255 754 123 1670 248 1659 464 716 162 – 1128 925 151
846 226 839 148 991 238 1712 487 583 340 4921 1318 1755 122
952 244 278 114 994 229 529 474 187 122 4893 1263 215 127
2056 1048 984 262 2199 1806 1889 976 696 295 – – 876 235
2414 1958 350 257 – 2030 4695 2077 589 352 – 2560 578 352
1319 775 859 460 987 1090 1904 1304 692 224 – – 391 258
1735 353 283 241 1911 274 – – 5874 4012 – 4005 911 190

Mod. ordering
function fModOrd

lcf
HotZone
lm1

lm∗
1

lm2

lm∗
2

UMCP
ems

da-HotSpot
du-HotSpot

SHOP

(b) WoodWorking domain: the problems define variations
of parts to be processed.

#1 #2 #3 #4 #5
org red org red org red org red org red

2067 350 – – – – – – – –
– – – – – 418 – – – –

96 55 2396 1815 171 159 732 184 564 197
82 50 669 245 614 98 1561 1395 2109 1245

881 433 – 1259 – 362 – – – –
1359 403 – – – 367 1935 1514 – 893
228 133 3207 2936 259 125 618 356 892 218
415 298 – 1275 – 2457 – 2256 – 512
113 85 968 828 355 110 328 357 573 201
– – – – – – – – – –
– – – – – – – – – 3578

(c) SmartPhone domain: assisting the user in
managing different daily-life tasks.

#1 #2 #3
org red org red org red

63 40 – 159 8455 6827
65 33 490 212 – –
50 30 134 53 – 465
65 50 392 173 – –
60 50 181 53 – 680
98 76 1632 327 – 697
80 30 256 115 – –
107 52 235 148 – –
45 43 – 203 1747 1041
52 46 638 166 – 3421
95 73 – – – –

Mod. ordering
function fModOrd

lcf
HotZone
lm1

lm∗
1

lm2

lm∗
2

UMCP
ems

da-HotSpot
du-HotSpot

SHOP

(d) Satellite domain: a column labeled with “x — y — z” stands for a problem instance with
x observations, y satellites, and z different modes.

1 — 1 — 1 1 — 2 — 1 2 — 1 — 1 2 — 1 — 2 2 — 2 — 1 2 — 2 — 2
org red org red org red org red org red org red

95 93 154 77 1551 1338 – 4069 – 701 – –
76 64 142 62 – 4764 – – – 1338 – 1114
89 80 209 208 767 652 458 400 802 785 3307 362
86 85 54 43 1024 969 2617 2569 960 813 – 1228

132 86 151 140 – 5804 2816 251 – – – 965
102 80 191 99 – – 2636 2553 – – – 161
91 91 51 41 2035 1336 4150 1894 1215 1097 2517 1270
74 60 62 53 2608 2856 – – 1756 1579 4484 175
69 67 85 78 2136 1131 – 1131 6850 6841 – –

107 49 270 150 – – – – – – – –
66 67 113 111 270 264 – – – 1780 – –

163

The following pages show the publication:

P. Bercher, D. Höller, G. Behnke, and S. Biundo. “User-Centered Planning”. In:
Companion Technology – A Paradigm Shift in Human-Technology Interaction. Ed. by S.
Biundo and A. Wendemuth. Cognitive Technologies. In print. Springer, 2017. Chap. 5,
pp. 79–100. isbn: 978-3-319-43664-7. doi: 10.1007/978-3-319-43665-4_5

https://link.springer.com/chapter/10.1007/978-3-319-43665-4_5

The final publication is available at link.springer.com

Reprinted with kind permission of Springer.

164

http://dx.doi.org/10.1007/978-3-319-43665-4_5
https://link.springer.com/chapter/10.1007/978-3-319-43665-4_5
link.springer.com

User-Centered Planning

Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

Abstract User-centered planning capabilities are core elements of Companion-
Technology. They are used to implement the functional behavior of technical sys-
tems in a way that makes those systems Companion-able – able to serve users in-
dividually, to respect their actual requirements and needs, and to flexibly adapt to
changes of the user’s situation and environment. This book chapter presents vari-
ous techniques we have developed and integrated to realize user-centered planning.
They are based on a hybrid planning approach that combines key principles also hu-
mans rely on when making plans: stepwise refining complex tasks into executable
courses of action and considering causal relationships between actions. Since the
generated plans impose only a partial order on actions, they allow for a highly flex-
ible execution order as well. Planning for Companion-Systems may serve different
purposes, depending on the application for which the system is created. Sometimes,
plans are just like control programs and executed automatically in order to elicit the
desired system behavior; but sometimes they are made for humans. In the latter case,
plans have to be adequately presented and the definite execution order of actions has
to coincide with the user’s requirements and expectations. Furthermore, the system
should be able to smoothly cope with execution errors. To this end, the plan genera-
tion capabilities are complemented by mechanisms for plan presentation, execution
monitoring, and plan repair.

1 Introduction

Companion-Systems are able to serve users individually, to respect their actual re-
quirements and needs, to flexibly adapt to changes of the user’s situation and envi-
ronment, and to explain their own behavior (cf. Chap. 1, the survey on Companion-
Technology [19], or the work of the collaborative research centre SFB/TRR 62 [21]).

Pascal Bercher · Daniel Höller · Gregor Behnke · Susanne Biundo
Ulm University, Institute for Artificial Intelligence, e-mail: forename.surname@uni-ulm.de

1

165

2 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

A core element when realizing such systems is user-centered planning. This chap-
ter presents various techniques we have developed and integrated to realize user-
centered planning [18]. They are based on a hybrid planning approach [20] that
combines key principles also humans rely on when making plans by refining com-
plex tasks stepwise into executable courses of action, assessing the various options
for doing so, and considering causal relationships.

Planning for Companion-Systems may serve different purposes, depending on
the application for which the system is created. Sometimes, plans are just like con-
trol programs and executed automatically in order to elicit the desired system be-
havior; but sometimes they are made for humans. In the latter case, plans have to
be adequately presented to the user. Since the generated plans impose only a partial
order on actions, they allow for a highly flexible execution order. A suitable total
order must be selected for step-wise presentation: it should coincide with the user’s
requirements and expectations. We ensure this by a technique that allows finding
user-friendly linearizations [33].

In particular when planning for humans, a plan execution component must mon-
itor the current state of execution so that the system can detect failures, i.e., devi-
ations from the expected execution outcome. In such a case, the hybrid plan repair
mechanism finds a new plan that incorporates the execution error [17, 9].

Companion-Systems assist users to complete demanding tasks, so the user may
not understand the steps that the system recommends to do. In particular after exe-
cution errors, question might arise due to the presentation of a new plan. To obtain
transparency and to increase the user’s trust in the system, it is essential that it is
able to explain its behavior. Therefor, the purpose of any action within a plan may
be automatically explained to the user in natural language [53].

These user-centered planning capabilities of plan generation, plan execution and
linearization, plan repair, and plan explanation are essential capabilities to provide
intelligent user-assistance in a variety of real-world applications [18]. As an exam-
ple, we integrated all those techniques in a running system that assists a user in the
task of setting up a complex home theater [34, 9, 15]. The respective system and, in
particular, the integration of the user-centered planning capabilities with a knowl-
edge base and components for user interaction is described in Chap. 24. Here, we
focus on the underlying planning capabilities and explain them in detail. We use the
planning domain of that application scenario as a running example.

The hybrid planning framework is explained in Sect. 2. Section 3 is devoted to
plan execution. Plan execution consists of various key capabilities when planning
for or with humans: the monitoring of the executed plans to trigger plan repair in
case of arising execution errors (explained in Sect. 4), the linearization of plans to
decide which plan step to execute next, and the actual execution of the next plan
step, which includes the adequate presentation to the user. Section 5 introduces the
plan explanation technique that allows to generate justifications for any plan step
questioned by the user. Finally, Sect. 6 concludes the chapter.

166

User-Centered Planning 3

2 Hybrid Planning Framework

Hybrid planning [36, 20] fuses Hierarchical Task Network (HTN) planning [27]
with concepts known from Partial-Order Causal-Link (POCL) planning [41, 50].

The smooth integration of hierarchical problem solving (inherited from HTN
planning) with causal reasoning (inherited from POCL planning) provides us with
many capabilities that are beneficial when planning for or with humans:

HTN Planning. In HTN planning, problems are specified in terms of abstract ac-
tivities one would like to have accomplished. To do so, they have to be refined
step-wise into more specific courses of action that can be executed by the user. This
provides us with certain benefits:

• First of all, a domain expert has more freedom in modeling a domain. Often,
expert knowledge is structured in a hierarchical way. Hence, it is often known to
the expert what actions need to be taken in which order to accomplish some high-
level goal. Such knowledge can easily be modeled by introducing a hierarchy
among the available actions. Many real-world application scenarios are hence
modeled using hierarchical planning approaches such as hybrid planning or the
SHOP approach [44, 39, 18]. Further, a domain modeler can be assisted in the
task of creating a hierarchical domain model by techniques that automatically
infer abstractions for hierarchical planning [7].

• That action hierarchy may then be exploited for generating and improving ex-
planations [53]. When the user wants to know about the purpose of a presented
action during execution, the hierarchy can be used to come up with a justification.

• The hierarchy defined on the actions may also be exploited to come up with
plausible linearizations of plans [33]. The actions in the plans are presented to
a user one-by-one. Some linearization might be more plausible to a user than
others. So, presenting those actions close to each other that “belong to each other”
with respect to the action hierarchy might achieve reasonable results.

• The way in which humans solve tasks is closely related to the way hierarchical
problems are solved by a planning system. That makes it more natural to a user
to be integrated into the planning process [5], as it resembles his or her idea of
problem solving. The integration of the user into this decision making process is
called mixed initiative planning. It is presented in Chap. 7.

POCL Planning. In POCL planning, problems are specified in terms of world
properties that one would like to hold. The problem is solved via analyzing causal
dependencies between actions to decide what action to take in order to fulfill a
required goal. The way in which plans are found and how they are represented can
be exploited in various ways:

• The causal dependencies between actions within a plan are explicitly represented
using so-called causal links. Analogously and complementarily to the exploita-
tion of the hierarchy, these causal relations can be analyzed and exploited to
generate explanations about the purpose of any action within a plan [53].

167

4 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

• The causal structure of plans may be used to find plausible linearizations of the
actions within a plan. For instance, given there are causal relationships between
two actions, it seems more plausible to present them after each other before pre-
senting another action that has no causal dependencies to either of them [33].

• Finally, the POCL planning approach also seems well-suited for a mixed initia-
tive planning approach, since humans do not only plan in a hierarchical manner,
but also via reasoning about which action to take in order to fulfill a requirement
that has to hold later on.

Hybrid planning combines HTN planning with POCL planning; it hence features
all before-mentioned user-centered planning capabilities.

2.1 Problem Formalization

A hybrid planning problem is given as a pair consisting of a domain model D and
the problem instance I . The domain describes the available actions required for
planning. The problem instance specifies the actual problem to solve, i.e., the avail-
able world objects, the current initial state, the desired goal state properties, and an
initial plan containing the abstract tasks that need to be refined.

More specifically, a domain is a triple D = 〈Tp,Ta,M〉. Tp and Ta describe the
primitive and abstract tasks, respectively. The primitive tasks are also referred to as
actions – those can be executed directly by, and hence communicated to, the user.
Actions are triples 〈a(τ̄),pre(τ̄),eff (τ̄)〉 consisting of a name a that is parametrized
with variables τ̄ , a parametrized precondition pre and the effects eff . As an example,
Eq. (1) depicts the name and parameters of an action of the home assembly task (see
Chap. 24) for plugging the audio end of a SCART cable into the audio port of an
audio/video receiver. In the depicted action, the parameters are bound to constants,
which represent the available objects – in the example domain those are the available
hi-fi devices, cables, and their ports.

plugIn(SCART-CABLE,AUDIO-PORT,AV-RECEIVER,AUDIO-PORT) (1)

The precondition describes the circumstances under which the action can be ex-
ecuted, while the effects describe the changes that an execution has on the re-
spective world state. Formally, preconditions and effects are conjunctions of lit-
erals that are defined over the variables τ̄ . For instance, the (negative) literal
¬used(SCART-CABLE,AUDIO-PORT) is part of the precondition of the action de-
picted in Eq. (1). It describes that the audio port of the SCART cable may only be
plugged into a port if it is currently not in use. The effects of that action mark the
port as blocked. Abstract tasks syntactically look like primitive ones, but they are re-
garded to be not directly executable by the user. Instead, they are abstractions of one
or more primitive tasks. That is, for any abstract task t, a so-called (decomposition)
method m = 〈t,P〉 relates that task to a plan P that “implements” t [20, 13]. The

168

User-Centered Planning 5

set of all methods is given by M. The implementation (or legality) criteria ensure
that t is a legal abstraction of the plan P, which can be verified by comparing the
preconditions and effects of t with those of the tasks within P. One can also regard
it the other way round: the implementation criteria ensure that only those plans may
be used within a method that are actual implementations for the respective abstract
task. That way, a human user (in that case the domain modeler) can be actively sup-
ported in the domain modeling process – independently of whether he or she uses a
top-down or bottom-up modeling approach.

Plans are generalizations of action sequences in that they are only partially or-
dered. They are knowledge-rich structures, because causality is explicitly repre-
sented using so-called causal links. Formally, a plan P is a tuple 〈PS,V,≺,CL〉 con-
sisting of the following elements: the set PS is referred to as plan steps. Plan steps
are uniquely labeled tasks. Thus, each plan step ps∈ PS is a tuple l : t, with l being a
label symbol unique within P and t being a task taken from Tp∪Ta. Unique labeling
is required to differentiate identical tasks from each other that are all within the same
plan. The set V contains the variable constraints that (non-)codesignate task param-
eters with each other or with constants. Codesignating a variable with a constant
means to assign the respective constant to that variable. Codesignating two vari-
ables means that they have to be assigned to the same constant. Non-codesignating
works analogously. The set ≺ is a strict partial order defined over PS×PS. The
causal links CL represent causal dependencies between tasks: each link cl ∈CL is a
triple 〈ps,ϕ, ps′〉 representing that the literal ϕ is “produced” by (the task referenced
by) ps and “consumed” by ps′. Due to that causal link, the precondition literal ϕ of
ps′ is called protected, since the solution criteria ensure that no other task is allowed
to invalidate that precondition anymore (see Solution Criterion 2c given below).

A problem instance I is a tuple 〈C,sinit,Pinit,g〉 consisting of the following el-
ements: the set C contains all available constants. The conjunction sinit of ground
positive literals describes the initial state. We assume the so-called closed world as-
sumption. That is, exactly the literals in sinit are assumed to hold in the initial state,
while all others are regarded false. The conjunction of (positive and negative) lit-
erals g describes the goal condition. All these goal state properties must hold after
the execution of a solution plan. Hence, g implicitly represents a set of world states
that satisfy g. In particular when planning for humans, not all goals are necessar-
ily mandatory. Instead, some of them might only be preferred by the user. That is,
while some goals might be declared as non-optional (those specified by g), a user
might also want so specify so-called soft goals that he or she would like to see satis-
fied, but that are regarded optional. A planner would then try to achieve those goals
to increase plan quality, but in case a soft-goal cannot be satisfied, the planning
process does not fail altogether. Some work has been done in incorporating such
soft-goals into hierarchical planning in general [39, 55] and in hybrid planning in
particular [8]. For the sake of simplicity, we focus on the non-optional goals in this
book chapter. Note that this is not a restriction, since any planning problem with
soft goals can be translated into an equivalent problem without soft goals [23, 37].
The initial plan Pinit complements the desired goal state properties by the tasks that
the user would like to have achieved. This plan may contain primitive tasks, abstract

169

6 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

tasks, or both. In addition, it contains two special actions ainit and agoal that encode
the initial state and goal description, respectively. The respective encoding is done
as usual in POCL planning: ainit is always the very first action in every refinement
of Pinit, while agoal is always the very last. The action ainit has no precondition and
uses sinit as effect1, while agoal uses g as precondition and has no effect.

Solution Criteria. Informally, a solution is any plan that is executable in the initial
state and satisfies the planning goals and tasks, i.e., after the execution of a solution
plan Psol, g holds, and Psol is a refinement of Pinit thereby ensuring that the abstract
activities the user should accomplish (specified in Pinit) have actually been achieved.
More formally, a plan Psol is a solution if and only if two criteria hold:

1. Psol is a refinement of Pinit. That is, one must be able to obtain Psol from Pinit by
means of the application of the following refinement operators:

a. Decomposition. Given a plan P = 〈PS,V,≺,CL〉 with an abstract plan step
l : t ∈ PS, the decomposition of the abstract task t using a decomposition
method m = 〈t,P′〉 results in a new plan P′′, in which l : t is removed and
replaced by P′. Ordering and variable constraints, as well as causal links
pointing to or from l : t, are inherited by the tasks within P′ [13]. This is a
generalization of Def. 3 by Geier and Bercher [29] for standard HTN plan-
ning without causal links. This decomposition criterion ensures that the ab-
stract tasks specified in Pinit are accomplished by any solution. That criterion
is the reason why HTN or hybrid planning is undecidable in the general case
[27, 29, 1, 13]. It also makes the verification of plans (i.e., answering “is the
given plan a valid solution to the given problem?”) hard (NP-complete) even
under severe restrictions [6, 13].

b. Task Insertion. In hybrid planning, both primitive and abstract tasks may be
inserted into a plan. Note that it is optional whether this feature is allowed or
not. Allowing or disallowing task insertion might influence both the complex-
ity of solving the planning problem [29, 2] and of the solutions themselves
[31, 32]. Allowing task insertion allows for more flexibility for the domain
modeler, as it allows to define partial hierarchical models [36, 2]. That is, the
domain modeler does not need to specify decomposition methods that ensure
that any decomposition is an executable solution, as the planner might in-
sert tasks to ensure executability. Thus, allowing task insertion moves some
of the planning complexity from the modeling process (which is done by a
user/domain expert) to the planning process (which is done automatically).

c. Causal Link Insertion and Ordering Insertion. Given two plan steps ps and
ps′, within a plan, a causal link can be inserted from any literal in ps’s effect
to any (identical) literal in the precondition of ps′. The parameters of the two
literals become pairwise codesignated. Also an ordering constraint may be

1 More technically, it uses not just sinit as effect, but – because sinit consists only of positive literals
due to the closed world assumption – also all negative ground literals that unify with any negative
precondition that are not contradicting sinit. Otherwise, there might be a negative task precondition
literal that could not be protected by a causal link rooting in the initial state.

170

User-Centered Planning 7

inserted between ps and ps′. Both these refinement options are inherited from
standard POCL planning. They are a means to ensure the executability of
plans [41, 50].

2. Psol is executable in the initial state sinit and, after execution of that plan, the goal
condition g is satisfied. Since sinit and g are encoded within Pinit by means of
the two special actions ainit and agoal, respectively, and because Psol is a refine-
ment of Pinit due to Solution Criterion 1, both planning goals can be achieved
by using standard POCL solution criteria. Thus, Psol = 〈PSsol,Vsol,≺sol,CLsol〉 is
executable in sinit and satisfies g if and only if:

a. All tasks are primitive and ground. Only primitive actions are regarded exe-
cutable. Grounding is required to ensure unique preconditions and effects.

b. There are no open preconditions. That is, for each precondition literal ϕ
of any plan step ps ∈ PSsol there is a causal link 〈ps′,ϕ, ps〉 ∈ CLsol with
ps′ ∈ PSsol thereby protecting ϕ .

c. There are no causal threats. We need to ensure that the literals used by the
causal links are actually “protected”. This is the case if there are no so-called
causal threats. Within a primitive ground plan P = 〈PS,V,≺,CL〉, a plan step
ps is threatening a causal link 〈ps′,ϕ, ps′′〉 ∈ CL if and only if the set of
ordering constraints allows ps to be ordered between ps′ and ps′′ (that is,
≺ ∪{(ps′, ps),(ps, ps′′)} is a strict partial order) and ps has an effect ¬ϕ .

2.2 Finding a Solution

Hierarchical planning problems may be solved in many different ways [4], hence
various hierarchical planning systems and techniques exist, such as SHOP/SHOP2
[43], UMCP [26], or HD-POP [52, edition 1, p. 374–375], to name just a few.

We follow the approach of the HD-POP technique. The resulting planning sys-
tem, PANDA [14, Alg. 1], performs heuristic search in the space of plans via re-
fining the initial plan Pinit until a primitive executable plan has been obtained. The
algorithm basically mimics the allowed refinement options: it decomposes abstract
tasks (thereby introducing new ones into the successor plan), inserts new tasks from
the domain (if allowed; cf. Solution Criterion 1b), and inserts ordering constraints
and causal links to ensure executability. Hierarchical planning is quite difficult. In
the general case, it is undecidable, but even for some quite restricted special cases,
it is still at least PSPACE-hard [27, 29, 1, 2, 13]. During search, that hardness cor-
responds to the choice of which task to insert and which decomposition method to
pick when decomposing an abstract task. In the approach taken by PANDA, these
questions are answered by heuristics: each candidate plan is estimated in terms of
the number of required modifications to refine it into a solution, or by means of the
number of actions that need to be inserted for the same purpose [14].

For standard POCL planning, i.e., in case the initial plan Pinit does not contain
abstract tasks, there are basically two different kinds of heuristics. The first kind

171

8 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

bases on delete-relaxation2, as this reduces the complexity of deciding the plan ex-
istence problem from PSPACE to P or NP, depending on the presence of negative
preconditions [22] and whether the actions in the domain and the given plan be-
come delete-relaxed or just those in the domain [11]. The respective heuristics are
the Add Heuristic for POCL planning [57], the Relax Heuristic [46], and a variant
of the latter based on partial delete-relaxation, called SampleFF [11]. The second
kind of heuristics is not just one single POCL heuristic, but a technique that allows
to directly use heuristics known from state-based planning in the POCL planning
setting [10]. The technique encodes a plan into a classical (i.e., non-hierarchical)
planning problem, where the POCL plan is encoded within the domain.

The idea of delete-relaxation has also been transferred to hierarchical planning.
Here, the complexity of the plan existence problem is reduced from undecidable
to NP or P, depending on various relaxations [3]. There is not yet an implementa-
tion of that idea, however. Instead, we developed the so-called task decomposition
graph that is a relaxed representation of how the abstract tasks may be decomposed
[25, 24]. That graph may both be used for pruning infeasible plans from the search
space (i.e., plans that cannot be refined into a solution) [25] and for designing well-
informed heuristics for hierarchical and hybrid planning [24, 14].

3 Plan Execution

In most real-world application domains, the effect of actions is not fully determinis-
tic, though there is often an outcome that can be regarded as the intended or standard
effect. Since Companion-Systems flexibly adapt to any changes in the user’s situa-
tion and environment, they must be able to detect and deal with unforeseen effects.
The sub system that monitors the environment and detects state changes that conflict
with the current plan is called execution monitor and described in Sect. 3.1. When
a state deviation is detected that may cause the current plan to fail, the plan repair
component is started. The plan repair mechanism is introduced later on in Sect. 4.
Solution plans are not totally ordered: they include only ordering constraints that
are necessary to guarantee executability. Thus it is likely that there is more than one
linearization of the solution. The plan linearization component is responsible to de-
cide which one is most appropriate to be presented to a user. This functionality is
described in Sect. 3.2. What it means to execute a single plan step, and how it may
be done, is described in Sect. 3.3.

2 Delete-relaxation means to ignore negative literals in the effects and, optionally, in the precondi-
tions of any action.

172

User-Centered Planning 9

3.1 Monitoring

As given above, the monitoring compares changes that have been detected in the
environment with the intended effect of a started action. When differences are de-
tected, it must not necessarily be a problem for the execution of the current plan,
so the monitoring has to decide whether repair (see Sect. 4) is initiated or not. The
decision may be based on the set of active causal links. A causal link is active if and
only if its producer has been executed while the consumer has not. When there is an
active link on a literal that has changed, repair is started (see Fig. 1).

Fig. 1 The figure shows how
an unexpected state deviation
influences the execution of
the remaining actions. The
horizontal line indicates the
execution horizon. An exe-
cution error flipped the truth
value of the literal protected
by the right-most causal
link. Because that causal link
crosses the execution horizon,
the causal link’s consumer
(Action-D) might not be exe-
cutable anymore.

Action-A

already executed

not yet executed

↑
↓ �

Action-B

Action-C

Action-D

Intuitively, this means that (a part of) the precondition of the consumer should
have been fulfilled by the producer, but this has not been successful. Now there is
no guarantee that the precondition of the consumer is fulfilled (i.e., a causal link that
supports it) and plan execution may fail. There are special cases, however, where the
currently executed sequence of actions is still executable although there is a causal
link that is violated (a valid POCL plan could hence be found by simply choosing a
new producer for the invalidated causal link within that plan). Although in that case
the user could proceed executing that action sequence, plan repair must be initiated,
since the respective causal link may be mandatory: in case it has not been inserted
by the planner as a means to ensure executability, but if it comes from the domain
(specified within a plan referenced by a decomposition method) or from the initial
plan, it may not be changed. Such links may be intended by the modeler to protect
certain properties during execution (referred to as prevail conditions) and are thus
not allowed to be removed.

So, when ever a condition of an active causal link is violated, the plan monitoring
initiates plan repair. It creates an altered plan (if there is one) that is able to deal with
unexpected changes and fulfills the constraints given in the model.

The approach given above is able to deal with unforeseen changes of the en-
vironment and minimizes the computational effort that is necessary. Plan repair is
only started if active causal links are violated. However, there are situations where
it would be beneficial to start the repair mechanism even in cases where no active

173

10 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

causal links are violated and, hence, the plan is still executable. Consider, e.g., the
case where the unforeseen change does not result in any violated causal link, but at
the same time causes the original goal condition to become true. In that setting, the
planning problem would be solved when no further actions are executed3. Without
starting repair, the user had to proceed executing the plan. Though this is a good
reason to start plan repair as often as there is enough time to wait for the new plan,
there are also reasons to continue the execution of the original plan: in case there is
no notable problem with the plan currently executed it might confuse the user when
its execution is canceled to proceed another plan. The question when to repair could
be answered by an empirical evaluation.

3.2 Plan Linearization

As given in the introduction of this section, plans generated by the planning system
are only partially ordered. They include only the ordering constraints that are in-
cluded in the model and those that have to be included to guarantee that a goal state
is reached after execution. This makes the execution most flexible, since it com-
mits only on necessary constraints. In many situations, it is necessary to choose a
linearization of that partial order for plan execution. When plans are executed by a
machine, like a smartphone or robot, it may not matter which of its linearizations
is executed. However, whenever humans are involved in plan execution, the low
commitment of the ordering given in the plan can be exploited to choose the lin-
earization that is most suitable for the specific user in the current situation. Consider
a user who has to achieve two tasks that are not related in any sense. This scenario
is likely to result in a plan with two lines of action that are not interrelated. It is no
problem to execute the first step of the first line, then the first step of the second line,
and so on. However, it might be much more intuitive for the user to finish the first
line before starting the second one (or vice versa). The overall process, committing
on some ordering constraints during planning and determining the other ordering
relations during post processing, can be seen as a model that consists of two parts.

There are several objectives for the linearization that may be competing. This
could be the convenience of the user during execution, to optimize a metric that can
be measured (e.g., execution time) or to imitate human behavior. Since Companion-
Systems need to adapt to the specific user and its current situation, finding a user-
friendly and maybe user- and situation-specific linearization is another point where
adaptivity may come to light. As a starting point for situation- and user-specific
strategies, we identified three domain-independent strategies to linearize plans [33].

All of them exploit knowledge that is included in the plan or the domain defini-
tion to linearize plans:

3 Assuming there are no not yet executed actions that are inserted due to the underlying action
hierarchy, cf. Solution Criterion 1a.

174

User-Centered Planning 11

1. Parameter Similarity. In the home theater domain (see Chap. 24) it seems rea-
sonable to complete all actions involving a specific device before starting on
another. It is a feasible design decision of the modeler to pass on the devices as
parameters to an action (though there are other ways to model the domain), as it
is the case for the example action in Eq. (1). A parameter-based strategy would
exploit this: it orders plan steps in a way that maximizes successive actions that
share constants in their parameter set [33, Section 4.1].

2. Causal Link Structure. The causal link structure of a plan represents which ef-
fect of a plan step fulfills a certain precondition of another. The planning proce-
dure is problem driven, i.e., there is no needless causal link in the plan. Therefore
this is also a valuable source of linearization information, because the user may
keep track of the causality behind steps that are executed. A strategy based on this
structure orders the steps in a way that minimizes the distance between producer
and consumer of a causal link. Besides the decisions of the domain modeler, this
strategy also depends on the planning process [33, Section 4.2].

3. Decomposition Structure. Since the planning domain is commonly modeled by
a human domain designer, it is reasonable to assume that tasks that are introduced
by a single method are also semantically related. Generalizing this assumption,
tasks that have a short distance in the tree of decompositions that spans from
the initial task network to the actual plan steps are supposed to be semantically
closer related than tasks that have a long distance. This property can be used for
plan linearization. In this form, it depends on both the domain and the planning
process. When using the task decomposition graph instead, it only depends on
domain properties [33, Section 4.3].

As given above, all strategies depend on the planning domain, the planning system,
or both. Thus it is possible to model the same application domain in such a way that
they work well or poorly. Consider, e.g., the strategy based on parameter similarity
in a propositional domain – there is no information included that could be used for
linearization.

The given strategies can be used to pick the next plan step from a set of possi-
ble next actions (those where all predecessors in the ordering relation have already
been finished), i.e., for a local optimization. Another possibility is to optimize them
globally over the linearization of the whole plan. They can also be used as starting
point for a domain-specific strategy.

3.3 Plan Step Execution

There are several possibilities on how to proceed when a single plan step has been
selected for execution. In some cases, the action is just present due to technical
reasons and nothing has to be done for its execution. Consider, e.g., the actions ainit
and agoal. Their purpose is to cause a certain change during the planning process
and it is likely that they can be ignored by the execution system, although reaching
action agoal could trigger a notification that states the successful plan completion.

175

12 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

A second possibility is that actions control some part of the system. These are
executed internally, but are not necessarily required to be communicated to the user.
They may cause, for example, a light to be switched on/off, or a door to open/close,
or adding a new entry to be added in a calendar.

Besides these possibilities, there are actions that have to be communicated to the
user, as he or she is the one that carries them out or because the presentation itself
is the desired purpose. Such actions can be easily communicated to the user by
relying on additional system components taken from dialog management (Chap. 9)
and user interaction (Chap. 10), as explained in Chap. 24. For that purpose, each
action has an associated dialog model that specifies how it may be presented to a
user [47, 16]. The dialog model may itself be structured in a hierarchical manner
to enable the presentation of an action with a level of detail that is specific to the
individual user. So, depending on the user’s background knowledge, the action may
be presented with more or less details [48]. The resulting information is sent to the
fission component [35] that is responsible for selecting the adequate output modality
(Chap. 10). For this, each action may have a standard text template associated with
it, which can be used for visualization. Further, each constant used by an action
parameter can be associated with respective graphics or videos. In Fig. 2 we see
how the action given in Eq. (1) may be presented to a user.

Fig. 2: Here, we see how a single planning action can be presented to a human user.

4 Repairing Failed Plans

Companion-Systems have to adapt to changes in the current situation [19]. This
is especially necessary when the execution of a plan fails. If the plan monitoring

176

User-Centered Planning 13

component (see Sect. 3.1) decides that – due to an execution failure – a new plan
has to be found, there are two possibilities how this can be done:

• Re-planning. The plan at hand is discarded and the planning process is done
from scratch. The changed environment is used as initial state and a new plan is
found that transfers it into a state that fulfills the goal criteria.

• Plan Repair. The original plan is re-used and adapted to the needs of the changed
situation. Thereby the unexpected changes of the environment have to be consid-
ered and to be integrated into the new plan.

Both approaches have several advantages and disadvantages. Re-planning enables
the use of sophisticated planning heuristics. For some cases in classical planning,
Nebel and Koehler showed that plan repair might be computationally more expen-
sive than planning from scratch [45]. The system could come up with a completely
new solution that has nothing in common with the original one, albeit a minor
change would have resulted in a valid solution. Presenting a very different solution
to a human user might cause confusion and reduce the user’s trust in the system.

When a plan is repaired, the new plan might be more similar to the original solu-
tion. However, this strategy might increase computational complexity [45], prevents
the planning system to find shorter/more cost-effective solutions; and an altered
algorithm with effective heuristics that are able to deal with the altered planning
problem has to be realized.

In HTN planning there is another aspect to consider: While in classical planning
the already executed prefix of the original solution, followed by a completely new
plan that reaches a goal state is a proper solution to the original problem, the com-
bination may not be in the decomposition hierarchy of an HTN problem and thus
violate Solution Criterion 1. There are circumstances that can be encoded into the
decomposition hierarchy of an HTN planning problem that can not be ensured by
preconditions and effects (see the expressivity analysis by Höller et al. [31, 32]). So
it has to be assured that a repaired plan also fulfills the constraints that are introduced
by the hierarchy.

We now introduce our approach for re-planning [9]. Although, from a theoretical
point of view, it is classified as re-planning (because we do not try to repair the plan
already found), it still combines aspects of both re-planning and plan repair. Aspects
of repair are required to ensure that the plan prefix already executed is also part of
any new solution that can cope with the execution error.

When the execution of a plan fails, a plan repair problem is created. Its domain
definition is identical to that of the original problem, while the problem instance is
adapted. It includes an additional set of obligations O, i.e., I = 〈C,sinit ,Pinit ,O,g〉.
Obligations define which commitments that were made in the original plan have to
be present in the new one. To ensure that they are fulfilled, we extend the solution
criteria in such a way that all obligations need to be satisfied. There are obligations
of the following kind:

• Task Obligations. These obligations ensure that a certain plan step (i.e., action)
is present in the new solution. A task obligation is included into the problem for
every step of the original plan that has already been executed. To overcome the

177

14 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

unexpected environment change, a special task obligation is added to the repair
problem. It makes sure that a new action is added that realizes the unforeseen
changes of the environment. Therefore it has the detected change as its effect.
This action is called process [17] and is introduced after the executed prefix of
the original plan.

• Ordering Obligations. Ordering obligations define ordering constraints between
the obligated task steps.

Obligations from the given classes are combined in a way ensuring that the executed
prefix of the original plan is also a prefix of any new plan. The process is placed
exactly behind this prefix to realize the detected change of the world. So the new
plan can cope with the unforeseen changes of the environment.

The additional constraints (i.e., the obligations) require some small alterations
of the planning procedure. Given an unsatisfied obligation, the algorithm needs to
provide possible refinements therefor: unsatisfied task obligations can be addressed
via task insertion or decomposition and marking a task within a plan as one of those
already executed. Ordering obligations are straight-forward.

We have also developed a repair approach for hybrid planning [17, 18]. It starts
with the original planning problem and the set of refinements applied to find the
original solution. As it is the case for our re-planning approach, the obligations are
part of the planning problem as well to ensure that the execution error is reflected
and the actions already executed are part of the repaired solution. In contrast to
standard repair, the algorithm tries to re-apply all previously applied refinements. It
only chooses different refinements where the particular choice leads to a part of the
plan that cannot be executed anymore due to the execution failure.

5 Plan Explanation

Plans generated via automated planning are usually fairly complex and can contain
a large amount of plan steps and causal links between them. If the decisions of a
Companion-System are based upon such plans, its user may not immediately under-
stand the behavior of the system completely. In the worst case, he or she might even
reject the system’s suggestions outright and stop using it altogether. In general, un-
expected or non-understandable behavior of a cognitive system may have a negative
impact on the trust in human-computer relationship [42], which in turn is known to
have adverse effects on the interaction with the user [49]. To avert this problem, a
system should be able to explain its decisions and internal behavior [40, 12]. If a
planner is the central cognitive component of the system, it has to be able to explain
its decisions (i.e., the plan it has produced) to the user.

A first step towards user-friendly interaction and eliminating questions of the
users even before they come up is an intelligent plan linearization component (see
Sect. 3.2), which presents the whole plan in an easy to grasp step-by-step fashion.
Obviously, this capability is not sufficient for complete transparency. Although the
order in which actions are presented is chosen in such a way that it is intuitive for

178

User-Centered Planning 15

the user, he or she might still wonder about it or propose a rearrangement. The user
might also be confused about the actual purpose of a presented action and ask why
it is part of the solution in the first place. The hybrid plan explanation [53] technique
is designed to convey such information to the user.

5.1 Generating Formal Plan Explanations

Usually, plan explanations are generated upon user request. Currently, the hybrid
plan explanation technique supports two types of requests. The first inquires for the
necessity of a plan step, i.e., “Why is action A in the plan?” or “Why should I do
A?”. The second requests information on an ordering of plan steps, i.e., “Why must
action A be executed before B?” or “Why can’t I do B after A?”. In both cases the
explanation is based upon a proof in an axiomatic system Σ , which encodes the
plan, the way it was created, and general rules how facts about the plan can be jus-
tified [53]. The request of the user is transformed into a fact F and an automated
reasoner is applied to compute a proof for Σ ` F . This proof is regarded as the ac-
tual formal explanation of the fact the user has inquired and is – subsequently –
transformed into natural language by a dialogue management component and pre-
sented to the user [53, 9]. Obtaining such a proof in a general first order axiomatic
system is undecidable. In our case it is decidable, since all necessary axioms are
horn-formulas, i.e., disjunctions of literals with at most one being positive. This
allows for the application of the well-known SLD-resolution [38] to find proofs.

We now describe which axioms are contained in Σ and how the inference, i.e.,
obtaining the formal proof, can be done. The plan itself is encoded in Σ by several
axioms, using two ternary predicates cr and dr, which describe the causal and hier-
archical relations, respectively. For every causal link 〈ps,ϕ, ps′〉 in the plan, the ax-
iom cr(ps,ϕ, ps′) is added to Σ . As described in Sect. 2, the plan to be explained has
been obtained by applying a sequence of modifications, i.e., by adding causal links,
ordering constraints, tasks, or by decomposing abstract tasks. Each used method m
was applied to decompose some abstract plan step ps′. It adds a set of new plan
steps PS (and ordering constraints and causal links) to the plan. For every such plan
step ps ∈ PS the axiom dr(ps,m, ps′) is added to Σ .

Explaining the Necessity of Plan Steps. To answer the first kind of question,
axioms proving the necessity of a plan step must be defined. That necessity is de-
scribed using the unary predicate n. Note that by “necessity” we do not refer to an
absolute or global necessity of a plan step. We do not answer the question whether
the respective action has to be part of any solution (such actions are called action
landmarks [51, 58]). Answering this question is in general as hard as planning it-
self. Instead, we explain the purpose of the action: we give a chain of arguments
explaining for which purpose that action is used within the presented plan.

All plan steps of the initial plan Pinit (which includes the action agoal that encodes
the goal condition) are necessary by definition, since Pinit describes the problem it-

179

16 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

self. Thus, n(ps) is included as an axiom for every plan step ps of Pinit. If a plan step
ps is contained in the plan in order to provide a causal link for another necessary
plan step, ps is also regarded necessary, as it establishes a precondition of a required
action. A simple example application of this rule is the necessity of any action es-
tablishing one (or more) of the goal conditions. The information that a plan step
establishes the precondition of another plan step is explicitly given in hybrid plans
by causal links. Using the given encoding of causal links in Σ , we can formulate an
axiom to infer necessity as follows:

∀ps,ϕ, ps′ : cr(ps,ϕ, ps′)∧n(ps′)→ n(ps) (2)

A similar argument can be applied if a plan step ps has been obtained via decom-
position. If a necessary abstract plan step ps′ is decomposed into ps, then ps serves
the purpose of refining ps′. Converted into an axiom this reads:

∀ps,m, ps′ : dr(ps,m, ps′)∧n(ps′)→ n(ps) (3)

One can use both Axiom (2) and (3) to show the purpose of any plan step: it is either
used to ensure the executability of another plan step (in this case, the first rule may
be applied), or it is part of the plan because of decomposition (then, the second rule
applies). Any chain of arguments (i.e., rule applications) will subsequently root in a
plan step of the initial plan, i.e., the number of proof steps is always finite.

So far, the explanations based on causal dependencies (cf. Axiom (2)) do only
rely on primitive plan steps. However, even these causality-based explanations could
be improved when taking into account abstract tasks. E.g., the presence of the plan
step plugIn(SCART-CABLE, AUDIO-PORT, AV-RECEIVER, AUDIO-PORT) should
be explained as follows: it is necessary, as it is part of the abstract task con-
nect(BLUERAY-PLAYER, AV-RECEIVER), which provides signalAt(AUDIO, AV-
RECEIVER), which in turn is needed by the action connect(AV-RECEIVER, TV) to
achieve the goal signalAt(AUDIO, TV). To obtain such explanations, cr predicates
(i.e., causal links) involving abstract tasks must be inferred. Here, the idea is that if
a plan step ps has an effect (or precondition) linked to some other plan step ps′ that
has been introduced into the plan by decomposing ps′′, then ps′′ is also linked to ps′

as one of its primitive tasks generated the condition necessary for ps′. The axiomatic
system Σ contains two further axioms, inferring these cr relations. Figure 3 contains
a visual representation of both axioms.

∀ps,m, ps′′, ps′ : dr(ps,m, ps′′)∧ cr(ps′,ϕ, ps)→ cr(ps′,ϕ, ps′′) (4)
∀ps,m, ps′′, ps′ : dr(ps,m, ps′′)∧ cr(ps,ϕ, ps′)→ cr(ps′′,ϕ, ps′) (5)

Explaining the Order of Plan Steps. The second question a user might pose, i.e.,
why a plan step ps is arranged before some other plan step ps′, has two possible
answers. Either the order is contained in the plan presented to the user or it was
chosen as part of the plan linearization process. In the latter case the system’s answer
could state that the order was chosen to obtain a plausible linearization and can be
changed if the user wishes to. In the former case, again a proof for a fact is generated

180

User-Centered Planning 17

ps′

ps′′

ps

m

ϕ

ϕ

(a) Visualization of Axiom (4)

ps′′

ps′ps

m

ϕ

ϕ

(b) Visualization of Axiom (5)

Fig. 3: The rectangular boxes depict primitive plan steps, the ones with rounded
corners depict abstract plan steps. The arrows labeled with m indicate a performed
decomposition using the method m. The arrows labeled with the literal ϕ indicate
causal links, whereas the dotted ones are inferred by one of the Axioms (4) or (5).

and conveyed to the user. Necessary order between plan steps is encoded using the
binary relation<. If the user poses the said question, the fact ps< ps′ is to be proven
in Σ and its proof constitutes the formal explanation for the order’s necessity. A
necessary order can be caused by several reasons, each of which is described by an
axiom. For the sake of brevity, we will only provide an intuition on these axioms,
while the interested reader is referred to the work of Seegebarth et al. [53] for further
details.

Orderings can be contained in the plans referenced by decomposition methods,
thus they are necessary if the respective abstract task is. Further, an ordering con-
straint may be added to a plan if a causal threat is to be dissolved. Here, the necessity
is based on the threatening plan step of the threat (cf. Solution Criterion 2c). Order
is also implicitly implied by every causal link in the plan, and its necessity is based
on the necessity of the consuming plan step of the link.

5.2 Verbalizing Plan Explanations

After having obtained a formal plan explanation, expressed by a proof in first-order
logic, it has to be conveyed to the user in a suitable way. As a default-approach the
explanation is transformed into text, which can be read to the user or displayed on a
screen (see Fig. 2). To generate a natural language text, we use a pattern-based ap-
proach, an approach commonly used by automated theorem provers to present their
proofs to humans [54, 30, 28]. Additionally one could use techniques similar to the
Interactive Derivation Viewer [56], which uses both verbal and visual explanations.

Consider the example mentioned earlier in this section. The formal explanation
in this case consists of one application of Axiom (3), two applications of the Ax-
iom (2), one of Axiom (4), and two of Axiom (5). Resulting from this proof the
following natural language text is generated:

Plug the audio end of the SCART-to-Cinch cable into the AV Receiver to connect the Blu-
ray Player with the AV Receiver. This provides that the AV Receiver has an audio signal,

181

18 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

needed to connect the AV Receiver with the TV. This provides that the TV has an audio
signal, needed to achieve the goal.

We chose not to verbalize Axioms (4) and (5), as their application should be intu-
itively clear to the user. The remaining applications of Axiom (2) and (3) form a
linear list. Each occurrence of Axiom (2) is translated into the text “This provides
that 〈ϕ〉, needed to 〈ps′〉”, where 〈x〉 denotes a domain-dependent verbalization of
x. Likewise, each instance of Axiom (3) is translated into “Do this to 〈ps′〉” For the
very first axiom in the explanation the begin of the sentences “This” and “Do this”
are replaced with the verbalization of the action to be explained.

6 Conclusion

Flexible system behavior is essential when realizing Companion-Systems [19]. We
summarized how different system capabilities supporting this design goal can be
implemented using the hybrid planning approach, starting by the generation pro-
cess that might integrate the user, the execution and communication of generated
solutions, as well as discussing how to cope with unforeseen situations.

Though the current abilities of user-centered planning contributes valuable capa-
bilities to the overall system, there are several promising lines of research for further
improvements. Especially the problem of how plans are linearized [33] may offer
further benefits for a convenient system. Another direction is a deeper explanation of
system behavior [53, 9]. Here questions like “Why can’t I use this action/method?”
or an explanation on why a problem at hand has no solution may help the user. The
overall explanation quality might also be improved by further integrating ontology-
as well as plan-based explanations [7]. Another important matter in real-world ap-
plications is the presentation of different alternatives to reach a goal [12].

Acknowledgements This work was done within the Transregional Collaborative Research Centre
SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

References

1. Alford, R., Bercher, P., Aha, D.: Tight bounds for HTN planning. In: Proc. of the 25th Int.
Conf. on Automated Planning and Scheduling (ICAPS), pp. 7–15. AAAI Press (2015)

2. Alford, R., Bercher, P., Aha, D.: Tight bounds for HTN planning with task insertion. In: Proc.
of the 25th Int. Joint Conf. on AI (IJCAI), pp. 1502–1508. AAAI Press (2015)

3. Alford, R., Shivashankar, V., Kuter, U., Nau, D.: On the feasibility of planning graph style
heuristics for htn planning. In: Proc. of the 24th Int. Conf. on Automated Planning and
Scheduling (ICAPS), pp. 2–10. AAAI Press (2014)

4. Alford, R., Shivashankar, V., Kuter, U., Nau, D.S.: HTN problem spaces: Structure, algo-
rithms, termination. In: Proc. of the 5th Annual Symposium on Combinatorial Search (SoCS),
pp. 2–9. AAAI Press (2012)

182

User-Centered Planning 19

5. Behnke, G., Höller, D., Bercher, P., Biundo, S.: Change the plan - how hard can that be?
In: Proc. of the 26th Int. Conf. on Automated Planning and Scheduling (ICAPS), pp. 38–46.
AAAI Press (2016)

6. Behnke, G., Höller, D., Biundo, S.: On the complexity of HTN plan verification and its im-
plications for plan recognition. In: Proc. of the 25th Int. Conf. on Automated Planning and
Scheduling (ICAPS), pp. 25–33. AAAI Press (2015)

7. Behnke, G., Ponomaryov, D., Schiller, M., Bercher, P., Nothdurft, F., Glimm, B., Biundo, S.:
Coherence across components in cognitive systems – one ontology to rule them all. In: Proc.
of the 25th Int. Joint Conf. on AI (IJCAI), pp. 1442–1449. AAAI Press (2015)

8. Bercher, P., Biundo, S.: A heuristic for hybrid planning with preferences. In: Proc. of the 25th
Int. Florida AI Research Society Conf. (FLAIRS), pp. 120–123. AAAI Press (2012)

9. Bercher, P., Biundo, S., Geier, T., Hörnle, T., Nothdurft, F., Richter, F., Schattenberg, B.: Plan,
repair, execute, explain - how planning helps to assemble your home theater. In: Proc. of the
24th Int. Conf. on Automated Planning and Scheduling (ICAPS), pp. 386–394. AAAI Press
(2014)

10. Bercher, P., Geier, T., Biundo, S.: Using state-based planning heuristics for partial-order
causal-link planning. In: Advances in AI, Proc. of the 36th German Conf. on AI (KI), pp.
1–12. Springer (2013)

11. Bercher, P., Geier, T., Richter, F., Biundo, S.: On delete relaxation in partial-order causal-
link planning. In: Proc. of the 25th Int. Conf. on Tools with AI (ICTAI), pp. 674–681. IEEE
Computer Society (2013)

12. Bercher, P., Höller, D.: Interview with David E. Smith. Künstliche Intelligenz (2016). DOI
10.1007/s13218-015-0403-y

13. Bercher, P., Hller, D., Behnke, G., Biundo, S.: More than a name? on implications of precon-
ditions and effects of compound htn planning tasks. In: Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI 2016), pp. 225–233. IOS Press (2016)

14. Bercher, P., Keen, S., Biundo, S.: Hybrid planning heuristics based on task decomposition
graphs. In: Proc. of the 7th Annual Symposium on Combinatorial Search (SoCS), pp. 35–43.
AAAI Press (2014)

15. Bercher, P., Richter, F., Hörnle, T., Geier, T., Höller, D., Behnke, G., Nothdurft, F., Honold, F.,
Minker, W., Weber, M., Biundo, S.: A planning-based assistance system for setting up a home
theater. In: Proc. of the 29th Nat. Conf. on AI (AAAI), pp. 4264–4265. AAAI Press (2015)

16. Bertrand, G., Nothdurft, F., Honold, F., Schüssel, F.: CALIGRAPHI-creation of adaptive di-
alogues using a graphical interface. In: 35th Annual Computer Software and Applications
Conf. (COMPSAC), pp. 393–400. IEEE (2011)

17. Bidot, J., Schattenberg, B., Biundo, S.: Plan repair in hybrid planning. In: Advances in AI,
Proc. of the 31st German Conf. on AI (KI), pp. 169–176. Springer (2008)

18. Biundo, S., Bercher, P., Geier, T., Müller, F., Schattenberg, B.: Advanced user assistance based
on AI planning. Cognitive Systems Research 12(3-4), 219–236 (2011). Special Issue on
Complex Cognition

19. Biundo, S., Höller, D., Schattenberg, B., Bercher, P.: Companion-technology: An overview.
Künstliche Intelligenz (2016). DOI 10.1007/s13218-015-0419-3

20. Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief (a preliminary report on
combining state abstraction and HTN planning). In: Proc. of the 6th European Conf. on
Planning (ECP), pp. 157–168. AAAI Press (2001)

21. Biundo, S., Wendemuth, A.: Companion-technology for cognitive technical systems.
Künstliche Intelligenz (2016). DOI 10.1007/s13218-015-0414-8

22. Bylander, T.: The computational complexity of propositional STRIPS planning. AI 94(1-2),
165–204 (1994)

23. Edelkamp, S.: On the compilation of plan constraints and preferences. In: Proc. of the 16th
Int. Conf. on Automated Planning and Scheduling (ICAPS), pp. 374–377. AAAI Press (2006)

24. Elkawkagy, M., Bercher, P., Schattenberg, B., Biundo, S.: Improving hierarchical planning
performance by the use of landmarks. In: Proc. of the 26th Nat. Conf. on AI (AAAI), pp.
1763–1769. AAAI Press (2012)

183

20 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

25. Elkawkagy, M., Schattenberg, B., Biundo, S.: Landmarks in hierarchical planning. In: Proc.
of the 20th European Conf. on AI (ECAI), pp. 229–234. IOS Press (2010)

26. Erol, K., Hendler, J.A., Nau, D.S.: UMCP: A sound and complete procedure for hierarchical
task-network planning. In: Proc. of the 2nd Int. Conf. on AI Planning Systems (AIPS), pp.
249–254. AAAI Press (1994)

27. Erol, K., Hendler, J.A., Nau, D.S.: Complexity results for HTN planning. Annals of Mathe-
matics and AI 18(1), 69–93 (1996)

28. Fiedler, A.: P.rex: An interactive proof explainer. In: Proc. of the 1st Int. Joint Conf. on
Automated Reasoning (IJCAR), pp. 416–420. Springer (2001)

29. Geier, T., Bercher, P.: On the decidability of HTN planning with task insertion. In: Proc. of
the 22nd Int. Joint Conf. on AI (IJCAI), pp. 1955–1961. AAAI Press (2011)

30. Holland-Minkley, A.M., Barzilay, R., Constable, R.L.: Verbalization of high-level formal
proofs. In: Proc. of the 16th Nat. Conf. on AI and the 11th Innovative Applications of AI
Conf. (AAAI/IAAI), pp. 277–284. AAAI Press (1999)

31. Höller, D., Behnke, G., Bercher, P., Biundo, S.: Language classification of hierarchical plan-
ning problems. In: Proc. of the 21st European Conf. on AI (ECAI), pp. 447–452. IOS Press
(2014)

32. Höller, D., Behnke, G., Bercher, P., Biundo, S.: Assessing the expressivity of planning for-
malisms through the comparison to formal languages. In: Proc. of the 26th Int. Conf. on
Automated Planning and Scheduling (ICAPS), pp. 158–165. AAAI Press (2016)

33. Höller, D., Bercher, P., Richter, F., Schiller, M., Geier, T., Biundo, S.: Finding user-friendly
linearizations of partially ordered plans. In: 28th PuK Workshop ”Planen, Scheduling und
Konfigurieren, Entwerfen” (PuK) (2014)

34. Honold, F., Bercher, P., Richter, F., Nothdurft, F., Geier, T., Barth, R., Hörnle, T., Schüssel, F.,
Reuter, S., Rau, M., Bertrand, G., Seegebarth, B., Kurzok, P., Schattenberg, B., Minker, W.,
Weber, M., Biundo, S.: Companion-technology: Towards user- and situation-adaptive func-
tionality of technical systems. In: Int. Conf. on Intelligent Environments (IE), pp. 378–381.
IEEE (2014). URL http://companion.informatik.uni-ulm.de/ie2014/companion-system.mp4

35. Honold, F., Schüssel, F., Weber, M.: Adaptive probabilistic fission for multimodal systems.
In: Proc. of the 24th Australian Computer-Human Interaction Conf. (OzCHI), pp. 222–231.
ACM (2012)

36. Kambhampati, S., Mali, A., Srivastava, B.: Hybrid planning for partially hierarchical domains.
In: Proc. of the 15th Nat. Conf. on AI (AAAI), pp. 882–888. AAAI Press (1998)

37. Keyder, E., Geffner, H.: Soft goals can be compiled away. Journal of AI Research (JAIR) 36,
547–556 (2009)

38. Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp. 569–574
(1974)

39. Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. In: Proc. of the
5th European Semantic Web Conf. (ESWC), pp. 629–643. Springer (2008)

40. Lyons, J.B., Koltai, K.S., Ho, N.T., Johnson, W.B., Smith, D.E., Shively, R.J.: Engineering
trust in complex automated systems. Ergonomics in Design 24(1), 13–17 (2016). DOI
10.1177/1064804615611272

41. McAllester, D., Rosenblitt, D.: Systematic nonlinear planning. In: Proc. of the 9th Nat. Conf.
on AI (AAAI), pp. 634–639. AAAI Press (1991)

42. Muir, B.M.: Trust in automation: Part I. theoretical issues in the study of trust and human
intervention in automated systems. Ergonomics 37(11), 1905–1922 (1994)

43. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: An
HTN planning system. Journal of AI Research (JAIR) 20, 379–404 (2003)

44. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Wu, D., Yaman, F., Muñoz-Avila, H., Murdock,
J.W.: Applications of SHOP and SHOP2. Intelligent Systems, IEEE 20, 34–41 (2005)

45. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and empirical analysis.
Artificial Intelligence 76(1-2), 427–454 (1995)

46. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI), pp. 459–466. Morgan Kaufmann (2001)

184

User-Centered Planning 21

47. Nothdurft, F., Bertrand, G., Heinroth, T., Minker, W.: GEEDI - guards for emotional and ex-
planatory dialogues. In: 6th Int. Conf. on Intelligent Environments (IE), pp. 90–95. IEEE
(2010)

48. Nothdurft, F., Honold, F., Zablotskaya, K., Diab, A., Minker, W.: Application of verbal in-
telligence in dialog systems for multimodal interaction. In: 10th Int. Conf. on Intelligent
Environments (IE), pp. 361–364. IEEE (2014)

49. Parasuraman, R., Riley, V.: Humans and automation: Use, misuse, disuse, abuse. Human
Factors: The Journal of the Human Factors and Ergonomics Society 39(2), 230–253 (1997)

50. Penberthy, J.S., Weld, D.S.: UCPOP: A sound, complete, partial order planner for ADL. In:
Proc. of the 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning (KR),
pp. 103–114. Morgan Kaufmann (1992)

51. Porteous, J., Sebastia, L., Hoffmann, J.: On the extraction, ordering, and usage of landmarks
in planning. In: Proc. of the 6th European Conf. on Planning (ECP), pp. 37–48. AAAI Press
(2001)

52. Russell, S., Norvig, P.: Artificial Intelligence – A Modern Approach, 1 edn. Prentice-Hall
(1994)

53. Seegebarth, B., Müller, F., Schattenberg, B., Biundo, S.: Making hybrid plans more clear to
human users – a formal approach for generating sound explanations. In: Proc. of the 22nd Int.
Conf. on Automated Planning and Scheduling (ICAPS), pp. 225–233. AAAI Press (2012)

54. Simons, M.: Proof presentation for isabelle. In: Proc. of the 10th Int. Conf. on Theorem
Proving in Higher Order Logics (TPHOLs), pp. 259–274. Springer (1997)

55. Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In: Proc. of the 21st
Int. Joint Conf. on AI (IJCAI), pp. 1790–1797. AAAI Press (2009)

56. Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. Electronic Notes Theoretical
Computer Science 174(2), 109–123 (2007)

57. Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile heuristic partial order planner. Journal of
AI Research (JAIR) 20, 405–430 (2003)

58. Zhu, L., Givan, R.: Heuristic planning via roadmap deduction. In: IPC-4 Booklet, pp. 64–66
(2004)

185

The following pages show the publication:

S. Biundo, D. Höller, B. Schattenberg, and P. Bercher. “Companion-Technology:
An Overview”. In: Künstliche Intelligenz 30.1 (2016). Special Issue on Companion
Technologies, pp. 11–20. doi: 10.1007/s13218-015-0419-3

https://link.springer.com/article/10.1007/s13218-015-0419-3

The final publication is available at link.springer.com

Reprinted with kind permission of Springer.

186

http://dx.doi.org/10.1007/s13218-015-0419-3
https://link.springer.com/article/10.1007/s13218-015-0419-3
link.springer.com

Künstliche Intelligenz: Special Issue on Companion Technologies
The final article is available at http://link.springer.com/article/10.1007/s13218-015-0419-3

Companion-Technology: An Overview

Susanne Biundo · Daniel Höller · Bernd Schattenberg · Pascal Bercher

Received: 10 November 2015 / Accepted: 17 November 2015

Abstract Companion-technology is an emerging field
of cross-disciplinary research. It aims at developing tech-

nical systems that appear as “Companions” to their
users. They serve as co-operative agents assisting in
particular tasks or, in a more general sense, even give

companionship to humans. Overall, Companion-tech-
nology enables technical systems to smartly adapt their
services to individual users’ current needs, their requests,
situation, and emotion. We give an introduction to the

field, discuss the most relevant application areas that
will benefit from its developments, and review the re-
lated research projects.

Keywords Artificial Companions · Companion-

systems · Human-Technology Interaction

1 Introduction

Companion-technology denotes a novel, cross-discipli-
nary field of research that aims at a paradigm shift in

human-technology interaction. It is motivated by two
fundamental observations. First, technological progress
in informatics and the engineering sciences provides us
with technical systems and electronic services of con-

tinuously increasing complexity and functional “intelli-

Susanne Biundo · Daniel Höller · Pascal Bercher
Ulm University, Institute of Artificial Intelligence, D-89069
Ulm, Germany. E-mail: forename.surname@uni-ulm.de
Bernd Schattenberg
Büro für intelligente Technologie-Beratung, D-88471 Laup-
heim, Germany. E-mail: mail@berndschattenberg.de

gence” in ever shorter innovation cycles. Second, quite
often a considerable lack of comfort and convenience in

use lets users feel overstrained and hindered from ex-
ploiting the offered functionality of these systems and
services to its full extent. Companion-technology points

the way out of this dissent by providing the means for a
smart, adequate, and particularly user-tailored human-
technology interaction.

Technical systems that conform to the Companion-
paradigm should be able to smartly adapt their func-
tionality to the individual user’s requirements and cur-

rent needs; adequately react to changes of context and
changes of the environment that might impair an effec-
tive user-system interaction; be sensitive to the user’s
emotional state and disposition; and conduct helpful

and informative dialogs. To this end, the systems need
to be provided with advanced cognitive abilities and
rich knowledge sources that build the basis for really

advanced and effective user support.

So far, the notion of Companion together with tech-
nical systems has been used in various ways. Most promi-

nently, the EU-funded COMPANIONS project focused
on the development of Companion-systems as conversa-
tional agents, which give companionship to human users
and accompany their owners over a (life-) long period

[92]. Another prominent example are Robotic Compan-
ions as addressed by one of the pilot finalists of the Eu-
ropean Flagship initiative “Robot Companions for Cit-

izens”. These biologically inspired systems were aimed
at supporting humans in their daily activities [8].

187

2 Susanne Biundo et al.

However, up to now a systemized definition of the
essence of Companion-technology or companionable sys-
tems is still lacking. The first attempt to come up with
such a definition was made when establishing the inter-

disciplinary Transregional Collaborative Research Cen-
tre “Companion-Technology for Cognitive Technical
Systems” [42,91,44]. Here, Companion-systems were

specified as cognitive technical systems showing partic-
ular characteristics: competence, individuality, adapt-
ability, availability, cooperativeness and trustworthiness.

A precise definition of these characteristics together
with specifications on how these characteristics could
be achieved will be given in a forthcoming book [43].

This article presents the current state of the art in

research and development towards Companion-techno-
logy. In Section 2 we introduce the research areas the
contributions of which are essential for the realization of

Companion-technology and review the application ar-
eas that will significantly benefit from its development.
Section 3 gives a comprehensive overview of research
projects that address Companion-technology in some

way or another. At that, we do not only refer to cur-
rently active projects, but give a summary on the com-
plete history of projects related to the field. Finally, we

conclude with some remarks on open issues and further
developments in Section 4.

2 Research and Application Areas of
Companion-Technology

Companion-technology builds upon wide-ranging cog-
nitive abilities of technical systems. The realization and
the synergy of those are, since roughly one decade, in-

vestigated under the research theme of cognitive sys-
tems or cognitive technical systems. The theme is fo-
cused on capabilities such as environment perception,
emotion recognition, planning, and learning, and their

combination with advanced human-computer interac-
tion. A first survey on cognitive technical systems was
published by Vernon et al. [86], whereas Putze and

Schultz give a more recent introduction [78]. Further-
more, there was also a special issue on Cognition for
Technical Systems of the KI journal [35].

2.1 Research Areas

The upcoming research field of Companion-technology
is cross-disciplinary in nature. Obviously, major con-

stituents stem from sub-fields of AI. The supply of rich

background knowledge together with the ability to rea-
son about this knowledge is a necessary prerequisite
for intelligent and user-tailored system behavior. Plan-

ning and decision making techniques enable systems to
generate courses of action and to reflect and explain
the effects of the respective acting. Thereby, depend-
ing on the application at hand, the system may either

act itself or take the generated course to give recom-
mendations for action to a human user. As soon as
sensory input has to be processed in order to recog-

nize environmental conditions, a user’s emotional state
or his or her disposition, reasoning under uncertainty
becomes indispensable. In these cases, often techniques

from machine learning and neural information process-
ing are the methods of choice. Finally, natural language
processing plays an important role for the exchange of
information between the system and its user.

However, in order to design and conduct effective
and adequate dialogs between a companionable system
and its human user, advanced dialog management and

human-computer-interaction techniques have to be em-
ployed and integrated with a system’s above-mentioned
cognitive abilities. They provide the possibility to choose

among various dialog strategies and to interact via var-
ious media and modalities. With that, they enable a
system to show a communication behavior that fits the

user’s current needs, the context of the application at
hand, and the user’s emotional state.

The field of affective computing originating from

the work of Picard [74] is an essential contributor to
Companion-technology as well. Combining aspects from
informatics, psychology, and cognitive science, it is con-
cerned with the recognition, processing, and even the

simulation of human affects. Being able to dynamically
recognize a user’s emotional state helps a system to
adapt its acting as well as its interaction and interven-

tion strategies in an adequate way, thereby ensuring
that a user gets not overburdened and preventing sud-
den dialog interruptions by the user.

Psychology and in particular the subfield of human
factors investigate the interaction between humans and
technical systems systematically and on an empirical

basis. The results obtained here and the methodologies
used are of particular importance for research, devel-
opment, and evaluation of Companion-technology. Fi-
nally, a synergy with the field of neuro-biology results

from neuro-imaging during human-machine interaction,

188

Companion-Technology: An Overview 3

which allows to draw conclusions regarding the benefit
of particular such dialogs, for example.

2.2 Application Areas

Most technical systems are operated by human users.
There is a wide variety of different application areas in

which systems of different kind are used that may enrich
their functionality and the system’s user friendliness by
Companion-technology. Here, we give a short overview
about some of these application areas.

Robotics. A large area of research and development con-

cerned with providing assistance to human users is the
field of Robotics. Especially areas of application where
robots interact directly with humans (see [54,58,46] for

overviews) form an interesting field for the realization
of Companion-characteristics. These areas range from
(seemingly) smart toys with limited interaction capabil-
ities, over service robots that perform tasks in house-

hold or elderly care, to systems in health care that sup-
port people with disabilities or in rehabilitation.

The field of domestic service robots (see [77] for an

overview) ranges from single robots performing certain
household tasks, like vacuum cleaning [55], over smart
robotic environments like an assistive kitchen [36], to
systems that are designed to support the user in a broad

variety of duties [47,34,32].

A robot system that focuses on the social interaction
in a bartender domain has been developed by Petrick

and Foster [72]. Its behavior is based on AI planning
and on its observations, which are based on vision and
speech input.

Health and Elderly Care. Robots are also applied in
health and elderly care. These robots can be catego-

rized into rehabilitation or therapy robots and assistive
social robots [48,67]. The former do not focus on human
machine interaction [48] like e.g. intelligent wheelchairs

and are thus not further discussed here. The latter cat-
egory can be divided into robots that support a hu-
man in basic activities like eating or getting dressed as
well as pet-like robots [48]. Here, the term “Compan-

ion” is used sometimes, but often in a literal sense (i.e.,
they provide companionship) and not like given above.
Especially robots that support humans in their daily

lives might benefit from Companion-characteristics. An
overview of the field is given in [67]. A survey on the

effects of robots in health and elderly care can be found

in [48,37]. Examples for such robots are the robot seal
“Paro” that is designed for psychotherapy [87,88] or the
assistant robot described in [75] that supports elderly

people by providing guidance and reminders.

There are also less robot-like intelligent devices that
support humans in their daily lives. Systems support
people suffering from dementia or other cognitive dis-

abilities in activities of daily life, such as washing hands
or brushing teeth, e.g. [76,45,71]. Other systems sup-
port people with disabilities, e.g. blind people ([51] gives
an overview). Although these systems need less social

abilities, situation and user adaptive behavior might
help to optimize their capabilities.

Intelligent Environments and Homes. Other applica-

tion areas that aim at realizing customized assistance
are those of intelligent environments [31] and in partic-
ular smart homes [59]. Systems in these areas should

tailor their behavior to the current situation as well as
to the preferences of the human user [31, p.4]. (Smart)
homes often have more than one resident, hence adap-

tation to the current environment and the user’s situ-
ation also becomes more complex. Smart homes are of
particular interest as an application scenario for elderly
care, as they allow to monitor and assist their elderly

residents and, e.g., call an ambulance or notify other
residents in case of an emergency. An important issue
is the question on whether potential residents accept

this technology in their daily life (see [52,56]); smart
homes have been particularly investigated for patients
[80]. For an overview of several smart home applications
and smart home research we refer to [64,77,79].

Driver Assistance. Modern vehicles become increasingly
smarter with a wide range of possible services [40,66,

85]. In particular, we encounter a growing individual-
ization of cars to its user. For example, they arrange the
position of the driver’s seat or adjust the radio’s volume
to the preferred level; they are equipped with many sen-

sors that allow to automatically react to the environ-
ment (e.g. to break automatically) or to assist parking
[89]. Individualization to a user’s personal preferences

and his current situation will also become important for
autonomously driving cars, as one could imagine that
the taken tour or speed depends on a combination of a
user’s personal preferences and his current stress level

or emotional state.

189

4 Susanne Biundo et al.

Other Assistance Systems. Individualization to a spe-
cific user and its environment as well as the capability to
behave rationally are important capabilities for smart
assistant systems in various application fields such as

elderly care. Due to its capability to automatically solve
complex tasks, AI planning can also serve as the basis to
improve the basic functionality of many technical sys-

tems, such as smartphones (see e.g. [41]). AI planning
also serves as the basis in a prototypical system that
provides automated assistance in the task of setting up

a home entertainment system [38,39]. The system au-
tonomously calculates a plan that solves the task and
presents it as a sequence of detailed instructions that
explain which cable needs to be plugged into which port

of the respective device. Further, the system can gen-
erate AI plan explanations that - transformed into nat-
ural language - explain to the user the necessity of any

presented instruction in question. The presentation of
these instructions can also be adapted to different skill
levels and preferences of different users [63,62].

Glodek et al. describe an intelligent ticket vending

machine as an example application for explaining how
information from various sources, such as sensors and a
knowledge base, can be fused [57]. The ticket machine
makes use of various sensors to observe the current sit-

uation and the user’s emotional state in order to adapt
its behavior accordingly. For instance, the system mon-
itors whether the user is interacting with the system or

with other people in front of the vending machine or
talking with someone else using a cell phone. In such a
situations, any spoken text or performed gestures are

not interpreted as input to the system.

User assistance is also essential in any situation that
involves great risks and/or where the cognitive load of
the respective user is quite high. One such system, ELP

(Emergency Landing Planner), assists pilots in case of
an emergency taking into account various factors like
weather conditions, for example [69].

3 Research Projects in the Area of
Companion-Technology

In this section, we focus on projects that are related in

terms of the application’s adaptation aspects and facets
that aim at advanced user assistance, which means in
particular: personal assistance systems, care of the el-

derly, and assistance for impaired or disabled persons.
This is of course a very pragmatic and relatively fuzzy

categorization of the enormous variety of approaches

behind the presented research projects – it is thus a
mere entry point to the field for the inclined reader.

3.1 History of Companion-Technology-like Projects

ACCESS (Assisted Cognition in Community, Employ-
ment and Support Settings) [2,65] was one of the first
major joint research projects to address the issue of
cognitive technical systems. Computer scientists and

medical researchers at the University of Washington ex-
plored the impact of cognitive support for people suf-
fering early stages of Alzheimer’s disease. They com-

bined techniques from Artificial Intelligence and Ubiq-
uitous Computing in order to monitor the behavior of
the patients and from that to assess their cognitive ca-

pabilities. While this research focused on establishing
cognitive support, service robotics projects like Nurse-
bot [25,82] at the University of Pittsburgh, Carnegie
Mellon University, and University of Michigan, or Gi-

raffPlus [17,50], funded by the European Community’s
Framework Programme Seven (FP7), aimed at directly
assisting elderly people with cognitive tasks, for exam-

ple helping them to remember medication schedules.
The assistance functionality is thereby not embedded in
a user’s environment, but provided by an autonomous
mobile platform that interacts directly with the patient.

But robot Companions have not only been successfully
deployed in elderly care scenarios, they are also very
well and unbiased received by children, for example

within the scope of the FP7 project ALIZ-E [4,68] on
adaptive strategies for sustainable long-term social in-
teraction. The autonomous system thereby assists in di-

abetes management during a long-term interaction with
the child patient.

The goal of the Collaborative Research Centre (CRC)
588 Humanoid Robots - Learning and Cooperating Mul-

timodal Robots [18,53], funded by the German Research
Foundation (DFG) at the Karlsruhe Institute of Tech-
nology (KIT), was to develop concepts, methods, and

mechatronic components for creating humanoid
robots. While assisting in household environments, the
robot was supposed to grasp and acknowledge its hu-

man user’s intentions in a natural, human-like, and
multi-modal manner. The project had a specific interest
in interactive learning, so in cooperatively interacting
with a human user, the robot learned from that per-

son new vocabulary, relevant objects in the household

190

Companion-Technology: An Overview 5

environment, and the execution of grasping and ma-
nipulation tasks. The research efforts thus focused on a
broad variety of techniques like learning from observa-
tions, spontaneous speech recognition, and the like.

The relevance of robotic Companions as a means
for assisted living on the European level became appar-
ent by the selection of the Robot Companions for Citi-

zens initiative CA-RoboCom [8] as one of the seven Fu-
ture and Emerging Technologies (FET) Flagship Pilot
finalists in 2012. The initiative’s consortium aimed at

developing biologically inspired robots that support hu-
mans in their daily activities and in particular in poten-
tially dangerous situations. In order to provide this kind

of support, their agenda also included developing ade-
quate cognitive capabilities and addressing emotional
aspects of companionship. CA-RoboCom proposed the
adoption of autonomous systems on various levels of

scale and organization, eventually realizing ubiquitous
robotic assistance.

Establishing a new level of usability by providing

Companion-like assistance in the realm of information
technology was the goal of the following two German
national “lead-project” initiatives, funded by the Fed-

eral Ministry of Education and Research (BMBF).
SmartKom [30,90] followed the vision of automatically
tailoring interactions with systems to the specific needs

of the individual users. The barriers for novices in adopt-
ing information technology were to be minimized by
providing more self-explanatory, respectively self ex-
plaining user interfaces. Key elements therefore were

highly adaptive dialog-based interfaces, which combined
natural speech, facial expression, gesture, and conven-
tional graphical interfaces. In this way, the systems al-

lowed for addressing all human senses in quasi-natural
communication settings. The EMBASSI project [16,60,
61] focused on assisting the operation of complex tech-
nical devices of everyday life, thereby providing access

to their functionalities without any deeper technical
knowledge required. This was achieved by establishing
a flexible conversational-like dialog between the human

user and the technical system, with the interfaces be-
ing based on psychological and ergonomic studies. In
following this direction, the initiative developed intel-

ligent assistance and anthropomorphic interfaces, com-
bined with a corresponding architecture, infrastructure
components, and protocol standards.

Focused on multi-modal dialog systems, the SE-
MAINE (Sustained emotionally colored machine-human

interaction using non-verbal expression) FP7 initiative

[29,83] followed the vision to provide these systems with
a technology such that a human user is able to engage
with them in an everyday conversation. The key ele-

ment is to build an avatar with a rich facial expression,
who reacts in particular on the user’s non-verbal sig-
nals and traits of his or her emotional state. The com-
munication, although no “real” content is understood,

becomes believably emotionally colored. This “Sensi-
tive Artificial Listener” is the underlying metaphor for
SEMAINE’s human-computer interface design.

Affective computing became a larger and more gen-
eral research topic in the area of computer science and
so it did in particular in realizing Companion-like func-

tionality. In the mid-2000’s, an FP6 project was funded
that was exclusively dedicated to research on emotions
in the course of man-computer interaction: the Human-

Machine Interaction Network on Emotion (HUMAINE)
[73]. Its members aimed at so-called Emotion-oriented
Systems, that means, systems that are able to recognize
emotions of human users, which can build an adequate

representation of the underlying emotional states and
processes, and that are capable of interacting on them.
This includes research topics on emotion theory, signals,

emotional aspects of interaction, emotions in cognition
and actions, emotions in communications, and usability
aspects of emotion-oriented systems.

After the network’s completion, the HUMAINE con-
sortium became the nucleus for The Association for
the Advancement of Affective Computing (AAAC) [1],

which is an active stakeholder in the field. Among oth-
ers, the AAAC organizes the Audio/Visual Emotion
Challenge and Workshop, the competition on emotion
analysis methods on multi-modal corpora.

In 2006, the DFG established the excellence clus-
ter Cognition for Technical Systems (CoTeSys) [15,33,
49]. It was devoted to research in the areas of design,

implementation, and analysis of information processing
methods that constitute cognitive processes in technical
systems [33]. In this long-term, interdisciplinary initia-

tive technical systems have been modeled on the hu-
man brain with respect to learning and reliably per-
forming complex activities, to adapt to changes in the

environment and objectives, and the like. The project
joined research in technical disciplines together with
neurobiology and cognitive sciences in order to realize
and evaluate technical solutions to perception in multi-

modal sensor feeds, to learning and knowledge acqui-

191

6 Susanne Biundo et al.

sition, to behavior planning, organization and control,
and to human-computer interaction models.

One of the most influential projects to the notion
of Companion-technology is COMPANIONS [13,92],

funded under the FP6 programme. It depicted Com-
panion-systems as virtual conversational agents, which
communicate with their users primarily via spoken lan-
guage, but also employ touch-sensitive displays and oth-

ers sensors. The research agenda of this project included
many of the before-mentioned capabilities that are as-
sociated with verbal interaction: dialog management,

speech recognition and synthesis, and emotion detec-
tion and elicitation. In addition to these technical is-
sues, COMPANIONS also examined long-term aspects

in the user-Companion relationship like the expanding
engagement of users and the increasing demand for re-
specting their preferences and inclinations. With envi-
sioning Companions to participate in everyday activi-

ties, the project also covered their philosophical and so-
cial implications. All these topics presented themselves
to be even more relevant in application areas like fitness

and health coaching or elderly care scenarios.

3.2 Currently Active Projects in Focus Areas

The majority of current projects that deal with pieces
of Companion-technology employs the notion of an em-
bodied, more or less anthropomorphic companionship,
which in turn often translates into projects on autono-

mous robotic platforms to assist human users in their
everyday lives. We will therefore start by focusing on a
few representatives of this direction, which subsumes a

vast number of methods and practical solutions.

Robotic companions become more and more socially
engaging and in order to build or maintain a believable
relationship, this requires them to adapt to the expe-

riences they share with their human users. This per-
sonalization of autonomous platforms, together with all
its technical and psychological issues is addressed by a

number of cognitive robotics projects, for example the
MIT Personal Robots projects [22] at the Massachusetts
Institute of Technology or the researchers training ini-
tiative Applications of Personal Robotics for Interac-

tion and Learning (APRIL) [5], funded under the Hori-
zon 2020 Framework of the European Union (H2020).
Their research centers around adaptation and learning

mechanisms in technical systems, with which users pre-
fer to interact in a natural, human-like fashion.

The H2020 project RAMCIP [28] addresses a spe-

cific kind of domestic service robot, a “Robotic Assis-
tant for MCI patients at home”. The vision is to pro-
vide the autonomous system with higher-level cogni-

tive capabilities such that it can pro-actively assist el-
derly people, patients suffering symptoms of beginning
Alzheimer’s disease, and the like. In these application
domains, the right proportion of a level of discreteness

and actual assistance provisioning is key, because the
patients’ autonomy must not be violated and the per-
sons are supposed to be stimulated properly in order to

stay as active as possible.

The aspect of the robotic Companion stimulating
its user for medical purposes is also central to Cog-

nitive Development for Friendly Robots and Rehabili-
tation (CODEFROR) [10]: The autonomous system is
supposed to provide training and rehabilitation tech-

niques for children with sensory, motor, and cognitive
disabilities. It is another example of a target user group
that heavily depends on natural and intuitive interfaces.
In order to deliver adequate assistance concepts and

mechanisms, this FP7 project focuses in particular on
developmental issues of human cognition like the evolu-
tion of action representations, intentions, and emotions.

PAL, the Personal Assistant for healthy Lifestyle
[26], builds upon some of the results of ALIZ-E (see
above). It proposes the combination of a robotic plat-

form, a virtual avatar agent, and a number of interac-
tive health-related devices, which together constitute a
health-related assistance system for young patients and

their caregivers. Type 1 Diabetes Mellitus is a complex
illness with serious risks, which on the one hand re-
quires the patients to acquire and strictly adhere to spe-
cific habits within their diabetes regimen and which on

the other hand demands for personalized and context-
sensitive support in order to reduce the diabetes-asso-
ciated risks persistently. It is the H2020 project’s vi-

sion, that the robot and avatar serve as incarnations of
the child’s personal Companion, while the other system
components support their parents and caregivers with
respect to information sharing, regimen coordination

and the like.

A primarily virtual avatar-based approach is fol-

lowed by FP7’s Miraculous-Life for Elderly Independent
Living [20], which aims at unobtrusively supporting el-
derly people in their daily activities and safety needs.
The avatar metaphor is chosen to allow the users to

connect emotionally more easily. This is supported by

192

Companion-Technology: An Overview 7

providing the avatar with the capacity for behavioral
and emotional understanding, allowing for interactions
involving, e.g., facial expressions, gestures, and contex-
tual information. This human-like company is expected

to stimulate and motivate older people to stay active.

A universal “ease of use” and intuitive interfaces for

technical systems in general is the goal for the DFG ex-
cellence cluster Cognitive Interaction Technology
(CITEC) [9,81]. To this end, the researchers exam-
ine a variety of cognitive processes concerning inter-

action and communication, ranging from the integra-
tion of perception and motoric functions to mediation
mechanisms for shared attention between human users

and technical systems. They regard any communication
with the systems as situational acts that require to co-
ordinate speech, perception, and motoric action. As a

consequence, learning and knowledge acquisition tech-
niques in these areas become central research issues, as
well as recognition, analysis, and goal-driven control of
attention on objects in the environment as part of an

emotional and social interaction.

One important aspect of Companion-technology is
to provide systems with the means to enable and pro-

cess a broad variety of input and output modalities.
In this regard we find a large number of HCI-related
projects that put emphasis on the sensory side. The

MIT Responsive Environments laboratory [23] produces
examples for augmenting the environment with a
plethora of individual sensors and sensor networks.

Building a coherent model of integrated sensory infor-
mation is an ongoing challenge in this area. But the
classical sensors for gathering visual and auditory in-
formation are not the only concerns of the community:

“Sensory Experiences for Interactive Technologies” [70],
a project funded by the European Research Council
(ERC), aims for example at extending interactive tech-

nologies by integrating touch, taste, and even smell ex-
periences. And although exploiting gestures as an in-
put for systems is suggested by several research initia-

tives, the BODY-UI (Body-based User Interfaces) ERC
project [7] studies the use of the body as a modality for
input and output matters likewise. The aim is to un-
derstand how a user’s cognitive processes are reflected

by his or her body, and vice versa, and eventually how
this can be exploited for creating natural interfaces. A
Corpus-Based Multimodal Approach to the Pragmatic

Competence of the Elderly (CorpAGEst) [14], funded
under FP7, explores the use of speech and gesture modal-

ities in particular amongst elderly people. The inter-

action patterns and their modalities are supposed to
change with age and therefore this project’s results may
provide exploitable data for adapting assisting systems

appropriately. On the subconscious level, a related topic
is addressed by Symbiotic Mind Computer Interaction
for Information Seeking (MindSee) [19] (FP7), which
analyses EEG and discreet peripheral physiological sen-

sors and combines them with available interaction con-
text information. The project aims at exploiting these
implicit cues of the user’s perception and emotions in

information retrieval applications. Similar topics are
addressed from a different angle by the ARIA-VALUSPA
(Artificial Retrieval of Information Assistants - Virtual
Agents with Linguistic Understanding, Social skills, and

Personalized Aspects) H2020 project [6]: The assisting
avatar is to be realized as an anthropomorphic charac-
ter that is capable of holding human-like multi-modal

social interactions. Verbal and non-verbal cues are used
to modify searches or filter results.

There are many more research initiatives in the field

of human-computer interaction, which contribute to the
ideas of accessibility in Companion-technology. For in-
stance, the technical implementation of intelligent and

reliable multimodal user interfaces is the driving force
behind the DFG excellence cluster Multimodal Com-
puting and Interaction (MMCI) [24,84]. This includes

processing of natural spoken language, dialog manage-
ment, image processing for three-dimensionally recon-
structing scenes and poses, and the synthesis of vir-
tual scenes and interacting avatars. But it also involves

technical aspects for providing a solid and trustworthy
system infrastructure.

Further examples of the many different facets of in-
teraction issues are the questions that arise from build-
ing up a shared understanding of complex contexts from
basic concepts when Communicating with Computers

[11], a program funded by the US Defense Advanced
Research Projects Agency. Its vision follows the notion
of human users being involved in a symmetric commu-

nication with a system when collaboratively developing
solutions to given problems, including the language to
actually communicate about that problem. Of course,
the area of affective computing contributes by bridg-

ing the gap between human emotions and information
technology - from the large number of projects we re-
fer to the MIT Affective Computing group [21] and the

before-mentioned AAAC [1]. These initiatives provide

193

8 Susanne Biundo et al.

methods to sense and elicit emotional user states and
are in particular suitable for detecting and handling en-
joyable, stressful, or otherwise particularly meaningful
episodes during an interaction. With a focus on pro-

viding natural access to assisting technology over a va-
riety of devices, the AIDE (Adaptive Multimodal In-
terfaces to Assist Disabled People in Daily Activities)

H2020 project [3] targets the needs of impaired persons.
Here, the challenge lies in a shared-control paradigm
for assistive devices, ranging from wearables to perva-

sive installations. As one final facet in our overview, we
mention the European Union’s FP7 Prosperity 4All ini-
tiative [27], which deals with the need for establishing
an adequate ecosystem that enables developers to eco-

nomically build self-personalizing interfaces and their
corresponding hardware.

The issues of a universal notion of Companion-tech-

nology are comprehensively dealt with by the Trans-
regional Collaborative Research Centre Companion-
Technology for Cognitive Technical Systems [12,42,91,

44,43]. This interdisciplinary initiative, funded by the
DFG, systematically investigates cognitive capabilities
and their implementation in technical systems. This
is done while focusing on a set of key characteristics

such as individuality, adaptability, availability, cooper-
ativeness, and trustworthiness. Realizing these so-called
Companion-characteristics by the integration of various

cognitive processes in technical systems is intended to
open a new dimension regarding human-technology in-
teraction. Since the resulting Companion-systems will
provide their technical functionality by taking into ac-

count the entire current and past situation of the user,
including his or her emotional state as well as envi-
ronmental conditions, these systems will finally be per-

ceived and accepted as competent and empathetic as-
sistants.

4 Conclusion

Companion-technology is an exciting field of research at
the interfaces between AI and informatics, the engineer-
ing sciences, and the life sciences. It imposes a number
of challenges on the disciplines involved and requires

close cross-disciplinary co-operation. Among the main
issues to be addressed are a consistent interlocking of
information processing procedures to actually connect

the sensory input levels of a prospective companion-
able system to its logical planning and decision mak-

ing levels and vice versa; the design and conduction

of comprehensive empirical studies to carefully explore
both users’ demands on the interaction and dialog ca-
pabilities of future technical systems and the effects of

these capabilities once they are actually implemented;
and finally the development of procedure models and
tool support to enable the take-up of the technology in
business and industry.

Acknowledgements This work is done within the Transre-
gional Collaborative Research Centre SFB/TRR 62 “Com-
panion-Technology for Cognitive Technical Systems” funded
by the German Research Foundation (DFG). We want to
thank our colleagues Felix Richter, Thomas Geier, Frank
Honold, Georg Layher, and Florian Nothdurft for discussions
and pointers to literature.

Project Webpages and References

1. AAAC (the association for the advancement of affective
computing). http://emotion-research.net

2. ACCESS (assisted cognition in community, employ-
ment and support settings). http://cognitivetech.

washington.edu

3. AIDE (adaptive multimodal interfaces to assist disabled
people in daily activities). http://aideproject.eu

4. ALIZ-E. http://aliz-e.org

5. APRIL (applications of personal robotics for interaction
and learning). http://cordis.europa.eu/project/rcn/

197987_en.html

6. ARIA-VALUSPA (artificial retrieval of information assis-
tants - virtual agents with linguistic understanding, social
skills, and personalized aspects). http://aria-agent.eu

7. BODY-UI (body-based user interfaces). http://www.

body-ui.eu

8. CA-RoboCom (robot companions for citizens). http://

www.robotcompanions.eu

9. CITEC (cognitive interaction technology). http://www.

cit-ec.de

10. CODEFROR (cognitive development for friendly robots
and rehabilitation). https://www.codefror.eu

11. Communicating with computers. http://www.darpa.

mil/program/communicating-with-computers

12. Companion-technology for cognitive technical systems.
http://www.companion-technology.org

13. COMPANIONS. http://www.companions-project.org

14. CorpAGEst (corpus-based multimodal approach to
the pragmatic competence of the elderly). http://

corpagest.org

15. CoTeSys (cognition for technical systems). http://

cotesys.in.tum.de

16. EMBASSI (Elektronische multimediale Bedien- und
Service-Assistenz). http://ftb-esv.de/embass.html

17. GiraffPlus. http://www.giraffplus.eu

18. Humanoid robots - learning and cooperating multimodal
robots (CRC 588). http://csl.anthropomatik.kit.

edu/english/sfb.php

194

Companion-Technology: An Overview 9

19. MindSee (symbiotic mind computer interaction for infor-
mation seeking). http://mindsee.eu

20. Miraculous-life for elderly independent living. http://

www.miraculous-life.eu

21. MIT affective computing group. http://www.media.mit.
edu/research/groups/affective-computing

22. MIT personal robots project. http://www.media.mit.

edu/research/groups/personal-robots

23. MIT responsive environments laboratory.
http://www.media.mit.edu/research/groups/

responsive-environments

24. MMCI (multimodal computing and interaction). http:

//www.mmci.uni-saarland.de

25. Nursebot. http://www.cs.cmu.edu/~flo/

26. PAL (personal assistant for healthy lifestyle). http://

www.pal4u.eu

27. Prosperity 4all. http://www.prosperity4all.eu

28. RAMCIP (robotic assistant for mci patients at home).
http://ramcip-project.eu

29. SEMAINE (sustained emotionally coloured machine-
human interaction using non-verbal expression). http:

//www.semaine-project.eu

30. SmartKom. http://www.smartkom.org

31. Augusto, J.C., Callaghan, V., Cook, D., Kameas, A.,
Satoh, I.: Intelligent environments: a manifesto. Human-
Centric Computing and Information Sciences 3(1), 1–18
(2013). DOI 10.1186/2192-1962-3-12

32. Awaad, I., Kraetzschmar, G.K., Hertzberg, J.: The role of
functional affordances in socializing robots. International
Journal of Social Robotics 7(4), 421–438 (2015). DOI
10.1007/s12369-015-0281-3

33. Beetz, M., Buss, M., Wollherr, D.: Cognitive techni-
cal systems – what is the role of artificial intelligence?
In: Proc. of the 30th German Conference on Artificial
Intelligence (KI), pp. 19–42. Springer (2007). DOI
10.1007/978-3-540-74565-5 3

34. Beetz, M., Jain, D., Mösenlechner, L., Tenorth, M.,
Kunze, L., Blodow, N., Pangercic, D.: Cognition-enabled
autonomous robot control for the realization of home
chore task intelligence. Proc. of the IEEE 100(8), 2454–
2471 (2012). DOI 10.1109/JPROC.2012.2200552

35. Beetz, M., Kirsch, A. (eds.): Künstliche Intelligenz – Spe-
cial Issue on Cognition for Technical Systems, vol. 24,
issue 4 (2010)

36. Beetz, M., Stulp, F., Radig, B., Bandouch, J., Blodow,
N., Dolha, M., Fedrizzi, A., Jain, D., Klank, U., Kresse,
I., Maldonado, A., Marton, Z., Mösenlechner, L., Ruiz,
F., Rusu, R.B., Tenorth, M.: The assistive kitchen – a
demonstration scenario for cognitive technical systems.
In: The 17th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), pp.
1–8. IEEE (2008). DOI 10.1109/ROMAN.2008.4600634

37. Bemelmans, R., Gelderblom, G.J., Jonker, P., De Witte,
L.: Socially assistive robots in elderly care: A system-
atic review into effects and effectiveness. Journal of the
American Medical Directors Association 13(2), 114–120
(2012). DOI 10.1016/j.jamda.2010.10.002

38. Bercher, P., Biundo, S., Geier, T., Hoernle, T., Nothdurft,
F., Richter, F., Schattenberg, B.: Plan, repair, execute,
explain - how planning helps to assemble your home the-
ater. In: Proc. of the 24th International Conference on

Automated Planning and Scheduling (ICAPS), pp. 386–
394. AAAI Press (2014)

39. Bercher, P., Richter, F., Hörnle, T., Geier, T., Höller, D.,
Behnke, G., Nothdurft, F., Honold, F., Minker, W., We-
ber, M., Biundo, S.: A planning-based assistance system
for setting up a home theater. In: Proc. of the 29th Na-
tional Conference on Artificial Intelligence (AAAI), pp.
4264–4265. AAAI Press (2015)

40. Bishop, R.: A survey of intelligent vehicle applications
worldwide. In: Proc. of the IEEE Intelligent Vehicles
Symposium, pp. 25–30. IEEE (2000). DOI 10.1109/IVS.
2000.898313

41. Biundo, S., Bercher, P., Geier, T., Müller, F., Schatten-
berg, B.: Advanced user assistance based on AI planning.
Cognitive Systems Research 12(3-4), 219–236 (2011).
DOI 10.1016/j.cogsys.2010.12.005. Special Issue on Com-
plex Cognition

42. Biundo, S., Wendemuth, A.: Von kognitiven technis-
chen Systemen zu Companion-Systemen. Künstliche
Intelligenz 24(4), 335–339 (2010). DOI 10.1007/
s13218-010-0056-9

43. Biundo, S., Wendemuth, A. (eds.): Companion Technol-
ogy – A Paradigm Shift in Human-Technology Interac-
tion. Springer (2016). Forthcoming

44. Biundo, S., Wendemuth, A.: Companion-technology for
cognitive technical systems. Künstliche Intelligenz
(2016). DOI 10.1007/s13218-015-0414-8. Special Issue
on Companion Technologies

45. Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G.,
Mihailidis, A.: A planning system based on markov de-
cision processes to guide people with dementia through
activities of daily living. IEEE Transactions on Informa-
tion Technology in Biomedicine 10(2), 323–333 (2006).
DOI 10.1109/TITB.2006.864480

46. Breazeal, C., Takanishi, A., Kobayashi, T.: Social robots
that interact with people. In: Springer Handbook
of Robotics, pp. 1349–1369 (2008). DOI 10.1007/
978-3-540-30301-5 59

47. Breuer, T., Macedo, G.R.G., Hartanto, R.,
Hochgeschwender, N., Holz, D., Hegger, F., Jin, Z.,
Mueller, C.A., Paulus, J., Reckhaus, M., Ruiz, J.A.Á.,
Plöger, P., Kraetzschmar, G.K.: Johnny: An autonomous
service robot for domestic environments. Journal of
Intelligent and Robotic Systems 66(1-2), 245–272 (2012).
DOI 10.1007/s10846-011-9608-y

48. Broekens, J., Heerink, M., Rosendal, H.: Assistive social
robots in elderly care: a review. Gerontechnology 8(2),
94–103 (2009). DOI 10.4017/gt.2009.08.02.002.00

49. Buss, M., Beetz, M.: CoTeSys – cognition for technical
systems. Künstliche Intelligenz 24(4), 323–327 (2010).
DOI 10.1007/s13218-010-0061-z

50. Coradeschi, S., Cesta, A., Cortellessa, G., Coraci, L.,
Galindo, C., Gonzalez, J., Karlsson, L., Forsberg, A.,
Frennert, S., Furfari, F., Loutfi, A., Orlandini, A.,
Palumbo, F., Pecora, F., von Rump, S., Štimec, A., Ull-
berg, J., Ötslund, B.: Giraffplus: A system for monitoring
activities and physiological parameters and promoting so-
cial interaction for elderly. In: Human-Computer Sys-
tems Interaction: Backgrounds and Applications 3, Ad-
vances in Intelligent Systems and Computing, vol. 300,
pp. 261–271. Springer International Publishing (2014).
DOI 10.1007/978-3-319-08491-6 22

195

10 Susanne Biundo et al.

51. Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle
avoidance electronic travel aids for blind: a survey. IEEE
Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 40(1), 25–35 (2010). DOI
10.1109/TSMCC.2009.2021255

52. Demiris, G., Rantz, M.J., Aud, M.A., Marek, K.D.,
Tyrer, H.W., Skubic, M., Hussam, A.A.: Older adults’
attitudes towards and perceptions of ‘smart home’
technologies: a pilot study. Informatics for Health
and Social Care 29(2), 87–94 (2004). DOI 10.1080/
14639230410001684387

53. Dillmann, R., Asfour, T.: Collaborative research center
on humanoid robots (SFB 588). Künstliche Intelligenz
22(4), 26–28 (2008)

54. Fong, T., Nourbakhsh, I.R., Dautenhahn, K.: A sur-
vey of socially interactive robots. Robotics and Au-
tonomous Systems 42(3-4), 143–166 (2003). DOI 10.
1016/S0921-8890(02)00372-X

55. Forlizzi, J., DiSalvo, C.: Service robots in the domes-
tic environment: a study of the roomba vacuum in the
home. pp. 258–265. ACM (2006). DOI 10.1145/1121241.
1121286

56. Gaul, S., Ziefle, M.: Smart home technologies: Insights
into generation-specific acceptance motives. In: HCI and
Usability for e-Inclusion, Lecture Notes in Computer Sci-
ence, vol. 5889, pp. 312–332. Springer (2009). DOI
10.1007/978-3-642-10308-7 22

57. Glodek, M., Honold, F., Geier, T., Krell, G., Nothdurft,
F., Reuter, S., Schüssel, F., Hörnle, T., Dietmayer, K.,
Minker, W., Biundo, S., Weber, M., Palm, G., Schwenker,
F.: Fusion paradigms in cognitive technical systems for
humancomputer interaction. Neurocomputing 161, 17–
37 (2015). DOI 10.1016/j.neucom.2015.01.076

58. Goodrich, M.A., Schultz, A.C.: Human-robot interac-
tion: A survey. Foundations and Trends in Human-
Computer Interaction 1(3), 203–275 (2007). DOI 10.
1561/1100000005

59. Harper, R.: Inside the smart home. Springer Science &
Business Media (2006)

60. Herfet, T., Kirste, T., Schnaider, M.: EMBASSI multi-
modal assistance for infotainment and service infrastruc-
tures. Computers & Graphics 25(4), 581–592 (2001).
DOI 10.1016/S0097-8493(01)00086-3

61. Hildebrand, A., Sá, V.: EMBASSI: Electronic multime-
dia and service assistance. In: Proc. of the Intelligent
Interactive Assistance & Mobile Multimedia Computing
(IMC) (2000)

62. Honold, F., Bercher, P., Richter, F., Nothdurft, F., Geier,
T., Barth, R., Hörnle, T., Schüssel, F., Reuter, S., Rau,
M., Bertrand, G., Seegebarth, B., Kurzok, P., Schatten-
berg, B., Minker, W., Weber, M., Biundo, S.: Companion-
technology: Towards user- and situation-adaptive func-
tionality of technical systems. In: 10th International Con-
ference on Intelligent Environments (IE), pp. 378–381.
IEEE (2014). DOI 10.1109/IE.2014.60

63. Honold, F., Schüssel, F., Weber, M.: Adaptive prob-
abilistic fission for multimodal systems. In: Proc. of
the 24th Australian Computer-Human Interaction Con-
ference, OzCHI ’12, pp. 222–231. ACM (2012). DOI
10.1145/2414536.2414575

64. Jiang, L., Liu, D.Y., Yang, B.: Smart home research. In:
Proc. of the Third Conference on Machine Learning and
Cybernetics, vol. 2, pp. 659–663. IEEE (2004). DOI
10.1109/ICMLC.2004.1382266

65. Kautz, H., Arnstein, L., Borriello, G., Etzioni, O., Fox,
D.: An overview of the assisted cognition project. In:
AAAI Workshop on Automation as Caregiver: The Role
of Intelligent Technology in Elder Care, pp. 60–65 (2002)

66. Lindgren, A., Chen, F.: State of the art analysis: An
overview of advanced driver assistance systems (ADAS)
and possible human factors issues. In: Human factors
and economics aspects on safety – Proc. of the Swedish
Human Factors Network (HFN) Conference, pp. 38–50
(2006)

67. Van der Loos, H.F.M., Reinkensmeyer, D.J.: Rehabil-
itation and health care robotics. In: Springer Hand-
book of Robotics, pp. 1223–1251 (2008). DOI 10.1007/
978-3-540-30301-5 54

68. Aliz-e Project Team: The ALIZ-E project: adaptive
strategies for sustainable long-term social interaction.
Poster and Demo Track of the 35th German Conference
on Artificial Intelligence at KI 2012 (2012)

69. Meuleau, N., Plaunt, C., Smith, D.E., Smith, T.: An
emergency landing planner for damaged aircraft. In:
Proc. of the 21st Innovative Applications of Artificial In-
telligence Conference (IAAI), pp. 114–121. AAAI Press
(2009)

70. Obrist, M., Tuch, A.N., Hornbaek, K.: Opportunities for
odor: Experiences with smell and implications for tech-
nology. In: Proc. of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 2843–2852. ACM
(2014). DOI 10.1145/2556288.2557008

71. Peters, C., Hermann, T., Wachsmuth, S., Hoey, J.: Au-
tomatic task assistance for people with cognitive disabil-
ities in brushing teeth - a user study with the tebra sys-
tem. ACM Transactions on Accessible Computing (TAC-
CESS) 5(4), 1–34 (2014). DOI 10.1145/2579700

72. Petrick, R., Foster, M.E.: Planning for social interac-
tion in a robot bartender domain. In: Proc. of the 23rd
International Conference on Automated Planning and
Scheduling (ICAPS), pp. 389–397. AAAI Press (2013)

73. Petta, P., Pelachaud, C., Cowie, R. (eds.): Emotion-
Oriented Systems: The Humaine Handbook. Cog-
nitive Technologies. Springer (2011). DOI 10.1007/
978-3-642-15184-2

74. Picard, R.W.: Affective Computing, vol. 252. MIT press
Cambridge (1997)

75. Pineau, J., Montemerlo, M., Pollack, M., Roy, N., Thrun,
S.: Towards robotic assistants in nursing homes: Chal-
lenges and results. Robotics and Autonomous Systems
42(3), 271–281 (2003)

76. Pollack, M.E.: Planning technology for intelligent cogni-
tive orthotics. In: Proc. of the 6th International Confer-
ence on Artificial Intelligence Planning Systems (AIPS),
pp. 322–332. AAAI Press (2002)

77. Prassler, E., Kosuge, K.: Domestic robotics. In: Springer
Handbook of Robotics, pp. 1253–1281 (2008). DOI 10.
1007/978-3-540-30301-5 55

78. Putze, F., Schultz, T.: Adaptive cognitive technical sys-
tems. Journal of Neuroscience Methods 234, 108–115
(2014). DOI 10.1016/j.jneumeth.2014.06.029

196

Companion-Technology: An Overview 11

79. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted
living tools for older adults. IEEE Journal of Biomedical
and Health Informatics 17(3), 579–590 (2013). DOI 10.
1109/JBHI.2012.2234129

80. Rialle, V., Duchene, F., Noury, N., Bajolle, L., Demon-
geot, J.: Health “smart” home: Information technology
for patients at home. Telemedicine Journal and E-Health
8(4), 395–409 (2002)

81. Ritter, H.J.: Cognitive interaction technology - goals and
perspectives of excellence cluster CITEC. Künstliche
Intelligenz 24(4), 319–322 (2010). DOI 10.1007/
s13218-010-0063-x

82. Roy, N., Baltus, G., Fox, D., Gemperle, F., Goetz, J.,
Hirsch, T., Margaritis, D., Montemerlo, M., Pineau, J.,
Schulte, J., Thrun, S.: Towards personal service robots
for the elderly. In: Workshop on Interactive Robots and
Entertainment (WIRE) (2000)

83. Schröder, M., Bevacqua, E., Cowie, R., Eyben, F., Gunes,
H., Heylen, D., ter Maat, M., McKeown, G., Pammi, S.,
Pantic, M., Pelachaud, C., Schuller, B., de Sevin, E., Val-
star, M., Wöllmer, M.: Building autonomous sensitive ar-
tificial listeners. IEEE Transactions on Affective Com-
puting (TAC) 99(1), 1–1 (2011)

84. Seidel, H.: Excellence cluster “multimodal computing
and interaction” – robust, efficient and intelligent pro-
cessing of text, speech, visual data, and high dimensional
representations. it - Information Technology 50(4), 253–
257 (2008). DOI 10.1524/itit.2008.0492

85. Shaout, A., Colella, D., Awad, S.: Advanced driver as-
sistance systems - past, present and future. In: Sev-
enth International Computer Engineering Conference
(ICENCO), pp. 72–82 (2011). DOI 10.1109/ICENCO.
2011.6153935

86. Vernon, D., Metta, G., Sandini, G.: A survey of artificial
cognitive systems: Implications for the autonomous de-
velopment of mental capabilities in computational agents.
Transactions on Evolutionary Computation 11(2), 151–
180 (2007). DOI 10.1109/TEVC.2006.890274

87. Wada, K., Shibata, T.: Social effects of robot therapy in
a care house - change of social network of the residents
for two months. In: International Conference on Robotics
and Automation, pp. 1250–1255. IEEE (2007). DOI 10.
1109/ROBOT.2007.363156

88. Wada, K., Shibata, T., Musha, T., Kimura, S.: Robot
therapy for elders affected by dementia. IEEE Engi-
neering in Medicine and Biology Magazine 27(4), 53–60
(2008). DOI 10.1109/MEMB.2008.919496

89. Wada, M., Yoon, K.S., Hashimoto, H.: Development of
advanced parking assistance system. IEEE Transactions
on Industrial Electronics 50(1), 4–17 (2003). DOI 10.
1109/TIE.2002.807690

90. Wahlster, W. (ed.): SmartKom: Foundations of Mul-
timodal Dialogue Systems. Springer (2006). DOI
10.1007/3-540-36678-4

91. Wendemuth, A., Biundo, S.: A companion technology for
cognitive technical systems. In: Cognitive Behavioural
Systems, Lecture Notes in Computer Science, pp. 89–103.
Springer (2012)

92. Wilks, Y.: Close Engagements with Artificial Compan-
ions: Key social, psychological, ethical and design issues,
Natural Language Processing, vol. 8. John Benjamins
Publishing (2010)

Susanne Biundo is a professor of Com-
puter Science at Ulm University and
the Director of the DFG-funded Trans-
regional Collaborative Research Centre

Companion-Technology for Cognitive
Technical Systems SFB/TRR 62. She led

the European Network of Excellence in AI Planning and

acted as the Co-chair of various international AI con-
ferences. Susanne Biundo was elected ECCAI Fellow
in 2004 and was a founding member of the Executive

Council of ICAPS, the International Conference on Au-
tomated Planning and Scheduling. Her research inter-
ests are in AI Planning, Automated Reasoning, Knowl-
edge Modeling, and Cognitive Systems.

Daniel Höller received his M. Sc. in
Computer Science from Bonn-Rhein-Sieg
University of Applied Sciences in 2013

and joined the Institute of Artificial In-
telligence at Ulm University afterwards.
He is interested in Automated Plan-

ning and currently working on his Ph. D.
on Plan and Goal Recognition in the context of the
SFB/TRR 62.

Bernd Schattenberg is a freelance de-
veloper and consultant for AI planning
and scheduling (P&S) technology since

2013. Before that, he was a Research As-
sistant at the Institute of Artificial Intel-

ligence of Ulm University, where he received his Ph.D.
in 2009. He coordinated the European Network of Excel-

lence in AI Planning and the Transregional Collabora-
tive Research Centre A Companion-Technology for Cog-
nitive Technical Systems SFB/TRR 62. His interests in-

clude knowledge engineering methods, mixed-initiative
aspects, and novel application areas of hybrid P&S.

Pascal Bercher received his diploma in

Computer Science from the University of
Freiburg, Germany. He is now working
on his Ph.D. in the SFB/TRR 62 at the

AI Institute of Ulm University. His area
of research focuses on hierarchical task
network (HTN) planning, Partial-Order

Causal-Link (POCL) planning, and the fusion thereof,

called hybrid planning. His thesis is concerned with the-
oretical foundations, planning heuristics, and practical
applications of these planning paradigms.

197

The following pages show the publication:

P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller, G. Behnke, F. Nothdurft, F.
Honold, W. Minker, M. Weber, and S. Biundo. “A Planning-based Assistance System
for Setting Up a Home Theater”. In: Proceedings of the 29th National Conference on
Artificial Intelligence (AAAI 2015). AAAI Press, 2015, pp. 4264–4265

Reprinted with kind permission of AAAI Press.

198

A Planning-based Assistance System for Setting Up a Home Theater

Pascal Bercher and Felix Richter and Thilo Hörnle and Thomas Geier and
Daniel Höller and Gregor Behnke and Florian Nothdurft and Frank Honold and

Wolfgang Minker and Michael Weber and Susanne Biundo
Faculty of Engineering and Computer Science

Ulm University, Germany
email: forename.surname@uni-ulm.de

Abstract

Modern technical devices are often too complex for many
users to be able to use them to their full extent. Based on
planning technology, we are able to provide advanced user as-
sistance for operating technical devices. We present a system
that assists a human user in setting up a complex home the-
ater consisting of several HiFi devices. For a human user, the
task is rather challenging due to a large number of different
ports of the devices and the variety of available cables. The
system supports the user by giving detailed instructions how
to assemble the theater. Its performance is based on advanced
user-centered planning capabilities including the generation,
repair, and explanation of plans.

Introduction
Technical devices become more and more complex and of-
ten cause mental overload to human users operating them.
Companion Technology (Biundo and Wendemuth 2010;
Wendemuth and Biundo 2012) enables the development of
companion systems – cognitive technical systems that assist
the user in operating a technical device. In our paper “Plan,
Repair, Execute, Explain - How Planning Helps to Assem-
ble your Home Theater” (Bercher et al. 2014), we showed
how planning and HCI capabilities were integrated to allow
for advanced user assistance – illustrated in an example sce-
nario, where a human user wants to connect various devices
of his home theater. Here, we describe a mobile version of
the prototypical Companion System presented there.

Application Scenario
– Assembling a Home Theater

We want to assist a human user in assembling her or his HiFi
components, s.t. every component receives the required au-
dio/video signals. We consider an example scenario, where
the user wants to set up a theater consisting of a television,
a blu-ray player, a satellite receiver, and an audio/video re-
ceiver. More technically, the task is to connect these devices
in such a way that the television receives the video signals
of the blu-ray player and the satellite receiver and that the

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

audio/video receiver receives the audio signals of these de-
vices. For connecting the devices, there are several different
cables and adapters available.

We are not aware of any tool that is capable of assisting a
user with such an assembly task. In practice, one would have
to consider the operating manuals of the various devices and
to come up with a solution by oneself.

It is straightforward to model the task in terms of a plan-
ning problem, where actions correspond to plugging cables
into devices. We described an excerpt of the domain model1
in our earlier work (Bercher et al. 2014). We solve the plan-
ning problem that encodes the assembly task using a hy-
brid planning approach. It fuses hierarchical planning with
Partial-Order Causal Link (POCL) planning. That approach
is well-suited for our intent of providing user assistance, as
the causal links allow for the explanation of plans (Seege-
barth et al. 2012), thereby justifying the system’s behavior.
Further, they allow for the smooth integration of plan execu-
tion and repair. The hierarchy, if introduced, can be used for
limiting the search space and improving plan explanations.

While the generation of plans allows to give detailed in-
structions to the user in the first place, plan repair allows to
assist in cases, where execution failures occur. Plan explana-
tion allows to question the necessity of certain instructions.

System Description
Our system implements a generic architecture for Compan-
ion Systems introduced in earlier work (Bercher et al. 2014,
Fig. 1). Its domain-independent components enable the re-
alization of assistance systems in many application areas.

In our example application, user assistance is based upon
a sequence of instructions that, if executed by the user,
solves the assembly task. That instruction sequence is based
upon a plan, which is a solution to the given planning prob-
lem. Since in hybrid planning such plans are only par-
tially ordered, a most-suitable total order must be chosen.
While every total order respecting the partial order of the
plan solves the given planning problem, some of them might
be more plausible to human users than others. We devel-

1The domain model can be downloaded from the SiGAPS web-
site http://users.cecs.anu.edu.au/∼patrik/sigaps/

199

Figure 1: The figure shows a single user instruction that vi-
sualizes a single action of a solution plan. The respective
ports of the audio/video receiver are flashing in red.

oped several domain-independent plan linearization strate-
gies (Höller et al. 2014) and employed a strategy that seems
most plausible in our example scenario.

We now investigate how a single user instruction looks
like. Every instruction is based upon a (primitive2) action.
The corresponding action schema basically looks as follows:

plugIn(SRC-H, SRC-P, SNK-H, SNK-P)

That action schema has four parameters. The terms
SRC-H and SNK-H represent the source and the sink hard-
ware, respectively. The terms SRC-P and SNK-P represent
the ports (such as HDMI) of the two hardware devices that
are used for plugging SRC-H and SNK-H together. When
presenting an action, these constants are used by the dialog
and interaction management (Honold et al. 2013) to gener-
ate an appropriate user interface. This includes pictures of
the devices and their ports as well as natural language text
that verbalizes the respective instruction (see Fig. 1). We
have done an empirical evaluation of our system with test
subjects. A majority of these subjects perceived the system
very well in particular because of the pictures of the devices
and the highlighting of the used ports (Bercher et al. 2014).

During interaction, the user may always state execution
errors or ask for justification of the currently presented in-
struction. For that purpose the user may touch/click on the
large X on the left side of the presented instruction (see
Fig. 1). Then a dropdown box occurs listing “The cable is
broken!” and “Why should I do this?”. The user may also in-
teract with the system using speech input that is recognized
using off-the-shelf software.

If “The cable is broken!” is selected, the currently used
cable is marked as unusable and the system initiates plan re-
pair. After a solution has been found that incorporates the
execution failure (in this case, the unexpectedly broken ca-
ble), the new plan is presented to the user in the same way
the original plan has been presented before. In our demon-
stration, we did not model unplug actions, so cables that
have already been used cannot be plugged out (depending

2In hybrid planning, actions may be primitive or abstract. So-
lution plans only contain primitive actions, however.

on the cables that became unusable this might be necessary
to find a repaired solution, however).

The user may also select “Why should I do this?”. In that
case the system uses plan explanation to derive a justification
for the currently presented action. Such a justification is a
chain of proof steps proving the purpose of the respective in-
struction. That proof is translated into natural language and
presented to the user. As an example consider the explana-
tion for the action depicted by Fig. 1: “You have to connect
the SCART to cinch cable to the AV receiver to transmit au-
dio data from the satellite receiver to the AV receiver.”

Discussion & Future Work
We described a system that supports a human user in the task
of setting up her or his home theater. The system’s capabili-
ties include plan generation, plan execution, plan repair, and
plan explanation. The task to solve is encoded as a planning
problem given in advance. To obtain a fully general sys-
tem, we want to enable to user to specify the given hardware
and the task to solve. We also want to extend the domain
model to allow unplugging cables. Concerning plan repair,
our demo system only allows to specify broken cables as ex-
ecution failure. However, our plan repair approach is more
general and allows to handle arbitrary state changes. So, we
want to allow the user to specify any state variable that un-
expectedly changed its truth value.

Acknowledgment
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Bercher, P.; Biundo, S.; Geier, T.; Hoernle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, execute,
explain - how planning helps to assemble your home theater.
In Proc. of ICAPS 2014, 386–394. AAAI Press.
Biundo, S., and Wendemuth, A. 2010. Von kognitiven tech-
nischen Systemen zu Companion-Systemen. Künstliche In-
telligenz 24(4):335–339.
Höller, D.; Bercher, P.; Richter, F.; Schiller, M.; Geier, T.;
and Biundo, S. 2014. Finding user-friendly linearizations
of partially ordered plans. In 28th PuK Workshop ”Planen,
Scheduling und Konfigurieren, Entwerfen” (PuK 2014).
Honold, F.; Schüssel, F.; Weber, M.; Nothdurft, F.; Bertrand,
G.; and Minker, W. 2013. Context models for adaptive
dialogs and multimodal interaction. In Proc. of the 2013
9th Int. Conf. on Intelligent Environments (IE 2013), 57–64.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo, S.
2012. Making hybrid plans more clear to human users – a
formal approach for generating sound explanations. In Proc.
of ICAPS 2012, 225–233. AAAI Press.
Wendemuth, A., and Biundo, S. 2012. A companion
technology for cognitive technical systems. In Proc. of
the EUCogII-SSPNET-COST2102 Int. Conf. (2011), Lecture
Notes in Computer Science, 89–103.

200

201

The following pages show the publication:

P. Bercher, S. Biundo, T. Geier, T. Hörnle, F. Nothdurft, F. Richter, and B. Schatten-
berg. “Plan, Repair, Execute, Explain - How Planning Helps to Assemble your Home
Theater”. In: Proceedings of the 24th International Conference on Automated Planning
and Scheduling (ICAPS 2014). AAAI Press, 2014, pp. 386–394

Reprinted with kind permission of AAAI Press.

The included PDF is a revised version. Modifications are not explicitly mentioned, since
there were only minor corrections or improvements.

202

Plan, Repair, Execute, Explain –
How Planning Helps to Assemble your Home Theater

Pascal Bercher, Susanne Biundo, Thomas Geier
Thilo Hoernle, Felix Richter, Bernd Schattenberg

Institute of Artificial Intelligence,
University of Ulm, Germany,

email: firstName.lastName@uni-ulm.de

Florian Nothdurft
Institute of Communications Engineering

University of Ulm, Germany
email: florian.nothdurft@uni-ulm.de

Abstract

In various social, work-related, or educational contexts, an
increasing demand for intelligent assistance systems can be
observed. In this paper, we present a domain-independent
approach that combines a number of planning and interaction
components to realize advanced user assistance. Based on a
hybrid planning formalism, the components provide facilities
including the generation, execution, and repair as well as the
presentation and explanation of plans. We demonstrate the
feasibility of our approach by means of a system that aims to
assist users in the assembly of their home theater. An empiri-
cal evaluation shows the benefit of such a supportive system,
in particular for persons with a lack of domain expertise.

Introduction
Today’s rapid technological progress periodically provides
us with technical systems, services and devices of increas-
ingly complex, “intelligent”, functionality. Those systems
include household appliances, web services, cars, service
robots, electronic devices such as smartphones, and much
more. However, it is not always easy to operate these sys-
tems and, even less so, to actually exploit the whole range
of their potential. In many cases, users are overwhelmed or
stressed out by awkward operation menus, inappropriate in-
teraction modes, or inconvenient or even missing instruction
manuals. Moreover, the demand for assistance systems that
support users in their every-day life by helping them to ac-
complish certain tasks or to handle systems and devices ap-
propriately becomes more and more important, in particular
in view of the aging society.

We show how AI planning technology can be employed to
perform user assistance in a smart and valuable fashion. We
introduce a system architecture composed of a number of
planning components, a knowledge base, as well as compo-
nents to manage the system’s dialog and interaction with the
user. The planning components include a hybrid planner that
combines hierarchical concepts with those of partial-order
causal-link planning. In addition, a plan execution system,
as well as plan repair and explanation components are parts
of the architecture. User assistance is based on automatically
generated plans. Such a plan of actions is passed to the user

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in a stepwise manner. The user’s execution of these actions
is monitored. This way, the system is able to detect execu-
tion failures or deviations from the proposed plan and to ini-
tiate the repair of the original plan accordingly. Furthermore,
explanations can be given, which elucidate why a certain ac-
tion is part of the plan, for example. Plans and explanations
need to be communicated to users in an adequate manner,
however. Therefore, the system’s facilities of establishing
dialogs with users and interacting through various modali-
ties are controlled by advanced dialog and interaction man-
agement components. They enable the system to give in-
structions and explanations via displayed text and speech, as
well as to understand users’ spoken responses and input via
touch screen. We used the planning and interaction compo-
nents and their orchestration within the overall architecture
to implement a prototype system that assists users in the as-
sembly of their home theater. Finally, we carried out an em-
pirical user study to evaluate the acceptance and benefit of
such an assistance system. It showed that the system’s sup-
port was perceived very well, in particular by non-experts.

Planning technology has been recently used in several hu-
man computer interaction-related contexts. One line of re-
search aims at supporting persons with various impairments,
such as children with autism (Bernardini and Porayska-
Pomsta 2013) or persons suffering from dementia (Boger
et al. 2005). Another line investigates systems that realize
assistance functionality by performing certain interaction-
related tasks presently done by humans, such as household
chores (Beetz et al. 2012) or serving drinks (Petrick and Fos-
ter 2013). These approaches do not incorporate facilities for
revising or explaining the decisions of the system, however.
Approaches that include some form of plan repair exist, e.g.,
the O-Plan architecture (Tate, Drabble, and Kirby 1994), or
in the context of interactive storytelling (Porteous, Cavazza,
and Charles 2010) or robotics (Lemai and Ingrand 2004).

In the next section, we present the system architecture and
the interplay of its major constituents. The following sec-
tions describe these constituents in more detail, focusing on
the planning components. After that, we present the user
study together with its results and conclude the paper.

System Architecture
We have developed an architecture which integrates essen-
tial planning capabilities (plan generation, execution/moni-

203

toring, repair, explanation) with components to provide ad-
vanced human-computer interaction (dialog and interaction
management). The architecture and the domain-independent
components enable the implementation of concrete assis-
tance systems in a variety of application areas. Such systems
are capable of multi-modally interacting with a human user
and to provide intelligent assistance based on the various ca-
pabilities provided by the planning and interaction compo-
nents. The architecture is depicted in Fig. 2. We will shortly
explain how the different components interact, before we de-
scribe their particular functionality in more detail.

Assistance functionality is provided through the interplay
of various planning capabilities; the most basic one being
that the system can give a course of actions to a user which
solves his current problem at hand. We assume that these
problems are formalized in terms of a hybrid planning do-
main. Knowledge about the specific domain is stored in the
Knowledge Base component, which manages and processes
the information necessary for the other components to work.

As soon as a user requests assistance in terms of a course
of action to solve a given problem, the Knowledge Base
component passes the corresponding hybrid planning prob-
lem to the Plan Generation component (arrow 1 in Fig. 2).
That component generates a solution, i.e., a plan, and passes
it to both the Plan Execution component and the Plan Ex-
planation component (arrow 2). The latter is done to be
prepared in case the user wants to ask questions about the
current plan. The plan is executed step by step, and several
components (arrows 3 to 10) are involved for each such step.

The Plan Execution component identifies the plan step
to be executed next and sends it to the Dialog Manage-
ment component (arrow 3). This way, it can be presented
to the user. The component loads the dialog model associ-
ated with the plan step and calculates the most-appropriate
dialog goals to achieve the effects of the given plan step.
The chosen dialog goals are passed one by one to the Inter-
action Management component (arrow 4), which builds the
actual user interface to be presented to the user (arrow 5).
The input of the user is sent back over the Interaction Man-
agement component to the Dialog Management component
(arrow 8). This constitutes both explicit input entered via
the user interface (arrow 6), and implicit input (e.g., facial
expression), which is registered by the sensors (arrow 7).

Once a dialog goal is finished, its effects are sent to the
Knowledge Base component (arrow 9). A common pattern
is to associate a dialog goal to a plan step, and interpret the
user’s input as an acknowledgement of having achieved the
effects of the plan step. The effects registered by the Interac-
tion Management component are then combined with sensor
inputs within the Knowledge Base component to calculate
a belief about the current world state. This information is
then passed back to the Plan Execution component (arrow
10). That component compares the believed state with the
expected state, using the effects of the last plan step. If they
match, the next plan step is executed in the same way. If a
deviation from the expected state is detected, the Plan Exe-
cution component triggers the Plan Repair component (ar-
row 11). Repair is initiated by constructing an augmented
planning problem, which incorporates the found discrepan-

Figure 1: The figure shows the back panel of the amplifier
used in our domain model and user study.

cies together with the execution state of the currently en-
acted plan. The augmented problem is then sent to the Plan
Generation component (arrow 12), which finds a new solu-
tion replacing the old plan, s.t. a new cycle can start over.

At any point in the interaction, the user may ask why he
had to execute any of the presented plan steps. If he does so,
the Dialog Management component requests the explanation
of the current plan step from the Plan Explanation compo-
nent (arrow 13), which generates a formal explanation stat-
ing why this plan step is necessary to solve the overall prob-
lem. This explanation is sent back to the Dialog Manage-
ment component, which initiates its presentation to the user
(arrows 14 and 4 to 8).

To illustrate how such an architecture works in detail, we
implemented a prototypical system that assists a person in
the task of setting up a complex home theater. The in-
teraction between the various components is realized with
the message-oriented middleware Semaine (Schröder 2010).
The main physical features of the prototype are a multi-
device user interface (one touch-screen, one remote ter-
minal) and user-localization based on a laser-range-finder
(Honold et al. 2013, Figure 10). No additional sensory mod-
ules were used, in particular there were no means of emotion
recognition, or means of automatically recognizing the state
of the home theater setup and cables. Progress on the task
was solely reported through the dialog system.

The task of the user is to connect several devices of his
new home theater. They comprise a satellite receiver, a
blu-ray player, an amplifier, and a television. Finally, the
user wants to be able to use both the blu-ray player and the
satellite receiver. While this task may seem easy for an ex-
pert, it is quite complicated for non-experts: Fig. 1 shows
the back panel of the modeled amplifier (an audio/video re-
ceiver, which we also used in the evaluation) and illustrates
the high number of different ports and thus the difficulty
of the task. In addition to these devices, we modeled sev-
eral different cables, adapters, and adapter cables (such as a
HDMI-to-DVI adapter cable, for example). The information
about available devices, cables, and other information rele-
vant for the task (e.g., about the user) is stored in the Knowl-
edge Base component and sent to the respective components
if requested.

Knowledge Base
Besides storing all the domain specific information, the
Knowledge Base component serves as the central hub for

204

Figure 2: This figure shows the components of our architecture and how they interact with the user and with each
other. It is based on the one presented by Honold, Schüssel, and Weber (2012), with emphasis on the planning
part instead of the user interaction part. The numbers represent the actual data sent from one component to an-
other: 1: planning problem, 2: generated solution plan, 3: next plan step, 4: next dialog goal, 5: interaction output,
6: explicit interaction input, 7: implicit sensor input, 8: fusion result, 9: interaction effects, 10: actual world state,
11: repair request, 12: plan repair problem, 13: explanation request, 14: formal plan explanation.

our architecture. It integrates information from various
sources like sensor data (arrow 7, usually pre-processed by
machine learning modules, not depicted), and explicit user
input via the Dialog Management component (arrow 9). A
major part of this information is of an uncertain nature due
to sensor noise, partial observability or model imperfection.

The requirement of a consistent treatment of uncertainty
throughout the whole system is addressed by choosing a
probabilistic approach. The knowledge of the system is re-
flected in a probability distribution over the possible world
states. Advances in the field over the past 20 years have
led us to a point where the treatment of probability distri-
butions over many random variables slowly becomes feasi-
ble, e.g., by the use of probabilistic graphical models (Koller
and Friedman 2009). To facilitate the concise representa-
tion of large graphical models, and in order to ease the in-
tegration with other modules like automated planning, we
use a logic-like, probabilistic, first-order modeling language
called Markov Logic (Richardson and Domingos 2006).

The integration of the knowledge base with the planning
components mainly focuses on the provision of a world
state. Initially, the Knowledge Base component is queried
for all state-features relevant to the current planning prob-
lem (arrow 1). In the case of the assembly task, this encom-
passes knowledge about available devices and cables. Dur-
ing plan execution, relevant state features are then constantly
monitored (arrow 10).

To make the probabilistic view of the knowledge base
compatible with the deterministic state representation of the
planner, one could infer the most probable world state ac-
cording to the current beliefs and report it as actual world
state. But for models with many random variables it is
very likely that the most probable state still has a vanish-
ingly small probability, and the chance that the true world
state differs from the reported one is huge. To handle this,
we declare the part of the global model that comes from
the planning domain as quasi-deterministic. In this part,
upon each new time-step, variables that have not received

an explicit observation (e.g., from the dialog) are automat-
ically observed to the most probable state they had during
the last time step. This makes the quasi-deterministic part
behave like a database, where values only change upon a
write request, offering semantics that are compatible with
assumptions of deterministic planning. Still, the probabilis-
tic part can transparently use information from the quasi-
deterministic part for inferences. The usefulness of such a
connection has been demonstrated by its exploitation for im-
proved user identification (Geier et al. 2012).

Plan Generation
In order to facilitate the provision of a suitable plan, the Plan
Generation component queries the current world state from
the Knowledge Base component. A valid plan will then con-
sist of a course of actions, whose execution will transform
the current world state into a desired state. For the assem-
bly task, actions are usually of the form “Connect port A
of cable X to port B of device Y .”, and the goal conditions
consist of the transmission of certain signals (audio or video)
from source devices to their respective sink devices.

In our system, such tasks are modeled by means of a
hybrid planning problem (Biundo and Schattenberg 2001;
Biundo et al. 2011; Geier and Bercher 2011). Hybrid plan-
ning combines hierarchical planning (Erol, Hendler, and
Nau 1994; Marthi, Russell, and Wolfe 2008) with con-
cepts known from Partial-Order Causal-Link (POCL) plan-
ning (McAllester and Rosenblitt 1991; Younes and Sim-
mons 2003). Both paradigms seem to be well-suited for our
enterprise of assisting human users: The hierarchical aspect
of the domain captures the hierarchical structure many real-
life problems show and the explicit representation of causal-
ity using causal links allows for the explanation of plans
(Seegebarth et al. 2012). These explanations may further
benefit from the hierarchical structure, as it allows more flex-
ibility w.r.t. the level of detail of explanations. We believe
that the capability of systems to explain their own behavior
is essential when assisting human users, since explanations

205

can improve the trust a user has in the system and might lead
to higher acceptance rates (Lim, Dey, and Avrahami 2009).

In hybrid planning, the task is modeled by means
of a planning domain D and a problem instance I.
For our example application, the planning domain mod-
els the specific technical devices (ports male/female, au-
dio/video/either/both signal in/out, etc.) and how they can be
connected using the available cables. The problem instance
specifies the actual task to solve. In hybrid planning, actions
may be either primitive or abstract. In both cases, an action
a(τ̄) has the form 〈pre, eff 〉with pre and eff being conjunc-
tions of literals over the action parameters τ̄ = τ1, . . . , τn.
Preconditions specify in which states an action is applica-
ble, and effects of actions specify how a state changes if
the action is applied. States and action applicability and ap-
plication are defined as usual. A partial plan is a structure
〈PS,≺, VC,CL〉 consisting of a set of plan steps PS, which
are uniquely identified actions, either primitive or abstract.
The partial order between these plan steps is achieved by
the relation ≺. The set VC contains the variable constraints,
which co- or non-codesignate action parameters to other pa-
rameters or constants. We call an action ground if all of
its parameters are codesignated to some constant taking the
closure of VC. A plan is called ground if all its actions are
ground. The set CL contains all causal links of the partial
plan P . A causal link ps →ϕ ps ′ denotes that the precondi-
tion literal ϕ of plan step ps ′ is supported (protected) by the
plan step ps . While primitive actions can be executed if all
their preconditions are supported by causal links, abstract
actions must be further refined, even if their preconditions
are all supported. To that end, the domainD contains at least
one so-called decomposition method for every abstract ac-
tion. A decomposition method m = 〈a(τ̄), VCm, P 〉 maps
an abstract action a(τ̄) to a partial plan P , which “imple-
ments” the preconditions and effects of a(τ̄) (Biundo and
Schattenberg 2001). Applying a method to a partial plan re-
sults in removing the abstract action and replacing it by the
partial plan the method maps to, adding the variable con-
straints VCm, which relate the action parameters to the vari-
ables in P , and to pass on the causal links of the abstract
action to its new sub-actions.

Now, the domain D = 〈A,M〉 contains the set of primi-
tive and abstract actions A as well as the set of decomposi-
tion methods M . The problem instance I is given in terms
of an initial partial plan Pinit , which contains some abstract
actions representing the high-level specification of the tasks
to be achieved. It also contains two artificial actions init
and goal , which encode the initial state and the goal descrip-
tion, respectively. The action init has no precondition and a
complete description of the initial state as effect, including
the facts initially false in terms of negative literals1. The ac-
tion goal has the goal description as precondition, which is
a conjunction of (possibly negative) literals. The solution to
a planning problem is a plan P , s.t.:

1. P is a refinement of Pinit .

2. P does not contain abstract actions.
1In POCL planning, we need to specify the facts initially false

to be able to support negative preconditions of actions.

3. P does not show unprotected precondition literals.

4. P has no causal threats. A causal threat is the situation
where the ordering constraints allow a plan step ps ′′ with
effect ϕ to be ordered between two plan steps ps and ps ′

which share a causal link ps →ϕ′ ps ′, s.t. there is a unifi-
cation σ with ϕ = ¬σ(ϕ′).

Criterion 1 is essential for relating any solution to the initial
plan Pinit . In contrast to PDDL, where the problem is given
merely in terms of a goal description, the goals in hierarchi-
cal/hybrid planning are given in terms of Pinit . Criterion 2
ensures that only primitive actions are present, as only those
can be executed directly. Criteria 3 and 4 together ensure
that every plan step linearization which is consistent with
P ’s ordering constraints is an applicable action sequence
and generates a state which satisfies the goal description.

Domain Model. We will now give an overview over how
we modeled the problem of setting up a home theater. In
our planning domain, the initial state specifies the avail-
able hardware and its compatibility to other devices. We
differentiate between devices and cables, which both have
an individual sort DEVICE and CABLE, respectively. Sorts
correspond to the concept of types in PDDL. For every de-
vice and cable in the scenario, there is a constant of the re-
spective sort, such as BLURAY of sort DEVICE to model the
blu-ray player. We also introduce an abstract sort HARD-
WARE with sub sorts DEVICE and CABLE to be used by
the actions. Every hardware in the scenario has several
ports: Cables, for instance, ordinarily have two ports, one
for each end of the cable (however, more complicated ca-
bles can have more than one port at the same end). We
thus introduce a sort PORT. Every port of a specific hard-
ware has certain properties: it may be either a signal in
or out, either used or unused, either male or female, and
it may be used for video, audio, both (in case of HDMI),
or either (for instance, a cinch video cable may be used
for either audio or video, but not for both at the same time
as is the case for HDMI). The description of the hardware
also specifies that certain devices are sources of audio and
video signals. For instance, while the TV and the ampli-
fier initially do not have any signal, the blu-ray player and
the satellite receiver initially have both video as well as an
audio signal. In our domain, we therefore have a predicate
HASVIDEO(HARDWARE,DEVICE) expressing that the con-
stant of sort HARDWARE has the video signal produced by
the constant of sort DEVICE. In our scenario, the initial state
thus contains the atoms HASVIDEO(BLURAY,BLURAY) and
HASVIDEO(RECEIVER,RECEIVER) as well as the respective
counter parts for the audio signal.

Actions are the means to connect cables to devices. More
precisely, we modeled the actions in such a way that they
can only be applied if the two ports to be connected are both
unused and compatible with each other (w.r.t. gender, for
instance). Furthermore, actions may only be applied in the
direction of the signals in order to propagate that signal to
the cable just plugged in. That is, a cable with an input port
may only be connected to a cable or device with an output
port if the other cable/device already has some signal. Then,

206

the cable that has been plugged in will also have that signal.
Note that we did not model unplug actions. Thus, in case
of execution failures, our prototype might not always find a
repaired solution in certain situations.

Hierarchy may be introduced to reduce the search space
by specifying pre-defined solutions to sub-problems. For ex-
ample, an abstract action CONNECT(BLURAY,AMPLIFIER)
can be modeled using several decomposition methods,
each corresponding to a valid solution transporting both
audio and video from the blu-ray player to the ampli-
fier. The initial plan may then contain that abstract
action as well as CONNECT(RECEIVER,AMPLIFIER) and
CONNECT(AMPLIFIER, TV).

Search Procedure. We search for solutions via search in
the space of plans by step-wise refining the initial partial
plan until a solution has been found. We base our search
technique on the standard POCL planning paradigm (Younes
and Simmons 2003), in which plan elements violating solu-
tion criteria induce so-called flaws. We extend this technique
by being able to decompose abstract actions; we call the
resulting system PANDA (Biundo and Schattenberg 2001;
Elkawkagy et al. 2012). The search is a two-stage process.
First, a most-promising plan is selected from a set of candi-
dates. That selection is done using informed heuristic func-
tions. Our system supports pure non-hierarchical heuris-
tics (Nguyen and Kambhampati 2001; Younes and Simmons
2003; Bercher, Geier, and Biundo 2013; Bercher et al. 2013),
as well as hierarchical ones (Elkawkagy et al. 2012). After
a most-promising plan has been selected, one of its flaws is
selected to be resolved. Resolving a flaw generates a set of
successor plans, which can contain new flaws. For example,
the insertion of an action adds one flaw for each of its pre-
condition literals. That procedure is repeated until a solution
has been created.

Plan Execution and Monitoring
Given a solution plan, the Plan Execution component exe-
cutes it in a step by step way. When prompted to execute
the next plan step, it first determines the set of executable
plan steps. A plan step is executable if it has not yet been
executed, whereas all plan steps which are ordered before it,
have already been executed. The Plan Execution component
then chooses a plan step to execute from this set. While any
execution order will guarantee that the goal will be reached,
some orders can be more intuitive for the user. The im-
plemented system therefore employs a domain-specific ap-
proach to execute semantically connected tasks in direct suc-
cession, if possible. For example, several steps are needed
to transport a video signal from the satellite receiver to the
TV. If the last executed step was one of these steps, the com-
ponent prefers executing another such step next. In future
work, we would like to examine the extent to which this
could be done domain-independently, for example by maxi-
mizing the number of common parameter values of two con-
secutively ordered tasks.

The chosen plan step is passed on to the Interaction
Management component, where the actual execution is per-

formed. Once the execution is completed, the interac-
tion management passes the results of the execution to the
Knowledge Base component and sends a signal to the Plan
Execution component. The Plan Execution component then
checks whether the action had the intended effects. This is
done by comparing the expected state – as computed by ap-
plying the specified effects of the action to the last known
world state – with the actual world state obtained by query-
ing the knowledge base. When the expected and actual
world states match, the next plan step is executed.

However, it might happen that the actual world state devi-
ates from the expected state. For example, when plugging an
HDMI cable into the blu-ray player fails because the HDMI
cable is broken, the actual world state will be that the cable
is unusable and that it is not connected to the blu-ray player.
In this case, it has to be checked whether the new world state
interferes with the yet-to-be-executed parts of the plan. This
can be done by examining the presently active causal links
of the plan, i.e., the causal links whose producer task has
been executed while its consumer task has not.

If there is no active causal link for a given literal then it
is either irrelevant for executing the remainder of the plan or
a yet-to-be-executed task will reestablish it at a later point.
Therefore, if the current state agrees with the expected state
on all literals for which there is an active causal link, the plan
is sure to still be a valid solution. Otherwise, the plan con-
tains tasks (that might be executed far in the future) whose
preconditions are no longer supported by valid causal links
and the plan needs to be repaired.

Plan Repair
When the Plan Execution component detects that the plan
at hand cannot be executed as intended, that plan, together
with the problems detected during execution, is passed on to
the Plan Repair component, which generates a “repair prob-
lem”. The Plan Generation component uses this repair prob-
lem to generate a repaired solution, if possible.

There might be several reasons for a plan to fail. Of-
ten, the reason lies in the non-deterministic and partially ob-
servable nature of the environment. For example, an action
might not be applicable (now or in the future), because one
of its precondition literals does not hold at the current world
state while the system predicted that precondition to hold.
In our domain, for instance, a cable might be defective or a
device port might not be working against expectation.

In these cases we need to find another – working – solu-
tion to the original planning problem, which can cope with
the unpredicted changes of the world. If the new problem
turns out to be unsolvable, we at least need to inform the
user that it is no longer possible to set up the home the-
ater system with the remaining set of cables and adapters.
While in standard state-based planning, replanning seems
most attractive (Nebel and Koehler 1995), it is not that easy
in hierarchical approaches like we follow, since solutions
need not only be executable, but also be a refinement of
the initial plan (cf. solution criterion 1). We thereby fol-
low a plan repair approach, which is suited for this ad-
ditional constraint (Bidot, Biundo, and Schattenberg 2008;
Biundo et al. 2011).

207

The repair mechanism basically works as follows: Given
the planning domain D = 〈A,M〉, the initial problem in-
stance I given by Pinit , and the failed solution plan P , the
Plan Execution component creates a repair problem instance
I = 〈Pinit , O〉, which now contains a set of obligations O.
This set contains an existence obligation for all plan steps
which have already been executed. Satisfying these obli-
gations will guarantee that executed plan steps are part of
any new solution. This is important, as we require solutions
which are refinements of the initial plan and the plan steps
already executed may be essential to satisfy that criterion.
Since these plan steps have been executed in one specific
order (while the plan that was to be executed might only
be partially ordered), O also contains ordering obligations
which restrict these plan steps to be totally ordered and pre-
vent any “new” action to be ordered within this sequence.
Lastly, O contains an obligation that requires a so-called
process to be inserted right behind the executed plan step
sequence. A process is a primitive action with no precondi-
tion and the unpredicted world changes as effect.

The planning procedure is altered in such a way that
unsatisfied obligations are represented as additional flaws.
Then, plans with no flaws are solutions to the original plan-
ning problem, they contain the already executed plan steps,
and can cope with the unforeseen changes caused by the en-
vironment.

Plan Explanation
So, for example, when the system learns about the fact that
one of the cables is broken, it comes up with a new solu-
tion. This solution is usually more complicated than the
original one, since the problem of a missing cable must
be worked around. A broken cable could be addressed by
using adapters and adapter cables as a replacement. How-
ever, the pro-active generation of a new plan, in particu-
lar a more complicated one, may confuse the user. Even
worse, the system can produce changes in the plan that are
not anticipated by the user, because the deviation was not de-
tected via user interaction (e.g., the user reporting the fail-
ure of the cable), but it was detected via different means,
e.g., computer vision. The explanation of such unexpected
or otherwise opaque decisions is critical for the human-
computer interaction, because especially unexpected or not
understandable situations may have a negative impact on
the human-computer trust relationship (Muir 1992). Stud-
ies have shown that if the user does not trust the system, the
interaction may suffer. This includes reduced frequency or
way of interaction, and in the worst case the complete abor-
tion of future interaction (Parasuraman and Riley 1997). Of
course, as we want technical systems to become intelligent
assistants and help us in complex, as well as in critical situ-
ations, it is clear that this should be impeded.

In human-human interaction moments of unclear, not rea-
sonable decisions by one party are often clarified by explain-
ing the process of reasoning (i.e., increasing transparency
and understandability). Analogous to that, research by Lim
et al. (2009) showed that different kinds of explanations can
improve the trust in and the understandability of context-
aware intelligent systems. The results showed that Why and

Why-not explanations were the best kind of explanation to
increase the user’s understanding in the system, though trust
was only increased by providing Why explanations.

Therefore, our planning system can help improve trust
and understandability by providing, if requested, plan expla-
nations. The special case of plan explanation used in this set-
ting is the task of explaining why a given plan step is present
in a given plan. To generate explanations, an axiomatic sys-
tem Σ comprising formalizations of basic arguments about
a plan and their logical consequences is constructed (Seege-
barth et al. 2012). The axioms are derived from the solution
criteria, the plan at hand, and the problem specification. We
use the atom N(ps) for representing that a step ps is nec-
essary for a given plan P to constitute a solution. For a
formula φ encoding a reason that supports the presence of
ps in P , Σ contains an axiom of the form ∀ps.[φ⇒ N(ps)].
Constructing an explanation for the presence of a plan step
is equivalent to finding a sequence of “applications” of these
axioms.

The reason for the presence of a plan step ps in a plan
P , according to the solution criteria for hybrid plans, can be
one of the following: First, ps is trivially either init , goal , or
any plan step from the problem specification, i.e., Σ contains
N(init), N(goal), and N(ps) for all ps in Pinit . Second, ps
establishes a precondition of some other plan step ps ′. For
this, Σ contains an atom CR(ps, ϕ, ps ′) for every causal link
ps →ϕ ps ′ present in P , representing the causal relation be-
tween ps and ps ′. The necessity of further plan steps can be
recursively derived from causal relations to necessary plan
steps with the following axiom:

∀ps.[[∃ps ′, ϕ.[CR(ps, ϕ, ps ′) ∧N(ps ′)]]⇒ N(ps)] (1)

The third reason for the presence of a plan step ps in P is
that ps has been introduced by decomposing an abstract plan
step ps ′ during the construction of P . In contrast to causal
dependencies, this information is not represented explicitly
in the solution plan and has to be (re-)constructed from the
knowledge about the plan generation process: for each de-
composition of an abstract plan step ps ′ via a methodm, per-
formed during the construction of P from Pinit , Σ contains
an atom DR(ps,m, ps ′) for each plan step ps introduced by
m, representing the decomposition relation between ps and
ps ′. Plan step necessity can again be recursively derived:

∀ps.[[∃ps ′,m.[DR(ps,m, ps ′) ∧N(ps ′)]]⇒ N(ps)] (2)

The result of an explanation request is a formal proof that
has to be conveyed to the user in a more suitable from, for
instance verbally. The simplest way of achieving this is to
provide a text template for each axiom and translating an
explanation proof step by proof step.

As an example, consider the case where a video
signal needs to be transported from the blu-ray
player to the TV, reflected in the goal description via
HASVIDEO(TV,BLURAY). The solution plan contains a
sequence of plan steps connecting devices and cables. The
tasks are connected with causal links successively providing
the HASVIDEO(X,BLURAY) property to the next task in
the sequence. If the user requests an explanation for the
necessity of the plan step plugging a cable into the blu-ray

208

player, the Plan Explanation component uses the above
axioms to successively determine the need to derive the
necessity of all plan steps in the sequence, including the
goal step. Since the goal step is necessary by definition, so
are all the other plan steps in the sequence.

Explanations subsume several kinds of explanations like
Why, Why-not, How-to, or What. Plan explanations in our
system are meant to increase the understandability in the
system’s decisions by using Why explanations. Therefore,
plan explanation is to be distinguished from explanation of
declarative knowledge, which uses What and How-to expla-
nations to impart knowledge (Nothdurft and Minker 2012).

Dialog and Interaction Management
In the case of required user-interaction, plan steps are trans-
mitted to the Dialog Management component (cf. Fig. 2).
Here, the provided plan step is decomposed into a hierarchi-
cal dialog structure which consists of so-called dialog goals
(Nothdurft et al. 2010). Each dialog goal represents a single
interaction step between human and technical system (e.g.,
one screen on a device filled with specific information). The
term dialog ”goal” arises from the fact that every step in
the interaction pursues a goal. This goal is, in this case,
to achieve one or several of the desired plan step effects.
Therefore, the term dialog goal is to be distinguished from
the term goal used in planning.

This means on the one hand that a plan step may be de-
composed into several steps of interaction, and on the other
hand that for every desired plan step effect a set of simi-
lar dialog goals may exist. These similar dialog goals may
for example take into account user knowledge or emotions,
and therefore differ in the complexity and kind of content
presentation. The selection of the next dialog goal is made
in a user-adaptive manner and leads to an individual dialog
appropriate for the current user (Honold et al. 2013). For
information presentation the dialog goal is passed on to the
Interaction Management component (cf. Fig. 2) and by that
transferred to a XML-based format called Dialog Output.

Hereby, the dialog content is composed of multiple in-
formation objects referencing so-called information IDs in
the information model. Each information ID can consist
of different types (e.g., text, audio, and pictures) which
are selected and combined at runtime by a fission sub-
component to compose the user interface in a user- and
situation-adaptive way. The reasoning process about the
most-appropriate user interface is based on a set of evalu-
ation functions. These functions rate the selection of pos-
sible output modalities and combinations by a reward func-
tion and propagate the best one for presentation (Honold,
Schüssel, and Weber 2012).

Performed user input is perceived by the input devices and
transmitted to the multimodal fusion (Schüssel, Honold, and
Weber 2013). The interaction input is passed on back to the
Dialog Management component, which analyzes how the in-
teraction result influences the desired plan step effects. The
effects of the user interaction are transferred to the Knowl-
edge Base component and the Plan Execution component is
notified that the current plan step has been processed by the
dialog management.

Additionally to that, if the user requested an explanation
why the current plan step has to be executed, the dialog man-
agement can transfer a plan explanation request to the Plan
Explanation component.

Experimental Evaluation
We conducted an experiment to evaluate the benefit of pro-
viding plan explanation for the acceptance of an automated
assistive system. The experiment is designed as a controlled,
randomized trial. This allows us to investigate the effects of
plan explanations in a principled way. For reasons of repro-
ducibility, we recreated a fixed course from the prototype
system as a seemingly interactive HTML5 slide show. Par-
ticipants are confronted with the task of connecting several
devices of a home theater system consisting of a satellite
receiver, a blu-ray player, an amplifier, and a television, as
explained in the beginning of the paper. Fig. 1 shows the
back panel of the amplifier used in the study. The require-
ments to the solution were that both watching satellite, TV,
and blu-ray disks is possible. The task was complicated by
the fact that the enacted solution uses an adapter for one con-
nection. Participants were given an electronic assistant that
gave them instructions on which cable to connect to which
device through written and spoken text, as well as by images
of the devices with the concerned ports highlighted. Partic-
ipants were randomly, and without them knowing, assigned
into two groups. The control group (n = 29) was faced
with the task as described. The treatment group (n = 30)
was shown two plan explanations at fixed steps. The longer
explanation was: “This step served the goal to transmit the
video signal of the blu-ray player to the TV. To this end,
the video signal of the blu-ray player is transmitted over the
HDMI-to-DVI adapter and the HDMI-to-DVI cable to the
amplifier. From there it is transmitted over the video-cinch
cable to the TV.“.

The outcome of the trial was captured by a self-report
questionnaire administered right after the task. Most impor-
tantly we asked for the subjectively perceived certainty that
the way how the devices are connected fulfills the stated re-
quirements as a 5-point Likert question (e.g., five levels from
“No Chance” to “Certain”). In addition to demographic vari-
ables, we asked about expertise and prior experience with
similar tasks, several other questions about how the partici-
pant perceived the device, and questions about how the ex-
planations were perceived (only for the treatment group).

Our main hypothesis was that the plan explanations have
a positive effect on the subjectively perceived certainty in
the validity of the setup solution.

We recorded 59 subjects in total. Concerning demo-
graphic variables, we have at 3 female and 7 male subjects
aged over 30, and 19 female and 27 male subjects aged at
most thirty; age is missing for three subjects; 26 subjects had
a university degree. Nine participants alone were Ph.D. stu-
dents in chemistry. Only 7 subjects’ graduation was lesser
than high school equivalent. In general the education level of
the sample was overly high. Only 12 participants had a tech-
nical background (computer science, engineering); though
this does not include natural sciences and Mathematics, to
which another 18 subjects affiliated.

209

We constructed a summary variable capturing the over-
all perception of the system by summing up all questions
that rate aspects of the system (trust, patronization, appeal,
utility, etc.; with good internal consistency α = 0.83). Ac-
cording to this scale, the system was very well perceived
in general (mean/sd: 26.63/3.67 points out of 30). We
found a major influence on this rating in the answer on a
question (5-point Likert scale) asking people to judge their
confidence to do the setup as required, but while only us-
ing the device manuals. The answer to that question sig-
nificantly predicted the overall perception in a linear regres-
sion (β = −0.37, t(55) = −2.99, p < .01). Thus, people
who consider themselves unskilled liked the system better.
We also found that women rated the system better than men
(mean/sd female 28.14/1.93, male 25.67/4.19, significant
with p < .01 using Mann-Whitney-U, Z = −2.81).

Considering the differences between subjects in the treat-
ment group and those in the control group, the main hypoth-
esis that explanation fosters confidence in the implemented
solution cannot be supported by the experimental results. In
contrary, subjects of the treatment group had lower confi-
dence on average (mean/sd: control 4.66/0.55, treatment
4.50/0.82, not significant). However, the confidence of the
subjects in the correctness of their assembly was very high
in general. Some subjects rated their confidence “certain”,
even though they forgot to connect some of the cables. Sub-
jects within the treatment group also had lower overall per-
ception scores compared to the control group (mean/sd: con-
trol 27.4/2.6, treatment 25.8/4.4, not significant).

We attribute the result concerning the explanation feature
to several factors. First, there is no substantial risk involved
in making a mistake while connecting the components. A
simple experiment (turn the devices on and see if it works)
can yield a reliable answer without much effort. So being
pushed towards reasoning about the correctness may be per-
ceived as annoying. Remember that the explanations were
displayed without an explicit request by the user, to facil-
itate randomization. A second reason for the result within
the treatment group is the possibility of an unsettling effect
of the explanation, caused by the participants thinking they
are to be fooled into believing something wrong — facili-
tated by the experimental condition.

When looking only at the treatment group, we found that
people with a higher education level rated the explanation
aspect2 better (mean/sd: with German “Abitur” 14.9/5.38,
with university degree 17.9/5.43; not significant).

In addition to the structured part, the questionnaire con-
tained free questions, asking the participants about aspects
they particularly liked or disliked. An aspect that was
praised in most comments was that we provided photographs
of the devices with highlighted ports. The negative counter-
part were complaints about the text-to-speech engine used
to read the instructions and the explanations, which were
also raised by a vast majority of the participants. Comments
about the system in general were all positive: “assists in a
useful way”, “this assistant would be great for my parents.”,

2sum over 6 questions with good internal consistency of α =
0.84

or “this assistance system is very useful, as it allows people
without expertise to follow the instructions successfully”.
The comments also confirm our assessment that not the ex-
planations themselves were perceived negatively, but the fact
that they were mandatory: Some participants mentioned as
positive that the explanations were completely optional, as
one can simply proceed by clicking on “next” (they were not
intended to be optional, but some people proceeded without
reading them). Other comments suggested to present the
explanation before the instruction it refers to, rather than af-
terwards. There were only five comments about the actual
quality of the explanations. Four of them were positive, only
one mentioned that explanations were complicated by men-
tioning the technical names for the cables. Some of the pos-
itive remarks were “explanations were good and useful, but
the presented version was confusing due to the bad, auto-
mated voice” and “the explanations seem to be unnecessary
at first glance, but they increase the understanding of what
one does and strengthen the credibility of the system”.

We conclude that a system that offers automated support
is perceived very well, in particular by non-experts. Fur-
thermore, explanation abilities appear to be an important
and beneficial feature of assistance systems, while their pro-
active provision should be thoroughly considered.

Conclusion
We presented a domain-independent architecture to imple-
ment plan-based assistance systems. It integrates planning
capabilities with advanced dialog and interaction manage-
ment components, which enable multi-modal communica-
tion skills of such systems. The approach offers a high de-
gree of flexibility by involving plan repair mechanisms to
assist users in cases where unexpected execution failures oc-
cur. Based on the architecture, we implemented a prototype
system capable of assisting users in the task of setting up a
complex home theater. We demonstrated the acceptance and
usefulness of this system in an empirical evaluation.

Acknowledgment
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Beetz, M.; Jain, D.; Mosenlechner, L.; Tenorth, M.; Kunze,
L.; Blodow, N.; and Pangercic, D. 2012. Cognition-enabled
autonomous robot control for the realization of home chore
task intelligence. Proc. of the IEEE 100(8):2454–2471.
Bercher, P.; Geier, T.; Richter, F.; and Biundo, S. 2013. On
delete relaxation in partial-order causal-link planning. In
Proc. of the 25th IEEE Intl. Conf. on Tools with AI (ICTAI
2013), 674–681.
Bercher, P.; Geier, T.; and Biundo, S. 2013. Using state-
based planning heuristics for partial-order causal-link plan-
ning. In Proc. of the 36nd German Conf. on AI (KI 2013),
1–12.

210

Bernardini, S., and Porayska-Pomsta, K. 2013. Planning-
based social partners for children with autism. In Proc. of
the 23rd Intl. Conf. on Automated Planning and Scheduling
(ICAPS 2013), 362–370.
Bidot, J.; Biundo, S.; and Schattenberg, B. 2008. Plan repair
in hybrid planning. In Proc. of the 31st German Conf. on AI
(KI 2008), 169–176.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief (a preliminary report on combining state
abstraction and HTN planning). In Proc. of the 6th European
Conf. on Planning (ECP 2001), 157–168.
Biundo, S.; Bercher, P.; Geier, T.; Müller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on AI plan-
ning. Cognitive Systems Research 12(3-4):219–236. Special
Issue on Complex Cognition.
Boger, J.; Poupart, P.; Hoey, J.; Boutilier, C.; Fernie, G.; and
Mihailidis, A. 2005. A decision-theoretic approach to task
assistance for persons with dementia. In Proc. of the 19th
Intl. Joint Conf. on AI (IJCAI 2005), 1293–1299.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In Proc. of the 26th Natl. Conf. on AI
(AAAI 2012), 1763–1769.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Proc. of the 2nd Intl. Conf. on AI Planning
Systems (AIPS 1994), 249–254.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of the 22nd Intl. Joint
Conf. on AI (IJCAI 2011), 1955–1961.
Geier, T.; Reuter, S.; Dietmayer, K.; and Biundo, S. 2012.
Track-person association using a first-order probabilistic
model. In Proc. of the 24th IEEE Intl. Conf. on Tools with
AI (ICTAI 2012), 844–851.
Honold, F.; Schüssel, F.; Weber, M.; Nothdurft, F.; Bertrand,
G.; and Minker, W. 2013. Context models for adaptive
dialogs and multimodal interaction. In Proc. of the 2013
9th Intl. Conf. on Intell. Env.’s (IE 2013), 57–64.
Honold, F.; Schüssel, F.; and Weber, M. 2012. Adaptive
probabilistic fission for multimodal systems. In Proc. of
the 24th Australian Computer-Human Interaction Confer-
ence (OzCHI 2012), 222–231.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles And Techniques. The MIT Press.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal plan-
ning and execution in robotics domains. In Proc. of the 19th
Natl. Conf. on AI (AAAI 2004), 617–622.
Lim, B. Y.; Dey, A. K.; and Avrahami, D. 2009. Why and
why not explanations improve the intelligibility of context-
aware intelligent systems. In Proc. of the SIGCHI Conf. on
Human Factors in Comp. Systems (CHI 2009), 2119–2128.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic hier-
archical planning: Optimal and online algorithms. In Proc.
of the 18th Intl. Conf. on Automated Planning and Schedul-
ing (ICAPS 2008), 222–231.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. of the 9th Natl. Conf. on AI (AAAI
1991), 634–639.
Muir, B. M. 1992. Trust in automation: Part i. theoretical
issues in the study of trust and human intervention in auto-
mated systems. In Ergonomics, 1905–1922.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan gen-
eration: A theoretical and empirical analysis. AI 76(1):427–
454.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In Proc. of the 17th Intl. Joint Conf. on AI
(IJCAI 2001), volume 17, 459–466.
Nothdurft, F., and Minker, W. 2012. Using multimodal
resources for explanation approaches in technical systems.
In Proc. of the 8th Conf. on Intl. Language Resources and
Evaluation (LREC 2012), 411–415. European Language Re-
sources Association (ELRA).
Nothdurft, F.; Bertrand, G.; Heinroth, T.; and Minker, W.
2010. GEEDI - Guards for Emotional and Explanatory DI-
alogues. In 6th Intl. Conf. on Intell. Env.’s (IE 2010), 90–95.
Parasuraman, R., and Riley, V. 1997. Humans and au-
tomation: Use, misuse, disuse, abuse. Human Factors:
The Journal of the Human Factors and Ergonomics Society
39(2):230–253.
Petrick, R., and Foster, M. E. 2013. Planning for social
interaction in a robot bartender domain. In Proc. of the 23rd
Intl. Conf. on Automated Planning and Scheduling (ICAPS
2013), 389–397.
Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Trans. Intell. Syst. Tech. 10:1–10:21.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62(1-2):107–136.
Schröder, M. 2010. The SEMAINE API: towards a
standards-based framework for building emotion-oriented
systems. Advances in Humam-Computer Interaction 2010.
Schüssel, F.; Honold, F.; and Weber, M. 2013. Using
the transferable belief model for multimodal input fusion
in companion systems. In Multimodal Pattern Recognition
of Social Signals in Human-Computer-Interaction (MPRSS
2012), LNCS/LNAI 7742. 100–115.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo,
S. 2012. Making hybrid plans more clear to human users
– a formal approach for generating sound explanations. In
Proc. of the 22nd Intl. Conf. on Automated Planning and
Scheduling (ICAPS 2012), 225–233.
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-plan2: an open
architecture for command, planning and control. In Intell.
Scheduling, 213–239.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of AI Research
(JAIR) 20:405–430.

211

The following pages show the publication:

S. Biundo, P. Bercher, T. Geier, F. Müller, and B. Schattenberg. “Advanced user
assistance based on AI planning”. In: Cognitive Systems Research 12.3-4 (Apr. 2011).
Special Issue on Complex Cognition, pp. 219–236. doi: 10.1016/j.cogsys.2010.12.

005

Reprinted with kind permission of Elsevier.

212

http://dx.doi.org/10.1016/j.cogsys.2010.12.005
http://dx.doi.org/10.1016/j.cogsys.2010.12.005

Advanced User Assistance Based on AI Planning

Susanne Biundo, Pascal Bercher, Thomas Geier, Felix Müller,
Bernd Schattenberg

〈firstname〉.〈lastname〉@uni-ulm.de

Institute of Artificial Intelligence, Ulm University, 89069 Ulm, Germany

Abstract

Artificial Intelligence technologies enable the implementation of cognitive sys-
tems with advanced planning and reasoning capabilities. This article presents
an approach to use hybrid planning – a method that combines reasoning about
procedural knowledge and causalities – to provide user-centered assistance.

Based on a completely declarative description of actions, tasks, and solution
methods, hybrid planning allows for the generation of knowledge-rich plans of
action. The information those plans comprise includes causal dependencies be-
tween actions on both abstract and primitive levels as well as information about
their hierarchical and temporal relationships.

We present the hybrid planning approach in detail and show its potential
by describing the realization of various assistance functionalities based on com-
plex cognitive processes like the generation, repair, and explanation of plans.
Advanced user assistance is demonstrated by means of a practical application
scenario where an innovative electronic support mechanism helps a user to op-
erate a complex mobile communication device.

Keywords: cognitive technical systems, companion-technology, hybrid
planning, plan repair, plan explanation, real-world planning

1. Introduction

In professional and private daily business and especially when pursuing any
major undertaking, strategic planning, reasoning about the consequences of
acting, and weighing the pros and cons of various options are crucial cognitive
capabilities human beings routinely exhibit. When aiming at the construction
of advanced intelligent systems that assist users in high-level tasks and support
their decision making, it seems therefore quite natural and adequate to rely on
a technical equivalent of those cognitive capabilities.

The field of Artificial Intelligence (AI) Planning provides a large variety of
methods to plan and reason and to do so by taking specific characteristics of
prospective applications and environments into account [1]. Its most popular
realm nowadays is classical state-based planning that originates from early work

Preprint submitted to Cognitive Systems Research February 12, 2016

213

by Fikes and Nilsson [2]. The publication of the Graphplan algorithm in the mid-
1990s [3] and the setup of the International Planning Competition [4] revived
the area and launched a strong development towards heuristic forward-search-
based planning [5, 6, 7]. While state-based approaches aim at the generation
of linear action sequences that are intended to be automatically executed by
systems, there are two main strands in the field dedicated to the construction of
more elaborate plan structures and to explicitly reflecting the kinds of reasoning
humans perform when developing plans. In partial-order causal-link (POCL)
planning [8, 9], plans are partially ordered sets of actions and show causal de-
pendencies between actions explicitly. This allows for flexibility w.r.t. the order
in which actions are finally executed and enables a human user to grasp the
causal structure of the plan and to understand why certain actions are part
of it. Hierarchical task network (HTN) planning [10, 11] features another im-
portant principle of intelligent planning, namely abstraction. It allows for the
specification of both complex abstract tasks and predefined standard solutions
for these tasks. Here, plan generation is a top-down refinement process that
stepwise replaces abstract tasks by appropriate (abstract) solution plans until
an executable action sequence is obtained. HTN planning is particularly useful
for solving real-world planning problems since it provides the means to immedi-
ately reflect and employ the abstraction hierarchies that are inherent in many
domains.

By combining the characteristic features of POCL and HTN techniques hy-
brid planning [12, 13, 14, 15] smoothly integrates reasoning about procedural
knowledge and causalities, thereby providing an enabling technology for the
realization of complex cognitive capabilities of technical systems. Based on a
completely declarative description of actions, tasks, and solution methods, hy-
brid planning allows for the generation of knowledge-rich plans of action. The
information those plans comprise includes causal dependencies between actions
on both abstract and primitive levels as well as information about their hierar-
chical and temporal relationships. By making use of this information, as well
as of the underlying declarative domain models, complex cognitive capabilities
like the generation of courses of action on various abstraction levels, the stable
repair of failed plans in response to some unexpected environment changes, and
the explanation of different solutions for a given planning problem – to name
just a few – can be implemented by advanced automated reasoning techniques.

In this article, we present the potential of hybrid planning in view of complex
cognition by describing the realization of various assistance functionalities for
individual users of a technical system. They include (1) generating a plan for a
specific user and advising him to carry out the plan in order to achieve a current
task, (2) instructing the user on how to escape from a situation where the
execution of this plan unexpectedly failed, and (3) justifying and explaining the
proposed solution plans in an adequate manner. These assistance functionalities
can be provided by a component that relies on a domain-independent hybrid
planner, a plan repair component, and a plan explanation facility.

In the scenario we have chosen to illustrate our approach, such an assis-
tance component appears as an innovative electronic support mechanism that

2

214

Choose Recipient

pascal.bercher@uni-ulm.de

susanne.biundo@uni-ulm.de

josef.k.@praha.eu

mybestest.friend@uni-ulm.de

Incoming Mail Server

Setup Account

Outgoing Mail Server

Address

Login

SMS

Send Picture

MMS

colleague@where-I-work.com

Create Email Account

Figure 1: A schematic view of a commercially available smart phone.

smoothly helps a human user to operate his new mobile phone. In applications
where the domain is a technical device, like in this scenario, setting up the plan-
ning domain model is rather straightforward. It includes the representation of
relevant states and of actions that cause state transitions. Actions are applica-
ble if certain prerequisites hold; their effects specify properties of the successor
state.

The state of the phone includes aspects like the currently displayed menu
and the pictures saved on the phone, but also whether it currently has reception.
Our model does not account for every detail of the phone, however. Aspects
below a certain level of detail are not relevant for providing support, because
they are not relevant for operating the phone. For example, we do not model
how the cell phone internally handles the communication with the network or
signal strength; we only distinguish between having reception and not having
reception.

The state of the phone can be changed by performing actions like pressing
a button, activating the camera, and the like. Figure 1 shows a schematic
view of the mobile phone. Performing an action like pressing the touch-screen
button labeled with “MMS” changes the state of the phone. Before the button
is pressed, the state of the cell phone is that it displays the send menu for
pictures; afterwards, it displays the MMS dialog menu where the user can enter
the details of the message to send.

As we are dealing with a deterministic technical system, all actions have
a well-defined outcome. This allows us to predict future states of the mobile
phone: if we know the state of the phone and the action we want to apply,
we can determine its state after the application of the action. In addition, we
again abstract from unnecessary details and treat action application as atomic.
We thus do not need an explicit representation of time and assume that actions
change the state of the phone instantaneously.

Performing a single action is usually not enough to achieve a given objective;
a combination of various actions is required instead. The order in which these
actions are performed generally matters. For instance, one cannot send an MMS
before having entered a recipient. In some cases however, the order may not

3

215

be relevant: it does not matter in which order one fills out the fields of a form,
for example. Hence, the required actions are partially ordered. The particular
order in which the actions have to be executed is determined by their enabling
preconditions and their effects and with that imposed by causal dependencies
between the actions. As a consequence, it seems to be obvious that POCL plans
are an adequate means to represent the operation of a technical device.

Moreover, there are higher-level operations or tasks that comprise a whole
bunch of simpler actions, an example being sending an MMS. It consists of
selecting a recipient, typing in the message, and so forth. In order to perform
this task, the user needs to navigate to the MMS menu, enter the recipient and
various types of content, and finally has to press the send button. Those higher-
level operations are not limited to a single realization; in general, there are
various ways to perform them. Thus, it seems natural to use HTN representation
means when dealing with these kinds of operations.

The article continues with the introduction of our formal planning frame-
work. Section 3 presents the hybrid planning algorithm and its formal proper-
ties. Our formalizations and the respective algorithms are illustrated by a run-
ning example where a person is supported in using his new and yet unfamiliar
mobile phone. In Section 4 we address the problem of unexpected environment
changes and show how our plan repair mechanism is applied to help the user
escaping from a situation where his intended action is doomed to failure. After
that, we discuss the challenge to come up with adequate explanations of plan-
based user instructions. Section 5 describes the ways in which both the causal
structure of plans and the hybrid plan generation process from which they orig-
inate can be employed to achieve this objective. Finally, our presentation ends
with some concluding remarks in Section 6.

2. The Hybrid Planning Framework

Hybrid planning – the fusion of partial-order causal-link (POCL) planning
and hierarchical task network (HTN) planning – combines the advantages of
two different approaches for solving planning problems.

POCL planning is a technique used for solving state-based planning prob-
lems. The objective is to accomplish some desired property of the world, i. e., to
reach some goal state by applying actions in a correct order starting in a given
initial state.

As mentioned, POCL planning is quite suitable for the purpose of finding
plans that are intended to be executed by human users, since, on the one hand,
the explicit information about causality helps to understand the plan and, on
the other hand, the partial order of actions allows the user for more degrees of
freedom in selecting the next action to execute.

HTN planning extends the principle of state-based planning to a hierarchy
on the available actions. In HTN planning, actions are generally referred to as
tasks. This hierarchy is established using so-called primitive tasks with precon-
ditions and effects like in pure state-based planning, as well as abstract tasks

4

216

that do not have any precondition or effect, but solely serve as containers for
plans that represent predefined implementations. However, these implementa-
tions can again contain abstract tasks. The mapping between an abstract task
and the plan implementing it is done by so-called decomposition methods. Thus,
for each abstract task there is at least one method defining its implementation.
A crucial difference between state-based and HTN planning is the solution crite-
rion. Whereas the goal in state-based planning is to achieve a desired property,
no matter which actions have to be used to accomplish this, the goal in HTN
planning is to find a plan that is a valid decomposition of the initial abstract
task, such that the resulting plan only contains primitive tasks.

The top-down manner in which HTN planning systems search for plans is
similar to planning performed by humans when planning to achieve complex
tasks like planning a business trip to a conference or setting up a complex
technical device.

Most real-world application domains, like emergency evacuation and cri-
sis management [1, Chapter 22][14] and transportation/logistics problems [16],
make use of hierarchical structures on tasks and resources to a very high ex-
tent. HTN planning techniques are therefore essential to tackle those problems.
Traditional HTN planning can only come up with solutions that are modeled in
advance by means of decompositions for abstract tasks. In fact, HTN planning
is intended to allow only these solutions, since they have been carefully designed
by domain experts. We regard the procedural knowledge given in terms of de-
composition methods as an enrichment of the domain model (i. e., the encoding
of the world), rather than as a restriction to a subset of valid plans. Therefore,
we pursue the integration of HTN planning and state-based planning, called
hybrid planning [12, 13, 14, 15], which turned out to be well suited for solving
real-world problems [17, 18].

2.1. Logical Language

Our hybrid planning formalism relies on an order-sorted, quantifier-free pred-
icate logic. Due to space limitations we omit the definition of its semantics and
refer to our previous work for any further details [14]. Its syntax is based on
the logical language L = 〈Z,<,R,C, V, L〉.

In sorted logics, all variables and constants are of some sort z ∈ Z. Ta-
ble 1 lists the sorts used in our example domain model. Order-sorted logics
additionally impose a hierarchy on sorts which allows for more adequate and
concise formalizations. The relation < is used to express this hierarchy on the
sort symbols in Z. Figure 2 shows a graphical representation of a part of the
sort hierarchy of our domain model. R is a Z∗-indexed family of finite dis-
joint sets of relation symbols, which are used to express properties of objects
in the real world. Accordingly, C is a Z-indexed family of finite disjoint sets
of constant symbols that represent objects in the real world. If we want to
model that a specific email message is associated with a specific recipient, we
use a constant like EMAIL42 of sort Email to represent this email and a con-
stant like CONTACT23 of sort Contact to represent its recipient. The expression
RecipientIsSet(EMAIL42, CONTACT23) then states the desired association. The

5

217

used in our example

Communication

Message

SMS Mms Email

Phone Call

Figure 2: Part of the sort hierarchy of our smart phone domain model.

expression Mode(USINGCAMERA) encodes that the cell phone is in a mode in which
pictures can be taken. V is a Z-indexed family of infinite disjoint sets of vari-
able symbols; in our examples, variable symbols are written with a preceding
question mark to distinguish them from constant symbols. To refer to the set
of variables and constants of a sort z ∈ Z, we write Vz and Cz, respectively.
Finally, L is an infinite set of labels used for identifying different occurrences of
identical tasks.

2.2. Tasks and Plans

A task t is a tuple 〈pre, post〉, specifying a precondition and a postcondition.
Pre- and postconditions are sets of literals over the relations of the logical lan-
guage L and depend on the task parameters τ̄(t) = τ1(t) . . . τn(t)(t), where n(t)
is the length of this sequence, also called the arity of task t. For convenience,
we also write t(τ̄) to refer to a task t. For example, the task SetUpEmail-

Account(?acc1) = 〈{Mode(SENDMENU), ¬SetUp(?acc1)}, {SetUp(?acc1)}〉 states
that setting up an email account requires the cell phone to be in the appropriate
mode and that the account is not set up already; as a result, the respective email
account is set up and can hence be used. We collect in post+(t) and post−(t)
the atoms that occur positively and negatively in the postcondition of task t
and denote them as the positive and negative effects of t, respectively.

A state is a finite set of ground atoms. A task t with ground pre- and
postconditions is called applicable in a state s, if the positive literals of its
precondition are contained in s and the negative ones are not. If t is applicable
in a state s, its application leads to the state s′ = (s\post−(t))∪post+(t) and is
undefined, otherwise. The applicability of sequences of ground tasks is defined
inductively over state sequences as usual.

Let the state of the mobile phone be s = {Mode(SENDMENU), SetUp(ACC1)}.
The task SetUpEmailAccount with its parameter ?acc1 being associated with
the constant ACC2 is applicable in s, since all positive literals of its precondition
{Mode(SENDMENU),¬SetUp(?acc1)} are contained in s and the negative ones are
not. Its application leads to the state s′ = s ∪ {SetUp(ACC2)}.

A plan or task network is a tuple P = 〈TE,≺, VC,CL〉 consisting of a finite
set TE of plan steps or task expressions te = l : t, where t is a (partially)
grounded task and l ∈ L is a unique label to distinguish different occurrences
of the same task within the same plan.

6

218

Table 1: A subset of elements of the logical language L, which we use to model the functionality
of a smart phone.

Sorts Z

Name Description

Mode constants of this sort are used
to represent the possible modes
of the cell phone

Message messages
Mms MMS messages
Email email messages
Picture pictures
Contact address book entries
Account configurable email accounts

Relations R

Name Signature Description

RecipientIsSet Message×Contact associates a message, i. e., an
MMS or email with a recipient

Stored Picture true iff a picture is stored
Mode Mode the active mode
HasReception true iff the phone has reception
...

Constants C

Name Signature Description

USINGCAMERA Mode the mode in which pictures can
be taken

SHOWALBUM Mode the mode for displaying the
stored pictures

ACC1,ACC2,. . . Account email accounts
PIC1,PIC2,. . . Picture pictures
...

7

219

CL is a set of causal links, each of which has the form 〈li, φ, lj〉, indicating
that the task expression tei provides the task expression tej with its precon-
dition φ ∈ post(tei) ∩ pre(tej), where post(te) and pre(te) refer to the post-
and precondition of t, if te = l : t. This explicit representation of causal rela-
tionships between tasks is, next to our integration of hierarchical concepts, one
of our main arguments for the adequacy of our formalism in our problem set-
ting of providing assistance to human users in scenarios which involve planning
capabilities because they are direct justifications for the occurrence of tasks.

Every causal link 〈li, φ, lj〉 implicitly induces an ordering between the plan
steps with labels li and lj . Additionally, the set of ordering constraints ≺
contains explicit orderings that are predefined by the model or are added as a
result of the planning process. We write ≺∗CL in infix notation when we refer to
the transitive closure imposed both by the constraints from ≺ and those induced
by CL. Note that ≺∗CL defines the partial order that governs the execution of
the plan – the ordering constraints ≺ alone are not enough.

The set of variable constraints VC is a set of (non-)co-designations used
for grounding tasks and to force (in-)equality between variables. Formally,
for two tasks t and t′, τi(t) =̇ τj(t

′) constrains τi(t) and τj(t
′) to be identical

and, for co-designating variables with constants, τi(t) =̇ c constrains the vari-
able τi(t) to be equal to the constant c ∈ Cz, where z ∈ Z is the sort of c.
Non-co-designations are defined analogously.

A causal threat is the situation in which the partial order of a plan would
allow the plan step tek with the postcondition ¬ψ to be ordered between two
plan steps tei and tej for which there is a causal link 〈li, φ, lj〉 such that under the
current variable constraints, φ and ψ can be unified. This situation is a threat
to the causal link, because the postcondition ¬φ would falsify the formula φ,
thus destroying the causal link. Causal threats can be resolved by promotion
or demotion (i. e., by inserting an ordering constraint tej ≺ tek or tek ≺ tei,
respectively), by separation (i. e., by inserting a variable constraint such that
φ and ψ cannot unify anymore), and by expansion (because the causal threat
might only exist on an abstract level; cf. Section 2.3).

Example for a Plan

Figure 3 shows a plan Psetup for setting up an email account in the mobile
phone. It uses the following tasks:

PressEmailSetup() = 〈{Mode(SENDMENU)},
{¬Mode(SENDMENU), Mode(EMAILSETUP)}〉

InputServerInfo(?acc2) = 〈{Mode(EMAILSETUP),¬SetUp(?acc2)},
{InfoEntered(?acc2)}〉

InputCredentials(?acc3) = 〈{Mode(EMAILSETUP),¬SetUp(?acc3)},
{CredentialsEntered(?acc3)}〉

8

220

PressEmailSetup

InputServerInfo InputCredentials

Confirm

Mode(EMAILSETUP) Mode(EMAILSETUP)

InfoEntered(?acc4) CredentialsEntered(?acc4)

Figure 3: The plan Psetup, which describes how an email account can be set up in the mobile
phone.

Confirm(?acc4) = 〈{Mode(EMAILSETUP), InfoEntered(?acc4),

CredentialsEntered(?acc4),

¬SetUp(?acc4)},
{¬Mode(EMAILSETUP), Mode(SENDMENU),

SetUp(?acc4)}〉

Psetup = 〈TEsetup,≺setup, VCsetup, CLsetup〉 is a plan where:

TEsetup = {l1 : PressEmailSetup(), l2 : InputServerInfo(?acc2),

l3 : InputCredentials(?acc3), l4 : Confirm(?acc4)}
≺setup = ∅
VCsetup = {?acc2 =̇ ?acc3, ?acc2 =̇ ?acc4}
CLsetup = {〈l1, Mode(EMAILSETUP), l2〉,

〈l1, Mode(EMAILSETUP), l3〉,
〈l2, InfoEntered(?acc4), l4〉,
〈l3, CredentialsEntered(?acc4), l4〉}

Please note that the set ≺ of explicit ordering constraints is empty, the
causal links however impose a partial order depicted in Figure 3. We include
explicit ordering constraints between tasks if causal threats need to be resolved
(by promotion or demotion) or if they are already present in a predefined plan
of the domain model.

This plan describes which actions need to be taken in order to set up an
email account. The first task is PressEmailSetup, which corresponds to the
action of pressing the menu entry Email Setup. For this being possible, the
mobile phone has to be in the state that actually shows the necessary menu,
which is encoded by the precondition Mode(SENDMENU) of the task. After the
execution of this action, the user has to enter the server information and the
credentials, which can be done in an arbitrary order. Finally, the setup will be
completed by pressing the confirmation button.

9

221

2.3. Domain Model

A domain model for hybrid planning is a tuple D = 〈L, T, M〉, consisting of the
logical language L, a set T of tasks and a set M of decomposition methods. We call
a task abstract if there is at least one method specifying a decomposition for this
task, otherwise we call it primitive. As an example for an abstract task, recall
the task SetUpEmailAccount(?acc1) introduced in Section 2.2. Abstract tasks
have pre- and postconditions like primitive tasks, but they do not correspond
to single actions in the real world and are hence not directly executable by
human users (they may be understandable, though; this issue will be addressed
in Section 5). Instead, abstract tasks serve as containers for plans that require
and achieve the pre- and postconditions of this abstract task and can thus be
regarded as predefined standard solutions.

A method m = 〈t, VC, P〉 ∈ M maps an abstract task t to a plan P that
implements t. Each method contains a set of additional variable constraints
VC to relate variables in t with variables occurring in the task network P. A
method m is applied to a plan P’ by replacing the abstract task t in P’ by
its implementation P and by inserting the variable constraints VC into the
variable constraints of the plan P’. Concerning the abstract task SetUpEmail-

Account, there is only one method that specifies how to decompose it: m =
〈SetUpEmailAccount(?acc1), {?acc1 =̇ ?acc2}, Psetup〉. This method specifies
that the task SetUpEmailAccount can be implemented by the task network
Psetup, that we have already seen (cf. Figure 3). The variable co-designation
?acc1 =̇ ?acc2 ensures that the variable ?acc1 of the abstract task is properly
identified with the corresponding variables used by Psetup. Figure 4 gives a
listing of all tasks and their corresponding decomposition structure of the smart
phone domain.

2.4. Problems and Solutions

A hybrid planning problem π = 〈D,Pinit〉 consists of a domain model D and
an initial plan Pinit. The initial plan does additionally contain two artificial task
expressions teinit and tegoal which are used to encode an initial and goal state,
respectively. The task teinit has the initial state as effect and the task tegoal has
the desired goal state as precondition. All other tasks are always ordered in
between.

A plan Psol = 〈TEsol,≺sol, VCsol, CLsol〉 is a solution to a planning problem
π = 〈D,Pinit〉 if the following criteria hold:

1. Psol is a refinement of Pinit. Informally, we call a plan a refinement of
Pinit, if it results from applying modifications to it. A modification is the
insertion of a plan element, i. e., an element from the set of task expres-
sions, temporal orderings, variable constraints and causal links. The only
modification that is not a pure insertion is the application of a method:
it replaces an abstract task by an implementing task network and adapts
the variable constraints and causal links. The formal description of the
modification is introduced in the next section.

2. Psol contains only primitive tasks.

10

222

PressHomeButton

ObtainPicture

EnterCameraMode

TakePicture

DisplayPicture

EnterAlbum

SelectPicture

SetUpEmailAccount

PressEmailSetup

InputServerInfo

InputCredentials

Confirm

SendPicture

EnterSendMenu

TransferPicture

ChooseSendByMMS

WriteMessage

ChooseRecipient

InputSubject

PressSend

ChooseSendByEmail

WriteMessage

Figure 4: This figure lists the tasks inside our example domain model. It depicts the de-
composition methods of abstract tasks by means of an angled line, while the subtasks of one
method are connected together by straight lines.

3. All preconditions of all plan steps in Psol are supported by a causal link,
i. e., for each precondition φ of a plan step tej ∈ TEsol there exists a causal
link 〈li, φ, lj〉 ∈ CLsol with tei ∈ TEsol.

4. There are no causal threats.

5. The ordering and variable constraints in Psol are consistent, i. e., there is
no plan step te ∈ TEsol, such that te ≺∗CL te and no v ∈ Vz for z ∈ Z,

such that VC |= v ˙6= v.

6. All tasks in Psol are grounded. That is, all variables are co-designated to
some constant.

Solution criterion (1) is inherited from HTN planning. In this approach, any
solution must be a decomposition of the initial plan Pinit. This HTN solution
criterion is reflected in hybrid planning by the requirement that solutions must
be refinements of Pinit. Since abstract tasks are regarded as non-executable, cri-
terion (2) ensures that only executable tasks, i. e., primitive tasks, are contained
in solution plans. Criterion (3) ensures the applicability of tasks in a plan: in
order for a task to be applicable in a state s, all its literals of its precondition
must hold in s, what can be ensured by establishing appropriate causal links.
(4) guarantees that all plan steps in all linearizations of a plan are applicable in
the sense of criterion (3): causal threats can cause a literal of the precondition
of a plan step to be false in some linearizations although it is supported by a
causal link. Since we require all linearizations of a plan to be valid solutions,
causal threats have to be eliminated. (5) is obviously necessary for constituting
meaningful plans since neither can a task be ordered before itself nor can a

11

223

Init ObtainPicture

SendPicture Goal

Stored(?pic2)

Figure 5: The initial plan Pinit of the planning problem of our running example. It encodes
James’ request to take a picture and send it to a contact in his address book by the means
of two abstract tasks. The initial plan contains a causal link between those tasks, because a
picture has to be stored on the device, before it can be sent.

constant be different from itself. (6) maps the variables used by tasks onto the
objects available in the modeled world.

Finally, we start our running example of providing plan-based support to a
user. To this end, we introduce James K., the protagonist of our story.

James K. is participating in a conference on cognitive systems research. He
has just attended a very interesting talk about modeling trials using ACT-R.
During the session, the speaker took notes on the blackboard and James would
like to discuss those with his colleagues at home. Fortunately, his new mobile
phone has an integrated digital camera that seems to be up to the task. Unfortu-
nately, the next talk is starting soon and James isn’t very familiar with all those
fancy functionalities, yet. Luckily, the phone is provided with an automated
assistance component, on which he can rely.

This component has knowledge of the internal state of the phone and its
available functions. Additionally, James can use it to query for help on sending
a picture of the blackboard to one of his colleagues.

The assistance component, based on hybrid planning technology, has thus
created the planning problem π = 〈D,Pinit〉, with D = 〈L, T, M〉 being the do-
main model and Pinit being the initial plan, formalized as follows and illustrated
in Figure 5. The initial plan Pinit of the planning problem consists of the fol-
lowing tasks:

Init() = 〈∅, {Mode(INIT), HasMobileNumber(CONTACT1),

HasEmail(CONTACT1), HasReception(),

HasWlanConnection()}〉

ObtainPicture(?pic1) = 〈∅, {Stored(?pic1)}〉

SendPicture(?pic2) = 〈{Stored(?pic2)}, ∅〉

Goal() = 〈∅, ∅〉

The tasks Init and Goal are artificial tasks used to encode the beginning and
the end of a plan, respectively. They thus occur only once in each plan and all

12

224

other tasks are always ordered in between. The effects of the initial task Init

encode the initial state: there is a contact (James’ colleague) that is stored in
the cell phone and has a mobile phone number and an email address. Also,
the moment the problem gets initialized, the phone has reception and W-LAN
connection. The precondition of the task Goal encodes the desired goal state.
In our example problem, any valid decomposition of the initial plan solves the
given problem without the need to explicitly satisfy a goal state.

The initial plan Pinit = 〈TEinit,≺init, VCinit, CLinit〉 is formalized as follows:

TEinit = {linit : Init(), l5 : ObtainPicture(?pic1),

l6 : SendPicture(?pic2), lgoal : Goal()}
≺init = {(linit, lgoal), (linit, l5), (linit, l6), (l5, lgoal), (l6, lgoal)}
VCinit = {?pic1 =̇ ?pic2}
CLinit = {〈l5, Stored(?pic2), l6〉}

3. Plan Generation

In order to find a solution to the problem π, our hybrid planning algorithm
has to refine the initial plan into a solution plan Psol.

3.1. Algorithm

Our planning procedure picks a plan P from a candidate set, called fringe,
which contains all plans that are yet to be examined. Initially, this is only the
initial plan, contained in the planning problem. If P constitutes a solution the
algorithm returns this plan and terminates. Otherwise, it identifies the prob-
lems with P and tries to resolve them. These problems (in the following called
flaws) explicitly indicate, why this plan does not meet the solution criteria. For
example, the second solution criterion states that all tasks of a solution plan
have to be primitive. Thus, if a plan P contains abstract tasks, P raises a flaw of
type abstract task for every abstract task in P. Obviously, the only possibility to
resolve such a flaw is to select and apply an appropriate decomposition method
m ∈ M, thus replacing the abstract task by the task network specified by m.
The procedure of (1) selecting a plan, (2) identifying its flaws, and (3) applying
all possible flaw-resolving modifications thereby generating a set of successor
plans is repeated until a solution has been found or it has been proven that
none exists. This kind of planning procedure is also referred to as refinement
planning [1, 19], because each modification application specializes and hence
refines the current plan.

A flaw is a syntactical structure that references all plan elements that are
involved in the violation of a solution criterion. Then, a flaw class is the set
of all possible flaws of a specific type and is used to relate types of flaws to
appropriate types of modifications (see our previous work [20] for formal defi-
nitions). For example, the initial plan Pinit raises (amongst others) two flaws
of the flaw class FAbstractTask which points to the abstract tasks ObtainPicture
and SendPicture.

13

225

Table 2: This table lists the solution criteria, their corresponding flaw classes and modifications
that can resolve those flaws. Solution criterion (1) is not associated with a flaw class, because
any refinement algorithm automatically satisfies it.

Solution Criterion Flaw Class Modification Class

(1) – –
(2) FAbstractTask MExpandTask

(3) FOpenPrecondition MAddCausalLink, MExpandTask,
MInsertTask

(4) FCausalThreat MExpandTask, MAddOrdering,
MBindVariable

(5) FInconsistentOrdering –
(6) FUnboundVariable MBindVariable

In order to resolve a particular flaw f that is detected in a plan P, a modifi-
cation m is applied to P. This results in a modified or refined plan, which is free
of f . A modification consists of plan elements to remove from the current plan
and plan elements to insert [20]. Note that the application of m might however
introduce new flaws into the plan. In our example, a modification that resolves
the abstract-task-flaw SendPicture would remove this task together with the
causal link that points to it. The task would be replaced by an implementing
task network. That is, it gets replaced by a task network P for which there
is a method 〈SendPicture(?pic2), VC, P〉 ∈ M. The causal link would also
be replaced, since its consumer would not be the abstract task SendPicture

anymore, but a more primitive task contained in the plan P.
A modification class is the set of all possible modifications of a specific type

and is used to relate types of flaws to appropriate types of modifications. For
instance, each modification decomposing an abstract task using its associated
method belongs to the modification classMExpandTask. Examples for other modi-
fication classes areMInsertTask andMAddCausalLink, which consist of modifications
inserting primitive and abstract tasks and establishing causal links between plan
steps, respectively. A complete list of modification classes, as well as the flaw
classes they can resolve, is given in Table 2.

As already mentioned, there is a relationship between flaw and modification
classes. For example, a flaw of the class FAbstractTask can only be resolved by a
modification of the class MExpandTask. Thus, only certain types of modifications
can be used to address a specific flaw. While this allows for an efficient and
distributed calculation of flaws and modifications [21], we will, for the sake of
readability, only present a simplified algorithm that calculates and addresses all
flaws in one step.

Our procedure is depicted in Algorithm 1; it performs search as long as there
are plans in the fringe that can possibly be refined into a solution (line 1). The
decision, which plan from the fringe to examine next is made by a function
fPlanSel, which we call plan selection strategy (line 2). It implicitly defines the

14

226

Algorithm 1: Our hybrid planning search procedure.

Input : The candidate set Fringe = {Pinit}.
Output: A solution plan or fail .

1while Fringe 6= ∅ do
2P ← fPlanSel(Fringe)

3F ← fFlawDet(P)
4if F = ∅ then return P

5Fringe← (Fringe \ {P }) ∪ {app(m,P) | m ∈ fModGen(F, P) }
6return fail

order in which the algorithm explores the space of all possible refinements of
the initial plan. If the search process cannot exhaust this space completely, it
depends on this function which parts will remain unexplored. fPlanSel is also
the means to introduce optimizations w.r.t. efficiency of search and quality of
solution into the search process. Many different plan selection strategies have
been described and evaluated in our previous work [15, 22, 20].

After P, the next plan to refine, has been chosen, all flaws are detected by
the flaw detection function fFlawDet and are stored into the set F (line 3). If
P does not contain any flaws, it is considered a solution to the given problem
and returned (line 4). Otherwise, the fringe is updated by removing the plan
currently under consideration and by inserting its successors (line 5). To this
end, the modification generation function fModGen computes for each detected
flaw all possible modifications that resolve it. Note that there are some flaws,
e. g., temporal ordering inconsistencies, that persist since they can never be
resolved. Let f be such a flaw. We set fModGen(F, P) = ∅ if f ∈ F in order
to discard plans containing these kinds of flaws. The calculated modifications
are applied to P (by means of the function app) and the resulting plans are
inserted into the fringe. If the fringe is empty, i. e., if there is no plan left that
can possibly be refined into a solution, the algorithm leaves its main loop and
returns fail (line 6). Figure 8 visualizes this procedure in the context of plan
repair.

3.2. Properties of the Algorithm

In the following, we present some theoretical properties of our algorithm and
sketch their proofs.

Property 1 (Correctness). Our algorithm is correct, i. e., if it returns a plan,
it is a solution to the given planning problem.

Obviously, the correctness depends on the completeness of the flaw detec-
tion and modification generation functions: every possible violation of a solution
criterion must be associated with a flaw, and for every flaw all possible modifi-
cations for resolving it must be detected. If both criteria hold – which they do
in our framework and implementation [15] – our claim follows by definition.

15

227

Property 2 (Completeness). If there exists a solution to a planning problem,
our algorithm finds a solution, provided an appropriate plan selection strategy
is chosen.

This property is related to the fact that we perform search in an infinitely
large space of plans, which may be caused by possibly recursive method appli-
cations and repeated task insertion, respectively: some tasks may be inserted,
either via HTN decomposition methods or via POCL task insertion, arbitrarily
often. The former is responsible for the semi-completeness of HTN planning [23],
whereas the latter is a general issue of partial order planners like ours [24, 25].

Hence, a search strategy (i. e., the plan selection function fPlanSel) can “get
lost” in this infinitely large search space. However, there are search strategies
that guarantee to find a solution (if one exists) like the uninformed breadth-first
search. Whereas informed search strategies [22, 20] do not guarantee complete-
ness in general, in most practical scenarios they do find a solution while being
much more efficient than uninformed search.

Property 3 (Termination). If no solution exists, our algorithm does not always
terminate. If there is a solution, termination depends on the choice of the plan
selection strategy.

Our first claim is easy to see, since for proving the non-existence of a solution
the fringe must become empty eventually. But the potential search space is
infinite while only a few plans get discarded from the fringe due to unresolvable
flaws; hence, termination cannot be guaranteed in cases where no solution exists.
We want to emphasize that this is just a theoretical result but not of much
importance for our purposes of assisting human users. This is, since we generally
assume the existence of a solution and are mainly interested in finding a trust-
worthy, user-adapted solution quickly, rather than proving that none exists.

Our second claim follows directly from the completeness property, as the
algorithm terminates as soon as a solution is encountered.

3.3. Example

Initially, the fringe contains only the initial plan Pinit, depicted in Figure 5.
The flaw detection function fFlawDet raises three flaws: Two flaws of the class
FAbstractTask, one for each of the two initial abstract tasks, and one flaw of the
class FUnboundVariable, because the variable ?pic1 is not yet bound to a con-
stant. The possible modifications detected by the modification detection func-
tion fModGen are applied, thereby generating a set of successor plans. At the
time our planner has generated a solution, the abstract task ObtainPicture

has been substituted by the tasks EnterCameraMode and TakePicture, and
the abstract task SendPicture has been substituted by a plan which sends the
picture via MMS. Note that in our domain model there are two methods that
specify how to decompose the abstract task SendPicture. One method uses an
MMS to send a picture, another one sends it by email. Our solution depicted in
Figure 6 used the former since we assume that the assistance component makes
use of a user profile in which the personal user preferences tell the system that

16

228

Init

EnterCameraMode

TakePicture

PressHomeButton

EnterAlbum

SelectPicture

EnterSendMenu

ChooseSendByMMS

InputSubject ChooseRecipient

PressSend

Goal

O
b
t
a
i
n
P
i
c
t
u
r
e

D
i
s
p
l
a
y
P
i
c
t
u
r
e S
e
n
d
P
i
c
t
u
r
e

Figure 6: A solution plan to the problem of sending a picture to a contact from the address
book of the smart phone. The annotations on the side describe by which abstract task
the primitive tasks were introduced into the plan. The abstract tasks ObtainPicture and
SendPicture were already present in the initial plan. The abstract task DisplayPicture and
the primitive task PressHomeButton were introduced into the plan in order to close open
preconditions of their succeeding tasks.

James has never used the email functionality before, whereas the task of sending
MMS messages is quite familiar to him. Because the task EnterSendMenu has
the precondition of the respective picture being selected, our planning system
inserts the abstract task DisplayPicture, which in turn gets decomposed into
a more primitive plan. After all flaws have been resolved, a plan has been ob-
tained that is free of flaws and that actually is a decomposition of the initial
plan.

Thus, the assistance component of James’ cell phone created a solution to
the problem π of taking a picture and sending it to a colleague. The solution
(cf. Figure 6) is presented to James, who begins executing it.

4. Plan Repair

One basic assumption underlying our planning approach discussed so far is
that the only way in which the environment changes is through actions executed
by the user. Since we want to offer advanced plan-based user assistance and
have to take the human user’s very dynamic environment into account, this
assumption is too restrictive.

James begins to follow the provided step-by-step instructions. He is able
to take a picture of the notes and begins composing an MMS message to his
colleague. James then leaves the room and heads for the next talk in a different
room. But while doing so, the reception signal of the mobile phone gets weaker
and finally completely fades.

A plan generated by the assistance component can be invalidated by excep-
tional events occurring at plan execution time, such as the fading reception in
our example. In this section, we will present an extension to our formalism that
meets the need to deal with such unforeseeable developments.

17

229

One possibility to cope with unexpected environmental changes is to restart
planning from scratch, using the modified situation as the new initial state.
Dealing with the problem in this way has the advantage that no modification of
the planning algorithm is needed. Plan repair, on the other hand, tries to adapt
a previously generated solution to a new situation. While plan repair is in terms
of computational complexity not easier than replanning in the general case [26],
the main advantage of plan repair is that it allows for more plan stability. Plan
stability is a measure of the similarity between the original solution and the
solution adapted to the new situation [27]. The goal is to present alternative
plans with only minimal deviations from the original plan, as there are several
reasons why plan stability is important.

First, overcoming a plan failure by generating a new solution from scratch
may result in a completely different plan, which most likely appears implausible
to the user and may lead to major confusion. Preserving as much of the original
plan as possible instead, appears much more appropriate and helps to gain
and/or preserve a user’s trust. Suppose our example solution Psol does not end
after James has sent his message but contains further tasks, then repairing the
plan will produce a plan close to the original one, while planning from scratch
would only produce some plan.

Second, solutions to real world planning problems generally tend to be large.
In case of a failure, many unexecuted parts of the plan may be unaffected. It
is thus not adequate and sometimes even infeasible to create a new plan just to
address a single execution failure.

Third, requests for resources or requests to third parties may have already
been carried out and undoing them might lead to unfavorable effects: if some-
thing goes wrong, say, after James has already bought a flight ticket for his trip
home, he is unlikely to accept a new solution that proposes to travel by train.

We will thus use a plan repair approach to deal with unpredictable envi-
ronmental changes. While there exist several different plan repair approaches
for classical state-based planning, there are hardly any for hierarchical plan-
ning [28]. In the following, we present our plan repair procedure for hybrid
planning, based on our previous work [29].

Before describing the plan repair process, we will show how failures are repre-
sented in the planning domain model. In our formalism described in Section 2,
the only way states can change is by the execution of actions; the formalism
does not foresee external influences that cause those changes. The task of the
repair procedure on the other hand is to produce a solution that compensates
an unexpected failure. As a consequence, a well-founded approach to plan re-
pair requires the means to explicitly represent failures. Unexpected changes to
the environment, sometimes called events in the literature [1, page 5f.], can be
interpreted as a kind of action themselves if we regard the environment as a
second actor in the domain. These actions can of course not be used by the
planner to construct plans, because they represent uncontrollable environmen-
tal developments. Instead, these so-called processes are inserted into the repair
plan to represent execution failures. Processes invert the truth value of literals
in state descriptions: the failing cell phone reception in our example is modeled

18

230

ChooseSendByMMS

InputSubject ChooseRecipient

PressSend

past

future

Mode(EDITMMS) Mode(EDITMMS)

HasReception()

Figure 7: An example of how the execution monitor is used to monitor the evolution of the
environment. The horizontal line identifies the execution horizon, i. e., the point in time
up to which the plan has been executed. Gray nodes are tasks marked as executed by the
monitor. If a failure is detected, the causal links crossing the execution horizon are candidates
for being failure-affected, because their properties are needed for the execution of a future
action. The causal link establishing the precondition HasReception for the task PressSend is
failure-affected, as illustrated by the failure symbol on the right.

by a process pHasReception with precondition HasReception and postcondition
¬HasReception. In this way, we are able to represent all imaginable changes to
the environment as a sequence of processes.

As a means to detect plan failures, we assume the existence of an execution
monitor, which keeps track of both the execution of the actions in the plan and
the evolution of the environment. When unexpected changes in the environ-
ment are discovered, it identifies which parts of the plan, if any, can no longer
be executed as intended. This includes unexpected results of action execution,
properties required as preconditions of future actions that do not hold as ex-
pected, and so on. The monitor maps these findings on the plan data structure
and annotates the problematic parts as failure-affected. In our running exam-
ple, the relation HasReception is a property required to enable a future action,
namely the task PressSend. By the time James arrives at the room of the
next talk, HasReception becomes false, and the execution monitor can identify
the causal link establishing the precondition HasReception for PressSend as
failure-affected. This situation is depicted in Figure 7. The figure also makes
clear that the failure assessment is not limited to the actions immediately follow-
ing the failed plan fragment; the causal structure of the plan allows us to infer
and anticipate causal breakdowns for actions to be executed far in the future.
We can correctly detect that the future action PressSend cannot be executed
as intended, even if several actions (InputSubject, ChooseRecipient) lie in
between.

Compared to our plan generation process presented in Algorithm 1, there is
slightly more to the plan repair process, because it has to take into account that
some parts of the plan are already executed and are therefore non-retractable
planning decisions. Every executed plan element needs to occur in the repaired
plan as well: James cannot go back on what he has already done. Therefore,

19

231

the basic idea behind our plan repair approach is to (1) make sure that the
repaired plan coincides with the failed plan on the executed parts, (2) include
the exceptional environmental processes, and (3) control repair plan generation
such that the new plan resembles the unexecuted parts of the original plan as
well, if possible. Note that we have to include the executed parts of the original
solution in the repaired plan. This is because we want it to be a solution
to the original planning problem, which might include abstract tasks whose
implementations are only executed in parts when the failure is detected. Thus,
the solution must contain a valid decomposition of all abstract tasks included in
the planning problem, cf. criterion (1) of the solution definition in Section 2.4.
To make sure that executed parts of the original solution are contained unaltered
in the new solution, we derive a template from the executed parts of the original
solution and use it to control the generation of the repair plan. This template
is represented using so-called obligations: for every executed plan element (like
ChooseSendByMMS in our example), we introduce a corresponding obligation into
the plan template, requiring its existence in the repair plan, including ordering
and causal information. To satisfy obligations, corresponding plan elements
have to be assigned to them during repair.

4.1. Problems and Solutions

Next, we will formally define plan repair problems and their corresponding
solutions. For the repair problem definition πr = 〈Dr, P r

init〉, we first augment
the domain model D = 〈L, T, M〉 by adding the processes, resulting in Dr =
〈L, T, M, Pr〉, where Pr is a set of processes as follows: for every relation, we
introduce two processes that invert the truth value of the respective relation
from true to false and vice versa. Note that we do not simply add the processes
to the set of available tasks T, because the system cannot actively use them to
construct plans. The initial repair plan P r

init = 〈TEinit,≺init, VCinit, CLinit, Oinit〉
is constructed by extending the initial plan of the original planning problem
Pinit = 〈TEinit,≺init, VCinit, CLinit〉 with the obligations Oinit computed from
the failed solution plan Pfail by the execution monitor. The obligations in Oinit

have two sources. Firstly, Oinit contains an obligation for every executed plan
element (tasks, causal links, etc.) of Pfail. Secondly, execution failures have
to be represented. Execution failures are caused by unexpected changes in the
environment and may thus falsify the annotated condition of causal links. These
failure-affected causal links result in appropriate obligations for processes, i. e.,
let 〈la, ϕ, lb〉 be a failure-affected causal link, then Oinit contains the following
obligations o:

• oa requires the existence of the task expression tea = la : ta,

• oϕ requires the existence of a process pϕ with precondition ϕ and post-
condition ¬ϕ, encoding the environmental change,

• and finally oCL = 〈oa, ϕ, oϕ〉 requires the existence of a causal link between
tea and the process pϕ.

20

232

This definition is based on the assumption that all initial goals persist and that
the underlying domain model is still adequate and stable. This is the case
for our example, neither has anything changed that would make the domain
model itself invalid nor has James changed his mind about his goals. We can
thus state a plan repair problem that contains obligations up to and including
the task ChooseSendByMMS, plus obligations as defined above for the process
pHasReception.

An obligation-extended plan P r
sol = 〈TEsol,≺sol, VCsol, CLsol, Osol〉 is a so-

lution to a plan repair problem πr = 〈Dr, P r
init〉 if and only if the following

conditions hold:

• P r
sol fulfills the planning solution criteria of Section 2.4. This implies in

particular that P r
sol is an executable solution to the original problem, if

we regard the processes added via obligations as additional tasks.

• The obligations in P r
sol are satisfied. A set of obligations O is satisfied w.r.t.

a plan P r, if every obligation in O is assigned to a plan element in P r

such that the ordering is consistent. This ensures that the non-retractable
decisions of the failed plan are respected and that the anomaly of the
environment is considered.

• For all task expressions tea and teb, if O contains an obligation for teb and
tea ≺∗CL teb, then O also contains an obligation for tea. This property
ensures that no executed plan step can occur after an unexecuted one.

4.2. Algorithm

We need to integrate the repair mechanism into the general hybrid planning
framework of Section 3 so that it can solve plan repair problems. To achieve
that, we extend the flaw detection function fFlawDet and modification generation
function fModGen such that they detect and address unsatisfied obligations. This
enables the hybrid planning Algorithm 1 to treat obligations transparently, i. e.,
no modification to Algorithm 1 is necessary.

Our repair procedure presented in Algorithm 2 starts at the failed original
solution plan Pfail. This plan is extended with appropriate obligations as stated
in the repair problem definition (line 1). To obtain a new solution, we make use
of the previously explored plan space. This is in contrast to local search ap-
proaches that take the failed plan as-is and try to repair it by locally adding and
removing tasks compensating for the failure [27, 30]. We examine the sequence
of modifications ModSeq our planning system applied to obtain Pfail from the
initial plan Pinit. Plan elements are introduced by modifications, so we can
determine modifications related to failure-affected plan elements. This yields
a partition of ModSeq into two subsequences: ModSeqfail, the modifications re-
lated to failure-affected plan elements, and ModSeqgood = ModSeq\ModSeqfail
(line 2), the modifications unrelated to failure-affected plan elements. Note
that sometimes, the application of a modification depends on the prior appli-
cation of a modification related to failure-affected plan elements. While such

21

233

Algorithm 2: The repair algorithm for hybrid planning.

Input : Repair problem πr = 〈Dr, P r
init〉, the failed solution plan Pfail,

and the modification sequence ModSeq leading from Pinit to Pfail.
Output: A repaired plan or fail

1P r
fail ← addObligations(Pfail, π

r)
2ModSeqgood,ModSeqfail ← partition(ModSeq)

3P r
retr ← retract(P r

fail,ModSeq)
4P r

safe ← reapply(P r
retr,ModSeqgood)

5P r
current ← P r

safe

6repeat
7P r

new ← generatePlan(P r
current, π

r) // call Algorithm 1

8if P r
new 6= fail then

9return P r
new

10else
// retract last modification

11P r
current ← retractOne(P r

current,popLast(ModSeqgood))

12until popLast was applied to the empty sequence ModSeqgood
13return fail

modifications are not directly related to failure-affected plan elements, we in-
clude them in ModSeqfail. In our example, the modification that introduced the
causal link establishing the precondition HasReception for the task PressSend

is therefore included in ModSeqfail, while the modification that added the task
InputSubject to the plan is contained in ModSeqgood, because the execution of
InputSubject does not depend on having reception. We proceed by retracting
modifications in reverse order of application until we encounter P r

retr, the first
plan without failure-affected elements (line 3). In doing so, we have retracted
all modifications in ModSeqfail and possibly some in ModSeqgood. The retracted
modifications which are contained in ModSeqgood are reapplied in line 4, yielding
P r
safe without involving combinatorial search. Thus, reapply does not have to

reapply all modifications in ModSeqgood, but only those below P r
retr. Our basic

search procedure (Algorithm 1) is then started on P r
current, which is initially

P r
safe (line 5), and attempts to refine it into a solution (line 7). If a solution
P r
new is found, it is returned by the algorithm. If generatePlan returns fail,

the last modification is retracted from P r
current in line 11, because there might be

a solution for the new initial plan P r
current to which the retracted modification

was not applied. If there are no more modifications to retract (line 12), the
main loop terminates and the plan repair returns fail in line 11, stating that no
solution exists. Figure 8 visualizes the plan space traversed during this process.

Our algorithm preserves all modifications unaffected by the failure, thereby
producing a plan close to the original solution. To further improve the similarity
to the original solution, a least-discrepancy heuristic can be used to guide the
actual planning in line 7. These measures accomplish minimal invasiveness.

22

234

m7

...

m9
m10

m11

m8

m8

m11

P r
init

P r
retr

P r
safe

P r
fail P r

new

f FlawDet

f ModGen

flaws

appplan
modifications

f PlanSel

P r
current

Figure 8: The left hand side sketches the hybrid planning procedure (Algorithm 1). First, a
plan is selected from the fringe. For this plan, all flaws are detected, for which in turn all
possible modifications are generated. These modifications are applied and the resulting plans
are finally inserted into the search space depicted on the right side: It shows a visualization
of the plan space traversed during the plan repair process. Modifications mi are denoted as
arrows. Dashed arrows (m7, m9, m10) represent modifications related to failure-affected plan
elements, continuous arrows (m8, m11) are unaffected modifications. Unaffected modifications
are reapplied to obtain P r

safe. Triangles below a plan represent the plan space reachable from
that plan.

Init

EnterCameraMode

TakePicture

PressHomeButton

EnterAlbum

SelectPicture

EnterSendMenu

ChooseSendByMMS

pHasReception

PressHomeButton

EnterAlbum

SelectPicture

EnterSendMenu

PressEmailSetup

InputServerInfo InputCredentials

Confirm

ChooseSendByEmail

InputSubject ChooseRecipient

PressSend

Goal

Figure 9: The result of the repair process in our example: James is instructed to set up an
email account and send his picture via email using W-LAN. Nodes with a gray background
denote executed tasks. pHasReception is the inserted process, representing the anomaly of the
environment. Arrows denote ordering constraints. Obligations and causal links are omitted
for the sake of readability.

23

235

The assistance component of the cell phone tells James that the initially gen-
erated plan cannot be carried out due to fading reception. Instead, the assistant
proposes an alternative course of action: as the phone has W-LAN functional-
ity and there is a wireless network in range (the conference offers free W-LAN
access for participants), James is instructed to send his picture via email. Be-
cause he has never sent an email before from his new cell phone, he is also
guided through the process of setting up an email account on the device first.

The originally generated solution (cf. Figure 6) failed due to the fading re-
ception (cf. Figure 7). It is hence extended with obligations for the executed
parts including the task ChooseSendByMMS and the process pHasReception. The
algorithm then retracts the modifications that introduced failure-affected ele-
ments. Afterwards, the resulting plan is refined to a new solution by adding
tasks implementing an alternative method to send the picture. Figure 9 shows
the result of the repair process in our example. It is apparent that the new
solution is also a solution to the original planning problem, though it contains
the process pHasReception to reflect the anomaly of the environment. Plan repair
thus enables James to reach his goals despite the changing conditions.

4.3. Properties of the Algorithm

Because the main plan generation algorithm is called within the plan repair
procedure (line 7), the repair algorithm’s properties are basically inherited from
the plan generation algorithm (cf. Section 3.2). We will thus not discuss the
properties in detail but summarize them by the following statement:

Property 4 (Correctness, Completeness, and Termination). The properties
Correctness, Completeness and Termination of the repair algorithm are the same
as the corresponding properties of the planning algorithm as long as it terminates
eventually for each problem P r

current it is called with except for the root plan P r
init.

Property 3 states that the main planning procedure does not necessarily ter-
minate in the general case, neither in cases where there is a solution, nor in cases
where there is none. For our procedure, this is a problem because Algorithm 1
is called with another repair problem as soon as the previous run terminated.
Pragmatically, this problem can be avoided by simply forcing termination, for
instance by returning fail if no solution could be found within a predefined time
limit. Termination may not be forced for the root plan P r

init, as correctness and
completeness would be sacrificed.

5. Plan Explanation

This section addresses the challenge of communicating an automatically gen-
erated plan to the user. This is not restricted to the way in which a solution is
presented, e. g., graphically or via natural speech. More important and funda-
mental is the problem of getting the user to accept and understand a produced
solution. We want to provide as much information as is needed for the user
to trust the system and be convinced that the generated plan is appropriate

24

236

to solve the given problem. Our formalism offers the hierarchical and causal
structuring of planning problems and their solutions. In our opinion, this con-
stitutes a fundamental part when aiming to reflect how humans view and think
about plans, and as such is essential for conveying not only the generated plans
themselves but also making the reasoning behind them transparent. While this
might very well help a user to better grasp the problem and its structure, we
do not focus on the didactic effect of explanation, i. e., on learning to solve the
problem without technical assistance.

The issue of explaining plans that were produced by AI planning systems
has not yet been addressed by the planning community. In the following para-
graphs, we present our view of what some important aspects of plan explana-
tion might be, and point out how our formalism can be used to address them.
They encompass the problems of presenting plans, providing abstract views on
plans, giving detailed operating instructions to perform primitive tasks, answer-
ing queries about intermediate states, justifying plan elements, and reasoning
about alternative solutions.

Presenting Plans. After the planning phase is finished and a solution plan has
been generated, the found solution must be presented to the user. In general
there exist many ways of achieving this. We discuss the employment of the two
main modalities vision and speech.

Let us go back to the moment right after James has told the assistance appli-
cation that he wants to take a photo and send it to his colleague. The integrated
planner has worked out a solution and now needs to present it to James. Be-
cause he will need to operate the touch screen it cannot be used for graphical
output. Thus, the system uses the speaker of the phone to instruct James for
his task: “Touch the camera symbol at the bottom of the screen.”

Of the two modalities mentioned, the graphical option seems to be the more
powerful version in general. By presenting a plan as a directed graph of plan
steps that are connected by ordering constraints, it is possible to convey an
impression of the complete solution at once. Figure 6 depicts the first solution
of our example in such a way. By looking at a graphical presentation, one
is able to assess the extent of the plan and the temporal orderings as well as
possible concurrences of actions. But the expressiveness of imagery can also lead
to overburdening a user with information. Especially in everyday applications,
this is not a desired property.

Modalities that are less prone to the danger of providing too much infor-
mation at once are text and speech. Using them to communicate a linearized
version of a plan to the user results in something that resembles an ordinary
manual and enables the user to execute the generated plan one step at a time.
Depending on the situation, this might be the preferred mode of presentation.
Additionally, the environment might prohibit the usage of a certain modality
(e. g., vision when driving a car, audio in loud places).

The presentation of plans, which we consider as the most basic form of
plan explanation, is also the one that has been researched the most. A recent

25

237

Primitive View Abstract View

EnterCameraMode

TakePicture

PressHomeButton PressHomeButton

EnterAlbum

SelectPicture

ObtainPicture

DisplayPicture

Figure 10: Primitive plan steps are summarized by the abstract tasks they were decomposed
from. This results in an easier to understand representation.

publication of our group presents a working prototype system that uses a text-
to-speech server and an annotated domain model to verbally present and explain
plans that stem from our hybrid planning formalism [31]. A three-dimensional
presentation of hierarchical plans has been investigated by Kundu et al. [32].
Another interesting approach using an ontology to describe output modalities
and planning concepts to generate a visualization has been pursued by Lino
et al. [33].

Operating Instructions. We are claiming that our planning formalism is well-
suited to generate instructions for human users. However, the result of the
planning process is a partially ordered network of plan steps, and instructions
of the form InputCredentials(ACC2) are not easy to interpret. Additionally,
the primitive tasks in a plan do not necessarily correspond to the basic actions
in a one-to-one way. For example entering a subject for a message might re-
quire operating the virtual touch keyboard of the smart phone which in turn
is a non-trivial series of actions. Nevertheless, the planning model abstracts
from this fact and models this sequence of actions as the single primitive task
InputSubject.

Therefore, the provision of detailed instructions for tasks is an important
aspect. In order to enable non-expert users to execute the automatically gener-
ated plans, the system must be able to provide actual operating instructions. To
this end, Bidot et al. [31] developed an extension of the domain model syntax of
our planning formalism that enables the annotation of utterances for describing
tasks via natural speech. An example in our domain could be the linking of the
task InputSubject to the instruction “Use the virtual keyboard to enter a sub-
ject for the message into the box labeled Subject.”. This approach could also be
extended to cover multimodal communication by providing more sophisticated
markups.

Abstract Views on Plans. A plan can become rather large and conveying a
comprehensive view of it is difficult. It is thus reasonable to look for ways to

26

238

reduce the information contained in the presentation. One way of achieving this
can be the abstraction of parts of the plan.

James is a bit annoyed because the assistance application seems to think he
does not know how to take a picture. He feels very able to achieve this without
help, so he demands that he is given an overview of the upcoming instructions.
The screen switches to a graphical high-level presentation of the remaining plan.
James can extract that he is intended to take the picture, open it again by using
the album function and then transmit it by MMS. He decides to try the first two
steps on his own and tells the system to turn off the instructions for a moment.

The plans generated by our planning system possess an intrinsic hierarchical
structure; some plan steps have been inserted as a decomposition of an abstract
task. Thus, replacing the result of a decomposition by its corresponding abstract
task when presenting the plan is an obvious step. Figure 10 gives an example
for an abstract view on a fragment of the solution to our example problem.
The presented fragment deals with taking a picture and then displaying it in
order to open the menu for sending it. Focusing on the upper half of the
figure, the solution to taking a photo consists of two sub tasks: entering the
camera mode of the smart phone (EnterCameraMode) and then triggering the
camera (TakePicture). These two plan steps together constitute a method
to implement the abstract task ObtainPicture. By using abstractions, the
understandability of a hierarchical plan can be improved.

When reducing information in such a way, it is important to regulate the
degree of abstraction applied. In more complex settings, a solution will contain
deeper hierarchies of decomposition. It is an open question how a reasonable
level of abstraction can be automatically determined.

When presenting abstract views on plans in an assistance application like the
one in our example, information about the user should be exploited extensively.
For example, an expert user might be able to execute a common task without
further instructions. Thus, a task like this can be presented in an abstract way
for such a user while being presented on a primitive level for novices. By using
information about the level of complexity of tasks, a system can decide which
abstraction to choose depending on the involved task, taking into account the
general level of expertise of the user. When using a more fine-grained user
model that provides an estimate of the user’s abilities concerning particular
tasks, it becomes possible to provide a level of abstraction that varies for each
task depending on the confidence of the particular user with that task. This
would be an improvement over the use of mere user classes like expert or novice.

We can summarize that the adaptation of the level of abstraction is an
important tool when communicating plans, but the exact details of an ergonomic
and intuitive regulation remain subject to further research.

Queries About Intermediate States. It is very important to have information
about the state of the domain while executing a plan. Especially when applying
planning technology to real world domains, focusing only on reaching the goal

27

239

is questionable. The execution of a plan may have undesirable side-effects and
it is important that those can be inspected.

Using the camera on his new phone has proven to be much easier than James
had expected. The manufacturer seems to be on the right track concerning us-
ability. However, the last step of sending the picture as an MMS remains to be
undertaken. And both because he is of a very cautious nature (some people might
call him paranoid) and because he wants to test the boundaries of the assistance
application he asks whether the picture will still be available on the phone after
having been transmitted by MMS.

In the case of totally ordered operator-based planning, obtaining the state of
the domain during or after the execution of a plan can be achieved in a canonical
way. Applying the plan steps one after another to the initial state, one obtains
the states during the plan execution. But since we are dealing with partially
ordered plans, we cannot completely determine the exact way in which the
plan will be executed unless it is linearized before execution. For our example
application, having the solution linearized by the system is a valid option and
by doing so we can take advantage of the easier access to intermediate states.
But in general, a plan produced by a hybrid planning system retains its partially
ordered nature. And thus when asking questions about an intermediate or a
final state of such a plan, we have to consider every linearization. This can be n!
linearizations for a plan consisting of n plan steps and no ordering constraints
between them.

Dean and Boddy [34] have shown that the computational complexity of rea-
soning about states for a constellation of partially ordered events can range from
polynomial time to NP-hardness; but their partially ordered events are merely
conditionally executable. In contrast, all plan steps that exist in a solution
to a hybrid planning problem will have their preconditions satisfied, and thus
will be executable unconditionally. Therefore, we expect that the reasoning task
about final and intermediate states during the execution of solutions of partially
ordered plans is feasible.

The fact that we are dealing with partially ordered plans is also reflected
in questions and their answers. A question like “Does property X hold after
performing task T?” translates into “Does property X hold after performing
task T in every linearization?”. Accordingly, answers to questions about the
state of partially ordered plans reflect this as well. The response “Sometimes.”
might occur very often if the question is not specific enough.

Justifying Plan Elements. Another category of questions that can be addressed
are those that aim at the justification of certain plan elements. A user may
be puzzled when confronted with a solution to a complex problem and may be
inclined to ask why a certain plan step is necessary.

Before James was ready to hit the final send button the reception waned
and the assistance application suggested a fixed solution to his problem. Since
the system created the impression of a mature and well-thought-out piece of
software, James simply followed the instructions guiding him along the way of

28

240

sending the picture by using the available W-LAN. At the point where he is
instructed to enter the user name and password of his email account, doubts
begin to emerge again and he asks why this action is a necessary step.

Before providing an answer to such a question we have to think about what
can be considered a justification. The only commitment by the user is the
stipulation of the initial planning problem. We assume that this problem cor-
rectly reflects the goals that the user wants to achieve. Thus, every justification
ultimately has to root there.

Taking our example, the system could respond to James’ question with the
immediate reason “Entering a user name and password is necessary for setting
up an email account.”. But the user might not be satisfied with this answer and
think “Why do I have to set up an email account? I just want to send a picture
to my colleague.”. To close the chain of justification, the system might have
better answered “Entering a user name and password is necessary for setting up
an email account, which in turn is needed to send the picture by email to your
colleague.”.

The refinement-based hybrid planning formalism provides us exactly with
this chain of justification. Every deviation away from the initial task network
is conducted by a modification that addresses a particular flaw, and therefore
can be justified by the necessity of resolving that flaw. For example, a plan step
consisting of the task InputCredentials may have been introduced to address
a flaw of type FAbstractTask that was associated with a plan step SetUpEmail-

Account. So by keeping the modification sequence that led to a solution, we can
extract from it the chains of justifications that explain the necessity of certain
plan elements.

To further improve on these justification chains, the system might skip cer-
tain elements inside the chain if it can be assumed that the user is able to fill
the gap by using his or her own reasoning capabilities. It is also imaginable
that the user model is keeping track of given explanations and this information
can be used to determine which parts of a justification chain can be simplified
or skipped completely. For example, if the user was already given the reason
of the existence of the plan step SetUpEmailAccount, the chain of justification
of the plan step InputCredentials can end there, assuming that the user has
accepted the necessity of SetUpEmailAccount.

Reasoning about Alternative Solutions. The last paragraph has dealt with jus-
tifying the existence of plan components that constitute a found solution. This
means we can substantiate the contribution of a certain element of the plan to
solving the problem. This does not mean that this element must be present in
every possible solution.

James does now understand that he has to set up his email account in order
to send the picture by email. But he is not very willing to do so because he’s
slow with the touch keyboard. To make matters worse, the next talk has already
begun and he doesn’t want to spend any time on unnecessary things. Therefore,

29

241

he queries the assistance component for an alternative way to get his problem
solved.

During the plan generation process, the system makes decisions about how
to resolve certain flaws that are present at an intermediate planning step. These
decisions have to be supported by a user that is supposed to execute the resulting
plan. A reasonable question is thus one about the reasons behind those decisions.

The hybrid planning formalism we are promoting can potentially lead to
an infinite number of solutions. Depending on the domain model, there might
exist a task that can be inserted arbitrarily many times without breaking the
solution. For our example this might be using the home button, which resets the
device to a defined state. The problem the planning system faces is to find and
pick one or more of these plans for presentation to the user. If the plan space is
finite and can be completely explored by the search process, answering questions
about the existence of alternative solutions is trivial, giving either a positive or
negative answer. Asking for a justification of why a particular solution has been
preferred by the system might be more difficult and is depending on the exact
way user preferences are handled. It then boils down to justifying the choice of
the preference system. In the case of infinitely many solutions or a search space
that cannot be completely explored because of its size, the issue becomes more
and more problematic. Absolute answers are not obtainable and the system
must decide how and where to spend additional computational power in order
to answer questions to the best extent possible.

Of all presented aspects of the explanation of plans, the question about
alternatives is the most complicated one. This is simply because it has to deal
with the largest space that contributes to the answers, the complete search
space. Justifying plan elements, as we are interpreting it, has to deal only with
one given path through the search space – the one going from the initial problem
to the solution plan. Questions about plan state are concerned only with the
solution plan itself and instructions for actions only address one single plan step
and maybe its parameters.

6. Conclusion

We have shown that our approach of hybrid planning enables the realization
of complex cognitive capabilities of technical systems.

Automated reasoning techniques including the generation, repair, and expla-
nation of plans can serve as core components of systems that provide advanced
user assistance. In our example, such a system supports a user while he operates
a mobile communication device.

User instructions are provided based on plans of action that are synthesized
by the hybrid planning system. If the execution of a certain action fails due to
some unexpected change of the environment, for example, the system is able
to help the user out of that situation by initiating a plan repair process. The
resulting plan overcomes the failure situation and is stable by exhibiting only
those deviations from the original plan that are indispensable. Finally, plan

30

242

explanation can be provided based on an analysis of the knowledge-rich plan
structures generated by the planner as well as of the planning process itself.

Future work is devoted to developing such an explanation generator and
provide it as an additional reasoning component to the envisaged assistance
system. Furthermore, the question of how the system actually becomes aware of
a user’s intentions will be addressed. Besides the option to consult an underlying
user model and compute the most likely next goal based on deposited typical
user plans and the observed operation history, like it is done in plan recognition,
also a speech dialogue with the user may be initiated. While in our setting,
assistance is provided only in case of need when operating the device, additional
modes like those where the user can explicitly ask for support or the system
acts as a tutor, i. e., a proactive electronic instruction manual, would be useful
enhancements of the portfolio of assistance functionalities.

Plan-based assistance is however not restricted to the support of users set-
ting up or operating technical devices. There is a broad spectrum of prospective
applications including personal organizers to support (elderly) people in their
everyday decision making and medical assistance systems that accompany pa-
tients in rehabilitation processes, for example. For these kinds of applications,
two additional features of our hybrid planning approach are essential and will
have to be exploited: the generation of individualized user plans and the gener-
ation of (partially) abstract solutions to a given planning problem.

Acknowledgement

This work was partly accomplished within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical
Systems”, funded by the German Research Foundation (DFG).

References

[1] D. S. Nau, M. Ghallab, P. Traverso, Automated Planning: Theory & Prac-
tice, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[2] R. E. Fikes, N. J. Nilsson, STRIPS: a new approach to the application of
theorem proving to problem solving, Artificial Intelligence 2 (1971) 189–
208.

[3] A. L. Blum, M. L. Furst, Fast planning through planning graph analysis,
Artificial Intelligence 90 (1-2) (1997) 281–300.

[4] D. McDermott, The 1998 AI planning systems competition, AI Magazine
21 (2) (2000) 35–55.

[5] B. Bonet, H. Geffner, Planning as heuristic search, Artificial Intelligence
129 (2001) 5–33.

31

243

[6] J. Hoffmann, B. Nebel, The FF planning system: Fast plan generation
through heuristic search, Journal of Artificial Intelligence Research 14
(2001) 253–302.

[7] M. Helmert, The fast downward planning system, Journal of Artificial In-
telligence Research 26 (2006) 191–246.

[8] D. McAllester, D. Rosenblitt, Systematic nonlinear planning, in: Proceed-
ings of the Ninth National Conference on Artificial Intelligence, 1991, pp.
634–639.

[9] J. S. Penberthy, D. S. Weld, UCPOP: A sound, complete, partial order
planner for ADL, in: Proceedings of the third International Conference on
Knowledge Representation and Reasoning, 1992, pp. 103–114.

[10] K. Erol, J. Hendler, D. S. Nau, UMCP: A sound and complete procedure
for hierarchical task-network planning, in: Proceedings of the 2nd Interna-
tional Conference on Artificial Intelligence Planning Systems (AIPS 1994),
1994, pp. 249–254.

[11] Q. Yang, Intelligent Planning. A Decomposition and Abstraction Based
Approach, Springer, 1998.

[12] S. Kambhampati, A. Mali, B. Srivastava, Hybrid planning for partially hi-
erarchical domains, in: Proceedings of the 15th National Conference on Ar-
tificial Intelligence, American Association for Artificial Intelligence (AAAI
Press), 1998, pp. 882–888.

[13] L. A. Castillo, J. Fernández-Olivares, A. González, A hybrid
hierarchical/operator-based planning approach for the design of control
programs, in: ECAI Workshop on Planning and Configuration: New re-
sults in planning, scheduling and design, 2000, pp. 1–10.

[14] S. Biundo, B. Schattenberg, From abstract crisis to concrete relief (a pre-
liminary report on combining state abstraction and HTN planning), in:
Proceedings of the 6th European Conference on Planning (ECP 2001),
Springer-Verlag, 2001, pp. 157–168.

[15] B. Schattenberg, Hybrid planning & scheduling, Ph.D. thesis, Ulm Univer-
sity, Germany (2009).

[16] S. Andrews, B. Kettler, K. Erol, J. A. Hendler, UM Translog: A planning
domain for the development and benchmarking of planning systems, Tech.
Rep. CS-TR-3487, University of Maryland (1995).

[17] T. A. Estlin, S. A. Chien, X. Wang, An argument for a hybrid
HTN/operator-based approach to planning, in: Proceedings of the 4th Eu-
ropean Conference on Planning: Recent Advances in AI Planning, 1997,
pp. 182–194.

32

244

[18] L. A. Castillo, J. Fernández-Olivares, A. González, On the adequacy of hi-
erarchical planning characteristics for real-world problem solving, in: Pro-
ceedings of VI European Conference of Planning, 2001.

[19] S. Kambhampati, Refinement planning as a unifying framework for plan
synthesis, AI Magazine 18 (2) (1997) 67–98.

[20] B. Schattenberg, J. Bidot, S. Biundo, On the construction and evaluation
of flexible plan-refinement strategies, in: J. Hertzberg, M. Beetz, R. Englert
(Eds.), Advances in Artificial Intelligence, Proceedings of the 30th German
Conference on Artificial Intelligence (KI 2007), Vol. 4667 of Lecture Notes
in Artificial Intelligence, Springer-Verlag, 2007, pp. 367–381.

[21] B. Schattenberg, S. Balzer, S. Biundo, Knowledge-based middleware as
an architecture for planning and scheduling systems, in: D. Long, S. F.
Smith, D. Borrajo, L. McCluskey (Eds.), Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2006),
American Association for Artificial Intelligence (AAAI Press), Ambleside,
The English Lake District, UK, 2006, pp. 422–425.

[22] B. Schattenberg, A. Weigl, S. Biundo, Hybrid planning using flexible strate-
gies, in: U. Furbach (Ed.), Advances in Artificial Intelligence, Proceedings
of the 28th German Conference on Artificial Intelligence (KI 2005), Vol.
3698, Springer-Verlag, 2005, pp. 249–263.

[23] K. Erol, J. Hendler, D. S. Nau, HTN planning: Complexity and expres-
sivity, in: Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI 1994), 1994, pp. 1123–1128.

[24] S. Kambhampati, Admissible pruning strategies based on plan minimality
for plan-space planning, in: Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI 1995), 1995, pp. 1627–1633.

[25] D. E. Smith, M. A. Peot, Suspending recursion in causal-link planning,
in: Proceedings of the 3rd International Conference on Artificial Intelli-
gence Planning Systems (AIPS 1996), American Association for Artificial
Intelligence (AAAI Press), 1996, pp. 182–190.

[26] B. Nebel, J. Köhler, Plan reuse versus plan generation: a theoretical and
empirical analysis, Artificial Intelligence 76 (1-2) (1995) 427–454.

[27] M. Fox, A. Gerevini, D. Long, I. Serina, Plan stability: Replanning versus
plan repair, in: Proceedings of the Sixteenth International Conference on
Automated Planning and Scheduling (ICAPS 2006), American Association
for Artificial Intelligence (AAAI Press), 2006, pp. 212–221.

[28] I. Warfield, C. Hogg, S. Lee-Urban, H. Muñoz-Avila, Adaptation of hier-
archical task network plans, in: Proceedings of the Twentieth Flairs Inter-
national Conference (FLAIRS 2007), American Association for Artificial
Intelligence (AAAI Press), 2007, pp. 429–434.

33

245

[29] J. Bidot, B. Schattenberg, S. Biundo, Plan repair in hybrid planning, in:
A. Dengel, K. Berns, T. Breuel, F. Bomarius, T. R. Roth-Berghofer (Eds.),
Advances in Artificial Intelligence, Proceedings of the 31st German Con-
ference on Artificial Intelligence (KI 2008), Vol. 5243 of Lecture Notes in
Artificial Intelligence, Springer-Verlag, 2008, pp. 169–176.

[30] A. Gerevini, A. Saetti, I. Serina, Planning through stochastic local search
and temporal action graphs in LPG, Journal of Artificial Intelligence Re-
search 20 (1) (2003) 239–290.

[31] J. Bidot, S. Biundo, T. Heinroth, W. Minker, F. Nothdurft, B. Schatten-
berg, Verbal plan explanations for hybrid planning, in: 24th MKWI re-
lated PuK-Workshop: Planung/Scheduling und Konfigurieren/Entwerfen,
2010, pp. 455–456, full article available at http://webdoc.sub.gwdg.

de/univerlag/2010/mkwi/03_anwendungen/planen_scheduling/06_

verbal_plan_explanations_for_hybrid_plannings.pdf.

[32] K. Kundu, C. Sessions, M. des Jardins, P. Rheingans, Three-dimensional
visualization of hierarchical task network plans, in: Proceedings of the 3rd
International NASA Workshop on Planning and Scheduling for Space, 2002.

[33] N. Q. Lino, A. Tate, Y.-H. J. Chen-Burger, Semantic support for visual-
isation in collaborative AI planning, in: The International Conference on
Automated Planning and Scheduling (ICAPS 2005), workshop on The Role
of Ontologies in AI Planning and Scheduling, Montery, California, USA,
2005, pp. 37–43.

[34] T. Dean, M. Boddy, Reasoning about partially ordered events, Artificial
Intelligence 36 (3) (1988) 375–399.

34

246

	Introduction
	Theoretical Foundations
	STRIPS Planning Problems
	POP and POCL Planning Problems
	HTN and TIHTN Planning Problems
	Hybrid Planning Problems

	Search and Heuristics
	Search Algorithm
	Heuristics for POP and POCL Planning Problems
	Heuristics for HTN and Hybrid Planning Problems

	Practical Application
	Companion Technology
	User Assistance Based on AI Planning

	Conclusion
	References
	Core Contributions
	Related Work

	Core Contributions in Full Length
	Theoretical Foundations
	Search and Heuristics
	Practical Application

