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1 Introduction 
 
The rate of femoral neck fractures, a common injury in the elderly, increases constantly 
(Cooper et al. 1992; Cummings et al. 1990; Johnell & Kanis 2004). Therefore, two ways 
of addressing have been established, consisting of the use of the 3CS (3 Cannulated 
Screws) on the one and the DHS (Dynamic Hip Screw) systems (blade and screw) on the 
other hand. (Gjertsen et al. 2010; Gurusamy et al.2005; Husby et al. 1989; Ly & 
Swiontkowski 2008). The most challenging aspects in managing femoral neck fractures 
result from achieving satisfying reduction on the one and facing poor bone quality in 
osteoporotic bone on the other hand (Chua et al. 1998; Duckworth et al. 2011; Husby et 
al. 1989; Rehnberg & Olerud 1989; Smith et al. 1992; Swiontkowski 1994; Thein et al. 
2014). While the old styled 3CS technique works as a minimally invasive procedure, the 
use of the DHS systems affords open surgery. The role of an ideal minimal invasive 
implant would assure the required stability of fixation providing compression force to 
the fracture site and preventing rotation of the femoral head as well, found in both, the 
3CS and the DHS systems. Furthermore, such a system would introduce the opportunity 
of working minimally invasive found in the 3CS method. 
Whereas the DHS Blade has been established as a European gold standard for the 
treatment of femoral neck fractures concerning cases of osteoporotic bones in special, 
the conventional DHS Screw with antirotation screw continues to be an international 
gold standard for the purpose of comparison (Bhandari et al. 2009; Müller et al. 1991, 
Russell & Crenshaw 1992). The conventional fixation with the 3CS can be used for 
treatment of femoral neck fractures type AO (Arbeitsgemeinschaft Osteosynthesefragen) 
31-B (Ruedi & Murphy 2001). The new minimal invasive implant FNS (Femoral Neck 
System) was developed for the treatment of the mentioned types of femoral neck 
fractures and was thought to become a replacement for the aged 3CS. 
The aim of this project was to evaluate the biomechanical performance of the newly 
designed FNS under cyclic loading in comparison to the existing clinical implant 
solutions on the market, DHS Blade, DHS Screw and the 3CS. There for, an elderly 
human cadaveric model was set up. In its course a 70°Pauwels III/AO 31–B2.3 fracture 
was performed in 21 human cadaveric frozen femora after augmentation through one of 
the 4 mentioned implants. Additional 30° distal and 15° posterior wedges were applied 
to the fracture, to create the worst case scenario as far as terms of stability are concerned. 
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invasiveness, furthermore, the implants diverging geometry promises to end up in a 
reduced risk of being exposed to pull out and rotational dislocating forces as well. By 
offering the features mentioned above, the implant could be introduced as a qualitative 
fully and improved replacement for the 3 CS, used for many years. 
 
It was hypothesized, that there would be a significant difference between FNS and the 
3CS regarding the most important outcome parameters of interest such as 1) initial 
construct stiffness, 2) cycles to failure and 3) load to failure. 
The biomechanical validation of the hypothesis would confirm FNS being a stable 
solution for fixing AO type 31-B fractures in the proximal femur. As a consequence, the 
system would be a suitable alternative for the treatment of femoral neck fractures, 
providing the advantages found in both, the DHS systems and the 3CS as well. 
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2 Materials & Methods 
 
2.1 Specimens 
The specimens were ordered and obtained from Science Care, an US-American 
Association dealing with human tissue. The company fulfills the guidelines set by the 
American Association of Tissue Banks and stands as an approved and authorized 
institution. Furthermore, the study was performed in compliance with the local ethical 
regulations of the AO Research Institute.  
Twenty-one pairs of fresh frozen (–20°C) human cadaveric femora from donors aged 
between 60 and 75 years were used in this project. The specimens were thawed at room 
temperature for 24 hours and separated from surrounding tissue afterwards as well. 

 
The following excluding criteria were chosen to obtain a homogeneous distribution 
regarding donor's morphology, to achieve comparable initial conditions for every single 
specimen.  

1) Severe osteoporosis. The assessment was based on literature data and BMD, 
surveyed with HR pQCT. 

2) Grade 3 and 4 arthrosis, surveyed with conventional X-ray. 
3) CCD angle smaller than 125° and bigger than 135°, surveyed with 

conventional X-ray. 
4) Previous hip fracture treated conservative or post hardware removal after 

ORIF, surveyed with conventional X-ray. 
5) Cancer, surveyed by patient history. 
 

Record of the femoral Head Diameter (mm.) (Fig.8a), CCD Angle (deg.) (Fig.8b) and 
Lever Arm (mm) (Fig.1c) was performed for all specimens and BMD was defined using 
HR pQCT as follows. First, each specimen was scanned along the shaft axis with 
XtremeCT (SCANCO Medical AG, Brüttisellen, Switzerland). The X-ray tube was set 
at 60 kVp with an effective energy of 40 keV, 900 µA, nominal isotropic resolution of 
82 µm and integration time 200 ms. Next, the scans were downscaled after 
reconstruction to a resolution of 123 µm and rotated in space to achieve the new scan 
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axis along the femoral neck axis. Finally, the slice with the largest diameter of the  
femoral head was determined and further 80 proximal slices from this slice onwards 
were selected for evaluation. BMD of the selected bone volume was calculated after 
contouring the bone area in each of the 80 slices. 

 
2.2 Implants 
The following implant systems were used: 
 

1) Two–hole 130° DHS with short threaded Ø 6.5 mm Cancellous Bone Screw and 
two Ø 4.5 mm cortical distal screws, 10 sets, Stainless Steel 

 
2) Two–hole 130° DHS Blade and two Ø 4.5 mm cortical distal screw, 10 sets, 

TAN 
 

3) One–hole FNS with one Ø 5.0 mm locking–head distal screw, 11 sets, TAN 
 
4) Three Ø 7.3 mm Cannulated Screws, short threaded, 11 sets, TAN 
 
All mentioned implants are crafted by Manufacturer DePuySynthes. 
 

2.3 Study groups 
The specimens were randomized in the following four groups based on their BMD: 

Group 1: DHS Screw 
Group 2:  DHS Blade 
Group 3: FNS 
Group 4:  3CS 

Accordingly the randomization was performed pair wise, either groups 1 and 2, or 
groups 3 and 4.  
The group code was consistent with the respective implant type used for 
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instrumentation. One pair - F09-2060L/R (Group DHS Blade) - had to be excluded from 
the mechanical testing due to failure during instrumentation which led to a total amount 
of 21 specimen pairs that were assessed.  
Each of the groups 1 and 2 consisted of nine paired specimens for the main series plus 
one paired pilot (n = 9+1), whereas each of the groups 3 and 4 included 10 paired 
specimens for the main series plus 1 paired pilot (n = 10+1), deciding that a 33% lower 
performance of group 3CS compared to FNS in view of cycles at failure occurrence 
would be enough for achieving statistically significance. Presuming that group 3CS 
would reach a mean of 5’000 cycles and FNS a mean of 7’500 cycles, both featuring a 
standard deviation of 2’000 cycles, a number of 10 samples was claimed to be sufficient 
to detect significant differences between the groups at a level of significance α = 0.05, 
with a statistical power of 97.7%.  

Table 1: Group assignment, pair number and name of each specimen. DHS=Dynamic Hip Screw, 3CS=3 Cannulated Screws, 
FNS=Fermoral Neck System. 
pair DHS Screw DHS Blade 
8 M13-1009R (pilot) M13-1009L (pilot) 
11 F12-1104R F12-1104L 
18 M13-1307L M13-1307R 
4 F10-1092R F10-1092L 
1 F09-2061R F09-2061L 
3 F10-1041R F10-1041L 
14 M13-1303L M13-1303R 
10 F11-4004L F11-4004R 
21 F13-1310R F13-1310L 
20 M13-1309L M13-1309R 
 FNS 3CS 
5 F10-1094L (pilot) F10-1094R (pilot) 
19 F13-1308L F13-1308R 
6 F13-8004_FemR F13-8004_FemL 
17 M13-1306R M13-1306L 
12 F13-1301L F13-1301R 
7 M10-1091L M10-1091R 
15 F13-1304R F13-1304L 
13 M13-1302R M13-1302L 
2 F09-2062L F09-2062R 
16 F13-1305R F13-1305L 
9 M09-2056L M09-2056R 

 



 

11  

2.4 Specimen preparation 
First, the specimens were instrumented according to the manufacturer's guidelines. The 
DHS Screw and FNS were instrumented 10% inferiorly (4.8±0.4 mm, mean±SD) than 
the center–center position in the coronar plane and in center–center position in the 
sagittal plane, referring to the position of the implant in correspondence to the femoral 
neck. DHS Blade was instrumented with center–center positioning in both, coronar and 
sagittal plane as well. Deviations from a central implant positioning in sagittal plane 
were measured using digital image processing software (AxioVision, V4.6, Carl Zeiss 
AG, Göttingen, Germany). Thereby, the shortest distance from the femoral head centre 
to the implant axis was registered in two different manners to create two outcomes 
named “Implant Axis Off Center Relative” (mm) and “Implant Axis Off Center 
Absolute” (mm) (Fig.8f). In case of the former mentioned, investigation contained, 
whether the implant was brought in anteriorly or posteriorly compared to its referring 
center. This is indicated by positive (anterior position) and negative (posterior position) 
values. In case of the latter mentioned, positive values are recognizable only, 
representing the undefined distance to the referring center. The described outcomes were 
evaluated for the groups DHS Screw, DHS Blade and FNS only. The FNS locking screw 
and the antirotation screw were tightened with force of 4 Nm. The 3CS were inserted 
parallel to each other into the femoral head according to the AO technique. By 
performing so, exceeding of the threads as far as the fracture line is concerned, was 
ensured. Washers were additionally used in any of the 3CS to raise intraosseous 
deadlock. The intraosseous construct length “x” was measured and defined as “Implant 
Length” (mm) (Fig.8d), according to the distance between the implant insertion point at 
the lateral cortex side of the trochanteric region and the implant tip. In the group 3CS, 
the averaged construct length of all three screws was taken as an arithmetically averaged 
Implant Length. The combined implant distance to subchondral bone on the AP and the 
lateral view at the medial aspect of the femoral head was performed less than 20 mm and 
registered as “Tip-Apex Distance” (mm) (Fig.8e). A custom c-shaped measuring tool 
was used to define the length between the implant insertion point at the lateral cortex 
side and the possible exit point of the implant at the femoral head tip. The Tip-Apex 
Distance was evaluated by subtracting the Implant Length from the measured distance 
between the lateral cortex and the tip of the femoral head. In case of group 3CS the Tip-
Apex Distance was based on the arithmetically averaged Implant Length of all three 
screws. 
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Fig.9: Proximal femur with a special custom made device to set consistent osteotomies. Shown are the device in situ (left) and the 
osteotomies set by using the device (right). With kind permission of the AO Research Institute Davos. 
 
Finally, all femora were cut to a total specimen length of 400 mm each and embedded in 
PMMA prior to biomechanical testing angled in 16° adduction. Retro–reflective marker 
sets were attached to the shaft and the femoral head fragment to enable optical motion 
tracking as shown in Fig.10. Two collinear markers were additionally attached to each 
implant to determine the orientation of the implant axis. In the case of 3CS the markers 
were attached to the most caudal screw. 
 



 

 

Fig.10: Test setup. Left: free body diagram
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2.5 Biomechanical testing 
Biomechanical testing was performed on a servo hydraulic test system (Bionix 858; 
MTS Systems, Eden Prairie, MN) with a 4 kN load cell at room temperature (20°C) in a 
dry environment. 
The biomechanical test setup and the loading protocol were adopted from previous 
performed studies (Bergmann et al. 2001; Bonnaire et al. 2007; Windolf et al. 2009) 
(Fig. 10). 
All specimens were tested in 16° adduction (Bergmann et al. 2001). The femoral head 
was axially loaded in compression along the machine axis. A PMMA shell cup, attached 
to the machine actuator via a linear horizontal guide, was used for this purpose. A 
special custom made foil from electro– conducting material was implanted at the distal 
surface part of the cup to achieve immediate detection of the cut–out and interruption 
during the mechanical tests. The feasibility of appropriate X–ray images at region of 
interest was provided by the semi–transparency cup. 

 
Fig.11: X-ray of implanted femur with electro-conductive semi-transparent metal cup shown on a DHS Screw implant. With kind 
permission of the AO Research Institute Davos. DHS=Dynamic Hip Screw. 
 
The cranial contact area was defined in terms of the physiological joint situation to the 
acetabulum. The distal specimen end was attached to the machine floor-frame via a 
cardan joint. By installation of a lateral bracing enclosing the whole cranio-caudal 
distance of the specimen, the abductive forces of the iliotibial ligament were simulated 
(Windolf et al. 2009). Finally, the zero point for vertical displacement was set at 50 N 
compression. 
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The biomechanical test of each specimen was performed according to the following 
loading protocol: 
 

1) Initial quasi–static loading in a linear protocol of increasing axial compression of 
50–200 N at a rate of 15 N/s. 

2) Cyclic compression loading at a rate of 2 Hz and 0.1N/cycle.  
 
An increasing cyclic ramp loading (Windolf et al. 2009) with a physiological profile of 
each cycle (Bergmann et al. 2001) was performed. Every cycle started at a valley load of 
200 N heading to a constantly increased maximum load, until failure of the bone–
implant construct occured. The initial maximum load was set to 500 N. The model of an 
increasing load ramp used to achieve implant failure within a predefined number of 
cycles has been found useful in studies performed before (Gueorguiev et al. 2011; 
Windolf et al. 2009). The test protocol was tuned with pilot tests and adjusted if 
necessary, the aim of the tuning was to achieve failure of the bone–implant construct 
between 10’000 and 30'000 cycles. 
The following test stop criteria were defined: 
 

1) Detection of cut-out with foil in PMMA shell cup. 
2) 30 mm axial displacement of the machine actuator. 
3) 4’000 N axial compression load. 
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2.6 Data acquisition and evaluation 
Radiographic images were taken at the beginning (50 N) and the end (200 N) of the 
quasi–static test, as well as every 250 cycles during the cyclic test at valley load of 200 N 
using a triggered C–arm. Machine data in terms of time (s), axial displacement (mm) and 
axial load (N) were acquired from the machine actuator and the load cell. Based on these,  

• “Axial Stiffness” (N/mm), (Fig.12) was calculated from the slope of the axial load– 
displacement curve in the third loading cycle between 300 N and 400 N axial 
compression and considered as an outcome.  

  Fig.12: Axial Stiffness (N/mm, red arrow), shown here on an FNS implant, defined as the force needed per mm of axial 
displacement of the implant bone construction. With kind permission of the AO Research Institute Davos. FNS=Femoral 
Neck System, mm=millimeter, N=Newton. 

 
Radiographic images were used to especially focus on the behaviour of the distal screws, 
the plate (of the DHS and FNS implants) and the lateral cortex in proximity to the 
mentioned screws and the particular plate. The following outcomes were calculated: 

• “Deformation Plate to Screw after 10’000 cycles” (deg.) (Fig.13), defined as the 
angular offset of the distal screw relative to the plate after 10’000 cycles at 
valley load of 200 N relative to the angle between the distal screw and the plate 
at the end of the initial quasi-static test. 

   Fig.13: Deformation Plate to Screw (deg., red lines and arrows), shown here on an FNS implant, indicating the deformation 
of the plate compared to the fixation screw. With kind permission of the AO Research Institute Davos. Deg.=Degree, 
FNS=Femoral Neck System. 
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•  “Leg Shortening” (mm), defined as movement of the head centre along the shaft 
axis (Fig.16). 

   Fig.16: Leg Shortening (mm, red lines, arrows and circles), shown here on an FNS implant indicating the shortening of the 
specimen under axial load. With kind permission of the AO Research Institute Davos. FNS=Femoral Neck System, 
mm=Millimeter. 

• “Neck Shortening” (mm), defined as displacement of the osteotomy aspect point 
along the neck axis. This specific point was located in the middle of the line 
connecting the most superior and most inferior osteotomy points (Fig.17). 

   Fig.17: Neck Shortening (mm, red lines, circles and arrow), shown here on an FNS implant, indicating the shortening of the 
specimens neck under axial load. With kind permission of the AO Research Institute Davos. FNS=Femoral Neck System, 
mm=millimeter. 

•  “Implant Tip Migration parallel to Implant Axis” (mm), defined as movement of 
the femoral head aspect point, initially located at the implant tip, along the 
implant axis (Fig.18). 

   Fig.18: Implant Tip Migration parallel to Implant Axis (mm, red arrow and circle), shown here on an FNS implant, indicating 
the movement of the femoral head along the axis of the implant. With kind permission of the AO Research Institute Davos. 
FNS=Femoral Neck System, mm=millimeters. 
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•  “Implant Tip Migration perpendicular to Implant Axis” (mm), defined as the 
vector, representing the transverse movement of the femoral head aspect point, 
initially located at the implant tip (same as above), in the coronal plane perpendicular to 
the implant axis (Fig.19). 

   
Fig.19: Implant Tip Migration perpendicular to Implant Axis (mm, red arrow and circle), shown here on an FNS implant, 
indicating the dislocation of the implant tip in the coronal plane perpendicular to the implant axis. With kind permission of 
the AO Research Institute Davos. FNS=Femoral Neck System, mm=millimeter. 

• “Total Implant Tip Migration” (mm), defined as the vector, representing the 
three-dimensional movement of the femoral head aspect point, which was 
initially located at the implant tip (Fig.20). 

   Fig.20: Total Implant Tip Migration (mm, red arrow and circle), shown here on an FNS implant, indicating the movement of 
the point in the femoral head, that was located at the implant tip initially. With kind permission of the AO Research Institute 
Davos. FNS=Femoral Neck System, mm=millimeter. 

• “Varus Deformation” (deg.), defined as rotation of the femoral head in the 
coronal plane around the sagittal z-axis (Fig.21). 

   Fig.21: Varus Deformation (deg., red lines, arrows and circle), shown here on an FNS implant, indicating the rotation of the 
femoral head at the fracture site in the coronal plane. With kind permission of the AO Research Institute Davos. 
FNS=Femoral Neck System, mm=millimeter, x/y/z=axes of the room. 
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The summative values of all variables represent the relative interfragmentary 
movements, excluding the variable “Rotation around Implant Axis”. The mentioned 
values were calculated after 2000 cycles and 5000 cycles at valley load of 200 N, 
considering the respective level of specimen's settling at the initial reference time point 
after 3 to 5 cycles as zero level. 
Based on this, the following outcomes were created:  

• “Leg Shortening after 2’000 cycles”, “Leg Shortening after 5’000 cycles”, “Neck 
Shortening after 2000 cycles”, “Neck Shortening after 5’000 cycles”, “Implant 
Tip Migration parallel to Implant Axis after 2’000 cycles”, “Implant Tip 
Migration parallel to Implant Axis after 5’000 cycles”, “Implant Tip Migration 
perpendicular to Implant Axis after 2’000 cycles”, “Implant Tip Migration 
perpendicular to Implant Axis after 5’000 cycles”, “Total Implant Tip Migration 
after 2’000 cycles”, Total Implant Tip Migration after 5’000 cycles”, “Varus 
Deformation after 2’000 cycles”, “Varus Deformation after 5’000 cycles”, 
“Axial Displacement after 2’000 cycles”, “Axial Displacement after 5’000 
cycles”. 

The variable Rotation around Implant Axis was used to calculate the following 
outcomes: 

• “Cycles at 2deg. Rotation around Implant Axis”, defined as the number of cycles 
until a femoral head rotation of 2 deg. around the implant axis occurred at the 
valley load of 200 N relative to the initial reference time point of specimen's 
settling. 

• “Rotation around Implant Axis after 10’000 cycles”, defined as the rotation of 
the femoral head around the implant axis after 10’000 cycles at valley load of 
200 N relative to the rotation at initial reference time point of specimen's settling. 

The variables Varus Deformation and Rotation Implant to Shaft were used to evaluate 
the following outcomes: 

• “Varus Deformation after 10’000 cycles”, defined as the rotation of the femoral 
head in the frontal plane around the sagittal z-axis after 10’000 cycles at valley 
load of 200 N relative to the rotation at initial reference time point of specimen's 
settling. 
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• “Rotation Implant to Shaft after 10’000 cycles” (deg.), defined as the rotation of 
the implant axis in the frontal plane around the sagittal z-axis after 10’000 cycles 
at valley load of 200 N relative to the rotation at initial reference time point of 
specimen's settling. 

The variables “Implant Tip Migration parallel to Implant Axis”, “Implant Tip Migration 
perpendicular to Implant Axis” and “Total Implant Tip Migration” were used to evaluate 
the following outcomes: 

• “Implant Tip Migration parallel to Implant Axis at Earliest Failure without 
Nonlinear Influence”, defined as the movement of the femoral head aspect point, 
initially located at the implant tip, along the implant axis at the time point when 
the corresponding event Cycles to Earliest Failure without Nonlinear Influence 
occurred, at valley load of 200 N relative to the initial reference time point of 
specimen's settling. 

• “Implant Tip Migration perpendicular to Implant Axis at Earliest Failure without 
Nonlinear Influence”, defined the vector, representing the transverse movement 
of the femoral head aspect point, initially located at the implant tip (same as 
above), in a plane perpendicular to the implant axis, at the time point when the 
corresponding event Cycles to Earliest Failure without Nonlinear Influence 
occurred, at valley load of 200 N relative to the initial reference time point of 
specimen's settling. 

• “Total Implant Tip Migration at Earliest Failure without Nonlinear Influence”, 
defined as the vector, representing the three-dimensional movement of the 
femoral head aspect point, which was initially located at the implant tip at the 
time point when the corresponding event Cycles to Earliest Failure without 
Nonlinear Influence occurred, at valley load of 200 N relative to the initial 
reference time point of specimen's settling. 

Thereby the latter six outcomes, together with the six outcomes based on radiographic 
evaluation were evaluated for the groups DHS Screw, DHS Blade and FNS only, 
because most of the specimens of group 3CS failed before reaching 10000 cycles in 
view of Earliest Failure without Nonlinear Influence. Furthermore, the evaluation of the 
latter three outcomes was additionally introduced to compare the respective three groups 
only. 
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Finally, all outcomes described above, together with the BMD, CCD Angle, Lever Arm, 
Head Diameter, Implant Axis off Center Relative, Implant Axis off Center Absolute, 
Implant Length and Tip-Apex Distance were considered as parameters of interest and 
selected further for statistical evaluation. 
 
2.7 Statistical power 
Concerning the group FNS/3CS the sample size n=10 was chosen with the assumption 
that FNS would fail under fourfold body weight of a statistically average person, 
equaling 2’800 N. Furthermore, we assumed that a 25% lower performance of 2’100 N 
in group 3CS compared to FNS would appear as a clinically meaningful difference, and 
that a standard deviation of ¾ from the mean value, namely 2’100 N for FNS and 1’575 
N for 3CS, could be an expected range of deviation. Based on these assumptions, a 
sample size of n=9 specimens would be necessary to reach significant differences 
between the two groups under a level of significance 0.05 and a power of 0.8. In order to 
be more concrete, a sample size of n=10 was chosen. Facing the sample size of n=8 in 
the group DHS Screw/DHS Blade an overall power of 94.2% was achieved for the 
testing.  
Statistical evaluation was performed with SPSS v.21 (IBM, USA). Normal distribution 
and homogeneity of variance were investigated with Shapiro-Wilk and Levenre tests, the 
differences between the paired groups were assessed with Haired-Samples T-test. For 
the comparison of the other independent groups the General Linear Model Univariate 
Analysis of Variance test including Bonferroni post-hoc correction was performed. 
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3 Results 
 
Four pairs of specimens (F10-1092, F10-1094, M10-1091, M13-1303) were included in 
the study despite the donors' cause of death specified as non-specific cancer in the 
patient history, which has been defined as an excluding criteria in its general form. 
However, the BMD values of the four pairs did not differ significantly compared to 
those considering all specimens (201.8±37.4 mgHA/cm3 versus 207.6±48.7 mgHA/cm3), 
p>0.1. Further specifications are depicted in Table 2. 
 
Table 2: Complementary specifications of specimens with general cancer history. BMD=Bone Mineral Density, DHS=Dynamic Hip 
Screw, FNS=Femoral Neck System, 3CS=3Cannulted Screws. 
Specimen Group Cause of Death BMD, Head 

F10-1092L DHS Blade Cancer 191.4 
F10-1092R DHS-Screw Cancer 145.3 
F10-1094L FNS Cancer, Heart 

failure 
167.1 

F10-1094R 3CS Cancer, Heart 
failure 

181.4 

M10-1091L FNS Cancer 205.5 
M10-1091R 3CS Cancer 229.8 
M13-1303L DHS Blade Cancer 244.5 
M13-1303R DHS-Screw Cancer 249.1 

 
In 37 cases the tests stopped due to fulfillment of the stop criterion of 30 mm machine 
transducer's axial displacement. Three tests stopped due to cut-out detection sensoring 
(specimens/axial displacement: F10-1041L / 29.35 mm; F13-1310L / 27.38 mm; F13-
1308L / 27.64 mm). In one case the test stopped reaching 4000 N load limit 
(specimen/axial displacement: M13-1009R / 28mm). Extraordinary fractures were 
observed in two cases: F12-1104L (DHS Blade) and F13-1301L (FNS). Both specimens 
failed by femoral shaft fracturing in the subtrochanteric region around the distal screws. 
After Pilot testing, the shape of the PMMA shell cup was adapted to allow proper load 
transfer to the femoral head. The machine had to be restarted twice while specimen 
M13-1009L (pilot) was tested, respectively once during specimen's F09-2062L testing, 
due to technical error. Furthermore, the first tested pilot (F10-1094R) was statically 
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loaded under 200 N compression during the motion tracking measurements for 
definition of the points of interest for translational degrees of freedom, whereas for the 
rest of specimens these measurements were performed under 50 N compression. Initial 
quasi-static ramp was not recorded from the Motion Tracking cameras for the following 
Specimens due to technical error, which practically has not led to any limitations during 
the data evaluation: 
 

1) DHS-Screw: M13-1009R(Pilot) 
2) DHS Blade: M13-1009L (Pilot),F10-1041L 
3) FNS: F10-1094L (Pilot), F13-1308L, M13-1306R, F13-1304R, 
 M13-1302R, F09-2062L, F13-1305R 
4) 3CS: F10-1094R (Pilot), F13-1308R, M13-1306L,F13-1304L, 
 M13-1302L, F13-1305L 

 
3.1 Outlier 
Two pairs of specimens were additionally removed from evaluation due to machine stop 
before construct failure occurred, as a result of distal fixation failure, leading to high 
shaft distal movements, causing stress concentrations around the distal screws during the 
tests: 
 

• Group 1: Specimen F13-1310R/L (18 mm shaft distal migration) 
• Group 3: Specimen F13-1301L/R (>7 mm shaft distal migration) 
 

As a consequence from the exclusion of 1 pair of specimens after the instrumentation 
(pair F09-2060L/R) and 3 pairs of specimens (pairs F09-2061R/L, F13-1301L/R and F13-
1310R/L) after the biomechanical testing a total sample size of n=18 (8 pairs group 
DHS, 10 pairs group FNS/3CS) paired femora was included in the statistical evaluation 
whereas the pilot pairs were respected in the statistical findings (Table 3). 
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Table 3: Group assignment used for the statistical analysis after subtraction of the outliers. DHS=Dynamic Hip Screw, FNS=Femoral 
Neck System, 3CS=3Cannulted Screws. 
pair DHS Screw DHS Blade 
8 M13-1009R (pilot) M13-1009L (pilot) 
11 F12-1104R F12-1104L 
18 M13-1307L M13-1307R 
4 F10-1092R F10-1092L 
3 F10-1041R F10-1041L 
14 M13-1303L M13-1303R 
10 F11-4004L F11-4004R 
20 M13-1309L M13-1309R 
 FNS 3CS 
5 F10-1094L (pilot) F10-1094R (pilot) 
19 F13-1308L F13-1308R 
6 F13-8004_FemR F13-8004_FemL 
17 M13-1306R M13-1306L 
7 M10-1091L M10-1091R 
15 F13-1304R F13-1304L 
13 M13-1302R M13-1302L 
2 F09-2062L F09-2062R 
16 F13-1305R F13-1305L 
9 M09-2056L M09-2056R 

 
3.2 Evaluation of accuracy 
Based on fluoroscopic image resolution of 0.2 mm/Pixel, the outcomes “Implant Axis 
off Center Relative” and “Implant Axis off Center Absolute” were evaluated at a 
systematic error of 0.4 mm (0.2 mm for defining the implant axis and 0.2 mm for 
defining the femoral head center). Further, the systematic error for the outcomes 
“Deformation Plate to Screw after 10’000 cycles”, “Plate Lift-off after 10’000 cycles” 
and “Deformation Screw to Shaft after 10’000 cycles” was calculated to be 2.5 deg., 
under the presumption of calculating the angle between lines of 30 mm (one-hole FNS 
side plate) and 50 mm length (FNS locking–head distal screw). 
Accuracy of optical motion tracking using a similar system, applied in a relatively large 
volume of 400x400x300 mm3 has been found to be capable of recording displacements 
of 20 µm at an accuracy being at the lowest 3.7 µm (Yang et al. 2012). 
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3.3.1 BMD 
  
Highest average BMD values were obtained in group DHS Blade (216.3±16.0 
mgHA/cm3 (mean± SEM)), followed by FNS (214.8±15.3 mgHA/cm3), 3CS 
(208.6±16.5 mgHA/cm3) and DHS Screw (206.7±15.7 mgHA/cm3, Fig.26). No 
significant differences were observed between any of the groups (p≥0.52). 
 
 

 
Fig.26: BMD (mgHA/cm3) median and mean values in the study groups. With kind permission of the AO Research Institute Davos. 
BMD=Bone Mineral Density, CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mgHA/cm3 
=milligramm hydroxylapatite per cubic centimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.2 CCD Angle 
  
Average CCD Angle in the groups was 129.6±1.3 deg. (DHS Screw), 130.5±1.0 deg. 
(DHS Blade), 130.8±1.2 deg. (FNS) and 130.8±0.9 deg. (3CS) with no significant 
differences between them (p≥0.861, Fig.27). 

 
Fig.27: CCD Angle (deg., yellow lines, dots and arrows) median and mean values in the study groups, defined as the angle between 
the axis of the femoral neck and the femoral shaft. With kind permission of the AO Research Institute Davos. CCD Caput Collum 
Diaphysis, CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 3CS=3Cannulated 
Screws, SE=Standard Error of the mean. 
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3.3.3 Lever Arm 
  
The Lever Arm average values measured in each group were 59.4±2.1 mm (DHS Screw), 
59.2±2.5 mm (DHS Blade), 57.5±1.9 mm (FNS), and 57.0±1.6 mm (3CS, 
Fig.28). No significant differences were observed between the groups (p≥0.540). 

 
Fig.28: Lever Arm (mm, yellow dots, circle and arrow) median and mean values in the study groups, defined as the distance between 
the center of the femoral head and the lateral cortex of the femur in the coronal plane. With kind permission of the AO Research 
Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 
Cannulated Screws, SE=Standard Error of the mean. 
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3.3.4 Head Diameter 
  
Similar relations were observed for Head Diameter with average values of 48.7±1.6 mm 
for DHS Screw, 48.5±1.7 mm for DHS Blade, 48.4±1.1 mm for FNS and48.2±1.1 mm 
for 3CS (Fig.29). No statistical differences were observed between any of the groups 
(p≥0.575). 

 
Fig.29: Head Diameter (mm, yellow circle and arrow) median and mean values in the study groups, defined as the diameter of the 
femoral head. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, 
FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.5 Implant Length 
  
Evaluation of the mean Implant Length (description: see chapter 3.4) in the groups 
revealed average values of 95.0±3.5 mm for DHS Screw (tolerance: ± 0.5 mm), 
92.8±3.5 mm for DHS Blade (tolerance: +0.4/-0.2 mm), 97.0±2.8 mm for FNS 
(tolerance: ±0.5 mm), and 96.4±2.9 mm for 3CS (tolerance: ±0.5 mm) (Fig.30). 
Significantly different values were detected between DHS Screw and DHS Blade 
(p=0.046). No further statistical significances were observed (p≥0.529). 

 
Fig.30: Implant Length (mm, yellow arrow) median and mean values in the study groups, defined as the intraosseous working length 
of the femoral neck component of the particular implant. With kind permission of the AO Research Institute Davos. CI=Confindential 
Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of 
the mean. 
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3.3.6 Tip-Apex Distance 
 
The Tip-Apex Distance average values measured in each group were 12.2±0.6 mm 
(DHS Screw), 11.3±0.9 mm (DHS Blade), 9.8±0.6 mm (FNS), and 8.0±1.1 mm (3CS, 
Fig.31). Significantly different values were detected between DHS-Screw and 3CS 
(p=0.008). No further statistical significances were observed (p≥0.055). 

 

 
Fig.31: Tip-Apex Distance (mm, yellow arrow) median and mean values in the study groups, defined as the distance between the tip of 
the implant and the surface of the femoral head. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.7 Implant Axis off Center Relative 
  
Highest average value was obtained in group FNS (1.09±0.99 mm), followed by DHS 
Blade (-0.26±0.50 mm) and DHS Screw (-0.45±0.95 mm, Fig.32). No significant 
differences were observed between the three groups (p=0.387). 
 

 
Fig.32: Implant Axis off Center Relative (mm, yellow dots, lines, arrow and circle) median and mean values in the study 
groups, defined as the axial deviation of the particular implant to the axis of the femoral neck in the coronal plane, respecting 
posterior (negative values) and anterior (positive values) position of the implant to the axis. With kind permission of the AO 
Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 
mm=millimeter, SE=Standard Error of the mean. 
 
 
 
 
 
 
 
 



 

37  

3.3.8 Implant Axis off Center Absolute 
  
Group DHS Screw revealed the highest average value for Implant Axis off Center 
Absolute (2.43±0.43 mm), followed by FNS (2.35±0.71 mm) and DHS Blade 
(1.11±0.33 mm, Fig.33). Significant difference was observed between DHS Screw and 
DHS Blade (p=0.036). 
 

 
Fig.33: Implant Axis off Center Absolute (mm, yellow dots, lines, circle and arrows) median and mean values in the study 
groups, defined as the axial deviation of the particular implant to the axis of the femoral neck in the coronal plane. With kind 
permission of the AO Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck 
System, mm=millimeter, SE=Standard Error of the mean. 
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3.3.9 Axial Stiffness 
  
Group FNS revealed the highest average axial stiffness (748.9±66.8 N/mm), followed by 
DHS Screw (688.8±44.2 N/mm), DHS Blade (629.1±31.4 N/mm) and 3CS (584.1±47.2 
N/mm, Fig.34) with no significant differences between the groups (p≥0.067). However, 
a significant influence of BMD as a covariate on Axial Stiffness was detected (p=0.017). 

 

 
Fig.34: Axial Stiffness (N/mm, red arrow) median and mean values in the study groups, defined as the force needed per mm of axial 
displacement of the implant bone construction. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, N=Newton, 3CS=3 Cannulated Screws, SE=Standard Error 
of the mean. 
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3.3.10 Cycles to 15mm Leg shortening 
  
Average number of cycles to 15mm Leg Shortening was highest in group DHS Screw 
with 20’542±2’488 cycles, followed by DHS Blade (19’161±1’264), FNS (17’372±947) 
and 3CS (7’293±850, Fig.35). DHS Screw, DHS Blade and FNS revealed significant 
higher values than 3CS (p<0.001). On the other hand, no significant differences were 
detected between these three groups (p≥0.487). In addition, BMD was found to have a 
significant influence as a covariate (p=0.013). Note: The criterion 15 mm was chosen 
because no specimen reached the initially defined 25 mm at test stop. 

 

 
Fig.35: Cycles to 15mm Leg Shortening (red lines, circle and arrow) median and mean values in the study groups, defined as cycles 
needed, to reach 15 mm leg shortening. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the 
mean. 
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3.3.11 Leg shortening after 2’000 cycles 
 

Highest average values for Leg Shortening after 2’000 cycles were obtained for 3CS 
(3.21±0.37 mm), followed by FNS (2.51±0.45 mm), DHS Blade (1.20±0.19 mm) and 
DHS Screw (1.04±0.22 mm, Fig.36). DHS Screw, DHS Blade and FNS revealed 
significant lower values than 3CS (p≤0.014). Moreover, DHS Screw was with 
significantly lower values than FNS (p=0.025). No further significant differences were 
detected between the groups (p≥0.067). BMD showed no significant influence as 
covariate (p=0.267). 

 
Fig.36: Leg shortening after 2’000 cycles (mm, red lines, circle and arrow) median and mean values in the study groups, defined as 
leg shortening after 2’000 cycles. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the 
mean. 
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3.3.12 Leg shortening after 5’000 cycles 
 

Group 3CS revealed the highest average value for Leg Shortening after 5’000 cycles 
(6.79±0.77 mm), followed by FNS (4.77±0.53 mm), DHS Blade (4.26±0.40 mm) and 
DHS Screw (2.44±0.42 mm, Fig.37). DHS Screw, DHS Blade and FNS revealed 
significant lower values than 3CS (p≤0.024). In addition, DHS Screw resulted in 
significant lower values in comparison to DHS Blade and FNS (p≤0.034). No significant 
difference was detected between DHS Blade and FNS (p=0.99). No significant influence 
of BMD as covariate was observed (p=0.392). 

 

 
Fig.37: Leg shortening after 5’000 cycles (mm, red lines, circle and arrow) median and mean values in the study groups, defined as 
leg shortening after 5’000 cycles. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the 
mean. 
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3.3.13 Cycles to Nonlinear Leg Shortening 
  
The highest average value for Cycles to Nonlinear Leg Shortening were observed in 
group DHS Blade (18’845±1’468), followed by DHS Screw (18’128±2’530), FNS 
(15’250±971) and 3CS (6’896±811, Fig. 38). DHS Screw, DHS Blade and FNS 
achieved significant higher values than 3CS (p<0.001). On the other hand, no significant 
differences were detected between these three groups (p≥0.462). In addition, BMD was 
found to have a significant influence as a covariate (p=0.004). 

 

 
Fig.38: Cycles to Nonlinear Leg Shortening (red lines, circle and arrow) median and mean values in the study groups, defined as the 
number of cycles, until sudden leg shortening occurs. With kind permission of the AO Research Institute Davos. CI=Confindential 
Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.14 Cycles to Machine Stop 
  
Average Cycles to Machine Stop was highest in group DHS Screw (21’936±2’525), 
followed by DHS Blade (21’745±1’646), FNS (18’381±838) and 3CS (8’043±838, 
Fig.39). DHS Screw, DHS Blade and FNS revealed significant higher values than 3CS 
(p<0.001). On the other hand, no significant differences were detected between these 
three groups (p≥0.339). In addition, BMD was found to have a significant influence as a 
covariate (p=0.005). 

 

 
Fig.39: Cycles to Machine Stop median and mean values in the study groups, defined as cycles, until machine stop criteria (contact 
between bone implant construction and machine actuator, 30 mm axial displacement of the bone implant construction, 4’000 N axial 
load reached) are fullfilled. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip 
Screw, FNS=Femoral Neck System, mm=millimeter, N=Newton, 3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.15 Cycles to 15mm Neck Shortening 
  
Group DHS Screw revealed the highest average value for Cycles to 15mm Neck 
Shortening (20’846±2’446), followed by DHS Blade (18’974±1’344), FNS 
(18’171±818) and 3CS (8’039±838, Fig.40). DHS Screw, DHS Blade and FNS revealed 
significant higher values than 3CS (p<0.001). On the other hand, no significant 
differences were detected between these three groups (p≥0.6). In addition, BMD was 
found to have a significant influence as a covariate (p=0.005). Note: The criterion 15mm 
was chosen because no specimen reached the previously defined 25mm at test stop. 

 

 
Fig.40: Cycles to 15mm Neck Shortening (red line, circles and arrow) median and mean values in the study groups, defined as cycles 
needed, to reach 15 mm neck shortening. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the 
mean. 
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3.3.16 Neck shortening after 2’000 cycles 
 

Highest average values for Neck Shortening after 2’000 cycles were observed in FNS 
(1.920±0.48 mm), followed by 3CS (1.72±0.24 mm), DHS Blade (0.99±0.20 mm) and 
DHS Screw (0.79±0.21 mm, Fig.41). No significances were observed between the 
Groups (p≥0.055). The covariate BMD was not influencing the results significantly 
(p=0.241). 

 
Fig.41: Neck shortening after 2’000 cycles (mm, red line, circles and arrow) median and mean values in the study groups, defined as 
neck shortening after 2’000 cycles. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the 
mean. 
 
 
 
 
 
 
 
 
 
 



 

46  

3.3.17 Neck shortening after 5’000 cycles 
 

Highest average values for Neck Shortening after 5’000 cycles were observed in DHS 
Blade (4.27±0.58 mm), followed by 3CS (4.08±0.41 mm), FNS (3.64±0.53 mm) and 
DHS Screw (2.09±0.45 mm, Fig.42). DHS Screw revealed significant lower values than 
DHS Blade, FNS and 3CS (p≤0.046). No further significances were observed between 
the groups (p≥0.180). BMD showed no significant influence as covariate (p=0.259). 

 
Fig.42: Neck shortening after 5’000 cycles (mm, red line, circles and arrow) median and mean values in the study groups, defined as 
neck shortening after 5’000 cycles. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the 
mean. 
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3.3.18 Cycles to Nonlinear Neck Shortening 
  
Group DHS Blade revealed the highest average value for Cycles to Nonlinear Neck 
Shortening (18’616±1’379), followed by DHS Screw (17’212±1’837), FNS 
(15’685±921) and 3CS (6’962±798, Fig.43). DHS Screw, DHS Blade and FNS revealed 
significant higher values than 3CS (p<0.001). On the other hand, no significant 
differences were detected between these three groups (p≥0.268). In addition, BMD was 
found to have a significant influence as a covariate (p=0.004). 

 

 
Fig.43: Cycles to Nonlinear Neck Shortening (red line, circles and arrow) median and mean values in the study groups, defined as 
the number of cycles, until sudden neck shortening occurs. With kind permission of the AO Research Institute Davos. 
CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 3CS=3 Cannulated Screws, SE=Standard Error 
of the mean. 
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3.3.19 Cycles to Earliest Failure 
  
Group DHS Blade revealed the highest average value for Cycles to Earliest Failure 
(18’252±1’311), followed by DHS Screw (16’712±1’869), FNS (14’899±926) and 3CS 
(6’717±800, Fig.44). DHS Screw, DHS Blade and FNS revealed significant higher 
values than 3CS (p<0.001). On the other hand, no significant differences were detected 
between these three groups (p≥0.216). In addition, BMD was found to have a significant 
influence as a covariate (p=0.004). 

 

 
Fig.44: Cycles to Earliest Failure median and mean values in the study groups, defined as the number of cycles, until one of the 
following failures occurs: Cycles to 15mm Leg Shortening, Cycles to Nonlinear Leg Shortening, Cycles to 15mm Neck Shortening, 
Cycles to Nonlinear Neck Shortening, Cycles to Machine Stop. With kind permission of the AO Research Institute Davos. 
CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 3CS=3 Cannulated Screws, SE=Standard Error of 
the mean. 
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3.3.20 Cycles to Earliest Failure without Nonlinear Influence 
 
Group DHS Screw revealed the highest average value for this parameter of interest 
(20’485±2’491), followed by DHS Blade (18’731±1’295), FNS (17’353±945) and 3CS 
(7’293±850, Fig.45). DHS Screw, DHS Blade and FNS revealed significant higher 
values than 3CS (p<0.001). On the other hand, no significant differences were detected 
between these three groups (p≥0.379). Further, BMD was found to have a significant 
influence as a covariate (p=0.008). In addition, Implant Axis off Center Absolute was a 
significant covariate for this very important outcome (p=0.019), whereas no significant 
influence was observed considering Implant Axis off Center Relative as a covariate 
(p=0.678). 

 
Fig.45: Cycles to Earliest Failure without Nonlinear Influence median and mean values in the study groups, defined as the number of 
cycles, until one of the following failures occurs: Cycles to 15mm Leg Shortening, Cycles to 15mm Neck Shortening, Cycles to 
Machine Stop. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, 
FNS=Femoral Neck System, 3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.21 Total Implant Tip Migration after 2’000 cycles 
 

Highest average Total Implant Tip Migration after 2’000 cycles was observed in 3CS 
(1.07±0.19 mm), followed by FNS (0.48±0.11 mm), DHS Blade (0.25±0.05 mm) and 
DHS Screw (0.12±0.04 mm, Fig.46). DHS Screw, DHS Blade and FNS revealed 
significant lower values than 3CS (p≤0.037). No further significances were observed 
between the groups (p≥0.105). BMD showed no significant influence as covariate 
(p=0.271). 

 

 
Fig.46: Total Implant Tip Migration after 2’000 cycles (mm, red arrow) median and mean values in the study groups, defined as 
movement of the point in the femoral head that was located at the implant tip initially after 2’000 cycles. With kind permission of the 
AO Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 
3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.22 Total Implant Tip Migration after 5’000 cycles 
 

Highest average Total Implant Tip Migration after 5’000 cycles was observed in group 
3CS (3.98±1.60 mm), followed by FNS (0.67±0.17 mm), DHS Blade (0.64±0.18 mm) 
and DHS Screw (0.30±0.09 mm, Fig.47). Group 3CS revealed significant higher values 
than DHS Screw (p=0.036). No further significances were observed between the groups 
(p≥0.073). BMD showed no significant influence as covariate (p=0.932). 

 

 
Fig.47: Total Implant Tip Migration after 5’000 cycles (mm, red arrow) median and mean values in the study groups, defined as 
movement of the point in the femoral head that was located at the implant tip initially after 5’000 cycles. With kind permission of the 
AO Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 
3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.23 Total Implant Tip Migration at Earliest Failure without 
Nonlinear Influence 
  
Highest average value was observed in group FNS (3.03±1.05 deg.), followed by DHS 
Screw (2.33±0.54 deg.) and DHS Blade (1.45±0.47 deg., Fig.48). No significances were 
observed between the groups (p=0.58). 

 

 
Fig.48: Total Implant Tip Migration at Earliest Failure without Nonlinear Influence (mm, red arrow) median and mean values in the 
study groups, defined as movement of the point in the femoral head that was located at the implant tip initially when one of the 
following failures occurs: 15mm Leg Shortening, 15mm Neck Shortening, Machine Stop. With kind permission of the AO Research 
Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, SE=Standard 
Error of the mean. 
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3.3.24 Implant Tip Migration parallel to Implant Axis after 2’000 
cycles 

 
Highest average Implant Tip Migration parallel to Implant Axis after 2’000 cycles was 
observed in group 3CS (0.34±0.16 mm), followed by group FNS (0.07±0.03 mm), DHS 
Blade (0.02±0.01 mm) and DHS Screw (0.01±0.002 mm, Fig.49). Group 3CS revealed 
significant higher values than DHS Screw, DHS Blade and FNS (p≤0.028). No further 
significances were observed between the groups (p≥0.063). BMD showed no significant 
influence as covariate (p=0.064). 

 

 
Fig.49: Implant Tip Migration parallel to Implant Axis after 2’000 cycles (mm, red arrow) median and mean values in the 
study groups, defined as movement of the femoral head along the axis of the implant after 2’000 cycles. With kind 
permission of the AO Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral 
Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.25 Implant Tip Migration parallel to Implant Axis after 5’000 
cycles 

 
Highest average Implant Tip Migration parallel to Implant Axis after 5’000 cycles was 
observed in group 3CS (1.03±0.47 mm), followed by group FNS (0.10±0.03 mm), DHS 
Blade (0.05±0.02 mm) and DHS Screw (0.03±0.01 mm, Fig.50). Group 3CS revealed 
significant higher values than DHS Screw, DHS Blade and FNS (p≤0.028). No further 
significances were observed between the groups (p≥0.067). BMD showed no significant 
influence as covariate (p=0.146). 

 

 
Fig.50: Implant Tip Migration parallel to Implant Axis after 5’000 cycles (mm, red arrow) median and mean values in the 
study groups, defined as movement of the femoral head along the axis of the implant after 5’000 cycles. With kind 
permission of the AO Research Institute Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral 
Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the mean 
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3.3.26 Implant Tip Migration parallel to Implant Axis at Earliest 
Failure without Nonlinear Influence 
 
Highest average value was observed in group DHS Blade (0.73±0.45 deg.), followed by 
DHS Screw (0.60±0.19 deg.) and FNS (0.60±0.27 deg., Fig.51). No significances were 
observed between the groups (p=0.80). 

 

 
Fig.51: Implant Tip Migration parallel to Implant Axis at Earliest Failure without Nonlinear Influence (mm, red arrow) 
median and mean values in the study groups, defined as movement of the point in the femoral head that was located at the 
implant tip initially, parallel to the implant axis when one of the following failures occurs: 15mm Leg Shortening, 15mm Neck 
Shortening, Machine Stop. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, SE=Standard Error of the mean. 
 
 
 
 
 
 



 

56  

3.3.27 Implant Tip Migration perpendicular to Implant Axis after 
2’000 Cycles 

 
Group 3CS revealed highest average value for Implant Tip Migration perpendicular to 
Implant Axis after 2’000 cycles (1.05±0.17 mm), followed by FNS (0.49±0.10) mm, 
DHS Blade (0.24±0.05 mm) and DHS Screw (0.13±0.04 mm, Fig.52). DHS Screw, 
DHS Blade and FNS revealed significant lower values than 3CS (p≤0.027). No further 
significances were observed between the groups (p≥0.109). BMD showed no significant 
influence as covariate (p=0.445). 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.52: Implant Tip Migration perpendicular to Implant Axis after 2’000 cycles (mm, red arrow) median and mean values in the 
study groups, defined as movement of the point in the femoral head that was located at the implant tip initially, perpendicular to the 
implant axis after 2’000 cycles. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the 
mean. 
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3.3.28 Implant Tip Migration perpendicular to Implant Axis after 
5’000 Cycles 

 
Group 3CS revealed the highest average value for Implant Tip Migration perpendicular 
to Implant Axis after 5’000 cycles (3.78±1.60 mm), followed by FNS (0.78±0.18 mm), 
DHS Blade (0.64±0.18 mm) and DHS Screw (0.30±0.09, Fig.53). 
Group 3CS revealed significant higher values than DHS Screw (p=0.047). No further 
significances were observed between the groups (p≥0.052). BMD showed no significant 
influence as covariate (p=0.986). 

 
Fig.53: Implant Tip Migration perpendicular to Implant Axis after 5’000 cycles (mm, red arrow) median and mean values in the 
study groups, defined as movement of the point in the femoral head that was located at the implant tip initially, perpendicular to the 
implant axis after 5’000 cycles. With kind permission of the AO Research Institute Davos. CI=Confindential Interval, 
DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, SE=Standard Error of the 
mean. 
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3.3.29 Implant Tip Migration perpendicular to Implant Axis at 
Earliest Failure without Nonlinear Influence 
  
Highest average value was observed in group FNS (2.91±1.07 deg.), followed by DHS 
Screw (2.16±0.57 deg.) and DHS Blade (1.30±0.36 deg., Fig.54). No significances were 
observed between the groups (p=0.62). 

 
Fig.54: Implant Tip Migration perpendicular to Implant Axis at Earliest Failure without Nonlinear Influence (mm, red 
arrow) median and mean values in the study groups, defined as movement of the point in the femoral head that was located 
at the implant tip initially, perpendicular to the implant axis when one of the following failures occurs: 15mm Leg 
Shortening, 15mm Neck Shortening, Machine Stop. With kind permission of the AO Research Institute Davos. 
CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, SE=Standard Error of 
the mean. 
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3.3.30 Varus Deformation after 2’000 cycles 
 

Highest average value for Varus Deformation after 2’000 cycles was observed in group 
3CS (2.58±0.33 deg.), followed by group FNS (1.41±0.15 deg.), DHS Blade (0.61±0.10 
deg.) and DHS Screw (0.50±0.10 deg., Fig.55). DHS Screw, DHS Blade and FNS 
revealed significant lower values than 3CS (p≤0.002). In addition, the values for DHS 
Screw were significantly lower than for FNS (p=0.031). No further significances were 
observed between the groups (p≥0.484). BMD showed no significant influence as 
covariate (p=0.479). 

 

 
Fig.55: Varus Deformation after 2’000 cycles (deg., red lines, arrows, letters) median and mean values in the study groups, indicating 
the rotation of the femoral head at the fracture site in the coronal plane after 2’000 cycles. With kind permission of the AO Research 
Institute Davos. CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 3CS=3 
Cannulated Screws, SE=Standard Error of the mean. 
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3.3.31 Varus Deformation after 5’000 cycles 
 

Highest average value for Varus Deformation after 5’000 cycles was observed in group 
3CS (5.28±0.69 deg.), followed by FNS (2.89±0.31 deg.), DHS Blade (1.46±0.07 deg.) 
and DHS Screw (0.91±0.18 deg., Fig.56). DHS Screw, DHS Blade and FNS revealed 
significant lower values than 3CS (p≤0.004). In addition, the values for DHS Screw 
were significantly lower than for DHS Blade and FNS, as well as significantly lower for 
DHS Blade in comparison to FNS (p≤0.032). BMD showed no significant influence as 
covariate (p=0.797). 

 

 
Fig.56: Varus Deformation after 5’000 cycles (deg., red lines, arrows, letters) median and mean values in the study groups, 
indicating the rotation of the femoral head at the fracture site in the coronal plane after 5’000 cycles. With kind permission of the AO 
Research Institute Davos. CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 3CS=3 
Cannulated Screws, SE=Standard Error of the mean. 
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3.3.32 Varus Deformation after 10’000 cycles 
  
Highest average value for Varus Deformation after 10’000 cycles was observed in group 
FNS (4.41±0.45 deg.), followed by DHS Screw (2.29±0.67 deg.) and DHS Blade 
(2.18±0.27 deg., Fig.57). DHS Screw and DHS Blade revealed significant lower values 
than FNS (p≤0.015). No further significances were observed between the groups 
(p=0.99). No significant influence was observed for BMD as covariate (p≥0.537). 

 

 
Fig.57: Varus Deformation after 10’000 cycles (deg., red lines, arrows, letters) median and mean values in the study groups, 
indicating the rotation of the femoral head at the fracture site in the coronal plane after 10’000 cycles. With kind permission of the 
AO Research Institute Davos. CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 
SE=Standard Error of the mean. 
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3.3.33 Axial Displacement after 2’000 cycles 
 

3CS revealed the highest average value for Axial Displacement at 2’000 cycles 
(3.29±0.40 mm), followed by FNS (3.01±0.52 mm), DHS Blade (1.57±0.27 mm) and 
DHS Screw (1.35±0.24, Fig.58). DHS Screw and DHS Blade revealed significant lower 
values than 3CS (p≤0.02). In addition, the values for DHS Screw were significantly 
lower compared to FNS (p=0.019). No further significances were observed between the 
groups (p≥0.073). BMD showed no significant influence as covariate (p=0.086). 

 

 
Fig.58: Axial Displacement after 2’000 cycles (mm, red arrow) median and mean values in the study groups, defined as total 
axial displacement of the bone implant construction after 2’000 cycles. With kind permission of the AO Research Institute 
Davos. CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 
Cannulated Screws, SE=Standard Error of the mean. 
 
 
 
 
 
 



 

63  

3.3.34 Axial Displacement after 5’000 cycles 
 

Highest average value for Axial Displacement at 5’000 cycles were observed in group 
3CS (6.78±0.59 mm), followed by FNS (5.47±0.62 mm), DHS Blade (4.93±0.46 mm) 
and DHS Screw (3.38±0.51 mm, Fig.59). DHS Screw, DHS Blade and FNS revealed 
significant lower values than 3CS (p≤0.01). In addition, the values for DHS Screw were 
significantly lower compared to DHS Blade (p=0.034). No further significances were 
observed between the groups (p≥0.179). BMD showed no significant influence as 
covariate (p=0.141). 

 

 
Fig.59: Axial Displacement after 5’000 cycles (mm, red arrow) median and mean values in the study groups, defined as total axial 
displacement of the bone implant construction after 5’000 cycles. With kind permission of the AO Research Institute Davos. 
CI=Confindential Interval, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, mm=millimeter, 3CS=3 Cannulated Screws, 
SE=Standard Error of the mean. 
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3.3.35 Cycles at 2 deg. Rotation around Implant Axis 
  
Groups DHS-Screw showed highest average value for Cycles at 2deg Rotation around 
Implant Axis (16’463±4’361), followed by DHS Blade (12’252±1’917), FNS 
(5’184±1’447) and 3CS (4’568±870, Fig.60). DHS Screw revealed significant higher 
values than FNS and 3CS (p≤0.045). No further significances were observed between 
the groups (p≥0.38). Axis off Center Absolute showed significant influence as covariate 
(p=0.008), whereas no significant influence was observed for BMD and Implant Axis 
off Center Relative as covariates (p≥0.544). 

 

 
Fig.60: Cycles at 2 deg. Rotation around Implant Axis (deg., red arrows) median and mean values in the study groups, indicating 
the number of cycles needed, until 2 deg. of femoral head rotation around the implant axis occur. With kind permission of the AO 
Research Institute Davos. CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 
3CS=3 Cannulated Screws, SE=Standard Error of the mean. 
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3.3.37 Deformation Plate to Screw after 10’000 cycles 
  
Highest average value were observed in group FNS (3.59±0.48 deg.), followed by DHS 
Screw (2.11±0.36 deg.) and DHS Blade (1.93±0.37 deg., Fig.62). DHS Blade revealed 
significant lower values than FNS (p=0.027). No further significances were observed 
between the groups (p≥0.054). 

 

Fig.62: Deformation Plate to Screw after 10’000 cycles (deg., red lines and arrow) median and mean values in the study groups, 
indicating the deformation of the plate compared to the fixation screw after 10’000 cycles. With kind permission of the AO Research 
Institute Davos. CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, SE=Standard 
Error of the mean. 
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3.3.38 Plate Lift-off after 10’000 cycles 
  
Group FNS showed highest average value for Plate Lift-off after 10’000 cycles 
(1.80±0.56 deg.), followed by DHS Screw (0.56±0.12 deg.) and DHS Blade (0.49±0.10 
deg., Fig.63). No significant differences were observed between the groups (p≤0.101). 

 
Fig.63: Plate Lift-off after 10’000 cycles (deg., red lines and arrow) median and mean values in the study groups, indicating the 
deviation of the plate to the femoral shaft after 10’000 cycles. With kind permission of the AO Research Institute Davos. 
CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, SE=Standard Error of the mean. 
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3.3.39 Deformation Screw to Shaft after 10’000 cycles 
  
Highest average value were observed in group DHS Screw (1.22±0.31 deg.), followed 
by DHS Blade (0.97±0.25 deg.) and FNS (0.85±0.14 deg., Fig.64). No significances 
were observed between the groups (p≥0.538). 

 
Fig.64: Deformation Screw to Shaft after 10’000 cycles (deg., red lines and arrow) median and mean values in the study groups, 
indicating the deformation of the fixation screw compared to the shaft after 10’000 cycles. With kind permission of the AO Research 
Institute Davos. CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System SE=Standard 
Error of the mean. 
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3.3.40 Rotation Implant to Shaft after 10’000 cycles 
  
Highest average value for Rotation Implant to Shaft after 10’000 cycles was observed in 
group FNS (2.82±0.31 deg.), followed by DHS Blade (1.76±0.16 deg.) and DHS Screw 
(0.94±0.18 deg., Fig.65). DHS Screw and DHS Blade revealed significant lower values 
than FNS (p≤0.012). No further significances were observed between the groups 
(p=0.69). No significant influence was observed for BMD as covariate (p≥0.597). 

 
Fig.65: Rotation Implant to Shaft after 10’000 cycles (deg., red lines and arrow) median and mean values in the study 
groups, indicating the rotation of the implant to the shaft after 10’000 cycles. With kind permission of the AO Research 
Institute Davos. CI=Confindential Interval, deg.=Degree, DHS=Dynamic Hip Screw, FNS=Femoral Neck System, 
SE=Standard Error of the mean. 
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4 Discussion 
 
The goal of the biomechanical investigations was to evaluate the performance of the 
newly designed implant FNS compared to the existing solutions DHS Screw, DHS 
Blade and 3CS under identical initial conditions. The presumed outcome would find 
FNS in third position concerning its biomechanical performance right before 3CS. 
Homogenization of the study groups was assured by selecting the femora using 
predefined exclusion criteria. Cancer was the only exclusion criterion which was only 
partially complied with, depending on the influence of the basic disease on the BMD 
found in the proximal femur. Four pairs of tested specimens, whose donors' cause of 
death was specified as non-specific cancer, were included in the evaluation. The 
following consideration was taken into count as far as their inclusion is concerned: 
Firstly, the BMD values of the four pairs didn’t show a significant difference compared 
to the other specimens. Secondly, the four pairs were assigned homogeneously to all 
four groups. Thirdly, the definition of cancer was not related to bone in general or the 
femur in special, it was noticed as a non-specific diagnosis. 
Finally, the fractures were generated as reproducible as possible using the same custom 
made device for every single of the tested specimens. 
Axial Stiffness was highest in the FNS group, although no significant differences were 
observed between the four groups. 
Regarding the parameters of interest, considered as diverse Cycles to Failure and based 
on a variety of failure criteria, the FNS group failed after a significantly higher number 
of cycles than the 3CS group, being in the same range as for the DHS Screw and DHS 
Blade groups with no significant difference to them. 
The average values of various movements at the implant tip after 2’000 and 5’000 
cycles, such as Implant Tip Migration parallel to Implant Axis, Implant Tip Migration 
perpendicular to Implant Axis and Total Implant Tip Migration, were highest in the 3CS 
group and mostly significantly higher to those in the DHS Screw, DHS Blade and FNS 
groups. Similarly, the highest values for Varus Deformation after 2’000 and 5’000 
cycles were observed in group 3CS, differing significantly from the DHS Screw, DHS 
Blade and FNS groups. These parameters, indicating the moments at the implant tip and 
the tendency of varization at the fracture site, were defined as the clinically most 
relevant findings according to the needs of stability requested most in vivo. 
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In consequence their influence on the estimation of the biomechanical performance of 
the tested implants was prioritized. 
Beside the above mentioned, clinically most relevant parameters, more data has been 
analyzed. Eight outcomes concerning DHS Screw (Axial Displacement at 2’000 cycles, 
Leg Shortening after 2’000 cycles, Leg Shortening after 5’000 cycles, Neck Shortening 
after 5’000 cycles, Varus Deformation after 2’000 cycles, Varus Deformation after 
5’000 cycles, Varus Deformation after 10’000 cycles and Cycles at 2deg Rotation 
around Implant Axis), and another three outcomes concerning DHS Blade (Varus 
Deformation after 5’000 cycles, Varus Deformation after 10’000 cycles and 
Deformation Plate to Screw after 10’000 cycles) evidenced the superiority of the DHS 
systems regarding the investigated parameters. 
During the cyclic test, the criterion for machine stop was fulfilled, before any of the 
specimens was able to reach neither of the originally set failure criteria for Leg 
Shortening nor Neck Shortening. This mismatch between the stop criterion on the one 
hand, and the criteria for Leg Shortening and Neck Shortening on the other, was 
amended by corrections of both criteria for Leg Shortening and Neck Shortening, whose 
values were decreased by 10 mm to be 15 mm instead of 25 mm. The definition of the 
new clinically relevant failure criteria was based on the fact, that the migration of the 
femoral head along the neck axis (Neck Shortening) revealed a stable interdigitation of 
the femoral head after a distance of 15 mm. This would be a clinically acceptable 
situation concerning the fracture position, except the mismatch of the greater trochanter 
position relatively to the femoral head and except the implants sticking out at the lateral 
femur. This configuration is well known from former DHS applications. At this position, 
no further shortening would be possible without destruction of the femoral neck or head, 
so that failure criterion had to be set at 15 mm, where bones were still intact. Due to the 
bone contact, catastrophic failure occurred during further testing at a displacement 
>15mm. 
Specimens F13-1310R (Group DHS-Screw) and F13-1301L (Group FNS) revealed 
relatively big distal femoral shaft movements, which were caused by distal embedding 
errors. These movements induced relatively high pulling forces on the bracing, leading 
to stress concentrations in the femoral shafts and causing in the case of the latter 
specimen a shaft fracture below the lateral plate. This was the only reported shaft 
fracture in this group. For that reason these specimens were considered as outliers and 
discarded from evaluation. In addition, the failure area of the latter specimen appeared 
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cystic after fluoroscopic re-assessment. The donor of this specimen died of renal disease, 
which could explain the pathological changes in the bone. 
After setting the osteotomies, the femoral head of one specimen (F12-1104L, DHS 
Blade) lost its anatomical reduction and displaced cranially. In consequence the 
reduction was restored by placing four flat washers in between the plate and the shaft 
around the distal screw. 
Another shaft fracture was observed in specimen F12-1104L (Group DHS Blade). The 
instrumentation of this specimen was readjusted after setting the osteotomy, in order to 
restore the anatomical reduction. The cause for loss of reduction was inner tensions in 
the bone and implant, which appeared, when the Blade was inserted into the femoral 
head with a slight angular deviation. Pulling the fixed angle plate to the bone with the 
cortex screws, which is standard procedure for this implant, was then leading to the 
inner tension within the bone/implant construct. After performing the osteotomy, these 
tensions were set free and resulted in head migration. However, to achieve a good 
reduction, parallel alignment between the plate and the shaft axis was compromised, 
leading to a change in biomechanical forces acting on the whole construct. It can be 
assumed that the shaft fracture in this specimen originated from the washer placing. 
However, this specimen was not considered as an outlier, as the biomechanical 
performance was in the range with the other specimens of the same group, and the distal 
fixation did not show any shaft migrations. 
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5 Summary 
 

The Femoral Neck System shows significantly higher overall construct stability compared 
to 3 Cannulated Screws in a biomechanical femoral neck fracture model. The superiority 
was proofed in the main parameters concerning the axial and rotational stability of the 
implant.  
Following the trend of reduced linear cutting out and rotational loosing as well observed in 
the improvement from Dynamic Hip Screw Screw to Dynamic Hip Screw Blade, the newly 
introduced implant Femoral Neck System can continue this progress by utilizing the 
mentioned advantages compared to the 3 Cannulated Screws. This biomechanical 
superiority may be beneficial in clinical use, especially in combination with the small side 
plate, potentially allowing a minimally invasive treatment. The side plate offers the 
additional opportunity of angle stable screw locking as well, which might lead to a tighter 
plate-to-shaft-connection, as the investigations demonstrated. Furthermore, no significant 
differences between the Femoral Neck System and the Dynamic Hip Screw systems could 
be shown in the clinically most relevant parameters concerning the axial and rotational 
stability of the implant. The potential role of the Femoral Neck System being a fully 
trustable addition to the existing implants Dynamic Hip Screw Screw, Dynamic Hip Screw 
Blade and the 3 Cannulated Screws in a manner of fixing transcervical fractures of the 
proximal femur can be considered as valid from a biomechanical point of view. The 
Femoral Neck System can be considered as a replace of the 3Cannulated Screws due to its 
proven biomechanical superiority. 
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