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Abstract

Sensor data fusion is the key to a comprehensive environment perception by today’s
and future systems basing on object tracking. Early and rather simple advanced
driver assistance systems (ADAS) are still using a sensor setup with a single sensor
where the problem of fusing different data sources does not arise. With the intent on
fusing data from multiple heterogeneous sensors into one common object tracking
system, various fusion methods are conceivable. Probabilistic data association
(PDA) is one of these methods and it has been shown to be feasible and effective
in former publications [Mäh09; Mun11]. In very complex scenarios, algorithms
based on finite set statistics [Mah03] have become popular over the last few years.
These allow the modeling of interactions between the tracked objects to resolve
ambiguities comparable to the multi-object Bayes filter. Independent of the fusion
method, all procedures share one major drawback: the interchangeability of the
sensors is not possible. In many systems it is necessary to transmit knowledge
about the sensors to the fusion system. Thus, a change of the sensor setup can
entail comprehensive consequences and can be expensive and costly in development
time. Besides increasing the sensor interchangeability, the anonymization of the
sensor is desirable. This allows sensors to be used without knowledge of the sensors’
theoretical principles and enables the sensor manufacturer to maintain secrecy about
the details. The generic linkage of sensors to object tracking systems as well as the
anonymization of sensors is the purpose of this work. Therefore, a mathematically
equivalent alternative to the Kalman filter, the information filter, is used. The focus
is set on probabilistic data association and the successful adaption of it to use the
information filter is evaluated in simulation and real-data scenarios. Additionally, it
is shown how to use the information filter approach in many other fusion systems.

In the further course of this work a novel approach to preprocessing high density
data from distance measuring sensors is presented. This new approach meets the
requirements on generically linked sensors. It allows the use of the information space
and simultaneously increases the perception performance markedly in comparison to
former attempts. This is achieved by filtering the raw sensor data over time and
generating reliable object hypotheses using the filtered data. The performance of
the achieved sensor model is demonstrated in various real-data scenarios.





Kurzfassung

Sensordatenfusion ist der Schlüssel zu heutigen und zukünftigen Systemen, die auf
einer Objektverfolgung zur umfassenden Umgebungserfassung beruhen. Frühe und
einfache Systeme basieren noch heute auf lediglich einem Sensor, wodurch sich
das Problem der Fusion verschiedener Datenquellen nicht ergibt. Sollen jedoch
Daten mehrerer heterogener Sensoren in eine gemeinsame Objektverfolgung einge-
bracht werden, kommen diverse Fusionsmethoden in Frage. Die probabilistische
Datenassoziation (PDA) ist eine dieser Methoden und hat sich in Untersuchungen
früherer Publikationen [Mäh09; Mun11] als einfach und wirkungsvoll erwiesen. In
sehr komplexen Szenarien kommen in den letzten Jahren auch vermehrt Methoden
der Statistik endlicher Mengen (engl. finite set statistics (FISST)) [Mah03] zum
Einsatz. Diese erlauben zusätzlich die Modellierung von Abhängigkeiten zwischen
den Objekten, wodurch Mehrdeutigkeiten aufgelöst werden können. Unabhängig
von der Fusionsmethode teilen sich alle Verfahren jedoch ein Problem: die Aus-
tauschbarkeit der Sensorik ist nicht vollständig gewährleistet. Es muss stets Wissen
über die verwendeten Sensoren in das System eingebracht werden. Eine Veränderung
des Sensoraufbaus kann weitreichende Konsequenzen nach sich ziehen und verursacht
sowohl Zeit- als auch Kostenaufwand. Des Weiteren ist neben dem Vereinfachen des
Sensoraustauschs auch eine Anonymisierung des Sensors wünschenswert. Dies würde
es erlauben, Sensoren ohne Wissen über ihr Messprinzip zu verwenden. Auf der
anderen Seite müsste der Hersteller dann keine detaillierten Informationen über den
Sensor preisgeben. Die generische Anbindung von Sensoren an fusionierende Systeme
zur Objektverfolgung sowie die Anonymisierung der Sensoren sind Ziel dieser Arbeit.
Um dies zu realisieren, wird der Informationsfilter als Alternative zum mathematisch
äquivalenten Kalman Filter verwendet. Besonderes Augenmerk wird dabei auf die
PDA gelegt. Deren erfolgreiche Anpassung wird anhand von Simulation und realer
Daten ausgewertet. Darüber hinaus wird gezeigt, wie der Informationsfilter-Ansatz
auch in vielen anderen Fusionsmethoden eingesetzt werden kann.
Im weiteren Verlauf dieser Arbeit wird ein neuartiger Ansatz zur Vorverarbeitung
für hochauflösende und Distanz messende Sensoren präsentiert, die den Anforderun-
gen an generisch angebundenen Sensoren entspricht. Dies ermöglicht den Einsatz
des Informationsraumes und verbssert gleichzeitig die Detektionsleistung deutlich
gegenüber bisherigen Ansätzen. Dabei werden direkt die Sensorrohdaten zeitlich
verfolgt, um zuverlässige Hypothesen erzeugen zu können. Die Leistungsfähigkeit
des neuen Ansatzes wird in verschiedenen realen Szenarien nachgewiesen.





Contents

1 Introduction 1

2 Kalman Filter based Data Fusion 3
2.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Information Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Information Space . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Filter Equations . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Comparison of Kalman and Information Filter . . . . . . . . 9

2.3 Data Association in Fusion Systems . . . . . . . . . . . . . . . . . . 9
2.3.1 Hard Decision Association . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Probabilistic Data Association . . . . . . . . . . . . . . . . . 10
2.3.3 Joint Integrated Probabilistic Data Association . . . . . . . . 14

2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Optimal Subpattern Assignment . . . . . . . . . . . . . . . . 19
2.4.2 Optimal Subpattern Assignment for Tracks . . . . . . . . . . 19

3 Generic Sensor Data Fusion in Information Space 21
3.1 Information Filter in PDA . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Calculating Association Weights . . . . . . . . . . . . . . . . 22
3.1.2 Mahalanobis Distance . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Calculating Estimation Hypotheses . . . . . . . . . . . . . . . 23
3.1.4 PDA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Information Filter in JIPDA . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Measurement Likelihood . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Gating Volume . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Using the Sensor Evidence . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.5 Linearization of Non-Linear Measurement Models . . . . . . . 30
3.2.6 The Continuity Problem in Angle Measurements . . . . . . . 32

3.3 Information Filter in other Fusion Systems . . . . . . . . . . . . . . 33
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Real-Data Results . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



xiv Contents

4 New Approach to Processing Dense Sensor Data 43
4.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Sensor Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Sensor Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Hypotheses Generation using Raw Data Tracking . . . . . . . . . . . 50

4.4.1 Tracking Raw Data . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.3 Hypotheses Generation . . . . . . . . . . . . . . . . . . . . . 69

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.1 Evaluation of the Vehicle Perception . . . . . . . . . . . . . . 80
4.5.2 Evaluation of the Pedestrian & Bicycle Perception . . . . . . 111

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Conclusion 119

Acronyms 121

List of Symbols 123

Bibliography 127

Publications 133



Chapter 1

Introduction

Nearly all kinds of modern object tracking systems are getting more and more complex
to improve existing systems or to allow the development of new ones. Therefore,
the amount of simultaneously used sensors increases in order to get more precise
information about the environment and thus a highly detailed environment perception.
In the field of ADAS, especially the intensely investigated highly autonomous driving,
data of multiple sensors has to be combined [KNW+15]. As soon as there are several
sensors, mostly of different kinds, a fusion system is necessary. Without a dedicated
fusion system, the information of different sources is combined in an heuristic manner
and leads to a highly sensor dependent and static setup. Fusion systems allow to
model an interface in a generic way. Today, there are fusion systems which can
treat measurements generically, but most of them still share the same problem: to
interpret measurements, they depend on knowledge about the connected devices
and, not seldom, on heuristics. Every change in the sensor setup entails a major
change of the fusion system or even a complete new development cycle, which causes
high costs and takes a lot of time. Therefore, a generic sensor data fusion, which
allows to regard sensors as "plug & play" devices, would be extremely useful. Munz
et al. showed in [MDM09] that the joint integrated probabilistic data association
(JIPDA) [ME02] is an appropriate algorithm for a generic fusion framework. The
JIPDA allows the fusion of sensor data and track management in a probabilistic
manner and can handle information from different sources. Nevertheless, there are
still some parts in the algorithm for which knowledge about the sensor devices is
necessary, since not every sensor provides the same type of measurements. These
depend on the measurement principle and may even vary over time.

To the knowledge of the author, the first part of this work is the first contribution
presenting a solution to the just described problem by combining the JIPDA with the
information filter and solving some of the mathematical problems coming along with
the integration of the information filter into the JIPDA algorithm. The information
filter, as presented in [GDH92], is equivalent to the Kalman filter and is often used for
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reasons of less computational effort or better decentralization characteristics [Mut98].
Here, the focus is not on reducing the computational load, but on gaining advantages
in generic data fusion by combining the information filter with the probabilistic
data association approach. One major advantage in using the information filter is a
common interface for all kinds of sensors. Therefore, the amount of data to transmit
in every cycle is always the same and known in advance. This has the effect, that
all information about the sensor and its measurement principle is encapsulated in
the measurement and can not be recovered in detail - which may be seen as a great
advantage by sensor manufacturers.

Independent from the fusion system, the quality of a sensor setup is of course a
matter of the quality of the sensor data. In case of single-measurement sensors, there
are only few possibilities to influence the perception result. On the opposite, when
using high density distance measuring sensors, further called HDDM, the perception
strongly depends on the preprocessing. Such sensors provide dense or semi dense
point clouds instead of single-measurements. Thus, the task of the preprocessing
is creating measurement hypotheses from these point clouds. Therefore, a new
method, where the raw data is filtered over time, is presented in the second part of
this work. The filter process extends frame based clustering approaches and allows
the use of information like velocity and yaw angle. The main advantages of the
method presented here are the improvement of the perception range, the detection
rate, and the independence of any model assumption. This is evaluated in several
real-data scenarios, where vehicles, pedestrians, and bicycles are observed in different
surroundings.



Chapter 2

Kalman Filter based Data Fusion

The cornerstone of nearly every state of the art sensor data fusion system is the
widely spread Kalman filter [Kal60]. Today, the mostly used approach to filtering
is Bayesian. This was presented in [HL64] as an extension to the former least
squares version of Kalman. Filtering an object’s state over time is the recursive
estimation of the state by incorporating knowledge about the process model, e.g.
the movement, of the object and an uncertain measurement about the object’s
state. As Ho et al. showed, using only Gaussian distributions and linear models, the
Kalman filter is a Bayes optimal estimator [HL64]. Later, Grime et al. introduced in
[GDH92] the so called information filter. Mathematically equivalent to the Kalman
filter, the information filter has some advantages in the decentralized fusion of
information, since the information contribution of different sources can be fused
by simply summing them up. In this work it is shown, that the information filter
approach has additional advantages in fusing measurement data from different sensors
about the same objects and therefore has some advantages for generic sensor data
fusion which are mentioned above.

This chapter briefly reviews the basics of the Kalman and the information filter.
Afterwards, the state of the art fusion systems using soft and hard decision association
are introduced. In such systems, one tracker is instantiated for every perceived
object and thus relies on a sufficient data association method. The probabilistic
data association (PDA) is one of these algorithms and is the focus of this work.
The chapter closes with the introduction of performance evaluation metrics for
multi-object tracking.
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2.1 Kalman Filter

The Kalman filter and its equations as introduced in [HL64; Kal60] are an important
part of this work. Thus, a brief review is given in this section. The idea of the Kalman
filter is to observe the state of a system over time using a series of measurements. In
order to do so, knowledge about the observed system is necessary. In case of tracking
applications, this knowledge inherits information about the behavior of the tracked
object. In this work, the object behavior is represented using a process model to
predict the movement of the object. This movement is described by the linear model
equation:

xk+1 = F kxk +Gkuk + vk. (2.1)

Therein xk is the state vector and represents the state of the object in state space
at time step k. F k is the state transition matrix and contains the process model.
The further parts of the equation are the control input matrix Gk and the control
vector uk. The vector vk is a discrete zero-mean white Gaussian noise process and
allows to incorporate uncertainties about the underlying model. With that process
noise, the process noise matrix can be expressed as the expectation:

Qk = E
{
vkv

T
k

}
. (2.2)

The state of the object can be observed using a sensor generating a measurement:

zk = Hkxk +wk. (2.3)

The measurement matrixHk describes the sensor model and the vector wk is a zero-
mean white Gaussian noise, representing the measurement noise and the uncertainty
of the measurement model. The measurement covariance matrix is defined as the
expectation:

Rk = E
{
wkw

T
k

}
. (2.4)

The Kalman filter is composed of two recursive parts: first, the estimated state
x̂k−1|k−1 of the last time step and its covariance P k−1|k−1 are predicted over time. In
the second step, the state and the covariance are updated to obtain a new estimation
using the measurement zk. These two steps are called prediction and estimation
(see Figure 2.1). The estimation step is also known as: innovation step, update step,
or corrector step.
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Prediction

Estimation Sensor

(·)k−1|k−1 → (·)k|k−1

(·)k|k−1 → (·)k|k

x̂k|k−1

P k|k−1

x̂k|k

P k|k

Central Tracker

Hk,Rk

zk

Figure 2.1: Single-object Kalman filter in state space.

The prediction equations of the state and the covariance are:

x̂k|k−1 = F k−1x̂k−1|k−1 +Gk−1uk−1 (2.5)
P k|k−1 = F k−1P k−1|k−1F

T
k−1 +Qk−1. (2.6)

The estimation equations are given with:

ẑk|k−1 = Hkx̂k|k−1 (2.7)
Sk = HkP k|k−1H

T
k +Rk (2.8)

Kk = P k|k−1H
T
kS
−1
k (2.9)

x̂k|k = x̂k|k−1 +Kk

[
zk − ẑk|k−1

]
(2.10)

P k|k = P k|k−1 −KkSkK
T
k . (2.11)

Therein ẑk|k−1 is the predicted measurement under the assumption of the predicted
state x̂k|k−1. The matrix Sk is the innovation covariance and the matrix Kk is
known as the Kalman gain.

So far, the process model in Equation (2.5) and the measurement model in Equa-
tion (2.7) assume linear functions. In case of non-linear functions the Kalman filter
equations as given above need to be adapted. There are several approximations to
handle these non-linearities. The most commonly used are the extended Kalman
filter (EKF) [BL98] and the unscented Kalman filter (UKF) [JUD00].
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2.2 Information Filter

The information filter is also known as the inverse covariance form of the Kalman
filter [BL98]. It is mathematically equivalent to the Kalman filter but uses measures of
information about the states, instead of the states and the covariances itself [GDH92;
Mut98]. As described in [Dur01], information is a measure of the compactness
of a distribution. This means that, if a probability distribution is widely spread,
the amount of information is very low. If there are clear peaks, the information
content is high. Thus, information is a function of the distribution. In this section,
the information space and the corresponding information filter are introduced and
compared with the standard Kalman filter. The explanations and equations of this
section are taken from [Mut98].

2.2.1 Information Space

Bayesian Theory

The Kalman filter, and therefore the information filter as well, are basing on the
Bayes theorem. This theorem allows to estimate x by the knowledge contained
in z using the conditional probability distribution function p(z|x), also known as
the likelihood function. Following the likelihood principle, it is assumed, that the
likelihood function inherits all necessary information about x to generate an estimate.
In combination with the a priori information p(x) about x and p(z) about z, the
Bayes theorem gives the posterior conditional distribution of x given z:

p(x|z) = p(z|x)p(x)
p(z) (2.12)

Taking only one measurement into account normally results in a rather high uncer-
tainty in the estimate of x. To reduce this uncertainty, it is possible to use a set Zk
of all measurements of x up to time k:

Zk , {z1, z2, z3, . . . ,zk}. (2.13)

Thus, the definition of the likelihood has to be changed to handle the set of all
measurements. This results in the likelihood function

Λk(x) = p(Zk|x). (2.14)
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and therefore in the new a posteriori

p(x|Zk) = p(Zk|x)p(x)
p(Zk) (2.15)

In order to use this equation in a recursive estimator, it can be rewritten as:

p(x|Zk) = p(zk|x)p(x|Zk−1)
p(Zk−1) (2.16)

This recursive formulation uses only the measurement of the current time zk. Thus,
it is not necessary to store all previous measurements. The recursive form of the
Bayes theorem is the most common approach to filtering approaches.

Fisher Information

The Fisher information is a measure of information an observable random variable Zk
contains about a random variable x. As depicted in Equation (2.14) the probability
function for p(Zk|x) is the likelihood function Λk(x) for x. The derivation of the
natural logarithm of the likelihood is called the score function sk(x) with

sk(x) , ∇x ln p(Zk|x). (2.17)

Considering the score function as a random variable the expectation equals zero

E [sk (x)] = 0 (2.18)

and the Fisher information results in:

Ik = −E
[
∇x∇T

x ln p (Zk|x)
]
. (2.19)

Another information measure known from estimation and control is the Cramer-Rao
lower bound (CRLB) [BL93]. For any unbiased estimator for the state vector xk the
CRLB is the lower bound of the mean squared error vector:

E
[{
xk − x̂k|k

}{
xk − x̂k|k

}T |Zk
]
≥ I−1

k . (2.20)

Thus, the covariance matrix of the estimator has a lower bound. Equation (2.20)
shows, that the CRLB can be expressed as the inverse of the Fisher information
matrix. If the likelihood function p (Zk|x) is assumed to be Gaussian, by considering
the probability distribution of a the random vector xk as Gaussian with mean x̂k|k
and covariance P k|k , it can be shown, that the Fisher information matrix is the
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inverse of the covariance matrix:

Ik = P−1
k|k = (CRLB)−1. (2.21)

More details about the Fisher information and its connection to the entropy (Shannon
information) can be found in [Mut98] and [Dur01].

2.2.2 Filter Equations

The filter equations of the prediction step in information space are pretty much the
same as in state space. Using the equivalences in [Mut98]

Y −1
k|k = P k|k = I−1

k , (2.22)
x̂k|k = P k|kŷk|k, (2.23)
ŷk|k = Y k|kx̂k|k, (2.24)

where yk|k is the estimated information vector and Y k|k the estimated information
matrix, the prediction Equations (2.5) and (2.6) can be written as:

Y k|k−1 =
[
F k−1Y

−1
k−1|k−1F

T
k−1 +Qk−1

]−1 (2.25)

ŷk|k−1 = Y k|k−1F k−1Y
−1
k−1|k−1ŷk−1|k−1. (2.26)

The estimation equations are different to those in state space. As described in
[Mut98] the information space version results after some conversions in:

ŷk|k = ŷk|k−1 + ik (2.27)
Y k|k = Y k|k−1 + Ik, (2.28)

with

ik = HT
kR
−1
k zk (2.29)

Ik = HT
kR
−1
k Hk. (2.30)

Therein ik is called the information gain and Ik the information gain matrix.
Together, ik and Ik are called information measurement.
For non-linear systems there are the extended information filter (EIF)[Mut98] and the
unscented information filter (UIF)[Mut98]. Both are very similar to the corresponding
EKF and UKF.
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2.2.3 Comparison of Kalman and Information Filter

The Kalman and the information filter are, as already pointed out, mathematically
equivalent. After every prediction and every estimation, a conversion between the
two representations is possible using Equations (2.22) to (2.24). Taking a closer
look and comparing the Figures 2.1 and 2.2 it is obvious that the information filter
provides a completely generic interface for sensors in the single-object case since
there is no need to transmit the measurement model or the measurement noise.
All the necessary information is incorporated in the information contribution using
Equations (2.29) and (2.30).

Prediction

Estimation Sensor

(·)k−1|k−1 → (·)k|k−1

(·)k|k−1 → (·)k|k

ŷk|k−1

Y k|k−1

ŷk|k

Y k|k

Central Tracker

ik, Ik

Figure 2.2: Single-object Kalman filter in information space

2.3 Data Association in Fusion Systems

The strongest restriction when tracking one or multiple objects with a standard
Kalman filter is the assumption that the sensor provides only one measurement per
object. In case of filtering one dimensional sensor data, this assumption may be
correct, but for object tracking the used sensors normally are able to provide multiple
measurements for one or more objects at the same time. Furthermore, false alarms
are usually unavoidable. Considering multiple measurements originated by at least
one object, especially designed filter algorithms are used. In case of fusion systems
basing on data association, one Kalman filter is instantiated for every perceived
object. Thus, an assignment of measurements to tracks is necessary. Such fusion
systems are also called multi-instance filters. Since every instantiated tracker needs
knowledge about the measurement in the estimation step, the assignment problem
is crucial. This association can be done using hard or a soft decision algorithms. For
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soft decision the probabilistic data association (PDA) is a common approach. The
hard and the probabilistic data association are summed up in this section.

2.3.1 Hard Decision Association

The hard decision association methods are normally realized using nearest neighbor
(NN) methods. This means, that a symmetric distance measure is used to find the
best association between all measurements and all tracks. This can be done by
finding every local nearest neighbor (LNN), which can be suboptimal, or the global
nearest neighbor (GNN). Where the LNN finds only the association with the minimal
distance, double association may be allowed or not, the GNN finds the associations
to minimize the global cost of all associations. Well known GNN methods are the
Hungarian algorithm [Kuh55], or the auction algorithm [Ber88].
One big advantage of NN methods is their simplicity. In particular the implementa-
tion of LNN algorithms is quite easy and the result is comprehensible. Further, even
a large amount of data is computationally feasible.
Using hard decisions in the association step works out in most cases, where the
objects are well separated. In dense scenarios, the NN methods are not able to
deal with ambiguities. The consequences are identifier (ID) switching or even track
loss. Further, such simple tracking approaches are normally not able to estimate an
existence probability of an object.

2.3.2 Probabilistic Data Association

The PDA was first presented in [BT75] with the intention to solve the problem of
multiple measurements for one single object. Instead of a hard decision association,
a weight is calculated for every measurement. These weights define the influence
of every measurement in the estimation step of the filter cycle. Thus, using the
PDA allows to circumvent the problem of hard data association by incorporating
all measurements in a weighted soft decision process. One problem coming up with
this kind of soft association is that even the most unlikely measurement has an
influence on the new state and might lead to inaccuracies. Another drawback of
this approach is the need for a computational costly calculation of the distance
from every measurement to every track. In order to reduce these drawbacks to a
minimum, a gating, e.g. using the Mahalanobis distance (MHD), is advisable, to
neclect very unlikely pairings. The PDA is divided into three parts: the calculation
of the association weights, the calculation of the estimation hypotheses, and the
PDA estimation. These three parts are explained in the following subsections. A
well written summary of the PDA can be found in [Gri10].
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Calculating Association Weights

When calculating the PDA the association weight βj,k has to be calculated for every
measurement zj , with j = 1 . . .mk at time k. This is commonly done using:

βj,k =


b

b+
∑mk

l=1
el,k

j = 0
ej,k

b+
∑mk

l=1
el,k

j = 1, . . . ,mk

(2.31)

Therein, j = 0 represents the hypothesis, that no measurement was associated. The
exponential function ej,k of the MHD is given with:

ej,k = e− 1
2d

MHD
j,k . (2.32)

The MHD is given by:

dMHD
j,k = νT

j,kS
−1
j,kνj,k, (2.33)

where νj,k = zj,k − ẑk|k−1 represents the measurement residuum and Sj,k is the
innovation covariance matrix from Equation (2.8) for the corresponding measurement
j. The weights are normalized to guarantee that they sum up to one:

mk∑
j=0

βj,k = 1. (2.34)

The last unknown parameter in Equation (2.31) is b, which models the influence
of possible clutter measurements. Using the, not necessarily constant, detection
probability pD, the gating probability pG, and the dimension nz of the measurement
space two different models are commonly used [BF88; Gri10]:

b=λ c© |2πSk|
1
2

(1− pDpG)
pD

=


(

2π
γ

)nz
2
λ c©Vkcnz

(1−pDpG)
pD

,parametric(
2π
γ

)nz
2
mkcnz

(1−pDpG)
pD

,non-parametric
(2.35)

The parametric model assumes the clutter measurements to be Poisson distributed.
In the non-parametric model the clutter is expected to be equally distributed.
Within Equation (2.35) cnz is the nz dimensional unity sphere, λ c©Vk is the Poisson
distribution parameter where Vk is the volume of the elliptical validation region of the
track, and λ c© is the spatial density of false measurements (i.e. the average number
per unit volume)[BF88], and γ is a constant parameter, which can be obtained from
the quantile tables of the nz dimensional chi-square distribution for constant pG:
γ = χ2

nz,pG
. Further information about the clutter models can be found in [BF88]
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and [Gri10].

Calculating Estimation Hypotheses

The PDA averages over mk hypotheses, one for every measurement zj,k. Every state
and covariance estimation hypothesis is obtained by estimating the prediction with
the standard Kalman equations from Section 2.1 with the appropriate measurement
and its noise. The state hypotheses are calculated with:

x̂j,k|k = x̂k|k−1 +Kj,k

[
zj,k − ẑk|k−1

]
= x̂k|k−1 +Kj,kνj,k (2.36)

=
{
x̂k|k−1, j = 0
x̂k|k−1 +Kj,kνj,k, j = 1, . . . ,mk

, (2.37)

and the equations for the covariance hypotheses are:

P j,k|k = P k|k−1 −Kj,kSj,kK
T
j,k (2.38)

=
{
P k|k−1, j = 0
P k|k−1 −Kj,kSj,kK

T
j,k, j = 1, . . . ,mk

. (2.39)

The hypothesis with j = 0 does not account the measurement z0,k, which does
not exist, but represents the hypothesis, that none of the available measurements
originates from the object. Thus, the hypothesis is equivalent to the prediction.

PDA Estimation

In the Estimation step of the PDA the averaging over all hypotheses is done. Since
the association weights βj,k are normalized, averaging of the state is done using a
weighted sum:

P k|k =
mk∑
j=0

βj,k︸︷︷︸
a

[
P j,k|k︸ ︷︷ ︸

b

+
(
x̂j,k|k︸ ︷︷ ︸
c

− x̂k|k︸︷︷︸
d

)(
x̂j,k|k − x̂k|k

)T

︸ ︷︷ ︸
correction term

]
(2.40)

This equation can be separated into the four parts (a)-(d). Part (a) is the calculation
of the association weights βj,k in Equation (2.31), (b) the estimation hypotheses
of the covariance in Equation (2.39), (c) the estimation hypotheses of the state in
Equation (2.37), and (d) is the estimated state. The new state (d) can be obtained
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by a weighted sum over all estimation hypotheses from (c):

x̂k|k =
mk∑
j=0

βj,kx̂j,k|k. (2.41)

As it can be seen in Equation (2.40), the estimation of the covariance is not only a
weighted sum over all hypotheses P j,k|k. It is the weighted sum over the hypotheses
plus a correction term. This correction term is necessary, because the weighted
sum approximates multiple Gaussian distributions (the hypotheses) with a single
Gaussian distribution (the new covariance and mean). This approximation leads to
an underestimation of the uncertainty as depicted in Figure 2.3.

−5 0 5

−5

0

5

xk|k−1

z1,k

z2,k z3,k

x in m

y
in

m

(a) Visualization of the predicted state
xk|k−1 and three measurements zj,k.
The black (solid) line represents the
3σ ellipse of the predicted state and
the dashed lines the ellipses of the mea-
surements.

−5 0 5

−5

0

5

xk|k

x1,k|k

x2,k|k

x3,k|k

x in m

y
in

m

(b) The state hypotheses for every mea-
surement and their uncertainties
(dashed). The red (dotted) ellipse rep-
resents the result of the estimation
without the correction term, the black
(solid) ellipse shows the correct PDA
result.

Figure 2.3: Estimation step of the PDA with and without the correction
term. It is obvious, that the approximation of three hypotheses
with only one normal distribution is not sufficient without using
the correction term.
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2.3.3 Joint Integrated Probabilistic Data Association

So far, the PDA was used to track one single object observed with one or multiple
measurements. In most cases the scenarios are a bit more complex, since there are
often more than only one object. The PDA can be extended to the multi-object
case, where so called joint events occur. These joint events are used to describe
every possible combination from each track to all measurements. Therefore, Bar-
Shalom et al. [BF88] introduced the joint probabilistic data association (JPDA). A
further extension of the PDA is the JIPDA [ME02] which, in addition to the JPDA,
integrates an estimation of an existence probability into the filter algorithm. The
main task of the JIPDA is the calculation of the weights for every joint event. There
are different possibilities to calculate these weights, e.g. using Murty’s algorithm
[Mur68]. A very intuitive way is the recursive hypothesis tree. This implementation
can be found in [MSMD08]. In this graph-, or tree-, based approach the probability
of every association is represented by the edge likelihood p(e). An overview of all
valid associations is shown in Table 2.1. An example of such a tree can be found
in Figure 2.4. To determine the weights of the JIPDA there are, corresponding to

x1

z1

x2

@

x2

∅

x2

z1

x2

@

x2

∅

x2

z1

x2

@

x2

∅

x1

@

x1

∅

c©

z1

b

z1

c©

z1

b

z1

c©

z1

b

z1

c©

z1

b

z1

Figure 2.4: Hypothesis tree of the graph based JIPDA in case of two objects
and one measurement.
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Table 2.1: Valid associations of the graph based JIPDA. The birth candidates
are an extension introduced in [MDM09]

t → j
true positive (TP)

object t generated measurement j

c©→ j
false positive (FP)

measurement j is clutter

t →∅ false negative (FN)
object t exists, but was not detected

t → @ true negative (TN)
object t was not detected, because it does not exist

b → j
birth candidate (BC)

measurement j is a birth candidate

Table 2.1, five different edge likelihoods:

p(e = (t, j)) = Λtj · ptD · ptk|k−1,∃ · (1− pj,F ) (2.42)
p(e = ( c©, j)) = pj,F · λ c© (2.43)
p(e = (t,∅)) = (1− ptD) · ptk|k−1,∃ (2.44)
p(e = (t, @)) = qt∃ = 1− ptk|k−1,∃ (2.45)
p(e = ( b , j)) = pj, b , (2.46)

where

Λtj = 1
pG
N (zj,k|ẑtk|k−1,S

t
j,k) (2.47)

is an a priori density of the measurement, ptD the detection probability for object xt,
ptk,∃ the predicted existence probability, pj,F the sensory clutter probability, λ c© the
spatial clutter density, and pj, b the spatial birth probability at the position of the
measurement. Since most of the likelihoods are used more than once, it is advisable
to store them in a look up table (LUT). For the given example, such a LUT is given
in Table 2.2.
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LUT ∅ @ z1

c© × × p(e = ( c©, 1))
b × × p(e = ( b , 1))
x1 p(e = (1,∅)) p(e = (1,@)) p(e = (1, 1))
x2 p(e = (2,∅)) p(e = (2,@)) p(e = (2, 1))

Table 2.2: look up table of all possible edge likelihoods for the example given
in Figure 2.4.

Further, Mählisch et al. proposed in [MSMD08] to go through the hypothesis tree
using the recursive Enumerate Matchings algorithm, introduced in the same work,
to accumulate all occurring likelihoods in the so called SUM table. For the given
example it is given in Table 2.3. Using the SUM table, the equation of the weights

SUM ∅ @ z1

c© × × ∑
e:( c©,1)∈e p(e)

b × × ∑
e:( b ,1)∈e p(e)

x1 ∑
e:(1,∅)∈e p(e)

∑
e:(1,@)∈e p(e)

∑
e:(1,1)∈e p(e)

x2 ∑
e:(2,∅)∈e p(e)

∑
e:(2,@)∈e p(e)

∑
e:(2,1)∈e p(e)

Table 2.3: SUM table with accumulated edge likelihoods for the example
given in Figure 2.4.

of the JIPDA [MSMD08]

βtj,k =
∑
e:{t,j}∈e p(e)∑
e:{t,@}/∈e p(e)

. (2.48)

can be rewritten as [MSMD08]:

βtj,k = SUMk(t, j)∑
ι∈{Z\@} SUMk(t, ι) . (2.49)

Here Z denotes the set of all measurements including the special elements introduced
in Table 2.1:

Z = {z1,k, z2,k, . . . ,zmk,k,∅,@} . (2.50)

Having multiple objects, the weights have an additional index t in comparison to
the weights of the PDA. Figure 2.5 shows a simple flow graph to visualize the data
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streams (compare to the single-object single-measurement case in Figure 2.1).

Prediction

Estimation
Sensor

(·)k−1|k−1 → (·)k|k−1

(·)k|k−1 → (·)k|k

x̂tk|k−1

P t
k|k−1

Central Tracker

Hk,Rk

zj,k, dim(zj,k)

J(I)PDA
x̂tk|k

P t
k|k

βtj,k

Figure 2.5: Multi-object Kalman filter in state space using J(I)PDA.

With multiple objects the PDA equations have to be adapted as well:

x̂tj,k|k = x̂tk|k−1 +Kt
j,kν

t
j,k (2.51)

P t
j,k|k = P t

k|k−1 −Kt
j,kS

t
kK

t
j,k

T (2.52)

x̂tk|k =
mk∑
j=0

βtj,kx̂
t
j,k|k (2.53)

P t
k|k =

mk∑
j=0

βtj,k[P t
j,k|k +

(
x̂tj,k|k − x̂tk|k

)(
x̂tj,k|k − x̂tk|k

)T
] (2.54)

So far, there is no prediction and estimation of existence. Thus, setting the predicted
existence probability to ptk|k−1,∃ = 1, the filter is equivalent to the JPDA. To fully
integrate the existence into the filter, the predicted existence probability is calculated
using the first order Markov chain from Figure 2.6:

ptk,∃ ptk,@ptk,P

1− ptk,P

p b

1− p b

Figure 2.6: First order Markov chain of the integrated existence estimation
in the prediction step.

ptk|k−1,∃ = ptk−1|k−1,∃p
t
k,P + p b (1− ptk−1|k−1,∃), (2.55)
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where it is a common practice to use a constant a priori birth probability p b = p b ,prior
for any new object, and ptk,P is the probability for object t to persist. The estimation
of the existence can be done with [MSMD08]

ptk|k,∃ =
∑
e:{x,@}∈e p(e)∑

e p(e)
(2.56)

using the SUM table again [MSMD08]:

ptk|k,∃ =
∑
ι∈{Z\@} SUMk(t, ι)∑
ι∈{Z} SUMk(t, ι) . (2.57)

An extension of the JIPDA as presented so far is to assume that a sensor is able to
provide an evidence about a measurement [Mun11]. This evidence can be expressed
as a true positive (TP) probability for every measurement: pjTP . An approach
to model such an evidence is to use a probability generating classification like a
standard Bayes classifier (see e.g. [DHS01]). Further examples of sensor evidence
models can be found in [Sto10] and [Mun11]. With this assumption Equations (2.43)
and (2.46) simplify to:

p(e = ( c©, j)) = 1− pjTP (2.58)
p(e = ( b , j)) = pj,kTP · pj, b . (2.59)

Further, Munz proposed in [Mun11] to eliminate the spatial distribution in Equa-
tion (2.47) by replacing the a priori density Λtj by the measurement likelihood
pΛ(xtk, zj,k) with:

pΛ(xtk, zj,k) = eν
t
j,k

T
St

j,k

−1
νt

j,k . (2.60)

2.4 Performance Evaluation

To compare different multi-object tracking algorithms against each other, a consistent
performance metric is necessary. In single-object applications, state estimation errors
like the Euclidean distance or the MHD are sufficient. In multi-object scenarios, a
performance metric has to incorporate the cardinality error as well. A traditional
approach to that problem is the Hausdorff distance, but it is relatively insensitive to
cardinality errors. This problem was addressed by the optimal mass transfer (OMAT)
metric presented in [HM04]. Schuhmacher et al. have shown in [SVV08] that there
are still some drawbacks using the OMAT. Some of the drawbacks are: the OMAT
is undefined in case of an empty set, and it does not penalize if there are multiple
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estimates for the same object. To overcome the drawbacks, Schuhmacher et al.
presented the optimal subpattern assignment (OSPA) metric. A brief introduction
to the OSPA metric is given in this section.

2.4.1 Optimal Subpattern Assignment

The basis of the OSPA metric is the distance d of two state vectors x and y. This
distance can be calculated using a valid metric, e.g. the Euclidean distance between
to states d(x,y). The OSPA metric of a single pair is this distance limited to an
upper bound c. This bound is called the cut-off:

dc(x,y) = min(c, d(x,y)). (2.61)

The cut-off parameter c is used to prevent that high distances between true and esti-
mated states cause larger OSPA distances than a missed detection. In case of multiple
objects, the single state vectors are replaced by two finite sets X = {x1, . . . ,xm}
and Y = {y1, . . . ,yn}. For m ≤ n, the OSPA distance now is obtained by:

dpc (X,Y ) =
(

1
n

(
min
π∈Πn

m∑
i=1

dc(x(i),y(π(i)))p + cp(n−m)
)) 1

p

. (2.62)

Therein, Πk is a set of possible permutations on {1, 2, . . . , k} for any k ∈ N. In
case of m > n, the sets X and Y have to be switched. An increasing parameter p
while keeping c constant leads to a higher penalization of outliers. For p = 1, the
parameter c is the penalty given to any false or missing estimation. In this work, the
parameter p is always set to p = 1. For further details on the use of the parameters
p and c refer to [SVV08].

2.4.2 Optimal Subpattern Assignment for Tracks

The OSPA metric is evaluated for every single time step. Thus, it does not incorporate
any information about the continuity of a track. In many cases, it is important to
have continuous track IDs. In these cases, there is the need to evaluate tracking
algorithms with respect to the track continuity. This problem was addressed in
[RVCV11]. Therein, the optimal subpattern assignment for tracks (OSPAT) as an
extension to the OSPA metric was proposed. In the OSPAT, the state vectors are
extended to labeled state vectors x = (x, l) and y = (y, s), with the labels l and s.
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The distance of the new labeled state vectors are defined by the OSPAT as:

d
(
x,y

)
=
(
d (x,y)p +

(
a (1− δl (s))

)p) 1
p

. (2.63)

Therein, the parameter a ∈ [0, c] represents the influence of mismatching labels and
δl (s) is a Dirac delta function. A value of a = 0 simplifies the OSPAT to the OSPA
as explained above. Choosing a = c, a mismatching label causes the same distance
as a missed detection.



Chapter 3

Generic Sensor Data Fusion in
Information Space

The information filter as introduced in Section 2.2 is mathematically equivalent to
the Kalman filter. In publications like [GDH92] and [Mut98] the main advantage of
the information filter is the simple realization of a decentralized filter architecture.
Every node of a decentralized network can incorporate the information transmitted in
information space by only summing it up. Nevertheless, until now, it is not possible
to use other methods than nearest neighbor association to fuse information from
different sources in information space. As this is a major drawback, why should one
use the information filter in a centralized fusion system? The answer is quite simple:
it is the anonymization of the sensor. Anonymization is the crucial point to realize
a completely generic sensor fusion system. The principle of this anonymization is
explained in detail in this chapter.
Every type of sensor has its own measurement model. This model is necessary in
the filtering process. With the measurement model, the measurement itself, its
states and dimension, changes. This results in a different size of the measurement
vector or different entries in it. Thus, if a sensor is exchanged the fusion system
has to be adapted to the new sensor. The result of the anonymization is an unified
sensor interface. Further, most sensors have an extrinsic calibration. Some also
have an intrinsic one. If this calibration never changes again, the fusion system
does not have to handle it. If the calibration is done very often, e.g. using an auto
calibration, the calibration can be incorporated into the sensor data and therefore
into the measurement model. Thus, a new calibration results again in a change of
the measurement model. Another characteristic of the anonymization of the sensor
is, that the fusion system does not need any detailed knowledge about the sensor or
its measurement principle. Therefore, the supplier of the sensor has not to provide
these details.
In the following it is explained how the information filter can be used in the JIPDA
fusion system and others.
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3.1 Information Filter in PDA

When calculating the PDA in information space a lot of equations are the same
as in state space. Some equations, especially those depending explicitly on the
measurement or the measurement model, change in information space. The standard
equations of the Kalman filter in Section 2.1 are replaced by the equations of the
information filter in Section 2.2. Since the prediction of the PDA does not differ
from the prediction of the standard Kalman filter, the major difference to the PDA
introduced in Section 2.3.2 is the estimation step.

3.1.1 Calculating Association Weights

Calculating the association weights is straight forward, since the calculation of
the weights βj,k of the PDA in information space is nearly the same as in state
space. There are two confinements: first, in Equation (2.35) the dimension of
the measurement nz is necessary. The problem in information space is, that the
information gain i is transmitted instead of the measurement z. Thus, the dimension
of the information vector i is the same as the one of state vector x. Consequently,
the dimension nz has to be transmitted from the sensor to the fusion system in
addition. The second constraint is the calculation of the MHD in Equation (2.33).
Thus, there is the need for an approach which allows the calculation of the MHD or
an equivalent. Such an approach is presented below in Section 3.1.2.

3.1.2 Mahalanobis Distance

The Mahalanobis distance (MHD) is a necessary distance measure used in several
equations of the PDA. Taking a closer look at the Equation (2.33), one will notice,
that the MHD can not be calculated in information space. This is due to the absence
of the innovation covariance, the predicted measurement, and the measurement itself.
This problem was also addressed in [FD93], where Fernandez et al. proposed to use
the following equivalence:

ηT
j,kΥ†j,kηj,k = νT

j,kS
−1
j,kνj,k. (3.1)

Therein, νj,k is the already known measurement residuum. Further, Fernandez et al.
pointed out that ηj,k is the equivalent to the measurement residuum in information
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space:

ηj,k = HT
kR
−1
k νk

= ij,k − Ij,kY −1
k|k−1ŷk|k−1. (3.2)

Consequently,Υj,k is defined as:

Υj,k = Ij,k + Ij,kY −1
k|k−1Ij,k. (3.3)

Actually, what really is necessary is the inverse Υ−1
j,k. Unfortunately Υj,k is not

always invertible, since the dimension of the observation nz is in most cases smaller
than the dimension of the state nx. Thus, the rank of Ij,k is not always full and
therefore is not invertible in general. Consequently Υj,k is not invertible in general
as well, since:

rank(Υj,k) ≤ rank(Ij,k). (3.4)

As solution, the Moore-Penrose pseudo-inverse [Moo20] is used, which is denoted by
the † symbol. In case of an invertible matrix the inverse and the pseudo-inverse are
identical.

3.1.3 Calculating Estimation Hypotheses

Calculating the estimation hypotheses needed in Equation (3.13) is very similar to
the state space case. Using the estimation equations of the information filter in
Equations (2.27) and (2.28), the hypotheses in Equations (2.37) and (2.39) can be
rewritten. In equivalence to the hypotheses of the estimated state in Equation (2.37)
the hypotheses of the estimated information vector are:

ŷj,k|k = ŷk|k−1 + ij,k (3.5)

=
{
ŷk|k−1, j = 0
ŷk|k−1 + ij,k, j = 1, . . . ,mk

. (3.6)

The corresponding hypotheses of the covariance in Equation (2.39) are replaced by
the hypotheses for the estimated information matrix:

Y j,k|k = Y k|k−1 + Ij,k (3.7)

=
{
Y k|k−1, j = 0
Y k|k−1 + Ij,k, j = 1, . . . ,mk

. (3.8)
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Again, the case j = 0 represents the hypothesis, that all measurements are clutter
and none of it is assigned to the actual object.

3.1.4 PDA Estimation

The approach to calculate the estimation step of the PDA with information mea-
surements is to slightly modify the estimation in Equation (2.40), and to replace the
estimated covariance with the estimated information matrix:

Y k|k =
( mk∑
j=0

βj,k︸︷︷︸
a

[
P j,k|k︸ ︷︷ ︸

b

+
(
x̂j,k|k︸ ︷︷ ︸
c

− x̂k|k︸︷︷︸
d

)(
x̂j,k|k − x̂k|k

)T
])−1

. (3.9)

Equivalent to the equation in state space there are four parts (a)-(d). In (a), as before,
the association weights are calculated. Parts (b)-(c) are rewritten in information
space using Equations (2.22) to (2.24).

(b) : P j,k|k = Y −1
j,k|k (3.10)

(c) : x̂j,k|k = P j,k|kŷj,k|k = Y −1
j,k|kŷj,k|k. (3.11)

In (d), as explained above, a weighted mean x̂ of all mk estimation hypotheses is
calculated. Using Equation (3.11), the Equation (2.41) can be written as:

(d) : x̂k|k = Y −1
k|kŷk|k =

mk∑
j=0

βj,kY
−1
j,k|kŷj,k|k (3.12)

After substituting Equations (3.10) to (3.12) into Equation (3.9), the update in
information space is:

Y k|k =
( mk∑
j=0

βj,k

[
Y −1
j,k|k + Ỹ j,kỸ

T
j,k

])−1
(3.13)

with

Ỹ j,k = x̂j,k|k − x̂k|k

=
(
Y −1
j,k|kŷj,k|k −

mk∑
j=0

βj,kY
−1
j,k|kŷj,k|k

)
. (3.14)
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3.2 Information Filter in JIPDA

As shown in Chapter 2 the main difference of JPDA and JIPDA to the single-object
PDA is the calculation of the association weights. In the multi-object version, a
hypothesis tree is used to determine the weight for every hypothesis. Table 2.1
shows, as already explained, the possible associations including the special symbols.
The corresponding equations are given by Equations (2.42) to (2.46). Since Equa-
tions (2.44) to (2.46) do not depend on any state space parameter, these can be used
in the information space form of the JIPDA without any adaption. In contrast, the
TP probability p(e = (t, j)) in Equation (2.42) depends directly on the state space
because of the measurement likelihood Λtj . The FP probability in Equation (2.43)
may depend on the state space because of the spatial clutter λ c©, depending on
the implementation of the clutter model. However, most of the suggested models
approximate the gating volume and therefore depend on the determinant of the
innovation covariance |Stj,k| [Mäh09; MM04] which in turn depends on the state
space as depicted in Equation (2.8).
The suggested solution to solve these dependencies is depicted in this section. After
solving the remaining state space dependencies, the obtained algorithm is a JPDA
or JIPDA which can be calculated using only information measurements. This leads
to the flow graph in Figure 3.1 in comparison to the one in state space (Figure 2.5).

Prediction

Estimation
Sensor

(·)k−1|k−1 → (·)k|k−1

(·)k|k−1 → (·)k|k

ŷtk|k−1

Y t
k|k−1

Central Tracker

ij,k, Ij,k

J(I)PDA
ŷtk|k

Y t
k|k

βtj,k

dim(zj,k), |Hj,k|+, |Rj,k|

Figure 3.1: Multi-object Kalman filter in information space using J(I)PDA

3.2.1 Measurement Likelihood

As pointed out, the measurement likelihood Λtj as used in Equation (2.42) is one of the
remaining dependencies of the state space to be solved. As shown in Equation (2.47),
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the likelihood is the result of a multivariate normal distribution N (zj,k|ẑtk|k−1,S
t
j,k)

with mean ẑtk|k−1 and covariance Stj,k. Unfortunately, none of the parameters of the
normal distribution is available when using the information filter. In order eliminate
these dependencies on the state it is necessary to take a look at the derivation of the
likelihood, where it is obtained by the following marginalization [Mäh09]:

N (zj,k|ẑtk|k−1,S
t
j,k) =

∫
N (zj,k|Hj,kx

t
k,Rj,k)N (xtk|x̂tk|k−1,P

t
k|k−1)dxtk (3.15)

In this equation, all unknown dependencies are part of the normal distribution
N (zj,k|Hj,kx

t
k,Rj,k) of the measurement. Therein, xtk is the true state of the

observed object to be estimated. Thus, Hj,kx
t
k is the true measurement of the

object, which does not exist, since it is influenced by the measurement noise Rj,k.
This results in the noise afflicted measurement zj,k. In the information space, there
is no explicit knowledge about any of the parameters. Writing out the normal
distribution of the measurement in full results in:

N (zj,k|Hj,kx
t
k,Rj,k)

= 1√
(2π)nz |Rj,k|

e−
1
2

(
(Hj,kx

t
k−zj,k)T

R−1
j,k(Hj,kx

t
k−zj,k)

)
(3.16)

Therein, several parameters are unknown in information space. To the knowledge of
the author, there is no possibility to determine the dimension of the measurement nz
and the determinant of the measurement uncertainty |Rj,k| using the information
contribution ij,k and Ij,k. These two parameters have to be provided by the sensor.
Since these are only two single values, the overhead when transmitting them is
acceptable. Further, it is not possible to use these information to recover the
measurement principle of the sensor. In contrast, the exponent of the right hand
side in Equation (3.16) contains explicit information about the sensor. Taking a
closer look at the exponent allows some useful conversions:(

Hj,kx
t
k − zj,k

)T
R−1
j,k

(
Hj,kx

t
k − zj,k

)
=
((
Hj,kx

t
k

)T − zT
j,k

)
R−1
j,k

(
Hj,kx

t
k − zj,k

)
=
(
xtk

T
HT

j,k − zT
j,k

)
R−1
j,k

(
Hj,kx

t
k − zj,k

)
= xtk

T
HT

j,kR
−1
j,kHj,kx

t
k − xtk

T
HT

j,kR
−1
j,kzj,k − zT

j,kR
−1
j,kHj,kx

t
k + zT

j,kR
−1
j,kzj,k

= xtk
T
Ij,kx

t
k − xtk

T
ij,k − zT

j,kR
−1
j,kHj,kx

t
k︸ ︷︷ ︸

a

+ zT
j,kR

−1
j,kzj,k︸ ︷︷ ︸
b

(3.17)

For further conversions of the parts (a) and (b) in Equation (3.17) some assumptions
are necessary. In the following it is assumed, that Rj,k and Ij,k are symmetric. This
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does not cause further restrictions. In addition it is necessary to regard Hj,k,Rj,k,
and Ij,k as invertible. ForRj,k this has no consequences. In contrast, this assumption
is not always true for Hj,k and Ij,k. This problem is referred to later in this section.
Now, further conversions of part (a) in Equation (3.17) can be done:

zT
j,kR

−1
j,kHj,kx

t
k

= zT
j,k

(
H−1

j,kRj,k

)−1
xtk

= zT
j,k

(
HT

j,kR
−T
j,k

)T
xtk

=
(
HT

j,kR
−1
j,kzj,k

)T
xtk

= iTj,kx
t
k. (3.18)

Same assumptions used in part (b) in Equation (3.17) results in:

zT
j,kR

−1
j,kzj,k = iTj,kI

−1
j,kij,k. (3.19)

Using Equations (3.18) and (3.19), Equation (3.17) simplifies to(
Hj,kx

t
k − zj,k

)T
R−1
j,k

(
Hj,kx

t
k − zj,k

)
= xtk

T
Ixtk − xtk

T
ij,k − iTj,kxtk + iTj,kI−1

j,kij,k

= xtk
T
Ij,kx

t
k − xtk

T
ij,k −

(
xtk

T
ij,k

)T
+ iTj,kI−1

j,kij,k

= xtk
T (

Ij,kx
t
k − ij,k

)
− iTj,kxtk + iTj,kI−1

j,kij,k

= xtk
T (

ij,kx
t
k − ij,k

)
+ iTj,k

(
−xtk + I−1

j,kij,k

)
= xtk

T (
Ij,kx

t
k − ij,k

)
− iTj,kI−1

j,k

(
Ij,kx

t
k − ij,k

)
=
(
xtk

T − iTj,kI−1
j,k

) (
Ij,kx

t
k − ij,k

)
=
(
xtk

T
IT
j,k − iTj,kI−1

j,kI
T
j,k

)
I−T
j,k

(
Ij,kx

t
k − ij,k

)
=
(
xtk

T
IT
j,k − iTj,k

)T
I−T
j,k

(
Ij,kx

t
k − ij,k

)
=
(
Ij,kx

t
k − ij,k

)T
I−1
j,k

(
Ij,kx

t
k − ij,k

)
(3.20)

With the equality in Equation (3.20) the normal distribution in Equation (3.16) can
be expressed as:

N (zj,k|Hj,kx
t
k,Rj,k) = ccorr · N (ij,k|Ij,kxtk, Ij,k) (3.21)
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where ccorr is a correction term:

ccorr =

√
(2π)ni |Ij,k|+√
(2π)nz |Rj,k|

=

√
(2π)ni−nz

|Ij,k|+
|Rj,k|

. (3.22)

Since the state x has the same dimension as y and i, it is ni = nx. The incorrect
assumption that Hj,k and Ij,k are invertible leads to problems when calculating
Equation (3.22). Therefore it is suggested to use the Moore-Penrose pseudo-inverse
[Moo20] (·)†. Further, since I is not necessarily a square matrix, the pseudo-
determinant | · |+ presented in [Min98] should be used. Having a representation
of Equation (3.16) using information measurements, it is possible to marginalize
Equation (3.15) using Equations (3.21) to (3.22) to obtain the measurement likelihood
in information space:

N (zj,k|ẑtk|k−1,S
t
j,k)

=
∫
N (zj,k|Hj,kx

t
k,Rj,k)N (xtk|x̂tk|k−1,P

t
k|k−1)dxtk

= ccorr ·
∫
N (ij,k|Ij,kxtk|k−1, Ij,k)N (xtk|x̂tk|k−1,P

t
k|k−1)dxtk

= ccorr · N (ij,k|Ij,kx̂tk|k−1, Ij,kP
t
k|k−1I

T
j,k + Ij,k)

= ccorr · N (ij,k|Ij,kY t
k|k−1
−1
ŷtk|k−1, Ij,kY

t
k|k−1
−1
IT
j,k + Ij,k). (3.23)

Again, the pseudo-inverse (·)† and the pseudo-determinant | · |+ should be used to
calculate the distributions for the above mentioned reasons.

3.2.2 Gating Volume

As explained above, the determinant of the innovation covariance |Stj,k| is used in
JIPDA to approximate the gating volume. In turn, the gating volume is often used
in clutter models. However, when tracking in the information space the innovation
covariance is unknown. Using the same assumption as in Section 3.2.1, that Hj,k

and Ij,k are invertible, it is possible to obtain an approximation. Thus, the following
conversion is feasible:

Υt
j,k = Ij,k + Ij,kY t

k|k−1
−1
Ij,k

= Ij,k + Ij,kP t
k|k−1
−1
Ij,k

= HT
j,kR

−1
j,kHj,k +HT

j,kR
−1
j,kHj,kP k|k−1H

T
j,kR

−1
j,kHj,k
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= HT
j,k

(
R−1
j,kHj,k +R−1

j,kHj,kP k|k−1H
T
j,kR

−1
j,k Hj,k

)
= HT

j,k

(
R−1
j,k +R−1

j,kHj,kP k|k−1H
T
j,kR

−1
j,k

)
Hj,k

= HT
j,kR

−1
j,k

(
1 +Hj,kP k|k−1H

T
j,kR

−1
j,k

)
Hj,k

= HT
j,kR

−1
j,k

(
Rj,k +Hj,kP k|k−1H

T
j,k

)
R−1
j,k Hj,k

= HT
j,kR

−1
j,kHj,kH

−1
j,kS

t
j,kH

−T
j,kH

T
j,kR

−1
j,kHj,k

= Ij,kH
−1
j,kS

t
j,kH

−T
j,k I

T
j,k. (3.24)

Since it is only the determinant instead of the complete matrix, the searched
expression for |Stj,k| is:

|Υt
j,k| = |Ij,k||H−1

j,k||Stj,k||H−T
j,k ||IT

j,k| (3.25)

|Stj,k| =
|Υt

j,k||Hj,k|2+
|Ij,k|2+

(3.26)

As one can see in Equation (3.26), it is not possible to calculate |Stj,k| using available
items solely, since |Hj,k|+ is unknown. Therefore, this information has to be
provided by the sensor. Since a determinant equals a single value, the overhead is
again acceptable and it is not possible to obtain the sensor model by knowing the
determinant of the measurement matrix only.

3.2.3 Using the Sensor Evidence

When using a sensor with an integrated evidence model as proposed in [Mun11],
the clutter probability in Equation (2.58) is slightly different to the original one in
Equation (2.43). Assuming the sensor to be able to provide a TP likelihood has the
effect, that the approximation of the gating volume in Section 3.2.2 is unnecessary.
Hence, it is not necessary to transmit the determinant of the measurement model
|Hj,k|+ from the sensor to the central tracker. Instead, the TP likelihood pj,kTP
has to be communicated.

3.2.4 Data Transmission

A very interesting question after discussing the data to be provided by the sensors is,
how much data really has to be transmitted. As depicted in the flow charts of the
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JIPDA in the state space, see Figure 2.5, and the information space, see Figure 3.1,
the data to transmit is: Hk,Rk, zj,k in state space, assuming that dim(zj,k) is
known because of the size of the received data. In information space, the transmitted
data is ij,k, Ij,k, dim(zj,k), |Hj,k|+, |Rj,k|. The comparison for different sets of state
and measurement dimensions are given in Table 3.1. It is shown, that the advantage

nz

state space information space
1 2 3 4 5 6 1-6

n
x

3 5 12 21 32 45 60 15
4 6 14 24 36 50 66 23
5 7 16 27 40 55 72 33
6 8 18 30 44 60 78 45
7 9 20 33 48 65 84 59

Table 3.1: Amount of transmitted values for every measurement depending
on the dimension of the state vector x and the measurement
vector z (worst case).

of the information space is, that the amount of transmitted values depends only on
the dimension of the state. This is a disadvantage at the same time, since in setups,
where the measurement dimension is low, the amount of values is higher than in the
state space. In such cases the bigger amount of data is the tradeoff to gain a generic
sensor linkage.

3.2.5 Linearization of Non-Linear Measurement Models

In case of non-linear measurement models, one certain problem arises: the lineariza-
tion. In the state space, the predicted state is transformed into the measurement
space using the measurement matrix Hk. A non-linear model causes a measurement
function hk(x̂). Using an extended or unscented Kalman filter, the measurement
function is used to transform the state into measurement space, but to calculate
the innovation covariance in Equation (2.8) a matrix is necessary. In the EKF for
example, this problem is solved using the linearization of the measurement function
at the predicted state:

hx,k+1 =
[
∇xhk+1(x)T]T∣∣∣

x=x̂k+1|k
:= ∂hk+1(x)

∂x

∣∣∣∣
x=x̂k+1|k

(3.27)
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Using the information filter, where the fusion system does not know the measurement
model, the linearization has to be done by the sensor.

Linearization Using the Predicted State As it can be seen in Equation (3.27),
the linearization depends on the predicted state. Therefore, a backward channel
from the fusion system to the sensor is necessary. The information sensor then has
to calculate the information gain and it’s corresponding information matrix with:

νk = zk − hk(x̂k+1|k) (3.28)
Ik = hT

x,k+1R
−1
k hx,k+1 (3.29)

ik = hT
x,k+1R

−1
k [νk + hx,k+1x̂k+1|k]. (3.30)

In Equations (3.28) to (3.30) a predicted state is necessary to calculate the measure-
ment. In multi-object and multi-measurement scenarios a certain problem arises: the
linearization has to be done for every measurement with the corresponding predicted
state. In case of a feasible backward channel some kind of measurement to track
association has to be calculated. Therefore, every measurement is linearized using
every predicted track. Afterwards, a nearest neighbor association using the MHD
is done. The transmitted measurements are those with the smallest MHD to the
predicted tracks. Here, a gating should be used in case of measurements which are
caused from an object not yet tracked. This causes the next barrier: if there is
no object tracked yet, a predicted state is not present. Without a predicted state,
the linearization is not possible. This corresponds to the case, that sometimes a
backward channel is either not feasible or not intended by the system design. It
is important to mention, that the measurement function is not separable from the
state [MA97] [VW05] [Lee08]. Bar-Shalom et al. also pointed out in [BL95], that
the calculation of the covariances is not decoupled from the estimated states. This
approach is used in the EKF of the evaluation in Section 3.4.1. Another drawback of
this approach is the large amount of data to transmit to the sensor e.g. in the case
of an UKF. Using this filter, the innovation covariance is calculated using a weighted
sum of sigma points. To do so, all sigma points have to be transmitted to the sensor.

Linearization Using the Invertable Measurement Function In case of an
invertible measurement function, one solution is, to linearize the measurement
function at the position of the measurement converted into state space. This is
comparable to the converted measurement Kalman filter (CMKF) presented in
[BL95]. Therein, the example of a sensor which measures the radial distance and
the angle is given. The measurement of this sensor can easily be transformed to
Cartesian coordinates and the linearization, or the use of a linear measurement
model, is possible. This solution is also evaluated in Section 3.4.1.
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Linearization Using the Measurement Function with Additional Assump-
tions If the measurement function is not invertible, it might be possible to invert it
partially to obtain only the necessary states for linearization. Measurement functions
containing projections, like the pinhole camera model [HZ04], depend from several
state variables. The measurement function then is not even partially invertible. In
this case, additional assumptions might be the solution. Using the pinhole camera
model, one approach is to assume a certain width of the perceived object to allow a
transformation from the measurement space into state space or to assume the world
to be absolutely flat.

3.2.6 The Continuity Problem in Angle Measurements

In case of a sensor which supplies angle measurements, e.g. because of a radial
measurement principle or the yaw angle of a perceived object, a problem comes
up: the discontinuity of the angle. Since the angle is always limited to a certain
interval, e.g. ]− π, π] or [0, 2π[, the problem arises always at the borders of the
interval. Figure 3.2 shows an example with the interval [0, 2π[= [0◦, 360◦[. In the
prediction step in Equation (2.5) or the estimation step in Equation (2.10) of the
Kalman filter it is not guaranteed that the intervals are not exceeded. Figure 3.2
depicts the problem of the estimation step in Equation (2.10). There, the difference
of the predicted measurement ẑk|k−1 and the current measurement z1,k has to be
calculated. If the sensor provides an angle, this difference inherits a difference of
angles. In the example in Figure 3.2 these angles are: ψẑk|k−1 = 10◦ and ψz1,k

= 350◦.
The difference then is: ψz1,k

− ψẑk|k−1 = 340◦. Obviously, the difference should be
20◦. In the state space such problems are solved by normalizing all angles and angle
differences. In the information space a normalization is not feasible, since it is not
possible to obtain the single state variables from the information gain ij,k. One

0◦ = 360◦180◦

90◦

270◦

ψẑk|k−1 = 10◦

ψz1,k = 350◦

Figure 3.2: Visualization of the angle continuity problem in the interval
[0, 2π[.

way to solve the problem of discontinuity in the information space is to convert the
predicted information vector ŷk|k−1 into the state space x̂k|k−1. This usually means
no computational overhead, since the complete prediction step is done in the state
space even when using the information filter. Afterwards multiple predicted states
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are hypothesized:

x̂0
k|k; x̂+2π

k|k ; x̂−2π
k|k

where ±2π is added to the angle of the state. Now, the MHD is calculated for the
three hypotheses and every information measurement ij,k. Here, the MHD presented
in Section 3.1.2 is used. The angle hypothesis with the smallest MHD is used in the
estimation step. After estimating the information vector, the added ±2π have to be
subtracted again.

3.3 Information Filter in other Fusion Systems

The use of the information filter approach in JIPDA is a special case because of
the averaging over multiple estimation hypotheses. In other fusion systems, the
information filter approach in multi-object scenarios is straight forward to the single-
object case, since a hard decision association is used in most cases. The only barrier
is the measurement likelihood

p(ẑk|k−1|zk,Rk) (3.31)

which has to be evaluated in nearly every fusion system. Further, most tracking
approaches assume this likelihood to be a multi-dimensional Gaussian:

p(ẑk|k−1|zk,Rk) ∼ N (ẑk−1|zk,Rk) (3.32)

= 1√
(2π)nz |Rk|

e−
1
2

(
(Hkxk|k−1−zk)T

R−1
k (Hkxk|k−1−zk)

)
. (3.33)

Equivalent to Equation (3.21), the exponent of Equation (3.33) can be transformed
as follows:

(Hx− z)T
R−1 (Hx− z) = xTIx− xTi− iTx+ iTI†i. (3.34)

With that, it is possible to calculate the measurement likelihood except the leading
normalization constant:

1√
(2π)nz |Rk|

(3.35)

In case of sequential Monte Carlo (SMC) methods, this constant is the same for every
particle. Since the particles are normalized, this constant can be ignored. In all other
cases, the normalization can be calculated with knowledge about the determinant
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|Rk|. This single value has to be provided by the sensor system. Further, since the
inverse I−1

k is not always possible, the pseudo-inverse I†k has to be used.

3.4 Evaluation

To evaluate if the presented information filter approach is equivalent to the Kalman
filter, three scenarios are used. Therein are two simulations: one with a linear
measurement model and one with a non-linear one, as well as one real-data scenario
where multiple pedestrians are tracked indoors. To guarantee that differences between
state space and information space are only due to numerical reasons, new born
tracks are initialized in one single step. Further, both methods are parameterized
identically with constant probabilities for pDt , pFj , and p b ,prior. As described above,
the only quantities transmitted from the information sensor to the fusion module are:
ij , Ij , |Rj |, |Hj |+, and nzj . To evaluate the difference between the information
filter and the Kalman filter, the OSPA distances dKF

O of the Kalman filter and dIF
O of

the information filter introduced in Section 2.4 are used. To penalize ID switching
errors the OSPAT is used. The evaluation of every scenario consists of two figures:
in (a) the OSPAT distance itself is plotted. Since there is no obvious difference at
the chosen scale, only the information space result is shown. In (b) the mathematical
difference dKF

O − dIF
O of the OSPAT distances is depicted. The JIPDA used in this

evaluation is not optimized in any way and therefore it is not the algorithm itself
which is evaluated here. The difference between information and state space is
evaluated to proof the equivalence of both approaches.

3.4.1 Simulation Results

In this section the two simulation scenarios are evaluated using the OSPA distances
in the state and information space. In the simulation, four objects are moving along
the trajectories depicted in Figure 3.3. The trajectories cross each other in one point
at the same time and only differ because of the added measurement noise. Three of
them are moving side by side over a short time. This scenario is chosen to show the
difference in a high density scenario where all measurements are very close to each
other. The used process model is a constant velocity and constant turn (CVCY)
with the state vector x = [x y v ψ ω]T. Therein, x and y denote the Cartesian
coordinates, v the velocity, ψ the yaw angle, and ω the yaw rate. As measurement
model, a linear model with z = [x y ψ]T and a non-linear model with z = [r ϕ ψ]T
are investigated. Herein, r is the radial distance and ϕ the the measurement angle.
The chosen simulation parameters are given in Table 3.2. Therein, the σ-values are
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Figure 3.3: Reference trajectories of the perceived objects in the simulation
scenarios. The starting point and the endpoint are marked with
asterisks. The small arrows denote the starting point and yaw
angle. All four objects are passing the the coordinate [−15 24]T
at the same time.

the noise parameters of the model and the sensor. Additionally, the simulated noise
was set to the identical values than the measurement noise of the sensor. In case of
the non-linear model a backward channel is used to allow the linearization in the
sensor.
Figure 3.4 shows the evaluation results in case of the linear measurement model. It
is illustrated that the results of the JIPDA in the state space and the here proposed
version in information space are nearly identical. The maximum of the differences
of both versions is in the range of 10−6 and gets even lower after the initialization
step. Because of the mathematical equivalence of both versions in case of linear
measurement models, this difference is assumed to inherit from computational
inaccuracies in calculation. The evaluation of the non-linear measurement model in
Figure 3.5b shows a much higher difference between state and information space.
It is still quite small, and there seems to be no perceptible difference, but there
are divergences which are not negligible. The most probable assumption about
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Part Parameters
Process σa = 6.0ms2 ; σω = 0.2618 1

s2

Tracker pD = 0.8; pG = 0.95; pP = 0.99; p b ,prior = 0.2
track is born if: p b > 0.5
track is killed if: pk|k,∃ < 0.2

Simulation timestep T = 0.1s
linear: σx = 0.5m; σy = 0.5m; σψ = 0.06 1

s
non-linear: σr = 0.3m; σϕ = 0.0088; σψ = 0.06 1

s

Sensor linear: σx = 0.5m; σy = 0.5m; σψ = 0.06 1
s

non-linear: σr = 0.3m; σϕ = 0.0088; σψ = 0.06 1
s

OSPAT a = 10; c = 10; p = 1

Table 3.2: Simulation and tracking parameters for the evaluation of the linear
and non-linear measurement model.

the reason of the difference is the use of the pseudo-determinant and the pseudo-
inverse since the remaining parts of the algorithm are mathematically equivalent.
Therefore, the error of the proposed method depends on the strength of the non-
linearity. It is hardly possible to predict the expected error since the pseudo-inverse
is exactly the same as the inverse in the linear case and in the non-linear case there
is no real inverse to compare with. Further, the difference between the OSPAT
distances of the linearization at the predicted track (TL) and the linearization at
the transformed measurement (ML) is evaluated in Figure 3.5c. The distances itself
are depicted in Figure 3.5a. The evaluation of the linearization methods shows, that
in the moment the tracked objects are very close to each other, the measurement
linearization is slightly better. Since the measurement linearization is assumed to
be an approximation, this result is unexpected. Actually, the linearization at the
position of the state is the approximation, not the one at the converted measurement.
Therefore, the accuracy of the linearization, in scenarios where the measurement is
convertible to the state space, should be expected to be more accurate. The reason
for that is, that the linearization at the position of the measurement leads to:

zk − hk(x̂k+1|k) = zk − zk = 0 (3.36)
νk + hx,k+1x̂k+1|k = zk (3.37)
ik = hT

x,k+1R
−1
k hx,k+1zk (3.38)

and therefore to a linear measurement model as in Equation (2.29).
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(a) OSPA distance of the information filter.
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(b) Difference of the OSPA distances in state and information space.

Figure 3.4: Evaluation of the OSPA distances in the simulation scenario.
The used measurement model is linear.
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(a) OSPAT distance of the information filter. The red solid line shows the result for
linearization of the measurement model at the predicted state (TL), and the black
dash dotted line at the measurement transformed to the state space (ML).
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(b) Difference of the OSPAT distances in state and information space. The measurement
model was linearized at the predicted state (TL).
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(c) Difference of the OSPAT distances of the TL and the ML linearization approach.

Figure 3.5: Evaluation of the OSPAT distances in the simulation scenario.
The used measurement model is non-linear.
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3.4.2 Real-Data Results

In the real-data scenario several pedestrians are tracked indoors. The pedestrians
do not have any preferred direction of moving and get very close to each other. This
results in frequent partial and full occlusions. The measurements of the objects are
obtained using two light detection and ranging (LiDAR) sensors, where the data of
both is combined in a segmentation process presented in [RD09]. The used process
model is a constant velocity (CV) model with the state vector x = [x vx y vy]T.
Therein, x and y are the Cartesian coordinates, vx and vy are the respective velocities.
For details refer to Section 4.4.1. The measurement model was chosen to be linear:
z = [x y]T. The reference data for this scenario was obtained by labeling the sequence
manually using the sensors’ raw data. The chosen tracking parameters are given in
Table 3.3. A snippet of the trajectories of the reference is shown in Figure 3.6.

Part Parameters
Process σvx = 2.5ms ; σvy = 2.5ms
Tracker pD = 0.8; pG = 0.95; pP = 0.99; p b ,prior = 0.2

track is born if: p b > 0.5
track is killed if: pk|k,∃ < 0.2

Sensor σx = 0.07m; σy = 0.07m
OSPAT a = 10; c = 10; p = 1

Table 3.3: Tracking parameters for the evaluation of the linear and non-linear
measurement model in the real-data scenario.

As before, the results in Figure 3.7 show that there is hardly any difference in the
OSPAT distances. The errors in the range of 10−9 are again assumed to be caused
by computational inaccuracies. Therefore, the results of the real-data scenario are
consistent with the result of the simulated scenario.



40 Generic Sensor Data Fusion in Information Space

S1

S2
1 2 3 4 5 6

−3

−2

−1

0

1

2

3

x in m

y
in

m

Figure 3.6: Reference trajectories of the objects in the indoor scenario in time
interval [48s, 96s]. The black dots S1 and S2 are the position of
the used sensors. The black dash dotted lines of the sensors are
the sensor yaw angles and the gray lines represent the field of
view. All other lines depict trajectories from different objects.
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(a) OSPAT distance of the information filter.
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(b) Difference of the OSPAT distances in state and information space.

Figure 3.7: Evaluation of the OSPAT distances in the real-data scenario.
The used measurement model is linear.
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3.5 Summary

In this chapter the JIPDA in information space was presented and evaluated. Ad-
ditionally, a solution to use the information space approach in many other fusion
systems, which are based on Gaussian measurement likelihoods, was given. The
evaluation of the JIPDA approach shows that, in the case of linear measurement
models, the information space is mathematically equivalent to the state space, except
for computational inaccuracies. In case of non-linear measurement models, the
approximation errors due to the use of pseudo-determinants and pseudo-inverses are
not negligible but still acceptable. In the case of strong non-linearities the expected
error is difficult to estimate in advance and needs to be evaluated in detail for the
specific case. In addition, with the use of a non-linear measurement model, a back-
ward channel might be necessary if the linearization at the state of the measurement
is not feasible. The disadvantages lie in the higher amount of data that has to be
transmitted in case of small measurement vectors and the fact that the content of a
measurement itself is not interpretable. The main advantages of this approach are:

· The information measurement of every sensor has the same dimension for every
type of measurement. This allows a common sensor interface independent of
the measurement principle. In contrast to that, the dimension of the state
space measurement may be different for every sensor.

· A side effect of the constant dimension of the measurement in information
space is that the amount of values to transmit with every measurement cycle
only depends on the dimension of the state vector nx as depicted in Table 3.1.

· The fusion framework does not need any knowledge about the sensor, since all
information such as the measurement model and the measurement noise are
incorporated in the information measurement.

· It is impossible to get detailed knowledge about the sensor and its measurement
model using the information measurement.

In summary, the presented information filter approach allows the anonymization of
the sensor and leads to the associated advantages at the expense of almost negligible
errors.



Chapter 4

New Approach to Processing
Dense Sensor Data

Modern sensors with the ability to provide distance measures in a very high density,
further referred to as high density distance measuring (HDDM) sensors, are getting
more and more popular. Current state of the art sensors providing dense data
are e.g. stereo cameras or LiDAR sensors. In future, high resolution radar and
even better LiDAR sensors will find their way into everyday life. Examples are
the existing autonomous vehicle presented in [KNW+15] or the well known Waymo
project [Wik17]. Such sophisticated sensors share one property: they supply three
dimensional data as point clouds. The ability of humans to analyze such point clouds
is tremendous. This is the reason why one could assume that it is very easy to
extract object hypotheses from this data, but humans have the ability to learn such
things with a huge amount of training data, to use information about the context,
and eventually fuse the perception with other sensor data (e.g. a two dimensional
image of the scene). Since the fusion with other sensors in the preprocessing of a
sensor is unrewarding and learning respectively classifying data can be very costly
in terms of time and resources, most approaches to processing dense data are frame
based. Such frame based methods are usually based on fitting or clustering. In this
chapter, a new approach to extract measurements from HDDM sensors by tracking
the sensor raw data and dynamically clustering the resulting tracks is presented.
After explaining sensor requirements on generic data fusion in general, the sensor
setup used in this work is introduced. Subsequently, the new approach is depicted
in detail.
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4.1 State of the Art

In order to generate measurement hypotheses from point clouds the most common
approach is segmenting the data into clusters and then trying to extract properties
like position, size, and yaw angle. The clustering itself is a widespread task and
there are many different algorithms to solve it. One very common approach is the
density-based spatial clustering of applications with noise (DBSCAN) [EKSX96]
algorithm because of its simple implementation, its efficiency, and the fact that
no prior knowledge about the number of clusters is necessary. Once a cluster is
found, there are different possibilities to generate the hypotheses. A popular way
to do this is a model based fitting of the data. In this work a box fit algorithm,
further referred to as BoxFit, as described in [MDM09] is used as a reference. This
algorithm, as depicted in Figure 4.1, uses a combination of the iterative end point
fit (IEPF) algorithm [Ram72], a least squares line fit, and a conclusive box fit. This
algorithm is specialized to detect vehicles, especially from behind when the cluster
is a clean L or I shape. Figure 4.2 makes clear that generating hypotheses without
knowledge about the context is not always an easy task. After exposing the scenario
in Figure 4.2 to be a roundabout the scene might get clearer. Revealing one car
right in front at [x, y] = [10m, 0m] crossing from left to right, one car leaving the
roundabout at [20m,−18m], and a bus in the roundabout at [40m,−10m] the scene
could be regarded as obvious. The problem of frame based approaches is that every
frame is independent from the last one. So the algorithm has to interpret the scene
in every time step all over again. Another problem is the absence of clean I and
L shapes, as used in [MDM09], if the data is accumulated over multiple sensors or
multiple layers as depicted in Figure 4.3. Therefore, the fitting is done for every
sensor and for every layer separately. This leads to a massive reduction of the amount
of available data points and causes unsatisfying detection rates in higher distances.
Further, it takes a lot of effort to estimate the best set for the necessary heuristic
parameters. The parameter set strongly depends on the scenario and on the object
class to perceive. A change from e.g. rural roads to a city environment can cause an
immense performance drop. The drawbacks listed here are a particular problem of
the used box fitting algorithm from [MDM09] but at the same time the problems
are common to many clustering and fitting approaches.
Another frame based approach to deal with multiple measurements per object is
to model the object’s extension. Such an approach was, among others, presented
in [FF08], where the extension of an object is modeled as a random symmetric
positive definite matrix, with the drawback of an elliptical shape. To overcome the
problems of a frame based measurement hypotheses generation, different approaches
are conceivable. If available, more knowledge about the context could be used
to improve the generated hypotheses. One example for that is to assume the
measurements hypotheses to be orientated along the road [Mei16]. On the one hand
this would improve the yaw angle estimation notably. On the other hand it might
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Figure 4.1: BoxFit algorithm from [MDM09] as a representative for model
based clustering and fitting. After clustering the point cloud
an iterative end point fit [Ram72] with a maximum of two
iterations determines the possible line end points. A least squares
line fit is done using the extracted end points and in case of
two lines a box fitting algorithm is applied. The result of the
algorithm is a line for I shapes and a box for L shapes. A side
product is an estimation for the yaw angle of the clustered object.
The algorithm is highly adapted to vehicles and heuristics are
inevitable.

be a more proper way to incorporate knowledge about the environment in a later
processing step when all available information is fused to an environmental model
as presented in [NSD14]. A more elegant approach could be to imitate the human
behavior to analyze the scene over time. This leads to a filtering approach, where the
raw data is used as an input to a tracking. Tracking road users with raw data and
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Figure 4.2: Bird’s-eye view of example sensor data. For the explanation of
the scenario refer to the text in this section.

Figure 4.3: On the left: measurements from multiple layers or sensors de-
picted in different colors. On the right: resulting cluster of all
points without any clear L or I shape as expected in [MDM09].

eventually fusing other sensors could be done with filter techniques like the group
tracking using the probability hypothesis density (PHD) filter [EAGG13] and the
extended target PHD tracking [GLO10; SC12]. Recently Scheel et al. presented a
laser based extended object tracking using random finite set (RFS) in [SRD16]. The
idea of the extended object tracking is, to model that an object can produce more
than one measurement and therefore, an object can be represented by a complete
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point cloud. These approaches are very promising but computationally expensive.
A few years ago, Meissner et al. presented a promising clustering algorithm at an
intersection, where the clusters are determined over time using measurement grids
[MRD13]. This is a smart possibility to generate object hypotheses in a static
environment. In a dynamic environment a static measurement grid needs to be
extended by a dynamic component as well and would become a static occupancy
grid as presented in [TBF05]. Such an occupancy grid is normally meant to deal
with static objects. Handling dynamic objects in static occupancy grids was done,
among others, in [YNK+15] and is referred to as a dynamic occupancy grid. Using
dynamic occupancy grids extends the geometric space of static occupancy grids by
the time domain. From a statistical point of view it is a single target tracker on
singe cell basis. In comparison to the here presented approach, the output of a grid
map is not only detected objects. It is more an environmental model representation.
The idea of this work is to create measurement hypotheses in a generic way without
the assumption of any model in a highly dynamic environment also providing
additional information like yaw angle and velocity. The approach presented here is
to filter the sensor raw data itself. Therefore every measurement point is regarded
as a single object to be tracked. In comparison to former clustering and fitting
approaches this allows to use additional information like yaw angle, velocity, and
the track ID in the clustering step. Details on the new approach are presented in
the following sections.

4.2 Sensor Requirements

To be able to fuse data from a sensor in a probabilistic manner, a lot of information
from the sensor is necessary. The most important information obviously is the
measurement z itself. A Kalman filter based fusion framework, as introduced in
Section 2.1, furthermore relies on the measurement matrix H, and therefore on
the measurement model, and the measurement noise R. In addition, as shown in
Section 2.3.2, most probabilistic approaches require information like the detection
probability pD, the clutter probability pF , and the birth probability p b . Sometimes,
information about the field of view of a sensor is also useful. Since all these additional
information might be dynamic, they have to be transmitted constantly.
Using the information filter as presented in Section 2.2, the information about the
measurement, its model and its noise are contained in i, I, |H|+, and |R|. As already
elucidated, it is best to use linear measurement models, when using the information
filter in data fusion to reduce the errors inheriting from the pseudo-inverse and
pseudo-determinant. In case of distance measuring sensors, a conversion from a
non-linear to a linear measurement model in the sensor is rather simple. Data from
a stereo camera can be represented in Cartesian coordinates as well and therefore
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a linear measurement model can be used. Using highly non-linear sensors, e.g.
projecting sensors like cameras, a conversion to Cartesian coordinates, and therefore
a linear measurement model, is not possible without additional assumptions. In
ADAS, the most commonly tracked states are: position, yaw angle, velocity, and
the respective derivatives. Therefore, a linear measurement model should provide
some of these states. HDDM sensors are usually able to provide the position of an
object. When using modern high resolution radar sensors, the measurement of the
velocity is also possible even though it is only a radial velocity. Measuring the yaw
angle (orientation) directly, is not possible in most cases but would be a very useful
information. A more exact information about the velocity would be useful as well,
especially in the initialization process of a new track.

4.3 Sensor Setup

The work of this chapter was done using three IBEO LUX 4 LiDARs [Ibe13] mounted
at the front of an experimental vehicle as shown in Figure 4.4. Technical facts and

Figure 4.4: Sensor setup of the experimental vehicle: three LiDARs, depicted
as red rectangles, are mounted at the front of the vehicle. The
opening angle of each sensor is visualized with a black cone.
(The cone does not show the maximum observation distance.)

the used configuration of the sensors is given in Table 4.1. Using the extrinsic
calibration of the sensors, the data of all three sensors can be transformed into the
vehicle coordinate system shown in Figure 4.5. An example measurement using
all three sensors is depicted in a bird’s-eye view in Figure 4.2. One drawback of a
rotating sensor principle all LiDARs share, is that not all measurements are obtained
at exactly the same time. Having the time stamp for every single measurement point,
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horizontal field of view in two central layers: 110◦ (50◦ to − 60◦)
top & bottom layer: 85◦ (35◦ to − 50◦)

vertical field of view 3.2◦ in four layers
data update rate set to 25.0Hz (also possible: 12.5Hz and 50.0Hz with

reduced amount of data)
angular resolution horizontal: set to 0.25◦ (also possible: 0.125◦ in central

measurement area)
vertical: 0.8◦

measurement principle time of flight
time per scan 0.0122s at 25.0Hz and 110◦ field of view.
accuracy 0.10m

Table 4.1: Technical facts [Ibe13] and configuration of the used LUX4 Li-
DARs

zE

xE xE

yE

Figure 4.5: Vehicle coordinate system conforming the norm DIN 70000 which
is equivalent to the norm ISO 8855.

this could be taken into account. In this work, this effect was ignored for two reasons:
the problem is not that important as Table 4.2 points out. For an object crossing
the sensor field of view orthogonally, this effect is only 4cm in a distance of 10m at
a speed of 50kmh . With a given accuracy of 10cm for the sensor, this is negligible.
Further, as soon as the measurements of one or more sensors are used in the same
coordinate system for any reason, e.g. to apply clustering algorithms, it has to be
assumed that all measurements were obtained at the same time. Without exact
knowledge about the object and its moving direction the knowledge about the time
stamp can not be used for corrections. So far, the problems occur only for the objects’
extent and movement orthogonally to the laser ray direction. The perpendicular
extent and movement of objects do not cause such problems. As soon as the sensor
is moving perpendicularly to its laser ray direction a corresponding error occurs. For
measurements from the same sensor in two successive scans the resulting movement
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is corrected by using the ego motion as depicted later in Section 4.4.1.

Distance of object in [m] 2.0 10.0 50.0 100.0

∆y in [m] at v = 50kmh 0, 158 0, 043 0, 009 0, 004
at v = 100kmh 0, 317 0, 087 0, 018 0, 009

Table 4.2: Distance ∆y an object covers in the time of one scan when crossing
the sensor field of view orthogonally depending on the distance
and the velocity of the object. Assumed length of the object is
5m. Sensor parameters are as listed in Table 4.1.

4.4 Hypotheses Generation using Raw Data
Tracking

The preprocessing method for HDDM sensor data in this work aims for generating
hypotheses for surrounding extended objects without using any assumptions about
the type of object. Such an hypothesis H with:

H = {h = [xH, yH, vH, ψH]T ;P h; [lH, wH]T ;RPH} (4.1)

consists of the hypothesis state vector h = [xH, yH, vH, ψH]T, with the two dimen-
sional position [xH, yH]T, the velocity vH, and the yaw angle (orientation) ψH.
Further, P h denotes the covariance matrix for the vector h. An extent for the
hypothesis is given with length lH and width wH. For an exact positioning in subse-
quent algorithms the reference point RPH, which describes where on the extended
objects the given position is valid, is given. More information about reference points
is given later in this section. A common clustering approach incorporating only
information from a single time step is not able to generate reliable propositions about
the angle and has problems in scenarios where multiple moving and/or non moving
objects are close to each other. The basic idea of the approach presented in this
work is to filter the raw sensor data over time and to use the gained information to
generate reliable hypotheses for the perceived objects. Therefore, every measurement
point is estimated over time using one instance of a multi-instance Kalman filter. In
the following, the filtered position of the measurements are called raw data tracks or
just tracks. Figure 4.6 shows the information flow of the raw data tracking approach.
The dense point cloud is the input and the object hypotheses

[
H1 H2 · · ·Hn

]
are the

output. These can be seen as the new raw data based measurements of the sensor
after the preprocessing and can be used in a more sophisticated subsequent object
tracking algorithm. The chart in Figure 4.6 shows that the result of the clustering
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Figure 4.6: Flow chart of the raw data tracking. There are three steps:
tracking the raw data (Section 4.4.1), clustering the tracks (Sec-
tion 4.4.2), and the hypotheses generation (Section 4.4.3). The
result of the hypotheses generation is not reused in the algorithm
and does not influence the tracking.

and hypotheses generation does not influence the tracking part of the algorithm. This
increases the generality of the algorithm, since each of the three parts is exchangeable.
Further, it is possible to reuse the results of the computationally rather expensive
tracking part in multiple clustering methods. In the course of this section, the three
parts of the algorithm depicted in Figure 4.6 are explained in detail.

4.4.1 Tracking Raw Data

The main idea of the preprocessing algorithm for HDDM sensors presented in this
work is to treat every measurement of the dense input point cloud as an independent
object and to track track it with a multi-instance Kalman filter. Details on the
implemented tracking algorithm are subject of this section.

Process and Measurement Model

In every Kalman filter a model for the behavior of objects, the process model, and for
the measurements, the measurement model, is needed. The preprocessing algorithm
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in this work is designed to work with any kind of moving object without or only
small adaption of the model’s parameters. The objects to be tracked are single points
of a point cloud without any knowledge about which kind of extended object has
caused the measurement point. Thus, the behavior of a measurement point needs to
be modeled. Since the goal of the preprocessing is to generate hypotheses for moving
and non moving objects, where these two kinds of objects are not separable from each
other without additional information, the best assumption about a model covering
nearly every kind of movement is: any tracked point can move in any direction at any
time under the constraint of a continuous movement. Therein continuous movement
can be modeled with the assumption of a constant velocity. Even pedestrians who
are able to change the main direction of moving instantaneously, prefer a continuous
movement in most cases. A two dimensional CV model is used as an approximation
of such a behavior, where a change of velocity and moving direction is modeled by
a constant velocity with an added acceleration noise. Actually, the best approach
for static objects seems to be a constant position model, but this is insufficient for
tracking moving objects. The CV model can handle static objects as well and is able
to deal with the transition from static to moving. It is also known as white noise
acceleration model and was derived for one dimension in [BL93]. Assuming that the
movements in x and y are independent from each other, the two dimensional model
used here is the concatenation of the equations of two one dimensional models from
[BL93]. This results in the state vector:

x̂k =


x
vx
y
vy

 , (4.2)

where [x y] is the two dimensional position and [vx vy] the corresponding velocity
vector. The process model of the object is given by the state transition matrix:

F k =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (4.3)

with the time difference T between two consecutive measurement cycles. As one can
see here, the velocity does not change over time and is therefore constant. The last
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part of the process model is the process noise matrix:

Qk =


1
4T

4 1
2T

3 0 0
1
2T

3 T 2 0 0
0 0 1

4T
4 1

2T
3

0 0 1
2T

3 T 2



σ2
vx

0 0 0
0 σ2

vx
0 0

0 0 σ2
vy

0
0 0 0 σ2

vy

 . (4.4)

Therein, [σvx σvy ] are the acceleration noises. Here, it is not very reasonable to
have different noise parameters in different directions, but for other applications this
might be helpful. E.g. a static setup at a sidewalk, where it is more probable, that
pedestrians move along the sidewalk than crossing it. In this case the lateral noise
could be smaller than the longitudinal.
As already mentioned, the input to the raw data tracking are Cartesian measurements:

zk =
[
xLS
yLS

]
. (4.5)

This leads to a linear measurement model with the measurement matrix:

Hk =
[
1 0 0 0
0 0 1 0

]
. (4.6)

For the measurement covariance matrix R from Equation (2.4) it follows:

Rk =
[

σ2
xLS

σxLS
σyLS

σxLS
σyLS

σ2
yLS

]
, (4.7)

with the measurement noise σxLS
in x direction and σyLS

in y direction. Here, it is
assumed that the measurement noise in x and y are uncorrelated:

Rk =
[
σ2
xLS

0
0 σ2

yLS

]
. (4.8)

Algorithm Overview

The input to the tracking are the measurement points of the sensor in Cartesian
coordinates [xLS yLS ]T. The third dimension is not necessary and not using it
reduces the computational load significantly. All points from the different sensors are
transformed into a common coordinate system, the vehicle coordinates as depicted in
Figure 4.5, and are projected onto the ground plane (by setting the third dimension
to zero). There may be multiple measurements at approximately the same position
when using multiple sensors with overlapping fields of view. In order to reduce
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the complexity and the computational load, a discretization is done. Sophisticated
tracking algorithms, like RFS, usually are computationally too expensive to handle
such an amount of tracks given here in between two measurement cycles of typical
sensors. For the same reason probabilistic approaches like PDA or multi-hypothesis
tracking (MHT) were not chosen. Therefore, the rather simple but effective method
of nearest neighbor association is used to solve the measurement-to-track association.
Using such a low level method has known drawbacks like frequent track losses because
of wrong associations, but in this case a perfect match from measurements to tracks
is not possible and not needed. It does not matter if close tracks caused by the
same extended object switch measurements as long as the corresponding track cloud
moves like a swarm. The output of the algorithm are the raw data tracks which are
used in the subsequent hypotheses generation as depicted in Figure 4.7. Details on
the elements of the flow chart in Figure 4.7 are subject of the following sections.
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Figure 4.7: Flow chart of the raw data tracking algorithm. Input to the
algorithm is a point cloud, output for the subsequent clustering
are the raw data tracks. The data flow for the point cloud
(measurements) is depicted as solid black arrow and for the
tracks as dashed gray arrows. The box on the left marks the
part of the algorithm which is used to initialize new tracks.

Discretization

In order to handle the overlap of the sensors’ fields of view and to reduce the
computational load the point cloud is discretized. This is done using a measurement
grid, where all measurements are inserted to. When choosing the discretization size
of the grid dgrid in the range of the sensor accuracy, the effective inaccuracy of the
system is dominated by the latter and hardly changed by the discretization. Thus,
loss of information can be assumed to be small. After inserting all measurements
from all sensors into the grid, the middle of every occupied cell, further referred to
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as the grid measurement, is used as input to the tracking. Calculating a mean or
median value inside of every cell would create a unnecessary computational overhead
since it is very likely that the points are spread over the whole cell if the grid
size is comparable to the sensor accuracy as shown in Figure 4.8. Note that the

dgrid

dgrid

Figure 4.8: Effects of discretization grid: black, green, and blue dots are
measurements. The big red circles are objects and the black
squares are the grid. The purple squares denote the middle of an
occupied cell and the blue hexagons represent the mean values of
the measurements within the cell. The grid size dgrid is chosen
to be approximately the same as the sensor accuracy. Thus,
the measurements are typically spread over the whole cell. The
loss of information due to the discretization is therefore hardly
noticeable and the advantage of calculating the mean value of
the data points over using the center of the cell is purely random.

discretization is part of the measurement acquisition process. The tracking and the
tracks themselves are not subject to any discretization. After the discretization,
there may be still several hundred grid measurements per time step.

Gating Track to Measurement

Gating is a method to reduce the amount of possible association solutions between
tracks and measurements. Without the gating, the association algorithm has to
consider all grid measurements and all available raw data tracks. This can be quite
demanding and time-consuming. In the gating step it is evaluated if there are
track-to-measurement relations which are very unlikely to be associated. Therefor
it is necessary to calculate a distance measure between a raw data track and a
grid measurement. As already pointed out, the MHD from Equation (2.33) can
be used as such a measure. It is calculated between the predicted track and the
grid measurement with an assumed measurement noise. Therein, the minimum
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of the measurement noise should be the accuracy of the sensor or, if greater, half
the size of the discretization grid size: dgrid/2. Since the calculation of the MHD is
computational expensive, a fast gating is done in advance. Before calculating the
complex MHD, it is checked if the track and the measurement exceed a distance
threshold and are too far away from each other in either the x or the y direction.
Only if the association passes the fast gating check the more complex MHD is
calculated. The output of the gating is a boolean value: it is true if the association is
possible. At the same time the MHD is saved, since it is used again in the association
step.

Gating Measurement to Measurement

The gating from unassociated grid measurements from the previous time step to
current measurements differs from the gating of tracks to measurements, since
there is no information about the movement of the possible object. Thus, it is not
possible to predict the measurements from the previous time step to the current
one. Only the ego motion correction is applicable. An association basing only on
the measurement noise using the MHD is not sufficient in case of a moving object.
The only possibility to exclude any measurement to measurement association in the
gating is the spatial position. Using an assumption about the maximum velocity of
an object, all possible associations have to be inside of circle around a measurement
defined by the maximum covered distance. The output of the gating is again a
boolean value saying if the association is possible or not.

Pre-Clustering

The pre-clustering is a further step to reduce the complexity of the association
problem. Since it is done twice, in the normal and in the track initialization branch
in Figure 4.7, there are two possible types of input: tracks and unassociated grid
measurements from the previous time step. In the following both are called candidates.
The idea of the pre-clustering is to use the boolean output from the gating to check if
there is any candidate sharing a possible grid measurement association with another.
If a candidate shares at least one measurement with another, they define a cluster.
If any candidate of a cluster shares a further possible measurement with any other
candidate, this is added to the cluster as well. In the following association step, it is
only necessary to solve the association problem for each cluster. This is helpful, since
normally the computational effort increases exponentially with an increasing number
of candidates but only linearly with an increasing number of clusters. Additionally,
the solution is independent for every cluster and can be calculated in parallel. An
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algorithm to calculate the clusters based on the gating result was presented in [DB93]
and is quite common in tracking, especially in the PDA algorithm.

Association

In this step, the final solution of the association problem is calculated. As already
mentioned, it is not necessary for the presented approach to have a perfect association
match. It is more important to match inside the right cluster and, first of all, to
have a computationally inexpensive solution. Therefore, the Hungarian method
[Kuh55], also known as Munkres algorithm, is used to solve the association problem.
An alternative solution would be the known auction algorithm [Ber88]. Using such a
global nearest neighbor approach inside every cluster from the pre-clustering step
can be quite time-consuming for large clusters. In the initialization phase of the
algorithm where there are a lot of old and current measurements the clusters are
very large. The same holds true for the following settling phase of the algorithm
where the track uncertainties are quite high and the resulting clusters are very large
and quite often end up in one huge cluster. Something similar might happen if
many objects get very close to each other and behave similar, e.g. are standing
still. In such cases, the computational effort has to be reduced. This is done by
approximating the global nearest neighbor algorithm with a local nearest neighbor
solution which has only quadratic complexity in comparison to the cubic complexity
(best case, depending on the implementation) of the Hungarian method. In case of a
small amount of data this difference is not really relevant, but f.i. having 400 tracks
and measurements to associate, the difference from square (400 · 400 = 160.000)
to cubic (400 · 400 · 400 = 64.000.000) is 63.840.000 operations less using a local
nearest neighbor approach. It is obvious, that using the local approach results in
non perfect matches in the association, but it allows to continue the algorithm using
a reduced solution until the cluster size is small enough. This happens always right
after starting the algorithm. After a few time steps the tracks are good enough to
form smaller clusters and a global nearest neighbor algorithm is used.

Estimation

After determining a unique association from grid measurements to predicted raw
data tracks, the next step of the Kalman filtering is the estimation. Using the
filter equations from 2.7 to 2.11 every track is estimated, also called updated, by
incorporating the associated measurement. The estimated raw data tracks of this
step are the main output of the tracking and are used in the subsequent hypotheses
generation.
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Initialization

The initialization of tracks is the concluding task of the track initialization branch in
Figure 4.7. After associating measurements of the previous step with measurements
of the current step, tracks can be initialized using a two step initialization as presented
in [BL93]:

x̂0|0 =


z0(0)

(z0(0)− z−1(0))/T
z0(1)

(z0(1)− z−1(0))/T

 (4.9)
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 (4.10)

Here, the same noise as in the measurement covariance matrix is used, but in
implementations it is common practice to use a multiple of the noise to get a more
stable initialization. If there are measurements of the current time step without
an association, these measurements are saved and compensated for the ego motion.
Therefore, it is necessary to wait for the subsequent time step as depicted in Figure 4.7
and explained in detail later in this section. The newly initialized tracks are, together
with the estimated tracks, the main output of the tracking part which is used for
hypotheses generation.

Deletion

Tracks which were not associated in the previous step are not deleted immediately.
They are kept for some further time steps where the tracks are only predicted and
not updated. After a certain number of predictions without an update, the track
is deleted, where this number is a configuration parameter. This is an heuristic
approach for track deletion. A more sophisticated approach would be to estimate an
existence probability as it is done in the integrated probabilistic data association
(IPDA) [MES94], JIPDA, and also in some RFS approaches. Since the here presented
algorithm uses nearest neighbor algorithms, and therefore a hard unique association
instead of soft association of multiple measurements, it is not possible to calculate
an existence probability like in Equation (2.55). Furthermore, since there is no
information about the a priori birth probability p b ,prior and the persistence proba-
bility pP , the calculation of the existence probability would not be very meaningful
while increasing the computational overhead. Thus, the threshold based deletion, as
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described above, is a simple and effective solution.

Prediction

After estimating and initializing all tracks, the next step of the Kalman filtering is
the prediction as given in Equations (2.5) to (2.6). To be able to predict the tracks
to the next time step it is necessary to know the elapsed time from one step to the
other. Thus, the algorithm waits for the next data input as depicted in Figure 4.7.

Ego-Motion

After the prediction, the tracks need to be corrected because of the motion of the
sensor platform, the ego vehicle. This ego motion compensation is necessary since
the ego vehicle moves between two consecutive time steps and causes a virtual
movement and rotation of the tracks as depicted in Figure 4.9. Using the EKF

yE

xE

∆xvirt

∆yvirt

∆ψvirt

ego motion

Figure 4.9: Virtual movement of a track because of the ego motion. On the
left depicted in green is a track with its yaw angle and the ego
vehicle. The ego vehicle moves from one time step to another
while the track remains on the same position. On the right
the same scenario is shown in the vehicle coordinate system
[xE , yE ]T. Because of the ego motion it seems as if the track has
moved by [∆xvirt,∆yvirt]T and turned by ∆ψvirt.

ego motion estimation proposed in [Mäh09], the translation and rotation of the
ego vehicle is obtained. Therefore, the additional input of the vehicle velocity and
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yaw rate is necessary. Further, the time difference from the current time step and
the previous one is needed as depicted by the wait condition in Figure 4.7. Every
track is compensated for the translation and rotation. This compensation corrects
the prediction of the track in a manner that the track does not get any virtual
velocities. An alternative approach is to use the control input vector uk and the
control input matrix Gk from Equation (2.5) to directly incorporate the ego motion
compensation into the Kalman filter algorithm. From the implementation point
of view it is advantageous to have the tracking and the ego motion compensation
separately so both parts can be replaced and reused in other algorithms easily.

4.4.2 Clustering

The task of clustering is to use the output of the preceding raw data tracking
(Section 4.4.1) to group tracks together which behave in a similar manner. The
clusters are then input to the hypotheses generation as depicted in Figure 4.6. In
comparison to the raw sensor data, the output is now smoothened using a Kalman
filter and additional information in form of the velocity vH, the yaw angle ψH, and
the history of every tracked point is gained. In Figure 4.2 the raw sensor data of a
roundabout was shown and the problem of the frame based object recognition was
illustrated. In Figure 4.10 the same scene is shown again. This time, the green dots
represent the tracked objects, and the black lines show the history of the last 40
time steps. A closer look reveals that mostly moving objects cause long histories
in space and time as depicted in Figure 4.11. Spatially long but temporally short
histories on not moving objects result mainly from jittering measurements causing
an initialization of new tracks with high velocities like in Figure 4.12. This effect
can only be removed by limiting the allowed association distance or decreasing the
initial uncertainty of tracks. Since in this case an approaching vehicle with an high
velocity would not be detected either, it is better to solve this problem with an outlier
filtering in the clustering process. Beside an erroneous ego motion compensation,
jittering of the raw measurements are the reason, why stationary objects cause raw
data tracks with a velocity greater than zero.
Using the analyzing capabilities of a human, the scene in Figure 4.10 is much clearer
than before. The histories of the tracks seem to be a good feature to separate real
moving objects from background. However, the fact of having a spatially long history
alone is not sufficient, since newly born objects have quite short temporal histories.
Further, one can imagine, that the major drawback of this approach is the perception
of non-moving objects. These can not be distinguished clearly from the background.
When thinking about methods to cluster raw data tracks as depicted in Figure 4.10,
it is reasonable to think about the methods used to cluster point clouds. The position
based DBSCAN [EKSX96] is one of the most famous approaches. This algorithm
can be used to find clusters basing on any symmetric distance measure, e.g. the
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Figure 4.10: Raw data tracks in green and their histories (40 time steps) in
black at the same moment as in Figure 4.2.

Euclidean distance of the filtered two dimensional positions of the raw data tracks.
In this work, the DBSCAN is used as reference algorithm. Using a single frame
based approach, the advantage of having a unique ID for the data to be clustered is
ignored. These IDs are the result of the preceding tracking. The clustering approach
in this work incorporates the IDs and was first presented in [SS06] as a graph based
clustering, further called graph clustering (GC). The realization of this clustering
having raw data tracks is explained in detail in this section. A graphical overview
of the algorithm is given as a flow chart in Figure 4.13. The basic idea of the GC
is to create clusters with a memory by adding an unique ID to the cluster. Tracks
initialize a new cluster or are associated to an existing one if their distance decreases
below the association distance and they are removed from the cluster if they exceed
the removal distance. Detailed information on the algorithm and on the blocks in
Figure 4.13 is given in the following sections.
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(a) Comparison of a static object at the position [x, y] = [40m, 40m]. On the left side
depicted with the raw sensor data taken from Figure 4.2 and on the right side with
the tracked histories of the last 40 time steps taken from Figure 4.10

(b) Comparison of a moving object at the position [x, y] = [20m,−18m]. On the left side
depicted with the raw sensor data taken from Figure 4.2 and on the right side with
the tracked histories of the last 40 time steps taken from Figure 4.10

Figure 4.11: Comparison of raw sensor data and tracked histories of a static
and a moving object in the same scene. The images are an
cutout from Figure 4.2 and Figure 4.10

Figure 4.12: Spatially long histories on a static object caused by jittering
measurements. These histories are normally only a few time
steps old. The image is a cutout of Figure 4.10 at position
[x, y] = [20m, 50m]
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Graph Clustering
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Hypotheses Generation

Re-Clustering
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Track Association

Cleaning-Up Clusters

Tracking

Removing Tracks Splitting Clustersfrom Clusters

Adding Tracks Merging Clustersto Clusters

Figure 4.13: Flow chart of the graph clustering (GC) algorithm. Input are
the raw data tracks and output to the hypotheses generation are
the clusters. A feedback loop from the output to the cleaning-
up allows to have a memory for every cluster. Disabling the
feedback loop results in a frame based clustering.
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Distance Measures

Like the DBSCAN, the graph clustering (GC) can be combined with any symmetric
distance measure like the Euclidean distance. When clustering raw data tracks,
there is more information available than only the position. There is also information
about the velocity and the yaw angle, respectively the velocity vector, and even a
covariance matrix providing information on the uncertainty. The idea arises to use
the complete state and its covariance to do a similarity check comparable to the MHD.
The drawback of the MHD is the assumption that the variances and covariances of
the compared distributions are identical. Another measure of statistical similarity of
two normal distributions p1 = N (µ1,Σ1) and p2 = N (µ2,Σ2) is the Bhattacharyya
distance (BD) [Bha46]:

dBD(p1, p2) = 1
8(µ2 − µ1)TΣ−1(µ2 − µ1) + 1

2 ln
(

|Σ|√
|Σ1||Σ2|

)
(4.11)

with

Σ = Σ1 + Σ2
2 . (4.12)

In case of identical covariances Σ1 = Σ2 = Σ the BD simplifies to:

dBD(p1, p2) = 1
8(µ2 − µ1)TΣ−1(µ2 − µ1). (4.13)

This is equivalent to the MHD in Equation (2.33), except for the factor 1
8 . The BD

can be used as a distance measure in the DBSCAN and the GC. So far, the BD is
an elegant way to integrate not measured states, like yaw angle and velocity, and a
covariance matrix into the clustering.
Another approach to define a distance measure incorporating the velocity and yaw
angle information is to define a symmetric distance dEM as a weighted mixture of
the Euclidean distance and other similarity measures:

dEM = dxy + Θ(dψ − dxy)dψ + Θ(dv − dxy)dv
1 + Θ(dψ − dxy) + Θ(dv − dxy) . (4.14)

Therein, Θ(x) is the known Heaviside function:

Θ(x) =
{

1, x ≥ 0
0, x < 0 , (4.15)
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dψ is a difference of yaw angles, dv is a difference of velocities, and dxy is the
Euclidean distance:

dψ = αψ|ψ1 − ψ2| (4.16)
dv = αv|v1 − v2| (4.17)
dxy = || [x1 y1]T − [x2 y2]T ||. (4.18)

The parameters αψ and αv are weighting factors. Setting the weight of the Euclidean
distance dxy to one, the difference of the velocity and the yaw angle need to be
weighted for two reasons: the range of the distance has to be scaled to fit to the
range of the Euclidean distance and to bring the differences to the same unit. This
is necessary, since the range of e.g. an angle difference in radians is quite small and
limited to [0, 2π[. Thus, a weight to account a difference of 5.0◦ ≈ 0.0873rad equal
to a distance of 1m would be: αψ = 11.46m/rad. A problem of using the angle and
velocity differences without any constraint is, that tracks which are spatially far
away from each other may have a small distance dEM because of their similarity of
the angle and the velocity. The Heaviside function in 4.14 is used to reduce this
problem and to allow only an increase of the total distance by the angle and velocity
distances.

Example This example shows the problem of pure position based and pure proba-
bility based distances. A problem for probabilistic distances are tracks with high
uncertainties as depicted in Figure 4.14a. High uncertainties occur for example
when initializing a new track. Figure 4.14a shows such a case. The states, given in
[x vx y vy], and its covariances are given with:

x̂1
k|k =


80.0
10.0
2.0

0.875


P 1
k|k = diag [1, 2, 1, 2]

x̂2
k|k =


80.0
10.0
0.0
0.0


P 2
k|k = diag [1, 1, 1, 1]

x̂3
k|k =


80.0
10.0
−1.0
−3.64


P 3
k|k = diag [5, 10, 5, 10]

The corresponding distances in Figure 4.14b show that, using the Euclidean mixture,
the distance for the tracks t = 1 and t = 2 is smaller than for t = 2 and t = 3 which
is correct regarding the scenario. To decide if the tracks belong to the same cluster is
part of the clustering process. This example is of course artificial and it is clear, that
there are contrary examples, where the Euclidean mixture fails. To decide which
distance shall be preferred a detailed evaluation is necessary.
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(a) Example for the difficulty to
calculate distances. Two ve-
hicles drive side by side. The
two tracks on the left car have
a bigger Euclidean distance
than the two tracks on the
right which inherit from dif-
ferent objects.

dxy dBD dEM

2→ 1 2.0 0.564 2.0
2→ 3 1.0 0.343 2.5

(b) Euclidean distance dxy, Bhattacharyya distance
dBD, and Euclidean mixture dEM distance for
the given scenario. For the Euclidean mixture the
weighting factors are: αψ = 11.46 and αv = 0.2

Figure 4.14: Comparison of distance measures in a difficult scenario.

Cluster Initialization

In the initialization phase a DBSCAN is used to generate clusters. The input to the
cluster initialization are new tracks which were not associated to any existing cluster,
but also tracks which where removed from other clusters. In the initialization the
main parameter, as in most other clustering approaches, is the association distance,
sometimes called connection distance. As soon as two or more tracks are closer
than the association distance, the tracks initialize a new cluster, where every cluster
obtains a unique cluster ID. The ID corresponds to some sort of memory, since the
clusters are always fed back to the algorithm in the next time step. Disabling the
feedback loop in Figure 4.13 from the output back to the cleaning-up, the GC would
be exactly the same as a DBSCAN since the algorithm then has no memory and is
only frame based.

Cleaning-Up

In the GC every cluster holds a list of unique track IDs given by the tracking. In
every new time step it is very likely, that some of the raw data tracks are deleted for
any reason, e.g they are leaving the field of view of the sensor. Thus, the clusters
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need to be cleaned up by removing the deleted tracks from the corresponding cluster.

Re-Clustering

After updating the raw data tracks in a new measurement cycle, the clusters need
to be re-clustered. Thus, the algorithm, as presented from [SS06], has not only an
association distance which is used to associate tracks to each other and therefore to
a cluster. It also has a removal distance as an additional parameter. Usually the
removal distance is chosen to be bigger than the association distance to implement a
hysteresis. As soon tracks are associated to each other in a cluster, their distance
has to increase over the removal distance to be separated from the cluster. Basing
on two distances, the re-clustering has two main tasks:

· Removing Tracks from Clusters
If a track exceeds the removal distance to all tracks inside a cluster, the track is
removed from the cluster and is again available for clustering in the subsequent
steps of the algorithm.

· Splitting Clusters
If a set of tracks exceed the removal distance but among each other they are
still close enough to stay together, the cluster is split up. A cluster can split
up into any amount of new clusters.

Track Association

All tracks which are not associated with any cluster, including the tracks which were
removed from clusters in the re-clustering, are compared to the set of all clusters. If
a track is close enough to other tracks in any other existing cluster the track will
be added to this. If a track fits into several clusters these may be merged together
depending on the parameterization of the algorithm, where merging clusters should
be done with caution. In addition to a shared track the clusters should have further
similarities. Such a similarity measure could be, among others, the yaw angle or
the difference of the averaged velocity between two time steps (and so a measure of
acceleration).
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4.4.3 Hypotheses Generation

After tracking the raw data and clustering the resulting tracks, the output hypotheses[
H1 H2 · · · Hn

]
as defined in Equation (4.1) have to be generated. Thus, the task

of the hypotheses generation, as depicted in Figure 4.15, is to determine the yaw
angle, the best reference point, the position, and an estimation of the dimension of
the cluster. Details on how to determine these properties and on reference points

hypotheses

Clustering

Tracking

clusters

Hypotheses Determination

Hypotheses Filtering

h = [xH, yH, vH, ψH]T P h

[lH, wH]TRPH

[
H1 H2 · · · Hn

]
Figure 4.15: Flow chart of the hypotheses generation. Input are the tracks

from Figure 4.7.

are pointed out in the following sections. Further, the process of hypotheses filtering,
the last step in Figure 4.15, is explained.

Position and Reference Point

Determining the position of the hypothesis vector h, as defined in Equation (4.1),
from a cluster is more than calculating the arithmetic mean of all cluster points.
The mean value represents the centroid of the cluster, but the centroid is not always
the best solution. This is because the sensor does not deliver measurements from
all over the object, but only from one to two sides. This results in the typical I
and L shapes as shown in Figure 4.16. The need for defining a point on the object
where the given position is valid was already addressed in [Käm07]. This idea
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Figure 4.16: Calculating the position as centroid for a L-shape on the left
and an I-shape on the right. The raw data tracks are depicted
as black circles and the resulting centroid as purple rectangle.
The example makes clear, that the centroids are not a sufficient
solution for a valid position on an extended object. A position
like the blue star would be of higher value if a reference is given
where on the extended the position is valid. This reference is
called a reference point.

was extended in [SWBH12], where nine distinctive points on extended objects are
defined as depicted in Figure 4.17. In this work, these points are called reference
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Figure 4.17: Available reference points of an object. The first letter defines
the longitudinal position {Front, Center, Rear} and the second
letter defines the lateral position {Left, Center, Right}.

point RPH ∈ {FL,FC, FR,CL,CC,CR,RL,RC,RR}. Fusing information about
extended objects from different sources gets more feasible when having reference
points. One example: a sensor fusion system with multiple sensors observes the
front of an object with one sensor and the back of it with another sensor. If there
are no reference points given by the preprocessing, the association of these two
measurements is difficult. Using reference points allows a sophisticated subsequent
algorithm to recognize that the two measurements originate from the same object
but from different sides under the assumption that a classification of the perceived
object is done to know the probable extent of the object. This was done for example
in [Mei16], where multiple LiDARs are mounted at a public intersection. At this
intersection multiple kinds of road users like pedestrians, cars, and trucks are
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perceived and tracked with measurements from multiple sides.
Determining the reference point strongly depends on the yaw angle of the perceived
object, since the reference point should always be the point of an object which is
observed best. In this work, the reference point is always set to one of the corners
since there is no information about the real dimension of the object and therefore
the center points {FC,CL,CC,CR,RC} can not be determined correctly. The best
observable corner in most cases is the one closest to the observation system. A
drawback of this approach is, that the corners are not always visible or detected,
e.g. in case of a bicycle from behind or a vehicle at high distance. This drawback
is partly solved by having yaw angle information from the raw data tracks which
allows a relatively good estimate of the bounding box and the dimension. In case
of a bicycle this might solve the problem. In case of a vehicle at higher distance
and a very small amount of points it can not be guaranteed, that the measurements
were caused around the corner. This problem can only be solved over time by the
subsequent object tracker.

Yaw Angle and Velocity

One big advantage of the preprocessing presented in this work is a reliable estimate
of the yaw angle and the velocity, which is also needed for the reference point and
dimension determination. Both values are extracted from the raw data tracks in
each cluster. Even after filtering of the data, jittering and noisy measurements cause
angle and velocity outliers. A stable output is achieved by calculating the median of
the yaw angle and the velocity over all tracks of the cluster.

Dimension

The dimension is obtained in every cycle by calculating a rectangular bounding
box surrounding all cluster points. The already determined yaw angle is used as
orientation of this box. The dimension is not filtered over time to elude problems
with incorrect estimated dimension. The presented preprocessing aims at being a
generic algorithm which does not incorporate deeper knowledge about the model of
the perceived object. Without more sophisticated models and some assumptions it
is not possible to filter the true dimension over time correctly. For that reason, the
currently observed dimension of the perceived extended object is used as output. So,
a subsequent algorithm can use this information to estimate a correct shape over
time by having a reliable yaw angle estimation from the preprocessing.
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Covariance

For many subsequent algorithms like object tracking, a further quantity is needed or
at least helpful: the covariance. In the here presented approach, the main output
is the hypothesis vector h. It would be a big advantage over simple preprocessing
approaches if it is possible to give a reliable covariance PH for this vector. Given
the fact, that there are already tracks t with its corresponding covariances in every
cluster, generating a covariance for the cluster of tracks seems not to be a difficult
task. Unfortunately, to the knowledge of the author, there are no closed solutions
to solve this problem. In this section it is discussed why the standard approaches
fail and a possible solution is suggested. This solution was implemented during this
work but its quality is not evaluated due to the lack of a reference.

Failing Approaches

Averaging the Available Track Covariances Having already the covariances
from the single tracks of a cluster, an average of these covariances could be calculated.
These covariances are a measure of uncertainty of the single tracks, but tend to
underestimate the uncertainty of the hypothesis. The solid red line in Figure 4.18b
represents this approach an makes it obvious, that the covariance of the single tracks
and the covariance of the hypothesis are not the same. Nevertheless, these two
covariances are not completely uncorrelated, but finding a closed solution for this
relation seems not to be realistic.

Sample Variance and Covariance Having multiple tracks t per cluster, it is
possible to calculate the sample variances [σ̃xH , σ̃yH , σ̃vH , σ̃ψH ] for all elements of h
with the standard equation for the sample variance of a random variable a:

σ̃a = 1
N − 1

N∑
i=1

(ai − a) (4.19)

Further, the covariance σ̃xy for the position can be obtained using the equation of
the sample covariance for two random variables a and b:

σ̃ab = 1
N − 1

N∑
i=1

(ai − a)
(
bi − b

)
. (4.20)
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Under the assumption, that the position, the yaw angle, and the velocity are
uncorrelated, the covariance matrix is given by:

P h =


σ̃xH σ̃xHyH 0 0
σ̃xHyH σ̃yH 0 0

0 0 σ̃vH 0
0 0 0 σ̃ψH

 . (4.21)

As already pointed out in the calculation of the position [xH, yH]T and depicted in
Figure 4.16, a mean value is already erroneous. Calculating the sample variance and
covariance for an L or I-shape would be directly connected to the observed size of
the extended object. An object which is far away may cause only a few measurement
points close to each other. The (co)variance for this would be rather small. At the
same time, a close object causes many measurement points spread over the whole
object. The (co)variance for the close object would be much bigger than for the far
object. Further, using the sample covariance with the mean values x and y would
be incorrect anyway, since the position of the object is given for the reference point
RPH. Using the given reference point in Equation (4.20) instead of the mean value
even increases this problem as depicted with the dashed orange line in Figure 4.18b.

Proposed Solution

Uncorrelated Covariance Along the Shape This approach is the proposed
solution of this work, where the main requirements to the covariance are: it is
valid at the position of the reference point RPH and it does not underestimate the
covariance. This definition is an information which subsequent algorithms can use
without being distracted by too small uncertainties. Using the reference point as
basis the covariance can’t be more than an upper bound, since the reference point is
the corner of the surrounding bounding box. Thus, all tracks t are inside of this box
and are not symmetrically distributed around the basis RPH. The covariance for
the position [xH, yH]T is calculated as the sample covariance from Equation (4.20)
over all track positions [xt, yt]T for t = 1, . . . , N , where the mean values are replaced
by the position of the reference point:

P̃
0
xy = 1

N − 1

N∑
t=1

(
xt − xH

) (
yt − yH

)
. (4.22)

This equation holds only true for yaw angles equal to zero: ψH = 0. Otherwise, the
uncertainties are clearly overestimated. Therefore, all track positions need to be
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shifted by [xH, yH]T and rotated counter clockwise by the angle ψH:[
xt,r

yt,r

]
= R(ψH)

([
xt

yt

]
−
[
xH
yH

])
(4.23)

whereR(%) is the rotation matrix for angle % and [xt,r, yt,r]T are the rotated positions.
To calculate two uncorrelated variances for the directions in x and y the tracks t are
assigned to two sets Tx and Ty:

Tx = {t|xt,r ≤ yn,r∀n ∈ 1 . . . N} (4.24)
Ty = {t|yt,r < xn,r∀n ∈ 1 . . . N}. (4.25)

The position variances are then obtained using the tracks of the corresponding set:

σ̃xH = 1
|Tx| − 1

∑
t∈Tx

xt,r (4.26)

σ̃yH = 1
|Ty| − 1

∑
t∈Ty

yt,r. (4.27)

Thus, the covariance matrix is given with:

P̃
r

xy =
[
σ̃xH 0

0 σ̃yH

]
. (4.28)

This covariance matrix has to be rotated clockwise by the angle ψH:

P h,xy = R(−ψH)P̃
r

xyR(−ψH)T. (4.29)

where P h,xy is the resulting covariance matrix for the position. Furthermore, the
variance of the angle ψH and the velocity vH is calculated using the sample variance
from Equation (4.19). Assuming that the position, the angle, and the velocity are
uncorrelated, the hypothesis covariance matrix is given with:

P h =

P h,xy
0 0
0 0

0 0 σ̃vH 0
0 0 0 σ̃ψH

 (4.30)

This covariance is depicted in Figure 4.18c as dashed orange circle.
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x

y

RR

(a) Example of a perceived
object with the tracked
raw data points and the
resulting bounding box.
The solid red circles rep-
resent the uncertainty el-
lipse of the track covari-
ance.

(b) Estimated covariance
of the position using
the sample covariance
on all points in orange
(dashed). For compar-
ison the average un-
certainty of the single
tracks in red (solid).

(c) Proposed solution:
Tracks are associated
to either one of the
directions to calculate
uncorrelated vari-
ances. The resulting
uncertainty ellipse is
depicted as dashed
orange line. In solid
red the average uncer-
tainty of the single
tracks.

Figure 4.18: Estimating an upper bound of the position variances. The
tracked raw data points are depicted in green and the uncer-
tainty of the single tracks in red (solid). The black arrows
represent the velocity and the angle information of the tracks.
The resulting bounding box is shown in blue.

Hypotheses Filtering

The last step of the hypotheses generation as shown in Figure 4.15 is the hypotheses
filtering. It is an optional step of the algorithm which could also be done by a
subsequent algorithm to adapt this step to the respective needs. In algorithms like
vehicle tracking it is very common to use background knowledge, e.g. a dimension
minimum, to filter incoming data. In this section, an approach to filtering data is
presented without the need for knowledge about the type of object of interest. The
main assumption is, that an object of interest is moving. With this, it follows that
all raw data tracks belonging to the cluster of an hypothesis should behave in a
similar manner. This characteristic was already used in the clustering step, but it is
still possible, that tracks are clustered together even if their behavior is not exactly
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the same, where the behavior is defined by their velocity and yaw angle. A very good
feature for filtering purposes is the variance of the yaw angle in a cluster. Discarding
objects with high variances of the yaw angle reduces the amount of false positives
significantly. Such high variances inherit from clusters without one preferred moving
direction. The example in Figure 4.19 illustrates the same cluster twice: with a
low and a high variance of the yaw angle. With such a filtering non-moving objects

x

y

(a) Cluster with a low variance of
the yaw angle.

x

y

(b) Cluster with a high variance
of the yaw angle.

Figure 4.19: Discarding a cluster using the variance of the yaw angle. The
green dots represent the track positions and the black arrows
the yaw angle where the length of the arrows illustrates the
velocity. The same artificial cluster is depicted twice. In a) the
variance of the angle is rather low and in b) it is quite high. A
low variance represents the case, that all tracks of the cluster
move approximately in the same direction. A high variance
represents the case, that the cluster inherits from a non-moving
object.

tend to be discarded. Table 4.3 shows a comparison of the results using different
thresholding filters with the angle variance VarOA = σ2

OA and its standard deviation
σOA. The filtering values are obtained by brute force optimization running the
following evaluation in Section 4.5. For σOA =

√
3◦ the filtering is very cautious

which does not remove relevant hypotheses, called true positive (TP), and is used in
the upcoming evaluation. A standard deviation of σOA = 1◦ already reduces the
FPs to nearly 63%. A more strict threshold of σOA =

√
0.5◦ reduces the FPs even

more, but the TP rate starts to decrease. Most of the FPs inherit from stationary
objects. A minimum velocity can reduce the false positive rate again to 45%. This
equals a reduction to 29% in total.
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scenario Nr. i, roundabout
σ2
OA in [◦]2 3 1 0.5 1
vmin in m

s 0 0 0 0.5
false positives 9305 5916 5277 2687

Table 4.3: The amount of FPs can be reduced using the yaw angle standard
deviation of the angle σOA or a minimum velocity vmin of the
cluster. For σOA = 1◦ the amount of false positives can be reduced
clearly. For σOA =

√
0.5◦ the reduction is even better, but the

amount of TPs also reduces. Thus, the performance starts to
decrease . (For reference: the chosen scenario is Nr. i in Table 4.4
and the used method is GCEM)

4.5 Evaluation

In this section the presented approach for preprocessing data from high density
distance measuring sensors is evaluated. The evaluation is done using various real-
data scenarios with the sensor setup introduced in Section 4.3. A summary of all
evaluated scenarios is given in Table 4.4. In this work it is assumed that the raw
data preprocessing is mainly used to detect moving objects. Thus, a generated
hypothesis for a static object is regarded as a false positive (FP). To reduce the
amount of FPs the hypotheses are filtered, as explained in Section 4.4.3, with a
very cautious threshold of σOA =

√
3◦. The ground truth data for the evaluation

of the vehicle perception was generated by using two GeneSys automotive dynamic
motion analyzers (ADMAs). An ADMA provides high precision information about
the state of the ego vehicle using a global navigation satellite system (GNSS) and an
inertial measurement unit (IMU). One ADMA in the observing vehicle and one in the
observed one allows a very accurate differential positioning. In case of perfect GNSS
receiving conditions and available correction data for the differential GNSS, the
ADMA allows a global position accuracy of up to 0.02m [Gen09]. Using two ADMAs
in different vehicles, the uncertainty increase accordingly. Nevertheless, this is almost
one order of magnitude better than the sensor accuracy given in Table 4.1. In
practice, one has to deal with various inaccuracies, since the receiving conditions are
not perfect all the time. Further, the temporal alignment of the perception system
to the reference system is very important. A deviation of only a few milliseconds
can cause position errors up to meters for higher velocities. Moreover, the quality of
the single measurements points of the used LiDAR sensors strongly depends on the
surface they are reflected by, e.g. it is noticeable, that pure black vehicles often do
not cause any measurement points. Further, highly reflecting surfaces, like number
plates, may cause additional inaccuracies. To evaluate the pedestrian and bicycle
perception the sensor raw data was used to generate the ground truth data by hand.
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Nr. Scenario Figure Brief Description
i standstill

roundabout
4.20 The ego object is standing at a rather flat round-

about. The perceived object drives a bit more
than two rounds in the roundabout.

ii standstill
receding

4.23 The ego object is standing still, the perceived
object recedes on a straight rural road in a narrow
serpentine line.

iii standstill
approach-
ing

4.26 The ego object is standing still, the perceived
object approaches on a straight rural road in a
wide serpentine line.

iv standstill
crossing

4.29 The ego object is standing diagonally at the side
of a rural road. The perceived object crosses on
the road.

v following 4.32 The ego object follows the perceived object on a
rural road.

vi following
while catch-
ing up

4.35 The ego object follows the perceived object while
catching up on a rural road.

vii following
while reced-
ing

4.38 The ego object follows the perceived object while
this is receding on a rural road.

viii Pedestrian
& Bicycle

4.42 The ego object is standing still. A pedestrian and
a bicycle moves into the field of view after each
other (not at the same time).

Table 4.4: Summary of the evaluated scenarios.

This manual labeling process can not be assumed to be perfect, since it depends on
the sensor measurements, the calibration of the sensors, the human influence, and the
difficulties in defining exact rules for the labeling process. Comparing the algorithm
results against such an inaccurate ground truth can only give an estimate of the
algorithm quality. Alltogether, four different algorithm versions are evaluated as
explained in Table 4.5. The difference of these four versions is the distance measure
(Section 4.4.2) and the usage of the cluster memory from the GC. The underlying
tracking of the raw data is always the same. These four methods are compared to the
box fitting algorithm presented in Section 4.1 as a representative of state of the art
algorithms. In the pedestrian and bicycle scenario (Nr. viii in Table 4.4) the BoxFit
can not be applied, since this algorithm is optimized to detect vehicles. The search
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Method Shortcut Description
Euclidean EUC The clustering is done with a position based

DBSCAN algorithm [EKSX96] using the Eu-
clidean distance. There is no knowledge about
the history used in the cluster process.

Bhattacharyya BHAT The clustering is done using a DBSCAN with-
out incorporating the history. As distance mea-
sure, the Bhattacharyya distance (BD) [Bha46]
in Equation (4.11) is used.

Graph Clustering
Bhattacharryya

GCB The difference to the BHAT method above is
the additional use of the cluster history used
by the graph clustering (GC) [SS06].

Graph Clustering
Euclidean Mix

GCEM As in the GCB method the graph clustering
(GC) is used additionally. As distance, a mix-
ture of the Euclidean distance, the yaw angle
difference, and the velocity difference as pre-
sented in Section 4.4.2 is used.

Table 4.5: Evaluated algorithm versions.

for specific I and L shapes does not work for circular objects like pedestrians and
has an only limited ability to detect bicycles. Thus, the box fitting is not available
for comparison in the scenario Nr. viii. The evaluated quantities are described in
Table 4.6. The evaluation of every sequence is a compound of three parts:

· first part is the trajectory of the perceived object in vehicle coordinates. If the
perception vehicle and the perceived object are moving at the same time, it is
very difficult to understand the scenario if it is given in vehicle coordinates and
the movement of the ego object is not visible. In this case, the trajectories are
given in a common Cartesian coordinate system using the universal transverse
mercator (UTM) coordinate system as basis. The time is always color coded
from cold to warm colors.

· second part is a table with the evaluation quantities given by Table 4.6. The
values are color coded column wise from white to black, where white is the
best and black the worst result. During the evaluation it was observed, that
the presented approaches outperform the box fitting algorithm by far. So,
the box fitting is excluded from the color coding. Otherwise, the differences
between the other four methods are not visible. The error of the velocity is not
evaluated for the box fitting since it is not able to estimate it. The evaluation
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Quantity Description
pos. err. in m The root mean square error (RMSE) of the position. Evaluated

is the closest distance of the reference points of the four corners
to reduce the impact of the dimension estimation.

ori. err. in ◦ The RMSE of the yaw angle.
false positives The amount of false positive measurements without the use of

any reduction method.
drop in % The drop evaluates the portion of time stamps where the

cluster method does not generate a measurement. It is in
relation to the amount of time stamps between the moment
of the first and the last measurement any of the methods
generates. A drop of 0% would be a perfect result.

max. dist. in m The maximum measured distance to the object.
vel. err. in m

s The RMSE of the velocity.

Table 4.6: Evaluation quantities.

always starts with the first detection of any algorithm and ends with the last
detection or the end of the scenario.

· third part is the error evaluation over time in two plots: one of the position
error and on of the yaw angle error. In the same plots, the distance of the
perceived object, only if detected, is depicted with a gray dash dotted line.
The gray boxes represent times, where the method was not able to generate a
measurement.

4.5.1 Evaluation of the Vehicle Perception

In this section the vehicle perception capabilities of the presented preprocessing
algorithms are evaluated. The evaluation is given in detail for the scenarios Nr. i to
Nr. vii in Table 4.4.

Scenario Nr. i, Standstill Roundabout

In scenario Nr. i in Table 4.4, the perceived object drives a bit more than two
rounds in a roundabout. The ego object is standing still. Figure 4.20 shows the
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reference trajectory. The increasing height of the trajectory is not real and was
added to allow a better overview. The object leaves the roundabout at the exit the
ego object is entering. Table 4.7 shows the evaluation quantities for the roundabout
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Figure 4.20: Reference trajectory of the perceived object in the scenario (Nr.
i in Table 4.4). For the reason of a better overview, the height
increases over time.

scenario. The position and yaw angle error of the four evaluated methods presented

pos.
err

. in
m

yaw
err

. in
◦

fal
se

posi
tiv

es

dro
p in

%

max
. dis

t.
in

m

vel
. err

. in
m

s

GCEM

GCB

BHAT

EUC 0.64 8.21 6042 15.52 47.69 3.16

0.74 7.99 10436 12.21 47.98 3.11

0.73 8.13 14715 11.45 47.96 3.14

0.73 8.20 9305 10.69 47.98 3.16

BoxFit 1.16 47.99 5977 58.78 46.04

Table 4.7: Evaluated quantities of the roundabout scenario (Nr. i in Ta-
ble 4.4) corresponding to Table 4.6. The maximum reached
distance can not get higher than approximately 48m since the
roundabout is not bigger than that. Beside the quite high angle
error of the BoxFit the very high drop rate catches one’s eye.
This is caused by partial occlusions on the opposite side of the
roundabout the BoxFit is not able to deal with.
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is approximately the same. They differ most in the amount of FPs and the drop
rate. Regarding position and yaw angle, the BoxFit is clearly outperformed. The
quite low amount of FPs of the BoxFit is due to the highly specific adaption to
vehicles and a very high measurement drop rate. This adaption allows to reject a lot
of smaller objects. The drawback is, that these smaller objects might be pedestrians,
bicycles, motorbikes, etc. How the amount of FPs of the other approaches can be
further reduced is addressed in the Subsection Hypotheses Filtering of Section 4.4.3.
The EUC seems to perform a bit better in this scenario than the others, but this
is at the cost of the drop rate. The error over time in Figures 4.21 and 4.22 shows
that the BoxFit is acceptable when the reference vehicle is crossing the ego vehicle
and then receding in the roundabout. After passing the turning point the vehicle is
lost quite fast. The other methods are able to generate measurements nearly all the
time because of the underlying Kalman filtering.
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Figure 4.21: Position error over time for scenario Nr. i in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Figure 4.22: Angle error over time for scenario Nr. i in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Scenario Nr. ii, Standstill Receding

In this scenario, the ego vehicle is standing still on a rural road. The perceived object
is receding in a narrow serpentine line as depicted in Figure 4.23. This movement was
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Figure 4.23: Reference trajectory of the perceived object in the scenario
Nr. ii in Table 4.4. The perceived objects recedes in a narrow
serpentine line.

chosen to evaluate the dynamic behavior of the presented approach. The evaluated
quantities in Table 4.8 show, that this is a scenario the BoxFit handles quite good.
The position error of the BoxFit is lower than of every other method. Regarding the
yaw angle error this is the only scenario the fitting approach works very well and
the new approaches are rather poor. Only when taking a look at the measurement
drop rate the advantage of the new approaches reveal their advantage, since the
BoxFit has a drop rate far beyond 50%. The explanation for this behavior can be
found in the detailed plots in Figures 4.24 and 4.25. The difference in the drop
rate is quite easy to see: the BoxFit is not able to handle this scenario in more
than approximately 50m − 60m of distance. In less distance the position error is
very good. The problem of the other methods, like the GCEM, in this scenario are
the fast changes of the yaw angle. A vehicle driving a normal curve behaves quite
smooth and does not change the yaw angle very frequently. The raw data tracking
is optimized to handle such a behavior. In case of a narrow serpentine line the yaw
angle changes are too fast. Figure 4.24 shows that the algorithm expects the vehicle
to drive straight. The error increases and decreases with the frequency of the driven
curves. The position error suffers from this too slow yaw angle adaption since the
reference point is calculated using the yaw angle. Driving the serpentine line in
wider curves like in scenario Nr. iii, this problem is hardly visible.
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GCEM

GCB

BHAT

EUC 0.35 12.96 529 23.81 144.07 2.53

0.35 12.97 747 25.64 143.99 2.53

0.36 12.64 843 17.95 124.38 2.44

0.40 12.64 749 12.09 145.29 2.45

BoxFit 0.20 2.23 174 71.80 61.58

Table 4.8: Evaluated quantities of the scenario Nr. ii in Table 4.4. The
BoxFit can handle the narrow serpentine line better than the
other approaches. Only the measurement drop rate unveils the
disadvantage of the fitting algorithm.
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Figure 4.24: Position error over time for scenario Nr. ii in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Figure 4.25: Angle error over time for scenario Nr. ii in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Scenario Nr. iii, Standstill Approaching

In this scenario the ego vehicle is standing still on a rural road. The perceived
object approaches in a serpentine line but not as narrow as in scenario Nr. ii. The
trajectory is depicted in Figure 4.26. The quantities in Table 4.9 show another major
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Figure 4.26: Reference trajectory of the perceived object in the scenario
Nr. iii in Table 4.4. The perceived objects approaches in a
serpentine line.

drawback of any fitting approach which does not incorporate any history: the yaw
angle estimation can not decide whether an object is approaching or receding. In
this work the used BoxFit was designed to perceive cars from behind. Thus, the yaw
angle estimation has an error of over 160◦ since the perceived object is approaching.
In this case, a perfect result of the BoxFit would be 180◦. Taking a look at the
other quantities shows, that the GCEM method again would be a good compromise
because of the small drop rate. The details of the yaw angle error in Figure 4.28
shows that the presented approaches might be a bit too slow for this scenario since
the error increases in the parts of the scenario with a higher dynamic behavior, but
in comparison to the narrow serpentine line in scenario Nr. ii the error is very small.
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EUC 0.36 3.64 296 35.92 63.80 1.57

0.29 3.84 422 9.71 63.55 1.58

0.34 3.95 167 8.74 63.55 1.60

0.33 3.72 472 5.83 63.55 1.60

BoxFit 2.46 166.61 100 83.50 28.00

Table 4.9: Evaluated quantities of the scenario Nr. iii in Table 4.4.
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Figure 4.27: Position error over time for scenario Nr. iii in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Figure 4.28: Angle error over time for scenario Nr. iii in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Scenario Nr. iv, Standstill Crossing

In this scenario the ego vehicle is standing still at a crossing on a rural road. It is
aligned diagonally to the rural road in order to drive onto it. The ground truth data
begins in the moment the perceived object enters the field of view of the sensors.
This moment is obtained by checking the time of the first measured point of the
sensor. Thus, there might be a few milliseconds between entering the theoretic field
of view and perceiving the first measurement because of the sensor cycle time of
80ms. The trajectory of the perceived object is depicted in Figure 4.29 Taking a

−60−40−200

0

20

40

x in m

y in m

0

2

4

tim
e

t
in

s

Figure 4.29: Reference trajectory of the perceived object in the scenario Nr.
iv in Table 4.4.

short look at Table 4.10 shows, that the presented approaches perform well and all
of them are very similar. Once more, the box fitting algorithm has some deficits in
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EUC 0.32 1.11 85 6.35 42.55 1.30

0.43 1.21 130 7.94 42.65 1.27

0.41 1.08 135 4.76 43.79 1.29

0.39 1.10 117 4.76 43.16 1.30

BoxFit 0.60 18.79 106 28.57 41.20

Table 4.10: Evaluated quantities of the scenario Nr. iv in Table 4.4.
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estimating the yaw angle and in a stable perception of the vehicle. In the plot of the
yaw angle error in Figure 4.31 one can see, that the tracking approaches need some
time steps to correctly initialize the object and after about 1.5s the yaw angle error
shrinks. Since a crossing vehicle is a very dynamic object, this behavior is expected.
Altogether the evaluation in Figure 4.31 shows the problems of the BoxFit in the
initialization phase and in distances of more than 50m.
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Figure 4.30: Position error over time for scenario Nr. iv in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Figure 4.31: Angle error over time for scenario Nr. iv in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Scenario Nr. v, Following

In scenario Nr. v the ego vehicle follows the perceived object on a rural road. The
trajectories of the perceived and the ego object in Cartesian coordinates are shown in
Figure 4.32. The distance covered during the scenario is approximately 900 meters
and lasts about 40 seconds. At the beginning the distance of both vehicles is more
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Figure 4.32: Reference and ego trajectory in Cartesian coordinates in Sce-
nario Nr. v in Table 4.4.

than 100m and gets less over time. The results of the evaluation of this scenario in
Table 4.11 show that this is a scenario, the BoxFit was optimized for. The position
and the yaw angle error seem to be quite low, better than of all other methods.
Even the maximum distance is comparable to all others. Only the drop reveals the
limitations of the BoxFit. Due to its optimization for I and L shapes of vehicles, the
BoxFit has, as always, the lowest amount of FPs. Figures 4.33 and 4.34 show the
limitations of the BoxFit in detail. Despite the maximum perception distance of over
100m, it is obvious, that a stable perception is limited to approximately 80m. The
reason for this weak performance in higher distance is that there are only a small
amount of points on the perceived vehicle. This leads to a failing fit or rejection
because of the size of the object. In comparison to that, the GCEM loses the object
only in two time steps during 36s. This is due to the fact, that the raw data tracking
does not need any certain shape. The filtering over time allows the perception with
only a few sensor measurements.
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EUC 0.34 2.10 1686 1.03 109.47 1.06

0.35 2.10 3021 1.03 109.42 1.07

0.37 2.09 3399 0.41 109.42 1.06

0.37 2.09 2239 0.41 109.42 1.06

BoxFit 0.32 2.00 1313 34.77 107.52

Table 4.11: Evaluated quantities of the pursuit scenario (Nr. v in Table 4.4).
Obviously this is the favorite scenario of the BoxFit. It has a
very small yaw angle error and an even smaller position error.
Only the drop rate reveals the problems. In higher distances
the BoxFit fails. Thus, it makes sense, that the errors are small
in comparison to the other methods, since the BoxFit does not
even generate a measurement in difficult parts of the scenario.
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Figure 4.33: Position error over time for scenario Nr. v in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Figure 4.34: Angle error over time for scenario Nr. v in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Scenario Nr. vi, Following while Catching Up

In this scenario the ego vehicle follows the perceived vehicle on a rural road starting
in a distance of more than 150m and catches up to approximately 20m. The
trajectories of both vehicles are depicted in Figure 4.35. The plots are given in
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Figure 4.35: Reference and ego trajectory in UTM coordinates in the sce-
nario Nr. vi in Table 4.4.

Cartesian coordinates to visualize the trajectories in relation to each other. The
color coded time supports the understanding of the scene. The evaluated quantities
are displayed in Table 4.12. This is once more an example of scenarios the BoxFit
is optimized for. A low position error and only a small amount of false positives
proof that the parameter set of the fitting are well chosen. Even the maximum
perceived distance is rather high. The drawback is the measurement drop rate again.
In comparison to that, the GCEM and the GCB methods deliver a perfect result
with zero drops. Thus, the detailed plots of the position and yaw angle errors in
Figures 4.36 and 4.37 don’t show any surprises.
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EUC 0.31 1.69 1698 5.64 143.97 1.26

0.28 1.68 1871 12.82 143.60 1.31

0.34 1.69 2616 0.00 143.60 1.23

0.35 1.70 2053 0.00 143.60 1.24

BoxFit 0.26 1.91 840 38.97 90.28

Table 4.12: Evaluated quantities of the scenario Nr. vi in Table 4.4. The
BoxFit is obviously well parameterized for this kind of scenario.
Only the measurement drop rate brings up another winner. The
GCEM and GCB gain a drop rate of 0%
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Figure 4.36: Position error over time for scenario Nr. vi in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Figure 4.37: Angle error over time for scenario Nr. vi in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Scenario Nr. vii, Follwing while Receding

As Figure 4.38 shows, the perceived vehicle recedes from the ego vehicle while this
follows. The position of both vehicles is given in Cartesian coordinates and the time
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Figure 4.38: Reference and ego trajectory in Cartesian coordinates in the
scenario Nr. vii in Table 4.4.

is color coded to get the relation between both trajectories. Like other scenarios
already showed, the evaluation quantities in Table 4.13 reveal that the BoxFit is
doing very well in rather simple scenarios. The position and angle errors are more
than acceptable and the amount of false positives is low. It is the maximum perceived
distance and the measurement drops which bring the advantage for the raw data
tracking. The errors depicted in Figures 4.39 and 4.40 bring out the problems of
the fitting: the shorter perception distance and the measurement drops. Further,
this scenario highlights another drawback of the BoxFit: the mean value of the yaw
angle error seems to be very good, but taking a closer look at Figure 4.40 shows,
that the yaw angle error is very jumpy. The errors are getting very high, but they
also can get very low. Expressed as a mean value this information gets lost. It is a
bit similar for the GCEM, but since the yaw angle is already filtered, the output is
much smoother and there are less peaks.
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EUC 0.36 0.84 1440 9.02 148.36 0.62

0.36 0.85 1778 9.02 148.29 0.62

0.37 0.85 2724 3.76 149.33 0.62

0.37 0.85 1640 3.76 149.33 0.62

BoxFit 0.22 1.51 572 45.11 94.50

Table 4.13: Evaluated quantities of the scenario Nr. vii in Table 4.4.
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Figure 4.39: Position error over time for scenario Nr. vii in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Figure 4.40: Angle error over time for scenario Nr. vii in Table 4.4. The
distance to the perceived object is depicted with a gray dash
dotted line. The gray overlays display the time period no
hypothesis was generated.
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Summary

To sum up the results over all evaluated vehicle perception scenarios (Nr. i to Nr.
vii, Table 4.4), Table 4.14 shows the mean values of the chosen evaluation quantities.
The mean is equivalent to a weighted sum of all sequences, where the weights are
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EUC 0.41 4.92 11776 13.90 148.36 1.77

0.43 4.90 18405 11.20 148.29 1.78

0.45 4.92 24599 6.72 149.33 1.76

0.45 5.01 16575 5.36 149.33 1.78

BoxFit 0.52 15.71 9082 51.64 107.52

Table 4.14: Summary of the evaluation over all vehicle perception scenarios
(Nr. i to Nr. vii) in Table 4.4. The evaluated quantities are
explained in Table 4.6.

proportional to the length of the sequence. The results show, that the position
estimation of all compared methods have approximately the same error. Due to the
limited accuracy of the reference system mentioned above, these differences are not
very meaningful. Since the position is evaluated at the corners of an object, the
position error also depends on the measurement point density. Here, the BoxFit
yields nearly the same mean as the other methods, and taking a closer look to the
boxplot in Figure 4.41a shows that the median error of the BoxFit is even better
than those of the other methods. This is mainly due to the fact, that the BoxFit has
a very high drop rate and thus the accuracy is only calculated in the easier parts of
the scenarios. Additionally, the outliers are widely spread.
The yaw angle error of the presented methods with approximately five degrees is
quite good comparing to [RKDW16], where the yaw angle of a vehicle was estimated
using high resolution Doppler radar information. Especially regarding the fact, that
no object specific model was used. The almost sixteen degrees of the BoxFit are not
incapable to be used in subsequent algorithms, but Figure 4.41b reveals the problem
of many and widely spread outliers.
As already noted above, the amount of FPs of the BoxFit algorithm is much less
than of the other methods. This advantage gets lost with a more strict hypotheses
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Figure 4.41: Boxplots of the errors for position, yaw angle, and velocity. All
vehicle perception scenarios (Nr. i to Nr. vii) in Table 4.4 were
used for this evaluation. Every plot consists of a total view in
the upper plot and a close up in the lower plot.

filtering as presented in Section 4.4.3. Even the maximum distance of the BoxFit
seems not too bad, but reminding the evaluation in Figures 4.33 and 4.34, a robust
detection is only available in up to approximately 80m depending on the scenario.
Further, the measurement drop rate of the BoxFit is very poor. Additionally, because
of the lack of a velocity estimation, the BoxFit can not differ between oncoming and
receding objects.
Altogether, the presented approaches outperform the BoxFit used in this work
and probably would do so with many clustering and fitting approaches. The four
presented methods yield very similar results and mostly differ in the measurement
drop rate and the amount of false positives. Since most tracking applications can
handle false positives quite effectively but have problems with missed detections the
priority is the drop rate. Thus the two clustering methods GCEM and GCB have a
small advantage. The GCB method has a higher amount of false positives than the
GCEM and has a slightly higher drop rate. Using this priority the GCEM method
should be preferred. Having other or more requirements, the recommendation could
be the other way round.
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4.5.2 Evaluation of the Pedestrian & Bicycle Perception

The purpose of the raw data tracking was a model free approach to allow the
perception of vehicles, pedestrians, and others with the same preprocessing algorithm.
Although different parameterizations for vehicles and pedestrians are useful, but not
mandatory, it is possible to generate hypotheses for both of them. Here, the algorithm
is evaluated using three pedestrians and two bicycles after one another. Figure 4.42
shows the trajectories of the five objects. These five objects are temporally separated.
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Figure 4.42: Trajectories of the pedestrian & bicycle scenario (Nr. viii in
Table 4.4). One long sequence was divided into five parts. The
positions are given in vehicle coordinates.
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There is always only one object in front of the ego vehicle. This is also visualized
using the colored time bar on the right of every trajectory. The chosen surrounding
is quite challenging: the observed footpath with a width of about 4m, as shown
in Figure 4.43, is surrounded by dense bushes and trees. Hedges cover both sides
of the path. In some segments branches extend into the path. Even with a still
standing ego object it is quite difficult to separate the bicycles and pedestrians from
the background. This leads to a huge amount of dense data. Furthermore, the leaves

Figure 4.43: Image of the setting the pedestrian and bicycle scenario was
taken.

and branches are moving in the wind causing moving raw data tracks. The observed
pedestrians and bicycles approach and recede along the vegetation on both sides to
test the limitations of the system. As already pointed out, the ground truth was
generated manually in a labeling process using the sensor raw data. This is an error
prone process but using GNSS based solutions fail in such a narrow surrounding.
The evaluation results are depicted in Table 4.15. Since the BoxFit is not able to
perceive anything else than vehicles, it is not compared here. The results show
that the quite challenging scenario leads to a rather high measurement drop rate.
One reason is that there are a lot of moving branches from trees etc. which cause
raw data tracks to be moving. This movement has a random direction. If a true
object is getting close to the trees and bushes, the tracks on the object might be
fused with the tracks on the branches or may be occluded. Another reason seems to
be responsible for even more measurement drops: the point cloud on bicycles and
pedestrians is very sparse. In a distance of 80m it occurs that there is no single
point on the object. Figure 4.44 shows, that for the GCB and GCEM method the
measurement drops increase drastically with the distance. The position error is again
only valid as a trend because of the manual ground truth generation, but it shows
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Table 4.15: Evaluated quantities of the pedestrian & bicycle scenario (Nr.
viii in Table 4.4). The BoxFit is not able to detect other objects
than vehicles. Thus, it is not evaluated in this scenario.

that there is hardly any difference between the evaluated methods. The amount of
false positives again reflects the difficulty of the chosen scenario. The BHAT method
shows less false positives, but also a worse performance. Here, the GCB seems to
be the best compromise. Figure 4.44 shows the position error over time in detail.
The angle error is not evaluated since the manual labeling of the yaw angle is not
reliable. The gray overlays display again the time periods where no hypothesis at
the position of the reference was generated. The red boxes are highlighting time
periods in which no reference object was moving within the field of view. One can
see, that the position error normally increases with the distance and the object is
lost in higher distances or if the object gets too close to the surrounding vegetation.
It might also come to one’s mind that the position error has a static offset. This
actually might be true, since the labeling of the position is done in the center of
the labeled point cloud and the measurement is given at one of the reference points.
This problem was reduced a bit for bicycles since it was possible to approximately
label the yaw angle. The results of Table 4.15 and Figure 4.44 show the limitations
of the presented approach. Where the GCB and GCEM might perform good enough
for subsequent tracking algorithms, the other methods have a way too high drop
rate. In higher distances the GCB and GCEM also fail quite often. This is mainly
due to the limited resolution of the sensor. As depicted in Figure 4.45 the amount of
points on a pedestrian in over 60m is zero in the worst case. The alignment of the
sensor was chosen to look straight ahead with one layer, so it is likely to have one to
two measurement points on the target in high distances. This reflects the results
in Figure 4.44, where the performance decreases drastically in distances over 60m.
Regarding this, it is a quite satisfying result to have hypotheses in up to over 80m.
The drops in closer distances are due to track loss or because of too big clusters. This
happens if the bushes etc. move in the wind and cause jittering measurement points.
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Figure 4.44: Position and yaw angle errors over time for the pedestrian
& bicycle scenario (Nr. viii in Table 4.4). The distance to
the perceived object is depicted with a gray dash dotted line.
The gray overlays display the time where no hypothesis at the
position of the reference was generated. The red boxes are the
time no reference object was moving within the field of view.
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Figure 4.45: Theoretical amount of points from one IBEO LUX 4 on a
pedestrian with an assumed width of 0.5m and height of 1.7m.
In blue, the number of vertical points (in one layer). In black,
the number of horizontal points (over multiple layers). In red
the total amount of points on the pedestrian (multiplication
of vertical and horizontal). There is always a best case (bc)
and a worst case (wc) analysis. The physical effect of beam
expansion was not taken into account.

This scenario shows, that an adaption of clustering and hypotheses generation of the
algorithm corresponding to the expected type of object might help. Nevertheless,
regarding the complexity of the problem and without any special adaption of the
algorithm, the performance of the GCB and GCEM are a good result.

4.6 Summary

In this chapter, a new method was presented to generate measurement hypotheses
using a high density distance measuring sensor. It does not matter if the sensor
measures bearing and range, or Cartesian coordinates. With the new method a linear
measurement model can be applied and therefore be used in information filtering
without any loss.
The obvious disadvantages are the additional computational load, the poor ability
to recognize still standing objects, and the relatively high amount of false positives.
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These disadvantages are well compensated for by the following improvements:

· In comparison to simple clustering algorithms like the BoxFit, the perception
range is extended markedly as shown in the evaluation in Section 4.5.1.

· The perception is not limited to certain scenarios, shapes, or types of objects.
The algorithm is independent from any model assumption.

· The yaw angle estimation is quite confident in every scenario, with the limita-
tion, that filtering the yaw angle in a subsequent tracking application causes a
filtering of an already filtered quantity. Since the filtering process is always a
type of low pass, double filtering amplifies this behavior.

· A velocity estimation is available. This is very useful for the initialization
of new tracks. When using it as a measurement in the subsequent tracking
application, the problem of double filtering arises again.

· An estimation of the covariance matrix of the generated hypothesis is available.
As explained in Section 4.4.3, the variances are not very precise, but they are
a rough estimate and can be used as an upper boundary value.

· Measurements produce an unique ID over long distances which might simplify
the task of data association.

· Reducing the amount of false positives using yaw angle and velocity information
turned out to be very useful.

Despite all advantages listed above, there are still possibilities for further improve-
ments. First of all, since the algorithm is a proof of concept, the parameterization
needs to be optimized based on a comprehensive data set. For better detection of
non-moving objects, it seems to be useful to use a threshold on moving objects and
implement some sort of fallback solution, e.g. a principle component analysis (PCA),
for the non-moving ones. Reducing the amount of false positive measurements would
surely be another helpful improvement. As shown above, the yaw angle on its own
could be used for this task, but a more extensive classification seems to be promising.
Another possibility to improve the hypotheses clusters may be to use symmetric
distance measures other than presented in this work. The suggested future work
so far was concerning the hypotheses generating algorithm itself, but a massive
reduction of the computational load could be achieved by a simple preprocessing of
the raw data. The task of such a preprocessing step would be to reduce the amount
of data e.g. at the side of the road where only bushes and trees are present. To
do this, a sort of attention control is conceivable. Different approaches to such an
attention control might be:
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· A digital street map can be used to reduce the sensor data to areas, were
other road users are expected to be. Further, if the vehicle path is known,
the attention could be increased along that path by reducing the resolution in
uninteresting regions.

· An online grid map, where cells are recognized as stationary over time. A
drawback of this method is that the online grid map is only reliable in an area
directly in front of the ego vehicle. Since unnecessary data are mainly caused
by exactly this area, the drawback is only a small one. Details of this approach
can be found in [NRK+12].

· An offline grid map, where the roads of interest are mapped in advance, extends
the functionality of an offline grid map with the disadvantage of invalid maps
in cases of changes along the road.

· Simultaneous localization and mapping (SLAM) as a mixture of offline and
online grid map. Using SLAM allows localization of the ego vehicle on a
formerly created map and incorporating the recent changes along the road
simultaneously. Nice summaries on SLAM are given, among others, in [AMV13;
BD06; DB06]).





Chapter 5

Conclusion

To handle the increasing complexity of modern sensory systems, like autonomous
vehicles, the key is a generic formulation of sensor data fusion systems. The main
property a generic fusion system should have is the possibility to exchange sensors
easily. The JIPDA is a method which suits the need to fuse information from
different types of sources so far. In the first part of this work, it was derived
how the information filter can be used within the JIPDA and it was shown that
their combination allows the formulation of a totally generic sensor data fusion
framework. This framework has multiple advantages: a common sensor interface for
all kind of sensors allowing the usage of any sensor without knowledge about the
sensor’s measurement principle. Additionally, it is not possible to extract detailed
knowledge about the sensor from the obtained measurements. This anonymization
allows the manufacturer to keep secrecy about the details of the sensor. Finally, the
interface has always the same number of values resulting in full exchangeability of
sensors without adaption being necessary to the fusion framework. In the course
of the work, the new information filter version was shown to be equivalent to the
standard Kalman filter approach in linear systems. In the case of non-linear systems,
the accuracy strongly depends on the non-linearity and is caused by the use of
pseudo-determinants and pseudo-inverses. For non-linear measurement models a
linearization at the measurement itself, in case of invertible measurement models, and
at the predicted state using a backward channel are feasible. In case of non-invertible
measurement models additional assumptions may help to realize a linearization of
the measurement model, e.g. the flat world assumption for cameras. Furthermore, it
was shown that other fusion systems basing on Gaussian measurement likelihoods
can also use the information filter approach to generalize the sensor interface.

Beside a generic fusion framework, the performance of the connected sensor systems
is essential to achieve a high precision perception result. At the moment, high density
distance measuring sensors delivering dense or semi dense 3D point clouds are very
common.
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In the second part of this work, a new approach was presented, showing how such
point clouds can be processed to get a maximum of information and to suit the needs
of a generic framework at the same time. In this new method, the raw sensor data is
tracked and the clustering is filtered over time to generate measurement hypotheses.
In comparison to model and frame based algorithms, a significant improvement of
the perception range and reliability is achieved in many different scenarios. An
adaption of the preprocessing to different kinds of objects or scenarios is not necessary
any more but still possible. A major advantage of the filtered hypotheses is the
availability of velocity and orientation information. Further more, a unique ID and
the estimation of the variance of every hypothesis may help subsequent tracking
applications during the data association. A detailed evaluation in many different
real-data scenarios showed the superiority of the presented raw data tracking and
clustering.
The presented approach is a proof of concept and may be further optimized by
parameterization and a more comprehensive data set for validation. A possible
extension of this work could be to classify the generated hypotheses. Having already
information about the general behavior of an object and the corresponding raw data
tracks, like the velocity and a possible extent, may be sufficient for this task. The
realization of an attention control mechanism or the like, using digital street maps,
offline or online grid maps, or a SLAM approach, to improve the results and to
reduce false positives is also conceivable.
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ψ yaw angle
ω yaw rate
Y information matrix
y information vector
z measurement vector
Z set of measurements
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