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Part I.

Preliminaries

1





1. Introduction

1.1. Motivation

During the past decades, the amount of (real or artificial) data that is collected
or simulated in almost all fields of natural, technical or social sciences has grown
exponentially, see, e.g., Turner et al. (2014). This is mostly driven by huge technical
advances (greatly improved computer power, inexpensive and large hard drives, social
media platforms, increased availability of image and video data, new innovative sensor
technology, etc.) which enable a quick and cheap compilation of large and complex
databases as well as extensive, high-resolution computer simulations. At the same
time, new concepts and methods are constantly being developed, which allow for a
more efficient acquisition, storage, processing, and analysis of such datasets. This
trend encourages an intensified use of advanced stochastic models, statistical methods,
and algorithms for Monte Carlo simulation to provide new insights to questions in all
kinds of research areas. For example, in recent years stochastic models and methods
have been successfully developed and applied at the Institute of Stochastics at Ulm
University for a multitude of challenging problems covering such various fields as biology
(e.g., Meinhardt et al., 2012; Lück et al., 2013), chemistry and physics (e.g., Brereton
et al., 2014; Stenzel et al., 2014), climatology and meteorology (e.g., Rumpf et al.,
2009; Elsner et al., 2013), dialectology (e.g., Rumpf et al., 2010), materials science
(e.g., Gaiselmann et al., 2014; Neumann et al., 2016; Spettl et al., 2016; Handl et al.,
2017; Westhoff et al., 2017), risk modeling (e.g., Christiansen et al., 2014; Kriesche
et al., 2014), and telecommunication networks (e.g., Hirsch et al., 2015; Neuhäuser
et al., 2016).

In this thesis, we consider two practical problems (one from meteorology and one
combining questions from archeology and paleoecology), which we attempt to address by
using stochastic models, methods, and simulation algorithms. Both applications have
in common that all information in the underlying data are referenced by geographical
coordinates and, additionally, have a temporal component. In fact, those are the
most important information in the data as both problems considered in the following
are related to the analysis and estimation of spatio-temporal distributions or the
modeling and simulation of objects in space and time. The presence of space-time data
suggests an extensive use of models and methods from disciplines that are referred to
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1. Introduction

as stochastic geometry, spatial statistics, and geostatistics in literature but tools from
other fields of applied mathematics will be considered as well (see Chapter 3). The main
objective of this thesis is the development of new and innovative models and methods
by combining existing spatial and spatio-temporal modeling approaches, statistical
estimators, simulation algorithms, and optimization procedures from literature. In
particular, we put a focus on the specific requirements the models and methods must
meet in order to provide suitable solutions for the considered applications. This involves,
e.g., that the developed approaches take into account special features in the available
data, perform reasonably well with respect to observation data or independent results
from literature and are implemented efficiently to allow short run times, which is crucial
for an operational application.

The present thesis is embedded into two research collaborations between the Institute
of Stochastics at Ulm University and several external partners, see Section 1.3. The
results on stochastic models in weather prediction described in Part II of this thesis
were achieved during a long-standing collaboration with the Deutscher Wetterdienst
(DWD). Founded in 1952 as the main meteorological service of Germany, the DWD
is responsible for providing timely, accurate and reliable weather forecasts and for
monitoring meteorological and climatological conditions over Germany. A particularly
challenging task is the issuing of weather warnings since severe weather events such
as heavy precipitation, strong wind gusts, earth frost or hailstorms can cause both
personal injury and high material damage. Thus, key customers of DWD range from
civil protection, federal and regional authorities, provincial administrations of road
construction, winter services, municipalities, business companies and media up to
private customers and the general public. Classically, deterministic weather forecasts
are computed based on numerical models describing the atmosphere, which is referred
to as numerical weather prediction (NWP) in literature. Probabilistic forecasts can be
derived using ensembles of numerical forecasts but it is generally acknowledged that
the resulting predictions are subject to systematic errors. Therefore, the application of
a wide range of probabilistic postprocessing methods has become of growing interest
during the last decades to improve forecast quality. This involves that biased forecasts
are corrected using data from meteorological observation systems such as rain gauges
or anemometers. These systems typically represent measurements at fixed geographical
locations, which is why the resulting calibrated probabilistic forecasts are related to
single geographical locations (i.e., points, in mathematical terms), too. Consequently,
DWD usually provides probabilities for the occurrence of weather events at given
locations, which are denoted as point probabilities in this thesis. Especially for the
issuing of weather warnings the consideration of point probabilities is often not sufficient
as a critical situation can already arise if a (severe) weather event occurs somewhere in
a region (or area, in mathematical terms) rather than at a fixed point. Two examples
are given by the area of responsibility of a fire department, which is alarmed when there
is heavy precipitation somewhere within that area, or by some warning area of DWD,
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1.1. Motivation

for which a warning of freezing streets is issued in winter if there is precipitation of any
small amount somewhere within that area (in combination with negative temperatures).
A probability for a weather event occurring somewhere in an area is denoted as an area
probability in this thesis. Accordingly, area probabilities are quantitatively different
from point probabilities, e.g., an area probability of some weather event is always
greater than or equal to a point probability of the same event at each fixed location
within that area.

While a variety of methods for the derivation of precise and reliable point forecasts
have been proposed in the literature, no general relationship is known for the analytical
computation of area probabilities based on point probabilities (and their spatial
correlations, which are expected to contain information about the spatial scale of
the considered weather event). Existing approaches for probabilities of precipitation
(Epstein, 1966; Krzysztofowicz, 1998) rely on restrictive assumptions, which make them
inappropriate for the use in operational weather prediction. On the one hand, circular
precipitation cells and uniformly distributed cell centers imply that point probabilities
are equal for all locations in the considered forecast area, which does not allow for
applications on a non-local scale such as the territory of Germany. On the other hand,
additional information about the size of precipitation cells need to be provided by the
forecaster, which prevents an automated generation of weather warnings, where an
algorithmic computation of area probabilities based solely on point probabilities is
desired. As a promising alternative, we suggest to compute or estimate area probabilities
based on spatial stochastic models. In the present thesis, we consider the occurrence
of precipitation exceeding a threshold u ≥ 0 in mm (which includes the occurrence of
precipitation of any amount for u = 0) and the occurrence of thunderstorms. While a
variety of approaches to the spatial, temporal or spatio-temporal stochastic modeling of
precipitation cells and precipitation amounts can be found in literature, the modeling
of thunderstorms has not been considered yet. Unfortunately, certain limitations such
as spatial and temporal stationarity, model fitting based on observation data or the
independence of precipitation cells and precipitation amounts prevent an application
of the models from literature in operational weather prediction. Therefore, one major
goal of this thesis is the development of more robust and less restrictive stochastic
models for precipitation cells, precipitation amounts and thunderstorm cells, which
are suitable for the flexible, algorithmic computation of reliable area probabilities in a
general context.

The results presented in Part III of this thesis were obtained in the framework of
a research collaboration with the University of Ottawa and pertain to the analysis
of relationships between the spatio-temporal distributions of human population and
vegetation composition in North America during the Holocene (the geological epoch
that began about 12000 years ago and lasts until today). While the rough distribution
of different plant taxa in prehistoric North America has already been estimated on
a continental scale (e.g., Williams et al., 2004), this has not yet been done for the
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1. Introduction

distribution of human population. For a long time, there has been the prevailing opinion
that the North American continent was settled via a land bridge connecting Alaska with
eastern Siberia, see, e.g., Hoffecker et al. (1993). When a corridor opened between the
Cordilleran and Laurentide Ice Sheets in western Canada about 14000 years ago, Native
Americans migrated into all regions of North America that were not covered by ice
(Bonatto and Salzano, 1997). However, today a large number of archaeologists consider
it possible that a coastal migration took place by seafaring peoples from Asia (e.g.,
Goebel et al., 2008; Pedersen et al., 2016) or even other continents such as Australia
(e.g., Skoglund and Reich, 2016), which would allow people to quickly reach all parts of
the Americas before the ice-free corridor opened. In any case, archaeological findings
(which are dated using the radiocarbon method) document that around 13000 years
ago, Native American populations could be found in many different regions across the
continent. The spatial patterns of subsequent population growth, however, are mostly
unclear. Native Americans did not leave any written legacy, which is why no reliable
information on population numbers and distributions is available until the arrival of
Europeans about 500 years ago. In the present thesis, we thus attempt to statistically
reconstruct the spatio-temporal distribution of populations in North America during
the Holocene based on a large database of radiocarbon dates. Furthermore, using
similar statistical techniques we also provide updated estimates of prehistoric vegetation
abundances for a series of plant taxa based on fossil pollen data.

Another question of interest is how Native Americans interacted with their environment.
Economic and technological activity of human populations often has a large effect on
their natural environment and, vice versa, fluctuations in environmental conditions
can have a significant influence on societies. For example, during the colonial period
in North America, European settlers had an enormous impact on the landscape by
deforesting large parts of eastern North America, although much has since regrown
(Williams, 1989). Determining relationships between Native American populations
and their environment before historical times, however, is much more complicated
and can be done using (sub)fossil data. Two different points of view have been
proposed in the literature to describe the nature of interactions between populations
and their environment in prehistoric North America, see, e.g., Denevan (1992) or Vale
(2002). One perspective commonly held through the 19th and 20th century suggests
that in the pre-Columbian era North America was a ‘pristine landscape’ with low
population densities, where vegetation was mostly unaltered by human activities.
This view implies that there was no systematic impact of native populations on the
environment and the primary factor causing changes in population numbers as well as in
cultural or technological progress would have been environmental and climatic changes.
However, an opposing viewpoint suggests that in large parts of North America, native
populations altered the forests and plains through extensive land use, e.g., by burning
down forests to allow for more intensive agriculture. Local and regional studies for
North America have highlighted possible relationships between environmental changes
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and population sizes, see Delcourt and Delcourt (2004), Munoz and Gajewski (2010),
Munoz et al. (2010) or Kelly et al. (2013). For example, in Munoz and Gajewski
(2010) it is demonstrated that the introduction of agriculture at its northernmost range
in Ontario led to a changing composition of forests over a period of several hundred
years. If this was widespread, then it is entirely possible that human activity affected
vegetation composition to a large extent across the continent. Therefore, we attempt
to understand this interaction at continental scales by analyzing correlations between
estimates of vegetation composition and population activity over the course of the past
13000 years.

1.2. Outline

This thesis is subdivided into three major parts. In Part I, the preliminaries, we provide
a basis for the stochastic models and methods that are developed throughout this
thesis. After the present introductory chapter we first give an overview of modern
weather prediction as applied by DWD in Chapter 2 to allow for a better understanding
of the available data and to provide a general context for the stochastic models that
are developed later on in Part II. This includes an introduction to operationally
applied atmospheric and surface observation systems, a brief discussion of NWP models
for deterministic forecasting and a description of several approaches to probabilistic
weather prediction (PWP) such as ensemble prediction and statistical postprocessing.
Furthermore, we give a review of existing literature on the computation of area
probabilities and on stochastic models for precipitation cells and precipitation amounts.
In Chapter 3, we introduce the mathematical foundations that allow for a precise formal
description of the developed models, methods, and simulation algorithms. Besides
some general notation, we focus on tools and concepts of geostatistics (e.g., estimation
of dependency structures in and between random fields), models and methods from
stochastic geometry (such as random point processes and germ-grain models), and
the application of nonparametric kernel methods in density estimation and regression
analysis.

In Part II, we discuss several approaches to the spatial and spatio-temporal modeling
of weather events with the purpose of estimating area probabilities. At first, Chapter 4
introduces a spatial stochastic model for the occurrence of precipitation, which can
be used to compute area probabilities for arbitrary areas of interest based on point
probabilities provided by DWD. In this context, precipitation cells are modeled as
circular discs with random centers and a joint random radius, and methods are
derived to algorithmically determine model characteristics without further input of the
forecaster. This approach is then extended in Chapter 5 to the modeling of precipitation
amounts. A randomly scaled response function is attached to each precipitation
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1. Introduction

cell and the individual response functions are summed up to obtain precipitation
amounts. Again, methods for the algorithmic computation of model characteristics
are provided and it is described how the model can be used for the estimation of
area probabilities for the occurrence of precipitation exceeding an arbitrary threshold.
Finally, Chapter 6 describes a generalization of the proposed model of precipitation
cells to the representation of thunderstorm cells using cluster processes. In addition to
forecasted point probabilities of DWD we also take recent thunderstorm records into
account, which allows to significantly increase the precision of predicted thunderstorm
events for lead times of few hours ahead. All three models discussed in Part II are
evaluated by comparing obtained area probabilities to high-resolution observation
data.

Part III of the present thesis deals with the statistical analysis of archaeological and
paleoecological data for North America. At first, Chapter 7 describes an approach to the
statistical estimation of population intensity maps for the past 13000 years based on a
comprehensive database of radiocarbon-dated archaeological material. For that purpose
we propose a nonparametric method which accounts for several potential biases such as
inhomogeneous sampling strategies, taphonomic loss or boundary effects. Furthermore,
we give a brief interpretation of obtained results and perform a sensitivity and robustness
analysis. Similar statistical techniques are applied in Chapter 8 to determine spatio-
temporal estimates of vegetation intensity maps for a series of plant taxa that are
major constituents of the forests and prairies of North America. As underlying data we
use fossil pollen samples from a paleoenvironmental database, which can be considered
as a quantitative index of past plant abundance. Once estimates of population and
vegetation intensities are available, we perform a correlation analysis to find systematic
relationships between demographic changes and environmental conditions in prehistoric
North America. For that purpose, Chapter 9 discusses a statistical methodology
to estimate spatio-temporal cross-correlation functions of vegetation and population
intensities as well as cross-correlations of changes in vegetation and population at
various temporal lags.

To conclude the thesis, Chapter 10 provides a summary of the main results and
illustrates the insights that are obtained from the applied statistical methodology.
Furthermore, we briefly discuss some open questions and suggest potential topics for
future research.

1.3. Research collaborations

As mentioned in Section 1.1, the results described in the present thesis were obtained
in several interdisciplinary research collaborations between the Institute of Stochastics
at Ulm University and various external partners. The approaches presented in Part
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1.4. Software

II of this thesis for the stochastic modeling of weather events with the purpose of
estimating area probabilities were developed and evaluated in a joint research project
with the Research and Development of DWD. Furthermore, the spatial stochastic
model introduced in Chapter 5 for the representation of precipitation amounts and the
statistical procedures for the computation of model characteristics were established
in collaboration with the Department of Probability and Mathematical Statistics at
Charles University in Prague.

The statistical methods for the estimation of spatial population and vegetation intensity
maps as well as the correlation analysis of obtained maps discussed in Part III were
developed jointly with the Laboratory for Paleoclimatology and Climatology and the
Department of Mathematics and Statistics at the University of Ottawa. Additionally,
the Canadian Museum of History in Ottawa and the Department of Anthropology at
the University of British Columbia in Vancouver were involved in the interpretation of
population intensity maps provided in Section 7.

1.4. Software

An important aspect in developing the stochastic models and methods presented
in this thesis is an efficient implementation to allow for an automatic operational
application. Most concepts introduced in the following were implemented in Java or
R, where we also rely on existing packages and libraries. On the one hand, we use
several classes from the GeoStoch, a Java library which was jointly developed by the
Institute of Stochastics and the former Institute of Applied Information Processing
at Ulm University, see Mayer et al. (2004), and which is still extended regularly.
In particular, we use classes for the handling of two-dimensional geometric objects
(such as point patterns, discs, and convex polygons), the simulation of random point
processes, the computation of distances between geographical coordinates, and the
fitting of semivariogram models, where the classes described in Faulkner (2002) are
used. In addition to the GeoStoch we incorporate classes from the Parallel Java

library developed by the Department of Computer Science at Rochester Institute of
Technology, see Kaminsky (2007), the Apache Commons Math library of the Apache
Software foundation, see http://commons.apache.org/proper/commons-math, and
the JOptimizer library for mathematical optimization problems, see http://www.

joptimizer.com.

The statistical software package R is mainly used for visualization purposes. In
particular, we import several packages that are specifically designed to facilitate
the reading, processing and visualization of geographically referenced data (maps,
maptools, rgdal and geosphere), the handling of geometric objects (rgeos) or the
illustration of three-dimensional functions (rgl). Furthermore, two packages for the
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1. Introduction

automatic selection and processing of paleoecological data are incorporated (neotoma
and analogue).
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2. Fundamentals of weather
prediction

In order to facilitate the description of the available data and the mathematical
framework used later on in this thesis in the context of modeling precipitation and
thunderstorms, the present chapter provides some fundamentals of modern weather
prediction as applied by DWD. We describe two routine procedures operated by DWD
to record precipitation rates and thunderstorms in the territory of Germany (Section 2.1)
and give some insight into the basics of numerical and probabilistic weather prediction
(Sections 2.2 and 2.3). A more detailed overview of the discussed concepts and systems
can also be found on the website of DWD (www.dwd.de). Furthermore, this chapter
contains a short review of previous literature on the topics considered in Part II of
the present thesis. To be more precise, in Section 2.4 the notations of point and
area probabilities are introduced and an analytical relationship between both types
of probabilities is presented under simplified conditions. As such approaches turn
out to be inapplicable in operational weather prediction, we alternatively suggest to
derive area probabilities based on spatial stochastic models, which are calibrated using
point forecasts. For that purpose, a brief review of stochastic models for precipitation
proposed in literature is provided in Section 2.5.

2.1. Weather observations

Reliable and exact high-resolution observation data are fundamental for weather services
to perform their tasks such as providing precise weather forecasts and monitoring
climatological developments. For that purpose, a large number of different observation
systems is operated by DWD. On the one hand, DWD maintains a monitoring network
of weather stations for surface observations (some manned by professionals or volunteers,
some running fully automatic) that record weather data at single, fixed locations and
regular time points (a few even providing temporally continuous data). Measured
meteorological quantities include air pressure, temperature, humidity, wind velocity,
wind direction, amount of precipitation, and duration of sunshine. Recorded raw data
are analyzed, preprocessed, and archived into data bases to be used for the calibration
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2. Fundamentals of weather prediction

of atmospheric observations (see below) or as input for NWP (see Section 2.2) and
statistical postprocessing in PWP (see Section 2.3.2).

In many meteorological applications weather data with a much higher spatial resolution
are required, which can only be obtained through systematic observation of the atmo-
sphere (i.e., through remote sensing). The most popular remote sensing technologies
used to provide spatially inclusive and comprehensive data of different meteorological
quantities are weather surveillance radar and geostationary weather satellites. As
we only consider data that are (mainly) derived from radar in this thesis, we briefly
summarize the functionality of the polarimetric Doppler C-Band radar systems as
operated by DWD. Using a transmitter and an antenna, a radar system generates
impulses of electromagnetic waves, which are radiated into the atmosphere (bundled
in a fixed direction). The electromagnetic waves propagate and hit the particles in
the atmosphere, where a small amount of the waves is reflected back to the radar
system. This so-called radar echo is then amplified, analyzed, and digitized, and the
strength of the received signal can be considered as an indicator for the intensity of
precipitation. Based on the fixed direction and the length of the time period between
radiating the electromagnetic wave and receiving the reflected signal, the exact location
of the reflecting particles can be determined. Changing the direction of the antenna
according to a coordinated radar-scan-strategy (which is consistent for all systems in
the radar network) allows to continuously monitor the atmosphere with a high spatial
resolution. The entire scan procedure is repeated every 5 minutes providing a high
temporal resolution as well. Radar reflectivities can be further processed to obtain
data on, e.g., precipitation amounts or thunderstorm cells.

In order to provide spatially inclusive and comprehensive records of precipitation
amounts, the routine procedure RADOLAN (Radar-Online-Aneichung) is applied by
DWD. The RADOLAN system is based on a regular 1 km × 1 km lattice, which
consists of 900 × 900 locations in central Europe ranging from 2.1◦E to 15.7◦E and
46.6◦N to 54.9◦N. Point coordinates that refer to the RADOLAN lattice are denoted
as RADOLAN coordinates throughout this thesis. RADOLAN uses radar reflectivities,
which are derived by the 17 radar stations of the operational weather radar network of
DWD, see Winterrath et al. (2012). As reflectivities only provide indirect information
on observed precipitation amounts, an adjustment is needed. For every full hour,
aggregated radar reflectivities are merged with surface observations of more than 1,200
rain gauges at conventional meteorological sites, combining the advantages of both
measurement technologies. The currently best possible RADOLAN product provides
hourly quantitative precipitation data for all points of the RADOLAN lattice that
are located within the territory of Germany with precipitation amounts rounded to a
multiple of 0.1 mm. An additional clutter filter for hydrological applications can be
applied in order to remove spurious pixel-scale precipitation events, see Winterrath
and Rosenow (2007).
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The second source of weather observation data being used in this thesis are derived
from the NowCastMIX system, which archives thunderstorm records in high spatial
and temporal resolution and provides various forecasts for the purpose of issuing
short-term thunderstorm warnings. NowCastMIX combines thunderstorm records that
are obtained every five minutes from three different approaches: CellMOS, KONRAD
(Konvektionsentwicklung in Radarprodukten) and lightning sensors. CellMOS and
KONRAD detect centers of thunderstorm cells based on (unadjusted) radar reflectivities,
see Lang (2001). In order to do this, areas of adjacent pixels with radar reflectivities
exceeding a certain threshold are determined and their barycenters are identified as
centers of thunderstorm cells (large areas are subdivided into several individual cells).
In addition, different cell characteristics are analyzed and recorded. Applications of
data from KONRAD are described, e.g., in Wapler et al. (2012) and Wapler (2017).
Moreover, CellMOS also provides probabilistic forecasts of thunderstorm events by
combining detected cells with data from NWP, which are, however, not used in this
thesis. As a third source of data, NowCastMIX interprets the coordinates of lightning
strikes detected by lightning sensors as thunderstorm cell centers as long as they are
not located within a radius of 10 km to a previously recorded cell center (lightning data
are called LINET and are provided by nowcast GmbH). In NowCastMIX, thunderstorm
cell centers are described using RADOLAN coordinates (see above) and single cells
are modeled as discs with a fixed radius of 10 km. Additionally, several thunderstorm
characteristics such as movement speed, movement direction and hail flag (an indicator
for thunderstorm strength) are derived from radar reflectivities, using several radar
processing methods together with lightning density and NWP data. Based on the
movement speed and direction a warning cone with a propagation angle of 7.5◦ is
computed for each thunderstorm cell describing the possible movement of the cell
during the subsequent 60 minutes.

2.2. Numerical weather prediction

Generally speaking, weather forecasting involves the application of scientific methods
to predict future states of the atmosphere using (surface and atmospheric) observations
from past and present time periods. Almost all modern weather forecasts are based on
numerical models describing the principles of atmospheric physics. We briefly sketch
the basic functionality of NWP models, for more details see, e.g., Coiffier (2011) and
Inness and Dorling (2013). In a numerical model the dynamic physical processes in
the atmosphere are described using a system of differential equations and physical
parameterizations. Based on Navier-Stokes equations from fluid dynamics, see Chorin
and Marsden (1993), the spatio-temporal evolution of the most important meteorological
variables such as temperature, wind velocity, air pressure, and water vapor are modeled.
These complex differential equations can only be solved numerically, which requires a
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suitable discretization. For that purpose, the system of equations is transfered into a
grid point model, which means that the spatio-temporal evolution of the considered
meteorological variables is computed on a three-dimensional spatial grid covering the
atmosphere from the surface up to a certain maximal height. Some NWP models are
based on a global (i.e, world-wide) grid as for forecast ranges of five days and more the
future weather at a fixed location (e.g., in Germany) can depend on the current state of
the atmosphere in many regions of the earth. One of the most important characteristics
of the model is the grid spacing, i.e., the horizontal distance of neighboring grid points.
When choosing a possible grid spacing a compromise needs to be found between
providing a sufficiently detailed representation of atmospheric structures and allowing
the system of equations to be solved in a reasonable computation time. However, many
physical phenomena in the atmosphere correspond to spatial scales that are smaller
than the grid spacing and can thus not be resolved explicitly by the NWP models.
These so-called sub-gridscale processes require additional parameterization schemes in
order to describe their impact on the overall evolution of the atmosphere. Important
sub-gridscale features include interaction of the atmosphere with solar and thermal
radiation, cloud microphysics, convection and sub-gridscale orography. Altogether
discretization and parameterization lead to a huge system of differential equations
in time (typically 108 to 109 equations). Finally, numerical difference methods for
initial value problems are applied to determine approximate solutions of the considered
system in time steps ranging from several seconds to few minutes (depending on the
chosen grid point model). For example, at DWD the Runge-Kutta method of third
stage and the predictor-corrector method are used for that purpose, see, e.g., Butcher
(2016). In order to apply such methods efficiently to the large system of equations,
powerful supercomputers need to be available.

DWD operates two NWP models, which are briefly described in the following. As one
of fourteen weather services in the world, DWD runs a global model called the ICON
(Icosahedral Nonhydrostatic) model, see Zängl et al. (2015). It was introduced in 2015
and superseded the GME (Globalmodell Europa), which started operational work in
1999 as the first NWP model in the world using an icosahedral grid, see Majewski (1998)
and Majewski et al. (2002). In the current version, the ICON model contains 2,949,120
horizontal equilateral triangles, whose centers form the points of the global ICON grid
with an effective grid spacing of about 13 km. Furthermore, the model contains 90
vertical layers ranging from the surface to a height of about 75 km resulting in a total
of more than 265 million grid points. The most important meteorological variables
included in the ICON model are air density, virtual potential temperature (indicating
air pressure), horizontal and vertical wind velocity, humidity, cloud water, cloud ice,
rain, and snow. In operational use the ICON model first starts a data assimilation
cycle in order to determine an optimal initial state for the forecast runs. A first guess,
which is derived from a previous forecast, is combined with recent observations using a
3D variational assimilation method. Forecast runs are then performed every six hours:
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at 00 UTC (Universal Time, Coordinated) and 12 UTC of each day with forecast
ranges of up to 180 hours and at 06 UTC and 18 UTC for ranges up to 120 hours.
Forecasts are written for each one-hour period up to a range of 78 hours and for every
third one-hour period afterwards.

Primarily, DWD is responsible for providing forecasts and weather warnings for the ter-
ritory of Germany. Thus, a second NWP model, the COSMO-DE, is used operationally,
which has a much finer spatial resolution and thus produces more precise weather
forecasts, see Baldauf et al. (2011). The COSMO-DE covers Germany, Switzerland,
Austria, and parts of neighboring countries by a regular grid consisting of 421× 461
points with a grid spacing of 2.8 km and 50 vertical layers, i.e., a total of 9.7 million
grid points. This extremely high horizontal resolution enables a more realistic repre-
sentation of topographic features and allows to better resolve deep convection such as
cumulonimbus clouds, providing much more precise forecasts of heavy precipitation,
thunderstorms, hail, and strong wind gusts. Accordingly, the high resolution also
decreases the need for additional parameterization. Since small-scale meteorological
objects such as cumulonimbus clouds typically have shorter life times than large-scale
high and low pressure systems, COSMO-DE provides forecasts every three hours for
forecast ranges up to 27 hours only. The COSMO-DE is not operated globally, making
the use of boundary values from the ICON model necessary. Furthermore, radar
data are taken into account as initial values by using a method called ‘Latent Heat
Nudging’.

2.3. Probabilistic weather prediction

NWP models as described in Section 2.2 provide deterministic forecasts, i.e., they
compute one single future state of the atmosphere for any considered point in time.
In applications, however, certain approximations, discretizations, and simplifications
concerning model equations and implementation are made and measurement errors in
observation data (which are used as initial values) often occur. Thus, deterministic
forecasts from NWP models are subject to uncertainties, which can be taken into
account by providing probabilistic forecasts.

2.3.1. Ensemble prediction

The most popular method to account for uncertainties in NWP models is using ensemble
prediction systems. An ensemble consists of different forecast scenarios, called ensemble
members, that are computed based on slightly different (but realistic) initial values,
configurations, and parameterizations of the NWP model. This variation has an effect
on the obtained deterministic forecasts, which gets more remarkable the longer the
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forecast range is (due to the chaotic nature of the atmosphere). Therefore, an ensemble
can be interpreted as a sample of equally likely future weather scenarios. If the number
of ensemble members is sufficiently large, the ensemble can be used to statistically
estimate probabilistic characteristics such as expectations and variances of meteorolog-
ical variables (e.g., temperature, precipitation amount, wind velocity) or probabilities
for the occurrence of certain weather events (e.g., precipitation, thunderstorms, wind
gusts).

At DWD the ensemble prediction system COSMO-DE-EPS has been used operationally
since the year 2012, see Gebhardt et al. (2011). The COSMO-DE-EPS computes 20
ensemble members based on the COSMO-DE model, see Section 2.2, which are obtained
by using different boundary conditions, initial values, and configurations of physical
parameterization as well as perturbations in the soil moisture. Ensemble prediction has
a particular high relevance for the COSMO-DE model since small-scale processes (which
can be represented by the COSMO-DE due to its fine spatial resolution) are subject to
a higher degree of uncertainty than forecasts of processes on a larger scale such as low
and high pressure systems. A similar ensemble prediction system for the ICON model
is currently under development at DWD and is planned to be operationally available
by the end of 2017.

2.3.2. Statistical postprocessing

It is generally acknowledged that forecasts from NWP models and ensemble prediction
systems are subject to systematic errors. Especially forecasts at grid points near the
surface tend to be underdispersed, see Gebhardt et al. (2011). In order to further
increase forecast quality, to correct biases, and to forecast additional meteorological
variables that are not directly included in the NWP models or the ensemble prediction
systems, a statistical postprocessing is performed. For that purpose, DWD uses
Model Output Statistics (MOS), see, e.g., Glahn and Lowry (1972), Knüpffer (1996)
or Wilks (2011). MOS involves a statistical optimization of forecasts by comparing
long historical time series of observed meteorological variables with the corresponding
uncalibrated predictions provided by NWP models and ensemble prediction systems.
In a development cycle, statistical relationships and systematic differences between
(uncalibrated) forecasts and observation data are analyzed and modeled using stepwise
regression equations. For each predictand (i.e., each meteorological variable to be
forecasted) the most relevant predictors are selected from a set of about 300 variables as
long as they are statistically significant. Most predictors are derived from the numerical
models and ensemble prediction systems but also recent observations are used (in
particular for short range forecasts) to provide meteorological persistence. Then, for
continuous variables, such as precipitation amount, temperature or wind velocity, linear
regression is applied, whereas logistic regression is used for probabilistic predictands
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such as probabilities for the occurrence of certain weather events. In operational use
the fitted regression models are then applied to derive forecasts based on the current
output of the NWP models and ensemble prediction systems and recent observations.
Furthermore, MOS is also used operationally to combine numerical or probabilistic
weather predictions from different forecast systems.

We briefly present two MOS products of DWD that provide calibrated probabilities
as data input for the stochastic models developed in Part II of this thesis (note
that a variety of other MOS systems and products is operated by DWD for different
applications). At first the so-called MOSMIX system is considered. MOSMIX calibrates
and combines deterministic forecasts of two numerical models: the ICON model, see
Section 2.2, and the IFS (Integrated Forecasting System) of the European Centre for
Medium-Range Weather Forecasts (ECMWF) in Reading. Forecasts are provided four
times a day with forecast ranges of up to ten days for a network of 4,000 weather
stations worldwide (most of them being located in western and central Europe).
Furthermore, MOSMIX forecasts include about 150 meteorological variables such as
expected temperature, dew point temperature, wind velocity and direction, precipitation
amount, air pressure, visibility, and sun shine duration as well as a large number of
probabilities for the occurrence of several weather events. A second operational system
of DWD called ModelMIX even allows to provide calibrated forecasts at arbitrary
locations in Germany. For that purpose the territory of Germany is subdivided into
nine climatic zones and a joint MOS regression is performed for all stations in each zone
separately. The obtained fitted regression models can then be applied at the original
sites of the weather stations or at any other location within the corresponding climatic
zone. In the latter case, observations need to be interpolated to the specified location
but the numerical models and ensemble prediction systems are always evaluated for
the exact location (i.e., the next grid point). Currently, a statistical postprocessing as
described above is performed separately for forecasts from the ICON model, the IFS
of ECMWF and the ensemble prediction system COSMO-DE-EPS, see Section 2.3.1.
ModelMIX then combines the individual results (again using a MOS technique) in
order to obtain an statistically optimal probabilistic weather forecast.

2.4. Point and area probabilities

The importance of probabilistic methods in operational weather prediction has grown
steadily during the last decades. The present practice of most weather services such
as DWD is to calibrate forecasts with synoptic meteorological observation systems
(e.g., rain gauges at weather stations, see Section 2.1) that provide measurements at
given geographical locations. Accordingly, obtained probabilistic forecasts represent the
chances of weather events to occur at fixed locations (or points) and are thus denoted as
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point probabilities in the following. However, in many applications, particularly when
providing weather warnings, the consideration of point probabilities is not sufficient,
e.g., when a critical situation arises if the weather event occurs somewhere in an area
(rather than at a fixed point). Thus, there is a strong interest in the computation of
reliable probabilities for the occurrence of weather events somewhere in a given region
(or area), which are denoted as area probabilities in this thesis. Until recently, no
operationally applicable methods to the computation of unbiased area probabilities
were known. One example is given by the ensemble prediction system COSMO-DE-EPS
of DWD, see Section 2.3.1, which also provides uncalibrated area probabilities for
quadratic areas with a size of 28 km× 28 km. However, since these probabilities are
directly derived from the numerical COSMO-DE model (without any further post-
processing), they contain a significant bias, see the forecast verification performed in
Hess et al. (2017).

Relationships between point and area probabilities under general conditions are still
unknown. Obviously, an area probability of some weather event is always larger than
or equal to a point probability of the same event for any fixed location within that area.
The difference of both kind of probabilities, however, depends on many factors, e.g.,
the size of the considered area or the scale and the dependence structure of the weather
event. Thus, representation formulas for the computation of area probabilities based on
point probabilities can only be derived under simplified conditions. In Epstein (1966)
and Krzysztofowicz (1998) the authors consider the occurrence of precipitation, where
they assume circular precipitation cells with a globally fixed radius that are uniformly
distributed over the considered domain. In this particular case, the area probability
π(B) of any circular forecast area B (whose distance to the boundary of the considered
domain is not smaller than the radius of the precipitation cells) is given by

π(B) = 1− (1− p(s))(1+Q−
1
2 )2 ,

where p(s) denotes the point probability at some arbitrary location s ∈ B and Q = C/A
is called a cell/area ratio, with C > 0 being the area covered by a precipitation cell
and A = ν2(B) > 0 (where ν2 denotes the 2-dimensional Lebesgue-measure, see
Section 3.1.1). In this setting, we always get that π(B) > p(s) whenever p(s) ∈ (0, 1)
and that π(B)→ p(s) for Q→∞. In other words, the difference between point and
area probabilities gets less significant when the forecast area B is small compared to
the area C of a precipitation cell. In Krzysztofowicz (1998) additional representation
formulas for the expectation and variance of the fraction of B that is covered by
precipitation based on p(s) and π(B) are derived. However, the very restrictive
assumptions mentioned above make such formulas inappropriate for the automated
generation of weather forecasts. Model parameters such as the radius of precipitation
cells have to be determined by the forecaster and missing spatial non-stationarity
prevents an application on a non-local scale such as the territory of Germany.
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2.5. Review of stochastic models for precipitation

As an alternative to the use of direct computation formulas, area probabilities can
be estimated using stochastic models. Since the 1980s there has been an extensive
literature on the stochastic modeling of precipitation cells and precipitation amounts.
Several approaches to the temporal representation of precipitation at single and
multiple sites have been proposed, which are based on, e.g., Poisson cluster processes,
in particular Neyman-Scott and Bartlett-Lewis rectangular pulse models and their
extensions (Rodriguez-Iturbe et al., 1987, 1988; Chandler, 1997; Cowpertwait et al.,
2007, 2011; Kaczmarska et al., 2014), Markov processes (Woolhiser and Osborn, 1985;
Hughes et al., 1999; Srikanthan and Pegram, 2009), doubly stochastic Poisson processes
(Ramesh et al., 2013; Thayakaran and Ramesh, 2017) or generalized linear models
(Yang et al., 2005).

Clearly, temporal models cannot be used for the estimation of area probabilities but they
motivate more sophisticated concepts for the continuous spatial and spatio-temporal
representation of rain events. Again, a majority of approaches suggested in literature
relies on random point processes. In Cox and Isham (1988) centers of precipitation cells
are modeled using stationary spatio-temporal Poisson point processes and single cells
are represented as discs with random radii, random movement speeds, and random
precipitation amounts (constant over each cell). Several probabilistic characteristics
are computed based on the proposed model but neither model fitting nor empirical
applications are considered. In Cowpertwait (1995) this approach is extended by using
temporal cluster processes and by allowing for different cell types. Additionally, a brief
empirical example using point data from rain gauges is given. Further enhancements
for this type of model include the introduction of elliptical precipitation cells and the
development of fitting methods (generalized method of moments, spectral methods)
for the estimation of model parameters based on radar data, see Northrop (1998)
and Wheater et al. (2000). Detailed summaries of the mentioned point-process-based
modeling approaches (also for the single-site and multi-site case) can be found in Onof
et al. (2000) and Wheater et al. (2005). The most commonly used point process model
for precipitation is the STNSRP (spatio-temporal Neyman-Scott rectangular pulses)
model (Burton et al., 2008), which can briefly be outlined as follows. At first, storm
centers are modeled using a stationary spatio-temporal Poisson point process. If a
storm occurs, then centers of precipitation cells within the storm are represented by
another stationary spatial Poisson point process and each cell is attached with a random
radius, a random lifetime, and a random precipitation amount (constant over the cell),
which are all exponentially distributed. The precipitation amount at any point can be
obtained by summing up the amounts of all individual precipitation cells covering that
point. Finally, a location-dependent scaling factor is considered to account for orography
effects on local precipitation amounts. The model parameters can be fitted based on rain
gauge data using a complex numerical optimization scheme. In Burton et al. (2010) the
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STNSRP model is extended by allowing precipitation cells to occur inhomogeneously in
space to also account for the effects of orography to the local intensity of precipitation
cells. A more realistic representation of precipitation amounts for single precipitation
cells is proposed in Rodriguez-Iturbe et al. (1986), where stationary shot-noise fields are
considered for the spatial modeling of precipitation. To be more precise, precipitation
cells are represented as discs whose centers are modeled by Poisson or Neyman-Scott
point processes and to each cell a randomly scaled response function is attached. The
authors derive several theoretical characteristics of their model and make a comparison
for different response functions (linear, quadratic or exponential). Model fitting based
on observed data, however, is only described vaguely. There are also approaches to
the continuous spatial and spatio-temporal modeling of precipitation suggested in the
literature that are not solely based on random point processes. For example, Smith
and Krajewski (1987) consider a combination of random point processes with Markov
chains and in Lanza (2000) a conditional simulation algorithm for intermittent rain
fields based on stationary Gaussian random fields is proposed. A more recent approach
to the representation of high-resolution precipitation in space and time is given by the
STREAP (space-time realizations of areal precipitation) model, see Paschalis et al.
(2013) and Peleg et al. (2017), where precipitation fields are modeled in three steps.
At first, storm arrivals are described by alternating temporal renewal processes. Then,
the temporal evolution of mean areal statistics such as the fraction of wet area and the
mean areal precipitation intensity are represented using bivariate Gaussian processes.
Finally, the spatio-temporal evolution of the storm structure is modeled based on latent
Gaussian random fields and autoregressive moving average time series. A validation
has shown that the STREAP model is able to provide even more realistic realizations
(concerning intermittency, spatial and temporal correlations, growth and decay of
storms over time) than the STNSRP model.

Unfortunately, certain limitations prevent the use of the above-mentioned models
in operational weather prediction. Most approaches assume temporal and spatial
stationarity and model fitting procedures (mostly for large parameter sets) always
rely on observation data from rain gauges or radar systems. In operational weather
forecasting, however, it is crucial to account for the (permanently changing) weather
conditions in the current period and future forecast periods rather than for weekly,
monthly or yearly averages, which contradicts the assumption of temporal stationarity.
Furthermore, forecasters are typically interested in stochastic models to be applied on a
non-local scale, which does not allow for spatial stationarity assumptions due to different
meteorological (areas of low or high pressure, changing over time) and geographical
(plains or mountainous regions, not changing over time) conditions. Although effects
of orography are taken into consideration in some approaches, see, e.g., Cowpertwait
(1995), Burton et al. (2008) and Burton et al. (2010), none of the proposed models
accounts for spatially varying meteorological conditions in fixed forecast periods. On
the other hand, model fitting based on precipitation data from radar or rain gauges is
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not suitable, either. Observation data from periods prior to the forecast period become
unrepresentative already after few hours and data for the (future) forecast period are
not available at the time the forecast is made. Further limitations occurring in some of
the mentioned approaches include constant precipitation amounts per precipitation cell,
independence of precipitation cells and precipitation amounts or the absence of model
fitting procedures. Although not directly applicable in operational weather prediction,
the previous approaches to the spatial modeling of precipitation from literature provide
a valuable basis for the models developed in Part II of the present thesis.

In contrast to precipitation there is hardly any literature for the stochastic modeling
of thunderstorms available. One of the few examples is Li (2000), where a model for
wind loads in thunderstorms is proposed at single sites but approaches to the spatially
continuous modeling of thunderstorm cells do not seem to exist.
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In the present chapter, we discuss some mathematical basics that are essential for a
rigorous description of the stochastic models and statistical methods considered in the
subsequent chapters of this thesis. After giving some general definitions in Section 3.1,
we address the following topics:

1. random fields with an emphasis on characterization and estimation of dependen-
cies (Section 3.2),

2. models and methods of stochastic geometry, in particular (random) point processes
and related germ-grain models (Section 3.3),

3. methods and estimators from multivariate kernel smoothing with a focus on their
application in density estimation and regression analysis (Section 3.4).

3.1. Basic definitions

3.1.1. General notation

First of all, we introduce some general notation that is repeatedly used throughout
this thesis. By N = {1, 2, . . .} we denote the set of natural numbers, by N0 = N ∪ {0}
the set of nonnegative integers, and by R the set of real numbers. For any dimension
d ∈ N, let Rd be the set of d-dimensional vectors with real components (also denoted
as d-dimensional Euclidean space), where o = (0, . . . , 0)> ∈ Rd is the origin and ‖ · ‖d
is the Euclidean norm on Rd. We write b(x, r) = {y ∈ Rd : ‖x − y‖d ≤ r} for the
d-dimensional (closed) ball with center x ∈ Rd and radius r > 0. By B(Rd) we denote
the Borel σ-algebra on Rd, by B0(Rd) the family of bounded Borel sets in Rd, and by
νd : B(Rd) → [0,∞] the d-dimensional Lebesgue measure. For any B ∈ B0(Rd), let
B(B) be the Borel σ-algebra that is generated by all open subsets of B.

For m,n ∈ N, the set of all m × n matrices with real coefficients is denoted by
Rm×n and for any A ∈ Rm×n, the matrix A> ∈ Rn×m is the transpose of A. We
write A = diag(a1, . . . , am) ∈ Rm×m for the matrix with entries a1, . . . , am ∈ R on
the main diagonal and zeros everywhere else and I = diag(1, . . . , 1) ∈ Rm×m for the
m-dimensional unit matrix. For A ∈ Rm×m let A−1 be the inverse (provided that it
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exists), det(A) the determinant, and tr(A) the trace of A, the latter being defined as
the sum of its diagonal elements.

For any subset B of Rd, we write B for its topological closure, #B for its cardinality,
and 1B : Rd → {0, 1} for the indicator function of B, which is defined by

1B(x) =

{
1 if x ∈ B,
0 if x /∈ B,

x ∈ Rd.

For any translation vector x ∈ Rd and any rotation δ : Rd → Rd around the origin, we
write B + x = {y + x, y ∈ B} and δB = {δ(y), y ∈ B} for the translation of B by x
and the rotation of B by δ, respectively. The Minkowski sum of two sets B1, B2 ⊂ Rd

is defined by B1 ⊕B2 = {x+ y, x ∈ B1, y ∈ B2}.

By supp(f) = {x ∈ Rd : f(x) 6= 0} we denote the support of any real-valued function
f : Rd → R. In addition, provided that f has continuous first- and second-order partial
derivatives, ∇f(x) ∈ Rd denotes the gradient of f at x = (x1, . . . , xd) ∈ Rd, which
contains all first-order partial derivatives ∂

∂xi
f(x) for i = 1, . . . , d and Hf(x) ∈ Rd×d

denotes the Hessian matrix of f at x = (x1, . . . , xd) ∈ Rd, which consists of the
second-order partial derivatives ∂2

∂xi∂xj
f(x) for i, j = 1, . . . , d.

3.1.2. Random elements

Probability theory is the branch of mathematics that addresses the modeling of random
phenomena and experiments. In order to formally describe stochastic models (as well
as statistical methods which are typically based on models), it is customary to first
define a suitable underlying probability space. A probability space (Ω,F ,P) is a triplet
consisting of

1. an arbitrary set Ω 6= ∅, which is denoted as sample space,

2. a σ-algebra F on Ω, where each element A ∈ F is called an event, and

3. a probability measure P, i.e., a σ-additive mapping P : F → [0, 1] with P(Ω) = 1,
which assigns a probability P(A) to each event A ∈ F .

In the following, unless specified more precisely, we always consider an arbitrary
probability space (Ω,F ,P).

In probability theory, a large variety of stochastic objects is considered for modeling
purposes. The most general notation to describe such objects is that of a random
element.
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Definition 3.1.1 (Random element). Let (Ω,F ,P) be a probability space and (S,B)
be a measurable space, i.e., S 6= ∅ is some nonempty set and B is a σ-algebra of subsets
of S. A mapping X : Ω→ S is called a random element with values in (S,B) if X is
(F ,B)-measurable, i.e.,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F , B ∈ B.

For each ω ∈ Ω we call X(ω) a realization of X.

Example 3.1.1. Examples of random elements include random variables (S = R,
B = B(R)), random vectors (S = Rd, B = B(Rd)) with finite dimension d ≥ 2, random
functions (see Section 3.2.1), random measures (see Section 3.3.1), random point
processes (see Section 3.3.2), and random closed sets (see Section 3.3.6).

Definition 3.1.2 (Distribution of a random element). Let X be a random element
defined on a probability space (Ω,F ,P) with values in a measurable space (S,B). The
distribution of X is the probability measure PX defined on (S,B) by

PX(B) = P(X ∈ B) = P
(
X−1(B)

)
, B ∈ B.

For any random element Y defined on (Ω,F ,P) with values in (S,B), we write X
d
= Y

if Y has the same distribution as X, i.e., PX(B) = PY (B) for all B ∈ B.

Definition 3.1.3 (Independent random elements). Consider an arbitrary index set
T 6= ∅ and a family {X(t), t ∈ T } of random elements defined on a joint probability
space (Ω,F ,P) with values in a measurable space (S,B). The random elements
{X(t), t ∈ T } are called (mutually) independent if for any finite subset {t1, . . . , tn} ⊂ T
with n ∈ N it holds that

P(X(t1) ∈ B1, . . . , X(tn) ∈ Bn) = PX(t1)(B1) · . . . · PX(tn)(Bn), B1, . . . , Bn ∈ B.

3.2. Random fields

In many statistical applications data are considered that can be interpreted as functions
depending on a time index, a spatial location or both. For the modeling of such data
(but also for the description of more complex random objects) random functions
are typically used in literature. In this section, the concept of random functions is
introduced to the reader, where we mainly focus on random functions whose domain
is a subset of the d-dimensional Euclidean space Rd. A particular emphasis is put
on characteristics describing the dependence structure of random fields and on their
estimation in a geostatistical context.
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3.2.1. Random functions

Random functions are, similar to random elements, very general and flexible stochastic
objects. For example, the class of random functions does not only include random
vectors, processes, and fields but also more sophisticated objects such as random
(counting) measures, see Section 3.3. For an overview of the general theory of random
functions we recommend Yaglom (1987a) and Yaglom (1987b), whereas the special
case of random fields is discussed in, e.g., Ivanov and Leonenko (1989), Ramm (2005)
or Adler (2010) (with a focus on estimation theory for random fields in the first two).

Definition 3.2.1 (Random function). Let (Ω,F ,P) be a probability space, (S,B) an
arbitrary measurable space with S 6= ∅, and T 6= ∅ an arbitrary index set. A family
X = {X(t), t ∈ T } of random elements with values in S is called a random function
with index set T and state space S.
To be more precise, X is a mapping from the product space Ω × T to S such that
X(·, t) : Ω → S is (F ,B)-measurable for each t ∈ T , where we usually write X(t)
instead of X(·, t). For each ω ∈ Ω we call {X(ω, t), t ∈ T } a realization or a trajectory
of X.

Example 3.2.1. The class of random functions includes a wide range of stochastic
objects, which are known under different names in the literature (depending on the
index set and the state space). Consider a random function X = {X(t), t ∈ T } with
index set T and state space S ⊂ R.

1. If T = {1, . . . , d} for some d ∈ N, then X is a d-dimensional random vector. In
this case, we usually write X = (X1, . . . , Xd) instead of X = {X(1), . . . , X(d)}.

2. If T is a countable subset of R, then X is called a stochastic process in discrete
time. As its name implies, a stochastic process in discrete time is often assumed
to describe the development of some random value over time (which is why the
index set is denoted by T ). Some authors even use the term stochastic process as
a synonym for random function, see, e.g., Kallenberg (2002). Popular examples
of stochastic processes in discrete time are given by Markov chains with discrete
state space S, see, e.g., Behrends (2000).

3. If T is an uncountable subset of R, e.g., T is some finite or infinite interval,
then X is called a stochastic process in continuous time. There is a wide range
of different stochastic processes considered in the literature such as Markov
processes, renewal processes, Gaussian processes, Lévy processes or martingales.
For a general overview see, e.g., Grimmett and Stirzaker (2001) or Kallenberg
(2002).

4. If T is a subset of the d-dimensional Euclidean space Rd for some d ≥ 2, then
X is denoted as random field. Random fields play an important role in spatial
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statistics and geostatistics since they are particularly suitable for the spatially
continuous modeling of geographically-referenced data.

5. If T is a subset of the Borel σ-algebra B(Rd) on Rd, then X is called a set-indexed
random function. An important example is given by the class of random measures,
which is formally introduced in Section 3.3.1.

One can show that a random function can not only be interpreted as a family of random
elements but also as a single random element taking values in a more complex space.
For any measurable space (S,B) with S 6= ∅ and any index set T 6= ∅, let ST denote
the set of all functions f : T → S and BT the smallest σ-algebra of subsets of ST that
contains the sets {f ∈ ST : f(t) ∈ B} for all t ∈ T and B ∈ B.

Theorem 3.2.1. Let (Ω,F ,P) be a probability space, (S,B) a measurable space with
S 6= ∅, and T 6= ∅ an index set. Furthermore, consider the measurable space (ST ,BT )
as introduced above. The mapping X : Ω × T → S with X(ω, ·) = {X(ω, t), t ∈ T }
for ω ∈ Ω is a random function with index set T and state space S in the sense of
Definition 3.2.1 if and only if X is a random element with values in (ST ,BT ), i.e., if the
mapping that assigns the function X(ω, ·) ∈ ST to each ω ∈ Ω is (F ,BT )-measurable.

Proof. See Kallenberg (2002), Lemma 3.1.

Since a random function X = {X(t), t ∈ T } can be considered as a random element,
its distribution PX is given according to Definition 3.1.2. However, in most cases it is
impossible to find a closed representation of PX . Thus, we introduce the notation of
the finite-dimensional distributions of X, which uniquely characterize the distribution
PX .

Definition 3.2.2 (Finite-dimensional distributions). Let X = {X(t), t ∈ T } be a
random function with index set T and state space S. For fixed n ∈ N and t1, . . . , tn ∈ T ,
consider the distribution P

(t1,...,tn)
X of the random vector (X(t1), . . . , X(tn)), i.e.,

P
(t1,...,tn)
X (B1, . . . , Bn) = P(X(t1) ∈ B1, . . . , X(tn) ∈ Bn), B1, . . . , Bn ∈ B.

Then, the family {P (t1,...,tn)
X , n ∈ N, t1, . . . , tn ∈ T } is called the family of finite-

dimensional distributions of X.

Theorem 3.2.2. Let X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T } be random functions

with index set T and state space S. Then, X
d
= Y if and only if

(X(t1), . . . , X(tn))
d
= (Y (t1), . . . , Y (tn)), n ∈ N, t1, . . . , tn ∈ T .

In other words, the random functions X and Y have the same distribution if and
only if they have the same finite-dimensional distributions. This implies that the
family of finite-dimensional distributions of a random function uniquely determines its
distribution.
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Proof. See Kallenberg (2002), Proposition 3.2.

3.2.2. Random fields in geostatistics

In this thesis, we mainly consider random fields with the purpose of analyzing and
modeling geostatistical data. Geostatistics denotes a branch of statistics, which is,
according to Montero et al. (2015), defined as “the study of regionalized phenomena, that
is, phenomena that stretch across space and which have a certain spatial organization
or structure.” The field of geostatistics emerged in the mining industry in the early
fifties (Wackernagel, 2003) and rapidly evolved since then finding applications in a
myriad of disciplines such as geology, hydrology, meteorology, geography, forestry,
environmental science, ecology, and agriculture. A defining feature of geostatistical
data is that the investigated variables are indexed by geographical locations and are
(theoretically) observable everywhere in a fixed, non-random domain T ⊂ Rd. In
practice, however, the variables are only observed at a finite sequence of deterministic
locations t1, . . . , tn ∈ T with n ∈ N. In most references, the observed variables
x(t1), . . . , x(tn) at t1, . . . , tn are denoted as regionalized values to emphasize their
dependence on the corresponding locations. The (unobserved) family {x(t), t ∈ T }
describing the values of the investigated variable at all locations in the domain T is
called a regionalized variable.

A common approach in geostatistics is to interpret a regionalized variable {x(t), t ∈ T }
as realization of some real-valued random field {X(t), t ∈ T }. Accordingly, we assume
that the index set T is a closed subset of the Euclidean space Rd, where d ≥ 2 and
νd(T ) > 0, and that the state space S is a subset of R. Furthermore, if T is bounded,
we define

r0 = max{r ≥ 0 : for each r′ ≤ r there are s, t ∈ T such that ‖s− t‖d = r′}. (3.1)

If T is unbounded, then we assume that for each r ≥ 0 there are locations s, t ∈ T
such that ‖s− t‖d = r. Unlike most references, we keep the notation T for the index
set in order to maintain consistency with the theory of general random functions
provided in Section 3.2.1 (in geostatistics the notation D is often used instead) but
from now on, we refer to T as a domain rather than as an index set. Furthermore,
in a geostatistical context, the family of finite-dimensional distributions of a random
field is sometimes referred to as the field’s spatial distribution (Chilès and Delfiner,
2012). When analyzing geostatistical data, the focus of interest often lies either on the
dependence structure of the underlying random field or, in the case that regionalized
values of more than one variable are given, on the dependence structure between the
corresponding random fields. Popular characteristics quantifying such dependencies
include covariance functions, cross-covariance functions, and semivariograms, which
are discussed in the following. More details on geostatistics (for purely spatial data)
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are provided in Journel and Huijbregts (1978), Cressie (1993), Wackernagel (2003),
Schabenberger and Gotway (2005), Diggle and Ribeiro Jr. (2007), and Chilès and
Delfiner (2012). In more recent times, there has been a growing interest in models and
methods for spatio-temporal datasets, see, e.g., Cressie and Wikle (2011) or Montero
et al. (2015), which will, however, not be considered in this thesis.

3.2.3. Covariance and correlation functions

One important characteristic describing the dependence structure of a real-valued
random field is its covariance function (or its correlation function, which allows for a
more meaningful interpretation). Closely related to the covariance function are the
expectation function and the variance function that represent random field analogues
to the expectation and variance of a random variable.

Definition 3.2.3 (Expectation function and variance function). Let X = {X(t), t ∈
T } be a real-valued random field with domain T such that EX2(t) <∞ for all t ∈ T .

1. The function µX : T → R defined as

µX(t) = EX(t), t ∈ T ,

is called expectation function of X.

2. The function VX : T → [0,∞) defined as

VX(t) = varX(t) = E
(
(X(t)− µX(t))2

)
, t ∈ T ,

is called variance function of X.

In the following, we always assume that if the variance function VX : T → [0,∞) of a
random field X = {X(t), t ∈ T } exists, then it satisfies that VX(t) > 0 for all t ∈ T .

Definition 3.2.4 (Covariance function and correlation function). Let X = {X(t), t ∈
T } be a real-valued random field with domain T such that EX2(t) <∞ for all t ∈ T .

1. The function C?
X : T × T → R defined as

C?
X(s, t) = cov

(
X(s), X(t)

)
= E

(
(X(s)− µX(s))(X(t)− µX(t))

)
, s, t ∈ T ,

is called covariance function of X.

2. The function ρ?X : T × T → [−1, 1] defined as

ρ?X(s, t) =
C?
X(s, t)√

VX(s) · VX(t)
, s, t ∈ T ,

is called correlation function of X.
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Remark 3.2.1. Let X = {X(t), t ∈ T } be a real-valued random field with domain T
such that EX2(t) <∞ for all t ∈ T . The covariance function C?

X : T × T → R and
the correlation function ρ?X : T × T → [−1, 1] of X fulfill the following properties:

1. C?
X(t, t) = VX(t) and ρ?X(t, t) = 1 for all t ∈ T ,

2. C?
X and ρ?X are symmetric, i.e., C?

X(s, t) = C?
X(t, s) and ρ?X(s, t) = ρ?X(t, s) for all

s, t ∈ T ,

3. C?
X and ρ?X are positive semi-definite, i.e., for any n ∈ N, t1, . . . , tn ∈ T and

c1, . . . , cn ∈ R it holds that

n∑
i=1

n∑
j=1

C?
X(ti, tj)cicj ≥ 0 and

n∑
i=1

n∑
j=1

ρ?X(ti, tj)cicj ≥ 0,

4. |C?
X(s, t)| ≤

√
VX(s) · VX(t), which ensures that |ρ?X(s, t)| ≤ 1 for all s, t ∈ T

(Cauchy-Schwarz inequality).

In particular, parametric models for covariance functions, which are frequently used in
geostatistical applications such as spatial prediction, need to satisfy these properties in
order to be valid. For a proof see Yaglom (1987a), Section 2.

In general, to infer characteristics such as the expectation function and the covariance
function of a random field, several realizations of the field need to be available. In most
geostatistical datasets, however, only one set of regionalized values is given. In this
case, statistical inference is only possible if the underlying random field has a certain
homogeneity structure.

Definition 3.2.5 (Strict stationarity and isotropy). A real-valued random field X =
{X(t), t ∈ T } with domain T is said to be

1. strictly stationary if for all n ∈ N, t1, . . . , tn ∈ T and any translation vector
τ ∈ Rd such that t1 + τ, . . . , tn + τ ∈ T it holds that

(X(t1), . . . , X(tn))
d
= (X(t1 + τ), . . . , X(tn + τ)),

2. strictly isotropic if for all n ∈ N, t1, . . . , tn ∈ T and any rotation δ : Rd → Rd

around the origin such that δ(t1), . . . , δ(tn) ∈ T it holds that

(X(t1), . . . , X(tn))
d
= (X(δ(t1)), . . . , X(δ(tn))).

Definition 3.2.6 (Second-order stationarity, isotropy, and motion-invariance). Let
X = {X(t), t ∈ T } be a real-valued random field with domain T such that EX2(t) <∞
for all t ∈ T . Furthermore, let µX : T → R be the expectation function and
C?
X : T × T → R the covariance function of X. Then, X is said to be
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1. second-order stationary (or weakly stationary) if

(i) there is some µ ∈ R such that

µX(t) = µ, t ∈ T ,

(ii) for any translation vector τ ∈ Rd it holds that

C?
X(s, t) = C?

X(s+ τ, t+ τ), s, t ∈ T such that s+ τ, t+ τ ∈ T ,

2. second-order isotropic (or weakly isotropic) if

(i) for any rotation δ : Rd → Rd around the origin it holds that

µX(t) = µX(δ(t)), t ∈ T such that δ(t) ∈ T ,

(ii) for any rotation δ : Rd → Rd around the origin it holds that

C?
X(s, t) = C?

X(δ(s), δ(t)), s, t ∈ T such that δ(s), δ(t) ∈ T ,

3. second-order motion-invariant (or weakly motion-invariant) if

(i) X is second-order stationary and isotropic,

(ii) C?
X only depends on the Euclidean distance of its two arguments, i.e.,

C?
X(s1, t1) = C?

X(s2, t2), s1, t1, s2, t2 ∈ T such that ‖s1−t1‖d = ‖s2−t2‖d.

Remark 3.2.2. 1. Provided that EX2(t) <∞ for all t ∈ T , one can easily see that
a strictly stationary random field X = {X(t), t ∈ T } is second-order stationary,
too. The converse, however, is generally not true. The same relationship also
holds for strict and second-order isotropy.

2. If a random field has the domain T = Rd, then it is second-order stationary
and isotropic if and only if it is second-order motion-invariant. However, for
T ( Rd a second-order stationary and isotropic random field does not need to
be second-order motion-invariant in the sense of Definition 3.2.6 in general.

According to Definition 3.2.6, the following simplified versions of the covariance function
and correlation function of a second-order motion-invariant random field can be
introduced, which play important roles in geostatistical applications.

Definition 3.2.7 (Motion-invariant covariance and correlation function). Let X =
{X(t), t ∈ T } be a second-order motion-invariant random field with domain T , covari-
ance function C?

X : T × T → R, and correlation function ρ?X : T × T → [−1, 1].
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1. The function CX : [0,∞)→ R with

CX(r) = C?
X(s, t), s, t ∈ T such that ‖s− t‖d = r, (3.2)

is called the motion-invariant covariance function or the covariogram of X.

2. The function ρX : [0,∞)→ [−1, 1] with

ρX(r) = ρ?X(s, t), s, t ∈ T such that ‖s− t‖d = r, (3.3)

is called the motion-invariant correlation function or the correlogram of X.

If the domain T is compact, then both CX and ρX are only defined for distances r ≤ r0,
where r0 is given according to (3.1).

Remark 3.2.3. The (motion-invariant) covariance function CX : [0,∞) → R and
correlation function ρX : [0,∞)→ [−1, 1] of a second-order motion-invariant random
field X = {X(t), t ∈ T } have the following properties, which follow immediately from
Definition 3.2.4, Definition 3.2.7 and Remark 3.2.1:

1. CX(0) = VX(t) for all t ∈ T and ρX(0) = 1,

2. ρX(r) = CX(r)/CX(0) for all r ≥ 0,

3. for any n ∈ N, t1, . . . , tn ∈ T and c1, . . . , cn ∈ R it holds that

n∑
i=1

n∑
j=1

CX(‖ti − tj‖d)cicj ≥ 0 and
n∑
i=1

n∑
j=1

ρX(‖ti − tj‖d)cicj ≥ 0,

4. |CX(r)| ≤ CX(0), which ensures that |ρX(r)| ≤ 1 for all r ≥ 0 (Cauchy-Schwarz
inequality).

Remark 3.2.4 (Great-circle distance). In many geostatistical applications, the domain
T is a subset of the earth’s surface and each location t ∈ T is identified as t = (λ, φ)
with λ and φ being the longitude and latitude of t in degree (we call T a geographical
domain in this case). Then, formally any location t ∈ T is a two-dimensional vector
but computing the Euclidean distance ‖s− t‖2 between two locations s, t ∈ T is not
appropriate for two reasons. On the one hand, degrees of longitude and latitude only
correspond to approximately equal distances near the equator but distances between
two longitudes reduce considerably for increasing or decreasing latitudes. On the other
hand, the Euclidean distance of two locations is related to the shortest direct line
between those points and is thus expected to underestimate the true distance, which
should refer to the shortest path along the earth’s surface. This might be negligible if
T represents a small region but, as demonstrated in Banerjee (2005), can influence the
results of inference significantly if the domain T is geographically extensive (e.g., if T
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describes the North American continent). In such a case, it is advised to consider the
great-circle distance dGC(s, t) in km between two locations s = (λs, φs), t = (λt, φt) ∈ T ,
which is, under the assumption that the earth is a sphere with a radius rE in km,
defined by

dGC(s, t) = rE cos−1
(

sin(φs) sin(φt) + cos(φs) cos(φt) cos(λs − λt)
)
, (3.4)

see, e.g., Diggle and Ribeiro Jr. (2007), Section 2.7. Accordingly, the (motion-invariant)
covariance function CX : [0,∞)→ R and correlation function ρX : [0,∞)→ [−1, 1] of
a second-order motion-invariant random field X = {X(t), t ∈ T } with geographical
domain T given in (3.2) and (3.3) can also be defined using the great-circle distance
dGC(s, t) instead of the two-dimensional Euclidean distance ‖s− t‖2.

3.2.4. Cross-covariance and cross-correlation functions

In some geostatistical applications regionalized values of several variables are considered,
which are then modeled using more than one random field. In such a case it can be of
great interest to not only investigate the correlation structures of the single random
fields but also dependencies between them. This can be done, e.g., by means of cross-
covariances and cross-correlations. For a more detailed view on this topic, which is
generally referred to as multivariate geostatistics, we recommend Wackernagel (2003),
Chilès and Delfiner (2012) or Genton and Kleiber (2015).

Definition 3.2.8 (Cross-covariance function and cross-correlation function). Let X =
{X(t), t ∈ T } and Y = {Y (t), t ∈ T } be real-valued random fields with domain T
such that EX2(t),EY 2(t) <∞ for all t ∈ T .

1. The function C?
XY : T × T → R defined as

C?
XY (s, t) = cov

(
X(s), Y (t)

)
= E

(
(X(s)− µX(s))(Y (t)− µY (t))

)
, s, t ∈ T ,

is called cross-covariance function of X and Y .

2. The function ρ?XY : T × T → [−1, 1] defined as

ρ?XY (s, t) =
C?
XY (s, t)√

VX(s) · VY (t)
, s, t ∈ T ,

is called cross-correlation function of X and Y .

Definition 3.2.9 (Joint second-order stationarity, isotropy, and motion-invariance).
Let X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T } be second-order motion-invariant
random fields with domain T and cross-covariance function C?

XY : T × T → R. Then,
X and Y are said to be
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1. jointly second-order stationary if for any translation vector τ ∈ Rd it holds that

C?
XY (s, t) = C?

XY (s+ τ, t+ τ), s, t ∈ T such that s+ τ, t+ τ ∈ T ,

2. jointly second-order isotropic if for any rotation δ : Rd → Rd around the origin it
holds that

C?
XY (s, t) = C?

XY (δ(s), δ(t)), s, t ∈ T such that δ(s), δ(t) ∈ T ,

3. jointly second-order motion-invariance if C?
XY only depends on the Euclidean

distance of its two arguments, i.e.,

C?
XY (s1, t1) = C?

XY (s2, t2), s1, t1, s2, t2 ∈ T such that ‖s1 − t1‖d = ‖s2 − t2‖d.

Remark 3.2.5. 1. Let X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T } be real-valued
random fields with domain T such that EX2(t),EY 2(t) <∞ for all t ∈ T . The
cross-covariance function C?

XY : T × T → R and the cross-correlation function
ρ?XY : T × T → [−1, 1] of X and Y fulfill the following properties:

(i) C?
XX(s, t) = C?

X(s, t) and ρ?XX(s, t) = ρ?X(s, t) for all s, t ∈ T ,

(ii) C?
XY (s, t) = C?

Y X(t, s) and ρ?XY (s, t) = ρ?Y X(t, s) for all s, t ∈ T but C?
XY

and ρ?XY are generally not symmetric,

(iii) |C?
XY (s, t)| ≤

√
VX(s) · VY (t), which ensures that |ρ?XY (s, t)| ≤ 1 for all

s, t ∈ T (Cauchy-Schwarz inequality).

A proof is similar to the properties stated in Remark 3.2.1.

2. Again, two random fields X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T } with domain
T = Rd are jointly second-order stationary and isotropic if and only if they are
jointly second-order motion-invariant. For T ( Rd this is generally not true. In
that case, joint second-order stationarity and isotropy could also be defined if
both X and Y are second-order stationary and isotropic but not second-order
motion-invariant. However, such a scenario is not considered in this thesis.

Definition 3.2.10 (Motion-invariant cross-covariance and cross-correlation function).
Let X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T } be jointly second-order motion-
invariant random fields with domain T , cross-covariance function C?

XY : T × T → R,
and cross-correlation function ρ?XY : T × T → [−1, 1].

1. The function CXY : [0,∞)→ R with

CXY (r) = C?
XY (s, t), s, t ∈ T such that ‖s− t‖d = r, (3.5)

is called the motion-invariant cross-covariance function of X and Y .
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2. The function ρXY : [0,∞)→ [−1, 1] with

ρXY (r) = ρ?XY (s, t), s, t ∈ T such that ‖s− t‖d = r, (3.6)

is called the motion-invariant cross-correlation function of X and Y .

If the domain T is compact, then both CXY and ρXY are only defined for distances
r ≤ r0, where r0 is given according to (3.1).

Remark 3.2.6. Let X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T } be jointly second-order
motion-invariant random fields with domain T .

1. The (motion-invariant) cross-covariance function CXY : [0,∞) → R and cross-
correlation function ρXY : [0,∞) → [−1, 1] of X and Y have the following
properties, which are simple consequences of Definitions 3.2.7, 3.2.8, and 3.2.10
as well as Remarks 3.2.3 and 3.2.5:

(i) ρXY (r) = CXY (r)/
√
CX(0) · CY (0) for all r ≥ 0,

(ii) CXY (r) = CY X(r) and ρXY (r) = ρY X(r) for all r ≥ 0,

(iii) |CXY (r)| ≤
√
CX(0) · CY (0), which ensures that |ρXY (r)| ≤ 1 for all r ≥ 0

(Cauchy-Schwarz inequality).

2. If T is a geographical domain, then CXY and ρXY given in (3.5) and (3.6) can
also be defined using the great-circle distance dGC(s, t) introduced in (3.4) instead
of the two-dimensional Euclidean distance ‖s− t‖2 for s, t ∈ T .

3.2.5. Semivariograms

An alternative characteristic describing the spatial dependence structure of a random
field is the so-called semivariogram. It plays an important role in the context of geosta-
tistical kriging, which is one of the most commonly used spatial interpolation methods.
We put a particular emphasis on a motion-invariant version of the semivariogram,
where it can be shown that, basically, the semivariogram contains the same information
as the covariance function.

Definition 3.2.11 (Semivariogram). Let X = {X(t), t ∈ T } be a real-valued random
field with domain T such that EX2(t) < ∞ for all t ∈ T . We call the function
γ?X : T × T → [0,∞) defined by

γ?X(s, t) =
1

2
var
(
X(s)−X(t)

)
, s, t ∈ T ,

the semivariogram of X.
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Remark 3.2.7. One can show that the semivariogram γ?X : T ×T → [0,∞) of a random
field X = {X(t), t ∈ T } is closely related to the covariance function C?

X : T × T → R
of X. In particular, we get that

γ?X(s, t) =
1

2
var
(
X(s)−X(t)

)
=

1

2

(
VX(s) + VX(t)

)
− C?

X(s, t), s, t ∈ T .

If X is second-order motion-invariant, this further simplifies to

γ?X(s, t) = CX(0)− CX(‖s− t‖d), s, t ∈ T ,

which implies that γ?X(s, t) only depends on the d-dimensional Euclidean distance
‖s− t‖d of s, t ∈ T . This motivates the definition of a motion-invariant version of the
semivariogram γ?X , which is one of the most important tools used in geostatistics.

Definition 3.2.12 (Motion-invariant semivariogram). Let X = {X(t), t ∈ T } be
a second-order motion-invariant random field with domain T and semivariogram
γ?X : T × T → [0,∞). The function γX : [0,∞)→ [0,∞) given by

γX(r) = γ?X(s, t), s, t ∈ T such that ‖s− t‖d = r, (3.7)

is called the motion-invariant semivariogram of X. If the domain T is compact, then
γX is only defined for distances r ≤ r0, where r0 is given according to (3.1).

Remark 3.2.8. Let X = {X(t), t ∈ T } be a second-order motion-invariant random
field with domain T and (motion-invariant) semivariogram γX : [0,∞)→ [0,∞).

1. The semivariogram γX has the following properties:

(i) γX(0) = 0,

(ii) γX(r) = CX(0)− CX(r) for all r ≥ 0,

(iii) γX is conditionally negative semi-definite, i.e., for any n ∈ N, t1, . . . , tn ∈ T
and c1, . . . , cn ∈ R with

∑n
i=1 ci = 0 it holds that

n∑
i=1

n∑
j=1

γX(‖ti − tj‖d)cicj ≤ 0.

The first and second property follow immediately from Definition 3.2.11, Def-
inition 3.2.12, and Remark 3.2.7. For a proof of the third property see, e.g.,
Montero et al. (2015), Section 3.4.1.

2. If T is a geographical domain, then γX given in (3.7) can also be defined using the
great-circle distance dGC(s, t) introduced in (3.4) instead of the two-dimensional
Euclidean distance ‖s− t‖2 for s, t ∈ T .
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3. The behavior of the semivariogram γX is often characterized by three parameters.
As mentioned above, it holds that γX(0) = 0 but in many applications it is
required (e.g., due to being observed in data) that γX(h) tends to some positive
constant c0 > 0 as h → 0. This implies that γX has a discontinuity in r = 0,
which is called nugget effect. The parameter c0 > 0 is referred to as nugget.
Furthermore, it is often assumed that CX(r)→ 0 for r →∞ as, typically, values
X(s) and X(t) of the random field X at s, t ∈ T are uncorrelated if the distance
‖s− t‖d is large enough. This implies that γX(r)→ CX(0) as r →∞, i.e., CX(0)
is the limiting value of γX is denoted as sill. The difference between the sill CX(0)
and the nugget c0 is called partial sill. The third parameter of interest, the range
a > 0 of γX , denotes the smallest distance r ≥ 0 such that γX(r′) is equal to the
sill CX(0) for each r′ ≥ r. If γX(r) < CX(0) for all r ≥ 0 then the range is often
defined as the smallest distance r ≥ 0 such that γX(r′) is greater than u · CX(0)
for each r′ ≥ r, where the threshold u ∈ (0, 1) is set to, e.g., u = 0.95 or u = 0.99.

Example 3.2.2 (Semivariogram models). Since commonly used estimators for the
(motion-invariant) semivariogram γX : [0,∞) → [0,∞) of a second-order motion-
invariant random field X = {X(t), t ∈ T } do typically not satisfy the theoretical
properties of γX (and have other disadvantages, see Section 3.2.6), parametric semivar-
iogram models are often fitted in applications. Three popular parametric models are
introduced in the following, for further examples see Cressie (1993), Jian et al. (1996)
or Montero et al. (2015).

1. If

γX(r) =


0, r = 0,

c0 + c
(

3
2
r
a
− 1

2

(
r
a

)3
)
, 0 < r < a,

c0 + c, r ≥ a,

then γX is called a spherical semivariogram with parameters c0 ≥ 0 and c, a > 0.
The nugget of γX is given by c0, the sill by c0 + c, and the range by a. Note that
the spherical model is a valid semivariogram for dimension d ≤ 3 only.

2. If

γX(r) =


0, r = 0,

c0 + c
(

7
(
r
a

)2 − 35
4

(
r
a

)3
+ 7

2

(
r
a

)5 − 3
4

(
r
a

)7
)
, 0 < r < a,

c0 + c, r ≥ a,

then γX is called a cubic semivariogram with parameters c0 ≥ 0 and c, a > 0.
The nugget of γX is given by c0, the sill by c0 + c and the range by a. Note that
the cubic model, like the spherical model, is a valid semivariogram for dimension
d ≤ 3 only.
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3. If

γX(r) =

{
0, r = 0,

c0 + c
(

1− exp
{
− r
ae

})
, r > 0,

then γX is called an exponential semivariogram with parameters c0 ≥ 0 and
c, ae > 0. The nugget of γX is given by c0 and the sill by c0 + c. The range
a, however, is more difficult to determine since γX(r)→ c0 + c for r →∞ but
γX(r) < c0 + c for each r ≥ 0. In Montero et al. (2015), Section 3.5.1.2 it is
suggested to determine the range a using the threshold u = 0.95, i.e., a should
satisfy that γX(r′) ≥ 0.95 (c0 + c) for each r′ ≥ a, which is fulfilled for

a = ae log

(
20
(

1 +
c0

c

)−1
)
.

Remark 3.2.9. Analogous to the cross-covariance function of two random fields
X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T }, a cross-semivariogram of X and Y can
be defined. Besides the general version, which does not require any conditions on
the homogeneity of X and Y but is difficult to handle in practice, a motion-invariant
version can be given if X and Y are jointly second-order motion-invariant. However,
cross-semivariograms are not considered in this thesis, for more details see Wackernagel
(2003), Chapter 20 and Chilès and Delfiner (2012), Section 5.6.2.

3.2.6. Estimators for (cross-) correlation functions and
semivariograms

Now that several characteristics have been introduced which describe dependencies
in (or between) random fields, we address the question how these characteristics can
be estimated based on observed data. In applications, typically regionalized values
x(t1), . . . , x(tn) are given for a finite set of n ∈ N sampling points t1, . . . , tn in a domain
T as specified in Section 3.2.2. These data are interpreted as realizations of a random
field X = {X(t), t ∈ T } at t1, . . . , tn and it is usually assumed that X is second-order
motion-invariant as otherwise, estimation based on only one set of regionalized values
is considerably more complicated (or even impossible). If the domain T is compact,
then the estimators of (cross-) covariance functions, (cross-) correlation functions and
semivariograms introduced in this section are only defined for distances r ≤ r0, where
r0 is given according to (3.1). We start with the discussion of estimators for (cross-)
covariance and (cross-) correlation functions. The most intuitive approach relies on
the method of moments.

Definition 3.2.13 (Method of moment estimator for (cross-) covariance function).
Let X = {X(t), t ∈ T } be a second-order motion-invariant random field with domain
T , constant expectation µX ∈ R, and (motion-invariant) covariance function CX :
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[0,∞)→ R. Furthermore, let t1, . . . , tn ∈ T with n ∈ N be a fixed sequence of sampling
points and define

N(r) = {(ti, tj) : ‖ti − tj‖d = r; i, j = 1, . . . , n}, r ≥ 0. (3.8)

1. The estimator µ̂X defined by

µ̂X =
1

n

n∑
i=1

X(ti) (3.9)

is a method of moment estimator of the expectation µX , which is also denoted as
empirical mean.

2. The estimator ĈM
X defined by

ĈM
X (r) =

1

#N(r)

∑
(ti,tj)∈N(r)

(X(ti)−µ̂X)(X(tj)−µ̂X), r ≥ 0 such that #N(r) > 0,

(3.10)
is a method of moment estimator of the covariance function CX , which is also
denoted as empirical or experimental covariogram.

3. Let Y = {Y (t), t ∈ T } be another second-order motion-invariant random field
with domain T and constant expectation µY ∈ R such that X and Y are jointly
second-order motion-invariant with (motion-invariant) cross-covariance function
CXY : [0,∞)→ R. The estimator ĈM

XY defined by

ĈM
XY (r) =

1

#N(r)

∑
(ti,tj)∈N(r)

(X(ti)−µ̂X)(Y (tj)−µ̂Y ), r ≥ 0 such that #N(r) > 0,

(3.11)
is a method of moment estimator of the cross-covariance function CXY .

Remark 3.2.10. Let X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T } be given as in
Definition 3.2.13.

1. In most applications there are no or only few distances r ≥ 0 such that #N(r) > 1,
which results in unreliable estimates of (cross-) covariance functions. Thus, it is
common to also add those pairs (ti, tj) to N(r) that have a distance ‖ti − tj‖d of
approximately r. For that purpose, we consider a fixed tolerance value ε > 0 and
define

N ε(r) = {(ti, tj) : ‖ti − tj‖d ∈ [r − ε, r + ε]; i, j = 1, . . . , n}, r ≥ 0, (3.12)

which is often used instead of N(r) in (3.10) and (3.11) (this is sometimes denoted
as binning in literature). The interval [r − ε, r + ε] is called a tolerance interval
in this context. A usual proceeding is to estimate a (cross-) covariance function
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using binning at a finite sequence r1, . . . , rm ≥ 0 of distances with m ∈ N, where
the tolerance value ε and the distances r1, . . . , rm are chosen in such a way that
the tolerance intervals [r1− ε, r1 + ε], . . . , [rm− ε, rm + ε] form a partition of the
interval [r1 − ε, rm + ε].

2. The empirical mean µ̂X as introduced in (3.9) is an unbiased estimator of the
constant expectation µX , i.e., E µ̂X = µX but due to X(t1), . . . , X(tn) being
not independent in general, it is not the estimator with minimum variance. In
order to construct an estimator with smaller variance, the covariance function
CX : [0,∞) → R is needed to be known which is typically not the case in
applications, see Montero et al. (2015), Section 3.3.

3. The method of moments estimator ĈM
X given in (3.10) is biased, i.e., in general

E ĈM
X (r) 6= CX(r) for r ≥ 0. The bias can have a substantial influence if n is

small (Cressie, 1993, Section 2.4.1). Furthermore, estimates obtained according
to ĈM

X tend to be unstable (i.e., large jumps often occur) and are generally not
positive semi-definite, which implies that they should not be used for spatial
prediction (Montero et al., 2015, Section 3.3). The same applies for the method
of moments estimator ĈM

XY of the cross-covariance function CXY given in (3.11).

4. If T is a geographical domain, then N(r) and N ε(r) given in (3.8) and (3.12)
can also be defined using the great-circle distance dGC(ti, tj) introduced in (3.4)
instead of the two-dimensional Euclidean distance ‖ti − tj‖2 for ti, tj ∈ T .

As stated in Remark 3.2.10, the proposed method of moments estimator for (cross-)
covariance functions has certain disadvantages, which do not only impede a direct use
in geostatistical applications but also make analysis and interpretation of obtained
estimates difficult. A popular solution to these shortcomings is to fit a parametric
model to estimates obtained by the method of moments, see, e.g., Montero et al. (2015),
Section 3.2.2. An alternative approach is to use nonparametric estimators as discussed
in, e.g., Hall et al. (1994), Genton and Gorsich (2002) or Choi et al. (2013). In this
thesis, we consider a kernel-based estimator suggested in Hall et al. (1994).

Definition 3.2.14 (Kernel estimator for (cross-) covariance function). Let X =
{X(t), t ∈ T } be a second-order motion-invariant random field with domain T and
(motion-invariant) covariance function CX : [0,∞)→ R. Furthermore, let t1, . . . , tn ∈
T with n ∈ N be a fixed sequence of sampling points, h > 0 a positive constant
and κ : R → [0,∞) a nonnegative, bounded, and Borel-measurable function with∫
R κ(x) dx = 1,

∫
R xκ(x) dx = 0, and

∫
R x

2κ(x) dx <∞ (called a kernel function, see
Section 3.4.1).
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1. The estimator ĈK
X defined by

ĈK
X (r) =

n∑
i=1

n∑
j=1

(X(ti)− µ̂X)(X(tj)− µ̂X)κ
(
r−‖ti−tj‖d

h

)
n∑
i=1

n∑
j=1

κ
(
r−‖ti−tj‖d

h

) , r ≥ 0, (3.13)

is a kernel estimator of the covariance function CX with bandwidth h > 0.

2. Let Y = {Y (t), t ∈ T } be another second-order motion-invariant random field
with domain T such that X and Y are jointly second-order motion-invariant with
(motion-invariant) cross-covariance function CXY : [0,∞)→ R. The estimator
ĈK
XY defined by

ĈK
XY (r) =

n∑
i=1

n∑
j=1

(X(ti)− µ̂X)(Y (tj)− µ̂Y )κ
(
r−‖ti−tj‖d

h

)
n∑
i=1

n∑
j=1

κ
(
r−‖ti−tj‖d

h

) , r ≥ 0, (3.14)

is a kernel estimator of the cross-covariance function CXY with bandwidth h > 0.

If for any r ≥ 0 the denominator in (3.13) is equal to zero, then the corresponding
numerator is equal to zero as well. In this case, the estimator ĈK

X (r) is not defined.
The same applies for (3.14).

Remark 3.2.11. Let X = {X(t), t ∈ T } and Y = {Y (t), t ∈ T } be given as in
Definition 3.2.14.

1. The bandwidth h > 0 in (3.13) and (3.14) controls the degree of smoothness of
estimated (cross-) covariance functions. It is a complicated task to choose the
bandwidth in such a way that spurious random variations are removed without
eliminating important details in the data. This can be done either manually, by
comparing estimates for different choices of h, or automatically. Some algorithmic
approaches for bandwidth selection are discussed in Section 3.4.4.

2. If T is a geographical domain, then the kernel estimators ĈK
X and ĈK

XY given in
(3.13) and (3.14) can also be defined using the great-circle distance dGC(ti, tj)
introduced in (3.4) instead of the two-dimensional Euclidean distance ‖ti − tj‖2

for ti, tj ∈ T .

Using the relationship between (cross-) covariance and (cross-) correlation functions
specified in Remarks 3.2.3 and 3.2.6, the following plug-in estimators for (motion-
invariant) correlation and cross-correlation functions can be given.
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Definition 3.2.15 (Plug-in estimator for (cross-) correlation function). Let X =
{X(t), t ∈ T } be a second-order motion-invariant random field with domain T , (motion-
invariant) covariance function CX : [0,∞) → R, and (motion-invariant) correlation
function ρX : [0,∞) → [−1, 1]. Furthermore, let ĈX be an estimator of CX , with
ĈX(0) > 0.

1. The estimator ρ̂X defined by

ρ̂X(r) =
ĈX(r)

ĈX(0)
, r ≥ 0, (3.15)

is a plug-in estimator of the correlation function ρX .

2. Let Y = {Y (t), t ∈ T } be another second-order motion-invariant random field
with domain T and (motion-invariant) covariance function CY : [0,∞) → R
such that X and Y are jointly second-order motion-invariant with (motion-
invariant) cross-covariance function CXY : [0,∞) → R and cross-correlation
function ρXY : [0,∞)→ [−1, 1]. Furthermore, let ĈY be an estimator of CY with
ĈY (0) > 0 and ĈXY an estimator of CXY . The estimator ρ̂XY defined by

ρ̂XY (r) =
ĈXY (r)√

ĈX(0) · ĈY (0)
, r ≥ 0, (3.16)

is a plug-in estimator of the cross-correlation function ρXY .

Finally, a method of moment estimator for the motion-invariant semivariogram of a
second-order motion-invariant random field is discussed.

Definition 3.2.16 (Method of moment estimator for semivariogram). Let X =
{X(t), t ∈ T } be a second-order motion-invariant random field with domain T and
(motion-invariant) semivariogram γX : [0,∞)→ [0,∞). Furthermore, let t1, . . . , tn ∈ T
with n ∈ N be a fixed sequence of sampling points and for each r ≥ 0 let N(r) be given
as in (3.8). The estimator γ̂X defined by

γ̂X(r) =
1

2#N(r)

∑
(ti,tj)∈N(r)

(
X(ti)−X(tj)

)2
, r ≥ 0 such that #N(r) > 0, (3.17)

is a method of moment estimator of the semivariogram γX , which is also denoted as
empirical or experimental semivariogram.

Remark 3.2.12. Let X = {X(t), t ∈ T } be a second-order motion-invariant random
field with domain T , (motion-invariant) semivariogram γX : [0,∞) → [0,∞), and
(motion-invariant) covariance function CX : [0,∞)→ R.
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1. Since γX can also be represented as

γX(r) =
1

2
E
(
X(s)−X(t)

)2
, s, t ∈ T such that ‖s− t‖d = r,

one can easily see that E γ̂X(r) = γX(r) for r ≥ 0 (such that #N(r) > 0), i.e.,
γ̂X is unbiased (in contrast to the method of moment estimator ĈM

X of CX).
The reason for having this desirable property is that the unknown constant
expectation µX ∈ R of X is not involved in the definition of the semivariogram.
Due to X(t1), . . . , X(tn) being not independent in general, the derivation of
further characteristics (such as second moments) of the estimator γ̂X is only
possible under restrictive assumptions on X, see Cressie (1993), Section 2.4 and
Schabenberger and Gotway (2005), Section 4.4.1.

2. When applying the estimator γ̂X in practice, it is customary to use binning, com-
pare to the discussion of the method of moment estimator ĈM

X in Remark 3.2.10.
This means that γ̂X is often computed for a finite sequence r1, . . . , rm ≥ 0 of
distances with m ∈ N, where N(rj) is replaced by the extended set N ε(rj) as
introduced in (3.12) for j = 1, . . . ,m. Typically, the distances r1, . . . , rm and the
tolerance value ε > 0 are chosen in such a way that [r1−ε, r1+ε], . . . , [rm−ε, rm+ε]
form a partition of the interval [r1 − ε, rm + ε]. Moreover, in Journel and Hui-
jbregts (1978) it is advised that each N ε(rj) should contain at least 30 (better 50)
pairs of sample points for j = 1, . . . ,m. However, regardless of whether binning
is used or not, obtained estimates are not conditionally negative semi-definite in
general and tend to be unstable, showing large jumps occasionally.

3. The method of moment estimator γ̂X is not very robust to outliers (Cressie, 1993,
Section 2.2.1). Therefore, several more robust approaches to the estimation of γX
are suggested in the literature, see, e.g., Cressie (1993), Section 2.4.3. However,
most of them do not account for the disadvantages of γ̂X mentioned previously.

Similar as for the covariance function, nonparametric estimators are proposed in
literature, which provide smooth (but not necessarily conditionally negative semi-
definite) estimates of the semivariogram, see, e.g., Schabenberger and Gotway (2005),
Section 4.6, Diggle and Ribeiro Jr. (2007), Section 5.2.3 or Kim and Park (2012). In
the present thesis, however, such approaches are not discussed.

3.2.7. Fitting of semivariogram models

Variogram estimates obtained using the method of moments have several disadvan-
tages that do not only make analysis and interpretation difficult but also impede
an application in spatial prediction. Thus, a popular approach in geostatistics is
to fit a parametric semivariogram model that matches the dependence structure in
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the available data as well as possible. Several fitting methods are considered in the
literature with least squares, maximum likelihood, and composite likelihood being
the most commonly used. For a general overview of semivariogram fitting we refer to
Cressie (1993), Section 2.6, Schabenberger and Gotway (2005), Section 4.5, Chilès and
Delfiner (2012), Section 2.6, and Montero et al. (2015), Section 3.8.

Let X = {X(t), t ∈ T } be a second-order motion-invariant random field with domain
T . We suppose that the motion-invariant semivariogram of X belongs to a parametric
family of semivariogram models, which is why we use the notation γθX : [0,∞)→ [0,∞)
with some parameter vector θ ∈ Θ ⊂ Rk and some k ∈ N. For example, γθX could
describe a spherical, cubic or exponential semivariogram model as introduced in
Example 3.2.2, where in all three cases Θ = [0,∞) × (0,∞)2 and k = 3, but many
more classes of parametric models exist. Furthermore, let t1, . . . , tn ∈ T with n ∈ N be
a fixed sequence of sampling points. We describe how the parameter vector θ can be
fitted based on X(t1), . . . , X(tn) using a generalized least squares (GLS) method with
iterative reweighting. Note that ordinary least squares (OLS) should not be applied here
since the random variables X(t1), . . . , X(tn) are not independent in general. Besides
the references given above, we recommend Cressie (1985) and Müller (1999) for a more
detailed discussion of this method.

As a basis for model fitting, we consider a sequence r1, . . . , rm ≥ 0 of distances with
m ∈ N and the corresponding method of moment estimators γ̂X(r1), . . . , γ̂X(rm) that
are given according to (3.17), where typically binning is applied. In the following, we
write γ̂ = (γ̂X(r1), . . . , γ̂X(rm))> and γθ = (γθX(r1), . . . , γθX(rm))>. We suppose that

γ̂ = γθ + ε,

where ε : Ω → Rm is a centered random vector (i.e., all its components have an
expectation of zero) with covariance matrix Σ ∈ Rm×m (which also is the covariance
matrix of γ̂). Then, the GLS estimator θ̂GLS of θ is given by

θ̂GLS = arg min
θ∈Θ

{
(γ̂ − γθ)>Σ−1(γ̂ − γθ)

}
. (3.18)

The biggest challenge is the determination of the covariance matrix Σ as no general
formula is known in the literature. However, under the assumption that X is a
Gaussian random field (i.e., all its finite-dimensional distributions belong to the family
of multivariate normal distributions), it holds that

1. E
(
(X(s)−X(t))2

)
= 2γθX(‖s− t‖d), s, t ∈ T ,

2. var
(
(X(s)−X(t))2

)
= 8

(
γθX(‖s− t‖d)

)2
, s, t ∈ T ,

3. cov
(
(X(s1)−X(t1))2, (X(s2)−X(t2))2

)
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= 2
(
γθX(‖s1 − t2‖d) + γθX(‖t1 − s2‖d)− γθX(‖s1 − s2‖d)− γθX(‖t1 − t2‖d)

)2
,

s1, s2, t1, t2 ∈ T ,

see Montero et al. (2015), Section 3.6, which can be used to give a (complicated) closed
formula for the covariance matrix Σ, see Cressie (1985). Note that in this case, Σ
also depends on the parameter vector θ, which is emphasized by writing Σ(θ) in the
following. Therefore, it does not seem possible to directly compute θ̂GLS according to
(3.18) in one step. Instead, the following iterative algorithm for the estimation of the
parameter vector θ is proposed in Müller (1999).

Algorithm 3.2.1. 1. Set l = 0 and Σ = I and compute an initial estimator θ̂
(0)
GLS

according to (3.18). In this case, θ̂
(0)
GLS actually is an OLS estimator.

2. Compute the covariance matrix Σ(θ̂
(l)
GLS) using the moment formulas given above

based on θ̂
(l)
GLS and set Σ = Σ(θ̂

(l)
GLS).

3. Compute the estimator θ̂
(l+1)
GLS according to (3.18). If the Euclidean norm ‖θ̂(l+1)

GLS −
θ̂

(l)
GLS‖2 is small enough, then set l = l+1 and terminate the algorithm. Otherwise,

set l = l + 1 and go back to step 2.

After the algorithm terminates, θ̂
(l)
GLS is used as an estimator of the parameter vector θ.

3.3. Stochastic geometry

In the present section, we discuss some basic models from stochastic geometry including
important properties, characteristics, and simulation algorithms. According to Chiu
et al. (2013), stochastic geometry is the field of mathematical research that provides
models and methods for the analysis of complicated geometrical structures occurring
in datasets from different areas in science and technology. In this thesis, we focus on
random point processes and random germ-grain models although a wide range of more
general models exists. For a more detailed overview of this topic we recommend Stoyan
and Stoyan (1994), Beneš and Rataj (2004), Baddeley et al. (2007), Schneider and
Weil (2008), and Chiu et al. (2013).

3.3.1. Random measures

Random measures are some of the most important and most flexible tools considered
in stochastic geometry (Kallenberg, 1986), which allow to formally describe stochastic
models for random geometric objects in a particularly elegant way. Moreover, many
models of stochastic geometry have characteristics that are associated with random
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measures, which further emphasizes their importance. Let M denote the family of all
locally finite measures on (Rd,B(Rd)), where a measure µ : B(Rd)→ [0,∞] is said to
be locally finite if µ(B) <∞ for all B ∈ B0(Rd). Furthermore, let M be the smallest
σ-algebra of subsets of M such that for each B ∈ B0(Rd) the mapping that assigns the
value µ(B) to each measure µ ∈ M is (M,B(R))-measurable.

Definition 3.3.1 (Random measure). A random measure M : Ω → M is a random
element defined on some probability space (Ω,F ,P) taking values in the measurable
space (M,M).

Remark 3.3.1. A random measure M can also be interpreted as a random function
with index set T = B(Rd), compare to Example 3.2.1. Thus, we often use the notation
M = {M(B), B ∈ B(Rd)} in this thesis, where M(B) denotes the random value of M
for each Borel set B ∈ B(Rd). According to Theorem 3.2.2, the distribution of M is
uniquely determined by its family of finite-dimensional distributions.

Definition 3.3.2 (Intensity measure). Let M = {M(B), B ∈ B(Rd)} be a random
measure defined over some probability space (Ω,F ,P). The (deterministic) intensity
measure µ : B(Rd)→ [0,∞] of M is defined as

µ(B) = EM(B), B ∈ B(Rd).

Remark 3.3.2. In general, it is not guaranteed that the intensity measure µ of a
(locally finite) random measure M is locally finite, although this is assumed in most
applications.

Definition 3.3.3 (Stationarity and isotropy). A random measure M = {M(B), B ∈
B(Rd)} is said to be

1. stationary if for all n ∈ N, B1, . . . , Bn ∈ B(Rd) and any translation vector τ ∈ Rd

it holds that

(M(B1), . . . ,M(Bn))
d
= (M(B1 + τ), . . . ,M(Bn + τ)),

2. isotropic if for all n ∈ N, B1, . . . , Bn ∈ B(Rd) and any rotation δ : Rd → Rd

around the origin it holds that

(M(B1), . . . ,M(Bn))
d
= (M(δB1), . . . ,M(δBn)).

3.3.2. Random point processes

Random point processes are basic tools of stochastic geometry that are frequently used
for the modeling of irregular point patterns. If considered from an applied perspective,
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random point processes are often interpreted as random configurations of points in
space and/or time but a more formal description using random counting measures
is typically preferred in the scientific literature. Historically, point processes were
introduced for the modeling of random sequences of temporal events in dimension
d = 1. Since for higher dimensions often no temporal evolution is considered, the term
random point field would be more appropriate in that case (Chiu et al., 2013). However,
the notation point process is still used by most researchers for arbitrary dimensions
d ∈ N. Besides the references given at the beginning of Section 3.3, we recommend
König and Schmidt (1992), Daley and Vere-Jones (2003), Daley and Vere-Jones (2008),
Illian et al. (2008), and Diggle (2014) for a more detailed view on this topic.

Definition 3.3.4 (Random point process). Let X1, X2, . . . : Ω → Rd ∪ {∞} be an
arbitrary sequence of random vectors defined on a probability space (Ω,F ,P), such
that

P
(
#{i : Xi ∈ B} <∞

)
= 1, B ∈ B0(Rd),

and

P
(
{Xi 6= Xj} ∪ {Xi = Xj =∞}

)
= 1, i, j ∈ N, i 6= j.

Then, X = {Xi, i = 1, 2, . . .} is called a (locally finite and simple) random point process.

Remark 3.3.3. The notation Xi =∞ means that the i-th point Xi of a random point
process X = {Xi, i = 1, 2, . . .} does not exist, which allows for the description of point
processes whose realizations have a finite number of points. Alternatively, one can
also write {Xi, i = 1, . . . , Z} where Z : Ω→ N0 ∪ {∞} is a random variable describing
the total number of points of X in Rd, i.e., Z = #{i : Xi ∈ Rd}. This notation is
particularly useful when a random point process is restricted to some compact subset
W ⊂ Rd or for the construction of so-called cluster processes, see Section 3.3.5.

As indicated previously, random point processes can also be interpreted as random
counting measures, which facilitates a formal description of point process models
and their properties. A measure ϕ ∈ M is called a (locally finite) counting measure
on (Rd,B(Rd)) if ϕ(B) ∈ N0 ∪ {∞} for all B ∈ B(Rd). Let N denote the family
of all locally finite and simple counting measures on (Rd,B(Rd)), where a counting
measure ϕ : B(Rd) → N0 ∪ {∞} is said to be simple if ϕ({x}) ∈ {0, 1} for each
x ∈ Rd. Furthermore, let N be the smallest σ-algebra of subsets of N such that for
each B ∈ B0(Rd) the mapping that assigns the value ϕ(B) to each measure ϕ ∈ N is
(N ,B(R))-measurable.

Definition 3.3.5 (Random counting measure). A random counting measure N : Ω→
N is a random element defined on some probability space (Ω,F ,P) taking values in
the measurable space (N,N ).
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Remark 3.3.4. Analogous to random measures, see Section 3.3.1, random counting
measures can be interpreted as random functions with index set T = B(Rd). Thus,
we often use the notation N = {N(B), B ∈ B(Rd)} for a random counting measure N ,
where N(B) denotes the random value of N for each Borel set B ∈ B(Rd). Accordingly,
the distribution of N is uniquely determined by the family of finite dimensional
distributions of N , compare to Theorem 3.2.2.

Lemma 3.3.1. Let X = {Xi, i = 1, 2, . . .} be a random point process and define

N(B) = #{i : Xi ∈ B}, B ∈ B(Rd). (3.19)

Then, N = {N(B), B ∈ B(Rd)} is a random counting measure. Vice versa, for each
random counting measure N = {N(B), B ∈ B(Rd)} there is a uniquely determined
random point process X = {Xi, i = 1, 2, . . .} such that (3.19) holds.

Proof. If X = {Xi, i = 1, 2, . . .} is a random point process, it can easily be checked
that for N = {N(B), B ∈ B(Rd)} as defined in (3.19) we have that N(B) ∈ N0 ∪ {∞}
for all B ∈ B(Rd), N(∅) = 0, and that N is σ-additive almost surely. For a proof of
the reverse statement see Daley and Vere-Jones (2008), Lemma 9.1.XIII.

Remark 3.3.5. 1. According to Lemma 3.3.1, each random point process can also
be interpreted as a random counting measure and vice versa. Thus, we will use
these two notations interchangeably in the following.

2. Since each random counting measure is a special case of a random measure,
the definition of the intensity measure of a random counting measure N =
{N(B), B ∈ B(Rd)} is included in Definition 3.3.2. The intensity measure of a
point process X = {Xi, i = 1, 2, . . .} is defined as the intensity measure of the
corresponding random counting measure N .

3. In the following, we only consider random point processes with locally finite and
diffuse intensity measures. A measure µ ∈ M is called diffuse if µ({x}) = 0 for
all x ∈ Rd.

4. We call a random point process X = {Xi, i = 1, 2, . . .} stationary if its corre-
sponding random counting measure N = {N(B), B ∈ B(Rd)} is stationary in
the sense of Definition 3.3.3. The same applies for the notation of isotropy.

In the case of stationarity, the intensity measure of a point process simplifies as
follows.

Theorem 3.3.1. Let X = {Xi, i = 1, 2, . . .} be a stationary random point process with
intensity measure µ : B(Rd)→ [0,∞]. Then, there is a constant λ ∈ [0,∞) such that

µ(B) = λ νd(B), B ∈ B(Rd).

The constant λ is called intensity of X.
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Proof. Let N = {N(B), B ∈ B(Rd)} be the corresponding random counting measure
of X. From the stationarity of N it follows that

µ(B) = EN(B) = EN(B + x) = µ(B + x), x ∈ Rd, B ∈ B(Rd).

Thus, µ is a translation invariant measure, which implies that µ is a multiple of the
Lebesgue measure, see Schilling (2005), Theorem 5.8. The intensity λ is finite since
the intensity measure µ is locally finite.

Remark 3.3.6. In applications, when a point process X = {Xi, i = 1, 2, . . .} with
intensity measure µ : B(Rd) → [0,∞] cannot be considered to be stationary, it is
often assumed that µ is absolutely continuous with respect to the d-dimensional
Lebesgue measure. In that case, there is a Borel-measurable, locally integrable function
λ : Rd → [0,∞), called intensity function of X, such that

µ(B) =

∫
B

λ(t) dt, B ∈ B(Rd).

The following result is essentially an application of Fubini’s theorem, which goes back
to the early work of Campbell (Campbell, 1909).

Theorem 3.3.2 (Campbell). Let X = {Xi, i = 1, 2, . . .} be a random point process
with intensity measure µ : B(Rd) → [0,∞]. For each Borel-measurable function
f : Rd ∪ {∞} → [0,∞) with f(∞) = 0 it holds that

E

(
∞∑
i=1

f(Xi)

)
=

∫
Rd
f(t)µ(dt).

Proof. See Schneider and Weil (2008), Theorem 3.1.2.

An important characteristic of random point processes is the probability generating func-
tional, which is a generalization of the probability generating function of nonnegative
discrete random variables. Like its counterpart for random variables, the probability
generating functional uniquely determines the distribution of a random point process.
Let F be the family of all Borel-measurable functions f : Rd ∪ {∞} → [0, 1] such that
f(x) = 1 for x /∈ Bf with some bounded Borel set Bf ∈ B0(Rd) (which depends on
f).

Definition 3.3.6 (Probability generating functional). Let X = {Xi, i = 1, 2, . . .} be a
random point process. The mapping G : F→ [0, 1] defined by

G(f) = E

(
∞∏
i=1

f(Xi)

)
, f ∈ F,

is called probability generating functional of X.
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Theorem 3.3.3. Let X(1) = {X(1)
i , i = 1, 2, . . .} and X(2) = {X(2)

i , i = 1, 2, . . .} be
random point processes with probability generating functionals G(1) : F → [0, 1] and
G(2) : F→ [0, 1]. The point processes X(1) and X(2) have the same distribution if and
only if

G(1)(f) = G(2)(f), f ∈ F.

Proof. See Cressie (1993), Section 8.3.2.

The distributions of random point processes can be further characterized by means of
(factorial) moment measures, which represent point process analogues to the (factorial)
moments of random variables and random vectors.

Definition 3.3.7 (mth moment measure). Let X = {Xi, i = 1, 2, . . .} be a random
point process and N = {N(B), B ∈ B(Rd)} the corresponding random counting
measure. For each m ∈ N with ENm(B) < ∞ for all B ∈ B0(Rd), the mth moment
measure µm : B(Rmd)→ [0,∞] of X is defined by

µm(B1 × . . .×Bm) = E

 ∑
(i1,...,im)

1B1×...×Bm(Xi1 , . . . , Xim)

 , B1, . . . , Bm ∈ B(Rd),

(3.20)
where the summation is over all m-tuples (i1, . . . , im) with i1, . . . , im ∈ N.

Definition 3.3.8 (mth factorial moment measure). Let X = {Xi, i = 1, 2, . . .} be
a random point process and N = {N(B), B ∈ B(Rd)} the corresponding random
counting measure. For each m ∈ N with ENm(B) <∞ for all B ∈ B0(Rd), the mth
factorial moment measure αm : B(Rmd)→ [0,∞] of X is defined by

αm(B1 × . . .×Bm) = E

 ∑ 6=

(i1,...,im)

1B1×...×Bm(Xi1 , . . . , Xim)

 , B1, . . . , Bm ∈ B(Rd),

where the summation is over all m-tuples (i1, . . . , im) with i1, . . . , im ∈ N and ij 6= ik
for j 6= k.

Remark 3.3.7. Let X = {Xi, i = 1, 2, . . .} be a random point process with mth
moment measure µm : B(Rmd) → [0,∞] and mth factorial moment measure αm :
B(Rmd)→ [0,∞] for m ∈ N.

1. The first moment measure µ1 and the first factorial moment measure α1 are both
given by the intensity measure µ : B(Rd) → [0,∞] of X. Furthermore, in the
case m = 2 we get that for arbitrary B1, B2 ∈ B(Rd)

µ2(B1 ×B2) = α2(B1 ×B2) + µ(B1 ∩B2), (3.21)
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which can easily be seen if the sum on the right-hand side of (3.20) is split up as
follows:∑

(i1,i2)

1B1×B2(Xi1 , Xi2) =
∑6=

(i1,i2)

1B1×B2(Xi1 , Xi2) +
∞∑
i=1

1B1∩B2(Xi).

2. The definition of µm implies the following generalization of the Campbell formula
stated in Theorem 3.3.2. For any nonnegative Borel-measurable function f :
Rmd → [0,∞) it holds that

E

 ∑
(i1,...,im)

f(Xi1 , . . . , Xim)

 =

∫
Rmd

f(t1, . . . , tm)µm(d(t1, . . . , tm)), (3.22)

see, e.g., Schneider and Weil (2008), Theorem 3.1.3.

3.3.3. Poisson point processes

We now introduce some classes of point process that are considered later on in this thesis
for modeling purposes and describe their most important properties and characteristics
as well as some frequently used simulation algorithms. We start with the Poisson point
process, which is not only the most popular model in applications but also provides
the basis for the construction of more sophisticated models such as Cox or (Poisson)
cluster processes. A more detailed consideration of Poisson processes can be found,
e.g., in Kingman (1993) and Streit (2010).

Definition 3.3.9 (Poisson point process). Let X = {Xi, i = 1, 2, . . .} be a random
point process and N = {N(B), B ∈ B(Rd)} the corresponding random counting
measure. We call X a Poisson point process (or Poisson process for short) with (locally
finite and diffuse) intensity measure µ : B(Rd)→ [0,∞] if

1. the random variables N(B1), N(B2), . . . are independent of each other for any
pairwise disjoint B1, B2, . . . ∈ B0(Rd),

2. the random number of points N(B) in any B ∈ B0(Rd) has a Poisson distribution
with parameter µ(B), i.e.,

P(N(B) = n) =
µ(B)n

n!
exp{−µ(B)}, n ∈ N0. (3.23)

Remark 3.3.8. 1. If X = {Xi, i = 1, 2, . . .} is a Poisson process, then the cor-
responding random counting measure N = {N(B), B ∈ B(Rd)} is sometimes
denoted as Poisson counting measure. However, most researchers use the term
Poisson process for both X and N , which is also done in the present thesis.
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2. The intensity measure µ : B(Rd) → [0,∞] of a Poisson process X = {Xi, i =
1, 2, . . .} completely determines the distribution of the process. In general, this is
not the case for random point processes.

Theorem 3.3.4. Let X = {Xi, i = 1, 2, . . .} be a Poisson process with intensity
measure µ : B(Rd)→ [0,∞].

(i) The probability generating functional G : F→ [0, 1] of X is given by

G(f) = exp

{∫
Rd

(f(t)− 1)µ(dt)

}
, f ∈ F. (3.24)

(ii) The mth factorial moment measure αm : B(Rmd)→ [0,∞] of X is given by

αm(B1 × . . .×Bm) = µ(B1) · . . . · µ(Bm), B1, . . . , Bm ∈ B(Rd). (3.25)

Proof. For (i) see Chiu et al. (2013), Example 4.2. and for (ii) see Schneider and Weil
(2008), Corollary 3.2.4.

Theorem 3.3.5. Let X = {Xi, i = 1, 2, . . .} be a Poisson process with intensity measure
µ : B(Rd)→ [0,∞]. For any nonnegative Borel-measurable functions f, g : Rd → [0,∞)
it holds that

E

(
∞∑
i=1

f(Xi)
∞∑
j=1

g(Xj)

)
=

∫
Rd
f(t1)µ(dt1)

∫
Rd
g(t2)µ(dt2) +

∫
Rd
f(t)g(t)µ(dt).

(3.26)

Proof. The statement follows immediately by using the more general definition of
the mth moment measure in (3.22) with m = 2, the relationship between the second
moment measure, the second factorial moment measure and the intensity measure
in (3.21), and the representation formula of the mth factorial moment measure of a
Poisson process in (3.25) with m = 2 as follows:

E

∑
(i,j)

f(Xi) g(Xj)

 =

∫
R2d

f(t1)g(t2)µ2(d(t1, t2))

=

∫
R2d

f(t1)g(t2)α2(d(t1, t2)) +

∫
Rd
f(t)g(t)µ(dt)

=

∫
Rd
f(t1)µ(dt1)

∫
Rd
g(t2)µ(dt2) +

∫
Rd
f(t)g(t)µ(dt).
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To conclude the discussion of the first point process model, we suggest several simulation
algorithms that allow to generate realizations of (stationary and non-stationary) Poisson
processes in general compact windows. At first, consider a stationary Poisson process
X = {Xi, i = 1, 2, . . .} with intensity λ > 0 and the corresponding random counting
measure N = {N(B), B ∈ B(Rd)}. Furthermore, let W = [a1, b1]× . . .× [ad, bd] with
ai < bi for i = 1, . . . , d be a cuboid in Rd, in which a realization of X is to be simulated.
Then, according to Definition 3.3.9 and Theorem 3.3.1, the random number N(W ) of
points in W is Poisson distributed with parameter λνd(W ). Furthermore, conditioned
on N(W ) = n for some n ∈ N0, the restriction of X to W consists of n independent
random vectors, which are uniformly distributed in W , see, e.g., Illian et al. (2008),
Section 2.3.2 (e). This motivates the following algorithm for the simulation of X in
W . For the generation of Poisson and standard uniformly distributed pseudo-random
numbers and uniformly in W distributed pseudo-random vectors we refer to Gentle
(2003) or Kroese et al. (2011).

Algorithm 3.3.1. 1. Generate a Poisson distributed pseudo-random number n
with parameter λνd(W ).

2. Generate n uniformly distributed pseudo-random vectors x1, . . . , xn in W .

Then, {x1, . . . , xn} can be regarded as a realization of a stationary Poisson process
with intensity λ > 0 restricted to W .

In order to simulate Poisson processes under more general conditions, the following
theorem concerning location-dependent thinning turns out to be useful. It motivates a
class of algorithms that are denoted as acceptance-rejection methods in literature.

Theorem 3.3.6. Let X = {Xi, i = 1, 2, . . .} be a Poisson process with (Borel-
measurable and locally integrable) intensity function λ1 : Rd → [0,∞) and let λ2 :
Rd → [0,∞) be another Borel-measurable and locally integrable function such that
λ1(x) ≥ λ2(x) for all x ∈ Rd. Furthermore, consider a sequence U1, U2, . . . of inde-
pendent, standard uniformly distributed random variables that are independent of X.
Then, the random counting measure Ñ = {Ñ(B), B ∈ B(Rd)} defined by

Ñ(B) = #

{
i : Xi ∈ B,Ui ≤

λ2(Xi)

λ1(Xi)

}
, B ∈ B(Rd),

is a Poisson process with intensity function λ2.

Proof. See Møller and Waagepetersen (2004), Proposition 3.7.

Based on this theorem an algorithm for the simulation of a stationary Poisson process
X = {Xi, i = 1, 2, . . .} with intensity λ > 0 in an arbitrary compact Borel set
B ∈ B0(Rd) can be given. For that purpose, let W = [a1, b1]× . . .× [ad, bd] with ai < bi
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for i = 1, . . . , d be the smallest d-dimensional cuboid such that B ⊂ W . Applying
Theorem 3.3.6 with λ1(x) = λ1W (x) and λ2(x) = λ1B(x) provides the basis for the
following simulation algorithm.

Algorithm 3.3.2. 1. Generate a realization {x1, . . . , xn} of a stationary Poisson
process with intensity λ > 0 in W according to Algorithm 3.3.1.

2. Eliminate those points of {x1, . . . , xn} that are not located in B and denote the
set of remaining points as {x̃1, . . . , x̃m} with m ≤ n.

Then, {x̃1, . . . , x̃m} can be regarded as a realization of a stationary Poisson process
with intensity λ > 0 restricted to B.

Remark 3.3.9. If B is a d-dimensional ball b(x, r) with some center x ∈ Rd and a
positive radius r > 0, then it is more elegant to simulate a stationary Poisson process
X = {Xi, i = 1, 2, . . .} in B according to a radial simulation algorithm proposed in
Quine and Watson (1984). Additionally, Theorem 3.3.6 can be used to generate a
realization of X in a subset B̃ ⊂ B using acceptance-rejection, which may be more
efficient than simulating X in a d-dimensional cuboid W ⊂ Rd first.

Finally, Theorem 3.3.6 is also applied to derive a simulation algorithm for the non-
stationary case. Consider a Poisson process X = {Xi, i = 1, 2, . . .} with intensity
function λ : Rd → [0,∞) and an arbitrary compact Borel set B ∈ B0(Rd) such that
λmax = max{λ(x), x ∈ B} > 0. Then, using Theorem 3.3.6 with λ1(x) = λmax 1B(x)
and λ2(x) = λ(x)1B(x) for all x ∈ Rd motivates the following simulation algorithm.

Algorithm 3.3.3. 1. Generate a realization {x1, . . . , xn} of a stationary Poisson
process with intensity λmax > 0 in B according to Algorithm 3.3.2.

2. For each i ∈ {1, . . . , n} generate a standard uniformly distributed pseudo-random
number ui. If ui ≤ λ(xi)/λmax, then accept xi, otherwise reject xi. Denote the
set of accepted points as {x̃1, . . . , x̃m} with m ≤ n.

Then, {x̃1, . . . , x̃m} can be regarded as a realization of a (non-stationary) Poisson
process with intensity function λ : Rd → [0,∞) restricted to B.

3.3.4. Cox point processes

An intuitive way to construct a more flexible model for random point processes is to
randomize the intensity measure of a Poisson process, which leads to the class of Cox
point processes (also called doubly stochastic Poisson processes in literature). Cox
processes were first studied systematically in Cox (1955).
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Definition 3.3.10 (Cox point process). Let X = {Xi, i = 1, 2, . . .} be a random point
process, N = {N(B), B ∈ B(Rd)} the corresponding random counting measure, and
M = {M(B), B ∈ B(Rd)} a random measure, which is locally finite and diffuse almost
surely. We call X a Cox point process (or Cox process for short) with random intensity
measure M if

P

(
n⋂
i=1

{N(Bi) = ki}

)
= E

(
n∏
i=1

M(Bi)
ki

ki!
exp{−M(Bi)}

)

for all n ∈ N, k1, . . . , kn ∈ N0 and pairwise disjoint B1, . . . , Bn ∈ B0(Rd).

Remark 3.3.10. Let X = {Xi, i = 1, 2, . . .} be a Cox process with random intensity
measure M = {M(B), B ∈ B(Rd)}.

1. According to Definition 3.3.10, the distribution of X can be interpreted as
a mixture of the distributions of different Poisson processes. In particular,
conditioned on {M = µ} for any (locally finite and diffuse) measure µ ∈ M, the
process X is a Poisson process with intensity measure µ.

2. The intensity measure µ : B(Rd) → [0,∞] of X coincides with the intensity
measure of M , i.e., µ(B) = EM(B) for all B ∈ B(Rd), see, e.g., Schneider and
Weil (2008), Section 3.2.

3. A special case, which is particularly important in applications, is given, when
the random intensity measure M is absolutely continuous with respect to the
d-dimensional Lebesgue measure almost surely. This implies that there exists a
random field Λ = {Λ(t), t ∈ Rd} with Λ(t) : Ω → [0,∞) for t ∈ Rd, which has
Borel-measurable and locally integrable realizations, such that

M(B) =

∫
B

Λ(t) dt, B ∈ B(Rd),

almost surely. The random field Λ is denoted as random intensity function of X.

3.3.5. Cluster processes

As a third class of random point processes that are used for modeling purposes in the
present thesis random cluster processes are introduced. We give a general definition of
cluster processes and describe commonly used models that are constructed based on
independent Poisson processes. In accordance to the applications discussed later on in
this thesis, we only consider processes which have a finite number of clusters almost
surely.
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Definition 3.3.11 (Cluster process). Let X(0) = {X(0)
i , i = 1, . . . , Z} be a random

point process with finite and diffuse intensity measure µ(0) : B(Rd) → [0,∞), where
Z : Ω → N0 is a random variable describing the total number of points of X(0) in
Rd. Furthermore, consider a sequence of identically distributed random counting
measures N (1) = {N (1)(B), B ∈ B(Rd)}, N (2) = {N (2)(B), B ∈ B(Rd)}, . . . with finite
and diffuse intensity measure µ(1) : B(Rd)→ [0,∞). If the random counting measure
N = {N(B), B ∈ B(Rd)} defined by

N(B) =
Z∑
i=1

N (i)(B −X(0)
i ), B ∈ B(Rd),

is locally finite and simple almost surely, i.e., if N is a random counting measure in the
sense of Definition 3.3.5, then we call N (or the corresponding random point process
X = {Xi, i = 1, 2, . . .}) a cluster process.

Remark 3.3.11. Let X = {Xi, i = 1, 2, . . .} be a cluster process as introduced in
Definition 3.3.11.

1. We call the random point process X(0) the primary process and the random
counting measures N (1), N (2), . . . the secondary processes of X. If the primary
process is a Poisson process, then X is called a Poisson cluster process.

2. In most applications it is assumed that the secondary processes N (1), N (2), . . .
are independent of each other and of the primary process X(0). In this case, the
(finite and diffuse) intensity measure µ : B(Rd)→ [0,∞) of X is given by

µ(B) =

∫
Rd
µ(1)(B − t)µ(0)(dt), B ∈ B(Rd),

see, e.g., Daley and Vere-Jones (2003), (6.3.3).

We introduce a subclass of Poisson cluster processes, called Neyman-Scott processes,
which can also be interpreted as special Cox processes. The name of the Neyman-Scott
process refers to its occurrence in Neyman and Scott (1958). In the following, we
suppose that the primary process and the secondary processes have intensity functions
(i.e., their intensity measures are absolutely continuous with respect to the d-dimensional
Lebesgue measure), which is a common assumption in applications.

Example 3.3.1 (Neyman-Scott process). Consider a Poisson cluster process X =

{Xi, i = 1, 2, . . .}, where the primary process X(0) = {X(0)
i , i = 1, . . . , Z} is a Poisson

process with integrable intensity function λ(0) : Rd → [0,∞) and the secondary processes
N (1) = {N (1)(B), B ∈ B(Rd)}, N (2) = {N (2)(B), B ∈ B(Rd)}, . . . are independent and
identically distributed Poisson processes with integrable intensity function λ(1) : Rd →
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[0,∞), which are independent of X(0). Then, X is called a Neyman-Scott process and
the (finite) intensity measure µ : B(Rd)→ [0,∞) of X is given by

µ(B) =

∫
Rd

∫
B

λ(1)(s− t) ds λ(0)(t) dt, B ∈ B(Rd).

One can show that X is also a Cox process with random intensity function Λ =
{Λ(t), t ∈ Rd} given by

Λ(t) =
Z∑
i=1

λ(1)(t−X(0)
i ), t ∈ Rd,

see, e.g., Cressie (1993), Section 8.5.3.

When the intensity function of the secondary processes simplifies to being constant in
a ball around the origin, i.e., when λ(1)(t) = λ(1)

1b(o,r)(t) for t ∈ Rd with λ(1), r > 0,
then we call X a Matérn cluster process with intensity function λ(0) : Rd → [0,∞) of
the primary process, cluster intensity λ(1) > 0, and cluster radius r > 0.

To conclude the discussion of models for random point processes, we propose an
algorithm for the simulation of a Matérn cluster process in a compact Borel set
B ∈ B0(Rd). Note that this algorithm does not account for boundary effects and
is thus only suitable if the cluster radius r is small compared to the size of B. In
order to perform a boundary correction, the values of the intensity function of the
primary process need to be known for the extended set B ⊕ b(o, r), which is not the
case in the applications considered in this thesis. Thus, point patterns generated by
Algorithm 3.3.4 are only denoted as approximate realizations in the following.

Algorithm 3.3.4. 1. Generate a realization {x(0)
1 , . . . , x

(0)
n } of a Poisson process

with intensity function λ(0) : Rd → [0,∞) in B according to Algorithm 3.3.3.

2. For each i ∈ {1, . . . , n}, generate a realization {x(i)
1 , . . . , x

(i)
ni } of a stationary Pois-

son process with intensity λ(1) > 0 in b(x
(0)
i , r) ∩B according to Algorithm 3.3.2.

Then, the union
⋃n
i=1{x

(i)
1 , . . . , x

(i)
ni } can be regarded as an approximate realization of

a Matérn cluster process with intensity function λ(0) : Rd → [0,∞) of the primary
process, cluster intensity λ(1) > 0, and cluster radius r > 0 restricted to B.

3.3.6. Random closed sets and germ-grain models

In many applications objects need to be modeled that have a different (and more
complicated) geometric structure than a point pattern. For that purpose, we discuss a
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class of random elements, called random closed sets, that serve as a general tool for
the modeling of irregular geometric objects. We introduce a special subclass of random
closed sets that are defined based on random point processes and describe suitable
simulation algorithms. Besides the references given at the beginning of Section 3.3, we
recommend Molchanov (2005) and Nguyen (2006) for a more detailed discussion of
this topic. Let C denote the family of all closed sets in Rd and K be the family of all
compact sets in Rd. Furthermore, by C we denote the smallest σ-algebra of subsets of
C that contains the sets {C ∈ C : C ∩K 6= ∅} for all K ∈ K.

Definition 3.3.12 (Random closed set). A random closed set Ξ : Ω→ C is a random
element defined on some probability space (Ω,F ,P) taking values in the measurable
space (C, C).

Definition 3.3.13 (Stationarity and isotropy). A random closed set Ξ is said to be

1. stationary if Ξ
d
= Ξ + x for any translation vector x ∈ Rd,

2. isotropic if Ξ
d
= δΞ for any rotation δ : Rd → Rd around the origin.

In general, it is difficult, if not impossible, to give a closed representation formula for
the distribution PΞ of a random closed set Ξ. A much more elegant way to characterize
the distribution of Ξ is using the so-called capacity functional.

Definition 3.3.14 (Capacity functional). Let Ξ be a random closed set in Rd. We
call the function TΞ : K→ [0, 1] with

TΞ(K) = P (Ξ ∩K 6= ∅), K ∈ K,

the capacity functional of Ξ.

Theorem 3.3.7. Let Ξ1 and Ξ2 be random closed sets in Rd with capacity functionals
TΞ1 : K→ [0, 1] and TΞ2 : K→ [0, 1]. Then, Ξ1 and Ξ2 have the same distribution if
and only if TΞ1(K) = TΞ2(K) for all K ∈ K.

Proof. It follows directly from the definition of the capacity functional that TΞ1 and

TΞ2 are identical if Ξ1
d
= Ξ2. For the converse statement see Schneider and Weil (2008),

Theorem 2.1.3.

As a special case of random closed sets we consider germ-grain models, which are
closely related to random point processes. To be more precise, germ-grain models
are constructed by assigning a bounded random closed set to each point of a point
process and by taking the union of the obtained sets. In accordance to the applications
discussed later on in this thesis, we only consider germ-grain models that are compact
almost surely in the following.
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Definition 3.3.15 (Germ-grain model). Let X = {Xi, i = 1, . . . , Z} be a random
point process in Rd, where Z : Ω → N0 is a random variable describing the total
number of points of X in Rd with P(Z < ∞) = 1. Furthermore, let Ξ1,Ξ2, . . . be a
sequence of identically distributed random closed sets in Rd, which are bounded almost
surely. Then, the random union set

Ξ =
Z⋃
i=1

(Xi + Ξi)

is a bounded random closed set almost surely, which is called a germ-grain model.
The random vectors X1, . . . , XZ are denoted as germs and the random closed sets
Ξ1, . . . ,ΞZ as grains.

We present an example of a germ-grain model, which is one of the most commonly
used models in stochastic geometry. In the following, we assume that the random point
process describing the germs has an intensity function, i.e., its intensity measure is
absolutely continuous with respect to the d-dimensional Lebesgue measure.

Example 3.3.2 (Boolean model). Consider a germ-grain model Ξ, where the random
point process X = {Xi, i = 1, . . . , Z} of germs is a Poisson process with integrable
intensity function λ(0) : Rd → [0,∞) and the grains Ξ1,Ξ2, . . . are independent of each
other and of X. Then, Ξ is called a Boolean model with intensity function λ(0) and
grain distribution PΞ1 .

In many applications it is assumed that Ξi = b(o,Ri) for all i ∈ N, where R1, R2, . . . :
Ω→ [0,∞) is a sequence of independent and identically distributed random variables
with distribution function F : R → [0, 1]. In this case, we call Ξ a Boolean model
with spherical grains. Further simplifications that are often considered in applications
include that Ri = R for some random variable R : Ω→ [0,∞) or that Ri = r for some
deterministic radius r > 0.

To conclude this section, we provide algorithms for the simulation of certain germ-grain
models in a compact Borel set B ∈ B0(Rd). Similar to Algorithm 3.3.4, we do not take
boundary effects into account. For a boundary correction the intensity function of the
random point process describing the germs needs to be known outside of B, which
is not the case in the applications considered in this thesis. Thus, sets generated by
Algorithms 3.3.5 and 3.3.6 are only denoted as approximate realizations in the following.
At first, consider a Boolean model Ξ with spherical grains, which is characterized by
the intensity function λ(0) : Rd → [0,∞) and the distribution function F of the grain
radii. We suppose that an algorithm for the generation of pseudo-random numbers
with distribution function F is available. For the most commonly used distributions
simulation algorithms can be found in Kroese et al. (2011).
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Algorithm 3.3.5. 1. Generate a realization {x1, . . . , xn} of a Poisson process with
intensity function λ(0) : Rd → [0,∞) in B according to Algorithm 3.3.3.

2. Generate n pseudo-random numbers r1, . . . , rn with distribution function F .

Then, the union set
⋃n
i=1(b(xi, ri) ∩B) can be regarded as an approximate realization

of the Boolean model Ξ as described above restricted to B.

Finally, we provide a simulation algorithm for germ-grain models, whose germs are given
by a more general random point process. Consider a germ-grain model Ξ with spherical
grains Ξ1,Ξ2, . . ., i.e., Ξi = b(o,Ri) for all i ∈ N, where R1, R2, . . . : Ω → [0,∞) is a
sequence of independent and identically distributed random variables with distribution
function F : R→ [0, 1]. Furthermore, the germs are given by a Matérn cluster process
X = {Xi, i = 1, . . . , Z} with intensity function λ(0) : Rd → [0,∞) of the primary
process, cluster intensity λ(1) > 0, and cluster radius r > 0, where the germs are
considered to be independent of the grains.

Algorithm 3.3.6. 1. Generate an approximate realization {x1, . . . , xn} of a Matérn
cluster process with intensity function λ(0) : Rd → [0,∞) of the primary pro-
cess, cluster intensity λ(1) > 0, and cluster radius r > 0 in B according to
Algorithm 3.3.4.

2. Generate n pseudo-random numbers r1, . . . , rn with distribution function F .

Then, the union set
⋃n
i=1(b(xi, ri) ∩B) can be regarded as an approximate realization

of the germ-grain model Ξ as described above restricted to B.

3.4. Multivariate kernel smoothing

Smoothing denotes a broad class of nonparametric statistical methods for the estimation
of high-dimensional unknown functions such as, e.g., probability density functions
(PDFs), regression functions or conditional quantiles based on observed data. According
to Härdle et al. (2004), the role of smoothing is to “extract structural elements of variable
complexity from patterns of random variation” and it is “designed to simultaneously
estimate and model the underlying structure”. In the present thesis, we focus on
kernel smoothing methods, which provide particularly intuitive and simple ways of
finding structure in datasets without imposing parametric (or semiparametric) models.
Other smoothing methods such as spline smoothing, median smoothing, wavelets or
(generalized) additive models are discussed, e.g., in Schimek (2000) or Härdle et al.
(2004). While parametric statistical models and methods are widely recognized to be
more powerful but require some prior knowledge of the considered structure, their
nonparametric counterparts are much more flexible and broadly applicable but may
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suffer a loss of efficiency (Scott, 1992). Especially in a high-dimensional context often
only few parametric models exist and prior information on the underlying structure is
more difficult to derive, which can result in incorrectly specified parametric models. In
such a case, Scott (1992) recommends to accept the lower efficiency of nonparametric
models rather than taking the risk of introducing large biases due to incorrect model
specification that cannot be eliminated by increased sample sizes alone. In this section,
we address two of the most popular smoothing methods: kernel density estimation and
kernel regression. For a more detailed discussion of this topic we recommend Nadaraya
(1989), Härdle (1991), Scott (1992), Wand and Jones (1995), Simonoff (1996), and
Härdle et al. (2004).

3.4.1. Kernel functions

As the name suggests, methods used in kernel smoothing typically involve the applica-
tion of so-called kernel functions.

Definition 3.4.1 (Kernel function). A nonnegative, bounded and Borel-measurable
function κ : Rd → [0,∞) is called a kernel function (or kernel for short) if∫

Rd
κ(x) dx = 1, (3.27)

∫
Rd
xκ(x) dx = o, (3.28)

and ∫
Rd
xx>κ(x) dx = µ2(κ) I, (3.29)

where µ2(κ) ∈ (0,∞) with

µ2(κ) =

∫
Rd
x2
iκ(x1, . . . , xd) d(x1, . . . , xd)

is independent of i ∈ {1, . . . , d}. Note that (3.28) and (3.29) are matrix equations.

Remark 3.4.1. In most of the scientific literature a bounded, Borel-measurable
function κ : Rd → [0,∞) is only required to satisfy (3.27) in order to be called a kernel
function. However, on the one hand, (3.28) and (3.29) need to be fulfilled to allow
for a derivation of (approximate) statistical properties of the estimators introduced
in Sections 3.4.2 and 3.4.3. On the other hand, there are hardly any kernel functions
used in applications that do not satisfy (3.28) or (3.29). Therefore, it seems reasonable
to only consider kernel functions with the properties specified in Definition 3.4.1.
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Example 3.4.1 (One-dimensional kernel functions). There is a wide variety of one-
dimensional kernel functions suggested in literature. In particular, any bounded,
symmetric PDF of a random variable with expectation zero and finite second moment
is a valid kernel function. For example, the function κ : R → [0,∞) is called a
one-dimensional

1. uniform kernel if

κ(x) =
1

2
1[−1,1](x), x ∈ R,

2. triangle kernel if
κ(x) = (1− |x|)1[−1,1](x), x ∈ R,

3. Epanechnikov kernel if

κ(x) =
3

4
(1− x2)1[−1,1](x), x ∈ R, (3.30)

4. biweight kernel or quartic kernel if

κ(x) =
15

16
(1− x2)2

1[−1,1](x), x ∈ R,

5. triweight kernel if

κ(x) =
35

32
(1− x2)3

1[−1,1](x), x ∈ R,

6. Gaussian kernel if

κ(x) =
1√
2π

exp

{
−1

2
x2

}
, x ∈ R. (3.31)

Example 3.4.2 (d-dimensional kernel functions). When considering applications in
arbitrary dimension d ≥ 2, it is common to use kernel functions that are constructed
based on one-dimensional kernels. Two approaches are suggested for that purpose,
see, e.g., Wand and Jones (1995), Section 4.2. Let κ : R → [0,∞) be a symmetric
one-dimensional kernel function.

1. The function κP : Rd → [0,∞) defined by

κP (x) =
d∏
i=1

κ(xi), x = (x1, . . . , xd) ∈ Rd,

is called a d-dimensional product kernel. One can easily see that κP satisfies
(3.27)-(3.29) due to κ being a valid kernel function.
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2. The function κS : Rd → [0,∞) defined by

κS(x) =
1

cd
κ
(√

x>x
)
, x ∈ Rd,

with

cd =

∫
Rd
κ
(√

x>x
)

dx

is called a d-dimensional radially symmetric kernel. According to Wand (1992),
Section 2.1, κS indeed is a kernel function in the sense of Definition 3.4.1.

In general, the product kernel κP and the radially symmetric kernel κS are different.
An exception is given by the d-dimensional Gaussian kernel. If κ is the PDF of the
standard normal distribution, then κP (x) = κS(x) for all x ∈ Rd.

3.4.2. Multivariate kernel density estimation

An important characteristic describing the distribution of an absolutely continuous
random vector is its (multivariate) PDF. Accordingly, density estimation is one of the
most fundamental statistical problems. Given data x1, . . . , xn ∈ Rd for n ∈ N that can
be assumed to be realizations of some independent and identically distributed absolutely
continuous random vectors X1, . . . , Xn with (unknown) PDF f : Rd → [0,∞), it often
is of particular interest in applications to determine values f(x) for certain locations
x ∈ Rd based on x1, . . . , xn. If d = 1, the most popular approach is to assume that
f belongs to a parametric family {fθ, θ ∈ Θ} of PDFs with some parameter space
Θ ⊂ Rm and m ∈ N and to provide an estimator θ̂ of the parameter vector θ based on
X1, . . . , Xn. However, for d ≥ 2 only few parametric families of PDFs exist, such as
the multivariate normal or the multivariate Student distribution, and it is significantly
more complicated to find one that fits the underlying data sufficiently well. Also
the application of copulas is not always suitable since the marginal distributions of
X1, . . . , Xn and the type of the copula need to be determined first, which can be a
difficult task. In this context, the technique of kernel density estimation serves as an
invaluable alternative. Besides the literature given at the beginning of Section 3.4, we
recommend Silverman (1986) for more details. In the following, let H be the family of
all symmetric and positive definite matrices in Rd×d.

Definition 3.4.2 (Kernel density estimator). Let X1, . . . , Xn with n ∈ N be a sequence
of independent and identically distributed absolutely continuous random vectors in
Rd with PDF f : Rd → [0,∞). Furthermore, let H ∈ H be a symmetric and positive
definite matrix (called the bandwidth matrix ) and κ : Rd → [0,∞) a d-dimensional
kernel function. The estimator f̂K defined by

f̂K(x) =
1

n
√

det(H)

n∑
i=1

κ
(
H−

1
2 (x−Xi)

)
, x ∈ Rd, (3.32)
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is called kernel density estimator (KDE) of f .

Remark 3.4.2 (Effect of smoothing parametrization). Let X1, . . . , Xn and f : Rd →
[0,∞) be given as in Definition 3.4.2 and let f̂K be the KDE introduced in (3.32).
The bandwidth matrix H has 1

2
d(d+ 1) independent entries, which have to be chosen

either manually or automatically. Especially in high-dimensional applications this is
a complicated task, which is why H is often assumed to have a simplified structure.
For example, sometimes the bandwidth matrix is considered to be a diagonal matrix
H = diag(h2

1, . . . , h
2
d) with bandwidths h1, . . . , hd > 0. In this case, the KDE f̂K can

be rewritten as

f̂K(x) =
1

nh1 . . . hd

n∑
i=1

κ

(
x1 −Xi1

h1

, . . . ,
xd −Xid

hd

)
, x = (x1, . . . , xd) ∈ Rd,

where Xi = (Xi1, . . . , Xid) for i = 1, . . . , n. An even more special case is given if hi = h
for i = 1, . . . , d and a bandwidth h > 0, which implies that

f̂K(x) =
1

nhd

n∑
i=1

κ

(
x−Xi

h

)
, x ∈ Rd.

Such simplifications of the bandwidth matrix can be interpreted as follows. Assume
κ : Rd → [0,∞) to be a radially symmetric kernel function with support b(o, 1) (e.g.,
the d-dimensional radially symmetric Epanechnikov kernel). Then, if H = h2I for
some h > 0, the scaled kernel function κH : Rd → [0,∞) defined by

κH(x) =
1√

det(H)
κ
(
H−

1
2x
)
, x ∈ Rd, (3.33)

is still radially symmetric with support b(o, h). Consequently, the amount of smoothing
is the same in every direction and only one bandwidth needs to be determined. Larger
values of h expand the support of κH and lead to smoother estimates, whereas smaller
bandwidths result in estimates showing more local variation. If H = diag(h2

1, . . . , h
2
d)

for some h1, . . . , hd > 0, then the support of κH is a d-dimensional ellipsoid centered at
the origin o, whose axes correspond to the coordinate directions. This allows smoothing
to be different for all d coordinate directions but at the cost of introducing d − 1
additional bandwidths. In order to provide a maximum of flexibility (but also the
largest number of smoothing parameters that need to be determined), the bandwidth
matrix H ∈ H should be chosen to be non-diagonal. In this case, the support of the
scaled kernel function κH is a d-dimensional ellipsoid centered at o whose axes do not
correspond to the coordinate directions, i.e., smoothing is even possible in directions
that are different from the coordinate axes. Some simple approaches for the (automatic)
selection of the bandwidth matrix are discussed in Section 3.4.4.
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Remark 3.4.3. Let X1, . . . , Xn and f : Rd → [0,∞) be given as in Definition 3.4.2
and let f̂K be the KDE introduced in (3.32) with kernel function κ : Rd → [0,∞) and
bandwidth matrix H ∈ H.

1. As a direct consequence of (3.27) we get that

P
(∫

Rd
f̂K(x) dx = 1

)
= 1,

i.e., f̂K is a PDF almost surely.

2. The KDE f̂K can also be used for a more general purpose than the estimation
of a PDF. For example, in stochastic geometry nf̂K is used as a nonparametric
estimator for the intensity function λ : Rd → [0,∞) of a random point process
X, see, e.g., Illian et al. (2008), Section 3.3 or Diggle (2014), Section 5.3. Scaling
f̂K by the factor n is necessary since for any bounded Borel set B ∈ B0(Rd) the
integral

∫
B
λ(x) dx describes the expected number of points of the process X in B

in contrast to the integral
∫
B
f(x) dx, which provides the probability P(X1 ∈ B).

3. Let κ be a radially symmetric kernel defined by κ(x) = c−1
d κ1(

√
x>x) for x ∈ Rd

with a normalizing constant cd > 0 and a one-dimensional kernel function
κ1 : R→ [0,∞) and let H be given as H = h2I for some h > 0. Then, for each
i ∈ {1, . . . , n} it holds that

κ
(
H−

1
2 (x−Xi)

)
=

1

cd
κ1

(
‖x−Xi‖d

h

)
, x ∈ Rd,

i.e., the KDE f̂K involves the computation of d-dimensional Euclidean distances.
However, if d = 2 and instead of R2 a geographical domain T is considered,
which sometimes is the case in geostatistical applications, then it is more suitable
to use the great-circle distance dGC(x,Xi) introduced in (3.4) rather than the
2-dimensional Euclidean distance ‖x−Xi‖2, see also Remark 3.2.4. Note that
this also requires an appropriate modification of the normalizing constant c2.
Utilization of the great-circle distance is rarely needed in density estimation but
can be of great importance when estimating intensity functions, compare to the
previous point.

We briefly discuss some statistical properties of the KDE such as bias, variance, and
mean integrated squared error (MISE). However, it turns out to be very difficult to
provide exact representation formulas for these properties under general conditions.
Thus, approximate formulas are usually derived by using the multivariate Taylor
theorem. In the following, we assume that the bandwidth matrix of the KDE is a
multiple of the d-dimensional unit matrix, for the more general case we refer to Wand
and Jones (1995), Section 4.3 or Härdle et al. (2004), Section 3.6.
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Theorem 3.4.1. Let X1, . . . , Xn with n ∈ N be a sequence of independent and identi-
cally distributed absolutely continuous random vectors in Rd with PDF f : Rd → [0,∞),
which is assumed to have bounded, continuous, and square integrable second-order
partial derivatives. Furthermore, let f̂K be the KDE of f based on X1, . . . , Xn with
kernel function κ : Rd → [0,∞) and bandwidth matrix H = h2I for some h > 0. If n
is large, h is small and nhd is large, then

(i) the expectation of f̂K(x) can be approximated by

E f̂K(x) ≈ f(x) +
1

2
h2µ2(κ) tr(Hf (x)), x ∈ Rd,

(ii) the variance of f̂K(x) can be approximated by

var f̂K(x) ≈ 1

nhd
f(x)

∫
Rd
κ2(y) dy, x ∈ Rd,

(iii) the MISE of f̂K can be approximated by

E
(∫

Rd

(
f̂K(x)− f(x)

)2

dx

)
≈ 1

nhd

∫
Rd
κ2(y) dy +

1

4
h4µ2

2(κ)

∫
Rd

tr2(Hf (y)) dy,

where Hf (x) is the Hessian matrix of f at x ∈ Rd introduced in Section 3.1.1.

Proof. For a proof in a more general context see Wand (1992), Section 2.1.

Remark 3.4.4. Theorem 3.4.1 reveals a fundamental problem arising when selecting
the bandwidth h > 0. The (approximate) bias of the estimator f̂K(x) for any x ∈ Rd

can be reduced to an arbitrary value by choosing h to be sufficiently small. However,
this usually causes the (approximate) variance of f̂K(x) to be large. On the other
hand, one can reduce the variance of f̂K(x) considerably by arbitrarily increasing h,
which comes at the cost of introducing a higher systematic bias into estimation. A
good compromise is to determine the smoothing parameter h in such a way that it
minimizes the (approximate) MISE, see Section 3.4.4.

Although the KDE is the most popular tool in density estimation, there are appli-
cations where it might not be an optimal choice. For example, a particular flaw is
that the (constant) bandwidth matrix H is not able to provide different smoothing
parameterizations across Rd. While in regions with a large amount of data one is often
interested in getting a very detailed picture of the underlying PDF (using rather small
bandwidths), one might wish to increase smoothing in regions of sparse data, e.g., in
the tails of the underlying PDF (Silverman, 1986, Section 5.1). Such a dynamization
of the bandwidth matrix H is denoted as adaptive smoothing in literature, see Silver-
man (1986), Section 5.2-5.3 and Scott (1992), Section 6.6. Two popular yet simple
approaches are introduced in the following.
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Definition 3.4.3 (Generalized nearest neighbor estimator/variable kernel estimator).
Let X1, . . . , Xn with n ∈ N be a sequence of independent and identically distributed
absolutely continuous random vectors in Rd with PDF f : Rd → [0,∞) and let
κ : Rd → [0,∞) be a d-dimensional kernel function. Furthermore, rk(x) denotes the
(random) distance of x ∈ Rd to the kth nearest of the random vectors X1, . . . , Xn for a
fixed k ∈ {2, . . . , n}.

1. The estimator f̂N defined by

f̂N(x) =
1

n rk(x)d

n∑
i=1

κ

(
x−Xi

rk(x)

)
, x ∈ Rd, (3.34)

is called generalized nearest neighbor estimator of f .

2. The estimator f̂V defined by

f̂V (x) =
1

n

n∑
i=1

1

rk(Xi)d
κ

(
x−Xi

rk(Xi)

)
, x ∈ Rd, (3.35)

is called variable kernel estimator of f .

Remark 3.4.5. Let X1, . . . , Xn and f : Rd → [0,∞) be given as in Definition 3.4.3
and let f̂N and f̂V be the generalized nearest neighbor estimator and the variable kernel
estimator introduced in (3.34) and (3.35).

1. The difference between f̂N and f̂V can be explained as follows. In the generalized
nearest neighbor approach, the kernel functions that are assigned to the random
vectors X1, . . . , Xn are all scaled using the same smoothing parameter but this
parameter changes when the PDF f is estimated at different locations in Rd. In
the variable kernel approach, the kernel functions that correspond to X1, . . . , Xn

are scaled using different bandwidths but this choice remains the same for all
x ∈ Rd.

2. As a consequence of the previous point, each realization of the variable kernel
estimator f̂V is a valid PDF, which, in general, is not the case for the generalized
nearest neighbor estimator f̂N .

3. More general adaptive smoothing parameterizations are considered in literature
by, e.g., using a different bandwidth matrix H(x) ∈ H for different locations
x ∈ Rd (generalization of the nearest neighbor estimator) or by assigning a
different bandwidth matrix Hi ∈ H to each random vector Xi for i = 1, . . . , n
(generalization of the variable kernel estimator), see Scott (1992), Section 6.6
and Simonoff (1996), Section 4.3.1. However, this is rarely used in practice as it
is almost impossible to properly choose all smoothing parameters.
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3.4.3. Kernel regression

Another fundamental statistical problem that occurs in many fields of science and
technology is the modeling and estimation of relationships between different variables.
A popular method to address such kind of problems is regression analysis, which is,
according to Scott (1992), the most commonly used statistical technique. Consider a
sequence of n ∈ N independent and identically distributed absolutely continuous random
vectors (X1, Y1), . . . , (Xn, Yn), where Xi = (Xi1, . . . , Xid) is a d-dimensional random
vector and Yi is a real-valued random variable for i = 1, . . . , n. By f : Rd+1 → [0,∞) we
denote the PDF of the random vector (X1, Y1) and by fX : Rd → [0,∞) the PDF of X1.
Regression analysis aims to describe how the random variable Yi can be explained by
the random vector Xi for i = 1, . . . , n, which is why Yi is denoted as response variable
and Xi1, . . . , Xid are called explanatory or regressor variables. A general relationship is
described by the regression model

Yi = m(Xi) + v
1
2 (Xi) εi, i = 1, . . . , n, (3.36)

where the (unknown) regression function m : supp(fX)→ R given by

m(x) = E (Y1 |X1 = x), x ∈ supp(fX), (3.37)

is the conditional expectation function of Y1 given X1 and v : supp(fX) → [0,∞)
with

v(x) = var (Y1 |X1 = x), x ∈ supp(fX), (3.38)

is the conditional variance function of Y1 given X1. Furthermore, ε1, . . . , εn are some
independent and identically distributed random variables, called residuals, with E εi = 0
and var εi = 1 for i = 1, . . . , n. Additionally, the residuals ε1, . . . , εn are assumed to be
independent of X1, . . . , Xn. Since the regressor variables are supposed to be random,
the described setting is referred to as random design in literature. In contrast to this,
a fixed design can be considered where the explanatory variables are deterministic but
this is not discussed here.

A frequently considered approach (especially if d = 1) is to find a parametric represen-
tation of the regression function m and to estimate the regression parameters using
least squares or maximum likelihood methods. In this context, the most popular choice
is to assume m to be a linear function, which is referred to as linear regression, but a
wide variety of other parametric models exists, see, e.g., Chatterjee and Hadi (2012).
However, not in all applications the use of parametric models is possible (or reasonable),
which is why several nonparametric regression methods have been developed, see, e.g.,
Takezawa (2006).

In the present thesis, we focus on kernel regression methods. Almost all (nonparametric)
estimators m̂ of the regression function m considered in literature are weighted (local)
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averages of the response variables Y1, . . . , Yn, i.e.,

m̂(x) =
n∑
i=1

wi(x,X1, . . . , Xn)Yi, x ∈ supp(fX), (3.39)

with nonnegative weights w1(x,X1, . . . , Xn), . . . , wn(x,X1, . . . , Xn) ≥ 0 such that∑n
i=1wi(x,X1, . . . , Xn) = 1. A particularly intuitive choice of the weights can be

derived as follows. For each x ∈ supp(fX), let fY |X=x : R→ [0,∞) be the conditional
PDF of Y1 given {X1 = x}. Then, the conditional expectation function m can be
represented as

m(x) =

∫
R
yfY |X=x(y) dy =

1

fX(x)

∫
R
yf(x, y) dy, x ∈ supp(fX). (3.40)

The only unknown quantities on the right-hand side of (3.40) are the PDFs fX and f ,
which can be estimated using the kernel-based approaches introduced in Section 3.4.2.
A KDE f̂X of fX is given by

f̂X(x) =
1

n
√

det(H)

n∑
i=1

κ
(
H−

1
2 (x−Xi)

)
, x ∈ Rd,

for some d-dimensional kernel function κ : Rd → [0,∞) and a bandwidth matrix H ∈ H,
compare to (3.32). A similar KDE f̂ of f is given by

f̂(x, y) =
1

n
√

det(H)h

n∑
i=1

κ
(
H−

1
2 (x−Xi)

)
κ̃

(
y − Yi
h

)
, x ∈ Rd, y ∈ R,

where, additionally to the notation introduced above, κ̃ : R→ [0,∞) denotes a one-
dimensional kernel function and h > 0 is the corresponding bandwidth. Using the
properties of a kernel function stated in (3.27) and (3.28) we get that∫

R
yf̂(x, y) dy =

1

n
√

det(H)

n∑
i=1

κ
(
H−

1
2 (x−Xi)

)∫
R

y

h
κ̃

(
y − Yi
h

)
dy

=
1

n
√

det(H)

n∑
i=1

κ
(
H−

1
2 (x−Xi)

)∫
R
(Yi + hz)κ̃ (z) dz

=
1

n
√

det(H)

n∑
i=1

Yi κ
(
H−

1
2 (x−Xi)

)
, x ∈ Rd.

Consequently, replacing fX and f by the KDEs f̂X and f̂ in (3.40) leads to the following
estimator of the regression function m, which has first been introduced in Nadaraya
(1964) and Watson (1964).
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Definition 3.4.4 (Nadaraya-Watson estimator). Consider the regression model spec-
ified in (3.36) with regression function m : supp(fX) → R as given in (3.37). Fur-
thermore, let H ∈ H be a (symmetric and positive definite) bandwidth matrix and
κ : Rd → [0,∞) a d-dimensional kernel function. The estimator m̂NW defined by

m̂NW (x) =

n∑
i=1

Yi κ
(
H−

1
2 (x−Xi)

)
n∑
i=1

κ
(
H−

1
2 (x−Xi)

) , x ∈ supp(fX), (3.41)

is called Nadaraya-Watson estimator (NWE) of m. If κ has bounded support, the
denominator in (3.41) can be equal to zero, which implies that the numerator is equal
to zero as well. In this case, the estimator m̂NW (x) is not defined.

Remark 3.4.6. Let m : supp(fX)→ R be given as in Definition 3.4.4 and let m̂NW

be the NWE introduced in (3.41).

1. In fact, the estimator m̂NW (x) of m at x ∈ supp(fX) is a weighted average of
the response variables Y1, . . . , Yn as specified in (3.39) with nonnegative weights
w1(x,X1, . . . , Xn), . . . , wn(x,X1, . . . , Xn) given by

wj(x,X1, . . . , Xn) =
κ
(
H−

1
2 (x−Xj)

)
n∑
i=1

κ
(
H−

1
2 (x−Xi)

) , j = 1, . . . n.

2. The NWE is a special case of a much broader class of estimators called local
polynomial kernel estimators, see, e.g., Wand and Jones (1995), Section 5.2. In
this context, the NWE is denoted as local polynomial kernel estimator of degree
0 or as locally constant kernel estimator.

3. The bandwidth matrix H ∈ H controls the influence the response variables
Y1, . . . , Yn have on the estimator m̂NW (x) for x ∈ supp(fX). If, for example, the
kernel function κ : Rd → [0,∞) is radially symmetric with support b(o, 1) and
the bandwidth matrix H is given as H = h2I for some h > 0, then m̂NW (x) only
takes into account those response variables that fall into b(x, h).

4. Let the kernel function κ be defined by κ(x) = c−1
d κ1(

√
x>x) for x ∈ Rd with a

normalizing constant cd > 0 and a one-dimensional kernel κ1 : R→ [0,∞) and let
the bandwidth matrix H be given as H = h2I for some h > 0. Then, the NWE
m̂NW involves the computation of d-dimensional Euclidean distances, compare
to Remark 3.4.3. When considering a geographical domain T instead of Rd, then
it is more suitable to use the great-circle distance introduced in (3.4) rather than
the d-dimensional Euclidean distance. However, an appropriate adjustment of the
normalizing constant cd is not necessary since cd is canceled out in the definition
of the NWE.
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3.4. Multivariate kernel smoothing

To conclude the discussion of the NWE, we briefly examine some statistical properties.
Since a random design is considered, i.e., the regressors X1, . . . , Xn are random vectors,
there often is a positive probability of the estimator m̂NW (x) being undefined due to
the denominator in (3.41) being equal to 0 if a kernel function with bounded support
is used. In this case, the moments of m̂NW (x) are undefined, too. For that reason,
Ruppert and Wand (1994) suggest to derive approximate formulas for the conditional
expectation and variance of m̂NW (x) given {X1, . . . , Xn} for certain x ∈ supp(fX).
For simplicity, we consider the bandwidth matrix of the NWE to be a multiple of the
d-dimensional unit matrix. The more general case is discussed in Härdle et al. (2004),
Section 4.5.

Theorem 3.4.2. We consider the regression model specified in (3.36) with regression
function m : supp(fX) → R as given in (3.37). Suppose that the PDF fX : Rd →
[0,∞) of the regressors X1, . . . , Xn and the regression function m have continuous
first- and second-order partial derivatives and that the conditional variance function
v : supp(fX) → [0,∞) specified in (3.38) is continuous. Furthermore, let m̂NW be
the NWE of m with bandwidth matrix H = h2I for some h > 0 and kernel function
κ : Rd → [0,∞), which is assumed to be a radially symmetric kernel or a product kernel
with compact support. Finally, let x be in the interior of supp(fX) with v(x) > 0. If n
is large, h is small and nhd is large, then

(i) the conditional expectation of m̂NW (x) given {X1, . . . , Xn} can be approximated
by

E
(
m̂NW (x) |X1, . . . , Xn

)
≈ m(x) + h2µ2(κ)

(
∇m(x)>∇fX (x)

fX(x)
+

tr(Hm(x))

2

)
,

(ii) the conditional variance of m̂NW (x) given {X1, . . . , Xn} can be approximated by

var
(
m̂NW (x) |X1, . . . , Xn

)
≈ 1

nhd
v(x)

fX(x)

∫
Rd
κ2(y) dy,

where ∇m(x) and ∇fX (x) are the gradients of m and fX at x and Hm(x) is the Hessian
matrix of m at x introduced in Section 3.1.1.

Proof. For (i) see Härdle et al. (2004), Section 4.5.1 and for (ii) see Ruppert and Wand
(1994), Section 2.

3.4.4. Selection of smoothing parameters

One of the most challenging tasks in both kernel density estimation and kernel regression
is to suitably choose the smoothing parameters. In many applications it is reasonable
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to find an optimal bandwidth matrix H ∈ H by comparing estimates for different
choices of H and selecting the matrix that provides the best compromise between
eliminating noise and showing enough details of the estimated function. In some
cases it is even possible to find a physical meaning of the bandwidth matrix H in the
considered application according to which H can be selected. However, in a majority of
situations this is not possible and one aims to algorithmically determine the smoothing
parameters based on the underlying data. In the following, we present some basic
approaches that are considered in this thesis, where we start with the selection of a
bandwidth matrix for a KDE.

Let X1, . . . , Xn with n ∈ N be a sequence of independent and identically distributed
absolutely continuous random vectors in Rd with PDF f : Rd → [0,∞) and let f̂K
be the KDE introduced in (3.32) with bandwidth matrix H ∈ H and kernel function
κ : Rd → [0,∞). A first approach is based on the consideration that a reasonable
choice of H should lead to a small, if possible minimal, approximate MISE of f̂K .
However, the bandwidth matrix minimizing the approximate MISE can only be derived
under certain constraints. We assume f to be the PDF of the multivariate normal
distribution with mean vector µ ∈ Rd and covariance matrix Σ = diag(σ2

1, . . . , σ
2
d) for

σ2
1, . . . , σ

2
d > 0 and κ to be the d-dimensional Gaussian kernel. Then, it can be shown

that among all diagonal bandwidth matrices {H = diag(h2
1, . . . , h

2
d) : h2

1, . . . , h
2
d > 0}

the one minimizing the approximate MISE of f̂K is given by

hj =

(
4

d+ 2

) 1
d+4

n
−1
d+4 σj, j = 1, . . . , d,

see, e.g., Härdle et al. (2004), Section 3.6.2. Accordingly, plug-in estimators ĥ1, . . . , ĥd
of the optimal bandwidths h1, . . . , hd are given by

ĥj =

(
4

d+ 2

) 1
d+4

n
−1
d+4 σ̂j, j = 1, . . . , d, (3.42)

where σ̂1, . . . , σ̂d are standard moment estimators of σ1, . . . , σd. Choosing the band-
widths according to (3.42) is denoted as normal reference rule in literature. Since the

term
(

4
d+2

) 1
d+4 is approximately equal to 1 for all d ∈ N (exactly equal to 1 if d = 2),

this term is often dropped. The resulting simplified version of (3.42) is referred to as
Scott’s rule, see, e.g., Scott (1992), Section 6.3.1. Note that the case of f being the
PDF of a normal distribution is not interesting in applications as in that situation,
f would be estimated by determining its parameters using the method of moments.
However, Härdle et al. (2004) argue that the normal reference rule and Scott’s rule still
provide bandwidths that are not too far from being optimal if f is unimodal, fairly
symmetric and has non-heavy tails. In all other situations the rules are still applicable
but tend to provide slightly too large bandwidths causing moderate oversmoothing.
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A popular but costly alternative to the simple rules suggested above is the application
of likelihood cross-validation (LCV), see, e.g., Silverman (1986), Section 3.4.4. Further
cross-validation methods such as least-squares cross-validation or biased cross-validation
exist, see, e.g., Härdle (1991), but are not considered in this thesis. The idea behind
LCV is the following. Suppose that in addition to X1, . . . , Xn a sample variable X
(independent of X1, . . . , Xn) with PDF f is given. Then, it is desirable to choose the
bandwidth matrix H ∈ H such that the likelihood log(f̂K(X)) (as a function of H)
is large. However, an additional sample variable X is not available, which is why
it is suggested to omit one random variable Xi of the original sample, to construct
an estimator f̂

(−i)
K based on X1, . . . , Xi−1, Xi+1, . . . , Xn according to (3.32), and to

consider the likelihood log(f̂
(−i)
K (Xi)) (still depending on H ∈ H). This is done for all

i = 1, . . . , n and the (random) likelihood function L : H→ R is defined as

L(H) =
n∑
i=1

log
(
f̂

(−i)
K (Xi)

)
, H ∈ H,

where the estimators f̂
(−i)
K technically are functions on H for i = 1, . . . , n. Finally, an

estimator Ĥ of an optimal bandwidth matrix H is given by

Ĥ = argmax
H∈H

L(H).

However, LCV is very sensitive to outliers and, as mentioned before, computationally
expensive if H has a high number of independent entries or if the number n of sample
variables is large.

A similar cross-validation technique can be used to select a bandwidth matrix in kernel
regression (although it is not denoted as LCV in this context). The one-dimensional case
is discussed in Härdle et al. (2004), Section 4.3.2 but a generalization to multivariate
kernel regression is straightforward. Consider the regression model specified in (3.36)
with regression function as given in (3.37). The general proceeding of the cross-

validation method is similar to LCV. For each i ∈ {1, . . . , n}, let m̂
(−i)
NW be a NWE

defined according to (3.41) based on the regressor variables X1, . . . , Xi−1, Xi+1, . . . , Xn

and the response variables Y1, . . . , Yi−1, Yi+1, . . . , Yn. As it is desired that the estimator

m̂
(−i)
NW (Xi) (as a function of H ∈ H) is close to the response variable Yi for all i = 1, . . . , n,

we consider the (random) cross-validation function CV : H→ [0,∞) given by

CV (H) =
n∑
i=1

(
Yi − m̂(−i)

NW (Xi)
)2

and define an estimator Ĥ of the optimal bandwidth matrix H as

Ĥ = argmin
H∈H

CV (H).
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Similar to LCV in density estimation, this cross-validation method can be computation-
ally expensive for high-dimensional bandwidth matrices or large sample sizes. Further
approaches to the selection of an optimal bandwidth matrix in kernel regression exist
but are not applied in this thesis, see, e.g., Härdle (1991), Chapter 6 for more details.
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Part II.

Stochastic models in probabilistic
weather prediction
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4. Stochastic model for the
occurrence of precipitation

In the present chapter, we introduce a probabilistic approach to the computation of
area probabilities for the occurrence of precipitation based on a spatial stochastic model
of precipitation cells. As mentioned in Section 1.3, this method was developed in the
context of a research collaboration with DWD. The proposed model of precipitation is
of fundamental importance for the rest of Part II of this thesis as it constitutes a basis
for subsequent modeling approaches on precipitation amounts and thunderstorm cells in
Chapters 5 and 6. The underlying data provided by DWD are described in Section 4.1.
A suitable mathematical framework for the modeling of point probabilities included in
the data is introduced in Sections 4.2 and 4.3. In Section 4.4, a stochastic model of pre-
cipitation cells is developed, whereas statistical methods for the computation of model
characteristics are presented in Section 4.5. In Section 4.6, it is demonstrated how area
probabilities of precipitation can be computed or estimated according to the specified
model of precipitation cells. Furthermore, examples of simulated precipitation patterns
and estimated area probabilities are illustrated. To conclude, Section 4.7 provides a
comparison of point and area probabilities with radar-derived precipitation analyses
using typical score functions and diagrams from weather forecast verification. The
results presented in this chapter (in a slightly modified version) have been incorporated
in Kriesche et al. (2015a). The mathematical framework as introduced in Sections
4.2 and 4.3 has been described in Kriesche et al. (2017b) and Kriesche et al. (2017c).
Although we focus on the weather event ‘occurrence of precipitation’ in this chapter,
the proposed methodology can generally be used to compute area probabilities for the
occurrence of other weather events, too.

4.1. Description of data

The model-based approach to the computation of area probabilities presented in this
chapter relies on point probabilities for the occurrence of precipitation as its sole data
input. We consider a system of 503 German and Luxembourgian synoptic weather
stations, which are located in the window [5.3◦E, 15.3◦E]× [46.9◦N, 55.3◦N]. Technically,
this window describes a geographical domain and distances between arbitrary locations
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Figure 4.1.: Locations of 503 weather stations at which point probabilities of precipita-
tion are available together with the corresponding Voronoi tessellation.

need to be computed using the great-circle distance introduced in (3.4). This, however,
would make the application of the spatial models and methods that are used in this
chapter considerably more complicated or even impossible. Thus, we project the
window [5.3◦E, 15.3◦E]× [46.9◦N, 55.3◦N] including the locations of the 503 weather
stations to the rectangle [0, 1500]× [0, 1875] and perform all computations using the
two-dimensional Euclidean distance in the following. By doing so we introduce an
error due to ignoring the curvature of the earth’s surface but this has a negligible effect
for such a relatively small area as the one considered here. Locations in the rectangle
[0, 1500]× [0, 1875] and distances between them are denoted as pixel coordinates and
pixel distances (or simply pixels) in the following. However, the rectangle is chosen in
such a way that any pixel distance d > 0 approximately represents a distance of 0.5 · d
km. In Figure 4.1, the described rectangle including the 503 weather stations and the
corresponding Voronoi tessellation, see (4.2) later on, are shown.

The data cover a time frame of four months in the year 2012. In order to address
seasonal changes in precipitation patterns, a summer period from June 1 until July
31 and a winter period from November 1 until December 31 were selected. At each
day, forecasts were made at 12 am (midnight) for seven forecast periods of one hour
each, ranging from 2-3 UTC every three hours up to 20-21 UTC, which results in
a total of 854 available forecast periods. For each such period, re-forecasts of the
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June 16, 2012, 20-21 UTC December 9, 2012, 11-12 UTC

Figure 4.2.: Available point forecast data for two selected forecast periods: the locations
of the considered 503 weather stations and the corresponding Voronoi
tessellation, where each Voronoi cell is colored according to the point
probability of precipitation at the corresponding weather station.

MOSMIX system of DWD were started, where a mixture of the individually post-
processed forecasts of the GME and the IFS of ECMWF were used, see Section 2.3.2,
to provide point probabilities of precipitation exceeding an amount of 0.1 mm for
all 503 weather stations. The threshold of 0.1 mm is chosen in order to allow for a
consistent verification with rain gauge adjusted radar analyses, which are not able
to detect smaller precipitation amounts. Figure 4.2 illustrates point probabilities for
two sample forecast periods: June 16, 2012, 20-21 UTC, where moderate probabilities
are forecasted for a band ranging from the west of Germany to the northeast, and
December 9, 2012, 11-12 UTC, with high probabilities in northern and central Germany,
which gradually decrease towards the south.

For the purpose of forecast verification radar-derived precipitation analyses from
RADOLAN (see Section 2.1) are available for all forecast periods considered above.
RADOLAN observations cover the entire territory of Germany except the northern
part of the island of Sylt, where one weather station is located. Accordingly, forecast
verification should only be performed for points and areas inside the boundaries of
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June 16, 2012, 20-21 UTC December 9, 2012, 11-12 UTC

Figure 4.3.: Adjusted precipitation amounts in mm from RADOLAN for two selected
forecast periods.

mainland Germany. Adjusted precipitation amounts from RADOLAN have a limited
resolution as only values being a multiple of 0.1 mm are measurable. Therefore, in this
chapter the occurrence of precipitation at some location is identical with a precipitation
amount of more than 0.1 mm. Adjusted radar data for two sample forecast periods are
illustrated in Figure 4.3. A comparison with point probabilities in Figure 4.2 reveals
that in the considered periods precipitation mainly occurred in those regions with
higher point probabilities indicating a close correspondence of both kind of data.

4.2. Underlying probability space

Before describing an approach to the spatial stochastic modeling of precipitation
patterns with the purpose of estimating area probabilities for the occurrence of precipi-
tation, we need to specify a suitable mathematical framework. In the following, we
always consider a fixed one-hour forecast period T that is interpreted as a subinterval
of the real line with a length of 60 minutes. In particular, no temporal dynamic is
taken into account in the proposed modeling approach. The occurrence of precipitation
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is one of the most complex meteorological events, which makes a precise estimation of
probabilities extremely difficult. Point forecasts computed based on NWP models and
ensemble prediction systems are subject to several sources of uncertainty concerning,
e.g., initial weather conditions or inaccuracies in the model specification due to dis-
cretization and physical parameterization. Thus, these estimated point probabilities
are subject to both random and systematic errors, see Sections 2.2 and 2.3.1. In order
to eliminate systematic errors, post-processing methods such as MOS are applied by
DWD, which provide statistically unbiased probabilistic forecasts, see Section 2.3.2.
These forecasts, however, are still subject to random errors and can thus be inter-
preted as estimators of the unknown future weather conditions. To provide a suitable
framework, we introduce the probability space (Ω,F ,P), where Ω is an abstract space
describing all possible weather scenarios and the corresponding forecasts provided
by the (numerical and probabilistic) weather forecast models of DWD, F denotes a
suitable σ-algebra of subsets of Ω and P is some probability measure on (Ω,F), which
associates each event A ∈ F with the probability P(A) ∈ [0, 1] of its occurrence. As
mentioned previously, probabilistic forecasts are subject to a random error, which is
modeled by a random variable E : Ω → S, with S being the (abstract) measurable
set of all such possible errors. Accordingly, the error E can also be interpreted as the
deviation of the forecast from the actual future weather situation. Heuristically spoken,
conditioning on {E = e} for some realization e ∈ S of E is synonymous for having
a specific forecast provided by the models of DWD (with error e) available. This is
always the case in applications, which is why model fitting procedures and simulation
algorithms are typically described conditioned on {E = e} in this thesis.

4.3. Modeling of point probabilities

We introduce our model-based method for the computation of area precipitation
probabilities in a general context (i.e., not restricted to the data described in Section 4.1)
in order to allow for a flexible application. As explained in Sections 2.3 and 4.2,
reliable, unbiased point forecasts (including point probabilities for the occurrence of
precipitation) are derived by DWD using numerical models, ensemble prediction systems,
and statistical post-processing. Since these forecasts are interpreted as estimators, we
model point probabilities as random variables. For that purpose, consider a random
field {P (t), t ∈ W} in a compact and convex domain W ⊂ R2, where P (t) : Ω→ [0, 1]
denotes the random point probability for the occurrence of precipitation at location
t ∈ W within the considered forecast period T . For each t ∈ W , we assume the random
variable P (t) to be σ(E)-measurable, where σ(E) ⊂ F is the sub-σ-algebra of events
generated by the random error E. This is equivalent to the existence of a measurable
function f : S → [0, 1] such that P (t) = f(E), see, e.g., Jacod and Protter (2004),
Theorem 23.2. Accordingly, if conditioned on {E = e} for any realization e of E, the
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value of P (t) is non-random and only depends on e. In this case, any realization of P (t)
can be identified by the conditional expectation f(e) = E (P (t) |E = e). In general,
point probabilities can be estimated by DWD for any location t inside the domain W .
In practice, however, this is only done for a finite number of sites (e.g., a network of
weather stations or a regularly spaced lattice). Accordingly, we suppose that for some
n ∈ N there is a finite sequence s1, . . . , sn ∈ W of n geographically distinct locations
at which point probabilities p(s1) = E (P (s1) |E = e), . . . , p(sn) = E (P (sn) |E = e)
are available for a particular realization e of E (i.e., from a specific forecast provided
by the models of DWD). In the example of application discussed in this thesis to
illustrate the proposed methodology, we have that W = [0, 1500]× [0, 1875] denotes
a rectangular domain comprising the boundaries of Germany and Luxembourg, the
sequence s1, . . . , s503 identifies the locations of the n = 503 weather stations shown
in Figure 4.1 and p(s1), . . . , p(s503) denotes the available point probabilities for the
occurrence of precipitation described in Section 4.1, where e is the error that occurs
when computing these data.

A fundamental assumption in the modeling of probabilities for the occurrence of
precipitation is that a precipitation pattern consist of several precipitation cells and
that there is precipitation at some location t ∈ W if and only if t is covered by at least
one such cell. We model the union set of precipitation cells using a random closed set
M : Ω→ C, see Section 3.3.6. Consequently, the random field {P (t), t ∈ W} of point
probabilities is represented as

P (t) = P(t ∈M |E), t ∈ W. (4.1)

In order to give a more precise representation of point probabilities and further
probabilistic characteristics such as, e.g., area probabilities, a model for the random
closed set M of precipitation cells needs to be found.

4.4. Spatial stochastic model for precipitation cells

In this section, the random closed set M of precipitation cells is further specified. We
start with the modeling of cell centers. One major requirement for a stochastic model
to be applied in operational weather prediction is spatial non-stationarity to account
for geographical differences (e.g., plains in northern Germany, uplands in central
Germany, mountains in the south) as well as locally varying weather conditions in the
considered forecast period T . For this purpose, we suppose that precipitation cells, or
more precisely their cell centers, occur in W according to a random intensity function
{Λ(t), t ∈ W}, where Λ(t) : Ω → [0,∞) is a nonnegative random variable modeling
the intensity for the occurrence of a precipitation cell at location t ∈ W . Analogous
to the random point probabilities {P (t), t ∈ W}, the intensity Λ(t) is assumed to be

82



4.4. Spatial stochastic model for precipitation cells

σ(E)-measurable for each t ∈ W , i.e., Λ(t) is non-random conditioned on {E = e}
for any e ∈ S. It turns out to be complicated to find a model of {Λ(t), t ∈ W} with
smooth realizations that captures the degree of non-stationarity sufficiently well but
can still be fitted in a reasonable way based on point forecast data. To account for
the circumstance that point probabilities are only available at the sites s1, . . . , sn ∈ W ,
we make the simplifying assumption that realizations of {Λ(t), t ∈ W} are piecewise
constant in a neighborhood of each site si for i = 1, . . . , n. The most natural choice of
such a neighborhood is the Voronoi tessellation {V (s1), . . . , V (sn)} of s1, . . . , sn in W ,
where the Voronoi cell V (si) of si is defined as

V (si) = {x ∈ W : ‖x− si‖2 < ‖x− sj‖2 for all j = 1, . . . , n with j 6= i}, (4.2)

for i = 1, . . . , n. Consequently, we assume that the random intensity function {Λ(t), t ∈
W} for the occurrence of precipitation cells can be represented as

Λ(t) =
n∑
j=1

Aj 1V (sj)(t), t ∈
n⋃
i=1

V (si),

where the σ(E)-measurable random variables A1, . . . , An : Ω → [0,∞) can be inter-
preted as random local intensities for the occurrence of precipitation cells in neighbor-
hoods of s1, . . . , sn. If t ∈ W is located on the boundary of at least one Voronoi cell, we
set Λ(t) equal to the minimum intensity of all adjacent Voronoi cells. Having specified
the intensity function {Λ(t), t ∈ W}, a model for the centers of precipitation cells can
be given. We suggest to use a two-dimensional Cox point process {Xi, i = 1, . . . , Z}
for that purpose (see Section 3.3.4), where Z : Ω → {0, 1, . . .} is a random variable
describing the total number of precipitation cells in W . In particular, the random
variable Z is almost surely finite. Clearly, the Cox process {Xi, i = 1, . . . , Z} of cell
centers cannot be assumed to be σ(E)-measurable because given a specific forecast
of the weather forecast models of DWD, the weather activity in the (future) forecast
period T (including the occurrence of precipitation) is still considered to be random.

After modeling cell centers, the shape of precipitation cells needs to be addressed.
Due to the irregularity and complexity of precipitation fields (see Figure 4.3), it
seems to be hardly possible to find a model for the shape of precipitation cells, which
exactly matches real precipitation fields and, simultaneously, is still easy to handle
concerning, e.g., model fitting and simulation. Therefore, we make the simplifying
model assumption that there is precipitation at a location t ∈ W (i.e., t is covered by
at least one precipitation cell, see Section 4.3) if t has a distance of not more than R
to at least one precipitation cell center, where R : Ω→ (0,∞) is a σ(E)-measurable
random variable denoted as precipitation range. Equivalently, the random closed set M
of precipitation cells is represented as a germ-grain model based on {Xi, i = 1, . . . , Z}
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with circular grains and grain radius R, i.e.,

M =
Z⋃
i=1

b(Xi, R). (4.3)

Although it is obvious that precipitation cells are typically not circular in real pre-
cipitation patterns, they are often approximated as circular or elliptical discs in the
literature, see Section 2.5. Thus, the grains b(X1, R), . . . , b(XZ , R) are interpreted as
models of precipitation cells and we denote the precipitation range R as random cell
radius in this context. We want to emphasize that precipitation probabilities which are
obtained as coverage probabilities of the germ-grain model M can still be quite accurate
even if single realizations of M look atypical compared to observed precipitation fields
from radar data. Analogous to the Cox process {Xi, i = 1, . . . , Z} of cell centers, the
germ-grain model M cannot be assumed to be σ(E)-measurable. Instead, conditioned
on {E = e} for any realization e of E, the Cox process {Xi, i = 1, . . . , Z} is a Poisson
process with (deterministic) intensity function {λ(t), t ∈ W}, see Section 3.3.3, where
λ(t) = E (Λ(t) |E = e) for t ∈ W . Accordingly, the germ-grain model M is a Boolean
model based on the Poisson process {Xi, i = 1, . . . , Z} with circular grains having
grain radius r = E (R |E = e) in this case, compare to Example 3.3.2.

Based on the characterization of M as a germ-grain model in (4.3), a more specific
representation formula of the random field {P (t), t ∈ W} of point probabilities for
the occurrence of precipitation can be derived. Using the distributional properties of
the Poisson process stated in (3.23) and the representation of P (t) as a (conditional)
coverage probability of M in (4.1) implies that

P (t) = P(t ∈M |E)

= 1− P
(
#{i : Xi ∈ b(t, R)} = 0 |E

)
= 1− exp

{
−
∫
b(t,R)

n∑
i=1

Ai 1V (si)(z) dz

}

= 1− exp

{
−

n∑
i=1

Ai

∫
W

1b(t,R)∩V (si)(z) dz

}

= 1− exp

{
−

n∑
i=1

Ai ν2

(
b(t, R) ∩ V (si)

)}
, t ∈ W. (4.4)

4.5. Computation of model characteristics

Using the proposed model for the union of precipitation cells we can either compute area
probabilities for the occurrence of precipitation directly or estimate these probabilities
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(and further characteristics) based on repeated Monte Carlo simulation, see Section 4.6.
However, in order to do this, the random model characteristics A1, . . . , An and R need to
be determined first. As the proposed method is designed to be applicable in operational
weather prediction, it is desirable that all characteristics are derived algorithmically
from the random point probabilities P (s1), . . . , P (sn) without further input of the
forecaster. In applications, the computation of model characteristics is performed in
dependence of the available point probabilities p(s1), . . . , p(sn), which are computed
based on a particular realization e of the random error E that results from the weather
forecast models of DWD (i.e., p(s1) = E (P (s1) |E = e), . . . , p(sn) = E (P (sn) |E = e)).
By a1 = E (A1 |E = e), . . . , an = E (An |E = e) and r = E (R |E = e) we denote the
corresponding realizations of the random local intensities A1, . . . , An for the occurrence
of precipitation cells and the random cell radius R.

A simultaneous computation of the unknown characteristics a1, . . . , an and r does not
seem to be possible. Therefore, this section describes a multi-step procedure that can
be outlined as follows.

1. For each r′ > 0, intensities a
(r′)
1 , . . . , a

(r′)
n are determined based on p(s1), . . . , p(sn)

under the condition that precipitation cells have radius r′.

2. The cell radius r is computed as a function of p(s1), . . . , p(sn) and the family of

conditional intensities {a(r′)
1 , . . . , a

(r′)
n , r′ > 0}.

3. Finally, the intensities a1, . . . , an are obtained as a
(r)
1 , . . . , a

(r)
n by setting r′ = r

in step 1.

The single steps are described in detail in the following subsections.

4.5.1. Local intensities for the occurrence of precipitation cells

At first, we describe an approach to the computation of local intensities for the
occurrence of precipitation cells with arbitrary radius based on the available point
probabilities p(s1), . . . , p(sn). To be more precise, we aim to find a model configuration
that provides point probabilities being as close as possible to the available data. For
that purpose, it is assumed that for each r′ > 0 there is a sequence of nonnegative

intensities a
(r′)
1 , . . . , a

(r′)
n ≥ 0, such that

p(sj) = 1− exp

{
−

n∑
i=1

a
(r′)
i ν2

(
b(sj, r

′) ∩ V (si)
)}

, j = 1, . . . , n, (4.5)

compare to (4.4). However, note that the characteristics a
(r′)
1 , . . . , a

(r′)
n and r′ are not

necessarily suitable to describe point probabilities for locations t /∈ {s1, . . . , sn}, as this
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is only assumed to be the case if a
(r′)
i = ai for i = 1, . . . , n and r′ = r. The system of

equations stated in (4.5) can easily be transformed into

log

(
1

1− p(sj)

)
=

n∑
i=1

a
(r′)
i ν2

(
b(sj, r

′) ∩ V (si)
)
, j = 1, . . . , n, (4.6)

which describes a system of n linear equations with n unknown variables a
(r′)
1 , . . . , a

(r′)
n .

There is a unique (exact) solution of (4.6) but in most cases, this solution has one
or more negative entries, which contradicts the concept of intensities. Therefore, we

suggest to solve (4.6) under the constraint that a
(r′)
1 , . . . , a

(r′)
n ≥ 0, which, however,

implies that an exact solution does not exist in general. For that reason, we compute

a
(r′)
1 , . . . , a

(r′)
n in a nonnegative least squares sense by

(
a

(r′)
1 , . . . , a(r′)

n

)
= argmin

a′1,...,a
′
n≥0


n∑
j=1

(
log

(
1

1− p(sj)

)
−

n∑
i=1

a′i ν2

(
b(sj, r

′) ∩ V (si)
))2


(4.7)

according to the algorithm given in Lawson and Hanson (1974), Chapter 23. In general,

the intensities a
(r′)
1 , . . . , a

(r′)
n determined according to (4.7) are not an exact solution of

(4.5). However, a comparison between the available probabilities p(s1), . . . , p(sn) from
data and probabilities computed by (4.5) with intensities derived according to (4.7)
reveals that the difference is negligible. In particular, no systematic bias is observed.
Figure 4.4 illustrates computed intensities for two sample forecast periods with different
fixed cell radii. A comparison with Figure 4.2 shows a high accordance of available
point probabilities and computed intensities, i.e., higher intensities are obtained in
areas with higher probabilities of precipitation and vice versa. The effect of the cell
radius r′ on computed intensities can be explained as follows. If for a fixed forecast
period the radius r′ is increased, i.e., precipitation cells cover a wider area, then the
mean number of cells in W needs to be decreased accordingly (such that the point
probabilities p(s1), . . . , p(sn) are still matched), which results in smaller intensities

a
(r′)
1 , . . . , a

(r′)
n . This is the reason why computed intensities in central Germany for the

forecast period December 9, 2012, 11-12 UTC are only moderately higher compared
to the period June 16, 2012, 20-21 UTC although the difference in the corresponding
point probabilities is considerably larger. In Sections 4.5.2 and 4.5.3, a method for
the computation of the cell radius r is proposed, such that (4.5) can be assumed to
hold for all t ∈ W . After r has been determined, the intensities a1, . . . , an are given by
ai = a

(r)
i for i = 1, . . . , n.

4.5.2. Iterative semivariogram estimation

Intuitively, the radius of precipitation cells should be closely related to the spatial
correlation structure of the random field {P (t), t ∈ W} of point probabilities, at least
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June 16, 2012, 20-21 UTC, r′ = 30 pixel December 9, 2012, 11-12 UTC, r′ = 52.5 pixel

Figure 4.4.: Local intensities for the occurrence of precipitation cells computed for
two selected forecast periods with different precipitation cell radii. Each
Voronoi cell is colored according to the corresponding local intensity.

for small distances. To quantify the degree of spatial dependence, we suggest to consider
the semivariogram γ?P : W ×W → [0,∞) of {P (t), t ∈ W}, see Section 3.2.5. However,
a meaningful estimation and analysis of the semivariogram based on realizations of
P (s1), . . . , P (sn) is only possible if {P (t), t ∈ W} can be assumed to be second-order
motion-invariant. While it is fairly realistic that for s, t ∈ W , the semivariogram
γ?P (s, t) only depends on the distance ‖s− t‖2 when geographical features are ignored,
the assumption of {P (t), t ∈ W} having a constant expectation function can generally
not be justified. Depending on the spatially varying current weather conditions in the
considered forecast period T , the precipitation probabilities show a clear spatial trend,
see, e.g., the available data illustrated in Figure 4.2.

A possible approach to address this problem is to decompose the random field
{P (t), t ∈ W} into a deterministic expectation function {µ(t), t ∈ W} (also called trend
function) with µ(t) = EP (t) for t ∈ W and a random field of residuals {ξ(t), t ∈ W}
with ξ(t) : Ω→ R and E ξ(t) = 0 for t ∈ W , i.e.,

P (t) = µ(t) + ξ(t), t ∈ W. (4.8)
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Then, the semivariogram γ?ξ : W ×W → [0,∞) of the random field {ξ(t), t ∈ W} of
residuals is identical to the semivariogram γ?P of {P (t), t ∈ W} but now the random
field {ξ(t), t ∈ W} can be assumed to be second-order motion-invariant. Therefore,
{ξ(t), t ∈ W} has a motion-invariant semivariogram γξ : [0,∞)→ [0,∞) defined by

γξ(r) = γ?ξ (s, t), s, t ∈ W such that ‖s− t‖2 = r.

Furthermore, second-order motion-invariance implies that the variance σ2 = var ξ(t)
does not depend on t ∈ W . However, a reasonable estimation of γξ is a certain problem
since only realizations of P (s1), . . . , P (sn) are given, whereas neither µ(s1), . . . , µ(sn)
nor realizations of ξ(s1), . . . , ξ(sn) are available. Thus, commonly used estimators as
defined in Section 3.2.6 are not directly applicable.

As an alternative, we consider an iterative approach proposed in Neuman and Jacobson
(1984). Suppose that the expectation function {µ(t), t ∈ W} can be represented as

µ(t) =
k∑
j=1

fj(t)βj, t ∈ W, (4.9)

where k ∈ N is an arbitrary integer, f1, . . . , fk : W → R is a sequence of base functions,
and β1, . . . , βk ∈ R are certain trend coefficients. In our example of application, we
put k = 10 and (f1(t), . . . , f10(t)) = (1, t(1), t(2), t

2
(1), t(1)t(2), t

2
(2), t

3
(1), t

2
(1)t(2), t(1)t

2
(2), t

3
(2))

are monomials ranging up to 3rd order for any location t = (t(1), t(2)) ∈ W . We
introduce the following simplifying notation. Let P = (P (s1), . . . , P (sn))> be the
random vector of point probabilities at s1, . . . , sn, X = (xij) ∈ Rn×k with xij = fj(si)
for i = 1, . . . , n and j = 1, . . . , k a deterministic design matrix, ξ = (ξ(s1), . . . , ξ(sn))>

the random vector of residuals at s1, . . . , sn, Σ ∈ Rn×n the covariance matrix of ξ,
and β = (β1, . . . , βk)

> a trend vector. Combining (4.8) and (4.9) with the notation
introduced above yields that

P = Xβ + ξ, (4.10)

which is a linear regression model with correlated residuals. Since the covariance
matrix Σ of ξ is unknown, GLS cannot be used for the estimation of the trend vector
β. Instead, OLS could be applied, but this would result in strongly biased estimators
for β and Σ. The approach presented in the following provides (iterative) estimators
of β and Σ with drastically reduced biases, although this bias cannot be removed
completely. This is due to the fact that the estimation of the covariance matrix Σ
of ξ based on empirical residuals obtained from the GLS estimator is always biased
in linear regression with correlated residuals, even if Σ is known. In Cressie (1993),
Chapter 3.4.3 and Beckers and Bogaert (1998), some simple examples are given to
illustrate this bias problem.
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Based on the assumptions made above, estimators of the trend vector β, the covariance
matrix Σ, and the (motion-invariant) semivariogram γξ of {ξ(t), t ∈ W} can be
computed according to an iterative algorithm proposed in Neuman and Jacobson
(1984). To allow for a quick and stable convergence of this algorithm, it is further
assumed that γξ is an exponential semivariogram with parameter vector θ = (c0, c, ae)
where c0 ≥ 0 and c, ae > 0, see Example 3.2.2. To emphasize this, we write γθξ instead
of γξ in the following.

1. Compute an estimator β̂ of β using OLS according to

β̂ = argmin
b∈Rk

{
(P −Xb)>(P −Xb)

}
= (X>X)−1X>P .

2. Use the estimator β̂ of β obtained in the previous step to determine a vector ξ̂
of empirical residuals according to

ξ̂ = P −Xβ̂.

Based on ξ̂, compute a method of moment estimator of the semivariogram γθξ
according to (3.17) and determine an estimator θ̂ of the parameter vector θ
using the iterative algorithm presented in Section 3.2.7. Furthermore, compute a
method of moment estimator σ̂2 of the variance σ2 based on ξ̂. Finally, determine
a plug-in estimator Σ̂ = (σ̂2

ij)i,j=1,...,n of the covariance matrix Σ of ξ using the
unique relationship between the semivariogramm and the covariance function of
a random field, i.e., by

σ̂2
ij = σ̂2 − γ θ̂ξ (‖si − sj‖2), i, j = 1, . . . , n. (4.11)

3. Recompute the estimator β̂ of β using GLS with (estimated) covariance matrix
Σ̂, i.e., by

β̂ = argmin
b∈Rk

{
(P −Xb)>Σ̂−1(P −Xb)

}
= (X>Σ̂−1X)−1X>Σ̂−1P .

4. Repeat steps 2 and 3 until β̂, ξ̂, and θ̂ converge to stable values. Once the
algorithm is terminated, γ̂ denotes the estimator of γθξ that is obtained according

to the exponential semivariogram model with estimated parameter vector θ̂.

Fitting a semivariogram model in step 2 is necessary to allow for a stable and quick
convergence of the algorithm (which can not be guaranteed if a method of moment esti-
mator of the semivariogram is used in (4.11)). Comparisons of different semivariogram
models for a sequence of sample forecast periods have shown that an exponential semi-
variogram seems to provide the best overall fit. Furthermore, note that the estimator
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June 16, 2012, 20-21 UTC December 9, 2012, 11-12 UTC

Figure 4.5.: Estimated trend functions for random point probabilities of precipitation
in Win for two selected forecast periods.

Σ̂ specified in (4.11) does not correspond to a method of moment estimator (even if
the fitting of the exponential semivariogram model is skipped), see Remark 3.2.12.
Figure 4.5 illustrates estimated trend functions of random point probabilities that
are computed according to (4.9) for two sample forecast periods. In order to avoid
boundary effects, we only consider values of the trend functions in a compact subset
Win of W , which contains all locations with a certain distance to the boundaries of
Germany. A comparison to the available data depicted in Figure 4.2 shows a good
accordance. Examples of estimated semivariograms are illustrated in Section 4.5.3.

4.5.3. Radius of precipitation cells

To conclude the computation of model characteristics, we describe how the radius R
of precipitation cells can be determined based on estimated semivariograms. Again,
we consider a fixed realization e of the random error E and the corresponding real-
izations p(s1) = E (P (s1) |E = e), . . . , p(sn) = E (P (sn) |E = e), a1 = E (A1 |E =
e), . . . , an = E (An |E = e), and r = E (R |E = e) of the random point probabilities
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Figure 4.6.: Locations of estimation points used for the computation of point probabil-
ities in the context of determining the radius of precipitation cells.

P (s1), . . . , P (sn), the random local intensities A1, . . . , An for the occurrence of precipi-
tation cells, and the random cell radius R. We aim to configure model characteristics
in such a way that computed point probabilities from the model and those from the
data have a similar dependency structure. For that purpose, we first compute an
estimator γ̂ for the semivariogram of the random field of residuals that corresponds
to {P (t), t ∈ W} based on p(s1), . . . , p(sn) using the iterative algorithm introduced in
Section 4.5.2. For comparison, similar semivariograms are estimated based on point
probabilities that are derived using various model configurations.

We consider a sequence t1, . . . , tl of l ∈ N locations in W (denoted as estimation points
in the following) that are comparable to (but different from) s1, . . . , sn. In our example
of application, estimation points are chosen as a realization of a stationary Poisson
point process inside the window Win (as point probabilities can only be determined
reliably for locations in Win), which is generated according to Algorithm 3.3.2. The
intensity of the process is chosen such that the mean number of estimation points in
Win is equal to #{i ∈ {1, . . . , n} : si ∈ Win}. The set of estimation points used to
obtain the results that are illustrated in the following is depicted in Figure 4.6. For
any possible radius r′ > 0, we introduce the deterministic field {p(r′)(t), t ∈ W} of
point precipitation probabilities that are computed as coverage probabilities of the
germ-grain model M of precipitation cells with radius r = r′ and local intensities
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ai = a
(r′)
i for i = 1, . . . , n by

p(r′)(t) = 1− exp

{
−

n∑
i=1

a
(r′)
i ν2

(
b(t, r′) ∩ V (si)

)}
, t ∈ W,

where a
(r′)
1 , . . . , a

(r′)
n are determined according to (4.7). We suppose that {p(r′)(t), t ∈

W} is a realization of some random field {P (r′)(t), t ∈ W} such that the assumptions
made in Section 4.5.2 (in particular (4.8) and (4.9)) remain valid if {P (t), t ∈ W} is
replaced by {P (r′)(t), t ∈ W}. According to this, we consider the motion-invariant

semivariogram γ
(r′)
ξ : [0,∞)→ [0,∞) of the (second-order motion-invariant) random

field of residuals {ξ(r′)(t), t ∈ W} that corresponds to {P (r′)(t), t ∈ W} and determine

an estimator γ̂(r′) of γ
(r′)
ξ based on p(r′)(t1), . . . , p

(r′)(tl) using the iterative algorithm
presented in Section 4.5.2. Finally, we choose the radius r of precipitation cells in such
a way that the squared L2-distance between γ̂ and γ̂(r) is minimal among all estimated
semivariograms {γ̂(r′), r′ > 0}, i.e.,

r = argmin
r′>0

{∫ c2

c1

(
γ̂(h)− γ̂(r′)(h)

)2

dh

}
(4.12)

with c1, c2 > 0 being some suitable integration limits. In practice, a finite set {r′1, . . . , r′k}
of possible radii is considered in (4.12), which we suggest to be chosen according to
available computing power. We furthermore recommend to provide a lower limit for
the cell radius r that depends on the sizes of the Voronoi cells V (s1), . . . , V (sn). The
smaller the radius r is, the more Voronoi cells V (si) satisfy that ν2

(
b(t, r)∩ V (si)

)
= 0

for a fixed t ∈ W , making the field of obtained point probabilities resemble a piecewise
constant function if r is too small. In contrast, larger values of r lead to smoother
fields of point probabilities.

Finally, we illustrate the results which are obtained in our example of application.
In Figure 4.7, the estimated semivariogram γ̂ (black) is compared to the estimated
residual semivariograms γ̂(r′) that correspond to a sequence of 15 possible cell radii (in
colors) for two selected sample forecast periods. To account for the observation that
typically precipitation patterns have smaller scales in summer than in winter periods,
we consider the possible radii 20, 22.5, 25, . . . , 55 (in pixel) for all forecast periods in
summer 2012 and the radii 25, 27.5, 30, . . . , 60 for winter 2012. The radius r obtained
by the proposed method is r = 30 for forecast period June 16, 2012, 20-21 UTC and
r = 52.5 for forecast period December 9, 2012, 11-12 UTC. It is clearly visible in
Figure 4.7 that the radius of modeled precipitation cells indeed has an impact on the
dependency structure of the residuals and that the semivariogram estimated from the
data goes well with those estimated for different model configurations. For the majority
of forecast periods we obtain similar results.
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June 16, 2012, 20-21 UTC,
possible radii: 20, 22.5, 25, . . . , 55 pixel.

December 9, 2012, 11-12 UTC,
possible radii: 25, 27.5, 30, . . . , 60 pixel.

Figure 4.7.: Comparison of semivariograms estimated based on available data (black)
and based on the introduced model of precipitation cells for different cell
radii (in colors) using the iterative algorithm presented in Section 4.5.2.

4.6. Model-based computation and estimation of area
probabilities

After suitable statistical methods have been developed for the computation of the model
characteristics A1, . . . , An and R based on available point probabilities P (s1), . . . , P (sn),
the germ-grain model M of precipitation cells introduced in (4.3) can now be used
for the computation of area probabilities. Similar to the considerations made when
modeling point probabilities in Section 4.3, we suppose that there is precipitation
somewhere inside a Borel set B ∈ B(W ) if B intersects at least one grain of the random
union set M (i.e., one precipitation cell). Accordingly, the following representation
formula for the random area probability Π(B) : Ω→ [0, 1] of B can be derived using
the distributional properties of the Poisson process stated in (3.23):

Π(B) = P(B ∩M 6= ∅ |E)

= 1− P
(
#{i : Xi ∈ B ⊕ b(o,R)} = 0 |E

)
= 1− exp

{
−
∫
B⊕b(o,R)

n∑
i=1

Ai 1V (si)(z) dz

}
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= 1− exp

{
−

n∑
i=1

Ai

∫
W

1(B⊕b(o,R))∩V (si)(z) dz

}

= 1− exp

{
−

n∑
i=1

Ai ν2

(
(B ⊕ b(o,R)) ∩ V (si)

)}
. (4.13)

This representation indeed is a generalization of the formula for point probabilities
derived in Section 4.4 since for B = {t} with t ∈ W , (4.13) is identical to (4.4).
When using the proposed model in applications (with a fixed realization e of E),
the model characteristics a1, . . . , an and r are first determined based on the sequence
p(s1), . . . , p(sn) of point probabilities according to (4.7) with r′ = r and (4.12). Then,
the (deterministic) area probability π(B) = E (Π(B) |E = e) of each Borel set B ∈
B(W ) can be computed based on a1, . . . , an and r using the representation formula
in (4.13). Alternatively, π(B) can also be estimated using repeated simulation of the
germ-grain model M . Recall that M is a Boolean model conditioned on {E = e} that
can be generated efficiently using Algorithm 3.3.5, which suggests to use the following
estimator of π(B). For an arbitrary integer j ∈ N let M1, . . . ,Mj be a sequence of

(conditionally) independent and identically distributed Boolean models with Mi
d
= M

for i = 1, . . . , j (conditioned on {E = e}). Then, a Monte Carlo estimator π̂(B) of
π(B) is given by

π̂(B) =
1

j
#{i ∈ {1, . . . , j} : B ∩Mi 6= ∅}. (4.14)

It depends on the application whether area probabilities should be computed directly
according to the model or estimated based on simulations. In general, using (4.13)
has the disadvantage that the intersection areas of the dilated set B ⊕ b(o, r) and
the Voronoi cells V (s1), . . . , V (sn) need to be determined numerically, which is both
computationally expensive and imprecise. This suggests that using the Monte Carlo
approach might be favorable in many situations. On the other hand, if the model is
applied in operational weather forecasting on a daily base (or even more frequently) for
the computation of area probabilities of a fixed Borel set B ∈ B(W ), it might be more
efficient to determine the intersection areas ν2((B ⊕ b(o, r)) ∩ V (si)) for i = 1, . . . , n
once for all possible cell radii, which then allows to quickly compute area probabilities
using the direct formula for different forecast periods.

To conclude this section, we present some results that were obtained in our example of
application. Figure 4.8 shows typical realizations of the germ-grain model M for two
sample forecast periods. We observe that although precipitation cells look different
from precipitation patterns in radar data, see Figure 4.3, they mainly occur in the same
regions. Furthermore, a close correspondence to the underlying point probabilities and
the computed intensities for the occurrence of precipitation cells is found, compare to
Figures 4.2 and 4.4. Finally, examples of point and area probabilities are illustrated
that were estimated based on 2,000 realizations of M . To avoid boundary effects, only
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June 16, 2012, 20-21 UTC, r = 30 pixel December 9, 2012, 11-12 UTC, r = 52.5 pixel

Figure 4.8.: Realizations of the germ-grain model M of precipitation cells with char-
acteristics computed from available point probabilities for two selected
forecast periods.

probabilities for locations in Win and areas intersecting Win are considered. Figure 4.9
shows estimated point probabilities for two sample forecast periods, which correspond
well to the point probabilities from the data, compare to Figure 4.2. In particular,
smooth transitions of point probabilities at the boundaries of the Voronoi cells are
provided. In Figure 4.10, area probabilities for all Voronoi cells V (s1), . . . , V (s503)
that intersect Win are depicted, where each Voronoi cell is colored according to the
corresponding area probability. We see that obtained area probabilities are clearly
higher than the corresponding point probabilities but are generally consistent providing
high values in regions with higher point probabilities and vice versa.

4.7. Forecast verification

In order to assess whether the proposed model of precipitation cells is able to provide
precise and reliable area probabilities, we perform a verification of forecasts using
precipitation analyses derived from rain gauge adjusted radar data (RADOLAN), see
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June 16, 2012, 20-21 UTC December 9, 2012, 11-12 UTC

Figure 4.9.: Point probabilities estimated for locations in Win based on 2,000 realiza-
tions of the germ-grain model M of precipitation cells for two selected
forecast periods.

Section 4.1. A comparison of Figures 4.3 and 4.10 already suggests a high correspon-
dence of provided area probabilities and radar data (for two considered forecast periods)
as in the vast majority of Voronoi cells with high area probabilities precipitation indeed
occurred and in most regions of low probabilities no precipitation was observed. Now,
the goal of forecast verification is to quantify the relationship between area proba-
bilities and radar data numerically over the entire sample period. For that purpose,
we use score functions and diagrams that are commonly used by meteorologists to
assess several aspects of forecast performance. However, note that a variety of other
verification tools exist that are tailored for different weather events and forecast types.
A more detailed overview of this topic can be found, e.g., in Wilks (2011), Section
8.4.

For any test area B ∈ B(W ) that intersects Win, the derived direct representation
formula (4.13) or the Monte Carlo estimator (4.14) can be used to determine area
probabilities π1(B), . . . , πm(B) that correspond to the m = 854 available forecast
periods described in Section 4.1. Furthermore, a sequence of precipitation indicators
I1(B), . . . , Im(B) is considered, where Ij(B) is equal to 1 if there is precipitation
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June 16, 2012, 20-21 UTC December 9, 2012, 11-12 UTC

Figure 4.10.: Area probabilities estimated for Voronoi cells that intersect Win based
on 2,000 realizations of the germ-grain model M of precipitation cells for
two selected forecast periods.

somewhere within B in forecast period j ∈ {1, . . . ,m} with respect to RADOLAN
data and 0 otherwise.

4.7.1. Bias, Brier skill score, and empirical correlation coefficient

We consider the following three score functions that provide a systematic comparison
of area probabilities and precipitation indicators. One of the most commonly used
scores is the bias bπ, which is defined as the difference between the mean precipitation
probability of B and the relative frequency of precipitation occurring in B over the
sample period, i.e.,

bπ =
1

m

m∑
j=1

πj(B)− 1

m

m∑
j=1

Ij(B). (4.15)

For a good weather prediction, the bias bπ given in (4.15) should be as close to zero as
possible. A clearly negative or positive bias would indicate that computed probabilities
are systematically too low or too high, respectively. However, neither does an unbiased
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forecast necessarily have a high quality nor does a (small) bias always imply bad
forecast performance. For example, the climate mean, which provides area probabilities
π′1(B), . . . , π′m(B) according to

π′i(B) =
1

m

m∑
j=1

Ij(B), i = 1, . . . ,m, (4.16)

has a perfect bias of zero but is clearly not a good forecast as for each forecast period
the same area probability is obtained. Furthermore, note that the climate mean as
defined in (4.16) is only based on past forecast periods and is thus a poor choice in
operational weather prediction.

It is advised to rely on more than one score function when verifying weather forecasts
that address different aspects of forecast quality, see Wilks (2011), Section 8.1. A
popular measure of accuracy for probabilistic forecasts is the Brier score (BS) bsπ
(Brier, 1950), which is defined as the mean squared difference of predicted probabilities
and observed precipitation indicators, i.e.,

bsπ =
1

m

m∑
j=1

(
πj(B)− Ij(B)

)2
. (4.17)

Obviously, the BS should be as small as possible. A score of bsπ = 0 is achieved
if πj(B) = Ij(B) for all j = 1, . . . ,m, i.e., if the occurrence or non-occurrence of
precipitation is always forecasted correctly with probability 1. Conversely, the worst
forecast quality is obtained when bsπ = 1, i.e., if precipitation is always forecasted
incorrectly with probability 1 (in fact, bsπ ∈ {0, 1} rarely occurs in applications
since probabilities of precipitation typically have values in (0, 1)). However, a more
intuitive interpretation of this score is difficult since the BS also depends on a term
denoted as uncertainty, which is expressed only by the variability of I1(B), . . . , Im(B),
see, e.g., Wilks (2011), Section 8.4.3. Therefore, it is common to consider a score
function that relates the BS of the area probabilities π1(B), . . . , πm(B) to the BS
of a reference prediction. Assume that another sequence π̃1(B), . . . π̃m(B) of area
precipitation probabilities computed from a different method is available and consider
the BS bsπ̃, which is determined according to (4.17) using π̃1(B), . . . π̃m(B) instead of
π1(B), . . . , πm(B). If no reference method for the derivation of area probabilities is
available, which is the case in this thesis, then the climate mean defined in (4.16) is
used, i.e., we set π̃i(B) = π′i(B) for i = 1, . . . ,m. Finally, the so-called Brier skill score
(BSS) bssπ defined as

bssπ = 1− bsπ
bsπ̃

(4.18)

is computed in order to investigate whether the considered forecasts have a higher
quality (in terms of BSs) than the reference method. If this is the case, the BSS should
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be clearly positive. In contrast, negative values of the BSS indicate that the verified
forecasts perform worse than the reference method (which is particularly bad if the
reference method is, as in our case, given by the climate mean).

As a third score function we suggest to consider the empirical correlation coefficient ρ̂ of
the computed probabilities π1(B), . . . , πm(B) and the observed precipitation indicators
I1(B), . . . , Im(B) given as

ρ̂ =

m∑
j=1

(πj(B)− µ̂π) (Ij(B)− µ̂I)√
m∑
j=1

(πj(B)− µ̂π)2
m∑
j=1

(Ij(B)− µ̂I)2

, (4.19)

with

µ̂π =
1

m

m∑
j=1

πj(B) and µ̂I =
1

m

m∑
j=1

Ij(B).

Clearly, ρ̂ should be as close to one as possible and ρ̂ = 0 indicates that there is no
relationship between computed precipitation probabilities and observed precipitation
events. Negative correlation coefficients suggest that the provided forecasts should
clearly not be considered in applications, as this indicates that on average lower area
probabilities are forecasted for B in periods where precipitation occurs than in periods
where it does not.

In order to perform a systematic analysis of the three proposed score functions, an
adequate set of test areas needs to be chosen. For that purpose, we suggest to consider
the Voronoi cells V (s1), . . . , V (s503) around the locations s1, . . . , s503 of the weather
stations illustrated in Figure 4.1. The Voronoi cells V (s1), . . . , V (s503) appear to be
particularly suitable for forecast verification since they cover a large variety of areas
with different sizes, shapes, and orientations. Area probabilities computed according to
the germ-grain model of precipitation cells are a function of model characteristics, which
in turn are computed from the available point probabilities. Therefore, verification is
not only performed for area probabilities of the 503 Voronoi cells V (s1), . . . , V (s503)
but also for point precipitation probabilities from the available data that correspond
to the locations s1, . . . , s503 of weather stations. For that purpose, the bias, BSS, and
empirical correlation coefficient are defined analogously to (4.15)-(4.19) by replacing the
area probabilities and precipitation indicators by their respective point counterparts.

In Figure 4.11, the biases of given point probabilities from data and computed area
probabilities are illustrated. On the left-hand side, each Voronoi cell is colored according
to the bias of the point probabilities at the location of the corresponding weather
station, whereas on the right-hand side, the bias of the area probabilities for each
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Figure 4.11.: Biases of point probabilities from available data for weather stations
s1, . . . , s503 (left) and of area probabilities computed according to the
proposed model of precipitation cells for Voronoi cells V (s1), . . . , V (s503)
(right). Biases are only shown for Voronoi cells intersecting Win.

Voronoi cell is depicted. Again, only cells intersecting Win are considered to avoid
boundary effects. The biases for point probabilities range from −4 % to 6 % for most
weather stations, which is acceptably small showing a good consistency of the point
forecast data with the radar observations. There are a few outliers with biases up to
14 %, which are most likely caused by problems with the radar measurements at these
locations. In general, however, no systematic deviation of point probabilities and radar
data can be found. The biases for area probabilities range from −6 % to 9 %, which
is only slightly different from point probabilities. For most test areas no systematic
bias is found and the mean bias (over all areas) is at 1 %, which is comparable to
the mean bias of point probabilities (over all weather stations). In the north-east
and the north-west of Germany, some larger biases are observed indicating that area
probabilities are slightly too high, whereas in some regions in southern Germany area
probabilities appear to be marginally too low. A similar trend (although to a much
smaller extent) is also observed for the point probabilities, which suggests that biases
of point probabilities are amplified when deriving area forecasts. Thus, unbiasedness
of the underlying data is found to be crucial to obtain reliable area probabilities.

Figure 4.12 provides histograms of BSSs computed for point and area probabilities
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Figure 4.12.: Histograms showing BSSs of point probabilities from available data for
weather stations s1, . . . , s503 (left) and of area probabilities computed
according to the proposed model of precipitation cells for Voronoi cells
V (s1), . . . , V (s503) (right). Red lines indicate mean BSSs.

using the climate mean as reference prediction. For the point probabilities of most
weather stations positive BSSs are found ranging up to a value of 0.5. There are
again outliers for some stations, the mean value of 0.28 shows a positive signal though.
The BSS is clearly positive for all considered Voronoi cells, ranging from 0.18 up to
more than 0.6. The mean BSS has a value of 0.4 and is thus clearly higher than for
point probabilities. This demonstrates that the presented method indeed provides a
significant improvement in computing area precipitation probabilities over using the
climate mean. Furthermore, it is a pleasant result that the accuracy of area probabilities
is not affected by occasional outliers occurring in point forecast data. Similar results
are obtained when considering histograms of the empirical correlation coefficients of
precipitation probabilities and precipitation indicators from radar data, see Figure 4.13.
For all considered weather stations a positive correlation coefficient of the corresponding
point probabilities with precipitation indicators is found, although about 20 % of values
are smaller than 0.5. The mean correlation coefficient is at 0.54. The histogram
on the right shows clearly positive correlations between computed area probabilities
and observed precipitation events, too. All values are greater than 0.5 ranging up
to more than 0.8 and the mean correlation of 0.65 is significantly higher than that
observed for point probabilities. Considering that the correlation coefficient compares
continuous probabilities with binary precipitation indicators, this is an excellent result.
Furthermore, we point out that our area probabilities perform even better (in terms of
BSS and empirical correlation coefficient) than the underlying point data.
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Figure 4.13.: Histograms showing empirical correlation coefficients of point probabil-
ities from available data for weather stations s1, . . . , s503 (left) and of
area probabilities computed according to the proposed model of precipita-
tion cells for Voronoi cells V (s1), . . . , V (s503) (right) with corresponding
precipitation indicators. Red lines indicate mean correlation coefficients.

4.7.2. Reliability diagram

To conclude our validation, reliability diagrams for area precipitation probabilities
are considered. Reliability diagrams give a much more detailed view on forecast
performance as they aim to describe the joint distribution of forecasts and observations
rather than providing single-number summaries as the score functions considered
in Section 4.7.1, see Wilks (2011), Section 8.4.4. Basically, a reliability diagram
illustrates the empirical conditional distribution of the precipitation indicators given
the forecasted area probabilities, i.e., it shows whether precipitation indeed occurs rarely
or often in forecast periods with low or high precipitation probabilities, respectively. A
mathematical description of the reliability diagram for test area B is given as follows.
At first, the unit interval [0, 1] is decomposed into a sequence U1, . . . , U20 of 20 equal
subintervals each having a length of 0.05. Then, for each k ∈ {1, . . . , 20}, the reliability
ρ̂(Uk) of the subinterval Uk is defined as the relative frequency of precipitation among
all those forecast periods for that the computed area precipitation probability of B
takes a value in Uk, i.e.,

ρ̂(Uk) =
#{j ∈ {1, . . . ,m} : πj(B) ∈ Uk, Ij(B) = 1}

#{j ∈ {1, . . . ,m} : πj(B) ∈ Uk}
, k = 1, . . . , 20. (4.20)

Additionally, the midpoints m1, . . . ,m20 of the intervals U1, . . . , U20 are computed and
the sequence of points (m1, ρ̂(U1)), . . . , (m20, ρ̂(U20)) is called a reliability diagram.
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Figure 4.14.: Reliability diagrams of area precipitation probabilities for two selected
test areas (Voronoi cells).

Ideally, the relative frequency of precipitation among all forecast periods with area
probabilities in the subinterval Uk should again fall into Uk for k = 1, . . . , 20. Thus, a
high forecast quality is characterized by a reliability diagram being close to the curve
{(x, y) ∈ [0, 1]2 : x = y}.

In contrast to the score functions considered in Section 4.7.1, it is not possible to
show reliability diagrams for all Voronoi cells here. In Figure 4.14, diagrams for
two sample Voronoi cells are depicted, which show a high correspondence of area
probabilities and precipitation indicators. It is clearly shown for these examples that
precipitation frequently occurs if computed precipitation probabilities are high and
vice versa. Similar results were obtained for most other Voronoi cells, too. A possibility
to assess performance of area probabilities for all test areas is to compute a reliability
diagram according to (4.20) based on area probabilities and precipitation indicators
of all Voronoi cells which intersect the restricted window Win and all forecast periods
simultaneously, see Figure 4.15. Again, we observe a great forecast performance with
the exception that for probabilities between 0.7 and 0.9 the corresponding reliabilities
are marginally too low. This indicates that those probabilities are forecasted slightly
too often and should be reduced, which corresponds well with the average bias of 1 %
in area probabilities. Altogether, the forecast verification performed in this section
shows impressively that area precipitation probabilities computed using the proposed
germ-grain model of precipitation cells correspond well with radar observations.
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Figure 4.15.: Reliability diagram computed based on area precipitation probabilities of
all Voronoi cells intersecting Win.
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precipitation amounts

In Chapter 4, a stochastic model for precipitation cells is introduced with the purpose
of computing area probabilities for the occurrence of precipitation. To allow for a
verification of obtained area forecasts using rain gauge adjusted radar measurements,
we consider sequences of point probabilities for the occurrence of precipitation of
more than 0.1 mm as data input since this is the smallest positive precipitation
amount provided by the RADOLAN system. Accordingly, obtained area probabilities
can also be understood as probabilities for the occurrence of precipitation of more
than 0.1 mm somewhere inside the considered areas. Although there are a couple of
applications where such area probabilities play an important role, meteorologists are
rather interested in the probability of precipitation of more than u mm somewhere
inside an area for an arbitrary threshold u > 0, see Section 1.1. For example, this is of
particular relevance for the issuing of weather warnings, where extreme precipitation
amounts need to be forecasted as precisely as possible. An intuitive approach to derive
area probabilities for an arbitrary threshold u > 0 would be the following generalization
of the models and methods introduced in Chapter 4. At first, the occurrence of
precipitation is considered to be identical with the occurrence of precipitation of more
than u mm, i.e., smaller precipitation amounts are ignored (this is done for u = 0.1 mm
in Chapter 4). Then, a spatial stochastic model for the union set of precipitation cells
(only representing precipitation of more than u mm) is introduced as described in
Section 4.4 and model characteristics are computed based on point probabilities for
the occurrence of precipitation of more than u mm in a similar way as proposed in
Section 4.5. Finally, the generalized model can be used to compute area probabilities for
the occurrence of precipitation of more than u mm, compare to Section 4.6. However,
it seems clear that if the threshold u is significantly larger than 0.1 mm, then there is
a high probability that realizations of the random radius R of precipitation cells are
considerably lower than in the case u = 0.1 mm. In particular, if extreme precipitation
events are forecasted, e.g., if u ≥ 5 mm, typical ‘precipitation cells’ are expected to
be clearly smaller than the sizes of almost all Voronoi cells that correspond to the
system of locations with available point data, which causes the proposed model to
be significantly less efficient. To account for this problem, a much higher number of
locations with available point probabilities is needed, which leads to a drastic increase
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in required computation time. Another disadvantage of this approach is that model
characteristics need to be determined separately for all considered thresholds, which
is highly inefficient, making it inappropriate for application in operational weather
prediction. Thus, we do not further pursue this idea in the following.

In the present chapter, an alternative approach to the estimation of area probabilities
for precipitation exceeding an arbitrary threshold u > 0 is introduced. We propose
an extension of the model for precipitation cells discussed in Chapter 4 by adding a
spatial stochastic model for precipitation amounts. Clearly, a modeling of precipitation
amounts based solely on point probabilities for the occurrence of precipitation of
more than 0.1 mm is not possible, which is why a more comprehensive data basis is
needed, see Section 5.1. In Section 5.2, the construction of the above-mentioned spatial
stochastic model of precipitation amounts is described and the model is embedded in
the mathematical framework introduced in Chapter 4. The fitting of (time-dependent)
model characteristics based on available point forecast data is discussed in Sections
5.3 and 5.4. As no direct computation formula is available, Section 5.5 provides a
Monte Carlo approach to the estimation of area probabilities of precipitation exceeding
arbitrary thresholds. Finally, Section 5.6 describes a verification of obtained area
probabilities using adjusted radar data. In this context, we also explain how remaining
(not time-dependent) model parameters are fitted. The results presented in this chapter
have been incorporated in Kriesche et al. (2015b) (in a modified mathematical frame-
work) and Kriesche et al. (2017c). While the model for the occurrence of precipitation
introduced in Chapter 4 can reasonably be generalized to the representation of other
weather events such as wind gusts, one has to be much more careful when aiming to
do the same for the presented model of precipitation amounts as, e.g., intensities of
wind gusts (which are an analogue to precipitation amounts) could have an entirely
different spatial structure.

5.1. Description of data

In order to illustrate the proposed methodology for the estimation of area probabilities
for precipitation amounts exceeding arbitrary thresholds, we use a similar data basis
as in Chapter 4. We again consider the system of 503 German and Luxembourgian
weather stations illustrated in Figure 4.1, whose locations are projected into a rectangle
[0, 1500]×[0, 1875] of pixel coordinates. We recall that distances between locations inside
this window are computed based on the two-dimensional Euclidean distance (which
only produces a negligible error) and that any such pixel distance d > 0 approximately
corresponds to 0.5 ·d km. Moreover, we again consider a time frame covering the period
from June 1 until July 31 and November 1 until December 31 in the year 2012. At each
day, forecasts are available for the 7 one-hour forecast periods 2-3 UTC, 5-6 UTC, . . .,
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20-21 UTC resulting in a total of 854 forecast periods. Using the MOSMIX system of
DWD for post-processing, see Section 2.3.2, point probabilities are computed for each
weather station and forecast period describing the chance of precipitation of more than
u mm for a sequence of thresholds u ∈ T = {0, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 10, 15} in
mm. In particular, for u = 0 the probability for precipitation of any amount at the
considered weather station is given. Unfortunately, these point forecast data are not yet
suitable for the purpose of model calibration. On the one hand, point probabilities for
a fixed weather station and forecast period are expected to be monotonically decreasing
with increasing threshold u ∈ T. By using the MOS approach in the post-processing
step, however, the probabilities of each threshold are computed separately, which
does not guarantee monotonicity due to statistically independent noise. In a few
cases in our data, it is possible that, e.g., the probability of precipitation of more
than 0.3 mm at a given weather station is slightly higher than the probability of
precipitation of more than 0.2 mm. On the other hand, we will see that the model
of precipitation amounts proposed in Section 5.2 requires expectations and variances
of point precipitation amounts to be available for model fitting, which are, however,
not directly included in the data. To overcome both problems, an additional modeling
approach for precipitation amounts at the locations of weather stations is introduced
in Section 5.3. Finally, for the purpose of forecast verification the rain gauge adjusted
radar data described in Section 4.1 are available, see the sample data for two selected
forecast periods shown in Figure 4.3.

5.2. Combined modeling of precipitation cells and
precipitation amounts

The derivation of area probabilities for the occurrence of precipitation amounts ex-
ceeding arbitrary thresholds based solely on a model of precipitation cells does not
seem to be possible. Therefore, an extension of the model presented in Section 4 is
proposed, which adds precipitation amounts to modeled precipitation cells. We recall
the most important notation, with the difference that in this chapter the occurrence of
precipitation is no longer identical to the occurrence of precipitation of more than 0.1
mm, which enables the consideration of smaller positive precipitation amounts. Let T
be a fixed one-hour forecast period and let (Ω,F ,P) be the probability space introduced
in Section 4.2, where the sample space Ω contains all possible weather scenarios in
forecast period T and the corresponding forecasts provided by DWD, F is a suitable
σ-algebra of subsets of Ω, and P is some probability measure on (Ω,F). By E : Ω→ S
we denote the random error occurring in the weather forecast models of DWD and
σ(E) ⊂ F is the sub-σ-algebra of events generated by E. We consider the random field
{P (t), t ∈ W} defined in a compact and convex domain W ⊂ R2, with P (t) : Ω→ [0, 1]
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being the random point probability for the occurrence of precipitation of any amount
at location t ∈ W in the one-hour forecast period T (note the difference to Section 4.3,
where P (t) describes the probability of precipitation of more than 0.1 mm). Further-
more, P (t) is assumed to be σ(E)-measurable for all t ∈ W . By Win ⊂ W we denote a
compact subset of W containing locations with a certain distance to the boundaries of
Germany, which is defined in Section 4.5.2. We suppose that point forecasts are pro-
vided by DWD for a system of locations s1, . . . , sn ∈ W with n ∈ N and that available
data include a sequence p(0)(s1) = E (P (s1) |E = e), . . . , p(0)(sn) = E (P (sn) |E = e)
of point probabilities for the occurrence of precipitation of any amount at s1, . . . , sn,
which are computed based on a particular realization e of E. By {V (s1), . . . , V (sn)}
we denote the Voronoi tessellation of s1, . . . , sn introduced in (4.2). In the example of
application considered to illustrate the modeling approach presented in this chapter, we
again have that W = [0, 1500]× [0, 1875] is a rectangle of projected pixel coordinates
comprising Germany and Luxembourg, the sequence s1, . . . , s503 identifies the n = 503
weather stations depicted in Figure 4.1, the point probabilities p(0)(s1), . . . , p(0)(s503)
are included in the data described in Section 5.1, and e is the particular error that
occurs when computing these data. The union set of precipitation cells (describing pre-
cipitation of any amount) is represented by the random germ-grain model M : Ω→ C
specified in (4.3), which is characterized by the σ(E)-measurable random local intensi-
ties A1, . . . , An : Ω→ [0,∞) of the underlying Cox process {Xi, i = 1, . . . , Z} of cell
centers and the σ(E)-measurable random cell radius R : Ω→ (0,∞), see Section 4.4.

Based on the random union set M of precipitation cells a spatial stochastic model for
the representation of precipitation amounts is proposed. For that purpose, we introduce
the random field {Γ(t), t ∈ W}, where Γ(t) : Ω→ [0,∞) describes the random amount
of precipitation at each location t ∈ W during the forecast period T . We expect that
precipitation cells and precipitation amounts cannot be considered to be independent of
one another, which is indicated by the results of a statistical test performed in Koubek
et al. (2016). We suggest to represent {Γ(t), t ∈ W} as a random shot-noise field
since this class of random fields has been successfully applied in the literature for the
modeling of precipitation amounts before, see, e.g., Rodriguez-Iturbe et al. (1986). At
first, a radially symmetric response function κp(·, Xi, R) is assigned to each precipitation
cell b(Xi, R) for i = 1, . . . , Z, where we choose κp : R2 × R2 × (0,∞)→ [0,∞) as

κp(t, x, r) =

(
1− ‖t− x‖

2
2

r2

)p
1b(t,r)(x), t, x ∈ R2, r > 0, (5.1)

with a certain shape parameter p > 0. This choice comprises a variety of possible
response functions. For example, if r = 1 and t = o, we obtain the surface of the
upper half of the 3-dimensional unit ball (for p = 0.5), a scaled version of the 2-
dimensional radially symmetric Epanechnikov kernel (for p = 1), a scaled version of the
2-dimensional radially symmetric biweight kernel (for p = 2) or a scaled version of the
2-dimensional radially symmetric triweight kernel (for p = 3), compare to Section 3.4.1.

108



5.3. Distribution of precipitation amounts at data locations

However, these response functions are not yet suitable to model precipitation fields
generated by single precipitation cells as the distribution of precipitation amounts
is expected to vary across the domain W for most forecast periods. As an example
consider the periods June 16, 2012, 20-21 UTC and December 9, 2012, 11-12 UTC,
both of which have higher expected precipitation amounts in northern and central
Germany than in the south, see Figure 5.4 later on. To account for spatially varying
distributions of precipitation amounts, we suggest to multiply each response function
κp(·, Xi, R) by a random location-dependent scaling variable. Since point forecast
data are only available at a finite sequence s1, . . . , sn of locations in W , we make the
simplifying assumption that all precipitation cells with centers in a given Voronoi
cell V (si) are multiplied by the same scaling variable for i = 1, . . . , n. Thus, we
introduce a sequence C1, . . . , Cn : Ω → [0,∞) of nonnegative, absolutely continuous
random scaling variables, which correspond to the n Voronoi cells V (s1), . . . , V (sn).
The variables C1, . . . , Cn can clearly not be assumed to be σ(E)-measurable since
precipitation amounts are still expected to be random if a particular realization of the
weather forecast models of DWD is given. However, we assume that conditioned on
E, the variables C1, . . . , Cn are independent of each other and of the point process
{Xi, i = 1, . . . , Z} of precipitation cell centers. For each t ∈ W , we interpret the value
of the response function κp(t,Xi, R) multiplied by the corresponding scaling variable
as the random amount of precipitation generated by the i-th precipitation cell b(Xi, R)
at location t. The total amount of precipitation at t ∈ W is obtained by summing up
the individual precipitation amounts generated by all Z precipitation cells. Combining
the modeling steps suggested above leads to the following representation of the random
field {Γ(t), t ∈ W} of precipitation amounts:

Γ(t) =
Z∑
i=1

n∑
j=1

Cj1V (sj)(Xi)κp(t,Xi, R), t ∈ W. (5.2)

The consecutive steps of modeling precipitation amounts according to (5.2) are exem-
plified in Figure 5.1.

5.3. Distribution of precipitation amounts at data
locations

The random field {Γ(t), t ∈ W} of precipitation amounts introduced in (5.2) is com-
pletely characterized by the random intensities A1, . . . , An for the occurrence of pre-
cipitation cells, the random cell radius R, the random scaling variables C1, . . . , Cn,
and the shape parameter p. In the following, let e be the particular realization of
the random error E that occurs when computing the underlying data using the
weather forecast models of DWD. Recall that the (conditional) intensities a1 =
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5. Spatial stochastic modeling of precipitation amounts

Figure 5.1.: Illustration of the proposed modeling approach for precipitation amounts:
(i) modeling of precipitation cells using a germ-grain model with circular
grains (top left), (ii) assigning a radially symmetric response function to
each cell (top right), (iii) multiplying response functions with random
scaling variables (bottom left), (iv) summing scaled response functions to
obtain precipitation amounts (bottom right).

E (A1 |E = e), . . . , an = E (An |E = e) and the cell radius r = E (R |E = e) can
be computed according to (4.7) and (4.12) based on the corresponding point prob-
abilities p(0)(s1) = E (P (s1) |E = e), . . . , p(0)(sn) = E (P (sn) |E = e). In order to
use the model for the estimation of area probabilities, it remains to fit (conditional)
distributions of the random scaling variables C1, . . . , Cn (given {E = e}) and to choose
a suitable shape parameter p. For that purpose, we first introduce the deterministic
fields {ε(t), t ∈ W} and {v(t), t ∈ W}, where ε(t) = E (Γ(t) |E = e) ∈ [0,∞) and
v(t) = var (Γ(t) |E = e) ∈ [0,∞) denote the conditional expectation and variance
of Γ(t) given {E = e} for all t ∈ W . We assume that point probabilities for the
occurrence of precipitation of more than u mm in the considered forecast period T
are included in the data provided by DWD for all locations s1, . . . , sn and thresholds
u ∈ T = {0, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 10, 15}. However, in general these data are
not yet suitable for model fitting due to occasional inconsistencies in point probabilities
and missing expectations and variances of point precipitation amounts, see, e.g., the
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5.3. Distribution of precipitation amounts at data locations

sample data described in Section 5.1.

To overcome such potential problems, we suggest to fit a gamma distribution to the
random point precipitation amount at each location s ∈ {s1, . . . , sn} as proposed, e.g., in
Wilks and Eggleston (1992) and Wilks (2011), Section 4.3.3. However, since the gamma
distribution is an absolutely continuous distribution and P (Γ(s) = 0 |E = e) > 0 in
general, it is an inappropriate choice for the distribution of Γ(s) (given {E = e}).
Instead, we assume that the gamma distribution can be used to model the (positive)
precipitation amount Γ(s) if precipitation occurs at s, i.e., given {Γ(s) > 0}. For that
purpose, let p(u)(s) = P (Γ(s) > u |E = e) for each u ∈ T denote the (conditional)
probability for the occurrence of precipitation of more than u mm (given {E = e})
at location s and p̃(u)(s) = P (Γ(s) > u |Γ(s) > 0, E = e) the conditional probability
for the occurrence of precipitation of more than u mm given that precipitation of any
(positive) amount occurs at s for each threshold u ∈ T\{0}. Note that this corresponds
well to the definition of p(0)(s) as given in Section 5.2 since {Γ(s) > 0} = {s ∈ M},
compare to the modeling of point probabilities as coverage probabilities of M in
(4.1) and the definition of {Γ(t), t ∈ W} in (5.2). We assume that p(0)(s) > 0 as
otherwise Γ(s) = 0 a.s. and p(u)(s) = 0 for all u ∈ T \ {0}. By using that for any
nonnegative random variable X : Ω → [0,∞) with P (X > 0) > 0 and any u > 0 it
holds that P (X > u |X > 0) = P (X > u)/P (X > 0), the conditional probabilities
of precipitation exceeding u mm given that precipitation of any amount occurs at
s can be determined based on p(0)(s) and the probabilities for the occurrence of
precipitation of more than u mm from the available data for all u ∈ T \ {0}. Based
on the obtained conditional probabilities the parameters of a gamma distribution
are fitted. This allows to analytically compute the sequence {p̃(u)(s), u ∈ T \ {0}} of
(conditional) probabilities according to the fitted gamma distribution. Furthermore,
we also compute the conditional expectations ε̃(s) = E (Γ(s) |Γ(s) > 0, E = e) and
m̃(s) = E (Γ2(s) |Γ(s) > 0, E = e) based on the obtained gamma distribution. Then,
the point probabilities {p(u)(s), u ∈ T \ {0}} can be recomputed easily using the
identity

p(u)(s) = p(0)(s) p̃(u)(s), u ∈ T \ {0}, (5.3)

see above. This approach has the advantage that obtained point probabilities are now
monotonically decreasing with increasing threshold u. Moreover, the fitted gamma
distribution allows to easily compute the expectation ε(s) and variance v(s) of Γ(s)
(conditioned on {E = e}). Using (5.3) and a representation formula for the moments
of a nonnegative random variable based on its tail function, see Kallenberg (2002),
Lemma 3.4, we get that

ε̃(s) =

∫ ∞
0

p̃(u)(s) du =

∫ ∞
0

p(u)(s)

p(0)(s)
du =

ε(s)

p(0)(s)
,

which allows to determine ε(s) according to

ε(s) = p(0)(s) ε̃(s). (5.4)
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Similarly, it holds that

m̃(s) = 2

∫ ∞
0

p̃(u)(s)u du = 2

∫ ∞
0

p(u)(s)

p(0)(s)
u du =

E (Γ2(s) |E = e)

p(0)(s)
,

which is used to compute v(s) by

v(s) = E (Γ2(s) |E = e)− ε2(s) = p(0)(s) m̃(s)−
(
p(0)(s) ε̃(s)

)2
. (5.5)

The suggested fitting procedure provides consistent (conditional) point probabilities
for the occurrence of precipitation of more than u mm for thresholds u ∈ T as well
as (conditional) expectations and variances of point precipitation amounts (given
{E = e}) at all data locations s1, . . . , sn. These revised data are now suitable to be
used for the calibration of the proposed model for precipitation amounts introduced
in (5.2), see Sections 5.4 and 5.6. To illustrate the results that are obtained in our
example of application by fitting gamma distributions as described above, we present
some sample data for two selected forecast periods. Figures 5.2 and 5.3 show point
probabilities p(u)(s1), . . . , p(u)(s503) for thresholds u ∈ {0, 0.2, 0.7, 2} in mm, which are
computed according to (5.3) based on the available data described in Section 5.1. In
both examples, point probabilities decrease rapidly for increasing thresholds but for
each single threshold there are generally higher probabilities of precipitation in forecast
period December 9, 2012, 11-12 UTC than in June 16, 2012, 20-21 UTC. Even though
the point probabilities shown in Figure 4.2 are not identical to p(0.1)(s1), . . . , p(0.1)(s503)
as they are directly derived from the weather prediction models of DWD without
additionally fitting a gamma distribution, they correspond well to the illustrations
given in this section. Obtained probabilities of precipitation exceeding 5, 10 or 15 mm
are close to zero for almost all weather stations and forecast periods, which is why
the occurrence of such precipitation amounts is considered to be an extreme event. In
Figure 5.4, expected precipitation amounts ε(s1), . . . , ε(s503) determined according to
(5.4) are depicted for the same forecast periods. As anticipated, expected precipitation
amounts seem strongly correlated to point probabilities showing larger values in
regions of higher point probabilities (for all thresholds) and vice versa. Furthermore,
we observe a generally good accordance to the corresponding radar data, compare
to Figure 4.3. Finally, Figure 5.5 illustrates variances v(s1), . . . , v(s503) computed
according to (5.5) for the two considered sample forecast periods. For each fixed period
we find a certain association between expectations and variances of point precipitation
amounts as variances seem to be largest for locations with large expected precipitation
amounts and vice versa. However, this does not seem to be valid when comparing
different forecast periods. Although expected precipitation amounts are clearly larger
in December 9, 2012, 11-12 UTC than in June 16, 2012, 20-21 UTC (in particular for
northern Germany), we observe similarly large variances of precipitation amounts in
both forecast periods.
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5.3. Distribution of precipitation amounts at data locations

Figure 5.2.: Sample data for June 16, 2012, 20-21 UTC: the locations of the considered
503 weather stations and the corresponding Voronoi tessellation, where
each Voronoi cell is colored according to the point probability for the
occurrence of precipitation of more than 0 mm (top left), 0.2 mm (top
right), 0.7 mm (bottom left), and 2 mm (bottom right) at the corresponding
station. Point probabilities are obtained from fitted gamma distributions.
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Figure 5.3.: Sample data for December 9, 2012, 11-12 UTC: the locations of the
considered 503 weather stations and the corresponding Voronoi tessellation,
where each Voronoi cell is colored according to the point probability for
the occurrence of precipitation of more than 0 mm (top left), 0.2 mm (top
right), 0.7 mm (bottom left), and 2 mm (bottom right) at the corresponding
station. Point probabilities are obtained from fitted gamma distributions.
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June 16, 2012, 20-21 UTC December 9, 2012, 11-12 UTC

Figure 5.4.: Sample data for two selected forecast periods: the locations of the con-
sidered 503 weather stations and the corresponding Voronoi tessellation,
where each Voronoi cell is colored according to the expected precipitation
amount at the corresponding station. Expected precipitation amounts are
obtained from fitted gamma distributions.

5.4. Fitting conditional distributions of random scaling
variables

We now introduce an approach to fitting (conditional) distributions of the random
scaling variables C1, . . . , Cn (given {E = e}) based on the (conditional) expectations
ε(s1), . . . , ε(sn) and variances v(s1), . . . , v(sn) of precipitation amounts at s1, . . . , sn that
were derived according to (5.4) and (5.5) using fitted gamma distributions. The goal of
the method is to choose the distributions of C1, . . . , Cn in such a way that expectations
and variances of precipitation amounts provided by the calibrated model stated in (5.2)
are as close as possible to the derived data ε(s1), . . . , ε(sn) and v(s1), . . . , v(sn). We
will always assume that the shape parameter p of the response function κp defined in
(5.1) is fixed. A recommendation on how to choose p in practice is given later on in
Section 5.6.
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June 16, 2012, 20-21 UTC December 9, 2012, 11-12 UTC

Figure 5.5.: Sample data for two selected forecast periods: the locations of the con-
sidered 503 weather stations and the corresponding Voronoi tessellation,
where each Voronoi cell is colored according to the variance of the precip-
itation amount at the corresponding station. Variances of precipitation
amounts are obtained from fitted gamma distributions.

5.4.1. Conditional expectations and variances of scaling variables

At first, we describe a statistical method to compute (conditional) expectations and
variances of C1, . . . , Cn. For that purpose, recall that conditioned on {E = e} the
point process {Xi, i = 1, . . . , Z} of precipitation cell centers is a Poisson point process
with intensity function {λ(t), t ∈ W}, where λ(t) = E (Λ(t) |E = e) for all t ∈
W with {Λ(t), t ∈ W} being defined as in Section 4.4. Additionally, the scaling
variables C1, . . . , Cn are assumed to be conditionally independent of each other and of
{Xi, i = 1, . . . , Z} given {E = e}. To improve the readability of derived representation
formulas, we introduce the following simplified notation. For each j ∈ {1, . . . , n}, let
cj = E (Cj |E = e) and c̃j = var (Cj |E = e) denote the conditional expectation and
variance of Cj conditioned on {E = e}. Furthermore, we introduce the functions
fj : W ×W → [0,∞), Jj : W → [0,∞) and J̃j : W → [0,∞) that are defined by

fj(t, x) = 1V (sj)(x)κp(t, x, r), t, x ∈ W,
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Jj(t) =

∫
V (sj)∩b(t,r)

(
1− ‖t− x‖

2
2

r2

)p
dx =

∫
W

fj(t, x) dx, t ∈ W,

and

J̃j(t) =

∫
V (sj)∩b(t,r)

(
1− ‖t− x‖

2
2

r2

)2p

dx =

∫
W

f 2
j (t, x) dx, t ∈ W.

We start by deriving a representation formula of the conditional expectation ε(t) =
E (Γ(t) |E = e) for t ∈ W . By applying the Campbell theorem for random point pro-
cesses, see Theorem 3.3.2, with f(x) = fj(t, x) and by using that 1V (sj)(x)1V (sk)(x) = 0
if j 6= k we get that

ε(t) = E

(
Z∑
i=1

n∑
j=1

Cj1V (sj)(Xi)κp(t,Xi, R)
∣∣∣E = e

)

=
n∑
j=1

cj E

(
Z∑
i=1

fj(t,Xi)
∣∣∣E = e

)

=
n∑
j=1

cj

∫
W

fj(t, x)
n∑
k=1

ak1V (sk)(x) dx

=
n∑
j=1

cj aj Jj(t), t ∈ W. (5.6)

In particular, (5.6) should be satisfied for t = s1, . . . , sn, which results in a system of n
linear equations with unknown variables c1, . . . , cn (recall that a1, . . . , an and r were
already computed in the context of calibrating the germ-grain model M of precipitation
cells and p is assumed to be known). In general, this system of equations cannot be
solved exactly under the constraint that c1, . . . , cn ≥ 0 (as C1, . . . , Cn ≥ 0 a.s.). Thus,
we suggest to compute c1, . . . , cn in a nonnegative least-squares sense, i.e., by

(c1, . . . , cn) = argmin
c′1,...,c

′
n≥0


n∑
i=1

(
ε(si)−

n∑
j=1

c′j ajJj(si)

)2
 , (5.7)

where again the algorithm presented in Lawson and Hanson (1974), Chapter 23 can be
used.

Next, we derive a representation formula of the conditional variance v(t) = var (Γ(t) |E =
e) for t ∈ W , which is a more complicated task. As a first result we get that

E
(

Γ2(t)
∣∣∣E = e

)
= E

( Z∑
i=1

n∑
j=1

Cj1V (sj)(Xi)κp(t,Xi, R)

)2 ∣∣∣E = e
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= E

(
n∑
j=1

n∑
k=1

CjCk

Z∑
i=1

1V (sj)(Xi)κp(t,Xi, R)
Z∑
l=1

1V (sk)(Xl)κp(t,Xl, R)
∣∣∣E = e

)

=
n∑
j=1

n∑
k=1

E (CjCk |E = e) E

(
Z∑
i=1

fj(t,Xi)
Z∑
l=1

fk(t,Xl)
∣∣∣E = e

)

=
n∑
j=1

n∑
k=1

E (CjCk |E = e) ·

·

(∫
W

fj(t, x) aj dx

∫
W

fk(t, x) ak dx+

∫
W

fj(t, x) fk(t, x)
n∑

m=1

am1V (sm)(x) dx

)

=
n∑
j=1

E (C2
j |E = e)

(
a2
j J

2
j (t) + aj J̃j(t)

)
+

n∑
j=1

n∑
k=1
k 6=j

cj ck aj ak Jj(t) Jk(t), t ∈ W,

where we use the property of Poisson processes shown in Theorem 3.3.5 with f(x) =
fj(t, x) and g(x) = fk(t, x) as well as that fj(t, x)fk(t, x) = 0 for all t, x ∈ W if j 6= k.
Furthermore, based on the representation formula of {ε(t), t ∈ W} derived in (5.6) it
holds that(

E (Γ(t) |E = e)
)2

=

(
n∑
j=1

cj aj Jj(t)

)2

=
n∑
j=1

n∑
k=1

cj ck aj ak Jj(t) Jk(t)

=
n∑
j=1

c2
j a

2
j J

2
j (t) +

n∑
j=1

n∑
k=1
k 6=j

cj ck aj ak Jj(t) Jk(t), t ∈ W.

Finally, combining both results yields that

v(t) = E
(

Γ2(t)
∣∣∣E = e

)
−
(
E (Γ(t) |E = e)

)2

=
n∑
j=1

E (C2
j |E = e)

(
a2
j J

2
j (t) + aj J̃j(t)

)
− c2

j a
2
j J

2
j (t)

=
n∑
j=1

E (C2
j |E = e)

(
a2
j J

2
j (t) + aj J̃j(t)

)
− c2

j

(
a2
j J

2
j (t) + aj J̃j(t)

)
+ c2

jajJ̃j(t)

=
n∑
j=1

c̃j

(
ajJ̃j(t) + a2

jJ
2
j (t)

)
+

n∑
j=1

c2
jajJ̃j(t), t ∈ W. (5.8)

Putting t = s1, . . . , sn in (5.8) again results in a system of n linear equations with
unknown variables c̃1, . . . , c̃n. Due to the constraint c̃1, . . . , c̃n ≥ 0 we solve the system
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of equations in a nonnegative least-squares sense, too, i.e.,

(c̃1, . . . , c̃n) = argmin
c′1,...,c

′
n≥0

{
n∑
i=1

(
v(si)−

n∑
j=1

c2
jajJ̃j(si)

−
n∑
j=1

c′j

(
ajJ̃j(si) + a2

jJ
2
j (si)

))2
 . (5.9)

5.4.2. Suitable distributions for scaling variables

After having computed the (conditional) expectations c1, . . . , cn and variances c̃1, . . . , c̃n
of the local scaling variables C1, . . . , Cn (given {E = e}), a two-parameter distribution
can be fitted to each Ci for i = 1, . . . , n using the method of moments. The following
absolutely continuous distributions seem to be the most suitable ones since they are
defined on the nonnegative real line, have finite second moments, and their parameters
can be represented as closed functions of expectation and variance, which is required
for applying the method of moments (two of the considered distributions have finite
second moments for certain parameter configurations only).

Let C ∈ {C1, . . . , Cn} be a fixed random scaling variable and let f : R→ [0,∞) denote
the PDF of C.

1. The scaling variable C has a beta prime distribution with parameters α, β > 0 if

f(x) =
xα−1(1 + x)−α−β

B(α, β)
1(0,∞)(x), x ∈ R,

where B : (0,∞)× (0,∞)→ (0,∞) is the beta function defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt, x, y > 0.

Then, the expectation and variance of C are given by

EC =
α

β − 1
for β > 1 and varC =

α(α + β − 1)

(β − 2)(β − 1)2
for β > 2.

Accordingly, the parameters α and β can be computed based on EC and varC
by

α =
(EC)2(EC + 1)

varC
+ EC and β =

EC(EC + 1)

varC
+ 2.
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2. The scaling variable C has a gamma distribution with parameters α, β > 0 if

f(x) =
βα

Γ′(α)
xα−1e−βx 1(0,∞)(x), x ∈ R,

where Γ′ : (0,∞)→ (0,∞) is the gamma function defined as

Γ′(x) =

∫ ∞
0

tx−1e−t dt, x > 0.

Then, the expectation and variance of C are given by

EC =
α

β
and varC =

α

β2
.

Accordingly, the parameters α and β can be computed based on EC and varC
by

α =
(EC)2

varC
and β =

EC
varC

.

3. The scaling variable C has an inverse gamma distribution with parameters
α, β > 0 if

f(x) =
βα

Γ′(α)
x−α−1e−

β
x 1(0,∞)(x), x ∈ R.

Then, the expectation and variance of C are given by

EC =
β

α− 1
for α > 1 and varC =

β2

(α− 2)(α− 1)2
for α > 2.

Accordingly, the parameters α and β can be computed based on EC and varC
by

α =
(EC)2

varC
+ 2 and β =

(EC)3

varC
+ EC.

4. The scaling variable C has an inverse normal distribution (or Wald distribution)
with parameters µ, λ > 0 if

f(x) =

(
λ

2πx3

) 1
2

exp

{
−λ(x− µ)2

2µ2x

}
1(0,∞)(x), x ∈ R.

Then, the expectation and variance of C are given by

EC = µ and varC =
µ3

λ
.

Accordingly, the parameters µ and λ can be computed based on EC and varC
by

µ = EC and λ =
(EC)3

varC
.

120



5.5. Model-based estimation of area probabilities

5. The scaling variable C has a log-normal distribution with parameters µ ∈ R and
σ2 > 0 if

f(x) =
1√

2πσx
exp

{
−(log x− µ)2

2σ2

}
1(0,∞)(x), x ∈ R.

Then, the expectation and variance of C are given by

EC = eµ+ 1
2
σ2

and varC = e2µ+σ2
(
eσ

2 − 1
)
.

Accordingly, the parameters µ and σ2 can be computed based on EC and varC
by

µ = 2 log(EC)− 1

2
log(varC + (EC)2) and σ2 = log

(
varC

(EC)2
+ 1

)
.

Finally, all (conditional) characteristics of the random field {Γ(t), t ∈ W} of precip-
itation amounts that are assumed to depend on the current forecast period T have
been determined: the local intensities a1, . . . , an for the occurrence of precipitation
cells, the cell radius r, and the (conditional) distributions of the local scaling variables
C1, . . . , Cn. Note that the type of these distributions (one of the five introduced above)
as well as the shape parameter p of the response function κp are considered to be fixed
for all forecast periods. A recommendation on how to choose these remaining model
configurations in practice is given in Section 5.6.

5.5. Model-based estimation of area probabilities

The proposed modeling approach for the representation of precipitation amounts in
terms of the random field {Γ(t), t ∈ W} introduced in (5.2) can be used for the
derivation of area probabilities for the occurrence of precipitation exceeding arbitrary
thresholds. According to our model, there is precipitation of more than u ≥ 0 mm
somewhere inside a Borel set B ∈ B(W ) if Γ(t) > u for at least one location t ∈ B.
Thus, the σ(E)-measurable random area probability Π(u)(B) : Ω → [0, 1] for the
occurrence of precipitation of more than u mm in B is modeled as

Π(u)(B) = P(max{Γ(t), t ∈ B} > u |E).

However, an analytical formula for Π(u)(B) (and also for point probabilities, which
are obtained when B is chosen to be a singleton) can only be given for the occur-
rence of precipitation (i.e., for u = 0 mm), see (4.13). Therefore, we suggest to
estimate area probabilities based on repeated Monte Carlo simulation. In applica-
tions (with a fixed realization e of E), we first determine the intensities a1, . . . , an
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for the occurrence of precipitation cells and the cell radius r based on the available
point probabilities p(0)(s1), . . . , p

(0)(sn) and fit the (conditional) distributions of the
scaling variables C1, . . . , Cn based on the expectations ε(s1), . . . , ε(sn) and variances
v(s1), . . . , v(sn) of point precipitation amounts, where one of the five distributions
presented in Section 5.4.2 is used. In order to generate realizations of the random field
{Γ(t), t ∈ W} of precipitation amounts (conditioned on {E = e}), we first simulate
the random germ-grain model M of precipitation cells (conditioned on {E = e})
according to Algorithm 3.3.5 and then generate realizations of the random scaling
variables C1, . . . , Cn (also conditioned on {E = e}). Simulation algorithms for all five
distributions can be found in Kroese et al. (2011), Section 4.2.1 (for the beta prime
distribution), Section 4.2.6 (for the gamma distribution), Section 3.1.2.3 (for the inverse
gamma distribution), Section 4.2.17 (for the inverse normal distribution), and Section
4.2.10 (for the log-normal distribution). We suggest to use the following Monte Carlo
estimator of the (deterministic) area probability π(u)(B) = E (Π(u)(B) |E = e). For
an arbitrary integer j ∈ N let {Γ(1)(t), t ∈ W}, . . . , {Γ(j)(t), t ∈ W} be a sequence
of (conditionally) independent and identically distributed random fields in W with

{Γ(i)(t), t ∈ W} d
= {Γ(t), t ∈ W} for i = 1, . . . , j (conditioned on E = e). Then, an

estimator π̂(u)(B) of π(u)(B) is given by

π̂(u)(B) =
1

j
#{i ∈ {1, . . . , j} : max{Γ(i)(t), t ∈ B} > u}. (5.10)

Similarly, the expected precipitation amount ε(t) for any t ∈ W can be estimated by
the empirical mean of Γ(1)(t), . . . ,Γ(j)(t). This seems to be more efficient than using
(5.6), where a large number of integrals has to be computed numerically.

We present some sample results that were obtained using the proposed model of
precipitation amounts (with shape parameter p = 1 and gamma distributed scaling
variables) based on the point forecast data described in Section 5.1. In Figure 5.6,
typical realizations of the random field {Γ(t), t ∈ W} of precipitation amounts are shown
for two sample forecast periods. One would expect that the radius r of precipitation
cells (representing precipitation of any amount) is bigger than the radius computed
according to the approach presented in Chapter 4, where only precipitation amounts
of more than 0.1 mm are considered. In order to account for this we consider the
possible radii 25, 27.5, . . . , 65 (in pixel) for all forecast periods in summer 2012 and the
radii 30, 32.5, . . . , 70 for winter 2012. For forecast period June 16, 2012, 20-21 UTC,
however, the radius r is slightly smaller than the one computed in Chapter 4 (27.5
pixel instead of 30), which can most likely be explained by random estimation errors.
In forecast period December 9, 2012, 11-12 UTC a larger radius is computed using the
approach presented in this chapter (70 instead of 52.5 pixel), which is also observed for
most other forecast periods. Although simulated precipitation patterns look atypical
compared to radar data, see Figure 4.3, we observe that precipitation cells with high
amounts are mainly generated in regions where indeed high precipitation amounts
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June 16, 2012, 20-21 UTC, r = 27.5 pixel December 9, 2012, 11-12 UTC, r = 70 pixel

Figure 5.6.: Realizations of the random field {Γ(t), t ∈ W} of precipitation amounts
with shape parameter p = 1 and gamma distributed scaling variables for
two selected forecast periods.

occurred and vice versa. In Figures 5.7 and 5.8, examples of area probabilities for all
Voronoi cells V (s1), . . . , V (s503) that intersect the subset Win ⊂ W of locations with a
certain distance to the boundaries of Germany (see Section 4.5.2) are illustrated. Area
probabilities are estimated based on 5,000 realizations of the random field {Γ(t), t ∈ W}
of precipitation amounts for thresholds u ∈ {0, 0.2, 0.7, 2}, which can be done in a
reasonable computation time. We again find a clear relationship between estimated
area probabilities and underlying point probabilities, compare to Figures 5.2 and 5.3.
Area probabilities are always significantly higher than point probabilities but both
types of probabilities take lower and higher values in the same regions. For forecast
period June 16, 2012, 20-21 UTC we observe that area probabilities for the occurrence
of precipitation of more than 0.2 mm are comparable to those estimated for the
occurrence of precipitation of more than 0.1 mm in Section 4.6, see Figure 4.10 (left),
which can be explained by the smaller cell radius. Finally, Figure 5.9 shows estimated
mean precipitation amounts in W for two sample forecast periods. A comparison
with expected precipitation amounts ε(s1), . . . , ε(s503) in Figure 5.4 reveals a close
correspondence. In particular, smooth transitions near the boundaries of the Voronoi
cells are provided.
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Figure 5.7.: Area probabilities for the occurrence of precipitation of more than 0 mm
(top left), 0.2 mm (top right), 0.7 mm (bottom left), and 2 mm (bottom
right) in forecast period July 16, 2012, 20-21 UTC. Area probabilities are
estimated based on 5,000 realizations of the random field {Γ(t), t ∈ W}
with cell radius r = 27.5 pixels, shape parameter p = 1, and gamma
distributed scaling variables for all Voronoi cells intersecting Win.
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Figure 5.8.: Area probabilities for the occurrence of precipitation of more than 0 mm
(top left), 0.2 mm (top right), 0.7 mm (bottom left), and 2 mm (bottom
right) in forecast period December 9, 2012, 11-12 UTC. Area probabilities
are estimated based on 5,000 realizations of the random field {Γ(t), t ∈ W}
with cell radius r = 70 pixels, shape parameter p = 1, and gamma
distributed scaling variables for all Voronoi cells intersecting Win.
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June 16, 2012, 20-21 UTC, r = 27.5 pixel December 9, 2012, 11-12 UTC, r = 70 pixel

Figure 5.9.: Mean precipitation amounts in Win estimated based on 5,000 realizations
of the random field {Γ(t), t ∈ W} with shape parameter p = 1 and gamma
distributed scaling variables for two selected forecast periods.

5.6. Forecast verification

To conclude this chapter, a comparison of forecasts with rain gauge adjusted radar
measurements is performed using the data described in Section 5.1. However, before
applying the proposed model of precipitation amounts to estimate area probabilities for
the available m = 854 forecast periods, the shape parameter p of the response function
κp defined in (5.1) and the type of (conditional) distribution of the random scaling
variables C1, . . . , C503 need to be chosen.

5.6.1. Choice of model configuration

We suggest to compare point probabilities obtained by fitting gamma distributions
to the available data (see Section 5.3) with point probabilities estimated based on
repeated simulation of the proposed model of precipitation (see Section 5.5) to give a
recommendation on how to choose the shape parameter p and the type of (conditional)
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distribution of the local scaling variables C1, . . . , C503. We consider p to take one of the
five values from {0.5, 1, 2, 3, 4} and the five types of two-parameter distributions for
the scaling variables considered in Section 5.4.2: beta prime, gamma, inverse gamma,
inverse normal, and log-normal. It does not seem necessary to consider values p > 4
as this does not lead to significant changes in estimated probabilities compared to
p = 4. For each value of p, each distribution type, and each threshold u ∈ T \ {0}
in mm, point probabilities at s1, . . . , s503 are determined for all available forecast
periods using the Monte Carlo estimator (5.10). Then, a comparison with the point
probabilities obtained from fitted gamma distributions, see (5.3), is made. For each
shape parameter, distribution type, threshold, and weather station, the bias and the
mean squared difference (MSD) are computed using the point probabilities of all
available forecast periods. Since this results in a huge amount of computed values, the
scores are averaged once more over all weather stations. As no consistent estimation of
point probabilities can be guaranteed for weather stations outside the boundaries of
Germany (due to boundary effects), only stations in Win are taken into account here.
The results reveal that for all thresholds and shape parameters, the model performs best
regarding MSDs when using gamma distributions for the scaling variables C1, . . . , C503.
However, the effect of changing this type of distribution seems to be minor since only
small variations in the scores are observed. Similar results are found when analyzing
the effect of changing the shape parameter (when fixing the gamma distribution).
The scaled Epanechnikov kernel (p = 1) leads to the smallest MSDs in almost all
cases but differences are minor for p = 2, 3, 4, see Table 5.1, where mean MSDs are
listed for thresholds u ∈ {0.1, 0.3, 0.7, 2, 5}. Only the surface of the upper half of
the 3-dimensional unit ball (p = 0.5) produces larger MSDs and significant biases
in estimated point probabilities, making κ0.5 inappropriate for the use as response
function. Since the computed scores barely depend on the shape parameter and the
distribution type, we also consider a verification of area probabilities using radar data
in order to give a final recommendation on how to choose these model configurations,
see Section 5.6.2.

5.6.2. Score functions

We perform a forecast verification by comparing estimated area probabilities with
precipitation indicators derived from independent rain gauge adjusted radar data.
As test areas we again choose the Voronoi cells V (s1), . . . , V (s503) that correspond
to the locations s1, . . . , s503 of the 503 weather stations since they include areas of
different shapes, sizes, and orientations. For each value of p and each of the five
distributions suggested in Section 5.4.2, area probabilities for V (s1), . . . , V (s503) are
determined according to the estimator (5.10) for all m = 854 forecast periods and all
thresholds u ∈ T \ {0} in mm. To each estimated area probability for the occurrence of
precipitation of more than u mm somewhere in a Voronoi cell V (si) for i ∈ {1, . . . , 503},
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Table 5.1.: Mean MSDs of point probabilities obtained by fitting gamma distributions
to the available data and point probabilities estimated based on repeated
simulation of the proposed model of precipitation with gamma distributed
scaling variables for different shape parameters and thresholds.

threshold in mm 0.1 0.3 0.7 2 5
MSD for p = 0.5 2.6 · 10−2 2.5 · 10−2 1.3 · 10−2 2.1 · 10−3 1.2 · 10−4

MSD for p = 1 3.3 · 10−3 2.1 · 10−3 1.16 · 10−3 2.7 · 10−4 3.2 · 10−5

MSD for p = 2 3.5 · 10−3 2.4 · 10−3 1.3 · 10−3 2.71 · 10−4 3.13 · 10−5

MSD for p = 3 4.2 · 10−3 2.9 · 10−3 1.48 · 10−3 2.81 · 10−4 3.4 · 10−5

MSD for p = 4 5.1 · 10−3 3.4 · 10−3 1.7 · 10−3 3 · 10−4 4 · 10−5

we assign the corresponding precipitation indicator, which is 1 if there is precipitation
of more than u mm somewhere within V (si) with respect to radar data and 0 otherwise.
In order to provide a systematic forecast verification for each fixed threshold, we again
compute biases, BSSs, and empirical correlation coefficients according to (4.15)-(4.19)
based on area probabilities and precipitation indicators of all forecast periods. To
further increase the significance of the verification results, all three scores are only
determined if the corresponding weather event occurs at least 10 times in the considered
Voronoi cell over the entire time period.

At first, we analyze the performance of the three score functions when varying the shape
parameter p and the type of (conditional) distribution of the local scaling variables
C1, . . . , C503. The results largely correspond with those obtained in Section 5.6.1. For
almost all shape parameters and thresholds, the gamma distribution yields the highest
BSSs and correlation coefficients, although varying the type of distribution has a
minor effect. A more noticeable impact (particularly on the bias) is observed when
changing the value of the shape parameter p. It seems that larger values of p are more
appropriate when computing area probabilities for higher thresholds. To obtain a bias
that is as close as possible to 0, we recommend to use the scaled Epanechnikov kernel
(p = 1) for thresholds smaller than 0.2 mm, the scaled biweight kernel (p = 2) for
thresholds between 0.2 mm and 0.5 mm and the scaled triweight kernel (p = 3) for
thresholds of at least 0.5 mm. A larger value of p can improve the bias even more for
thresholds of more than 1 mm but this will also lead to decreasing BSSs and correlation
coefficients and is therefore not recommended. Choosing p = 0.5 causes estimated area
probabilities for all thresholds to be systematically too low. If one shape parameter
needs to be selected to estimate area probabilities for all thresholds based on the same
fitted model, then using p = 2 seems to be the best compromise.

We analyze the three considered score functions for estimated area probabilities, where
the model configurations suggested above (i.e., gamma distributed scaling variables
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and varying shape parameters for different thresholds) are used. Since obtained area
probabilities are expected to depend heavily on the underlying input data, we also
provide a comparison of point probabilities at s1, . . . , s503 (which are computed based
on fitted gamma distributions, see Section 5.3) and precipitation indicators derived
from radar data. Again, the bias, the BSS, and the empirical correlation coefficient are
considered, where scores are only computed for those weather stations at which the
corresponding weather event occurs at least 10 times during the selected time period.
This implies, however, that no verification of point probabilities for thresholds of 5 mm
or higher is possible. Scores for all considered thresholds are visualized using boxplots
in Figure 5.10 for point probabilities and in Figure 5.11 for area probabilities. Again,
only weather stations located in Win and Voronoi cells intersecting Win are taken into
account.

When analyzing mean biases for estimated area probabilities, we find that there is no
systematic error for all thresholds up to 5 mm, whereas area probabilities seem to be
slightly too low for thresholds of 10 and 15 mm. More variation is observed for single
Voronoi cells. Although the bias is close to zero for most areas, we occasionally obtain
values reaching up to −7 % or +10 %, see Figure 5.11 (top). Biases are closer to zero for
higher thresholds, since in general the corresponding probabilities are smaller. Several
reasons causing these biases are conceivable. On the one hand, radar measurements
are susceptible to interference that can result in systematic errors for some regions.
On the other hand, we already indicated in Section 4.7.1 that biases in estimated
area probabilities are induced by biases in the underlying point probabilities (even if
these are smaller). Indeed, we observe positive biases of point and area probabilities in
northern Germany and small negative biases in southern Germany. Thus, it seems that
occasional biases of estimated area probabilities are caused (and slightly amplified) by
the underlying point forecasts.

Next, BSSs and empirical correlation coefficients are analyzed. In general, these scores
decrease with increasing threshold (for both point and area probabilities), which shows
that precipitation events occurring less frequently are more difficult to predict. We
find that averaged scores as well as almost all single scores are clearly positive for all
thresholds up to u = 3 mm, see Figure 5.11 (center and bottom). Furthermore, a direct
comparison with the underlying point data, see Figure 5.10 (center and bottom), shows
that BSSs and correlation coefficients of estimated area probabilities for thresholds up
to 2 mm actually perform slightly better than those of point forecasts. Even the few
weather stations with more unreliable point probabilities, indicated by very low (or
negative) BSSs and correlation coefficients, do not affect estimated area probabilities
very much, which is a particularly nice result. Again, we observe that best results
(i.e., highest score functions) for area probabilities are obtained in those regions where
the underlying data have the highest scores as well, whereas small insufficiencies in
our method seem to be influenced by less reliable data. A meaningful verification
of area probabilities estimated for thresholds of 5 mm or higher is difficult since the
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Figure 5.10.: Boxplots showing biases (top), BSSs (center), and empirical correlation
coefficients (bottom) of point probabilities that are obtained by fitting
gamma distributions to data provided by DWD for all weather stations
s1, . . . , s503 in Win.
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Figure 5.11.: Boxplots showing biases (top), BSSs (center), and empirical correlation
coefficients (bottom) of area probabilities that are estimated based on
the proposed precipitation model for all Voronoi cells V (s1), . . . , V (s503)
intersecting Win.
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Figure 5.12.: RPSSs of point probabilities that are obtained by fitting gamma distri-
butions to data provided by DWD for weather stations s1, . . . , s503 (left)
and of estimated area probabilities for Voronoi cells V (s1), . . . , V (s503)
(right). RPSSs are only shown for areas intersecting Win.

corresponding (extreme) precipitation events occur rarely in the data. For example, a
verification of area probabilities is only possible for 34 Voronoi cells if the threshold is
10 mm and for only 1 Voronoi cell if the threshold is 15 mm. BSSs and correlation
coefficients are significantly smaller than for lower thresholds but still positive for most
test areas. Although our results indicate that our procedure gives more reliable area
probabilities for extreme precipitation events than the climate mean, we also observe
that forecast quality is considerably lower than for smaller thresholds. Thus, such area
probabilities should be handled with caution.

The score functions computed previously are only able to assess performance of forecasts
in dependence of the chosen threshold. To conclude forecast verification, we aim to
assess the overall forecast quality of the proposed method. For that purpose, we ana-
lyze the ranked probability skill score (RPSS), see, e.g., Daan (1985) or Wilks (2011),
Section 8.4.9. This score can be considered as a multiple-category version of the BSS
and is constructed as follows. At first, the interval [0,∞) of all possible precipitation
amounts in mm is subdivided into a sequence U1 = [0, 0.1], U2 = (0.1, 0.2], . . . , U11 =
(10, 15], U12 = (15,∞) of 12 subintervals, whose endpoints correspond to the thresholds
considered throughout this chapter. For a fixed forecast period j ∈ {1, . . . ,m} and test
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area B ∈ B(W ), let π
(u)
j (B) denote the probability for the occurrence of precipitation

of more than u mm somewhere inside B in period j. Based on this, we determine the
sequence πj(B,U1), . . . , πj(B,U12), where for i = 1, . . . , 12 the probability of a precipi-
tation amount in Ui occurring within B in forecast period j is denoted by πj(B,Ui),

i.e., πj(B,U1) = 1 − π
(0.1)
j (B), πj(B,U2) = π

(0.1)
j (B) − π

(0.2)
j (B), . . . , πj(B,U11) =

π
(10)
j (B)− π(15)

j (B) and πj(B,U12) = π
(15)
j (B). Furthermore, we consider the indicator

variables Ij(B,U1), . . . , Ij(B,U12), where Ij(B,Ui) is equal to 1 if the maximal precip-
itation amount observed within B in period j according to radar data falls into the
interval Ui and Ij(B,Ui) is equal to 0 otherwise for i = 1, . . . , 12. Then, the ranked
probability score (RPS) rpsπ is computed as

rpsπ =
1

m

m∑
j=1

12∑
k=1

(
k∑
i=1

πj(B,Ui)−
k∑
i=1

Ij(B,Ui)

)2

.

Similar as for the BS, another RPS rpsπ̃ is computed using a reference prediction (where
often the climate mean defined in (4.16) is used) and the RPSS rpssπ is determined
as

rpssπ = 1− rpsπ
rpsπ̃

.

RPSSs for the underlying point probabilities can be computed analogously. Values of
this score should be positive and as high as possible. Figure 5.12 shows the RPSSs
for point and area probabilities, where only cells intersecting Win are colored. All
computed values (except for three weather stations) are clearly positive with values
between 0.15 and 0.4. In particular, we find that scores for area probabilities have
similar values as those for point probabilities, which indicates that our method provides
area forecasts with a similar quality as point forecasts included in the (revised) data.
The mean RPSS of area probabilities over all Voronoi cells even has a higher value than
that for point probabilities over all weather stations (point probabilities: 0.25, area
probabilities: 0.28). We conclude that different precipitation amounts occur mainly in
those areas and forecast periods, where the corresponding probabilities are high, which
shows the success of the developed model-based approach to the estimation of area
probabilities for precipitation events.

133





6. Cluster-based modeling of
thunderstorm cells

Besides the occurrence of precipitation amounts exceeding certain (warning) thresholds,
which is considered in Chapters 4 and 5, other weather events are of great interest in
PWP, too. In the present chapter, we address the stochastic modeling and simulation
of thunderstorm cells with the goal of estimating reliable point and area probabilities
for their occurrence. It is generally recognized that thunderstorm events are much
more difficult to predict than, e.g., the occurrence of precipitation, which is why
reliable forecasts can usually be given for short forecast ranges only. Furthermore,
thunderstorm cells typically have different properties than precipitation cells, making
it unclear whether similar stochastic models can be used for both types of weather
events. The available data used in this chapter to illustrate the proposed models
and simulation algorithms are presented in Section 6.1. They are provided by DWD
and include both point forecasts for the occurrence of thunderstorms and historical
thunderstorm records. In a first approach, considered in Section 6.2, we suggest the
application of the model for precipitation cells introduced in Chapter 4 and demonstrate
why it is not suitable for the characterization of thunderstorms. In Section 6.3, a
more sophisticated model is developed, which enables a more realistic representation
of thunderstorm cells using cluster processes. Several statistical methods for the
computation of model characteristics are presented in Section 6.4. The estimation of
area probabilities for the occurrence of thunderstorms based on repeated Monte Carlo
simulation is discussed in Section 6.5, where we put a particular focus on a conditional
simulation algorithm that significantly improves the forecast quality for short ranges
by combining point probabilities with thunderstorm records from past periods. Finally,
Section 6.6 provides a forecast verification by comparing point and area probabilities
that were derived by (conditional) simulation of the proposed model with thunderstorm
data. The results of this chapter have been summarized in Kriesche et al. (2017b).

6.1. Description of data

The model-based methods for the estimation of thunderstorm probabilities developed
in this chapter combine data from PWP and high-resolution thunderstorm records from
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past periods. As a basis for choosing a suitable domain, we first consider a rectangular
window in central Europe that contains the points {(i, j), i, j = 1, . . . , 900} of the
RADOLAN lattice introduced in Section 2.1. Recall that point coordinates which refer
to the RADOLAN lattice are denoted as RADOLAN coordinates in this thesis and
that neighboring lattice points always have a distance of 1 km, which implies that
using the Euclidean distance for pairs of RADOLAN coordinates is more precise and
produces smaller errors than using the projected window considered in Chapters 4 and
5 (a small, negligible error still occurs due to the curvature of the earth’s surface). The
window that comprises the RADOLAN lattice is slightly extended to the south, east,
and north (to cover the entire territory of Germany and to allow for a more convenient
representation) and cut in the west, where large regions of the Netherlands, Belgium,
and France are included that are not of interest in our example of application. This
finally results in a rectangular window [150, 925]× [−25, 950] covering the area shown
in Figure 6.1, where all locations in this domain are given in RADOLAN coordinates.
A conversion of geographical coordinates into RADOLAN coordinates and back can be
done using an algorithm provided by DWD. The Euclidean distance between any two
locations in [150, 925]× [−25, 950] (given in RADOLAN coordinates) can be interpreted
as the (approximate) distance between the corresponding geographical coordinates in
km.

Point forecast data are available for a regularly spaced lattice consisting of 1,575 points
inside the domain [150, 925]× [−25, 950] given in RADOLAN coordinates. The lattice
is designed in such a way that neighboring points always have a distance of 20 km.
Furthermore, we consider a sequence of 2,205 forecast periods, each with a length of
one hour, covering the months May, June, and July 2016 with forecast ranges of one
to three hours ahead. This period is of particular interest as in the early summer
2016 an exceptionally high number of severe thunderstorms occurred, including heavy
precipitation and hail events. Note that thunderstorms are much more difficult to
predict than precipitation, which is why no forecast ranges of more than three hours
are considered in our example of application. For each of the selected 2,205 forecast
periods, point probabilities for the occurrence of thunderstorms were computed for all
1,575 points of the 20 km× 20 km lattice using the ModelMIX system of DWD, see
Section 2.3.2. In Figure 6.1, point probabilities for two sample forecast periods are
illustrated. In general, thunderstorms occur much more infrequently than precipitation,
which causes probabilities for thunderstorms to be considerably lower than those for
the occurrence of precipitation in most forecast periods. In particular, almost all point
probabilities in our available data are smaller than 0.5. In forecast period May 22, 2016,
19-20 UTC, we observe low point probabilities in the entire domain, which suggest
the occurrence of only few scattered thunderstorm cells. In the period July 11, 2016,
14-15 UTC, significantly higher point probabilities of up to 0.4 were predicted for some
regions of southern and eastern Germany.

As a second source of data historical records of thunderstorm cells from NowCastMIX

136



6.1. Description of data

May 22, 2016, 19-20 UTC July 11, 2016, 14-15 UTC

Figure 6.1.: Available point forecast data for two selected forecast periods: the 1,575
points of the considered 20 km × 20 km lattice and the corresponding
Voronoi tessellation, where each Voronoi cell is colored according to the
probability for the occurrence of a thunderstorm at the corresponding
lattice point.

are available. For each selected forecast period, centers of occurring thunderstorm cells
are identified using three different methods, see Section 2.1, and thunderstorm cells
are modeled as discs with a globally fixed radius of 10 km. Thunderstorm records
from NowCastMIX are given in RADOLAN coordinates, which further motivates
choosing the domain as introduced above. Besides the locations of thunderstorm cell
centers, NowCastMIX contains a variety of other information. Of particular interest
in this chapter are the current wind speed and direction at the location of the cell
center as well as a hail flag (an indicator of thunderstorm strength taking the values
0, 1 or 2), which are derived from radar reflectivities using several radar processing
methods. Based on these characteristics, a so-called warning cone is computed for
each thunderstorm cell using a propagation angle of 7.5◦, which reflects the possible
movement of the cell in the subsequent one-hour period. Figure 6.2 provides examples
of NowCastMIX data for two sample forecast periods. While records for forecast period
July 11, 2016, 14-15 UTC correspond well to the point probabilities illustrated in
Figure 6.1 (right), we find that in period May 22, 2016, 19-20 UTC, a considerably
larger number of thunderstorm cells occurred than was expected due to the relatively
low point probabilities, particularly in southern Germany.
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May 22, 2016, 19-20 UTC July 11, 2016, 14-15 UTC

Figure 6.2.: Data from NowCastMIX for two selected forecast periods: recorded thun-
derstorm cells together with warning cones that reflect the possible move-
ment of cells in the subsequent one-hour period. Thunderstorm cells are
colored according to an internal classification of DWD.

6.2. Application of the model for precipitation cells

As a first approach to the modeling of thunderstorm cells we apply the Cox germ-grain
model, which was introduced in Chapter 4 for the representation of precipitation cells.
To provide consistence of modeled thunderstorm cells with NowCastMIX data, the
radius of circular grains is set to a fixed value of 10 km, which means that the time-
consuming algorithm presented in Sections 4.5.2 and 4.5.3 does not need to be used. It
remains to determine for each forecast period the local intensities for the occurrence of
thunderstorms that correspond to the 1,575 Voronoi cells of the 20 km× 20 km lattice
shown in Figure 6.1 according to (4.7), where the lattice points and point probabilities
described in Section 6.1 are used. Realizations of the fitted germ-grain model for two
sample forecast periods are illustrated in Figure 6.3. Although thunderstorm cells are
mainly generated in those regions where positive point probabilities are forecasted and
where indeed thunderstorms occurred according to NowCastMIX data, we observe that
simulated and recorded thunderstorm patterns have a completely different structure.
While thunderstorm cells that are generated according to the proposed Cox germ-grain
model appear to be widely scattered, we find that real thunderstorm cells recorded in
NowCastMIX seem to occur in clusters. In order to generally assess the applicability
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May 22, 2016, 19-20 UTC July 11, 2016, 14-15 UTC

Figure 6.3.: Realizations of the Cox germ-grain model introduced in Chapter 4 for the
representation of precipitation cells applied to the modeling of thunder-
storm cells with a cell radius of 10 km for two selected forecast periods.

of the Cox germ-grain model for the representation of thunderstorm cells, we analyze
the performance of computed area probabilities. This time, the Voronoi cells of the
20 km× 20 km lattice shown in Figure 6.1 do not appear to be suitable test areas since
most of them have the same size and shape. To obtain test areas with more varying
shapes, sizes, and orientations, we generate a realization of a stationary Poisson point
process in the considered domain [150, 925]× [−25, 950] using Algorithm 3.3.1, whose
intensity is chosen such that the expected number of points is equal to 1,000. We
obtain a realization with 999 points and use the cells of the corresponding Voronoi
tessellation, denoted as B1 . . . , B999 in the following, as test areas. Area probabilities
for B1, . . . , B999 can be computed directly according to (4.13) or estimated based on
repeated Monte Carlo simulation, see (4.14). For each test area B ∈ {B1, . . . , B999}, we
consider the sequences π1(B), . . . , πm(B) of area probabilities and I1(B), . . . , Im(B) of
thunderstorm indicators, which are 1 if there is a thunderstorm within B with respect
to NowCastMIX data and 0 otherwise, for the m = 2, 205 available forecast periods.
In order to systematically compare area probabilities and thunderstorm indicators,
we analyze three score functions: the bias, the logarithmic skill score (LSS), and the
empirical correlation coefficient. The LSS is preferred over the BSS as this score
is recognized to be more suitable for rare weather events such as the occurrence of
thunderstorms, see, e.g., Benedetti (2010) or Wilks (2011), Section 8.4.6. For each
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forecast period j ∈ {1, . . . ,m}, the ignorance ij of πj(B) is set to − log(πj(B)) if
Ij(B) = 1 and to − log(1− πj(B)) if Ij(B) = 0. Then, the logarithmic score (LS) lsπ
is defined as the mean of i1, . . . , im, i.e.,

lsπ =
1

m

m∑
j=1

ij.

Since the LS is difficult to compare for different forecast periods, it is related to the LS
lsπ̃ of a reference prediction, where usually the climate mean of I1(B), . . . , Im(B) is
used, see (4.16). Then, the LSS lssπ is given by

lssπ = 1− lsπ
lsπ̃

.

Of course, LSs of analyzed area probabilities should not be bigger than those of the
(naive) reference prediction, which is why the LSS is requested to be clearly positive.
Biases and empirical correlation coefficients can be computed according to (4.15) and
(4.19) based on π1(B), . . . , πm(B) and I1(B), . . . , Im(B). The three considered score
functions are computed and illustrated for all test areas that are not too close to
the boundaries of the domain, see Figures 6.4-6.6 (right), where each test area is
colored according to the value of the corresponding score function. Since the quality
of computed area probabilities is expected to strongly depend on the precision of
the underlying point forecast data, the same score functions are also computed for
available point probabilities, see Figures 6.4-6.6 (left), where each Voronoi cell is
colored according to the value of the score function at the corresponding point of
the 20 km× 20 km lattice. At some locations in the northwest no thunderstorms are
recorded for the entire period, which is why the corresponding Voronoi cells are left
white.

We find that point probabilities for the occurrence of thunderstorms provided by DWD
do not seem to contain any systematic bias (the mean bias is at −0.2 %, single values
range between −2 % and 1 %) but only moderate LSSs (mean value of 0.24, most single
values between 0 and 0.35) and correlation coefficients (mean value of 0.27, most single
values ranging from 0 to 0.4) are obtained. For area probabilities results are different.
We get reasonably high correlation coefficients (significantly higher than for point
probabilities with values between 0.1 and 0.6 for most test areas), which shows that
the proposed model indeed produces higher probabilities in periods and areas where
thunderstorms occur than in those where thunderstorms do not occur. However, the
biases show that area probabilities are systematically too high. The mean bias is at 3 %
and single values reach up to 7 %, which is large given that the relative frequency of a
thunderstorm (i.e., the mean thunderstorm indicator) over all test areas and forecast
periods is at 4 % only. LSSs show slightly smaller values than for point probabilities
(mean value of 0.2), with even having negative values for a few test areas. The results of
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6.3. Modeling of thunderstorm cells based on cluster processes

Figure 6.4.: Biases of point probabilities from available data for points of the 20 km×
20 km lattice (left) and of area probabilities computed according to the
Cox germ-grain model introduced in Chapter 4 applied to thunderstorms
for test areas B1, . . . , B999 (right). Biases are not shown for points and
areas at the boundaries of the considered domain.

forecast verification (in particular the significant bias) and the comparison of historical
thunderstorm records with realizations of the analyzed model demonstrate that the
Cox germ-grain model proposed in Chapter 4 for the representation of precipitation
cells is not suitable for the modeling of thunderstorms.

6.3. Modeling of thunderstorm cells based on cluster
processes

As indicated in Section 6.2, the Cox germ-grain model should not be used for the
representation of thunderstorm cells. A probable reason for the model’s failure to
provide reliable area probabilities is that it generates thunderstorm cells independently
of each other in applications, while recorded thunderstorms seem to occur in clusters.
Therefore, a different approach for the spatial modeling of thunderstorm cells is
proposed in this section. We consider a similar mathematical framework as in Chapters
4 and 5. In the following, let T be a fixed one-hour forecast period that can be
interpreted as some subinterval of the real line with a length of 60 minutes. By
T − d for d ≥ 0 we denote the one-hour time period that starts and ends d minutes
earlier than T . Furthermore, we consider the probability space (Ω,F ,P) introduced
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6. Cluster-based modeling of thunderstorm cells

Figure 6.5.: LSSs of point probabilities from available data for points of the 20 km×
20 km lattice (left) and of area probabilities computed according to the
Cox germ-grain model introduced in Chapter 4 applied to thunderstorms
for test areas B1, . . . , B999 (right). LSSs are not shown for points and areas
at the boundaries of the considered domain.

in Section 4.2, where the sample space Ω contains all possible weather scenarios in
forecast period T and the corresponding forecasts provided by DWD, F is a σ-algebra
of subsets of Ω, and P is some probability measure on (Ω,F). The random error
occurring in probabilistic forecasts provided by DWD is again modeled by a random
element E : Ω → S, where S is the (abstract) measurable space of all such possible
errors, and σ(E) ⊂ F denotes the sub-σ-algebra of events generated by E. We
introduce the random field {P (t), t ∈ W} with compact and convex domain W ⊂ R2,
where the σ(E)-measurable random variable P (t) : Ω → [0, 1] denotes the random
probability for the occurrence of a thunderstorm at location t ∈ W in forecast period
T . Similar as in Chapters 4 and 5, we assume that point forecasts are provided by
DWD for a sequence of locations s1, . . . , sn ∈ W with n ∈ N and that available data
include point probabilities p(s1) = E (P (s1) |E = e), . . . , p(sn) = E (P (sn) |E = e)
for the occurrence of thunderstorms at s1, . . . , sn, which are computed based on a
particular realization of the weather forecast models with error e ∈ S. In the example
of application considered in this chapter to illustrate the obtained results, we have
that W = [150, 925]× [−25, 950] is a rectangle of projected RADOLAN coordinates
covering the territory of Germany and s1, . . . , s1575 identifies the n = 1, 575 points of the
20 km× 20 km lattice illustrated in Figure 6.1. Furthermore, p(s1), . . . , p(s1575) denote
the point probabilities for the occurrence of thunderstorms at s1, . . . , s1575 described in
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6.3. Modeling of thunderstorm cells based on cluster processes

Figure 6.6.: Empirical correlation coefficients of point probabilities from available data
for points of the 20 km × 20 km lattice (left) and of area probabilities
computed according to the Cox germ-grain model introduced in Chapter 4
applied to thunderstorms for test areas B1, . . . , B999 (right) with corre-
sponding thunderstorm indicators from NowCastMIX data. Correlation
coefficients are not shown for points and areas at the boundaries of the
considered domain.

Section 6.1 and e is the particular error that occurs when computing these data.

We follow the same fundamental assumption as made in Section 4.3 for the modeling
of point probabilities in the context of precipitation. We consider a thunderstorm to
occur at some location t ∈ W if and only if this location is covered by at least one
thunderstorm cell. Accordingly, the random field {P (t), t ∈ W} of point probabilities
can be represented by

P (t) = P(t ∈M |E), t ∈ W, (6.1)

where M : Ω→ C is a two-dimensional random closed set (see Section 3.3.6) modeling
the union set of thunderstorm cells occurring in forecast period T . However, as already
shown, the Cox germ-grain model introduced in (4.3) is not a suitable choice for
M , which is why a more sophisticated model based on a cluster process is proposed.
We start with the modeling of cluster centers. For that purpose, we consider a two-
dimensional Cox point process {Yi, i = 1, . . . , ZY } in W defined on (Ω,F ,P) with
P(ZY <∞) = 1. We suppose that {Yi, i = 1, . . . , ZY } has a random intensity function
{Λ(0)(t), t ∈ W}, where the σ(E)-measurable random variable Λ(0)(t) : Ω → [0,∞)
denotes the random intensity for the occurrence of thunderstorm clusters at location
t ∈ W . In order to account for the circumstance that point forecasts are only available
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at the locations s1, . . . , sn but to still enable a spatially inhomogeneous distribution of
thunderstorm cells, we suppose that {Λ(0)(t), t ∈ W} can be represented by

Λ(0)(t) =
n∑
j=1

A
(0)
j 1V (sj)(t), t ∈

n⋃
i=1

V (si), (6.2)

where {V (s1), . . . , V (sn)} denotes the Voronoi tessellation of s1, . . . , sn defined in (4.2).

The σ(E)-measurable random variables A
(0)
1 , . . . , A

(0)
n : Ω→ [0,∞) can be interpreted

as local random intensities for the occurrence of thunderstorm clusters in neighborhoods
of s1, . . . , sn. If t ∈ W is located on the boundaries of one or more Voronoi cells, i.e.,
if t /∈

⋃n
i=1 V (si), then Λ(0)(t) is set to the minimum intensity of all adjacent Voronoi

cells.

For the modeling of the clusters themselves some further simplification is necessary. It
can be observed that the shapes of recorded thunderstorm clusters vary significantly
across space and time and can therefore hardly be determined, see, e.g., the sample data
illustrated in Figure 6.2. We suggest to model thunderstorm clusters as circular discs
around the points of the Cox process {Yi, i = 1, . . . , ZY } as described in the following.

Consider a sequence X(1) = {X(1)
i , i = 1, . . . , ZX(1)}, X(2) = {X(2)

i , i = 1, . . . , ZX(2)}, . . .
of identically distributed Cox point processes in W with P(ZX(i) < ∞) = 1 for all
i ∈ N. We suppose that X(1), X(2), . . . are conditionally independent of each other and
of the Cox process {Yi, i = 1, . . . , ZY } of cluster centers given {E = e} for any e ∈ S.
To provide circular thunderstorm clusters, we assume that the (identically distributed)
Cox processes X(1), X(2), . . . have a random intensity function {Λ(1)(t), t ∈ W} defined
by

Λ(1)(t) = A(1)
1b(o,R(1))(t), t ∈ W, (6.3)

where the σ(E)-measurable random variable A(1) : Ω→ [0,∞) can be interpreted as
random cluster intensity and the σ(E)-measurable random variable R(1) : Ω→ (0,∞)
describes the cluster radius. In order to give a proper representation of the process of all
thunderstorm centers, we also consider the random counting measures {N (1)(B), B ∈
B(W )}, {N (2)(B), B ∈ B(W )}, . . . that correspond to the Cox processes X(1), X(2), . . .,

i.e., N (j)(B) : Ω→ N0 with N (j)(B) = #{i : X
(j)
i ∈ B} for all B ∈ B(W ) and j ∈ N.

Based on this, we introduce the random counting measure {N(B), B ∈ B(W )} defined
by

N(B) =

ZY∑
i=1

N (i)((B − Yi) ∩W ), B ∈ B(W ).

Then, according to Lemma 3.3.1, there is a uniquely defined point process {Xi, i =
1, . . . , ZX} in W with P(ZX <∞) = 1 and N(B) = #{i : Xi ∈ B} for all B ∈ B(W ),
which is used as a model for the centers of thunderstorm cells in forecast period T . This
kind of process is referred to as a (doubly-stochastic) cluster process, see Section 3.3.5.
Due to the Cox process {Yi, i = 1, . . . , ZY } of cluster centers being non-stationary,
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the cluster process {Xi, i = 1, . . . , ZX} of thunderstorm cell centers has this property,
too.

Finally, we again suggest to model thunderstorm cells as discs b(X1, R), . . . , b(XZX , R)
with a random σ(E)-measurable radius R : Ω → (0,∞) around the locations of the
cluster process {Xi, i = 1, . . . , ZX} and represent the union set M of thunderstorm
cells as a germ-grain model by

M =

ZX⋃
i=1

b(Xi, R). (6.4)

Both the cluster process {Xi, i = 1, . . . , ZX} of thunderstorm cell centers and the
germ-grain model M of thunderstorm cells cannot be assumed to be σ(E)-measurable
since given {E = e} for any realization e of E (i.e., given a specific forecast provided
by the weather forecast models of DWD) the actual weather in the future forecast
period T is still considered to be random.

6.4. Computation of model characteristics

Since the approach to the spatial stochastic modeling of thunderstorm cells proposed
in Section 6.3 is based on a more complex point process model than the one considered
in Chapter 4 for the representation of precipitation cells, there are also more model
characteristics that need to be determined based on data provided by DWD. In
applications, fitting and simulation of the developed models is done based on a
particular forecast provided by the weather forecast models of DWD, which is why
a fixed realization e of E is considered in the rest of this chapter. Given {E = e},
the conditional distribution of the cluster-based germ-grain model M specified in
(6.4) is completely characterized by the corresponding realizations a

(0)
1 = E (A

(0)
1 |E =

e), . . . , a
(0)
n = E (A

(0)
n |E = e), a(1) = E (A(1) |E = e), r(1) = E (R(1) |E = e), and

r = E (R |E = e) of the random local intensities A
(0)
1 , . . . , A

(0)
n for the occurrence of

thunderstorm clusters, the random cluster intensity A(1), the random cluster radius R(1),
and the random radius R of thunderstorm cells. Furthermore, we assume that point
probabilities p(s1) = E (P (s1) |E = e), . . . , p(sn) = E (P (sn) |E = e) for the occurrence
of thunderstorms at sites s1, . . . , sn and thunderstorm records from NowCastMIX for
past periods are available as data input. In order to provide comparability of simulated
thunderstorm cells and recorded cells from NowCastMIX, we set r = 10 km in
applications as performed in Section 6.6.
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6.4.1. Local intensities for the occurrence of thunderstorm
clusters

The computation of the local intensities a
(0)
1 , . . . , a

(0)
n for the occurrence of thunderstorm

clusters can be done analogously to the computation of the local intensities for the
occurrence of precipitation cells considered in Section 4.5.1. We suggest to derive a
representation formula for point probabilities according to the model for thunderstorm
cells proposed in Section 6.3 and choose a

(0)
1 , . . . , a

(0)
n in such a way that point probabil-

ities computed according to the model are as close as possible to those included in the
data provided by DWD. In the following, we assume that the cluster intensity a(1), the
cluster radius r(1), and the cell radius r are known. An algorithm for the computation
of a(1) and r(1) based on NowCastMIX data is developed in Section 6.4.2 and the cell
radius r is set to a fixed value of 10 km in our example of application.

Conditioned on {E = e}, the random point process {Yi, i = 1, . . . , ZY } of cluster centers
is a Poisson point process with (deterministic) intensity function {λ(0)(t), t ∈ W}, where
λ(0)(t) = E (Λ(0)(t) |E = e) for t ∈ W . Furthermore, X(1), X(2), . . . is a sequence of
independent and identically distributed Poisson point processes with intensity function
{λ(1)(t), t ∈ W}, where λ(1)(t) = E (Λ(1)(t) |E = e) for t ∈ W . Since X(1), X(2), . . . are
supposed to be independent of {Yi, i = 1, . . . , ZY } given {E = e}, the point process
{Xi, i = 1, . . . , ZX} forms a Matérn cluster process (conditioned on {E = e}) with
random intensity function {Λ(t), t ∈ W} defined by

Λ(t) = a(1)

ZY∑
i=1

1b(Yi,r(1))(t), t ∈ W,

compare to Example 3.3.1. Due to the properties of {Xi, i = 1, . . . , ZX} being a Cox
process and {Yi, i = 1, . . . , ZY } being a Poisson process conditioned on {E = e}, a
specific representation formula of the point probability p(t) = E (P (t) |E = e) for the
occurrence of a thunderstorm at location t ∈ W can be computed. In order to improve
readability, we introduce for each i ∈ {1, . . . , n} the function Ĩi : W → [0,∞), which is
defined by

Ĩi(t) =

∫
V (si)

1− exp
{
−a(1)ν2

(
W ∩ b(t, r) ∩ b(z, r(1))

)}
dz, t ∈ W.

Then, based on the representation of point probabilities as coverage probabilities of
the germ-grain model M , see (6.1), we get that

p(t) = P(t ∈M |E = e)

= 1− P(#{i : Xi ∈ b(t, R)} = 0 |E = e)

= 1− E

(
exp

{
−
∫
W∩b(t,r)

a(1)

ZY∑
i=1

1b(Yi,r(1))(z) dz

})
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= 1− E

(
ZY∏
i=1

exp
{
−a(1)ν2

(
W ∩ b(t, r) ∩ b(Yi, r(1))

)})

= 1− exp

{∫
W

(
exp

{
−a(1)ν2

(
W ∩ b(t, r) ∩ b(z, r(1))

)}
− 1
) n∑
i=1

a
(0)
i 1V (si)(z) dz

}

= 1− exp

{
−

n∑
i=1

a
(0)
i Ĩi(t)

}
, t ∈ W, (6.5)

where in the third equality we use the distributional properties of Cox processes,
see Definition 3.3.10, and in the fifth equality a representation formula of the prob-
ability generating functional of Poisson processes is applied, see (3.24) with f(z) =

exp
{
−a(1)ν2

(
W ∩ b(t, r) ∩ b(z, r(1))

)}
. Accordingly, the cluster intensities a

(0)
1 , . . . , a

(0)
n

should satisfy

log

(
1

1− p(sj)

)
=

n∑
i=1

a
(0)
i Ĩi(sj), j = 1, . . . , n,

for fixed a(1) ≥ 0 and r(1), r > 0, which describes a system of n linear equations with the
n unknowns a

(0)
1 , . . . , a

(0)
n ≥ 0. Due to the constraint of a

(0)
1 , . . . , a

(0)
n being nonnegative,

there is no exact solution of this system of equations in general, which is why we
compute a

(0)
1 , . . . , a

(0)
n in a nonnegative least squares sense according to

(a
(0)
1 , . . . , a(0)

n ) = argmin
a′1,...,a

′
n≥0


n∑
j=1

(
log

(
1

1− p(sj)

)
−

n∑
i=1

a′iĨi(sj)

)2
 .

6.4.2. Cluster intensity and cluster radius

In order to fully specify the proposed model of thunderstorm cells, it remains to
determine the intensity a(1) of cells occurring in each cluster as well as the cluster
radius r(1). Unfortunately, it does not seem possible to compute these characteristics as
a function of the available point probabilities, too. Thus, we suggest to use thunderstorm
records of past periods obtained from NowCastMIX data, see Section 6.1, for this
purpose. In the presented fitting approach, clusters of recorded thunderstorm cells are
first identified using an established cluster algorithm and are then used to determine
a(1) and r(1) based on the sizes of obtained clusters and the total number of recorded
thunderstorm cells. Of course, when making a forecast for the one-hour forecast period
T , the thunderstorm records for that period are not yet available. Instead, we consider
the latest one-hour period prior to T with available NowCastMIX data, which can be
represented as T − d with some d ≥ 60 minutes. The best case (d = 60) is given when
the forecast is made directly at the beginning of period T and NowCastMIX records of
the preceding 60 minutes are already available. While the positions of thunderstorm
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cells can change quickly over time due to strong wind, we observe that typical sizes
of thunderstorm clusters and the number of storms per cluster only change gradually.
Thus, we suppose that both a(1) and r(1) (for period T ) can be estimated based on
NowCastMIX records of period T − d if d is not too large.

At first, a cluster analysis is performed to identify clusters of thunderstorm cell centers
in forecast period T − d. For this purpose, we suggest to use the Density Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm introduced in Ester et al.
(1996). This algorithm seems to be particularly suitable since it can recognize clusters
of arbitrary shapes, it is possible to account for outliers (which are interpreted as
noise), and the number of clusters to be found does not need to be known a priori (as
required, e.g., in the k-means clustering algorithm). DBSCAN has two parameters: the
maximum neighborhood radius ε and the minimum number minPts that is required
to form a cluster (clusters with less than minPts points are considered as noise).
Comparisons of results for different parameter configurations have shown that when
applied to thunderstorm records from NowCastMIX, ε = 20 km and minPts = 3 seem
to be reasonable choices. Example results for the application of the DBSCAN algorithm
to thunderstorm records of two sample forecast periods are illustrated in Figure 6.7,
where all thunderstorm cells in one cluster have the same color. A comparison with
Figure 6.2 shows that we obtain reasonable partitions of thunderstorm cell centers into
clusters and that single isolated cells are indeed identified as noise and thus dropped
before computing cluster parameters.

Next, we propose an algorithm to determine a(1) and r(1) based on obtained thunder-
storm clusters. Let c1, . . . , cm for some m ∈ N denote the clusters of thunderstorm cell
centers detected by the DBSCAN algorithm as described above. In order to find typical
cluster sizes, we determine for each i ∈ {1, . . . ,m} the radius rmaxi > 0 of the smallest
circle that contains all thunderstorm cell centers of cluster ci. For detected clusters with
an approximately circular shape, e.g., the blue cluster in northern Germany in forecast
period May 22, 2016, 19-20 UTC or the light green cluster in southern Germany in
period July 11, 2016, 14-15 UTC, see Figure 6.7, a disc with radius rmaxi seems suitable.
However, for more elongated clusters such as the orange one in southern Germany in
forecast period May 22, 2016, 19-20 UTC or the brown one over the Alps in period
July 11, 2016, 14-15 UTC, it is unlikely that the cluster can be represented by a disc
with radius rmaxi . It seems more realistic that such clusters can be modeled by several
circular discs with smaller radii that are located directly next to each other. To account
for this, we determine for each i ∈ {1, . . . ,m} the convex hull hi of cluster ci, which is
the smallest convex set that contains all cell centers belonging to ci, and determine
the radius rmini > 0 of the biggest circle that is completely contained in hi as also
illustrated in Figure 6.7. Then, to each cluster ci for i ∈ {1, . . . ,m} a radius ri > 0
is assigned in dependence of the ratio of rmini and rmaxi according to the following
algorithm.
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May 22, 2016, 19-20 UTC, 5 clusters July 11, 2016, 14-15 UTC, 16 clusters

Figure 6.7.: Results of the DBSCAN algorithm with ε = 20 km and minPts = 3
applied to thunderstorm records from NowCastMIX data for two selected
forecast periods. Additionally, for each cluster the convex hull, the biggest
circle contained in the convex hull, and the smallest circle containing all
points of the cluster are shown.

1. The minimum cluster radius is supposed to be equal to 10 km. This implies that
if rmaxi ≤ 10 km, then ri = 10 km.

2. If 10 km < rmaxi ≤ 20 km, then we always put ri = rmaxi .

3. If 20 km < rmaxi ≤ 35 km, then the following applies. If rmini < 0.4 rmaxi , we put
ri = rmini , otherwise ri = rmaxi .

4. If 35 km < rmaxi ≤ 50 km, then the following applies. If rmini < 0.55 rmaxi , we put
ri = rmini , otherwise ri = rmaxi .

5. If 50 km < rmaxi , then the following applies. If rmini < 0.65 rmaxi , we put ri = rmini ,
otherwise ri = rmaxi .

6. The maximum cluster radius is assumed to be equal to 70 km. This implies that
if ri > 70 km, then ri is reduced to 70 km.

Finally, we compute the typical cluster radius r(1) as the mean value of the individual
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cluster radii r1, . . . , rm, i.e.,

r(1) =
1

m

m∑
i=1

ri.

To conclude model fitting, the cluster intensity a(1) has to be specified. Let k ∈ N
denote the total number of thunderstorms contained in all clusters c1, . . . , cm (i.e.,
thunderstorm centers interpreted as noise by the DBSCAN algorithm are not taken into
account). For each i ∈ {1, . . . ,m}, we determine the minimal number li of discs with
radius r(1) that is needed to cover all thunderstorm cell centers contained in cluster
ci. The sum l = l1 + . . .+ lm can then be interpreted as the total number of circular
clusters with radius r(1) and the ratio k/l denotes the mean number of thunderstorm
cells per cluster. Accordingly, the intensity a(1) can be computed as

a(1) =
k

l π(r(1))2
.

In periods with very weak or no thunderstorm activity, it may happen that no thunder-
storms are recorded or that no clusters are detected by the DBSCAN algorithm (which
can happen if all thunderstorm cells are considered to be noise) in period T −d. In this
case, we recommend to put r(1) = 11 km and a(1) = 4/(π(r(1))2) ≈ 0.0105. These are
the mean values of a(1) and r(1) from all one-hour periods with thunderstorm activity
but without detected thunderstorm clusters in the preceding one-hour period according
to the dataset introduced in Section 6.1.

6.5. Monte Carlo simulation of thunderstorm cells

After the proposed model for thunderstorm cells is fully specified, it can be used for the
probabilistic prediction of thunderstorm events. For that purpose, we again provide
methods for the estimation of area probabilities based on repeated (conditional) Monte
Carlo simulation, which can be done in a similar way as for precipitation events, see
Sections 4.6 and 5.5.

6.5.1. Model-based computation and estimation of area
probabilities

At first, we derive a direct computation formula for area probabilities based on the
germ-grain model M of thunderstorm cells proposed in (6.4). We suppose that a
thunderstorm occurs somewhere inside a test area B ∈ B(W ) if and only if B intersects
M . Analogous to the derivation of (6.5), we obtain the following representation formula
for the (conditional) area probability π(B) ∈ [0, 1] of B (given {E = e}) using the
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distributional properties of Cox processes and the formula for the probability generating
functional of Poisson processes in (3.24):

π(B) = P(B ∩M 6= ∅ |E = e)

= 1− P(#{i : Xi ∈ B ⊕ b(o,R)} = 0 |E = e)

= 1− E

(
exp

{
−
∫
W∩(B⊕b(o,r))

a(1)

ZY∑
i=1

1b(Yi,r(1))(t) dt

})

= 1− E

(
ZY∏
i=1

exp
{
−a(1)ν2

(
W ∩ (B ⊕ b(o, r)) ∩ b(Yi, r(1))

)})

= 1− exp

{∫
W

(
exp

{
−a(1)ν2

(
W ∩ (B ⊕ b(o, r)) ∩ b(t, r(1))

)}
−1
) n∑
i=1

a
(0)
i 1V (si)(t) dt

}

= 1− exp

{
−

n∑
i=1

a
(0)
i

∫
V (si)

1− exp
{
−a(1)ν2

(
W ∩ (B ⊕ b(o, r)) ∩ b(t, r(1))

)}
dt

}
.

(6.6)

Alternatively, area probabilities can again be estimated based on repeated Monte
Carlo simulation. In most applications, this turns out to be more efficient than using
the direct computation formula since a large number of intersections and numerical
integrals needs to be computed in (6.6). Conditioned on {E = e}, the point process
{Xi, i = 1, . . . , ZX} of thunderstorm cell centers is a Matérn cluster process, which can
(approximately) be simulated in W according to Algorithm 3.3.4. A corresponding
realization of the (conditional) germ-grain model M is obtained by assigning a disc
with radius r to each point of the generated cluster process, see Algorithm 3.3.6.
Based on a sequence M1, . . . ,Mj of j ∈ N (conditionally) independent and identically

distributed germ-grain models with Mi
d
= M for i = 1, . . . , j (conditioned on {E = e}),

an estimator π̂(B) of π(B) is given by

π̂(B) =
1

j
#{i ∈ {1, . . . , j} : B ∩Mi 6= ∅}. (6.7)

Both the representation formula (6.6) and the Monte Carlo estimator (6.7) can also
be used for the derivation of point probabilities by setting B = {t} for any t ∈ W ,
compare to (6.5).

In Figure 6.8, typical realizations of the germ-grain model M are illustrated for two
sample forecast periods. A comparison to the thunderstorm records from NowCastMIX
depicted in Figure 6.2 shows that a representation of thunderstorm cells in clusters is
much more realistic than the application of the Cox germ-grain model of precipitation
cells introduced in Chapter 4, see the realizations in Figure 6.3. However, we still
observe significant differences between recorded and generated thunderstorm clusters as

151



6. Cluster-based modeling of thunderstorm cells

May 22, 2016, 19-20 UTC, r(1) = 17 km July 11, 2016, 14-15 UTC, r(1) = 25 km

Figure 6.8.: Realizations of the cluster-based germ-grain model M for the representation
of thunderstorm cells with a fixed cell radius of 10 km for two selected
forecast periods.

only circular clusters with spatially constant radii and cluster intensities are simulated
according to the proposed model. Figure 6.9 shows estimated area probabilities for the
test areas B1, . . . , B999 introduced in Section 6.2 for the same two forecast periods. Area
probabilities closely correspond to the underlying point forecasts, see Figure 6.1, but
forecasters might wish a better precision and sharpness of estimated probabilities, i.e.,
high probabilities for areas in which thunderstorms occurred and low probabilities in
areas without thunderstorms instead of medium probabilities in large regions, compare
to Figure 6.2.

6.5.2. Conditional simulation using thunderstorm records

In order to provide even more realistic realizations of thunderstorm clusters and to
further increase forecast quality, we propose a conditional simulation algorithm for the
cluster-based germ-grain model M , which generates thunderstorm cells with respect to
data from past periods. Let T again denote the one-hour time period for which the
forecast is made and T − d with d ≥ 60 minutes the most recent one-hour period for
which recorded thunderstorms from NowCastMIX are available. With x1, . . . , xp ∈ W
for p ∈ N we denote the centers of all thunderstorm cells included in NowCastMIX for
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May 22, 2016, 19-20 UTC July 11, 2016, 14-15 UTC

Figure 6.9.: Area probabilities for test areas B1, . . . , B999 estimated based on repeated
simulation of the germ-grain model M of thunderstorm cells for two
selected forecast periods. Area probabilities are not shown for areas at the
boundaries of the considered domain.

period T − d (if no thunderstorms were recorded, then no conditional simulation is
possible). The idea behind the algorithm is that for short forecast ranges (to be more
precise, for small d) there is a certain probability that some of these cells still exist
(with changed positions) in period T and should thus influence the provided forecast.
In order to determine such probabilities, the distribution of lifetimes of thunderstorm
cells has been estimated by DWD for thunderstorms with different hail flags, see
Figure 6.10 and Wapler (2017). At first, for each i ∈ {1, . . . , p}, the total lifetime of
cell xi is randomly generated based on the estimated distributions (in dependence
of the storm’s hail flag). Then, the remaining lifetime of cell xi (from the time it
was recorded until its death) is simulated by multiplying the total lifetime with a
realization of a standard uniformly distributed random variable. Knowing the exact
time when xi was recorded, we can now easily determine whether the thunderstorm
cell xi still exists during the forecast period T or not. Let {x̃1, . . . , x̃q} ⊂ {x1, . . . , xp}
with q ≤ p denote all thunderstorm cell centers from period T − d that still exist
in period T . As x̃1, . . . , x̃q represent the locations in the interval T − d, the random
movements of these cells have to be simulated next. Since for each i ∈ {1, . . . , q},
NowCastMIX also provides the movement speed and movement direction of the i-th
surviving thunderstorm cell x̃i at the time it was recorded, see Section 6.1, we can
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Figure 6.10.: Distribution of the lifetimes of thunderstorm cells for different hail flags.

determine the area of all possible locations x̃i can have between the beginning of period
T and its death (similar to the warning cones illustrated in Figure 6.2). This area is
computed using a propagation angle of 7.5◦, making it a triangle or a trapezoid within
which we uniformly generate the new location yi ∈ W of the i-th surviving cell x̃i.
Thus, {y1, . . . , yq} can be interpreted as a possible set of thunderstorm cell centers that
were recorded in period T − d (at locations x̃1, . . . , x̃q) and still exist in forecast period
T .

We propose the following algorithm to generate a realization of the germ-grain model
M given the surviving cell centers y1, . . . , yq.

1. Let U =
⋃q
i=1 b(yi, r

(1)). Compute the expected numbers λin =
∫
U
λ(0)(t) dt and

λout =
∫
W\U λ

(0)(t) dt of cluster centers inside and outside of U , respectively.

2. Generate realizations xin and xout of Poisson distributed random variables with
parameters λin and λout.

3. If possible, simulate xin cluster centers inside U independently according to the
intensity function {λ(0)(t), t ∈ U} under the condition that each of the discs
b(y1, r

(1)), . . . , b(yq, r
(1)) contains at least one cluster center. If this is not possible

(i.e., if xin is too small), then increase xin by 1 but reduce xout by 1 accordingly
and repeat step 3.

4. Simulate xout cluster centers in W \ U independently according to the intensity
function {λ(0)(t), t ∈ W \ U}. If xout ≤ 0 due to a possible reduction in step 3,
then skip this step and go to step 5.
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5. Put a disc with radius r(1) around each cluster center generated in steps 3 and 4
in order to provide the cluster discs.

6. Generate a realization x′ of a Poisson distributed random variable with parameter
(xin + xout) a

(1)π(r(1))2. Put x = x′ − q, which can be interpreted as the number
of thunderstorm cell centers to be simulated.

7. Repeat x times the following. Choose one cluster generated in step 3 or 4 at
random and generate a uniformly distributed thunderstorm cell center in the
corresponding cluster disc.

8. Put a disc with radius r around each point generated in step 7 and around each
remaining cell center yi for i = 1, . . . , q. The union of all these discs can be
interpreted as a realization of M under the conditions that

(i) the realization contains the thunderstorm cells with centers y1, . . . , yq and

(ii) the expected number of generated thunderstorm cells is not changed com-
pared to unconditional simulation.

Note that according to the properties of Poisson point processes, the number of cluster
centers #{i : Yi ∈ U} in U and the number of cluster centers #{i : Yi ∈ W \ U}
outside U should be independent random variables, see Definition 3.3.9. However, if in
step 3 xout is not reduced accordingly if xin is increased to get one cluster center in
each disc b(yi, r

(1)) for i = 1, . . . , q, too many clusters are generated on average, which
introduces a significant model bias in applications. Point and area probabilities for the
occurrence of thunderstorms can again be determined using the estimator (6.7), where
the underlying realizations of M are generated using the algorithm described above.

We illustrate the value of using the proposed conditional simulation algorithm by
showing some example results for the two sample forecast periods considered throughout
this chapter. In Figure 6.11, typical realizations of the germ-grain model M of
thunderstorm cells are shown that were generated by the conditional simulation
algorithm using thunderstorm records of the preceding one-hour time period (i.e., the
best case d = 60 minutes is considered). We observe that the obtained realizations
look much more realistic compared to the ones generated by unconditional simulation,
see Figure 6.8. Realized thunderstorm clusters have more general shapes and we
observe a high similarity to the corresponding thunderstorm records of NowCastMIX
data, compare to Figure 6.2. On the other hand, different realizations still provide a
sufficient amount of random variation to account for uncertainties in thunderstorm
activity in forecast period T . Finally, Figures 6.12 and 6.13 illustrate examples of point
probabilities for the 1,575 points of the 20 km × 20 km lattice, see Section 6.1, and
area probabilities for the test areas B1, . . . , B999, see Section 6.2, that are estimated
using the proposed conditional simulation algorithm, where again the optimal case
d = 60 minutes is considered. We observe large differences of estimated probabilities
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May 22, 2016, 19-20 UTC, r(1) = 17 km July 11, 2016, 14-15 UTC, r(1) = 25 km

Figure 6.11.: Realizations of the cluster-based germ-grain model M for the representa-
tion of thunderstorm cells with a fixed cell radius of 10 km generated by
conditional simulation using NowCastMIX data for two selected forecast
periods.

to the point probabilities provided by DWD, compare to Figure 6.1, and to the
area probabilities estimated based on unconditional simulation, see Figure 6.9. In
particular, the sharpness of obtained forecasts is significantly improved and estimated
probabilities correspond particularly well to the thunderstorm records obtained from
NowCastMIX.

The entire procedure described in this section can as well be applied using not only
recorded thunderstorm cells from period T −d but also from earlier periods (depending
on how big d is) since thunderstorms, particularly those with hail flag 2, have a good
chance to exist two hours or longer. Furthermore, a slightly larger value of d will be
considered in most applications for practical reasons.

6.6. Forecast verification

In the final section of this chapter, we perform a verification of point and area proba-
bilities that were computed or estimated using the proposed cluster-based germ-grain
model for the representation of thunderstorm cells. For this purpose, we again consider
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May 22, 2016, 19-20 UTC July 11, 2016, 14-15 UTC

Figure 6.12.: Point probabilities for the 1,575 points of the 20 km × 20 km lattice
estimated based on conditional simulation of the germ-grain model M
of thunderstorm cells using NowCastMIX data for two selected forecast
periods. Point probabilities are not shown for points at the boundaries of
the considered domain.

the forecast periods, point probabilities, test areas, and thunderstorm records from
NowCastMIX data that were introduced in Sections 6.1 and 6.2. For the computation
of the cluster characteristics a(1) and r(1) as described in Section 6.4.2 and for the
application of the conditional simulation algorithm introduced in Section 6.5.2, we
assume that forecasts are always made directly at the beginning of the corresponding
forecast period and that NowCastMIX data are available for the preceding one-hour
period, which means that d = 60 minutes. When providing forecasts based on the
conditional simulation algorithm, NowCastMIX data is used for the condition and
for forecast verification. However, for verification data is considered that corresponds
to the respective forecast period, whereas for the condition only data from preceding
periods is taken into account.

We again consider the biases, LSSs, and empirical correlation coefficients of estimated
probabilities and thunderstorm indicators as defined in Sections 4.7.1 and 6.2. In
Figure 6.14, the test areas B1, . . . , B999 are colored according to the corresponding
scores for area probabilities computed by means of the representation formula (6.6).
The results reveal that the cluster-based germ-grain model M is much more suitable
for the modeling of thunderstorm cells than the Cox germ-grain model considered in
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May 22, 2016, 19-20 UTC July 11, 2016, 14-15 UTC

Figure 6.13.: Area probabilities for test areas B1, . . . , B999 estimated based on condi-
tional simulation of the germ-grain model M of thunderstorm cells using
NowCastMIX data for two selected forecast periods. Area probabilities
are not shown for areas at the boundaries of the considered domain.

Section 6.2. Compared to Figure 6.4 (right), biases were reduced drastically (now the
mean bias is at −0.4 %, single values are between −3.5 % and 2 %). The lowest and
highest biases occur in regions, where similar biases are also present in the underlying
point probabilities, see Figure 6.4 (left). LSSs are positive for all test areas over land
(mean value of 0.28, single values ranging between 0.15 and 0.45) and thus clearly higher
than for the Cox germ-grain model, see Figure 6.5 (right). Correlation coefficients have
similar values as for the Cox germ-grain model (mean value of 0.4, most single values
between 0.25 and 0.6), compare to Figure 6.6 (right).

Finally, we analyze the performance of point and area probabilities that are estimated
using the conditional simulation algorithm proposed in Section 6.5.2. In Figures
6.15 and 6.16, the three considered score functions are illustrated for point and area
probabilities. When comparing estimated point probabilities with those probabilities
from the available data, see Figures 6.4-6.6 (left), we find that LSSs (mean value 0.51,
single values reaching up to 0.7) and empirical correlation coefficients (mean value
0.63, single values reaching up to 0.8) are considerably higher when using conditional
simulation. Furthermore, no model bias is introduced. The results for area probabilities
are even more convincing. A comparison of scores with those in Figure 6.14 shows
drastically increased LSSs (mean value of 0.49, single values up to 0.65) and empirical

158



6.6. Forecast verification

correlation coefficients (mean value of 0.71, almost all single values between 0.55 and
0.8) together with a mean bias of less than 1 %. This shows impressively that using the
proposed conditional simulation algorithm for the cluster-based germ-grain model of
thunderstorm cells does not only provide realistic realizations of thunderstorm events
(see Figure 6.11) but also allows for an estimation of both point and area probabilities
with a very high precision. Thus, we conclude that the models and methods developed
in the present chapter provide a valuable tool in the forecasting of thunderstorm events
for short forecast ranges that can be applied in operational weather prediction.
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Figure 6.14.: Comparison of area probabilities for test areas B1, . . . , B999 computed
according to the cluster-based germ-grain model M of thunderstorm cells
with thunderstorm indicators from NowCastMIX data: biases (top left),
LSSs (top right), and empirical correlation coefficients (bottom). Scores
are not shown for areas at the boundaries of the considered domain.
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Figure 6.15.: Comparison of point probabilities for the 1,575 points of the 20 km×20 km
lattice estimated based on conditional simulation of the cluster-based
germ-grain model M of thunderstorm cells with thunderstorm indicators
from NowCastMIX data: biases (top left), LSSs (top right), and empirical
correlation coefficients (bottom). Scores are not shown for points at the
boundaries of the considered domain.

161



6. Cluster-based modeling of thunderstorm cells

Figure 6.16.: Comparison of area probabilities for test areas B1, . . . , B999 estimated
based on conditional simulation of the cluster-based germ-grain model M
of thunderstorm cells with thunderstorm indicators from NowCastMIX
data: biases (top left), LSSs (top right), and empirical correlation coeffi-
cients (bottom). Scores are not shown for areas at the boundaries of the
considered domain.
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Part III.

Statistical analysis of
paleogeographical space-time data
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7. Spatio-temporal distribution of
prehistoric populations in North
America

In Part III of the present thesis, we perform a qualitative statistical analysis that aims to
find systematic relationships and interactions between prehistoric human populations
and vegetation composition in North America during the Holocene. However, for
that purpose, spatio-temporal estimates of population and vegetation intensities need
to be determined first using comprehensive archaeological and paleoenvironmental
databases. In this chapter, we propose a statistical approach to the estimation of
spatially smoothed population intensity maps for a sequence of time intervals covering
the past 13000 years. In particular, this involves the use of nonparametric kernel
methods, which have successfully been applied to archaeological data before, see, e.g.,
Collard et al. (2010) or Grove (2011). In Section 7.1, we present the underlying data,
which are extracted from an extensive database of archaeological samples from North
America. These data are used in Section 7.2 to estimate prehistoric population intensity
maps, where a particular focus is put on various potential errors such as taphonomic
loss, inhomogeneous sampling strategies, and boundary effects. In Section 7.3, we show
some example maps and give a brief summary of results. Finally, Section 7.4 provides
a sensitivity and robustness analysis by modifying the applied nonparametric kernel
methods and the underlying database to demonstrate the significance of obtained
population patterns. The results presented in this chapter were summarized in Chaput
et al. (2015) (with a focus on discussion of estimated population maps). A similar
study has recently been performed for South America, see Goldberg et al. (2016).

7.1. Description of data

In order to reconstruct and analyze paleodemographic changes in North America during
the Holocene, comprehensive archaeological databases are frequently used. We follow
the generally acknowledged assumption that the frequency of dated archaeological
samples is, after accounting for several potential biases, proportional to population
density, which is denoted as ‘dates as data’ approach in literature, see, e.g., Steele (2010).
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In the present chapter, we use data from the Canadian Archaeological Radiocarbon
Database (CARD), see Gajewski et al. (2011), which was created by Dr. Richard
Morlan of the Canadian Museum of History and which is now maintained and regularly
updated jointly by the Canadian Museum of History and the Laboratory of Archaeology
at the University of British Columbia. The version of the CARD considered in this
thesis contains 35,905 samples collected from 9,149 geographically distinct sites in
Canada, the United States (US), and eastern Russia. Currently, great effort is made
to extend CARD to a global database by adding samples from all continents (except
the Antarctic) but in this chapter, analysis is restricted to North America.

Each entry in the CARD represents an archaeological sample, which is characterized
by a variety of information. Most importantly, the geographical coordinates of the
archaeological excavation site where the sample was found are recorded including the
elevation and the corresponding province (for sites in Canada) or state (for sites in
the US). Of similar relevance is the age of the sample, which is estimated using the
radiocarbon method, see Libby (1955). This method relies on the observation that
radiocarbon (14C, a radioactive isotope of carbon with 8 neutrons) is constantly created
in the earth’s atmosphere and absorbed by plants, animals, and humans, leading to a
relatively stable amount of 14C in all living organisms. Upon death, this absorption
stops and the radioactive 14C within the organism starts to decay according to a well-
known half-life period. Analyzing the amount of 14C in a sample of a dead plant, animal
or human thus allows to determine the age of the sample. However, the radiocarbon
method falsely assumes that the ratio of 14C and 12C (non-radioactive isotope of carbon
with 6 neutrons) is constant over time, which is why derived (uncalibrated) radiocarbon
ages are subject to a systematic bias. To account for that, an adjustment is made using
the IntCal04 calibration curve, see Reimer et al. (2004), where an entire probability
distribution is determined for the (unknown) age of each sample in the CARD. The
median of this distribution is then used as a calibrated estimate (denoted as calibrated
age or age in calender years) of the sample’s age. At the time this thesis was written, an
updated version, IntCal13, was available, see Reimer et al. (2013), but the differences
to IntCal04 are marginal for radiocarbon ages of less than 15000 years. Obtained
calibrated ages are typically provided in years before present (BP), where by convention,
the term ‘present’ refers to the year CE 1950 (e.g., the year 600 BP is equivalent to
the year CE 1350). Besides geographical locations and calibrated ages, each sample
in the CARD includes a variety of additional information such as classification and
type of the dated material, archaeological provenance, site names and components,
references, contributing collectors, collection dates, and general comments. However,
the only further attribute considered in this thesis is a classification to distinguish
between cultural (i.e., related to human activity) and paleoenvironmental (i.e., related
to animals and plants) dates. Unfortunately, one has to notice that most attributes are
not provided for all samples. For example, locations are available for 99.8 %, calibrated
ages for 94.03 %, and classification for about 99.9 % of dates in the CARD. Furthermore,
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Figure 7.1.: Sites with cultural and paleoenvironmental dates from the CARD.

dummy values such as ‘unknown’ occasionally occur and need to be identified and
eliminated.

Altogether, we use 33,696 samples (77 are missing locations, 61 are from Russia
and 2,071 are missing radiocarbon ages or classification) from 7,754 geographically
distinct sites, where a majority of 29,609 dates is classified as cultural and 4,087 dates
have a paleoenvironmental context, see Figure 7.1. Especially for cultural dates we
observe large differences in local sampling densities. Plenty of samples were obtained
in the northeastern US and regions that roughly correspond to the states of Wyoming,
Utah, Colorado, Washington, and Oregon. The south of the US as well as central
and northern Canada, however, seem to be underrepresented with very low sampling
densities. Possible reasons causing these inhomogeneities are that in areas of higher
sample densities often more research institutions with interest in archaeological field
work are located and that archaeologists tend to investigate regions where evidence of
prehistoric population has already been found (i.e., where sampling density is already
high). A proper adjustment for inhomogeneous sampling strategies in the context of
estimating population intensity maps is proposed in Section 7.2.

To conclude this section, we analyze the temporal distribution of the 29,609 cultural
dates from the CARD, see the histogram in Figure 7.2. Apparently, there is a large
amount of dates with calibrated ages between 500 BP and 1500 BP (about 40 % of all
cultural samples). With increasing age the number of available dates quickly decreases,
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Figure 7.2.: Temporal distribution of calibrated radiocarbon ages for cultural dates
from the CARD.

which is most likely caused by both the destruction of older carbon due to erosion and
dissolution (taphonomic loss) and lower population numbers for earlier time periods.
There are very few dates found with ages older than 13000 BP, which corresponds
well with the prevailing opinion that a settlement of the North American continent
started only a couple of thousand years before that time. We also identified some dates
having ages of 20000 years or more, which are, however, considered to be subject to
dating errors or misspecification. Surprisingly, prior to 800 BP the frequency of dates
also decreases showing considerably smaller numbers for the most recent 500 years. A
potential reason for this is that archaeological samples from the era after the arrival of
Europeans can often be identified and dated without using the radiocarbon method,
making such dates occur less frequently in the CARD. However, it also seems possible
that this effect indeed corresponds to a decline in population numbers, which could be
due to the spread of European diseases, see O’Fallon and Fehren-Schmitz (2011).

7.2. Nonparametric estimation of population intensity
maps

In this section, we propose a statistical method to the estimation of spatially smoothed
population intensity maps based on the locations and calibrated radiocarbon ages of
archaeological samples from the CARD. The underlying assumption of this approach
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is that on the continental scale of this study, a greater number of dates is indicative of
a higher population activity (‘dates as data approach’) when potential biases such as
inhomogeneous sampling strategies and taphonomic loss are accounted for appropriately.
Since the development of spatial or spatio-temporal parametric models for population
intensities seems to be a highly complicated task, we propose the application of
nonparametric kernel methods. To allow for a comparison of estimated population
intensity maps over time, we consider a sequence of 121 500-year intervals, which range
from 500− 1000 BP, 600− 1100 BP, . . . , 12500− 13000 BP. An interval length of 500
years is selected as a compromise to avoid aggregating too many dates and having too
few to produce reliable estimates later on. For a fixed 500-year interval, denoted as
I = [y − 250, y + 250] with y ∈ {750, 850, . . . , 12750} in the following, we define the
compact set W ⊂ R2 describing all locations of North America (including some bigger
offshore islands) that are not covered by ice in year y (reconstructions of prehistoric ice
sheets were used to identify glaciated areas in the past 13000 years, see Dyke, 2002).
In particular, each location t ∈ W can be represented as t = (t(1), t(2)) with t(1) and
t(2) being the longitude and latitude of t in degree, i.e., W is a geographical domain,
see Remark 3.2.4. By {λ(t), t ∈ W} we denote the unknown deterministic population
intensity map for interval I. We suggest to estimate {λ(t), t ∈ W} as follows. At first,
we select all cultural dates from the CARD with calibrated ages in the extended time
interval Ĩ = [y−650, y+650] (that starts 400 years earlier and ends 400 years later than
I) and denote by t1, . . . , tn ∈ W with n ≤ 29, 609 the locations of the archaeological
sites at which the corresponding samples were excavated. In most time intervals, some
of the sites t1, . . . , tn are identical since different samples can be found at the same
archaeological site. Dates within 400 years before or following the fixed time interval I
are also taken into consideration because they can still have an influence on population
intensities in I (e.g., the number of people at a given time and location is influenced
by how many people were there several generations before) and to account for possible
errors occurring from radiocarbon dating and calibration. However, dates with ages in
Ĩ \ I should have a smaller impact than those with ages in I, which is why a weight
wj is assigned to site tj for each j ∈ {1, . . . , n}. If the calibrated age of the date that
corresponds to site tj falls into I, then we set wj = 1, otherwise wj < 1 decreases
linearly with the temporal distance of the age to the boundary of I. In particular, for
dates with an age of y − 650 BP or y + 650 BP we get that wj = 0.

We suggest to use a modified two-dimensional KDE, see Section 3.4.2, for the estimation
of {λ(t), t ∈ W}. An intuitive idea is to put a disc b(tj, h) with a radius h > 0 in km
around the site tj for each j ∈ {1, . . . , n} in order to describe an area where human
population could have occurred in the interval I based on the archaeological sample
found at site tj (note that all discs are computed using the great-circle distance in
this chapter, see Remark 3.2.4). The radius h is chosen to be globally fixed as all
cultural dates are expected to indicate population activity within the same range of the
corresponding excavation sites. In particular, we ignore geographical features such as
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rivers or mountains, which seem impossible to be modeled in a continent-wide analysis.
Next, we account for the fact that the cultural date found at tj is more likely to indicate
population activity close to tj than near the boundary of b(tj, h). For that purpose,
a (scaled) radially symmetric Epanechnikov kernel κEh (·, tj) with bandwidth matrix
H = diag(h2, h2) is assigned to each disc b(tj, h), where κEh : W ×W → [0,∞) is given
by

κEh (s, t) =
1

h2

(
1− dGC(s, t)2

h2

)
1[0,h](dGC(s, t)), s, t ∈ W, (7.1)

compare to Section 3.4.1 and (3.33). Since W describes a geographical domain, i.e., all
locations in W are represented by geographical coordinates, the great-circle distance
is used instead of the Euclidean distance in (7.1), see (3.4) and Remark 3.4.3. As
a consequence, the Epanechnikov kernels κEh (·, t1), . . . , κEh (·, tn) do not necessarily
integrate to 1 over W , which is why they are denoted as scaled kernels here.

Generally speaking, the considered nonparametric approach with a globally fixed
bandwidth h suggests that a cultural date from the CARD is indicative for a certain
population number, which is constant for all dates. A problem occurs if a site tj is
located close to the coast, a region permanently covered by ice or the boundary to
Central America such that the disc b(tj, h) intersects with an area where no population
is possible or no data are available. This, however, would cause such dates to have
less influence on population intensities in the domain W , which leads to estimated
population intensity maps that decrease towards the boundaries of W . To account for
this, a boundary correction is proposed, where for each j ∈ {1, . . . , n} the integral

e
(h)
j =

∫
W

κEh (t, tj) dt

of the scaled Epanechnikov kernel κEh (·, tj) centered at tj is calculated numerically and

κEh (·, tj) is then multiplied by 1/e
(h)
j . In particular, a site tj close to the boundary gets

a higher scaling factor (due to a smaller integral e
(h)
j ) than a site in the central US.

Furthermore, all scaled kernel functions are now guaranteed to integrate to 1.

Another potential error that needs to be addressed is the taphonomic bias inherent in
the CARD due to the long-term loss of samples caused by, e.g., erosion and dissolution.
In particular, estimates of population intensities are expected to be systematically
too low for earlier time intervals due to older dates being underrepresented in the
CARD. To correct for taphonomic loss, a temporal loss function is estimated in Surovell
et al. (2009) based on ice core and geologic volcanic activity records, which has been
successfully applied to the estimation of prehistoric demography, see, e.g., Peros et al.
(2010). We assume that taphonomic loss rates are constant for the entire continent,
although we are aware that degradation may be slightly lower in the Arctic, where
permafrost preserves archaeological materials. Accordingly, we suggest to compute a
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taphonomic loss corrector cI for the considered 500-year interval I by applying the loss
function of Surovell et al. (2009) to the center y of the interval I, i.e.,

cI = 5.726442 · 106(y + 2176.4)−1.3925309.

Combining the scaled kernel functions κEh (·, t1), . . . , κEh (·, tn) with the weights w1, . . . , wn,

the boundary correctors e
(h)
1 , . . . , e

(h)
n , and the taphonomic loss corrector cI provides

the following estimate {λ̃(t), t ∈ W} of the population intensity map {λ(t), t ∈ W} for
the 500-year interval I:

λ̃(t) =
1

cI

n∑
j=1

wj

e
(h)
j

κEh (t, tj), t ∈ W. (7.2)

A fundamental question is the choice of a proper bandwidth h as varying h has a
significant effect on obtained population intensity maps, see Section 7.4.1. Small values
of h often show many local details but could be inappropriate to provide reliable
estimates in regions with only few sites available and too large values of h are expected
to overgeneralize the resulting patterns of population activity. A frequently used
option is to algorithmically determine the bandwidth based on the underlying data,
see Section 3.4.4, in which case LCV is the most popular choice. However, LCV is very
sensitive to outliers and multiple data points and requires long computation times when
large datasets are considered, making it a poor choice in our context. A more applicable
alternative is given by Scott’s rule, which we use to determine a bandwidth for each of
the considered 500-year intervals, see Figure 7.3. In order to provide comparability
of population intensity maps over time, we aim to choose a constant bandwidth for
all 121 time intervals. For that purpose, we suggest to use h = 600 km, which is the
rounded mean value of the single bandwidths determined according to Scott’s rule.
This choice turns out to be a good compromise, see the example maps illustrated in
Sections 7.3 and 7.4.1.

Unfortunately, {λ̃(t), t ∈ W} turns out to be a poor estimate of the population intensity
map {λ(t), t ∈ W} as it does not account for inconsistencies in regional sampling effort.
For example, a number of ten dates found in a region with only two excavation sites
should indicate a higher population intensity than the same number of dates found in
a region with equal size and eight excavation sites. If this remains unaccounted for,
estimated population intensities are highly correlated to sampling intensities because
a greater sampling effort produces a larger number of dates, which results in higher
population estimates. For that purpose, a sampling intensity map is determined using
(7.2), where t1, . . . , tn are replaced by all considered 7,754 geographically distinct sites
t̃1, . . . , t̃7754 of the CARD (excluding sites with missing attributes but including those
with paleoenvironmental dates) with w1, . . . , w7754 and cI set to 1 and using similar

boundary correctors ẽ
(h)
1 , . . . , ẽ

(h)
7754 for the Epanechnikov kernels κEh (·, t̃1), . . . , κEh (·, t̃7754)

centered at t̃1, . . . , t̃7754. In Figure 7.4, the estimated sampling intensity map with
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7. Spatio-temporal distribution of prehistoric populations in North America

Figure 7.3.: Histogram of bandwidths determined according to Scott’s rule for the 121
considered 500-year intervals. The red line indicates the mean bandwidth
of 595 km.

bandwidth h = 600 km is illustrated, where all intensities are scaled to the interval
[0, 1]. A comparison to Figure 7.1 shows a close visual correspondence between
estimated sampling intensities and the underlying data. Finally, the raw population
estimates obtained according to (7.2) are divided by estimated sampling intensities to
adjust for inhomogeneous sampling strategies. This results in a more reliable estimate
{λ̂(t), t ∈ W} of {λ(t), t ∈ W} given by

λ̂(t) =
1

cI

n∑
j=1

wj

e
(h)
j

κEh (t, tj)

7754∑
k=1

1

ẽ
(h)
k

κEh (t, t̃k)

, t ∈ W, (7.3)

which accounts for possible dating and calibration errors, boundary errors, temporal
bias due to taphonomic loss, and sampling bias. Heuristically speaking, estimated
population intensities can roughly be interpreted as smoothed numbers of dates per
site, which should better reflect population intensities than only considering numbers
of dates. The bandwidth h = 600 km is chosen large enough such that the denominator
in (7.3) is positive for each location t ∈ W and each considered interval I.

172



7.3. Presentation of results

Figure 7.4.: Sampling intensity map estimated based on 7,754 geographically distinct
sites from the CARD with a fixed bandwidth of h = 600 km.

7.3. Presentation of results

We present and discuss estimated population intensity maps obtained according to (7.3)
with a bandwidth of h = 600 km. Since we cannot show all results here, Figure 7.5
illustrates estimated maps for three selected 500-year intervals. In order to allow for
a comparison of maps through time and to make temporal changes more apparent
(especially during earlier intervals), we rescale all estimated intensities to [0, 1] and
plot population intensity maps of all time intervals on a joint logarithmic scale. In
the following, we briefly describe results for different regions of the North American
continent. A much more detailed discussion in the context of archaeological literature
is provided in Chaput et al. (2015).

In Alaska, population intensities fluctuated periodically for the entire time period,
which is reasonable considering that Alaska was the location of repeated migrations
into North America. Population intensities were relatively high in northern and central
Alaska between 13000 BP and 8000 BP, see Figure 7.5 (bottom), with a peak at 11500
BP, which is most likely related to Paleoindian populations. Around 6000 BP, a second
increase started on the Aleutian Islands and slowly moved east over the next 1500 years,
which agrees with archaeological evidence that Aleut peoples colonized these islands at
this time. Beginning at 4500 BP, a 1000 year long increase in population intensities at
Alaska is observed, which coincides with a suspected migration of Paleoeskimo from
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Figure 7.5.: Population intensity maps estimated using a modified KDE with a fixed
bandwidth of h = 600 km (left) and underlying dates from the CARD
(right) for three selected 500-year intervals: 1600-2100 BP (top), 6400-6900
BP (center), and 12100-12600 BP (bottom). Gray colors indicate areas
permanently covered by ice.
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Siberia. Estimated population intensities show a decrease for some hundred years
and then begin to increase at the northern coast (2500 BP) and along the west coast
(2000 BP), see Figure 7.5 (top). Finally, at 1500 BP, the majority of Alaska seems
occupied, which is most likely associated to the development of Thule culture beginning
ca. 1000 BP.

The Canadian Arctic seems to be the last region of the North American continent to
be colonized. Prior to 10000 BP, large parts of the Arctic were permanently covered by
ice making human population impossible, see Figure 7.5 (bottom). Occupation started
around 7000 BP, where the maps show a rapid increase in population intensities in
coastal northwestern Canada, including the Mackenzie Delta, Banks Island, and western
Victoria Island, see Figure 7.5 (center). Shortly thereafter, populations occurred in the
northern Arctic on Ellesmere Island, which supports recent genetic evidence suggesting
there was human activity in the general region at this time. By 4000 BP, there
were signs of occupation across the entire Canadian Arctic, which remained relatively
constant except some fluctuation in the far north. However, population intensities in
the Arctic are smaller than in most other regions, see Figure 7.5 (top).

Before and during the Last Glacial Maximum, human migration from Alaska into
western Canada via an interior route was not possible due to the presence of ice sheets.
At ca. 14000 BP, an ice-free corridor opened between the Laurentide and Cordilleran Ice
Sheets and population intensities started to increase rapidly in this region at 13000 BP,
see Figure 7.5 (bottom). Intensities remained high until 12000 BP, when the Cordilleran
Ice Sheet retreated and westward human expansion into this new terrain probably
occurred. Between 11500 BP and 10000 BP, population intensity maps show strong
human activity along the entire west coast of British Columbia. After a period with
relatively constant population across western Canada, a second increase of estimated
intensities at the coast started at 7000 BP, see Figure 7.5 (center), followed by an
increase further east. After 5500 BP, population patterns have expanded, potentially
due to the development of new trap and tool technologies east of the Rocky Mountains.
By 1000 BP, large parts of western Canada were densely populated, which reflects the
demographic success of complex hunter–gatherer cultures, see Figure 7.5 (top).

In the eastern US, estimated maps show an increase in population intensities, which
began around 10500 BP and expanded northward and westward during the following
2000 years. These results are plausible as numerous archaeological studies indicate a
strong presence of Paleoindians in the southeast before 10000 BP. Population intensities
decreased east of the Appalachians after 9000 BP and moved towards Missouri, where
the presence of Paleoindian populations has been confirmed. Intensities fluctuated
until 5000 BP, see Figure 7.5 (center), afterwards populations grew east and west of
the Appalachians as well as in the Atlantic and New England regions. After 3500 BP,
estimated maps showed greatly increased population activity in the central part of the
eastern temperate deciduous forest and after 2000 BP, the highest estimates were in
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the regions of Ohio and Kentucky, see Figure 7.5 (top). These patterns then persisted
until the time Europeans arrived. Altogether, the eastern US were a permanent center
of strong human activity during almost all time intervals after 10000 BP.

When analyzing Atlantic Canada, population activity due to Paleoindian peoples was
first observed in Nova Scotia and New Brunswick between 13000 BP and 12000 BP,
see Figure 7.5 (bottom). Afterwards, estimated population intensities decreased
as temperature and dryness increased during the Younger Dryas. Following this,
population estimates fluctuated and began to increase around 10000 BP in southeastern
Canada and around 8500 BP in Newfoundland and Labrador, where estimates almost
tripled. While population intensities decreased again rather quickly in eastern Quebec
and central Labrador, they remained stable in the northeast for almost 2000 years.
Starting at 5000 BP, estimated intensity maps showed a large growth of population
numbers in Atlantic Canada, first in the east and north and several hundred years later
in the eastern Hudson Bay region and along the coastline of Labrador. Population
intensities decreased in central Quebec but remained high in Newfoundland, Labrador,
and the area surrounding New Brunswick until 1500 BP, see Figure 7.5 (top). Some
hundred years later, large populations seem to have spread across the entire region.

It remains to consider the central and western US. Population intensity maps for the
oldest time periods show two centers of high estimates in Arizona and at the border
between Colorado and Kansas, areas where the presence of Paleoindians has been
confirmed. Around 12500 BP, these centers moved to Texas, where strong population
activity is observed until 5000 BP, see Figure 7.5 (center) and (bottom). By 10500 BP,
an intensification of population appeared in California and persisted until 8000 BP,
which is likely related to offshore communities using marine resources. The latter half
of the Holocene is characterized by an increase of populations in Idaho that moved
towards the coast around 4000 BP.

In summary, we find that estimated population intensity maps show clear patterns of
population activity, which are considered to capture paleodemographic trends. This
is justified by the observation that population patterns correlate well with previous
archaeological interpretations of population change across the North American continent
during the Holocene that were derived partly from radiocarbon dates, but also other
data sources and inferences, see Chaput et al. (2015).

7.4. Sensitivity and robustness analysis

In order to assess the quality and completeness of the CARD as well as the sensitivity of
the applied statistical methodology and the robustness of obtained results, we perform
some additional analyses using modified estimators and databases.
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7.4.1. Modification of estimators

At first, a comparison of population intensity maps obtained according to the modified
KDE in (7.3) with different bandwidths between 200 km and 1500 km is made.
Figure 7.6 illustrates estimated population intensity maps with h = 300 km (left)
and h = 1000 km (right) for the same 500-year intervals as considered in Figure 7.5.
It turns out that a bandwidth of less than 500 km is not large enough to capture
overall patterns because for many locations on the North American continent the
number of dates within such a small radius is too low. For example, a bandwidth of
300 km can cause rapid changes of estimated intensities within only few kilometers,
see the ice-free corridor in Figure 7.6 (bottom left) or the signal south of the Canadian
Arctic in Figure 7.6 (center and top left). On the other hand, when a bandwidth
of 800 km or more is considered, the overall results remain the same but the maps
are too smoothed to discern regional patterns. In most recent time intervals, e.g.,
almost all regions (except Florida and the Arctic) seem to have similar population
numbers if h = 1000 km is used, see Figure 7.6 (top right). By comparison, the
bandwidth of h = 600 km suggested by Scott’s rule seems to be a good compromise.
The consideration of a smaller bandwidth might be suitable if the CARD is extended
substantially (particularly in Canada and the southern US) or if a regional study in an
area of high sampling intensity is attempted. In contrast, a larger bandwidth could be
appropriate for a global analysis. The application of a different kernel function, such
as the Gaussian kernel, is not considered in this thesis since kernels with unbounded
support do not correspond well to our assumption that each date influences population
intensities within a fixed radius of its site.

We additionally study the effect of using two adaptive smoothing approaches, see
Section 3.4.2, although such methods also contradict our assumption that all dates from
the CARD indicate population within a constant radius. On the one hand, a generalized
nearest neighbor estimator is applied, which works completely analogous to the KDE
in (7.3) with the difference that the bandwidth varies across the considered domain.
In particular, for a number of n ∈ N dates (with corresponding sites), the bandwidth
for estimating λ(t) at some location t ∈ W is chosen to be the distance of t to the
kth nearest site, where it is often assumed that k = bnpc for some p ∈ (0, 1), compare
to (3.34). We determine location-dependent bandwidths based on the n = 7, 754
geographically distinct sites considered in Section 7.2 and choose p = 0.65 as this
provides results that are most similar to those obtained with a fixed bandwidth of
600 km. To allow for comparability through time, these bandwidths are then used to
estimate population intensity maps for all 500-year intervals. This implies, however,
that the chosen proceeding is not really adaptive since the locally varying bandwidths
are not determined based on the dates of the respective interval. The second approach,
a variable kernel estimator, works analogously, except that a different bandwidth is
assigned to each site from the data instead of to each location of the considered domain,
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Figure 7.6.: Population intensity maps estimated using a modified KDE with a fixed
bandwidth of h = 300 km (left) and h = 1000 km (right) for three selected
500-year intervals: 1600-2100 BP (top), 6400-6900 BP (center), and 12100-
12600 BP (bottom). Gray colors indicate areas permanently covered by
ice.
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see (3.35). Similarly, for each date the corresponding bandwidth is chosen as the
distance to the kth nearest site, where k = bnpc and, in our example, n = 7, 754 and
p = 0.65. Figure 7.7 illustrates population intensity maps for three example time
intervals that were determined using the generalized nearest neighbor estimator (left)
and the variable kernel estimator (right). The obtained maps show similar population
estimates for both approaches. Largely smoothed patterns are revealed in regions
with low site densities (e.g., central Canada) but undersmoothing occurs in more
frequently sampled regions (e.g., the southeast or Wyoming). In general, however, both
approaches lead to population intensity maps that show similar signals, although the
spatial scale and size of single events can vary slightly. Furthermore, both sequences of
maps show the same patterns as those obtained by using a globally fixed bandwidth of
600 km, which confirms the results described in Section 7.3.

7.4.2. Modification of database

To conclude this chapter, we analyze the sensitivity and robustness of estimated
population intensity maps to possible errors in the underlying database. Although
carefully checked, dates from the CARD are subject to well-known sources of error, e.g.,
dates could be contaminated with younger organic matter leading to underestimated
radiocarbon ages. In particular, a total of 1,419 dates in the CARD (around 4 % of all
dates) are marked as ‘anomalous’ (i.e., too young or old considering the archaeological
context) by the contributing researchers, indicating potentially erroneous data. Such
data were not removed prior to our study to avoid selectively reducing the database
according to preconceived notions of paleodemographic trends. However, to determine
to what extent the ‘anomalous’ dates in the CARD influence the resulting population
patterns, we reestimate a new series of maps using the kernel approach described
in Section 7.2 with a fixed bandwidth of 600 km, where all ‘anomalous’ dates are
excluded. We find that the new maps are almost identical to those estimated based
on the complete database. All population patterns remain the same throughout the
entire study period at continental to regional scales. Example maps for three selected
500-year intervals are illustrated in Figure 7.8 (left), showing a high correspondence to
Figure 7.5 (left).

While the analysis performed above addresses a worst-case scenario in which population
intensity maps are estimated excluding dates marked as ‘anomalous’, we now reduce the
size of the database by a much larger factor to test whether or not the CARD is spatially
representative and has a sufficiently large size for all considered time intervals. For that
purpose, we perform a Bernoulli experiment with a success probability of 0.5 for each
date (independently for different dates) and remove all dates, where the experiment
shows success. This results in a total of 16,894 dates from 5,787 geographically distinct
sites. New population intensity maps are then estimated based on the reduced dataset
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Figure 7.7.: Population intensity maps estimated using a modified generalized near-
est neighbor estimator (left) and a modified variable kernel estimator
(right) for three selected 500-year intervals: 1600-2100 BP (top), 6400-
6900 BP (center), and 12100-12600 BP (bottom). Gray colors indicate
areas permanently covered by ice.
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using the kernel estimator proposed in Section 7.2 with a bandwidth of 600 km. A
comparison with the original maps discussed in Section 7.3 reveals that, despite the
smaller number of dates, the spatial population patterns remain mostly the same,
even during earlier intervals, where the number of dates is relatively small. Only
a few regional differences are visible, see, e.g., the three example maps illustrated
in Figure 7.8 (right). Between 12600 BP and 12100 BP, we now observe slightly
higher population intensities at the Californian coast and in Florida, whereas between
6900 BP and 6400 BP, the reduced dataset leads to slightly lower intensities in the
eastern US and western Canada, compare Figure 7.5 (center and bottom left) with
Figure 7.8 (center and bottom right). In more recent time periods, where more data
are available, maps from the complete and the reduced dataset are almost identical,
see, e.g., Figure 7.5 (top left) and Figure 7.8 (top right).

Based on the two performed robustness analyses, we conclude that the CARD is
sufficiently complete for continental-scale spatio-temporal paleodemographic analyses
and that individual dates as well as non-systematic errors (e.g., ‘anomalous’ dates) do
not have an impact on obtained results of paleodemographic patterns.
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Figure 7.8.: Population intensity maps estimated using a modified KDE with a fixed
bandwidth of h = 600 km excluding ‘anomalous’ dates (left) and using 50 %
of dates only (right) for three selected 500-year intervals: 1600-2100 BP
(top), 6400-6900 BP (center), and 12100-12600 BP (bottom). Gray colors
indicate areas permanently covered by ice.
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8. Spatio-temporal distribution of
prehistoric vegetation abundances
in North America

In order to be able to estimate spatio-temporal correlations of human populations and
vegetation composition in North America during the past 13000 years, it remains to
derive maps of estimated vegetation intensities. While the statistical methodology
developed in Chapter 7 is, to our knowledge, the first attempt to the estimation of
population intensities on a continental scale, spatial vegetation maps for (parts of)
North America have been produced several times in the literature, see, e.g., Williams
et al. (2004) or Paciorek and McLachlan (2009). However, on the one hand, these maps
are computed based on different statistical approaches than those used in Chapter 7,
making a comparison to estimated population intensity maps difficult. On the other
hand, paleoecological databases have rapidly increased in size and quality during
the last decade, motivating the estimation of updated vegetation intensity maps. In
Section 8.1, we present the extensive database used to obtain estimates of vegetation
abundances and discuss a simplified method to the calibration of radiocarbon ages.
Section 8.2 then introduces an intuitive and simple approach to temporal smoothing
and interpolation of pollen abundances to the target ages needed for the estimation
of spatially smoothed vegetation intensity maps in Section 8.3. Section 8.4 concludes
the chapter with an illustration of example maps for one taxon (Quercus) and a brief
comparison to existing literature. The results presented in this chapter have been
incorporated in Kriesche et al. (2017a).

8.1. Description of pollen data

For the purpose of reconstructing past vegetations, it is generally acknowledged to
analyze prehistoric pollen records, which are considered to be an indicator of past
vegetation abundance, see Birks and Birks (1980). Fossil pollen samples are typically
acquired through cores taken at the bottoms of lakes and ponds, where pollen are
effectively preserved in the sediment. The resulting information are collected in
comprehensive paleoecological and paleoenvironmental databases.
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8.1.1. The Neotoma Paleoecology Database

Spatio-temporal data of prehistoric pollen abundance used in this study are obtained
from the Neotoma Paleoecology Database, see Grimm (2008). Neotoma is a compre-
hensive and complex compilation of fossil data from the Holocene, Pleistocene, and
Pliocene (covering the last 5.3 million years) from more than 8,400 sites worldwide. It
was merged from the Global Pollen Database, FAUNMAP (containing fossil mammal
data), the North American Plant Macrofossil Database, and a fossil beetle database by
Eric C. Grimm from the Illinois State Museum. Neotoma is publicly available and up-
dated regularly containing data that were obtained from various sources such as pollen,
plant macrofossils, vertebrate fauna, insects or mollusks. Thus, the database is used
by researchers from several fields such as paleoecology, paleoclimatology, paleontology,
paleoenvironmental sciences, archeology or evolutionary biology. Since many different
researchers contribute to Neotoma individually, even data of the same type (pollen,
mammals, etc.) are not always comparable due to different ways of acquiring and
processing data. In addition, entries in Neotoma are sometimes incomplete, missing
important attributes or descriptions.

8.1.2. Calibration of radiocarbon ages

For the estimation of vegetation intensities the ages of fossil pollen samples are required,
which are typically determined as follows. At each site (a lake or a pond) on the
North American continent with available pollen data in Neotoma, a sediment core
was taken by the contributing researcher and samples were collected for a sequence
d0 < . . . < dn of n + 1 depths with n ∈ N. Usually, each sample contains a certain
number of preserved pollen, which are identified, classified, and counted. Next, the age
of the sample at each depth needs to be determined. For that purpose, the technique
of radiocarbon dating again is the most popular choice, see Section 7.1. However, in
general a large number of samples is taken at each site and since radiocarbon dating is
rather expensive, it is not used to estimate the ages of all samples. Instead, radiocarbon
ages are only determined for a subset {di1 , . . . , dij} ⊂ {d0, . . . , dn} for j ∈ {1, . . . , n}
and ages for depths d ∈ {d0, . . . , dn} \ {di1 , . . . , dij} are computed using model-based
interpolation methods, see the rich literature on stochastic age-depth modeling, e.g.,
Bronk Ramsey (2008), Haslett and Parnell (2008) or Blaauw and Christen (2011).
Next, ages obtained from the radiocarbon method (or interpolation) need to be
calibrated to correct systematic errors from radiocarbon dating. Unfortunately, this is
only done by a minority of researchers contributing data to Neotoma. Thus, a huge
amount of radiocarbon ages needs to be calibrated, which cannot be done manually
using standard calibration curves such as IntCal13, see Reimer et al. (2013). As an
alternative, we suggest to convert radiocarbon ages into calibrated ages based on a
smoothed radiocarbon calibration curve introduced in Grimm (2008), Figure 3. This
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simplified approach is not exact but in Grimm (2008) it is estimated that with a
probability of 0.47 the occurring error is less than 25 years, with a probability of 0.86
the error is less than 100 years, and with a probability of 0.97 the occurring error
is less than 200 years. Since this is clearly below the temporal scale of our study,
it is extremely unlikely that a significant bias is introduced by using the simplified
calibration curve. The result is a sequence a0, . . . , an of calibrated radiocarbon ages
(the unit being calibrated years BP; we simply write BP to provide consistency to
Chapter 7) that correspond to the samples taken at depths d0, . . . , dn.

The absence of calibrated ages for most samples in the Neotoma Database causes
another potential problem that needs to be addressed. The correct procedure when
contributing data to Neotoma would be to calibrate radiocarbon ages at depths
di1 , . . . , dij first, resulting in calibrated ages ai1 , . . . , aij , and to determine ages for
depths d ∈ {d0, . . . , dn} \ {di1 , . . . , dij} afterwards based on ai1 , . . . , aij using model-
based interpolation methods. For the majority of sites, however, ages for depths
d ∈ {d0, . . . , dn} \ {di1 , . . . , dij} are first interpolated based on uncalibrated ages at
di1 , . . . , dij before contributing data into Neotoma, and we then calibrate the ages of
all n+ 1 depths d0, . . . , dn using the smoothed calibration curve of Grimm (2008). In
general, this exchange of calibration and interpolation could lead to a bias in calibrated
ages. Unfortunately, for those sites in Neotoma at which ages are only interpolated
(without calibration), it does not seem possible to identify, which (uncalibrated) ages
were obtained from radiocarbon dating and which from interpolation methods, making
it impossible to eliminate this bias. To investigate whether the calibration bias is
expected to significantly influence the analysis performed in this chapter, we perform
the following case study. We select 22 independent test samples from the literature,
each consisting of a sequence d0, . . . , dn of depths in cm and a sequence ã0, . . . , ãn
of corresponding uncalibrated radiocarbon ages, with n ∈ N varying between 4 and
17. For each test sample, we determine the sequence {d′1, . . . , d′k} ⊂ [d0, dn] with
k ∈ N, which contains all depths between d0 and dn being a multiple of 5 cm. We
first compute radiocarbon ages for depths d′1, . . . , d

′
k by applying linear interpolation

based on ã0, . . . , ãn and afterwards calibrate interpolated ages using the smoothed
calibration curve. Next, we first calibrate ã0, . . . , ãn and then determine calibrated
ages for d′1, . . . , d

′
k by applying linear interpolation. This results in two calibrated

radiocarbon ages a and a′ for each depth d′ ∈ {d′1, . . . , d′k}, i.e., we obtain two depth-
age-curves for each of the 22 test samples that can be compared to analyze the effect of
exchanging calibration and interpolation. The depth-age-curves for three test samples
are illustrated in Figure 8.1, showing that calibrated ages obtained with the different
approaches have similar values. To provide a better overview of all 22 test samples,
Figure 8.2 depicts a histogram of the differences a− ã for all depths and test samples
(altogether about 1,500 values). We observe that the mean error is at -10 years, that
the large majority of errors are between -100 and 100 years, and that errors larger
than 300 years (or smaller than -300 years) occur extremely rarely. Moreover, most
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8. Spatio-temporal distribution of prehistoric vegetation abundances in North America

Figure 8.1.: Depth-age-curves illustrating the differences between correctly computing
calibrated radiocarbon ages (first calibration, then interpolation; blue)
and exchanging calibration and interpolation (red) for three selected test
samples.
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8.1. Description of pollen data

Figure 8.2.: Histogram of errors occurring when exchanging calibration and interpo-
lation of radiocarbon ages for all chosen depths in a sequence of 22 test
samples. The red line indicates the mean error.

of the larger errors occur for ages older than 13000 BP, which are not considered in
our analysis. We conclude that, since the observed differences are small compared
to the temporal scale of this study, errors occurring from exchanging calibration and
interpolation of radiocarbon ages can be considered as negligible in the following.

8.1.3. Data selection and processing

In order to access the Neotoma Database for automatic data selection and processing,
we use the R package neotoma, see Goring et al. (2015). The package neotoma uses
an application programming interface to send data requests to the Neotoma Database
and then forms data objects that are compatible with existing R packages for recon-
struction, manipulation, presentation, processing, and inference of paleoenvironmental
and paleoecological data. Three levels of information are accessible via neotoma, which
are denoted as sites, datasets, and downloads. An overview of these levels and
their interrelationships is given in Goring et al. (2015), Figure 1. A site is the most
basic form of spatial information representing geographical coordinates, name, and
description of excavation sites in Neotoma. According to the scope of our study, we
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select all sites which are labeled with the geopolitical id ‘Canada’ or ‘United States’,
all other sites are dropped. Neotoma’s datasets are collections of samples of the
same type from a fixed site. Thus, in the next step all datasets associated with the
sites selected before are loaded (each dataset belongs to a site but a site can have
more than one dataset, e.g., one of type ‘pollen’ and one of type ‘vertebrate fauna’).
The most important attributes of a dataset are the collection type (describing the
way data are collected) and the dataset type. Other attributes such as principal inves-
tigators or submission dates are not of interest in our study. We select all datasets
whose collection type is equal to ‘core’ or ‘composite’ (combination of several adjacent
cores) and whose dataset type is equal to ‘pollen’. The most complex level of data
is given by the downloads, which contain the most important information such as
ages of samples and pollen counts. In particular, each download that is associated
with a pollen dataset contains a sequence d0, . . . , dn of depths and the corresponding
sequence of (in most cases uncalibrated) radiocarbon ages together with the pollen
counts for different taxa. If ages are not calibrated, this is done using the smoothed
calibration curve of Grimm (2008), which results in ages a0, . . . , an, see Section 8.1.2.
We load all downloads that correspond to the datasets selected above and delete
those downloads with

1. less than two depths/ages available (i.e., n < 1),

2. the age of at least one depth missing,

3. at least one age without characterization of age type (e.g., calibrated or not),

4. ages having different age types.

Finally, it remains to identify which taxa of a download should be taken into account for
application in this study. A taxon and the corresponding count data are characterized by
different attributes such as the taxon name, the taxon group or the variable element and
unit describing the considered element, part or organ of the taxa and the unit in which
the count data are measured. For each download, we select those taxa whose taxon
group is ‘vascular plants’, whose variable element is equal to ‘pollen’ or ‘spore’ and whose
variable unit is ‘NISP’ (number of identified specimen). Since data are contributed to
Neotoma by many different researchers and since most taxa can be subdivided into
various sub-taxa, a standardization of count data across sites is necessary. For example,
one analyst might discriminate sub-genera of Picea (spruce), such as Picea glauca
(white spruce) or Picea mariana (black spruce), while another might simply identify
Picea to the genus level. To provide comparability, the standardization list suggested
in Williams and Shuman (2008) is used, which aggregates count data for up to 64
taxa. Finally, we observe that comparing pollen counts (for a fixed taxon) across time
and space is still problematic due to, e.g., spatially and temporally varying sampling
effort. Thus, the usual practice is to compute relative pollen abundances for all sites,
ages, and taxa, which are much easier to compare and interpret. Altogether, we obtain
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Figure 8.3.: Sites with data of relative pollen abundances in the Neotoma Paleoecology
Database.

a set of 1, 151 sites, which are distributed inhomogeneously over the entire North
American continent, see Figure 8.3. In particular, we observe a large number of sites in
southeastern Canada, the northeastern and western US and Alaska, whereas northern
Canada and the southern US show low site densities. Each of the depicted sites contains
a sequence a0, . . . , an of calibrated radiocarbon ages together with the corresponding
relative pollen abundances of 64 taxa. In this thesis, pollen data were compiled for
10 selected taxa, which are major constituents of the forests and prairies of North
America and some of which were extensively used by First Nations people. Those are
Acer (maple), Carya (hickory), Castanea (chestnut), Fagus (beech), Juglans (walnut
and butternut), Picea (spruce), Pinus (pine), Poaceae (grasses), Populus (includes
poplar, aspen and cottonwood), and Quercus (oak).

8.2. Temporal interpolation and smoothing of pollen
abundances

To allow for the estimation of spatial vegetation intensity maps, relative pollen abun-
dances need to be available at (a subset of) the 1, 151 sites shown in Figure 8.3
simultaneously for the same years. However, the ages a0, . . . , an for which pollen data
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are obtained from Neotoma are different from site to site, which makes the application
of interpolation or smoothing methods necessary. Since relative pollen abundances
may vary considerably even during short time periods, which is most likely a result
of random sampling errors, it is recommended to use smoothing methods over inter-
polation if possible, see Takezawa (2006). In the following, we consider a fixed site
from the Neotoma database with available pollen data and a fixed taxon (one of the
10 described in Section 8.1.3). With (a0, p0), . . . , (an, pn), where 0 ≤ a0 < . . . < an
and pi ∈ [0, 1] for all i = 0, . . . , n, we denote the ages of the available samples in years
BP (i.e., an describes the age of the oldest sample) and the corresponding relative
pollen abundances of the chosen taxon. A random design approach seems suitable in
this context, see Section 3.4.3, since the ages of samples are not fixed a priori by the
analyst collecting the data and can thus be considered to be random. Furthermore,
samples for different ages are acquired and investigated independently. Accordingly,
we interpret (a0, p0), . . . , (an, pn) as (sorted) realizations of some independent and iden-
tically distributed absolutely continuous random vectors (A0, P0), . . . , (An, Pn) taking
values in [0,∞)× [0, 1]. Furthermore, we consider the PDF fA : R→ [0,∞) of A0. It
seems almost impossible to find a parametric representation describing the relationship
between the random pollen abundances P0, . . . , Pn and the random ages A0, . . . , An
sufficiently well, which is why we generally assume that

Pi = p(Ai) + v
1
2 (Ai) εi, i = 0, . . . , n,

where p : supp(fA)→ [0, 1] with

p(a) = E (P0 |A0 = a), a ∈ supp(fA),

and v : supp(fA)→ [0,∞) with

v(a) = var (P0 |A0 = a), a ∈ supp(fA),

are the conditional expectation function and the conditional variance function of P0

given A0 and ε0, . . . , εn denote some random variables, called residuals, with E εi = 0
and var εi = 1 for all i = 0, . . . , n.

The conditional expectation function p can be estimated using kernel smoothing.
For that purpose, we consider the time intervals I1, . . . , In, where Ii = [ai−1, ai) for
i = 1, . . . , n − 1 and In = [an−1, an], and by hi = ai − ai−1 we denote the length of
interval Ii for i = 1, . . . , n. In order to allow for a smooth estimation of p, the bandwidth
h, which controls the degree of smoothing in one-dimensional kernel estimators, should
be chosen not smaller than the maximum max{h1, . . . , hn}. However, for some sites
and taxa, a long period Ii without a sample occurs, which leads to a bandwidth
that can cause oversmoothing in other intervals by eliminating too many details. To
avoid such effects, we only consider those intervals {Ii1 , . . . Iik} ⊂ {I1, . . . , In} with
k ∈ {1, . . . , n} that have a length of not more than 2000 years. Furthermore, we define
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8.3. Vegetation intensity maps

I = Ii1 ∪ . . . ∪ Iik and h = max{hi1 , . . . , hik}, where it is assumed that I ⊂ supp(fA).
Then, an estimate p̂ of p can be determined using a (one-dimensional) NWE with
bandwidth h according to (3.41), i.e.,

p̂(a) =

n∑
i=0

pi κ
G

(
a− ai
h

)
n∑
i=0

κG
(
a− ai
h

) , a ∈ I, (8.1)

with κG : R → [0,∞) being the one-dimensional Gaussian kernel defined in (3.31).
Motivation for choosing the Gaussian kernel over, e.g., the Epanechnikov kernel is that
it has an unbounded support and is thus expected to provide smooth estimates even
in regions of few data points. Furthermore, we avoid that the denominator in (8.1)
can be equal to zero. However, for a /∈ I, using the NWE with bandwidth h as chosen
above occasionally results in sudden decreases or increases making it an inappropriate
choice. Therefore, we alternatively suggest to estimate p using linear interpolation,
which leads to an estimate p̃ of p defined by

p̃(a) =
n∑
i=1

(
pi−1 + (a− ai−1)

pi − pi−1

ai − ai−1

)
1Ii(a), a ∈ [a0, an]. (8.2)

Finally, we set p̂(a) = p̃(a) for a ∈ [a0, an] \ I.

The proposed methodology is applied to 10 selected taxa, see Section 8.1.3. Figure 8.4
illustrates data of relative pollen abundances from Neotoma for three sites together
with estimates {p̂(a), a ∈ I} and {p̃(a), a ∈ [a0, an]} obtained using the NWE in (8.1)
and linear interpolation according to (8.2), respectively. We find that choosing the
smoothing parameter h as explained above leads to estimates that capture the temporal
development very precisely, including abrupt in- or decreases, see, e.g., the yellow curve
in Figure 8.4 (top). On the other hand, noise is also eliminated quite well, see, e.g.,
the green curve in Figure 8.4 (center) and the blue curve in Figure 8.4 (bottom). In
Figure 8.4 (bottom), we furthermore have that I 6= [a0, an] since for ages between
14300 BP and 18000 BP interpolation is preferred over smoothing due to missing data.
We also point out that, although we will keep the notation ’relative pollen abundance’
in the following, estimates p̂(a) for all 64 taxa at a fixed age a ∈ [a0, an] do not longer
sum to one in general.

8.3. Vegetation intensity maps

Now that estimated relative pollen abundances are available at a large number of sites
in North America simultaneously for the same years, we address the question how
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8. Spatio-temporal distribution of prehistoric vegetation abundances in North America

Figure 8.4.: Relative pollen abundances for three different sites and 10 selected taxa:
data from Neotoma (points), estimates obtained using linear interpolation
(thin lines), and estimates obtained using a NWE (bold lines).
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8.3. Vegetation intensity maps

smooth vegetation intensity maps can be determined. For that purpose, we use similar
nonparametric kernel methods as applied in Section 7.2 for the estimation of population
intensity maps. Furthermore, we describe an approach to estimate the (temporally
changing) ranges of the considered taxa based on obtained vegetation intensities.

8.3.1. Nonparametric estimation of vegetation intensity maps

In order to compute smooth vegetation intensity maps that are comparable to pop-
ulation intensity maps estimated in Chapter 7, we consider the sequence of years
750 BP, 850 BP, . . . , 12750 BP, which correspond to the midpoints of the 500-year
intervals 500 − 1000 BP, 600 − 1100 BP, . . . , 12500 − 13000 BP introduced in Sec-
tion 7.2. The estimation procedure proposed in the following is applied to each of
the 121 years and each taxon specified in Section 8.1.3 separately. Let y be a fixed
year, i.e., y ∈ {750, 850, . . . , 12750}, and let W ⊂ R2 again denote the compact set of
all locations on the North American continent that are not permanently covered by
ice in year y (according to reconstructions of prehistoric ice sheets, see Dyke, 2002).
We only consider those of the 1,151 sites shown in Figure 8.3 with y ∈ [a0, an], where
a0 and an are the site-specific minimal and maximal available calibrated radiocarbon
ages introduced in Section 8.1.2. At all other sites no pollen abundances are available
for year y. This results in a sequence (s1, π1), . . . , (sm, πm), with m ≤ 1, 151, where
s1, . . . , sm denote all sites in North America with smoothed or interpolated pollen
abundances π1, . . . , πm in year y that were derived according to (8.1) or (8.2) (for time
intervals with sparse data).

As in some time periods relative pollen abundances vary considerably (even among
closely located sites) due to statistical noise and as we are interested in large scale
patterns of spatial vegetation intensities, it seems more suitable to apply nonpara-
metric spatial smoothing methods than interpolation methods such as kriging, see,
e.g., Wackernagel (2003), Diggle and Ribeiro Jr. (2007) or Cressie and Wikle (2011).
Furthermore, we aim to provide as many similarities to the estimators applied in
Section 7.2 for the computation of population intensity maps as possible. We again
choose a random design approach, see Section 3.4.3, as sampling sites were not designed
by one analyst but chosen individually by many different researchers and can thus
be considered to be independent random vectors. Furthermore, corresponding pollen
abundances are estimated independently for different sites based on the data from
Neotoma, which are also sampled independently across sites. Accordingly, we suppose
that (s1, π1), . . . , (sm, πm) can be interpreted as realizations of some independent and
identically distributed absolutely continuous random vectors (S1,Π1), . . . , (Sm,Πm)
with values in W × [0, 1]. By fS : W → [0,∞) we denote the PDF of S1, where we
assume that fS(t) > 0 for all t ∈ W . Again, it seems impossible to find a parametric
representation that models the relationship between sites S1, . . . , Sm and relative pollen
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abundances Π1, . . . ,Πm sufficiently well, which is why we suppose that

Πi = π(Si) + ṽ
1
2 (Si) ε̃i, i = 1, . . . ,m,

where π : W → [0, 1] with

π(t) = E (Π1 |S1 = t), t ∈ W,

and ṽ : W → [0,∞) with

ṽ(t) = var (Π1 |S1 = t), t ∈ W,

denote the conditional expectation function and the conditional variance function of
Π1 given S1 and ε̃1, . . . , ε̃m are some random residuals with E ε̃i = 0 and var ε̃i = 1
for i = 1, . . . ,m. Since pollen are interpreted as an index of past plant abundance,
see Section 8.1, we consider the field {π(t), t ∈ W} as a map of expected vegetation
intensities of the considered taxon in year y. We suggest to estimate {π(t), t ∈ W} based
on (s1, π1), . . . , (sm, πm) using a two-dimensional NWE, see Section 3.4.3. According
to (3.41), an estimate {π̂(t), t ∈ W} of {π(t), t ∈ W} can be determined by

π̂(t) =

m∑
i=1

πi κ
E
h (t, si)

m∑
i=1

κEh (t, si)
, t ∈ W, (8.3)

where for h > 0 the function κEh : W×W → [0,∞) denotes the (scaled) two-dimensional
radially symmetric Epanechnikov kernel with bandwidth matrix H = diag(h2, h2) given
in (7.1). Furthermore, we suggest to set h = 600 km to ensure comparability to the
population intensity maps estimated in Section 7.2, which is also the reason for choosing
the Epanechnikov kernel over a kernel with unbounded support (such as the Gaussian
kernel). However, in contrast to the estimation of population intensity maps, we do
not need to account for sampling biases, boundary effects, and errors occurring due to
taphonomic loss. On the one hand, the denominator in (8.3) prevents the estimate
from being influenced by inhomogeneous sampling strategies and boundary effects. On
the other hand, relative pollen abundances do not contain taphonomic biases as it can
be assumed that pollen do not degrade over the time-scale of our study. Computing
{π̂(t), t ∈ W} for all years y ∈ {750, . . . , 12750} results in a sequence of estimated
vegetation intensity maps for the selected taxon.

8.3.2. Estimation of taxon ranges

Most taxa considered in this thesis have a region of typical occurrence, which is denoted
as taxon range (e.g., the eastern and southern US for Quercus). Only in the taxon
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range estimated vegetation intensities have significantly positive values, whereas in the
remaining regions intensities are zero or very close to zero (due to few pollen grains
being transported by wind or caused by data, sampling, and measurement errors).
When comparing a population and a vegetation intensity map (see Chapter 9), only
the range of the selected taxon should be taken into account, as in this region the
taxon represents a significant part of the local vegetation in the considered year. For
example, if correlations between population activity and the intensity of Quercus are
estimated, only the eastern and southern US should be analyzed. Outside the range of
Quercus (e.g., in the western US and in Canada), estimated vegetation intensities will
be very close to zero although population activity is likely to occur in some parts of
these regions, which will dilute correlation results. For that purpose, we suggest an
approach to determine (temporally varying) estimates of the taxon range based on
vegetation intensities. Let {π̂(t), t ∈ W} be an estimated vegetation intensity map,
which is computed according to (8.3) for a selected taxon with (unknown) range ξ ⊂ W
in a given year y. Then, we suggest to compute an estimate ξ̂ of ξ by

ξ̂ = {t ∈ W : π̂(t) ≥ u ·max{π̂(t), t ∈ W}} , (8.4)

with a suitable threshold u ∈ (0, 1). In other words, we estimate the range as the set of
all locations on the North American continent at which the local vegetation intensity
is at least u times the global maximum of the vegetation intensity map. In order to
determine an optimal choice for the threshold u, the taxon range is estimated for the
most current year (y = 750 BP) using thresholds u = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. Then,
a visual comparison to the taxon’s modern range is made, see Thompson et al. (1999),
where we observe that for all 10 taxa considered in the previous sections the threshold
u = 0.2 provides the best overall match. Since the estimate ξ̂ as defined in (8.4) always
depends on the maximum of the considered vegetation intensity map (and thus changes
over time), we suppose that the suggested approach is also able to capture the typical
taxon ranges for older years. This will be confirmed by the example maps shown in
Section 8.4.

8.4. Discussion of results for Quercus

Using the statistical methodology proposed in Sections 8.2 and 8.3, we estimated
sequences of vegetation intensity maps for all 10 taxa specified in Section 8.1.3. This
results in a large number of maps and discussing all of them clearly goes beyond the
scope of this thesis. As an example illustrating vegetation intensity maps and taxon
ranges obtained according to (8.3) and (8.4), we briefly discuss results for Quercus
(oak). Quercus is the characteristic species of the eastern deciduous forest and serves
as a general indicator for the extent of this ecosystem. It is an important source of
food for both humans and game animals, see McShea and Healy (2002), which suggests
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the assumption that the abundance of Quercus has a significant impact on human
populations. Figure 8.5 shows estimated vegetation intensity maps of Quercus together
with the corresponding estimated taxon ranges for three selected years. The general
development of Quercus over the past 13000 years according to estimated vegetation
intensities is summarized in the following. Prior to 11000 BP, highest values of Quercus
were restricted to Florida and the states along the eastern Gulf Coast, see Figure 8.5
(bottom). The range expanded and moved to the north and west after 11000 BP. At
a smaller scale, the maps capture the lower values of Quercus in the upper slopes of
the Appalachian Mountains, whereas Quercus became more abundant west of this
mountain chain. During this time, Quercus occurred in all southern and eastern states,
see Figure 8.5 (center). At around 9000 BP, Quercus became less abundant in the
south, and had the highest values in a band across the Mid-Atlantic States. Lower
vegetation intensities are also shown in the Great Lakes region and Texas. This pattern
remained for the next few thousand years, see Figure 8.5 (top), followed by a slight
decrease in Quercus between 2000 BP and 1500 BP.

Maps depicting the spatio-temporal development of tree taxa across eastern North
America (e.g., for Quercus) have been produced several times since the 1970s. During
the last decades, extensive paleoecological databases were compiled and innovative
statistical methods to estimate such maps were developed, which allows to infer a
detailed picture of prehistoric vegetation patterns, see, e.g., Williams et al. (2004)
and the references therein. The latest version discussed in the mentioned paper is
based on a previous database, the North American Pollen Database with 759 sites,
to produce maps every 1000 to 2000 years using a tri-cubic distance weighting to
average pollen data from a 300 km × 300 km × 500 m window to a 50 km × 50 km
lattice. There is a very close visual correspondence of our maps to those of Williams
et al. (2004); all of the features discussed above are seen in both sets of maps. The
overall migration pattern at the scale discussed in this study is captured, only showing
marginal differences due to the updated database and differences in smoothing and
mapping methods. This suggests that the methodology proposed in this paper is able
to provide reliable indicators of vegetation abundance, which can be used for statistical
comparison to spatio-temporal human population intensities.

Besides the simple nonparametric smoothing techniques applied in this chapter or in
Williams et al. (2004), a more sophisticated approach to the inference of local vegetation
intensities for tree taxa is discussed in Paciorek and McLachlan (2009), where Bayesian
models and methods have also been used to estimate uncertainties in obtained results.
However, we do not consider this to be necessary in our study as estimated vegetation
intensity maps correspond particularly well with those of the existing literature, see
above. Furthermore, the proposed methodology is closely related to that we used when
estimating population intensity maps in Section 7.2, which is preferred to enable a
qualitative comparison of vegetation and population intensities in Chapter 9.
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Figure 8.5.: Estimated vegetation intensity maps of Quercus for the years 2550 BP
(top), 9450 BP (center), and 12050 BP (bottom). The left-hand side
illustrates intensities for the entire continent together with temporally
smoothed abundances of Quercus at sites from the Neotoma database. On
the right, vegetation intensities are restricted to the estimated taxon range.
Gray colors indicate areas permanently covered by ice.
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9. Correlation analysis for vegetation
abundances and population
intensities

After spatio-temporal estimates of prehistoric vegetation and population intensity maps
for North America have been derived based on comprehensive paleoecological and
archaeological databases, we now address the analysis of interrelationships between both
sets of maps. It still remains unclear if and how Native American populations interacted
with their environment. On the one hand, it seems plausible that natives responded
to environmental and climatic changes that have a strong impact on their living
conditions. On the other hand, some researchers hypothesize that native populations
directly influenced the composition of forests, e.g., by burning down trees to make the
land available for agriculture and by growing plants that serve as a source of food. In
order to provide a tool for the identification of such relationships, we describe a simple
approach to estimate spatial cross-correlation functions of vegetation and population
intensities as well as cross-correlations of changes in vegetation and population at
various temporal lags, see Sections 9.1 and 9.2. Furthermore, Section 9.3 introduces
a method to compute nonparametric confidence bands of estimated cross-correlation
functions based on different resampling methods to assess the significance of obtained
results. The chapter is concluded by a presentation and discussion of results for one
taxon (Quercus) in Section 9.4. The contents presented in the following have been
incorporated in Kriesche et al. (2017a). A more detailed discussion of correlation
results for further taxa in an archaeological and paleoecological context is provided in
Gajewski et al. (2017).

9.1. Cross-correlation functions of vegetation and
population intensity maps

In a first step, we aim to analyze correlations between prehistoric vegetation and
population intensity maps that were estimated in Chapters 7 and 8 of the present
thesis. We again consider the 10 taxa introduced in Section 8.1.3 (Acer, Carya, Castanea,
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Fagus, Juglans, Picea, Pinus, Poaceae, Populus, and Quercus) and the sequence of
years 750 BP, 850 BP, . . . , 12750 BP, compare to Section 8.3.1. In the following, we
fix one of the 10 taxa and a year y ∈ {750, 850, . . . , 12750} and by W ⊂ R2 we again
denote the compact set of all locations on the North American continent that are
not permanently covered by ice in year y. Next, we consider the corresponding map
{π̂(t), t ∈ ξ̂} of estimated vegetation intensities in year y and the map {λ̂(t), t ∈ ξ̂} of
estimated population intensities for the 500-year time period [y − 250, y + 250], both
being restricted to the estimated taxon range ξ̂ ⊂ W , compare to (7.3), (8.3), and
(8.4). In estimation theory, estimators are commonly modeled as random elements,
which is why ξ̂ is considered to be a realization of some random closed subset Ξ of W ,
see Section 3.3.6. Furthermore, the estimated maps {π̂(t), t ∈ ξ̂} and {λ̂(t), t ∈ ξ̂} are
interpreted as realizations of random fields Π = {Π(t), t ∈ W} and Λ = {Λ(t), t ∈ W}
restricted to Ξ, where Π(t) and Λ(t) take values in [0, 1] and [0,∞), respectively, for
each t ∈ W .

Inference of joint probabilistic properties of two random fields based on one pair of
realizations is only possible if certain assumptions on the spatial dependency structure
of the fields are made. We suppose in the following that Π and Λ are jointly second-order
motion-invariant, see Section 3.2.4 (which means that both Π and Λ are second-order
motion-invariant, too, see Section 3.2.3). This implies that Π and Λ have constant
expectation functions, i.e., EΠ(t) = µΠ and EΛ(t) = µΛ for each t ∈ W , and that for
any pair of locations s, t ∈ W the covariances cov (Π(s),Π(t)), cov (Λ(s),Λ(t)), and
cov (Π(s),Λ(t)) only depend on the (great-circle) distance dGC(s, t) between s and t
(due to W being a geographical domain), see Remark 3.2.4. Clearly, these assumptions
are rather unrealistic on a continental scale due to, e.g., geographical and climatic
differences. However, when estimating cross-correlation functions, we only consider
the restriction of vegetation and population intensity maps to the estimated taxon
range, which covers a smaller, geographically more homogeneous region for most taxa
(in particular for Quercus, which is analyzed in more detail in Section 9.4).

We suggest to analyze relationships between vegetation and population intensities by
estimating cross-covariance and cross-correlation functions. Let r0 > 0 be defined as
in (3.1), i.e., r0 denotes the maximum distance such that for any r ≤ r0 there is at
least one pair s, t of locations in W with dGC(s, t) = r. As Π and Λ are assumed to be
jointly second-order motion-invariant, the motion-invariant cross-covariance function
CΠΛ : [0, r0]→ R of Π and Λ is defined by

CΠΛ(r) = cov
(
Π(s),Λ(t)

)
, s, t ∈ W such that dGC(s, t) = r, (9.1)

compare to (3.5). Cross-covariance functions are rather difficult to interpret, which
is why they are typically normalized to obtain cross-correlation functions. By using
that the variances σ2

Π = var Π(t) and σ2
Λ = var Λ(t) do not depend on t ∈ W , where

we assume that σ2
Π, σ

2
Λ > 0, the (motion-invariant) cross-correlation function ρΠΛ :
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9.1. Cross-correlation functions of vegetation and population intensity maps

Figure 9.1.: Realization of a stationary Poisson point process with intensity α = 0.0003,
the points of which are used as sample points for the estimation of cross-
correlation functions.

[0, r0]→ [−1, 1] of Π and Λ is represented as

ρΠΛ(r) =
CΠΛ(r)√
σ2

Π σ
2
Λ

, r ∈ [0, r0],

see Remarks 3.2.3 and 3.2.6.

Even though the whole trajectories of population and vegetation intensity maps were
estimated in the previous chapters, we need to choose a finite sequence u1, . . . , uk ∈ ξ̂
of k ∈ N sample points, at which the values π̂(u1), . . . , π̂(uk) and λ̂(u1), . . . , λ̂(uk) are
determined for the estimation of cross-correlation functions. One possibility is to
consider a regularly spaced lattice for this purpose but this raises the question of how
to choose its origin and orientation. To avoid making an arbitrary choice here, we
alternatively suggest to generate a realization of a stationary Poisson point process
with intensity α = 0.0003, see Section 3.3.3, and use those points of the process as
sample points u1, . . . , uk that fall into the estimated taxon range ξ̂. The intensity
α = 0.0003 is chosen as a compromise to get a number of sample points (3,876 for the
entire continent in our example, see Figure 9.1) that is high enough to ensure a reliable
estimation but still allows computations to be done in a reasonable time.

The most intuitive approach is to first estimate the cross-covariance function CΠΛ using
the method of moments, see Section 3.2.6. However, the method of moments estimator
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9. Correlation analysis for vegetation abundances and population intensities

has certain disadvantages, see Remark 3.2.10, making it an inappropriate choice in
this context. Also the fitting of parametric models, as advised in most geostatistical
applications to obtain smooth and continuous estimates, see, e.g., Montero et al. (2015),
is not suitable since it seems hardly possible to find a parametric model for cross-
covariance functions that can be fitted adequately for all taxa and time periods. A
more appropriate alternative is to use a kernel estimator for cross-covariance functions
introduced in Section 3.2.6. This kind of estimator is frequently used in spatial statistics
for the estimation of mark correlation functions, see Illian et al. (2008), and has been
successfully applied and interpreted in an ecological context, see, e.g., Shimatani (2002)
or Ledo et al. (2011). Let rest ∈ (0, r0] be chosen in such a way that for each r ≤ rest, the
number of pairs of sampling points ui, uj ∈ {u1, . . . , uk} in ξ̂ with approximate distance
r ≈ dGC(ui, uj) is sufficiently large. For example, rest = 1000 km is a reasonable choice

for all taxa considered in this chapter. According to (3.14), an estimate ĈΠΛ of CΠΛ

based on π̂(u1), . . . , π̂(uk) and λ̂(u1), . . . , λ̂(uk) can be computed by

ĈΠΛ(r) =

k∑
i=1

k∑
j=1

(π̂(ui)− µ̂Π)(λ̂(uj)− µ̂Λ)κE
(
r−dGC(ui,uj)

h

)
k∑
i=1

k∑
j=1

κE
(
r−dGC(ui,uj)

h

) , r ∈ [0, rest], (9.2)

where h is a positive bandwidth, µ̂Π and µ̂Λ are method of moment estimates of the
expectations µΠ and µΛ, see (3.9), and κE : R→ [0,∞) denotes the one-dimensional
Epanechnikov kernel defined in (3.30). Comparisons of estimates based on different
bandwidths have shown that h = 20 km is a good choice to obtain smooth functions
without eliminating important details. Using different types of kernel functions has
a negligible effect on obtained results. A similar kernel estimator for covariance
functions is also proposed in Hall et al. (1994), where the authors propose an additional
adjustment based on Fourier transforms to ensure that estimated functions are positive
semi-definite. We are not following this path, since the procedure is computationally
expensive and does not really affect qualitative interpretation of cross-correlation
functions.

Finally, a plug-in estimate ρ̂ΠΛ of the cross-correlation function ρΠΛ is given according
to (3.16), i.e.,

ρ̂ΠΛ(r) =
ĈΠΛ(r)√
σ̂2

Π σ̂
2
Λ

, r ∈ [0, rest], (9.3)

where σ̂2
Π and σ̂2

Λ are estimates of the variances σ2
Π and σ2

Λ. To obtain stable estimates
of cross-correlation functions, it is recommended not to use the standard moment
estimates here. Instead, due to σ2

Π = cov (Π(t),Π(t)) for all t ∈ W , an estimate σ̂2
Π

can be computed according to (9.2) for r = 0 with π̂(u1), . . . , π̂(uk) and µ̂Π instead
of λ̂(u1), . . . , λ̂(uk) and µ̂Λ, compare to (3.13). An estimate σ̂2

Λ of the variance σ2
Λ is

determined analogously. The value ρ̂ΠΛ(r) for any r ∈ [0, rest] describes the estimated
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correlation of the vegetation intensity and the population intensity at two arbitrary
locations in the estimated taxon range ξ̂ with a distance of r km.

9.2. Cross-correlation functions of changes in
vegetation and population with temporal lag

An even more interesting question when analyzing prehistoric vegetation and population
intensities is how native populations responded to environmental changes and, vice
versa, how vegetation composition changed due to paleodemographic developments.
In this context, it seems plausible that a change in vegetation intensity does not
necessarily cause a response in population intensity immediately but a few hundred
years later (or that a change in vegetation is influenced by a demographic change some
hundred years earlier). For that purpose, we estimate and interpret cross-correlation
functions of 500-year changes in vegetation and population intensity maps with temporal
lag. We fix one of the 10 taxa considered in Section 9.1, a year y from the sequence
1000 BP, 1100 BP, . . . , 12500 BP, and a temporal lag τ ∈ {−1000,−900, . . . , 900, 1000}
in years. Let W (y) ⊂ R2 describe the compact set of all locations in North America
that are not permanently covered by ice in the years y − 250 and y + 250, i.e., W (y)

is the intersection of the geographical domains that are considered when estimating
vegetation intensity maps for those two years. Similarly, W (y+τ) ⊂ R2 contains all
locations on the North American continent that are not covered by ice in the years
y + τ − 250 and y + τ + 250. In order to provide a consistent domain for the random
fields to be compared, we furthermore introduce the intersection W̃ = W (y) ∩W (y+τ).
Additionally, let r̃0 > 0 be the maximum distance such that for each r ≤ r̃0 there is at
least one pair s, t of locations in W̃ with dGC(s, t) = r, compare to (3.1). By π̂(y)(t)
we denote the 500-year change in estimated vegetation intensities at location t ∈ W̃
between the years y + 250 and y − 250, which is computed based on the corresponding
estimated vegetation intensity maps obtained according to (8.3). Analogously, λ̂(y+τ)(t)
denotes the 500-year change in estimated population intensities at t ∈ W̃ between the
years y+ τ + 250 and y+ τ −250 (or, to be more precise, between the 500-year intervals
[y+ τ, y+ τ + 500] and [y+ τ − 500, y+ τ ], whose centers are given by y+ τ + 250 and
y + τ − 250), compare to (7.3). For the estimation of cross-correlation functions we
only consider locations that fall into the intersection ξ̃ of W̃ with the estimated taxon
ranges that correspond to the years y + 250 and y − 250. By ũ1, . . . , ũk̃ with k̃ ∈ N we
denote those sample points obtained from the realization of a stationary Poisson point
process depicted in Figure 9.1 that fall into ξ̃.

Again, we suppose that ξ̃ is a realization of some random closed subset Ξ̃ of W̃ , see
Section 3.3.6. Furthermore, we interpret the fields {π̂(y)(t), t ∈ ξ̃} and {λ̂(y+τ)(t), t ∈ ξ̃}
as realizations of random fields Π(y) = {Π(y)(t), t ∈ W̃} and Λ(y+τ) = {Λ(y+τ)(t), t ∈ W̃}
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9. Correlation analysis for vegetation abundances and population intensities

restricted to Ξ̃, where Π(y)(t) and Λ(y+τ)(t) take values in R for each t ∈ W̃ . Next,
we again suppose that the random fields Π(y) and Λ(y+τ) are jointly second-order
motion-invariant, see Section 3.2.4. Accordingly, the motion-invariant cross-covariance
function CΠ(y)Λ(y+τ) : [0, r̃0]→ R of Π(y) and Λ(y+τ) is defined by

CΠ(y)Λ(y+τ)(r) = cov
(
Π(y)(s),Λ(y+τ)(t)

)
, s, t ∈ W̃ such that dGC(s, t) = r.

The corresponding (motion-invariant) cross-correlation function ρΠ(y)Λ(y+τ) : [0, r̃0]→
[−1, 1] is represented as

ρΠ(y)Λ(y+τ)(r) =
CΠ(y)Λ(y+τ)(r)√
σ2

Π(y) σ
2
Λ(y+τ)

, r ∈ [0, r̃0],

where σ2
Π(y) = var Π(y)(t) and σ2

Λ(y+τ) = var Λ(y+τ)(t) for any t ∈ W̃ . For the estimation
of ρΠ(y)Λ(y+τ) , we first consider a distance r̃est ∈ (0, r̃0] such that for each r ≤ r̃est
the number of pairs of sampling points ũi, ũj ∈ {ũ1, . . . , ũk̃} in ξ̃ with approximate
distance r ≈ dGC(ũi, ũj) is reasonably large (e.g., r̃est = 1000 km). Finally, estimates
ρ̂Π(y)Λ(y+τ)(r) of ρΠ(y)Λ(y+τ)(r) for r ∈ [0, r̃est] can be computed using the kernel estimators
given in Section 9.1 based on π̂(y)(ũ1), . . . , π̂(y)(ũk̃) and λ̂(y+τ)(ũ1), . . . , λ̂(y+τ)(ũk̃) instead

of π̂(u1), . . . , π̂(uk) and λ̂(u1), . . . , λ̂(uk), see (9.2) and (9.3).

Note that, in a similar way, the cross-correlation function of Π(y) and Π(y+τ) or that
of Λ(y) and Λ(y+τ) could be estimated in order to analyze the persistence of trends in
the temporal development of vegetation or population intensities. This would provide
additional insight into prehistoric demography and vegetation change although we
have to mention that some correlation is artificially created by the applied temporal
smoothing methods. However, this goes beyond the scope of this thesis.

9.3. Nonparametric estimation of pointwise confidence
bands

When interpreting estimated cross-correlation functions, it usually is of great interest
to know which results can be considered as significant and which not. For exam-
ple, if the applied estimator has a high variance, then it is possible that a clearly
positive or negative cross-correlation is obtained although there is no relationship
between the underlying random fields. In order to determine which values of estimated
cross-correlation functions can be considered as significantly different from zero, we
compute pointwise confidence bands using nonparametric resampling methods. Several
approaches are considered in the following: a subsampling method with different
parameters and a bootstrap method, see, e.g., Politis et al. (1999) or Chernick and
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LaBudde (2011). We describe how the suggested methods are applied to estimated
cross-correlations of vegetation and population intensity maps obtained in Section 9.1.
An application to cross-correlation functions of vegetation and population changes,
see Section 9.2, works analogously. Let {ρ̂ΠΛ(r), r ∈ [0, rest]} be an estimated cross-
correlation function for some fixed year and taxon (with estimated range ξ̂) obtained
according to (9.3) based on estimated vegetation intensities π̂(u1), . . . , π̂(uk) and pop-
ulation intensities λ̂(u1), . . . , λ̂(uk) at sampling points u1, . . . , uk ∈ ξ̂. Resampling
methods involve that the values of the cross-correlation function ρΠΛ are re-estimated
using a modified data basis. In the subsampling approach with parameter β ∈ (0, 1), a
random Bernoulli experiment with success probability β is performed for each sample
point u ∈ {u1, . . . , uk} (independently for different sample points) to decide whether the
data pair (π̂(u), λ̂(u)) is accepted or rejected. Based on all accepted data pairs, another

estimate {ρ̂(1)
ΠΛ(r), r ∈ [0, rest]} of {ρΠΛ(r), r ∈ [0, rest]} is computed according to (9.3).

In contrast, when applying the bootstrap approach, the estimate {ρ̂(1)
ΠΛ(r), r ∈ [0, rest]}

is determined based on π̂(u′1), . . . , π̂(u′k) and λ̂(u′1), . . . , λ̂(u′k), where the k sample
points u′1, . . . , u

′
k are drawn randomly with replacement from the set {u1, . . . , uk} of

original sample points. The difference between both methods can be interpreted as
follows. In the subsampling approach, the cross-correlation function is re-estimated
based on a reduced set of sampling points (which means a reduced data set), i.e., it
is analyzed how estimates of cross-correlation functions change when it is assumed
that some of the data are overrepresented or erroneous and are thus dropped. In
the bootstrap approach, however, we do not only drop some of the sample points
(and the corresponding data) but also provide the estimated intensities at some other
sample points with a higher weight to consider the case that those values might be
underrepresented in the data. Note that in both approaches, the spatial correlation
structure of the data is not violated since estimated vegetation and population intensi-
ties (at accepted or randomly drawn sampling points) are still associated with the same
geographical locations as before. The considered resampling procedure (subsampling or

bootstrap) is repeated 5,000 times, which results in a sample ρ̂
(1)
ΠΛ(r), . . . , ρ̂

(5000)
ΠΛ (r) of

cross-correlation estimates for each r ∈ [0, rest]. Based on this sample, a confidence in-
terval [θ(γ)(r), θ

(γ)(r)] of level γ ∈ (0, 1) for ρ̂ΠΛ(r) is constructed, where θ(γ)(r) denotes
the empirical (1− γ)/2 quantile and θ(γ)(r) is the empirical 1− (1− γ)/2 quantile of

the sample ρ̂
(1)
ΠΛ(r), . . . , ρ̂

(5000)
ΠΛ (r). Consequently, the confidence interval [θ(γ)(r), θ

(γ)(r)]

contains γ · 100% of the estimates ρ̂
(1)
ΠΛ(r), . . . , ρ̂

(5000)
ΠΛ (r). An estimated cross-correlation

ρ̂ΠΛ(r) is considered to be significantly different from zero, if 0 /∈ [θ(γ)(r), θ
(γ)(r)],

where the level γ is typically chosen as γ = 0.95 or γ = 0.99. Finally, the func-
tions {θ(γ)(r), r ∈ [0, rest]} and {θ(γ)(r), r ∈ [0, rest]} describe the (lower and upper)
boundaries of pointwise confidence bands of level γ for the estimated cross-correlation
function {ρ̂ΠΛ(r), r ∈ [0, rest]}.

205



9. Correlation analysis for vegetation abundances and population intensities

Figure 9.2.: Estimated cross-correlation functions for vegetation intensity maps of
Quercus and population intensity maps between 12750 BP and 750 BP.

9.4. Discussion of correlation results for Quercus

To conclude this chapter, we briefly present the results of the performed cross-correlation
analysis, where we again focus on the history of Quercus (oak). A more detailed
discussion for further taxa goes beyond the scope of this thesis and is provided in
Gajewski et al. (2017). In Figure 9.2, estimated cross-correlation functions ρ̂ΠΛ obtained
according to (9.3) for all years y ∈ {750, 850, . . . , 12750} are depicted, where warm colors
indicate positive and cold colors negative values. Prior to approximately 10500 BP,
intensities of both Quercus and population were high in Florida and decreased towards
the north and west, compare to Sections 7.3 and 8.4, which leads to high estimated
cross-correlations. Between 10500 BP and 6800 BP, the range of Quercus expanded and
moved northwards, while populations showed a complex pattern of changes resulting
in cross-correlations that are close to zero. For example, in Texas relatively low values
of Quercus and high population intensities are observed, whereas in Florida Quercus
remained stable but population numbers decreased. This was a time period of quite
some variability in the climate, see Viau et al. (2006), although incompleteness of the
CARD cannot be ruled out. During the period between ca. 6800 BP and 3700 BP,
the Late Archaic cultural period, cross-correlations started to increase again but also
showed some fluctuations. The distribution of Quercus did not change much during this
time but population gradually increased in the central regions of the eastern US, where
Quercus had its maximum intensities. However, population numbers also were subject
to certain fluctuations causing cross-correlations to increase and decrease several times
during this period. Over the past 3600 years, the Woodland Period, cross-correlations
were uniformly high. Populations decreased in New England but greatly increased
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in the area of maximum Quercus abundance in the eastern US. The large values of
estimated cross-correlation functions in the late Holocene indicate that forests with a
high abundance of Quercus provide optimal conditions for population growth during
this time. However, potential issues with incompleteness of the CARD (particularly in
the south, see Section 7.1), or the low density of pollen samples in the southeastern
US, see Figure 8.3, may have contributed to obtained cross-correlations as well.

Next, estimated cross-correlation functions ρ̂Π(y)Λ(y+τ) of 500-year changes in Quercus
abundance and population intensity as described in Section 9.2 are analyzed. Figure 9.3
illustrates the values of cross-correlation functions for y ∈ {1000, 1100, . . . , 12500} and
three different temporal lags, where y describes the midpoint of the 500-year interval
in which changes of vegetation intensities are computed. However, it is desirable to
summarize cross-correlations for all temporal lags in one figure to provide a compact
overview of spatio-temporal relationships between vegetation and population changes.
For that purpose, we compute for each year y ∈ {1000, 1100, . . . , 12500} and each lag
τ ∈ {−1000,−900, . . . , 900, 1000} the mean value of the estimated cross-correlations
{ρ̂Π(y)Λ(y+τ)(r), r = 30, 35, 40, . . . , 200 km} (the boundaries are chosen to reflect local
associations only and to avoid unstable estimates for distances close to zero) and
summarize computed means in a matrix representation, see Figure 9.4. Values on
the bold diagonal line correspond to the temporal lag τ = 0 (compare to Figure 9.3,
center), whereas cross-correlations above the diagonal line correspond to a negative
temporal lag and values below the line to a positive lag. Several periods of positive
and negative cross-correlations between changes in Quercus and population are found,
some of which are briefly discussed in the following.

Large positive values of cross-correlations are observed for changes in Quercus between
11000 BP and 9500 BP and changes in population in the period between 11300 BP and
10000 BP for all positive and small negative temporal lags. This indicates a strong
relationship between demographic and environmental changes over more than 1000
years. For example, both vegetation and population intensities were decreasing in
Florida and increasing further north (especially Quercus) during this period. This
was a time of rapid warming in North America, see Viau et al. (2006), where native
populations relied on a diverse set of resources, including hunting different animals and
gathering a variety of food, see Fagan (2000). The increased diversity of forests in which
Quercus typically occurs would have provided a suitable habitat to enable the increase of
human populations. The period with low to medium negative cross-correlations between
7500 BP and 6500 BP is a time in which both vegetation intensities and population
intensities showed a complex series of developments. Major changes in Quercus (due
to a moister climate) are observed in the west, whereas changes in population occurred
in different regions across the range of Quercus. Also a decrease in Quercus abundance
in Florida and the southeast (combined with increasing populations in these regions)
has probably caused negative cross-correlations. An increase in sedentism and the use
of diverse resources by native populations could have enabled adaptation to numerous
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9. Correlation analysis for vegetation abundances and population intensities

Figure 9.3.: Estimated cross-correlation functions for 500-year changes in vegetation
intensity maps of Quercus and population intensity maps with three
temporal lags: τ = −500 years (top), τ = 0 years (center), and τ = 500
years (bottom). Values on the ordinate correspond to the midpoints of the
500-year change intervals for vegetation intensities.
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Figure 9.4.: Mean cross-correlations (of distances between 30 and 200 km) for 500-year
changes in vegetation intensity maps of Quercus and population intensity
maps with different temporal lags. Values on the abscissa and ordinate
correspond to the midpoints of the 500-year change intervals for population
intensities and vegetation intensities, respectively.

environments, which further contributes to a lower association with Quercus abundance,
see Fagan (2000). Moreover, in Delcourt and Delcourt (2004) it is speculated that
in some regions prehistoric people thinned tree populations to increase acorn yields,
which could explain negative correlations, too. During the most recent 3000 years,
agriculture and more sedentary lifestyles became increasingly established in the eastern
US and southeastern Canada, with large cities in some areas and increasing impact
on the environment, see, e.g., Fagan (2000), Delcourt and Delcourt (2004) or Munoz
and Gajewski (2010). Agriculture (which is associated to increasing populations)
and Quercus abundance would both be favored in areas with optimal environmental
conditions. This could explain positive cross-correlations of changes in Quercus between
3000 BP and 2500 BP and population between 2500 BP and 1500 BP as well as of
changes in Quercus between 1500 BP and 1000 BP and population between 2500 BP
and 1500 BP.

To conclude presentation of correlation results, we discuss pointwise confidence bands
for cross-correlation functions as described in Section 9.3. Due to their time-consuming
computation, confidence bands are only provided every 1000 years for cross-correlation
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Figure 9.5.: Estimated cross-correlation function for 500-year changes in vegetation
intensities of Quercus and population intensities between 2550 BP and
2050 BP together with pointwise confidence bands of levels 0.95 and 0.99
computed based on the bootstrap method. The gray dashed line indicates
the difference between the upper and the lower bound of level 0.95.

functions of vegetation and population intensity maps as well as for cross-correlations
of changes in vegetation and population with temporal lag τ = 0. Furthermore,
both the bootstrap method and the subsampling method (with different parameters
β1 = 0.25, β2 = 0.5, and β3 = 0.75) are used. Figure 9.5 illustrates pointwise confidence
bands for changes in vegetation intensities (of Quercus) and population intensities
between 2550 BP and 2050 BP, which are computed using the bootstrap method.
We observe that cross-correlations for distances up to 550 km can be considered to
be significantly different from zero at level 0.99. The subsampling approach with
parameter β2 = 0.5 leads to bands that are almost identical to those depicted in
Figure 9.5. Using subsampling with β1 = 0.25 or β3 = 0.75 results in wider or
narrower bands, respectively. Finally, we aim to give a general recommendation on
how large estimated cross-correlations of changes in Quercus and population (with
temporal lag τ = 0) should be in order to be considered as significantly different
from zero for all time periods. For each computed confidence band, we determine
half of the maximum difference between the upper and the lower bound of level 0.95
for all distances between 30 and 200 km and plot these values as a function of the
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Figure 9.6.: Graphs showing the significance of estimated cross-correlation functions
for 500-year changes in vegetation intensities of Quercus and population
intensities based on pointwise confidence bands of level 0.95 for four differ-
ent methods. For each computed confidence band, half of the maximum
difference between the upper and the lower bound among distances between
30 and 200 km is illustrated as a function of the corresponding year.

corresponding year, see Figure 9.6. For example, the maxima of the brown and the
green graph indicate that when relying on the bootstrap approach or the subsampling
method with parameter β2 = 0.5 (which is a reasonably conservative choice), then
all cross-correlations (for all considered time periods) that are greater than 0.35 (or
smaller than -0.35) can be considered to be significantly different from zero. Note that
this approach assumes confidence bands to be symmetric, which is the case (at least
approximately) for the vast majority of estimated cross-correlation functions. When
interpreting cross-correlations for vegetation intensities of Quercus and population
intensities as illustrated in Figure 9.2 (instead of changes), similar plots can be derived,
which reveal that all (absolute) values greater than 0.3 are significantly different from
zero.

211





10. Conclusions

In the present thesis, we discuss various stochastic models, statistical methods, and
simulation algorithms to address open questions in PWP, archeology, and paleoecology.
In Chapter 4, a stochastic model for precipitation cells is proposed to enable the
computation of area probabilities for the occurrence of precipitation. In the presented
approach, precipitation cells are described using a germ-grain model with circular
grains, which is based on a non-stationary Cox point process. This model is extended
in Chapter 5 to allow for the estimation of area probabilities for the occurrence of
higher precipitation amounts. For that purpose, a randomly scaled response function is
assigned to each precipitation cell and the summed response functions are interpreted as
random precipitation amounts. The most important model characteristics (intensities
of precipitation cells, cell radius, expectations and variances of random scaling variables)
are computed algorithmically based on point probabilities (separately for each forecast
period), i.e., no precipitation data are required for model fitting. Estimators are
provided to determine area probabilities based on repeated simulation of the proposed
model. A comparison of estimated area probabilities with radar data shows a close
correspondence. For thresholds up to 3 mm, we receive reasonable BSSs and correlation
coefficients for almost all test areas, which in many cases are even higher than the
scores of the underlying point probabilities. In general, biases are close to zero but
also show some deviations for few test areas. For higher thresholds of 5 mm or more,
forecast verification shows less significant results. In particular, BSSs and correlation
coefficients are lower than for smaller thresholds and area probabilities seem to be
marginally underestimated. However, we still obtain positive BSSs and correlation
coefficients for a majority of test areas, which indicates that estimated probabilities have
a higher quality than the climate mean. The analysis of computed RPSSs also confirms
these results. We get reasonably high values for both point and area probabilities,
which demonstrates a strong relationship between estimated probabilities and radar
data. This is also indicated by computed reliability diagrams of area probabilities
for the occurrence of precipitation, which show a particularly nice performance, too.
However, we find that all considered verification scores of area probabilities clearly
depend on the scores of underlying point probabilities. Thus, reliable, unbiased data
are crucial for the applicability of the presented method. Although it remains unclear
whether the lower quality of area probabilities for higher thresholds is caused by the
underlying data or the stochastic model, we will consider the derivation of more precise
area probabilities for rare precipitation events as a major goal of future research. In
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principle, the combined model of precipitation cells and precipitation amounts can
also be applied to determine further characteristics that are relevant for the issuing of
weather warnings. For example, it seems possible to use the model for the estimation
of the expected cumulated precipitation amount that occurs in the drainage area of
a river to assess flood risks. However, this is beyond the scope of this thesis and
further research is required to assess the applicability of the precipitation model to
such problems.

A further generalization of the model for precipitation cells is provided in Chapter 6,
where we propose a representation of thunderstorm cells based on spatial cluster
processes. In contrast to the previous approaches, which solely rely on available point
probabilities, the cluster model also requires thunderstorm records of past periods to
statistically determine all model characteristics. Moreover, formulas for the computation
of point and area probabilities are derived and a forecast verification is performed using
thunderstorm data provided by DWD. It turns out that this more complex model is
able to produce reliable area probabilities for the occurrence of thunderstorms, which
have a higher forecast quality (according to computed verification scores such as bias,
LSS, and empirical correlation coefficient) than the underlying point probabilities. The
performance of forecasts can be increased even more if realizations of the model are
generated conditionally on thunderstorm data from past periods, which provides a
seamless combination of thunderstorm records and point probabilities from PWP for
the issuing of short-term weather warnings. However, currently the model is designed
for short forecast ranges only, especially an application of the conditional simulation
algorithm only provides better results for ranges up to three hours ahead. Therefore, a
main topic of future research could be a generalization of the proposed model with the
goal of generating more realistic realizations of thunderstorms for arbitrary forecast
ranges without using the conditional simulation algorithm. Possible ideas include
the incorporation of elliptic clusters, spatially varying cluster parameters or even the
integration of precipitation produced by single thunderstorm cells. Furthermore, an
adaption of the proposed conditional simulation algorithm to the model for precipitation
cells is currently under preparation.

In summary, the model-based methods proposed in Part II of this thesis are expected
to play a central role when addressing a specific responsibility of DWD, which is the
derivation and dissemination of area probabilities for potentially dangerous weather
events for customer-specific areas using semi-automated warning systems. For the first
time, spatial stochastic models of precipitation amounts and thunderstorm cells are
provided, which allow for the estimation of precise area probabilities while fulfilling
important requirements for application in modern weather prediction. The proposed
models do neither assume spatial nor temporal stationarity and all model characteristics
are determined automatically from point forecasts or observation data from past periods.
This, together with the reasonable computation time, makes the considered approaches
suitable for an operational derivation of weather forecasts for the territory of Germany.
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However, it remains to be investigated how the presented methods perform for areas
with sizes and shapes varying from those investigated in our example of application or in
regions with different climate conditions than Germany. In general, an adaption of the
proposed methodology to further weather events seems possible although a verification
of area forecasts is difficult due to the lack of spatially inclusive and comprehensive
high-resolution observation data for most meteorological variables.

Part III of the present thesis addresses the statistical estimation of prehistoric pop-
ulation and vegetation intensity maps for North America with the goal of analyzing
interrelationships between demographic developments and environmental changes over
the past 13000 years. At first, Chapter 7 describes a nonparametric statistical method-
ology to the reconstruction of population intensities for a sequence of 500-year intervals,
which takes into account errors occurring due to inhomogeneous sampling strategies,
taphonomic loss, and boundary effects. The resulting maps show temporally distinct
dynamic patterns of paleodemographic trends that correspond well to independent
archaeological, ethnohistoric, and genetic evidence from literature. Several sensitivity
and robustness analyses reveal that most modifications of the method and the database
only marginally influence the obtained results. For the broad population patterns, the
effect of applying an adaptive smoothing method is just as small as that of randomly
dropping up to 50 % of the underlying radiocarbon dates. The only significant effect is
observed when modifying the globally constant bandwidth. While in this case a large
effect on the spatial scale of population events is visible, affected regions still remain
the same. As the underlying radiocarbon database, the CARD, is currently extended
to other continents, a global estimation of prehistoric population intensities could be
an interesting topic of future research. Furthermore, such results have implications for
hypothesizing and testing human migration routes as well as the relative influence of
human populations on the evolution of ecosystems. In Chapter 8, a similar statistical
method is designed to estimate comparable vegetation intensity maps for 10 plant taxa
based on pollen data obtained from a comprehensive paleoecological database. We
briefly describe and interpret results for Quercus (oak), which correspond well with
existing estimates from literature.

Finally, Chapter 9 provides a simple approach to analyze statistical cross-correlations
of (changes in) population and vegetation intensity maps for various spatial and
temporal lags. Furthermore, the computation of pointwise confidence bands based
on nonparametric resampling methods is considered to determine the significance of
obtained correlation results. This analysis is motivated by the fact that relationships
between demographic and environmental changes are complex and causal associations
can go in both directions. In addition, the human use of natural resources as well as
influences of populations on the environment have changed through time as cultures
evolved. The proposed approach is again illustrated using the example of Quercus. By
estimating and interpreting cross-correlations between 500-year changes in population
intensities and the relative abundance of Quercus in eastern North America, we could
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10. Conclusions

identify times in the past with both positive and negative associations. However, a more
detailed analysis of the estimated maps reveals times and locations where individual
data points seem to have undue influence on obtained cross-correlations, especially in
regions of low sampling intensities. Thus, future work is planned to refine the method,
e.g., by determining minimum site densities that are needed to provide more reliable
estimates or by better identifying overly influential points and outliers. Local analyses
with smaller smoothing bandwidths may also be of great interest. Furthermore, a
companion study is prepared, see Gajewski et al. (2017), where results for the other
taxa are described and interpreted, too. Since the community ecology of the considered
tree species is well understood and human use of the various taxa has also been
studied several times in the literature, consistencies between the taxa could help to
better identify significant signals in obtained correlation results. In conclusion, the
considered approach is a first attempt to quantify relationships between prehistoric
demographic changes and environmental conditions on a continental scale and is thus
expected to contribute to the understanding of human-environment interactions in
North America during the Holocene. Moreover, the proposed methodology has a wide
range of further potential applications in geographic and environmental sciences, where
large and complex databases consisting of repeated measurements at a spatial system
of sites are compiled.
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Zängl, G., Reinert, D., Ŕıpodas, P., and Baldauf, M. (2015). The ICON (ICOsahedral
Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the
non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc., 141:563–579.

230



Nomenclature

Latin symbols
b(x, r) d-dimensional closed ball with center x ∈ Rd and radius r > 0,

page 23

B σ-algebra of subsets of S, page 25

BT σ-algebra of subsets of ST , page 27

B(B) Borel σ-algebra generated by all open subsets of B ∈ B0(Rd),
page 23

B(Rd) Borel σ-algebra on Rd, page 23

B0(Rd) family of bounded Borel sets in Rd, page 23

C family of closed sets in Rd, page 58

C σ-algebra of subsets of C, page 58

cov covariance, page 29

det(A) determinant of a matrix A ∈ Rm×m, page 24

dGC great-circle distance, page 33

diag(a1, . . . , am) diagonal matrix with entries a1, . . . , am ∈ R on the main
diagonal, page 23

E expectation, page 29

F family of Borel-measurable functions f : Rd ∪ {∞} → [0, 1]
such that f(x) = 1 for x /∈ Bf with some Bf ∈ B0(Rd),
page 49

F σ-algebra of subsets of Ω, page 24

H family of symmetric and positive definite matrices in Rd×d,
page 63

Hf (x) Hessian matrix of a real-valued function f : Rd → R with
continuous first- and second-order partial derivatives at x ∈
Rd, page 24

231



Nomenclature

I unit matrix, page 23

K family of compact sets in Rd, page 58

M family of locally finite measures on (Rd,B(Rd)), page 46

M σ-algebra of subsets of M, page 46

N set of natural numbers, page 23

N0 set of nonnegative integers, page 23

N family of locally finite and simple counting measures on
(Rd,B(Rd)), page 47

N σ-algebra of subsets of N, page 47

o origin in Rd, page 23

P probability measure on (Ω,F), page 24

R set of real numbers, page 23

Rd set of d-dimensional vectors with real components, page 23

Rm×n set of m× n matrices with real coefficients, page 23

S state space of a random element X or a random function
{X(t), t ∈ T }, page 25

ST set of functions with state space S and index set T , page 27

S set of possible random errors in the forecast models of DWD,
page 81

supp(f) support of a real-valued function f : Rd → R, page 24

T set of thresholds {0, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 10, 15} for
precipitation amounts in mm, page 107

T index set of a random function {X(t), t ∈ T }, page 26

tr(A) trace of a matrix A ∈ Rm×m, page 24

var variance, page 29

Greek symbols
δB rotation of B ⊂ Rd by δ : Rd → Rd, page 24

νd d-dimensional Lebesgue measure, page 23

Ω sample space, page 24

σ(X) σ-algebra generated by a random element X, page 81

Θ parameter space, page 44

232



Further symbols
A−1 inverse of a matrix A ∈ Rm×m, page 23

A> transpose of a matrix A ∈ Rm×n, page 23

#B cardinality of B ⊂ Rd, page 24

B topological closure of B ⊂ Rd, page 24

X
d
= Y equality in distribution of random elements X and Y , page 25

‖ · ‖d Euclidean norm on Rd, page 23

1B indicator function of B ⊂ Rd, page 24

∇f (x) gradient of a real-valued function f : Rd → R with continuous
first- and second-order partial derivatives at x ∈ Rd, page 24

B + x translation of B ⊂ Rd by x ∈ Rd, page 24

B1 ⊕B2 Minkowski sum of B1, B2 ⊂ Rd, page 24

Abbreviations
BP before present, page 166

BS Brier score, page 98

BSS Brier skill score, page 98

CARD Canadian Archaeological Radiocarbon Database, page 166

DBSCAN Density Based Spatial Clustering of Applications with Noise,
page 148

DWD Deutscher Wetterdienst, page 4

ECMWF European Centre for Medium-Range Weather Forecasts, page 17

GLS generalized least squares, page 44

GME Globalmodell Europa, page 14

ICON Icosahedral Nonhydrostatic, page 14

IFS Integrated Forecasting System, page 17

KDE kernel density estimator, page 64

KONRAD Konvektionsentwicklung in Radarprodukten, page 13

LCV likelihood cross-validation, page 73

LS logarithmic score, page 140

LSS logarithmic skill score, page 139

MISE mean integrated squared error, page 65

233



Nomenclature

MOS Model Output Statistics, page 16

MSD mean squared difference, page 127

NWE Nadaraya-Watson estimator, page 70

NWP numerical weather prediction, page 4

OLS ordinary least squares, page 44

PDF probability density function, page 60

PWP probabilistic weather prediction, page 7

RADOLAN Radar-Online-Aneichung, page 12

RPS ranked probability score, page 133

RPSS ranked probability skill score, page 132

STNSRP spatio-temporal Neyman-Scott rectangular pulses, page 19

STREAP space-time realizations of areal precipitation, page 20

US United States, page 166

UTC Universal Time, Coordinated, page 15

234



Abstract

In the present thesis, we develop novel stochastic models, statistical methods, and
simulation algorithms for meteorological and paleogeographical space-time data. In this
context, we aim to address two practical problems from different scientific disciplines.
On the one hand, we consider an open question from meteorology, which has a high
relevance in operational weather prediction. Currently applied probabilistic forecast
methods are designed to estimate probabilities for the occurrence of weather events
at fixed geographical locations, which is why they are called point probabilities in
literature. However, for the issuing of weather warnings it often is desired to provide
probabilities for the occurrence of certain weather events (e.g., heavy precipitation,
thunderstorms) somewhere within an area, which are denoted as area probabilities.
As no generally applicable formulas for the derivation of area probabilities based on
point probabilities are available, we propose several spatial stochastic models that can
be used for the operational computation of area probabilities in a general context.
The second problem considered in this thesis concerns the statistical reconstruction
of paleodemographic and paleoecological trends during the Holocene. In recent years,
extensive databases of archaeological and paleoenvironmental samples have been
compiled but only few attempts to estimate spatio-temporal distributions of, e.g.,
populations or vegetations on a continental scale were made. Therefore, another goal
of this thesis is the development of suitable nonparametric methods to compute series
of maps showing population densities and vegetation abundances for different plant
taxa in North America over the past 13000 years. Furthermore, we also discuss an
statistical analysis of relationships between estimated demographic and environmental
developments.

The present thesis consists of three parts. In Part I, we provide some important
preliminaries to motivate the contents of this thesis and to allow for a better under-
standing of the considered data and the applied mathematical models and methods.
The introduction in Chapter 1 briefly describes the general context of the practical
problems which we attempt to address using the statistical methodology proposed in
Parts II and III. To further increase the comprehensibility of the stochastic models
and statistical methods developed in Part II for the representation of several weather
events, Chapter 2 provides an overview of systems, methods, and products applied in
operation weather prediction. Additionally, this chapter gives a review on previous
approaches to the computation of area probabilities and on existing stochastic models
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for precipitation cells and precipitation amounts. Chapter 3 contains a detailed descrip-
tion of the mathematical basics which are needed throughout this thesis. In particular,
this includes an introduction of random fields with a focus on the characterization and
estimation of dependency structures, a discussion of models from stochastic geometry,
their properties, and simulation algorithms, and a review of nonparametric smoothing
methods used in kernel density estimation and kernel regression.

Part II of this thesis describes the development of stochastic models for the representa-
tion of different weather events. In Chapter 4, we suggest to model precipitation cells
using circular discs with random centers and a joint random radius. Furthermore, we
propose suitable statistical methods to compute important model characteristics based
on available point probabilities. This approach is extended in Chapter 5 by assigning a
randomly scaled response function to each precipitation cell such that the summed
response functions can be considered as a representation of precipitation amounts.
Again, methods are developed to algorithmically compute model characteristics based
on available point forecasts. A further generalization of the model for precipitation
cells is described in Chapter 6, where a representation of thunderstorm cells based on
cluster processes is provided. Besides forecasted point probabilities, this more complex
model also requires thunderstorm records from past periods for model fitting but in
return produces much more realistic realizations of thunderstorm events than previous
approaches. All three models introduced in Part II can be used for the operational
derivation of area probabilities in a general context. To evaluate forecast quality,
obtained area probabilities are compared to high-resolution weather observations.

Finally, in Part III we discuss a spatio-temporal analysis of prehistoric population
densities and vegetation abundances in North America. At first, Chapters 7 and 8
describe similar nonparametric approaches to the statistical estimation of population
and vegetation intensities over the past 13000 years based on extensive databases of
radiocarbon dates and fossil pollen samples. The proposed methodology produces
spatially and temporally smoothed intensity maps every 100 years while accounting for
several potential biases such as inhomogeneous sampling strategies, taphonomic loss,
and boundary effects. We provide a brief discussion of obtained population intensity
maps for most regions of North America and assess their significance by performing
a sensitivity and robustness analysis. Vegetation intensity maps are estimated for a
series of 10 plant taxa occurring in North America and an interpretation of results for
one example taxon is given. In Chapter 9, we analyze statistical relationships between
obtained population and vegetation intensities (as well as 500-year changes in both
variables) by estimating spatio-temporal cross-correlation functions. A nonparametric
method to assess the significance of correlation results is proposed and results for one
example taxon are interpreted in the context of scientific literature.

The thesis is concluded by a summary of results and an outlook on open questions in
Chapter 10 to motivate topics for future research.
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Zusammenfassung

Die vorliegende Dissertation beschreibt die Entwicklung neuartiger stochastischer Mo-
delle, statistischer Methoden und Simulationsalgorithmen für meteorologische und
paläogeographische Raum-Zeit-Daten mit dem Ziel, Lösungen für zwei praktische
Probleme aus unterschiedlichen wissenschaftlichen Fachrichtungen zur Verfügung zu
stellen. Zum einen befasst sich diese Arbeit mit einer noch ungelösten meteorologi-
schen Fragestellung, welche eine hohe Relevanz in der operationellen Wettervorher-
sage hat. Derzeit verwendete probabilistische Prognosemethoden liefern sogenannte
Punktwahrscheinlichkeiten, d. h. sie schätzen Wahrscheinlichkeiten für das Auftreten
von Wetterereignissen an festen geographischen Lokationen. Für die Bereitstellung
von Wetterwarnungen ist es allerdings häufig von Interesse, Wahrscheinlichkeiten
für das Auftreten bestimmter Wetterereignisse (z. B. Starkregen, Gewitter) irgendwo
in einem bestimmten Gebiet zu bestimmen, welche als Flächenwahrscheinlichkeiten
bezeichnet werden. Da keine allgemein anwendbaren Formeln zur Bestimmung von
Flächenwahrscheinlichkeiten aus Punktwahrscheinlichkeiten bekannt sind, werden in
dieser Arbeit diverse stochastische Modelle entwickelt, welche die operationelle Be-
rechnung von Flächenwahrscheinlichkeiten unter verschiedenen Rahmenbedingungen
ermöglichen. Die zweite betrachtete Problemstellung betrifft die statistische Rekonstruk-
tion paläodemographischer und paläoökologischer Entwicklungen während des Holozäns.
Obwohl in den vergangen Jahren umfangreiche archäologische und paläoökologische
Datenbanken zusammengetragen wurden, existieren in der Literatur nur sehr wenige
Ansätze zur Schätzung räumlich-zeitlicher Bevölkerungs- oder Vegetationsverteilungen
auf einer kontinentalen Skala. Daher beschreibt diese Arbeit geeignete parameter-
freie Methoden zur Schätzung von Populationsdichten und Vegetationsstrukturen in
Nordamerika während der vergangenen 13000 Jahre. Darauf basierend wird schließ-
lich eine statistische Korrelationsanalyse durchgeführt, um Zusammenhänge zwischen
demographischen und ökologischen Entwicklungen zu identifizieren.

Die vorliegende Arbeit besteht aus drei Teilen. Teil I enthält einige wichtige Grundlagen,
welche das Thema dieser Dissertation motivieren und ein besseres Verständnis der
betrachteten Daten und verwendeten Verfahren ermöglichen sollen. Die Einleitung in
Kapitel 1 beschreibt den Hintergrund der Fragestellungen, die mit Hilfe der in Teil
II und III entwickelten Modelle und Methoden beantwortet werden sollen. Um die
Verständlichkeit der Inhalte von Teil II noch weiter zu erhöhen, wird in Kapitel 2
eine kurze Einführung zu Systemen, Methoden und Produkten der operationellen
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Wettervorhersage gegeben. Darüber hinaus bietet dieses Kapitel auch eine kurze Zu-
sammenfassung vorheriger Ansätze zur Berechnung von Flächenwahrscheinlichkeiten
und zur stochastischen Modellierung von Niederschlagszellen und Niederschlagsmen-
gen. Kapitel 3 enthält schließlich eine detaillierte Darstellung der mathematischen
Grundlagen, auf die im Verlauf dieser Arbeit wiederholt verwiesen wird. Dies umfasst
eine Einführung in Zufallsfelder mit einem Schwerpunkt auf Charakterisierung und
Schätzung von Abhängigkeitsstrukturen, eine Beschreibung verschiedener Modelle der
stochastischen Geometrie (inklusive wichtiger Eigenschaften und Simulationsalgorith-
men) und eine Übersicht zu Kerndichteschätzung und Kernel-Regression.

Teil II dieser Arbeit beschäftigt sich mit der Entwicklung stochastischer Modelle
zur Darstellung verschiedener Wetterereignisse. Zunächst beschreibt Kapitel 4 einen
Ansatz zur Modellierung von Niederschlagszellen als Kreisscheiben mit zufälligen
Mittelpunkten und zufälligem Radius. Zusätzlich werden geeignete statistische Me-
thoden vorgeschlagen, mit deren Hilfe wichtige Modellcharakteristiken basierend auf
verfügbaren Punktwahrscheinlichkeiten bestimmt werden können. Dieser Ansatz wird
in Kapitel 5 erweitert. Jeder Niederschlagszelle wird eine zufällig skalierte Kernfunktion
zugewiesen, sodass die Summe der Kernfunktionen als ein Modell für Niederschlagsmen-
gen interpretiert werden kann. Wie zuvor werden statistische Methoden zur Berechnung
von Modellcharakteristiken mittels verfügbaren Punktvorhersagen entwickelt. Eine
weitere Verallgemeinerung der Darstellung von Niederschlagszellen in Kapitel 4 wird in
Kapitel 6 betrachtet, welches ein Modell für Gewitterzellen basierend auf räumlichen
Cluster-Prozessen beschreibt. Neben prognostizierten Punktwahrscheinlichkeiten wer-
den auch Gewitteraufzeichnungen vergangener Perioden zur Modellanpassung benötigt,
dafür sind aber auch deutlich realistischere Realisierungen von Gewitterereignissen
möglich als in vorherigen Ansätzen. Alle drei eingeführten Modelle können für die
operationelle Schätzung von Flächenwahrscheinlichkeiten basierend auf wiederholter
Monte-Carlo-Simulation verwendet werden. Um die Vorhersagequalität einzuschätzen,
wird zudem ein Vergleich erhaltener Flächenwahrscheinlichkeiten mit flächendeckenden
Wetterbeobachtungen durchgeführt.

In Teil III wird schließlich eine statistische Raum-Zeit-Analyse von prähistorischen
Populationsdichten und Vegetationsstrukturen in Nordamerika durchgeführt. Zunächst
beschreiben Kapitel 7 und 8 vergleichbare nichtparametrische Methoden zur Schätzung
von Populations- und Vegetationsintensitäten der vergangenen 13000 Jahre. Basierend
auf umfangreichen Radiokarbondaten und fossilen Pollenproben werden räumlich und
zeitlich geglättete Intensitätskarten in Abständen von je 100 Jahren geschätzt, wobei
verschiedene mögliche Fehlerquellen (inhomogene Beprobungsdichte, taphonomischer
Verlust, Randeffekte) Berücksichtigung finden. Zusätzlich werden eine Interpretati-
on der Populationsintensitätskarten und eine Sensitivitäts- und Robustheitsanalyse
durchgeführt, um die Gültigkeit der erhaltenen paläodemographischen Ergebnisse zu un-
tersuchen. Vegetationsintensitätskarten werden für 10 Pflanzentaxa geschätzt, wobei im
Rahmen dieser Arbeit nur die Ergebnisse für ein Taxon genauer diskutiert werden. Zu-
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letzt beschreibt Kapitel 9 eine statistische Korrelationsanalyse, in der räumlich-zeitliche
Kreuzkorrelationsfunktionen zwischen erhaltenen Populations- und Vegetationsinten-
sitäten (sowie zwischen 500-jährigen Veränderungen in beiden Variablen) untersucht
werden. Es wird zudem eine nichtparametrische Methode entwickelt, um die Signifikanz
erhaltener Korrelationen einschätzen zu können.

Zum Abschluss der Arbeit bietet Kapitel 10 eine Zusammenfassung der erzielten
Ergebnisse und einen Ausblick auf offene Fragestellungen, um mögliche zukünftige
Forschungsthemen zu motivieren.
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sehr genossen. Für die großartige Unterstützung und die vielen hilfreichen Ratschläge
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nur mit den angegebenen Hilfsmitteln angefertigt habe. Alle Stellen, die wörtlich oder
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