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Abstract—Future automotive radars will be able to achieve
much higher range and angular resolution compared to currently
used radar sensors. This enables functionalities like vehicle
contour estimation to be used in advanced driver assistance
systems, thus heavily increasing their performance. In this paper,
the application of an adaptive algorithm on basis of k-nearest-
neighbours examination for clustering radar data as precursor to
estimation of width, length, and position of vehicles is presented
and compared to a more basic algorithm. The influence of the
parameters of this KNN-DBSCAN algorithm and its performance
dependency on the used MIMO radar system is discussed.

I. INTRODUCTION

Today’s driver assistance and autonomous driving systems
use a combination of multiple sensors to estimate the sur-
roundings of the ego-car and deliver useful functionality,
ranging from warning the driver of dangerous situations,
initiating emergency systems and maneuvers, up to planning
and adjusting their driving trajectory autonomously.

As of now, radar based data is primarily used for detecting
the range, angle, and velocity of medium sized objects like
cars as a whole, rather than trying to gain information about
their dimension or shape. This limitation stems from the low
resolution partly in range and especially in angular direction.

Currently, radar systems are being developed, which by
far exceed the limitations of current systems with regard
to range and angular resolution. This means that objects
detected by radar are not bound to appear as a single target
anymore, but instead behave like extended objects, resulting
in multiple reflection points per object, even if their size is
not overly large [1]. This makes contour estimation systems
based on radar imagery a viable option in place of or in
addition to optical systems like LiDAR or video systems.
Radar is especially attractive because of the known advantages
toward optical systems like higher robustness in harsh weather
conditions such as fog, snow, or rain, as well as providing
its own illumination source. With radar it is even possible to
detect targets in visibility shadows of other objects via ground
reflections.

Up to this time, only a few investigations on the topic of
radar based contour estimation exist. In [2] an algorithm chain
for obtaining an oriented bounding box based upon a density
based clustering algorithm [3] is presented.

The algorithm chain in this paper is based upon the approach
in [2], but uses an adaptive clustering algorithm presented
in [4]. This KNN-DBSCAN algorithm is better equipped

for self-configuration and adaptation to different radar data
characteristics with respect to reflection point distribution and
density.

The focus lies on parameter discussion of the involved al-
gorithms and the radar system in regard to contour estimation.

II. PROBLEM FORMULATION

As shown in [2], clustering is a vital part on the way to
reliably obtain contours from radar data. An ideal clustering
algorithm is able to correctly lump together all those reflection
points belonging to one object, regardless of how dense these
points are, without adding any neighbouring noise points
that may corrupt the resulting contour estimation. If too
many noise points are included in a cluster, it may lead to
an overestimation of the contour in the later steps of the
algorithm chain. If the algorithm cannot handle spread out
reflex points, it may lead to an underestimation, because not
enough available information will be used in the later steps,
up to a point where maybe no contour can be detected at
all. It can be argued that overestimation is less critical than
underestimation with regards to traffic safety.

III. ASSESSMENT CRITERIA

To evaluate the clustering performance in regard to the
chosen parameters, the clusters acquired in the evaluated
measurements are examined with respect to the following
requirements:

1) A valid cluster has to intersect with the known ground
truth of the object and may not exceed a length of 8 m
and a width of 3 m.

2) The more the cluster area is intersecting with the ground
truth, the higher the value of the cluster. This is called
overlap and is at its maximum, if the whole ground truth
is covered by the cluster.

3) The more the cluster area lies inside the ground truth
instead of the outside, the higher the value of the cluster.
This is called confinement and is at its maximum, if the
whole cluster is situated within the boundaries of the
ground truth.

4) To determine a score for each parameter set, the above
criteria are combined summing up the multiplication of
overlap and confinement values for every valid cluster
found in the measurements.



−4 −2 0 2

12

14

16

y in m

x
in

m

0

20

40

60

80

N
or

m
al

iz
ed

Po
w

er
in

dB

(a) Scenario A: favorable reflection point distribution.
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(b) Scenario B: challenging reflection point distribution.

Fig. 1. Radar measurements of two automotive scenarios; acquired with a 2x4 MIMO system using a bandwidth of 2 GHz; ground truth as red rectangle.

IV. RADAR DATA AS BASIS FOR CONTOUR ESTIMATION

There is already a substantial amount of research done
regarding contour estimation based on optical systems like
video cameras and LiDAR [5]–[7]. Image data from optical
systems often yields a high number of accurate measurement
points along the contour of objects. In LiDAR, this stems from
the mechanically panning of a highly focused laser beam and
in video images from high resolution CMOS sensors and the
usage of perceived color and brightness as the main means to
distinguish separate parts in the image.

For radar, these prerequisites are not given. For most
practical automotive applications, the antenna beam width of
the radar system is not as focused and angular information
is acquired by means of direction of arrival estimation intro-
ducing a not negligible factor of uncertainty and spread of
targets. Furthermore, the longer wavelength leads to a highly
unforeseeable amount of interactions of radar signals with
the object and its surroundings, depending on properties like
distance, incident angle, roughness, volume, shape, etc. In
combination with the possibility of multiple reflections under
the body of the object or in its cavities and at the ground
around it (clutter), this leads to the familiar 2D radar image
exhibiting highly scattered reflection points in, along, and
around the shape of the object.

The radar data used to test the clustering performance of
the algorithms was obtained from a next generation radar
with 2 transmitting and 4 receiving channels operating in
Time Division Multiplex (TDM) mode to obtain 2x4 MIMO
capability. A bandwidth of B=2 GHz around a center fre-
quency of fc=76.45 GHz was used to obtain a range resolution
of ∆r=7.5 cm. The radar was operated in chirp-sequence
modulation, using Nr =128 ramps, with Ns=1024 samples
at a sampling rate of fs=10 MHz. This leads to a velocity
resolution of ∆v=5.4 cm/s with a maximum unambiguous
velocity of vmax=3.43 m/s. Target extraction was done via
a combination of OS-CFAR algorithms in both range and
velocity direction. Both CFAR thresholds were chosen to be

relatively low to gather as much extended targets as possible.
For direction of arrival (DOA) estimation, a maximum like-
lihood estimator was used to compare the phase relation of
the extracted targets between the 8 MIMO channels against
previously acquired single target calibration data.

For obtaining ground truth data, a Mercedes-Benz E-Class
Model T equipped with an Automotive Dynamic Motion
Analyzer (ADMA) sensor unit was used to accurately measure
the differential GPS coordinates at any given time during the
measurement. The car performed a series of maneuvers such
as left and right turning, as well as stopping and driving
in reverse. For the parameter discussion, only measurements
where the velocity relative to the sensor was within the
unambiguous velocity range were considered.

In Fig. 1 two exemplary measurement scenarios are shown.
The known ground truth is depicted as a red rectangle.
Figure 1 (a) shows a very favorable measurement scenario.
The car is currently executing a turning motion, which leads to
more reflection surfaces for the radar signal and more velocity
contributions that qualify as targets. In Fig. 1 (b) the car is not
moving as well as facing the radar with its short side at an
inappropriate angle leading to very little interaction.

V. ALGORITHM CHAIN

After target extraction, the coordinates of said targets are
fed into the algorithm depicted in Fig. 2 chain in which the
clustered data is used to construct a bounding box describing
the estimated position, width, length, and yaw angle of the
vehicle.

A. KNN-DBSCAN Clustering

For the clustering, firstly an examination of the smoothed
probability density function of the distance distribution be-
tween every point is performed. In the original presentation
of the algorithm in [4] a distinct multi-waveform is assumed
for the density. The distance value of the first local minimum
is used for the so-called window width. This value is used
in the following steps to build the fuzzy clusters, on which



Target extraction and DOA estimation

Distance examination of k nearest neighbours
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Building of fuzzy clusters
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Fig. 2. Algorithm chain for contour estimation with KNN-DBSCAN.

a DBSCAN clustering, as described in [8], is subsequently
performed. The parameters ε and pmin are calculated for every
fuzzy cluster separately from the window widths of the points
in the cluster as described in [8]. Overlapping result clusters
are then combined.

In Fig. 3 the smoothed distance distribution for two exem-
plary target points situated within the boundaries of the ground
truth of Fig. 1 (a), denoted by A.1 and A.2, is plotted for two
different smoothing factors α. Target points belonging to the
vehicle often exhibit a density spectrum, in which the first
wave is not sharply enough separated from the next wave when
using the default smoothing factor. This leads to too large
clusters often incorporating lots of noise points into the fuzzy
cluster (and subsequently the final cluster). If the smoothing
is sufficiently reduced, so that the distance distribution of
point A.1 exhibits the desired behaviour, distributions like that
of point A.2 experiences a high fluctuation leading to too
small clusters. Therefore, it was decided to set the criteria for
the window width to the first local maximum instead, which
leads to a more stable behaviour in regards to the smoothing.
It naturally leads to slightly smaller than optimal clusters,
which are usually automatically combined in the last step of
clustering.

B. Bounding Box Construction

After clustering a simple method for a rough estimation
of width, length, and position is used. This method consists
of a symmetric extension (point reflection of targets on the
geometrical center of the cluster) of the cluster points and a
subsequent construction of the bounding box of minimal area
including all points of the cluster. To avoid over-enlargement
of the bounding box due to points situated on the far side
of the object (relative to the sensor), which often stem from
multi-reflection paths, only the points on the near side of the
object are considered for a symmetric extension.
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Fig. 3. Kernel-smoothed distribution of distances to the 100 nearest neigh-
bours for two sample points A.1 and A.2 from the favorable measurement
scenario A for different smoothing factors α.

VI. PARAMETER DISCUSSION

A. KNN-DBSCAN Parameters

When examining the KNN-DBSCAN algorithm, the calcu-
lation of the window width is critical, because creation of the
fuzzy clusters and the calculation of parameters ε and pmin
heavily rely on this step. The integral part of this step is
the calculation of the distance probability distribution. Three
parameters are identified to strongly influence the shape of the
distribution:

1) Kernel function K
The kernel describes the function, the distance histogram
is convoluted with in order to obtain the kernel smoothed
distance probability distribution. Four kernel functions
are examined:

• Gaussian kernel
• Rectangular kernel
• Triangular kernel
• Epanechnikov kernel

The Epanechnikov kernel describes a hill-like curve with
edges abruptly assuming zero instead of approaching it
like a Gaussian function.

2) Kernel smoothing factor α
The smoothing factor of the kernel determines the
amount of smoothing the histogram experiences during
the convolution and is unitless. After some experimen-
tation, it emerged that values below 0.5 often lead
to too fluctuating distributions. Similarly, values above
2.0 almost always result in uselessly large clusters in
the presence of noise and clutter. Therefore, values of
α=0.5..2.0 were examined.

3) Number of nearest neighbours k
On the one hand, the number of nearest neighbours k to
take into consideration during calculating the distance
distribution should not be too low, since otherwise the
first wave might not be yet distinct enough to determine
a sensible window width. On the other hand, k should
not be too large, as it greatly influences the calculation
time. Here, a parameter sweep of k=50..200 nearest
neighbours was performed.
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Fig. 4. KNN-DBSCAN clustering result ( ) for optimal parameter choice,
estimated contours ( ) with ground truth ( ). DBSCAN achieved the
same result for Scenario A, but failed to detect any cluster in Scenario B.

B. DBSCAN Parameters

To compare performance of KNN-DBSCAN with that of
basic DBSCAN, a range of ε=0.5..1.5 m with a fixed pmin=10
was chosen, which were determined to be reasonable values
in an automotive setting.

C. Overall Assessment Method

To determine the optimal parameter set for the KNN-
DBSCAN, 61 radar measurements, containing a wide variety
of driving maneuvers, like ac- and decelerating, left and right
turning, lateral driving as well as in line with the sensor,
forward and reversed movement, were evaluated. The score
sK (k, α) for every parameter configuration was calculated
and summed up over the measurements. The maximum score
sK ,max was determined and tested for a confidence area Ac
relative to the k×α area where the score does not fall below
75% of sK ,max. This serves as a measurement of operational
stability due to fluctuations of data characteristics.

VII. RESULTS

A. Parameter Sweep

The results of the parameter sweep conducted are presented
in Tab. I. As can be seen, the rectangular kernel reaches the
highest score of sK ,max=12.5 at k=130 and α=1.5. Addition-
ally, it is able to achieve similar results in a confidence area of
Ac=28% of the parameter space around its optimal parameter
set and thus can be considered as very stable. The DBSCAN
result, which is not listed in the table, reaches a score of
sDBSCAN,max=11.8 for ε=1.5 m.

TABLE I
SCORING TABLE FOR KNN-DBSCAN

Kernel K sK ,max Ac
Gaussian 10.0 (@k = 70, α = 0.9) 6%

Rectangular 12.5 (@k = 130, α = 1.5) 28%
Triangular 9.2 (@k = 200, α = 1.0) 13%

Epanechnikov 9.8 (@k = 120, α = 0.7) 6%

Figures 4 (a) and (b) show the clustering result, as well as
the contour estimation on basis of a oriented bounding box
with a KNN-DBSCAN clustering using the rectangular kernel

and k=130 and α=1.5. The resulting errors etype with respect
to the ground truth for both scenarios are listed in Tab. II.

TABLE II
CONTOUR ESTIMATION ERRORS

earea [m2] elenght [m] ewidth [m] eyaw [◦]
A 2.3 0.12 0.53 0.94
B 3.7 0.76 0.55 4.13

B. Comparison DBSCAN vs. KNN-DBSCAN
Regarding the score, the KNN-DBSCAN is around the same

level as the DBSCAN in the case of clearly shaped out
reflection points like in scenario A, where it delivers the same
output in regards to the resulting contour estimation. However,
in challenging situations, like scenario B, KNN-DBSCAN is
able to find the cluster within the ground truth, despite the
very inhomogeneous distribution. DBSCAN on the other hand
fails to find any usable cluster in this situation.

However, this advantage comes at higher computational
cost, with the generic implementation being around 5 times
slower than DBSCAN depending on the number of target
points and mostly due to the distance distribution calculation.

VIII. CONCLUSION

The adaptive clustering algorithm KNN-DBSCAN was ex-
amined for its suitability in radar-based contour estimation ap-
plications. It shows promising results, especially in challenging
conditions of very inhomogeneous reflection point distribution,
where it surpasses the more basic DBSCAN. Simultaneously,
it delivers the same robustness in scenarios with favorable
reflection point behaviour. Due to the unique characteristics
of radar data, a different approach of the distance examination
step than originally proposed is needed.
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