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Abstract

Multiphysics problems include various physical phenomena such as fluid flow, heat trans-

fer or electromagnetism, to mention just a few. The mathematical description of this type

of problem therefore requires a system of nonlinearly coupled partial differential equations

(PDE – Partial Differential Equation), usually defined on complex spatial domains. Elec-

tromagnetic heating systems are governed by electromagnetic and thermal phenomena and

are a typical example of such problems. The planning of optimal trajectories for different

electromagnetic heating applications is the subject of this work.

Electromagnetic fields are used in many technical and medical applications to heat up specific

spatial domains of electrically conductive objects. Examples are induction heating problems

for tempering or surface hardening in the steel industry. Hyperthermia therapy constitutes

another field of application of electromagnetic heating, which uses the heat source to improve

conventional drug treatment techniques or to severely damage tumors caused by overheating.

The good controllability of the electromagnetic field allows one to adapt the intensity and

spatial distribution of the heat source to the desired heat-up behavior of a specific problem.

Further advantages of electromagnetic heating are fast heat-up rates and low energy costs.

However, optimal trajectory planning for such problems involves many challenges that can

be divided into methodological and numerical ones.

From a methodological point of view, the nonlinear coupling effects between the electro-

magnetic and thermal phenomena are challenging and have to be described by a system of

coupled PDEs. They are, in general, defined on complex spatial domains in order to be able

to sufficiently accurate represent the real physics. In addition, many applications include

temperature constraints to address technical or medical requirements. The most important

degrees of freedom for planning optimal trajectories are the electrical excitation of the actua-

tor as well as its position and shape. An effective interaction between the control strategy for

the actuators in form of voltage and current sources and the specific actuator configuration

allows one to tailor the intensity and spatial distribution of the electromagnetic heat source

to the objectives of a heat-up process.

Another difficulty in the course of planning optimal trajectories for electromagnetic heating

systems is the numerical complexity of multiphysics problems. Sophisticated algorithms and

numerical solvers are required to predict the system dynamics of the multiphysics problem

with sufficient accuracy. Thereby, the distinctly different temporal and spatial scales of the

electromagnetic and thermal phenomena as well as complex spatial domains necessitate an

adaptation of the numerical techniques and solution approaches to the specific problem. In

addition, the optimization of the actuator configuration involves a change in the geometrical

setup on what the PDEs are defined, which necessitates adapted strategies for the numerical

solution of the multiphysics problem.
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This thesis discusses optimization-based approaches to determine an optimal excitation and

spatial configuration of electromagnetic actuators. The objectives of the trajectory planning

problems are tailored to several induction heating processes and hyperthermia therapy. The

incorporation of state constraints for the trajectory planning such as constraints on the

temperature of the object to be heated or on the temperature gradient is another focus.

All three problems, i. e., the optimization of the excitation of the actuator, the optimization

of the actuator configuration, and the incorporation of state constraints, are tackled by

formulating and numerically solving suitable optimization problems.

The primary benefit of the presented solution strategy is its wide applicability to various

problems of electromagnetic heating without the necessity to overcome the numerical chal-

lenges by developing numerical algorithms and solvers. Instead, an optimization framework

is presented that uses state-of-the-art simulation software to numerically solve the optimiza-

tion problems. The numerical level is extended by an algorithmic level to incorporate proper

optimization methods.

The optimization-based trajectory planning is based on forward and backward integrations

of the multiphysics problems and its optimality conditions. In order to derive the optimality

conditions, the formal Lagrangian technique and the adjoint-based sensitivity analysis is

applied. The optimality condition will result in PDE systems that can be numerically solved

by the optimization framework with relative ease since the numerical effort of the trajectory

planning can be outsourced to FEM-based simulation software. In order to be able to tackle

state constrained problems in a similar manner, an augmented Lagrangian method and a

transformation approach are discussed.

The basic idea of the augmented Lagrangian method and transformation approach consists

in preserving the characteristics of unconstrained state variables of the optimality conditions

to guarantee that their solution can be provided by FEM-based simulation software. The

augmented Lagrangian method ensures unconstrained state variables of the multiphysics

problems and its optimality conditions in an algorithmic manner by adjoining the state

constraints to the original problem formulation. In contrast to that, the transformation ap-

proach uses a saturation function to replace the constrained state variables by unconstrained

counterparts. It is shown that this step transfers the constrained problem into an equivalent

unconstrained one in which the system dynamics inherently satisfies the state constraint.

The applicability and accuracy of the optimization framework is exemplified for simulation

studies ranging from induction heating processes to hyperthermia therapy. The numerical

results demonstrate the optimization of the excitation and spatial configuration of the actu-

ator for selected problems and reveal the simple adaptation of the solution strategy to other

electromagnetic heating problems.
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Deutsche Kurzfassung

Multiphysikprobleme umfassen unterschiedliche und in einer wechselseitigen Beziehung ste-

hende physikalische Effekte wie zum Beispiel fluiddynamische Vorgänge, Wärmeleitung oder

elektromagnetische Felder. Eine hinreichend genaue mathematische Beschreibung derarti-

ger Probleme erfordert daher partielle Differentialgleichungen, welche häufig auf komplexen

Ortsgebieten definiert sind. Ein typisches Beispiel sind elektromagnetische Heizvorgänge, die

durch elektromagnetische und thermische Wechselwirkungen gekennzeichnet sind. Die Pla-

nung optimaler Trajektorien für verschiedene Anwendungen des elektromagnetischen Heizens

ist Inhalt dieser Arbeit.

Elektromagnetische Felder werden in zahlreichen technischen und medizinischen Anwendun-

gen zur Erwärmung elektrisch leitender Materialien eingesetzt. Beispielhaft seien induktive

Heizvorgänge zum Anlassen oder zur Oberflächenbehandlung in der Stahlindustrie genannt.

Mit dem Hyperthermieverfahren ergibt sich ein weiteres Anwendungsfeld. In diesem Fall wird

die elektromagnetische Wärmequelle zur Unterstützung konventioneller Tumorbehandlungen

eingesetzt. Modernere Verfahren setzen den Wärmeeintrag auch für eine direkte Abtötung

des Tumors durch Überhitzung ein. Die guten Steuerbarkeitseigenschaften von elektroma-

gnetischen Feldern ermöglicht es, die Intensität und örtliche Verteilung der Wärmequelle an

ein gewünschtes Aufheizverhalten anzupassen. Weitere Vorteile sind kurze Heizzyklen bei

relativ geringen Energiekosten. Die optimale Trajektorienplanung für derartige Probleme ist

jedoch mit einigen methodischen und numerischen Herausforderungen verbunden.

Aus methodischer Sicht stellen vor allem die nichtlinearen Kopplungseffekte zwischen den

elektromagnetischen und thermischen Vorgängen eine Herausforderung dar und müssen in

Form von partiellen Differentialgleichungssystemen berücksichtigt werden. Diese sind häufig

auf komplexen Ortsgebieten definiert, um das reale Systemverhalten hinreichend genau abbil-

den zu können. Darüber hinaus beinhalten viele Anwendungen Temperaturbeschränkungen,

um technische oder medizinische Anforderungen berücksichtigen zu können. Als Stellgröße

für die Trajektorienplanung steht zum einen die elektrische Aktoransteuerung zur Verfügung.

Eine weitere Stellgröße ergibt sich aus der Position und Form des Aktors. Eine geeignete

Wahl dieser Freiheitsgrade erlaubt es, sowohl den zeitlichen als auch den örtlichen Verlauf

der Wärmequelle an ein gewünschtes Aufheizverhalten anzupassen.

Eine weitere Schwierigkeit bei der Planung optimaler Trajektorien ergibt sich aus der nume-

rischen Komplexität des Problems. Um die Systemdynamik von elektromagnetischen Heiz-

vorgängen hinreichend genau vorhersagen zu können werden geeignete Algorithmen und

Solver benötigt. Die unterschiedlichen Orts- und Zeitskalen der elektromagnetischen und

thermischen Vorgänge sowie komplexe Ortsgebiete erfordern angepasste Lösungen. Zudem

verändert die Optimierung der Aktorkonfiguration den Definitionsbereich der partiellen Dif-

ferentialgleichungen, was eine Adaption der numerischen Lösung des Problems erfordert.
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In dieser Arbeit werden optimierungsbasierte Ansätze für die Auslegung einer optimalen

Ansteuerung der Aktorik sowie einer optimale Aktorkonfiguration untersucht. Die Zielstel-

lung der Trajektorienplanung wird auf verschiedene induktive Heizvorgänge und Formen der

Hyperthermiebehandlung angepasst. Ein weiterer Schwerpunkt ist die Berücksichtigung von

Zustandsbeschränkungen, um beispielsweise die Temperatur oder den Gradienten der Tem-

peratur im Rahmen der Trajektorienplanung begrenzen zu können. Der Lösungsansatz für

die unterschiedlichen Problemstellungen einer optimalen Aktoransteuerung und optimalen

Aktorkonfiguration sowie für die Berücksichtigung von Zustandsbeschränkungen beruht auf

der geeigneten Formulierung und numerischen Lösung von Optimierungsproblemen.

Der Vorteil des vorgestellten Lösungsansatzes zur optimalen Trajektorienplanung beruht auf

dessen breiter Anwendbarkeit. Verschiedenste Problemstellungen des elektromagnetischen

Heizens können bewältigt werden ohne aufwendige Erweiterungen hinsichtlich der Numerik

vornehmen zu müssen. Stattdessen wird eine Optimierungsumgebung vorgestellt, die auf

Basis von FEM-Software die numerische Lösung der Optimierungsprobleme ermöglicht. Die

numerische Ebene wird um eine algorithmische erweitert, in welcher geeignete Optimierungs-

routinen implementiert werden.

Der Ansatz zur Trajektorienplanung basiert auf einer sequentiellen Lösung der Multi-

physikprobleme und deren Optimalitätsbedingungen, wobei die Optimalitätsbedingungen

unter Verwendung der formalen Lagrange-Technik und einer adjungiert-basierten Sensiti-

vitätsanalyse hergeleitet werden. Die Optimalitätsbedingungen liegen in Form von partiellen

Differentialgleichungssystemen vor, deren Struktur eine numerische Lösung mit Hilfe von

FEM-Software ermöglicht. Dies führt dazu, dass der numerische Aufwand der Trajekto-

rienplanung auf FEM-basierte Simulationssoftware ausgelagert werden kann. Um auch

zustandsbeschränkte Probleme auf diese Art handhaben zu können, wird ein erweiterter

Lagrange-Ansatz sowie ein Transformationsansatz vorgestellt.

Die Idee des erweiterten Lagrange-Ansatzes und des Transformationsansatzes besteht in

der Erhaltung der unbeschränkten Zustandsvariablen der Optimalitätsbedingungen, um so-

mit sicherzustellen, dass das Optimalitätssystem mit Hilfe von FEM-basierter Simulations-

software gelöst werden kann. Der erweiterte Lagrange-Ansatz beruht auf einer algorithmi-

schen Erweiterung der Optimierungsroutinen. Die strukturelle Eigenschaft unbeschränkter

Zustände bleibt dabei erhalten, indem die Zustandsbeschränkungen mit Hilfe von adjun-

gierten Zuständen an die ursprüngliche Problemstellung gekoppelt werden. Der Transfor-

mationsansatz verwendet eine Sättigungsfunktion, um die beschränkten Zustände durch un-

beschränkte zu ersetzen. Dadurch wird das beschränkte Optimierungsproblem in ein unbe-

schränktes transformiert, dessen Systemdynamik inhärent die Beschränkungen einhält.

Die Leistungsfähigkeit der Optimierungsumgebung wird mit Hilfe von Simulationsstudien

von induktiven Heizvorgängen und Tumorbehandlungen aufgezeigt. Die Simulationsstudi-

en führen letztendlich zu optimalen Ansteuerungen und Konfigurationen der Aktoren und

verdeutlichen die breite Anwendbarkeit der Optimierungsumgebung auf verschiedene Pro-

blemstellungen des elektromagnetischen Heizens.
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Chapter 1

Introduction

The major advantage of electromagnetic heating techniques over conventional technologies

such as combustion, i. e., the generation of heat from coal or fuels, or electrical heating

(e. g. radiant or convection heating) is the ability to localize the heat source inside the

spatial domain of interest without the need for contact with the object. Typical application

examples are, but are not limited to, heat treatment processes in the steel industry [118, 89]

and medical sector [129, 144, 9], the manufacturing of monocrystalline silicon [78, 91], and

thermal oil recovery methods [24].

In the last decades, specialized software packages were developed to simulate multiphysics

problems. This formed the foundation of understanding the fundamental physics and various

coupling effects of complex problems as well as to customize control strategies to a specific

problem. The optimal trajectory planning of electromagnetic heating systems, however, is

still a challenging task. The main reasons for this are the underlying multiphysics character-

istics in combination with complex spatial domains which result in enormous methodological

complexity and numerical challenges [62, 119].

The electrical excitation of electromagnetic actuators such as inductors or electrodes as

well as their positions and shapes represent important degrees of freedom for an optimal

trajectory planning [127, 118]. A well-balanced coordination between the control strategy

for the actuators in form of voltage or current sources and appropriately selected actuator

shapes and positions facilitates the adaptation of the intensity and spatial distribution of the

heat source to the objectives of a heat-up process. Figure 1.1 shows typical electromagnetic

heating applications in form of constant heat-up and surface hardening processes. The

actuator configuration in Figure 1.1a is used to heat up the whole workpiece, whereby the

actuator is excited in a way that the heat source is generated as homogeneously as possible

within the workpiece. The actuator configurations in Figure 1.1b and 1.1c ensure to heat up

individual areas of the surface layer of the workpiece.

In general, the major challenge of the trajectory planning stems from the objective to heat

up specific regions to desired temperature profiles and is complicated by secondary objec-

tives that are often competing [31, 38]. For example, a surface hardening process has the

primary objective to heat up the surface layer without increasing the temperature of in-

ner domains. The compliance of state constraints is a further important aspect, e. g., the

workpiece must not exceed critical temperatures to prevent undesired metallurgical effects

capable to downgrade the material properties.
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2 Introduction

(a) Constant heat-up (b) Surface hardening (c) Surface hardening

Figure 1.1: Typical scenarios of electromagnetic heating. Different actuator configurations

are used to generate the electromagnetic heat source in specific regions of the workpiece.

There are several other objectives for electromagnetic heating systems including the necessity

to guarantee a homogeneous heat-up behavior, i. e. to prevent too large temperature gradients

or the realization of rapid heat-up cycles that are highly accurate [118]. Moreover, the

geometrical setups of electromagnetic heating systems are as manifold as the number of

application examples (e. g. induction heating, hyperthermia therapy, or manufacturing of

monocrystalline silicon) for which the heat-up techniques have to be customized. In turn,

the trajectory planning problem will involve a great deal of effort and is computationally

demanding for each individual problem.

In this thesis, a trajectory planning approach is presented to optimize the electrical excitation

and the position or shape of the actuator. The approach also accounts for state constraints

and is characterized by its generality to handle different problems of electromagnetic heating.

The basic idea is to closely couple optimization algorithms and a software package that is

specialized to the numerical solution of multiphysics problems [114, 108]. An optimization

framework is developed where the methodological challenges can be separated from the

numerical ones. The software package is used to numerically solve both the system dynamics

of the electromagnetic heating processes and the optimality conditions to obtain optimal

trajectories. The derivation of the optimality conditions and their incorporation into the

optimization framework is the focus of this thesis.

This introductory chapter illustrates the multiphysics characteristics of electromagnetic heat-

ing systems and discusses the most relevant aspects for an optimal trajectory planning. Fur-

thermore, the concept of dynamic optimization is outlined to provide an insight into the

problem and theoretical basics of optimization-based trajectory planning.

1.1 Electromagnetic heating

Electromagnetic and thermal phenomena are essential physical processes that have to be

taken into account when applying electromagnetic heating techniques.1 The physical prin-

ciple of electromagnetic heating and its advantages over traditional heat-up techniques are

outlined in what follows, also see [56, 117].

1 Further significant phenomena are metallurgical and thermo-mechanical effects.
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1.1.1 Basic principle

A typical geometrical setup of an electromagnetic heating system consists of an actuator

(e. g. an inductor in the case of induction heating or an electrode in the case of hyperthermia

therapy) and the object to be heated, as illustrated in Figure 1.2. The basic principle of an

electromagnetic heat-up process is as follows. One or several actuators2 are energized with

alternating electric currents Jimp := Jimp(x, t) which in turn give rise to an electromagnetic

field that propagates through the ambient area with the same frequency [130]. The char-

acteristic of wave propagation is indicated in Figure 1.2 by means of the impressed electric

currents Jimp within the actuator and the arising magnetic field H := H(x, t) in the air. The

spatial coordinates are denoted by x := [x1, x2, x3]T and the temporal coordinate by t.3

Objects that are penetrated by the electromagnetic field are exposed to intrinsic heat sources

since the time-varying magnetic field H induces an electric field intensity E := E(x, t) in

electrically conductive materials [116, 57]. Thus, the temperature of the object T := T (x, t)

increases as a function of the intensity and spatial distribution of the heat source.

In the vast majority of electromagnetic heating scenarios, the predominant heat source is

Joule heating QJ (E) arising from electric dissipation effects. The physical cause of this

heat source lies in a combination of the resistivity of the object, respectively its electrical

conductivity σ := σ(x), and induced eddy currents Jind := Jind(x, t) due to the electric field

intensity E . By its very nature, eddy currents flow in closed loops while they match more

or less pronounced the contour of the object, cf. Figure 1.2. In the case of ferromagnetic

impressed

currents Jimp

magnetic field H
actuator

object to be heated

induced eddy currents Jind

Figure 1.2: Typical setup of an electromagnetic heating application with magnetic field H
and induced eddy currents Jind within an electrically conductive object.

2 In the following, the uniform description “actuator” is used also implying the plural form.
3 After the definition of variables or physical quantities such as the magnetic field H(x, t) or the tempera-

ture T (x, t), their arguments x and t are omitted to not further complicate the notation.
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objects, the permanent magnetization and demagnetization of materials cause additional

dissipation effects and a certain amount of magnetic energy is converted to heat [83]. Thus,

magnetic losses may be able to generate another significant heat source QM(H).

1.1.2 Advantages

Electromagnetic heat-up techniques offer several advantages over conventional heating meth-

ods. The major advantage is the possibility to localize the heat source to specific areas of the

object, cf. Figure 1.1. In combination with the fast heating rates of electromagnetic fields,

local areas can be heated up without significantly increasing the temperature of surround-

ing regions [147, 46]. In addition, the heat source can be reproduced accurately, what is

particularly interesting in terms of an automation of the heat-up process [29].

Electromagnetic heating techniques are energy efficient since the heat source is directly gen-

erated in the object to be heated [20]. Moreover, the convective and radiative heat losses

are kept to a minimum. The characteristic of a contactless heat transfer into the object is

another advantage. Compared to external heat sources that inevitably involve contamina-

tion effects of the object, electromagnetic heating can be utilized even if the specific problem

demands high standards of technical or medical cleanliness. This advantage is of particu-

lar relevance, for instance, in the course of manufacturing monocrystalline silicon [140] or

hyperthermia therapy [144].

With respect to an optimal heat-up process, both the intensity and spatial distribution of the

intrinsic heat source Q(E ,H) = QJ (E)+QM(H) are important factors. The time-dependent

excitation of the actuator as well as its position and shape constitute the most important

degrees of freedom to adjust the heat source.4 There are, however, several multiphysics

characteristics that influence the propagation of the electromagnetic field and hence the

generation of the heat source. Thus, the intensity and spatial distribution of the heat source

can be manipulated only to a certain degree. The most relevant multiphysics characteristics

of electromagnetic heating applications are discussed in what follows.

1.2 Multiphysics characteristics of electromagnetic

heating systems

The multiphysics characteristics of electromagnetic heating systems are complex in their

nature and involve, among others, a close coupling of electromagnetic and thermal phenom-

ena [118]. For an optimal trajectory planning, it is important to account for such multiphysics

characteristics using proper mathematical models.

4 Additional degrees of freedom are, for instance, the frequency of the electrical excitation of the actuator

or stem from the application of magnetic flux concentrators, see, e. g., [118].
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1.2.1 Nonlinearly coupled partial differential equations

From a mathematical point of view, a sufficiently precise description of the electromagnetic

and thermal phenomena requires a set of coupled partial differential equations (PDE – Partial

Differential Equation). The Maxwell equations and the heat equation can be used to model

the temporal and spatial dynamics of electromagnetic heating systems [57, 87]. For the sake

of compactness, the system dynamics and the associated challenges for an optimal trajectory

planning are discussed, for the time being, on the basis of the PDE system

esys(y, v) = 0 in Ω× (0, tf) (system dynamics) (1.1a)

ebc(y, v) = 0 on Γ× (0, tf) (boundary condition) (1.1b)

eic(y) = 0 in Ω at t = 0 (initial condition) (1.1c)

with state y := y(x, t) and input v := v(x, t). The electromagnetic and thermal phenomena

are represented by the model esys(y, v) = 0 on the space-time cylinder Ω× (0, tf) with tf as

the final time of the heat-up cycle. The boundary condition on Γ and the initial condition

within the region of interest Ω at t = 0 are described by ebc(y, v) = 0 and eic(y) = 0, respec-

tively. The input v represents the available degrees of freedom to actuate the electromagnetic

heating system such as the electrical excitation or the position and shape of the actuator. A

detailed description of the PDE system (1.1) is presented in Chapter 2.

The planning of optimal trajectories for problems governed by PDEs is challenging in its

own [19, 27]. In the case of electromagnetic heating, the problem is complicated by the

fact that the PDE constraints involve nonlinear coupling effects [11]. For example, the

mathematical model (1.1) must be able to describe the temporal and spatial distribution of

the electric field intensity E according to Faraday’s law of induction

∇×E = −µ ∂tH in Ω× (0, tf) (1.2)

with µ := µ(x) denoting the magnetic permeability.5 Depending on the knowledge about

the temporal and spatial distribution of the electric field intensity, the Joule heat source

QJ = σ E · E in Ω× (0, tf) (1.3)

can be used to describe the density of electrical power converted to heat.6 The Joule heat

source QJ allows one to describe the thermal behavior of the object by expanding the

mathematical model (1.1) by the well known heat equation

ρC∂tT −∇· (k∇T ) = QJ in Ω× (0, tf) , (1.4)

whereby the material parameters ρ := ρ(x), C := C(x), and k := k(x) specify the density,

the heat capacity, and the thermal conductivity of the object.

5 The temporal operator ∂t(·) denotes the partial derivative with respect to time t. The spatial operators

∇×(·) and ∇· (·) denote the curl and divergence operator, also see Appendix B.5.
6 In the remainder, the operator ’·’ is used to formulate the scalar product of two vectors.
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The computational effort that is associated with the simulation of multiphysics problems, not

to mention their optimization, is another crucial point [76, 119]. The solution of the system

dynamics (1.1) requires sophisticated algorithms and solvers to cope with distinctly different

temporal and spatial scales of the electromagnetic and thermal phenomena [65, 116, 95]. In

addition, the geometrical setup on which the system dynamics is formulated often exhibits

complex spatial domains and structures by which its numerical treatment becomes a tedious

and costly procedure [118].

In principle, the numerical effort for the trajectory planning can be reduced by assuming

more simple spatial domains as they really are. This results in mathematical models with

symmetry planes and reduced space dimensions. In turn, the numerical load decreases and

the application of semi-analytical approaches for the trajectory planning is facilitated, see,

e. g., [17, 125]. On the other hand, non-uniform shapes and structures of the object may

have a major impact on the propagation of the electromagnetic field, and thus on the spatial

distribution of the electromagnetic heat source. A discussion of such distortion effects and

its influence on the heat-up behavior of the object is the subject of the following section.

1.2.2 Distortion effects of the electromagnetic field

The intensity of the electromagnetic heat source depends on, among other things, the

strength and frequency of the electromagnetic field, cf. Equation (1.3) in the case of Joule

heating. By adjusting the power supply of the actuator in form of impressed current or

voltage sources of sinusoidal type

u := u(t) = û(t) cos(ωt) (1.5)

with time-dependent peak-value û(t) and angular frequency ω, both the intensity and fre-

quency of the electric field can be changed. In turn, the control strategy (1.5) allows one

to temporally adapt the electromagnetic heat source to the desired heat-up behavior of a

specific problem. The spatial distribution of the electromagnetic heat source, however, may

be highly non-uniform. The most pronounced distortion effects leading to an uneven spatial

distribution of the heat source are the skin, end, and edge effect, which will be discussed in

the following lines, also see [31, 116].

Skin and damping effects

The time-varying electromagnetic field induces a further time-varying field in electrically

conductive objects that opposes the former one due to Lenz’s law, see, e. g., [130, 118]. As a

result, the eddy currents Jind decreases from the surface layer of the object towards its core.

This phenomenon is known in the literature as skin effect and is illustrated in Figure 1.3 by

the induced eddy currents, which are concentrated to the surface layer of the object. The

impact of the skin effect is more pronounced as the frequency of the electromagnetic field is

increased, also see [118].
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Figure 1.3: Illustration of the skin, end, and edge effect in the course of surface hardening.

A darker coloration of the red-marked surface layer corresponds to a higher intensity of the

electromagnetic heat source.

There are also damping effects when the electromagnetic field propagates through space.

Roughly speaking, the skin and damping effects cause an exponential decrease of the eddy

current distribution from the surface layer of the object towards its core. Taking into account

Ohm’s law

Jind = σE in Ω× (0, tf) , (1.6)

it becomes clear that also the Joule heat source QJ (E) decreases in an exponential manner,

cf. Equation (1.3). Thus, the Joule heat source is predominant in the surface layer of the

object [118]. Similar conclusions apply to heat losses due to magnetic hysteresis effects.

End effect

A further distortion of the electromagnetic field is evoked by the end effect, which eventually

result in a spatially uneven heat source along the surface of the object. The end effect occurs

in areas between the object and the ambient air or at the boundary of different materials.

The electromagnetic field lines are contracted or stretched in these areas depending on the

material parameters, the geometrical setup of the problem, and the severity of the skin effect,

see, e. g., [118]. The spatial distribution of the heat source is affected by these distortions of

the electromagnetic field and may vary from very intensive to less pronounced. Figure 1.3

illustrates the end effect by a darker color at the left end of the surface layer, which has a

higher heat source intensity.

Edge effect

Another important effect that can significantly distort the electromagnetic field in some areas

is the edge effect. Here, the electromagnetic field and its associated heat source is affected in

areas with sharp edges and non-uniform shapes, as shown in Figure 1.3 in the middle region

of the surface layer of the object. The edge effect strongly depends on the severity of the
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skin effect. Because a more pronounced skin effect leads to a better alignment of the eddy

currents to the contour of the object, the three-dimensional edge layers represent regions in

which more eddy currents can penetrate, see, e. g., [118]. In consequence, such areas may be

exposed to a much higher electromagnetic heat source than other domains.

Depending on the geometrical setup of the object to be heated, the impact of the edge effect

can be inverse and the corresponding regions of the surface layer are submitted to a much

lower intensity of induced currents. This phenomenon is illustrated in Figure 1.3 by the

non-existent coloration at the right hand side of the surface layer of the object, where the

intensity of the electromagnetic heat source is less pronounced.

1.2.3 Temperature-dependent material parameters

The material properties of the object can significantly vary with temperature, so that the

intensity and spatial distribution of the electromagnetic heat source can also change during

a heat-up cycle. The temperature dependence of the material influences, for example, how

strongly the electromagnetic field penetrates into the object. Depending on the temperature

increase and heating rate, the system dynamics of the electromagnetic phenomena change

with time. Similarly, the phenomenon of heat propagation is also affected by changes of the

material parameters.

The handling of temperature-dependent materials is a crucial point when planning trajecto-

ries for electromagnetic heating systems, see, for instance, [11, 23]. Both the temporal and

spatial dynamics of the electromagnetic and thermal phenomena may significantly change

during a heat-up cycle. For instance, the thermal conductivity of commonly used steels of

induction heat-up and surface hardening processes is a function of temperature

k := k(T ) in Ω× (0, tf) , (1.7)

cf., e. g., [87, 118]. Thus, the intensity of diffusive heat propagation depends on the current

temperature of the object and therefore on the spatial coordinate x, cf. Equation (1.4).

Note that the temperature-dependent and hence space-dependent thermal conductivity k

in combination with the locally concentrated heat source intensifies the issue of an uneven

heat-up behavior.

Similar to the thermal conductivity in Equation (1.7), the density and heat capacity depend

on the temperature

ρ := ρ(T ) in Ω× (0, tf) (1.8a)

C := C(T ) in Ω× (0, tf) , (1.8b)

which causes a change of the thermal dynamics of electromagnetic heating systems. Typical

application examples of temperature-dependent material parameters influencing the thermal

phenomena are discussed in [118, 75] and [23] in the case of heating up various types of
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metals and tumour cells. The dependency of the electrical conductivity and the magnetic

permeability on temperature, i. e.,

σ := σ(T ) in Ω× (0, tf) (1.9a)

µ := µ(T ) in Ω× (0, tf) , (1.9b)

does not affect the thermal dynamics, but rather the propagation of the electromagnetic

field itself. In this case, both the intensity and the spatial distribution of the heat source

can change considerably during the heat-up process, see, e. g. [11, 64].

The intensity of the temperature dependency as well as the temperature increase during a

heat-up cycle influences the severity of the impact of temperature-dependent materials on

the heat-up behavior. A decision must be made as to whether the effects of temperature-

dependent material parameters are significant or whether they can be neglected for planning

optimal trajectories of an electromagnetic heating system. In the following, the issue of

temperature-dependent material parameters is not further discussed, but it is referred to

the above-mentioned contributions. Moreover, there are simulation tools for multiphysics

problems such as Comsol Multiphysics [28] or Ansys [5] which offer comprehensive

material databases.

1.3 Optimal trajectory planning for

multiphysics problems

The objective of electromagnetic heating systems is either to heat up the entire object

to a constant temperature profile or to heat only a portion of it without increasing the

temperature of surrounding regions [118, 38]. Control strategies can tackle such problems

by appropriately matching the position and shape of the actuator and its electrical excitation,

but are confronted with a number of methodological and numerical challenges. Besides this,

the trajectory planning approach often should lead to an optimal heat-up behavior in terms

of being highly accurate and rapid or energy efficient. To be able to meet these additional

criteria, the exploitation of input and state constraints is inevitable.

Optimization-based techniques constitute a promising approach to overcome the challenges of

planning optimal trajectories of PDE constrained problems [88, 40, 62, 101]. The discussion

below provides an introduction to PDE constrained optimization to address the trajectory

planning of electromagnetic heating systems. For the moment, however, the discussion

is limited to a simplified problem formulation before the optimization-based approach is

adapted in the following chapters for determining optimal excitation strategies and spatial

configurations of electromagnetic actuators.
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1.3.1 Problem formulation

Optimization-based trajectory planning relies on the formulation and numerical solution of

an optimization problem. The general procedure for handling such a problem is discussed

in the following by means of the time-independent motivating example

min
v

J(y, v) =

∫
Ω

q1

2
(y − yd)2 dx+

∫
Γ0

q2

2
(v − vd)2 dx (1.10a)

s.t. −∆y = f in Ω (1.10b)

n · ∇ y = v on Γ0 (1.10c)

n · ∇ y = 0 on Γ1 (1.10d)

with state variable y := y(x) and control variable v. The cost functional J(y, v) is used to

define the objectives of the trajectory planning. Here, the quadratic error of the state and

input variable is penalized with respect to desired profiles yd := yd(x) and vd, respectively.

The non-negative weights q1 and q2 are used to balance the two control tasks against each

other.7 The discussion on handling optimization problem (1.10) is simplified by considering

a one-dimensional spatial domain Ω = (0, 1) with boundary Γ = Γ0 ∪ Γ1, whereby Γ0 = 0

and Γ1 = 1. Neither input nor state constraints are considered for the time being.

The cost functional (1.10a) is minimized with respect to the optimization variable v taking

into account the linear PDE constraint defined by the Poisson equation (1.10b) and the

Neumann boundary conditions (1.10c)–(1.10d). The infinite-dimensional system dynamics

of stationary type is specified by the Laplacian ∆(·), the gradient ∇ (·), a given right hand

side f := f(x), and the outward unit normal vector n. For the minimization of the cost

functional, the dynamics of the PDE constraint have to be affected in an optimal manner by

taking advantage of the boundary control v on Γ0. The homogeneous Neumann boundary

condition on Γ1 models perfect thermal insulation.

The numerical solution of optimization problem (1.10) results in the optimal design variable

v∗ and state variable y∗, which minimize the cost functional

J(y∗, v∗) ≤ J(y, v) ∀v . (1.11)

A common approach to cope with the optimization problem relies on the algorithmic treat-

ment of a set of optimality conditions. The formulation of the optimality conditions, however,

is challenging, even in the case of the rather simple problem (1.10). The following section

presents suitable approaches to tackle such optimization problems from a mathematical point

of view before introducing a formal approach that offers a promising alternative.

7 For an overall scaling, both parts of the cost functional are weighted by individual parameter q1 and q2.
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1.3.2 Typical optimization approaches

A major contribution to the treatment of optimization problems with PDE constraints goes

back to the research activities of J. L. Lions in the early seventies [88]. In this connection,

analytical and numerical foundations for linear problems were developed, see, e. g., [88, 1].

Research activity was continuously intensified to cope with problems governed by nonlinear

PDEs leading to a rapidly growing mathematical field [40, 62]. This is particularly the case

for the problem of proving the existence and uniqueness of a solution [62, 8] as well as for

developing methods that are able to derive proper optimality conditions [55, 33, 62, 133].

Research activity also focused on the efficient numerical solution of PDEs. Probably the most

important method is the finite element method (FEM – Finite Element Method) because of

its flexibility to deal with complex spatial domains [88, 146, 8]. The continuous increase in

computational power favors this development to this day. However, the proper handling of

PDE constrained optimization problems is still a challenging task. This is especially true if

nonlinear coupling effects or state constraints are present [62, 96, 101].

Generally speaking, methods to tackle PDE constrained optimization problems can be di-

vided into the two approaches “first discretize then optimize” (FDTO – First Discretize

Then Optimize) and “first optimize then discretize” (FOTD – First Optimize Then Dis-

cretize), see, e. g., [62, 63]. Both approaches have advantages and disadvantages, and the

choice for one of them depends largely on the complexity of the PDE constraints and the

spatial domains for which the infinite-dimensional system dynamics is defined [119].

First discretize then optimize (FDTO)

The idea of an FDTO approach is to first discretize the temporal and spatial coordinates

of the infinite-dimensional system dynamics before suitable optimization techniques are ap-

plied [62]. The prior discretization step allows to derive the optimality conditions in finite-

dimensional spaces. There are two different techniques concerning the discretization step,

known as semi-discretization and full-discretization [146, 124, 84]. The former one discretizes

either the temporal or spatial coordinate whereas the latter discretizes both.

The FDTO approach is demonstrated for optimization problem (1.10). Since this problem is

stationary, there is no difference between full and semi-discretization. First of all, the spatial

coordinate x is discretized on Ω ∈ (0, 1) at N grid nodes

xh = [x1 = 0, x2, . . . , xN = 1]T , xj < xj+1 (1.12)

with the subscript h indicating the discretization of the spatial domain, i. e., h = xj+1 − xj.
The discrete grid nodes facilitate the evaluation of the infinite-dimensional state variable

yh = [y1, y2, . . . , yN ]T . (1.13)

The discretized state variables yj ≈ y(x)|x=xj can be used to approximate the spatial oper-

ators of the system dynamics (1.10b)–(1.10d) using finite difference, finite element, or finite
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volume techniques, see, e. g., [131, 146, 138]. Eventually, the discretization step results in

the finite-dimensional optimization problem

min
v

Jh(yh, v) (1.14a)

s.t. Kyh = fh (1.14b)

that approximates the infinite-dimensional counterpart (1.10), also see [63]. The new cost

functional to be minimized Jh(yh, v) represents (1.10a). The algebraic equation (1.14b) ap-

proximates the PDE constraints (1.10b)–(1.10d), whereby K := K(yh, v) and fh := fh(yh, v)

denote the stiffness matrix and the load vector, respectively.

The second step of an FDTO approach deals with the numerical solution of the discretized

optimization problem (1.14). In the vast majority, the numerical solution relies on the formu-

lation and evaluation of optimality conditions, see, e. g., [21, 98]. Commonly used approaches

to derive the optimality conditions are adjoint-based methods. To this end, the discretized

system dynamics (1.14b) is adjoined to the cost functional (1.14a) using adjoint states. An

analysis of the extended cost functional eventually reveals the optimality conditions. In or-

der to numerically solve them, approaches such as (conjugate) gradient methods, sequential

quadratic programming, (quasi-)Newton methods, or interior point methods can be applied,

also see [22, 21, 98].

First optimize then discretize (FOTD)

An FOTD approach offers an alternative to cope with optimization problems such as (1.10).

In this case, the optimality conditions are formulated directly in infinite-dimensional spaces

without applying prior discretization techniques. The discretization step is solely required

to numerically solve the optimality conditions. A detailed discussion on FOTD approaches

can be found in [55, 63, 62].

For a number of reasons (e. g., infinite-dimensional system dynamics, nonlinearly coupled

PDEs, or presence of state constraints), the major challenge of an FOTD approach is to

formulate a well-defined control-to-state operator

y = G(v) in Ω , (1.15)

which maps each control variable v to a unique state variable y. Thereby, the side constraints

of the optimization problem in form of PDE systems or input and state constraints have to

taken into account [62]. For the sake of simplicity, the discussion of the main steps of an

FOTD approach are exemplified for optimization problem (1.10).

A sophisticated analysis of optimization problem (1.10) shows that a unique control-to-state

operator y = G(v) exists [2]. The reduced problem reads as

min
v

J(G(v), v) =

∫
Ω

q1

2
(G(v)− yd)2 dx+

∫
Γ0

q2

2
(v − vd)2 dx (1.16)
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and solely depends on the optimization variable v but not on the state variable y. The direc-

tional derivative of the reduced cost functional with respect to the optimization variable v

can be used to formulate a set of optimality conditions. The reformulation of the directional

derivative eventually yields the so-called adjoint dynamics

∆p∗ = q1 (y∗ − yd) in Ω (1.17a)

n · ∇ p∗ = 0 on Γ (1.17b)

as a necessary optimality condition. Roughly speaking, the adjoint dynamics reflects the

impact of the cost functional (1.10a) on the system dynamics (1.10b)–(1.10d) in terms of an

optimal solution.

The optimality conditions of problem (1.10) also comprise the gradient condition

gv =

∫
Γ0

q2 (v∗ − vd)− p∗ dx = 0 (1.18)

with gv := gv(v, p) relating the control input v to an optimal solution (p∗, v∗). The negative

gradient −gv can be interpreted as a descent direction for the optimization variable v in

order to reduce the cost functional, which is particularly interesting from an algorithmic

point of view, see, e. g., [74, 62, 58].

The second step of an FOTD approach uses the optimality system, described by the system

dynamics (1.10b)–(1.10d), the adjoint dynamics (1.17), and the gradient condition (1.18), to

determine a numerical solution of the optimization problem in an algorithmic manner [58].

To this end, the system dynamics and the adjoint dynamics, also referred to as canonical

equations, are discretized using finite difference, finite element, or finite volume techniques,

see, e. g., [146, 138, 132]. On the basis of the discretized optimality conditions, (conju-

gate) gradient methods, sequential quadratic programming or (quasi-)Newton methods are

typically used to determine an optimal solution [62, 58].

Comparison of FDTO and FOTD approaches

Generally, one can say that multiphysics problems give rise to severe difficulties in the course

of planning optimal trajectories regardless whether an FDTO or FOTD approach is applied,

see, e. g., [62, 133, 119]. The crucial points can be divided into methodological issues (e. g.,

derivation of optimality conditions, incorporation of state constraints) and numerical issues

(e. g., numerical solution of nonlinear coupled PDEs, handling of complex spatial domains),

whose degree of severity varies for the two different approaches.

The major issues of an FDTO approach are numerical ones and are linked to the discretiza-

tion step. The approximation of the PDE constrained optimization problem by an finite-

dimensional counterpart necessitates tailored discretization techniques and problem specific

workarounds [146, 132]. Various subdomains, on which the cost functional is defined, or the

adequate implementation of the degrees of freedom for shape optimization, to name just a

few aspects, necessitate customized and tedious discretization techniques.
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The lack of freedom to employ different grids for discretizing and numerically solving the

canonical equations is another disadvantage of FDTO approaches [55]. The crucial point

is that the system dynamics and adjoint dynamics often need different spatial grids. For

example, the surface layer of typical induction heating processes as shown in Figure 1.3, is

subject to the steepest temperature gradients and should therefore be discretized sufficiently

fine. The adjoint dynamics, however, requires a rather fine spatial grid in the region of the

actuator in order to precisely reflect its sensitivity for shape optimization [55].

The advantage of FDTO approaches lies in well-developed methods and algorithms to cope

with optimization problems governed by ODEs or algebraic equations. There exists a variety

of software packages to derive and numerically solve the optimality conditions. Examples

include, but are not limited to, the software packages QPOPT [48], ACADO Toolkit [66],

IPOPT [139], and GRAMPC [54]. Such numerical frameworks also make it possible to

cope with state constraints by means of interior point methods [143], augmented Lagrangian

methods [16, 69], or transformation techniques [53, 52]. Another advantage of FDTO ap-

proaches is a consistent gradient condition (1.18). In contrast, the optimality conditions of

an FOTD approach need a rather fine spatial grid to guarantee their numerical validity.

Most of the numerical issues discussed above can be avoided by applying an FOTD approach

that is closely coupled to state-of-the-art FEM software [108, 109]. Thereby, it is important

to keep in mind that the discretization step of an FOTD approach is solely required to

numerically solve the optimality conditions. An elaborate representation of the discretized

system dynamics for deriving the optimality conditions is not necessary. By its very nature,

FOTD approaches provide the possibility to discretize the system dynamics and adjoint

dynamics on different spatial grids [133, 63]. This allows one to suit the fineness of the

grid to the expected dynamics of the canonical equations, by which the numerical effort

for solving them can be kept to a minimum without introducing noticeable discretization

errors [55]. Furthermore, the possibility to influence the spatial discretization with relative

ease allows to deal with changing geometries during shape optimization [111].

As already mentioned, an FOTD approach follows the idea to formulate the optimality

conditions in infinite-dimensional spaces and requires a deep mathematical insight into the

optimization problem [40, 133, 62]. Another challenging aspect concerns the proper treat-

ment of state constraints when deriving the optimality conditions, see, e. g., [16, 14, 96]. In

general, the state constraints lead to complementarity conditions to handle active and inac-

tive state constraints. This not only complicates the formulation of the optimality system

but also its numerical solution. In order to achieve a well-defined problem formulation, the

complementarity conditions can be handled numerically by means of proper regularization

techniques [60, 134, 96]. Another way to deal with active and inactive state constraints

follows from a transformation method that reformulates the inequality constrained problem

as an equality constrained counterpart [52].
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1.3.3 Mathematical “inexact” optimization approaches

This thesis takes the opportunity of an FOTD approach to outsource the numerical ef-

fort of the trajectory planning of electromagnetic heating systems to FEM-based simulation

software. However, a more formal approach is pursued to cope with the challenging task

of deriving the optimality conditions. The basic idea of formally deriving the optimality

conditions is exemplified for optimization problem (1.10) using the formal Lagrangian tech-

nique [133] and the calculus of variations [120]. This provides the methodological basis for

optimizing the excitation and the position or shape of electromagnetic actuators.

Formal Lagrangian technique

The formal Lagrangian technique tackles optimization problems such as (1.10) by analyzing a

so-called Lagrangian that eliminates side constraints (e. g. PDE systems or state constraints)

in a first step. The Lagrangian L := L(y, v, p) for optimization problem (1.10) reads

L =

∫
Ω

q1

2
(y − yd)2 dx+

∫
Γ0

q2

2
(v − vd)2 dx

−
∫
Ω

p (∆y + f) dx+

∫
Γ0

p (n · ∇ y − v) dx+

∫
Γ1

p (n · ∇ y) dx , (1.19)

where the side constraints (1.10b)–(1.10d) are coupled to the cost functional (1.10a) by means

of the adjoint state p := p(x), cf., e. g., [133, 119]. The Lagrangian L can be interpreted,

roughly speaking, as the counterpart of the reduced cost functional (1.16). Thereby, the

Lagrangian only accounts for the system dynamics by means of the adjoint state p instead

of a control-to-state operator G(v), cf. Equation (1.15).

The Lagrangian (1.19) allows one to derive the optimality conditions of minimization problem

(1.10) in a classical sense. To this end, the directional derivatives of first order

∂L
∂p

∣∣∣∣
a∗
hp = 0 ∀hp (1.20a)

∂L
∂y

∣∣∣∣
a∗
hy = 0 ∀hy (1.20b)

∂L
∂v

∣∣∣∣
a∗
hv = 0 ∀hv (1.20c)

are considered to interrelate an optimal solution a∗ = (y∗, v∗, p∗) to vanishing partial deriva-

tives of the Lagrangian L with respect to the adjoint state p, the state y, and the optimiza-

tion variable v, respectively.8 Thereby, the admissible directions hp = p − p∗, hy = y − y∗,
and hv = v− v∗ represent the rate of change of the Lagrangian L as the optimal solution a∗

varies, also see [133, 55].

8 The notation (·)|a∗ is used in short for (·)|a=a∗ to not further complicate the notation.
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In order to be able to analyze the directional derivatives (1.20) with respect to an optimal

solution, the formal Lagrangian technique accepts a negligence of mathematical strictness in

the sense that spatial operators such as the Laplacian ∆(·) or the gradient ∇ (·) are treated

formally.9 The function space of the adjoint state p is not properly defined either. Instead,

it is assumed that both the state y and the adjoint state p are at least twice continuous

differentiable with respect to the spatial coordinate x.

The simplifying assumptions mentioned above shall facilitate the derivation of an optimality

system by reformulating the directional derivatives (1.20). Actually, suitable integral identi-

ties can be applied to the directional derivatives to interchange the arguments (hy, hp) with

the arguments (y, p) of the spatial operators ∆(·) and ∇(·). The following lines demonstrate

this reformulation step. A detailed discussion of the formal Lagrangian technique can be

found in [133].

An evaluation of the directional derivative (1.20a) yields the variational equation

∂L
∂p

∣∣∣∣
a∗
hp = −

∫
Ω

(∆y∗ + f)hp dx

+

∫
Γ0

(n · ∇ y∗ − v∗)hp dx+

∫
Γ1

(n · ∇ y∗)hp dx = 0 ∀hp (1.21)

from which the first of three required conditions for the optimality of the state y, the opti-

mization variable v, and the adjoint state p can be deduced. To guarantee that the variational

equation (1.21) vanishes for all admissible directions hp, the system dynamics

−∆y∗ = f in Ω (1.22a)

n · ∇ y∗ = v∗ on Γ0 (1.22b)

n · ∇ y∗ = 0 on Γ1 (1.22c)

has to be satisfied by an optimal solution. Note that this PDE system ensures that the

variational equation (1.21) vanishes in a distributional manner, implying optimality in terms

of the first-order optimality condition (1.20a).

The directional derivative (1.20b) allows to derive the adjoint dynamics, which, as already

discussed in Section 1.3.2, reflects the impact of the system dynamics on the cost functional.

In view of a formal treatment of spatial operators, the directional derivative (1.20b) can be

evaluated and results in the variational equation

∂L
∂y

∣∣∣∣
a∗
hy =

∫
Ω

q1 (y∗ − yd)hy dx−
∫
Ω

p∗∆hy dx+

∫
Γ

p∗ n · ∇hy dx = 0 ∀hy . (1.23)

Thereby, the arguments of the Laplacian and gradient operator swap from the state y to the

admissible directions hy.

9 The term “formal” refers to the fact that spatial operators are treated as constants when evaluating

directional derivatives such as (1.20). It is also assumed that the arguments of the spatial operators are

interchangeable between the state and adjoint variables in the sense of suitable integral identities [133].
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Integration by parts is applied to the second integral of the variational equation (1.23). This

allows one to analyze the variational equation for all admissible directions hy. A suitable

integral identity to shift the spatial operator from the admissible directions hy to the adjoint

state p is given by Green’s second identity∫
Ω

p∗∆hy dx =

∫
Ω

∆p∗ hy dx−
∫
Γ

n · (∇ p∗)hy dx+

∫
Γ

p∗ n · ∇hy dx . (1.24)

Finally, the application of the integral identity (1.24) to the variational equation (1.23) yields

the formulation

∂L
∂y

∣∣∣∣
a∗
hy =

∫
Ω

[
q1 (y∗ − yd)−∆p∗

]
hy dx+

∫
Γ

n · ∇ p∗hy dx = 0 ∀hy (1.25)

that no longer contains admissible directions hy that are subject to spatial operators.

The reformulated variational equation (1.25) is used to define the adjoint dynamics

∆p∗ = q1 (y∗ − yd) in Ω (1.26a)

n · ∇ p∗ = 0 on Γ (1.26b)

by which the directional derivative (1.20b) vanishes for all admissible directions hy in a

distributional manner. Consequently, the adjoint dynamics (1.26) can be used to determine

the optimal adjoint state p∗ depending on the optimal state y∗.

Two of three necessary optimality conditions of optimization problem (1.10) are already

known in form of the system dynamics (1.22) and the adjoint dynamics (1.26). In order to

derive the third condition, the directional derivative (1.20c) is evaluated

∂L
∂v

∣∣∣∣
a∗
hv =

∫
Γ0

q2 (v∗ − vd)hv dx−
∫
Γ0

p∗ hv dx = 0 ∀hv . (1.27)

This variational equation can be used to formulate the gradient condition

gv =

∫
Γ0

q2 (v∗ − vd)− p∗ dx = 0 , (1.28)

whereby the negative gradient −gv minimizes the cost functional (1.10a) in terms of a steep-

est descent approach. In conclusion, the optimality conditions described by the system

dynamics (1.22), the adjoint dynamics (1.26), and the gradient condition (1.28) can be used

to determine an optimal solution of optimization problem (1.10).

The procedure of deriving the optimality conditions by means of the formal Lagrangian tech-

nique benefits to a great extent from the negligence of mathematical strictness. This allows,

in the absence of state constraints, to both formulate and evaluate the directional derivatives

(1.20) with relative ease. It is for this reason, that, for the time being, no state constraints
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are considered. A detailed discussion about the incorporation of state constraints is given in

Chapter 5 and Appendix A. The situation is different with regard to input constraints

v ∈ Vad := {v ∈ R | v− ≤ v ≤ v+} (1.29)

with bounds v− < v+. It is straightforward to show that in this case the optimality conditions

coincide with the unconstrained case apart from the variational inequality

∂L
∂v

∣∣∣∣
a∗
hv =

∫
Γ0

q2 (v∗ − vd) hv dx−
∫
Γ0

p∗ hv dx ≥ 0 ∀v ∈ Vad (1.30)

replacing the variational equation (1.27), see, e. g., [133, 62]. On the basis of the variational

inequality and the definition of the unconstrained gradient (1.28), the conditional expression

gv


> 0 if v∗ = v−

= 0 if v∗ ∈ (v−, v+)

< 0 if v∗ = v+

(1.31)

allows one to adapt the optimality conditions for the input constraints (1.29), also see [1].

Calculus of variations

The calculus of variations copes with optimization problem (1.10) by analyzing the sta-

tionary of the Lagrangian (1.19) in a slightly different way than the formal Lagrangian

technique [120]. First of all, the non-optimal trajectories are introduced

p = p∗ + ε δp (1.32a)

y = y∗ + ε δy (1.32b)

v = v∗ + ε δv (1.32c)

with ε as a variational parameter for the variations (δp, δy, δv), whereby δp := δp(x) and

δy := δy(x). The variational parameter ε is used as a scaling factor to defect the optimal

solution (p∗, y∗, v∗) in the direction of (δp, δy, δv).

The calculus of variations derives the first-order optimality conditions of optimization prob-

lem (1.10) by reformulating the derivatives

lim
ε→0

(
L(y∗, v∗, p∗ + ε δp)− L(y∗, v∗, p∗)

ε

)
=

dL(y∗, v∗, p∗ + ε δp)

dε

∣∣∣∣
ε=0

= 0 ∀δp (1.33a)

lim
ε→0

(
L(y∗ + ε δy, v∗, p∗)− L(y∗, v∗, p∗)

ε

)
=

dL(y∗ + ε δy, v∗, p∗)

dε

∣∣∣∣
ε=0

= 0 ∀δy (1.33b)

lim
ε→0

(
L(y∗, v∗ + ε δv, p∗)− L(y∗, v∗, p∗)

ε

)
=

dL(y∗, v∗ + ε δv, p∗)

dε

∣∣∣∣
ε=0

= 0 ∀δv , (1.33c)

which show a close similarity to the directional derivatives (1.20) in the case of the formal

Lagrangian technique.
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The variation of the Lagrangian with respect to the adjoint state (1.33a) again results in the

system dynamics (1.22) representing one part of the optimality conditions. Similarly, the

analysis of the variation of the Lagrangian with respect to the state (1.33b) will result in an

adjoint dynamics. To this end, the non-optimal state trajectory (1.32b) is substituted into

the Lagrangian (1.19) yielding

L(y∗ + ε δy, v∗, p∗) =

∫
Ω

q1

2
(y∗ + ε δy − yd)2 dx+

∫
Γ0

q2

2
(v∗ − vd)2 dx

−
∫
Ω

p∗ (∆y∗ + ε∆δy + f) dx

+

∫
Γ0

p∗ (n · ∇ y∗ + ε n · ∇ δy − v∗) dx+

∫
Γ1

p∗ (n · ∇ y∗ + ε n · ∇ δy) dx . (1.34)

The total differentiation of the modified Lagrangian (1.34) with respect to the variational

parameter ε according to (1.33b) gives

dL(y∗ + ε δy, v∗, p∗)

dε

∣∣∣∣
ε=0

=

∫
Ω

q1 (y∗ − yd) δy dx

−
∫
Ω

p∗∆δy dx+

∫
Γ

p∗n · ∇ δy dx = 0 ∀δy . (1.35)

Note that the variational equation (1.35) exhibits an identical structure as its counter-

part (1.23) obtained from the directional derivative (1.20b) in the course of applying the

formal Lagrangian technique. Hence, the calculus of variations confirms that an optimal

solution of optimization problem (1.10) has to satisfy the adjoint dynamics (1.26).10

The first-order optimality condition (1.33c) relating the optimization variable v to an optimal

solution results in the variational equation

dL(y∗, v∗ + ε δv, p∗)

dε

∣∣∣∣
ε=0

=

∫
Γ0

q2 (v∗ − vd) δv − p∗δv dx = 0 ∀δv . (1.36)

This variational equation allows again to define the gradient (1.28) that completes with the

system dynamics (1.22) and the adjoint dynamics (1.26) the optimality system of optimiza-

tion problem (1.10). In the case of a constrained optimization variable (1.29), the gradient

condition is subject to the conditional expression (1.31).

10 The adjoint dynamics (1.26) can be derived from the variational equation (1.35) by applying a modified

version of Green’s second identity (1.24) by which the spatial operators ∆(·) and ∇ (·) can be shifted

from the variation δy to the adjoint state p.
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1.4 Overview on trajectory planning methods for

electromagnetic heating systems

The various methodological and numerical issues discussed so far are the reason why there

are only few approaches in the literature that optimize electromagnetic heating systems in

a holistic manner. Usually, the trajectory planning problem is confined to optimizing the

electrical excitation of the actuator [135, 122] or its position/shape [3, 36]. Furthermore,

most of the contributions use mathematical models of reduced space dimension [140, 41, 45]

and pursue semi-analytical approaches or simplify the problem formulation for the trajectory

planning [125, 17]. State constraints are also often neglected [65, 41, 45]. The majority of

contributions cope with the numerical challenges by means of frameworks that are adapted

to the specific problem, see, e. g., [122, 3, 140].

The following lines address the most relevant contributions concerning the trajectory plan-

ning of electromagnetic heating systems. The review is not restricted to optimization-based

techniques but includes other commonly used approaches. The discussion is divided into

two parts. The first part gives an overview on existing solution approaches from a more

methodological point of view. The second part discusses how the numerical solution of the

trajectory planning problem is carried out in literature.

1.4.1 Methodological approaches

A variety of methods has been proposed in literature that cope with the trajectory planning

for electromagnetic heating systems with different emphasis. The methods can be divided

into trial-and-error approaches, genetic algorithms, and optimization-based techniques.

Trial-and-error approaches

An intuitive way to cope with trajectory planning of electromagnetic heating systems are

trial-and-error approaches [118]. Thereby, simulation studies or experiments are used to

investigate the impact of the available degrees of freedom on the objectives of a problem, see,

e. g., [64, 73, 29]. The contribution [91] uses a trial-and-error approach to relate the impact of

the electrical excitation of individual actuators on the heat-up behavior of a semiconductor

wafer. The knowledge of the actuated system dynamics is used to formulate an actuation

strategy in terms of a superposition method. A similar approach is presented by the authors

of the contribution [103]. Here, the superposition method takes the law of conservation of

energy into account to describe the relationship between the actuator excitation and the

spatial distribution of the heat source in a more realistic manner.

A trial-and-error approach is discussed in [38] for the temperature control in hyperthermia

therapy. The authors investigate the impact of some design parameters (e. g. Curie tempera-

ture of magnetic nanoparticles, excitation of the actuator) to plan trajectories that overheat

the tumor without increasing the temperature of healthy tissue too much. There are also
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trial-and-error approaches that adapt the actuator position and shape to obtain an optimal

heat-up behavior for induction heating processes and hyperthermia therapy [147, 26, 75, 44].

However, in particular the shape optimization problem becomes manifold and has to be

restricted to few parameters (e. g. length and width of the actuator).

Genetic algorithms

Genetic algorithms provide a more systematic approach to optimize the electrical excitation

and the position or shape of the actuator, see, e. g., [49, 35]. The adaptive and heuristic search

algorithms allow to find at least a suboptimal solution of the trajectory planning problem.11

A further advantage of genetic algorithms over trial-and-error approaches is the fact that the

adaptation of the optimization variables can be automated. The optimization of the actuator

excitation by means of genetic algorithms is presented in [36, 23] for an induction heat-

up process and hyperthermia therapy. The contributions [36, 82] simultaneously optimize

the excitation and position of an actuator for induction heating and hyperthermia therapy

problems of axisymmetrical type. An approach that is based on genetic algorithms and

optimizes the shape of an actuator for a surface hardening process is presented in [81].

The bottleneck of genetic algorithms is the necessity to test a sequence of suitable candidates

of optimization variables. Thereby, the test sequence has to be sufficiently large to ensure

that the algorithm converges to an optimal solution. This confines the applicability of genetic

algorithms to only few optimization variables and rather simple actuator shapes. In addition,

genetic algorithms are zero-order methods that do not employ gradient information and the

algorithm converges for practical reasons only to a suboptimal solution.

Optimization-based techniques

Optimization-based techniques constitute a promising approach to cope with the trajec-

tory planning problem in a more systematic manner. Once the crucial task of discretizing

the infinite-dimensional system dynamics is overcome, the optimization step of an FDTO

approach can be carried out by means of nonlinear programming techniques. The contribu-

tion [59] considers an induction heating process and uses sequential quadratic programming

to optimize the length and width of the actuator. Similarly, the contributions [34, 122, 23]

discretize the infinite-dimensional system dynamics of hyperthermia processes to optimize

the actuator excitation. The nonlinear programming problems are tackled by the simplex

algorithm, an interior point method, and sequential quadratic programming.

The discretization of the infinite-dimensional system dynamics also facilitates to use other

control design methods than optimization-based techniques. As the PDE constraints reduce

to a set of ODEs or algebraic equations, the control design can benefit from well-established

11 Theoretically, genetic algorithms converge to the global optimum. However, the implementation of the

algorithm often relies on an approximated problem formulation since they do not scale well with the

complexity of the problem [35].
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methods. For instance, the authors of [125] apply a flatness-based feedforward design method

to a thixoforming process to determine a suitable control strategy for exciting the actuator.

The concept of eigenvalue optimization, see, e. g., [85], is used in [80, 97] to optimize the

excitation of some actuators for hyperthermia therapy.

The application of FOTD approaches is investigated by some authors to cope with the op-

timization of electromagnetic heating problems. The contributions [145, 37, 135] determine

an optimal excitation strategy for actuators in the course of induction heating. The optimal-

ity conditions in the infinite-dimensional function spaces are derived by analyzing suitable

control-to-state operators such as (1.15). Similar optimization problems are considered by

the authors of [17, 90], where the formal Lagrangian technique is used to derive the optimality

conditions with respect to an optimal excitation strategy for the actuator.

In literature, there are relatively few FOTD approaches that deal with the optimization of the

position and shape of electromagnetic actuators. The optimization of actuator positions of

a hyperthermia process is presented in [3]. In [17], the infinite-dimensional problem of shape

optimization is reformulated to incorporate the corresponding design variables in an explicit

form. It is assumed that the geometrical setup of the induction heating process is infinite

in the direction perpendicular to a sufficiently thin actuator. The optimality conditions are

derived formally on the basis of the reformulated optimization problem.

The concept of shape sensitivities is used in [65] to optimize the actuator shape in the course

of surface hardening. An analysis of the shape sensitivities reveals a descent direction for the

boundary of the actuator. The authors of the contribution [77] present a similar approach.

Here, the shape sensitivity analysis is combined with level-set methods to simultaneously

optimize the actuator shape and its structure and topology. The method is based on the

proper definition of transformation approaches which, roughly speaking, comply with the

control-to-state operator (1.15) in the case of optimizing the excitation of the actuator. Thus,

the above optimization techniques require a deep mathematical insight into the problem.

Although state constraints complicate the derivation of optimality conditions, optimization-

based techniques are the preferred choice for state constrained trajectory planning. An

FDTO approach can benefit from interior point methods, augmented Lagrangian methods

or transformation approaches to tackle state constraints both from an algorithmic and a

numerical point of view, cf. Section 1.3.2, also see [16, 98].

The research activity of PDE constrained optimization has focused on handling state con-

straints in the last years providing a solid theoretical foundation [69, 33, 61, 96]. In gen-

eral, the optimality conditions of state constrained problems are of Karush-Kuhn-Tucker

type [25, 62, 61, 96] that can, for instance, be numerically solved using augmented La-

grangian methods [13, 14, 69]. The systematic incorporation of state constraints for the

trajectory planning is presented in [145, 37, 135]. The problem formulation, however, con-

cerns the optimization of either the excitation or the shape of the actuator.

A more straightforward procedure to handle state constraints is given by inner and outer

barrier methods [90, 123]. Here, the violation of the state constraint is penalized by means

of a sufficiently large additional cost value. The contribution [90] proposes such a barrier
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method for an induction heating process. Most of the contributions, however, disregard state

constraints when planning optimal trajectories for electromagnetic heating systems, see, for

instance, [17, 36, 65, 41, 90, 77].

1.4.2 Numerical frameworks

Trial-and-error approaches and genetic algorithms cope with optimal trajectory planning

problems on the basis of a repetitive solution of the system dynamics. The characteristic

of such zero-order methods offers the opportunity to outsource the numerical effort that

is related with multiphysics problems to simulation software. The authors of [36, 82, 97,

81, 23] present numerical frameworks relying on this idea and plan optimal trajectories for

induction heating or hyperthermia therapy. To this end, genetic algorithms are combined

with simulation software such as Comsol Multiphysics [28] or Ansys [5]. This allows to

get rid of the crucial tasks of numerically solving the system dynamics without developing

own numerical tools and frameworks.

The numerical FDTO and FOTD frameworks used in the literature to cope with optimal

trajectory planning are commonly adapted to the specific problem. The discretization step

of an FDTO approach must result in a proper representation of the specific problem for the

subsequent optimization step, which makes it impractical to transfer the results to other

problems. The contributions [80, 59, 122] apply discretization techniques such as finite dif-

ferences, finite elements, or finite difference time domain methods to cope with the numerical

issues. However, the problems are often restricted to more simple geometrical setups and

axisymmetrical problems to reduce the numerical effort, see, e. g., [34, 59, 125].

An FOTD approach is faced with similar numerical issues as an FDTO approach, which is

reflected not only by the fact that existing contributions adapt the discretization step to the

problem at hand. The contributions [77, 3] develop and adapt frameworks to numerically

solve the optimality conditions. Here again, the trajectory planning is often restricted to

rather simple geometrical setups and axisymmetrical problems [17, 90, 77]. Some contribu-

tions minimize the numerical effort by applying specialized optimization techniques which

ensure that the optimality conditions are inherently simple to solve. For instance, the au-

thors of the contribution [135] define a control-to-state operator that leads to optimality

conditions that comprise the system dynamics but not any additional PDE system.
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1.5 Goals and outline of the thesis

The overview on trajectory planning approaches reveals that there is a lack of holistic op-

timization approaches for electromagnetic heating problems. There are many contributions

that either optimize the electrical excitation or the position or shape of the actuator, but do

not handle both aspects simultaneously. It can also be noticed that existing approaches are

often restricted to explicit geometrical setups including simple shapes and structures. The

contributions are also mainly customized for individual problems such as induction heating

or hyperthermia therapy and often disregard constraints for the trajectory planning.

In this thesis, an optimal trajectory planning approach is proposed that simultaneously op-

timizes the excitation and position or shape of electromagnetic actuators. The systematic

incorporation of state constraints for the trajectory planning is another focus of this work.

The presented approach is capable to handle typical electromagnetic heating systems such

as induction heating or hyperthermia therapy including geometries of arbitrary complex-

ity. To this end, an optimization framework is developed that combines FOTD approaches

with software tools that are specialized on simulating multiphysics problems. Thereby, the

separation of the numerical issues from the methodological ones allows to cover different

application domains and geometrical setups in a straightforward manner.

The crucial point of deriving the optimality conditions of the PDE constrained optimization

problems is attacked formally. It is shown that the problem of optimizing the electrical exci-

tation of the actuator can be tackled by means of the formal Lagrangian technique resulting

in a set of suitable optimality conditions. The problem of optimizing the position and shape

of the actuator is handled in a separate step. To this end, the adjoint-based sensitivity analy-

sis is applied to the optimization problems to derive the corresponding optimality conditions.

However, both sets of optimality conditions are combined to simultaneously optimize the ex-

citation and position or shape of the actuator. In order to incorporate state constraints,

both a transformation approach and an augmented Lagrangian method are investigated.

The key role in the numerical solution of the trajectory planning problems plays the structure

of the optimality conditions, ensuring a sequential solution by means of tailored gradient

methods. Because of this characteristic, both the system dynamics and adjoint dynamics

can be iteratively solved forward and backward in time. This structural advantage can

be preserved even if state constraints are present. The development of an optimization

framework picks up this idea and couples the software packages Matlab and Comsol

Multiphysics. Thus, the algorithmic treatment of the optimality conditions benefits from

well known methods of optimization problems governed by ODEs or algebraic equations.

On the other hand, the numerical solution of the multiphysics problems and its optimality

conditions is outsourced to Comsol Multiphysics. The applicability and accuracy of the

optimization framework is investigated for various applications from induction heating and

hyperthermia therapy.
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The goals of this thesis reflect the structure of the individual chapters. Chapter 2 addresses

the mathematical description of electromagnetic heating systems in form of coupled PDEs.

The Maxwell equations and the heat equation form the system dynamics of the electromag-

netic heating processes and are equipped with suitable boundary conditions to complete its

mathematical description.

The optimal excitation of electromagnetic actuators is investigated in Chapter 3. The trajec-

tory planning problem is tackled by formulating and numerically solving suitable optimiza-

tion problems. Thereby, the formal Lagrangian technique is used to derive the corresponding

optimality conditions following an FOTD approach. Chapter 3 also presents an optimization

framework that involves the primary benefit to handle various kinds of electromagnetic heat-

ing systems with relative ease. The optimization framework closely couples FEM software

with a tailored gradient method.

Chapter 4 deals with the problem of optimizing the position and shape of electromagnetic

actuators. A coupled optimization problem is formulated in order to simultaneously optimize

the actuator configuration and excitation. Similar to Chapter 3, the optimality conditions

are derived on the basis of FOTD approaches. It is shown that a combination of the for-

mal Lagrangian technique and adjoint-based sensitivity analysis is applicable to derive the

optimality conditions of the coupled problem. The numerical solution of the optimality con-

ditions is provided by a modified version of the optimization framework from Chapter 3 to

still benefit from the capabilities of FEM software.

The trajectory planning approaches from Chapter 3 and 4 are extended in Chapter 5 to

account for state constraints in a systematic manner. To this end, an augmented Lagrangian

method is introduced, where special emphasis is put on maintaining the structural benefits of

the optimality conditions to facilitate the numerical solution of the constrained problem by

means of FEM software. The augmented Lagrangian method ensures this by adjoining the

state constraints to the cost functional. From an algorithmic point of view, the reformulated

problem is unconstrained and can be numerically solved similar to Chapter 3 and 4 by

outsourcing the numerical effort to FEM software. Finally, the results of this thesis and an

outlook on potential future work are summarized in Chapter 6.

In Appendix A, a transformation approach is discussed to handle state constraints in a more

analytical manner compared to the augmented Lagrangian method in Chapter 5. Saturation

functions are used to transform the constrained optimization problem into an unconstrained

one that can be numerically solved by means of the optimization frameworks presented in

this thesis. Appendix B summarizes abbreviations and symbols that are used throughout

the text.





Chapter 2

Modeling of electromagnetic heating systems

The trajectory planning of electromagnetic heating systems requires mathematical models

that represent at least the electromagnetic and thermal phenomena of the real physics.1 In

order to optimize the electrical excitation as well as the position and shape of the actuator

on the basis of a highly accurate mathematical model, the Maxwell equations and the heat

equation are introduced. This chapter follows the idea to describe the multiphysics problem

of electromagnetic heating in a general setting.

2.1 Model requirements

The governing equations of electromagnetic heating systems are formulated for the geomet-

rical setups shown in Figure 2.1. The left hand side illustrates an induction heating process

as it typically arises in steel industry when conducting tempering, surface hardening, or

shrinking processes for electrically conductive objects Ωo, see, e. g., [31, 118, 32]. In short,

the objective of the trajectory planning consists of heating up either the whole object or

only individual parts of it. To this end, the actuator with spatial domain Ωc is energized

with alternating currents i := i(t), t ∈ (0, tf) to generate the electromagnetic heat source, cf.

Figure 2.1a. From a mathematical point of view, the spatial domain of air Ωa is required to

model the electromagnetic field in the surrounding area.2

In order to address the problem of planning optimal trajectories for interstitial hyperthermia

therapy, see, e. g., [9, 144], the geometrical setup from Figure 2.1b is considered. In this case,

the spatial domain Ωo represents a region of the human body that is affected by a tumor and

includes the infected and healthy tissue as well as blood vessels and nerves. Hyperthermia

therapy uses the electromagnetic heat source for overheating the tumor or making the cancer

cells more susceptible to conventional drug treatments [144, 46, 73].

The objective of the trajectory planning in the case of hyperthermia therapy is to realize

specific temperature profiles that guarantee optimal therapeutic success. A needle-like actu-

ator acts as a coaxial cable and is sticked into the diseased tissue to guide the electric energy

1 Further phenomena are, e. g., metallurgical effects, mechanical stresses, and deformations of the object

to be heated and can be taken into account by extending the mathematical model by suitable PDEs.
2 A description of the subscripts of spatial domains can be found in Appendix B.4.
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(a) Induction heating
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(b) Hyperthermia therapy

Figure 2.1: Geometrical setups of induction heating and hyperthermia processes with spatial

domain Ω = Ωo ∪ Ωc ∪ Ωa including the object, actuator, and ambient air (not to scale).

from a voltage source v := v(t), t ∈ (0, tf) via an air gap to the tumor, cf. Figure 2.1b. This

generates the electromagnetic heat source as close as possible in the region of the tumor and

avoids a hazardous overheating of healthy tissue.

In what follows, the electromagnetic phenomena are mathematically described on the spatial

domain Ω = Ωo ∪ Ωc ∪ Ωa with boundary Γ. The impact of confining the spatial domain to

a smaller region is accommodated by the formulation of boundary conditions. The thermal

phenomena of the induction heating and hyperthermia processes, however, are modeled solely

on the spatial domain of the object Ωo. The formulation of boundary conditions on Γo is

used to account for the thermal interaction between the object and its surrounding.

2.2 Electromagnetic phenomena

The Maxwell equations are used to incorporate the electromagnetic phenomena for the tra-

jectory planning. A time-dependent as well as a time-harmonic formulation is introduced,

whereby the latter requires considerably lower numerical effort for solving the system dynam-

ics. The Maxwell equations are adapted according to whether current or voltage sources are

used to generate the electromagnetic field. This ensures that the corresponding optimization

variable occurs explicitly in the optimization problem for the trajectory planning.

A set of boundary conditions completes the mathematical formulation of the electromagnetic

phenomena. Conditions for symmetry planes are introduced to reduce the region of interest Ω

if circumstances permit. Finally, the electromagnetic heat source is mathematically described

and interlinked to the thermal phenomena.
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2.2.1 Maxwell’s equations in time-dependent form

The electromagnetic phenomena are described by the time-dependent Maxwell equations in

differential form, see, for instance, [130],

∇· D = ρ̂ in Ω× (0, tf) (2.1a)

∇· B = 0 in Ω× (0, tf) (2.1b)

∇×E = −∂tB in Ω× (0, tf) (2.1c)

∇×H = J + ∂tD in Ω× (0, tf) . (2.1d)

Gauss’ law (2.1a) relates the electric charge density ρ̂ := ρ̂(x, t) to the electric flux density

D := D(x, t) using the divergence operator∇·(·). Gauss’ law of magnetism (2.1b) states that

the divergence of the magnetic flux density B := B(x, t) is zero. Note that the quantities of

the electromagnetic field are vectors depending both on space x and time t, whereby vectors

are distinguished from scalars using capital letters.

The wave propagation effects of the electromagnetic field stem from a close coupling between

Faraday’s law of induction (2.1c) and Ampere’s law (2.1d) with ∇×(·) denoting the curl

operator. Faraday’s law of induction describes the generation of an electric field intensity E
due to a time-varying magnetic field. On the other hand, Ampere’s law states that the

current density J := J (x, t) creates a magnetic field intensity H in addition to a temporally

changing electric field. Ampere’s law (2.1d) in combination with Gauss’ law (2.1a) implies

the equation of continuity

∇· J + ∂tρ̂ = 0 in Ω× (0, tf) , (2.2)

since the divergence of the curl of any vector field is zero. A more detailed discussion on the

Maxwell equations (2.1) can be found, for instance, in [130, 57].

As a result of the bilateral coupling effects between Faraday’s law of induction (2.1c) and

Ampere’s law (2.1d), electromagnetic waves travel through space. With respect to an optimal

trajectory planning, the electrical charge density ρ̂ and the current density J are the degrees

of freedom to manipulate the temporal and spatial distribution of the electromagnetic field

quantities [147, 118]. For example, if the actuator is energized by a current source i as

illustrated in Figure 2.1a, the current density J can be assumed to be impressed within the

spatial domain of the actuator Ωc. Accordingly, the current density in total is

J = Jimp + Jind in Ω× (0, tf) (2.3)

summarizing externally impressed current densities Jimp and induced current densities Jind

due to Ohm’s law. Thus, the objective of the trajectory planning to heat up specific regions

of the object Ωo can be tackled by modifying the excitation and the position or shape of the

actuator in a way that the electromagnetic field generates an appropriate heat source.
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The Maxwell equations (2.1) need to be extended by the constitutive relationships B = B(H)

and D = D(E) to model how the electromagnetic field interacts in a macroscopic manner

with materials. For isotropic linear materials, the constitutive relationships read as

B = µH in Ω× (0, tf) (2.4a)

D = εE in Ω× (0, tf) (2.4b)

with µ = µ0µr denoting the magnetic permeability and ε = ε0εr the electrical permittivity.

The permeability and permittivity of free space is denoted by µ0 and ε0, the relative magnetic

permeability by µr := µr(x), and the relative electric permittivity by εr := εr(x). The induced

current densities Jind are modeled by means of Ohm’s law

Jind = σE in Ω× (0, tf) (2.5)

forming another constitutional relation, whereby σ denotes the electrical conductivity.

2.2.2 Maxwell’s equations in time-harmonic form

Costly power electronics or restrictions to specific hardware platforms means that the elec-

tromagnetic actuator is typically excited by current and voltage sources of sinusoidal type

with constant frequency. Thus, the electromagnetic field quantities are time-harmonic and

the mathematical analysis of the Maxwell equations (2.1) becomes simpler [57]. For example,

the instantaneous magnetic field intensity H can be expressed in the frequency domain by

defining the complex-valued phasor H := H(x) as

H(x, t) = Re{H(x)ejωt} , (2.6)

whereby the phasor H solely depends on space but not on time. The angular frequency of

the sinusoidal variation is denoted by ω and the operator Re{·} evaluates the real part of its

argument. The imaginary unit is denoted by j. The spatial components of H and H in the

direction of xi are related as follows

Hi(x, t) = Re{Hi(x)ejωt} = |Hi(x)| cos(ωt+ Φi) (2.7)

with peak-value |Hi(x)| and phase Φi. Thus, the complex-valued phasor of H is defined as

the time-independent vector H(x) := |H(x)|ejΦ with |H(x)| = [|H1(x)|, |H2(x)|, |H3(x)|]T
and Φ = [Φ1,Φ2,Φ3]T. Equivalently, the electromagnetic field quantities (B,D, E ,J ) and

the electrical charge density ρ̂ can be formulated on the basis of the complex-valued phasors

(B,D,E, J) and ρ, see, e. g., [57].

Using the complex-valued phasors introduced above, the Maxwell equations (2.1) can be

formulated in time-harmonic form

∇·D = ρ in Ω (2.8a)

∇·B = 0 in Ω (2.8b)

∇×E = −jωB in Ω (2.8c)

∇×H = J + jωD in Ω , (2.8d)
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which no longer contains any temporal dynamics. Thereby, the time-harmonic version (2.8)

is derived by means of the phasor arithmetic

Re{A}+ Re{B} = Re{A+B} (2.9a)

Re{αA} = αRe{A} (2.9b)

∂x Re{A} = Re{∂xA} (2.9c)∫
Ω

Re{A} dx = Re{
∫

Ω

A dx} (2.9d)

with complex-valued vectors A and B and scalar α. In addition, the transformation from the

time-dependent to the time-harmonic form of the Maxwell equations relies on the relation

Re{Aejωt} = Re{Bejωt} ∀t ⇔ A = B ∀t (2.10)

that can be deduced from the phasor arithmetic, see, for instance, [57].

The time-independent formulation of the Maxwell equations (2.8) favors a numerically more

efficient treatment of the trajectory planning problem compared to the case of using the

time-dependent counterpart (2.1). The time-harmonic form avoids the handling of distinctly

different temporal scales of the electromagnetic and thermal phenomena that would lead to

a stiff system dynamics [116]. In what follows, two different PDE formulations are presented

to incorporate the optimization variables for the case of exciting the actuator with both

current and voltage sources.

Governing equations for current sources

A suitable representation of the time-harmonic Maxwell equations is presented for the case of

using current sources to generate the electromagnetic field, cf. Figure 2.1a. The displacement

currents in Ampere’s law (2.8d) are neglected since the estimation

jωD � Jind in Ω (2.11)

holds true for typical induction heating problems, see, e. g., [11, 64]. This is also referred to

as the quasi-stationary case, where coupling effects between the electric and magnetic field

occur solely within electrically conductive materials [118, 95].

To bring the time-harmonic Maxwell equations (2.8) in a more suitable form for the tra-

jectory planning, the magnetic vector potential A := A(x, t) and the scalar electric poten-

tial v̂ := v̂(x, t) with associated phasors A := A(x) and v := v(x) are introduced, see, for

instance, [130, 57]. The governing equations of the potentials are

B = ∇×A in Ω (2.12a)

E = −∇ v − jωA in Ω (2.12b)

and describe its relation to the magnetic and electric field quantities. The governing equa-

tion of the magnetic vector potential (2.12a) follows from Gauss’ law of magnetism (2.8b)
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and the fact that the divergence of the curl of any vector is zero. The validity of the second

relation (2.12b) can be verified by Faraday’s law of induction (2.8c) and the phasor arith-

metic (2.9c). Note that relation (2.12b) corresponds to the definition of the electric field

intensity E for stationary problems with ω = 0.

Ampere’s law (2.8d) is reformulated using the magnetic vector potential A and its governing

equation (2.12a) as follows

∇×(µ−1∇×A) = J in Ω , (2.13)

whereby the constitutive equation (2.4a) is used to express the magnetic field intensity H

by B, respectively A. The displacement currents jωD are neglected due to quasi-stationary

field quantities. The total current density

J = σE + Jimp in Ω (2.14)

consists of the induced currents σE due to Ohm’s law (2.5) and externally impressed cur-

rents Jimp within the spatial domain of the actuator Ωc.

The impressed current density

Jimp = −σχΩc ∇ v in Ω (2.15)

models the flow of electric charge resulting from the current source i, cf. Figure 2.1a, also

see, e. g., [11, 102]. The characteristic function χΩc is defined by

χΩc =

{
1 if x ∈ Ωc

0 else
. (2.16)

The proper representation of the real current density within the spatial domain of the actu-

ator is commonly based on measurements [11].

The description of the impressed current density (2.15) provides different perspectives for

modeling the direction of flow and amplitude of the impressed currents i within the spatial

domain of the actuator Ωc. An analytical function can be used to describe the excitation

of the electromagnetic field [135, 102]. This modeling approach is particularly suited for

circular or straight-lined actuator shapes as well as for axisymmetrical setups where the flow

direction of the impressed currents is identical to the out-of-plane vector [108, 115].

Alternatively, the direction of flow and amplitude of the currents can be described by a PDE

system such as

∇· (−σ∇ v) = 0 in Ωc (2.17a)

n · σ∇ v = Jext on Γi (2.17b)

n · σ∇ v = 0 on Γ0 (2.17c)
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following from the equation of continuity (2.2), see, for instance, [64]. The inhomogeneous

Neumann boundary condition (2.17b) models the flow of currents through the cross section Γi

due to the external power supply, cf. Figure 2.1a. Its right hand side is specified by∫
Γi

n · Jext dx = i (2.18)

with Jext denoting the current density from the external source. The homogeneous Neumann

boundary condition (2.17c) describes an electrical insulation of the actuator.

The set of PDEs (2.13)–(2.14) forms a suitable basis to model the electromagnetic phenomena

that arise from current sources i, whereby the magnetic vector potential A serves as the

state variable. The electric field intensity E within Equation (2.14) can be reformulated as

a function of A, i. e.,

E = −jωA in Ω , (2.19)

using Faraday’s law of induction (2.12b) and the phasor arithmetic (2.9c). Eventually, the

time-harmonic PDE of second order

∇×(µ−1∇×A) + jωσA = Jimp in Ω (2.20)

is obtained.

The time-harmonic PDE of second order (2.20) complies both with Faraday’s law of induc-

tion (2.8c) and Ampere’s law (2.8d). The validity of the remaining Maxwell equations (2.8a)–

(2.8b) is guaranteed through the definition of the vector potentials (2.12). Furthermore, the

PDE system (2.20) is extended by the gauging condition

∇· A = 0 in Ω , (2.21)

also referred to as Coulomb gauging, since the magnetic vector potential A is not uniquely

defined by Equation (2.12a), see, e. g., [4, 93].

Governing equations for voltage sources

The following lines address the problem that some actuators generate the electromagnetic

field not by prescribing a current source within Ωc. The actuator rather serves as a transmis-

sion line for the electric energy of the power supply. Such a scenario is typical for interstitial

hyperthermia therapy where the heat is generated as close as possible to the tumor, cf.

Figure 2.1b, also see [73, 38]. The voltage source v induces an electromagnetic field at the

end of the coaxial cable with boundary Γv. The other end of the actuator comprises an air

gap by which the electromagnetic field penetrates the region of the tumor.

A different formulation of the time-harmonic Maxwell equations (2.8) is considered to model

the electromagnetic behavior of problems governed by boundary controlled voltage sources.

In this case, the assumption of quasi-stationary field quantities is no longer admissible since
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the electromagnetic wave propagation effects in the actuator have to be mathematically

described using the full set of the Maxwell equations.

The electromagnetic phenomena arising from the boundary controlled voltage sources are

mathematically described using the electric field intensity E as a state variable. The time-

harmonic Maxwell equations (2.8) are reformulated by considering a modified version of

Faraday’s law of induction

µ−1
r ∇×E = −jωµ0H in Ω . (2.22)

To incorporate Ampere’s law (2.8d) into the modified version of Faraday’s law of induction,

the curl operator is applied to both sides of Equation (2.22) resulting in

∇×(µ−1
r ∇×E) = −jωµ0∇×H in Ω . (2.23)

The phasor arithmetic (2.9c) guarantees that Equation (2.23) still coincides with Faraday’s

law of induction (2.22). The electric flux density D and the current density J within Am-

pere’s law (2.8d) are formulated as a function of the electric field intensity E yielding

∇×H = jωε0

(
εr − j σ

ωε0

)
E in Ω , (2.24)

whereby Ohm’s law (2.5) and the constitutive equation (2.4b) were used.

Based on the modified versions of Faraday’s law of induction (2.23) and Ampere’s law (2.24),

the time-harmonic PDE of second order

∇×(µ−1
r ∇×E)− k2

0

(
εr − j σ

ωε0

)
E = 0 in Ω (2.25)

is obtained with k0 = ω
√
ε0µ0 denoting the wave number. The additional side constraint

∇· E = 0 in Ω (2.26)

is formulated to ensure that the time-harmonic PDE system (2.25) complies with the Maxwell

equations (2.8).3 The PDE system (2.25)–(2.26) allows one to mathematically describe the

electromagnetic phenomena of interstitial hyperthermia processes. The voltage sources of

the actuator are taken into account by means of suitable boundary conditions.

2.2.3 Interface conditions, symmetry planes,

and boundary conditions

The formulation of internal and external boundary conditions is required to complete the

mathematical description of the PDE system (2.20) and (2.25). The introduction of bound-

ary conditions will also make it possible to model the generation of the electromagnetic field

by means of a boundary controlled voltage source, cf. Figure 2.1b. They also allows one to

cope with the truncated electromagnetic field due to the closed spatial domain Ω.

3 The generation of the electric field by means of a prescribed electrical charge density ρ is not considered.
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Interface conditions

For several reasons (e. g. variations of material parameters, objects placed next to each

other), the region of interest Ω comprises internal boundaries, also referred to as interfaces,

where the relative magnetic permeability µr and the relative electric permittivity εr may be

discontinuous. A classical solution of the PDE systems (2.20) and (2.25) does not exist in

these regions since the electromagnetic field quantities have to be well-behaved, i. e., they

have to be continuous functions involving continuous derivatives. This problem can be

tackled numerically by deducing interface conditions from the integral forms of the Maxwell

equations (2.8), see, for instance, [130].

The theorems of Gauss and Stokes are applied to the Maxwell equations resulting in the

interface conditions for the electric field quantities4

n12 × (E2 − E1) = 0 on Γ12 (2.27a)

n12 · (D2 −D1) = 0 on Γ12 (2.27b)

with the normal vector n12 that points from the spatial domain of material 1 to material 2

with corresponding interface Γ12, also see [57]. Equation (2.27a) implies that the tangential

component of the electric field intensity E has to be continuous on Γ12 in contrast to its nor-

mal component which can jump between two materials. On the other hand, Equation (2.27b)

requires that the normal components of the electric flux density D are continuous on Γ12.

The interface conditions for the magnetic field quantities are

n12 × (H2 −H1) = 0 on Γ12 (2.28a)

n12 · (B2 −B1) = 0 on Γ12 . (2.28b)

The interpretation of Equation (2.28) is similar to its electric counterpart (2.27).

The overall set of interface conditions (2.27)–(2.28) results in an overdetermined system of

equations of the electromagnetic subsystem. Either the interface conditions (2.27) or (2.28)

have to be considered to complete the mathematical description of the Maxwell equations.

As the PDE system (2.20) comprises the state variable A, it is advantageous to use the

interface condition (2.28) for this problem formulation. For this purpose, the magnetic field

quantities (H,B) are reformulated as functions of the magnetic vector potential

n12 ×
(
µ−1

2 ∇×A2 − µ−1
1 ∇×A1

)
= 0 on Γ12 (2.29a)

n12 · (∇×A2 −∇×A1) = 0 on Γ12 . (2.29b)

The interface conditions of the PDE system (2.25) are reformulated as a function of the

electric field intensity E as follows

n12 × (E2 − E1) = 0 on Γ12 (2.30a)

n12 · (ε2E2 − ε1E1) = 0 on Γ12 . (2.30b)

As will be shown later, this interface conditions facilitates to mathematically describe the

generation of the electromagnetic field due to a voltage source v, cf. Figure 2.1b.

4 The interface conditions (2.27) do not account for surface charges on the interface Γ12. Similarly, Equa-

tion (2.28) neglects surface current densities on the interface.
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Symmetry planes

Materials with a perfect electric or magnetic conduction offer the basis to introduce symmetry

planes confining the region of interest Ω to a smaller one. In turn, the numerical effort

for solving the PDE system (2.20) or (2.25) can be reduced. Under the assumption that

material 1 is a perfect electric conductor (PEC – Perfect Electric Conductor), the interface

condition (2.27a) reduces to the homogeneous Dirichlet boundary condition

n12 × E2 = 0 on Γ12 (PEC) (2.31)

in view of a vanishing electric field intensity E1. This is a direct consequence of Ohm’s

law (2.5) and the perfect electric conduction implying σ1 = ∞. Otherwise, a non-zero

electric field intensity E1 would produce an infinite current density. For a perfect magnetic

conductor (PMC – Perfect Magnetic Conductor), Equation (2.28a) degenerates to

n12 ×H2 = 0 on Γ12 (PMC) . (2.32)

The homogeneous Dirichlet boundary condition (2.31) can be used to model symmetry

planes, where the normal component of the magnetic field quantities B and H, respec-

tively the tangential component of D and E, vanish [130]. From a numerical point of view,

the PDE systems (2.20) and (2.25) can benefit from such symmetry planes by means of the

homogeneous Dirichlet boundary conditions

ns × A = 0 on Γs (PEC–A) (2.33a)

ns × E = 0 on Γs (PEC–E) (2.33b)

with ns denoting the outward unit normal vector of the symmetry plane Γs. In contrast,

the condition of a perfect magnetic conduction (2.32) facilitates to model symmetry planes

where the tangential component of the magnetic field quantities B and H or respectively the

normal component of D and E vanish. The homogeneous Neumann boundary conditions

ns ×
(
µ−1∇×A

)
= 0 on Γs (PMC–A) (2.34a)

ns ×
(
µ−1∇×E

)
= 0 on Γs (PMC–E) (2.34b)

model this symmetric behavior of the electromagnetic field depending on whether the PDE

system (2.20) or (2.25) is considered for the trajectory planning.

Boundary conditions

A modified formulation of the interface condition (2.30a) is considered to model the gener-

ation of the electromagnetic field due to a voltage source v, cf. Figure 2.1b. It is assumed

that the voltage source prescribes the electric field intensity Eimp(v) between the inner and

outer conductors of the coaxial cable, cf. Figure 3.3. This facilitates to model the generation

of the electromagnetic field by means of the inhomogeneous Dirichlet boundary condition

n× E = Eimp(v) on Γv (2.35)

with the boundary Γv as the electrical connection to the power supply [130, 44].
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As shown in Figure 2.1, the boundary Γ confines the region of interest Ω to a closed area.

To mathematically describe the electromagnetic phenomena on Γ, it is assumed that the

boundary is divided into Neumann and Dirichlet boundary conditions with the disjunct

segments ΓN and ΓD, i. e.,

Γ = ΓN ∪ ΓD , (2.36)

also see [8]. The correct formulation of such boundary conditions is, however, a crucial point

since the electromagnetic field actually extends into an infinite spatial domain [57, 11].

One possibility to mathematically describe the electromagnetic field on boundary segments

of Γ are homogeneous Dirichlet boundary conditions

n× A = 0 on ΓD (2.37a)

n× E = 0 on ΓD . (2.37b)

In order to avoid artificial disturbance effects, it is assumed that the tangential component

of the magnetic vector potential A, respectively of the electric field intensity E, vanishes

towards an infinite point in view of the radial propagation of electromagnetic waves, see,

e. g., [92, 57, 64]. Thus, the boundary segment ΓD has to be chosen sufficiently far away

from the sources of the electromagnetic field [11, 135].

The first-order absorbing boundary conditions

n× (∇×A) = FA(A) on ΓN (2.38a)

n×
(
µ−1∇×E

)
= FE(E) on ΓN (2.38b)

constitute another modeling approach to prevent disturbance effects, whereby the right hand

sides FA(A) and FE(E) are specified for a specific problem [11, 6, 67]. The inhomogeneous

Neumann boundary conditions (2.38) are used to make the boundary ΓN as transparent

as possible to incident electromagnetic waves. The advantage over the Dirichlet boundary

conditions (2.37) is the possibility to place the boundary ΓN closer to the electromagnetic

source. This decreases the numerical effort for solving the PDE systems (2.20) and (2.25).

2.2.4 Electromagnetic heat source

In general, the physical cause of electromagnetic heating are electric and magnetic energy

dissipation effects. The electromagnetic heating applications considered in this work, how-

ever, are restricted to problems where the electric losses are considerably greater than the

magnetic ones, see, e. g., [118].

The electromagnetic heat source is modeled by the instantaneous power density

Q = J · E in Ωo × (0, tf) (2.39)

and describes the conversion of electric energy into thermal energy as electromagnetic waves

propagate through space. To describe the electromagnetic heat source by means of the time-

harmonic PDE systems (2.20) and (2.25), the instantaneous power density Q is transformed
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into the frequency domain, cf. Section 2.2.2. To this end, Equation (2.39) is averaged over

one time period ∆t = 2πω−1 yielding

Q = σω2

2
|A|2 in Ωo (2.40a)

Q = σ
2
|E|2 in Ωo (2.40b)

with Q := Q(x; t) and |F |2 = F · F ∗ for any complex-valued vector F with complex conju-

gate F ∗, see, for instance, [57, 95]. Note that both formulations of the electromagnetic heat

source neglect displacement currents and are linked to each other by Equation (2.19).

A sufficiently precise representation of the electromagnetic heat source generally requires a

fine local discretization of the spatial domain of the object Ωo. Thereby, the fineness of the

spatial grid should facilitate to numerically resolve the highly uneven spatial distribution

of the electromagnetic heat source due to the distortion effects of the electromagnetic field,

also see the discussion about the skin, end, and edge effect in Section 1.2.2.

2.3 Thermal phenomena

Heat propagation is another relevant physical process in the course of electromagnetic heat-

ing. Its essential driving force is the heat source (2.40) as well as the temporal temperature

profile of the object. The well known heat equation is introduced to mathematically describe

the temporal and spatial dynamics of the thermal phenomena. This allows one to predict

the evolution of temperature within the object to be heated.

2.3.1 Heat equation

The thermal phenomena of the induction heating processes and hyperthermia therapy are

mathematically described by a common PDE system. The modifications and extensions that

are required for a sufficiently precise description of problem specific features are customized

to different application examples in the following chapters. To begin with, the heat equation

ρC∂tT −∇· (k∇T ) = Q in Ωo × (0, tf) (2.41)

is introduced with the temperature T serving as the state variable of the parabolic PDE of

second order, see, e. g., [141, 87].

The dynamics of the heat equation (2.41) is described on the spatial domain of the object Ωo

in contrast to the electromagnetic subsystems (2.20) and (2.25) which are defined on the

whole spatial domain Ω. The heat-up process is considered on the time interval (0, tf) and

it is assumed that the control strategy of the actuator gives rise to an electromagnetic heat

source Q(x; t), cf. Section 2.2.4. The final time of the heat-up cycles is denoted by tf > 0.

The material parameters of the heat equation (2.41) are specified by the density ρ, the heat

capacity C, and the thermal conductivity k.



2.3 Thermal phenomena 39

The heat flux by conduction, also referred to as Fourier’s law of heat conduction, is

q = −k∇T in Ωo × (0, tf) (2.42)

and allows to interpret the heat equation (2.41) from a physical point of view [87]. The

heat flow q relates the temperature gradient ∇ T to the thermal conductivity k serving as

a proportionality constant. Thus, the left hand side of the heat equation models the rate of

change of the temperature T over time and space due to diffusion.

2.3.2 Boundary conditions, symmetry planes,

and initial conditions

In an analogous manner to the electromagnetic phenomena, a set of boundary conditions

and symmetry planes is formulated to complete the mathematical description of the thermal

dynamics and to confine the spatial domain for which the heat equation (2.41) is numerically

solved. In addition, an initial condition is formulated to take the fact into account that the

heat equation is instationary.

Boundary conditions

The thermal interaction between the object Ωo and its surrounding is modeled by means of

a set of boundary conditions. For this purpose, the boundary of the object Γo is divided into

the disjunct boundary segments Γo,N and Γo,D, i. e.,

Γo = Γo,N ∪ Γo,D , (2.43)

to account for Neumann boundary conditions and Dirichlet boundary conditions.

The inhomogeneous Neumann boundary condition

n · (k∇T ) = f(T ) on Γo,N × (0, tf) (2.44)

models the heat flow in the direction of the outward unit normal vector n subject to Fourier’s

law of heat conduction (2.42). Heat losses of the object by convection and radiation to the

constant ambient temperature Ta are taken into account by setting the function f := f(T ) to

f = α (Ta − T ) on Γo,N × (0, tf) (convection) (2.45a)

f = εσSB

(
T 4

a − T 4
)

on Γo,N × (0, tf) (radiation) , (2.45b)

respectively. The convective heat losses are parametrized by the surface heat transfer coef-

ficient α, the heat losses due to radiation by the emissivity of the surface ε and the Stefan-

Boltzmann constant σSB, see, e. g., [87, 11]. Note that the set of equations (2.44)–(2.45)

facilitates to model a combination of convective and radiative heat losses. A thermal insu-

lation of the object Ωo against its surrounding is modeled by

f = 0 on Γo,N × (0, tf) , (2.46)

which is equivalent to a vanishing heat flow at the boundary segment Γo,N.
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Typical electromagnetic heating systems involve, in some situations, boundary segments

that are subject to external cooling strategies. To this end, the inhomogeneous Dirichlet

boundary condition

T = g on Γo,D × (0, tf) (2.47)

is formulated, where the function g := g(t) facilitates to specify the prescribed temperature.

Symmetry planes

The boundary condition for thermal insulation, i. e., the Neumann boundary condition (2.44)

with the function f specified by (2.46), can be used to model symmetry planes. This allows

to confine the spatial domain Ωo for which the thermal dynamics has to be numerically

solved. To model the thermal phenomenon on a symmetry plane Γs, the boundary condition

ns · (k∇T ) = 0 on Γs × (0, tf) (2.48)

is introduced, where ns denotes the outward unit normal vector of the symmetry plane.

The essential prerequisite to confine the spatial domain in this way is that the electromag-

netic heat source is symmetric with respect to the symmetry plane. Note that this implies

that the same symmetry plane can be applied to the PDE system of the electromagnetic

phenomena (2.20) and (2.25).

Initial conditions

The mathematical description of the thermal phenomena is completed by the initial condition

T (·, 0) = T0 in Ωo at t = 0 . (2.49)

The temperature profile T0 := T (x, 0) is used to describe the temperature at the beginning

of a heat-up cycle. Alternatively, the temperature profile T0 allows to represent a specific

temperature profile resulting from a prior heat treatment process.

2.4 Numerical solution

FE methods are widely used techniques to numerically solve PDE systems [146, 132, 93].

Similar to finite difference methods, the FE methods calculate a solution of the PDEs at

discrete places of the spatial domain, also referred to as the grid nodes. The spatial domain

is covered by a mesh to discretize the functions of the infinite-dimensional state variables.

Thus, the yet unknown functions of the state variables can be approximated at the grid nodes

by a finite set of basis functions and coefficients. Depending on whether the discretization is

applied only to the spatial domain or to space and time coordinates, the original problem re-

duces to a system of ordinary differential equations (ODE – Ordinary Differential Equation)

or algebraic equations with the coefficients as its states and variables, respectively.
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The approximation of the infinite-dimensional functions of the state variables by a finite

set of basis functions and coefficients relies on the method of variational calculus [8]. The

reformulation of the PDE system as a variational equation makes it possible to divide the

spatial domain Ω into several subdomains with relative ease and offers several additional

advantages. The requirement of a solution to be pointwise differentiable can be mitigated.

A solution of the finite-dimensional problem calls solely for functions that are differentiable

in an integral manner.

The variational principle also provides the flexibility to deduce the system of ODEs or

algebraic equations not on the basis of the original variational equation but on a weak for-

mulation [2]. Thus, the necessary degree of regularity of the solution can be reduced by half,

since the temporal and spatial derivatives can be spread over the state variables and the test

functions used to formulate the variational equation. The following lines discuss the numer-

ical solution of the coupled PDEs of the electromagnetic and thermal phenomena by means

of FE methods. This includes the derivation of the weak formulations, its discretization to

convert the infinite-dimensional problem into a finite-dimensional counterpart as well as the

numerical solution of the latter one.

2.4.1 Weak formulation of the electromagnetic subsystem

To determine a numerical solution of the electromagnetic subsystems (2.20) and (2.25), the

function space of the magnetic vector potential A and electric field intensity E is defined as

the Banach space

X =
{
K ∈ H (curl ; Ω) ∩H (div ; Ω) | ∇·K = 0 in Ω, K × n = 0 on ΓD

}
(2.50)

with K ∈ {A,E}, see, e. g., [8, 92, 135]. The function space X allows one to incorporate

Dirichlet boundary conditions on ΓD. The curl and div spaces in Equation (2.50) are defined

as follows

H (curl ; Ω) =
{
K ∈ L2 (Ω;C)3 | ∇×K ∈ L2 (Ω;C)3

}
(2.51a)

H (div ; Ω) =
{
K ∈ L2 (Ω;C)3 | ∇·K ∈ L2 (Ω;C)

}
(2.51b)

with L2 (Ω;C) as the Lebesgue space of complex-valued square-integrable functions [4].

The weak formulation of the electromagnetic subsystem (2.20) is obtained by multiplying

its governing equation on both sides with the test function Λ := Λ(x; t). A subsequent

integration over the spatial domain Ω results in the variational equation∫
Ω

∇×(µ−1∇×A) · Λ + jωσA · Λ dx =

∫
Ω

Jimp · Λ dx ∀Λ ∈ X (2.52)

that complies with (2.20) in accordance with the variational principle. In order to shift the

outer curl operator to the test function Λ, the formula of partial integration∫
Ω

∇×U · V dx =

∫
Ω

U · ∇×V dx−
∫
Γ

(U × n) · V dx , (2.53)
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also referred to as Green’s formula, is applied to (2.52) with U and V denoting complex-

valued vectors [4, 57]. Thus, the weak formulation of the electromagnetic subsystem∫
Ω

(µ−1∇×A) · (∇×Λ) dx−
∫
Γ

(
(µ−1∇×A)× n

)
· Λ dx

+

∫
Ω

jωσA · Λ dx =

∫
Ω

Jimp · Λ dx ∀Λ ∈ X (2.54)

is obtained. Note that the new boundary integral of Equation (2.54) follows from the formula

of partial integration (2.53) that is applied to (2.52).

The boundary integral in the weak formulation (2.54), i. e.,∫
Γ

(
(µ−1∇×A)× n

)
· Λ dx , (2.55)

is used to take the boundary conditions of a specific problem into account. In the case

of homogeneous Dirichlet boundary conditions, the boundary integral vanishes on ΓD since

the test function Λ is set to zero for numerical reasons. Note that inhomogeneous Dirichlet

boundary conditions can be taken into account by adapting the solution space X as defined

by Equation (2.50), also see, for instance, [8]. The structure of the boundary integral (2.55)

allows one to incorporate Neumann boundary conditions of the type

n× (µ−1∇×A) = gA on ΓN × (0, tf) (2.56)

in a straightforward manner. In summary, the weak formulation corresponding to the elec-

tromagnetic subsystem (2.20) is specified by∫
Ω

(µ−1∇×A) · (∇×Λ) + jωσA ·Λ dx+

∫
ΓN

gA ·Λ dx =

∫
Ω

Jimp ·Λ dx ∀Λ ∈ X . (2.57)

Similar to the electromagnetic subsystem (2.20) used to describe the electrical excitation of

the actuator by means of a current source i, the weak formulation of the electromagnetic

subsystem (2.25) can be formulated as∫
Ω

(µ−1
r ∇×E) · (∇×Λ) − k2

0

(
εr − j σ

ωε0

)
E · Λ dx +

∫
ΓN

gE · Λ dx = 0 ∀Λ ∈ X (2.58)

in order to deal with boundary controlled voltage sources v, cf. Figure 2.1. The function gE
denotes the right hand side of a Neumann boundary condition of the type (2.56).
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2.4.2 Weak formulation of the thermal subsystem

The weak formulation of the thermal subsystem (2.41) is derived in an analogous manner

to the procedure presented for the electromagnetic subsystem in Section 2.4.1. The function

space of the temperature T is defined by

W (0, tf) =
{
T ∈ L2

(
0, tf ;H

1(Ωo)
)
| ∂tT ∈ L2

(
0, tf ;H

1(Ωo)∗
)
, T = 0 on Γo,D

}
, (2.59)

see, for instance, [132, 135], with the Sobolev space

H1(Ωo) =
{
T ∈ L2 (Ωo) | ∇T ∈ L2 (Ωo)

}
(2.60)

encompassing weak derivatives in the Lebesgue space L2 (Ωo). The dual space of H1(Ωo) is

denoted by H1(Ωo)∗, see, e. g., [2, 8]. Here, the Lebesgue space L2 (Ωo) comprises real-valued

square-integrable functions.

The test function p := p(x, t) with function space (2.59) is used to derive the weak for-

mulation of the thermal subsystem. The heat equation (2.41) is multiplied with the test

function p and subsequently integrated over the space-time cylinder Ωo × (0, tf), i. e.,∫∫
Ωo×(0,tf)

ρC∂tTp+ (k∇T ) · (∇ p) dxdt−
∫∫

Γo,N×(0,tf)

gTp dxdt =

∫∫
Ωo×(0,tf)

Qp dxdt ∀p ∈ W (0, tf) .

(2.61)

Thereby, Green’s first identity was used to divide the spatial operators between the tem-

perature T and the test function p. The function gT denotes the inhomogeneous part of a

Neumann boundary condition on the boundary segment Γo,N of following type

n · (k∇T ) = gT on Γo,N × (0, tf) . (2.62)

2.4.3 Approximation of the infinite-dimensional problem

The weak formulations of the electromagnetic and thermal subsystems allows one to ap-

proximate the infinite-dimensional functions of the corresponding state variables. For this

purpose and in a first step, the spatial domain on which the system dynamics is formu-

lated is divided into finite elements. There are several types of finite elements to cover the

spatial domain of one-dimensional, two-dimensional, and three-dimensional problems as il-

lustrated in Figure 2.2, also see [146, 92, 106]. The subdivision of the spatial domain into

non-overlapping finite elements is based on grid points that coincide with the vertices of the

finite elements.

The main steps of representing the infinite-dimensional problem by a finite-dimensional

counterpart is outlined for the weak formulation of the thermal subsystem (2.61). For the

sake of compactness, a one-dimensional spatial domain is considered and the problem is

assumed to be stationary in time with homogeneous Dirichlet boundary conditions. First of
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Figure 2.2: Typical finite elements to discretize spatial domains of different dimensions: 1D

(line), 2D (triangular, quadrilateral), and 3D (pentrahedron, tetrahedron, hexahedron).

all, a mesh is generated to discretize the spatial domain of the system dynamics. The spatial

coordinate x is subdivided into the finite elements ei and its associated grid points i and i+1,

also referred to as nodes, cf. Figure 2.3. For each node, a basis function Ψi := Ψi(x) and

coefficient Ti is introduced to approximate the temperature T := T (x) linearly over each

element ei according to

T ≈ Th =
∑
i

TiΨi(x) . (2.63)

The basis functions have compact support, meaning that they are non-zero only in close

proximity to its belonging node. The test function of the weak formulation is approximated

in an analogous manner

p ≈ ph =
∑
j

Ψj(x) . (2.64)

The solution space of the finite-dimensional approximations Th and ph is adapted from

the infinite-dimensional counterparts T and p in form of the subspace Vh ⊂ H1(Ωo), cf.

Equation (2.60), also see, for instance, [132].

The finite-dimensional representation of the weak formulation is obtained by approximat-

ing the infinite-dimensional state T and the test function p according to Equation (2.63)

and (2.64). This eventually leads to the system of algebraic equations∑
i

Ti

∫
Ωo

(k∇Ψi) · (∇Ψj) dx =

∫
Ωo

QΨj dx ∀j (2.65)

with Ti as the only dependent variables since both the basis functions Ψi and the test

functions Ψj are known. Similarly, the FE method can be applied to the weak formulation

of the electromagnetic subsystems (2.57) and (2.58). A detailed discussion of FE methods

can be found in the literature, see, for instance, [146, 92, 7, 30].
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Figure 2.3: Approximation of the infinite-dimensional function of temperature T by a finite

set of basis functions Ψi(x) and coefficients Ti (inspired by Zienkiewicz [146]).

2.4.4 Numerical solution of the finite-dimensional problem

The reformulation of PDEs as a system of ODEs in the non-stationary case or as algebraic

equations in the stationary case paves the way to numerically solve the system dynamics

of electromagnetic heating systems. Examples of numerical techniques are Runge-Kutta,

Adam-Bashford, and Newton-Raphson methods. A detailed discussion on these techniques

goes beyond the scope of this thesis. Instead, the idea of this work to outsource the numerical

effort to state-of-the-art FEM software is emphasized here.

Software packages such as Comsol Multiphysics [28] or Ansys [5] provide highly adapted

FE methods that allow to numerically handle multiphysics problems and especially electro-

magnetic heating systems. Crucial points such as the design of the geometrical setup, the

formulation of the governing equations, and the numerical solution of the multiphysics prob-

lem can be mastered regardless of the complexity of both the geometrical setup and the

governing equations. For example, the mathematical description of the geometrical setup

can benefit from computer-aided design tools (CAD – Computer-Aided Design) that are

included in the software packages.

In addition, software packages such as Comsol Multiphysics or Ansys include sophisti-

cated algorithms for discretizing the spatial domain of almost any complexity. The freedom

to choose between different mesh types and element sizes facilitates the adaptation of the

discretization step to a specific problem. Different types of basis and test functions such as

linear, quadratic, or cubic interpolation functions provide further flexibility to modify the

discretization of the spatial domain, see, e. g., [146, 92, 102]. In this regard, the interaction of

several physical phenomena can be tackled in an optimal manner by adapting the type and

order of the basis functions to the individual state variables. Finally, the numerical solution

of the electromagnetic heating systems can benefit from mesh refinement techniques that

automatically adapt the accuracy of the solution.
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2.5 Conclusions

The governing equations of electromagnetic and thermal phenomena presented in this chap-

ter enable a flexible handling of various types of electromagnetic heating systems and provide

the basis for an optimization-based trajectory planning. The time-harmonic PDE (2.20) is

applicable to describe situations, where the electromagnetic field is generated by a prescribed

current source within the spatial domain of the actuator. The generation of the electromag-

netic field by means of a needle-like actuator with boundary controlled voltage source can

be mathematically described by the time-harmonic PDE (2.25). The thermal phenomena of

electromagnetic heating systems are modeled by the heat equation (2.41). The PDE systems

of the electromagnetic and thermal phenomena are equipped with various types of boundary

conditions to deal with different situations and needs of problems such as induction heating

or hyperthermia therapy.

The diversity of FEM-based simulation software makes it possible to overcome the chal-

lenging task of numerically solving the system dynamics of electromagnetic heating systems.

This also offers a promising approach to meet the numerical challenges of optimization-based

trajectory planning for electromagnetic heating systems. The proper combination of FOTD

approaches and FEM software will provide the foundation for separating methodological

challenges from numerical ones, as discussed in the following chapters.



Chapter 3

Optimal excitation of actuators

The electrical excitation of the actuator affects the intensity of the electromagnetic field and

therefore the intensity of the heat source. In turn, electrically conductive materials that are

placed in the region of the electromagnetic field can be heated up. This chapter presents a

trajectory planning approach that optimizes the current and voltage sources of electromag-

netic actuators. Special emphasis is laid on coping with a wide variety of electromagnetic

heating systems including complex shapes.

The proposed trajectory planning approach relies on the formulation of a PDE constrained

optimization problem that is solved by a software framework in a straightforward manner.

To this end, the optimality conditions are derived in the function space of the original prob-

lem formulation to ensure that not only the system dynamics but rather the whole optimality

system can be solved by FEM-based simulation software. The trajectory planning approach

for optimizing the electrical excitation of electromagnetic actuators is exemplified for in-

duction heating processes [118] and hyperthermia therapy [144]. Both problems represent

typical scenarios of electromagnetic heating and illustrate the generality of the presented

trajectory planning approach.

3.1 Optimal control strategies for induction heating

Induction heating is a widely used heat treatment process in which the electromagnetic heat

source facilitates to alter mechanical properties of a workpiece such as hardness, strength,

ductility, or wear resistance [31, 118, 20]. A transformation process of the crystalline struc-

ture of the workpiece is enforced through metallurgical effects that highly depend on the

temperature and heating rate. To prevent undesired retransformation processes during the

time of workpiece cooling, final quenching is carried out in some induction heating processes.

Further applications of induction heating are brazing, melting, or welding, to name just a

few. For an overview, also see, e. g., [147, 118].

47
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3.1.1 Geometrical setup and control tasks

In general, a distinction is made between the two types of induction heating applications

shown in Figure 3.1. The constant heat-up process in Figure 3.1a is performed to alter the

mechanical properties of the whole workpiece. Examples are tempering and stress relieving

processes as well as the preheating for forging and thixoforming operations. The other type

of induction heating applications are surface hardening processes, cf. Figure 3.1b. Here, the

objective is to increase the hardness of the workpiece in specific surface layers.1 A subsequent

quenching process ensures the formation of a martensitic microstructure, which leads to the

hardness of the surface layer [32, 29].

Figure 3.1a shows a constant heat-up process of a gear wheel with spatial domain Ωo and

boundary Γo. The electromagnetic field and its associated heat source is generated by means

of a time-dependent excitation of the actuator Ωc. The spatial domain of the ambient air is

denoted by Ωa. The region of interest is described by Ω = Ωo ∪ Ωc ∪ Ωa with boundary Γ.

Figure 3.1b shows a surface hardening process with the surface layer to be hardened Ω̃o. In

this case, the spatial domain of the actuators is denoted by Ωc = ∪Ωcj , j ∈ {1, 2, . . . , 6}.

Ωc

x1

x2

x3

Γo

Ωo

Ωa

Γ

u(t)

Ω = Ωo ∪ Ωc ∪ Ωa

(a) Constant heat-up process

x1

x3

x2

Ωo

Ωa

Ωc1

Ωc2

ΩcN

Γo

Γ

u(t)

Ω̃o

Ω = Ωo ∪ Ωc ∪ Ωa

(b) Surface hardening process

Figure 3.1: Geometrical setups of induction heating processes (not to scale): a) constant

heat-up process of a gear wheel and b) surface hardening process of an axisymmetrical

workpiece with spatial domain Ωo. The flow of currents in the actuator Ωc, respectively in

the actuators Ωcj , j ∈ {1, 2, . . . , N}, generates the electromagnetic heat source.

1 It is assumed that the phase transitions leading to the hardening effects, i. e., the transformation of

ferrite, pearlite, and bainite into martensite, can be represented for the trajectory planning by suitable

temperature profiles (isothermal transformation diagrams), see, e. g., [118, 11, 64]. A more accurate

description of the phase transition effects is presented in [42, 64] and the references therein.
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For both constant heating and surface hardening, the control trajectory u := u(t) is used to

describe the electrical excitation of the actuator by means of the flow of currents, cf. the red

marked regions in Figure 3.1. The position and shape of the actuators are fixed and cannot

be modified for the time being.2 The frequency of the current source is also fixed in view of

the accompanying expensive power electronics [118]. Similarly, the actuators are excited by

an identical current source u, if several of them are used to generate the heat source.

Besides the primary objective of the trajectory planning to heat up either the whole work-

piece or solely parts of it, the limitation of the current source has to be taken into account

due to physical restrictions. In addition, the workpiece temperature is not allowed to exceed

the bound T+. This should prevent undesired metallurgical effects during the heat-up pro-

cess that would lead to poor mechanical properties of the workpiece [118]. The trajectory

planning accounts for the input and state constraints by means of the admissible sets

u(t) ∈ Uad := {u(t) ∈ R |u− ≤ u(t) ≤ u+} (3.1a)

T (x, t)− T+ ≤ 0 in Ωo × (0, tf) (3.1b)

with the bounds 0 ≤ u− < u+ and T+ > 0.

3.1.2 Governing equations of induction heating processes

The constant heat-up and surface hardening processes are mathematically described by the

coupled PDE system

ρC∂tT −∇· (k∇T ) = σω2

2
|A|2 in Ωo × (0, tf) (3.2a)

n · (k∇T ) = f(T ) on Γo × (0, tf) (3.2b)

T (·, 0) = T0 in Ωo at t = 0 (3.2c)

∇×(µ−1∇×A) + jωσA = Jimp(u) in Ω× (0, tf) (3.2d)

n× A = 0 on Γ× (0, tf) , (3.2e)

whereby the thermal subsystem (3.2a)–(3.2c) is defined for the workpiece with the spatial

domain Ωo. The electromagnetic subsystem (3.2d)–(3.2e) is taken into account for the whole

region of interest Ω.

The heat equation (3.2a) describes the thermal phenomena of the considered heat-up pro-

cesses with the temperature T serving as the state variable. The boundary condition (3.2b)

models heat losses due to convection and radiation against the surrounding. Its right hand

side is specified by

f(T ) = α (Ta − T ) + εσSB

(
T 4

a − T 4
)

on Γo × (0, tf) (3.3)

with the heat transfer coefficient α, the emissivity of the surface ε, the Stefan-Boltzmann

constant σSB and the temperature of air Ta. A more accurate description of heat losses due

2 The optimization of the position and shape of electromagnetic actuators is the subject of Chapter 4.
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to radiation effects can be achieved by introducing view factors, also referred to as shape

factors. This allows one to model the radiative heat transfer between different surfaces, see,

e. g., [87, 37]. The initial workpiece temperature is specified by Equation (3.2c).

The electromagnetic phenomena of induction heating are described by the time-harmonic

PDE (3.2d) with the magnetic vector potential A as the state variable. The PDE is for-

mulated on the space-time cylinder Ω × (0, tf) to reflect the time-dependent excitation of

the actuator. It is assumed that the sinusoidal current source u prescribes a time-harmonic

current density within the spatial domain of the actuator. To this end, the phasor

Jimp(u) = Nc

Ac
uχΩcec in Ω× (0, tf) (3.4)

is introduced with Nc and Ac as the coil windings and cross section surface of the actuator,

see, e. g., [135, 102].3 The direction of the flow of currents is described by the vector

ec =

(
−x̃2√
x̃2

1 + x̃2
2

,
x̃1√
x̃2

1 + x̃2
2

, 0

)T

(3.5)

with (x̃1, x̃2) following from a suitable coordinate transformation. Note that the electrical

excitation of the actuator can be modeled more precisely by a PDE system such as (2.17),

if the trajectory planning approach requires a higher accuracy.

The boundary condition (3.2e) models a vanishing electromagnetic field on Γ. Thereby,

the boundary Γ is chosen sufficiently far away from the current source within the actuator,

cf. the discussion in Section 2.2.3, also see [11, 135]. For a more compact notation, the

gauging condition (2.21) as well as interface conditions of the magnetic vector potential A

such as (2.29) are not explicitly formulated in what follows. A detailed explanation of the

system dynamics (3.2) is presented in Section 2.2 and 2.3, respectively.

3.1.3 Formulation of a cost functional

The objectives of the induction heating processes are represented for the trajectory planning

by a cost functional of the following type

J(u) =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T, u) dxdt , (3.6)

whereby the Mayer and Lagrange terms V (T (·, tf)) and l(T, u) are specified for both the

constant heat-up and surface hardening process as follows

V (T (·, tf)) =
q1

2
χΩd

(T (·, tf)− Td)2 (3.7a)

l(T, u) =
q2

2
χΩd

(T − Td)2 +
q3

2
χΩo max

(
0, T − T+

)2
+
q4

2
χΩcu

2 . (3.7b)

In fact, the three weights (q1, q2, q3) are sufficient to balance the four objectives of the Mayer

and Lagrange terms (3.7). For an overall scaling of the cost functional, however, all parts

are weighted by individual parameters.

3 The characteristic function χΩc
is defined by Equation (2.16).
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The primary objective of heating up the workpiece is taken into account for the trajectory

planning by penalizing the quadratic error between the temperature T and the desired tem-

perature Td with the non-negative weights (q1, q2) within the Mayer and Lagrange terms (3.7).

Depending on whether a constant heat-up or a surface hardening process is considered, the

quadratic error (T − Td)2 is penalized on the spatial domain

Ωd = Ωo (constant heat-up) (3.8a)

Ωd = Ω̃o (surface hardening) , (3.8b)

whereby χΩd
is the characteristic function of the spatial domain Ωd, cf. Equation (2.16).

In the case of surface hardening, the control task of preventing an undesired heat-up of inner

domains of the workpiece is taken into account by choosing the final time of the heat-up

process tf sufficiently short. Note that unavoidable diffusive heat transport phenomena can

not be suppressed completely in view of the limited influence of the control trajectory u on

the system dynamics of the induction heating processes (3.2).

At this current stage, the cost functional to be minimized (3.6) is also used to incorporate

the state constraint (3.1b). To this end, the Lagrange term l(T, u) is amended by an outer

penalty function that is weighted with q3 ≥ 0. This not only reduces the numerical effort for

solving the optimization problem specified in what follows, but also simplifies the derivation

of its optimality conditions.4 The last part of the Lagrange term weights the control action

by means of the parameter q4 ≥ 0. This part of the cost functional also prevents, to some

degree, the heat-up of inner domains of the workpiece in the case of surface hardening.

3.2 Optimal control strategies for

hyperthermia therapy

Hyperthermia therapy is another typical example in which the energy of electromagnetic

fields is used to heat up electrically conductive materials. The electromagnetic heat source

is localized to cancer cells to make them more susceptible to conventional drug treatments,

see, e. g., [144, 46]. A further type of hyperthermia therapy uses the electromagnetic heat

source to significantly damage and kill the tumor by inducing biological effects including

coagulation and necrosis [3].

Especially for tumors located deep within the human body, interstitial hyperthermia therapy

facilitates optimal therapeutic success not to say making a cancer treatment possible. The

particular challenges for the trajectory planning are to adapt the electrical excitation of the

actuator to the size of the tumor, to the thermal behavior of healthy tissue, and to prevent

adverse effects of the electromagnetic field to the human body.

4 A more systematic incorporation of state constraints is devoted to Chapter 5 and Appendix A, where an

augmented Lagrangian method and a transformation approach is discussed.
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3.2.1 Geometrical setup and control tasks

The optimal trajectory planning for hyperthermia therapy is exemplified for the minimally

invasive methods microwave ablation (MWA – Micro-Wave Ablation) and radio frequency

ablation (RFA – Radio Frequency Ablation). MWA is often applied to treat tumors Ωt in the

region of the breast or liver Ωh, as illustrated in Figure 3.2a for an axisymmetrical setup, see,

e. g., [43, 107]. An alternating voltage source u is applied to the boundary Γc of a needle-like

actuator, also referred to as electrode or applicator, with spatial domain Ωc. The induced

electromagnetic field penetrates through an air gap into the tumor and surrounding tissue.

By sticking the actuator directly into the diseased tissue, the electromagnetic heat source is

generated as close as possible to the spatial domain which should be heated up.

Figure 3.2b shows a typical scenario of RFA, where a tumor Ωt close to the dorsal vertebra Ωb

and spinal canal Ωs is heat-treated [15, 46]. The healthy tissue is denoted by Ωh.5 Alternating

voltages u are applied to the boundary segment of the actuators Γc = Γc,1∪Γc,2 to guide the

electromagnetic field through air gaps into the region of the diseased tissue. As a result, the

tumor Ωt as well as surrounding healthy tissue heats up. The intensity of the heat source

can be controlled as in the case of MWA by the specific choice of the voltage source u.

r

z

ϕ

Ωo = ∪Ωi, i ∈ {t, h}
Ωa = ∅

Ωt

Ωh

Γc

Ωc

Γ

(a) MWA setup

x1

x2

x3

Ωo = ∪Ωi, i ∈ {t, h, s, b}
Ωa = ∅

Ωt

Ωh

Ωs

Ωb

Γc,1 Γc,2

Ωc,1 Ωc,2

Γ

(b) RFA setup

Figure 3.2: MWA and RFA setup (not to scale) with actuator Ωc, respectively Ωc,1 and Ωc,2,

to generate the electromagnetic heat source in close proximity to the tumor Ωt. MWA is

typically applied to treat tumors in the region of the breast or liver Ωh. RFA is a preferred

cancer therapy for tumors close to the dorsal vertebra Ωb and spinal canal Ωs.

5 A description of the subscripts of the individual spatial domains is presented in Appendix B.4.
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The electrically conductive materials of MWA and RFA are summarized as follows

Ωo = Ωt ∪ Ωh (MWA) (3.9a)

Ωo = Ωt ∪ Ωh ∪ Ωs ∪ Ωb (RFA) , (3.9b)

whereby Γo denotes the corresponding boundary, cf. Figure 3.3, also see Appendix B.4. The

definition of the region of interest Ωo facilitates a consistent description of the spatial domain

for which the electromagnetic and thermal phenomena have to be taken into account in the

case of MWA and RFA, respectively. In RFA, the spatial domain of the actuators is denoted

by Ωc = Ωc,1 ∪ Ωc,2. Note that the spatial coordinates are either specified by x = [r, ϕ, z]T

or x = [x1, x2, x3]T, according to whether MWA or RFA is considered, cf. Figure 3.2.

The electromagnetic phenomena of MWA and RFA are modeled not only on the spatial do-

main of the diseased and healthy tissue Ωo, but also on the spatial domain of the actuator Ωc

in view of the boundary control u. For numerical reasons, the geometrical setups of hyper-

thermia therapy contain no ambient air Ωa in contrast to the induction heating scenarios in

Section 3.1. Consequently, the spatial domain for which the electromagnetic phenomena of

hyperthermia therapy has to be solved is Ω = Ωo ∪ Ωc.

The control tasks of hyperthermia therapy are similar to those of induction heating pro-

cesses. Both the objective to make the tumor more susceptible to conventional drugs and

the required necrosis effects to severely damage the tumor can be reduced to desired temper-

ature profiles Td, see, e. g., [23, 45, 38]. For example, to achieve a complete destruction of the

tumor caused by necrosis effects, the tumor temperature has to exceed a critical value Td for

a certain time interval. Further criteria to account for is the limitation of the voltage source

as described by the input constraints (3.1a). To prevent a health-damaging overheating, the

temperature T is subject to the state constraint (3.1b).

3.2.2 Governing equations of hyperthermia processes

The PDE (2.25) allows one to describe the connection between the boundary control u and

the generation of the electromagnetic heat source. The thermal phenomena are modeled by

means of a modified version of the heat equation (2.41). Overall, the PDE system

ρC∂tT −∇· (k∇T ) = σ
2
|E|2 − ρbCbωb(T − Tb) in Ωo × (0, tf) (3.10a)

n · (k∇T ) = 0 on Γo × (0, tf) (3.10b)

T (·, 0) = Tb in Ωo at t = 0 (3.10c)

∇×(µ−1
r ∇×E)− k2

0(εr − j σ
ωε0

)E = 0 in Ω× (0, tf) (3.10d)

n× E = Eimp(u) on Γc × (0, tf) (3.10e)

n× E = 0 on ΓPEC × (0, tf) (3.10f)

n× (∇×E) = jk0Eout on Γ× (0, tf) (3.10g)

facilitates to model the system dynamics of hyperthermia therapy. The PDE (3.10a) is also

referred to as Pennes’ bioheat equation [100].
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The right hand side of the heat equation (3.10a) includes the Joule heat source (2.40b) and

a heat sink to model heat transfer effects due to blood perfusion. The thermal behavior of

different kinds of tissue and bones is taken into account by the density ρb := ρb(x) and the

specific heat capacity Cb := Cb(x). The temperature of blood penetrating the tumor and

surrounding tissue with perfusion rate ωb := ωb(x) is specified by Tb, see, e. g., [15, 3].

The Neumann boundary condition (3.10b) models a vanishing heat flow on the boundary

segment Γo including the outer boundary of the region of interest and the boundary of the

actuator, cf. Figure 3.3. This is an appropriate assumption since the predominant heat sink

due to blood perfusion has the effect that regions away from the heat source rapidly reach

the temperature of blood [3]. The assumption of a vanishing heat flow on the boundary of

the actuator is justified by a heat transfer coefficient close to zero for the catheter that is

used as an insulating layer to human tissue [15, 46]. The initial temperature of hyperthermia

therapy is specified by Equation (3.10c).

The time-harmonic PDE (3.10d) models the electromagnetic phenomena of MWA and RFA,

whereby k0 = ω
√
ε0µ0 denotes the wave number. The Dirichlet boundary condition (3.10e)

comprises the voltage source u that acts as the degree of freedom for an optimal trajectory

planning. The control trajectory u prescribes the electric field intensity at the boundary of

the actuator on the time interval (0, tf) according to

Eimp(u) =
uer

r ln (r2/r1)
on Γc × (0, tf) (3.11)

with er denoting the unit vector in the direction of r, also see [44]. Consequently, electromag-

netic waves travel through the dielectric Ωc,d of the actuator of coaxial type, cf. Figure 3.3.

It is assumed that only the fundamental TEM mode (TEM – Transverse Electro-Magnetic)

is present by which the most part of the energy of the electromagnetic field radiates through

the air gap Ωc,a into the tumor, see, e. g., [107].

The homogeneous Dirichlet boundary condition (3.10f) models a perfect electric conduction

on the boundary of the dielectric and catheter ΓPEC. The first-order absorbing boundary

condition (3.10g) makes the boundary Γ transparent for outgoing waves

Eout = n× (n× E) on Γ× (0, tf) , (3.12)

z

r

Γc
ΓPEC Ωc,d

Ωt

Ωc,c
r1

r2

Ωc,a

ϕ

Γo Γ

Figure 3.3: Detail view of an actuator of coaxial type (not to scale) with the dielectric Ωc,d,

the air gap Ωc,a and the catheter Ωc,c as an insulating layer to human tissue.
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cf. Figure 3.2, also see [11, 6, 67].6 This takes into account the fact that electromagnetic

waves in reality propagate outside the region of interest Ω. A more detailed description of

the electromagnetic and thermal phenomena is presented in Chapter 2.

3.2.3 Formulation of a cost functional

A cost functional similar to that of induction heating (3.6) is formulated for the trajectory

planning in the case of hyperthermia therapy

J(u) =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T ) dxdt+

∫∫
Γ×(0,tf)

lΓ(u) dxdt . (3.13)

To convert the various objectives of hyperthermia therapy into a suitable form for the

optimization-based trajectory planning approach, the Mayer term V (T (·, tf)) and the La-

grange terms l(T ) and lΓ(u) are specified as follows

V (T (·, tf)) =
q1

2
χΩt (T (·, tf)− Td)2 (3.14a)

l(T ) =
q2

2
χΩt (T − Td)2 +

q3

2
χΩo max

(
0, T − T+

)2
(3.14b)

lΓ(u) =
q4

2
χΓc (u− ud)2 . (3.14c)

Note that all four parts of the Mayer and Lagrange terms are weighted by an individual

parameter instead of the minimum required number of three.

The primary objective of heating up the tumor is taken into account by penalizing the

quadratic error between the temperature T and the desired temperature Td on the spatial

domain Ωt. The Mayer term V (T (·, tf)) and the Lagrange term l(T ) weight this control task

by q1 ≥ 0 and q2 ≥ 0. The second part of the Lagrange term is an outer penalty function to

incorporate the state constraint (3.1b). The corresponding weight is q3 ≥ 0. The Lagrange

term lΓ(u) penalizes the quadratic error between the control trajectory u and a set point ud

using the weight q4 ≥ 0.

3.3 Optimization problem for electromagnetic

heating systems

The optimization-based trajectory planning for the induction heating processes and hyper-

thermia therapy described in Section 3.1 and 3.2 relies on the formulation of a common PDE

constrained optimization problem. This offers the possibility to derive the optimality con-

ditions of both problems in a more compact form. This will also ensure that the trajectory

planning approach will be able to address other electromagnetic heating applications in a

straightforward manner.

6 Except for the segment ΓPEC which is not included in Γ, the boundary Γ corresponds to the boundary Γo,

i. e., Γ = Γo \ ΓPEC, also see Figure 3.2 and 3.3.
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3.3.1 Definition of differential operators

The governing equations of the induction heating and hyperthermia processes (3.2) and (3.10)

contain the same differential operators. It is therefore feasible to represent both problems

by a PDE system exhibiting a generic structure. For reformulating the thermal subsystems

(3.2a)–(3.2c) and (3.10a)–(3.10c) in the following lines, the temporal and spatial operators

e∇, t (α, T ) = α∂tT in Ωo × (0, tf) (3.15a)

e∆ (α, T ) = ∇· (α∇T ) in Ωo × (0, tf) (3.15b)

e∇, x (α, T ) = n · (α∇T ) on Γo × (0, tf) (3.15c)

are introduced. The parameter α is used to address different material parameters.

The electromagnetic subsystems (3.2d)–(3.2e) and (3.10d)–(3.10g) are reformulated on the

basis of the spatial operators

e∇×,∇× (α,K) = ∇×(α∇×K) in Ω× (0, tf) (3.16a)

e∇× (α,K) = n× (α∇×K) on Γ× (0, tf) (3.16b)

e× (K) = n×K on Γ× (0, tf) (3.16c)

with the phasor K := K(x; t), K ∈ {A,E} as the corresponding state variable. The general-

izations of the differential operators (3.15) and (3.16) facilitate to define optimality conditions

for both induction heating and hyperthermia processes in a holistic way.

3.3.2 Problem formulation

The differential operators defined in the last section are used to express optimal control

problems for electromagnetic heating systems in the generalized form

min
u(·)∈Uad

J(u) =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T, u) dxdt+

∫∫
Γ×(0,tf)

lΓ(u) dxdt (3.17a)

s.t. e∇, t (ρC, T )− e∆ (k, T ) = fΩo(T,K) in Ωo × (0, tf) (3.17b)

e∇, x (k, T ) = fΓo,N
(T ) on Γo,N × (0, tf) (3.17c)

T = fΓo,D
on Γo,D × (0, tf) (3.17d)

T (·, 0) = T0 in Ωo at t = 0 (3.17e)

e∇×,∇× (µ−1, K) = fΩ(K, u) in Ω× (0, tf) (3.17f)

e∇× (µ−1, K) = fΓN
(K, u) on ΓN × (0, tf) (3.17g)

e× (K) = fΓD
(u) on ΓD × (0, tf) . (3.17h)

The cost functional (3.17a) consists of the Mayer term V (T (·, tf)) and the Lagrange terms

l(T, u) and lΓ(u). The individual parts are specified by Equation (3.7) or (3.14), according

to whether an induction heating or hyperthermia problem is considered.



3.3 Optimization problem for electromagnetic heating systems 57

The formulation of optimization problem (3.17) includes both Dirichlet boundary condi-

tions and Neumann boundary conditions for the thermal and electromagnetic phenomena.

Thereby, the functions

fΩo(T,K) in Ωo × (0, tf) (3.18a)

fΓo,N
(T ) on Γo,N × (0, tf) (3.18b)

fΓo,D
on Γo,D × (0, tf) (3.18c)

facilitate to adapt the right hand sides of the heat equation (3.17b), the Neumann boundary

condition (3.17c), and the Dirichlet boundary condition (3.17d) to a specific electromagnetic

heating problem. Similarly, the electromagnetic subsystem (3.17f)–(3.17h) is described in

general form with the functions

fΩ(K, u) in Ω× (0, tf) (3.19a)

fΓN
(K, u) on ΓN × (0, tf) (3.19b)

fΓD
(u) on ΓD × (0, tf) . (3.19c)

The induction heating processes described in Section 3.1 can be addressed by optimization

problem (3.17) by setting the right hand sides (3.18)–(3.19) as follows

fΩo(T,A) = σω2

2
|A|2 in Ωo × (0, tf) (3.20a)

fΓo,N
(T ) = α (Ta − T ) + εσSB

(
T 4

a − T 4
)

on Γo,N × (0, tf) (3.20b)

fΩ(A, u) = Nc

Ac
uχΩcec − jωσA in Ω× (0, tf) (3.20c)

fΓD
(u) = 0 on ΓD × (0, tf) , (3.20d)

cf. Equation (3.2). The undefined functions fΓo,D
and fΓN

(A, u) in (3.20) reflect the fact that

the thermal subsystem (3.2a)–(3.2b) and electromagnetic subsystem (3.2d)–(3.2e) comprises

no Dirichlet boundary condition, respectively no Neumann boundary condition.

To deal with the optimal trajectory planning problem in the course of hyperthermia therapy,

the right hand sides (3.18)–(3.19) are set to

fΩo(T,E) = σ
2
|E|2 − ρbCbωb(T − Tb) in Ωo × (0, tf) (3.21a)

fΓo,N
(T ) = 0 on Γo,N × (0, tf) (3.21b)

fΩ(E, u) = k2
0(εr − j σ

ωε0
)E in Ω× (0, tf) (3.21c)

fΓN
(E, u) = jk0Eout on ΓN × (0, tf) (3.21d)

fΓD
(u) = Eimp(u) on ΓD × (0, tf) . (3.21e)

For reasons of consistency, however, only the Dirichlet boundary condition (3.10e) is incor-

porated into optimization problem (3.17) using Equation (3.21e) to avoid an adaptation of

the structure of the optimization problem.
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3.4 Derivation of optimality conditions

The formal Lagrangian technique provides a promising approach to deal with the nonlinear

PDEs when deriving the optimality conditions of optimization problem (3.17), see [133], as

well as the discussion in Section 1.3.3. First of all, the Lagrangian L := L(T,K, u, p,Λ) is

defined as follows

L =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T, u) dxdt+

∫∫
Γ×(0,tf)

lΓ(u) dxdt

+

∫∫
Ωo×(0,tf)

p [e∇, t (ρC, T )− e∆ (k, T )− fΩo(T,K)] dxdt

+

∫∫
Γo,N×(0,tf)

p
[
e∇, x (k, T )− fΓo,N

(T )
]

dxdt+

∫∫
Γo,D×(0,tf)

p
[
T − fΓo,D

]
dxdt

+

∫∫
Ω×(0,tf)

Λ ·
[
e∇×,∇× (µ−1, K)− fΩ(K, u)

]
dxdt

+

∫∫
ΓN×(0,tf)

Λ ·
[
fΓN

(K, u)− e∇× (µ−1, K)
]

dxdt+

∫∫
ΓD×(0,tf)

Λ · [e× (K)− fΓD
(u)] dxdt (3.22)

to couple the PDE system (3.17b)–(3.17h) to the cost functional (3.17a) by means of ad-

joint states.7 The scalar-valued adjoint state p := p(x, t) accounts for the thermal subsys-

tem (3.17b)–(3.17d) within the Lagrangian L and depends on space and time. The adjoint

state Λ := Λ(x; t) is a phasor, which takes the electromagnetic subsystem (3.17f)–(3.17h)

into account. In this case, however, the adjoint state Λ is a vector that depends on time

only implicitly, since the electromagnetic phenomena are assumed to be time-harmonic.

The first-order optimality conditions of optimization problem (3.17) are deduced from the

directional derivatives

∂L
∂T

∣∣∣∣
y∗
hT = 0 ∀hT (3.23a)

∂L
∂K

∣∣∣∣
y∗
·HK = 0 ∀HK (3.23b)

∂L
∂u

∣∣∣∣
y∗
hu ≥ 0 ∀u ∈ Uad , (3.23c)

whereby y∗ = (T ∗, K∗, u∗, p∗,Λ∗) denotes optimal state, adjoint state, and control trajec-

tories, also see [133, 119]. The admissible directions of the temperature T are specified

by hT = T −T ∗, of the state variable of the electromagnetic subsystem K by HK = K−K∗,
and of the control trajectory u by hu = u − u∗, respectively.8 With respect to an optimal

7 To simplify the following discussion, the left and right hand side of the boundary condition (3.17g) is

multiplied by minus one before being incorporated into the Lagrangian.
8 Contrary to the notation to distinguish vectors from scalars by capital letters, the temperature is denoted

by T despite it is scalar. Accordingly, the admissible directions hT have a capital letter as subscript.
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solution y∗, the directional derivatives (3.23a) and (3.23b) have to be equal to zero for all

admissible directions hT and HK . On the contrary, the third directional derivative (3.23c)

is formulated as an inequality constraint to take the input constraints (3.1a) into account,

also see, for instance, [1, 62].

The basic idea of the formal Lagrangian technique to treat temporal and spatial operators

formally makes it possible to evaluate and analyze the partial derivatives of the Lagrangian L
with respect to the states (T,K) and the control trajectory u. Consequently, the first-order

optimality conditions (3.23a) and (3.23b) can be mathematically handled with relative ease

and will result in adjoint PDE systems, cf. Section 1.3. The same applies to the first-order

optimality condition (3.23c) that results in a gradient condition. The derivation of the

adjoint PDE systems and gradient condition is the subject of the following sections.

3.4.1 Adjoint dynamics of the thermal subsystem

The following lines analyze the directional derivative (3.23a), which eventually results in an

adjoint dynamics related to the thermal subsystem (3.17b)–(3.17e). The partial derivative

of the Lagrangian L with respect to the state T yields the variational equation

∂L
∂T

∣∣∣∣
y∗
hT =

∫
Ω

∂TV (T (·, tf))|y∗ hT (·, tf) dx+

∫∫
Ω×(0,tf)

∂T l(T, u)|y∗ hT dxdt

+

∫∫
Ωo×(0,tf)

p∗
[
e∇, t (ρC, hT )− e∆ (k, hT )− ∂TfΩo(T,K)|y∗ hT

]
dxdt

+

∫∫
Γo,N×(0,tf)

p∗
[
e∇, x (k, hT )− ∂TfΓo,N

(T )
∣∣
y∗
hT

]
dxdt+

∫∫
Γo,D×(0,tf)

p∗hT dxdt = 0 ∀hT ,

(3.24)

whereby the derivatives concerning the temporal and spatial operators (3.15) are treated

formally. The arguments of the temporal and spatial operators swap from the state T to the

admissible directions hT , i. e.,

∂T e∇, t (ρC, T )|y∗ hT = e∇, t (ρC, hT ) in Ωo × (0, tf) (3.25a)

∂T e∆ (k, T )|y∗ hT = e∆ (k, hT ) in Ωo × (0, tf) (3.25b)

∂T e∇, x (k, T )|y∗ hT = e∇, x (k, hT ) on Γo × (0, tf) , (3.25c)

what can also be observed by comparing the Lagrangian (3.22) with the variational equa-

tion (3.24), also see [133].

In order to be able to analyze the variational equation (3.24) for all admissible directions hT ,

the temporal and spatial operators involving hT as an argument, i. e., the parts e∇, t (ρC, hT ),

e∆ (k, hT ), and e∇, x (k, hT ), are applied to proper integral identities. This reformulation step

eventually allows one to replace the arguments hT of the temporal and spatial operators in

Equation (3.24) by the adjoint state p.
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First of all, the formula of partial integration∫∫
Ωo×(0,tf)

p∗e∇, t (ρC, hT ) dxdt =

∫
Ωo

p∗ρChT |tf0 dx−
∫∫

Ωo×(0,tf)

e∇, t (ρC, p∗)hT dxdt (3.26)

is applied to the first part of the second line of the variational equation (3.24). This integral

identity allows to get rid of the temporal derivative affecting the admissible directions hT .

Moreover, Green’s second identity

−
∫∫

Ωo×(0,tf)

p∗e∆ (k, hT ) dxdt = −
∫∫

Ωo×(0,tf)

e∆ (k, p∗)hT dxdt

+

∫∫
Γo,N×(0,tf)

e∇, x (k, p∗)hT dxdt−
∫∫

Γo,N×(0,tf)

p∗e∇, x (k, hT ) dxdt (3.27)

is applied to the second part of the second line of the variational equation (3.24) to cope with

the spatial derivative that is subject to the admissible directions hT , see, e. g., [133, 119].

This substitution also cancels out the spatial derivative of the admissible directions hT within

the boundary integral on the segment Γo,N.

By applying both the formula of partial integration (3.26) and Green’s second identity (3.27)

to the variational equation (3.24), the modified counterpart

∂L
∂T

∣∣∣∣
y∗
hT =∫∫

Ωo×(0,tf)

[
−e∇, t (ρC, p∗)− e∆ (k, p∗)− ∂TfΩo(T,K)|y∗ p

∗ + ∂T l(T, u)|y∗
]
hT dxdt

+

∫∫
Γo,N×(0,tf)

[
e∇, x (k, p∗)− ∂TfΓo,N

(T )
∣∣
y∗
p∗
]
hT dxdt+

∫∫
Γo,D×(0,tf)

p∗hT dxdt

+

∫
Ωo

[
ρCp∗(·, tf) + ∂TV (T (·, tf))|y∗

]
hT (·, tf) dx = 0 ∀hT (3.28)

is obtained.9 The new variational equation (3.28) no longer contains admissible directions hT
which are subject to temporal or spatial derivatives. This allows one to specify a condition for

an optimal solution y∗. The parts within the squared brackets must vanish in a distributional

manner, since the admissible directions hT are arbitrary. The adjoint PDE system

e∇, t (ρC, p∗) + e∆ (k, p∗) = ∂T l(T, u)|y∗ − ∂TfΩo(T,K)|y∗ p
∗ in Ωo × (0, tf) (3.29a)

e∇, x (k, p∗) = ∂TfΓo,N
(T )
∣∣
y∗
p∗ on Γo,N × (0, tf) (3.29b)

p∗ = 0 on Γo,D × (0, tf) (3.29c)

ρCp∗(·, tf) = − ∂TV (T (·, tf))|y∗ in Ωo at t = tf (3.29d)

9 For the sake of compactness, the part ∂T l(T, u) is now only integrated over Ωo as the temperature T is

just defined for the object to be heated, see Equation (3.24) and (3.28).
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guarantees this necessary optimality condition, cf., e. g., [17, 3]. The adjoint dynamics (3.29a)

ensures that the first line of the variational equation (3.28) vanishes for all admissible direc-

tions hT . The same applies to the Neumann boundary condition (3.29b) and the Dirichlet

boundary condition (3.29c) which cancels out the second line of Equation (3.28). The third

line of the variational equation (3.28) vanishes in view of the final condition (3.29d).

3.4.2 Adjoint dynamics of the electromagnetic subsystem

The directional derivative (3.23b) is analyzed in the following lines to derive the adjoint dy-

namics of the electromagnetic subsystem of optimization problem (3.17). After substituting

the Lagrangian (3.22) into Equation (3.23b), the partial derivative of (3.23b) is carried out

and results in the variational equation

∂L
∂K

∣∣∣∣
y∗
·HK = −

∫∫
Ωo×(0,tf)

p∗ ∂KfΩo(T,K)|y∗ ·HK dxdt

+

∫∫
Ω×(0,tf)

Λ∗ ·
[
e∇×,∇× (µ−1, HK)− ∂KfΩ(K, u)|y∗ ·HK

]
dxdt

+

∫∫
ΓN×(0,tf)

Λ∗ ·
[
∂KfΓN

(K, u)|y∗ ·HK − e∇× (µ−1, HK)
]

dxdt

+

∫∫
ΓD×(0,tf)

Λ∗ · e× (HK) dxdt = 0 ∀HK . (3.30)

The partial derivatives of spatial operators are formally treated similar to the derivation of

the adjoint dynamics of the thermal subsystem in Section 3.4.1, i. e.,

∂Ke∇×,∇× (µ−1, K)
∣∣
y∗
·HK = e∇×,∇× (µ−1, HK) in Ω× (0, tf) (3.31a)

∂Ke∇× (µ−1, K)
∣∣
y∗
·HK = e∇× (µ−1, HK) on Γ× (0, tf) (3.31b)

∂Ke× (K)|y∗ ·HK = e× (HK) on Γ× (0, tf) , (3.31c)

also see Section 3.3.1 for a definition of the differential operators.

The spatial operators of the variational equation (3.30) that involve admissible directions HK

as arguments are submitted to proper integral identities to be able to formulate the adjoint

dynamics. This applies to the parts e∇×,∇× (µ−1, HK), e∇× (µ−1, HK), and e× (HK). To this

end, the formula of partial integration∫
Ω

U · ∇×V dx =

∫
Ω

∇×U · V dx+

∫
Γ

(U × n) · V dx , (3.32)

also referred to as Green’s formula [4, 130], as well as the vector identities

U · (V ×W ) = V · (W × U) = W · (U × V ) in Ω× (0, tf) (3.33a)

U × V = −V × U in Ω× (0, tf) (3.33b)

are introduced, whereby U , V , and W denote some vectors, see, e. g., [57].
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Applying the formula of partial integration (3.32) twice as well as the vector identities (3.33)

to the part e∇×,∇× (µ−1, HK) yields the integral identity∫∫
Ω×(0,tf)

Λ∗ · e∇×,∇× (µ−1, HK) dxdt =

∫∫
Ω×(0,tf)

e∇×,∇× (µ−1,Λ∗) ·HK dxdt

−
∫∫

Γ×(0,tf)

e∇× (µ−1,Λ∗) ·HK dxdt+

∫∫
Γ×(0,tf)

Λ∗ · e∇× (µ−1, HK) dxdt , (3.34)

which is also referred to as the vector analogue of Green’s second identity [130]. Using the

integral identity (3.34), the admissible directionsHK of the spatial operator e∇×,∇× (µ−1, HK)

can be shifted to the adjoint state Λ. The last part of the integral identity (3.34) also cancels

out the spatial operator e∇× (µ−1, HK) within the variational equation (3.30). The vector

identity (3.33a) is used to replace the admissible directions HK with the adjoint state Λ

within the part e× (HK), i. e., the reformulation∫∫
ΓD×(0,tf)

Λ∗ · e× (HK) dxdt = −
∫∫

ΓD×(0,tf)

e× (Λ∗) ·HK dxdt (3.35)

holds true in a distributional manner.

The integral identities (3.34)–(3.35) facilitate to reformulate the variational equation (3.30)

into the equivalent counterpart

∂L
∂K

∣∣∣∣
y∗
·HK =∫∫

Ω×(0,tf)

[
e∇×,∇× (µ−1,Λ∗)− ∂KfΩ(K, u)|y∗ · Λ

∗ − χΩop
∗ ∂KfΩo(T,K)|y∗

]
·HK dxdt

+

∫∫
ΓN×(0,tf)

[
∂KfΓN

(K, u)|y∗ · Λ
∗ − e∇× (µ−1,Λ∗)

]
·HK dxdt

−
∫∫

ΓD×(0,tf)

e× (Λ∗) ·HK dxdt = 0 ∀HK , (3.36)

whereby the characteristic function χΩo is introduced for the sake of compactness, cf. Equa-

tion (2.16). Similar to the procedure in Section 3.4.1, the variational equation (3.36) facili-

tates the formulation of the adjoint PDE system

e∇×,∇× (µ−1,Λ∗)− ∂KfΩ(K, u)|y∗ · Λ
∗ = χΩop

∗ ∂KfΩo(T,K)|y∗ in Ω× (0, tf) (3.37a)

e∇× (µ−1,Λ∗) = ∂KfΓN
(K, u)|y∗ · Λ

∗ on ΓN × (0, tf) (3.37b)

e× (Λ∗) = 0 on ΓD × (0, tf) , (3.37c)

which eliminates the various parts of the modified directional derivative (3.36).

The first-order optimality condition (3.23b) is satisfied for all admissible directions HK since

the adjoint dynamics (3.37a) cancels out the first line of the variational equation (3.36). The

Neumann boundary condition (3.37b) and the Dirichlet boundary condition (3.37c) ensure

that the second and the third line vanishes for all admissible directions HK .
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3.4.3 Gradient condition for optimal control trajectory

An optimal solution of optimization problem (3.17) also requires the compliance of the first-

order optimality condition (3.23c). The evaluation of this optimality condition yields the

variational inequality

∂L
∂u

∣∣∣∣
y∗
hu =

∫∫
Ω×(0,tf)

[
∂ul(T, u)|y∗ − Λ∗ · ∂ufΩ(K, u)|y∗

]
hu dxdt

∫∫
Γ×(0,tf)

[
∂ulΓ(u)|y∗ + Λ∗ ·

(
χΓN

∂ufΓN
(K, u)|y∗ − χΓD

∂ufΓD
(u)|y∗

)]
hu dxdt

≥ 0 ∀u ∈ Uad , (3.38)

which can be used to define a gradient condition with respect to an optimal control trajec-

tory u, see, e. g., [133, 62]. To simplify matters, the characteristic functions χΓN
and χΓD

are

used to formulate the variational inequality (3.38).

In view of a time-dependent excitation of electromagnetic heating systems, the variational

inequality (3.38) is used to define the reduced gradient

gu =

∫
Ω

∂ul(T, u)|y∗ − Λ∗ · ∂ufΩ(K, u)|y∗ dx

+

∫
Γ

∂ulΓ(u)|y∗ + Λ∗ ·
(
χΓN

∂ufΓN
(K, u)|y∗ − χΓD

∂ufΓD
(u)|y∗

)
dx , (3.39)

also see [62, 17]. Note that the reduced gradient gu := gu(T,K, u) is a time-dependent func-

tion, whereby its evaluation requires the numerical solution of the adjoint PDE systems (3.29)

and (3.37). The reduced gradient has to comply with the conditional expression

gu(t)


> 0 if u∗(t) = u−

= 0 if u∗(t) ∈ (u−, u+) ,

< 0 if u∗(t) = u+

∀t ∈ (0, tf) (3.40)

to take the input constraints (3.1a) into account, see, e. g., [1, 133].

As an alternative to a time-dependent control strategy, electromagnetic actuators are often

excited with a constant intensity of the current or voltage source over the optimization

horizon (0, tf). To this end, the gradient

ḡu =

tf∫
0

gu dt (3.41)

is defined instead of its time-dependent counterpart (3.39). With respect to an optimal

solution, the modified gradient ḡu := ḡu(T,K, u) has also to comply with the conditional

expression (3.40) but is constant over time.
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3.4.4 Analysis of the optimality conditions

The optimality conditions for optimizing the electrical excitation of electromagnetic actua-

tors are described by a set of coupled PDEs, whose structure is analyzed in the following

lines. An optimal solution y∗ of optimization problem (3.17) has to comply with the system

dynamics esys(T,K, u) = 0 specified by the PDE system (3.17b)–(3.17h). In addition, an

optimal solution must comply with the adjoint dynamics eadj(p,Λ, T,K, u) = 0 comprising

the PDE systems (3.29) and (3.37). The system dynamics and adjoint dynamics are also

referred to as the canonical equations. The gradient defined by Equation (3.39), respectively

by Equation (3.41), and the conditional expression (3.40) complete the optimality system of

optimization problem (3.17).

The left hand sides of the system dynamics and adjoint dynamics are almost identical but

differ in some algebraic signs. The canonical equations consist of the same temporal and

spatial operators (3.15)–(3.16), which determine mostly the specific type of the PDE and its

underlying boundary conditions. For example, the temporal and spatial operators e∇, t (α, T )

and e∆ (α, T ), as occurring in the heat equation (3.17b), are also present in the adjoint

counterpart (3.29a). The same applies to the left hand sides of the Neumann and Dirichlet

boundary conditions (3.17c) and (3.17d), which are represented by boundary conditions of

identical type in the adjoint counterparts (3.29b) and (3.29c). This structural similarity can

also be observed in the electromagnetic subsystem and its adjoint dynamics. Consequently,

the adjoint PDE system eadj(p,Λ, T,K, u) = 0 can be numerically solved in a similar way as

the system dynamics esys(T,K, u) = 0, if proper optimization algorithms are applied.10

The structural similarity of the canonical equations allows one to physically interpret the

adjoint PDE system eadj(p,Λ, T,K, u) = 0. To this end, the right hand sides of the adjoint

dynamics are analyzed, which depend on, among other, the individual parts of the cost

functional (3.17a). Additionally, the sinks and sources of the PDE system esys(T,K, u) = 0

that are described by the functions (3.18)–(3.19) influence the right hand sides of the adjoint

dynamics. Thus, the adjoint PDE systems (3.29) and (3.37) reflect, roughly speaking, the

energy that is required by the system dynamics to minimize the cost functional and to

compensate existing sinks and sources. The temporal and spatial propagation of energy is

represented by the left hand side of the adjoint dynamics.

3.5 Numerical solution of the optimality conditions

The following lines discuss the numerical solution of the optimality conditions of induction

heating processes and hyperthermia therapy. An optimization framework is presented that

combines a gradient method in Matlab with the FEM software Comsol Multiphysics.

This allows one to outsource the numerical issues of multiphysics problems (e. g. description

and discretization of complex spatial domains or numerical solution of coupled PDE systems,

also see Section 2.4.4) to the FEM software.

10 A discussion of the algorithmic treatment of the optimality conditions is the subject of Section 3.5.
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3.5.1 Gradient method

The gradient method shown in Algorithm 3.1, see, for instance, [21, 1, 58, 62], is used to

numerically solve optimization problem (3.17). The gradient method takes advantage of

the structure of the optimality conditions from Section 3.4 comprising the system dynamics

esys(T,K, u) = 0, the adjoint dynamics eadj(p,Λ, T,K, u) = 0, and the gradient condition

(3.39) and (3.40).

The separated initial and final time conditions of the canonical equations (3.17e) and (3.29d)

allow for a sequential solution of the optimality conditions. Algorithm 3.1 starts with the

solution of the canonical equations esys(T,K, u
(j)) = 0 and eadj(p,Λ, T

(j), K(j), u(j)) = 0 in

the steps II.i)–II.ii) after the initialization step I). Thereby, the current iteration index of

the gradient method is denoted by j. The basic idea is to numerically solve the canonical

equations as a function of a specific control trajectory u(j), generally a non-optimal one, to

be able to determine the direction of steepest descent −g(j)
u in step II.iii).

Algorithm 3.1 Gradient method for solving optimization problem (3.17).

I. Initialization

i) Choice of initial control trajectory u(1).

ii) Select termination criterion (3.55) or (3.56) with threshold εu > 0 or εJ > 0.

II. Gradient iteration j = 1, 2, . . .

i) Forward integration of system dynamics esys(T,K, u
(j)) = 0 specified by PDE

system (3.17b)–(3.17h) to obtain state trajectories (T (j), K(j)).

ii) Backward integration of adjoint dynamics eadj(p,Λ, T
(j), K(j), u(j)) = 0 specified

by PDE system (3.29) and (3.37) to obtain adjoint state trajectories (p(j),Λ(j)).

iii) Evaluation of gradient (3.39) to obtain direction of steepest descent −g(j)
u .

iv) Numerical solution of line search problem

α(j) = arg min
α>0

J
(
ψu(u

(j) − αg(j)
u )
)

(3.42)

with projection function ψu, cf. Equation (3.44).

v) Update of control trajectory

u(j+1) = ψu(u
(j) − α(j)g(j)

u ) (3.43)

following a steepest descent approach.

vi) Quit gradient method, if termination criterion (3.55) respectively (3.56) is fulfilled.

Otherwise, set j ← j + 1 and return to step II.i).
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The steps II.iv) and II.v) of Algorithm 3.1 deal with the update of the control trajectory

u(j) following a steepest descent approach. To this end, the line search problem (3.42) is

numerically solved to determine the step size in the direction of steepest descent α(j). The

projection function

ψu(u(t)) =


u− if u(t) < u−

u+ if u(t) > u+ ,

u(t) else

∀t ∈ (0, tf) (3.44)

takes the input constraints (3.1a) into account, cf. the conditional expression (3.40) and

Pontryagin’s maximum principle [105].11 An improved control trajectory u(j+1) can then be

obtained by correcting the current one in the direction of the steepest descent −g(j)
u , what

eventually decreases the value of the cost functional (3.17a), see Equation (3.43). Figure 3.4

illustrates the individual steps of the gradient method.

Since the direction of steepest descent −g(j)
u depends on the numerical solution of the canon-

ical equations esys(T,K, u
(j)) = 0 and eadj(p,Λ, T

(j), K(j), u(j)) = 0 and hence on the current

control trajectory u(j), several gradient iterations are needed to approach the optimal solu-

tion y∗. The proper determination of the step size α(j) ensures stability of Algorithm 3.1

and guarantees convergence to at least a local minimum of optimization problem (3.17), see,

e. g., [1, 62, 51].

Backward integration of

eadj(p,Λ, T
(j), K(j), u(j)) = 0

adjoint dynamics

termination criterion

fullfilled

optimal solution

(u∗, T ∗, K∗)

j = 1

j ← j + 1

yes

no

Numerical solution of

α(j) = arg minα>0 J(·)
line search problem

Forward integration of

esys(T,K, u
(j)) = 0

system dynamics
Update of

u(j+1) = ψu(u
(j) − α(j)g

(j)
u )

control trajectory

Figure 3.4: Illustration of the gradient method.

11 In PDE constrained optimization, the applicability of Pontryagin’s maximum principle has only been

proven for specific problem classes such as semi-linear parabolic PDEs with boundary control [25].
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Line search strategies

In order to achieve a sufficiently large decrease in the cost functional (3.17a) when updating

the control trajectory u(j) in the direction of steepest descent −g(j)
u , the line search prob-

lem (3.42) is numerically solved. There are two important issues with respect to numerically

solving this scalar minimization problem. Firstly, the numerical solution has to be deter-

mined sufficiently accurate to satisfy convergence and stability conditions for the sequence

of control and state trajectories u(j) and (T (j), K(j)). Secondly, the solution of line search

problem (3.42) is accompanied by a high numerical effort since each candidate of the step

size α used for determining α(j) requires the evaluation of the cost functional (3.17a). Thus,

the PDE system esys(T,K, u
(j)) = 0 has to be numerically solved several times.

Different types of line search strategies are known in literature, see, e. g., [74, 98]. A very

simple strategy is to use a fixed step size

α(j) = const. ∀j (3.45)

in each gradient iteration j to circumvent expensive numerical computations. However, the

fixed step size has to be chosen sufficiently small to guarantee stability of Algorithm 3.1.

Thus, a slow convergence behavior will be obtained in general by which the numerical effort

in total increases despite the costless determination of the step size.

More sophisticated line search strategies solve the line search problem (3.42) approximately.

To this end, a sequence of candidates of the step size α(j) is tested. The Armijo rule is a

typical inexact line search strategy using the update rule

α(j) = ᾱ 2−l(j) (3.46)

for determining the test sequence. A commonly used stopping criteria reads

l(j) = min
{
k ∈ Z0 | J

(
T (j), u(j) − ᾱ2−kg̃(j)

u

)
≤ J

(
T (j), u(j)

)
− σ ᾱ 2−k

∥∥g̃(j)
u

∥∥2

L2(0,tf)

}
(3.47)

with the iteration index k and the parameters ᾱ > 0 and σ ∈ (0, 1) to adapt the line search

to a specific problem [74, 70]. The stopping criteria (3.47) is formulated with the projected

gradient g̃
(j)
u to take the input constraints (3.1a) into account and uses the norm

‖a‖2
L2(0,tf)

:=

∫ tf

0

a2 dt (3.48)

with a := a(t). The initial guess of the first candidate α(0) is successively reduced until the

new iterate complies with the stopping criterion (3.47). This leads to a reduction of the cost

functional in each gradient iteration j and therefore to stability of the gradient method [70].

Improved convergence properties can be achieved by applying Wolfe or Goldstein conditions,

which consider a modified version of the stopping criteria (3.47), see, for instance, [98, 70, 58].

The number of required iterations for testing the stopping criteria, however, can be very large

and may lead to an expensive line search.
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A good trade-off between an accurate determination of the step size α(j) and the related

numerical effort can be achieved by applying an adaptive line search strategy [50, 51]. Here,

the cost functional to be minimized (3.42) is evaluated at three sample points α ∈ {α1, α2, α3}
with α1 < α3 and mid-point α2 = (α1 + α3)/2. This allows one to approximate the cost

functional (3.17a) by means of a quadratic polynomial

J
(
ψu
(
u(j) − αg(j)

u

))
≈ γ(α) = c0 + c1α + c2α

2 , α ∈ [α1, α3] (3.49)

whose minimum can be solved analytically as α̂ = −c1/(2c2). The step size for updating the

control trajectory according to (3.43) can then be determined as follows

α(j) =

{
α̂ if c2 > 0 and α̂ ∈ [α1, α3]

min{J(α1), J(α3)} else
(3.50)

with min{J(α1), J(α3)} selecting the step size α1 or α3 which leads to a smaller value of the

approximated cost functional (3.49).

To track the minimum of the approximated cost functional (3.49) for forthcoming gradient

iterations, the interval [α1, α3] is adapted if the step size α(j) is close to the boundaries α1

or α3. The update of the interval reads as

[α1, α3]←


κ[α1, α3] if α̂ ≥ α3 − εα(α3 − α1) and α3 ≤ αmax

1/κ[α1, α3] if α̂ ≤ α1 + εα(α3 − α1) and α3 ≤ αmin

[α1, α3] else

(3.51)

with the adaptation factor κ > 1, the interval tolerance εα ∈ (0, 1), and the maximal and

minimal interval bounds αmax > αmin > 0, also see [51].

A further reduction of the computational effort for determining the step size α(j) can be

achieved by using an explicit line search strategy [10, 71]. This approach is motivated by

minimizing the distance between two consecutive control trajectories u(j) and u(j+1) with the

same step size α(j) and is mathematically described as

α(j) = arg min
α>0

∥∥∥ (u(j) − αg(j)
u

)
−
(
u(j−1) − αg(j−1)

u

) ∥∥∥2

L2(0,tf)
(3.52a)

= arg min
α>0

∥∥∥ (u(j) − u(j−1)
)︸ ︷︷ ︸

=:∆u(j)

−α
(
g(j)
u − g(j−1)

u

)︸ ︷︷ ︸
=:∆g

(j)
u

∥∥∥2

L2(0,tf)
. (3.52b)

The function to be minimized (3.52) is used to approximate the secant equation, similar to

quasi-Newton methods. A detailed analysis of (3.52) can be found in [10, 71] and eventually

results in the two similar rules

α(j) =

∫ tf
0

∆u(j)∆g
(j)
u dt∫ tf

0
∆g

(j)
u ∆g

(j)
u dt

and α(j) =

∫ tf
0

∆u(j),∆u(j) dt∫ tf
0

∆u(j),∆g
(j)
u dt

(3.53)
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for determining the step size α(j) in explicit form. For numerical reasons, the calculated step

size (3.53) is constrained to an interval

α(j) ← min
(
αmax,max

(
α(j), αmin

))
(3.54)

specified by maximal and minimal step sizes.

The explicit line search strategy (3.53) requires only the control trajectories (u(j), u(j−1))

and the gradients (g
(j)
u , g

(j−1)
u ) to determine the step size α(j) but no evaluations of the cost

functional (3.17a). This leads to a very efficient line search strategy. The convergence and

stability behavior of an explicit line search strategy depends on the specific problem, whereby

practical use shows very good and robust results [72, 115, 39]. The choice of which of the

two equations in (3.53) is used to calculate the step size α(j) depends on the problem.

Termination criterion

There are several choices for terminating the gradient method in Algorithm 3.1, see, e. g., [74,

21, 1]. An obvious termination criterion is to check if the change of the control trajectory

between two consecutive iterations is smaller than a specific value εu > 0. In view of the

time-dependent control trajectory, the gradient method is terminated after achieving∥∥u(j+1) − u(j)
∥∥2

L2(0,tf)

‖u(1)‖2
L2(0,tf)

≤ εu , (3.55)

whereby the norm ‖·‖2
L2(0,tf)

is specified by Equation (3.48).

A further termination criterion can be deduced from the objective of the optimization prob-

lem to minimize the cost functional (3.17a). The demand for a sufficiently large reduction of

the cost functional between two consecutive iterations can be used to terminate the gradient

method after achieving

J (j+1) − J (j)

J (1)
≤ εJ . (3.56)

In this case, the stopping criteria is specified by εJ > 0.

3.5.2 Optimization framework

The optimization framework shown in Figure 3.5 uses the software package Matlab to

implement the gradient method from Algorithm 3.1. However, the numerical solution of

the canonical equations esys(T,K, u) = 0 and eadj(p,Λ, T,K, u) = 0 in step II.i) and II.ii)

is outsourced to the FEM software Comsol Multiphysics. This makes it possible to

separate the numerical issues of the trajectory planning of electromagnetic heating systems

from the algorithmic ones. The FEM software provides the simulation results to Matlab,

which allows one to both numerically solve the line search problem (3.42) and perform the

control update (3.43) with relative ease.
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Figure 3.5: Optimization framework for solving optimization problem (3.17).

The canonical equations esys(T,K, u) = 0 and eadj(p,Λ, T,K, u) = 0 are represented in

Comsol Multiphysics by means of their weak formulations using the PhysicsBuilder

module, cf. Section 2.4.1–2.4.2. The Comsol module LiveLink for Matlab is applied

to establish a software interface between Matlab and Comsol, cf. Figure 3.5. This makes

it possible to start the forward and backward integrations of the canonical equations as well

as to provide their simulation results for the line search and control update within Matlab.

The control trajectory u(j) is written to an ASCII file at the beginning of each gradient

iteration to synchronize the workspaces of Matlab and Comsol.

The optimization framework separates the challenging task of numerically solving the canon-

ical equations from the algorithmic treatment of the optimality conditions. This allows one,

among others, to benefit from extensive modeling capabilities of the FEM software. The

enclosed CAD tools simplify the description of the geometrical setup of a specific problem,

cf. Figure 3.5. Furthermore, the FEM software offers the possibility to import geometrical

setups from third-party CAD software or from magnetic resonance imaging systems (MRI –

Magnetic Resonance Imaging).

A further advantage of the optimization framework concerns the application of state-of-the-

art FEM techniques to numerically solve the canonical equations. This also applies to the

generation of meshes for complex geometries and to the choice of suitable classes of basis and

test functions for discretizing the weak formulations of PDEs. The weak formulations can be

transformed into finite-dimensional counterparts without leading to significant discretization

errors. In addition, the FEM software provides well-developed time stepping algorithms of

explicit and implicit type to numerically solve the discretized canonical equations.

In conclusion, the primary benefit of the optimization framework consists in the interaction of

Matlab and Comsol Multiphysics to cope with the trajectory planning of electromag-

netic heating problems including complex geometries. The specification of the cost functional

allows one to handle different control tasks such as preheating for forging and thixoforming

operations or surface hardening processes in the case of induction heating. The optimization

framework also facilitates to cope with various kinds of hyperthermia therapy.
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3.6 Numerical results

The optimization of the electrical excitation of electromagnetic actuators is presented in

simulation studies for induction heating processes and hyperthermia therapy. The spatial

domains of the application examples range from axisymmetrical setups to three-dimensional

ones involving complex structures. The numerical results of the trajectory planning verify

the applicability of the optimality conditions as derived in Section 3.4.

3.6.1 Constant heat-up process of a gear wheel

The first simulation study applies the trajectory planning approach to a constant heat-up

process of a gear wheel made of steel (high tensile steel, EN steel name 34CrNiMo6) with 16

teeth, cf. Figure 3.6. The outside diameter of the gear wheel d1 = 38 mm is measured from

the tops of the teeth, its root diameter d2 = 32 mm from the base of the teeth. The inner

and outer diameter of the inductor is d3 = 44 mm and d4 = 54 mm. The spatial dimensions

result in a minimal air gap between inductor boundary and workpiece of rag = 3 mm. The

ambient air is modeled by a sphere with diameter d5 = 1 m.

The amplitude of the impressed currents within the inductor with cross section surface Ac =

2.5π · 10−5 m2 and coil windings Nc = 100 is described by the control trajectory u serving as

the optimization variable. The inductor current is bounded by [0 A, 200 A] in terms of the

input constraints (3.1a). The angular frequency of the sinusoidal excitation of the inductor

Ωc

Ωo

(a) Gear wheel and inductor (b) Detail view of gear wheel

Figure 3.6: Geometrical setup of the constant heat-up process with discretized spatial domain

of the gear wheel Ωo and inductor Ωc. The boundary layers of the gear wheel are covered

by much finer finite elements to numerically resolve the highly uneven spatial distribution

of the heat source due to distortion effects of the electromagnetic field.
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Table 3.1: Material parameters of the heat-up process of the gear wheel.

gear wheel Ωo inductor Ωc air Ωa

rel. magnetic permeability µr 200 1 1 [−]

electrical conductivity σ 5.26 · 106 102 102 [S/m]

density ρ 7.85 · 103 - - [kg/m3]

heat capacity C 460 - - [J/(kg K)]

thermal conductivity k 42 - - [W/(m K)]

heat transfer coefficient α 7.9 - - [W/(m2 K)]

emissivity of the surface ε 0.5 - - [−]

is ω = 1 kHz. The material parameters of the thermal and electromagnetic subsystem are

shown in Table 3.1. For numerical reasons, the electrical conductivity of the spatial domain

of the inductor Ωc and air Ωa is set to a value greater than zero.

The cost functional (3.17a) is specified by the Mayer and Lagrange terms (3.7). The primary

objective of the trajectory planning consists in heating up the gear wheel to the desired

temperature Td = 773 K as it is typically the case for annealing or stress relieving processes.12

The corresponding weights of the Mayer and Lagrange terms are set to q1 = 102 and q2 = 106.

The temperature of the gear wheel is bounded by T+ = 853 K. To incorporate the state

constraint T ≤ T+ for the trajectory planning, the outer penalty function in the Lagrange

term (3.7b) is weighted by q3 = 109. The control action u2 is weighted by q4 = 103. Table 3.2

gives an overview of the weights. The right hand sides of the thermal and electromagnetic

subsystem (3.17b)–(3.17e) and (3.17f)–(3.17h) are specified as follows

fΩo(T,A) = σω2

2
|A|2 in Ωo × (0, tf) (3.57a)

fΓo,N
(T ) = α (Ta − T ) + εσSB

(
T 4

a − T 4
)

on Γo,N × (0, tf) (3.57b)

fΩ(A, u) = Nc

Ac
uχΩcec − jωσA in Ω× (0, tf) (3.57c)

fΓD
(u) = 0 on ΓD × (0, tf) . (3.57d)

The geometrical setup of the gear wheel neither takes into account symmetry planes for the

thermal nor for the electromagnetic subsystem to demonstrate the ability of the optimization

framework to handle large scale problems.13 The region of interest Ω = Ωo∪Ωc∪Ωa is covered

by finite elements as shown in Figure 3.6b for a detail view of the gear wheel. The boundary

layers of the gear wheel are discretized much finer. This allows one to accurately represent

the distortion effects of the electromagnetic field such as the skin, end, and edge effect.

The numerical solution of the trajectory planning problem specified above is provided by the

optimization framework from Section 3.5. Thereby, the explicit line search strategy (3.53) is

used for updating the optimization variable u in each gradient iteration, cf. Algorithm 3.1.

The threshold of the termination criterion (3.55) is set to εu = 10−6.

12 The initial temperature of the gear wheel T0 is specified by the ambient temperature Ta = 293 K.
13 A problem setting that accounts for symmetry planes is presented in [114].
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Table 3.2: Weights of the Mayer and Lagrange term (3.7) for heating up the gear wheel.

weight objective

q1 = 102 minimization of state error (T − Td)2 in Ωo (Mayer term)

q2 = 106 minimization of state error (T − Td)2 in Ωo (Lagrange term)

q3 = 109 violation of state constraint T ≤ T+ in Ωo (Lagrange term)

q4 = 103 penalization of control action u2 in Ωc (Lagrange term)

As can be seen in Figure 3.7, the numerical solution of optimization problem (3.17) leads to

the desired heat-up of the gear wheel by accounting for the input and state constraints (3.1).

The control trajectory u harmonizes the average temperature of the gear wheel Tavg(t) with

the desired temperature Td = 773 K. Moreover, the maximum temperature of the gear

wheel Tmax(t) does not significantly violate the constraint T+ = 853 K. The relatively slow

heat-up behavior of the gear wheel, represented in Figure 3.7 by the minimum tempera-

ture Tmin(t), stems from the concentration of the heat source to boundary layers caused

by the skin effect, cf. Figure 3.8. Consequently, the dynamically slower process of heat

conduction is necessary to heat up inner domains of the gear wheel.
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Figure 3.7: Control trajectory u and minimum Tmin, average Tavg, and maximum tempera-

ture Tmax of the gear wheel. The normalized cost functional Jn and the step size α during

the gradient iterations show the fast convergence behavior of Algorithm 3.1.
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Figure 3.7 also shows the fast convergence of Algorithm 3.1 to the optimal solution by means

of the normalized cost functional

J (j)
n =

J (j)

J (1)
(3.58)

and the step size α(j) during the gradient iterations j. It can be observed that j = 10

gradient iterations are already sufficient to achieve a good control performance and that the

optimization framework is capable to deal with the large scale problem. The average required

CPU time for one gradient iteration is 19 h, whereby the canonical equations esys(T,A, u) = 0

and eadj(p,Λ, T,K, u) = 0 are discretized by 2.5 · 107 degrees of freedom within the region of

interest Ω, cf. Figure 3.6.14

Figure 3.8 shows the electromagnetic heat source of the gear wheel at the time instant t = 0 s.

The end and edge effects in combination with the skin effect cause the heat source to be

unevenly distributed along the surface layer of the gear wheel. As a result, local areas of

the workpiece tend to overheat. Nevertheless, the optimized control trajectory u guarantees

that the trajectories of the minimum, average, and maximum temperature of the gear wheel

reach the desired temperature Td as fast as possible, while complying with the formulated

input and state constraints, cf. Figure 3.7.

The uneven spatial distribution of the electromagnetic heat source results in local hot spots

of the temperature of the gear wheel as can be seen in Figure 3.9 for selected time instants

of the heat-up process. However, the trajectory planning approach adjusts the intensity of

the electromagnetic heat source in a way that the temperature of the gear wheel does not

excessively violate the state constraint (3.1b), cf. Figure 3.7. Indeed, the control trajec-

tory u adapts the intensity of the heat source to the current temperature and diffusive heat

propagation effects to heat up the gear wheel in an optimal manner.

4 · 1011 W/m3

2 · 1011 W/m3

0 W/m3

Figure 3.8: Electromagnetic heat source of the gear wheel σω2

2
|A|2 at time instant t = 0 s.

14 In this thesis, the simulation studies are carried out on an Intel Core i7-7700 processor with 3.6 GHz and

64 GB RAM.
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Figure 3.9: Temperature profiles of the gear wheel T at t ∈ {1 s, 2 s, 10 s}.

3.6.2 Surface hardening process of an axisymmetrical workpiece

The trajectory planning approach is presented in a second simulation study for the surface

hardening process from Figure 3.10. The considered scenario consists of heating up the

surface layer Ω̃o from the initial temperature T0 = 293 K to the desired temperature Td =

1023 K as homogeneously as possible. The bounds of the inductor current u and workpiece

temperature T are specified by [0 A, 30 A] and T+ = 1173 K.
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The material parameters for a workpiece made of low-carbon steel (EN steel name C18D) are

shown in Table 3.3. Similar to the heat-up process of the gear wheel, the trajectory planning

relies on the numerical solution of optimization problem (3.17). The right hand sides of the

thermal and electromagnetic subsystem (3.17b)–(3.17h) are specified by Equation (3.57).

The direction of the flow of currents within the inductor is described by eϕ = [0, 1, 0]T. Note

that the surface hardening process is modeled using an axisymmetrical setup with spatial

coordinates x = [r, ϕ, z]T.

In order to be able to heat up the surface layer without increasing the temperature of inner

domains too much, the angular frequency of the impressed currents u is set to ω = 50 kHz,

which is much higher compared to the previous constant heat-up process. In addition, the

time period of the heat-up process is shortened to tf = 6 s to alleviate the propagation of heat

from the surface layer to inner domains of the workpiece. The most important dimensions

of the workpiece are the radii r1 = 20 mm and r2 = 40 mm as well as the lengths z1 = 70 mm

and z2 = 50 mm. The depth of the surface layer is δ = 4 mm. The electromagnetic heat

source is generated by six inductors with spatial domain Ωc = ∪Ωcj , j ∈ {1, 2, . . . , 6}.

An obvious choice for the actuator configuration to generate the electromagnetic heat source

predominantly within the surface layer is to place the inductors equidistantly along the

corresponding segment in the direction of z, cf. Figure 3.10a. The air gap between the

boundary of the individual inductors and workpiece is chosen as rag = 5 mm. The cross

Ωo

Ωa

Γ

r

z

ϕ

r1

r2

z1

z2

Ω̃o

Ωc1

Ωc2

Ωc6

rag

(a) Geometrical setup (not to scale) (b) Meshed spatial domain (detail view)

Figure 3.10: Geometrical setup of the surface hardening process with axisymmetrical work-

piece Ωo and inductors Ωcj , j ∈ {1, 2, . . . , 6}. The mesh as used for numerically solving the

optimality conditions is adapted to the skin, end, and edge effects.
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Table 3.3: Material parameters of the surface hardening process.

workpiece Ωo inductor Ωc air Ωa

rel. magnetic permeability µr 100 1 1 [−]

electrical conductivity σ 6.29 · 106 0 0 [S/m]

density ρ 7.78 · 103 - - [kg/m3]

heat capacity C 486 - - [J/(kg K)]

thermal conductivity k 51.9 - - [W/(m K)]

heat transfer coefficient α 1.54 - - [W/(m2 K)]

emissivity of the surface ε 0.75 - - [−]

section surface and the coil windings of each inductor is Ac = 7.52π 10−6 m2 and Nc = 75.

The ambient air is described by a rectangle with length r = 1 m and height h = 2 m.

Figure 3.10b shows a detail view of the discretized spatial domain Ω as used for numerically

solving optimization problem (3.17).

The optimization framework from Figure 3.5 uses the adaptive line search strategy to ap-

proximately solve the line search problem (3.42), cf. Section 3.5.1. The cost functional of

optimization problem (3.17) is specified by the Mayer and Lagrange terms (3.7) with the

weights shown in Table 3.4. The gradient method uses termination criterion (3.55) with

bound εu = 10−9 to quit Algorithm 3.1.

Table 3.4: Weights of the Mayer and Lagrange terms (3.7) for the surface hardening process.

weight objective

q1 = 101 minimiz. of state error (T − Td)2 in surface layer Ω̃o (Mayer term)

q2 = 104 minimiz. of state error (T − Td)2 in surface layer Ω̃o (Lagrange term)

q3 = 108 violation of state constraint T ≤ T+ in Ωo (Lagrange term)

q4 = 101 penalization of control action u2 in Ωc (Lagrange term)

The optimized control trajectory u and the resulting trajectories of the minimum T̃min(t),

average T̃avg(t), and maximum temperature T̃max(t) within the surface layer Ω̃o are shown

in Figure 3.11. The difference between the desired temperature Td and the temperature in

the surface layer Ω̃o is minimized in a quadratic manner. Moreover, the optimized control

trajectory ensures the compliance of the state constraint T ≤ T+ with bound T+ = 1173 K

according to the outer penalty function approach.

Figure 3.11 also shows the directions of steepest descent −g(j)
u during the gradient iterations.

With respect to an optimal solution, the gradient g
(j)
u converges over the entire time interval

to zero except for the first 2.4 s where the control trajectory u hits its upper bound, cf. the

conditional expression (3.40). The fast convergence of Algorithm 3.1 to the optimal solution

is illustrated in Figure 3.11 by means of the normalized cost functional (3.58) during the
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Figure 3.11: Control trajectory u that leads to an optimal heat-up behavior of the surface

layer with minimum T̃min, average T̃avg, and maximum temperature T̃max. The normalized

cost functional Jn reveals the fast convergence behavior of Algorithm 3.1.

gradient iterations. Thereby, already j = 16 gradient iterations are sufficient to achieve

a good control performance. Note that the number of gradient iterations can be reduced

to j = 10 without downgrading the control performance too much.

The formulated state constraint T ≤ T+ in combination with the inhomogeneous distribu-

tion of the electromagnetic heat source prevents a complete heat-up of the surface layer to

the desired temperature Td = 1023 K, cf. Figure 3.11. However, the intensity of the electro-

magnetic heat source is continuously decreased by the control trajectory u to ensure that the

heat transfer due to diffusion heats up the surface layer as good as possible to the desired

temperature without violating the state constraint too much.

The very pronounced end and edge effects leading to the inhomogeneous distribution of the

electromagnetic heat source can be observed in the temperature profiles of the workpiece

in Figure 3.12. Especially the temperature profile at the time instant t = 2 s reveals the

highly non-uniform heat source within the surface layer by means of pronounced hot spots

of the temperature. The temperature profiles also reflect the optimal heat-up behavior of

the surface layer to the desired temperature Td = 1023 K. The inevitable heat-up of inner
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Figure 3.12: Temperature profiles T during the surface hardening process satisfying the state

constraint despite the pronounced end and edge effects leading to local hot spots.

domains of the workpiece is less pronounced and does not appear significantly until the very

end of the heat-up process. The local hot spots of the temperature at the end and edge

area of the surface layer are permanently kept in the range of the state constraint, also see

Figure 3.11. This clarifies the optimal control strategy to heat up the surface layer as fast

as possible.

In conclusion, the optimization framework from Section 3.5.2 provides optimal trajectories

for the surface hardening process by taking the formulated state and input constraints into

account. The 2D model in cylindrical coordinates allows for a numerical efficient solution

of the associated optimization problem, whereby the canonical equations are discretized

by 2.74 · 105 degrees of freedom within the region of interest Ω, cf. Figure 3.10b. The average

required CPU time for one gradient iteration is approximately 20 min.

3.6.3 Microwave ablation for interstitial hyperthermia therapy

The optimization-based trajectory planning approach is also demonstrated for interstitial

hyperthermia therapy. The simulation scenario in the following lines concerns MWA for

a tumor Ωt that is located in the region of the liver Ωh, cf. Figure 3.2a and 3.13a. A

serious damage of the tumor due to temperature-dependent necrosis effects is enforced by the

electromagnetic heat source arising from an electrode with spatial domain Ωc. The degree

of freedom for the trajectory planning is the boundary controlled voltage source u of the

electrode. The problem settings of hyperthermia therapy correspond to [99, 112]. Numerical

results for the optimal trajectory planning in the case of RFA are presented in [112].
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Figure 3.13: MWA setup with tumor Ωt and liver Ωh. The electrode for generating the heat

source consists of the dielectric Ωc,d, the catheter Ωc,c, and the air gap Ωc,a.

The electromagnetic and thermal phenomena of MWA are taken into account in the spatial

domain Ω = Ωt ∪ Ωh. A sufficiently precise prediction of the system dynamics is obtained

by means of the PDE system (3.10) and the material parameters shown in Table 3.5. The

differential operators defined in Section 3.3.1 are used to formulate the corresponding opti-

mization problem. The angular frequency of MWA is set to ω = 2π ·2.45 GHz, see, e. g., [44].

The control trajectory u is bounded by [0 V, 40 V].

Table 3.5: Material parameters of the thermal and electromagnetic subsystem of MWA.

dielectric air gap catheter tumor, liver

Ωc,d Ωc,a Ωc,c Ωt ∪ Ωh

rel. magnetic permeability µr 1 1 1 1 -

rel. electric permittivity εr 2.03 1 2.6 43.03 -

electrical conductivity σ 0 1 0 1.69 S/m

density (of blood) ρ/ρb - - - 1.1/1.0 · 103 kg/m3

heat capacity (of blood) C/Cb - - - 3.5/3.6 · 103 J/(kg K)

thermal conductivity k - - - 0.56 W/(m K)

perfusion rate ωb - - - 3.6 · 10−3 1/s
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The axisymmetrical setup of MWA is shown in Figure 3.13a. The electrode is sticked directly

into the spatial domain of the tumor assuming spherical shape and a diameter of 3 cm. The

discretization of the spatial domain around the air gap of the electrode by finite elements is

shown in Figure 3.13b. The fineness of the mesh ensures an accurate representation of the

propagation effects of the electromagnetic field in the electrode and of the electromagnetic

heat source in the tumor.

To achieve a complete destruction of the tumor, its temperature has to exceed Td = 333 K

for a certain time interval [43].15 For medical safety reasons, however, the temperature of

the tumor and healthy tissue must not exceed T+ = 373 K, cf., e. g., [38, 43]. A suitable

representation of the objective of heating up the tumor within optimization problem (3.17) is

achieved by a set-point transition from the initial temperature T0 to a stationary temperature

profile that minimizes the quadratic error (T − Td)2 within the tumor.16 To this end, the

quadratic error is penalized in the Lagrange term l(T ) and Mayer term V (T (·, tf)) of cost

functional (3.14). The corresponding weights are q1 = 108 and q2 = 108. The temperature

constraint is taken into account by means of the outer penalty function in the Lagrange term

l(T ). The corresponding weight is set to q3 = 109, cf. Equation (3.14). Table 3.6 shows the

weights of the Mayer and Lagrange terms (3.14).

To be able to perform the cancer treatment for any time periods, the trajectory planning

approach for MWA identifies in a first step appropriate stationary set points (ud, Td(x)). To

this end, the stationary version of optimization problem (3.17) is numerically solved using

the cost functional

J(u) =

∫
Ω

q2

2
χΩt (T − Td)2 +

q3

2
χΩo max

(
0, T − T+

)2
dx (3.59)

representing the objectives of the trajectory planning as discussed above.17 Accordingly,

the numerical solution of this optimization problem reveals optimal stationary set points

(ud, Td(x)) that can be used in a second step to specify cost functional (3.14) for solving the

instationary problem (3.17).

Table 3.6: Weights of the Mayer and Lagrange terms (3.14) for hyperthermia therapy.

weight objective

q1 = 108 minimiz. of state error (T − Td)2 in tumor Ωt (Mayer term)

q2 = 108 minimiz. of state error (T − Td)2 in tumor Ωt (Lagrange term)

q3 = 109 violation of state constraint T ≤ T+ in Ωo (Lagrange term)

q4 = 102 penalization of control action (u− ud)2 on Γc (Lagrange term)

15 The treatment time of MWA varies according to whether metastases may be present or not. Generally

speaking, the oncologist estimates the treatment time as a rule of thumb.
16 The initial temperature of the tumor and healthy tissue is the temperature of blood Tb = 310 K.
17 Note that the temperature T does not depend on time t but only on the spatial coordinate x due to the

stationary formulation of the associated optimization problem.
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Both the stationary and instationary version of optimization problem (3.17) are numerically

solved by means of the optimization framework from Section 3.5. Similar to Section 3.6.2,

the optimization framework uses the adaptive line search strategy for updating the control

trajectory u in each gradient iteration. The gradient method of Algorithm 3.1 is terminated

after fulfilling condition (3.56) with εJ = 10−6.

The control trajectory u resulting from the numerical solution of the instationary version of

optimization problem (3.17) leads to an optimal heat-up behavior of the tumor as shown in

Figure 3.14. The control trajectory exhibits an identical structure as the one in the case of

induction heating and can be divided into three phases. During the first minute, the control

trajectory u maximizes the intensity of the electromagnetic heat source by remaining at its

upper bound u+. Subsequently, the control trajectory decreases continuously within the time

interval (1 min, 6 min) to generate only as much heat as is permissible to comply with the

state constraint T ≤ T+ with bound T+ = 373 K, cf. the trajectories of the minimum Tmin(t),

average Tavg(t), and maximum temperature Tmax(t) of the tumor in Figure 3.14.

The temperature profiles at the time instants t ∈ {1 min, 2 min, 8 min} in Figure 3.15 demon-

strate the optimal heat-up behavior of the tumor to the desired temperature profile Td(x).

Since the electromagnetic heat source is mainly confined to the region around the air gap

of the electrode, the rather slow heat transfer due to diffusion is required to heat-up the

outer region of the tumor. This fact is also reflected in the sharp decrease of the control

trajectory u after t = 1 min and in the moderate increase of the average and minimum

temperature in contrast to the rapid increase of the maximum one, cf. Figure 3.14.

The therapeutic success of MWA can be assessed by means of the temperature of abla-

tion Tabl = 315 K. Instead of requiring that the tumor is heated up to Td = 333 K in total,

the necrosis effects that seriously damage the tumor also arise if the tumor temperature

exceeds the threshold Tabl, see, e. g., [43]. To guarantee a sufficiently large destruction of
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Figure 3.14: Optimal control trajectory u to heat up the tumor to the desired set-point Td(x).

The minimum Tmin, average Tavg, and maximum temperature Tmax of the tumor minimize

their distance to Td(x) but do not significantly exceed the constraint T+.
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T (x, t = 1 min) T (x, t = 2 min) T (x, t = 8 min)

310 K

330 K

350 K

370 K

T = 315 K

Figure 3.15: Temperature profiles of the tumor and surrounding liver T with isoline T =

315 K at the time instants t ∈ {1 min, 2 min, 8 min}.

the tumor for Tabl � Td, the treatment time tf has to be increased. The successful cancer

therapy becomes clear by considering the stationary temperature profile at t = 8 min and

the isoline Tabl = 315 K that completely encloses the tumor in Figure 3.15.

3.7 Conclusions

This chapter discusses the formulation and numerical solution of optimization problems for

planning trajectories of various kinds of electromagnetic heating systems. The control tasks

of typical application examples such as induction heating and hyperthermia therapy are

represented by cost functionals which are minimized subject to the electromagnetic and

thermal subsystems from Chapter 2. The optimality conditions are derived by the formal

Lagrangian technique in terms of an FOTD approach.

Special emphasis is paid to adapt the trajectory planning approach to general electromag-

netic heating systems. To this end, use is made of the structure of the optimality conditions

that possess unconstrained state and adjoint state variables, as well as canonical equations

with separated initial and final time conditions. Keeping in mind that the gradient algorithm

relies on simple forward and backward integrations of the canonical equations, the incorpo-
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ration of FEM software for the trajectory planning is favorable. An optimization framework

is developed that picks up this idea and closely couples optimization algorithms in Matlab

and FEM-based solution techniques from the software package Comsol Multiphysics.

This offers an elegant way to separate the methodological and numerical issues from each

other when optimizing the excitation of electromagnetic actuators. The applicability and

accuracy of the trajectory planning approach is illustrated for induction heating processes

and hyperthermia therapy.



Chapter 4

Optimal position and shape of actuators

Besides the adjustment of the intensity of the electromagnetic heat source by means of

impressed currents or voltages within the actuator as addressed in the previous chapter, the

position and shape of the actuator constitute further important degrees of freedom with

respect to an optimal trajectory planning. The specific choice of the actuator configuration

(e. g. inductor shape or electrode position) allows one to influence the spatial distribution of

the heat source within the object to be heated. The control performance of electromagnetic

heating systems can benefit from this additional degree of freedom and, for instance, the

workpiece or tumor from the previous chapter can be heated up more homogeneously.

As the optimal actuator configuration depends on its electrical excitation, a simultaneous

treatment of both problems is essential. The extended trajectory planning approach pro-

posed in this chapter attacks the coupled problem by considering a joined optimization

problem. The optimality conditions are derived by means of the adjoint-based sensitivity

analysis in conjunction with the formal Lagrangian technique. Analogous to Chapter 3, the

optimality conditions are numerically solved by considering a close interaction of state-of-

the-art FEM software and a tailored gradient method.

4.1 Problem formulation

The optimization of the actuator configuration is used to tailor the spatial distribution of the

heat source to the desired heat-up behavior of the object to be heated. This means that the

diverse objectives of electromagnetic heating applications such as homogeneous heating of a

gear wheel or local overheating of a tumor can be taken more effectively into account by the

trajectory planning. In this thesis, the optimization of the actuator configuration is exem-

plified for the surface hardening processes shown in Figure 4.1 and introduced in Chapter 3.

The problem of an optimal positioning of N inductors is illustrated in Figure 4.1a, whereas

Figure 4.1b addresses the problem of optimizing the inductor shape. The primary objective

of both scenarios is to heat up the surface layer Ω̃o as homogeneously as possible to the

desired temperature Td. Further objectives concern the prevention of an excessive heat-up

of inner domains of the workpiece and the compliance of temperature constraints to suppress

undesired metallurgical effects during the heat-up process [32].

85
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(a) Scenario for optimal inductor positions
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Figure 4.1: Geometrical setup for optimizing a) the position of N inductors and b) the

shape of an inductor (not to scale). The degrees of freedom to manipulate the actuator

configuration are the tuples θj = (θj,r, θj,z)
T, j ∈ {1, 2, . . . , N}.

4.1.1 Governing equations

The surface hardening processes from Figure 4.1 are mathematically described using the

coupled PDE system (3.2). The state variables are the temperature T and the magnetic

vector potential A. The corresponding geometrical setups are of axisymmetrical type with

spatial coordinates x = [r, ϕ, z]T, whereby the region of interest Ω = Ωo ∪ Ωc(θ) ∪ Ωa

encompasses the workpiece Ωo, the inductor Ωc(θ), and the ambient air Ωa. The surface

layer to be hardened is denoted by Ω̃o ⊂ Ωo.

To obtain the degrees of freedom for optimizing the actuator configuration, the spatial do-

main of the inductor is defined as a function of the parameter vector θ = [θ1
T , θ2

T , . . . , θN
T]

T

including the tuples

θj =

(
θj,r
θj,z

)
, j ∈ {1, 2, . . . , N} . (4.1)

A second degree of freedom for the trajectory planning is the time-dependent control tra-

jectory u, which allows to adjust besides the spatial distribution of the electromagnetic heat

source also its intensity. Thus, the phasor for modeling the impressed inductor currents

Jimp(u; θ) = Nc

Ac
uχΩc(θ)eϕ in Ω× (0, tf) (4.2)

includes both optimization variables u and θ. The phasor Jimp(u; θ) explicitly depends on the

control trajectory u and implicitly on the parameter vector θ in view of the parametrization

of the actuator configuration with spatial domain Ωc(θ).
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4.1.2 Parametrization of the position and shape of the actuator

This section presents suitable parametrization techniques to provide the optimization vari-

ables for optimizing the position and shape of electromagnetic actuators.1 The optimization

variables related to the positions of the N inductors from Figure 4.1a are the parameters

θ = [θ1, θ2, . . . , θN ]T . (4.3)

Further variables of the actuator configuration such as the diameter of inductors or the

number of coil windings can be optimized by extending the parameter vector θ.

The actuator configuration of the second scenario where the inductor shape is optimized

is specified as follows. Suitable parametrization techniques are applied to mathematically

describe the inductor contour Γc(θ), as shown in Figure 4.1b. The so-called discrete approach

is one possible option and linearly interpolates between two consecutive tuples (θj, θj+1), cf.

Equation (4.1). In this case, the optimization variables are all elements of the tuples. While

this parametrization technique is easy to implement, the required number of optimization

variables is generally large to achieve a smooth contour Γc(θ). This is especially true for

segments of Γc(θ) involving sharp edges or curvatures [104].

A more appropriate approach for parameterizing the inductor contour Γc(θ) relies on piece-

wise polynomial functions [121]. To this end, the contour of the inductor is covered by n

connected subintervals

Γc(θ) =
n∑
j=0

Nj,p(ξ)

(
θj,r
θj,z

)
, a ≤ ξ ≤ b , (4.4)

whereby the basis functions Nj,p(ξ) of degree p ensure a smooth parametrization.2 The j-th

basis function is defined on the subinterval [ξj, ξj+1) with knots ξj, non-periodic knot vector

X = [ξ0 = a, ξ1, . . . , ξj, . . . , ξm = b]T , (4.5)

and m ≥ n. The tuples θj, also referred to as control points, have a local influence on the

inductor contour Γc(θ). In order to reduce the number of control points, respectively the

number of optimization variables, the length of the n subintervals can be varied depending

on both its expected and required smoothness.

In literature, there are many methods such as spline interpolation, Bézier approximation, or

B-spline techniques to define the basis functions Nj,p(ξ), also see [121, 104]. For a sufficiently

smooth parametrization of the inductor contour Γc(θ), a B-spline approximation with the

basis functions defined by the recursive formula

Nj,0(ξ) =

{
1 if ξj ≤ ξ ≤ ξj+1

0 else
(4.6a)

Nj,p(ξ) =
ξ − ξj
ξj+p − ξj

Nj,p−1(ξ) +
ξj+p+1 − ξ
ξj+p+1 − ξj+1

Nj,p−1(ξ) (4.6b)

1 The parametrization techniques are universally applicable but are directly applied to the surface hard-

ening processes from Figure 4.1.
2 The tuple θ0 is used to close the curve Γc(θ) by setting θ0 = θ1.
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is proposed. The degree of the basis functions p allows to influence the smoothness of the in-

ductor contour Γc(θ) as it has continuous derivatives up to the order of p−1, cf. Equation (4.4)

and (4.6). A more detailed discussion of B-spline parametrization techniques including mod-

ified approaches such as non-uniform rational B-splines (NURBS – Non-Uniform Rational

B-Splines) can be found, for instance, in [121, 104].

Similar to the optimization of the inductor positions, the parameter vector (4.3) summarizes

the optimization variables for optimizing the inductor shape. Generally, the optimization

variables θ comprise all control points (θj,r, θj,z) that affect the B-spline basis functions

Nj,p(ξ), cf. Equation (4.4). In order to reduce the number of optimization variables, some of

the control points can be assumed to be constant.

4.1.3 Formulation of a coupled optimization problem

The trajectory planning approach uses the optimization variables (u, θ) to adjust the inten-

sity and spatial distribution of the electromagnetic heat source. Thereby, the constraints

u(t) ∈ Uad : = {u(t) ∈ R |u− ≤ u(t) ≤ u+} (4.7a)

θ ∈ θad : = {θ ∈ RN | θ− ≤ θ ≤ θ+} (4.7b)

with the minimal and maximal allowable inductor currents (u−, u+) and the admissible

distance between actuator and object specified by (θ−, θ+) have to be taken into account.

The temperature constraint

T (x, t)− T+ ≤ 0 in Ωo × (0, tf) (4.8)

prevents transformation processes of the crystalline structure of the object.

The cost functional for incorporating the objectives of the surface hardening processes reads

J(u; θ) =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T, u; θ) dxdt (4.9)

and exhibits a similar structure to its counterpart in Section 3.1, cf. Equation (3.6). The

Mayer term V (T (·, tf)) and the Lagrange term l(T, u; θ) are specified as follows

V (T (·, tf)) =
q1

2
χΩd

(T (·, tf)− Td)2 (4.10a)

l(T, u; θ) =
q2

2
χΩd

(T − Td)2 +
q3

2
χΩo max

(
0, T − T+

)2
+
q4

2
χΩc(θ)u

2

+
q5

2
χΩi

(T − T0)2 (4.10b)

and penalize the quadratic error (T − Td)2 with weights (q1, q2) ≥ 0 on the surface Ωd = Ω̃o.

The Lagrange term (4.10b) is also used to weakly incorporate the state constraint (4.8) in

terms of an outer penalty function approach. The severity of this part is influenced by the

weight q3 ≥ 0 and allows to specify the tolerable violation of the state constraint compared
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to the primary objectives with weights (q1, q2). The third part of the Lagrange term weights

the control action u2 with the parameter q4 ≥ 0. A more detailed discussion about the Mayer

term and the above-mentioned parts of the Lagrange term follows from Section 3.1.3.

The last part of the Lagrange term (4.10b) accounts for the objective of a surface hard-

ening process to prevent the heat-up of inner domains of the workpiece. To this end, the

parameter q5 ≥ 0 weights the quadratic error (T − T0)2 on the spatial domain

Ωi = Ωo \ Ω̃o (4.11)

encompassing the workpiece Ωo but not the surface layer Ω̃o. The degree of freedom to adapt

the spatial distribution of the electromagnetic heat source by the actuator configuration

facilitates to realize the objective of preventing the heat-up of inner domains of the workpiece.

Note that this is hardly viable for scenarios where only the electrical excitation of the actuator

constitutes the optimization variable. However, the weight q5 has to be chosen sufficiently

small compared to q1 and q2 to ensure that the primary objective of heating up the surface

layer dominates the overall cost functional.

The cost functional (4.9) and the Mayer and Lagrange terms (4.10) are used to formulate

the PDE constrained optimization problem

min
u(·)∈Uad
θ∈θad

J(u; θ) =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T, u; θ) dxdt (4.12a)

s.t. e∇, t (ρC, T )− e∆ (k, T ) = fΩo(T,K) in Ωo × (0, tf) (4.12b)

e∇, x (k, T ) = fΓo,N
(T ) on Γo,N × (0, tf) (4.12c)

T = fΓo,D
on Γo,D × (0, tf) (4.12d)

T (·, 0) = T0 in Ωo at t = 0 (4.12e)

e∇×,∇× (µ−1, K) = fΩ(K, u; θ) in Ω× (0, tf) (4.12f)

e∇× (µ−1, K) = fΓN
(K, u) on ΓN × (0, tf) (4.12g)

e× (K) = fΓD
(u) on ΓD × (0, tf) (4.12h)

to cope with the simultaneous optimization of the actuator configuration and electrical exci-

tation. The optimization problem is formulated using the differential operators (3.15)–(3.16)

and the state variable of the electromagnetic subsystem K ∈ {A,E} to address various kinds

of electromagnetic heating systems. The right hand sides of the thermal and electromagnetic

subsystem (4.12b)–(4.12e) and (4.12f)–(4.12h) allows one to specify the system dynamics of

a particular problem. The problem considered in these lines is described by

fΩo(T,A) = σω2

2
|A|2 in Ωo × (0, tf) (4.13a)

fΓo,N
(T ) = α (Ta − T ) + εσSB

(
T 4

a − T 4
)

on Γo,N × (0, tf) (4.13b)

fΩ(A, u; θ) = Nc

Ac
uχΩc(θ)eϕ − jωσA in Ω× (0, tf) (4.13c)

fΓD
(u) = 0 on ΓD × (0, tf) , (4.13d)

also see Section 3.3.
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4.2 Approach for handling the coupled

optimization problem

The optimality conditions of optimization problem (4.12) rely on the analysis of the La-

grangian L := L(T,K, u, p,Λ; θ). Its definition is based on the cost functional (4.12a) and

the adjoined PDE system (4.12b)–(4.12h) and reads as

L =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T, u; θ) dxdt

+

∫∫
Ωo×(0,tf)

p [e∇, t (ρC, T )− e∆ (k, T )− fΩo(T,K)] dxdt

+

∫∫
Γo,N×(0,tf)

p
[
e∇, x (k, T )− fΓo,N

(T )
]

dxdt+

∫∫
Γo,D×(0,tf)

p
[
T − fΓo,D

]
dxdt

+

∫∫
Ω×(0,tf)

Λ ·
[
e∇×,∇× (µ−1, K)− fΩ(K, u; θ)

]
dxdt

+

∫∫
ΓN×(0,tf)

Λ ·
[
fΓN

(K, u)− e∇× (µ−1, K)
]

dxdt+

∫∫
ΓD×(0,tf)

Λ · [e× (K)− fΓD
(u)] dxdt (4.14)

with the adjoint states p(x, t) and Λ(x; t), cf. Section 3.4. The optimization variables θ only

arise implicitly within the Lagrangian L in view of its influence on the position and shape

of the actuator Ωc(θ). The implicit time dependency of the adjoint state Λ(x; t) is due to

the time-harmonic formulation of the electromagnetic subsystem (4.12f)–(4.12h).

The optimality conditions of optimization problem (4.12) are derived separately for optimiz-

ing the actuator configuration and excitation. In a first step, the adjoint-based sensitivity

analysis is applied to optimization problem (4.12). Thereby, the variational inequality

∇θjL :=
dL
dθj

∣∣∣∣
y∗

(
θj − θ∗j

)
≥ 0 ∀θj ∈ θad (4.15)

is interpreted as a necessary optimality condition, whereby y∗ = (T ∗, K∗, u∗, θ∗, p∗,Λ∗) de-

notes the optimal solution, see Section 4.3. The second problem, i. e., the optimal excitation

of the actuator, relies on the definition of the directional derivatives

∂L
∂T

∣∣∣∣
y∗
hT = 0 ∀hT (4.16a)

∂L
∂K

∣∣∣∣
y∗
·HK = 0 ∀HK (4.16b)

∂L
∂u

∣∣∣∣
y∗
hu ≥ 0 ∀u ∈ Uad , (4.16c)

which are analyzed in Section 4.4 by means of the formal Lagrangian technique as discussed

in detail in Chapter 3. The optimality systems deduced from Equation (4.15) and (4.16) are

combined in Section 4.5 to facilitate a holistic optimization approach.
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4.3 Optimality conditions for optimal

actuator configuration

The adjoint-based sensitivity analysis, see, for instance, [79, 128, 18, 86], relates an optimal

actuator configuration to the variational inequality (4.15), whereby the total differential

∇θjL =
dL
dθj

∣∣∣∣
y∗

, j ∈ {1, 2, . . . , N} (4.17)

reflect the influence of an optimization variable θj on both the cost functional (4.12a) and the

systems dynamics (4.12b)–(4.12h). In combination with the geometrical meaning of an opti-

mization variable θj in terms of its direction in the spatial coordinate r or z, Equation (4.17)

constitutes geometrical gradients of the cost functional with respect to θ.

The crucial point of a solely implicit dependency of the Lagrangian L with respect to the

optimization variables θ is tackled by means of the state sensitivities

Tθj =
∂T (x, t; θ)

∂θj
(4.18a)

Kθj =
∂K(x; t, θ)

∂θj
, j ∈ {1, 2, . . . , N} . (4.18b)

The state sensitivities Tθj := Tθj(x, t) and Kθj := Kθj(x; t) represent the impact of a variation

of the optimization variable θj on the state variables (T,K). In what follows, the evaluation

of the variational inequality (4.15) and its subsequent analysis is presented. It is shown that

the formulation of an optimality system comprising an adjoint PDE system, an adjoint ODE

system, and a gradient condition ensures the validity of the variational inequality (4.17).

4.3.1 Adjoint PDE system

The handling of temporal and spatial operators involved in the Lagrangian (4.14) consti-

tutes a major challenge when analysing the gradients (4.17). However, this problem can be

tackled according to the formal Lagrangian technique by treating temporal and spatial op-

erators formally, cf. the discussion in Section 1.3.3. After substituting the Lagrangian (4.14)

into (4.15), the evaluation of the total differential yields

∇θjL =

∫
Ω

∂TV (T (·, tf))|y∗ Tθj(·, tf) dx+

∫∫
Ω×(0,tf)

∂T l(T, u; θ)|y∗ Tθj + ∂θj l(T, u; θ)
∣∣
y∗

dxdt

+

∫∫
Ωo×(0,tf)

p∗
[
e∇, t (ρC, Tθj)− e∆ (k, Tθj)− ∂TfΩo(T,K)|y∗ Tθj − ∂KfΩo(T,K)|y∗ ·Kθj

]
dxdt

+

∫∫
Γo,N×(0,tf)

p∗
[
e∇, x (k, Tθj)− ∂TfΓo,N

(T )
∣∣
y∗
Tθj

]
dxdt+

∫∫
Γo,D×(0,tf)

p∗Tθj dxdt
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+

∫∫
Ω×(0,tf)

Λ∗ ·
[
e∇×,∇× (µ−1, Kθj)− ∂KfΩ(K, u; θ)|y∗ ·Kθj − ∂θjfΩ(K, u; θ)

∣∣
y∗

]
dxdt

+

∫∫
ΓN×(0,tf)

Λ∗ ·
[
∂KfΓN

(K, u)|y∗ ·Kθj − e∇× (µ−1, Kθj)
]

dxdt+

∫∫
ΓD×(0,tf)

Λ∗ · e× (Kθj) dxdt .

(4.19)

Thereby, the arguments of the temporal and spatial operators swap from the state vari-

ables (T,K) to the state sensitivities (Tθj , Kθj), see Equation (3.25) and (3.31) for handling

the partial derivatives of the temporal and spatial operators (3.15)–(3.16) with respect to

the optimization variables θ. The state sensitivities (4.18) are used to deal with the total

differential of the variational inequality (4.15) with respect to θ.

Reformulation of the gradient equation

The gradients (4.19) depend on both the unknown state sensitives (Tθj , Kθj) and the yet un-

known adjoint states (p,Λ). Analogously to the formal Lagrangian technique in Chapter 3,

the parts of (4.19) with sensitivities (Tθj , Kθj) that are subject to temporal or spatial deriva-

tives are reformulated by means of integral identities. The basis for this reformulation step

is provided in Section 3.4.1–3.4.2. The temporal derivative of the state sensitivity Tθj in the

first part of the second line of Equation (4.19) can be shifted to the adjoint state p using the

formula of partial integration (3.26). The application of Green’s second identity (3.27) to

the second part of the second line of (4.19) shifts the Laplacian from the state sensitivity Tθj
to the adjoint state p. This also cancels out the first part of the third line of (4.19).

To shift the double curl operator from the state sensitivity Kθj to the adjoint state Λ within

the first part of the fourth line of (4.19), the vector analogue of Green’s second identity (3.34)

is applied. In summary, the integral identities (3.26), (3.27), and (3.34) provide a suitable

basis to reformulate Equation (4.19) as the equivalent counterpart

∇θjL =

∫∫
Ω×(0,tf)

∂θj l(T, u; θ)
∣∣
y∗
− ∂θjfΩ(K, u; θ)

∣∣
y∗
· Λ∗ dxdt

+

∫∫
Ωo×(0,tf)

[
−e∇, t (ρC, p∗)− e∆ (k, p∗)− ∂TfΩo(T,K)|y∗ p

∗ + ∂T l(T, u; θ)|y∗
]
Tθj dxdt

+

∫∫
Γo,N×(0,tf)

[
e∇, x (k, p∗)− ∂TfΓo,N

(T )
∣∣
y∗
p∗
]
Tθj dxdt+

∫∫
Γo,D×(0,tf)

p∗Tθj dxdt

+

∫
Ωo

[
ρCp∗(·, tf) + ∂TV (T (·, tf))|y∗

]
Tθj(·, tf) dx
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+

∫∫
Ω×(0,tf)

[
e∇×,∇× (µ−1,Λ∗)− ∂KfΩ(K, u; θ)|y∗ · Λ

∗ − χΩop
∗ ∂KfΩo(T,K)|y∗

]
·Kθj dxdt

+

∫∫
ΓN×(0,tf)

[
∂KfΓN

(K, u)|y∗ · Λ
∗ − e∇× (µ−1,Λ∗)

]
·Kθj dxdt−

∫∫
ΓD×(0,tf)

e× (Λ∗) ·Kθj dxdt .

(4.20)

Formulation of an adjoint PDE system

The variational inequality (4.15) with the reformulated gradients (4.20) contains state sen-

sitivities (Tθj , Kθj) that are separated from the adjoint states (p,Λ). This allows one to

formulate the coupled PDE system

e∇, t (ρC, p∗) + e∆ (k, p∗) = ∂T l(T, u; θ)|y∗ − ∂TfΩo(T,K)|y∗ p
∗ in Ωo × (0, tf) (4.21a)

e∇, x (k, p∗) = ∂TfΓo,N
(T )
∣∣
y∗
p∗ on Γo,N × (0, tf) (4.21b)

p∗ = 0 on Γo,D × (0, tf) (4.21c)

ρCp∗(·, tf) = − ∂TV (T (·, tf))|y∗ in Ωo at t = tf (4.21d)

e∇×,∇× (µ−1,Λ∗)− ∂KfΩ(K, u; θ)|y∗ · Λ
∗ = χΩop

∗ ∂KfΩo(T,K)|y∗ in Ω× (0, tf) (4.21e)

e∇× (µ−1,Λ∗) = ∂KfΓN
(K, u)|y∗ · Λ

∗ on ΓN × (0, tf) (4.21f)

e× (Λ∗) = 0 on ΓD × (0, tf) . (4.21g)

It is postulated that an optimal solution y∗ complies with the adjoint dynamics (4.21) to get

rid of the state sensitivities (Tθj , Kθj) within the variational inequality (4.15), respectively

within the gradients (4.20). The adjoint subsystem (4.21a)–(4.21d) ensures that the second,

third, and fourth line of the gradient equation (4.20) vanish in a distributional manner. The

last two lines are eliminated by the adjoint subsystem (4.21e)–(4.21g). Note that the adjoint

PDE system (4.21) avoids the necessity to calculate the state sensitivities (Tθj , Kθj) for each

optimization parameter θj using finite difference schemes.

4.3.2 Adjoint ODE system

The formulation of the adjoint PDE system (4.21) simplifies Equation (4.20) to

∇θjL =

∫∫
Ω×(0,tf)

∂θj l(T, u; θ)
∣∣
y∗
− ∂θjfΩ(K, u; θ)

∣∣
y∗
· Λ∗ dxdt (4.22)

that can be used for evaluating the gradients ∇θj L without numerically solving the state

sensitivities (Tθj , Kθj), cf. Equation (4.20). The integral equation (4.22) can also be stated

as the adjoint ODE system

ṡ∗θj =

∫
Ω

∂θjfΩ(K, u; θ)
∣∣
y∗
· Λ∗ − ∂θj l(T, u; θ)

∣∣
y∗

dx , s∗θj(tf) = 0 , (4.23)
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also referred to as sensitivity ODEs, whereby the sensitivities sθj := sθj(t) are the state

variables.3 The evaluation of the sensitivity sθj at t = 0 specifies the gradient ∇θj L and

reveals the impact of an optimization variable θj on optimization problem (4.12).

In order to cope with the partial derivative of the terms fΩ(K, u; θ) and l(T, u; θ) with respect

to the optimization variables θ, the finite difference schemes

∂θjf(α; θ) ≈ f(α; θj + ε)− f(α; θj − ε)
2ε

, f(α; θ) ∈ {fΩ(K, u; θ), l(T, u; θ)} (4.24)

are considered. The finite difference schemes approximately solve the term ∂θjf(α; θ) using

the admissible geometrical perturbation in the direction of θj, i. e., θj ± ε ∈ θad. As the

implicit dependency is caused by the spatial domain of the actuator Ωc(θ), the function

f(α; θj ± ε) can be evaluated with relative ease.

4.3.3 Gradient condition for optimal actuator configuration

The adjoint ODE system (4.23) provides a suitable basis to optimize the actuator configura-

tion in terms of the first-order optimality condition (4.15). On the basis of Equation (4.15)

and (4.23), it can be concluded that an optimal actuator configuration correlates with

s∗θj(0)


> 0 if θ∗j = θ−j

= 0 if θ∗j ∈ (θ−j , θ
+
j )

< 0 if θ∗j = θ+
j

. (4.25)

The conditional character (4.25) follows from the variational inequality (4.15) and takes the

constraints of the optimization variables (4.7b) into account. For a more compact notation,

the sensitivities s(t) = [sθ1(t), sθ2(t), . . . , sθN (t)]T evaluated at the time instant t = 0 s are

summarized by the gradient vector

gθ = [sθ1(0), sθ2(0), . . . , sθN (0)]T . (4.26)

In conclusion, the adjoint-based sensitivity analysis forms a basis to determine an optimal

actuator configuration by appropriately solving the adjoint PDE system (4.21), the adjoint

ODE system (4.23), and the gradient condition (4.25).

4.4 Optimality conditions for optimal

control trajectory

The approach for handling the coupled optimization problem (4.12) applies the formal La-

grangian technique to derive the optimality conditions for optimal inductor currents u, cf.

Section 4.2. The following lines only summarize the resulting optimality system comprising

an adjoint PDE system and a gradient condition. A detailed discussion on handling this

problem can be found in Chapter 3.

3 The fundamental theorem of calculus is used to transform the integral equation (4.22) to the final value

problem (4.23).
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Adjoint PDE system

The analysis of the directional derivatives (4.16a)–(4.16b) eventually results in the adjoint

PDE system (4.21), cf. the discussion in Section 3.4.1 and 3.4.2. Consequently, the optimality

conditions with respect to both an optimal actuator configuration and excitation relies on

an identical adjoint PDE system.

Gradient condition for optimal control trajectory

In order to optimize the control trajectory u, the directional derivative (4.16c) is considered

yielding the reduced gradient

gu =

∫
Ω

∂ul(T, u; θ)|y∗ − Λ∗ · ∂ufΩ(K, u; θ)|y∗ dx

+

∫
Γ

Λ∗ ·
(
χΓN

∂ufΓN
(K, u)|y∗ − χΓD

∂ufΓD
(u)|y∗

)
dx , (4.27)

also see Section 3.4.3. The reduced gradient gu := gu(T,K, u; θ) depends on the numerical

solution of the adjoint PDE system (4.21). The conditional expression (3.40) takes the input

constraints (4.7a) into account.

4.5 Numerical solution of the optimality conditions

The solution of optimization problem (4.12) follows the idea from Chapter 3 to combine

optimization algorithms in Matlab with FEM software. To this end, the gradient method

in Algorithm 3.1 and the optimization framework shown in Figure 3.5 are adapted to the

problem of optimizing the actuator configuration. The Matlab environment is extended by

a module that deals with the parametrization of the actuator configuration as illustrated in

Figure 4.2. The interface between Matlab and Comsol Multiphysics not only facilitates

to outsource the numerical issues related with multiphysics problems to the FEM software

but also to manipulate the actuator position and shape during the gradient iterations.

The tailored gradient method shown in Algorithm 4.1 copes with the simultaneous op-

timization of the actuator configuration and excitation by taking advantage of the fact

that both problems are linked to the adjoint PDE system (4.21). The gradient method

starts with initial optimization variables (u(1), θ(1)) to integrate the system dynamics

esys(T,K, u
(j); θ(j)) = 0, i. e., the PDE system (4.12b)–(4.12h), forwards in time, cf. step II.i)

of Algorithm 4.1. The trajectories of the state variables (T (j), K(j)) obtained by this step

allows one to numerically solve the adjoint dynamics eadj(p,Λ, T
(j), K(j), u(j); θ(j)) = 0 and

eadj,ODE(s,Λ(j), T (j), K(j), u(j); θ(j)) = 0 specified by the PDE system (4.21) and the ODE

system (4.23), cf. step II.ii). The adjoint systems are integrated backward in time and result

in the trajectories of the adjoint state variables (p(j),Λ(j), s(j)).
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Figure 4.2: Optimization framework for solving optimization problem (4.12).

The canonical equations esys(T,K, u
(j); θ(j)) = 0 and eadj(p,Λ, T

(j), K(j), u(j); θ(j)) = 0 are

numerically solved by means of the FEM software Comsol Multiphysics. Thereby, the

separated initial and final time conditions (4.12e) and (4.21d) as well as the fact that the

PDE systems comprise unconstrained state variables allows one to numerically solve them

by means of simple forward and backward integrations in time. The adjoint ODE system

eadj,ODE(s,Λ(j), T (j), K(j), u(j); θ(j)) = 0 is numerically solved in Matlab as illustrated in

Figure 4.2, cf. step II.ii) of Algorithm 4.1.

The steps II.iii)–II.v) of Algorithm 4.1 are concerned with the update of the optimization

variables (u(j), θ(j)). The current optimization variables and the gradients (4.26) and (4.27)

are used to formulate the joint line search problem (4.28). The numerical solution of the line

search problem provides the step size α(j) and ensures the optimality of the interaction of

the optimization variables u and θ.4 Consequently, the update step (4.29) leads to improved

optimization variables (u(j+1), θ(j+1)) in the sense of cost reduction.

For numerical reasons, the line search problem (4.28) and the update of the actuator config-

uration (4.29a) involve a scaling factor γ > 0 that adapts the different temporal and spatial

scales of the optimization variables u and θ, see, e. g., [16]. The projection function

ψβ(β) =


β− if β < β−

β+ if β > β+

β else

β ∈ {θ, u} (4.30)

takes the conditional expressions of the reduced gradients (4.25) and (3.40) into account.

Thus, the optimization variables (θ(j+1), u(j+1)) comply with the constraints (4.7) during the

gradient iterations. The termination criterion (3.56) is used to quit Algorithm 4.1.

4 A discussion about line search strategies to approximately solve (4.28) can be found in Section 3.5.1.
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Algorithm 4.1 Gradient method for solving optimization problem (4.12).

I. Initialization

i) Choice of initial optimization variables (θ(1), u(1)).

ii) Select suitable termination criterion such as (3.56) with threshold εJ > 0.

II. Gradient iteration j = 1, 2, . . .

i) Forward integration of system dynamics esys(T,K, u
(j); θ(j)) = 0 specified by the

PDE system (4.12b)–(4.12h) to obtain state trajectories (T (j), K(j)).

ii) Backward integration of adjoint dynamics

• Solution of PDE system eadj(p,Λ, T
(j), K(j), u(j); θ(j)) = 0 specified by Equa-

tion (4.21) to obtain adjoint state trajectories (p(j),Λ(j)).

• Solution of ODE system eadj,ODE(s,Λ(j), T (j), K(j), u(j); θ(j)) = 0 specified by

Equation (4.23) to obtain adjoint state trajectory s(j).

iii) Evaluation of the gradients (4.26) and (4.27) to obtain the current directions of

steepest descent −(g
(j)
θ , g

(j)
u ).

iv) Numerical solution of line search problem

α(j) = arg min
α>0

J
(
ψu(u

(j) − αg(j)
u );ψθ(θ

(j) − γαg(j)
θ )
)

(4.28)

with projection function ψβ, cf. Equation (4.30).

v) Update of optimization variables

θ(j+1) = ψθ(θ
(j) − γα(j)g

(j)
θ ) (4.29a)

u(j+1) = ψu(u
(j) − α(j)g(j)

u ) (4.29b)

following a steepest descent approach.

vi) Quit gradient method, if termination criterion (3.56) is fulfilled. Otherwise, set

j ← j + 1 and return to step II.i).

4.6 Numerical results

In the following, the simultaneous optimization of the actuator configuration and excitation is

presented for the surface hardening processes from Figure 4.1. To this end, the optimization

problem (4.12) and the parametrization techniques from Section 4.1.2 are adapted to the

individual heat-up scenarios. The numerical solution of the optimality conditions is provided

by the optimization framework illustrated in Figure 4.2.



98 Optimal position and shape of actuators

4.6.1 Surface hardening process with optimal inductor positions

The first simulation scenario optimizes the positions of N = 6 inductors of a surface hard-

ening process, also see [109, 110]. The geometrical setup of the heat-up scenario is identical

to Section 3.6.2 with the exception that the inductor positions are part of the optimal solu-

tion. The workpiece is made of steel with the material parameters shown in Table 4.1. The

objective is to heat up the surface layer Ω̃o from T0 = 773 K to Td = 1023 K.5 The time

interval of the heat-up cycle t ∈ (0, tf) is specified by the final time tf = 10 s.

Table 4.1: Material parameters of the surface hardening process.

workpiece Ωo inductor Ωc(θ) air Ωa

rel. magnetic permeability µr 3 1 1 [−]

electrical conductivity σ 4 · 106 0 0 [S/m]

density ρ 7.9 · 103 - - [kg/m3]

heat capacity C 475 - - [J/(kg K)]

thermal conductivity k 44.5 - - [W/(m K)]

heat transfer coefficient α 1.54 - - [W/(m2 K)]

emissivity of the surface ε 0.7 - - [−]

The optimization problem (4.12) with the Mayer and Lagrange terms (4.10) serves as the

basis for the trajectory planning. The right hand sides of the thermal and electromagnetic

subsystem (4.12b)–(4.12e) and (4.12f)–(4.12h) are specified by Equation (3.57). The inductor

positions θj,r are subject to some constraints which stem from the requirement of a minimal

air gap between the boundary of the inductors and the workpiece of rag = 5 mm.6 The control

trajectory u is bounded by the interval [0 A, 30 A]. The angular frequency of the impressed

currents is set to ω = 50 kHz. During the heat-up process, the workpiece temperature must

not exceed T+ = 1103 K.

Table 4.2: Weights of cost functional (4.12a) for optimizing the inductor positions.

weight objective

q1 = 101 minimization of state error (T − Td)2 in surface layer Ω̃o (Mayer term)

q2 = 104 minimization of state error (T − Td)2 in surface layer Ω̃o (Lagrange term)

q3 = 108 violation of state constraint T ≤ T+ in workpiece Ωo (Lagrange term)

q4 = 10−2 penalization of control action u2 in Ωc(θ) (Lagrange term)

q5 = 0 minimization of state error (T − T0)2 in inner domains Ωi (Lagrange term)

5 The prior heat-up of the workpiece from the ambient temperature Ta = 293 K to the initial tempera-

ture T0 = 773 K can be tackled by means of the findings of Chapter 3.
6 Equidistantly distributed inductors are assumed in the direction of z. The optimization of the inductor

positions in the direction of r and z is presented in [111] for a similar heat-up problem.
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The solution of optimization problem (4.12) with the weights shown in Table 4.2 is provided

by the optimization framework from Section 4.5. Algorithm 4.1 approximately solves the line

search problem (4.28) using the adaptive line search strategy. At the end of each gradient

iteration j, the current inductor positions θ(j+1) are used to update the actuator configuration

within Comsol Multiphysics. For this purpose, the capabilities of the interface between

the software packages Matlab and Comsol Multiphysics are utilized. The termination

criterion of Algorithm 4.1 is specified by Equation (3.56) with bound εJ = 10−6.

The solid lines in Figure 4.3 shows the numerical solution of the coupled problem of opti-

mizing the inductor positions and its electrical excitation. The optimal control trajectory u

energizes the inductors in a way that the surface layer of the workpiece Ω̃o is heated up as

homogeneously as possible to the desired temperature Td = 1023 K. The optimal heat-up be-

havior of the surface layer is illustrated by means of the trajectories of the minimum T̃min(t),

average T̃avg(t), and maximum temperature T̃max(t).

In order to assess the impact of optimizing the actuator configuration on the control perfor-

mance, an auxiliary optimization problem is considered with a fixed distance of rag = 5 mm

between the boundary of inductors and workpiece.7 The dotted lines in Figure 4.3 are
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Figure 4.3: Optimized control trajectory u and actuator configuration θ (solid lines) leading

to the minimum T̃min, average T̃avg, and maximum temperature T̃max within the surface

layer. The sensitivities sθj(0) reflect the optimality of the actuator configuration. Results

with fixed inductor positions are shown as dotted lines.

7 Up to the fixed inductor positions and the material parameters shown in Table 4.1, the problem setting

and numerical solution of optimization problem (4.12) is the same as the one described in Section 3.6.2.
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related to the solution of this problem formulation. The significantly lower temperature

range ∆T (t) = T̃max(t)− T̃min(t) in the case of optimized inductor positions compared to the

case of fixed inductor positions is achieved on the basis of a much more homogeneous spatial

distribution of the heat source within the surface layer.

The optimization of the actuator configuration makes it possible that the maximum temper-

ature T̃max(t) no longer has to be in the range of the state constraint T+ = 1103 K during

the whole heat-up cycle, cf. Figure 4.3. The trajectory of the maximum surface temper-

ature T̃max(t) touches the temperature constraint (4.8) only for a short time interval and

the average temperature T̃avg(t) reaches the desired temperature Td = 1023 K at the time

instant t = 5 s already. Consequently, the final time of the heat-up process tf can be halved

with a simultaneous increase of control performance.

The optimized actuator configuration shown in Figure 4.3 compensates the end and edge

effects in contrast to the scenario with fixed inductor positions as good as possible. Especially

the leftmost inductor ( ) and the fourth one from the left ( ) are placed farther away

from the workpiece to weaken the end and edge effects. The second and third inductor

( , ) are slightly displaced with respect to the default position to counteract an increased

accumulation of heat at the head of the workpiece. The fifth and sixth inductor ( , )

are placed as close as possible to the workpiece since the right part of the surface layer prones

to stay below the desired temperature Td = 1023 K due to a significantly lower intensity of

the heat source in this region and heat conduction effects.

The sensitivities s∗θj(t) in Figure 4.3 reflect the optimality of the actuator configuration.

The trajectories relate to the last gradient iteration and clearly show that the gradients

for optimizing the actuator configuration gθ = [s∗θ1(0), s∗θ2(0), . . . , s∗θN (0)]T are almost zero.

Apart from the sensitivity of the fifth and sixth inductor ( , ), the inductor positions

are in the allowable region and do not require to touch the constraints (4.7b) with respect

to an optimal solution. Consequently, the sensitivities s∗θj(t) of the first four inductors from

the left are zero. In contrast to this, the two inductors on the right hand side are placed

to the surface layer of the workpiece as close as possible to ensure that there is a sufficient

heat source in this area. The exploitation of the constraints prevents the corresponding

sensitivities from becoming zero, cf. Figure 4.3, also see Equation (4.25).

The convergence behavior of the inductor positions θ to their optimal solution is shown in

Figure 4.4 during the gradient iterations. Figure 4.4 also shows the decrease of the normal-

ized cost functional Jn both for the coupled optimization problem (solid lines) and for the

problem with fixed inductor positions (dotted lines), cf. Equation (3.58) for a definition of

the normalized cost functional. Although the convergence behavior of the coupled problem is

somewhat slower, the optimization of the actuator configuration makes it possible to achieve

a greater reduction of the cost functional. The decreased value of the cost functional is due

to the optimal adaptation of the spatial distribution of the electromagnetic heat source to

the heat-up behavior of the surface layer, as already discussed on the basis of the varying

temperature range ∆T (t) = T̃max(t)− T̃min(t) in the case of optimized inductor positions and

fixed inductor positions, cf. Figure 4.3.
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Figure 4.4: Convergence of the inductor positions θj,r to optimal solution and normalized

cost functional Jn. Results with fixed inductor positions are shown as dotted lines.

The temperature profiles T in Figure 4.5 at the time instants t ∈ {1 s, 2 s, 4 s, 10 s} illustrate

the optimal heat-up behavior of the surface layer for the case of fixed inductor positions

(upper row) and for an optimal actuator configuration (lower row). The end and edge

effects are present even in the case of an optimal actuator configuration but are significantly

weakened. Thus, the surface layer can be heated up more homogeneously and the surface

hardening process is not restricted by local hot spots of the workpiece temperature in the

end and edge layer due to the formulated temperature constraint (4.8).

T (x, t = 1 s) T (x, t = 2 s) T (x, t = 4 s) T (x, t = 10 s)

800 K

900 K

1000 K

1100 K

Figure 4.5: Temperature profiles T for fixed inductor positions (upper row) and optimized

inductor positions (lower row).
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4.6.2 Surface hardening process with optimal inductor shape

The second simulation scenario deals with the optimal actuator design for electromagnetic

heating systems. For this purpose, the surface hardening process shown in Figure 4.1b is con-

sidered. To provide the optimization variables θ for the trajectory planning, the parametriza-

tion technique from Section 4.1.2 is applied to the inductor shape. The implementation of the

B-spline parametrization technique is carried out in Matlab, whereby the interface of the

optimization framework shown in Figure 4.2 is used to adapt the geometrical setup for numer-

ically solving the PDE systems esys(T,K, u
(j); θ(j)) = 0 and eadj(p,Λ, T

(j), K(j), u(j); θ(j)) = 0

in Comsol Multiphysics. Thus, the optimization problem (4.12) can be solved in each

gradient iteration on the basis of the current actuator configuration.

The optimization problem (4.12) is numerically solved for different degrees of the basis

functions p to be able to influence the smoothness of the inductor contour Γc(θ). A first case

study deals with the objective to achieve optimal control performance, whereby significant

deformations of the inductor contour will be accepted.8 A second case study is presented

with the purpose of obtaining a smooth inductor contour. The problem settings of the two

case studies are identical to those in Section 4.6.1, also see [126, 111]. Table 4.3 shows the

weights of the Mayer and Lagrange terms (4.10).

Table 4.3: Weights of cost functional (4.12a) for optimizing the inductor shape.

weight objective

q1 = 101 minimization of state error (T − Td)2 in surface layer Ω̃o (Mayer term)

q2 = 104 minimization of state error (T − Td)2 in surface layer Ω̃o (Lagrange term)

q3 = 108 violation of state constraint T ≤ T+ in workpiece Ωo (Lagrange term)

q4 = 10−2 penalization of control action u2 in Ωc(θ) (Lagrange term)

q5 = 102 minimization of state error (T − T0)2 in inner domains Ωi (Lagrange term)

Case study I

Figure 4.6 shows the parametrized inductor contour Γc(θ) using B-splines with n = 24

subintervals and tuples θj = [θj,r, θj,z]
T. The degree of the basis functions (4.6) is set to

p = 3. This ensures that the numerical solution of optimization problem (4.12) results in an

inductor contour which is locally adapted to end and edge effects within the surface layer.

However, only the elements in the direction of r of the tuples {θ1, θ2, . . . , θ11} and the element

in the direction of z of tuple θ12 are used to optimize the inductor shape. In order to obtain

an inductor shape with uniform width in the direction of r, the spatial coordinates of the

remaining elements of the tuples are a function of the optimization variables.

8 The manufacturing of electromagnetic actuators by means of additive techniques, also referred to as 3D

printing, is an active topic of research, see, e. g., [94, 47].
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Figure 4.6: Parametrization of the inductor shape.

The parameter vector for shape optimization is specified by

θ = [θ1,r, θ2,r, . . . , θ11,r, θ12,z]
T, θ ∈ R12 (4.31)

and allows one to adapt important characteristics of the inductor shape such as the distance

between outer boundary of the workpiece and inner inductor contour, as well as the inductor

length. Geometrical constraints of the inductor shape are shown in Figure 4.6, which prevent

a placement of the inductor too close to the workpiece, respectively limit its length.

The numerical solution of optimization problem (4.12) results in the sequence of inductor

shapes shown in Figure 4.7. Optimization variable θ12,z increases the inductor length by

which a sufficiently large spatial domain of the upper region of the surface layer is exposed to

the electromagnetic heat source. In addition, the distance between workpiece and inductor

is increased in this region by optimization variable θ11,r to mitigate the end effect. The

combination of the increased inductor length and the mitigation of the end effect makes it

possible to heat up the upper region of the surface layer as homogeneously as possible.

j = 1 j = 4 j = 8 j = 16 j = 30

θ1,r

θ5,r

θ11,r

θ12,z

Figure 4.7: Sequence of inductor shapes for the gradient iterations j = {1, 4, 8, 16, 30}.
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Similar to the adaptation of the inductor shape in the upper region, the edge effect is weak-

ened by increasing the air gap between workpiece and inductor in the middle region by means

of optimization variable θ5,r, cf. Figure 4.7. The optimization variables (θ6,r, θ7,r, . . . , θ10,r)

constitute a trade-off between a sufficiently large generation of the electromagnetic heat

source in the upper region of the surface layer and a prevention of a too high accumula-

tion of heat during the heat-up cycle. In order to heat up the lower region of the surface

layer to the desired temperature as good as possible, the remaining optimization variables

(θ1,r, θ2,r, . . . , θ4,r) place the inductor as close as possible to the workpiece.

The numerical solution of optimization problem (4.12) also provides the optimal control

trajectory u shown in Figure 4.8. Eventually, the simultaneous optimization of the actuator

shape and excitation results in the trajectories of the minimum T̃min(t), average T̃avg(t),

and maximum temperature T̃max(t) within the surface layer, cf. Figure 4.8. An important

characteristic of the heat-up behavior is that the temperature constraint is not touched

during the whole time interval. Actually, the optimized inductor shape provides a sufficiently

homogeneous heat source within the surface layer by which it is not necessary to hit the

constraint, also see Figure 4.9.

The advantage of optimizing the inductor shape over optimizing only its position as discussed

in Section 4.6.1 can be observed in Figure 4.9 by means of the temperature profiles of both

scenarios. In the case of an optimized inductor shape, the heat-up behavior of the surface

layer benefits from the precise adjustment of the spatial distribution of the electromagnetic

heat source (lower row). The major spatial domain of the surface layer is heated up closely

to the desired temperature at the final time instant tf = 10 s. It can also be observed that

the end and edge effects are further weakened compared to the case of optimized inductor

positions (upper row). The mitigation of the distortion effects is particularly apparent for

the temperature profiles of the workpiece at the time instants t = 2 s and t = 4 s in Figure 4.9

and is the main reason for the improved control performance.
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Figure 4.8: Control trajectory u and minimum T̃min, average T̃avg, and maximum tempera-

ture T̃max of the surface layer obtained with an optimal inductor shape.
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900 K
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1100 K

Figure 4.9: Temperature profiles of the workpiece T in the case of optimized inductor posi-

tions (upper row) and optimized inductor shape (lower row).

Case study II

For practical reasons (e. g. costs and efforts regarding the manufacturing of the inductor),

there is often the demand for smooth contours of the inductor. The second case study deals

with this problem by increasing the degree of the basis functions to p = 8. Consequently,

the inductor contour Γc(θ) involves continuous derivatives up to the order of seven and

the solution of optimization problem (4.12) naturally results in a smooth inductor contour.

Beyond this modification, the problem settings correspond to the former case study.

Figure 4.10b shows the optimized inductor shape for the B-spline parametrization (4.4)

with degree p = 8. For the sake of comparison, the inductor shape from the previous

case study with p = 3 is illustrated in Figure 4.10a. The increase of the degree of the

basis function p results in a smooth inductor contour Γc(θ). Only the middle region of the

inductor is significantly adapted to cope with the predominant edge effect, cf. the discussion

in Section 4.6.1. The relatively high degree of the basis functions p = 8 suppresses further

spatial variations of the inductor contour.
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θ11,r

θ1,r

θ5,r

θ12,z

(a) Optimal inductor shape for a B-spline parametrization (4.4) with degree p = 3

θ1,r

θ5,r

θ12,z

θ11,r

(b) Optimal inductor shape for a B-spline parametrization (4.4) with degree p = 8

Figure 4.10: Optimal inductor shapes with different degrees of smoothness of the contour

Γc(θ). The major change of the smooth inductor shape with p = 8 is based on optimization

variable θ5,r to cope with the edge effect in a similar manner to the case p = 3.

Similar to the case p = 3, the inductor length is increased by optimization variable θ12,z, cf.

Figure 4.10b. However, the distance between the left end of the workpiece and the inductor

is only slightly increased by the optimization of parameter θ11,r. Moreover, the end effect is

weakened but the small oscillations of the inductor contour Γc(θ) are not present as in the

previous case, cf. Figure 4.10a. Note that the extension of the parameter vector (4.31) by

optimization variable θ24,z could be used to adapt the inductor length at the lower region of

the surface layer to improve the heat-up behavior in this region, cf. Figure 4.9.

Further improvements of permitting uneven inductor contours can not be observed in the

control trajectory u and the heat-up behavior of the surface layer with minimum T̃min(t),

average T̃avg(t), and maximum temperature T̃max(t), as shown in Figure 4.11. The control u

and the trajectories of the surface temperature differ only slightly for the cases of a smooth

inductor contour (solid lines) and an uneven one (dotted lines). However, the secondary

objective of the surface hardening process to prevent the heat-up of inner domains of the

workpiece can be attacked superiorly by means of the uneven inductor contour.



4.6 Numerical results 107

As can be observed in Figure 4.11, the part of the cost functional (4.10) that penalizes the

heat-up of inner domains of the workpiece

JT0,n =

∫∫
Ω×(0,tf)

q5

2
χΩi

(T − T0)2 dxdt/J (1) (4.32)

results in a smaller value in the case of the uneven inductor contour (dotted lines) compared

to the smooth inductor contour (solid lines). On the contrary, the overall control performance

is not significantly affected by the different inductor shapes as can be observed by the

normalized cost functional Jn in Figure 4.11, cf. Equation (3.58). Note that the penalization

of the quadratic error (T − T0)2 has a strong influence on optimization problem (4.12) which

is why the corresponding weight is chosen relatively small and results in the low value of JT0,n
as a part of the normalized cost functional Jn. In summary, both the smooth and uneven

inductor contour lead to an optimal heat-up behavior of the surface hardening process.
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Figure 4.11: Numerical results of shape optimization with smooth (solid lines) and uneven

inductor contour (dotted lines). In both cases, the optimal control trajectory u results in an

almost identical heat-up behavior of the surface layer with minimum T̃min, average T̃avg, and

maximum temperature T̃max. The normalized cost functionals Jn and JT0,n reveal that the

uneven inductor contour has a beneficial impact on suppressing the heat-up of inner domains

but not significantly affects the overall control performance.
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4.7 Conclusions

This chapter extends the trajectory planning from Chapter 3 to account for the optimization

of the actuator configurations of electromagnetic heating applications. The design of opti-

mal actuator positions and shapes relies on suitable parametrization techniques to provide

the degrees of freedom for spatially adapting the electromagnetic heat source. A PDE con-

strained optimization problem is considered for a simultaneous optimization of the actuator

configuration and excitation.

The optimality conditions of the optimization problem are derived separately for optimizing

the actuator configuration and excitation by applying the adjoint-based sensitivity analysis

and the formal Lagrangian technique. The optimality conditions of both problems utilize

the same adjoint PDE system and a simultaneous solution of the coupled problem can be

carried out. The optimization of the actuator configuration involves only a further adjoint

ODE system compared to the case of optimizing the actuator excitation. An extended

version of the optimization framework from Chapter 3 is presented to cope with the coupled

problem. The applicability and accuracy of the trajectory planning approach is illustrated

for surface hardening processes involving different actuator configurations.



Chapter 5

State constrained trajectory planning

The trajectory planning approaches presented so far handle state constraints as soft con-

straints by penalty functions within the cost functional. This procedure has the shortcoming

that the modified problem formulation reflects a trade-off between the original control tasks

and the compliance of the state constraints. Thereby, the parametrization of the cost func-

tional with penalty term is associated with trial-and-error tests to ensure that the influence

of the individual parts of the cost functional is well balanced. The convergence behavior of

the gradient method also becomes worse with increasing weights of the penalty term.

This chapter discusses an augmented Lagrangian method to deal with state constraints of

electromagnetic heating systems such as constraints on the temperature. The appropriate

formulation of an optimization problem and the derivation of its optimality conditions is one

focus of this chapter. The derived optimality conditions are then numerically solved using

an extended version of the optimization framework from Chapter 3. Two simulation studies

demonstrate the applicability and accuracy of the state constrained trajectory planning.

5.1 Problem formulation

A problem formulation similar to that in Chapter 3 and 4 is considered to discuss the state

constrained trajectory planning. At this current stage, the electromagnetic heating system

is subject to the temperature constraint

h(T ) = T (x, t)− T+ ≤ 0 in Ωo × (0, tf) (5.1)

with bound T+ > 0.1 An application example concerns the induction heating processes

from Chapter 3. To simplify the discussion about handling state constraints, the problem

formulation includes an optimization of the control trajectory u, but ignores an optimization

of the actuator configuration. Thus, only the constrained control trajectory

u(t) ∈ Uad : = {u(t) ∈ R |u− ≤ u(t) ≤ u+} (5.2)

serves as a degree of freedom for the trajectory planning.2

1 The handling of constraints on the temperature gradient is discussed in Section 5.5.2.
2 The simultaneous optimization of the actuator excitation and configuration by taking state constraints

into account is presented in [111].

109
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A suitable optimization problem for the state constrained trajectory planning reads

min
u(·)∈Uad

J(u) =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T, u) dxdt (5.3a)

s.t. e∇, t (ρC, T )− e∆ (k, T ) = fΩo(T,K) in Ωo × (0, tf) (5.3b)

e∇, x (k, T ) = fΓo,N
(T ) on Γo,N × (0, tf) (5.3c)

T = fΓo,D
on Γo,D × (0, tf) (5.3d)

T (·, 0) = T0 in Ωo at t = 0 (5.3e)

e∇×,∇× (µ−1, K) = fΩ(K, u) in Ω× (0, tf) (5.3f)

e∇× (µ−1, K) = fΓN
(K, u) on ΓN × (0, tf) (5.3g)

e× (K) = fΓD
(u) on ΓD × (0, tf) (5.3h)

h(T ) ≤ 0 on Ωo × (0, tf) . (5.3i)

For the sake of transferability of the trajectory planning to other problems of electromagnetic

heating, the governing equations of the thermal and electromagnetic subsystem (5.3b)–(5.3e)

and (5.3f)–(5.3h) are formulated using the differential operators (3.15)–(3.16) and the generic

right hand sides (3.18)–(3.19). A description of the thermal and electromagnetic phenomena

with state variables (T,K) can be found in Chapter 2.

The cost functional to be minimized (5.3a) involves a Mayer term V (T (·, tf)) and a Lagrange

term l(T, u) that are specified as follows

V (T (·, tf)) =
q1

2
χΩd

(T (·, tf)− Td)2 (5.4a)

l(T, u) =
q2

2
χΩd

(T − Td)2 +
q3

2
χΩcu

2 . (5.4b)

The characteristic function χΩd
is used to penalize the quadratic between the temperature T

and the desired temperature Td on the spatial domain that should be heated up, also see

Section 3.1.3. The characteristic function χΩc ensures to weight the control action u2 only

on the spatial domain of the actuator.

5.2 Augmented Lagrangian method

The augmented Lagrangian method reformulates the state constrained optimization prob-

lem (5.3) as a max-min problem for which optimality conditions can be derived in a straight-

forward manner. Moreover, the max-min problem is considerably easier to solve because it

is no longer subject to state constraints. The maximization and minimization step can be

performed separately from each other, what is particularly interesting from an algorithmic

point of view, see, e. g., [16, 12, 69]. The formulation and numerical solution of the max-min

problem is discussed in the following sections.
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5.2.1 Formulation of a max-min problem

A commonly used approach in augmented Lagrangian theory is to transform the state con-

straint (5.3i) into the equality constraint

g(T, z) = h(T ) + z = 0 in Ωo × (0, tf) (5.5)

with slack variable z := z(x, t) ≥ 0. This allows one to define the augmented cost functional

Jβ(u, z, µ) = J(u) +

∫∫
Ωo×(0,tf)

µg(T, z) +
β

2
g(T, z)2 dxdt (5.6)

with Lagrange multiplier µ := µ(x, t), also referred to as dual variable, and penalty para-

meter β ≥ 0, see, e. g., [16]. The augmented cost functional Jβ(u, z, µ) couples the equality

constraint g(T, z) = 0 to the cost functional (5.3a) with the additional penalty term g(T, z)2

for regularization purposes [16].

The augmented cost functional (5.6) must be minimized with respect to the primal vari-

ables (u, z) and maximized with respect to the dual variable µ. However, the minimization

with respect to z can be solved analytically yielding z∗ = max(0,−µ/β − h(T )), whereby

the operator max(·, ·) accounts for the constraint of the slack variable z ≥ 0. This motivates

the definition of the auxiliary function

g̃(T, µ) = max (h(T ),−µ/β) in Ωo × (0, tf) , (5.7)

which facilitates the formulation of the augmented cost functional (5.6) in the absence of the

slack variable z. The modified formulation of the augmented cost functional reads

Jβ(u, µ) = J(u) +

∫∫
Ωo×(0,tf)

µg̃(T, µ) +
β

2
g̃(T, µ)2 dxdt , (5.8)

but consistency between Equation (5.6) and (5.8) can be shown by some straightforward

manipulations, see, e. g., [16, 68].

On the basis of the augmented cost functional (5.8), the max-min problem

max
µ(·)

min
u(·)∈Uad

Jβ(u, µ) = J(u) +

∫∫
Ωo×(0,tf)

µg̃(T, µ) +
β

2
g̃(T, µ)2 dxdt (5.9a)

s.t. e∇, t (ρC, T )− e∆ (k, T ) = fΩo(T,K) in Ωo × (0, tf) (5.9b)

e∇, x (k, T ) = fΓo,N
(T ) on Γo,N × (0, tf) (5.9c)

T = fΓo,D
on Γo,D × (0, tf) (5.9d)

T (·, 0) = T0 in Ωo at t = 0 (5.9e)

e∇×,∇× (µ−1, K) = fΩ(K, u) in Ω× (0, tf) (5.9f)

e∇× (µ−1, K) = fΓN
(K, u) on ΓN × (0, tf) (5.9g)

e× (K) = fΓD
(u) on ΓD × (0, tf) (5.9h)
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is formulated, whereby the max-min problem without penalty term g̃(T, µ)2 is the dual

formulation of the original primal problem (5.3). Note that both the minimization and the

maximization of the augmented cost functional Jβ(u, µ) with respect to the primal and dual

variables u and µ is not affected by state constraints. Consequently, the max-min problem

offers a promising alternative solution approach for the original problem.

5.2.2 Numerical solution of the max-min problem

Under the assumption of strong duality and existence of an optimal solution of the max-min

problem (5.9), the saddle-point condition

Jβ(u∗, µ) ≤ Jβ(u∗, µ∗) ≤ Jβ(u, µ∗) ∀u ∈ Uad, µ (5.10)

holds for optimal primal and dual variables (u∗, µ∗), see, e. g., [142, 12, 69]. Roughly speak-

ing, the assumption of strong duality allows one to approach the optimal saddle-point (u∗, µ∗)

from “both sides” by alternately minimizing and maximizing the augmented cost func-

tional (5.9a) in terms of steepest descent and ascent approaches. As shown in Algorithm 5.1,

the minimization of the augmented cost functional Jβ(u, µ) in step II.i) is separated from its

maximization in step II.ii).

Minimization of the augmented cost functional

At the beginning of each iteration i of Algorithm 5.1, the augmented cost functional (5.9a)

is minimized. The minimization step is considered for a fixed value of the dual variable µ(i)

and accounts for the system dynamics esys(T,K, u) = 0, i. e., the PDE system (5.9b)–(5.9g).

Eventually, the numerical solution of the PDE constrained optimization problem (5.11) pro-

vides the new primal variable u(i+1) as a function of the current dual variable µ(i). A detailed

discussion about handling this problem is the subject of Section 5.3 and 5.4.

Update of the dual variable

Step II.ii) of Algorithm 5.1 describes a steepest ascent approach to maximize the augmented

cost functional (5.9a). To this end, the directional derivative

∂Jβ(u, µ)

∂µ

∣∣∣∣
y(i+1)

hµ = 0 ∀hµ (5.15)

is analyzed to derive the direction of steepest ascent g
(i)
µ := g

(i)
µ (x, t), whereby hµ denotes the

admissible directions of the dual variable µ and y(i+1) = (T (i+1), K(i+1), u(i+1), p(i+1),Λ(i+1))

the solution of minimization step II.i). To account for the fact that the state constraint (5.1)

is defined on the spatial domain Ωo, the directional derivative (5.15) is used to define the

reduced gradient

g(i)
µ = max

(
h(T (i+1)),−µ(i)/β(i)

)
in Ωo × (0, tf) . (5.16)
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Algorithm 5.1 Augmented Lagrangian method for solving max-min problem (5.9).

I. Initialization

i) Choice of initial primal and dual variables (u(1), µ(1)) and penalty parameter β(1).

ii) Set thresholds (εu, εT+) > 0 of termination criterion (5.14).

II. Augmented Lagrangian step i = 1, 2, . . .

i) Numerical solution of minimization problem

u(i+1) = arg min
u(·)∈Uad

Jβ(u, µ(i)) (5.11a)

s.t. esys(T,K, u) = 0 (5.11b)

following a steepest descent approach, cf. Algorithm 5.2.

ii) Update of dual variable by means of steepest ascent approach

µ(i+1) = µ(i) + β(i)g(i)
µ in Ωo × (0, tf) (5.12)

with gradient g
(i)
µ defined by Equation (5.16) and step size β(i).

iii) Update of penalty parameter

β(i+1) =


γ1β

(i) if
∥∥g̃(T (i+1), µ(i+1))

∥∥2

L2(Qo)
> κ

∥∥g̃(T (i), µ(i))
∥∥2

L2(Qo)

γ2β
(i) if

∥∥g̃(T (i+1), µ(i+1))
∥∥2

L2(Qo)
≤ εT+

β(i) else

(5.13)

with norm (5.18), constant κ ≥ 0, and adaptation factors γ1 ≥ 1 and 0 < γ2 ≤ 1.

iv) Quit augmented Lagrangian method, if termination criterion∥∥u(i+1) − u(i)
∥∥2

L2(0,tf)

‖u(1)‖2
L2(0,tf)

≤ εu ∧
∥∥max

(
0, h(T (i+1))

)∥∥2

L2(Qo)
≤ εT+ (5.14)

with thresholds (εu, εT+) > 0 and norms (3.48) and (5.18) is fulfilled. Otherwise,

set i← i+ 1 and return to step II.i).

This allows one to consider the steepest ascent approach (5.12) in step II.ii) of Algorithm 5.1,

whereby the update of the dual variable (5.12) can also be formulated as

µ(i+1) = max
(
0, µ(i) + β(i)h(T (i+1))

)
in Ωo × (0, tf) . (5.17)

As the step size in the direction of steepest ascent g
(i)
µ , the penalty parameter β(i) is used,

which is adapted after each maximization step using the heuristic (5.13). The step size β(i)
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is increased by the factor γ1 ≥ 1 if insufficient progress in improving the compliance with

the inequality constraint h(T ) ≤ 0 is made compared to the previous augmented Lagrangian

step. The step size is decreased by the factor 0 < γ2 ≤ 1 if the constraint is sufficiently

satisfied, also see [98]. The norm of the heuristic (5.13) is defined by

‖a‖2
L2(Qo) :=

∫∫
Ωo×(0,tf)

a2 dxdt (5.18)

with a := a(x, t). Note that a large adaptation factor γ1 generally results in a fast convergence

behavior of Algorithm 5.1. However, the max-min problem will be ill-conditioned for large

dual variables µ(i), so the increase of β(i) must be limited. A reference value for the adaptation

factors is γ1 ∈ (4, 10) and γ2 = 0.9 to achieve a good balance between fast convergence and

a well-conditioned problem, also see [39, 111].

Termination of the augmented Lagrangian method

The augmented Lagrangian method is terminated if the minimization step II.i) results in no

further improvement of the control trajectory u(i+1) and the state constraint h(T (i+1)) ≤ 0

is fulfilled with sufficient accuracy. To this end, step II.iv) of Algorithm 5.1 evaluates the

termination criterion (5.14) with thresholds (εu, εT+) > 0 and norms (3.48) and (5.18).

5.3 Optimality conditions for minimization step

The formal Lagrangian technique constitutes a promising approach to derive the optimality

conditions of the PDE constrained optimization problem (5.11), whereby its similar structure

to optimization problem (3.17) facilitates to recycle the results of Section 3.4 for deriving

the optimality conditions. For minimizing the augmented cost functional (5.11a), the sta-

tionarity of the Lagrangian

L =

∫
Ω

V (T (·, tf)) dx+

∫∫
Ω×(0,tf)

l(T, u) dxdt+

∫∫
Ωo×(0,tf)

µ(i)g̃(T, µ(i)) +
β(i)

2
g̃(T, µ(i))2 dxdt

+

∫∫
Ωo×(0,tf)

p [e∇, t (ρC, T )− e∆ (k, T )− fΩo(T,K)] dxdt

+

∫∫
Γo,N×(0,tf)

p
[
e∇, x (k, T )− fΓo,N

(T )
]

dxdt+

∫∫
Γo,D×(0,tf)

p
[
T − fΓo,D

]
dxdt

+

∫∫
Ω×(0,tf)

Λ ·
[
e∇×,∇× (µ−1, K)− fΩ(K, u)

]
dxdt

+

∫∫
ΓN×(0,tf)

Λ ·
[
fΓN

(K, u)− e∇× (µ−1, K)
]

dxdt+

∫∫
ΓD×(0,tf)

Λ · [e× (K)− fΓD
(u)] dxdt (5.19)
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is analysed. The Lagrangian L := L(T,K, u, µ(i), p,Λ) couples the system dynamics (5.9b)–

(5.9h) to the augmented cost functional (5.11a) using the adjoint states p(x, t) and Λ(x; t).

Thus, the minimization of the augmented cost functional with respect to u can be reduced

to the conditions of directional derivatives

∂L
∂T

∣∣∣∣
y∗
hT = 0 ∀hT (5.20a)

∂L
∂K

∣∣∣∣
y∗
·HK = 0 ∀HK (5.20b)

∂L
∂u

∣∣∣∣
y∗
hu ≥ 0 ∀u ∈ Uad , (5.20c)

also see Section 3.4. For the purpose of utilizing the directional derivatives within step II.i)

of Algorithm 5.1, an adjoint PDE system and a gradient condition is formulated.

5.3.1 Adjoint PDE system

According to the findings of Section 3.4, the directional derivatives (5.20a)–(5.20b) will be

fulfilled by formulating the adjoint PDE system

e∇, t (ρC, p∗) + e∆ (k, p∗) = gΩo(T
∗, K∗, u∗, µ(i), p∗) in Ωo × (0, tf) (5.21a)

e∇, x (k, p∗) = gΓo,N
(T ∗, p∗) on Γo,N × (0, tf) (5.21b)

p∗ = 0 on Γo,D × (0, tf) (5.21c)

ρCp∗(·, tf) = − ∂TV (T (·, tf))|y∗ in Ωo at t = tf (5.21d)

e∇×,∇× (µ−1,Λ∗)− ∂KfΩ(K, u)|y∗ · Λ
∗ = gΩ(T ∗, K∗, p∗) in Ω× (0, tf) (5.21e)

e∇× (µ−1,Λ∗) = gΓN
(K∗, u∗,Λ∗) on ΓN × (0, tf) (5.21f)

e× (Λ∗) = 0 on ΓD × (0, tf) , (5.21g)

whereby the coupled subsystems (5.21a)–(5.21d) and (5.21e)–(5.21g) reflect the impact of the

thermal and electromagnetic phenomena on the augmented cost functional (5.11a). Thereby,

the right hand sides of the adjoint PDE system

gΩo(T
∗, K∗, u∗, µ(i), p∗) = ∂T l(T, u)|y∗ − ∂TfΩo(T,K)|y∗ p

∗

+ ∂T g̃(T, µ(i))
∣∣
y∗

(
µ(i) + β(i)g̃(T ∗, µ(i))

)
in Ωo × (0, tf) (5.22a)

gΓo,N
(T ∗, p∗) = ∂TfΓo,N

(T )
∣∣
y∗
p∗ on Γo,N × (0, tf) (5.22b)

gΩ(T ∗, K∗, p∗) = χΩop
∗ ∂KfΩo(T,K)|y∗ in Ω× (0, tf) (5.22c)

gΓN
(K∗, u∗,Λ∗) = ∂KfΓN

(K, u)|y∗ · Λ
∗ on ΓN × (0, tf) (5.22d)

reveal a similar structure as the adjoint PDE system in Chapter 3, where an outer penalty

function approach is used to cope with state constraints, cf. Equation (3.29) and (3.37). A
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difference to the case where no augmented Lagrangian method is applied is the right hand side

of the adjoint subsystem (5.21a), cf. Equation (5.22a). The function gΩo(T
∗, K∗, u∗, µ(i), p∗)

comprises the new part ∂T g̃(T, µ(i))
∣∣
y∗

(
µ(i) + β(i)g̃(T ∗, µ(i))

)
.

The dual variable µ(i) on the right hand side of the adjoint dynamics (5.21a) affects the

optimality system in a way that an optimal solution complies with the state constraint (5.1) in

terms of the augmented Lagrangian method. Furthermore, the part β(i)g̃(T ∗, µ(i)) mitigates

the impact of the dual variable on the adjoint dynamics due to the regularization of the

max-min problem by means of the penalty parameter β(i). The partial derivative of the

function g̃(T ∗, µ(i)) with respect to T reads as

∂T g̃(T, µ(i))
∣∣
y∗

=

{
1 if h(T ∗) > −µ(i)/β(i)

0 else
in Ωo × (0, tf) (5.23)

and ensures, roughly speaking, that the parts µ(i) and β(i)g̃(T ∗, µ(i)) affect the optimality

system only if the state constraint (5.1) is violated.

5.3.2 Gradient condition for optimal primal variable

The directional derivative (5.20c) is used to formulate the gradient condition with respect

to an optimal primal variable u. Similar to Section 3.4.3, the reduced gradient

gu =

∫
Ω

∂ul(T, u)|y∗ − Λ∗ · ∂ufΩ(K, u)|y∗ dx

+

∫
Γ

Λ∗ ·
(
χΓN

∂ufΓN
(K, u)|y∗ − χΓD

∂ufΓD
(u)|y∗

)
dx (5.24)

is defined, whereby the negative gradient −gu is the direction of steepest descent and allows

one to minimize the augmented cost functional (5.11a). To take the input constraints (5.2)

into account, the conditional expression (3.40) is used.

5.3.3 Summary of the optimality conditions

The optimality conditions of minimization problem (5.11) comprise the canonical equations

esys(T,K, u) = 0 and eadj(p,Λ, µ
(i), T,K, u) = 0 specified by the PDE systems (5.9b)–(5.9h)

and (5.21), respectively. The reduced gradient (5.24) represents the information of the

adjoint dynamics with respect to minimize the augmented cost functional (5.11a).

5.4 Numerical solution of the minimization step

This section presents the numerical solution of minimization problem (5.11) for the sequence

of dual variables µ(i) provided by Algorithm 5.1. The optimality conditions from the previous

section are numerically solved by means of a tailored gradient method and an extended

version of the optimization framework from Chapter 3.
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5.4.1 Tailored gradient method

The tailored gradient method shown in Algorithm 5.2 solves minimization problem (5.11)

using the current primal and dual variables from Algorithm 5.1. After this initialization step,

the first gradient iteration j starts with the numerical solution of the canonical equations

esys(T,K, u
(i,j)) = 0 and eadj(p,Λ, µ

(i), T (i,j), K(i,j), u(i,j)) = 0. The canonical equations are

integrated forwards and backwards in time and result in the trajectories of the current state

variables (T (i,j), K(i,j)) and adjoint state variables (p(i,j),Λ(i,j)), cf. step II.i)–II.ii).

Algorithm 5.2 Gradient method for solving minimization problem (5.11).

I. Initialization

i) Initialize gradient method with primal variable u(i,1) = u(i) from Algorithm 5.1.

ii) Get current dual variable µ(i) from Algorithm 5.1.

iii) Get thresholds (εu, εT+) > 0 of termination criterion (5.27) from Algorithm 5.1.

II. Gradient iteration j = 1, 2, . . .

i) Integration of system dynamics esys(T,K, u
(i,j)) = 0 forwards in time to obtain

state trajectories (T (i,j), K(i,j)).

ii) Integration of adjoint dynamics eadj(p,Λ, µ
(i), T (i,j), K(i,j), u(i,j)) = 0 backwards in

time to obtain adjoint state trajectories (p(i,j),Λ(i,j)).

iii) Evaluation of gradient (5.24) to obtain direction of steepest descent −g(i,j)
u .

iv) Numerical solution of line search problem

α(i,j) = arg min
α>0

Jβ(ψu
(
u(i,j) − αg(i,j)

u

)
, µ(i)) (5.25)

with projection function ψu, cf. Equation (3.44).

v) Update of primal variable

u(i,j+1) = ψu
(
u(i,j) − α(i,j)g(i,j)

u

)
(5.26)

following a steepest descent approach.

vi) Quit gradient method and set primal variable u(i+1) = u(i,j+1) in Algorithm 5.1,

if termination criterion∥∥u(i,j+1) − u(i,j)
∥∥2

L2(0,tf)

‖u(i,1)‖2
L2(0,tf)

≤ εu ∨
∥∥max

(
0, h(T (i,j+1))

)∥∥2

L2(Qo)
> γ3 εT+ (5.27)

with γ3 > 1 is fulfilled, whereby at least Nmin > 2 gradient iterations are consid-

ered. Otherwise, set j ← j + 1 and return to step II.i).
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The steps II.iii)–II.v) of Algorithm 5.2 deal with the update of the primal variable u(i,j)

following a steepest descent approach. To this end, the negative gradient −g(j)
u is determined

using Equation (5.24). The step size in the direction of steepest descent α(i,j) follows from

the numerical solution of line search problem (5.25). This allows one to update the control

trajectory (5.26), whereby the projection function ψu takes the input constraints (5.2) into

account, cf. Equation (3.44).

If either the sequence of primal variables u(i,j) converges to at least a local optimum or the

violation of the state constraint h(T (i,j+1)) ≤ 0 exceeds a critical threshold, the minimization

of the augmented cost functional is interrupted, cf. step II.vi) of Algorithm 5.2. Instead,

the augmented Lagrangian step from Algorithm 5.1 is carried out. The switchover from the

minimization to the maximization step is described by termination criterion (5.27) with the

thresholds (εu, εT+), the constant γ3 > 1, and the norms (3.48) and (5.18). The minimization

step is not interrupted until at least Nmin > 2 gradient iterations are carried out. To achieve

a good and robust convergence behavior, the reference value Nmin ∈ (3, 6) is proposed.

5.4.2 Extended optimization framework

The numerical solution of the max-min problem (5.9) is tackled by means of the optimiza-

tion framework shown in Figure 5.1. The augmented Lagrangian method and the tailored

gradient method from Algorithm 5.1 and 5.2 are implemented in Matlab, whereby an in-

terface to the FEM-based simulation software Comsol Multiphysics is used to separate

the numerical issues of the state constrained trajectory planning from the algorithmic ones,

also see the discussion in Section 3.5.

The sequence control of Algorithm 5.2 in Matlab corresponds to Algorithm 3.1, but is ex-

tended by the augmented Lagrangian step described in Algorithm 5.1. The numerical solu-

tion of the canonical equations esys(T,K, u
(i,j)) = 0 and eadj(p,Λ, µ

(i), T (i,j), K(i,j), u(i,j)) = 0

is outsourced to the FEM software Comsol Multiphysics. The corresponding simulation

Augm. Lagrangian method Interface

LiveLin
k for M

atlab

Gradient method & line search

Update of primal variables

Numerical solution of PDEs

System dynamics

Adjoint dynamics

Problem formulation

Update of dual variables

Figure 5.1: Extended optimization framework for solving max-min problem (5.9).
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results are provided Matlab to cope with the update of the primal variable u(i,j) in the

steps II.iii)–II.v) of Algorithm 5.2. The update of the dual variable µ(i) in the step II.ii)

of Algorithm 5.1 is carried out in Comsol Multiphysics. This allows one to outsource

the memory management for the dual variable µ(i) to the FEM software, which is especially

advantageous for problems with state constraints defined on complex spatial domains.

5.5 Numerical results

This section presents numerical results of the state constrained trajectory planning. The

optimization framework from the previous section is applied to a surface hardening and a

constant heat-up process including constraints on the temperature and temperature gradient.

The simulation scenarios reveal the capability of the optimization-based approach to plan

trajectories that accurately satisfy state constraints.

5.5.1 Surface hardening process with temperature constraint

The first simulation study deals with the state constrained trajectory planning of a surface

hardening process. The problem formulation is similar to Section 3.6.2. Figure 3.10 shows

the geometrical setup of the surface hardening process encompassing six inductors Ωcj and

the axisymmetrical workpiece Ωo with surface layer Ω̃o.

The control task consists in heating up the surface layer from the initial temperature T0 =

773 K to the desired temperature Td = 1023 K. The temperature constraint (5.1) is specified

by the bound T+ = 1078 K, which is significantly lower than in the problem formulation from

Chapter 3 to demonstrate the accuracy of the augmented Lagrangian method. The input

constraints (5.2) are specified by the interval [0 A, 30 A], whereby the angular frequency of

the impressed currents is set to ω = 50 kHz. For the state constrained trajectory planning,

an optimal actuator configuration is considered. To this end, the optimization framework

from Chapter 4 is applied but not discussed in what follows.

The max-min problem (5.9) is numerically solved with the weights of the Mayer and Lagrange

terms (5.4) as specified by Table 5.1. The initial penalty parameter is set to β(1) = 102. The

update law of the penalty parameter (5.13) uses the adaptation factors γ1 = 4 and γ2 = 0.8

as well as the factor κ = 1.8. The termination criteria (5.14) and (5.27) are evaluated with

the bounds εu = 10−8 and εT+ = 10−5 and the constant γ3 = 103.

Table 5.1: Weights of the Mayer and Lagrange terms (5.4) for the surface hardening process.

weight objective

q1 = 101 minimization of state error (T − Td)2 in surface layer Ω̃o (Mayer term)

q2 = 104 minimization of state error (T − Td)2 in surface layer Ω̃o (Lagrange term)

q3 = 10−2 penalization of control action u2 in Ωc (Lagrange term)
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Figure 5.2: Control trajectory u leading to an optimal heat-up behavior of the surface layer

with minimal, average, and maximum temperature T̃i, i ∈ {min, avg,max}.

Figure 5.2 shows the optimized control trajectory u and the trajectories of the minimum,

average, and maximum surface temperature T̃i(t), i ∈ {min, avg,max}. The temperature

constraint T ≤ T+ with bound T+ = 1078 K is well exploited by the trajectory T̃max(t),

making it possible to heat up the surface layer as fast as possible to the desired tempera-

ture Td = 1023 K. To comply with the temperature constraint, the optimization variable u

adapts the electromagnetic heat source to the heat-up behavior of the workpiece.

5.5.2 Heat-up process with temperature gradient constraint

The second simulation scenario is concerned with heating a cylindrical workpiece from the

initial temperature T0 = 293 K to the desired temperature Td = 773 K on the time interval

t ∈ (0, tf) with final time tf = 100 s. The absolute value of the temperature gradient must

not exceed | ∇T+| = 9 · 103 K/m during the heat-up process, what is a typical requirement

to confine mechanical stresses of the workpiece [118]. The inductor currents are subject to

the input constraints u(t) ∈ [0 A, 200 A]. The angular frequency is set to ω = 1 kHz.

The geometrical setup of the heat-up process comprises a workpiece made of aluminium

alloy with radius r = 0.06 m and height h = 0.2 m, three inductors with cross section surface

Ac = 7.52π 10−6 m2 and coil windings Nc = 100, and the ambient air, cf. Figure 5.3. The

air gap between inductor and workpiece is set to rag = 10 mm. Table 5.2 shows the material

parameters of the system dynamics.

To apply the augmented Lagrangian method to the problem considered in these lines, the

inequality constraint h(∇T ) and the function g̃(∇T, µ) are defined as follows

h(∇T ) = | ∇T |2 − |∇T+|2 ≤ 0 in Ωo × (0, tf) (5.28a)

g̃(∇T, µ) = max (h(∇T ),−µ/β) in Ωo × (0, tf) (5.28b)

with | ∇T |2 = ∇T · ∇T , cf. Equation (5.1) and (5.7). Thus, a max-min problem similar to

the formulation (5.9) can be considered for handling the optimal trajectory planning problem

including constraints on the temperature gradient.
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Figure 5.3: Geometrical setup and meshed spatial domain of the heat-up process.

The optimality conditions of the new max-min problem correspond to those from Section 5.3.

The replacement of the constraint (5.1) and function (5.7) by Equation (5.28), however, lead

to modified versions of the right hand sides of the adjoint subsystem (5.22a)–(5.22b). For

the problem considered in these lines, the right hand sides are defined as follows

gΩo(T
∗, K∗, u∗, µ, p∗) = ∂T l(T, u)|y∗ − ∂TfΩo(T,K)|y∗ p

∗

+ f̃Ωo(∆T ∗)
(
µ(i) + β(i)g̃(∇T ∗, µ(i))

)
in Ωo × (0, tf) (5.29a)

gΓo,N
(T ∗, p∗) = f̃Γo,N

(∇T ∗) + ∂TfΓo,N
(T )
∣∣
y∗
p∗ on Γo,N × (0, tf) , (5.29b)

whereby the new functions f̃Ωo(∆T ) and f̃Γo(∇T ) read as

f̃Ωo(∆T ) =

{
−2 e∆ (1, T ∗) if h(∇T ∗) > −µ(i)/β(i)

0 else
in Ωo × (0, tf) (5.30a)

f̃Γo,N
(∇T ) =

{
2 e∇, x (1, T ∗) if h(∇T ∗) > −µ(i)/β(i)

0 else
on Γo,N × (0, tf) . (5.30b)

The functions (5.30) result from the part g̃(∇T, µ) when carrying out the directional deriva-

tive (5.20a). In this regard, Green’s second identity (3.27) is used to shift the spatial operator

∇T from the admissible directions hT to the state variable T .

The max-min problem specified above is solved with the weights of the Mayer and Lagrange

terms (5.4) from Table 5.3. The initial penalty parameter is β(1) = 102, whereby the update

step (5.13) uses the constants γ1 = 4, γ2 = 0.8, and κ = 2.5. The stopping criteria (5.14)

and (5.27) uses the bounds εu = 10−8 and εT+ = 10−5 as well as the constant γ3 = 103.
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Table 5.2: Material parameters of the heat-up process.

workpiece Ωo inductor Ωc air Ωa

rel. magnetic permeability µr 1 1 1 [−]

electrical conductivity σ 3.77 · 107 0 0 [S/m]

density ρ 2.7 · 103 - - [kg/m3]

heat capacity C 900 - - [J/(kg K)]

thermal conductivity k 238 - - [W/(m K)]

heat transfer coefficient α 6.8 - - [W/(m2 K)]

emissivity of the surface ε 0.060 - - [−]

Table 5.3: Weights of the Mayer and Lagrange terms (5.4) for the heat-up process.

weight objective

q1 = 105 minimization of state error (T − Td)2 in workpiece Ωo (Mayer term)

q2 = 103 minimization of state error (T − Td)2 in workpiece Ωo (Lagrange term)

q3 = 10−2 penalization of control action u2 in Ωc (Lagrange term)

The numerical results provided by the optimization framework are shown in Figure 5.4.

The solution of the state constrained problem is compared to those of the unconstrained

counterpart (dotted lines). In the former case, it can be seen that the control trajectory u

hits its upper bound only initially and decreases afterwards to ensure that the absolute value

of the maximum temperature gradient | ∇T |max(t) does not exceed | ∇T+| = 9 · 103 K/m.
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Figure 5.4: Optimal trajectories of the heat-up process with constraints on the temperature

gradient (solid lines) and without constraints (dotted lines).
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For both the scenario with and without temperature gradient constraints, the control tra-

jectory u appropriately adjusts the power over the time interval t ∈ (0, 100 s) that is induced

within the workpiece

Q(t) =

∫
Ωo

σω2

2
|A|2 dx , (5.31)

cf. Figure 5.4. However, the control trajectory is increased for a short period of time af-

ter t = 40 s in the case of a constrained temperature gradient (solid lines) compared to the

unconstrained scenario (dotted lines). This compensates in the scenario with constraints the

reduced power at the beginning of the heat-up process, what is necessary to comply with

the temperature gradient constraint (5.28a). In both cases, the trajectories of the mini-

mum Tmin(t), average Tavg(t), and maximum workpiece temperature Tmax(t) are harmonized

with the desired temperature Td = 773 K at the end of the heat-up process.

The spatial profiles of the absolute value of the temperature gradient | ∇ T | are shown in

Figure 5.5 for different time instants of the heat-up process with constraints on the tem-

perature gradient. Due to an accumulation of heat at regions of the workpiece close to

the inductors, individual areas occur where the temperature gradient increases rapidly, cf.

the profiles at t = 2 s and t = 4 s. These hot spots can be interpreted as equipotential

surfaces which are especially pronounced during the time interval t ∈ (10 s, 30 s), where

the optimized trajectories hit the state constraint | ∇ T | ≤ 9 · 103 K/m, cf. the profile of

Figure 5.5 at t = 10 s and the trajectory of the absolute value of the maximum gradient of

the temperature | ∇T |max(t) in Figure 5.4.
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Figure 5.5: Absolute value of the temperature gradient | ∇T |.
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5.6 Conclusions

The optimization frameworks from Chapter 3 and 4 have been extended to account for state

constraints in a more systematic manner compared to the outer penalty function approach.

An augmented Lagrangian method is presented to replace the original problem by a max-min

problem that can be numerically solved considerably easier, since the mutual minimization

and maximization of the augmented cost functional are problem formulations that comprise

no state constraints.

The augmented Lagrangian method is illustrated for a surface hardening process and a

constant heat-up process including constraints on the temperature and the gradient of the

temperature. The optimized trajectories of the electromagnetic heating systems exploit the

state constraints highly accurate and lead to an optimal heat-up behavior.



Chapter 6

Conclusions and outlook

The trajectory planning of electromagnetic heating systems constitutes a multiphysics prob-

lem including electromagnetic and thermal phenomena. Generally speaking, the objective is

to heat up specific spatial domains of an electrically conductive object. An important aspect

of the trajectory planning concerns the proper electrical excitation of the actuator in order

to achieve a desired heat-up behavior. Another important point concerns the spatial actu-

ator design itself. Both degrees of freedom can be utilized to manipulate the intensity and

spatial distribution of the electromagnetic heat source. The compliance of state constraints

such as a constraints on the temperature or temperature gradient are typical requirements

for electromagnetic heating applications.

In this thesis, the optimal trajectory planning of electromagnetic heating systems is tackled

by formulating and numerically solving a PDE constrained optimization problem. The op-

timization of the electrical excitation and spatial configuration of the actuator relies on the

formal Lagrangian technique and the adjoint-based sensitivity analysis. The corresponding

optimality conditions are derived in the function space of the original problem formulation

following a FOTD approach to ensure that not only the system dynamics but rather the

whole optimality system can be numerically solved by means of FEM-based simulation soft-

ware. The solution approach is characterized by its generality to deal with typical problems

of electromagnetic heating. This means that different excitation strategies for the actua-

tor, geometrical setups with arbitrary complexity, and various application examples such as

induction heating processes or hyperthermia therapy can be handled with relative ease.

In order to account for state constraints, an outer penalty function approach and augmented

Lagrangian method are presented.1 The augmented Lagrangian method attacks the state

constrained trajectory planning problem from an algorithmic point of view and circumvents

the crucial point of manually choosing suitable weights for the outer penalty function. An

important side effect is that the algorithmic implementation of the augmented Lagrangian

method can be incorporated into the optimization frameworks already used for optimizing

the excitation and spatial configuration of the actuator.

1 Appendix A presents a transformation approach to deal with state constraints more analytically.
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The three main components of this thesis, i. e., the optimal excitation of the actuator, its

optimal spatial configuration, and the incorporation of state constraints for the trajectory

planning, are tackled by an optimization framework that closely couples FEM software and

optimization algorithms. The state-of-the-art FEM software Comsol Multiphysics and

the software package Matlab are combined to cope with the trajectory planning prob-

lem. The algorithmic level of the optimization framework in Matlab consists of a gradient

method, respectively an augmented Lagrangian method, to solve the optimality conditions.

The numerical effort that is associated with the trajectory planning, however, is outsourced

to Comsol Multiphysics. An interface between Matlab and Comsol Multiphysics

ensures the interaction of the algorithmic and numerical level.

The primary benefit of the optimization framework lies in the usage of well known algorithms

and solvers to numerically solve the canonical equations of the multiphysics problems. Fur-

thermore, the integrated CAD tools of the FEM software allow to handle the description

of the geometrical setup of the trajectory planning problems with relative ease. Another

important characteristic of the optimization framework concerns the automated meshing of

the domain of interest for which the canonical equations are numerically solved. This is

particularly advantageous if complex geometries are involved and in the context of shape

optimization since different candidates of actuator shapes are relatively easy to handle during

the gradient iterations.

The trajectory planning approach is exemplified for various types of electromagnetic heating,

as they typically arise in induction heating processes and hyperthermia therapy. The geo-

metrical setups considered in this thesis range from two-dimensional spatial domains in the

course of hyperthermia therapy over axisymmetrical setups of surface hardening processes to

complex spatial domains of induction heat-up processes of a gear wheel. The presented sim-

ulation studies demonstrate the generality of the solution approach as well as the accuracy

and general applicability of the optimization-based trajectory planning.

There are several promising extensions of the optimization framework. The numerical find-

ings of the state constrained trajectory planning can be applied to real processes of induc-

tion heating or hyperthermia scenarios after suitable parameter identification techniques

have been applied to estimate the material parameters of the electromagnetic and thermal

subsystems. Another interesting extension of the optimization framework is to consider ad-

ditional multiphysics phenomena such as metallurgical effects or thermo-mechanical strains

and stresses. The integration of such physical phenomena into the mathematical model of

the system dynamics improves the accuracy of the trajectory planning, but makes it more

difficult to validate the mathematical model. It also remains to show that the optimal-

ity conditions of the new problem formulation can be derived and incorporated into the

optimization framework.



Appendix A

Transformation approach for

constraint handling

A transformation approach is discussed to cope with state constraints in a more analytic

way compared to the outer penalty function approach in Chapter 3 and 4 as well as the aug-

mented Lagrangian method in Chapter 5. The proposed approach makes use of an analytic

preprocessing step relying on a constraint transformation technique.

The idea of the transformation approach goes back to optimal control problems governed

by ODEs [53, 52, 71]. In a first step, the state constraints are substituted on the basis of

saturation functions. As a result, the constrained state and input variables can be mapped

onto new unconstrained counterparts. This reformulation step facilitates to transform the

constrained system dynamics into an unconstrained one with the new variables serving as

the states and inputs. The transformation approach eventually results in a new optimiza-

tion problem, which inherently complies with the state constraints. The advantage of this

state constraint handling is based on established optimization methods that can be used to

numerically solve the new problem.

The following lines address how the transformation technique can be modified to cope with

state constraints in the context of PDE constrained optimization. The modified approach

preserves the structure of the optimality conditions from the previous chapters and allows

to outsource its numerical solution to the respective optimization frameworks.

A.1 Transformation of state constrained

optimization problems

The transformation approach is exemplified for optimization problem (5.3). However, the

state constraints are handled in a more general way by replacing (5.3i) by the two-sided

inequality constraint

T− ≤ T (x, t) ≤ T+ in Ωo × (0, tf) . (A.1)

The upper and lower bounds T± are assumed to be symmetric.1

1 To simplify matters, the notation (·)± is used to address both symbols (·)+ and (·)−.
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A.1.1 Saturation function approach and

transformation instructions

The transformation approach substitutes the constrained state variable T ∈ [T−, T+] by an

equivalent unconstrained counterpart. In order to realize such a coordinate transformation,

the saturation function

Ψ(ξ) = T+ − T+ − T−

1 + e sξ
in Ωo × (0, tf) (A.2)

is introduced with ξ := ξ(x, t) serving as a new state variable. The parameter s is chosen as

s =
4

T+ − T−
(A.3)

in order to normalize the slope of the saturation function (A.2) at ξ = 0 to ∂ξΨ(ξ) = 1, also

see [52]. Figure A.1 shows the characteristic of the saturation function Ψ(ξ) of mapping the

feasible interval (T−, T+) onto the unconstrained interval (−∞,∞).

The saturation function approach (A.2) allows one to express the constrained state variable T

within the new unconstrained coordinates of ξ. The applicability of this interchange of

coordinates is due to the characteristic of the saturation function (A.2) to be asymptotic

with respect to ξ, i. e.,

lim
ξ→±∞

Ψ(ξ) = T± in Ωo × (0, tf) . (A.4)

Thus, the bounds T± are only approached in the limit ξ → ±∞, cf. Figure A.1. Another

important characteristic of the saturation function Ψ(ξ) is its behavior to be strictly mono-

tonically increasing on the whole interval ξ ∈ (−∞,∞) resulting in

∂ξΨ(ξ) > 0 ∀ξ in Ωo × (0, tf) , (A.5)

as shown in Figure A.1.

Both the transformation of the constrained state variable T to its unconstrained counter-

part ξ and the corresponding inverse transformation are formally defined by

T = Ψ(ξ) , Ψ : (−∞,∞)→ (T−, T+) in Ωo × (0, tf) (A.6a)

ξ = Ψ−1(T ) , Ψ−1 : (T−, T+)→ (−∞,∞) in Ωo × (0, tf) , (A.6b)

also see [137]. Thereby, the inverse of the saturation function

Ψ−(T ) =
1

s
ln

(
T − T−

T+ − T

)
in Ωo × (0, tf) (A.7)

follows from Equation (A.2).
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Figure A.1: Saturation function Ψ(ξ) with bounds T± = ±1 with partial derivatives of first

and second order with respect to ξ, and function d(ξ) = k ∂ξξΨ/∂ξΨ, cf. Equation (A.12).

The transformation (A.6a) can directly be applied to parts of optimization problem (5.3)

that neither involve temporal nor spatial operators, whereby the transformation of the cost

functional (5.3a) results in the transformed Mayer and Lagrange terms

Ṽ (ξ(·, tf)) =
q1

2
χΩd

(Ψ(ξ(·, tf))− Td)2 (A.8a)

l̃(ξ, u) =
q2

2
χΩd

(Ψ(ξ)− Td)2 +
q3

2
χΩcu

2 . (A.8b)

The transformation (A.6a) is also applicable to the right hand sides of (5.3b)–(5.3c) yielding

f̃Ωo(ξ,K) = fΩo(Ψ(ξ), K) in Ωo × (0, tf) (A.9a)

f̃Γo,N
(ξ) = fΓo,N

(Ψ(ξ)) on Γo,N × (0, tf) . (A.9b)

However, the transformation (A.6a) is not immediately applicable to temporal and spa-

tial operators of the thermal subsystem (5.3b)–(5.3c). Note that the inverse transforma-

tion (A.6b) allows one to transform the Dirichlet boundary condition (5.3d) and initial the

condition (5.3e) into the coordinates of ξ.
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A.1.2 Transformation of the thermal dynamics

For a transformation of parts of optimization problem (5.3) involving temporal or spatial

operators with T as an argument, the transformation instructions

∂tT = Ψ′(ξ) ∂tξ in Ωo × (0, tf) (A.10a)

∇T = Ψ′(ξ) ∇ ξ in Ωo × (0, tf) (A.10b)

∇· (k∇T ) = kΨ′′(ξ) ∇ ξ · ∇ ξ + Ψ′(ξ)∇· (k∇ ξ) in Ωo × (0, tf) (A.10c)

are introduced. They are obtained by successively differentiating the left and right hands

side of Equation (A.6a) with respect to the time variable t and the spatial coordinate x,

respectively.2 Using the transformation instructions (A.9) and (A.10), the thermal subsys-

tem (5.3b)–(5.3e) can be transformed to the equivalent unconstrained counterpart

Ψ′(ξ) [e∇, t (ρC, ξ)− e∆ (k, ξ)− d(ξ)∇ ξ · ∇ ξ] = f̃Ωo(ξ,K) in Ωo × (0, tf) (A.11a)

Ψ′(ξ) [e∇, x (k, ξ)] = f̃Γo,N
(ξ) on Γo,N × (0, tf) (A.11b)

ξ = Ψ−1(fΓo,D
) on Γo,D × (0, tf) (A.11c)

ξ(·, 0) = Ψ−1(T0) in Ωo at t = 0 (A.11d)

that inherently satisfies the state constraints (A.1), also see [113]. A more suitable structure

of the transformed thermal subsystem (A.11) can be derived by introducing the relation

d(ξ) = k
Ψ′′(ξ)

Ψ′(ξ)
in Ωo × (0, tf) , (A.12)

whereby it is guaranteed that d(ξ) remains bounded for all ξ, cf. Figure A.1.

The structure of the transformed thermal subsystem (A.11) is almost identical to its con-

strained counterpart (5.3b)–(5.3e). The transformed thermal subsystem (A.11) only includes

the additional function d(ξ)∇ ξ · ∇ ξ and the partial derivative of the saturation function

with respect to ξ, i. e., Ψ′(ξ). Note that the function Ψ′(ξ) asymptotically approaches zero

for ξ → ±∞. Consequently, the subsystem (A.11a)–(A.11b) degenerates to the set of alge-

braic constraints

0 = f̃Ωo(ξ,K) in Ωo × (t1, t2) (A.13a)

0 = f̃Γo,N
(ξ) on Γo,N × (t1, t2) (A.13b)

with t ∈ (t1, t2) denoting time intervals where ξ → ±∞. At these time intervals, the original

state variable T approaches its bounds T±.

In order to cope with the degenerated subsystem (A.13), the control variable v := v(x, t) is

introduced and related to the left and right hand sides of (A.11a) as follows

e∇, t (ρC, ξ)− e∆ (k, ξ)− d(ξ)∇ ξ · ∇ ξ = v in Ωo × (0, tf) (A.14a)

Ψ′(ξ)v = f̃Ωo(ξ,K) in Ωo × (0, tf) . (A.14b)

2 For the sake of brevity, the partial derivatives of the saturation function Ψ(ξ) with respect to ξ of first

and second order are denoted by Ψ′(ξ) and Ψ′′(ξ).
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As shown in the following lines, this alternative description of the system dynamics al-

lows the formulation of an optimization problem in such a way that the left hand side of

Equation (A.14a) is well-defined even if the state constraints are approached, which im-

plies ξ → ±∞. In such cases, the control variable v tends to peak in view of the algebraic

constraint (A.14b) that is used to achieve consistency between the formulations (A.11a)

and (A.14a). Consequently, a quadratic penalization of the control variable v allows one to

prevent the crucial point that the state variable ξ becomes unbounded, also see [52].

It is worth to mention that the right hand side of Equation (A.14a) is specified using the

control variable v instead of setting directly

v =
f̃Ωo(ξ,K)

Ψ′(ξ)
in Ωo × (0, tf) . (A.15)

At a first glance, this is an identical formulation to Equation (A.14b). However, formula-

tion (A.15) would result in both a nonlinear and state-dependent transformation of the state

variable of the electromagnetic subsystem K and therefore to an inconsistency between the

assumed distribution of the electromagnetic heat source in the coordinates of ξ and the true

physical conditions. The inconsistency is caused by the temporal and spatial dynamics of the

state variable ξ which do not reflect the original situation. The correct spatial distribution

of the electromagnetic heat source depends on the dynamics of the electromagnetic system

(5.3f)–(5.3h). For this reason, the algebraic constraint (A.14b) is considered, which can be

interpreted as an equality constraint for v.

To achieve a well-defined formulation of the thermal dynamics in the coordinates of ξ, the

transformed PDE system

e∇, t (ρC, ξ)− e∆ (k, ξ)− d(ξ)∇ ξ · ∇ ξ = v in Ωo × (0, tf) (A.16a)

e∇, x (k, ξ) = f̃Γo,N
(ξ)/Ψ′(ξ) on Γo,N × (0, tf) (A.16b)

ξ = Ψ−1(fΓo,D
) on Γo,D × (0, tf) (A.16c)

ξ(·, 0) = Ψ−1(T0) in Ωo at t = 0 (A.16d)

Ψ′(ξ)v = f̃Ωo(ξ,K) in Ωo × (0, tf) (A.16e)

is introduced. The control variable v actuates the transformed thermal subsystem (A.16a)–

(A.16d), whereby the algebraic constraint (A.16e) ensures that the spatial distribution of

the electromagnetic heat source is reflected correctly.
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A.1.3 Optimization problem with unconstrained state variables

The transformed cost functional (A.8) and subsystem (A.16) is used to formulate the opti-

mization problem

min
u(·)∈Uad
v(·)

Jε(u, v) =

∫
Ω

Ṽ (ξ(·, tf)) dx+

∫∫
Ω×(0,tf)

l̃(ξ, u) + pε(v) dxdt (A.17a)

s.t. e∇, t (ρC, ξ)− e∆ (k, ξ)− d(ξ)∇ ξ · ∇ ξ = v in Ωo × (0, tf) (A.17b)

e∇, x (k, ξ) = f̃Γo,N
(ξ)/Ψ′(ξ) on Γo,N × (0, tf) (A.17c)

ξ = Ψ−1(fΓo,D
) on Γo,D × (0, tf) (A.17d)

ξ(·, 0) = Ψ−1(T0) in Ωo at t = 0 (A.17e)

e∇×,∇× (µ−1, K) = fΩ(K, u) in Ω× (0, tf) (A.17f)

e∇× (µ−1, K) = fΓN
(K, u) on ΓN × (0, tf) (A.17g)

e× (K) = fΓD
(u) on ΓD × (0, tf) (A.17h)

g(ξ,K, v) = Ψ′(ξ)v − f̃Ωo(ξ,K) = 0 in Ωo × (0, tf) , (A.17i)

whereby the unconstrained state variable ξ allows one to overcome the demanding task of

a direct handling of the state constraint (5.3i) when numerically solving the optimization

problem. The control trajectory u is subject to the constraints (5.2) and serves as one of

two optimization variables. The control variable v serves as a further optimization variable,

which has to comply with (A.17i) for reasons of consistency, cf. Appendix A.1.2.

The cost functional to be minimized (A.17a) is amended by the penalty term

pε(v) = χΩo

ε

2
v2 in Ω× (0, tf) (A.18)

with ε > 0 as the penalty parameter. In order to interpret the penalty term, the cost

functional Jε(u, v) is transformed back into the original control and state variables (u, T )

using the inverse transformation (A.6b). The back transformation of the Mayer and Lagrange

terms Ṽ (ξ(·, tf)) and l̃(ξ, u) leads to its original counterparts V (T (·, tf)) and l(T, u). For

achieving a change of coordinates for the penalty term pε(v), the control variable v is replaced

according to Equation (A.15), which eventually results in

p−1
ε (T,K) =

ε

2

(
1

4

(T− − T+)
2

(T− − T ) (T+ − T )

)2

fΩo(T,K)2 in Ωo × (0, tf) . (A.19)

Thus, the inverse of the penalty term p−1
ε (T,K) becomes unbounded as soon as the temper-

ature T approaches its bounds T±, also see [52, 137].

The discussion above reveals that the incorporation of the penalty term (A.18) into the

cost functional Jε(u, v) can be interpreted as an interior barrier function that is capable to

cope with state constraints on the basis of the original problem formulation (5.3). In the
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coordinates of the transformed unconstrained problem (A.17), the term (A.18) penalizes

large values of the state variable ξ in order to circumvent the critical case of unbounded

state variables ξ implying

Ψ(ξ)→ T± ⇔ Ψ′(ξ)→ 0 in Ωo × (0, tf) . (A.20)

The convergence behavior of the new optimization problem (A.17) for a successively reduced

penalty parameter ε is investigated in [52].

A.2 Numerical solution of the transformed

optimization problem

This section applies an augmented Lagrangian method to numerically solve optimization

problem (A.17). The equality constrained problem is first reformulated as a max-min prob-

lem. Subsequently, the optimality conditions of the new problem formulation are derived

and numerically solved as discussed in Chapter 5.

A.2.1 Formulation and numerical solution of a max-min problem

The augmented Lagrangian method from Chapter 5 allows one to reformulate the equality

constrained optimization problem (A.17) as the max-min problem

max
µ(·)

min
u(·)∈Uad
v(·)

Jβ(u, v, µ) = Jε(u, v) +

∫∫
Ωo×(0,tf)

µg(ξ,K, v) +
β

2
g(ξ,K, v)2 dxdt (A.21a)

s.t. e∇, t (ρC, ξ)− e∆ (k, ξ)− d(ξ)∇ ξ · ∇ ξ = v in Ωo × (0, tf) (A.21b)

e∇, x (k, ξ) = f̃Γo,N
(ξ)/Ψ′(ξ) on Γo,N × (0, tf) (A.21c)

ξ = Ψ−1(fΓo,D
) on Γo,D × (0, tf) (A.21d)

ξ(·, 0) = Ψ−1(T0) in Ωo at t = 0 (A.21e)

e∇×,∇× (µ−1, K) = fΩ(K, u) in Ω× (0, tf) (A.21f)

e∇× (µ−1, K) = fΓN
(K, u) on ΓN × (0, tf) (A.21g)

e× (K) = fΓD
(u) on ΓD × (0, tf) , (A.21h)

whereby the augmented cost functional (A.21a) couples the equality constraint g(ξ,K, v) = 0

to the cost functional (A.17a) using the dual variable µ(x, t). In addition, the augmented

cost functional includes a regularization term with penalty parameter β > 0. Comparing

the max-min problem (A.21) with the formulation in original state variables (5.9), it can be

concluded that Algorithm 5.1 is suitable to cope with both problems. The max-min problem

(A.21) can be numerically solved by alternately minimizing and maximizing the augmented

cost functional Jβ(u, v, µ) with respect to the primal variables (u, v) and dual variable µ.
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In order to minimize the augmented cost functional (A.21a) in step II.i) of Algorithm 5.1, the

optimality conditions are derived in Appendix A.2.2. The maximization of the augmented

cost functional in step II.ii) is tackled by means of the directional derivative

∂Jβ(u, v, µ)

∂µ

∣∣∣∣
y(i+1)

hµ = 0 ∀hµ (A.22)

with hµ denoting the admissible directions of the dual variable µ. The directional derivative

(A.22) is evaluated for the solution y(i+1) of the prior minimization step, cf. Algorithm 5.1.

The directional derivative allows the formulation of the reduced gradient

g(i)
µ = g(ξ(i), K(i), v(i)) in Ωo × (0, tf) , (A.23)

whereby gµ(x, t) is interpreted as the direction of steepest ascent with respect to maximizing

the augmented cost functional Jβ(u, v, µ) in the augmented Lagrangian step i.

A.2.2 Optimality conditions for minimization step

The optimality conditions for minimizing the augmented cost functional (A.21a) in step II.i)

of Algorithm 5.1 are derived by applying the formal Lagrangian technique. As the struc-

ture of the max-min problem (A.21) is similar to that in Chapter 5, the following discus-

sion is restricted to the specifics of the transformation approach. The transformed thermal

dynamics (A.21b)–(A.21e) encompass the same temporal and spatial operators up to the

part d(ξ)∇ ξ · ∇ ξ as its constrained counterpart (5.9b)–(5.9e). Accordingly, the application

of the formal Lagrangian technique will result in optimality conditions that are similar to

those in Section 5.3.

First of all, the Lagrangian L := L(ξ,K, u, v, µ(i), p,Λ) is defined as

L =

∫
Ω

Ṽ (ξ(·, tf)) dx+

∫∫
Ω×(0,tf)

l̃(ξ, u)+pε(v) dxdt+

∫∫
Ωo×(0,tf)

µ(i)g(ξ,K, v)+
β(i)

2
g(ξ,K, v)2 dxdt

+

∫∫
Ωo×(0,tf)

p [e∇, t (ρC, ξ)− e∆ (k, ξ)− d(ξ)∇ ξ · ∇ ξ − v] dxdt

+

∫∫
Γo,N×(0,tf)

p
[
e∇, x (k, ξ)− f̃Γo,N

(ξ)/Ψ′(ξ)
]

dxdt+

∫∫
Γo,D×(0,tf)

p
[
ξ −Ψ−1(fΓo,D

)
]

dxdt

+

∫∫
Ω×(0,tf)

Λ ·
[
e∇×,∇× (µ−1, K)− fΩ(K, u)

]
dxdt

+

∫∫
ΓN×(0,tf)

Λ ·
[
fΓN

(K, u)− e∇× (µ−1, K)
]

dxdt+

∫∫
ΓD×(0,tf)

Λ · [e× (K)− fΓD
(u)] dxdt (A.24)

coupling the transformed thermal subsystem (A.21b)–(A.21d) and the electromagnetic sub-

system (A.21f)–(A.21h) to the augmented cost functional Jβ(u, v, µ(i)) using the adjoint

states p(x, t) and Λ(x; t). Note that the augmented cost functional is minimized for a fixed

value of the dual variable µ, cf. the discussion in Section 5.2.
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The optimality conditions for a minimization of the augmented cost functional (A.21a) are

derived by analyzing the directional derivatives

∂L
∂ξ

∣∣∣∣
y∗
hξ = 0 ∀hξ (A.25a)

∂L
∂K

∣∣∣∣
y∗
·HK = 0 ∀HK (A.25b)

∂L
∂u

∣∣∣∣
y∗
hu ≥ 0 ∀u ∈ Uad (A.25c)

∂L
∂v

∣∣∣∣
y∗
hv = 0 ∀v . (A.25d)

The conditions of vanishing directional derivatives (A.25a)–(A.25b) are used to formulate an

adjoint PDE system with respect to the thermal subsystem (A.21b)–(A.21e) and the elec-

tromagnetic subsystem (A.21f)–(A.21h). The directional derivatives (A.25c)–(A.25d) allows

one to formulate gradient conditions for the primal variables (u, v).

To achieve a more compact notation, the left and right hand sides of the adjoint PDE system

are derived separately from each other. To this end, the knowledge about how the individual

parts of the Lagrangian (A.24) affect the structure of the adjoint PDE system is utilized.

By bearing in mind that the dynamics of the adjoint PDE subsystems stem from parts of

the Lagrangian L that contain temporal or spatial operators, the left hand sides can be

specified. Furthermore, it is known that the right hand sides of the adjoint dynamics reflect

parts that originate from the augmented cost functional Jβ(u, v, µ(i)) and right hand sides

of the system dynamics (A.21b)–(A.21h).

Adjoint dynamics of the transformed thermal subsystem

The following lines evaluate the directional derivative (A.25a) to define the adjoint dynamics

of the transformed thermal subsystem (A.21b)–(A.21e). The left hand side of the adjoint

subsystem can to a large extent be inferred from the results of Section 5.3 by keeping in

mind the similar structure of the transformed thermal subsystem and its original counter-

part (5.3b)–(5.3e). The analysis of optimization problem (5.11) in Section 5.3 has revealed

how the temporal and spatial operators (3.15) will be reflected within the adjoint dynamics

due to an interchange of the state variable T to the adjoint state p.

It remains to show how the part d(ξ)∇ ξ · ∇ ξ can be incorporated into the left hand

side of the adjoint thermal subsystem. To this end, its associated part of the directional

derivative (A.25a) is analyzed∫∫
Ωo×(0,tf)

∂

∂ξ
(pd(ξ)∇ ξ · ∇ ξ)

∣∣∣∣
y∗
hξ dxdt =

∫∫
Ωo×(0,tf)

p∗d′(ξ∗)∇ ξ∗ · ∇ ξ∗hξ + 2p∗d(ξ∗)∇ ξ∗ · ∇hξ dxdt (A.26)
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with d′(ξ) as the partial derivative of first order of d(ξ) with respect to ξ. In order to evaluate

the overall directional derivative (A.25a), the function 2p∗d(ξ∗)∇ ξ∗ · ∇ hξ on the right

hand side of Equation (A.26) is transformed into an equivalent form where the admissible

directions hξ are not subject to spatial derivatives. A suitable integral identity to put this

into practice can be deduced from the formula of partial integration and reads as∫∫
Ωo×(0,tf)

2p∗d(ξ∗)∇ ξ∗ · ∇hξ dxdt =

∫∫
Γo×(0,tf)

[n · (2p∗d(ξ∗)∇ ξ∗)]hξ dxdt

−
∫∫

Ωo×(0,tf)

[2p∗d(ξ∗)∆ξ∗ + 2p∗d′(ξ∗)∇ ξ∗ · ∇ ξ∗ + 2d(ξ∗)∇ p∗ · ∇ ξ∗]hξ dxdt , (A.27)

cf., e. g., [2].

By substituting the integral identity (A.27) into Equation (A.26), the relation∫∫
Ωo×(0,tf)

∂

∂ξ
(pd(ξ)∇ ξ · ∇ ξ)

∣∣∣∣
y∗
hξ dxdt =

∫∫
Γo×(0,tf)

[n · (2p∗d(ξ∗)∇ ξ∗)]hξ dxdt

−
∫∫

Ωo×(0,tf)

[2p∗d(ξ∗)∆ξ∗ + p∗d′(ξ∗)∇ ξ∗ · ∇ ξ∗ + 2d(ξ∗)∇ p∗ · ∇ ξ∗]hξ dxdt (A.28)

is obtained, which no longer contains any derivatives of the admissible directions hξ. For the

sake of compactness, the functions

gl,Ωo = −2pd(ξ)∆ξ − pd′(ξ)∇ ξ · ∇ ξ − 2d(ξ)∇ p · ∇ ξ in Ωo × (0, tf) (A.29a)

gl,Γo,N
= n · (2pd(ξ)∇ ξ) on Γo,N × (0, tf) (A.29b)

are introduced with gl,Ωo := gl,Ωo(ξ, p) and gl,Γo,N
:= gl,Γo,N

(ξ, p) summarizing the terms

of (A.28) on the space-time cylinders Ωo × (0, tf) and Γo × (0, tf) by neglecting the factors

of the admissible directions hξ.

The parts of the directional derivative (A.25a) that originate from the augmented cost func-

tional (A.21a) and the right hand sides of the transformed subsystem (A.21b)–(A.21e) read

gr,Ωo = ∂ξ l̃(ξ, u)
∣∣∣
y∗

+ ∂ξg(ξ,K, v)|y∗
(
µ(i) + β(i)g(ξ∗, K∗, v∗)

)
in Ωo × (0, tf) (A.30a)

gr,Γo,N
= ∂ξf̃Γo,N

(ξ)/Ψ′(ξ)
∣∣∣
y∗
p∗ on Γo,N × (0, tf) (A.30b)

gr,Γo,D
= 0 on Γo,D × (0, tf) (A.30c)

gr,Ωo,tf
= ∂ξṼ (ξ(·, tf))

∣∣∣
y∗

in Ωo at t = tf (A.30d)

with the functions gr,Ωo := gr,Ωo(ξ,K, v, µ
(i)), gr,Γo,N

:= gr,Γo,N
(ξ, p), and gr,Ωo,tf

:= gr,Ωo,tf
(ξ),

respectively. The functions will define the sources of the adjoint dynamics related to the

transformed thermal subsystem. Using the integral identities (3.26), (3.27), and (A.28), the
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adjoint PDE system of the transformed thermal subsystem can be defined

e∇, t (ρC, p∗) + e∆ (k, p∗) + gl,Ωo(ξ
∗, p∗) = gr,Ωo(ξ

∗, K∗, v∗, µ(i)) in Ωo × (0, tf) (A.31a)

e∇, x (k, p∗) + gl,Γo,N
(ξ∗, p∗) = gr,Γo,N

(ξ∗, p∗) on Γo,N × (0, tf) (A.31b)

p∗ = gr,Γo,D
on Γo,D × (0, tf) (A.31c)

−ρCp∗(·, tf) = gr,Ωo,tf
(ξ∗) in Ωo at t = tf . (A.31d)

Adjoint dynamics of the electromagnetic subsystem

The condition of a vanishing directional derivative (A.25b) is used to formulate a further

adjoint PDE system. However, the analysis of the directional derivative is similar to that

in Chapter 3 since the transformation approach affects only the thermal subsystem but

not the electromagnetic subsystem, cf. Appendix A.1.3. The analysis of the directional

derivative (A.25b) eventually results in the adjoint PDE system (3.37).

Gradient conditions for optimal primal variables

The minimization of the augmented cost functional (A.21a) relies on the gradients

gu =

∫
Ω

∂ul̃(ξ, u)
∣∣∣
y∗
− Λ∗ · ∂ufΩ(K, u)|y∗ dx

+

∫
Γ

Λ∗ ·
(
χΓN

∂ufΓN
(K, u)|y∗ − χΓD

∂ufΓD
(u)|y∗

)
dx (A.32a)

gv = ∂vpε(v)|y∗ + ∂vg(ξ,K, v)|y∗ (µ+ βg(ξ∗, K∗, v∗))− p∗ in Ωo × (0, tf) (A.32b)

with gu := gu(t) and gv := gv(x, t), which result from the directional derivatives (A.25c)–

(A.25d). In combination with the canonical equations comprising the system dynamics

(A.21b)–(A.21h) and the adjoint PDE systems (A.31) and (3.37), the reduced gradients

complete the optimality system for the minimization step II.i) of Algorithm 5.1. Thereby,

the gradient (A.32a) is subject to the conditional expression (3.40) to take the input con-

straints (5.2) into account.

A.3 Numerical results for a heat-up process

The discussion so far shows that the transformation approach essentially affects the thermal

subsystem for which the state constraint is formulated. The electromagnetic subsystem is

only indirectly influenced by the control variable v and the equality constraint g(ξ,K, v) = 0

used to obtain a well-defined problem formulation, cf. Equation (A.17) and (A.17i) as well

as the discussion in Appendix A.1.2. This structural property is evident for the application

example of surface hardening where the electromagnetic subsystem (A.17f)–(A.17h) remains

unaffected from the transformation approach.
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The transformation approach and its advantages regarding the numerical solution of state

constrained optimization problems is demonstrated for a heat-up process. The boundary

control u represents the heat source on the right hand side of a slab and serves as the

optimization variable. The corresponding problem formulation reads

min
u(·)∈Uad

J(u) =

∫∫
Ω×(0,tf)

q1

2
(T − Td)2 dxdt+

∫∫
Γ1×(0,tf)

q2

2
u2 dxdt (A.33a)

s.t. e∇, t (ρC, T )− e∆ (k, T ) = 0 in Ω× (0, tf) (A.33b)

e∇, x (k, T ) = 0 on Γ0 × (0, tf) (A.33c)

e∇, x (k, T ) = u on Γ1 × (0, tf) (A.33d)

T (·, 0) = T0 in Ω at t = 0 (A.33e)

T− ≤ T ≤ T+ in Ω× (0, tf) . (A.33f)

The focus of the simulation study is to show that the transformation approach leads to a well-

defined problem formulation that can be numerically solved by the optimization framework

from Chapter 5, also see [113, 137, 136].

The control task to be carried out consists in the transition from the initial temperature

T0 = 0 to the desired temperature Td = 1.3 The bounds of the temperature constraint (A.33f)

are set to T± = ±1.2. The control trajectory is bounded by u± = ±2. The system dynam-

ics (A.33b)–(A.33e) is defined on a one-dimensional slab with spatial domain Ω and bound-

ary Γ = Γ0 ∪ Γ1 with Γ0 = 0 and Γ1 = 1. The spatial coordinate is denoted by x ∈ (0, 1).

The state constrained system dynamics (A.33b)–(A.33f) is represented for the trajectory

planning by an unconstrained one using the transformation approach from Appendix A.1.

The transformation approach results in the transformed PDE system

e∇, t (ρC, ξ)− e∆ (k, ξ)− d(ξ)∇ ξ · ∇ ξ = 0 in Ω× (0, tf) (A.34a)

n · (k∇ ξ) = 0 on Γ0 × (0, tf) (A.34b)

n · (k∇ ξ) = w on Γ1 × (0, tf) (A.34c)

ξ(·, 0) = Ψ−1(T0) in Ω at t = 0 , (A.34d)

where the constrained input and state variables (u, T ) are replaced by the unconstrained

counterparts (w, ξ). The interchange of the state variables is described by (A.6), whereas

the change of coordinates of the input variable is based on the substitution

w =
u

Ψ′(ξ)
on Γ1 × (0, tf) (A.35)

and follows from the transformation approach, cf. Equation (A.15). The corresponding in-

verse transformation is defined by

u = Ψ′(ξ)w on Γ1 × (0, tf) . (A.36)

3 The problem formulation (A.33) is based on a normalized system dynamics by setting the diffusion

parameter k, the density ρ, and the heat capacity C to one.
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The new optimization variable w := w(t) is related to the original one by means of the

inequality constraint4

u− ≤ Ψ′w ≤ u+ on Γ1 × (0, tf) (A.37)

to account for the input constraints (5.2).

Following the augmented Lagrangian method from Chapter 5, the augmented cost func-

tional Jβ(w, µ) is defined as follows

Jβ(w, µ) =

∫∫
Ω×(0,tf)

q1

2
(Ψ(ξ)− Td)2 dxdt+

∫∫
Γ1×(0,tf)

q2

2
(Ψ′(ξ)w)

2
+
ε

2
w2 dxdt

+

∫∫
Γ1×(0,tf)

µTg̃(ξ, w, µ) +
β

2
g̃(ξ, w, µ)Tg̃(ξ, w, µ) dxdt . (A.38)

The first two integrals reflect the transformed cost functional (A.33a) that is amended by a

penalty term as discussed in Appendix A.1.3. The corresponding penalty parameter is ε ≥ 0,

cf. Equation (A.18). The integral in the second line of Equation (A.38) accounts for the

inequality constraints (A.37) by means of the Lagrange multiplier µ = [µ1, µ2]T and the

function g̃(ξ, w, µ) = [g̃1(ξ, w, µ1), g̃2(ξ, w, µ2)]T with elements

g̃1(ξ, w, µ1) = max
(
Ψ′w − u+,−µ1/β

)
on Γ1 × (0, tf) (A.39a)

g̃2(ξ, w, µ2) = max
(
u− −Ψ′w,−µ2/β

)
on Γ1 × (0, tf) . (A.39b)

Thereby, the penalty parameter β ≥ 0 is used to achieve a regularization of the associated

max-min problem.

The minimization and maximization of the augmented cost functional (A.38) with respect to

the primal variable w and dual variable µ is carried out by the optimization framework from

Section 5.4, also see Algorithm 5.1. The weights of the augmented cost functional (A.38)

are shown in Table A.1. The initial value of the penalty parameter is chosen as β(1) = 102,

whereby its update law (5.13) is specified by γ1 = 6, γ2 = 0.8, and κ = 1.8.

Table A.1: Weights of the augmented cost functional (A.38).

weight objective

q1 = 104 minimization of state error (Ψ(ξ)− Td)2 in Ω

q2 = 10−3 penalization of control action u2 on Γ1

ε = 10−4 penalization of optimization variable w2 on Γ1, cf. penalty term (A.18)

The upper row of Figure A.2 shows the numerical solution of the max-min problem in form

of the trajectories of the unconstrained input variable w and state variable ξ|x′ evaluated

at the spatial coordinates x′ ∈ {0, 0.25, 0.5, 0.75, 1}. The trajectories of the constrained

4 Alternatively, the input constraints can be substituted by a further saturation function [113].
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Figure A.2: Trajectories of the unconstrained input and state variables (w, ξ) and its trans-

formed constrained counterparts (u, T ).

counterparts (u, T ) are obtained by applying the inverse transformations (A.36) and (A.6b)

and are shown in the bottom row of Figure A.2. In order to exploit the bounds u± = ±2

and T± = ±1.2 of the original input and state variable (u, T ), the input variable w, and

state variable ξ|x=1 assume rather large values. Note that his characteristic is due to the

saturation function approach (A.2).

The approach of the bounds T± = ±1.2 in the original variables (u, T ) leads to large values

in the unconstrained state variable ξ, also see Figure A.1. At the same time, the approach

of the state constraints causes the characteristic of peaking values of w since in this case the

function Ψ′(ξ) asymptotically approaches zero, cf. Equation (A.35) and Figure A.1. How-

ever, the regularization of the unconstrained input variable w within the augmented cost

functional (A.38) ensures a well-defined problem formulation and prevents the degeneration

of the thermal dynamics into an algebraic constraint as discussed in Appendix A.1.2.

The good exploitation of the input and state constraints leads to an optimal heat-up behavior

of the slab as illustrated in Figure A.2. At the beginning, the control variable u heats up

the slab by means of the maximum allowable intensity of heat. After this initial period, the

intensity of the heat source is adapted to the state constraint and the thermal dynamics to

hold the state trajectory T |x=1 at its upper bound T+. Finally, the slab is heated up in total

to the desired temperature Td = 1.
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A.4 Conclusions

The basic idea of the transformation approach is to reformulate constrained input and state

variables by means of a saturation function to obtain an equivalent problem formulation

in unconstrained coordinates. This reformulation step facilitates to deal with the state

constrained trajectory planning from a more analytical point of view compared to the outer

penalty function or augmented Lagrangian method in Chapter 3–5. The applicability of the

transformation approach is illustrated for a heat-up process.





Appendix B

List of symbols

The following lists only contain abbreviations, functions, and variables that are used contin-

uously throughout the text. Local quantities are not listed.

B.1 Abbreviations

(·)|a∗ compact notation for (·)|a=a∗

(·)± compact notation for constraints (·)+ and (·)−

CAD computer-aided design

FDTO first discretize then optimize

FEM finite element method

FOTD first optimize then discretize

MRI magnetic resonance imaging

MWA micro-wave ablation

NURBS non-uniform rational B-splines

ODE ordinary differential equation

PDE partial differential equation

PEC perfect electric conductor

PMC perfect magnetic conductor

RFA radio frequency ablation

s.t. subject to

TEM transverse electromagnetic

143
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B.2 Functions

esys(·) system dynamics

eadj(·) adjoint PDE system

eadj,ODE(·) adjoint ODE system

Eimp(·) electric field intensity on the boundary of the actuator

g(·) equality constraint

g̃(·) function of transformed equality constraint

gu(·) gradient for optimal control trajectory u, gu := gu(t)

gv(·) gradient for optimal control variable v, gv := gv(x, t)

gw(·) gradient for optimization variable w, gw := gw(t)

gθ(·) gradient vector for optimal actuator configuration

gµ(·) direction of steepest ascent for dual variable µ, gµ := gµ(x, t)

G(·) control-to-state operator

h(·) inequality constraint

J(·)/Jn(·) cost functional / normalized cost functional

Jβ(·) augmented cost functional

Jimp(·)/Jimp(·) externally impressed current density (instantaneous quantity / phasor)

l(·) Lagrange term

L(·) Lagrangian

Nj,p(·) j-th basis function of degree p

pε(·) penalty term

V (·) Mayer term

χ(·) characteristic function

Ψ(·) projection function or saturation function
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B.3 Variables

A magnetic vector potential (phasor A := A(x; t))

Ac cross section surface of the actuator

B/B magnetic flux density (instantaneous quantity / phasor)

C/Cb heat capacity / heat capacity of blood

D/D electric flux density (instantaneous quantity / phasor)

er/eϕ unit vector in the direction of r and ϕ

E/E electric field intensity (instantaneous quantity E(x, t) / phasor E(x; t))

Eout outgoing wave (phasor)

H/H magnetic field intensity (instantaneous quantity / phasor)

hT , HK , hu admissible directions of state and input variables

i current source or iteration index of augmented Lagrangian method

j imaginary unit or iteration index of gradient method

J current density (instantaneous quantity)

Jind/Jind induced current density (instantaneous quantity / phasor)

k thermal conductivity

K state of electromagnetic subsystem (phasor K := K(x; t), K ∈ {A,E})

n outward unit normal vector or number of subintervals

N dimension of parameter vector θ

Nc coil windings

p adjoint state of thermal subsystem p := p(x, t) or degree of basis function

qi weights of cost functional

Q/Q electromagnetic heat source

(instantaneous quantity / phasor (averaged over one time period))

s sensitivity vector of the cost functional w.r.t. the parameters θ, s := s(t)

t time coordinate

tf final time of heat-up cycle

T state of thermal subsystem (temperature T := T (x, t))
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Tmin/T̃min trajectory of the minimum temperature within object / surface layer

Tavg/T̃avg trajectory of the average temperature within object / surface layer

Tmax/T̃max trajectory of the maximum temperature within object / surface layer

T0 initial temperature

Ta temperature of ambient air

Td desired temperature profile

Tθj/Kθj state sensitivity w.r.t. states T and K (Tθj := Tθj(x, t), Kθj := Kθj(x; t))

u control trajectory (current or voltage source u := u(t))

ud set point for control trajectory

v voltage source or control variable v := v(x, t)

w optimization variable w := w(t)

X Banach space or knot vector

x spatial coordinates (x = [x1, x2, x3]T or x = [r, ϕ, z]T)

y∗ optimal solution

α step size of gradient method or heat transfer coefficient

β penalty parameter

γ scaling factor

γi adaptation factors for updating the penalty parameter β

or constant of termination criterion

Γ boundary of the region of interest Ω, also see Appendix B.4

ΓD boundary segment with Dirichlet boundary condition

ΓN boundary segment with Neumann boundary condition

Γi boundary segment that is subject to a current source

Γv boundary segment that is subject to a voltage source

ε electrical permittivity, emissivity of the surface,

or weight of penalty term

ε0 permittivity of free space

εr relative electric permittivity

εJ/εT+/εu thresholds of termination criteria
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θ parameter vector for manipulating the actuator configuration

κ adaptation factor of adaptive line search strategy

or constant of the update law for the penalty parameter

Λ adjoint state of electromagnetic subsystem (phasor Λ := Λ(x; t))

µ Lagrange multiplier µ := µ(x, t) or magnetic permeability

µ0 permeability of free space

µr relative magnetic permeability

ξ knot of B-spline or transformed state variable ξ := ξ(x, t)

ρ/ρb density / density of blood or electrical charge density

σ electrical conductivity

σSB Stefan-Boltzmann constant

ω angular frequency of the electrical excitation of the actuator

ωb perfusion rate

Ω region of interest, also see Appendix B.4

B.4 Subscripts of spatial domains

a ambient air

b bones, dorsal vertebra

c coil or electrode (actuator)

c, a air gap of the electrode

c, c catheter of the electrode

c, d dielectric of the electrode

d spatial subdomain that should be heated up

h healthy tissue such as breast or liver

i spatial subdomain that should not be heated up

o object to be heated (workpiece, human tissue)

s spinal canal

t tumor
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B.5 Mathematical operators

· scalar product

× cross product

∂a(·) partial derivative with respect to a ∈ {t, θj, ξ}

∇ (·) gradient

∇· (·) divergence

∆(·) Laplacian

∇×(·) curl

Re{·} real part
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USA, 2001.

[28] COMSOL Multiphysics. Webpage. https://comsol.com. Accessed 5-October-2017.

[29] S. Dappen and F. Amiri. Procedural aspects of induction hardening (in German).
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224, 2014.

[45] P. Gas. Multi-frequency analysis for interstitial microwave hyperthermia using multi-

slot coaxial antenna. Journal of Electrical Engineering, 66(1):26–33, 2015.

[46] A. Gasselhuber, M. R. Dreher, A. Negussie, B. J. Wood, F. Rattay, and D. Haem-

merich. Mathematical spatio-temporal model of drug delivery from low temperature

sensitive liposomes during radiofrequency tumour ablation. International Journal of

Hyperthermia, 26(5):499–513, 2010.

[47] GH Induction. Webpage. http://ghinduction.com. Accessed 5-October-2017.

[48] P. E. Gill, W. Murray, and M. A. Saunders. Users guide for QPOPT 1.0: A For-

tran package for quadratic programming. http://sbsi-sol-optimize.com/asp/sol_

product_qpopt.htm, 1995. Accessed 5-October-2017.

[49] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Menlo Park, USA, 1989.

[50] K. Graichen, M. Egretzberger, and A. Kugi. A suboptimal approach to real-time

model predictive control of nonlinear systems (in German). at – Automatisierungs-

technik, 58(8):447–456, 2010.

[51] K. Graichen and B. Käpernick. A real-time gradient method for nonlinear model

predictive control. In Frontiers of Model Predictive Control, pages 9–28. In-

Tech, 2012. [Online]. Available: http://intechopen.com/articles/show/title/

a-real-time-gradient-method-for-nonlinear-model-predictive-control.

[52] K. Graichen, A. Kugi, N. Petit, and F. Chaplais. Handling constraints in optimal

control with saturation functions and system extension. System & Control Letters,

59(11):671–679, 2010.

[53] K. Graichen and N. Petit. Incorporating a class of constraints into the dynamics of

optimal control problems. Optimal Control Applications and Methods, 30(6):537–561,

2009.

http://ghinduction.com
http://sbsi-sol-optimize.com/asp/sol_product_qpopt.htm
http://sbsi-sol-optimize.com/asp/sol_product_qpopt.htm
http://intechopen.com/articles/show/title/a-real-time-gradient-method-for-nonlinear-model-predictive-control
http://intechopen.com/articles/show/title/a-real-time-gradient-method-for-nonlinear-model-predictive-control


Bibliography 153

[54] GRAMPC. Webpage. https://sourceforge.net/projects/grampc. Accessed 5-

October-2017.

[55] M. D. Gunzburger. Perspectives in Flow Control and Optimization. Society for Indus-

trial and Applied Mathematics (SIAM), Philadelphia, USA, 2003.

[56] R. E. Haimbaugh. Practical Induction Heat Treating. ASM International, Materials

Park, USA, 2001.

[57] R. F. Harrington. Time-Harmonic Electromagnetic Fields. John Wiley & Sons, Ltd.,

New York, USA, 2001.

[58] R. Herzog and K. Kunisch. Algorithms for PDE-constrained optimization. GAMM-

Mitteilungen, 33(2):163–176, 2010.

[59] I. Hiltunen, A. Korpela, and R. Mikkonen. Solenoidal Bi-2223/Ag induction heater

for aluminum and copper billets. IEEE Transactions on Applied Superconductivity,

15(2):2356–2359, 2005.

[60] M. Hintermüller and M. Hinze. Moreau-Yosida regularization in state constrained

elliptic control problems: Error estimates and parameter adjustment. SIAM Journal

on Numerical Analysis, 47(3):1666–1683, 2009.

[61] M. Hintermüller and K. Kunisch. PDE-constrained optimization subject to pointwise

constraints on the control, the state, and its derivative. SIAM Journal on Optimization,

20(3):1133–1156, 2010.

[62] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization With PDE Constraints.

Springer, New York, USA, 2009.
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