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It’s the questions we can’t answer
that teach us the most.

They teach us how to think.
If you give a man an answer,

all he gains is a little fact.
But give him a question

and he’ll look for his own answers.
– Patrick Rothfuss

The Name of the Wind

My mother and my dearest friends





Abstract
This thesis covers miscellaneous topics in the field of time series analysis and stochastic
processes and consists of four topics where the first two are connected by the appearance
of random coefficients and the last two by inference of Lévy driven continuous time moving
average processes.
In Chapter 2, we consider a random recurrence equation of the form Xn = MnXn−1+Qn,
n ∈ N, where (Mn, Qn)n∈N is assumed to be an i.i.d. sequence in R2. Much attention has
been paid to causal strictly stationary solutions of that random recurrence equation, i.e.
to strictly stationary solutions of this equation when X0 is assumed to be independent of
(Mn, Qn)n∈N. For this case, a complete characterization when such causal solutions exist
can be found in literature. We shall dispose of the independence assumption of X0 and
(Mn, Qn)n∈N and derive necessary and sufficient conditions for a strictly stationary, not
necessarily causal solution of this equation to exist.
In Chapter 3, we introduce a continuous time autoregressive moving average process
with random Lévy coefficients, termed RC-CARMA(p,q) process, of order p and q < p
via a subclass of multivariate generalized Ornstein-Uhlenbeck processes. Sufficient condi-
tions for the existence of a strictly stationary solution and the existence of moments are
obtained. We further investigate second order stationarity properties, calculate the auto-
covariance function and spectral density, and give sufficient conditions for their existence.
In Chapter 4, we study a Lévy driven continuous time moving average process X sam-
pled at random times which follow a renewal structure independent of X. Asymptotic
normality of the sample mean, the sample autocovariance, and the sample autocorrelation
is established under certain conditions on the kernel and the random times. We compare
our results to a classical non-random equidistant sampling method and give an application
to parameter estimation of the Lévy driven Ornstein-Uhlenbeck process.
As an extension of the results in Chapter 4, we consider in Chapter 5 multivariate Lévy
driven continuous time moving average processes X = (Xt)t∈R, given by

Xt = µ+
∫
R
f(t− s) dLs , t ∈ R ,

where µ ∈ Rd, f : R → Rd×m and L = (Lt)t∈R is an Rm-valued Lévy process. We first
sample the process X at a non-random equidistant sequence (∆n)n∈Z for some ∆ > 0
and establish the asymptotic normality of the sample mean. Secondly, we use a renewal
sampling sequence independent of X and derive also in this case the asymptotic normality
of the sample mean.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit verschiedenen Themen der Zeitreihenanalyse
und stochastischer Prozesse und besteht aus vier Teilen, von denen die ersten beiden durch
die Betrachtung von zufälligen Koeffizienten und die letzten beiden durch Inferenz von
Lévy getriebenen Moving Average Prozessen als jeweils miteinander verknüpft betrachtet
werden können.
InKapitel 2 betrachten wir die zufällige Rekurrenzgleichung Xn = MnXn−1 +Qn, n ∈ N,
wobei (Mn, Qn)n∈N als unabhängige und gleichverteilte Folge in R2 angenommen wird.
Kausale, strikt stationäre Lösungen jener zufälligen Rekurrenzgleichung, d.h. strikt sta-
tionäre Lösungen dieser Gleichung wennX0 als unabhängig von (Mn, Qn)n∈N angenommen
wird, sind weitreichend untersucht worden. Eine vollständige Charakterisierung solcher
kausalen, strikt stationären Lösungen können in der Literatur gefunden werden. Wir
werden die Unabhängigkeitsannahme von X0 und (Mn, Qn)n∈N beiseite lassen und leiten
notwendige und hinreichenden Bedingen für eine strikt stationäre, nicht notwendigerweise
kausale Lösung obiger Gleichung her.
In Kapitel 3 stellen wir einen zeitstetigen Autoregressiven Moving Average Prozess mit
zufälligen Lévykoeffizienten, genannt RC-CARMA(p,q) Prozess, der Ordnung p und q < p
als eine Unterklassen mehrdimensionaler verallgemeinerter Ornstein-Uhlenbeck Prozesse
vor. Wir geben hinreichende Bedingungen für eine strikt stationäre Lösung und für die
Existenz seiner Momente. Weiterhin untersuchen wir Eigenschaften zweiter Ordnung,
berechnen die Autokovarianzfunktion und die Sprektraldichte und geben hinreichende
Bedingungen für die Existenz derselben.
In Kapitel 4 studieren wir den Lévy getriebenen zeitstetigen Moving Average Prozess X,
welcher an zufälligen Zeitpunkten, die bezüglich einer Erneuerungsstruktur unabhängig
von X definiert sind, abgegriffen wird. Asymptotische Normalität des Stichprobenmittel-
wertes, der Stichprobenautokovarianz und der Stichprobenautokorrelation werden unter
bestimmten Voraussetzungen an den Kern und den zufälligen Zeiten nachgewiesen. Wir
vergleichen unsere Ergebnisse mit denen einer klassischen nicht zufälligen und äquidis-
tanten Stichprobenentnahme und wenden unsere Resultate zur Parameterschätzung eines
Lévy getriebenen Ornstein-Uhlenbeck Prozesses an.
Als Erweiterung unserer Ergebnisse aus Kapitel 4 betrachten wir in Kapitel 5 mehrdi-
mensionale Lévy getriebene zeitstetige Moving Average Prozesse X = (Xt)t∈R, welche
durch

Xt = µ+
∫
R
f(t− s) dLs , t ∈ R ,
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Zusammenfassung

wobei µ ∈ Rd, f : R→ Rd×m und L = (Lt)t∈R ein Rm-wertiger Lévy Prozess sind, definiert
sind. Als Erstes tasten wir den Prozess X an einer nicht zufälligen äquidistanten Folge
(∆n)n∈Z für ein ∆ > 0 ab und weisen die asymptotische Normalität des Stichprobenmit-
telwertes nach. Nachfolgend nutzen wir zur Stichprobenentnahme zufälligen Zeiten, die
einer Erneuerungsstruktur unabhängig von X genügen, und weisen auch in diesem Fall
die asymptotische Normalität des Stichprobenmittelwertes nach.
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1 Introduction

Time series describe phenomena which are regularly or irregularly observed such as the
annual birth rate, the monthly unemployment rate, or high frequency data. Nowadays,
the increasing availability of data, also at high frequency, in finance, economics, and
physics has highlighted on the one hand the need of more complex models to describe
their dynamics and on the other hand the necessity of versatile statistical methods capable
of dealing also with irregularly spaced data.

To account for these two sides, we focus in this thesis on three classes of models to
which has been paid considerable attention in the last decades. We first study the class
of AR(1) processes with random coefficients and extend known results. Secondly, we
generalize the class of CARMA processes to account for random coefficients and examine
their properties.

In the third place, we propose a renewal sampling scheme for continuous time moving
average processes, which embrace irregularly spaced data and comprise high frequency,
and analyze the asymptotics of its sample mean and sample autocovariance.

In Section 1.1, we start with a collection of preliminary theory needed to introduce the re-
sults presented in the chapters to come, whereas Section 1.2 is concerned with a summary
of the main results of this thesis.

1.1 Preliminaries and Notations

In this section we present some preliminary results and used notations. We start with
some basic concepts before we dive more deeply into the subject matter in the subsections
afterwards.

Throughout, when it comes to stochastic integration, we will always assume as given a
complete probability space (Ω,F , P ), i.e. the σ-algebra F contains additionally all subsets
of nullsets. In addition we have given a filtration F = (Ft)t≥0. By a filtration we mean a
family of σ-algebras (Ft)t≥0 that is increasing, i.e. Fs ⊂ Ft for all s ≤ t. Our filtration
satisfies, if not stated otherwise, the usual hypotheses, i.e. F0 contains all P -nullsets of
F , and the filtration is right-continuous.

We will use N for the set of all strictly positive integers and write N0 to include zero.
Further, Z denotes the set of all integers, R the set of all real numbers, and C the complex
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1 Introduction

plane. For real-valued vector or matrix spaces of dimension n or n×m, respectively, we
use Rn and Rn×m, and we write A′ to denote the transpose of a vector or matrix A. With
” d=” we denote equality in distribution, d→ convergence in distribution, and similar for
convergence in probability, P−→, and almost sure (abbreviated a.s.) convergence, a.s.−→.
The term “càdlàg” describes stochastic processes with right-continuous sample paths and
finite left limits, similar does “càglàd” for processes with left-continuous sample paths and
finite right limits. With L(X) we denote the law of a random variable X.
In time series analysis, a subfield of stochastics, to which this thesis belongs to, one of the
most important and commonly examined properties of the processes under consideration
is stationarity. We differ between two concepts, strict stationarity and weak stationarity,
and give the definition of both.

Definition 1.1. Let T ⊂ R be an arbitrary index set and X = (Xt)t∈T a stochastic
process.
(a) X is called strictly stationary if its finite-dimensional distributions are shift-invariant,

i.e. for all n ∈ N, for all t1, . . . , tn ∈ T and all h ∈ R such that t1 +h, . . . , tn +h ∈ T
it holds

(Xt1+h, . . . , Xtn+h) d= (Xt1 , . . . , Xtn) .

(b) X is called weakly stationary if E(X2
t ) < ∞ for all t ∈ T , the mean E(Xt) is

constant over time, i.e. does not depend on t, and the covariances Cov(Xt+h, Xt) =
E(Xt+h − E(Xt+h))E(Xt − E(Xt)) do not depend on t for all h ∈ R such that
t+ h ∈ T .

Observe that any strictly stationary process X = (Xt)t∈T with E(X2
t ) < ∞ for all t ∈ T

is also weakly stationary whereas the converse is not true in general. An example for
a strictly stationary time series is an i.i.d. sequence (Xt)t∈T , which is, if E(X2

1 ) < ∞,
also weakly stationary. A weakly stationary but not necessarily strictly stationary time
series is, for example, a white noise, i.e. a sequence (Xt)t∈T such that E(X2

t ) < ∞,
E(Xt) = 0, Var(Xt) = σ2 for all t ∈ T , where σ2 > 0, and Cov(Xt, Xs) = 0 for all
s, t ∈ T such that t 6= s. We also write (Xt)t∈T ∼WN(0, σ2). Most often we use the term
stationary instead of weakly stationary. If a sequence X = (Xt)t∈T is stationary, we call
γ(h) = Cov(Xt+h, Xt), h ∈ Z, the autocovariance function (of X) at lag h.

1.1.1 Random recurrence equations

Crucial ingredients in time series are moving average and autoregressive processes. In
this section, we especially examine the discrete time AR(1) process. For a polynomial
a(z) = 1−a1z−a2z

2−· · ·−apzp, we call X = (Xt)t∈Z an AR(p) process or autoregressive
process of order p if

a(B)Xt = Zt , t ∈ Z ,
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1.1 Preliminaries and Notations

where B denotes the backshift operator, i.e. BXt = Xt−1, and (Zt)t∈Z ∼ WN(0, σ2).
Cleary, if a(z) = 1− az, then the process X = (Xt)t∈Z which satisfies

Xt = aXt−1 + Zt , t ∈ Z , (1.1)

is an AR(1) process. By iterating (1.1) it can be shown, cf. Example 3.1.2 in Brockwell
[23] that

Xt =
∞∑
j=0

ajZt−j P -a.s. , t ∈ Z , (1.2)

is the unique stationary solution to (1.1) if |a| < 1, and

Xt = −
∞∑
j=1

a−jZt+j P -a.s. , t ∈ Z , (1.3)

is the unique stationary solution to (1.1) if instead |a| > 1, whereas, if |a| = 1, it can be
shown that there does not exist a stationary solution. Clearly, if we assume that (Zt)t∈Z
is an i.i.d. sequence with finite second moment, (1.2) and (1.3) become now strictly
stationary solutions.
If we relax the finite variance condition on the i.i.d. sequence (Zt)t∈Z and assume, in case of
|a| < 1, that E(log+ |Z1|) <∞, then the series in (1.2) converges almost surely absolutely
and is the unique strictly stationary solution, cf. Lemma 1 in Yohai and Maronna [68].
Analogously, by the same arguments as in Yohai and Maronna [68], one can show that, if
|a| > 1 and E(log+ |Z1|) < ∞, the series in (1.3) converges almost surely absolutely and
is the unique strictly stationary solution to (1.1).
We turn our attention now to the so called random recurrence equation

Xn = MnXn−1 +Qn , n ∈ N , (1.4)

where (Mn, Qn)n∈N is an R2-valued i.i.d sequence and the starting random variables X0
is assumed to be independent of (Mn, Qn)n∈N. (1.4) can be recognized as a discrete time
AR(1) process with random coefficients. In time series analysis, the assumption that X0
is independent of the sequence (Mn, Qn)n∈N is termed a causality-assumption or also a
non-anticipativity assumption, and a corresponding solution a causal solution. If we drop
this causality-assumption, i.e. X0 depends on the future, we call a corresponding solution
a non-causal solution.
Iterating (1.4) leads to

Xn+h = Mn+hMn+h−1Xn+h−2 +Mn+hQn+h−1 +Qn+h

= · · · =
(

n+h∏
i=h+1

Mi

)
Xh +

n+h∑
i=h+1

(
n+h∏
j=i+1

Mj

)
Qi ∀h, n ∈ N0 ,
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1 Introduction

where we set ∏−1
i=0Mi := 1. If ∏n−1

i=1 Mi converges almost surely absolutely to 0 for n →
∞ and ∑∞n=1(∏n−1

i=1 Mi)Qn converges almost surely absolutely, a unique (in distribution)
causal strictly stationary solution to (1.4) is given by

Xn =
n∑
k=1

(
k−1∏
i=1

Mi

)
Qk +

(
n∏
i=1

Mi

)
X0 , n ∈ N0 , (1.5)

where X0 is chosen independent of (Mn, Qn)n∈N and such that

L(X0) = L
( ∞∑
n=1

n−1∏
i=1

MiQn

)
.

In the following theorem, necessary and sufficient conditions for the sum in (1.5) to con-
verge almost surely absolutely are given. If P (X > 0) > 0 we denote the truncated mean
AX(y) with

AX(y) := E(X+ ∧ y) =
∫ y

0
P (X > x) dx , y > 0 . (1.6)

Theorem 1.2. (Theorem 2.1 of Goldie and Maller [41])
Let (Mn, Qn)n∈N be an i.i.d. sequence in R2 with generic copy (M,Q) such that it holds
P (Q = 0) < 1 and P (M = 0) = 0. Then the following are equivalent:
(i) ∏n

i=1Mi → 0 a.s. as n→∞ and
∫∞

1
log q

A− log |M|(log q)P|Q|(dq) <∞.

(ii) The infinite sum
∞∑
n=1

(
n−1∏
i=1

Mi

)
Qn

converges almost surely absolutely.

The theorem above is a reduced version of Theorem 2.1 in Goldie and Maller [41]. When
an additional nondegeneracy condition holds, convergence of (1.6) occurs under certain
moment assumptions on the i.i.d. sequence (Mn, Qn)n∈N.

Theorem 1.3. (Corollary 4.1 of Goldie and Maller [41])
Let (Mn, Qn)n∈N be an i.i.d. sequence in R2 with generic copy (M,Q) and suppose that
P (M = 0) = 0 and P (Q + Mc = c) < 1 and −∞ < E(log |M |) < 0. Then the infinite
sum ∑∞

n=1(∏n−1
i=1 Mi)Qn converges almost surely absolutely if and only if E(log+ |Q|) <∞.

The random variable ∑∞n=1(∏n−1
i=1 Mi)Qn is called perpetuity in actuarial sciences, which

describes the actual value of a permanent commitment to make a payment at regular
intervals into an infinite future. (Qn)n∈N describes these regular payments and (Mn)n∈N
the cumulative discount factors which are both subject to random fluctuations.
A complete characterization of perpetuities and of causal strictly stationary solutions to
the random recurrence equation (1.4) under various assumptions can be found in Goldie
and Maller [41] and references therein.
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1.1 Preliminaries and Notations

1.1.2 Dependence of random variables and central limit theorems

To develop valid asymptotic inference, it is necessary to have central limit theorems for
stochastic processes with various dependence structures at hand. This means, tools which
describe for a stochastic process (Xt)t∈T with index sets T ⊂ R whether and at which rate
for example the sample mean Xn := 1

n

∑n
k=1Xk or the sample autocovariance at lag h, i.e.

γ̂(h) = 1
n

∑n−h
k=1 (Xk−Xn)(Xk+h−Xn), h ∈ {0, . . . , n−1}, converge to a limit distribution

(assuming T ⊃ N). We give in here a short overview on central limit theorems which are
used in Chapter 4 and 5.
We start with the most well-known central limit theorem by Lindeberg and Lévy for a
sequence where convergence of the sample mean towards a normal distribution is achieved
at rate

√
n.

Theorem 1.4. Let (Xn)n∈N be a sequence of i.i.d. random variables with E(X1) = µ and
Var(X1) = σ2, where σ2 ∈ [0,∞). Let Xn = 1

n

∑n
k=1Xk, then

√
n(Xn − µ) d−→ N(0, σ2) , n→∞ .

Proof. Theorem 27.1 in Billingsley [12].
The i.i.d. assumption in Theorem 1.4 can be relaxed and replaced for example by the
Lindeberg condition or the Lyapunov condition, cf. Billingsley [12]. But we want to relax
it even further which is the purpose of the following definition and the theorem thereafter.

Definition 1.5. (m-Dependence)
A strictly stationary sequence of random variables (Xt)t∈Z is called m-dependent, where
m ∈ N0, if for each t ∈ Z the two sets of random variables (Xj)j≤t and (Xj)j>t+m are
independent.

Observe that, if m = 0, a 0-dependent strictly stationary sequence is an i.i.d. sequence.
The following theorem is due to Hoeffding and Robbins [45] where the form given here
can be found in Brockwell and Davis [23].

Theorem 1.6. Let (Xt)t∈Z be a strictly stationary m-dependent sequence of random vari-
ables with mean zero and autocovariance function γ(·). If vm = γ(0) + 2∑m

j=1 γ(j) 6= 0,
then
(i) lim

n→∞
Var(Xn) = vm and

(ii)
√
nXn

d−→ N(0, vm) as n→∞.

Proof. Theorem 6.4.2 in Brockwell and Davis [23].
Sometimes, different notions of asymptotic independence are needed and therefore, we
introduce the concept of strong mixing. There are various mixing coefficients, like α, β,
ρ, ψ, et. al, but for the present elaboration α- and ρ-mixing are sufficient.
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1 Introduction

Definition 1.7. (Mixing)
On a probability space (Ω,F , P ) for any two σ-algebras A, C ⊂ F the following measures
of dependence can be defined

α(A, C, P ) := sup |P (A ∩ C)− P (A)P (C)| , A ∈ A , C ∈ C ,
ρ(A, C, P ) := sup |Corr(f, g)| , f ∈ L2(Ω,A, P ) , g ∈ L2(Ω, C, P ) .

We say that a strictly stationary sequence of Rd-valued random variables Z = (Zn)n∈Z is

strongly mixing if αn := α(A, Cn;P )→ 0 as n→∞ ,

ρ-mixing if ρn := ρ(A, Cn;P )→ 0 as n→∞ ,

for the σ-algebra of the past A = σ(Z0, Z−1, Z−2, . . . ) and the σ-algebra of the future
Cn = σ(Zn, Zn+1, Zn+2, . . . ).

More general, the σ-algebras A and Cn for a non-stationary time series X = (Xn)n∈N are
defined as AJ := σ(Xk ,−∞ < k ≤ J) and CJ+n := σ(Xk , J + n ≤ k < ∞) and the
corresponding strong mixing coefficient as

αn := sup
J∈Z

α(AJ , CJ+n) ,

see also Bradley [20] for more information on strong mixing coefficients as well as for the
subsequent remark.
Remark 1.8. Suppose that X = (Xk)k∈Z is a strictly stationary, strongly mixing sequence
of random variables.
(a) Suppose that f : R → R is a Borel function. Define the random sequence Y =

(Yk)k∈Z by Yk = f(Xk), k ∈ Z. Then the sequence Y is strictly stationary and
strongly mixing with αYn ≤ αXn for each n ∈ N.

(b) If d is a nonnegative integer and g : Rd+1 → R is a Borel function and Z = (Zk)k∈Z
is given by Zk := g(Xk−d, . . . , Xk), k ∈ Z, then Z is strictly stationary and strongly
mixing with αZn ≤ αXn−d for each n ≥ d+ 1.

There is a certain connection between α- and ρ-mixing which we need and which is due
to Bradley [19].
Remark 1.9. Let (Ω,F , P ) be a probability space, ε > 0 and A, C ⊂ F two sub-σ-
algebras. Assume that D ∈ F such that P (D) ≥ 1 − ε and ρ(A, C, P (·|D)) ≤ ε, then
α(A, C, P ) ≤ 4ε.

The following theorem gives asymptotic normality of the sample mean under the assump-
tion of existing 2 + δ moment for some δ > 0.
Theorem 1.10. Let (Xk)k∈Z be a strictly stationary strongly mixing sequence of random
variables such that E(X0) = 0. Suppose that for some δ > 0 it holds E(|X0|2+δ) <∞ and∑∞
n=1(αn)δ/(2+δ) <∞. Then

6



1.1 Preliminaries and Notations

(a) σ2
X

:= E(X2
0 )+2

∞∑
n=1

E(X0Xn) exists in [0,∞) and the sum is absolutely convergent.

(b)
√
nXn

d−→ N(0, σ2
X

) as n→∞.

Proof. Theorem 10.7 in Bradley [20].
The so called growth condition ∑∞

n=1(αn)δ/(2+δ) < ∞ can be strengthened such that the
moment assumption can be relaxed. This is the contents of the next theorem.
Theorem 1.11. Let (Xk)k∈Z be a strictly stationary strongly mixing sequence of random
variables such that E(X0) = 0 and E(X2

0 ) < ∞. Further, suppose that the mixing coeffi-
cients αn are exponentially decreasing as n→∞ and E(|X0|2 log+ |X0|) <∞.
Then
(a) σ2

X
:= E(X2

0 )+2
∞∑
n=1

E(X0Xn) exists in [0,∞) and the sum is absolutely convergent.

(b)
√
nXn

d−→ N(0, σ2
X

) as n→∞.

Proof. Corollary 10.20 (c) in Bradley [20].
An always useful result is the following variant of Slutsky’s Lemma.
Theorem 1.12. Let (Xn)n∈N and (Ynj)n∈N for each j ∈ N be sequences of Rd-valued
random variables, and Y and Rd-valued random variable. Suppose that
(i) Ynj d−→ Yj as n→∞ for each j ∈ N,
(ii) Yj d−→ Y as j →∞, and
(iii) lim

j→∞
lim sup
n→∞

P (|Xn − Ynj| > ε) = 0 for every ε > 0.

Then
Xn

d−→ Y , n→∞ .

Proof. Theorem 6.3.9 in Brockwell and Davis [23].

1.1.3 Lévy processes

In this subsection, we give the definition of Lévy processes, state some of their important
properties and give a short overview of so called multiplicative Lévy processes.
Definition 1.13. (Lévy process)
An Rd-valued stochastic process X = (Xt)t≥0 is called a Lévy process if it satisfies the
following conditions.
(i) X has independent increments, i.e. for all n ∈ N and all 0 ≤ t0 < t1 < · · · < tn the

random variables Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.
(ii) X has stationary increments, i.e. Xt+s −Xs

d= Xt for all t, s ≥ 0.
(iii) X0 = 0 a.s.

7
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(iv) X is stochastically continuous, i.e. for every t ≥ 0 and ε > 0, it holds
lim
s→t

P (|Xt −Xs| > ε) = 0 .

(v) X has almost surely càdlàg paths.

We call an Rd-valued stochastic process X = (Xt)t≥0 an additive Lévy process, if X
satisfies Definition 1.13. If we drop the Assumption (v) in Definition 1.13, we call L
a Lévy process in law. Lévy processes in law have a strong connection with infinitely
divisible distributions. In what follows, we also consider Lévy processes with index set R,
so called two-sided Lévy processes, i.e. L = (Lt)t∈R which can be constructed by taking
two independent copies (X ′t)t≥0 and (X ′′t )t≥0 of a Lévy process (Xt)t≥0 and setting

Lt =

X ′t , if t ≥ 0 ,
−X ′′−(t−) , if t < 0 ,

where X ′′t− denotes the left-limit of X ′′t .
Definition 1.14. (Infinitely Divisible Distributions)
A probability measure µ on Rd is infinitely divisible if, for any positive integer n, there is
a probability measure µn on Rd such that µ = µnn, where

µnn = µn ∗ · · · ∗ µn︸ ︷︷ ︸
n-times

denotes the n-fold convolution.

Examples of infinitely divisible distributions are among others the Gaussian, Poisson,
exponential, and gamma distributions. If X = (Xt)t∈R is a Lévy process and µ denotes
the distribution of X1, then µ is infinitely divisible. Conversely, if µ is an infinitely
divisible distribution, then there is a Lévy process in law X = (Xt)t∈R such that PX1 = µ,
where we denote with PZ the distribution of a random variable Z.
Lemma 1.15. (Properties/Implications of Infinitely Divisible Distributions)
The following statements hold:
(i) If µ1 and µ2 are infinitely divisible, then so is µ1 ∗ µ2.

(ii) If (µk)k∈N is a sequence of infinitely divisible distributions and µk d−→ µ, k → ∞,
then µ is infinitely divisible.

(iii) If µ is infinitely divisible, then µt is well-defined for every t ∈ [0,∞) and infinitely
divisible.

(iv) If (Xt)t≥0 is an Rd-valued Lévy process in law, then PXt is infinitely divisible for
each t ≥ 0. Further, letting PX1 = µ, we have PXt = µt.

(v) Conversely, if µ is an infinitely divisible distribution on Rd, then there is a unique
Lévy process in law (Xt)t≥0 such that PX1 = µ.

(vi) Every Lévy process in law has a modification which is a Lévy process.
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Proof. Lemma 7.4, Lemma 7.5, Lemma 7.8, and Lemma 7.9, Theorem 7.10 together with
Theorem 11.5 and Corollary 11.6 in Sato [61].
An infinitely divisible distribution can be characterized in terms of its characteristic triplet
which is the contents of the following theorem.
Theorem 1.16. (Lévy-Khintchine formula)
Let D := {x ∈ Rd : |x| ≤ 1}, the closed unit ball. Then
(i) If µ is an infinitely divisible distribution on Rd, then for z ∈ Rd

µ̂(z) = exp
[
−1

2〈z, Az〉+ i〈γ, z〉+
∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉1D(x)

)
ν(dx)

]
, (1.7)

where A is a symmetric nonnegative-definite d × d matrix, γ ∈ Rd, and ν is a
measure on Rd, called Lévy measure, satisfying

ν({0}) = 0 and
∫
Rd

(|x|2 ∧ 1)ν(dx) <∞ . (1.8)

(ii) The representation of µ̂(z) in (1.7) by A, γ, and ν is unique.
(iii) Conversely, if A is a symmetric nonnegative-definite d× d matrix, ν a measure on

Rd satisfying (1.8), and γ ∈ Rd, then there exists an infinitely divisible distribution
µ whose characteristic function is given by (1.7).

Proof. Theorem 8.1 in Sato [61].
Definition 1.17. (Characteristic Triplet of a Lévy process)
We call (A, ν, γ) in Theorem 1.16 the generating or characteristic triplet of µ or, because
of Lemma 1.15 (v), of the Lévy process X = (Xt)t≥0 with PX1 = µ in which case we write
(AX , νX , γX). A or AX , respectively, is also called the Gaussian covariance matrix and
we write σ2

X instead of AX if the Lévy process X is univariate. If A = 0, µ is called purely
non-Gaussian. Sometimes, the Lévy measure is also denoted by ΠX .

GL(R,m) denotes the general linear group, i.e. the set of all m ×m invertible matrices
associated with the ordinary matrix multiplication. The group structure therefore allows
us to define left increments XtX

−1
s and right increments X−1

s Xt for 0 ≤ s < t < ∞ of a
GL(R,m)-valued process.
Definition 1.18. (Multiplicative Lévy process)
Let m ∈ N. A GL(R,m)-valued stochastic process X = (Xt)t≥0 is a (multiplicative) right
Lévy process, if the following conditions are satisfied:
(1) For any n ≥ 1 and 0 < t1 < · · · < tn, the random variablesX0, Xt1X

−1
0 , . . . , XtnX

−1
tn−1

are independent.
(2) X0 = I a.s.
(3) The distribution of XtX

−1
s for s < t depends only on t−s, i.e. XtX

−1
s

d= Xt−sX
−1
0 =

Xt−s.
(4) It is stochastically continuous.
(5) It has càdlàg paths.
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X is called a (multiplicative) left Lévy process, if X satisfies the condition (2), (4), (5) and
(1’) For any n ≥ 1 and 0 < t1 < · · · < tn, the random variablesX0, X

−1
0 Xt1 , . . . , X

−1
tn−1Xtn

are independent.
(3’) The distribution of X−1

s Xt for s < t depends only on t−s, i.e. X−1
s Xt

d= X−1
0 Xt−s =

Xt−s.
Given a filtration F = (Ft)t≥0, a right Lévy process (Xt)t≥0 is called a right F-Lévy process
if it is adapted to F and for any s < t the left increment XtX

−1
s is independent of Fs.

Left F-Lévy processes and (additive) F-Lévy processes are defined similarly.

1.1.4 Stochastic Integration

A crucial ingredient for Chapters 3-5 is the theory of stochastic integration whose review
is the contents of this section. We start with the definition of a semimartingale for which
we first need the definition of the total variation of a real-valued function. More on the
theory of stochastic integration can be found in the books of Protter [58] and Medvegyev
[55].
Definition 1.19. (Total Variation)
Let g : [0,∞)→ R. For every t ≥ 0 the (total) variation of g on [0, t] is defined by

Vt(g) := sup
{
n−1∑
i=0
|g(ti+1)− g(ti)| : 0 = t0 ≤ t1 ≤ · · · ≤ tn = t , n ∈ N

}
.

We say that g is of finite variation on compacts if Vt(g) <∞ for all t ≥ 0.
Definition 1.20. Let (Ω,F ,F = (Ft)t≥0, P ) be a stochastic basis. A stochastic process
M = (Mt)t≥0 is called a martingale if
(i) M is adapted to the filtration F.
(ii) E|Mt| <∞ for all t ≥ 0.
(iii) E(Mt|Fs) = Ms P -a.s. for all s, t ≥ 0 such that s ≤ t.
Definition 1.21. (Semimartingale)
A process X = (Xt)t≥0 is a semimartingale with respect to the filtration F = (Ft)t≥0, if
there exist processes M and A with M0 = 0 and A0 = 0 such that

Xt = X0 +Mt + At

where
(i) M is a local martingale, i.e. M is adapted to the filtration F, càdlàg and there exists

an increasing sequence of stopping times (τn)n∈N with τn → ∞ almost surely for
n → ∞ such that the stopped process (Mt∧τn1{τn>0})t≥0 is a uniformly integrable
martingale for every n ∈ N.

(ii) A is a finite variation process, i.e. A is adapted to F, càdlàg and has paths of finite
variation on compacts.
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Theorem 1.22. An additive Lévy process is a semimartingale.

Proof. P. 55 in Protter [58].
Definition 1.23. (Matrix-valued Semimartingales)
A matrix-valued stochastic process X = (Xt)t≥0 is called an F-semimartingale or simply
a semimartingale if every component (X(i,j)

t )t≥0 is a semimartingale with respect to the
filtration F.
Definition 1.24. (Locally Bounded Processes)
A stochastic process H = (Ht)t≥0 with values in Rm×l is said to be locally bounded if there
exists a sequence of stopping times (τn)n∈N with τn → ∞ almost surely for n → ∞ such
that for each n ∈ N the stopped process (Ht∧τn1{τn>0})t≥0 is bounded.
Definition 1.25. (Predictable Processes)
Let (Ω,F ,F = (Ft)t≥0, P ) be a stochastic basis. The predictable σ-algebra P on R+ × Ω
is the smallest σ-algebra making all F-adapted, càglàd processes measurable. Therefore
a stochastic process X = (Xt)t≥0 is called predictable if it is, considered as a mapping
(t, ω)→ Xt(ω) of R+ × Ω into R, measurable with respect to P .

The following definitions and properties are stated here for matrix-valued stochastic in-
tegrals, but are also valid in an univariate setting with the obvious simplifications, cf.
Karandikar [46] and Protter [58].
Definition 1.26. (Matrix-valued Stochastic Integrals)
For a semimartingale X in Rm×n and a locally bounded predictable process H in Rl×m

the Rl×n-valued (left) stochastic integral J1 =
∫
H dX is defined by is components

J
(i,j)
1 =

m∑
k=1

∫
H(i,k) dX(k,j) .

Similiar, for X ∈ Rl×m, H ∈ Rm×n, the Rl×n-valued (right) stochastic integral J2 =∫
dXH is defined by its components

J
(i,j)
2 =

m∑
k=1

∫
H(k,j) dX(i,k) ,

and for X ∈ Rm×n, H ∈ Rl×m, and H ′ ∈ Rn×p the Rl×p-valued stochastic integral
J3 =

∫
H dXH ′ is defined by its components via

J
(i,j)
3 =

n∑
k=1

m∑
h=1

∫
H(i,h)H ′(k,j) dX(h,k) .

Remark 1.27. By the previous definitions, it can be easily seen that also in the multi-
variate case the stochastic integration preserves the semimartingale property as stated for
example in the one-dimensional case in Protter [58] (Definition III.3 and Theorem IV.29),
i.e. if H and H ′ are locally bounded predictable processes and X a semimartingale then
also, in the notation of the previous definition, J1, J2, and J3 are semimartingales.
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Definition 1.28. (Matrix-valued Quadratic Covariation)
For two semimartingales X ∈ Rl×m and Y ∈ Rm×n the quadratic covariation [X, Y ] is
defined by its components via

[X, Y ](i,j) =
m∑
k=1

[X(i,k), Y (k,j)]

and similar its continuous part [X, Y ]c via

([X, Y ]c)(i,j) =
m∑
k=1

[X(i,k), Y (k,j)]c

such that it also holds true for matrix-valued semimartingales

[X, Y ]t = [X, Y ]ct +X0Y0 +
∑

0<s≤t
∆Xs∆Ys , t ≥ 0 .

Proposition 1.29. (Properties of the Matrix-valued Stochastic Integral)
For two semimartingales X, Y ∈ Rm×m and two locally bounded predictable processes
G,H ∈ Rm×m the following two equalities hold almost surely[∫

(0,·]
Gs dXs,

∫
(0,·]

dYsHs

]
t

=
∫

(0,t]
Gs d[X, Y ]Hs , t ≥ 0 ,[

X·,
∫

(0,·]
Gs dYs

]
t

=
[∫

(0,·]
dXsGs, Y·

]
t

, t ≥ 0 ,

and the integration by parts formula takes the form

(XY )t =
∫ t

0+
Xs− dYs +

∫ t

0+
dXsYs− + [X·, Y·]t , t ≥ 0 .

Proof. Equations (4)-(6) in Karandikar [46].
An application of multivariate stochastic integration which is used in Chapter 3 is the
multivariate stochastic exponential.
Definition 1.30. (Multivariate Stochastic Exponential)
Let X = (Xt)t≥0 be a semimartingale in Rm×m. Then its left stochastic exponential
←
E (X)t is defined as the unique Rm×m-valued, adapted, càdlàg solution (Zt)t≥0 of the
integral equation

Zt = I +
∫

(0,t]
Zs− dXs , t ≥ 0 ,

and its right stochastic exponential
→
E (X)t is defined as the unique Rm×m-valued, adapted,

càdlàg solution (Zt)t≥0 of the integral equation

Zt = I +
∫

(0,t]
dXsZs− , t ≥ 0 .

12
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It is clear, by Remark 1.27, that the left and the right stochastic exponential are semi-
martingales and it can be shown that for its transpose it holds

←
E (X)′t =

→
E (X ′)t. As

observed by Karandikar [46] and stated by Behme and Lindner [8], the right and the left
stochastic exponentials of a process X are invertible at time t if and only if

det(I + ∆Xs) 6= 0 for all s ≤ t .

1.1.5 Infinite moving average processes

Moving average processes are together with autoregressive processes main ingredients in
time series analysis. In this section, we examine the moving average processes in discrete
time and continuous time of infinite order. Let θ(z) = 1+θ1z+ · · ·+θqzq be a polynomial.
We then call X = (Xt)t∈Z an MA(q) process or moving average process of order q if

Xt = θ(B)Zt , t ∈ Z ,

where (Zt)t∈Z ∼WN(0, σ2) or an IID(0, σ2) sequence. X is then a stationary process with
mean zero and autocovariance function

γ(h) = Cov(Xt+h, Xt) =

σ2∑q−|h|
j=0 θjθj+|h| , if |h| ≤ q ,

0 , if |h| > q .

Definition 1.31. (MA(∞) process)
If (Zt)t∈Z ∼ WN(0, σ2), and µ ∈ R some constant, then we say that X = (Xt)t∈Z is a
two-sided moving average of infinite order (MA(∞) process) if there exists a sequence
(ψj)j∈Z such that

Xt =
∞∑

j=−∞
ψjZt−j , t ∈ Z . (1.9)

It can be shown that X is a strictly stationary process, for which a necessary condition is
the convergence of the series in (1.9). The series converges almost surely absolutely and in
mean square to the same limit if ∑∞j=−∞ |ψj| <∞ and X has the autocovariance function
γ(h) = σ2∑∞

j=−∞ ψjψj+|h|, h ∈ Z, see Proposition 3.1.2 in Brockwell and Davis [23].
Other conditions for convergence can also be found in Theorem 1.4.1 in Samorodnitsky
[60].
In continuous time, a moving average process of infinite order X = (Xt)t∈R is defined by

Xt := µ+
∫ ∞
−∞

f(t− s) dLs , t ∈ R , (1.10)

where L = (Lt)t∈R is a mean zero two-sided Lévy process, called the driving Lévy process,
and f : R → R a suitable kernel function. Necessary and sufficient conditions for the
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integral to exist can be found for example in Rajput and Rosinski [59] or in Chapter 57
of Sato [61]. If f ∈ L2(R) and E(L2

1) < ∞, the integral can be defined in the L2-sense.
Observe that X, if the integral exists, is strictly stationary and then its distribution is
infinitely divisible, cf. also Rajput and Rosinski [59].

By the Wold decomposition, it is well-known that any discrete time mean zero stationary
process X = (Xt)t∈Z which is not deterministic can be expressed as a sum Xt = Ut + Vt,
where U = (Ut)t∈Z is a one-sided MA(∞) process and (Vt)t∈Z a deterministic process
which is uncorrelated with U , cf. Theorem 5.7.1 in Brockwell and Davis [23]. Similarly
in a continuous time setting, a weakly stationary process can be represented in terms of
a two-sided moving average process (with respect to an orthogonal increment process) if
and only if its spectral distribution is absolutely continuous, cf. Doob [36], page 533. A
key example is the CARMA process as can be seen in Brockwell [22].

Since a large class of stationary processes permits a moving average representation, there
is an interest in inference of moving average processes. In discrete time, the following
results are taken from Brockwell and Davis [23]. Theorem 1.32 shows the asymptotic
normality of the sample mean of a moving average process of infinite order, and Theorem
1.33 the asymptotic normality of its sample autocorrelation function which is given by
ρ̂(h) := γ̂(h)/γ̂(0), where γ̂(h) = 1

n

∑n−h
k=1 (Xk −Xn)(Xk+h −Xn), h ∈ {0, . . . , n− 1}.

Theorem 1.32. Let X = (Xt)t∈Z be given by

Xt = µ+
∞∑

j=−∞
ψjZt−j , t ∈ Z ,

where Z = (Zt)t∈Z is an i.i.d. sequence of random variables with E(Z2
1) = σ2 ∈ (0,∞)

and mean zero, ∑∞j=−∞ |ψj| <∞, and ∑∞j=−∞ ψj 6= 0. Then

√
n(Xn − µ) d−→ N(0, v) , n→∞ ,

where v = ∑∞
h=−∞ γ(h) = σ2(∑∞j=−∞ ψj)2, and γ(·) is the autocovariance function of X.

Proof. Theorem 7.1.2 in Brockwell and Davis [23].

Theorem 1.33. Let X = (Xt)t∈Z be given by

Xt = µ+
∞∑

j=−∞
ψjZt−j , t ∈ Z ,

where Z = (Zt)t∈Z is i.i.d with mean zero and variance σ2 ∈ (0,∞) such that E(Z4
1) <∞,

and ∑∞j=−∞ |ψj| <∞. Then, for each h ∈ N,

√
n((ρ̂(1), . . . , ρ̂(h))′ − (ρ(1), . . . , ρ(h))′) d−→ N(0,W ) , n→∞ ,
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where W = (wij)i,j=1,...,h is the covariance matrix whose entries are given by Bartlett’s
formula,

wij =
∞∑

k−∞
(ρ(k + i) + ρ(k − i)− 2ρ(i)ρ(k)) · (ρ(k + j) + ρ(k − j)− 2ρ(j)ρ(k)) .

Proof. Theorem 7.2.1 and Remark 1 thereafter in Brockwell and Davis [23].
In the continuous time case, Theorem 1.34 shows the asymptotic normality of the sample
mean Xn;∆ = 1

n

∑n
k=1Xk∆ of a continuous time moving average process, and Theorem

1.35 the asymptotic normality of its sample autocorrelation function. They are due to
Cohen and Lindner [31].
Theorem 1.34. Let X = (Xt)t∈Z be given by (1.10) with µ ∈ R and L = (Lt)t∈R a Lévy
process with mean zero and variance σ2 ∈ (0,∞). Let ∆ > 0. Suppose that(

F∆ : [0,∆]→ [0,∞] , u 7→ F∆(u) =
∞∑

j=−∞
|f(u+ j∆)|

)
∈ L2([0,∆]) . (1.11)

Then ∑∞h=−∞ |γ(∆h)| <∞,
∞∑

h=−∞
γ(∆h) = σ2

∫ ∆

0

( ∞∑
h=−∞

f(u+ h∆)
)2

du ,

and
√
n(Xn;∆ − µ) d−→ N

(
0, σ2

∫ ∆

0

( ∞∑
h=−∞

f(u+ h∆)
)2

du
)
, n→∞ .

Proof. Theorem 2.1 in Cohen and Lindner [31].
Observe that, if µ = 0, further natural estimator for the autocovariance function γ(·) and
the autocorrelation function ρ(·) are given by

γ∗n;∆(h∆) = 1
n

n∑
t=1

Xt∆X(t+h)∆ , h ∈ N ,

ρ∗n;∆(h∆) = γ∗n;∆(h∆)/γ∗n;∆(0) , h ∈ N .

Theorem 1.35. Let X = (Xt)t∈Z be given by (1.10) with µ ∈ R and L = (Lt)t∈R a
Lévy process with mean zero, variance σ2 ∈ (0,∞), and finite fourth moment. Denote
η = σ−4E(L4

1) and suppose that ∆ > 0, f ∈ L2(R) ∩ L4(R),(
[0,∆]→ [0,∞] , u 7→

∞∑
k=−∞

f(u+ k∆)2
)
∈ L2([0,∆]) , (1.12)

as well as
∞∑

k=−∞

(∫
R
|f(s)f(s+ k∆)| ds

)2

<∞ . (1.13)
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(a) If µ = 0, then for each h ∈ N

√
n((γ∗n;∆(1), . . . , γ∗n;∆(h))′ − (γ(1), . . . , γ(h))′) d−→ N(0, V∆) , n→∞ ,

where V∆ = (vpq;∆)p,q=0,...,h ∈ R(h+1)×(h+1) can be given explicitly.
(b) Assume µ ∈ R, and that in addition to (a) (1.11) holds. Denote by

γ̂n;∆(h∆) = 1
n

n−h∑
t=1

(Xt∆ −Xn;∆)(X(t+h)∆ −Xn;∆) , h = 0, 1, . . . , n− 1 ,

the sample autocovariance. Then for each h ∈ N

√
n((γ̂n;∆(1), . . . , γ̂n;∆(h))′ − (γ(1), . . . , γ(h))′) d−→ N(0, V∆) , n→∞ ,

where V∆ = (vpq;∆)p,q=0,...,h ∈ R(h+1)×(h+1) can be given explicitly.
(c) Assume that f is not almost everywhere equal to zero and denote with ρ̂n(h∆) =

γ̂n;∆(h∆)/γ̂n;∆(0) the sample autocorrelation. Then, under the assumptions of (a),
we have for each h ∈ N

√
n((ρ∗n;∆(1), . . . , ρ∗n;∆(h))′ − (ρ(1), . . . , ρ(h))′) d−→ N(0,W∆) , n→∞ ,

where W∆ = (wij;∆)i,j=1,...,h is the covariance matrix whose entries can be given
explicitly in terms of Bartlett’s formula plus an additional term, cf. Theorem 3.5 in
Cohen and Lindner [31]. If additionally (1.11) holds, we have for each h ∈ N

√
n((ρ̂n;∆(1), . . . , ρ̂n;∆(h))′ − (ρ(1), . . . , ρ(h))′) d−→ N(0,W∆) , n→∞ .

Proof. Theorem 3.5 in Cohen and Lindner [31].

Besides the representation of weakly stationary processes as moving averages, there are
also very well-known processes inside the class of moving averages. For example, if f : R→
R , s 7→ 1

Γ(d+1)(s
d
+ − (s − 1)d+), for some d ∈ (0, 1

2), the moving average process becomes
a fractional Lévy noise based on increments of length 1 provided L has finite second
moment, and if the kernel function is f : R → R , s 7→ e−as1[0,∞)(s), a > 0, the process
obtained is the Lévy driven Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process
can be used to model the volatility of a financial asset, see Barndorff-Nielsen and Shepard
[1], or the intermittency in a turbulence flow, see Barndorff-Nielsen and Schmiegel [2].
Marquardt [52] showed that fractional Lévy processes in the moving average context
permit long memory behavior. Other applications for fractional Lévy processes can be
found in Cohen [30] and in the references therein.

For more applications of continuous time moving average processes see also the references
in Basse-O’Conner and Pedersen [3].
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1.1.6 CARMA processes

In here we present the definition of CARMA processes and restate some of their already
discovered properties.
Definition 1.36. (CARMA Process)
Let L = (Lt)t∈R be an R-valued additive Lévy process and p, q ∈ N. We define a (complex
valued) CARMA process Y = (Yt)t∈R driven by L through

Yt = b′Xt , t ∈ R ,

where X = (Xt)t∈R is a Cp-valued process which satisfies the stochastic differential equa-
tion (SDE)

dXt = AXt dt+ e dLt , t ∈ R , (1.14)

or equivalently

Xt = eA(t−s)Xs +
∫ t

s
eA(t−u)e dLu , ∀ s ≤ t ∈ R .

Here are

A =



0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1

 , e =



0
0
...
0
1

 , and b =



b0
b1
...

bp−2
bp−1


with a1, . . . , ap, b0, . . . , bp−1 ∈ C such that bq 6= 0 and bj = 0 for j > q. For p = 1 the
matrix A is considered as A = (−a1).

To understand why a definition like this makes sense, first of all recall that we call any
solution Y = (Yt)t∈Z of

Yt − φ1Yt−1 − · · · − φpYt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q , (1.15)

where p, q ∈ N, q < p, φ1, . . . , φp, θ1, . . . , θq ∈ C and Z = (Zt)t∈Z i.i.d. or WN(0, σ2), an
ARMA(p,q) process.
If we define the polynomials

Φ(z) = 1− φ1z − · · · − φpzp , z ∈ C , and
Θ(z) = 1 + θ1z + · · ·+ θqz

q , z ∈ C ,

and denote with B the backshift operator, i.e. BYt = Yt−1, we can write (1.15) as

Φ(B)Yt = Θ(B)Zt , t ∈ Z .
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By defining the backward difference as ∆ = (Id − B), where B denotes the backshift
operator, i.e. ∆Yt = Yt − Yt−1, we are able to find a0, a1, . . . , ap, b0, b1, . . . , bq ∈ C with∑p
i=0 ai = 1 and ∑q

i=0 bi = 1 such that

Yt − φ1Yt−1 − · · · − φpYt−p = a0Yt + a1∆Yt + · · ·+ ap∆pYt

Zt + θ1Zt−1 + · · ·+ θqZt−q = b0Zt + b1∆Zt + · · ·+ bq∆qZt

so that (1.15) takes the form

(a0∆0 + a1∆1 + · · ·+ ap∆p)Yt = (b0∆0 + b1∆1 + · · ·+ bq∆q)Zt
= (b0∆0 + b1∆1 + · · ·+ bq∆q)∆St

with a random walk St = ∑t
j=1 Zj.

From the above we recognize that the continuous time analogue, i.e. where the difference
of time points become infinitesimal small, should be of the form

(a0D
0 + a1D

1 + · · ·+ apD
p)Yt = (b0D

0 + b1D
1 + · · ·+ bqD

q)DLt , (1.16)

where D denotes the differentiation operator with respect to t, and the choice of L =
(Lt)t∈R to be a Lévy process reflects the fact that we also want to have an i.i.d. noise
in continuous time for what a Lévy process is the natural extension of a random walk
S = (St)t∈Z. Remark that it is not possible to differentiate in our setting without changing
the definition of the ordinary differentiation operator such that the above differentiation
is understood informally.
We write Xt = (X1

t , . . . , X
p
t )′ and have for i = 1, . . . , p− 1

(1.14) =⇒ dX i
t = X i+1

t dt

⇐⇒ X i
t −X i

s =
∫ t

s
X i+1
u du

⇐⇒ X i+1
t = DX i

t ⇐⇒ X i
t = Di−1X1

t (1.17)

and for i = p, arguing formally,

(1.14) =⇒ dXp
t = −apX1

t dt− · · · − a1X
p
t dt+ dLt

′′ ⇐⇒′′ DXp
t + a1X

p
t + · · ·+ apX

1
t = DLt

(1.17)=⇒ DDp−1X1
t + a1D

p−1X1
t + · · ·+ apD

0X1
t = DLt

=⇒ a(D)X1
t = DLt ,

where a(z) = zp + a1z
p−1 + · · ·+ ap. From this

a(D)X i
t = a(D)Di−1X1

t = Di−1a(D)X1
t = Di−1DLt

such that through Yt = b′Xt, t ≥ 0, and with b(z) = b0 + b1z + · · ·+ bp−1z
p−1 we get

a(D)Yt = a(D)(b0X
1
t + · · ·+ bp−1X

p
t )

18



1.1 Preliminaries and Notations

= b0D
0DLt + b1D

1DLt + · · ·+ bp−1D
p−1DLt = b(D)DLt .

This formal deviation gives exactly what we wanted to have by formulating the extended
difference equation (1.16).
Processes as in Definition 1.36 were first considered for L being a Gaussian process by
Doob [35]. Brockwell [21], [22] gave the now commonly used definition with L being a Lévy
process and showed when a strictly stationary solution exists assuming that E(L2

1) <∞.
This work was later completed by Brockwell and Lindner [26] who gave conditions for
existence and uniqueness of strictly stationary solutions of CARMA processes.
Proposition 1.37. Let Y = (Yt)t∈R = (b′Xt)t∈R be a CARMA(p,q) process such that
X = (Xt)t∈R fulfills (1.14). Let L = (Lt)t∈R denote the corresponding Lévy process and A
the companion matrix.
(a) If X0 is independent of the Lévy process L = (Lt)t∈R and E(L2

1) <∞ then (Yt)t≥0 is
strictly stationary if and only if the eigenvalues of A all have strictly negative real
parts and X0

d=
∫∞

0 eAse dLs.
(b) Suppose that L is not a deterministic Lévy process and that a(·) and b(·) have no

common zeroes. Then there exists a unique strictly stationary CARMA process Y
if and only if E(log+ |L1|) <∞ and a(·) is non-zero on the imaginary axis.

Proof. (a) Proposition 2 in Brockwell [24]. (b) Theorem 3.3 in Brockwell and Lindner
[26].
The condition in Proposition 1.37 (a) that E(L2

1) <∞ can be relaxed to E(Lr1) <∞ for
some r > 0, cf. Brockwell [22].
In both cases of Proposition 1.37, the CARMA process permits a moving average repre-
sentation of the form

Yt =
∫ ∞
−∞

g(t− s) dLs , t ≥ 0 , (1.18)

where we can choose t ∈ R in case of Proposition 1.37 (b), and if the eigenvalues of A all
have strictly negative real parts,

g(t) =

b′eAte , if t ≥ 0 ,
0 , if t < 0 ,

which is known as the kernel of the CARMA process Y and can be written more explicitly
as

g(t) = 1
2π

∫ ∞
−∞

eitλ b(iλ)
a(iλ) dλ , t ∈ R .

The more general representation of g in case of Proposition 1.37 (b) can be found in
Proposition 3.2 of Brockwell and Lindner [26].
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CARMA processes are nowadays a quite popular class of processes in time series analysis
and modeling. There are extensions to the original definition, like multivariate CARMA
processes (MCARMA processes) as in Marquardt and Stelzer [54], fractionally integrated
CARMA processes (FICARMA processes) as in Brockwell and Marquardt [29] which in
contrast to CARMA processes show long memory behavior, and multivariate fractionally
integrated CARMA processes (MFICARMA processes), see Marquardt [53].
Recently, Basse-O’Conner et al. [5], showed that a CARMA process Y = (Yt)t∈R permits
besides the moving average representation in (1.18) also a continuous time autoregressive
(CAR) representation, i.e.

R(D)Yt =
∫ ∞

0
Yt−sf(s) ds+DLt , t ∈ R ,

where R is a polynomial of order p − q and f : R → R a deterministic function, both
defined through the polynomials a(·) and b(·). Another such representation can be found
in Basse-O’Conner et al. [4].
CARMA processes provide a wide field of applications and can therefore serve, for ex-
ample, as stochastic volatility models, cf. Brockwell [21], Todorov and Tauchen [65], and
Todorov [64], as well as temperature models, cf. Benth et. al. [10], and electricity, cf.
García et. al [37].
A comprehensive overview on recent results can also be found in Brockwell [25] and the
references therein.

1.2 Main Results of this Thesis

In Chapter 2 we extend the results of Subsection 1.1.1. We consider again the random
recurrence equation (1.4). The aim of Theorem 2.3 therefore is to characterize completely
whenX0, possibly dependent on (Mn, Qn)n∈N, can be chosen such that a strictly stationary
solution (Xn)n∈N to (1.4) exists.
If we choose (Mn, Qn)n∈N0 as an i.i.d. sequence in R2 with generic copy (M,Q), we obtain
the following results regarding (1.4).
(a) Under the assumption of P (M = 0) > 0, a random variable X0 (possibly on a

suitably enlarged probability space) can be chosen such that the stochastic process
(Xn)n∈N0 is strictly stationary. This stationary solution is unique in distribution
and obtained by choosing X0 independent of (Mn, Qn)n∈N with

L(X0) = L
 ∞∑
i=0

 i∏
j=1

Mj

Qi+1

 . (1.19)

(b) Suppose that P (M = 0) = 0 and that ∏n
i=1Mi converges almost surely to 0 as

n→∞. Then the following are equivalent:
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(i) A random variable X0 (possibly on a suitably enlarged probability space) can
be chosen such that (Xn)n∈N0 is strictly stationary.

(ii) The infinite sum ∑∞
i=0

(∏i
j=1 Mj

)
Qi+1 converges almost surely absolutely.

(iii) With A− log |M | as defined in (1.6), it holds that

∫ ∞
1

log q
A− log |M |(log q) P|Q|(dq) <∞ .

If these equivalent conditions are satisfied, then the stationary solution is unique
in distribution, and it is obtained by choosing X0 independent of (Mn, Qn)n∈N and
with distribution L(X0) given by (1.19).

(c) Suppose that P (M = 0) = 0 and that ∏n
i=1M

−1
i converges almost surely to 0 as

n→∞. Then the following are equivalent:

(i) A random variable X0 can be chosen such that (Xn)n∈N0 is strictly stationary.

(ii) The infinite sum ∑∞
i=1

(∏i
j=1M

−1
j

)
Qi converges almost surely absolutely.

(iii) With Alog |M | as defined in (1.6), it holds

∫ ∞
1

log q
Alog |M |(log q) P|M

−1Q|(dq) <∞ .

If these equivalent conditions are satisfied, then the stationary solution is unique
and given by

Xn = −
∞∑
i=1

 i∏
j=1

M−1
n+j

Qn+i , n ∈ N0 .

(d) Suppose that P (M = 0) = 0 and that neither ∏n
i=1Mi nor

∏n
i=1M

−1
i converges

almost surely to 0 as n → ∞. Then a random variable X0 can be chosen such
that (Xn)n∈N0 is strictly stationary if and only if there is some c ∈ R such that
P (Q + Mc = c) = 1. If this condition is satisfied, a strictly stationary solution is
given by the degenerate and constant process Xn = c for all n ∈ N0. If additionally
P (|M | = 1) < 1, then (Xn = c)n∈N0 is the only strictly stationary solution of (1.4).

These results can be extended to the index set Z with the only difference that in case of
(a) and (b) above the solution is not only unique in distribution but almost surely and
given by Xt = ∑∞

i=0

(∏i−1
j=0Mt−j

)
Qt−i for all t ∈ Z.

In Chapter 3, Section 3.2, we introduce a CARMA process with random coefficients of
order p and q < p, termed RC-CARMA(p,q) process. More specifically, let p ∈ N and
C = (Ct)t≥0 = (M (1)

t , . . . ,M
(p)
t , Lt)t≥0 be a Lévy process in Rp+1 with ΠM(1)({1}) = 0.
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Let b0, . . . , bp−1 ∈ R. Let U = (Ut)t≥0 be Rp×p-valued defined by

Ut :=



0 t 0 . . . 0
0 0 t . . . 0
... ... ... . . . ...
0 0 0 . . . t

−M (p)
t −M (p−1)

t −M (p−2)
t . . . −M (1)

t

 , e :=



0
0
...
0
1

 , b :=



b0
b1
...

bp−2
bp−1

 , (1.20)

and q := max{j ∈ {0, . . . , p − 1} : bj 6= 0}. Then we call any process R = (Rt)t≥0 which
satisfies

Rt = b′Vt , t ≥ 0 , (1.21)

where V = (Vt)t≥0 is a solution to the SDE

dVt = dUtVt− + e dLt , t ≥ 0 , (1.22)

an RC-CARMA(p,q) process.

It is easy to see that when we choose (M (1)
t , . . . ,M

(p)
t ) = (a1, . . . , ap)t with a1, . . . , ap ∈ R,

we get a classical CARMA(p,q) process (St)t≥0 = (b′Vt)t≥0, although on the positive real
line.
Brockwell and Lindner [28] gave a rigorous interpretation of (1.16) by showing that a
CARMA(p,q) process (St = b′Xt)t∈R driven by a Lévy process L satisfies the integral
equation

a(D)JpSt = b(D)Jp−1(Lt) + a(D)Jp(b′eAtX0) , t ∈ R ,

where a(z) and b(z) are as in the discussion of Section 1.1.6, and J denotes the integration
operator which associates with any càdlàg function f = (ft)t∈R : R → C , t 7→ ft, the
function J(f) defined by J(f)t :=

∫ t
0 fs ds .

We show that the RC-CARMA(p,0) process can be interpreted to satisfy a similar pth order
differential equation, as the CARMA process does, which then can be done thoroughly by
showing that the RC-CARMA(p,0) process satisfies a certain integral-differential equation.
Conversely, every process satisfying this certain integral-differential equation is an RC-
CARMA(p,0) process.
That the state vector process V = (Vt)t≥0 satisfying (1.22) is an MGOU (see Appendix
A.2 for its definition and properties) driven by a Lévy process (X, Y ) which can be given
explicitly in terms of the Lévy process (U,L) is proved as well as the existence of a strictly
stationary solution of (1.22) and hence of (1.21) if E

[
log+ ‖U1‖

]
<∞, E

[
log+ |L1|

]
<∞,

there exists a t0 > 0 such that

E
[
log

∥∥∥∥←E (U)t0
∥∥∥∥] < 0 , (1.23)
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1.2 Main Results of this Thesis

and V0 is chosen independent C and such that V0
d=
∫∞

0
←
E (U)s− e dLs which exists if (1.23)

holds for some t0 > 0. Conversely, if V0 can be chosen independent of C such that V is
strictly stationary, M = (M (1)

t , . . . ,M
(p)
t )t≥0 is independent of L, and L not deterministic,

then there exists a t0 > 0 such that (1.23) holds.
It is shown in Section 3.3 that if

E ‖C1‖2 <∞ and all eigenvalues of D have strictly negative real parts , (1.24)

where D = E[U1]⊗ I + I ⊗E[U1] + E[U1 ⊗ U1]−E[U1]⊗E[U1], then the state vector V
is strictly and weakly stationary and, if further E[L1] = 0, the autocovariance function of
the RC-CARMA(p,q) process can be given explicitly as

Cov(Rt+h, Rt) = b′ehE[U1] vec−1(−D−1ep2) E(L2
1)b ,

where ⊗ denotes the Kronecker product and vec the vectorizing operator on which more
information are provided in Section A.1. Moreover, we give conditions for the existence
of higher moments in terms of the moments of C.
Further, we give the spectral density of the RC-CARMA process and show that we can
associate to every RC-CARMA processR = (Rt)t≥0 a certain CARMA process S = (St)t≥0
where A is chosen to be E[U1]. In this case, the autocovariance functions of R and S differ
only by a constant.
In Chapter 4, we consider a continuous time moving average process X = (Xt)t∈R as
defined in (1.10) for f ∈ L2(R) and L = (Lt)t∈R a Lévy process with zero mean and finite
second moment σ2

L sampled at a renewal sequence. This means, we consider a sequence
of increasing random times (Tn)n∈Z defined by

T0 := 0 and Tn :=


∑n
i=1Wi , n ∈ N ,
−∑−1

i=nWi , −n ∈ N ,

where W = (Wn)n∈Z\{0} is an i.i.d. sequence of positive supported random variables
independent of the driving Lévy process L and such that P (W1 > 0) > 0. Moreover, we
define the sampled process Y = (Yn)n∈Z by

Yn := XTn , n ∈ Z , (1.25)

and study the behavior of its sample mean Y n = 1
n

∑n
k=1 Yk, its sample autocovariance

γ̂n(h) = 1
n

∑n−h
k=1 (Yk − Y n)(Yk+h − Y n), h = 0, 1, . . . , n− 1, and its sample autocorrelation

ρ̂n(h) = γ̂n(h)/γ̂n(0). Throughout, we compare our results to the non-random equidistant
sampling of Theorem 1.34 and 1.35.
Under the condition that E(|L1|2 log+ |L1|) <∞, f ∈ L2(R),

∫
R |f(s)|2 log+ |f(s)| ds <∞,

and ∫
R
|f(u)|

∑
k∈Z

E|f(Tk + u)| du <∞ , (1.26)
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we show in Section 4.2 that σ2
Y

:= ∑
k∈Z Cov(Y0, Yk) exists in [0,∞), is absolutely con-

vergent,

σ2
Y

= E(L2
1)
∑
k∈Z

∫
R
f(u)E(f(Tk + u)) du ,

and √
n (Y n − µ) d−→ N(0, σ2

Y
) as n→∞ .

The proof of this result relies on the foundations of Section 4.1 where we show that
the sampled process Y is strictly stationary and that every m-dependent process X(m)

sampled in the above way (1.25) is strongly mixing with exponentially decreasing mixing
coefficients. We then consider the “truncated” moving average

X
(m)
t := µ+

∫
R
fm(t− s) dLs , t ∈ R ,

where fm = f1[−m/2,m/2], and prove that its sampled version Y (m) converges, by a cen-
tral limit theorem for strictly stationary strongly mixing sequences with exponentially
decreasing mixing coefficients, cf. Theorem 1.11, towards a normal distribution. Showing
the other conditions of Theorem 1.12, we establish the asymptotic normality of the sample
mean Y n.
In Section 4.3 we exhibit that assuming for the Lévy process L = (Lt)t∈R to have ex-
pectation zero and E(|L1|4(log+ |L1|)2) < ∞, f ∈ L2(R) ∩ L4(R), f 6= 0 λ-a.e, (1.26),∫
R |f(s)|4(log+ |f(s)|)2 ds <∞, and for an h ∈ N∫

R
|f(u)|

∞∑
k=1

E|f(u+ Tp)f(u+ Tk)f(u+ Tk+q)| du <∞ , ∀p, q ∈ {0, . . . , h} ,

as well as
∞∑
k=1

E
[( ∫

R
|f(u)f(u+ Tk)| du

)2]
<∞ ,

that it holds
√
n(ρ̂n(1)− ρ(1), . . . , ρ̂n(h)− ρ(h))′ d−→ N(0,W) , n→∞ .

Here W = (Wpq)p,q=1,...,h ∈ Rh×h is given by

Wpq = (Zpq − ρ(p)Z0q − ρ(q)Zp0 + ρ(p)ρ(q)Z00)/γ(0)2 ,

where Z = (Zpq)p,q=0,...,h ∈ Rh+1×h+1 is the covariance matrix obtained in the limit normal
distribution of the autocovariance function. An explicit expression for Z is also available
and given. The proof of the asymptotic normality result of the autocorrelation function
follows in a similar manner as the one for the sample mean.

24



1.2 Main Results of this Thesis

In Section 4.4, we propose an estimator for the parameter of an Ornstein-Uhlenbeck
process for which we apply the results of Section 4.3.
In Chapter 5, Section 5.1, we extend the results of Cohen and Lindner stated in Theorem
1.34 to a multivariate setting. More precisely, we consider an Rd-valued continuous time
moving average process X = (Xt)t∈R defined by

Xt := µ+
∫
R
f(t− s) dLs , t ∈ R , (1.27)

where µ ∈ Rd, L = (Lt)t∈R is a two-sided Rm-valued Lévy process with mean zero and
finite second moment, and f : R→ Rd×m is in L2(Rd×m), i.e.

L2(Rd×m) :=
{
f : R→ Rd×m measurable :

∫
R
‖f(s)‖2 ds <∞

}
for some norm on Rd×m.
We see that the integrals on the right-hand side of (1.27) exist since f ∈ L2(Rd×m) and
E ‖L1‖2 < ∞. X is then strictly stationary. We show that the autocovariance function
of X is given by

Γ(∆h) =
∫
R
f(s)ΣLf(s)′ ds

where ΣL denotes the covariance matrix of the Lévy process L.
Further, when X is sampled equidistantly at a sequence (∆n)n∈N for some ∆ > 0, then the
asymptotic normality of the sample mean ∆

Xn = 1
n

∑n
k=1Xk∆ can be established under

the assumption that(
F̃∆ : [0,∆]→ [0,∞] , u 7→ F̃∆(u) =

∞∑
h=−∞

‖f(u+ h∆)‖
)
∈ L2([0,∆]) . (1.28)

More precisely, if (1.28) holds, f ∈ L2(Rd×m), and L = (Lt)t∈R is an Rm-valued Lévy
process with zero mean and finite second moment, we have that ∑∞h=−∞ ‖Γ(∆h)‖ <∞,

∞∑
h=−∞

Γ(∆h) =
∫ ∆

0
F (s)ΣLF (s)′ ds ,

where F∆(u) = ∑∞
h=−∞ f(u+ h∆), and

√
n(∆

Xn − µ) d−→ N

(
0,
∫ ∆

0
F (s)ΣLF (s)′ ds

)
as n→∞ .

Finally in Section 5.2, we extend the results of Section 4.2 on the sample mean of a renewal
sampled moving average process to a multivariate setting. More precisely, we show that

√
n (Y n − µ) d−→ N(0,ΣY ) as n→∞ ,
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where

ΣY =
∑
k∈Z

∫
R
f(u)ΣLE(f(Tk + u)′) du ,

assuming that E(‖L1‖2 log+ ‖L1‖) <∞,
∫
R ‖f(s)‖2 log+ ‖f(s)‖ ds <∞, and

∫
R
‖f(u)‖

∞∑
k=1

E ‖f(Tk + u)‖ du <∞ .

In both Sections 5.1 and 5.2 we see that the conditions of the univariate cases extend
naturally towards a multivariate setting.
Some known results on the Kronecker product are summarized in Appendix A.1. Ap-
pendix A.2 provides a collections of results on multivariate generalized Ornstein-Uhlenbeck
(MGOU) processes which are due to Behme and Lindner [8] and Behme [9], while Ap-
pendix A.3 contains some detailed calculations for the results of Section 4.4.
Chapter 2-4 are based on research articles, namely Chapter 2 is based on Brandes and
Lindner [16] (published), Chapter 3 is based on Brandes [14] (published), and Chapter 4
is based on Brandes and Curato [15] (submitted).
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2 Non-causal strictly stationary
solutions of random recurrence
equations

This chapter is based on the published article by Brandes and Lindner [16] “Non-causal
strictly stationary solutions of random recurrence equations”. Let (Mn, Qn)n∈N be an i.i.d.
sequence in R2, (M,Q) a generic copy of it, and let the real-valued process (Xn)n∈N0 be
defined recursively by

Xn = MnXn−1 +Qn , n ∈ N , (2.1)

where X0 is some starting random variable, defined on the same probability space. Our
goal is to characterize when the starting random variable X0 can be chosen such that the
derived process (Xn)n∈N0 is strictly stationary, meaning that for all n ∈ N0,m ∈ N and
h1, . . . , hm ∈ N0,

L(Xh1 , . . . , Xhm) = L(Xh1+n, . . . , Xhm+n)

where L(Y ) denotes the law of a random vector Y . Much attention has been paid to this
question when X0 is assumed to be independent of (Mn, Qn)n∈N, in which case (Xn)n∈N0

becomes a time-homogeneous Markov process. In this case, an independent X0 can be
chosen such that the process becomes stationary if and only if the Markov process admits
an invariant probability measure µ, in which case X0 and µ are related by µ = L(X0).
By the definition of the invariant measure, this is further equivalent to saying that the
distributional fixed point equation

L(X) = L(Q+MX) , with X independent of (M,Q),

has a solution. A complete solution of when such a distributional fixed point and hence a
choice of an independent X0 exists making (Xn)n∈N0 strictly stationary has been achieved
by Goldie and Maller [41, Theorem 3.1], while necessary and sufficient conditions under
some extra conditions had been obtained earlier by Vervaat [67, Theorems 1.5 and 1.6]. We
also mention Brandt [17, Theorem 1], who gave sufficient conditions when (Mn, Qn)n∈N0

was allowed to be stationary and ergodic rather than i.i.d., the book by Brandt et al. [18],
where this equation and more general recursive equations with stationary and ergodic
input are treated, and Bougerol and Picard [13] who consider a multivariate extension of
Vervaat’s result. We refer to the paper by Goldie and Maller [41] for further references
when X0 is assumed to be independent of (Mn, Qn)n∈N.
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2 Non-causal strictly stationary solutions of random recurrence equations

In time series analysis, the assumption thatX0 is independent of the sequence (Mn, Qn)n∈N
is termed a causality-assumption or also a non-anticipativity assumption, and a corre-
sponding solution a causal solution. The aim of this chapter is to dispose of this causality
assumption and to characterize completely when X0, possibly dependent on (Mn, Qn)n∈N,
can be chosen such that (Xn)n∈N0 becomes strictly stationary. It will turn out that non-
causal solutions which depend on the future may indeed exist. This chapter can then
be seen as a discrete time analogue of Behme et al. [6], who consider strictly stationary
solutions of the stochastic differential equation dVt = Vt−dUt +dLt with Lévy noise. Note
also that related questions for ARMA processes (with deterministic coefficients) have been
dealt with in Brockwell and Davis [23, Theorem 3.1.3 and Problem 4.28] for the second
order stationary case, and in Brockwell and Lindner [27, Theorem 1] for the strictly sta-
tionary case. A discussion of non-causal autoregressive models in economic time series
can be found in Lanne and Saikkonen [50].

2.1 Preliminaries

Let (Mn, Qn)n∈N be an R2-valued i.i.d. sequence defined on a probability space (Ω,F , P ),
let X0 be a random variable on the same probability space, and define (Xn)n∈N0 by (2.1).
Denote

Πn :=
n∏
i=1

Mi, n ∈ N0 ,

with the usual convention that the empty product is 1. By successive iteration, it is easy
to see that

Xn+h =
 n+h∏
i=h+1

Mi

Xh +
n+h∑
i=h+1

 n+h∏
j=i+1

Mj

Qi ∀ h, n ∈ N0 . (2.2)

By Theorem 3.1 (c) of Goldie and Maller [41], if P (M = 0) = 0 and P (Q+Mc = c) < 1
for all c ∈ R, then a causal strictly stationary solution of (2.1) exists if and only if∑∞
n=1 Πn−1Qn converges almost surely absolutely, in which case L(∑∞n=1 Πn−1Qn) is the

unique invariant measure. In Goldie and Maller [41, Theorem 2.1], of which a reduced
version is given already in Chapter 1 as Theorem 1.2, they also give a necessary and
sufficient condition for this sum to converge almost surely absolutely. It will be also an
important tool for the proof of our characterization of all (not-necessarily causal) solutions
we give in Theorem 2.3 below. For a random variable X, we denote its distribution by
PX , and if P (X > 0) > 0 we denote

AX(y) := E(X+ ∧ y) =
∫ y

0
P (X > x) dx , y > 0 . (2.3)

Then the function (0,∞) → (0, 1], y 7→ AX(y)
y

is nonincreasing, cf. [41, Remark 2.2].
We can now state those parts of Theorem 2.1 of [41] which are relevant for our further
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2.1 Preliminaries

investigations. In the formulation below, the equivalence of (ii) and (iii) and the last
assertions follow from Theorem 2.1 together with Lemma 5.5 (applied with Z0 := 0) in
Goldie and Maller [41].
Theorem 2.1. [41, Theorem 2.1]
Let (Mn, Qn)n∈N be an i.i.d. sequence in R2 with generic copy (M,Q) such that P (Q =
0) < 1 and P (M = 0) = 0. Then the following are equivalent:
(i) Πn → 0 a.s. as n→∞ and

∫∞
1

log q
A− log |M|(log q)P|Q|(dq) <∞.

(ii) The infinite sum ∑∞
n=1 Πn−1Qn converges almost surely absolutely.

(iii) Πn → 0 a.s. as n→∞ and ∑n
i=1 Πi−1Qi converges in distribution to a finite random

variable as n→∞.
If Πn → 0 a.s. (n→∞) but

∫∞
1

log q
A− log |M|(log q)P|Q|(dq) =∞, then |∑n

i=1 Πi−1Qi| converges
in probability to ∞ as n → ∞. Further, if Πn does not converge almost surely to 0 as
n→∞ and P (Q+Mc = c) < 1 for all c ∈ R, then |∑n

i=1 Πi−1Qi| converges in probability
to ∞ as n→∞.

Conditions for the almost sure convergence of Πn to 0 have been obtained by Kesten and
Maller [48, Lemma 1.1]. To state their results, let (Mn)n∈N be an i.i.d. sequence of real
valued random variables such that P (M1 = 0) = 0. Consider the random walk

Sn :=
n∑
i=1

(− logMi) , n ∈ N .

Then ∏n
i=1 Mi converges almost surely to 0 if and only if Sn drifts almost surely to +∞

as n→∞, and ∏n
i=1M

−1
i converges almost surely to 0 if and only if Sn converges almost

surely to −∞ as n→∞. Further, it is well known that (Sn)n∈N either converges almost
surely to +∞, or converges almost surely to −∞, or oscillates in the sense that −∞ =
lim infn→∞ Sn < lim supn→∞ Sn = +∞ almost surely. Then by Lemma 1.1 in Kesten and
Maller [48], we have Sn → ∞ a.s. as n → ∞ if and only if either 0 < E(− log |M |) ≤
E
∣∣∣ log |M |

∣∣∣ < ∞, or E(log |M |)− = ∞ and
∫∞

1
y

A− log |M|(y)Plog |M |(dy) < ∞ with A− log |M |

as defined in (2.3). Similarly, Sn → −∞ a.s. as n→∞ if and only if either

0 < E(log |M |) ≤ E
∣∣∣ log |M |

∣∣∣ <∞ , (2.4)

or
E(log |M |)+ =∞ and

∫ ∞
1

y

Alog |M |(y)P− log |M |(dy) <∞ . (2.5)

Since limy→∞Alog |M |(y) is finite if and only if E(log |M |)+ <∞, we see that∫ ∞
1

y

Alog |M |(y)P− log |M |(dy) <∞ (2.6)

is implied by both (2.4) and (2.5), hence (2.6) always holds whenever ∏n
i=1M

−1
i → 0 a.s.

(n→∞).
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2 Non-causal strictly stationary solutions of random recurrence equations

Remark 2.2. If P (M = 0) = 0 and E
∣∣∣ log |M |

∣∣∣ < ∞, then Πn → 0 a.s. (n → ∞) if
and only E(log |M |) < 0, in which case A− log |M |(x) converges to E((− log |M |)+) < ∞
as x → ∞. Hence, provided that E

∣∣∣ log |M |
∣∣∣ < ∞, condition (i) of Theorem 2.1 can be

replaced by
E(log |M |) < 0 and E(log+ |Q|) <∞ ,

where log+(x) = log(max{1, x}) for x ∈ R, cf. Theorem 1.3.

2.2 Results

The following is our main result and characterizes when X0 can be chosen for (2.1) to
have a strictly stationary, not necessarily causal, solution.
Theorem 2.3. Let (Mn, Qn)n∈N0 be an i.i.d. sequence in R2 with generic copy (M,Q).
Consider the random recurrence equation (2.1).
(a) Suppose that P (M = 0) > 0. Then a random variable X0 (possibly on a suitably
enlarged probability space) can be chosen such that the stochastic process (Xn)n∈N0 is
strictly stationary. This stationary solution is unique in distribution and obtained by
choosing X0 independent of (Mn, Qn)n∈N with

L(X0) = L
 ∞∑
i=0

 i∏
j=1

Mj

Qi+1

 . (2.7)

(b) Suppose that P (M = 0) = 0 and that ∏n
i=1Mi converges almost surely to 0 as n→∞,

i.e. that ∑n
i=1 log |Mi| → −∞ a.s. as n→∞. Then the following are equivalent:

(i) A random variable X0 (possibly on a suitably enlarged probability space) can be
chosen such that (Xn)n∈N0 is strictly stationary.

(ii) The infinite sum ∑∞
i=0

(∏i
j=1Mj

)
Qi+1 converges almost surely absolutely.

(iii) With A− log |M | as defined in (2.3), it holds that∫ ∞
1

log q
A− log |M |(log q) P|Q|(dq) <∞ .

If these equivalent conditions are satisfied, then the stationary solution is unique in distri-
bution, and it is obtained by choosing X0 independent of (Mn, Qn)n∈N and with distribution
L(X0) given by (2.7).
(c) Suppose that P (M = 0) = 0 and that ∏n

i=1M
−1
i converges almost surely to 0 as

n→∞, i.e. that ∑n
i=1 log |Mi| → +∞ a.s. as n→∞. Then the following are equivalent:

(i) A random variable X0 can be chosen such that (Xn)n∈N0 is strictly stationary.

(ii) The infinite sum ∑∞
i=1

(∏i
j=1M

−1
j

)
Qi converges almost surely absolutely.
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2.2 Results

(iii) With Alog |M | as defined in (2.3), it holds
∫ ∞

1

log q
Alog |M |(log q) P|M

−1Q|(dq) <∞ .

If these equivalent conditions are satisfied, then the stationary solution is unique and given
by

Xn = −
∞∑
i=1

 i∏
j=1

M−1
n+j

Qn+i , n ∈ N0 . (2.8)

(d) Suppose that P (M = 0) = 0 and that neither ∏n
i=1Mi nor

∏n
i=1M

−1
i converges almost

surely to 0 as n → ∞. Then a random variable X0 can be chosen such that (Xn)n∈N0 is
strictly stationary if and only if there is some c ∈ R such that P (Q+Mc = c) = 1. If this
condition is satisfied, a strictly stationary solution is given by the degenerate and constant
process Xn = c for all n ∈ N0. If additionally P (|M | = 1) < 1, then (Xn = c)n∈N0 is the
only strictly stationary solution of (2.1).

Observe that the solution given by (2.8) depends on the future and is a non-causal solution.

Proof. (b) Suppose that P (M = 0) = 0 and that ∏n
i=1Mi → 0 a.s. as n → ∞. The

equivalence of (ii) and (iii) is clear from Theorem 2.1. Now assume (i) and let (Xn)n∈N0

be a strictly stationary solution of (2.1). Since L(Xn+h1 , . . . , Xn+hm) = L(Xh1 , . . . , Xhm)
for all m ∈ N and h1, . . . , hm ∈ N0 by strict stationarity, and since ∏n+hk

i=1+hkMi → 0 a.s.
as n→∞ for each k ∈ {1, . . . ,m}, it follows from (2.2) and Slutsky’s lemma that n+h1∑

i=1+h1

 n+h1∏
j=i+1

Mj

Qi, . . . ,
n+hm∑
i=1+hm

 n+hm∏
j=1+hm

Mj

Qi


converges in distribution as n→∞ to L(Xh1 , . . . , Xhm). Since this limit does not depend
on X0, we see that the stationary solution must be unique in distribution. Further, setting
m = 1 and h1 = 0, we get convergence in distribution of ∑n

i=1

(∏n
j=i+1Mj

)
Qi, and since

L

 n∑
i=1

 n∏
j=i+1

Mj

Qi

 = L
 n∑
i=1

i−1∏
j=1

Mj

Qi

 (2.9)

as a consequence of the i.i.d. assumption on (Mn, Qn)n∈N, we see that also ∑n
i=1 Πi−1Qi

converges in distribution to a finite random variable as n → ∞. Hence (ii) follows from
Theorem 2.1.
For the converse, assume (ii), and chooseX0 independent of (Mn, Qn)n∈N with distribution
given by (2.7). Then (Xn)n∈N0 is a time–homogeneous Markov process, and it is easy to
check that L(M1X0 +Q1) = L(X0). Hence L(X0) is an invariant probability measure and
the Markov process (Xn)n∈N0 consequently strictly stationary.
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2 Non-causal strictly stationary solutions of random recurrence equations

(a) If P (M = 0) > 0, for each hk ∈ N0 we automatically have ∏n+hk
i=1+hkMi → 0 a.s.

and almost sure absolute convergence of ∑n
i=1

(∏i−1
j=1Mj

)
Qi as n → ∞. The existence

of a stationary solution and the uniqueness assertion is then in complete analogy to the
corresponding proof in (b).
(c) Suppose that P (M = 0) = 0 and that ∏n

i=1M
−1
i → 0 almost surely as n→∞. Since

n∑
i=1

 i∏
j=1

M−1
j

Qi =
n∑
i=1

i−1∏
j=1

M−1
j

M−1
i Qi

for n ∈ N and since (Mn,M
−1
n Qn)n∈N is an i.i.d. sequence, the equivalence of (ii) and (iii)

follows from Theorem 2.1. Now assume (i) and let X0 be chosen such that (Xn)n∈N0 is
strictly stationary. Rewriting (2.2) we have

Xh =
 n+h∏
i=h+1

M−1
i

Xn+h −
n+h∑
i=h+1

 i∏
j=h+1

M−1
j

Qi (2.10)

for every h ∈ N0 and n ∈ N. Since L(Xh+n) = L(X0) by strict stationarity, and
since ∏n+h

i=h+1M
−1
i converges almost surely to 0 as n → ∞, we conclude from Slut-

sky’s lemma that
(∏n+h

i=h+1M
−1
i

)
Xh+n converges in probability to 0 as n → ∞, hence

−∑n
i=1

(∏i
j=1M

−1
h+j

)
Qh+i must converge in probability to Xh as n → ∞. This shows

uniqueness of the solution and the given form, and from the discussion above and Theo-
rem 2.1 we see that the convergence must be almost surely absolutely, hence we obtain
(ii). Conversely, if (ii) is satisfied, define Xn by (2.8). Then it is easy to see that (Xn)n∈N0

is a strictly stationary solution of (2.1).
(d) Suppose that P (M = 0) = 0 and that neither Πn nor Π−1

n converges to 0 a.s. as
n → ∞. Suppose that P (Q + Mc = c) < 1 for all c ∈ R. Then P (Q = 0) < 1
and |∑n

i=1 Πi−1Qi| converges in probability to ∞ as n → ∞ by Theorem 2.1, hence so
does

∣∣∣∑n
i=1

(∏n
j=i+1Mj

)
Qi

∣∣∣ by (2.9). Assume that a stationary version (Xn)n∈N0 exists.
By (2.2) for h = 0 this implies that |ΠnX0| converges in probability to ∞ as n → ∞,
hence so does |Πn|. By stationarity, we conclude that Π−1

n Xn converges in probability
to 0 as n → ∞, and hence we conclude from (2.10) for h = 0 that ∑n

i=1 Π−1
i−1M

−1
i Qi

converges in probability to −X0. Since P (Q + Mc = c) < 1 for all c ∈ R, we also have
P (M−1Q + M−1d = d) < 1 for all d ∈ R, and since Π−1

n does not converge to 0 a.s.
by assumption it follows again from Theorem 2.1 that |∑n

i=1 Π−1
i−1M

−1
i Qi| converges in

probability to ∞, a contradiction. Hence no strictly stationary solution can exist unless
P (Q+Mc = c) = 1 for some c ∈ R.
Now if there is some c ∈ R such that P (Q+Mc = c) = 1, then Qn = (c−Mnc) a.s., and
(2.1) is equivalent to

Xn − c = Mn(Xn−1 − c) , n ∈ N . (2.11)
Hence Xn = c for each n ∈ N0 is obviously a strictly stationary solution. To show
uniqueness if P (|M | = 1) < 1, let (Xn)n∈N0 be some strictly stationary solution of (2.1).
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From (2.11) we obtain |Xn − c| = |Πn| |X0 − c|, hence

log |Xn − c| = log |X0 − c|+
n∑
i=1

log |Mi| , n ∈ N ,

with the convention that log 0 = −∞. But as the modulus of a random walk with
P (log |Mi| = 0) < 1,

∣∣∣∑n
i=1 log |Mi|

∣∣∣ converges in probability to +∞ as n → ∞ (this is
well known; for instance it is an immediate consequence of Theorem III.9 in Petrov [57]),
hence

∣∣∣ log |Xn − c|
∣∣∣ converges in probability to ∞ as n → ∞. But since (Xn)n∈N0 is

strictly stationary, this is only possible if
∣∣∣ log |Xn − c|

∣∣∣ =∞ a.s., i.e. if Xn = c a.s.

Remark 2.4. It follows from Theorem 2.3 that the strictly stationary solution to (2.1),
provided it exists, is unique in distribution unless P (|M | = 1) = 1 and Q = (1 −M)c
a.s. for some c ∈ R. If P (|M | = 1) = P (Q = (1 −M)c) = 1 for some c ∈ R, then
the strictly stationary solution is indeed no longer unique in distribution, as follows from
Theorem 3.1 (b) (i)–(iii) in Goldie and Maller [41], where moreover all causal solutions
in this case are characterized.
Remark 2.5. Let (Mn, Qn)n∈Z be an i.i.d. sequence in R2 with generic copy (M,Q). Then
the same characterization as in Theorem 2.3 also holds for the existence of strictly station-
ary solutions to the equation Xn = MnXn−1 + Qn indexed by n ∈ Z. The only difference
is now that, in cases (a) and (b), the strictly stationary solution (if existent) is not only
unique in distribution, but unique almost surely, and given by Xt = ∑∞

i=0

(∏i−1
j=0 Mt−j

)
Qt−i

for all t ∈ Z, with convergence almost surely absolutely. This follows from (2.2) by fixing
t = n+ h and letting h→ −∞.

In light of part (c) of Theorem 2.3, in comparison with part (b) of Theorem 2.3, it
is natural to ask for the relationship between the almost sure absolute convergence of∑∞
i=1

(∏i
j=1M

−1
j

)
Qi and that of ∑∞i=1

(∏i−1
j=1 M

−1
j

)
Qi, or in other words, the relationship

between the convergence of the integrals
∫∞

1
log q

Alog |M|(log q)P|M−1Q|(dq) and∫∞
1

log q
Alog |M|(log q)P|Q|(dq). We have the following result:

Proposition 2.6. Let (Mn, Qn)n∈N be an i.i.d. sequence in R2 with generic copy (M,Q)
such that P (M = 0) = 0.

(a) If ∑∞
i=1

(∏i−1
j=1M

−1
j

)
Qi converges almost surely absolutely, then so does∑∞

i=1

(∏i
j=1M

−1
j

)
Qi.

(b) Conversely, if additionally E
∣∣∣ log |M |

∣∣∣ <∞, then almost sure absolute convergence of∑∞
i=1

(∏i
j=1M

−1
j

)
Qi implies that of ∑∞i=1

(∑i−1
j=1M

−1
j

)
Qi.

(c) If (M,Q) are such that P (M > 1) = 1, E(logM) = ∞ and Q = M , then∑∞
i=1

(∏i
j=1M

−1
j

)
Qi converges almost surely absolutely, while ∑∞i=1

(∏i−1
j=1M

−1
j

)
Qi does

not.
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2 Non-causal strictly stationary solutions of random recurrence equations

Proof. The proof of (a) and (b) is in complete analogy to the proof of Theorem 3.1 in
Lindner and Maller [51] for convergence of Lévy integrals and hence omitted. We only
remark that for the proof of (a), Equation (7.1) in Lindner and Maller [51] has to be
replaced by

P (|M−1Q| > q) ≤ P (|M−1| > √q) + P (|Q| > √q)

for q ≥ 1 and that (2.6) is used to show convergence of the corresponding integral involving
P (|M−1| > √q). The proof of (b) is similar to that in Lindner and Maller [51], using

P (|Q| > q) ≤ P (|M | > √q) + P (|M−1Q| > √q) .

The convergence statement in (c) is trivial from Theorem 2.1 since P|M−1Q| is the Dirac
measure at 1, while the divergence assertion follows as in Lindner and Maller [51, Theorem
3.1 (c)].
Similar to Brandt [17] or Brandt et al. [18], it would be interesting to know if some of the
results of this chapter can be extended to inputs that are strictly stationary and ergodic
rather than i.i.d., but we leave this for future research.
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3 Continuous time autoregressive
moving average processes with Lévy
coefficients

This chapter is grounded on the published article by Brandes [14] “Continuous time
autoregressive moving average processes with random Lévy coefficients”. Let q < p be
non-negative integers and L = (Lt)t∈R a Lévy process, i.e. a process with stationary
and independent increments, càdlàg sample paths and L0 = 0 almost surely, which is
continuous in probability. A CARMA(p,q) process S = (St)t∈R driven by L is defined via

St = b′Xt , t ∈ R , (3.1)

with X = (Xt)t∈R a Cp-valued process which is a solution to the stochastic differential
equation (SDE)

dXt = AXt dt+ e dLt , t ∈ R , (3.2)

where

A =



0 1 0 . . . 0
0 0 1 . . . 0
... ... ... . . . ...
0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1

 , e =



0
0
...
0
1

 , and b =



b0
b1
...

bp−2
bp−1


with a1, . . . , ap, b0, . . . , bp−1 ∈ C such that bq 6= 0 and bj = 0 for j > q. For p = 1 the
matrix A is interpreted as A = (−a1).

It is well-known that the solution of (3.2) is unique for any X0 and given by

Xt = eAt
(

X0 +
∫

(0,t]
e−Ase dLs

)
, t ≥ 0 .

Processes of this kind were first considered for L being a Gaussian process by Doob [35].
Brockwell [22] gave the now commonly used definition with L being a Lévy process.
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3 Continuous time autoregressive moving average processes with Lévy coefficients

A CARMA process S = (St)t∈R as defined in (3.1) and (3.2) can be interpreted as a
solution of the pth-order linear differential equation

a(D)St = b(D)DLt ,

where a(z) = zp + a1z
p−1 + · · · + ap, b(z) = b0 + b1z + · · · + bp−1z

p−1 and D denotes the
differentiation operator. In this sense, CARMA processes are a natural continuous time
analog of discrete time ARMA processes. Similar to ARMA processes, CARMA processes
provide a tractable but rich class of stochastic processes. Their possible autocovariance
functions h 7→ Cov(St, St+h) are linear combinations of (complex) exponentials and thus
provide a wide variety of possible models when modeling empirical data.
In discrete time, ARMA processes with random coefficients (RC-ARMA) have attracted
a lot of interest recently, in particular, AR processes with random coefficients, see e.g.
Nicholls and Quinn [56]. They have applications as non-linear models for various pro-
cesses, e.g. bilinear GARCH processes introduced by Storti and Vitale [63]. RC-ARMA
processes also arise as a special case of conditional heteroscedastic ARMA (CHARMA)
models proposed by Tsay [66] and are used for financial volatility processes, see e.g. He
and Teräsvirta [44], to name just a few.
As CARMA processes constitute the natural continuous time analog of ARMA processes,
it is, therefore, natural to ask for CARMA processes with random coefficients. The
CARMA(1, 0) process with random (Lévy) coefficients has already been studied. It is
known as the generalized Ornstein-Uhlenbeck (GOU) process, which is obtained as the
solution to the SDE

dXt = Xt− dξt + dLt , t ≥ 0 ,
where (ξ, L) = (ξt, Lt)t≥0 is a bivariate Lévy process. It has been shown by de Haan
and Karandikar [33] that GOU processes arise as the natural continuous time analog of
the AR(1) process with random i.i.d. coefficients. By choosing (ξt)t≥0 = (−a1t)t≥0, the
GOU process reduces to the classical Lévy-driven Ornstein-Uhlenbeck process, which is
a CAR(1), i.e. CARMA(1,0) process.
Both the Ornstein-Uhlenbeck process as well as the generalized Ornstein-Uhlenbeck pro-
cess have various applications in insurance and financial mathematics, see e.g. Barndorff-
Nielsen and Shepard [1] and Klüppelberg et al. [49].
The aim of this chapter is to introduce CARMA processes with random Lévy autore-
gressive coefficients of higher orders, p ≥ 1, and to study stationarity and other natural
properties. The definition of our process is done in such a way that it includes the gen-
eralized Ornstein-Uhlenbeck process for order (1, 0) as a special case and that it reduces
to the usual CARMA process when the autoregressive Lévy coefficients are chosen to be
deterministic Lévy processes, i.e. pure drift and henceforth linear functions.
The chapter is organized as follows. In Section 3.1 we give some preparative results regard-
ing multivariate stochastic integration, the multivariate stochastic exponential, and mul-
tivariate generalized Ornstein-Uhlenbeck processes. In Section 3.2 we define a CARMA
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process with random coefficients (RC-CARMA) and present some basic properties as well
as sufficient conditions for the existence of a strictly stationary solution. Similar to Brock-
well and Lindner [28] for CARMA processes, we further show that the RC-CARMA(p, 0)
process satisfies an integral-differential equation and examine its path properties. Section
3.3 is concerned with the existence of moments, the autocovariance function and spectral
density, whereby it turns out that the latter two have an interesting connection to those
of CARMA processes. We end Section 3.3 by investigating an RC-CARMA(2, 1) process
in more detail. Conclusively, in Section 3.4 we present some simulations.

3.1 Preliminaries

Throughout we will always assume as given a complete probability space (Ω,F , P ) to-
gether with a filtration F = (Ft)t≥0. By a filtration we mean a family of σ-algebras (Ft)t≥0
that is increasing, i.e. Fs ⊂ Ft for all s ≤ t. Our filtration satisfies, if not stated oth-
erwise, the usual hypotheses, i.e. F0 contains all P -null sets of F , and the filtration is
right-continuous.
GL(R,m) denotes the general linear group of order m, i.e. the set of all m×m invertible
matrices associated with the ordinary matrix multiplication. If A ∈ GL(R,m), we denote
with A′ its transpose and with A−1 its inverse.
For càdlàg processes X = (Xt)t≥0 we denote with Xt− and ∆Xt := Xt−Xt− the left-limit
and the jump at time t, respectively. A d-dimensional Lévy processes L = (Lt)t≥0 can be
identified by its characteristic exponent (AL, γL,ΠL) due to the Lévy-Khintchine formula,
cf. Theorem 1.16, i.e. if µ denotes the distribution of L1, then its characteristic function
is given by

µ̂(z) = exp
[
−1

2〈z, ALz〉+ i〈γL, z〉+
∫
Rd

(ei〈z,x〉 − 1− i〈z, x〉1{|x|≤1}(x)) ΠL( dx)
]
, z ∈ Rd.

Here, AL is the Gaussian covariance matrix which is in one dimension denoted by σ2
L, ΠL

a measure on Rd which satisfies ΠL({0}) = 0 and
∫
Rd(|x|2 ∧ 1) ΠL( dx) < ∞, called the

Lévy measure, and γL ∈ Rd a constant. Further, |x| denotes the Euclidean norm of x.
For a detailed account of Lévy processes we refer to the book of Sato [61].

Stochastic Integration

A matrix-valued stochastic process X = (Xt)t≥0 is called an F-semimartingale or simply
a semimartingale if every component (X(i,j)

t )t≥0 is a semimartingale with respect to the
filtration F.
For a semimartingale X ∈ Rm×n, and H ∈ Rl×m and G ∈ Rn×p two locally bounded
predictable processes, the Rl×p-valued stochastic integral J =

∫
H dXG is defined, cf.
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3 Continuous time autoregressive moving average processes with Lévy coefficients

Definition 1.26, by its components via

J (i,j) =
n∑
k=1

m∑
h=1

∫
H(i,h)G(k,j) dX(h,k) .

It can easily be seen that also in the multivariate case the stochastic integration preserves
the semimartingale property, cf. Remark 1.27.
For two semimartingales X ∈ Rl×m and Y ∈ Rm×n the Rl×n-valued quadratic covariation
[X, Y ] is defined, cf. Definition 1.28, by its components via

[X, Y ](i,j) =
m∑
k=1

[X(i,k), Y (k,j)] (3.3)

and similar its continuous part [X, Y ]c such that it also holds true for matrix-valued
semimartingales

[X, Y ]t = [X, Y ]ct +X0Y0 +
∑

0<s≤t
∆Xs∆Ys , t ≥ 0 . (3.4)

Finally, as stated in Theorem 1.29, for two semimartingales X, Y ∈ Rm×m the integration
by parts formula takes the form

(XY )t =
∫ t

0+
Xs− dYs +

∫ t

0+
dXsYs− + [X·, Y·]t , t ≥ 0 .

The Multivariate Stochastic Exponential

Let X = (Xt)t≥0 be a semimartingale in Rm×m with X0 = 0. Due to Definition 1.30, its
left stochastic exponential

←
E (X)t is defined as the unique Rm×m-valued, adapted, càdlàg

solution (Zt)t≥0 of the integral equation

Zt = I +
∫

(0,t]
Zs− dXs , t ≥ 0 ,

where I ∈ Rm×m denotes the identity matrix. The right stochastic exponential of X,
denoted as

→
E (X)t, is defined as the unique Rm×m-valued, adapted, càdlàg solution (Zt)t≥0

of the integral equation

Zt = I +
∫

(0,t]
dXsZs− , t ≥ 0 .

It can be shown that both the left and the right stochastic exponential are semimartingales
and that for its transpose it holds

←
E (X)′t =

→
E (X ′)t. As observed by Karandikar [46], the

right and the left stochastic exponentials of a semimartingale X are invertible at all times
t ≥ 0 if and only if

det(I + ∆Xt) 6= 0 ∀ t ≥ 0 . (3.5)

We also need the following result of Karandikar [46].
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Proposition 3.1. (Inverse of the Stochastic Exponential)
Let X = (Xt)t≥0 be a semimartingale with X0 = 0 such that (3.5) holds. Define the
semimartingale

Ut := −Xt + [X,X]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)
, t ≥ 0 . (3.6)

Then
←
E (X)−1

t =
[←
E (U ′)t

]′
=
→
E (U)t ∀ t ≥ 0 , (3.7)

and

Ut = −Xt − [X,U ]t ∀ t ≥ 0 . (3.8)

Further,

det(I + ∆Ut) 6= 0 ∀ t ≥ 0 ,

and X can be represented by

Xt = −Ut + [U,U ]ct +
∑

0<s≤t

(
(I + ∆Us)−1 − I + ∆Us

)
, t ≥ 0 . (3.9)

Proof. For (3.7) and (3.8) see Karandikar [46], Theorem 1. For the remaining assertions,
observe that ∆Ut = (I + ∆Xt)−1 − I from (3.6), so that det(I + ∆Ut) 6= 0 for all t ≥ 0.
Further, from (3.6) we obtain [U,U ]ct = [X,X]ct . Inserting this, ∆Ut = (I + ∆Xt)−1 − I,
and the form of Ut from (3.6) into the right-hand side of (3.9) gives Xt so that (3.9) is
true.

Multivariate Generalized Ornstein-Uhlenbeck processes

We give a short overview of results regarding multivariate generalized Ornstein-Uhlen-
beck (MGOU) processes which are used throughout. MGOU processes were introduced
by Behme and Lindner [8] and further investigated in Behme [9].
Definition 3.2. Let (X, Y ) = (Xt, Yt)t≥0 be a Lévy process in Rm×m × Rm such that
X satisfies (3.5), and let V0 be a random variable in Rm. Then the Rm-valued process
V = (Vt)t≥0 given by

Vt =
←
E (X)−1

t

(
V0 +

∫
(0,t]

←
E (X)s− dYs

)
, t ≥ 0 ,

is called a multivariate generalized Ornstein-Uhlenbeck (MGOU) process driven by (X, Y ).
The underlying filtration F = (Ft)t≥0 is such that it satisfies the usual hypotheses and
such that (X, Y ) is a semimartingale.
The MGOU process will be called causal or non-anticipative, if V0 is independent of
(X, Y ), and strictly non-causal if Vt is independent of (Xs, Ys)0≤s<t for all t ≥ 0.
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3 Continuous time autoregressive moving average processes with Lévy coefficients

Remark 3.3. It follows from Behme and Lindner [8], Theorem 3.4, that an MGOU
process V = (Vt)t≥0 with an F0-measurable V0 solves the SDE

dVt = dUtVt− + dZt , t ≥ 0 , (3.10)

where U = (Ut)t≥0 is another Rm×m-valued Lévy process defined by (3.6) so that
←
E (X)−1

t =
→
E (U)t, and Z = (Zt)t≥0 is a Lévy process in Rm given by

Zt = Yt +
∑

0<s≤t

(
(I + ∆Xs)−1 − I

)
∆Ys − [X, Y ]ct , t ≥ 0 .

With these U and Z the MGOU process can also be written as

Vt =
→
E (U)t

(
V0 +

∫
(0,t]

→
E (U)−1

s− dYs
)
, t ≥ 0 . (3.11)

Conversely, if (U,Z) = (Ut, Zt)t≥0 is a Lévy process in Rm×m × Rm such that it holds
det(I + ∆Ut) 6= 0 for all t ≥ 0, then for every F0-measurable random vector V0 the
solution to (3.10) is an MGOU process driven by (X, Y ), where X is given by (3.9) and
Yt = Zt + [X,Z]t.
Convention 3.4. Observe that an MGOU process and similarly the process given by
(3.11) is well-defined for any starting random vector V0, regardless if it is F0-measurable
or not. We shall hence speak of (3.11) as a solution to (3.10), regardless if V0 is F0-
measurable or not. Observe that if V0 is chosen to be independent of (U,Z) or equivalently
(X, Y ), then the natural augmented filtration of (U,Z) may be enlarged by σ(V0) such
that (U,Z) still remains a semimartingale, see Protter [58], Theorem VI.2, and with this
enlarged filtration, V0 is measurable.

To investigate the strict stationarity property of RC-CARMA processes later, we introduce
the property of irreducibility of a class of MGOU processes as it has been done in Section
4 of Behme and Lindner [8].
Definition 3.5. Suppose that (X, Y ) = (Xt, Yt)t≥0 is a Lévy process in Rm×m×Rm such
that X satisfies (3.5). Then an affine subspace H of Rm is called invariant for the class of
MGOU processes V = (Vt)t≥0 driven by (X, Y ) if for all x ∈ H the choice V0 = x implies
Vt ∈ H a.s. for all t ≥ 0.
If there exists no proper affine subspace H such that, for all x ∈ H, V0 = x implies Vt ∈ H
a.s. for all t ≥ 0, we call the class of MGOU processes irreducible.

Irreducibility is thus a property of the considered model. By abuse of language, we will
call an MGOU process irreducible if the corresponding class satisfies Definition 3.5.
A more comprehensive overview on MGOU processes can be found in the Appendix A.2,
or in the paper of Behme and Lidner [8].
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3.2 The RC-CARMA process

3.2 The RC-CARMA process

Let p ∈ N and C = (Ct)t≥0 = (M (1)
t , . . . ,M

(p)
t , Lt)t≥0 be a Lévy process in Rp+1 with

ΠM(1)({1}) = 0. Let b0, . . . , bp−1 ∈ R. Let U = (Ut)t≥0 be Rp×p-valued defined by

Ut :=



0 t 0 . . . 0
0 0 t . . . 0
... ... ... . . . ...
0 0 0 . . . t

−M (p)
t −M (p−1)

t −M (p−2)
t . . . −M (1)

t

 , e :=



0
0
...
0
1

 , b :=



b0
b1
...

bp−2
bp−1

 , (3.12)

and q := max{j ∈ {0, . . . , p − 1} : bj 6= 0}. Then we call any process R = (Rt)t≥0 which
satisfies

Rt = b′Vt , t ≥ 0 , (3.13)

where V = (Vt)t≥0 is a solution to the SDE

dVt = dUtVt− + e dLt , t ≥ 0 , (3.14)

an RC-CARMA(p,q) process, i.e. a CARMA process with random Lévy coefficients. We
speak of C and b as the parameters of the RC-CARMA process.
As will be seen in Proposition 3.9 below, the assumption ΠM(1)({1}) = 0 implies det(I +
∆Ut) 6= 0 for all t ≥ 0, so that V is an MGOU process as in (3.10) and, as in Convention
3.4, by a solution of (3.14) we mean a process of the form (3.11) with starting random
variable V0 not necessarily F0-measurable. We shall call the process V a state vector
process of the RC-CARMA process R.
Observe that we get a classical CARMA(p,q) process (St)t≥0 = (b′Vt)t≥0, although on
the positive real line, by choosing (M (1)

t , . . . ,M
(p)
t ) = (a1, . . . , ap)t with a1, . . . , ap ∈ R.

Further, we recognize that there is less sense in choosing the coefficients of the moving
average side to be random since they are just defining the weights of the components of
V to form S.
Recall that a CARMA(p,q) process S = (St)t∈R satisfies the formal pth-order linear differ-
ential equation

a(D)St = b(D)DLt , (3.15)

where a(z) = zp + a1z
p−1 + · · · + ap, b(z) = b0 + b1z + · · · + bp−1z

p−1 and D denotes
the differentiation with respect to t. When we consider an RC-CARMA(p,0) process
(Rt)t≥0 = (b0V

1
t )t≥0 for (Vt)t≥0 = (V 1

t , . . . , V
p
t )t≥0 solving (3.14), we formally find that

aM(D)Rt = aM(D)b′Vt = aM(D)b0V
1
t = b0DLt = b(D)DLt , (3.16)
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3 Continuous time autoregressive moving average processes with Lévy coefficients

where

aM(z) = zp + dM (1)
t

dt zp−1 + · · ·+ dM (p)
t

dt z0 .

Observe that dM(i)
t

dt is not defined in a rigorous way but just an intuitive way of writing.
Thus, it is possible to interpret also the RC-CARMA(p,0) process as a solution to a formal
pth-order linear differential equation with random coefficients.
To justify (3.16), look at the first p− 1 components of V

dV i
t = V i+1

t dt ⇔ dV i
t

dt = V i+1
t ⇔ DiV 1

t = V i+1
t , i = 1, . . . , p− 1 . (3.17)

Formal division by dt yields for the pth component

dV p
t = −V 1

t dM (p)
t − · · · − V p

t dM (1)
t + dLt

“⇔ ” dV p
t

dt = −V 1
t

dM (p)
t

dt − · · · − V p
t

dM (1)
t

dt + dLt
dt

(3.17)⇔ DV p
t = −V 1

t

dM (p)
t

dt − · · · −Dp−1V 1
t

dM (1)
t

dt +DLt

⇔ DLt = DpV 1
t + dM (1)

t

dt Dp−1V 1
t + · · ·+ dM (p)

t

dt V 1
t

⇔ DLt = aM(D)V 1
t .

Brockwell and Lindner [28] gave a rigorous interpretation of (3.15) by showing that a
CARMA(p,q) process (St = b′Xt)t∈R driven by a Lévy process L satisfies the integral
equation

a(D)JpSt = b(D)Jp−1(Lt) + a(D)Jp(b′eAtX0) , t ∈ R ,

where a(z) and b(z) are as before, and J denotes the integration operator which associates
with any càdlàg function f = (ft)t∈R : R→ C , t 7→ ft, the function J(f) defined by

J(f)t :=
∫ t

0
fs ds .

Similarly, we give a rigorous interpretation of (3.16) as an integral-differential equation
and show that the RC-CARMA(p, 0) process solves this equation, hence making the formal
deviation of (3.16) above thoroughly.
We call a function g : [0,∞)→ R differentiable with càdlàg derivative Dg, if g is continuous
and there exists a càdlàg function Dg such that g is at every point t ∈ R right- and
left-differentiable with right-derivative Dgt and left-derivative Dgt− = limε↓0 ,ε 6=0Dgt−ε,
respectively. In other words, g is absolutely continuous and has càdlàg density Dg (see
the discussion in [28] at the beginning of Section 2).
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3.2 The RC-CARMA process

We call a function g : [0,∞)→ R p-times continuously differentiable with càdlàg derivative
Dpg, if g is p−1-times differentiable in the usual sense and the (p−1)st derivative D(p−1)g
is differentiable with càdlàg derivative Dpg = D(Dp−1g) as defined above.

Theorem 3.6. Let C = (Ct)t≥0 = (M (1)
t , . . . ,M

(p)
t , Lt)t≥0 be a Lévy process in Rp+1 and

an F-semimartingale with ΠM(1)({1}) = 0. Let b′ = [b0, . . . , bp−1] ∈ Rp with b0 6= 0 and
b1 = · · · = bp−1 = 0, and consider the RC-CARMA(p, 0) process R = (Rt)t≥0 defined by
(3.13) and (3.14), where V = (Vt)t≥0 is the state vector process (with V0 not necessarily
F0-measurable). Denote by Dp−1 the set of all F-adapted, R-valued processes G = (Gt)t≥0
which are p− 1 times differentiable with càdlàg derivative Dp−1G.
(a) Define W = (Wt)t≥0 by

Wt := Rt − b′
→
E (U)t V0 , t ≥ 0 .

Then W ∈ Dp−1, it is an RC-CARMA process with parameters C, b, and initial state
vector 0, and it satisfies the integral-differential equation

Dp−1Wt +
( p∑
i=1

∫
(0,t]

Di−1Ws− dM (p−i+1)
s

)
= b0Lt , t ≥ 0 . (3.18)

If V0 is additionally F0-measurable, then also R ∈ Dp−1 and there exists an F0-measurable
random variable Z0 such that

Dp−1Rt +
( p∑
i=1

∫
(0,t]

Di−1Rs− dM (p−i+1)
s

)
= b0Lt + Z0 , t ≥ 0 . (3.19)

(b) Conversely, if R̃ = (R̃t)t≥0 ∈ Dp−1 satisfies

Dp−1R̃t +
( p∑
i=1

∫
(0,t]

Di−1R̃s− dM (p−i+1)
s

)
= b0Lt + Z0 (3.20)

for some F0-measurable Z0, then R̃ is an RC-CARMA process with parameters C, b,
and state vector process Ṽ = (Ṽt)t≥0 := (b−1

0 (R̃t, DR̃t, . . . , D
p−1R̃t))t≥0. Especially, Ṽ0 is

F0-measurable.

Proof. (a) As already observed (and to be shown in Proposition 3.9 (a) below), the con-
dition ΠM(1)({1}) = 0 implies that V is an MGOU process. So

Vt =
→
E (U)t

(
V0 +

∫
(0,t]

→
E (U)−1

s− dYs
)

for some Lévy process Y as specified in Remark 3.3. Hence, (Vt−
→
E (U)t V0)t≥0 is adapted

and consequently so is (Rt − b′
→
E (U)t V0)t≥0, and it is obviously an RC-CARMA process

with initial state vector 0. Hence, for the proof of (3.18) it suffices to assume that V0 = 0.
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Denote V = (Vt)t≥0 = (V 1
t , . . . , V

p
t )t≥0. By (3.17), we have DiV 1

t = V i+1
t , i = 1, . . . , p− 1.

Hence, V 1
t is p−1-times differentiable with (p−1)st càdlàg derivative V p

t . By the defining
SDE of the RC-CARMA process (3.14) and the form of the matrix U = (Ut)t≥0 given in
(3.12), we also have

V p
t = V p

0 −
p∑
i=1

∫
(0,t]

V i
s− dM (p−i+1)

s + Lt , (3.21)

and since V0 = 0, that

Lt = Dp−1V 1
t +

p∑
i=1

∫
(0,t]

Di−1V 1
s− dM (p−i+1)

s . (3.22)

Multiplying (3.22) by b0 gives (3.18) when V0 = 0 and hence (3.18) in general.
For (3.19) let

Kt = (K1
t , . . . , K

p
t )′ :=

→
E (U)t V0 .

When we consider the SDE which defines the right stochastic exponential d
→
E (U)t =

dUt
→
E (U)t−, we obtain

dKt = dUtKt− with K0 = V0 , (3.23)

and due to the form of the process U

dKi
t = Ki+1

t dt ⇔ dKi
t

dt = Ki+1
t ⇔ DiK1

t = Ki+1
t , i = 1, . . . , p− 1 .

Further, from the last component of (3.23)

Kp
t = Dp−1K1

t = V p
0 −

∫
(0,t]

K1
s− dMp

s − · · · −
∫

(0,t]
Kp
s− dM1

s

= V p
0 −

p∑
i=1

∫
(0,t]

Di−1K1
s− dM (p−i+1)

s .

Hence,

Dp−1K1
t +

p∑
i=1

∫
(0,t]

Di−1K1
s− dM (p−i+1)

s = V p
0 ,

where V p
0 is F0-measurable such that we obtain (3.19) via Rt = Wt + b′Kt, where Wt

satisfies (3.18).
(b) For the converse, let R̃ ∈ Dp−1 satisfy (3.20), and denote Ṽt = (Ṽ 1

t , . . . , Ṽ
p
t ) =

(b−1
0 (R̃t, DR̃t, . . . , D

p−1R̃t)), t ≥ 0. By the fundamental theorem of calculus

Ṽ i
t = Ṽ i

0 +
∫

(0,t]
Ṽ i+1
s ds , i = 1, . . . , p− 1 , (3.24)
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and from (3.20) we obtain

Ṽ p
t = b−1

0 Z0 −
p∑
i=1

∫
(0,t]

Di−1Ṽ 1
s− dM (p−i+1)

s + Lt

= b−1
0 Z0 −

p∑
i=1

∫
(0,t]

Ṽ i
s− dM (p−i+1)

s + Lt , t ≥ 0 . (3.25)

But (3.24) and (3.25) mean that Ṽ p
0 = b−1

0 Z0 and that Ṽ = (Ṽt)t≥0 satisfies

Ṽt = Ṽ0 +
∫

(0,t]
dUsṼs− + eLt .

Since obviously b′Ṽt = b0b
−1
0 R̃t = R̃t, it follows that R̃ is an RC-CARMA(p, 0) process

with parameters C, b, and state vector process Ṽ .
Remark 3.7. Differentiating (3.19) formally gives

DpRt +
p∑
i=1

Di−1Rs−DM
(p−i+1)
s = b0DLt ,

hence (3.16) and the RC-CARMA(p, 0) process can be interpreted as a solution to a for-
mal pth-order linear differential equation with random coefficients. To obtain a similar
equation and hence interpretation for RC-CARMA(p, q) processes with q > 0 seems not
so easy since it is in general not possible to interchange the stochastic integration with the
differentiation operator D.
Remark 3.8. Similar as in case of CARMA(p,q) processes, we easily see for an RC-
CARMA(p,q) process R = (Rt)t≥0 with q < p, bq 6= 0, and bj = 0 for j > q with

Rt = b′Vt = b0V
1
t + · · ·+ bqV

q+1
t

that, by (3.17), R is (p− q − 1)-times differentiable with (p− q − 1)st càdlàg derivative

Dp−q−1Rt = b0D
p−q−1V 1

t + · · ·+ bqD
p−q−1V q+1

t = b0V
p−q
t + · · ·+ bqV

p
t .

The following proposition shows that the state vector process V = (Vt)t≥0 is an MGOU
process and gives its specific driving Lévy process (X, Y ). Further, V is an irreducible
MGOU process if we assume that U is independent of L and L is not deterministic.
Proposition 3.9. Let C = (Ct)t≥0 = (M (1)

t , . . . ,M
(p)
t , Lt)t≥0 be an Rp+1-valued Lévy

process and an F-semimartingale. Let ΠM(1) denote the Lévy measure of M (1) and let U
be defined as in (3.12).
(a) Then

←
E (U)t ∈ GL(R, p) for all t ≥ 0 if and only if ΠM(1)({1}) = 0. In this case, for

any starting random vector V0 the solution to

dVt = dUtVt− + e dLt
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is an MGOU process driven by (X, Y ), i.e. V = (Vt)t≥0 takes the form

Vt =
←
E (X)−1

t

(
V0 +

∫
(0,t]

←
E (X)s− dYs

)
=
→
E (U)t

(
V0 +

∫
(0,t]

→
E (U)−1

s− dYs
)
, t ≥ 0.

Here, (X, Y ) = (Xt, Yt)t≥0 is a Lévy process defined by

Xt =



0 −t 0 . . . 0
0 0 −t . . . 0
... ... ... . . . ...
0 0 0 . . . −t

N
(p)
t N

(p−1)
t N

(p−2)
t . . . N

(1)
t


with

N
(i)
t = M

(i)
t + t σM(1),M(i) +

∑
0<s≤t

∆M (i)
s ∆M (1)

s

1−∆M (1)
s

, i = 1, . . . , p ,

where σM(1),M(i) denotes the Gaussian covariance of M (1) and M (i). X satisfies det(I +
∆Xt) 6= 0 for all t ≥ 0, and Yt = eỸt with

Ỹt = Lt + tσM(1), L +
∑

0<s≤t

∆M (1)
s ∆Ls

1−∆M (1)
s

.

(b) Denote M = (Mt)t≥0 = (M (1)
t , . . . ,M

(p)
t )t≥0. Assume that M is independent of L and

L not deterministic. Then the MGOU process V obtained in (a) is irreducible.

Proof. (a) Since C is a Lévy process and a semimartingale with respect to F, it is clear that
also U as defined in (3.12) is a semimartingale and therefore also

←
E (U) is a semimartingale

with respect to F. Since
←
E (U) is non-singular if and only if det(I+∆Ut) 6= 0 for all t ≥ 0,

we calculate

det(I + ∆Ut) = det



1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0

−∆M (p)
t −∆M (p−1)

t . . . −∆M (2)
t 1−∆M (1)

t

 (3.26)

= (1−∆M (1)
t )

which shows that
←
E (U)t is non-singular if and only if ∆M (1)

t 6= 1 for all t ≥ 0. Since M (1)

is a Lévy process, the latter is equivalent to ΠM(1)({1}) = 0.
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3.2 The RC-CARMA process

By Remark 3.3, V is an MGOU process driven by (X, Y ), where X is given by (3.9) and
satisfies det(I + ∆Xt) 6= 0 for all t ≥ 0, and Yt = eLt + [X, eL]t.
From (3.3) we obtain for the components of [U,U ]c due to the form of U in (3.12)

([U,U ]ct)(i,j) =
p∑

k=1
[U (i,k), U (k,j)]c =

0 , i = 1, . . . , p− 1 ,
[U (p,p), U (p,j)]ct = tσM(1),M(p−j+1) , i = p .

The form of I + ∆Ut is implicitly given in (3.26) such that

(I + ∆Ut)−1 =



1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0

∆M(p)
t

1−∆M(1)
t

∆M(p−1)
t

1−∆M(1)
t

. . .
∆M(2)

t

1−∆M(1)
t

1
1−∆M(1)

t


which is well-defined since ΠM(1)({1}) = 0. Summing up the terms according to (3.9)
leads to the stated form of the processes (N (1)

t , . . . , N
(p)
t )t≥0 and X.

For Yt = eLt + [X, eL]t we obtain with (3.3) componentwise

[X, eL](i)t =
p∑

k=1
[X(i,k), (eL)(k)]t = [X(i,p), L]t =

0 , i = 1, . . . , p− 1 ,
[N (1), L]t , i = p .

Since

∆N (1)
t = ∆M (1)

t

1−∆M (1)
t

,

and [N (1), L]ct = [M (1), L]ct = σM(1) , L t we get the stated form of Y by (3.4).
(b) Suppose that V = (Vt)t≥0 = (V 1

t , . . . , V
p
t )t≥0 is not irreducible. Hence, there exists

an invariant affine subspace H with dimH ∈ {0, . . . , p− 1}. Then for all x ∈ H it holds
P (Vt ∈ H|V0 = x) = 1 for all t ≥ 0. Since V is càdlàg, we obtain P (Vt ∈ H ∀ t ≥ 0|V0 =
x) = 1. Further, if H ′ ⊃ H with dimH ′ = p− 1, then

P (Vt ∈ H ′ ∀ t ≥ 0 |V0 = x) = 1 ∀x ∈ H . (3.27)

We shall show that P (Vt ∈ H ′ ∀ t ≥ 0 |V0 = x) < 1 for all x ∈ Rp, hence contradicting
(3.27). So assume w.l.o.g. that dimH = p− 1. Since then H is a hyperplane, there exists
λ ∈ Rp with λ 6= 0 and a ∈ R such that H = {y ∈ Rp : λ′y = a}.
Let V0 = x ∈ H. Let i1, . . . , ik ∈ {1, . . . , p} with in 6= im for all n 6= m, λin 6= 0 for all n ∈
{1, . . . , k} and λj = 0 for j ∈ {1, . . . , p} \ {i1, . . . , ik}. W.l.o.g. assume i1 < i2 < · · · < ik.
By the existence of an invariant affine subspace, this yields λi1V i1

t + · · · + λikV
ik
t = a.

This is, since Din−i1V i1
t = V in

t , n = 1, . . . , k, equivalent to

λi1V
i1
t + λi2D

i2−i1V i1
t + · · ·+ λikD

ik−i1V i1
t = a . (3.28)
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3 Continuous time autoregressive moving average processes with Lévy coefficients

But (3.28) is an inhomogeneous ordinary linear differential equation of order ik − i1.
Hence, V i1

t is a smooth deterministic function in t and so are V j
t for all j ∈ {1, . . . , p}

since V j
t = Dj−1V 1

t . When we consider the last component of V , we obtain by (3.21) with
V p

0 = xp

Lt = V p
t +

p∑
k=1

∫
(0,t]

V k
s− dM (p−k+1)

s − xp . (3.29)

But under the assumption that M and L are independent and L is not deterministic,
(3.29) cannot hold (observe that Vt is deterministic by (3.28) when V0 = x). This gives
the wanted contradiction and therefore that V is irreducible.
Remark 3.10. We can write (3.29) using partial integration as

Lt = V p
t +

p∑
k=1

V k
t M

(p−k+1)
t −

p∑
k=1

∫
(0,t]

M
(p−k+1)
s− dV k

s − xp ,

hence Lt is a functional of M . It would therefore be enough assuming that L is not
measurable with respect to the filtration generated by M to ensure irreducibility of the
state vector process V .
Remark 3.11. When the components M (1), . . . ,M (p), L of the Lévy process C in Propo-
sition 3.9 (a) are additionally independent, then the components do not jump together
almost surely and the Gaussian covariances vanish for different components so that the
formulas for N (1), . . . , N (p) simplify to

N
(1)
t = M

(1)
t + t σ2

M
(1)
t

+
∑

0<s≤t

(∆M (1)
s )2

1−∆M (1)
s

and N
(i)
t = M

(i)
t a.s. for i = 2, . . . , p .

Further, Yt = eLt and X are independent in that case (the latter is already true when just
L is independent of (M (1), . . . ,M (p))).

Recall that a process is strictly stationary if its finite-dimensional distributions are shift-
invariant. As in the case of the MGOU process, we can find sufficient conditions for the
existence of a strictly stationary solution of the RC-CARMA SDE (3.14) and therefore a
strictly stationary RC-CARMA process. Assume throughout that the used norm ‖·‖ on
Rp×p is submultiplicative.
Theorem 3.12. Let C = (Ct)t≥0 = (M (1)

t , . . . ,M
(p)
t , Lt)t≥0 be a Lévy process in Rp+1

with ΠM(1)({1}) = 0 and a semimartingale with respect to the given filtration F. Let
b′ := [b0, . . . , bp−1] ∈ Rp, q := max{j ∈ {0, . . . , p − 1} : bj 6= 0} and U = (Ut)t≥0 be given
as in (3.12). Assume that E

[
log+ ‖U1‖

]
<∞ and E

[
log+ |L1|

]
<∞.

(a) Suppose there exists a t0 > 0 such that

E
[
log

∥∥∥∥←E (U)t0
∥∥∥∥] < 0 . (3.30)
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3.3 Existence of moments and second order properties

Then
←
E (U)t converges a.s. to 0 as t→∞, and the integral

∫
(0,t]

←
E (U)s− e dLs converges

a.s. to a finite random vector as t → ∞, denoted by
∫∞

0
←
E (U)s− e dLs. Further, (3.14)

admits a strictly stationary solution which is causal and unique in distribution, and is
achieved by choosing V0 to be independent of C and such that V0

d=
∫∞

0
←
E (U)s− e dLs.

(b) Conversely, if V0 can be chosen independent of C such that V is strictly stationary,
M = (M (1)

t , . . . ,M
(p)
t )t≥0 is independent of L and L not deterministic, then there exists a

t0 > 0 such that (3.30) holds.
In both cases with this choice of V0, the RC-CARMA process given by Rt = b′Vt, t ≥ 0,
is strictly stationary, too.

Proof. (a) The assertions regarding V follow from Theorem 5.4 with Remark 5.5 (b) and
Theorem 5.2 (a) in Behme and Lindner [8].
(b) Under the assumptions made, V is irreducible by Proposition 3.9 (b). Therefore
Theorem 5.4 of Behme and Lindner [8] applies.
That R is strictly stationary if V is, is obvious.

3.3 Existence of moments and second order properties

In this section, we calculate the autocovariance function (ACVF) of an RC-CARMA
process and give a connection to the autocovariance function of a specific CARMA process
obtained by choosing A = E[U1]. Further, we give sufficient conditions for the existence of
the ACVF and the spectral density. We end this section with an exemplary investigation of
the RC-CARMA(2, 1) process. But we start with a result which guarantees the existence
of higher moments. Assume that the used norm ‖·‖ on Rp×p is submultiplicative.
Proposition 3.13. Let R = (Rt)t≥0 be an RC-CARMA(p, q) process with parameters
C = (Ct)t≥0 = (M (1)

t , . . . ,M
(p)
t , Lt)t≥0, b and strictly stationary state vector process V =

(Vt)t≥0 with V0 independent of C and C a semimartingale with respect to the given filtration
F. Assume that for κ > 0 we have for some t0 > 0

E ‖C1‖max{κ,1} <∞ and E
∥∥∥∥←E (U)t0

∥∥∥∥κ < 1 . (3.31)

Then E|R0|κ <∞, and if (3.31) holds for κ = 1,

E[R0] = b0
E[L1]

E[M (p)
1 ]

.

Remark 3.14. The assumption (3.31) in the previous proposition actually already implies
the existence of a strictly stationary state vector process V = (Vt)t≥0, that is unique in dis-
tribution, since E ‖C1‖max{κ,1} <∞ obviously implies E[log+ ‖U1‖] <∞ and E[log+ |L1|] <
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3 Continuous time autoregressive moving average processes with Lévy coefficients

∞, and by Jensen’s inequality and (3.31) we further have

κE
[
log

∥∥∥∥←E (U)t0
∥∥∥∥] ≤ log E

∥∥∥∥←E (U)t0
∥∥∥∥κ < 0 .

Then Theorem 3.12 applies.

Proof of Proposition 3.13. By Remark 3.14 the strictly stationary state vector process V
is unique in distribution. By Proposition 3.3 in Behme [9] we then have E ‖V0‖κ < ∞
and hence E|R0|κ <∞.
Now let κ = 1. Again from [9], Proposition 3.3, we know that E[U1] is invertible and

E[V0] = −E[U1]−1e E[L1] .

Observe that E[U1] is a companion matrix and it is well-known that the inverse of this is
of the form

E[U1]−1 =



−E[M(p−1)
1 ]

E[M(p)
1 ]

−E[M(p−2)
1 ]

E[M(p)
1 ]

. . . −E[M(1)
1 ]

E[M(p)
1 ]

− 1
E[M(p)

1 ]
1 0 . . . 0 0
0 1 . . . 0 0
... ... . . . ... ...
0 0 . . . 1 0


(3.32)

such that

E[V0] = e1
E[L1]

E[M (p)
1 ]

,

where e1 denotes the first unit vector in Rp, and

E[R0] = E[b′V0] = b′e1
E[L1]

E[M (p)
1 ]

= b0
E[L1]

E[M (p)
1 ]

.

The following proposition gives sufficient conditions for the existence of the autocovariance
function of an RC-CARMA process and states its form. We denote with ⊗ the Kronecker
product and by vec the vectorizing operator which maps a matrix H form Rp×m into Rpm

stacking its columns one under another. vec−1 means the inverse operation such that
vec−1(vec(H)) yields H.
Proposition 3.15. Let R = (Rt)t≥0 be an RC-CARMA(p, q) process with parameters C =
(Ct)t≥0, b and state vector process V = (Vt)t≥0 with V0 independent of C and C a semi-
martingale with respect to the given filtration F. Suppose that it holds E ‖C1‖2 ,E ‖Vs‖2 <
∞, then for t ≥ 0 we have

Cov(Rt+h, Rt) = b′ehE[U1] Cov(Vt)b ∀h ≥ 0 ,
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3.3 Existence of moments and second order properties

where Cov(Vt) = E[VtV ′t ]− E[Vt]E[V ′t ] denotes the covariance matrix of Vt.
In particular, if V is strictly stationary, (3.31) holds for κ = 2 and we denote

D = E[U1]⊗ I + I ⊗ E[U1] + E[U1 ⊗ U1]− E[U1]⊗ E[U1] , (3.33)

then all eigenvalues of D have strictly negative real parts and the matrix

F =
∫ ∞

0

∫ s

0
euD(e(s−u)(E[U1]⊗I) + e(s−u)(I⊗E[U1])) du ds

is finite. Further, if E[L1] = 0 we obtain

Cov(Rt+h, Rt) = b′ehE[U1] vec−1(−D−1ep2) E(L2
1)b ,

where ep2 denotes the (p2)th-unit vector in Rp2, and if M = (M (1)
t , . . . ,M

(p)
t )t≥0 and L are

independent, we obtain

Cov(Rt+h, Rt) = b′ehE[U1]

vec−1
(
−D−1ep2Var(L1) + Fep2(E[L1])2

)
− e1e′1

(
E[L1]

E[M (p)
1 ]

)2
b .

Proof. This follows immediately from Proposition 3.4 and the subsequent remark in
Behme [9], by observing that

vec−1((E[U1]⊗ E[U1])−1vec(E[eL1]E[eL1]′)) = E[U1]−1E[eL1]E[eL1]′(E[U1]−1)′

= e1e′1

(
E[L1]

E[M (p)
1 ]

)2

is obtained by (3.32), and the properties of the vectorizing and the Kronecker product
operations.

The following is Remark 3.5 (a) in Behme [9] for our purposes.

Remark 3.16. Let C = (Ct)t≥0 = (M (1)
t , . . . ,M

(p)
t , Lt)t≥0 be a Lévy process in Rp+1 with

E ‖C1‖2 < ∞ satisfying ΠM(1)({1}) = 0 and U = (Ut)t≥0 a Lévy process in Rp×p of the
form (3.12). Let D be as in (3.33). Then

E
∥∥∥∥←E (U)t0

∥∥∥∥2
< 1 for some t0 > 0

if and only if
all eigenvalues of D have strictly negative real parts .

Therefore, that condition (3.31) holds for κ = 2 can be replaced by

E ‖C1‖2 <∞ and all eigenvalues of D have strictly negative real parts . (3.34)
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3 Continuous time autoregressive moving average processes with Lévy coefficients

Let R = (Rt)t≥0 be an RC-CARMA process with parameters C = (M (1), . . . ,M (p), L) and
b. If E|M (1)|, . . . ,E|M (p)| < ∞, we can associate to R and each vector X0 a CARMA
process S = (St)t≥0, given by (3.1) and (3.2) with A = E[U1].

Each of these processes, i.e. when X0 varies over all random variables, will be called a
CARMA process associated with the given RC-CARMA process with state vector process
(Xt)t≥0. It is then interesting to compare the autocovariance function of R with that of
S provided both are strictly stationary with finite variance.

We denote with ⊕ the Kronecker sum, i.e. A⊕ A = A⊗ I + I ⊗ A.

Theorem 3.17. Let R = (Rt)t≥0 be an RC-CARMA(p, q) process with parameters C =
(Ct)t≥0, b and strictly stationary state vector process V = (Vt)t≥0 with V0 independent
of C and C a semimartingale with respect to the given filtration F. Assume that (3.31)
holds for κ = 2, that E[L1] = 0 and denote D̃ := E[U1] ⊕ E[U1]. Then E[U1] and
D̃ have only eigenvalues with strictly negative real parts. Further, X0 can be chosen
independent of C and unique in distribution such that the state vector process (Xt)t≥0 of
the associated CARMA process S = (St)t≥0 becomes strictly stationary with finite variance.
Its autocovariance function can be expressed for all t ≥ 0 as

Cov(St+h, St) = b′ehE[U1] vec−1(−D̃−1ep2) E(L2
1)b , ∀h ≥ 0 . (3.35)

Then the autocovariance function of S and R differ only by a multiplicative constant.
More precisely,

Cov(Rt+h, Rt) = Cov(St+h, St) · %RC ∀ t , h ≥ 0 , (3.36)

where

%RC = 1− e′p2BD−1ep2 (3.37)

with B = E[U1 ⊗ U1]− E[U1]⊗ E[U1]. Furthermore, if Var(R0) > 0, the autocorrelation
functions of both R and S agree, i.e.

Corr[St+h, St] = Corr[Rt+h, Rt] , ∀ t , h ≥ 0 . (3.38)

Proof. That E[U1] has only eigenvalues with strictly negative real parts follows since (3.31)

by Jensen’s inequality implies
∥∥∥∥E[

←
E (U)t0 ]

∥∥∥∥ ≤ E
∥∥∥∥←E (U)t0

∥∥∥∥ ≤
(

E
∥∥∥∥←E (U)t0

∥∥∥∥2
)1/2

< 1.

Hence, since E[
→
E (U)t0 ] = et0E[U1] by Proposition 3.1 in Behme [9] we obtain by the

submultiplicativity of the norm

∥∥∥ent0E[U1]
∥∥∥ ≤ ∥∥∥et0E[U1]

∥∥∥n ≤ (E
∥∥∥∥→E (U)t0

∥∥∥∥2
)n/2

→ 0 , n→∞ ,
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3.3 Existence of moments and second order properties

so that all eigenvalues of E[U1] have strictly negative real parts (e.g. Proposition 11.8.2
in Bernstein [11]). That then also D̃ has only eigenvalues with strictly negative real parts
follows by Fact 11.17.11 of Bernstein [11].

That X admits a strictly stationary solution which is unique in distribution with finite
variance and X0 independent of C under the given conditions, is well-known (e.g. Brock-
well [21]) or alternatively follows from Remark 3.14. (3.35) follows from Proposition 3.15.
(3.38) is clearly true as long as (3.36) holds and Var(R0) 6= 0.

To show that (3.36) is indeed true, we recognize first that the covariance of the CARMA
process S and the RC-CARMA process R differ only in the matrices D as defined in
(3.33) and D̃. So, it is enough to show that

x = x̃%RC

where x := D−1ep2 and x̃ := D̃−1ep2 and %RC is defined by (3.37).

Since both D and D̃, under the assumptions made, are invertible, x and x̃ are well-defined.
Further, we have that

D = D̃ + E[U1 ⊗ U1]− E[U1]⊗ E[U1] =: D̃ +B ,

where the matrix B = (bi,j)i,j=1,...,p2 does only have values different from zero in the last
row. The latter can be seen due to the form of the matrix U1 by

E[U1 ⊗ U1] =



0p E[U1] 0p . . . 0p
0p 0p E[U1] . . . 0p
... ... ... . . . ...

0p 0p 0p . . . E[U1]
−E[M (p)

1 U1] −E[M (p−1)
1 U1] −E[M (p−2)

1 U1] . . . −E[M (1)
1 U1]

 ,

and

E[U1]⊗ E[U1] =

0p E[U1] 0p . . . 0p
0p 0p E[U1] . . . 0p
... ... ... . . . ...

0p 0p 0p . . . E[U1]
−E[M (p)

1 ]E[U1] −E[M (p−1)
1 ]E[U1] −E[M (p−2)

1 ]E[U1] . . . −E[M (1)
1 ]E[U1]

 .

Then

ep2 = Dx = (D̃ +B)x = D̃x+
p2∑
i=1

bp2,ixiep2
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3 Continuous time autoregressive moving average processes with Lévy coefficients

such that

D̃x =
1−

p2∑
i=1

bp2,ixi

 ep2 = (1− (e′p2B)D−1ep2)ep2 = %RCep2 .

Hence, x = %RCD̃
−1ep2 = %RC x̃.

The following two propositions give handy sufficient conditions for (3.34) and therefore
also for the existence of a strictly stationary solution by Remark 3.14.
Proposition 3.18. Suppose that E ‖C1‖2 <∞ and that E[U1] has only eigenvalues with
strictly negative real parts. Denote D̃ := E[U1]⊕ E[U1], and B := E[U1 ⊗ U1]− E[U1]⊗
E[U1] = (bi,j)i,j=1,...,p2 with bi,j = 0 for all i 6= p2 and all j = 1, . . . , p2 and bp2,p(k−1)+j =
Cov(M (p−k+1)

1 ,M
(p−j+1)
1 ) for k, j = 1, . . . , p. Then the minimal singular value σmin(D̃ ⊕

D̃), which is the square root of the minimal eigenvalue of (D̃ ⊕ D̃)(D̃ ⊕ D̃)′, is strictly
positive, and if

p∑
i,j=1

[Cov(M (i)
1 ,M

(j)
1 )]2 < 1

4σmin(D̃ ⊕ D̃)2 , (3.39)

then (3.34) applies.

Proof. Assume that E[U1] has only eigenvalues with strictly negative real parts. Then so
does D̃ = E[U1] ⊕ E[U1] by Fact 11.17.11 of Bernstein [11] and hence also D̃ ⊕ D̃. In
particular, D̃ ⊕ D̃ is invertible so that its minimal singular value is strictly positive. By
Fact 11.18.17 of [11], the sum D = D̃+B has only eigenvalues with strictly negative real
parts if ‖B‖F < 1/2σmin(D̃ ⊕ D̃), where ‖·‖F denotes the Frobenius norm. Due to the
form of B, we see immediately that ‖B‖2

F = ∑p2

j=1 b
2
p2,j, hence (3.39).

Let us denote with ‖A‖1 the column sum and with ‖A‖∞ the row sum norm of a matrix
A, respectively. Further, κ1(A) = ‖A‖1 ‖A−1‖1 and κ∞(A) = ‖A‖∞ ‖A−1‖∞ denote the
condition number of an invertible A with respect to ‖·‖1 and ‖·‖∞, respectively.
Proposition 3.19. Suppose that E ‖C1‖2 <∞ and that E[U1] has only pairwise distinct
eigenvalues with strictly negative real parts, which we denote by µ1, . . . , µp. Let D̃ and B
be as in Proposition 3.18, denote

S :=


1 . . . 1
µ1 . . . µp
... . . . ...

µp−1
1 . . . µp−1

p

 , Λ := diag(µ1, . . . , µp) ,

and by spec(D̃) the set of all eigenvalues of D̃. Then E[U1] and D̃ are diagonalizable,
more precisely S−1E[U1]S = Λ and (S−1 ⊗ S−1)D̃(S ⊗ S) = Λ⊕ Λ. Further, if
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3.3 Existence of moments and second order properties

(a) κ1(S)2 · max
i,j=1,...,p

|Cov(M (i)
1 ,M

(j)
1 )| < min

λ∈spec(D̃)
|Re(λ)| , or

(b) κ∞(S)2 ·
p∑

i,j=1
|Cov(M (i)

1 ,M
(j)
1 )| < min

λ∈spec(D̃)
|Re(λ)| ,

then (3.34) applies.

Proof. That E[U1] is diagonalizable and that S−1E[U1]S = Λ under the assumption of
pairwise distinct eigenvalues, is well-known, see e.g. Fact 5.16.4 in Bernstein [11]. Then

(S−1 ⊗ S−1)D̃(S ⊗ S) = (S−1 ⊗ S−1)(E[U1]⊗ I + I ⊗ E[U1])(S ⊗ S)
= S−1E[U1]S ⊗ S−1S + S−1S ⊗ S−1E[U1]S
= Λ⊗ I + I ⊗ Λ = Λ⊕ Λ ,

so that D̃ is diagonalizable and has only eigenvalues with strictly negative real parts.
Let r ∈ {1,∞}. By the Theorem of Bauer-Fike (e.g. Theorem 7.2.2 in Golub and van
Loan [42]) we have for µ being an eigenvalue of D = D̃ + B that min

λ∈spec(D̃) |λ − µ| ≤
κr(S ⊗ S) ‖B‖r. In particular, if

κr(S ⊗ S) ‖B‖r < min
λ∈spec(D̃)

|Re(λ)| ,

then D can only have eigenvalues with strictly negative real parts. Observe that by Fact
9.9.61 in Bernstein [11] it holds κr(S ⊗ S) = ‖S ⊗ S‖r ‖S−1 ⊗ S−1‖r = ‖S‖2

r ‖S−1‖2
r =

κr(S)2 so that the statement follows.
Remark 3.20. (a) Proposition 3.19 can also be formulated for other natural matrix norms
corresponding to the r-norms with r ∈ [1,∞], i.e.

‖A‖r = sup
x 6=0

‖Ax‖r
‖x‖r

.

(b) For r =∞ observe that Theorem 1 in Gautschi [38] gives estimates for the condition
number κ∞(S) when S has the form as in Proposition 3.19 which then gives practicable
conditions for (3.34) to hold.
(c) Both Proposition 3.18 and 3.19 state that, if a strictly stationary CARMA process
with finite second moments and matrix A whose eigenvalues have only strictly negative
real parts is given, then an RC-CARMA process with E[U1] = A can be chosen to be
strictly stationary with finite second moments, provided the variances of the M (i) are
sufficiently small. In other words, the CARMA matrix may be slightly perturbed and still
give a strictly stationary RC-CARMA process with finite second moments.
Example 3.21. Consider an RC-CARMA(2, 1) process under the assumption of Proposi-
tion 3.19. Denote with λ1 6= λ2 the eigenvalues of E[U1] with strictly negative real parts. If

κ · max
i,j=1,2

|Cov(M (i)
1 ,M

(j)
1 )| < min

λ∈spec(D̃)
|Re(λ)| ,

55



3 Continuous time autoregressive moving average processes with Lévy coefficients

where

κ =
(

(1 + max{|λ1|, |λ2|}) ·max{2, |λ1|+ |λ2|}
|λ2 − λ1|

)2

,

then D̃ +B has only eigenvalues with strictly negative real parts.

Proof. Since E[U1] is a companion matrix, we have

S =
[

1 1
λ1 λ2

]
and S−1 =

[
λ2

λ2−λ1
− 1
λ2−λ1

− λ1
λ2−λ1

1
λ2−λ1

]
.

Hence, straightforward calculations yield

κ1(S) = (1 + max{|λ1|, |λ2|}) ·max{2, |λ1|+ |λ2|}
|λ2 − λ1|

.

Observe that κ∞(S) = κ1(S) such that Proposition 3.19 (b) gives a weaker sufficient con-
dition.

Let X = (Xt)t∈R be a weakly stationary real-valued stochastic process with E|Xt|2 < ∞
for each t ∈ R, then the autocovariance function of X with lag h is defined by

γX(h) := Cov(Xt+h, Xt) = E[(Xt+h − E[Xt+h])(Xt − E[Xt])] , h ∈ R .

and the autocorrelation function of X is

ρX(h) := γX(h)
γX(0) = Corr(Xt+h, Xt) , h ∈ R .

If γX : R → R is the autocovariance function of such a process X = (Xt)t∈R with∫
R |γX(h)| dh <∞, then its Fourier transform

fX(ω) := 1
2π

∫ ∞
−∞

e−iωhγX(h) dh , ω ∈ R ,

is called the spectral density if the integral exists.
It is well-known (e.g. Brockwell [21]) that the spectral density of a CARMA(p,q)-process
S = (St)t≥0 of order q < p is given by

fS(ω) = σ2

2π
|b(iω)|2
|a(iω)|2 , ω ∈ R ,

with σ2 being the variance of the driving Lévy process. Under the stated conditions of
Theorem 3.17 we see that the spectral density of an RC-CARMA(p,q) process R = (Rt)t≥0
with parameters C and b is given by

fR(ω) = fS(ω)%RC , ω ∈ R ,

where fS(ω) denotes the spectral density of the associated CARMA process with the
matrix A = E[U1] as in Theorem 3.17 and the constant %RC is as in (3.37).
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3.3 Existence of moments and second order properties

Remark 3.22. It is well-known that if S = (St)t∈R is a weakly stationary CARMA(p, q)
process, then the equidistantly sampled process S∆ = (Sn∆)n∈N0, for some ∆ > 0, is a
weak ARMA(p, q′) process for some q′ < p, see e.g. Section 3 in Brockwell [24].

Since under the conditions of Theorem 3.17 the autocovariance function of an RC-
CARMA(p, q) process R = (Rt)t≥0 differs from that of the associated CARMA(p, q) pro-
cess only by a multiplicative constant, it follows immediately that also R∆ = (R∆n)n∈N0 is
a weakly stationary ARMA(p, q′) process for some q′ < p.

Next, we evaluate exemplarily the covariance structure of an RC-CARMA(2, 1) process
under the assumption E[L1] = 0.

Example 3.23. (Covariance of RC-CARMA(2,1))
Let R = (Rt)t≥0 be an RC-CARMA(2, 1) process with parameters C = (Ct)t≥0 =
(M (1)

t ,M
(2)
t , Lt)t≥0, b and strictly stationary state vector process V = (Vt)t≥0. Let V0

be independent of C and C a semimartingale with respect to the given filtration F. As-
sume that E[L1] = 0, that (3.31) holds for κ = 2, and denote with S = (St)t≥0 the
associated CARMA process characterized by Theorem 3.17. Then, for all t ≥ 0,

Cov(Rt+h, Rt) = Cov(St+h, St)%RC = b′ehE[U1]

 b0
E[M(2)

1 ]
b1

 E[L2
1]

2E[M (1)
1 ]

%RC ∀h ≥ 0 , (3.40)

where

%RC = 2E[M (1)
1 ]E[M (2)

1 ]
(2E[M (1)

1 ]−Var[M (1)
1 ])E[M (2)

1 ]−Var[M (2)
1 ]

.

Proof. Under the assumptions made, an application of Theorem 3.17 yields an associated
CARMA process S and the first equality in (3.40). Clearly,

E[U1] =
[

0 1
−E[M (2)

1 ] −E[M (1)
1 ]

]
,

and the general form of Cov(Rt+h, Rt) is obtained from Proposition 3.15, i.e.

Cov(Rt+h, Rt) = b′ehE[U1] vec−1(−D−1e4) E(L2
1)b . (3.41)

Easy calculations show that

D =
0 1 1 0

−E[M (2)
1 ] −E[M (1)

1 ] 0 1
−E[M (2)

1 ] 0 −E[M (1)
1 ] 1

Var[M (2)
1 ] Cov[M (2)

1 ,M
(1)
1 ]−E[M (2)

1 ] Cov[M (2)
1 ,M

(1)
1 ]−E[M (2)

1 ] Var[M (1)
1 ]− 2E[M (1)

1 ]

 .
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3 Continuous time autoregressive moving average processes with Lévy coefficients

Let
% = 1

(2E[M (1)
1 ]−Var[M (1)

1 ])E[M (2)
1 ]−Var[M (2)

1 ]
,

and denote y =
[
−% 0 0 −%E[M (2)

1 ]
]′
. Then Dy = e4 such that

vec−1(−D−1e4) = vec−1

−


−%
0
0

−%E[M (2)
1 ]


 =

[
1 0
0 E[M (2)

1 ]

]
% .

Summarizing,

vec−1(−D−1e4)b =
 1

E[M(2)
1 ]

0
0 1

 [b0
b1

]
2E[M (1)

1 ]E[M (2)
1 ]

2E[M (1)
1 ]

% =
 b0

E[M(2)
1 ]
b1

 1
2E[M (1)

1 ]
%RC

and with (3.41), we get the stated shape of (3.40).

Observe that for M (1) and M (2) being deterministic, %RC = 1, hence dividing (3.40) by
%RC gives the autocovariance function of a CARMA(2, 1) process.

Example 3.24. (Covariance of RC-CARMA(3,2))
Let R = (Rt)t≥0 be an RC-CARMA(3, 2) process with parameters C = (Ct)t≥0, b and
strictly stationary state vector process V = (Vt)t≥0. Let V0 be independent of C and C a
semimartingale with respect to the given filtration F. Assume that E[L1] = 0 and (3.31)
hold for κ = 2. Then, for all t, h ≥ 0,

Cov(Rt+h, Rt) = b′ehE[U1]


E[M(1)

1 ]
E[M(2)

1 ]
b0 − b2

b1

E[M (2)
1 ]b2 − b0

 E[L2
1]

2(E[M (1)
1 ]E[M (2)

1 ]− E[M (3)
1 ])

· %RC ,

where

%RC = 2(E[M (1)
1 ]E[M (2)

1 ]− E[M (3)
1 ])

ξ + 2(Cov(M (3)
1 ,M

(1)
1 )− E[M (3)

1 ])− E[M(1)
1 ]

E[M(3)
1 ]

Var[M (3)
1 ]

with ξ = (2E[M (1)
1 ]−Var[M (1)

1 ])E[M (2)
1 ]−Var[M (2)

1 ].

The proof follows by similar calculations as in Example 3.23.
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3.4 Simulations

3.4 Simulations

We compare in this section two simulations of an RC-CARMA(2, 1) process, one when
E[U1] has only real strictly negative eigenvalues and the other when E[U1] has complex
eigenvalues with strictly negative real parts.
For our simulations we have chosen as random coefficient processes M (1), M (2) two inde-
pendent compound poisson processes, i.e. with depiction

M
(1)
t =

N
(1)
t∑
i=1

X
(1)
i and M

(2)
t =

N
(2)
t∑
i=1

X
(2)
i , t ≥ 0 .

In the case of real eigenvalues we have chosen E[N (1)
1 ] = 1.5, E[N (2)

1 ] = 2, X(1)
i ∼

N (1, 0.32), and X(2)
i ∼ N (0.25, 0.22), and as driving process a standard Brownian motion

B = (Bt)t≥0. Hence, for D̃ = E[U1]⊕E[U1] and D = D̃+ E[U1 ⊗U1]−E[U1]⊗E[U1] we
have

E[U1] =
[

0 1
−1/2 −3/2

]
, D̃ =


0 1 1 0
−1/2 −3/2 0 1
−1/2 0 −3/2 1

0 −1/2 −1/2 −3

 , and

D =


0 1 1 0
−1/2 −3/2 0 1
−1/2 0 −3/2 1
0.205 −1/2 −1/2 −1.365

 .
Hence, we have for E[U1] the eigenvalues µ1 = −1/2 and µ2 = −1, and for D the
eigenvalues λ1 ≈ −0.29, λ2 ≈ −1.29 + 1.28i, λ3 = −1.29 − 1.28i, and λ4 = −1.5. Since
all eigenvalues of D have strictly negative real parts, we obtain the existence of a strictly
stationary solution by Remark 3.14 and Remark 3.16.
Nevertheless, observe that

Var(M (1)
1 ) + Var(M (2)

1 ) = 1.84 6< 1
4σmin(D̃ ⊕ D̃)2 ≈ 0.0799

showing that the condition in Proposition 3.18 is not necessary. Moreover,

κ =
(

(1 + max{|λ1|, |λ2|}) ·max{2, |λ1|+ |λ2|}
|λ2 − λ1|

)2

= 25

so that
κ ·max

i=1,2
|Var(M (i)

1 )| = 40.875 6< min
λ∈spec(D̃)

|Re(λ)| = 1 ,

showing that also the condition in Example 3.23 and hence in Proposition 3.19 is not
necessary.
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3 Continuous time autoregressive moving average processes with Lévy coefficients
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(a) Simulation with eigenvalues of E [U1] chosen to
be µ1 = − 1

2 and µ2 = −1.
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(b) ACVFs with eigenvalues of E [U1] chosen to be
µ1 = − 1

2 and µ2 = −1.
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(c) Simulation with eigenvalues of E [U1] chosen to
be µ̃1 ≈ −0.5 + 1.66i and µ̃2 = −0.5− 1.66i.
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(d) ACVFs with eigenvalues of E [U1] chosen to be
µ̃1 ≈ −0.5 + 1.66i and µ̃2 = −0.5− 1.66i.

Figure 3.1: Simulated RC-CARMA(2,1) process and ACVFs.

In case of complex eigenvalues we have chosen E[N (1)
1 ] = 2, E[N (2)

1 ] = 7.5,
X

(1)
i ∼ N (0.5, 0.12), and X

(2)
i ∼ N (0.4, 0.052), and have left the driving process un-

changed. Then

E[U1] =
[

0 1
−3 −1

]

gives two complex-valued eigenvalues µ̃1 ≈ −0.5 + 1.66i and µ̃2 = −0.5− 1.66i. Also, D
has just eigenvalues with strictly negative real parts. Furthermore, an observation similar
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3.4 Simulations

to the one above showing non-necessity of the conditions in Proposition 3.18 and 3.19 can
be made.

For both the complex and the real eigenvalues case, we have simulated 10, 000, 000 obser-
vations with a mesh size k = 0.01, i.e. R0.01, R0.02, . . . , R100,000. In Figure 1 (a), (c) we see
the corresponding plots until time 300. Plots 3.1(b) and 3.1(d) show the corresponding
autocovariance functions (ACVF).

The solid line corresponds to the model autocovariance function, the dashed one to the
sampled ACVF based on the data R0.01, . . . , R100,000, and the dotted shows the model
ACVF of the corresponding CARMA(2, 1) process. The dashed-dotted line shows the
sample ACVF based on R0.01, . . . , R100.

We see that using 10, 000, 000 observations to calculate the sample autocovariance func-
tion, it nearly agrees in both cases with the model autocovariance function. Plot 3.1(d)
shows a sinusoidal oscillation which is also in the CARMA case characteristic for allowing
complex eigenvalues and visualizes the variety of possible autocovariance functions.
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(a) Simulation of RC-CARMA(2, 1) with eigenval-
ues of E [U1] chosen to be µ1 = − 1

2 and µ2 = −1.
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(b) Simulation of associated CARMA(2, 1) with
A = E [U1].

Figure 3.2: Simulated RC-CARMA(2,1) and CARMA(2,1) processes.

The first plot in Figure 3.2 shows all simulated observations of the RC-CARMA(2, 1) pro-
cess where E[U1] has real eigenvalues. The second plot shows an equally sized simulation
of the associated CARMA(2, 1) process, i.e. with the choice A = E[U1]. It can be seen
that the RC-CARMA(2, 1) process provides larger outliers around the between −5 and
5 concentrated band than the CARMA(2, 1) process around its band. This may indicate
possible heavy tails of RC-CARMA processes.

We justify these observations intuitively in the following remark recalling results on ran-
dom recurrence equations.
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3 Continuous time autoregressive moving average processes with Lévy coefficients

Remark 3.25. Observe that a stationary CARMA process driven by a Brownian motion
has a normal marginal stationary distribution, in particular, it has light tails.
On the other hand, as a consequence of results of Kesten [47] and Goldie [40], it is known
that a generalized Ornstein-Uhlenbeck process and so an RC-CARMA(1, 0) process will
have Pareto tails under wide conditions, even if the driving process is a Brownian motion,
see e.g. Lindner and Maller [51] (Theorem 4.5) or Behme [7] (Theorem 4.1).
We henceforth expect using the multivariate results of Kesten [47] that under wide condi-
tions the RC-CARMA process will also have Pareto tails for higher orders. However, we
leave a thorough investigation of this for forthcoming research.
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4 Lévy driven moving average process
sampled at a renewal sequence

This chapter is an extension of the submitted article by Brandes and Curato [15] “On
the sample autocovariance of a Lévy driven moving average process when sampled at
a renewal sequence”. Time series models cover a wide field of applications in finance,
insurance, and meteorology. In particular, moving average processes became a standard
tool as many time series provide a moving average representation. Nowadays, it is often
preferred to use continuous time models over discrete one not only for theoretical reasons,
but also, for example, due to their applicability to high-frequency data.
In this chapter we analyze the distributional limit of sample mean and sample autoco-
variance function of a Lévy driven continuous time moving average process when sampled
at a renewal sequence. More in general, let X = (Xt)t∈R be a continuous time moving
average process of the form

Xt = µ+
∫
R
f(t− s) dLs , t ∈ R , (4.1)

where L = (Lt)t∈R is a two-sided R-valued Lévy process, i.e. a stochastic process with
independent and stationary increments, càdlàg sample paths and L0 = 0 almost surely,
which is continuous in probability, µ ∈ R, and f : R→ R a deterministic function, called
kernel, for which the integral exists. We call processes of the form (4.1) a continuous time
moving average process with mean µ and kernel function f driven by L.
The process X is infinitely divisible, as seen in Rajput and Rosinski [59], and strictly
stationary meaning that its finite dimensional joint distributions are shift-invariant, i.e.
for all n ∈ N and all t1, . . . , tn ∈ R it holds

L(Xt1+h, . . . , Xtn+h) = L(Xt1 , . . . , Xtn) ∀h ∈ R .

A popular example of a Lévy driven moving average process is given by the Ornstein-
Uhlenbeck (OU) process used to model the volatility of a financial asset, see [1], or the
intermittency in a turbulence flow, see [2]. The OU process is in fact a tractable mathe-
matical model that can adequately describe the price of an asset as well as the volatility
fluctuations on different time scales.
Continuous time moving average processes as in (4.1) are the natural continuous time
analogue of discrete time moving average processes

X̃t = µ+
∑
k∈Z

ψkZt−k , t ∈ Z ,
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4 Lévy driven moving average process sampled at a renewal sequence

where (ψk)k∈Z is a square summable sequence of real coefficients, and (Zt)t∈Z an inde-
pendent and identically distributed (i.i.d.) sequence with zero mean and finite second
moment. These processes and the asymptotic behavior of their sample mean and their
sample autocorrelation function have been widely studied (cf. Theorem 1.32, Theorem
1.33, Brockwell and Davis [23], Davis and Mikosch [32], and Hannan [43]).
We study a renewal sampling of the process X in (4.1). We select a sequence of increasing
random times (Tn)n∈Z such that Tn → ∞ almost surely. More in detail, we assume that
W = (Wn)n∈Z\{0} is an i.i.d. sequence of positive supported random variables independent
of the driving Lévy process L and such that P (W1 > 0) > 0. We then define (Tn)n∈Z by

T0 := 0 and Tn :=


∑n
i=1Wi , n ∈ N ,
−∑−1

i=nWi , −n ∈ N ,
(4.2)

and the sampled process Y = (Yn)n∈Z via

Yn := XTn , n ∈ Z . (4.3)

We are interested in studying the sample moments of the process Y . We do this for
different reasons. First of all, continuous processes are often used in time series analysis
because they can be sampled at non-equidistant points in time and therefore provide a
model for non-equidistant data which are often available for statistical inference.
Secondly, results for non-equidistant sampling schemes have not yet been shown. But
when X in (4.1) is observed on a lattice {∆t : t = 0, 1, 2, . . . }, the asymptotic behavior
of the sample mean and the sample autocorrelation has been studied in various cases.
In particular, Cohen and Lindner [31] proved asymptotic normality of the sample mean
and the sample autocorrelation under E(L2

1) < ∞ and f ∈ L2(R), and E(L4
1) < ∞ and

f ∈ L4(R) plus some extra assumptions, respectively, cf. also Theorem 1.34 and 1.35.
Spangenberg [62] showed in the long memory case under the assumption of E(L4

1) < ∞
for f(t) ∼ Cdt

d−1 for d ∈ (0, 1) and some constant Cd a central limit theorem where the
limit distribution is Rosenblatt, and in the case of a slowly varying Lévy process with
index α ∈ (2, 4) that the limit distribution is either Rosenblatt or a stable distribution,
depending on the interplay of d and α. Drapatz [34] proved that the sample autocovariance
is asymptotically stable distributed when the Lévy process has infinite variance with
regularly varying tails with index α ∈ (0, 2).
The central limit theorems presented here generalize the results of Theorem 1.34 and 1.35
at the costs of slightly more restrictive moment conditions. We compare throughout this
chapter our results with the ones of Theorem 1.34 and 1.35.
Moreover, we present a parameter estimation of the mean reverting parameter of a Lévy
driven OU process

Xt =
∫ t

−∞
e−a(t−s) dLs , t ∈ R , (4.4)
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4.1 Preliminaries

sampled at a Poisson rate, i.e. a sequence (Tn)n∈Z where W is a sequence of i.i.d. expo-
nentially distributed random variables. We then compare the efficiency of our estimator
with an estimator based on the results of Theorem 1.35 for an equidistant sampling.
This chapter is structured as follows. In Section 4.1 we give some preliminary results
regarding strict stationarity of a process sampled at a renewal sequence and the mixing
property that it fulfills. Section 4.2 is concerned with establishing a central limit theorem
for the sample mean of a randomly sampled continuous time moving average process as
is Section 4.3 for the sample autocovariance and sample autocorrelation function. Finally
in Section 4.4, we show the parameter estimation of a Lévy driven OU process.

4.1 Preliminaries

In this section, we provide some results on properties of continuous time moving average
processes and their renewal sampled processes used in the upcoming sections. These
results are set in a slightly more general framework than needed.
As a first result we prove that a strictly stationary process sampled at a renewal sequence
inherits the strict stationarity. In particular, this shows that the sampled process (4.3) is
strictly stationary.

Denote with d= equality in distribution and with A′ the transpose of a matrix A ∈ Rd×m.
Proposition 4.1. Let X = (Xt)t∈R be an Rd-valued strictly stationary process Xt =
(X(1)

t , . . . , X
(d)
t )′, (Wn)n∈Z\{0} an i.i.d. sequence supported on [0,∞) independent of X.

Define for n ∈ Z a sequence of random times via (4.2). Then the Rd-valued process
Y = (Yn)n∈Z defined by Y (i)

n := X
(i)
Tn , i = 1, . . . , d, is strictly stationary. More generally,

the process (Yn, Tn − Tn−1)n∈Z is strictly stationary.

Proof. Observe that (Yn, Tn − Tn−1)n∈Z is strictly stationary if and only if (Yn, Tn+1 −
Tn)n∈Z is strictly stationary, and the latter implies strict stationarity of Y . Hence, it
suffices to show that (Yn, Tn+1 − Tn)n∈Z is strictly stationary. For that, let m ≤ n,
B ∈ B(R(d+1)(n−m+1)), the Borel-σ-algebra on R(d+1)(n−m+1), and denote the distribution
of the random vector Z by PZ . Define

Rk := Tk+m − Tm , k = 1, . . . , n−m+ 1 .

Conditioning and using the strict stationarity of X, we obtain

P ((Y ′m, . . . , Y ′n, Tm+1 − Tm, . . . , Tn+1 − Tn)′ ∈ B)
= P ((X ′Tm , . . . , X

′
Tn , R1, R2 −R1, . . . , Rn−m+1 −Rn−m)′ ∈ B)

= P ((X ′Tm , X
′
Tm+R1 , . . . , X

′
Tm+Rn−m , R1, R2 −R1, . . . , Rn−m+1 −Rn−m)′ ∈ B)

=
∫
Rn−m+2

P ((X ′u, X ′u+v1 , . . . , X
′
u+vn−m , v1, v2 − v1, . . . , vn−m+1 − vn−m)′ ∈ B)
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4 Lévy driven moving average process sampled at a renewal sequence

P(Tm,R1,...,Rn−m+1)( d(u, v1, . . . , vn−m+1))

=
∫
Rn−m+2

P ((X ′0, X ′v1 , . . . , X
′
vn−m , v1, v2 − v1, . . . , vn−m+1 − vn−m)′ ∈ B)

P(Tm,R1,...,Rn−m+1)( d(u, v1, . . . , vn−m+1))

=
∫
Rn−m+1

P ((X ′0, X ′v1 , . . . , X
′
vn−m , v1, v2 − v1, . . . , vn−m+1 − vn−m)′ ∈ B)

P(R1,...,Rn−m+1)( d(v1, . . . , vn−m+1)) ,

where in the last line we used that the integrand does not depend on u. Using that
(R1, . . . , Rn−m+1)′ d= (T1, . . . , Tn−m+1)′, the latter is equal to

=
∫
Rn−m

P ((X ′0, X ′v1 , . . . , X
′
vn−m , v1, v2 − v1, . . . , vn−m+1 − vn−m)′ ∈ B)

P(T1,...,Tn−m+1)( d(v1, . . . , vn−m+1))
= P ((Y ′0 , . . . , Y ′n−m, T1, T2 − T1, . . . , Tn−m+1 − Tn−m)′ ∈ B) ,

by the same calculation as above, showing the strict stationarity of (Yn, Tn+1−Tn)n∈Z.

In order to prove central limit theorems, we recall the concept of mixing which was given
in Definition 1.7: On a probability space (Ω,F , P ) for any two σ-algebras A, C ⊂ F the
following measures of dependence can be defined

α(A, C, P ) := sup |P (A ∩ C)− P (A)P (C)| , A ∈ A , C ∈ C ,
ρ(A, C, P ) := sup |Corr(f, g)| , f ∈ L2(Ω,A, P ) , g ∈ L2(Ω, C, P ) .

We say that a strictly stationary sequence of random vectors Z = (Zn)n∈Z is

strongly mixing if αn := α(A, Cn;P )→ 0 as n→∞ ,

ρ-mixing if ρn := ρ(A, Cn;P )→ 0 as n→∞ ,

for the σ-algebra of the past A = σ(Z0, Z−1, Z−2, . . . ) and the σ-algebra of the future
Cn = σ(Zn, Zn+1, Zn+2, . . . ). For more information about mixing coefficients see also
Bradley [20].

Recall that a process X = (Xt)t∈R is called an m-dependent process when (Xt)t≤s and
(Xt)t>s+m are independent for each s.

Proposition 4.2. Let X = (Xt)t∈R be for some m ∈ N an Rd-valued m-dependent
strictly stationary process and Y = (Yn)n∈Z defined by Yn := XTn with (Tn)n∈Z as in
(4.2) for a positive supported sequence of i.i.d. random variables W = (Wn)n∈Z\{0} such
that P (W1 > 0) > 0 and W is independent of X. Then Y is strongly mixing with expo-
nentially decreasing mixing coefficients αn. More generally, (Yn, Tn−Tn−1)n∈Z is strongly
mixing with exponentially decreasing mixing coefficients.
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Proof. Let Zn = (Y ′n, Tn − Tn−1)′. Let Dn := {Tn > m} and n ≥ 1 so large such that
P (Dn) > 0. First, we show that the two σ-algebras A and Cn defined as above are
independent under the conditional probability measure P (·|Dn). Therefore, let A ∈ A
and Cj ∈ Cn be of the form A = {X ′Ti ∈ B , Ti − Ti−1 ∈ F} for some i ≤ 0, B ∈ B(Rd),
and F ∈ B(R), and Cj = {X ′Tj ∈ B

′ , Tj − Tj−1 ∈ F ′} for some j ≥ n, B′ ∈ B(Rd), and
F ′ ∈ B(R), respectively. Then, by the Doob-Dynkin lemma and the m-dependence of X,

P (A ∩ Cj|Dn) = 1
P (Dn)E(1A∩Cj1Dn) = 1

P (Dn)E(1DnE[1A∩Cj |σ(Tn)])

= 1
P (Dn)

∫
(m,∞)

E[1A∩Cj |Tn = t]PTn(dt)

= 1
P (Dn)

∫
(m,∞)

P (X ′Ti ∈ B, Ti − Ti−1 ∈ F,X ′Tj ∈ B
′, Tj − Tj−1 ∈ F ′|Tn = t)PTn(dt)

= 1
P (Dn)P (X ′Ti ∈ B, Ti − Ti−1 ∈ F )

∫
(m,∞)

P (X ′Tj ∈ B
′, Tj − Tj−1 ∈ F ′|Tn = t)PTn(dt)

= P (A|Dn) 1
P (Dn)

∫
(m,∞)

P (X ′Tj ∈ B
′, Tj − Tj−1 ∈ F ′|Tn = t)PTn(dt) .

Observe that P (A) = P (A|Dn) since X ′Ti for i ≤ 0 and Tn are independent. A calculation
like the one above for B = Rd, i.e. A = Ω, gives

P (Cj|Dn) = 1
P (Dn)

∫
(m,∞)

P (X ′Tj ∈ B
′, Tj − Tj−1 ∈ F ′|Tn = t)PTn(dt)

such that all together we obtain

P (A ∩ Cj|Dn) = P (A|Dn)P (Cj|Dn) for j ≥ n . (4.5)

Similarly we can obtain (4.5) forA′ = {X ′Ti1 ∈ B1, . . . , X
′
Tik
∈ Bk, Ti1−Ti1−1 ∈ F1, . . . , Tik−

Tik−1 ∈ Fk} for i1, . . . , ik ≤ 0, B1, . . . , Bk ∈ B(Rd), and F1, . . . , Fk ∈ B(R), and C ′n =
{X ′Tj1 ∈ B′1, . . . , X

′
Tjl
∈ B′l, Tj1 − Tj1−1 ∈ F ′1, . . . , Tjl − Tjl−1 ∈ F ′l } for j1, . . . , jl ≥ n,

B′1, . . . , B
′
l ∈ B(Rd), and F ′1, . . . F ′l ∈ B(R). Observe that sets of the form A′ generate the

σ-algebra A and sets of the form C ′n generate the σ-algebra Cn and both are ∩-stable.
Thus, we conclude that (4.5) is true for all A ∈ A and Cn ∈ Cn. Using measure theoretic
induction, and

CovP (·|Dn)(1A,1Cn) = P (A ∩ Cn|Dn)− P (A|Dn)P (Cn|Dn) = 0 ,

we obtain that ρ(A, Cn, P (·|Dn)) = sup |CorrP (·|Dn)(f, g)| = 0 where the supremum is
taken over all f ∈ L2(Ω,A, P (·|Dn)) and g ∈ L2(Ω, Cn, P (·|Dn)).
Since P (Dn) = 1 − P (Dc

n) and 0 = ρ(A, Cn;P (·|Dn)) ≤ P (Dc
n), it follows, from Remark

1.9 that
αn(A, Cn;P ) ≤ 4P (Dc

n) = 4P (Tn ≤ m) .
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4 Lévy driven moving average process sampled at a renewal sequence

Since (Wn)n∈Z\{0} is supported on [0,∞) and P (W1 > 0) > 0, there exists an r > 0 such
that P (W1 > r) > 0 and hence P (W1+· · ·+Wdm/re > m) > 0, where dxe for x ∈ R denotes
the smallest integer k ∈ N so that k ≥ x. Denote q := 1−P (W1 + · · ·+Wdm/re > m) < 1.
Then, as long as n ≤ dm/re, we obtain P (Tn ≤ m) ≤ q. For n > dm/re set kn = b n

dm/rec
for n ∈ N. Then, by the i.i.d. property of (Wn)n∈Z\{0},

P (Tn ≤ m) ≤P (W1 + · · ·+Wdm/re ≤ m,Wdm/re+1 + · · ·+W2dm/re ≤ m, . . . ,

W(kn−1)dm/re+1 + · · ·+Wkndm/re ≤ m,Wkndm/re+1 + · · ·+Wn ≤ m)
=P (W1 + · · ·+Wdm/re ≤ m)knP (Wkndm/re+1 + · · ·+Wn ≤ m)
≤ qkn ,

and

αn(A, Cn, P ) ≤ 4qkn → 0 as n→∞ (4.6)

showing that Z and hence Y are strongly mixing with exponentially decreasing mixing
coefficients.
We give some results leading to the characterization of finiteness of the moments of a
Lévy driven continuous time moving average process.
Recall that an R-valued Lévy processes L = (Lt)t≥R can be characterized by its charac-
teristic triplet (σ2

L, νL, γL) due to the Lévy-Khintchine formula, cf. Theorem 1.16, i.e. if µ
denotes the infinitely divisible distribution of L1, then its characteristic function is given
by

µ̂(z) = exp
[
iγLz −

1
2σ

2
Lz

2 +
∫
R
(eizx − 1− izx1{|x|≤1}) νL(dx)

]
, z ∈ R .

Here, σ2
L is the Gaussian covariance, νL a measure on R which satisfies νL({0}) = 0 and∫

R(|x|2 ∧ 1) νL(dx) < ∞, called the Lévy measure, and γL ∈ R. If
∫
|x|>1 |x|νL(dx) < ∞,

then E(L1) = γL +
∫
|x|>1 x νL(dx).

For a detailed account on Lévy processes we refer to the book of Sato [61].
The next lemma shows, for the continuous time moving average process X as defined
in (4.1), finiteness of the rth- and log-moments under certain similar conditions on the
driving Lévy process L and the kernel function f
In the following we use the notation log+(x) := log(max{1, x}).
Lemma 4.3. Let X = (Xt)t≥0 be defined by Xt := µ+

∫
R f(t− s) dLs , where f ∈ L2(R)

and L = (Lt)t≥0 is a one-dimensional Lévy process with mean zero.

(a) If f ∈ Lr(R) for some r > 2 and E|L1|r <∞, then E|Xt|r <∞ for all t ∈ R.

(b) If E(|L1|2 log+ |L1|) <∞, and∫
R
|f(s)|2 log+ |f(s)| ds <∞ ,
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then E(|Xt|2 log+ |Xt|) <∞ for all t ∈ R.

(c) If E(|L1|4(log+ |L1|)2) <∞, f ∈ L4(R), and∫
R
|f(s)|4(log+ |f(s)|)2 ds <∞ ,

then E(X4
t (log+ |Xt|)2) < ∞ for all t ∈ R and, for h ∈ N, E(|XtXt+h|2 log+ |XtXt+h|) <

∞ for all t ∈ R.

Proof. (a) It is enough to show that E|Z|r <∞, where

Z =
∫ ∞

0
f(s) dLs .

By the definition of a two-sided Lévy process, this can be easily extended to
∫
R f(s) dLs

which is equal in distribution to
∫
R f(−s) dLs = X0. Since X is strictly stationary, we

obtain the result.
Since f ∈ L2(R), f is locally L-integrable by Corollary 57.11 of Sato [61] and∫ ∞

0
f 2(s)σ2

L ds <∞ . (4.7)

Next, consider∫ ∞
0

∫
R
(|f(s)x|2 ∧ 1) νL(dx) ds ≤

∫ ∞
0

∫
R
|f(s)x|2 νL(dx) ds

≤
∫ ∞

0
|f(s)|2 ds

∫
R
|x|2νL(dx) <∞ (4.8)

since f ∈ L2(R) and E|L1|2 <∞.
Moreover, choose c(x) = 1{|x|≤1}(x) and observe that 0 = E(L1) = γL +

∫
{|x|>1} x νL(dx),

then ∫ ∞
0

∣∣∣∣∣f(s)γL +
∫
R
f(s)x(c(f(s)x)− c(x))νL(dx)

∣∣∣∣∣ ds
=
∫ ∞

0

∣∣∣∣∣f(s)γL +
∫
R
f(s)x1{|x|>1}(x)νL(dx)−

∫
R
f(s)x1{|x|>1}(x)νL(dx)

+
∫
R
f(s)x(c(f(s)x)− c(x))νL(dx)

∣∣∣∣∣ ds
=
∫ ∞

0

∣∣∣∣∣
∫
R
f(s)x(1{|f(s)x|≤1}(f(s)x)− 1)νL(dx)

∣∣∣∣∣ ds
=
∫ ∞

0

∣∣∣∣∣−
∫
R
f(s)x1{|f(s)x|>1}(f(s)x)νL(dx)

∣∣∣∣∣ ds
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4 Lévy driven moving average process sampled at a renewal sequence

≤
∫ ∞

0

∫
R
|f(s)x|21{|f(s)x|>1}(f(s)x)νL(dx) ds

≤
∫ ∞

0

∫
R
|f(s)x|2νL(dx) ds <∞ , (4.9)

by (4.8). Then (4.7), (4.8), and (4.9) together with Proposition 57.16 of Sato [61] give
that Z =

∫∞
0 f(s) dLs is definable, and Proposition 57.13 (ii) of Sato [61] yields its infinite

divisibility, and its Lévy measure is given by

νZ(C) =
∫ ∞

0

∫
R

1C(f(s)x) νL(dx) ds , C ∈ B(R \ {0}) .

By Corollary 25.8 of Sato [61], Z then has finite rth-moment, if
∫
|x|>1 |x|r νZ(dx) <∞. To

see that this is indeed true, consider∫
|x|>1
|x|r νZ(dx) =

∫ ∞
0

∫
R
|f(s)x|r1(1,∞)(|f(s)x|) νL(dx) ds

≤
∫ ∞

0
|f(s)|r ds

∫
R
|x|rνL(dx) <∞

since f ∈ Lr(R), E|L1|r <∞, and, since r > 2,∫
|x|≤1
|x|r νL(dx) ≤

∫
R
(|x|2 ∧ 1) νL(dx) <∞ , (4.10)

by the properties of the Lévy measure νL.
(b) Observe that log+ |ab| ≤ log+ |a|+ log+ |b| for a, b ∈ R. Hence,∫

|x|>1
|x|2 log+ |x| νZ(dx) =

∫ ∞
0

∫
R
|f(s)x|2 log+ |f(s)x| νL(dx) ds

≤
∫ ∞

0

∫
R
|f(s)x|2(log+ |f(s)|+ log+ |x|) νL(dx) ds

≤
∫ ∞

0
|f(s)|2 log+ |f(s)| ds

∫
R
|x|2 νL(dx)

+
∫ ∞

0
|f(s)|2 ds

∫
R
|x|2 log+ |x| νL(dx) <∞

since E|L1|2 < ∞,
∫∞

0 |f(s)|2 log+ |f(s)| ds < ∞,
∫
R x

2 log+ |x| νL(dx) < ∞, and f ∈
L2(R), by assumption.
(c) Observe that E(|L1|4(log+ |L1|)2) <∞ is equivalent to

∫
|x|>1 |x|4(log+ |x|)2 νL(dx) <∞

and that, by Proposition 25.4 and Theorem 25.3 of Sato [61], E(|L1|4(log+ |L1|)2) < ∞
implies E|L1|4 <∞, since, for |x| > 1,

|x|4 ≤

|x|4(log+ |x|)2 , if log+ |x| > 1 ,
e4 , if log+ |x| ≤ 1 ,
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such that ∫
|x|>1
|x|4νL(dx) ≤

∫
|x|>1
|x|4(log+ |x|)2νL(dx) + e4

∫
|x|>1

νL(dx) <∞ .

For |x| ≤ 1, (4.10) implies
∫
|x|≤1 |x|4νL(dx) <∞. Henceforth we obtain∫

|x|>1
|x|4(log+ |x|)2 νZ(dx) =

∫ ∞
0

∫
R
|f(s)x|4(log+ |f(s)x|)2 νL(dx) ds

≤ 2
∫ ∞

0

∫
R
|f(s)x|4((log+ |f(s)|)2 + (log+ |x|)2) νL(dx) ds

≤
∫ ∞

0
|f(s)|4(log+ |f(s)|)2 ds

∫
R
|x|4 νL(dx)

+
∫ ∞

0
|f(s)|4 ds

∫
R
|x|4(log+ |x|)2 νL(dx) <∞

since E|L1|4 < ∞,
∫∞
0 |f(s)|4(log+ |f(s)|)2 ds < ∞,

∫
R |x|4(log+ |x|)2 νL(dx) < ∞, and

f ∈ L4(R), by assumption, and νL is a Lévy measure. This gives E(|Xt|4(log+ |Xt|)2) <∞
for all t ∈ R. Using the strict stationarity of X and the Cauchy-Schwarz inequality gives

E(|XtXt+h|2 log+ |XtXt+h|) ≤ E(|X0Xh|2 log+ |X0|) + E(|X0Xh|2 log+ |Xh|)
≤ 2E(|X0|4(log+ |X0|)2)E|X0|4 <∞

which gives the result.
Remark 4.4. Throughout this chapter, we assume that the Lévy process L = (Lt)t∈R
has expectation zero. This assumption can be dropped in many cases. For example, if
f ∈ L1(R) ∩ L2(R), we define with L′t = Lt − tE(L1), t ∈ R, another Lévy process with
mean zero and the same variance such that

Xt = µ+ E(L1)
∫
R
f(s) ds+

∫
R
f(t− s) dL′s , t ∈ R ,

and Xt has mean µ+ E(L1)
∫
R f(s) ds.

4.2 Sample Mean

The objective of this section is to show the asymptotic normality of the sample mean

Y n :=
n∑
k=1

Yk =
n∑
k=1

XTk , n ∈ N , (4.11)

where X = (Xt)t∈R and Y = (Yn)n∈Z are given in (4.1) and (4.3), respectively.
To do so, we consider a certain truncated continuous time moving average process. There-
fore, let fm : R→ R, s 7→ f(s)1[−m/2,m/2] be a kernel function with compact support, and
X(m) = (X(m)

t )t∈R be defined by

X
(m)
t := µ+

∫
R
fm(t− s) dLs = µ+

∫
R
f(t− s)1[−m/2,m/2](t− s) dLs , t ∈ R , (4.12)
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4 Lévy driven moving average process sampled at a renewal sequence

where L = (Lt)t∈R is a Lévy process with zero mean and E|L1|2 < ∞, µ ∈ R, and
f ∈ L2(R). Then the process X(m) = (X(m)

t )t∈R is an m-dependent process. Moreover,
X(m) is strictly stationary and, by Proposition 4.1, so is the sequence Y (m) = (Y (m)

n )n∈Z
defined by

Y (m)
n := X

(m)
Tn , (4.13)

where (Tn)n∈Z is defined as in (4.2) independent of X.
The next proposition gives a result on the asymptotic behavior of the sample mean of Y (m),
i.e. Y (m)

n := 1
n

∑n
k=1 Y

(m)
k , as n→∞. We denote with d−→ convergence in distribution.

Proposition 4.5. Let X(m)
t be defined as in (4.12), where L = (Lt)t∈R is a Lévy process

with E(L1) = 0. Assume that E(|L1|2 log+ |L1|) <∞, f ∈ L2(R), and∫
R
|f(s)|2 log+ |f(s)| ds <∞ .

Let (Tn)n∈Z be as in (4.2) independent of L, and define Y (m) = (Y (m)
n )n∈Z by (4.13). Then,

for Y (m)
n = 1

n

∑n
k=1 Y

(m)
k , we have

(a) σ2
Y

(m) :=
∑
k∈Z

Cov(Y (m)
0 , Y

(m)
k ) exists in [0,∞) and is absolutely convergent.

(b)
√
n
(
Y

(m)
n − µ

)
d−→ N(0, σ2

Y
(m)) as n→∞.

Proof. The assumptions on L and f imply, by Lemma 4.3 (b), E(|Y (m)
0 |2 log+ |Y (m)

0 |) =
E(|X(m)

0 |2 log+ |X(m)
0 |) < ∞, since Y

(m)
0 = X

(m)
0 . Further, define X̃

(m)
t = X

(m)
t − µ

such that with Ỹ (m)
n = Y (m)

n − µ due to the strict stationarity of (Y (m)
n )n∈Z and since

Y
(m)

0 = X
(m)
0 , we obtain a sequence with expectation zero. Hence, w.l.o.g. µ = 0.

Observe that (Y (m)
n )n∈Z fulfills the assumptions of Proposition 4.2 and is therefore strongly

mixing with exponentially decreasing mixing coefficient αY (m)
n . Hence, due to (4.6),

αY
(m)

n = O(ekn log q) as n → ∞. This shows that the assumptions of Theorem 1.11 hold
and (a) and (b) follow immediately from this.

The following proposition states a result on the convergence of the covariances of Y (m)

towards the ones of Y . By Proposition 4.1, the process Y is strictly stationary.
Proposition 4.6. Let X be defined by (4.1), X(m) by (4.12), the processes Y and Y (m)

by (4.3) and (4.13), respectively, with (Tn)n∈Z as in (4.2) and assume that µ = 0. Then

E(|YkYl − Y (m)
k Y

(m)
l |)→ 0 as m→∞ for k, l ∈ Z . (4.14)

Further, it holds

E(YkYl) = E(L2
1)
∫
R

E(f(u)f(T|l−k| + u)) du for k, l ∈ Z , (4.15)

and similar for E(Y (m)
k Y

(m)
l ) with f replaced by fm = f1[−m/2,m/2].
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Proof. Let Tk be a random time taken from the sequence (Tn)n∈Z. Let fm : [−m/2,m/2]→
R be defined by fm(u) := f(u)1[−m/2,m/2](u). Clearly |fm(u)| ≤ |f(u)| for all u ∈ R.
We denote with σ(T ) the σ-algebra generated by some random variable T . Then, by
conditioning on Tk, the Itô Isometry, and Fubini’s theorem,

E|Y (m)
k |2 = E

∣∣∣∣∫
R
fm(Tk − u) dLu

∣∣∣∣2 = E
[
E
((∫

R
fm(Tk − u) dLu

)2∣∣∣∣∣σ(Tk)
)]

=
∫
R

E
((∫

R
fm(t− u) dLu

)2∣∣∣∣∣Tk = t

)
PTk(dt)

=
∫
R

E(L2
1)
∫
R
(fm(t− u))2 duPTk(dt) ≤ E(L2

1)
∫
R
f(u)2 du <∞ . (4.16)

Further, observe that

E|Yk − Y (m)
k |2 = E

∣∣∣∣∫
R
f(Tk − u) dLu −

∫
R
f(Tk − u)1[−m/2,m/2](Tk − u) dLu

∣∣∣∣2
= E

∣∣∣∣∣
∫
R\[Tk−m/2,Tk+m/2]

f(Tk − u) dLu
∣∣∣∣∣
2

= E

E

(∫
R\[Tk−m/2,Tk+m/2]

f(Tk − u) dLu
)2
∣∣∣∣∣∣σ(Tk)

 =: E(I) . (4.17)

By the Doob-Dynkin Lemma there exists a measurable function ϕ(m) : [0,∞) → R such
that ϕ(m) ◦ Tk = I. Define

ϕ(m)(t) := E

(∫
R\[t−m/2,t+m/2]

f(Tk − u) dLu
)2
∣∣∣∣∣∣Tk = t

 ,

then obviously ϕ(m) ◦ Tk = I. But, since L is independent of (Tn)n∈Z, it holds

ϕ(m)(t) = E

(∫
R\[t−m/2,t+m/2]

f(t− u) dLu
)2


= E(L2
1)
∫
R\[t−m/2,t+m/2]

f(t− u)2 du→ 0 as m→∞ ,

since f ∈ L2(R). Hence ϕ(m)(Tk(ω))→ 0 as m→∞ for all k ∈ Z and all ω ∈ Ω.
Define

ϕ(t) := E
((∫

R
f(t− u) dLu

)2
)

= E(L2
1)
∫
R
f(t− u)2 du .

Then E(ϕ ◦ Tk) = E(Y 2
k ) < ∞ such that, since |ϕ(m) ◦ Tk| ≤ |ϕ ◦ Tk|, we obtain by the

dominated convergence theorem for (4.17)

E|Yk − Y (m)
k |2 = E(I) = E(ϕ(m) ◦ Tk)→ 0 as m→∞ . (4.18)
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4 Lévy driven moving average process sampled at a renewal sequence

Henceforth, by (4.16), (4.18), and the Cauchy-Schwarz inequality,

E|YkYl − Y (m)
k Y

(m)
l | = E|YkYl − Y (m)

k Y
(m)
l + Y

(m)
k Yl − Y (m)

k Yl|
≤ E(|Y (m)

k ||Yl − Y (m)
l |) + E(|Yl||Yk − Y (m)

k |)

≤
√

E|Y (m)
k |2

√
E|Yl − Y (m)

l |2 +
√

E|Yl|2
√

E|Yk − Y (m)
k |2 → 0

for m→∞, i.e. (4.14).
For the last statement (4.15), let w.l.o.g. k, l ∈ N0 and k ≤ l. Then, by the same
arguments as above,

E
[∫

R
f(Tk − u) dLu

∫
R
f(Tl − u) dLu

]
= E

[
E
[∫

R
f(Tk − u) dLu

∫
R
f(Tl − u) dLu

∣∣∣∣σ(Tk)
]]

using the Doob-Dynkin Lemma

=
∫
R

E

∫
R
f(t− u) dLu

∫
R
f

(
t+

l∑
i=k+1

Wi − u
)

dLu

∣∣∣∣∣∣Tk = t

 PTk(dt)
Tk independent of L and ∑l

i=k+1Wi, so repeating the first steps and the Itô Isometry give

=
∫

[0,∞)

∫
[0,∞)

∫
R
f(t− u)f(t+ s− u) duE(L2

1)P∑l

i=k+1 Wi
(ds)PTk(dt)

Substituting v = t−u and using PTl−k = P∑l

i=k+1 Wi
together with Fubini’s theorem shows

that this is equal to

= E(L2
1)
∫
R

E(f(v)f(Tl−k + v)) du .

such that the statement follows.

Now we are in the position to prove asymptotic normality of Y n = 1
n

∑n
k=1 Yk as n→∞,

which is the objective of the following theorem.
Theorem 4.7. Let X be defined as in (4.1) such that µ ∈ R, L has expectation zero and
E(|L1|2 log+ |L1|) < ∞, f ∈ L2(R), and

∫
R |f(s)|2 log+ |f(s)| ds < ∞. Let Y be defined

by (4.3) with (Tn)n∈Z as in (4.2) such that W = (Wn)n∈N is a sequence of i.i.d. random
variables with positive support, P (W1 > 0) > 0, and W is independent of L. Assume that∫

R
|f(u)|

∑
k∈Z

E|f(Tk + u)| du <∞ . (4.19)

Then
(a) σ2

Y
:=

∑
k∈Z

Cov(Y0, Yk) exists in [0,∞), is absolutely convergent, and

σ2
Y

= E(L2
1)
∑
k∈Z

∫
R
f(u)E(f(Tk + u)) du . (4.20)

(b)
√
n (Y n − µ) d−→ N(0, σ2

Y
) as n→∞.
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Proof. (a) As in Proposition 4.5, we set w.l.o.g. µ = 0. Observe that E|Y 2
0 | = E|X0|2 <∞

since f ∈ L2(R) and L has finite second moment. Further, by (4.15) and (4.19) together
with the dominated convergence theorem

∑
k∈Z
|E(Y0Yk)| =

∑
k∈Z

∣∣∣∣∣E(L2
1)
∫
R
f(u)E(f(Tk + u)) du

∣∣∣∣∣
≤ E(L2

1)
∫
R
|f(u)|

∑
k∈Z

E|f(Tk + u)| du <∞ . (4.21)

This gives the absolute summability of σ2
Y
and the same calculation without the modulus

and without the last line gives (4.20).
(b) By Proposition 4.5, we have that for the sequence (Y (m)

n )n∈Z as in (4.13) defined via
the m-dependent process (X(m)

t )t∈R as in (4.12) its sample mean is asymptotically normal,
i.e.

√
nY

(m)
n

d−→ Z(m) with Z(m) d= N(0, σ2
Y

(m)) . (4.22)

By Proposition 4.6, we have that E(Y (m)
0 Y

(m)
k )→ E(Y0Yk) as m→∞ and, since∑

k∈Z
|E(Y (m)

0 Y
(m)
k )| ≤ E(L2

1)
∫
R
|f(u)|

∑
k∈Z

E|f(Tk + u)| du <∞ ,

by (4.21), it follows from the dominated convergence theorem that limm→∞ σ
2
Y

(m) = σ2
Y
.

Hence,

Z(m) d−→ Z as m→∞ with Z
d= N(0, σ2

Y
) . (4.23)

Define for k ∈ Z

Y f−fm
k :=

∫
R
f(Tk − u)− f(Tk − u)1[−m/2,m/2](Tk − u) dLu

=
∫
R\[Tk−m/2,Tk+m/2]

f(Tk − u) dLu .

Then (Y f−fm
n )n∈Z is strictly stationary, by Proposition 4.1. Further, by Cauchy-Schwarz’s

inequality,

E(Y f−fm
0 Y f−fm

k )

≤
(

E
(∫

R\[−m/2,m/2]
f(−u) dLu

)2

E
(∫

R\[Tk−m/2,Tk+m/2]
f(Tk − u) dLu

)2)1/2

→ 0

as m→∞ since f ∈ L2(R). Since, by (4.21),∑
k∈Z
|E(Y f−fm

0 Y f−fm
k )| ≤ E(L2

1)
∫
R
|f(u)|

∑
k∈Z

E|f(Tk + u)| du ∀m ∈ N ,
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4 Lévy driven moving average process sampled at a renewal sequence

the dominated convergence theorem yields limm→∞
∑
k∈Z |E(Y f−fm

0 Y f−fm
k )| = 0.

Hence, by Theorem 7.1.1 in Brockwell and Davis [23],

lim
m→∞

lim
n→∞

Var(n1/2(Y n − Y
(m)
n )) = lim

m→∞
lim
n→∞

nVar
(

1
n

n∑
k=1

Y f−fm
k

)
= lim

m→∞

∑
k∈Z

E(Y f−fm
0 Y f−fm

k ) = 0 .

Using Chebychef’s inequality gives then

lim
m→∞

lim sup
n→∞

P (n1/2|Y n − Y
(m)
n | > ε) = 0 ∀ ε > 0 .

Together with (4.22) and (4.23), the claim follows by a variant of Slutsky’s Lemma, cf.
Theorem 1.12.
Remark 4.8. When (Tn)n∈Z is deterministic, i.e. Tn = ∆n for n ∈ Z and some ∆ > 0,
then Theorem 1.34 established the asymptotic normality of the sample mean under the
conditions E(L2

1) <∞, E(L1) = 0, f ∈ L2(R), and(
u 7→

∞∑
j=−∞

|f(u+ ∆j)|
)
∈ L2([0,∆]) . (4.24)

Observe that (4.24) implies (4.19) since∫
R
|f(u)|

∞∑
k=1
|f(∆k + u)| du =

∞∑
j=−∞

∫ ∆

0
|f(u+ ∆j)|

∞∑
k=1
|f(u+ ∆k)| du

≤
∫ ∆

0

( ∞∑
j=−∞

|f(u+ ∆j)|
)2

du .

Hence, Theorem 4.7 generalizes Theorem 1.34 for the case of the renewal sampling se-
quence (Tn)n∈N, however on the cost of the slightly more restrictive conditions on the Lévy
process and the kernel, i.e. E(|L1|2 log+ |L1|) <∞ and

∫
R |f(s)|2 log+ |f(s)| ds <∞.

Remark 4.9. To establish the asymptotic normality of the sample mean, we need that
(4.19) is satisfied. For example, for |f(u)| ≤ K(|u|−α ∧ 1) such that α > 1 and some
constant K > 0, this is true without any further conditions.
To see this, observe that, due to |f(u)| ≤ K(|u|−α ∧ 1), decomposing

∫
R as

∫−t/2
−∞ +

∫∞
−t/2,

we obtain for a constant C ′α for t ≥ 0 that∫
R
|f(u)||f(t+ u)| du ≤ C ′α1{t≤2}(t) + C ′αt

−α1{t>2}(t) .

and replacing t by −t, similarly for t ≤ 0, resulting in∫
R
|f(u)||f(t+ u)| du ≤ Cα(|t|−α ∧ 1) . (4.25)
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for some Cα. Hence,∫
R
|f(u)|

∞∑
k=1

E|f(Tk + u)| du =
∞∑
k=1

E
( ∫

R
|f(u)||f(Tk + u)| du

)

≤
∞∑
k=1

E(Cα1{Tk≤1} + CαT
−α
k 1{Tk>2})

≤ Cα
∞∑
k=1

P (Tk ≤ 1) + Cα
∞∑
k=1

E(T−αk 1{Tk>1}) . (4.26)

The first sum in (4.26) converges since, as it has been shown at the end of the proof of
Proposition 4.2, there exists an r > 0 such that P (W1 > r) > 0 and hence, for all m ∈ N,
P (W1 + · · · + Wdm/re > m) > 0. Denote q := 1 − P (W1 + · · · + Wdm/re > m) < 1. If
k ≤ dm/re, it holds P (Tk ≤ m) ≤ q. Otherwise for k > dm/re, set lk(m) = b k

dm/rec.
Then, by the i.i.d. property of (Wn)n∈Z\{0}, we have P (Tk ≤ m) ≤ qlk(m).
For establishing the convergence of the second sum, observe that

E(T−αk 1{Tk>1}) ≤ E(T−αk 1{Tk≥1}) = E(T−αk 1{T−α
k
≤1}) =

∫ 1

0
P (T−αk 1{T−α

k
≤1} > t) dt

=
∫ 1

0
P (1 ≤ Tk < t−1/α) dt ≤

∫ ∞
1

P (Tk ≤ v)αv−α−1 dv

such that
∞∑
k=1

E(T−αk 1{Tk>1}) ≤
∫ ∞

1
αv−α−1

∞∑
k=1

P (Tk ≤ v) dv . (4.27)

Since P (Tk ≤ v) ≤ P (Tk ≤ dve) ≤ qlk(dve) and

lk(dve) =
⌊

k

ddve/re

⌋
≥ k

ddve/re
− 1 ≥ C

k

v/r
− 1 ∀ k ∈ N , v ≥ 1 ,

for some C > 0, we obtain with q̃ := qC that
∞∑
k=1

P (Tk ≤ v) ≤ q−1
∞∑
k=1

qC
k
v/r ≤ q−1

1− q̃r/v . (4.28)

Let q̃(x) = q̃x for x ≥ 0. Then for x ∈ [0, 1], by the mean value theorem, there exists
ξ ∈ (0, 1) such that

1− q̃x = q̃(0)− q̃(x) = (−x)q̃′(ξ) = (−x)q̃ξ log(q̃) ≥ xq̃| log(q̃)|

since q̃ ∈ (0, 1). This yields for v > r that 1
1−q̃r/v ≤

v
rq̃| log(q̃)| . This together with (4.28)

gives for (4.27)∫ ∞
1

αv−α−1
∞∑
k=1

P (Tk ≤ v) dv ≤
∫ ∞

1
αv−α

q−1

rq̃| log(q̃)| dv <∞ ,

since α > 1.

77



4 Lévy driven moving average process sampled at a renewal sequence

4.3 Sample Autocovariance

In this section, we present a multivariate central limit theorem for the autocovariance and
autocorrelation functions when the process is sampled at a renewal sequence. We start
by considering the strictly stationary, mean zero process

Xt =
∫
R
f(t− s) dLs , t ∈ R . (4.29)

As in the previous section, let (Tn)n∈Z be a sequence of random times defined by (4.2)
with (Wn)n∈Z\{0} a nonnegative i.i.d. noise independent of L such that P (W1 > 0) > 0,
and the sampled process Yn = XTn for n ∈ Z. Recall that for a mean zero process,

γ∗n(h) = 1
n

n∑
k=1

YkYk+h , h ∈ N , (4.30)

is a natural estimator for the autocovariance function.
Let X(m) = (X(m)

t )t∈R be defined as in (4.12) with µ = 0, and Y (m) = (Y (m)
n )n∈Z as

in (4.13). If, for a fixed h ∈ N, we set Z(m)
h,k := Y

(m)
k Y

(m)
k+h , it can be easily seen, that

also Z(m)
h = (Z(m)

h,k )k∈Z is a strictly stationary, strongly mixing sequence with coefficient

α
Z

(m)
h

n ≤ αY
(m)

n−h for all n > h by Remark 1.8 (b). Hence, to establish the central limit
theorem, we first show a central limit theorem for

γ∗,mn (h) = 1
n

n∑
k=1

Z
(m)
h,k , h ∈ N .

But before we give some preliminary results regarding Lévy processes and their integrals.
In the following theorem, we recall the multivariate extension of Theorem 2.7 in Rajput
and Rosinski [59], which characterizes the continuous time moving average process. It
can also be regarded as an extension to Proposition 57.13 of Sato [61].
Theorem 4.10. Let L = (Lt)t∈R be a Lévy process on R with characteristic triplet
(γL, σ2, νL) and g : R → Rd be a measurable function. Denote with Dd := {x : |x| ≤ 1}
the unit ball in Rd. Then
(a) g is L-integrable (i.e. integrable with respect to the Lévy process L) as a limit in
probability in the sense of Rajput und Rosinski [59] if and only if

(i)
∫
R

∥∥∥∥g(s)γL +
∫
R
g(s)x(1Dd(g(s)x)− 1D1(x)) νL(dx)

∥∥∥∥ ds <∞,

(ii)
∫
R

∥∥∥g(s)σ2g(s)′
∥∥∥ ds <∞, and

(iii)
∫
R

∫
R
(‖g(s)x‖2 ∧ 1) νL(dx) ds <∞.
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(b) If g is L-integrable, the distribution of
∫
R g(s) dLs is infinitely divisible with charac-

teristic triplet (γint,Σint, νint) given by

γint =
∫
R
g(s)γL +

∫
R
g(s)x(1Dd(g(s)x)− 1D1(x)) νL(dx) ds ,

Σint = σ2
∫
R
g(s)g(s)′ ds , and

νint(B) =
∫
R

∫
R

1B(g(s)x) νL(dx) ds for all Borel sets B ⊂ Rd \ {0}.

Corollary 4.11. By a similar calculation as for the univariate case in the proof of Lemma
4.3, we deduce that, if L has expectation zero and finite second moment and g ∈ L2(Rd),
then the conditions (i), (ii), and (iii) of Theorem 4.10 (a) are satisfied and

∫
R g(s) dLs is

infinitely divisible with characteristic triplet (γint,Σint, νint) as given in Theorem 4.10 (b).

Point (a) in the lemma below generalizes expression (3.5) in Cohen and Lindner [31] to
non-lattice times and presents a different and quicker proof of that fact even for integer-
times.

Lemma 4.12. Let f ∈ L2(R) ∩ L4(R), and L = (Lt)t∈R be a Lévy process with ex-
pectation zero and finite fourth moment. Denote σ2 := E(L2

1), η := σ−4E(L4
1), and

fm := f1[−m/2,m/2]. Then the following statements hold:
(a) For Xt :=

∫
R f(t− u) dLu, we have for all r, s, t, v ∈ R

E(XrXsXtXv) = (η − 3)σ4
∫
R
f(u+ r)f(u+ s)f(u+ t)f(u+ v) du

+ E(XrXs)E(XtXv) + E(XrXt)E(XsXv) + E(XrXv)E(XsXt) . (4.31)

(b) Let additionally X(m)
t :=

∫
R fm(t− u) dLu, then we have for all r, s, t, v ∈ R

E(XrXsX
(m)
t X(m)

v ) = (η − 3)σ4
∫
R
f(u+ r)f(u+ s)fm(u+ t)fm(u+ v) du

+ E(XrXs)E(X(m)
t X(m)

v ) + E(XrX
(m)
t )E(XsX

(m)
v ) + E(XrX

(m)
v )E(XsX

(m)
t ) .

Proof. Since Xr, Xs, Xt, and Xv all have expectation zero, the 4th order joint cumulant
Cum(X) of X := (Xr, Xs, Xt, Xv) is given by

Cum(X) = E(XrXsXtXv)− E(XrXs)E(XtXv)
− E(XrXt)E(XsXv)− E(XrXv)E(XsXt) , (4.32)

see Proposition 4.2.2 in Giraitis et al. [39]. On the other hand,

Cum(X) = ∂4

∂u1∂u2∂u3∂u4
log E(ei〈u,X〉)

∣∣∣∣∣
u1=u2=u3=u4=0

,
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4 Lévy driven moving average process sampled at a renewal sequence

cf. Definition 4.2.1 of Giraitis et al. [39]. Let g(u) = (f(r−u), f(s−u), f(t−u), f(v−u)),
then it holds X =

∫
R g(u) dLu, and, since f ∈ L2(R)∩L4(R), we obtain g ∈ L2(R4)∩L4(R4)

which yields by Corollary 4.11 that X is infinitely divisible with characteristic exponent

log E(ei〈u,X〉) = i〈γint, u〉 −
1
2〈u,Σintu〉+

∫
R4

(ei〈u,x〉 − 1− i〈u, x〉1D4(x)) νint(dx) .

Hence, by Theorem 4.10 (b) and the well-known fact
∫
R x

4νL(dx) = (η − 3)σ4,

Cum(X) =
∫
R4
x1x2x3x4 νint(dx) = (η − 3)σ4

∫
R
f(r − u)f(s− u)f(t− u)f(v − u) ds .

Then this together with (4.32) yields (a).
For (b) just observe that also fm ∈ L2(R)∩L4(R) such that with h(u) = (f(r− u), f(s−
u), fm(t − u), fm(v − u)) we obtain that also Z =

∫
R h(u) dLu is infinitely divisible by

Corollary 4.11. Similar argumentations as above give the demanded result.

A straightforward consequence is now the following result which has already been obtained
in Cohen and Lindner [31, Lemma 3.2].
Corollary 4.13. Let f ∈ L2(R) ∩ L4(R), L = (Lt)t∈R a Lévy process with expectation
zero and finite fourth moment. Denote σ2 := E(L2

1) and η := σ−4E(L4
1). Then

E
(∫

R
f(s) dLs

)4

= (η − 3)σ4
∫
R
f 4(s) ds+ 3σ4

(∫
R
f 2(s) ds

)2

.

In the following lemma we give a similar expression as (4.31) when the deterministic times
r, s, t, and v are replaced by random times.
Lemma 4.14. Let L = (Lt)t∈R be a Lévy process with expectation zero and finite fourth
moment, X be defined by (4.29), with f ∈ L2(R) ∩ L4(R), and X

(m)
t by (4.29) with f

replaced by fm. The processes Y and Y (m) are defined by (4.3) and (4.13), respectively,
with (Tn)n∈Z as in (4.2), where W = (Wn)n∈Z\{0} is as usual. Denote σ2 := E(L2

1) and
η := σ−4E(L4

1), and let l,m, n ∈ Z. Let F (s, t) :=
∫
R f(u+ s)f(u+ t) du, then

(a) E(Y0YlYmYn) = (η − 3)σ4
∫
R
f(u)E(f(u+ Tl)f(u+ Tm)f(u+ Tn)) du

+ σ4E(F (0, Tl))F (Tm, Tn)) + σ4E(F (0, Tm)F (Tl, Tn))
+ σ4E(F (0, Tn)F (Tl, Tm)) .

(b) If 0 ≤ l ≤ m ≤ n, then E(F (0, Tl))F (Tm, Tn)) = E(F (0, Tl))E(F (0, Tn−m)).

Proof. (a) Due to the definition of (Tn)n∈Z it follows that Tl ≤ Tm ≤ Tn. Conditioning on
the random times yields, by the independence of L and W and Lemma 4.12 (a),

E(Y0YlYmYn) = E
(
E
[
X0XTlXTmXTn|σ(Tl, Tm, Tn)

])
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=
∫

[0,∞)3
E
[
X0XsXtXv|(Tl, Tm, Tn)′ = (s, t, v)′

]
P(Tl,Tm,Tn)(d(s, t, v))

=
∫

[0,∞)3
E
(
X0XsXtXv)P(Tl,Tm,Tn)(d(s, t, v))

=: A + B + C + D ,

say, where A, B, C, and D corresponds to the parts arising from the decomposition in
(4.31). Then, by Fubini’s theorem,

A = (η − 3)σ4
∫

[0,∞)3

∫
R
f(u)f(u+ s)f(u+ t)f(u+ v) duP(Tl,Tm,Tn)(d(s, t, v))

= (η − 3)σ4
∫
R
f(u) E

[
f(u+ Tl)f(u+ Tm)f(u+ Tn)

]
du .

Since E(XsXt) = σ2 ∫
R f(u+ s)f(u+ t) du for all s, t ∈ R, we obtain

B =
∫

[0,∞)3
E(X0Xs)E(XtXv)P(Tl,Tm,Tn)( d(s, t, v))

= σ4
∫

[0,∞)3

∫
R
f(u)f(u+ s) du

∫
R
f(w + t)f(w + v) dwP(Tl,Tm,Tn)( d(s, t, v))

= σ4 E
[ ∫

R
f(u)f(u+ Tl) du

∫
R
f(u+ Tm)f(u+ Tn) du

]
.

Likewise

C = σ4 E
[ ∫

R
f(u)f(u+ Tm) du

∫
R
f(w + Tl)f(w + Tn) dw

]
, and

D = σ4 E
[ ∫

R
f(u)f(u+ Tn) du

∫
R
f(w + Tl)f(w + Tm) dw

]
.

With the definition of F (s, t), the assertion follows.
(b) Observe that, since P∑n

i=m+1 Wi
= PTn−m , by independence of the sequence W ,

E[F (0, Tl)F (Tm, Tn)]

=
∫

[0,∞)3

∫
R
f(u)f(u+ s) du

∫
R
f(w + s+ t)f(w + s+ t+ v) dw

P∑n

i=m+1 Wi
(dv)P∑m

i=l+1 Wi
(dt)PTl(ds)

=
∫

[0,∞)

∫
R
f(u)f(u+ s) duPTl(ds)

∫
[0,∞)

∫
R
f(w)f(w + v) dwPTn−m(dv)

= E(F (0, Tl))E(F (0, Tn−m)) ,

which gives the result.

From Lemma 4.14, the following proposition gives the expression of nCov(γ∗n(p), γ∗n(q))
as n→∞ needed in the upcoming central limit theorem.
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4 Lévy driven moving average process sampled at a renewal sequence

Proposition 4.15. Let L = (Lt)t∈R be a Lévy process with expectation zero and finite
fourth moment, and denote σ2 := E(L2

1) and η := σ−4E(L4
1). Suppose that f ∈ L2(R) ∩

L4(R), and let X and Y be defined by (4.29) and (4.3) with (Tn)n∈Z by (4.2). Denote

F (s, t) :=
∫
R
f(u+ s)f(u+ t) du , s, t ∈ R , and

κf (k, l,m) := (η − 3)σ4
∫
R
f(u)E(f(u+ Tk)f(u+ Tl)f(u+ Tm)) du

+ σ4E(F (0, Tl)F (Tk, Tm)) + σ4E(F (0, Tm)F (Tk, Tl)) , for k, l,m ∈ Z .

Let p, q ∈ N, denote Zp,i := YiYi+p, Zq,i := YjYj+q for i, j ∈ Z and assume that∫
R
|f(u)|

∞∑
k=1

E|f(u+ Tp)f(u+ Tk)f(u+ Tk+q)| du <∞ , (4.33)

and
∞∑
k=1

E
[( ∫

R
|f(u)f(u+ Tk)| du

)2]
<∞ . (4.34)

Then

Cov(Zp,i, Zq,i) = κ(p, j − i, j − i+ q) + σ4Cov(F (0, Tp), F (Tj−i, Tj−i+q)) , (4.35)
Cov(F (0, Tp), F (Tj−i, Tj−i+q)) = 0 for j − i ≤ p or j − i ≤ q , (4.36)∑
k∈Z
|Cov(Zp,0, Zq,k)| <∞ ,

∑
k∈Z
|κ(p, k, k + q)| <∞ , (4.37)

and

lim
n→∞

nCov(γ∗n(p), γ∗n(q)) =
∑
k∈Z

Cov(Zp,0, Zq,k) =

∑
k∈Z

κ(p, k, k + q) + σ4
p−1∑

k=−q+1
Cov(F (0, Tp), F (Tk, Tk+q)) .

(4.38)

where γ∗n(p) and γ∗nq are defined in (4.30).

Proof. From Lemma 4.14 (a), since E(YiYi+p) = σ4E(F (Ti, Ti+p)) = σ4E(F (0, Tp)), and
by the stationarity of Y , we have

Cov(Zp,i, Zq,j) = E(YiYi+pYjYj+q)− E(YiYi+p)E(YjYj+q)

= (η − 3)σ4E
(∫

R
f(u)f(u+ Tp)f(u+ Tj−i)f(u+ Tj−i+q) du

)
+ σ4E(F (0, Tp)F (Tj−i, Tj−i+q)) + σ4E(F (0, Tj−i)F (Tp, Tj−i+q))
+ σ4E(F (0, Tj−i+q)F (Tp, Tj−i))− σ4E(F (0, Tp))E(F (Tj−i, Tj−i+q))

= κ(p, j − i, j − i+ q) + σ4Cov(F (0, Tp), F (Tj−i, Fj−i+q))
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4.3 Sample Autocovariance

which is (4.35). Equation (4.36) is an immediate consequence of Lemma 4.14 (b). For the
proof of (4.37), by (4.35) and (4.36), it is enough to show that ∑k∈Z |κ(p, k, k + q)| <∞.
To see this, observe that
∑
k∈Z
|κ(p, k, k + q)| ≤ (η − 3)σ4

∫
R
|f(u)|

∑
k∈Z
|E(f(u+ Tp)f(u+ Tk)f(u+ Tk+q))| du

σ4 ∑
k∈Z
|E(F (0, Tk)F (Tp, Tk+q))|+ σ4 ∑

k∈Z
|E(F (0, Tk+q)F (Tp, Tk))| .

The first of these summands is finite by (4.33) and the second is finite since, by Cauchy-
Schwarz’s inequality,∑

k∈Z
|E(F (0, Tk)F (Tp, Tk+q))| ≤

∑
k∈Z

(E(F (0, Tk))2)1/2(E(F (Tp, Tk+q))2)1/2

≤
(∑
k∈Z

E(F (0, Tk))2
)1/2(∑

k∈Z
E(F (Tp, Tk+q))2

)1/2

which is finite by (4.34). The same argument yields finiteness of the third summand,
showing (4.37).
To see (4.38), observe that by the stationarity of Y , with k = j − i,

nCov(γ∗n(p), γ∗n(q)) = 1
n

n∑
i,j=1

Cov(Zp,i, Zq,j) =
n∑

i,j=1

1
n

Cov(Zp,0, Zq,j−i)

=
n−1∑

k=−n+1

n− |k|
n

Cov(Zp,0, Zq,k) .

Since ∑k∈Z |Cov(Zp,0, Zq,k)| < ∞ by (4.37), the latter converges to ∑k∈Z Cov(Zp,0, Zq,k)
as n→∞ by the dominated convergence theorem, which together with (4.35) and (4.36)
finishes the proof of (4.38).
Remark 4.16. (a) If q = 0 or p = 0, it is easy to see that Cov(F (0, Tp)F (Tk, Tk+q)) = 0
for all k ∈ {−q + 1, . . . , p− 1}. Hence, the second summand in (4.38) disappears.

(b) It is easy to check, by the Cauchy-Schwarz inequality, that (4.33) holds for example
under the assumption of f ∈ L2(R) and(

u 7→
∑
k∈Z

E|f(u+ Tp)f(u+ Tk)f(u+ Tk+q)|
)
∈ L2(R).

(c) If we choose (Tn)n∈Z to be deterministic, i.e. Tn = n∆ for n ∈ Z and some ∆ > 0, it
is easy to see that (4.33) and (4.34) are implied by (1.12) and (1.13) in Theorem 1.35 for
establishing the asymptotic normality of the sample autocovariance of the moving average
process observed on a lattice. (4.33) then reduces to (1.13), which in Cohen and Linder
[31] was shown to be implied by (3.3) of [31].
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4 Lévy driven moving average process sampled at a renewal sequence

Remark 4.17. Similarly to Remark 4.9, a sufficient condition for the validity of (4.33)
and (4.34) is that |f(u)| ≤ K(|u|−α ∧ 1) for some K > 0 and α > 1/2, instead of α > 1
as in Remark 4.9.
To see this, observe that, by (4.25),

∑
k∈Z

E
(∫

R
|f(u)f(u+ Tk)|

)2

≤
∑
k∈Z

C2
αE(|Tk|−2α ∧ 1) <∞ ,

by the the same calculations as in Remark 4.9. Hence, (4.34) is true. To establish (4.33),
observe that ∫

R
|f(u)f(u+ Tk)||f(u+ Tp)f(u+ Tk+q)| du

≤
(∫

R
f 2(u)f 2(u+ Tk)

)1/2(∫
R
f 2(u+ Tp)f 2(u+ Tk+q)

)1/2

≤ (C2α(|Tk|−2α ∧ 1))1/2(C2α(|Tk+q − Tp|−2α ∧ 1))1/2

for some C2α, by (4.25). Applying the Cauchy-Schwarz inequality twice then gives

∑
k∈Z

E
(∫

R
|f(u)f(u+ Tk)||f(u+ Tp)f(u+ Tk+q)| du

)
≤
∑
k∈Z

C2α(E(|Tk|−2α ∧ 1))1/2(E(|Tk+q − Tp|−2α ∧ 1))1/2

≤ C2α

(∑
k∈Z

E(|Tk|−2α ∧ 1)
)1/2(∑

k∈Z
E(|Tk+q − Tp|−2α ∧ 1)

)1/2

= C2α
∑
k∈Z

E(|Tk|−2α ∧ 1) ,

and the latter is finite by the calculation in Remark 4.9.

The next proposition shows that similar results as obtained in Proposition 4.15 are valid
for the truncated sequence Y (m).
Proposition 4.18. Let the assumption and notations of Proposition 4.15 be satisfied.
For m ∈ N, define fm := f1[−m/2,m/2], Fm :=

∫
R fm(u+ s)fm(u+ t) for s, t ∈ R, X(m)

t :=∫
R fm(t − u) dLu, Y (m)

n := X
(m)
Tn . Let p, q ∈ N, and define Z(m)

p,i := Y
(m)
i Y

(m)
i+p , Z

(m)
q,j :=

Y
(m)
j Y

(m)
j+q , and

γ∗,mn (h) := 1
n

n∑
k=1

Y
(m)
k Y

(m)
k+h , h = p, q .

Then (4.33) and (4.34) also hold for fm, and for all k ∈ Z

|κfm(p, k, k + q)| ≤ κ|f |(p, k, k + q) ,
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4.3 Sample Autocovariance

κfm(p, k, k + q)→ κf (p, k, k + q) as m→∞ , (4.39)
Cov(Fm(0, Tp)Fm(Tk, Tk+q))→ Cov(F (0, Tp)F (Tk, Tk+q)) as m→∞ , (4.40)

and
lim
m→∞

lim
n→∞

nCov(γ∗,mn (p), γ∗,mn (q))

=
∑
k∈Z

κ(p, k, k + q) + σ4
p−1∑

k=−q+1
Cov(F (0, Tp), F (Tk, Tk+q)) .

(4.41)

Proof. That (4.33) and (4.34) also hold for fm is clear since |fm| ≤ |f |, as is |κfm | ≤ κ|f |.
Since |fm| ≤ |f | and fm → f as m → ∞, the dominated convergence theorem shows
(4.39) and (4.40). And (4.41) then follows from (4.39), (4.40), and (4.38) again by the
dominated convergence theorem.

The following proposition proof the demanded central limit theorem for the truncated
sequence Y (m).
Proposition 4.19. Let X(m)

t =
∫
R fm(t−u) dLu, where fm = f1[−m/2,m/2] and L = (Lt)t∈R

a Lévy process with E(L1) = 0. Assume that E(|L1|4(log+ |L1|)2) <∞, f ∈ L2(R)∩L4(R),
and ∫

R
|f(s)|4(log+ |f(s)|)2 ds <∞ .

With the same notations for Fm(s, t), Y (m) = (Y (m)
n )n∈Z, and Z(m)

h,k as in Proposition 4.18,
we then have

(a) Zm
p,q given by

Zm
p,q =

∑
k∈Z

Cov(Z(m)
p,0 , Z

(m)
q,k ) =

∑
k∈Z

κfm(p, k, k+q)+σ4
p−1∑

k=−q+1
Cov(Fm(0, Tp), Fm(Tk, Tk+q))

exists in [0,∞), and is absolutely convergent, for each p, q ∈ N0.

(b)
√
n(γ∗,mn (0) − γm(0), . . . , γ∗,mn (h) − γm(h))′ d−→ N(0,Zm) as n → ∞, where the co-

variance matrix is Zm = (Zm
pq)p,q=0,...,h ∈ Rh+1×h+1 with entries given by (a).

Proof. Define Qk := (Z(m)
0,k , Z

(m)
1,k , . . . , Z

(m)
h,k )′ ∈ Rh+1. Then (Qk)k∈Z is obviously strictly

stationary and we have
1
n

n∑
k=1

Qk = (γ∗,mn (0), . . . , γ∗,mn (h))′ .

If we can show that
√
n

(
1
n

n∑
k=1

λ′Qk − λ′(γmn (0), . . . , γmn (h))′
)

d−→ N(0, λ′Zmλ) ∀λ ∈ Rh+1 ,

we obtain, by the Cramér-Wold theorem, the assertion of (b).
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4 Lévy driven moving average process sampled at a renewal sequence

By the assumptions on L and f , we obtain, by Lemma 4.3 (c), E(|Y (m)
0 |4(log+ |Y (m)

0 |)2) =
E(|X(m)

0 |4(log+ |X(m)
0 |)2) < ∞, since Y (m)

0 = X
(m)
0 , and so E(|Zh,0|2 log+ |Zh,0|) < ∞,

by the Cauchy-Schwarz inequality. Therefore also E(|λ′Q0|2 log+ |λ′Q0|) < ∞ for all
λ ∈ Rh+1.
Observe that (λ′Qn)n∈Z is strongly mixing for each λ ∈ Rh+1 with αλ

′Q
n ≤ αY

(m)
n−h for

all n > h, by Remark 1.8 (b), such that (αλ′Qn ) is exponentially decreasing. Hence, the
assumptions of Theorem 1.11 hold for λ′Qk−E(λ′Q0) and (a) and (b) follow immediately.
Observe that the assertion there also holds when λ′Zmλ = 0, in which case we have L2-
convergence to 0 by Bradley [20], Proposition 8.3.

Now, we can establish the multivariate asymptotic normality of the sample autocovariance
and sample autocorrelation.
Theorem 4.20. Let L = (Lt)t∈R be a Lévy process with expectation zero such that
E(|L1|4(log+ |L1|)2) < ∞, and denote σ2 := E(L2

1) and η := σ−4E(L4
1). Let h ∈ N0,

suppose that f ∈ L2(R) ∩ L4(R),
∫
R |f(s)|4(log+ |f(s)|)2 ds < ∞, and assume that (4.33)

and (4.34) hold for all p, q ∈ {0, . . . , h}.

(a) Then
√
n(γ∗n(0)− γ(0), . . . , γ∗n(h)− γ(h))′ d−→ N(0,Z) , n→∞ ,

where γ(h) = E(Y0Yh) and Z = (Zpq)p,q=0,...,h ∈ Rh+1×h+1 is the covariance matrix defined
by

Zpq = σ4
p−1∑

k=−q+1
Cov(F (0, Tp), F (Tk, Tk+q)) +

∑
k∈Z

κ(p, k, k + q)

with κ(p, k, k + q) for k, p, q ∈ Z and F (s, t) given as in Proposition 4.15.

(b) If additionally ∫
R
|f(u)|

∑
k∈Z

E|f(Tk + u)| du <∞ (4.42)

hold, and we denote by

γ̂n(j) = 1
n

n−j∑
k=1

(Yk − Y n)(Yk+j − Y n) , j = 0, 1, . . . , n− 1 ,

the sample autocovariance, then we have for each h ∈ N
√
n(γ̂n(0)− γ(0), . . . , γ̂n(h)− γ(h))′ d−→ N(0,Z) , n→∞ ,

where Z as defined in (a).
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(c) Let ρ∗n(p) = γ∗n(p)/γ∗n(0) and ρ̂n(p) = γ̂n(p)/γ̂n(0) for p ∈ N. Suppose that f 6= 0
λ-a.e. Then, under the assumptions of (a), we have for each h ∈ N

√
n(ρ∗n(1)− ρ(1), . . . , ρ∗n(h)− ρ(h))′ d−→ N(0,W) , n→∞ ,

where W = (Wpq)p,q=1,...,h ∈ Rh×h is given by

Wpq = (Zpq − ρ(p)Z0q − ρ(q)Zp0 + ρ(p)ρ(q)Z00)/γ(0)2 .

If additionally (4.42) is satisfied, then it also holds

√
n(ρ̂n(1)− ρ(1), . . . , ρ̂n(h)− ρ(h))′ d−→ N(0,W) , n→∞ .

Proof. (a) By Proposition 4.19, we have
√
n(γ∗,mn (0)− γm(0), . . . , γ∗,mn (h)− γm(h))′ d−→ Vm as n→∞ .

Here Vm
d= N(0,Zm), where Zm = (Zm

pq)p,q=0,...,h ∈ Rh+1×h+1 is given as in Proposition
4.19.

By Proposition 4.18, limm→∞ Zm = Z, where Proposition 4.15 gives the form and finite-
ness of Zpq, the entries of Z. Henceforth,

Vm
d−→ V , m→∞ ,

where V d= N(0,Z).

By Theorem 1.12, the claim will follow if we can show that

lim
m→∞

lim sup
n→∞

P (n1/2|γ∗,mn (p)− γm(p)− γ∗n(p) + γ(p)| > ε) = 0 ∀ ε > 0 , p ∈ {0, . . . , h} .

Since E(γ∗,mn (p)) = γm(p) and E(γ∗n(p)) = γ(p), this will follow from Chebychef’s inequal-
ity if we can show that

lim
m→∞

lim
n→∞

Var(n1/2(γ∗n(p)− γ∗,mn (p)) = lim
m→∞

lim
n→∞

[
nVar(γ∗n(p)) + nVar(γ∗,mn (p))

− 2nCov(γ∗n(p), γ∗,mn (p))
]

= 0 ∀ p ∈ {0, . . . , h} .

But since
lim
m→∞

lim
n→∞

nVar(γ∗,mn (p)) = lim
n→∞

nVar(γ∗n(p)) = Zpp ,

by Proposition 4.18, it remains only to show that

lim
m→∞

lim
n→∞

nCov(γ∗n(p), γ∗,mn (p)) = Zpp ∀ p ∈ {0, . . . , h} . (4.43)
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4 Lévy driven moving average process sampled at a renewal sequence

In doing so, denote Gm(s, t) :=
∫
R f(u+s)fm(u+ t) du and Fm(s, t) :=

∫
R fm(u+s)fm(u+

t) du. Observe first that from Lemma 4.12 (b), similar to the proof of Lemma 4.14 (a),
by conditioning on Tp, Tk, and Tk+p, that for k ∈ Z, we have

Cov(Zp,0, Z(m)
p,k ) = E(Y0YpY

(m)
k Y

(m)
k+p )− E(Y0Yp)E(Y (m)

k Y
(m)
k+p )

= (η − 3)σ4E
(∫

R
f(u)f(u+ Tp)fm(u+ Tk)fm(u+ Tk+p) du

)
+ σ4E(F (0, Tp)Fm(Tk, Tk+p)) + σ4E(Gm(0, Tk)Gm(Tp, Tk+p))
+ σ4E(Gm(0, Tk+p)Gm(Tp, Tk))− σ4E(F (0, Tp))E(Fm(Tk, Tk+p))

Further, as in the proof of Lemma 4.14 (b), it follows that

E(F (0, Tp)Fm(Tk, Tk+p)) = E(F (0, Tp))E(Fm(Tk, Tk+p)) when |k| ≥ p .

Denoting

κf,fm(p, k, k + p) := (η − 3)σ4E
(∫

R
f(u)f(u+ Tp)fm(u+ Tk)fm(u+ Tk+p) du

)
+ σ4E(Gm(0, Tk)Gm(Tp, Tk+p)) + σ4E(Gm(0, Tk+p)Gm(Tp, Tk)) ,

we hence have

Cov(Zp,0, Z(m)
p,k ) =

κf,fm(p, k, k + p) , |k| ≥ p ,

κf,fm(p, k, k + p) + σ4Cov(F (0, Tp)Fm(Tk, Tk+p)) , |k| < p .

Next, observe that as in the proof of Proposition 4.18, since |fm| ≤ |f |, for all k ∈ Z,

|κf,fm(p, k, k + p)| ≤ κ|f |(p, k, k + p) ∀m ∈ N ,
κf,fm(p, k, k + p)→ κf (p, k, k + p) as m→∞ ,

Cov(F (0, Tp)Fm(Tk, Tk+p))→ Cov(F (0, Tp)F (Tk, Tk+p)) as m→∞ .

By stationarity, we obtain for n ≥ p

nCov(γ∗n(p), γ∗,mn (p)) = 1
n

n∑
i,j=1

Cov(Zp,0, Z(m)
p,j−i) =

n−1∑
k=−n+1

n− |k|
n

Cov(Zp,0, Z(m)
p,k )

=
n−1∑

k=−n+1

n− |k|
n

κf,fm(p, k, k + p) + σ4
p−1∑

k=−p+1

n− |p|
n

Cov(F (0, Tp)Fm(Tk, Tk+p)) .

Applying Lebesgues dominated convergence theorem once then gives

lim
n→∞

nCov(γ∗n(p), γ∗,mn (p))

=
∞∑

k=−∞
κf,fm(p, k, k + p) + σ4

p−1∑
k=−p+1

Cov(F (0, Tp)Fm(Tk, Tk+p)) ,
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and applying it a second time gives

lim
m→∞

lim
n→∞

nCov(γ∗n(p), γ∗,mn (p))

=
∞∑

k=−∞
κf (p, k, k + p) + σ4

p−1∑
k=−p+1

Cov(F (0, Tp)F (Tk, Tk+p)) ,

which is (4.43). This finishes the proof of (a).
(b) This follows if we can show that

√
n|γ∗n(p) − γ̂n(p)| → 0 in probability for n → ∞

and p ∈ {0, . . . , h}. The latter can be done in exactly the same way as in the proof of
Proposition 7.3.4 in Brockwell and Davis [23] with X replaced by Y in connection with the
observation that, by Theorem 4.7,

√
nY n converges in distribution to a normal random

variable as n→∞, and hence Y n must converges to 0 in probability as n→∞.
(c) Follows readily as in the proof of Theorem 7.2.1 in Brockwell and Davis [23].
Remark 4.21. (a) Due to the form of Z, there seems to be no simplification for W
possible. Also observe that W in general depends on η as seen in Theorem 3.5 (c) of
Cohen and Lindner [31].
(b) Part (a) of Theorem 4.20 in particular applies if |f(u)| ≤ K(|u|−α∧1) for some K > 0
and α > 1/2 which can be seen by Remark 4.17.
(c) Similarly, part (b) of Theorem 4.20 applies if |f(u)| ≤ K(|u|−α ∧ 1) for some K > 0
and α > 1 as shown in Remark 4.9.

4.4 An Application to Parameter Estimation of the
Ornstein-Uhlenbeck Process

In this section, we present a parameter estimation of a Lévy driven Ornstein-Uhlenbeck
(OU) process sampled by a Poisson process. An OU process is a moving average process
X = (Xt)t∈R with kernel function f : R → R, s 7→ e−as1[0,∞)(s) where the parameter
a > 0. This yields

Xt =
∫ t

−∞
e−a(t−s) dLs ,

where L = (Lt)t∈R is a Lévy process with zero mean and σ2 = E(L2
1) < ∞. We define

Yn := XTn , n ∈ Z, where (Tn)n∈Z is given by (4.2) with W = (Wn)n∈Z\{0} a sequence of
i.i.d. random variables independent of L and such that W1 ∼ Exp(λ), λ > 0.
By Proposition 4.1, Y = (Yn)n∈Z is strictly stationary, E(Y0) = 0, and E(Y 2

0 ) <∞. Then
we obtain, by Proposition 4.6,

γ(h) = E(Y0Yh) = σ2
∫
R
f(u)E(f(Th + u)) du

= σ2
∫ ∞

0
e−au

∫ ∞
0

e−a(t+u) λh

Γ(h)t
h−1e−λt dt du
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4 Lévy driven moving average process sampled at a renewal sequence

= σ2
∫ ∞

0
e−2au du λh

(a+ λ)h
∫ ∞

0

(a+ λ)h
Γ(h) th−1e−(a+λ)t dt = σ2

2a

(
λ

a+ λ

)h

as the autocovariance function of the process Y . Further γ(0) = σ2/2a, and henceforth
for the autocorrelation function ρ(h) =

(
λ

a+λ

)h
. In particular, ρ(1) = λ

λ+a and hence

a = λ

(
1
ρ(1) − 1

)
. (4.44)

Since we have given a central limit theorem for the autocorrelation function in Section
4.3, we define an estimator a∗ for a for a known parameter λ of the distribution of W by
means of

a∗ = λ

(
1

ρ∗(1) − 1
)
,

where ρ∗(1) = γ∗(1)/γ∗(0) with γ∗(h) = 1
n

∑n
k=1 YkYk+h. We can then give the following

theorem.
Theorem 4.22. Let L = (Lt)t≥0 be a Lévy process with mean zero, σ2 = E(L2

1) and
η = σ−4E(L4

1), and E(|L1|4(log+ |L1|)2) < ∞, (Tn)n∈Z be defined as in (4.2) with W =
(Wn)n∈Z\{0} an i.i.d. sequence such that W1 ∼ Exp(λ) for some λ > 0, and Xt =∫
R f(t− s) dLs with f(s) := 1[0,∞)(s)e−as. Let a∗ = λ

(
1

ρ∗(1) − 1
)
. Then

√
n(a∗ − a) d−→ N

(
0, (λ+ a)4

λ2 W11

)
, n→∞ ,

where

W11 =
(

λ

λ+ 2a −
λ2

(λ+ a)2

)
((η − 3)a+ 3) + 2a

λ+ 2a . (4.45)

Proof. As usual, Yk := XTk , k ∈ Z, and Zk,h := YkYk+h, k ∈ Z, γ∗n(h) = 1
n

∑n
k=1 Zk,h,

h = 0, . . . , n − 1 and hence ρ∗n(1) = γ∗n(1)/γ∗n(0). Observe that P (W1 > 0) > 0, since W
is exponentially distributed and it has positive support. Further, f ∈ L2(R) ∩ L4(R) is
obvious as is

∫
R |f(s)|4(log+ |f(s)|)2 ds < ∞, and, since clearly f(s) ≤ K(|s|−α ∧ 1) for

some K > 0 and α > 1/2, it follows, by Remark 4.17, that (4.33) and (4.34) are satisfied.
Therefore, by Theorem 4.20 (c), we have

√
n(ρ∗n(1)− ρ(1)) d−→ N(0,W11) , n→∞ ,

where

W11 = (Z11 − 2ρ(1)Z01 + ρ(1)2Z00)/γ(0)2 = 4a2

σ4

(
Z11 − 2 λ

a+ λ
Z01 +

(
λ

a+ λ

)2

Z00

)
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4.4 An Application to Parameter Estimation of the Ornstein-Uhlenbeck Process

with
Zpq = σ4

p−1∑
k=−q+1

Cov(F (0, Tp), F (Tk, Tk+q)) +
∑
k∈Z

κ(p, k, k + q) .

Thus, under our assumptions on the distribution of W , an easy but tedious calculation
yields that W11 is given by (4.45), cf. Lemma A.16.

To complete the proof, define g : R → R, x 7→ λ
(

1
x
− 1

)
with g′(x) = − λ

x2 such that
g(ρ∗n(1)) = a∗ and the delta-method, cf. Proposition 6.4.3 in Brockwell and Davis [23],
yields

√
n(a∗ − a) d−→ N(0, g′(ρ(1))W11g

′(ρ(1))) , n→∞ ,

where
g′(ρ(1)) = − λ

ρ(1)2 = −(λ+ a)2

λ
.

Let us now consider the case when the parameter λ of W1 ∼ Exp(λ) is additionally
unknown. Since, in addition to the observations Y1, . . . , Yn+1, we also have the observation
times T1, . . . , Tn+1, we also observe the waiting times Wi = Ti − Ti−1, i = 1, . . . , n + 1,
and hence can define

λ̂ :=
(

1
n

n∑
k=1

Wk+1

)−1

,

which by the strong law of large numbers is a strongly consistent estimator for λ, since
E(W1) = λ−1.
By (4.44), this suggests the estimator

â = λ̂

(
1

ρ∗(1) − 1
)
.

Since ρ∗(1) and λ̂ are consistent estimators, so is â. The asymptotic normality of â is
given in the following theorem.
Theorem 4.23. Let L = (Lt)t≥0 be a Lévy process with mean zero, σ2 = E(L2

1), η =
σ−4E(L4

1), and E(|L1|4(log+ |L1|)2) < ∞. Assume that (Tn)n∈Z is defined as in (4.2)
with W = (Wn)n∈Z\{0} an i.i.d. sequence such that W1 ∼ Exp(λ) for some λ > 0, and
Xt =

∫
R f(t − s) dLs with f(s) := 1[0,∞)(s)e−as. Set Yk := XTk , k ∈ Z, and let ρ∗(1) as

before. Then

√
n(â− a) d−→ N

(
0, (λ+ a)4

λ2 W11 − a2
)
, n→∞ ,

where W11 is given by (4.45).
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4 Lévy driven moving average process sampled at a renewal sequence

Proof. For m ∈ N define fm := f1[−m/2,m/2] and Y (m)
n :=

∫
R fm(t − s) dLs. Then the se-

quences (Y 2
n , YnYn+1, Tn+1−Tn)n∈Z and ((Y (m)

n )2, Y (m)
n Y

(m)
n+1 , Tn+1−Tn)n∈Z are both strictly

stationary by Proposition 4.1 and the latter is also strongly mixing with exponentially
decreasing mixing coefficients by Proposition 4.2.
Proceeding then exactly as in the proof of Proposition 4.19 and Theorem 4.20, i.e. estab-
lishing first a central limit theorem for the by m truncated quantities and then letting m
tend to infinity, shows that

√
n

((
γ∗n(0), γ∗n(1), 1

n

n∑
k=1

Wk+1

)
−
(
γ(0), γ(1), 1

λ

))
d−→ N(0,Σ) , n→∞ ,

where

Σ =
∑
k∈Z

 Cov(Y 2
0 , Y

2
k ) Cov(Y 2

0 , YkYk+1) Cov(Y 2
0 , Tk+1 − Tk)

Cov(Y 2
0 , YkYk+1) Cov(Y0Y1, YkYk+1) Cov(Y0Y1, Tk+1 − Tk)

Cov(Y 2
0 , Tk+1 − Tk) Cov(Y0Y1, Tk+1 − Tk) Cov(T1, Tk+1 − Tk)

 . (4.46)

An easy but tedious calculation, cf. Lemma A.17, then shows that

Σ =


Z00 Z01 0
Z10 Z11 − σ2

2(λ+a)2

0 − σ2

2(λ+a)2
1
λ2

 (4.47)

with Z00, Z01, and Z11 as in the proof of Theorem 4.22.
To complete, we define g : R3 → R, (x1, x2, x3) 7→ 1

x3
(x1
x2
− 1) such that

â = g

(
γ∗n(0), γ∗n(1), 1

n

n∑
k=1

Wk+1

)
= λ̂

(
1

ρ∗n(1) − 1
)
.

Henceforth, by the delta-method, cf. Proposition 6.4.3 in Brockwell and Davis [23], we
obtain with µ := (γ(0), γ(1), 1

λ
)

√
n(â− a) d−→ N(0, (∇g(µ))Σ(∇g(µ))′) , n→∞ ,

where

∇g(x) = (∂g/∂x1, ∂g/∂x2, ∂g/∂x3) = (1/(x2x3),−x1/(x2
2x3), 1/x2

3(1− x1/x2))

such that, by a straightforward calculation,

(∇g(µ))Σ(∇g(µ))′ = (λ+ a)4

λ2 W11 − a2

and the result follows.
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Remark 4.24. Note that the shrinking phenomenon observed in the asymptotic variance
of the estimator â with respect to the asymptotic variance of a∗ depends on the non zero
asymptotic covariance between the sample autocovariance γ∗n(1) and the estimator λ̂.

Next, we compare our results to an equidistant sampling method, more precisely to the
one of Theorem 1.35. Sampling at equidistant times ∆, 2∆, . . . , n∆ for ∆ > 0, leads to
an autocovariance function

γeq(h) = E(X0Xh) = σ2
∫
R
f(u)f(u+ h) du = σ2

2ae
−ah , h > 0 ,

from which we conclude that ρeq(∆) = γeq(∆)/γ(0) = e−a∆ and hence

a = − log(ρeq(∆))
∆ . (4.48)

For an estimator of ρeq(∆), i.e. for ρ∗eq(∆) = γ∗eq;n;∆(∆)/γ∗eq;n;∆(0), where

γ∗eq;n;∆(h∆) = 1
n

n∑
t=1

Xt∆X(t+h)∆ , h ∈ N ,

we suggest, given a central limit theorem for ρ∗eq(∆), as an estimator for a from (4.48)

âeq := −
log(ρ∗eq(∆))

∆ .

By Theorem 3.5 of Cohen and Lindner [31], cf. Theorem 1.35, we have
√
n(ρ∗eq(∆)− ρeq(∆)) d−→ N(0, V ) , n→∞ ,

where

V = (η − 3)σ4

γeq(0)2

∫ ∆

0
(g1;∆(u)− ρ(∆)g0;∆)2 du

+
∞∑
k=1

(ρ((k + 1)∆) + ρ((k − 1)∆)− 2ρ(∆)ρ(k∆))2

with
gq;∆ : [0,∆]→ R , u 7→

∞∑
k=−∞

f(u+ k∆)f(u+ (k + q)∆)

given as in Proposition 3.1 of Cohen and Lindner [31]. A simple calculation of V given
the Ornstein-Uhlenbeck kernel and its autocorrelation function and an application of the
delta-method, cf. Lemma A.18, leads to

√
n(âeq − a) d−→ N(0,∆−2(e2a∆ − 1)) , n→∞ .
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4 Lévy driven moving average process sampled at a renewal sequence

Having W1 ∼ Exp(λ), we have an expected waiting time of E(Ti − Ti−1) = 1
λ
in the

random sampling in comparison to an deterministic waiting time of ∆ in the equidistant
sampling. This suggest to compare the variance of the asymptotic distributions of the
estimators â and âeq by choosing λ = 1

∆ or ∆ = 1
λ
, respectively, such that the expected

waiting time of the random sampling and of the deterministic sampling agree. In doing so,
we compare the efficiency of â and âeq depending on λ and a by plotting relative variance
σ2
eff given by

σ2
eff =

(λ+a)4

λ2 W11 − a2

λ2(e2a 1
λ − 1)

,

where W11 given as in (4.45).
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Figure 4.1: σ2
eff depending on a and λ in case of η = 3, 4, 5.
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4.4 An Application to Parameter Estimation of the Ornstein-Uhlenbeck Process

We plot in Figure 4.1 the relative efficiency σ2
eff with respect to the mean reverting

parameter a. The dotted line belongs to η = 3, the solid line to η = 4 and the dashed
line to η = 5.
From the analytic form of σ2

eff , we see that for a → ∞, the denominator becomes big
and therefore the ratio tends to zero. Depending on λ, we see this behavior in the graphs
already for small a.

Considering the Taylor expansions of order 2 of f(a) = (λ+a)4

λ2 W11 − a2 and g(a) =
λ2(e2a 1

λ − 1) at 0, we obtain

f(a) ≈ 2λa+ 6a2 + o(a2)
g(a) ≈ 2λa+ 2a2 + o(a2)

showing that the denominator tends faster to 0 for a ↓ 0 as the numerator, which is
reflected in the graph as σ2

eff ↓ 1 for a ↓ 0.
Summarizing, for small a, the equidistant estimator âeq is more efficient unless λ is not
chosen to be small. By the relation ∆ = 1

λ
, we see that the estimator â becomes more

efficient the lower the sampling frequency is.

λ
η 3 4 5

0.05 0.1288 0.1294 0.1300
0.5 1.2878 1.3455 1.3983
1 2.5755 2.7965 2.9814
2 5.1509 5.9627 6.5465

Table 4.1: Values of a for which â becomes more efficient depending on λ and η.

Table 4.1 shows, depending on λ and η, the smallest value of a for which σ2
eff ≤ 1. For

values of a less than 2, the estimator based on an equidistant sampling is more efficient
than â unless the sampling frequency ∆ is greater than 1.
We see that the non-equidistant sampling performs worse as the kurtosis of the driving
Lévy process increases. The best scenario across all time scales is observed for η = 3
which corresponds to the Brownian motion case.
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5 On sample mean central limit
theorems of multivariate Lévy driven
moving averages

Let L = (Lt)t∈R be a two-sided Rm-valued Lévy process, i.e. a stochastic process with
independent and stationary increments, càdlàg sample paths and L0 = 0 almost surely,
which is continuous in probability. We further assume that L has expectation zero and
finite second moment, and let f : R→ Rd×m in L2(Rd×m), i.e.

L2(Rd×m) :=
{
f : R→ Rd×m measurable :

∫
R
‖f(s)‖2 ds <∞

}
for some norm on Rd×m. For fixed µ ∈ Rd the multivariate continuous time moving
average process with mean µ and kernel function f driven by L denoted by X = (Xt)t∈R
can be defined in the L2-sense by

Xt := µ+
∫
R
f(t− s) dLs , t ∈ R , (5.1)

more precisely,

Xt = µ+
∫
R
f(t− s) dLs := µ+


∑m
j=1

∫
R f

(1,j)(t− s) dL(j)
s

...∑m
j=1

∫
R f

(d,j)(t− s) dL(j)
s

 ,

where the integrals on the right-hand side exist since f ∈ L2(Rd×m) and E ‖L1‖2 < ∞.
X is then as its univariate counterpart strictly stationary.
(5.1) can be considered as continuous time analogue of the discrete time multivariate
moving average process

X̃t = µ+
∑
k∈Z

Ct−kZk , t ∈ Z , (5.2)

where (Zt)t∈Z is an Rm-valued independent and identically distributed (i.i.d.) noise with
expectation zero and covariance matrix Σ, and (Ck = (C(i,j)

k )i,j=1,...,d)k∈Z is a sequence of
Rd×m-valued matrices such that ∑k∈Z |C

(i,j)
k | < ∞ for all i = 1, . . . , d and j = 1, . . . ,m.

The asymptotic behavior of the sample mean of X̃t in (5.2) and the autocorrelation in

97



5 On sample mean central limit theorems of multivariate Lévy driven moving averages

the special case of X̃t in (5.2) being bivariate have been studied for example in Section
11 of Brockwell and Davis [23].

When X in (5.1) is observed on a lattice {∆t : t = 0, 1, 2, . . . }, the asymptotic behavior
of the sample mean and the sample autocorrelation has been studied in various cases
when L and f were assumed to be univariate. In particular, Cohen and Lindner [31],
cf. Theorem 1.34 and 1.35 proved asymptotic normality of the sample mean and the
sample autocorrelation under E(L2

1) <∞ and f ∈ L2(R), and E(L4
1) <∞ and f ∈ L4(R)

plus some extra assumptions, respectively. Spangenberg [62] showed in the long memory
case that under the assumption of E(L4

1) < ∞ for f(t) ∼ Ctt
d−1 for d ∈ (0, 1) and some

constant Cd a central limit theorem where the limit distribution is Rosenblatt, and in case
of a slowly varying Lévy process with index α ∈ (2, 4) that the limit distribution is either
Rosenblatt or a stable distribution, depending on the interplay of d and α. Drapatz [34]
proved for the sample autocovariance function when the Lévy process has infinite variance
with regularly varying tails with index α ∈ (0, 2) that its limit distribution is a stable
distribution whose parameters can be given in terms of the characteristics of the driving
Lévy process.

In this chapter on the one hand we want to study the asymptotic behavior of the sample
mean

∆
Xn := 1

n

n∑
k=1

Xk∆ , n→∞ ,

of the process X as defined in (5.1) when sampled at (∆n)n∈N, where ∆ > 0 is fixed,
thus extending the results of Theorem 1.34 to a multivariate setting. And on the other
hand, we study a renewal sampling of the process X, i.e. we select a sequence of increasing
random times (Tn)n∈Z such that Tn →∞ almost surely (abbreviated a.s.). More in detail,
we assume that W = (Wn)n∈Z\{0} is an i.i.d. sequence of positive supported random
variables independent of the driving Lévy process L and such that P (W1 > 0) > 0. We
then define (Tn)n∈Z by

T0 := 0 and Tn :=


∑n
i=1Wi , n ∈ N ,
−∑−1

i=nWi , −n ∈ N ,
(5.3)

and the sampled process Y = (Yn)n∈Z via

Yn := XTn , n ∈ Z . (5.4)

We thus extend the results of Section 4.2 on the asymptotic normality of the sample mean
of a renewal sampled continuous time moving average process to a multivariate setting.

The chapter is organized as follows. In Section 5.1 we establish a central limit theorem for
the sample mean of a multivariate continuous time moving average process when observed
on a lattice. In Section 5.2 we establish a central limit theorem for the sample mean when
the multivariate moving average process is sampled at a renewal sequence.
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5.1 Asymptotic normality of the sample mean of an equidistant sampled MA

5.1 Asymptotic normality of the sample mean of an
equidistant sampled MA

In this section, we establish a central limit theorem for the sample mean, i.e.

∆
Xn = 1

n

n∑
k=1

Xk∆ ,

for n → ∞ when X is sampled at (∆n)n∈N where ∆ > 0 is fixed. We define Γ(∆h) =
Cov(X0, Xh∆) = (γ(i,j)(∆h))i=1,...,d,j=1,...,m the autocovariance function of the Rd-valued
processX as in (5.1), where we denote with A′ the transpose of a vector or matrix A. It can
be shown that γ(i,i)(∆h) is again an autocovariance function, those of the ith-component
of the process X, cf. Section 11 of Brockwell and Davis [23]. Observe that

γ(i,j)(∆h) = E(X(i)
0 X

(j)
∆h)− µ(i)µ(j)

=
m∑
k=1

m∑
l=1

E
(∫

R
f (i,k)(−s) dL(k)

s

∫
R
f (j,l)(∆h− s) dL(l)

s

)

=
m∑
k=1

m∑
l=1

Cov(L(k)
1 , L

(l)
1 )

∫
R
f (i,k)(s)f (j,l)(∆h+ s) ds , (5.5)

where the last equality follows from the Itô isometry. Then

Γ(∆h) =
∫
R
f(s)ΣLf(s)′ ds

with ΣL to be explained below.
An Rm-valued Lévy processes L = (Lt)t≥0 can be identified by its characteristic triplet
(ΣL, νL, γL) due to the Lévy-Khintchine formula, i.e. if µ denotes the infinitely divisible
distribution of L1, then its characteristic function is given by

µ̂(z) = exp
[
i〈γL, z〉 −

1
2〈z,ΣLz〉+

∫
Rm

(ei〈z,x〉 − 1− i〈z, x〉1{|x|≤1}(x)) νL(dx)
]
, z ∈ Rm .

Here, ΣL is the Gaussian covariance, νL a measure on Rm which satisfies νL({0}) = 0 and∫
R(|x|2 ∧ 1) νL(dx) <∞, where | · | denotes the Euclidean norm, called the Lévy measure,
and γL ∈ R some constant. We denote with (σ(k,l)

L )2 the entries of the covariance matrix,
i.e. the covariance between the lth and kth component of L.
For a detailed account on Lévy processes we refer to the book of Sato [61].
Theorem 5.1. Let L = (Lt)t∈R be an Rm-valued Lévy process with zero mean and finite
covariance matrix ΣL, let µ ∈ R and f ∈ L2(Rd×m) such that X = (Xt)t∈R is defined as
in (5.1). Suppose that ∆ > 0 and(

F̃∆ : [0,∆]→ [0,∞] , u 7→ F̃∆(u) =
∞∑

h=−∞
‖f(u+ h∆)‖

)
∈ L2([0,∆]) . (5.6)

99



5 On sample mean central limit theorems of multivariate Lévy driven moving averages

Then ∑∞h=−∞ ‖Γ(∆h)‖ <∞,

∞∑
h=−∞

Γ(∆h) =
∫ ∆

0
F (s)ΣLF (s)′ ds

=
(

m∑
k=1

m∑
l=1

(σ(k,l)
L )2

∫ ∆

0
F

(i,k)
∆ (s)F (j,l)

∆ (s) ds
)
i,j=1,...,d

,

(5.7)

where F∆(u) = ∑∞
h=−∞ f(u+ h∆), and the sample mean is asymptotically normal, i.e.

√
n(∆

Xn − µ) d−→ N

(
0,
∫ ∆

0
F (s)ΣLF (s)′ ds

)
as n→∞ .

Proof. For convenience we assume that ∆ = 1, and write F = F1 and F̃ = F̃1, respectively.
By (5.6), we have that the functions defined by

F̃ (i,j)(u) :=
∞∑

h=−∞
|f (i,j)(u+ h)|

are in L2([0,∆]) as well for all i = 1, . . . , d and all j = 1, . . . ,m. We continue F and F̃ (i,j)

for all i = 1, . . . , d and j = 1, . . . ,m, respectively, periodically on R by setting

F (u) =
∞∑

h=−∞
f(u+ h) , and F̃ (i,j)(u) =

∞∑
h=−∞

|f (i,j)(u+ h)| , u ∈ R .

By the equivalence of norms, w.l.o.g. we take the 1-norm, i.e. for a matrix A ∈ Rd×m we
have ‖A‖ = ∑d

i=1
∑m
j=1 |a(i,j)|. Then

∞∑
h=−∞

‖Γ(h)‖ =
d∑
i=1

m∑
j=1

∞∑
h=−∞

|γ(i,j)(h)|

≤
d∑
i=1

m∑
j=1

∞∑
h=−∞

∣∣∣∣∣
m∑
k=1

m∑
l=1

(σ(k,l)
L )2

∫
R
f (i,k)(s)f (j,l)(h+ s) ds

∣∣∣∣∣
≤

d∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1
|σ(k,l)
L |2

∫
R
|f (i,k)(s)|

∞∑
h=−∞

|f (j,l)(h+ s)| ds

=
d∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1
|σ(k,l)
L |2

∫ 1

0

∞∑
h=−∞

|f (i,k)(s+ h)|F̃ (j,l)(s) ds

=
d∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1
|σ(k,l)
L |2

∫ 1

0
F̃ (i,k)(s)F̃ (j,l)(s) ds

≤
d∑
i=1

m∑
j=1

m∑
k=1

m∑
l=1
|σ(k,l)
L |2

(∫ 1

0
(F̃ (i,k))2 ds

∫ 1

0
(F̃ (j,l))2 ds

)1/2

ds <∞ , (5.8)
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where the second last inequality follows form the Cauchy-Schwarz inequality. Similar, we
find for each component, by (5.5),

∞∑
h=−∞

γ(i,j)(h) =
∞∑

h=−∞

m∑
k=1

m∑
l=1

(σ(k,l)
L )2

∫
R
f (i,k)(s)f (j,l)(h+ s) ds

=
m∑
k=1

m∑
l=1

(σ(k,l)
L )2

∫
R
f (i,k)(s)

∞∑
h=−∞

f (j,l)(h+ s) ds

=
m∑
k=1

m∑
l=1

(σ(k,l)
L )2

∫ 1

0

∞∑
h=−∞

f (i,k)(s+ h)F (j,l)(s) ds

=
m∑
k=1

m∑
l=1

(σ(k,l)
L )2

∫ 1

0
F (i,k)(s)F (j,l)(s) ds

such that
∞∑

h=−∞
Γ(∆h) =

∫ 1

0
F (s)ΣLF (s)′ ds

which is (5.7).
For the asymptotic normality, by subtracting the mean, we may assume without loss of
generality that µ = 0, and we use the Cramér-Wold theorem, i.e. prove

√
nλ′

1
Xn = 1√

n

n∑
k=1

λ′Xk = 1√
n

n∑
k=1

d∑
i=1

λiX
(i)
k

d−→ N

(
0, λ′

∫ 1

0
F (s)ΣLF (s)′ dsλ

)
∀λ ∈ Rd ,

i.e. we are considering

1√
n

n∑
k=1

d∑
i=1

λiX
(i)
k = 1√

n

n∑
k=1

d∑
i=1

λi
m∑
j=1

∫
R
f (i,j)(k − s) dL(j)

s .

To do so, for a ∈ N, we define fa(s) = (f (i,j)(s)1[−a,a](s)) i=1,...,d
j=1,...,m

such that

Xt;a :=
∫
R
fa(t− s) dLs =

∫ t+a

t−a
f(t− s) dLs =


∑m
j=1

∫ t−a
t−a f

(1,j)(t− s) dL(j)
s

...∑m
j=1

∫ t−a
t−a f

(d,j)(t− s) dL(j)
s

 , t ∈ R ,

is a 2a-dependent process in the sense that (Xt;a)t≤s and (Xt;a)t≥s+2a are independent.
Then also the sequence (λ′Xt;a)t∈R is strictly stationary and 2a-dependent with zero mean
and autocovariance function λ′Γfa(h)λ such that we can use a central limit theorem for 2a-
dependent sequences, cf. Brockwell and Davis [23] Theorem 6.4.2, to obtain for λ′X(a)

n :=
1
n

∑n
k=1 λ

′Xk;a that

√
nλ′X

(a)
n

d−→ Y (a) , n→∞ , with Y (a) d= N(0, νa) , (5.9)
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where

νa =
2a∑

h=−2a
λ′Γfa(h)λ =

2a∑
h=−2a

d∑
i=1

d∑
j=1

λiλjγ
(i,j)
fa

(h)

=
2a∑

h=−2a

d∑
i=1

d∑
j=1

λiλj
m∑
k=1

m∑
l=1

(σ(k,l)
L )2

∫
R
f (i,k)
a (s)f (j,l)

a (h+ s) ds .

Since for all i = 1, . . . , d and j = 1, . . . ,m we have |f (i,j)
a (s)| ≤ |f (i,j)(s)| for all a ∈ N, it

follows by Lebesgue’s dominated convergence theorem that

lim
a→∞

∫
R
f (i,k)
a (s)f (j,l)

a (h+ s) ds =
∫
R
f (i,k)(s)f (j,l)(h+ s) ds ∀i, j, k, l .

From this we conclude that, for all i, j ∈ {1, . . . , d}, lima→∞ γ
(i,j)
fa

(h) = γ(i,j)(h) for
each h ∈ Z, and hence, since ∑∞h=−∞ |λ′Γ(h)λ| < ∞, by the calculation that led to
(5.8), it follows again from Lebesgue’s dominated convergence theorem that lima→∞ va =∑∞
h=−∞ λ

′Γ(h)λ. Hence, by (5.7),

Y (a) d−→ Y , a→∞ , where Y
d= N

(
0, λ′

∫ 1

0
F (s)ΣLF (s)′ dsλ

)
. (5.10)

Next since |f (i,j) − f (i,j)
a | ≤ |f (i,j)| almost everywhere and lima→∞ |f (i,j) − f (i,j)

a | = 0 for
all i = 1, . . . , d, j = 1, . . . ,m, we obtain, by the dominated convergence theorem and a
similar calculation as for νa, that lima→∞ γ

(i,j)
f−fa(h) = 0 for each h ∈ Z and all i = 1, . . . , d,

and j = 1, . . . ,m. Hence, lima→∞
∑∞
h=−∞ γ

(i,j)
f−fa(h) = 0 for all i = 1, . . . , d, j = 1, . . . ,m,

by the calculation that led to (5.8) and the dominated convergence theorem. Then

lim
a→∞

lim
n→∞

Var(
√
n(λ′ 1Xn − λ′X

(a)
n ))

= lim
a→∞

lim
n→∞

nVar
(

d∑
i=1

λi
1
n

n∑
t=1

m∑
k=1

∫
R
f (i,k)(t− s)− f (i,k)

a (t− s) dL(k)
s

)

= lim
a→∞

d∑
i=1

d∑
j=1

λiλj
∞∑

h=−∞
γ

(i,j)
f−fa(h) = 0 ,

where we have used Theorem 7.1.1 in Brockwell and Davis [23] for the second equality.
Then we obtain

lim
a→∞

lim sup
n→∞

P (
√
n|λ′ 1Xn − λ′X

(a)
n | > 0) = 0 ∀ε > 0 ,

by an application of Chebychef’s inequality. This together with (5.9) and (5.10) gives the
claim by an application of a variant of Slutsky’s theorem, cf. Theorem 1.12.
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5.2 Sample mean of renewal sampled multivariate
moving average processes

In this section, we show the asymptotic normality of the sample mean

Y n :=
n∑
k=1

Yk =
n∑
k=1

XTk , n ∈ N , (5.11)

where X = (Xt)t∈R and Y = (Yn)n∈Z are given in (5.1) and (5.3), respectively. Observe
that, by Proposition 4.1, the process Y is strictly stationary.
To do so, we consider a certain truncated continuous time moving average process. There-
fore, for a ∈ N, let fa : R → Rd×m, s 7→ f(s)1[−a/2,a/2] be a kernel function with compact
support, and X(a) = (Xt;a)t∈R be defined by

Xt;a := µ+
∫
R
fa(t− s) dLs = µ+

∫
R
f(t− s)1[−a/2,a/2](t− s) dLs , t ∈ R , (5.12)

where L = (Lt)t∈R is a Lévy process with zero mean and E ‖L1‖2 < ∞, µ ∈ R, and
f ∈ L2(Rd×m). Then the process X(a) = (Xt;a)t∈R is an a-dependent process. Moreover,
X(a) is strictly stationary and, by Proposition 4.1, so is the sequence Y (a) = (Yk;a)k∈Z
defined by

Yk;a = XTk;a , (5.13)

where (Tn)n∈Z is defined as in (5.2) independent of X.
Throughout this section, if not stated otherwise, we denote with ‖A‖ the Euclidean norm
of a matrix or vector A. Observe that ‖A‖ is also called the Frobenius norm of a matrix
A ∈ Rd×m. Observe further that then ‖AB‖ ≤ ‖A‖ ‖B‖ for all A ∈ Rd×m and B ∈ Rm×k,
cf. Proposition 9.3.5 of Bernstein [11].
In the following theorem, we recall the multivariate extension of Theorem 2.7 in Rajput
and Rosinski [59], which characterizes the continuous time moving average process.
Theorem 5.2. Let L = (Lt)t∈R be a Lévy process on Rm with characteristic triplet
(γL,ΣL, νL) and f : R→ Rd×m be a measurable function. Denote with Dm := {x : |x| ≤ 1}
the unit ball in Rm. Then
(a) f is L-integrable (i.e. integrable with respect to the Lévy process L) as a limit in
probability in the sense of Rajput und Rosinski [59] if and only if

(i)
∫
R

∥∥∥∥f(s)γL +
∫
Rm

f(s)x(1Dd(f(s)x)− 1Dm(x)) νL(dx)
∥∥∥∥ ds <∞,

(ii)
∫
R
‖f(s)ΣLf(s)′‖ ds <∞, and

(iii)
∫
R

∫
Rm

(‖f(s)x‖2 ∧ 1) νL(dx) ds <∞.
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(b) If f is L-integrable, the distribution of
∫
R f(s) dLs is infinitely divisible with charac-

teristic triplet (γint,Σint, νint) given by

γint =
∫
R
f(s)γL +

∫
Rm

f(s)x(1Dd(f(s)x)− 1Dm(x)) νL(dx) ds ,

Σint =
∫
R
f(s)ΣLf(s)′ ds , and

νint(B) =
∫
R

∫
Rm

1B(f(s)x) νL(dx) ds for all Borel sets B ⊂ Rd \ {0}.

Corollary 5.3. With a simple calculation, one can show that, if L has expectation zero
and finite second moment and g ∈ L2(Rd×m), then the conditions (i), (ii), and (iii)
of Theorem 5.2 (a) are satisfied and

∫
R g(s) dLs is infinitely divisible with characteristic

triplet (γint,Σint, νint) as given in Theorem 5.2 (b).

The next lemma shows that E(‖Xt‖2 log+ ‖Xt‖) < ∞ for all t ∈ R when we impose
certain conditions on the Lévy process L and the kernel f .

Lemma 5.4. Let X = (Xt)t∈R be a multivariate moving average process, i.e. Xt :=
µ +

∫
R f(t − s) dLs , where f ∈ L2(Rd×m) and L = (Lt)t∈R is an Rm-valued Lévy process

with zero mean. If E(‖L1‖2 log+ ‖L1‖) < ∞, and
∫
R ‖f(s)‖2 log+ ‖f(s)‖ ds < ∞, then

E(‖Xt‖2 log+ ‖Xt‖) <∞ for all t ∈ R.

Proof. W.l.o.g. µ = 0. It is enough to show the assertions for Z =
∫
R f(s) dLs, for which

Z
d=
∫
R f(−s) dLs = X0. By the strict stationarity of X, we obtain the result.

By Corollary 5.3, Z is infinitely divisible with triplet (γZ ,ΣZ , νZ) given by Theorem 5.2
(b). By Theorem 25.3 and Proposition 25.4 of Sato [61], we know that E(‖Z‖2 log+ ‖Z‖) <
∞, if it holds

∫
‖x‖>1 ‖x‖

2 log+ ‖x‖ νZ(dx) < ∞. To see that this is indeed true, observe
that log+ |ab| ≤ log+ |a|+ log+ |b| for a, b ∈ R. Hence,∫

‖x‖>1
‖x‖2 log+ ‖x‖ νZ(dx) ≤

∫
R

∫
Rm
‖f(s)x‖2 log+ ‖f(s)x‖ νL(dx) ds

≤
∫
R
‖f(s)‖2 log+ ‖f(s)‖ ds

∫
Rm
‖x‖2 νL(dx)

+
∫
R
‖f(s)‖2 ds

∫
Rm
‖x‖2 log+ ‖x‖ νL(dx) <∞ ,

since E ‖L1‖2 < ∞,
∫∞

0 ‖f(s)‖2 log+ ‖f(s)‖ ds < ∞,
∫
Rm ‖x‖

2 log+ ‖x‖ νL(dx) < ∞ (as
a consequence of E(‖L1‖2 log+ ‖L1‖) < ∞, cf. Theorem 25.4 of Sato [61]), and f ∈
L2(Rd×m), by assumption.

The next proposition gives the asymptotic normality of the sample mean of Y (a), i.e.
Y

(a)
n := 1

n

∑n
k=1 Yk;a, as n→∞. We denote with Cov(X, Y ) = E(XY ′)−E(X)E(Y ′) the

covariance of Rd-valued, square-integrable random variables X and Y .
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Proposition 5.5. Let Xt;a be defined as in (5.12), where L = (Lt)t∈R is an Rm-valued
Lévy process with E(L1) = 0. Assume that E(‖L1‖2 log+ ‖L1‖) <∞, f ∈ L2(Rd×m), and∫

R
‖f(s)‖2 log+ ‖f(s)‖ ds <∞ .

Let (Tn)n∈Z be as in (5.3) independent of L, and define Y (a) = (Yk;a)k∈Z by (5.13). Then,
for Y (a)

n = 1
n

∑n
k=1 Yk;a, we have

(a) Σ
Y

(a) :=
∑
k∈Z

Cov(Y0;a, Yk;a) exists in [0,∞)d×d and is absolutely convergent.

(b)
√
n
(
Y

(a)
n − µ

)
d−→ N(0,Σ

Y
(a)) as n→∞.

Proof. Observe that (Yk;a)k∈Z is strictly stationary, by Proposition 4.1, and strongly mix-
ing with exponentially decreasing mixing coefficients, by Proposition 4.2. If we can show
that

√
n

(
1
n

n∑
k=1

λ′Yk;a − λ′µ
)

d−→ N(0, λ′Σ
Y

(a)λ) ∀λ ∈ Rh ,

we obtain, by the Cramér-Wold theorem, the assertion of (b).
We obtain, by the assumptions on the Lévy process L, the kernel f , and by Lemma 5.4
that E(‖Y0;a‖2 log+ ‖Y0;a‖) = E(‖X0;a‖2 log+ ‖X0;a‖) < ∞, since Y0;a = X0;a. Therefore
also E(|λ′Y0;a|2 log+ |λ′Y0;a|) <∞ for all λ ∈ Rd. Further, define X̃t;a = Xt;a−µ such that
with Ỹk;a = Yk;a − µ due to the strict stationarity of (Yk;a)k∈Z and since Y0;a = X0;a, we
obtain a sequence with expectation zero. Hence, w.l.o.g. µ = 0.
Observe that (λ′Yk;a)k∈Z is strongly mixing for each λ ∈ Rd with αλ

′Y (a)
k ≤ αY

(a)
k for

all k ∈ N, by Remark 1.8 (a), such that (αλ′Y (a)
k ) is exponentially decreasing. Hence,

the assumptions of Theorem 1.11 hold for λ′Yk;a and (a) and (b) follow immediately.
Observe that the assertion there also holds when λ′Σ

Y
(a)λ = 0, in which case we have

L2-convergence to 0 by Bradley [20], Proposition 8.3.
The following proposition states a result on the convergence of the covariances of Y (a)

towards the ones of Y .
Proposition 5.6. Let X be defined by (5.1) and X(a) by (5.12) such that f ∈ L2(Rd×m)
and L = (Lt)t∈R is a Lévy process with zero mean and E ‖L1‖2 < ∞. The processes Y
and Y (a) are given by (5.4) and (5.13), respectively, with (Tn)n∈Z as in (5.3) and assume
that µ = 0. Then

E(|YkY ′l − Yk;aY
′
l;a|)→ 0 as a→∞ for k, l ∈ Z . (5.14)

Further, it holds

E(YkY ′l ) =
∫
R

E(f(u)ΣLf(T|l−k| + u)′) du for k, l ∈ Z , (5.15)

and similar for E(Yk;aY
′
l;a) with f replaced by fa = f1[−a/2,a/2].
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Proof. We denote with Yk;a := Y
(a)
k , and with Y

(i)
k;a , i = 1, . . . , d, the ith component of

the vector Yk;a. Let Tk be a random time taken from the sequence (Tn)n∈Z and denote
by σ(Tk) the σ-algebra generated by Tk. Observe that ‖fa(u)‖ ≤ ‖f(u)‖ for all u ∈ R.
Denote with f (i,·) the ith row of the matrix valued function f . Then, by conditioning on
Tk, the independence of L and Tk, the Itô Isometry, and Fubini’s theorem,

E‖Yk;a‖2 =
d∑
i=1

E((Y (i)
k;a)2) =

d∑
i=1

E
(

m∑
j=1

∫
R
f (i,j)
a (Tk − u) dL(j)

u

)2

=
d∑
i=1

E
[
E
((

m∑
j=1

∫
R
f (i,j)
a (Tk − u) dL(j)

u

)2∣∣∣∣∣σ(Tk)
)]

=
d∑
i=1

∫
R

E
((

m∑
j=1

∫
R
f (i,j)
a (t− u) dL(j)

u

)2∣∣∣∣∣Tk = t

)
PTk(dt)

=
d∑
i=1

∫
R

m∑
j=1

m∑
l=1

∫
R
f (i,j)
a (t− u)Σ(j,l)

L f (i,l)
a (t− u) duPTk(dt)

=
d∑
i=1

∫
R
f (i,·)
a (u)ΣLf

(i,·)
a (u)′ du

≤
√
d
∫
R
‖fa(u)ΣLfa(u)′‖ du ≤

√
d ‖ΣL‖

∫
R
‖f(u)‖2 du <∞ . (5.16)

Further, observe that

E ‖Yk − Yk;a‖2 = E
∥∥∥∥∥
∫
R
f(Tk − u) dLu −

∫
R
f(Tk − u)1[−a/2,a/2](Tk − u) dLu

∥∥∥∥∥
2

= E
∥∥∥∥∥
∫
R\[Tk−a/2,Tk+a/2]

f(Tk − u) dLu
∥∥∥∥∥

2

= E
[
E
(∥∥∥∥∥
∫
R\[Tk−a/2,Tk+a/2]

f(Tk − u) dLu
∥∥∥∥∥

2∣∣∣∣∣σ(Tk)
)]

=: E(I) . (5.17)

By the Doob-Dynkin Lemma there exists a measurable function ϕa : [0,∞) → R such
that ϕa ◦ Tk = I. Define

ϕa(t) := E
[
E
(∥∥∥∥∥
∫
R\[t−a/2,t+a/2]

f(t− u) dLu
∥∥∥∥∥

2∣∣∣∣∣Tk = t

)]
,

then obviously ϕa ◦Tk = I. But, since L is independent of (Tn)n∈Z, we obtain, by a similar
calculation as for (5.16),

0 ≤ ϕa(t) = E
(∥∥∥∥∥
∫
R\[t−a/2,t+a/2]

f(t− u) dLu
∥∥∥∥∥

2)

≤
√
d ‖ΣL‖

∫
R\[t−a/2,t+a/2]

‖f(t− u)‖2 du→ 0 as a→∞ ,
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since f ∈ L2(Rd×m). Hence ϕa(Tk(ω))→ 0 as a→∞ for all k ∈ Z and all ω ∈ Ω.
Define

ϕ(t) :=
√
d ‖ΣL‖

∫
R
‖f(t− u)‖2 du =

√
d ‖ΣL‖

∫
R
‖f(u)‖2 du .

Then E(ϕ ◦ Tk) < ∞ such that, since |ϕa ◦ Tk| ≤ |ϕ ◦ Tk|, we obtain by the dominated
convergence theorem for (5.17)

E ‖Yk − Yk;a‖2 = E(I) = E(ϕa ◦ Tk)→ 0 as a→∞ . (5.18)

Henceforth, by (5.16), (5.18), and the Cauchy-Schwarz inequality,

E
∥∥∥YkY ′l − Yk;aY

′
l;a

∥∥∥ = E
∥∥∥YkY ′l − Yk;aY

′
l;a + Yk;aY

′
l − Yk;aY

′
l

∥∥∥
≤ E(‖Yk;a‖ ‖Yl − Yl;a‖) + E(‖Yl‖ ‖Yk − Yk;a‖)

≤
√

E ‖Yk;a‖2
√

E ‖Yl − Yl;a‖2 +
√

E ‖Yl‖2
√

E ‖Yk − Yk;a‖2 → 0

for a→∞, i.e. (5.14).
For the last statement (5.15), let w.l.o.g. k, l ∈ N0 and k ≤ l. First observe that, due to
the strict stationarity of Y , we have E(YkYl) = E(Y0Yk−l) and, by the independence of
Tk−l and L and the same calculation that lead to (5.5),

E(X0, X
′
Tk−l

) = E(E(X0X
′
Tk−l
|σ(Tk−l)))

=
∫
R

E(X0X
′
t|Tk−l = t)PTk−l(dt)

=
∫
R

E(X0X
′
t)PTk−l(dt)

=
∫
R

∫
R
f(u)ΣLf(u+ t)′ duPTk−l(dt) =

∫
R

E(f(u)ΣLf(u+ Tk−l)′) du

which gives (5.15).
Now we are in the position to prove the asymptotic normality of Y n in (5.11). We denote
with d−→ convergence in distribution.
Theorem 5.7. Let X be defined as in (5.1) such that µ ∈ R, L has expectation zero and
E(‖L1‖2 log+ ‖L1‖) < ∞, f ∈ L2(Rd×m), and

∫
R ‖f(s)‖2 log+ ‖f(s)‖ ds < ∞. Let Y be

defined by (5.4) with (Tn)n∈Z as in (5.3) independent of L. Assume that∫
R
‖f(u)‖

∞∑
k=1

E ‖f(Tk + u)‖ du <∞ . (5.19)

Then
(a) Σ2

Y
:= ∑

k∈Z Cov(Y0, Yk) exists in [0,∞)d×d, is absolutely convergent, and

ΣY =
∑
k∈Z

∫
R
f(u)ΣLE(f(Tk + u)′) du . (5.20)

(b)
√
n (Y n − µ) d−→ N(0,ΣY ) as n→∞.
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Proof. Define X̃t = Xt − µ such that with Ỹk = Yk − µ due to the strict stationarity of
(Yk)k∈Z and since Y0 = X0, we obtain a sequence with expectation zero. Hence, w.l.o.g.
µ = 0.
(a) Observe that E ‖Y0‖2 = E ‖X0‖2 < ∞ since f ∈ L2(Rd×m) and L has finite second
moment. Further, by (5.15) and (5.19) together with the dominated convergence theorem

∑
k∈Z
‖E(Y0Y

′
k)‖ =

∑
k∈Z

∥∥∥∥∥
∫
R
f(u)ΣLE(f(Tk + u)′) du

∥∥∥∥∥
≤ ‖ΣL‖

∫
R
‖f(u)‖

∑
k∈Z

E ‖f(Tk + u)‖ du <∞ . (5.21)

This gives the absolute summability of Σ2
Y
and a similar calculation without the modulus

gives (5.20).
(b) Using the Cramér-Wold theorem, it is enough to show that

√
nλ′Y n

d−→ N(0, λ′ΣY λ) as n→∞ ∀λ ∈ Rd . (5.22)

By Proposition 5.5, we have that the sample mean of the sequence (Yk;a)k∈Z as in (5.13)
defined via the a-dependent process (Xt;a)t∈R as in (5.12) is asymptotically normal, i.e.
we obtain

√
nλ′Y

(a)
n

d−→ Z(a) with Z(a) d= N(0, λ′Σ
Y

(a)λ) ∀λ ∈ Rd . (5.23)

By Proposition 5.6, we have that E(Y0;aY
′
k;a)→ E(Y0Y

′
k) as a→∞ and, since∑

k∈Z
|E(λ′Y0;aY

′
k;aλ)| ≤ ‖λ‖2 ∑

k∈Z

∥∥∥E(Y0;aY
′
k;a)

∥∥∥
≤ ‖λ‖2 ‖ΣL‖

∫
R
‖f(u)‖

∑
k∈Z

E ‖f(Tk + u)‖ du <∞ ,

by (5.21) and ‖fa(u)‖ ≤ ‖f(u)‖ for all u ∈ R, it follows from the dominated convergence
theorem that lima→∞ λ

′Σ
Y

(a)λ = λ′ΣY λ. Hence,

Z(a) d−→ Z as a→∞ with Z
d= N(0, λ′ΣY λ) ∀λ ∈ Rd . (5.24)

Define for k ∈ Z

Yk;f−fa :=
∫
R
f(Tk − u)− f(Tk − u)1[−a/2,a/2](Tk − u) dLu

=
∫
R\[Tk−a/2,Tk+a/2]

f(Tk − u) dLu .

Then (Yk;f−fa)k∈Z is strictly stationary, by Proposition 4.1. Further,

|E(λ′Y0;f−faY
′
k;f−faλ)| ≤ ‖λ‖2 ‖E(Y0;f−faY

′
k;f−fa)‖

≤ ‖λ‖2 ‖Σ‖
∫
R\[−a/2,a/2]

‖f(u)‖2 du→ 0
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as a→∞ since f ∈ L2(Rd×m). Since, by (5.21),∑
k∈Z
|E(λ′Y0;f−faY

′
k;f−faλ)| ≤ ‖λ‖2 ‖ΣL‖

∫
R
‖f(u)‖

∑
k∈Z

E ‖f(Tk + u)‖ du <∞ ,

the dominated convergence theorem yields lima→∞
∑
k∈Z |E(λ′Y0;f−faY

′
k;f−faλ)| = 0.

Hence, by Theorem 7.1.1 in Brockwell and Davis [23],

lim
a→∞

lim
n→∞

Var(n1/2(λ′Y n − λ′Y
(a)
n )) = lim

a→∞
lim
n→∞

nVar
(

1
n

n∑
k=1

λ′Yk;f−fa

)
= lim

a→∞

∑
k∈Z

E(λ′Y0;f−faY
′
k;f−faλ) = 0 .

An application of Chebychef’s inequality yields then

lim
m→∞

lim sup
n→∞

P (n1/2|λ′Y n − λ′Y
(a)
n | > ε) = 0 ∀ ε > 0 .

Together with (5.23) and (5.24), the claim follows by a variant of Slutsky’s Lemma, cf.
Theorem 1.12.
Remark 5.8. (a) When (Tn)n∈Z is deterministic, i.e. Tn = ∆n for n ∈ Z and some
∆ > 0, we established the asymptotic normality in Theorem 5.1 under the condition
(5.6). Observe that (5.6) implies (5.19) since∫

R
‖f(u)‖

∞∑
k=1
‖f(∆k + u)‖ du =

∞∑
j=−∞

∫ ∆

0
‖f(u+ ∆j)‖

∞∑
k=−1

‖f(u+ ∆k)‖ du

≤
∫ ∆

0
|F̃∆(u)|2 du .

So, Theorem 5.7 generalizes Theorem 5.1 to the case of a renewal sampling sequence
(Tn)n∈Z at the cost of the slightly more restrictive conditions E(‖L1‖2 log+ ‖L1‖) < ∞
and

∫
R ‖f(s)‖2 log+ ‖f(s)‖ ds <∞.

(b) Proposition 5.5, Proposition 5.6 and Theorem 5.7 generalize Proposition 4.5, Propo-
sition 4.6 and Theorem 4.7 of Section 4.2 to a multivariate setting. Choosing in Theorem
5.7 the kernel function f ∈ L2(R) and L as a univariate Lévy process with zero mean and
second finite moment, we see that condition (5.19) reduces to (4.19) of Theorem 4.7.
Remark 5.9. Condition (5.19) is satisfied, for example, for ‖f(u)‖ ≤ K(|u|−α ∧ 1) with
α > 1 and K > 0.
To see this, observe that for some Cα∫

R
‖f(u)‖ ‖f(t+ u)‖ du ≤ Cα(|t|−α ∧ 1) .

Hence,∫
R
‖f(u)‖

∞∑
k=1

E ‖f(Tk + u)‖ du ≤ Cα
∞∑
k=1

P (Tk ≤ 1) + Cα
∞∑
k=1

E(T−αk 1{Tk>1}) , (5.25)

and the two sums on the right-hand side of (5.25) converges as seen in Remark 4.9.
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A.1 Kronecker Product, Vectorizing, and the Stochastic
Integral

Definition A.1. (Kronecker Product and Vectorizing Operator)
Let A ∈ Rn×m and B ∈ Rl×k. Then the Kronecker product A ⊗ B ∈ Rnl×mk of A and B
is the partitioned matrix

A⊗B :=


a11B a12B . . . a1mB
... ... . . . ...

an1B an2B . . . anmB

 .
Let A ∈ Rn×m and denote with Aj the j-th column of A. The vectorizing operator is
defined as

vec(A) :=


A1
...
Am

 ∈ Rnm .

More informations of the properties of the Kronecker product and the vectorizing oper-
ator can be found in Bernstein [11]. The following properties in conjunction with the
multivariate stochastic integral hold, see also Lemma 2.1 in Behme [9]. For a matrix
A ∈ Rn×m we denote by A′ ∈ Rm×n its transposed.
Lemma A.2. Let X = (Xt)t≥0, Y = (Yt)t≥0, and Z = (Zt)t≥0 be Rd×d-valued semi-
martingales. Then it holds for all t ≥ 0

(i)
∫

(0,t]
(I ⊗ Ys−) d(I ⊗Xs) = I ⊗

(∫
(0,t]

Ys− dXs

)
,

(ii)
∫

(0,t]
d(Xs ⊗ I)(Ys− ⊗ I) =

(∫
(0,t]

dXsYs−

)
⊗ I,

(iii)
∫

(0,t]
d(I ⊗Xs)(I ⊗ Ys−) = I ⊗

(∫
(0,t]

dXsYs−

)
,

(iv)
∫

(0,t]
(I ⊗ Ys−) d(Xs ⊗ I) =

∫
(0,t]

d(Xs ⊗ I)(I ⊗ Ys−), and

(v) [I ⊗X·, X· ⊗ I]t = [X· ⊗ I, I ⊗X·]t.
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Further, it holds together with the vec-operator

(vi) vec
(∫

(0,t]
Xs− dYs Zs−

)
=
∫

(0,t]
(Z ′s− ⊗Xs−) d(vec(Ys))

(vii) vec
(∫

(0,t]
dYsXs−

)
=
∫

(0,t]
d(I ⊗ Ys)(vec(Xs−))

(viii) vec
(∫

(0,t]
Xs− dY ′s

)
=
∫

(0,t]
d(Ys ⊗ I)(vec(Xs−))

(ix) vec
[
X·,

∫
(0,·]

Ys− dX ′s
]
t

=
∫

(0,t]
d[I ⊗X·, X· ⊗ I]svec(Ys−)

(x) vec[X·, Y·]t = [I ⊗X·, vec(Y·)]t
(xi) vec[Y·, X ′· ]t = [X· ⊗ I, vec(Y·)]t
(xii) vec [X·, [Y,X ′]·]t = [[I ⊗X,X ⊗ I]·, vec(Y·)]t = vec [[X, Y ]·, X ′· ]t .

Proof. Follows from the properties of the multivariate stochastic integral and the defini-
tion of the vectorizing operator and the Kronecker product.

A.2 MGOU Processes

Here we give a short overview of multivariate generalized Ornstein-Uhlenbeck processes
needed in Chapter 3.

Stochastic Logarithm

Definition A.3. (Multivariate Stochastic Logarithm)
Let Z = (Zt)t≥0 be a GL(R,m)-valued semimartingale with Z0 = I and Zt− ∈ GL(R,m),
t > 0. Then the left stochastic logarithm

←−
Log (Z) and the right stochastic logarithm

−→
Log (Z) of Z are defined by

←−
Log (Z)t =

∫
(0,t]

Z−1
s− dZs , and

−→
Log (Z)t =

∫
(0,t]

dZsZ−1
s− , t ≥ 0 , (A.1)

respectively.
Proposition A.4. Let F = (Ft)t≥0 be a filtration satisfying the usual hypotheses. Then
for every F-Lévy process X = (Xt)t≥0 in Rm×m satisfying (3.5), the stochastic exponential
Zt =

←
E (X)t (resp.

→
E (X)t) is a left (resp. right) F-Lévy process in GL(R,m).

Conversely, if Z = (Zt)t≥0 is a left (resp. right) F-Lévy process in GL(R,m), then Z is
an F-semimartingale and

←−
Log (Z) (resp.

−→
Log (Z)) is an additive Lévy process in Rm×m

satisfying (3.5).
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Proof. Proposition 2.4 in Behme and Lindner [8].
Remark A.5. Under the assumption of the previous proposition it holds

←−
Log

(←
E (X)

)
t

= Xt and
−→
Log

(→
E (X)

)
t

= Xt .

Definition and Properties of MGOU processes

As in Behme and Lindner [8] we define
Definition A.6. Let (X, Y ) = (Xt, Yt)t≥0 be a Lévy process in Rm×m×Rm, such that X
satisfies

det(I + ∆Xt) 6= 0 ∀ t ≥ 0 , (A.2)

and let V0 be a random variable in Rm. Then the Rm-valued process V = (Vt)t≥0 given
by

Vt =
←
E (X)−1

t

(
V0 +

∫
(0,t]

←
E (X)s− dYs

)
, t ≥ 0 , (A.3)

is called a multivariate generalized Ornstein-Uhlenbeck (MGOU) process driven by (X, Y ).
The MGOU process will be called casual or non-anticipative, if V0 is independent of (X, Y ),
and strictly non-causal if Vt is independent of (Xs, Ys)0≤s<t for all t ≥ 0.

Behme and Lindner [8] defined the MGOU process to satisfy the random recurrence
equation

Vt = As,tVs +Bs,t a.s. , 0 ≤ s ≤ t , (A.4)

for random functionals (As,t)0≤s≤t, (Bs,t)0≤s≤t satisfying the following Assumption A.7.
This was motivated by what de Haan and Karandikar did in there paper Embedding a
stochastic difference equation into a continuous-times process [33] to define the generalized
Ornstein-Uhlenbeck (GOU) process.
Assumption A.7. Suppose that the GL(R,m) × Rm-valued random functional denoted
by (As,t, Bs,t)0≤s≤t with At,t = I and Bt,t = 0 a.s. for all t ≥ 0 satisfies the following four
conditions.
(a) For all 0 ≤ u ≤ s ≤ t almost surely

Au,t = As,tAu,s and Bu,t = As,tBu,s +Bs,t .

(b) For all 0 ≤ a ≤ b ≤ c ≤ d the families of random matrices {(As,t, Bs,t) , a ≤ s ≤ t ≤ b}
and {(As,t, Bs,t) , c ≤ s ≤ t ≤ d} are independent.
(c) For all 0 ≤ s ≤ t

(As,t, Bs,t) d= (A0,t−s, B0,t−s) .
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(d) It holds

lim
t↓0

A0,t = I and lim
t↓0

B0,t = 0 in probability .

With Definition A.6, it is then easy to see that Vt with (As,t, Bs,t)0≤s≤t defined by(
As,t
Bs,t

)
=
 ←

E (X)−1
t

←
E (X)s←

E (X)−1
t

∫
(s,t]

←
E (X)u− dYu

 a.s. , 0 ≤ s ≤ t ,

where (Xt, Yt)t≥0 are as in Definition A.6, satisfies the stated random recurrence equation
(A.4), Vt and (As,t, Bs,t)0≤s≤t are independent, and (As,t, Bs,t)0≤s≤t satisfies Assumption
A.7. This was shown in Behme and Lindner [8] as well as the following two results
Theorem A.8. Let a stochastic basis (Ω,F ,F = (Ft)t≥0, P ) with F satisfying the usual
hypotheses be given.
(a) Let (X, Y ) = (Xt, Yt)t≥0 be a Lévy process in Rm×m × Rm, such that (X, Y ) is a
semimartingale with respect to F and X satisfies (A.2), and let V = (Vt)t≥0 be the MGOU
process driven by (X, Y ) with F0-measurable starting random variable V0. Then V solves
the stochastic differential equation (SDE)

dVt = dUtVt− + dLt , t ≥ 0 , (A.5)

where (U,L) = (Ut, Lt)t≥0 is another Lévy process in Rm×m × Rm with

Ut := −Xt + [X,X]ct +
∑

0<s≤t

(
(I + ∆Xs)−1 − I + ∆Xs

)
, t ≥ 0 , (A.6)

i.e. it holds ←
E (X)−1

t =
→
E (U)t , t ≥ 0 ,

and L given by

Lt = Yt +
∑

0<s≤t

(
(I + ∆Xs)−1 − I

)
∆Ys − [X, Y ]ct , t ≥ 0 . (A.7)

The process U satisfies

det(I + ∆Ut) 6= 0 ∀ t ≥ 0 . (A.8)

(b) Conversely, if (U,L) is a Lévy process in Rm×m × Rm, such that (U,L) is a semi-
martingale with respect to F and U satisfies (A.8), and V0 is an Rm-valued F0-measurable
starting random variable, then the solution to (A.5) is an MGOU process driven by (X, Y ),
where (X, Y ) is a Lévy process defined by

(
Xt

Yt

)
=


←−
Log

(→
E (U)−1

t

)
Lt +

[ ←−
Log

(→
E (U)−1

)
, L
]
t

 , t ≥ 0 ,

and X satisfies (A.2).
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Proposition A.9. Let a stochastic basis (Ω,F ,F = (Ft)t≥0, P ) with F satisfying the usual
hypotheses be given. Let (X, Y ) be a Lévy process in Rm×m × Rm such that X satisfies
(A.2) and let (U,L) be defined by (A.6) and (A.7). Then

Lt = Yt + [U, Y ]t , t ≥ 0 ,

and

Yt = Lt + [X,L]t , t ≥ 0 .

Moments of MGOU Processes

Lemma A.10. Let L = (Lt)t≥0 be a Lévy process, (Ω,F ,F = (Ft)t≥0, P ) be a stochastic
basis with F the natural filtration of L, and H = (Ht)t≥0 an adapted, càdlàg process.
Suppose there exists a κ ≥ 1 such that E|L1|κ <∞ and E sup0<t≤1 |Ht|κ <∞. Then

E
[

sup
0<t≤1

∣∣∣∣∣
∫

(0,t]
Hs− dLs

∣∣∣∣∣
κ]
<∞ .

In particular, if E|L1| <∞ and E sup0<t≤1 |Ht| <∞, for t > 0 it holds

E
[∫

(0,t]
Hs− dLs

]
= E[L1]

∫
(0,t]

E[Hs−] ds .

Proof. Lemma 6.1 in Behme [7].
A multivariate extension yields
Lemma A.11. Let (Lt)t≥0 be a Lévy process in Rm×m and (Ht)t≥0 an adapted, càdlàg
process in Rm×m. If E ‖L1‖ <∞ and E sup0<t≤1 ‖Ht‖ <∞, then it holds for t > 0

E
[∫

(0,t]
Hs− dLs

]
=
∫

(0,t]
E[Hs−] d(sE[L1]) .

This allows us to formulate the following
Proposition A.12. Let (Xt)t≥0 be a Lévy process in Rd×d and suppose for some fixed
κ > 0 that E ‖X1‖κ <∞. Then it holds

E
[

sup
0≤s≤t

∥∥∥∥←E (X)s
∥∥∥∥κ
]
<∞ and E

[
sup

0≤s≤t

∥∥∥∥→E (X)s
∥∥∥∥κ
]
<∞ for all t ≥ 0 .

Especially for κ = 1 we get

E
[←
E (X)t

]
= E

[→
E (X)t

]
= exp(tE [X1]) for all t ≥ 0 .

Proof. Proposition 3.1 in Behme [9].

115



A Appendix

Proposition A.13. Let (U,L) = (Ut, Lt)t≥0 be a Lévy process in Rd×d × Rd×n such that
U satisfies (A.8). Let V = (Vt)t≥0 be a strictly stationary solution of the SDE (A.5) with
starting value V0 independent of (U,L). Assume that for κ > 0 we have for some t0 > 0

E ‖U1‖max{κ,1} <∞ , E ‖L1‖max{κ,1} <∞ and E
∥∥∥∥←E (U)t0

∥∥∥∥κ < 1 . (A.9)

Then E ‖V0‖κ < ∞. Further if (A.9) holds for κ = 1, then E[U1] is invertible and in
particular it holds

E[V0] = −E[U1]−1E[L1] .

Proof. Proposition 3.3 in Behme [9].

Proposition A.14. Let (U,L) = (Ut, Lt)t≥0 be a Lévy process in Rd×d × Rd such that U
satisfies (A.8). Let V = (Vt)t≥0 be a strictly stationary solution of the SDE (A.5) with
starting value V0 independent of (U,L). Suppose that it holds E ‖U1‖ ,E ‖L1‖ ,E ‖Vs‖2 <
∞, then for 0 ≤ s ≤ t we have

Cov(Vt, Vs) = e(t−s)E[U1] Cov(Vs) ,

where Cov(Vt, Vs) = E[VtV ′s ]−E[Vt]E[V ′s ] and Cov(Vs) = E[VsV ′s ]−E[Vs]E[V ′s ] denoting
the covariance matrix of Vs.
In particular, if V is strictly stationary, (A.9) holds for κ = 2 and we denote

C = E[U1]⊗ I + I ⊗ E[U1] + E[U1 ⊗ U1]− E[U1]⊗ E[U1] ,

then the matrix

D =
∫ ∞

0

∫ s

0
euC(e(s−u)(E[U1]⊗I) + e(s−u)(I⊗E[U1])) du ds

is finite. Now, if either E[L1] = 0 or U and L are independent, we obtain

Cov(Vt, Vs) = e(t−s)E[U1]·
· vec−1(−C−1vec(Cov(L1)) + (D − (E[U1]⊗ E[U1])−1)vec(E[L1]E[L′1])) .

Proof. Proposition 3.4 in Behme [9].

Stationary solutions of MGOU processes

Theorem A.15. Suppose that (X, Y ) = (Xt, Yt)t≥0 is a Lévy process in Rm×m × Rm

such that X satisfies (A.2). Let V = (Vt)t≥0 be the MGOU process driven by (X, Y ) and
let (U,L) = (Ut, Lt)t≥0 be the Lévy processes defined in (A.6) and (A.7). Suppose ‖·‖
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is a submultiplicative matrix norm and that E [log+ ‖U1‖] < ∞ and E [log+ ‖L1‖] < ∞.
Assume further that there exists a t0 > 0 such that

E
[
log

∥∥∥∥←E (U)t0
∥∥∥∥] < 0 .

Then limt→∞
←
E (U)t = 0 almost surely and the integral

∫
(0,t]

←
E (U)s− dLs converges almost

surely for t→∞ to a finite random variable. Further, a finite Rm-valued random variable
V0 independent of (X, Y ) can be chosen with

V0
d= d− lim

t→∞

∫
(0,t]

←
E (U)s− dLs ,

such that V is uniquely determined and strictly stationary.

Proof. Remark 5.5 (b) together with Theorem 5.4 (iv)⇒ (iii)⇒ (i) and Theorem 5.2 (a)
of Behme and Lindner [8].

A.3 Detailed Calculations on the Results of Section 4.4

This section is dedicated to the detailed calculation of some expressions in Section 4.1,
which have been left out there for a more fluent reading experience.
Lemma A.16. The distributional variance of

√
n(ρ∗n(1)− ρ(1)) d−→ N(0,W11) , n→∞ ,

appearing in the proof of Theorem 4.22, is of the form (4.45), which is

W11 =
(

λ

λ+ 2a −
λ2

(λ+ a)2

)
((η − 3)a+ 3) + 2a

λ+ 2a , (A.10)

Proof. Recall that, by Theorem 4.20 (c),

W11 = (Z11 − 2ρ(1)Z01 + ρ(1)2Z00)/γ(0)2 = 4a2

σ4

(
Z11 − 2 λ

a+ λ
Z01 +

(
λ

a+ λ

)2

Z00

)

with
Zpq = σ4

p−1∑
k=−q+1

Cov(F (0, Tp), F (Tk, Tk+q)) +
∑
k∈Z

κf (p, k, k + q) ,

and

κf (p, k, k + q) := (η − 3)σ4
∫
R
f(u)E(f(u+ Tp)f(u+ Tk)f(u+ Tk+q)) du

+ σ4E(F (0, Tk)F (Tp, Tk+q)) + σ4E(F (0, Tk+q)F (Tp, Tk)) ,
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for k, p, q ∈ Z, given as in Proposition 3.19, where also F (s, t) =
∫
R f(s + u)f(t + u) du.

Here we have f(u) = e−au1[0,∞)(u). Recall that by Remark 4.16, if p = 0 or q = 0, the
first sum in Zpq vanishes.

It therefore remains to calculate

Z11 = σ4Var(F (0, T1)) +
∑
k∈Z

κf (1, k, k + 1) , (A.11)

Z01 =
∑
k∈Z

κf (0, k, k + 1) , and (A.12)

Z00 =
∑
k∈Z

κf (0, k, k) . (A.13)

Recall that W1 ∼ Exp(λ) for some λ > 0, and hence Tn ∼ Γ(n, λ), i.e. with density
gΓ(u) = λn

Γ(n)x
n−1e−λx. We then start with (A.11), more precisely

σ4Var(F (0, T1)) = E(F (0, T1)2)− E(F (0, T1))2

= σ4E
((∫ ∞

0
e−aue−a(T1+u) du

)2)
− E

((∫ ∞
0

e−aue−a(T1+u) du
))2

= σ4

4a2

(
E(e−2aT1)− E(e−aT1)2

)
= σ4

4a2

(∫ ∞
0

e−2atλe−λt dt−
(∫ ∞

0
e−atλe−λt dt

)2)

= σ4

4a2

(
λ

λ+ 2a

∫ ∞
0

(λ+ 2a)e−(λ+2a)t dt− λ2

(λ+ a)2

(∫ ∞
0

(λ+ a)e−(λ+a)t dt
)2)

= σ4

4a2

(
λ

λ+ 2a −
λ2

(λ+ a)2

)
(A.14)

From this we see that E(e−aT1) = λ
λ+2a . For the sum in (A.11), we differentiate the

following three cases. First, consider k = 0, then

κf (1, 0, 1) = (η − 3)σ4
∫ ∞

0
e−auE(e−a(u+T1)e−aue−a(u+T1)) du

+ σ4E
(∫ ∞

0
e−2au du

∫ ∞
−T1

e−2a(u+T1) du
)

+ σ4E
(∫ ∞

0
e−2aue−aT1 du

∫ ∞
−T1

e−2aue−aT1 du
)

= (η − 3)σ4
∫ ∞

0
e−4au duE(e−2aT1) + σ4

4a2 + σ4

4a2 E(e−2aT1)

= σ4

4a2
λ

λ+ 2a

(
(η − 3)a+ 2 + 2a

λ

)
. (A.15)
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Next, let k ≥ 1, then, since

E(e−2aTk−1) =
∫ ∞

0
e−2at λk−1

Γ(k − 1)t
k−2e−λt dt

=
(

λ

λ+ 2a

)k−1 ∫ ∞
0

(λ+ 2a)k−1

Γ(k − 1) t(k−1)−1e−(λ+2a)t dt =
(

λ

λ+ 2a

)k−1

,

for k ≥ 1, we obtain

κf (1, k, k + 1) = (η − 3)σ4
∫ ∞

0
e−auE(e−a(u+T1)e−a(u+Tk)e−a(u+Tk+1)) du

+ σ4E
(∫ ∞

0
e−2aue−aTk du

∫ ∞
−T1

e−2aue−2a(T1+Tk+1) du
)

+ σ4E
(∫ ∞

0
e−2aue−aTk+1 du

∫ ∞
−T1

e−2aue−2a(T1+Tk) du
)

= (η − 3)σ
4

4aE(e−a(T1+Tk+Tk+1)) + 2σ4

4a2 E(e−aTke2aT1e−a(T1+Tk+1))

= σ4

4a2

(
(η − 3)aE(e−3aT1)E(e−2a

∑k

i=2 Wi)E(e−aWk+1)

+ 2E(e−aTk)E(e2a
∑k

i=2 Wi)E(e−aWk+1)
)

= σ4

4a2

(
(η − 3)aE(e−3aT1)E(e−2aTk−1)E(e−aT1)

+ 2E(e−aTk)E(e2aTk−1)E(e−aTk+1)
)

= σ4

4a2

(
(η − 3)a λ

λ+ 3a
λ

λ+ a

(
λ

λ+ 2a

)k−1

+ 2 λ

λ+ a

λ

λ+ a

(
λ

λ+ 2a

)k−1)

= σ4

4a2
λ

λ+ a

(
λ

λ+ 2a

)k−1(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)
.

From the latter, we conclude

∞∑
k=1

κf (1, k, k + 1) = σ4

4a2
λ

λ+ a

∞∑
k=1

(
λ

λ+ 2a

)k−1(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)

= σ4

4a2
λ

λ+ a

λ+ 2a
2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)
. (A.16)

Now, if −k ≥ 1, we obtain, since T−k d= −Tk

κf (1,−k,−k + 1) = (η − 3)σ4
∫ ∞
−T−k

e−auE(e−a(u+T1)e−a(u+T−k)e−a(u+T−k+1)) du
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+ σ4E
(∫ ∞

T−k
e−2aue−aT−k du

∫ ∞
−T−k+1

e−2aue−2a(T1+T−k+1) du
)

+ σ4E
(∫ ∞

T−k+1
e−2aue−aT−k+1 du

∫ ∞
−T−k

e−2aue−2a(T1+T−k) du
)

= σ4

4a2 E(e−aT1)
(

(η − 3)aE(e3aT−ke−aT−k+1) + 2E(eaT−keaT−k+1)
)

= σ4

4a2
λ

λ+ a

(
(η − 3)aE(e2aT−k+1e−3aW−k) + 2E(ea(T−k+T−k+1))

)

= σ4

4a2
λ

λ+ a
E(e−2aTk−1)

(
(η − 3)aE(e−3aW1) + 2E(e−aW1)

)

= σ4

4a2
λ

λ+ a

(
λ

λ+ 2a

)k−1(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)
.

such that
∞∑
k=1

κf (1,−k,−k + 1) = σ4

4a2
λ

λ+ a

λ+ 2a
2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)
. (A.17)

From (A.14) together (A.15), (A.16), and (A.17) we derive for (A.11)

Z11 = σ4

4a2

(
λ

λ+ 2a −
λ2

(λ+ a)2 + 2λ
λ+ a

λ+ 2a
2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)

+ λ

λ+ 2a

(
(η − 3)a+ 2 + 2a

λ

))
,

and hence, since γ(0) = σ4

4a2 ,

Z11

γ(0)2 = λ

λ+ 2a −
λ2

(λ+ a)2 + 2λ
λ+ a

λ+ 2a
2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)

+ λ

λ+ 2a

(
(η − 3)a+ 2 + 2a

λ

)
.

(A.18)

We turn our attention to (A.12). First, the case k = 0

κf (0, 0, 1) = (η − 3)σ4
∫ ∞

0
e−4auE(e−aT1) du+ 2σ4E

(∫ ∞
0

e−2au du
∫ ∞

0
e−2aue−aT1 du

)

= σ4

4a2
λ

λ+ a
((η − 3)a+ 2) . (A.19)

Next, when k ≥ 1, we obtain

κf (0, k, k + 1) = (η − 3)σ4
∫ ∞

0
e−4auE(e−aTke−aTk+1) du
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+ 2σ4E
(∫ ∞

0
e−2aue−aTk du

∫ ∞
0

e−2aue−aTk+1 du
)

= σ4

4a2

(
(η − 3)aE(e−2aTk)E(e−aW1) + 2E(e−2aTk)E(e−aW1)

)

= σ4

4a2
λ

λ+ a

(
λ

λ+ 2a

)k
((η − 3)a+ 2)

such that together with (A.19)
∞∑
k=0

κf (0, k, k + 1) = σ4

4a2
λ

λ+ a

∞∑
k=0

(
λ

λ+ 2a

)k
((η − 3)a+ 2)

= σ4

4a2
λ

λ+ a

λ+ 2a
2a ((η − 3)a+ 2) . (A.20)

When −k ≥ 1,

κf (0,−k,−k + 1) = (η − 3)σ4
∫ ∞
−T−k

e−4auE(e−aT−ke−aT−k+1) du

+ 2σ4E
(∫ ∞
−T−k

e−2aue−aT−k du
∫ ∞
−T−k+1

e−2aue−aT−k+1 du
)

= σ4

4a2

(
(η − 3)aE(e−2aTk−1)E(e−3aW1) + 2E(e−2aTk−1)E(e−aW1)

)

= σ4

4a2

(
λ

λ+ 2a

)k−1(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)
and so

∞∑
k=1

κf (0,−k,−k + 1) = σ4

4a2
λ+ 2a

2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)
. (A.21)

This gives for (A.12), by (A.20) and (A.21),

Z01 = σ4

4a2
λ+ 2a

2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

+ λ

λ+ a
((η − 3)a+ 2)

)
,

and hence, since ρ(1) = λ
λ+a ,

2ρ(1)Z01

γ(0)2 = 2λ
λ+ a

λ+ 2a
2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

+ λ

λ+ a
((η − 3)a+ 2)

)
. (A.22)

Last but not least, we consider (A.13). We start with the case k = 0

κf (0, 0, 0) = (η − 3)σ4
∫ ∞

0
e−4au du+ 2σ4E

(∫ ∞
0

e−2au du
∫ ∞

0
e−2au du

)

= σ4

4a2 ((η − 3)a+ 2) . (A.23)
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Next, when k ≥ 1, we obtain

κf (0, k, k) = (η − 3)σ4
∫ ∞

0
e−4auE(e−2aTk) du+ 2σ4E

((∫ ∞
0

e−2aue−aTk du
)2)

= σ4

4a2

(
λ

λ+ 2a

)k
((η − 3)a+ 2)

such that together with (A.23)
∞∑
k=0

κf (0, k, k) = σ4

4a2
λ+ 2a

2a ((η − 3)a+ 2) . (A.24)

When −k ≥ 1,

κf (0,−k,−k) = (η − 3)σ4
∫ ∞
−T−k

e−4auE(e−2aT−k) du+ 2σ4E
((∫ ∞

−T−k
e−2aue−aT−k du

)2)

= σ4

4a2

(
(η − 3)aE(e−2aTk) + 2E(e−2aTk)

)

= σ4

4a2

(
λ

λ+ 2a

)k
((η − 3)a+ 2)

and so
∞∑
k=1

κf (0,−k,−k) = σ4

4a2
λ

2a((η − 3)a+ 2) . (A.25)

This gives for (A.13), by (A.24) and (A.25),

Z00 = σ4

4a2
λ+ a

a
((η − 3)a+ 2) ,

and hence

2ρ(1)2Z01

γ(0)2 =
(

λ

λ+ a

)2
λ+ a

a
((η − 3)a+ 2) . (A.26)

Overall, using in the following expression (A.18), (A.22), and (A.26), we obtain

W11 = (Z11 − 2ρ(1)Z01 + ρ(1)2Z00)/γ(0)2

= λ

λ+ 2a −
λ2

(λ+ a)2 + 2λ
λ+ a

λ+ 2a
2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)

+ λ

λ+ 2a

(
(η − 3)a+ 2 + 2a

λ

)
− 2λ
λ+ a

λ+ 2a
2a

(
(η − 3) aλ

λ+ 3a + 2λ
λ+ a

)
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− 2
(

λ

λ+ a

)2
λ+ 2a

2a ((η − 3)a+ 2) +
(

λ

λ+ a

)2
λ+ a

a
((η − 3)a+ 2)

= λ

λ+ 2a −
λ2

(λ+ a)2 + λ

λ+ 2a((η − 3)a+ 2) + 2a
λ+ 2a −

(
λ

λ+ a

)2

((η − 3)a+ 2)

=
(

λ

λ+ 2a −
λ2

(λ+ a)2

)
((η − 3)a+ 3) + 2a

λ+ 2a ,

which is (A.10).
Lemma A.17. The asymptotic variance of

√
n

((
γ∗n(0), γ∗n(1), 1

n

n∑
k=1

Wk+1

)
−
(
γ(0), γ(1), 1

λ

))
d−→ N(0,Σ) , n→∞ ,

appearing in the proof of Theorem 4.23 is given by (4.46), i.e. of the form

Σ =
∑
k∈Z

 Cov(Y 2
0 , Y

2
k ) Cov(Y 2

0 , YkYk+1) Cov(Y 2
0 , Tk+1 − Tk)

Cov(Y 2
0 , YkYk+1) Cov(Y0Y1, YkYk+1) Cov(Y0Y1, Tk+1 − Tk)

Cov(Y 2
0 , Tk+1 − Tk) Cov(Y0Y1, Tk+1 − Tk) Cov(T1, Tk+1 − Tk)



=


Z00 Z01 0
Z10 Z11 − σ2

2(λ+a)2

0 − σ2

2(λ+a)2
1
λ2

 (A.27)

Proof. Observe that

Σ =
∑
k∈Z

(
Cov(Y 2

0 , Y
2
k ) Cov(Y 2

0 , YkYk+1)
Cov(Y 2

0 , YkYk+1) Cov(Y0Y1, YkYk+1)

)
=
(

Z00 Z01
Z10 Z11

)

follows directly from Theorem 4.20 (a). Since Tk+1 − Tk ⊥⊥ X2
0 for all k ∈ Z,∑

k∈Z
Cov(Y 2

0 , Tk+1 − Tk) =
∑
k∈Z

Cov(X2
0 , Tk+1 − Tk) = 0 .

By the i.i.d. property of (Tk+1− Tk)k∈Z and the assumption that Tk+1− Tk ∼ Exp(λ), we
obtain ∑

k∈Z
Cov(T1, Tk+1 − Tk) = Var(T1, T1) = 1

λ2 .

Further, since Tk+1−Tk ⊥⊥ T1 for all k ∈ Z\{0}, E(X0XT1) = σ2

2a
λ

λ+a , E(X0, Xt) = σ2

2ae
−at,

and E(T1) = 1
λ
, we calculate∑

k∈Z
Cov(Y0Y1, Tk+1 − Tk) = Cov(Y0Y1, T1)

= E(X0XT1T1)− E(X0XT1)E(T1)
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=
∫

[0,∞)
E(X0Xtt)PT1(dt)− σ2

2a
1

λ+ a

=
∫

[0,∞)
t
σ2

2ae
−atλe−λt dt− σ2

2a
1

λ+ a

= σ2

2a
λ

(λ+ a)2

∫
[0,∞)

t2−1

γ(2)λe
−(λ+a)t dt− σ2

2a
1

λ+ a

= σ2

2a

(
λ

(λ+ a)2 −
1

λ+ a

)

= σ2

2a
−a

(λ+ a)2 = − σ2

2(λ+ a)2 .

So, we obtain the form given in (A.27).
Lemma A.18. The mean-reverting parameter of the OU process X = (Xt)t∈R can be
given in terms of the autocorrelation function as in (4.48) such that we suggest as an
estimator

âeq := −
log(ρ∗eq(∆))

∆ ,

where ρ∗eq(∆) = γ∗eq;n;∆(∆)/γ∗eq;n;∆(0) with γ∗eq;n;∆(h∆) = 1
n

∑n
t=1Xt∆X(t+h)∆, for h ∈ N.

Then âeq satisfies
√
n(âeq − a) d−→ N(0,∆−2(e2a∆ − 1)) , n→∞ .

Proof. By Theorem 3.5 of Cohen and Lindner [31], cf. also Theorem 1.35, we have
√
n(ρ∗eq(∆)− ρeq(∆)) d−→ N(0, V ) , n→∞ ,

where

V = (η − 3)σ4

γeq(0)2

∫ ∆

0
(g1;∆(u)− ρ(∆)g0;∆)2 du

+
∞∑
k=1

(ρ((k + 1)∆) + ρ((k − 1)∆)− 2ρ(∆)ρ(k∆))2

with
gq;∆ : [0,∆]→ R , u 7→

∞∑
k=−∞

f(u+ k∆)f(u+ (k + q)∆)

given as in Proposition 3.1 of Cohen and Lindner [31].
Observe that

g0;∆(u) =
∞∑

k=−∞
f(u+ k∆)2 =

∞∑
k=−∞

1[−k∆,∞)(u)e−2a(u+k∆)
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and

g1;∆(u) =
∞∑

k=−∞
f(u+ k∆)f(u+ (k + 1)∆)

=
∞∑

k=−∞
1[−k∆,∞)(u)1[−(k+1)∆,∞)(u)e−a(u+k∆)e−a(u+(k+1)∆)

=
∞∑

k=−∞
1[−k∆,∞)(u)e−2a(u+k∆)e−a∆

such that, since ρ(∆) = e−a∆,

(η − 3)σ4

γ(0)2

∫ ∆

0
g1;∆(u)− ρ(∆)g0;∆(u) du = 0 .

Henceforth, we obtain

V =
∞∑
k=1

(ρ((k + 1)∆) + ρ((k − 1)∆)− 2ρ(∆)ρ(k∆))2

=
∞∑
k=1

(e−a(k+1)∆ + e−a(k−1)∆ − 2e−a∆e−ak∆)2

=
∞∑
k=1

(e−a(k−1)∆ − e−a(k+1)∆)2

=
∞∑
k=0

(e−2a∆)k − 2
∞∑
k=1

(e−2a∆)k +
∞∑
k=1

(e−2a∆)k+1

= 1
1− e−2a∆ − 2

(
1

1− e−2a∆ − 1
)

+
(

1
1− e−2a∆ − 1− e−2a∆

)
= 1− e−2a∆ .

To complete the proof, define h∆ : (0,∞)→ R, x 7→ − log(x)
∆ with h′∆(x) = − 1

∆x such that
h∆(ρ∗eq(∆)) = âeq and the delta-method, cf. Proposition 6.4.3 in Brockwell and Davis
[23], yields

√
n(âeq − a) d−→ N(0, h′∆(ρ(∆))V h′∆(ρ(∆))) , n→∞ ,

where
h′∆(ρ(∆)) = − 1

∆ea∆ ,

which then gives the result.
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