
Construction and Decoding of Evaluation Codes
in Hamming and Rank Metric

DISSERTATION
zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS
(DR.-ING.)

der Fakultät für Ingenieurwissenschaften,
Informatik und Psychologie der Universität Ulm

von

Sven Puchinger
geboren in Karlsruhe

Gutachter: Prof. Dr.-Ing. Martin Bossert
Prof. Dr. Tom Høholdt

Amtierender Dekan: Prof. Dr. Frank Kargl

Ulm, 25. Juni 2018

Für Emma und Sandra.

Acknowledgments

This dissertation contains parts of my work as a research assistant at the Institute
of Communications Engineering at Ulm University, Germany, from January 2014
to April 2018. During this time, many people inspired, motivated, and supported
me, and I am profoundly thankful to them.

First of all, I would like to thank Martin Bossert for being an excellent doctoral adviser.
Martin provided an extraordinarily inspiring and motivating research environment. This
includes his contagious enthusiasm for new research problems and mathematical tools, his
support for starting new research collaborations, and the freedom that he gives to his doctoral
students. Furthermore, he is an enthusiastic teacher and encourages his students to think
outside the (research) box as well. I would also like to thank Martin for supporting all my
conference travels and other research stays.
I feel very grateful and honored that Tom Høholdt was the second examiner of this disser-

tation, especially since Tom’s book (with Jørn Justesen) was—besides Martin’s book—one
of the first ones that I read about coding theory and which encouraged me to work in this
research area. I would also like to thank Christian Waldschmidt and Maurits Ortmanns for
being on my committee.
During my time as a doctoral student, I learned a lot from Johan Rosenkilde né Nielsen,

Antonia Wachter-Zeh, and Vladimir (Volodya) Sidorenko, for which I am very thankful.
Johan, with his always enthusiastic way of doing research (and everything else), has been a
great co-author and mentor. His ideas and detailed comments made a significant contribution
to the results presented in this thesis. Antonia already advised me during my bachelor’s thesis,
and, with her encouraging manner, she motivated me to work in coding theory. She has a
great intuition for interesting research topics and is always full of ideas, some of which have
found their way into this dissertation. I would also like to thank Volodya for the inspiring
discussions about open research problems that we have had, and the numerous chocolate bars
that helped solving some of them.
Several colleagues have made my time at Ulm University fun and enjoyable. In particular, I

would like to thank Sven Müelich for being a great co-author, travel mate, and moral support,
Mostafa Hosni Mohamed for being an awesome office mate and for the fantastic discussions,
and George Yammine for the entertaining early-morning coffee breaks. Moreover, thanks to
all the other colleagues at the institute for the great time.
During my time as a doctoral student, I (co-)advised several talented bachelor’s and mas-

ter’s thesis student: Frederik Walter, David Mödinger, Karim Ishak, Yonatan Marin, Michael
Zurell, Ranjith Ponnusamy, Sven Kahle, Veniamin Stukalov, Liming Fan, and Carmen Sippel.
I enjoyed working together with them.
I would like to thank my co-authors that have not been mentioned above: Peter Beelen,

Irene Bouw, Yuval Cassuto, Michael Cyran, Robert F. H. Fischer, Evyatar Hemo, Matthias
Hiller, Johannes B. Huber, Ludwig Kürzinger, Wenhui Li, Julian Renner, John Sheekey,
Georg Sigl, Ulrich Speidel, and Sebastian Stern.
Furthermore, I am grateful to Irene Bouw, Sven Müelich, Cornelia Ott, Vladimir Sidorenko,

and Antonia Wachter-Zeh for proofreading parts of this dissertation.

iii

Finally, I would like to thank my family, in particular my parents Susanne and Jürgen and
my sister Anouk, who have always supported, encouraged, and motivated me through my
entire life. I am also infinitely grateful to my wife Sandra and my daughter Emma for always
loving and supporting me: you make me happy every day.

Ulm, June 2018 Sven Puchinger

iv

Abstract

This dissertation considers constructions and decoders of several evaluation codes in
Hamming and rank metric. Codes in Hamming metric have been studied since
the 1950s and the known codes considered in this thesis have found many appli-
cations, e.g., satellite communication, CDs, DVDs, BluRays, RAID systems, QR

codes, code-based cryptography, and modern storage systems. Rank-metric codes were first
introduced in 1978 and have recently become an active research area due to their possible
applications in network coding, cryptography, distributed storage systems, low-rank matrix
recovery, and space-time coding.

In Hamming metric, we propose new partial unique decoding algorithms for decoding inter-
leaved Reed–Solomon and interleaved one-point Hermitian codes beyond half the minimum
distance. The algorithms combine ideas of collaborative decoding of interleaved codes and
power decoding. For interleaved Reed–Solomon codes, we achieve the same maximal decoding
radius as the previous best decoder, but at a better complexity. Our decoder for interleaved
one-point Hermitian codes improves upon the previous best maximal decoding radius at all
rates. Simulation results for various parameters indicate that both algorithms achieve their
maximal decoding radii with high probability for random errors.
Inspired by a recent rank-metric code construction by Sheekey, called twisted Gabidulin

codes, we present a new code class in Hamming metric: Twisted Reed–Solomon codes. The
class contains many maximum distance separable (MDS) codes that are inequivalent to Reed–
Solomon codes. We study the duals and Schur squares of the new codes and propose a list
decoder that is efficient for many parameters. Furthermore, we single out two subclasses of
long non-Reed–Solomon MDS codes and show that there is a subclass resisting some known
structural attacks on the McEliece code-based cryptosystem.
In rank metric, we present the first sub-quadratic runtime half-the-minimum-distance de-

coding algorithm for Gabidulin codes, a well-known class of maximum rank distance (MRD)
codes that can be seen as the rank-metric analog of Reed–Solomon codes. The result is
achieved by accelerating many operations over skew polynomial rings that occur in a known
decoding algorithm.
Further, we show that the core steps of several known decoding algorithms for interleaved

Gabidulin codes, both key-equation- and interpolation-based, can be implemented using row
reduction of skew polynomial matrices. By adapting well-known row-reduction algorithms
over ordinary polynomial rings to skew polynomials, we achieve conceptually simple and in
some cases faster decoding algorithms. The approach is inspired by several recent publications
that found a unified description of various decoders of Reed–Solomon, one-point Hermitian,
and their interleaved codes.
Finally, we propose a generalization of Sheekey’s twisted Gabidulin codes, using similar

methods as for our twisted Reed–Solomon codes. The new code class contains many MRD
codes that are inequivalent to both Gabidulin codes and the original twisted Gabidulin codes.

v

vi

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Basic Terminology . 5

2.1.1 Block Codes . 5
2.1.2 Notation . 6

2.2 Codes in Hamming Metric . 7
2.2.1 Reed–Solomon Codes . 8
2.2.2 One-Point Hermitian Codes . 9
2.2.3 Interleaved Codes in Hamming Metric 11

2.3 Codes in Rank Metric . 12
2.3.1 Skew Polynomial Rings . 14
2.3.2 Modules over Skew Polynomial Rings 17
2.3.3 Gabidulin Codes . 19
2.3.4 Interleaved Gabidulin Codes . 20
2.3.5 Twisted Gabidulin Codes . 21
2.3.6 Rank-Metric Codes over Fields of Characteristic Zero 22

Part I: Codes in Hamming Metric 25

3 Improved Power Decoding of Interleaved Codes in Hamming Metric 25
3.1 Improved Power Decoding of Interleaved Reed–Solomon Codes 28

3.1.1 Key Equations . 28
3.1.2 Solving the Key Equations . 30
3.1.3 Decoding Radius . 33
3.1.4 Failure Behavior . 36
3.1.5 Simulation Results . 38

3.2 Improved Power Decoding of Interleaved One-Point Hermitian Codes 39
3.2.1 Key Equations . 39
3.2.2 Solving the Key Equations . 41
3.2.3 Decoding Radius and Failure Behavior 44
3.2.4 Simulation Results . 47

3.3 Comparison of the New Decoders . 48
3.4 Concluding Remarks . 51

vii

Contents

4 Twisted Reed–Solomon Codes 53
4.1 Definition . 54
4.2 A Sufficient Condition for Twisted RS Codes to be MDS 55
4.3 Decoding . 58
4.4 Dual Codes . 60
4.5 Schur Squares . 62

4.5.1 Schur Squares of Twisted RS Codes 63
4.5.2 Codes with Maximal Schur Square Dimension 65

4.6 Relation to Reed–Solomon Codes . 69
4.6.1 Low-Rate Non-GRS Twisted RS Codes 69
4.6.2 A Combinatorial Inequivalence Argument 70
4.6.3 Separation from GRS Codes Using Schur Squares 74

4.7 Subclasses of Long MDS Twisted RS Codes 75
4.7.1 (∗)-Twisted Reed–Solomon Codes . 76
4.7.2 (+)-Twisted Reed–Solomon Codes . 79
4.7.3 Computer Searches . 81

4.8 Twisted RS Codes in the McEliece Cryptosystem 83
4.8.1 Twisted RS Codes Resisting Some Known Structural Attacks 85
4.8.2 Example Parameters Resulting in Small Key Sizes 88

4.9 Concluding Remarks . 89

Part II: Codes in Rank Metric 93

5 Fast Decoding of Gabidulin Codes 93
5.1 Decoding Gabidulin Codes up to Half the Minimum Distance 93
5.2 Fast Operations on Skew Polynomials . 96

5.2.1 Multiplication . 98
5.2.2 Division . 101
5.2.3 Minimal Subspace Polynomials and Multi-Point Evaluation 102
5.2.4 Interpolation . 106
5.2.5 σ-Transform . 107

5.3 Concluding Remarks . 109

6 Decoding Interleaved Gabidulin Codes Using Row Reduction 111
6.1 Implementing Known Decoding Algorithms Using Row Reduction 112

6.1.1 Key-Equation-Based Decoding . 112
6.1.2 Interpolation-Based Decoding . 115

6.2 Row Reduction of Skew Polynomial Matrices 117
6.2.1 The Mulders–Storjohann Algorithm over Skew Polynomials 117
6.2.2 Orthogonality Defect and Cost of the Mulders–Storjohann Algorithm 119
6.2.3 A Divide-&-Conquer Variant: Alekhnovich’s Algorithm 123

6.3 Specialized Row Reduction Algorithms for the Decoding Problems 127
6.3.1 Key-Equation Based Decoding: Rosenkilde’s Demand-Driven Algorithm 127
6.3.2 Interpolation-Based Decoding: Weak Popov Walk 130

6.4 Concluding Remarks . 132

viii

Contents

7 Generalizations of Twisted Gabidulin Codes 135
7.1 Definition . 135
7.2 A Sufficient Condition for Twisted Gabidulin Codes to be MRD 136
7.3 A Suboptimal Decoder . 139
7.4 Inequivalence to Other MRD Codes . 143
7.5 Twisted Gabidulin Codes in the GPT Cryptosystem 147
7.6 Concluding Remarks . 147

8 Conclusion 149

A Appendices 151
A.1 Efficiently Decoding Interleaved Reed–Solomon and One-Point Hermitian Codes151
A.2 Proof of Theorem 4.21 (Schur Squares of Shortened Codes) 154
A.3 Optimal Multiplication of Skew Polynomials of Degree m 156

A.3.1 Relation of Skew Polynomial and Matrix Multiplication 156
A.3.2 Faster Implementation of a Known Multiplication Algorithm 157
A.3.3 Optimality of the Multiplication Algorithm 158

A.4 Key Equations Solvable with the MgLSSR Problem 159

B List of Symbols and Acronyms 161

Bibliography 167

ix

1
Introduction

Coding Theory has its roots in the pioneering publications by Shannon [Sha48] and
Hamming [Ham50]. Shannon developed a mathematical theory that formalized
information transmission through communication channels and gave limits on how
much redundancy must be added to information in order to transmit it error-

free asymptotically. Though non-constructive, his statements lead to fundamental limits of
communication systems, whose practical achievability has been studied since then. Hamming
proposed one of the first constructive classes of error-correcting codes and introduced the
Hamming distance, a metric that measures the distance of codewords by counting the number
of positions in which they disagree. Within the last 70 years, his findings have resulted in a
rich theory of codes and metrics tailored to different communication channels.
In this dissertation, we consider the problem of constructing and decoding codes in two

metrics: Hamming and rank metric. All considered codes are algebraic block codes, which are
sets of vectors of fixed length over a—typically finite—field. Furthermore, they are evaluation
codes, which are defined by evaluating certain polynomials. When constructing block codes,
one usually aims at finding codes of large cardinality whose codewords are pairwise far apart in
a given metric, i.e., they have a large minimum distance. Motivated by Shannon’s asymptotic
statements, longer codes are often preferred over short codes and many applications require
a small field size relative to the length. Decoding means to find close codewords to a received
word with respect to a given metric, e.g., in order to correct errors introduced by the channel.
Generally, the aim is to find decoding algorithms that are fast and can correct many errors,
i.e., have a large decoding radius.
The Hamming metric is the natural one for many communication channels and the codes

designed for this metric are widely used. Among these codes are Reed–Solomon (RS) codes
[RS60], which arise from evaluating low-degree univariate polynomials and are maximum
distance separable (MDS), i.e., they attain Singleton’s upper bound [Sin64] on the minimum
distance with equality. Their applications range from satellite communication [WHPH87],
error-correction in CDs/DVDs/BluRays [HTV82], RAID-6 [Anv04], QR codes [OM11], to
modern storage applications (see e.g. the overview in [DDKM16, Section I.B]). RS codes can
be decoded beyond half the minimum distance in polynomial time, cf. [GS98, Wu08, SSB10,
Ros18]. Furthermore, the problem of fast decoding of RS codes is solved asymptotically: Using
well-known methods from computational algebra, most RS decoders can be implemented in
quasi-linear time in the code length, see, e.g., [Jus76, CJN+15, NRS17].

The length of RS codes, and conjecturally all non-trivial MDS codes (cf. [Seg55]), is upper-
bounded by their field size plus a small constant. In the last decades, many inequivalent

1

1 Introduction

constructions of MDS codes of length in the order of their field size have been found, see,
e.g., [MS77, RL89a, RS85].
One-point Hermitian codes are, besides RS codes, one of the most-studied class of algebraic

geometry (AG) codes [Gop83]. By evaluating certain bivariate polynomials at points on the
Hermitian curve, they achieve larger lengths compared to RS codes at the cost of a slightly
reduced minimum distance. These codes can also be decoded beyond half their minimum
distance [GS98, HN99, Kam14, NB15], and the corresponding algorithms can be implemented
with sub-quadratic time in the code length, cf. [NB15].

Interleaved codes are direct sums of codes of the same length and, when designed for the
Hamming metric, are used to correct burst errors, i.e., errors that occur at the same positions
in the constituent codewords. Such errors occur, e.g., in data storage applications (see, e.g.,
[KL97]) or when decoding concatenated codes, cf. [KL98, JTH04, SSB05, SSB09]. In the last
decades, many algorithms for decoding interleaved Reed–Solomon codes have been proposed
[KL97, BKY03, CS03, PV04, BMS04, Par07, SSB07, SSB09, CH13, WZB14]. The largest
decoding radius is achieved by [PV04, CH13]. For interleaved one-point Hermitian codes,
there are comparably fewer decoding algorithms [BMS05, Kam14].
The second metric that we consider is the rank metric, which was first considered in coding

theory by Delsarte [Del78], Gabidulin [Gab85], and Roth [Rot91]. Codes in this metric can
be interpreted as sets of matrices whose distance is determined by the rank of their difference.
The codes have applications in network coding [KK08, SKK08], cryptography [GPT91, FL06,
Ove08, Loi10, Loi16, WPR18], distributed storage systems [SRV12], construction and decod-
ing of space-time codes [GBL00, BGL02, LFT02, LGB03, Rob15a, PSBF16], and low-rank
matrix recovery [FS12, MPB17b].
The first and most prominent representatives of this code class are Gabidulin codes [Del78,

Gab85, Rot91], which are defined by evaluating so-called skew polynomials of low degree
and can be seen as the rank-metric analog of Reed–Solomon codes. Gabidulin codes are
maximum rank distance (MRD) codes, i.e., they fulfill the rank-metric Singleton bound with
equality. It was recently shown by Raviv and Wachter-Zeh [RW15, RW16] that certain classes
of Gabidulin codes cannot be list decoded at any radius beyond half the minimum distance,
which means that a general polynomial-time list decoder—analog to the Guruswami–Sudan
or Wu list decoder for RS codes—does not exist for these codes. All existing algorithms for
decoding up to half the minimum distance [Gab85, Rot91, Gab91, PT91, RP04a, RP04b,
SKK08, SK09, GY08, SRB11, WAS13, Wac13, SB14] have at least quadratic runtime in the
code length, and, despite several advances accelerating parts of the algorithms [SB14, SK09,
HS10, WAS13, Wac13], it has been an open problem whether Gabidulin codes can be decoded
in sub-quadratic time.
Besides Gabidulin codes, only a few classes of MRD codes, and rank-metric codes in general,

are known. Recently, Sheekey [She16] presented twisted Gabidulin codes, a class of MRD codes
that are inequivalent to Gabidulin codes, and which arise from the latter by slightly modifying
the set of evaluation polynomials.
Interleaved Gabidulin codes were introduced by Loidreau and Overbeck [LO06] for crypto-

graphic applications and can be used for overhead reduction in network coding, cf. [SKK08].
By considering synchronized rank errors, analog to burst errors in Hamming metric, one can
decode beyond half the minimum distance with high probability [LO06, SB10, SJB11, WZ13,
Wac13].

2

Outline

In Chapter 2, we give an introduction to the known methods and codes that we consider
in this dissertation. We first recall fundamental mathematical and coding-theory-specific
notions. Then, we discuss codes in Hamming metric, more specifically Reed–Solomon, one-
point Hermitian codes, and interleaved codes thereof. Finally, we recall properties of the rank
metric and skew polynomial rings. We give the definition of Gabidulin, interleaved Gabidulin
and twisted Gabidulin codes as evaluation codes of these polynomials.

The remaining chapters contain new results. Since most of these findings are already
published, we give the corresponding references at the end of each chapter introduction. The
thesis is formally divided into two parts: Chapters 3 and 4 deal with codes in Hamming metric
and Chapters 5, 6, and 7 contain results on rank-metric codes. Despite this separation, the
parts are closely related, as mentioned in detail below.
In Chapter 3, we present new decoding algorithms for interleaved Reed–Solomon and

interleaved one-point Hermitian codes. Simulation results indicate that the algorithms suc-
ceed for most errors up to the derived maximal decoding radius, but—as all comparable
algorithms—fail for some errors beyond the unique decoding radius. The approach combines
the ideas of power decoding of RS [SSB06, SSB10] and one-point Hermitian codes [Kam14,
NB15], respectively, with collaborative decoding of interleaved codes [SSB09, SSB07, WZB14],
and the recently developed improved power decoding principle [Ros18]. For interleaved RS
codes, we obtain the same maximal decoding radius as [PV04, CH13], but at a better com-
plexity. The maximal decoding radius of our decoder for interleaved one-point Hermitian
codes improves upon the previous best one [BMS05, Kam14] at all rates.
Chapter 4 introduces a new code class, twisted Reed–Solomon codes, which is motivated

by Sheekey’s twisted Gabidulin codes [She16], utilizing the similarity of RS and Gabidulin
codes. Compared to Sheekey’s codes, we significantly generalize the construction based on
modifying the evaluation polynomials. We also use different methods for their analysis. First,
we derive a sufficient condition for the codes to be MDS. Although this yields short codes
in general, we show in the subsequent sections that subclasses of longer (half the field size)
MDS twisted RS codes exist. Our decoding algorithm makes use of well-known RS decoders,
or in some cases even decoders for interleaved RS codes, where we can utilize the algorithm
from Chapter 3. We present a subclass of twisted RS codes that are closed under duality,
and show that many low-rate codes have much larger Schur square dimension than RS codes.
The latter observation proves the inequivalence of these codes to RS codes, which we also
study from a combinatorial perspective. Finally, we analyze the new codes in the McEliece
cryptosystem, a candidate for post-quantum public-key cryptography based on coding theory.
We show that subclasses of twisted RS codes resist some known structural attacks on variants
of the system based on RS codes.

We consider fast decoding of Gabidulin codes in Chapter 5. First, we recall the algorithm
by Wachter-Zeh et al. [WAS13] for decoding up to half the minimum distance, phrase it in
skew polynomial language, and identify the skew polynomial operations that determine the
algorithm’s runtime. Inspired by well-known fast algorithms for ordinary polynomials, which
are, for instance, used for fast decoding of RS codes, we prove that all these operations can
be implemented in sub-quadratic time in the polynomials’ degrees. This results in the first
decoder for Gabidulin codes with sub-quadratic complexity in the code length.
Chapter 6 shows that the core steps of several known algorithms for decoding interleaved

3

1 Introduction

Gabidulin codes can be solved by row reduction of skew polynomial matrices. The approach
is inspired by the recent unification of various decoding algorithms for decoding RS and
one-point Hermitian codes [Ale05, LO08, BB10, CH10, Nie13a, Nie13b, Nie14, NB15, Ros18]
(cf. the overview in [Nie13b]) which also forms the algorithmic basis of the algorithms in
Chapter 3. Then, we adapt well-known row reduction algorithms for matrices over ordinary
polynomial rings to skew polynomial matrices and analyze their runtime. In this way, the
core steps of many decoding algorithms for interleaved Gabidulin codes become flexible,
conceptually simple, and in some cases faster.

In Chapter 7, we use our results on twisted RS codes to widely generalize Sheekey’s
construction of twisted Gabidulin codes. We use similar methods as in Chapter 4 to derive
a sufficient condition for the codes to be MRD. Furthermore, we show that many of the new
codes are inequivalent to both Gabidulin and Sheekey’s twisted Gabidulin codes.
The thesis is concluded in Chapter 8.

4

2
Preliminaries

Block codes are subsets of finite-dimensional vector spaces whose elements’ distance
is measured with respect to a given metric. In this section, we give a brief overview
of definitions and properties of several codes. Although they are considered in
two different metrics, Hamming and rank metric, they share many fundamental

properties and methods for analyzing and decoding them.
We introduce basic notation in Section 2.1, recall Hamming-metric codes and their prop-

erties in Section 2.2, and provide an overview of rank-metric codes in Section 2.3.

2.1 Basic Terminology
2.1.1 Block Codes
Coding theory commonly considers two general classes of codes: Infinite and finite length
codes. The latter ones, also called block codes, were first studied by Golay [Gol49] and
Hamming [Ham50], and all codes in this thesis belong to this family. They are defined as
follows. Let F be a field, n a positive integer, and d(·, ·) : Fn × Fn → R≥0 a metric1 on Fn.
Definition 2.1. A (block) code C(n,M, d) over F of length n, cardinality M , and minimum
distance d with respect to the metric d(·, ·) is a subset C ⊆ Fn of M = |C| elements that fulfill

d = min
c1,c2∈C
c1 6=c2

d(c1, c2).

The elements of a code are called codewords. A code is called linear if it is a vector space
over its base field F. In this case, the dimension k of the code is defined by the dimension of
C as an F-vector space and we write C[n, k, d] or C[n, k]. A linear code has rate R = k

n .
A generator matrix G of a linear code C is a basis of the code, written as the rows of G.

The dual code C⊥ of C is the orthogonal complement of C, i.e., the set of vectors y ∈ Fn such
that c ·y> = 0 for all c ∈ C. A parity-check matrix H is a generator matrix of the dual code.

If a metric is translation invariant, i.e., d(x,y) = d(x + z,y + z) for all x,y, z ∈ Fn, the
minimum distance of a linear code is determined by the minimum distance of all non-zero
codewords to the zero codeword, i.e., d = minc∈C\{0} d(c,0).

All codes in this thesis are evaluation codes, which are codes of the following form.
Definition 2.2. Let R be a polynomial ring2 in which each polynomial f ∈ R has an

1i.e., d(x,y) ≥ 0, d(x,y) = 0 iff x = y, d(x,y) = d(y,x), and d(x, z) ≤ d(x,y) + d(y, z) for all x,y, z ∈ Fn.
2E.g., a univariate or multivariate ordinary polynomial ring, or a skew polynomial ring (cf. Section 2.3.1)

5

2 Preliminaries

evaluation map f(·) : D → K, where D is the domain of the map and K is a field. Fix
elements α1, . . . , αn ∈ D (evaluation points) and a set of polynomials P ⊆ R (evaluation
polynomials). The corresponding evaluation code is defined by

C = ev[α1,...,αn](P) := {[f(α1), . . . , f(αn)] : f ∈ P} ⊆ Kn.

A comprehensive introduction to error-correcting codes can be found in many textbooks on
coding theory, e.g., [Ber15, Gal68, PW72, MS77, CJC13, VL12, Bla83, Bos13, JH04, Rot06].

2.1.2 Notation

Vectors and Matrices

Vectors v and matrices V are denoted by bold letters, where matrices are usually capital.
We use square brackets to surround elements of matrices, vectors, or tuples. Unless stated
otherwise, vectors are indexed starting from 1, i.e., v = [v1, . . . , vn]. Also, vectors are usually
considered to be row vectors. The identity matrix is denoted by I.

Computational Complexity

We measure the asymptotic running time of algorithms, depending on their input size n, using
the Bachmann–Landau notation, i.e., O(f(n)) for upper, Θ(f(n)) for tight, and Ω(f(n)) for
lower bounds, where f is a function of the input size. If the symbol is accompanied by a tilde,
then logarithmic terms are omitted, e.g., n log2(n) ∈ O∼(n).

For resolving recursive complexity expressions T (n) of the form T (n) = aT (n/b) + f(n),
where a ≥ 1, b > 1, and a function f , we use the master theorem, cf. [CLR+01, Theorem 4.1].

If an algorithm relies on the cost of multiplying two n × n matrices over a field, then we
usually express its complexity in terms of the matrix multiplication exponent ω ∈ [2, 3], which
corresponds to the asymptotic number of field operations O(nω) required by the used matrix
multiplication algorithm.
We express the cost of algorithms corresponding to a code (e.g., a decoder) as a function of

its length n. Asymptotically, we assume that the dimension k is proportional to the length,
which corresponds to a fixed code rate. Hence, we have k, n − k ∈ Θ(n), which simplifies
asymptotic complexity expressions. For codes of small (k ∈ o(n)) or large (n − k ∈ o(n))
rates, the true cost of an algorithm might be smaller than indicated by this simplification.

Algebra

We extensively deal with algebraic objects, such as rings, fields, or vector spaces. We give a
brief notational overview here and refer to fundamental textbooks for a detailed introduction,
e.g., [Art91, LN97].
Most of the fields considered in this thesis are finite. The cardinality of a finite field Fq is

a prime power q and that all finite fields of the same size are isomorphic.
Let K and L be fields. If K is a subfield of L, denoted by K ≤ L, we call L/K a field

extension. It is well-known that L is a K-vector space. The extension degree [L : K] of a field
extension is defined by the dimension of L as a vector space over K. For instance, Fqm/Fq
has extension degree m and Fqm is an m-dimensional vector space over Fq.

6

2.2 Codes in Hamming Metric

The automorphism group Aut(L/K) of a field extension is the set of automorphisms3 φ :
L → L, that fix the base field K, i.e., φ(α) = α for all α ∈ K, equipped with composition ◦
as the group operation. An extension L/K of finite degree is called Galois extension if
the extension degree equals the cardinality of the automorphism group. In this case, the
automorphism group is called Galois group and denoted by Gal(L/K) = Aut(L/K). For
L = Fqm and K = Fq, the Galois group consists of all powers ·qi = (·q) ◦ · · · ◦ (·q) of the
Frobenius automorphism ·q : Fqm → Fqm , α 7→ αq. Also, it is cyclic and the generators are
the automorphisms ·qi with gcd(i,m) = 1.
For any finite-degree Galois extension L/K, there is a so-called normal basis of the form
{σ(β) : σ ∈ Gal(L/K)}, where β ∈ L, of L as a vector space over K. For Fqm/Fq, such a
basis is thus of the form {β, βq, . . . , βqi} = {σ0(β), σ1(β), . . . , σm−1(β)}, where β ∈ Fqm and
σ is any generator of the Galois group. Elements of Fqm can be multiplied, added, and raised
to the (qi)th power for any i in O∼(m) operations over Fq using the bases described in [CL09].
By K[x], we denote the univariate polynomial ring over a field K in the indeterminate x.

Likewise, K[x1, . . . , xn] is the multivariate polynomial ring over K in n unknowns.

Decoding Principles

In this thesis, we discuss decoding algorithms for codes in different metrics d(·, ·), where for
a given received word r ∈ Fn, we aim at finding codewords c ∈ C that have small distance
d(r, c) to r. We distinguish the following two types of decoders of decoding radius τ ∈ N. By
relative decoding radius, we denote the value τ

n .

List decoder The decoder returns all codewords of distance at most τ to the received word.

Unique decoder The decoder returns a codeword of minimal distance to the received word
among those codewords c with d(r, c) ≤ τ .

If the decoding radius τ is less than half the minimum distance d
2 of a code, there is at most

one codeword of distance d(r, c) ≤ τ , so both decoding principles coincide. If τ = bd−1
2 c,

a decoder is called bounded minimum distance (BMD) decoder. Furthermore, we say that a
decoder is partial4 if it does not work for all received words.

2.2 Codes in Hamming Metric
The Hamming metric is presumably the most common metric considered in coding theory.
It counts the number of components in which two vectors differ.

Definition 2.3 ([Ham50]). The Hamming distance of two vectors in Fnq is defined by

dH : Fnq × Fnq → N0,

[x,y] 7→ |{i : xi 6= yi}|.

The Hamming weight wtH(x) of a vector x ∈ Fnq is the Hamming distance to the all-zero
vector 0, i.e., wtH(x) = dH(x,0).

3I.e., bijective mappings φ : L→ L with φ(ab+ cd) = φ(a)φ(b) + φ(c)φ(d) for all a, b, c, d ∈ L
4In order to avoid confusion with randomized algorithms, the name partial decoder was coined in [Ros18] as
a replacement for probabilistic decoder, which was used for the same purpose, e.g., in [SSB06, SSB10].

7

2 Preliminaries

The Hamming distance is a metric. In the following, we consider codes whose codewords’
distance is measured with respect to this metric. It is translation invariant, so the minimum
distance of a linear code is determined by the minimal Hamming weight of the non-zero
codewords. It can be upper-bounded by the code parameters as follows.

Theorem 2.4 (Singleton Bound [Sin64]). The minimum Hamming distance of a linear code
C[n, k, d] fulfills

d ≤ n− k + 1.

Definition 2.5 ([Sin64]). A linear code C[n, k, d] that fulfills d = n−k+1 is called maximum
distance separable (MDS).

MDS codes attain the maximal possible minimum distance for a given length n and di-
mension k. However, there are not many known codes with this property, and all of them
are relatively short compared to their field size. In fact, it is conjectured (MDS conjecture,
cf. [Seg55]) that an MDS code over a field Fq of dimension k < q must satisfy n ≤ q + 2 if q
is even and k ∈ {3, q − 1}, and n ≤ q + 1 otherwise.
We will define a new class of Hamming-metric codes in Chapter 4. It is important to study

whether these codes are in some sense equivalent to existing codes. The semi-linear Hamming-
metric isometries on Fq (i.e., semi-linear maps5 that preserve the distance properties) are
given by permuting positions, element-wise multiplication with non-zero field elements, and
element-wise application of an automorphism in Gal(Fq/Fp), where p is the characteristic of
Fq. Based on this observation, we define equivalence w.r.t. the Hamming metric as follows.

Definition 2.6 ([Huf98]). Two codes C, C′ ⊆ Fnq are (semi-linearly) equivalent (w.r.t. the
Hamming metric) if there is a permutation π ∈ Sn, a vector v ∈

(
F∗q
)n

, and an automorphism
σ ∈ Gal(Fq/Fp), where p is the characteristic of Fq, such that C′ = ϕπ,v,σ (C), where ϕπ,v,σ is
defined by

ϕπ,v,σ : Fnq → Fnq ,

[c1, . . . , cn] 7→
[
v1σ

(
cπ(1)

)
, . . . , vnσ

(
cπ(n)

)]
.

In this thesis, we discuss several codes in the Hamming metric: Besides introducing a new
family of MDS codes, we consider Reed–Solomon and one-point Hermitian codes and their
interleaved variants, which are defined as follows.

2.2.1 Reed–Solomon Codes

Reed–Solomon codes [RS60] were invented in 1960 and have become one of the most studied
and used class of algebraic codes. They have found many applications, such as satellite com-
munication [WHPH87], error-correction in CDs/DVDs/BluRays [HTV82], RAID-6 [Anv04],
QR codes [OM11], and modern storage applications (see e.g. the overview in [DDKM16,
Section I.B]). The codes are formally defined as follows.

5A map f : Fnq → Fnq is semi-linear if there is a σ ∈ Gal(Fq/Fp), where p is the characteristic of Fq, such
that f(x+ y) = f(x) + f(y) and f(αx) = σ(α)f(x) for all x,y ∈ Fnq and α ∈ Fq, cf. [Huf98]

8

2.2 Codes in Hamming Metric

Definition 2.7 ([RS60]). Let k ≤ n and α1, . . . , αn ∈ Fq be distinct. The corresponding
Reed–Solomon (RS) code is defined by6

CRS[n, k] =
{
c =

[
f(α1), . . . , f(αn)

]
: f ∈ Fq[x], deg f < k

}
⊆ Fnq .

We call the αi the evaluation points and f the message polynomial of the codeword c. A code
is called generalized Reed–Solomon (GRS) code if it is equivalent to an RS code.

Theorem 2.8 ([RS60]). An RS code CRS[n, k] is MDS.

Proof. Since CRS[n, k] is a linear code and fulfills the Singleton bound, it suffices to show that
the minimum weight of a non-zero codeword c is at least n − k + 1. Any non-zero message
polynomial has degree at most k− 1, and, as a consequence of Bézout’s theorem, has at most
k − 1 zeros. Since the αi are distinct, at least n − (k − 1) entries of c are non-zero, which
implies the claim.

Note that a Reed–Solomon code can have length at most n ≤ q. It is possible to extend
an RS code to length n = q+ 1 without violating the MDS property by adding an evaluation
point at infinity as follows: f(∞) := fk−1 for all f =

∑k−1
i=0 fix

i ∈ Fq[x].

2.2.2 One-Point Hermitian Codes
One-point Hermitian codes belong to the class of algebraic geometry (AG) codes, which was
introduced by Goppa [Gop83]. Their advantage compared to RS codes, which are also AG
codes, is that they achieve greater lengths n = q3 compared to the underlying field size q2.
This improvement comes at the cost of a reduced minimum distance d ≥ n− k+ 1− g, where
g is the genus of the Hermitian curve. In the following, we summarize properties of this curve
using the notation of [HvLP98], [Bra10], and [NB15]. A comprehensive introduction to the
topic is contained in the textbooks [HvLP98, Sti09].

The Hermitian Curve

The Hermitian curve H/Fq2 is the smooth projective plane curve given by the affine equation

H = yq + y − xq+1 = 0.

The curve has genus g = 1
2q(q−1) and q3 +1 many Fq2-rational points H = H∗∪{P∞}. Here,

P∞ denotes the point at infinity and the remaining points H∗ = {P1, . . . , Pq3} are—in affine
coordinates—of the form [α, β], where for each α ∈ Fq2 , there are exactly q many β ∈ Fq2

such that [α, β] ∈ H.
By Fq2(H), we denote the function field of the curve. A local parameter tP in P ∈ H

is a generator of the unique maximal ideal of the local ring OP consisting of all rational
functions f ∈ Fq2(H) that are regular in P . For Pi = [α, β] ∈ H∗, a local parameter is
given by tPi = x − α and for the point at infinity, we can use tP∞ = x/y. For P ∈ H, the
mapping vP : Fq2(H) → Z ∪ {∞} is defined such that vP (0) = ∞ and for each non-zero
rational function f ∈ Fq2(H)∗, vP (f) is the unique integer such that there is a unit u of OP
with f = utP

vP (f). The definition is independent of the chosen local parameter and vP is a
6I.e., = ev[α1,...,αn](Fq[x]<k) in evaluation-code notation.

9

2 Preliminaries

discrete valuation (cf. [HvLP98]). Furthermore, any f ∈ Fq2(H)∗ can be uniquely expanded
into a Laurent series of the form

∑
i≥vP (f) fitP

i, where fi ∈ Fq2 and fvP (f) 6= 0.
A divisor D on H is a formal sum D =

∑
P∈H nPP with nP ∈ Z. Its degree is given by

deg(D) =
∑
P∈H nP and we write D � 0 if nP ≥ 0 for all P . For a non-zero rational function

f ∈ Fq2(H)∗, we define the divisor div(f) =
∑
P∈H vP (f)P . The Riemann–Roch space of a

divisor is the Fq2-vector space given by

L(D) =
{
f ∈ Fq2(H)∗ : div(f) +D � 0

}
∪ {0}.

If the divisor D has negative degree degD < 0, then L(D) = {0}. A central result in algebraic
geometry is the Riemann–Roch theorem (cf. [HvLP98, Section 2.6]), which for deg(D) > 2g−2
implies that dimFq2 L(D) = deg(D)− g + 1.

As in [NB15], we use the notation L(D +∞P∞) =
⋃
r∈N0 L(D + rP∞), in particular the

ring R := L(∞P∞) of functions that are regular in all points except for P∞. Note that R
is isomorphic to the set of bivariate polynomials in Fq2 [x, y] with y-degree < q with ordinary
addition and multiplication modulo the curve equation yq = xq+1 − y in order to guarantee
the multiplicative closure. We therefore treat elements in R as such polynomials. A basis of
R as an Fq2-vector space is given by B = {xiyj : 0 ≤ i, 0 ≤ j < q}. It was shown in [Bra10,
Proposition 2.2] that for non-zero rational functions f ∈ Fq2(H), we have

L(−div(f) +∞P∞) = fR. (2.1)

We define the degree on R as

degH : R → N0 ∪ {−∞},
f 7→ −vP∞(f).

By the properties of the Hermitian curve, we have degH(xiyj) = iq+j(q+1), which extends to
polynomials in R by taking the maximum of this value for all non-zero monomials. Note that
degH is injective on the basis B since j < q, and fulfills degH(f+g) ≤ max{degH(f), degH(g)}
and degH(f · g) = degH(f) + degH(g) for all f, g ∈ R. We call a polynomial in R monic if
the monomial of largest degree degH has coefficient 1.

Using the above notation, the Riemann–Roch space L(rP∞) contains all polynomials f ∈ R
of degree degH(f) ≤ r. A basis of L(rP∞) is therefore given by the monomials xiyj with
j < q and degH(xiyj) ≤ r. The Riemann–Roch theorem implies that for non-negative integers
a < b, there are at least b− a− g many monomials of the form xiyj ∈ R with j < q of degree
degH(xiyj) ∈ [a, b), and this bound is attained with equality if all Weierstraß gaps7 are in
[a, b). Due to the injectivity of degH on B, there are at most b− a many such monomials.

Codes over the Hermitian Curve

One-point Hermitian codes are obtained by evaluating all polynomials in the Riemann–Roch
space L(mHP∞), for some mH ∈ N, at distinct Fq2-rational points on H∗ = H \ {P∞}.

7Here, these are the non-negative integers that cannot be expressed as iq+ j(q+ 1) with i, j ∈ N0 and j < q.

10

2.2 Codes in Hamming Metric

Definition 2.9. Let P1, . . . , Pn ∈ H∗ be distinct, g = 1
2q(q− 1) the genus of H, and mH ∈ N

with 2(g − 1) < mH < n. The one-point Hermitian code of length n and parameter mH over
Fq2 is defined by8

C(n,mH)
H =

{[
f(P1), . . . , f(Pn)

]
: f ∈ L(mHP∞)

}
⊆ Fnq2 .

The designed minimum distance of C(n,mH)
H is d∗ := n−mH.

Note that the maximal length of a one-point Hermitian code is n = q3. The Riemann–Roch
theorem implies the following statement.

Theorem 2.10. The dimension of C(n,mH)
H is given by k = mH − g + 1 and the minimum

distance d is lower-bounded9 by the designed minimum distance, i.e., d ≥ d∗.

2.2.3 Interleaved Codes in Hamming Metric
An h-interleaved code is a direct sum of h codes of the same length. Such codes were intro-
duced to correct burst errors which occur, e.g., in data storage applications, see, e.g., [KL97].
In this thesis, we will consider interleaved codes, where the constituent codewords are from
Reed–Solomon or one-point Hermitian codes, respectively. They are defined as follows.

Definition 2.11. Let n, h ∈ N and C(1)[n, k1], . . . C(h)[n, kh] be linear codes over Fq.

i) The corresponding interleaved code is defined as the set

C(n, k1, . . . , kh;h) =

c =


c1
...
ch

 : ci ∈ C(i)[n, ki]

 ⊆ Fh×nq .

An interleaved code is homogeneous if k1 = · · · = kh =: k. In this case, we write
C(n, k;h).

ii) If the constituent codes C(i)[n, ki] are Reed–Solomon codes with the same evaluation
points α1, . . . , αn ∈ Fq, then we call the interleaved code an (h-)interleaved Reed–
Solomon (IRS) code and denote it by CIRS(n, k1, . . . , kh;h), and CIRS(n, k;h) in the
homogeneous case.

iii) We call it (h-)interleaved one-point Hermitian (IH) code, CIH(n,mH1, . . . ,mHh;h) or
CIH(n,mH;h), if the C(i) are one-point Hermitian codes C(n,mHi)

H with the same evaluation
points P1, . . . , Pn ∈ H∗.

As error model, we consider column-wise burst errors, i.e., when the received word is
r = c + e ∈ Fh×nq then the error positions are given by the indices of the non-zero columns
of e, i.e.,

E =
h⋃
j=1
{i : eji 6= 0}.

We define the number of errors to be |E|. The error model is illustrated in Figure 2.1.
8I.e., C(n,mH)

H = ev[P1,...,Pn](L(mHP∞)) in evaluation-code notation.
9Exact valued of d were determined in [Sti88, YK92].

11

2 Preliminaries

h...
r = c+ e =

x
x

x

x
x
x

x

x
x

x

error positions E x = non-zero entry of e

Figure 2.1: Illustration of the burst errors considered for interleaved codes in Hamming metric.
In this particular example, 3 burst errors occurred.

Such burst errors occur, for instance, in data storage systems [KL97] or when decoding the
outer code in concatenated codes [KL98, JTH04, SSB05, SSB09]. In general, an h-interleaved
code of length n over Fq can be seen as a—not necessarily linear—code of length n over the
field Fqh by considering the columns of a codeword as elements in Fqh . A burst error then
simply corresponds to a symbol error in Fqh . In case of a homogeneous interleaved RS code,
we obtain an (Fqh-linear) RS code of the same evaluation points, cf. [SSB08].10

2.3 Codes in Rank Metric
Rank-metric codes can be interpreted as sets of matrices whose distance is determined by the
rank of their difference. They were independently introduced by Delsarte [Del78], Gabidulin
[Gab85], and Roth [Rot91], together with a constructive class of linear codes, nowadays called
Gabidulin codes, achieving the maximal minimum distance in the rank metric for given length,
dimension, and field size.
In the last years, there has been an increased interest in the codes due to their possible

applications in network coding [KK08, SKK08], cryptography [GPT91, Ove08, Loi10, Loi16],
distributed storage systems [SRV12], construction and decoding of space-time codes [GBL00,
BGL02, LFT02, LGB03, Rob15a, PSBF16], and low-rank matrix recovery [FS12, MPB17b].
We fix a field extension Fqm/Fq of extension degree m. Since Fqm is an m-dimensional Fq-

vector space, the (Fq-)rank of a vector in x = [x1, . . . , xn] ∈ Fnqm is defined by the dimension
of the Fq-span of its components, i.e.,

rank(x) = dimFq〈x1, . . . , xn〉.

Definition 2.12 ([Del78, Gab85, Rot91]11). The rank distance in Fnqm over Fq is defined by

dR : Fnqm × Fnqm → N0,

[x,y] 7→ rank(x− y).

The rank weight of a vector x ∈ Fnqm is its distance to the zero vector, i.e., wtR(x) = dR(x,0).
10Note that the evaluation points are in Fq, so the code length is much smaller than the code’s field size qh.
11The rank metric was already studied under the name arithmetic distance by Hua in [Hua51]. Delsarte,

Gabidulin, and Roth were the first to consider it in the context of coding theory.

12

2.3 Codes in Rank Metric

Due to the properties of the rank, the rank distance is a metric. In the following, we
consider codes over Fqm in the rank metric with respect to the base field Fq, also called rank-
metric codes. In this case, the minimum distance of the code is also called minimum rank
distance, and upper-bounded by the following rank-metric analog of the Singleton bound.

Theorem 2.13 ([Del78]). The minimum rank distance of an (n,M, d) code over Fqm fulfills

d ≤ min
{
n− logqM

m + 1,m− logqM
n + 1

}
. (2.2)

For linear codes of length n ≤ m and dimension k ≤ n, this results in d ≤ n − k + 1, see
also [Gab85, Rot91].

Definition 2.14 ([Del78, Gab85, Rot91]). A rank-metric code satisfying the rank-metric
Singleton bound (2.2) with equality is called maximum rank distance (MRD) code.

In Chapter 7, we will introduce a new class of rank-metric codes. We use the following
definition for equivalence of rank-metric codes.

Definition 2.15 ([Ber03]). Two codes C, C′ ⊆ Fnqm are (semi-linearly) equivalent (w.r.t. to the
rank metric on Fqm over Fq) if there are λ ∈ F∗qm , A ∈ Fn×nq invertible, and σ ∈ Gal(Fqm/Fq)
with

C′ = σ(λC)A := {[σ(λc1), . . . , σ(λcn)] ·A : [c1, . . . , cn] ∈ C} .

Matrix Representation of Rank-Metric Codes

Each field element a ∈ Fqm can be uniquely represented as a vector extB(a) ∈ Fmq with respect
to an ordered basis B of Fqm over Fq. In this way, we can represent a vector in x ∈ Fnqm as
a matrix in X := extB(x) ∈ Fm×nqm , where the ith column of X is the vector representation
extB(xi) of the ith entry of x. This representation is illustrated in Figure 2.2.

Fqm
n extB Fq

n

m

Figure 2.2: Matrix representation of a vector in Fnqm as a matrix in Fm×nq .

The Fq-rank of a vector x then equals the rank of its matrix representation X, i.e.,

rank(x) = rank(X),

independent of the chosen basis B. Hence, any rank-metric code can be interpreted as a set
of m× n matrices over a finite field Fq, where the distance of two codewords is measured by
the rank of their difference.

13

2 Preliminaries

2.3.1 Skew Polynomial Rings

All rank-metric codes considered in this thesis are evaluation codes of the non-commutative
ring of skew polynomials, which was introduced by Ore in [Ore33b]. Besides their use in
coding theory, these polynomials have applications in cryptography [FL06], dynamical sys-
tems [CH00] and are of theoretical interest [EGN+92, WL13]. Since skew polynomials are
not widely known (e.g., they are usually not covered in lectures or textbooks), we recall their
definition an properties thoroughly in the following.

Definition

Definition 2.16. Let Fqm/Fq be a field extension and σ ∈ Gal(Fqm/Fq) be a generator of its
Galois group.12 The corresponding skew polynomial ring13 Fqm [x;σ] consists of polynomials
of the form

f =
d∑
i=0

fix
i,

where d ∈ N0 and fi ∈ Fqm . Addition is done component-wise as usual, whereas multiplication
is defined by the non-commutative rule x · fi = σ(fi) · x, which—by the associative and
distributive property—extends to polynomials f, g ∈ Fqm [x;σ] as

f · g =
∑
i

(i∑
j=0

fjσ
j(gi−j)

)
xi. (2.3)

Similar to ordinary polynomials, the degree of a skew polynomial f ∈ Fqm [x;σ] is given by

deg(f) =
{

max{i : fi 6= 0}, if f 6= 0
−∞, if f = 0.

We use the abbreviations Fqm [x;σ]≤s for the set of skew polynomials over Fqm of degree at
most s, and Fqm [x;σ]<s analogously. The leading coefficient of a non-zero polynomial f is
LC(f) = fdeg f . Similarly, its leading term is given by LT(f) = fdeg fx

deg f . We call a non-zero
skew polynomial monic if its leading coefficient is LC(f) = 1.

Remark 2.17. In the literature, rank-metric evaluation codes are often defined through lin-
earized polynomials [Ore33a]. These are ordinary polynomials of the form f =

∑d
i=0 fix

qi,
where d ∈ N0 and fi ∈ Fqm. Using composition of polynomials as multiplication, the poly-
nomials form a non-commutative ring denoted by Lq,m. This ring is isomorphic to the skew
polynomial ring over Fqm with the Frobenius automorphism ·q, i.e., Fqm [x; ·q] ∼= Lq,m. Hence,
skew polynomials can be seen as a natural generalization of linearized polynomials.
Skew polynomials can be further generalized using so-called derivations, cf. [Ore33b]. In

this form, they can also be used to construct evaluation codes [BU14], but we do not consider
this extension in this thesis.
12Some authors allow σ to be any automorphism in Gal(L/K). Hovewer, in this case, the polynomial evaluation

map does not behave as well as here: E.g., Theorems 2.22, 2.23, and 2.24 below do not hold, cf. [ALR13].
Also, all known code constructions based on Fqm [x;σ] require this property.

13In this form, skew polynomials are sometimes called twisted polynomials or σ-polynomials.

14

2.3 Codes in Rank Metric

Division

Skew polynomials admit left and right division, which is formally stated in the following
theorem. In contrast to their commutative relatives, the resulting right and left quotients
and remainders do not necessarily agree.

Theorem 2.18 ([Ore33b]). Let a, b ∈ Fqm [x;σ] with b 6= 0. Then, there are unique skew
polynomials χR, χL ∈ Fqm [x;σ] (right and left quotient) and %R, %L ∈ Fqm [x;σ] (right and left
remainder) such that degq%R < degqb, degq%L < degqb, and

a = χR · b+ %R (right division),
a = b · χL + %L (left division).

If the right (left) remainder is zero, we say that a is divisible by b on the right (left).

Definition 2.19. Let a, b, c ∈ Fqm [x;σ], c 6= 0. If a− b is divisible by c on the right, we write

a ≡ b modr c.

In the left case, we have a ≡ b modl c. The right and left modulo operators a modr c and
a modl c denote the remainders of the right and left division a by c, respectively.

The right division implies the existence of the following objects.

Definition 2.20 ([Ore33b]). Let f, g ∈ Fqm [x;σ].

i) The right union of f and g is the monic polynomial a ∈ Fqm [x;σ] of smallest degree
that is divisible on the right by both f and g. There are unique b, c ∈ Fqm [x;σ] with

a = b · f = c · g.

ii) The greatest common right divisor gcrd(f, g) of f and g is the monic polynomial a ∈
Fqm [x;σ] of largest degree that divides both f and g on the right. There are unique
b, c ∈ Fqm [x;σ] such that

a = b · f + c · g.

Evaluation Map

Like ordinary polynomials, skew polynomials admit an evaluation map.14 Since all rank-
metric codes considered in this thesis are evaluation codes of skew polynomials, we study this
map thoroughly. It is formally defined by

f(·) : Fqm → Fqm ,
α 7→

∑
ifiσ

i(α).

The map is fundamentally different from Fqm [x]-evaluation maps in several aspects, which
becomes apparent by the following well-known observations.
14There are at least two possible evaluation maps for skew polynomials, but here we consider only the so-called

operator evaluation, cf. [BU14].

15

2 Preliminaries

Theorem 2.21. Let f, g ∈ Fqm [x;σ] and α ∈ Fqm. Then,

i) (f · g)(α) = f(g(α)).

ii) f(·) is an Fq-linear map.

Proof. Ad i): By definition, we have

f(g(α)) =
∑
µ

fµσ
µ

(∑
ν

gνσ
ν(α)

)
=
∑
µ

∑
ν

fµσ
µ(gν)σµ+ν(α)

(∗)=
∑
i

(i∑
j=0

fjσ
j(gi−j)

)
σi(α) = (f · g)(α),

where (∗) is obtained by reordering the sum, combining all terms with µ+ ν = i.
Ad ii): Since σi(·) is an Fq-linear map for all i ∈ N0, this property extends to the evaluation

map f(·), which is an Fqm-linear combination of finitely many σi(·).

Using the evaluation map, we define the root space of a polynomial f ∈ Fqm [x;σ] by

roots(f) = {α ∈ Fqm : f(α) = 0} .

Due to Theorem 2.21, the root space is an Fq-subspace of Fqm . The following property can
be seen as the Fqm [x;σ]-analog of the fact that a non-zero ordinary polynomial of degree s
has at most s roots.

Theorem 2.22 ([ALR13]). Let f ∈ Fqm [x;σ] \ {0}. Then,

dim(roots(f)) ≤ deg f.

We define some special polynomials which are defined through their evaluation map.

Theorem 2.23 ([LN97] (σ = ·q) or [ALR13]). Let U be a subspace of Fqm. There is a unique
nonzero monic polynomial MU ∈ Fqm [x;σ] of minimal degree such that roots(MU) = U . Its
degree is degMU = dimU .

The polynomialMU in Theorem 2.23 is called minimal subspace polynomial (MSP) of U .15

Evaluating one skew polynomial f ∈ Fqm [x;σ] at multiple points x1, . . . , xs ∈ Fqm is called
multi-point evaluation (MPE). The dual problem to this is to find the polynomial of smallest
degree that evaluates to some given values at fixed evaluation points, and is called interpola-
tion. It is based on the following lemma.

Lemma 2.24 ([SK07, Sec. III-A] (σ = ·q) or [Rob15b, Théorème 11]). Let [xi, yi] ∈ F2
qm for

i = 1, . . . , s, where x1, . . . , xs are linearly independent over Fq. There is a unique interpolation
polynomial I{[xi,yi]}si=1

∈ Fqm [x;σ]<s such that

I{[xi,yi]}si=1
(xi) = yi, ∀ i = 1, . . . , s.

15In the literature, the polynomial is sometimes called annihilator polynomial, e.g., in [ALR13].

16

2.3 Codes in Rank Metric

In the case s | m and the xi = σi(β) being an ordered normal basis of Fqs ≤ Fqm , multi-
point evaluation and interpolation is called the (inverse) σ-transform16, which is formally
defined as follows. Note that the inverse σ-transform exists due to Theorem 2.24.

Definition 2.25. Let B = [σ0(β), . . . , σs−1(β)] be an ordered normal basis of Fqs ≤ Fqm .
The σ-transform (w.r.t. B) is the mapping ·̂ : Fqm [x;σ]<s → Fqm [x;σ]<s , a 7→ â, where

âj = a(σj(β)) =
s−1∑
i=0

aiσ
i+j(β), ∀ j = 0, . . . , s− 1. (2.4)

Its inverse is called inverse σ-transform (w.r.t. B).

The σ-transform can be seen as the Fqm [x;σ]-analog of the discrete Fourier transform over
ordinary polynomial rings. Its motivation in coding theory is a transform-based definition of
rank-metric codes, similar to Blahut’s [Bla79] description of several codes in Hamming metric
(see also [Bos13]). This observation was utilized in [SK09] and [WAS13, Wac13] to obtain
fast decoding methods for these codes.

2.3.2 Modules over Skew Polynomial Rings
A module is a generalization of a vector space, where the underlying scalar space is a (unitary)
ring instead of a field. If the ring is non-commutative, we distinguish between left and right
modules, which indicate the side from which a scalar is multiplied to a vector in the module.

In this thesis, we only consider left modules and often omit the “left” in front of attributes.
Considering the definition of scalar multiplication, linear combination, linear independence,
generating set, basis, submodule, and other notions immediately generalize from vector spaces.
A module is called free if it has a basis.
In general, modules do not behave as nicely as vector spaces. However, in this thesis, we

only consider left modules over Fqm [x;σ], which share many important properties with their
well-studied commutative analogs over Fqm [x]. For instance, the following properties follow
analog to [Lan02, Theorem 7.1] over Fqm [x], and by the statements [Pet12, Theorem 18] and
[Pet12, Proposition 16], using that Fqm [x;σ] is left Euclidean, which implies left Noetherian17.

Theorem 2.26. Let V be a (left) submodule of Fqm [x;σ]r. Then,

• V is free.
• V has a basis with at most r elements.
• Any two bases of V have the same number of elements.

Using these properties, the dimension of V is well-defined as the number of its basis elements.

Skew Polynomial Matrices

In this thesis, we often consider vectors and matrices over Fqm [x;σ]. Similar to [Nie13b] over
Fqm [x], we define the following notation for vectors v ∈ Fqm [x;σ]r, where r ∈ N, and matrices
V ∈ Fqm [x;σ]r×r. By vi, we denote the ith row of the matrix V .
16The σ-transform is called q-transform in case of linearized polynomials (σ = ·q), cf. [SK09, Wac13].
17I.e., every left ideal is finitely generated.

17

2 Preliminaries

Definition 2.27. Let v ∈ Fqm [x;σ]r and V ∈ Fqm [x;σ]r×r.

• The degree of v is defined by deg v = maxi{deg vi}.
• The degree of V is degV =

∑
i deg vi, where vi is the ith row of V .

• The maximal degree of V is maxdegV = maxi{deg vi}.
• The leading position of v 6= 0 is the right-most position of maximal degree, i.e.,

LP(v) = max{i : deg vi = deg v}.

Its leading term is given by the polynomial LT(v) = vLP(v).

The row space of a matrix V ∈ Fqm [x;σ]r×r is the set of all linear combinations of its rows.
The rank of a matrix V ∈ Fqm [x;σ]r×r is the dimension of its row space. We denote the set of
matrices in Fqm [x;σ]r×r of (full) rank r by GLr(Fqm [x;σ]). Two matrices V ,V ′ ∈ Fqm [x;σ]r×r
have the same row space if and only if there is a matrix U ∈ GLr(Fqm [x;σ]) such that
V = U ·V ′. Elementary row operations, which consist of adding a scalar multiple of one row
to another, neither change the row space nor the rank of a matrix.

The Weak Popov Form

In Chapter 6, we will extensively deal with algorithms for transforming skew polynomial
matrices into the following matrix normal form, the weak Popov form. We use a similar
notation as in the Fqm [x]-case, cf. [Nie13b].

Definition 2.28. A matrix V ∈ Fqm [x;σ]r×r is in weak Popov form (wPf) if the leading
positions of its non-zero rows are different.

We call a matrix row reduced if it is in weak Popov form and the process of obtaining such
a matrix row reduction.18 Row reduction is also sometimes called module minimization since
it finds a module basis, which is minimal in the following way.

Lemma 2.29. Let V ∈ Fqm [x;σ]r×r be in weak Popov form and V ⊆ Fqm [x;σ]r be its
row space. Then, the rows of V are linearly independent and every u ∈ V \ {0} satisfies
degu ≥ deg v, where v is the row of V with LP(u) = LP(v).

Proof. The proof works as its Fqm [x]-analog (cf. [Nie13a]), but we include it for completeness.
Since u is in the row space of V , we must have u =

∑
i aivi, where vi are the rows of V and

ai ∈ Fqm [x;σ]. The vi have different leading positions and if ai 6= 0, then LP(vi) = LP(aivi).
If two vectors have different LP, then their sum has both the LP and degree of one of the
two (the “dominant” one is the vector of larger degree, or, in case of the same degree, the
one with the larger LP). By an inductive argument, there is a unique row vi with LP(u) =
LP(aivi) = LP(vi) and deg(u) = deg(aivi) ≥ deg(vi), which proves the claim.

In some cases, we need to “shift” a vector in order to change the degrees of its entries.
Given a “shift vector” w = [w1, . . . , wr] ∈ Nr0, we define the mapping

Φw : Fqm [x;σ]r → Fqm [x;σ]r

u = [u1, . . . , ur] 7→ [u1x
w1 , . . . , urx

wr].
18Over Fqm [x], a “row reduced” basis of a module V is a basis V of minimal degree among all bases of V,

cf. [Kai80][p. 384]. Being in weak Popov form implies row reduced in this sense.

18

2.3 Codes in Rank Metric

Due to non-commutativity, the shifts xwi need to be multiplied from the right for two reasons.
First, the coefficients of the skew polynomials are merely shifted to higher degrees and not
changed, and second, the mapping Φw is an injective (left) module isomorphism. In particular,
it is possible to compute the inverse Φ−1

w of any vector in the module Φw(Fqm [x;σ]r). For
notational convenience, we introduce LPw(v) := LP(Φw(v)) and degw(v) := deg Φw(v).

The mapping Φw can be extended to Fqm [x;σ]-matrices by applying it row-wise. Since
the row space of Φw(V) for any matrix V ∈ Fqm [x;σ]r×r is a subset of Φw(Fqm [x;σ]r), we
can easily compute the inverse Φ−1

w of any matrix with the same row space. Using the shift
mapping, we define a shifted weak Popov form as follows.

Definition 2.30. Let w = [w1, . . . , wr] ∈ Nr0. A matrix V is in w-shifted weak Popov form
if Φw(V) is in weak Popov form.

2.3.3 Gabidulin Codes
Gabidulin codes were independently introduced by Delsarte [Del78], Gabidulin [Gab85], and
Roth [Rot91]. They are evaluation codes of skew polynomials and considered to be the
rank-metric analog of Reed–Solomon codes due to their resembling definition. Indeed, many
properties and decoding algorithms of the codes carry over from or are inspired by their
Hamming-metric analog.

Definition 2.31 ([Del78, Gab85, Rot91]). Let α1, . . . , αn ∈ Fqm be linearly independent
over Fq, and k ≤ n. The corresponding Gabidulin code of length n and dimension k is defined
by19

CG[n, k] =
{[
f(α1), . . . , f(αn)

]
: f ∈ Fqm [x;σ], deg f < k

}
⊆ Fnqm .

We call the αi evaluation points and f the message polynomial of the codeword c.

Similar to RS codes in Hamming metric, Gabidulin codes attain the rank-metric Singleton
bound with equality.

Theorem 2.32 ([Del78, Gab85, Rot91]). Any Gabidulin code CG[n, k] is MRD.

Proof. Let f ∈ Fqm [x;σ] be a non-zero evaluation polynomial. Due to deg f ≤ k − 1, by
Theorem 2.22 we have

dim ker(f) ≤ k − 1.

Since the α1, . . . , αn are linearly independent, the rank nullity theorem gives

wtR(c) = rank
[
f(α1), . . . , f(αn)

]
= dim〈α1, . . . , αn〉−dim (ker(f) ∩ 〈α1, . . . , αn〉)︸ ︷︷ ︸

≤ k−1

≥ n−k+1,

which implies the claim as CG[n, k] is a linear code.

Note that a Gabidulin code can have length at most n ≤ m since the αi are linearly
independent over Fq. In contrast to MDS codes in the Hamming metric, MRD codes exist
for any field size and length: If n > m, then we simply transpose the codeword matrix
representation of a CG(m, k) Gabidulin code over Fqn and consider the resulting codewords
as vectors in Fnqm .
19I.e., CG[n, k] = ev[α1,...,αn](Fqm [x;σ]<k) in evaluation-code notation.

19

2 Preliminaries

2.3.4 Interleaved Gabidulin Codes

Similar to the Hamming-metric case, an h-interleaved Gabidulin code is a direct sum of h
Gabidulin codes. The codes were first introduced by Loidreau and Overbeck [LO06] for
cryptographic applications and independently proposed by Silva, Kschischang, and Kötter
[SKK08] to increase the rates of codes for random linear network coding.
In the literature, there exist two variants: vertically [LO06, Ove07, SKK08, Sil09, WZ13,

Wac13] and horizontally [SB10, SJB11] interleaved codes, which solely differ in the assumed
error model. The distinction is due to the invariance of a rank-metric code under the trans-
position of its codewords in matrix representation, and both variants, i.e., error models, can
be motivated by it. The codes are defined as follows.

Definition 2.33. Let C(1)
G [n, k1], . . . , C(h)

G [n, kh] be Gabidulin codes over Fqm with the same
evaluation points α1, . . . , αn. The corresponding (h-)interleaved Gabidulin code is defined by

CIG(n, k1, . . . , kh;h) =

c =


c1
...
ch

 : ci ∈ C(i)
G [n, ki]

 ⊆ Fh×nqm .

We consider the following two error models, which are illustrated in Figure 2.3. Let the
received word be of the form r = c+ e ∈ Fh×nqm , where c ∈ CIG(n, k1, . . . , kh;h) is a codeword
and e is an error with components ei ∈ Fnqm for all i = 1 . . . , h. Furthermore, letEi = extB(ei)
be the matrix representation of ei for a fixed ordered Fq-basis B of Fqm .

Error Model in Vertically Interleaved Gabidulin Codes

In vertically interleaved Gabidulin codes, the number of errors τ = rank(Ev) is given by the
rank of the matrix

Ev =


E1
E2
...
Eh

 ∈ Fhm×nq . (2.5)

This means that the row spaces of the Ei are contained in a τ -dimensional subspace of
Fnq . The error model is motivated by interpreting the codewords c ∈ Fh×nqm as matrices
C ∈ Fhm×nq by vertically concatenating the matrix representations Ci = extB(ci) of the
constituent codewords ci for i = 1, . . . , h.

Error Model in Horizontally Interleaved Gabidulin Codes

In horizontally interleaved Gabidulin codes, the number of errors τ = rank(Eh) is given by
the rank of the matrix

Eh = [E1,E2, . . . ,Eh] ∈ Fm×hnq . (2.6)

This means that the column spaces of the Ei are contained in a τ -dimensional subspace of
Fmq . Here, a codeword’s matrix representation C = [C1, . . . ,Ch] ∈ Fm×hnq is obtained by
horizontally concatenating the matrices Ci.

20

2.3 Codes in Rank Metric

In the case of horizontally interleaved Gabidulin codes, the number of errors can be directly
determined from the rows ei of the error e without considering their matrix representation:
We define the error space E ⊆ Fqm to be smallest Fq-subspace of Fqm that contains the spans
of the error word components, i.e.,

〈ei,1, . . . , ei,n〉 ⊆ E ∀ i = 1, . . . , h.

The number of errors τ is then given by the dimension of E .

vertically interleaved

c1 + e1
c2 + e2

...

ch + eh

C1 +E1

C2 +E2

...

Ch +Eh

c+ e ∈ Fh×nqm C +Ev ∈ Fhm×nq

horizontally interleaved

c1 + e1
c2 + e2

...

ch + eh
C1 +E1 C2 +E2 . . . Ch +Eh

c+ e ∈ Fh×nqm C +Eh ∈ Fm×hnq

Figure 2.3: Matrix representations of vertically and horizontally interleaved Gabidulin codes,
which motivate the respective number of errors: τ = rank(Ev) and τ = rank(Eh).

2.3.5 Twisted Gabidulin Codes

Quite recently, Sheekey [She16] introduced a new class of MRD codes that are inequivalent
to Gabidulin codes: Twisted Gabidulin codes. Together with a special case of theirs, which
was independently found by Otal and Özbudak [OÖ16], the codes form—to the best of our
knowledge—the only known general family of linear MRD codes besides Gabidulin codes that
exist for a large variety of code parameters.
The idea of the code construction is to evaluate skew polynomials of degree k, where the

kth coefficient depends on the 0th one. By choosing this dependency in a suitable way (see
Theorem 2.35 below), the resulting codes are MRD.

21

2 Preliminaries

Definition 2.34 ([She16]). Let α1, . . . , αn ∈ Fqm be linearly independent over Fq, η ∈ Fqm ,
and k < n. The corresponding twisted Gabidulin code is defined by20

CTG[n, k] =
{
c =

[
f(α1), . . . , f(αn)

]
: f =

k−1∑
i=0

fix
i + ηf0x

k ∈ Fqm [x;σ]
}
⊆ Fnqm .

Theorem 2.35 ([She16]). If η
qm−1
q−1 6= (−1)mk, then the code CTG[n, k] is MRD.

Remark 2.36. The construction in [She16] is in fact slightly more general: The kth coeffi-
cient of f can be chosen as fk = ηf q

i

0 for some i ∈ {0, . . . ,m − 1} instead of fk = ηf0. For
i 6= 0, the resulting codes are not Fqm-linear, which is why we do not consider them here.

2.3.6 Rank-Metric Codes over Fields of Characteristic Zero
Recently, there has been a raising interest in Gabidulin codes that are not defined over a
finite field, but over fields of characteristic zero, in particular number fields [Rot96, ALR13,
Rob15b, ALR17]. Such codes can be applied for low-rank matrix recovery [FS12, MPB17b]
or constructing space-time codes [Rob15a].
They are defined exactly as Gabidulin codes over finite fields, where instead of a field

extension Fqm/Fq, we take a Galois extension L/K of two—possibly infinite—fields K and L
whose Galois group Gal(L/K) is cyclic (e.g. cyclotomic extensions ofQ or Kummer extensions
thereof, cf. [ALR13, Rob15b]). Since L is a finite-dimensional vector space over K, the rank
metric is well-defined over Ln.
If the automorphism σ ∈ Gal(L/K) is a generator of the Galois group and we define

L[x;σ] to be the set of skew polynomials with coefficients in L and automorphism σ, then
the definitions and statements in Section 2.3.1 (skew polynomials), Section 2.3.2 (modules
over skew polynomial rings), Section 2.3.3 (Gabidulin codes), and Section 2.3.4 (interleaved
Gabidulin codes) immediately carry over by replacing Fqm ← L and Fq ← K, cf. [ALR13,
Rob15b].
In this thesis, we concentrate on codes over finite fields. However, since most results in

Chapter 5 and Chapter 6 directly apply to codes over fields of characteristic zero, we will
briefly discuss this connection in the respective conclusion sections.

20I.e., CTG = ev[α1,...,αn]({f =
∑k−1

i=0 fix
i + ηf0x

k ∈ Fqm [x;σ]}) in evaluation-code notation.

22

Part I

Codes in Hamming Metric

23

3
Improved Power Decoding of Interleaved
Codes in Hamming Metric

Decoding h-interleaved Reed–Solomon codes has received much attention in the
last two decades. By assuming that errors occur at the same positions in the
constituent codewords, i.e., burst errors, one can decode beyond half the mini-
mum distance of the code, see e.g.,() [KL97, BKY03, CS03, PV04, BMS04, Par07,

SSB07, SSB09, CH13, WZB14]. All of these decoders are partial, i.e., they fail for some
error patterns beyond half the minimum distance. For notational convenience, we consider
homogeneous IRS codes, i.e., where the constituent RS codes all have the same code rate R.1
The first such algorithm was presented by Krachkovsky and Lee in [KL97], which can

correct a fraction of h
h+1(1 − R) errors with high probability by collaboratively retrieving

a joint error locator polynomial from the constituent received words. The same decoding
radius was also achieved by Bleichenbacher, Kiayias, and Yung in [BKY03], Brown, Minder,
and Shokrollahi [BMS04, BMS05] and Schmidt, Sidorenko, and Bossert in [SSB09].
Coppersmith and Sudan [CS03] presented a partial interpolation-based algorithm with

relative decoding radius at least 1−R−Rh/h+1. The method can be seen as a generalization of
the Sudan [Sud97] and Guruswami–Sudan [GS98] list decoder, and improves upon h

h+1(1−R)
for low rates. Parvaresh and Vardy [PV04, Par07] and Cohn and Heninger [CH13] introduced
another generalization based on (h+1)-variate interpolation that can correct up to a fraction
of 1 − Rh/h+1 errors under certain assumptions.2 The cost of the algorithm is dominated by
the expensive root-finding step, which relies on resultant or Gröbner basis computation.
Power decoding, which was introduced by Schmidt, Sidorenko, and Bossert [SSB06, SSB10],

is a partial decoding algorithm for Reed–Solomon codes that can decode up to roughly the
same radius as Sudan’s algorithm. The idea is to generate several linearly independent key
equations from element-wise powers of the received word, which is a non-linear operation in
general. In [SSB07], the same authors proposed to combine collaborative decoding of IRS
codes with the power decoding method in order to obtain a larger system of key equations,
resulting in a decoding radius similar to the Coppersmith–Sudan algorithm and improving
upon it at some rates R ≤ 1/3. The method was further refined by Wachter-Zeh, Zeh, and
Bossert in [WZB14] by mixing (i.e., element-wise multiplying) powers of received words.
Recently, Rosenkilde [Nie14, Ros18] introduced an improved power decoding algorithm for

1The generalization of the new algorithms to the inhomogeneous case is technical, but straightforward.
2In [PV04, Par07], the root-finding step was described for h = 2 although the interpolation step works for
arbitrary h. The root-finding step was later generalized in [CH13].

25

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

RS codes that—with high probability—achieves roughly the same decoding radius as the
Guruswami–Sudan list decoder, asymptotically attaining the Johnson radius. The improve-
ment is due to a larger system of key equations, which again depends on element-wise powers
of the received word. In contrast to the Sudan and Guruswami–Sudan decoders, both power
decoding and its improved version do not require a root-finding step.

In Section 3.1, we join the ideas of the improved power decoder [Ros18], combining col-
laborative with power decoding [SSB07], and the mixing technique [WZB14]. We argue
that—under certain assumptions—the resulting algorithm is able to decode up to a relative
radius of 1−Rh/h+1, which equals the radii of [PV04, Par07] and [CH13]. Simulation results
for various code and decoder parameters indicate that the new algorithm indeed achieves this
maximal decoding radius with high probability. Compared to [PV04, Par07] and [CH13], our
algorithm is faster due to the lack of a root-finding step. For ε > 0, we can achieve a relative
decoding radius 1−Rh/h+1 − ε at the cost of O∼(n(1/ε)hω+1) field operations.

All mentioned decoding radii are illustrated in Figure 3.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

Rate R = k
n

R
el
at
iv
e
D
ec
od

in
g
R
ad

iu
s
τ n

1−R
h

h+1 ([PV04, CH13] and this work)
Wachter-Zeh–Zeh–Bossert [WZB14]
Schmidt–Sidorenko–Bossert [SSB07]
1−R−R

h
h+1 (Coppersmith–Sudan [CS03])

h
h+1 (1−R) (Krachkovsky–Lee [KL97])
1
2 (1−R)

Figure 3.1: Comparison of Relative Decoding Radii of IRS Decoders for h = 2.

In Section 3.2, we extend our results to homogeneous interleaved one-point Hermitian
codes of maximal length n = q3. So far, the original power decoder was generalized to one-
point Hermitian codes by Kampf [Kam14] and Rosenkilde and Beelen [NB15], achieving the
same decoding radius as the adaption of Sudan’s algorithm by Høholdt and Nielsen [HN99].
Furthermore, Brown et al. [BMS05] and Kampf [Kam14] adapted the collaborative decoder
of IRS codes to IH codes, reaching a relative decoding radius of about h

h+1(1− k+g−1
n), where

k is the dimension, n the length, and g the genus of the code. To the best of our knowledge,
other decoding methods for IRS codes have not been extended to IH codes.
We show that our arguments for combining improved power with collaborative decoding

26

and mixing can be directly adapted. For efficiently solving the system of key equations, we rely
on methods similar to the fast power decoder for one-point Hermitian codes in [NB15]. The
resulting relative decoding radius asymptotically achieves 1 − (k+g−1

n)h/h+1, improving upon
the previous best algorithms by Brown et al. [BMS05] and Kampf [Kam14]. As a by-product
(i.e., for h = 1), we obtain an adaption of Rosenkilde’s improved power decoder to one-point
Hermitian codes that attains the same radius as the Guruswami–Sudan decoder [GS98].
Figure 3.2 provides an overview of existing and new decoding algorithms.

In Section 3.3, we compare the decoding radii of the new decoding algorithms for the same
overall field size and length.

Reed–Solomon Codes

Power Decoding
[SSB06, SSB10]u,p

Improved Power
Decoding [Ros18]u,p

Sudan
[Sud97]l

Guruswami–Sudan
[GS98]l

One-Point Hermitian Codes

Power Decoding
[Kam14]u,p

Improved Power
Decoding (new)u,p

Sudan
[HN99]l,sp

Guruswami–Sudan
[GS98]l,sp

h-Interleaved Reed–Solomon Codes

Collaborative (C)u,p
[KL97, BKY03, SSB09]

Power + C
[SSB07]u,p

Power + Mixing (M)
+ C [WZB14]u,p

Coppersmith–Sudan
[CS03]l,p

Improved Power
+ C + M (new)u,p

h = 2: [PV04]l,p
h ≥ 2: [CH13]l,p

Collaborative (C)
[BMS05, Kam14]u,p

Improved Power
+ C + M (new)u,p

h-Interleaved One-Point Hermitian Codes

Figure 3.2: Algorithms for decoding h-interleaved Reed–Solomon and one-point Hermitian
codes beyond the unique decoding radius, roughly sorted by their decoding radius
(increasing from the top to the bottom). New algorithms: . Arrows indicate
that an algorithm is based on the idea of the arrow’s origin. Line types of frames
are chosen as in Figure 3.1.
Legend: llist decoder, l,ppartial list decoder, u,ppartial unique decoder, l,splist
decoder that is partial above its guaranteed radius.

The results of this chapter were partly published in [PR17], [PBR17], and [PRB17] (preprint).

27

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

3.1 Improved Power Decoding of Interleaved Reed–Solomon Codes
3.1.1 Key Equations

In the following, we derive a system of key equations that combines the ideas of enhancing
the error correction capability of interleaved RS codes using power decoding [SSB07], its
improvement using “mixing” of codewords [WZB14], and the recent result about improved
power decoding of (non-interleaved) RS codes [Ros18]. We use a similar notation for power
decoding as in [Ros18].

Channel Model

Let r = c + e ∈ Fh×nq be the received word, where c ∈ CIRS(n, k;h) is a codeword of
a homogeneous interleaved Reed–Solomon code with corresponding message polynomials,
written as a vector, f = [f1, . . . , fh] ∈ Fq[x]h<k. Recall from Section 2.2.3 that we consider
burst errors, i.e., the error positions E are the non-zero columns of the error word e.

Polynomials Occurring in the Key Equations

The receiver can compute the following h+1 polynomials inO∼(hn) field operations (cf. [GG99]).

Definition 3.1. Let r ∈ Fh×nq be as above and α1, . . . , αn be the distinct evaluation points
of the corresponding code CIRS(n, k;h). For t = 1, . . . , h, let Rt ∈ Fq[x] be the unique
interpolation polynomial of degree degRt < n such that

Rt(αi) = rt,i ∀i = 1, . . . , n.

We write R = [R1, . . . , Rh]. Furthermore, we define G :=
∏n
i=1(x− αi) ∈ Fq[x].

Our system of key equations (see Theorem 3.6 below) contains the unknown message poly-
nomial vector f and the error locator polynomial Λ, whose roots are exactly the evaluation
points of the error positions.

Definition 3.2. The error locator polynomial is defined by

Λ =
∏
i∈E(x− αi).

As a last component of the system of key equations, we define the unknown vector

Ω = Λ(f −R)/G ∈ Fq[x]h,

which is well-defined by the following lemma.3

Lemma 3.3. Let G and R be as in Definition 3.1 and Λ as in Definition 3.2. Then, G
divides each component of Λ(f −R).

Proof. For each i = 1, . . . , h and j = 1, . . . , n, we have
(
Λ(fi −Ri)

)
(αj) = 0 since

(
Λ(fi −Ri)

)
(αj) = Λ(αj) · (−ei,j) =

{
0 · (−ei,j), j ∈ E
Λ(αj) · 0, else.

Thus, (x− αj) | Λ(fi −Ri) and the claim follows by the definition of G =
∏n
j=1(x− αj).

3The components Ωi of Ω also occur in other key equations and are usually called error evaluator polynomials.

28

3.1 Improved Power Decoding of Interleaved Reed–Solomon Codes

The Mixing Technique

In our system of key equations, we “mix” powers of the entries of the vectors R, f , and Ω,
similar to [WZB14], as follows.

Definition 3.4 (Mixing Notation). Let a, b ∈ Fq[x]h and i, j ∈ Nh0 .

i) The size of i is defined as |i| :=
∑
µ iµ.

ii) By �, we denote the product partial order on Nh0 , i.e., i � j if iµ ≤ jµ ∀µ = 1, . . . , h.
iii) Furthermore, we define

ai :=
m∏
t=1

aitt ,

(
j

i

)
:=

m∏
t=1

(
jt
it

)
.

Note that the number of vectors i ∈ Nm0 of size |i| = µ is given by
(m+µ−1

µ

)
. Using the

above notation, we can formulate a vectorized binomial theorem.

Lemma 3.5. Let a, b ∈ Fq[x]h, and j ∈ Nh0 . Then,

(a+ b)j =
∑
i�j

(
j

i

)
aibj−i.

Proof. We re-write

(a+ b)j =
r∏

µ=1
(aµ + bµ)jµ =

r∏
µ=1

jµ∑
iµ=0

(jµ
iµ

)
aiµµ b

jµ−iµ
µ =

∑
i�j

r∏
µ=1

(jµ
iµ

)
aiµµ b

jµ−iµ
µ =

∑
i�j

(j
i

)
aibj−i.

Key Equations

The system of key equations is stated in the following theorem. It consists of
(h+`
h

)
− 1 many

relations, indexed by the parameter j ∈ Nh0 , between the known polynomials in R and G
and the unknown ones in f , Ω, and Λ. The system depends on two parameters, ` and s,
which are also parameters of the resulting decoding algorithm. As in the key equations of
the original power decoder [SSB10], ` is the maximal power in which the components of the
message polynomials fi occur. The key equations also contain the sth power of the error
locator, which has the evaluation points of the error positions as zeros of multiplicity s.4

Theorem 3.6 (System of Key Equations). Let s, ` ∈ N be such that s ≤ `, and Λ, G, R, f ,
and Ω be as above. Then, for all j ∈ Nh0 with 1 ≤ |j| ≤ `, we have

Λsf j =
∑
i�j

[
Λs−|i|Ωi

] [(j
i

)
Rj−iG|i|

]
, 1 ≤ |j| < s (3.1)

Λsf j ≡
∑
i�j
|i|<s

[
Λs−|i|Ωi

] [(j
i

)
Rj−iG|i|

]
mod Gs, s ≤ |j| ≤ `. (3.2)

4s was called multiplicity parameter in [Ros18] (case h = 1), in analogy to the parameters of the GS decoder
[GS98]. Using the same parameters, these two algorithms yield almost the same decoding radius.

29

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

Proof. Using Lemma 3.5, we can write

Λsf j = Λs
(
(f −R) +R

)j =
∑
i�j

(
j

i

)
Λs(f −R)iRj−i.

For |i| < s, the summand Λs(f −R)i can be re-written as
Λs(f −R)i = Λs−|i|[Λ(f −R)]i = Λs−|i|ΩiG|i|.

If |i| ≥ s, we can decompose i = is + i′, where is, i′ ∈ Zh≥0 with |is| = s and obtain

Λs(f −R)i = [Λ(f −R)]is(f −R)i
′

= GsΩis(f −R)i
′
,

so all summands i with |i| ≥ s are divisible by Gs, which implies the claim.

Remark 3.7. For h = 1, the system of key equations in Theorem 3.6 coincides with the one
in [Ros18]. Similarly, we obtain the relations in [WZB14] in the special case s = 1. The
notation f j =

∏h
µ=1 f

jµ
µ and Rj−i =

∏h
µ=1R

jµ−iµ
µ corresponds to mixing the codewords and

received words. This mixing technique was used in [WZB14] in order to improve the decoding
radius of [SSB07]. The original power decoding key equations [SSB06] (written as in [Ros18]),
Λf j ≡ ΛRj mod G for j = 1, . . . , `, where f = f1 and R = R1, are obtained for h = s = 1.
The name “power decoding” is due to the powers of the polynomials in f j and Rj−i.
In the following, we show how to solve the key equations and use the following abbreviations:

Ψj := Λsf j (unknown at the receiver),
Λi := Λs−|i|Ωi (unknown at the receiver), and (3.3)

Ai,j :=
(j
i

)
Rj−iG|i| (known at the receiver).

By known at the receiver, we mean that the polynomial can be directly computed from the
received word. Similarly, unknown means that our algorithm aims at finding this polynomial.
Remark 3.8. The polynomials Ψj, Λi, and Ai,j as in (3.3) have degree bounds

deg Ψj = deg(Λs) + deg(f j) ≤ deg Λ0 + |j|(k − 1)
deg Λi = deg(Λs−|i|) + deg(Λ|i|) + deg((f −R)i)− deg(G|i|) ≤ deg Λ0 − |i|

degAi,j ≤ (n− 1)(|j| − |i|) + |i|n = (n− 1)|j|+ |i| for i � j.
The bounds are tight in general: The first one is fulfilled with equality for all message polyno-
mial vectors with deg fµ = k − 1 for all µ with jµ > 0. The second and third bound are tight
in case of degRµ = n− 1 for all µ with iµ > 0, or jµ − iµ > 0, respectively. For a fixed µ, a
fraction of 1 − 1/q codewords, or received words, results in these maximal deg fµ, or degRµ,
by definition and properties of the Lagrange interpolation. Note that Ai,j = 0 if not i � j.

3.1.2 Solving the Key Equations
As in any other decoding-related key equation, the relations given in Theorem 3.6 are non-
linear in the unknown polynomials. Therefore, we relax the problem into a linear one, i.e.,
where we do not assume that λi and ψj , are of the form as in (3.3), and hope that its solution
agrees with the sought one, i.e., λi = Λi and ψj = Ψj . The linearized version is a wide
generalization of a multi-sequence shift register synthesis problem [FT89, SS11, Nie13a]5 of

5Such problems are closely related to simultaneous Hermite Padé approximation problems [BL92, BL94].

30

3.1 Improved Power Decoding of Interleaved Reed–Solomon Codes

the following form, whose degree restrictions are motivated by Remark 3.8.

Problem 3.9. Given positive integers s ≤ `, Ai,j =
(j
i

)
Rj−iG|i| ∈ Fq[x] as in (3.3) for all

i ∈ I := {i ∈ Nh0 : 0 ≤ |i| < s} and j ∈ J := {j ∈ Nh0 : 1 ≤ |j| ≤ `}, and G ∈ Fq[x] as in
Definition 3.1. Find λi, ψj ∈ Fq[x] for i ∈ I and j ∈ J with monic λ0, such that

ψj =
∑
i∈I

λiAi,j 1 ≤ |j| < s, (3.4)

ψj ≡
∑
i∈I

λiAi,j mod Gs s ≤ |j| ≤ `, (3.5)

deg λ0 ≥ deg λi + |i| 0 ≤ |i| < s, (3.6)
deg λ0 ≥ degψj − |j|(k − 1) 1 ≤ |j| ≤ `. (3.7)

Definition 3.10. Consider an instance of Problem 3.9. A solution λi, ψj , i ∈ I, j ∈ J has
degree T ∈ N0 if deg λ0 = T .6 It is minimal if its degree is minimal among all solutions.

Our decoding strategy is motivated by the following theorem, whose proof is straightforward
using the degree bounds in Remark 3.8. Note that since these bounds are tight in general,
the relative degree restrictions (3.6) and (3.7) on the degrees of λi and ψj are chosen minimal
among all choices for which Theorem 3.11 holds.

Theorem 3.11. Consider an instance of Problem 3.9. Then, λi = Λi and ψj = Ψj, where
Λi and Ψj are chosen as in (3.3), are a solution of the problem of degree T = s · |E|.

Hence, all solutions corresponding to a valid error locator Λ and codeword c are contained
in the solution space of Problem 3.9. We would like to find such a solution that has minimal
degree, i.e., the smallest number of errors |E|. We thus find a minimal solution of Problem 3.9
and hope that it is of the form λi = Λi and ψj = Ψj . If the sought solution has degree T , the
strategy can fail if there is another solution of degree at most T . We will return to this issue
in the following subsections. If the strategy succeeds, we can obtain the message polynomials
fi by division of ψui = Λsfi by λ0 = Λs, where ui = [0, . . . , 0, 1, 0, . . . , 0] is the ith unit vector.
The procedure is outlined in Algorithm 1.

Algorithm 1: Improved Power Decoder for h-Interleaved Reed–Solomon Codes
Input: Received word r ∈ Fh×nqm and positive integers s ≤ `
Output: f such that ci = [fi(α1), . . . , fi(αn)] for all i = 1, . . . , h is the codeword

corresponding to the smallest number of errors |E|; or “decoding failure”.
1 Compute R and G as in Definition 3.1
2 Ai,j ←

(j
i

)
Rj−iG|i|

3 λi, ψj ← Minimal solution of Problem 3.9 with input s, `, Ai,j , and G
4 if λ0 divides all ψui for i = 1, . . . , h then
5 f ← [ψu1/λ0, . . . , ψuh/λ0]
6 E ← Error set corresponding to ei = ri − [fi(α1), . . . , fi(αn)] for i = 1, . . . , h
7 if λ0 = Λs, where Λ is the error locator of E then
8 return f

9 return “decoding failure”

6Note that λ0 being monic ensures that λ0 6= 0, so its degree must be non-negative.

31

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

In the next subsection, we will see that we can solve Problem 3.9 using a linear system of
equations. However, the problem can be solved more efficiently using known algorithms from
computational algebra.

Lemma 3.12. A minimal solution of Problem 3.9 with input s, `, Ai,j, and G can be found
in O∼(

(h+`
h

)ω
`n) operations over Fq.

Proof. Problem 3.9 is the same computational problem as the one in [Ros18] and the claim
follows by adapting the size and polynomials’ degrees of the problem. For completeness, we
discuss the technical details in Appendix A.1.

Theorem 3.13. Algorithm 1 can be implemented in O∼(
(h+`
h

)ω
`n) operations over Fq.

Proof. Precomputing R and G costs O∼(hn) operations over Fq, using standard methods
from computation algebra, cf. [GG99]. There are

(h+`
h

)
·
(h+s−1

h

)
many Ai,j , which each an be

computed in O∼(`n) operations using a divide-&-conquer strategy. Thus, Line 2 costs

O∼
((h+`

h

)(h+s−1
h

)
`n
)
⊆ O∼

((h+`
h

)2
`n
)

field operations. The heaviest step is Line 3, which costs O∼(
(h+`
h

)ω
`n) by Lemma 3.12. The

only remaining expensive operations are the h divisions in Line 5, which cost O∼(h`n).

Remark 3.14. The algorithms by Parvaresh and Vardy [PV04, Par07] and Cohn and Heninger
[CH13] have the same maximal asymptotic decoding radius as our decoder (cf. Section 3.1.3
below). We compare the complexities of the algorithms.
In [Par07, Section 2.4], the complexity of the (h+ 1)-variate interpolation step is given as

O(n2`3h+2) (by choosing the parameter m of their decoder m ∈ Θ(`), which results in approx-
imately the same decoding radius, cf. Section 3.1.3 below). This is larger than the complexity
of our decoder, which has quasi-linear runtime in n.7 It is stated that in principal, the com-
plexity of the interpolation step can be further reduced, but—to the best of our knowledge—this
has not yet been analyzed.
The second part of the algorithm is the multivariate root-finding step. It is described in

[Par07, Section 2.5] only for the case h = 2. The idea is to find two trivariate interpolation
polynomials and to eliminate one variable using resultants. Afterwards, the message polyno-
mials can be found by the Roth–Ruckenstein algorithm [RR00]. Resultant computation can
be rather heavy (cf. [GG99, Chapter 6]) and the complexity of this step is given in [Par07] as
“polynomial time” without stating the exponents of ` or n.
The algorithm by Cohn and Heninger [CH13] is of a similar type as the Parvaresh–Vardy

algorithm. The interpolation step is done via lattice basis reduction, for which many effi-
cient algorithms exist, and h many interpolation polynomials are found. Furthermore, Cohn
and Heninger suggest to solve the root-finding step for general h by iteratively eliminating
h variables of the interpolation polynomials using resultants or Gröbner bases without giving
the algorithmic details—in fact, the method is only described for the integer variant of the
problem that they are solving. The overall complexity of the algorithm is given as “polynomial
time for fixed h” and it is not apparent whether root finding can be done efficiently.

7Note that for a constant h, we have O∼(
(
h+`
h

)ω
`n) ⊆ O∼(`hω+1n), so also the exponent of ` is smaller here.

32

3.1 Improved Power Decoding of Interleaved Reed–Solomon Codes

3.1.3 Decoding Radius

In this section, we provide an upper bound on the number of errors for which the decoding
problem solution λi = Λi and ψj = Ψj can be a unique minimal solution of Problem 3.9.
As in previous algorithms based on power decoding [SSB06, SSB07, WZB14, Ros18], we call
this upper bound the decoding radius. Similarly, since the algorithm might fail or return a
different codeword for certain error patterns of weight up to this bound, we study the failure
behavior separately in Section 3.1.4. We first prove two lemmata.

Lemma 3.15. Let r ∈ N. Then,

r∑
µ=0

(h+µ−1
µ

)
=
(h+r
h

)
, and

r−1∑
µ=0

µ
(h+µ−1

µ

)
= h

(h+r−1
h+1

)
.

Proof. This follows immediately from well-known properties of the binomial coefficient.

Lemma 3.16. Let T, `, s ∈ N such that s ≤ ` and T + `(k − 1) < sn. Then, all polynomials
λi and ψj for i ∈ I and j ∈ J that fulfill (3.4), (3.5), and the absolute degree restrictions

deg λi ≤ T − |i| ∀ i ∈ I, (3.8)
degψj ≤ T + |j|(k − 1) ∀ j ∈ J , (3.9)

are exactly the solutions of a homogeneous linear system of equations over Fq with at least

δ(T) = (τ + 1)
(h+`
h

)
− n

[
h
(h+s−1
h+1

)
+ s

(h+`
h

)
− s

(h+s−1
h

)]
+ (k − 1)h

(h+`
h+1
)

more variables than equations.8 There are received words, where the difference between the
number of variables and equations is exactly δ(T).

Proof. By Remark 3.8, the degree of Ai,j is at most (n− 1)|j|+ |i|, so any λi satisfying (3.8)
results in

deg
(∑
i∈I

λiAi,j
)
≤ T + |j|(n− 1) ∀ j ∈ J .

Consider the right-hand sides in the equations, (3.4), of Problem 3.9, i.e.,
∑
i∈I λiAi,j . Fur-

thermore, view the coefficients of the λi as indeterminates. Then,
∑
i∈I λiAi,j is a polynomial

of x-degree at most T + |j|(n− 1) (in fact, for most received words, the x-degree is equal to
this value), whose coefficients are linear combinations of the unknown coefficients of the λi.
The polynomial ψj on the left-hand side of (3.4) has a much lower upper bound on its degree,
cf. (3.9). Thus, we obtain a homogeneous system of equations given by the coefficients of∑
i∈I λiAi,j of degree greater than T + |j|(k − 1). Note that the upper bound on the poly-

nomial’s degree implies an upper bound the number of equations. The lowest T + |j|(k − 1)
coefficients do not give additional equations since the coefficients of ψj are also unknown.
They can be easily obtained after solving the system for the λi.

We obtain further equations by considering the congruences, (3.5), of Problem 3.9, which
are equivalent to equations in which the left- and right-hand sides are taken modulo Gs. Note
that we need to assume T + `(k − 1) < sn in order for the degree bound on ψj to be smaller

33

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

Coefficient index

ψj

=

λi1

[(j
i1

)
Rj−i1G|i1|

]
mod Gs

+

λi2

[(j
i2

)
Rj−i2G|i2|

]
mod Gs

+

. . .

+ · · ·

sn− 1

T + |j|(k − 1)

Coefficients are linear maps of the coefficients of the λi

linear system
in coeff. of λi

Figure 3.3: Illustration of the linear system for obtaining all polynomials λi and ψj satisfying
(3.4), (3.5), (3.8), and (3.9), in the proof of Lemma 3.16 in the case s ≤ |j| ≤ `
(in the other case, the upper bound on the degree is T + |j|(k− 1) instead of sn).
Known polynomials are displayed in green color, unknown ones are red.

than the degree bound on the right-hand-side polynomial. The system, which is illustrated
in Figure 3.3, is obtained as for the equations above.
For |j| < s, the number of equations is at most9

Nj :=
(
τ + |j|(n− 1)

)
−
(
τ + |j|(k − 1)

)
= |j|(n− k)

and for |j| ≥ s at most (note that T + `(k − 1) < sn ensures Nj ≥ 0 for all j ∈ J)

Nj := sn− 1−
(
τ + |j|(k − 1)

)
= sn− τ − |j|(k − 1)− 1.

Using Lemma 3.15, in total we obtain at most

NE :=
∑
j∈J

Nj =
∑

1≤|j|<s
|j|(n− k) +

∑
s≤|j|≤`

(
sn− τ − |j|(k − 1)− 1

)
= (n− k)h

(h+s−1
h+1

)
+ (sn− τ − 1)

((h+`
h

)
−
(h+s−1

h

))
− (k − 1)

(
h
(h+`
h+1
)
− h

(h+s−1
h+1

))
equations. On the other hand, the number of unknowns (i.e., the coefficients of the λi) is

NV :=
∑
i∈I

(τ − |i|+ 1) = (τ + 1)
(h+s−1

h

)
− h

(h+s−1
h+1

)
.

The first claim follows by subtracting NV − NE. If all Ri have maximal degree n − 1, then
the number of equations is equal to NE, which proves the second statement.

Lemma 3.17. Let T, `, s ∈ N such that s ≤ ` and T + `(k − 1) < sn. If Problem 3.9 has a
solution of degree T , it has at least qδ(T)−1 many such solutions.

8If δ(T) < 0, this statement means that #variables − #equations ≥ δ(T).
9It might be fewer if e.g. degRi < n− 1 for some i.

34

3.1 Improved Power Decoding of Interleaved Reed–Solomon Codes

Proof. Degree-T solutions of Problem 3.9 are those solutions of the system of linear equations
in Lemma 3.16 where the T th coefficient of λ0 is one. In this way, we obtain an inhomogeneous
system of equations, whose matrix, say A, has a kernel of dimension dim kerA ≥ δ(T) − 1.
If the problem has a solution of degree T , then this system has at least qdim kerA solutions,
which proves the claim.

Theorem 3.18. Let T, `, s ∈ N such that T = s|E|, s ≤ `, T + `(k − 1) < sn, and

T
s = |E| > τnew := n

(
1− s(h+s−1

h)−h(h+s−1
h+1)

s(h+`
h)

)
− h

h+1
`
s(k − 1)− 1

s

(
1− 2

(h+`
h)

)
. (3.10)

Then, Problem 3.9 has at least two solutions of degree T .

Proof. If (3.10) is satisfied, then we have δ(T) > 1. Due to T = s|E|, the problem has at
least one degree-T solution by Theorem 3.11, i.e., λi = Λi and ψj = Ψj . Hence, the problem
has at least qδ(T)−1 > 1 solutions by Lemma 3.17.

We can interpret Theorem 3.18 as follows: If the number of errors |E| is greater than τnew,
then λi = Λj and ψj = Ψj cannot be a unique solution of Problem 3.9, and Algorithm 1
will most likely fail. On the other hand, if there are sufficiently many linearly independent
equations in the system of linear equations given in Lemma 3.16, then Problem 3.9 has no
other solution of degree T for T ≤ s|E|, and Algorithm 1 succeeds up to τnew many errors.10

This motivates to call τnew the decoding radius. As we will see in Section 3.1.5, our simulation
results indicate that this is indeed the radius up to which most errors can be corrected.

Remark 3.19. In case of T + `(k − 1) ≥ sn, the numerical difference of variables and
equations of the system in Lemma 3.16 is strictly larger than predicted by δ(T). Hence, the
actual decoding radius might be smaller in this case. We will, however, see in the following
that our proposed choice of the parameters ` and s implies that for T ≤ sτnew, we always have
T + `(k − 1) < sn.

Asymptotic Analysis

We analyze the asymptotic behavior of the decoding radius τnew over the choices of the
decoder parameters ` and s. The following lemma helps us to understand the limit of the
binomial coefficient fractions occurring in the expression of τnew.

Lemma 3.20. Let h ∈ N and γ ∈ (0, 1) be fixed. Then, for i ∈ N, we have

(h+bγic
h)

(h+i
h) = γh +O

(
1
i

)
.

Proof. Using Stirling’s formula (∗) and

1 ≤
√

(h+γi)i
(h+i)γi =

√
1 + (1−γ)m

γi ≤ 1 + (1−γ)m
γi , (3.11)∣∣∣ex − (1 + x

i

)i∣∣∣ = O
(1
i

)
∀x ∈ R, (3.12)(

h+γi
h+i

)h
= γh +

h∑
j=1

(
h
j

)
γm−j

(
(1−γ)m
m+i

)j
= γh +O

(1
i

)
, (3.13)

10This condition resembles, but seems weaker than, the “algebraic independence assumption” in [CH13].

35

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

we obtain

(h+bγic
h)

(h+i
h) = (h+bγic)!i!

bγic!(h+i)!
(∗)=

(3.11)
= 1+O(1

i
)︷ ︸︸ ︷√

(h+γi)i
(h+i)γi ·

(h+γi)h+γiii

(γi)γi(h+i)h+i ·

=1︷ ︸︸ ︷
e(h+γi)+i−γi−(h+i) +O

(
1
i

)
=

(
h+γi
h+i

)h
︸ ︷︷ ︸
=

(3.13)
γh+O(1

i
)

· (h+γi)γi
(γi)γi︸ ︷︷ ︸

=
(3.12)

eh+O(1
i
)

· (i)i
(h+i)i︸ ︷︷ ︸

=
(3.12)

e−h+O(1
i
)

+O
(

1
i

)
= γh +O

(
1
i

)
,

which proves the claim.

Using Lemma 3.20, we derive the following asymptotic expression for τnew. Theorem 3.21
is constructive as it provides a sequence of parameters that asymptotically achieve the limit.

Theorem 3.21. Let [`i, si] = [i, bγic+ 1] for i ∈ Z>0, where γ = h+1
√

k−1
n . Then,

τnew(`i, si) = n
(
1−

(
k−1
n

) h
h+1 −O

(
1
i

))
.

Proof. We choose [`i, si] as in the theorem statement. Using Lemma 3.20, we obtain

τnew
n = 1−

[
1−

(
1− 1

si

)︸ ︷︷ ︸
= 1−O(1

i)

h
h+1

] (h+si−1
h)

(h+`i
h)︸ ︷︷ ︸

= γh+O(1
i)

− h
h+1

`i
si︸︷︷︸

= γ−1

+O(1
i)

k−1
n −

1
si︸︷︷︸

=O

(
1
i

)
[
1− 2

(h+`
h)

]
︸ ︷︷ ︸

= 1−O(1
i)

= 1 + m
m+1

(
γh − γ−1 k−1

n

)
︸ ︷︷ ︸

= 0

− γh −O
(

1
i

)
= 1−

(
k−1
n

) h
h+1 −O

(
1
i

)
,

which proves the claim.

Corollary 3.22. For a fixed code of rate R = k
n and any constant ε > 0, we can choose

s, ` ∈ O(1/ε) such that τnew ≥ n(1 − R
h
h+1 − ε). In this case, the algorithm has complexity

O∼
(
(1/ε)hω+1n

)
in operations over Fq, where ω is the matrix multiplication exponent.

Remark 3.23. The choice of ` ≤ s(k−1
n)−

1
h+1 in Theorem 3.21 yields, for T ≤ sτnew,

T + `(k − 1) < sn(1− (k−1
n)

h
h+1) + s(k−1

n)−
1

h+1 (k − 1) = sn,

and therefore always fulfills the condition T + `(k − 1) < sn discussed in Remark 3.19.

3.1.4 Failure Behavior
As any other power decoding algorithm, the new decoder sometimes fails to decode below
the maximal decoding radius derived in the previous subsection. By failure, we mean that
for a received word r = c + e, the codeword c does not correspond to a unique minimal
solution of Problem 3.9.11 We start with the observation that the success is independent of
the codeword.
11Note that this kind of failure might not be detected by the decoder. E.g., it might find a solution corre-

sponding to a codeword although there are other solutions of the same degree.

36

3.1 Improved Power Decoding of Interleaved Reed–Solomon Codes

Theorem 3.24. The success of decoding r = c+ e depends only on the error e.

Proof. The proof is analogous to the one of [Ros18, Proposition 5.1]. We show that if decoding
r fails, then for any ĉ ∈ CIRS with corresponding message polynomial f̂ , decoding r + ĉ also
fails. If decoding r fails, there is a minimal solution λi, ψj of Problem 3.9 with input r such
that λ0 6= Λs and deg λ0 ≤ deg Λs. We prove that ψ̂j :=

∑
i�j

(j
i

)
f̂ iψj−i and λ̂i := λi is a

minimal solution Problem 3.9 with input r+ ĉ (using R̂ := R+ f̂), so that decoding r+ ĉ also
fails. The polynomials λ̂i and ψ̂j indeed fulfill the equalities and congruences of Problem 3.9
with input r + ĉ since∑
i�j
|i|<s

λ̂i
(j
i

)
R̂
j−i

G|i| =
∑
i�j
|i|<s

∑
h�j−i

λi
(j
i

)(j−i
h

)︸ ︷︷ ︸
= (j

h)(j−h
i)

Rj−i−hf̂
h
G|i|

=
∑
h�j

(j
h

)
f̂
h ∑
i�j−h
|i|<s

λi
(j−h
i

)
Rj−h−iG|i|

=


∑
h�j

(j
h

)
f̂
h
mψj−h = ψ̂j , if |j| < s∑

h�j

(j
h

)
f̂
h
ψj−h + ξGs ≡ ψ̂j mod Gs, for some ξ ∈ Fq[x] if |j| ≥ s.

Also, deg ψ̂j ≤ minh{degψj−h + |h|(k − 1)} ≤ deg λ0s+ |j|(k − 1).

In general, the success of the decoder is bound to the maximal number of linearly inde-
pendent equations in the linear system described in Lemma 3.16. If the method fails, we can
distinguish the following two cases:

i) Algorithm 1 formally returns “decoding failure”, in which case the found minimal solu-
tion of Problem 3.9 is generic, i.e., does not correspond to a codeword.

ii) The decoder returns a different codeword c′ corresponding to errors positions E ′ with
|E ′| ≤ |E|.

A bound on the failure probability for a random error of given weight can be given as the union
bound of the probabilities that the events occur. The latter probability can be estimated us-
ing classical coding theory. However, the first case is more difficult. We conjecture that its
probability is closely related to the existence of a generic solution of degree ≤ sτnew of Prob-
lem 3.9 with random input polynomials Ai,j , but we cannot formally prove this statement.
Both mentioned probabilities are exponentially decaying in (τnew − |E|).
However, this crucial question requires further research. In fact, it is not even solved in

general for the previous power-decoding-based algorithms [SSB06, SSB10, WZB14, Ros18].
The only known formal bounds are as follows:

• [SSB06, SSB10] (h = s = 1) gives an upper bound for the case ` ≤ 2.

• [WZB14] (s = 1) gives an upper bound for the case ` ≤ 2.12

• [Ros18] (h = 1) gives an upper bound for the case s ≤ 2 and ` ≤ 3.
12The bound holds for general ` but yields values larger than 1 beyond the radius corresponding to ` = 2.

37

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

For the interpolation-based interleaved RS decoders that potentially achieve the same decod-
ing radius as our decoder, [PV04, Par07] (h ≤ 2) and [CH13], the only known upper bound
on the failure probability is given by Parvaresh and Vardy [PV04, Par07] for h ≤ 2 and

|E| ≤ n
(

1− 3
√

6(k−1
n)2

)
,

which is far below its asymptotic radius n(1− (k−1
n)2/3).

Although we do not have a formal upper bound on the failure probability, the simulation
results for various code and decoder parameters presented in the next subsection indicate
that the new decoder is indeed able to decode up to τnew errors with overwhelmingly large
probability. Based on our observations and known formal bounds on the special cases men-
tioned above [SSB06, SSB10, WZB14, Ros18], we conjecture that the probability of failure
for a random error e of weight |E| is upper-bounded by

Pfail ≤ q−b(τnew−|E|),

where q is the field size and b > 1 is a constant that depends on the code and decoder
parameters n, k, h, `, and s.

3.1.5 Simulation Results

In this section, we present results of Monte–Carlo simulations with the new decoder, based on
an implementation of Algorithm 1 in SageMath v7.5 [S+]. For a variety of code and decoder
parameters, we estimate the failure probability Pfail for random errors of weight |E| = τ .

Table 3.1 shows the results for decoding at exactly the decoding radius τ = bτnewc. For
comparison, the table also displays the maximal decoding radii τWZB of the WZB [WZB14]
and τKL of the KL [KL97] algorithm for the given code parameters.

Table 3.1: Observed Failure Rate P̂fail at τ = bτnewc errors for various code (q, n, k,m) and
decoder (`, s) parameters, measured by Monte–Carlo simulations of N ∈ {104, 106}
samples. For comparison: Decoding radii τWZB of [WZB14] and τKL of [KL97] for
the chosen parameters.

q n k m [`, s] bτnewc P̂fail τWZB τKL N

257 257 86 2 [3, 2] 120 0 114 114 106

[4, 3] 124 1.1 · 10−5 114 114 106

43 43 18 2 [4, 3] 18 5.4 · 10−4 16 16 106

17 17 3 2 [3, 2] 11 1.9 · 10−3 10 9 106

4 [4, 3] 13 2.8 · 10−2 10 9 104

5 [5, 3] 13 1.9 · 10−3 10 9 104

17 16 2 3 [3, 2] 12 9.1 · 10−5 12 10 106

[6, 3] 13 1.0 · 10−1 12 10 104

16 16 3 3 [2, 1] 10 0 10 9 106

[3, 2] 11 2.1 · 10−5 10 9 106

38

3.2 Improved Power Decoding of Interleaved One-Point Hermitian Codes

Compared to the Krachkovsky–Lee and Wachter-Zeh–Zeh–Bossert algorithm, we can often
correct many more errors. For instance, we can correct 124 instead of 114 errors with the code
CIRS(257, 86; 2) over F257 and decoder parameters [`, s] = [4, 3], where the observed failure
rate is ≈ 1.1 · 10−5. Our decoder can also achieve a better observed failure rate at the same
decoding radius. Consider the code CIRS(16, 2; 3) code over F17, which is was also numerically
evaluated in [WZB14, Table 1]. The WZB algorithm corrects 12 errors with observed failure
rate 6.2 · 10−3. By choosing the parameters of our decoder [3, 2], we observe a lower failure
rate 9.1 · 10−5 for the same number of errors. If we increase the decoder parameters to [6, 3],
we can correct one more error in ≈ 90% of the samples.
In case of the CIRS(17, 3; 5) code over F17, we can almost decode up to the list decoding

capacity n− k = 14: By choosing the decoder parameters [`, s] = [5, 3], Algorithm 1 corrects
13 errors at an observed failure rate ≈ 1.9 · 10−3.

As expected, decoding always failed in our simulations when the number of errors is chosen
larger than τnew. On the other hand, the estimated failure probability significantly decreases
when the number of errors is below τnew. For instance, the observed failure rate of the decoder
with parameters [3, 2] of the CIRS(17, 3; 2) code over F17 is 1.3 · 10−5 at τ = bτnewc − 1 = 10
errors, compared to 1.9 · 10−3 at 11 errors.

3.2 Improved Power Decoding of Interleaved One-Point Hermitian
Codes

In this section, we adapt our results of the previous section to interleaved one-point Hermitian
codes of maximal length n = q3.13 The main difference is that we are dealing with polynomials
in R. Recall from Chapter 2 that R is the ring of functions in Fq2(H) that are regular in all
points of the curve except for P∞. The functions in R may be uniquely written as Fq2-linear
combinations of the bivariate monomials xiyj with y-degree j < q. In this case, multiplication
in R corresponds to multiplication of the bivariate polynomials modulo the curve equation
yq +x−xq+1 = 0. Furthermore, recall that g = 1

2q(q−1) is the genus of the Hermitian curve.
We use a similar notation for power decoding as in [NB15].

3.2.1 Key Equations

Let r = c + e ∈ Fh×nq2 be the received word, where c ∈ CIH(n,mH;h) is a codeword with
corresponding message polynomial vector f ∈ L(mHP∞)h, and e is an error word with burst
error positions in E (cf. Section 2.2.3). Our decoder is based on a system of key equations
that contains the following polynomials.

Definition 3.25. Let s ∈ N. An error locator polynomial Λ(s) of multiplicity s is a non-zero
monic element in L (−

∑
i∈E sPi +∞P∞) of minimal degree.

Theorem 3.26. The error locator polynomial of multiplicity s is unique and has degree

s|E| ≤ degH Λ(s) ≤ s|E|+ g.

13The approach also works for any n < q3, but then the evaluation points must be chosen carefully in order
to retain the complexity statements.

39

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

Proof. The proof is similar to [NB15, Lemma 23]. Uniqueness is clear since the difference of
two such polynomials would also be in L (−

∑
i∈E sPi +∞P∞), but of smaller degree degH

(recall that two different monomials xiyj with j < q cannot have the same degH).
We prove the upper bound by showing that L (−

∑
i∈E sPi +∞P∞) contains an element f

of degree degH f ≤ s|E|+g. We can find such an element by a system of equations as follows:
Consider the coefficients of f up to the monomial of degree s|E| + g to be indeterminates.
Hence, there are at least s|E|+1 many of them. The polynomial f is in L (−

∑
i∈E sPi +∞P∞)

if and only if it can be expanded into a power series
∑
j≥s γi,jtPi

j for all i ∈ E , where
tPi is a local parameter of Pi (e.g., take tPi = x − αi if Pi = (αi, βi)). Each i ∈ E thus
puts s many homogeneous linear restrictions on the coefficients of f , given by the s lowest
coefficients of the power series expansion. In total, we obtain a homogeneous linear system
of s|E| equations and s|E|+ 1 unknowns, so there is a non-zero solution corresponding to an
f ∈ L (−

∑
i∈E sPi +∞P∞) of degree degH f ≤ s|E|+ g.

There cannot be an error locator of degree smaller than s|E| since otherwise it would be
contained in the Riemann–Roch space L (D) with D = −

∑
i∈E sPi + (s|E| − 1)P∞. However,

we have L (D) = {0} since degD < 0 (cf. Section 2.2.2).

Lemma 3.27. For each i = 1, . . . , h, there is a polynomial Ri ∈ R with degH(Ri) < n + 2g
that satisfies Ri(Pj) = ri,j for all Pj ∈ H∗ and can be computed in O∼(n) operations over Fq2.

Proof. This directly follows from [NB15, Lemma 6].

In the remainder of this section, we writeR = [R1, . . . , Rh] ∈ Rh, whereRi is as Lemma 3.27
and choose G ∈ R, with degHG = n, as

G =
∏
α∈Fq2 (x− α) = xq

2 − x.

Lemma 3.28. Let s ∈ N, i ∈ Nh0 with |i| ≤ s, and Λ(s), R, f , G as above. There is a unique
polynomial Ωs,i ∈ R of degree degHΩs,i ≤ degH Λ(s) + |i|(2g − 1) such that

Λ(s)(f −R)i = G|i|Ωs,i.

Proof. We show that Λ(s)(f − R)i) ∈ L(−div(G|i|) +∞P∞). Existence and uniqueness of
Ωs,i then follows since this Riemann–Roch space equals G|i|R, cf. (2.1) on page 10. First
note that div(G) =

∑n
j=1 Pj − nP∞, so −div(G|i|) +∞P∞ = −|i|

∑n
j=1 Pj +∞P∞. Hence,

it suffices to show vPj (Λ(s)(f −R)i)) ≥ |i| for all j = 1, . . . , n. In the case j ∈ E , we have
vPj (Λ(s)(f −R)i) ≥ vPj (Λ(s)) ≥ s ≥ |i|. Since for each µ = 1, . . . , h, the polynomial fµ −Rµ
has zeros at the non-error positions j /∈ E , we must have vPj (Λ(s)(f−R)i)) ≥ vPj ((f−R)i) ≥
|i|. The degree of Ωs,i follows from the degree bound degH(Rµ) < n+ 2g and by comparing
the degrees on both sides of the equation.

The following theorem states the system of key equations that we use for decoding. Its
formulation is similar to its IRS analog, Theorem 3.6 on page 29, with two major differences:

• All polynomials are in R instead of Fq[x].
• Instead of the sth power of the ordinary error locator, Λs, we seek the error locator Λ(s)

of multiplicity s, which is a natural generalization.14

14In Fq[x], Λs is the monic polynomial of smallest degree with multiplicity s at all evaluation points αi ∈ Fq.

40

3.2 Improved Power Decoding of Interleaved One-Point Hermitian Codes

Theorem 3.29 (System of Key Equations). Let `, s ∈ N with s ≤ ` and f , Λ, G, R, and
Ωs,i be defined as above. Then, for all j ∈ Nh0 with 1 ≤ |j| ≤ `, we have

Λ(s)f j =
∑
i�j

Ωs,i

(
j

i

)
Rj−iG|i|, 1 ≤ |j| < s (3.14)

Λ(s)f j ≡
∑
i�j
|i|<s

Ωs,i

(
j

i

)
Rj−iG|i| mod Gs, s ≤ |j| ≤ `, (3.15)

as a congruence over R.

Proof. The statement follows by analogous arguments as Theorem 3.6, using Lemma 3.28.

Analogous to (3.3) in the previous section, we define the following polynomials in R:

Ψj := Λ(s)f j (unknown at the receiver),
Λi := Ωs,i (unknown at the receiver), and (3.16)

Ai,j :=
(j
i

)
Rj−iG|i| (known at the receiver).

Remark 3.30. Theorem 3.29 is similar to the system of key equations for IRS decoding,
Theorem 3.6 on page 29. However, the polynomials Ψj, Λi and Ai,j as in (3.16) have different
degree bounds (cf. Remark 3.8)

degHΨj = degH Λ(s) + degH(f j) ≤ degH Λ0 + |j|mH,

degH Λi ≤ degH Λ(s) + |i|(2g − 1) = degH Λ0 + |i|(2g − 1),
degHAi,j ≤ (n+ 2g − 1)(|j| − |i|) + |i|n = (n+ 2g − 1)|j| − |i|(2g − 1) for i � j.

The bounds are tight for many received words: If for all µ with jµ > 0, we have degH fµ = mH,
then the first bound is fulfilled with equality. The second and third bound are tight for received
words with degHRµ = n+2g−1 for all µ with iµ > 0, and all µ with jµ− iµ > 0, respectively.
Note that for a fixed µ, the polynomials fµ and Rµ have these maximal degrees for a fraction
of 1− 1/q2 of codewords and received words by definition. This is a direct consequence of the
choice of fµ and the interpolation polynomial formula in [NB15, Lemma 6].

3.2.2 Solving the Key Equations

As in the IRS case in Section 3.1.2, we relax the non-linear system of key equations into
a generalization of a multi-sequence linear feedback shift-register synthesis problem, whose
degree restrictions are motivated by the degree bounds in Remark 3.30. By relaxed, we mean
that we do not assume that the λi and ψj , instead of Λi and Ψj , are of the form as in (3.16).

Problem 3.31. Given positive integers s ≤ `, Ai,j =
(j
i

)
Rj−iG|i| ∈ R as in (3.16) for all

i ∈ I := {i ∈ Nh0 : 0 ≤ |i| < s} and j ∈ J := {j ∈ Nh0 : 1 ≤ |j| ≤ `}, and G ∈ R as in

41

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

Section 3.2.1. Find λi, ψj ∈ R for i ∈ I and j ∈ J with monic λ0, such that

ψj =
∑
i∈I

λiAi,j 1 ≤ |j| < s, (3.17)

ψj ≡
∑
i∈I

λiAi,j mod Gs s ≤ |j| ≤ `, (3.18)

degH λ0 ≥ deg λi − |i|(2g − 1) 0 ≤ |i| < s, (3.19)
degH λ0 ≥ degψj − |j|mH 1 ≤ |j| ≤ `. (3.20)

Definition 3.32. Consider an instance of Problem 3.31. A solution λi, ψj , i ∈ I, j ∈ J has
degree T ∈ N0 if degH λ0 = T . It is minimal if its degree is minimal among all solutions.

Our decoding strategy, which is outlined in Algorithm 2, is motivated by the following state-
ment, which directly follows from the key equations and the degree bounds in Remark 3.30.

Theorem 3.33. Consider an instance of Problem 3.31. Then, λi = Λi and ψj = Ψj,
where Λi ∈ R and Ψj ∈ R are chosen as in (3.16), are a solution of the problem of degree
T = degH Λ(s), where s · |E| ≤ T ≤ s · |E|+ g.

In the following, we show how to obtain a minimal solution of Problem 3.31 (Line 3 of
Algorithm 2). If the found solution is λi = Λi and ψj = Ψj , then we can proceed analogously
to the IRS case in Section 3.1.2: Let ui = [0, . . . , 0, 1, 0, . . . , 0] be the ith unit vector for
i = 1, . . . , h. Then, λ0 = Λ(s) and ψui = Λ(s)fi, so we can obtain the message polynomials fi
by a division of ψui by λ0. Division in R can be performed efficiently as described in [NB15,
Section V.C], using truncated power series.

Algorithm 2: Improved Power Decoder for h-Interleaved One-Point Hermitian Codes
Input: Received words ri = ci + ei ∈ Fh×nqm for i = 1, . . . , h and positive integers s ≤ `
Output: f ∈ L(mHP∞)h such that ci = [fi(P1), . . . , fi(Pn)] for all i = 1, . . . , h is a

codeword corresponding to a minimal deg Λ(s); or “decoding failure”.
1 Compute R and G as in Section 3.2.1 using the interpolation algorithm in [NB15]
2 Ai,j ←

(j
i

)
Rj−iG|i| for all i � j

3 λi, ψj ← Minimal solution of Problem 3.31 with input s, `, Ai,j , and G
4 if λ0 divides all ψui (in R) for i = 1, . . . , h, where ui is the ith unit vector then
5 f ← [ψu1/λ0, . . . , ψuh/λ0] using the division algorithm in [NB15]
6 E ← Error set corresponding to ei = ri − [fi(α1), . . . , fi(αn)] for i = 1, . . . , h
7 if λ0 is the error locator of multiplicity s corresponding to E then
8 return f

9 return “decoding failure”

Complexity

We show how to implement Algorithm 2 efficiently. Since Problem 3.31 is over R, we cannot
immediately apply the same methods as for the IRS case: We first need to reduce it to
an equivalent problem over Fq2 [x], similar to [NB15]. For this purpose, we use the Fq2 [x]-
vector representation of an element of R. Any polynomial a ∈ R can be uniquely written

42

3.2 Improved Power Decoding of Interleaved One-Point Hermitian Codes

as a =
∑q−1
i=0 aiy

i ∈ R with ai ∈ Fq2 [x]. Then, the vector representation of a is defined by
ν(a) = [a0, . . . , aq−1] ∈ Fq2 [x]q, cf. [NB15]. We can determine the degree of a over R from its
vector representation by

degH(a) = max
i
{q deg(ai) + i(q + 1)}, (3.21)

Furthermore, the vector representations of a, b ∈ R fulfill

ν(a+ b) = ν(a) + ν(b), ν(ab) = ν(a)µ(b)Ξ,

where µ(b) ∈ Fq2 [x]q×(2q−1) and Ξ ∈ Fq2 [x](2q−1)×q are defined by

µ(b) :=


b0 b1 b2 . . . bq−1

b0 b1 . . . bq−2 bq−1
. . .

.
. . .

. . .

b0 b1 . . . bq−2 bq−1

 , Ξ :=



1
1

. . .

1
xq+1 −1

xq+1 −1
. . .

. . .

xq+1 −1


,

cf. [NB15]. For any polynomial c ∈ Fq2 [x] ⊆ R, we have µ(ac) = µ(a)c. In the following, let
[q) denote {0, . . . , q− 1}. We reformulate Problem 3.31 into the following equivalent problem
over Fq2 [x] using the notation above.

Problem 3.34. Let `, s ∈ N with s ≤ `, R, G ∈ R as in Section 3.2.1, and

A(i,j) := µ(Ai,j)Ξ = µ
((j
i

)
Rj−iG|i|

)
Ξ ∈ Fq2 [x]q×q

for all i ∈ I := {i ∈ Nh0 : 0 ≤ |i| < s} and j ∈ J := {j ∈ Nh0 : 1 ≤ |j| ≤ `}. Find
λi,ι, ψj,κ ∈ Fq2 [x] for i ∈ I, j ∈ J , ι, κ ∈ [q), which are not all zero, such that

ψj,κ =
∑
i∈I

q−1∑
ι=0

λi,ιA
(i,j)
ι,κ , 1 ≤ |j| < s, (3.22)

ψj,κ ≡
∑
i∈I

q−1∑
ι=0

λi,ιA
(i,j)
ι,κ mod Gs, s ≤ |j| ≤ `, (3.23)

max
ι∈[q)
{q deg λ0,ι + ι(q + 1)} ≥ q deg λi,ι + ι(q + 1)− |i|(2g − 1), 0 ≤ |i| < s, ι ∈ [q), (3.24)

max
ι∈[q)
{q deg λ0,ι + ι(q + 1)} ≥ q degψj,κ + κ(q + 1)− |j|mH, 1 ≤ |j| ≤ `, κ ∈ [q). (3.25)

Motivated by (3.21), we call T = maxι∈[q) {q deg λ0,ι + ι(q + 1)} the degree of a solution
λi,ι, ψj,κ of Problem 3.34. Also, a solution is called monic if the leading coefficient of the
(unique) polynomial λ0,ι that maximizes maxι∈[q) {q deg λ0,ι + ι(q + 1)} is one. We establish
the connection between Problem 3.31 and Problem 3.34 in the following.

43

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

Theorem 3.35. Let T ∈ N0. The polynomials λi, ψj ∈ R for i ∈ I and j ∈ J are a degree-T
solution of Problem 3.31 if and only if

[λi,0, . . . , λi,q−1] := ν(λi) and [ψj,0, . . . , ψj,q−1] := ν(ψj)

are a monic solution of degree T of Problem 3.34.

Proof. The equivalence of (3.17) and (3.22) is clear by the properties of the vector represen-
tation. Also the degree restrictions are equivalent due to (3.21). It remains to show that the
congruences mean the same. If λi and ψj are a solution to Problem 3.31, then for |j| ≥ s,
there is some uj ∈ R such that:

ψj =
∑
i�j
|i|<s

λiAi,j + ujG
s ⇐⇒ ν(ψj) =

∑
i�j
|i|<s

ν(λi)µ(Ai,j)Ξ + µ(uj)Gs,

where µ(Gsuj) = µ(uj)Gs due to Gs ∈ Fq2 [x], which implies the claim.

Problem 3.34 is of a similar form as the problem discussed in [NB15, Section V.B], which
can be solved with the following cost.

Lemma 3.36. A minimal solution of Problem 3.31 with input `, s, Ai,j , G can be found in

O∼
((h+`

h

)ω
`n

ω+2
3
)
⊆ O∼

(
`hω`n

ω+2
3
)

operations over Fq2.

Proof. Problem 3.34 is of a similar kind as the one considered in [NB15]. For completeness,
the technical details are contained in Appendix A.1.

Theorem 3.37. Algorithm 2 can be implemented in O∼(
(h+`
h

)ω
`n

ω+2
3) operations over Fq2.

Proof. The pre- and post-computations in Algorithm 2 are negligible compared to Line 3 by
similar arguments as in Theorem 3.13 and the fast interpolation and division algorithm over
R in [NB15]. The claim follows by Lemma 3.36.

3.2.3 Decoding Radius and Failure Behavior
Similar to the IRS case, we derive an upper bound on the degree of Λ(s) for which it can be
a unique solution of Problem 3.31.

Lemma 3.38. Let T, `, s ∈ N such that s ≤ ` and T + `mH < sn. Then, all polynomials
λi, ψj ∈ R for i ∈ I and j ∈ J that fulfill (3.17), (3.18), and the absolute degree restrictions

degH λi − |i|(2g − 1) ≤ T, (3.26)
degH ψj − |j|mH ≤ T, (3.27)

are exactly the solutions of a homogeneous linear system of equations over Fq2 with at least

δ(T) = (T + 1)
(h+`
h

)
− n

[
h
(h+s−1
h+1

)
+ s

(h+`
h

)
− s

(h+s−1
h

)]
+mHh

(h+`
h+1
)
− g

(h+`
h

)
more variables than equations.15 If T ≥ 2g − 1, there are received words for which this
difference is exactly δ(T).
15If δ(T) < 0, this statement means that #variables − #equations ≥ δ(T).

44

3.2 Improved Power Decoding of Interleaved One-Point Hermitian Codes

Proof. The proof works in a similar way as the one of Lemma 3.16 on page 33, but we need
to take care that all polynomials are in R. Due to degHAi,j ≤ (n+ 2g − 1)|j| − (2g − 1)|i|,
we get

degH
(∑
i∈I

λiAi,j
)
≤ T + |j|(n+ 2g − 1) ∀ j ∈ J .

Hence, for |j| < s, the polynomial ψj has lower degree than the terms in
∑
i∈I λiAi,j , where

the coefficients of λi are considered to be indeterminates. For |j| ≥ s, ψj has also lower
degree than the modulus Gs due to the condition T + `mH < sn. Thus, the coefficients of
the polynomials

∑
i∈I λiAi,j (case |j| < s) and (

∑
i∈I λiAi,j mod Gs) (case |j| ≥ s) of index

greater than T + |j|mH must be zero. Since the coefficients are known linear combinations
of the unknown coefficients of the λi, this gives us a homogeneous linear system of equations
(cf. Figure 3.3 on page 34).
We count the number of equations and variables. Recall that for a, b ∈ N0, a < b, there

are at least b − a − g and at most b − a many monomials xiyj ∈ R with j < q of degree
degH(xiyj) ∈ [a, b), cf. Section 2.2.2.

Due to the degrees of the polynomials, the number of equations for each |j| < s is at most

Nj = (T + |j|(n+ 2g − 1))− (T + |j|mH) = |j|(n+ 2g − 1−mH).

The analysis is more complicated for |j| ≥ s: Since Gs is a polynomial only in x with x-
degree degx(Gs) = sq2, the modulo-Gs operation forces the x-degree of all monomials in
(
∑
i∈I λiAi,j mod Gs) to be at most sq − 1. Thus, it can be written as∑

i∈I
λiAi,j mod Gs

 =
q−1∑
j=0

sq2−1∑
i=0

aijx
iyj ,

where aij ∈ Fq2 are again known linear combinations of the unknown coefficients of the λi.
Due to degψj ≤ T + |j|mH, we get at most

Nj :=
(q−1∑
j=0

sq2
)
− |{[i, j] : qi+ (q + 1)j ≤ T + |j|mH}|︸ ︷︷ ︸

=T+|j|mH−g+1

= sn− T − |j|mH + g − 1

homogeneous linear equations. Using Lemma 3.15 repeatedly, we obtain the following upper
bound on the number of equations:

NE :=
∑
j∈J

Nj =
∑

1≤|j|<s
|j|(n+ 2g − 1−mH) +

∑
s≤|j|≤`

(
sn− T − |j|mH + g − 1

)
= (n+ 2g − 1)h

(h+s−1
h+1

)
+ (sn− T − 1 + g)

((h+`
h

)
−
(h+s−1

h

))
−mHh

(h+`
h+1
)
.

The number of variables (i.e., the number of Fq2-coefficients of the λi) is at least

NV :=
(∑
i∈I

(T + |i|(2g − 1) + 1− g)
)

= (T + 1− g)
(h+s−1

h

)
+ (2g − 1)h

(h+s−1
h+1

)
,

which implies the claim by subtracting NV−NE.
If T ≥ 2g − 1, then all Weierstraß gaps are below the degree bounds of the λi and ψj ,

so the number of variables is exactly equal to NV. Since there are received words with
degHRi = n+ 2g− 1, we can have degH

(∑
i∈I λiAi,j

)
= T + |j|(n+ 2g− 1), so the derived

NE also equals the number of equations in this case.

45

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

From the above lemma, we get the following statement, whose proof works exactly as the
one of Lemma 3.17.

Lemma 3.39. Let T, `, s ∈ N such that s ≤ ` and T + `mH < sn. If Problem 3.31 has a
solution of degree T , then it has at least (q2)δ(T)−1 many such solutions.

Lemma 3.39 implies the following statement on the uniqueness of a minimal solution cor-
responding to the error locator polynomial.

Theorem 3.40. Let T, s, ` ∈ N such that s ≤ `, T = degH Λ(s), T + `mH < sn, and

T > Tmax := sn

(
1− s(h+s−1

h)−h(h+s−1
h+1)

s(h+`
h)

)
− h

h+1`mH +
(

1
(h+`
h) − 1

)
+ g. (3.28)

Then, Problem 3.31 has at least two solutions of degree T .

Proof. Condition (3.28) holds if and only if δ(T) > 1. Due to T = degH Λ(s), Problem 3.31
has a solution of degree T , which implies the claim using Lemma 3.39.

We can interpret Theorem 3.40 as follows: If degH Λ(s) > Tmax, then even if Λ(s) corresponds
to a minimal solution of Problem 3.31, there are also other solutions of the same degree. Since
Algorithm 2 only specifies that one minimal solution of the problem should be found, there
is no reason to assume that the decoder succeeds in this case. In particular, if we choose a
random minimal solution, then the decoder will fail with high probability.
Recall that |E| ≤ degH Λ(s) ≤ s|E|+g, and—for a random error—often degH Λ(s) = s|E|+g.

Thus, Λ(s) can usually not be a unique solution for s|E| + g > Tmax, i.e., |E| > Tmax−g
s , and

for sure if |E| > Tmax
s . This motivates to call

τH,new = Tmax−g
s = n

(
1− s(h+s−1

h)−h(h+s−1
h+1)

s(h+`
h)

)
− h

h+1
`
smH + 1

s

(
1

(h+`
h) − 1

)
(3.29)

the decoding radius of Algorithm 2.

Remark 3.41. As stated in Lemma 3.38, for T ≥ 2g − 1 and T + `mH < sn, there are
received words such that the inhomogeneous system for computing monic degree-T solutions
of Problem 3.31 has exactly δ(T) − 1 more variables than equations. In fact, most received
words fulfill this condition: For a fixed j, we only require one Ai,j to fulfill the upper bound
on its degree with equality, i.e., degHAi,j = (n + 2g − 1)|j| − (2g − 1)|i| (cf. Remark 3.30).
If the system contains enough linearly independent equations for T with δ(T) < 0, then Λ(s)

corresponds to a unique minimal solution.
In the case T < 2g−1, the degree bounds of both λ0 and ψ0 are smaller than 2g−1 (due to

mH ≥ 2g−1; those of all other λi and ψj are still at least 2g−1). Thus, the maximal number
of equations can be up to g smaller and there can be up to g more variables than predicted in
Lemma 3.38. By the arguments above, the decoding radius is reduced by at most 2g/[s

(h+`
h

)
].

For T + `mH ≥ sn, the number of equations is also smaller than predicted by Lemma 3.38.
As in the IRS case, we will see that our proposed choice of ` and s (see below) circumvents
this case for T ≤ sτH,new.

46

3.2 Improved Power Decoding of Interleaved One-Point Hermitian Codes

Similar to our decoder for interleaved RS codes in the previous section, the decoder fails
to return the sent codeword c for some errors of weight less than the decoding radius. If
this is the case, then Problem 3.31 either has a generic solution of degree ≤ degH Λ(s) or
there is another codeword c′ 6= c with corresponding error positions E ′ and Λ(s)′ of degree
degH Λ(s)′ ≤ degH Λ(s). It is important to note that—in contrast to IRS codes—the latter
case does not imply |E ′| ≤ |E|. A formal upper bound on the failure probability of the decoder
remains an open question. However, the simulation results in the following subsection indicate
that the new decoder can indeed correct up to τH,new errors. Sometimes, it can even decode
beyond this radius, in which case we usually have degH Λ(s) < s|E|+ g.

Asymptotic Analysis and Parameter Choice

Using the same arguments as in the IRS case (cf. Theorem 3.21 on page 36), we obtain the
following asymptotic decoding radius. The statement also implies a practical choice of the
parameters ` and s.

Theorem 3.42. Let [`i, si] = [i, bγic+ 1] for i ∈ N, where γ = h+1
√

mH
n . Then,

τH,new(`i, si) = n
(
1−

(mH
n

) h
h+1 −O(1

i)
)

for (i→∞).

Corollary 3.43. Let ε > 0 and R = k
n . Then, there are `, s ∈ O(1/ε) such that τH,new ≥

n(1− (R+ g−1
n)

h
h+1 − ε). In this case, Algorithm 2 costs O∼((1/ε)hω+1n

ω+2
3).

Remark 3.44. The choice of ` and s in Theorem 3.42 ensures that the condition T + `mH <
sn is fulfilled for all T ≤ s · τH,new(`, s).

3.2.4 Simulation Results

This section presents Monte-Carlo simulations with N ∈ {102, 103, 104, 105} samples for es-
timating the failure probability of the new decoder in a channel that randomly adds τ ∈ N
burst errors. Our implementation of Algorithm 2 in SageMath v7.5 [S+] is based on the
available implementations of the algorithms in [NB15] and [Ros18].
All simulated examples satisfy degH Λ(s) ≥ sτ ≥ 2g − 1. If this condition was not fulfilled,

the decoder might not be able to decode up to τH,new errors (cf. Remark 3.41).

Case h = 1

Since Rosenkilde’s improved power decoder has so far not been adapted to one-point Hermi-
tian codes, we first treat the special case h = 1 (i.e., no interleaving) and compare its failure
probability (P̂fail,IPD) to the Guruswami–Sudan (GS) decoder (P̂fail,GS) using the implemen-
tation from [NB15]. The GS algorithm is guaranteed to return all codewords of distance

n[1− s+1
2(`+1)]− `

2smH − g
s = τH,new − g

s + `
s(`+1)

to the received word, but it is well-known that it often succeeds beyond this radius, cf. [NB15].
In our simulations, we consider values of τ greater than this guaranteed radius.

47

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

Table 3.2: Observed failure rate of the improved power (P̂fail,IPD) and Guruswami–Sudan
(P̂fail,GS) decoder for one-point Hermitian codes (h = 1). Code parameters
q,m, n, k, d∗. Decoder parameters `, s. Number of errors τ (+τ = τH,new decoding
radius as in (3.29)). Number of experiments N .
q m n k d∗ ` s τ P̂fail,IPD P̂fail,GS N

4 15 64 10 49 4 2 28 0 0 104

29+ 0 3.30 · 10−3 104

30 9.93 · 10−1 9.39 · 10−1 104

5 55 125 46 70 3 2 35 0 0 104

36+ 0 4.00 · 10−4 104

37 9.57 · 10−1 9.60 · 10−1 104

5 20 125 11 105 5 2 67 0 0 103

68+ 0 7.00 · 10−3 103

69 9.91 · 10−1 9.60 · 10−1 103

7 70 343 50 273 3 2 160 0 0 103

161+ 0 0 103

162 9.78 · 10−1 9.86 · 10−1 103

7 70 343 50 273 4 2 168 0 0 103

169+ 0 0 103

170 9.79 · 10−1 2.2 · 10−2 103

7 55 343 35 288 4 2 183 0 0 103

184+ 0 0 103

185 9.82 · 10−1 1.9 · 10−2 103

The results for various code (q,m, n, k, d∗), decoder (`, s), and channel (τ) parameters are
shown in Table 3.2. Both algorithms can correct most error patterns of weight up to τH,new,
improving upon classical power decoding. Also, neither of the two algorithms is generally
superior in terms of observed failure rate.

General Case

For h ≥ 1, the previous best relative decoding radius is τH,old = h
h+1(n−mH) [BMS05, Kam14].

We present several simulation results in Table 3.3. Algorithm 2 corrected all error patterns
up to weight τH,new in the simulated samples. Furthermore, it failed with large observed
probability when only one more error was added.

3.3 Comparison of the New Decoders

In this section, we compare the two new decoding algorithms for codes of the same length
and overall field size, both to each other and to other codes and their decoders.

48

3.3 Comparison of the New Decoders

Table 3.3: Observed failure rate P̂fail,IPD of Algorithm 2 for h > 1. Code parameters q,mH, n,
k, d∗, h. Decoder parameters `, s. Number of errors τ (+τ = τH,new as in (3.29)).
Number of experiments N . Previous best decoding radius τH,old [BMS05, Kam14].
q mH n k d∗ h ` s τ P̂fail,IPD N τH,old

4 15 64 10 49 2 3 2 35+ 0 105 32
36 9.18 · 10−1 103 32

4 15 64 10 49 2 5 3 36+ 0 103 32
37 9.31 · 10−1 103 32

4 15 64 10 49 3 3 2 38+ 0 105 36
39 9.42 · 10−1 103 36

4 15 64 10 49 3 4 3 39+ 0 102 36
40 1 102 36

4 22 64 17 42 2 4 3 29+ 0 103 28
30 9.44 · 10−1 103 28

5 20 125 11 105 2 3 2 79+ 0 105 70
80 9.37 · 10−1 103 70

5 20 125 11 105 2 4 2 81+ 0 103 70
82 9.93 · 10−1 103 70

5 20 125 11 105 3 3 2 86+ 0 103 78
87 9.94 · 10−1 103 78

5 55 125 46 70 2 4 3 48+ 0 103 46
49 9.86 · 10−1 103 46

7 90 343 70 253 2 3 2 183+ 0 103 168
184 9.72 · 10−1 103 168

8 128 512 101 384 2 3 2 281+ 0 102 256
282 1 102 256

Interleaved Reed–Solomon and One-Point Hermitian codes

We first compare RS, IRS, and IH codes of the same length and overall field size.16 Using
an isomorphism FhQ ' FQh , an h-interleaved code over a field FQ can be considered as a, not
necessarily FQh-linear, code over FQh . A burst error then simply corresponds to a Qh-ary
symbol error. We compare the following decoding radii for a prime power q, n = q3, k < n,
and h ∈ N:

i) τRS = n(1 − (k−1
n)

1
2): Johnson radius for decoding an [n, k] RS code over Fq6h , using

one of the algorithms in [GS98, Wu08, Ros18].

ii) τIRS = n(1− (k−1
n)

2h
2h+1): Decoding radius of [CH13] and the new decoder in Section 3.1

for a 2h-interleaved RS code over Fq3 .

iii) τIH = n(1 − (k+g−1
n)

3h
3h+1): Decoding radius of the new decoder in Section 3.2 for a

3h-interleaved RS code over Fq2 .

16A similar comparison was drawn in [Arm08] between the decoders in [BKY03] and [BMS05].

49

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

All codes have length n = q3 and overall field size q6h. The special case h = 1 is illustrated
in Figure 3.4.

IH CodeIRS CodeRS Code

q6

n = q3

1−R
1
2

(q3)2

n = q3

1−R
2
3

(q2)3

n = q3

1− (R+ g
n)

3
4

Figure 3.4: Decoding radii of RS, IRS, and IH codes of length n = q3 and overall field size q6.

From the expressions of τRS, τIRS, and τIH, it becomes clear that asymptotically, we have

τRS < τIRS < τIH

for any h ∈ N since g
n →∞ for n→∞. We provide some examples for finite n below.

The prime power q = 13 is the smallest field size for which τIH > τIRS for codes of rate
≈ 1/2. In this case, the interleaved codes are [2197, 1098] codes over F136 , and the decoding
radii are tRS = 644, τIRS = 814 and τIH = 823. Table 3.4 gives decoding radii of rate 1/2
codes for several values of even q.

Table 3.4: Examples of τRS, τIRS, and τIH for rate R = 1/2 codes of several lengths for h = 1.
q n = q3 k = n

2 τRS τIRS τIH τIH/τRS ≈ τIH/τIRS ≈
23 512 256 150 190 183 1.22 0.96
24 4096 2048 1200 1516 1555 1.30 1.03
25 32768 16384 9598 12126 12844 1.34 1.06
26 262144 131072 76780 97004 104478 1.36 1.08
27 2097152 1048576 614242 776029 842936 1.37 1.09

Comparison to Folded and Univariate Multiplicity Codes

We compare our IRS decoder to h-folded Reed–Solomon codes, which are codes with an overall
field size qh and can be list-decoded beyond the Johnson radius [GR08, Theorem 4.4]. More
precisely, for any ε > 0, there are h-folded RS codes of rate R with h ∈ O(1/ε2) such that the
decoder returns all codewords of relative distance 1 − R − ε to the received word. Another
family of codes that achieve 1−R−ε for an overall field size qO(1/2ε2) are univariate multiplicity
codes [Kop12], sometimes called Derivative codes.
In comparison, for ε > 0, an h-interleaved RS code with h = log(1/(R+ε))

log(1+ε/R) ≤
log(1/R)
ε/R ∈ O(1/ε)

can presumably be decoded by [CH13] and our decoding algorithm in Section 3.1 up to a
fraction of

1−R
h
h+1 = 1−R

log(R+ε)
log(R) = 1−R− ε

errors. Compared to folded or univariate multiplicity codes, the IRS decoder’s radius con-
verges to the list decoding capacity 1 − R much faster in the overall field size qh. The

50

3.4 Concluding Remarks

comparison is not entirely fair, though: The decoders of the folded and univariate multiplic-
ity codes codes are list decoders, whereas neither [CH13] nor we have a guarantee that the
IRS decoder succeeds.

3.4 Concluding Remarks
In this chapter, we have presented new partial decoding algorithms for interleaved Reed–
Solomon and interleaved one-point Hermitian codes, which join ideas of power decoding
[SSB06, SSB10, Kam14, NB15] and improved power decoding [Ros18] for RS and one-point
Hermitian codes, as well as collaborative decoding [SSB09, SSB07, WZB14, Kam14] of their
interleaved variants.

The new decoder for IRS codes achieves, under certain assumptions, the decoding radius

n(1− (k−1
n)

h
h+1),

which is on par with the interpolation-based algorithms by [PV04, Par07] (h = 2) and [CH13],
but at a better complexity. Simulation results indicate that for random errors, the expected
decoding radius is achieved with high probability.
Our decoder for IH codes can correct, with presumably high probability, up to

n(1− (k+g−1
n)

h
h+1),

errors, improving upon the previous best radius by [BMS05, Kam14] at all rates.
Proving an analytic upper bound on the failure probability for random errors of a given

weight remains an open question. The results on special cases of previous power decoding
algorithms, cf. Section 3.1.4, can yield a partial answer to this problem. Furthermore, it
appears possible to adapt improved power decoding to general interleaved AG codes, analog
to the adaptions of the Sudan [SW99] or Guruswami–Sudan [GS98] algorithm.
Since all existing decoding algorithms for interleaved Reed–Solomon and one-point Hermi-

tian codes are partial, it is an open problem to find a polynomial-time list decoding algorithm
that guarantees to return all codewords within a distance greater than the Johnson radius.
The decoding radius of such an algorithm cannot be greater than the one of a list decoder
for a single, non-interleaved, constituent code: If one row of the interleaved received word
contains a word with exponential list size in the constituent code, then also the list size of
the interleaved decoder is exponential. Finding a polynomial-time list decoder for decoding
Reed–Solomon codes beyond the Johnson radius has been, and still is, an open problem for
many years.

51

3 Improved Power Decoding of Interleaved Codes in Hamming Metric

52

4
Twisted Reed–Solomon Codes

Maximum distance separable (MDS) codes attain the maximal achievable min-
imum distance d = n−k+1 for a fixed code length n and dimension k. The codes
have been an interesting object to study since Singleton [Sin64] presented his
famous upper bound on the minimum distance of a code. In general, it is con-

jectured that, except for a few trivial examples, a linear MDS code over a field Fq must have
length n ≤ q+ 2. Presumably the most prominent MDS codes are generalized Reed–Solomon
(GRS) codes [RS60], which—when extended—achieve the conjectured upper bound on the
code length. There are many other constructions, e.g., based on finding n-arcs in projective
geometry (see, e.g., [MS77]), Hankel matrices [RS85], or k-sum generators [RL89a].
Inspired by the construction of Sheekey’s twisted Gabidulin codes [She16] in rank metric, we

introduce a new class of linear evaluation codes in Hamming metric: Twisted Reed–Solomon
codes. Compared to RS codes, where polynomials of degree smaller than the code dimension
k are evaluated, we add further monomials, so-called “twists”, of degree at least k to the
evaluation polynomials. The twists’ coefficients depend linearly on the k lowest coefficients.
We give the formal definition in Section 4.1.
In Section 4.2, we show that by a suitable choice of the evaluation points and twist coeffi-

cients, the resulting twisted RS code is MDS. The length of this constructive subclass of MDS
twisted RS codes is comparably small to the field size (n ≤ √q), but the subsequent sections
show that longer codes (n ≈ q

2) are possible. A decoding algorithm is given in Section 4.3,
whose complexity is polynomial in the code length for a fixed number of twists.
We study the duals of the new codes in Section 4.4. In Section 4.5, we investigate the Schur

squares of low-rate twisted RS codes and show that many of them have much larger Schur
square dimension than GRS codes of the same dimension. We use these findings to prove
inequivalence of subfamilies of the new codes to GRS codes in Section 4.6. In addition, we
provide a combinatorial argument showing that many more twisted RS codes are non-GRS.
Finally, we emphasize two notable properties of the new codes based on the results of the

preceding sections: First, Section 4.7 presents two subclasses of MDS twisted RS codes that
achieve lengths up to ≈ q

2 for a given field size q, as well as computer searches for other
long MDS twisted RS codes that are not equivalent to any Reed–Solomon code. Second, we
analyze twisted RS codes for their suitability in the McEliece cryptosystem, cf. Section 4.8.
An explicit subfamily resists some known structural attacks on the system based on RS-like
codes, and other attacks at least do not apply in an obvious way.
The results of this chapter were partly published in [BPR17] and [BBPR18].

53

4 Twisted Reed–Solomon Codes

4.1 Definition

Idea and Goal

In this section, we define the new codes. We first provide an intuition of the construction
and then present the formal definition. Reed–Solomon codes of dimension k are MDS since
a polynomial of degree less than k,

f =
k−1∑
i=0

fix
i, fi ∈ Fq,

is evaluated at distinct evaluation points α1, . . . , αn ∈ Fq, and, as a non-zero f cannot have
more than k − 1 zeros, its corresponding codeword has Hamming weight at least n− k + 1.
The idea of twisted Reed–Solomon codes is to add further monomials of degree at least k

and to choose the coefficients of these new monomials as a (linear) function of the lowest k
coefficients. Figure 4.1 shows several possible evaluation polynomial constructions (a)-(d).1
We use such illustrations of the evaluation polynomials throughout this chapter.

M
on

om
ia
ld

eg
re
e

0
1

k − 1

n− 1

f0
f1
f2

...

fk−2
fk−1

f0
f1
f2

...

fk−2
fk−1
ηf0

f0

...

fh

...

fk−2
fk−1

ηfh

f0

...

...

...

fk−2
fk−1

η1fh1

η2fh2

...

η`fh`

(a) (b) (c) (d)

Figure 4.1: Illustration of evaluation polynomials of twisted RS codes. Boxes � correspond
to possibly non-zero coefficients. Arcs connect the corresponding hook and twist
(grey background) coefficients (cf. Definition 4.1 below). Interpretation: See text.

Figure 4.1 (a) corresponds to evaluation polynomials of a Reed–Solomon code. The codes
resulting from the polynomials in Figure 4.1 (b) can be seen as the Fq[x]-analogs of Sheekey’s
[She16] twisted Gabidulin codes, where the additional twist has degree k and depends on the
0th coefficient, i.e.,

f =
k−1∑
i=0

fix
i + ηf0x

k,

1Note the analogy to the transform-domain illustration of RS and BCH codes in [Bla83] and [Bos13].

54

4.2 A Sufficient Condition for Twisted RS Codes to be MDS

with η ∈ Fq. We consider this case in Section 4.7.1. In Figure 4.1 (c), the construction is
generalized such that the twist can be at any monomial degree k − 1 + t for 1 ≤ t ≤ n − k
and depend on any of the lowest k coefficients fh for 0 ≤ h < k, i.e.,

f =
k−1∑
i=0

fix
i + ηfhx

k−1+t.

Our twisted RS codes arise from a further generalization of this construction (cf. Figure 4.1
(d)), which allows multiple (` ≤ n− k many) such twists, i.e.,

f =
k−1∑
i=0

fix
i +

∑̀
j=1

ηjfhjx
k−1+tj .

Our goal is to choose the coefficients ηi ∈ Fq and evaluation points αi ∈ Fq, such that again
any non-zero evaluation polynomial has at most k − 1 roots among the evaluation points,
resulting in MDS codes. We return to this problem in Section 4.2 and Section 4.7.

Formal Definition

The new codes are formally defined as follows.

Definition 4.1. Let n, k, ` ∈ N be positive integers with k < n and ` ≤ n−k. Choose a hook
vector h ∈ {0, . . . , k− 1}` and a twist vector t ∈ {1, . . . , n− k}` such that the ti are distinct,
and let η ∈ F`q. The set of [k, t,h,η]-twisted polynomials over Fq is defined by

Pn,kt,h,η =

f =
k−1∑
i=0

fix
i +

∑̀
j=1

ηjfhjx
k−1+tj : fi ∈ Fq

 .
Let α1, . . . , αn ∈ Fq be distinct and write α = [α1, . . . , αn]. The [α, t,h,η]-twisted Reed–
Solomon code of length n and dimension k is given by

Cα,t,h,η[n, k] = evα(Pn,kt,h,η) ⊆ Fnq .

For brevity, we often say twisted polynomials and twisted RS codes2, respectively.

The set of twisted polynomials Pn,kt,h,η ⊆ Fq[x] forms a k-dimensional Fq-linear subspace, so
a twisted RS code is linear. The code Cα,t,h,η[n, k] indeed has dimension k since the evaluation
map is injective: Any evaluation polynomial f satisfies deg f ≤ k − 1 + maxi{ti} < n.

4.2 A Sufficient Condition for Twisted RS Codes to be MDS
Not all twisted RS codes as in Definition 4.1 are MDS. In this section, we show that by
choosing the evaluation points α and the twist coefficients η in a suitable way, we can ensure
that any non-zero evaluation polynomial has at most k − 1 roots among the αi, resulting in
an MDS code due to its linearity. We start with a lemma that relates this property to a set
of homogeneous systems of linear equations, whose coefficients depend on α and η, having
only the zero solution.

2Twisted RS codes are not related to twisted BCH codes [EB97]. The name is inspired by Sheekey’s twisted
Gabidulin codes [She16], which are related to so-called generalized twisted fields.

55

4 Twisted Reed–Solomon Codes

Lemma 4.2. Let n, k, t,h,η be chosen as in Definition 4.1 with t1 < t2 < · · · < t` and ηi 6= 0
for all i. For any I ⊆ {1, . . . , n} with |I| = k, consider the homogeneous, linear system of
equations in g0, . . . , gt`−1 ∈ Fq:∑t`−1

j=0 gjT
(I)
i,j = 0 for i = k, . . . , k − 1 + t` , (4.1)

where
T

(I)
i,j =

{
η−1
κ ai−j − ahκ−j , if i = k − 1 + tκ for κ ∈ {1, . . . , `},
ai−j , otherwise,

and
∑k
i=0 aix

i :=
∏
i∈I(x − αi) and ai := 0 for i < 0 or i ≥ k. The twisted RS code

Cα,t,h,η[n, k] is MDS if and only if there is no choice of I admitting a non-zero solution of
the linear system (4.1).

Proof. Let f ∈ Pn,kt,h,η be a polynomial with at least k roots among the α1, . . . , αn. This
means that there is a set I ⊆ {1, . . . , n} with |I| = k such that a :=

∏
i∈I(x − αi) divides

f , i.e., f = g · a for some g =
∑t`−1
i=0 gix

i ∈ Fq[x]. Then the ith coefficient of f is given by
fi =

∑t`−1
j=0 gjai−j . On the other hand, for i ≥ k, then fi also satisfies

fi =
{
ηκfhκ if i = k − 1 + tκ for κ ∈ {1, . . . , `},
0 otherwise.

For the case i = k − 1 + tκ, combining and rewriting yields 0 =
∑t`−1
j=0 gj ·

(
η−1
κ ai−j − ahκ−j

)
.

Thus, for a given I, a non-zero solution of the linear system given in (4.1) corresponds to a
non-zero polynomial f = g · a ∈ Pn,kt,h,η with wtH(evf (α)) ≤ n − k. The code Cα,t,h,η[n, k] is
MDS if and only if all non-zero f ∈ Pn,kt,h,η result in codewords of weight ≥ n − k + 1, which
is true if and only if System (4.1) has no non-zero solution for any set I.

For a given index set I, System (4.1) is of the form as in Figure 4.2.



η−1
t`

+ � � . . . � � � . . . � � . . .

� 1
...

...
. . .

� � . . . 1
η−1

t`−1
� + � η−1

t`−1
� + � . . . η−1

t`−1
� + � η−1

t`−1
+ � � . . . � � . . .

� � . . . � � 1
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
...

. . .

� � . . . � � � . . . 1
η−1

t1
� + � η−1

t1
� + � . . . η−1

t1
� + � η−1

t1
� + � η−1

t1
� + � . . . η−1

t1
� + � η−1

t1
+ � . . .

...
...

. . .
...

...
...

. . .
...

...
. . .


︸ ︷︷ ︸

=: BI


gt`
gt`−1
...
g1
g0

 = 0,

Figure 4.2: Illustration of the linear system in (4.1). Boxes � represent elements obtained by
multiplications and Fq-linear combinations of α1, . . . , αn. Diagonal elements are
1 (if the row corresponds to an index i with i 6= k − 1 + tκ for all κ) or η−1

tκ + �
(if i 6= k− 1 + tκ) due to ai−(i−k) = ak = 1 for all i = k, k+ 1, . . . , k− 1 + t` (note
that the diagonal elements are the T (I)

i,j of (4.1) with j = i−k). Also, all elements
above the diagonal do not depend on the η−1

tκ since ai−j = 0 for all i > j + k.

56

4.2 A Sufficient Condition for Twisted RS Codes to be MDS

By choosing the evaluation points α and twist coefficients η as in the following theorem,
the system’s matrix BI is always regular, independent of the choice of I. Using Lemma 4.2,
this proves that the resulting code is MDS. Theorem 4.3 is illustrated in Figure 4.3.

· · · · · ·
η1fh1 η2fh2 η3fh3

f =

Fs` = Fq. . .Fs2Fs1Fs0

Cα,t,h,η[n, k] =
{[
f(α1), f(α2), . . . , f(αn)

]
: f ∈ Pn,kt,h,η

}
Figure 4.3: Illustration of the choices of α and η in Theorem 4.3, resulting in MDS codes.

Theorem 4.3. Let s0, . . . , s` ∈ N such that Fs0 (Fs1 (· · · (Fs` = Fq is a chain of
subfields. Let k < n ≤ s0 and α1, . . . , αn ∈ Fs0 be distinct, and let t, h, and η be chosen as
in Definition 4.1 with the additional requirements

ηi ∈ Fsi \ Fsi−1 ∀ i = 1, . . . , `

and t1 < t2 < · · · < t`.3 Then, the twisted RS code Cα,t,h,η[n, k] is MDS.

Proof. We prove the claim using Lemma 4.2. Let I ⊆ {1, . . . , n} be a set of k elements. We
show that the system (4.1) only has the zero solution. Since ai ∈ Fs0 , the boxes � of the
system’s matrix BI as in Figure 4.2 represent elements from Fs0 .
We consider the η−1

tκ ’s to be indeterminates. This means that det(BI) ∈ Fs0 [η−1
t1 , . . . , η

−1
t`

]
is a multivariate polynomial, where each indeterminate η−1

tκ appears at most of degree 1 in a
monomial. Let B(µ)

I be the (µ×µ)-bottom-right submatrix of BI . We distinguish two cases:

(i) If µ 6= tκ for all κ, then the first row of B(µ)
I is of the form [1, 0, . . . , 0] and by Laplace’s

rule we get
det

(
B

(µ)
I

)
= det

(
B

(µ−1)
I

)
.

(ii) If µ = tκ for some κ, then B(µ)
I contains only η−1

t1 , . . . , η
−1
tκ−1 in its rows 2 to µ and since

the first row is of the form [η−1
tκ + �,�, . . . ,�], the determinant fulfills

det
(
B

(µ)
I

)
= (η−1

tκ + Tµ) · det
(
B

(µ−1)
I

)
+ Uµ ∈ Fs0 [η−1

t1 , . . . , η
−1
tκ],

where Tµ ∈ Fs0 and Uµ ∈ Fs0 [η−1
t1 , . . . , η

−1
tκ−1].

3The entries of t and h can be permuted such that any twisted RS code fulfills the latter condition.

57

4 Twisted Reed–Solomon Codes

Combined, we get det(B(tκ)
I) = (η−1

tκ + Ttκ) det(B(tκ−1)
I) + Utκ ∈ Fs0 [η−1

t1 , . . . , η
−1
tκ], where

det(B(t1)
I) = η−1

t1 , and by recursively substituting ηκ ∈ Fsκ \ Fsκ−1 for κ = 1, . . . , `, we obtain

det
(
B

(tκ)
I

)
∈ Fsκ \ {0},

since η−1
tκ ∈ Fsκ \ Fsκ−i , det(B(tκ−1)

I) ∈ Fsκ−1 \ {0}, and Utκ ∈ Fsκ−1 . Hence, also det(BI) =
det(B(t`)

I) 6= 0 and System (4.1) has only the zero solution.

Theorem 4.3 implies that if the code length n is a prime power, there is a twisted RS code
with ` twists over the field of size q = n2` (choose si = n2i). For a large number of twists, we
therefore obtain codes whose length is much smaller than the field size.
We will see in Section 4.7 that for ` = 1, we can improve this lower bound on the maximal

length from n ≈ √q to n ≈ q
2 in some cases, thereby obtaining codes close to the conjectured

maximal length. The “short” codes given by Theorem 4.3 are nevertheless interesting, e.g.,
for cryptographic applications as discussed in Section 4.8.

4.3 Decoding

An efficient decoding algorithm is a key ingredient in the study of a code. If the coefficients
fhiηi of the twist monomials xk−1+ti are known, we can subtract the twists from the evaluation
polynomial and obtain a polynomial of degree less than k. Thus, if c = evα(f), then c′ =
c−evα(

∑`
i=1 fhiηix

k−1+ti) is a codeword of the Reed–Solomon code CRS[n, k] with evaluation
points α. Twisted RS codes can therefore be decoded based on a given RS decoder by
brute-forcing the twist coefficients. The procedure is formally stated in Algorithm 3.

Algorithm 3: Twisted RS list decoder by brute-forcing the twists.
Input: Received word r ∈ Fnq , RS (list) decoder RSdecoder(·) with decoding radius τ
Output: List L of codewords c ∈ Cα,t,h,η[n, k] such that dH(r, c) ≤ τ .

1 L ← ∅
2 for [g1, . . . , g`] ∈ F`q do
3 r′ ← r − evα(

∑`
i=1 giηix

k−1+ti)
4 L′ ← RSdecoder(r′)
5 for c′ ∈ L′ do
6 c← c′ + evα(

∑`
i=1 giηix

k−1+ti)
7 if c ∈ Cα,t,h,η[n, k] and dH(r, c) ≤ τ then
8 L ← L ∪ {c}

9 return L

Theorem 4.4. Let k, n, α, t, h, and η be chosen as in Definition 4.1. Furthermore,
let RSdecoder(·) be a list decoder with decoding radius τ ∈ N, maximal list size L(τ), and
complexity T (n, τ) over Fq of the RS code CRS[n, k] with evaluation points α.
Then, Algorithm 3 is correct, returns a list of size at most q`L(τ), and can be implemented

in O(q`T (n, τ)) operations over Fq.

58

4.3 Decoding

Proof. Note that c ∈ Cα,t,h,η[n, k] such that dH(r, c) ≤ τ if

c′ = c− evα(
∑̀
i=1

fhiηix
k−1+ti) ∈ CRS

with dH(r′, c′) ≤ τ , where r′ = r − evα(
∑`
i=1 fhiηix

k−1+ti). Thus, the algorithm finds all
sought codewords in the iteration corresponding to gi = fhi for all i = 1, . . . , ` and the overall
list size is the same as the one of the RS decoder in this iteration. The complexity of the
algorithm is determined by Line 4, which is executed q` times. The list size statement follows
from |L′| ≤ L(τ).

By evaluating Theorem 4.4 for different decoders, e.g., a bounded minimum distance (BMD)
decoder or the Guruswami–Sudan list decoder [GS98], we obtain the decoding radii, list sizes
and complexities in Table 4.1. The last row of the table gives the resulting values in case of
the improved power decoder for IRS codes from Chapter 3. We can use this decoder if the
evaluation points αi are in a proper subfield Fs � Fq. In this case, the RS code CRS[n, k]
over Fq is a homogeneous interleaved RS code of interleaving degree h = [Fq : Fs]. For the
constructive class of MDS twisted RS codes in Section 4.2 with minimal field size q = n2` for
a given length, we thus have h = 2`.

Table 4.1: Decoding radii, list sizes, and complexities for different RS decoders, both for a
general field size q and for the minimal field size of the MDS twisted RS codes
constructed in Section 4.2, i.e., q = n2` .

RS decoder τ List size Complexity Complexity (q = n2`)

BMD bn−k2 c q` O∼
(
q`n
)

O∼
(
n`2

`+1
)

MDS: 1 [Jus76]4

GS n

(
1−

√
k−1
n − ε

)
q` 1
ε O∼

(
q`n4`ε−4

)
O∼
(
n`2

`+14`ε−4
)

[GS98] [CJN+15, NRS17]5

IRS n

(
1−

(
k−1
n

) h
h+1 − ε

)
q` O∼

(
q`nε−(hω+1)

)
O∼
(
n`2

`+1ε−(2`ω+1)
)

(Sec. 3.1) h = [Fq : Fs], αi ∈ Fs (partial) (cf. Corollary 3.22)

e.g.: h = 2`

In case of the MDS codes in Section 4.2 with q ≈ n2` , all listed decoders have complexities
in the order of at least n`2`+1. For ` = 1, this gives n3, for ` = 2, it is n9, but already for
` = 3, we get n25. Hence, the decoder is feasible for very small values of ` only (e.g., ` = 1, 2),
which is due to the relatively large field size compared to the code length.

4Exact expression: O
(
q`n log2(n) log(log(n))

)
5Exact expression: O

(
q`nε−4(log2(n/ε) + log(q)) log(log(n/ε))

)

59

4 Twisted Reed–Solomon Codes

Remark 4.5. Note that Theorem 4.4, as well as the decoding radii, maximal list sizes, and
complexities in Table 4.1, also hold for non-MDS twisted RS codes since our algorithm consists
of a brute-force step and RS decoders. However, the average list size might be larger in this
case. Furthermore, the maximal list size is bounded by well-known bounds on the list size, such
as the q-ary generalization of the Johnson bound [Joh62] or the Cassuto–Bruck bound [CB04].
In particular, the list size is polynomial in n for decoding radii up to τ < n −

√
n(n− d),

independent of `.

4.4 Dual Codes
We study the dual codes of twisted RS codes. The following analysis shows that some
subfamilies of the new codes with conditions on the evaluation points are—up to equivalence—
closed under duality. In contrast to GRS codes, the statement does not generalize to arbitrary
evaluation points: In our computer searches (cf. Section 4.7.3), we found twisted RS codes
with one twist whose dual code is not equivalent to any twisted RS code with one twist.

Definition 4.6 (Auxiliary Matrices). Let r, r′ ∈ N and α ∈ Frq.

i) The reversal matrix Jr ∈ Fr×rq is the square matrix

J =


1

. .
.

1

 .
ii) The Vandermonde matrix of α of rank r is denoted by

V r(α) =


α0

1 α0
2 . . . α0

n

α1
1 α1

2 . . . α1
n

...
. . .

...

αr−1
1 αr−1

2 . . . αr−1
n

 .

Remark 4.7. For a matrix A ∈ Fr×r′q , then JrA is A with the rows in reverse order.
Similarly, AJr′ is A with the columns in reverse order. And JrAJr′ is A “rotated”, i.e.,
(JrAJr′)[i, j] = A[n− j + 1,m− j + 1].

Lemma 4.8. Let α ∈ Fnq such that the αi are distinct and form a multiplicative group. Then,(
V n(α)T

)−1
= Jn · V n(α) · diag(α/n).

Proof. Since the entries of α are a multiplicative group, we have
∏n
i=1(x− αi) = xn − 1 and

(
V n(α)T

)−1
= 1
n


1 1 . . . 1
α−1

1 α−1
2 . . . α−1

n
...

...
. . .

...

α
−(n−1)
1 α

−(n−1)
2 . . . α

−(n−1)
n

 = Jn · V n(α) · diag(α/n),

where the first equality follows by [AL69].

60

4.4 Dual Codes

Lemma 4.9. Let C[n, k] be a linear code with a generator matrix of the form

G = [I | L] · V n(α),

where I ∈ Fk×kq is the identity matrix, L ∈ Fk×n−kq , and the entries of α ∈ Fnq are distinct
and form a multiplicative group. Then, the matrix

H = [I | −Jn−kL>Jk] · V n(α) · diag(α/n)

generates the dual code C⊥.

Proof. By construction, H has full rank n− k and fulfills

G ·H> = [I | L]V n(α) ·
(
[I | −Jn−kL>Jk]V n(α) diag(α/n)

)>
= [I | L]V n(α) ·

(
Jn−k[−AT | I] JnV n(α) diag(α/n)︸ ︷︷ ︸

= (V n(α)−1)> (Lemma 4.8)

)>
= [I | L]

[
−L
I

]
J> = 0

so it is a parity-check matrix of C, and thus, a generator matrix of the dual code.

Lemma 4.9 implies the following duality statement for twisted RS codes with evaluation
points forming a multiplicative group. The statement is illustrated in Figure 4.4.

Theorem 4.10. Let n, k,α, t,h,η be chosen as in Definition 4.1 such that the entries of α
form a multiplicative sub-group of Fq and the hi are distinct. Then, the dual of a [α, t,h,η]-
twisted code is equivalent to a [k − h, n − k − t,−η]-twisted code with the same evaluation
points.

Proof. By definition, a [α, t,h,η]-twisted code has a generator matrix of the form

G = [I | L] · V n(α),

where the entries of L ∈ Fk×n−kq are of the form

Lij =
{
ηµ, if [i, j] = [hµ + 1, tµ],
0, else.

The dual code is generated by the matrix H = [I | −Jn−kL>Jk] · V n(α) · diag(α/n) by
Lemma 4.9, so it is equivalent to a code C′ generated by [I | −Jn−kL>Jk] ·V n(α). Since the
entries of −Jn−kL>Jk are of the form

[−Jn−kL>Jk]ij =
{
−ηµ, if [i, j] = [n− k − tµ + 1, k − hµ]
0, else,

and the k−hµ are distinct by assumption, the code C′ is a [k−h, n−k− t,−η]-twisted code,
which proves the claim.

61

4 Twisted Reed–Solomon Codes

Code

Dual Code

Figure 4.4: Illustration of the evaluation polynomials of the dual code of a twisted RS code
as in Theorem 4.10. The twist vector of the dual code is given by k − h and the
hook vector becomes n− k − t. Here, we have t = [3, 7, 9] and h = [1, 5, 4].

Remark 4.11. By analogous arguments as in the proof of Lemma 4.9, we can show the
following: We join 0 to the evaluation points, i.e., α = [α1, . . . , αn, 0], where the αi form a
multiplicative subgroup of Fq. Furthermore, let a matrix L ∈ Fk×n+1−k

q be given whose first
row is of the form [l1 | 0] with l1 ∈ Fn−kq . Then,

H =
[
I
∣∣∣ − [1

l>1 I

]
· Jn+1−kL

>Jk

]
· V n+1(α) · diag(1/n, . . . , 1/n,−1)

is a valid parity-check matrix for the code generated by G = [I | L] · V n(α) ∈ Fk,n+1
q . If the

first row or the last column of L is zero, then we have

−
[

1
l>1 I

]
· Jn+1−kL

>Jk = −Jn+1−kL
>Jk.

This implies that if all twist parameters fulfill ti 6= n − k or all hook parameters are hi 6= 0,
then Theorem 4.10 holds as well if 0 is joined to the evaluation points.

4.5 Schur Squares
In this section, we study the Schur squares of twisted RS codes. There has been an increased
interest in these objects in the last years (see, e.g., [Ran15] and references therein) due to
several applications, cf. [CGGU+14], [CDN15], and [Ran15, Section 5].

Definition 4.12. Let x,y ∈ Fnq be vectors and C, C1, C2 ⊆ Fnq be linear codes. The Schur
product or component-wise product of x and y is defined by

x ? y = [x1 · y1, . . . , xn · yn].

62

4.5 Schur Squares

The Schur product of the codes C1 and C2 is similarly defined by

C1 ? C2 = 〈{c1 ? c2 : c1 ∈ C1, c2 ∈ C2}〉Fq

By C2 = C ? C, we denote the Schur square of C.

It is well-known that the Schur square of a linear code C[n, k] has dimension

dim
(
C2
)
≤ min{n, 1

2k(k − 1)},

and a random linear code attains this upper bound with high probability, cf. [CCMZ15].
Furthermore, if the code is MDS, then it satisfies [Ran15, p.31]

dim
(
C2
)
≥ min{n, 2k − 1}.

Generalized Reed–Solomon codes fulfill this lower bound with equality, i.e., for k < n/2, their
Schur square is much smaller than one expects from a random code. This fact is, e.g., utilized
by Couvreur et al. [CGGU+14] to recover the structure of a GRS code, yielding a structural
attack on the GRS-based McEliece cryptosystem, cf. Section 4.8.
In this section, we develop tools to obtain the Schur square dimension of twisted RS codes,

or at least a lower bound thereof. For low-rate codes, many of the codes have much larger
Schur squares than a GRS code of the same parameters. We will use this observation for two
purposes in the succeeding section:

• In Section 4.6, we will separate twisted RS codes from GRS codes, implying inequiva-
lence in many cases.
• In Section 4.8, we will show that Couvreur et al.’s attack does not work for a large
subfamily of twisted RS codes.

Note that if two linear codes are equivalent, then also their Schur squares are equivalent.
In particular, the Schur square dimension is invariant under equivalence.

4.5.1 Schur Squares of Twisted RS Codes
Lower Bounds on the Schur Square Dimension of Evaluation Codes

Since twisted RS codes are evaluation codes, we derive a general lower bound on the dimension
of the Schur square of such codes. Due to f(αi)·g(αi) = (f ·g)(αi), for polynomials f, g ∈ Fq[x]
and αi ∈ Fq, the Schur square of a linear evaluation code is a linear evaluation code with
the same evaluation points. Its evaluation polynomials are the span of all products of two
evaluation polynomials of the original code. We will use the following objects to lower-bound
the dimension of the Schur square.

Definition 4.13. Let α ∈ Fnq with distinct entries, and V ⊆ Fq[x]<n be a k-dimensional
Fq-subspace containing polynomials of degree less than n. We define

D(V) := {deg(f · g) : f, g ∈ V} , and
D(V)<n := {d ∈ D(V) : d < n} .

63

4 Twisted Reed–Solomon Codes

For f ∈ Fq[x], let f :=
(
f mod

∏n
i=1(x − αi)

)
be the remainder of the division of f by the

polynomial
∏n
i=1(x− αi). Then, we define

D(V,α) :=
{

deg(f · g) : f, g ∈ V
}
.

Theorem 4.14. Let α ∈ Fnq and V ⊆ Fq[x]<n be as in Definition 4.13, and define the
evaluation code C := evα(V). Then,

dim
(
C2
)
≥
∣∣∣D(V,α)

∣∣∣ .
Proof. Due to f(α) = f(α) for all f ∈ Fq[x] and deg(f) < n, the code C2 is an evaluation
code with evaluation polynomials

V ′ =
〈
f · g : f, g ∈ V

〉
⊆ Fq[x]<n.

Since the entries of α are distinct, the evaluation map evα(·) is injective on Fq[x]<n. Further-
more, evα(·) : Fq[x] → Fnq is a linear map. Thus, the dimension of C2 equals the dimension
of V ′ as an Fq-vector space. Since {1, x, . . . , xn−1} is a basis of Fq[x]<n, we have

dim
(
C2
)

= dimV ′ ≥
∣∣∣D(V,α)

∣∣∣ .
For some evaluation points, the set D(V,α) is easy to determine: For instance, when the

αi form a multiplicative group, we have
∏n
i=1(x − αi) = xn − 1 and the polynomials f · g

are easy to compute. In other cases, we can utilize D(V)<n ⊆ D(V,α), which implies the
following slightly weaker bound.

Corollary 4.15. Let α ∈ Fnq , V ⊆ Fq[x]<n, and C = evα(V) be as in Theorem 4.14. Then,

dim
(
C2
)
≥
∣∣D(V)<n

∣∣ .
Schur Squares of Twisted RS Codes

For twisted RS codes, the set D(V), and thus D(V)<n, is easy to compute. We will use the
following observation in the subsequent sections.

Theorem 4.16. Let α, t,h, and η be as in Definition 4.1 with ηi 6= 0 for all i, and

Sk,h,t =
(
{0, . . . , k − 1} \ {h1, . . . , h`}

)
∪ {k − 1 + t1, . . . , k − 1 + t`}.

Then, D(Pn,kt,h,η) = {d1 + d2 : d1, d2 ∈ Sk,h,t} and

dim
(
Cα,t,h,η[n, k]2

)
≥ |{d1 + d2 : d1, d2 ∈ Sk,h,t}| . (4.2)

Proof. Since the ti are distinct, the elements of Sk,h,t are exactly the degrees of the polyno-
mials in Pn,kt,h,η, which implies the claim.

Example 4.17. Let ` = 1, n = 14, k = 5, t1 = 4, h1 = 2, and η1 6= 0. The corresponding
evaluation polynomials have the following form:

64

4.5 Schur Squares

f0 f1 f2 f3 f4 f8 = η1f2

In this example, we get

Sk,h,t = ({0, . . . , 4} \ {2}) ∪ {8} = {0, 1, 3, 4, 8}.

The degrees of the polynomials f · g, where f, g ∈ Pn,kt,h,η, can be written as sums of elements
in Sk,h,t as follows:

0 = 0 + 0, 4 = 4 + 0, 8 = 8 + 0,
1 = 1 + 0, 5 = 4 + 1, 9 = 8 + 1,
2 = 1 + 1, 6 = 3 + 3, 11 = 8 + 3,
3 = 3 + 0, 7 = 4 + 3, 12 = 8 + 4.

Thus, we have D(Pn,kt,h,η) = D(Pn,kt,h,η)<n = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12}, so only the degrees
(less than n) 10 and 13 do not occur as deg(f ·g). Hence, the Schur square code of Cα,t,h,η[n, k]
has dimension

dim
(
Cα,t,h,η[n, k]2

)
≥
∣∣∣∣D(Pn,kt,h,η)<n

∣∣∣∣ = 12.

Note that any GRS code with [n, k] = [14, 5] has Schur square dimension 2k − 1 = 9, so the
code Cα,t,h,η[n, k] as above is not a GRS code. We will generalize this approach in Section 4.6.

4.5.2 Codes with Maximal Schur Square Dimension
In this subsection, we present two constructive classes of twisted RS codes whose Schur square
has dimension n. This is of theoretical interest as it shows that twisted RS codes can have
much larger Schur squares than RS codes. The Schur square of the latter class stays also
maximal if the code is shortened at several positions. We will use this fact in Section 4.8
to obtain codes that are resistant to known structural attacks on the McEliece cryptosystem
based on RS-like codes.

Twisted RS Codes with Maximal Schur Square Dimension

Theorem 4.18. Let k, n, ` ∈ N be chosen such that

2
√
n+ 4 < k ≤ n

2 and (4.3)
n+1
k−
√
n
− 2 < ` < 2n

k − 2. (4.4)

We define r :=
⌈
n+1
`+2

⌉
and, for i = 1, . . . , `, choose the hook and twist parameters as

hi = r − 1 + i,

ti = (i+ 1)r − k.

Then, for any η ∈ (Fq \ {0})`, the corresponding twisted RS code has Schur square dimension

dim
(
Cα,t,h,η[n, k]2

)
= n.

65

4 Twisted Reed–Solomon Codes

Proof. We first show that the hook and twist parameters are well-defined. First note that
` < 2n

k − 2 < 2n
2
√
n+4 − 2 <

√
n− 2.

• Due to ` < 2n
k − 2, we have r > k

2 > 0. Hence, hi > 0, ti ≥ 2r − k > 0, and the ti are
distinct.
• Due to n+1

k−
√
n
− 2 < ` and ` <

√
n− 2, we have n+1

k−(`+2) <
n+1
k−
√
n
< `+ 2, which implies

hi ≤ r − 1 + ` ≤ n+1
`+2 + `+ 2 < k.

• Due to ` <
√
n− 2, we have (`+ 3)(`+ 1) ≤ (`+ 2)2 < n, so n+1

`+2 + 1 ≤ n
`+1 , and

ti ≤ (`+ 1)r − k ≤ (`+ 1)(n+1
`+2 + 1)− k ≤ (`+ 1) n

`+1 − k = n− k.

Hence, the hi and ti are valid parameters by Definition 4.1. We now prove that the Schur
square has full dimension using Theorem 4.16. The argument is illustrated in Figure 4.5. By
construction, the following degrees are in the degree set of the evaluation polynomials:

{0, . . . , r − 1} ∪ {(i+ 1)r − 1 : i = 1, . . . , `} ⊆ Sk,h,t.

Hence, the degrees 0, r − 1, 2r − 1, . . . , (` + 1)r − 1 divide the interval [0, (` + 2)r − 2] into
sub-intervals of length r, so any integer

(ir − 1) + j with i = 0, . . . , `+ 1 and j = 0, . . . , r − 1

can be expressed as the sum of two elements in Sk,h,t. Due to

(`+ 2)r − 2 ≥ n− 1,

this means that {0, . . . , n− 1} ⊆ D(Pn,kt,h,η)<n, which proves the claim.

Remark 4.19. We analyze for which code lengths n, there are dimensions k and numbers of
twists ` satisfying the conditions in Theorem 4.18. For this, we need to show that there are
integers between the lower and upper bounds in (4.3) and (4.4), which translates to

2
√
n+ 5 < n

2 and (4.5)
n+1
k−
√
n
− 1 < 2n

k − 2. (4.6)

Condition (4.5) is fulfilled for n > 32. We can rewrite (4.6) as

0 < −k2 + k(n− 1 +
√
n)− 2n3/2.

The right-hand-side is monotonically increasing in k for 2
√
n + 4 < k ≤ n

2 , so it suffices to
show the inequality for k = 2

√
n+ 4. In this case, it simplifies to an inequality in n,

0 < 2n− 14
√
n− 20,

which is fulfilled for n > 67. Hence, twisted RS codes of maximal Schur square dimension as
in Theorem 4.18 exist for any n > 67.
Furthermore, for a fixed rate R = k

n ≤
n
2 , there is a twisted RS code of length n ∈ Ω(1/R2)

(due to 2
√
n+ 4 < k = Rn) and maximal Schur square dimension.

66

4.5 Schur Squares

r degrees
B = {0, . . . , r − 1}

r degrees
r − 1 +B

r degrees
k − 1 + t1 +B = 2r − 1 +B .. .

Figure 4.5: Illustration of the proof of Theorem 4.18 for the example6 n = 24, k = 8, ` = 3,
r = 5. All evaluation polynomial degrees 0, . . . , n− 1 can be expressed as sums of
an element in B = {0, . . . , r − 1} and one in {0, r − 1, k − 1 + t1, . . . , k − 1 + t`}.

Remark 4.20. For a fixed rate R = k
n , the lower bound on ` in Theorem 4.18 converges to

n+1
k−
√
n
− 2→ 1

R − 2, (n→∞)

so it suffices to choose ` = b 1
Rc − 1 twists for large code lengths n. Note that the number of

required twists ` does not grow in n.

Shortened Twisted RS Codes with Maximal Schur Square Dimension

In [CGGU+14], the low-dimensional Schur square of shortened Reed–Solomon codes was used
to attack the RS-based McEliece cryptosystem. In the following, we show that twisted RS
codes can have large Schur square also when they are shortened at several positions. The
shortening of a linear code C[n, k, d] at position i is the code (see e.g. [Rot06, Problem 2.14])

C′ = {[c1, . . . , ci−1, ci+1, . . . , cn] : [c1, . . . , ci−1, 0, ci+1, . . . , cn] ∈ C} ⊆ Fn−1
q .

The resulting code has parameters C′[n′, k′, d′] with n′ = n− 1, k′ ≥ k − 1, and d′ ≥ d. This
also implies that a shortened MDS code is again MDS with k′ = k−1 and d′ = d. A code can
be shortened at several positions by applying the procedure above iteratively. The following
family of codes has maximal Schur square also when shortened at % ≥ 0 positions. It can be
seen as a natural generalization of the family in Theorem 4.18.

6These values are chosen for didactic reasons. They do not fulfill (4.3) and (4.4), but yield a maximal Schur
square code anyways. It also shows that these conditions are sufficient, but not necessary for this purpose.

67

4 Twisted Reed–Solomon Codes

Theorem 4.21. Let %, k, n, ` ∈ N be such that % ≤ k, ν(%) ∈ N0 (cf. Remark 4.22 below),

2
√
n+ ν(%) < k ≤ n

2 , and (4.7)
n+1
k−
√
n
− 2 < ` < min

{
2n
k − 2,

√
n− 2− %

}
. (4.8)

We define r :=
⌈
n+1
`+2

⌉
+ % and, for i = 1, . . . , `, choose the hook and twist parameters as

hi = r − 1 + i,

ti = (i+ 1)(r − %)− k + %.

Furthermore, let the entries of α ∈ (Fq \ {0})n be distinct and non-zero, and η ∈ (Fq \ {0})`.
Then, for any %′ ≤ %, the code C[n − %′, k − %′] obtained from shortening Cα,t,h,η[n, k] at
arbitrary %′ positions has maximal Schur square dimension

dim
(
C2
)

= n− %′.

Proof. The proof is similar to the one of Theorem 4.18. It can be found in Appendix A.2.

Remark 4.22. The role of the parameter ν(%) becomes apparent when considering the exis-
tence of k and ` satisfying (4.7) and (4.8). For the analysis, we assume that ν : N0 → N0 is
a function in %, which also motivates the notation. As in Remark 4.19, we must have

2
√
n+ ν(%)− 1 < n

2 , (4.9)
n+1
k−
√
n
− 1 < 2n

k − 2, and (4.10)
n+1
k−
√
n
− 1 <

√
n− 2− %. (4.11)

The first inequality gives a restriction on n as n > (
√

2(ν(%) + 3)+2)2 ∈ Θ(ν(%)). For ν(%) >
3 and n > 67, Inequality (4.10) is satisfied by the arguments in Remark 4.19. The left-hand
side of (4.11) is monotonically decreasing in k for 2

√
n+ ν(%) < k, so is suffices to consider

n+1√
n+ν(%) <

√
n− 1− %, which for ν(%) > 1 + % is fulfilled if and only if n >

(
ν(%)(1+%)
ν(%)−(1+%)

)2
. In

total, we must choose

ν(%) > max{3, 1 + %}, and (4.12)

n > max
{

67,
(√

2(ν(%) + 3) + 2
)2
,
(
ν(%)(1+%)
ν(%)−(1+%)

)2
}
. (4.13)

It can be seen that the minimal possible code rate increases with ν(%). On the other hand, the
lower bound

(ν(%)(1+%)
ν(%)−(1+%)

)2 on n decreases in ν(%). Hence, one must find a trade-off between
the desired rate and the minimal n by choosing ν(%) accordingly.
As an example, let ν(%) = max{4, 2(1 + %)}. In this case, we must use a code length of

at least n ∈ Ω(%2) by (4.13). The minimal dimension grows linearly in %, which means that
arbitrarily small rates are possible. For % ≤ 3, the minimal possible length is 68 in this case,
and for % = 7 and % = 10, we have n ≥ 257 and n ≥ 485, respectively.

Again, we only require ` = b 1
Rc − 1 twists asymptotically in order to obtain a maximal

Schur square dimension. Note that the number of shortened positions % only influences the
minimal possible rate and length of the code, but not the smallest number of required twists.

68

4.6 Relation to Reed–Solomon Codes

4.6 Relation to Reed–Solomon Codes
In this section, we study the relation of RS and twisted RS codes. We first show that many
twisted RS codes are not GRS codes, i.e., are not equivalent to RS codes. In Section 4.6.3,
we consider a more general separation problem: Finding the dimensions of the smallest GRS
code containing a given twisted RS code, and the largest GRS code that is contained in it.

4.6.1 Low-Rate Non-GRS Twisted RS Codes
In Section 4.5, we have seen that any GRS code with parameters [n, k] has Schur square
dimension min{n, 2k− 1}, which is the minimal value for an MDS code. If a twisted RS code
has larger Schur square dimension, it cannot be a GRS code. Note that this is only possible
for low-rate codes, i.e., k ≤ n

2 .
Hence, we can use the lower bound on the Schur square dimension developed in Theo-

rem 4.16 to show the inequivalence of many twisted RS codes to RS codes. For instance, the
following statement shows that almost all low-rate twisted RS codes with one twist (` = 1)
are not GRS codes.

Theorem 4.23. Let ` = 1 and 2k < n. Choose α,h, t,η as in Definition 4.1 with the
additional requirements

η1 6= 0 and 1 < h1 < k − 2.

Then, the code Cα,t,h,η[n, k] has Schur square dimension dim(Cα,t,h,η[n, k]2) ≥ 2k and is not
a GRS code.

Proof. We apply Theorem 4.16. The set of evaluation polynomial degrees is given by

Sk,h,t = {0, 1, . . . , h1 − 1, h1 + 1, . . . , k − 2, k − 1, k − 1 + t1}.

Note that in particular {0, 1, k − 2, k − 1} ⊆ Sk,h,t due to the additional requirements. We
show that {0, . . . , 2k − 2, µ} ⊆ D(Pn,kt,h,η) for some µ ∈ {2k − 1, . . . , n− 1}.

• Let 0 ≤ i ≤ k−1. Then, i can be written as the sum of two elements in Sk,h,t as follows:

i =
{
i+ 0, if i 6= h1,

(h1 − 1) + 1, if i = h1.

Hence, i ∈ D(Pn,kt,h,η). Note that we require 0, 1, h1 − 1 ∈ Sk,h,t, which is fulfilled by
assumption.

• Let k ≤ k − 1 + i ≤ 2k − 2. Then,

k − 1 + i =
{

(k − 1) + i, if i 6= h1,

(k − 2) + (h1 + 1), if i = h1.

Hence, k − 1 + i ∈ D(Pn,kt,h,η). Note that we require k − 1, k − 2, h1 + 1 ∈ Sk,h,t.

• Due to 2k < n, the set {2k − 1, . . . , n − 1} contains at least two elements. Hence, it
intersects with the set (k − 1 + ti) + Sk,h,t in at least one element µ.

69

4 Twisted Reed–Solomon Codes

The claim follows by Theorem 4.16 and |D(Pn,kt,h,η)| ≥ 2k.

The arguments used in the proof of Theorem 4.23 can be generalized easily to apply to a
much wider class of codes, but the proofs get very technical. In fact, it appears that most
low-rate twisted RS codes have Schur square dimension larger than 2k − 1 and exceptional
cases are rare.

Implication on Some High-Rate Twisted RS Codes

For high-rate codes (k ≥ n
2), we can use the duality statements in Section 4.4 in cases where

they apply. In particular, if the evaluation points α form a multiplicative group (or if in
addition 0 is an evaluation point and ti 6= n− k for all i or hi 6= 0 for all i, cf. Remark 4.11),
then we can apply the Schur square arguments to the (low-rate) dual code. Since the dual of
a non-GRS code is non-GRS, this implies the inequivalence for the high-rate code.

4.6.2 A Combinatorial Inequivalence Argument

In this subsection, we approach the inequivalence problem from a combinatorial perspective.
We show that for given code parameters α, h, and t, the choices of η for which the twisted
RS code is MDS either all result in GRS codes or many of them result in non-GRS codes.
We rely on the following well-known result about codes being GRS codes.

Lemma 4.24 ([RS85, RL89b]). Let C be a linear code with a generator matrix of the form
G = [I | A]. Then, C is a GRS code if and only if, for A′ ∈ Fk×n−kq with A′ij = A−1

ij ,

(i) all entries of A are non-zero,
(ii) all 2× 2 minors of A′ are non-zero, and
(iii) all 3× 3 minors of A′ are zero.

An MDS code always has a unique generator matrix of the form G = [I | A] (since
any k columns of a generator matrix are linearly independent) and such a matrix A fulfills
Conditions (i) and (ii) of Lemma 4.24. Thus, Condition (iii) is the essential property that
distinguishes a non-GRS MDS code from a GRS code.
For k < 3 or n − k < 3, the matrix A has no 3 × 3 minors, so any MDS code of these

parameters is a GRS code. Hence, we only consider the case min{k, n− k} ≥ 3.
We start with a lemma that shows how the entries of a twisted RS code’s generator matrix

G = [I | A] depend on the twist coefficients η.

Lemma 4.25. Let α, t,h be chosen as in Definition 4.1 and H ⊆ F`q be the set of η such
that Cα,t,h,η[n, k] is MDS. For any η ∈ H, let G = [I | A(η)] be the generator matrix of
Cα,t,h,η[n, k] in reduced row echelon form. Then, the entries of A(η) ∈ Fk×n−kq are given by

A
(η)
i,j = p(i,j)(η1, . . . , η`) ∀η = [η1, . . . , η`] ∈ H,

where p(i,j) = p
(i,j)
0 +

∑`
κ=1 p

(i,j)
κ xκ ∈ Fq[x1, . . . , x`] is a polynomial in ` variables of total

degree at most 1, does not have a zero in H, and whose coefficients do not depend on η.

70

4.6 Relation to Reed–Solomon Codes

Proof. Let η ∈ H. W.l.o.g., let the ti be ordered such that t1 < t2 < · · · < t` (otherwise,
re-order t and h, respectively). For i = 1, . . . , k, the ith row of G = [I | A(η)] is obtained by
evaluating a polynomial f (i) ∈ Pn,kt,h,η that fulfills

f (i)(αj) =
{

1, i = j,

0, i 6= j,
∀ i, j = 1, . . . , k. (4.14)

Thus, it factors into f (i) = g(i) · σ(i), where σ(i) =
∑k−1
j=0 σ

(i)
j xj :=

∏k
j=1,j 6=i(x − αj) and

g(i) ∈ Fq[x]≤t` . Using γi := (σ(i)(αi))−1 =
∏k
j=1,j 6=i(αi − αj)−1 ∈ Fq, we obtain the equation

1 = f (i)(αi) = g(i)(αi) · σ(i)(αi) = g(i)(αi) · γ−1
i ⇔ γi =

t∑
j=0

g
(i)
j αji . (4.15)

For κ ∈ {1, . . . , t`} \ {ti : i = 1, . . . , `}, the (k+ κ− 1)-th coefficient of f is zero, so we obtain
the t` − ` many equations in the unknowns g(i) := [g(i)

t`
, g

(i)
t`−1, . . . , g

(i)
0]>[

σ
(i)
k−t`−1+κ, . . . , σ

(i)
k−1, 1, 0, . . . , 0︸ ︷︷ ︸

κ−1
many

]
· g(i) = 0. (4.16)

For κ = 1, . . . , `, the (k + tκ − 1)-th coefficient of f is[
σ

(i)
k−t`−1+tκ , . . . , σ

(i)
k−1, 1, 0, . . . , 0︸ ︷︷ ︸

tκ−1
many

]
· g(i) = ηκλκ(a0, . . . , ak−1) = ηκcκ (4.17)

with cκ := λκ(a0, . . . , ak−1) ∈ Fq. By combining (4.15), (4.16), and (4.17), we obtain a system
of t` + 1 many equations

1
σ

(i)
k−1 1
...

...
. . .

σ
(i)
k−t`+t`−1

σ
(i)
k−t`+t`−1+1 . . . 1

σ
(i)
k−t`+t`−1−1 σ

(i)
k−t`+t`−1

. . . σ
(i)
k−1 1

...
...

. . .
...

...
. . .

σ
(i)
k−t` σ

(i)
k−t`+1 . . . σ

(i)
k−t`−1+2 σ

(i)
k−t`−1+3 . . . 1

αt`i αt`−1
i . . . α

t`−1+1
i α

t`−1
i . . . αi 1


︸ ︷︷ ︸

=:B

· g(i) =



η`c`
0
...
0

η`−1c`−1
...
0
γi


.

Since the matrix B is lower-triangular, it is invertible and the solution g(i) is of the form
g

(i)
j = g

(i)
j,0 +

∑`
κ=1 g

(i)
j,κηi, where g

(i)
j,κ ∈ Fq does not depend on η. Hence, we obtain

A
(η)
i,j = f (i)(αk+j) = σ(i)(αk+j) · g(i)(αk+j)

=

 k∏
κ=1
κ6=i

(αk+j − ακ)

 ·
 t∑̀
µ=0

(
g

(i)
µ,0 +

∑̀
κ=1

g(i)
µ,κηi

)
αµk+j

 =: p(i,j)(η1, . . . , η`),

71

4 Twisted Reed–Solomon Codes

where the polynomial p(i,j) is of the claimed form. If p(i,j) had a zero η ∈ H, the ith row of
G would have Hamming weight less than n− k + 1, contradicting the MDS property.

Theorem 4.26. Let min{k, n− k} ≥ 3, α, t, h be chosen as in Definition 4.1 and H ⊆ F`q
be the set of η such that Cα,t,h,η[n, k] is MDS. Then, one of the following is true:

i) Cα,t,h,η[n, k] is GRS for all η ∈ H.

ii) All η ∈ H for which Cα,t,h,η[n, k] is GRS are zeros of a non-zero multivariate polynomial
p ∈ Fq[x1, . . . , x`] of total degree at most 6.

Proof. If H is empty or Case i) is fulfilled, we are done. Suppose both conditions are not
fulfilled. Then, there is an η∗ ∈ H such that Cα,t,h,η∗ [n, k] is non-GRS. Let G = [I | A(η∗)]
the generator matrix of Cα,t,h,η∗ [n, k] in systematic form. By Lemma 4.24, the element-wise
inverse of A(η∗) has a non-vanishing 3× 3 minor.
Now fix this minor (i.e., the row and column indices of the corresponding 3×3 submatrix),

but consider all matrices A(η) with η ∈ H as an indeterminate. It follows from Lemma 4.25
that the entries of the element-wise inverse of A(η) are rational functions of the form 1

pi,j
,

where the pi,j ∈ Fq[x1, . . . , x`] \ {0} are multivariate polynomials of total degree at most 1.
Since the fixed minor is the determinant of a 3× 3 submatrix of the element-wise inverse of
A(η), it is a rational function in η1, . . . , η` of total nominator degree at most six. Since the
minor is non-zero for η∗, the nominator polynomial, say p, cannot vanish.7

Theorem 4.26 can be interpreted as follows: All values η that result in GRS codes are zeros
of a multivariate polynomial of low total degree. If the polynomial does not vanish, this is
quite a strong restriction as shown by the statements below. We rely on the following result,
which was used in [LRMV14] to give the minimum distance of affine Cartesian codes8.

Lemma 4.27 ([LRMV14, Theorem 3.8]). Let p ∈ Fq[x1, . . . , x`] \ {0} be a non-zero multi-
variate polynomial of total degree at most 6, and H = H1 × · · · × H`, where Hi ⊆ Fq with

7 ≤ |H1| ≤ |H2| ≤ · · · ≤ |H`|.

Then, p has at most 6
∏`
i=2 |Hi| zeros in H.

Proof. This statement is a special case of [LRMV14, Theorem 3.8].

Corollary 4.28. Let min{k, n−k} ≥ 3, α, t, h be chosen as in Definition 4.1. Furthermore,
let Hi ⊆ Fq with

7 ≤ |H1| ≤ |H2| ≤ · · · ≤ |H`|.
be such that the code Cα,t,h,η[n, k] is MDS for all η ∈ H := H1 × · · · × H`. If there is an
η∗ ∈ H such that Cα,t,h,η∗ [n, k] is non-GRS, then at least a fraction

|H| − 6
∏`
i=2 |Hi|

|H|
=
∏`
i=1 |Hi| − 6

∏`
i=2 |Hi|∏`

i=1 |Hi|
= 1− 6

|H1|
(4.18)

of the codes Cα,t,h,η[n, k] given by the η ∈ H is non-GRS.
7In our publication corresponding to this result, [BPR17], we mistakenly assumed that the polynomial p
never vanishes, i.e., Case ii) is always fulfilled. Hence, [BPR17, Theorem 18] is not true in general.

8These are codes, where multivariate polynomials over a field K of bounded total degree are evaluated at the
Cartesian product of subsets of K. For finite K, they are related to Reed–Muller codes, cf. [LRMV14].

72

4.6 Relation to Reed–Solomon Codes

Corollary 4.28 implies that if the ηi can be independently chosen from subsets of Fq, then,
either all resulting twisted RS codes are GRS or almost all of them are non-GRS. This
assumption is, for instance, fulfilled by the constructive class of MDS twisted RS codes in
Section 4.2. For most9 low-rate twisted RS codes, we can drop the condition on the existence
of a non-GRS code with the help of Theorem 4.23, and prove the following.

Corollary 4.29. Let 2k < n, min{k, n−k} ≥ 3, and t, h be chosen as in Definition 4.1 with
the additional requirement that one of the hook parameters hj fulfills 1 < hj < k − 2. As in
Section 4.2, we choose a chain of fields

Fs0 � Fs1 � · · · � Fs` = Fq

and distinct evaluation points αi ∈ Fs0. Furthermore, let H := H1 × . . .H`, where Hi =
(Fsi \ Fsi−1) ∪ {0}. Then, at least

(|H1| − 6)
∏̀
i=2
|Hi| ≥ (n2 − n− 5)

∏̀
i=2

(
n2i − n2i−1 + 1

)
(4.19)

choices of η ∈ H are non-GRS MDS codes. The fraction of non-GRS MDS codes for values
η ∈ H is at least

1− 6
|H1| ≥ 1− 6

n2−n+1 → 1 (n→∞).

Proof. By Section 4.2, all choices of η ∈ H are MDS codes. Since one hook parameter hj
fulfills 1 < hj < k − 2 and due to 2k < n, the choice of η∗ = [0, . . . , 0, ηj , 0, . . . , 0] ∈ H with
ηj 6= 0 results in a non-GRS code Cα,t,h,η∗ [n, k] by Theorem 4.23. Note that in this case, the
twisted RS code technically has only one twist.
Due to s0 ≥ n and si ≥ s2

i−1 for all i, we must have |Hi| ≥ n2i − n2i−1 + 1, so in particular
|H1| ≥ n2 − n+ 1 ≥ 7, where the last inequality follows by n ≥ 3 due to min{k, n− k} ≥ 3.
Hence, there are at least (|H1| − 6)

∏`
i=2 |Hi| ≥ (n2 − n − 5)

∏`
i=2(n2i − n2i−1 + 1) many

non-GRS MDS codes with η ∈ H by Corollary 4.28, which implies the claim.

Example 4.30. Let all the code parameters be chosen as in Corollary 4.29. For n = 256,
there are at least 65275, ≈ 4.3 · 109, and ≈ 1.8 · 1019 non-GRS MDS codes for ` = 1, 2, 3,
respectively. The relative number of GRS codes with η ∈ H is at most ≈ 9 · 10−5 in this case,
independent of `.

Remark 4.31. For high-rate twisted RS codes for which the dual code is equivalent to a
twisted RS code, we can apply a similar statement as Corollary 4.29 using the observations
in Section 4.6.1.

Summary

In summary, we have the following for codes fulfilling min{k, n− k} ≥ 3:

• For fixed α, t,h and variable η, either all MDS twisted RS codes are GRS or the number
of non-GRS codes are given by the zeros of a non-zero multivariate polynomial of total
degree at most 6.

9All except for those with hi ∈ {0, 1, k − 2, k − 1} for all i = 1, . . . , `.

73

4 Twisted Reed–Solomon Codes

• In case when we can choose the ηi independently from subsets of Fq, the latter case
implies that most twisted RS codes are non-GRS.
• Given that the ηi are chosen from a chain of subfields as in Theorem 4.3 (sufficient MDS

condition), the fraction of GRS codes decreases in the code length n with O(1
n2).

• For low-rate codes for which at least one hook coefficient fulfills 1 < hj < k − 2 (and
high-rate codes whose dual is a twisted RS code of this kind), the existence of a non-GRS
MDS code is guaranteed, so many (or in some cases most) of the codes are non-GRS.

4.6.3 Separation from GRS Codes Using Schur Squares

We now turn to the more general problem of showing how “far away” twisted RS codes
Cα,t,h,η[n, k] are from being a GRS code. More precisely, our goal is to determine the smallest
dimension of a GRS code CGRS,out and the largest dimension of a GRS code CGRS,inn such
that

CGRS,inn ⊆ Cα,t,h,η[n, k] ⊆ CGRS,out.

By construction, it is clear that any twisted RS code

• is contained in a large RS code of dimension k + maxi{ti}, since the coefficients with
index ≥ k + maxi{ti} of the evaluation polynomials are zero, i.e.,

dim(CGRS,out) ≤ k + max
i
{ti}.

• and conversely contains a small RS code of dimension mini{hi}, since the monomials
x0, . . . , xmini{hi}−1 are evaluation polynomials, i.e.,

dim(CGRS,inn) ≥ min
i
{hi}.

Separation of Low-Rate Codes Based on Schur Squares

We start with general bounds on dim CGRS,out and dim CGRS,inn for low-rate codes.

Theorem 4.32. Let k < n
2 and C[n, k] be a linear code with dim(C2) = 2k − 1 + δ for some

δ > 0. Then, any GRS code CGRS,out that contains C has dimension

dim CGRS,out ≥ k + δ
2 .

Proof. Let k′ be the dimension of CGRS,out. Due to C ⊆ CGRS,out, we have

2k − 1 + δ = dim(C2) ≤ dim(C2
GRS,out) ≤ 2k′ − 1,

which implies k′ ≥ k + δ/2.

Theorem 4.33. Let k < n
2 and C[n, k] be a linear code with dim(C2) = 2k − 1 + δ for some

δ > 0. Then, any GRS code CGRS,inn that is contained in C has dimension

dim CGRS,inn ≤
√

(k − 5
2)2 − 2δ + 5

2 .

74

4.7 Subclasses of Long MDS Twisted RS Codes

Proof. Let k′ be the dimension of CGRS,inn (note that k′ < n
2). We choose a basis c1, . . . , ck′

of CGRS,inn and extend it into a basis c1, . . . , ck of C. The Schur products ci ? cj for i, j ≤ k′
span a space of dimension 2k′ − 1. The other Schur products can span a space of dimension
at most k′(k − k′) +

(k−k′
2
)
, so we have

2k − 1 + δ ≤ dim(C2) = 2k′ − 1 + (k − k′)k′ + 1
2(k − k′)(k − k′ − 1),

which implies (k′ − 5
2)2 ≤ (k − 5

2)2 − 2δ.

Theorem 4.32 is quite strong since the difference (dim CGRS,out − dim C) grows linearly
in the difference of the Schur square dimension to its lower bound 2k − 1. The separa-
tion statement for the inner code, Theorem 4.33, provides a significant separation difference
dim C − dim CGRS,inn only for Schur squares of huge dimension (e.g., dim(C2) ∈ Θ(k2)).

Separation of High-Rate Codes based on the Dual Code

For high-rate codes, we can apply the above statements on the dual code since the dual of a
GRS code is also a GRS code and

CGRS,inn ⊆ C ⊆ CGRS,out ⇐⇒ C⊥GRS,out ⊆ C⊥ ⊆ C⊥GRS,inn.

In this case, we obtain an upper bound on the dimension of the inner GRS code CGRS,inn
by applying Theorem 4.32 on the Schur square of the dual code C⊥, and a lower bound on
dim CGRS,out using Theorem 4.33.

Separation of Twisted RS Codes

We have seen in Section 4.5 and Section 4.6.1 that many low-rate twisted RS codes have
a larger Schur square as an RS code of the same dimension. Hence, we can directly apply
the arguments above. In particular, low-rate twisted RS codes of maximal Schur square
dimension can be separated from the smallest GRS code containing them using the following
corollary.

Corollary 4.34. Let k < n
2 and C[n, k] be a linear code with full Schur square dimension

dim(C2) = n. Then, any GRS code CGRS,out that contains C has dimension

dim CGRS,out ≥ k + n−2k+1
2 = n+1

2 .

This shows that the codes of the family constructed in Theorem 4.18 are not contained in
a GRS code of dimension less than n−2k+1

2 larger than their own dimension. For a fixed rate
R = k

n <
1
2 , this separation difference grows linearly in n.

4.7 Subclasses of Long MDS Twisted RS Codes
In this section, we show that there are MDS twisted RS codes of length ≈ q

2 . We consider
two constructive subclasses with one twist. For notational convenience, we slightly change
the notation in the case ` = 1 into

t := t1, h := h1, η := η1, Cα,t,h,η[n, k] := Cα,t,h,η[n, k].

75

4 Twisted Reed–Solomon Codes

For certain parameters, we also provide upper bounds on the maximal length of such codes,
proving that the two constructive classes of MDS twisted RS codes achieve the maximal length
in these cases. We use the concept of k-sum generators in finite abelian groups, which was
introduced in [RL89a, RL92] and originally used to construct non-RS MDS codes.

Definition 4.35 ([RL92]). Let (A,⊕) be a finite abelian group and k ∈ N. A k-sum generator
of A is a subset S ⊆ A such that for any a ∈ A, there are distinct s1, . . . , sk ∈ S with
a =

⊕k
i=1 si. The smallest integer such that any S ⊂ A with |S| > M(k,A) is a k-sum

generator of A is denoted by M(k,A).

Lemma 4.36 ([RL92, Theorem 3.1]). Let |A| = 2r for some r ≥ 6. For any k with 3 ≤ k ≤
r − 2, we have

M(k,A) =
{
r + 1, if A ∈ {Zm2 ,Z4 × Zm−1

2 } for some m > 1 and k ∈ {3, r − 2},
r, else.

In the remainder of this section, we apply this lemma to the even-order abelian groups (F∗q , ·)
with odd q and (Fq,+) with even q, respectively. An equivalent statement as Lemma 4.36 for
|A| odd can be found in [RL89a, RL92], but we do not make use of it here.

4.7.1 (∗)-Twisted Reed–Solomon Codes

We first consider the case [t, h] = [1, 0], which is illustrated in Figure 4.6. It can be seen as the
Fq[x]-analog of Sheekey’s twisted Gabidulin codes [She16], though we use different techniques
to analyze our codes.

f0 f1 f2

· · ·
fk−1 ηf0

Figure 4.6: Illustration of the evaluation polynomials in the case [t, h] = [1, 0].

In this case, the statement and proof of Lemma 4.2 simplifies significantly and we get the
following condition for when the code C1,0,η,α[n, k] is MDS.

Lemma 4.37. Let k, n,α be chosen as in Definition 4.1 and η ∈ Fq. The code Cα,1,0,η[n, k]
is MDS if and only if

η(−1)k
∏
i∈I

αi 6= 1 ∀ I ⊆ {1, . . . , n} s.t. |I| = k. (4.20)

Proof. Let f =
∑k−1
i=0 fix

i+ηf0x
k be an evaluation polynomial with f0 6= 0. If there is a subset

I ⊆ {1, . . . , n} with |I| = k and f(αi) = 0 for all i ∈ I, then we can write f = ηf0
∏
i∈I(x−αi)

with constant term f0 = f(0) = ηf0
∏
i∈I(−αi), so it must fulfill

η(−1)k
∏
i∈I

αi = 1.

76

4.7 Subclasses of Long MDS Twisted RS Codes

Hence, f has at most k − 1 roots among the αi if and only if (4.20) is fulfilled. In the case
f0 = 0, any non-zero polynomial has degree at most k − 1, implying that it always has at
most k − 1 roots among the αi. We conclude that all non-zero evaluation polynomials have
at most k − 1 roots among the αi if and only if (4.20) is satisfied.

Condition (4.20) implies that if (−1)kη−1 cannot be represented by the product of k distinct
evaluation points, then the resulting code is MDS. By choosing the evaluation points from a
multiplicative group and (−1)kη−1 to be a value not in this group, we obtain the following
class of MDS codes.

Definition 4.38. Let G be a proper subgroup of (F∗q , ·), αi ∈ G∪{0} for all i, and (−1)kη−1 ∈
F∗q \G. Then, we call Cα,1,0,η[n, k] a (∗)-twisted code.

Theorem 4.39. Any (∗)-twisted code is MDS.

Proof. For any I ⊆ {1, . . . , n}, we have
∏
i∈I αi ∈ G∪{0}. Since (−1)kη /∈ G∪{0}, Condition

(4.20) is fulfilled and the code is MDS.

Theorem 4.39 implies that (∗)-twisted codes can be rather long, as formally stated in the
following corollary.

Corollary 4.40. Let p be a prime divisor of the field size q. Then, there is a (∗)-twisted code
of length

n = q−1
p + 1.

Proof. There is a proper subgroup G of F∗q of cardinality (q − 1)/p. We obtain the claimed
length by choosing {α1, . . . , αn} = G ∪ {0}.

If q is odd, then (∗)-twisted codes can have length n = q+1
2 .

Maximal Length of a [1, 0, η]-Twisted Code

The construction using a multiplicative group is rather limited and one could raise the question
whether different choices of α would yield longer codes. The following analysis answers this
negatively using k-sum generators.

Lemma 4.41. Let k, n,α,η be chosen as in Definition 4.1 such that S := {α1, . . . , αn} ⊆ F∗q
is a k-sum generator of (F∗q , ·). Then, the code Cα,1,0,η[n, k] is not MDS.

Proof. Since S is a k-sum generator of (F∗q , ·) and (−1)kη−1 6= 0, there is an index set I ⊆
{1, . . . , n} with |I| = k such that

∏
i∈I αi = (−1)kη−1, which implies that Cα,1,0,η[n, k] is not

MDS by Lemma 4.37.

Theorem 4.42. Let q be odd and 3 ≤ k ≤ q−1
2 − 2. If the code length satisfies n > q+1

2 , then
the code Cα,1,0,η[n, k] is not MDS for any choice of α as in Definition 4.1.

Proof. The abelian group (F∗q , ·) is cyclic and of even order |F∗q | = q− 1 since q is odd. Thus,
Lemma 4.36 implies

M(k,F∗q) = q−1
2 .

77

4 Twisted Reed–Solomon Codes

For n > q+1
2 , the set S := {α1, . . . , αn} ∩ F∗q is therefore a k-sum generator of F∗q since

|S| ≥ n− 1 > q+1
2 − 1 = q−1

2 = M(k,F∗q)

By Lemma 4.41, the code Cα,1,0,η[n, k] is not MDS.

Remark 4.43. The statements above only hold for odd q. For even q > 4, the (∗)-twisted
codes cannot attain length b(q + 1)/2c since any proper subgroup of (F∗q , ·) cannot have order
greater than q−1

p , where p > 2 is the smallest prime divisor of q − 1.
When allowing arbitrary evaluation points and η ∈ F∗q, such long codes do exist: Our

computer search (cf. Section 4.7.3) shows, e.g., for q = 16, there are many MDS [1, 0, η]-
twisted RS codes of length b(q + 1)/2c = 9 for k = 3, 4, 5.

Duals of (∗)-twisted Codes

Since the dual of an MDS code is MDS, we can use the results on (∗)-twisted codes to predict
the minimum distance of their duals, which are [n− k, k − 1, η]-twisted codes (cf. 4.7).

f0 f1 f2

· · ·
fk−1 ηfk−1

Figure 4.7: Illustration of the evaluation polynomials in the case [t, h] = [n− k, k − 1].

Theorem 4.44. Let G be a proper subgroup of (F∗q , ·) and k, n,α be chosen as in Definition 4.1
such that {α1, . . . , αn} = G and (−1)n−k+1η−1 /∈ G ∪ {0}. Then, the code Cα,n−k,k−1,η[n, k]
is MDS.

Proof. By Theorem 4.10, the dual code of Cα,n−k,k−1,η[n, k] is equivalent to

Cα,1,0,−η[n, n− k].

Due to (−1)n−k+1(−η)−1 = (−1)n−kη−1 /∈ G ∪ {0}, this code is a (∗)-twisted code, which
implies the claim.

Non-GRS (∗)-Twisted RS Codes

(∗)-Twisted codes are only interesting if they are not equivalent to an RS code. The following
statement shows that for k ≥ 3, all low-rate (∗)-twisted codes are non-GRS.

Theorem 4.45. Let 3 ≤ k ≤ n−1
2 . Then, any (∗)-twisted -code is non-GRS.

Proof. We consider the Schur square dimension of a (∗)-twisted -code C. Since the evaluation
polynomials of C have degrees 1, . . . , k, there are evaluation polynomials of degrees 2, . . . , 2k
of the Schur square code. Furthermore, since x1, x2, xk−1, ηxk + x0 ∈ Pn,kt,h,η (note that we
require 2 ≤ k − 1), the polynomial

x1 · (ηxk + x0)− ηxk−1 · x2 = x1,

78

4.7 Subclasses of Long MDS Twisted RS Codes

is among the evaluation points of the Schur square code. Due to 2k < n− 1, the polynomials
x1, . . . , x2k form a 2k-dimensional subspace of the Schur square evaluation points, so we have
deg(C2) ≥ 2k, which proves the claim.

For high-rate codes with k ≤ n − 3 and α being the full multiplicative group, also all
high-rate (∗)-twisted codes are non-GRS.

Theorem 4.46. Let n−1
2 < k ≤ n − 3 and the α form a multiplicative group. Then, any

(∗)-twisted -code with evaluation points α is non-GRS.

Proof. By Theorem 4.10, the dual code of the (∗)-twisted code is equivalent to a low-rate
twisted RS code C[n, n − k] with [t, h] = [k, n − k − 1], which is spanned the polynomials
x0, . . . , xn−k−2, η′xn−1 + xn−k−1 for some η′ 6= 0, and the same evaluation points α. Thus,
there are evaluation polynomials of the Schur square code C2 of degrees 0, . . . , 2(n − k) − 4,
and n− 1. Since α forms a multiplicative group, we have A =

∏n
i=1(x− αi) = xn − 1, so

xi
(
η′xn−1 + xn−k−1

)
≡ η′xi−1 + xn−k−1+i mod A ∀ i = 1, . . . , k.

Due to n − k ≥ 3, xn−k−2 is an evaluation polynomial of degree > 0 and we obtain a Schur
square evaluation polynomial of degree 2(n − k) − 3 by xn−k−2 · (η′xn−1 + xn−k−1) mod A,
and of degree 2(n− k)− 2 by (η′xn−1 + xn−k−1)2 mod A.

Thus, the Schur square evaluation polynomial set is spanned by polynomials of degrees
0, . . . , 2(n− k)− 2, n− 1, so dim(C2) ≥ 2(n− k) (note that we require n−1

2 < k) and C is not
a GRS code (recall that the dimension of C is n− k ≤ n−1

2).

We will see in the computer searches (cf. Section 4.7.3) that there are some (∗)-twisted
codes with n = 6 and k = 3 that are GRS codes. Note that in this case, we have n−1

2 < k.
Hence, the statement of Theorem 4.46 does not hold for arbitrary evaluation points α.

4.7.2 (+)-Twisted Reed–Solomon Codes

In the case [t, h] = [1, k − 1] (cf Figure 4.8), we obtain an analogous code class as the (∗)-
twisted codes, using additive subgroups of Fq.

f0 f1 f2

· · ·
fk−1 ηfk−1

Figure 4.8: Illustration of the evaluation polynomials in the case [t, h] = [1, k − 1].

The following lemma is the analog of Lemma 4.37.

Lemma 4.47. Let k, n,α be chosen as in Definition 4.1 and η ∈ Fq. Then, the code
Cα,1,k−1,η[n, k] is MDS if and only if

η
∑
i∈I

αi 6= −1 ∀ I ⊆ {1, . . . , n} s.t. |I| = k. (4.21)

79

4 Twisted Reed–Solomon Codes

Proof. The proof works as the one of Lemma 4.37. Any evaluation polynomial with fk−1 6= 0
with k zeros at I ⊆ {1, . . . , n} with |I| = k can be written as ηfk−1

∏
i∈I(x − αi), so its

(k − 1)th coefficient is
fk−1 = ηfk−1

∏
i∈I

(−αi).

Thus, no evaluation polynomials has more than k−1 zeros among the αi if and only if (4.21)
is fulfilled.

Hence, the code is MDS if −η−1 cannot be represented as the sum of any k evaluation
points. This yields the following subclass of MDS twisted RS codes.
Definition 4.48. Let V be a proper subgroup of (Fq,+) and η−1 ∈ Fq\V . Then, Cα,1,0,η[n, k]
is called (+)-twisted code if the elements of α are a subset of V ∪ {∞}.
Lemma 4.47 directly implies the following statement.

Theorem 4.49. Any (+)-twisted code is an MDS code.
Corollary 4.50. Let p be the characteristic of Fq. Then, there is a (+)-twisted code of length

n = q
p .

Proof. There is a proper subgroup V of (Fq,+) with order q/p.

Corollary 4.50 implies that for even q, (+)-twisted codes can have length n = q
2 . The group

V as in the proof of the corollary has the maximal size among all proper subgroups.

Maximal Length of an MDS [1, k − 1, η]-Twisted Code

We again analyze the maximal achievable length if the restriction to evaluation points in
subgroups is omitted.
Lemma 4.51. Let k, n,α be chosen as in Definition 4.1 such that S := {α1, . . . , αn} ∈ Fq is
a k-sum generator of (Fq,+). Then, the code Cα,1,k−1,η[n, k] is not MDS.
Theorem 4.52. Let q be even and 3 ≤ k ≤ q

2 − 2. If the code length satisfies

n >

{
q
2 , if 3 < k < q

2 − 3,
q
2 + 1, if k ∈ {3, q2 − 2},

then the twisted code Cα,1,k−1,η[n, k] is not MDS for any choice of η as in Definition 4.1.

Extended [t, k − 1, η]-Twisted Codes

For any 1 ≤ t ≤ n − k, we can extend a [1, k − 1, η]-twisted code by adding an evaluation
point at infinity, whose evaluation is defined by

f(∞) = fk−1.

If the original code is MDS, so is the extended code since any non-zero evaluation polynomial
with fk−1 = 0 has at most k− 2 zeros among the original αi, which implies that the maximal
number of zero entries in the corresponding codeword is still k − 1.
Using this observation, we obtain MDS twisted RS codes of length n = q

p + 1 using Corol-
lary 4.50, and the bounds on the maximal length of an MDS [1, k − 1, η]-twisted code in
Theorem 4.52 become q

2 + 1 and q
2 + 2, respectively.

80

4.7 Subclasses of Long MDS Twisted RS Codes

Non-GRS (+)-Twisted RS Codes

We also analyze the connection of (+)-twisted codes to RS codes. Since in this case, the
evaluation points usually do not form a multiplicative group, we can apply the Schur square
argument only to low-rate (+)-twisted codes. Our computer searches in the following subsec-
tion indicate that also most high-rate (+)-twisted codes are non-GRS.

Theorem 4.53. Let k < n
2 . Then any (+)-twisted code C is non-GRS.

Proof. The evaluation polynomials of C have degrees 0, . . . , k − 2, k. Thus, the Square code
evaluation polynomial set obviously contains polynomials of degrees 0, . . . , 2k− 2, 2k. Due to
2k < n, we have dim(C2) ≥ 2k, so C is non-GRS.

4.7.3 Computer Searches
In the following, we present computer searches for MDS twisted RS codes with one twist
` = 1 over small fields. The searches were implemented in SageMath v7.4 [S+].10 Since any
twisted RS code with η = η1 = 0 or min{k, n − k} ≤ 2 is a GRS code (cf. Lemma 4.24), we
exclude these cases from the set of tested parameters.

Number of (∗)-Twisted Codes

We counted all (∗)-twisted codes over Fq for q ≤ 19, i.e., the number of evaluation point
sets {α1, . . . , αn} and corresponding η ∈ Fq that satisfy the conditions in Definition 4.38
for a given length n and dimension k. Furthermore, we determined the number of resulting
equivalence classes of codes, as well as the number of non-GRS classes thereof.
For odd field sizes q, we can obtain MDS codes of length up to q+1

2 , independent of k,
which confirms Corollary 4.40. Furthermore, almost all found (∗)-twisted codes are non-
GRS. Table 4.2 shows the results for q = 19.

Table 4.2: Number of (∗)-twisted codes over F19 (Total/Inequivalent/Non-GRS).
n\k 3 4 5 6 7

6 1974/73/67
7 1092/67/67 1092/63/63
8 405/25/25 405/25/25 405/25/25
9 90/7/7 90/6/6 90/6/6 90/7/7
10 9/2/2 9/1/1 9/1/1 9/2/2 9/1/1

Relation to Roth–Lempel Codes

In [RL89a], Roth and Lempel presented a construction of non-GRS MDS codes with pa-
rameters [n, k] based on finding subsets S ⊂ Fq with |S| = n − 2 which are not (k − 1)-sum
10The SageMath scripts were implemented by Johan Rosenkilde, one of the thesis author’s co-authors in the

publication corresponding to this result: [BPR17]. Full results and the source code can be downloaded
from http://jsrn.dk/code-for-articles.

81

http://jsrn.dk/code-for-articles

4 Twisted Reed–Solomon Codes

generators of (Fq,+). Similar to our (+)-twisted codes, subgroups of Fq are one way to obtain
such non-(k − 1)-sum generators. Hence, these codes can achieve similar parameters as our
(+)-twisted codes, i.e., ≈ q

2 for even q. For odd q, the results in [RL89a] imply that the code
length is bounded asymptotically (for q → ∞) by q

k (1 + o(1)), which is much shorter than
our (∗)-twisted codes in this case.
For small q, we determined all Roth–Lempel codes (i.e., the non-(k− 1)-sum generators11)

of given n and k, and counted in how many cases they were equivalent to our (∗)-twisted
codes or MDS (extended) [1, k − 1, η]-twisted codes12. The results indicate that the three
code classes have only little overlap. Some examples are given in Table 4.3.

Table 4.3: Number of inequivalent Roth–Lempel (RL), (∗)-twisted , and MDS [1, k − 1, η]-
twisted codes / inequivalent to RL codes thereof.

q n k RL codes (∗)-twisted codes MDS [1, k − 1, η]-twisted codes
13 7 2 35 2/1 8/6
16 8 5 186 0/0 83/73
23 12 5 0 1/1 0/0

All MDS Twisted Codes with one Twist up to Field of Size q = 13

Table 4.4 shows the number of MDS twisted RS codes for q ≤ 13 (i.e., the number of evaluation
point sets and parameters t, h, and η that result in MDS codes), the number of inequivalent
codes, and the number of non-GRS equivalence classes. It can be observed that most cases,
there are many fewer equivalence classes than parameter sets (e.g., [q, n, k] = [13, 7, 4] each
class can be obtained by ≈ 1200 parameters on average). Furthermore, most of the codes are
non-GRS, as predicted by Section 4.6. We found three codes of length n = q:

• The code [q, n, k] = [9, 9, 5] is equivalent to Glynn’s code [Gly86], which is known as the
first example of a code for odd q with 2 ≤ k ≤ q that is a non-GRS MDS code.

• [q, n, k] = [9, 9, 4] is equivalent to the dual of Glynn’s code.

• The code [q, n, k] = [8, 8, 5] can be constructed using t = 1, h = k − 1 = 4, η = 1 ∈ F8,
and {α1, . . . , α8} = (F8 \ {1}) ∪ {∞}. It is equivalent to a Roth–Lempel code.

Although we do not have an explicit construction, except for the (∗)-twisted and (+)-twisted
codes, most choices of t and h admit codes of length ≈ q

2 within the searched parameter
range.

11In order to achieve codes of length n, the construction in [RL89a] always adds an evaluation point at infinity
([0, . . . , 0, 1]>-column in G). For a fair comparison with our (+)-twisted codes, we allow to instead evaluate
at one more αn−1 ∈ Fq s.t. S ∪ {αn−1} with |S ∪ {αn−1}| = n− 1 is not a (k − 1)-sum generator of Fq.

12By Section 4.7.2, these are exactly the codes with non-k-sum generators S of size |S| = n as evaluation
points, where η−1 cannot be represented as a sum of k elements in S, or an extension of such a code.

82

4.8 Twisted RS Codes in the McEliece Cryptosystem

Table 4.4: Number of MDS Twisted Codes (Total/Inequivalent/Non-GRS. Blank = 0/0/0)
q n k = 3 4 5 6 7 8 9
7 6 38/3/2
8 6 406/5/4

7 63/2/1
8 14/2/1

9 6 2374/7/5
7 216/3/3 332/3/2
8 4/1/1 40/1/1 36/1/1
9 4/1/1 4/1/1

11 6 32518/15/11
7 6286/21/19 8554/20/18
8 585/15/15 160/7/6 960/9/7
9 40/3/3 20/1/0 135/1/0
10 2/1/1 22/2/1

13 6 216722/26/21
7 71618/80/75 98430/80/75
8 11164/165/160 5176/98/93 26916/139/134
9 1110/32/31 41/4/3 381/8/5 5424/24/21
10 138/4/4 93/3/0 1167/4/1
11 24/1/1 254/1/0
12 2/1/1 26/2/1

4.8 Twisted RS Codes in the McEliece Cryptosystem

As a potential application of twisted RS codes, we analyze the McEliece [McE78] cryptosystem
when used in combination with subclasses of the new codes. The system is a code-based
public-key cryptosystem, which was introduced in 1978, in the same year as Rivest, Shamir,
and Adleman proposed their famous RSA system [RSA78]. In 1986, Niederreiter [Nie86]
introduced a second code-based public-key cryptosystem. Compared to other public-key
cryptosystems, such as RSA or ElGamal [ElG85], code-based systems remained unfavorable
for a long time due to large key sizes.

However, interest in code-based systems has significantly increased in the past years due
to the potential thread by quantum computers: Systems based on the problem of integer
factorization (e.g., RSA) or discrete logarithms (e.g., ElGamal) can be broken in polynomial
time by such computers using Shor’s algorithm [Sho99]. For the McEliece and Niederreiter
cryptosystem, no such polynomial-time attack is known, see e.g. [OS09]. In 2017, the National
Institute of Standards and Technology (NIST) of the US Department of Commerce started
the first post-quantum cryptography standardization process [Nat17], and many variants of
the McEliece and Niederreiter system are among the submitted proposals.

83

4 Twisted Reed–Solomon Codes

In the following, we describe the McEliece cryptosystem, which is based on publishing the
generator matrix of an obfuscated code, in which it is easy to encode (= encryption) but
hard to decode (= decryption) in general.13 The private key enables the desired addressee to
efficiently decrypt the cypher.

1. Key Generation:
• Choose a linear code C[n, k, d] over Fq, with generator matrix G and efficient
decoding algorithm dec(·) that can correct up to τ errors, from a given family F
of codes at random.
• Choose an invertible matrix S ∈ Fk×kq at random.
• Choose a permutation matrix14 P ∈ Fn×nq at random.

• Compute G̃ = S ·G · P (obfuscated generator matrix).
The secret key is [S,G,P , dec(·)] and the public key is [G̃, τ].

2. Encryption:
• Message m ∈ Fkq .
• Choose e ∈ Fnq with wtH(e) = τ at random.

• Encrypt r = m · G̃+ e.

3. Decryption:
• Decode dec(rP−1) = dec((mS)G+ eP−1) in order to obtain m′ = mS.
• Compute m = m′S−1

Note that the decryption works since (mS)G ∈ C[n, k, d] and wtH(eP−1) = wtH(e) = τ since
P−1 is a permutation matrix. The security of the system is based on the NP-completeness
of the general decoding problem, cf. [BMVT78]. This means that an attacker faces an NP-
complete problem unless she or he is able to retrieve the structure of an efficiently decodable
code with generator matrix G̃. Attacks of the latter kind are called structural attacks.
The code family F which was proposed in the original McEliece cryptosystem consists

of binary Goppa codes. For this code class, no polynomial-time structural attack has been
found. Since then, many other code classes have been considered (cf. the overview in [OS09])
However, for most of these codes, structural attacks have been found. A comprehensive
introduction to code-based cryptosystems can be found in [OS09].

For RS-like codes, structural attacks have been found by Sidelnikov and Shestakov [SS92],
Wieschebrink [Wie06], Couvreur et al. [CGGU+14], and an improved attack by Wiesche-
brink [Wie10]. In the following, we argue that there is a subfamily of twisted RS codes that
resist some of these structural attacks. More precisely, we can show that Sidelnikov–Shestakov
and Couvreur et al.’s attack, as well as Wieschebrink’s attack on the code itself, do not work
for the codes. Wieschebrink’s attack on the dual code, as well as the improved attack by
Wieschebrink, do not apply in an obvious way.
13Niederreiter’s cryptosystem is based on publishing an obfuscated parity-check matrix of an efficiently de-

codable code and encrypting the message as an error, whose syndrome is the cypher. We only consider the
McEliece system here since the systems are equivalent in terms of structural attacks: one can easily obtain
an obfuscated generator matrix from a parity-check matrix and vice versa.

14I.e., a matrix containing exactly one 1 per column and row, and zero otherwise.

84

4.8 Twisted RS Codes in the McEliece Cryptosystem

4.8.1 Twisted RS Codes Resisting Some Known Structural Attacks
We analyze the following subfamily of twisted RS codes with respect to known structural
attacks on the McEliece cryptosystem using RS-like codes. We combine the ideas of The-
orem 4.3 (sufficient MDS condition) and Theorem 4.21 (shortened maximal Schur square
codes) in order to obtain a subfamily of twisted RS codes that are MDS and have maximal
Schur square when shortened by at most % = 2 positions.

Definition 4.54. Let k, n ∈ N, be such that n > 67 and 2
√
n+ 6 < k ≤ n

2 . Choose

` =
⌊
n+1
k−
√
n

⌋
− 1,

r =
⌈
n+1
`+2

⌉
+ 2,

and define the hook and twist parameters h, t ∈ N`0 as

hi = r − 1 + i and ti = (i+ 1)(r − 2)− k + 2 for i = 1, . . . , `.

Furthermore, fix a chain of subfields Fs0 ≤ Fs1 ≤ · · · ≤ Fs` =: Fq such that |Fs0 | ≥ n. We
define the following family of codes:

Fn,k =
{
Cα,t,h,η[n, k] : α1, . . . , αn ∈ Fs0 \ {0} distinct, ηi ∈ Fsi \ Fsi−1

}
.

Note that the parameters of the codes contained in the family are well-defined by the
analysis in Section 4.5.2 (` is chosen minimal fulfilling (4.8)).

Remark 4.55. For a fixed chain of subfields, the number of distinct parameters α and η that
result in codes in Fn,k is given by

n!
(
|Fs0 | − 1

n

) ∏̀
i=1

∣∣Fsi \ Fsi−1

∣∣ ≥ n!
(
|Fs0 | − 1

n

) ∏̀
i=1

(
n2i − n2i−1)

.

which already for small n gives a sufficiently large number of possible parameters to prevent
efficient naive brute-force structural attacks on the family. The number of inequivalent codes
is presumably much smaller (cf. the examples for small field sizes in Section 4.7.3), but in
order to utilize this fact, an attacker must determine the equivalence classes of the family.

In the following, we consider Sidelnikov and Shestakov’s, Wieschebrink’s, Couvreur et al.’s,
and Wieschebrink’s improved attacks on codes in the family Fn,k. Since knowing the structure
of the dual of a code might reveal the code’s structure (we have an explicit formula for some
codes in Section 4.4, but more general statements might be possible), we also analyze the
attacks on the dual codes. The latter is also important if we want to use high-rate codes in
the McEliece cryptosystem: We can simply use the dual codes of the codes in Fn,k.

Sidelnikov–Shestakov Attack

The Sidelnikov–Shestakov attack [SS92] is a polynomial-time structural attack on the McEliece
system with GRS codes as the code family. We describe the attack as in [Wie10]. Let [I | A]
be the unique systematic generator matrix of a GRS code with evaluation points α1, . . . , αn,

85

4 Twisted Reed–Solomon Codes

where the positions of the codewords are multiplied by the non-zero field elements v1, . . . , vn.15

Then, row i of the matrix is obtained by evaluating the polynomial

fi = ci
∏k
µ=1,µ 6=i(x− αµ),

where ci ∈ Fq, and the entries of the matrix A are given by

Aij = vjfi(αj) =
ci·vj

∏k

µ=1(αj−αµ)
αj−αi =: ci·dj

αj−αi (4.22)

for i = 1, . . . , k and j = k+1, . . . , n (cf. [RS85]). By guessing the four values α1, α2, c1, c2 ∈ Fq
(≤ q4 possibilities16), one obtains the values αk+1, . . . , αn by solving the equations

A1j
A2j

= c1(αj−α2)
c2(αj−α1) ∀ j = k + 1, . . . , n.

By a similar strategy, the remaining evaluation points α3, . . . , αk and v1, . . . , vn are found.
The attack relies on the structure of the matrix A given by (4.22). Such a matrix is called

Cauchy matrix. Is is well-known that a matrix A is Cauchy if and only if [I | A] generates
a GRS code [RS85, RL89b]. Since all codes in the family Fn,k have Schur square dimension
larger than 2k− 1, none of them is GRS, so the Sidelnikov–Shestakov is neither applicable to
the codes in the family nor to their duals.

Wieschebrink Attack

Wieschebrink [Wie06] proposed a generalization of the Sidelnikov–Shestakov attack, which
works for subcodes C[n, k] of a GRS code CGRS,out[n, k+δ]. Again, the ith row of the systematic
generator matrix [I | A] of C is obtained from a polynomial

fi = ci(x)
∏k
µ=1,µ 6=i(x− αµ),

which is also an evaluation polynomial of CGRS,out, and thus, ci(x) ∈ Fq[x] is a polynomial
of degree deg ci(x) ≤ δ. Compared to the Sidelnikov–Shestakov attack, an attacker need to
guess two polynomials c1(x) and c2(x) instead of scalars, which costs about ≈ q2δ iterations,
and is efficient only for small δ.
Hence, for C ∈ Fn,k, we need to ensure that the smallest GRS code containing C has

much larger dimension than k. Fortunately, this is guaranteed due to the full Schur square
dimension and Corollary 4.34: For each code in the family, we have δ ≥ n+1

2 −k, which grows
linearly in n for a fixed rate R = k

n <
1
2 .

Showing such a property for the dual code is more involved. We can only state the following:

• Since CGRS,inn ⊆ C if and only if C> ⊆ C>GRS,inn, we can use Theorem 4.33, our result on
the separation from an inner GRS code. For the code in Fn,k, we obtain

δ ≥ (k − 5
2)−

√
(k − 5

2)2 − (n− 2k + 1) =: δmin,

which tends to 0 for a fixed rate and n→∞.
15The vi are usually called code multipliers.
16In fact, one can assume w.l.o.g. that α1 = 0 and α2 = 1, cf. [Wie10].

86

4.8 Twisted RS Codes in the McEliece Cryptosystem

• By construction, any C in Fn,k contains a GRS code of dimension r. It follows from the
definition that r ≥ (k −

√
n) 1

1+(k−
√
n)/(n+1) ≥ (k −

√
n) 1

1+R , so this gives a GRS code
containing the dual code C> with

δ ≤ k − (k −
√
n) 1

1+R = k2/n+
√
n

1+R =: δmax,

where the upper bound δmax grows in n for any k > 2
√
n+ 6.

There is no obvious reason why C should contain a GRS code of dimension larger than r,
so it seems likely that in most cases we would have δ = δmax. However, a proof of such a
statement is an open problem. Assuming that it is true, then Wieschebrink’s attack on C or
C⊥ has work factor ≈ q2δ if

k ∈ [r + δ, n+1
2 − δ] ≈ [n

`+1 − δ,
n
2 − δ].

Wieschebrink’s attack can be refined if there are two codewords that have more than k− 1
zero entries in common, cf. [Wie06, Section 4]. Since both C and C> are MDS, any two
codewords differ in at least n− k + 1 positions, so the refinement cannot be applied.

Couvreur et al.’s Attack Based on Schur Square Distinguishing

Couvreur et al. [CGGU+14] proposed structural attacks on GRS-based McEliece systems
and variants thereof, which are based on the fact that a low-rate GRS code, as well as any
shortening of it at up to two positions, has an abnormally small Schur square dimension. In
[CGGU+14, Section 6], they present a polynomial-time attack based on finding codewords
that result from evaluation polynomials that have certain evaluation points as zeros with high
multiplicity. Such codewords are found by fixing two evaluation points, w.l.o.g., α1 and α2,
and computing the codes C(i,j) with i, j > 0 and i + j < k which correspond to evaluation
polynomials that vanish in α1 with multiplicity at least i and in α2 with multiplicity at least
j. In [CGGU+14, Section 6.2], they give a recursive formula that allows to compute all C(i,j)

from the four codes
C = C(0,0), C(0,1), C(1,0), and C(1,1),

given that the Schur square dimensions of C(0,1), C(1,0), and C(1,1) are not maximal.
Since C = C(0,0), and C(0,1), C(1,0), and C(1,1) are simply shortenings of C at positions 1, 2,

and {1, 2}, respectively, all these codes have maximal Schur square dimension by construction.
Since the shortenings are also MDS codes of low rate, their dual codes have maximal Schur
square dimensions as well, which implies the following statement.

Theorem 4.56. Let C ∈ Fn,k. Then, C(0,0), C(0,1), C(1,0), and C(1,1), as well as their duals,
have maximal Schur square dimension.

Hence, the attack in [CGGU+14, Section 6] does not work for the McEliece cryptosystem
using Fn,k as the code family.

Wieschebrink’s Improved Attack and Possible Weakness

In [Wie10], Wieschebrink proposed an improved attack on the McEliece cryptosystem based
on random subcodes of GRS codes. The key observation is that the Schur square of a low-rate

87

4 Twisted Reed–Solomon Codes

random subcode C of a GRS code CRS equals the Schur square of CRS with high probability.
Hence, the Sidelnikov–Shestakov attack can be applied to a code’s Schur square in order to
retrieve the structure of the supercode CRS. If the supercode CRS does not have low rate (i.e.,
its Schur square equals Fnq), then the code C can be shortened at many positions until it is
a subcode of a low-rate GRS code (i.e., CRS shortened at the same positions). For random
subcodes, the Schur square property is then still fulfilled with high probability.
Since twisted RS codes are subcodes of GRS codes (cf. Section 4.6.3), the codes must be

analyzed in this setting. An initial test on the example in Section 4.8.2 below showed that
the Schur square dimensions of its shortened codes are much smaller than the dimension of
the corresponding shortenings of the obvious supercode CRS[n, k+ t`]. Indeed, it was already
mentioned in [Wie10] that it is possible to constructively choose subcodes that resist the
attack. However, proving that the Schur squares of shortenings of the codes in Fn,k at many
positions are not GRS codes is an open problem.
Generally, the idea of shortening the code at many positions and attacking the shortened

code appears to be a possible weakness of code-based cryptosystems based on twisted RS
codes. However, even if such an attack is possible, it is not clear how to utilize the structure
of the shortened code in order to obtain the structure of the unshortened code. Also, using
a few more twists than needed and arguments as in the proof of Theorem 4.21, it seems
possible to construct codes that have maximal Schur squares even when shortened heavily.
These observations need to be further analyzed in future work.

4.8.2 Example Parameters Resulting in Small Key Sizes

One of the main challenges in the McEliece cryptosystem is to decrease the public key size at
a given security level, i.e., the work factor of the most efficient known generic or structural
attack, compared to existing proposals. Since the codes in Fn,k are defined over a field of
size q ≥ n2` , the size of the public key (in bits) exponentially increases in the number of
twists `. For small `, this effect is compensated by the fact that for given n, k, and number of
errors, generic decoding attacks are much less efficient than for small fields (e.g., F2). In the
following, we consider example parameters that significantly decrease the key size compared
to state-of-the-art parameters of the original McEliece cryptosystem.
Consider Fn,k with [n, k] = [255, 117], ` = 1, and q = s1 = s2

0 = (28)2. The codes in Fn,k
can correct τunique = 69 errors uniquely, τlist = 83 using a list decoder, and up to τIRS = 104
using an IRS decoder, cf. Section 4.3. In all cases, the key size is

Ksys = k(n− k) log2(q)/8192 = 31.5 KiB,

using a systematic generator matrix as the public key.17

The best-known structural attack on the code family is Wieschebrink’s attack, which—
under the assumption in the previous subsection—has work factor 2336. For a given number
of errors τ , the generic information set decoding attack [Pra62, McE78], has work factor
WI =

(n
k

)
/
(n−τ
k

)
k3 log2(q)2, which gives

WI,unique ≈ 2105, WI,list ≈ 2126, WI,IRS ≈ 2165,

17Systematic generator matrices can decrease the semantic security if not carefully used, cf. [OS09, Section 5.1].

88

4.9 Concluding Remarks

in these particular cases.18 Thus, the security level in case of a unique decoder is ≈ 2100, and
≈ 2128 for a list decoder. For comparison, we consider the following parameter proposals for
the original McEliece system based on binary Goppa codes:

• Security level ≈ 2100: Canteaut and Sendrier [CS98] suggest an [n, k] = [2048, 1608]
binary Goppa code that can correct τ = 40 errors uniquely. This results in a key size of

K = 86.4 KiB,

which is larger than our example by factor 2.7.
• Security level ≈ 2128: Barbier and Barreto [BB11] use an [n, k] = [3262, 2482] binary

Goppa code that can correct up to τ = 66 errors using a list decoder. The key size is

K = 236.3 KB,

which is larger than our list decoding example by factor 7.5.

4.9 Concluding Remarks
In this chapter, we have introduced twisted RS codes, a new class of evaluation codes that
arise from Reed–Solomon codes by adding large-degree monomials, twists, to the evaluation
polynomials whose coefficients linearly depend on the lower ones. We have shown that by
choosing the evaluation polynomials in a suitable way, we obtain MDS codes, which sometimes
are relatively short. Our proposed decoder is efficient for a small number of twists.
We have shown that there is a subfamily of the new codes that is closed under duality.

Moreover, we have studied the Schur squares of the new codes and shown in many cases their
dimension is much larger than for Reed–Solomon codes. This observation was used to show
the inequivalence of many twisted RS codes to RS codes. We have also given a combinatorial
inequivalence argument.
We studied two subclasses of “long” MDS twisted RS codes, which achieve lengths n ≈ q

2 .
Finally, we have analyzed the new codes for the McEliece code-based cryptosystem. More
precisely, a subfamily of twisted RS codes appears to be resistant against known structural
attacks on the system based on RS-like codes. This shows that the codes should be considered
for this application. There are some open problems:

• Decoding of twisted RS codes with a large number of twists (i.e., ` ≥ 3) is not yet
feasible. We need to find a decoder that avoids brute-forcing the twist coefficients.
• The statements on the dual code in Section 4.4 should be extended—if possible—to
cases where the evaluation points do not form a multiplicative group.
• The inequivalence statements in Section 4.6 do not hold for all twisted RS codes. Indeed,
the computer searches in Section 4.7.3 indicate that there are twisted RS codes that are
GRS codes. The question which twisted RS codes are GRS should be studied further.

18Peters [Pet10] proposed an improvement of the information-set decoding algorithm for non-binary fields,
which decreases the expected number of required iterations. In contrast to the original algorithm, the cost
of one iteration strongly depends on the field size, which is large in our case: q = 216. Hence, the algorithm
appears to be slower than the original algorithm. However, this should be more carefully analyzed, e.g.,
by estimating the number of iterations using a Markov chain simulation as in [Pet10].

89

4 Twisted Reed–Solomon Codes

• Our computer searches show that there are more twisted RS codes of length ≈ q
2 than

the two subclasses that we studied in Section 4.7. It is an open problem to analytically
describe these classes.
• Finding upper bounds on the dimension of the largest GRS code contained in a twisted
RS code is not yet satisfactorily solved. Stronger bounds would directly yield a guar-
antee for the infeasability of Wieschebrink’s attack on the dual code in Section 4.8.1.
• Experiments with small parameters indicate that if we do not restrict the evaluation
points (as, e.g., in Section 4.2), we often obtain codes that are close to MDS (i.e., their
minimum distance is close to n− k + 1), independent of the field size q or the number
of twists `. This observation should be analytically studied.
• In our analysis of subfamilies of twisted RS codes in Section 4.8, we considered known
structural attacks. Certainly, this gives no guarantee that the codes are suitable for
cryptographic applications. Hence, further attacks that are tailored to the new code
class must be found and analyzed in order to get a better idea of their suitability in this
scenario. A first idea would be to attack heavy shortenings of the codes, as discussed
in Section 4.8.1. Furthermore, the resistance against Wieschebrink’s improved attack
needs to be analyzed analytically.

90

Part II

Codes in Rank Metric

91

5
Fast Decoding of Gabidulin Codes

Gabidulin codes can be decoded up to half the minimum distance in polynomial
time based on similar decoders for Reed–Solomon codes. The first known algo-
rithms are based on solving a key equation to find the so-called error span poly-
nomial—the minimal subspace polynomial of the space spanned by the columns

of the error matrix. A solution of this key equation is found by a skew polynomial equivalent
of the extended Euclidean algorithm [Gab85] in O(n2), solving a system of linear equations
[Rot91, Gab91] in O(n3), or a skew polynomial equivalent of the Berlekamp–Massey algo-
rithm [PT91, RP04a, RP04b, HS10, SRB11, SB14] in O(n2) or O∼(n1.69) operations over
Fqm , where n is the code length. The methods were further accelerated with respect to the
hidden constant in the asymptotic complexity expression in [GY08, SK09].

All of these decoding algorithms share a heavy second step: Computing a basis of the
root space of the error span polynomial, resulting in a complexity of O(n2m) over Fq, which
asymptotically costs—up to logarithmic factors—as much as O(n2) operations over Fqm using
the bases in [CL09]. There is also an interpolation-based algorithm by Loidreau [Loi06] of
quadratic complexity O(n2), which directly returns the message polynomial.
Recently, Wachter-Zeh, Afanassiev, and Sidorenko [WAS13] (see also [Wac13, Section 3.2.2])

introduced a key-equation-based algorithm that directly outputs the message polynomial
without solving a linear system of equations, similar to Gao’s algorithm for decoding Reed–
Solomon codes [Gao03]. Its complexity is fully determined by the operations division, finding
minimal subspace polynomials, and interpolation over the skew polynomial ring Fqm [x;σ].
The fastest known algorithms for these operations have quadratic complexity in the degrees
of the involved polynomials (cf. Section 5.2).
In Section 5.1 of this chapter, we first recall and slightly generalize the key-equation-based

decoding algorithm by Wachter-Zeh et al. and outline which skew-polynomial operations
it uses. We then show in Section 5.2 that all of these operations can be implemented in
O∼(nmax{log2(3),min{ω+1

2 ,1.635}}) operations over Fqm . In this way, we obtain the first sub-
quadratic-time decoding algorithm for Gabidulin codes.
The results of this chapter were partly published in [MPMB16], [PW16], and [PW18].

5.1 Decoding Gabidulin Codes up to Half the Minimum Distance
In this section, we recall the decoding algorithm by Wachter-Zeh, Afanassiev, and Sidorenko
[WAS13] (see also [Wac13, Section 3.2.2]) and phrase it in skew polynomial language. This
slight reformulation not only fits the notation of this dissertation, but also admits a direct

93

5 Fast Decoding of Gabidulin Codes

generalization of the algorithm to Gabidulin codes over fields of characteristic zero (cf. Sec-
tion 5.3). Let the received word be of the form

r = c+ e ∈ Fnqm ,

where c = [f(α1), . . . , f(αn)] ∈ CG[n, k] and e is an error word of rank weight wtR(e). The
goal of the algorithm is to recover the message polynomial f from the received word r.

It is obtained by solving a key equation (see Lemma 5.1 below), which also includes the
unknown error span polynomial

Λ =M〈e1,...,en〉 ∈ Fqm [x;σ].

By definition, the error span polynomial satisfies Λ(u) = 0 for all u ∈ 〈e1, . . . , en〉 and its
degree equals the rank weight of the error deg Λ = wtR(e). The key equation consists of
two further polynomials R and G that can be directly obtained from the received word and
evaluation points. The polynomial R is the interpolation polynomial

R = I{(αi,ri)}ni=1
∈ Fqm [x;σ].

Recall that R has degree degR < n and satisfies R(αi) = ri for all i = 1, . . . , n. Also, we can
compute the minimal subspace polynomial

G =M〈α1,...,αn〉 ∈ Fqm [x;σ],

which satisfies G(u) = 0 for all u ∈ 〈α1, . . . , αn〉 and has degree degG = n. Using these
polynomials, we can prove the following key equation.1

Lemma 5.1 (Fqm [x;σ]-analog of the key equation in [WAS13, Wac13]). The polynomials Λ,
R, f , and G, defined as above, fulfill

ΛR ≡ Λf modrG.

Proof. Due to the properties of the evaluation map and the involved polynomials, we have[
Λ · (R− f)

]
(αi) = Λ(R(αi)− f(αi)) = Λ(ri − fi) = Λ(ei) = 0.

Hence, G must right-divide Λ(R − f) since otherwise the remainder of the right division of
Λ(R − f) by G would be a polynomial with n-dimensional root space 〈α1, . . . , αn〉 of degree
smaller than n, contradicting the properties of skew polynomials.

As most key equations, Lemma 5.1 provides a non-linear relation in the indeterminates
Λ and f . Hence, we solve the following linearized problem, whose solution equals the one
of the key equation if the rank weight of the error is less than half the minimum distance
(cf. Lemma 5.3 below). In Section 6.1.1, we will study a generalization of Problem 5.2.

Problem 5.2. Let k, R and G be given as above. Find [λ, ω] ∈ (Fqm [x;σ]∗)2 such that

λR ≡ ω modrG, (5.1)
deg λ > degω + k, (5.2)
deg λ minimal. (5.3)

1It can be seen as the rank-metric analog of Theorem 3.6 on page 29 in the special case h = ` = s = 1.

94

5.1 Decoding Gabidulin Codes up to Half the Minimum Distance

Lemma 5.3. If wtR(e) < d
2 , then Problem 5.2 has a solution. Furthermore, any solution

[λ, ω] of the problem satisfies
[Λ,Λf] = α[λ, ω],

where α ∈ F∗qm, and f and Λ are defined as above.

Proof. Problem 5.2 has a solution since [Λ,Λf] satisfies (5.1) by Lemma 5.1, and (5.2) by
deg Λf < deg Λ + k. Due to (5.3), any solution [λ, f] must fulfill deg λ ≤ deg Λ =: τ . By the
properties of the MSP Λ, we know that dim〈e1, . . . , en〉 = τ and therefore

degM〈λ(e1),...,λ(en)〉 = dim〈λ(e1), . . . , λ(en)〉 ≤ τ.

Similar to [Loi06], we show that M〈λ(e1),...,λ(en)〉(ω − λf) is the all-zero polynomial. The
degree bounds above imply that the polynomial has degree < k + 2τ , which is at most n for
τ = wtR(e) ≤ d−1

2 = n−k
2 . Due to (5.1), we obtain[

M〈λ(e1),...,λ(en)〉(ω − λf)
]
(αi) =M〈λ(e1),...,λ(en)〉

(
λ(R(αi))− λ(f(αi))

)
=M〈λ(e1),...,λ(en)〉

(
λ(ei)

)
= 0.

Hence, the polynomial evaluates to zero at n linearly independent points, but has degree less
than n, and therefore is the all-zero polynomial. Since Fqm [x;σ] is an integral domain, we
obtain ω = λf . Together with (5.1), we get λ(ei) = 0 for all i = 1, . . . , n. Since deg λ ≤ deg Λ,
the polynomial λ must be a scalar multiple of the MSP Λ, which proves the claim.

If [Λ,Λf] = α[λ, ω], we obtain the message polynomial by right-dividing ω by λ. Thus,
Lemma 5.3 implies a half-the-minimum distance decoder for Gabidulin codes, which is out-
lined in Algorithm 4. The algorithm’s complexity depends on the cost of several skew poly-
nomial operations. In the next section, we will provide new cost bounds on these operations,
proving that Algorithm 4 can be implemented in sub-quadratic time. This result is formally
stated in the following theorem.

Theorem 5.4. Let r = c+ e be the received word and c = [f(α1), . . . , f(αn)] for deg f < k.
If wtR(e) < d

2 , then Algorithm 4 finds the correct message polynomial f ∈ Fqm [x;σ] in

O
(
nmax{log2(3),min{ω+1

2 ,1.635}} log(n)
)

operations over Fqm using the algorithms for fast skew polynomial arithmetic in Section 5.2
and Algorithm 13 in Section 6.1.1 for solving Problem 5.2.2

Proof. Correctness directly follows from Lemma 5.3. The core step of the algorithm is to solve
Problem 5.2. We will thoroughly study a generalization of this problem in Chapter 6. There,
we show that Problem 5.2 can be solved by Algorithm 13 on page 114 in O(Mqm(n) log(n))
operations over Fqm , whereMqm(n) ∈ O(nmin{ω+1

2 ,1.635}) is the cost of multiplying two skew
polynomials of degree at most n (cf. Algorithm 5 in Section 5.2.1).

2Alternatively, Problem 5.2 can be solved in O(nmin{ω+1
2 ,1.635} log2(n)) by a skew-variant of the linearized

extended Euclidean algorithm in [WSB10] (see also [Wac13, Section 3.1.4]) using the division algorithm in
Section 5.2.2.

95

5 Fast Decoding of Gabidulin Codes

Algorithm 4: Half-the-Minimum-Distance Decoder for Gabidulin Codes (Fqm [x;σ]-
analog of [WAS13, Algorithm 4], see also [Wac13, Algorithm 3.6])
Input: Received word r ∈ Fnqm
Output: f ∈ Fqm [x;σ]<k such that c = [f(g1), . . . , f(gn)] with wtR(r − c) < d

2 or
“decoding failure”.

1 R← I{[αi,ri]}ni=1
// O(nmax{log2(3),min{ω+1

2 ,1.635}} log(n))
2 G←M〈α1,...,αn〉 // O(nmax{log2(3),min{ω+1

2 ,1.635}} log(n))
3 [λ, ω]← Solve Problem 5.2 with input R, G by Algorithm 13

// O(nmin{ω+1
2 ,1.635} log(n))

4 [χ, %]← Right-divide ω by λ // O(nmin{ω+1
2 ,1.635} log(n))

5 if % = 0 then
6 return χ

7 else
8 return “decoding failure”

The other steps of Algorithm 4 consist of the following skew polynomial operations. The
complexity statements are derived in Section 5.2.
• The interpolation at n point tuples [α1, r1], . . . , [αn, rn] in Line 1 can be implemented
in O(nmax{log2(3),min{ω+1

2 ,1.635}} log(n)) operations over Fqm using Algorithm 10 in Sec-
tion 5.2.4.
• The minimal subspace polynomial of the n-dimensional subspace 〈α1, . . . , αn〉 in Line 2
can be computed in O(nmax{log2(3),min{ω+1

2 ,1.635}} log(n)) operations over Fqm using Al-
gorithm 8 in Section 5.2.1.
• In Line 4, the algorithm divides ω by λ. If t := wtR(e) < d/2, we have deg λ = t ≤ n

and degω < t+ k ≤ n, so the division can be implemented in O(nmin{ω+1
2 ,1.635} log(n))

operations over Fqm using Algorithm 6 in Section 5.2.3.
Summarized, we obtain the claimed complexity.

Remark 5.5. 4We can achieve the same asymptotic complexity as in Theorem 5.4 for the
error-erasure decoders in [SKK08] and [Wac13], which compute two MSPs, an interpolation, a
few multiplications and divisions, and once solve a variant of Algorithm 13, all on polynomials
of degree in the order of n.

5.2 Fast Operations on Skew Polynomials
We have seen in the previous section that the complexity of decoding of Gabidulin codes di-
rectly depends on the cost of multiplication, division, interpolation, and computing minimal
subspace polynomials in Fqm [x;σ]. In addition, encoding of Gabidulin codes can be accom-
plished by a multi-point evaluation (MPE). If the evaluation points of a Gabidulin code form
a normal basis of Fqm over Fq (w.r.t. σ), then MPE and interpolation can be replaced by a
σ-transform and its inverse, respectively. In this section, we therefore prove new cost bounds
on the following operations.

96

5.2 Fast Operations on Skew Polynomials

Definition 5.6. Let s ∈ N. We define the following formal complexity measures in operations
over Fqm , i.e., the infimum of the worst-case complexities of algorithms that solve the given
operation.

Measure Operation

Mqm(s) Multiplication of two polynomials a, b ∈ Fqm [x;σ]≤s

Dqm(s) Left or right division of a ∈ Fqm [x;σ]≤s by b ∈ Fqm [x;σ]≤s

MSPqm(s) Computation of the MSPM〈U〉 for a generating set U = {u1, . . . , us} of a
subspace of Fqm

MPEqm(s) Multi-point evaluation of a ∈ Fqm [x;σ]≤s at s points α1, . . . , αs ∈ Fqm

Iqm(s) Finding the interpolation polynomial of s point tuples.

ST qm(s) Computing the σ-transform or its inverse of a polynomial a ∈ Fqm [x;σ]<s,
with respect to a normal basis BN = {σ0(β), . . . , σs−1(β)} of Fqs ⊆ Fqm .

We briefly summarize previous best known cost bounds on these operations and outline
our contribution in the following. Table 5.1 provides an overview of all bounds.

Previous Work
Silva et al. [SK09] and Wachter-Zeh et al. [WAS13] proposed fast algorithms of several oper-
ations in the case σ = ·q, s ≤ m, and given the existence of a low-complexity normal basis of
Fqm over Fq. This includes algorithms for the σ-transform w.r.t. a basis of Fqs ⊆ Fqm (O(ms2)
over Fq), multi-point evaluation (O(m2s) over Fq), and multiplication of skew polynomials
modulo xm − 1 (O(m2s) over Fq). The runtime of the latter two methods is determined by
a σ-transform w.r.t. a basis of Fqm with complexity O(m2s).

For σ = ·q and arbitrary s > 0, [Wac13, Section 3.1.2] showed that Mqm(s) ∈ O(s
ω+1

2).
It is also known that MSPqm(s) [LSS14], MPEqm(s) [Wac13], and ST qm(s) [SK09] are in
O(s2). Interpolation can be implemented in Iqm(s) ∈ O(s3), cf. [SK07]

In the general case, [CL17a] proposed fast algorithms for multiplication in O(ms) and
division in O(ms log(s)) operations over Fqm . If m ∈ o(s), then these algorithms are sub-
quadratic in s. For the case m ∈ Ω(s), which is relevant for decoding Gabidulin codes, it has
been an open problem whether division algorithms of sub-quadratic complexity exist.
Operations over Fqm cost O∼(m) operations over Fq using the bases in [CL09]. A quadratic

complexity O(s2) over Fqm therefore costs O∼(ms2) over Fq, and the algorithms for fast
operations that directly operate on Fq in [SK09, WAS13] are—asymptotically—not faster
than the known ones over Fqm . Thus, we compare our results to the cost bounds over Fqm .

Our Contribution
In Section 5.2.1, we generalize the multiplication algorithm in [Wac13] from linearized to skew
polynomials and slightly improve its complexity using fast rectangular matrix multiplication
algorithms, resulting inMqm(s) ∈ O(smin{ω+1

2 ,1.635}). The generalization enables us to apply
the reduction of division in Fqm [x;σ] to multiplication in both Fqm [x;σ] and Fqm [x;σ−1], which
was presented in [CL17a], in order to prove Dqm(s) ∈ O∼(smin{ω+1

2 ,1.635}), cf. Section 5.2.2.

97

5 Fast Decoding of Gabidulin Codes

Our fast methods for MPE and computing MSPs in Section 5.2.3 use ideas of well-known
divide-&-conquer algorithms for MPE and so-called sub-product-tree computation over Fqm [x],
where, compared to the latter case, the algorithms need to call each other recursively. The
divide-&-conquer interpolation algorithm in Section 5.2.4 is based on the new MPE and MSP
algorithms. All three algorithms cost O∼(smax{log2(3),min{ω+1

2 ,1.635}}) operations over Fqm .
In Section 5.2.5, we speed up the σ-transform and its inverse using fast algorithms for

Toeplitz-matrix-vector multiplication and solving a system of equations given by a Toeplitz
matrix, respectively. The resulting cost bound is quasi-linear in s, i.e., ST qm(s) ∈ O∼(s).

Table 5.1: Previous and new cost bounds in operations over Fqm for the complexity measures
of Definition 5.6. The new cost bounds are proved in Sections 5.2.1-5.2.5.

Operation Previous cost bound (ref.: see text) New cost bound

Mqm(s)

O
(
min

{
ms, s

ω+1
2
})

, if σ = ·q,
O(ms) , else.

O
(
min

{
ms, smin{ω+1

2 ,1.635}
})

Dqm(s) O(ms log(s)) O
(
min

{
ms, smin{ω+1

2 ,1.635}
}

log(s)
)

MSPqm(s) O
(
s2) O

(
smax{log2(3),min{ω+1

2 ,1.635}} log(s)
)

MPEqm(s) O
(
s2) O

(
smax{log2(3),min{ω+1

2 ,1.635}} log(s)
)

Iqm(s) O
(
s3) O

(
smax{log2(3),min{ω+1

2 ,1.635}} log(s)
)

ST qm(s) O
(
s2) O(s log(s) log(log(s)))

5.2.1 Multiplication
In this section, we provide a sub-quadratic cost bound on Mqm(s) by generalizing the fast
multiplication algorithm for linearized polynomials from [Wac13, Theorem 3.1] to skew poly-
nomial rings. The generalization follows without complications by reformulating the state-
ments in skew polynomial language. However, it is necessary to obtain other fast algorithms
for skew or even linearized polynomials.3 In addition, we achieve a speed-up compared to
[Wac13] for the best-known ω using specialized rectangular matrix multiplication algorithms.
The idea of the algorithm is to multiply small fragments of the involved polynomials and

then put together the constituent results to a whole. This approach was first presented for
calculating compositions of power series in [BK78, PS73] and is related to the baby-steps
giant-steps method.
We say that polynomials a, b ∈ Fqm [x;σ] overlap at k positions if their supports, i.e.,

supp(a) := {i : ai 6= 0} and supp(b) := {i : bi 6= 0}, intersect in at most k elements:

|supp(a) ∩ supp(b)| ≤ k.

If k = 0, we say that a and b are non-overlapping. If the overlapping positions are known, the
sum of two polynomials overlapping at k positions can be calculated with k additions in Fqm .
We use this notation to prove the following result.

3For instance, the fast division algorithm in [CL17a] does not yield a fast linearized polynomial (σ = ·q)
division algorithm since it reduces division in Fqm [x; ·q] to multiplication in both Fqm [x; ·q] and Fqm [x; ·1/q].

98

5.2 Fast Operations on Skew Polynomials

Theorem 5.7 (Fqm [x;σ]-analog of [Wac13, Lemma 3.1/Theorem 3.1]). Let a, b ∈ Fqm [x;σ]≤s
and s∗ := d

√
s+ 1e. Then, Algorithm 5 computes the multiplication c = a · b in O(s3/2) field

operations, plus the cost of multiplying an s∗ × s∗ with an s∗ × (s+ s∗) matrix over Fqm.

Algorithm 5: Multiplication (Fqm [x;σ]-analog of [Wac13, Algorithm 3.1])
Input: a, b ∈ Fqm [x;σ]≤s
Output: c = a · b

1 Set up matrices A and B as in (5.4) // s3/2 ·O(1)
2 C ← A ·B // s∗ ·O((s∗)ω) or (s∗)3.2699

3 Extract the c(i)’s from C as in (5.4) // s3/2 ·O(1)
4 return c←

∑s∗−1
i=0 c(i) // O

(
s3/2
)

Proof. The idea of Algorithm 5 is to fragment a into s∗ non-overlapping polynomials a(i) by

a =
s∗−1∑
i=0

a(i) =
s∗−1∑
i=0

s∗−1∑
j=0

ais∗+jx
is∗+j

 .
Similarly, the result c of the multiplication c = a · b can be written as

c = a · b =
(
s∗−1∑
i=0

a(i)
)
· b =

s∗−1∑
i=0

(a(i) · b)︸ ︷︷ ︸
=: c(i)

.

Similar to [Wac13, Lemma 3.1], we can rewrite the polynomials c(i) as follows.

c(i) =

s∗−1∑
j=0

ais∗+jx
is∗+j

 · (s∑
k=0

bkx
k

)
=

s∗−1∑
j=0

s∑
k=0

(
ais∗+jx

is∗+j · bkxk
)

=
s∗−1∑
j=0

s∑
k=0

(
ais∗+jσ

is∗+j(bk)xis
∗+j+k

)
=

s+s∗−1∑
h=0

 h∑
j=0

ais∗+jσ
is∗+j(bh−j)


︸ ︷︷ ︸

=: c(i)
h

xis
∗+h

Thus, the c(i)’s pairwise overlap at not more than s positions, which we know. Since σ−is∗ is
an automorphism, we obtain the coefficients of the polynomials c(i) by a vector multiplication

σ−is
∗(c(i)

h) =
h∑
j=0

σ−is
∗(ais∗+j)σ−is

∗+is∗+j(bh−j) =
h∑
j=0

σ−is
∗(ais∗+j)σj(bh−j)

=
[
σ−is

∗(ais∗), . . . , σ−is
∗(ais∗+s∗−1)

]
·
[
σ0(bh), σ1(bh−1), . . . , σh(b0), 0, . . . , 0

]>
.

Since the left and right vector are independent of h and i, respectively, we can express the

99

5 Fast Decoding of Gabidulin Codes

coefficients σ−is∗(c(i)
h) by a matrix multiplication C = A ·B with

C =
[
Cij
]j=0,...,s+s∗−1

i=0,...,s∗−1
, Cij = σ−is

∗(c(i)
j),

A =
[
Aij
]j=0,...,s∗−1

i=0,...,s∗−1
, Aij = σ−is

∗(ais∗+j), (5.4)

B =
[
Bij
]j=0,...,s+s∗−1

i=0,...,s∗−1
, Bij =

{
σj(bi−j), 0 ≤ i− j ≤ s,
0, else.

We analyze the complexity. The matrices A and B can be set up using s∗ · s+ s∗ · s∗ ≈ s3/2

many computations of automorphisms to Fqm elements. We can compute the matrix C by a
multiplying an s∗ × s∗ with an s∗ × (s+ s∗) matrix. The coefficients of the polynomials c(i)

are obtained from C in ≈ s3/2 automorphism computations. Finally, c is computed by adding
the polynomials c(i). For any k < s∗, the polynomials

∑k−1
i=0 c

(i) and c(k) overlap at s known
positions, so the sum of all c(i)’s can be computed in O(s∗ · s) = O(s3/2) time. Since any
Fqm-automorphism can be computed in O(1), the lines of Algorithm 5 except for the matrix
multiplication have overall complexity O(s3/2).

Corollary 5.8. The multiplication of the s∗×s∗ with the s∗×(s+s∗) matrix in Algorithm 5 can
be implemented in different ways, resulting in the following cost bounds on skew polynomial
multiplication.

i) As described in [Wac13], the multiplication can be carried out by s∗ + 1 many multipli-
cations of square s∗ × s∗ matrices, resulting in

Mqm(s) ∈ O(s∗ · (s∗)ω) ⊆ O
(
s
ω+1

2
)
.

By plugging in different values of the matrix multiplication exponent ω, we obtain

Mqm(s) ∈
{
O
(
s1.91) , ω ≈ 2.8074 [Str69],

O
(
s1.69) , ω ≈ 2.376 [CW90].

ii) Alternatively, we can use tailored multiplication algorithms for rectangular matrices,
such as the ones in [HP98] and [KZHP08], resulting in

Mqm(s) ∈ O
(
(s∗)3.2699

)
⊆ O

(
s1.635

)
,

where 3.2699 [KZHP08, Example 1] is the exponent of multiplying a square matrix with
a matrix whose number of columns is approximately the square of its row count.

Corollary 5.8 provides an asymptotic statement. The following remark assesses the practi-
cality of Algorithm 5 for finite input size s.

Remark 5.9. Using its defining formula, i.e., (2.3), skew polynomial multiplication can be
performed in approximately 2s2 many field operations. If we instead consider case (i) of
Corollary 5.8 with naive matrix multiplication (each costing approximately 2(s∗)3 operations),
skew polynomial multiplication takes ≈ s∗ · (2(s∗)3) = 2(s∗)4 = 2s2 operations in total. Algo-
rithm 5 with case (i) of Corollary 5.8 is therefore faster than a naive implementation if and

100

5.2 Fast Operations on Skew Polynomials

only if the algorithm for multiplying two matrices of dimension s∗ × s∗ is faster than 2(s∗)3.
Strassen’s algorithm [Str69] costs ≈ 4.7(s∗)log2(7) field operations, which is smaller than 2(s∗)3

for s∗ ≥ 85. Hence, the resulting algorithm is only faster than the naive implementation for
an input size of s ≥ 7225. The Coppersmith–Winograd algorithm [CW90] has a much larger
“hidden constant” and improves upon the naive case only for much larger values of s.
The rectangular matrix multiplication algorithms in [HP98] and [KZHP08] considered in

case (ii) of Corollary 5.8 might improve upon the naive implementation for smaller values
of s than case (i) with Strassen’s algorithm. However, this must be analyzed thoroughly since
[HP98] and [KZHP08] only provide an asymptotic analysis.
On the other hand, there are efficiently implemented linear algebra libraries that provide fast

matrix multiplication algorithms for small input sizes, optimized for the used programming
language or hardware. With the help of these libraries, Algorithm 5 can be faster than a naive
implementation for smaller values of s than given above.

5.2.2 Division
In this section, we show that division of skew polynomials of degree at most s can be imple-
mented in sub-quadratic time for arbitrary s. So far, the best-known cost bound on division
is O∼(sm) [CL17a], which is quasi-linear for s � m, but quadratic if s is in the order of
m—the case relevant for decoding Gabidulin codes. Our result improves upon this bound in
the latter case.
We obtain the new cost bound by relying on a reduction of division in Fqm [x;σ] to multi-

plication in another skew polynomial ring Fqm [x;σ−1], which was presented Caruso and Le
Borgne in [CL17a]. Together with the fast multiplication algorithm in the previous subsec-
tion, the cost bound immediately follows. For the sake of completeness, we briefly recall
Caruso and Le Borgne’s reduction. As in [CL17a], we only consider right division since the
other case follows analogously.

Lemma 5.10 ([CL17a]). Right division of two polynomials in Fqm [x;σ]≤s can be implemented
in O(log(s)) multiplications in Fqm [x;σ−1]≤s and two multiplications in Fqm [x;σ]≤s using
Algorithm 6.

Proof idea. The idea of Algorithm 6 is that the quotient χ ∈ Fqm [x;σ] of the right division
of a skew polynomial a ∈ Fqm [x;σ] by b ∈ Fqm [x;σ] satisfies

τs(a) ≡ τs−`(χ) · τ`(b(s−`)) modr x
s−`+1,

where s = deg a ≥ deg b = ` and

τs : Fqm [x;σ]≤s → Fqm [x;σ−1]≤s,
∑s
i=0aix

i 7→
∑s
i=0as−ix

i (5.5)

maps a polynomial to Fqm [x;σ−1] and reverts its coefficients. Hence, the polynomial τs−`(χ)
can be computed using the right inverse of τ`(b(s−`)) modulo xs−`+1, which is obtained in
O(log(s)) multiplications in Fqm [x;σ−1] using a Hensel-like lifting in Algorithm 7. Afterwards,
the remainder % is computed from the quotient.

It is clear from Lemma 5.10 that we require an efficient skew polynomial multiplication
method that works for any automorphism σ in order to obtain a fast division algorithm.

101

5 Fast Decoding of Gabidulin Codes

Our generalization of Wachter-Zeh’s algorithm to arbitrary skew polynomials in Section 5.2.1
therefore provides the following new cost bound.

Algorithm 6: RightDiv(a, b) [CL17a, Algorithm 5]
Input: a, b ∈ Fqm [x;σ], s = deg a ≥ deg b = `
Output: χ, % ∈ Fqm [x;σ] s.t. a = χ · b+ % and deg % < `.

1 c← τ`(b(s−`)); ã← τs(a), where τ` and τs are as in (5.5) // O(s)
2 c−1 ← RightInv(c, s− `+ 1) //O(Mqm(s) log s)
3 χ← τ−1

s−`
(
ã · c−1 modr x

`−1) // Mqm(s)
4 %← a− χ · b // Mqm(s)
5 return [χ, %]

Algorithm 7: RightInv(c, η) [CL17a, Algorithm 5]
Input: c ∈ Fqm [x;σ−1] with c0 6= 0, η ∈ N.
Output: d ∈ Fqm [x;σ−1] s.t. c · d ≡ 1 modr x

η

1 h0 ← 1/c0 // O(1)
2 for i = 1, . . . , dlog2(η)e do
3 hi ← 2hi−1 − hi−1 · c · hi−1 modr x

2i // 2 · Mqm
(
2i
)

4 return hdlog2(η)e

Theorem 5.11. Right and left division of two skew polynomials in Fqm [x;σ]≤s costs

Dqm(s) ∈ O
(
smin{ω+1

2 ,1.635} log s
)

operations over Fqm using Algorithm 6 and the multiplication algorithm in Section 5.2.1.

5.2.3 Minimal Subspace Polynomials and Multi-Point Evaluation

In this section, we present an efficient algorithm for multi-point evaluation and computing
minimal subspace polynomials in skew polynomial rings.
In the polynomial ring Fqm [x], fast multi-point evaluation at a set S ⊆ Fqm typically uses a

pre-computed sub-product tree in combination a divide-&-conquer trick [GG99, Section 10.1].
Such a sub-product tree consists of polynomials MU =

∏
u∈U (x − u), where U is a subset

U ⊆ S. The MU can be efficiently computed since for any partition U = A ∪ B, A ∩ B = ∅,
the polynomial MU can be written as the product of the polynomials MA and MB

MU = MA ·MB. (5.6)

Over skew polynomials, we can apply a similar trick, where the analog of the sub-product
tree consists of minimal subspace polynomialsM〈U〉 spanned by a subset U of the evaluation
set S. The analog statement of (5.6) in the skew polynomial case is given in Lemma 5.12 (see
below). In contrast to the Fqm [x] case, the left factor depends on a multi-point evaluation of
the right factor. Hence, the sub-product tree cannot be efficiently pre-computed without a
fast multi-point evaluation and vice versa using this method.

102

5.2 Fast Operations on Skew Polynomials

We therefore treat the two problems and their cost bounds jointly. The following two
lemmata lay the foundation to algorithms that compute MSPs and MPEs by convoluted
recursive calls of each other.

Lemma 5.12 (Fqm [x;σ]-analog of [LSS14, Lemma 1]). Let U = {u1, . . . , us} be a generating
set of a subspace U ⊆ Fqm, A,B ⊆ Fqm such that U = A ∪B. Then,

MU =M〈U〉 =M〈M〈A〉(B)〉 · M〈A〉.

If s = 1, then

MU =
{

1, if u1 = 0,
x− σ(u1)

u1
, else.

(5.7)

Proof. The proof works as in [LSS14], using properties of Fqm [x;σ]. Let u ∈ U . Since the
union of A and B spans U , there are a ∈ 〈A〉 and b ∈ 〈B〉 such that u = a+ b. We have(
M〈M〈A〉(B)〉 · M〈A〉

)
(u) =M〈M〈A〉(B)〉

(
M〈A〉(u)

)
=M〈M〈A〉(B)〉

(
M〈A〉(a+ b)

)
=M〈M〈A〉(B)〉

(
M〈A〉(a) +M〈A〉(b)

)
=M〈M〈A〉(B)〉

(
M〈A〉(b)

)
= 0

Hence, the polynomialM〈M〈A〉(B)〉 ·M〈A〉 vanishes on U . Furthermore, it is monic and, since
dim〈M〈A〉(B)〉 = dim〈B〉 − dim(〈A〉 ∩ 〈B〉), has degree

deg
(
M〈M〈A〉(B)〉 · M〈A〉

)
= dim〈M〈A〉(B)〉+ dim〈A〉 = dim〈A ∪B〉 = dim〈U〉

Due to the minimality of its degree, M〈M〈A〉(B)〉 · M〈A〉 must be the MSP of U . The base
case M〈ui〉 follows by the same argument.

Lemma 5.13. Let a ∈ Fqm [x;σ] and U ⊆ Fqm. Furthermore, let A,B ⊆ Fqm be a partition
of U , i.e., U = A ∪ B and A ∩ B = ∅. Let %A, %B be the respective remainders of the right
divisions of the polynomial a by M〈A〉 and M〈B〉. Then, the multi-point evaluation of a at
the set U is given by the recursive formula

a(U) = %A(A) ∪ %B(B). (5.8)

If U = {u} and deg a ≤ 1, say a = a1x+ a0 for a1, a0 ∈ Fqm, then

a(U) = {a1σ(u) + a0u}. (5.9)

Proof. Let u ∈ U . If u ∈ A, we have

a(u) = (χA · M〈A〉 + %A)(u) = χA(
=0︷ ︸︸ ︷

M〈A〉(u)) + %A(u) =
=0︷ ︸︸ ︷

χA(0) + %A(u) = %A(u).

Likewise, we can prove that a(u) = %B(u) if u ∈ B. Since A ∪ B is a partition of U , we
obtain (5.8). Equation (5.9) follows directly from the definition of the evaluation map.

By combining the ideas of the preceding lemmata, we obtain Algorithm 8 and Algorithm 9,
which provide the following cost bounds on MSP computation and MPE.

103

5 Fast Decoding of Gabidulin Codes

Theorem 5.14. Finding the MSP of an Fq-subspace spanned by s elements of Fqm and an
MPE of a polynomial of degree at most s at s many points can be implemented in

MSPqm(s) ,MPEqm(s) ∈ O
(
max

{
slog2(3) log(s),Mqm(s) ,Dqm(s)

})
⊆ O

(
smax{log2(3),min{ω+1

2 ,1.635}} log(s)
)
.

operations over Fqm using Algorithms 8 and 9, respectively.

Algorithm 8: MSP(U)
Input: Generating set U = {u1, . . . , us} of a subspace U ⊆ Fqm .
Output: MSPM〈U〉.

1 if s = 1 then
2 returnM〈u1〉(x) according to (5.7) // O(1)
3 else
4 A← {u1, . . . , ubs/2c}, B ← {ubs/2c+1, . . . , us} // O(1)
5 M〈A〉 ← MSP(A) // MSPqm(s/2)
6 M〈A〉(B)← MPE

(
M〈A〉, B

)
// MPEqm(s/2)

7 M〈M〈A〉(B)〉 ← MSP
(
M〈A〉(B)

)
// MSPqm(s/2)

8 returnM〈M〈A〉(B)〉 · M〈A〉 // Mqm(s)

Algorithm 9: MPE(a, {u1, . . . , us})
Input: a ∈ Fqm [x;σ]≤s, {u1, . . . , us} ∈ Fsqm
Output: Evaluation of a at all points ui

1 if s = 1 then
2 return {a1σ(u1) + a0u1} according to (5.9) // O(1)
3 else
4 A←{u1, . . . , ubs/2c}, B←{ubs/2c+1, . . . , us} // O(1)
5 M〈A〉 ← MSP(A) // MSPqm(s/2)
6 M〈B〉 ← MSP(B) // MSPqm(s/2)
7 [χA, %A]← RightDiv

(
a,M〈A〉

)
// Dqm(s)

8 [χB, %B]← RightDiv
(
a,M〈B〉

)
// Dqm(s)

9 return MPE(%A, A) ∪MPE(%B, B) // 2 · MPEqm(s/2)

Proof. We analyze the correctness and complexity of Algorithm 8 and Algorithm 9 jointly
since they call each other recursively on smaller input size respectively. These convoluted
calls are illustrated in Figure 5.1.

First, we show the correctness by induction. In the base case s = 1, both algorithms
return the correct result by Lemma 5.12 and Lemma 5.13. The induction step also follows
by Lemma 5.12 and Lemma 5.13, and due to |A|, |B|, degM〈A〉, deg %A, and deg %B being
smaller than s.

As for the complexity, we analyze the non-negligible lines of both algorithms. Algorithm 8:

104

5.2 Fast Operations on Skew Polynomials

• Lines 5 and 7 both have complexityMSPqm
(
s
2
)
because |A| ≈ |B| ≈ |U |/2 = s

2 .
• Line 6 computes the result inMPEqm

(
s
2
)
time because degM〈A〉 ≤ |B| ≈ |U |/2 = s

2 .
• Line 8 multiplies two polynomials of degree < s and therefore costsMqm(s).

In total, we obtain

MSPqm(s) = 2 · MSPqm
(
s
2
)

+MPEqm
(
s
2
)

+Mqm(s) . (5.10)

The lines of Algorithm 9 have the following complexities:

• Lines 5 and 6 compute MSPs with input size |A| ≈ |B| ≈ s
2 , so they costMSPqm

(
s
2
)
.

• Lines 7 and 8 divide polynomials from Fqm [x;σ]≤s and have complexity Dqm(s) each.
• Line 9 performs two MPEs of polynomials (remainders, cf. Theorem 2.18) with degree
< |B| ≈ s

2 at |A| ≤ |B| ≈ s
2 positions. Thus, the line has complexity 2 · MPEqm

(
s
2
)
.

If both algorithms are called with the same set U , we can save one computation of MSP(A),
which is computed both in Algorithm 8 (Line 5) and Algorithm 9 (Line 5), cf. Figure 5.1.
At further recursion depths, the function is always first called by Algorithm 8. Hence, the
recursive expression of the MPE cost is given by

MPEqm(s) =MSPqm
(
s
2
)

+ 2 · MPEqm
(
s
2
)

+ 2 · Dqm(s) . (5.11)

We define C(s) := max {MPEqm(s) ,MSPqm(s)} and derive an upper bound on C(s). Using
(5.10) and (5.11), we obtain

C(s) ≤ 3 · C
(
s
2
)

+ max {Mqm(s) , 2 · Dqm(s)} .

For f(s) = max {Mqm(s) ,Dqm(s)}, we distinguish three cases and use the master theorem:

• If f(s) ∈ O
(
slog2(3)−ε

)
for some ε > 0, then C(s) ∈ O(slog2(3)).

• If f(s) ∈ Θ
(
slog2(3)

)
, then C(s) ∈ O(slog2(3) log(s)).

• If f(s) ∈ Ω
(
slog2(3)+ε

)
for some ε > 0, then C(s) ∈ O(max {Mqm(s) ,Dqm(s)}).

Using the results of Section 5.2.1 and Section 5.2.2, the claim follows.

MSP(U)

MSP
(
M〈A〉(B)

)
MSP(A) MSP(B)

MPE(a, U)

MPE
(
M〈A〉, B

)
MPE(%A, A) MPE(%B, B)

Figure 5.1: Illustration of the convoluted recursive calls of Algorithm 8 and Algorithm 9. Note
that MSP(A) is called by both MSP(U) and MPE(a, U).

105

5 Fast Decoding of Gabidulin Codes

5.2.4 Interpolation
In the following, we use the fast MSP and MPE algorithms of the preceding section to
obtain a fast divide-&-conquer interpolation algorithm for skew polynomials. Compared to
existing fast interpolation algorithms for Fqm [x] (cf. [GG99, Section 10.2]), we need to consider
the properties of the skew polynomial evaluation map. The new algorithm is based on the
following lemma.

Lemma 5.15. Let [xi, yi] ∈ F2
qm, for i = 1, . . . , s, be such that the xi are linearly independent

over Fq. The corresponding interpolation polynomial fulfills the recursion

I{[xi,yi]}si=1
= I{[x̃i,yi]}bs/2c

i=1
· M〈xbs/2c+1,...,xs〉 + I{[x̃i,yi]}si=bs/2c+1

· M〈x1,...,xbs/2c〉 (5.12)

where we define

x̃i :=

M〈xbs/2c+1,...,xs〉(xi), if i = 1, . . . , bs/2c
M〈x1,...,xbs/2c〉(xi), otherwise.

If s = 1 (base case), we have I{[xi,yi]}1
i=1

= y1
x1
.

Proof. The base case (s = 1) is clear due to y1
x1

(x1) = y1
x1
σ0(x1) = y1. The interpolation

polynomial of the [x̃i, yi] is well-defined since x̃1, . . . , x̃bs/2c are linearly independent. This is
fulfilled because the x1, . . . , xs are linearly independent andM〈xbs/2c+1,...,xs〉(·) is a linear map
whose kernel is the span of xbs/2c+1, . . . , xs and does not include any of the x1, . . . , xbs/2c since
the xi are linearly independent by assumption. Moreover,

I{[xi,yi]}si=1
(xi) = I{[x̃i,yi]}bs/2c

i=1

(
M〈xbs/2c+1,...,xs〉(xi)︸ ︷︷ ︸

=x̃i

)
+ I{[x̃i,yi]}si=bs/2c+1

(
M〈x1,...,xbs/2c〉(xi)︸ ︷︷ ︸

=0

)
= I{[x̃i,yi]}bs/2c

i=1
(x̃i) + I{[x̃i,yi]}si=bs/2c+1

(0) = yi + 0 = yi.

Analogously, also I{[x̃i,yi]}si=bs/2c+1
is well-defined and I{[xi,yi]}si=1

(xi) = yi for i > b s2c. The
degree constraint holds due to

deg I{[xi,yi]}si=1
≤

max
{
deg I{[x̃i,yi]}bs/2c

i=1︸ ︷︷ ︸
< s

2

+ degM〈xbs/2c+1,...,xs〉︸ ︷︷ ︸
≤ s2

,deg I{[x̃i,yi]}si=bs/2c+1︸ ︷︷ ︸
< s

2

+ degM〈x1,...,xbs/2c〉︸ ︷︷ ︸
≤ s2

}
< s,

Hence, the right-hand side of (5.12) is the desired interpolation polynomial (cf. Lemma 2.24).

Lemma 5.15 directly yields a recursive interpolation algorithm (Algorithm 10) that relies
on the fast algorithms for MSP computation and MPE of Section 5.2.3. We can prove the
following cost bound.

Theorem 5.16. The interpolation polynomial of s point tuples can be found in

Iqm(s) ∈ O(max{MSPqm(s) ,MPEqm(s) ,Mqm(s)})

⊆ O(smax{log2(3),min{ω+1
2 ,1.635}} log(s))

operations over Fqm using Algorithm 10.

106

5.2 Fast Operations on Skew Polynomials

Algorithm 10: IP({[xi, yi]}si=1)
Input: [x1, y1], . . . , [xs, ys] ∈ F2

qm , xi linearly independent
Output: Interpolation polynomial I{[xi,yi]}si=1

1 if s = 1 then
2 return y1

x1
// O(1)

3 else
4 A← {x1, . . . , xbs/2c}, B ← {xbs/2c+1, . . . , xs} // O(1)
5 M〈A〉 ← MSP(A) // MSPqm(s/2)
6 M〈B〉 ← MSP(B) // MSPqm(s/2)
7 {x̃1, . . . , x̃bs/2c} ← MPE

(
M〈B〉, A

)
// MPEqm(s/2)

8 {x̃bs/2c+1, . . . , x̃s} ← MPE
(
M〈A〉, B

)
// MPEqm(s/2)

9 I1 ← IP
(
{[x̃i, yi]}b

s/2c
i=1

)
// Iqm(s/2)

10 I2 ← IP
(
{[x̃i, yi]}si=bs/2c+1

)
// Iqm(s/2)

11 return I1 · M〈B〉 + I2 · M〈A〉 // 2 · Mqm(s/2)

Proof. Correctness results from Lemma 5.15. Its non-negligible lines have the following costs:

• The complexities of Lines 5 and 6 areMSPqm
(
s
2
)
.

• Lines 7 and 8 takeMPEqm
(
s
2
)
time each.

• The algorithm calls itself recursively with input size ≈ s
2 in Lines 9 and 10.

• Two multiplications of cost 2 · Mqm
(
s
2
)
are required in Line 11.

This gives the recursive complexity expression

Iqm(s) = 2 · Iqm
(
s
2
)

+ 2 ·
(
MSPqm

(
s
2
)

+MPEqm
(
s
2
)

+Mqm
(
s
2
))
,

which implies the claim by the master theorem.

5.2.5 σ-Transform

The following theorem shows that the σ-transform can be computed by a vector-matrix mul-
tiplication and its inverse by solving a Toeplitz linear system, respectively. This observation
implies that both problems can be solved in quasi-linear time over Fqm .

Theorem 5.17. Let s | m. The σ-transform of a polynomial a ∈ Fqm [x;σ]<s w.r.t a normal
basis B of Fqs can be implemented by multiplying a vector with a Toeplitz matrix (cf. Algo-
rithm 11). Similarly, computing the inverse σ-transform of â ∈ Fqm [x;σ]<s w.r.t B consists
of solving a Toeplitz system (cf. Algorithm 12). Thus, both operations can be implemented in

ST qm(s) ∈ O(s log(s) log(log(s)))

operations over Fqm.

107

5 Fast Decoding of Gabidulin Codes

Algorithm 11: ST(a,B)
Input: a =

∑s−1
i=0 aix

i ∈ Fqm [x;σ]<s and normal basis B = {β, σ(β), . . . , σs−1(β)}
Output: σ-transform â ∈ Fqm [x;σ]<s of a w.r.t. B

1 Set up the Toeplitz matrix B as in (5.13)
2 [â0, . . . , âs−1]← [as−1, . . . , a0] ·B using (ordinary) polynomial multiplication (see

e.g. [BP12, Chapter 2, Problem 5.1]) // O(s log(s) log(log(s)))
3 return â =

∑s−1
i=0 âix

i

Algorithm 12: IST(â,B)
Input: â =

∑s−1
i=0 âix

i ∈ Fqm [x;σ]<s and normal basis B = {β, σ(β), . . . , σs−1(β)}
Output: Inverse σ-transform a ∈ Fqm [x;σ]<s of â w.r.t. B

1 Set up the Toeplitz matrix B as in (5.13)
2 Solve [â0, . . . , âs−1] = [as−1, . . . , a0] ·B for [as−1, . . . , a0] using the algorithm for

solving Toeplitz systems in [BGY80] // O(s log2(s) log(log(s)))
3 return a =

∑s−1
i=0 aix

i

Proof. Correctness of the two algorithms follows by reformulating the definition of the σ-
transform and its inverse as

[â0, . . . , âs−1] = [as−1, . . . , a0] ·


σs−1(β) σs(β) σs+1(β) . . . σ2s−1(β)
σs−2(β) σs−1(β) σs(β) . . . σ2s−2(β)

...
...

...
. . .

...
σ0(β) σ1(β) σ2(β) . . . σs−1(β)

 ,
︸ ︷︷ ︸

=:B

(5.13)

where the matrix B is an s × s Toeplitz matrix over Fqm , which is invertible since it is also
a σ-Vandermonde matrix (cf. [LN97, Lemma 3.5.1]).

The multiplication of [as−1, . . . , a0] with the Toeplitz matrix B equals computing the coef-
ficients s− 1, . . . , 2s− 1 of the ordinary polynomial multiplication of

∑s−1
i=0 as−1−ix

i ∈ Fqm [x]
with

∑2s−1
i=0 σi(β)xi ∈ Fqm [x], see e.g. [BP12, Chapter 2, Problem 5.1]. Thus, it can be im-

plemented in O(s log(s) log(log(s))) operations over Fqm using the Schönhage–Strassen poly-
nomial multiplication algorithm.
It was shown by Brent, Gustavson, and Yun in [BGY80] that solving a linear Toeplitz

system can be reduced to a Padé approximation problem, which again can be solved us-
ing the extended Euclidean algorithm with stopping condition over Fqm [x]. A fast version
of the latter algorithm was introduced by Aho and Hopcroft in [AH74] based on exist-
ing algorithms over Z, and corrected in [BGY80]. Its complexity is O(P(s) log(s)), where
P(s) ∈ O(s log(s) log(log(s))) is the cost of multiplying two ordinary polynomials of degree
at most s. Hence, we obtain the claimed complexity.

Since the input sizes of Algorithm 11 and Algorithm 12 are s, we have ST qm(s) ∈ Ω(s), so
the cost bound in Theorem 5.17 is tight up to log-factors.

108

5.3 Concluding Remarks

Remark 5.18. We can also perform the σ-transform with respect to an incomplete basis
{σi(β), . . . , σi+s′−1(β)} ⊆ B for some i ∈ Z and s′ ≤ s. In this case, the σ-transform and its
inverse correspond to a vector-matrix multiplication and solving a system with an (s′ × s′)-
submatrix of B, indexed by consecutive rows and columns. This costs O∼(s′) over Fqm.

Implication: Optimal Skew Polynomial Multiplication for s = m

It was already mentioned in [Wac13, Section 3.1.3, page 43] that multiplication of skew
polynomials in Fqm [x;σ]<m and (m×m)-matrices over Fq are closely connected through the
σ-transform. However, an efficient reduction of one problem to the other was not yet possible
due to the non-existence of efficient (inverse) σ-transform computation.
Our speed-up of the σ-transform from O(s2) to O∼(s), in operations over Fqm , implies the

following two important observations, which we prove in Appendix A.3:

• For s = m, the cost of skew polynomial multiplication is lower-bounded by

Mqm(m) ∈ Ω(mω−1),

where ω is the matrix multiplication exponent.

• There is a multiplication algorithm for skew polynomials of degree s ∈ Θ(m) that
costs O(mω) operations over Fq (which is—up to log-factors—as fast as a hypothetical
algorithm that costs O(mω−1) over Fqm).

5.3 Concluding Remarks

In this chapter, we have shown how to decode Gabidulin codes in sub-quadratic time in
the code length over Fqm . We have achieved this result by improving the best-known cost
bound of many operations over skew polynomials, such as multiplication, division, multi-point
evaluation, minimal subspace polynomial computation, interpolation, and the σ-transform in
cases relevant for decoding Gabidulin codes. An overview of new and known cost bounds is
given in Table 5.1 on page 98.
After the first publication of the results in this chapter, Caruso and Le Borgne [CL17b]

proposed a fast algorithm for multiplication of skew polynomials of complexity O(sω−2m2)
over Fq, which improves upon the multiplication algorithm in Section 5.2.2 form2/(5−ω) ≤ s ≤
m. As an immediate consequence, also the cost bound for division is improved to O∼(sω−2m2)
over Fq in this range. The result does not influence our cost bounds for the σ-transform, MSP,
MPE, and interpolation since the first is already quasi-linear and the other bounds would be
dominated by the slog2(3) factor.

As open questions, it remains to find asymptotically optimal algorithms for computing the
mentioned operations. We have partly answered this question for skew polynomial multi-
plication in the case when the involved polynomials have degree s ∈ Θ(m) and—up to log-
factors—for the σ-transformation, cf. Section 5.2.5. Faster multiplication algorithms would
directly imply faster division. It is also an interesting question whether one can eliminate the
log2(3) lower bound on the exponent in our MSP, MPE, and interpolation cost bounds.

109

5 Fast Decoding of Gabidulin Codes

Remarks on Generality
This chapter considers skew polynomial rings over a finite field Fqm . However, most results
immediately translate to skew polynomials over an arbitrary Galois extension L/K with cyclic
Galois group, which is generated by the automorphism σ (cf. Section 2.3.1). Table 5.2 outlines
which statements hold in this case and states—if required—which additional conditions must
be satisfied.

Table 5.2: List of statements that hold for skew polynomials over any field extension L/K of
cyclic Galois group with generator σ. Additional requirements: ∗Automorphism
σ(i) can be computed in O(1) for any i = 1, . . . , [L : K]. +Two elements in L[x] of
degree at most s can be multiplied in O(s log(s) log(log(s))) operations over L.

Section Statements
Decoding (Section 5.1) Lemma 5.1, Lemma 5.3, Theorem 5.4∗

Multiplication (Section 5.2.1) Theorem 5.7∗, Corollary 5.8∗, Remark 5.9∗

Division (Section 5.2.2) Lemma 5.10∗, Corollary 5.11∗

MSP & MPE (Section 5.2.3) Lemma 5.12, Lemma 5.13, Theorem 5.14∗

Interpolation (Section 5.2.4) Lemma 5.15, Theorem 5.16∗

σ-Transform (Section 5.2.5) Theorem 5.17∗,+, Remark 5.18∗,+

Note that the complexities are given in operations over the field L. If the field is of char-
acteristic zero, one must be careful about the increasing size of field element representations
of intermediate results (e.g. growing nominator and denominator in extensions of Q). This
effect might yield an increased overall bit complexity compared to a naive implementation.

110

6
Decoding Interleaved Gabidulin Codes Using
Row Reduction

Interleaved Gabidulin codes allow to correct most errors of rank weight beyond half
the minimum distance by assuming a synchronized error model for the constituent parts
of a codeword. This fact can be utilized in network coding [KK08, SKK08, SB10] and
to attack cryptosystems based on rank-metric codes [LO06, GOT17, WPR18].

The first such decoder was presented by Loidreau and Overbeck [LO06], a generalization
of Loidreau’s Welch–Berlekamp-like algorithm [Loi06]. Alternatively, decoding can be for-
mulated as a set of simultaneous key equations by the algorithm of Sidorenko, Jiang, and
Bossert [SB10, SJB11]. Both algorithms are partial unique decoders. Recently, Wachter-Zeh
and Zeh [WZ14] presented an interpolation-based decoding method. The algorithm can be
seen as a list decoder with exponential worst-case, but comparably small average list size, or
as a partial unique decoder with small failure probability.
In Section 6.1, we show that both the main task of the algorithm by Sidorenko, Jiang, and

Bossert and the interpolation step in the algorithm by Wachter-Zeh and Zeh can be solved
by row reduction of a specific skew polynomial module basis. The approach is inspired by
many recent publications that have unified the core of various decoding algorithms, such as
the Guruswami–Sudan list decoder [Ale05, LO08, BB10, CH10, NB15] and power decoding
[Nie13a, Nie14, NB15, Ros18] (see also Chapter 3/Appendix A.1), both for Reed–Solomon and
Hermitian codes, based on Fqm [x]-row reduction. Using well-known row reduction algorithms,
these decoding algorithms have become flexible, easy to prove, and partly faster.
In Section 6.2, we adapt two of these Fqm [x]-row reduction methods, the Mulders–Storjohann

[MS03] and Alekhnovich [Ale05] algorithm, to skew polynomial rings and show that most of
their properties translate to the Fqm [x;σ] case with only a few modifications. The complex-
ity analysis is more involved due to the non-commutativity of the skew polynomial ring.
Compared to previous works on computing matrix normal forms over so-called Ore rings
[AB01, BCL06, Mid11], which are mostly concerned in coefficient growth due to infinite base
fields, our algorithms are faster when considered on skew polynomials over finite fields.
Finally, we present two row reduction algorithms that are specialized for the two decoding

problems in Section 6.3. The first is an Fqm [x;σ]-adaption of Rosenkilde’s Demand–Driven
algorithm [Nie13a] and the other one, weak Popov walk, is a conceptually new row reduction
method inspired by Gröbner walks [CKM97].
The results of this chapter were partly published in [LNPS15], [PRLS17], and [PMM+17].

111

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

6.1 Implementing Known Decoding Algorithms Using Row
Reduction

In this section, we show how to implement both key-equation- and interpolation-based decod-
ing methods for interleaved Gabidulin codes to row reduction of skew polynomial matrices.
For notational convenience, we sometimes start matrix indices at 0 for the decoding problems
and some related row reduction algorithms in the succeeding sections of this chapter.

6.1.1 Key-Equation-Based Decoding
We recall the key-equation-based decoding algorithm for horizontally interleaved Gabidu-
lin codes by Sidorenko, Jiang, and Bossert [SB10, SJB11] and rephrase it slightly using
the notation of Wachter-Zeh et al.’s decoding algorithm for non-interleaved Gabidulin codes
[WAS13, Wac13] (see also Section 5.1).

A System of Key Equations

In the case of interleaved Gabidulin codes, we obtain h recevied words ri = ci + ei ∈ Fnqm for
i = 1, . . . , h, where ci = [fi(α1), . . . , fi(αn)] is a codeword of the ith constituent Gabidulin
code C(i)

G [n, ki] (recall that deg fi < ki).
Similar to the approach in Section 5.1, we can obtain interpolation polynomials Ri ∈

Fqm [x;σ]<n that satisfy R(αi) = ri. Furthermore, let G := M〈α1,...,αn〉 be the minimal
subspace polynomial of the space spanned by the evaluation points.
We consider horizontally interleaved Gabiulin codes, cf. Section 2.3.4, i.e., the spans of

the error word components 〈ei,1, . . . , ei,n〉 ⊆ Fqm are contained in an error space E ⊆ Fqm
of dimension τ . We would like to obtain a joint error locator Λ := ME and the message
polynomials fi from the following system of key equations.
Lemma 6.1 (Key Equations). The polynomials Ri, fi, Λ, and G, defined as above, satisfy

ΛRi ≡ Λfi modrG ∀ i = 1, . . . , h.

Since the polynomials Λfi have small degree τ+ki−1, one can find the unknown polynomial
Λ, which is the same in all h congruences, by solving a large linear system of equations in the
top n − τ − ki coefficients of ΛRi modrG. For random errors of rank weight τ , the system
has a unique monic solution with large probability1 (cf. [SB10, SJB11]) if

τ ≤ h

h+ 1

(
n− 1

h

h∑
i=1

ki

)
many errors occurred. In the following, we show how to solve the problem more efficiently.
Remark 6.2. Sidorenko, Jiang, and Bossert [SB10, SJB11] formulated an equivalent syndrome-
based key equation. In this form, the algorithm can be rephrased to work for the error model
considered for vertically interleaved Gabidulin codes, and is closely connected to Loidreau’s
decoding algorithm [LO06], see [Wac13, Section 4.1]. Furthermore, it can be solved like the
above key equation as shown below.

1This failure behavior is sometimes desirable: It was shown in [WPR18] that the attack of [GOT17] on the
rank-metric-based Faure–Loidreau cryptosystem [FL06] is equivalent to decoding interleaved Gabidulin
codes. Thus, the system can be repaired by choosing the public key such that all known decoders fail.

112

6.1 Implementing Known Decoding Algorithms Using Row Reduction

Solving the System of Key Equations by a Shift Register Synthesis Problem

Lemma 6.1, together with the observation that deg Λ+n > deg(Λfi)− (n−ki), motivates the
following natural generalization of Problem 5.2 in Section 5.1, which we call “Multi-Sequence
generalized Linear Skew-Feedback Shift Register” (MgLSSR) synthesis problem.2

Problem 6.3 (MgLSSR). Let ri ∈ Fqm [x;σ], gi ∈ Fqm [x;σ]\{0}, and γi ∈ N0 for i = 1, . . . , h
be given. Furthermore, let h ∈ O(µ), where µ := mini{γi + deg gi}. Find skew polynomials
λ, ω1, . . . , ωh ∈ Fqm [x;σ], with λ of minimal degree such that the following holds:

λri ≡ ωi modr gi (6.1)
deg λ+ γ0 > degωi + γi (6.2)

The significance of the MgLSSR problem extends beyond the key equation in Lemma 6.1:
It is able to solve a variety of key equations arising from decoding Gabidulin codes (h = 1)
and interleaved Gabidulin codes, both for correcting errors and erasures. An overview of these
key equations can be found in Appendix A.4. In all of these key equations, the parameter µ
is in the order of the code length n and usually h is much smaller than µ. We will measure
the complexity of algorithms solving Problem 6.3 by h and µ.
We show how to solve Problem 6.3 by row reduction of a skew polynomial module basis that

depends on the input of the problem, analogously to the approach for Fqm [x]-shift register
synthesis presented by Rosenkilde in [Nie13a]. Compared to the latter case, we need to take
care of the non-commutativity of Fqm [x;σ].

Finding a Solution of the MgLSSR Problem by Row Reduction

In the following, let h ∈ O(µ), ri ∈ Fqm [x;σ], gi ∈ Fqm [x;σ]\{0}, and γi ∈ N0 for i = 1, . . . , h
be arbitrary but fixed. W.l.o.g., we assume that deg ri ≤ deg gi for all i since replacing ri by
(ri modr gi) would yield the same solution of Problem 6.3. We define the setM(M) of vectors
v ∈ Fqm [x;σ]h+1 satisfying the congruence relations (6.1), i.e.,

M(M) :=
{
[λ, ω1, . . . , ωh] ∈ Fqm [x;σ]h+1 : λri ≡ ωi modr gi ∀i = 1, . . . , h

}
. (6.3)

Lemma 6.4. Consider an instance of Problem 6.3 and M(M) as in (6.3). The set M(M)

with component-wise addition and left multiplication by elements of Fqm [x;σ] forms a free left
module over Fqm [x;σ]. A basis ofM(M) is given by the rows of the matrix

M (M) =


1 r1 r2 . . . rh
0 g1 0 . . . 0
0 0 g2 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . gh

 ∈ Fqm [x;σ](h+1)×(h+1) . (6.4)

Proof. The first part of the claim follows directly sinceM(M) ⊆ Fqm [x;σ]h+1 is closed under
addition and left scalar multiplication. Similar to [Nie13a, Lemma 1], by (6.1), any vector

2Over Fqm [x], this problem is also known as a multi-sequence shift-register synthesis [FT91, SS11], simultane-
ous Padé approximation [BGM96], or vector rational function reconstruction [OS06]. It has further gener-
alizations (e.g., [BL92, BL94]), some with applications in decoding algebraic codes [RR00, ZGA11, NB15].

113

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

v ∈ M(M) satisfies v0ri = vi + pigi for some pi ∈ Fqm [x;σ]. Hence, the rows m0, . . . ,mh of
M (M) are a generator set ofM(M) since we can write v = v0m0 +

∑h
i=1 pimi (note that the

pi are multiplied from the left, which is essential due to the non-commutativty of Fqm [x;σ]).
They are linearly independent since M(M) is a triangular matrix with non-zero diagonal
elements.

Lemma 6.4 provides a convenient description of all vectors satisfying the congruence rela-
tions of Problem 6.3. In order to obtain a solution of the problem, we need to find an element
in the left row space of M (M) that has minimal deg λ and also satisfies the degree inequality
(6.2). The following lemma shows that both properties are fulfilled by a particular row of a
shifted weak Popov form of M (M) (recall the notation from Section 2.3.2).

Lemma 6.5. Consider an instance of Problem 6.3 and the module M(M) as in (6.3). Let
w(M) = [γ0, . . . , γh] ∈ Nh+1

0 and V be a basis of M(M) in w(M)-shifted weak Popov form.
Then, the row v of V with LP(Φw(M)(v)) = 0 is a solution of Problem 6.3.

Proof. Since v ∈M(M), it fulfills the congruences of Problem 6.3. We have LP(Φw(M)(u)) = 0
if and only if deg u0 + γ0 = deg(Φw(M)(u)0) > deg(Φw(M)(u)i) = deg ui + γi for all i > 0., i.e.
u satisfies the degree restriction (6.2). The minimality of u0 is ensured by Lemma 2.29.

Lemma 6.5 implies a solution strategy for Problem 6.3, which is summarized in Algo-
rithm 13. The complexity of the algorithm is determined by a skew polynomial row reduc-
tion. In the following sections, we analyze how and in which complexity we can row-reduce
Fqm [x;σ]-matrices. The results of these sections are summarized in the following theorem.

Theorem 6.6. Algorithm 13 is correct and can be implemented using

i) Algorithm 15 on page 118 in O(h2µ2),

ii) Algorithm 17 on page 125 in O(h3Mqm(µ) log(µ)) ⊆ O(h3µmin{ω+1
2 ,1.635} log(µ)), and

iii) Algorithm 19 on page 129 in O(hµ2), if gi = xti + ci with ti ∈ Θ(µ) and ci ∈ Fqm ∀ i,

operations over Fqm.

Algorithm 13: Solve Problem 6.3 (MgLSSR) by Row Reduction
Input: Instance of Problem 6.3
Output: Solution v = [λ, ω1, . . . , ωh] of Problem 6.3

1 Set up M (M) as in (6.4)
2 Compute V as a w(M)-shifted weak Popov form of M (M), with w(M) as in Lemma 6.5
3 return the row v of V having LP(Φw(M)(v)) = 0

Proof. Correctness is clear by Lemma 6.5. A w(M)-shifted weak Popov form is obtained by
transforming Φw(M)(M (M)) into weak Popov form using the algorithms in Section 6.2 and
6.3, and then applying Φ−1

w(M) it. The complexities follow by Corollary 6.28 in Section 6.2.2,
Corollary 6.41 in Section 6.2.3, and Theorem 6.48 in Section 6.3.1, respectively.

114

6.1 Implementing Known Decoding Algorithms Using Row Reduction

Remark 6.7. Case iii) of Theorem 6.6 applies to many key equations arising from decoding
Gabidulin and interleaved Gabidulin codes, cf. Appendix A.4. For instance, the gi of the key
equation in Lemma 5.1 and its generalized version in Lemma 6.1 can be chosen of the form
xn− 1 if n | m. Also, in syndrome-based key equations, the gi are simply powers of x. Hence,
we achieve the complexity as the Berlekamp–Massey-like algorithm in [SJB11], but for a more
general class of shift register synthesis problems.

6.1.2 Interpolation-Based Decoding

In the following, we recall the interpolation-based decoding algorithm for vertically interleaved
Gabidulin codes by Wachter-Zeh and Zeh [WZ13], and show that its interpolation step can
be solved by row reduction of a specific skew polynomial module basis. The algorithm is
inspired by the Guruswami–Sudan algorithm for Reed–Solomon codes [GS99], and our row
reduction approach similarly resembles the fast module-based algorithms for implementing
the Guruswami–Sudan, see e.g. [LO08, BB10].

Decoding Using Interpolation

Problem 6.8 (Interpolation Step). Let n, k1, . . . , kh, τ ∈ N. Given ri = [ri,1, . . . , ri,n] ∈ Fnqm
for i = 1, . . . , h, and α1, . . . , αn ∈ Fqm that are linearly independent over Fqm. Find a non-zero
skew polynomial vector [Q0, . . . , Qh] ∈ Fqm [x;σ]h+1 such that

Q0(αi) +
h∑
i=1

Qj(ri,j) = 0 ∀ i = 1, . . . , n (6.5)

degQ0 < n− τ (6.6)
degQj < n− τ − ki + 1 ∀ j = 1, . . . , h (6.7)

It was shown in [WZ14] that Problem 6.8 has a solution if

τ <
h

h+ 1

(
n+ 1− 1

h

h∑
i=1

ki

)
, (6.8)

Also, if the number of errors, i.e., the rank of the error matrix Ev (cf. (2.5) in Section 2.3.4),
is at most τ , the message polynomials fi ∈ Fqm [x;σ]<ki satisfy

Q0 +
h∑
i=1

Qifi = 0,

so they are the roots of the formal multi-variate skew polynomial Q = Q0(x) +
∑h
i=0Qi(yi)

in the indeterminates x, y1, . . . , yh. Wachter-Zeh and Zeh [WZ14] presented a root-finding
algorithm that returns a basis of the affine root space of Q in O(h3n2) operations over Fqm .
The number of roots of the multivariate polynomial Q may be exponential in

∑
i ki. However,

[WZ14] showed that the expected dimension of this affine space is close to 0, so with large
probability only the actual message polynomials f1, . . . , fh are contained in the list.

115

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

Solving the Interpolation Problem Using Row Reduction

Consider an instance of Problem 6.8. LetM(I) ⊆ Fqm [x;σ]h+1 be the set of vectors [Q0, . . . , Qh]
satisfying (6.5), i.e.,

M(I) =
{

[Q0, . . . , Qh] ∈ Fqm [x;σ]h+1 : Q0(αi) +
h∑
i=1

Qj(ri,j) = 0 ∀ i = 1, . . . , n
}
. (6.9)

Lemma 6.9. The set M(I) as in (6.9) with component-wise addition and left multiplication
with elements from Fqm [x;σ] is a free left Fqm [x;σ]-module. A basis of M(I) is given by the
rows of the matrix

M (I) =


G 0 0 . . . 0
−R1 1 0 . . . 0
−R2 0 1 . . . 0
...

...
...

. . .
...

−Rh 0 0 . . . 1

 , (6.10)

where G = M〈α1,...,αn〉 is the annihilator polynomial of the αi and for each i = 1, . . . , h,
Ri = I{[αj ,ri,j]}nj=1

is the unique interpolation polynomial of degree < n satisfying Ri(αj) = ri,j
for all j = 1, . . . , n.

Proof. The set M(I) is closed under addition since (a + b)(α) = a(α) + b(α) for all a, b ∈
Fqm [x;σ] and α ∈ Fqm . It is closed under multiplication since for [Q0, . . . , Qh] and f ∈
Fqm [x;σ], we have f · [Q0, . . . , Qh] ∈M(I) due to

(f ·Q0)(αj) +
h∑
i=1

(f ·Qi)(αj) = f ·
(
Q0(αj) +

h∑
i=1

Qi(αj)
)

= f(0) = 0 ∀ j = 1, . . . , n.

The rowsm1, . . . ,mh ofM (I) are linearly independent sinceM (I) is in lower triangular form
and has non-zero diagonal elements. Also, they are inM(I) since

m0 : G(αj) = 0, ∀j = 1, . . . , n,
mi : 1(ri,j)−Ri(αj) = ri,j − ri−j , ∀j = 1, . . . , n.

Let [Q0, . . . , Qh] ∈M(I). We show that it is a linear combination of the mi. We have

[Q0, . . . , Qh]−
h∑
i=1

Qimi = [a, 0, . . . , 0] ∈M(I),

where a ∈ Fqm [x;σ] satisfies a(αj) = 0 for all j = 1, . . . , n. In the division a = χG+%, we must
have % = 0 since otherwise % would be a polynomial of degree < degG vanishing at all αi,
contradicting the minimality of G. Hence, we can write [Q0, . . . , Qh] = χm0+

∑h
i=1Qimi.

Lemma 6.9 provides a description of all vectors satisfying the evaluation condition (6.5) of
Problem 6.8. The following lemma shows how to find a vector in the row space of the matrix
M(I) satisfying also the degree constraints (6.6) and (6.7) using row reduction.

116

6.2 Row Reduction of Skew Polynomial Matrices

Lemma 6.10. Consider an instance of Problem 6.8 satisfying (6.8) (i.e., the problem has
a solution), and M(I) as in (6.9). Let w(I) = [0, k1 − 1, . . . , kh − 1] and V be a basis of
M(I) in w(I)-shifted weak Popov form. Then, a row v of V with minimal w(I)-shifted degree
deg Φw(I)(v) is a solution of Problem 6.8.

Proof. Since (6.8) is fulfilled, the problem has a solution u = [Q0, . . . , Qh] ∈ M(I) satisfying
the degree constraints (6.6) and (6.7), which—by the choice of w(I)—can be re-written as

deg(Φw(I)(u)) = max
i
{deg(ui) + w(I)

i} < n− τ.

Let t := LP(Φw(I)(u)) and v′ be the row of V with leading position t. Any row v in V of
minimal w(I)-shifted degree satisfies the degree constraints

deg(Φw(I)(v)) ≤ deg(Φw(I)(v′)) ≤ deg deg(Φw(I)(u)) < n− τ,

where the second inequality follows by Lemma 2.29.

Theorem 6.11. If Problem 6.8 satisfies (6.6) (i.e., has a solution), Algorithm 14 is correct
and can be implemented using

i) Algorithm 15 on page 118 in O(h3n2),

ii) Alg. 17 (page 125) in O(h3Mqm(hn) log(hn)) ⊆ O(hmin{ω+7
2 ,4.635}nmin{ω+1

2 ,1.635} log(hn)),
iii) and Algorithm 21 on page 132 in O(h2n2)

operations over Fqm.

Algorithm 14: Solve Problem 6.8 (interpolation step) by Row Reduction
Input: Instance of Problem 6.8
Output: Solution v = [Q0, . . . , Qh] of Problem 6.8

1 Set up M (I) as in (6.10)
2 Compute V as a w(I)-shifted weak Popov form of M (I), with w(I) as in Lemma 6.10
3 return a row v of V having minimal w(I)-shifted degree deg(Φw(I)(v)).

Proof. Correctness is clear by Lemma 6.10. Again, aw(I)-shifted weak Popov form is obtained
by transforming Φw(I)(M (I)) into wPf using the algorithms in Section 6.2 and Section 6.3,
and then applying Φ−1

w(I) to it. The complexities follow by Corollary 6.29 in Section 6.2.1,
Corollary 6.44 in Section 6.2.3, and Theorem 6.50 in Section 6.3.2, respectively.

6.2 Row Reduction of Skew Polynomial Matrices
6.2.1 The Mulders–Storjohann Algorithm over Skew Polynomials
In this section, we introduce an algorithm for obtaining a row-reduced basis of a left Fqm [x;σ]-
module V ⊆ Fqm [x;σ]r spanned by the rows of a full-rank square matrix in GLr(Fqm [x;σ]).
The algorithm is an Fqm [x;σ]-variant of the Mulders–Storjohann algorithm [MS03] for row
reduction of Fqm [x]-matrices. By taking care of the non-commutativity, the algorithm and its

117

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

correctness proof translate to the Fqm [x;σ]-case with only a few modifications. The complexity
analysis, however, is significantly more difficult due to the non-existence of a determinant of
Fqm [x;σ]-matrices, cf. Section 6.2.2. The algorithm consists of the elementary operation given
by the following definition.

Definition 6.12. A simple transformation i on j at position h on a matrix V ∈ GLr(Fqm [x;σ])
with deg vi,h ≤ deg vj,h replaces the row vj by vj − αxδvi, where δ = deg vj,h − deg vi,h and
α = LC(vj,h)/σδ(LC(vi,h)). For two rows vi and vj with LP(vi) = LP(vj), a simple LP-
transformation i on j is a simple transformation i on j at position LP(vi).

Remark 6.13. A simple transformation i on j at position h cancels the leading term of the
skew polynomial vj,h. In general, a simple transformation is a sequence of elementary row
operations, so it neither changes the row space nor the rank of a matrix.

The Mulders–Storjohann algorithm, Algorithm 15, applies simple LP-transformations to a
matrix until all leading positions are different. We prove its correctness below.

Algorithm 15: Mulders–Storjohann Algorithm for Fqm [x;σ]-Matrices
Input: A matrix V ∈ GLr(Fqm [x;σ]), whose rows span a module V ⊆ Fqm [x;σ]r.
Output: A basis of V in weak Popov form.

1 while there are two rows vi and vj of V with the same leading position do
2 Apply a simple LP-transformation i on j
3 return V

The following tool enables us to prove that only finitely many simple LP-transformations
are needed to transform a basis into weak Popov form.

Definition 6.14. The value function of a vector in Fqm [x;σ]r is given by

ψ : Fqm [x;σ]r → N0

v 7→
{

0, if v = 0,
r deg v + LP(v) + 1, otherwise.

.

The sum value of a matrix in Fqm [x;σ]r×r is the sum of the rows’ values.

Lemma 6.15. Let V ∈ GLr(Fqm [x;σ]). Consider a simple LP-transformation i on j, where
vj is replaced by v′j. Then, ψ(v′j) < ψ(vj).

Proof. The proof resembles the one of [Nie13a, Lemma 8], but we include it for completeness.
We must have deg v′j ≤ deg vj since deg vj = deg(αxδvi), where α and δ are chosen as in
Definition 6.12. The entries of vj and αxδvi right of the leading position h = LP(vj) have
degree < deg vj and so is their sum. The simple LP-transformation ensures that deg vjh <
deg v′jh, which implies LP(v′j) < LP(vj) or deg v′j < deg vj , proving the claim.

Theorem 6.16. Algorithm 15 is correct.

Proof. The values ψ(vi) of the rows vi of the input matrix V are finite. Since the sum of the
row values decreases with each simple LP-transformation (cf. Lemma 6.15) and cannot become
negative by definition, the algorithm terminates. At termination, all rows have distinct leading
positions, i.e., V is in weak Popov form.

118

6.2 Row Reduction of Skew Polynomial Matrices

Remark 6.17. The proof of Theorem 6.16 implies a rough complexity estimate for Algo-
rithm 15: The sum value of V is in O(r degV) and each simple LP-transformation costs
O(rmaxdegV) operations over Fqm, so the total complexity is at most O(r2 degV maxdegV).
There might be several possibilities for simple LP-transformations during the execution of

Algorithm 15. Theorem 6.16 shows that any choice yields a basis in weak Popov form.

Shifted Weak Popov Form

We can use Algorithm 15 to transform a matrix V ∈ GLr(Fqm [x;σ]) into w-shifted weak
Popov form for some w ∈ Nr0. One simply applies the algorithm to the shifted basis Φw(V)
and then inverts Φw on the result. Since all elements in the ith column of Φw(V) are in the
left module Fqm [x;σ]xwi , simple LP-transformations, which are elementary row operations,
result again in entries in Fqm [x;σ]xwi , so the inversion is possible.

The strategy works for any algorithm that is based on simple LP-transformations, in par-
ticular all row reduction algorithms in the remainder of this chapter.

6.2.2 Orthogonality Defect and Cost of the Mulders–Storjohann Algorithm

The complexity analysis of the Mulder–Storjohann algorithm over Fqm [x;σ] is more involved
than in the commutative case. We use similar arguments as in [Nie13a], which proceeds
analogous to the original paper [MS03], but finer-grained with the help of the so-called or-
thogonality defect, which was introduced by Lenstra in [Len85] for measuring how far a matrix
is from being in weak Popov form. The measure is defined using the degree of the determinant
of an Fqm [x]-matrix.
Over Fqm [x;σ], a determinant in the classical sense does not exist due to non-commutativity.

We therefore use the so-called Dieudonné determinant for Fqm [x;σ]-matrices and show that
the resulting notion of orthogonality defect behaves exactly as in the Fqm [x]-case.

The Determinant Degree and Orthogonality Defect

The Dieudonné determinant is a generalization of the commutative determinant function to
square matrices over a skew field, cf. [Die43] or [Dra83, § 20]. It can be used for Fqm [x;σ]-
matrices by embedding Fqm [x;σ] into its left field of fractions. For our purposes, we bypass
the technical definition of this generalized determinant and only consider the following obser-
vations by Taelman [Tae06] about its degree.

Lemma 6.18 ([Tae06]). There is a unique function deg det : Fqm [x;σ]r×r → N0 ∪ {−∞}
s.t.:

• deg det(AB) = deg det(A) + deg det(B) for all A,B ∈ Fqm [x;σ]r×r.

• deg detA = 0 for all A ∈ GLr(Fqm [x;σ]).

• If A is a diagonal matrix with diagonal entries d0, . . . , dm−1, then deg detA =
∑
i deg di.

Definition 6.19. We call the function deg det(·) of Lemma 6.18 the determinant degree.

The following properties of the determinant degree are immediate consequences of the
statements above.

119

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

Corollary 6.20. For any A,B ∈ Fqm [x;σ]r×r, the determinant degree satisfies:

• If B is obtained from A by elementary row operations, then deg detB = deg detA.
• If B is obtained from A by multiplying one row with a non-zero skew polynomial f ∈
Fqm [x;σ]∗ from the left, then deg detB = deg f + deg detA.
• If A is triangular with diagonal entries d0, . . . , dm−1, then deg detA =

∑
i deg di.

• For any shift w ∈ Nr0, we have deg det(Φw(A)) = deg det(A) +
∑
iwi.

The description of deg det(·) above is not constructive. However, it does allow us to directly
compute the determinant degree for certain special cases, such as the following example.

Example 6.21. In Algorithm 13, we need to row-reduce a matrix Φw(M)(M (M)), whereM (M)

is of the form (6.4). For an interleaved Gabidulin code of parameters n = 100, h = 2,
k1 = 58, k2 = 31, exemplary entries of M (M) could have degrees deg g1 = deg g2 = 100,
deg r1 = deg r2 = 99, and the shifts would be chosen as w(M) = (100, 42, 69) (cf. Section 6.1.1
or Table A.1). We obtain

deg det Φw(M)(M (M)) = deg det

1 r1 r2
g1

g2


xγ0

xγ1

xγ2

 = deg g1 + deg g2 +
∑
i

γi = 411

by Corollary 6.20.

We use the following definition and observation to bound the complexity of the Mulders–
Storjohann algorithm over Fqm [x;σ]. Lemma 6.23 and Corollary 6.24 are trivial statements
over Fqm [x], but more difficult to prove in the non-commutative case.

Definition 6.22. The orthogonality defect of V ∈ Fqm [x;σ]r×r is ∆(V) = degV −deg detV .

Lemma 6.23. Let V ∈ GLr(Fqm [x;σ]) be in weak Popov form. Then, ∆(V) = 0.

Proof. Since V has full rank, all its rows are non-zero. W.l.o.g., we assume that the leading
positions are on the diagonal since otherwise, we could re-order the rows of V without chang-
ing deg detV or degV , cf. Corollary 6.20. Using elementary row operations, we construct a
sequence of matrices V = V (0),V (1), . . . ,V (r−1) such that the first i columns of V (i) are zero
below the diagonal and the leading positions, marked by here, stay on the diagonal, i.e.,

V (i) =



v
(i)
1,1 . . . v

(i)
1,i v

(i)
1,i+1 . . . v

(i)
1,r

. . .
...

...
. . .

...

v
(i)
i,i v

(i)
i,i+1 . . . v

(i)
i,r

v
(i)
i+1,i+1 . . . vi+1,r
...

. . .
...

v
(i)
r,i+1 . . . v

(i)
r,r



120

6.2 Row Reduction of Skew Polynomial Matrices

The row operations that we apply to V (i−1) in order to obtain V (i) are as follows. For
j ≤ i, we keep v(i)

j = v
(i−1)
j . Let j > i and denote by pj,i = aj,iv

(i−1)
i,i = bj,iv

(i−1)
j,i ∈ Fqm [x;σ]

the right union of v(i−1)
i,i and v(i−1)

j,i , where aj,i, bj,i ∈ Fqm [x;σ] (cf. Section 2.3.1). We compute

v
(i)
j = bj,iv

(i−1)
j − aj,iv(i−1)

i .

By definition of the union, we have v(i)
j,i = 0 and the leading position remains LP(v(i)

j) = j

since deg(aj,iv(i−1)
i) ≤ deg(bj,iv(i−1)

j) and LP(deg(aj,iv(i−1)
i)) = i < j = deg(bj,iv(i−1)

j). Since
we are scaling jth row by bj,i, the degree and determinant degree of V (i) are given by

degV (i) = degV (i−1) +
∑
j>ibj,i and deg detV (i) = deg detV (i−1) +

∑
j>ibj,i,

respectively (cf. Corollary 6.20). Thus, inductively, V (r−1) is an upper triangular matrix and

deg detV = deg detV (r−1) −
∑
i

∑
j>ibj,i =

∑
i deg v(r−1)

i,i −
∑
i

∑
j>ibj,i

= degV (r−1) −
∑
i

∑
j>ibj,i = degV ,

which proves the claim.

Corollary 6.24. Let V ∈ GLr(Fqm [x;σ]). Then, deg detV ≤ degV and ∆(V) ≥ 0.

Proof. Simple LP-transformations on V neither increase the degree of any row nor change
the determinant degree of V . By Lemma 6.23, Algorithm 15 therefore computes a matrix U
with deg detV = deg detU = degU ≤ degV , which proves the claim.

Remark 6.25. Lemma 6.23 implies an algorithm for computing deg detV of any full-rank
matrix V : If V is transformed into weak Popov form using Algorithm 15, then deg det(V)
equals the degree of the result since deg det(·) is invariant under simple LP-transformations.

Complexity of the Algorithm

Using the tools developed above, we can bound the complexity of Algorithm 15 analogously
to [Nie13a] for the Fqm [x] case.

Theorem 6.26. Let V ∈ GLr(Fqm [x;σ]) with r ∈ O(∆(V)). Then, Algorithm 15 with
input matrix V performs at most r

(
∆(V)+r

)
simple LP-transformations and has complexity

O(r2∆(V) maxdeg(V)) in operations over Fqm.

Proof. LetU be the output of the algorithm. By Lemma 6.15, every simple LP-transformation
reduces the sum of the ψ-values of a matrix, so their number is upper-bounded by∑r−1

i=0ψ(vi)−
∑r
i=0ψ(ui) =

∑r−1
i=0
[
r deg vi + LP(vi)−

(
r degui + LP(ui)

)]
≤ r

∑r−1
i=0
[
deg vi − degui + 1

]
= r

[
degV − degU + r

]
= r

[
∆(V) + r

]
,

where the last equality uses degU = deg detU from Lemma 6.23 and the invariance of deg det
under elementary row operations.
Each simple LP-transformation consists of calculating vj − αxβvi, so we must apply an

automorphism σβ to the at most rmaxdeg(V) many coefficients of vi, multiply them with α
from the left, and subtract vi from vj , which costs O(rmaxdeg(V)) operations over Fqm .

121

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

Remark 6.27. Due to ∆(V) ≤ degV , the cost bound in Theorem 6.26 is at least as good
as the rough complexity estimate in Remark 6.17. Corollary 6.28 below shows that it can
improve upon the latter (which amounts to O(h3µ2) in this case).

Implications on the Cost of the Decoding Problems

The matrices used for decoding interleaved Gabidulin codes in Section 6.1 can be transformed
into weak Popov form using Algorithm 15 with the following costs.

Corollary 6.28. Consider an instance of Problem 6.3 (MgLSSR). Let M (M) be as in (6.4)
and choose w(M) as in 6.5. The orthogonality defect of Φw(M)(M (M)) is ∆(Φw(M)(M (M))) ≤ µ
and we can transform Φw(M)(M (M)) into weak Popov form in O(h2µ2) operations over Fqm
using Algorithm 15.

Proof. The matrix Φw(M)(M (M)) is of the form

Φw(M)(M (M)) =


xγ0 r1x

γ1 r2x
γ2 . . . rhx

γh

g1x
γ1

g2x
γ2

. . .

ghx
γh

 . (6.11)

W.l.o.g., we can assume that γ0 ≤ maxi≥1{γi + deg ri} ≤ µ since otherwise M (M) is already
in w(M)-shifted weak Popov form. Since Φw(M)(M (M)) is in triangular form, its determinant
degree is

deg det Φw(M)(M (M)) =
∑h
i=1 deg gi +

∑h
i=0γi .

Let mi be the ith row of M (M). The degree of the matrix is given by

deg Φw(M)(M (M)) =
∑h
i=0 deg Φw(M)(mi) = max

i
{γi + deg si}+

∑h
i=1 (γi + deg gi)

≤ µ+ deg det Φw(M)(M (M)),

so the orthogonality defect is upper-bounded by ∆(Φw(M)(M (M))) ≤ µ. By Theorem 6.26,
Algorithm 15 row-reduces the matrix in O(h2µ2) operations over Fqm .

Corollary 6.29. Consider an instance of Problem 6.8. Let M (I) be as in (6.10) and w(I)

be as in Lemma 6.10. Then, the orthogonality defect of Φw(I)(M (I)) is upper-bounded by
∆(Φw(I)(M (I))) ≤ hn and we can row-reduce the matrix Φw(I)(M (I)) in O(h3µ2) time using
Algorithm 15.

Proof. The degrees of the non-zero entries of Φw(I)(M (I)) are component-wise given by
n
< n k1 − 1
< n k2 − 1
...

. . .

< n kh − 1


Thus, ∆(Φw(I)(M (I))) ≤ (h + 1)n − n −

∑h
i=1(ki − 1) ≤ hn. Using Theorem 6.26 and

maxdeg(Φw(I)(M (I))) = n, the complexity in operations over Fqm becomes O(h3n2).

122

6.2 Row Reduction of Skew Polynomial Matrices

6.2.3 A Divide-&-Conquer Variant: Alekhnovich’s Algorithm
Over ordinary polynomial rings, Alekhnovich [Ale05] proposed an algorithm for fast row
reduction based on efficient Fqm [x]-multiplication algorithms. The algorithm can be seen as
a generalization of Knuth–Schönhage’s GCD algorithm (cf. [Ale05]) or as a divide-&-conquer
variant of the Mulders–Storjohann algorithm (cf. [Nie13b]).
In this section, we show that—by taking care of non-commutativity—Alekhnovich’s algo-

rithm can be adapted for row reduction of skew polynomial matrices. The method relies on
the fast Fqm [x;σ]-multiplication algorithm in Section 5.2.1. Similar to [Ale05], we use the
following notation.

Definition 6.30. Let v ∈ Fqm [x;σ], v ∈ Fqm [x;σ]r, V ∈ Fqm [x;σ]r×r, and t ∈ N0. The
length |v| of v is defined by

|v| :=
{

0, if v = 0,
deg v −max{i ∈ N0 : vj = 0 ∀ 0 ≤ j ≤ i}, else.

Similarly, the length of a vector v is |v| = maxi{deg v − deg vi + |v|i} and the length of a
matrix V is |V | = maxi{|vi|}.

We define the accuracy approximation to depth t of v as v|t :=
∑deg v
i=deg v−t+1 vix

i, of v as

v|t =
[
v1|min{0,t−(deg v−deg v1)}, . . . , vr|min{0,t−(deg v−deg vr)}

]
,

and extend it row-wise to matrices V .

Example 6.31. For instance, we have

V =
[
x2 + x x2 + 1
x4 x3 + x2 + x+ 1

]
, V |2 =

[
x2 + x x2

x4 x3

]
, and V |1 =

[
x2 x2

x4 0

]
.

Note that the accuracy approximation of a polynomial, vector, or matrix to depth t always
results in a length at most t, i.e., |a|t| ≤ t, |v|t| ≤ t, and |V |t| ≤ t. The algorithm uses
the following observation that two matrices containing polynomials of small length can be
multiplied efficiently although their degrees might be large.

Lemma 6.32. Let A,B ∈ Fqm [x;σ]r×r such that each entry of the two matrices has length
at most t. The multiplication A ·B can be implemented in O(r3Mqm(t)) time.

Proof. Consider two polynomials a, b ∈ Fqm [x;σ] of length ≤ t. There are ã, b̃ ∈ Fqm [x;σ] of
degree at most t such that a = ãxdeg a−|a|+1 and b = b̃xdeg b−|b|+1. Thus, the multiplication
a · b can be re-written as

a · b =
[
ã · σdeg a−|a|+1(b̃)]xdeg a+deg a−|a|−|b|+1

and implemented using at most t automorphism computations, which is negligible, and a
multiplication of two polynomials of degree t, costing O(Mqm(t)). Naive multiplication3 of A
by B consists of r3 many multiplications as above, which cost O(r3Mqm(t)), plus r3 additions
of polynomials of length ≤ 2t, which is negligible in comparison.

3In faster matrix multiplication algorithms, the length of polynomials in intermediate computations might
be much larger than t. Thus, we compute it naively in cubic time.

123

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

Similar the original paper [Ale05], the final algorithm (see Algorithm 17 below) is recursive
and calls a base case given by Algorithm 16. We first establish the correctness and complexity
of the latter one.

Lemma 6.33. Algorithm 16 is correct and returns a matrix U of the form Uij = uijx
dij ,

where uij ∈ Fqm and dij = deg vi − deg vj. If |V | ≤ 1, the algorithm costs O(r3) operations
over Fqm.

Algorithm 16: R(V)
Input: Basis V ∈ GLr(Fqm [x;σ]) of a module V ⊆ Fqm [x;σ]r of degree η
Output: U ∈ Fqm [x;σ]r×r such that U · V is in wPf or deg(U · V) ≤ degV − 1

1 U ← I
2 while degV = η and V is not in wPf do
3 Find i, j such that LP(vi) = LP(vj) and deg vi ≥ deg vj
4 δ ← deg vi − deg vj
5 α← LC(LT(vi))/σδ(LC(LT(vj)))
6 U ← (I − αxδEi,j) ·U and V ← (I − αxδEi,j) · V
7 return U

Proof. Inside the while loop, the algorithm performs a simple LP-transformation on V , which
can be written as a multiplication of (I−αxδEi,j) from the left. By multiplying these matrices
(I −αxδEi,j) in the correct order, one obtains the matrix U such that UV equals the result
of the sequence of simple LP-transformations on V .

The matrix U is of the claimed form during the entire algorithm. This is obviously fulfilled
at the start since U = I. As long as the condition of the while loop is fulfilled, the row
degrees of V are constant. Hence, δ = deg vi − deg vj and Line 6 corresponds to subtracting
the row αxdeg vi−deg vjvj from vi, where µth entry of the first vector is of the form

αxdeg vi−deg vjujµx
deg vj−deg vµ = ασdeg vi−deg vj (ujµ)xdeg vi−deg vµ =: u′iµxdeg vi−deg vµ ,

so the matrix’ structure is preserved and updating U costs O(r) operations over Fqm .
Since the degree of a row vi is decreased after at most r simple LP-transformations on it,

the while loop runs at most r2 iterations. If |(V)| ≤ 1, each row of V consist of monomials
of the same degree, but possibly different coefficient. Thus, each simple LP-transformation,
i.e., computing V as in Line 6, consists of at most r many automorphism computations,
scalar multiplications and additions, respectively, and does not change length of the matrix.
Together with the cost of updating U , we obtain the claimed complexity.

Remark 6.34. The original algorithm [Ale05] over Fqm [x] operates on the columns of V by
multiplying the returned matrix U from the right. In contrast, it is necessary to consider the
“transposed” problem (operating on rows) here since we are dealing with left Fqm [x;σ]-modules.

We can apply Algorithm 16 iteratively on a matrix V in order to decrease its degree by
at least t ∈ N or transform it into weak Popov form. We call this algorithm R(V , t). As in
[Ale05], we speed up R(V , t) in a divide-&-conquer fashion using two main observations:

124

6.2 Row Reduction of Skew Polynomial Matrices

• We can recursively compute R(V , t) by two calls of the algorithm with input size t′ ≈ t
2 .

• The involved matrices can be (accuracy) approximated without loss, so re-assembling
the results of the recursive calls (= matrix multiplications) has small cost.

We formalize these observations in the following lemmata.
Lemma 6.35. Let V ∈ GLr(Fqm [x;σ]), t, t′ ∈ N, t′ < t, and U = R(V , t′). Then,

R(V , t) = R
[
U · V , t− (degV − deg(U · V))

]
·U .

Proof. The matrix U reduces degV by at least t′ or transforms V into wPf. Multiplication
by R[U · V , t − (degV − deg(U · V))] further reduces the degree of U · V by t − (degV −
deg(U · V)) ≥ t− t′ (or U · V in wPf).

Lemma 6.36. Let V ∈ GLr(Fqm [x;σ]) and t ∈ N. Then, R(V , t) = R(V |t, t).
Proof. The proof works exactly as the one of [Ale05, Lemma 2.7], but we give its idea for the
sake of completeness. If a sequence of simple LP-transformations on the same rows is applied
to two matrices V and V ′ whose top t coefficients agree (i.e., V |t = V ′|t), then as long
as the degree of the matrices does not drop by at least t, the coefficients of the simple LP-
transformations are the same since they depend only on the top coefficients of the matrices.
If after some transformations, modeled by U , the degree is dropped by t′ < t, then we have
(UV)|t−t′ = (UV ′)|t−t′ , so the claim follows by an inductive argument.

Lemma 6.37. Let V ∈ GLr(Fqm [x;σ]) and t ∈ N. The entries of U = R(V , t) are of the
form Uij =

∑t−1
µ=−t+1 uijµx

dij+µ, where uijµ ∈ Fqm and dij := deg vi − deg vj.
Proof. The proof is again similar to [Ale05, Lemma 2.8]. We prove it by induction, where
the case t = 1 is given by Lemma 6.33. If we choose t′ = t − 1 in Lemma 6.35 and write
U = R(V), V ′ = U · V , and ∆t = degV − degV ′, we obtain

R(V , t) = R(V ′, t−∆t) ·U

By induction hypothesis, all monomials in R(V ′, t − ∆t) have degree d′ij + µ′ with |µ′| ≤
t−∆t−1. Also, |d′ij−dij | ≤ ∆t by definition. Since the entries of U are monomials of degree
dij , we obtain the claimed degree by |µ| = |d′ij + µ′ − dij | ≤ |d′ij − dij |+ |µ′| ≤ t− 1.

Combining the ideas above, we obtain Algorithm 17, R̂(V , t), whose correctness and com-
plexity is proved in the following theorem.
Theorem 6.38. Algorithm 17 is correct and costs O(r3Mqm(t)) operations over Fqm.

Algorithm 17: R̂(V , t)
Input: Basis V ∈ GLr(Fqm [x;σ]) of a module V ⊆ Fqm [x;σ]r of degree η, and t ∈ N
Output: U ∈ Fqm [x;σ]r×r such that U · V is in wPf or deg(U · V) ≤ degV − t

1 if t = 1 then
2 return R(V |1) // O(r3)
3 U1 ← R̂(V |t, bt/2c) // f(t2) (cf. proof)
4 V 1 ← U1 · V |t // O(r3Mqm(t))
5 U2 ← R̂(V 1, t− (degV |t − degV 1)) // f(t2) (cf. proof)
6 return U2 ·U1 // O(r3Mqm(t))

125

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

Proof. Correctness follows from R(V , t) = R̂(V , t) by induction, where the base case is given
in Lemma 6.33. For t > 1, with Û = R̂(V |t, b t2c) and U = R(V |t, b t2c), the claim follows by

R̂(V , t) = R̂(Û · V |t, t− (degV |t − deg(Û · V |t))) · Û
(i)= R(U · V |t, t− (degV |t − deg(U · V |t))) ·U

(ii)= R(V |t, t)
(iii)= R(V , t),

where (i) is the induction hypothesis, (ii) uses Lemma 6.35, and (iii) equals Lemma 6.36.
Algorithm 17 calls itself twice on inputs of sizes ≈ t

2 and in addition, performs two ma-
trix multiplications in Lines 4 and 6. Since the involved matrices contain polynomials of
length O(t) (cf. Lemma 6.37), these multiplications cost O(r3Mqm(t)) operations over Fqm
(cf. Lemma 6.32). Recursively, the cost bound f(t) in operations over Fqm reads

f(t) = 2 · f(t2) +O(r3Mqm(t)),

and can be resolved as f(t) ∈ O(r3Mqm(t) log(t)) by the master theorem since the base case
has complexity O(r3) (cf. Lemma 6.33).

We have seen in Section 6.2.2 that the degree of any matrix V ′ in weak Popov form,
obtained from a full-rank matrix V by a sequence of simple LP-transformations, is exactly
degV ′ = degV − ∆(V). Hence, it suffices to choose t = ∆(V) in Algorithm 17 to ensure
that the resulting matrix transforms V into weak Popov form. We formalize this in the main
statement of this subsection:

Theorem 6.39. Let V ∈ GLr(Fqm [x;σ]) be a basis of a module V ⊆ Fqm [x;σ]r. Then,
R̂(V ,∆(V)) · V is a basis of V in weak Popov form. It can be computed in

O(r3Mqm(∆(V)) log(∆(V)))

operations over Fqm using Algorithm 17.

Remark 6.40. If the used multiplication algorithm is in Ω(t1+ε) for some ε > 0, e.g., the
one in Section 5.2.1 with ω > 2, we can omit the log-factors in the complexity expressions of
Theorem 6.38 and Theorem 6.39.

Implications on the Cost of the Decoding Problems

The matrices used for decoding interleaved Gabidulin codes in Section 6.1 can be transformed
into weak Popov form using Algorithm 17 with the following costs.

Corollary 6.41. Consider an instance of Problem 6.3 (MgLSSR). Let M (M) be as in (6.4)
and w(M) be as in Lemma 6.5. Then, Algorithm 17 can row-reduce Φw(M)(M (M)) in

O(h3Mqm(µ) log(µ)) ⊆ O(h3µmin{ω+1
2 ,1.635} log(µ))

operations over Fqm, where µ := maxi{γi + deg gi}.

Proof. This follows from Theorem 6.39 and ∆(Φw(M)(M (M))) ≤ µ (cf. Corollary 6.28).

126

6.3 Specialized Row Reduction Algorithms for the Decoding Problems

Remark 6.42. In [SB14], Sidorenko and Bossert give an algorithm for solving the MgLSSR
problem in the special case arising from syndrome-based key equations. In their paper, the in-
terleaving parameter h is considered to be a constant and the cost is given as O(Mqm(n) log(n)).
If h is included in the complexity analysis, one obtains O(h3Mqm(n) log(n)).4 Hence, the al-
gorithm’s cost bound equals the one from Corollary 6.41 in this case.

Remark 6.43. If we apply Algorithm 17 to the shifted basis Φw(M)(M (M)) of Algorithm 13
in the special case h = 1 and σ = ·q, we obtain an alternative to the Linearized Ex-
tended Euclidean algorithm (LEEA) from [WSB10] (see also [Wac13, Section 3.1.4]) of the
same complexity. The algorithms are equivalent up to the implementation of a simple LP-
transformation. This is not surprising since on 2× 2 matrices, Alekhnovich’s algorithm over
Fqm [x] is equivalent to the fast Knuth–Schönhage-like GCD algorithm introduced by Aho and
Hopcroft [AH74] and Brent, Gustavson, and Yun [BGY80] (see also [GG99, Chapter 11]).
The LEEA in [Wac13] is based on the latter one.

Corollary 6.44. Consider an instance of Problem 6.8 (interpolation step). Let M (I) be as
in (6.10) and w(I) be as in Lemma 6.10. Then, Algorithm 17 can row-reduce Φw(I)(M (I)) in

O(h3Mqm(hn) log(hn)) ⊆ O(hmin{ω+7
2 ,4.635}nmin{ω+1

2 ,1.635} log(hn))

operations over Fqm.

Proof. The claim follows from Theorem 6.39 using ∆(Φw(I)(M (I))) ≤ hn (cf. Corollary 6.29).

6.3 Specialized Row Reduction Algorithms for the Decoding
Problems

In this section, we present two algorithms for row reduction of skew polynomial matrices that
are particularly fast on the matrices arising in the decoding problems given in Section 6.1.
The first one is a skew polynomial variant of Rosenkilde’s Demand-Driven algorithm and is
fast for key-equation-based methods. The second procedure is inspired by Collart et al.’s
Gröbner walk algorithm and efficiently row-reduces the module basis for interpolation-based
decoding.

6.3.1 Key-Equation Based Decoding: Rosenkilde’s Demand-Driven Algorithm
In the following, we adapt Rosenkilde’s Demand-Driven algorithm [Nie13a] to skew polyno-
mials. The algorithm achieves a speed-up compared to the Mulders–Storjohann algorithm
(Algorithm 15) in case of the MgLSSR problem by utilizing the module’s structure, which
enables to remember only the first column of the module basis during a series of simple LP-
transformations and to compute the remaining entries on demand. We prove the method
using an auxiliary algorithm, which is given by Algorithm 18 below.

4Line 8 of [SB14, Algorithm 4] computes h many matrix-vector multiplications of dimension h, containing
polynomials of length η. This can be implemented in O(h3Mqm (η)) operations over Fqm and—by the same
arguments as in Lemma 6.32—cannot be easily accelerated. The arguments as in [SB14, Theorem 2] imply
the given complexity.

127

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

Lemma 6.45. Algorithm 18 is correct. The while loop is executed at most O(hµ) times.

Algorithm 18: Auxiliary Algorithm
Input: V ← Φw(M)(M (M)) with M (M) as in (6.4) and w(M) as in Lemma 6.5
Output: Basis V ′ ofM(M) as in (6.3) in w(M)-shifted weak Popov form

1 [η, h]← [deg v0,LP(v0)]
2 while deg v0,0 ≤ η do
3 α← coefficient of xη in v0,h
4 if α 6= 0 then
5 ηh ← deg vh
6 αh ← coefficient of xηh in vh,h
7 if η < ηh then
8 swap [v0, α, η] and [vh, αh, ηh]
9 v0 ← v0 − α/ση−ηh(αh)xη−ηhvh

10 [η, h]←
{

[η, h− 1], if h > 1
[η − 1, h], else.

11 return Φ−1
w(M)(V)

Proof. Algorithm 18 performs a sequence of simple transformations h on 0 on V , which are
executed by Line 9. During the algorithm, we always have LP(vi) = i for all i ≥ 0. This
is obviously fulfilled at the start by the structure of M (M) as in (6.4), and ensured in the
remainder of the execution by Line 8 that swaps two rows with the same leading position h
in order to perform the simple transformation always on the 0th row.
At the start of the algorithm, we have η = deg v0 and h = LP(v0), so ψ(v0) = η(h+1)+h.

During the algorithm, whenever a simple transformation is performed, we reduce the value
ψ(v0) of the 0th row. Unless LP(v0) = 0, we have ψ(v0) ≤ η(h + 1) + h since Line 10
corresponds to a decrement of η(h + 1) + h by one if h > 1 and by two if h = 1. Note that
ψ(v0) = η(h+ 1) + h if and only if the algorithm performs the next simple transformation.

Hence, the number of iterations of the while loop is a lower bound on the total reduction of
the sum value of the matrix and is therefore upper bounded by (h+1)(∆(Φw(M)(M (M)))+h+
1) ∈ O(hµ), cf. Theorem 6.26. At termination, we have deg v0,0 > η, which means LP(v0) = 0
and V is in wPf.

We speed up Algorithm 18 using the following two observations.

Lemma 6.46. Consider an instance of Problem 6.3 with M (M) as in (6.4), w(M) as in
Lemma 6.5, and g̃i := gix

γi. Let V be a matrix that originates from M (M) by a sequence of
the following modified simple transformation j on i: Instead of replacing vi by v′i, we replace
it by

v′′i := [v′i,0, v′i,1 modr g̃1, . . . , v
′
i,h modr g̃1].

The resulting matrix V is still a basis of the same module and we have ψ(v′′i) ≤ ψ(v′i) < ψ(vi).

Proof. The row space is not changed since for all h > 0, the hth modulo reduction can be
realized instead by elementary row operations on the matrix after replacing vi by v′i. In order

128

6.3 Specialized Row Reduction Algorithms for the Decoding Problems

to prove this, we define gh := [0, . . . , 0, g̃h, 0, . . . , 0] and Jh to be the set of rows of V that
span gh and fulfill ψ(v) ≤ ψ(gh) for all v ∈ Jh. Initially, we have Jh = {vh}. We distinguish
two cases. Case 1: Let vi ∈ Jh. Then, ψ(v′i) < ψ(vi) ≤ ψ(gh) and the hth modulo reduction
has no effect. We update Jh = (Jh \ {vi}) ∪ {v′i,vj}. Case 2: If vi /∈ Jh, the vector gh
is a (left) linear combination of rows in Jh, so the hth modulo reduction can be realized by
elementary row operations after the replacement of vi by v′′i . The set Jh is not changed. In
both cases, Jh does not become empty, so we can apply the argument inductively.
Due to the properties of a simple transformation and since the modulo operation does not

increase any of the degrees in the vector, we have ψ(v′′i) ≤ ψ(v′i) < ψ(vi).

Lemma 6.47. Let ri, gi ∈ Fqm [x;σ] and γi ∈ N0 for all i = 1, . . . , h be chosen as in Prob-
lem 6.3 with the additional property that the gi are of the form gi = xti+ci for some ti ∈ Θ(µ)
and ci ∈ Fqm. For any λ ∈ Fqm [x;σ] of degree deg λ ∈ O(µ), h ∈ {1, . . . , h} and η ∈ N0, we
can compute the coefficient of xη in (λrhxγh modr ghx

γh) in O(µ) operations over Fqm.

Proof. Since (λrhxγh modr ghx
γh) is divisible from the right by xγh and has degree at most

ti + γh − 1, all coefficients of xη with η < γh and η ≥ ti + γh are zero. For all other values of
η, the coefficient of xη in (λrhxγh modr ghx

γh) is the one of xη−γh in (λrh modr gh). By the
structure of gh, this coefficient is a linear combination of the coefficients with indices

η − γh, η − γh + th, . . . , η − γh + t · th,

of the polynomial λrh, where t = bdeg(λrh)−η+γh
th

c ∈ O(1) (i.e., the number of coefficients is
constant compared to µ). Each of these coefficients can be computed in O(µ) automorphism
computations, multiplications and additions over Fqm , so the overall cost is as stated.

Theorem 6.48. Algorithm 19 is correct and costs O(hµ2) operations over Fqm.

Algorithm 19: Skew Polynomial Variant of Rosenkilde’s Demand-Driven Algorithm
Input: Instance of Problem 6.3 with gi = xti + ci, where ti ∈ Θ(µ) and ci ∈ Fqm .

Furthermore, g̃i = gix
γi and r̃i = rix

γi for i = 1, . . . , h
Output: Row v with LP(v) = 0 of a basis V ofM(M) as in (6.3) in

[γ0, . . . , γh]-shifted weak Popov form.
1 [η, h]← [deg v0,LP(v0)], where v0 = [xγ0 , r̃1, . . . , r̃h]
2 [λ0, . . . , λh]← [1, 0, . . . , 0]
3 αix

ηj ← leading monomial of g̃i for i = 1, . . . , h
4 while deg λ0 ≤ η do
5 α← coefficient of xη in (λ0r̃h modr g̃h) // O(µ) by Lemma 6.47
6 if α 6= 0 then
7 if η < ηh then
8 swap [λ0, α, η] and [λh, αh, ηh]
9 λ0 ← λ0 − α/ση−ηh(αh)xη−ηhλh // O(µ)

10 [η, h]←
{

[η, h− 1], if h > 1
[η − 1, h], else.

11 return [λ0, (λ0r1 modr g1), . . . , (λ0rh modr gh)] // O(hµ2)

129

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

Proof. Algorithm 19 arises from Algorithm 18 by the following modifications:

• Instead of the entire matrix V , we only remember the first column [λ0, . . . , λh] of
Φ−1
w(M)(V), which is [1, 0, . . . , 0] at the beginning. Since Φ−1

w(M)(V) is a basis of the
moduleM(M) as in (6.3), each row v = [λxγ0 , ω1x

γ1 , . . . , ωhx
γh] of V is determined by

λ using
ωix

γi = (λr̃i modr g̃i).

• After every simple transformation, we reduce the coefficients of the affected row modulo
g̃h as in Lemma 6.46. This neither changes the correctness of the algorithm nor the
upper bound O(hµ) on the number of iterations of the while loop since the line’s value
cannot increase.
• Combining both modifications above, we can compute the coefficient of xη in v0,0 as in
Line 5 on demand.5

Hence, the two algorithms are computationally equivalent. Algorithm 19 returns the first row
of the computed basis, which has w(M)-shifted leading position 0.

As for the complexity, the while loop is iterated at most O(hµ) times by Lemma 6.45,
where Line 5 has complexity O(µ) over Fqm by Lemma 6.47, and Line 9 costs O(µ) additions,
multiplications and automorphism computations. Line 11 of the algorithm consists of h
multiplications and modulo reductions, which cost O

(
hµ2) in total.6

6.3.2 Interpolation-Based Decoding: Weak Popov Walk
In this section, we describe an algorithm for computing a w-shifted weak Popov form of a
basis that is already reduced over a different shift w′. By applying this algorithm iteratively
to the module basis of the interpolation problem (cf. Algorithm 14), we obtain a complexity
reduction fromO(h3n2) toO(h2n2) compared to the Mulders–Storjohann. The idea is inspired
by “Gröbner walks” [CKM97], which is why we call it “weak Popov walk”. To the best of our
knowledge, there is no known Fqm [x]-equivalent of this algorithm.

The base of the method is Algorithm 20, which “walks” from a weak Popov form w.r.t. the
shift w into one with shift w + [1, 0, . . . , 0].

Lemma 6.49. Algorithm 20 is correct. It performs at most

O(r deg det(V) +
∑
i,j |wi − wj |+ r2))

operations over Fqm.

Proof. Let V be the input and V̂ the output matrix of the algorithm. The algorithm performs
at most one simple transformation on each row vi with i ∈ I and keeps all other rows
untouched. The set I contains the indices of the rows vi with LPw(vi) 6= LPŵ(vi) and the
row with LPw(vi) = 0 since the leading position either remains the same or becomes 0 under
the new shift. We show that the leading positions of the rows v̂i1 , . . . , v̂is are a permutation
of hi1 , . . . , his . We distinguish two cases given by the if condition.

5This is the origin of the name “demand-driven”.
6The cost of Line 11 can be further reduced using the fast multiplication and division algorithms of Section 5.2.
However, this would not change the algorithm’s overall complexity.

130

6.3 Specialized Row Reduction Algorithms for the Decoding Problems

Algorithm 20: WeakPopovWalkStep
Input: Shift w ∈ Nm0 and matrix V ∈ GLr(Fqm [x;σ]) in w-shifted weak Popov form
Output: Matrix in ŵ-shifted weak Popov form spanning the same Fqm [x;σ]-row

space as V , where ŵ = w + [1, 0, . . . , 0]
1 hi ← LPw(vi), for i = 0, . . . ,m− 1
2 I ← indexes i such that LPŵ(vi) = 0
3 [i1, . . . , is]← I sorted such that hi1 < hi2 < . . . < his
4 t← i1
5 for i = i2, . . . , is do
6 if deg vt,0 ≤ deg vi,0 then
7 Apply a simple transformation t on i at position 0 in V
8 else
9 Apply a simple transformation i on t at position 0 in V

10 t← i

11 return V

Case 1: During the algorithm, let i and t be such that deg vt,0 ≤ deg vi,0. We show that
the resulting row v̂i = vi +αxδvt, where δ = deg vi,0−deg vt,0 ≥ 0 and suitable α ∈ Fqm , has
LPŵ(v̂i) = hi. Since we are performing a simple transformation at position 0 under the shift
ŵ, we know that the ŵ-shifted degree of the row decreases to

degŵ v̂i ≤ degŵ vi − 1 = degw vi = deg vi,hi + whi .

Due to ht < hi, for u := αxδvt we have

deg uj + wj < δ + deg vt + wj = deg vi + wj = deg vi,hi + whi .

Thus, deg v̂i,hi = deg vi,hi and deg v̂i,j + wj < deg vi,hi + whi for all j > hi, so LPŵ(v̂i) = hi.
Case 2: Using exactly the same arguments, we obtain LPŵ(v̂t) = hi in the other case

(deg vt,0 > deg vi,0).
Combined, each row vi with index i ∈ I \ {i1} either keeps its leading position hi or

gives it away to another row vt and waits for getting the initial LP hij for j > i of again
another row vij (i.e, t ← i). At termination, the row with index t is the only one on which
no simple transformation was performed, so it keeps the leading position 0. Hence, the
LPŵ(v̂i1), . . . ,LPŵ(v̂is) are a permutation of the initial leading position hi1 , . . . , his , so V̂ is
in ŵ-shifted weak Popov form.
As for the complexity, since Algorithm 20 performs at most one simple transformation on

each row using another row of the original matrix, we can bound the cost by the number of
non-zero monomials in the original matrix. W.l.o.g., we assume that LPw(vi) = i for all i
(otherwise, permute the rows). Since Φw(V) is in weak Popov form, we have

degw(V) = deg det Φw(V) = deg detV +
r−1∑
i=0

wi

Among all matrices having this weighted degree, a matrix with the maximal possible number
of monomials is one with maximal shifted degree of the last row, i.e., degw vr−1 = degw(V)−

131

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

∑r−2
i=0 degw vi, where the degrees of the vi are chosen as small as possible. Due to LPw(vi) = i,

we must have degw vi ≥ wi, so we choose

degw vi = wi for i = 0, . . . , r − 2, and degw vr−1 = wr−1 + deg detV .

Hence, we have deg vi,j ≤ max{−1,deg vi−wj}, and the total number of monomials involved
in the simple transformations is at most∑

i,j

(deg vi,j + 1) ≤
∑
i,j

max{0,deg vi − wj + 1} ≤
∑
j

deg detV +
∑
i,j

(|wi − wj |+ 1)

≤ r2 + r deg detV +
∑
i,j

|wj − wi|,

which implies the complexity statement.

Iteratively applying Algorithm 20 leads to a method for efficiently row-reducing the module
basis given in Section 6.1.2 for solving the interpolation step of decoding interleaved Gabidulin
codes. The procedure is outlined in Algorithm 21.

Theorem 6.50. Algorithm 21 is correct and performs at most O(h2n2) operations over Fqm.

Algorithm 21: WeakPopovWalk
Input: Instance of Problem 6.8, the matrix V ←M (I) as in (6.10), and

w = [0, k1 − 1, . . . , kh − 1] as in Lemma 6.10
Output: A w-shifted weak Popov form of M (I)

1 w′ ← w + [0, n, n, . . . , n]
2 for i = 1, ..., n do
3 V ←WeakPopovWalkStep(V ,w′)
4 w′ ← w′ + [1, 0, . . . , 0]
5 return V

Proof. At the start of the algorithm, V is in w′-shifted weak Popov form due to the structure
of M (I) (cf. (6.10); note that the polynomials in the first column of M (I) have degree at
most n). By the correctness of Algorithm 20, at termination, the algorithm is in (w +
[n, n, . . . , n])-shifted weak Popov form, which implies being in wPv w.r.t. w. The algorithm
calls Algorithm 20 n times, where

∑
i,j |wj − wi| ∈ O(h2n) and deg detV = n, resulting in

the claimed complexity using Lemma 6.49.

6.4 Concluding Remarks
We have shown that row reduction of skew polynomial matrices can be used for solving the
core tasks of both various key-equation based (MgLSSR problem, see Appendix A.4) and
interpolation-based (interpolation step) methods for decoding of interleaved Gabidulin codes.
This implies flexible, efficient, and still conceptually simple decoding algorithms.

We have adapted several algorithms for row reduction of Fqm [x]-matrices to skew polyno-
mials by taking care of the non-commutativity of Fqm [x;σ]. Furthermore, we have introduced

132

6.4 Concluding Remarks

Algorithm MgLSSR Problem Interpolation Step

Skew Mulders–Storjohann (Sec. 6.2.1) O(h2n2) O(h3n2)
Skew Alekhnovich (Sec. 6.2.3) O(h3Mqm(n) log(n)) O(h3Mqm(hn) log(hn))
Skew Demand-Driven (Sec. 6.3.1) O(hn2) -
Weak Popov Walk (Sec. 6.3.2) - O(h2n2)

Skew Berlekamp–Massey [SJB11] O(hn2) -
Sidorenko–Bossert [SB14] O(h3Mqm(n) log(n)) -
Xie et al. [XLYS13] - O(h2n2)

Table 6.1: Complexity comparison of new and existing algorithms for solving the core tasks of
decoding h-interleaved Gabidulin codes of length n: The MgLSSR problem (cf. Sec-
tion 6.1.1) and the interpolation step (cf. Section 6.1.2), respectively. Motivated by
Appendix A.4, we use µ ∈ Θ(n) as the MgLSSR problem parameter. Complexities
are given in operations over Fqm .

a new row-reduction algorithm, Weak Popov Walk, which might be of wider interest—also in
the Fqm [x]-case. Table 6.1 summarizes the resulting complexities of the algorithms.
Usually, we have h� n, so the algorithms based on efficient multiplication (Skew Alekhnovich

and Sidorenko–Bossert) are the fastest algorithms for solving the problems. Note that we
improve upon the method by Xie et al. [XLYS13] in this case, which is the fastest-known
algorithm for the interpolation step.
The row reduction method has many interesting properties that could be beneficial for

decoding, in particular for key-equation-based methods. For instance, we can easily compute
all “small” elements of the row space of a matrix, implying a description of all solutions of
the MgLSSR problem. This again could be used in a Chase-like fashion [Cha72] to correct a
few more errors beyond the error correction capability.
The row reduction framework introduced in this chapter can be directly applied to decoding

Guruswami–Xing [GX13] and Guruswami–Wang [GW14] rank-metric codes, as well as the
subspace codes by Mahdavifar and Vardy [MV13, Mah12], cf. [PRLS17].
Over Fqm [x], row reduction based on order bases computation [GJV03, ZL12] sometimes

results in more efficient algorithms than the ones we adapted in this chapter. Therefore,
these methods should be considered in the skew polynomial case, where they promise a cost
of O∼(hωMqm(n)) operations over Fqm for both the MgLSSR and the interpolation problem.

Remarks on Generality

Skew Polynomials With Derivation

Boucher and Ulmer [BU14] constructed codes based on skew polynomial rings with so-called
derivations [Ore33b], which is a generalization of the skew polynomials considered in this
thesis.7 The row reduction algorithms in this chapter—except for Algorithm 17—work over
these rings without modification, though with a worse complexity.

7The multiplication rule is then x · f = σ(f) · x+ δ(f) for f ∈ Fqm and a specific map δ : Fqm → Fqm .

133

6 Decoding Interleaved Gabidulin Codes Using Row Reduction

Skew Polynomials Over Fields of Characteristic Zero

The algorithms can also be applied for row reduction of skew polynomial matrices over ar-
bitrary Galois extensions L/K with cyclic Galois group and generator σ, where we need to
replace Fqm by L and Fq by K. This, for instance, implies that we can decode Gabidulin codes
over fields of characteristic zero in a quadratic or even sub-quadratic number of operations
over L using the algorithm in Section 5.1. As in Section 5.3, the complexity statements are
then given in operations over L and do not necessarily provide a good estimate of the bit com-
plexity due to possible coefficient growth. Thus, the complexity should be more thoroughly
analyzed, e.g., using the methods developed by [AB01, BCL06, KRS17].

134

7
Generalizations of Twisted Gabidulin Codes

Maximum rank distance (MRD) codes, and Gabidulin codes as their most fa-
mous subfamily, were independently introduced by Delsarte [Del78], Gabidulin
[Gab85], and Roth [Rot91]. Originally, Gabidulin codes were defined as eval-
uation codes of skew polynomials with the Frobenius automorphism ·q. The

codes were later generalized to arbitrary automorphisms in [Rot96, KG05, ALR13]. Since the
invention of Gabidulin codes, it had been an open question whether other MRD codes exist.
The first such families were introduced by Sheekey [She16], twisted Gabidulin codes, and

Otal and Özbudak [OÖ16], where the latter is a special case of the first. Similar to Gabidulin
codes, these codes were generalized using arbitrary automorphisms in [She16, Remark 9] and
[LTZ15]. Recently, several further constructions were proposed, leading to new MRD codes for
some parameters or general families of non-linear rank-metric codes [HM17, CMP16, OÖ17,
CMPZ17, CMZ17, DS17]. However, since Gabidulin codes and their transposes provide MRD
codes for any field size q and matrix dimensions m and n, the variety of MRD codes, and
rank-metric codes in general, is still far behind their Hamming-metric counterparts.
In Section 7.1, we use a similar approach as for twisted Reed–Solomon codes (cf. Chap-

ter 4) in order to introduce a new class of linear rank-metric codes by adding ` ∈ N further
monomials to the evaluation polynomials. The family is a generalization of Sheekey’s twisted
Gabidulin codes, whereas the methods for their analysis differ. We derive a sufficient condi-
tion for the new codes to be MRD in Section 7.2, which yields MRD codes over Fqm of length
up to 2−`m. In Section 7.3, we present a decoding algorithm for twisted Gabidulin codes
whose evaluation points span a sub-field of Fqm , which is able to decode up to one third of
the minimum distance for one twist ` = 1, and up to ≈ d

`+1 for large `. Furthermore, we
show that the new class contains MRD codes that are neither equivalent to Gabidulin nor
Sheekey’s twisted Gabidulin codes. Finally, we briefly analyze the new codes in the GPT
cryptosystem in Section 7.5 and conclude the chapter in Section 7.6.
The results of this chapter were partly published in [PRS17].

7.1 Definition

The idea of the new codes is similar to Sheekey’s twisted Gabidulin and the twisted Reed–
Solomon codes in Chapter 4, using skew polynomial language. A Gabidulin code is MRD
since the root space of a non-zero skew polynomial f =

∑k−1
i=0 fix

i ∈ Fqm [x;σ] with degree
less than k has dimension at most k − 1. By the rank nullity theorem, the evaluation of this
polynomial at n many Fq-linearly independent evaluation points α1, . . . , αn ∈ Fqm therefore

135

7 Generalizations of Twisted Gabidulin Codes

spans an at least (n − k + 1)-dimensional Fq-subspace of Fqm—that is, the minimum rank
weight of the resulting code is n− k + 1.

Sheekey [She16] added one more monomial ηf0x
k to all evaluation polynomials whose

coefficient depends linearly on the zeroth coefficient of f . By a suitable choice of η ∈ Fqm ,
it was shown that the root space of any such polynomial still has dimension at most k − 1
(cf. Section 2.3.5).
Our construction further generalizes this approach, similar to the twisted Reed–Solomon

codes in Chapter 4. We add ` ≤ n− k many additional monomials, “twists”, to f , which are
of the form

∑`
j=1 ηjfhjx

k−1+tj with distinct 1 ≤ tj ≤ n−k, suitable 0 ≤ hj < k and ηj ∈ Fqm
(see also the illustrations of the Fq[x]-analog of this construction in Section 4.1). The codes
are formally defined as follows.

Definition 7.1. Let n, k, ` ∈ N with k < n and ` ≤ n − k. Choose a hook vector h ∈
{0, . . . , k − 1}` and a twist vector t ∈ {1, . . . , n − k}` such that the ti are distinct, and let
η ∈ (Fqm \ {0})`. The set of [k, t,h,η]-twisted skew polynomials over Fqm is defined by

Pn,kt,h,η =

f =
k−1∑
i=0

fix
i +

∑̀
j=1

ηjfhjx
k−1+tj : fi ∈ Fqm

 ⊆ Fqm [x;σ].

Let α1, . . . , αn ∈ Fqm be linearly independent over Fq and write α = [α1, . . . , αn]. The
[α, t,h,η]-twisted Gabidulin code of length n and dimension k is given by

Cα,t,h,η[n, k] = evα(Pn,kt,h,η) ⊆ Fnqm .

For brevity, we say twisted skew polynomials and twisted Gabidulin codes, respectively, and
refer to Sheekey’s codes as Sheekey’s twisted Gabidulin codes.

The new codes are linear over Fqm due to the linearity of the evaluation map. They indeed
have dimension k since any distinct f, g ∈ Pn,kt,h,η fulfill

f 6≡ g modrM〈α1,...,αn〉,

whereM〈α1,...,αn〉 is the minimal subspace polynomial of the space spanned by the evaluation
points, which has degree n, so the evaluation map is injective on Pn,kt,h,η.

7.2 A Sufficient Condition for Twisted Gabidulin Codes to be MRD
Not all codes as in Definition 7.1 are MRD. In the following, we give a sufficient condition for
the new codes to be MRD. The strategy is to choose the evaluation polynomials α1, . . . , αn and
the twist coefficients η in such a way that the root space of any non-zero evaluation polynomial
intersects with the space spanned by the evaluation points in at most k dimensions. We start
with a lemma, which can be seen as the rank-metric analog of Lemma 4.2 on page 56.

Lemma 7.2. Let n, k, t,h,η be chosen as in Definition 7.1 with t1 < t2 < · · · < t`. For any
S ⊂ 〈α1, . . . , αn〉Fq with dimFq S = k, consider the homogeneous linear system of equations
in g0, . . . , gt`−1 ∈ Fqm:

t`−1∑
j=0

gjT
(S)
i,j = 0 for i = k, . . . , k − 1 + t`, (7.1)

136

7.2 A Sufficient Condition for Twisted Gabidulin Codes to be MRD

where for
∑k
i=0 aix

i :=MS and ai := 0 for i < 0 or i ≥ k, we have

T
(S)
i,j =

{
η−1
κ σj(ai−j)− σj(ahκ−j), if i = k − 1 + tκ for κ ∈ {1, . . . , `},
σj(ai−j), else.

The code Cα,t,h,η[n, k] is MRD if and only if there is no choice of S admitting a non-zero
solution to the linear system.

Proof. Let f ∈ Pn,kt,h,η be a polynomial whose root space fulfills

dim (roots(f) ∩ 〈α1, . . . , αn〉) ≥ k. (7.2)

Thus, there is a k-dimensional subspace S ⊆ 〈α1, . . . , αn〉 whose minimal subspace polynomial
MS right-divides f , i.e., f = g · MS for some g ∈ Fqm [x;σ]. Write g =

∑t`−1
i=0 gix

i and
MS =

∑k
i=0 aix

i with ai := 0 for i < 0 or i ≥ k. By definition, the ith coefficient of f is given
by fi =

∑t`−1
j=0 gjσ

j (ai−j). Since f ∈ Pn,kt,h,η, we have for i ≥ k

fi =
{
ηκfhκ if i = k − 1 + tκ for κ ∈ {1, . . . , `},
0 otherwise .

Hence, for i = k − 1 + tκ, we get

0 =
t`−1∑
j=0

gj ·
(
η−1
κ σj (ai−j)− σj (ahκ−j)

)
.

A non-zero polynomial f satisfying (7.2) therefore yields a non-zero solution gj of (7.1) for
some subspace S and the other way round. Due to

rank(evα(f)) = n− dim (roots(f) ∩ 〈α1, . . . , αn〉) ,

the code Cα,t,h,η[n, k] is MRD if and only if (7.2) is not fulfilled for any non-zero f ∈ Pn,kt,h,η,
which implies the claim.

For a given subspace S, the system (7.1) is of a similar form as its twisted RS counterpart
(cf. Figure 4.2 on page 56), i.e.,

η−1
t`

+ � � . . . � � � . . . � � . . .

� 1
...

...
. . .

� � . . . 1
η−1

t`−1
� + � η−1

t`−1
� + � . . . η−1

t`−1
� + � η−1

t`−1
+ � � . . . � � . . .

� � . . . � � 1
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
...

. . .

� � . . . � � � . . . 1
η−1

t1
� + � η−1

t1
� + � . . . η−1

t1
� + � η−1

t1
� + � η−1

t1
� + � . . . η−1

t1
� + � η−1

t1
+ � . . .

...
...

. . .
...

...
...

. . .
...

...
. . .


︸ ︷︷ ︸

=: BS


gt`
gt`−1
...
g1
g0

 = 0,

(7.3)

where the boxes � represent elements obtained by Fq-linear combinations, automorphism
computations σ(·), and multiplications from α1, . . . , αn. If a row corresponds to a coefficient of

137

7 Generalizations of Twisted Gabidulin Codes

index i = k−1+tκ for some κ = 1, . . . , `, then the diagonal element of this row is η−1
tκ +�, and

it is 1 otherwise. This is due to σi−k(ai−(i−k)) = σi−k(ak) = 1 for all i = k, k+1, . . . , k−1+t`

and since the diagonal elements are the T (S)
i,j of (7.1) with j = i − k. The entries above the

diagonal are independent of the η−1
tκ due to ai−j = 0 for all i > j+k. We use this observation

to prove the following sufficient condition for a twisted Gabidulin code to be MRD. The
statement is the rank-metric equivalent of Theorem 4.3 on page 57 (see also Figure 4.3).

Theorem 7.3. Let s0, . . . , s` ∈ N such that Fq ⊆ Fqs0 (Fqs1 (· · · (Fqs` = Fqm is a chain
of subfields. Furthermore, let k < n ≤ s0 and α1, . . . , αn ∈ Fqs0 be linearly independent over
Fq, and let t, h, and η be chosen as in Definition 7.1 with the additional requirements

ηi ∈ Fqsi \ Fqsi−1

and t1 < t2 < · · · < t`.1 Then, the twisted Gabidulin code Cα,t,h,η[n, k] is MRD.

Proof. Let S ⊆ 〈α1, . . . , αn〉 be a k-dimensional subspace. We show that the system (7.1) has
only the zero solution. Lemma 7.2 then implies the claim. Since the ai arise from α1, . . . , αn
by multiplications, automorphisms, and linear Fqs0 -combinations. Due to σ(Fqs0) = Fqs0 , the
boxes � of the system’s matrix BS as in (7.3) represent elements from Fqs0 .
We consider the η−1

tκ to be indeterminates. This means that det(BS) ∈ Fqs0 [η−1
t1 , . . . , η

−1
t`

]
is a multivariate polynomial, where each η−1

tκ appears at most of degree 1 in each monomial.
Let B(µ)

S be the (µ× µ)-lower-right submatrix of BS . We distinguish two cases:

(i) If µ 6= tκ for all κ, then the first row of B(µ)
S is [1, 0, . . . , 0] and by Laplace’s rule we get

det
(
B

(µ)
S

)
= det

(
B

(µ−1)
S

)
.

(ii) If µ = tκ for some κ, then the first row of B(µ)
S is of the form [η−1

tκ + �,�, . . . ,�] and
the matrix contains only the indeterminates η−1

t1 , . . . , η
−1
tκ−1 in its rows 2 to µ, so

det
(
B

(µ)
S

)
= (η−1

tκ + Tµ) · det
(
B

(µ−1)
S

)
+ Uµ ∈ Fqs0 [η−1

t1 , . . . , η
−1
tκ],

where Tµ ∈ Fqs0 and Uµ ∈ Fqs0 [η−1
t1 , . . . , η

−1
tκ−1].

Combined, we get det(B(tκ)
S) = (η−1

tκ + Ttκ) det(B(tκ−1)
S) + Utκ ∈ Fqs0 [η−1

t1 , . . . , η
−1
tκ], where

det(B(t1)
S) = η−1

t1 , and recursively substituting ηκ ∈ Fqsκ \ Fqsκ−1 for κ = 1, . . . , ` yields

det
(
B

(tκ)
S

)
∈ Fqsκ \ {0},

since η−1
tκ ∈ Fqsκ \ Fqsκ−i , det(B(tκ−1)

S) ∈ Fqsκ−1 \ {0}, and Utκ ∈ Fqsκ−1 . In particular, we
have det(BS) = det(B(t`)

S) 6= 0 and the system (7.1) has only the zero solution.

Theorem 7.3 implies a large constructive class of MRD twisted Gabidulin codes. For a
given length n, the necessary extension degree m of these codes is given as follows.

1The entries of t and h can be permuted such that any twisted Gabidulin code fulfills the latter condition.

138

7.3 A Suboptimal Decoder

Corollary 7.4. Let ` ∈ N and 2` | m. There is an MRD twisted Gabidulin code with ` twists
of length n = 2−`m over Fqm.

Remark 7.5. For MDS twisted Reed–Solomon codes, we were able to guarantee half the
length of an RS code’s maximal length (n ≤ q) only in two special cases (cf. Section 4.7). In
contrast, we achieve half the maximal length of a Gabidulin code (n ≤ m) for MRD twisted
Gabidulin codes with one twist ` = 1 and any t and h. Figure 7.1 illustrates the maximal
dimensions of a codeword’s matrix representation when constructed with Theorem 7.3.

(Orig. Twisted)
Gabidulin:

n

m

` = 1: n

m

` = 2: n

m

Figure 7.1: Maximal length n of Gabidulin codes (and Sheekey’s twisted Gabidulin codes),
and the new codes constructed with Theorem 7.3 for ` = 1 and ` = 2 .

As for twisted RS codes, there can be MRD twisted Gabidulin codes of greater length than
guaranteed by Theorem 7.3. One such class is given by Sheekey’s twisted Gabidulin codes,
which achieve the same maximal length as Gabidulin codes. Note the analogy to the “long”
(∗)-twisted RS codes in Section 4.7.

7.3 A Suboptimal Decoder
Decoding by guessing the twist coefficients as for twisted RS codes (cf. Section 4.3) is not
possible for twisted Gabidulin codes since the number of possibilities is exponential in the
code length. Clearly, a twisted Gabidulin code is contained in a Gabidulin code of dimension
k+maxi{ti}, so we can always correct up to n−k−maxi{ti}

2 errors by decoding in this supercode.
In the special case of Sheekey’s twisted Gabidulin codes, Rosenthal and Randrianarisoa

[RR17] presented a decoder that can correct up to bd−1
2 c errors (instead of bd−2

2 c by decoding
in the Gabidulin supercode). They obtain a system of linear equations with one additional
non-linear equation, which they can solve in some cases. If their approach is generalized to
one twist with arbitrary t1 > 1 or h1 > 0, then the number of non-linear equations becomes
greater than one, and it is—at least—not obvious whether the system is solvable in polynomial
time. The situation gets even more involved when multiple twists are considered.
In the following, we show how the codes can be decoded by partially utilizing the structure

of the evaluation polynomials. The resulting decoder cannot decode up to half-the-minimum
distance, but is efficient and achieves a decoding radius of about one third of the minimum
distance in some important cases. We consider a received word

r = c+ e ∈ Fnqm ,

where c ∈ Cα,t,h,η[n, k] and e is an error word of rank weight wtR(e).
The following result implies a decoding algorithm for twisted Gabidulin codes with evalu-

ation polynomials that span a subfield of Fqm . Its basic idea is to identify the largest “gap”

139

7 Generalizations of Twisted Gabidulin Codes

∆g, i.e., number of consecutive zero entry coefficients smaller than n, of the evaluation poly-
nomials. The structure of the evaluation points implies that taking an automorphism of a
codeword corresponds to a cyclic shift (and entry-wise automorphism computations) of the
evaluation polynomial coefficients 0 to n − 1. By a suitable shift of this kind, we obtain
a codeword of a Gabidulin code of minimum distance ∆g + 1. The technique uses a simi-
lar approach as the proof of the BCH bound on the minimum distance of cyclic codes and
only depends on the particular structure of the support of the evaluation polynomials. The
parameters occurring in the statement and proof of Theorem 7.6 are illustrated in Figure 7.2.

Theorem 7.6. Let t,h,α,η be chosen as in Definition 7.1 such that t1 < · · · < t` and the
evaluation points span a subfield of Fqm, say 〈α1, . . . , αn〉Fq = Fqn ≤ Fqm. For i = 0, . . . , `+1,
we define

δi =


k − 1, if i = 0,
k − 1 + ti, if 1 ≤ i ≤ `,
n, if i = `+ 1.

Furthermore, let ∆g = max{δi − δi−1 − 1 : i = 1, . . . , ` + 1} and choose δ := δi for some i
with δi − δi−1 − 1 = ∆g. For a received word r = c+ e ∈ Fnqm with c ∈ Cα,t,h,η[n, k], we have

σn−δ(c) ∈ CG[n, n−∆g] and (7.4)

wtR
(
σn−δ(e)

)
= wtR(e), (7.5)

where CG[n, n−∆g] is the Gabidulin code of dimension n−∆g with evaluation points α. In
particular, we can correct up to ∆g/2 errors by decoding σn−δ(r) in CG[n, n−∆g].

Proof. First note that that σn−δ(·) : Fqm → Fqm is a bijective Fq-linear map. Hence, it
does not change the rank of e, which proves (7.5). In order to show (7.4), we consider
c ∈ Cα,t,h,η[n, k], which corresponds to an evaluation polynomial

f =
k−1∑
j=0

fjx
j +

∑̀
j=1

ηjfhjx
k−1+tj .

Thus, we have ci = f(αi) for all i = 1, . . . , n. We can write the components of σn−δ(c) as

σn−δ(ci) = σn−δ(f(αi)) =
(
xn−δ · f

)
(αi) =

(
xn−δ · f modrM〈α1,...,αn〉

)
(αi).

The polynomial xn−δ · f has a support (i.e., set of indices of non-zero coefficients)

supp
(
xn−δ · f

)
⊆ n− δ + {0, . . . , k − 1, k − 1 + t1, . . . , k − 1 + t`}

= {n− δ, n− δ + 1, . . . , n− δ + δ0, n− δ + δ1, . . . , n− δ + δ`} .

Since the αi span a subspace Fqn , we haveM〈α1,...,αn〉 = xn− 1, so taking a skew polynomial
moduloM〈α1,...,αn〉 results in reducing each element of its support modulo n. This implies

supp
(
xn−δ · f modrM〈α1,...,αn〉

)
⊆ {δi − δ, . . . , δ` − δ, n− δ + 1, . . . , n− δ + δ0, n− δ + δ1, . . . , n− δ + δi−1} ,

140

7.3 A Suboptimal Decoder

so the degree of the evaluation polynomial corresponding to σn−δ(c) is

deg
(
xn−δ · f modrM〈α1,...,αn〉

)
≤ n− δ + δi−1 = n−∆g − 1,

which proves that σn−δ(c) ∈ CG[n, n−∆g].

∆gδ0 = k − 1 δ1 δ = δ2 δ3 δ4 = n

∆g

f →
(
xn−δ · f

)
modr x

n − 1 (cyclic right shift by n− δ and
application of σn−δ to coefficients)

Figure 7.2: Illustration of the parameters δ0, . . . , δ`+1, δ, and ∆g, as well as the cyclic shift of
the evaluation polynomials, in Theorem 7.6. Here, we use the example n = 20,
k = 7, ` = 3, t = [3, 9, 11], and h = [1, 5, 4].

Theorem 7.6 implies a simple decoding strategy, outlined in Algorithm 22, and the following
two statements about the achievable decoding radius. The first statement is more general,
but uses a BMD decoder for decoding in the Gabidulin code CG[n, n − ∆g]. The second
statement holds for the MRD codes constructed in Section 7.2, and achieves a significantly
larger decoding radius.

Algorithm 22: Decoder for twisted Gabidulin codes Cα,t,h,η[n, k]
Input: Received word r ∈ Fnqm and δ,∆g as in Theorem 7.6
Output: Codeword c ∈ Cα,t,h,η[n, k] with minimal wtR(r − c) or “decoding failure”

1 r′ ← σn−δ(r)
2 c′ ← Decode r′ in CG[n, n−∆g] over Fqm // cf. Corollary 7.7 and 7.8
3 if decoder returned “decoding failure” then
4 return “decoding failure”
5 else
6 return σ−(n−δ)(c′)

141

7 Generalizations of Twisted Gabidulin Codes

Corollary 7.7. Let t,h,α,η be chosen as in Definition 7.1 such that the evaluation points
span a subfield of Fqm. Then, we can correct up to

τ = n− k − `
2(`+ 1) ≈

d

2(`+ 1) , with d = n− k + 1,

errors using Algorithm 22 in combination with a BMD decoder (cf. Section 5.1). The resulting
complexity is O∼(nmax{log2(3),min{ω+1

2 ,1.635}}) in operations over Fqm.

Proof. Consider the notation in Theorem 7.6. Since the δi divide the interval [k, n − 1] into
`+ 1 sub-intervals, the pigeonhole principle implies that we must have (`+ 1)∆g + ` ≥ n− k,
so ∆g ≥ n−k−`

`+1 . The code CG[n, n−∆g] can correct up to ∆g/2 errors, which gives the claim.
The complexity statement follows from the results in Chapter 5.

Corollary 7.8. Let t,h be chosen as in Definition 7.1 and α,η as in Theorem 7.3 such
that the evaluation points span a subfield Fqn ≤ Fqm with extension degree h = [Fqm : Fqn]
(note that h ≥ 2`). Then, the code CG[n, n − ∆g] as in Theorem 7.6 can be interpreted as
an interleaved Gabidulin code of interleaving degree h, and an error word e ∈ Fnqm of rank
weight t corresponds to t errors in the error model for vertically interleaved Gabidulin codes.
This implies that for a random error e ∈ Fqm of rank weight t, the received word σn−δ(r)

as in Theorem 7.6 can be corrected if

t < τ := h
h+1∆g,

with probability at least
1− 3.5q−n[(2`+1)(τ−t)+1],

which is ≥ 1− 4
qn for t < τ . The algorithm can be implemented in

O
(
min

{
h3Mqm(n) log(n), hn2

})
operations over Fqn.

Proof. We choose a basis B = [β1, . . . , βh] of Fqm over Fqn such that any element fi ∈ Fqm
can be uniquely written as fi =

∑h
µ=1 fi,µβµ, where fi,µ ∈ Fqn . Since the αi span a subfield

Fqn , the components of a codeword c ∈ CG[n, n−∆g] over Fqm can be written as

ci = f(αi) =
n−∆g−1∑
j=0

fjσ
j(αi) =

n−∆g−1∑
j=0

 h∑
µ=1

fj,µβµ

σj(αi) =
h∑
µ=1

βµ

n−∆g−1∑
j=0

fj,µσ
j(αi)

 ,
where the

∑n−∆g−1
j=0 fj,µσ

j(αi) are entries of a codeword in the Gabidulin code CG[n, n−∆g]
over the small field Fqn . Hence, we can interpret CG[n, n−∆g] over Fqm as an h-interleaved
Gabidulin code over Fqn . Since the error e ∈ Fqm is chosen at random of rank weight t, so is
σn−δ(e) since σn−δ(·) is a bijective rank-preserving mapping on Fqm . By expanding the error
σn−δ(e) into a matrix of dimension m × n using a basis of Fqm over Fq, we obtain an error
matrix Ev of rank t corresponding to t errors in the vertically interleaved error model.
Using Loidreau’s decoding algorithm [LO06] or the adaption of the algorithm by Sidorenko,

Jiang, and Bossert [SB10, SJB11] to the vertically interleaved error model in [Wac13, Sec-
tion 4.1], we obtain the claimed decoding radius and failure probability.

142

7.4 Inequivalence to Other MRD Codes

The complexity follows by the results in Chapter 6. Note that since the αi span a sub-field,
their minimal subspace polynomial is of the form xn− 1, so we can apply the skew-variant of
Rosenkilde’s demand-driven algorithm (Algorithm 19 on page 129).

Remark 7.9. The partial decoder implied by Corollary 7.8 has decoding radius

τ ≥ 2`

2` + 1
n− k − `
`+ 1 = 2`

2` + 1

(
d

`+ 1 − 1
)
, with d = n− k + 1.

For ` = 1, 2, 3, this is 2
3(d2 − 1) ≈ d

3 ,
4
5(d3 − 1), and 8

9(d4 − 1). For large `, we get τ ≈ d
`+1 − 1.

7.4 Inequivalence to Other MRD Codes
The σ-sum of Evaluation Codes

It was observed in [HM17] that a linear code C[n, k] is a Gabidulin code with respect to an
automorphism σ if and only if it fulfills dim(C ∩ σ(C)) = k − 1. Note that, for k < n, the
latter condition implies

dim(C + σ(C)) = k + 1,

which is a well-known property of Gabidulin codes and, e.g., is utilized to attack McEliece-like
cryptosystems based on Gabidulin codes, cf. Section 7.5. Inspired by these observations, we
consider the following notion in this section.

Definition 7.10. Let C ⊆ Fnqm be a linear code and σ ∈ Gal(Fqm/Fq). The σ-sum of C is the
subspace

C + σ(C) ⊆ Fnqm .

We denote the dimension of the σ-sum by σ-sum dimension.

The following lemma implies that the σ-sum dimension of a linear code C is invariant under
equivalence. We use the σ-sum for twisted Gabidulin codes analogously to the Schur square
for twisted RS codes in Hamming metric (cf. Section 4.5 and Section 4.6), e.g., to show
inequivalence of codes in rank metric.

Lemma 7.11. Let C, C′ ⊆ Fnqm be two linear codes that are equivalent w.r.t. the rank metric.
Then, we have

dim(C + σ(C)) = dim
(
C′ + σ(C′)

)
for any automorphism σ ∈ Gal(Fqm/Fq).

Proof. Since C and C′ are equivalent, by Definition 2.15 there is an automorphism σ′ ∈
Gal(Fqm/Fq) and a matrix A ∈ GLn(Fq) such that2

C′ = σ′(C)A.

Since σ′(·)A : Fqm → Fqm is a vector space isomorphism on Fqm , we know the following:

σ′(C + σ(C))A = σ′(C)A+ σ′(σ(C))A = σ′(C)A+ σ
(
σ′(C)A

)
= C′ + σ(C′).

This implies the claim.
2In Definition 2.15, C is also multiplied by λ ∈ F∗qm . This is not needed here since C, C are linear over Fqm .

143

7 Generalizations of Twisted Gabidulin Codes

In order to apply Lemma 7.11 to an evaluation code C, we need to easily compute σ(C) for
any automorphism σ. The following statement shows that σ(C) is also an evaluation code
and how its evaluation polynomials are connected to those of C.

Lemma 7.12. Let α ∈ Fnqm with linearly independent entries, V ⊆ Fqm [x;σ]<n be an Fqm-
subspace of evaluation polynomials, where σ is a generator of Gal(Fqm/Fq), and define the
evaluation code C = evα(V). Furthermore, let σi ∈ Gal(Fqm/Fq) for some i ∈ N0 (i.e., any
automorphism in the group). Then, the code σi(C) is an evaluation code with evaluation
points α and evaluation polynomials

V ′ =
{
xif modrM〈α1,...,αn〉 : f ∈ V

}
=
{
σi(f)xi modrM〈α1,...,αn〉 : f ∈ V

}
⊆ Fqm [x;σ]<n.

In particular, if V is generated by g1, . . . , gk ∈ V, then V ′ is also an Fqm-subspace of Fqm [x;σ]<n
that is generated by the σi(gj)xi modrM〈α1,...,αn〉 for j = 1, . . . , k.

Proof. For f ∈ Fqm [x;σ], we have

σi(f(αj)) = (xi · f)(αj) = (σi(f)xi)(αj) = (σi(f)xi modrM〈α1,...,αn〉)(αj).

Let V be generated by g1, . . . , gk ∈ V and f ∈ V. Then, there are β1, . . . , βk ∈ Fqm such that
f =

∑k
µ=1 βµgµ and we have

σi(f)xi = σi
(k∑
µ=1

βµgµ
)
xi =

k∑
µ=1

σi(βµ)σi(gµ)xi.

Due to σi(βµ) ∈ Fqm , the evaluation polynomial space of C′ is generated by the polynomials
σi(gµ)xi modrM〈α1,...,αn〉.

Remark 7.13. If the αi span a subfield of Fqm, then the minimal subspace polynomial
M〈α1,...,αn〉 is of the form xn− 1. Thus, for a polynomial f of degree less than n, the polyno-
mial xif modrM〈α1,...,αn〉 is a cyclic shift of its coefficients, where the automorphism σi is
applied to its coefficients.

The following lemma shows how the sum of two linear evaluation codes is connected to the
sum of their evaluation polynomial spaces.

Lemma 7.14. Let α ∈ Fqm with linearly independent entries, V,V ′ ⊆ Fqm [x;σ]<n be two
Fqm-subspaces, and define the evaluation codes C = evα(V) and C′ = evα(V ′). Then, the sum
of C and C′ is also an evaluation code with

C + C′ = evα(V + V ′).

Proof. This holds since evα(·) : Fqm [x;σ]<n → Fnqm is a vector space isomorphism.

σ-sum of Known MRD Codes

Theorem 7.15. Let k < n and CG[n, k] be a Gabidulin code defined over the skew polynomial
ring Fqm [x;σ] with automorphism σ. Then,

dim(CG + σ(CG)) = k + 1.

144

7.4 Inequivalence to Other MRD Codes

Proof. We know that CG = evα(V), where V = 〈x0, x1, . . . , xk−1〉 ⊆ Fqm [x;σ]<n. Further-
more, the evaluation polynomial space of σ(CG) is given by V ′ = 〈x1, . . . , xk〉 ⊆ Fqm [x;σ]<n
(note that we require k < n). Thus, V + V ′ = 〈x0, . . . , xk〉, and the claim follows by
Lemma 7.14.

Theorem 7.16. Let k < n − 1, η ∈ Fqm \ {0}, α ∈ Fnqm with linearly independent entries,
and Cα,1,0,η[n, k] be one of Sheekey’s twisted Gabidulin codes defined over the skew polynomial
ring Fqm [x;σ] with automorphism σ. Then,

dim(Cα,1,0,η + σ(Cα,1,0,η)) = k + 2.

Proof. The evaluation polynomials of Cα,1,0,η are given by V = 〈x1, . . . , xk−1, ηxk + x0〉. Fur-
thermore, σ(Cα,1,0,η) is obtained by evaluating V ′ = 〈x2, . . . , xk, σ(η)xk+1 + x〉 ⊆ Fqm [x;σ]<n
(note that we require k < n− 1). Due to (ηxk + x0)− ηxk = x0, we have

V + V ′ = 〈x0, . . . , xk, σ(η)xk+1 + x〉,

which implies the claim using Lemma 7.14.

Inequivalence of Some Twisted Gabidulin Codes to Known MRD Codes

Theorem 7.17. Let 4 < k < n − 4, ` = 1, t = [t] with 2 < t < n − k − 1, h = [h] with
1 < h < k − 2, and η = [η] with η 6= 0. Furthermore, let α ∈ Fqm such that the αi are
a basis of a subfield Fqn ≤ Fqm. Let σ ∈ Gal(Fqm/Fq) be a generator of the Galois group.
Then, the corresponding twisted Gabdiulin code Cα,t,h,η[n, k] over Fqm [x;σ], is not equivalent
to any Gabidulin code or Sheekey twisted Gabidulin code (t = [1] and h = [0]) defined over
an arbitrary automorphism σ′ ∈ Gal(Fqm/Fq) that is not the identity map.

Proof. Since σ is a generator of the Galois group, we can write σ′ = σi for some integer i.
We show that

dim
(
Cα,t,h,η[n, k] + σi

(
Cα,t,h,η[n, k]

))
≥ k + 3 (7.6)

for all i = 1, . . . , n − 1, which proves the claim. Since the αi form a subfield of Fqm , the
unique evaluation polynomials of degree at most n− 1, say Vi, of σi(Cα,t,h,η[n, k]) are cyclic
shifts of the ones, say V, of Cα,t,h,η[n, k] by i positions, where σi is applied to all coefficients,
cf. Remark 7.13.
By symmetry, a shift by i gives the same dimension as a shift by n − i, so it suffices to

consider only those shifts by i = 1, . . . , d(n− 1)/2e. We distinguish the following cases:

• Case i ≥ 4: The evaluation polynomial set V contains skew polynomials of degrees

D = {0, . . . , k − 1} \ {h},

which are k−1 distinct ones. Due to 4 ≤ i ≤ n/2, n−k ≥ 5, and n ≥ 10 (this is implied
by 4 < k < n− 4), there are polynomials of at least four distinct degrees ≥ k in Vi:
– Three monomials and (σi(η)xi+k−1+t + xh+i) modr x

n − 1 if k − 1 < i+ h < n or
– four monomials otherwise.

145

7 Generalizations of Twisted Gabidulin Codes

In total, there are polynomials of at least (k− 1) + 4 = k+ 3 distinct degrees in V +Vi,
so we have

dim(V + Vi) ≥ k + 3.

• Case i = 3: The set Vi contains polynomials of at least three distinct degrees ≥ k, i.e.,

Di = {k, k + 1, k + 2}, if t ≥ n− k − 3, and
D′i = {k + 1, k + 2, k − 1 + t}, if t < n− k − 3 (due to h < k − 2).

Furthermore, the set V contains all monomials of degree D = {0, . . . , k − 1} \ {h}, as
well as the polynomial g = ηxk−1+t + xh.
– For t > 3, the degree of g is neither contained in Di nor in D′i, so in total, there

are polynomials of k + 3 distinct degrees in V + Vi.
– For t = 3, we have xk+2 ∈ Vi, so g−ηxk−2 = xh ∈ V+Vi, which means that V+Vi

contain polynomials of k + 3 distinct degrees.

• Case i ∈ {1, 2}: The sets V and Vi contain polynomials of degrees

D =
(
{0, . . . , k − 1} \ {h}

)
∪ {k − 1 + t}, and

Di =
(
{i, . . . , i+ k − 1} \ {i+ h}

)
∪ {i+ k − 1 + t},

respectively (note that t ≤ n− k − 2 implies i+ k − 1 + t < n). Due to 1 < h < k − 2
and t > 2, we have 1 < h < i+ h < k and k − 1 + t > k + 1, which gives

|D ∪Di| = |{0, . . . , k − 1 + i, k − 1 + t, k − 1 + t+ i}| ≥ k + 3.

In total, we have dim(V + Vi) ≥ k + 3 for all i = 1, . . . , n− 1, which implies the claim using
Lemma 7.14.

Remark 7.18. The conditions on t and h in Theorem 7.17 are sufficient but not necessary
for (7.6) to hold. However, for fixed n and k, there are at most 4 values of t and 4 values of
h, i.e., at most 16 pairs, that do not fulfill them. Hence, most twisted Gabidulin codes with
one twist (` = 1) are inequivalent to both Gabidulin and Sheekey’s twisted Gabidulin codes.
It is technical but straightforward to generalize the statement of Theorem 7.17 to certain

codes with multiple twists ` > 1.
In any case (i.e., also if the evaluation points are arbitrary), Theorem 7.17 provides a

powerful tool to prove inequivalence of a twisted Gabidulin code to Gabidulin or Sheekey’s
twisted Gabidulin codes in polynomial time.

The following example shows that there are twisted Gabidulin codes with [t, h] 6= [1, 0] that
have σ-sum dimension k + 2 for a suitable automorphism σ.

Example 7.19. Consider 3 < k < n− 4, h = k− 2, t = 2, and i = 2: In this case, V and Vi
are spanned by the polynomials

B =
{
x0, . . . , xk−3, xk−1, ηxk+1 + xk−2

}
, and

Bi =
{
x2, . . . , xk−1, xk+1, σ2(ηxk+3) + xk

}
,

146

7.5 Twisted Gabidulin Codes in the GPT Cryptosystem

respectively. Hence, the basis elements x2, . . . , xk−3, xk−1, ηxk+1 +xk−2 of V are all contained
in Vi, and we have

dim(V + Vi) = k + 2.

It is an open problem whether this code is equivalent to one of Sheekey’s twisted Gabidulin
codes with σ′ = σ2.

7.5 Twisted Gabidulin Codes in the GPT Cryptosystem
In 1991, Gabidulin, Paramonov, and Tretjakov proposed the GPT cryptosystem [GPT91],
which can be seen as the rank-metric analog of the McEliece cryptosystem and uses Gabidulin
codes. Since the general decoding problem in rank metric appears to be much harder than its
Hamming-metric analog, the system has the potential to achieve significantly smaller key sizes
than the McEliece cryptosystem at the same security level. Since its invention, many efficient
attacks on the system have been found, e.g., [Gib95, Gib96, Ove05, Ove06, Ove08]. There are
also several repairs of the systems and corresponding modifications of the mentioned attacks.

The most prominent structural attack is the polynomial-time method by Overbeck [Ove08],
which is based on the fact that for a Gabidulin code CG[n, k] defined over Fqm [x;σ], the
dimension of the sum

Υi(CG) = CG + σ(CG) + · · ·+ σi(CG)

is dim(Υi(CG)) = min{k+i, n}. This also distinguishes a Gabidulin code from a random code
C[n, k], which fulfills dim(Υi(C)) = min{2k, n} with high probability, cf. [Ove08]. Note the
analogy to the Schur square dimension distinguisher for Reed–Solomon codes in [CGGU+14].
Using similar arguments as in the previous section, we obtain an upper bound on the sum’s

dimension dim(Υi(Cα,t,h,η[n, k])) of a twisted Gabidulin code with ` twists as follows:

dim
(
Υi(Cα,t,h,η[n, k])

)
≤ min{k + (`+ 1)i, n}.

Hence, we would need at least ` ≈ k twists in order to protect a twisted Gabidulin code
against this distinguisher, resulting in codes over huge fields compared to their length. A few
twists might nevertheless make the Overbeck attack infeasible for some parameters, which
should be studied further.

7.6 Concluding Remarks
In this chapter, we have presented a generalization of Sheekey’s twisted Gabidulin codes,
where we added ` additional monomials to the low-degree evaluation polynomials. We have
shown that the new code class contains MRD codes of length 2−`m over the field Fqm .
We have proposed a partial decoder that is able to decode these MRD codes up to one third

of their minimum distance, d/3, for ` = 1, but only up to d/(`+1) for `→∞. Hence, finding
an algorithm for decoding up to or beyond half-the-minimum distance is an open problem.
Supposedly, such an algorithm must utilize the algebraic structure of the evaluation codes,
similar to the decoder for Sheekey’s twisted Gabidulin codes in [RR17].
Furthermore, we have studied the σ-sums of twisted Gabidulin codes, which can be used as

a tool—analog to the Schur square dimension of twisted RS codes—to determine whether a

147

7 Generalizations of Twisted Gabidulin Codes

code is equivalent to a Gabidulin or Sheekey’s twisted Gabidulin code in polynomial time in
the code length. We have used the σ-sum to show inequivalence of a large subclass of twisted
Gabidulin codes to the latter classes. Since Gabidulin and Sheekey’s twisted Gabidulin codes
are—to the best of our knowledge—the only known classes of MRD codes that are linear and
exist for more than a few parameters, this result is of fundamental theoretical interest.
Both Schur squares of twisted RS codes and the σ-sums of twisted Gabidulin codes serve

as tools for showing inequivalence to other code classes, as well as distinguishers in cryptosys-
tems, for the respective code classes. It is worth mentioning that the σ-sum is more powerful
in both scenarios: The equivalence proofs are not restricted to low-rate codes (in contrast to
arguments based on the Schur square). Moreover, one needs many more twists in order to
hide a twisted Gabidulin code from the σ-sum distinguisher than a twisted RS code from the
Schur square dimension distinguisher.
Finding subfamilies of MRD twisted Gabidulin codes of length n = m, other than Sheekey’s

codes, is an open problem. Since for twisted RS codes, we know two choices of the twist and
hook vectors resulting in long MDS codes (cf. Section 4.7), where one case is the Hamming-
metric analog of Sheekey’s codes, a first idea would be to study the second parameter choice
(i.e., the (+)-twisted codes) in the rank metric.
Moreover, the new twisted Gabidulin codes should be further analyzed in the context

of the GPT cryptosystem. If they were used in the original GPT cryptosystem without
modification, the codes would be vulnerable to Overbeck-like structural attacks, as discussed
in Section 7.5. However, the codes might work well with modifications of the system, such as
Loidreau’s recent proposal [Loi16].
It is also an open question whether twisted Gabidulin codes can be used in other applica-

tions. Since they contain codes inequivalent to Gabidulin codes, we might obtain more degrees
of freedom when constructing Ferrers diagram codes based on MRD codes, cf. [EGRW16].
Furthermore, we should analyze space-time codes based on twisted Gabidulin codes using the
constructions in [GBL00, BGL02, LFT02, LGB03, PSBF16].

148

8
Conclusion

In this dissertation, we have covered constructions and decoders of evaluation codes,
both in Hamming and rank metric. In the Hamming-metric part, the studied codes are
interleaved Reed–Solomon, interleaved one-point Hermitian, and the new twisted Reed–
Solomon codes. The considered rank-metric codes are Gabidulin, interleaved Gabidulin,

and the new generalizations of twisted Gabidulin codes. Although the codes are defined over
different metrics, their methods of construction and decoding closely resemble each other.
In Chapter 3, we have proposed new decoders for interleaved Reed–Solomon and interleaved

one-point Hermitian codes by combining the ideas of several known algorithms (cf. Figure 3.2
on page 27). As all comparable algorithms, the new decoders are partial, i.e., fail for some
codewords above half the minimum distance. While we do not have an analytic expression for
the failure probability yet, various simulation results indicate that the new decoders achieve
the derived maximal decoding radii. For the IRS decoder, this radius attains the same value
as the previous-best algorithms, but at a better complexity due the missing root-finding step.
In case of IH codes, the radius improves upon all known decoders.
In Chapter 4, we have constructed a new class of codes designed for the Hamming metric:

Twisted RS codes. The code construction is inspired by Sheekey’s rank-metric twisted Gabi-
dulin codes, and is obtained from an RS code by adding ` many additional monomials to
the evaluation polynomials whose coefficients depend on the k lowest coefficients. By choos-
ing the evaluation points in a suitable way, we have given a large constructive subclass of
MDS codes containing rather short codes, as well as two smaller subclasses containing “long”
codes of length approximately half the field size. We have proposed a decoder based on RS
decoders that is efficient for small ` and showed that certain subclasses of twisted RS codes
are closed under duality. Furthermore, we have studied the Schur squares of the new codes,
which revealed that many twisted RS codes are inequivalent to RS codes and that certain
subclasses of twisted RS codes are resistant against some known structural attacks on the
McEliece cryptosystem based on RS codes.
In the rank-metric part, we have first studied half-the-minimum-distance decoding of Gabi-

dulin codes in Chapter 5. We have recalled the known decoder by Wachter-Zeh, Afanassiev,
and Sidorenko, whose runtime is directly determined by the cost of the skew polynomial op-
erations multiplication, division, multi-point evaluation, interpolation and minimal subspace
polynomial computation. By accelerating these operations to sub-quadratic time in their
input size (cf. Table 5.1 on page 98), independent of the field size, we have obtained the first
decoder for Gabidulin codes of sub-quadratic runtime in the code length.
In Chapter 6, we have shown that the main steps of several known algorithms for decoding

149

8 Conclusion

interleaved Gabidulin codes, both key-equation- (cf. Table A.1) and interpolation-based, can
be solved by row reduction of certain skew polynomial matrices. The approach continues the
development of a unified row-reduction-based description of decoding algorithms by several
recent works that have shown analogous results for many decoders of Reed–Solomon and
one-point Hermitian codes. We have adapted several row reduction algorithms from ordinary
polynomial rings to skew polynomials and in this way obtained simple, general, and in some
cases faster (cf. Table 6.1 on page 133) algorithms.

In Chapter 7, we have proposed a generalization of Sheekey’s twisted Gabidulin codes, ana-
log to the construction of the twisted RS codes in Chapter 4. By giving a constructive subclass
of MRD codes and showing that many of these codes are inequivalent to both Gabidulin and
Sheekey’s twisted Gabidulin codes, we have found a new class of MRD codes.
Open research problems have been given in the conclusion section of each chapter.

150

A
Appendices

A.1 Efficiently Decoding Interleaved Reed–Solomon and
One-Point Hermitian Codes

We discuss the following problem and argue that, under certain conditions, Problem 3.9
(over F = Fq) and Problem 3.34 (over F = Fq2), are instances of it. The problem is a slight
generalization of the “2D key equation problem” in [Nie13b, Section 2.5], where the latter is
obtained by setting I ′ = I in the problem statement.

Problem A.1. Let I,J be index sets and I ′ ⊆ I be a non-empty subset. Furthermore, let
ν, ηi, wj ∈ N0, Si,j ∈ F[x] and Gj ∈ F[x] for all i ∈ I and j ∈ J . Find λi, ψj ∈ F[x] for i ∈ I
and j ∈ J , not all zero, such that∑

i∈I
λiSi,j ≡ ψj mod Gj ∀ j ∈ J , (A.1)

ν deg λi + ηi < max
i∈I′
{ν deg λi + ηi} ∀ i ∈ I, (A.2)

ν degψj + wj < max
i∈I′
{ν deg λi + ηi} ∀ j ∈ J , (A.3)

and minimal maxi∈I′{ν deg λi + ηi}.

Let i1, . . . , i|I| and j1, . . . , j|J | be ordered lists of the elements in I and J , respectively.
Any solution [λi1 , . . . , λi|I| , ψj1 , . . . , ψj|J |] of the problem is in the row space of the following
F[x]-module basis:

M =



1 Si1,j1 . . . Si1,j|J |
. . .

...
. . .

...
1 Si|I|,j1 . . . Si|I|,j|J |

Gi1
. . .

Gi|J |


Similar to the Fqm [x;σ]-module definitions in Section 2.3.2, we say that an F[x]-module

basis is in weak Popov form if the leading positions of its rows, i.e., the right-most position
of a maximal degree element in one row, are distinct. By the same arguments as in [Nie13b,

151

A Appendices

Section 2.5], we thus obtain a solution of Problem A.1 by transforming the matrix

M ′ =



1 Si1,j1(xν) . . . Si1,j|J |(x
ν)

. . .
...

. . .
...

1 Si|I|,j1(xν) . . . Si|I|,j|J |(x
ν)

Gi1(xν)
. . .

Gi|J |(xν)


·



xηi1

. . .

x
ηi|I|

xwj1

. . .

x
wj|J |


(A.4)

into weak Popov form and extracting the row of minimal degree among all rows of leading
positions in I ′. Such a row has the form

[λi1(xν)xηi1 , . . . , λi|I|(x
ν)xηi|I| , ψj1(xν)xwj1 , . . . , ψj|J |(x

ν)xwj|J |],

where in each polynomial the indeterminate is replaced by x 7→ xν and the degrees are shifted
by [ηi1 , . . . , ηi|I| , wj1 , . . . , wj|J |]. Thus, we can easily compute the λi and ψj from it. The
complexity is determined by well-known algorithms for transforming F[x]-matrices into weak
Popov form, see e.g. [MS03, GJV03, Ale05, Nie13a, Nie13b]. The asymptotically fastest one,
[GJV03], on the above input problem has asymptotic complexity

O∼
(
(|I|+ |J |)ω ν−1 maxdeg(M ′)

)
.

We therefore obtain the following complexities for solving Problem 3.9 and Problem 3.34,
respectively.

Solving Problem 3.9 (Interleaved Reed–Solomon Codes) Efficiently
Theorem A.2. Consider Problem 3.9 on page 31 with input s ≤ `, Ai,j ∈ Fq[x] for all
i ∈ I := {i ∈ Nh0 : 0 ≤ |i| < s} and j ∈ J := {j ∈ Nh0 : 1 ≤ |j| ≤ `} as in (3.3), and
G ∈ Fq[x] as in Definition 3.1.
Let T = sn. Then, λi, ψj for i ∈ I and j ∈ J is a minimal solution of Problem 3.9 if and

only if it is a minimal solution with monic λ0 of Problem A.1 with input

Si,j = Ai,j ,

Gj =
{
xT+|j|(n−1)+1, if |j| < s,

Gs, else,

ηi =
{

1 + `(k − 1), if i = 0,
|i|+ `(k − 1), else,

wj = (`− |j|)(k − 1)
ν = 1,
I ′ = {0},

for all i ∈ I and j ∈ J . In this case, Problem A.1 can be solved in

O∼
((h+`

h

)ω
`n
)

operations over Fq, where ω is the matrix multiplication exponent.

152

A.1 Efficiently Decoding Interleaved Reed–Solomon and One-Point Hermitian Codes

Proof. The degree restrictions (3.6) and (3.7) coincide with (A.2) and (A.3). Note that
`(k − 1) is added to all degree “shifts” of Problem A.1 in order to make them non-negative.
For |j| ≥ s, also the congruence (3.5) coincides with (A.1).

The only point in which the two problems differ is the equality (3.4), which is a congruence
modulo GT+|j|(n−1)+1 for |j| < s in (A.1). We show that a minimal solution is not affected
by this modification. It is clear that Problem 3.9 has a solution of degree at most T : Take
an arbitrary codeword and construct the solution corresponding to its error locator, which
has degree at most n, so the corresponding solution has degree ≤ sn = T . Thus, a minimal
solution fulfills deg λi ≤ T + |i| and

deg
(∑
i∈I

λiAi,j
)
≤ T + |j|(n− 1) < deg

(
xT+|j|(n−1)+1

)
.

Since also degψj ≤ T + |j|(k− 1) ≤ T + |j|(n− 1), taking (3.4) modulo GT+|j|(n−1)+1 has no
effect, which proves that the minimal solutions of the two problems are the same.
As for the complexity, the matrixM ′ as in (A.4) has maximal degree maxdegM ′ ∈ O(`n)

and |I|, |J | ∈ O(
(h+`
h

)
) (cf. Lemma 3.15 on page 33), which implies the complexity statement.

Solving Problem 3.34 (Interleaved One-Point Hermitian Codes) Efficiently
Theorem A.3. Consider Problem 3.34 on page 43 with input `, s ∈ N with s ≤ `, R, G ∈ R
as in Section 3.2.1, and

A(i,j) := µ(Ai,j)Ξ = µ
((j
i

)
Rj−iG|i|

)
Ξ ∈ Fq2 [x]q×q

for all i ∈ I := {i ∈ Nh0 : 0 ≤ |i| < s} and j ∈ J := {j ∈ Nh0 : 1 ≤ |j| ≤ `}.
Let T = sn + g. Then, λi,ι, ψj,κ ∈ Fq2 [x] for [i, ι] ∈ I := {[i, ι] : i ∈ I, ι ∈ [q)},

[j, κ] ∈ J := {[j, κ] : j ∈ J , κ ∈ [q)} is a minimal solution of Problem 3.34 if and only if it
is a solution of Problem A.1 with input

S[i,ι],[j,κ] = A(i,j)
ι,κ ,

G[j,κ] =

xd
T+|j|(n+2g−1)+1

q
e
, if |j| < s,

Gs, else,

ηi =
{
`mH − |i|(2g − 1) + ι(q + 1) + 1, if [i, ι] ∈ I ′,
`mH − |i|(2g − 1) + ι(q + 1), else,

wj = (`− |j|)mH + κ(q + 1)
ν = q,

I ′ = {[i, ι] ∈ I : i = 0},

for all [i, ι] ∈ I and [j, κ] ∈ J . In this case, Problem 3.34 can be solved in

O∼
((h+`

h

)ω
`n

ω+2
3
)

operations over Fq2, where ω is the matrix multiplication exponent.

153

A Appendices

Proof. By definition, the congruences for |j| ≥ s and all degree restrictions of the two prob-
lems agree. It is only left to show that for a minimal solution of either of the problem, we
have

ψj,κ =
∑

[i,ι]∈I
λi,ιA

(i,j)
ι,κ ⇔ ψj,κ ≡

∑
[i,ι]∈I

λi,ιA
(i,j)
ι,κ mod x

dT+|j|(n+2g−1)+1
q

e

for any [j, κ] ∈ J with 1 ≤ |j| < s.
Problem 3.34 has a solution of degree ≤ T since any codeword corresponds to an error

locator of multiplicity s of degree at most degH Λ(s) ≤ sn+ g = T , which gives a solution of
the problem by Theorem 3.33. Hence, there are λi ∈ R with [λi,0, . . . , λi,q−1] = ν(λi) and

degH
(∑
i∈I

λiAi,j
)
≤ T + |j|(n+ 2g − 1).

Since
∑

[i,ι]∈I λi,ιA
(i,j)
ι,κ is the κth component of the vector representation of

∑
i∈I λiAi,j , we

must have
deg

(∑
[i,ι]∈I

λi,ιA
(i,j)
ι,κ

)
≤ T+|j|(n+2g−1)

q ∀ [j, κ] ∈ J .

Since also degψj,κ ≤ T+|j|mH
q , the modulo reduction does not influence the equality in case

of a minimal solution.
Turning to complexity, the matrixM ′ as in (A.4) has maximal degree maxdegM ′ ∈ O(`n)

and |I|, |J | ∈ O(q
(h+`
h

)
) (cf. Lemma 3.15 on page 33). Thus, the problem can be solved in

O∼
((
q
(h+`
h

))ω
q−1`n

)
⊆ O∼

((h+`
h

)ω
`n

ω+2
3
)

operations over Fq2 .

A.2 Proof of Theorem 4.21 (Schur Squares of Shortened Codes)
Proof of Theorem 4.21 on page 67. As in the proof of Theorem 4.18, we first show that the
hook and twist parameters are well-defined.

• Due to ` < 2n
k − 2, we have r > k

2 + % > 0. Hence, hi > 0, ti ≥ 2(r − %) − k + % > 0,
and the ti are distinct.
• Due to n+1

k−
√
n
− 2 < ` and ` <

√
n− 2− %, we have n+1

k−(`+2+%) <
n+1
k−
√
n
< `+ 2, and

hi ≤ r − 1 + ` ≤ n+1
`+2 + %+ ` < k.

• By ` <
√
n− 2− %, we have `2 + (4 + %)`+ 3 + 2% ≤ (`+ 2 + %)2 < n, so n+1

`+2 + 1 ≤ n−%
`+1 ,

and

ti ≤ (`+ 1)(r − %)− k + % ≤ (`+ 1)(n+1
`+2 + 1)− k + % ≤ (`+ 1)n−%`+1 − k + % = n− k.

Hence, the hi and ti are valid parameters by Definition 4.1.
Since shortening at one position i reduces the Schur square dimension by at least 1, it suffices

to show the claim only for %′ = %. Shortening an evaluation code at positions I ⊆ {1, . . . , n}

154

A.2 Proof of Theorem 4.21 (Schur Squares of Shortened Codes)

of cardinality |I| = % means to take only those evaluation polynomials in Pn,kt,h,η that vanish on
I, and to evaluate them at all points αi with i /∈ I. We first prove that this set of evaluation
polynomials, say P ′, contains the degrees

S′ := {%, %+ 1, . . . , r − 1} ∪ {(i+ 1)(r − %)− 1 : i = 1, . . . , `} .

The original set of evaluation polynomials Pn,kt,h,η contains 〈1, x, . . . , x%−1〉 = Fq[x]<%, as well as
polynomials of degrees S′ (cf. the arguments in the proof of Theorem 4.18). Take a polynomial
of the latter kind, say f . By Lagrange interpolation, there is a polynomial g ∈ Fq[x]<% that
evaluates to the same values as f at all shortened evaluation points αi with i ∈ I. Hence,
f − g vanishes at these αi, has the same degree as f , and is contained in P ′.

Next, we prove that the evaluation polynomial set of Schur square of the shortened code
contains polynomials of degrees

D′ = {2%, . . . , n− 1 + %} .

The argument is illustrated in Figure A.1. We distinguish the following cases:

• By multiplying the polynomials of degrees %, %+ 1, . . . , r − 1 with the one of degree %,
we obtain polynomials of degrees

D′−1 := {2%, . . . , r + %− 1}.

• By multiplying the polynomials of degrees %, %+1, . . . , r−1 with the one of degree r−1,
we obtain polynomials of degrees

D′0 := {r + %− 1, . . . , 2r − 2︸ ︷︷ ︸
=2(r−%)−2+2%

}.

• For i = 1, . . . , `, by multiplying the polynomials of degrees %, % + 1, . . . , r − 1 with the
one of degree (i+ 1)(r − %)− 1 + %, we obtain polynomials of degrees

D′i := {(i+ 1)(r − %)− 1 + 2%, . . . , (i+ 1)(r − %)− 1 + %− r − 1︸ ︷︷ ︸
=((i+1)+1)(r−%)−2+2%

}.

Hence, the evaluation polynomials of the Schur square code contain polynomials of degrees

⋃̀
i=−1

D′i = {2%, . . . , (`+ 2)(r − %)− 2 + 2%}.

By definition of r, we have (`+ 2)(r − %)− 2 ≥ n− 1, so D′ ⊆
⋃`
i=−1D

′
i.

Consider the shortened evaluation point vector α′ ∈ Fn−%q consisting only of the αi with
i /∈ I. Due to αi 6= 0, the polynomial

∏
i/∈I(x − αi) has a constant term, which implies that

the evaluation map of the evα′(·) : 〈xj , . . . , xj+n−%〉 → Fn−%q is bijective for any j ∈ N0, in
particular for j = 2%. Hence, the Schur square dimension of C′ is dim(C′2) ≥ |D′| = n − %,
which implies the claim.

1As in Figure 4.5, these values are chosen for didactic reasons and do not fulfill (4.7) or (4.8).

155

A Appendices

% degrees

r − % degrees
{%, . . . , r − 1}

D′−1

D′0

D′1 . . .

Figure A.1: Illustration of the proof of Theorem 4.21 for the example1 n = 26, k = 10, % = 2,
` = 3, r = 7. The integers in D′ = {2%, . . . , n − 1 + %} appear as evaluation
polynomial degrees in ∪`i=−1D

′
i.

A.3 Optimal Multiplication of Skew Polynomials of Degree m
The algorithms in Section 5.2 are all based on a fast skew polynomial multiplication algorithm.
Therefore, it is an important question whether the multiplication algorithm in Section 5.2.1
can be accelerated and what the minimal cost of such an algorithm can be.
In this section, we answer both questions for the case when the polynomials have degree

less than s = m: By combining the connection of skew polynomial and matrix multiplication
observed in [Wac13, Section 3.1.3] and our fast σ-transformation algorithm in Section 5.2.5,
we obtain a lower bound on the cost of a multiplication algorithm in Fqm [x;σ]<m, as well as
an algorithm that achieves this optimal complexity.

A.3.1 Relation of Skew Polynomial and Matrix Multiplication

In the following, we recall the connection of linearized polynomial and matrix multiplication
from [Wac13, Section 3.1.3] and phrase it in skew polynomial language. The first lemma im-
plies that there is a bijection between the set of skew polynomials of degree < m, Fqm [x;σ]<m,
and the set of Fq-linear maps Fqm → Fqm , EndFq(Fqm), given by mapping a polynomial to its
evaluation map.

Lemma A.4. Let a, b ∈ Fqm [x;σ]. Then, their evaluation maps a(·), b(·) : Fqm → Fqm are
the same if and only if a ≡ b modr(xm − 1).

Proof. Suppose that the evaluation maps are the same. Then, (a − b) modr(xm − 1) is a
skew polynomial of degree less than n that vanishes at all elements of the field Fqm , which
implies (a − b) modr(xm − 1) = 0, i.e., a ≡ b modr(xm − 1). The other direction follows
from (xm − 1)(·) = 0.

156

A.3 Optimal Multiplication of Skew Polynomials of Degree m

If two skew polynomials are multiplied modulo xm − 1, denoted by · modr(xm−1), this cor-
responds to a composition of their evaluation maps, i.e.,

((a · b) modr(xm − 1))(·) = (a · b)(·) = a(b(·)) = a(·) ◦ b(·).

Let B be a basis of Fqm over Fq and denote by [ψ]BB the matrix representation of a linear map
ψ ∈ EndFq(Fqm) with respect to B. Then, the composition of two linear maps corresponds
to a multiplication of their matrix representations, i.e., [a(·) ◦ b(·)]BB = [a(·)]BB · [b(·)]BB. This
implies the following statement.

Lemma A.5. Let B be a basis of Fqm over Fq. Then, the mapping

ϕB :
(
Fqm [x;σ]<m, · modr(xm−1)

)
→
(
Fm×mq , ·

)
, a 7→ [a(·)]BB

is a monoid isomorphism.

Lemma A.5 implies that skew polynomial multiplication modulo xm − 1 and matrix mul-
tiplication in Fm×mq are equivalent. If there is a fast implementation of the mapping ϕB and
its inverse ϕ−1

B , the operations can be efficiently reduced to each other. The following lemma
shows how this can be accomplished.

Lemma A.6. Let B be a basis of Fqm over Fq, a ∈ Fqm [x;σ]<m, and A ∈ Fm×mq .

• If B is a normal basis, then ϕB(a) or ϕ−1
B (A) can be computed by a σ-transform or an

inverse σ-transform, respectively.
• Otherwise, ϕB(a) or ϕ−1

B (A) can be computed by a σ-transform or an inverse σ-transform,
respectively, plus two matrix multiplications in Fm×mq .

Proof. We can obtain ϕB(a) of a skew polynomial a ∈ Fqm [x;σ]<m by evaluating a at the m
elements of B and representing the result in the basis B. Computationally, this is a multi-
point evaluation, or a σ-transform if B is a normal basis. Accordingly, the inverse ϕ−1

B consists
of an interpolation, or an inverse σ-transform in case of a normal basis.
If B is not a normal basis, we choose a normal basis B′ and compute ϕB(a) using the

(precomputed) change of basis matrices T BB′ (from B′ to B) and T B
′
B by

ϕB(a) = [a(·)]BB = T BB′ · [a(·)]B
′

B′ · T
B′
B = T BB′ · ϕB′(a) · T B′B .

Thus, ϕB′(a) can be obtained by a σ-transform, and ϕB(a) by two further matrix multiplica-
tions. The case ϕ−1

B (A) works analogously.

A.3.2 Faster Implementation of a Known Multiplication Algorithm
The observations of the previous subsection show that skew polynomial multiplication modulo
xm − 1 can be implemented using a few matrix multiplications and (inverse) σ-transforms.
This was already observed in [Wac13, Section 3.1.3], where the σ-transforms were the bot-
tleneck operations due to the lack of efficient algorithms. Our fast (inverse) σ-transform in
Section 5.2.5, together with the fast bases of Fqm over Fq by Couveignes and Lercier [CL09],
implies the following speed-up.

157

A Appendices

Theorem A.7. Using the σ-transform as described in Theorem 5.17 and the Fq-bases of Fqm
in [CL09], multiplication of a, b ∈ Fqm [x;σ]<m modulo xm − 1 can be implemented in O(mω)
operations over Fq.

Proof. Since ϕB is a monoid isomorphism, we can compute c = a · b modr(xm − 1) by

c = ϕ−1
B (ϕB(a) · ϕB(b)) .

By Lemma A.6, computing c costs seven matrix multiplications, two σ-transforms and one
inverse σ-transform. The fast σ-transform algorithm in Theorem 5.17 costs O∼(m) operations
over Fqm , and, using the fast bases from [CL09], in total O∼(m2) operations over Fq. If the
fast basis is not normal2, each (inverse) σ-transform requires another multiplication with a
change of basis matrix from the left in order to represent the result in a normal basis. Hence,
the algorithm’s complexity is dominated by the matrix multiplications, which cost O(mω)
operations over Fq.

Remark A.8. The proof of Theorem A.7 implies that any multi-point evaluation and inter-
polation w.r.t. a basis of Fqm can be computed in O∼(mω) operations over Fq.

The algorithm implied by Theorem A.7 is a multiplication algorithm for skew polynomials
of degree s < m/2 since the result of their multiplication has degree < m and is not affected by
the modulo operation. For polynomials of higher degree, we need to apply the following trick:
Let s = µ ·m/2 for some integer µ ≥ 1 and a, b ∈ Fqm [x;σ]<s. If we fragment a and b into µ
polynomials of degree < m/2, we can compute c = a ·b by pairwise multiplying the fragments
(µ2 many multiplications in Fqm [x;σ]<m/2) and adding the results (which is negligible since
we know the overlapping positions). This costs O

(
max

{
s2mω−2,mω

})
operations over Fq.

Remark A.9. Using the bases in [CL09], the skew polynomial multiplication algorithm in
Section 5.2.1 (i.e., the Fqm [x;σ]-analog of [Wac13, Algorithm 3.1]) can be implemented in
O∼(msmin{ω+1

2 ,1.635}) operations over Fq. The algorithm described in this section is faster for

max
{
m

ω−1
1.635 ,m2ω−1

ω+1
}
< s < min

{
m2,m

3−ω
0.365

}
,

e.g., m0.8152 < s < m1.7096 for the Coppersmith–Winograd exponent ω ≈ 2.376 [CW90]. In
addition, the constant hidden by the O-notation might be smaller since matrices of dimension
m×m are multiplied (instead of ≈

√
s many

√
s×
√
s matrices in Section 5.2.1).

A.3.3 Optimality of the Multiplication Algorithm
In the following, we prove the optimality of the algorithm in Theorem A.7. If the basis in
which we represent elements of Fqm is a normal basis, then we can implement matrix multi-
plication in Fm×mq using one σ-transform, two inverse σ-transforms, and a skew polynomial
multiplication modulo xm − 1, cf. Lemma A.6. If in addition, the normal basis admits quasi-
linear operations over Fq, then the (inverse) σ-transforms cost O∼(m2) using Algorithm 11
and Algorithm 12. Hence, the skew polynomial multiplication becomes the bottleneck, which
implies the following statement.

2In [CL09], two classes of bases with quasi-linear operations are presented, one of which contains only normal
bases. However, these so-called elliptic normal bases do not exist for all extensions Fqm/Fq.

158

A.4 Key Equations Solvable with the MgLSSR Problem

Lemma A.10. Let q and m be such that there is a normal basis of Fqm over Fq in which
field operations3 cost O∼(m) over Fq. Then, the multiplication of two matrices from Fm×mq

can be implemented in
O(mω) ⊆ O

(
M(Fq)

qm (m)
)

operations over Fq, where M(Fq)
qm (m) is the cost of an algorithm for multiplication of skew

polynomials in Fqm [x;σ]<m (in operations over Fq).

The so-called elliptic normal bases introduced by Couveignes and Lercier [CL09] fulfill both
assumptions of Lemma A.10: They are normal bases that admit quasi-linear field operations.
Although such bases do not exist for all field extensions Fqm/Fq, the following is directly
implied by the statements in [CL09].

Lemma A.11. Let (mi)i∈N be a sequence of positive integers mi ∈ N with mi → ∞ for
i → ∞. Then, there is a sequence of prime powers (qi)i∈N such that there is an elliptic
normal basis of Fqmii over Fqi.

Proof. Take an arbitrary sequence of prime powers (q̃i)i∈N. By [CL09, Section 5.2], there is
a positive integer fi ∈ O(log2(mi)(log log(mi))2) such that there is an elliptic normal basis of
Fqmii over Fqi , where qi = q̃fii .

Now suppose that, similar to the matrix multiplication exponent ω, there is a constant
γ ≥ 2 such that we have Mqm(m) ∈ Θ(mγ), independent of the ground field Fq. Then,
Lemma A.10 and Lemma A.11 directly imply that we must have

ω ≤ γ.

Hence, the the algorithm for skew polynomial multiplication in Section A.3.2 is optimal

Remark A.12. If we use the fast bases by Couveignes and Lercier [CL09], then the multipli-
cation algorithm in Section 5.2.1 (i.e., the Fqm [x;σ]-analog of [Wac13, Algorithm 3.1]) costs
at most O∼(m

ω+1
2 +1) = O∼(m

ω+3
2) operations over Fq, and differs from the lower cost bound

by a factor m
3−ω

2 . Note that this only holds for s = m.

The arguments in this section imply that ifMqm(s) ∈ O∼(s), then there would be a quasi-
quadratic matrix multiplication algorithm in the cases where an elliptic normal basis of Fqm
over Fq exists. Hence, finding a quasi-linear skew polynomial multiplication algorithm is at
least as hard as proving that there is a quasi-quadratic time matrix multiplication algorithm.

A.4 Key Equations Solvable with the MgLSSR Problem
Table A.1 gives an overview of key equations for decoding (interleaved) Gabidulin codes,
both with and without erasures, that can be solved by the MgLSSR problem (Problem 6.3).
A similar table for the well-studied F[x]-analog of Problem 6.3 can be found in [Nie13b,
Table 2.1].

3I.e., multiplication, addition, and computing inverses.

159

A Appendices
Table

A
.1:Selection

ofkey
equations

solvable
by

the
M
gLSSR

problem
(Problem

6.3),both
for

decoding
G
abidulin

(h
=

1)
and

interleaved
G
abidulin

(h
≥

1)
codes.

For
each

key
equation,w

e
give

the
input

variables
(h
∈
N
,
r
i ,g

i ∈
F
q
m

[x;σ],and
γ

0 ,γ
i ∈

N
0
for

i=
1
,...,h),output

variables
(λ
,ω

i ∈
F
q
m

[x;σ]),the
param

eter
µ
(for

com
plexity

m
easurem

ent),and
further

restrictions.
Variables

are
nam

ed
as

in
their

respective
sources.

M
ost

key
equations

in
the

literature
are

w
ritten

in
linearized

polynom
iallanguage

(σ
=
· q),but

m
ight

be
generalized

to
arbitrary

skew
polynom

ials
straightforw

ardly.
K
ey

Equation
h

r
i

g
i

γ
0

γ
i

λ
ω
i

µ
=

m
in
i {
γ
i +

deg
g
i }

R
estriction

[G
ab85]

1
S(x)

x
d−

1
0

0
∆

(x)
F

(x)
d
−

1
≤
n

σ
=
· q

[SK
K
08,

T
heorem

12]
(error-erasure

decod-
ing)

1
S
D
U (x)

x
d−

1
δ

+
µ

0
σ
F (x)

ω(x)
d
−

1
+
δ

+
µ
≤
n

σ
=
· q

[W
ac13,

T
heorem

3.5]
(row

-space
syndrom

e
key

equation)

1
s̃(x)

x
n−

k
0

0
Γ(x)

Φ
(x)

n
−
k
≤
n

σ
=
· q

[W
ac13,

T
heorem

3.6]
and

[W
A
S13]

(“G
ao-

like”
decoding)

1
r̂(x)

M
G (x)

k
0

Λ
(x)

Λ
(f(x))

n
+
k
≤

2
n

σ
=
· q

[W
ac13,

T
heorem

3.8]
(error-erasure

decod-
ing)

1
Λ

(R
)(r̂(Γ

(C
)(x

γ)))
x
m
−

1
k

+
%

+
γ

0
Λ

(E
)

Λ
(E

)(Λ
(R

)(f(Γ
(C

)(x
γ))))

m
+
k

+
%

+
γ
≤

2n
σ

=
· q

and
α

1 ,...,α
n

norm
al

basis
ofF

q
m

Lem
m
a

5.1
(skew

-
polynom

ial
variant

of
[W

A
S13,W

ac13])

1
R

G
k

0
Λ

Λ
f

n
+
k
≤

2
n

-

[SB
10,

SJB
11]

(poly-
nom

ial
notation

as
in

[SW
C
12])

≥
1

s (i)(x)
x
n−

k
i

0
0

σ(x)
ω

(i)(x)
m

ax
i {n
−
k
i }
≤
n

σ
=
· q

and
horizontally
interleaved
codes

[W
ac13,

Section
4.1]

(row
-space

variant
of

[SB
10,SJB

11])

≥
1

s̃ (i)(x)
x
n−

k
(i)

0
0

Γ
Φ

(i)(x)
m

ax
i {n
−
k

(i)}
≤
n

σ
=
· q

and
vertically
interleaved
codes

Lem
m
a
6.1

≥
1

R
i

G
m

ax
j {
k
j }

m
ax

j {k
j }
−
k
i

Λ
Λ
f
i

≤
n

+
m

ax
j {
k
j }
≤

2
n

horizontally
interleaved
codes

160

B
List of Symbols and Acronyms

The following is a list of symbols and acronyms that are commonly used inside this disserta-
tion. We refrain from listing symbols that only appear close to their definitions. Due to the
similarity of their meanings, some symbols are used for multiple notions (e.g., the evaluation
points of Reed–Solomon and Gabidulin codes are both called αi). Thus, we list some symbols
by chapter.

Global Notions

Acronyms

AG Algebraic Geometry
BCH Bose–Chaudhuri–Hocquenghem
BMD Bounded Minimum Distance
GRS Generalized Reed–Solomon
IH Interleaved (one-point) Hermitian
IRS Interleaved Reed–Solomon
MDS Maximum Distance Separable
MgLSSR Multi-Sequence generalized Linear Skew-Feedback Shift Register
MPE Multi-Point Evaluation
MRD Maximum Rank Distance
MSP Minimal Subspace Polynomial
RS Reed–Solomon
wPf weak Popov form

Algebraic Notation

F, K, L Fields
Fq and Fqm Finite fields of cardinality q and qm (q prime power, m ∈ N)
L/K Field extension
[L : K] Extension degree of a field extension L/K
Gal(L/K) Galois group of a field extension L/K
·q Frobenius automorphism ·q : Fqm → Fqm , α 7→ αq

K[x] Univariate polynomial ring over K
K[x1, . . . , xn] Multivariate polynomial ring over K

161

B List of Symbols and Acronyms

Codes
n Code length
M Cardinality of a code
k Dimension of a linear code
d Minimum distance (w.r.t. the given metric)
d(·, ·) Metric d(·, ·) : Fn × Fn → R≥0
C(n,M) Code of length n and cardinality M
C(n,M, d) Code of length n, cardinality M , and minimum distance d
C[n, k] Linear code of length n and dimension k
C[n, k, d] Linear code of length n, dimension k, and minimum distance d
evα(P) Evaluation code with eval. polynomials P, eval. points α, cf. Def. 2.2
G Generator matrix
H Parity-check matrix
CRS[n, k] Reed–Solomon code
C(n,mH)

H One-point Hermitian code
CIRS(n, k1, . . . , kh;h) Interleaved Reed–Solomon code (CIRS(n, k;h) if homogeneous)
CIH(n,mH1, . . . ,mHh;h) Interleaved one-point Hermitian code (CIH(n,mH;h) if homogeneous)
CG[n, k] Gabidulin code
CIG(n, k1, . . . , kh;h) Interleaved Gabidulin code
CTG[n, k] (Sheekey’s) Twisted Gabidulin code

Skew Polynomials

Fqm [x;σ] Skew polynomials over Fqm w.r.t. σ ∈ Gal(Fqm/Fq), cf. Def. 2.16
Fqm [x;σ]≤s,Fqm [x;σ]<s Skew polynomials of degree at most/smaller than s
LC(f), LT(f) leading coefficient/term of a skew polynomial f
f(·) Evaluation map of a skew polynomial f , cf. Section 2.3.1
roots(f) Root space of a skew polynomial f
MU Minimal subspace polynomial of a subspace U ⊆ Fqm , cf. Theorem 2.23
I{[xi,yi]}si=1

Interpolation polynomial (∈ Fqm [x;σ]), cf. Theorem 2.24
·̂ σ-transform, cf. Definition 2.25

Symbols by Chapter

Chapter 3: Improved Power Decoding of Interleaved Codes in Hamming Metric

General

h Interleaving degree h ∈ N
`, s Parameters of the decoders
E Set of error positions, cf. Section 2.2.3
R Code rate R = k

n of the (homogenenous) interleaved code
|i| Length of a vector |i| =

∑h
µ=1 iµ, cf. Definition 3.4

i � j Product partial order, cf. Definition 3.4
ai =

∏m
µ=1 a

iµ
µ , cf. Definition 3.4

162

Interleaved Reed–Solomon Codes

f Message polynomial vector f ∈ Fq[x]h<k, cf. Section 3.1.1
R Interpolation polynomial vector R ∈ Fq[x]h, cf. Definition 3.1
G =

∏n
i=1(x− αi) ∈ Fq[x], cf. Definition 3.1

Λ Error locator polynomial, cf. Definition 3.2
Ω Vector of error evaluator polynomials, see below Definition 3.2
Ψj = Λsf j , cf. (3.3)
Λi = Λs−|i|Ωi, cf. (3.3)
Ai,j =

(j
i

)
Rj−iG|i|, cf. (3.3)

Interleaved One-Point Hermitian Codes

H Hermitian curve
P1, . . . , Pq3 , P∞ Points on the Hermitian curve (P∞ point at infinity)
tP Local parameter in a point P on the curve
vP Discrete valuation in a point P on the curve
L(D) Riemann–Roch space of a divisor D
R Ring R = L(∞P∞), isomorphic to the set of bivariate polynomials of

y-degree < q with multiplication modulo the curve equation
degH Degree of polynomials in R
f Message polynomial vector f ∈ L(mHP∞)h, cf. Section 3.2.1
R Interpolation polynomial vector R ∈ Rh, cf. Section 3.2.1
G =

∏
α∈Fq2 (x− α) = xq

2 − x ∈ R, cf. Section 3.2.1
Λ(s) Error locator polynomial of multiplicity s, cf. Definition 3.25
Ωs,i Polynomial in R, see below Lemma 3.28
Ψj = Λ(s)f j , cf. (3.16)
Λi = Ωs,i, cf. (3.16)
Ai,j =

(j
i

)
Rj−iG|i|, cf. (3.16)

[q) = {0, . . . , q − 1}

Chapter 4: Twisted Reed–Solomon Codes

` Number of twists ` ∈ N
t Twist vector t ∈ N` with distinct entries 1 ≤ ti ≤ n− k
h Hook vector h ∈ N`0 with entries 0 ≤ hi < k
η Vector of factors in the twist coefficients η ∈ (Fq \ {0})`
α Evaluation points α ∈ Fnq with distinct entries
Pn,kt,h,η [k, t,h,η]-twisted polynomials, cf. Definition 4.1
Cα,t,h,η[n, k] [α, t,h,η]-twisted Reed–Solomon code, cf. Definition 4.1
Sk,h,t Degrees of the polynomials in Pn,kt,h,η, cf. Theorem 4.16
D(V) = {deg(f · g) : f, g ∈ V}, where V ⊆ Fq[x], cf. Definition 4.13
D(V)<n = {d ∈ D(V) : d < n}, where V ⊆ Fq[x], cf. Definition 4.13

163

B List of Symbols and Acronyms

Chapter 5: Fast Decoding of Gabidulin Codes

s Input size of a polynomial operation (e.g., degree)
Mqm(s) Complexity of multiplication in Fqm [x;σ], cf. Definition 5.6
Dqm(s) Complexity of division in Fqm [x;σ], cf. Definition 5.6
MSPqm(s) Complexity of computing minimal subspace polynomials, cf. Def. 5.6
MPEqm(s) Complexity of multi-point evaluation in Fqm [x;σ], cf. Definition 5.6
Iqm(s) Complexity of interpolation in Fqm [x;σ], cf. Definition 5.6
MPEqm(s) Complexity of the (inverse) σ-transformn in Fqm [x;σ], cf. Def. 5.6

Chapter 6: Decoding Interleaved Gabidulin Codes Using Row Reduction

h Interleaving degree h ∈ N
Eh Error matrix (∈ Fm×hnq) of vertically int. Gabidulin codes, cf. (2.6)
Ev Error matrix (∈ Fhm×nq) of horizontally int. Gabidulin codes, cf. (2.5)
r1, . . . , rh, g1, . . . , gh Skew Polynomials in the MgLSSR problem, cf. Problem 6.3
γ0, . . . , γh Degree shifts (∈ N0) in the MgLSSR problem, cf. Problem 6.3
λ, ω1, . . . , ωh Solution (∈ Fqm [x;σ]) of the MgLSSR problem, cf. Problem 6.3
µ Input size µ = mini{γi+deg gi} of the MgLSSR problem, cf. Prob. 6.3
M(M) Module containing the MgLSSR problem solution, cf. Equation 6.3
M (M) Basis of the moduleM(M), cf. Lemma 6.4
w(M) Shift vector for solving the MgLSSR problem, cf. Lemma 6.5
Q0, . . . , Qh Solution (∈ Fqm [x;σ]) of the interpolation step, cf. Problem 6.8
M(I) Module containing the interpolation step solutions, cf. Equation 6.9
M (I) Basis of the moduleM(I), cf. Lemma 6.9
w(I) Shift vector for solving the interpolation step, cf. Lemma 6.10
ψ Value function of a skew polynomial vector or matrix, cf. Def. 6.14
∆(V) Orthogonality defect of a matrix V ∈ GLr(Fqm [x;σ]), cf. Def. 6.22
|v|, |v|, |V | Length of a skew polynomial v, vector v, or matrix V , cf. Def. 6.30
v|t,v|t,V |t Accuracy approximation to depth t ∈ N0 of a skew polynomial v,

vector v, or matrix V , cf. Definition 6.30
deg v,degV Degree of a skew polynomial vector v or matrix V , cf. Definition 2.27
maxdegV Maximal degree of a matrix V , cf. Definition 2.27
LP(v) Leading position of a vector v, cf. Definition 2.27
LT(v) Leading term of a vector v, cf. Definition 2.27
GLr(Fqm [x;σ]) Set of full-rank matrices in Fqm [x;σ]r×r
w (Degree) Shift vector w ∈ Nr0
Φw Shift mapping Φw : Fqm [x;σ]r×r → Fqm [x;σ]r×r, cf. Section 2.3.2
LPw(v) Shifted leading position, cf. Section 2.3.2
degw(v) Shifted degree, cf. Section 2.3.2

164

Chapter 7: Generalizations of Twisted Gabidulin Codes
` Number of twists ` ∈ N
t Twist vector t ∈ N` with distinct entries 1 ≤ ti ≤ n− k
h Hook vector h ∈ N`0 with entries 0 ≤ hi < k
η Vector of factors in the twist coefficients η ∈ (Fqm \ {0})`
α Evaluation points α ∈ Fnqm with Fq-linearly independent entries
Pn,kt,h,η [k, t,h,η]-twisted skew polynomials, cf. Definition 7.1
Cα,t,h,η[n, k] [α, t,h,η]-twisted Gabidulin code, cf. Definition 7.1

165

Bibliography

References

[AB01] Sergei A. Abramov and Manuel Bronstein. On Solutions of Linear Functional
Systems. In International Symposium on Symbolic and Algebraic Computation,
pages 1–6, New York, NY, USA, 2001.

[AH74] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edition, 1974.

[AL69] H Althaus and R Leake. Inverse of a Finite-Field Vandermonde Matrix (Cor-
resp.). IEEE Transactions on Information Theory, 15(1):173–173, 1969.

[Ale05] Michael Alekhnovich. Linear Diophantine Equations Over Polynomials and Soft
Decoding of Reed–Solomon Codes. IEEE Transactions on Information Theory,
51(7):2257–2265, July 2005.

[ALR13] Daniel Augot, Pierre Loidreau, and Gwezheneg Robert. Rank Metric and Gabi-
dulin Codes in Characteristic Zero. In IEEE International Symposium on In-
formation Theory, 2013.

[ALR17] Daniel Augot, Pierre Loidreau, and Gwezheneg Robert. Generalized Gabidulin
Codes Over Fields of Any Characteristic. Designs, Codes and Cryptography, Oct
2017.

[Anv04] H Peter Anvin. The Mathematics of RAID-6, 2004. http://kernel.org/pub/
linux/kernel/people/hpa/raid6.pdf.

[Arm08] Marc A Armand. Interleaved Reed–Solomon Codes Versus Interleaved Hermitian
Codes. IEEE Communications Letters, 12(10), 2008.

[Art91] Michael Artin. Algebra. Prentice Hall, 1991.

[BB10] Peter Beelen and Kristian Brander. Key Equations for List Decoding of Reed–
Solomon Codes and How to Solve Them. Journal of Symbolic Computation,
45(7):773–786, 2010.

[BB11] Morgan Barbier and Pauolo S. L.M̃. Barreto. Key Reduction of McEliece’s
Cryptosystem Using List Decoding. In IEEE International Symposium on In-
formation Theory, July 2011.

[BCL06] Bernhard Beckermann, Howard Cheng, and George Labahn. Fraction-Free Row
Reduction of Matrices of Ore Polynomials. Journal of Symbolic Computation,
41(5):513–543, 2006.

167

http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf
http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf

Bibliography

[Ber03] Thierry P Berger. Isometries for Rank Distance and Permutation Group of
Gabidulin Codes. IEEE Transactions on Information Theory, 49(11):3016–3019,
2003.

[Ber15] Elwyn R Berlekamp. Algebraic Coding Theory. World Scientific Publishing Co,
2015.

[BGL02] Martin Bossert, Ernst M Gabidulin, and Paul Lusina. Space-Time Codes Based
on Gaussian Integers. In IEEE Int. Symp. Inf. Theory, 2002.

[BGM96] George A Baker and Peter Graves-Morris. Padé approximants. Cambridge
University Press, 1996.

[BGY80] Richard P Brent, Fred G Gustavson, and David YY Yun. Fast Solution of
Toeplitz Systems of Equations and Computation of Padé Approximants. Journal
of Algorithms, 1(3):259–295, 1980.

[BK78] Richard P Brent and Hsiang-Tsung Kung. Fast Algorithms for Manipulating
Formal Power Series. Journal of the ACM, 25(4):581–595, October 1978.

[BKY03] Daniel Bleichenbacher, Aggelos Kiayias, and Moti Yung. Decoding of Inter-
leaved Reed Solomon Codes Over Noisy Data. In International Colloquium on
Automata, Languages, and Programming, pages 97–108. Springer, 2003.

[BL92] Bernhard Beckermann and George Labahn. A Uniform Approach for Hermite
Padé and Simultaneous Padé Approximants and Their Matrix-Type Generaliza-
tions. Numerical Algorithms, 3(1):45–54, 1992.

[BL94] Bernhard Beckermann and George Labahn. A Uniform Approach for the Fast
Computation of Matrix-Type Padé Approximants. SIAM Journal on Matrix
Analysis and Applications, 15(3):804–823, July 1994.

[Bla79] Richard E. Blahut. Transform Techniques for Error Control Codes. IBM Journal
of Research and development, 23(3):299–315, 1979.

[Bla83] Richard E Blahut. Theory and Practice of Error Control Codes. Addison Wesley
Longman Publishing Co, 1983.

[BMS04] Andrew Brown, Lorenz Minder, and Amin Shokrollahi. Probabilistic Decoding
of Interleaved RS-Codes on the q-Ary Symmetric Channel. In IEEE Interna-
tional Symposium on Information Theory, pages 326–326, 2004.

[BMS05] Andrew Brown, Lorenz Minder, and Amin Shokrollahi. Improved Decoding of
Interleaved AG Codes. In IMA International Conference on Cryptography and
Coding, pages 37–46. Springer, 2005.

[BMVT78] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the Inherent
Intractability of Certain Coding Problems (Corresp.). IEEE Transactions on
Information Theory, 24(3):384–386, 1978.

[Bos13] Martin Bossert. Kanalcodierung. Walter de Gruyter, 2013.

168

Bibliography

[BP12] Dario Bini and Victor Pan. Polynomial and Matrix Computations: Fundamental
Algorithms. Springer Science & Business Media, 2012.

[Bra10] Kristian Brander. Interpolation and List Decoding of Algebraic Codes. PhD
thesis, Technical University of Denmark, 2010.

[BU14] Delphine Boucher and Felix Ulmer. Linear Codes Using Skew Polynomials with
Automorphisms and Derivations. Designs, Codes and Cryptography, 70(3):405–
431, 2014.

[CB04] Yuval Cassuto and Jehoshua Bruck. A Combinatorial Bound on the List Size.
Technical report, California Institute of Technology, 2004.

[CCMZ15] Ignacio Cascudo, Ronald Cramer, Diego Mirandola, and Gilles Zémor. Squares
of Random Linear Codes. IEEE Transactions on Information Theory,
61(3):1159–1173, March 2015.

[CDN15] Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Secure Multi-
party Computation and Secret Sharing. Cambridge University Press, 2015.

[CGGU+14] Alain Couvreur, Philippe Gaborit, Valérie Gauthier-Umaña, Ayoub Otmani, and
Jean-Pierre Tillich. Distinguisher-based Attacks on Public-key Cryptosystems
Using Reed–Solomon Codes. Designs, Codes and Cryptography, 73(2):641–666,
2014.

[CH00] Stephen D Cohen and Dirk Hachenberger. The Dynamics of Linearized Polyno-
mials. Proceedings of the Edinburgh Mathematical Society (Series 2), 43(01):113–
128, 2000.

[CH10] Henry Cohn and Nadia Heninger. Ideal forms of Coppersmith’s Theorem and
Guruswami–Sudan List Decoding. arXiv, 1008.1284, 2010.

[CH13] Henry Cohn and Nadia Heninger. Approximate Common Divisors via Lattices.
The Open Book Series, 1(1):271–293, 2013.

[Cha72] David Chase. Class of Algorithms for Decoding Block Codes with Channel Mea-
surement Information. IEEE Transactions on Information Theory, 18(1):170–
182, 1972.

[CJC13] George C Clark Jr and J Bibb Cain. Error-Correction Coding for Digital Com-
munications. Springer Science & Business Media, 2013.

[CJN+15] Muhammad F.̃I. Chowdhury, Claude-Pierre Jeannerod, Vincent Neiger, Éric
Schost, and Gilles Villard. Faster Algorithms for Multivariate Interpolation
with Multiplicities and Simultaneous Polynomial Approximations. IEEE Trans-
actions on Information Theory, 61(5):2370–2387, May 2015.

[CKM97] Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Converting Bases with
the Gröbner Walk. Journal of Symbolic Computation, 24(3-4):465–469, 1997.

169

Bibliography

[CL09] Jean-Marc Couveignes and Reynald Lercier. Elliptic Periods for Finite Fields.
Finite Fields and Their Applications, 15(1):1–22, 2009.

[CL17a] Xavier Caruso and Jérémy Le Borgne. A New Faster Algorithm for Factoring
Skew Polynomials Over Finite Fields. Journal of Symbolic Computation, 79:411–
443, 2017.

[CL17b] Xavier Caruso and Jérémy Le Borgne. Fast Multiplication for Skew Polynomials.
arXiv preprint arXiv:1702.01665, 2017.

[CLR+01] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al.
Introduction to Algorithms, volume 2. MIT press Cambridge, 2001.

[CMP16] Antonio Cossidente, Giuseppe Marino, and Francesco Pavese. Non-Linear Max-
imum Rank Distance Codes. Designs, Codes and Cryptography, 79(3):597–609,
2016.

[CMPZ17] Bence Csajbók, Giuseppe Marino, Olga Polverino, and Corrado Zanella. A New
Family of MRD-Codes. arXiv preprint arXiv:1707.08487, 2017.

[CMZ17] Bence Csajbók, Giuseppe Marino, and Ferdinando Zullo. New Maximum Scat-
tered Linear Sets of the Projective Line. arXiv preprint arXiv:1709.00926, 2017.

[CS98] Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the Original McEliece
Cryptosystem. In International Conference on the Theory and Application of
Cryptology and Information Security, volume 1514, pages 187–199. Springer,
1998.

[CS03] Don Coppersmith and Madhu Sudan. Reconstructing Curves in Three (and
Higher) Dimensional Space from Noisy Data. In ACM Symposium on the Theory
of Computing, 2003.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix Multiplication via Arithmetic
Progressions. Journal of symbolic computation, 9(3):251–280, 1990.

[DDKM16] Hoang Dau, Iwan Duursma, Han Mao Kiah, and Olgica Milenkovic. Repairing
Reed–Solomon Codes with Multiple Erasures. arXiv preprint arXiv:1612.01361,
2016.

[Del78] Philippe Delsarte. Bilinear Forms over a Finite Field with Applications to Cod-
ing Theory. Journal of Combinatorial Theory, Series A, 25(3):226–241, 1978.

[Die43] Jean Dieudonné. Les déterminants sur un corps non commutatif. Bulletin de la
Société Mathématique de France, 71:27–45, 1943.

[Dra83] Peter K. Draxl. Skew Fields. Cambridge University Press, 1983.

[DS17] Nicola Durante and Alessandro Siciliano. Non-Linear Maximum Rank Distance
Codes in the Cyclic Model for the Field Reduction of Finite Geometries. arXiv
preprint arXiv:1704.02110, 2017.

170

Bibliography

[EB97] Yves Edel and Jürgen Bierbauer. Twisted BCH-Codes. Journal of Combinatorial
Designs, 5(5):377–389, 1997.

[EGN+92] Ronald J Evans, John Greene, Harald Niederreiter, et al. Linearized Polynomials
and Permutation Polynomials of Finite Fields. Michigan Mathematical Journal,
39(3):405–413, 1992.

[EGRW16] Tuvi Etzion, Elisa Gorla, Alberto Ravagnani, and Antonia Wachter-Zeh. Op-
timal Ferrers Diagram Rank-Metric Codes. IEEE Transactions on Information
Theory, 62(4):1616–1630, 2016.

[ElG85] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

[FL06] Cédric Faure and Pierre Loidreau. A New Public-Key Cryptosystem Based on
the Problem of Reconstructing p-Polynomials. In Coding and Cryptography,
pages 304–315. Springer, 2006.

[FS12] Michael A Forbes and Amir Shpilka. On Identity Testing of Tensors, Low-
Rank Recovery and Compressed Sensing. In ACM Symposium on the Theory of
Computing, pages 163–172, 2012.

[FT89] Gui-Liang Feng and Kenneth K. Tzeng. A Generalized Euclidean Algorithm
for Multisequence Shift-Register Synthesis. IEEE Transactions on Information
Theory, 35(3):584–594, 1989.

[FT91] Gui-Liang Feng and Kenneth K. Tzeng. A Generalization of the Berlekamp-
Massey Algorithm for Multisequence Shift-Register Synthesis with Applica-
tions to Decoding Cyclic Codes. IEEE Transactions on Information Theory,
37(5):1274–1287, 1991.

[Gab85] Ernst M Gabidulin. Theory of Codes with Maximum Rank Distance. Problems
of Information Transmission, 21(1):3–16, 1985.

[Gab91] Ernst M Gabidulin. A Fast Matrix Decoding Algorithm for Rank-Error-
Correcting Codes. In Workshop on Algebraic Coding, pages 126–133. Springer,
1991.

[Gal68] Robert G Gallager. Information Theory and Reliable Communication, volume 2.
Springer, 1968.

[Gao03] Shuhong Gao. A New Algorithm for Decoding Reed–Solomon Codes. In Com-
munications, Information and Network Security, pages 55–68. Springer, 2003.

[GBL00] Ernst M Gabidulin, Martin Bossert, and P Lusina. Space-Time Codes Based on
Rank Codes. In IEEE International Symposium on Information Theory, page
284, 2000.

[GG99] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge university press, 1999.

171

Bibliography

[Gib95] JK Gibson. Severely Denting the Gabidulin Version of the McEliece Public Key
Cryptosystem. Designs, Codes and Cryptography, 6(1):37–45, 1995.

[Gib96] Keith Gibson. The Security of the Gabidulin Public Key Cryptosystem. In In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 212–223. Springer, 1996.

[GJV03] Pascal Giorgi, Claude-Pierre Jeannerod, and Gilles Villard. On the Complexity
of Polynomial Matrix Computations. In International Symposium on Symbolic
and Algebraic Computation, pages 135–142, 2003.

[Gly86] David G Glynn. The Non-Classical 10-Arc of PG(4, 9). Discrete Mathematics,
59(1):43–51, 1986.

[Gol49] Marcel JE Golay. Notes on Digital Coding. Proceedings of the Institute of Radio
Engineers, 37(6):657–657, 1949.

[Gop83] Valery Denisovich Goppa. Algebraico-Geometric Codes. Izvestiya: Mathematics,
21(1):75–91, 1983.

[GOT17] P. Gaborit, A. Otmani, and H. Talé Kalachi. Polynomial-Time Key Recovery
Attack on the Faure–Loidreau Scheme based on Gabidulin Codes. preprint,
April 2017. URL: https://arxiv.org/abs/1606.07760.

[GPT91] Ernst M Gabidulin, AV Paramonov, and OV Tretjakov. Ideals Over a Non-
Commutative Ring and Their Application in Cryptology. In Advances in Cryp-
tology—EUROCRYPT’91, pages 482–489. Springer, 1991.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit Codes Achieving List Decoding
Capacity: Error-Correction with Optimal Redundancy. IEEE Transactions on
Information Theory, 54(1):135–150, 2008.

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved Decoding of Reed–
Solomon and Algebraic-Geometric Codes. In IEEE Foundations of Computer
Science, pages 28–37, 1998.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved Decoding of Reed–
Solomon Codes and Algebraic-Geometric Codes. IEEE Transactions on In-
formation Theory, 45(6):1757–1767, 1999.

[GW14] Venkatesan Guruswami and Carol Wang. Explicit Rank-Metric Codes List-
Decodable with Optimal Redundancy. In International Workshop on Random-
ization and Computation, 2014. arXiv: 1311.7084.

[GX13] Venkatesan Guruswami and Chaoping Xing. List Decoding Reed–Solomon,
Algebraic-Geometric, and Gabidulin Subcodes Up to the Singleton Bound. In
ACM Symposium on the Theory of Computing, pages 843–852. ACM, 2013.

[GY08] Maximilien Gadouleau and Zhiyuan Yan. Complexity of Decoding Gabidulin
Codes. In IEEE Annual Conference on Information Science and Systems, pages
1081–1085, 2008.

172

https://arxiv.org/abs/1606.07760

Bibliography

[Ham50] Richard W Hamming. Error Detecting and Error Correcting Codes. Bell Labs
Technical Journal, 29(2):147–160, 1950.

[HM17] Anna-Lena Horlemann-Trautmann and Kyle Marshall. New Criteria for MRD
and Gabidulin Codes and Some Rank-Metric Code Constructions. Advances in
Mathematics of Communications, 11(3):533–548, 2017.

[HN99] Tom Høholdt and Rasmus Refslund Nielsen. Decoding Hermitian Codes with
Sudan’s Algorithm. In International Symposium on Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes, volume 13, pages 260–270. Springer,
1999.

[HP98] Xiaohan Huang and Victor Y Pan. Fast Rectangular Matrix Multiplication and
Applications. Journal of Complexity, 14(2):257–299, 1998.

[HS10] Yahia Hassan and Vladimir Sidorenko. Fast Recursive Linearized Feedback Shift
Register Synthesis. In International Workshop on Algebraic and Combinatorical
Coding Theory, pages 162–167, 2010.

[HTV82] H Hoeve, J Timmermans, and LJ Vries. Error Correction and Concealment in
the Compact Disc System. Origins and Successors of the Compact Disc, page 82,
1982.

[Hua51] Loo-Keng Hua. A Theorem on Matrices over a Field and its Applications. Acta
Mathematica Sinica, 1(2):109–163, 1951.

[Huf98] W Cary Huffman. Codes and Groups. Handbook of Coding Theory, 2(Part
2):1345–1440, 1998.

[HvLP98] Tom Høholdt, Jacobus H van Lint, and Ruud Pellikaan. Algebraic Geometry
Codes. Handbook of Coding Theory, 1(Part 1):871–961, 1998.

[JH04] Jørn Justesen and Tom Høholdt. A Course in Error-Correcting Codes, volume 1.
European Mathematical Society, 2004.

[Joh62] Selmer M. Johnson. A New Upper Bound for Error-Correcting Codes. IEEE
Transactions on Information Theory, 46:203–207, 1962.

[JTH04] Jørn Justesen, Christian Thommesen, and Tom Høholdt. Decoding of Concate-
nated Codes with Interleaved Outer Codes. In IEEE International Symposium
on Information Theory, pages 328–328, 2004.

[Jus76] Jørn Justesen. On the Complexity of Decoding Reed-Solomon Codes (Corresp.).
IEEE Transactions on Information Theory, 22(2):237–238, March 1976.

[Kai80] Thomas Kailath. Linear Systems. Prentice-Hall, 1980.

[Kam14] Sabine Kampf. Bounds on Collaborative Decoding of Interleaved Hermitian
Codes and Virtual Extension. Designs, Codes and Cryptography, 70(1-2):9–25,
2014.

173

Bibliography

[KG05] Alexander Kshevetskiy and Ernst Gabidulin. The New Construction of Rank
Codes. In IEEE International Symposium on Information Theory, pages 2105–
2108, 2005.

[KK08] Ralf Koetter and Frank R Kschischang. Coding for Errors and Erasures in Ran-
dom Network Coding. IEEE Transactions on Information Theory, 54(8):3579–
3591, 2008.

[KL97] V Yu Krachkovsky and Yuan Xing Lee. Decoding for Iterative Reed–Solomon
Coding Schemes. IEEE Transactions on Magnetics, 33(5):2740–2742, 1997.

[KL98] V Yu Krachkovsky and Yuan Xing Lee. Decoding of Parallel Reed–Solomon
Codes with Applications to Product and Concatenated Codes. In IEEE Inter-
national Symposium on Information Theory, page 55, 1998.

[Kop12] Swastik Kopparty. List-Decoding Multiplicity Codes. In Electronic Colloquium
on Computational Complexity, volume 19, page 2, 2012.

[KRS17] Mohamed Khochtali, Johan Rosenkilde né Nielsen, and Arne Storjohann. Popov
Form Computation for Matrices of Ore Polynomials. In International Sympo-
sium in Symbolic and Algebraic Computation, 2017.

[KZHP08] ShanXue Ke, BenSheng Zeng, WenBao Han, and Victor Y Pan. Fast Rectan-
gular Matrix Multiplication and Some Applications. Science in China Series A:
Mathematics, 51(3):389–406, 2008.

[Lan02] Serge Lang. Algebra. Springer-Verlag New York, 2002.

[Len85] Arjen K. Lenstra. Factoring Multivariate Polynomials over Finite Fields. Journal
of Computer and System Sciences, 30(2):235–246, 1985.

[LFT02] Youjian Liu, Michael P Fitz, and Oscar Yassuo Takeshita. A Rank Crite-
rion for QAM Space-Time Codes. IEEE Transactions on Information Theory,
48(12):3062–3079, 2002.

[LGB03] Paul Lusina, Ernst Gabidulin, and Martin Bossert. Maximum Rank Dis-
tance Codes as Space-Time Codes. IEEE Transactions on Information Theory,
49(10):2757–2760, 2003.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20. Cambridge
University Press, 1997.

[LO06] Pierre Loidreau and Raphael Overbeck. Decoding Rank Errors Beyond the Error
Correcting Capability. In International Workshop on Algebraic and Combina-
torical Coding Theory, pages 186–190, 2006.

[LO08] Kwankyu Lee and Michael E. O’Sullivan. List Decoding of Reed–Solomon Codes
from a Gröbner Basis Perspective. Journal of Symbolic Computation, 43(9):645
– 658, 2008.

174

Bibliography

[Loi06] Pierre Loidreau. A Welch–Berlekamp Like Algorithm for Decoding Gabidulin
Codes. In Coding and Cryptography, pages 36–45. Springer, 2006.

[Loi10] Pierre Loidreau. Designing a Rank Metric Based McEliece Cryptosystem. In
Post-Quantum Cryptography, pages 142–152, 2010.

[Loi16] Pierre Loidreau. An Evolution of GPT Cryptosystem. In Workshop on Algebraic
and Combinatorial Coding Theory, 2016.

[LRMV14] Hiram H López, Carlos Rentería-Márquez, and Rafael H Villarreal. Affine Carte-
sian Codes. Designs, Codes and Cryptography, 71(1):5–19, 2014.

[LSS14] Wenhui Li, Vladimir Sidorenko, and Danilo Silva. On Transform-Domain Error
and Erasure Correction by Gabidulin Codes. Designs, Codes and Cryptography,
73(2):571–586, 2014.

[LTZ15] Guglielmo Lunardon, Rocco Trombetti, and Yue Zhou. Generalized Twisted
Gabidulin codes. arXiv preprint arXiv:1507.07855, 2015.

[Mah12] Hessam Mahdavifar. List Decoding of Subspace Codes and Rank-Metric Codes.
PhD thesis, University of California, San Diego, 2012.

[McE78] Robert J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding
Theory. Deep Space Network Progress Report, 42(44):114–116, 1978.

[Mid11] Johannes Middeke. A Computational View on Normal Forms of Matrices of Ore
Polynomials. PhD thesis, Research Institute for Symbolic Computation (RISC),
2011.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The Theory of
Error Correcting Codes. Elsevier, 1977.

[MS03] Thom Mulders and Arne Storjohann. On Lattice Reduction for Polynomial
Matrices. Journal of Symbolic Computation, 35(4):377–401, 2003.

[MV13] Hessam Mahdavifar and Alexander Vardy. Algebraic List-Decoding of Subspace
Codes. IEEE Transactions on Information Theory, 59(12):7814–7828, 2013.

[Nat17] National Institute of Standards and Technology (NIST). Post-Quantum Cryp-
tography Standardization, 2017. URL: https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography.

[NB15] Johan S. R. Nielsen and Peter Beelen. Sub-Quadratic Decoding of One-Point
Hermitian Codes. IEEE Transactions on Information Theory, 61(6):3225–3240,
2015.

[Nie86] Harald Niederreiter. Knapsack-Type Cryptosystems and Algebraic Coding The-
ory. Problems of Control and Information Theory, 15(2):159–166, 1986.

[Nie13a] Johan S. R. Nielsen. Generalised Multi-Sequence Shift-Register Synthesis Us-
ing Module Minimisation. In IEEE International Symposium on Information
Theory, pages 882–886, 2013.

175

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Bibliography

[Nie13b] Johan S. R. Nielsen. List Decoding of Algebraic Codes. PhD thesis, Technical
University of Denmark, 2013.

[Nie14] Johan S. R. Nielsen. Power Decoding Reed–Solomon Codes up to the Johnson
Radius. In International Workshop on Algebraic and Combinatorical Coding
Theory, 2014.

[NRS17] Vincent Neiger, Johan Rosenkilde, and Eric Schost. Fast Computation of the
Roots of Polynomials Over the Ring of Power Series. In International Symposium
on Symbolic and Algebraic Computation, 2017.

[OM11] T. Onoda and K. Miwa. Hierarchized Two-Dimensional Code, Creation Method
Thereof, and Read Method Thereof, May 25 2011. EP Patent 1,916,619.

[OÖ16] Kamil Otal and Ferruh Özbudak. Explicit Construction of Some Non-Gabidulin
Linear Maximum Rank Distance Codes. Advances in Mathematics of Commu-
nications, 10(3), 2016.

[OÖ17] Kamil Otal and Ferruh Özbudak. Additive rank metric codes. IEEE Transac-
tions on Information Theory, 63(1):164–168, 2017.

[Ore33a] Øystein Ore. On a Special Class of Polynomials. Transactions of the American
Mathematical Society, 35(3):559–584, 1933.

[Ore33b] Øystein Ore. Theory of Non-Commutative Polynomials. Annals of Mathematics,
pages 480–508, 1933.

[OS06] Zach Olesh and Arne Storjohann. The Vector Rational Function Reconstruction
Problem. In Waterloo Workshop in Computer Algebra, pages 137–149, 2006.

[OS09] Raphael Overbeck and Nicolas Sendrier. Code-Based Cryptography. In Post-
Quantum Cryptography, pages 95–145. Springer, 2009.

[Ove05] Raphael Overbeck. A New Structural Attack for GPT and Variants. In Inter-
national Conference on Cryptology in Malaysia, pages 50–63. Springer, 2005.

[Ove06] Raphael Overbeck. Extending Gibson’s Attacks on the GPT Cryptosystem. In
Coding and Cryptography, pages 178–188. Springer, 2006.

[Ove07] Raphael Overbeck. Public Key Cryptography Based on Coding Theory. PhD
thesis, TU Darmstadt, 2007.

[Ove08] Raphael Overbeck. Structural Attacks for Public Key Cryptosystems Based on
Gabidulin Codes. Journal of Cryptology, 21(2):280–301, 2008.

[Par07] Farzad Parvaresh. Algebraic List-Decoding of Error-Correcting Codes. PhD
thesis, University of California, San Diego, 2007.

[Pet10] Christiane Peters. Information-Set Decoding for Linear Codes over Fq. Inter-
national Conference on Post-Quantum Cryptography, 2010:81–94, 2010.

176

Bibliography

[Pet12] Pete L. Clark. Non-Commutative Algebra. University of Georgia. http://math.
uga.edu/~pete/noncommutativealgebra.pdf, 2012.

[Pra62] Eugene Prange. The Use of Information Sets in Decoding Cyclic Codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[PS73] Michael S Paterson and Larry J Stockmeyer. On the Number of Nonscalar Mul-
tiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing,
2(1):60–66, 1973.

[PT91] AV Paramonov and OV Tretjakov. An Analogue of Berlekamp–Massey Algo-
rithm for Decoding Codes in Rank Metric. Moscow Institute of Physics and
Technology, 1991.

[PV04] Farzad Parvaresh and Alexander Vardy. Multivariate Interpolation Decoding
Beyond the Guruswami–Sudan Radius. In Allerton Conference on Communica-
tion, Control and Computing, 2004.

[PW72] William Wesley Peterson and Edward J Weldon. Error-Correcting Codes. MIT
press, 1972.

[Ran15] Hugues Randriambololona. On Products and Powers of Linear Codes Under
Componentwise Multiplication. In International Conference on Arithmetic, Ge-
ometry, Cryptography, and Coding Theory, 2015.

[RL89a] Ron M. Roth and Abraham Lempel. A Construction of Non-Reed-Solomon
Type MDS Codes. IEEE Transactions on Information Theory, 35(3):655–657,
May 1989.

[RL89b] Ron M. Roth and Abraham Lempel. On MDS Codes via Cauchy Matrices.
IEEE Transactions on Information Theory, 35(6):1314–1319, 1989.

[RL92] Ron M. Roth and Abraham Lempel. t-Sum Generators of Finite Abelian Groups.
Discrete Mathematics, 103(3):279–292, May 1992.

[Rob15a] Gwezheneg Robert. A New Constellation for Space-Time Coding. In Interna-
tional Workshop on Coding and Cryptography, 2015.

[Rob15b] Gwezheneg Robert. Codes de Gabidulin en Caractéristique Nulle. Application
au Codage Espace-Temps. PhD thesis, Université Rennes 1, 2015.

[Ros18] Johan Rosenkilde. Power Decoding Reed–Solomon Codes up to the Johnson
Radius. Advances in Mathematics of Communications, 12(1):81–106, 2018.

[Rot91] Ron M. Roth. Maximum-Rank Array Codes and their Application to Crisscross
Error Correction. IEEE Transactions on Information Theory, 37(2):328–336,
1991.

[Rot96] Ron M Roth. Tensor Codes for the Rank Metric. IEEE Transactions on Infor-
mation Theory, 42(6):2146–2157, 1996.

177

http://math.uga.edu/~pete/noncommutativealgebra.pdf
http://math.uga.edu/~pete/noncommutativealgebra.pdf

Bibliography

[Rot06] Ron Roth. Introduction to Coding Theory. Cambridge University Press, 2006.

[RP04a] Gerd Richter and Simon Plass. Error and Erasure Decoding of Rank-Codes
with a Modified Berlekamp–Massey Algorithm. ITG Fachbericht, pages 203–
210, 2004.

[RP04b] Gerd Richter and Simon Plass. Fast Decoding of Rank-Codes with Rank Er-
rors and Column Erasures. In IEEE International Symposium on Information
Theory, pages 398–398, 2004.

[RR00] Ron M. Roth and Gitit Ruckenstein. Efficient Decoding of Reed–Solomon Codes
Beyond Half the Minimum Distance. IEEE Transactions on Information Theory,
46(1):246 –257, 2000.

[RR17] Joachim Rosenthal and Tovohery Randrianarisoa. A Decoding Algorithm for
Twisted Gabidulin Codes. In IEEE International Symposium on Information
Theory, pages 2771–2774, 2017.

[RS60] Irving S Reed and Gustave Solomon. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics, 8(2):300–
304, 1960.

[RS85] Ron M Roth and Gadiel Seroussi. On Generator Matrices of MDS Codes (Cor-
resp.). IEEE Transactions on Information Theory, 31(6):826–830, 1985.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems. Communications of the
ACM, 21(2):120–126, 1978.

[RW15] Netanel Raviv and Antonia Wachter-Zeh. Some Gabidulin Codes Cannot be
List Decoded Efficiently at Any Radius. In IEEE International Symposium on
Information Theory, pages 6–10, June 2015.

[RW16] Netanel Raviv and Antonia Wachter-Zeh. Some Gabidulin Codes Cannot be List
Decoded Efficiently at Any Radius. IEEE Transactions on Information Theory,
62(4):1605–1615, 2016.

[S+] William A. Stein et al. SageMath Software. http://www.sagemath.org.

[SB10] Vladimir Sidorenko and Martin Bossert. Decoding Interleaved Gabidulin Codes
and Multisequence Linearized Shift-Register Synthesis. In IEEE International
Symposium on Information Theory, pages 1148–1152, 2010.

[SB14] Vladimir Sidorenko and Martin Bossert. Fast Skew-Feedback Shift-Register
Synthesis. Designs, Codes and Cryptography, 70(1-2):55–67, 2014.

[Seg55] Beniamino Segre. Curve Razionali Normali Ek-Archi Negli Spazi Finiti. Annali
di Matematica Pura ed Applicata, 39(1):357–379, 1955.

[Sha48] Claude Elwood Shannon. A Mathematical Theory of Communication. Bell
System Technical Journal, 27(3):379–423, 1948.

178

Bibliography

[She16] John Sheekey. A New Family of Linear Maximum Rank Distance Codes. Ad-
vances in Mathematics of Communications, pages 475–488, 2016.

[Sho99] Peter W Shor. Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer. SIAM Review, 41(2):303–332, 1999.

[Sil09] Danilo Silva. Error Control for Network Coding. PhD thesis, University of
Toronto, 2009.

[Sin64] Richard Singleton. Maximum Distance q-nary Codes. IEEE Transactions on
Information Theory, 10(2):116–118, 1964.

[SJB11] Vladimir Sidorenko, Lan Jiang, and Martin Bossert. Skew-Feedback Shift-
Register Synthesis and Decoding Interleaved Gabidulin Codes. IEEE Trans-
actions on Information Theory, 57(2):621–632, 2011.

[SK07] Danilo Silva and Frank R Kschischang. Rank-Metric Codes for Priority Encoding
Transmission with Network Coding. In Canadian Workshop on Information
Theory, pages 81–84. IEEE, 2007.

[SK09] Danilo Silva and Frank R. Kschischang. Fast Encoding and Decoding of Gabi-
dulin Codes. In IEEE International Symposium on Information Theory, pages
2858–2862, June 2009.

[SKK08] Danilo Silva, Frank R Kschischang, and Ralf Koetter. A Rank-Metric Approach
to Error Control in Random Network Coding. IEEE Transactions on Informa-
tion Theory, 54(9):3951–3967, 2008.

[SRB11] Vladimir Sidorenko, Gerd Richter, and Martin Bossert. Linearized Shift-Register
Synthesis. IEEE Transactions on Information Theory, 57(9):6025–6032, 2011.

[SRV12] Natalia Silberstein, Ankit S. Rawat, and Sriram Vishwanath. Error Resilience
in Distributed Storage via Rank-Metric Codes. In Allerton Conference on Com-
munication, Control and Computing, pages 1150–1157, October 2012.

[SS92] Vladimir M Sidelnikov and Sergey O Shestakov. On Insecurity of Cryptosys-
tems Based on Generalized Reed–Solomon Codes. Discrete Mathematics and
Applications, 2(4):439–444, 1992.

[SS11] V.R. Sidorenko and G. Schmidt. A Linear Algebraic Approach to Multisequence
Shift-Register Synthesis. Problems of Information Transmission, 47(2):149–165,
2011.

[SSB05] Georg Schmidt, Vladimir R Sidorenko, and Martin Bossert. Interleaved Reed–
Solomon Codes in Concatenated Code Designs. In IEEE Information Theory
Workshop, pages 5–pp, 2005.

[SSB06] Georg Schmidt, Vladimir Sidorenko, and Martin Bossert. Decoding Reed-
Solomon Codes Beyond Half the Minimum Distance Using Shift-register synthe-
sis. In IEEE International Symposium on Information Theory, pages 459–463.
IEEE, 2006.

179

Bibliography

[SSB07] Georg Schmidt, Vladimir Sidorenko, and Martin Bossert. Enhancing the Cor-
recting Radius of Interleaved Reed–Solomon Decoding Using Syndrome Exten-
sion Techniques. In IEEE International Symposium on Information Theory,
pages 1341–1345, 2007.

[SSB08] Vladimir Sidorenko, Georg Schmidt, and Martin Bossert. Decoding Punctured
Reed–Solomon Codes up to the Singleton Bound. In International ITG Confer-
ence on Source and Channel Coding, pages 1–6, 2008.

[SSB09] Georg Schmidt, Vladimir R Sidorenko, and Martin Bossert. Collaborative De-
coding of Interleaved Reed–Solomon Codes and Concatenated Code Designs.
IEEE Transactions on Information Theory, 55(7):2991–3012, 2009.

[SSB10] Georg Schmidt, Vladimir R Sidorenko, and Martin Bossert. Syndrome Decoding
of Reed–Solomon Codes Beyond Half the Minimum Distance Based on Shift-
Register Synthesis. IEEE Transactions on Information Theory, 56(10):5245–
5252, 2010.

[Sti88] Henning Stichtenoth. A Note on Hermitian Codes over GF (q/sup 2/). IEEE
Transactions on Information Theory, 34(5):1345–1348, 1988.

[Sti09] Henning Stichtenoth. Algebraic Function Fields and Codes, volume 254. Springer
Science & Business Media, 2009.

[Str69] Volker Strassen. Gaussian Elimination is not Optimal. Numerische Mathematik,
13(4):354–356, 1969.

[Sud97] Madhu Sudan. Decoding of Reed–Solomon Codes Beyond the Error-Correction
Bound. Journal of Complexity, 13(1):180–193, 1997.

[SW99] Mohammad Amin Shokrollahi and Hal Wasserman. List Decoding of Algebraic-
Geometric Codes. IEEE Transactions on Information Theory, 45(2):432–437,
1999.

[SWC12] Vladimir Sidorenko, Antonia Wachter-Zeh, and Di Chen. On Fast Decoding of
Interleaved Gabidulin Codes. In IEEE Problems of Redundancy in Information
and Control Systems, pages 78–83, 2012.

[Tae06] Lenny Taelman. Dieudonné Determinants for Skew Polynomial Rings. Journal
of Algebra and Its Applications, 5(01):89–93, 2006.

[VL12] Jacobus Hendricus Van Lint. Introduction to Coding Theory, volume 86.
Springer Science & Business Media, 2012.

[Wac13] Antonia Wachter-Zeh. Decoding of Block and Convolutional Codes in Rank
Metric. PhD thesis, Ulm University and University of Rennes, 2013.

[WAS13] Antonia Wachter-Zeh, Valentin Afanassiev, and Vladimir Sidorenko. Fast De-
coding of Gabidulin Codes. Designs, Codes and Cryptography, 66(1):57–73,
2013.

180

Bibliography

[WHPH87] William Wu, David Haccoun, Robert Peile, and Yasuo Hirata. Coding for
Satellite Communication. IEEE Journal on Selected Areas in Communications,
5(4):724–748, 1987.

[Wie06] Christian Wieschebrink. An Attack on a Modified Niederreiter Encryption
Scheme. In Public Key Cryptography, volume 3958, pages 14–26. Springer, 2006.

[Wie10] Christian Wieschebrink. Cryptanalysis of the Niederreiter Public Key Scheme
Based on GRS Subcodes. In International Workshop on Post-Quantum Cryp-
tography, pages 61–72. Springer, 2010.

[WL13] Baofeng Wu and Zhuojun Liu. Linearized Polynomials over Finite Fields Revis-
ited. Finite Fields and Their Applications, 22:79–100, 2013.

[WSB10] Antonia Wachter, Vladimir Sidorenko, and Martin Bossert. A Fast Linearized
Euclidean Algorithm for Decoding Gabidulin Codes. In International Workshop
on Algebraic and Combinatorical Coding Theory, pages 298–303, 2010.

[Wu08] Yingquan Wu. New List Decoding Algorithms for Reed-Solomon and BCH
Codes. IEEE Transactions on Information Theory, 54(8):3611–3630, 2008.

[WZ13] Antonia Wachter-Zeh and Alexander Zeh. Interpolation-Based Decoding of In-
terleaved Gabidulin Codes. In International Workshop on Coding and Cryptog-
raphy, pages 528–538, 2013.

[WZ14] Antonia Wachter-Zeh and Alexander Zeh. List and Unique Error-Erasure De-
coding of Interleaved Gabidulin Codes with Interpolation Techniques. Designs,
Codes and Cryptography, 73(2):547–570, 2014.

[WZB14] Antonia Wachter-Zeh, Alexander Zeh, and Martin Bossert. Decoding Interleaved
Reed–Solomon Codes Beyond Their Joint Error-Correcting Capability. Designs,
Codes and Cryptography, 71(2):261–281, 2014.

[XLYS13] H. Xie, J. Lin, Z. Yan, and B. W. Suter. Linearized Polynomial Interpolation
and Its Applications. IEEE Transactions on Signal Processing, 61(1):206–217,
January 2013.

[YK92] Kyeongcheol Yang and P Vijay Kumar. On the True Minimum Distance of
Hermitian Codes. In Coding Theory and Algebraic Geometry, pages 99–107.
Springer, 1992.

[ZGA11] A. Zeh, C. Gentner, and D. Augot. An Interpolation Procedure for List Decoding
Reed-Solomon Codes Based on Generalized Key Equations. IEEE Transactions
on Information Theory, 57(9):5946–5959, 2011.

[ZL12] Wei Zhou and George Labahn. Efficient Algorithms for Order Basis Computa-
tion. Journal of Symbolic Computation, 47(7):793–819, July 2012.

181

Bibliography

Publications Containing Parts of this Thesis

[BBPR18] Peter Beelen, Martin Bossert, Sven Puchinger, and Johan Rosenkilde né Nielsen.
Structural Properties of Twisted Reed–Solomon Codes with Applications to Code-
Based Cryptography. In IEEE International Symposium on Information Theory,
2018.

[BPR17] Peter Beelen, Sven Puchinger, and Johan Rosenkilde né Nielsen. Twisted Reed–
Solomon Codes. In IEEE International Symposium on Information Theory, 2017.

[LNPS15] Wenhui Li, Johan S.R. Nielsen, Sven Puchinger, and Vladimir Sidorenko. Solving
Shift Register Problems over Skew Polynomial Rings Using Module Minimisation.
In International Workshop on Coding and Cryptography, 2015.

[MPMB16] Sven Müelich, Sven Puchinger, David Mödinger, and Martin Bossert. An Alter-
native Decoding Method for Gabidulin Codes in Characteristic Zero. In IEEE
International Symposium on Information Theory, pages 2549–2553, 2016.

[PBR17] Sven Puchinger, Irene Bouw, and Johan Rosenkilde né Nielsen. Improved Power
Decoding of One-Point Hermitian Codes. In International Workshop on Coding
and Cryptography, 2017.

[PMM+17] Sven Puchinger, Sven Müelich, David Mödinger, Johan Rosenkilde né Nielsen,
and Martin Bossert. Decoding Interleaved Gabidulin Codes Using Alekhnovich’s
Algorithm. Electronic Notes in Discrete Mathematics, 57:175–180, 2017.

[PR17] Sven Puchinger and Johan Rosenkilde né Nielsen. Decoding of Interleaved Reed–
Solomon Codes Using Improved Power Decoding. In IEEE International Sympo-
sium on Information Theory, 2017.

[PRLS17] Sven Puchinger, Johan Rosenkilde né Nielsen, Wenhui Li, and Vladimir
Sidorenko. Row Reduction Applied to Decoding of Rank-Metric and Subspace
Codes. Designs, Codes and Cryptography, 82(1-2):389–409, 2017.

[PRS17] Sven Puchinger, Rosenkilde né Nielsen, and John Sheekey. Further Generalisa-
tions of Twisted Gabidulin Codes. In International Workshop on Coding and
Cryptography, 2017.

[PW16] Sven Puchinger and Antonia Wachter-Zeh. Sub-Quadratic Decoding of Gabidulin
Codes. In IEEE International Symposium on Information Theory, pages 2554–
2558, 2016.

[PW18] Sven Puchinger and Antonia Wachter-Zeh. Fast Operations on Linearized Polyno-
mials and their Applications in Coding Theory. Journal of Symbolic Computation,
89:194–215, 2018.

182

Bibliography

Preprints Containing Parts of this Thesis
[PRB17] Sven Puchinger, Johan Rosenkilde né Nielsen, and Irene Bouw. Improved Power

Decoding of Interleaved One-Point Hermitian Codes. submitted to Designs, Codes,
Cryptography, arXiv preprint arXiv:1801.07006, 2017.

Other Publications and Preprints by the Author of this Thesis
[CHPB17] Yuval Cassuto, Evyatar Hemo, Sven Puchinger, and Martin Bossert. Multi-

Block Interleaved Codes for Local and Global Read Access. In IEEE Interna-
tional Symposium on Information Theory, 2017.

[HKS+15] Matthias Hiller, Ludwig Kürzinger, Georg Sigl, Sven Müelich, Sven Puchinger,
and Martin Bossert. Low-Area Reed Decoding in a Generalized Concatenated
Code Construction for PUFs. In IEEE Computer Society Annual Symposium
on VLSI, 2015.

[MPB+14] Sven Müelich, Sven Puchinger, Martin Bossert, Matthias Hiller, and Georg
Sigl. Error Correction for Physical Unclonable Functions Using Generalized
Concatenated Codes. In International Workshop on Algebraic and Combina-
torical Coding Theory, 2014.

[MPB17a] Mostafa H. Mohamed, Sven Puchinger, and Martin Bossert. Guruswami–Sudan
List Decoding for Complex Reed-Solomon Codes. In International ITG Con-
ference on Systems, Communications and Coding, 2017.

[MPB17b] Sven Müelich, Sven Puchinger, and Martin Bossert. Low-Rank Matrix Recovery
using Gabidulin Codes in Characteristic Zero. Electronic Notes in Discrete
Mathematics, 57:161–166, 2017.

[PCF+15] Sven Puchinger, Michael Cyran, Robert F.H. Fischer, Martin Bossert, and Jo-
hannes B. Huber. Error Correction for Differential Linear Network Coding in
Slowly Varying Networks. In International ITG Conference on Systems, Com-
munications and Coding, 2015.

[PMB+15] Sven Puchinger, Sven Müelich, Martin Bossert, Matthias Hiller, and Georg Sigl.
On Error Correction for Physical Unclonable Functions. In International ITG
Conference on Systems, Communications and Coding, 2015.

[PMB17] Sven Puchinger, Sven Müelich, and Martin Bossert. On the Success Probabil-
ity of Decoding (Partial) Unit Memory Codes. In International Workshop on
Optimal Codes and Related Topics, 2017.

[PMIB17] Sven Puchinger, Sven Müelich, Karim Ishak, and Martin Bossert. Code-Based
Cryptosystems Using Generalized Concatenated Codes. In Ilias S. Kotsireas
and Edgar Martínez-Moro, editors, Springer Proceedings in Mathematics &
Statistics: Applications of Computer Algebra: Kalamata, Greece, July 20–23
2015, volume 198, pages 397–423. Springer International Publishing, 2017.
doi:10.1007/978-3-319-56932-1_26.

183

http://dx.doi.org/10.1007/978-3-319-56932-1_26

Bibliography

[PMWZB17] Sven Puchinger, Sven Müelich, Antonia Wachter-Zeh, and Martin Bossert. Tim-
ing Attack Resilient Decoding Algorithms for Physical Unclonable Functions. In
International ITG Conference on Systems, Communications and Coding, 2017.

[PSBF16] Sven Puchinger, Sebastian Stern, Martin Bossert, and Robert F.H. Fischer.
Space-Time Codes Based on Rank-Metric Codes and Their Decoding. In IEEE
International Symposium on Wireless Communication Systems, pages 125–130,
2016.

[PWB14] Sven Puchinger, Antonia Wachter-Zeh, and Martin Bossert. Improved Decoding
of Partial Unit Memory Codes Using List Decoding of Reed–Solomon Codes.
In International Zurich Seminar on Communications, 2014.

[SPB17] Ulrich Speidel, Sven Puchinger, and Martin Bossert. Constraints for Coded
Tunnels Across Long Latency Bottlenecks with ARQ-based Congestion Control.
In IEEE International Symposium on Information Theory, 2017.

[WPR18] Antonia Wachter-Zeh, Sven Puchinger, and Julian Renner. Repairing the
Faure–Loidreau Public-Key Cryptosystem. In IEEE International Symposium
on Information Theory, 2018.

184

For data protection reasons, the curriculum vitae is not included in the online version.

For data protection reasons, the curriculum vitae is not included in the online version.

	Introduction
	Preliminaries
	Basic Terminology
	Block Codes
	Notation

	Codes in Hamming Metric
	Reed–Solomon Codes
	One-Point Hermitian Codes
	Interleaved Codes in Hamming Metric

	Codes in Rank Metric
	Skew Polynomial Rings
	Modules over Skew Polynomial Rings
	Gabidulin Codes
	Interleaved Gabidulin Codes
	Twisted Gabidulin Codes
	Rank-Metric Codes over Fields of Characteristic Zero

	Part I: Codes in Hamming Metric
	Improved Power Decoding of Interleaved Codes in Hamming Metric
	Improved Power Decoding of Interleaved Reed–Solomon Codes
	Key Equations
	Solving the Key Equations
	Decoding Radius
	Failure Behavior
	Simulation Results

	Improved Power Decoding of Interleaved One-Point Hermitian Codes
	Key Equations
	Solving the Key Equations
	Decoding Radius and Failure Behavior
	Simulation Results

	Comparison of the New Decoders
	Concluding Remarks

	Twisted Reed–Solomon Codes
	Definition
	A Sufficient Condition for Twisted RS Codes to be MDS
	Decoding
	Dual Codes
	Schur Squares
	Schur Squares of Twisted RS Codes
	Codes with Maximal Schur Square Dimension

	Relation to Reed–Solomon Codes
	Low-Rate Non-GRS Twisted RS Codes
	A Combinatorial Inequivalence Argument
	Separation from GRS Codes Using Schur Squares

	Subclasses of Long MDS Twisted RS Codes
	()-Twisted Reed–Solomon Codes
	(+)-Twisted Reed–Solomon Codes
	Computer Searches

	Twisted RS Codes in the McEliece Cryptosystem
	Twisted RS Codes Resisting Some Known Structural Attacks
	Example Parameters Resulting in Small Key Sizes

	Concluding Remarks

	Part II: Codes in Rank Metric
	Fast Decoding of Gabidulin Codes
	Decoding Gabidulin Codes up to Half the Minimum Distance
	Fast Operations on Skew Polynomials
	Multiplication
	Division
	Minimal Subspace Polynomials and Multi-Point Evaluation
	Interpolation
	-Transform

	Concluding Remarks

	Decoding Interleaved Gabidulin Codes Using Row Reduction
	Implementing Known Decoding Algorithms Using Row Reduction
	Key-Equation-Based Decoding
	Interpolation-Based Decoding

	Row Reduction of Skew Polynomial Matrices
	The Mulders–Storjohann Algorithm over Skew Polynomials
	Orthogonality Defect and Cost of the Mulders–Storjohann Algorithm
	A Divide-&-Conquer Variant: Alekhnovich's Algorithm

	Specialized Row Reduction Algorithms for the Decoding Problems
	Key-Equation Based Decoding: Rosenkilde's Demand-Driven Algorithm
	Interpolation-Based Decoding: Weak Popov Walk

	Concluding Remarks

	Generalizations of Twisted Gabidulin Codes
	Definition
	A Sufficient Condition for Twisted Gabidulin Codes to be MRD
	A Suboptimal Decoder
	Inequivalence to Other MRD Codes
	Twisted Gabidulin Codes in the GPT Cryptosystem
	Concluding Remarks

	Conclusion
	Appendices
	Efficiently Decoding Interleaved Reed–Solomon and One-Point Hermitian Codes
	Proof of thm:trsSchursquaresFamilymaximalshortened (Schur Squares of Shortened Codes)
	Optimal Multiplication of Skew Polynomials of Degree m
	Relation of Skew Polynomial and Matrix Multiplication
	Faster Implementation of a Known Multiplication Algorithm
	Optimality of the Multiplication Algorithm

	Key Equations Solvable with the MgLSSR Problem

	List of Symbols and Acronyms
	Bibliography

