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With the rapid rise of the cloud computing paradigm, the manual maintenance and provisioning of the
technological layers behind it, both in their hardware and virtualized form, became cumbersome and error-
prone. This has opened up the need for automated capacity planning strategies in heterogeneous cloud
computing environments. However, even with mechanisms to fully accommodate customers and fulfill service-
level agreements, providers often tend to over-provision their hardware and virtual resources. A proliferation
of unused capacity leads to higher energy costs, and correspondingly, the price for cloud technology services.
Capacity planning algorithms rely on data collected from the utilized resources. Yet, the amount of data
aggregated through the monitoring of hardware and virtual instances does not allow for a manual supervision,
much less data analysis or a correlation and anomaly detection. Current data science advancements enable
the assistance of efficient automation, scheduling and provisioning of cloud computing resources based on
supervised and unsupervised machine learning techniques. In this work, we present the current state of the
art in monitoring, storage, analysis and adaptation approaches for the data produced by cloud computing

environments, to enable proactive, dynamic resource provisioning.
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I. INTRODUCTION

Few terms in technology nowadays have achieved the
same penetration magnitude and omnipresence across all
levels of society as cloud computing. From a business
point of view, the market is currently booming. The top
three enterprise-cloud providers: Microsoft, Amazon and
IBM, have posted cloud revenue of over $53 billion for
the fiscal 2017 year® .

The arrival of the big-data technological wave, led to
an even higher exploitation of cloud technology’ . Not
only does the sheer amount of data need to be stored,
the possibility of at least a primitive form of data analy-
sis and manipulation must be supported. Cloud orches-
tration is now tasked with work scheduling, data storage
and provisioning.

The rapid increase of infrastructure required for
cloud technologies poses the additional challenge of for
providers: the upkeep and capacity planning.

Hence, there is a an incentive to optimize data cen-
tres for maximum profit while maintaining service-level-
agreements (SLAs)? towards customers. Currently, this
can either result in capacity over-provisioning, which in
term, leads to higher energy consumption, unused re-
sources and higher service costs; or overbooking” , which
leads to poor user experience.

The overall research efforts in cloud environments can
be divided into (i): A more efficient task scheduling us-
ing e.g., more context aware scheduling and more eco-
friendly data centres by means of reduced power con-
sumption. (i) Intelligent orchestration and resource pro-
visioning” , which can be explained by the more hetero-
geneous and distributed (as far as geographical location
goes) nature of cloud systems and the jobs with which
they are tasked.

a)Direct all correspondece to mark.leznik@uni-ulm.de

An argument can be made, that these categories can-
not be easily separated, since they are closely inter-
twined. Reducing the amount of required hardware
through efficient orchestration directly leads to an im-
plication on the power consumption. On the other hand,
a smart scheduling technique is equally responsible for a
greener, more eco-friendly data centre.

In this work, we highlight current technologies enabling
the optimization of cloud environments in terms of ca-
pacity planning and the difficulties in this field. We go
over the processing pipeline required for collecting and
evaluating data in cloud environments and explain our
methodology in Section ??7. We then describe the com-
ponents in the pipeline, starting from the data acquisi-
tion, described in Section ?? and provide an overview
of cloud-based databases allowing the storage of the col-
lected monitoring data in Section ??. Further, current
data science approaches for the analysis of the data are
depicted in Section ?7. Possible adaptation and remedi-
ation techniques as results of data analysis are shown in
Section ?7?. The current state-of-the-art is presented in
Section ?7?. We finish with a brief discussion and conclu-
sion of the topic.

Il. METHODOLOGY

While the data collection, storage, analysis and adap-
tation is often described as a control loop, e.g MAPE? .
Given the introduction of data science and machine learn-
ing into the process, we feel that this must be revised.
A data analysis process generally involves dumping the
data from any form of database, analysing it offline and
creating a model. This model is then applied to data col-
lected online during runtime. Hence, the loop is divided
into two separate parts, the data collection and analy-
sis process, referred to as the offline process. And the
data collection and adaptation process, referred to as the
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online process.

Both loops can be rerun at any time with new data.
A push towards direct incorporation of data collected
during runtime and previously calculated models is also
discussed further.

In the following sections, we provide an overview of
each step of the pipeline components with the current
technologies available for its implementation.

11l. DATA ACQUISITION

In this section we provide an overview over the current
state of monitoring and the issues and challenges in that
domain. This includes in particular, how and in what
form the monitored data is acquired. It directly leads
to the challenges of analysing and processing this data
later on. The most pressing concerns in this regard is
the adaptation of a theoretically applicable approach to
a real world scenario.

A. Collection

We generally distinguish between two different ap-
proaches of acquiring monitoring data. The first ap-
proach being (i) Blackbox monitoring. This strategy is
of comparatively low usefulness, since it does not yield
great insights on the resource being monitored. In its
simplest form this kind of monitoring can be a steady
stream of pings testing the availability of the resource.
Blackbox monitoring is especially helpful if one does not
have any control over a given resource, or is not allowed
to modify it in any way, but nevertheless requires to act
upon any unexpected events. (ii) Whitebox monitoring
on the other hand, requires the operator to install a soft-
ware which either actively pushes data to a receiving end-
point, or creates an endpoint itself, waiting to be scraped.
A simple example of such an approach can be achieved
using HTTP status codes returned by a prepared HTTP
request. He and Wang discuss the benefits of either strat-
egy in detail ? | proclaiming a combined approach as an
optimal fit.

B. Types of data monitoring

While there is no generally agreed upon definition of
monitoring data, we categorized into the following types:

Traces: Traces are a series of events an application or
a software component traverses. The most useful one re-
garding this paper is the application request trace. These
describe the life cycle of a request, either externally or
internally issued, to its final destination. This request
can span multiple components and represents a full path
through the whole application. In contrast, a component
trace only highlights the travel through a single compo-
nent without the context of the whole application.

Metrics: Metrics are raw data values. They usually
describe state and resource utilization of an applica-
tion/instance on a given infrastructure.

Logs: Logs are usually collected on a ’per component’
basis, if they are not further aggregated and are relatively
similar to metrics. They consist of unstructured data,
with each entry describing what the application is doing
at a given point in time.

C. Acquiring and processing the data

In distributed applications, measures to aggregate all
the logs, metrics and traces of the target infrastructure or
application must be performed. An aggregating logical
component is required combining the data and preparing
it for processing. The necessary functionality is currently
provided by multiple tools on the market, e.g. Logstash'
or Fluentd?

The data processed by the aggregator might be in a
non normalized shape, however, most of the tools in this
domain assist the operator in terms of normalization and
derivation.

Hereby, several assumptions made in research condi-
tions are overthrown. Firstly, a cloud environment oper-
ator cannot be the sole provider of monitoring data. This
is not feasible from a privacy point of view, since it would
require the provider to monitor customers on an applica-
tion level. The main research focus should be placed on
data provided by the bottom two layers, namely physical
servers and virtual machines running on top of them.

As stated above, the usefulness of raw metrics is lim-
ited, since they do not describe the actual performance
of the component. A high CPU utilization for example
might have multiple reasons with not all of them being
an issue or even harmful. As Beyer et al. state’ , they
circumvent that, by deriving four metrics from those raw
metrics: latency, traffic, errors and saturation.

D. Concerns in monitoring

Cloud computing environments usually run on hard-
ware which is shared amongst different parties. This is
not only true for IaaS but also for PaaS where even less
about the infrastructure is known. There might be some-
one else on the physical server in a different VM, who
produces heavy disk load or who is utilizing most of the
network link. Cloud providers do not act upon this is-
sue, as long as they still fulfill the SLAs they have with
their customers. In contrast, they use this practice com-
monly to ensure a high utilization of their resources’ .
This practice is called Overprovisioning or Overbooking.

I https://www.elastic.co/products/logstash
2 https://www.fluentd.org/
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Said relation is even worse when there are more layers of
virtualization in between.

It can be considered a rare case where access to all
layers from the hardware up to the application is given.
Even more so, when logs of such a scenario are then
also published, as done by Google” ? in their dataset.
Anonymized traces of internal hardware and software to
provide cluster functionality to their employers is openly
shared. From the perspective of a cloud provider how-
ever, metrics like VM per compute node or geo-tags are
missing to adapt it to real-world scenarios, this could
however be attributed to the fact that the trace was
recorded in one geographical location.

IV. CLOUD DATABASE MANAGEMENT SYSTEMS

With the demand of storing and accessing immense
amount of monitoring data produced by the cloud and
Big Data infrastructures, the database management sys-
tem (DBMS) landscape has significantly evolved over
the last decade in order cope with the challenges ( Sec-
tion ??). In particular, the data volume, velocity and
variety” imposes challenges to DBMS such as scalabil-
ity and elasticity, diversity in data management and the
usage of cloud resources’” . NoSQL DBMS have also
emerged over the last decade and became a common so-
lution for the cloud and Big Data domains® *

NoSQL DBMS are typically built as distributed sys-
tems with a shared-nothing architecture. This favours
their operation on commodity hardware. Based on their
distributed architecture, NoSQL DBMS support hori-
zontal scalability even at runtime (elasticity) to handle
workload peaks’ . Yet, NoSQL DBMS offer only relaxed
consistency guarantees compared to relational DBMS? .
Further, NoSQL DBMS do not offer a standardised query
interface such as SQL due to their heterogeneous storage
models.

NoSQL DBMS are typically classified according to
their logical data model. Initially, four data mod-
els have been defined: key-value, document-oriented,
column-oriented and graph based” . Recent advances

have brought up the time-series data model as an ad-
ditional data model of NoSQL DBMS? ? .

In the following, we introduce existing DBMS cate-
gories based on their data model and provide a concise
analysis towards their usability for monitoring and data
analysis systems with respect to the introduced chal-
lenges in Section ??. The analysis is based on the stor-
age model, the support for analytical queries and the
exploitation of cloud resources, i.e. enabling scalability
and elasticity. For more detailed DBMS analysis with re-
spect to large scale monitoring systems, the avid reader

. 72?27?27
is referred to* * * *

A. Relational DBMS

Relational DBMS (RDBMS) store data as tuples,
forming an ordered set of attributes. In turn, a rela-
tion consists of sets of tuples while a tuple is a row, an
attribute is a column and a relation forms a table. Tables
are defined using a static, normalised data schema and
different tables can be referenced using foreign keys. The
relational data model is suitable for storing monitoring
data collected in a fixed schema. Further, with SQL as
established interface for generic data definition, manipu-
lation and query language, RDBMS provide a rich sup-
port for analytical queries and aggregations. Due to the
relational data model and the provided ACID consistency
guarantees’ , RDBMS typically do not provide horizon-
tal scalability or elasticity. So called NewSQL DBMS
aim at providing horizontal scalability and elasticity? ,
e.g. VoltDB?. Yet, the possible impact on the data con-
sistency’ and performance’ needs to be carefully eval-
uated based on the application domain. RDBMS have
been a common choice for persisting monitoring data for
on-premise systems in the last decade’ . Yet, with the
continuously increasing data volume and the trend to
(geographically) distributed applications and the increas-
ing volume and variety of monitoring data, the usage of
RDBMS for storing monitoring data decreased due to
their lacking support of scalability and elasticity.

B. Key-Value DBMS

Key-value DBMS relate to hash tables of program-
ming languages. The data records are tuples consisting
of key/value pairs. While the key uniquely identifies an
entry, the value is an arbitrary chunk of data. Opera-
tions are usually limited to simple create, read, update,
delete (CRUD) operations of items referenced by their
key. Key-value DBMS, such as Riak* or Redis®, are op-
timised for the operation in large-scale clusters and sup-
port horizontal scalability and elasticity. With the lim-
ited query capabilities, key-value DBMS are feasible for
the sole storage of large amounts of monitoring data but
the limited query hinder advanced processing.

C. Document-oriented DBMS

The document-oriented DBMS build upon a are simi-
lar data model as key-value DBMS. Yet, in contrast they
define a structure on the values in formats such as XML
or JSON. These values are referred to as documents, but
usually without fixed schema definitions. Compared to

3 https://www.voltdb.com/
4 http://basho.com/products/riak-kv/
5 https://redis.io/
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key-value DBMS, they allow for more complex queries,
as document properties can be used for indexing and
querying. Common document-oriented DBMS such as
MongoDB® or Couchbase” offer query support for ag-
gregations and analytical functions. Further, document-
oriented DBMS support a distributed operation and en-
able horizontal scalability and elasticity even for geo-
graphically distributed cluster. Hence, these DBMS are
an appropriate solution for storing large-scale monitoring
data. However, the performance implications for using
the aggregations and analytical functions in combination
with horizontal scaling and elasticity needs to be care-
fully evaluated? .

D. Column-oriented DBMS

Column-oriented DBMS store data by columns rather
than by rows. This enables storing large amounts of data
in bulk and for efficiently querying over very large, struc-
tured data sets. A column-oriented data model does not
rely on a fixed schema. Instead, it provides nestable,
map-like structures for data items which improves flexi-
bility over fixed schemas. Yet, the query capabilities of
existing DBMS such as Apache Cassandra® or Apache
HBase® only partially support advanced aggregation and
analytical queries. Column-oriented DBMS support hor-
izontal scalability and elasticity for large scale and geo-
graphically distributed clusters. Based on their features,
column-oriented DBMS are appropriate to store large-
scale monitoring data, especially if a high write through-
put is required.

E. Graph-based DBMS

Graph-based DBMS are inspired by graph theory.
They use graph structures for data modeling, thus nodes
and edges represent and contain data. Nodes are of-
ten used for the main data entities, while edges between
nodes are used to describe relationships between entities.
Querying is typically executed by traversing the graph.
Due to their graph-focused data model and query capa-
bilities, these DBMS are not applicable for storing moni-
toring data as the representation of the monitoring data
structure (cf. Section ?7?) does not fit the graph data
model.

6 https://www.mongodb.com/
7 https://www.couchbase.com/
8 http://cassandra.apache.org/
9 https://hbase.apache.org/

F. Time-series DBMS

Time-series (T'S) DBMSs are driven by the need for
monitoring of large-scale cloud and Internet of Things
(IoT) applications and infrastructures, which require hor-
izontally scalable DBMSs with analytical query support.
Therefore, time-series DBMS typically built upon exist-
ing DBMS data models, preferred key-value or column-
oriented, and add a dedicated time-series data model on
top. The TS data model is built upon data points which
comprise a timestamp, an associated numeric value and
an unstructured set of meta-data. The query capabili-
ties of TS DBMS focus on extensive analytical and ag-
gregation queries. As the TS DBMSs are explicitly de-
signed for storing large-scale monitoring data, the data
model fitting for the monitoring data structures and TS
DBMSs provides rich query functionality for aggregation
and analytical functions. TS DBMS such as InfluxDB*°,
Prometheus'! or OpenTSDB'2, are typically optimised
for write performance and they support horizontal scala-
bility and elasticity for distribution the load across large
scale clusters. Yet, the support for horizontal scalability
might only be available in the commercial version of the
TS DBMS, e.g. InfluxDB. Based on their dedicated data
model for monitoring data and their scalability /elasticity
support, TS DBMSs seem as an appropriate solution for
solution for large scale monitoring systems. In addition,
TS DBMS often provide additional tools for the collec-
tion and visualization of the monitoring data. The per-
formfmce of analytical queries needs to be further evalu-
ated® .

V. DATA ANALYSIS

This section provides an overview of current possibili-
ties of analysing the data aggregated by the monitoring
process described in Section ?? and persisted using the
technologies described in Section ?7. Simple descriptive
statistics offer a quantitative description of the data and
a simple way of visualization. Hereby a subdivision into
univariate and multivariate analysis is made. This can be
summarized as exploratory analysis of the data. Further,
more advanced analysis can be performed, namely clas-
sification and clustering and dimensionality reduction.
Prediction and forecasting of the data is conducted us-
ing either statistical models, or several types of machine
learning approaches.

10 https://www.influxdata.com/time-series-platform /influxdb/
M https://prometheus.io/
12 http://opentsdb.net/
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A. Exploratory and Descriptive Analysis

Exploratory data analysis applies several statistical
characteristics to get an initial visualisation and descrip-
tion of the data. A single metric distribution, e.g. the
CPU load, can be analysed in terms of: mean, median,
mode, minimum, maximum, quantiles. This can then be
visualized in a form of a histogram or a boxplot. Multi-
variate analysis incorporates several metrics and provides
the relationship between several variables using e.g. the
covariance or a linear correlation. Similarly a visualisa-
tion is available in the form of scatterplots or conditional
density plots.

This only provides so-called descriptive statistics of the
data, without any kind of forecasting or advanced anal-
ysis taking place.

B. Classification and Segmentation

Classification and segmentation, also known as cluster-
ing, is generally performed on the data using several un-
supervised machine learning algorithms. A large amount
of related work (cf. Section ??) employs the k-means
clustering algorithm® for workload analysis and classi-
fication. K-means provides a segmentation of the data
into a previously defined number of segments. Due to
its easy of use, is it widespread in a large number of
research fields, such as image analysis. It necessitates ei-
ther previous knowledge of the amount of output classes,
or an empirical evaluation of the correct amount. Quick-
shift? is an alternative clustering algorithm. It oper-
ates using medoids instead of means for segmentation,
and also does not require a predefined number of output
classes. Medoids are calculated by minimizing the ab-
solute distance between the points and the selected so-
called centroid, rather than minimizing the square dis-
tance. Hence, Quickshift is more robust to noise and
outliers than k-means. Quickshift also allows for a later
reclustering of additional data only by using the previ-
ously calculated medoid centres, which greatly reduces
computation time’ . Similar to this, Hao et al.? show
a concept of a never-ending learning approach for time
series data, negating the general assumption that all the
training data is available from the start.

A dimensionality reduction of the data, in the form of
a principal component analysis (PCA) can be performed
on the data before applying an unsupervised clustering
algorithm. Ding and He? also argue, that a k-means
clustering can be performed using solely a PCA, since
principal components are the continuous solutions to the
discrete cluster membership indicators for k-means clus-
tering.

Generally, due to the lack of labelled /tagged monitor-
ing data, comparable to manually tagged images required
for supervised learning in image analysis, unsupervised
algorithms are predominantly used. However, correla-
tions between stored metadata and monitoring data can

be made, e.g. matching a timestamp of a failed task with
the corresponding CPU load.

The approach for classification of monitoring data as
shown by de Carvalho Pagliosa and de Mello? tackles
the aforementioned problem. The authors not only show
a solution for working with unlabelled data, but also ad-
dress the issue of noise occurrence in the data with their
solution.

Segmentation and dimensionality reduction can be
used for workload classification and distinction, or any
given task requiring a segmentation of the input data. In
the next section, we discuss means of predicting future
outcomes based on the data.

C. Prediction and Forecasting

Traditional models for forecasting include: exponen-
tial smoothing, regression and composite model forecasts.
Linear regression models the relationship between vari-
ables by fitting a linear equation to the data. Hereby,
the previously mentioned exploratory data analysis (cf.
Section ?7?) is of help? . Time series linear regression’
can be regarded as an established concept in the field of
data science. Recurrent neural networks (RNN) intro-
duce the concept of reasoning based on previous events,
which as-is is not present in traditional neural networks.
Long Short Term Memory (LSTM) networks are a sub-
set of RNNs and applicable to the analysis of time series
data’ . LSTM networks have also been used to learn
lengthy patterns in time series. This can be exploited for
detection of anomalies and faults in time series data, as
shown by Malhotra et al.? .

A promising deep learning approach for generating
workload or time-series data using Generative Adversar-
ial Networks (GAN)? was shown by Esteban et al.” . In
their work, the authors can generate time-series data use-
ful for supervised training with only minor degradation
in performance on real test data. This can be useful when
either a validation on another form of data is necessary,
or the amount of input data is too small.

VI. ADAPTATION

Subsequent to the analysis of the application’s state,
is a new deployment plan, which is implemented by exe-
cuting adaptation actions.

Many rule languages for elastic cloud applications were
developed in the last years, mostly with the focus on au-
tonomous scaling” . Further, there have been languages
that outsource the actual adaptation to external tools
and define actions as pure notifications, when a particu-
lar situation occurs, e.g” . This need for more than just
adaptation in terms of scaling can also be seen in the
Scalability Rule Language (SRL)? , which was just re-
cently extended to support custom adaptation workflows,
instead of only supporting monolithic scaling actions? .
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As elasticity is considered a main attribute of Cloud
computing” | auto-scaling of applications naturally plays
a big role in cloud environments. By horizontally scaling
in or out a component, a copy of a running component
is created or deleted. A component recovery is a repair
operation that might need take place after an outage of a
provider’s data centre, which is also a situation that can
be sensed by the monitoring system. The update of a
component is an operation that becomes more important
due to the advances in DevOps, and continuous integra-
tion and deployment in the last years with shrinking roll-
out cycles’ . Due to dynamics in user behaviours, the
reconfiguration of a component may become necessary.
Among this, we distinguish between (i) wiring of com-
ponents, (ii) restart of components, and the (iii) change
of parameters. Deployment plans can comprise multi-
ple components with a dynamic number of component
instances’ . Therefore, it is necessary that a definition
of what happens when communicating components are
deployed is performed. The restart of a component can
be necessary, e.g. due to temporary, unforeseeable in-
frastructure problems. Thus, deployment plans should
be parametrizable, even on component basis.

Another possible operation is migration, e.g. by mov-
ing a component from one cloud provider to another.
Cloud bursting is an operation for which resources of an-
other cloud are used, once the initial cloud is running out
of resources or is starting to violate QoS metrics. Load
balancing is an adaptation that can be executed as reac-
tion of variation in the use behaviour. Also, reactions to
failures can be instructed via adaptations, such as data
recovery.

These operations can happen on different cloud layers.
This means a scaling action can happen by the change
of the hosting virtual machine (infrastructure layer) or
the change of software components (service layer). Also,
the adaptation can happen in a cross-layer manner. A
new dimension to this can be added by considering the
user view of the action by a data-driven design of the
deployment of a cloud application? . Further to the dis-
tinction of the several fields of operation (infrastructure,
platform, component, workload, etc.), an action can be
distinguished by sub-classes of them. E.g. traditionally
infrastructure services are the compute services (CPU,
RAM, etc.), but also the networking infrastructure is a
sub-class of the infrastructure field. This is mainly fos-
tered by the uprise of software-defined networking.

VIl. RELATED WORK

The research efforts related to this work and field can
be divided into approaches dedicated to reducing energy
consumption in data centres and work directly dealing
with the autonomics of various cloud environments. In
the following, we will briefly summarize several publica-
tions particularly interesting to the context of this work.

Wang et al.” present and algorithm to efficiently se-

lect the ideal node utilization in a heterogeneous cluster
for optimal energy efficiency when processing large data.
Given that computing clusters are mainly comprised of
heterogeneous nodes, the correct choice of nodes for a
given task can reduce energy consumption by up to 60%.
This however, does not take into account real-life circum-
stances such as node failures.

Guyon et al.” show that the energy consumption can
be monitored in a more granular way with the context
information provided by Platform as a Service (PaaS) ap-
plications. The authors investigate the link between user
configurable PaaS parameters and the resulting energy
consumption. While a fluctuation between different pro-
gramming languages is noticeable, a wide consumption
gap can be seen between different database technologies.

Kang et al.” propose a workload-aware brokering sys-
tem for energy efficient containers. For this purpose, the
incoming requests are classified upon their resource uti-
lization using a the k-medoid clustering algorithm? . Fur-
ther, an energy cost model with heterogeneous of cloud
environments in mind is formulated to improve power ef-
ficiency. While the authors do compare their solution to
regular dockerized setups and show the necessity of their
algorithm, a comparison with more conventional virtual
servers was not performed.

Liu et al.” also take into account the heterogeneous
nature of cloud environments, as well as factors like net-
work traffic for workload classification. A workload char-
acterization is dynamically performed using a 0-1 integer
programming model. Experimental results performed on
the Google cluster dataset? show a significant improve-
ment in the prediction of the resources compared to es-
tablished forecasting models like the Autoregressive Inte-
grated Moving Average (ARIMA) and linear regression.

A solution for scaling cloud applications while also tak-
ing SLAs into account is shown by Tran et al.? . Hereby,
an autoscaling solution based on time series analysis of
monitoring data using a fuzzy approach, genetic algo-
rithm and neural networks is applied. The main con-
tributions lie in a combination of several monitoring pa-
rameters (CPU, memory etc.) during the data analysis
step to forecast system usage. Additionally, scaling de-
cisions are made based on rules derived from SLAs and
SLA violation estimation.

Wang et al.” are motivated very similarly to this work,
touching on the subject of capacity over-provisioning by
providers, in this case of virtual server instances. The au-
thors propose to forecast server load based on previous
monitoring data for an appropriate, dynamically deter-
mined number of running servers. This works stands out
for using monitoring data obtained by the authors for a
period of more than 3 years. This allows for a mean-
ingful user pattern workload recognition and serves as
a basis for a capacity planning process to match supply
and demand for resource utilization. In total, a server
amount reduction of 30% is achieved. However, given
that this approach is used to classify users, it might be
not be directly applicable to an enterprise solution from
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a privacy point of view. This also ties in with our ra-
tionale presented in Section 77, where we consider the
resource supervision from a privacy perspective. While
in a closed solution used by a single company, such an
aspect might not be of importance, the multi-tenant na-
ture of cloud applications however, shifts this topic into
the foreground.

Mann’s survey details the allocation of virtual ma-
chines in cloud data centres’ , and provides an extensive
overview of the state of cloud technologies, the current
problems in the field and optimization algorithms.

Due to its uniqueness, the Google cluster dataset and
the original data analysis performed on it” , is very pop-
ular among the research community, spawning a large
amount of publications directly based on it . The very
high amount of nodes in the cluster (over 12000) as well
as the recorded time length (29 days) provide a large
amount of data for almost any cluster related data anal-
ysis topic.

Garraghan et al.” present a large-scale analysis of the
Google cluster dataset, presenting several insights, in-
cluding the resource utilization, workload environment
characteristics, as well as wasted resource utilization.
The authors show a high level of workload diversity and
dynamicity in the trace log, while the correlation between
resource utilization and workload variability is dependent
on the architecture type. This leads to a suggestion, that
the server utilization is not influenced by the dynamicity
of the workload itself. The resource waste in the clus-
ter, measured between 4.5-14.2 % for the CPU an 1.2-
7.6 % for the memory is mainly attributed to the task
termination primarily influenced by the cloud workload
environment, rather than the workload scheduler. This
naturally suggests the direction of future resource in that
area.

Sirbu and Babaoglu® similarly base their work on the
Google cluster dataset, coining the term data-driven au-
tonomics. Using Google’s BigQuery !4, they show the
applicability and feasibility of a data science based ap-
proach of using predictive models acquired from a data
center log. They then build a classifier to predict the
possibility of a node failure in the next 24 hours window.
A precision rate of up to 72% can then be achieved. A
node redirection can then be performed and hence, task
failure avoided. Combined with the previously described
insight of task termination based on the same dataset,
this would offer a tremendous improvement in resource
utilization.

13 A full list of publications as well as the dataset itself can be found
at https://github.com/google/cluster-data
™ https://cloud.google.com/bigquery

VIIl. DISCUSSION

The majority of the challenges regarding the acquisi-
tion and processing of monitoring data are solved and
widely adopted. While this gives the operators of infras-
tructure and applications a certain degree of confidence
that the systems are working as expected, there is a huge
gap to make this data really useful. The biggest strug-
gle is the extraction of useful data which really quantifies
and qualifies the expected operation of the infrastructure
or application and the detection of overprovisioning.

Yet, the power of monitoring causes challenges for
other domains, as the tremendous amount of monitor-
ing data that can be produced shall lead to a meaningful
analysis. Further, with cloud-edge infrastructures gain-
ing traction, the additional challenge of the geo-locality
of the analysis arises.

A push towards dockerized containers and PaaS solu-
tions can also currently be seen, due to its rapid and
lightweight deployment and multi-tenant characteristics.
Such solutions offer a more granular monitoring ap-
proach, which naturally is beneficial in the context of
data analysis based automation.

In the overall current research landscape of using ma-
chine learning in cloud based environments, the topic of
workload description and classification currently stands
out. This can be explained by the ease of use of unsu-
pervised algorithms, and additionally the lack of openly
accessible data. The current research in the field of ma-
chine learning coupled with technological leaps enabling
the use of neural network paradigms already established
years ago opens up a lot of possibilities. The prospects
of processing large amount of data in a short period of
time with already given frameworks and implementation
is very beneficial. We see a lot of potential in the use of
this technology for this use case, specifically the applica-
tion of recurrent neural networks to time series.

Current adaptation plans are mostly static and pre-
defined during design-time of the deployment plan. Dy-
namic is realised by concatenating different rules and al-
low for variables in terms of cardinality of the compo-
nents of a cloud application. A machine learning system
should be able to be trained how to react properly to
different situations. So an adaptation plan does not nec-
essarily need to be created along with the deployment
plan, but can be created autonomously during run-time.
This has to be proven in future research.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we revised the currently utilized data
analysis loop of cloud computing environments, and in-
troduced the components and technologies required for
performing a data science based analysis and optimiza-
tion. This work not only highlights the current state-of-
the-art but also lists challenges and difficulties in imple-
menting and running an optimization pipeline for cloud
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computing setups. Future work shall focus and imple-
menting concrete autonomous solutions for this purpose.
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