
Predictability of Resource Intensive Big Data

and HPC Jobs in Cloud Data Centres

Christopher B. Hauser, Jörg Domaschka, Stefan Wesner

Institute of Information Resource Management

Ulm University

Albert-Einstein-Allee 43, 89081 Ulm, Germany

Email: {christopher.hauser, joerg.domaschka, stefan.wesner}@uni-ulm.de

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.1109/QRS-C.2018.00069



Predictability of Resource Intensive Big Data and HPC Jobs in Cloud Data Centres

Christopher B. Hauser, Jörg Domaschka, Stefan Wesner

Institute of Information Resource Management

Ulm University

Albert-Einstein-Allee 43, 89081 Ulm, Germany

Email: {christopher.hauser, joerg.domaschka, stefan.wesner}@uni-ulm.de

Abstract—Cloud data centres share physical resources at the
same time with multiple users, which can lead to resource
interferences. Especially with resource intensive computations
like HPC or big data processing jobs, neighbouring applications
in a cloud data centre may experience less performance of their
assigned virtual resources. This work evaluates the predictabil-
ity of such resource intensive jobs in principle. The assumption
is, that the execution behaviour of such computations depends
on the computation and the environment parameters. From
these two influencing factors, the predictability is the outcome
of removing the hardware dependent environment parameters
from the observed execution behaviour, in order to compute
any other execution behaviour for computations with similar
computation parameters but on a different environment. The
assumptions are analysed and evaluated with the HPC appli-
cation Molpro.

Keywords-Resource Prediction, Resource Intensive Jobs,
Cloud Computing, Resource Interference

I. INTRODUCTION

Cloud computing is becoming more popular recently, due

to its virtually unlimited computation and storage resources,

and the flexible on demand resource provisioning. High

performance computing (HPC) on the other hand is still the

most relevant data centre operation model for science and

engineering, when large and intensive computations have to

be scheduled among distributed physical resources. Anyway

HPC jobs are slowly moving towards cloud computing, since

Infrastructure as a Service (IaaS) offers a dynamic payment

model for virtual servers instead of buying and hosting

physical servers for a data centre. Additionally, with the rise

of big data applications, data and hence compute intensive

applications similar to HPC jobs appear in cloud computing.

Moving HPC jobs or similar resource intensive jobs

to cloud computing brings some new challenges to cloud

providers. The fact that physical resources are shared

amongst customers as virtual resources, in addition with

overbooking, introduces the so called Noisy Neighbour Ef-

fect: virtual machines experience performance degradations

whenever shared physical resources are heavily demanded

by other virtual machines. The Quality of Experience (QoE)

in this case decreases. It is hence necessary for cloud

providers to improve the resource reliability for their cus-

tomers to have a deep understanding of the resource de-

mands of resource intensive jobs. Figure 1 shows the impact

 0

 20

 40

 60

 80

 100

 120

 140

 160

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00

T
h
ro

u
g
h
p
u
t 

[O
p
s
/s

e
c
]

Execution Time

Couchbase Throughput with Molpro
Couchbase Throughput without Molpro

Figure 1. Couchbase Throughput with and without HPC computation

of running an HPC job on the shared physical resources in

parallel to a distributed cloud database. The disk I/O inten-

sive Molpro computation as an representative of an HPC job

in this example has visible impacts on the throughput of the

Couchbase database cluster. In this example the bottleneck

is the storage (hard drive disks in RAID 1), which is shared

by a ”Kernel-based Virtual Machine” (KVM) hypervisor.

The presented work analyses the predictability of the

workload characteristics of resource intensive jobs to help

cloud data centre managers, who provide private or public

clouds as a service provider, to reduce or even avoid the

noisy neighbour effect. Applications in this setup hence

run on shared physical resources, yet we analyse the re-

source utilisation of each single virtual machine with one

application each by itself. The work presents the foundation

of a tool set for cloud resource scheduling with utilisation

awareness - where predictability is the first important factor

and is analysed in the following.

The paper is organized as follows. Section II clarifies

the problem statement considered in our work. Section III

reviews related work in this area. Section IV describes

our approach towards predictability of resource intensive

computations in cloud computing, which is then practically

analysed in section V with one exemplary application. From

this analysis we evaluate with a proof of concept approach

in section VI the approach presented in section IV. Section

VII finally concludes the paper.



II. PROBLEM STATEMENT

The following work analyses the predictability of the

workload characteristics of resource intensive jobs. There-

fore we first introduce main characteristics of cloud and HPC

data centres and workloads. From there, research questions

are derived.

A. Cloud Data Centres

Cloud computing consists of management software which

controls a large amount of physical resources in a data

centre and offers abstracted access to a Cloud user. Typical

Cloud applications running in such a setup are continuously

running services like web servers or web based applications.

The encapsulation for multiple users in parallel and sharing

of physical resources is realised by virtualisation. Yet, the

encapsulation limits user access securely but does not iso-

late the performance demands. Hence, in parallel running

applications might influence each other in an intransparent

and undeterministic way.

A Cloud middleware offers interfaces to spawn new or

remove existing virtual resources. The scheduling of new

virtual machines takes place immediately after a user is-

sued a request. The VM has a set of maximum hardware

properties assigned, consisting of CPU cores, amount of

memory and disk space. A typical Cloud scheduler puts

new VMs on the host with the most free memory available

[1], as long as the overbooking factors for each resource

is not exceeding. The Cloud schedulers usually take not

into account the heterogeneity of physical servers or the

applications’ hardware affinity [2].

The effect of experienced resource degradation - as shown

in figure 1 - can happen on any resource type like CPU,

memory, disk or network. Yet, the impact differs, depending

on the parallelism the physical resource can handle: i)

Modern CPUs usually come with multiple cores, servers

even have multiple CPUs, which makes parallel execution

physically possible. ii) the allocation of memory is rather

static and is (compared to CPU cycles or I/O operations)

slowly changing. Still swapping to disk leads due to heavy

memory allocation leads to the noisy neighbour effect as

well. Memory bandwidth utilisation are not considered,

since monitoring memory access performance is usually not

part of monitoring software. iii) Disk I/O operations are

usually transferred towards the computation unit using a

small number of physical connections (e.g. SATA, SAS or

Fiberchannel). This connection and the sequential access

handling of disks introduce a bottleneck for parallelism.

RAID levels partially introduce parallel disk access, yet

limited to a maximum amount of disks handled by a RAID

controller. Disk allocation is out of scope of this work,

since running out of disk space will break most operating

systems and applications anyway, why we assume enough

capacity. iv) Similarly to disk I/O, the network is usually

designed to be hierarchical. Eventually on the path towards

the public network from within a data centre, the network

capacity and hence physical network connections will be

shared by multiple consumers. Link aggregation can increase

the parallelism of physical network connections to some

limited extent.

B. Resource Intensive Computations

In HPC, machines are not directly and immediately

available to the user - instead, HPC clusters are typically

overbooked, as they are constrained in size compared to the

number and size of submitted jobs. Therefore, the user will

have to submit his job to a “waiting queue” which will select

jobs according to resource availability. Typical schedulers

for this task include the Portable Batch System (PBS) in

its commercial or open source flavour OpenPBS1, MOAB2

or Slurm3, to name a few. They all try to place jobs so

as to maximize resource utilization, but keep a common

fair share goal. HPC data centres are typically consisting

of a large number of (comparably homogeneous) compute

resources. An HPC application typically is distributed over

many servers and runs for a long time (in the order of hours

to weeks). Due to high demand of hardware resources and

the sensitivity of the application towards resource utilisation,

HPC servers are dedicated to one user at a time. The overall

cluster is hence fully used by only a few applications, which

might not even fully use their resources at all time. This

leads to a high wait time for running a new job and an overall

inefficient data centre utilisation. Further, the efficiency of

the job scheduling mechanism depends on the correctness

of the resource requirements specification of the submitted

jobs. Since the requirements are submitted by the users

themselves, there is a strong tendency to overestimate the

resource needs, in order to avoid running out of resources

or time.

Similarly, resource intensive computations appear in big

data applications. Frameworks with map-reduce approaches

or using the Apache Spark4 framework process up to

petabytes of data. In this context, big data job scheduler

like Apache Mesos5 appeared, to schedule containers and

jobs on data centres to solve big data challenges. A single

map-reduce job has by design changing resource demands

over time, due to the split in map phase and reduce phase.

Further, each job has its resource utilisation depending on

the task it fulfils. Since these big data computations usually

run on cloud data centres, the resource interference occurs

eventually.

Both HPC and Big Data computations when running in

Cloud data centres eventually lead to resource degrada-

tions for neighbouring virtual machines. While their historic

1http://pbspro.org/
2http://www.adaptivecomputing.com/products/hpc-products/
3https://slurm.schedmd.com/
4https://spark.apache.org/
5http://mesos.apache.org/



origin differs, the conceptional appearance from a Cloud

provider’s perspective is the same: batch job workloads, with

intense resource demands, with repeating patterns in their

resource utilisations.

C. Research Questions & Contribution

To recap the main problem with resource intensive jobs

in cloud computing: the physical resources are not dedicated

to one customer at time but shared, leading to unpredictable

performance degradations. Cloud schedulers usually place

VMs when their creation is requested and only some sched-

ulers replace at runtime. To optimize the resource scheduling

in cloud data centres, this work focuses on the analysis, if

it is possible to reliably analyse the resource demands of

resource intensive computations. This analysis as an output

for cloud providers can be used to schedule resources in a

cloud data centre at runtime. The research questions of our

analysis are as follows:

1) What are influencing factors of the execution be-

haviour of resource intensive computations?

2) How can a prediction model depending on influencing

factors be for HPC jobs?

III. RELATED WORK

The general idea of moving HPC workloads to Cloud

data centres is widely discussed in literature, and is for

some types of computations a reasonable alternative to HPC

clusters [3]. Especially for applications of smaller scale,

the payment model of public clouds is with its elastic

and virtually unlimited computation resources economically

interesting. Cloud computing can further help to optimise

costs by using cloud features like snapshotting and resuming

[4].

Research focused on the the performance of HPC work-

loads, like by Nawaz et al. in [5], where I/O intensive

workloads are evaluated on two of the most frequently

used public cloud offerings on the market recently. This

study compared the various different storage models offered

by Google Cloud6 and Amazon Web Services7. The main

message is the importance of data locality, especially when

moving to clouds. The public cloud providers recently

push their offerings towards HPC, like promoting HPC on

Amazon EC28 with self deploying workload schedulers,

special virtual machine types or even with bare metal hosts.

Similar approaches have been made by Brandt et al., to

enable the HPC cluster management softwate OVIS 9 on

cloud computing environments in [6].

A even more sophisticated study including the cloud

internals of a provider perspective has been done by Gupta

et al. This study first evaluates HPC applications on clouds

6https://cloud.google.com
7https://aws.amazon.com/
8https://aws.amazon.com/hpc/
9https://ovis.ca.sandia.gov/

[7] to identify issues, solved by a scheduler to place virtual

machines with HPC workloads accordingly on available

physical resources in a private cloud infrastructure [8].

While these researches either focus on public clouds or

on dedicated HPC-aware private clouds, our approach is

motivated from a practical point of view: a cloud provider

with very mixed resource demanding virtual machines.

While our approach will eventually lead to virtual machine

placement and hence scheduling decisions on various levels

like in the CACTOS project [2] with a cloud monitoring

solution [9], this paper steps back to first elaborate on the

feasibility of reliably predicting workloads for cloud data

centre optimisation in principal.

Analysing resource intensive jobs is core functionality

of tools and frameworks like from Allinea10, Vampir11,

Paraver12, Scalasca13, and many more. All these tools have

in common to help users to optimize the runtime of their

HPC jobs. While increasing the efficiency on code level is

an important part of developing HPC jobs, our approach

assumes the operational level. We assume that HPC jobs run

inside virtual machines on a private cloud, with only little

knowledge about the internals of the virtual machines. Our

approach rather relates with task characteristics estimation

in [10], where sophisticated monitoring data is used to auto-

matically characterize resource needs and detect correlations

using clustering techniques. While this approach is evaluated

on a set of scientific workloads, our work has to deal with

black box virtual machines and a high diversity of resource

utilisation traces.

Performance interference in cloud computing, known as

the ”noisy neighbour” effect, has been discussed in research

and by public cloud providers like Amazon. Approaches

exist like in [2] or [11]. Their goal is a smart placement of

virtual machines on physical resources, to avoid performance

interferences at runtime. Another approach to control the

performance interference is to limit the virtual resources

according to the current utilisation and the available physical

resources. For networking a software defined networking

approach can be considered [12]. Since placement and

resource scheduling is based on knowledge, this work first

elaborates the predictability to eventually provide a reliable

input to such algorithms.

IV. PREDICTABILITY MODELS FOR RESOURCE

INTENSIVE JOBS

We assume that the considered resource intensive jobs

are batch jobs without any interaction while running. In

fact, a job consists of a mix of an application and input

parameters to compute with. The application is either written

to fit a specific use case or is a general purpose application,

10https://www.allinea.com
11https://www.vampir.eu/
12http://www.vi-hps.org/Tools/Paraver.html
13http://www.scalasca.org/



which strengthens the impact of the input parameters. We

call the set of application and input parameters computation

parameters of a resource intensive job in the following.

The assumption in the following is, since resource intensive

jobs are running without any human interaction, that their

execution behaviour is predictable in principle, since the

computation is defined only by its computation parameters.

Environment 
Parameters

Execution Behaviour

Resource
Demand

Computation
Parameters

Figure 2. Influencing Factors for the Execution Behaviour

From the computation parameters the resource demand

can be derived. Some jobs specify resource utilisation like

the maximal usage of memory or cpu cores in the input

parameters. While these parameters are directly influencing

specific resource types, more generally, the computation

complexity defined by the computation parameters implicitly

defines the resource types and their utilisation. To name

an example, a computation might be on a single node

and a single CPU only, without any communication. Other

examples are highly distributed computations with a high

amount of network and disk operations. The evaluation in

this paper will show, that this resource demand stays the

same with static computation parameters. We are aware

that some applications behave differently depending on the

used hardware, for e.g. caching intermediate results versus

recomputing them.

Finally, the execution behaviour of a job depends on the

used resources to run the job. The set of used resources

is called environment parameters in the following. These

set of parameters describe the hardware setup, like CPU

model with frequency and cores, the underlying storage

like SSDs or HDDs, the network infrastructure and the

memory. The resource demand, which directly depends on

the computation parameters, and the environment parameters

define the execution behaviour, like represented in figure 2.

A. From Execution Behaviour to Prediction

From figure 2, the conclusion for a hardware inde-

pendent predictability model Resource Demand follows

from extracting the environment parameters from the ex-

ecution behaviour. The compilation of these abstract re-

source demands can be considered as the training phase

in machine learning context. At runtime these resource

demand models are then used to predict the execution

behaviour on different hardware but with similar compu-

tation parameters. While the first modelling step to com-

pile the abstract resource demand takes place after each

computation from monitoring data, the prediction takes

place whenever new or running high performance com-

putations have to be considered in a cloud data cen-

tre. Our assumptions with Computation Parameters C,

Resource Demand D, Environment Parameters E,

and Execution Behaviour B are as follows: as defined

in figure 3 D ∧ E ❀ B, with C ❀ D. From monitoring

data the execution behaviour can be extracted to calculate

the resource demand with B \ E ❀ D. From this re-

source demand model, any behaviour can be predicted on

alternative hardware with D ∧ E′
❀ B′. Figure 3 depicts

this approach: from this abstract resource demand any other

execution behaviour can be compiled by aligning the abstract

resource demand with a set of execution parameters.

Environment 
Parameters ‘

Execution 
Behaviour Resource

Demand

Modelling

Prediction

Execution 
Behaviour

Environment 
Parameters “

∧

\

Figure 3. Approach for Predictability

While this work provides an evaluation of the conceptual

feasibility with practical evaluations, the integration of the

resource demand for resource scheduling is out of scope of

this paper.

V. ANALYSIS OF RESOURCE INTENSIVE COMPUTATIONS

To proof the concept of predictability models for resource

intensive jobs in cloud data centres, we analysed an exem-

plary resource intensive computation in detail. The analysis

is designed to reveal three insights: i) the predictability

of resource intensive jobs in general, ii) the impact of

computation parameters on the execution behaviour and

iii) the impact of environment parameters on the execution

behaviour.

The approach to analyse the predictability of resource

intensive jobs for cloud computing is based on evaluation

runs of the Molpro application. To understand the impact of

computation and environment parameters on the execution

behaviour (cf. figure 2), we first varied the computation

parameters with static environment parameters, and second

varied the environment parameters with static computation

parameters. This way, the two sets of parameters can be

isolated and analysed separately.

The evaluation first shows that the resource utilisation

with static computation parameters and static environment



parameters stays identical. This first insight is important

to allow for predictability. From there, the computation

parameters are first analysed with varying computation com-

plexities, meaning the computation parameters are slightly

changed. Last, the environment parameters are changed

to identify the execution behaviour with varying hardware

resources.

A. Exemplary Use Case

To further analyse resource intensive computations and

their application behaviour we focus on low scalable but

disk I/O intensive exemplary workloads as a starting point.

This limitation in first instance leaves out networking on

purpose but starts with the analysis of CPU, disk operations

and memory. Computations in the field of our focus can be

found in simulations for structural mechanics or quantum

chemistry (QC). We chose the Molpro14 application pack-

age that stands for a full class of applications in the field of

QC [13]. Within the Molpro application a set of different

methods is implemented. This leads to a very different

application behaviour depending on the input data, what

makes this application interesting as an exemplary workload.

Two well-established methods are DFT and LCCSD: Density

Functional Theory (DFT) based algorithms have a high

dependency on the CPU speed and memory bandwidth

but little dependency on I/O. Conventional coupled-cluster

(CCSD) methods and their local variant LCCSD [14] on

the other hand show a clear dependency on I/O speed.

Since we also want to include disk I/O, we analyse the

(L)CCSD method in the following in more detail, although

the methodology will apply for any other method and even

applications as well.

The LCCSD computations to evaluate the predictability in

the following are designed to run in an acceptable time frame

(less than ten hours) in order to run enough repetitions. In a

real world scenario, these computations are expected to run

even longer, up to several days.

B. Predictability: Constant Resource Utilisation

To show that resource intensive jobs are principally pre-

dictable, we isolated one server node of our OpenStack cloud

testbed and placed a single virtual machine on this node to

host the experiment. The physical server has a dual socket

Intel Xeon CPU E5-2670 with 2.60GHz frequency, and in

total 128GB of DDR3 memory. For storage, the physical

server has two HDDs in RAID1 with 1TB capacity and

7200 rpm. The virtual machine on top of a KVM hypervisor

on this physical server has four virtual cpu cores, 17GB

memory and a 300GB qcow2 file as virtual disk. The local

virtual machine storage is comparably the fastest storage

solution [15]. The exemplary workload is issued by Molpro

with a LCCSD computation.

14http://www.molpro.net

-20

 0

 20

 40

 60

 80

 100

 120

 140

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00 07:00:00 08:00:00 09:00:00 10:00:00 11:00:00

C
P
U

 U
s
a
g
e

Execution Time

CPU Standard Deviation
CPU Average

Figure 4. CPU Utilisation (Average and Standard Deviation)

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00 07:00:00 08:00:00 09:00:00 10:00:00 11:00:00

D
is

k
 I
/O

Execution Time

Disk Reads Standard Deviation
Disk Reads Average

Figure 5. Disk Reads (Average and Standard Deviation)

The results of this experiment are based on 23 runs. Figure

4 and 5 show two graphs: the CPU utilisation and the disk

reads, each with average and standard deviation over the

23 runs. The main message of this result is the predictable

appearance of read requests to the disk and a reduction of

CPU utilisation. The graphs also show the changing resource

demands over time, depending on the current application

phase. While at the beginning the computation is the major

workload, writing some temporary results to the disk, the

behaviour changes within minutes at approx. 4:00h. At this

time, the disk becomes the bottleneck, while the computation

is randomly reading previously written data from disk. Since

the disk is a shared physical resource for all hosted VMs

in a productive cloud infrastructure with local storage, the

read heavy phases of this Molpro computation will harm

the quality of other VMs on the same host. Yet, with the

knowledge about the exact occurrences of these peaks, the

cloud provider’s management software can avoid customer

shortcomings by scheduling the resources in advance ac-

cordingly.

C. Impact of Computation Parameters

Obviously, depending on the application under consid-

eration, the resource demand will vary. The same applies



Figure 6. Linear dependency of computation complexity to execution time.

for input parameters of general purpose applications of a

specific field, like Molpro for quantum chemistry. Still, the

dependency between the complexity of these computation

parameters and the execution time is of importance to predict

a computation’s execution behaviour for cloud infrastruc-

tures.

To elaborate on the impact of computation parameters,

we analysed different commands, which can be specified as

input parameters for Molpro and lead to different compu-

tations. From analysing these input parameters, the type of

computation and leading to the type of resource demands

can be derived. For example a DFT algorithm behaves

completely different than a LCCSD computation: while DFT

jobs run from minutes to a few hours on CPU and memory,

LCCSD jobs run several hours and use CPU, memory and

disk. Understanding the exact input parameters as part of

the computation parameters hence leads to a prediction of

the resource demand, and how the resource demand changes

during execution time.

To further detail the impact of computation parameters

to the execution behaviour, we evaluated runs of Molpro

with an LCCSD computation with a varying problem size.

The problem size in this context is defined by the amount

of molecules and the type of electron approximation. Elab-

orated in many different evaluations, the problem size is

directly influencing the minimum of required memory and

disk space for the computation. The CPU time is affected as

well, since more molecules lead to more computation time.

Figure 6 shows the mostly linear dependency of computation

complexity and computation runtime, where computation

complexity is a factor expressing the amount of molecules.

D. Impact of Environment Parameters

After analysing the computation parameters as one in-

fluencing factor of the execution behaviour (cf. figure 2),

the environment parameters and their impact are analysed.

To understand the change of behaviour, we fixed the com-

putation parameters to Molpro with a LCCSD computation

Table I
VARYING ENVIRONMENT PARAMETERS

16 GB RAM 32 GB RAM
setup avg. (std.) setup avg. (std.)

Intel i5 SSD A 385.14 (0.36) E 381.29 (0.20)
3.2GHz HDD B 504.16 (22.11) F 487.23 (21.04)

Intel e5 SSD C 452.88 (7.07) G 450.74 (4.28)
2.6GHz HDD D 578.60 (24.63) H 597.18 (35.02)

-20

 0

 20

 40

 60

 80

 100

 120

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00 07:00:00 08:00:00 09:00:00

C
P
U

 U
s
a
g
e

Execution Time

Setting B

(a) Setup B with HDD

-20

 0

 20

 40

 60

 80

 100

 120

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00 07:00:00 08:00:00 09:00:00

C
P
U

 U
s
a
g
e

Execution Time

Setting A

(b) Setup A with SSD

Figure 7. Average CPU Utilisation with HDD and SSD storage

and evaluated the execution behaviour on different physical

hardware. Table I lists the eight setups for this evaluation,

with two different CPUs (Intel i5 with 3.2GHz and Intel

e5 with 2.6GHz), different storage technologies (HDD and

SSD), and different amount of DDR3 memory (16GB and

32GB).

The first evaluation insight of the eight variations is the

changing standard deviation depending on the used type of

storage. Since the chosen computation parameter leads to a

high amount of random disk reads, the standard deviation

depends on the access time (or seek time) of the disk.

Figure 7a and 7b shows the average and standard deviation

of cpu usage with HDD (figure 7a) and SSD (figure 7b).

The much faster access time of SSD as storage device

leads to much lower standard deviations and hence a much

higher accuracy for predicting the execution behaviour. The

standard deviations and how they differ between SSD and

HDD are also stated in table I. Since additional memory

is used for caching disk requests, the standard deviation

changes also depending on the amount of memory. Apart

from that, additional memory shows only minor effect on

the overall execution behaviour.

The difference for the execution behaviour of SSD and

HDD as storage is also visible in figure 8a, where the

average CPU utilisation is printed for setting A (SSD) and

setting B (HDD). While the first two hours of execution

is mostly identical, starting at 3:00h the impact of storage

becomes clearly visible. While the disk I/O phase for setting

A takes approx. 20 minutes, this phase starts slightly later for

setting B and takes approx. one hour. In total, the execution

behaviour leads to two hours longer execution time for

setting B, with similar CPU phases but much longer and

less accurate disk I/O phases.

Similar to the evaluation with different storage types is the



-20

 0

 20

 40

 60

 80

 100

 120

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00 07:00:00 08:00:00 09:00:00

C
P
U

 U
s
a
g
e

Execution Time

Setting A
Setting B

(a) Setup A & B with SSD / HDD

-20

 0

 20

 40

 60

 80

 100

 120

00:00:00 01:00:00 02:00:00 03:00:00 04:00:00 05:00:00 06:00:00 07:00:00 08:00:00 09:00:00

C
P
U

 U
s
a
g
e

Execution Time

Setting A
Setting C

(b) Setup A & C with 3.2/2.6 GHz

Figure 8. Average CPU Utilisation with Changing Hardware Setup

evaluation for different CPU frequencies. Figure 8b shows

the average CPU utilisation for settings A (3.2GHz) and C

(2.6GHz). The disk I/O phase as a reference point shows

the impact of CPU frequency: while for setting A it starts at

about 3:00h and takes approx. 20 minutes, this phase starts at

3:40h and hence 40 minutes later. The overall execution time

is more than one hour more with the slower CPU frequency,

while the CPU and disk I/O phases predictably occur with

a factor relative to the CPU frequency.

E. Concluding the Analysis

The evaluation of predictability of high performance

computations first shows that with static computation and

environment parameters the execution behaviour for com-

putations stays with only low deviations predictably static.

This first enabling conclusion allows to have a detailed

analysis of the two influencing parameters for describing

the computation and the environment. Changing the com-

putation algorithm obviously leads to a different execution

behaviour, while changing only the complexity of the com-

putation linearly scales with the execution behaviour. These

insights conclude a static behaviour of jobs, which allows

a prediction in general. Yet the prediction of the execution

behaviour strongly relates with the underlying hardware. The

evaluation shows that the amount of memory is comparably

less important, while storage access time and cpu frequency

has a reasonable impact. From the evaluation, the next

step is to derive a prediction model for high performance

computations in cloud computing.

VI. PROOF OF CONCEPT CALCULATIONS WITH

PREDICTION MODELS

In order to proof the concept for predicting resource

intensive computations, the conceptual approach presented

in section IV is exemplary calculated with the results from

the analysis in section V. To simplify the proof of concept,

this example validates the whole execution time of a job,

while accepting a loss of accuracy. In an optimised system,

the overall execution time should be divided in its phases

like in [16].

To proof the prediction of one execution behaviour to

another with varying environment parameters, the proof

of concept takes the two most influencing environment

parameters: the type of disk and the CPU frequency. The

calculations are based on the setups A,B and A,C from

section V-D. First, the environment parameters from A are

extracted from the execution behaviour A. From this hard-

ware independent factor, the execution behaviour for setups

B and C are calculated and compared with the measured ex-

ecution behaviours. When considering the monitoring data,

the calculations use the 95th percentile of the collected data

to reduce noise and outliers. The statistical computations

may be reconsidered, when phases are considered instead

of the whole execution time.

A. Prediction with changing type of disk (HDD vs.SSD)

The measured overall execution time for setup A (SSD) is

385.14 min., while for setup B (HDD) it takes 504.16 min.

The difference regarding the overall execution time is hence
A
B

. The difference for SSD and HDD is the overall amount of

reads and writes, which needs to be analysed in more detail:

Setup A has a 95th percentile for writes of 73048 ops and

for reads 964632 ops (sum: 1037680 ops), Setup B has 95th

percentile for writes of 20091 ops and for reads 296900 ops

(sum: 316991 ops). The factor of overall disk I/O operations

per second between both setups is hence fdisk = Adisk

Bdisk

=
3.2735. The predictability of execution behaviour A but with

environment parameters from B is hence (1 + 1

fdisk
) ∗ A

which is 502.73, and hence - due to accuracy issues with

this proof of concept approach - approximately equal to the

execution behaviour B with 504.16.

B. Prediction with changing CPU frequency

Similarly to the predictability with changing the type of

disk, the factor of the overall execution time for setup A

and setup B is A
C

= 385.14min
452.88min

. The changed environment

parameter in this example is the CPU frequency, hence this

factor has to be related to the the product of CPU utilisation

and CPU frequency. For setup A the 95th percentile for CPU

utilisation is 99.7122144253 with a frequency of 3.2GHz

(product: 319.079), and for setup C with the 95th percentile

of CPU utilisation 100.0 and frequency 2.6Hz (product:

260.0). For predicting the execution behaviour C out of A,

the computed resource demand is 472.65 - which is with

inaccuracy approximately the expected 452.88 of execution

behaviour C.

VII. CONCLUSION

In this work, the predictability of resource intensive

computations in cloud computing data centres has been anal-

ysed. We first introduce the problem statement of resource

interference in cloud data centres, especially of resource

intensive computations like HPC or big data processing

jobs. From the problem statement, our approach is described

as predictability models, where the two influencing factors

of computations’ execution behaviour are the computation

parameters and the environment parameters. A detailed



analysis shows the constant resource utilisation, which is

the first required assumption for predictability. The analysis

also shows the impact of computation and environment

parameters to the execution behaviour. From this analysis,

the predictability models are exemplary evaluated.

This work focuses on the very first requirements for

resource scheduling in data centres: the predictability of

resource consumptions. While related work in research is

solving this bin packing problem, the knowledge about the

applications’ resource traces are the key aspect. Recent

research projects like CACTOS [2] show that the overall

data centre utilisation and experience can be optimised. With

a monitoring system for controlling the overbooking [9], the

profiling for reliably predicting execution behaviours can be

achieved with the analysis and suggested approach in this

work. The predictability models can then be added to job

descriptions or images like addressed in [17].

ACKNOWLEDGEMENTS

The research leading to these results has received funding

from the federal state of Baden-Württemberg (Germany), un-

der the Project ”ViCE - Virtual Open Science Collaboration

Environment”, and from the European Commission’s Sev-

enth Framework Programme under grant agreement number

610711 (CACTOS).

REFERENCES

[1] OpenStack Foundation, “Openstack configuration ref-
erence - scheduling,” Dec. 2017. [Online].
Available: https://docs.openstack.org/nova/latest/user/filter-
scheduler.html

[2] P.-O. Ostberg, H. Groenda, S. Wesner, J. Byrne,
D. Nikolopoulos, C. Sheridan, J. Krzywda, A. Ali-
Eldin, J. Tordsson, E. Elmroth, C. Stier, K. Krogmann,
J. Domaschka, C. Hauser, P. Byrne, S. Svorobej,
B. McCollum, Z. Papazachos, D. Whigham, S. Ruth,
and D. Paurevic, “The cactos vision of context-aware cloud
topology optimization and simulation,” in Cloud Computing
Technology and Science (CloudCom), 2014 IEEE 6th
International Conference on, Dec 2014, pp. 26–31.

[3] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Ber-
riman, “Experiences using cloud computing for a scientific
workflow application,” in Proceedings of the 2nd interna-
tional workshop on Scientific cloud computing. ACM, 2011,
pp. 15–24.

[4] Y. Gong, B. He, and A. C. Zhou, “Monetary cost opti-
mizations for mpi-based hpc applications on amazon clouds:
Checkpoints and replicated execution,” in High Performance
Computing, Networking, Storage and Analysis, 2015 SC-
International Conference for. IEEE, 2015, pp. 1–12.

[5] H. Nawaz, G. Juve, R. F. da Silva, and E. Deelman, “Per-
formance analysis of an i/o-intensive workflow executing on
google cloud and amazon web services.”

[6] J. Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe, D. Thomp-
son, and M. Wong, “Resource monitoring and management
with ovis to enable hpc in cloud computing environments,”
in IPDPS 2009. IEEE International Symposium on. IEEE,
2009, pp. 1–8.

[7] A. Gupta and D. Milojicic, “Evaluation of hpc applications
on cloud,” in Open Cirrus Summit (OCS), 2011 Sixth. IEEE,
2011.

[8] A. Gupta, L. V. Kale, D. Milojicic, P. Faraboschi, and S. M.
Balle, “Hpc-aware vm placement in infrastructure clouds,” in
Cloud Engineering (IC2E), 2013 IEEE International Confer-
ence on. IEEE, 2013, pp. 11–20.

[9] A. Tsitsipas, C. B. Hauser, J. Domaschka, and S. Wesner,
Towards Usage-Based Dynamic Overbooking inIaaS Clouds.
Cham: Springer International Publishing, 2017, pp. 263–274.

[10] R. F. Da Silva, G. Juve, E. Deelman, T. Glatard, F. Desprez,
D. Thain, B. Tovar, and M. Livny, “Toward fine-grained
online task characteristics estimation in scientific workflows.”
in WORKS@ SC, 2013, pp. 58–67.

[11] F. Caglar, S. Shekhar, A. Gokhale, and X. Koutsoukos,
“Intelligent, performance interference-aware resource man-
agement for IoT cloud backends,” Proceedings - 2016 IEEE
1st International Conference on Internet-of-Things Design
and Implementation, IoTDI 2016, pp. 95–105, 2016.

[12] C. B. Hauser and S. R. Palanivel, “Dynamic network
scheduler for cloud data centres with sdn,” in Proceedings
of the10th International Conference on Utility and
Cloud Computing, ser. UCC ’17. New York, NY,
USA: ACM, 2017, pp. 29–38. [Online]. Available:
http://doi.acm.org/10.1145/3147213.3147217

[13] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and
M. Schtz, “Molpro: a general-purpose quantum chemistry
program package,” Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science, vol. 2, no. 2, pp. 242–253, 2012.

[14] M. Schütz and H.-J. Werner, “Low-order scaling local elec-
tron correlation methods. iv. linear scaling local coupled-
cluster (lccsd),” The Journal of Chemical Physics, vol. 114,
no. 2, pp. 661–681, 2001.

[15] H. Nawaz, G. Juve, R. F. Da Silva, and E. Deelman, “Per-
formance analysis of an i/o-intensive workflow executing on
google cloud and amazon web services,” in Parallel and
Distributed Processing Symposium Workshops, 2016 IEEE
International. IEEE, 2016, pp. 535–544.

[16] A. Bhattacharyya, S. Sotiriadis, and C. Amza, “Online phase
detection and characterization of cloud applications,” in Cloud
Computing Technology and Science (CloudCom), 2017 IEEE
9th International Conference on Cloud Computing Technol-
ogy and Science, Dec 2017.

[17] C. Hauser and J. Domaschka, “Vice registry: An image
registry for virtual collaborative environments,” in Cloud
Computing Technology and Science (CloudCom), 2017 IEEE
9th International Conference on Cloud Computing Technol-
ogy and Science, Dec 2017.


