Refinement and
Implementation Techniques

for
Abstract State Machines

Dissertation
zur Erlangung des Grades eines Doktors
der Naturwissenschaften (Dr. rer. nat.)
im Fachbereich Informatik
der Universitat Ulm

vorgelegt von

Joachim Schmid

aus Tuttlingen

Abteilung fiir Programmiermethodik und Compilerbau
(Leiter: Prof. Dr. Helmuth Partsch)

2002

II

Amtierender Dekan: Prof. Dr. Glnther Palm

Gutachter: Prof. Dr. Helmuth Partsch (Universitat Ulm)
Prof. Dr. Friedrich von Henke (Universitdt Ulm)
Prof. Dr. Egon Borger (Universitit Pisa)

Tag der Priiffung: 17. Juni 2002

Danksagung

An dieser Stelle mochte ich mich bei allen Personen bedanken, die mich bei der
Erstellung dieser Arbeit unterstiitzt haben.

Besonderen Dank gilt Herrn Prof. Dr. Egon Borger, der stets ein offenes
Ohr fiir Fragen und Diskussionen hatte und mich zu dieser Arbeit motivierte.

Bedanken méchte ich mich fiir die tatkréaftige Unterstiitzung durch Dr. Peter
Péppinghaus, der meine Promotion bei der Siemens AG betreute. Dank gilt
auch allen anderen Mitarbeitern von CT SE 4, welche manchmal von ihrer
Arbeit abgehalten wurden.

Dank gilt der Siemens AG, die mir die notwendigen Arbeitsmittel zur Verfii-
gung stellte und mich finanziell unterstiizte. Insbesondere mdochte ich mich bei
dem Fachzentrumsleiter Prof. Dr. Wolfram Biittner bedanken, der sich bereit
erklart hatte, diese Dissertation durch die Siemens AG zu unterstiitzen.

11

Contents

Introduction

1

Submachine Concept

1.1
1.2

1.3
1.4

1.5

Standard ASMs
Sequential Composition and Iteration

1.2.1 Sequence Constructor
1.2.2 Tteration Constructor
1.2.3 Boéhm-Jacopini ASMs
Parameterized Machines
Further Concepts
1.4.1 Local State
1.4.2 ASMs with Return Value . . .
1.4.3 Error Handling
Related Work

Component Concept

2.1

2.2

2.3
2.4

Component
2.1.1 Formal Definition
2.1.2 Abstraction
2.1.3 Verification
2.1.4 Defining Components
Composition of Components
2.2.1 Formal Definition
2.2.2 Defining Composition
Component based Verification
Related Work

Execution of Abstract State Machines

3.1
3.2
3.3

3.4
3.5

Functional Programming and ASMs .
Lazy Evaluation
Lazy Evaluation and ASMs
3.3.1 Nullary Dynamic Functions . .
3.3.2 FiringRules.
3.3.3 Unary Dynamic Functions . . .
3.3.4 Referential Transparency . . .
Sequential Execution of Rules
Related Work

co O Ut W

10
13
15
15
16
17
17

19
20
20
23
23
25
31
31
37
41
49

VI CONTENTS
4 The AsmGofer System 65
4.1 The Interpretero 65
4.1.1 Expression Evaluation, ... 66

4.1.2 Dealing with Files 66

4.1.3 Other Commands 67

4.2 Sequential ASMs 67
4.2.1 Nullary Dynamic Functions 68

4.2.2 Unary Dynamic Functions 70

4.2.3 Update Operator 71

4.2.4 N-ary Dynamic Functions 71

4.2.5 Executionof Rules 72

4.2.6 Rule Combinators 73

4.3 Distributed ASMs 74
4.4 An Example: Game of Life 76
4.4.1 Static Semantics 76

4.4.2 Dynamic Semantics L. 78

4.5 Automatic GUI Generation 79
4.6 Userdefined GUI 81

5 Applications 85
5.1 The Light Control System 85
5.2 Java and the Java Virtual Machine 85
5.3 Hardware Verification 86
54 FALKO e 87
Conclusions and Outlook 89
Zusammenfassung 93
Appendix 95
A Submachine Concept 95
A.1 Deduction Rules for Update Sets 95

B Component Concept 99
B.1l Syntax L 99
B.2 Semantics 100
B.3 Typesystem 102
B.4 Constraints 104

References 105

Introduction

The notion of Abstract State Machines (ASMs), defined by Gurevich in [33, 31],
has been used successfully for the design and the analysis of numerous complex
software and hardware systems (see [16] for an overview). The outstanding
features which are responsible for this success are the simple yet most general
notion of state—mnamely mathematical structures, providing arbitrary abstract
data types—together with the simultaneous execution of multiple atomic actions
as the notion of state transforming basic machine step.

This view, of multiple atomic actions executed in parallel in a common state,
comes however at a price: the standard composition and structuring principles,
which are needed for high-level system design and programming in the large,
are not directly supported and can be introduced only as refinement steps. Also
the freedom in the choice of the appropriate data structures, which provides a
powerful mechanism to describe systems at various levels of abstraction, has a
price: it implies an additional step to turn these abstractions into executable
models, so that experimental validation can be done via simulation.

In this thesis we enhance the usefulness of ASMs for software engineering
practice by:

e defining three major composition concepts for ASMs, namely component
machine, parameterized submachine, and iteration, which cannot be dis-
pensed with in software engineering (Chap. 1, Chap. 2)

e developing a tool that allows to execute these extended ASMs and comes
with a graphical user interface, to support experimental analysis (Chap. 3,
Chap. 4)

We have tested the practicality of the proposed concepts and of their implemen-
tation (Chap. 5), namely by the design and the analysis

e of a well-known software engineering case study in the literature and of a
middle sized industrial software development project (for a train timetable
construction and validation system). This project work also included the
development of a proprietary compiler from ASMs to CH+.

e of the Java language and its implementation on the Java Virtual Machine

e of an industrial ASIC design and verification project. This project work
also included the development of a compiler from ASM components to
VHDL.

Part of this work has been published already in [17, 18, 19, 61, 63, 64].

) Introduction

Notational conventions

Throughout this thesis we stick to standard mathematical terminology. Never-
theless, we list here some frequently used notations.

We write P(X) for the set of all subsets of X.

We write X < f for the domain restriction of the function f to the set X:
X af = {(z,f(z)) | z € dom(f) N X}

We use ¢ for the empty sequence and - to separate elements in a sequence.
Further, we write RZ™ for the universe containing all sequences of R with length
greater or equal than n.

RZ"=RrU R U ..
R =R-...-R
—_——

n

Since only some functions are partial in this thesis we denote them by the symbol
-+ instead of symbol — for total functions. For example:

f:Ri+ Ry
The composition of functions is denoted by f o g.

We use N,, to denote the set of natural numbers from zero to n.

Chapter 1

Submachine Concept

It has often been observed that Gurevich’s definition of Abstract State Ma-
chines (ASMs) [33] uses only conditional assignments and supports none of the
classical control or data structures. On the one side this leaves the freedom—
necessary for high-level system design and analysis—to introduce during the
modeling process any control or data structure whatsoever which may turn out
to be suitable for the application under study. On the other hand it forces
the designer to specify standard structures over and over again when they are
needed, at the latest when it comes to implement the specification. In this re-
spect ASMs are similar to Abrial’s Abstract Machines [1] which are expressed
by non-executable pseudo-code without sequencing or loop (Abstract Machine
Notation, AMN). In particular there is no notion of submachine and no calling
mechanism. For both Gurevich’s ASMs and Abrial’s Abstract Machines, various
notions of refinement have been used to introduce the classical control and data
structures. See for example the definition in [37] of recursion as a distributed
ASM computation (where calling a recursive procedure is modeled by creating a
new instance of multiple agents executing the program for the procedure body)
and the definition in [1, 12.5] of recursive AMN calls of an operation as calls to
the operation of importing the implementing machine.

Operations of B-Machines [1] and of ASMs come in the form of atomic ac-
tions. The semantics of ASMs provided in [33] is defined in terms of a function
next from states (structures) to states which reflects one step of machine execu-
tion. We extend this definition to a function describing, as one step, the result
of executing an a priori unlimited number n of basic machine steps. Since n
could go to infinity, this naturally leads to consider also non halting compu-
tations. We adapt this definition to the view of simultaneous atomic updates
in a global state, which is characteristic for the semantics of ASMs, and avoid
prescribing any specific syntactic form of encapsulation or state hiding. This
allows us to integrate the classical control constructs for sequentialization and
iteration into the global state based ASM view of computations. Moreover this
can be done in a compositional way, supporting the corresponding well known
structured proof principles for proving properties for complex machines in terms
of properties of their components. We illustrate this by providing structured
ASMs for computing arbitrary computable functions, in a way which combines
the advantages of functional and of imperative programming. The atomicity of
the ASM iteration constructor we define below turned out to be the key for a

4 Submachine Concept

rigorous definition of the semantics of event triggered exiting from compound
actions of UML activity and state machine diagrams, where the intended in-
stantaneous effect of exiting has to be combined with the request to exit nested
diagrams sequentially following the subdiagram order, see [11, 12].

For structuring large ASMs extensive use has been made of macros as no-
tational shorthands. We enhance this use here by defining the semantics of
named parameterized ASM rules which include also recursive ASMs. Aiming at
a foundation which supports the practitioners’ procedural understanding and
use of submachine calls, we follow the spirit of the basic ASM concept [33]
where domain theoretic complications—arising when explaining what it means
to iterate the execution of a machine “until ...”—have been avoided, namely
by defining only the one-step computation relation and by relegating fixpoint
(“termination”) concerns to the metatheory. Therefore we define the semantics
of submachine calls only for the case that the possible chain of nested calls of
that machine is finite. We are thus led to a notion of calling submachines which
mimics the standard imperative calling mechanism and can be used for a defini-
tion of recursion in terms of sequential (not distributed) ASMs. This definition
suffices to justify the submachines used in [64] for a hierarchical decomposition
of the Java Virtual Machine into loading, verifying, and executing machines for
the five principal language layers (imperative core, static classes, object oriented
features, exception handling, and concurrency).

The third kind of structuring mechanism for ASMs we consider in this paper
is of syntactical nature, dealing essentially with name spaces. Parnas’ [56] infor-
mation hiding principle is strongly supported by the ASM concept of external
functions which provides also a powerful interface mechanism (see [10]). A more
syntax oriented form of information hiding can be naturally incorporated into
ASMs through the notion of local machine state, of machines with return values
and of error handling machines which we introduce in Section 1.4.

1.1 Standard ASMs

We start from the definition of basic sequential (i.e. non distributed) ASMs in
[33] and survey in this section our notation.

Basic ASMs are built up from function updates and skip by parallel compo-
sition and constructs for if then else, let and forall. 'We consider the choose-
construct as a special notation for using choice functions, a special class of
external functions. Therefore we do not list it as an independent construct in
the syntactical definition of ASMs. It appears however in the appendix be-
cause the non-deterministic selection of the choose-value is directly related to
the non-deterministic application of the corresponding deduction rule.

The interpretation of an ASM in a given state 2 depends on the given envi-
ronment Env, i.e. the interpretation (€ Env of its free variables. We use the
standard interpretation [[t]]%L of terms t in state 2 under variable interpretation
¢, but we often suppress mentioning the underlying interpretation of variables.
The semantics of standard ASMs is defined in [33] by assigning to each rule R,
given a state 21 and a variable interpretation (, an update set [[R]]? which—if
consistent—is fired in state 2 and produces the next state nextg (2, ¢).

An update set is a set of updates, i.e. a set of pairs (loc, val) where loc is
a location and wval is an element in the domain of 2l to which the location is

1.2 Sequential Composition and Iteration 5

intended to be updated. A location is m-ary function name f with a sequence
of length n of elements in the domain of 2, denoted by f(a1,...,a,). If uis
an update set then Locs(u) denotes the set of locations occurring in elements
of u (Locs(u) = {loc | Jwal : (loc,val) € u}). An update set u is called
inconsistent if u contains at least two pairs (loc, v1) and (loc, ve) with v; # vg
(i.e. |u] > |Locs(u)|), otherwise it is called consistent.

For a consistent update set u and a state 2, the state fireg (u), resulting from
firing u in 2, is defined as state A’ which coincides with 2 except f%'(a) = val
for each (f(a),val) € u. Firing an inconsistent update set is not allowed, i.e.
fireg(u) is not defined for inconsistent w. This definition yields the following
(partial) next state function nextrp which describes one application of R in a
state with a given environment function ¢ € Env. Sometimes, we omit the
environment, (.

nextr : State(X) x Env — State(X)
nextr(A, () = ﬁreg[([[R]]?)

The following definitions describe the meaning of standard ASMs. We use
R and S for rules, z for variables, s and ¢ for expressions, p for predicates
(boolean expressions), and u, v for semantical values and update sets. We write
f for the interpretation of the function f in state 2 and ¢’ = ¢ Z is the variable
environment which coincides with ¢ except for z where ¢'(z) = u.

[=]2 = (=)

[[f(tla'~-7tn)]]§l :fm([[tl]]?v"'v[[tn]]?)

[skip]2 =g

f(trooota) =512 ={F{0lE, . [8a]2), [s12)}
{Ri,..., R} — [RiJ2 U U[RAJZ

[if ¢ then R else S]]%l =

[R]Z, if [t] = true*
[S]%*, otherwise

¢
[let z = ¢ in R[Y = [R]%: where v = [1]2
[forall z with pdo R[¥ = |J [R]?. where V = {v | [p]3. = true®}
veV Y Y

Remark 1.1 Usually the parallel composition {Ry,..., Ry} of rules R; is de-
noted by displaying the R; vertically one above the other.

For a standard ASM R, the update set [[R]]?1 is defined for any state 2 and for
any variable environment ¢, but nextr (2, ¢) is undefined if [[R]]? is inconsistent.

1.2 Sequential Composition and Iteration

The basic composition of ASMs is parallel composition (see [35]). It is for
practical purposes that in this section we incorporate into ASMs their sequential
composition and their iteration, but in a way which fits the basic paradigm of
parallel execution of all the rules of a given ASM. The idea is to treat the
sequential execution P seq @ of two rules P and) as an “atomic” action, in
the same way as executing a function update f(¢1,...,t,) := s, and similarly
for the iteration iterate(R) of rule R, i.e. the repeated application of sequential
composition of R with itself, as long as possible. The notion of repetition yields

6 Submachine Concept

a definition of the traditional while (cond) R construct which is similar to
its proof theoretic counterpart in [1, 9.2.1]. Whereas Abrial explicitly excludes
sequencing and loop from the specification of abstract machines [I, pg. 373],
we take a more pragmatic approach and define them in such a way that they
can be used coherently in two ways, depending on what is needed, namely to
provide black-box descriptions of abstract submachines or glass-box views of
their implementation (refinement).

1.2.1 Sequence Constructor

If one wants to specify executing one standard ASM after another, this has
to be explicitly programmed. Consider for example the function pop_back in
the Standard Template Library for C++ (abstracting from concrete data struc-
tures). The function deletes the last element in a list. Assume further that we
have already defined rules move_last and delete where move_last sets the list
pointer to the last element and delete removes the current element. One may
be tempted to program pop_back as follows to first execute move_last and then
delete:

pop_back =
if mode = Move then
move_last

mode := Delete
if mode = Delete

delete

mode := Mowve

This definition has the drawback that the user of pop_back must know that
the action to be completed needs two steps, which really is an implementation
feature. Moreover the dynamic function mode, which is used to program the
sequential ordering, is supposed to be initialized by Move. Such an explicit
programming of execution order quickly becomes a stumbling block for large
specifications, in particular the initialization is not easily guaranteed without
introducing an explicit initialization mechanism.

Another complication arises when sequentialized rules are used to refine
abstract machines. In the machine on the lefthand side of the picture below,
assume that the simultaneous execution of the two rules R and S in state 1 leads
to state 2. The machine on the right side is supposed to refine the machine on
the lefthand side with rules R and S refined into the sequence of rules Ry R R3
and 5155 respectively. There is no obvious general scheme to interleave the
Rj-rules and the Sj-rules, using a mode function as above. What should happen
if rule Ry modifies some locations which are read by S3? In such cases R and S
could not be refined independently of each other.

1.2 Sequential Composition and Iteration 7

Ry
/‘\”_\/_\ R
/
R (i\-/) \ /}\ 3

/\ Rl I/ S - \'

v \ PN

S SI‘»I\

Therefore we introduce a sequence constructor yielding a rule P seq @ which
can be inserted into another ASM but whose semantical effect is nevertheless
the sequential execution of the two rules P and . If the new rule P seq @) has
to share the same status as any other ASM rule together with which it may be
executed in parallel, one can define the execution of P seq @ only as an atomic
action. Obviously this is only a way to “view” the sequential machine from
outside; its refined view reveals its internal structure and behavior, constituted
by the non atomic execution, namely in two steps, of first P and then Q.
Syntactically the sequential composition P seq @ of two rules P and @ is
defined to be a rule. The semantics is defined as first executing P, obtaining an
intermediate state, followed by executing () in the intermediate state. This is
formalized by the following definition of the update set of P seq @ in state 2.

Definition 1.2.1 (Sequential execution) Let P and @ be rules. We define

’

[P seq QI = [P]* & [Q]™

where 2" = nextp(2) is the state obtained by firing the update set of P in state
A, if nextp(A) is defined; otherwise 2’ can be chosen arbitrarily.

The notion u @ v denotes the merging of the update set v with update set
u where updates in v overwrite updates in u. We merge an update set v with
u only if u is consistent, otherwise we stick to u because then we want both
fireg(u) and fireq(u @ v) to be undefined.

U otherwise

)

P {{(loc, val) | (loc, val) € u A loc & Locs(v)} U v, consistent(u)

Proposition 1.2.1 (Persistence of inconsistency) If the update set [P]*

is not consistent, then [P seq Q]* = [P]*

The next proposition shows that the above definition of the seq constructor
captures the intended classical meaning of sequential composition of machines,
if we look at them as state transforming functions'. Indeed we could have
defined seq via the composition of algebra transforming functions, similarly to
its axiomatically defined counterpart in Abrial’s AMN [1] where seq comes as

concatenation of generalized substitutions.

1We assume that f(z) is undefined if z is undefined, for every function f (f is strict).

8 Submachine Concept

Proposition 1.2.2 (Compositionality of seq)
nertpseq = NETtg © Nertp

This characterization illustrates that seq has the expected semiring proper-
ties on update sets:

Proposition 1.2.3 The ASM constructor seq has a left and a right neutral
element and is associative, i.e. for rules P, @), and R the following holds:

[skip seq R]* = [R seq skip |* = [R]* (left and right neutral)
[P seq (Q seq R)]* = [(P seq Q) seq R]* (associative)

1.2.2 Iteration Constructor

Once a sequence operator is defined, one can apply it repeatedly to define the
iteration of a rule. This provides a natural way to define for ASMs an itera-
tion construct which encapsulates a computation with a finite but a priori not
explicitly known number of iterated steps into an atomic action (one-step com-
putation). As a by-product we obtain the classical loop and while constructs,
cf. [1, 9.2].

The intention of rule iteration is to execute the given rule again and again—
as long as needed and as long as possible. We define

skip , n=20
R?L —
R lseqR, n>0

Denote by 2, the state obtained by firing the update set of the rule R™ in state
2, if defined (i.e. A, = nextra(A)).

There are obviously two stop situations for iterated ASM rule application,
namely when the update set becomes empty (the case of successful termination)
and when it becomes inconsistent (the case of failure, given the persistence of
inconsistency as formulated in Proposition 1.2.1).% Both cases provide a fixpoint

lim [R™]® for the sequence ([R™]*),~0 which becomes stable if a number 7 is
n—oo

found where the update set of R, in the state obtained by firing R" !, is empty
or inconsistent.

Proposition 1.2.4 (Fixpoint Condition) Vm > n > 0 the following holds:
if [R]®»~1 is not consistent or if it is empty, then [R™]* = [R"]*

Therefore we extend the syntax of ASM rules by iterate(R) to denote the
iteration of rule R and define its semantics as follows.

Definition 1.2.2 (Iteration) Let R be a rule. We define

[iterate(R)]* = lim [R"]*, if In>0:[R]* =0V
e —consistent([R]*")

2We do not include here the case of an update set whose firing does not change the given
state, although including this case would provide an alternative stop criterion for implemen-
tations of ASMs.

1.2 Sequential Composition and Iteration 9

The sequence ([R™]*),>0 eventually becomes stable only upon termination
or failure. Otherwise the computation diverges and the update set for the
iteration is undefined. An example for a machine R which naturally produces a
diverging (though in other contexts useful) computation is iterate(a := a + 1),
see [46, Exl. 2, pg. 350].

Example 1.2.1 (Usage of iterate) The ASM model for Java in [20] includes
the initialization of classes which in Java is done implicitly at the first use of
a class. Since the Java specification requires that the superclass of a class c¢ is
initialized before ¢, the starting of the class initialization is iterated until an
initialized class ¢’ is encountered (i.e. satisfying initialized(c'), as eventually
will happen towards the top of the class hierarchy). We define the initialization
of class class as follows:

initialize =
¢ := class seq iterate(if —initialized(c) then
createlnitFrame(c)
if —initialized (superClass(c)) then
¢ := superClass(c))

The finiteness of the acyclic class hierarchy in Java guarantees that this rule
yields a well defined update set. The rule abstracts from the standard sequential
implementation (where obviously the class initialization is started in a number
of steps depending on how many super classes the given class has which are not
yet initialized) and offers an atomic operation to push all initialization methods
in the right order onto the frame stack (the frame stack contains the method
calls).

The macro to create new initialization frames can be defined as follows. The
current computation state, consisting of method, program, program position pos
and localVars, is pushed onto the frames stack and is updated for starting the
initialization method of the given class at position 0 with empty local variables
set.

createlnitFrame(c) =
classState(c) := InProgress
frames := frames - (method, program, pos, localVars)
method = ¢/<clinit>
program := body(c/<clinit>)
JueX; =0
localVars =g

While and Until. The iteration yields a natural definition of while loops. A
while loop repeats the execution of the while body as long as a certain condition
holds.

while (cond) R = iterate(if cond then R)

This while loop, if started in state 2, terminates if eventually [R]*" becomes
empty or the condition cond becomes false in 2, (with consistent and non
empty previous update sets [R]®: and previous states 2; satisfying cond). If the
iteration of R reaches an inconsistent update set (failure) or yields an infinite

10 Submachine Concept

sequence of consistent non empty update sets, then the state resulting from
executing the while loop starting in 2(is not defined (divergence of the while
loop). Note that the function nextyhiie(cond) r is undefined in these two cases
on .

A while loop may satisfy more than one of the above conditions, like while
(false) skip . The following examples illustrate the typical four cases:

o (success) while (cond) skip

e (success) while (false) R

o (failure) while (true) a :=1
a:=2

o (divergence) while (true) a := a

Example 1.2.2 (Usage of while)

The following iterative ASM defines a while loop to compute the factorial func-
tion for given argument z and stores the result in a location fac. It uses mul-
tiplication as given (static) function. We will generalize this example in the
next section to an ASM analogue to the Bohm-Jacopini theorem on structured
programming [8].

compute_fac = (fac :== 1) seq (while (z > 0) fac := z * fac
z =z—1)

Remark 1.2 As usual one can define the until loop in terms of while and seq
as first executing the body once and then behaving like a while loop:

do R until (cond) = R seq (while (—cond) R).

The sequencing and iteration concepts above apply in particular to the
Mealy-ASMs defined in [10] for which they provide the sequencing and the
feedback operators. The fundamental parallel composition of ASMs provides
the concept of parallel composition of Mealy automata for free. These three
constructs allow one to apply to Mealy-ASMs the decomposition theory which
has been developed for finite state machines in [22].

1.2.3 Bohm-Jacopini ASMs

The sequential and iterative composition of ASMs yields a class of machines
which are known from [8] to be appropriate for the computation of partial
recursive functions. We illustrate in this section how these Béhm-Jacopini-
ASMs naturally combine the advantages of the Goédel-Herbrand style functional
definition of computable functions and of the Turing style imperative description
of their computation.

Let us call Béhm-Jacopini-ASM any ASM which can be defined, using the
sequencing and the iterator constructs, from basic ASMs whose functions are
restricted as defined below to input, output, controlled functions and some
simple static functions. For each Bohm-Jacopini-ASM M we allow only one
external function, a O-ary function for which we write iny;. The purpose of
this function is to contain the number sequence which is given as input for the
computation of the machine. Similarly we write outys for the unique (0-arp)
function which will be used to receive the output of M. Adhering to the usual

1.2 Sequential Composition and Iteration 11

practice one may also require that the M-output function appears only on the
lefthand side of M-updates, so that it does not influence the M-computation and
is not influenced by the environment of M. As static functions we admit only the
initial functions of recursion theory, i.e. the following functions from Cartesian
products of natural numbers into the set N of natural numbers: +1, all the
projection functions U;", all the constant functions C* and the characteristic
function of the predicate # 0.

Following the standard definition we call a number theoretic function f :
N™ — N computable by an ASM M if for every n-tuple z € N™ of arguments
on which f is defined, the machine started with input z terminates with output
f(z). By “M started with input z” we mean that M is started in the state
where all the dynamic functions different from iny; are completely undefined
and where iny; = z. Assuming the external function inys not to change its
value during an M-computation, it is natural to say that M terminates in a
state with output y, if in this state outy; gets updated for the first time, namely
to y.

Proposition 1.2.5 (Structured Programming Theorem)
Every partial recursive function can be computed by a B6hm-Jacopini-ASM.

Proof. We define by induction for each partial recursive function f a machine
F computing it. Each initial function f of recursion theory is computed by the
following machine F' consisting of only one function update which reflects the
defining equation of f. The following machine F' is well-defined, since it contains
a singleton function update and therefore, the update set is always consistent.

F = outp := f(ing)

For the inductive step it suffices to construct, for any partial recursive definition
of a function f from its constituent functions f;, a machine F' which mimics the
standard evaluation procedure underlying that definition. We define the follow-
ing macros for using a machine F for given arguments in, possibly including to
assign its output to a location out:

F(in) = inp = inseq F
out := F(in) = F(in) seq out := outp

We start with the case of function composition. If functions g, h, ..., h, are
computed by Boéhm-Jacopini-ASMs G, Hy, ..., H,,, then their composition f
defined by f(z) = g(hi(z), ..., hn(z)) is computed by the following machine F:

F={H(inp),...,H,(inF)} seq outr := G(outy,,...,outy,)

For reasons of simplicity but without loss of generality we assume that the
submachines have pairwise disjoint signatures. Hence, the machine F' is well-
defined, since the locations in the update sets of Hy, ..., H,, are disjoint.
Unfolding this structured program reflects the order one has to follow for
evaluating the subterms in the defining equation for f, an order which is implic-
itly assumed in the equational (functional) definition. First the input is passed
to the constituent functions h; to compute their values, whereby the input func-
tions of H; become controlled functions of F'. The parallel composition of the

12 Submachine Concept

submachines H;(ing) reflects that any order is allowed here. Then the sequence
of outy, is passed as input to the constituent function g. Finally ¢’s value on
this input is computed and assigned as output to outp.

Similarly let a function f be defined from g, A by primitive recursion:

[(2,0) =g(z), flz,y+1)=h(zy f(z,9))

and let Bohm-Jacopini-ASMs G, H be given which compute g, h. Then the
following machine F' computes f, composed as sequence of three submachines.
The start submachine of F' evaluates the first defining equation for f by initial-
izing the recursor rec to 0 and the intermediate value wal to g(z). The while
submachine evaluates the second defining equation for f for increased values of
the recursor as long as the input value y has not been reached. The output
submachine provides the final value of wal as output.

F=let (z,y) =inp in
{ival := G(z), rec := 0} seq
(while (rec < y) {ival := H(x, rec, ival), rec := rec + 1}) seq
outp := twal

If f is defined from ¢ by the p-operator, i.e. f(z) = py(g(z,y) = 0), and if
a Bohm-Jacopini-ASM G computing g is given, then the following machine F
computes f. The start submachine computes g(z, rec) for the initial recursor
value 0, the iterating machine computes g(z, rec) for increased values of the
recursor until 0 shows up as computed value of g, in which case the reached
recursor value is set as output.

F = {G(inp,0), rec := 0} seq
(while (outg # 0) {G(inp, rec + 1), rec :== rec +1}) seq
outp := rec

Remark 1.3 The construction of Bohm-Jacopini-ASMs illustrates, through
the idealized example of computing recursive functions, how ASMs allow to
pragmatically reconcile the often discussed conceptual dichotomy between func-
tional and imperative programming. In the context of discussing the “func-
tional programming language” Godel used to exhibit undecidable propositions
in Principia Mathematica, as opposed to the “imperative programming lan-
guage” developed by Turing and used in his proof of the unsolvability of the
Entscheidungsproblem (see [141]), Martin Davis [28] states:

“The programming languages that are mainly in use in the software
industry (like C and FORTRAN) are usually described as being im-
perative. This is because the successive lines of programs written
in these languages can be thought of as commands to be executed
by the computer ... In the so-called functional programming lan-
guages (like LISP) the lines of a program are definitions of oper-
ations. Rather than telling the computer what to do, they define
what it is that the computer is to provide.”

The equations which appear in the Goédel-Herbrand type equational defini-
tion of partial recursive functions “define what it is that the computer is to

1.3 Parameterized Machines 13

provide” only within the environment for evaluation of subterms. The corre-
sponding Bohm-Jacopini-ASMs constructed above make this context explicit,
exhibiting how to evaluate the subterms when using the equations (updates),
as much as needed to make the functional shorthand work correctly. We show
in the next section how this use of shorthands for calling submachines, which
appear here only in the limited context of structured WHILE programs, can be
generalized as to make it practical without loss of rigor.

1.3 Parameterized Machines

For structuring large ASMs extensive use has been made of macros which, se-
mantically speaking, are mere notational shorthands, to be substituted by the
body of their definition. We enhance this use here by introducing named param-
eterized ASM rules which in contrast to macros also support recursive ASMs.

We provide a foundation which justifies the application of named parameter-
ized ASMs in a way which supports the practitioners’ procedural understanding.
Instead of guaranteeing within the theory, typically through a fixpoint operator,
that under certain conditions iterated calls of recursive rules yield as “result”
a first-class mathematical “object” (namely the fixpoint), we take inspiration
from the way Kleene proved his recursion theorem [16, Section 66] and leave
it to the programmer to guarantee that a possibly infinite chain of recursive
procedure calls is indeed well founded with respect to some partial order.

We want to allow a named parameterized rule to be used in the same way
as all other rules. For example, if f is a function with arity 1 and R is a named
rule expecting two parameters, then R(f(1),2) should be a legitimate rule, too.
In particular we want to allow rules as parameters, like in the following example
where the given dynamic function stdout is updated to ”hello world”:

rule R(output) =
output("hello world")

rule output_to_stdout(msg)
stdout := msg

R(output_to_stdout)

Therefore we extend the inductive syntactic definition for rules by the following
new clause, called a rule application with actual parameters ay, ..., a,:

R(ay,...,an)
and coming with a rule definition of the following form:

rule R(z,...,z,) = body

where body is a rule. R is called the rule name, x,...,x, are the formal pa-
rameters of the rule definition. They bind the free occurrences of the variables
Ty, ..., Ty in body.

The basic intuition the practice of computing provides for the interpretation
of a named rule is to define its semantics as the interpretation of the rule body
with the formal parameters replaced by the actual arguments. In other words

14 Submachine Concept

we unfold nested calls of a recursive rule R into a sequence R;, Ra,... of rule
incarnations where each R; may trigger one more execution of the rule body,
relegating the interpretation of possibly yet another call of R to the next in-
carnation R;;;. This may produce an infinite sequence, namely if there is no
ordering of the procedure calls with respect to which the sequence will decrease
and reach a basis for the recursion. In this case the semantics of the call of R
is undefined. If however a basis for the recursion does exist, say R,,, it yields a
well defined value for the semantics of R through the chain of successive calls
of R;; namely for each 0 < i < n with R = Ry, R; inherits its semantics from
Ri+1.

Definition 1.3.1 (Named ruled) Let R be a named rule declared by rule
R(z1,...,z,) = body, let A be a state.

If [body[ay /71, . . ., an/2,]]* is defined, then
[R(ai,...,a,)]* = [bodylar/z1, ..., an/z:]]*

For the rule definition rule R(z) = R(z) this interpretation yields no value
for any [R(a)]*, see [16, Example 1, page 350]. In the following example the
update set for R(z) is defined for all z < 10, with the empty set as update set,
and is not defined for any x > 10.

rule R(z) = if z < 10 then R(z + 1)
if £ = 10 then skip
if z > 10 then R(z + 1)

Example 1.3.1 (Defining while by a named rule) Named rules allow us
to define the while loop recursively instead of iteratively:

rule while,(cond, R) =
if cond then
R seq while,(cond, R)

This recursively defined while, behaves differently from the while of the pre-
ceding section in that it leads to termination only if the condition cond will
become eventually false, and not in the case that eventually the update set of R
becomes empty. For example the semantics of while, (true, skip) is not defined.

Example 1.3.2 (Starting Java class initialization)

We can define the Java class initialization of Example 1.2.1 also in terms of
a recursive named rule, avoiding the local input variable to which the actual
parameter is assigned at the beginning.

rule initialize(c) =
if initialized (superClass(c)) then
createlnitFrame(c)
else
createInitFrame(c) seq initialize(superClass(c))

Remark 1.4 Tterated execution of (sub)machines R, started in state 2, un-
avoidably leads to possibly undefined update sets [R]*. As a consequence

1.4 Further Concepts 15

[R]* = [S]* denotes that either both sides of the equation are undefined or
both are defined and indeed have the same value. In the definitions above we
adhered to an algorithmic definition of [R]*, namely by computing its value
from the computed values [S]® of the submachines S of R. In the appendix we
give a deduction calculus for proving statements [R]* = u meaning that [R]*
is defined and has value u.

1.4 Further Concepts

In this section we enrich named rules with a notion of local state, show how
parameterized ASMs can be used as machines with return value, and introduce
error handling for ASMs which is an abstraction of exception handling as found
in modern programming languages.

1.4.1 Local State

Basic ASMs come with a notion of state in which all the dynamic functions are
global. The use of only locally visible parts of the state, like variables declared
in a class, can naturally be incorporated into named ASMs. It suffices to extend
the definition of named rules by allowing some dynamic functions to be declared
as local, meaning that each call of the rule works with its own incarnation of
local dynamic functions f which are to be initialized upon rule invocation by
an initialization rule Init(f). Syntactically we allow definitions of named rules
of the following form:

rule name(zy,...,z,) =
local f; [Init;

local f[Inity]
body

where body and Init; are rules. The formal parameters z;, ..., z, bind the free
occurrences of the corresponding variables in body and Init;. The functions
fi,- -, fx are treated as local functions whose scope is the rule where they are
introduced. They are not part of the signature of the ASM. Init; is a rule used
for the initialization of f;. We write local f := ¢ for local f[f := t].

For the interpretation of a call of a rule with local dynamic functions, the
updates to the local functions are collected together with all other function
updates made through executing the body. This includes the updates required
by the initialization rules. The restriction of the scope of the local functions to
the rule definition is obtained by then removing from the update set u, which is
available after the execution of the body of the call, the set Updates(fi,...,fx)
of updates concerning the local functions fi, ..., fi. This leads to the following
definition.

Definition 1.4.1 (Name rule with local state) Let R be a rule declaration
with local functions as given above. If the right side of the equation is defined,
we set:

[R(ai,...,a,)]* =
[({Inity, ..., Inity } seq body)[ar/z1,. .., an/z,]]* \ Updates(fi,...,fx)

16 Submachine Concept

We assume that there are no name clashes for local functions between dif-
ferent incarnations of the same rule (i.e. each rule incarnation has its own set
of local dynamic functions).

Example 1.4.1 (Usage of local dynamic functions) The use of local dy-
namic functions is illustrated by the following rule computing a function f de-
fined by a primitive recursion from functions ¢ and A which are used here as
static functions. The rule mimics the corresponding B6hm-Jacopini machine in
Proposition 1.2.5.

rule F(z,y) =
local val := g(x)
local rec :=0
(while (rec < y) {ival := h(z, rec, ival), rec := rec + 1}) seq
out := ival

1.4.2 ASMs with Return Value

In the preceding example, for outputting purposes the value resulting from
the computation is stored in a global dynamic function out. This formulation
violates good information hiding principles known from Software Engineering.
To store the return value of a rule R in a location which is determined by the
rule caller and is independent of R, we use the following notation for a new rule:

l—R(a,...,an)

where R is a named rule with n parameters in which a 0-ary (say reserved)
function result does occur with the intended role to store the return value.
Let rule R(zy,...,2,) = body be the declaration for R, then the semantics
of | «— R(ay,...,ay) is defined as the semantics of R;(a1,...,a,) where R is
defined like R with result replaced by I:

rule R;(zy,...,x,) = body[l/result]

In the definition of the rule R by body, the function name result plays the
role of a placeholder for a location, denoting the interface which is offered for
communicating results from any rule execution to its caller. One can apply si-
multaneously two rules [«— R(ay,...,a,) and I’ — R(af, ..., a),) with different
return values for [and I’.

Remark 1.5 When using | < R(ay, ..., a,) with a term [of form f (¢, ..., &),
a good encapsulation discipline will take care that R does not modify the values
of t;, because they contribute to determine the location where the caller expects
to find the return value.

Example 1.4.2 (Using return values) Using this notation the above Exam-
ple 1.4.1 becomes f(z,y) < F(z,y) where moreover one can replace the use of
the auxiliary static functions g, h by calls to submachines G, H computing them,
namely wal — G(z) and val — H(x, rec, ival).

1.5 Related Work 17

Example 1.4.3 A recursive machine computing the factorial function, using
multiplication as static function.

rule Fac(n) =
local z :=1

if n =1 then
result ;=1
else

(x «— Fac(n — 1)) seq result :=n xx

1.4.3 Error Handling

Programming languages like C++ or Java support exceptions to separate error
handling from “normal” execution of code. Producing an inconsistent update
set is an abstract form of throwing an exception. We therefore introduce a
notion of catching an inconsistent update set and of executing error code.

The semantics of try R catch f(t,...,t,) S is the update set of R if either
this update set is consistent (“normal” execution) or it is inconsistent and the
location loc determined by f(t,. .., t,) is not updated inconsistently. Otherwise
it is the update set of S.

Since the rule enclosed by the try block is executed either completely or not
at all, there is no need for any finally clause to remove trash.

Definition 1.4.2 (Try catch) Let R and S be rules, f a dynamic function
with arguments ti,...,t,. We define

[try R catch f(t1,...,t,) S]* =
v, Jv #vy: (loc,v1) € uA (loc,vs) € u

u, otherwise

where u = [R]* and v = [S]* are the update sets of R and S respectively, and
loc is the location f([t;]®, ..., [t.]*).

1.5 Related Work

The sequence operator defined by Zamulin in [74] differs from our concept with
respect to rules leading to inconsistent update sets for which it is not defined.
In case everything is consistent, both definitions compute the same resulting
update set. For consistent update sets Zamulin’s loop constructor coincides
with our while definition in Example 1.2.2.

In Anlauff’s XASM [2], calling an ASM is the iteration of a rule until a
certain condition holds. [2] provides no formal definition of this concept, but
for consistent update sets the XASM implementation seems to behave like our
definition of iterate.

Named rules with parameters appear in the ASM Workbench [29] and in
XASM [2], but with parameters restricted to terms. The ASM Workbench does
not allow recursive rules. Recursive ASMs have also been proposed by Gurevich
and Spielmann [37]. Their aim was to justify recursive ASMs within distributed
ASMs [33]. If R is a rule executed by agent a and has two recursive calls to R,

18 Submachine Concept

then a creates two new agents a; and as which execute the two corresponding
recursive calls. The agent a waits for termination of his slaves a; and as and then
combines the result of both computations. This is different from our definition
where executing a recursive call needs only one step, from the caller’s view, so
that the justification remains within purely sequential ASMs without invoking
concepts from distributed computing. Through our definition the distinction
between suspension and reactivation tasks in the iterative implementation of
recursion becomes a matter of choosing the black-box or the glass-box view for
the recursion. The updates of a recursive call are collected and handed over to
the calling machine as a whole to determine the state following in the black-box
view the calling state. Only the glass-box view provides a refined inspection of
how this collection is computed.

Chapter 2

Component Concept

The last chapter extended the ASM semantics by several structuring principles
like parametrized machines and sequential execution of rules. However, for large
specifications, these concepts are not sufficient, because it is difficult to divide
a specification into smaller independent parts. One key technique to solve such
a problem is the usage of components. Hence, we introduce in this chapter a
notion of ASM component.

Our component notion is in particular useful for specifying the abstract
behavior of digital hardware circuits. See [9] for a general discussion about
hardware design with Abstract State Machines.

The idea is to write abstract models of the hardware to be designed using
the component concept. These models can be used to validate the design.
In the second step, we refine those validated abstract models to their final
implementations (the concrete models) and show that the refined models behave
in some sense as the abstract models. To do this, we introduce a component-wise
verification technique. This proceeding has the advantage, that we can use the
abstract system (the composition of the abstract models) for validating system
properties instead of doing this in the much more complex concrete system (the
composition of the concrete models). The abstract system model is the ground
model in the sense of [10].

There are two main languages for hardware design, namely VHDL [39, 24]

and Verilog [65]. Since VHDL is the language commonly used in Europe, we will
focus on that language. It is a powerful programming language for designing
hardware (see [13] for a rigorous ASM description of the semantics of VHDL)

but it is generally recognized that VHDL is not suited for high-level descriptions.
On the other hand, a hardware designer would not be happy if he has to write
the formal piece of a specification (the abstract models) in one language and
later he has to encode it in a different language. Hence, the solution is to design
a language which is very similar to VHDL, but which can be used for high-level
descriptions.

We are now going to describe our specification language for components and
their composition and show how our formal composition model can be used to
simplify formal verification in large hardware systems. This chapter is divided
into four parts. Section 2.1 introduces the formal component model and the
specification language to define such components. In Section 2.2 we introduce
the composition of components for the formal model and for the specification

19

20 Component Concept

Figure 2.1 Graphical notation of a component

il ol

— -

i2 02

— e -

language. Based on the composition model we introduce in Section 2.3 a verifi-
cation technique which allows formal verification for large compositions where
the verification can be done component-wise.

2.1 Component

The term component is widely used in software and hardware engineering. In
this section we first define our formal component model and then we introduce
a syntax to define such components. Our notation of component consists of
inputs, outputs, state elements, an output function, and a next state function.
The inputs and outputs constitute the component interface which is the only
possibility to interact with the component.

Figure 2.1 illustrates the graphical notation used in this chapter for a com-
ponent with inputs i, 7o and outputs o1, 09 in a black-box view.

2.1.1 Formal Definition

The component interface is defined by inputs and outputs. Given the input
values, the component computes—depending on the current state—the values
for the outputs. For the relation between inputs (outputs) and values we use
a notion of input (output) state which assigns a value to each input (output).
The universe Val denotes the universe of values:

Definition 2.1.1 (Input and Output state) For a set I of inputs and a set
O of outputs, the total functions

i:1 — Val
0:0 — Val

are called input state and output state, respectively. We denote the universe of
all total functions from I to Val by the symbol 3. Similarly, we use O for the
universe of all total functions from O to Val.

The behavior of a component depends on the input state and on the internal
state. Similar to the input state we introduce a notion of internal state for the
relation between state elements and their values:

Definition 2.1.2 (Internal state) For a set S of state elements, a total func-
tion

5: 8 — Val

2.1 Component 21

is called an internal state or simply a state. We denote the universe of all total
functions from S to Val by the symbol G.

Our following component definition is similar to Finite State Machines [21].
We have inputs, outputs, an output function, and a state transition function.
In contrast to automata, our state is represented as an assignment from state
elements to values similar to dynamic functions in ASMs [33].

Definition 2.1.3 (Component) A tuple (I, 0, S, next, out) is called a com-
ponent. The sets I and O are the inputs and outputs, S is the set of state
elements. The total output function

out: Ix 6 — O

computes the output state, given an input and internal state. Similar to out,
the total function

next: I x 6 — 6

determines the next (internal) state of the component. We require the sets I,
0, and S to be disjoint.

Remark 2.1 The requirement, that I, O, and S have to be disjoint is not a
restriction, because feedback wires can be introduced when composing compo-
nents.

Let i be an input state and let s be an internal state for a component
(I, 0,8, next, out). The output function out(i,s) defines the output values;
next(i,s) defines the next internal state (one computation step). We now ex-
tend these two functions as usual for a sequence of input states:

Definition 2.1.4 (Run) Let (I, O, S, next, out) be a component. Let s be an
internal state. For a sequence of input states is €> n*J we define the next state
function

next™: 2" x 6 - S
for n > 0 as follows:

next®(is, s) =5
next"1(i-is,s) = next™(is, next(i,s))

For a sequence of input statesi, ... ip ... i,q15(k > 0), we define the output
function

out™: 32l x & -5 O
for n > 0 in terms of the next state function next™:
out™(ig - ... iptk,8) = out(in, next™(ig - ... in_1,5))

Remark 2.2 The definition of this output function out™ for a sequence of input
states i -is implies (as expected) that

out®(i-is,s) = out(i,s)

22 Component Concept

The output function out computes for given input and internal state an
output state. Usually, a subset of input values is sufficient to compute the value
for an output o. Hence, we define a notion of dependency set for an output o
which contains at least those inputs where the output value of o depends on,
i.e., inputs not in this set can not influence the output value. This is formalized
as follows:

Definition 2.1.5 (Dependency set) Let (I, O, S, next, out) be a component.
A set

Ider C T
is a dependency set for output o € O if the following condition is true:

Vi,ip €J,5 € G:
(I3P iy = I9°P Qip) = out(i1,s)(0) = out(iz,s)(0)

Obviously, the set I is always a dependency set. However, much more inter-
esting is a dependency set which is as small as possible. We say a dependency
set is minimal (with respect to set inclusion), if there is no proper subset which
is a dependency set, too:

Definition 2.1.6 (Minimal dependency set) Let [P be a dependency set
for output o € O in component (I, 0, S, next,out). The set 2P is called a
minimal dependency set if there is no proper subset which is a dependency set
for o, too.

Obviously, for each output o there is a minimal dependency set, because I
is a dependency set for o, and one can remove elements as long as the resulting
set remains a dependency set for o. The following lemma states that there is
exactly one minimal dependency set:

Lemma 2.1.1 (Minimal dependency set: uniqueness)
Let (I, 0, S, next, out) be a component. For each o € O, there is exactly one
minimal dependency set.

Proof by Contradiction. Assume, there are two different minimal dependency
sets %P1 and 1972 for an output o € O. We show that then 1°P1 0 [9°P2 is a
dependency set which implies, that neither 7%P* nor %P2 can be minimal.

Let i1, iy be two input states coinciding on I%P1 N [dep2;
(]depl N Idepz) < il — ([dem N]depz) < 12

Then there is an input state v coinciding with i; on %Pt and coinciding with
iy on J%P2:

Iderr q o = Jderr iy A T%P2 gy = [eP2 g,
This implies that the output function for o for input states i; and iy is equal:
out(iy,s)(0) = out(v,s)(0) = out(iz,s)(0)

Hence, 1971 0 [9¢P2 is a dependency set for o. O

2.1 Component 23

Remark 2.3 If there are two disjoint dependency sets for an output o, then
the output function for o does not depend on the input values, i.e., the empty
set is a dependency set.

Remark 2.4 The above property about minimality of dependency sets is useful
for theory. However, in practice it is difficult to compute this minimal set, but
it is possible to compute a good approximation by analyzing the dependencies
in the definition of the corresponding output function.

2.1.2 Abstraction

For two components C' and A we define what it means that A is an IO-
abstraction of C. Usually, we use A for the abstract component and C for
the concrete component. In the literature ([26, 27, 62], e.g.) the notion ab-
straction is used with many different interpretations. Often, abstraction in the
literature implies some mathematical relation between the abstract and concrete
model.

Our notion of abstraction defines a relation (mapping) between inputs/out-
puts of the abstract and concrete component. To distinguish this notion from
the term used in the literature, we call this an IO-Abstraction:

Definition 2.1.7 (I0-Abstraction) Let C' and A be two components with

C=(I¢0° 8% nest®, out®)
A = (14,04, 84 next?, out?)

Without loss of generality, we require the sets I4, 04,54, 1¢,0¢,8¢ to be
pairwise disjoint. Let map’ and map© be partial injective functions (not totally
undefined) and let map be their union:

map? T4+ I¢
map® : 04 + 0¢
map = mapI U mapo

We call A an IO-abstraction of C' with respect to the mapping function map.

The mapping function map defines a correspondence between the identifiers
in the abstract component A and in the concrete component C. This definition
of abstraction is very weak, because there is no need that all inputs or outputs
in the abstract model are present in the concrete model and vice versa. We
do enforce only, that two different identifiers in the abstract model—if they are
mapped at all—are mapped to two different identifiers in the concrete model.

2.1.3 Verification

General techniques for verifying ASMs have been introduced for theorem proving
in [59, 31] and for model checking in [72]. Hence, we could use one of these
techniques to proof properties about our components. Since we also want to
use the abstract models for simulation purpose, we have to translate them into
VHDL code. For VHDL, there are already model checkers and we use one of
them to proof properties. Hence, we translate our specification language into

24 Component Concept

VHDL and therefore we do not discuss how to verify ASMs. The translation to
VHDL is not described in this thesis.

In Section 2.3 we will introduce a component based verification technique.
For this technique, we need a notion of formula. Hence, we introduce a very sim-
ple property language—boolean combination of timed input/output variables—
for the formal component model defined in the previous section. The notations
it and o correspond to the input value of i at time ¢ and output value of o at
time ¢. For instance, the formula

it Aottt v —it A —ottt

states that the input value of 7 at time ¢ is equal to the output value of o at
time ¢t + 1. It follows the formal definition:

Definition 2.1.8 (Formula) The formulas over an input set I and output set
O with respect to time period w are inductively defined:

o foric I, t €N,, i'isa formula (i is also called a variable)
e for o € 0,t € N, ot is a formula (o® is also called a variable)
e if F', G are formulas, then also FAN G, FV G
e if F' is a formula, then also - F

We use vars(p) to denote the set of variables in .

For a formula ¢ and component C, we define what it means that ¢ is valid
in C (C is a model for ¢). In the following definition, C' is a model for ¢ if the
formula ¢ is valid for every possible sequence of input states and initial internal
state. Without loss of generality, we assume that each input and output is of
basic type boolean :

Definition 2.1.9 (Model) Let ¢ be a formula over input set I and output set
O with respect to time period w. A component C = (I, 0, S, next, out) Is a
model for ¢ (denoted by C |=) if the following property holds:

Vis € 32vH s € &: p(is,s) = true
where ¢(is, s) is defined as follows:
o foric I,0<t<w: ¢'(i% .. .-it. .. -itTk g) =i’(4)
e foroe 0,0 <t < w: ol(is,s) = out®(is,s)
o (F&® G)(is,s) = F(is,s) ® G(is,s), & = A,V
o (—F)(is,s) = ~(F(is,5))

We will use these definitions about formulas in Section 2.3 where we intro-
duce the component based verification technique.

LOtherwise one has to extend the formula language in Def. 2.1.8.

2.1 Component 25

Figure 2.2 An example: FlipFlop

component FlipFlop function 0 is val
use library std_logic rule FlipFlop is {
interface { if S=’1’ then

S : in std_logic val := D

D : in std_logic if R=’1’ then

R : in std_logic val := ’0’

0 : out std_logic }
} end component
state { val : std_logic }

2.1.4 Defining Components

In Section 2.1.1 we defined a formal model for components. For these com-
ponents we now introduce a specification language inspired by VHDL. This
subsection defines this language by introducing the syntax and by defining the
translation from the syntax to our formal component model.

Syntax

Syntactically a component consists of a name (the component name), a (possible
empty) sequence of used libraries, and a non-empty sequence of component
declarations (compdecl).

The libraries are used to declare signatures of external functions and external
types. A library itself is based on other libraries and a sequence of library
declarations (libdecl).

component ::= component id library ::= library id
usedecl* usedecl™
compdecl™ libdecl™
end component end library

usedecl ::=use library id

The grammar for compdecl and libdecl will be defined below. The symbols '+,
"/ and '?" denote one or more, zero or more, and zero or one iteration ("?" will
be used later).

Before we introduce the grammar rules, we want to give an impression about
the language. Figure 2.2 defines a component called FlipFlop. The component
has three inputs, namely S, D, R of type std_logic which is a commonly used
type for bits in VHDL. Additionally, the interface contains an output O. The
value for this output is defined by a function having the same name. The
behavior of our FlipFlop is defined by the main rule FlipFlop: Whenever S is
equal to 1’ we store the input value of D in a state element val; if the input R
is ’1’, then we reset val to zero. Setting S and R simultaneously to ‘1’ makes
no sense, except when D is '0’. Note that val is a state element and an update
to it is visible not until the next step. This means, if R is ‘1’ at time ¢, then O
is ‘0" at time ¢ + 1.

26 Component Concept

We are now going to introduce the grammar rules in detail and then we
define the relation to the formal component model.

A component declaration (compdecl) is either a rule declaration, a function
declaration, a type declaration, an alias-type declaration, an interface declara-
tion, or a state declaration. Type declarations and alias declarations are also
admitted in library declarations. Additionally, a library declaration (libdecl)
can be a signature declaration for an external function. The declarations are
described in detail below. We underline syntactic symbols to distinguish them

from the corresponding meta symbols. In particular, this applies for the symbols
I(/ /)I I{I I}/ and ! /.

compdecl ::= ruledecl libdecl ::= sigdecl
| fundecl | typedecl
| typedecl | aliasdecl
| aliasdecl

| interface { ifacedecl™ }
| state { statedecl™ }

A signature declaration (sigdecl) in a library declares the argument types
and the return type of a function. In the view of the component such a function
is external and is defined by the run-time environment (and, or on bits, e.g.).
A type declaration (typedecl) introduces a new type; the syntax for types is de-
scribed in Appendix B. An alias declaration (aliasdecl) introduces an additional
name for an already existing type.

sigdecl ::=function id types? : type
typedecl ::=type id is typedef
aliasdecl ::=typealias id is type

Rule declarations (ruledecl) and function declarations (fundecl) are very sim-
ilar. Both have a name and may have a list of formal parameters which can be
used in the rule and function body. It is not allowed to define multiple rules or
functions with the same name. This applies to all other declarations, too.

ruledecl ::=rule id parameters? is rule
fundecl ::=function id parameters? is term

parameters :: (
parameter = id (: type)?

(parameter(,parameter)*)

The interface of a component is defined in terms of inputs and outputs. As
in VHDL, the types for inputs and outputs must not be function types 2.

A component reads input values and provides output values. Inputs and
outputs are declared by in and out, respectively.

ifacedecl ::=id : (in | out) type

The internal state elements of a component can be defined with state decla-
rations. In terms of ASMs, a state declaration defines a dynamic function and

20therwise we can not compile the language into VHDL.

2.1 Component 27

Figure 2.3 Interface and state declarations

[type] — 1

1
[id : type] — {State(id, t,e)} (statedecl)
[type] — t, [typer] — t1, ..., [typen] — tn
[id (type, . .. ,typen) : type] — {State(id, t, (t1,... t,))}
[decl] — dsq, ..., [decl,] — dsy,
[state {dech ... decl,}] — ds; U... U ds, (state)
[type] — [type] — ¢ .
facedecl
[id :in type] — {In(id, 1)} [id : out type] — {Out(id, t)} (tacedect)
[dech] — ifacey, ..., [decl,] — iface, fintertace)

[interface idecll e declnl] — iface; U ... U iface,

declares the argument and return type of it.

statedecl ::= id types? : type
types = (type(,type)”)

The dynamic behavior of a component is defined by ASM rules. Rules are
built from the skip rule, the function update, and the call rule.

rule ::= skip rulecall ::= id terms?
| {rule*} funterm ::= id terms?
| rulecall terms = (term(,term)*)

| funterm := term
| if term then rule (else rule)?

The skip rule does nothing, it is like a semicolon in C++. The function update
assigns a new value to the function symbol on the lefthand side for the given
arguments. A call rule is similar to a function call: For the identifier in the call
rule (leftmost identifier), there must be a rule declaration statement and the
length and types of the formal arguments from the rule declaration statement
must match the parameters in the call rule. A sequence of rules can be grouped
to one rule by curly braces. The else part in the if then rule is optional. The
semantics of rules is described in detail in the next section.

The syntax and semantics for terms and types is listed in Appendix B where
we also list static constraints about the definitions introduced above. However,
these constraints are similar as in other programming languages; for instance,
every identifier must be defined, the program must be well typed, etc.

Interpretation

The remaining paragraphs in this subsection define the interpretation of the
previous syntax definitions. More precisely, we introduce derivation rules to
transform a syntactical component into the mathematical model of subsection

28 Component Concept

Figure 2.4 Type and signature declarations

[typedef] — def

1

[type id is typedef] — { Typedef (id, def)} (typedecl)
[type] — ¢ .

1 1

[typealias id is type| — {Alias(id,t)} (aliasdecl)

el £ (sigdecl)

[function id : type] — {Sig(id, t,£)}

[type] — ¢, [typer] — t, . .., [typen] — tn
[function id(types, ..., type,) : type] — {Sig(id,t, (t1,...,tn))}

2.1.1. The derivation rules are shown in Fig. 2.3, 2.4, 2.5. We use the notation
[str] — def

to denote that a syntactical string str is transformed into a set of abstract
declarations def.

We gather all abstract declarations in an environment env. This is expressed
by the derivation rule below. It states that if a syntactical string decl can be
transformed (by Fig. 2.3 2.4, 2.5) to a set ds, then each element in this set is
also contained in env.

[decl] — ds, d € ds
d € env

In our specification language we do not commit to any special ordering of
the declarations. However, the environment env can only be computed, if all
declarations can be sorted topologically (no cyclic definitions), because env is
also used in the interpretation of types and terms (see Appendix B). Therefore,
any kind of recursion for function and rule definitions is prohibited.

In the following paragraphs, we consider the interpretation of the introduced
syntax parts such that we can eventually define the interpretation for a syntac-
tical component definition.

Inputs, Outputs, States. Figure 2.3 defines the interpretation for inputs,
outputs, and state elements. They are translated to the abstract declarations
In(...), Out(...), State(...). Hence, the sets I, O, and S (the inputs, the out-
puts, and the state elements) can be defined by looking into the environment
env ('_' matches anything):
In(id,_) € env Out(id,—) € env State(id,—,_) € env
id €1 id € O id e S

Function and rules. Figure 2.5 shows the interpretation for function and
rule declarations. The interpretation of rules (update sets) and functions (term
values) depends on the input and internal state. This dependence is not evident

2.1 Component 29

Figure 2.5 Function and rule declarations

[rule] — r
1 1
[rule id is rule] — {Rule(id,e,r)} (ruledecl)
[rule] — r,[p1] — idy,...,[pn] — idy
[rule id(p1,...,pn) is rule] — {Rule(id,id; - ... - idy,)}
[term] — (fundecl)

[function id is term] — {Fun(id,e,f)}

[term] — f,[p1] ¥ idy, ... [pn] — idy,
[function id(pi,...,pn) is term| — {Fun(id, (idy, ..., idy,), f)}

from the figure. In the figure, we have the conditions [rule] — r and [term] — f
and the question is what are r and f. Let us first consider r which is defined
by the following rule:

Vi s, C: [[rule]]i(’5 =r(i,s,()

[rule] — r

If [rule] — r holds, then r is a function from input state, internal state, and
local variable environment to an update set. The notation [[7’ule]]i<’5 = r(i,s,()
means that rule is interpreted as the update set r(i, s, () with respect to input
state i, internal state s, and local variable environment (.

The definition of f in [term] — f is similar to definition of r in [rule] — r

described above.

V i557 C: [[term]]i(;s = f(i75’ C)
[term] — f

The notation [[term]]z’ﬁ interprets term with respect to input state i, internal
state s, and local variable environment . For more information, see Appendix B
where term interpretation is defined in detail for our specification language.

Output function. The value of an output is defined in our specification lan-
guage by a nullary function having the same name.? Therefore, for any nullary
function definition, where the function name id is in the set of outputs, we de-
fine the function out;; which computes for given input state and internal state
the value for the output. We use L for the empty local variable environment.

Fun(id,e, f) € env,id € O
Vied,s € S: outig(i,s) = f(i,s, 1)

Usage of libraries. A component may include library declarations of a library
lib by using the usedecl syntax

use library lib

30 Component Concept

Figure 2.6 Rules

[skip]* ‘ . .
[{rule; =~ rule, }]¢° [rule,J¢*U--- U [[7”ulen]]‘c’5
[f = 1] . ={(f.e, [[tl]ls)} ,
[f (hs oo tn) = 217 ={(f, <[[t1]]‘5~ e [aDe) [0}
[[rgll...ltn)]]gs =[]} 1o°(tl]] [[tn]]gﬁ)

is { mlel]]C , [[t]] = true

if t then rule; else rules]” =
[[! 2l mleg]]C , [[t]] = false

[[7"]]‘25 = f where f(p1,...,pn) [[body]]ldlﬁph Lidy—p, a0d
Rule(r,idy - ... - idy, body) € env

For the interpretation of such a wusedecl statement we can include all library
declarations into the environment env. This is done by the rules below where
we assume, that the function content returns (by a database lookup, e.g.) the
syntactical library content for the specified library name:

content([lib]) — ds
[use library lib] — ds

[uses] — ds, [decli] — dsy, ..., [decl,] — ds,

[library id uses decly ... decl, endlibrary| — dsUds; U---Uds,

Rule interpretation. Figure 2.6 defines the interpretation for rules for given
input state, internal state, and local variable environment. The notation used
is similar to the definition of ASMs in [64]. Rules are built up from skip and
function updates. The update set of skip is the empty set and the update set of
a function update is the singleton set containing the update itself. The identifier
f in a function update must be an element of S and the number and types of
arguments must match the state element definition of f.

The update set of a parallel execution is the union of the corresponding
update sets and the update set of a call rule is the update set of the rule body
(defined by the environment env) with instantiated parameters in the local
variable environment.

Next state function. The next state function computes for given internal
state (and input state) an internal state which is obtained by executing one step
of the component. In our language, we execute the nullary rule which has the
same name as the component and we call this the main rule of the component.*

Executing a rule with respect to an input and internal state yields an update
set (see Figure 2.6). For a consistent update set u for the main rule with respect
to given input state i and internal state s, we define the next internal state

3The syntactic constraints in Appendix B ensure that there is a nullary function definition
for each output.

4The syntactic constraints in Appendix B ensure that there is a nullary rule with the name
of the component.

2.2 Composition of Components 31

next(i,8) = $pew Which we obtain by applying the update set u to s as follows:
The internal state s,,, coincides with s except for the following condition:

For (st ... tn), 1) € U= Spew(s)(t, ... 1) = t

Note that n denotes the arity of the state element s.
In case the update set u is inconsistent, the next internal state coincides
with the current state: next(i,s) = s.

Component interpretation. Based on the previous definitions, we can de-
fine the interpretation for the whole syntactic component definition:

Definition 2.1.10 (Interpretation for components) Let
C = [component id uses decl; ... decl, end component]

be a syntactical component definition. Let env be the environment defined by
the previous derivation rules for the declaration statements decly, . . ., decl, and
the uses statements. The interpretation for C is (I, O, S, next, out) where I,
0, S, out,, and next are defined by the previous definitions for C and out is
defined in terms of out,:

Voeg 0,i€T,s€6: out(i,s)(o) = outy(i,s)

The above definition transforms the syntactically defined component to our
formal component framework as stated in the next lemma. This includes in
particular that out and next must be total functions.

Lemma 2.1.2 Let C be a syntactical component definition. The interpretation
(I, 0,8, next, out) defined above is a component.

Proof. The syntactic constraints (see Appendix B) ensure that there is an output
function for each output. Therefore, the defined out function is total. The next
state function next is total by construction. O

2.2 Composition of Components

In this section we build new components based on already existing components.
We first introduce the formal model for composing components and then show
how component composition can be defined using our specification language.

2.2.1 Formal Definition

For a set of components we could build a new component by putting one interface
(containing all inputs and outputs) around the basic components. The behavior
of this new component would be the union of the single behaviors. However, we
are more interested in building a new component where the behavior is defined
by the behavior and interaction of the single components. Therefore, we connect
inputs and outputs of the single components.

Figure 2.7 shows an example for a composition of the components Ay, Az, As.
In that example, 5 is connected with o1, i3 with o3, and iy with os.

32 Component Concept

Figure 2.7 Example for composition of components

i1 ol i2_
AL n=in i3] A2 o4
— —
02="1'|02 14 _ | 04=i2& (i3]i4)
A3 g1 |03

To define the connections among inputs and outputs of the single compo-
nents, we introduce a notion of connection function. For the example in Fig. 2.7,
the connection function cf is defined as follows:

01, =1z
Cf(l): 03, Z:ZS
09, 1= i4

If ¢f(i) = 4d, then the input value for i is determined by id. It follows the
formal definition of a connection function:

Definition 2.2.1 (Connection function)

Let C4,..., C, be components. Let C; = (I;, O;, S;, next;, out;). Without loss
of generality, we require the sets I;, O;, S; to be pairwise disjoint. A partial
function

¢f: (LU---UL)+ (LU---ULUOU---UO0,)

connecting inputs and outputs or inputs and inputs is called a connection func-
tion for the components Ci, ..., C,, if ¢f viewed as a relation is acyclic.

The definition of connection function raises two questions: (i) why do we
allow connecting input with input and (ii) why do we restrict the set of valid
connection functions? The answer to the first question is simple, because it’s
useful that in the composition several inputs get the same input value and we
will use this feature later.

The restriction of the set of valid connection functions ensures that either
an input is not connected, or it is connected only with an output, or with an
input which is transitively not connected to the original input. This implies
that for connected inputs we can always determine the source which determines
the input value.

We introduce c¢f* to denote the connection function obtained from cf where
each input element is mapped to the identifier which eventually determines the

2.2 Composition of Components 33

input value (¢f* can be viewed as the reflexive transitive closure of ¢f):

of *(cf (i), cf (i) € dom(cf)
of (i) = q cf (f) i € dom(cf)

1, otherwise

The requirement, that ¢f must be acyclic does not prohibit cyclic definitions
of outputs. In fact, there are situations where the behavior of a composition
is not well-defined. For example, consider the composition in Fig. 2.7 with
an additional connection from o4 to 7. Then we would have the following
definitions:

01 =11, 01 = 04,04 = 12&(ig | 1a), 12 = 01

If we unfold the definition of o1, then we see that op is defined recursively. We
want to prohibit such compositions. Therefore, we analyze the resulting depen-
dencies in the composed model by the following two definitions of dependency
function and dependency relation.

The definition of dependency function below combines the dependency sets
of the single outputs into one function. We will use it in the definition of a
dependency relation.

Definition 2.2.2 (Dependency function)
Let C4,..., C, be components with

C; = (I;, O;, S, next;, out;)
I :Il U...U]n
O = Olu"'UOn

A function
I%?: 0 — P(I)

is a called dependency function with respect to C, ..., C, if for o € O;, I%?(0)
is a dependency set for each o in component C;.

A dependency set 19¢P(0) contains the inputs, the output o at least depends
on. If o is element of O;, then 1P (o) C I, i.e., the dependency set contains
only inputs belonging to the same component. However, if an output o depends
on an input ¢ and 4 is connected with id, then o also depends on id.

In the following definition of dependency relation we extend the dependencies
in the dependency set with respect to the connections among the components.
A pair (idy, ide) in the dependency relation means that the value of id; depends
on the value of ids:

Definition 2.2.3 (Dependency relation)
Let C,..., C, be components with

Ci = (I, 0y, S;, next;, out;)

Let cf be a connection function for Ci, ..., C,. Let 19" be a dependency func-
tion with respect to Ci, ..., C,. A smallest set dep fulfilling the following two

34 Component Concept

Figure 2.8 Composed component

ol
il i1 ol J_ i2_
TIAL m=in ¢ 3% A2 o4 |o4
02="1']02 i4 | 04=i28(i3)i4)
02
A3 g1 |08 03,

properties is called a dependency relation with respect to connection function
¢f and dependency function 1%°P:

Vi € dom(cf): (i, ¢f(i)) € dep
Vo€ O1U...UOy,i€I%(0): (0,i) € dep

If the dependency relation contains no cycle, then no output in the composed
model could depend on its own value (instantaneously). This is a necessary
condition to define the interpretation for the composition of the components.

The composition we define in the next theorem for components Ci, ..., Cy,
and connection function c¢f is a component where

e the set of inputs is the union of the inputs of the single components without
those inputs which are connected to other identifiers, i.e. which are in the
domain of cf.

e the set of outputs is the union of the outputs of the single components.
The same applies to the state elements.

e the output function for an output o is the output function of the corre-
sponding component where o is defined. Since in the composed model
we have an input state for the inputs of the composed model, we define
the input state for the single components by using the input state for
the composition, the connection function, and the output functions of the
single components. In particular, if an input is connected to an output,
then the input value is the result of the output function of the output it
is connected to.

e the next state function for a state element s is the result of the next state
function of the corresponding component where s is defined.

Figure 2.8 illustrates the component obtained from the composition shown
in Fig. 2.7 according to the previous description of composition. In the figure,
only 7 is an input of the composed component, because all other inputs of the
single components are connected to outputs. On the other hand, all outputs of

2.2 Composition of Components 35

the single components are also outputs of the composition regardless whether
they are connected or not.

The following theorem formalizes this composition principle in terms of the
given single components according to the previous description and states that
the composition is a component:

Theorem 2.2.1 (Composition of components)
Let C4,..., C, be components with

C; = (I;, 0;, S;, next;, out;)

Let ¢f be a connection function for Cy,...,C,. The tuple (I, 0, S, next, out)
with I, O, S, out, next defined below is a component if there is a dependency
function I9¢? with respect to Cy, ..., Cy, such that the dependency relation dep
with respect to c¢f and 1P is acyclic:

I =(LU---UI,)\ dom(cf)
O=0,U---UO0,
S=5U---US,

o€ 0 s€S;
out(i,5)(0) = out;(i;,S; < s)(0) mnext(i,s)(s) = next;(i;,S; <5)(s)

cf*(id) e I,id € I, cf*(id) € 0y, id € I;
i;(id) = i(cf*(id)) i,(id) = out;(i;, S; < 8)(cf*(id))

Proof. We have to show that the output function out and the next state function
next are well-defined. The crucial point is the definition of the input state i; for
a component C; depending on the global input state i. For the input state i;
we have to show that it is well defined.

Let us first consider the definition i,(id) = out; (i;, S; <8)(cf*(id)) in the deduc-
tion rule at right bottom. Since I%P(cf*(id)) is a dependency set for output
cf*(id), the following property is satisfied for each input state v:

TP (cf*(id)) < v = 19 (cf*(id)) <i; =
out; (i, S; < 5)(cf*(id)) = outj(v, S; < s)(cf*(id))

This implies that we only need the input values i;(n) for n € 19P(cf*(id)). The
other input values can be chosen arbitrarily. Since the dependency relation dep
is acyclic, the definition of i;(id) is acyclic, too. O

Remark 2.5 A composition C’ in Theorem 2.2.1 where the set of outputs is a
subset of O is a component, too. In such a case we have to restrict the domain
of the output function out to the new domain.

Given the dependency sets for the single components, we can compute a de-
pendency set for each output in the composition. An input ¢ of the composition
is in the dependency set for an output o, if the pair (o,4) is in the transitive
closure of the corresponding dependency relation:

36 Component Concept

Figure 2.9 Graphical composition principle

—D2 — o1t
F1 F2
-D1 rO21
e D O— rD O
S S
r R gaeva T R gaeva
-—R
statetoggle
functionS —*
function 02

Lemma 2.2.1 (Dependency set of composition)

Let C,..., C, be components. Let cf be a connection function for Ci,..., Cy,
let I1%P be a dependency function with respect to C,..., C,, let dep be a
dependency relation with respect to c¢f and I%°? and let C = (I, O, S, next, out)
be the composition of Cy, ..., C, according to Theorem 2.2.1. Then the set 2P
defined below is a dependency set for output o € O.

Vo€ O,i€l: icll® & (0,i)€ dept

where dep™ is the transitive closure of dep.

Proof. We have to show that I[P is a dependency set for output 0 Given
the dependency relation dep we first determine the dependency set I ° for an
output o with respect to the corresponding component C; where the output 0

is defined (Ij(fzp is a dependency set according to Def. 2.2.3).
Voe Ojielj:ic ijlf;p < (0,1) € dep

Consider now two input states u and v for the composition C. We have to show
the following property:

I8P <y =149 qv = out(u,s)(o) = out(v,s)(0)

Let output o be defined in component C; and let u; and v; be the input states
resulting from v and v according to Theorem 2.2.1 for component C;. We now
prove the following property which implies that the output functions for the
input states v and v are equal.

Idr qu=18% qv = I qu; = I[P <

For i € def)p we have to distinguish three cases:

2.2 Composition of Components 37

1l.iel
This implies that i € 19, u(i) = wu;(i), v(i) = v;(i), and therefore
05(3) = v,(3).

2. ¢f*(1) el
Similar to the first case.

3. ¢f*(i) € O
Now we prove that Iccjf*p(i) is a dependency set for output c¢f*(i). This
proof terminates, because in that proof there is no need to prove that
13¢? is a dependency set for o, because the dependency relation dep in
Theorem 2.2.1 is acyclic.

By construction of dep, the following property holds:

i€ I8P Nef*(i) € O = I D IGT
With this property we can conclude our proof:

T3P qu=14% g0
de de
Lyrny Qu =Ll <
out (u, 5)(cf* (1)) = out(v,s)(cf* (7))

u;(4) = v (2)

il

O

Remark 2.6 The dependency set 19°P constructed in Lemma 2.2.1 for output
o in the composition C' is not necessarily minimal, even if the corresponding
dependency sets for the single components are minimal.

2.2.2 Defining Composition

This subsection defines a syntax for the specification language which allows to
define components by composition.

For the formal model, we defined composition by connecting single com-
ponents as was illustrated by Fig. 2.8. Syntactically, we allow a more general
composition technique, namely inclusion of components (similar to VHDL, e.g.
in [6]). Figure 2.9 illustrates this composition technique. The figure shows a
component M with inputs D1, D2, R, outputs O1, 02, state variable toggle, and
functions S, O2. The component M includes the components F'1 and F2 and
defines connections among the different interfaces.

We first introduce the syntax to define such compositions and then we show
how to reduce it to the formal composition model, namely to connect single
components.

Syntax

Components can be included similarly to libraries. There is no need to include
a library twice, but two instances of one component may differ from each other
due to their state. Therefore, an inclusion statement for components consists of
a component name (of the component to be included) and an alias name. The

38 Component Concept

Figure 2.10 Composition principle

component M connect {
use library std_logic F1:D = D1
use component FlipFlop as F1 F2:D = D2
use component FlipFlop as F2 01 = F1:0
interface { F1:R R
D1 : in std_logic F2:R =R
D2 : in std_logic F1:S S
R : in std_logic F2:8 =38
01 : out std_logic }
02 : out std_logic rule M is {
} toggle := not(toggle)
state { toggle : std_logic } }
function 02 is F1:0 and F2:0 function S is toggle and not(R)
end component

same component may be included several times with different alias names. We
extend the usedecl statement for components.

usedecl ::=use library id | use component id as id

Figure 2.10 illustrates the composition in our specification language (Fig. 2.9
is the graphical representation of Fig. 2.10). In the example, the FlipFlop com-
ponent is included as F'1 and F2. For connecting identifiers we provide a con-
nection section as can be seen in the figure. Additionally, the notation alias : id
allows to reference outputs of included components (the definition of function
02, e.g.); alias is a component C included with alias name alias, and id is an
output in C.

We are now going to explain the syntactical constructs in detail. For con-
necting inputs and outputs we introduce the connection statement where we
can define connections between the including and the included component and
among included components. Therefore, we extend the compdecl statement with
a connection section.

compdecl ::= ruledecl conndecl ::= id = id : id
| fundecl | id : id = (id : id | id)
| typedecl
| aliasdecl

| interface { ifacedecl™ }
| state { statedecl™ }
| connect { conndecl™ }

Let C be an including component and let Ci,..., C,, be included compo-
nents. There are four possibilities to connect among these components.

e Output id; of C with output idy of C; (idy = C; : idp)

e Input idy of C; with input ids of C (Cy :idy = idp)

e Input id; of C; with nullary function ids in C (C; : idy = idp)

e Input id; of C; with output idy of Cj (C; - idy = Cj :idy)

2.2 Composition of Components 39

Figure 2.11 Reduction to connecting single components

M

F1 L F2
D2 o1

E —R S 1S

R = F1.0 R
T ~ F2:0 (

The value for the identifier on the lefthand side in a connection is determined
by the identifier on the righthand side.

Interpretation

The following paragraphs define the interpretation of the introduced syntax fro
composing components. Instead of defining a new framework for this composi-
tion technique, we reduce it to the composition of connecting single components.

Figure 2.11 illustrates the reduction principle for the composition shown in
Fig. 2.9. We lift the included components F'1 and F2 outside the including
component M .Now we have three components connected to each other and we
can apply the composition Theorem 2.2.1.

We are now going to describe this reduction in detail and we start with the
interpretation for the component inclusion statement:

[use component c as id] — {Use(c,id)}

For Use(c,id) € env and C = (I, 0, S, next, out) the interpretation of ¢, we
introduce the notation Cyq = (La, Oid, Sid, next;q, out;q) for a corresponding
copy of C.

The notation c:id transforms the syntactical string c:id into the semantical
identifier id. in component c¢. Note that we assume that all inputs, outputs,
and state elements in different components are disjoint.

In the interpretation of the connection statement defined in Fig. 2.12 we
have to distinguish the different connections as introduced in the syntax part.
We use OutOut when connecting output with output, Inin for input with input,
InOut for input with output, and InFun for input with function.

We can now define the interpretation of composition based on Theorem 2.2.1:
If a component C uses the component instantiations C, ..., Cy,, then we define
a component C” and compose the components C’, C1, ..., C, according to Theo-
rem 2.2.1. The component C is obtained from C by eliminating the component
inclusion statements and the connection section. Furthermore, referenced out-
puts of C; in C (using the notation C; : id in terms) are treated as primary
inputs of C’, and nullary functions in C' which appear as the righthand-side in
the connection section of C' are added as outputs in C”.

40 Component Concept

Figure 2.12 Connection declarations

idleO,c:idgeOc idQE[,CZidlefc
[idi = ¢ :idg] — {OutOut(idy, c:idz)} [c: idy = idp] — {InIn(idy, c:idy)}

c:idy € I, Fun(idg, e, f) € env
[c:idy = ids] — {InFun(c:idy,ids)}

cy:id; €]Cl7 Co:iidy € OC2
[Cl : Zdl = C2 ! ng] (g {InOut(clzz’dl, Cgiidg)}

For the example in Fig. 2.11 this means that we modify component M to
M’ where we introduce two new inputs F'1: O and F2: O and a new output S.
We connect O in component F'1 with the new input F1:0 in M’ and O in F2
with the new input F2:0 in M’, and S with F1:S and F2:S. We now define
this composition formally:

Definition 2.2.4 (Interpretation for composition) Let
C = [component id uses decl; ... decl, end component]

be a syntactically defined component. The interpretation of C' is
(I, 0, S, next, out)

where I, S, out, next are defined as in Theorem 2.2.1 for the components
Cy, Chy.e.ts Cp

and connection function cf defined below. The set of outputs O of the new
component is the set Oy (the same outputs as in the definition of the interface
in C). Cy is the interpretation of C' without the component inclusion and
connection statements and where terms like c:id are treated as inputs of C'.

{C,...,Ch} ={Csa | Use(c,id) € env}
I'={c:id | c:id € terms(C) V 3 o : OutOut(o, c:id) € env}
0" = {idy | InFun(idy, idy) € env}
Cy=(IhUlI',00U O, Sy, nexty, out’)
out'(i, 8)(0) = {f(i,%, 1), Fun(o,s,fgnv

i(c:id), OutOut(o,c:id) € env
o, InOut(i, 0) € env V InFun(i, 0) € env
i, InIn(i,i') € env
ciid, i=c:id A (c:id € terms(C)V

3 0: OutOut(o, c:id) € env)

of (1) =

We assume that the function terms(C') computes the set of all basic expressions
in the definitions of the syntactical component C'.

2.3 Component based Verification 41

Figure 2.13 Abstract connection function

cf#

XA yA
map map

XC

cf ©

2.3 Component based Verification

Automatic property verification (model checking, e.g.) seems to be possible for
small components (small models). However, when reasoning about a composi-
tion of components, usually properties cannot be verified due to the complexity
of the composed model.

In this section we introduce a verification technique which allows us to infer
a property for a composed model from a (modified) property in a simplified
composed model.

In the literature ([27, 62], e.g.), usually the user defines an abstraction func-
tion (with certain properties). The verification system automatically abstracts
the model with respect to the given abstraction function and proves the property
in the abstracted model. Often, the abstraction has to fulfill some properties
such that each valid formula in the abstracted model holds in the original model,
too. However, finding the right abstraction function is a difficult task.

We do not apply an abstraction function to a model to obtain an abstracted
model. We assume that the model and its abstraction are given without knowing
a functional relation between them. The disadvantage is that if the formula
holds in the abstracted model, then we cannot conclude that the formula holds
in the original model, too. This is obvious, since the abstraction may behave
completely different from the original model. On the other hand it is easier to
build such abstractions.

In contrast to other compositional verification proposals ([32, 5, 73], e.g.)
we use the abstract models for the environment behavior.
Assume we have the components C1, ..., C, together with connection func-

tion c¢f resulting in the composition C'. Further, we want to prove formula ¢
for model C, but this is not possible due to complexity issues. Let us further
assume that IO-abstractions A; of C; are given and A (similar to C') is the com-
position of A1,..., A,. To conclude whether ¢ holds in C' we check whether an
extended version of ¢ holds in an extended model of A. The assumption is that
automatic property proving (model checking) is possible in A extended with one
component C;. Thus, Aq,..., A, have to reduce the complexity of Ci,..., Cy;
otherwise we would have the same problem as proving in C.

We connect the models Aq,..., A, (to obtain A) according to Ci,..., Cy;
i.e., if there is a connection from id; to idy in the composition C, and both iden-
tifiers have a mapping from the abstract components, then the corresponding
abstract identifiers are connected. This is illustrated in Fig. 2.13 and formalized
in the following definition of cf“:

42 Component Concept

Definition 2.3.1 (Abstract connection function) Let c¢f“ be a connection
function for the components C1, ..., C,. Let A; be an I0-abstraction of C; with
respect to mapping function map;. The connection function cf* for Ay,..., A,
for the composition A is determined by

cf “(a9) =y map(z?) = 2, map(y?) = y°
cof A(zh) = y4
where map is the union of the single map; functions. Without loss of generality,
we require the inputs, outputs, and state elements in Cy,..., Cy, Ay,..., A, to

be pairwise disjoint.

We now extend the abstract composition A with all concrete components C;
and we connect each mappable input in the abstract model with the correspond-
ing input in the concrete component. This implies that in such a composition
no output of a concrete component is connected. We will use this extended
composition as a first model for proving the formula ¢.

Figure 2.14 shows an example for the abstract components A;, Ao, A3 and
the concrete components Ci, Co, C3 with mapping functions map;, maps, maps
and connection function ¢f, ¢f# defined below.

map1 (1) = i3, mapi1(01) = o5, mapi(02) = 0
maps (i2) = i, mapz(iz) = iz, mapz(is) = ig, mapz(04) = 08
maps(03) = o7

O:
cf ©(ig) = 05, cf ©(i7) = o7, cf ©(is) = 06
of A(iz) = o1, ¢fA(iz) = 03, ¢f A (ia) = 02

The following definition formalizes this composition:

Definition 2.3.2 (Abstract-to-concrete composition) Let ¢f¢ be a con-
nection function for the components Ci, ..., C,. Let A; be an IO-abstraction of
C; with respect to mapping function map;. Let c¢f? be the connection function
defined by Def. 2.3.1. The component AC obtained by composing the com-
ponents Ay, ..., A,, Cy,..., C, with respect to connection function c¢f defined
below is called the abstract concrete composition of Ay, ..., Ay, Cy,..., C, with
respect to connection function c¢f©.

cfA(z?) =y 2zt € I, map;(z?) = 2©
cof (z4) = yA cof (2¢) = z4

The abstract-to-concrete composition is a component which contains all ab-
stract and concrete components where the abstract components are connected
as in the abstract composition and all inputs of the abstract components which
can be mapped to concrete inputs are connected to them.

Our aim is to prove formula ¢ in C by proving a modified ¢ in the abstract
composition A. The inputs and outputs in 4 and C are disjoint (by assumption)
but we know their relation due to the mapping function. Hence, we can to
substitute the inputs and outputs in formula ¢ to translate them to A and we
first define what we mean with substitution:

Definition 2.3.3 (Formula substitution) Let ¢ be a formula over input set
I and output set O with respect to time period w. Let f be an injective function

2.3 Component based Verification 43

Figure 2.14 Example for an abstract concrete composition

i1 ol i2
Al o1=in 3% A2 o4
02="1'|02 o | ol04=i28(i3li4)
i5 o5
Cl 55 i6
i . A3 7 08
_ 19, 06=i9 |96 03="1 |03 ¢ i7, C2
i8 _ | 08=i6&(i7]i8)
o7
. c3 o7=i10——-
i10
—

from I'U O to any set. [f] is the formula ¢ where all identifiers id € dom(f)
are substituted by f(id).

Our concept of abstraction does not ensure that all inputs and outputs in the
concrete composition are available in the abstract composition. This is natural,
because A should be a simplification of C. The formulas for C' which can be
transformed to formulas for A are called expressible in A:

Definition 2.3.4 (Expressible formula) Let C' be the composition of the
components Ci, ..., C, with respect to connection function cf®. Let A; be an
I0-abstraction of C; with respect to mapping function map; and let ¢ be a
formula over input set I¢ and output set O€ of C with respect to time period
w. Let A be the composition of Ay, ..., A, with ¢f* as defined in Def. 2.3.1.
A formula ¢ in the signature of C' is called expressible in A if all identifiers in
0 have a mapping from C':

Y (id, t) € vars(p): id € ran(map)
where map is the union of map;.

This implies that ¢[map~—!] is a formula over input set /4 and output set 04
with respect to time period w where map~! is the inverse function of map (note
that map is an injective function).

As stated before, we want to prove an extended version of formula ¢ in the
abstract composition together with one concrete component. Before we come
to this, we first prove an extended version of ¢ in the abstract composition
together with all concrete components. If this extended formula holds, then ¢
holds in the composition C.

In the following theorem we extend formula ¢ by 1, which states that every
output in A which is connected to an input has the same value as the corre-
sponding mapped output in the concrete component at each timepoint.

44 Component Concept

The idea here is that for a given property ¢ the components A; and C;
behave in the same way with respect to their output values. Note that both
components already get the same inputs by the constructed connection function:

Theorem 2.3.1 Let AC be the abstract concrete composition of the concrete
components C1,..., C, and the abstract components A1, ..., A, with respect
to connection function cf ¢, let C' be the composition of C, ..., C, with respect
to ¢f¢ and let A be the composition of Ay, ..., A, with respect to c¢f*. Let
A; be an IO-abstraction of C; with respect to mapping function map;. Let ¢
be an expressible formula in A over input set I1¢ and output set O¢ of C with
respect to time period w. Then the following property holds:

AC = plmap '] Ay
CkEe

where 1 is defined as

b= A A A o = mapi(0)’

1<i<n 0<t<w o0€0/ Nran(cf4)

and a = b stands for (a A b) V (—a A —b).

Proof by Contradiction. Let AC = ¢[map='] At be valid and C | ¢ be
not valid. This implies, that there is a sequence of input states us for the
composition C' and an internal state s, such that

©Y(us,s) = false
where ¢ denotes the formula with respect to component C. On the other
hand, there is a sequence of input states vs and an internal state s’ for the
composition AC with the properties below such that ¢4¢ (vs,s’) holds.

SC¢ as=8%<xs

us =ul ... u¥

vs =, Q¥
ut(cf*C(4)) i€ IfU.. ULl cf*C(i) e I¢
outt, (us,s)(cf*“ (i) i€ I U.. ULl ef*C(i) g 1€

vt (i) = < ul(cf*C (map(i))) i € dom(map), cf* (map(i)) € I¢
outé(us,s)(cf*c(map(i))) i € dom(map), cf*C (map(i)) ¢ 1€
arbitrary otherwise

Since ¢ (us,s) = false, 92 (vs,s’) = true, and the input values in us coincide
with the input values in vs on the common subset, there must be a variable o!
in ¢, such that out (us,s)(0) # out} s (vs,s’)(map~(0)).

From ¢ we know that out,(vs,s")(map~'(0)) = out - (vs,s')(0). Let s; and
5} be the internal states at time ¢ for component C; resulting from the input
states us and wvs, respectively.

s; = Sjc < nextt (us,s)
s =S¢ < nexth o (vs,s')

2.3 Component based Verification 45

Let u; and v; be the input states at time ¢ for component C; resulting from the
sequence of input states us and vs according to Theorem 2.2.1, respectively. Let
out; be the output function for component C;. From the previous discussion we
know that out;(u;,s;)(0) # out;(v;,s})(0) and we consider the two cases why
these output values can be different:

1. 5; = i
J
The input states u; and v; must be different, because the corresponding
output functions out;(u;,s;)(0) and out;(v;,s;)(0) are different. Hence,
for 7 € dom(u,) there are seven cases to discuss:

(a)
(b)

(c)
(d)

i € I¢. Contradiction, because v;(i) is also defined as u;(4).
i g 1€, cf*C(i) ¢ I€,i € T'C. This implies ¢f*“(i) € 0¢ and
u; (1) = outl (us,s)(cf*¢(i)). Contradiction, because v; (i) is defined
as outl (us,s)(cf*C(4)).
i & 19, cf*C(i) € 19,i € I1¢. Contradiction, because u;(i) and
v; (i) are both defined as u®(cf*“ (i)).
i@ I, c¢f*C(i) € I€,i & TAC c¢f*(i) € TAC. Let i’ = cf*(4).
Auxiliary statement (1) below implies i’ € I and (2) implies i’ €
dom(map). wu;(i) is defined as u®(cf*©(i)) and v;(4) is defined as
v'(cf*(i)) = v*(i') =aep u'(cf*C(map(i'))) =() u'(cf (). Con-
tradiction.
i@ I, c¢f*C(i) € IC,i g TAC cf*(i) ¢ I4C. Let i’ = cf*(4).
Hence, i’ € O4,i’ € dom(map). This case is not possible, because
(3) is violated (the connection in the concrete composition eventually
leads to an input and the connection in the abstract composition
eventually leads to an output).
i €19, ¢f*C(i) ¢ 1€,i & 149, ¢f*(i) € I*C. This implies
u; (i) = outl (us,s)(cf*¢ (1)),
(i) = v (ef (1)) =2) outl (us. 5)(ef*C (map(ef* (1))

=) out&(us,s)(cf*“(cf*“(i))) = outf:(us,s)(cf*“(i)).
Contradiction.
i g 1€, cf*C(i) ¢ I€,i & TAC, cf*(i) & T2C. Let o = ¢f*“(i) and
o' = ¢f*(i). (2) implies o’ € dom(map), (3) implies map(o’) = o,
because cf*C(z'dl) = idy < id; = idy for 0 € OY. We continue
the proof for the output values of 0o and o’. The proof terminates,
because the dependency relation dep in Theorem 2.2.1 is acyclic.

Auxiliary statements:

(1)
(2)
(3)

id' = cf (id) = id' € I4 U 04
id' = cf (id) = id’ € dom(map)

id € IS U...ULC: c¢f*Y(map(cf*(i))) = cf*C (i)
Proof: Let iy = i,ipt1 = of “(i), 1 = i,jks1 = ¢f (). Hence,
map(Jx+1) = i is an invariant.

2. 5, 7é 5
J
The time point ¢ must be greater than 0, because the initial state s’
coincide on the set S¢ with the initial state s. Hence, there is a time

46 Component Concept

point t' with 0 < ¢ < t, such that the corresponding states s and s’
at time ¢’ are equal and the input states are different. At that time we
continue the proof with the first case. O

Theorem 2.3.1 seems to be useless, because the model AC (in which we prove
the extended property of ¢) is even larger than C. Further, we have to prove
the equality of several outputs. Fortunately, in the proof of Theorem 2.3.1 we
can reduce the number of equalities to prove and we can divide the proof in AC
to n proofs in n smaller models.

We first analyze the set of outputs where it is sufficient to prove equality.
Therefore, we define an extended version of a dependency set for an output
which takes time into account.

A pair (i,t) is in a dependency set I(j{ewp, if the output value of o at time w
depends on the input value of 7 at time ¢. A set If,‘j]f is a dependency set for o
with respect to time period w, if pairs (¢, t) not in IO‘{‘;’,’ can not influence the
output value of o at time w:

Definition 2.3.5 (Dependency set)
Let C = (I, 0, S, next, out) be a component. A set

I C I xN,

is a dependency set for output o € O with respect to time period w if the
following condition is true:

Visy,isy € 32w+175 €6:
(V (i, t) € 180 ist(i) = is§(i)) = out®(is1,s)(0) = out™ (isz,s)(0)

Note that we use the notation is* where is is a sequence of input states and
is? is the t* input state (starting counting at zero).

Similar to the dependency function in Def. 2.2.2 we define a dependency
function which also takes time into account. We further add those dependencies
which occur due to the connection function. For example, if an output value
for o at time ¢ depends on the input i; at ¢ and ¢ is connected to o1, then
we add all dependencies of 07 at time ¢; to the dependencies of o at ¢. This is
formalized in the following definition.

Definition 2.3.6 (Dependency function)
Let C4,..., C, be components with

Ci = (I, Oy, S, neat;, out;)

I =LU---Ul,
0O=0,U---UO0,
Let c¢f be a connection function for Ci, ..., C,. Let Iod,etp be a dependency set

for o € O; in component C; with respect to time period t where 0 < t < w. A
function

I 0 x N, — P((IU0) x Ny)

2.3 Component based Verification 47

satisfying the rules below, is called a dependency function with respect to

Cy,..., Cy,, connection function cf, and time period w.
(G, ¢) €I (i) € 1 (o, 1), cf (i) = id
(i, t') € 12 (o, t) (id, ') € I3 (o, t)

(idl, tl) S Ijep(o, t), (idg, tg) S [ﬁep(idl, tl)
(idz, t2) € L5 (0, t)

For an output o and given time point ¢, this dependency function 3¢ (o, t)
defines the set of inputs and outputs at certain time points upon which the
value of o at ¢t depends.

When we proof Theorem 2.3.1 we can see that it is sufficient to show the
equality for those outputs and time points where the formula ¢ contains a
subformula id* and id® depends on.

The function wvars(¢) in Def. 2.1.8 computes the set of formula variables
in ¢. For each variable o! in this set, we compute the set of variables where
the variable o' depends on. The union of these sets is an upper bound for the
equality check in Theorem 2.3.1.

Lemma 2.3.1 For given dependency function 2P with respect to components
Cy, ..., Cy,, connection function cf, and time period w, we can reduce the proof
obligations in Theorem 2.3.1 to the following v:

b= A A A o' = mapi(0)’

1<i<n 0<t<w o0€0 Nran(cf4),(o,t)Edeps
where deps = |J {12 (0,t) U{(0,t)} | (0,t) € vars(y)}.

Proof. Follows immediately from the proof of Theorem 2.3.1 by analyzing for
which outputs the equation is needed. O

The abstract concrete composition AC contains all abstract and all concrete
components. As can be seen in Def. 2.3.2, the outputs of the concrete compo-
nents are not connected and therefore the concrete components cannot influence
the behavior of AC. This is the reason why we can define reduced versions of
AC where we use all abstract components and only one concrete component.

We define a model AC; which we obtain from AC by removing the concrete
components Cj-; and the corresponding connections:

Definition 2.3.7 (Restricted abstract-to-concrete composition)

Let ¢f¢ be a connection function for the components Ci,...,C,. Let A; be
an IO-abstraction of C; with respect to mapping function map;. Let c¢f* be
the connection function defined by Def. 2.3.1. The component AC; obtained by
composing the components C;, Ay, ..., A, with respect to connection function
¢f (as defined in Def. 2.3.2 for given 1) is called the abstract concrete composition
of C1,...,Cp, Aq,..., A, with respect to connection function cf ¢ restricted to
component C;.

The proof obligations in Theorem 2.3.1 for the model AC' can now be divided
into n models where in each model we have only one concrete component. Since

48 Component Concept

the concrete components cannot influence the behavior of the AC model we can
also split the formula v into n sub-formulas. This is stated in the following
theorem:

Theorem 2.3.2 Let AC; be the abstract concrete composition of the concrete
components C, ..., C, and the abstract components Ay, ..., A, with respect to
connection function cf ¢ restricted to component C;. Let C be the composition
of Cy,...,C, with respect to c¢f® and let A be the composition of Ay,..., A,
with respect to ¢f*. Let A; be an IO-abstraction of C; with respect to mapping
function map;. Let I9°P be a dependency function with respect to C;, connection
function ¢f©, and time period w. Let ¢ be an expressible formula in A over
input set 1€ and output set O¢ of C over time period w. Then the following
property holds:

AC) | @[map= Y A1, ..., AC, = @[map™t] Ay,
CkEy

where 1; is defined as

Yi= N A\ o' = map;(o)’

0<t<w o0eO0A Nran(cf4),(o,t)Edeps
where deps = |J {12 (0,t) U{(0,t)} | (0,t) € vars(p)}.

Proof. Follows immediately from Lemma 2.3.1 and the fact that the outputs of
the concrete components are not connected. O

Usage of Theorem 2.3.2

Let ¢ be a formula for the composition C' and expressible in A. We want to
prove o in C, but this is not possible due to complexity issues. We try to prove
instead the modified version of ¢ in ACY,..., AC,. If we succeed, then by
Theorem 2.3.2 we know that ¢ holds in C'. If the property fails in one of these
models, then by model checking, we get an input state where the property fails.
We analyze this counter example for AC;, if it is a counter example for C, then
we know that the property does not hold in C'. If it is not a counter example
in C, then we have to modify our abstract model or the concrete composition,
since they behave differently from each other.

Remarks

For given concrete components C; and abstract components A; we can auto-
matically apply the introduced verification technique for a formula ¢, because
the models AC; and the extended version of ¢ can be generated automatically.
The crucial point is how to define the abstract models. They have to contain
all features which we are interested in proving and they also have to be simple
enough, such that verification is possible.

This verification technique is in particular useful when the abstract models
are already part of the specification for the designed hardware. In such a case
high-level properties can be proved in the abstract models during the specifi-
cation phase and the final implementation can be checked against the abstract
models with the introduced verification technique. The implementation can
then be seen as a refinement of the abstract models.

2.4 Related Work 49

2.4 Related Work

Our component definition is similar to the definition of Mealy automata [21].
It is well-known that the composition of Mealy automata is not necessarily a
Mealy automaton. In our work, we do not commit to any particular algorithm
to detect whether the composition of given Mealy machines is a Mealy machine.
Moreover, we use a notion of dependency set to decide whether the composition
is a valid component. The Mealy composition problem is related to the detection
of hazards in digital circuits. Some algorithms to detect hazards are described
in [48].

We compose components by connecting inputs and outputs with a so-called
connection function. Usually, in the literature [32, 50] automata are composed
by name sharing, i.e. inputs and outputs with the same name are connected.
We do not use the technique of name sharing, because we need a more flexible
way of composition.

The most important difference between our proposal and others [10, 27] is
the notion of abstraction. Our notion of abstraction does not necessarily imply
any functional relation between the concrete and the abstract model. Roughly
spoken, our concrete models are a refinement of the abstract models with respect
to some properties.

The best studied approach to compositional verification is the assume-gua-
rantee paradigm [58, 62, 5, 40], where component properties are verified contin-
gent on properties that are assumed of the environment [62]. This is different
from our approach, because we use abstract models to simulate the environ-
ment. Abstract models for the environment are also used in lazy compositional
verification [62]. However, that approach uses for each component a model for
the environment, whereas in our approach the environment is given by the com-
position of the abstract models. Additionally, the compositional verification is
completely different from ours.

This is not the first proposal for a component concept for Abstract State
Machines. For instance, [2] introduces XASM as a component based language.
However, a major weakness of that language is the lack of support in modeling
hierarchy which is of utmost importance for modeling complex architectures
(see [3)):

The main contribution of this chapter is the introduction of a component con-
cept for Abstract State Machines. This concept is especially useful for hardware
design. We introduced a component based verification technique, where system
properties about the composition of concrete models can be proven in a simpler
model. There is no need to split system properties into component properties as
needed for other compositional approaches (assume-guarantee, e.g.). Further-
more, if the concrete and abstract models are given, then our proof technique
can be applied without user interaction.

Chapter 3

Execution of Abstract State
Machines

In the previous chapters we introduced structuring and composition concepts
for ASMs. We can use these concepts to specify systems, but up to now we can
not execute them. Executable specifications are desirable for validation purpose
(as can be seen in [64], e.g.).

The question arises how we can execute ASM specifications. There are at
least two possibilities: (i) building a new tool from scratch or (ii) extending an
existing one. Building a new tool and designing a new language is an interesting
subject, but it needs a lot of man power. On the other hand, extending an
existing tool is also very interesting and more effective, because we can use
existing work. Hence, we decided to extend an existing tool.

We take the TkGofer [67] interpreter which is a conservative extension of
Gofer [13] (a functional programming language similar to Haskell [66]) and ex-
tend it in order to make it suitable for executing Abstract State Machines.

In Section 3.1 we discuss the combination of functional programming and
ASMs. As a result of this discussion we present in Section 3.2 a natural seman-
tics for a functional programming language with lazy evaluation. Section 3.3
extends and modifies the semantics presented in Section 3.2 with respect to
language features needed for executing ASMs. Eventually, Section 3.4 describes
the semantics extension for the seq construct introduced in Section 1.2.

3.1 Functional Programming and ASMs

Combining functional programming and ASMs can be done by integrating ASMs
into functional programming; in our case into TkGofer. The main question is
how to integrate a notion of state in a functional language.

There is a standard answer to this question in the functional community:
use monads. For an introduction and discussion about monads we refer the
reader to [09]. Here, we assume the reader has basic knowledge of monads and
we now discuss whether we can use them to represent the ASM state.

Consider an ASM specification with two nullary dynamic functions f and g.
We can define a state monad [19] where the monad captures the two dynamic
functions. We assume, that this monad is defined as the type MyState a where

ol

52 Execution of Abstract State Machines

a is the result type of the corresponding action of the monad. We assume,
there are two functions for updating f and ¢ and two functions for accessing
their values. These functions have the following signatures where F' and G are
assumed to be the types of f and g, respectively.

update_f : F — MyState ()
update_g : G — MyState ()
read_f : MyState F
read_g : MyState G

These functions are sufficient to represent an ASM with state functions f and
¢ as a monadic expression. For instance, consider the following ASM rule:

f=Ff+y
It can now be represented using the do-notation for monads [41] as follows:

do f « read_f
g «— read_g

update_f (f + g)

The first line stores the value of the dynamic function f in the variable f; the
second line is similar for g. In the last line, the function f is updated to the
sum of the values of the variables f and g¢.

There is an obvious disadvantage with monads: we can not access the values
of dynamic functions on the expression level. More precisely, we have to trans-
form ASM rules by lifting dynamic function accesses to the monadic level as
indicated in the above example. This is a general problem when using monads.
Due to this, we do not use monads to represent state. Hence, the question is
what else can we do?

There seems to be no appropriate solution in a pure functional language.
Hence, we extend and modify an existing system, such that it can deal with
dynamic functions and parallel updates.

The system we will extend is TkGofer; it is based on lazy evaluation. Instead
of describing the implementation, we discuss the extension on the semantics level
where we introduce new primitive expressions to support the ASM features.

The aim is to extend the semantics in a way, such that we can adapt the
Gofer implementation [14] accordingly (and also TkGofer).

3.2 Lazy Evaluation

In this section we present a semantics for lazy evaluation. The semantics is
taken from [17] where it is described in detail. We repeat the definitions here,
because we will extend them in the next two sections.

The language considered in [17] is based on the lambda-calculus [1] extended
with let-expressions and is normalized to a restricted syntax. This normalized
syntax is characterized in [47] as: “normalized A-expressions have two distin-
guishing features: all bound variables are distinct, and all applications are ap-
plications of an expression to a variable”. The normalized A-expressions are

3.2 Lazy Evaluation 53

Figure 3.1 Basic A-expressions

= lambda
F'tAzell;, TF Az.e ()
kel FAy.e, ThF ez Tot z
BTy g, Tk e/ Tk e
I'tez{,Tat 2
0
kel T+ d
el 5 2 upd(z) (variable)
Tyz—e) bzl T,z 2)F2
(F,x1»—>el,...,xn»—>en)l—el)fl"ll—z (let)
I'kletx =e€1,...,2, = enineU:Fl Fz
defined in [47] by the following syntax:
z € Var
e € Exp:=Azx.e
| ex
| z
| letz =ep,...,2, =e,ine
The dynamic semantics is defined in [17] by deduction rules and is shown in

Fig. 3.1 where the following naming conventions are used:

I' € Heap = Var + Exp
z,y € Val == MXzx.e

For the time being, ignore the super-script and sub-script values at the symbol
|} in Fig. 3.1 which are not present in the original definition. The symbol
denotes reduction of terms and is explained in [17] as: “Judgments of the form
' el 'y F 2 are to be read, the term e in the context of the set of bindings T’
reduces to the value z together with the (modified) set of bindings I';.” Ignore
also the predicate upd(z) in the variable rule which is not present in the original
definition, too. If z is an expression, then z denotes the expression where all
bound variables are replaced by fresh variables (~ alpha-conversion).

The lambda rule in Fig. 3.1 states that A\-expressions are not further reduced.
This is not surprisingly, because in lazy evaluation, expressions are evaluated
only when necessary.

An application ez is reduced by first reducing e to a lambda-expression
Ay.e’, and then reducing the function body e’ with the formal parameter y
substituted by the argument z.

If a variable binding z +— e is in the heap, then we reduce a variable z by
reducing the expression e (see variable rule). Let-expressions introduce new
variable bindings (see let rule).

For more details about these definitions, we refer the reader to [47].

54 Execution of Abstract State Machines

Figure 3.2 Nullary dynamic functions

[+ indt lli Ty F 2z, (Ty,init(z) — 2z, 0ld(z) — z) F dyn0x{}; To F y

v init
[k initValzinit{, T2y (init)

0 (read)
I'Fdyn0oz |, T+ dyn0z
i (read)
(T, old(z) — z) - dyn0z |}, (T, old(z) — 2) F 2
(read)

(T, init(z) — 2z) F dyno ml}} (T, init(z) — 2) F 2z

3.3 Lazy Evaluation and ASMs

Usually, one would semantically distinguish between expressions and rules. Ex-
tending a lazy evaluation semantics would then mean to define the ASM seman-
tics on top of a semantics for expressions as it is usually done in the literature.

The problem arises when we want to adapt the TkGofer system in the same
way as we adapted the semantics, because we have to implement the ASM
semantics on top of expression evaluation. Since the TkGofer run-time system
is heavily based on expressions, this would probably be nearly impossible.

Another possibility is to use expressions for representing the ASM features
like parallel updates and rules. This has the advantage, that we stay in the
functional world and therefore, it would be easier to extend the TkGofer system.

In the following subsections, we extend and modify the semantics for lazy
evaluation in order to make it suitable for ASMs. In particular, we introduce
new primitive expressions to define dynamic functions, to update them, and to
execute rules.

3.3.1 Nullary Dynamic Functions

Nullary dynamic functions have an initial value and can be updated during a
run. Let us first discuss how to define nullary dynamic functions and how to
represent the function values in the heap structure.

We use an expression initVal to define a nullary dynamic function and we
extend our expression syntax as follows:

Ezp = ...| initVal @ o

The expression initVal z; 7o can be viewed as a primitive function taking two
arguments. The first is the name of the dynamic function and the second its
initial value. Using this syntax, the following term is valid! and evaluates to 10.

let f=1initValf5
in f+f

1We abstract from the fact that function arguments must be variables, see [17] for the
transformation algorithm.

3.3 Lazy Evaluation and ASMs 55

Figure 3.3 Firing rules

FI—lhsl}?Fl FdynOn, I }—rhsllll-Fg}—z

= upate
' - update lhs rhs |}, (T'2, new(n) — z) - rule (upate)
Tl (Ty,old — o,new + n) I rule (fixe)
Tk firelr|; (Ty,0ld — o ®n)F io

(rule, io)

F}—rulel}ffl—rule Fl—iol};}l"l—io

Figure 3.2 defines the semantics for initializing and reading nullary dynamic
functions. At the end of this subsection we will explain the rules in detail.

We extend the universe of values by an element dynO to represent nullary
dynamic functions as values:

Val ::=...| dynOx

The argument to dyn0O denotes the name of the dynamic function (the same as
specified for initVal). We also extend our heap by two functions init and old
for the current and the initialization values of dynamic functions:

Heap = ... U{old,init}
old :Id - Val
it Id - Val

The heap function old assigns the current value to a dynamic function whereas
init assigns the initial value. Initially, the current value and the initial value are
the same.

We store the initial value, because it might be that we need the initial
value of a dynamic function, but the function already contains a newer value.
Consider the following scenario (see the example below) where the initial value
of a dynamic function g depends on the initial value of a dynamic function
f. Assume now, that f is evaluated and updated in the first step, but g is
not evaluated (lazy evaluation). If g is evaluated in the second step, then we
initialize the dynamic function ¢ using the value of f. In our scenario, for
this initialization we must use the intial value of f and not the current value.
In the following example we use a not furthermore described function ioseq to
denote sequential execution. Such a function can be implemented in Gofer using
monads (see [15], e.g.).

let f = initValf 1,
g = initValg f
in ioseq(firel (f :=f+1)) (print g)

We will describe the update operator := and the firel rule in the next sub-
section. However, the value of g would be 2 and not 1 if we would not store the
intial value of f.

56 Execution of Abstract State Machines

Figures 3.1 and 3.2 use an annoted version of the reduction symbol l}: which
is not present in the original semantics definition in [47]. The variables v and
i denote in which context an expression is evaluated. If ¢ is equal to 1, then
we evaluate expressions with respect to initial values of dynamic functions. For
instance, consider the reduction of the initial value for a dynamic function in
Fig. 3.2 (rule init).

The variable v denotes whether a reduction should stop at dynO or whether
we want to reduce this value to a basic value. By a basic value we mean a value
different from dynO. If v is 0, then dynamic functions are not evaluated. We
need this feature for the update rule in Fig. 3.3.

Consider now the rules in Fig. 3.2. The init rule first evaluates the expression
init to the value z. Now z is stored as the initial and current value of z and z
is evaluated to y using one of the read rules.

The first read rule will be used in Fig. 3.3 where we need the name of the
dynamic function on the lefthand-side of a function update. Therefore, the
value dynO z is not further reduced. The last two read rules are used to get the
function value. The first of them returns the current value and the last returns
the initial value.

3.3.2 Firing Rules

Similar to the definition of dynamic functions with initVal, we provide a prim-
itive function update for function updates (see Fig. 3.3). Therefore, we extend
the expression syntax:

Ezp := ... | update z; 2o

The arguments for the update function are the lefthand-side and righthand-side
expressions of the update. Usually, an update is written as lhs := rhs instead
of update lhs rhs.

Consider now the update definition in Fig. 3.3. We evaluate the lefthand-
side expression to a dynamic function dynOz. It is important to evaluate the
righthand-side expression (in contrast to the usual lazy evaluation of argu-
ments), because the expression might contain dynamic functions which have
to be evaluated in the current state. We store the update itself in the heap
using a function new:

Heap = ... U {new}
new : Id -+ Val

In the definition of update in Fig. 3.3, we do not overwrite the value in old,
because the value might be used in succeeding updates in the same state.

We introduce a special value rule to ensure that function updates, expres-
sions, and firing of rules are nested correctly (rules can not be used in expres-
sions, e.g.).

Val = ... | rule]| io
Ezp = ... | firelz

Rules can be fired with firel where we require that the argument of firel evalu-
ates to value rule. In this case, the firel expression evaluates to value io which
corresponds to the IO type in TkGofer (see rule fire in Fig. 3.3).

3.3 Lazy Evaluation and ASMs 57

Figure 3.4 Unary dynamic functions

' initFunz U: I'-dynlz (init)
I'Fdyntz{}; I'Fdyntz (read)
TkelliTy Fdynin, TyFall; Dy old(n,y) — 2) Fy
T'ke xlli (To, 0ld(n,y) — 2) F 2 (apply)
Lo el Tut dyot (apply)

'k exU?Fl F (dynin)z

'k lth?Fl F(dynin)z, T F xl}i Doby, Tok ’r’hSU/:Fz; Fz
T update lhs rhs)] (U3, new(n, y) — 2) F rule

(upd)

Firing a rule means to make dynamic function updates visible. Thus, we
take the values in old and overwrite them with the values stored in new. This
is done by the operator & in Fig. 3.3:

o®n=A{(f2)|(f,2) €o,f ¢dom(n)}Un

Our semantics definition of function updates is very convenient and powerful.
For instance, we can define an alias to a dynamic function and update the alias
instead of the dynamic function itself. The semantics is the same as directly
updating the dynamic function.

Consider the following example, where the lefthand-side of the update is an
if-then-else expression:

let f = initValf 5,
g = initValg3,
usel = ...

in let a = if useF then f else g
in update (a:=a+ f)

In general, we can use any term on the lefthand-side if it evaluates to a dynamic
function. This is more useful when dealing with unary dynamic functions which
can then be abbreviated by nullary variables. On the other hand, there is also
a disadvantage with this semantics, because in general only at run-time, we can
detect whether the lefthand-side of an update really evaluates to a dynamic
function.

3.3.3 Unary Dynamic Functions

Similar to nullary dynamic functions, we define unary dynamic functions by
using an expression initFunz where z is the name of the dynamic function.
Hence, we extend our expression syntax by this primitive function:

Ezp :=...| initFunz

58 Execution of Abstract State Machines

For unary dynamic functions we do not consider initialization in this semantics,
because an initialization for a unary function would be a finite mapping; to
represent such mappings we would have to deal with tuple and list expressions.
However, the semantics can be extended for initializing unary dynamic functions
similarly to the initialization of nullary dynamic functions.

As can be seen in Fig. 3.4, the initFun z expression evaluates to the value
dynl z which corresponds to dynO z for nullary functions. Hence, we extend the
universe of values:

Val ::=...| dynlx

Since a unary function can only be evaluated together with an argument,
the read rule for dynlz in Fig. 3.4 evaluates to itself (similar to the rule for
lambda abstraction).

Let us now consider the unary function update. Usually, a function update
looks syntactically as follows:

fa=1

This illustrates that the operator := is a function with two arguments of the same
type and the lefthand-side expression of the operator must represent a unary
dynamic function application. The problem is to split the function application
into the function symbol and the function argument. This may look trivial, but
in fact, it is a non-trivial problem and it may become clearer if we write the
above example with the update function instead of the operator:

update (f a) ¢

Note that this expression is translated to a restricted syntax where only variables
are allowed as function arguments (see [17] for the transformation algorithm):

let z=fa
in updatext

This implies that the update function does not get the function application
(the lefthand-side term of the update) as its argument and therefore we must
evaluate the variable z in the above example to get the function symbol to be
updated.

The crucial point is how much has to be evaluated; if we evaluate x com-
pletely, then we would return the result of the function application and not
the application itself. Hence, we distinguish two cases for evaluating function
applications. Both cases are shown in Fig. 3.4 by the two apply rules.

The first apply rule is used in the context of a reduction to a basic value (v =
1). The rule evaluates the expression e to a dynamic function, the argument
z to a value, and returns the value which is stored in the heap function old
(similarly to the read rule for nullary dynamic functions).

The second apply rule is used in the update rule where the lefthand-side
expression of the update is reduced in context v = 0. The rule evaluates the
expression e to a value dynln and returns the function application with its
argument. As can be seen in the upd rule, this application is used to split
the function symbol from the argument of the expression lhs. Afterwards, the

3.3 Lazy Evaluation and ASMs 59

function argument and the righthand-side of the update are evaluated and the
update is stored in the heap function new (similarly to nullary updates).

As already stated, this technique of function updates allows very flexible
updates. For instance, consider the following example where the lefthand-side
expression is an if-then-else expression.

let f = initFunf,

T=...,

a =if x =5 then f2else f 3
in updatea?7

In the example, depending on the value of z, either f 2 or f 3 is updated.
The disadvantage is that we can not statically ensure, that the lefthand-side
expression represents a unary function update.

3.3.4 Referential Transparency

Referential transparency is an important property in functional languages. It
means that an expression always evaluates to the same value no matter when we
evaluate the expression. Obviously, this property is not true in our semantics
extension, because the value of a dynamic function depends on the current
state. This leads to some problems in our definitions. For instance, consider
the following example:

let f =initValf1,
g=f+1
in ioseq(firel (f :=g)) (printg)

The expected output is 3, because in the first step, g = f+1=14+1=2is
assigned to f and the value of g = f +1 = 24 1 = 3 is printed in the second
step. However, in our semantics up to now, the value 2 is printed, because in the
first step the definition of ¢ is set to 2 and not newly reevaluated in the second
step. Indeed, the fact that variable definitions are overwritten by the evaluated
value is the problem in our semantics (see rule variable in Fig. 3.1. Hence, one
solution might be to prevent overwriting of definitions, but then we would have
a very inefficient language, because expressions would not be shared.

A more useful strategy is to analyze for which definitions the referential
transparency is violated. The remaining definitions can be safely overwritten
by the evaluated value. The referential transparency is violated for a function
definition if the definition transitively depends on a dynamic function, i.e., on
initVal or initFun. We will come to this later.

Usually, a functional programming language supports top-level definitions
and not only one functional expression as in our language. For instance, consider
the following Gofer program:

facn =if n =0 then 1 else n * fac(n — 1)
g = fac7
h =g+ fac2

Such top-level definitions must be represented in our syntax by a top-level let
expression. Furthermore, usually only top-level definitions are stored in a global

60 Execution of Abstract State Machines

Figure 3.5 Variables and dynamic expressions

Tkel; Ty F 2z —upd(z)

= - (variable)
Cyz—e)kzd, (T1,z—e)F 2
ThHelliTiky, Tikyl,Tok 2, upd(z), (veriable)
T,z — e) l—ml}i Ty, z—y)F 2
Frel;TiF
e Fe (dynamic)

(T,z — e) - dynamicz {}; ([, + e) F 2

environment table. Hence, due to technical reasons, we have to restrict our
analysis (dependence on dynamic functions) to the variable definitions in the
top-level let expression. On the other hand, the evaluation machine with this
restriction is more efficient. Consider the following example:

let f =initValf1,
h=M\x.x+z,
g="h(f+2)

in firel(f :=g)

The expression A (f 4+ 2) would be translated to the restricted syntax
letz=f+2inhx

If we do not restrict the dependence analysis to top-level definitions, then we
would not overwrite the definition of z, because = depends on the dynamic
function f. This implies that in the definition of

h=Xr.x+z

we would evaluate the variable z twice. With the restriction to top-level defini-
tions in the analysis, we overwrite the definition of z after the first evaluation
and therefore evaluate it only once.

We assume there is a predicate upd(z) which is false if z is a top-level defini-
tion depending (transitively but not directly) on a dynamic function. Otherwise
upd(z) is required to be true. It is very important, that upd(z) is true if z de-
pends directly on a dynamic function. This seems to be strange, but consider
the following example:

let f =1initValf1
in f+f

If upd(z) would be false, then each time accessing variable f, we would create
the dynamic function f.

As can be seen in Fig. 3.1, the variable rule there applies only if upd(z) is
true. The other variable rules are shown in Fig. 3.5. The first variable rule in
that figure is similar to that in Fig. 3.1 except that the definition of x in the
heap is not modified. The second wariable rule in Fig. 3.5 considers the case
that a variable z should be evaluated to a basic value (different from dyno0).

3.3 Lazy Evaluation and ASMs 61

Consider now the case that f in the above expression f + f should be evalu-
ated to a basic value (v = 1). According to the second variable rule in Fig. 3.5
we first evaluate f to a value in the context v = 0. The result y (in our example
dynO f) of this evaluation is used to overwrite the definition of our dynamic func-
tion f. Eventually, we evaluate the intermediate value y to a basic value (v = 1)
and return the result z with fresh bound variables (value 1 in our example).

This treatment of variables implies a restriction of the usage of initVal and
initFun: They are allowed only in top-level definitions and must not appear as
function arguments. In particular, examples like the following definition for ¢
make no sense:

let f =initValf1,
g=/f-+initValg?2
in
Now our semantics works fine except for the case where the argument for
firel is not a top-level definition. Consider the following example:

let f =initValf1,
fire = An.Ar.if n = 1then firelr
else ioseq (firelr) (fire (n — 1) 1)
in fire2(f:=f+1)

The intended behavior if fire n n is to execute n steps of the rule r. Hence, the
expected result for f after executing the program is the value 3. However, f is
updated twice to 2, because the expression fire2 (f := f + 1) is replaced by

let 21 =letay=f+1inf := 2y
in fire2xn

and x is evaluated once. This problem occurs very rarely. For instance consider
the program below similar to the previous one where the function f is in fact
updated to 3.

let f =initValf1,
fire =An.Ar.if n = 1then firelr
else ioseq (firelr) (fire(n — 1)),
act =f:=f+1
in fire2act

However, we can fix our semantics, such that both programs compute the same
result and the same heap as expected. We do this by introducing another
primitive function dynamic:

Ezp := ... | dynamicx

The reduction rule is defined in Fig. 3.5 by the rule dynamic. This rule first
creates a copy of the expression and then evaluates the copy. We use this
expression to define our firel rule:

let f = initValf1,
firel = Ar.firel (dynamicr),
fire = An.Ar.if n = 1then firel r
else ioseq (firel r) (fire(n — 1) r)
in fire2(f:=f+1)

62 Execution of Abstract State Machines

Note that we provide prelude definitions for the functions firel, fire,:=, ... and
therefore there is no need for the user to take care of this problem:

This concludes the extension of the semantics for lazy evaluation and we
state the following informal theorem.

Theorem 3.3.1 (Soundness) With the described restriction for initVal and
initFun and with the predefined functions firel,:=, ioseq, an expression eval-

uates to its expected value with respect to the semantics of lazy evaluation and
ASMs.

To formulize and prove this theorem, one first must translate a program in
our syntax (where rules and expressions are represented as expressions) to a
syntax where we syntactically distinguish among rules, functions, and dynamic
functions. Then one could use the usual ASM semantics [33] for the theorem.

Additionally, one must restrict our syntax, because we know no ASM seman-
tics, where expressions like the following could be represented without trans-
forming the definitions:

let f = initValf1,
r =...,
a if z = 7 then f 2 else f 3,
act=a:=a+1

in firelact

In fact, this feature in our semantics is useful to introduce an alias for a location
which may be more expressive than the original expression.

In summary, proofing this theorem would be really difficult and we leave the
proof for further investigation.

3.4 Sequential Execution of Rules

In Section 1.2 we introduced the concept of sequential execution of rules. The
sequential execution of two rules is to fire the second rule in the intermediate
state established by executing the first rule in the initial state. On the level
of update sets, the semantical concept is intuitive. However, it is difficult to
integrate the concept in our semantics for lazy evaluation: we have the same
problem as in the previous section, namely to represent the sequential execution
of two rules as a functional expression.

Let us first consider an example to illustrate why the seq concept is prob-
lematic in our semantics:

seq (/:=5) (}fz Z?ﬁf)
g:=f

The first of the two rules is the sequential execution of f := 5 and the two
rules on the righthand-side. In parallel to this sequential execution, we have
the update g := f. This update needs the initial value of f, but the update
h := h + f needs the value of f from the update f := 5.

In our semantics, we execute all updates sequentially with the same effect as
if they would be executed in parallel. As demonstrated in the example above,

3.4 Sequential Execution of Rules 63

Figure 3.6 Sequential execution

I'En U;},l+1 (T'1, new;41 — my) F rule
(T, oldiyy — ny) 1o UZHI (T's, new; — n, new;41 — ng) - rule

' seqrr U:’l (T3, new; — n U (n; ® ny), oldj41 — &) F rule

this implies that we have to work with different values for f depending on where
the function is accessed.

We parametrize our heap functions old and new with an additional level
index [and add this index to our previous reduction rules to the reduction
symbol {}. The notation Uf ; means to reduct in context v, ¢ with level index .
Furthermore, we modify the read and update rule for dynamic functions. For
instance, consider the modified read rule for nullary dynamic functions:

BE:k<k <I:T=(T,oldy — y)
(T, old,(z) — z) - dynO z U(l)l (T, oldi(z) — 2) F 2

The rule implies that for given index [, we use old; where k is maximal.
When updating a nullary dynamic function in the context of index level [,
then we store the update in the function new:

Tk ihsd; T1 - dynOn, Ty rhs{y Dotz
I' - update lhs Ths Ufl (T, new(n) — z) F rule

The read and wupdate rules for unary functions are modified similarly and
not further discussed here.

To summarize, the previous reduction rules pass the given level index to
the sub-reductions. When reading a dynamic function in level [, then we use a
maximal k£ such that oldy is defined and when updating a dynamic function in
level I, then we use new;.

We increment the level index for the evaluation of the arguments of the seq
construct. The seq construct is also a basic expression and takes two rules as
its arguments:

Ezp := ... | seq@ o

The semantics of seq is defined in Fig. 3.6, where for given level [we evaluate
the rule r; in level [+ 1. This leads to an update set m; which is copied to
old;+1 to evaluate the rule r (also in level [4 1) to get the update set np. The
result of the sequential execution is now a heap where we merge the updates n
(we already have for level [) and the updates n; and ny for level [4+ 1. Since
9 is executed after 7y, the updates in ng overwrite updates in n; (denoted by
n1 @ ng). The updates n and n; & ny have to be applied in parallel and therefore
we build the union of both update sets.

Note that we did not consider inconsistent update sets in our semantics.
However, the semantics could be easily extended.

Now, the soundness theorem could be extended for the seq construct using
the ASM semantics for seq as described in Section 1.2.

64 Execution of Abstract State Machines

3.5 Related Work

There are already some tools for executing ASMs. For instance XASM [2] and
the ASM Workbench [30]. In the next paragraphs we will briefly describe them
and then we will discuss related work with respect to updatable functions.

The ASM Workbench is an interpreter written in ML. Its language syntax is
also inspired by ML. There is no sequence operator. However, an advantage of
this tool is that it can translate finite ASMs into the language for the SMV model
checker for proving properties. The tool provides a graphical user interface to
debug an ASM run.

XASM is an ASM compiler written in C. Static functions can be defined
in C, too. The tool has some interesting features; for instance, an ASM with
return value can itself be used as a function, or for given grammar rules, the
tool generates the corresponding parser and graphically shows the control flow
while executing the rules on the syntax tree. In fact, the tool is especially useful
with respect to attributed grammars.

In [53], updatable variables are introduced in a simple functional language
with lazy evaluation. To guarantee confluence and referential transparency,
the author introduces a static criterion based on abstract interpretation which
checks that any side-effect (variable update) remains invisible. This criterion is
too restrictive for combining ASMs and functional programming.

Another proposal for updatable variables is given in [55, 25] where the au-
thors show that their new calculus is a conservative extension of the classical
lambda calculus. This proposal is similar to using monads except that state
transformers (used for updatable variables) are introduced in the semantics in-
stead of defined in terms of basic lambda expressions. Therefore, the introduced
language has the same disadvantages as described in the beginning of this chap-
ter when discussing monads.

Updatable functions are introduced in [54], where the functional language
Fun is described. The formal semantics is not completely defined. Therefore,
it is difficult to compare the work with our proposal. However, it seems that
Fun is a functional language with strict evaluation and the mutable variables
are similar to references in Standard ML [71, 57].

The above mentioned proposals use the term representation to store vari-
able/function updates instead of using an explicit store as in our work. Fur-
thermore, all updates in these proposals are not applied simultaneously and
therefore not suitable for combining ASMs and functional programming. The
same applies for Standard ML.

The main contribution of this chapter is the extension of the lambda cal-
culus (with lazy evaluation semantics) for simultaneous function updates. This
extended calculus can be used to represent ASMs. With this work, it is straight-
forward to extend an implementation of a functional system with lazy evalu-
ation. For instance, the next chapter introduces the AsmGofer system which
extends Gofer in that way.

Chapter 4

The AsmGofer System

AsmGofer [60] is an advanced Abstract State Machine (ASM) [16] programming
system. It is an extension of the functional programming language Gofer [13]
which is similar to Haskell [66]. More precisely, AsmGofer introduces a notion
of state and parallel updates into TkGofer [67] and TkGofer extends Gofer to
support graphical user interfaces.

AsmGofer has been used successfully for several applications. For instance,
Java and the Java Virtual Machine [64], the Light Control Case Study [18],
Simulating UML Statecharts [23].

In this chapter we introduce the AsmGofer programming environment. We
assume basic knowledge in functional programming, like algebraic data types,
functional expressions, and pattern matching. For an introduction into func-
tional programming we refer the reader to [7, 68]. This chapter is not a reference
manual for AsmGofer. Unfortunately, up to now, there is no such manual.

In Section 4.1 we briefly explain the Gofer command line interface for load-
ing, editing, and running examples. Section 4.2 and Section 4.3 introduce the
notations and constructs for sequential and distributed ASMs in AsmGofer. In
Section 4.4 we use sequential ASMs to define the well-known Game of Life ex-
ample. For this example, we show in Section 4.5 how our GUI generator works,
and in Section 4.6 we define a customized GUI for the game.

4.1 The Interpreter

Gofer and AsmGofer are interpreters. In this section we describe the command
line interface of Gofer and AsmGofer. After starting AsmGofer, the output
looks as in Fig. 4.1. At startup the system reads a prelude file where all li-
brary functions (map, head, tail, fst, ...) are defined. We use the prelude
tk.prelude-all-asm. The Gofer system is ready for new commands when the
? prompt occurs. One can now evaluate arbitrary expressions, load and edit
files, load projects, and find function and type definitions. In the following
subsections we explain these features of the command line.

65

66 The AsmGofer System

Figure 4.1 AsmGofer system at startup

AznGofer {(TkGofer w2,0%}
mGofer Version 1,1 (c) Joachim Schmid 1999-2001

Gofer session forg

shomed joedocvsAsnGofer Preludes/tk prelude-all-asn
Type 17 for help

)

4.1.1 Expression Evaluation

Expressions can be evaluated in Gofer using the command line. For instance,
typing 5+2 and pressing the enter key results in 7 being displayed.

7 542

7

(3 reductions, 7 cells)
7

The Gofer system evaluates the expression and reports the result together with
information about the used cells' and reduction steps. This information gives
an impression about the complexity and size of the evaluation. Another short
example is the sum of squares of numbers from one to ten.

? sum (map (\x -> x*x) [1..10])
385

(124 reductions, 185 cells)
7

When the user enters an expression, Gofer first tries to typecheck it. If the
expression has a unique type, then Gofer evaluates the expression, otherwise
a type error is reported. For example, consider the wrongly typed expression
5+"Hello".

? 5+"Hello"

ERROR: Type error in application
*** expression : 5 + "Hello"
**%* term : 5

*** type : Int

*** does not match : [Char]

?

4.1.2 Dealing with Files

The command line can be used to evaluate expressions, but not to provide
definitions. Functions and types can be defined only in files (also called scripts).
The command :1 filename.gs loads the file filename.gs. File names do not

1A cell is a synonym for head element.

4.2 Sequential ASMs 67

have to end with .gs, but this is a usual extension for gofer scripts. The :1
command removes all definitions of previously loaded files except the definitions
in the prelude file. To append definitions contained in another file file2.gs, the
command :a file2.gs can be used.

If a file is modified, then :r reloads all dependant files. In case there is a
syntax or a type error, the interpreter shows the file name and the line number
where the error occurred. Typing :e opens an editor with the corresponding file
at the corresponding line number. The editor used by Gofer can be determined
in the environment variables EDITOR and EDITLINE.

Especially for many files, it is cumbersome to load files with the :a com-
mand. Therefore Gofer supports so-called project files; each line in a project file
contains a file name. The files in file.p are loaded by :p file.p in the order in
which they appear in file.p. The reload command :r works for projects, too.
Additionally, an arbitrary file can be edited by typing :e filename.gs.

4.1.3 Other Commands

As already mentioned, Gofer typechecks every expression. Furthermore, the in-
terpreter supports a command to print the type of a given expression. Consider
the input :t "Hello".

? :t "Hello"
"Hello" :: String
o

The command :t determines the type and prints it to standard output. The
operator :: separates the type information from the expression. In our case the
type is String. Additional information will be displayed by typing :i String.

? :i String
-- type constructor

type String = [Char]
v

Now Gofer tells us, that String is an alias for [Char] which is a list of characters.
Gofer remembers the file name and line number for each function and type
definition. Entering :f sum instructs Gofer to open the editor with the corre-
sponding file and to jump to the position where sum is defined.
The command to quit the interpreter is :q.

? :q
[Leaving Gofer]
joe: >

Gofer supports several other commands. Typing :? prints a list of known com-
mands and short descriptions. For further information we refer the reader to
the Gofer manual which is included in the AsmGofer distribution [60].

4.2 Sequential ASMs

Encoding ASMs in a purely functional programming language like Gofer seems
to be a contradiction on terms, because a pure functional language has no side-
effects, whereas each ASM update has a main-effect on the global state. In fact,

68 The AsmGofer System

AsmGofer is not Gofer with additional definitions in Gofer to support ASMs.
Rather, AsmGofer modifies the evaluation machine in the Gofer run-time system
to support a notion of state (see Section 3.1 for a discussion about this topic).
On the other hand, we do not change the Gofer syntax and therefore we have
to represent the ASM features as expressions. We provide special functions and
operators to define dynamic functions and to perform updates, as we are going
to explain in this section.

4.2.1 Nullary Dynamic Functions

Since we do not provide any special ASM syntax, we have to represent a dynamic
function as an ordinary functional term. For this purpose, the prelude contains
a function init Val with the following signature (see below for an explanation of

Eq):
mnitVal:: Eqa = String — a — a

With this function we can create a 0-ary dynamic function f by the following
definition:

f = initVal "name" init

The first argument "name" is a name for the dynamic function which is used
only in error messages. Due to technical reasons in the Gofer implementation,
we cannot access the function name f as given by the lefthand-side expression of
the function definition. The second argument init is the initial value for f. The
initVal function is defined in such a way, that the return type of the function
is equal to the type of the initial value, as can be seen from the signature
declaration above.

In Gofer there is no need to define function signatures for function defini-
tions. Usually, Gofer can deduce the types. However, we suggest to define the
signatures anyway, because this enhances the readability of type error reports
by Gofer. To improve readability we further suggest to write signatures for
dynamic functions with the type alias Dynamic:

type Dynamict =t

Note that this definition of Dynamic implies that there is no semantic difference
between a type A and Dynamic A. Dynamic is added only for better readability.
A declaration of a dynamic function may then look as follows:

[Dynamic Int
f=1mitVal "£" 0

The notation Eq a = ... in the signature for initVal means that the type a

must be an instance of type class Eq. We refer the reader to [38] for a discussion
of type classes. In the following we use the term class as an alias for type class.
Being an instance of Eq implies that the equality operator == is defined for

that type. AsmGofer needs this operator for the consistency check of updates,
namely to determine whether two values are equal. All basic types in AsmGofer
are already defined as an instance of class Eq and for all user-defined types, the
user has to provide the corresponding definition. Alternatively, one can define

4.2 Sequential ASMs 69

a type to be an instance of the class AsmTerm (defined in the prelude), which
makes it an instance of class Fq using the type class features of Gofer. For more
information about type classes in Gofer, we refer the reader to [42].

data MyType = ...

instance AsmTerm MyType

For AsmGofer, a dynamic function behaves similarly to other functions. For
instance, we can enter f in the command line to evaluate the function:

7 f
0

(5 reductions, 19 cells)
?

In our definition of f we defined zero as the initial value for the dynamic function.
It is also possible to use the special predefined expression asmDefault, which
corresponds to an undefined value for each type, defined as an instance of class
AsmTerm:

asmDefault:: AsmTerm a = a
We can now use this undefined value to define the dynamic function f:

[Dynamic Int
f =1mitVal "£" asmDefault

This undefined value is not an implementation of the value undef of the Li-
pari Guide [33]. In particular, AsmGofer can not use this undefined value in
computations. Therefore, whenever an expression evaluates to asmDefault, As-
mGofer stops the computation and reports an error message. Note that Gofer
uses lazy evaluation [51] which implies that expressions are evaluated only when
necessary.

?f
(5 reductions, 18 cells)
ERROR: evaluation of undefined ’asmDefault’

**%* dynamic function: "f"
?

However, it is possible to specify for any type an own undefined value. For
example we could define 0 as the undefined value for expressions of type Int, as
in the following instance definition.

instance AsmTerm Int where
asmDefault =0

This definition implies that 0 and asmDefault are treated as equal. This will be
become more interesting for unary dynamic functions as discussed in the next
subsection.

The above kind of undefined is more flexible than the undefined in the Lipari
Guide, where undefined is treated like an ordinary value which can be used in
computations. In AsmGofer one can use the predefined asmDefault expression
where a computation is abrupted whenever this expression occurs, but one can
also define an element which should be used instead of undefined.

70 The AsmGofer System

4.2.2 Unary Dynamic Functions

We provide a function initAssocs which can be used to define unary dynamic
functions.

initAssocs:: (AsmOrd a, Eq b) = String — [(a,b)] — Dynamic(a — b)

The first argument is the name for the dynamic function, which is used only
in error messages. The second argument is an initialization list. If this list is
empty, then the dynamic function is undefined (in the sense above) for each
argument. In the type signature for initAssocs we can see that type ¢ must
be an instance of class AsmOrd and b an instance of class Eq. Requiring b
to be an instance of Fq allows one to determine whether two values are equal
when checking the consistency of updates. Requiring a to be an instance of
AsmOrd is used to compare two arguments. The equality operator would be
sufficient, but we can implement unary dynamic functions more efficiently using
binary search, if there is an ordering on the argument type. The class AsmOrd
is defined as follows.

class AsmOrd a where
asmCompare:: a — a — Int

The function asmCompare returns for two arguments either —1, 0, or 1 de-
pending on whether the first argument is less than, equal to, or greater than
the second argument. If we define a type as an instance of AsmTerm, then it
automatically becomes an instance of class AsmOrd.

Similarly to nullary dynamic functions we can introduce unary dynamic
functions, but using initAssocs instead of init Val.

g:: Dynamic(Int — Int)
g = initAssocs "g" [(0,1), (1,1)]

The function g can be used like other unary functions, except when the function
should be evaluated for an argument which is not in the domain of the func-
tion. In that case, AsmGofer uses the expression asmDefault already introduced
above.

7g1l

1

(6 reductions, 16 cells)

7 g2

(4 reductions, 15 cells)

ERROR: evaluation of undefined ’asmDefault’

*** dynamic function: "g"
?

Additionally, AsmGofer supports some other functions to determine the do-
main and the range of unary dynamic functions, to check whether an expression
is in the domain of a function, and to compute the current association list
(function represented as a finite mapping).

dom : Ord a = Dynamic(a — b) — {a}
ran = Ord b = Dynamic(a — b) — {b}
inDom :: a — Dynamic(a — b) — Bool
assocs : Dynamic(a — b) — [(a,)]

4.2 Sequential ASMs 71

The predefined Gofer class Ord defines the operators <, <,>, >. The type {a}
is the type corresponding to the power set of type a similar to the list type
[a] except that there are no duplicate values. The requirements on class Ord
are used to sort the expressions in a set. The domain of a dynamic function
only contains those expressions which are mapped to a value different from the
undefined element for the corresponding type.

4.2.3 Update Operator

Up to now we introduced nullary and unary dynamic functions. Now the ques-
tion arises how we can update dynamic functions. As usual in ASMs we provide
the := operator.

(:=): AsmTerm a = a — a — Rule ()

The operator takes two arguments of the same type (which must be an instance
of AsmTerm) and returns something of the special type Rule (). We use this
type to represent rules. Additionally, we use the do notation for monads [66] in
Gofer to denote parallel execution of rules. The do notation and monads [(9]
are not described in this chapter, because this would explode this introduction.
Roughly spoken, the do notation for rules in AsmGofer can be viewed as taking
a set of rules and combining them to one rule as in the example below for
someUpdate.

someUpdate :: Rule ()
someUpdate = do
f =5
g2:=T+f

The other basic rule is the skip rule which has the empty set as update set.
skip:: Rule ()

This skip rule is especially useful in if-then-else expressions when no else part
is needed.

someOtherUpdate :: Rule ()
someOtherUpdate =
if f == 2 then
g2:=T7+f
else skip

4.2.4 N-ary Dynamic Functions

We do not provide syntax for dynamic functions with arity greater than one.
However, such dynamic function can be represented as a unary dynamic function
by using a tuple for the arguments. Additionally, one can define an auxiliary
dynamic function as illustrated in the following example for a 2-ary dynamic
function g:

g—auz:: Dynamic((Int, String) — String)

g—auzr = initAssocs "g" some_init

g Int — String — String
gis=g_auzx(i,s)

72 The AsmGofer System

The function g is a 2-ary function. We can use g to access the values of g_auz.
On the other hand, we can also use g to update the dynamic function g_auz,
because g i s and g_auz(i, s) are treated equally by AsmGofer.

my—_updates:: Rule ()
my_updates = do

g5 "great" := "hello"

g7 "other" := g3 "strange"

4.2.5 Execution of Rules

In the previous subsections we defined dynamic functions and updates to them.
The question is how to execute the updates and especially, what to do with the
type Rule ()7 Expressions of type Rule () correspond to rules and have a side-
effect on the global state. Gofer supports IO actions [15] of type IO (), which
are used to perform input-output-operations like printing a string on standard
output. Printing a string is a side-effect. In Gofer, this side-effect is implemented
by a primitive function which on evaluation prints the corresponding string on
standard output. The monad ensures that the function must be evaluated in
order to proceed. We use the same technique to define primitive functions having
a side-effect on a global state to implement dynamic functions. However, to
distinguish in the type system between 10 actions and rules, we use an abstract
type Rule and we provide the following functions to transform expressions of
type Rule () into 10 actions which can be executed by the Gofer interpreter.

fire : Int — Rule () — 10 ()
firel = Rule () — 10 ()
fireWhile :: Bool — Rule () — 10 ()
fireUntil :: Bool — Rule () — IO ()
fizpoint : Rule () — 10 ()

The first function fire takes two arguments. The first argument is the number
of steps to execute the rule specified by the second argument.

? fire 2 someUpdate
2 steps

(102 reductions, 228 cells)
e

The firel function is a specialization of fire where the number of steps to execute
is fixed to 1. The fire While and fireUntil functions take a condition and a rule
as arguments and fire while or until the condition holds. The fizpoint function
fires its argument as long as the resulting update set is not empty.

Execution of rules is possible only if the corresponding update set is consis-
tent. An update set is inconsistent if it contains updates to assign two different
values to the same location.

? firel (do f :=1; f := 2)
(22 reductions, 60 cells)
ERROR: inconsistent update

*x% dynamic function : "f"
*** expression (new) : 2
*** expression (old) : 1

?

4.2 Sequential ASMs 73

4.2.6 Rule Combinators

The Lipari Guide [33] introduces several rules like émport, extend, choose, and
var over. We have implemented forall, choose, and create where forall corre-
sponds to var over and create to the import rule in the Lipari Guide. The result
type of the rule combinators in this subsection is always Rule ().

Our forall rule takes a range constraint similar to list comprehension in Gofer
and a rule to execute.

forall i < dom(g) do
gi:=gi+1
In this example the rule body is executed for each ¢ in the domain of ¢g. It is

also possible to loop over several variables.

forall i — dom(g),j < {1..10} do
h(i,j)=gi+j

On the other hand, the choose rule below chooses one i in the domain of g and
executes the body. If the domain of g is empty, then the rule is equivalent to
skip.

choose i +— dom(g) do
f=f+gi

We provide an alternative choose rule where we can determine with an ifnone
clause what should happen when the range constraint is empty.

chooselfNone i — dom(g) do

f=f+gi
ifnone
f=0

In this example the update f := 0 is performed if the domain of g is empty,
otherwise an element in the domain is chosen as in the choose rule above.

The Lipari Guide [33] supports an import rule which takes anonymous el-
ements from a special universe reserve. Imported elements are no longer in
that universe and no element of reserve is an element of any other universe.
In AsmGofer we want to support something similar. However, it is difficult to
implement the semantics of the import rule according to the Lipari Guide in a
functional language with algebraic data types. Therefore, we provide a create
rule which can be used to deal with anonymous elements. The rule only ensures
that a “created” expression was never created previously by a create rule, and
if two create rules are executed in parallel, then both elements are different.
Consider the following example for creating heap references.

create ref do
heap(ref) := Object(..)

The create rule works for expressions of type Int. When the necessity arises to
use the create rule for a type different from Int, then we have to define this type
as an instance of the following type class Create.

class Create a where
createElem:: Int — a

74 The AsmGofer System

When defining a type a as an instance of class Create we must provide an
implementation for the createElem function. This function expects an integer
value as its argument and transforms it to an expression of the corresponding
type a. It is important, that the definition of createElem is an injective function.
Otherwise the create rule does not “create” always different elements of the
corresponding types.

instance Create MyType where
createElem i = ...

Sometimes it is useful to choose one rule among a set of rules. For that
reason we provide the choose among rule.

choose among

f=f+1
f=f+2
f=f+3

In Section 1.2 we introduced the concepts of sequential execution and itera-
tion of rules. Both concepts are implemented in AsmGofer by the functions seq
and iterate.

seq : Rule() — Rule () — Rule ()
iterate :: Rule () — Rule ()

The result of seq is the sequential execution of the argument rules. The second
rule is executed in the intermediate state established by the first rule. The
iterate construct is similar to the fizpoint function in the previous subsection,
except that the result is a rule and not an IO action. Note also, that intermediate
states are not visible to other rules. Both constructs are atomic and executed
in one step.

4.3 Distributed ASMs

In the previous section we described constructs for sequential ASMs. In the
Lipari Guide [33] there is also a definition for distributed (or multi agent) ASMs.
In sequential ASMs there is one agent firing always the same set of rules. In a
distributed ASM there are several agents firing rules. Furthermore, the set of
active agents might be dynamic.

In our implementation of multi agent ASMs we can define for each agent a
rule to execute. Such a rule gets as its first argument (self in the example in
Fig. 4.2) the agent which executes the rule. For instance, consider the defini-
tions for the well known Dining Philosophers problem in Fig. 4.2 where each
philosopher is an agent. In the figure the functions fork and mode are dynamic
functions parametrized over a philosopher. It is important that we parametrize
the Up constructor over a philosopher, too. Otherwise we do not know which
fork is used by which philosopher. The dynamic function phils assigns to a
philosopher the exec rule. In our case each philosopher executes the same rule.

We provide a special function multi with the following signature to execute
agents.

multi = Dynamic(a — AgentRule a) — Rule ()

4.3 Distributed ASMs

75

Figure 4.2 Dining philosophers

type AgentRule a = a — Rule ()

type Philosopher = Int

data Fork = Up(Philosopher) | Down
data Mode = Think | Fat

instance AsmTerm Fork where
asmDefault = Down

instance AsmTerm Mode where
asmDefault = Think

fork :: Dynamic(Philosopher — Fork)
fork = initAssocs "fork" []

mode :: Dynamic(Philosopher — Mode)
mode = initAssocs "mode" []

phils:: Dynamic(Philosopher — AgentRule Philosopher)
phils = initAssocs "phils" [(phl, exec), (ph2, exec), ..]

exec:: AgentRule Philosopher
exec self =
if mode(self) == Think A lfork == Down A rfork == Down then do
Ifork := Up(self)
rfork Up(self)
mode(self) := Eat
else if mode(self) == Eat then do

Ifork := Down

rfork := Down

mode(self) := Think
else skip

where [fork = fork(self)
rfork = fork(right)
right = (self + 1) ‘mod‘ card(dom(phils))

76 The AsmGofer System

This function takes as its argument a dynamic function like the function phils
in Fig. 4.2. The function result is a rule. The implementation of multi chooses
non-deterministically a subset of the domain of phils and executes in parallel
for each element in this subset the corresponding rule. This could be described
by the following pseudo rule.

multt actions =
forall act — some_subset(dom(actions)) do
(actions act)(act)

Note that not necessarily all agents execute the same rule as in our example. It
is important that multi never chooses a subset which leads to an inconsistent
update. This is useful in particular for our example, because the rule

multi phils

never chooses a set of philosophers where a fork is shared by two philosophers,
because then we would get an inconsistent update for the dynamic function
fork.

4.4 An Example: Game of Life

In this section we briefly introduce Conway’s well-known Game of Life and
then we show how to formulate the static and dynamic semantics in AsmGofer.
Figure 4.3 shows a typical pattern of this game. The game consists of a n x m
matrix; each cell is either alive or dead. The rules for survival, death and birth
are as follows (see [70]):

e Survival: each living cell with two or three alive neighbors survives until
the next generation.

e Death: each living cell with less than two or more than three neighbors
dies.

e Birth: each dead cell with exactly three living neighbors becomes alive.

In the following two subsections we illustrate the use of AsmGofer by means
of the Game of Life example. We define the static and dynamic semantics.

4.4.1 Static Semantics

The definitions in this subsection are ordinary Gofer definitions. In the next
subsection when presenting the dynamic semantics we use constructs which are
available only in AsmGofer.

Each cell in the matrix is either alive or dead and therefore we define a type
State consisting of the two constructors Dead and Alive.

data State = Dead | Alive

Both constructors can be viewed as nullary functions creating elements of type
State. Note that in Gofer, type names and constructor names must always start
with an upper case letter. Functions on the other hand with a lower case letter.

4.4 An Example: Game of Life 7

Figure 4.3 Conway’s Game of Life

For the representation of cells we use pairs of integer values and we define a
type Cell as an alias for them.

type Cell = (Int, Int)

Further, we define a nullary function ¢N to denote the number of columns
and rows. In order to loop later through all possible cells, we define a function
computing such a list. In the definition below we use the concept of list compre-
hension. The function result is a list of pairs (7, j) where ¢ and j range from 0 to
¢N —1. The order in the list is as follows: [(0,0), (0,1),...,(0,cN—1),(1,0),...].

cN :: Int
cN =8
cells:: [Cell]

cells = [(i,7) | ¢ < [0..cN —1],j < [0..cN —1]]

In the rules for Game of Life we need for each cell the number of alive
neighbors. A cell has at most 8 neighbors. The following definition computes a
list of tuples (i’,;") where (i’,7’) is a neighbor different from (7, ;) and a valid
position in the game.

neighbors:: Cell — [Cell]
neighbors(i,j) = [(¢',5") | i/ — [i = 1..a+1],5/ < [j — 1.5 + 1],
(i,9) # (i, 7"), valid i, valid j']
where valid i =i € [0..cN — 1]

With the definition of neighbors, we can define the number of alive neighbors.
This is the length of the list neighbors restricted to those elements which are
alive.

aliveNeighbors :: Cell — Int
aliveNeighbors cell = length([c | ¢ < neighbors cell, status ¢ == Alive])

For the time being, let us assume there is a function status with the signature
below. In the next subsection we will define status as a dynamic function, since

78 The AsmGofer System

it may change its value during execution.

status:: Cell — State

4.4.2 Dynamic Semantics

In this subsection we describe the dynamic semantics of the game in terms of
ASMs. To do this, we first have to store for each cell whether it is alive or dead.
Therefore we use a unary dynamic function status initialized with state Dead
for each cell.

status = Dynamic(Cell — State)
status = initAssocs "status" [(¢, Dead) | ¢ « cells]

instance AsmTerm State

Now we can define two rules letDie and letLive for the behavior of a cell
with n alive neighbors. Both rules correspond to the last two rules (Death and
Birth) at the beginning of this section. The first rule Survival is automatically
established by ASM semantics. Since everything must be an expression in Gofer
(as already stated), we can not omit the else branch in the following definitions.

letDie:: Cell — Int — Rule ()
letDie celln =
if status cell == Alive A (n < 2V n > 3) then
status cell := Dead
else skip

letLive:: Cell — Int — Rule ()
letLive cell n =
if status cell == Dead A n == 3 then
status cell := Alive
else skip

It remains to execute both rules for all possible cells. For this purpose we
use the forall rule of AsmGofer.

gameOfLife:: Rule ()
gameOfLife =
forall cell < cells do
let n = aliveNeighbors cell
letDie cell n
letLive cell n

These definitions are sufficient for the dynamic behavior of the game. We
can use the command line to validate our specification. For instance, consider
following scenario:

? status (2,3)

Dead

(66 reductions, 175 cells)
? firel gameOfLife

4.5 Automatic GUI Generation 79

Figure 4.4 Configuration for Game of Life
QFUNS

status

Q@TERMS

status (2,3)

ORULES

gameOfLife

initField

@CONDS

False

QFILES

output guiMain.gs
QGUI

main gmain

title Game of Life
ODEFAULT

history

update

0 steps

(126277 reductions, 259144 cells, 2 garbage collections)
? status (2,3)

Dead

(66 reductions, 175 cells)

? firel (do status (2,3) := Alive; status (3,4) := Alive)
1 steps

(131 reductions, 352 cells)

? status (2,3)

Alive

(66 reductions, 176 cells)

? assocs status

[((0,0),Dead), ((0,1),Dead), ..., ((2,3),Alive),...]

(386 reductions, 2182 cells)
?

AsmGofer reports zero execution steps in the above output for the first firel
expression, because no update was performed.

Obviously, this kind of executing rules and debugging is very time consum-
ing. Fortunately, AsmGofer extends TkGofer whose features can be used to
define graphical user interfaces as we will describe in the next two sections.

4.5 Automatic GUI Generation

A useful feature of AsmGofer is the automatic generation of a GUIL. Obviously,
the generated GUI is independent of the application domain, but it can be used
to debug and validate a specification at early stages.

The GUI generator is written in AsmGofer itself and reads some configu-
ration information from a file called gui.config which must be located in the
current working directory. The configuration file provides information about

80 The AsmGofer System

Figure 4.5 Generated GUI for Game of Life

* Game of Life o E [E

status [E0,0%,Dead), (0,13, Dead), ((0,2),
status (2,30 Dead

¥
| =
quitl rules | conds |ﬂ|JID_;|ﬂ

dynamic functions to display, expressions to display, rules the user may select in
the GUI to execute, and some conditions for iterative execution of rules. With
this information, the generator creates a new file containing the corresponding
GUI definitions.

Figure 4.4 shows a configuration file for our example. The file is divided
into several sections which we are now going to explain. Section FUNS contains
dynamic function names which should be displayed in the GUI. Additionally
the GUI displays expressions which are defined in the TERMS section. In our
case we display only the expression status (2,3). The GUI generator creates a
list box where the user can select a rule to execute. All names in the RULES
section are listed in that box. Obviously these names must be of type Rule ().
We add the following rule initField to our definitions for the game to initialize
the matrix.

initField :: Rule ()
mitField = do
forall ¢ « cells do
if ¢ € init then
status ¢ := Alive
else
status ¢ := Dead
where init = [(3,4), (4,4), (5,4), (4,3),(5,5)]

Selected rules in the list box can be executed step by step and while or until
a certain condition holds. The conditions which can be selected are defined in
the CONDS section. All expressions in this section must be of type Bool.

The output entry in the section FILES denotes the file in which the generator
should create the corresponding GUI definitions. Additionally, the main and
title entries define the function name to start the resulting GUI and the title
for the main window, respectively. In our case we can run the generated GUI
with the function gmain.

In the DEFAULT section we can specify whether we want a history for the
execution steps to move forward and backwards and whether the GUI should
be updated during execution of a rule while or until a condition holds.

With the configuration file in Fig. 4.4 we can type genGUI in the unix shell.
This command calls the GUI generator, reads the information in the config-
uration file and writes the file guiMain.gs. If the file game.gs contains the
AsmGofer definitions introduced in the previous chapter, then we define the
following project file game.p for Gofer.

4.6 User defined GUI 81

Figure 4.6 Rule and condition window, Dynamic function status

X condi. @ [EH » status o F EH
% while % True I
s~ until - - False J

l{game OfLife
llinitFeld

W show updates

B history

close

game.gs
guiMain.gs

We now load this project file by typing :p game.p in the Gofer command line.
The expression gmain starts the generated GUI and the main window in Fig. 4.5
appears. Clicking on the rules button displays the list box containing the rules
specified in the RULES section of the configuration file. The same applies for the
box displaying the conditions. Figure 4.6 shows both windows. Note that the
condition True is always present.

The content of dynamic functions is displayed in the main window. Double
clicking on such a dynamic function opens a new window which displays only
the values for that dynamic function. Figure 4.6 also shows this window for the
dynamic function status.

The quit button in Fig. 4.5 is self explaining. Pressing the run button
executes the rule selected in the rule window while or until the selected condition
in the condition window holds. If the check button show updates is enabled,
then the GUI will be updated in each step during iterative execution with run;
otherwise only after the iterative execution.

If the history button is enabled, then AsmGofer stores the complete history
of execution steps. The buttons + and - move backwards and forwards in the
history. Finally, the fire button executes one step of the selected rule.

4.6 User defined GUI

This section describes how to fire rules from a GUI. For this reason, we define a
graphical user interface for Conway’s Game of Life using the features of TkGofer.
In this section, we assume the reader is familiar with TkGofer [67].

As already mentioned, the function firel transforms a rule into an IO action
and is of type Rule () — IO (). On the other hand, TkGofer provides a function
LiftIO transforming an IO action into a GUI action. This implies that the
following definition for oneStep is a GUI action which first executes one step
of the rule gameOfLife and then updates each field in the list fields containing

82 The AsmGofer System

Figure 4.7 Graphical user interface

JJJJJJJJ
1] I I 1 O

I
O)

_|
H
|
O
O
i

A O

=
£
=

pairs of buttons and cells. GUI actions are always executed sequentially from
top to bottom (see [67] for more information).

oneStep :: Fields — GUI ()
oneStep(fields) = do
LftIO (firel gameOfLife)
segs [cset f (background(color ¢)) | (f, c) < fields]

type Field = (Button, Cell)
type Fields = [Field]

We are now going to define the remaining functions for the GUI (see Fig. 4.7)
and we start with a function yielding a color to represent a cell depending on
its status.

color:: Cell — String
color cell = if status cell == Dead then "lightgrey" else "red"

Since we do not want to initialize the dynamic function status by entering
commands on the command line we define each field in the matrix in Fig. 4.7
in such a way, that the status of the corresponding cell toggles whenever we
click on the field. Therefore we define a toggle action similarly to the oneStep
action above. It first switches the status for the given cell and then updates the
background color of the corresponding button in the GUI.

toggle:: Field — GUI ()
toggle(b, cell) = do
liftIO (firel(if status cell == Dead then
status cell := Alive
else
status cell := Dead))
cset b (background(color cell))

A Gofer program is usually started by a function called main. Hence we
define main as creating the main window and the elements as shown in Fig. 4.7.

4.6 User defined GUI 83

All functions used in this definition are already introduced or described in [(7]
except controlWindow.

main: 10 ()
main = start $ do
w «— window [title "Game of Life"|
q — button [text "quit" , command quit] w
bfire — button [text "fire" | w
fields «— binds [button|background(color c), font "courier" | w
| ¢« cells]
let fields' = zip fields cells
seqs [cset f (command(toggle(f, ¢))) | (f, c) « fields']
cset bfire (command(oneStep fields'))
pack (matriz cN fields ~~ fillX bfire ~~ fillX q)
controlWindow(fields")

The function controlWindow creates an additional window (see Fig. 4.8) to
control the execution. This window contains a run button to start automatic
execution (iterative execution of oneStep) and a cancel button to stop it.

controlWindow :: Fields — GUI ()
controlWindow(fields) = do
w «— window [title "speed control"]
t « timer [init Value 1000, active False, command(oneStep(fields))]
be « button [text "cancel" , active False] w
br « button [text "run" | w
s« hscale [scaleRange (0, 3000), tickInterval 1000,
text "delay in ms", height 200, init Value 1000] w
pack (flexible(flexible s™~be << br))
cset s (command(do v «— getValue s; setValue t v))
cset br (command (animation(t, s, be, br)))
cset be (command(do cset t (active False)
cset br (active True)
cset be (active False)))

The definition creates a new window with a timer object, two buttons cancel
and run, and a scaler. Whenever the timer expires, the oneStep action is exe-
cuted. In our definition, the timer expires every second (assuming the timer is
active).

When clicking on the run button, the action animation is executed which
disables the run button, enables the cancel button, and activates the timer.
This implies that then oneStep is executed every second.

animation:: (Timer, Scale, Button, Button) — GUI ()
animation(t, s, be, br) = do

cset br (active False)

cset be (active True)

csett (active True)

Loading the source code (downloadable at [60]) in AsmGofer and typing
main starts the GUI. We can initialize the dynamic function status by clicking

84 The AsmGofer System

Figure 4.8 Control execution

» speed control i g @ [#
delay in ms
1000

| LT
o 1000 2000 3000

on the corresponding fields to establish the glider pattern as shown in Fig. 4.7.
The fire button in the main window executes one step of the gameOfLife rule.
On the other hand, the run button in the control window executes gameOfLife
iteratively. Pressing the quit button terminates the GUI and the interpreter is
ready for further commands.

Chapter 5

Applications

This chapter describes some applications and case studies where the introduced
refinement and implementation techniques were applied. Additionally, Sec-
tion 5.4 describes the FALKO application where ASMs are compiled to C++.

5.1 The Light Control System

The Light Control System was a case study of the Dagstuhl seminar about
Requirements Capture, Documentation, and Validation [15]. For this case study,
E. Borger, E. Riccobene, and J. Schmid used ASMs to capture the informally
stated requirements. The following paragraph is the abstract of the published
paper [18].

We show how to capture informally stated requirements by an ASM (Ab-
stract State Machine) model. The model removes the inconsistencies, ambigu-
ities and incomplete parts in the informal description without adding details
which belong to the subsequent software design. Such models are formulated
using application-domain-oriented terminology and standard software engineer-
ing notation and bridge the gap between the application-domain and the system
design views of the underlying problem in a reliable and practical way, avoid-
ing any formal overhead. The basic model architecture reflects the three main
system parts, namely for the manual and automatic light control and for hand-
ling failures and services. We refine the ground model into a version that is
executable by AsmGofer and can be used for high-level simulation, test and
debugging purposes.

5.2 Java and the Java Virtual Machine

The following paragraphs are part of the introduction of Java and the Java
Virtual Machine [64] written by R. F. Stark, J. Schmid, and E. Borger.

The book provides a structured and high-level description, together with a
mathematical and an experimental analysis, of Java and of the Java Virtual
Machine (JVM), including the standard compilation of Java programs to JVM
code and the security critical bytecode verifier component of the JVM. The
description is structured into modules (language layers and machine compo-
nents), and its abstract character implies that it is truly platform-independent.

85

86 Applications

It comes with a natural refinement to executable machines on which code can be
tested, exploiting in particular the potential of model-based high-level testing.
The analysis brings to light in what sense, and under which conditions, legal
Java programs can be guaranteed to be correctly compiled, to successfully pass
the bytecode verifier, and to be executed on the JVM correctly, i.e., faithfully
reflecting the Java semantics and without violating any run-time checks. The
method we develop for this purpose, using Abstract State Machines which one
may view as code written in an abstract programming language, can be applied
to other virtual machines and to other programming languages as well.

We provide experimental support for our analysis, namely, by the validation
of the models in their AsmGofer executable form. Since the executable Asm-
Gofer specifications are mechanically transformed into the IATEX code for the
numerous models which appear in the text, the correspondence between these
specifications is no longer disrupted by any manual translation. AsmGofer is an
ASM programming system, extending TkGofer to execute ASMs which come
with Haskell definable external functions. It provides a step-by-step execution
of ASMs, in particular of Java/JVM programs on our Java/JVM machines, with
GUTIs to support debugging. The appendix which accompanies the book con-
tains an introduction to the three graphical AsmGofer user interfaces: for Java,
for the compiler from Java to bytecode, and for the JVM. The Java GUI offers
debugger features and can be used to observe the behavior of Java programs
during their execution. As a result, the reader can run experiments by executing
Java programs on our Java machine, compiling them to bytecode and executing
that bytecode on our JVM machine.

5.3 Hardware Verification

The introduced specification language and verification technique in Chapter 2
was experimentally used for two projects at Siemens Corporate Technology.
Since these are industrial and thus highly confidential projects, we can only
touch the experiments.

We now report about the first experiment. When the experiment started,
the verbal specification was already given. Almost at the same time, for some
components in the specification we built abstract models and the hardware de-
signers started encoding in VHDL based on the verbal specification. Since the
specification could be interpreted differently, some of the abstract models be-
haved differently from the models designed by the hardware experts. However,
the introduced verification technique could be applied to show that one small
component was buggy. For this component, the specification was exact enough,
such that the abstract model and the concrete model behave similarly. We
formalized a high-level property (about the composition of the studied compo-
nents) which was valid in the abstract composition but the equality check of
Theorem 2.3.2 failed due to a bug in the concrete implementation of that small
component.

In the second experiment the VHDL code for some components was already
given. The problem was, that important properties could not be proved in the
composed model, because this model was too complex. Therefore, the intro-
duced specification language was used to build abstract models with respect to
the property to be proved. The composed abstract model was simple enough

5.4 FALKO 87

such that the desired properties could be proven. However, the introduced ver-
ification technique was not applied, since it is not yet supported enough due to
insufficient tool support. On the other hand, this experiment shows, that ab-
stract models can be built which are simple enough but contain the functionality
needed for interesting properties.

For further experiments it would be important that the abstract models are
developed during the specification phase and then used as a pattern for the
final implementation. Otherwise, if somebody (not familiar with the designed
hardware, e.g.) tries to build an abstract model and hardware designers build
independently their VHDL implementation, then probably the abstract models
behave differently from the concrete models and it would be difficult to apply
the introduced verification technique.

5.4 FALKO

FALKO [17] is a software system for railway simulation. The software consists
of three components, namely the train supervision, interlocking system, and the
process simulator. The first two components are manually encoded in C+4++ and
the process simulator is designed using ASM-SL [29, 30]. The specification is
detailed enough such that it can be executed using the ASM-Workbench [30]
with an additional oracle for the external functions in the specification.

The ASM-Workbench was used to debug the specification for small test sce-
narios. We compiled this specification into C++ using our compilation scheme
introduced in [61]. The generated code is used successfully since January 1999
in the final product release. Until now (April 2001) no bugs in the compilation
scheme have been discovered and only two specification bugs occurred. When
the specification bugs were discovered, the team which implemented the other
components fixed the bugs directly in the generated code, because they were not
familiar with the ASM specification and the provided tool environment. They
also introduced a new feature in the compiled code. This illustrates that the
generated code is readable enough so that people not familiar with the com-
pilation scheme can fix and extend the produced code. Meanwhile, the bugs
have been fixed in the specification, the new feature was introduced, and the
specification was recompiled into C4++ to prevent inconsistencies between the
specification and the code.

For more information about the FALKO specification and the generated code
like size and effort, we refer the reader to [17].

Conclusions and Outlook

This thesis introduced several structuring and composition principles for Ab-
stract State Machines. For instance, sequential execution of machines, iteration
of machines, parametrized machines, or components. These concepts can be
used to structure single machines (by using parametrized machines, sequential
execution, iteration, e.g.) as well as to divide large specifications into simpler
parts by using the introduced component concept.

Most of these concepts are applied in several applications and some of them
are implemented in AsmGofer. In the following paragraphs we will summarize
the chapters of this thesis.

Submachines. In the Lipari Guide [33] ASMs are defined inductively mainly
by guarded function updates. In particular, there is no concept of named ma-
chines and no concept of sequential execution; essential features for structuring
machines. In this work, we introduced parametrized machines (possibly recur-
sive), sequential execution of two machines, fixpoint iteration of a machine, local
state inside machines, machines with return values, and error handling. These
concepts are useful to structure machines. On the other hand, to divide a spec-
ification into independent parts, the defined component concept is appropriate.

Components. We defined a notion of ASM components inspired by digital
hardware circuits. Based on the defined formal semantics, we introduced a com-
position principle where inputs and outputs of single components are connected
to each other in order to define the interaction among the components. Fur-
thermore, we discuss the conditions under which the resulting composition is a
well-defined component.

Usually, properties have to be proven about the composition of components
(system properties), but due to complexity issues, this can not be done automa-
tically; this is known as the state explosion problem in the literature. Therefore,
we introduced a component-based verification technique which allows us to prove
a desired system property in a less complex model. For this verification tech-
nique, we assume that for each concrete component there is a corresponding
abstract component. However, we do not require a (known) functional rela-
tion between the models as it is usually required in the literature. The above
mentioned less complex model is the composition of all abstract components
together with one concrete component. Therefore, we have to apply the proof
for each concrete component. The abstract components in this composition can
be regarded as the simulation of the environment for the corresponding concrete
component.

89

90 Conclusions and Outlook

The aim is to show that if a desired system property holds in the less com-
plex models, then the property also holds in the composition of the concrete
components (without explicitly proving this). To ensure this, we must prove a
stronger property in the less complex models.

In order to evaluate this ASM component concept, we built a tool to com-
pile such components into VHDL code. This had the advantage that we could
use existing VHDL tools (a model checker for VHDL, e.g.) to apply the intro-
duced component based verification technique for automatically proving system
properties.

Executing ASMs. We discussed how to extend and modify a semantics for
lazy evaluation in order to support dynamic functions and simultaneous function
updates which are essential features in ASMs.

Usually, in the literature, an ASM semantics is defined on top of a given
semantics for terms. This means that new syntactic constructs and their inter-
pretation are defined for ASM rules, dynamic functions, and function updates.
Our semantics is not defined on top of a semantics for terms, because our aim is
to extend an existing system for lazy evaluation (lazy evaluation is a semantics
for A-terms) according to the semantics extension. If we would define an ASM
semantics on top of lazy evaluation, then we would have to introduce ASM rules,
dynamic functions, and function updates in the corresponding implementation
which implies to build a new tool based on another one. Hence, we represent
all ASM features as A-terms. We do this by defining new functional expressions
and by modifying the lazy evaluation semantics in order to behave as expected
in ASMs.

One main problem is the fact that referential transparency of expressions is
no longer a property of the extended language. However, we adapted the lazy
evaluation semantics in order to behave correctly according to ASM semantics.

We applied this semantics extension on the functional programming system
TkGofer (based on lazy evaluation) and obtained AsmGofer—an advanced ASM
programming system.

AsmGofer. AsmGofer is different from other ASM tools in a sense that rules
are treated as expressions. In particular, one can define expressions on top of
firing rules, because firing a rule is an expression, too. This allows to build
graphical user interfaces to observe the current state and to execute arbitrary
ASM rules. Usually, in other tools, rules can be executed only by the run-time
system.

AsmGofer is usually too slow for performance critical applications (it is an in-
terpreter), but it is rather suitable for executable specifications and their valida-
tion. Although there are some other ASM tools (ASM-Workbench [30], XASM
[2], e.g.), the AsmGofer system is probably the most powerful and flexible tool
with respect to the supported language features. For instance, multi agent ASMs
are supported, non-deterministic selection of elements and rules, sequential ex-
ecution and iteration of rules, higher-order functions, recursive definitions for
rules and functions, constructor classes, graphical user interfaces, etc. Of course,
some of these features come from TkGofer, but this illustrates the usefulness of
combining functional programming and ASMs.

Conclusions and Outlook 91

Applications. AsmGofer was extensively used in the book Java and the Java
Virtual Machine [61] where the ASM models in the book for Java, the Java
compiler, and the Java Virtual Machine are executable with this tool. The ex-
ecutable models come with a graphical user interface to observe the execution
steps. In the models, recursive machines and machines parametrized over ma-
chines are used in order to get compact and intuitive definitions. Probably, the
book contains the most complex application considered with ASMs in such a
detailed way. Without AsmGofer, much more effort would had been necessary
in order to get executable models.

In an industrial software project for train simulation (FALKO), we have
demonstrated that in principle it is possible to compile structured ASMs into
efficient C++ code. In fact, in that project the generated code is used success-
fully in the final product release.

Outlook

The introduced component concept is focused on hardware systems. For soft-
ware systems, one could think about a more general component concept. For
instance, the possibility to use functions and rules in interface definitions. This
would complicate the composition notion and the corresponding component-
based verification technique.

Not all submachine and composition concepts are integrated into the lazy
evaluation semantics and also not in the AsmGofer system. Some of them should
be easy to integrate (catching inconsistent update sets, e.g.) and some others
might be really hard (local state, e.g.), because we have to use the framework
provided by Gofer.

AsmGofer allows to define expressions on top of rules (graphical user inter-
faces, e.g.). However, in the semantics extension we did not take into account
this feature. This is a very interesting research area, because it leads to some-
thing like programming on a meta level for ASMs.

In the industrial application for railway simulation, the ASM specification
was embedded into an HTML documentation. The implemented ASM compiler
extracts from this documentation the formal parts and generates the C4++ code.
This enabled seamless transition from the documentation to the executable code
and was a major reason for the success of the project.

The procedure for the book Java and the Java Virtual Machine was similarly
to the mentioned industrial application. This patency was very helpful for the
design and implementation. However, the developed tools in this thesis are
experimental. One useful continuation of this work could be to implement the
introduced composition concepts in a tool suitable for industrial software design
supporting seamless transition from the documentation til the executable code.

Zusammenfassung

Gurevich fithrt in [33] den Begriff der Abstrakten Zustandsmachinen (ASMs)
ein. Diese Maschinen wurden in zahlreichen Anwendungen fiir den Entwurf und
fiir die Analyse von Software- und Hardware-Systemen erfolgreich angewandt
(einen Uberblick gibt [16]). Ein wesentlicher Aspekt fiir diesen Erfolg ist ein
allgemeiner Zustandsbegriff (eine mathematische Struktur) mit der notwendigen
Abstraktionsmoglichkeit in Verbindung mit einer Zustandsiibergangsfunktion
(Maschinenschritt) als der simultanen Ausfithrung von atomaren Aktionen.

Die simultane Ausfithrung von atomaren Aktionen im gleichen Zustand hat
jedoch ihren Preis: Bekannte Kompositions- und Strukturierungsprinzipien (not-
wendig fiir die Beschreibung von gréBeren Systemen) werden nicht unterstiitzt
und kénnen nur mit Hilfe von Verfeinerungsschritten verwendet werden. Ebenso
hat auch die Moglichkeit zur Datenabstraktion, welche die Beschreibung eines
Systems auf unterschiedlichen Ebenen ermdglicht, ihren Preis: In einem weite-
ren Verfeinerungsschritt miissen diese Abstraktionen in eine ausfithrbare Form
gebracht werden, so daf} eine Validierung der Spezifikation durch Simulation
ermoglicht wird.

Die vorliegende Arbeit erweitert das Spektrum der Einsatzmoglichkeiten von
ASMs fiir das Software Engineering hinsichtlich der folgenden Punkte:

e Definition von drei wichtigen Kompositionskonzepten fiir ASMs: Kompo-
nenten, Parametrisierte Untermaschinen und Iteration.

e Entwicklung eines Werkzeuges fiir die Ausfithrung der erweiterten ASMs
welches eine grafische Benutzeroberflache fiir die experimentielle Analyse
ermoglicht.

Parametrisierte Untermaschinen und Iteration erlauben die Strukturierung
von einzelnen atomaren Aktionen; das Komponentenkonzept hingegen ermdog-
licht die Aufteilung einer Spezifikation in unabhéngige kleinere Teile, welche
zusammen das Gesamtsystem beschreiben. Basierend auf diesem Komponen-
tenkonzept stellt die Arbeit eine Verifikationsmethode vor, die sich fiir Korrekt-
heitsbeweise von Komponenten und deren Komposition eignet.

Die Grundlage fiir das entwickelte Werkzeug zur Ausfiihrung der erweiter-
ten ASMs bildet eine Semantikbetrachtung fiir eine funktionale Sprache mit
verzogerter Auswertung und deren Erweiterung im Hinblick auf die Anforderun-
gen zur Ausfiihrung von ASMs (beispielsweise dynamische Funktionen und si-
multane Funktionsaktualisierungen). Das entstandene Werkzeug AsmGofer ist
eine konservative Erweiterung des Gofer Systems.

93

94 Zusammenfassung

Die Anwendbarkeit der vorgestellten Kompositionskonzepte und deren Im-
plementierungen wurde fiir den Entwurf und die Analyse von folgenden Anwen-
dungen evaluiert:

e eine aus der Literatur bekannte Fallstudie und eine industrielle Anwen-
dung mittlerer Grofle fir die Simulation von Zugfahrplinen. In diesem
Projekt entstand auch ein Compiler von ASMs nach C4++. Die entspre-
chende ASM-Spezifikation wurde von Peter Pappinghaus und Joachim
Schmid gemacht. Das Compilations-Schema wurde entworfen und imple-
mentiert von Joachim Schmid.

e Java and the Java Virtual Machine. Ein Buch, das die Definition, Verifi-
kation und die Validierung von Java und der Virtuellen Maschine mit Hilfe
von ASMs behandelt. Die Beweise wurden von Robert Stark und Egon
Borger entwickelt. Der Bytecode-Verifier wurde von Robert Stark und
Joachim Schmid entworfen und Robert Stérk zeigt, dass der Verifier jedes
legale Java-Programm — erzeugt nach dem vorgestellten Compilations-
Schema — akzeptiert. Die ausfithrbaren Modelle mit AsmGofer wurden
von Joachim Schmid entwickelt.

e cin industrielles ASIC Projekt mit formaler Verifikation. In diesem Pro-
jekt entstand ein Compiler von ASMs nach VHDL welcher bereits von
Giuseppe Del Castillo fiir ein Verifikationsprojekt eingesetzt wurde.

In der industriellen Anwendung fiir die Simulation von Zugfahrpléinen wurde
die ASM-Spezifikation in eine HTML-Dokumentation eingebettet. Ausgehend
von der HTML-Dokumentation konnte der C4++ Code erzeugt werden. Dies
erméglichte den nahtlosen Ubergang von der Dokumentation bis hin zum aus-
fiihrbaren Modell und trug wesentlich zum Erfolg des Projektes bei.

Ahnlich wurde auch beim Buch Java and the Java Virtual Machine vorge-
gangen. Diese Durchgéngigkeit hat sich als sehr hilfreich und niitzlich erwiesen.
Allerdings ist die Werkzeugunterstiitzung (entstanden in dieser Arbeit) noch ex-
perimentell. Eine mogliche Fortfithrung dieser Arbeit wire die Integration der
vorgestellten Kompositionskonzepte in einem Werkzeug, das industriellen An-
forderungen geniigt, und welches die Durchgingigkeit von der Dokumentation
bis hin zum ausfithrbaren Modell unterstiitzt.

Teile der Arbeit und deren Anwendung sind verdffentlich in [17] (industrielle
Anwendung), [18] (Fallstudie aus der Literatur), [19] (Kompositions- und Struk-
turierungsprinzipien), [61] (Kompilierung von ASMs nach C4+) und [64] (Java
und die Virtuelle Machine).

Appendix A

Submachine Concept

A.1 Deduction Rules for Update Sets

The following rules provide a calculus for computing the semantics of standard
ASMs and for the constructs introduced in this paper.

We use R, R;, and S for rules, f for functions, x for variables, s and ¢ for
expressions, p for predicates (boolean expressions), and u and v for semantical
values and update sets.

Function and variable evaluation.

[t)] =2 (01, v0) [2]2 = (o) variable(z)
Skip rule.
Guarded rules.
[[t]]? = true?, [[R]]? —u M? = false™, [[S]]? =u

[if t then R else 5’]]2l =u [if ¢t then R else S}]? =u

Function update.
Vi [L]3
[f(t, .. tn) =]

Uy

is [H]g =u
{(<Ula"'7 n>7u)}

»
“Q I

Parallel combination and let rule.

{Ri,. R}¥F=wU - Uu, [letz=tinR[F=u

95

96 Submachine Concept

Quantified rules.

V=A_v,...,u}, Vi:[[R]]?i = uy
[forall z with pdo R]]? =y U---Uu,

V= {o | [p]% = true?}

[[p]]?% = true¥, [[R]]?l =u
[choose = with pdo R]? = u

2 2
N T — t
[choose = with pdo R]? = & Av:lplce = true

Sequential composition.

(R = w, IS =
o consistent(u)
[Rseq S| =udv
R|2 =u
Rl inconsistent (u)

[Rseq S[} =u

Iteration.

[R]? =

U
n > 0, inconsistent(u
[iterate(R)[2 =u =~ (u)

12 = =
[iterate(R)]2 = u

n > 0, consistent(u)

Parameterized Rules with local state. Let R be a named rule as in Section
1.4.1:

[({Inity, ..., Init } seq body)[ay/z1, ..., an/@a] |3 = u
[R(ai,.- .., an)]]%l = u \ Updates(fi,...,[x)

Error Handling.

[R]2 = u
t,..

2 (1 A (1
[bry R cateh f(A v #£ v (loc,v) € uA (loc, 10) € u

)
o tn) S]]? =" where loc = f([[tl]]?, ce [[tn]]?)

A O 3 iy () € i o)
T v # v : (loc,v1) € u oc,vs) € U
[[tryRcatchf(tl,...,tn) S]]C =0 where lOC:f<[[t1]]§[,,|Itn]]?>

Remark A.1 The second rule for choose reflects the decision in [33] that an
ASM does nothing when there is no choice. Obviously also other decisions could
be formalized in this manner, e.g. yielding instead of the empty set an update
set which contains an error report.

A.1 Deduction Rules for Update Sets 97

Remark A.2 The rule for forall is formulated as finitary rule, i.e. it can be
applied only for quantifying over finite sets. The set theoretic formulation in
Section 1.1 is more general and can be formalized by an infinitary rule. It
would be quite interesting to study different classes of ASMs, corresponding to
different finitary or infinitary versions of the forall construct.

Appendix B

Component Concept

B.1 Syntax

Type definition. A type is either an enumeration of type constructors or an array
type; the range for array types is optional.

typedef ::= {type_constructor(,type_constructor)*}

| array of type i B

| array[range] of type
range = constant (to | downto) constant
type_constructor ::= id | char

Type instantiation. Array types can be restricted to ranges. Additionally, integer
is a valid type.

type ::= id ([range])* | integer | (type) ([range])*

Term syntax. Terms can be defined using if-then-else, binary operators, unary op-
erators, function applications, and constants.

term = if _then_else_term

if _then_else_term ::= if term then term else term | or_zor_term
or_zor_term == and_term ((or | xor) and_term)*

and_term ::= relational_term (and relational_term)*
relational_term = rotate_term ((= | # | < | < | > | >) add_sub_term)?
add_sub_term u= mul_term ((+ | — | &) mul_term)*

mul_term ::= not_term (x not_term)*

not_term =not not_term | unary_term

unary_term =+ not_term | — not_term | postfix_term
postfiz_term ::= primary_term([term | constant (to | downto) constant])*
primary_term = funterm | basic_constant | (term) | id ' (term)

Basic constants. Integers, characters, and bit-vectors (sequence of 0 and 1) are
constants.

basic_constant ::= integer | char |’ (0| 1)t

Constants. Expressions containing only constant expressions, are treated as con-

99

100 Component Concept

stants, too.
constant ::= constadd
constadd ::= constmul ((+ | —) constmul)*
constmul ::= constexp (* constexp)*
constexp ::= integer |id | (constant)

Basic Universes. ID denotes identifiers, INT denotes integer values, and CHAR
denotes characters:

id = 1D
integer == INT
char = CHAR

B.2 Semantics

Values. A value is either an integer, a type constructor, or a sequence of values (used
for arrays).

Val = Integer | Constructor | Sequence(Val™)
To represent the interpretation of types, we use the following definition of Type:

Type = Integer | Boolean | Inst(Type, Range)
| Array(Type) | Constructors((Char | id)*) | Rule

Type definitions.

[[icons1l. . .iconsnl]] = Constructors(cons, ..., consy)

[array of type] = Array([type])
[array[range | of type] = Inst(Array([type]), [range])

[typedef] — def < [typedef] = def
[type] — t < [type] =t

Types. The following lines define the interpretation of types. The notion 4 to 2 and
i1 downto i2 are range specifications for arrays.

[integer] = Integer

[tyve [range |] = Inst([typel, [range])
[(type)] = [type]

[id] = normalize(id)

[[7,1 to 'LQ]] = TO(’Lll7 ig)

[4 downto i3] = DownTo(i1, i2)

The function normalize is defined inductively on types and substitutes identifiers by
the corresponding type definitions.

. normalize(type), Alias(id, type) € env
normalize(id) :
normalize(type), TypeDef (id, type) € env
normalize(Array(type)) = Array(normalize(type))
normalize(Inst(type, range)) = Inst(normalize(type), range)
normalize(Integer) = Integer
normalize(Boolean) = Boolean
(

normalize(Constructors(ci, . .., cn)) = Constructors(ci, ..., cn)

B.2 Semantics 101

If-then-else expressions.

[[terml]]zs, [[cond]]z5 = true

if cond then termy else terms]® = b §
: ! 2l¢ {ﬂtermz]]‘c’s, [cond]y® = false

Binary operators.

[*termy bop® termz]] = [bopr(a), T ,3)]]([[7567"7711]]C ,[[termz]])

Unary operators.

[uop “term]y* = [uopr ()] ([term]y®)

Identifiers.

¢(f), fis formal parameter

i(f), fis input identifier

s(f), fis state variable

[[f}]zs = fest, fis library function

g, f is function definition,
g(p1y. .y pPn) = [[body]];’dslépl,wmn_)pn and
Fun(f, (id,...,id,), body) € env

Function application.
[f (terma, . .. termn)]] [[f}]g ([[terml]] e [[termn}]z’s)
Array indexing and slicing.

[“term [index]]]‘C5 = val;

where Sequence(valy, . .., val,) = [[term]]z’s
Inst(_, range) =T ()
i = select(range, [index] ")
[“term [range:]]]‘C5 = Sequence(vali, ..., val;)
where Sequence(valh, ..., val,) = [term];*
Inst(—, rangez) =7 (a)
(i,7) = select(rangesz, [range:])

Basic terms.

[[integer]]ic‘5 = integer

char]?® = char
S
[vector]* = Sequence(vector)
Type cast.

[id ' gtermz]]z’s = [[term]]ic’5

Given a range specification and an index or another range specification, the function
select computes the corresponding element number(s) in a sequence of values.

select(To(1,12),7) =14j—1i
select(DownTo (i1, 12),7) =14i—j
select(To(i1,12), To(j1,J2)) I+ —di,1+j2—i1)
select(DownTo (i1, i2), DownTo(j1,52)) = (1 + 4 — ji,1 4+ i1 — J2)

102 Component Concept

B.3 Type system

Type compatibility is denoted by the symbol <. If #; < #2, then the type ti may be
used when t is expected. This is implies, that ¢z is more general than ¢;. The relation
is defined as follows:

Inst(t1,m1) < Inst(ta, r2) = t1 < t2 A size(r1) = size(r2)
Inst(ti,r) < Array(tz) =t <t

Array(t1) =< Array(tz) =t =<

t <t = True

In the remaining part of this section, we list inference rules to deduce the type of terms
and rules. 7 (t) denotes the type of t.

If-then-else expressions.
T (termi) = T (termz), T (cond) = Boolean
T (if cond then term; else terms) = 7 (terms)

T (termz) = T (termy), T (cond) = Boolean
T (if cond then termy else termg) = 7 (termi)

Binary operators.

T (termy) = t1, T (termz) = t2, T (bopi,,1n) = thin
T (terma bop terma) = toin

Unary operators.

T (term) = t, T (uopt) = tun
T (uop term) = tun

Local variables. We use 7,.,4 to denote the type of parameter id in function or rule
n.

id is formal parameter, n is current function or rule

Input and Output identifiers.

In(id, type) € env Out(id, type) € env
7 (id) = type 7 (id) = type

State variables.

State(id, type, (t1,. .., tn)) € env, T (term;) =< t;
T(f(terma,. .. term,)) = type

Library function signatures.

Sig(id, type, {(t1, ..., tn)) € env, T (term;) = t;
T(f(termll. . .itermn)) = type

Function signatures.

Fun(f, (id,...,id,), body) € env, T (term;) < Tj.ia;, T (body) =t
T(f(terma, ... termy)) =t

Array indexing and slicing.

T (term) = Inst(type,_), T (index) = Integer
T (term [indez |) = type

B.3 Type system 103

T (term) = Inst(type,)
T (term [range |) = Inst(type, [range])

Integers.
T (integer) = Integer
Type constructors.

TypeDef (id, Constructors(ci, ..., cn)) € env
7T (¢i) = normalize(id)

Vectors.

TypeDef (id, t) € env, t = Constructors(ci, ..., cn)
vector = v1 - ... Ug, U; € {C1,...,Cn}
T (vector) = Inst(Array(t)), DownTo(k — 1,0)

Type casts.

normalize(id) = t, t < T (term)
T(id "’ (term)) =t

Skip rule.
T (skip) = Rule
Parallel rules.

T (rule;) = Rule
T(irulel L. ruleni) = Rule

Function update.

State(f, type, e) € env, T (term) =< type
T(f := term) = Rule
State(f, type, (t1, ..., t,)) € env, T (term;) X t;, T (term) < type
T (f(termy,. .. term,) := term) = Rule

Call rule.

Rule(r, e, body) € env, T (body) = Rule
T (r) = Rule
Rule(r, (idy, ..., id,), body) € env, T (term;) = Tr.ia;, T (body) = Rule
’T(r(termll. . .ltermn)) = Rule

Conditional rule.

T (cond) = Boolen, T (rule;) = Rule
T (if cond then rule; else rules) = Rule

104 Component Concept

B.4 Constraints

Constraints for C' = [component id uses decly . .. decl, end component]

Main rule. The component contains a rule having the same name as the component:
3 Rule(id, e, body) € env: T (id) = Rule

Outputs. For each output id;, there is either a nullary function with the same name,
or id; is connected to an output id2. The corresponding types must be compatible.

V Out(idy, type) € env: 3 Fun(idi, €, body) € env: T (id1) = type V
3 OutOut(ids, idz2) € env: T (id2) < type

Type compatibility of connections.

YV OutOut(idy, idz) € env: T (id2) < T (id1)
V InOut(idy, id2) € env: T (id2) = 7 (id1)
V InIn(idy,id2) € env: 7 (id2) = 7 (id1)
V InFun(idy, idz) € env: 7T (idz) =< 7 (id1)

References

[1]

J. R. Abrial. The B-Book. Assigning Programs to Meanings. Cambridge
University Press, 1996.

M. Anlauff. XASM — An extensible, component-based Abstract State Ma-
chines language. In Gurevich et al. [30], pages 69-90.

M. Anlauff, D. Fischer, P. W. Kutter, J. Teich, and R. Weper. Hierarchi-
cal microprocessor design using XASM. In Moreno-Diaz and Quesanda-
Arencibia [52], pages 271-274. Extended Abstract.

H. Barendregt. The Lambda Calculus. Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, 1981.

S. Berezin, S. Campos, and E. M. Clarke. Compositional reasoning in
model checking. In W.-P. de Roever, H. Langmaack, and A. Pnueli, editors,
Compositionality. The Significant Difference, volume 1536 of Lecture Notes
in Computer Science, pages 81-102. Springer-Verlag, 1998.

J. Bergé, O. Levia, and J. Rouillard. Hardware Component Modeling.
Kluwer Academic Publishers, 1996.

R. Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 1998.

C. Béhm and G. Jacopini. Flow diagrams, Turing Machines, and languages
with only two formation rules. Communications of the ACM, 9(5):366-371,
1966.

E. Borger. Why use evolving algebras for hardware and software engineer-
ing? In M. Bartosek, J. Staudek, and J. Wiederman, editors, Proceedings
of SOFSEM’95, 22nd Seminar on Current Trends in Theory and Practice
of Informatics, volume 1012 of Lecture Notes in Computer Science, pages
236-271. Springer-Verlag, 1995.

E. Borger. High level system design and analysis using Abstract State
Machines. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors,
Current Trends in Applied Formal Methods (FM-Trends 98), number 1641
in Lecture Notes in Computer Science, pages 1-43. Springer-Verlag, 1999.

E. Borger, A. Cavarra, and E. Riccobene. An ASM semantics for UML
Activity Diagrams. In T. Rust, editor, Algebraic Methology and Software

105

106

REFERENCES

Technology, number 1816 in Lecture Notes in Computer Science. Springer-
Verlag, 2000.

E. Borger, A. Cavarra, and E. Riccobene. Modeling the dynamics of UML
state machines. In Gurevich et al. [36], pages 223-241.

E. Borger, U. Glasser, and W. Miiller. Formal definition of an abstract
VHDI’93 simulator by EA-Machines. In C. D. Kloos and P. T. Breuer,
editors, Formal Semantics for VHDL, pages 107-139. Kluwer Academic
Publishers, 1995.

E. Borger, E. Gréadel, and Y. Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer-Verlag, 1997.

E. Borger, B. Horger, D. L. Parnas, and D. Rombach, editors. Requirements
Capture, Documentation and Validation, Dagstuhl-Seminar-Report 242,
1999. Web pages at http://www.iese.thg.de/Dagstuhl/seminar99241.html.

E. Borger and J. Huggins. Abstract State Machines 1988-1998. Commented
ASM bibliography. Bulletin of EATCS, 64:105-127, February 1998. Up-
dated bibliography available at http://www.eecs.umich.edu/gasm/.

E. Borger, P. Pappinghaus, and J. Schmid. Report on a practical applica-
tion of ASMs in software design. In Gurevich et al. [36], pages 361-366.
Online available at http://www.tydo.de/files/papers/.

E. Borger, E. Riccobene, and J. Schmid. Capturing requirements by Ab-
stract State Machines. the Light Control case study. Journal of Universal
Computer Science, 6(7), 2000.

E. Borger and J. Schmid. Composition and submachine concepts. In P. G.
Clote and H. Schwichtenberg, editors, Computer Science Logic (CSL 2000),
number 1862 in Lecture Notes in Computer Science, pages 41-60. Springer-
Verlag, 2000.

E. Borger and W. Schulte. Modular design for the Java Virtual Machine ar-
chitecture. In E. Borger, editor, Architecture Design and Validation Meth-
ods, pages 297-357. Springer-Verlag, 2000.

W. Brauer. Automatentheorie. B. G. Teubner, 1984.

A. Briiggemann, L. Priese, D. Rodding, and R. Schétz. Modular decompo-
sition of automata. In E. Borger, G. Hasenjager, and D. Rodding, editors,
Logic and Machines. Decision Problems and Complexity, number 171 in
Lecture Notes in Computer Science, pages 198-236. Springer-Verlag, 1984.

A. Cavarra and E. Riccobene. Simulating UML statecharts. In Moreno-
Diaz and Quesanda-Arencibia [52], pages 224-227. Extended Abstract.

K. C. Chang. Digitial Design and Modeling with VHDL and Synthesis.
IEEE Computer Society Press, 1997.

K. Chen and M. Odersky. A type system for a lambda calculus with assign-
ment. In Theoretical Aspects of Computer Science, number 789 in Lecture
Notes in Computer Science, pages 347-364. Springer-Verlag, 1994.

http://www.eecs.umich.edu/gasm/
http://www.tydo.de/files/papers/

REFERENCES 107

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, pages
343-354, 1992.

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, 1994.

M. Davis. The Universal Computer. The Road from Leibniz to Turing.
W.W. Norton, New York, 2000.

G. Del Castillo. The ASM Workbench. an open and extensible tool envi-
ronment for Abstract State Machines. In Proceedings of the 28" Annual
Conference of the German Society of Computer Science. Technical Report,
Magdeburg University, 1998.

G. Del Castillo. The ASM-Workbench. A tool environment for computer
aided analysis and validation of ASM models. PhD thesis, University of
Paderborn, 2000.

A. Dold. A formal representation of Abstract State Machines using PVS.
Verifix Report Ulm/6.2, 1998.

O. Grumberg and D. E. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and Systems, 16(3):843—
871, 1994.

Y. Gurevich. Evolving Algebras 1993. Lipari Guide. In E. Borger, editor,
Specification and Validation Methods, pages 9-36. Oxford University Press,
1995.

Y. Gurevich. May 1997 draft of the ASM guide. Technical Report CSE-
TR-336-97, University of Michigan EECS Department, 1997.

Y. Gurevich. Sequential Abstract State Machines capture sequential algo-
rithms. ACM Transactions on Computational Logic, 1(1), 2000.

Y. Gurevich, M. Odersky, and L. Thiele, editors. Abstract State Machines,
ASM 2000, number 1912 in Lecture Notes in Computer Science. Springer-
Verlag, 2000.

Y. Gurevich and M. Spielmann. Recursive Abstract State Machines. Jour-
nal of Universal Computer Science, 3(4):233-246, 1997.

C. Hall, K. Hammond, S. P. Jones, and P. Wadler. Type classes in Haskell.
ACM Transactions on Programming Languages and Systems, 18(2):109—
138, 1996.

U. Heinkel. VHDL reference. A pratical guide to computer-aided integrated
circuit design, including VHDL-ASM. John Wiley Ltd, 2000.

T. A. Henzinger, S. Qadeer, S. K. Rajamani, and S. Tasiran. An assume-
guarantee rule for checking simulation. Formal Methods in Computer-Aided
Design, 1997.

108

[41]

[42]

[51]

[52]

[53]

[54]

[55]

REFERENCES

G. Hutton and E. Meijer. Monadic parser combinators. Technical Re-
port NOTTCS-TR-96-4, Department of Computer Science, University of
Nottingham, 1996.

M. P. Jones. An introduction to Gofer, 1991. Available in the Gofer
distribution at http://www.cse.ogi.edu/ mpj/goferarc/index.html.

M. P. Jones. Gofer. Functional programming environment, 1994. Web page
at http://www.cse.ogi.edu/ " mpj/goferarc/index.html.

M. P. Jones. The implementation of the Gofer functional programming
system. Research Report YALEU/DCS/RR-1030, 1994.

S. P. Jones and P. Wadler. Imperative functional programming. In Confer-
ence record of the 20" Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Charleston, South Carolina, pages
71-84, 1993.

S. C. Kleene. Introduction to Metamathematics. D. van Nostrand, Prince-
ton, New Jersey, 1952.

J. Launchbury. A natural semantics for lazy evaluation. In Conference
Record of the 20" Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 144-154, 1993.

L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for Synthesis and
Testing of Asynchronous Circuits. Kluwer Academic Publishers, 1993.

S. Liang, P. Hudak, and M. Jones. Monad transformers and modular inter-
preters. In Conference record of POPL 95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 333-343, 1995.

N. A. Lynch and M. R. Tuttle. An introduction to input/output automata.
Technical Report MIT/LCS/TM-373, M.I.T. Laboratory for Computer Sci-
ence, 1988.

J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus.
Journal of Functional Programming, 8(3), 1994.

R. Moreno-Diaz and A. Quesanda-Arencibia, editors. Formal Methods and
Tools for Computer Science, Furocast. Universidad de Las Palmas de Gran
Canaria, 2001.

M. Odersky. How to make destructive updates less destructive. In Pro-
ceedings, 18" ACM Symposium on Principles of Programming Languages,
pages 25-26, 1991.

M. Odersky. Programming with variable functions. ICFP’98, Proceedings
of the 3™ ACM SIGPLAN International Conference on Functional Pro-
gramming, 34(1):105-116, 1998.

M. Odersky, D. Rabin, and P. Hudak. Call-by-name, assignment, and
the lambda calculus. In Conference record of the 20" Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Charleston, South Carolina, pages 43-56, 1993.

http://www.cse.ogi.edu/~mpj/goferarc/index.html
http://www.cse.ogi.edu/~mpj/goferarc/index.html

REFERENCES 109

[56]

[60]

[61]

[62]

D. L. Parnas. Information distribution aspects of design methodology. In
Information Processing 71, pages 339-344. North Holland Publishing Com-
pany, 1972.

L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1996.

A. Pnuelli. In transition from global to modular temporal reasoning about
programs. In K. R. Apt, editor, Logics and Models of Concurrent Systems,
Computer and System Science, pages 123-144. Springer-Verlag, 1985.

G. Schellhorn. Verifikation abstrakter Zustandsmaschinen. PhD thesis, Uni-
versity of Ulm, 1999. For an english version see http://www.informatik.
uni-ulm.de/pm/kiv/papers/verif-asms-english.pdf.

J. Schmid. Executing ASM specifications with AsmGofer. Web pages at
http://www.tydo.de/AsmGofer/, 1999.

J. Schmid. Compiling Abstract State Machines to C4++. In Moreno-Diaz
and Quesanda-Arencibia [52], pages 298-300. Extended Abstract.

N. Shankar. Lazy compositional verification. In H. Langmaack, A. Pnueli,
and W.-P. de Roever, editors, Compositionality. The Significant Differ-
ence, volume 1536 of Lecture Notes in Computer Science, pages 541-564.
Springer-Verlag, 1998.

R. F. Stark and J. Schmid. Java bytecode verification is not possible.
In Moreno-Diaz and Quesanda-Arencibia [52], pages 232-234. Extended
Abstract.

R. F. Stark, J. Schmid, and E. Borger. Java and the Java Virtual Machine.
Definition, Verification, Validation. Springer-Verlag, 2001. See web pages
at http://www.inf.ethz.ch/~ jbook/.

E. D. Thomas and R. P. Moorby. The Verilog Hardware Description Lan-
guage. Kluwer Academic Publishers, 2000.

S. Thompson. Haskell. The Craft of Functional Programming. Addison-
Wesley, second edition, 1999.

T. Vullinghs, W. Schulte, and T. Schwinn. An introduction to Tk-
Gofer, 1996. Web pages at http://pllab.kaist.ac.kr/seminar/haha/
tkgofer2.0-html/user.html.

P. Wadler. The essence of functional programming. In Proceedings of
the 19" Symposium on Principles of Programming Languages, pages 1-14,
1992.

P. Wadler. Monads for functional programming. In J. Jeuring and E. Mei-
jer, editors, 15 International Spring School on Advanced Functional Pro-
gramming Techniques, pages 24-52. Springer-Verlag, 1995.

J. Walton. Conway’s Game of Life, 2000. Web pages at http://wuw.reed.
edu/~ jwalton/.

http://www.informatik.uni-ulm.de/pm/kiv/papers/verif-asms-english.pdf
http://www.informatik.uni-ulm.de/pm/kiv/papers/verif-asms-english.pdf
http://www.tydo.de/AsmGofer/
http://www.inf.ethz.ch/~jbook/
http://pllab.kaist.ac.kr/seminar/haha/tkgofer2.0-html/user.html
http://pllab.kaist.ac.kr/seminar/haha/tkgofer2.0-html/user.html
http://www.reed.edu/~jwalton/
http://www.reed.edu/~jwalton/

110 REFERENCES

[71] A. Wikstrom. Functional programming using Standard ML. Prentice Hall,
1987.

[72] K. Winter. Model checking for Abstract State Machines. Journal of Uni-
versal Computer Science, 3(5):689-701, 1997.

[73] Q. Xu and M. Swarup. Compositional reasoning using the assumption-
commitment paradigm. In W.-P. de Roever, H. Langmaack, and A. Pnueli,
editors, Compositionality. The Significant Difference, volume 1536 of Lec-
ture Notes in Computer Science, pages 565-583. Springer-Verlag, 1998.

[74] A. Zamulin. Object-oriented Abstract State Machines. In Proceedings of
the 28" Annual Conference of the German Society of Computer Science.
Technical Report, Magdeburg University, 1998.

	Introduction
	Submachine Concept
	Standard ASMs
	Sequential Composition and Iteration
	Sequence Constructor
	Iteration Constructor
	Böhm-Jacopini ASMs

	Parameterized Machines
	Further Concepts
	Local State
	ASMs with Return Value
	Error Handling

	Related Work

	Component Concept
	Component
	Formal Definition
	Abstraction
	Verification
	Defining Components

	Composition of Components
	Formal Definition
	Defining Composition

	Component based Verification
	Related Work

	Execution of Abstract State Machines
	Functional Programming and ASMs
	Lazy Evaluation
	Lazy Evaluation and ASMs
	Nullary Dynamic Functions
	Firing Rules
	Unary Dynamic Functions
	Referential Transparency

	Sequential Execution of Rules
	Related Work

	The AsmGofer System
	The Interpreter
	Expression Evaluation
	Dealing with Files
	Other Commands

	Sequential ASMs
	Nullary Dynamic Functions
	Unary Dynamic Functions
	Update Operator
	N-ary Dynamic Functions
	Execution of Rules
	Rule Combinators

	Distributed ASMs
	An Example: Game of Life
	Static Semantics
	Dynamic Semantics

	Automatic GUI Generation
	User defined GUI

	Applications
	The Light Control System
	Java and the Java Virtual Machine
	Hardware Verification
	FALKO

	Conclusions and Outlook
	Zusammenfassung
	Appendix
	Submachine Concept
	Deduction Rules for Update Sets

	Component Concept
	Syntax
	Semantics
	Type system
	Constraints

	References

