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Chapter 1

Introduction

The Norwegian mathematician Marius Sophus Lie pioneered the study of trans-
formation groups that leave differential equations invariant. He founded the
theory of continuous transformation groups and Lie groups [1, 2, 3, 4, 5, 6, 7, 8|.
Although Lie started with geometry, his group theoretic investigations lead him
to the study of differential equations. His goal was to establish a broad theory
of integration of differential equations that would incorporate the diverse and ad
hoc integration methods for solving special classes of differential equations under
a common concept.

From this the concept of symmetry evolved. This concept has lead to many
developments throughout the twentieth century. The theory of Lie groups and
Lie algebras is now applied to diverse fields of mathematics and to nearly any
area of theoretical physics, in particular classical and quantum mechanics, fluid
dynamics, relativity or particle physics.

Lie’s method of infinitesimal transformations provides the most widely applicable
technique to find closed form solutions of ordinary and partial differential equa-
tions.

For nonlinear ordinary differential equations Lie’s method provides a means of
reducing the solution to a series of quadratures. Through group classification
Lie succeeded in identifying all ordinary differential equations that can either be
reduced to lower-order ones or completely integrated via group theoretic tech-
niques.

Applied to partial differential equations the symmetry method leads to group in-
variant solutions and conservation laws. Exploiting the symmetries new solutions
can be derived from old ones and partial differential equations can be classified
into equivalence classes. The group-invariant solutions obtained by Lie’s ap-
proach provide insight into physical models themselves and serve as benchmarks
in the design, accuracy testing and comparison of numerical algorithms.

The ideas of Lie influenced the study of physically important systems of differ-
ential equations for example in classical and celestial mechanics, fluid dynamics,

7



8 CHAPTER 1. INTRODUCTION

elasticity and many other applied areas. In these fields the theory of transfor-
mation groups led to new important solutions. In [9] and the references therein
numerous examples and solutions are treated starting from classical field theory,
on to the Dirac and the Klein-Gordon equation, models of incompressible and
non-Newtonian fluids, boundary layer problems, magneto-hydrodynamics, non-
linear optics and acoustics.

As mentioned in section 2.9 there are various generalizations of Lie’s original
method, where the transformations act on the dependent and the independent
variables. Lie himself already studied transformations which also depend upon
the first-order derivatives of the dependent variables, which results in the so-called
contact transformations. This concept of generalization by transforming in a
larger space surmounted in the theory of Lie-Backlund transformations. The
famous theory by Emmy Noether demonstrates [11, 12] that if such groups exist,
they have applications in the theory of conservation laws, where the connection
between symmetries and conservation laws is given by Noether’s theorem.
When speaking of Lie-Backlund transformations the so-called recursion oper-
ators also have to be mentioned. These are operators which typically depend
upon derivatives of the dependent variables and which commute with the sym-
metry operator [39]. In this way they generate infinitely many symmetries and
solutions of a differential equation. Such differential equations are then called
completely integrable. These sorts of equations are also solvable with the inverse
scattering method. One famous example of such equations admitting recursion
operators is the Korteweg-de-Vries equation.

Another source of generalizations was the inclusion of conditions to the differen-
tial equations. This leads to the so-called nonclassical or conditional sym-
metries. They were first introduced by Bluman and Cole [13] who studied the
general solution of the heat equation. The nonclassical method, as it is also called,
leads to the solution of physically significant nonlinear partial differential equa-
tions, such as the nonlinear Schrédinger equation [14], the Boussinesq equation
[15], the Kadomtsev-Petviashvili equation [16] or the Fitzhugh-Nagumo equation
[17]. For an introduction on nonclassical symmetries we refer to Clarkson and
Mansfield [18].

If the differential equations include small perturbations the theory of approxi-
mate transformation groups applies [19]. Such transformation groups then
lead to approximate symmetry Lie algebras and to approximate invariant solu-
tions and conservation laws.

Another generalization leads to potential symmetries. In contrast to the sym-
metries mentioned above potential symmetries are nonlocal symmetries. They no
longer depend only on the independent variables, the dependent variables and
their derivatives. In fact if the differential equation under consideration can be
written in conserved form the ordinary symmetries of this conserved quantity
lead to transformations of the original differential equation which depend on the



potential of the dependent variables, hence the name.

The application of the method of Lie groups to concrete physical systems of dif-
ferential equations involves tedious and messy computations. Even for relatively
simple equations the calculations are bound to fail if done with pencil and paper.
In such a situation computer algebra systems such as Mathematica, MAPLE or
REDUCE are very useful. Today there exist a variety of symbolic packages which
are able to calculate the defining or determining equations of the Lie symmetry
group of a differential equation. The more sophisticated packages then reduce
the determining system into an equivalent but more suitable system, solve that
system and calculate the infinitesimal generators that span the Lie algebra of
symmetries.

The REDUCE package SPDE developed by Schwarz [20] automatically derives and
often successfully solves the determining equations for Lie point symmetries with
the intervention by the user. The package CRACK by Wolf and Brand [21] solves
overdetermined systems of differential equations with polynomial terms. Based
on CRACK the REDUCE-packages LIEPDE and APPLYSYM by Wolf [19, 22| cal-
culate Lie point and contact symmetries by deriving and solving a few simple
determining equations before continuing with the computation of the more com-
plicated ones. The solutions obtained are then used by APPLYSYM to reduce
the differential equation. This package is applicable only for point symmetries
where the generators are at worst rational.

The MACSYMA-package SYMMGRP.MAX by Champagne, Hereman and Winter-
nitz [23] has been widely used and tested in hundreds of equations. It has the
possibility of using it interactively to allow the user to find symmetry groups.
The Mathematica-package MathLie by Baumann [24] allows the computation of
point, approximate, nonclassical, potential and Lie-Backlund symmetries. Fur-
thermore the package is able to use the symmetries obtained to reach a reduction
of the original differential equation. This package also allows operations concern-
ing Lie algebras.

Another important aspect of calculating symmetries of differential equations deals
with the simplification of the determining system. There are various implemen-
tations of such simplifications. Perhaps the earliest go back to 1974 where Arais
et al. implemented Cartan’s exterior form approach to involutive systems [25].
For such systems all integrability conditions are identically satisfied. Early imple-
mentations of the method of Riquier and Janet to transform an arbitrary system
of differential equations to an involutive system already appear in [26, 27, 28].

The implementation by Topunov in REFAL can only reduce linear systems of par-
tial differential equations. In the 1990’s the works of Schwarz [29] and Reid and
collaborators [30, 31, 32, 33, 34] lead to sophisticated implementations of such
simplification algorithms. Schwarz described an algorithm based on the theory
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of Riquier and Janet [35, 36] to transform a linear system of partial differential
equations into involutive form. In modern language the involutive form is a dif-
ferential Groebner basis with respect to a selected term ordering. The purpose
of this implementation was to determine the size of the Lie symmetry group of
a given system of partial differential equations without having to integrate the
determining equations.

The implementations of Reid et al. in MACSYMA and later MAPLE reduces systems
of partial differential equations to a simplified standard form as it is called. This
procedure can be seen as a generalization of the Gaussian reduction method for
matrices or linear systems. It is applicable to linear systems and reduces them
to an equivalent simplified ordered triangular system with all integrability con-
ditions included and all redundancies eliminated.

The MAPLE-program diffgrob2 by Mansfield [37] is designed to calculate the dif-
ferential Groebner basis of a finitely generated ideal of partial differential equa-
tions with polynomial terms. It allows the computation of elimination ideals,
integrability conditions and compatibility conditions of a system of polynomially
nonlinear partial differential equations, up to certain constraints which are ex-
plained in [37].

In 1996 Wittkopf developed an algorithm to reduce polynomially nonlinear sys-
tems of partial differential equations to the form of a reduced differential Groeb-
ner basis [38]. In essence the algorithm is a differential analogue of Buchberger’s
elimination algorithm for polynomial equations, to which it refers.

The above survey of methods and symbolic program packages to calculate certain
kinds of symmetries already shows the directions in which todays theory of sym-
metry analysis is heading. On the one side there are the theoretical aspects. They
involve the generalization of the theory to gain more kinds of symmetries and to
draw conclusions from them. These conclusions include the solutions arising from
the symmetries. But for partial differential equations there seem to be only two
methods to get solutions. These are the method of characteristics and the
direct insertion. The solutions obtained are so-called invariant solutions. To
calculate invariant solutions the invariant surface condition is used. This condi-
tion ensures that solutions of the equation are transformed into themselves, and
not into other solutions. The invariant surface condition is a first order linear
partial differential equation.

For the method of characteristics this first order differential equation has to be
solved first and the solutions have to be recognized as new dependent and inde-
pendent variables. Inserting these invariants in the original differential equation
a reduced equation is obtained. The problem for this method consists in the
solution of the invariant surface condition. For simple partial differential equa-
tions of first order a solution is obtained very easy. But for more complicated
equations the method runs into trouble. The calculation of the invariants can be
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very difficult for some problems.

The direct method consists in solving the invariant surface condition with respect
to one partial derivation. This derivation is then inserted in the original differ-
ential equation and a symmetry analysis of this new equation is performed. The
problem here is the fast growth of the number of terms and complexity in the
new differential equation because of the insertion. This leads to a considerable
more time-consuming calculations to reach the new symmetry analysis.

Other problems concerning symmetry analysis are concerned with implementa-
tions of the existing theory into computer algebra packages. As mentioned above
there exist two sorts of implementations. First there are the packages which
solve coupled systems of partial differential equations, like CRACK, MathLie or
SYMMGRP .MAX. Second, the packages which try to simplify systems of coupled
partial differential equations. Such packages, like rif, diffgrob2 use involutive
methods incorporating integrability and compatibility conditions to reach a sim-
plification of the coupled system. So both sorts of implementations are used to
make the computations and solutions more easy.

But there is no implementation which uses the advantages of both kinds of im-
plementations. There is no single package which simplifies and solves systems
of coupled partial differential equations. Without doubt the coupling of both
procedures could reach simplifications and solutions the single algorithms are not
capable of. The two procedures could help each other in finding additional sim-
plifications not possible by one alone. The involutive simplifier puts the system
in a form which is easier to solve and the solutions obtained by the solver and
their integrability conditions can be used to simplify the system even further.
One reason that there is no such implementation lies in the fact that the single
procedures are written in different computer algebra packages by different people.
To create the necessary interfaces the source codes of the various packages may
have to be changed in part to allow such a coupling and some parts may have to
be rewritten completely in another computer algebra system. For this to happen
the source codes would have to be published.

Another problem which one has to face to reach solutions of differential equa-
tions by using symmetry analysis is concerned with the infinitesimal generators.
If linear, these generators can be split into single generators which span a Lie
algebra. The solutions are then found by using each subalgebra for the construc-
tion of a so-called optimal system of infinitesimal generators [39], from which
the solutions corresponding to each optimized generator can be calculated.

But already in an example in [40] appear infinitesimal generators with products
of group constants. If this is the case the division of the full generator into sim-
pler ones by setting one group constant to one and the others to zero does not
lead to linear independent generators and therefore to no Lie algebra. In [40)]
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the problem is solved by taking only some constants as group constants and the
other ones as parameters of the solution which have to satisfy certain conditions.
But there is no way one can tell which constants are group constants and which
are just parameters.

The above mentioned drawbacks can be summarized as follows:

e no practical or automated method to gain invariant solutions automatically

e 1no coupling of involutive and solution methods to simplify and solve cou-
pled systems of partial differential equations

e group structure constants appear nonlinearly and therefore analysis on the
basis of Lie algebras is not possible for these cases.

So there is a clear need for other methods to reach for invariant solutions for dif-
ferential equations, for a coupling of involutive and solution methods for systems
of partial differential equations and for the problem of the nonlinear appearing
group constants.

One solution out of this dilemma concerning the first item is to take a closer
look at invariant solutions. As said above they are obtained by the solution of
an additional differential equation, the invariant surface condition. So the invari-
ant solutions are nothing but solutions of a coupled system of partial differential
equations. For this reason the first and the second item above are related. If
there is a useful tool for the simultaneous simplification and solution of a coupled
system of partial differential equations, this tool directly leads to the automated
construction of invariant solutions. The development, implementation and appli-
cation of such an involutive solution procedure forms one part of this thesis.
The third problem, the nonlinear appearance of the group structure constants
is solved in this work in the following way. There is simply no division of the
original infinitesimal generator into a Lie algebra. For this reason we do not
mention the methods concerning Lie algebras in this thesis and refer to [39, 40].
The full generator of the infinitesimal transformations is used to find invariant
solutions. During the calculation of the solutions different cases for the constants
are generated, simplified and reduced separately in the form of a case distinction.
We will see that this leads to new solutions which cannot be found by using the
division of the generator.

This is similar to a group classification problem occurring when trying to find
equivalence transformations of a differential equation involving an arbitrary func-
tion. But here the different functional forms of the arbitrary function evolve very
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naturally as prefactors which have to be assumed unequal to zero to reach a sim-
plification and/or solution.

The following work is divided into nine parts. The second chapter introduces
the necessary notions and criteria to perform a symmetry analysis and how to
calculate the determining equations and invariant solutions.

The third chapter does the same for the concept of involutivity. Here the neces-
sary steps to transform a system of coupled partial differential equations to an
involutive form are listed and the single steps are explained and illustrated on
examples.

The next part describes the solution steps incorporated into the heuristic solver.
These steps form the skeleton of the solution part of the implementation of the
involutive solution algorithm introduced here.

In the fifth chapter appear some notes on the implementation of the involutivity
concept and the solution procedure. We illustrate how a new calculus dealing
with lists is introduced to simplify the occurring calculations. This calculus,
which we call discrete involutive calculus, covers the representation of terms,
equations and systems with conditions as well as an own implementation of mul-
tiplications and differentiations of these list representations.

The involutive solver is then illustrated on simple examples in chapter six. On
a step by step basis we will see which calculations are performed and how the
solutions are built up.

Finally, the next three chapters deal with the application of the implemented
procedures on more interesting and difficult examples. A full classification in-
volving solutions is performed in chapter seven for a class of nonlinear diffusion
equations involving an arbitrary diffusion function.

Chapter eight deals with equations appearing in financial mathematics, which also
include boundary values. The most important of these boundary value problems
is the Black-Scholes equation. The involutive reduction procedure is applied to
this equation and some generalizations.

Chapter nine then features some solutions which were obtained by applying the
involutive solution procedure to some physical problems, for example the diffusion
of a chemically reactive species.



14

CHAPTER 1. INTRODUCTION



Chapter 2

The Symmetry Concept

Before studying the invariance properties of differential equations we need to in-
troduce the basic concept. This concept, the symmetry concept, contains the
notions of groups, groups of transformations, Lie groups of transformations and
infinitesimal transformations. On the basis of these notions we study the in-
variance of surfaces under the infinitesimal transformations of Lie groups. Such
transformations are then called symmetries.

We will see that Lie groups of transformations are completely determined by
their infinitesimal behavior. Given this infinitesimal Lie group the global group
of transformations can be recovered. But for our purposes the infinitesimal trans-
formations, or infinitesimals as they are called, is all we need.

Furthermore, Lie groups of transformations which act on the space of dependent
and independent variables are naturally extended to Lie groups of transforma-
tions acting on any enlarged space which includes all derivatives of the dependent
variables up to a fixed finite order. To do this preservation of the derivative re-
lations or contact conditions which connect higher order differentials has to be
required. This preservation induces a unique extended group action in any en-
larged space. In this enlarged space the derivatives of the dependent variables
are treated as coordinates too. The group structure is also enlarged naturally to
this prolonged space.

As a consequence of the enlargement of the group structure, extended Lie groups
of transformations are characterized completely by their infinitesimals. These
extended infinitesimals are determined completely by the infinitesimals of the
unprolonged group which acts on the space of independent and dependent vari-
ables. It is then very natural to look at differential equations as hypersurfaces
in this extended or prolonged space. Consequently, the invariance principles of
surfaces extend to the invariance principles of differential equations. This allows
the construction of an algorithm to determine the infinitesimal transformations
admitted by a given differential equation.

Note that during this work we treat only point transformations. These are trans-
formations on the space of the dependent and independent variables. This means

15
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that the unprolonged transformations and with them the infinitesimal transfor-
mations only depend on the dependent and independent variables, and not on
their derivatives. If the unprolonged transformations do depend on derivatives of
the dependent variables these transformations are generally called Lie-Backlund
or Backlund transformations. These are treated for example in [39, 24, 40]. Other
types of transformations are mentioned in section 2.9.

The first object which is needed to understand the notion of symmetry is a group.

2.1 Group

Definition 2.1.0.1 Definition: Group
A set G of elements with a law composition ¢ which satisfies

i) Closure: ¢(a,b) € G Va,be G

ii) Associativity: ¢(a, (b, c)) = ¢(¢(a,b),c) Va,b,ce G

iii) Identity: 3 e € G unique such that ¢(a,e) = ¢(e,a) =a VYa € G

iv) Inverse: Va € G 3 a ! unique such that ¢ (a,a™') =¢p(at,a)=¢

1s called a group.

Note that a group G is called Abelian if ¢(a,b) = ¢(b,a) for all elements a, b

in G.

A subgroup of G is a group formed by a subset of elements of G with the

same law of composition ¢.
Some examples of groups are given by:

a)

The set of all reals with the law of composition given by ¢(a,b) = a+b is a
group. The identity element is given by e = 0 and the inverse of an element
aisa™! = é This group is Abelian.

The set GL(n, R) of invertible n X n matrices with rational entries forms a
group. The law of composition is given by matrix multiplication, the iden-
tity is the identity matrix and the inverse element is the inverse of a given
matrix. Note that this group is not Abelian since the matrix multiplication
is not commutative.

The set of all integers with the law of composition given by ¢(a,b) = a+b
is also a group. In fact it is a subgroup of all reals with the same law of
composition mentioned in a).

In the following we will concentrate on special groups. Since we want to study the
invariance of some differential equation under certain transformations the groups
considered further on are groups of transformations.
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2.2 Groups and Lie Groups of Transformations

Definition 2.2.0.2 Definition: Group of Transformation:
Forx e D C R", ¢,6 €S8 CR, ¢ alaw of composition of parameters €, §

zt = X(z;¢) (2.1)
s a group of transformations in D if

i) Ve € S the transformations (2.1) are one-to-one and onto D, in particular
z* €D

it) S with law of composition ¢ is a group
iii) ¥ =z for e = e (identity: X(z;e) = z)
w) if x* = X(z;¢), 2 = X(z*;6) then z** = X (z; (¢(¢,9))-

Note that the law of composition in this definition is an arbitrary one. The
parameter ¢ is an element of a set S C R. A special group of transformations is
obtained if this parameter is continuous in R. These transformations then form
a so-called Lie group of transformations:

Definition 2.2.0.3 Definition: Lie Group of Transformations:
A Lie group of transformations is a group of transformations satisfying i) - iv)
above and additionally:

v) the parameter of the group € is continuous on S cR. Without loss of gen-
erality € = 0 can be chosen to be the identity e

vi) X 1is differentiable to the order necessary in the following calculations with
respect to x € D and an analytic function of € in S

vii) the law of composition ¢(e, ) is analytic ine, § Ve, 6 € S

Note that these conditions assure that the transformations (2.1) are smooth
enough such that the operations needed to calculate symmetries are permitted.

Consider for example the group of translations along the z-axis in a plane. If
the coordinates of the plane are z and y this Lie group of transformations is given

by

r = x+E, (2.2)

yvo=y
for ¢ € R. Here the law of composition is ¢(e, J) = €+ J. This group corresponds
to a motion parallel to the x-axis.
Another important Lie group of transformations are the scalings. Considering



18 CHAPTER 2. THE SYMMETRY CONCEPT

the three coordinates x, y and z, a scaling of the x and y coordinates is given for
example by

¥ = a,
y* fry a2y, (2.3)
2f = z.

Here the law of composition is ¢(«, ) = af and the identity element is e = 1.
Note that this group of transformations can be re-parametrized by introducing
the new parameter ¢ = oo — 1. In terms of this new group parameter (2.3) can be
rewritten as

= (1+¢)z,

y* = (1+e),

= z
so that the new identity element is e = 0.
As a last example for Lie groups of transformations we mention the rotations.
In two dimensions this group is represented by G = SO(2) or in coordinates:

x* = zcosfh — ysinb, (2.4)

*

y* = xsinf + ycosb

where 0 < § < 27 is the angle of rotation.

2.3 Infinitesimal Transformations

The analytic dependence of (2.1) on ¢ in the neighborhood of the identity ¢ = 0
implies the existence of the infinitesimal transformations.

Consider a Lie group of transformations z* = X(z;¢) with the identity ¢ = 0
and a law of composition ¢. Expanding this transformation around € = 0 leads to:

0X (z;¢) g2 0%X (x;¢) 5
* — X(g: . ) < )
x (x;0) + € o |, 52 | +0(e”)
= x+¢- M + 0(52)_
Oe |,

This expansion around € = 0 is called the infinitesimal transformation of the
Lie group of transformations (2.1). Hereby the elements

£(a) = 2X1)

e=0
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are called the infinitesimals of the transformation.

These infinitesimal transformations prove to be very important in the construc-
tion of solutions of differential equations. They define the transformations locally.
In fact the global transformation (2.1) can be reconstructed from the infinitesi-
mals. This is the content of the first fundamental theorem of Lie (see [40])

Theorem 2.3.0.1 Lie’s first Fundamental Theorem:
There is a parameterization T(g) such that the Lie group of transformations

z* = X(z;¢)

1s equivalent to the solution of the initial value problem for the system of first
order differential equations

d *
de =¢(z*) with z*=2z when 7 =0. (2.5)

This parameterization is given by

where 96(a.b)
a,
T(e) = 5%
(a,b)=(e~1,e)
and
ro) =1.

The law of composition for this new parameterization is given by ¢(11,T2) = T1+72

so that e~ = —¢.

This theorem shows that the infinitesimal transformations contain the essential
information determining a Lie group of transformations. The global group is
fully determined by the infinitesimals, i.e. by the local behavior of the group of
transformations. The global transformation can be recovered by solving the initial
value problem (2.5). Additionally it shows that a Lie group of transformations
(2.1) defines a stationary flow.

To illustrate Lie’s first fundamental Theorem we go back to the examples of Lie
groups of transformations above. For the group of translations (2.2) e™! = —¢,
8¢é‘2’b) =1 and hence I'(¢) = 1. Since X (z;¢) = (z + ¢,y) we get % = (1,0)
and the infinitesimals are given by

0X (z;¢)
= — — ]_,0 .
o= 5 =)
Therefore the system of first-order ordinary differential equations (2.5) becomes
dz* dy*
T o1, Y0 with 2*(0) =z, ¥*(0) = y.

de " de
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The solution to this initial value problem is seen to be (2.2).

For the group of scalings (2.3) e ' = — % and W =1+ a. Thus
0¢(a,b
I(e) = ¢5g2, ) =1+e'= T

(@b)=(c"1e) te
Furthermore,

0X(x;¢e

S(x,y,z): % :(1'721%0)
€ e=0

Inserting these results in (2.5) leads to

dz* x* dy* 2y*

de  1+4¢ de 1+e¢

with 2%(0) ==z, y*(0) =y

whose solution is (2.3). The new parameter is given by

T:/ F(s’)de':/ de =log(1+¢)
0 0

1+¢

and the group (2.3) becomes

= ez,

x*
y* — €2Ty,
¢ = z
with new law of composition ¢(7y,72) = 71 + To.
For the group of two-dimensional rotations (2.4) we get

_ 0X(xz;¢)
B 86 e=0

3 = (—y,.’L‘)

and thus
dz* ., ay*

e 70 de
The solution to this initial value problem is again (2.4).

z* with z*(0) =z, y*(0) = v.

2.4 Infinitesimal Generator

Now we want to look at a function F(z') under the action of a Lie group of
transformations. This group of transformations is given by
dxi*

™ = X'(z;¢) with a = &(x). (2.6)
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This transformation naturally implies a transformation of an arbitrary function
F(z™) = F(z'+e¢& +0(c?))

oF

ami* e=0

_ i 8_Fz 2
= F(a')+ 5 g+ 0()

— F(')+ e& +0(2)

Thus the infinitesimal transformation (2.6) leads to an infinitesimal transforma-
tion of the function F(z‘). This infinitesimal transformation depends upon the
infinitesimals & of the infinitesimal transformation of the independent variables.
This fact can be represented by introducing an operator, called infinitesimal
generator, which is defined as

0
ox’
where summation over repeated indices is assumed. With this the infinitesimal

transformation of the function F(z%) under the infinitesimal transformation (2.6)
of the independent variables is expressed as

X =¢&(x)

F(z™) = F(z')+eXF(z) + %XQF(xi) +O0() (2.7)
== %X’“F(azi). (2.8)

This shows that a Lie group of transformations of the coordinates of some space
induces a Lie group of transformations of an object which is expressed in these co-
ordinates. This infinitesimal transformation is completely given, or generated, by
the infinitesimal transformations of the coordinates. The global transformation
of an object F(z') is again completely given by its infinitesimal counterpart.

2.5 Invariant Functions, Surfaces and Curves

Since we now know how a function changes under a Lie group of transformations
we are able to introduce the notion of an invariant function:

Definition 2.5.0.4 Definition: Invariant Function:
An infinitely differentiable function F(x) is an invariant function of a Lie group
of transformations

¥ = X(z;¢) (2.9)

if and only if
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for any group transformation (2.9). If F(z) is an invariant function of (2.9) then
F(z) is called an invariant of (2.9) and F(z) is said to be invariant under (2.9).
The transformation (2.9) is then called a symmetry of F(z). The procedure of
finding the transformation (2.9) which leaves F(x) invariant is called symmetry
analysis.

Using (2.8) it is apparent that a function is invariant under (2.9) if and only if
(for a prove see [40])
XF(z) = 0.

The next step towards the invariance of differential equations is the invariance of
surfaces F(z) = 0, and curves F(z,y) = 0.

Definition 2.5.0.5 Definition: Invariant Surface:
A surface F(z) = 0 is an invariant surface under a Lie group of transformations
(2.9) if and only if

F(z*)=0 when F(z)=0.

To check the invariance of a given surface under the Lie group of transformations
t* = X(z;€) = 2 + £ + 0(e?) (2.10)
the following theorem is used:

Theorem 2.5.0.2 Theorem:

A surface F(z) = 0 is an invariant surface for the transformation (2.10) if and
only if

XF(z)=0 when F(z)=0,
where 5
X == i—.
¢ ox?
is the infinitesimal generator of (2.10).

This theorem is seen to be true on the background of the action of a Lie group of
transformation (2.9) on functions. The same is obviously also true for invariant
curves:

Definition 2.5.0.6 Definition: Invariant Curve
A curve F(z,y) = 0 is an invariant curve for a Lie group of transformations

ot = X(z,y;e) =z +e&f(z,y) +0(e?),

\ (2.11)
v = Y(z,y5¢) =y +en(z,y) +0(e7)

with infinitesimal generator

0

o
X = §(w,y)£+n(w,y)a—y (2.12)
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if and only if
F(z*,y*) =0 when F(z,y)=0.

Theorem 2.5.0.3 Theorem:
A curve F(z,y) = 0 is an invariant curve of (2.11) if and only if
; oF oF
XF(z,y) =& (z,9)55 +n(z,y)5-=0 when F(z,y)=0. (2.13)
oxt Oy
This theorem can be used to construct an invariant curve when the infinitesimals
or symmetries £ and 7 of the Lie group of transformations are known. Then
(2.13) is a first order linear partial differential equation for F(z,y).

2.6 Prolongations

Since we are interested in solutions of differential equations using symmetry anal-
ysis we first need to construct the Lie group of transformations which leaves dif-
ferential equations invariant. Such groups of transformations are of the form

= X(z,u;e),

*

Do e) (2.14)

and act on the space of independent and dependent variables z = (z?,...,z") and

u = (U1,.--,Uny). A Lie group of the form (2.14) admitted by some differential
equation A has the equivalent properties of mapping any solution u = 6(z) of A
into another solution and leaving A invariant in the sense that A is unchanged
in terms of the transformed variables for any solution u = §(z) of A. For such a
group the derivatives of the dependent variables with respect to the independent
variables are transformed appropriately such that the contact conditions are pre-
served.

This natural extension of Lie groups of transformations of the dependent and
independent variables to Lie groups of transformations acting on the dependent
variables, the independent variables and the derivatives of the dependent vari-
ables with respect to the independent variables is called prolongation. This is
done in the following way.

Consider a Lie group of point transformations (2.14) and let

_ Ou,
Upi = e
. ou;
Uy = i
and so on. Furthermore let
D.-:i+u.i+u..i+ + U, .L_}.
YT ogt 7 Ouy MOy, N i
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be the total derivative operator where summation over repeated indices is as-
sumed.

The transformations (2.14) are assumed to be one-to-one in some domain D in
the space of the dependent and independent variables x and v and k-times dif-
ferentiable in D. The transformations preserve the contact conditions

du, = Uy dz",
i
Auosy.iy, = Uo,ip..ipdT™
if and only if

* * 11%
du, = ua,ildac ,

* _ * Tg*

duo-,il...ik_l = uo-,il...ikdx . (2.15)

From the transformations (2.14) we obtain

" .
du = Dij i1~--ik—1dx]7

O',il...ik_l
dz"** = D;X"da’.
Inserting this in (2.15) we get
DU, =}, . DX (2.16)

11.lp—1 0,110k

Since the transformations (2.14) define a Lie group we can expand around € = 0:

Usyirooiros = Uo,iyeip_s T EN(o,iroip_1) T O(e?),
X% = g% 4 g% + 0(e?),

where the lower indices of 7 are enclosed in brackets since they do not represent
derivatives, only indices. Using this in (2.16) we get

Dj (ua,il---ik—1 + EN(oyiy..ip—1) + 0(52)) = u:,il...z'ij (‘73”c + Egik + 0(52))'
Threading the total derivative operator D; leads to

Ug,41..ik—1,] + ng N(o,41..1-1) + O(€2) - u::',’il...ik (6;k + gDJ' §Zk + 0(52))' (2'17)
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Since the extension of the Lie group of transformations to the derivatives is again
to be a Lie group of transformations we can expand u} around € = 0:

g, llzk
*

Uy i i = Yoy + EN (o) T O(7).

This leads to the so-called prolongation formula

Ug,iy..ip_1,5 T EDj Noiroi_1) T 0(52) =
(Yo, iy, F EN(oyi1.min) T 0(52))(5;'k +¢eD; &% 4+ 0(e?))
Ug,iy.ip 1,5 T 5(77(072'1--4'1@7171') t Uo, iy ...iy Dj glk) + 0(52)

or
Noyireinrg) = DjMoyir.inr) = Uoyir..iz, - Dj £ (2.18)

This prolongation formula shows that the k-th extended transformation depends
upon derivatives of the dependent variables up to k-th order when starting with
a point transformation, which means a transformation of the form (2.14) on the
space of dependent and independent variables.

As an example consider the case of one dependent variable v and two independent
variables, x and ¢. Since we are looking for point transformations the unprolonged
infinitesimal generator looks like

0 0 0
X = §(w,t, U)% + T(ZL’,t, u)a + n(x,tau)a_ua

where £ is the infinitesimal transformation of x, 7 the infinitesimal transformation
of ¢t and 7 the infinitesimal transformation of u. With this the infinitesimal
transformation of u,; reads

n(z,t) = Nzt + (nz,u - é-z,t)ut + (nt,u - ga:,t)ua: — TgUt,t + (nu - 5:1: - Tt)uz,t
_gtu:z:,m - Tz,uuf + (nu,u - gz',u - Ty,u)uz‘ut - gy,uui - ’ru,uut2 - gu,uuiut

_2Tuutuz,t - 2£uuzuz,t - guutua:,z — Ty Uz Uz,

where lower indices not enclosed in brackets are again differentiations with respect
to the corresponding variable.

Having thus defined a Lie group of transformations acting on any enlarged space
incorporating derivatives it is relatively easy to write down the corresponding
k-th extended infinitesimal generator:

LD 9 9
xX® = ¢ (x,u)% + n(a)(w,u)a—ua + 7)(,,,1-1)(:11:,11,ujl)Wm1 +...
0
oot n(a,h---ik)(ma Uy Ugys - v 7uj1---jk)a

U,’il...ik
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Furthermore we recognize that the higher order infinitesimals 7., ..;,) are com-
pletely determined by the infinitesimals of the Lie group of transformations which
act on the space of the dependent and independent variables. The relation to
build the higher order infinitesimals from the infinitesimals of the space of de-
pendent and independent variables is given by the prolongation formula (2.18).

2.7 The Symmetry Criterion

Since we want to apply the prolonged infinitesimal transformations to the con-
struction of solutions to partial differential equations we need a criterion of in-
variance. As we will see this criterion will also be in infinitesimal form and will
lead directly to an algorithm to determine the infinitesimal generator X admit-
ted by the differential equation under consideration. The invariant surfaces of
the corresponding Lie group of point transformations then lead us to invariant
solutions.

But first we start with the invariance criterion. Consider a partial differential
equation of k-th order

A(xia Uy Ugyy - - 7ui1,...,ik) =0 (219)

where z* denote the n independent variables, u denotes the dependent variable
and u;, . ;; denotes the set of coordinates of the j-th order partial derivatives of
u with respect to the z*:
B u . .

Wiy yoyiy — —8331“ i 11+ ...l = J.
In terms of all these coordinates, the independent variables, the dependent vari-
ables and the derivatives, (2.19) is an algebraic equation defining a hypersurface
in the k-th prolonged space (z,u, U, , - .., Ui, i)
For any solution u = 6(x) of (2.19) the equations

6(x)

Arl™ .. grin

uil,...,i]‘ -

define a solution surface which lies on (2.19).
Having thus recognized a differential equation as a hypersurface in an appropri-
ately prolonged space we can define its invariance.

Definition 2.7.0.7 Invariance of Differential Equations:
The Lie group of transformations

7 = X'(z,u;e),

v = U(z,u;e) (2.20)
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leaves the differential equation (2.19) invariant if and only if its k-th prolongation
leaves the surface (2.19) invariant.

Invariance of (2.19) under the k-th prolongation of (2.20) means that any solution
u = 6(z) of (2.19) maps into some other solution u = ¢(x;¢) of (2.19) under the
action of the Lie group of transformations (2.20). Moreover, if a transformation
(2.20) maps any solution u = 6(z) of (2.19) into another solution u = ¢(z;¢) of
(2.20) than the surface (2.19) is invariant with respect to (2.20) with

& p(z;¢)
uil,...,ij — a9 141 i
Oxl™ ... gnin

As a consequence, the family of all solutions of (2.19) is invariant under (2.20) if
and only if (2.19) admits (2.20).

This definition readily leads to an infinitesimal criterion for the invariance of a
differential equation:

Theorem 2.7.0.4 Theorem:
The differential equation

A(.’Ei, u, uil, RPN ,uil,___’ik) = 0
admits the Lie group of transformations

¥

= X'(z,u;e),
u* = U(z,u;¢)

if and only if

X(k)A(mi, cey Uiy ) =0 when Az . .. y Wiy i) = 0,

where 5 5
X =¢ : —
€ (o, u) o+ () o

is the infinitesimal generator of A(z',u, Uiy, .., Uiy i) =0,

; 0 0 0
X® —¢ 9z T gy T T Main) g

1s the k-th extended infinitesimal generator and

T(i1,enping) = Dj N(i1,eeyit) — Winpeenyiy * Dj fil

are the corresponding extended infinitesimals.
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This theorem provides an effective computational procedure to find the Lie group
of transformations admitted by a given differential equation. This group is de-
noted the symmetry group of the differential equation.

To do this let the infinitesimals &, n be unknown functions of the dependent and
independent variables. The extended infinitesimals of the prolonged infinitesimal
generator are then certain differential expressions involving the partial derivatives
of the infinitesimals £* and 1 with respect to the dependent and independent vari-
ables. After eliminating any dependencies among the derivatives of the dependent
variable by inserting the differential equation to restrict the transformations to
the solution surface, the values of all the remaining derivatives of the dependent
variable can be arbitrary.

Since these derivatives appear polynomially the coefficients of this polynomial
have to vanish separately. From this separation results an overdetermined system
of partial differential equations which is linear (except for nonclassical symme-
tries) and overdetermined. This system of partial differential equations is called
the determining system or the determining equations.

In most instances these determining equations can be solved by elementary meth-
ods for partial differential equations, such as integration of pseudo-ordinary dif-
ferential equations.

Summarizing, we are directly lead to an algorithm to determine the infinitesimals
€', n and therefore the infinitesimal generator X admitted by a given differential
equation:

i) Start with the unknown infinitesimals and build up the extended infinites-
imal generator.

ii) Apply the extended infinitesimal generator to the differential equation un-
der consideration.

iii) Insert the differential equation to use the dependencies of the partial deriva-
tives given by the differential equation and to restrict the transformations
to the solution surface.

iv) Split the resulting polynomial of partial derivatives of the dependent vari-
able on which the infinitesimals do not depend.

v) Solve the determining system.

To illustrate the symmetry criterion and the separation of the equation which is
polynomial in the derivatives we consider the nonlinear diffusion equation

u = (K(u)ug)e (2.21)
where v is a function of x and ¢ or in expanded form:

u = K'(u)uy + K(u)ug .
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To use the above symmetry criterion we need the extended infinitesimal trans-
formations 7)), 7(z) and 74,y of the unprolonged infinitesimal generator

X = (o, t,0) o+ (o) o+ (o, b

The corresponding prolonged infinitesimal generator reads

0 0 0 0 0 0

581‘ +T6t +n3u I )Ouz +n(t)8ut + e, )0uz,z

)50

where

Ny = N+ Ut (N — Tt) — Uz€e + Upuey — u?Tu,
Nz)y = Nz + uz('r/u - gcc) - ui& — Ty — UgUsTy
and
New) = Mozt Ue(@Now — Eoz) + U2 (Nuw — 2&0u) + Use (M — 262) — BUpUy 2&u
_uzfu,u — Uy 5Ty — 2UgUp g Ty — UtTpg — 2UtUg Ty — Ul pTy — ’U,tui_Tu’u

where the prolongation formula (2.18) was used. According to the theorem above
the symmetry criterion is given by

x® (ug — K'(u)ui — K(u)uww)‘ =0.

u=K'(u)us+K(u)ug,o
Putting it all together we get an equation which is a multivariate polynomial in
the variables ug z, Ug ¢, Uy, Uy and u,. Since &, 7 and 7 do not depend on any
of these variables and the polynomial equation has to be true for all values of
these variables the coefficients have to vanish separately. This gives the equations

K(u)é, =

Kur, =

&+ 2K (u)ne + K(w)(2Nep — €oe) =
K(u)(m —2&) + K'(u)n =

K(u)nuu + K'(0)(Tu — 26 +m) + K" (u)n =
M — K (u),e

(2.22)

(= = = = R = N

These are the determining equations for the equation (2.21).

2.8 Invariant Solutions

Having calculated the infinitesimals of the symmetry generator the question is
how to use these symmetries to get a solution of the differential equation un-
der consideration. In this thesis we use the symmetries to construct so-called
invariant solutions. This notion is connected with the invariance of a surface:
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Definition 2.8.0.8 Definition: Invariant Solution:
A surface u = 6(x) in the space of dependent and independent variables is an
invariant solution of

A(xia Uy Ugyy - - - 7ui1,-~~7ik) =0
under the action of the infinitesimal generator

X = €, u) s+ () o

oxt
of the Lie group of transformations

X'(z, use),
u* = U(z,u;¢)

8
I

if and only if
i) u = 6(z) is an invariant surface of the generator,
i) u=0(z) solves A(T",u, Uiy, ., Uiy, i) = 0.

Using the condition for the invariance of a surface we see that v = 6(z) is an
invariant solution if and only if

i) X(u—0(z))=0 when u=20(z)
ii) u = 6(z) solves A(z%,u, u;,, ..., u;) = 0.

The condition i) is called the invariant surface condition.

Therefore, to get an invariant solution of a given differential equation we have
to solve the linear first order partial differential equation i) together with the
differential equation ii) under consideration.

One way to construct invariant solutions would be to insert the infinitesimals in
the invariant surface condition and solve the resulting equation. The solution
to this equation is then recognized as new dependent and independent variables.
Inserting these invariants in the original differential equation a reduced equa-
tion is obtained. This resulting differential equation is then to be solved and an
invariant solution is obtained. This method is also known as the method of
characteristics [40].

The methods of characteristics is well known and generally applicable. But it
relies on the solution of an explicit set of invariants. If these invariants are not
found this method is of no use.

Therefore we use another method to get invariant solutions. The idea goes back
to Olver and Rosenau [41, 42]. Their approach consists in adding the integra-
bility conditions to the original equations of the invariant surface condition and
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the differential equation under consideration. The result is a combined system of
partial differential equations. Unlike the nonclassical method, where a symmetry
analysis is performed on this coupled system, in [41] the system is directly re-
duced by using some integrability conditions, with no symmetry background at
all.

We generalized this procedure in such a way, that not only some integrability
conditions are calculated, but a whole involutive reduction procedure incorpo-
rating heuristics to solve simple partial differential equations is implied. Unlike
other computer algebra packages like CRACK [21] or PDESolve [24], which “just”
aim at solving a system of overdetermined polynomially nonlinear partial differ-
ential equations, or rif [38] or diffalg [58|, which “just” perform a reduction of
such a system to a simplified form, our procedure implemented in Mathematica
is able to simplify and solve systems as above in one step, as long as the heuristic
solver is able to solve the corresponding differential equations. That means that
by starting the calculation simplifications by all integrability conditions and so-
lutions of partial differential equations by heuristics are done. This procedure is
explained in more detail in [59].

But before explaining this procedure in detail, we introduce in the next chapter
the notion and concept of involutivity.

2.9 Notes

We already said that in this work we deal only with point symmetries. These
are symmetries where the infinitesimals depend only on the dependent and the
independent variables. Of course this dependency of the infinitesimals can be
generalized. The invariance of some differential equation is then again some sym-
metry, but in a more general sense.

If the infinitesimal transformations depend additionally on the first order deriva-
tives of the dependent variables the corresponding transformations are called
contact transformations. Like point transformations contact transformations
act on a finite-dimensional space. Such transformations are used to construct a
wider class of solutions [40] or to construct transformations between classes of
differential equations, for example when transforming nonlinear differential equa-
tions to linear ones [40].

Generalizing even further we arrive at so-called generalized symmetries or
Lie-Backlund symmetries. These are symmetries where the unprolonged in-
finitesimal transformations depend not only on the dependent and independent
variables, but also on higher-order derivatives. When requiring an additional
condition on generalized symmetries they are called variational symmetries.
These are symmetries which leave an action integral invariant. This then leads
to the invariance of Euler-Lagrange equations.

Unlike the contact transformations the Lie-Backlund transformations do not act
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upon a finite space. Lie-Backlund transformations are used to construct integrals
of motion via the famous Noether theorem [11, 12, 39]. Furthermore they can be
used to construct so-called recursion operators which generate an infinite class
of solutions, for example in the case of the Korteweg-de-Vries equation [39, 40].

Another class of transformations are the equivalence transformations [9, 10].
These are transformations of a differential equation which involves an arbitrary
function. Equivalence transformations are transformations which leave a specific
class of differential equations invariant. The equivalence relation then divides
the set of all differential equations of a given family of differential equations into
disjoint classes of equivalent equations. For each of these classes a representative
is chosen. Equivalence transformations are used to classify differential equations
according to its arbitrary function. This procedure is called a group classifica-
tion problem.

Later on we use another method to achieve a group classification problem. We
use this other method because of two reasons. The first reason is that for the
construction of equivalence transformations the construction of optimal systems
and discrete symmetries are needed. But until today there is no complete imple-
mentation for the calculation of optimal systems and discrete symmetries. The
second reason is the choice of the representative. This choice is not unique and
if an application involves a different representative a transformation is needed to
the differential equation under consideration.



Chapter 3

The Concept of Involutivity

The notion of involutivity goes back to the French mathematicians Charles Riquier
[35] and Maurice Janet [36]. They inspected the problem of transforming a sys-
tem of coupled partial differential equations to a simpler form by adding and
inserting all integrability conditions of the system to the system. This simpler
form is called involutive and has the same set of solutions as the original system
and is obtained in a finite number of steps, or in modern language, algorithmi-
cally.

There are two main purposes of this procedure. First, and this is the one we are
interested in, the transformed system is much simpler than the original system
and therefore the solution of the system is much easier to accomplish. The second
purpose is the fact that the dimension of the solution space of the system is easily
read off from the transformed system. This is used for example in the computer
programs by Schwarz [29] and Reid [31].

The reason for the fact that the dimension of the solution space is very easy to
determine for an involutive system is based upon a term ordering and the addi-
tion of all integrability conditions to the system. Because of this ordering certain
leading derivatives with respect to the given term ordering are expressed as func-
tions of other derivatives, which are called parametric. Parametric derivatives are
derivatives that cannot be obtained by differentiation of the leading derivatives.

3.1 The Term Ordering

The dimension of the solution space is given by the number of parametric deriva-
tives. Of course the division of derivatives into leading ones and parametric ones
does depend on the ordering procedure. Therefore, a system which is involutive
with respect to one term ordering is usually not involutive with respect to another
ordering.

Note that the ordering of the terms involved cannot be chosen arbitrarily. There
is one restriction. The term ordering has to be invariant under arbitrary differ-

33
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entiations. Denoting the ordering by “>” this condition is expressed as follows:
Consider two terms u and v which are ordered as
u > .
Then the ordering has to satisfy
Ou > 0w,

where O represents an arbitrary differentiation. This relation expresses the com-
patibility of differentiation with the term ordering. For some examples of admis-
sible terms orderings see [54, 55, 56].
We work exclusively with the ordering which uses the following criteria. First
there is an ordering of the dependent variables. For two dependent variables, for
example

u>wv.

Then we have to choose an ordering of the independent variables, for example
x>y

for the two independent variables x and y. Now consider two terms
Oirtizy, ks Otz k2
(896"183/” > ’ (f%fl Oy ) '

ail +i2u k1 ajl +3j2 v k2
<<9w"1<9y"2) g <3wj1 3@/”?)

Then

if :
i) 11+ 12 > J1+ Jo

ii) if 44 + 42 = j1 + jo then u > v
iii) if 4y + 42 = j1 + jo and u = v then 4; > j;
iV) if 411 + 49 = j1 + J2, u = v and i; = j; then ky > ko

For the above mentioned example this produces the following relations among all
second order derivatives:

Ugg > Ugy > Uyy > Upg > Ugy > Uyy > Ug > Uy > Vg > Uy > U > 0,

where as usual we use the notation with the lower indices for differentiation, i. e.

N
Ug,y for Bady-
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3.2 The Involutive Algorithm

As said above the transformation to involutive form is an algorithm. This algo-
rithm is build up of three major steps. The first step is called autoreduction.
Hereby each equation of a coupled system of partial differential equations is solved
with respect to the leading derivative under the given term ordering and back-
inserted into the system. This reduction of the system with respect to itself ends
when no insertions of the system into itself for the ordering given are possible.
In the next step, the completion, the system is enlarged by equations which
ensure the calculation of integrability conditions. These equations are deriva-
tives of some equations with respect to certain independent variables, which are
called non-multiplicative, and guarantee that integrability conditions can be cal-
culated.

Finally, in the last step the integrability conditions are calculated and are
reduced with respect to the system. If these new equations are not identically
zero they are appended to the system to reenter the autoreduction step. This
loop structure is entered over and over again until the integrability conditions are
identically satisfied when inserting the system. It is illustrated in figure 3.1. To
get an idea of how to manage these tasks we explain them now in a more detailed
way.

3.3 Autoreduction

Consider a polynomially nonlinear coupled system of partial differential equa-
tions. The problem we want to solve is to insert all equations of the system into
itself to reach a simplification, but without losing any solutions. We do this in
the following way.

First we order the system with respect to the term ordering. Now the equation
with the lowest derivative order and lowest in order for the dependent and inde-
pendent variables is last. We start with this last equation. What could happen
now is that this equation factors. If this is the case new systems of equations
are build. These new systems incorporate the old system, where the equation
that factors is replaced by each of the factors. If the equation is build up of two
factors for example, the original system is replaced by two new systems, one for
each factor. These new systems are then again sorted with respect to the term
ordering and the last equation is inspected.

Consider for example the system

{Equation 1

Equation 2 =
Equation 3 =

o oo o

2 —
3T Ug gy VU =
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The Involutive Simplifier

i

[Autoreduction]

i

[Completion]

i

[Integrability Conditions j

yes

Result

Figure 3.1: The loop structure of the involutive simplifier.
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Equation 5 = 0,
Equation 6 = 0}

in the dependent variables v and v. The fourth equation is a product of four
factors. The factor 3z2 does not involve the dependent variables at all. The
other three factors involve u and v. Thus the system is replaced by the three
systems

{Equation 1
Equation 2 =

uw7w’y

0
0
Equation 3 = 0,
0
0

Equation 5 = 0,
Equation 6 = 0},

{Equation 1 =
Equation 2 =

0

0

Equation 3 = 0,
v = 0

0

Equation 5 = 0,
Equation 6 = 0}
and

{Equation 1 =

Equation 2 =

Equation 3 =

u = y

o oo oo

Equation 5 = 0,
Equation 6 = 0}

which are then sorted with respect to the given term ordering.

Now consider the case when the last equation does not factor. Then the second-
to-last equation is inspected for terms where the last equation can be inserted.
If there are none the third-to-last equation is inspected, and so on. If the last
equation cannot be inserted into the system this procedure starts all over again
with the second-to-last equation. If this equation factors corresponding new sys-
tems are built, sorted with respect to the ordering given and the procedure starts
again with the last equation of each new system.

If the second-to-last equation does not factor the third-to-last equation is in-
spected if the second-to-last equation can be inserted and so on. If no insertions
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can be made at all the autoreduction procedure stops and returns all the systems
it has produced.

Suppose that at some stage the (—n)-th equation can be inserted in the (—m)-th
equation, with m > n. Since we are dealing with polynomially nonlinear systems
it may happen that the leading derivative of the (—n)-th equation has a prefac-
tor which incorporates the dependent variables or derivatives of them. Since we
don’t want to loose solutions we now have to consider different cases.

First there is the case where the prefactor is unequal to zero. Then the (—n)-th
equation can be inserted in the (—m)-th equation, but under the condition that
the prefactor is not equal to zero. This means that the simplification of the (—m)-
th equation with respect to the (—n)-th equation is only valid for this condition
not being zero. Therefore this condition has to be remembered somehow.

We do this by prepending the conditions which should be unequal to zero to the
system. The system is only valid if these conditions are satisfied. That means
that a ”case“ is built up of two parts. First the conditions which are unequal to
zero, and second the system under these conditions. Of course the factoring and
the case distinctions mentioned above have to take these conditions into account.
The conditions which have to be unequal to zero are canceled out for the case
distinctions which appear in the factoring and in the prefactors.

To illustrate this we again use the above example. Suppose this system has the
additional condition u # 0:

{{u # 0},
{Equation 1 =

Equation 2 =

Equation 3

2 _
BT Ug gy VU =

oo o o o

Equation 5 = 0,
Equation 6 = 0}}.

Like above the fourth equation factors. But since the system is only valid for
u # 0 there are only two new systems:

{{fu # 0},
{Equation 1 = 0
Equation 2 = 0
Equation 3 = 0,
Ug,z,y 0
Equation 5 = 0
Equation 6 = 0}}.
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and

{{fu # 0},
{Equation 1 =

Equation 2 =

Equation 3 =

vo=

o 0o o0 oo

Equation 5 = 0,
Equation 6 = 0}}.

The third system would contain a contradiction and is therefore left out.

Now consider again the case where a prefactor occurs in the (—n)-th equation.
Before checking if the whole prefactor is new or already appearing in the list of
the conditions unequal to zero the prefactor is factorized. If new prefactors occur
a case distinction is performed. There exists one case where the whole prefactor
is unequal to zero. Then the (—n)-th equation can be inserted in the (—m)-th
equation. On the other hand there are the cases where each factor of the prefactor
is equal to zero. Here the condition to be zero is appended to the system. This
new system is then sorted according to the term ordering and the new bunch of
systems enters again the autoreduction step.

As an example consider the system

{{u # 0},
{Equation 1 =

Equation 2 =

Equation 3 =

2
3T Ug gy "V U =

o o0 oo

BTYUVY Uy o + OTYVYUy o + Uy -V, = 0,
Equation 6 = 0}}.

The (—2)-nd equation can be inserted in the (—3)-rd, but only if the prefactor of
Uz . 1s unequal to zero. However this prefactor is a product of three terms: 3zy,
u + 2 and v,. The first prefactor is unequal to zero since the system has to be
true for all values of the independent variables. For the other two factors a case
distinction is performed. There is the case where u + 2 and v, are unequal to

zero, the case where v = —2 and the case where v, = 0:
{{fu # 0,
u+2 # 0,
/Uy 7é O}a

{Equation 1 0,



40 CHAPTER 3. THE CONCEPT OF INVOLUTIVITY

Equation 2 =

Equation 3 =

2 _
3T Ug gy V- U =

o oo o

BTYUVY Uy & + 6TYVyUz o + Uy -V, = O,
Equation 6 = 0}},

where the (—2)-nd equation is then inserted in the (—3)-rd one,

{{fu # 0},

{Equation 1 = 0

Equation 2 = 0

Equation 3 = 0

37Uy gy v u = 0,

3TYUVY Uy g + OTYVyUp g + Uy -V, = 0
Equation 6 = 0

u+2 = 0}}

and

H{u
u+2#

Uy

RIS

{Equation 1 =

o O O O O O

Equation 2

Equation 3 =

2 _
3T Ugzy "V U =

BTYUVY Uy o + OTYVYUz g + Uy Uy =

Equation 6 = 0,

v, = O0}}.

If all insertions of the (—n)-th equation into the (—m)-th equation are made it
is observed if the (—n)-th equation can be inserted in the (—n — 1)-th equation
and so on. Following this procedure all simplifications of the system with respect
to its own equations are made where different cases are considered for equations
which factorize or for the prefactors of equations which can be inserted into the
system.

An overview of the autoreduction procedure is given in figure 3.2.
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Figure 3.2: Flow chart of the autoreduction algorithm.
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3.4 Completion

If the system is reduced with respect to itself it enters the completion step. In
this step equations are constructed by differentiation with respect to certain inde-
pendent variables in such a way that all integrability conditions can be calculated
by cross-differentiation. To explain what is done in detail we need the notion of
multiplicative and non-multiplicative variables.

Consider some derivatives of the dependent variables with respect to the indepen-
dent variables. Now pick one of these terms. This term now involves derivatives
with respect to the independent variables. An independent variable of this deriva-
tion is called multiplicative when the order of derivation with respect to this
variable is equal or larger than the highest order of derivation of the subsystem
incorporating derivatives of the same dependent variable with respect to this
independent variable. If this is not the case the independent variable is non-
multiplicative.

To illustrate the notions of multiplicative and non-multiplicative variables con-
sider three dependent variables u, v and w with the ordering v > v > w and
the three independent variables z, y, z with z > y > z. For the following set of
derivatives the multiplicative variables are given:

Derivative multiplicative variable(s)

Ug o T,Y,z
Ug,~ Y,z
Uy,y Y,z
Uy z
v.’l: x’ y’ Z
Uy Y, 2
U, z
W, x,Y, 2

Coming back to the autoreduced system we want to construct all equations which
lead to the calculation of integrability conditions by cross-differentiation. This is
done in the following way.

We start with the last equation with respect to the term ordering. The lead-
ing term of this equation is differentiated with respect to its non-multiplicative
variables. If the resulting terms cannot be written as the derivation of the lead-
ing terms of other equations with respect to their multiplicative variables, the
equations is differentiated with respect to this non-multiplicative variable and is
appended to the system. If this is done for all non-multiplicative variables of
the leading term of the last equation with respect to the term ordering the same
procedure is applied to the second-to-last equation and so on.

If all equations have undergone this procedure a new system is formed. The above
mentioned procedure is again applied on this new system and so on until every
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differentiation of a leading term with respect to its non-multiplicative variables
can be expressed as derivatives of other leading terms of the other equations with
respect to their multiplicative variables.

3.5 Integrability Conditions

When the system under consideration is completed the next step is the calcula-
tion of the integrability conditions themselves. Here one equation after another
is picked and the leading derivative is differentiated with respect to its non-
multiplicative variables. If such a derivation can be expressed as a derivative of
another leading term with respect to its multiplicative variables those derivations
have equal leading terms and can be equated to form an integrability condition.
This is done for all equations in the system. After that all the integrability con-
ditions are reduced with respect to the system. That means that every equation
is inserted into the integrability conditions until no more simplifications occur.
The result of this insertion are reduced integrability conditions. If these are not
identically satisfied they are appended to the system and again enter the autore-
duction step and so on.

This loop structure of autoreduction, completion and integrability conditions is
performed over and over again until every integrability condition is satisfied iden-
tically when reducing it with respect to the system. The result of this loop are
systems whose integrability conditions do not lead to new information or reduc-
tions because of the system itself. Such a system is called an involutive system.

3.6 Notes

There are several implementations to turn a given system of coupled partial
differential equation to involutive form. There is a REDUCE-package of F'. Schwarz
[29] which transforms linear systems of partial differential equations to involutive
form. This implementation does not consider different cases for prefactors of
equations which are inserted into others. All prefactors are assumed to be unequal
to zero.

The REFAL-package of Topunov [28] and the MAPLE-package of Reid [32] transform
a linear system of coupled differential equations to involutive form (or standard
form as it is called in Reid) and at the end of the calculation give a list of
coefficients which are assumed to be nonzero throughout the calculation.

The MAPLE-package rif [38] also performs case distinctions when transforming
to a simpler form. It refers to Groebner-basis techniques and is built in MAPLE.
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Chapter 4

The Solution Procedure

As was said before, an involutive system is easier to solve than the original sys-
tem. So the next step towards solution of a system of partial differential equations
is a tool to solve partial differential equations. This tool uses simple heuristics
to solve different kinds of partial differential equations and to simplify or sepa-
rate them. In fact the tool used is an adaptation of MathLie’s PDESolve [24]
which additionally considers that equations can factorize and features a built-in
interface to couple to the involutive form procedure.

The solution procedure itself consists of four individual solution steps. These
steps solve monomial equations, try a direct and an indirect separation of par-
tial differential equations and try to solve pseudo-ordinary differential equations.
These four solution steps are arranged in a loop. The system of partial differen-
tial equations enters this loop over and over again until no more changes occur.
This loop structure is represented in figure 4.1. We will see that many of the
partial differential equations which appear in intermediate steps are solved with
this tool. In the following we want to describe the single steps of this solution
procedure in more detail. Note that before trying to solve each equation of the
system it is observed if this equation factorizes, that means if it can be rewritten
as a product. If this is the case this equation is not altered in the solution steps.

4.1 The Monomial Solver

The first heuristic used in this solution procedure solves monomial equations.
These are equations of the form

8i1+...+inf(x1’ L ,l.n)

. , =0. (4.1)
oxl"™ ... Qxnin
This sort of equations can be easily solved to give
n ip—1 .
flzh, ... 2™) = Z Z TN (A L R L) (4.2)
k=1 j=0
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The Heuristic Solver

Figure 4.1: The heuristic solution algorithm.
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If an equation is of the form (4.1) the dependent variable f is substituted into
the whole system and in the conditions unequal to zero as the right-hand side
of (4.2) and this solution is then appended as a rule to the system. The new
appearing functions c;j are further on treated as additional dependent variables.
The monomial solver is applied to every equation in the system, except the ones
that factorize.

4.2 Direct Separation

The next heuristic searches for equations which are real polynomials in an inde-
pendent variable. This means that no dependent variable which appears in this
equation depends on the polynomial variable, for example like

fo(@,y) + 2(f(2,y) + go(2,9)) + 2 (9(z,y) + ygy(z,y)) =0,

where f and g depend on z and y, but not on z. Since this equation has to be
true for all values of z it separates into the three equations

fy(xay) = 0,
f(z,y) + go(z,y) = 0,
9(z,y) +ygy(z,y) =

Thus each coefficient for the various powers of the variable which appears polyno-
mially is equal to zero. This simplification step, which is called direct separa-
tion or ”Polynomial To Coeflicients” in figure 4.1, then appends the coefficients
of the polynomial variable to the system.

If every equation has undergone this procedure it is checked if the system of par-
tial differential equations has changed. If this is the case the system together with
the conditions which have to be unequal to zero and possible rules from previous
solution steps reenter the monomial solver, since it can happen that monomial
equations appear because of this separation, like in the example above.

4.3 Indirect Separation

If the system has not changed in the direct separation step the system enters
the indirect separation. Again, if some equation factorizes it is not treated with
this procedure. The indirect separation searches for separations as a result of
differentiations. In figure 4.1 it appears as “Differentiator”. This is achieved in
the following way.

Say some equation involves an independent variable polynomially, like in the
direct separation, but additionally some of the dependent variables depend on
this independent variable. Let the highest exponent of this independent variable
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be k. Then this equation is differentiated k+ 1 times with respect to this variable
to reach a simplification. Take for example the equation

f(z,y,2) +y°g(@, 2) + y*h(z, 2) + yl(z, 2) + m(z, 2) = 0,

where f depends on z, y and z and g, h, [ and m only depend on z and z. In this
case the highest exponent of the polynomial variable y is three. So this equation
is differentiated four times with respect to y to give

[ vy = 0,

which is a monomial equation and is solved by the monomial solver and appended
to the system. So a simpler form of the equation is reached. This example shows
the importance of the (k + 1)-time differentiation. Additionally it is seen that
such operations only lead to reductions if the generated equations can be solved
by the solution algorithm, in this case the monomial solver.

4.4 Pseudo Ordinary Differential Equations

If every indirect separation, if possible, has been appended to the system it is
observed if anything has changed. If so, the new system reenters the monomial
solution step to take advantage of the simplifications. When the system does not
incorporate equations with polynomial dependence of a dependent variable the
system enters the solver for pseudo ordinary differential equations.

This procedure searches for partial differential equations where only differenti-
ations of a single dependent variable with respect to one independent variable
occurs. Such an equation is for example of the form

b(z',...,z") +a(x',..., ") fu(z',. .. 2") + (@', ... 2" fripi(z!, ..., 2") = 0.

Here only derivatives of f with respect to z¢ occur. Every equation which is of
such a form enters the standard Mathematica solver for differential equations,
DSolve. But before entering DSolve, the equation has to be rewritten as an
ordinary differential equation.

If DSolve is able to solve this equation it produces constants of integration.
These constants of integration do not depend upon any independent variables.
The coeflicients of the dependent variable and the constants of integration have to
be transformed to be functions of all of the other independent variables. In the ex-
ample above the constants of integration then depend on !, ..., z* 1,z ... 2",
If a solution can be found by DSolve it is inserted into the system, in the condi-
tions which have to be unequal to zero and in the solutions obtained so far. The
new appearing “constants” of integration are appended to the set of dependent
variables.



Chapter 5

Implementation Notes

As was already said above the French mathematicians Charles Riquier and Mau-
rice Janet already gave a recipe to calculate the involutive form of a system of
partial differential equations. This algorithm is the basis of todays implementa-
tions in many computer algebra systems. So the basic features of all involutive
packages are all the same. First the system is reduced with respect to itself, then
it is completed and the integrability conditions are calculated and reduced with
respect to the system. But this only provides the skeleton for the implementation
in a computer algebra system. The rest is up to the programmer.

One problem the programmer faces when trying to implement an involutive form
algorithm is that he cannot rely on the implementation methods of other authors,
simply because they are not published. If there are any descriptions at all, they
limit themselves to what has to be done when doing the calculations with pencil
and paper. Nothing is said how to check if some equation can be inserted into
another one, or how to insert it, when and how to do case distinctions and so on.
Todays implementations are merely black boxes.

In this chapter we give an overview of how the involutive algorithm is imple-
mented, how a system of partial differential equations is represented in this im-
plementation and the operations which act upon this representation.

The reader may wonder what this is all about. Mathematica already offers a
front end where mathematical objects are represented in a very intuitive way,
very close to mathematics done with pencil and paper. But there are some prob-
lems concerning the speed and effectiveness with this representation. We will
see that some operations, such as checking if some equation can be inserted in
another one, is not very simple to implement using the standard representation of
Mathematica. Note that this is not only the problem of Mathematica, any com-
puter algebra system with a wide variety of applications deals with these kind of
problems.

But as we will see there are ways to get around these difficulties. We concen-
trated upon the strengths of Mathematica by mainly using representations and
operations which are relatively fast, such as operations on lists. To do this a

49
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whole calculus had to be implemented using lists. This calculus, the discrete
involutive calculus, includes addition of terms and equations, simplification
of terms and equations, the multiplication of equations with terms, how to find
prefactors of terms, the operation of derivation and so on.

5.1 Representing Derivatives

Consider a derivative like

ua,mlil yerny XN (51)
which incorporates some dependent variable, here u,, and the independent vari-
ables z!,...,z". What is the important information in this construction? Well,

the derivative can be reconstructed if the dependent variable which appears in
(5.1) is known and how often this dependent variable is differentiated with respect
to each independent variable, i. e. the (n + 1)-tuple

Ugyl1y---3lpn

where i; corresponds to z7, so the ordering of the i;’s is important. Keeping in
mind that there may be several dependent variables and a given ordering of the
dependent variables and the independent variables we need only the position of
U, in the list of the m dependent variables, since the ordering of the dependent
and the independent variables is fixed. So all that is needed to recover (5.1) is

£0,...,1,...,0,i1,...,in},

where the 1 is on the o-th position.

But the term ordering used in the involutive form algorithm also features the
total order of differentiation, see section 3.1. This additional number is the first
criterion when ordering derivatives. The second criterion is the order of the
dependent variables and the third the order of the independent variables. So we
have to rewrite the above construction to

{iv4 - +0n,0,...,1,...,0,41,...in}.

But we are not finished yet. Keeping in mind that we deal with polynomially
nonlinear systems of partial differential equations we somehow have to express
the power of the derivative as an additional index. We append this index to the
list above and finally receive the unique representation of (5.1):

{ir+ - 4105,0,...,1,...,0,41,...,4n, 1}.

Using this method we can express all derivatives as lists of such a form. As an
example consider the derivatives u, 4 ,, vg’ and u itself where u and v are the only
dependent variables and x and y the independent ones. The dependent variables
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are ordered such that v > v and the independent ones as x > y. These derivatives
are then expressed as

{3,1,0,2,1,1},
{1,0,1,0,1,3},
{0,1,0,0,0,1}

5.2 Terms, Equations and Systems

Since terms are built up from derivatives we simply list the single derivatives
to form a term. Hereby we distinguish between “real” derivatives, which are
derivatives containing dependent variables, and prefactors, such as numbers or the
set of independent variables. These prefactors are appended to the derivatives.
The whole term is then ordered according to the term ordering, i. e. derivatives
which are greater with respect to the term ordering precede those who are lower.
Then a term like 5w2yum’m,yvgu for the same ordering as above looks like

{{3,1,0,2,1,1},{1,0,1,0,1,3},{0,1,0,0,0,1}, 52%y}

and a term with no dependent variable at all, an inhomogeneity, e.g. 37z is
represented by
{37zx}.

To represent an equation we transform it to the form
left-hand-side — right-hand-side = 0,

list the single terms and sort them with respect to the term ordering. The
equation
51’y uw,w,yvg’ u=3Tx

is then represented by
{{{3,1,0,2,1,1},{1,0,1,0,1,3},{0,1,0,0,0, 1}, 52y}, {37z} }.

Finally, a system of polynomially nonlinear partial differential equations with
conditions unequal to zero is just a list of these conditions and the system. This
system itself is just a list of the equations.

These are all the functions needed to transform a system of partial differential
equations into the new representation. Before this is done it is observed if the
system is polynomially nonlinear in the dependent variables which appear in the
system itself, not in the conditions. This is very important, because later on
in the solution step it may happen that dependent variables appear no more
polynomially nonlinear, but ”more” nonlinear, for example in some exponent.

If the system is not polynomially nonlinear in the dependent variables appearing
in the system it does not enter the involutive form algorithm at all.
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5.3 Multiplication of Terms, Collecting Deriva-
tives and Terms

During some steps in the involutive form algorithm it happens that equations are
multiplied with another derivative or term. This is done by appending the term
which is multiplied with the multiplication factor. Therefore a function which
collects derivatives which only differ in the exponential and a function which
collects terms which only differ in their prefactors is needed.

If two derivatives in a single term only differ by their exponentials they are
replaced by the same derivative, but with an exponential which is the sum of the
single exponentials. Then the result is sorted with respect to the term ordering.
Take for example the term

{{2,1,0,2,0,1},{1,0,1,0,1,2},3,{1,0,1,0,1, 1}, 2}

which is the result of multiplying {{2,1,0,2,0,1},{1,0,1,0,1,2},3} with the
term {{1,0,1,0,1,1},2}. The second and the fourth derivative only differ by
the exponential so they are replaced by {1,0,1,0,1,3}. Then there are the two
number 3 and 2. They are multiplied to 6. So the result of this collection of
derivatives is

{{2,1,0,2,0,1},{1,0,1,0,1,3},6}.

In a similar way the collection of terms which only differ by the prefactor works.
Here the prefactors are replaced by the sum of the single prefactors and the
resulting equation is sorted with respect to the term ordering.

Note that the sum is of the prefactors is simplified with the Mathematica-function
Simplify. This is done because it is the only Mathematica-function which tests
if the result is zero. If it is zero Simplify is very fast. But if the result is not
zero and involves many fractions or is threaded very deep it may take some time
and/or memory to get the result. This is a potential bottle-neck in this involutive
form algorithm.

5.4 Derivations

Another basic operation when inserting some equations into others is differen-
tiation. But using the list notation this operation is very simple and very fast.
Simply add a corresponding “derivative list” to the expression which is to be dif-
ferentiated. Take for example u,, which is represented by {2,1,0,1,1,1} when
dealing with the dependent and independent variables appearing in the above
examples. Differentiation with respect to x results in raising the first and the
fourth number in this list by one or by adding a derivative to the list expression
number by number:

Opllpy = Uz zy = {1,0,0,1,0,0} +{2,1,0,1,1,1} = {3,1,0,2,1, 1}.
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Of course the derivation of products and higher derivations with respect to dif-
ferent independent variables have to be taken into account. The derivation of
products is implemented analogous to the product rule. Higher derivatives with
respect to different independent variables are handled as follows. To use the speed
and effectiveness of the derivative list we first separate a higher order derivative
list into single derivative lists. Each derivative list is then applied to the expres-
sion to be differentiated one after another. Take for example the derivation 93 ,
whose derivative list is given by {3,0,0,2,1,0}. This derivative list is separated
into three simple derivative lists:

{3,0,0,2,1,0} = {{1,0,0,1,0,0},{1,0,0,1,0,0},{1,0,0,0,1,0} }.

Each of these derivative lists is then added to the list representation of the ex-
pression to be differentiated, eventually by using the product rule.

5.5 Inserting Equations into other Equations

The list representation presented above is also useful when observing if an equa-
tion can be inserted into another one. To do this we take the leading deriva-
tive of the equation which is to be inserted. From each list representation of
a derivative of the equation in which to insert the other equation the lead-
ing derivative is subtracted. If a negative number occurs in the difference the
leading derivative cannot be inserted. If all numbers stay positive the leading
derivative can be inserted in this derivative of the equation. Take for exam-
ple the term 5z%yu? , vdu and the leading derivative u,. The corresponding
list representations are {{3,1,0,2,1,2},{1,0,1,0,1,3},{0,1,0,0,0, 1}, 5z%} and
{1,1,0,1,0,1}. Subtracting the last from the former termwise we get

{{27 07 07 1) 17 1}7 {07 _]-7 Oa _1a 17 2}7 {_17 07 Oa _1a 07 0}}

The second and the third list contain negative numbers so the leading derivative
cannot be inserted. But in the first list only positive numbers occur, so the
leading derivative can be inserted.

Note that the difference already contains the operator which is necessary to insert
the leading derivative into the first list. The first number tells us that the leading
derivative has to be differentiated two times. The fourth and the fifth list entries
show that we have to differentiate once with respect to  and once with respect
to y. The last entry shows that by inserting the leading derivative one time the
remaining power of the first derivative is one. This information is used to insert
the equation with the leading derivative into the equation with the above term.
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5.6 Calling the Involutive Solution Procedure
and Interpreting the Results

In the previous chapters we talked about the algorithms which are used and how
they are implemented in Mathematica. This section features the interpretation of
the results of the involutive solution procedure and the calling of its implemented
counterpart InvolutePDESolve.

The involutive solution/reduction algorithm needs three input parameters. First
the systems of differential equations with the corresponding conditions is needed.
The other two things left to start the evaluation are the dependent and indepen-
dent variables. Here it is important to know which dependent variable depends
on which independent variable, because it may happen that a dependent variable
is independent of some or even all independent variables. Therefore it is manda-
tory that the dependent variables in the system of differential equations is given
with all the variables on which it depends.

In Mathematica dependencies are written with square brackets. Take for example
the dependent variable u which depends on z, y, z and ¢, the dependent variable
v which depends only on ¢ and the dependent variable K which does not depend
on any of these independent variables, so actually it is a constant. For the func-
tion InvolutePDESolve these dependent variables in the system of differential
equations and its conditions have to be written as

ulz,y, z,t], wv[t] and K].

To calculate the solution of the determining equations (2.22) for the nonlinear
diffusion equation (7.1) with the condition K(u) # 0 for example, the user has
to enter:

InvolutePDESolve[{{{K][u]}, dets}}, {7, &, n, K}, {z,t,u}],

where dets stands for the determining system, which can be calculated for exam-
ple with the MathLie-function DeterminingEquations.

The result of this calculation is given by a list of different cases. Hereby each
list is again given by two lists, the first for the conditions and solutions obtained
so far and the second for the rest of the equations which could not be solved.
Note that the result may contain expressions with the head free and a unique
numbering involving the $-sign which is used to designate the new constants or
functions introduced by the heuristic solver, for example free[$2](].

To make the result of this call more readable to the unexperienced user the func-
tion FormatOutput can be used. The result of this function applied to one
single case involves three headers named Solutions, Conditions and FEquations,
each followed by the results obtained.
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5.7 Notes

We already saw that the new representation of derivatives, terms and equations
as lists containing their basic information was very useful for multiplications,
derivations and for inserting equations into other ones. All these operations
occur in the autoreduction step which inserts and simplifies a system of partial
differential equations with respect to itself while taking care of possible case
distinctions which may occur during the calculations.

But the list representation is also useful in the other two major steps towards an
involutive form, the completion and the integrability conditions. All the necessary
steps in the calculation of the involutive form, such as the calculation of the
multiplicative and non-multiplicative variables and with them the computation
of the integrability conditions are carried out in the list representation. This is
done because this representation is very effective and fast.
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Chapter 6

Involutive Reductions

We already mentioned in section 2.8 that we use another method to find invariant
solutions. This method uses an involutive algorithm to simplify a system of
partial differential equations coupled with a heuristic solver to solve or reduce
the system. Therefore we call it the method of involutive reductions. The
system under consideration is built up from the equation(s) which is/are to be
solved and their invariant surface conditions. In this way the same procedure
which is able to solve the system of determining equations is also capable of
solving or reducing a differential equation when its symmetries are given. The
problem is indeed the same whether considering the determining system or the
coupled system of differential equation and invariant surface condition. It is all
about case distinction and solution of a coupled system of partial differential
equations.

In this chapter we illustrate the algorithm on several simple examples. We will
see that the solutions of these examples is achieved by the touch of a button.

6.1 Methodology Applied to the Diffusion Equa-
tion

The standard diffusion equation in 1+1 dimensions is given by
Up = Uy g, (6.1)

where lower indices represent partial differentiations with respect to time ¢ and
spatial coordinate z. In the following we discuss the invariance of (6.1) under
two infinitesimal transformations leading to two different kinds of solutions.
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6.1.1 Error-Function Solution

The standard diffusion equation allows among other transformations a scaling
with the infinitesimal generator

X = a:@a, + 2t8t,

so a function v = f(z,t) is invariant under this transformation if it satisfies the
first order partial differential equation

TUg + 2tu; = 0, (6.2)

which is nothing but the invariant surface condition. To reduce equation (6.1)
with the condition (6.2) the coupled system first enters the involutive simplifier.
Calling our involutive reduction method on the combined system (6.1,6.2) we get
the same result as is achieved by the direct method, but completely automatic
and in a direct way. When tracing the intermediate results to take a look inside
the “black box”, we see that the involution algorithm reduces (6.1) with (6.2).
First the involutive simplifier is called. Since the integrability conditions of the
resulting system are all satisfied the involutive algorithm ends with the system

TUg + 2tUz, = 0,

(6.3)
Tuy + 2tu; = 0.

The following solution step first tries to solve monomial equations, that means
equations consisting of just one term. Since (6.3) does not contain such equations
the solution algorithm enters the next step. If an equation is a polynomial in one
variable the coefficients of the various powers of this variable are identically zero.
Again the system does not change, just like in the next step, which differentiates
equations with respect to variables appearing polynomially.

Next, the system enters a solver for ordinary differential equations. Hereby, the
first equation of (6.3) has the solution

u= fylt) + Vatert (21\/%) 0
with the new arbitrary functions f(t) and f3(t). Inserting this in (6.3), we get
Vrtert (2%/%) Fa(t) + 2tv/mt exf (2%%) A +2AE =0  (6.4)

as the only equation which has to be fulfilled. With this the solver ends and we
again enter the involutive part of the algorithm. Since f; and f3 only depend on ¢
differentiation with respect to x and back-insertion of the result in (6.4) delivers

f3(t) = 0. (6.5)
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The reduction step inserts this in the system. We get

fa(t) + 2t f5(t) = 0.

With these results the involutive part ends. Entering the solution algorithm the
monomial solver integrates (6.5), so f3 is a constant. The ODE-solver then gives

fa(t) = %

Combining these results the algorithm InvolutivePDESolve ends with

X
=C1+C fl — ).
u 1 2\/77'('61' (2\/7?)

6.1.2 Airy Solution

The standard diffusion equation is also invariant under the infinitesimal generator
X = 0y — 2t0, + zu0,.

Looking for invariant solutions under this transformation, we get the additional
equation
zu + 2tu, — ug = 0. (6.6)

Combining equations (6.1,6.6) and following the steps in which changes happen
we call the involutive solver.
In the first part of the involutive step equation (6.1) is reduced by (6.6) to

—zU — 28Uy + Uz z-

The following steps, the computation and reduction of the integrability conditions
do not change anything. So the involutive procedure delivers the system

—zu — 2tUy + Uz, = O, (6.7)
—zu — 2tuy +u; = 0.

Entering the solution step the algorithm first looks for monomial equations. Since
there are none the program checks for polynomial variables. Again the system
does not change under this operation as well as under a differentiation. Next
(6.7) enters the solver for ordinary differential equations. In this step the first
equation is solved to give

u = e®(Ai(z + t?) fo(t) + Bi(z + t2) f3(t))

with new free functions f, and f;. Hereby Ai and Bi denote Airy-functions [57].
Inserting this in (6.7) we get an identity and the relation

—Ai(z+t?) f5(t) = Bi(z+1%) f3(t) +2t° Ai(z+1%) fo (t) +2t*Bi(z+1%) f3(t) = 0. (6.8)
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Since f> and f3 only depend on ¢, differentiation of this condition with respect to
z and inserting this in (6.8) delivers the following ODEs:

ft) =20 H(t) = 0,
f5(0) = 26°f3(t) = 0,

with which the involutive part ends. These two equations are then integrated by
the ad-hoc solver to

242
0163 R

f3(t) = Ches.

o

Ve
~

N—
I

With these solutions the involutive solver ends with the invariant solution
u = e3" T (C1Ai(z + £2) + CBi(z + 7).

Again this solution is obtained completely automatic.

6.2 A Nonlinear Diffusion Equation
As a second example we consider the nonlinear diffusion equation
uy = u? + Uy g (6.9)
This equation is invariant under the infinitesimal generator
X = z0, + 2ud,,
meaning that the corresponding invariant surface condition
2u — zu, =0 (6.10)

has to be satisfied. The method of invariants just works the same way as for the
standard diffusion equation. We just state the result:

(6.11)

where C' is a constant.

To treat the problem of finding invariant solutions with the involutive method we
again discuss those steps in which important changes occur. First the combined
system (6.9,6.10) enters the involution step. The first part of the involutive
algorithm reduces the system with itself. In our example (6.10) is inserted in
(6.9) to give
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—2u—+zu, = 0,

6.12
—6u? + 2%, = 0. ( )

The following completion step does not change anything which is also true for
the computation and reduction of the integrability conditions. So the involutive
procedure ends with (6.12).

Now the system enters the heuristic solver. The first step of the solver searches
for monomial equations. Since there are none and also no simplifications are
possible the system enters the differentiator. Hereby the first equation of (6.12)
is differentiated two times with respect to x leading to the equation

TUgz e = 0.
The following monomial solver provides

u= fi(t) + zfo(t) + 2* f3(t).

Inserting this in (6.12) gives

zfa(t) + 22°fa(t) — 2fa(t) — 22 f3(t) — 22°fa(t) = O,
—6(fa(t) + zfa(t) + 2 fa(1))* + 22 f5(8) + 2° f(t) + 2 fi(t) = O.

Since each equation has to be satisfied for all values of x the polynomial simplifier
delivers

fa(t

fs(t

—6f3(t)° — 12f2(t) fa(t) + fa(t
—12f3(t) fa(t) + fa(t

—64(t)% + fa(t

c oo oo

)
)
) =
)
)

which results in
u = fi(t)z?, (6.13)

where f; has to solve the ODE
—6£4(t)? + fi() = 0. (6.14)

The single remaining condition (6.14) now enters the solver for ordinary differ-
ential equations. The result is

1

1)=& e
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Inserting this in (6.13) we get one solution of (6.9):

$2

YE o6t

With this result the involutive solver stops. This is exactly the same solution as
(6.11) derived by the method of invariants, but in a much more convenient way.
It is done automatically!

These examples show that the involutive reduction method is able to solve simple
differential equations when a symmetry transformation is given. In the next
chapters we use the involutive reduction method to physical applications to see
that the case distinction and solution capabilities also provide solutions in these
circumstances.



Chapter 7

Involutive Reductions and
Solutions of a Nonlinear
Diffusion Equation

In this chapter we deal with the 14+1 dimensional nonlinear diffusion equation
u = (K(u) ug)e (7.1)

for a single function u of the two independent variables x and ¢ representing space
and time respectively. We are going to examine equation (7.1) for an arbitrary
diffusivity K (u). We also identify different kinds of functions of K (u) in a group
classification problem.

This class of equations has many applications, among others it is used in plasma
physics [43], in describing convectionless transport of fluids in homogeneous, non-
deformable porous media [44] or in dissipative nonlinear media [45]. See also the
applications discussed in [46, 47].

Exact solutions of (7.1) with K = const. were found in [13]. In [48] exact sep-
arable solutions are found for this class of equations with an additional source
term. In [43] a symmetry classification is given also including a source term. In
[49] some functional forms of exact solutions of equation (7.1) with K = u~*/3
and u~%/3 are derived. In [45] an overview of a quasilinear heat equation with a
source is given. In [50] appears a group classification including optimal systems
of (7.1).

The classification and some solutions of this equation using symmetry analysis
were presented in [40, 51], or [44, 45, 48, 52] for related equations. All the solu-
tions known were found by using a single element of the symmetry algebra or the
optimal system of the infinitesimal transformations. In contrast, we searched for
invariant solutions under the full generator of the symmetry group in connection
with an involutive procedure. Applying this method to (7.1) we were able to find
solutions which depend on up to six group constants appearing in the generator
of the group.
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7.1 Classification with Respect to the Diffusiv-
ity

Equivalence transformations are used in [45, 50, 51] to approach the group clas-
sification problem of equation (7.1). The problem with this method is the use of
optimal systems of subalgebras. Their computation can be quite difficult. Also,
discrete symmetry groups have to be taken into account to obtain a fully reduced
optimal system.

Another lack of this method are the results obtained. They incorporate only
simple representatives of classes of functions. For example we will see below that

K(u) = C1(Cy + UC3)% appears among the classified diffusivities. This diffu-
sivity is clearly more general than its analogue K(u) = u°, which is obtained by
equivalence transformations.

We resolve these difficulties by applying the involutive reduction method. With
this procedure we performed a symmetry analysis of (7.1). Our examinations are
focused on point symmetries. We resolved the following cases from the classifi-
cation problem concerning the diffusivity K:

e K arbitrary:

ga: = Cl + $02,
§t == Cg + 2t02,
n =0

e K = const.

ga: = Cl + .’L’(Cg + tC4) + tC5,
& = Cs+t(2Cy + tCy),

_ C4 .’B(C4$+205)
n = f(m,t)+u<—2t— e +Cﬁ),

where f has to satisfy the equation

ft - Kf:z:,m =0.

Note that f represents the linear form of equation (7.1) with K = const.

Ca
o K — 01(02 + u03)073

€ = Cg+ 3(04 + C),

& = Cp+1tCs,
n = 02+U/C3
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(] K s 601(u76’2)

g = 03+g(0104+c6),

{t = C5+tCg,
n = C,

ga: = 03 + .’13'(04 + .7305),
2
& = Cg+2t(Cy+ 507),
n = (u - CQ)(—3$C5 + 07)

where the C;’s denote the arbitrary group constants and &%, £ and 7 are the
infinitesimals for the independent variables z, t and the dependent variable .
We note that we get the same classification as in [40]. But in contrast to [40] we
treat each appearing constant as a group constant. This means that the above
symmetries are not longer built up from linear independent simpler symmetries,
namely the coefficients of the C;’s. Therefore we do not split the symmetries to
form an algebra and therefore cannot calculate equivalence transformations as is
done in [51].

7.2 Reductions and Solutions

In this section we construct exact solutions and reductions for the cases in section
7.1. We insert each symmetry into the coupled system of (7.1) and its invariant
surface condition

Uy — (K(u) um)z = 0, (7_2)
n—Euy— &y = 0

and use the method explained in the previous section to reduce the resulting cou-

pled system of partial differential equations. For arbitrary K this procedure does

not work because the functional form of u is not given. This case is not considered

here.
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K=const.

C,=0, C,=0, C,=0, C4=0  C,=0, C;=0, C,=0, Cz=0  C,=0, C4=0,C4=0  C,=0, C,=0,C,=0  C,=C2/C, c,2CiC,

Solution No. 5 Solution No. 10 Solution No. 11 Solution No. 12 Solution No. 1 Solution No. 2

7.2.1 K = const.

The most general case when K = const. is given by the coupled system
—Kug, +us = 0,
—(Cl + l’(CQ + tC4) + tC5)’U,z—
(Cs + (20, + tCy) yu+ (7.3)
C z(Caz+2C5) _
u(—Gt— =220 4 o) = .
The function f mentioned in section 7.1 for this case is not considered here
because it represents the linearity of the diffusion equation.
Applying the involutive reduction procedure to (7.3) we get the following cases:

We will show how the results of the involutive reduction procedure lead to the
mentioned solutions.

CaseClzo, CQZO, 04:0, 05:0

Besides the conditions for the C;’s the involutive solver delivered

_=v/Cs_ 2+/C6_
u(z,t) = fs(t)e YVEVGs + fo(t)eVEVCs (7.4)
where the functions fs and fg have to satisfy the condition
20./Cq 22./Cq

—Cs fs(t) — eV Cg fo(t) + Cafg(t) + eVxv% Cs fy(t) = 0.

Since fs and fg9 only depend on ¢ the above condition simplifies to the following
two equations:

—Csfs(t) + Csfg(t) = 0,
—Csfot) + Csfy(t) = 0.

These are easily solved:

%
fg(t) = A€C3,
folt) = Be.

Inserting this into equation (7.4) we get the solution no. 5 in table 1:
u(z,t) = Ac S VEE® L Be ’%?w, (7.5)

where here and in the following A and B represent constants of integration. Note
that in [13] the special case A = 0 occurs (see below).
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CaSGCQZO, 0320, 0420, 05:0

This case is almost identical to the case above. The only difference is that here
Cj is identically zero, and not C;. The reduction delivers

u(e,1) = fy(t)e

with the condition
KCqfs(t) — Cifg(t) =0
The solution to this equation is

2
Kcﬁt

fg(t) = Ae 012

and so the solution for u reads (no. 10 in table 1)
u(z,t) =

Case C4,=0,Cs =0, Cg=0

Ae %% (2C1+KCét)

This choice leads to three solutions. The first one has to satisfy the additional
conditions Cy = 0, Cy = 0 and C3 = 0. The only remaining equation is the diffu-
sion equation itself. This corresponds to the case where there are no symmetries
at all.

The second case solves the diffusion equation for the additional conditions Cy = 0
and C3 = 0. The resulting solution is a constant. In the third case we get

K 2 I
u(z,t) = 4| T (C3 +20s) el erf Cy +z2C, A
262 2K C5(Cs + 2105)

+f2 (t)a
with the additional condition
Cl + $Cg

%
/27 TKC(C5733) e K(Cs + 2tCo)? f1(t
f ARG, 5 210y (K(Cs 2)"fi(t)

+(KCo(C3 + 2tCh) — C7) f1(t)) + 2/ K Ca(Cs + 2tC)*2 f3(t) = 0.
Since this condition has to be true for all z the equation separates into
(K(C3+ 2tCy)% f1(t) + (KCy(C3 + 2tCy) — C3) f1(t)) = 0
ft) = 0.

Solving these equations the solution of the diffusion equation in this case reads
(no. 11 table 1)

u(z,t) :A+BU erf C1 + 26
V2K Co(Cs + 2tCy)
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Hereby A and B are two constants of integration. Comparing this with the
solution u = Cj erf(z/2v/t) + C, given in [13] we see that our solution implies
three more nontrivial constants.

Case CQZO, 03:0, C4:0
The involutive solver delivered besides the conditions for Cs, C3 and Cj the

reduction
z(xCs—4KCg)

u(z,t) = f(t)e <o, (7.6)
where f has to satisfy
K((—C1C5 —tC2 + 2KC2) f(t) — 2(Cy + tCs)* f'(t) = 0.

This equation is now solved and the result inserted in (7.6) to give the well-known
Gaussian solution (no. 12 table 1)

A _ (2C5-2KC4)?
U(CE, t) = WG 4K C5(C1+tC5) |
v01 +1C5

02
Case C; = C_?;
The calculations for this case requires a lot of space. So we simply mention the
results here (solution no. 1 table 1):

_ £a(z,t)
e 12KC23(t02+03)3

VtCy + Cs

with the Airy functions A7 and Bi [57] and the abbreviations

51 (.’IT, t) = Cg(cl + tC5)2 + 2x (tCQ + 03) (0102 —_ 0305)
+2K (tCy + C3)? (Cy + 2Cs)

u(z,t) = (A~ Ai(&s(2,t)) + B - Bi(&3(x, 1)),

&(z,t) = 3(tCy + Cy)? (032052+ (2Cy? + C3C5)*+

2K Cy2Cs (Cy + 2C5)) + 2C5%(C1Cy — C3C5)° +
6C;3 (tCy + C3) (C1C2 — C3C5) (zC° + C3Cs)

and W
o K503§€1($,t)

23 (tC; + C3)*(C1Cs — C5C5)*
This solution is new compared to [13, 39, 51], where (3 is given by (3 = = + t?,
the square-root does not appear and the argument of the exponential function
reads zt + 3t°.

63(.’17, t)
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02
Case Cs # &

Again the calculations are rather messy and we state only the results (solution
no. 2 table 1):

€3(z,t)

K?e % ,t ~ 3 ~ 3
U(.Z’,t) = = 3 glf‘r 5) <A lFl <057 5,52(1:,15)) +BU <057 5752($at)>)
264 (1) (K?CQ)
with the abbreviations

51(.%, t) = 0102 — 0305 + iL'(CQQ — 0304) + t(0104 — 0305),

_ C~'3§1(~’1’3a t)2
264(t)C3

52($7t)

tC 2046 (,t) (Cz +tCi+ K 6‘3) &i(z,t)°
C3 C3 £4(t)C2
Ca+ 10
(=C») V-G
&4(t) = 2tCy + Cs + t2Cy,
C = —C’Cy + 2C105C5 — C305” + 2K (Co® — C3C4) (C2 + 2Cs)
02 = 022 — C3C4,

. | Cy
03 = ﬁa

C, = C,Cy — CyCs

53(1', t)

+ arctan(

3
2

and finally .

- C3(Cy +6K*C?)

Cs = = .

8C?2

We notice that the hypergeometric functions reduce to other special functions if
the parameters are chosen appropriately. For example, the above solution incor-
porates Laguerre-Polynomials, Weber-Functions or Hermite-Polynomials for ; F}
or Spherical Bessel-Functions, Cunningham-Functions or Bateman-Functions for
U. A complete overview of the special cases of the hypergeometric functions is
found in [57].
Note that our solution also reduces to the ones known when choosing the con-
stants appropriately. To get the solution in [13, 39, 51] we have to choose C5 = —%
so that the confluent hypergeometric functions reduce to the parabolic cylinder
functions cited therein.




70 CHAPTER 7. NONLINEAR DIFFUSION

C,/C
K=C, (C,+uc, ) * 72
C,=0, C4=0, C,=0 C,=0, C5=0, C4=0 Cc,=0 C,=0 C,=-Cq C,#-Cq C;=0, C4=0
Solution No. 6 Solution No. 7 Solution No. 3 Reduction No. 13 Reduction No. 14 Reduction No. 15 Solution No. 21

7.2.2 K= 01(02 + u03)g_§

Inserting the symmetries for this kind of diffusivity in (7.2) we arrive at

- Kpuy — Kug, =

202 + 203 - 2(05 + th)ut — (207 + ZL'(C4 + C’(;))’LLm
(Cg + C3U)Kz. — KC4’LLm =
(Cz + ’LLC3)Kt - KC4’LLt =

(1)

Y

o O O O

Y

where we have appended the differential equation for K to the system. The
automatic solution procedure of (7.7) ends with twelve cases. Four of them have
the result that u is a constant. We don’t list them here. The other reductions
lead to the following classification:

Case C7;=0,Cy,=0,Cg=0

For this choice of the constants the diffusivity K is also constant. Like in the
case where K is a constant initially, we get a partial solution with additional free

functions:
u=——2+ fi(t)e VEG® 4 fy(t)e VECS

Cs

with the condition
C C
~Cailt) - &V Cupe) + Ca (10 + V1)) =
The solution is given by (no. 6 table 1)

u(m’t) = Ae%gt—i_\/ C—i%a: -+ Be%_\/ C_isfx — @

Cs

This solution is up to changes of constants identical to (7.5).

CaseC'4:0, 0520, 06:0

Here the involutive reduction arrives at
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where f has to satisfy the equation

KC3f - Cif'(t) = 0.
Solving this we get
G
Cs’

where again A is a constant of integration. This solution is found in table 1 where
it has the number 7.

C
u(z, t) = Aetr KO0 _

Case C;, =0
In this case no partial solution is obtained. The reduction stops at
—202 — 2C’3u + (.’L’Cﬁ + 207)’11@ + 2(05 + tCG)Ut = 0,
2K02(203 - 06) + 2KC3(203 - Cﬁ)u—
(.’L'ch + 2K(4C3 - 306)(05 + tCe) + 4.’1,‘0607 + 4C’$)ut
+4K(C5 + tCG)zut,t = 0.

Solving the first equation leads to

C3 2
u:(csﬂcﬁ)gﬁf( C’7+tC’6> Cy

Co\/Cs +1Cs)  C5'
Inserting this in the second equation we get an equation for f:

—2f(€)Cs + CsCf'(C) + 2K f7(() =0

2C7+zC, : : :
where ( stands for cm/ﬁ This equation has the solution

_ Cy 1 Cg? 1 C3 1 Cg?
f(C)_A1F1< 66,5, 4K +BC1F1 5 aaia AK 3

where 1 F} is the confluent hypergeometric function [57]. Combining both results
the solution to the diffusion equation is given by (no. 3 table 1)

C 2 2
=3 03 1 C 1 Cg 3 C CQ
— (% [ AF [ =22 = 2 B F =222 2 52 )
wet) =G ( ! 1( Co’ 2’ 4K>+<2 1 1(2 Cs' 2’ 4K)> Cs

with the abbreviations

G = Cs + tCs,
<_ . 207 + .Z'CG
T Ge/G

and the two constants A and B. Again this result is more general than the ones in
[13, 39, 51] and reduces to them if the constants are chosen in such a way that the
confluent hypergeometric functions reduce to the parabolic cylinder functions.
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Case C7; =0
For this case the involutive solver ends with
C. C3
u = ——=24(Cs+1tCe)% fi(z),
Cs
fa(z)
Cs + tCs .

Hereby, fi(x) and fs(z) are arbitrary functions which are coupled according to

a= fi(z)” fa(z)"

where a is a constant and f>(z) has to satisfy the condition
Csf3(2)* — Cg fo(@) — Cofa(2) f5 (z) = 0.

This equation has the implicit solution

20D g (cl, S1+G C(fz(a:))> -
V-4% @& +2p@)08

1—((B)
_A%GB +2BC?

2B

2 Fy (Cl, %; 1+ (s C(B)> —x

with the hypergeometric function oF [57], the constants A, B and the abbrevi-
ations

1 2C.
AT R
C(h) = T
and
6= o
Y7 ucs — 20

This solution is listed as no. 13 in table 2.

Case Cy = —Cs

In this case the involutive solver ends with four partial differential equations
where K and u occur. Three of them are coupled, but the fourth is a first order
partial differential equation just involving K:

2KCg¢ + 2CK, + 2(05 + tCe)Kt =0.
This equation is solved to give

f (x — g—; log (Cs + tC6))
Cs +tCg
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Inserting this partial solution into the other equations we arrive at one equation
which just involves the arbitrary function f. It reads (reduction no. 14 table 2)

CoCrf'(€) — C5f'(Q)* + F(C)(C§ + Csf"(¢)) = 0.

We were not able to solve this equation in general. So in this case no solution is
obtained, just a reduction. This is also true for the case when C; # —Cj, as is
seen below.

Case Cy # —Cj

Like above we arrive at

C4+Cs

K=(C +t0)5—‘éf<(c +tCg)™ 06 (az+ 207 ))
5 6 5 6 C4+06

and an ordinary differential equation which we were not able to solve in the
general case:

(Ca(Ca+ Co) f'(Q) +2C31'(¢)* + F(O)(=2CF + 2C4f"(C)) = 0.

So again only a reduction was possible (no. 15 table 2).

Case C5=0,Cs =0

Besides this form of the constants the involutive reduction procedure delivered
the partial solutions

C 2C
u = —52 + f1(t)(zCy + 2C7) @
3

K = fo(t)(zCy+2C7)%
The functions f;(t) and f(t) have to satisfy the conditions
2C3(2Cs + Co) (1) o(t) — f1(t) = O,
204(203 + C4)f2(t)2 — fé(t) = 0.

Solving the second equation and substituting the result in the first equation
delivers

1
f2(t) T A-— 2t04(203 + 04),

fi(t) = B(A—2tC4(2C5 + Cy))

_C3
Cy

Inserting this in the relation for the diffusivity we obtain

(1'04 + 2C7)2
T A—2tC4(2C5 + Ca)
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and the solution (no. 21 table 3)

u(z,t) = —%-ﬁ—B(

C3
(.’1104 + 207)2 C4
A+ 2tCy(2C; + Cy)

This solution contains besides the integration constants A and B four group
parameters which are involved in the symmetry analysis. This solution reduces
to the one in [51] if the C; are chosen appropriately.

7.2.3 K =)
For this class of diffusivities system (7.2) reads

up — Kguy — Kug, =

0
X

Oy — (Cs + tC4)us — (03 +5(CiCu+ 06)) Uy = 0

0

0

Y

Kz — KC'luz =
Kt - KClUt

Y

As before, we mention only the cases where interesting solutions occur, meaning
we don’t list the cases where u is a constant or K is zero.
Acting upon this system with the involutive solver delivers seven non-trivial cases:

K= ecl(u_cz)
C,=0, C4=0, C¢=0 C,=0, C5=0, C4=0 C,=0 C;=0 C,C,+C¢=0 C,C,+C¢2 0 C5=0, C4=0
Solution No. 8 Solution No. 9 Solution No. 4 Solution No. 22 Reduction No. 17 Reduction No. 16 Solution No. 23

For the first three cases we only list the results here, because either the solutions
where obtained directly, as in the first two cases, or they involve additional space-
consuming computations, as in the third case.

Case C; =0, C3 =0, Cs =0 (solution no. 8 tablel)

u(z,t) = t% + 2 Cs

A+ 2B
c. TToge, TATT

Case C; =0, C5 =0, Cs = 0 (solution no. 9 table 1)

C
u(z,t) = xé + A.
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Case C; = 0 (solution no. 4 table 1)

C4(2Cg+$06)2 F 1 1§ 9 _ (2C3+3306)2
2KCI(Cs +1Ce) 2 2\ 777277

2 4Cs(Cs + tCy)

K 203+CL'06 C4

A er + —log (Cs + tCs) + B.
CV6 f<2\/KC6(05+t06)> 06 g( ° 6)

u(z,t) =

To our knowledge this result is new. It does not appear in [13, 39, 51].

Case C3=0

For this choice of the constants we obtain the diffusivity

P 2(A + Bz) — 22Cs
 2(Cs + tC)

Again the result for u is obtained directly (solution no. 22 table 3):

C4 <—2(A + Ba:) + $206> n C.

)= — =4
u(@,?) Cs B Cs +tCs

C is an additional constant of integration.

Case 0104 + Cs =0

In this case we get the system

K, —CiKu, =
K(Cg + C1Csuy) + (Cs +tCe) Ky, =

CeK + C3K, + (C5 +tCe) K, =

4K?Cg —ACI K, + 4K (Cs + tC6) (3Cs Ky + (Cs + tCo) Ky =

o oo o

Integrating the third equation and re-inserting the result in the system we arrive
at the diffusivity (reduction no. 17 table 2)

B f (x - %63 log (Cs + tCG))
Cs +tCs

and the equation

Csf'(€) + F(O(Ce + £7(C)) = 0.

Again we found no general solution to this ordinary differential equation.
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Case 0104 + Cs 75 0
In this case the involutive solver stops with

—2C4 + (2C5 + 2(C1Cy + C) )uy + 2(Cs + tCs) K = 0,

—2C — 1C4K + (2C5+ z(C1C4 + Cg)) K, + 2(Cs + tCe) Ky = 0,
2K2C,C4(C1Cy — Cg) — (2C5 + z(C,Cy + Cs))?K,

+2K(C5 + tCs)(3(—C1Cy + Co) Ky + 2(C5 + tCs) K1) = 0.

Integrating the second equation of this system we get
C104 _C1C4+C 2C!
K = (C5+1tCs) & f ((05 +tCg)” s <a:+ 73» .

Re-inserting this diffusivity into the system we arrive at the following ordinary
differential equation for the function f (reduction no. 16 table 2):

((C1Cs+ Co) f'(€) + F(O(—2C1Cs + 2f"()) = 0.

It was not possible for us to solve this equation in general, so no general solution
is obtained.

Case C5=0,Cs =0

When C5 = 0 and Cg = 0 the involutive solver immediately arrives at the diffu-
sivity
(203 + 1'0104)2

A —2tC3C?

K —

and the solution (no. 23 table 3)

- 1 (203 + .1'0104)2
u(z,t) —B-I—alog( A= 20202

724 K=-—9
(u—C2)3

If K is of this form the system which is given as input to the involutive solver
reads

uy — Kpug — Kugy, = 0,

(—=3zC5 + Cg)(—C2 +u) — <C’1 + 2tCy + %tC’G) Uy
—(C5 4+ zCy + 2°Cs)u, =
(~Cs + WK, + %Kut _

o o

4
(—Cy +u)K, + gKUm = 0.
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These equations are also given in [49]. Leaving this system to the involutive
solver we get, besides some rather boring solutions, four interesting new solu-
tions/reductions:

Cl
K= 43
(u-C,)
\
| \ \ \
3 c? 3 c? 3 c?
C,=0 C¢=-—C,,Cy = Ce=-—C,,Cy # Ce¢#——C,,Cy#
2 4C, 2 5 2 4C,
Solution No. 24 Reduction No. 18 Reduction No. 19 Reduction No. 20
Case (7 =0
For this case the diffusivity is given by
2 2
(03 + $C4 +x 05)

K=—
A—#(C? + 4C5C5)

and solution is immediately obtained (no. 24 table 3):

B(—A + t(C2 — 4C5Cs))}

u(z,t) = Cy + 3
(C3 + .’L’C4 + $2C5)2

If C; # 0 the situation changes rather drastically. In contrast to this case, where
a solution is obtained automatically, only reductions are achieved. Since the
calculations involved are rather cumbersome we only state the results.

02
Case Cg = —204, Cs; = ic;

For this choice of constants we obtain the diffusivity

K —

(Cy + 2zC5)* f 2C1 + tCy + 2tz Cs
16C% Cy + 22C5 '

Here a solution is possible, but unfortunately only an implicit one (reduction no.
18 table 2):

1

1 2 2 1,1 .1 2
1 . 1 1A 3
4 36A5CE V3

log
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_ _3 C3
Case Cg = —5C,, C3 # ic;

Here the diffusivity is of the functional form

2
K = <—1+ arctan Ca+ 2205 ))

Cy + 22C5)?\? t 2
(;1—x5)> flos +
C’4 —4C3C5 Ch AV —CZ + 4C3C5 —CZ + 4C5C%
where the function f has to satisfy the equation (reduction no. 19 table 2)
2 2 L, 2 2 3 pr
—16f(¢)°C5(Cy — 4C5C5) + af (€) ((CF — 4C5C5)? — 12C1 G5 f(€))

+16CE(Q)F"(C) = o.

Again we did not achieve a solution of this equation for the general case.

Case C(,‘ 7é —%04, 03 75 %

Finally, when both conditions are unequal zero K has the form

__4(3C4+42C¢) . oion  Cat22C5
K = (C3+zCy+ x205)2e 34/-C3+405C5 /0310505
_ Cat22Cs5
% darctan \/m _ 3log (301 + 2t(304 + 206))

f

2 \ —CZ + 40305 3614 + 2C(G

Here the function f is a solution of (reduction no. 20 table 2)

2((3C4+2Cq

16f(<-)2(90305 =+ 06(304 + 06)) — 2705]0,(4-) <—46 3Cs : + C5fl(<)>
—12f(¢)C5((3Cs +2C5) f'(¢) — 3C5£"(¢)) = 0.

All the solutions and reductions obtained in this section are summarized in the
tables 1, 2 and 3. Table 1 lists the solutions of (7.1) where K is constant. The
first column lists the number of the corresponding solution/reduction. In the
second column the solution is given, while in the third column the corresponding
abbreviations are listed.

Table 2 features the cases when only a reduction or an implicit solution was
possible. The second column lists the forms of the diffusivity. The third column
contains the implicit solution, as in the first and the sixth case, or the ordinary
differential equation to which equation (7.1) was reduced.

The content of table 3 are the nonconstant diffusivities of equation (7.1), which
appear in the second column, and the corresponding solutions, which are listed
in the third column.
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Table 3: Solutions of (1) for various K.

No. | K Solution
C3
_ (@Cat207)? _ ¢ (zCa+2C7)?> | Ca
21 |K = A_zt(ﬁ(zc;rog u(z,t) = —atB (A+2tci(2037+04))
_ 2(A+Bz)—22C, e —2(A+Bz)+z2C
22 | K =55 0 8 u(z,t) = — ¢ log (—Cs+to6 6) +C
203+2C1C4)? 205 +2C1Cy)?
23 | K =1 As—Ztcflcg) u(z,t) = B+ g log <( AS—ZthICj%) )
_ (Cs+aCata2Cs)? _ B(—A+t(C2—4C5C5)) 1

7.3 Notes

We demonstrated that an involutive solution procedure is able to classify the
different diffusivities of the nonlinear diffusion equation (7.1). Moreover it was
possible to deduce in a straightforward way new solutions (tables 1, 3). If no ex-
plicit solutions were found we obtained implicit ones or at least reductions (table
2).

In conclusion we examined thirteen different models with the involutive solver.
Overall 16 solutions were found. In eight cases we found no general solution.
However, we derived at least an implicit solution or an ordinary differential equa-
tion.

The involutive solution method was able to detect new solutions which incorpo-
rate up to six additional constants. These solutions do not appear in the literature
(to our knowledge).
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Chapter 8

Black-Scholes Type Equations

In this chapter we will apply the method of involutive reduction to equations
of financial mathematics, in particular to the Black-Scholes equation [60] and
generalizations of it. But first we start with the original problem of Black and
Scholes.

8.1 The Black-Scholes Equation

In 1973 Fischer Black and Merton Scholes published their famous paper concern-
ing the pricing of European options on underlying assets [60]. This model allows
to rate the price of an option when the price of the stock of the option is known.
To do this it uses the so-called equivalent martingale procedure which states that
in the absence of arbitrage there exist unique probabilities for an option to rise
and fall. This amounts to a risk neutral evaluation procedure in which the value
of an option can be determined by calculating the expected future value of the
option by using these equivalent martingale probabilities and then discounting at
the risk-free rate of interest [61].

Before discussing the solutions to this equation we first derive the Black-Scholes
model for the pricing of a European option. This derivation closely follows the
one given in [61]. Let u(z(t),t) denote the value of a derivative security at date
t which additionally depends on the value of the corresponding stock. The value
of the derivative security at a date ¢ + At is then u(x(t + At),t + At) . Using a
risk neutral evaluation procedure and a derivative security with payout z(7) at
date T, its value at date t is given by

u(t) = B {%} Alt). (8.1)

Hereby EtQ means the expected value of the asset at date T using equivalent
martingale probabilities and A(t) is the value of the money market account at

83
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date t. Expanding around ¢ we get

B ou Ou 1 , 0% 3 9
u(z(t+At), t+ At) = u(x(t),t)+AtE +Ax%+§(Ax) @+O((Aﬂv) , (At)?).

Doing the same for the money market account A leads to [61]

e Jlr AD - Att) (1 —rAt + %(rAt)Q + O((At)3)> :

where r denotes the continuously compounded spot interest rate. Inserting these
expansions in (8.1) and simplifying gives

0%u
Ox?

1
—u(z(t), t)rAt+Ata—u +EP [Ax]% + 5E?[(M)?]

ot +O((At)*, (Az)?). (8.2)

This equation is the starting point for the Black-Scholes model. For this model
three assumptions are made at this point. The first one is that terms of the order
(At)? and higher and terms of order (Az)? and higher are neglected. The second
assumption concerns the form of E®[Az]. It is assumed that it is of the form

EP[Az] = rz(t)At.

This assumption means that the instantaneous expected return on the stock per
unit time is constant and equals r. The third assumption states that for small
At the change in the stock price Az is also small. This assumption leads to a
volatility of the form [61]

E7[(Az)’] = o5e(t)*At,

where oy is called the volatility of the stock. Inserting these conditions in equation
(8.2) and dividing by At leads to the well-known Black-Scholes partial differential

equation
ou  x%0% 0%u ou
’= —— =0 8.3

ot 2 6x2+r<x8x u) ’ (83)

where u is the value of the option which depends upon the time ¢ and the value
of the underlying stock x. g is the volatility of the stock, which is the square
root of the stock return’s instantaneous variance. It measures the oscillations of
the stock price. r is the risk free interest rate.

Hereby a European call option gives the holder the right, but not the obligation
to buy the underlying asset at the strike price K at the expiration date 7. These
considerations lead to the boundary condition or terminal payoff-function

r— K, > K,

0, z< K. (8.4)

u(z,T)=(z—K)f(z — K) = {
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Equation (8.3) together with the boundary condition (8.4) was the original deriva-
tive security priced in [60].

Performing a symmetry analysis for (8.3) with the conditions ¢ # 0 and r # 0
leads to the infinitesimal transformations

5“” = Cl + CQt + Cgt’
& = Cur+ %x log z + t(Csz + Cszlog z),

u 2 2 2 212

n = —— [4C3log” z + 8Cg0y + Cst*(2r + o)
802 | 0 0 (8.5)
+2log z(4C — 5 — (Cy + 2tC3(2r + 03))

+t(—4C3002 + Ca(2r + 03)° + C5(—8r + 407))] -

Note that these symmetries differ from the ones in [62]. But we will see that they
will lead to the same fundamental solution.

According to the solution procedure introduced in this thesis we have to append
the invariant surface condition to the differential equation (8.3):

Ou + z% 82_u r xa—u —u] =0
U 9 ou
n(x’t’u)_g (x,t,u)——{f (x,t,u)a =0

with the infinitesimal transformations (8.5). Applying the involutive reduc-
tion/solution procedure to this coupled system of partial differential equations
leads to at least six cases for the appearing constants C; to Cg. In one case
the calculation involves huge expressions requiring more than one gigabyte of
memory. Here the calculations were stopped. Three other cases lead either to
contradictions or the symmetry constants are all zero, which does not lead to any
simplification at all.

The other two cases lead to the solutions in the next two sections.

811 (3,=0,C3=0,Cy=0,C5=0

For these values of the parameters and oy # 0 and r # 0 arbitrary the involutive
solution procedure ends with the result

_r 1 [Cried)? 8o 1,1 [@ried)? 8o
2 o o2 o o2
u(z,t) =2 7 °° o Vi) +2" o (8.6)

Y
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where f! and f? are functions of ¢ which have to satisfy the condition

: 1 [(2r+02)2  8Cs
Cefl(t)—lel(t)er”"\/ e

(Cef(t) — C1f?(1)). (8.7)

Since this condition has to be true for all values of = and ¢ (8.7) splits into the
conditions

Csfi(t) — Cof' (t) =0
for i = 1,2 whose solutions are
. C
Fi(t) = Kiear”.

Inserting this in (8.6) leads to the solution

Cs, — i @riof)? scq 1p1 [@rtep)? scg
. o0 1 90 1
u(z,t) =e%r'g 7 Kivz + Koz i

Note that as ¢ — T this solution only satisfies the boundary value (8.4) if » = 0.

812 C;=0,C,=0,C3=0

In this case we get

Cj log 2+2Cg o2 +tC5(—2r+03)

w(z,t) = f(t)x  Caricoed (8.8)

and the condition

—8(Cy +tC5)?03 f'(t) + [2C2(2r + 03)* + 2tC5(—2C505 + Cu(2r + 03)*)+

40[2)(2027' — 0620[2) - 04(05 + 2067“ - 060'3))} f(t) =0
which the function f has to satisfy. This first-order ordinary differential equation
is solved by DSolve to

K t(27‘+o’3)2 (72C4r+(C472CG)08)2
1 2 2 Cr (CattC
f( ) = ¢ 80'0 80‘0 5(Cq+tCx)

VCi+tCs

Inserting this result in (8.8) leads to the solution

K Cx log z+2cﬁag+tc5(—2r+ag) t(2’r‘+o’8)2 (—2C4r+(04—206)a(2))2
1 2(C4+t05)0'3 e So'g 80'(2)05(04+tc5)

t) = ——
u,t) = Je==e”

Rewriting this with 2% = e®!°8% leads to

2,2 2 2
F:l 1 (t(2r+03)2+(—ZC4T+(C4—2C6)00) +410gm(05logz+2C660+tC5(—2r+ao)))
Cx(C, C C C
u(w,t) _ 68002 5(C4+tCs) 4+tC5

VCi +1tCs
(8.9)
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Analyzing the solution (8.9) we observe that as ¢ varies it can happen that the
denominators are zero as t — 7. This is the case for C5 = —%. At first thought
it seems that this behavior leads to the conclusion that (8.9) does not satisfy the
boundary condition (8.4). But keep in mind that we are dealing with a linear
differential equation. That means that not a single solution has to satisfy the
boundary value problem, but a superposition. Furthermore, the general solution
can be written as -

w(z, ) = / ux(z, £yur(V)dA (8.10)
where uy(z,t) tends to the delta function §(z — A) for ¢t — T and up()) is the
boundary value (8.4).

So we see that if the solution (8.9) can be written as a delta series the superposi-
tion of the solutions (8.9) does indeed satisfy the boundary value problem (8.4)
for some suitably chosen parameter \.

For this purpose we set C5 = —%4. Doing this the right hand side of (8.9) gives
(after some calculation)

2
log z o o
(a0f+2f0 w0 (-2 OC’e+C4( 2r+ 0))) +72T+00 » z+(2r+00)2t
T e = A
Ky —
Cy T —t
If ¢ tends to T" we have
(‘05’” +-—L  (-202Cg+Cys(—2r+0 )))2
agV2 2\/_C4 0~6 4 0 —2r+c70 (2r+ao)2t

— + logz+
T e i 273 “
lim K; =
t—T 04 T—1t

T _ZT—J;,OI +(2T+02§)2T e (%Lj_ﬂ\/‘cw (;a(t]ce+04( 2r+°’0)))
Comparing this with
z2
= () (8.11)

e—0 /T

we see that in the limit ¢ — T the solution (8.9) is indeed a delta function:

7TTK1 . 22“:2)"01 +(2’:U"go) 5 <loga: T
00vV2  2v/2C400

C (_20(2)06 + C4(—2T + 0'3))) .
4
Introducing the new constant A as
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20’006 + 04( 2r + 0'3))

T
1 _
og\ = 204(

leads to

—2r4ol (2r+02)?
wr(z,T) = K, /7rT 207 log ot = 6<logm B log)\>.
[ o0V2  00V2

According to the formula

0z — 29) = le|5($ — o), (8.12)

which connects the delta function of z(z) to the delta function of z we have

2 T 2r+o’0 log A (2r+a’§)2T
ur(z,T) = K00 g wf TSR AS(z — ).
4

Finally, the condition

ux(z,T) = 6(x — A)

fixes the constant of integration

1 —(%_%)—I— 2T+UO (logz—log \)— —Ma) (T-t)
ur(z,t) = e i %0 . (8.13)

Aogy/ 27 (T —t)

The overall solution is obtained by inserting (8.13) and (8.4) in (8.10):

oo

u(z,t) = /oo ua(z, (A — K)I(\ — K)dA = /

oo K

Auy(z,t)d\ — K/ ux(z,t)dA.
K

Solving the corresponding integrals we arrive at the famous solution of Black and
Scholes [60]:

ups = zN(dy) — Ke "IN (dp) (8.14)
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Ugs

Figure 8.1: The Black-Scholes solution for T = 35/365, K = 20, r = 0.0425,
o = 0.25.

with
1 T 2r+o? >
o = ——— (logZ + T-1)),
' am/z(T—t)< K 7 (L1
1 r  (—2r+o0d) )
dy = ——— (108 % - Tt
2 00\/2(T—t)< % 5 (=1
and

N(z) = % /_ oo e~ du.

Note that Black and Scholes derived their solution by transforming equation (8.3)
to the heat equation. The solution in ([62]) was obtained by similar consider-
ations. But they used a symmetry generator where the constants A\ and 7' are
built in.

This result is illustrated in figure 8.1 as a reference for a 35-day European call
option (T = 35/365) with a strike price of 20 dollars (K = 20), a constant spot
interest rate of 4.25% (r = 0.0425) and a volatility of 25% per year (og = 0.25).

In this section we solved the Black-Scholes equation (8.3) for two parameter
combinations. In both cases we found the corresponding solutions by using the
method of involutive reduction. The first solution does not appear in the litera-
ture. It does not satisfy the necessary boundary conditions for options, especially
European call options.

The second solution is the famous solution of Black and Scholes [60]. However,
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in contrast to the original solution procedure, which used a transformation to the
heat equation, we solved the differential equation in a straightforward way.
In the next sections we are going to consider generalizations of equation (8.3).

8.2 A Time-Dependent Volatility

In this section we release the assumptions which have lead to the model of Black
and Scholes. The first and second assumptions made above, the neglection of
terms of order (At)?, (Az)? and higher and the form of E®[Az] however are still
made, so that the general form of equation (8.3) stays more or less the same.
The only change we are making is the form of E®[(Az)?]. In contrast to the
Black-Scholes model we assume that it is of the form

E7[(Az)’] = o(t) At

where o(t) denotes a general volatility function, depending only on the time ¢.
Remember that E[(Az)?] for the Black-Scholes model is of the form o2z which
follows from an assumption made for small ¢ and a Brownian motion, so an
arbitrary time-dependent volatility is clearly a generalization. Inserting this in
(8.2) we arrive at the following generalized Black-Scholes type equation:

ou  o%(t) 0%u du
bl = _ = 1
5% +t— 97 +r (max u) 0 (8.15)

together with the boundary condition

r— K, z>K
u(z,T) = { 0 r<K ' (8.16)

which is not changed either. Applying the involutive solution procedure to the
determining equations for Lie point symmetries of (8.15) we arrive at three cases.

8.2.1 General Solutions For a Time-Dependent Volatility

In the first case the symmetries of (8.15) are given by (the symmetry part repre-
senting the linearity of equation (8.15) is not considered here)

& = fi),
& =0,

1 = ued) (P~ P@),
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where the unknown functions f1(r), f?(x) and f3(z) have to satisfy the conditions

zr? f1(t) — e o (t) F2(z) — zr U (t) 0, (8.17)
f2(x) — fol(x) + ertxrf3'(x) = 0. (8.18)

I

Differentiating the first condition (8.17) twice with respect to z leads to
f2($) == kl + kg.%’.
Inserting this in the conditions (8.17) and (8.18) leads to

2t fL(t) — o?(t)e ™ (ky 4 koz) —zrfV'(t) = 0, (8.19)
ki +etarf¥(z) = 0. (8.20)

Equation (8.20) is solved to give

kle—rt

F@) = ks —
Inserting this in (8.19) gives

log .

k(B 4z (—klaz(t)e_” +r(rfi(t) — fl’(t)) —0.

Since this condition has to be true for all values of x k; must be zero. Inserting all
this information in the infinitesimal transformations and appending the invariant
surface condition to the differential equation (8.15) leads to the system:

—trlz——u

ot 2 0z ox
u(tn= 220 - P~ o

—g(t)ac®(t) + r(rf'(t) —rf'(t) == 0,

Ou , o*(t) 0u ( du )

QQ\
~—~
o~
N—r
+
S
Q
—~
~
N—r
I
=

where e~ has been replaced by ¢(t) and the corresponding differential equation
has been appended to the system. This has to be done since we are looking for
solutions classified also by r, which appears in the exponent. But remember that



92 CHAPTER 8. BLACK-SCHOLES TYPE EQUATIONS

the function InvolutePDESolve can only handle polynomially nonlinear func-
tions in the corresponding dependent variables, so the replacement of e " with
g(t) is a must.

Trying to solve the above system of partial differential equations with the involu-
tive method we arrive again at three cases. The first case is not very interesting
since here f1(t) = 0, k; = 0 and k3 = 0, so the invariant surface condition van-
ishes and does not help in the solution of the problem. The other two cases are
treated separately in the following.

ko =0

For ks = 0 we obtained the solution for the differential equation for g(t). Besides
that we got

fH(t) = Cre™

and

(8.21)

where F''(t) has to satisfy

—k202(t)F(t) + 2C2e¥ (rF'(t) — FY(t)) = 0.

The solution for this linear first-order differential equation is given by

kg ot
r(tfos)*é fC3 e 22 (1)dr

F ! (t) = 026
Inserting this result in (8.21) leads to the solution for the value of an option:

e_rtzkz

u(z,t) = Che

k2
+r(t—C3)— ﬁ fé3 e~ 2702 (1)dT

Note that this solution does not satisfy the boundary condition (8.4). It is not
considered in the literature.

The General Solution

If none of the constants or appearing functions is zero the involutive solution
procedure ends with two differential equations for u(z,t). Solving the first one
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leads to

—rt
o 2wy R )

u(z,t) = Fi(t) e @ (8.22)

and a rather lengthy equation which, when inserting (8.22), is a polynomial in z.
Equating to zero the coefficients of this polynomial, which has to be true for all
values of z, results in two differential equations for f!(¢) and and F!(¢). They
are solved to

i) = eTrt (Clr - a/t e2r702(7)d7>

Ky

and

k3r t 0'2(‘1') k t eiTTaz(‘r)
r(t—K4)——3— Ly dr+32 —1—dT
F'(t) = Kqe (=F)=7%" Jiey G2t ar Sy i .

Inserting the last result in (8.22) gives

k3r ot o2(r) kg pt e TTo%(r) 1
r(t-Ka)== Jk, flz(f)dTJrﬁfKL; i 9T

u(z,t) = Kse

Like in the case of the classical Black-Scholes differential equation the exponent
has a denominator which does depend on ¢. So there is the possibility that (8.23)
tends to the delta function as ¢ — T'. For this to happen the condition

fT)=0
has to be satisfied. This leads to

T
Cyr = kg/ e 0% (r)dr

K
which results in

k2 e'rt

FH(t) = /t " o2y

r

Now we have to see if we can rewrite equation (8.22) in the form of the left-hand-
side of (8.11). To do this we rewrite the integrals which appear in (8.22). The
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first integral can be rewritten to
t 2 2 t —2rT 2
/ dTJZ(T) = 7"_2/ dr e o (1) 5
ke fUT) kUK, (fT dtlefQTt’o-Q(tl))

The substitution

T !
v = / dt/e—Qrt 0_2 (tl)

leads to

ﬁ 1 _ 1
k3 ftT dre=2"7g2(T) f;,; dre=27g2(1) )

Applying the same substitution to the second integral in (8.22) gives

/t dTef«rTa2(7_) _ _Llog ftT dre 2762 (1)

K4 fH(7) ks f;,; dre=27o(1)

Inserting these integrals in (8.22) and simplifying results in

fT dTe—Qr‘ra-Q(T) r(t—Ka)+ k3r? _( vz " k2_3_\/_)
u(z,t) = Ky, | ~28 24 Jigy 47BN [T dreTE A0 (8 9g)

T —2rT 42 ¢
ft dre=2r702(T)

Taking the limit £ — 7" and using the formulas (8.11) and (8.12) like we did in
the case of the classical Black-Scholes equation, we arrive at

k
llmu 1’ t \/27r/ dTe—2r‘rO-2 ) rT(s <1’ N i’r rT) .
t—=T K, kg

The normalization condition leads to

2,2
1 rK4—2rT— k3

= e
\/27r f; dre=2r702(T)

Defining a new constant A as

2k2 fT dre—2TTo 2(‘r)




8.2. A TIME-DEPENDENT VOLATILITY 95

and inserting in (8.24), we finally get the solution

re—TT

_ ze— Tt _ ?
e \/2 ftT dre—2TTo2(7) \/2 ftT dre=2rTo2(r) . (825)

er(t—2T)

(z,t) =
\/27r ftT dre=?r702(T)

Ux

The general solution satisfying the boundary condition (8.4) is then given by

[e.e]

w(z,t) = /_oo (@, 8 — K)I(n — K)dA = / N (2, £)dA — K/: us (2, £)dA

[eS) K

which evaluates to

with
N(s) :/ e Vdy,
B Kefr(Tft) -z
2f(t)
and

f(t) = /tT e~ (Do (1)dr.

Analyzing the above solution, which is new to our knowledge, we recognize that
the volatility is damped exponentially. So long as the volatility does not rise
exponentially the exact form of the volatility is not important. The exponential
function determines the integral and with it the solution. As time goes on the
damping gets weaker and weaker until it reaches a minimum at striking time.

Moreover, for volatilities in the range of 0-1 the above solution and the classical
solution of Black and Scholes are very similar. The time-dependence of the so-
lution (8.26) is only visible when subtracting (8.26) from the classical solution
(8.14). For very large volatilities above say 5 the solutions differ greatly and the
time-dependence of (8.26) is clearly visible. Such an example is given in figure 8.2
for an oscillating volatility of the form o(t) = 0¢ + o1 sinwt for K = 20, w = 500,
0o = 50 and o; = 40. For more examples of time-dependent solutions see [63].



96 CHAPTER 8. BLACK-SCHOLES TYPE EQUATIONS

Figure 8.2: Solution for an oscillating volatility with the parameters o9 = 50 and
o1 = 40.

In this section we found two new solutions to a generalized Black-Scholes type
equation with an arbitrary time-dependent volatility. The first one does not
satisfy the boundary value of European call options and therefore does not seem
to be of great importance. The second solution however allows to price the value
of an option when the time-dependence of the volatility of the underlying asset
is known.

8.3 Time- and Asset Price-Dependent Volatility

In this section we generalize the form of the volatility mentioned in the section
before. There we analyzed a purely time-dependent volatility. Here we consider
a volatility which additionally depends on the value z of the stock. This means
that we are looking for solutions of the differential equation

ou  o*(z,t) %u ou
E—i_ 5 @—{—r (a:— —u) =0. (8.27)

Applying an involutive solution procedure to the determining equations of (8.27)
with the conditions r # 0 and A(z,t) # 0 we get four different cases. However,
three of them do not lead to solutions either because the symmetry constants
vanish identically or the symmetries are so general that the following reduction
does not lead to a solution.

The fourth case is the one we will consider in a more detailed way. The involutive
reduction procedure ends with
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o(z,t) = 2f(1),

& = 0,
& = ),
n = ufi(z,t),

where the functions f(t), f2(t) and f3(z,t) have to satisfy

f1f2’ 4 2f2f1/ —

5/ frerC - - 1) =

—21:rf2fl’ + x201f13f£’ =

arf2 Y+ fr Qa2+ 2O LR, 4 2ff) =
—rf2(2z%r — 2291 (=3 + 2Cl)f12)fll — xQlelsff =

(8.28)

©c o o o o

Hereby the underscript denotes differentiation with respect to the corresponding
variable. Note that in the second and the last equation appear expressions which
involve the parameter C. If these expressions are zero before the solution of the
corresponding other solutions evolve than the ones considered here. These will
be mentioned separately. We start with the problem to find the most general
solution.

8.3.1 Search for the Most General Solution

Since the symmetries are built up of functions which have to satisfy further dif-
ferential equations we append these differential equations to ones given as input
to the involutive solver. That means that this input is given by

g(z)f'(t)

Uy + Ty Uea +r(zu, —u) =
uf?(z,t) - A, =
f1f2’ + 2f2f1’ _
57 + i er(Ch = 1Y = )
—2mrf2fll + mwlflsff =
arf2 Y+ 1 2arf2 + 22O fUR L 2ff) =
—rf*(22%r — 2*H (=3 +20)) f) [ = O fU R =
zg'(x) — Cig(z) =

= = e e N == I == == =)

where o(z,t) has been replaced by g(z)f(t). The substitution 2 = g(z) has
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been used since we are looking for solutions in dependence of the constant Cj.
But since the solver can only handle polynomially nonlinear differential equations
this has to be done (but it is not really a drawback since the information is stored
in the form of the corresponding differential equation).

Applying the involutive solution method to the above system with the conditions
r # 0, g(x) # 0 and f1(t) # 0 results in two cases. The first one does not lead to
any solution since the appearing functions f2 and f3 are identically zero. In this
case the symmetries are identically zero and no solution is obtained.

The second case ends with five differential equations involving u, f! and f3. f2
was found to be

fQ(t) = Ko e_rt\/eT(QtCH-Kl) — er(2t—C1K1),

Solving the differential equation for f1(¢) leads to

Tt
K3€7

T-
(61‘(2tC1+K1) _ er(2t+ClK1))Z

Fit) =

Inserting this result in the other differential equations leads to

rK. 20 -3 1.27201,,,2}'{ eT(?t(lel)-i-Kl)
fg(x,t) — K4—Me_rt\/e7'(2t01+[{l) _ eT(2t+ClK1)+ 2 5 ,
2 2K?
C1K
r(3-2C1), Ky arctane_rt_T_IZ_l \/J(2t01+K1)_er(2t+C1K1)
2 rC1 Ky
u(z,t) = fY(x)e Kye 2 r(C1-1)
TzZ—ZC’le—rt\/er(2t01+K1)_er(2t+ClK1)
e 2K2(C1-1)

and the differential equation

i) (9T 2 Ky + 202 K2K,) + 2*C K3 Ko f* (2) = 0 (8.29)

for the function f*. At this point we are stuck concerning the general solution of
this equation. But for certain values of the parameter C; a solution is possible.
For C; = 3/2 for example we get

3
'QTKl 2
_e Ks T 2 _CETK1T2
3 7
f=) = < ci1F | 1— il 2 f
KiK, o z
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2 eg-'r‘Klrg
K - Kj
+CQU 1-— 4 2 :

Y )
/ 3 T
2 e2TK1r2

For C; = 1/2 f* is given by

gy | 12e3TE1 :
K 1
4 ze 3 K, r2ezrK1
Fz) = o 2,214 ————
1 )4 n
K3 K, 2,57K] K
K3Ky |-
3
r2ezrk
+62U 1—

Ky 2,2
) ) :L' -7 4
2 TQG%TKI K§

Hereby 1 F; and U are hypergeometric functions (see [57]). Note that we did not
find any other value for C; that allows the solution of (8.29).

Despite the fact that we found solutions for C; = 3/2 and C; = 1/2 these
solutions suffer an important drawback: they involve imaginary parts. The pa-
rameters appearing in the square roots

1 3
\/ r2e2mf1 \/ r2e2mf1
o 4 o 4
K K

are all positive and so the expression under the square root is negative. This
results in a non-vanishing imaginary part of the solution, so they may not be of
any interest.

However, we mentioned above that by setting certain expressions involving C to
zero other solutions are obtained. They will be discussed in the next sections.

8.3.2 Power Law Solution

In this section we first solve the second equation of (8.28) and then set C; equal
to 1. This results in

FU(t) = Caem 39"

Inserting this in (8.28) end setting C; = 1 here leads to the new system
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7t = o
fiz,t) = 0,
fix,t) = 0.
whose solutions are
fz(t) - 04)
f3(.'17,t) = CS-

Thus the involutive solution algorithm starts with

C2k20?
Us +

Uy +1(TU; —uw) = 0,

C5U—C4Ut = 0,

where the parameter combination e~ 192" has been replaced by k to bring the

system into a polynomially nonlinear form. The solution procedure ends with

r 1 [(C3k2+2r)2 ey 1, 1 (C2r242r)2  ggq
_ _ _ 1 _
Cgkz C3k cng Cy 2 3k 03§k2 Cs 9

Vzg'(t) + @ 9@ |,

u(z,t) =z

where the functions g'(¢) and g%(t) have to satisfy the equation

(G342 oy [(c2K212)% 80y
omE T Or , g 9
Csg'(t) + Csg’(x &F  —Cug"(t)+z = g¥() =0.

This equation has to be true for all values of x and ¢. For this reason the equation
splits into the equations

Csg'(t) — Cag” (t) =0

for + = 1,2, whose solution is

. C
g'(t) = Kiedi',
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Inserting this in the above equation for u leads to the solution

1 1
re3Car  4Car \/4 C4+4eC27 12 e_%cﬂf 8Cx

S5y T o2 2
>t c 2C3 c Cyq
u(z,t) = eCax 73 3

1 C
l_i_ez;CzT rt Ch+4eC27r2 o~ 5C2r_8Cs
2 C3 c? Oy

le/z + KQZE

Like in the case for the classical Black-Scholes problem, where we obtained a
similar result, this solution does not satisfy the boundary condition (8.4) and is
therefore of no interest concerning the pricing of European options.

In this section we set Cy = 1 after the solution of the second equation of (8.28).
In the next section we do this before the solution of the system (8.28). This leads
to another class of solutions.

8.3.3 Airy Solution
Setting C; = 1 in system (8.28) leads to

o(z,t) = zf'(t)

and

f1f2’ _|_ 2f2f1’ —

5/ - 1) =

~2zrf2fV + 2 fF =

arf2fV + fr a2+ 2?02, +2fF) =
—rf2@r+ O - U =

o o o o o

Solving the second equation, inserting it back into the system leads to

C
1 o 3
f (t) (4t+02)1/47
f2(t) = Cy\/4t+ Cy,
047' 047’2 2047‘
f3z,t) = Co+ —/4t+Cy+ —— (4t + Cy) — —-log .
(2,t) = Cot+ = 2+ 5o 4+ Co) = o
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Constructing the invariant surface condition, appending it to equation (8.27)
where o(z,t) has been replaced by Mt—ﬂf’)m, and applying the function Invo-
lutePDESolve to it gets

2
2
1203

— S VAFCh ot 58 A Cat g (414C3)/2
3 (& .

u(z,t) = g'(z)z
Hereby the function g(¢) has to satisfy the condition

2 (C3Cs +log (z7297)) g(x) + 2°C3Cag" (z) = 0.

The solution to this equation reads

1/3 4 _ 2
g(z) = \/E<K1Az<< r ) C3Cy 8C3CG+16C4T10g;1:>

ﬂ 8047'
1/3 ~a 2
. r C3Cy — 8C5Cs + 16Cyrlog x
K-B 3 3
e <<20;}) 8Cur )) ’

where Ai and Bi are Airy-functions (see [57]). Finally, inserting the result in the
preliminary solution for u leads to

T T C 2
%——2- 4t+Co ?t—l—ﬁ% 4t+C2+@g(4t+C2)3/2 )

u(z,t) = z° % e
weai [ (- /3 c4Cy — 8C2Cs + 16Cyrlog
! 203 8Cyr
1/3 4 2
. r C3Cy — 8C5Cs + 16Cyr log x
K)B 3 3 :
T ((20;}) 8Car

Unfortunately this solution does not satisfy the boundary condition (8.4) either.

In this chapter we found known as well as new solutions to applications of the
world of financial mathematics. With the method of involutive reduction we
calculated the well-known solution of Black and Scholes (8.3) which allows to
price European call options which a specified boundary condition. This was also
done for a generalized Black-Scholes-type equation which involves an arbitrary
time-dependent volatility.

Besides the solutions to these boundary-value problems we found other solutions
to the considered applications. To our knowledge they do not appear in the
literature and are therefore new.



Chapter 9

Further Applications

In the last three chapters we saw how the method of involutive reductions and
solutions works. The proceeding is always the same. First, calculate the deter-
mining equations for the infinitesimal generators of the differential equation under
consideration, in dependence of any appearing parameters or arbitrary functions.
If this is done use the invariant surface condition to build coupled systems of
differential equations and solve these systems. This leads to invariant reductions
or solutions. After illustrating this procedure many times, in this chapter we
only state the solutions and the notation for constants and arbitrary functions
found for a bunch of differential equations with the method of involutive reduc-
tions/solutions. Note that the majority of these solutions are new and do not
appear in the literature.

In the following examples appear different solutions. Each solution is preceded
by a declaration of the constants and/or the form of certain arbitrary functions
which are involved in the differential equation. The constants named C; are the
group constants of the symmetry group of the original differential equation, while
the other constants named k;, K; or c; are either constants coming from the so-
lution of ordinary differential equations or are symmetry constants of a reduced
equation.

9.1 Incompressible Laminar Boundary Layer
Equations

In this section we consider the incompressible laminar boundary layer equations
for a radial flow in the absence of a pressure gradient with an axially symmetric
swirling component of velocity w. The governing equations of this model are
(lower indices represent derivatives with respect to the corresponding variable)

103
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2

w
Uly + VUy — — = Vlyy
x
n n uw
UW, +VWy + — = VW
z Yy T Y.y (91)

(zu); + (zv), = 0.

Hereby x is the radial distance from the symmetry axis, y is the coordinate par-
allel to this axis, while © and v are the velocity components in these directions.
The details of the derivation are found in [64]. The symmetry group of this prob-
lem is built up of a two-dimensional discrete symmetry group and a continuous
symmetry group. The involutive reduction procedure delivered the following so-
lutions (we state only the non-trivial solutions we found):

e K, k, Cg constant, f(z) arbitrary function:

K+ve* — 24+ 2C2 (62’“ — .1'2)2

u(z,y) = (2% — ze?*) (f(z) —yCe)? '
v(z,y) = 2 (2 — 2?) v C2 (20 f(x) — 2wy Cs + f'(x) (2 — 2?))
Y Cex (e2* — 22) (f(z) — yCs)?
+ Vet — 2K (—zf(z) + zyCs + f'(z) (e* — 2?))
Coz (% — 22) (f(z) —y C)? |
(,9) e* (\/MK +2v Cf (e — 372)2)
w(z,y) = —

z (% +22)°? (f(x) -y Co)?

® (y, c3 constant:

2zvCs
u(mﬁy) - _(02 +yc3)2’
( ) 41/63
v(z, = —-——,
Y Cotycs
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® (y, c3 constant:

3zrvcs
u(z,y) = m,
(z,1) 6rcs
v(z = —— =
Y co+ycs
3zvc?
= 4T3
’lU(LL',y) (c2 + y03)2
e (4, Cy constant, f(z) arbitrary:
21’202 - 02
U(l’,’y) = - Tlv
2’y CQ
v(z, = —= = ,
(z,9) 222Cy—C? f(@)
T =
Ci
w(x,y) - ?
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9.2 A Driven Single Flux Line in Superconduc-

tors

The dynamics of a driven single flux line in a bulk type-II superconductor at low
temperatures, where the driving force and the velocity of the string is very large,

is modeled by the two-dimensional equation (see [65])

up(1+u2) — kug, = 0,

9.2)

where u(z,t) is the shape function, u is the direction of the driving Lorentz force
and z and ¢ are space and time coordinates respectively. Note that the symmetry

group of (9.2) is five-dimensional.

The following solutions were found by the involutive reduction procedure:

e (%, Cy constant:

. :ECS.Z'—C7

U(x, t) Cg
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o (5, (7, Cy constant:

_ (2 _ 2
ula,t) = ~ GG EY A

e (1, Cy, C7, Cs constant:

u(z,t) = Cig (—C’7 — \/C$ +22CyCy — 22CE + 2C3(Ch + kth)>

e K, c1, Cy, C4 constant:

C kC Cox
u(z,t) = K+ Ezt — F;log (cos <01 + k—éﬂ;»

9.3 A Burgers Type Equation

Next we state the solutions of a type of Burgers equation [40] involving an ar-
bitrary function f(u) which depends upon u, which is a function of space = and
time ¢:

ou ou 0*u

T U — O u) = 0.

ot ox 0x? + )
The following solutions were found by using the two-dimensional, three-dimensional
and the continuous symmetry groups (note that for each functional form of f a
different symmetry group is received):

e (4, C3, Cy constant, f(u) = Cy(u — 3C3)*:

oy _ 6CsCat = +/2(Cit = C1) — 6C1Cs

u(z,?) 2(Cat — Cy)

e (4, Cy, C3 constant, f(u) = Cy + uCy:

—Cat g

u(z,t) = Cre G
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e K;, K, constant, f(u) = K;:

u(z,t) = Ky — Kyt

e Ki, ky, c1, Cy, Cs, Cs constant, f(u) = Cy + uCsy:

K, — 0101€C2t + k1C’5(ng — Clt)

t) =
U(l', ) 0102€C2t + k105

e Cy, C3, Cy constant, f(u) = Cyu:

G5 (1++/1+8Cha)
2C4(Cs + Csx)

u(z,t) =

e (4, C5 constant, f(u) = —=:

8a
405&
t p—
Un ) = &1 G
o ky, ks, Cy constant, f(u) = Cyu®:
u(;l,’ t) . _1 +k5\/1 +80[C4
’ 204(k4 + k‘51’)

e C4, Cs5, Cg constant, f(u) = —5-:

’LL(JI t) . 30[(0’5 + 21‘06)
’ N 04 + $(C5 + .Z'CG)

e (4, Cs, Cg constant, f(u) = —%:

9a

C5 + 21’06 + Cg - 40406

e, t) = B0 ——F = G + 2Cy)
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e (5, Cg constant, f(u) = —2

. 12060[
N 05 + 2.7306

9.4 The Hasegawa-Mima Equation

The Hasegawa-Mima equation describes low-frequency drift waves in magnetized
plasmas or flows in the atmosphere or oceans [66]. It reads

99 _
or

0

e (V20— ¢) + {0, V?0} + 0,

where {f, g} := fz9,— fy9: is the Poisson bracket, /3 is proportional to the density
gradient in the plasma case or to the Coriolis parameter in the geophysical case.
In both cases ¢(z,y,t) is the stream function.

The symmetry group of this problem is nine-dimensional. Solutions to this equa-
tion are:

e (1, Cy, C4, Cg, Cr, Cg constant:

Cr;.  BCCs — C7Cy ( Gy > CyCgs £ 1C7Cy

y,t) = Gy + 2t - . c -
¢($ Yy ) 1 02 C4(Cg:f:’6ﬂ02) 02 C4(Cgi2ﬁ02)

L4 Cl, 04, Cﬁ, 07, Cg constant:

C C C
Bz,y,t) = O+ a vy (- ) + 5%
Cy Co

o (1, Cy, C4, Cg, Cy constant:

CsCy  .Cq Co
é(z,y,t) 01¢ZC402t$zC4 (y c, )
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L4 Cl, Cz, 04, 067 07, Cg constant:

CoCr. Co(CsCo— CoCr)  Co(BCy — C) ( Co )
y,t) = Ch + £t _ oy
A298) = Ot GGyt T Ca(Cols = ACr) = T Co(BCr — Co) \Y ™ G

® Kl; K2, K3, kg, kg, 02, 07, Cg constant:

k2B B
¢(xayat) = K3 + \/% <K26\/%z — Kle\/%m>
2

Cs kyCr — ksCy  Cy
Coy — Cyt —— + —t
+k202/8( 2y 9 )+$ k2c2/8 +C2

Cy, Cg constant, f arbitrary function of its argument:

Cs(z + Bt) + f(Fi(z + Bt) +y)

gb(a:,y,t) - 04
o (', Cy, C4, Cg constant:
C C
B(a,1,t) = Co + Cily F e + 1)) + 0o + S0
C'4 C4

Cy, Cg constant, f arbitrary function of its argument:

1) = o+ 00) + f ( - %(Hﬁt))

K, Ky, Cy, C4 constant:

¢(,’L', Y, t) - K2 +

— 2%
C, C, y

O, Caf—K) ( Ca )
Ci
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o Kl, kl, kQ, CQ, 04, C(j, 07, Cg constant:

C7 C6 07 CQCGB CQ
t) = — K, +— R - =
o(z,y,t) C2t+ 1+ C4x-|— (Cg CaCs ) (y 02t> +

\ /—0409 — (oG kyeV cate g (v-E3t) _ ke V caceaos (v ca)
C4Cy
[} Kl; KQ, kg, kg, k4, k()‘, CQ, C7, Cg constant:
kGCQ - ]{7409 09
t) = /k2+ k2 Az) | K Bly— —t
¢(z,y,t) = [k + ki cos ( w)( 1\/k§(k4cg—5k202) COS< <y G, ))
— Ky FeCo — kaC sin (B ( — ﬁ15))
koks(ksCo — BkaCs) \| ksCoy — BkaCy y Cy
. keCa — kaCy ( ( Cy ))
+1/k3 + k3 sin (Az) | K. cos | B|ly— —t
2 4 ( ) ( 2\/]{:2(]{;409 —ﬂkQCQ) Y 02
Ky k3 (keCa — kaCy) . ( ( Cy ))
— sin | B — —t
km\/ k4Co — Bk2Co e

. keCo — ko Cr + yk407 — BkeCy
ksCq — BkoCy ksCq — BkoCy

+

+ K30t(k¢Cy — koCr),

with

A | BB(kiCo — BRaCa)
(k% + kZ)(kGC2 — k4C9) ’

o | KB, — kCy)
(k3 + k3)(kaCy — k6C)

® Kl; Kg, K3, k4, k67 Cg, C7, Cg constant:

ke  Bks Yy BkeCo
= _— —_— _ — —_—
é(z,y,1) Ks + k4w+ T t+ e (07 T

,/—k“CZ_CkGCQ (Kle‘\/rmc—?—cf?@(y—%t) _ KQe\/r—’Z‘ﬁ?@(y—%gt))
4“9
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o Ky, K5, K3, k3, ks, Cr7, Cy constant:

ks ks C7 ksC7 — k3Cy
t) = Ks+ +ift| —— — | Et1————

”;3 <K2e\/f — Kje \/Za:)
5

e K, k1, ks constant:

¢($7y7 ) Kl

[} Kl, K2, K3 kl, kg, 02, C7 constant:

ks Cr C
gb(x,y,t):K1+—:E+—t—|-K2y+K3y +y— R Cr - B
02 k302

L] Kl, Kg, Kg, kl, kg, k3, Cg, 07 constant:

ety = s (LR (g faater s _ ot s)

ka3 ki

ko C' t k3Cy8 — k1C
n 2 7($+5)+é3 20 1 7)y>+K3
2

® ki, ko, k3, Cy, C7, Cy constant:

(kngﬁ + zk2C7)y + (k207 - ]{?309)(1' + ﬁt) + Klkz(CQﬁ + ZCg)
kyCsf3 =+ iksCl

d(z,y,t) =
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o Kl, KQ, K3, kz, k3, CQ, C7, Cg constant:

k3 t kgcg ]{?207 — k’3Cg
1) = Ky+ 2y+—(Cr—
¢(l’,’y, ) 3 + k2y+ 02 ( 7 kz ) + ﬁk202

[ (el g V5)
2

® Kl; K2, K3, kl, k3, 02, 07, Cg constant:

ks Yy BksCy
o(z,y,t) = K3+ —t+ = — +
( ,y, ) 3 kl t CQ <C7 kl )

SR =RC (o i) 4 s -8
1v9

o (5, C; constant, f arbitrary function of its argument:

Cr

¢(:I:7ya t) = @

(z + 1) + f(y £i(z + b))

o (5, Cy constant, f arbitrary function of its argument:

C
1) = 2w+ 50) + £ (y - +5t>)

L] Kl, kQ, k3, Cz, 07, Cg constant:

1
C2Cy(BCs — C3)
+K109(Bk202 - k302) + 095(1@07 - ]{?309)15)

P(z,y,t) =

(k‘gCg(Cgﬁ — 07)3/ + Cg(k207 - k‘gCg)iU
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° Kl, KQ, Cz, C7 constant:

¢(z,y,t) = Ko + (%75 F z‘K1> (z +Bt) + K1y

e K, Ky, Cy, Cy constant:

Coy < K,
Ca s

C
b,y t) = K+ 5 (o - —) + (B — Kt + Kuy
2

o Ky, Ky, K3, ky, ko, k3, Cy, C7, Cgy constant:

Cr (k? + k2)(ksCy — k1Cy) Coy
= It Ay - =22
é(z,y,t) 215 \/ R TN cos y 0215

(Kysin (Bz) + K, cos (Bz))

ki [ k3(kY + k3)(ksCo — koCa) ( ( Cy >>
+ sin| A — —t
kle\/ k1Cy — BksC e

(K3 sin (Bz) — K cos (Bz))
ksCo — ko Cr - k1C7 — BksCy
ki1Cy — BkaCo k1Cq — BkaCy

Co ( k10709)
| BksCy — + K,
k1Co — BkyCy PlsCo C, 3

Y+

where

A — k%(/ﬁkQCQ - kICQ)
(k% + k%)(kICg — k302)’

_ k3(Bk2Cy — k1Cy)
(k} + k2)(k1Cy — k3C3)

e f arbitrary function of its argument:

P(z,y,t) = fy £i(z + Bt))
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o K1, kq, ko, Co, Cy constant:

C; k1
¢(xaya) Kl+m<x+ﬁt_5—k2)

e K, K, constant:
o K, Ky, K3, k3, ks constant:

et = Kaxip (1= 1) e+ 0+ 2yt
5

5

JE (15— V)

o K1, Ky, K3, k3, ks, Cy, Cy constant:

t
s c, +

ﬂkli <K26\/§ Kle_\/% >
v 5

° Kl, KQ, Kg, k5, k7, Cg, 07 constant:

¢(z,y,t) = Ko+ (ﬁﬁk—) (:c+ﬁt)+ﬁ + (Kleﬁl‘ Kye \/T)
/802 Bk5

B k3 Cy Co(Bks — ks) BCy
o(z,y,t) = Ksz+ (y t) + ks Cs T+ A
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e K, Ky, K3, ks, k7 constant:

k k Pks 2 —\ /B
Oy, t) = Ky + -y F (e + Bt)) + B—,Z(KQe = Kie J)
5 5

9.5 Diffusion of a Chemically Reactive Species
in a Laminar Boundary Layer Flow

In the last section we are dealing with the two-dimensional equations of motion
of a chemically reactive species in a laminar boundary layer flow. The chemically
reactive species is hereby emitted from a surface of a body which is located in a
hydrodynamic flow field. The details can be found in [67].

The equations of motion for this model are given by

ou Ov
a7 + 8_y =0, (9.3)

which describes the conservation of the total mass, the kinetic equation

ou ou 1 0%u
- Ty = A4
u8x+vay+gp V8y2 0, (9.4)

and the equation of the concentration field for the critical component given off
by the surface

u—+v——d— +aW(c) =0. (9.5)

Hereby u(z,y) and v(x,y) = are the velocity components of the fluid in the z,
y-direction parallel and orthogonal to the surface, p = p(z) is the known pres-
sure distribution at the edge of the boundary layer, ¢ is the density and v is the
kinematic viscosity, which are assumed to be constant, as well as the tempera-
ture. c(z,y) is the dimensionless concentration based on the surface value, d is
the coefficient of diffusion in the mixture, « is a reaction rate constant and W (c)
is a dimensionless reaction rate which depends only on the concentration of the
critical component, where a simple one-stage reaction mechanism in an isother-
mal flow field is considered. In this reaction the reactive component given off by
the surface, which is the critical component, and the reaction products form a
three-component mixture together with either an inert or reactive carrier fluid,
which is present as the major component.

The solutions which we found by using the involutive solution method and the
two-dimensional, three-dimensional and two-fold continuous symmetry goups (for
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different functional forms of W (c)) are:

e K constant, f!, f2, f3, f4 arbitrary functions of z:

>
Wiy = @)@,
u(m,y) = fl(x)a
Wy) = F1) vl ()
dey) = L)

e Ky, Ks, ki, Cq, Cy, Cs constant, f, f? arbitrary functions of z:

pe) = Ko—3f'(@)
W(c(z,y)) = Ci+Caclz,y),
u(z,y) = fl(z),
o(a,y) = fAz)—yfY (@),
05, 1 C2A® Oy
c(z,y) = Kie '@y @ _ 21

Cy’

where
z 2
Alz) = / dz’ (—% +dCyC2f(2') — ki Cs f2(x')>

® ki, ks, ks, C1, Cy, Cy constant:

p(ﬂ:) = Cla
W(x,y) = kla
ks — 6xv
u\z,y = )
(z,9) "
6v
T,y = T
(z,9) y

k (6] d
2 1 _o_
c( ’y) 2Cy y (2d—|— 12v 5( 30 y) ’ )
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L kQ, Kl, KQ, Cl, Cg, 03, Cg constant:

p(x) = 017
14250
W(C(ﬂ?, y)) = (CZ + C'30(‘/1:7 y)) %,
kg — 6zv
U(.T,y) = T3
)
6v
U(.Z',y) = T
Y
C _C
c(z,y) = —5 + Ky % .
3
O3
9 d(C31+09) o T 20y
Cg (6.%'1/ — kz) 3vCy — chg(d(C;J, + Cg) — 6I/Cg)

e C4, C7 constant, f!, f2 arbitrary function of z:

p(m) = C7a
W) = ~ @),
u(x,y) = C4a
o(z,y) = fl(z),
c(z,y) = fiz)

o ki, k4, ks, Cy, Cg, C7 constant, f2, f3 arbitryary function of y:

p(x) = Cr+ CyCs,

1 n !
W(z,y) = —(df*(y) =k f* ),
CQCG k4l/ ky
+——ev?,

ok Y k1

U(Z’,y) = k5_
’U(Il',y) = kla

cz,y) = )
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o ky, ko, k3, K1, Ky, Cy, Cy, C; constant, f arbitrary function of its argument:

p(.’E) = C"77
k
Wia,y) — f(y—élog(cﬁ(hw)),
2
u(x,y) _ 6k3l/(Cz+C4l')

Ci (ko + ks (v— B log (Co+ Cuz)) )

k5w (kuks + Ci (ko + ks (y = B 1og (Co + Cia)) ) )
v(z,y) = — 3 ;
Cs (ks + ks (y = & 1og (Co + Cur) ) )

1 y—%log(cg+c4w)
C(.’L’,y) = K2+E/<
0

¢ 6v
(Kld + a/ d¢" (ko + k3§”)7f@”))

G

¢’ (ks + ks¢')~ -

o K, Ky, ks, k3, Cy, C4, C; constant, f arbitrary function of y:

p(l’) = 07)
W(z,y) = f(v),

. GI/kg(Cz + C4$)
u('x7y) - C4(k2+k3y)2 )
’U(:L' ) _ 6k31/

Y kg +k3y,

1 Y 6r y, v
c(z,y) = Ko+ 3/ dy' (ke + k3y') @ <K1d+ Ot/l dy" (ks + k3y”)%f(y”)>
Yo

Yo

o Ky, Ky, ki, k4, ks, C7 constant, f arbitrary function of y:

p(:z:) = Cy,
W(z,y) = f(y),
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u(z,y)
v(z,y)

c(z,y)

k4I/ k1
evy,
ky

ks +
ky,

Ko+ - v

1 v ky y'
/ dy'ea? K1d+a/ dy"e”
Yo Yo

d
o

o K, ki, k3, C4, C7 constant, f arbitrary function of z:

L4 Kl, K2, kl, k3, 02,

k1,
ks,
ks — 6xv
Y2
6v

b

Y

Y G L
Y \2d+120

I

Cy

C6 + k2(k5 — 611311)_2_;">

Cs, Cy4, C5, Cg constant:

k?n
kla

k1, n

119

)
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C,
602255 +0%
uey) = - __ 05\
(Cz + Csyz 2(05+CG)>
___ G
_LCE <C’5+C’ 2) — 2C3yx 2(C5+C%)
v(z,y) = 3vCsz xCs+Ce) ,

Cs 2
(02 + ngafm)

Cs
Cy kijoux Cs+Cs o 2
= S T a2 A 2(C5+Cq)
C(may) 05 + 20%(([—{—61/) (CQ+C3yJ,' 51TC6 > +

_Cs R
K1z %5+C (02 + Csyx 2(05+Ce)) +

_05_ _ CE )\2
z%7% Ko (02 + Csyzx 2(05+CG))

with

1, 730G +2C) + \/dC5 (Cs5 + Cp)(d — 30w + L& 4 Py

)\1 = §+ Zd(CS + 06) ,

| —3v(Cs +2C5) — 1/dC5(Cs + Ce)(d — 30w + LU 4 80w

Ay = §+ 2d(05 - 06)

o K, Ky, Cy, C3, C4 constant, f arbitrary function of y:

p(l’) = 04)
B 6zvC2
u(l’,y) - —m,
v(z,y) = __6vCs
Y B 02 + C3y,

1 y v y
c(z,y) = Ko+ P / dy'(Cy + Csy' )_% <K1d+ a/’ dy"(Cs + ng")%f(y")>
Yo

Yo
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o Kl, KQ, kz, kg, CQ, C3, 04, 06 constant:

p(z) = ks,
W(.’L’,y) = k?a
6zvC32
u x, = -,
(z,9) L
v(z,y) = __6vCs
Y Cy + Csy’
Sa _6vCs koory?
c(z,y) = Kz+log (:c % (Cy + C3y) cﬁ(d—eu)) + %;Tyﬁy) i
kgCgay Kid

(Cy + C3y)lf%u

C3(d + 61/) Cg(d — 61/)

o Ky, Ky, ks, ks, Cy, Cg, C7, Cg constant, J, Y Bessel functions:

p(l') = k27
W(C(.’B, y)) = 08(04 + 056('7:7 y))7
6zvk?
u(x, = ——
() (ko + k3y)?
’U(.’L‘ ) _ 6Vk3
Y ko + ksy’
Cy 7 1_3v
C(.’L‘,’y) = _57 + x% (k2+k3y)2 d (KlJ)\(g) +K2Y)\(§))7
with
1 36v2  12(Cs + 2Cy)
A= —4/1 —
2\/ e iCs

f — C7CgOl k‘z + k3y
V. d ks

® ki, ko, ks, ks, Cy4, Cg constant:

p(m) = ky,
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W(mvy) = k27
k5 — b6zv
u(z,y) = T’
6v
’U($,y) = _37
I kaa —2— 4
C(.’l),y) - E6+y <2d—|—121/+k4(k5 61131/) 3

e ki, k3, Ky, C4, Cs, Cg, Cg constant:

p(z) = ki,
CE-&-CQ
W(c(z,y)) = Cs(Cy+ Csc(z,y)) o
k3—6.’131/
u(z,y) = B
6v
’U.%', = )
(z,y) ”
Cy o5 205 205 %
= —— + Ky2%y © —ks) ©
c(z,y) C, TH02%y % By — k) (d(205+06)—61/06

G d(2C5+C6)
Cs

EQ
<36x2K§5 av®Cy® Cg + (2d(2Cs + Cs) — 12vC6) (6 — k3) ™ %6
Cs

Ce Cg Cs  Ce o
—121‘K205 al/C5CE’ Cgk3 + K205 aC505 Cgkg))



Chapter 10

Conclusion

In this work we found new solutions to physically important differential equa-
tions. We did this by introducing a new method to find invariant solutions. We
call this method the method of involutive reduction or solution. The basic
idea for this new method appeared in the work of Olver and Rosenau [41, 42]. In
this work the invariant surface condition was appended to the differential equa-
tion under consideration and this coupled system was then solved by using some
integrability conditions to simplify the calculations.

We generalized this procedure by using a whole involutive algorithm to calculate
all integrability conditions according to Riquier and Janet. To use all these in-
tegrability conditions effectively for a reduction or even a solution to differential
equations, we coupled this algorithm with a solution tool based on MathLie [24]
to solve simple partial differential equations by heuristic methods.

The involutive reduction procedure automatically applies the involutive algo-
rithm and the heuristic solver alternately to the coupled system of differential
equations. In this way the involutive algorithm helps to simplify the involved
differential equations which more easily leads to solutions by the heuristic solver.
In reverse, the solutions found by the heuristic solver lead to simplifications by
the insertion of these solutions, which is done by the involutive algorithm auto-
matically. Thus, each single method helps the other method in simplifying and
reducing the coupled system.

To implement the involutive solution procedure, that is the automated coupling
of involutive and heuristic methods, in an effective way, we used a unique rep-
resentation of the equations under consideration. In this new representation a
single part of a term of an equation is built up as a list of numbers. That means
that a term, an equation and a system of equations is nothing more than several
nested lists. For such nested lists we developped and implemented the discrete
involutive calculus which reflects the computations with the usual representation
of terms in equations.

Another important aspect of the involutive reduction method is concerned with
case distinctions. Case distinctions are very important when keeping in mind

123
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that an equation can only be inserted into another one if its prefactor is unequal
to zero. Since we are dealing with polynomially nonlinear differential equations
these prefactors also depend upon the dependent variables which appear in the
system of differential equations. To reach such a case distinction each prefactor
is checked if it involves expressions containing dependent variables. If so, the
prefactor is compared against a list of previously obtained prefactors which are
unequal to zero. If it is not contained there a case distinction is performed and
new systems are built up, one in which the new prefactor is unequal to zero and
one in which it is zero. To remember the previous prefactors unequal to zero a
list of these prefactors is added to each system so the user is able to see on which
conditions the result obtained depends.

With the involutive reduction procedure, which is implemented in Mathematica,
we obtained solutions to physical problems, such as the diffusion of a chemi-
cally reactive species or low-frequency drift-waves in magnetized plamas, as well
as solutions to differential equations which play an important role in financial
mathematics. For a generalized Black-Scholes equation in which the volatility
depends on time we even solved a boundary value problem. To obtain such solu-
tions we used symmetry analysis and searched for invariant solutions. To get rid
of the problem concerning the nonlinearity of the group constants we used the
full infinitesimal generator for the invariant solutions.

Summarizing, with this work we showed that this new method, the involotive
solution procedure, and with it the inplementation of it are able to automatically
find solutions to differential equations.
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Zusammenfassung

Diese Arbeit beschaftigt sich mit der Berechnung von invarianten Lésungen von
Differentialgleichungen. Dazu wird eine neue Methode benutzt, die sog. Involu-
tive Reduktion. Die Grundlage dieser Methode findet sich in der Arbeit von
Olver und Rosenau [41, 42]. Hierin wird bemerkt, dafl durch Ergénzen der ur-
spriinglichen Differentialgleichungen mit der Invarianzbedingung fiir Losungsfla-
chen und der Ausnutzung von einigen Integrabilitdtsbedingungen dieses gekop-
pelte System gelost werden kann.

Diese Vorgehensweise wurde dahingehend verallgemeinert, dafl anstelle einiger
wahlloser Integrabilitdtsbedingungen ein involutiver Algorithmus nach Riquier
und Janet verwendet wird, um systematisch alle Integrabilitatsbedingungen zu
berechnen und diese zur Vereinfachung des Systems zu verwenden. Dariiberhinaus
wird dieser involutive Algorithmus zum ersten mal iberhaupt mit einem heuris-
tischen Differentialgleichungsloser gekoppelt, der auf MathLie zuriickgeht.
Diese automatische Kopplung von Vereinfachung und Losung von gekoppelten
Differentialgleichungen bildet die Grundlage der involutiven Reduktion. Durch
das Wechselspiel beider Komponenten erganzen sich beide und fithren so zu einer
Reduktion bzw. Losung des urspriinglichen Systems von polynomial nichtlinearen
Differentialgleichungen. Der Vereinfachungsalgorithmus nutzt das System und
seine Integrabilitdtsbedingungen um dieses zu vereinfachen und dadurch leich-
ter zu losen, wohingegen der Losungsalgorithmus Losungen hervorbringt, die mit
dem Vereinfachungsalgorithmus wieder in das System eingesetzt werden usw. Auf
diese Weise erginzen sich beide Algorithmen bei der Reduktion bzw. Loésung von
Systemen von Differentialgleichungen.

Um die Methode der involutiven Reduktion in Mathematica effektiv umzusetzen
werden die Differentialgleichungen auf eindeutige Weise in eine Listendarstellung
transformiert. Um mit dieser Listendarstellung Berechnungen durchzufiihren
wird ein eigener Calculus (discrete involutive caclulus) implementiert der die
notigen Berechnungen erlaubt.

Des weiteren wurde ein Mechanismus entwickelt und implementiert der es erlaubt
anhand von Vorfaktoren eine Fallunterscheidung durchzufiihren. Dies ist notig
um keine Losungen zu verlieren. Dazu wird untersucht ob ein Vorfaktor einer Dif-
ferentialgleichung ungleich Null ist oder nicht. Dies geschieht durch Vergleich des
Vorfaktors mit einer bereits existierenden Liste von Vorfaktoren die ungleich Null
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sind. Falls der zu untersuchende Vorfaktor darin auftaucht wird die Gleichung
eingesetzt. Falls er nicht auftaucht wird eine Fallunterscheidung durchgefiihrt.
Der bestehende Fall wird ersetzt durch zwei andere Falle, einer in dem der Vor-
faktor als ungleich Null angenommen wird, die Gleichung eingesetzt wird und die
Vorfaktorliste modifiziert wird, und ein anderer in dem der Vorfaktor identisch
Null ist und somit keine Einsetzung moglich ist.

Mit Hilfe dieser eben kurz beschriebenen involutiven Reduktion werden Lésungen
zu physikalischen Problemen berechnet, so zum Beispiel fiir die Diffusion einer
chemisch reaktiven Substanz, fiir magnetisierte Plasmen oder fiir grundlegende
Gleichungen der Finanzmathematik, wie der Black-Scholes Gleichung. Hierbei
wird mit Hilfe der Symmetrieanalyse und der involutiven Reduktion das Randw-
ertproblem fiir eine verallgemeinerte Black-Scholes Gleichung mit einer beliebig
zeitabhangigen Volatilitat gelost. Hierzu sei bemerkt, dafl bei der Aufstellung
der Invarianzbedingung fiir die Losungsflache stets der vollstandige infinitesimale
Generator benutzt wird, um Probleme mit nichtlinear auftretenden Gruppenkon-
stanten zu vermeiden und moglichst allgemeine Losungen zu finden.
Abschliessend 148t sich feststellen, da3 die hier entwickelte und implementierte
Losungsmethode der involutiven Reduktion, wie hier gezeigt, fahig ist vollau-
tomatisch Losungen fiir gekoppelte polynomial-nichtlineare Systeme von Differ-
entialgleichungen zu berechnen.



Danksagung

Zuerst einmal mochte ich mich bei Herrn Prof. Dr. Baumann fiir die Freiheit
der Wahl des Themas, die Annahme als Doktorand und die prompte Hilfe bei
etwaigen Problemen bedanken. Herrn Prof. Dr. Nonnenmacher danke ich fiir die
Ubernahme des Zweitgutachtens. Des weiteren mochte ich mich bei allen Mit-
gliedern der Abteilungen Mathematische Physik und Theoretische Chemie fiir die
angenehme Atmosphére bedanken, insbesondere Herrn Prof. Dr. Witschel und
Herrn PD Dr. Taubmann fiir die angenehme Zusammenarbeit und Herrn Dipl.
Phys. Jiirgen Dollinger und Herrn cand. phys. Ronald Schmid fiir die Hilfe bei
Problemen jeglicher Art und das angenehme Abteilungsleben.

Weiterhin mochte ich mich bei meinen Eltern bedanken die mich immer un-
terstiitzt haben und ganz besonders bei meinem grofiten Schatz, ohne den es
gar nicht mehr geht, fiir all die Unterstiitzung und Aufbauarbeit, obwohl meine
Aufmerksamkeit manchmal zu wiinschen tbrig lies.



Erklarung

Ich erklare hiermit, dafl ich die vorliegende Arbeit selbstandig angefertigt und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie die
wortlich oder inhaltlich iibernommenen Stellen als solche erkenntlich gemacht
habe.

Joachim Engelmann



Curriculum Vitae

Name Joachim Engelmann
geboren am 10.7.1972
in Giengen an der Brenz

Eltern Valentin Engelmann und Veronika Engelmann geb. Ulrich

1979-1983 Grundschule in Giengen

1983-1992 Margatere-Steiff-Gymnasium in Giengen
Allgemeine Hochschulreife

1992-1993 Ableistung des Wehrdienstes

1993-1998 Physikstudium an der Universitat Ulm

30.8.1998 Diplom in Physik

seit September 1998 Promotion in der Abteilung Mathematische Physik



