
Optimal Control of

Stochastic Fluid Programs

Habilitationsschrift
an der Fakultät für Mathematik und

Wirtschaftswissenschaften
der Universität Ulm

vorgelegt
von

Nicole Bäuerle
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List of Symbols

Commonly used Symbols

IN set of positive integers
IN0 IN ∪ {0}
IR set of real numbers
IR+ set of nonnegative real numbers
IR+ IR+ + {∞}

B(S) Borel-σ-algebra on S
◦
S interior of S

1S(·) indicator function of set S
ei i-th unit vector
11k vector of 1’s with dimension k
|h| max{h,−h}.
‖ · ‖ vector norm.
x ∧ y componentwise minimum of vectors x and y.
x ∨ y componentwise maximum of vectors x and y.

∂
∂y
V (y, z) derivative w.r.t. y.

ṗt derivative w.r.t. time t.
I identity matrix
δx Dirac measure.
⇒ weak convergence.

< · > quadratic variation.
DN [0,∞) set of functions f : [0,∞) → IRN which are right

continuous and have left-hand limits.

Abbreviations

a.s. almost sure.
DSFP Discretized Stochastic Fluid Program.
i.i.d. independent and identically distributed.
SFP Stochastic Fluid Program.

w.l.o.g. without loss of generality.
w.r.t. with respect to.
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1 Introduction

In manufacturing and telecommunication systems we often encounter the situation
that there are different timescales for the occurence of events. For example, if we
allow for random breakdowns of machines in manufacturing models, we typically
assume that the production process itself is much faster than the breakdowns of
machines (cf. Sethi/Zhang (1994)). In the celebrated Anick/Mitra/Sondhi-model
(1982), the authors suppose that the cell stream sources in ATM multiplexers
are on-off sources. Thus, we have a certain cell transmission when the source is
on (talkspurt state) and no transmission when the source is off (silent state). The
durations of the state lengths are random. In both cases we obtain adequate models
when we replace quantities that vary faster with their averages, whereas we keep
the stochastics of the slower process. Formulations of this type are commonly used
and important in stochastic modeling. We now want to give a unified approach
towards the optimal control of such systems which we will call Stochastic Fluid
Programs. An informal description of the evolution of stochastic fluid programs
is the following: Suppose S ⊂ IRN is the state space of the system and y ∈ S
the initial state. The local dynamics of the system are determined by an external
environment process (Zt) which we assume to be a continuous-time Markov chain
with finite state space Z and generator Q (this assumption can be relaxed to (Zt)
being a semi-Markov process). Whenever Zt = z, the system evolves according to
yt = y +

∫ t
0 b

z(u(y, z, s)) ds, where u : S × Z × IR+ → U ⊂ IRK is a control and
bz is a given linear function bz : U → S. U is our action space. Moreover, a cost
rate function c : S × Z × U → IR+ and an interest rate β ≥ 0 are given. The
6-tuple (E = S × Z,U, b,Q, c, β) will be called a Stochastic Fluid Program (SFP).
We are interested in minimizing the β-discounted cost of the system over an infinite
horizon for β > 0 as well as minimizing the average cost for β = 0.
Let us first look at the following example of a multi-product manufacturing system
with backlog. We have a number of machines in parallel which can produce N
different items and certain demand rates µ1, . . . , µN ≥ 0 for the items. Denote
µ := (µ1, . . . , µN). Since the machines are subject to random breakdown and
repair, the total production capacity λ(z) ∈ IR+ depends on the number z = Zt

of working machines at time t. Zt is our environment process. The vector Yt =
(y1(t), . . . , yN(t)) gives the inventory/backlog of each product at time t and we
assume S = IRN . We have to decide now upon the partition of the production
capacity, hence we define U = {u ∈ [0, 1]N | ∑N

j=1 uj ≤ 1}, where uj is the
percentage of the production capacity that is assigned to product j, j = 1 . . . , N .
For u ∈ U, z ∈ Z the local dynamics of the system are given by bz(u) = λ(z)u− µ.
Hence, the data

E = IRN × Z

U = {u ∈ [0, 1]N |
N∑

j=1

uj ≤ 1}
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bz(u) = λ(z)u− µ

together with a cost rate function c, interest rate β and generator Q of the envi-
ronment process specifies our problem.
In Section 2 we will consider the β-discounted optimization problem. By (Yt) we
denote the stochastic process of the buffer contents and by (Xt) = (Yt, Zt) the joint
state process. x ∈ E should always be understood as x = (y, z). At the jump
times (Tn) of the environment process (Zt), decisions have to be taken in form of
a control u : E × [0,∞) → U and φt(x, u) := y +

∫ t
0 b

z(u(x, s)) ds gives the state
of the system at time t under control u, starting in x. u is called admissible if
φt(x, u) ∈ S for all t ≥ 0 and a sequence π = (un) of admissible un defines a policy.
Hence we have Yt = φt−Tn(XTn , un) for Tn ≤ t < Tn+1 and πt := un(XTn , t − Tn).
The optimization problem is

V (x) = inf
π
Vπ(x) = inf

π
Eπ

x

[∫ ∞

0
e−βtc(Xt, πt) dt

]
,

where the infimum is taken over all policies. Thus SFPs are a special class of piece-
wise deterministic Markov processes (see Davis (1993), Forwick (1998)) with one
exception: in our model we allow for constraints on the actions and the process can
move along the boundary of the state space. In the literature one can find examples
of SFP which have been solved explicitely, see e.g. Akella/Kumar (1986), Presman
et al. (1995), Rajagopal et al. (1995), Bäuerle (1998b). Related models are Markov
decision drift processes (cf. Hordijk/Van der Duyn Schouten (1983)) and the more
specific semi-Markov decision processes. In contrast to our model, one is here
allowed to control the jumps of the process and not the deterministic behaviour
between jumps. Consequently we will use numerous results from piecewise deter-
ministic Markov processes and accommodate them to our constrained problem. In
particular we will exploit the fact that the optimization problem can be reduced to
a discrete-time Markov decision process. To prevent the use of relaxed controls, we
will make several convexity assumptions. For our applications this is no crucial re-
striction. We will prove under some continuity and compactness assumptions that
an optimal stationary policy exists which is the solution of a deterministic control
problem (Theorem 2.5). Moreover, we show under certain conditions that the value
function V is a constrained viscosity solution of a Hamilton-Jacobi-Bellman (HJB)
equation and derive a verification Theorem (Theorem 4.3).
Beyond the discounted cost, we will consider in Section 3 the minimization of the
average cost, i.e. we are interested in finding

G(x) = inf
π
Gπ(x) = lim sup

t→∞

1

t
Eπ

x

[∫ t

0
c(Xs, πs) ds

]
.

Due to some technical reasons we are forced to consider a slight modification of our
SFP. We will now work with the uniformized version of the environment process
(Zt) and allow decisions to be taken at jump times of the uniformized version
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(whether or not a real jump occurs). There are only very few recent papers dealing
with the average cost criterion in SFP, see for example the special production
model in Sethi et al. (1997) and Sethi et al. (1998). We tackle the problem again
by discretizing the continuous problem and using the vanishing discount approach.
Under certain assumptions, which are mainly due to Sennott (1989a) and following
essentially the ideas in Schäl (1993), we prove the existence of average cost optimal
policies (Theorem 3.6). This has not been done in the earlier work of Sethi et al.
(1997, 1998). Since the assumptions in Theorem 3.6 are not easy to verify, we will
give some sufficient conditions for them. Mainly these conditions imply positive
Harris recurrence of the controlled state process. We will also show that the relative
value function is a constrained viscosity solution of a HJB-equation and derive a
verification Theorem (Theorem 4.4).
We will apply our results to three examples which are interesting for themselves.
The first one is the previously defined multi-product manufacturing system. It has
already been considered in Sethi/Zhang (1994), Sethi et al. (1997) and Sethi et al.
(1998). However, their approach is different from ours in that they directly operate
with the continuous model. In the cases of one or two products we derive the
optimality of threshold and switching-curve policies respectively (cf. also Rajagopal
et al. (1995)). The second example is a generic single-server network with routing
which is the fluid analogue of the famous Klimov problem (see e.g. Klimov (1974),
Walrand (1988)). The environment process influences here the inflow rates of the
buffers. The purely deterministic model has been investigated in Chen/Yao (1993).
It is possible to prove that the optimal policy is a so-called index-policy and the
indices coincide with the indices of the Klimov-problem. This result holds for the
discounted as well as for the average cost problem (here under a suitable stability
condition which implies the finiteness of the average cost) and the indices are
independent of the interest rate and the arrival intensity. The third application
is the routing to parallel queues, where the arrival rate of fluid depends on the
environment process. In the case of equal linear holding cost we can show that
the least-loaded routing policy is optimal for both optimization criteria. In the
deterministic two-buffer case we obtain the optimality of a switching curve policy,
where the switching curve can be computed explicitely.
Another interesting topic that we will deal with in Section 7 is the following: If we
have only one environment state, then our SFP reduces obviously to the following
purely deterministic control problem

(F )



∞∫
0
e−βtc(yt, at) dt→ min

yt = y0 +
t∫
0
b(as) ds

yt ≥ 0,
at ∈ U, t ≥ 0

which we will refer to as the fluid problem. In recent years it turned out that there
is a close connection between the stability of stochastic queueing networks and their
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associated fluid problems (see e.g. Dai (1995), Bramson (1996), Maglaras (1998a)).
Following this idea, together with the observation that the optimal policies in
stochastic networks and the associated fluid problem often coincide, several authors
have conjectured that there is a strong connection between these optimization
problems (see Atkins/Chen (1995), Avram et al. (1995), Avram (1997), Meyn
(1997)). Such a connection would be very helpful since optimization problems
in stochastic networks are notoriously difficult to solve. Meyn (1997) proved for
the average cost case that the relative value functions, when properly normalized
converge against the value function in the fluid model. Since the problem (F ) is
relatively easy to solve (it often reduces to a so-called separated continuous linear
program (SCLP) which can be solved quite efficiently, cf. Pullan (1993, 1995),
Weiss (1996, 1997)), the crucial question is how the optimal control of (F ) can
be translated in a ”good” policy for the stochastic network. A numerical study,
where so-called ”Fluid Heuristics” are used for the control of stochastic networks
can be found in Atkins/Chen (1995). Alanyali/Hajek (1998) consider a special
routing problem and prove that the load-balancing policy which is optimal in the
associated fluid problem is asymptotically optimal in the stochastic network. In
Maglaras (1998a,b, 1999) one can find a systematical way to construct asymptotic
optimal policies in multi-class queueing networks for finite horizon problems (so-
called discrete review policies). The asymptotics is w.r.t. fluid scaling, which works
as follows: Suppose y ∈ S and denote by (Ŷ γ

t ) the state process starting in γy under
policy πγ = (fγ

n ), γ ∈ IN . The scaled state and action processes are Y γ
t := 1

γ
Ŷ γ

γt

and πγ
t = fγ

n (Ŷ γ
Tn

) if Tn ≤ γt < Tn+1 respectively, where (Tn) are the jump times of

(Ŷ γ
t ). The corresponding value function is

V γ
πγ (y) = Eπγ

y

[∫ ∞

0
e−βtc(Y γ

t , π
γ
t ) dt

]
,

i.e. we increase the intensity of the process by factor γ and reduce the jump
heights by the same factor. A sequence of policies πγ is asymptotically optimal, if
limγ→∞ V γ

πγ (y) = V F (y) for all y ∈ S. We will propose a different class of asymptot-
ically optimal policies, which we will call Tracking-policies. The policy is instation-
ary, however easy to implement. It relies on the fact that the optimal control of the
fluid problem is often piecewise constant (see Pullan (1995)) and hence uses the cor-
responding control on properly defined time intervals. Since the trajectories of the
so controlled stochastic network converge under fluid scaling against the trajectory
of the fluid problem, we have named this policy Tracking-policy. The asymptotic
optimality will be proven here only for multi-class queueing networks and admis-
sion/routing problems (Theorem 7.4 and 7.5), though this procedure works in a
quite general class of optimization problems. In particular, V F provides always an
asymptotic lower bound on the value functions, i.e. lim infγ→∞ V γ

πγ (y) ≥ V F (y) for
all y ∈ S (Theorem 7.3). For practical applications, we obtain a good performance
with the Tracking-policy, when we have a system with large initial state which is
working under a high intensity.
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The content of this paper is organized as follows: Section 2 and 3 contain the theory
about the β-discounted and the average cost optimality for SFP respectively. In
Section 4 we have summarized results which are useful for solving SFPs in practice.
In particular, we derive a HJB equation and a Verification Theorem for both criteria
together with a maximum principle for the discounted cost problem. Section 5
contains some numerical tools for solving SFPs. The purely deterministic case will
be dealt with separately in Section 5.1 since it is very important for the last Section
7 about asymptotic optimality as outlined before. In particular, we have refined an
algorithm which is due to Pullan (1993), in order to obtain a faster convergence for
our problems. For the numerical solution of the general SFP we will explain the
use of Kushner’s approximating Markov chain approach (Kushner/Dupuis (1992))
in Section 5.2. Finally, Section 6 contains three applications for SFPs which have
already been presented before.

Acknowledgment
I am grateful to my teacher Ulrich Rieder for his excellent guidance and encour-
agement during the last years and for some profound discussions with him which I
enjoyed very much. Also I would like to thank Manfred Schäl for numerous helpful
comments.



2 β-Discounted Optimality

In this section we consider Stochastic Fluid Programs with the β-discounted op-
timality criterion and infinite horizon. An informal description of the evolution
of such models is the following: suppose y ∈ IRN is the starting state of the sys-
tem. The local dynamics of it are influenced by an external process (Zt) which
is a continuous-time Markov chain or more general, a semi-Markov process (see
Remark 2.8 c). (Zt) will be called environment process. As long as Zt = z, the
system evolves according to yt = y +

∫ t
0 b

z(u(y, z, s)) ds, where u is an open-loop
control which has to be chosen from a set of functions and bz is linear. The decision
time points of the model are the jump times of the environment process. At these
time points a whole function has to be chosen which determines the control until
the next jump. The decision is Markovian i.e. it depends only on the state of
the system at that time. Finally, a cost rate function c depending on the state
and action is given. The expected β-discounted cost of the system over an infinite
horizon has to be minimized. A rigorous definition of the model will be given in
Section 2.1. As already mentioned in the introduction, Stochastic Fluid Programs
are a special class of controlled piecewise deterministic Markov processes (see Davis
(1993), Forwick (1998)) with one exception: in our model we have constraints on
the actions and the process can move along the boundary of the state space. To
obtain a general solution technique we will exploit the fact that the optimization
problem can be reduced to a discrete-time Markov decision process (see Section 2.2)
as has already been done in Davis (1993), Forwick (1998), Presman et al. (1995).
However, it is important to note that due to some convexity assumptions we do
not need the concept of relaxed controls. We can deal with ordinary deterministic
controls which makes the theory much easier. After investigating the relaxed opti-
mization problem in Section 2.3 we present our main theorem (Theorem 2.5) about
infinite horizon β-discounted Stochastic Fluid Programs in Section 2.4. It states
that under some continuity and compactness assumptions an optimal stationary
policy exists which is the solution of a deterministic control problem.

2.1 Continuous-time Definition

We will first give a definition of a Stochastic Fluid Program in continuous time
and make some basic assumptions about our model which will be valid throughout
the manuscript without further mentioning them. Let Z be a finite set and Q
a generator for a Markov chain on Z. We assume that Q = (qzz′) defines an
irreducible Markov chain. As usual denote qz := −qzz for z ∈ Z. Let S ⊂ IRN

and define by B(S) the Borel-σ-algebra on S. E := S × Z is called state space
of the system. A state x ∈ E is denoted by x = (y, z). U ⊂ IRK is the action
space of the system. For all z ∈ Z, linear functions bz : U → IRN are given, the
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so-called dynamics of the system. We will write b : Z × U → IRN to summarize
all bz. As we will see, the linearity of the dynamics will accomodate a rich class
of interesting problems. A measurable function u : E × [0,∞) → U is called an
open-loop control. Define

φt(x, u) := y +
∫ t

0
bz(u(x, s)) ds.

φt(x, u) gives the state of the system at time t under control u, starting in state
x. u is called admissible if φt(x, u) ∈ S for all t ≥ 0. Let π = (un) be a sequence
of controls, where all un are admissible. In this case we will call π a policy. When
we denote by (Tn), T0 = 0 the jump times of the environment process (Zt), then
un(XTn , t−Tn) is the control which has to be applied for t in the interval [Tn, Tn+1).
Moreover, we are given a measurable cost rate function c : E × U → IR+ and an
interest rate β > 0. These objects together will define our program:

Definition 2.1:
The 6-tuple (E,U, b,Q, c, β) is called Stochastic Fluid Program (SFP).

For a fixed policy π, there exists a family of probability measures {P π
x | x ∈ E} on

a measurable space (Ω,F) and stochastic processes (Xt) = (Yt, Zt) and (πt) such
that for 0 := T0 < T1 < T2 < . . .

Zt = ZTn for Tn ≤ t < Tn+1

Yt = φt−Tn(XTn , un) for Tn ≤ t < Tn+1

πt = un(XTn , t− Tn) for Tn ≤ t < Tn+1

and

(i) P π
x (X0 = x) = P π

x (T0 = 0) = 1 for all x ∈ E.

(ii) P π
x (Tn+1 − Tn > t | T0, XT0 , . . . , Tn, XTn) = e−qZTn

t.

(iii) P π
x (XTn+1 ∈ B×{z′} | T0, XT0 , . . . , XTn , Tn+1) =

qZTn
z′

qZTn

1B

(
φTn+1−Tn(XTn , un)

)
(1− 1{z′}(ZTn)) for z′ ∈ Z and B ∈ B(S).

The process (Xt) = (Yt, Zt) will be called state process. Obviously (Zt) is a
continuous-time Markov chain with generator Q and jump times (Tn). The op-
timization problem we are interested in is the following:

Definition 2.2:
Let π be a policy. For x ∈ E define by
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a)

Vπ(x) := Eπ
x

[∫ ∞

0
e−βtc(Xt, πt) dt

]
the expected discounted cost over an infinite horizon under policy π, starting
the system in x.

b)
V (x) := inf

π
Vπ(x)

the minimal expected discounted cost over an infinite horizon, starting the
system in x.

c) π is called β-discounted optimal, if it attains the infimum in b) for all x ∈ E.

Remark 2.1:

a) Formally one has to consider the state process X̄ := (Xt, ηt, τt) on the enlarged
state space E×E×IR+, whereXt is as before, ηt the state of the system directly
after the last jump and τt the time elapsed since the last jump. In particular,
the evolution of the system is then given by (φt(x, u), x, t). To ease notation,
one only considers the first component. However, there will be some cases,
where we will need the extended formulation. Note that for a fixed stationary
policy, (Xt) is not a Markov process, whereas (X̄t) is.

b) Since the jump times of (Zt) cannot be controlled, it is easily possible to
define for fixed x ∈ E a common probability measure Px on a measurable
space (Ω′,F ′) such that for all policies π there exist processes (Xπ

t ) = (Y π
t , Zt)

such that Px(X
π
t ∈ ·) = P π

x (Xt ∈ ·). This observation is useful for sample path
arguments.

2.2 Discrete-time Formulation

We will now show that the optimization problem in Definition 2.1 can be transfered
into an equivalent discrete-time dynamic program with substochastic transition
kernel. Exploiting this fact, it is (in principle) possible to apply the theory of
Markov decision processes. However, we will see that the action space causes some
difficulties.
Suppose a SFP (E,U, b,Q, c, β) as defined in the previous section is given. U is en-
dowed with the usual Borel σ-algebra. Denote byA := {a : IR+ → U | a measurable}
the action space and for x ∈ E by

D(x) := {a ∈ A | φt(x, a) = y +
∫ t

0
bz(as) ds ∈ S,∀t ≥ 0}
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the set of admissible actions. We assume that D(x) 6= ∅ for all x ∈ E and define
D := {(x, a) | a ∈ D(x)}. Furthermore, let the transition kernel p : D×B(S)×Z →
[0, 1] be defined by

p(x, a;B × {z′}) :=

 qzz′
∞∫
0
e−(β+qz)t1B (φt(x, a)) dt, if z′ 6= z

0 if z′ = z

and the one-step cost function C : D → IR+ by

C(x, a) :=
∫ ∞

0
e−(β+qz)tc (φt(x, a), z, at) dt.

p is obviously a substochastic transition kernel. A σ-algebra on A will be defined
in Section 2.3. F := {f : E → A | f measurable, f(x) ∈ D(x)} is called the set
of decision rules and π = (fn), where fn ∈ F is called a policy in the discrete case.
After adding an absorbing state ∆ which makes the transition kernel p stochastic,
we obtain for a fixed policy π that there exists a family of probability measures
{P̂ π

x | x ∈ E + {∆}} on a measurable space (Ω̂, F̂) and a discrete-time stochastic
process (X̂n) = (Ŷn, Ẑn) on (Ω̂, F̂) such that

(i) P̂ π
x (X̂0 = x) = 1 for all x ∈ E.

(ii) P̂ π
x (X̂n+1 ∈ B × {z′} | X̂0, . . . , X̂n) = p(X̂n, fn(X̂n);B × {z′}) for all z′ ∈ Z

and B ∈ B(S).

Remark 2.2:
It is important to point out that the Markov chain (Xn) as previously defined and
the process (Xt) as defined in Section 2.1 are two different objects, as well as the
corresponding policies. In what follows we will skip the ”̂” in the notation. It
should always be clear from the context, whether the continuous or the discrete
version is considered and the notation should not lead to any confusion.

Definition 2.3:
The 6-tuple (E,A,D, p, C, β) is called the Discretized Stochastic Fluid Program
(DSFP).

Remark 2.3:
To obtain the connection with the continuous-time definition it is important to note
that whenever π = (un) is a policy for the SFP, σ = (fn), where fn(x)(t) = un(x, t)
is a policy for the DSFP and vice versa. This result is not trivial since fn and
un have different measurability requirements. For a proof see e.g. Forwick (1998)
Theorem 2.2.14.
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Theorem 2.1:
Let π be a policy for the SFP and σ the corresponding policy for the DSFP. Then
we obtain

a) Vπ(x) = Eσ
x

[ ∞∑
n=0

C (Xn, fn(Xn))
]

b) V (x) = inf
σ
Eσ

x

[ ∞∑
n=0

C (Xn, fn(Xn))
]

Proof: Part b) follows directly from a). For a) let π be fixed. If we denote by {Ft}
the natural filtration of the state process (Xt) we obtain by conditioning on {FTn}

Vπ(x) = Eπ
x

[∫ ∞

0
e−βtc(Xt, πt) dt

]
= Eπ

x

[ ∞∑
n=0

∫ Tn+1

Tn

e−βtc(Xt, πt) dt

]

= Eπ
x

[ ∞∑
n=0

Eπ
x

{∫ Tn+1

Tn

e−βtc(Xt, πt) dt
∣∣∣ FTn

}]

= Eπ
x

 ∞∑
n=0

e−βTnEπ
x


Tn+1−Tn∫

0

e−βtc(YTn+t, ZTn , fn(XTn)(t− Tn)) dt
∣∣∣ FTn




= Eπ
x

[ ∞∑
n=0

e−βTnC (XTn , fn(XTn))

]
,

c.f. also Davis (1993). Now we will show by induction on m ∈ IN that for all
x ∈ E, m ∈ IN

Eπ
x

[
m∑

n=0

e−βTnC (XTn , fn(XTn))

]
= Eσ

x

[
m∑

n=0

C (Xn, fn(Xn))

]

which yields the result. m = 0 is obvious. Suppose the assertion is valid for
k = 0, . . . ,m− 1. Then we obtain by applying the induction hypothesis

Eπ
x

[
m∑

n=0

e−βTnC (XTn , fn(XTn))

]

= C(x, f0(x)) + Eπ
x

[
e−βT1Eπ

XT1

{
m∑

n=1

e−β(Tn−T1)C(XTn , fn(XTn))
∣∣∣ FT1

}]

= C(x, f0(x)) +
∑
z′ 6=z

qzz′

qz

∫ ∞

0
e−βtEπ

(φt(x,f0),z′)

[
m−1∑
n=0

e−βTnC(XTn , fn+1(XTn))

]
qze

−qzt dt

= C(x, f0(x)) +
∑
z′ 6=z

qzz′

∫ ∞

0
e−(β+qz)tEσ

(φt(x,f0),z′)

[
m−1∑
n=0

C(Xn, fn+1(Xn))

]
dt

= Eσ
x

[
m∑

n=0

C (Xn, fn(Xn))

]
.
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For further investigations it is convenient to define the following operators. If
v : E → IR+ we denote the operator U by

Uv(x) := inf
a∈D(x)

C(x, a) +
∫ ∞

0
e−(β+qz)t

∑
z′ 6=z

qzz′v (φt(x, a), z
′) dt

 .
For f ∈ F we will use the following notation

Ufv(x) := C(x, f(x)) +
∫ ∞

0
e−(β+qz)t

∑
z′ 6=z

qzz′v (φt(x, f(x)), z′) dt.

f ∈ F will be called minimizer of v if f attains the infimum in Uv.

Remark 2.4:

a) Let π = (fn) be a policy for the DSFP. Then we have Vπ = limn→∞ Uf0 . . . Ufn0.
The proof is similar to the one for Theorem 2.1.

b) It is easily seen that both operators Uf and U are monotone, i.e. if we have
v, w : E → IR+ with v ≤ w then Ufv ≤ Ufw and Uv ≤ Uw.

The next aim will be to show the existence of optimal policies in the DSFP. There-
fore, we have to establish several compactness and continuity properties. This will
be done under

Assumption 2.1:

(i) S is closed and U is convex and compact w.r.t. the usual Euclidian norm.

(ii) c is lower semicontinuous on E × U and u 7→ c(x, u) is convex for all x ∈ E.

However, this causes some difficulties since we have to find a topology on A which
guarantees that A is compact and that also some continuity properties hold. To
cope with this problem we pass over to randomized actions. The action space can
then be shown to be compact w.r.t. the Young topology. This procedure will be
explained in the next section. It will turn out that our special DSFP formulation
allows for the minimum to be taken in the smaller set A of deterministic actions.

2.3 A Relaxed Problem

As indicated in the last section we will relax our DSFP by considering randomized
actions. Denote by IP (U) the set of all probability measures on U . Then we denote

R := {r : IR+ → IP (U) | r measurable}.
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Let a DSFP be given. For r ∈ R, x ∈ E, B ∈ B(S), z′ ∈ Z we define

φ̃t(x, r) := y +
∫ t

0

∫
U
bz(u)rs(du) ds

C̃(x, r) :=
∫ ∞

0
e−(β+qz)t

∫
U
c(φ̃t(x, r), z, u)rt(du) dt

p̃(x, r;B × {z′}) :=

 qzz′
∞∫
0
e−(β+qz)t1B(φ̃t(x, r)) dt, if z 6= z′

0 if z = z′

D̃(x) := {r ∈ R | φ̃t(x, r) ∈ S, ∀t ≥ 0}

D̃ := {(x, r) | r ∈ D̃(x)}

The relaxed DSFP is given by the previously defined quantities (E,R, D̃, p̃, C̃, β).

Remark 2.5:

a) As usual in Lp-spaces, r should be thought of as a representative of the λ1-
equivalence class.

b) IP (U) is endowed with the Borel-σ-algebra which is induced by the weak topol-
ogy. For a characterization of measurability of functions r : IR+ → IP (U) see
Lemma A.3.

c) A ⊂ R since the elements of A can be interpreted as the Dirac measures in
the set R. In particular we obtain φ̃(x, δa) = φt(x, a), C̃(x, δa) = C(x, a) and
so on.

It is possible to show that R is compact w.r.t. the Young-topology and R is metriz-
able. For definition of the Young-topology and a proof of these results we refer the
reader to Davis (1993) Section 4.3 or Forwick (1998) chapter 2. The following
Lemma will now be crucial.

Lemma 2.2:
Let a relaxed DSFP (E,R, D̃, p̃, C̃, β) be given. Under Assumption 2.1 it holds
that

a) The mapping (x, r) 7→ φ̃t(x, r) is continuous for all t ≥ 0.

b) D̃(x) is compact for all x ∈ E and D̃ is closed.

c) The mapping (x, r) 7→ C̃(x, r) is lower semicontinuous and C̃ ≥ 0.

d) p̃ is weakly continuous, i.e. (x, r) 7→
∫
v(x′)p̃(x, r; dx′) is continuous and bounded

for every continuous, bounded function v : E → IR.

e) The set-valued mapping x 7→ D̃(x) is upper semicontinuous.
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Proof:

a) See e.g. Davis (1993) Theorem 43.5 or Forwick (1998) Theorem 2.2.6.

b) Fix x ∈ E. We have

D̃(x) = {r ∈ R | φ̃t(x, r) ∈ S ∀t ≥ 0} = ∩t≥0{r ∈ R | φ̃t(x, r) ∈ S}.

Since S is closed and φ̃t(x, r) is continuous in r for all x and t, {r ∈ R | φ̃t(x, r) ∈
S} is closed. Hence D̃(x) is closed as the intersection of closed sets and since
D̃(x) ⊂ R it is compact.
Analoguously we can write D̃ = ∩t≥0{(x, r) | φ̃t(x, r) ∈ S} and since (x, r) 7→
φ̃t(x, r) is continuous for all t ≥ 0 we obtain that D̃ is closed.

c) and

d) see e.g. Davis (1993) Theorem 44.11 or Forwick (1998) Theorem 2.2.11.

e) Define the mapping ψ : E → D̃ by ψ(x) = D̃(x). Let B ⊂ R be closed (since
R is compact, B is also compact). We have to show that

ψ−1[B] := {x ∈ E | D̃(x) ∩B 6= ∅}

is again closed. Let xn ∈ ψ−1[B] with xn → x. Choose rn ∈ R, n ∈ IN such
that rn ∈ D̃(xn) ∩ B ⊂ B. Since B is compact there exists a convergent
subsequence rnk

→ r ∈ B for k →∞. Because of the closedness of D̃ it holds
that (xnk

, rnk
) → (x, r) ∈ D̃. This implies x ∈ ψ−1[B].

Remark 2.6:
The one-step cost function C and the transition kernel p depend by definition on
the interest rate β. To make the dependence explicit we will sometimes write Cβ

and pβ. It can easily be shown that even

(i) (x, r, β) 7→ C̃β(x, r) is lower semicontinuous.

(ii) (x, r, β) 7→
∫
E v(x

′)p̃β(x, r; dx′) is continuous and bounded for every continu-
ous, bounded function v : E → IR.

For v ∈ Clsc := {v : E → IR+ | v is lower semicontinuous} define the operator T
for the relaxed problem as

T v(x) = inf
r∈D̃(x)

C̃(x, r) +
∫ ∞

0
e−(β+qz)t

∑
z′ 6=z

qzz′v
(
φ̃t(x, r), z

′
)
dt

 .
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Theorem 2.3:
Let a DSFP be given and v ∈ Clsc. Under Assumption 2.1 there exists an f ∗ ∈ F
such that

Uf∗v = Uv = T v
and Uv ∈ Clsc.

Proof: Consider the relaxed DSFP. Due to our assumptions and using Proposition
7.31 in Bertsekas/Shreve (1978) (which also holds for substochastic transition ker-
nels) we can apply the measurable selection Theorem A.1 to show that there exists
a measurable g : E → R with g(x) ∈ D̃(x) for all x ∈ E which attains the infimum
in T v and T v ∈ Clsc. Since A ⊂ R implies Uv ≥ T v, it is now enough to show
that there exists an f ∗ ∈ F with Uf∗v = Uv ≤ T v.
For r ∈ R define at =

∫
U urt(du), t ≥ 0. Since U is convex, at ∈ U for all t ≥ 0

(see e.g. Hinderer (1984) Theorem 25.10) and is measurable due to Lemma A.3,
hence a ∈ A. Moreover, since bz is linear

φ̃t(x, r) = y +
∫ t

0

∫
U
bz(u)rs(du) = y +

∫ t

0
bz
( ∫

U
urs(du)

)
ds

= φt(x, a)

which implies in particular that a ∈ D(x). Using the convexity of c in the last
component we obtain with the Jensen inequality

C̃(x, r) =
∫ ∞

0
e−(β+qz)t

∫
U
c(φ̃t(x, r), z, u)rt(du) dt

≥
∫ ∞

0
e−(β+qz)tc(φt(x, a), z,

∫
U
urt(du)) dt = C(x, a).

Now we define for all x ∈ E and t ≥ 0

f ∗(x)(t) =
∫

U
ug(x)(t, du).

Then f ∗ : E → A is measurable (see Lemma A.3) and f ∗(x) ∈ D(x). Moreover,
for fixed x ∈ E we obtain T v = Tgv ≥ Uf∗v ≥ Uv which implies T v = Uv and the
proof is complete.

2.4 β-Discounted Cost Optimality Equation

We will first consider the finite-horizon optimization problem for a DSFP. Define
for a policy π = (f0, . . . , fn−1), n ∈ IN and x ∈ E, the expected discounted cost
over n-stages using policy π and starting in x by

Vnπ(x) := Eπ
x

[
n−1∑
k=0

C (Xk, fk(Xk))

]
.
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And the minimal expected discounted cost over n-stages starting in x by

Vn(x) := inf
π
Vnπ(x)

where the infimum is taken over all policies π. In the sequel we will always set
V0 := 0. The proof of the next lemma follows e.g. along the lines of Rieder (1994),
see also Hernández-Lerma/Lasserre (1996).

Lemma 2.4: (Value iteration)
With the preceding definitions we obtain under Assumption 2.1

a) Vn(x) = UVn−1(x) = Un0, n ∈ IN .

b) If fk is a minimizer of Vk−1, k = 1, . . . , n which exists, then the policy π =
(fn, . . . , f1) is optimal for the n-stage optimization problem.

We will now return to our infinite-horizon optimization problem. The following
assumption is needed.

Assumption 2.2:
There exists a policy π such that Vπ(x) <∞ for all x ∈ E.

Theorem 2.5: (β-Discounted cost optimality equation)
Suppose that the Assumptions 2.1 and 2.2 hold. Then

a) V is the minimal solution of the β-discounted cost optimality equation V =
UV , i.e. for all x ∈ E

V (x) = min
a∈D(x)

C(x, a) +
∫ ∞

0
e−(β+qz)t

∑
z′ 6=z

qzz′V (φt(x, a), z
′) dt

 . (2.1)

b) There exists a minimizer f ∗ ∈ F of V in (2.1) and the stationary policy
(f ∗, f∗, . . .) is β-discounted optimal.

Remark 2.7:
Let f ∈ F . For the stationary policy π = (f, f, . . .) we write f∞ := π and Vf := Vπ.
Moreover, for π = (f, . . . , f) we denote Vnf := Vnπ.
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The proof of part a) and b) follows essentially as in Hernández-Lerma/Lasserre
(1996).

Proof: a),b) Since 0 ≤ C we obtain immediately for all x ∈ E

0 ≤ Vn = Un0 ≤ V

and since the operator U is monotone we have Vn ↑ V̂ ≤ V . From Lemma A.2
(interchange of min and lim) together with Theorem 2.3 and the monotone con-
vergence Theorem it follows that

V̂ := lim
n→∞

Vn = lim
n→∞

UVn−1 = lim
n→∞

T Vn−1 = T lim
n→∞

Vn−1 = T V̂ = U V̂

i.e. V̂ is a solution of the optimality equation and V̂ is lower semicontinuous. On
the other hand we know from Theorem 2.3 that there exists a decision rule f ∗

which attains the infimum in V̂ = U V̂ . Thus we obtain

V̂ = Un
f∗V̂ ≥ Un

f∗0 = Vnf∗

for all n ∈ IN which implies V̂ ≥ Vf∗ ≥ infπ Vπ = V . Therefore, V̂ = V . Moreover,
if W is an arbitrary solution of the optimality equation we can repeat the argu-
ments and obtain W ≥ V . This completes the proof of a) and b).

Remark 2.8:

a) A natural question that arises when reading Section 2.1 is why the policies
have been defined in a discrete way. A natural candidate for a policy would
be a measurable mapping πt : Ht → U, t ≥ 0, where Ht gives the history
of the process (Xt) up to time t and the corresponding state process satisfies
Y π

t ∈ S for all t ≥ 0. However, it is known that Theorem 2.5 remains valid if
we would minimize over all policies π = (fn) such that fn+1 depends on the
history hn = 0x0f1t1x1 . . . fntnxn, n ∈ IN . Thus in terms of Yushkevich (1980)
Theorem 2.5 states that the optimal policy can be found among the simple
strategies and applying Theorem 2 of Yushkevich (1980), we obtain under our
assumption that minimizing over policies πt gives the same value function.

b) All the previous Lemmas and Theorems remain valid, when we allow the en-
vironment process (Zt) to be a more general semi-Markov process, i.e. if for
x ∈ E and policy π

P π
x (Tn+1 − Tn ≤ t, ZTn+1 = z′ | T0, XT0 , . . . , Tn, YTn , ZTn = z) = Fzz′(t)pzz′ .

If we denote by F̄zz′(t) := 1 − Fzz′(t) the survival function, by F̄z(t) :=∑
z′ pzz′F̄zz′(t) and by fzz′ the density of Fzz′ , then we obtain for the DSFP

pSM(x, a;B × {z′}) = pzz′

∞∫
0

e−βtfzz′(t)1B (φt(x, a)) dt
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CSM(x, a) :=
∫ ∞

0
e−βtF̄z(t)c (φt(x, a), z, at) dt.

All other data remains the same. In particular the optimality equation (2.1)
is now of the form

V (x) = min
a∈D(x)

[
CSM(x, a) +

∫ ∞

0
e−βt

∑
z′
pzz′fzz′(t)V (φt(x, a), z

′) dt

]
.

2.5 Properties of the Value Function

Suppose a SFP as defined in Section 2.1 is given and Assumptions 2.1 and 2.2 hold.
We will prove several properties of the value function which will be important in
obtaining structural results for the optimal control. In the following, we fix z ∈ Z.

Lemma 2.6:
If S is convex and y 7→ c(y, z, u) is convex for all u ∈ U, z ∈ Z then V (y, z) is
convex in y.

Proof: The proof is by means of a sample path argument. The underlying proba-
bility measure is here the one of Remark 2.1 b). Let y, y′ ∈ S, α ∈ [0, 1]. Moreover,
denote by (πt) and (π′t) the processes of the optimal policies for starting in y and
y′ respectively. Define π̂t = απt + (1−α)π′t. π̂t ∈ U for all t ≥ 0 since U is convex.
Obviously (π̂t) defines a policy. Take (π̂t) as a control for starting in αy+(1−α)y′.
Hence

Y π̂
t = αy + (1− α)y′ +

∫ t

0
bZt(απs + (1− α)π′s) ds = αY π

t + (1− α)Y π′

t ∈ S

since S is convex which yields that π̂ is admissible. Therefore, we obtain

V (αy + (1− α)y′) ≤ Vπ̂(αy + (1− α)y′) = Ex

[ ∫ ∞

0
e−βtc(Y π̂

t , Zt, π̂t) dt
]

≤ αVπ(y, z) + (1− α)Vπ′(y
′, z) = αV (y, z) + (1− α)V (y′, z)

and the proof is complete.

We will often need the following growth assumption on the cost rate function c
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Assumption 2.3:
There exist constants k ∈ IN and C0 ∈ IR+ such that for all z ∈ Z, u, u′ ∈ U and
y, y′ ∈ S

|c(y, z, u)− c(y′, z, u′)| ≤ C0

(
1 + ‖y‖k + ‖y′‖k

)(
‖y − y′‖+ ‖u− u′‖

)

Lemma 2.7:
If S = IRN and y 7→ c(y, z, u) is continuous for all u ∈ U, z ∈ Z and fulfills
Assumption 2.3 then V (y, z) is Lipschitz-continuous in y.

Proof: Let y, y′, h ∈ IRN . Moreover, denote by (πt) the process of the optimal
policy for starting in y + h. Due to our assumptions, (πt) is also admissible for
starting in y. Hence we obtain

V (y, z)− V (y + h, z) ≤ Vπ(y, z)− Vπ(y + h, z)

= Eπ
y+h

[∫ ∞

0
e−βt

(
c(Yt − h, Zt, πt)− c(Yt, Zt, πt)

)
dt
]

≤ C0‖h‖Eπ
y+h

[∫ ∞

0
e−βt

(
1 + ‖Yt − h‖k + ‖Yt‖k

)
dt
]

where the last term tends to zero if ‖h‖ → 0 since ‖Yt‖ = O(t). With the same
arguments one can show that V (y, z)− V (y+ h, z) has a lower bound which tends
to zero as ‖h‖ → 0 and the statement is proven.

Lemma 2.8:
If S = IRN and y 7→ c(y, z, u) is continuously differentiable and convex for all
u ∈ U, z ∈ Z and fulfills Assumption 2.3 then V (y, z) is continuously differentiable
w.r.t. y.

Proof: Since V is convex due to Lemma 2.6 it suffices to show that the partial
derivatives exist (cf. Rockafellar (1970)). Let y, y′ ∈ IRN and h > 0. By eν we
denote the ν-th unit vector. The convexity of c implies the convexity of V (Lemma
2.6), hence

D1(y, h) := V (y, z)− V (y − heν , z) ≤ V (y + heν , z)− V (y, z) =: D2(y, h).

Let (πt) be the process of the optimal policy for starting in y. Due to our assump-
tions, (πt) is also admissible for starting in y + heν and y − heν . Therefore, we
obtain for the two differences above

D2(y, h) ≤ Eπ
y

[∫ ∞

0
e−βt

(
c(Yt + heν , Zt, πt)− c(Yt, Zt, πt)

)
dt
]
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D1(y, h) ≥ Eπ
y

[∫ ∞

0
e−βt

(
c(Yt, Zt, πt)− c(Yt − heν , Zt, πt)

)
dt
]
.

If we now define

f(h) :=
∫ ∞

0
e−βt 1

h

(
c(Yt + heν , Zt, πt)− c(Yt, Zt, πt)

)
dt

then we have with Assumption 2.3 for |h| small enough

|f(h)| ≤ C0

∫ ∞

0
e−βt

(
1 + ‖Yt + heν‖k + ‖Yt‖k

)
dt ≤ C ′

0(y),

since the trajectories can grow at most linearly. An analogous bound can be derived
for the second difference. Thus, dividing both sides by h and letting h → 0 we
obtain with bounded convergence

Eπ
y

[∫ ∞

0
e−βt ∂

∂y
c(Yt, Zt, πt) dt

]
≤ lim

h↓0

D1(y, h)

h

≤ lim
h↓0

D2(y, h)

h
≤ Eπ

y

[∫ ∞

0
e−βt ∂

∂y
c(Yt, Zt, πt) dt

]
<∞

which implies the statement.



3 Average Optimality

We will now deal with the minimization of the long-term average cost of SFPs. As
in the preceding section we are interested in the existence of optimal policies and
an optimization principle. In continuous time, the average cost can be defined in
different ways. The most natural one is to take

Gπ(x) = lim sup
t→∞

1

t
Eπ

x

[∫ t

0
c(Xs, πs) ds

]
.

We will define the average cost optimization problem for a uniformized version of
the SFP. The reason is that we were not able to derive an optimality principle for
the non-uniformized SFP. However, when the optimal policy is given by a feedback
control, the minimal average cost in both models are the same. The main theorem
of this section (Theorem 3.6) states the existence of an average cost optimal policy
under some assumptions which are the same as the ones introduced by Sennott
(1989a) for discrete-time Markov decision processes. In addition it can be shown
that an accumulation point of β-discounted policies for β ↓ 0 is average optimal.
As in Section 2 we solve our problem by discretization. Unfortunately, this is
more complicated here, since it is not clear whether the average cost of a policy
in the continuous and the discrete setting are the same in general. However, we
will give some conditions which imply the equivalence. The proof of Theorem 3.6
uses the vanishing discount approach and follows essentially as in Schäl (1993).
There are only a few papers dealing with average cost for piecewise deterministic
processes. Hordijk/Van der Duyn Schouten (1983) investigate the average cost
problem for Markov decision drift processes. In Sethi et al. (1997, 1998) one can
find special production models under the average cost criterion. However, their
approach is in a continuous setting and does not deal with the question of existence
of optimal policies. The section is organized as follows: in Section 3.1 we introduce
the uniformized SFP and give two definitions of average cost. In the following
section we investigate the relation of the stationary distributions of the continuous
and the discrete model. Section 3.3 contains the main theorem and the validity
of the average cost optimality inequality. Since the assumptions of Theorem 3.6
are quite technical we will give some sufficient conditions for them. Mainly these
conditions imply positive Harris recurrence of the controlled state process. Finally
Section 3.4 deals with the validity of the average cost optimality equation.

3.1 Definition of Average Optimality

The model we consider here is a slight modification of the model in Section 2.
The difference is that we consider a uniformized environment process (Zt), i.e. let
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q > maxz∈Z qz and P = I+ 1
q
Q. Then (Zt) can be constructed from a sequence (Tn)

of jump times, where the random variables (Tn+1 − Tn), n ∈ IN are independent
and exponentially distributed with parameter q and from a Markov chain (Λn) with
transition matrix P as follows. Let Λ0 := Z0, T0 := 0 and t ≥ 0. Then

Zt = Λn, if Tn ≤ t < Tn+1

is in distribution equal to a Markov chain with generator Q (cf. Bertsekas (1995)).
Formally we now add further artificial jump time points to the system. Decisions
have to be taken in a Markovian fashion at times Tn whether or not a real jump has
occured. When a SFP is given as in Section 2.1, we will refer to its modification
as the uniformized SFP. In the discrete setting, the transition kernel p and and the
one-step cost function C for the uniformized β-discounted model are now given by

p(x, a;B × {z′}) = q pzz′

∞∫
0

e−(β+q)t1B (φt(x, a)) dt

C(x, a) =
∫ ∞

0
e−(β+q)tc (φt(x, a), z, at) dt.

The operator U for v : E → IR+ reads

Uv(x) := inf
a∈D(x)

[
C(x, a) + q

∫ ∞

0
e−(β+q)t

∑
z′
pzz′v (φt(x, a), z

′) dt

]
.

Of course all the previous theorems remain valid in this case and we will use the
same definitions and notations. Before we define the average cost problem for this
model, we will shortly investigate its relation to the problem in Section 2 in the
β-discounted case. In particular, the next theorem states that the value function
of the uniformized SFP is independent of the parameter q. The statement follows
from Theorem 2 in Yushkevich (1980).

Theorem 3.1:
Under Assumptions 2.1 and 2.2 the value functions of the uniformized SFP and
the non-uniformized SFP coincide in the β-discounted problem.

Let us now return to the problem of defining average costs in the uniformized SFP.
There is certainly more than one reasonable definition for average optimality for
continuous-time processes (see e.g. Sennott (1989b), Ross (1970)). But the most
appealing one is the following:

Definition 3.1:
Let a uniformized SFP be given with β = 0 and let π be a policy. For x ∈ E define
by
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a)

Gπ(x) = lim sup
t→∞

1

t
Eπ

x

[∫ t

0
c(Xs, πs) ds

]
the average cost under policy π, starting the system in x.

b)
G(x) = inf

π
Gπ(x)

the minimal average cost, starting the system in x.

c) π is called c-average optimal, if it attains the infimum in b) for all x ∈ E.

As in the discounted case we will tackle this problem via discretization. It is
important to note that the transition kernel p and the one-step cost function C in
the average case are defined by

p(x, a;B × {z′}) = q pzz′

∞∫
0

e−qt1B (φt(x, a)) dt

C(x, a) :=
∫ ∞

0
e−qtc(φt(x, a), z, at) dt.

To avoid confusions we write in this section pβ, Cβ for the quantities in the β-
discounted model. The average cost for a DSFP are now defined in an obvious way
by:

Definition 3.2:
Let a uniformized DSFP be given with β = 0 and let π = (fn) be a policy. For
x ∈ E define by

a)

Jπ(x) = lim sup
m→∞

Eπ
x

[∑m−1
n=0 C(Xn, fn(Xn))

]
Eπ

x [Tm]

the average cost under policy π, starting the system in x.

b)
J(x) = inf

π
Jπ(x)

the minimal average cost, starting the system in x.

c) π is called d-average optimal, if it attains the infimum in b) for all x ∈ E.

Remark 3.1:

a) If π = f∞ is a stationary policy we write Gf and Jf .
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b) Since the sequence (Tn+1 − Tn) is iid with mean 1
q

we obviously have

Jπ(x) = q lim sup
m→∞

1

m
Eπ

x

[
m−1∑
n=0

C(Xn, fn(Xn))

]

3.2 Stationary Distributions

In this section we choose a fixed stationary feedback policy π = f∞ and will hence
suppress the dependence on π in our notation. It is possible to obtain a connection
between the stationary distribution of the continuous-time process (Xt) and the
discrete-time process (Xn) of the uniformized model. For t ≥ 0, B ∈ B(S), z′ ∈ Z
and x ∈ E let us denote by

pt(x;B × {z′}) = Px(Xt ∈ B × {z′})

the transition kernel of (Xt). As before p(x;B × {z′}) is the one-step transition
probability for (Xn), i.e.

p(x;B × {z′}) = q pzz′

∫ ∞

0
e−qt1B(φt(x)) dt.

Definition 3.3:

a) A distribution µ on E is a stationary distribution of (Xt) if for all t ≥ 0, A ∈
B(E)

µ(A) =
∫

E
pt(x;A) µ(dx).

b) A distribution ν on E is a stationary distribution of (Xn) if for all A ∈ B(E)

ν(A) =
∫

E
p(x;A) ν(dx).

An important role in determining the stationary distribution, plays the generator
A of (Xt). A acts on the set of functions

D(A) = {v : E → IR | v measurable, bounded , t 7→ v(φt(x), z) is absolutely

continuous for all x ∈ E}

and a version of it is given by

Av(x) = lim
t→0

1

t
(Ex[v(Xt)]− v(x)) = ṽ(x) + q

∑
z′
pzz′(v(y, z

′)− v(x))
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where ṽ : E → IR is such that

v(φt(x), z)− v(x) =
∫ t

0
ṽ(φs(x), z) ds.

The following theorem states that (Xt) has a stationary distribution if and only if
(Xn) has one and gives a transformation formula for them. See e.g. Costa (1990)
or Davis (1993).

Theorem 3.2:

a) Let ν be a stationary distribution of (Xn), then µ defined for B ∈ B(S), z ∈ Z
by

µ(B × {z}) =
∫ ∞

0
qe−qtν({y | φt(x) ∈ B} × {z}) dt

is a stationary distribution of (Xt).

b) Let µ be a stationary distribution of (Xt), then ν defined for B ∈ B(S), z ∈ Z
by

ν(B × {z}) =
∑
z′
pzz′µ(B × {z′})

is a stationary distribution of (Xn).

Proof:

a) Obviously µ is a distribution. It holds that µ is a stationary distribution if
and only if

∫
E Av(x)µ(dx) = 0 for all v ∈ D(A) (cf. Ethier/Kurtz (1986)

Proposition 9.2). Let v ∈ D(A) be arbitrary. We obtain∫ ∞

0
Av(φt(x), z)e

−qt dt

=
∫ ∞

0
ṽ(φt(x), z)e

−qt dt+
∫ ∞

0
qe−qt

∑
z′
pzz′ (v(φt(x), z

′)− v(φt(x), z)) dt

=
∫ ∞

0

d

dt

(
v(φt(x), z)e

−qt
)
dt+

∫ ∞

0
qe−qt

∑
z′
pzz′v(φt(x), z

′) dt

= Ex[v(XT1)]− v(x).

Since ν is a stationary distribution for (Xn) we have∫
E

[Ex[v(XT1)]− v(x)] ν(dx) = 0.

This yields

0 =
∑
z

∫
S

∫ ∞

0
Av(φt(y, z), z)e

−qt dt ν(dy, z) =
1

q

∫
E
Av(x) µ(dx)

and the proof of part a) is complete.
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b) From the definition of µ we get that ν is a distribution. For A ∈ B(E) we have
to show ν(A) =

∫
E p(x;A)ν(dx). Since µ is stationary,

∫
E Av(x) µ(dx) = 0 for

all v ∈ D(A).
We will first show that p(x;A) ∈ D(A) for all A ∈ B(E). Let A = B ×
{z′}, x = (y, z). Since

p(x;A) = e−qtp((φt(x), z);A) +
∫ t

0
qe−qs1B(φs(x)) ds pzz′

p((φt(x), z);A) is obviously absolutely continuous and we obtain at points
where 1B(y) is continuous

lim
t↓0

1

t
(p((φt(x), z);A)− p(x;A)) = lim

t↓0

1

t
(eqt − 1)p(x;A)−

− lim
t↓0

1

t
eqt
∫ t

0
qe−qs1B(φs(x)) ds pzz′ = q(p(x;A)− 1B(y)pzz′).

Hence p(x;A) ∈ D(A) and

A p(x;A) = q(
∑
w

pzwp(y, w;A)− 1B(y)pzz′).

Therefore∫
E
Ap(x;A)µ(dx) = q(

∑
z

∫
S

∑
w

pzwp(y, w;A)µ(dy, z)−q(
∑
z

∫
S

1B(y)pzz′µ(dy; z))

which yields ∫
E
p(x;A) ν(dx) =

∑
z

pzz′

∫
B
µ(dy, z) = ν(A)

and the proof is complete.

For a function c : E → IR+ we obtain now∫
E
c(x) µ(dx) =

∑
z

∫
S

∫ ∞

0
c(φt(x), z)qe

−qt dt ν(dy, z)

= q
∑
z

∫
S
C(x) ν(dy, z) = q

∫
E
C(x) ν(dx)

which means that the expected cost in a stationary regime of an SFP and the
corresponding DSFP differ only by a factor q.

Remark 3.2:
When we are concerned with general controlled processes we usually have piecewise-
open-loop policies. Therefore we have to consider the enlarged process X̄t =
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(Xt, ηt, τt) on the state space Ē = E × S × IR+ (cf. Remark 2.1). Every piecewise-
open-loop policy is now a feedback control of the new state process. Theorem 3.2
can be shown in the same way for the process X̄t and its discretized version (see
e.g. Costa (1990), Davis (1993)). If u : E× IR+ → U is admissible, we obtain with
x̄ = (x, η, τ) ∫

Ē
c(x, u(η, τ)) µ(dx̄) = q

∫
Ē
C(x, u(x, ·)) ν(dx̄)

where C : E × A→ IR+ is defined by

C(x, u(x, ·)) =
∫ ∞

0
e−qtc(φt(x, u), z, u(x, t)) dt.

3.3 Average Cost Optimality Inequality

In this section we will prove the existence of a c- and d-average cost optimal sta-
tionary policy. Let us define for x ∈ E, β > 0 and a fixed state ξ ∈ E

hβ(x) = V β(x)− V β(ξ) and ρ(β) = βV β(ξ),

where V β is the value function of the β-discounted model. hβ is called relative value
function. Assumption 3.1 has been established by Sennott (1989a) for Markov
decision processes with a countable state space.

Assumption 3.1:

(i) There exists a policy π such that Gπ(x) <∞ for all x ∈ E.

(ii) There exist constants L ∈ IR, β̄ > 0 and a function M : E → IR+ with

L ≤ hβ(x) ≤M(x)

for all x ∈ E and 0 < β ≤ β̄.

The following Tauber Theorem will be a useful tool. Versions of it can be found
e.g. in Hordijk/Van der Duyn Schouten (1983) and Sethi et al. (1997).

Theorem 3.3:
For all policies π and x ∈ E we obtain

lim sup
β↓0

βV β
π (x) ≤ Gπ(x)
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Applying the Tauber Theorem we immediately obtain the following two lemmas.

Lemma 3.4:
Under Assumption 3.1 there exists a sequence of interest rates βn ↓ 0 such that for
all x ∈ E

0 ≤ lim
n→∞

βnV
βn(x) = lim sup

β↓0
ρ(β) <∞

Proof: From the Tauber Theorem 3.3 we obtain with Assumption 3.1 (i)

0 ≤ ρ := lim sup
β↓0

ρ(β) ≤ Gπ(ξ) <∞.

Let βn ↓ 0 be a sequence such that limn→∞ ρ(βn) = ρ. For x ∈ E, Assumption 3.1
(ii) yields ∣∣∣βnV

βn(x)− ρ
∣∣∣ ≤ βn

∣∣∣hβn(x)
∣∣∣+ |ρ(βn)− ρ|

≤ βn max{L,M(x)}+ |ρ(βn)− ρ|.

The right hand side converges to 0 as n→∞ which implies the result.

Lemma 3.5:
Under Assumption 3.1 it holds for all policies π and x ∈ E that

lim sup
β↓0

ρ(β) ≤ Gπ(x)

Now we are able to prove the main theorem of this section. The proof is along the
lines of Schäl (1993) who established the existence of average optimal policies in
discrete-time Markov decision processes with Borel state space.

Theorem 3.6: (Average cost optimality inequality)
Suppose that the Assumptions 2.1 2.2 and 3.1 hold. Then

a) There exists a constant ρ ≥ 0 and a lower semicontinuous function h : E → IR
such that the average cost optimality inequality holds, i.e. for all x ∈ E

ρ

q
+ h(x) ≥ min

a∈D(x)

[
C(x, a) + q

∫ ∞

0
e−qt

∑
z′
pzz′h (φt(x, a), z

′) dt

]
. (3.2)

Moreover, there exists a minimizer f ∗ of h in (3.2).
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b) Suppose that Jf∗ ≥ Gf∗ . Then the stationary policy (f ∗, f∗, . . .) is c-average
optimal and ρ = limβ↓0 ρ(β) are the minimal average cost, independent of x.
Moreover, there exists a decision rule f 0 and sequences βm(x) → 0, xm(x) → x
such that

f 0(x) = lim
m→∞

fβm(x)(xm(x)),

where fβ is an optimal decision rule in the β-discounted model and the sta-
tionary policy (f 0, f0, . . .) is c-average optimal, provided Jf0 ≥ Gf0 .

Proof: a),b) Define ρ = lim infβ↓0 ρ(β) ≥ 0 which is finite because of Lemma 3.4.
Take β(n) as the subsequence such that ρ = limn→∞ ρ(β(n)). Define

h(x) := lim inf
n→∞, x′→x

hβ(n)(x′) = lim
n→∞

inf
k≥n

inf
d(x,x′)≤ 1

n

hβ(k)(x′)

where d is a metric on E. Due to Assumptions 2.1 and 2.2 the β-discounted
optimality equation holds and we can write it in the following form for β > 0, x ∈ E

ρ(β)

β + q
+hβ(x) = Cβ(x, fβ(x))+ q

∫ ∞

0
e−(β+q)t

∑
z′
pzz′h

β
(
φt(x, f

β(x)), z′
)
dt, (3.3)

where fβ is the optimal decision rule in the β-discounted model. From Schäl
(1993) Lemma 3.4 we know that there exist sequences {kn} of integer-valued mea-
surable mappings and {xn} of E-valued measurable mappings on E such that
kn(x) → ∞, xn(x) → x for n → ∞ and hβ(kn(x))(xn(x)) → h(x). Define
an(x) = fβ(kn(x))(xn(x)), x ∈ E. We will now fix x ∈ E and suppress the de-
pendence on x in our notation. Then by (3.3)

ρ(β(kn))/(β(kn) + q) + hβ(kn)(xn) = (3.4)

Cβ(kn)(xn, an) + q
∫ ∞

0
e−(β(kn)+q)t

∑
z′
pzz′h

β(kn) (φt(xn, an), z′) dt.

Moreover, we know from Schäl (1975) that there exists a measurable function
g0 : E → R such that g0(x) is an accumulation point of {an(x)} and g0 ∈ F .
For a fixed x ∈ E choose a subsequence {nm} of natural numbers (for simplicity
denoted by m) such that am(x) → g0(x). Taking m→∞ we obtain with the lower
semicontinuity of Cβ (see Remark 2.6)

lim inf
m→∞

Cβ(km(x))(xm(x), am(x)) ≥ C(x, g0(x)).

For the next step, observe that multiplying pβ(x, a;B) by β+q
q

makes the transition

kernel stochastic. Since β+q
q
pβ(x, a; ·) is weakly continuous (see Remark 2.6) we

obtain with Lemma 2.3 (ii) in Schäl (1993), cf. also Serfozo (1982)

lim inf
m→∞

∫
E
hβ(km(x))(x′)pβ(km(x))(xm(x), am(x); d x′)
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≥
∫

E

[
lim inf

m→∞,x′′→x′
hβ(km(x))(x′′)

]
p(x, g0(x); d x′) ≥

∫
E
h(x′)p(x, g0(x); d x′)

Hence taking lim infm→∞ in (3.4) we obtain altogether

ρ

q
+ h(x) ≥ C(x, g0(x)) +

∫
E
h(x′)p(x, g0(x); d x′)

≥ C(x, g∗(x)) +
∫

E
h(x′)p(x, g∗(x); d x′)

where g∗ is the minimizer of h which exists since h is lower semicontinuous (see
Schäl (1993)). As in the proof of Theorem 2.3 we can now define f 0(x)(t) =∫
U ug

0(x)(t, du) (respectively f ∗(x)(t) =
∫
U ug

∗(x)(t, du)) which is in F and due to
the convexity of c

ρ

q
+ h(x) ≥ C(x, g0(x)) +

∫
E
h(x′)p(x, g0(x); d x′)

≥ C(x, f 0(x)) +
∫

E
h(x′)p(x, f 0(x); d x′)

Iterating this inequality m times one gets

m
ρ

q
+ h(x) ≥ Ef0

x

[
m−1∑
n=0

C(Xn, f
0(Xn))

]
+ Ef0

x [h(Xm)] .

Assumption 3.1 (ii) yields that h is finite and h ≥ L. Hence we obtain by dividing
through m and taking limit m→∞

ρ ≥ Jf0(x) ≥ Gf0(x) ≥ lim sup
β↓0

βV β
f0(x) ≥ lim sup

β↓0
ρ(β) ≥ ρ

where the second inequality follows from the assumption and the third inequality
from Theorem 3.3. The last but one inequality is a consequence of Lemma 3.4.
Hence we have equality. Using Lemma 3.5 this implies that the stationary policy
(f 0, f0, . . .) is c-average optimal and the minimal average cost are ρ = limβ↓0 ρ(β).
The same holds for g∗ which completes the proof.

To show that (f 0, f0, . . .) and (f ∗, f∗, . . .) from Theorem 3.6 are also d-average
optimal we need some further assumptions.

Theorem 3.7:
Suppose that the Assumptions 2.1 2.2 and 3.1 are valid. Moreover, we assume

(i) If y ∈ S then λy ∈ S for λ ∈ [0, 1].

(ii) M of Assumption 3.1 is locally uniformly bounded.
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(iii) The cost rate function c satisfies

c(λy, z, u) ≤ K(λ)c(x, u)

for λ ∈ (λ, 1) with 0 < λ < 1 and a function K : IR+ → IR with K(λ) → 1 if
λ ↑ 1.

Then the stationary policies (f ∗, f∗, . . .) and (f 0, f0, . . .) of Theorem 3.6 are also
d-average optimal and ρ are the minimal average cost independent of x.

Proof: The proof proceeds by using a coupling argument. Denote by (Ẑt) a
continuous-time Markov chain with generator β+q

q
Q and uniformization parameter

β + q. Therefore we have (Ẑt)
d
= (Zt β+q

q
) and in particular the jump times satisfy

T̂n
d
= q

β+q
Tn, n ∈ IN . For an arbitrary decision rule f ∈ F , let f̂( q

β+q
y, z)(t) :=

f(x)(tβ+q
q

) for t ≥ 0, x ∈ E. Thus for x ∈ E

φt(
q

β + q
y, z, f̂) =

q

β + q
y +

∫ t

0
bz(f̂(

q

β + q
y, z)(s)) ds

=
q

β + q
y +

q

β + q

∫ t β+q
q

0
bz(f(x)(s)) ds =

q

β + q
φt β+q

q
(x, f)

Hence Ŷt = q
β+q

Yt β+q
q

for all t ≥ 0 and Ŷt ∈ S due to our Assumption (i). Moreover,

using Assumption (iii) we get∫ T̂n+1

T̂n

c(Ŷt, Ẑt, π̂t) dt =
q

β + q

∫ Tn+1

Tn

c(
q

β + q
Yt, Zt, πt) dt

≤ q

β + q
K(

q

β + q
)
∫ Tn+1

Tn

c(Yt, Zt, πt) dt

If we define for v : E → IR+, f ∈ F , the operators

Ũf (x) = C0(x, f) +
q

β + q

∫ ∞

0
e−qtq

∑
z′
pzz′v(φt(x, f), z′) dt

Uf (x) = Cβ(x, f) +
q

β + q

∫ ∞

0
e−(β+q)t(β + q)

∑
z′
pzz′v(φt(x, f), z′) dt,

we obtain from Theorem 3.6

ρ ≥ Jf0(x) = q lim sup
N→∞

Ef0

x

[
N−1∑
n=0

C(Xn, f
0(Xn))

]

≥ q lim sup
α→1

(1− α)Ef0

x

[ ∞∑
n=0

αnC(Xn, f
0(Xn))

]

= q lim sup
β→0

β

β + q
Ef0

x

[ ∞∑
n=0

(
q

β + q
)nC(Xn, f

0(Xn))

]
= q lim sup

β→0

β

β + q
Ũ∞

f0 0(x)

≥ lim sup
β→0

β

K( q
β+q

)
U∞

f̂
0(

q

β + q
y, z) ≥ lim sup

β↓0
βV β(

q

β + q
y, z) ≥ ρ
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The second inequality follows from the Tauber Theorem in Sznajder/Filar (1992).
The last inequality follows as in Lemma 3.4 using the assumption on M . Hence
we have equality in the preceding expression. In particular, when we omit the
first inequality and apply the same arguments to an arbitrary policy π we obtain
Jπ(x) ≥ ρ. Hence J ≥ ρ and the d-average optimality of f 0 follows. The same
proof can be used for (f ∗, f∗, . . .).

Assumption 3.1 is often difficult to verify directly. However, we can give some
sufficient conditions which will prove extremely useful in our applications. Besides,
it is possible to provide conditions which yield that Jf = Gf . For the next lemma
suppose that c ≥ 1, otherwise replace c by c+ 1.

Lemma 3.8:
Suppose that Assumptions 2.1 and 2.2 are valid and that there exists a decision
rule f ∈ F such that for π = f∞ there exists a state ξ ∈ E with

Ef
x

[∫ τξ

0
c(Xt, πt) dt

]
<∞ (3.5)

for all x ∈ E, where τξ = inf{t ≥ 0 |Xt = ξ}. Then there exists a constant β̄ > 0
and a function M : E → IR+ such that for all x ∈ E and 0 < β < β̄

hβ(x) = V β(x)− V β(ξ) ≤M(x).

Moreover, if (3.5) holds for the stopping time σξ = inf{Tn |XTn = ξ}, then Gf (x) =
Jf (x) <∞ for all x ∈ E.

Proof: Let πβ = (fβ)∞ be the optimal stationary policy for the β-discounted model
and denote by (πβ

t ) the process of the optimal control, starting in ξ. (πt) is the
process of the control starting in x under policy π. Now define for t ≥ 0

π̃β
t =

{
πt , if t < τξ
πβ

t−τξ
, if t ≥ τξ

For arbitrary β > 0 we obtain for x ∈ E (cf. Remark 2.8a))

V β(x) ≤ V β
π̃β(x) ≤ Ef

x

[∫ τξ

0
c(Xt, πt) dt

]
+ V β(ξ).

Hence we can define M(x) := Ef
x

[∫ τξ

0 c(Xt, πt) dt
]

which is finite due to our as-
sumption.
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If (3.5) holds for σξ, then denoting by Nξ the number of jumps up to time σξ we
obtain

Ef
x

[∫ σξ

0
c(Xt, πt) dt

]
= Ef

x

 Nξ∑
n=0

∫ Tn+1

Tn

c(Xt, πt) dt


= Ef

x

[ ∞∑
n=0

∫ Tn+1

Tn

c(Xt, πt) dt 1[Nξ≥n]

]

=
∞∑

n=0

Ef
x

[
Ef

x

[∫ Tn+1

Tn

c(Xt, πt) dt | FTn

]
1[Nξ≥n]

]

= Ef
x

[ ∞∑
n=0

C(Xn, f(Xn))1[Nξ≥n]

]
= Ef

x

 Nξ∑
n=0

C(Xn, f(Xn))

 <∞

Hence it follows from Proposiotion 9.1.7 and Theorem 10.2.2 in Meyn/Tweedie
(1993a) that the controlled Markov chain (Xn) is positive Harris recurrent. In
particular, we know that the expected cost until the state ξ̄ = (ξ, ξ, 0) is reached
by the enlarged process are finite. From Theorem 4.1 in Meyn/Tweedie (1993c)
we know that (X̄t) is positive Harris recurrent with a stationary distribution µ and
that

∫
c dµ <∞. Applying Proposition 4.2 in Glynn/Sigman (1992) we obtain for

all x ∈ E.

Gf (x) =
∫

Ē
c(x̄, f(η)(τ))µ(dx̄) <∞.

Theorem 3.2 then gives us Gf = Jf .

The assumption that L ≤ hβ(x) for 0 < β < β̄, x ∈ E is clearly fulfilled, if we have
monotonicity, i.e. V β(x) ≥ V β(ξ) for all x ∈ E and 0 < β < β̄. Another important
case where this condition is fulfilled emerges when the cost rate function is coercive
(see e.g. Kitaev/Rykov (1995)).

Definition 3.4:
The cost rate function c : E × U → IR+ will be called coercive when the set
BK := {x ∈ E | infu∈U c(x, u) ≤ K} is compact for all K ∈ IR+.

Remark 3.3:
Since c is lower semicontinuous and U compact (Assumption 2.1), we obtain with
Theorem A.1 that x 7→ minu∈U c(x, u) is lower semicontinuous and hence BK is
closed. Therefore, under Assumption 2.1, a growth condition on c like the one in
Assumption 3.2 is sufficient for the coercivity of c.
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Assumption 3.2:
There exist constants k ∈ IN and C1, C2 ∈ IR+ such that for all z ∈ Z, u ∈ U and
y ∈ S

c(y, z, u) ≥ C1‖y‖k − C2.

Lemma 3.9:
Suppose that Assumption 2.1, 2.2 and 3.1 (i) hold and let β̄ > 0. Assume that
there exists an upper semicontinuous function M : E → IR+ such that −M(x) ≤
hβ(x) ≤ M(x) for all x ∈ E and 0 < β < β̄. If the cost rate function satisfies
Assumption 3.2 , then there exists a constant L ∈ IR such that

L ≤ hβ(x)

for all x ∈ E, 0 < β < β̄.

The proof uses ideas of Sennott (1989b) Proposition 3.

Proof: Define ρ = lim supβ↓0 ρ(β). Note that ρ is finite due to the proof of Lemma
3.4. Choose K > max{ρ + ε,minu c(ξ, u)} for ε > 0. Hence ξ ∈ BK . Since
BK is compact, M upper semicontinuous and V β lower semicontinuous due to our
assumptions we can define

−L = max
x∈BK

M(x), V β(xβ) = min
x∈BK

V β(x).

From our assumptions we have

−M(x) ≤ V β(x)− V β(ξ) ≤M(x)

for all 0 < β < β̄ and x ∈ E. Hence for all x ∈ BK

βV β(x) ≥ β
(
−M(x) + V β(ξ)

)
≥ β

(
L+ V β(ξ)

)
(3.6)

βV β(x) ≤ β
(
M(x) + V β(ξ)

)
≤ β

(
−L+ V β(ξ)

)
and lim supβ↓0 β(−L + V β(ξ)) = ρ. Therefore, we can conclude that there exists
a β̄ > 0 such that βV β(x) ≤ ρ + ε for all x ∈ BK , 0 < β < β̄. In particular
βV β(xβ) ≤ ρ + ε if 0 < β < β̄. Now suppose x /∈ BK and 0 < β < β̄ and
define τ := inf{t ≥ 0 | Xt ∈ BK} where (Xt) is the state process induced by the
β-discounted optimal policy πβ

t . Thus

V β(x) ≥ Eπβ

x

[∫ τ

0
e−βtc(Xt, π

β
t ) dt+ e−βτV β(xβ)

]
≥ Eπβ

x

[
(ρ+ ε)

1− e−βτ

β
+ e−βτV β(xβ)

]
≥ V β(xβ).
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Notice, that the statement is true even if τ = ∞. Altogether we have for x ∈ BK

from (3.6)
V β(x)− V β(ξ) ≥ L

and for x /∈ BK

V β(x)− V β(ξ) ≥ V β(xβ)− V β(ξ) ≥ L

which implies the statement.

Lemma 3.10:
Suppose that the Assumptions 2.1, 2.2, 3.1 and 3.2 are valid. Then f 0 ∈ F and
f ∗ ∈ F defined in Theorem 3.6 satisfy

Gf0 = Jf0 and Gf∗ = Jf∗ ,

provided the transition kernels p(x, f 0; ·) and p(x, f ∗; ·) are weakly continuous.

Proof: Since C̃ : D̃ → ĪR+ is lower semicontinuous, we obtain as in Remark 3.3 with
Assumption 3.2 that C̃(x, r) is coercive. Denote by (X̄t) and (Xn) the continuous
and discrete Markov chains respectively, which are induced by the stationary policy
(f 0, f0, . . .) ((X̄t) is the enlarged process (Xt, ηt, τt) cf. Remark 3.2). Let K >
ρ := lim supβ↓0 ρ(β) and define BK = {x ∈ E | minr∈D̃(x) C̃(x, r) ≤ K} and
τBK

= inf{n ∈ IN | Xn ∈ BK}. From the proof of Theorem 3.6 we know that
Jf0(x) ≤ ρ < ∞ for all x ∈ E. This immediately implies that Px(τBK

< ∞) > 0
for all x ∈ E. Thus, if we denote by ψ the maximal irreducibility measure of
(Xn), it follows that ψ(BK) > 0. In particular, supp ψ has non-empty interior
and since (Xn) is a weak Feller chain by our assumption we obtain with Theorem
6.2.9 in Meyn/Tweedie (1993a) that (Xn) is a T-chain. Moreover, we also know
that Px(Xn → ∞) = 0 for all x ∈ E and Theorem 9.0.2 in in Meyn/Tweedie
(1993a) implies that (Xn) is a Harris recurrent chain which possesses a unique
invariant measure ν. Using the coercivity of C(x, a) and the fact that Jf0(x) <∞,
Proposition 12.1.3 in Meyn/Tweedie (1993a) tells us that ν is indeed a stationary
distribution and thus (Xn) is positive Harris recurrent. Therefore, we obtain with
Theorem 14.3.3 in Meyn/Tweedie (1993a) that

lim
m→∞

1

m

m−1∑
n=0

Ef0

x

[
C(Xn, f

0(Xn))
]

=
1

q
Jf0(x) =

∫
C d ν

independent of the initial state x ∈ E. Obviously P f0

x (Xt →∞) = 0 is satisfied for
each x ∈ E, hence with Theorem 3.2 (i) in Meyn/Tweedie (1993b) it follows that
(X̄t) is positive Harris recurrent. In analogy to Theorem 4.2 in Meyn/Tweedie
(1993b) it can be shown that (X̄t) is a T-process. Finally, Proposition 4.2 in
Glynn/Sigman (1992) implies now

lim
t→∞

1

t
Ef0

x

[∫ t

0
c(Xs, πs) ds

]
=
∫
c d µ
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From Theorem 3.2 we know that∫
c d µ = q

∫
C d ν.

Thus Jf0 = Gf0 independent of x ∈ E.

3.4 Average Cost Optimality Equation

This section provides a further condition under which the limit h is continuous.
This enables us to obtain a HJB-equation for the average cost case. Fortunately,
this assumption is not too hard to satisfy for the examples we have in mind (cf.
Hernández-Lerma/Lasserre (1996)). Suppose that the sequence βn ↓ 0 is such that
limn→∞ ρ(βn) = ρ := lim supβ↓0 ρ(β).

Assumption 3.3:

(i) The sequence {hβn}, βn → 0 of the relative value functions is equicontinuous.

(ii) The function M which appears in Assumption 3.1 fulfills for all x ∈ E, a ∈
D(x) ∫

E
M(x′)p(x, a; d x′) <∞.

Theorem 3.11: (Average cost optimality equation)
Suppose that the Assumptions of Theorem 3.6 and Assumption 3.3 hold. Then

a) There exists a constant ρ > 0 and a continuous function h : E → IR such that
the average cost optimality equation holds, i.e. for all x ∈ E

ρ

q
+ h(x) = min

a∈D(x)

[
C(x, a) + q

∫ ∞

0
e−qt

∑
z′
pzz′h (φt(x, a), z

′) dt

]
. (3.7)

Moreover, there exists a minimizer f ∗ of h in (3.7).

b) Suppose that Jf∗ ≥ Gf∗ . Then the stationary policy (f ∗, f∗, . . .) is c-average
optimal and ρ = limβ↓0 ρ(β) are the minimal average cost, independent of x.
Moreover, there exists a decision rule f 0 and sequences βm(x) → 0, xm(x) → x
such that

f 0(x) = lim
m→∞

fβm(x)(xm(x)),

where fβ is the optimal decision rule in the β-discounted model and the sta-
tionary policy (f 0, f0, . . .) is c-average optimal, provided Jf0 ≥ Gf0 .
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Proof: a), b) From Assumption 3.3(i) and the Arzela-Ascoli Theorem we know that
there exists a subsequence of {hβn} (for convenience still denoted by {hβn}) and a
continuous function h such that for all x ∈ E

lim
n→∞

hβn(x) = h(x)

and the convergence is uniform on compact sets. In particular, if xn → x for n→∞
we have hβn(xn) → h(x). Thus h coincides with the limit defined in Theorem 3.6
and we have

ρ

q
+ h(x) ≥ C(x, g0(x)) +

∫
E
h(x′)p(x, g0(x); d x′)

≥ min
a∈D(x)

[
C(x, a) +

∫
E
h(x′)p(x, a; d x′)

]
.

As in the proof of Theorem 3.5 we obtain that f 0(x)(t) =
∫
u ug

0(x)(t, du) defines a
stationary average optimal policy, as well as the minimizer f ∗ of h. To complete the
proof, we have to show the reverse inequality. From the discounted cost optimality
equation we have for all x ∈ E, a ∈ D(x)

ρ(βn)

q
+ hβn(x) = min

a∈D(x)

[
Cβn(x, a) +

∫
E
hβn(x′)pβn(x, a; d x′) dt

]
≤ C(x, a) +

∫
E
hβn(x′)p(x, a; d x′)

Taking n→∞ we obtain with Assumption 3.3 and Dominated Convergence

ρ

q
+ h(x) ≤ C(x, a) +

∫
E
h(x′)p(x, a; d x′)

for all x ∈ E, a ∈ D(x) which implies the result.

Remark 3.4:
Assumption 3.3 (i) is for example fulfilled when S = IRN and (y, u) 7→ c(y, z, u) is
convex for all z ∈ Z. This follows from Hernández-Lerma/Lasserre (1996) Remark
5.5.3.



4 Solution Methods

In this section we provide different results which help computing the optimal policy
in the β-discounted and in the average cost case. Since we know from Theorem
3.6 that the average cost problem can be solved via the β-discounted problem, we
will mainly restrict to solution methods for the β-discounted problem. Reference
to the average cost problem will be mentioned explicitly. We will first establish
the well-known method of policy iteration. Afterwards solutions to the one-step
optimization problems are investigated. Since these problems are deterministic
control problems, we will derive a Hamilton-Jacobi-Bellman equation. Further
on we explain how to solve the one-step optimization problems via Pontryagin’s
maximum principle.

4.1 Policy Iteration for β-Discounted Problems

Suppose that the problem of Section 2 is given and Assumptions 2.1 and 2.2 hold.
Schäl (1975) showed that the optimal stationary policy can be taken as an accumu-
lation point of the sequence of minimizers fn of the Vn−1, n ∈ IN . In particular if
all minimizers fn are equal f then f∞ is an optimal stationary policy. To formulate
this procedure we need the following notions. For x ∈ E, a ∈ D(x) and v ∈M we
introduce the operator L : M →M as

Lv(x, a) := C(x, a) +
∫ ∞

0
e−(β+qz)t

∑
z′ 6=z

qzz′v(φt(x, a), z
′) dt.

Let D∗
n(x) := {a ∈ D(x) | a minimizes a → LVn−1(x, a)} for n ∈ IN, x ∈ E and

D∗(x) := {a ∈ D(x) | a minimizes a → LV (x, a)} for all x ∈ E. Moreover, for a
compact metric space A and a sequence (An) of nonempty subsets of A define

LsAn := {x ∈ A | x is an accumulation point of (xn) with xn ∈ An ∀n ∈ IN}.

Theorem 4.1: (Policy Iteration)
Suppose that Assumption 2.1 and 2.2 hold. For all x ∈ E we obtain

∅ 6= LsD∗
n(x) ⊂ D∗(x).

Moreover, if fn ∈ D∗
n, then there exists an accumulation point f ∈ F such that

f ∈ LsD∗
n and every stationary policy f∞ with f ∈ D∗ is optimal.

Proof: Fix x ∈ E. Since a 7→ LVn−1(x, a) is lower semicontinuous for n ∈ IN (see
proof of Theorem 2.5), D∗

n(x) 6= ∅ for all n ∈ IN . Thus LsD∗
n(x) 6= ∅ because D(x)
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is compact. Let a0 ∈ LsD∗
n(x), i.e. there exists a sequence (ank

) with ank
∈ D∗

nk
(x)

and limk→∞ ank
= a0. For m ∈ IN we obtain

lim
n→∞

Vn(x) = lim
k→∞

Vnk
(x) = lim

k→∞
LVnk−1(x, ank

) ≥ lim inf
k→∞

LVm(x, ank
)

≥ LVm(x, a0).

Hence we have

V (x) = lim
n→∞

Vn(x) ≥ lim
m→∞

LVm(x, a0) = LV (x, a0) ≥ V (x)

and therefore LsD∗
n(x) ⊂ D∗(x). From Schäl (1975) the existence of f follows and

the proof is complete.

4.2 A Hamilton-Jacobi-Bellman Equation

From Theorem 2.5 we know that the value function V is the solution of a determinis-
tic control problem. Therefore, it is possible to derive a Hamilton-Jacobi-Bellman
(HJB) equation for the problem and thus to obtain a Verification Theorem. The
approach is standard and can be found e.g. in the text books of Bardi/Capuzzo-
Dolcetta (1997), Fleming/Soner (1992), Fleming/Rishel (1975). Throughout the
section we will assume that the environment state z ∈ Z is fixed and therefore
sometimes suppress it in the notation. For our convenience we will now introduce
the following abbreviations. The function cV : S × U → IR+ is defined by

cV (y, u) := c(y, z, u) +
∑
z′ 6=z

qzz′V (y, z′).

For x ∈ E and a ∈ D(x) the operator L in this section is defined by

LV (x, a) :=
∫ ∞

0
e−(β+qz)tcV (φt(x, a), at) dt.

The one-step optimization problem of Theorem 2.5 can now be written in a control
theoretic framework as follows

(CP )



∞∫
0
e−(β+qz)tcV (φt(x, a), at) dt → min

φt(x, a) = y +
t∫
0
bz(as) ds

φt(x, a) ∈ S
at ∈ U, for all t ≥ 0

In order to obtain a Verification Theorem we first have to show
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Lemma 4.2: (Bellman principle)
Under Assumption 2.1 and 2.2, the following relation holds for all x ∈ E, T > 0

V (x) = inf
a∈D(x)

[∫ T

0
e−(β+qz)tcV (φt(x, a), at) dt+ e−(β+qz)TV (φT (x, a), z)

]
(4.8)

Proof: Let us name W (x) the right hand side of (4.8). Let T > 0, x ∈ E and
a ∈ D(x) be an arbitrary control. Then

LV (x, a) =
∫ T

0
e−(β+qz)tcV (φt(x, a), at) dt+

∫ ∞

T
e−(β+qz)tcV (φt(x, a), at) dt

= I + e−(β+qz)TLV (φT (x, a), z, ã) ≥ I + e−(β+qz)TV (φT (x, a), z)

where I is the first integral on the right hand side and ãt = aT+t. Taking the
infimum over a ∈ D(x) we obtain V (x) ≥ W (x). For the reverse inequality
let a ∈ D(x) be arbitrary. Fix ε > 0 and take ã ∈ D(φT (x, a), z) such that
LV (φT (x, a), z, ã)− ε < V (φT (x, a), z). Define

a∗t =

{
at , t ≤ T
ãt−T , t > T

Then we obtain

V (x) ≤ LV (x, a∗)

=
∫ T

0
e−(β+qz)tcV (φt(x, a), at) dt+

∫ ∞

T
e−(β+qz)tcV (φt(x, a

∗), a∗t ) dt

= I + e−(β+qz)TLV (φT (x, a), z, ã) ≤ I + e−(β+qz)TV (φT (x, a), z) + ε̃

where I is the first integral on the right hand side. Since ε and a are arbitrary we
get V (x) ≤ W (x) for all x ∈ E.

Part b) of the following theorem is a so-called Verification Theorem.

Theorem 4.3:
We suppose that Assumptions 2.1, 2.2 hold and that (y, u) 7→ c(y, z, u) and y 7→
V (y, z) are continuous and

V (x) ≤ C0(1 + ‖y‖k)

for some constants C0 ∈ IR+, k ∈ IN . Then we obtain
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a) The value function V is a constrained viscosity solution of the HJB equation

(β + qz)V (x) = min
u∈U

[cV (y, u) + bz(u)Vy(x)] . (4.9)

b) If the continuously differentiable function W (·, z) : S → IR satisfies (4.9) and
limt→∞ e−(β+qz)tW (φt(x, a)) = 0, for all a ∈ D(x) and Eπ

x [W (Xn)] → 0 when
n→∞ for all policies π, x ∈ E, then W (x) ≤ V (x) for all x ∈ E. Moreover,
if there exists a decision rule f ∗ ∈ F such that for all x ∈ E

(β+ qz)W (φt(x, f
∗), z) = cW (φt(x, f

∗), f∗(x)(t)) + bz(f ∗(x)(t))Wy(φt(x, f
∗), z)

for almost every t ≥ 0, then V = W and (f ∗, f∗, . . .) is a stationary, β-
discounted optimal policy.

Proof:

a) Fix x0 = (y0, z) ∈ E, y0 ∈
◦
S and let ψ1 be continuously differentiable on IRN ,

such that V (y, z) − ψ1(y) attains its maximum at y = y0 in a neighborhood
N(y0) of y0 in S. Consider a control a ∈ D(x0) with at ≡ u for 0 < t < T ,
where T is small enough such that a is admissible and φt(x0, a) ∈ N(y0) for
0 < t < T . From Lemma 4.2 we have

V (x0)− e−(β+qz)TV (φT (x0, a), z) ≤
∫ T

0
e−(β+qz)tcV (φt(x0, a), at) dt.

Since φT (x0, a) ∈ N(y0) one gets

V (φT (x0, a), z) ≤ ψ1(φT (x0, a)) + V (x0)− ψ1(y0).

Hence

V (x0)−e−(β+qz)T
(
ψ1(φT (x0, a))+V (x0)−ψ1(y0)

)
≤
∫ T

0
e−(β+qz)tcV (φt(x0, a), at) dt.

Dividing the preceding inequality by T and letting T tend to zero we obtain

(β + qz)V (x0)− ψ1
y(y0)b

z(u) ≤ cV (y0, u)

Since the inequality holds for all u ∈ U we obtain

(β + qz)V (x0) ≤ min
u∈U

[
cV (y0, u) + ψ1

y(y0)b
z(u)

]
.

Thus, V (·, z) is a viscosity subsolution on
◦
S.

To show that V (·, z) is viscosity supersolution on S, we suppose the contrary.
Hence, there exists an x0 = (y0, z) ∈ E, a continuously differentiable function
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ψ2 on IRN such that V (y, z)− ψ2(y) attains its minimum at y0 in a neighbor-
hood N(y0) of y0 in S and a constant δ > such that for all u ∈ U

(β + qz)V (x0)− ψ2
y(y0)b

z(u) + δ ≤ cV (y0, u).

Since all functions are continuous this implies

(β + qz)V (y, z0)− ψ2
y(y)b

z(u) + δ ≤ cV (y, u)

for all y ∈ N(y0) and u ∈ U . Let a ∈ D(x0) and T > 0 small enough, then

LV (x0, a) ≥
∫ T

0
e−(β+qz)tcV (φt(x0, a), at) dt+ e−(β+qz)TV (φT (x0, a), z)

≥
∫ T

0
e−(β+qz)t

(
δ + (β + qz)V (φt(x0, a), z)−

ψ2
y(φt(x0, a))b

z(at)
)
dt+ e−(β+qz)TV (φT (x0, a), z).

On the other hand we have

V (x0)− e−(β+qz)TV (φT (x0, a), z)

≤ V (x0)− e−(β+qz)T
(
ψ2(φT (x0, a)) + V (x0)− ψ2(y0)

)
≤
∫ T

0
e−(β+qz)t

(
(β + qz)V (φt(x0, a), z)− ψ2

y(φt(x0, a))b
z(at)

)
dt.

Taking the infimum over all a ∈ D(x0) we obtain from the last two inequalities

V (x0) ≥ V (x0) + δ
1− e−(β+qz)T

β + qz

which is a contradiction. Therefore V (·, z) is a viscosity supersolution on S
and hence a constrained viscosity solution.

b) Let W be as assumed and a ∈ D(x) an arbitrary control. Hence

e−(β+qz)TW (φT (x, a), z) = W (x)−
∫ T

0
e−(β+qz)t

(
(β + qz)W (φt(x, a), z)−

Wy(φt(x, a), z)b
z(at)

)
dt

≥ W (x)−
∫ T

0
e−(β+qz)tcW (φt(x, a), at) dt.

Letting T → ∞ we obtain with our assumption W ≤ UW . Thus, for an
arbitrary policy π we get

Eπ
x [W (Xn+1) | Xn] =

∫
E
W (x)p(Xn, f(Xn); dx) =
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C(Xn, fn(Xn))+
∫ ∞

0
e−(β+qZn )t

∑
z′ 6=Zn

qZnz′W (φt(Xn, fn(Xn)))dt−C(Xn, fn(Xn))

≥ W (Xn)− C(Xn, fn(Xn))

Hence
C(Xn, fn(Xn)) ≥ Eπ

x [W (Xn)−W (Xn+1) | Xn] .

Summing over n from 0 to m and taking expectation w.r.t. P π
x , we obtain

Eπ
x

[
m∑

n=0

C(Xn, fn(Xn))

]
≥ W (x)− Eπ

x [W (Xm+1)] .

Taking limit m→∞ and applying our assumption we obtain V ≥ W .
If there exists an f ∗ ∈ F which provides the infimum in (4.9) then we derive in
addition W = UW , thus W ≥ V (cf. Theorem 2.5) and the proof is complete.

Remark 4.1:
If the value function is continuously differentiable w.r.t. y, then equation (4.9)
reduces to the HJB equation in the classical sense.

As far as the average cost problem is concerned we obtain a similar Verification
Theorem. In this case we define ch(y, u) := c(x, u) + q

∑
z′ pzz′h(y, z

′).

Theorem 4.4:
Suppose that Assumption 2.1, 2.2, 3.1 and 3.3 are valid and that M in 3.1 satisfies

M(x) ≤ C0(1 + ‖y‖k)

for some constants C0 ∈ IR+, k ∈ IN . Define ρ := lim supβ↓0 ρ(β). If (y, u) 7→
c(y, z, u) is continuous, then

a) The limit h of the relative value functions is a constrained viscosity solution
of the HJB equation

ρ+ qh(x) = min
u∈U

[ch(y, u) + bz(u)hy(x)] . (4.10)

b) If the continuously differentiable function w(·, z) : S → IR satisfies (4.10) and
if there exists a decision rule f ∗ ∈ F such that for all x ∈ E, Jf∗ ≥ Gf∗ and

ρ+ qw(φt(x, f
∗), z) = cw(φt(x, f

∗), f∗(x)(t)) + bz(f ∗(x)(t))wy(φt(x, f
∗), z)
(4.11)
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for almost every t ≥ 0 and

lim
m→∞

1

m
Ef∗

x [w(Xm+1)] = 0, (4.12)

then ρ = Gf∗(x) for x ∈ E and (f ∗, f∗, . . .) is a c-average optimal policy.

Proof: Under our assumption, the average cost optimality equation (Theorem 3.11)
holds and can be written in the following form

h(x) = min
a∈D(x)

[∫ ∞

0
e−qt(ch(φt(x, a), at)− ρ) dt

]
.

As in Theorem 4.3 we obtain part a). For part b) we proceed as in Theorem 4.3
b). First we obtain for all x ∈ E

w(x) =
∫ ∞

0
e−qt(cw(φt(x, f

∗), f∗(x, t))− ρ) dt.

Then we get

Ef∗

x [w(Xn+1) | Xn] = w(Xn) +
ρ

q
− C(Xn, f

∗(Xn))

and therefore

1

m
Ef∗

x

[
m−1∑
n=0

C(Xn, f
∗(Xn))

]
=

1

m
w(x)− 1

m
Ef∗

x [w(Xm+1)] +
ρ

q
.

Letting lim supm→∞ and using our assumption we obtain Gf∗ ≤ Jf∗ = ρ and the
proof is complete.

4.3 Necessary and Sufficient Conditions for Optimality

For the control problem (CP ) of the previous section we also have a maximum
principle which provides necessary conditions for the optimal control. Under further
assumptions, we also obtain sufficient conditions. Here we will restrict to the cases
S = IRN and S = IRN

+ . The following theorems can be found in Seierstad/Sydsæter
(1987). Throughout this section we assume
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Assumption 4.1:
The mapping y 7→ cV (y, z, u) is differentiable and the derivative is continuous w.r.t.
all variables.

The Hamiltonian of problem (CP ) is defined by

H(y, u, p) = p0cV (y, z, u) + pT b(u).

Theorem 4.5: (Maximum principle)
Suppose that S = IRN and Assumptions 2.1, 2.2 and 4.1 are valid. Let a∗t be a
piecewise continuous control and y∗t the associated trajectory. If a∗t is optimal, then
there exists a constant p0 and a continuous and piecewise continuously differentiable
vector function pt = (p1(t), . . . , pn(t)) such that for all t ≥ 0

(i) (p0, pt) 6= 0, p0 = 1 or p0 = 0.

(ii) a∗t minimizes at 7→ H(y∗t , at, pt), at ∈ U .

(iii) ṗt − (β + qz)pt = −p0
∂
∂y

cV (y∗t , a
∗
t ) except at points of discontinuity of a∗t .

Theorem 4.6: (Sufficient conditions for optimality)
In addition to the assumptions of Theorem 4.5 we suppose that u 7→ cV (y, u) is
continuously differentiable and y 7→ c(y, u) is convex. The admissible control a∗t
with the associated trajectory y∗t is optimal for (CP ) if there exists a continuous
and piecewise continuously differentiable vector function pt = (p1(t), . . . , pN(t))
such that for all t ≥ 0

(i) a∗t minimizes at 7→ H(y∗t , at, pt), at ∈ U .

(ii) ṗt − (β + qz)pt = − ∂
∂y

cV (y∗t , a
∗
t ), except at points of discontinuity of a∗t .

(iii) lim inft→∞ e−(β+qz)tpt(y
∗
t − yt) ≥ 0 for all admissible trajectories yt.

Since S and the mapping y 7→ c(y, u) are convex, we obtain from Lemma 2.6 that
(y, u) 7→ H(y, u, p) is convex. Hence Theorem 4.6 follows from Theorem 3.13 in
Seierstad/Sydsæter (1987). In various applications we have S = IRN

+ . Here the
following theorem is of use

Lemma 4.7: (Sufficient conditions for optimality)
Suppose that S = IRN

+ and Assumptions 2.1, 2.2 and 4.1 are valid. Further on
assume that u 7→ cV (y, u) is continuously differentiable and c(y, u) = c1(y) + c2(u)
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where y 7→ c1(y) and u 7→ c2(u) are convex. The control a∗t with the associated
trajectory y∗t is optimal for (CP ) if there exists a continuous and piecewise contin-
uously differentiable vector function pt = (p1(t), . . . , pN(t)) as well as a piecewise
continuous vector function ηt = (η1(t), . . . , ηN(t)) such that for all t ≥ 0

(i) a∗t minimizes at 7→ H(y∗t , at, pt), at ∈ U .

(ii) ṗt − (β + qz)pt = − ∂
∂y

cV (y∗t , a
∗
t ) + ηt, when ṗt exists at t.

(iii) ηt ≥ 0.

(iv) ηty
∗
t = 0.

(v) lim inft→∞ e−(β+qz)tpt(y
∗
t − yt) ≥ 0 for all admissible trajectories yt.



5 Numerical Methods

In this section we investigate numerical methods for solving our SFP. In a first part
we consider the special case of a deterministic fluid program. The reason is twofold.
On the one hand this is a very important problem (cf. also Section 7), on the other
hand there exist very efficient algorithms to solve it. In a second part we deal with
the general SFP. In both cases we apply the numerical methods to examples. The
second application is an admission control problem which has been investigated in
Bäuerle (1998b). For this model we also present a sensitivity analysis w.r.t. some
stochastic parameters.

5.1 Numerical Methods for Deterministic Fluid Programs

We present an algorithm which solves the purely deterministic fluid optimization
problem, i.e. if the dynamics bz(u) = b(u) are not influenced by the environment
process. This will be important in Section 7. Several papers have dealt with this
problem. In Chen/Yao (1993) a myopic solution procedure is explained. Weiss
(1996, 1997) develops an algorithm for re-entrant lines by formulating the problem
as a separated continuous linear program and using results of Pullan (1993, 1995).
In Avram/Bertsimas/Ricard (1995) a heuristical approach is given, using Pontrya-
gins maximum principle. For our algorithm we use essentially the formulation as
a separated continuous linear program combined with the sufficient conditions for
deterministic control problems presented in the last section.
In this subsection we assume now that S = IRN

+ , that the cost rate function c is
linear in y and u, i.e. c(y, u) = c1y+c2u and that the set of controls U is a bounded
polyhedron, i.e. U can be written as U = {u ∈ IRK | Au ≤ b, u ≥ 0} and U is
bounded. We get the following optimization problem:

∞∫
0
e−βt [c1yt + c2at] dt → min

yt = y0 +
t∫
0
b(as) ds

Aat ≤ b

yt, at ≥ 0 for all t ≥ 0

It is now possible to write the objective function in a slightly different form:∫ ∞

0
e−βtc1yt dt =

c1y0

β
+
∫ ∞

0

∫ t

0
e−βtc1b(as) ds dt =

=
c1y0

β
+
∫ ∞

0

∫ ∞

s
e−βtc1b(as) dt ds =

c1y0

β
+

1

β

∫ ∞

0
e−βsc1b(as) ds

To get a numerically tractable problem we replace the infinite time horizon by
a finite but large horizon T > 0 and obtain the following problem with a new
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objective function:

(SCLP )



T∫
0
e−βtcat dt → min

yt = y0 +
t∫
0
b(as) ds

Aat ≤ b

yt, at ≥ 0 for all t ≥ 0

where c ∈ IRK . This is now a so-called separated continuous linear program
(SCLP ). The optimal solution consists of two functions (at, yt). However, since yt

can be determined from at, when speaking of an optimal solution for (SCLP ) we
only mean the component at. This point of view will also be taken for the other
programs which appear during this section. Problems of this type have already
been extensively investigated in the literature, see e.g. Pullan (1993, 1995) and
the references given there. Weiss (1996, 1997) used this formulation to give an
algorithm for solving re-entrant problems. The following result which states that
the optimal control can be chosen w.l.o.g. as a piecewise constant function is due
to Pullan (1995) Theorem 3.3

Theorem 5.1:
There exists an optimal solution of (SCLP ) with at piecewise constant on [0, T ]
and with a finite number of breakpoints.

Remark 5.1:
If we have a finite horizon problem with β = 0, the objective function of (SCLP )
is
∫ T
0 (T − t)cat dt and Theorem 5.1 is still valid.

Besides the algorithm of Weiss (1996, 1997) for re-entrant lines, there exists a
general algorithm for solving (SCLP ), see e.g. Pullan (1993). The key issue is the
following discrete formulation. Let P = {t0, . . . , tm} with t0 = 0 < t1 < . . . < tm =
T be an arbitrary, fixed partition of the interval [0, T ]. We define the ordinary
linear program LP (P ) by

LP (P )



m∑
i=1

1
β

(
e−βti−1 − e−βti

)
ca(ti−1+) → min

(t1 − t0)b(a(t0+))− y(t1) = −y0

(ti − ti−1)b(a(ti−1+))− y(ti) + y(ti−1) = 0, i = 2, . . . ,m

Aa(ti−1+) ≤ b, i = 1, . . . ,m

y(ti), a(ti−1+) ≥ 0, i = 1, . . . ,m

To relate optimal solutions of LP (P ) to optimal solutions of (SCLP ) we need the
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following definitions:

Definition 5.1:
Let P = {t0, . . . , tm} be a partition of [0, T ]. Suppose we have m + 1 vectors
â(t0), . . . , â(tm), then the function a(t) defined by

a(t) =

{
â(tm−1+) , t = T
â(ti−1+) , ti−1 ≤ t < ti, i = 1, . . . ,m

is called piecewise constant extension of â. The function a(t) defined by

a(t) =

(
ti − t

ti − ti−1

)
â(ti−1) +

(
t− ti−1

ti − ti−1

)
â(ti), for ti−1 ≤ t ≤ ti, i = 1, . . . ,m

is called piecewise linear extension of â.

For arbitrary P , the piecewise constant extension a of the optimal solution â of
LP (P ) is admissible for (SCLP ) (see Pullan (1993), Lemma 3.1) and

∫ T

0
e−βtcat dt =

m∑
i=1

1

β

(
e−βti−1 − e−βti

)
câ(ti−1+),

i.e. the value of LP (P ) gives us an upper bound for the value of (SCLP ). If P
contains the breakpoints of the optimal solution of (SCLP ), the piecewise constant
extension of the optimal solution of LP (P ) obviously gives the optimal solution at of
(SCLP ). On the other hand, a steady refinement of the set of breakpoints P leads
to an approximation of the optimal solution of (SCLP ). The idea of the algorithm
which we present in this section is now to compute time points which come close to
potential breakpoints of the optimal solution. This can be done since breakpoints
are either depletion times of buffers or time points of switching priorities (see
Avram/Bertsimas/Ricard (1995)). Switching priorities will be detected by using
the sufficient conditions for optimality presented in Section 4. We will now give a
discrete version thereof for our deterministic model.

Lemma 5.2:
Suppose that a partition P of [0, T ] is given. If the variables a(ti−1+), y(ti), η(ti−1+),
p(tm), p(ti−1), i = 1, . . . ,m fulfill

(i) (t1 − t0)b(a(t0+))− y(t1) = −y0

(ti − ti−1)b(a(ti−1+))− y(ti) + y(ti−1) = 0, i = 2, . . . ,m.

(ii) Aa(ti−1+) ≤ b, i = 1, . . . ,m.
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(iii) p(ti) − eβ(ti−ti−1)p(ti−1) = 1
β
(c − η(ti−1+))(eβ(ti−ti−1) − 1), i = 1, . . . ,m

p(tm) = 0.

(iv) η(ti−1+)y(ti−1) = η(ti−1+)y(ti) = 0, i = 1, . . . ,m.

(v) a(ti−1+) minimizes a 7→ p(ti−1)b(a) and a 7→ p(ti)b(a) with a ∈ U .

(vi) y(ti), a(ti−1+), η(ti−1+) ≥ 0, i = 1, . . . ,m.

then the piecewise constant extension of a(ti−1+), i = 1, . . . ,m is an optimal
solution of (SCLP ).

Proof: Let at, ηt be the piecewise constant extension of a(ti−1+), i = 1, . . . ,m
and η(ti−1+), i = 1, . . . ,m respectively and yt the piecewise linear extension of
y0, y(ti), i = 1, . . . ,m. We define for ti−1 ≤ t < ti the function

αt = (eβ(t−ti−1) − 1)/(eβ(ti−ti−1) − 1)

(obviously 0 ≤ αt ≤ 1) and pt = αtp(ti) + (1 − αt)p(ti−1). The statement follows,
when we can show that the process (at, yt, ηt, pt) satisfies for all 0 ≤ t ≤ T

(i) yt = y0 +
∫ t
0 b(as) ds ≥ 0.

(ii) at ∈ U.
(iii) ṗt − βpt = −c+ ηt, pT = 0

(iv) ηtyt = 0.

(v) at minimizes a 7→ ptb(a), a ∈ U.

(i) and (ii) follow from Lemma 3.1 in Pullan (1993). (iv) holds since yt is linear on
[ti−1, ti], i = 1, . . . ,m which implies that if yj(ti−1) = yj(ti) = 0, then yj(t) ≡ 0 on
[ti−1, ti]. Since for ti−1 ≤ t < ti, pt = αtp(ti) + (1− αt)p(ti−1) and at ≡ a(ti−1+) on
[ti−1, ti] minimizes both a 7→ p(ti−1)b(a) and a 7→ p(ti)b(a), we obtain (v). Thus it
is left to show (iii). However, a short calculation gives us that for all 0 ≤ t ≤ T

pt =
∫ T

t
eβ(t−s)(−c+ ηs) ds

which implies (iii).

Our algorithm now proceeds as follows. For y ∈ IRN
+ define Υ(y) = {1 ≤ j ≤

N | yj = 0}. Suppose we have a partition set P of [0, T ]. We can solve the LP (P )
with starting state y and partition set P . The corresponding value function will be
denoted by V (P, y). If the solution is optimal, we would have p(t0) = ∂

∂y
V (P, y(t0)).

Hence we approximate the real value p(t0) by ∂
∂y
V (P, y(t0)) and compute a new
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control a(t0+) for the first time interval by solving

(LP )



p(t0)b(a) → min

Aa ≤ b

bj(a) ≥ 0, for all j ∈ Υ(y)

a ≥ 0

The first depletion time under this control is then given by

t′ := min{ yj

−bj(a(t0+))
| j /∈ Υ(y), bj(a(t0+)) < 0, j = 1, . . . , N}.

Determine η(t0+) = c + ṗ(t0) − βp(t0) and define pt = eβ(t−t0)p(t0) + 1
β
(c −

η(t0+))(eβ(t−t0) − 1). Using sensitivity analysis, we can determine the time in-
terval [t0, t

′′] on which a(t0) is a solution of (LP ) with p(t0) replaced by pt. Thus
t′′ gives the time where priorities switch. t := min{t′, t′′} is therefore a potential
breakpoint for the optimal control and will be added to P . Starting from t we can
compute in the same way further potential breakpoints. In order to obtain a good
initial solution, we determine in a first step the myopic solution as in Chen/Yao
(1993). The procedure is as follows

PROCEDURE Myopic Solution

t := t0, y := y0, i := 0

WHILE (t < T ) DO
Solve

(LP )



ca → min

Aa ≤ b

bj(a) ≥ 0, for all j ∈ Υ(y)

a ≥ 0

ai := a

∆t := min{ yj

−bj(a)
| j /∈ Υ(y), bj(a) < 0, j = 1, . . . , N}

ti+1 := ti + ∆t

t := ti+1

y := y + ∆t b(a)

i = i+ 1

END

OUTPUT (ai, ti).
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In the myopic solution procedure above, we minimize the cost at a breakpoint
time, subject to getting a feasible pair of control and trajectory and determine
the next breakpoint as the first depletion time under this control. Sometimes the
myopic solution is already optimal, as for example in the case of the index policy
(see Chen/Yao (1993)). Here we are only interested in the breakpoints generated
by the algorithm which we will use to obtain an improved solution. The whole
algorithm for solving (SCLP ) works as follows:

ALGORITHM SCLP

STEP 1: Compute Myopic Solution

P0 = breakpoints of Myopic Solution.

STEP 2: Computation of new breakpoints:
t := t0, y := y0, P := P0

WHILE (t < T ) DO
Solve LP (P ). Objective value V (P, y). pt := ∂

∂y
V (P, y)

Solve

(LP )



ptb(a) → min

Aa ≤ b

bj(a) ≥ 0, for all j ∈ Υ(y)

a ≥ 0

t′ := min{ yj

−bj(a)
| j /∈ Υ(y), bj(a) < 0, j = 1, . . . , N}

ηj := 0, if j /∈ Υ(y) or j ∈ Υ(y) and bj(a) > 0 else
ηj := cj + ṗj(t)− βpj(t), j = 1, . . . ,m

ps := eβ(s−t)pt + 1
β
(c− η)(eβ(s−t) − 1)

t′′ := max{s ≥ 0 | a still solves (LP ) with pt replaced by ps}
∆t := min{t′, t′′}
y := y + ∆t b(a)

t := t+ ∆t

P0 := P0 ∪ {t}
P := {t̂−∆t ≥ 0 | t̂ ∈ P} ∪ {0}
END

IF the solution (a, y, η, p) satisfies (i)-(vi) of Lemma 5.2 THEN Stop.
The piecewise constant extension of a is optimal for (SCLP ).

ELSE GOTO STEP 2.
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Of course, if the number of breakpoints which have been generated in one step is
very small, one can add further breakpoints, like ti+ti−1

2
, i = 1, . . . ,m. In any case

one should always remove breakpoints which have not led to an improvement in
the next step.

Example:
We have used the algorithm to solve the following small network

fig.5.1 : Network with blocking

with λ1 = λ3 = 0, µ1 = 8, µ2 = 2, µ3 = 10, c1 = 11, c2 = 0, y0 = (8, 0, 10), β =
0. It can be shown for the ordinary stochastic network problem that the opti-
mal policy is a switching policy. However, the proof is surprisingly difficult (see
Bäuerle/Brüstl/Rieder (1998)). Avram/Bertsimas/Ricard (1995) have shown that
the same result holds for the deterministic fluid problem, but the proof is only
correct for the interior of the state space. The data of this problem is chosen in
such a way that the solution obtained from Avram/Bertsimas/Ricard (1995) is
not correct (indeed they get the myopic solution). The result we obtain with our
algorithm is summarized in the following table

Myopic Solution LP (P ) Solut. New Breakpoints LP (P ) Solut.

P {0, 1, 2, 5} - {0, 1, 1.33, 2, 4, 5} -
a(t0+) (0, 0, 1) (1

4
, 1, 3

4
) - (1

4
, 1, 3

4
)

a(t1+) (1, 1, 0) (3
4
, 1, 1

4
) - (1

4
, 1, 3

4
)

a(t2+) (0, 1, 0) (0, 2
3
, 0) - (1

4
, 1, 0)

a(t3+) - - - (1
4
, 1, 0)

a(t4+) - - - (0, 0, 0)
y(t1) (8, 0, 0) (6, 0, 2.5) - (6, 0, 2.5)
y(t2) (0, 6, 0) (0, 4, 0) - (5.33, 0, 0)
y(t3) (0, 0, 0) (0, 0, 0) - (4, 0, 0)
y(t4) - - - (0, 0, 0)

Obj. value 29 25.5 - 22.67
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First we have computed the myopic solution with breakpoints {0, 1, 2, 5} and objec-
tive value 29. Using these breakpoints to solve LP (P ) we get an improved solution
with objective value 25.5. In a next step we have computed the new breakpoints
1.33, 2 and 4 which we have added to our set P . Solving LP (P ) gives the objevtive
value 22.67 and the algorithm detects optimality.

5.2 Numerical Methods for Stochastic Fluid Programs

Solving SFPs is much more complicated numerically than solving deterministic
ones. It is even not clear whether the optimal solution is again piecewise constant
for every environment state. Of course one would expect this. In principle, there
are several different ways in which one could tackle this problem. For example
one could try and solve the fixed point equation 2.1 by iteration. However, we
use a direct approach to this problem, namely the Approximating Markov chain
approach (see Kushner/Dupuis (1992)). This is a general method for stochastic
control problems. In what follows, we give a short outline of how to apply it to
our SFP as defined in Section 2.1. First we look at a time discretization of our
process. Let h > 0 be small and define ∆th = h (maxu∈U,z∈Z{

∑N
j=1 |bzj(u)|})−1.

Denote D(x) = {u ∈ U | y+ bz(u)∆th ∈ S}, x ∈ E the set of admissible actions in
state x. The discrete time optimality equation then reads

V h(x) = inf
u∈D(x)

{
∆thc(x, u) + e−β∆th

[
∆th

∑
z′ 6=z

qzz′V
h(y, z′) +

(1−∆thqz)V
h
(
y + bz(u)∆th, z

)]}

In a next step we restrict the state space to a grid with distance h > 0. This can
be done by applying a finite-element method. The crucial point is that the new
state y + bz(u)∆th can be written as a convex combination of grid points:

bz(u)∆th =
N∑

j=1

hej

bzj(u)
+∆th

h
+

N∑
j=1

(−hej)
bzj(u)

−∆th

h

Notice that the sum of the weights is less than 1 due to the definition of ∆th.
Approximating the value function by a linearization over the grid, we obtain the
following optimality equation

V h(x) = min
u∈D(x)

{
∆thc(x, u) + e−β∆th

(
∆th

∑
z′ 6=z

qzz′V
h(y, z′) + (1−∆thqz)

[ N∑
j=1

bzj(u)
+∆th

h
V h(y + hej, z) +

N∑
j=1

bzj(u)
−∆th

h
V h(y − hej, z) +
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[
1− ∆th

h

N∑
j=1

|bzj(u)|
]
V h(x)

])}

Under Assumptions 2.1 and 2.2 there exists a minimizer f of V h and the stationary
policy π = f∞ is optimal. From Kushner/Dupuis (1992) we know that for h→ 0,
V h(x) converges to V (x) for every environment state z. We use this method to
compute the optimal policy for the following admission control problem.

Example:
A controller has to decide upon acceptance of fluid for N buffers in parallel. If
the environment process is in state z at time t there is a demand for inflow into
buffer j at rate λj(z). The outflow rate µj for buffer j is fixed j = 1, . . . , N . The
controller obtains a reward rj for each unit of accepted fluid for buffer j, but has
to pay holding costs ĉ(y) which depend on the common buffer content y and are
increasing. The control is hence a vector (u, v), where uj is the fraction of fluid that
is admitted to buffer j and vj is the activation rate of server j (of course vj = 1 if
there is fluid in the buffer). In terms of our SFP, the data is given by

E = IRN
+ × Z

U = [0, 1]N × [0, 1]N

bzj(u) = λj(z)uj − µjvj, j = 1, . . . , N

c(x) = ĉ(y)−
N∑

j=1

rjλjuj

β > 0

It has been shown in Bäuerle (1998b) that the optimal policy is of switching type
under suitable assumptions on the cost rate function. In particular in the one buffer
case (N = 1) we obtain a threshold policy (see also Rajagopal et al. (1995)).
The following numerical computation of the optimal policy has been done for the
one-and two-buffer case with two environment states. Figure 5.2 and 5.3 refer to
the one-buffer case with c(y) = (y + 0.5)2, β = 0.9, r = 20

9
, µ = 2. In figure 5.2

we have fixed q0 = q1 = 2, λ(0) = 4 and have varied the input rate in environment
state 1, λ(1) from 0 to 2.5. The curve consisting of circles represents the optimal
threshold y∗0 in environment state 0 and the other curve, the optimal threshold y∗1 in
environment state 1. In Sethi et al. (1992) it has been shown that if λ(0), λ(1) ≥ µ
- which is the case if λ(1) ≥ 2 - the optimal thresholds are independent of the
environment state and can be computed from ∂

∂y
c(y∗) = βr which gives y∗ = 0.5

in our case. From Rajagopal et al. (1995) we know that λ(1) ≤ λ(0) implies
that y∗1 ≥ y∗0. Moreover, the numerical computations allow to conjecture that the
optimal thresholds are decreasing in the input rate λ(1).
In figure 5.3 we have fixed the two input rates λ(0) = 4 and λ(1) = 1 and have varied
the intensity q0 = q1 with which the environment process changes. For q0 → 0 the
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system decouples into two deterministic systems with thresholds y∗0 = 0.5 and
y∗1 = 1.446. For q0 →∞ the environment process converges uniformly on compact
sets to a constant input rate λ̄ = 1

2
(λ(0) + λ(1)) = 2.5. Hence we would expect

0.6

0.8

1
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1.4

levels
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y1

fig.5.2 : Optimal thresholds - variation of λ(1)
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fig.5.3 : Optimal thresholds - variation of q0

that both y∗0 = y∗0(q0) and y∗1 = y∗1(q0) converge to 0.5 which is the optimal threshold
in the deterministic case with input rate λ̄. This can be observed from the numerical
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data. Moreover, y∗0(q0) is decreasing and y∗1(q0) has a unique maximum point which
can be interpreted as the parameter setting possessing the most randomness.
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fig.5.4 : Optimal policy in state z = 0 - variation of λ1
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fig.5.5 : Optimal policy in state z = 1 - variation of λ1

The figures 5.4-5.7 for the two-buffer case are quite similar. Here we have chosen
the following data: c(y1, y2) = ey1+y2 , β = 0.9, r1 = r2 = 40

9
, µ1 = µ2 = 2. From

Bäuerle (1998b) we know that the optimal policy is characterized by 4 switching-
curves S0

1(y1), S
0
2(y1), S

1
1(y1) and S1

2(y1) where y2 ≤ Sz
j (y1) if and only if the whole
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fluid is accepted into buffer j in environment state z, when the buffer levels are
y1 and y2 respectively. Since the data is symmetric in buffer 1 and 2, the optimal
policy is also symmetric. Hence we can restrict w.l.o.g. to the policy for the first
buffer. In figure 5.4 and 5.5 we see the optimal policy for buffer 1 in environment
states 0 and 1 respectively, with q0 = q1 = 2, λ1(0) = λ2(0) = 4 where we have
varied λ1(1) = λ2(1) from 0.4 to 2.3. The region below the curve is the acceptance
region.
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fig.5.6 : Optimal policy in state z = 0 - variation of q0
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fig.5.7 : Optimal policy in state z = 1 - variation of q0

It seems that the optimal policy in the two-buffer case has the same properties as
in the one-buffer case, that is: as soon as λ1(1) > µ1, the policy does not change;
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both acceptance regions increase when λ1(1) decreases and the acceptance region
in environment state 1 is always greater than the one in environment state 0.
In figure 5.6 and 5.7 we have fixed λ1(0) = λ2(0) = 4, λ1(1) = λ2(1) = 1 and varied
the intensity with which the environment process changes, where q0 = q1.
Figure 5.6 refers to the optimal policy in environment state 0, figure 5.7 to the one
in environment state 1. Again, for q0 → 0 and q0 →∞ we are in completely deter-
ministic settings and the acceptance region in environment state 1 is decreasing in
q0. Moreover, the acceptance region in environment state 1 is always greater than
the one in environment state 0.



6 Applications

We present now some important examples for SFPs and apply our results of the
previous sections. SFPs typically arise in models for manufacturing and telecom-
munication systems. In both cases we encounter events that occur on different time
scales, where the faster one is modeled as a deterministic flow. For example the cell
stream sources in ATM multiplexers are often modeled as on-off sources, where we
have a certain inflow rate into a buffer when the source is on (talkspurt state) and
no inflow, when the source is off (silent state). The duration of the state length is
random.
In the sequel we investigate three examples. The first one is formulated in the
framework of manufacturing models and is a so-called parallel machine problem
with backlog. In the one and two product model we show that the optimal produc-
tion policies are threshold and switching-curve policies, respectively. The second
example is a single-server network. Here we can prove that the optimal scheduling
policy is an index policy. The last example is the problem of routing to parallel
queues. In the case of equal holding cost we show the optimality of the least-loaded
routing policy, in the case of two buffers and arbitrary cost we derive the optimality
of a switching curve policy.

6.1 Multi-Product Manufacturing Systems

A typical example for SFPs are stochastic manufacturing systems with machine
failures and/or demand changes. Since there are different timescales for the oc-
curence of events (for example the production process itself evolves faster than
random breakdowns of the machines), quantities that vary faster are replaced with
their averages. The cost of such systems are inventory/backlog cost as well as
production cost which are often assumed to be convex. The task is to find the
optimal production rate of the machines, which involves a scheduling problem in
dynamic jobshop systems. For a discussion of recent models and approaches see
Sethi/Zhang (1994).
In this section we will investigate a parallel machine system with backlog. The
example is taken from Sethi et al. (1998). We consider a multi-product manufac-
turing system with stochastic production capacity and constant demand for each
product over time. The vector y = (y1, . . . , yN) gives the inventory/backlog of
each product and we assume S = IRN . There are a number of parallel machines
for manufacturing which are subject to random breakdown and repair. Hence
λ(z) ∈ IR+, z ∈ Z gives the production capacity of the system that is available. The
vector u ∈ U = {u ∈ [0, 1]N | ∑N

j=1 uj ≤ 1} contains the percentages of the produc-
tion capacity that are assigned to each of the products. If we denote by µ ∈ IRN

+

the constant demand rate, the dynamics of the system are for a ∈ A, x ∈ E, t ≥ 0

yt = φt(x, a) = y +
∫ t

0
λ(z)as − µ ds.
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The function c : IR2N → IR+ denotes the surplus (inventory/backlog) and produc-
tion cost. In our notation we can summarize the SFP as follows

E = IRN × Z

U = {u ∈ [0, 1]N |
N∑

j=1

uj ≤ 1}

bz(u) = λ(z)u− µ

We will first look at the discounted model with interest rate β > 0. In order to
apply our results we have to impose the following assumptions on the cost rate
function:

Assumption 6.1:

(i) (y, u) 7→ c(y, z, u) is convex for all z ∈ Z.

(ii) c satisfies the growth conditions of Assumption 2.3 and 3.2.

(iii) y 7→ c(y, z, u) is continuously differentiable for all z ∈ Z, u ∈ U .

Under this assumption it has been shown in Sethi et al. (1998) that the value
function V satisfies the following growth condition

|V (y, z)− V (y′, z)| ≤ C0

(
1 + ‖y‖k+1 + ‖y′‖k+1

)
‖y − y′‖. (6.13)

Obviously our Assumptions 2.1 and 2.2 are fulfilled. From Theorem 2.5, Lemma
2.8 and Theorem 4.3 we immediately obtain Theorem 6.1.

Theorem 6.1: (β-Discounted case)
Under the preceding Assumption 6.1 it holds for the parallel machine problem that

a) There exists a β-discounted optimal policy.

b) The value function V is continuously differentiable w.r.t. y and satisfies the
HJB-equation

(β + qz)V (x) = min
u∈U

[c(x, u) + Vy(x)(λ(z)u− µ)] +
∑
z′ 6=z

qzz′V (y, z′) (6.14)

Moreover, V fulfills the growth condition (6.13).

c) If there exists an f ∗ ∈ F such that for almost every t ≥ 0

(β + qz)V (φt(x, f
∗), z) = c(φt(x, f

∗), z, f ∗(x)(t)) + Vy(φt(x, f
∗))(λ(z)f ∗(x)(t)

−µ) +
∑
z′ 6=z

qzz′V (φt(x, f
∗), z′)

then (f ∗, f∗, . . .) is an optimal policy.
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Now we will look at the same model with the c-average cost optimality criterion. In
this case we need a further assumption. Note that due to our previous assumptions,
the cost rate function is coercive (see Remark 3.3).

Assumption 6.2:
Suppose that ν is the stationary distribution of the environment process (Zt). Then
we assume

∑
z λ(z)νz >

∑N
j=1 µj.

It has been shown in Sethi et al. (1998) Theorem 3 (cf. also Sethi et al. (1997)
Theorem 3.3) that with ξ = (0, 0) ∈ E (w.l.o.g. suppose 0 ∈ Z) we have

|hβ(x)| ≤ C0(1 + ‖y‖k+2) =: M(y)

for all x ∈ E, β > 0, where C0 ∈ IR+ is independent of β. Moreover, from Theorem
2 in Sethi et al. (1998) we can conclude that there exists a policy π such that
Gπ(x) < ∞ for all x ∈ E (cf. Lemma 3.8). Hence using Lemma 3.9, Assumption
3.1 is fulfilled. Since the convexity assumptions of Remark 3.4 are fulfilled we
obtain with Theorem 3.6, Theorem 4.4 (notice that Assumption 3.3 (ii) is also
valid) and Remark 3.4

Theorem 6.2: (Average case)
Under the preceding Assumptions 6.1 and 6.2 it holds for the parallel machine
problem that

a) There exists a decision rule f 0 and sequences βm(x) → 0, xm(x) → x such that

f 0(x) = lim
m→∞

fβm(x)(xm(x)),

where fβ is an optimal decision rule in the β-discounted model and the sta-
tionary policy (f 0, f0, . . .) is c-average optimal, provided Jf0 ≥ Gf0 .

b) There exists a continuous and convex function h : E → IR and a constant
ρ ≥ 0 such that h is a viscosity solution of the HJB-equation

ρ+ qh(x) = min
u∈U

[c(x, u) + hy(x)(λ(z)u− µ)] + q
∑
z′
pzz′h(y, z

′) (6.15)

c) If some continuously differentiable function w(·, z) : S → IR satisfies (6.15)
and if there exists a decision rule f ∗ ∈ F such that (4.11) and (4.12) hold and
Jf∗ ≥ Gf∗ , then ρ = Gf∗(x) for x ∈ E and (f ∗, f∗, . . .) is a c-average optimal
policy.
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Remark 6.1:
The same analysis can be carried out if we allow for a stochastically varying de-
mand, i.e. there is a second continuous-time Markov chain (Z2

t ) with finite state
space which is independent of everything else and determines the demand rate µ(z).
Obviously it is possible to construct a common continuous-time Markov chain (Zt)
such that the dynamics of the system is given by bz(u) = λ(z)u− µ(z).

In the cases of one (N = 1) or two products (N = 2) it is possible to further derive
some structured properties for the optimal policies under suitable assumptions on
the cost rate function.

A) One-Product System
Suppose now that N = 1, i.e. we have a one-product system and that

Assumption 6.3:
The cost rate function is of the form c(y, z, u) = c(y) + c̃u, with c̃ ∈ IR+.

Let us first look at the β-discounted problem. Assumption 6.1 also implies that V
is convex in y (cf. Lemma 2.6), hence Vy is increasing. In this case we obtain from
the HJB-equation (6.14) that the optimal policy is given by a threshold feedback
control. A feedback control is a function g : E → U such that yt = y+

∫ t
0 b

z(g(ys))ds
has a unique solution and the open loop control u(x, t) = g(yt) is admissible.

Corollary 6.3: (β-Discounted case)
In addition to the assumptions of Theorem 6.1 we assume that N = 1 and that
the cost rate function satisfies Assumption 6.3. Then the optimal stationary policy
(f ∗, f∗, . . .) in the β-discounted model is given by a threshold feedback control g,
i.e. there exists a function S : Z → IR such that

g(x) =


1 , y < S(z)

min{1, µ
λ(z)

} , y = S(z)

0 , y > S(z)

and f ∗(x)(t) = g(φt(x, f
∗)).

Remark 6.2:
The definition of g(x) at y = S(z) is arbitrary. We have chosen it in such a way
that the inventory - if possible - stays the same. If |Z| = 2, the function S(z) can be
computed explicitely. This has been done in Akella/Kumar (1986). For arbitrary
Z it is possible to derive monotonicity properties of S. In Sethi/Zhang (1994) one
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finds statements if (Zt) is a birth-and-death process. For a more general concept
using stochastic orderings, see Rajagopal et al. (1995).

In the average cost case we obtain

Corollary 6.4: (Average case)
In addition to the assumptions of Theorem 6.2 we assume that N = 1 and that
the cost rate function satisfies Assumption 6.3. Then the optimal stationary policy
(f ∗, f∗, . . .) in the c-average cost model is given by a threshold feedback control g,
i.e. there exists a function S : Z → IR such that

g(x) =


1 , y < S(z)

min{1, µ
λ(z)

} , y = S(z)

0 , y > S(z)

and f ∗(x)(t) = g(φt(x, f
∗)). Moreover, there exists a sequence βm → 0 such that

Sβm(z) → S(z) for z ∈ Z, where Sβm is the optimal threshold function in the
βm-discounted model.

Proof: From Corollary 6.3 we know that for β > 0, the optimal policy is given by
a threshold feedback control with threshold function Sβ : Z → IR, i.e.

fβ(x)(t) =


1 , φt(x, f

β) < Sβ(z)
min{1, µ

λ(z)
} , φt(x, f

β) = Sβ(z)

0 , φt(x, f
β) > Sβ(z)

Hence we can choose in the proof of Theorem 3.11 a subsequence {βm} of {βn}
such that Sβm(z) → S(z) for z ∈ Z and m → ∞. First we have to verify that for
g, the integral equation

φt(x) = y +
∫ t

0
λ(z)g(φs(x), z)− µ ds

has a unique solution. As far as existence is concerned, it is possible to compute a
solution explicitly. However this involves to distinguish several cases. For example
if λ(z) > µ and y > S(z) we have

φt(x) =

{
y − tµ , 0 ≤ t ≤ t(x)
S(z) , t > t(x)

with t(x) = (y − S(z))/µ. Uniqueness follows e.g. from Hartman (1982) Theorem
6.2. Using Lemma A.4 it can be readily verified that fβm(x)(xm(x)) → f(x) for
m→∞, where f is constructed from a feedback control g with threshold function
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S. This again makes it necessary to distinguish several cases. We will only look at
the case λ(z) > µ and y > S(z) ∈ IR. We have to show∫ ∞

0

∫
U
ψ(t, u)fβm(xm)(t, du)dt→

∫ ∞

0

∫
U
ψ(t, u)f 0(x)(t, du)dt

for all measurable functions ψ, with u 7→ ψ(t, u) is continuous for all t ≥ 0 and∫∞
0 supu∈U |ψ(t, u)| dt < ∞. W.l.o.g. suppose y − S(z) > 3ε for ε > 0. Choose
N0(ε) big enough such that for all m ≥ N0(ε):

zm = z, |y − ym| ≤ ε, |Sβm(z)− S(z)| ≤ ε

and thus ym > Sβn(z) for all m,n ≥ N0(ε). Hence we obtain with tm(x) :=
(ym − Sβm(z))/µ∣∣∣∣∣

∫ t(x)

0
ψ(t, 0)dt+

∫ ∞

t(x)
ψ(t,

µ

λ(z)
)dt−

∫ tm(x)

0
ψ(t, 0)dt−

∫ ∞

tm(x)
ψ(t,

µ

λ(z)
)dt

∣∣∣∣∣ ≤
≤
∫ tm(x)

t(x)
|ψ(t, 0)|dt+

∫ tm(x)

t(x)
|ψ(t,

µ

λ(z)
)|dt→ 0 for m→∞,

since tm(x) → t(x) for m → ∞ which implies the statement. Last but not least,
we have to show that the transition kernel induced by the feedback control g is
weakly continuous which yields the result by Lemma 3.10. Hence we have to show

x 7→
∑
z′
pzz′

∫ ∞

0
e−qtv(φt(x), z

′)dt

is continuous and bounded, for all continuous and bounded v : E → IR, where
φt is generated by g. Boundedness is clear. As far as continuity is concerned we
will again look at the case λ(z) > µ and y > S(z) ∈ IR. Thus for N0 big enough,
zm = z for all m ≥ N0 and it remains to show that

y 7→
∫ ∞

0
e−qtv(φt(x), z

′)dt

is continuous for all z′ ∈ Z. We have

lim
m→∞

∫ ∞

0
e−qtv(φt(ym, z), z

′)dt = lim
m→∞

(∫ tm(x)

0
e−qtv(ym − tµ, z′)dt+

e−qtm(x)

q
v(Sm(z))

)

= lim
m→∞

(∫ t(x)

0
e−qtv(ym − tµ, z′)dt+

e−qt(x)

q
v(Sm(z))

)
=
∫ ∞

0
e−qtv(φt(x), z

′)dt

where we have used dominated convergence in the last step.

B) Two-Product System
An investigation of this model can be found in Rajagopal (1995) section 4.9.3. We
will restrict to the β-discounted model here. The average cost model can be solved
in the same spirit as in the one-product system. Suppose now that N = 2, i.e.
we have a two-product system and that the cost rate function has the following
properties
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Assumption 6.4:

(i) c(y, z, u) = c(y) + c̃u, c̃ ∈ IR2
+.

(ii) c satisfies the growth condition of Assumption 2.3 and 3.2.

(iii) y → c(y) is strictly convex and continuously differentiable.

(iv)
(

∂c
∂y1

− ∂c
∂y2

)
(y) is strictly increasing in y1 and strictly decreasing in y2.

(v) ∂c
∂y1

is strictly increasing in y2 and ∂c
∂y2

is strictly increasing in y1.

(vi) ∂c
∂y1

(y+h(e1− e2)) is strictly increasing in h > 0, ∂c
∂y2

(y+h(e1− e2)) is strictly
decreasing in h > 0.

The property in Assumption 6.4 (v) is also called supermodularity or one says that
c has monotone differences. The assumptions are e.g. fulfilled if c is separable,
i.e. c(y1, y2) = c1(y1) + c2(y2) and each ci, i = 1, 2 is strictly convex, continuously
differentiable and satisfies the growth conditions. Here it is possible to show

Theorem 6.5:
Under the preceding Assumption 6.4 the optimal policy is given by a feedback
control of switching-type. The feedback control can be characterized by a partition
P1 + P2 + SP of IR2 such that

a) if y ∈ SP , then it is optimal to stop production and y ∈ SP, y′ ≥ y implies
y′ ∈ SP .

b) if y ∈ P1, then it is optimal to produce item 1 only and if y′ /∈ SP, y′1 ≤
y1, y

′
2 > y2 then y′ ∈ P1.

c) if y ∈ P2, then it is optimal to produce item 2 only and if y′ /∈ SP, y′2 ≤
y2, y

′
1 > y1 then y′ ∈ P2.

The proof that this policy is ε-optimal can be found in Rajagopal (1995). How-
ever, he did not prove that V is continuously differentiable. Since this is true due
to Lemma 2.8 we can complete his proof.

6.2 Single-Server Networks

A well-known problem in queueing theory is the so-called Klimov Problem (see
e.g. Klimov (1974), Walrand (1988)). Here we consider its fluid analogue which
is a generic single-server fluid network (fig.6.1). There are N buffers with infinite
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capacity which receive fluid from outside at rate λ(z) = (λ1(z), . . . , λN(z)), if at
time t the environment process Zt = z. The vector y = (y1, . . . , yN) gives the
buffer content and we assume S = IRN

+ . A single server has to be splitted among
the buffers.

fig.6.1 : Single-server network

The potential service rate of buffer j is assumed to be µj > 0, j = 1, . . . , N which
means that if a fraction uj ∈ (0, 1) of the server is allocated to buffer j, there is
an output of rate ujµj. For abbreviation denote the matrix D = diag(µj) as the
diagonal matrix with elements µj on the diagonal. The fluid that is leaving buffer j
is divided and a fraction of pji ∈ [0, 1), i = 1, . . . , N is instantaneously flowing into
buffer i. Denote the matrix P = (pji) and define U = {u ∈ [0, 1]N | ∑N

j=1 uj ≤ 1}.
Hence, given a fixed server allocation u ∈ U and a fixed environment state z, the
input rate into buffer j is λj(z)+

∑N
i=1 pijµiui and the output rate is equal to µjuj.

In matrix notation this is λ(z) + P TDu and Du respectively.
We suppose that a linear cost of rate cj ∈ IR is incurred, when holding fluid in
buffer j. Denote c = (c1, . . . , cN). In our notation we can summarize the SFP as
follows, if we introduce the matrix A := D(I − P ) (I denotes the identity matrix)

E = IRN
+ × Z

U = {u ∈ [0, 1]N |
N∑

j=1

uj ≤ 1}

bz(u) = λ(z)− ATu

c(x, u) = cy

Let us first investigate the β-discounted problem. A different optimization problem
is obtained, when we suppose that we obtain a reward of rj ∈ IR for each unit uj,
we allocate the server to buffer j. Denote r = (r1, . . . , rN). The aim here is to
maximize the expected discounted reward of the system over an infinite horizon.
In Bäuerle/Rieder (1999) it has been shown that if we define r = Ac, the optimal
policies for both optimization problems are the same. We will impose the following
assumptions, where we fix r = Ac throughout the section.
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Assumption 6.5:

(i) Suppose that P is transient, i.e.
∑∞

n=0 P
n <∞.

(ii) The rewards r are non-negative.

Assumption 6.5(i) is for example fulfilled if
∑N

i=1 pji < 1, for all j = 1, . . . , N i.e. a
positive fraction of 1−∑N

i=1 pji is leaving the system. Our aim is to prove that the
optimal policy is a priority index policy. The deterministic version of this problem
has also been investigated in Chen/Yao (1993). Using a linear programming ap-
proach the authors there showed that the index policy is a myopic solution of the
optimization problem and gave conditions under which the myopic solution is also
globally optimal.
We will next give a definition of the indices and some important properties. In
the following subsections we will define the index policy and present a proof of its
optimality.

Definition and Properties of the Indices
Due to Assumption 6.5 we have that (I − P )−1 =

∑∞
n=0 P

n ≥ 0 and hence

A−1 =
∞∑

n=0

P nD−1 ≥ 0.

Obviously this relation holds for arbitrary quadratic submatrices of A. For means
of short notation, let us introduce the following abbreviation: For a subset S ⊂
{1, . . . , N} we denote

aS
i = (−aij)j∈S = (µipij)j∈S, i /∈ S and AS = (aij)i,j∈S.

An analogous definition is used for vectors.

Now we will give a recursive definition of the indices I1, . . . , IN , the so-called
largest remaining index algorithm (the name will be justified by Lemma 6.6
a)). It is closely connected to the reward model. By 11 we denote the vector
consisting of 1’s only - the dimension should be clear from the context.

Largest remaining index algorithm:

(i) I1 = max1≤j≤N rj, i1 = argmax1≤j≤N rj, S1 = {i1}.
(ii) For k = 1, . . . , N − 1 let

Ik+1
j =

rj + aSk
j A−1

Sk
rSk

1 + aSk
j A−1

Sk
11
, j /∈ Sk
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Ik+1 = max
j /∈Sk

Ik+1
j , ik+1 = argmaxj /∈Sk

Ik+1
j

Set Sk+1 = Sk + {ik+1}.

Buffer ik is now assigned the index Ik, k = 1, . . . , N .

The indices have the following nice interpretation: I1 is simply the maximal re-
ward rate in the model. Suppose that the indices I1, . . . , Ik have already been
determined. Given that we have to keep the buffer contents of the buffers in Sk

at zero we can now look at the reduced network which consists of the buffers in
{1, . . . , N} − Sk. If we allocate a unit of the server to buffer j /∈ Sk, in order to
keep the buffers in Sk empty we have to assign to them a server capacity uSk

which
can be computed from

0 = AT
Sk
uSk

− aSk
j .

Therefore uSk
= aSk

j A−1
Sk

. Hence Ik+1
j is the reward rate of buffer j in the reduced

network.
The following properties of the indices will be crucial in the sequent proofs.

Lemma 6.6:
Under Assumption 6.5, the indices computed by the largest remaining index algo-
rithm fulfill

a) I1 ≥ I2 ≥ . . . ≥ IN ≥ 0.

b) For 1 ≤ k ≤ N − 1
A−1

Sk
(Ik+111− rSk

) ≤ 0.

c) For 1 ≤ j < k ≤ N − 1

ejA
−1
Sk

(Ik+111− rSk
) ≤ ejA

−1
Sk−1

(Ik11− rSk−1
).

Proof: a) and b) see Bäuerle/Rieder (1999).
c) W.l.o.g. we assume that ik = k for k = 1, . . . , N . Hence we have

ASk
=

(
ASk−1

aS

−aSk−1

k akk

)
.

When we define wk = a
Sk−1

k A−1
Sk−1

we can write

Ik =
rk + wkrSk−1

1 + wk11
.
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Moreover, the definition zj = ejA
−1
Sk

, 1 ≤ j < k gives us

zj =

(
wkα+ ejA

−1
Sk−1

α

)
where α =

−aSejA
−1
Sk−1

akk + aSwk

.

Using the introduced notation we obtain

ejA
−1
Sk−1

(
Ik11− rSk−1

)
− ejA

−1
Sk

(
Ik+111− rSk

)
= ejA

−1
Sk−1

(
Ik11− rSk−1

)
− zj

(
Ik+111− rSk

)
= ejA

−1
Sk−1

(
Ik11− rSk−1

)
− (wkα+ ejA

−1
Sk−1

)
(
Ik+111− rSk−1

)
− α(Ik+1 − rk)

= (Ik − Ik+1)ejA
−1
Sk−1

11 + α(wk11 + 1)(Ik − Ik+1)

= (Ik − Ik+1)zj11 = (Ik − Ik+1)ejA
−1
Sk

11 ≥ 0

where the non-negativity is valid due to a) and the fact that A−1
Sk
≥ 0.

Definition of the Priority Index Policy
The priority index policy is now defined as follows: assign the complete server to
the non-empty buffer with highest index as long as there is fluid in this buffer.
When the buffer is empty, assign to it only the capacity that is needed to hold the
buffer at zero and assign the rest of the server to the buffer with second highest
index and so on. Since there can be re-entrants from the newly processed buffer
to buffers with higher priority, this procedures makes it necessary to re-assign the
server capacity to all the buffers at each time point when a buffer empties.
Assume that the buffers have been rearranged such that the natural order coincides
with the priority order i.e. ik = k and Sk = {1, . . . , k}, k = 1, . . . , n. Under
different environment states the number of buffers which can be emptied is different.

Definition 6.1:
The environment state z ∈ Z is called d-stable, d ∈ {0, 1, . . . , N} if there exists
a u ∈ U such that λj(z) < (ATu)j for j = 1, . . . , d and λj(z) ≥ (ATu)j for
j = d+ 1, . . . , N and all u ∈ U .

In a d-stable environment, the server can empty the first d buffers irrespective of
the initial buffer contents. Let z ∈ Z be a given d-stable environment state. We
will define the following server allocations

u∗(z, 1) = (1, 0, . . . , 0)

u∗(z, k + 1) = (λSk
(z)A−1

Sk
+ εaSk

k+1A
−1
Sk
, ε, 0, . . . , 0), k = 1, . . . , d < N

where ε > 0 is chosen such that 11u∗(z, k + 1) = 1

and

u∗(z,N + 1) = λ(z)A−1 if z is N − stable.



6 APPLICATIONS 70

Note that all server allocations are admissible due to our definition of d-stability.
u∗(z, k + 1) is exactly the server allocation which can hold buffers 1, . . . , k at zero
and work on the fluid in buffer k + 1. u∗(z,N + 1) can hold the complete system
empty.
Formally we can define the priority index policy as the stationary feedback policy
π = f∞ with

f(x)(t) = u∗(z, j) if j = min{i | yi(t) > 0} ∧ (d+ 1), z is d− stable,

where yt = φt(x, f(x)). For a fixed initial state we will call the action f(x) index
rule.

Theorem 6.7: (Optimality of the priority index policy - β-discounted case)
Under Assumption 6.5, the priority index policy is optimal for the discounted cost
model.

Remark 6.3:
An important special case is P = 0, i.e. there is no routing and processed fluid
leaves the system immediately. Assumption 6.5 (i) is then fulfilled. Moreover, we
obtain rj = µjcj and aS

j = 0 for arbitrary j /∈ S. Therefore, the LRI-algorithm
gives Ik+1 = maxj /∈Sk

rj and the priority index policy is the well-known µc-rule. In
the deterministic setting this result can also be found in Avram et al. (1995).

Example:
We will illustrate the operation of the priority index policy by means of the following
deterministic 5 buffer example:

fig.6.2 : Single-server network

The numbers next to the buffer give the reward rate rj and the server rate µj

respectively. We have λ1 = 1, all other external input rates are zero. The routing



6 APPLICATIONS 71

probabilities are indicated at the edges. The indices of the buffers computed with
the LRI-algorithm are: I(1) = 9, I(2) = 8, I(3) = 8, I(4) = 5.7, I(5) = 6.3. Figure
6.3 gives the path of the optimal trajectory. A vertical cut at time t gives the
amount of fluid in the buffers at time t, hence y = (1, 1, 1, 1, 1) is the buffer content
at t = 0.

t

fig.6.3 : Optimal trajectory

Proof of the optimality of the Priority Index Policy
For the proof we use the method of policy iteration which is explained in Section
4. Assumption 2.1 and 2.2 are obviously fulfilled. Let us first look at the following
generic control problem with function l : IRN

+ → IR+

(CP )



∞∫
0
e−(β+qz)tl(φt(x, a)) dt → min

φt(x, a) = y +
t∫
0
λ(z)− ATas ds

φt(x, a) ∈ IRN
+

at ∈ U for all t ≥ 0

In the sequel, z ∈ Z is fixed and we will suppress it in our notation. V (y) denotes
now the value function of (CP ).

Assumption 6.6:

(i) l is increasing and convex.

(ii) There exists a constant C0 ∈ IR+ such that for all y, y′ ∈ IRN
+

|l(y)− l(y′)| ≤ C0 (1 + ‖y‖+ ‖y′‖) ‖y − y′‖.
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(iii) l is continuously differentiable.

Lemma 6.8:
Suppose that the index rule is optimal for problem (CP ) and l fulfills Assumption
6.6. Then

a) y 7→ V (y) is increasing and convex.

b) There exists a constant C ′
0 ∈ IR+ such that for all y, y′ ∈ IRN

+

|V (y)− V (y′)| ≤ C ′
0 (1 + ‖y‖+ ‖y′‖) ‖y − y′‖.

c) y 7→ V (y) is continuously differentiable.

Proof: Again let ik = k for k = 1, . . . , N .
a) The convexity follows immediately from Lemma 2.6. For the monotonicity let
y ∈ IRN

+ , h > 0. It suffices to show that V (y+hej) ≥ V (y) for j = 1, . . . , N . Denote
by ah(t) the optimal index rule, starting in y + hej. Suppose that the additional
amount of fluid h is colored red, all other fluid has color blue. Moreover, we assume
that red fluid is always the last to process in the buffers. Define the control

a(t) =

{
ah(t) , if ah(t) processes blue fluid only.

(λSk
A−1

Sk
, 0) , if ah(t) processes red fluid and buffer 1, . . . , k are empty.

Obviously a ∈ D(y) and φt(y, a) ≤ φt(y+hej, ah) for all t ≥ 0. Hence we have due
to the monotonicity of l that V (y) ≤ LV (y, a) ≤ LV (y + h, ah) = V (y + h).

b) We first show the statement for y′ = y + hej, h > 0, j = 1, . . . , N. Denote by
at the optimal index rule, starting in y. Obviously a ∈ D(y + hej) and ‖φt(y, a)−
φt(y + hej, a)‖ = h for all t ≥ 0, where ‖ · ‖ is the L1-norm here. Due to the
assumptions on l we obtain

|V (y + hej)− V (y)| ≤ LV (y + hej, a)− LV (y, a)

=
∫ ∞

0
e−(β+qz)t|l(φt(y + hej, a))− l(φt(y, a))| dt

≤
∫ ∞

0
e−(β+qz)tC0

(
1 + ‖φt(y + hej, a)‖+ ‖φt(y, a)‖

)
h dt

Since the dynamics are linear we have that ‖φt(y, a)‖ ≤ ‖y‖+ bt, with b > 0. Thus

|V (y + hej)− V (y)| ≤
∫ ∞

0
e−(β+qz)tC0

(
1 + ‖y + hej‖+ ‖y‖+ 2bt

)
h dt

=
C0

β + qz

(
1 + ‖y + hej‖+ ‖y‖

)
h+

2bC0

(β + qz)2
h

≤ Cj

(
1 + ‖y + hej‖+ ‖y‖

)
h
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Now let y, y′ ∈ IRN
+ be arbitrary. Define ∆j := yj−y′j, y0 = y and for k = 1, . . . , N

define yk := y −∆1e1 − . . .−∆kek, . Then

|V (y)− V (y′)| = |V (y)−
N−1∑
k=1

(
V (yk)− V (yk)

)
− V (y′)|

≤
N∑

k=1

|V (yk−1)− V (yk)| ≤
N∑

k=1

Ck

(
1 + ‖yk−1‖+ ‖yk‖

)
|∆k|

Since ‖yk‖ ≤ ‖y‖+ |∆1|+ . . .+ |∆k| ≤ ‖y‖+ ‖y − y′‖ ≤ 2‖y‖+ ‖y′‖ we obtain

|V (y)− V (y′)| ≤ C̃0

(
1 + 4‖y‖+ 2‖y′‖

) N∑
k=1

|∆k| ≤ C ′
0

(
1 + ‖y‖+ ‖y′‖

)
‖y − y′‖

which completes the proof.

c) Since V is convex, it suffices to prove that the partial derivatives exist (cf.
Rockafellar (1970)). Define φt(y) = φt(y, a), where a is the optimal index rule. We
will first show that φt(y) has continuous partial derivatives with respect to y for
almost all t ≥ 0. Therefore, suppose z is d-stable and denote by Tk(y) and φk(y)
the depletion time of buffer k ≤ d and the state of the buffers at time Tk(y) under
the optimal index rule. An easy induction shows that Tk(y) and φk(y) are linear
in y, i.e. there exist Bk ∈ IRN×N , bk ∈ IRN such that Tk(y) = bky, φk(y) = Bky.
Obviously, Tk is increasing in y. Therefore, we obtain with |h| small enough and
t ∈ (Tk(y), Tk+1(y)), k < d, j = 1, . . . , N

φt(y + hej)− φt(y)

h
=

1

h

(
φk(y + hej)− φk(y) + (t− Tk(y + hej)(λ− ATu∗(k))

−(t− Tk(y))(λ− ATu∗(k))
)

= Bkej − bkej(λ− ATu∗(k))

Thus if t 6= Tk(y), k = 1, . . . , N , φt(y) has continuous partial derivatives. Finally,
we get now with Assumption 6.6 (ii) and Bounded Convergence

lim
h→0

V (y + hej)− V (y)

h
= lim

h→0

∫ ∞

0
e−(β+qz)t 1

h
(l(φt(y + hej))− l(φt(y))) dt

=
∫ ∞

0
e−(β+qz)t lim

h→0

1

h
(l(φt(y + hej))− l(φt(y))) dt

=
∫ ∞

0
e−(β+qz)t ∂

∂y
l(φt(y))

∂

∂yj

φt(y) dt

which implies the statement.

Proof of Theorem 6.7: According to the policy iteration it is sufficient to show
that the priority index rule is a minimizer of the n-stage value function Vn for all
n ∈ IN . Hence we have to show that the priority index rule is the optimal control
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for (CP ) where we define l(y) := cy +
∑

z′ 6=z qzz′Vn(y, z′), n ∈ IN. We do this by
induction on n using Lemma 4.7, where (i) reads

a∗t maximizes at 7→ atApt for at ∈ U.

First let us introduce the following definitions and notations, where we assume
w.l.o.g. that ik = k for k = 1, . . . , N .
T (x) ∈ IR+ is the time it takes to empty buffer 1, . . . , N if z is N -stable and y the
initial state, under the index rule. If z is d-stable, d < N , then T (x) := ∞.
φt(x) := φt(x, a), where a is the priority index rule.
Moreover, we define the following matrix

B = (b1, . . . , bN) =


c1 b12 b13 · · · b1N

c2 c2 b23 · · · b2N
...

...
...

...
cN cN cN · · · cN


with

(b1,k+1, . . . , bk,k+1) = A−1
Sk

(
Ik+111− rSk

)
+ cSk

,

k = 1, . . . , N − 1. Due to Lemma 6.6 b), c) we know that b1 ≥ b2 ≥ . . . ≥ bN .
Now consider the optimization problem for n = 0. Since V0 = 0 we have to solve
the control problem for the purely deterministic model (formally we have then also
to define Q := 0). As adjoint functions we take for t ≥ 0 and fixed x ∈ E

p0
t (x) :=

∫ T (x)

t
e(β+qz)(t−s)c(φs(x), z) ds,

where the function c : E → {b1, . . . , bN} is defined by c(x) := bk∧(d+1), if y1 = . . . =
yk−1 = 0, yk > 0 and z is d-stable, k = 1, . . . , N +1. Throughout the proof we will
understand that

∫ t2
t1
. . . ds =: 0 if t1 > t2. p

0
t (x) is obviously piecewise continuously

differentiable since φt(x) is continuous in t and

ṗ0
t (x) = (β + qz)p

0
t (x)− c(φt(x), z).

Set η0
t := c − c(φt(x), z). Since bk ≤ c, we have η0

t ≥ 0. If c(φt(x), z) = bk, then
[φt(x)]j = 0, j = 1, . . . k − 1 and η0

t φt(x) = 0. The continuity of φt(x) in t implies
that ηt is piecewise constant. Hence conditions (ii), (iii) and (iv) of Lemma 4.7 are
fulfilled. To verify (i) we have to look at

Ap0
t (x) =

∫ T (x)

t
e(β+qz)(t−s)Ac(φs(x), z) ds.

Now u∗ ∈ U with u∗1, . . . , u
∗
k > 0, u∗k+1 = . . . = u∗N = 0,

∑
j u

∗
j = 1 maximizes

u → uw, u ∈ U if and only if 0 < w1 = . . . = wk ≥ wk−1, . . . , wN . Therefore, we
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have to compute Abk, k = 1, . . . , N . Ab1 = r by definition and

Abk+1 =


Ik+111k

aSk
k+1A

−1
Sk
rSk

− Ik+1aSk
k+1A

−1
Sk

11 + rk+1
...

aSk
N A−1

Sk
rSk

− Ik+1aSk
N A−1

Sk
11 + rN


Because of the definition of Ik+1, it holds that

ek+1Abk+1 − Ik+1 =
(
rk+1 + aSk

k+1A
−1
Sk
rSk

)
− Ik+1

(
1 + aSk

k+1A
−1
Sk

11
)

= 0

and since aSk
j ≥ 0, A−1

Sk
≥ 0, using the maximality of Ik+1 we have for j =

k + 2, . . . , N :

ejAbk+1 − Ik+1 =
(
rj + aSk

j A−1
Sk
rSk

)
− Ik+1

(
1 + aSk

j A−1
Sk

11
)
≤ 0

and from Lemma 6.6 a) we get Ik+1 ≥ 0. Hence we have shown that

0 ≤ e1Ab1 ≥ e2Ab1, . . . , eNAb1

0 ≤ e1Abk = . . . = ekAbk ≥ ek+1Abk, . . . , eNAbk,

k ∈ {2, . . . , N}. Since c(φs(x), z) is decreasing in s, it can be readily verified that
(i) holds.
It is easy to see that p0

t is bounded and all admissible trajectories yt can at most
grow linearly. Therefore, the limit in (v) is always 0 which implies that (v) is also
valid. Thus, we have shown that (i)-(v) of Lemma 4.7 are satisfied and the index
rule is a minimizer of V0. Suppose now that this is valid for k = 0, . . . , n − 1 and
denote the corresponding adjoint functions by pk

t (x). We will prove that it is also
true for n. In this case we have to define further functions qk : E ×{b1, . . . , bN} →
IRN , k ∈ IN0 which help represent the adjoint functions.

q0(x, bk) :=
∫ T (x)

0
e−(β+qz)s [bk ∧ c(φs(x), z)] ds

and by recursion

pn
t (x) := p0

t (x) +
∫ T (x)

t
e(β+qz)(t−s)

∑
z′ 6=z

qzz′q
n−1 (φs(x), z

′, c(φs(x), z)) ds

qn(x, bk) := q0(x, bk)

+
∫ T (x)

0
e−(β+qz)s

∑
z′ 6=z

qzz′q
n−1 (φs(x), z

′, c(φs(x), z) ∧ bk) ds.

We will now show that the adjoint function pn
t together with a suitably defined

Lagrange function ηn
t satisfy the sufficient optimality conditions (i)-(v) in Lemma
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4.7 with l(y) = cy +
∑

z′ 6=z qzz′Vn(y, z′).

(i) Define w0 := A · q0(x, bk). Since [bk ∧ c(φs(x), z)] ≤ bk we obtain with the
properties of AB: 0 ≤ w0

1 = . . . = w0
k ≥ w0

k−1 ≥ . . . ≥ w0
N . Suppose this is true for

A · qj(x, bk), j = 0, . . . , n− 1. Define

wn := A · qn(x, bk) = A · q0(x, bk)

+
∫ T (x)

0
e−(β+qz)s

∑
z′ 6=z

qzz′A · qn−1 (φs(x), z
′, c(φs(x), z) ∧ bk) ds.

Since qz, qzz′ ≥ 0 for z′ 6= z we again obtain 0 ≤ wn
1 = . . . = wn

k ≥ wn
k−1 ≥ . . . ≥ wn

N

by the induction hypothesis. Since c(φs(x), z) is decreasing in s we can conclude
that Apn

t satisfies (i).

(ii) pn
t (x) is obviously continuous and piecewise continuously differentiable with

ṗn
t (x) = (β + qz)p

n
t (x)− c(φt(x), z)−

∑
z′ 6=z

qzz′q
n−1 (φt(x), z

′, c(φt(x), z)) .

Since by Lemma 6.8 Vn is continuously differentiable, we have that ∂
∂y
Vn(φt(x), z

′) =

pn−1
0 (φt(x), z

′). Therefore,

ηn
t (x) := c− c(φt(x), z) +

∑
z′ 6=z

qzz′

{
pn−1

0 (φt(x), z
′)− qn−1 (φt(x), z

′, c(φt(x), z))
}

and ηt is piecewise continuous.

(iii) Due to the definition of the qj we have for all j ∈ IN0, k = 1, . . . , N

pj
0(x) ≥ qj(x, bk).

Since c ≥ c(φt(x), z) for all t ≥ 0, we obtain ηn
t (x) ≥ 0 for all t ≥ 0.

(iv) Define w := p0
0(x) − q0(x, bk). The definition of bk implies that wk = . . . =

wN = 0. Moreover, if we define w0 := q0(x, bj)− q0(x, bk) with bk ≤ bj then again
w0

k = . . . = w0
N = 0. Suppose this is valid for w0, . . . , wn−1. Define

wn := qn(x, bj)− qn(x, bk) = q0(x, bj)− q0(x, bk)

+
∫ T (x)

0
e−(β+qz)s

∑
z′ 6=z

qzz′

{
qn−1 (φs(x), z

′, c(φs(x), z) ∧ bj)

−qn−1 (φs(x), z
′, c(φs(x), z) ∧ bk)

}
ds.

Using the induction hypothesis we can conclude that wn
k = . . . = wn

N = 0. Thus
the vector pn

0 (x)−qn(x, bk) has the same property. Now if c(φt(x), z) = bk we know
that [φt(x)]j = 0, j = 1, . . . , k − 1. Therefore ηn

t (x)φt(x) = 0 for all t ≥ 0.
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(v) It is easy to see that all pn
t (x) are bounded. In particular

|pn
t (x)| ≤ 1

β + qz

N∑
k=0

(
qz

qz + β

)k

‖c‖

for all x ∈ E and t ≥ 0. Hence the same argument as for n = 0 applies and (v) is
valid. Altogether we have now proven the theorem.

Remark 6.4:
In fact it can be shown that the index policy is optimal in a very strong sense:
it minimizes the cost on each sample path, i.e. if π∗ is the index policy and π an
arbitrary policy, it holds for all ω ∈ Ω that∫ ∞

0
e−βtcY π∗

t (ω) dt ≤
∫ ∞

0
e−βtcY π

t (ω) dt.

Hence we have in particular that the cost under the index policy are stochastically
smaller than the cost under any arbitrary policy. For the proof it is possible to
take almost the same construction for the adjoint functions pn

t . Moreover, it is
important to note that the indices do neither depend on the inflow rate λ nor on
the interest rate β.

Now we will investigate the single-server problem under the c-average cost criterion.
We have to find a further stability assumption which guarantees the validity of
Assumption 3.1. For this purpose, let us define by αj(z), j = 1, . . . , N the nominal
total arrival rate to buffer j in environment state z, which can be computed from
the traffic equation α(z) = λ(z) + α(z)P T . Hence, α(z) = (I − P T )−1λ(z). We
will denote by (νz)z∈Z the stationary distribution of (Zt) which exists since (Zt)
is irreducible. It is not surprising that the priority index policy is again optimal.
The stability condition is simply that the mean traffic intensity of the buffer is less
than 1.
The following general Lemma will be useful (see Lemma 7.1 in Sethi (1997)):

Lemma 6.9:
Assume that

∑
z∈Z z νz < µ with µ ∈ IR+. For l0 > 0 let τ = inf{t ≥ 0 |

∫ t
0(µ −

Zs) ds ≥ l0}. Then for any k ∈ IN , there exists a constant C0 independent of l0
such that E[τ k] ≤ C0(1 + lk0).
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Theorem 6.10: (Optimality of the priority index policy - average case)
Suppose that Assumption 6.5 is valid and that

∑
z∈Z

N∑
j=1

αj(z)

µj(z)
νz < 1.

Then the priority index policy is c-average optimal and G(x) = g <∞ for x ∈ E.

Proof: We prove the result with the help of Theorem 3.6. Denote by Z ⊂ Z, the
set of states which are N -stable (Z 6= ∅ due to our stability assumption). W.l.o.g.
assume 0 ∈ Z. We will verify Assumption 3.1 with ξ = (0, 0). Since y 7→ V β(y, z)
is increasing by Lemma 6.8, the relative value function hβ is bounded below by
minz V

β(0, z) − V β(ξ). Thus it suffices to verify the assumptions of Lemma 3.8.
We will do this with ξ = (0, 0) and f taken as the priority index rule. Now denote
by Yt the state process of the buffer content under the index policy π = f∞ and
define Λt :=

∫ t
0 λ(Zs) ds. Moreover, the process Tt = (T1(t), . . . , TN(t)) is referred

to as the allocation process under policy π, i.e. Tj(t) =
∫ t
0 πj(s) ds. Thus we have

for almost all ω (cf. Chen (1995)):

Yt = Y0 + Λt − [I − P T ]DTt = Y0 + Λt − ATTt ≥ 0

t 7→ Tt is increasing, T0 := 0.

t 7→ [11t− Tt] is increasing.

[11Yt] d [t− 11Tt] = 0

In particular we have with Qt := YtA
−111 and Λ̃t := ΛtA

−111 for almost all ω

Qt = Q0 + Λ̃t − 11Tt = Q0 + Λ̃t − t+ (t− 11Tt) ≥ 0

t 7→ 11Tt is increasing, T0 := 0.

t 7→ [t− 11Tt] is increasing.

Qt d [t− 11Tt] = 0

Hence Qt can be interpreted as the buffer content of a single server system under
a work-conserving policy (see last condition) and we know that if Λ̃t0 + Q0 ≤ t0
for a t0 > 0, then there exists a t ∈ [0, t0] such that Qt = 0 and thus Yt = 0.
However, from our assumption (note that the stability condition can be written as∑

z λ(z)A−111νz < 1) and Lemma 6.9 we have that τ̃ := inf{t ≥ 0 | t ≥ Q0 + Λ̃t}
has the property that Ef

x [τ̃ k] ≤ C0(1 + ‖y‖k) for all k ∈ IN and the constant C0 is
independent of y. Therefore, with τ1 = inf{t ≥ 0 | Yt = 0} we obtain τ1 ≤ τ̃ and
hence

Ef
x [τ k

1 ] ≤ C0(1 + ‖y‖k), k = 1, 2.

However, we do not know Zτ1 and are interested in τ(0,0) := inf{t ≥ 0 | Xt = (0, 0)}.
Obviously Zτ1 ∈ Z. If Z = Z, the statement follows easily. Now suppose Z 6= Z.
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We define now the following sequence of stopping times:

σ1 := inf{t ≥ τ1 | Zt /∈ Z}
τn := inf{t > σn | Yt = 0}
σn := inf{t ≥ τn | Zt /∈ Z}.

Then 0 ≤ τ1 ≤ σ1 ≤ . . . < τn ≤ σn and obviously Yt = 0 for t ∈ [τn, σn), n ∈ IN.
Moreover, from the theory of Markov chains we get, since (Zt) is ergodic

(i) P f
x (Zs 6= 0, τn ≤ s < σn) ≤ α < 1, for all n ∈ IN .

(ii) Ef
x [(σn − τn)k] ≤ C1, for all k = 1, 2, n ∈ IN, x ∈ E.

From (i) we conclude that

P f
x (τ(0,0) > σn) = P f

x (τ(0,0) > σn, . . . , τ(0,0) > σ1) = P f
x (τ(0,0) > σn | τ(0,0) > σn−1)

· . . . · P f
x (τ(0,0) > σ2 | τ(0,0) > σ1)P

f
x (τ(0,0) > σ1) ≤ αn.

And we know that maxz E
f
(0,z)[τ

k
1 ] ≤ C0, k = 1, 2. Hence together with (ii) we

obtain
Ef

x [(τn+1 − τn)k] ≤ C2, for all k = 1, 2, n ∈ IN
where C2 is independent of x. Thus we have for k = 1, 2

Ef
x [τ k

(0,0)] = k
∫ ∞

0
tk−1P f

x (τ(0,0) > t) dt = k
∞∑

n=1

Ef
x

[∫ τn

τn−1

tk−1P f
x (τ(0,0) > t) dt

]
≤

≤ Ef
x [τ k

1 ] + k
∞∑

n=2

Ef
x

[∫ τn

τn−1

tk−1P f
x (τ(0,0) > σn−2) dt

]
≤

≤ C0(1 + ‖y‖k) +
∞∑

n=2

αn−2Ef
x

[
(τn − τn−1)

k
]
≤

≤ C0(1 + ‖y‖k) + C2
1

1− α
≤ C3(1 + ‖y‖k)

Since Yt can grow at most linear, there exists a constant c̃ ∈ IR+ such that

Ef
x

[∫ τ(0,0)

0
cYt dt

]
≤ Ef

x

[∫ τ(0,0)

0
cy + c̃t dt

]
= cyEf

x [τ(0,0)] +
1

2
c̃Ef

x [τ 2
(0,0)] ≤ C4(1 + ‖y‖2) <∞

with a constant C4 independent of y. In the same way we obtain with σ(0,0) =
inf{Tn | XTn = (0, 0) } that

Ef
x

[∫ σ(0,0)

0
cYt dt

]
<∞.

Thus, all assumptions of Theorem 3.6 are fulfilled. In particular Gf (x) = Jf (x) <
∞ for all x ∈ E. Now take a sequence xm(x) ∈ E, xm(x) → x ∈ E and βm(x) ↓ 0.
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From the β-discounted case we know that the optimal policy fβm(x)(xm(x)) is the
priority index policy which is independent of βm(x). Using Lemma A.4 and the
special structure of the index policy it is easily seen that limm→∞ fβm(x)(xm(x)) =
f(x). Hence the result follows.

Remark 6.5:

(i) According to Theorem 3.7 the priority index policy is also d-average optimal.

(ii) From the proof of Theorem 6.10 we see that the state process (Xt) is positive
Harris recurrent under the stability assumption, for all policies which are work-
conserving, i.e. fulfill for almost all ω : [11Yt] d [t− 11Tt] = 0 for t ≥ 0.

6.3 Routing to Parallel Queues

Another classical problem in queueing theory is the problem of routing to parallel
queues. For a literature survey see e.g. Stidham/Weber (1993). In the stochastic
setting there are only a few analytical results on the problem. It is known that in
the symmetric case, i.e. if all queues are equal, the Join-the-shortest queue policy
is optimal. This has been shown in Winston (1977). In the case of two buffers,
the optimal policy is given by a switching curve (cf. Stidham/Weber (1993)) which
however, cannot be given explicitely. In terms of SFPs we have one randomly
varying input process λ(Zt) which has to be split up and routed to N different
buffers. Each buffer has a single server with a fixed potential output rate µj, j =
1, . . . , N . As before let D be the diagonal matrix with elements µj on the diagonal.
We assume linear holding cost of rate cj ∈ IR+ when holding fluid in buffer j.
Denote c = (c1, . . . , cN). In order to define the problem correctly one has to decide
upon the splitting u = (u1, . . . , uN) of the arriving fluid and on the activation
v = (v1, . . . , vN) of the servers, hence U = {(u, v) ∈ [0, 1]2N | ∑N

j=1 uj = 1}.
Summing up our SFP has the following form

E = IRN
+ × Z

U = {(u, v) ∈ [0, 1]2N |
N∑

j=1

uj = 1}

bz(u, v) = λ(z)u−Dv

c(x, u) = cy

We will look at two special cases of this model.
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A) Equal holding cost
Let us assume that c1 = . . . = cN = c ∈ IR+. Note that in this subsection c is in
IR+ and not a vector. We will show that the Least Loaded Routing (LLR) policy
is optimal which we define in the following way. For y ∈ IRN

+ denote by

I(y) = {1 ≤ j ≤ N | yj

µj

= min
1≤i≤N

yi

µi

}

the buffer numbers with least load, if y gives the current buffer contents. The
allocation vectors u∗(y) and v∗(y, z) are defined by

u∗j(y) =


µj∑

i∈I(y)
µi

, if j ∈ I(y)
0 , if j /∈ I(y).

v∗j (y, z) =

 1 , if yj > 0

min{1, λ(z)u∗j (y)

µj
} , if yj = 0

for j = 1, . . . , N . The LLR policy π = f∞ is a stationary feedback policy with

f(x)(t) = (u∗(yt), v
∗(yt, z))

where yt := φt(x, f(x)).

Theorem 6.11: (Optimality of the LLR policy - β-discounted case)
The LLR policy is optimal for the discounted cost model.

Example:
Suppose we have the following deterministic network:

fig.6.4 : Routing network
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The number next to the buffer gives the server rate µj. We have choosen λ = 6.
Figure 6.5 gives the path of the optimal trajectory with y = (1, 1, 1, 1, 1) at t = 0.

fig.6.5 : Optimal trajectory

The method of the proof is the same as in Section 6.2. Let l : IRN
+ → IR+ be

arbitrary. We will look at the following problem

(CP )



∞∫
0
e−(β+qz)tl(φt(x, a)) dt → min

φt(x, a) = y +
t∫
0

(λ(z)a1(s)−D a2(s)) ds

φt(x, a) ∈ IRN
+

at ∈ U for all t ≥ 0

In the following, z ∈ Z is fixed and we will suppress it in our notation. V (y) is the
value function of (CP ).

Lemma 6.12:
Suppose that the LLR control is optimal for problem (CP ) and l fulfills Assumption
6.6. Then

a) y 7→ V (y) is increasing and convex.

b) There exists a constant C ′
0 ∈ IR+ such that for all y, y′ ∈ IRN

+

|V (y)− V (y′)| ≤ C ′
0 (1 + ‖y‖+ ‖y′‖) ‖y − y′‖.

c) y 7→ V (y) is continuously differentiable.
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Proof: a) The convexity follows immediately from Lemma 2.6. For the monotonic-
ity let y ∈ IRN

+ , h > 0. It suffices to show that V (y+ hej) ≥ V (y) for j = 1, . . . , N .
Denote by ah(t) = (ah

1(t), a
h
2(t)) the optimal LLR control, starting in y + hej. De-

fine the control a1(t) = ah
1(t) and a2(t) = v∗(φt(y, a), z). Obviously a ∈ D(y) and

φt(y, a) ≤ φt(y + hej, ah) for all t ≥ 0. Hence we have due to the monotonicity of
l that V (y) ≤ LV (y, a) ≤ LV (y + h, ah) = V (y + h).

b) Follows as in Lemma 6.8 b).

c) Recalling the proof of Lemma 6.8 c) it remains to show that φt(y) has almost
everywhere continuous partial derivatives w.r.t. y. Fix two buffers k and j, 1 ≤
k, j ≤ N . Define t0 := inf{t > 0 | [φt(y)]k = 0} and t1 = inf{t ≥ 0 | j ∈ I(φt(y))}.
Denote by a and ah the LLR control, starting in y and y + hej respectively. Then
we have for t > t0:

lim
h→0

[φt(y + hej)− φt(y)]k
h

= 0

and for t < t0:

lim
h→0

[φt(y + hej)− φt(y)]k
h

=

{
δjk , if j /∈ I(φt−(y))
c̃ , if j ∈ I(φt−(y))

with a constant c̃. Thus, the assertion follows as in Lemma 6.8c).

Proof of Theorem 6.11 We will use policy iteration and show that the LLR control
is optimal for (CP ) where we define l(y) := cy+

∑
z′ 6=z qzz′Vn(y, z′), n ∈ IN. We do

this by induction on n using Lemma 4.7, where (i) reads

(u∗t , v
∗
t ) minimizes (ut, vt) 7→ λ(z)ptut − ptD vt for (ut, vt) ∈ U.

Let x ∈ E and denote by Tj(x) ∈ ĪR+ the time it takes to empty buffer j = 1, . . . , N
under the LLR control. Note that either Tj(x) <∞ for all j or Tj(x) = ∞ for all
j. Moreover, let φt(x) := φt(x, a), where a is the LLR control. Now consider the
optimization problem for n = 0. Since V0 = 0 we have to solve the control problem
for the purely deterministic model (formally we have then also to define Q := 0).
As adjoint functions we take for t ≥ 0 and j = 1, . . . , N

p0
j(x, t) := c

∫ Tj(x)

t
e(β+qz)(t−s) ds,

and define the Lagrange multipliers for t ≥ 0 and j = 1, . . . , N as

η0
j (x, t) := c1[t>Tj(x)].

As before we assume that
∫ t2
t1
. . . ds =: 0 if t1 > t2. Obviously (ii)-(v) of Lemma 4.7

are satisfied (cf. proof of Theorem 6.7). For (i) note that Tj(x) ≥ Ti(x) implies p0
j ≥

p0
i and p0

j(x, t) = 0 if [φt(x)]j = 0, hence the LLR control solves the minimization
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problem in (i). Hence we have shown that (i)-(v) of Lemma 4.7 are satisfied and the
LLR control is a minimizer of V0. Suppose now that this is valid for k = 0, . . . , n−1
and denote the corresponding adjoint functions by pk

t (x). We will prove that it is
also true for n. Define for t ≥ 0 and j = 1, . . . , N

pn
j (x, t) :=

∫ Tj(x)

t
e(β+qz)(t−s)

c+
∑
z′ 6=z

qzz′p
n−1
j (φs(x), z

′, 0)

 ds

ηn
j (x, t) := 1[t>Tj(x)]

c+
∑
z′ 6=z

qzz′p
n−1
j (φs(x), z

′, 0)


Properties (ii)-(v) of Lemma 4.7 follow directly (cf. proof of Theorem 6.7). Since
under the LLR control t1 ≤ t2 implies I(φt1(x)) ⊂ I(φt2(x)) we have by the induc-
tion hypothesis for j ∈ I(φs(x)) and all z′ ∈ Z (note that the order of depletion
times is independent of z′):

0 ≤ pn−1
j (φs(x), z

′, 0) = pn−1
i (φs(x), z

′, 0), if i ∈ I(φs(x))

0 ≤ pn−1
j (φs(x), z

′, 0) ≤ pn−1
i (φs(x), z

′, 0), if i /∈ I(φs(x))

This implies (i), because qzz′ ≥ 0 for z 6= z′. Altogether we have proved Theorem
6.11.

Let us now look at the average cost problem. The analysis is in the same spirit as
in Theorem 6.10. As before, denote by (νz)z∈Z the stationary distribution of (Zt).

Theorem 6.13: (Optimality of the LLR policy - average cost case)
Suppose the following stability assumption is valid

∑
z∈Z

λ(z)νz <
N∑

j=1

µj.

Then the LLR policy is c-average optimal and G(x) = g <∞ for x ∈ E.

Proof: We prove the result with the help of Theorem 3.6. Denote by Z ⊂ Z, the
set of states with λ(z) <

∑
j µj (Z 6= ∅ due to our stability assumption). W.l.o.g.

assume 0 ∈ Z. We will verify Assumption 3.1 with ξ = (0, 0). Since y 7→ V β(y, z)
is increasing by Lemma 6.12, the relative value function hβ is bounded below by
minz V

β(0, z) − V β(ξ). Thus it suffices to verify the assumptions of Lemma 3.8.
We will do this with ξ = (0, 0) and f̂ , which will be defined in the following way:
let

u := (
µ1∑N

j=1 µj

, . . . ,
µN∑N
j=1 µj

)
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and f̂(x)(t) := (u, v∗(φ̂t(x), z)), where φ̂t(x) = φt(x, f̂(x)). Denote by Yt the state
process of the buffer content under policy π̂ = f̂∞, with Y0 = y. W.l.o.g. suppose
y1

µ1
= max1≤j≤N{ yj

µj
} > 0 and

τ̃ := inf{t ≥ 0 |
∫ t

0
(1− λ(Zs)∑N

j=1 µj

) ds ≥ y1

µ1

}.

Since

Y1(t) = y1 +
∫ t

0

(
λ(Zs)

µ1∑N
j=1 µj

)
ds− µ1t

for 0 ≤ t ≤ τ̃ a.s., it holds that that there exists a t0 ≤ τ̃ with Yt0 = 0 a.s. and we
can proceed as in the proof of Theorem 6.10 to obtain

Ef
x

[∫ τ(0,0)

0
cYt dt

]
≤ C1(1 + ‖y‖2) <∞

with a constant C1 independent of y. Using the same arguments as in Theorem 6.10
we obtain Gf̂ <∞. Now take a sequence xm(x) ∈ E, xm(x) → x ∈ E and βm(x) ↓
0. From the β-discounted case we know that the optimal policy fβm(x)(xm(x)) is
the LLR policy which is independent of βm(x). Using Lemma A.4 and the special
structure of the LLR policy it is easily seen that limm→∞ fβm(x)(xm(x)) = f(x).
Since y → φt(y) is continuous, f induces a weakly continuous kernel pt(x, f ; ·) and
due to Lemma 3.10 we have Gf = Jf . Applying Theorem 3.6 we obtain our result.

B) Deterministic Two-Buffer Case
In this section the linear holding costs are not necessarily equal at the buffers.
However, we will restrict to two buffers and deterministic input, i.e. λ(z) ≡ λ for
all z ∈ Z. The optimal policy in this case is given by a feedback switching control.

Theorem 6.14:
Let N = 2. Suppose that µ1, µ2 > λ and w.l.o.g. c1 ≤ c2. Then the following
feedback switching control g : IR2

+ → U is optimal

g(y1, y2) =

{
((1, 0), v∗(y)) , if y2 > S(y1)
((0, 1), v∗(y)) , if y2 ≤ S(y1)

where S(y1) := −µ2−λ
β
log

(
1− c1

c2
(1− e

−β
y1
µ1 )
)
.

Proof: Due to the assumption µ1, µ2 > λ, g is obviously optimal if y1 = 0 or y2 = 0.
Therefore, suppose y > 0. As long as yt > 0 the adjoint functions in the maximum
principle (Theorem 4.5) are of the form

pj(t) =
1

β
(cj + Cje

βt), j = 1, 2
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with constants C1, C2 < 0. From part (i) of the maximum principle we know
that it is optimal in state y to route to 2 if p1(0) ≥ p2(0) which is equivalent to
c1 + C1 ≥ c2 + C2. Since c1 ≤ c2 this implies C2 < C1. It is easy to see that the
adjoint functions p1 and p2 have at most one intersection and if p1(0) ≥ p2(0), then
p1(t) ≥ p2(t) for all t ≥ 0. Moreover, the adjoint functions hit zero if and only
if the buffer empties, i.e. if we denote tj = inf{t ≥ 0 | pj(t) = 0} j = 1, 2, then

y1 − µ1t1 = 0, y2 − (µ2 − λ)t2 = 0 which implies C1 = −c1e−
βy1
µ1 , C2 = −c2e−

βy2
µ2−λ .

The condition c1 + C1 ≥ c2 + C2 now reads

c1

(
1− e

−β
y1
µ1

)
≥ c2

(
1− e

−β
y2

µ2−λ

)
which gives our switching curve.

Remark 6.6:
If we let β ↓ 0 the switching curve S(y1) converges to µ2−λ

µ1

c1
c2
y1, which is the

switching curve in the undiscounted case (cf. Avram (1997)).



7 Asymptotic Optimality of Tracking-Policies

In this section we want to shed some light on the important role of deterministic
fluid problems which we obtain as a special case of our SFP, by allowing only
one environment state. In this case we obtain the following deterministic control
problem

(F )



∞∫
0
e−βtc(yt, at) dt→ min

yt = y0 +
t∫
0
b(as) ds

yt ≥ 0,
at ∈ U, t ≥ 0

which we will refer to as the fluid problem. These problems are not only interesting
for themselves, but also serve as an approximation for stochastic queueing networks.
For example, it has been shown recently that there is a close connection between
the stability of a stochastic network and the corresponding fluid model (see e.g.
Dai (1995), Bramson (1996), Maglaras (1998a)). Since in examples it often turned
out that the optimal control in the fluid problem and the optimal policy in the
stochastic network coincide (see Section 6), the question arises, whether there is
also a connection between the control problem in the stochastic network and the
fluid problem (cf. Avram et al. (1995), Avram (1997), Atkins/Chen (1995), Meyn
(1997)). This is an important issue, since control problems in stochastic networks
are difficult to solve. Although the dynamic programming technique which is the
most common solution method, is well developed, only a few special networks allow
for an explicit solution (cf. also Stidham/Weber (1993)). Due to the enormous
state space of the problems, a numerical solution is often intractable. On the other
hand, several authors have shown that the optimization problem in the fluid setting
is often easy to solve: in Avram et al. (1995) one can find numerous scheduling
problems which have been solved explicitely using Pontryagins maximum principle.
In addition, the authors give an efficient approximation algorithm to solve the
deterministc control problems which arise when the fluid model is considered (cf.
Section 5.1). Weiss (1995, 1996, 1997) solved several scheduling problems in fluid
re-entrant lines, showing that modifications of the ’Last-Buffer-First-Served’-policy
are optimal.
In the literature we can find several results concerning the relation between the con-
trol problem for stochastic queueing networks and the corresponding fluid problem.
Meyn (1997) for example proved in Theorem 5.2 that in the average cost model,
the policy iteration if initialized with a stable policy for the fluid model, yields
a sequence of relative value functions which converge when properly normalized
against the value function in the fluid model. Chen/Meyn (1998) used this fact to
suggest that the value iteration can be speed up when initialized with the value
function of the fluid model. In Atkins/Chen (1995) one can find a large numerical
study, where the optimal control from the fluid model has been used as a heuristic
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for the policy in the stochastic network. The performance of this implementation
has been compared to simple priority rules. It turned out that the fluid heuristic
was often slightly better than the priority rules but not always. Alanyali/Hajek
(1998) considered a special routing problem and proved that the Load-Balancing
policy which is optimal in the associated fluid model is asymptotically optimal in
the stochastic network. However, the crucial question in general is how to trans-
late the optimal fluid control in an admissible policy for the stochastic network. A
first proposal came from Maglaras (1998a,b, 1999) who used the BIGSTEP idea
of Harrison (1996) to construct a class of policies which he called discrete-review
policies. These policies are asymptotically optimal under fluid scaling in multi-class
queueing networks, i.e. when the intensity of the process increases by factor γ and
the jump height decreases by the same factor. The idea is to review the state of
the system at discrete time points and compute from linear programs the actions
that have to be carried out over the next planning period. The information about
the fluid model is here put into the LP. Safety stock requirements ensure that the
plans can be processed properly.

fig.7.1 : Rybko-Stolyar network

We will now propose a new class of policies which can be constructed from the
optimal fluid control directly and are very intuitive. We will call these policies
Tracking-policies. They are asymptotically optimal under fluid scaling in the same
sense as in Maglaras (1998b) and work for a general class of network problems.
The name Tracking-policy is chosen, since the scaled state process converges to
the optimal fluid trajectory. In fact it is possible to use this approach to track
every arbitrary chosen fluid trajectory. Hence this method works for a large class
of objectives. The approach relies on the observation that in fluid problems the
optimal control is usually piecewise constant (see Theorem 5.1). As a numerical
example we have taken the Rybko-Stolyar network in figure 7.1 (cf. Rybko/Stolyar
(1992), Maglaras (1998b)): queue 1 and 4 are processed by server 1, while queue
2 and 3 are processed by server 2. The service times of jobs are independent and
exponentially distributed with rate µ1 = µ3 = 3 and µ2 = µ4 = 1.5. Queue 1 and
3 receive jobs from outside according to Poisson processes with rate λ1 = λ3 = 1.
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fig.7.2 : Trajectories for buffer 1 in the Rybko-Stolyar network with γ = 10, 102, 104
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fig.7.3 : Trajectories for buffer 1-4 in the Rybko-Stolyar network with γ = 103
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The initial state is y0 = (1, 0, 0.5, 1) and we assume linear holding cost c1 = . . . =
cn = 1 for the jobs. The optimization problem is to schedule the servers in order to
minimize the expected discounted cost. In figure 7.2 we see simulation results of the
trajectory of queue 1 under the Tracking-policy for scaling parameter γ = 10, 100
and 10000. The solid line is the optimal trajectory in the fluid model. In Section 7.3
we will prove that the trajectories and value functions of the stochastic network
under the Tracking-policy converge against the optimal ones of the fluid model
when γ tends to ∞. Figure 7.3 shows a simulation result for the trajectory of
queue 1-4 respectively, with scaling parameter γ = 1000. The solid line is again
the optimal trajectory.
In the next table we find the value function V γ

σγ for different scaling parameter
γ under the Tracking-policy σγ. The optimal cost in the fluid problem are 7.22.
From the simulation we can see that the Tracking-policy performs well, when we
are close to the limit, i.e. in queueing systems with a large initial state and high
intensity.

γ 104 105 107 ∞
V γ

σγ (y0) 7.5189 7.3522 7.2287 7.2222

tab. 7.1: Value function under Tracking-policy σγ for different γ

7.1 Control Problems in Stochastic Networks

In this section we present a rather general model for a stochastic queueing network.
The state process is formulated as a continuous-time Markov chain (Yt) in INN

0 ,
where the j-th component of (Yt) gives the number of jobs at queue j at time t.
To keep the formulation simple we assume that arrival and service times are inde-
pendent and exponentially distributed. The model allows to control the transition
rates of the process at each point in time in a non-anticipating fashion. However, it
is known that in this case the optimal policy can be found among the discrete-time
policies, where decisions have to be taken at state changes only. The formulation
includes admission control, routing, service control and scheduling. This leads to
the following Markov decision process (see e.g. Sennott (1998), Tijms (1986)): we
assume that there are N queues, hence the state space is S = INN

0 . The action
space U ⊂ IRK

+ has to be compact and convex. The generator Q = (q(y, u, y′)) of
(Yt) should satisfy the following conditions for all y, y′ ∈ S:

(i) D(y) := {u ∈ U | q(y, u, y′) = 0, if y′ /∈ S} 6= ∅.
(ii) there exists a linear function b : U → IRN such that for all u ∈ D(y)∑

y′∈S

(y′ − y)q(y, u, y′) = b(u).
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(iii) there exists a q ∈ IR+ with supu∈U supy,y′∈S |q(y, u, y′)| < q.

The set D(y) is the set of admissible actions in state y. As usual define q(y, u) :=∑
y′ 6=y q(y, u, y

′).
In the Rybko-Stolyar network of the introduction we have for example
U = {u ∈ [0, 1]4 | u1 + u4 ≤ 1, u2 + u3 ≤ 1} and D(y) = {u ∈ U | yj =
0 ⇒ uj = 0, j = 1, 2, 3, 4}. For u ∈ D(y) the generator is

q(y, u, y + e1) = λ1

q(y, u, y + e3) = λ3

q(y, u, y − e2) = µ2u2

q(y, u, y − e4) = µ4u4

q(y, u, y + e2 − e1) = µ1u1

q(y, u, y + e4 − e3) = µ3u3

The cost rate function c : S × U → IR+ of the general model should satisfy

(i) c(y, u) = c1(y) + c2u with c2 ∈ IRK
+ , c1 : IR→ IR+.

(ii) c1 is lower semicontinuous.

Denote by (Tn), T0 := 0 the sequence of jump times of the Markov process (Yt).
A policy π = (f0, f1, . . .) for the Markov decision process is a sequence of decision
rules fn : S → U with fn(y) ∈ D(y), where fn is applied at time Tn. For a fixed
policy π and initial state y ∈ S, there exists a family of probability measures P π

y

on a measurable space (Ω,F) and stochastic processes (Yt) and (πt) such that for
0 =: T0 < T1 < T2 < . . .

Yt = YTn , Tn ≤ t < Tn+1

πt = fn(YTn), Tn ≤ t < Tn+1

and

(i) P π
y (Y0 = y) = P π

y (T0 = 0) = 1 for all y ∈ S.

(ii) P π
y0

(Tn+1 − Tn > t | T0, YT0 , . . . , Tn, YTn = y) = e−q(y,fn(y))t for all y ∈ S, t ≥ 0.

(iii) P π
y0

(YTn+1 = y′ | T0, YT0 , . . . , Tn, YTn = y, Tn+1) = q(y,fn(y),y′)
q(y,fn(y))

for y, y′ ∈ S, y 6=
y′ and zero, if y = y′.

In this section we are interested in the discounted cost criterion and define

Vπ(y) = Eπ
y

[∫ ∞

0
e−βtc(Yt, πt) dt

]
The optimization problem is

V (y) = inf
π
Vπ(y).
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In the sequel we assume that D(y) is compact for all y ∈ S and the mapping
u→ q(y, u, y′) is continuous for all y, y′ ∈ S. Under these assumptions, there exists
an optimal stationary policy for the β-discounted problem. Moreover, this policy
is optimal among all non-anticipating policies. The value iteration is of the form

Vn+1(y) = min
u∈U

 1

β + q(y, u)
c(y, u) +

1

β + q(y, u)

∑
y′ 6=y

q(y, u, y′)Vn(y′)

 .
Although problems of this type can in principle be solved by policy iteration, the
size of the state space, even for simple examples makes this procedure intractable.
Hence we would be satisfied with a policy which is in some sense ”good” and easily
computable. Let us now introduce a scaling parameter γ > 0 for the stochastic
process as follows: let {yγ} be a sequence of initial states such that limγ→∞

yγ

γ
= y

for y ∈ S. To ease notation we will assume for our problem that yγ = γy for all
γ ∈ IN , though the proofs are in a more general setting. Denote by (Ŷ γ

t ) the state
process with initial state yγ under a fixed policy πγ = (fγ

n ) and define by

Y γ
t :=

1

γ
Ŷ γ

γt

the scaled state process. Note that (Ŷ γ
t ) is a process on the state space S = INN

0 ,
whereas (Y γ

t ) is a process on the state space 1
γ
S. If we define the policy π̃γ = (f̃γ

n )

on the state space 1
γ
S by f̃γ

n ( 1
γ
y) = fγ

n (y) and the generator Q̃γ by q̃( 1
γ
y, u, 1

γ
y′) =

γq(y, u, y′), then the corresponding process (Ỹ γ
t ) is in distribution equal to the

process (Y γ
t ). The scaled action process is defined by

πγ
t := fγ

n (Ŷ γ
Tn

), if Tn ≤ γt < Tn+1

where (Tn) are the jump times of process (Ŷ γ
t ). As γ tends to ∞ the intensity of

the scaled process increases by factor γ, while the jump heights decrease by the
same rate. This scaling is refered to as fluid scaling. The scaled value function is
then defined by

V γ
πγ (y) = Eπγ

y

[∫ ∞

0
e−βtc(Y γ

t , π
γ
t ) dt

]
.

The optimization problem is as before, where we now write V γ
πγ (y) and V γ(y)

respectively, to make the dependence on γ explicit.
Associated with the discounted stochastic network optimization problem is the
following deterministic control problem

(F )



∞∫
0
e−βtc(yt, at) dt→ min

yt = y +
t∫
0
b(as) ds

yt ≥ 0
at ∈ U, t ≥ 0
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We will call (F ) the fluid problem. The value function of this problem will be
denoted by V F (y) and the optimal control (which exists due to Theorem 2.5) and
state trajectory by a∗t and y∗t respectively.

7.2 An Asymptotic Lower Bound on the Value Function

In this section we will show that the value function V F of the fluid problem (F )
provides an asymptotic lower bound on the value function V γ

πγ of the β-discounted
stochastic network, irrespective of the chosen sequence of policies (πγ). We denote
by (Y γ

t ), for γ ∈ IN , the state process under fixed policy πγ = (fγ
n ) and initial state

y. For the convergence results which follow, the processes (Y γ
t ) are defined on a

common probability space (Ω′,F ′, Py). Such a probability space can be constructed.
As usual, we denote by (Y γ

t ) ⇒ (Yt) the weak convergence of the processes as
γ → ∞. We understand the processes (Y γ

t ) as random elements with values in
DN [0,∞), which is the space of IRN -valued functions on [0,∞) that are right
continuous and have left-hand limits and all endowed with the Skorokhod topology.
For the following Lemma and Theorem 7.2 we suppose that πγ = (fγ)∞ is a
stationary policy and define the process

Mγ
t = Y γ

t − y −
∫ t

0
b(πγ

s ) ds.

We will first show

Lemma 7.1: (Mγ
t ) ⇒ 0 as γ →∞.

Proof: Let πγ = (fγ, fγ, . . .) and thus

πγ
t = fγ(Ŷ γ

Tn
), Tn ≤ γt < Tn+1.

Denote by Fγ
t = σ(Y γ

t ) the σ-algebra generated by the process (Y γ
t ). From the

Dynkin formula we can conclude that (Mγ
j (t)), j = 1, . . . , N is a martingale w.r.t.

the filtration (Fγ
t ). This follows, since by definition the generator A of the process

(Y γ
t ) is

A g(
1

γ
y) =

∑
y′

(
g(

1

γ
y′)− g(

1

γ
y)

)
γq(y, fγ(y), y′)

where g : 1
γ
S → IR. Setting g(y) = yj, j = 1, . . . , N it follows with Proposition

14.13 in Davis (1993) and Assumption (ii) on the generator that (Mγ
j (t)) is a

martingale. Define τn := inf{t ≥ 0 | Mγ
j (t) ≥ n}, n ∈ N . Since Mγ

j has jumps of
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size 1
γ
, Mγ

j (t∧ τn) is bounded and hence a square integrable martingale. Using the
Lemma of Fatou we obtain

Ey

[
(Mγ

j (t))2
]
≤ lim inf

n→∞
Ey

[
(Mγ

j (t ∧ τn))2
]

= lim inf
n→∞

Ey

[
< Mγ

j (t ∧ τn) >
]

≤ 1

γ2
Ey [ number of jumps in [0, t]] ≤ 1

γ2
qγt = O(

1

γ
)

where < Mγ
j (t) > is the quadratic variation of Mγ

j (t). Applying Doob’s inequality
gives us

Ey

[
sup

0≤s≤t
(Mγ

j (s))2

]
≤ 4Ey

[
(Mγ

j (t))2
]
≤ O(

1

γ
).

Hence we have that (Mγ
t ) ⇒ 0 for γ →∞ on compact intervals. Applying Theorem

VI.16 in Pollard (1984) we obtain (Mγ
t ) ⇒ 0 for γ →∞.

Theorem 7.2:
Every sequence (Y γ

t , π
γ
t ) has a further subsequence (Y γn

t , πγn
t ) such that (Y γn

t , πγn
t ) ⇒

(Yt, Rt) and the limit satisfies with πt :=
∫
U uRt(du)

(i) Yt = y +
∫ t
0 b(πs) ds.

(ii) Yt ∈ IRN
+ .

(iii) πt ∈ U .

Proof: Let us interpret (πγ
t ) as a random element (Rγ

t ) ∈ R, hence πγ
t =

∫
U uR

γ
t (du)

for all t ≥ 0. The first step is to show that the sequence (Y γ
t , R

γ
t ) is tight. Due

to Proposition 3.2.4 in Ethier/Kurtz (1986) we can do this separately. As far as
(Rγ

t ) is concerned, it is trivially tight, since R is compact. For (Y γ
t ) we use the

conditions given in Kushner (1990) Theorem 4.4. That is we have to check

(i) limm→∞ supγ Py(‖Y γ
t ‖ ≥ m) = 0 for all t ≥ 0.

(ii) limδ→0 lim supγ→∞ supτ≤T Ey

[
min{1, ‖Y γ

τ+δ − Y γ
τ ‖}

]
= 0.

We make now use of the fact that (‖Y γ
t − 1

γ
yγ‖) is stochastically dominated by a

Poisson process (Λγ
t ) with parameter qγ and jumps of height 1

γ
. With the Cheby-

chev inequality we obtain

Py(‖Y γ
t ‖ ≥ m) ≤ 1

m2
Ey

[
‖Y γ

t ‖2
]
≤ 1

m2

(
(qt)2 +

qt

γ
+ 2qt

‖yγ‖
γ

+
‖yγ‖2

γ2

)

which implies (i). For (ii) we note that Ey

[
min{1, ‖Y γ

τ+δ − Y γ
τ ‖}

]
≤ δq. Therefore,

(Y γ
t , R

γ
t ) is tight, which gives us a subsequence (Y γn

t , Rγn
t ) weakly converging to a
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limit (Yt, Rt). By Skorokhod’s Theorem (Ethier/Kurtz (1986) Theorem 3.1.8) the
process can be constructed on the same probability space such that the convergence
is almost sure. Since U is convex, we can define πt :=

∫
U uRt(du) ∈ U for all t ≥ 0.

Using Lemma A.4 we know that almost sure∫ t

0

∫
U
uRγn

s (du) ds→
∫ t

0
πs ds.

Together with Lemma 7.1, (i) and (iii) follow. Because of Y γ
t ∈ IRN

+ for all γ we
obtain (ii) and the proof is complete.

Now we are able to prove the main theorem of this section

Theorem 7.3:
For all sequences of policies (πγ) and initial states y ∈ S we obtain

lim inf
γ→∞

V γ
πγ (y) ≥ V F (y).

Proof: Suppose first that πγ = (fγ, fγ, . . .) is a stationary policy. Let (Y γn
t , πγn

t ) be
a subsequence such that (Y γn

t , πγn
t ) ⇒ (Yt, πt) and yγn = γny for all n ∈ IN . Due

to the assumption on the cost function we have

Ey

[∫ ∞

0
e−βtc(Y γn

t , πγn
t ) dt

]
= Ey

[∫ ∞

0
e−βtc1(Y

γn
t ) dt

]
+ Ey

[∫ ∞

0
e−βtc2π

γn
t dt

]
Let us first look at the second term. Define the mapping ĉ2 : R→ IR+ by

ĉ2(r) := c2

∫ ∞

0
e−βt

∫
U
urt(du)dt.

It is easy to see that ĉ2 is continuous (cf. Lemma A.4) and since U is compact, ĉ2
is bounded on R. Hence we have

lim
n→∞

Ey

[∫ ∞

0
e−βtc2π

γn
t dt

]
= Ey

[∫ ∞

0
e−βtc2πt dt

]
Now define ĉm1 : DN [0,∞) → IR+ by

ĉm1 (y) :=
∫ m

0
e−βtcm1 (yt)dt,

where cm1 ↑ c1 and cm1 : IRN → IR+ is continuous (see Lemma 7.14 in Bert-
sekas/Shreve (1978)). Hence ĉm1 is continuous and thus ĉm1 (Y γn

t ) ⇒ ĉm1 (Yt). There-
fore, we obtain with the Lemma of Fatou and since the convergence cm1 ↑ c1 is
monotone

lim inf
n→∞

Ey

[∫ ∞

0
e−βtc1(Y

γn
t ) dt

]
= lim inf

n→∞
lim

m→∞
Ey [ĉm1 (Y γn

t )] ≥
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lim
m→∞

lim inf
n→∞

Ey [ĉm1 (Y γn
t )] ≥ lim

m→∞
Ey [ĉm1 (Yt)] = Ey

[∫ ∞

0
e−βtc1(Yt)dt

]
.

From Theorem 7.2 we know that the limit (Yt, πt) of every converging subsequence
is for almost all ω an admissible state-action-trajectory for the fluid problem (F ).
Hence we have in particular

Ey

[∫ ∞

0
e−βtc(Yt, πt) dt

]
≥ V F (y)

and thus lim infγ→∞ V γ
πγ (y) ≥ V F (y). Since for arbitrary policies πγ = (fγ

0 , f
γ
1 , . . .)

it holds that V γ
πγ ≥ V γ

fγ (y), where (fγ)∞ is the optimal policy, the statement follows.

7.3 β-Discounted Asymptotic Optimality

For the β-discounted problem we will show that it is possible at least for some
network models to construct a policy in such a way that the lower bound of the
last section is achieved in the limit. We will call a policy with this property β-
discounted asymptotically optimal. This notion coincides with the ones used by
Meyn (1997) and Maglaras (1998b). A crucial observation for this construction is
that the optimal control a∗ in problem (F ) is often piecewise constant (see Theorem
5.1). Otherwise, it is possible to construct for every ε > 0 a piecewise constant
policy which is ε-optimal (so-called ’Chattering Theorem’ see e.g. Kushner/Dupuis
(1992) Section 4.6). The implementation of our policy is a direct translation of the
fluid solution. The policy itself is instationary, i.e. the decision depends also on
the current time. A state (y, t) consists now of the queue length and the time at
which the jump occurs. The policy is defined in the following way: suppose that
a∗t = u∗(ν) on the interval [tν , tν+1), ν = 0, 1, . . . ,m, t0 := 0 and use the decision
rule

fγ(y, t) = u∗(ν), if γtν ≤ t < γtν+1,

irrespective of the state Yt the network is in. This of course may lead to unfeasible
allocations where we want to serve a job though there is none there. In such cases
we reduce the service rate to zero. We will call a policy of this type Tracking-policy.
Obviously these policies are instationary and the only necessary information about
the state is which components are zero. At first glance this policy may look very
inefficient, however under fluid scaling it becomes much more important to catch
the right drift of the process instead of being locally optimal. We will show that
Tracking-policies are asymptotically optimal for two important classes of control
problems in stochastic networks. To do this, we need a further assumption on the
cost rate function
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Assumption 7.1:

(i) y 7→ c1(y) is increasing and convex.

(ii) There exist constants C0 ∈ IR+, k ∈ IN such that for all y ∈ IRN

c1(y) ≤ C0(1 + ‖y‖k)

Multiclass Queueing Networks (cf. Dai (1995))
In the literature the multiclass queueing network is defined as follows: there are
d single-server stations k = 1, . . . , d and server k is responsible for the jobs at
queue j ∈ Kk ⊂ {1, . . . , N}. Each queue j has exogenous arrivals at rate λj. The
potential service rate of sever k is µk. Upon completion of service of a job at
queue j, it is routed to queue i with probability pji, independent of all previous
history. The optimization problem is to schedule the severs among their queues
in order to minimize the discounted expected cost of the system. We obtain this
network as a special case of our general model in the following way: denote by
{K1, . . . , Kd}, d < N a partition of the set {1, . . . , N}. The action space is given
by U = {u ∈ [0, 1]N | ∑j∈Kk

uj ≤ 1, k = 1, . . . , d}, where uj is the fraction of
the k-th server that is allocated to queue j ∈ Kk. As in Section 6.2 define the
matrix A = D(I −P ), where P = (pji) is transient, i.e.

∑∞
n=0 P

n <∞ and D is an
N -dimensional diagonal matrix with elements µj ≥ 0 on the diagonal. The linear
function b is of the form b(u) = λ−ATu with λ ∈ IRN

+ . The set of admissible actions
in state y ∈ S is D(y) = {u ∈ U | yj = 0 ⇒ uj = 0, j = 1, . . . , N}. Suppose
that a∗t is the optimal control in the corresponding fluid model and a∗t = u∗(ν)
on [tν , tν+1), ν = 0, 1, . . . ,m. The Tracking-policy σγ = (fγ, fγ, . . .) is formally
defined by

fγ(y, t) = u∗(ν) ∧ δ(y), if γtν ≤ t < γtν+1,

where δ(y) = (δ1(y), . . . , δN(y)) is given by

δj(y) =

{
0, if yj = 0
1, if yj > 0

.

Note that fγ(y, t) ∈ D(y) for all t ≥ 0. We will now show

Theorem 7.4:
Under Assumption 7.1, the Tracking-policy σγ in the multiclass queueing network
satisfies for y ∈ S

lim
γ→∞

V γ
σγ (y) = V F (y)

and hence σγ is β-discounted asymptotically optimal.
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Proof: Let us first consider a continuously defined policy πγ
t with corresponding

scaled process (Y γ
t ) which is given by

πγ
t = u∗(ν) ∧ δ(Y γ

t ), if γtν ≤ t < γtν+1.

Denote by (Ȳ γ
t ) the scaled process, where we use the Tracking-policy σγ. The

difference between these two processes is the duration of the time intervals on
which the actions u∗(ν) ∧ δ(y) are taken. If (T γ

n ) is the sequence of jump times of
process (Ȳ γ

t ) and Nγ(t) := inf{n ∈ IN | T γ
n > t} then we obtain for γ →∞

T γ
Nγ(t) → t a.s.

This means that the change points, where we use a different server allocation in
the processes (Y γ

t ) and (Ȳ γ
t ) converge together a.s. Hence (Y γ

t ) and (Ȳ γ
t ) have the

same limit. Therefore, it suffices to prove the statement for the policy πγ
t . Define

Y γ
0 = y ∈ S for all γ.

On time interval [tν , tν+1) we can think of the process (Y γ
t ) as a Jackson-network

with N servers and fixed service rates µ1u
∗
1(ν), . . . , µNu

∗
N(ν), ν = 1, . . . ,m. In

this network server k is only idle when there is no job at queue k. This queueing
discipline is called work-conserving. We will now look at the process on time
interval [0, t1) only. Under the Tracking-policy we have πγ

t = U∗
1 π̂

γ
t where U∗

1 =
diag(u∗(1)) and π̂γ

t ∈ [0, 1]N and our process fulfills for all t ∈ [0, t1)

Y γ
t =

1

γ
yγ +

∫ t

0

(
λ− ATU∗

1 π̂
γ
s

)
ds−Mγ

t ≥ 0 (7.16)

π̂γ
t ∈ [0, 1]N (7.17)∫ ∞

0
Y γ

t (11− π̂γ
t ) dt = 0 (7.18)

As before we can show that every sequence (Y γ
t , π̂

γ
t ) has a further subsequence

(Y γn
t , π̂γn

t ) such that (Y γn
t , π̂γn

t ) ⇒ (Yt, π̂t) and the limit satisfies for all t ∈ [0, t1)
a.s. (see Dai (1995) for the convergence of (7.18))

Yt = y +
∫ t

0

(
λ− ATU∗

1 π̂s

)
ds ≥ 0 (7.19)

π̂t ∈ [0, 1]N (7.20)∫ ∞

0
Yt(11− π̂t) dt = 0 (7.21)

From Chen (1995) (p. 641) we know that the solution (Yt, π̂t) of (7.19)-(7.21) is
unique on the interval [0, t1) up to sets of measure zero. However, we know by
definition that u∗(1) is admissible for the fluid problem (F ) on [0, t1). Thus, we
get that (y∗t , 11) is the unique solution of (7.19)-(7.21) on [0, t1). Since the limit is
independent of ω, this implies (up to sets of measure zero)

(Y γ
t , π̂

γ
t ) ⇒ (y∗t , 11) on [0, t1)
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Thus, in particular Y γ
t1 → y∗t1 a.s. Inductively we obtain in this way that the

convergence holds for all t ≥ 0.
Now it remains to show that limγ→∞ V γ

πγ (y) = V F (y). Due to the proof of Theorem
7.3 it is left to show that

lim
γ→∞

Ey

[∫ ∞

0
e−βtc1(Y

γ
t ) dt

]
=
∫ ∞

0
e−βtc1(y

∗
t ) dt.

First, since c1 ≥ 0, it holds that

Ey

[∫ ∞

0
e−βtc1(Y

γ
t ) dt

]
=
∫ ∞

0
e−βtEy [c1(Y

γ
t )] dt.

Using Assumption 7.1 (i) we obtain that c1(Y
γ
t ) is stochastically dominated by

c1(Λ
γ
t , . . . ,Λ

γ
t ) for all t ≥ 0, where Λγ

t is a Poisson process with parameter qγ and
jump heights 1

γ
. From Bäuerle (1998a) Lemma 1 it follows that for all t ≥ 0 and

γ ≥ γ′

Λγ
t ≤cx Λγ′

t

where ≤cx is the convex ordering. Thus, we obtain with Assumption 7.1

Ey [c1(Y
γ
t )] ≤ Ey [c1(Λ

γ
t , . . . ,Λ

γ
t )] ≤ Ey [c1(Λt, . . . ,Λt)] <∞

Moreover, since c1 is also continuous, we obtain c1(Y
γ
t ) ⇒ c1(y

∗
t ) for all t ≥ 0.

Applying dominated covergence we obtain

lim
γ→∞

Ey[c1(Y
γ
t )] = c1(y

∗
t ).

Using Assumption 7.1 (ii) we obtain
∫∞
0 e−βtEy [c1(Λt, . . . ,Λt)] dt <∞ and applying

again dominated convergence yields

lim
γ→∞

Ey

[∫ ∞

0
e−βtc1(Y

γ
t ) dt

]
=
∫ ∞

0
e−βtc1(y

∗
t ) dt

and the statement is proven.

Admission and Routing Problems
Under an admission and routing problem, we understand the following model: there
are d external streams of jobs arriving with intensity λk, k = 1, . . . , d and jobs of
type k can be routed to the queues j ∈ Kk ⊂ {1, . . . N}. Each queue j has a
server with potential service rate µj. The optimization problem is to decide upon
admission/rejection of jobs and in case of admission, to decide upon the routing
of the jobs in order to minimize the discounted expected cost of the system. Our
general model specializes to an admission and routing problem in the following
way: let K1, . . . , Kd, d < N be subsets of the set {1, . . . , N}. The action space is
given by U = {(u, v) ∈ [0, 1]d×N × [0, 1]N | ukj = 0, if j /∈ Kk,

∑
j∈Kk

ukj ≤ 1, k =
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1, . . . , d, 0 ≤ vj ≤ 1, j = 1, . . . , N}, where ukj is the fraction of jobs of type k which
is routed to queue j. vj is the activation level of server j. Let λ ∈ IRd

+ and let D be
an N -dimensional diagonal matrix with elements µj ≥ 0 on the diagonal. Thus, the
linear function b is of the form b(u) = λu−Dv. The set of admissible actions in state
y ∈ S is D(y) = {(u, v) ∈ U | yj = 0 ⇒ (λu −Dv)j ≥ 0, j = 1, . . . , N}. Suppose
that a∗t is the optimal control in the corresponding fluid model and a∗t = u∗(ν) on
[tν , tν+1), ν = 0, 1, . . . ,m. The Tracking-policy is exactly defined as before. Hence
we obtain

Theorem 7.5:
Suppose Assumption 7.1 is valid.

a) The Tracking-policy σγ in the admission and routing problem satisfies for y ∈ S

lim
γ→∞

V γ
σγ (y) = V F (y)

and hence σγ is β-discounted asymptotically optimal.

b) V γ
σγ (y) is decreasing in γ for all y ∈ S. In particular, V F (y) is a lower bound

for all V γ
σγ (y).

Proof: a) The idea is the same as in the proof of Theorem 7.4. Let us first look
at time interval [0, t1). Since there is no rerouting, each queue separately is an
M/M/1-queue with input rates λu and output rates Dv. From the theory of large
deviation (see e.g. Shwartz/Weiss (1995) chapter 11) we know that

Y γ
t ⇒ y + (λu∗(1)−Dv∗(1))t

on [0, t1). Using the same arguments as before we can complete the first part of
the proof.
b) Denote by ξγ

j (t) = Aγ
j (t)−B

γ
j (t), j = 1, . . . , N , the difference between a Poisson

process Aγ
j (t) with parameter γ

∑
k λkukj and jump heights 1

γ
and a Poisson pro-

cess Bγ
j (t) with parameter γµj and jump heights 1

γ
which are independent. From

Bäuerle (1998a) it can be deduced that for γ ≥ γ′ and 0 ≤ t1 < t2 < . . . tn <∞

(ξγ
1 (t1), . . . , ξ

γ
1 (tn), . . . , ξγ

N(t1), . . . , ξ
γ
N(tn)) ≤cx

(ξγ′

1 (t1), . . . , ξ
γ′

1 (tn), . . . , ξγ′

N (t1), . . . , ξ
γ′

N (tn))

where ≤cx denotes the convex ordering. Now it holds that

Y γ
j (t) = yj + ξγ

j (t) + sup
0≤s≤t

(
−ξγ

j (s)
)
.
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Since this is a convex functional, we obtain for all γ ≥ γ′ and 0 ≤ t1 < t2 < . . . <
tn <∞

(Y γ
1 (t1), . . . , Y

γ
1 (tn), . . . , Y γ

N(t1), . . . , Y
γ
N(tn)) ≤icx

(Y γ′

1 (t1), . . . , Y
γ′

1 (tn), . . . , Y γ′

N (t1), . . . , Y
γ′

N (tn))

where ≤icx denotes the increasing convex ordering. Using the assumptions on c1
we obtain

ĉ1(Y
γ
t ) ≤icx ĉ1(Y

γ′

t )

for γ ≥ γ′ and the statement follows.

Corollary 7.6:
In the multiclass queueing network as well as in the admission and routing problem
we have for y ∈ S under Assumption 7.1

lim
γ→∞

V γ(y) = V F (y).

Proof: From the previous theorems we obtain

V F (y) = lim sup
γ→∞

V γ
σγ (y) ≥ lim sup

γ→∞
V γ(y) = lim sup

γ→∞
V γ

π̂γ (y) ≥ lim inf
γ→∞

V γ
π̂γ (y) ≥ V F (y),

where π̂γ is the optimal policy for scaling parameter γ, which exists due to our
assumption and the proof is complete.

Remark 7.1:

a) Of course Theorems 7.4 - 7.5 are asymptotic statements, which means that
the Tracking-policy is only good when the system is close to the limit. This
situation occurs when the initial state is large and the system is operating with
a high intensity.

b) Theorems 7.4 - 7.5 can be extended to the case where the interarrival times
and service times are i.i.d. but arbitrary (cf. Dai (1995)).

c) If the cost rate function satisfies c( 1
γ
y, u) = 1

γ
c(y, u), then the value function

V γ
π can be expresses with the help of the original value function Vπ. An easy

substitution gives us

V γ
π (y) =

1

γ2
V

β
γ

π (γy),

where V
β
γ

π is the original value function (γ = 1) with interest rate β
γ
.
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d) There are several alternatives for the implementation of the Tracking-policy.
We explain the procedures here in the setting of the multiclass queueing net-
work. The only thing one has to make sure is that the fraction of the server
allocation to buffer j is in the long run equal to u∗j(ν) on the time interval
[tν , tν+1). If we are not allowed to split the server, there are two possibilities:

(i) we interpret u∗j(ν) as a randomized decision, i.e. we do a random ex-
periment for each buffer independent of the history, where u∗j(ν) is the
probability that the k-th server is assigned to queue j ∈ Kk.

(ii) when we can write u∗j(ν) = αj∑
i∈Kk

αi
, with αj ∈ IN0, j = 1, . . . , N , then

we can follow a so-called generalized round-robin policy (cf. Dai (1998)):
assign the k-th server in a cyclic fashion αj1-times to queue j1 ∈ Kk, then
αj2-times to queue j2 ∈ Kk and so on.

7.4 Average Cost Asymptotic Optimality

Let us finally look at the average cost case in our general network model. Here we
define for a stationary policy π = f∞

Gf (y) = lim sup
t→∞

1

t
Eπ

y

[∫ t

0
c(Ys, πs) ds

]
and we want to solve

G(y) = inf
f
Gf (y).

The scaled processes are defined as before and we write

Gγ
f (y) = lim sup

t→∞

1

t
Eπ

y

[∫ t

0
c(Y γ

s , π
γ
s ) ds

]
.

We will assume here for the cost rate function that c1(y) = 0 if y = 0 and c2 = 0.
A policy π = f∞ is called stable for the stochastic network, if the corresponding
fluid model is stable (for a definition see e.g. Dai (1995) Definition 4.1).

Theorem 7.7:
If π = f∞ is a stable policy for our model and

∫
c1dν <∞, where ν is the stationary

distribution of the state process under policy π, then for y ∈ S

lim
γ→∞

Gγ
f (y) = 0
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and π is hence average asymptotically optimal.

Proof: Since π is stable, we obtain from Dai (1995) Theorem 4.2 and Remark 2
that there exists a stationary distribution νγ on 1

γ
S such that for γ > 0

Gγ
f (y) = E[c1(Y

γ
∞)] =

∫
c1 dν

γ <∞.

Obviously we have νγ(y) = ν(γy) for y ∈ 1
γ
S and thus νγ ⇒ δ0 for γ → ∞. Since

the c1(Y
γ
∞) are uniformly integrable, we obtain the statement.
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Appendix

A Sets and Functions

For the following definitions and theorems we suppose that the sets E,A, U,D and
R are defined as in Section 2. For a proof of Theorem A.1 see Schäl (1975). Lemma
A.3 and A.4 can be found in appendix B of Forwick (1998).

Definition A.1:
Let v : E → ĪR be such that v(x) <∞ for at least one point, then v is called lower
semicontinuous if for all x ∈ E and sequences (xn) with xn → x

lim inf
n→∞

v(xn) ≥ v(x).

Definition A.2:
Suppose ψ : E → D is defined by ψ(x) = D(x). ψ is called upper semicontinuous
if for all closed sets B ⊂ D

ψ−1[B] := {x ∈ E | ψ(x) ∩B 6= ∅}

is again closed.

Theorem A.1: (Measurable selection Theorem)
Suppose ψ : E → D is defined by ψ(x) = D(x). If ψ is compact-valued and upper
semicontinuous and v : D → IR lower semicontinuous and bounded below on D,
then there exists an f ∗ ∈ F such that

v∗(x) := v(x, f ∗(x)) = min
a∈D(x)

v(x, a)

and v∗ is lower semicontinuous and bounded below on E.

Theorem A.2:
Let vn, v : D → IR be lower semicontinuous functions bounded below. If D(x) is
compact for all x ∈ E and vn ↑ v, then

lim
n→∞

min
a∈D(x)

vn(x, a) = min
a∈D(x)

v(x, a)

for all x ∈ E.
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Proof: For x ∈ E define

l(x) = lim
n→∞

min
a∈D(x)

vn(x, a) and u∗(x) = min
a∈D(x)

v(x, a).

Since vn ↑ v we have l ≤ u∗. For the converse, fix x ∈ E. Let an ∈ D(x) be such
that vn(x, an) = mina∈D(x) vn(x, a). Since D(x) is compact we have a convergent
subsequence (ank

) with ank
→ a∗ ∈ D(x) for k → ∞. Using that the vn are

increasing we obtain for all nk ≥ n

vnk
(x, ank

) ≥ vn(x, ank
).

Letting k → ∞, the lower semicontinuity of vn yields l(x) ≥ vn(x, a∗). With
n→∞ we finally obtain l(x) ≥ v(x, a∗) ≥ u∗(x) and the proof is complete.

Lemma A.3:

a) r : IR+ → IP (U) is measurable if and only if

t 7→
∫

U
ψ(u)r(t, du)

is measurable for all continuous functions ψ : U → IR.

b) f : E → R is measurable if and only if

x 7→
∫ ∞

0

∫
U
ψ(t, u)f(x, t, du) dt

is measurable for all measurable functions ψ : IR+ × U → IR such that u 7→
ψ(t, u) is continuous for all t ≥ 0 and

∫∞
0 supu∈U |ψ(t, u)|dt <∞.

There are more general and elegant ways to define measurability (cf. Rieder (1975)),
however Lemma A.3 is sufficient for our purpose.

Lemma A.4:
Let rn, r ∈ R. The following statements are equivalent

(i) rn → r for n→∞.

(ii) ∫ ∞

0

∫
U
ψ(t, u)rn

t (du)dt→
∫ ∞

0

∫
U
ψ(t, u)rt(du)dt

for all measurable functions ψ : IR+ × U → IR such that u 7→ ψ(t, u) is
continuous for all t ≥ 0 and

∫∞
0 supu∈U |ψ(t, u)|dt <∞.
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B Markov Chains

This part of the appendix is essentially taken from Meyn/Tweedie (1993). In the
sequel, (Xn) is a homogeneous, discrete-time Markov chain with state space E and
transition kernel p. For A ∈ B(E) define τA := min{n | Xn ∈ A}.

Definition B.1:
A measure φ on B(E) with φ(A) > 0 implies Px(τA < ∞) > 0 for all x ∈ E is
called irreducibility measure.

There always exists an essentially unique irreducibility measure ψ on B(E) such
that

(i) for all x ∈ E, ψ(A) > 0 implies Px(τA <∞) > 0.

(ii) ψ(A) = 0 implies ψ({y|Py(τA <∞) > 0}) = 0.

(iii) ψ(Ac) = 0 implies A = A0 ∪ N , where ψ(N) = 0 and p(x,A0) = 1 for all
x ∈ A0.

Let us assume now that (Xn) is ψ-irreducible and denote by B+(E) := {A ∈
B(E) | ψ(A) > 0}.

Definition B.2:

a) (Xn) is called Harris recurrent, if for all A ∈ B+(E)

Px(τA <∞) = 1

whenever x ∈ A.

b) (Xn) is called positive Harris recurrent, if it is Harris recurrent and has an
invariant probability measure µ, i.e.

µ(A) =
∫

E
p(x,A)µ(dx)
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C Viscosity Solutions

Suppose the situation of Section 4 is given. We will provide a definition of a con-
strained viscosity solution in terms of test functions. Usually viscosity solutions
are defined with the help of sub- and superdifferentials of V and then shown af-
terwards that this is equivalent to the test function approach. However, since it is
much more convenient to work with test functions we decided to use the following
definition. For details about viscosity solutions see e.g. Bardi/Capuzzo-Dolcetta
(1997), Sethi/Zhang (1994).

Definition C.1:
y 7→ V (y, z) is a constrained viscosity solution of

(β + qz)V (x) = min
u∈U

[l(y, u) + bz(u)Vy(x)]

if

a) y 7→ V (y, z) is continuous and |V (x)| ≤ C0(1 + ‖y‖k).

b) for all continuously differentiable ψ1 : S → IR, where V (x)−ψ1(y) has a local

maximum at y = y0 ∈
◦
S, relative to

◦
S, it holds that

(β + qz)V (x0)−min
u∈U

[
cV (y0, u) + bz(u)ψ1

y(y0)
]
≤ 0.

c) for all continuously differentiable ψ2 : S → IR, where V (x)−ψ2(y) has a local
minimum at y = y0 ∈ S, relative to S, it holds that

(β + qz)V (x0)−min
u∈U

[
cV (y0, u) + bz(u)ψ1

y(y0)
]
≥ 0.
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