Concept and I mplementation of C+++,
an Extension of C++ to Support User-Defined
Operator Symbolsand Control Structures

Christian Heinlein

Dept. of Computer Structures, Waisity of UIm, German
heinlein@informatik.uni-ulm.de

Abstract. The frst part of this report presents the concepts of C+++xtangion of

C++ allaving the programmer to dek new operator symbolswvith userdefined priori-

ties by specifying a partial precedence relationship. Furthermore, so{ftedigdopea-

tor combinationsconsisting of a sequence of associated operator symbols to connect a
fixed number of operands as well afexary opeators connecting ay number of
operands are supported. Finalbperators withlazily evaluated opesndsare supported

which are patrticularly useful to implementwnkinds of control structues especially as

they accept whole blocks of statements as operands, too. In the second part of the report,
the implementation of C+++ by means of a “lazy” precompiler for C++ is described in
detail.

1 Introduction

Programming languages such as Ada [12] and C++ [10, 4] support the conopptatdr overload-

ing, i. e, the possibility to redafe the meaning dbuilt-in operators fouserdeined types. Since the
built-in operators of maplanguages are alreadyenloaded to a certain deee in the language itself

(e. g.,arithmetic operators which can be applied togateand floating point numbers, or the plus op-
erator which is often used for string concatenation as well), it appears rather natural and straightfor
ward to extend this possibility to usateined types (so that, ., plus can be diefed to add comple
numbers, gctors, matrices, etc., too).

Other languages, g., Smalltalk [3], Prolog [1], and modern functional languages such as ML [7]
and Haskll [9], also allav the programmer to introduagew operator symbolsin order to &press
application-speci€ operations (such as determining the number of elements contained in a collec-
tion ¢) more directly and naturally (g., as#c) than with werloaded hiilt-in operators (&3., *c in
C++) or with methods or functions @, c.size()  orsize(c) ).

The introduction of n& operator symbols (especially if fhelenoteinfix operators) immediately
raises the question about thbinding pioperties i. e, their precedencavith respect to bilt-in and
other usedefined operators, and theassociativity In the abee languages, the programmer intro-
ducing a ner operator symbol is forced to assign ifixed precedence &l on a pedefned absolute
scale (eg., an intgral number between 0 and 9). This approach is bothxibfe(for exkample, it is
impossible to defie a nev operator that binds stronger than plus and mindsdealer than mult and
div, if there is no gp between these operator classes in the pnedeprecedence scale) angedy
prescriptve (because the programmer isvays forced to establish precedence relationships between
all operators, wen though some of them might be completely unrelated anet appear together in a
single epression).

The approach described in this report (which is not restricted to C++ conceptuadipresi®isting
approaches in the folldng ways:



» The precedencef nav operators need not baxéd on an absolute scalejttonly relative to other
operators, ie., the precedence relationship is not a completeotly apartial order on the set of
operator symbols, which can be incrementalteeded on demand.

* In addition to well-knavn unary and binary operatofissary opeator combinationsonsisting of a
sequence of associated operator symbols to conneadarfumber of operands as well #exary
opeators connecting apnumber of operands are supported.

« Finally, operators whose operands are onlgigatedon demandroughly comparable tazy eal-
uation in functional languages) are supported in a language such as C++ whosexéasgiore
model is imperatie. These operators are particularly useful to implememt kieds of control
structures especially as theaccept whole blocks of statements as operands, too.

Sec. 2 describes the basic features of C+++xtnsion of C++ supporting the introduction ofane
operator symbols. Secs. 3, 4, 5, and 6 illustrate these with numesouples, demonstrating in par
ticular the adances mentioned before. Sec. 7 describes the implementation of C+++ by means of a
“lazy” precompiler for C++, including some minor limitations of the approach. Finddly. 8 con-

cludes the report with a discussion of relateatkw

2 New Operatorsin C+++

New operator symbols in C+++ are introduceddperator declaationsat global or namespace scope
(i. e., outside aw function or class dafition) starting with the &word sequenca&ew operator
These are bothxesting C++ leywords which cannot occur in juxtaposition,wever, in the original
language. Therefore, the alreadygkset of C++ &ywords need not bextended to support this lan-
guage etension. Inside an operator declarationwéaer, numerous “local” or “conte&-dependent”
keywords which will not be treated as such elsere (eg.,unary , left ,right , etc.) can be used to
describe properties of thewm®perator

New operators are eithédentifiers as deined in the base language C++e(i. sequences of letters
and digits starting with a lettewhere the underscore character and appropriatersal character
names are treated as letters) or sequences of one oopeator characters (all characterseept
white space, letters, digits, and quotation marks). & ogerator symbol of the latter kind becomes a
tokenof the lical analysis as soon as it has been declaredji.might influence the parsing process
of the remaining input. @ give an artifcial example, a sequence afd plus signs (without inteen-
ing white space or comments) is parsed as threm$sit, ++, and + in original C++ (i.e., the lgical
analyzer is “greedy”). If a meoperator+++ is introduced, the same sequence gets parsedoas-tw
kens+++ and++ afterwards. (Of course, such “operator puzzles” canvoilad by alvays separating
tokens by white space.)

Just like aher identifers, nev operator symbols which are idefifs are recognized as such only if
they are not part of a lger identifer (or other tokn). For exkample, an operatabc is not recognized
as such in the inpuhcd (part of a lager identifer) nor in the inpudx123abc (part of a hgadeci-
mal integer literal).

In general, bilt-in operators in C++ can be applipdefix, infix, or postfx, and there are seral oper
ators which can be applied both @xedind infx (+, -, *, & and :: ) or both prefx and postik (++
and--). In analogynew qoerators are cagerized as eithemnary (meaning prék and postik appli-
cable) orbinary (meaning preék and infx applicable).

As in standard C++, the semantics of operators isebyoperator functionsi. e, functions whose
name consists of theelword operator  followed by an operator symbol. Functions corresponding to
prefix and infx applications of an operator &kne resp. tw arguments representing the operator’
operand(s). @ distinguish posik from prefx applications, operator functions corresponding to the
former recere a dimmy agument of typent in addition to the @yjument representing the operator’



operand. (Since the same operator cannot be applied bistlamaf posti, it is always well-defned
whether a tw argument operator function corresponds to aixiaf postfx application.)

To define generic operators, it is possible toigefoperator functions as function templates. Unlik
built-in operators, n& operators cannot be implemented by member functions of a classnll by
ordinary (i.e., global or namespace-scope) functions.

To retain the original C++ rule that the meaning oiltin operators applied touilt-in types must
not be changed, it is forbidden to ihef an operator function whose operator symbol and parameter
types are all bilt-in. In other words, only dahitions where either the operator symbol or one of the
parameter types (or both) is uskined, are alloved.

As in standard C++, postfoperators are applied left to right and bind more tightly tharnxpopkra-
tors which are applied right to left and bind more tightly thaix ioperators. The latter areganized
in an (irreflxive) partial precedence dler (i. e., an irreflive, transitve, and asymmetric relation-
shipstronger  with an irverse relationshipveaker ) containingopemtor classedi. e., sets of opera-
tors with equal precedence). Furthermore, ilnfoperators may be declardeft - or right -
associatie 0 express that an operator appearing earlier inx@nession binds stronger resp. weiak
than one of the same operator class appearing later irphession.

After the application of posif and preix operators (which can be idemifl simply by their syntac-
tic position) and, if appropriate, the recussiraluation of parenthesized supgessions, the remain-
ing expression consists of an alternating sequence of operands iarmupigrfators. In order to get suc-
cessfully parsed, such arpeession must contain either no operator at all amigue weag&st opea-
tor, i. e, exactly one operator binding weakthan all other operators of thepeession. Furthermore,
the two subexpressions resulting from splitting th&peession at this operator must flllthe same
rule recursiely. Otherwise, the xpression is rejected as being ambiguous. In such a case, the pro-
grammer might either use parentheses fptieit grouping or declare additional precedence relation-
ships to resole the conflict.

Pasing such anxression and testing it for ambiguity can be dofieiehtly using a simple push-
down automaton: Operands andiinbperators are processed from left to right and pushed onto a
stack. Before an operator is pushed, it is cedokhether the pvéous operator on the stack (ifygn
binds stronger than the current operator; if so, it is replaced, together with its operandsy logra-ne
pound operand, and the check is repeated. If, after these reductionsyithespoperator on the stack
(if any) and the current operator are incomparable, tbeession is ambiguous. (Sec. 7.4.3 describes
this in more detail.)

The initial precedence ordewhich contains operator classes for allitein C++ operators and there-
fore is actually a total ordecan be gtended freely as long asweaeclarations do not introduceyan
conflicts. (For example, declaring a meoperator to bind stronger than but wealer than+, would be
illegd, since* already binds stronger than) In particulay it is possible to insert e operators be-
tween adjacent classes afilbin operators (eg., betweert and+) and at the “ends” of the spectrum
of built-in operators, ie., to introduce operators binding stronger than (the strongest gular C++
infix operator) or weadr than, (comma, the weast C++ inix operator). In analogy to standard
C++, havever, expressions used as functiomaments or ariable initializers (using the notation for
initialization) must not contain operators weakhan comma or assignment operators, resghgti
except when nested in parentheses.



3 Unary and Binary Operators

3.1 Exponentiation

The folloving operator declaration introduces awvriginary, right-associatie gperator™ that binds
stronger than theuilt-in multiplicative gperators:

new operator ™ right stronger *;

Since the multiplicatie goerators bind in turn stronger than thdltein additve goerators, and be-
cause the precedence relationship is tramsithe nev operator binds stronger than,ge.+, too.
Therefore, anxpression such as+b”""¢” “d*e will be interpreted aa + ( (b™(c™d))*

e), whilex " "y - >*z (where—>* is a huilt-in operator binding stronger thén too) is rejected as
ambiguous sinc€ and->* are incomparable. On the other hapd,” g * r — >*s is successfully
parsed asp(" "q) *( r->*) since” and->* both bind stronger than

To define the meaning of ~ "y, a awrresponding operator functi@perator™  taking two argu-
ments is defed which computes, g., the alue ofx raised to the pwer ofy (using the predefed li-
brary functionpow):

double operator™ (double x, double y) { return pow(x, y); }

Because of the usual arithmetic eersions, the n& operator cannot only be applieddouble , but
also toint values, eg.,2 "~ 1 0. To make aure, havever, that the result of such an application is also
of typeint , an overloaded variant of the operator function can be supplied:

int operator™ (int X, int y) { return (int) pow(x, y); }

Because a binary operator cannot only be appliéxl infit also prak, it is possible to défie a sepa-
rate meaning for that case by idefg an additional operator function taking only onguanent. lér
example, the follwing function deihes the meaning 6fx as the alue ofe (the base of the natural
logarithm) raised to the peer ofx:

double operator™ (double x) { return exp(x); }

3.2 Container Operators

To introduce a n& unary operato# which corveniently returns the size @., number of elements) of
an arbitrary container objectof the C++ standard library (or imdt ary object that possesses a pa-
rameterlessize  member function), the folleing declarations will stiifce”

new operator # unary;,

template <typename C>
int operator# (const C& c, int postfix = 0) { return c.size(); }

By defning the operator functiooperator# as a function template, the operator is basically appli-
cable to objects of ary type C.2 If Cdoes not declare a member functgize , howeve, the corre-
sponding template instantiation will be rejected by the compiler

! Because the operator declaration introdutas an operator symbol, it will be treated as such in the remaining input. Therefore, it can no
longer be used as a C++ preprocessor symbol aftdswSincefinclude directives ae typically placed at theewy bainning of a transla-

tion unit and the use of other preprocessing diresi¢define in particular) is highly discouraged in general, this appears to be an accept-
able restriction.

2 Defining the type of asconstC& instead of jus€Cis a common C++ idiomx@ressing that is passed by reference (symiplto avoid
expensve mpying of the whole container while at the same time notatig the function to change itélword const ).



By giving the function an optional second parameter of type it can be called with either one or
two arguments, ie., it simultaneously defes the meaning &f for prefix (one agument) and posi
applications (additional dummygurment of typent ).

Even though it is possible in principle to bhef completely dferent meanings for priefand postik
applications of the same unary operatare should bexercised in practice tovaid confusion. ©
give an example, where diérent, lut related meanings malense, consider the folking operator@
which returns theiffst or last element of a containerwhen applied préf (@9 or postix (c@),
respectsirely:3

new operator @ unary;

template <typename C>

typename C::value_type operator@ (const C& ¢) {
return c.front();

}

template <typename C>

typename C::value_type operator@ (const C& c, int postfix) {
return c.back();

}

4 Fixary Operator Combinations

4.1 Principle

In addition to ordinary unary and binary operators, C++ides a special ternary operator combina-
tion ?: to express conditionabecution inside anxpression. When vieing ? and: as separate bina-

ry operators, their binding properties are equal to those of assignment opexatptiteat their mid-
dle operand (betweehand: ) might beany expression containing in particular assignment and com-
ma operators,ven though the latter bind weakthan? and: . Conceptuallythis exceptional rule can

be eliminated and reduced to the normal precedence rulesibingédhat the subgression between
the two operators is abays implicitly grouped as if it would be surrounded by parentheses. Further
more, a operator must not occur without a precedingperator (and viceersa).

This principle is generalized in C+++ to so-calfedary opeator combinationgsometimes also
called distix or mixfix operators): By declaring that one operator must only apgesr another
operator in anxpression, ay subexpression between these operators is implicitly grouped and it is
checled that the former operator is not used without the lddeglaring that an operatgrmust only
appearafter an operatok, turns out to be more ftible than declaring the oppositeei, thatx must
only appear beforg, because in theirkt casex might well appear withoug, but not vice ersa. ©
malke the concept\en more flexible, it is possible to specify multiple operatarsvhich might pre-
cedey; in such a case; must only appear after one of these operators, and thepsabsion between
y and the nearest such operator is implicitly grouped.

3typenameT::value_type denotes the typealue_type declared inside the container typd. e, the containes dement type.



4.2 Inserting Into a Container

The folloving declarations:

new operator INSERT unary;
new operator INTO after INSERT right equal =;

template <typename T>
T operator INSERT (T x) { return x; }

template <typename C>
void operator INTO (typename C::value_type x, C& c) { c.push_back(x); }

define an operator combinatidNSERT — INTO which can be used as folg to insert the result of
assigningl to x into the \ectorc:

int x; vector<int> c;
INSERT x =1 INTO ¢;

If INTO would have been declared as a normal binary operator withouatftan clause, the last line
of the example vould get parsed a8NSERTXx)=(1INTOc) according to the normal rules. By
declaringINTO afterINSERT , howeve, the subgpression between these operators is implicitly
grouped and afterards the completexpression gets parsed @SSERT(x=1))INTOc

By introducing another operatBEFORE
new operator BEFORE after INTO right equal =;

template <typename C>

pair<C*, typename C::iterator>

operator BEFORE (C& c, typename C::iterator i) {
return pair<C*, typename C::iterator>(&c, i);

}

template <typename C>

void operator INTO

(typename C::value_type x, pair<C*, typename C::iterator> ci) {
C& ¢ = *ci.first;
typename C::iterator i = ci.second;
c.insert(i, x);

}

it is possible to generalize the pieus example as follas to insert the result of assignifhdo x into
the \ectorc before the position determined by the iteratdwhose type idypenameC::itera-
tor ):

int X; vector<int> c; vector<int>::iterator i;
INSERT x = 1 INTO ¢ BEFORE i;

BecausdNTO and BEFOREhave keen declared right-associagi the last &pression gets parsed as
(INSERT(x=1))INTO(cBEFOREI) . Therefore, the result ofvaluatingc BEFOREi (which is
just a pair consisting of a pointerdandi ) becomes the second operandNfO which performs the
actualinsert  operation.

It should be noted that the pieus example (without usin@EFORE is dill valid becauséNTO can
still be used withouBEFORE but not vice ersa. This isxact the increased #éility mentioned

4 Note that it is possible in principle to UBSERT without INTO (e. g.,INSERT1 ), which is semantically useless,wever. On the other
hand, usindNTO without INSERT would be erroneous.



above tat is @ined by declarinBEFOREafterINTO  instead of the oppositBlTObeforeBEFORE
(which is actually not supported) thabwd forbid the use dNTO without a succeedinBEFORE

Finally, by extending the declarations tNTO andBEFOREas follows:

new operator INTO after BEFORE;
new operator BEFORE after INSERT;

it is allowed to usdNTO either aftedNSERT (original declaration) or afteBEFOREextended decla-
ration) and to usBEFOREeither aftedNTO (original declaration) or aftdNSERT (extended declara-
tion). Together with appropriateverloadings of the imolved operator functions, insertions carwno
be done in anof the folloving ways (where the latter mware expected to be equélent):

INSERT x INTO c;
INSERT x INTO ¢ BEFORE j;
INSERT x BEFORE i INTO c;

4.3 User-Defined Control Structures

Userdefined control structures, such BBREACHXxINcDO... , e another typical use akéry op-
erator combinations. Rwever, dnce their implementation requires the additional concept of lazily
evduated operands, their discussion is postponed until Sec. 6.

5 Flexary Operators

5.1 Average Values

The folloving operatoAVGcomputes thewvaerage of tvo double valuesx andy:

new operator AVG left stronger + weaker *;

double operator AVG (double x, double y) { return (x +y)/2; }

When applied to threealuesx AVGYAVGz , howeve, the result is equilent to (xAVGY)AVGz
(because the operator is declared left-asswge)atihich is usually diierent from the werall average
value ofx, y, and z. To avoid such accidental misinterpretations, ibwd be more reasonable to de-
fine the operator non-associaticausing the xpressiorxk AVGyAVGz to be rejected due to ambigui-
ty.

Alternatively, AVGcould be interpreted asféexary opeator, i. e., an operator accepting conceptu-
ally any number of operands concatenated byxiapplications of the operatdfor that purpose, the
above qerator functiomVGis replaced by the folleing defnitions which do not directly compute
the average \alue of their gguments, bt rather collect the necessary information (numberatifes
and sum of all &lues processed sar} in an auxiliary structure of tygeg:

struct Avg {
int num; double sum;
Avg (int n, double s) : num(n), sum(s) {}

%

Avg operator AVG (double x, double y) {
return Avg(2, X +Y);
}



Avg operator AVG (Avg a, double z) {
return Avg(a.num + 1, a.sum + z);
}

Additionally, a pseudo operator functiooperator... (where... is not a meta-symbol in thexte
denoting an omissionub rather a real C++ tek) is deifhed which cowerts this intermediate infer
mation to the actualverage \alue:

double operator... (Avg a) { return a.sum / a.num; }

This pseudo operator function is called automatically ¥eryeexpression or subg@ression contain-
ing userdefined operators, whewer al operators of a particular precedencesldhavebeen applied,
before operators of the xtdlower precedence Vel will be applied. Br example, if the operatokVG
is defned as abee (. e., left-associatie with precedence betweenand*), the expressiona*bAVG
c/dAVGe%f + g AVGh (with double aluesa to h) is equivalent to

operator...(operator AVG(operator AVG(a*b, c/d), e%f))
+ operator...(operator AVG(g, h))

i. e.,it computes the sum of theesiage alue ofa*b , c/d , and e%f (e modulof ) and the &erage \al-
ue ofg andh.

Because the compiler actually does notvknwehether an irik operator shall be interpreted as a
normal binary operator (which does neither need ramtwthe call toperator... ) or as a fexary
operator (which needs it), the calls are actuallyags inserted as described a&boFurthermore, the
function is predehed as the identical function

template <typename T>
inline T operator... (T x) { return x; }

for ary argument typeTl to male wre that it has actually nofe€t on the ealuation of the gpression,
unless it has been specialized for a particular Typach asAvg above. By declaring the predafed
functioninline , the compiler is instructed tokeand its calls in place, which in this case actually
means to eliminate them tedad unnecessary run time penalties.

5.2 Chainable Comparison Operators

Comparison operators are another source of potential misinterpretations, at leagiceopragram-
mers. While the C++x@ressiora <b corresponds»actly to the mathematical teren< b, the mean-
ing of the epressiora < b < ¢ is quite diferent from its mathematical counterpark b < c, the lat-
ter meaninga < b and b< c. The former is actually interpreted @s<b)<c , which compares the
Boolean-alued result of comparingandb with ¢. In mary programming languages, this will lead to
a compile time error since Booleammlues and numbers cannot be compared to each tihér+,
however, the Boolean aluestrue andfalse are implicitly cowerted to the intger \aluesl and0,
respectrely, when necessargausing the pressioma < b < ¢ to be actually well-défied, lut proba-
bly not producing the desired result.

Because “chained” comparisons suchaasb <c or 0<i <n are occasionally useful and more
convenient than their logicalx@ansions (such asi and i< n), one might vant to dehe corre-
sponding operators in a programming language. Similar té&\W&operator abee, such operators
must not only return a Booleamlue representing the result of the current compariaanalbo the
value of their right operand which might be needed as the left operand of tivariglloperatortoo.
This can agin be achieed by introducing an appropriate auxiliary structure:

template <typename T>
struct Cmp {
bool res; T val;
Cmp (bool r, T v) : res(r), val(v) {}



template <typename T>
bool operator... (Cmp<T> c) { return c.res; }

new operator .<. stronger = weaker ||;

template <typename T>
Cmp<T> operator.<. (T x, T y) {

return Cmp<T>(x <, Y);
}

template <typename T>
Cmp<T> operator.<. (Cmp<T>c¢, T 2){
return Cmp<T>(c.res && c.val < z, 2);

}
/I Likewise for operators <=, > >= = =
Now, an expression such as. <.b.<.c is indeed equilent toa < b && b < c, while 0 . <=.i

<.n isequvaentto0<=i&&i<n,i.e, itis possible to mix fbeary operators of equal prece-
dence.

6 Operatorswith Lazily Evaluated Operands

6.1 Logical Implication

The huilt-in operator&and|| expressing logical conjunction and disjunction, respelsti are spe-
cial and diferent from all other Wilt-in operators (ecept the already mentioned tern&ry operator
combination) in that their second operandvawatedconditionallyonly when this is necessary to de-
termine the glue of the result. If these (oryaather) operators areverloaded, this special and some-
times etremely useful property is lost, because an application ovenfoaded operator is equdent

to the call of an operator function whosguamnents (ie., operands) are unconditionalleliated be-
fore the function gets called.

Therefore, it is currently impossible to tef, eg., a n&v operator=> denoting logical implication
which evaluates its second operand only when necessaryx => y should bexactly equivalent to
IX|]ly . To support such operator deitions, the concept dazy evaluationwell-known from func-
tional languages is introduced in a restricted manner: If an operator is dégtgredts applications
are equialent to function calls whose guments do not represent te@luated operands, Wt rather
their unevaluatedcode wrapped irfunction objectqclosures) which must bexgicitly invoked in-
side the operator function to cause thegiwation on demand. The type of such a function object is
lazy<T> if Tis the type of thewaluated operand.

Using this feature, the operator can indeed be defed and implemented as falls:

new operator => left equal || lazy;

bool operator=> (lazy<bool> x, lazy<bool>y) {
return Ix() || y();
}

Because the second operand of thidtdn operator|| is evaluated conditionallythe invocationy()

of the second operandof => is executed only if the imocationx() of the frst operandx returns
true . Of course, this behdour could be made morex@icit by rephrasing the body of the operator
function with an gplicit if statement:



bool operator=> (lazy<bool> x, lazy<bool>y) {
if (x()) return y();
else return true;

}

6.2 User-Defined Control Structures

To keep the declaration of lazy operators simple and general, it is not possible to mix eagerly and lazi-
ly evaluated operands, &., all operands are eithevauated eagerly (before the operator function is
called) or lazily (if the operator is declarlady ). However, by invoking a function object represent-
ing an operand immediately at thegb®wing of the operator function, the belwaur of an eagerly
evduated operand can be easily agbie

Because an operand function object can kekied multiple times, operators resembling iteration
statements can be implemented, tog,e.

new operator ?* left weaker = stronger , lazy;

template <typename T>

T operator?* (lazy<bool> cond, lazy<T> body) {
T res=T(),
while (cond()) res = body();
return res;

}

Using operators tox@ress control structures might appear sehe strange in a basically impeveati
language such as C++. Wever, C++ already preides hiilt-in operators corresponding to control
structures, namely the binary comma operatpressing sequentiakecution of subrpressions simi-

lar to a statement sequence and the terdamyperator combinationxpressing conditionalxecution

similar to an if-then-else statement. Therefore, introducing operators similar to iteration statements is
just a straightfonard and logical consequence dive a Smple example of their usage, the greatest
common dvisor of two numbersx andy can be computed in a singlepeession using the well-
known Euclidian algorithm:

int ged (int x, int y) {
return (X!I=y) 2* (X >y ?X-=y:y-=X), X;
}

The possibility to press control structures with ustefined operators might appearea more use-
ful when control flovs are needed which cannot be directtpressed with theuilt-in operators or
statements of the languagearkxample, an operatddNLESSmight be dahed that gecutes its ifst
operand unless thevauation of its second operand yields truee(j.the latter isv@luated before the
former):

new operator UNLESS left equal ?* lazy;

template <typename T>

T operator UNLESS (lazy<T> body, lazy<bool> cond) {
T res=T();
if (Icond()) res = body();
return res;

}

Using the additional concept akéry operator combinations (cf. Sec. 4), it is also possible tnadaf
REPEAT— UNTIL operator combination:

10



new operator REPEAT unary;
new operator UNTIL after REPEAT left equal ?* lazy;

template <typename T>
T operator REPEAT (T body) { return body; }

template <typename T>
T operator UNTIL (lazy<T> body, lazy<bool> cond) {
T res=T();
do res = body();
while (cond());
return res;

}

6.3 Database Queries

Using some C++ “acrobatics” @., deining one operator to return an auxiliary structure that is used
as an operand of another operator), it isnepossible to defie operator combinations such as
FIRST/ALL/COUNT- FROM- WHERBEvhich can be used as folis to express “database queries” re-
sembling SQL [6]:

struct Person {
string name;
bool male;

set<Person> db; // Or some other standard container.
Person p;

Person ch = FIRST p FROM db WHERE p.name == "Heinlein";
set<Person> men = ALL p FROM db WHERE p.male;
int abcd = COUNT p FROM db WHERE "A" .<=. p.name .<. "E";

Writing equivalent expressions with C++ standard library algorithms sucfindsif ~ or count_if

would require to write an auxiliary function fovery search predicate because the standaildibg

blocks for constructing function objects (such as predicates, binders, and adapters, cf. [10]) are not
sufficient to construct them.

6.4 Blocksas Operands

In contrast to normal operators with eagefgeated operands where operands of tygd do not
make ense, it is possible and quite useful to uspressions of typeoid as lazily eduated
operands. If, for xeample,f happens to be a function with result tymed , an expression such as
i>0? *f (i-—) obviously males sense.

It is even possible (with some restrictions,wever) to useblods, i. e., sequences of statements and
declarations enclosed in curly brat, as lazily wauated operands of typ®id . This is agin useful
in combination with operators such&sor REPEAT— UNTIL expressing control structures:

REPEAT {

/I Do something complex

/l that is hard to express as a single expression.
} UNTIL (/* some condition */);

11



The precise rules gerding blocks as operands are as folo

» A block is treated as an operand if and only if it appears between apeeator and the nearest
subsequent semicolon (on the same nestig) ¢¢ curly braclets), and neither the operator nor the
block are enclosed in round or square betskFurthermore, the enclosingpeession must be an
expressionstatement
This rule is necessary to unambiguously distinguish blocks used as operands from normal blocks
used as statements.

* If such a block is not immediately folleed by a usedefined operator hang anafter clause (cf.
Sec. 4.1), a semicolon is implicitly inserted after the block which terminates the enclkgsieg-e
sion.

» Before such a block, a binary lazy pseudo-operator whose operator function regeratos{}
is inserted implicitly
The preix application of this operator is predefd as the identical function (note that a block has
typevoid ):

lazy<void> operator{} (lazy<void> x) { return x; }

This is equialent in efect to saying that the operator is inserted only if the block is not immediately
preceded by another operator

Infix applications of this operator can beidefl as needed (cf. theamples belw).

There are no predekd precedence relationships for this operd#ecause theare not needed for

its typical applications, W it is possible in principle to declare such relationships.

Using blocks as operands, it is possible to wrikpressions which lookxactly like C++ control
structures. Br example, gven the following defnitions:

/I Operators foreach and in.
new operator foreach unary;
new operator in weaker = stronger ,;

/I operator in combines a variable v of type V

/[ and a container ¢ of type C into a pair.

template <typename V, typename C>

pair<V*, const C*> operator in (V& v, const C& ¢) {
return pair<V*, const C*>(&v, &c);

}

Il operator foreach returns such a pair vc unchanged.

template <typename V, typename C>

pair<V*, const C*> operator foreach (pair<V*, const C*> vc) {
return vc;

}

I operator {} combines such a pair vc and a block b.

/I It iterates through the container c,

/I binds the variable v to each element in turn,

/I and executes block b for it.

template <typename V, typename C>

void operator {} (lazy< pair<V*, const C*> > vc_, lazy<void> b) {
pair<V*, const C*> vc = vc_();
V& v = *vc.first;
const C& ¢ = *vc.second;

12



for (typename C::const_iterator i = c.begin(); i = c.end(); i++) {
vV = *i

b();
}

it is possible to write code kkthis:

vector<int> c; int i;
foreach (i in c¢) { cout <<i<<endl; }

If a block used as an operanxkeutes a jump statemeriir¢ak , continue , goto , or return ) that
transfers control out of the block, the operand is terminated as if it haehthroeception (of an un-
known type) that also terminates the operator function and all possiblg @térmediate functions
called directly or indirectly from it. This includes the process of “stack unwinding” [@], ¢alling
destructors for all “automatic objects” (objects with automatic storage duration) constructed during
their execution. Then, instead of continuingeeution after the point where the operator function has
been called, control is transferred to the destination of the jump statement.

For examplereturn can be used in the usuahwto terminate foreach loop prematurely:

/I Does container ¢ contain value x?
template <typename C>
bool contains (const C& ¢, typename C::value_type x) {
typename C::value_type i;
foreach (iinc) {
if (i == x) return true;
}

return false;

}

However, break andcontinue statements cannot be used insidereach loop to just break out of
this loop or to continue with its meiteration, respeately, because thewill terminate or continue an
enclosing normal loop (@witch statement). It is possible, Wwever, to use ceptions for such pur
poses. If, for gample, the implementation operator{}  is changed as foles:

template <typename V, typename C>

void operator {} (lazy< pair<V*, const C*> > vc_, lazy<void> b) {
pair<V*, const C*> vc = vc_();
V& v = *vc first;
const C& ¢ = *vc.second;

for (typename C::const_iterator i = c.begin(); i 1= c.end(); i++) {
vV = *j
try {
b();
}

catch (bool cont) {
if (cont) continue;
else break;

}

it is possible to terminate the current iteration offtlieach loop by thraving an eception of type
bool whose actualalue indicates whether the whole loop shall continue or not.

13



Other types of xceptions might be used to implement more sophisticated iteration comtrak-F
ample, by thrving anint vauei the iteration bodyp could indicate that the iteration shall continue
with thei -th next element of the container

7 Implementation of C+++

7.1 Basic Approach

The languagextensions to C++ described in this reporvdaeen implemented by a “lazy” precom-
piler. Here, the term “lazy” has nothing to do with lazy or eageluation of epressions, it shall
describe thedct that the precompiler does not “eagerly” do a complete parse of its input (which is im-
possible for C++ without doing a complete semantic analysisyather copies most of it through un-
changed without actually “understanding” it. (Therefore, it might also be called a “stupid” precompil-
er) Only when encountering particulagyvords, special toéns, or combinations thereof, it performs

a “local” parse of their congt and possibly a corresponding code transformation. These “sehsiti
token sequences and their processing are described in the sequel.

7.2 Operator Declarations

If the keywordsnew andoperator appear in juxtaposition, the subsequent input up to tkieseeni-
colon is parsed as an operator declaration according to theifal&BNF grammar (where quoted
strings represent teks of the Igical analyzer):

opdecl:
"new" "operator" newopsym [ "unary" ] { "after" opsym }
{ " left" | "right" | "stronger" opsym | "weaker" opsym }
[ " lazy"]""

Here,opsym represents eitherubit-in operators or ng operator symbols introduced earli€n the
other handnewopsym might represent a meoperator symbol (such as+) which consists of multi-
ple tokens ¢+ and+ in this case) since it is not yet kmo to be a single t@n. The precise rule is that
it might be either an ident#r as dahed in the base language C++e(i.a sequence of letters and dig-
its starting with a lettewhere the underscore character and appropriatersal character names are
treated as letters) or a sequence of one or me@tor character tokens i. e, tokens consisting sole-
ly of so-called operator characters. These are all characters of the basic charagrpsettdte
space (including comments), letters, digits, and quotation magksactually the follwing:

{(}[1#()<>% :;.2*+-/"& |~ 1=\

Immediately after th@ewopsym has been read, its complete character sequence is declaredias a ne
single tolen to the Igical analyzer causing it to be recognized as such in the remaining input.

The lical analyzer is basically identical to a standard C++ scanner which recognizes so-called pre-
processing todéns [4] (and, of course, white space and comments). The ofdyedite is thedct that

the set of operators which are recognized as singknsoks not hard-coded into the scanieit
maintained in anmaensible table. Whenrer a ssquence of operator characters is found in the input, it

is broken into one ore more teks according to this table.

7.3 Operator Function Names
If a newv operator symbol (ke., one that has been yieusly declared by an operator declaration) ap-

pears after thedyword operator  (possibly with interening white space or comments)ggoper-
ator+++ , this is replaced by a unique function name \aerifrom the operator symbol, @,

14



__plus_plus_plus (where the leading underscores indicate that this is an “implementation-
internal” name).

This olviously transforms operator function declarations anéhiieihs to normal function decla-
rations and ddfitions which can be processed by a C++ compiet it also transforms operator
function names appearing elgeere (ie., as function pointer or referencalues) into normal func-
tion names.

7.4 Expressions Containing New Operator Symbols
7.4.1 Basic Principle

In C++, it is \ery difficult to recognizegressions in general, becauseyth@gght appear in arious
places, €g., as gpression statements, initializers afriables, member initializers of constructors, etc.
Furthermore, without additional kmtedge it is impossible to distinguish some kinds xgressions
from declarations. &1 instancea * b looks like a multiplication ofa andb at first glance, bt it might
actually be a declaration bfas a pointer ta if a is knovn to be a type name in the current scope.

Therefore, the C+++ precompiler does netreatempt to recognizall expressions in its input,
but only those containing me operator symbols. The latter will be analyzed as describeavpahol
the nev operators will be replaced by corresponding function calls (cf. Sec. 7.4.3). All aifrerse
sions, ie., those containing onlult-in operators, simply get passed through unchanged and will be
correctly interpreted by the C++ compijleven if some of their operators ta been werloaded.

As the #amplea * b demonstrates, it auld even be dangerous for the precompiler to transform
all operators to corresponding function calls unifornidgcause the transformed codeaster-
isk(a,b) is of course no longer a declaration. Furthermore aidb were compile-time constants,
a* b would also be such a constant, which could be useg, & an array bound or a cagpres-
sion. Agnin, the transformedxkpression _asterisk(a,b) would not be an equélent substitute in
these (and some other) carite because a function calpression is neer regaded as a constank-e
pression, een if the function__asterisk  would be predehed for all typed as follovs:

template <typename T>
T _ asterisk (T x, Ty) {returnx *vy; }

Expressions containing weoperators are simply recognized by these mperator symbols, é.,
wheneer a token is encountered that has been declared as @perator symbol (and this tek is
not preceded by theslgword operator , cf. Sec. 7.3), the surrounding coxitenust be anxgression.

In order to correctly analyze and transform thigression, its bgin and end is determined by search-
ing backvard resp. fonard until aleft resp.right expression delimiteis found, ie., a tolen that def
nitely and unambiguously delimits arpeession. Brtunately the sets of these teks are rather small
and well-deined.

7.4.2 Expression Delimiters

The set of left gpression delimiters contains:
; end of preceding statement

end of preceding (case) label
(Sec. 7.5 ®plains hav this is distinguished from :aoperator)

( begin of sube&pression or (member) initializer

(Subepressions surrounded by parentheses are transformed separately from their surrounding

expression where the former are treated as simple operands.)

[ begin of array bound or subscript
(Normally, array bounds must be constampeessions which cannot contain udefined opera-

15



{
}

tors; in anew-expression howeve, the frst array bound might be an arbitrapeession which
might contain usedefined operators.)

begin of block

end of preceding block

return
else
do

Keywords which might be follwed by an epression orpression statement.

The set of rightxpression delimiters contains:

’

)
]

end of epression statement
end of subepression

end of array bound or subscript

While searching for thesexgression delimiters, complete bratlkexpressiong...) and[..]
i. e.,token sequences containing balanced opening and closingetsraake treated as single units. In
particular their braclets do not constitutexpression delimiters.

To make aure that an appropriate lefxgression delimiter is alays found, substatements of condi-
tional and iteration statement$ ( switch , while , for , do) which are not surrounded by curly
braclets are automatically augmented with these (which does not introdusenaantic diference).

If a block{...}  is encountered while searching for a rigRpression delimiterit is freated as a
block operand, and the pseudo-opergtors inserted before. If the block is not immediately fokal

by

a useidefined operator hang anafter clause, a semicolon is inserted after the block which ter

minates the enclosingpression (and will cause a syntax error in the generated C++ code ¥-the e
pression is enclosed in round or square )k

7.4.3 Transformation Algorithm

Having identifed bein and end of anx@ression containing uselefned operators, thexpression is
transformed as follos:

1.

16

If it begins with one or more operators, these must béxpoperators (otherwise thexgression is
erroneous) which are el on a gack.

. Thesubsequent tans up to the & operator (or the end of themression) mad& wp the frst

operand which is sad on the stack, too.
(Operands might consist ofveeal tokens, eg., function calls such dé,y) , subscript &pres-
sions such agi][j] , and the lile.)

. Aslong as the follwing tokens are post operators (and consequently are noikiapplicable, cf.

Sec. 2), thg are applied to the puvous operand on the stack.

Here, applying an operator to an operand either means to simply combine them into a compound
operand (if the operator iaiitt-in, e.g., combinex followed by++ into the compound operand

x++) or to transform them into an operator function call (if the operator isdedgred, eg., trans-

form x followed by+++ into the operator function call plus_plus_plus(x,0) ) that is also

treated as a compound operand.

In ary case, the result of this application replaces theipus operand on the stack.

If any postfix operators hee been applied in step 3, go back to step 2, since the operand construct-
ed in step 3 (., __plus_plus_plus(x,0) ) might be follaved by other operand teks (such
as[i] ), which might themsebs be follaved by other postt operators, etc.



5. Afterwards, all prak operators which hae been saed on the stack in step 1 will be applied to the
operand on top of the stack irnveese orderfinally yielding a single compound operand on top of
the stack.

6. Thenext token, if ary, must be an irk operator which is pushed onto the stack. (It might also be
prefix applicable, bt according to its position in themression, it must be applied ixj
Before it is actually pushed, it is checkwhether the pvious (infx) operator on the stack (if gh
binds stronger than the current operator; if so, thigigus operator (which is the 2nd to top ele-
ment on the stack) is applied to its operands (which are the 3rd to top and the topmost element on
the stack, respewtly) and the resulting compound operand replaces them on the stack.
This check is performed repeatedly until thevimes operator on the stack (ifygrbinds weakr
than the current operator (in which case the current operator is actually pushed onto the stack) or
the two operators are incomparable (in which case #pgassion is rejected as being ambiguous).

7. Afterwards, the whole procedure from step 1 to 6 is repeated untkpnession is xhausted, and
finally all infix operators remaining on the stack are sucedgsapplied to their operands.

7.5 Special C++ Operators

The operators ,. (dot), and-> are not treated as operators by the precompilrather as parts of
operands, because yhgind more tightly than préf and postik operators and therefore do nittifito
the general scheme described in Sec. 2, whareapérators bind less tightly than unary operators.

The ternary operator combinati@n is treated lile a @ir of operator® and: where the latter must

only appearafter the formey causing ag subexpression between these operators to become auto-
matically grouped (cf. Sec. 4.1). Furthermore, to distinguish a colon constituting an operator from
colons haing other meanings, in particular those faling (case) labels and therefore constituting

left expression delimiters, only colons for which a matching question mark is found are treated as op-
erators.

The C++ leywordssizeof , typeid , anddelete as well as the ta@n sequencdelete]] are treat-
ed just like normal preix operators.

So-callednew-expressionsare treated as single operands in ordevtida and& tokens appearing in
their new-type-id[4] to be treated as operators.

In contrast taeturn  statementsthrow instructions are actuallgxpressionswith the same prece-
dence as assignmentpeessions. Therefore, theyvord throw is actually a prék operator with a

very low precedence. In order to ma&k fit into the general operator scheme mentioned before;, ho
eva, itis treated as an inf operator (haing the same precedence as assignment operators) whose left
operand is empty resp. missing.

Furthermore, since it is possible to wsew without an associatedgression (in which case the
currently handled»eeption is rethnan), its right operand might be empty resp. missing, too. This is
the case if and only throw is either the last tan of an gpression or it is follewed by an inik oper
ator with laver precedence. (In C++, the only such operator is the comma oﬁehyatcbn C+++ oth-
er such operators might be mhefd, of course.)

5The case thatrow is immediately folloved by: is covered by the rule that the middle operand?ofmight be ag expression. In this
casethrow is the last tokn of this subgression.

17



7.6 Lazily Evaluated Operands
7.6.1 Non-local Gotos

The implementation of lazilyvaeluated operands is based on a non-local gatiitfy similar to the C
library functionssetjimp andlongjmp .

There is a data typ@ontext whose instances are able to store the curpetiuéon contet of a
process or thread, including its program coyriter base pointer of the current stack frame, the stack
pointer referring to the top of the stack, and possibly some otisteewalues. The function

int mark (Context& ¢);
stores the currenkecution contgt in its parametet and returns zero, while the function
void jump (const Context& c, intv = 1);

restores the comtesaved in ¢ and causesxecution to continue as if the corresponding calingrk
had just returned thealuev (which defults to one and must be fdifent from zero). & that pur
pose, the function that hageeutedmark must still be actie, i. e., the function that>ecutesjump
must either be the same function or one that has been called directly or indirectly from it. (In other
words,jump can only jump “danwards” on the stack.)
Apart from diferent names, this functionality is identicalsijmp andlongjmp . Howeve, there
is a third function

int markjump (Context& ¢, const Context& d, int v = 1);

that combines the functionality afark andjump by first saving the currentxecution contat in ¢
before restoring the destination codte. Furthermore, in contrast to a nornahp , the current stack
pointer is left unchanged ., the one s&d in d is ignored) causing the stack frames of subsequent
function calls to be placed almthe frame of the functiorxecutingmarkjump and therefore protect-
ing the frames bel from becoming werwritten. Thus, in contrast to a normainp , it is possible to
return to the consé saved in ¢ by another call tgump (or markjump ) later i. e., one can also jump
“upwards” on the stack (if the terms “uprds” and “davnwards” refer to the logical motion of the
base pointemo matter whether the stack actually geo“forward” or “backward” in terms of absolute
addresses).

These functions can be implemented either directly in (machine-dependent) assembly code or (more
portably!) by usingetimp andlongjmp to implemenimark andjump (which is straightfonard) as

well as markjump by using these functions in aaw that is actually undefed: By eecuting
longjmp(e,v) where the conté e is a coly of d except for its stack pointeralue which is takn

fromc, it is possible to implement the behaur of markjump(c,d,v)

7.6.2 Auxiliary Typesand Functions

For every lazily evaluated operand, an instance of the fwilog template typ@®perand<n> will be
allocated that contains:

» acontet objectopnd to store thexecution cont&t of the operand;

 another contet objectoper to store the xecution cont&t of the operator function (or a function
called directly or indirectly from it) where the operand/aluation is requested;

% Because mancompilers allocate function parameters in therent stack frame, ie., beneath the current stack poinbefore allocating
the frame of the called function, it is actually necessary to (logically) increase the stack pointer folnydtlire size of the frame found
ind, i.e, the diference between the stack and base poirtiees found there.

Furthermore, sinceetimp must be recuteddirectly in the function whose conteshall be seed, mark andmarkjump must not be func-
tions, hut rather macros (which shouldvealess common names such aMARKand__MARKJUMPRhen, and which cannot Y gtional pa-
rameters).

18



» a(maximally aligned) arrayal of n bytes, where is the size of the operarsdype, to store the re-
sult of evaluating the operana.

template <int n>

struct Operand {
Context opnd;
Context oper;

union {
double dummy; /I To force maximum alignment of val.
char val [n];

3

%

To evaluate an operand and store its result in an appropri@eerand objectop, the folloving func-
tioneval will be used:

template <typename T>

lazy<T> eval (T x, Operand<sizeof(T)>& op) {
new(op.val) T(x);
jump(op.oper);

}

It uses the so-called “placement operatow'hto copy x (which is ealuated automatically when
eval gets called) into the byte arrapg.val usingT's copy constructor Afterwards,jump is used to
return to the placep.oper where the operanslevaluation has been requested (cf. bélo

When calling an operator function with lazilyakiated operands, the latter are passed as objects of
the following typelazy<T> (which, for reasonsxglained in Sec. 7.6.3 belpis dso used as the for
mal result type okval , even thougheval does not actually return alie) wherel represents the
type of the ealuated operand. Such an object is initialized with a referepce an appropriate
Operand object which is stored inside thezy<T> object. It provides a ddhition of a parameterless
function call operator that causes the operand todleated and returns itsalue.

For that purposemarkjump is used to sz the current gecution cont&t in op.oper and jump to
the contet saved earlier inop.opnd (cf. belaw, Sec. 7.6.3), whereval(...,op) will be executed
to actually gauate the operand, store italue inop.val , and return to the current position by-e
ecutingjump(op.oper)  (cf. abwe). Afterwards, the operanslvalue is copied into a temporarg-v
riable x beforeT’s destructor is called foop.val to complement the constructor call performed by
eval ,8 and fnally, this valuex is returned.

template <typename T>
struct lazy {
Operand<sizeof(T)>& op;
lazy (Operand<sizeof(T)>& op) : op(op) {}

T operator() () {
markjump(op.oper, op.opnd);
T* p = (T*)(op.val);
Tx="7"p;
p—>"T();

7 Of course, it wuld be more natural to directly use the opermygie T instead of its size as a template parameter foperand . Howev-
er, this type is not knan to the precompileend in standard C++ there is n@ayvto abstractly refer to it, suchgpeof(x) in GNU C++.
On the other handjzeof(x)  is avallable as a portable means to refer to the sizesaf/pe.

8 Formally, these constructor and destructor calls are weihddfeven for basic types such @& , even though thg will not perform par
ticular actions.

19



return x;
%
7.6.3 Basic Approach

The application of a normal usdefned operator with eagerlywauated operands, such &as "y
(wherex andy might be arbitrary sub@ressions), is transformed to a call of the corresponding oper
ator function whose guments are the operand<.i. _hat_hat(x,y)

If the operator is declarddzy , as in the expressiorx => vy, its operands are wrapped as fako

Operand<sizeof(x)> _ x;
Operand<sizeof(y)> _y;

__equal_greater(
mark(__x.opnd) ? eval(x, _ X):_ X,
mark(__y.opnd) ? evally, _y):_y
)

This means, that before the operator functioequal_greater is called,mark is called for gery
operand to s& its execution cont&t in __ x.opnd and__y.opnd , respectrely. Snce mark returns
zero (which is equelent to flse),eval will not be called nw, but rather__x resp.__y will be
passed as guments to_equal_greater . To make this type-correcteval has been declared akmo
(Sec. 7.6.2) with result tydezy<T> if it is called with an gpression of typd, and because this type
provides a constructor accepting an object of @perand<sizeof(T)> , __x resp.__y are implic-
itly converted (according to the rules of determining the type o?.aexpression) to objects of type
lazy<X> resp.lazy<Y> (if Xresp.Y is the type ok resp.y) using this constructor

In summary this means that equal_greater is called with objects of typ&azy<X> resp.
lazy<Y> containing references to tt@perand objects__ x resp.__y. If __equal_greater re-
quests the waluation of, eg., x by executing x() , the call to markjump performed in
lazy<X>::operator() (cf. abore, Sec. 7.6.2) causes the callmérk(_ x.opnd)  to return a non-
zero \alue causingpval(x,  X) to be called ne. As described abee (Sec. 7.6.2), thisvaeluates
the operandk and transfers control back to its function call operatpr which will return the
operands value.

7.6.4 Problem and M odified Approach

The approach described sar faorks fine except for a subtle detail: If temporary objects are created
during the galuation of a lazily galuated operand, their constructors will beeuted at the point
where the objects are createdit bheir destructors will bexecuted, according to the C++ Stan-
dard [4], at the end of the enclosiffigll expression This point, havever, is not reached immediately
becauseeval does not return gilarly, but rather transforms control back to the operator function.
Therefore, the destructors will beeeuted only after the operator function returns, whiculd not

be a problem if the operands wevaleated &actly once. If thg are evaluated multiple times, heev-

er (as is typical for operators implementing iterations), the temporary objects’ constructors will be e
ecuted multiple times, too (which is correctyit bheir destructors will only bexecutedonceat the
end of the enclosing fullxpression (because the C++ compilefr course, does notxpect the
operands to getvaluated multiple times).

Given this obsersation, the normal C++ rule gerding the @&ecution of destructors must be modi-
fied to say that temporary objects constructed duringweagion of a lazy operand are destructed at
the end of this\eluation instead of at the end of the enclosing fyfiression. ® implement this be-
haviour with a precompileri. e,, without modifying the underlying C++ compilét is necessary to
transform gery lazy operand to an independent fulpeession. This is achied by modifying the
transformation scheme skio abwe (Sec. 7.6.3) as folles:

20



Operand<sizeof(x)> _ x;
if (mark(__x.opnd)) { eval(x, _ x); jump(__x.oper); }

Operand<sizeof(y)> __y;
if (mark(__y.opnd)) { eval(y, __y); jump(__y.oper); }

__equal_greater(
false ? eval(x, _ X): X,
false 2 eval(y, _y):_y

)

The calls tanark returning zero hae keen replaced by the Booleaalwefalse which has the same
effect on the ealuation of the?: expressions, andven thougheval will never get executed here, its
result type is still needed by the C++ compiler to correctly determine the type of xipeess@ons.

The original calls tanark with their subsequent calls éval when the former returns non-zerovha
been mweed before the enclosing full xpression (which might be Iger than the call to
__equal_greater shavn abae) to make them full xpressions of theirven. Furthermore, the calls

to jump which have been part okval above (Sec. 7.6.2) are performed as separate statements after
the eecution ofeval here to mak& are that the end of these fukmressions (ie., the “semicolon”

after the call teeval ) is actually reached. Thereforeval is nav simply defined as follevs:

template <typename T>

lazy<T> eval (T x, Operand<sizeof(T)>& op) {
new(op.val) T(x);

}

7.6.5 Operandsof Typevoi d

As has been mentioned in Sec. 6.4, a laaiguated operand might f@ type void , which would
lead to syntax errors in the alomde since anxpression of typeoid can neither be used as an
operand of theizeof operator nor as a functiongarment ofeval . To remedy this problem, an aux-
iliary type Void (with an uppeicaseV) is introduced, which acts as a “right neutral element” of the
comma operator:

struct Void {};

template <typename T>
inline T operator, (T x, Void) { return x; }

Furthermore, thexpressionsx andy in the abee wde are replaced bfx, Void()) and (y,
Void()) , respectiely, which, due to this defition, does not hae awy dfect on their meaningxe
cept if their type isvoid : In that case, thevarloaded comma operator is not applicable (because it
cannot hae a @rameter of typ&oid ), and therefore, theulit-in definition of the comma operator is
used, yielding anx@ression of typ&oid . To make sure, havever, that an operator function accepting
lazy operands of typeid actually receies these as guments of typdazy<void> , an overloaded
definition of eval for the typeVoid is provided whose formal result typelazy<void>

lazy<void> eval (Void, Operand<sizeof(Void)>&) {}

Because instantiating this type from the general temf@ageT> shawn earlier (Sec. 7.6.2) quld
be erroneous (becausieof(void) is undeined and the function call operator must not return
arything), it is deined as anxlicit template specialization as fols:

template <>
struct lazy<void> {
Operand<sizeof(Void)>& op;
lazy (Operand<sizeof(Void)>& op) : op(op) {}

21



void operator() () {
markjump(op.oper, op.opnd);
}

%
7.6.6 Exceptions Thrown by Lazy Operands

Since lazy operands argeeuted in the stack frame of their enclosing function, and the C++ run time
system is notware of the still actre goerator function whose stack frame is abdnis, an &ception
thrown during the ealuation of an operand euld not pass through the operator functicu, tather
terminate it abruptlywhich would have wo undesired consequences: First, destructors for local ob-
jects of this function wuld not be recuted correctlyand second, the operator functiorouwid not
have the chance to catch theaeption as described at the end of Sec. 6.4.

To remedy these problems, the transformation scheme describeel @eos. 7.6.4 and 7.6.5) is
modified once more:

Operand<sizeof(x, Void())> __x;

if (mark(__x.opnd)) {
try { eval((x, Void()), _ x); jump(__x.oper, 1); }
catch (...) { jump(__x.oper, 2); }

}

Operand<sizeof(y, Void())> __;

if (mark(__y.opnd)) {
try { eval((y, Void()), __y); jump(__y.oper, 1); }
catch (...) { jump(__y.oper, 2); }

}

__equal_greater(
false ? eval((x, Void()), _ x): X,
false ? eval((y, Void()), _Vy): vy
)

Any exception thravn during the ealuation of an operand is caught bgadch(...) clause whose
associated statement block calisip with a second gument of 2 instead of the @eft value 1. If

this value appears as the result of the matchiakjump call, the &ception is simply rethren there

(which is possible without actually kwing its type) causing it to pass througly aative try state-

ments as desired:

template <typename T>
struct lazy {
Operand<sizeof(T)>& op;
lazy (Operand<sizeof(T)>& op) : op(op) {}

T operator() () {
switch (markjump(op.oper, op.opnd)) {
case 1:{
T* p = (T*)(op.val);
TXx="%*p;
p—>"T();
return x;
}
case 2:
throw;

22



%

template <>
struct lazy<void> {
Operand<sizeof(Void)>& op;
lazy (Operand<sizeof(Void)>& op) : op(op) {}

void operator() () {
switch (markjump(op.oper, op.opnd)) {
case 1:
return;
case 2:
throw;
}

2
7.6.7 Blocksas Operands

If a block is used as an operand of a lazy operatgy, inx ?*{y} , this is transformed as folis:

Operand<sizeof(x, Void())> _ x;

if (mark(__x.opnd)) {
try { eval((x, Void()), _ x); jump(__x.oper, 1); }
catch (...) {jump(__x.oper, 2); }

}
Operand<sizeof(Void)> __y;
if (mark(__y.opnd)) {
try {
BlockOpnd __ dummy(__y);
try {y; __dummy(); }
catch (...) { _dummy(); throw; }
}
catch (...) {jump(__y.oper, 2); }
jump(__y.oper, 1);
}
try {

__question_asterisk(
false ? eval((x, Void()), _ Xx):__ X,
lazy<void>(__y)

}
catch (Operand<sizeof(Void)>* op) { jump(op—>opnd); }

Because a block cannot be used within tigeimients okizeof andeval , sizeof(Void) is used
directly to declare the correspondi@gerand object, and the block’esaluation is not surrounded by

a all toeval . Furthermore, théazy<void> object passed to the operator function can be construct-
ed directly in that case, without empilog the?: trick needed for other operands.

23



If a block executes a jump statemerir¢ak , continue , goto , or return ) that transfers control
out of the block, its é#ct would be similar to anxeeption that is not caught immediately: ibud
terminate the operator function abruptigsulting in possibly lost destructor calls.\iwer, it is a bt
more dificult to “catch” these kinds of %eeptions” and to correctly deal with them. Of course, it
would be possible for the precompiler in principle to analyze the statements of the block in order to
detect these critical ones. It is easiasweve, to declare a dummy object of the foNong type
BlockOpnd for that purpose, whose destructor will be called automatically whkettge block in
which it is declared is left:

struct BlockOpnd {
Operand<sizeof(Void)>* op;
BlockOpnd (Operand<sizeof(Void)>& op) : op(&op) {}

void operator() () {op = 0;}

"BlockOpnd () { if (op) modjump(op—>opnd, op—>oper, 3); }

I3
The object _dummyis initialized with a reference/pointep to theOperand object__y representing
the block operand. If this block terminates normally orwlsran &ception, the function call operator
__dummy() is executed which setsp to null, in which case the destruci@tockOpnd does nothing
andjump will be executed with a alue of 1 or 2, resperztily.9 Otherwise, ie., if the block is termi-
nated by a “critical” jump statemerdp still refers to__y when__dummys destructor gets called,
and in that case, another auxiliary functroadjump similar to markjump is used to modify thexe
ecution contet saved in op—>opnd as described bel and to jump back to the comtiesaved in
op—>oper , i.e, to the gecution of lazy<void>::operator() , this time passing thealue 3. If
this value is receied there, the address op is throvn as an xception in order to correctly terminate
the execution of the operator function as well as the enclosing fpitession:

template <>
struct lazy<void> {
Operand<sizeof(Void)>& op;
lazy (Operand<sizeof(Void)>& op) : op(op) {}

void operator() () {
switch (markjump(op.oper, op.opnd)) {
case 1
return;
case 2:
throw;
case 3:
throw &op;
}

I3
This exception is caught by theatch clause associated with ttry statement that surrounds this
full expression (which must actually be arpeessionstatementbecause it contains blocks as

operands, cf. Sec. 6.4) where anotle is executed that transfers control to the mastf contet
op—>opnd .

°To make are that this destructor isvedys executed (and thus, constructor and destructor calls are correctly balgnaed),,2) is
not directly called in the inneatch clause, bt rather postponed to the outer one by reting the &ception just caught (which might of
course be eliminated by an optimizing compiler).

24



The function
void modjump (Context& c, const Context& d, intv = 1);

uses the base and stack pointer information fourtdandd to determine the position on the stack
where the return address of the currentigcating destructorBlockOpnd has been stored by the run
time system and changes the program counter storedoirthis address. Therefore, thedl call to
jump(op—>opnd) is actually nothing elseub a goto statement to this address, becaus&atsition
contt is otherwise identical to the one that has initially been storegp+tropnd . After this
roundtrip from the destructor “up” to the operamdleation function, then “den” to the &pression
containing the operator call, anadlly back to the destructer'return address, the jump statement
whose &ecution triggered the call to the destructor runs to completion transferring control to its origi-
nal destination.

If markjump would be used instead afodjump here, the conte stored inop—>opnd would be
completely werwritten by the gecution cont&t of the destructorcausingjump(op—>opnd) to jump
backinto the destructorBecause the latter terminates immediately atiedw, ie., transfers control
to its return address, this seems to aehiae same ééct as described abe The problem with this
approach, heever, is the fact that the destructerdack frame (in particulathe position on the stack
where its return address is stored) might bawritten by other destructor calls which are performed
during the stack unwinding caused by thirg the &ception&op.

7.7 Implementation Limitations

The fact that C+++ is implemented by a “stupid” precompiler impliesaalif@itations which are de-
scribed in the sequel.

7.7.1 Template|Ds

If a template ID such agector<T> is used in a constructor or function callggvector<T>(100)
this cannot be distinguished syntactically from a relatioxatession such as< b > ( ¢) . Therefore,
the C+++ precom(;ailer wilalwaystreat< and> as relational operators ixgressions containing user
defined operatoré.

Given the deinition of the cardinality operato# from Sec. 3.2, anx@ression such a#vec-
tor<T>(100)  will thus be parsed g#vector)<T>(100) by the precompiler causing it to gen-
erate erroneous C++ code. Because the precompiler does not transfoxpresdiens which do not
contain usedefined operators, the easiestywto preent such misinterpretations is to enclose sube
pressions containing template IDs in parentheses,#vector<T>(100))

Another probably better solution from a conceptual point ofwigould be to use diérent tolens
as template gument delimiters, ., <| and|>, which will be translated by the precompiler to the
original tokens< and> after expressions hae been transformed.

7.7.2 Old-Style Casts

So-called old-style casts,@, (T)x or(T)(x) , cannot be recognized as such by a stupid precompiler
since the lattergression might also be a function call with redundant parentheses around the func-
tion nameT. Therefore, thg are actually treated as parts of an operand which is correct in caan

es. Havever, if the operand of the cast starts with a binary operator asedeh Sec. 2, e., an opera-

tor that might be applied both irfand preix (e.g., (T)-x ), the precompiler will erroneously inter

pret this as an iif instead of a préf operator Agan, such misinterpretations can bevaed with
additional parentheses,g, (T)(-x) , or by using a diferent cast notation, g., T(-x) (functional

cast notation) ostatic_cast<T>(-x) (new-style cast).

191t would be possible to treatand> specially in the conie of so-called ne style casts (3., static_cast<T>(x) ), because these are
introduced by well-défied keywords, hut this has not been implemented yet.

25



7.7.3 Lazy Operands

The fnal transformation scheme for lazy operands described in Sec. 7.6.6 restricts the use of lazy
operands to»>gressions appearing in function bodieg. i.it is not allaved to use them in member
initializers of constructors, dafilt aguments of functions, initializers of global and namespaca-v
bles, and initializers of static data members of classes, because in thegts ¢bate is no place to
put the additionaif(mark(...))... code that is needed for the transformatiom.cfcumvent
this limitation, auxiliary functions containing thepeessions in question can be used.

Furthermore, if anx@ression containing lazy operands is used to initialize a locally declared v
ble, this ariable is not kmen in this additional code (because it appears before the declaration). This
is unproblematic in almost all cases, sinceasiable is rarely used within itswo initialization
(void*p=&p is an @&ample of an xception).

7.7.4 Jump Statements Out of Block Operands

The implementation of jump statements transferring control out of a block operand assumes that the
exception&op thrown by lazy<void>::operator() that shall terminate the operator function (and
ary possible intermediate functions) that called this function operator (cf. Sec. 7.6.7) is not caught by
ary of these functions (or that it is rethwo afterwards). Otherwise, it will not reach its intended des-
tination, resulting in possibly undeéd behwiour. (In particular the jump statement will not reach its
original destination.)

Since the type of thisxeeption is internal to the implementation, it is assumed that a programmer
does not actually kmoit and therefore is simply not able to catch it with an ordir@atgh clause.
Using acatch with an ellipsis, havever, even exceptions of unkn@n types can be caughtytbin
these cases it is typical to rettwthe exception at the end of tleatch block.

7.8 Statusof the Implementation

The main part of C++8' implementation is straightfoard and uses only simple, well-gefd C++
concepts, ie., function calls. The implementation of lazy operandaigher, is tricky, not to say bold,
in that it usesetjimp andlongjmp in a partially undehed way which might not interact well with
certain compilers or optimizers. Sarfit has been tested successfully with soraesions of GCC, in-
cluding some leels of optimization.

Therefore, this part of the implementation should be considered a proof of concept rather than a
real-world implementation. (In particulait should not be used for safety-critical applications!-o
eve, by employing these tricks it has been possible to construatr&ing implementation that is suf-
ficient for eploiting the possibilities of usatefined control structures in a rather short amount of
time. As a long-term goal, aver, it would be desirable to incorporate the features of C+++ into a
real C++ compiler such as GCC.

8 Related Work

This report has presented the concepts of C+++xi@m&on of C++ allewing the programmer to de-
fine nev operator symbols with uselefined priorities. Een though the basic idea of this approach
dates back to at least ALGOL 68 [13], it has not found widespread dissemination in mainstream impe-
rative rogramming languages.

Compared with Prolog [1] and modern functional languages such as ML [7] anellHakkvhich
support the concept in principle, the approach presented liere @fmore flgible way to specify op-
erator precedences (because the precedence relationship is not attotaly b partial order), the ad-
ditional concepts of ofixary operator combinations and Xty operators (where the latter is rather
dispensable in these languages as théécetan be achied in asimilarly corvenient manner with
unary operators applied to list literals), and the concept of lazlyated operands in an imperteti

26



language (which is of course nothing special in functional languages). It might be interesting to note,
however, that this concept has already been present in ALGOL 60 [8lyrk@as the (indmous “call

by namé. While this is indeed not well-suited as a general parameter passing mechanistanthe e
ples of Sec. 6 ha@ demonstrated that the basic principle is useful when applied with care, because it
opens the door to implement usksfined control structures, especially when combined with the con-
cept of fxary operator combinations and if whole blocks of statements akgeallas operands, too.

(The latter is agin unnecessary in functional languages, becaugedtheot have a mtion of state-
ments, ot rather denote all computations solely by meansmfessions.)

Compared with other languagedening the possibility of usedefined control structures, such as
Common Lisp [14], Dylan [2], and (in a limited form) Ruby [11], the approach presented here has the
advantage that it does not require separate concepts and language constructs, such as macros with
tricky quote and unquote rules in Lisp, macros withrige rules, patterns, templates, etc. in Dylan,
and special code blocks associated with method calls in, Rubgimply reuses and generalizes the
existing concept of operatoverloading to achiee that aim. Compared with Smalltalk [3], which pur
sues a similar stragg by deining control structures by means of methods and blocks, C+++ also sup-
ports lazily ealuated epressions which are not blocks and does not require the programmer to e
plicitly mark each operand that shall balaated lazily by encapsulating it in a block. Instead, the de-
cision whether operands shall belaated lazily or not is simplyxpressed once by declaring an op-
eratorlazy or not.

Acknowledgement

The basic ideas of C+++ V®mleen implemented in wvsudent projects in 2002 by Michael Altmann
and Dietmar Sauer as well aoifgang Doll, Heilo Lorenz, and Michael Sonnenfroh. Based on their
experiences, the concept has been dicanitly refned and gtended, especially by the concept of
lazily evaluated operands. The current precompiler has been implemented with assistaraie of W
gang Doll.

The anogmous referees of [5], a sigiantly shorter grsion of this report, missing completely the
concepts ofikary operator combinations and blocks as operands as well as the description of the im-
plementation, pnaded helpful comments to impre both that paper and this report.

References

[1] W. E Clocksin, C. S. MellishProgramming in Polog (Fourth Edition). Springe¥erlag, Berlin,
1994.

[2] 1. D. Craig:Programming in Dylan SpringerVerlag, London, 1997.
[3] A. Goldbeg, D. RobsonSmalltalk-80. The Langga Addison-Wesley, Reading, MA, 1989.

[4] ISO/IEC: International Standatl: Programming Languges — C++ (Second Edition, ISO/IEC
14882:2003(E)). October 2003.

[5] C. Heinlein: “C+++: UseiDefined Operator Symbols in C++.” I18. Arbeitstgung Popgram-
miersprachen (UIm, German, September 2004). Gesellschaft fiir Informatik/e.Lecture Notes in
Informatics, (in print).

[6] J. Melton, A. R. Simon:SQL:1999. Undestanding Relational Langge GmponentsMorgan
Kaufmann Publishers, San Francisco, CA, 2002.

27



[7] R. Milner, M. Tofte, R. HarperThe Deihition of Standad ML. The MIT Press, Cambridge, MA,
1990.

[8] P. Naur (Ed.): “Reised Report on the Algorithmic Language ALGOL 60Blimeriste Mathe-
matik4, 1963, 426453.

[9] S.Pegton Jones (ed.Haslell 98 Languge and Libraries. The Résed ReportCambridge Uni-
versity Press, Cambridge, 2003.

[10] B. Stroustrup:The C++ Piogramming Languge (Special Edition). Addison-®éle/, Reading,
MA, 2000.

[11] D. Thomas, A. HuntProgramming Ruby: The Rgmatic Piogrammers Guide (2nd Edition).
Addison-Weslegy, 2001.

[12] S.Tucker Taft, R. A. Duf, R. L. Brukardt, E. Ploedereder (ed€pnsolidated Ada 95 Reésrce
Manual with Bdnical Corrigendum 1(ANSI/ISO/IEC-8652:1995 (E) with COR. 1:2000). Lecture
Notes in Computer Science 2219, Sprirgerlag, Berlin, 2001.

[13] A. van Wijngaarden et al. (Eds.): “Rised Report on the Algorithmic Language ALGOL 68.”
Acta Informaticab, 1975, }236.

[14] P H. Winston, B. K. PHorn: LISP (Third Edition). Addison-W¥sle/, Reading, MA, 1989.

28



