
Concept and Implementation of C+++,
an Extension of C++ to Support User-Defined

Operator Symbols and Control Structures

Christian Heinlein

Dept. of Computer Structures, University of Ulm, Germany
heinlein@informatik.uni-ulm.de

Abstract. The first part of this report presents the concepts of C+++, an extension of
C++ allowing the programmer to define new operator symbolswith user-defined priori-
ties by specifying a partial precedence relationship. Furthermore, so-calledfixary opera-
tor combinationsconsisting of a sequence of associated operator symbols to connect a
fixed number of operands as well asflexary operators connecting any number of
operands are supported. Finally, operators withlazily evaluated operandsare supported
which are particularly useful to implement new kinds ofcontrol structures, especially as
they accept whole blocks of statements as operands, too. In the second part of the report,
the implementation of C+++ by means of a “lazy” precompiler for C++ is described in
detail.

1 Introduction

Programming languages such as Ada [12] and C++ [10, 4] support the concept ofoperator overload-
ing, i. e., the possibility to redefine the meaning ofbuilt-in operators foruser-defined types. Since the
built-in operators of many languages are already overloaded to a certain degree in the language itself
(e. g.,arithmetic operators which can be applied to integer and floating point numbers, or the plus op-
erator which is often used for string concatenation as well), it appears rather natural and straightfor-
ward to extend this possibility to user-defined types (so that, e.g., plus can be defined to add complex
numbers, vectors, matrices, etc., too).

Other languages, e.g., Smalltalk [3], Prolog [1], and modern functional languages such as ML [7]
and Haskell [9], also allow the programmer to introducenew operator symbolsin order to express
application-specific operations (such as determining the number of elements contained in a collec-
tion c) more directly and naturally (e.g., as#c) than with overloaded built-in operators (e.g., *c in
C++) or with methods or functions (e.g., c.size() or size(c)).

The introduction of new operator symbols (especially if they denoteinfix operators) immediately
raises the question about theirbinding properties, i. e., their precedencewith respect to built-in and
other user-defined operators, and theirassociativity. In the above languages, the programmer intro-
ducing a new operator symbol is forced to assign it afixed precedence level on a predefined absolute
scale (e.g., an integral number between 0 and 9). This approach is both inflexible (for example, it is
impossible to define a new operator that binds stronger than plus and minus but weaker than mult and
div, if there is no gap between these operator classes in the predefined precedence scale) and overly
prescriptive (because the programmer is always forced to establish precedence relationships between
all operators, even though some of them might be completely unrelated and never appear together in a
single expression).

The approach described in this report (which is not restricted to C++ conceptually) advances existing
approaches in the following ways:

1

• The precedenceof new operators need not be fixed on an absolute scale, but only relative to other
operators, i.e., the precedence relationship is not a complete, but only a partial order on the set of
operator symbols, which can be incrementally extended on demand.

• In addition to well-known unary and binary operators,fixary operator combinationsconsisting of a
sequence of associated operator symbols to connect a fixed number of operands as well asflexary
operators connecting any number of operands are supported.

• Finally, operators whose operands are only evaluatedon demand(roughly comparable tolazy eval-
uation in functional languages) are supported in a language such as C++ whose basic execution
model is imperative. These operators are particularly useful to implement new kinds of control
structures, especially as they accept whole blocks of statements as operands, too.

Sec. 2 describes the basic features of C+++, an extension of C++ supporting the introduction of new
operator symbols. Secs. 3, 4, 5, and 6 illustrate these with numerous examples, demonstrating in par-
ticular the advances mentioned before. Sec. 7 describes the implementation of C+++ by means of a
“lazy” precompiler for C++, including some minor limitations of the approach. Finally, Sec. 8 con-
cludes the report with a discussion of related work.

2 New Operators in C+++

New operator symbols in C+++ are introduced byoperator declarationsat global or namespace scope
(i. e., outside any function or class definition) starting with the keyword sequencenew operator .
These are both existing C++ keywords which cannot occur in juxtaposition, however, in the original
language. Therefore, the already large set of C++ keywords need not be extended to support this lan-
guage extension. Inside an operator declaration, however, numerous “local” or “context-dependent”
keywords which will not be treated as such elsewhere (e.g., unary , left , right , etc.) can be used to
describe properties of the new operator.

New operators are eitheridentifiers as defined in the base language C++ (i.e., sequences of letters
and digits starting with a letter, where the underscore character and appropriate universal character
names are treated as letters) or sequences of one or moreoperator characters (all characters except
white space, letters, digits, and quotation marks). A new operator symbol of the latter kind becomes a
tokenof the lexical analysis as soon as it has been declared, i.e., it might influence the parsing process
of the remaining input. To giv e an artificial example, a sequence of fiv e plus signs (without interven-
ing white space or comments) is parsed as three tokens++, ++, and + in original C++ (i.e., the lexical
analyzer is “greedy”). If a new operator+++ is introduced, the same sequence gets parsed as two to-
kens+++ and++ afterwards. (Of course, such “operator puzzles” can be avoided by always separating
tokens by white space.)

Just like other identifiers, new operator symbols which are identifiers are recognized as such only if
they are not part of a larger identifier (or other token). For example, an operatorabc is not recognized
as such in the inputabcd (part of a larger identifier) nor in the input0x123abc (part of a hexadeci-
mal integer literal).

In general, built-in operators in C++ can be appliedprefix, infix, or postfix, and there are several oper-
ators which can be applied both prefix and infix (+, −, * , &, and ::) or both prefix and postfix (++
and−−). In analogy, new operators are categorized as eitherunary (meaning prefix and postfix appli-
cable) orbinary (meaning prefix and infix applicable).

As in standard C++, the semantics of operators is defined byoperator functions, i. e., functions whose
name consists of the keyword operator followed by an operator symbol. Functions corresponding to
prefix and infix applications of an operator take one resp. two arguments representing the operator’s
operand(s). To distinguish postfix from prefix applications, operator functions corresponding to the
former receive a dummy argument of typeint in addition to the argument representing the operator’s

2

operand. (Since the same operator cannot be applied both infix and postfix, it is always well-defined
whether a two argument operator function corresponds to an infix or postfix application.)

To define generic operators, it is possible to define operator functions as function templates. Unlike
built-in operators, new operators cannot be implemented by member functions of a class, but only by
ordinary (i.e., global or namespace-scope) functions.

To retain the original C++ rule that the meaning of built-in operators applied to built-in types must
not be changed, it is forbidden to define an operator function whose operator symbol and parameter
types are all built-in. In other words, only definitions where either the operator symbol or one of the
parameter types (or both) is user-defined, are allowed.

As in standard C++, postfix operators are applied left to right and bind more tightly than prefix opera-
tors which are applied right to left and bind more tightly than infix operators. The latter are organized
in an (irreflexive) partial precedence order (i. e., an irreflexive, transitive, and asymmetric relation-
shipstronger with an inverse relationshipweaker) containingoperator classes(i. e.,sets of opera-
tors with equal precedence). Furthermore, infix operators may be declaredleft - or right -
associative to express that an operator appearing earlier in an expression binds stronger resp. weaker
than one of the same operator class appearing later in the expression.

After the application of postfix and prefix operators (which can be identified simply by their syntac-
tic position) and, if appropriate, the recursive evaluation of parenthesized subexpressions, the remain-
ing expression consists of an alternating sequence of operands and infix operators. In order to get suc-
cessfully parsed, such an expression must contain either no operator at all or aunique weakest opera-
tor, i. e., exactly one operator binding weaker than all other operators of the expression. Furthermore,
the two subexpressions resulting from splitting the expression at this operator must fulfill the same
rule recursively. Otherwise, the expression is rejected as being ambiguous. In such a case, the pro-
grammer might either use parentheses for explicit grouping or declare additional precedence relation-
ships to resolve the conflict.

Parsing such an expression and testing it for ambiguity can be done efficiently using a simple push-
down automaton: Operands and infix operators are processed from left to right and pushed onto a
stack. Before an operator is pushed, it is checked whether the previous operator on the stack (if any)
binds stronger than the current operator; if so, it is replaced, together with its operands, by a new com-
pound operand, and the check is repeated. If, after these reductions, the previous operator on the stack
(if any) and the current operator are incomparable, the expression is ambiguous. (Sec. 7.4.3 describes
this in more detail.)

The initial precedence order, which contains operator classes for all built-in C++ operators and there-
fore is actually a total order, can be extended freely as long as new declarations do not introduce any
conflicts. (For example, declaring a new operator to bind stronger than* , but weaker than+, would be
illegal, since* already binds stronger than+.) In particular, it is possible to insert new operators be-
tween adjacent classes of built-in operators (e.g., between* and+) and at the “ends” of the spectrum
of built-in operators, i.e., to introduce operators binding stronger than−>* (the strongest regular C++
infix operator) or weaker than, (comma, the weakest C++ infix operator). In analogy to standard
C++, however, expressions used as function arguments or variable initializers (using the= notation for
initialization) must not contain operators weaker than comma or assignment operators, respectively,
except when nested in parentheses.

3

3 Unary and Binary Operators

3.1 Exponentiation

The following operator declaration introduces a new binary, right-associative operatorˆˆ that binds
stronger than the built-in multiplicative operators:

new operator ˆˆ right stronger *;

Since the multiplicative operators bind in turn stronger than the built-in additive operators, and be-
cause the precedence relationship is transitive, the new operator binds stronger than, e.g., +, too.
Therefore, an expression such asa + b ˆ ˆ c ˆ ˆ d * e will be interpreted asa + ((b ̂ˆ (c ̂ˆ d)) *
e) , while x ˆ ˆ y − >* z (where−>* is a built-in operator binding stronger than* , too) is rejected as
ambiguous sincê̂ and−>* are incomparable. On the other hand,p ˆ ˆ q * r − >* s is successfully
parsed as (p ˆ ˆ q) * (r − >* s) sinceˆˆ and−>* both bind stronger than* .

To define the meaning ofx ˆ ˆ y , a corresponding operator functionoperatorˆˆ taking two argu-
ments is defined which computes, e.g., the value ofx raised to the power ofy (using the predefined li-
brary functionpow):

double operatorˆˆ (double x, double y) { return pow(x, y); }

Because of the usual arithmetic conversions, the new operator cannot only be applied todouble , but
also toint values, e.g., 2 ˆ ˆ 1 0. To make sure, however, that the result of such an application is also
of typeint , an overloaded variant of the operator function can be supplied:

int operatorˆˆ (int x, int y) { return (int) pow(x, y); }

Because a binary operator cannot only be applied infix, but also prefix, it is possible to define a sepa-
rate meaning for that case by defining an additional operator function taking only one argument. For
example, the following function defines the meaning ofˆˆx as the value ofe (the base of the natural
logarithm) raised to the power ofx :

double operatorˆˆ (double x) { return exp(x); }

3.2 Container Operators

To introduce a new unary operator# which conveniently returns the size (i.e., number of elements) of
an arbitrary container objectc of the C++ standard library (or in fact any object that possesses a pa-
rameterlesssize member function), the following declarations will suffice:1

new operator # unary;

template <typename C>
int operator# (const C& c, int postfix = 0) { return c.size(); }

By defining the operator functionoperator# as a function template, the operator is basically appli-
cable to objectsc of any type C.2 If C does not declare a member functionsize , howev er, the corre-
sponding template instantiation will be rejected by the compiler.

1 Because the operator declaration introduces# as an operator symbol, it will be treated as such in the remaining input. Therefore, it can no
longer be used as a C++ preprocessor symbol afterwards. Since#include directives are typically placed at the very beginning of a transla-
tion unit and the use of other preprocessing directives (#define in particular) is highly discouraged in general, this appears to be an accept-
able restriction.
2 Defining the type ofc asconst C& instead of justC is a common C++ idiom expressing thatc is passed by reference (symbol&) to avoid
expensive copying of the whole container while at the same time not allowing the function to change it (keyword const).

4

By giving the function an optional second parameter of typeint , it can be called with either one or
two arguments, i.e., it simultaneously defines the meaning of# for prefix (one argument) and postfix
applications (additional dummy argument of typeint).

Even though it is possible in principle to define completely different meanings for prefix and postfix
applications of the same unary operator, care should be exercised in practice to avoid confusion. To
give an example, where different, but related meanings make sense, consider the following operator@
which returns the first or last element of a containerc when applied prefix (@c) or postfix (c@),
respectively:3

new operator @ unary;

template <typename C>
typename C::value_type operator@ (const C& c) {

return c.front();
}

template <typename C>
typename C::value_type operator@ (const C& c, int postfix) {

return c.back();
}

4 Fixary Operator Combinations

4.1 Principle

In addition to ordinary unary and binary operators, C++ provides a special ternary operator combina-
tion ?: to express conditional execution inside an expression. When viewing ? and: as separate bina-
ry operators, their binding properties are equal to those of assignment operators, except that their mid-
dle operand (between? and:) might beany expression containing in particular assignment and com-
ma operators, even though the latter bind weaker than? and: . Conceptually, this exceptional rule can
be eliminated and reduced to the normal precedence rules by defining that the subexpression between
the two operators is always implicitly grouped, as if i t would be surrounded by parentheses. Further-
more, a: operator must not occur without a preceding? operator (and vice versa).

This principle is generalized in C+++ to so-calledfixary operator combinations(sometimes also
called distfix or mixfix operators): By declaring that one operator must only appearafter another
operator in an expression, any subexpression between these operators is implicitly grouped and it is
checked that the former operator is not used without the latter. Declaring that an operatory must only
appearafter an operatorx , turns out to be more flexible than declaring the opposite, i.e., thatx must
only appear beforey , because in the first casex might well appear withouty , but not vice versa. To
make the concept even more flexible, it is possible to specify multiple operatorsx which might pre-
cedey ; in such a case,y must only appear after one of these operators, and the subexpression between
y and the nearest such operator is implicitly grouped.

3 typename T::value_type denotes the typevalue_type declared inside the container typeC, i. e., the container’s element type.

5

4.2 Inserting Into a Container

The following declarations:

new operator INSERT unary;
new operator INTO after INSERT right equal =;

template <typename T>
T operator INSERT (T x) { return x; }

template <typename C>
void operator INTO (typename C::value_type x, C& c) { c.push_back(x); }

define an operator combinationINSERT −− INTO which can be used as follows to insert the result of
assigning1 to x into the vectorc :

int x; vector<int> c;
INSERT x = 1 INTO c;

If INTO would have been declared as a normal binary operator without anafter clause, the last line
of the example would get parsed as(INSERT x) = (1 INTO c) according to the normal rules. By
declaring INTO after INSERT , howev er, the subexpression between these operators is implicitly
grouped and afterwards the complete expression gets parsed as(INSERT (x = 1)) INTO c .4

By introducing another operatorBEFORE:

new operator BEFORE after INTO right equal =;

template <typename C>
pair<C*, typename C::iterator>
operator BEFORE (C& c, typename C::iterator i) {

return pair<C*, typename C::iterator>(&c, i);
}

template <typename C>
void operator INTO
(typename C::value_type x, pair<C*, typename C::iterator> ci) {

C& c = *ci.first;
typename C::iterator i = ci.second;
c.insert(i, x);

}

it is possible to generalize the previous example as follows to insert the result of assigning1 to x into
the vectorc before the position determined by the iteratori (whose type istypename C::itera-
tor):

int x; vector<int> c; vector<int>::iterator i;
INSERT x = 1 INTO c BEFORE i;

BecauseINTO and BEFOREhave been declared right-associative, the last expression gets parsed as
(INSERT (x = 1)) INTO (c BEFORE i) . Therefore, the result of evaluating c BEFORE i (which is
just a pair consisting of a pointer toc andi) becomes the second operand ofINTO which performs the
actualinsert operation.

It should be noted that the previous example (without usingBEFORE) is still valid becauseINTO can
still be used withoutBEFORE, but not vice versa. This is exact the increased flexibility mentioned

4 Note that it is possible in principle to useINSERT without INTO (e. g.,INSERT 1), which is semantically useless, however. On the other
hand, usingINTO without INSERT would be erroneous.

6

above that is gained by declaringBEFORE after INTO instead of the oppositeINTO before BEFORE
(which is actually not supported) that would forbid the use ofINTO without a succeedingBEFORE.

Finally, by extending the declarations ofINTO andBEFOREas follows:

new operator INTO after BEFORE;
new operator BEFORE after INSERT;

it is allowed to useINTO either afterINSERT (original declaration) or afterBEFORE(extended decla-
ration) and to useBEFOREeither afterINTO (original declaration) or afterINSERT (extended declara-
tion). Together with appropriate overloadings of the involved operator functions, insertions can now
be done in any of the following ways (where the latter two are expected to be equivalent):

INSERT x INTO c;
INSERT x INTO c BEFORE i;
INSERT x BEFORE i INTO c;

4.3 User-Defined Control Structures

User-defined control structures, such asFOREACH x IN c DO ... , are another typical use of fixary op-
erator combinations. However, since their implementation requires the additional concept of lazily
evaluated operands, their discussion is postponed until Sec. 6.

5 Flexary Operators

5.1 Average Values

The following operatorAVGcomputes the average of two double valuesx andy :

new operator AVG left stronger + weaker *;

double operator AVG (double x, double y) { return (x + y)/2; }

When applied to three valuesx AVG y AVG z , howev er, the result is equivalent to (x AVG y) AVG z
(because the operator is declared left-associative) which is usually different from the overall average
value of x , y , and z . To avoid such accidental misinterpretations, it would be more reasonable to de-
fine the operator non-associative causing the expressionx AVG y AVG z to be rejected due to ambigui-
ty.

Alternatively, AVGcould be interpreted as aflexary operator, i. e., an operator accepting conceptu-
ally any number of operands concatenated by infix applications of the operator. For that purpose, the
above operator functionAVGis replaced by the following definitions which do not directly compute
the average value of their arguments, but rather collect the necessary information (number of values
and sum of all values processed so far) in an auxiliary structure of typeAvg:

struct Avg {
int num; double sum;
Avg (int n, double s) : num(n), sum(s) {}

};

Avg operator AVG (double x, double y) {
return Avg(2, x + y);

}

7

Avg operator AVG (Avg a, double z) {
return Avg(a.num + 1, a.sum + z);

}

Additionally, a pseudo operator functionoperator... (where... is not a meta-symbol in the text
denoting an omission, but rather a real C++ token) is defined which converts this intermediate infor-
mation to the actual average value:

double operator... (Avg a) { return a.sum / a.num; }

This pseudo operator function is called automatically for every expression or subexpression contain-
ing user-defined operators, whenever all operators of a particular precedence level hav ebeen applied,
before operators of the next lower precedence level will be applied. For example, if the operatorAVG
is defined as above (i. e., left-associative with precedence between+ and*), the expressiona*b AVG
c/d AVG e%f + g AVG h (with double valuesa to h) is equivalent to

operator...(operator AVG(operator AVG(a*b, c/d), e%f))
+ operator...(operator AVG(g, h))

i. e., it computes the sum of the average value ofa*b , c/d , and e%f (e modulof) and the average val-
ue ofg andh.

Because the compiler actually does not know whether an infix operator shall be interpreted as a
normal binary operator (which does neither need nor want the call tooperator...) or as a flexary
operator (which needs it), the calls are actually always inserted as described above. Furthermore, the
function is predefined as the identical function

template <typename T>
inline T operator... (T x) { return x; }

for any argument typeT to make sure that it has actually no effect on the evaluation of the expression,
unless it has been specialized for a particular typeT such asAvg above. By declaring the predefined
function inline , the compiler is instructed to expand its calls in place, which in this case actually
means to eliminate them to avoid unnecessary run time penalties.

5.2 Chainable Comparison Operators

Comparison operators are another source of potential misinterpretations, at least for novice program-
mers. While the C++ expressiona < b corresponds exactly to the mathematical terma < b, the mean-
ing of the expressiona < b < c is quite different from its mathematical counterparta < b < c, the lat-
ter meaninga < b and b< c. The former is actually interpreted as(a < b) < c , which compares the
Boolean-valued result of comparinga andb with c . In many programming languages, this will lead to
a compile time error since Boolean values and numbers cannot be compared to each other. In C++,
however, the Boolean valuestrue and false are implicitly converted to the integer values1 and0,
respectively, when necessary, causing the expressiona < b < c to be actually well-defined, but proba-
bly not producing the desired result.

Because “chained” comparisons such asa < b < c or 0 ≤ i < n are occasionally useful and more
convenient than their logical expansions (such as 0≤ i and i < n), one might want to define corre-
sponding operators in a programming language. Similar to theAVGoperator above, such operators
must not only return a Boolean value representing the result of the current comparison, but also the
value of their right operand which might be needed as the left operand of the following operator, too.
This can again be achieved by introducing an appropriate auxiliary structure:

template <typename T>
struct Cmp {

bool res; T val;
Cmp (bool r, T v) : res(r), val(v) {}

};

8

template <typename T>
bool operator... (Cmp<T> c) { return c.res; }

new operator .<. stronger = weaker ||;

template <typename T>
Cmp<T> operator.<. (T x, T y) {

return Cmp<T>(x < y, y);
}

template <typename T>
Cmp<T> operator.<. (Cmp<T> c, T z) {

return Cmp<T>(c.res && c.val < z, z);
}

// Likewise for operators .<=. .>. .>=. .==. .!=.

Now, an expression such asa . <. b .<. c is indeed equivalent toa < b && b < c , while 0 . <=. i
.<. n is equivalent to 0 <= i & & i < n , i. e., it is possible to mix flexary operators of equal prece-
dence.

6 Operators with Lazily Evaluated Operands

6.1 Logical Implication

The built-in operators&& and|| expressing logical conjunction and disjunction, respectively, are spe-
cial and different from all other built-in operators (except the already mentioned ternary?: operator
combination) in that their second operand is evaluatedconditionallyonly when this is necessary to de-
termine the value of the result. If these (or any other) operators are overloaded, this special and some-
times extremely useful property is lost, because an application of an overloaded operator is equivalent
to the call of an operator function whose arguments (i.e., operands) are unconditionally evaluated be-
fore the function gets called.

Therefore, it is currently impossible to define, e.g., a new operator=> denoting logical implication
which evaluates its second operand only when necessary, i. e., x => y should beexactly equivalent to
!x || y . To support such operator definitions, the concept oflazy evaluationwell-known from func-
tional languages is introduced in a restricted manner: If an operator is declaredlazy , its applications
are equivalent to function calls whose arguments do not represent theevaluatedoperands, but rather
their unevaluatedcode wrapped infunction objects(closures) which must be explicitly invoked in-
side the operator function to cause their evaluation on demand. The type of such a function object is
lazy<T> if T is the type of the evaluated operand.

Using this feature, the operator=> can indeed be defined and implemented as follows:

new operator => left equal || lazy;

bool operator=> (lazy<bool> x, lazy<bool> y) {
return !x() || y();

}

Because the second operand of the built-in operator|| is evaluated conditionally, the invocationy()
of the second operandy of => is executed only if the invocationx() of the first operandx returns
true . Of course, this behaviour could be made more explicit by rephrasing the body of the operator
function with an explicit if statement:

9

bool operator=> (lazy<bool> x, lazy<bool> y) {
if (x()) return y();
else return true;

}

6.2 User-Defined Control Structures

To keep the declaration of lazy operators simple and general, it is not possible to mix eagerly and lazi-
ly evaluated operands, i.e., all operands are either evaluated eagerly (before the operator function is
called) or lazily (if the operator is declaredlazy). However, by inv oking a function object represent-
ing an operand immediately at the beginning of the operator function, the behaviour of an eagerly
evaluated operand can be easily achieved.

Because an operand function object can be invoked multiple times, operators resembling iteration
statements can be implemented, too, e.g.:

new operator ?* left weaker = stronger , lazy;

template <typename T>
T operator?* (lazy<bool> cond, lazy<T> body) {

T r es = T();
while (cond()) res = body();
return res;

}

Using operators to express control structures might appear somewhat strange in a basically imperative
language such as C++. However, C++ already provides built-in operators corresponding to control
structures, namely the binary comma operator expressing sequential execution of subexpressions simi-
lar to a statement sequence and the ternary?: operator combination expressing conditional execution
similar to an if-then-else statement. Therefore, introducing operators similar to iteration statements is
just a straightforward and logical consequence. To giv e a simple example of their usage, the greatest
common divisor of two numbersx and y can be computed in a single expression using the well-
known Euclidian algorithm:

int gcd (int x, int y) {
return (x != y) ?* (x > y ? x −= y : y −= x), x;

}

The possibility to express control structures with user-defined operators might appear even more use-
ful when control flows are needed which cannot be directly expressed with the built-in operators or
statements of the language. For example, an operatorUNLESSmight be defined that executes its first
operand unless the evaluation of its second operand yields true (i.e., the latter is evaluated before the
former):

new operator UNLESS left equal ?* lazy;

template <typename T>
T operator UNLESS (lazy<T> body, lazy<bool> cond) {

T r es = T();
if (!cond()) res = body();
return res;

}

Using the additional concept of fixary operator combinations (cf. Sec. 4), it is also possible to define a
REPEAT−− UNTIL operator combination:

10

new operator REPEAT unary;
new operator UNTIL after REPEAT left equal ?* lazy;

template <typename T>
T operator REPEAT (T body) { return body; }

template <typename T>
T operator UNTIL (lazy<T> body, lazy<bool> cond) {

T r es = T();
do res = body();
while (!cond());
return res;

}

6.3 Database Queries

Using some C++ “acrobatics” (i.e., defining one operator to return an auxiliary structure that is used
as an operand of another operator), it is even possible to define operator combinations such as
FIRST /ALL/COUNT−− FROM−− WHEREwhich can be used as follows to express “database queries” re-
sembling SQL [6]:

struct Person {
string name;
bool male;
......

};

set<Person> db; // Or some other standard container.
Person p;

Person ch = FIRST p FROM db WHERE p.name == "Heinlein";
set<Person> men = ALL p FROM db WHERE p.male;
int abcd = COUNT p FROM db WHERE "A" .<=. p.name .<. "E";

Writing equivalent expressions with C++ standard library algorithms such asfind_if or count_if
would require to write an auxiliary function for every search predicate because the standard building
blocks for constructing function objects (such as predicates, binders, and adapters, cf. [10]) are not
sufficient to construct them.

6.4 Blocks as Operands

In contrast to normal operators with eagerly evaluated operands where operands of typevoid do not
make sense, it is possible and quite useful to use expressions of typevoid as lazily evaluated
operands. If, for example,f happens to be a function with result typevoid , an expression such as
i > 0 ? * f (i−−) obviously makes sense.

It is even possible (with some restrictions, however) to useblocks, i. e., sequences of statements and
declarations enclosed in curly brackets, as lazily evaluated operands of typevoid . This is again useful
in combination with operators such as?* or REPEAT−− UNTIL expressing control structures:

REPEAT {
// Do something complex
// that is hard to express as a single expression.

} U NTIL (/* some condition */);

11

The precise rules regarding blocks as operands are as follows:

• A block is treated as an operand if and only if it appears between a new operator and the nearest
subsequent semicolon (on the same nesting level of curly brackets), and neither the operator nor the
block are enclosed in round or square brackets. Furthermore, the enclosing expression must be an
expressionstatement.
This rule is necessary to unambiguously distinguish blocks used as operands from normal blocks
used as statements.

• If such a block is not immediately followed by a user-defined operator having anafter clause (cf.
Sec. 4.1), a semicolon is implicitly inserted after the block which terminates the enclosing expres-
sion.

• Before such a block, a binary lazy pseudo-operator whose operator function name isoperator{}
is inserted implicitly.
The prefix application of this operator is predefined as the identical function (note that a block has
typevoid):

lazy<void> operator{} (lazy<void> x) { return x; }

This is equivalent in effect to saying that the operator is inserted only if the block is not immediately
preceded by another operator.
Infix applications of this operator can be defined as needed (cf. the examples below).
There are no predefined precedence relationships for this operator, because they are not needed for
its typical applications, but it is possible in principle to declare such relationships.

Using blocks as operands, it is possible to write expressions which look exactly like C++ control
structures. For example, given the following definitions:

// Operators foreach and in.
new operator foreach unary;
new operator in weaker = stronger ,;

// operator in combines a variable v of type V
// and a container c of type C into a pair.
template <typename V, typename C>
pair<V*, const C*> operator in (V& v, const C& c) {

return pair<V*, const C*>(&v, &c);
}

// operator foreach returns such a pair vc unchanged.
template <typename V, typename C>
pair<V*, const C*> operator foreach (pair<V*, const C*> vc) {

return vc;
}

// operator {} combines such a pair vc and a block b.
// It iterates through the container c,
// binds the variable v to each element in turn,
// and executes block b for it.
template <typename V, typename C>
void operator {} (lazy< pair<V*, const C*> > vc_, lazy<void> b) {

pair<V*, const C*> vc = vc_();
V& v = *vc.first;
const C& c = *vc.second;

12

for (typename C::const_iterator i = c.begin(); i != c.end(); i++) {
v = * i;
b();

}
}

it is possible to write code like this:

vector<int> c; int i;
foreach (i in c) { cout << i << endl; }

If a block used as an operand executes a jump statement (break , continue , goto , or return) that
transfers control out of the block, the operand is terminated as if it had thrown an exception (of an un-
known type) that also terminates the operator function and all possibly active intermediate functions
called directly or indirectly from it. This includes the process of “stack unwinding” [4], i.e., calling
destructors for all “automatic objects” (objects with automatic storage duration) constructed during
their execution. Then, instead of continuing execution after the point where the operator function has
been called, control is transferred to the destination of the jump statement.

For example,return can be used in the usual way to terminate aforeach loop prematurely:

// Does container c contain value x?
template <typename C>
bool contains (const C& c, typename C::value_type x) {

typename C::value_type i;
foreach (i in c) {

if (i == x) return true;
}
return false;

}

However, break andcontinue statements cannot be used inside aforeach loop to just break out of
this loop or to continue with its next iteration, respectively, because they will terminate or continue an
enclosing normal loop (orswitch statement). It is possible, however, to use exceptions for such pur-
poses. If, for example, the implementation ofoperator{} is changed as follows:

template <typename V, typename C>
void operator {} (lazy< pair<V*, const C*> > vc_, lazy<void> b) {

pair<V*, const C*> vc = vc_();
V& v = *vc.first;
const C& c = *vc.second;

for (typename C::const_iterator i = c.begin(); i != c.end(); i++) {
v = * i;
try {

b();
}
catch (bool cont) {

if (cont) continue;
else break;

}
}

}

it is possible to terminate the current iteration of theforeach loop by throwing an exception of type
bool whose actual value indicates whether the whole loop shall continue or not.

13

Other types of exceptions might be used to implement more sophisticated iteration control. For ex-
ample, by throwing anint value i the iteration bodyb could indicate that the iteration shall continue
with thei -th next element of the container.

7 Implementation of C+++

7.1 Basic Approach

The language extensions to C++ described in this report have been implemented by a “lazy” precom-
piler. Here, the term “lazy” has nothing to do with lazy or eager evaluation of expressions, but shall
describe the fact that the precompiler does not “eagerly” do a complete parse of its input (which is im-
possible for C++ without doing a complete semantic analysis), but rather copies most of it through un-
changed without actually “understanding” it. (Therefore, it might also be called a “stupid” precompil-
er.) Only when encountering particular keywords, special tokens, or combinations thereof, it performs
a “local” parse of their context and possibly a corresponding code transformation. These “sensitive”
token sequences and their processing are described in the sequel.

7.2 Operator Declarations

If the keywordsnew andoperator appear in juxtaposition, the subsequent input up to the next semi-
colon is parsed as an operator declaration according to the following EBNF grammar (where quoted
strings represent tokens of the lexical analyzer):

opdecl:
"new" "operator" newopsym ["unary"] { "after" opsym }
{ " left" | "right" | "stronger" opsym | "weaker" opsym }
[" lazy"] ";"

Here,opsym represents either built-in operators or new operator symbols introduced earlier. On the
other hand,newopsym might represent a new operator symbol (such as+++) which consists of multi-
ple tokens (++ and+ in this case) since it is not yet known to be a single token. The precise rule is that
it might be either an identifier as defined in the base language C++ (i.e., a sequence of letters and dig-
its starting with a letter, where the underscore character and appropriate universal character names are
treated as letters) or a sequence of one or moreoperator character tokens, i. e., tokens consisting sole-
ly of so-called operator characters. These are all characters of the basic character set except white
space (including comments), letters, digits, and quotation marks, i.e., actually the following:

{ } [] # () < > % : ; . ? * + − / ˆ & | ˜ ! = , \

Immediately after thenewopsym has been read, its complete character sequence is declared as a new
single token to the lexical analyzer causing it to be recognized as such in the remaining input.

The lexical analyzer is basically identical to a standard C++ scanner which recognizes so-called pre-
processing tokens [4] (and, of course, white space and comments). The only difference is the fact that
the set of operators which are recognized as single tokens is not hard-coded into the scanner, but
maintained in an extensible table. Whenever a sequence of operator characters is found in the input, it
is broken into one ore more tokens according to this table.

7.3 Operator Function Names

If a new operator symbol (i.e., one that has been previously declared by an operator declaration) ap-
pears after the keyword operator (possibly with intervening white space or comments), e.g., oper-
ator+++ , this is replaced by a unique function name derived from the operator symbol, e.g.,

14

__plus_plus_plus (where the leading underscores indicate that this is an “implementation-
internal” name).

This obviously transforms operator function declarations and definitions to normal function decla-
rations and definitions which can be processed by a C++ compiler, but it also transforms operator
function names appearing elsewhere (i.e., as function pointer or reference values) into normal func-
tion names.

7.4 Expressions Containing New Operator Symbols

7.4.1 Basic Principle

In C++, it is very difficult to recognize expressions in general, because they might appear in various
places, e.g., as expression statements, initializers of variables, member initializers of constructors, etc.
Furthermore, without additional knowledge it is impossible to distinguish some kinds of expressions
from declarations. For instance,a * b looks like a multiplication ofa andb at first glance, but it might
actually be a declaration ofb as a pointer toa if a is known to be a type name in the current scope.

Therefore, the C+++ precompiler does not even attempt to recognizeall expressions in its input,
but only those containing new operator symbols. The latter will be analyzed as described below, and
the new operators will be replaced by corresponding function calls (cf. Sec. 7.4.3). All other expres-
sions, i.e., those containing only built-in operators, simply get passed through unchanged and will be
correctly interpreted by the C++ compiler, even if some of their operators have been overloaded.

As the examplea * b demonstrates, it would even be dangerous for the precompiler to transform
all operators to corresponding function calls uniformly, because the transformed code__aster-
isk(a, b) is of course no longer a declaration. Furthermore, ifa andb were compile-time constants,
a * b would also be such a constant, which could be used, e.g., as an array bound or a case expres-
sion. Again, the transformed expression__asterisk(a, b) would not be an equivalent substitute in
these (and some other) contexts, because a function call expression is never reg arded as a constant ex-
pression, even if the function__asterisk would be predefined for all typesT as follows:

template <typename T>
T __asterisk (T x, T y) { return x * y; }

Expressions containing new operators are simply recognized by these new operator symbols, i.e.,
whenever a token is encountered that has been declared as a new operator symbol (and this token is
not preceded by the keyword operator , cf. Sec. 7.3), the surrounding context must be an expression.
In order to correctly analyze and transform this expression, its begin and end is determined by search-
ing backward resp. forward until aleft resp.right expression delimiteris found, i.e., a token that defi-
nitely and unambiguously delimits an expression. Fortunately, the sets of these tokens are rather small
and well-defined.

7.4.2 Expression Delimiters

The set of left expression delimiters contains:

; end of preceding statement

: end of preceding (case) label
(Sec. 7.5 explains how this is distinguished from a: operator.)

(begin of subexpression or (member) initializer
(Subexpressions surrounded by parentheses are transformed separately from their surrounding
expression where the former are treated as simple operands.)

[begin of array bound or subscript
(Normally, array bounds must be constant expressions which cannot contain user-defined opera-

15

tors; in anew-expression, howev er, the first array bound might be an arbitrary expression which
might contain user-defined operators.)

{ begin of block

} end of preceding block

return
else
do

Ke ywords which might be followed by an expression or expression statement.

The set of right expression delimiters contains:

; end of expression statement

) end of subexpression

] end of array bound or subscript

While searching for these expression delimiters, complete bracket expressions(...) and [...] ,
i. e., token sequences containing balanced opening and closing brackets, are treated as single units. In
particular, their brackets do not constitute expression delimiters.

To make sure that an appropriate left expression delimiter is always found, substatements of condi-
tional and iteration statements (if , switch , while , for , do) which are not surrounded by curly
brackets are automatically augmented with these (which does not introduce any semantic difference).

If a block {...} is encountered while searching for a right expression delimiter, it is treated as a
block operand, and the pseudo-operator{} is inserted before. If the block is not immediately followed
by a user-defined operator having anafter clause, a semicolon is inserted after the block which ter-
minates the enclosing expression (and will cause a syntax error in the generated C++ code if the ex-
pression is enclosed in round or square brackets).

7.4.3 Transformation Algorithm

Having identified begin and end of an expression containing user-defined operators, the expression is
transformed as follows:

1. If it begins with one or more operators, these must be prefix operators (otherwise the expression is
erroneous) which are saved on a stack.

2. Thesubsequent tokens up to the next operator (or the end of the expression) make up the first
operand which is saved on the stack, too.
(Operands might consist of several tokens, e.g., function calls such asf(x, y) , subscript expres-
sions such asx[i][j] , and the like.)

3. Aslong as the following tokens are postfix operators (and consequently are not infix applicable, cf.
Sec. 2), they are applied to the previous operand on the stack.
Here, applying an operator to an operand either means to simply combine them into a compound
operand (if the operator is built-in, e.g., combinex followed by++ into the compound operand
x++) or to transform them into an operator function call (if the operator is user-defined, e.g., trans-
form x followed by+++ into the operator function call__plus_plus_plus(x,0)) that is also
treated as a compound operand.
In any case, the result of this application replaces the previous operand on the stack.

4. If any postfix operators have been applied in step 3, go back to step 2, since the operand construct-
ed in step 3 (e.g., __plus_plus_plus(x,0)) might be followed by other operand tokens (such
as[i]), which might themselves be followed by other postfix operators, etc.

16

5. Afterwards, all prefix operators which have been saved on the stack in step 1 will be applied to the
operand on top of the stack in reverse order, finally yielding a single compound operand on top of
the stack.

6. Thenext token, if any, must be an infix operator which is pushed onto the stack. (It might also be
prefix applicable, but according to its position in the expression, it must be applied infix.)
Before it is actually pushed, it is checked whether the previous (infix) operator on the stack (if any)
binds stronger than the current operator; if so, this previous operator (which is the 2nd to top ele-
ment on the stack) is applied to its operands (which are the 3rd to top and the topmost element on
the stack, respectively) and the resulting compound operand replaces them on the stack.
This check is performed repeatedly until the previous operator on the stack (if any) binds weaker
than the current operator (in which case the current operator is actually pushed onto the stack) or
the two operators are incomparable (in which case the expression is rejected as being ambiguous).

7. Afterwards, the whole procedure from step 1 to 6 is repeated until the expression is exhausted, and
finally all infix operators remaining on the stack are successively applied to their operands.

7.5 Special C++ Operators

The operators:: , . (dot), and−> are not treated as operators by the precompiler, but rather as parts of
operands, because they bind more tightly than prefix and postfix operators and therefore do not fit into
the general scheme described in Sec. 2, where infix operators bind less tightly than unary operators.

The ternary operator combination?: is treated like a pair of operators? and : where the latter must
only appearafter the former, causing any subexpression between these operators to become auto-
matically grouped (cf. Sec. 4.1). Furthermore, to distinguish a colon constituting an operator from
colons having other meanings, in particular those following (case) labels and therefore constituting
left expression delimiters, only colons for which a matching question mark is found are treated as op-
erators.

The C++ keywordssizeof , typeid , and delete as well as the token sequencedelete[] are treat-
ed just like normal prefix operators.

So-callednew-expressionsare treated as single operands in order to avoid * and& tokens appearing in
their new-type-id[4] to be treated as operators.

In contrast toreturn statements, throw instructions are actuallyexpressionswith the same prece-
dence as assignment expressions. Therefore, the keyword throw is actually a prefix operator with a
very low precedence. In order to make it fit into the general operator scheme mentioned before, how-
ev er, it is treated as an infix operator (having the same precedence as assignment operators) whose left
operand is empty resp. missing.

Furthermore, since it is possible to usethrow without an associated expression (in which case the
currently handled exception is rethrown), its right operand might be empty resp. missing, too. This is
the case if and only ifthrow is either the last token of an expression or it is followed by an infix oper-
ator with lower precedence. (In C++, the only such operator is the comma operator5, but in C+++ oth-
er such operators might be defined, of course.)

5 The case thatthrow is immediately followed by: is covered by the rule that the middle operand of?: might be any expression. In this
case,throw is the last token of this subexpression.

17

7.6 Lazily Evaluated Operands

7.6.1 Non-local Gotos

The implementation of lazily evaluated operands is based on a non-local goto facility similar to the C
library functionssetjmp andlongjmp .

There is a data typeContext whose instances are able to store the current execution context of a
process or thread, including its program counter, the base pointer of the current stack frame, the stack
pointer referring to the top of the stack, and possibly some other register values. The function

int mark (Context& c);

stores the current execution context in its parameterc and returns zero, while the function

void jump (const Context& c, int v = 1);

restores the context saved in c and causes execution to continue as if the corresponding call tomark
had just returned the valuev (which defaults to one and must be different from zero). For that pur-
pose, the function that has executedmark must still be active, i. e., the function that executesjump
must either be the same function or one that has been called directly or indirectly from it. (In other
words,jump can only jump “downwards” on the stack.)

Apart from different names, this functionality is identical tosetjmp andlongjmp . Howev er, there
is a third function

int markjump (Context& c, const Context& d, int v = 1);

that combines the functionality ofmark and jump by first saving the current execution context in c
before restoring the destination context d. Furthermore, in contrast to a normaljump , the current stack
pointer is left unchanged (i.e., the one saved in d is ignored) causing the stack frames of subsequent
function calls to be placed above the frame of the function executingmarkjump and therefore protect-
ing the frames below from becoming overwritten. Thus, in contrast to a normaljump , it is possible to
return to the context saved in c by another call tojump (or markjump) later, i. e., one can also jump
“upwards” on the stack (if the terms “upwards” and “downwards” refer to the logical motion of the
base pointer, no matter whether the stack actually grows “forward” or “backward” in terms of absolute
addresses).

These functions can be implemented either directly in (machine-dependent) assembly code or (more
portably!) by usingsetjmp andlongjmp to implementmark andjump (which is straightforward) as
well as markjump by using these functions in a way that is actually undefined: By executing
longjmp(e, v) where the context e is a copy of d except for its stack pointer value which is taken
from c , it is possible to implement the behaviour of markjump(c, d, v) .6

7.6.2 Auxiliary Types and Functions

For every lazily evaluated operand, an instance of the following template typeOperand<n> will be
allocated that contains:

• acontext objectopnd to store the execution context of the operand;

• another context objectoper to store the execution context of the operator function (or a function
called directly or indirectly from it) where the operand’s evaluation is requested;

6 Because many compilers allocate function parameters in thecurrent stack frame, i.e., beneath the current stack pointer, before allocating
the frame of the called function, it is actually necessary to (logically) increase the stack pointer found inc by the size of the frame found
in d, i. e., the difference between the stack and base pointer values found there.
Furthermore, sincesetjmp must be executeddirectly in the function whose context shall be saved, mark andmarkjump must not be func-
tions, but rather macros (which should have less common names such as__MARKand__MARKJUMPthen, and which cannot have optional pa-
rameters).

18

• a (maximally aligned) arrayval of n bytes, wheren is the size of the operand’s type, to store the re-
sult of evaluating the operand.7

template <int n>
struct Operand {

Context opnd;
Context oper;
union {

double dummy; // To force maximum alignment of val.
char val [n];

};
};

To evaluate an operandx and store its result in an appropriateOperand objectop, the following func-
tion eval will be used:

template <typename T>
lazy<T> eval (T x, Operand<sizeof(T)>& op) {

new(op.val) T(x);
jump(op.oper);

}

It uses the so-called “placement operator new” to copy x (which is evaluated automatically when
eval gets called) into the byte arrayop.val usingT’s copy constructor. Afterwards,jump is used to
return to the placeop.oper where the operand’s evaluation has been requested (cf. below).

When calling an operator function with lazily evaluated operands, the latter are passed as objects of
the following typelazy<T> (which, for reasons explained in Sec. 7.6.3 below, is also used as the for-
mal result type ofeval , even thougheval does not actually return a value) whereT represents the
type of the evaluated operand. Such an object is initialized with a referenceop to an appropriate
Operand object which is stored inside thelazy<T> object. It provides a definition of a parameterless
function call operator that causes the operand to be evaluated and returns its value.

For that purpose,markjump is used to save the current execution context in op.oper and jump to
the context saved earlier in op.opnd (cf. below, Sec. 7.6.3), whereeval(..., op) will be executed
to actually evaluate the operand, store its value inop.val , and return to the current position by ex-
ecutingjump(op.oper) (cf. above). Afterwards, the operand’s value is copied into a temporary va-
riable x beforeT’s destructor is called forop.val to complement the constructor call performed by
eval ,8 and finally, this valuex is returned.

template <typename T>
struct lazy {

Operand<sizeof(T)>& op;
lazy (Operand<sizeof(T)>& op) : op(op) {}

T operator() () {
markjump(op.oper, op.opnd);
T* p = (T*)(op.val);
T x = * p;
p−>˜T();

7 Of course, it would be more natural to directly use the operand’s typeT instead of its sizen as a template parameter forOperand . Howev-
er, this type is not known to the precompiler, and in standard C++ there is no way to abstractly refer to it, such astypeof(x) in GNU C++.
On the other hand,sizeof(x) is available as a portable means to refer to the size ofx ’s type.
8 Formally, these constructor and destructor calls are well-defined even for basic types such asint , even though they will not perform par-
ticular actions.

19

return x;
}

};

7.6.3 Basic Approach

The application of a normal user-defined operator with eagerly evaluated operands, such asx ˆ ˆ y
(wherex andy might be arbitrary subexpressions), is transformed to a call of the corresponding oper-
ator function whose arguments are the operands, i.e.,__hat_hat(x, y) .

If the operator is declaredlazy , as in the expressionx => y , its operands are wrapped as follows:

Operand<sizeof(x)> __x;
Operand<sizeof(y)> __y;

__equal_greater(
mark(__x.opnd) ? eval(x, __x) : __x,
mark(__y.opnd) ? eval(y, __y) : __y

)

This means, that before the operator function__equal_greater is called,mark is called for every
operand to save its execution context in __x.opnd and__y.opnd , respectively. Since mark returns
zero (which is equivalent to false),eval will not be called now, but rather__x resp.__y will be
passed as arguments to__equal_greater . To make this type-correct,eval has been declared above
(Sec. 7.6.2) with result typelazy<T> if it is called with an expression of typeT, and because this type
provides a constructor accepting an object of typeOperand<sizeof(T)> , __x resp.__y are implic-
itly converted (according to the rules of determining the type of an?: expression) to objects of type
lazy<X> resp.lazy<Y> (if X resp.Y is the type ofx resp.y) using this constructor.

In summary, this means that__equal_greater is called with objects of typelazy<X> resp.
lazy<Y> containing references to theOperand objects__x resp.__y . If __equal_greater re-
quests the evaluation of, e.g., x by executing x() , the call to markjump performed in
lazy<X>::operator() (cf. above, Sec. 7.6.2) causes the call ofmark(__x.opnd) to return a non-
zero value causingeval(x, __x) to be called now. As described above (Sec. 7.6.2), this evaluates
the operandx and transfers control back to its function call operatorx() which will return the
operand’s value.

7.6.4 Problem and Modified Approach

The approach described so far works fine except for a subtle detail: If temporary objects are created
during the evaluation of a lazily evaluated operand, their constructors will be executed at the point
where the objects are created, but their destructors will be executed, according to the C++ Stan-
dard [4], at the end of the enclosingfull expression. This point, however, is not reached immediately,
becauseeval does not return regularly, but rather transforms control back to the operator function.
Therefore, the destructors will be executed only after the operator function returns, which would not
be a problem if the operands were evaluated exactly once. If they are evaluated multiple times, howev-
er (as is typical for operators implementing iterations), the temporary objects’ constructors will be ex-
ecuted multiple times, too (which is correct), but their destructors will only be executedonceat the
end of the enclosing full expression (because the C++ compiler, of course, does not expect the
operands to get evaluated multiple times).

Given this observation, the normal C++ rule regarding the execution of destructors must be modi-
fied to say that temporary objects constructed during the evaluation of a lazy operand are destructed at
the end of this evaluation instead of at the end of the enclosing full expression. To implement this be-
haviour with a precompiler, i. e., without modifying the underlying C++ compiler, it is necessary to
transform every lazy operand to an independent full expression. This is achieved by modifying the
transformation scheme shown above (Sec. 7.6.3) as follows:

20

Operand<sizeof(x)> __x;
if (mark(__x.opnd)) { eval(x, __x); jump(__x.oper); }

Operand<sizeof(y)> __y;
if (mark(__y.opnd)) { eval(y, __y); jump(__y.oper); }

__equal_greater(
false ? eval(x, __x) : __x,
false ? eval(y, __y) : __y

)

The calls tomark returning zero have been replaced by the Boolean valuefalse which has the same
effect on the evaluation of the?: expressions, and even thougheval will never get executed here, its
result type is still needed by the C++ compiler to correctly determine the type of these expressions.
The original calls tomark with their subsequent calls toeval when the former returns non-zero have
been moved before the enclosing full expression (which might be larger than the call to
__equal_greater shown above) to make them full expressions of their own. Furthermore, the calls
to jump which have been part ofeval above (Sec. 7.6.2) are performed as separate statements after
the execution ofeval here to make sure that the end of these full expressions (i.e., the “semicolon”
after the call toeval) is actually reached. Therefore,eval is now simply defined as follows:

template <typename T>
lazy<T> eval (T x, Operand<sizeof(T)>& op) {

new(op.val) T(x);
}

7.6.5 Operands of Type void

As has been mentioned in Sec. 6.4, a lazily evaluated operand might have type void , which would
lead to syntax errors in the above code since an expression of typevoid can neither be used as an
operand of thesizeof operator nor as a function argument ofeval . To remedy this problem, an aux-
iliary type Void (with an upper-caseV) is introduced, which acts as a “right neutral element” of the
comma operator:

struct Void {};

template <typename T>
inline T operator, (T x, Void) { return x; }

Furthermore, the expressionsx and y in the above code are replaced by(x, Void()) and (y,
Void()) , respectively, which, due to this definition, does not have any effect on their meaning, ex-
cept if their type isvoid : In that case, the overloaded comma operator is not applicable (because it
cannot have a parameter of typevoid), and therefore, the built-in definition of the comma operator is
used, yielding an expression of typeVoid . To make sure, however, that an operator function accepting
lazy operands of typevoid actually receives these as arguments of typelazy<void> , an overloaded
definition of eval for the typeVoid is provided whose formal result type islazy<void> :

lazy<void> eval (Void, Operand<sizeof(Void)>&) {}

Because instantiating this type from the general templatelazy<T> shown earlier (Sec. 7.6.2) would
be erroneous (becausesizeof(void) is undefined and the function call operator must not return
anything), it is defined as an explicit template specialization as follows:

template <>
struct lazy<void> {

Operand<sizeof(Void)>& op;
lazy (Operand<sizeof(Void)>& op) : op(op) {}

21

void operator() () {
markjump(op.oper, op.opnd);

}
};

7.6.6 Exceptions Thrown by Lazy Operands

Since lazy operands are executed in the stack frame of their enclosing function, and the C++ run time
system is not aware of the still active operator function whose stack frame is above this, an exception
thrown during the evaluation of an operand would not pass through the operator function, but rather
terminate it abruptly, which would have two undesired consequences: First, destructors for local ob-
jects of this function would not be executed correctly, and second, the operator function would not
have the chance to catch the exception as described at the end of Sec. 6.4.

To remedy these problems, the transformation scheme described above (Secs. 7.6.4 and 7.6.5) is
modified once more:

Operand<sizeof(x, Void())> __x;
if (mark(__x.opnd)) {

try { eval((x, Void()), __x); jump(__x.oper, 1); }
catch (...) { jump(__x.oper, 2); }

}

Operand<sizeof(y, Void())> __y;
if (mark(__y.opnd)) {

try { eval((y, Void()), __y); jump(__y.oper, 1); }
catch (...) { jump(__y.oper, 2); }

}

__equal_greater(
false ? eval((x, Void()), __x) : __x,
false ? eval((y, Void()), __y) : __y

)

Any exception thrown during the evaluation of an operand is caught by acatch (...) clause whose
associated statement block callsjump with a second argument of 2 instead of the default value 1. If
this value appears as the result of the matchingmarkjump call, the exception is simply rethrown there
(which is possible without actually knowing its type) causing it to pass through any active try state-
ments as desired:

template <typename T>
struct lazy {

Operand<sizeof(T)>& op;
lazy (Operand<sizeof(T)>& op) : op(op) {}

T operator() () {
switch (markjump(op.oper, op.opnd)) {
case 1: {

T* p = (T*)(op.val);
T x = * p;
p−>˜T();
return x;
}

case 2:
throw;

22

}
}

};

template <>
struct lazy<void> {

Operand<sizeof(Void)>& op;
lazy (Operand<sizeof(Void)>& op) : op(op) {}

void operator() () {
switch (markjump(op.oper, op.opnd)) {
case 1:

return;
case 2:

throw;
}

}
};

7.6.7 Blocks as Operands

If a block is used as an operand of a lazy operator, e. g., in x ? * { y } , this is transformed as follows:

Operand<sizeof(x, Void())> __x;
if (mark(__x.opnd)) {

try { eval((x, Void()), __x); jump(__x.oper, 1); }
catch (...) { jump(__x.oper, 2); }

}

Operand<sizeof(Void)> __y;
if (mark(__y.opnd)) {

try {
BlockOpnd __dummy(__y);
try { y; __dummy(); }
catch (...) { __dummy(); throw; }

}
catch (...) { jump(__y.oper, 2); }
jump(__y.oper, 1);

}

try {
......
__question_asterisk(

false ? eval((x, Void()), __x) : __x,
lazy<void>(__y)

)
......

}
catch (Operand<sizeof(Void)>* op) { jump(op−>opnd); }

Because a block cannot be used within the arguments ofsizeof andeval , sizeof(Void) is used
directly to declare the correspondingOperand object, and the block’s evaluation is not surrounded by
a call to eval . Furthermore, thelazy<void> object passed to the operator function can be construct-
ed directly in that case, without employing the?: trick needed for other operands.

23

If a block executes a jump statement (break , continue , goto , or return) that transfers control
out of the block, its effect would be similar to an exception that is not caught immediately: it would
terminate the operator function abruptly, resulting in possibly lost destructor calls. However, it is a bit
more difficult to “catch” these kinds of “exceptions” and to correctly deal with them. Of course, it
would be possible for the precompiler in principle to analyze the statements of the block in order to
detect these critical ones. It is easier, howev er, to declare a dummy object of the following type
BlockOpnd for that purpose, whose destructor will be called automatically whenever the block in
which it is declared is left:

struct BlockOpnd {
Operand<sizeof(Void)>* op;
BlockOpnd (Operand<sizeof(Void)>& op) : op(&op) {}

void operator() () { op = 0; }

˜BlockOpnd () { if (op) modjump(op−>opnd, op−>oper, 3); }
};

The object__dummy is initialized with a reference/pointerop to theOperand object__y representing
the block operand. If this block terminates normally or throws an exception, the function call operator
__dummy() is executed which setsop to null, in which case the destructor˜BlockOpnd does nothing
and jump will be executed with a value of 1 or 2, respectively.9 Otherwise, i.e., if the block is termi-
nated by a “critical” jump statement,op still refers to__y when __dummy’s destructor gets called,
and in that case, another auxiliary functionmodjump similar tomarkjump is used to modify the ex-
ecution context saved in op−>opnd as described below and to jump back to the context saved in
op−>oper , i. e., to the execution of lazy<void>::operator() , this time passing the value 3. If
this value is received there, the address ofop is thrown as an exception in order to correctly terminate
the execution of the operator function as well as the enclosing full expression:

template <>
struct lazy<void> {

Operand<sizeof(Void)>& op;
lazy (Operand<sizeof(Void)>& op) : op(op) {}

void operator() () {
switch (markjump(op.oper, op.opnd)) {
case 1:

return;
case 2:

throw;
case 3:

throw &op;
}

}
};

This exception is caught by thecatch clause associated with thetry statement that surrounds this
full expression (which must actually be an expressionstatementbecause it contains blocks as
operands, cf. Sec. 6.4) where anotherjump is executed that transfers control to the modified context
op−>opnd .

9 To make sure that this destructor is always executed (and thus, constructor and destructor calls are correctly balanced),jump(..., 2) is
not directly called in the innercatch clause, but rather postponed to the outer one by rethrowing the exception just caught (which might of
course be eliminated by an optimizing compiler).

24

The function

void modjump (Context& c, const Context& d, int v = 1);

uses the base and stack pointer information found inc andd to determine the position on the stack
where the return address of the currently executing destructor̃BlockOpnd has been stored by the run
time system and changes the program counter stored inc to this address. Therefore, the final call to
jump(op−>opnd) is actually nothing else but a goto statement to this address, because its execution
context is otherwise identical to the one that has initially been stored inop−>opnd . After this
roundtrip from the destructor “up” to the operand evaluation function, then “down” to the expression
containing the operator call, and finally back to the destructor’s return address, the jump statement
whose execution triggered the call to the destructor runs to completion transferring control to its origi-
nal destination.

If markjump would be used instead ofmodjump here, the context stored inop−>opnd would be
completely overwritten by the execution context of the destructor, causingjump(op−>opnd) to jump
back into the destructor. Because the latter terminates immediately afterwards, i.e., transfers control
to its return address, this seems to achieve the same effect as described above. The problem with this
approach, however, is the fact that the destructor’s stack frame (in particular, the position on the stack
where its return address is stored) might be overwritten by other destructor calls which are performed
during the stack unwinding caused by throwing the exception&op.

7.7 Implementation Limitations

The fact that C+++ is implemented by a “stupid” precompiler implies a few limitations which are de-
scribed in the sequel.

7.7.1 Template IDs

If a template ID such asvector<T> is used in a constructor or function call, e.g., vector<T>(100) ,
this cannot be distinguished syntactically from a relational expression such asa < b > (c) . Therefore,
the C+++ precompiler willalwaystreat< and> as relational operators in expressions containing user-
defined operators.10

Given the definition of the cardinality operator# from Sec. 3.2, an expression such as#vec-
tor<T>(100) will thus be parsed as(#vector) < T > (100) by the precompiler causing it to gen-
erate erroneous C++ code. Because the precompiler does not transform subexpressions which do not
contain user-defined operators, the easiest way to prevent such misinterpretations is to enclose subex-
pressions containing template IDs in parentheses, e.g., #(vector<T>(100)) .

Another, probably better solution from a conceptual point of view would be to use different tokens
as template argument delimiters, e.g., <| and |> , which will be translated by the precompiler to the
original tokens< and> after expressions have been transformed.

7.7.2 Old-Style Casts

So-called old-style casts, e.g., (T)x or (T)(x) , cannot be recognized as such by a stupid precompiler
since the latter expression might also be a function call with redundant parentheses around the func-
tion nameT. Therefore, they are actually treated as parts of an operand which is correct in many cas-
es. However, if the operand of the cast starts with a binary operator as defined in Sec. 2, i.e., an opera-
tor that might be applied both infix and prefix (e.g., (T)−x), the precompiler will erroneously inter-
pret this as an infix instead of a prefix operator. Again, such misinterpretations can be prevented with
additional parentheses, e.g., (T)(−x) , or by using a different cast notation, e.g., T(−x) (functional
cast notation) orstatic_cast<T>(−x) (new-style cast).

10 It would be possible to treat< and> specially in the context of so-called new style casts (e.g., static_cast<T>(x)), because these are
introduced by well-defined keywords, but this has not been implemented yet.

25

7.7.3 Lazy Operands

The final transformation scheme for lazy operands described in Sec. 7.6.6 restricts the use of lazy
operands to expressions appearing in function bodies, i.e., it is not allowed to use them in member
initializers of constructors, default arguments of functions, initializers of global and namespace varia-
bles, and initializers of static data members of classes, because in these contexts there is no place to
put the additionalif (mark(...)) ... code that is needed for the transformation. To circumvent
this limitation, auxiliary functions containing the expressions in question can be used.

Furthermore, if an expression containing lazy operands is used to initialize a locally declared varia-
ble, this variable is not known in this additional code (because it appears before the declaration). This
is unproblematic in almost all cases, since a variable is rarely used within its own initialization
(void* p = &p is an example of an exception).

7.7.4 Jump Statements Out of Block Operands

The implementation of jump statements transferring control out of a block operand assumes that the
exception&op thrown by lazy<void>::operator() that shall terminate the operator function (and
any possible intermediate functions) that called this function operator (cf. Sec. 7.6.7) is not caught by
any of these functions (or that it is rethrown afterwards). Otherwise, it will not reach its intended des-
tination, resulting in possibly undefined behaviour. (In particular, the jump statement will not reach its
original destination.)

Since the type of this exception is internal to the implementation, it is assumed that a programmer
does not actually know it and therefore is simply not able to catch it with an ordinarycatch clause.
Using acatch with an ellipsis, however, even exceptions of unknown types can be caught, but in
these cases it is typical to rethrow the exception at the end of thecatch block.

7.8 Status of the Implementation

The main part of C+++’s implementation is straightforward and uses only simple, well-defined C++
concepts, i.e., function calls. The implementation of lazy operands, however, is tricky, not to say bold,
in that it usessetjmp and longjmp in a partially undefined way which might not interact well with
certain compilers or optimizers. So far, it has been tested successfully with some versions of GCC, in-
cluding some levels of optimization.

Therefore, this part of the implementation should be considered a proof of concept rather than a
real-world implementation. (In particular, it should not be used for safety-critical applications!) How-
ev er, by employing these tricks it has been possible to construct a working implementation that is suf-
ficient for exploiting the possibilities of user-defined control structures in a rather short amount of
time. As a long-term goal, however, it would be desirable to incorporate the features of C+++ into a
real C++ compiler such as GCC.

8 Related Work

This report has presented the concepts of C+++, an extension of C++ allowing the programmer to de-
fine new operator symbols with user-defined priorities. Even though the basic idea of this approach
dates back to at least ALGOL 68 [13], it has not found widespread dissemination in mainstream impe-
rative programming languages.

Compared with Prolog [1] and modern functional languages such as ML [7] and Haskell [9], which
support the concept in principle, the approach presented here offers a more flexible way to specify op-
erator precedences (because the precedence relationship is not a total, but only a partial order), the ad-
ditional concepts of of fixary operator combinations and flexary operators (where the latter is rather
dispensable in these languages as their effect can be achieved in a similarly convenient manner with
unary operators applied to list literals), and the concept of lazily evaluated operands in an imperative

26

language (which is of course nothing special in functional languages). It might be interesting to note,
however, that this concept has already been present in ALGOL 60 [8], known as the (in)famous “call
by name.” While this is indeed not well-suited as a general parameter passing mechanism, the exam-
ples of Sec. 6 have demonstrated that the basic principle is useful when applied with care, because it
opens the door to implement user-defined control structures, especially when combined with the con-
cept of fixary operator combinations and if whole blocks of statements are allowed as operands, too.
(The latter is again unnecessary in functional languages, because they do not have a notion of state-
ments, but rather denote all computations solely by means of expressions.)

Compared with other languages offering the possibility of user-defined control structures, such as
Common Lisp [14], Dylan [2], and (in a limited form) Ruby [11], the approach presented here has the
advantage that it does not require separate concepts and language constructs, such as macros with
tricky quote and unquote rules in Lisp, macros with rewrite rules, patterns, templates, etc. in Dylan,
and special code blocks associated with method calls in Ruby, but simply reuses and generalizes the
existing concept of operator overloading to achieve that aim. Compared with Smalltalk [3], which pur-
sues a similar strategy by defining control structures by means of methods and blocks, C+++ also sup-
ports lazily evaluated expressions which are not blocks and does not require the programmer to ex-
plicitly mark each operand that shall be evaluated lazily by encapsulating it in a block. Instead, the de-
cision whether operands shall be evaluated lazily or not is simply expressed once by declaring an op-
eratorlazy or not.

Acknowledgement

The basic ideas of C+++ have been implemented in two student projects in 2002 by Michael Altmann
and Dietmar Sauer as well as Wolfgang Doll, Heiko Lorenz, and Michael Sonnenfroh. Based on their
experiences, the concept has been significantly refined and extended, especially by the concept of
lazily evaluated operands. The current precompiler has been implemented with assistance of Wolf-
gang Doll.

The anonymous referees of [5], a significantly shorter version of this report, missing completely the
concepts of fixary operator combinations and blocks as operands as well as the description of the im-
plementation, provided helpful comments to improve both that paper and this report.

References

[1] W. F. Clocksin, C. S. Mellish:Programming in Prolog (Fourth Edition). Springer-Verlag, Berlin,
1994.

[2] I. D. Craig:Programming in Dylan. Springer-Verlag, London, 1997.

[3] A. Goldberg, D. Robson:Smalltalk-80. The Language. Addison-Wesley, Reading, MA, 1989.

[4] ISO/IEC: International Standard: Programming Languages −− C++ (Second Edition, ISO/IEC
14882:2003(E)). October 2003.

[5] C. Heinlein: “C+++: User-Defined Operator Symbols in C++.” In:3. Arbeitstagung Program-
miersprachen (Ulm, Germany, September 2004). Gesellschaft für Informatik e.V., Lecture Notes in
Informatics, (in print).

[6] J. Melton, A. R. Simon:SQL:1999. Understanding Relational Language Components. Morgan
Kaufmann Publishers, San Francisco, CA, 2002.

27

[7] R. Milner, M. Tofte, R. Harper:The Definition of Standard ML. The MIT Press, Cambridge, MA,
1990.

[8] P. Naur (Ed.): “Revised Report on the Algorithmic Language ALGOL 60.”Numerische Mathe-
matik4, 1963, 420−−453.

[9] S. Peyton Jones (ed.):Haskell 98 Language and Libraries. The Revised Report. Cambridge Uni-
versity Press, Cambridge, 2003.

[10] B. Stroustrup:The C++ Programming Language (Special Edition). Addison-Wesley, Reading,
MA, 2000.

[11] D. Thomas, A. Hunt:Programming Ruby: The Pragmatic Programmer’s Guide (2nd Edition).
Addison-Wesley, 2001.

[12] S.Tucker Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder (eds.):Consolidated Ada 95 Reference
Manual with Technical Corrigendum 1(ANSI/ISO/IEC-8652:1995 (E) with COR. 1:2000). Lecture
Notes in Computer Science 2219, Springer-Verlag, Berlin, 2001.

[13] A. van Wijngaarden et al. (Eds.): “Revised Report on the Algorithmic Language ALGOL 68.”
Acta Informatica5, 1975, 1−−236.

[14] P. H. Winston, B. K. P. Horn:LISP (Third Edition). Addison-Wesley, Reading, MA, 1989.

28

