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Abstract

Research on autonomous mobile robots and robot teams has gained signifi-
cant momentum over the last ten years and robotics application scenarios are
becoming increasingly ambitious. But developing software for mobile robot
applications is a tedious and error-prone task. Modern mobile robot systems
are distributed systems and their designs exhibit large heterogeneity in terms
of hardware and have to deal with soft real-time constraints as well as the
tight coupling of the software solutions to the physical properties of the robot.
Most of today’s robot software environments provide little conceptual support
to structure and encapsulate these domain characteristics and to foster the
development of reusable solutions of robotics software.

This thesis introduces research into the application of advanced software meth-
ods and technologies within the field of autonomous mobile robots to make
the development of mobile robot applications easier and faster and to foster
reusability and scalability of robot software. The conceptual solutions iden-
tified during this research process are exemplified in the design of the Miro
software architecture. It provides extensive support for the management of the
domain-specific difficulties by addressing them in the form of a middleware-
oriented architecture.

The architecture is divided into four layers that lie between the operating sys-
tem and the robotics application. The device layer encapsulates the communi-
cation with the low-level controller boards. The infrastructure layer provides
standard-based communication facilities and support for configuration and pa-
rameter management. On the service layer, the robots sensor and actuator
devices are modeled as abstract services with network transparent, generalized
interfaces. On top, the framework layer provides semi-complete solutions for
often encounter robotics problems such as behavior-based reactive control or
robot vision in form of scalable, user extensible frameworks.

Miro has been carefully assessed and is successfully applied on various robot
platform, in different scenarios, and in multiple research projects. It is also
used for robotics software development at other laboratories.
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Chapter 1

Introduction

Research on autonomous mobile robots and robot teams has gained significant
momentum over the last ten years. With the necessary computational power
and wireless networking technology becoming available for mobile platforms,
also robotics application scenarios are becoming increasingly ambitious. Mod-
ern autonomous mobile robots are equipped with a comprehensive set of sensors
and actuators, and teams of robots are expected to share their sensory obser-
vations and to cooperate in the execution of tasks. Because of this growth in
complexity, the problem set addressed by autonomous mobile robot research is
large and will become even more all-encompassing in the near future. There-
fore, more and more disciplines of computer science such as distributed systems,
computer vision, or neural information processing and learning will have to be
incorporated into robotics applications in order to meet the growing challenges
of modern autonomous mobile robots.

Because of its innate characteristics, the application domain of autonomous
mobile robots holds huge challenges for software development. It features a
heterogeneous set of hardware devices, the need for concurrent and distributed
information processing, a tight coupling of algorithmic solutions to the physical
properties of the robot and its environment, the stochastic properties of the
physical world, as well as time and resource constraints. Moreover, all these
features need to be addressed simultaneously when developing solutions in the
field of autonomous mobile robots.

Most of today’s software architectures for this domain provide little conceptual
support for the application programmer to structure and encapsulate these do-
main characteristics. An additional problem is the severe lack of research in the
robotics community to address the integration challenge posed by the diverse
methods and technologies applied within this domain. Many of the robotics
applications spend most of their time managing the domain’s elementary prob-
lems instead of solving the targeted ones. This hinders the implementation
of portable, reusable and interoperable generalized solutions that form building
blocks for subsequent robot applications. In consequence, software development
for autonomous mobile robots is tedious and error-prone, which, in turn, limits

1



2 CHAPTER 1. INTRODUCTION

research, the exchange of scientific results and jeopardizes commercialization.

This thesis introduces research into the application of advanced software meth-
ods and technologies within the field of autonomous mobile robots in order to
address the intrinsic software development challenges of this application do-
main. The conceptual solutions identified during this research process are ex-
emplified in the design of the Miro software architecture, the “middleware for
robots” [140]. The basic idea of Miro is to provide extensive support for the
management of the domain-specific difficulties by addressing them in the form
of a middleware-oriented architecture.

1.1 Motivation

There is a growing interest within the robotics community to address the various
software quality issues in autonomous mobile robot applications. The goal is to
enhance the non-functional aspects of software for autonomous mobile robots
such as stability, maintainability, or scalability to form building blocks of robot
software functionality that can be reused by subsequent robotic applications.

Currently, hardly any sophisticated toolkits for the engineering of autonomous
mobile robot applications exist. Even the direct reuse of existing solutions in
different subsequent research projects is rarely seen. Difficulties often arise
even within one single laboratory for various reasons. For instance, robot plat-
forms become outdated and are often replaced between projects. But robots
from different manufacturers usually come with different, incompatible soft-
ware environments. Also, senior students and PhD students often leave the
university after successful completion of their research. Research prototypes of
robotics software especially are notoriously undocumented. But new robotic
systems usually encompass and extend the functionality provided by preceed-
ing projects. Therefore, the ability to reuse existing developments in robotics
research is crucial for the success of a robotics project.

Reusability is closely related to scalability in two different dimensions: the
manageable growth of project size and the manageable load related to system
runtime performance. While the first depends heavily on a clear and natural
structuring of the application, the second is usually dependent on the ability to
identify and resolve hot-spots in the runtime environment. Both these aspects
can be enhanced tremendously by the underlying software architecture.

Adaptivity is another key feature for reusable components especially with au-
tonomous mobile robots. As the correct algorithmic solution of a robotic task
is usually heavily dependent on the physical aspects of the robot and its envi-
ronment, it is inevitable to adapt these parameters when applying a solution to
another robot or environment. The infrastructure can support this adaptation
process in two ways: firstly by making known physical properties of the robot
accessible to the application, and secondly by providing tools that facilitate the
application of technologies for learning and adaptation such as neural networks.
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Scalability can be improved by using properly debugged and assessed high qual-
ity components. For this purpose roboticists need conceptual support in the
development of robotic applications. Specialized tools that support developers
in solving the specific problems of the robotics domain could therefore help to
raise the software quality in this respect.

To successfully manage the growth in size and complexity of robotic applica-
tions, research into and development of autonomous mobile robots could be
helped tremendously if supported by a solid software infrastructure, i.e. toolk-
its, frameworks and libraries that provide portable solutions usable for vari-
ous robotics applications. Additionally, progress in this domain will facilitate
the broader application and evaluation of proposed research solutions and will
therefore help to raise the scientific standards within this particular research
community.

1.2 The Problem

To foster reusability, scalability and adaptivity in robotic applications, various
problems have to be addressed on different levels of an individual autonomous
mobile robot application.

On the lowest level, the sensors and actuators of a robot are usually controlled
by microcontroller boards that are attached to one or more PCs, which perform
all higher-level processing. Due to the diversity of the available controller boards
and communication links, there is little potential for reusable standardization of
the communication on this level. Therefore, applications that directly interface
with the robotics sensors and actuators on this level are hardly portable between
robot platforms.

Another set of problems arises due to the fact that robotic applications are
inherently distributed. The sensors and actuators often reside on multiple con-
troller boards and higher-level processing of an autonomous mobile robot is fre-
quently distributed over multiple PCs. Additionally, researchers usually super-
vise their robots from workstations in the laboratory. For multirobot scenarios,
the scenarios themselves already imply the distributedness of the application.
Such heavily distributed systems introduce their own intriguing problem set,
ranging from inherent concurrency and latency within the application to the
failure or temporary breakdown of communication links or entire sub-systems.

Reusability could be facilitated by defining generalizations for similar sensors
and actuators of different robot platforms. But the properties of the different
devices available from different manufacturers vary especially in crucial aspects
such as the order and frequency in which e.g. ultra-sonic range sensors can
be queried. So in practice, even similar devices from the same category often
confront the application developer with widely varying interfaces.

Generalizing robotics solutions in order to make them work flexibly on different
versions of sensor and actuator modalities makes it necessary to deal with the
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variance in properties such as the reliability and precision of the sensor read-
ings or the velocity and accelerations of motors. This is a major challenge, as
even small differences can change the overall requirements of a subsystem sig-
nificantly. Lower deceleration capabilities, for instance, require to scan a wider
area for the task of obstacle avoidance. This might in turn alter the evaluation
of range sensor scans or even the focus of attention control. Thus, the capabili-
ties of every sensor and actuator are tightly related to the overall performance of
the entire system and have to be individually weighted in different application
scenarios.

Because robots are intended for use in the real world, they also need to be able
to cope with real-time requirements at least to some extent. Hard real time,
that is maximum response times of only a few µsec, is usually only required
for small subsystems, that mostly reside on their own microcontroller boards.
Nevertheless, timeliness and reliable response times are also an issue for the
PC-based higher-level services. So the design of priorities in sensor processing
and actuator control also need to be added to the problem set.

With autonomous mobile robots becoming a wide spread and mature technol-
ogy, the need to systematically assess and benchmark new and existing methods
is becoming mandatory. The stochastic nature of natural environments how-
ever, requires an empirical, statistical evaluation, preferably based on series of
experiments in the actual application environment. Apart from the many un-
solved methodological problems, there is also a lack of readily available methods
and tools for acquiring the relevant data on individual robots and multirobot
teams in an effective and efficient manner.

It is obvious that many of the problems sketched above cannot be solved once
and for all by means of one fixed solution. Instead, many approaches need
calibration and adaption of their parameters in order to cope with changes in
environment or the robot itself, like lightning conditions or the dynamics of the
robot when holding another object. These require the use of adaptive technol-
ogy and learning algorithms. While such abilities are usually associated with
higher-level services, that are beyond the scope of a generic robot architecture,
they have to be considered in the design of the lower-level services. Otherwise
it can become significantly more complicated to embody learning and adaptive
behavior on the higher levels of the entire robot application.

1.3 Solution Approach

This thesis discusses and evaluates solutions for the problem set described above
for modern autonomous mobile robot software development. The research un-
dertaken focused on three main topics: (1) the applicability of standard dis-
tributed systems technology for robotics, (2) the design of suitable abstractions
for robotic devices and (3) providing support for the non-functional aspects such
as scalability and reactivity in the development of robotics applications. The
proposed solutions are exemplified in the Miro architecture: the Middleware
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for Robots [140].

The inherent distributedness of robotic applications is addressed in Miro by the
application and customization of a CORBA-based communication infrastruc-
ture. Miro supports both the classical method-call-oriented client/server model
as well as a message-based publisher/subscriber protocol. Special precautions
are taken to address the needs of group communication in teams of robots using
WLAN technology.

The different sensor and actuator devices in their various flavors are wrapped
by generalized interfaces and implemented as network transparent services. In-
heritance is used to make the individual features of the devices available.

Higher-level robotic functionality is supported by specialized frameworks that
are used to build customizable high-level services. These have been carefully
assessed for their applicability in real-time-constrained environments. By in-
verting the control flow of time-critical tasks like image processing or reactive
control, the timeliness of information processing can be managed and controlled
centrally by the middleware itself. For performance assessment the user is pro-
vided with sophisticated instruments for monitoring and logging.

1.4 Major Results

The scientific contributions of this thesis lie in the identification and appli-
cation of supportive technology as well as the design and exemplification of
services and frameworks for high-level robotic applications to be used in up-
coming application scenarios. These are bundled in the concise design of a
middleware-oriented, flexible, scalable and portable distributed software archi-
tecture for autonomous mobile robots. The discussed implementation could
prove its applicability in various successful applications for different scenarios.

Communication: Within this architecture, distributed systems technology
has been carefully assessed for its applicability to autonomous mobile
robots, especially with respect to highly dynamic environments. Bot-
tlenecks, e.g. in event-based team communication, were identified and
successfully resolved by transparent extensions [141].

Data acquisition: The design and the performance of an efficient service for
generic data acquisition in distributed multirobot scenarios, as required
for various means in autonomous mobile systems such as debugging, em-
pirical evaluation and learning was discussed [137].

Service design: A design for service-oriented abstraction of sensory and ac-
tuatory devices was proposed and successfully applied to the devices of
various robot platforms [140]. The services and higher-level frameworks
did independently prove their applicability.
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Video image processing: The benefits of the middleware-oriented approach
in addressing the intrinsic difficulties of robotics applications could be
clearly demonstrated in the design and performance of a framework for
video image processing in real-time constrained robotic scenarios. It al-
lows to define priorization and synchronization of image evaluations that
are both sensor triggered as well as demand driven [135]. It success-
fully fosters code reuse for different scenarios such as robot soccer and
biomimetic learning.

Behavior-based reactive control: The proposed formally specified model
for behavior-based reactive control provides a scalable way for specifying
rich sets of emergent, reactive behavior in a reusable way. The integration
with the middleware, especially the use of device abstractions, proliferates
the development of flexible behavior implementations that are reusable
on various robot platforms in different scenarios [136]. In the RoboCup

scenarios it proved itself as a sustainable foundation for the development
of a rich set of reactive repertoire.

Miro has been actively developed and maintained for several years and was
successfully applied in such different scenarios as robot soccer [70] or biologically
motivated neural learning [29]. The architecture was also ported by external
research groups that use Miro for their robots [125], contributing additional
interfaces, services and device implementations [142, 71] that adhere to the
proposed design.

1.5 Overview of the Thesis

The remainder of this thesis is organized as follows. In the following chap-
ter an overview of the challenges of robot software development as reflected in
the literature is given and work related to this thesis is discussed. Chapter 3
then introduces the Miro architecture and its design principles, showing how it
helps to overcome the problems identified earlier. The chapters following there-
after discuss the different layers of the Miro architecture. Chapter 4 describes
the infrastructure provided for communication and configuration, Chapter 5
discusses the main features of the service layer, while Chapter 6 presents dif-
ferent higher-level frameworks for robotics application development. After a
short chapter on the tools that were developed to support robotics software
development with Miro, various aspects of the implementation are evaluated in
Chapter 8. Thereafter, successful applications and further results are described
in Chapter 9. The thesis ends with conclusions and indications for possible
future work in chapter 10.



Chapter 2

Robotics Software
Development

Developing software for mobile robot applications is a tedious and error-prone
task. Modern mobile robots are usually composed of heterogeneous sets of
hardware components which are connected using different networking technolo-
gies and communication protocols with widely varying bandwidths. A large
number of different methods for processing sensor information and controlling
actuators, for performing computer vision and cognitive tasks like planning and
navigation, and also user interactions must be integrated into a well-engineered
piece of software. All these issues contribute to the enormous complexity of
the mobile robot software development task. There is growing concern in the
robotics community about programming environments provided by manufac-
turers not keeping pace with recent developments in software technology. Also,
their closed, platform-bound design does not meet the requirements of today’s
mobile robot application scenarios [76, 38].

In order to assess the requirements of today’s robot software architectures, a
more detailed view on robot software and application development needs to
be taken. Therefore, an overview of current and upcoming autonomous mo-
bile robots, autonomous mobile robot application scenarios and the challenging
characteristics of autonomous mobile robotics as an application domain will
be given here. This overview will be followed by a discussion of related robot
software architectures and projects that address challenges of robotics software
development.

2.1 Autonomous Mobile Robots

Today, mobile robots come in various different shapes and sizes that can be
divided roughly into three main categories based on the computational hardware
infrastructure provided:

7
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a) b) c)

Figure 2.1: Different categories of autonomous mobile robots: A Tetrixx robot,
the B21 platform and the Pino

1. Miniature robots with limited computational power like the Lego Mind-
storms, the Khepera robots or the Tetrixx robot kit [27]. These are pre-
dominantly used for educational purposes and usually only provide an
embedded micro-controller for the control of various analog and digital
I/O-ports (Figure 2.1a).

2. Mid-size PC-based platforms which nowadays are the standard robots
used for research in autonomous mobile systems. There are various com-
mercial platforms available for indoor and outdoor use, like the B21 or
the Pioneer series and many custom-built robots populate the laboratories
(Figure 2.1b).

3. Legged and humanoid robots equipped with specialized high-end embed-
ded systems, like the Sony AIBO or the Curio platform. Those are not
generally available and usually bring their own proprietary operating sys-
tem (Figure 2.1c).

In this thesis the focus lies on the PC-based research platforms, which usually
come with a wheeled locomotion system. The results presented also apply to
the other two categories, but the limited computational resources on the one
side and the specialized hardware and non-standard operating systems on the
other make a direct transfer somewhat cumbersome.

2.2 Robotic Scenarios

In the robotics community research is usually centered around a scenario, in
which results are demonstrated and evaluated. Many application scenarios
are actually market-driven, but the main value of a scenario is to provide the
community with a common ground on which different solutions can be more
easily compared against each other.

Robotic scenarios define general system properties that often impose challenges
for the robots’ software architecture. These also imply requirements from non-
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functional aspects of a robot’s application such as reliability, fault tolerance
and responsiveness. Newly upcoming scenarios usually feature a more complex
set of research challenges that mark the progress in robotics research. Different
robotic scenarios are also designed to stress different aspects of advanced future
robot applications and robotics solution should therefore be flexible enough to
be applicable to different scenarios. Thus, robot software architecture needs to
support robot platforms with solutions for these different research challenges
and address their different demands.

Robotic scenarios today range from artificial toy robot scenarios such as “trash
can cleaning”, which are used for educational purposes, to autonomous driving
on highways or on unpaved terrain. The research undertaken for this thesis
mainly focused on two scenarios popular with the robotics community. These
two scenarios stress fairly different system properties of an autonomous mobile
robot. On the one side there is the classical office scenario, and on the other the
more and more popular environment of robot soccer. While the architectural
issues addressed within these scenario most probably will be too complex for
educational toy robot scenarios, they also cover many aspects of other upcoming
robotics research such as robot companions that can also operate outdoors.

2.2.1 Office Robotics

The office scenario addresses is-

Figure 2.2: Robot navigating in an au-
tonomously built map.

sues such as simultaneous local-
ization and mapping (SLAM) [24],
navigation or simple interactive
tasks within an office environment
[69]. Figure 2.2 is a screenshot
taken from a visualization tool for
such a scenario. It shows a 2-D
map drawn up with a laser scan-
ner. The red rectangles and green
squares visualize different granu-
larities of a hierarchical path plan-
ner. The red line denotes the path
actually taken and the red circle
denotes the current position of the
robot. Robots operate at moderate speed and feature higher-level cognitive
capabilities such as task scheduling or deliberative planning. Human-robot in-
teraction, web-based user interfaces [35] as well as adaptivity and learning [29]
are popular research topics. Cooperation among multiple robots is also becom-
ing of greater interest within this scenario. The multirobot SLAM, for example,
was evaluated in the CentiBOTS project with a fleet of a hundred robots [63].

A major feature of research platforms designed for these scenarios is their rich
set of sensory and actuator devices for perceiving and manipulating the natural
environment. Often special purpose sensors are installed for extracting task-
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relevant information such as landmarks and maps, static and moving obstacles,
stairs or tables. Apart from the robot’s locomotion system, actuators usually
include simple grippers and multiple-degrees of freedom robot arms. The appli-
cations integrate a comprehensive set of methodologies for sensory, actuatory
and cognitive purposes. The different focus of future research projects in this
domain makes adaptations and modifications to previously developed solutions
or even complete rearrangements of functional subsystems necessary.

The difficulties of this scenario from a robot software architecture point of
view lie in the diversity of the robot’s sensors and actuators as well as the
number of modules and their complexity within typical applications. A robot
software architecture can support application development in such a domain
in the area of management and interfacing of sensory and actuatory devices,
by providing domain-specific frameworks that facilitate the implementation of
subsystems such as localization or reactive execution, by supporting a proper
modularization and by keeping the overall application manageable.

2.2.2 Robot Soccer

Since 1997 the RoboCup scenario

Figure 2.3: Kickoff at a RoboCup game
in the medium-size robot league.

has been putting autonomous mo-
bile robots in a highly dynamic
environment, introducing robot
teams as well as competition be-
tween robots [7, 144]. There are
several leagues for robot soccer,
ranging from simple 2-D simula-
tion to humanoid robots. The
team of the robotics lab at the
University of Ulm, the The Ulm

Sparrows, has been participating
in the medium-size robot league

since 1999. In this league, teams of 4 to 6 robots with a maximum size of
50 x 50 cm compete on a field of 12 x 8 m (see Figure 2.3). The most interest-
ing aspect of the scenario is that the problem can not be ‘solved’ as such, but
rather promotes an evolutionary process, where new solutions compete with the
existing state of the art [74].

The high dynamics of the scenario impose tight timeliness constraints and pro-
mote the reactive capabilities of the system. The multirobot teams make the
distributed nature of robotic applications explicit. Also, vision is the dominant
sensor within this scenario, since the autonomous, robust detection and classifi-
cation of various objects in real time (ball, goal, opponents, team mates) is the
dominant cognitive problem [81, 82, 79]. On the other hand, the higher-level
deliberative capabilities of such robots are usually rather limited.

A robot software architecture can contribute to the development of robot soccer
applications by managing the difficulties of the distributed systems, the assess-
ment of the timing characteristics of the different subsystems and by providing
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scalable support for the deployment of a rich set of reactive behavior.

2.3 Challenges of the Application Domain

Apart from the different domain specific emphasis, the above described two
application scenarios feature a set of difficulties that are prominent in almost
every non-trivial application of autonomous mobile robots and which are all
individually considered difficult. These characteristics need to be addressed in
parallel to the actual robotics application. They are often underestimated and
form a major obstacle for the successful integration of solved research problems
into a running application.

Extreme heterogeneity of hardware components. A huge variety of sen-
sors and actuators are available for use on autonomous mobile robots. As
a consequence, almost every robot has its individual sensor suite and actu-
atory capabilities. It would be desirable to build logical groups of similar
sensor and actuator devices that are accessible by a generalized interface.
But even very similar devices offer different capabilities such as maximum
sensor sampling rates, different sensing range and accuracy etc. that need
to be taken into account when writing software targeted for use on more
than one individual robot.

Inherent concurrency. An autonomous mobile system has to process sev-
eral tasks at the same time. Various sensory and cognitive processing
procedures as well as the control of multiple actuators need to take place
in parallel and on different time scales. The computational power of
dual-processor boards, hyper-threading technologies and the upcoming
multi-core CPUs can only be fully exploited when these processes are
also implemented as parallel processing threads.

Developing multi-threaded applications is considered difficult and devel-
opment support for parallel processes is sparse in most programming lan-
guages and development environments. Race conditions between different
processing threads are hard to achieve by classical single-step debugging
and provoke non-deterministic system failure. The necessity to synchro-
nize concurrent data access can also introduce subtle performance bottle-
necks.

Inherent distribution. Multi-robot scenarios make the distributed nature of
robotics applications apparent. But also a single robot often delegates
computationally expensive tasks to remote workstations to overcome com-
putational bottlenecks and receives input from web-based user interfaces.
Teleoperation also requires network transparent access to the robots’ in-
terfaces. Additionally the monitoring and visualization of task execution
is usually performed from a remote workstation. Some robots are also
equipped with multiple PCs to provide extended computational power.
Thus, the problematic characteristics of distributed systems are an in-
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tegral part of the challenges associated with autonomous mobile robot
applications.

Device and environment dependency. Algorithmic solutions for robotic
problems are heavily dependent on the properties of the physical devices
that are controlled or deliver sensory information. An algorithm for obsta-
cle avoidance reliably working on a robot running at 1m/s and accelerat-
ing/decelerating with 1.5m/s2 is unlikely to work with 2m/s and 0.5m/s2

deceleration without major adjustments on the sensory side. This could
even include adaptations of the visual attention control to recognize ob-
stacles earlier. Algorithmic solutions therefore not only need to precisely
model their physical dependencies for their flexible application. The sys-
tem as a whole also needs to be flexibly adapted to the requirements of
and interdependencies between its various modules.

Stochastic properties of the physical world. Robot experiments and ap-
plications in the physical world have to deal with its stochastic properties
that make it impossible to guarantee a deterministic outcome. Robot
sensor data is noisy and for instance lighting conditions are not control-
lable in an outdoor scenario. Additionally, many important parameters
of the environment vary over time. This has various implications for the
design, implementation and evaluation of software within this domain,
as the gathering and processing of sensory information has to model its
stochastic nature and the experimental evaluation needs to take the non-
deterministic properties into account.

Real-time constraints. A robot acting in the physical world needs determin-
istic response times of various subsystems in order not to endanger others
or himself. The admissible response times and jitter do not usually lie in
the area of hard real-time performance. Nevertheless, tasks like obstacle
avoidance require the system to satisfy at least soft real-time capabilities.
In such reactive control tasks, the right answer delivered too late becomes
the wrong answer, and most of these control loops run with a pace of 5Hz
to 50Hz.

Resource constraints. Apart from the usual constraints on a computer’s re-
sources such as the available processing power or physical memory, a robot
has additional resource limitations. Actuators can only have one physical
state, so concurrent requests from multiple modules of the system need
to be arbitrated. And while sensory information can easily be replicated
for use by multiple sub-systems, these systems still have a maximum fre-
quency at which new sensor readings can be sampled.

A software architecture that does not provide sufficient support for the man-
agement of the intrinsic difficulties of the robotics domain force the application
programmer to cope with these problems in the limited scope of the program
domain. This leads to a limited generality of the solutions, a frequent ad-hoc
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reinvention of the wheel, the heavy use of heuristic solutions and proliferation
of inadequate evaluation and assessment, especially of the resulting solutions.

This thesis covers research on how to address these domain characteristics on
the level of a system architecture. This form of central management will make
it possible to solve the general difficulties inherent in the domain from other
aspects of the application.

2.4 Environments for Robot Software Development

Various architectures for programming robot applications currently exist. Most
commercial robots come within their own proprietary robot and control pro-
gramming environment. In the last five years various projects have been started
that address the challenge of providing more sophisticated cross-platform envi-
ronment in order to resolve different issues like portability and real-time control.
In this section an overview of the most relevant projects in this area will be
given.

2.4.1 Commercial Vendor System

A typical commercial robot software environment supports only the robots from
one manufacturer. Two prominent typical representatives of such environments
will be covered in this section.

Saphira

Saphira [1, 62] is the software development environment delivered with the Pi-
oneer mobile robot family. Its core is a C library for accessing the controller
board. By using the Saphira library, the programmer implicitly imports el-
ements of a particular robot control architecture, including mechanisms like
state reflection (a kind of implicit communication between client programs and
server), data structures like a Local Perceptual Space (LPS) and a Global Per-
ceptual Space (GPS), a fuzzy control-based behavior specification language,
and Colbert, a language for reactive control [64]. Saphira lacks location trans-
parency, and when integrating hardware from other manufacturers (vision sys-
tems, manipulators), the programmer must carefully synchronize the communi-
cation of client programs with add-on hardware with the basic Saphira control
loop.

Mobility

Mobility is a distributed, object-oriented software development framework for
the B21r/B14r family of robots by RWI [98]. It scales well with respect to user
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interaction, client libraries for visualization and remote access of sensory infor-
mation. Client libraries are available in C++ as well as in Java. On the other
hand, Mobility lacks conceptual support for robot control. As a manufacturer-
provided package, it is only available for mobile platforms provided by its man-
ufacturer. Since not even our old B21 robot was supported by Mobility it could
only be evaluated by investigating its documentation and header files.

Mobility also exposes another problem of vendor-supported robot libraries: even
though RWI followed a rather liberal policy in opening up their source for
scientific researchers, Mobility vanished with the buyout of RWI by Evolution
Robotics in 2002.

2.4.2 Research Architectures

Due to the limitations of vendor-provided environments, some groups of re-
searchers started to invent their own architectures. The most successful of
these are actually an Open Source community project. These robot software
architectures usually support robot platforms from several different manufac-
turers and are designed to address different aspects of the application domain’s
problem set.

Player/Stage

The Player/Stage project was started in 1999 and aims to provide standard
APIs for autonomous mobile robots, the Player Abstract Device Interfaces
(APDI) [36]. The project consists of two components. One is the Player soft-
ware, which provides client/server interfaces for robot devices [143]. It supports
several commercial robot platforms such as the RWI B21r robot and the Active
Media Pioneer series. The other component is Second Stage, a 2D simulator
able to provide virtual robots offering Player interfaces for multirobot systems
research [37]. A 3D simulator named Gazebo is also under development. The
Player project probably has the biggest user base of the projects discussed here.

The Player project omits OO-techniques and middleware technology for the
sake of simplicity. The device abstraction model is based on the simple se-
rial device API of read/write/ioctl [31] and does not reflect the inherent asyn-
chronicity of message-based low-level controller communication. It does not
even support event-demultiplexing based on the UNIX select() function. The
servers provide TCP/IP based socket interfaces, lacking the type safety and
scalability of modern middleware technology and missing all possible optimiza-
tion opportunities for colocated clients and servers. They also lack support
for sensor-driven event-based communication as the architecture is targeted to-
wards robotic applications with moderate timing constraints. But this tends to
introduce unnecessary and avoidable latencies to a core system design. Add-on
libraries provide object-oriented wrappers for the low-level communication links
on the client side.
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OROCOS

The acronym OROCOS actually stands for two related projects, both for the
“Open Robot Control Software” and for “Open Real-time Control Services”.
The OROCOS project was also started in 1999 and pursued similar goals as
the Player project, but it was targeted at real-time-oriented robot control [16].
Thus, it provides a real-time kernel for low-level control for devices ranging from
PID servo controllers to robot arms [17] and a software framework for robotic
control software development.

The integration of a middleware-based communication infrastructure for higher-
level autonomous mobile robot control is a stated project goal, but all attempts
to do so led to different, non-interoperable projects, which will be discussed in
the next two subsections.

SmartSOFT and OROCOS::SmartSOFT

SmartSOFT is an early attempt to introduce modern software technology such
as object orientation and component-ware into robotics application develop-
ment. It provided object-oriented interfaces for the sensors and actuators of
the B21 robot and templates for the implementation of typical communication
patterns identified in robotic applications [107, 105]. The software framework
was structured after the classical 3T architecture and also provides modules for
task decomposition and localization [106]. SmartSOFT was developed further
in the OROCOS project and became OROCOS::SmartSOFT.

The project was based upon the original B21 control software BeeSoft and its
message-based proprietary communications infrastructure TCX [30]. Later ver-
sions also use CORBA as their communications infrastructure. As most of the
identified communication patterns such as one-way communication (commands
in their terminology), synchronous and asynchronous queries and publisher/-
subscriber protocols are not exclusive to robotic applications, they have recently
become available in modern standardized communication middleware architec-
tures. CORBA, for instance, offers specialized communication technologies with
an advanced feature set for all patterns listed above: reliable one-ways [116],
synchronous and asynchronous method invocation [23], and the Notification
Service [41].

OROCOS@KTH and Orca

Orca, previously called OROCOS@KTH, is a component framework for au-
tonomous mobile robots [92, 12]. Components are software entities with a suf-
ficiently strict definition of interfaces and their semantics, which allow for their
flexible use and interchangeability. A component framework provides the neces-
sary support to deploy, configure and initialize components within a system and
link their communication ports to form a modular, highly configurable system.
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Orca uses an XML-based specification language to describe the configuration
and initialization of such a component system.

Component approaches are a highly relevant concept for improving the modu-
larity of robotics software. Several component models such as Enterprise Java
Beans, the .NET architecture, or the CORBA Component Model (CCM) are
currently available. However, there are several unsolved challenges as regards
defining generalizations that could be implemented as interchangeable com-
ponents. Additionally, Orca refrains from committing itself to any concrete
transport protocol, thereby aiming to provide additional flexibility. This means
that the communication needs to be implemented by hand instead of being
generated automatically from the interface definitions.

Distributed Robotics Framework

The robotics research group at the department of electrical and computer en-
gineering at the University of Auckland, New Zealand also conducted research
in the area of robot software architectures. Their distributed robotics frame-
work features a CORBA-based design similar to the Miro system. Woo et al
proposed a three-tier software infrastructure based on CORBA and designed
around the CORBA Trader Service [150].

Lately, these researchers have been focusing on the application of real-time
features of CORBA to improve the reactivity and predictability of the response
times of autonomous mobile systems. Kuo and MacDonald proposed using RT-
CORBA features to ensure predictable response times for high-priority tasks
within a distributed robot control architecture. In [73] they show how the
proper prioritization of system tasks can ensure the end to end quality of service
(QoS) requirements in a distributed robotic application.

CLARAty

The Coupled Layered Architecture for Robotic Autonomy (CLARAty) is being
developed at the Jet Propulsion Laboratory (JPL) and the Carnegie Mellon
University (CMU) as a common platform for controlling rover platforms as
used in space missions to Mars [91]. They revert the classical 3T architecture
consisting of a functional, an executive and a planner layer, in favor of a two
layer architecture which divides a robot application into a functional and a
decision layer. Additionally, a set of functional components for mobile robot
systems are provided [146]. A major challenge addressed on the functional
layer is the design of a locomotion system that generalizes the different steering
capabilities of the different planetary rover platforms.

The architecture is implemented in C++ for the real-time operating system
VxWorks and for Linux. It uses a client/server approach for separating the
decision and the functional layer, but no higher-level standard communications
infrastructure is used.
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Marie

Marie is a fairly new project that addresses rapid prototyping for autonomous
mobile robot applications [21]. On the system level, its developers propose the
mediator pattern for integrating complete software modules. On the higher
level they illustrate how graphical tools like the RobotFlow/FlowDesigner, a
flow control tool originated in the DSP domain, can facilitate the programming
of robot software applications.

The attempt to integrate existing implemented solutions directly instead of
proposing yet another architecture for integrating components for complex au-
tonomous mobile robot applications is very promising, but also exhibits limited
applicability for various application scenarios. The communications adapter, for
instance, might introduce additional latencies to the sensor processing, which
severely limits the quality of available sensory information in highly dynamic
environments. A centralized adapter also represents a potential bottleneck in
the inherently distributed environment of robotics applications. The high-level
tools discussed here primarily rely on a synchronous data processing model,
driven by the pull model of querying sensor information. This concept is fairly
limited when it comes to handling the complexities of the various concurrently
executing sensory, cognitive and actuatory processes that run on the different
modules and components of a complex autonomous mobile robot application.

LAAS robot software repository

In [3], Alami et al document the task of integrating a demonstration from
scratch on a newly obtained mobile platform within 40 days. They utilize their
LAAS architecture [2] for an office navigation scenario. Even though most of the
tools’ functionalities are located on a higher control level as currently provided
within Miro, this work nicely documents the potential for generalization and
code reuse within the mobile robotics domain. The LAAS laboratory also tries
to open up their sources for reuse by the community. But due to the original
closed source design of their projects, there are significant difficulties involved
in the process and the different libraries and APIs currently present themselves
as unrelated modules.

2.5 Assessment of Robot Software Development

Over the last two decades, significant progress has been made in the field of
software engineering with respect to mastering the challenges of modern ap-
plication development. Autonomous mobile robot applications impose severe
difficulties which exceed those in many other application domains. Nevertheless,
most available software environments for robotic application development show
significant deficiencies when it comes to modern programming abstractions and
programming paradigms.
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Multi- Availa-
Platform

Comm. RT
bility

High Level Features

Saphira - - - com.1 control language
Mobility - CORBA - com./-2 -

Player X proprietary - OS3 obstacle avoidance, navigation
OROCOS X - X OS RT control
SmartSoft X prop./CORBA - OS communication patterns

Orca X(?) open - OS component framework
Aukland X/ - CORBA - / X - RT communication

CLARAty X4 proprietary X -5 task control mission planning
Marie - open - OS interoperability
LAAS X - - OS6 deliberative planning

Table 2.1: Properties of commercial and research software architectures for
autonomous mobile robot programming.

This has become a bottleneck in the development of autonomous mobile robot
applications and hinders both the integration of further research disciplines and
the use of new technologies that are needed to master the challenges of future
robot application scenarios. Thus, robotic software tends to scale badly in the
areas of project growth, performance, reliability and maintenance.

The growing number of projects on robot libraries and robot device servers
shows the community’s increasing awareness of urgent need to address defi-
ciencies in current robot software development. As summarized in Table 2.1,
the related work discussed in the last section features some common capabil-
ities, but they diverge in the provided higher-level features. Research in this
area covers very different aspects such as generic low-level control, real-time-
related research, large scale system integration and higher-level control. The
software architectures partly differ due to the targeted application domain, for
instance RT control targeted by OROCOS vs. indoor navigation targeted by
Player. Others deliberately provide different approaches for addressing similar
higher-level robot applications such as the closely coupled two-tiered approach
of CLARAty vs. the classical deliberative 3T architecture of LAAS.

Currently, not a single standard software architecture for autonomous mobile
robots exists. There is also still no consensus on how exactly such an archi-
tecture should look. One reason for this certainly is the fact that the field
of autonomous mobile robots is still evolving too rapidly to be able to define
the requirements of tomorrow’s robot applications precisely enough. Therefore,
identifying the concepts and technologies which provide most valuable benefit
for autonomous mobile robot software architectures and evaluating their appli-
cability are still unsolved research problems.

1Commercial
2No longer available due to buyout
3Open Source
4Proprietary research platforms and planetary rovers from various labs
5Announced for open source release
6Not a complete package



Chapter 3

Miro Architecture and Design

This thesis discusses the design and application of a distributed object-oriented
robot software architecture. The fundamental design goal of such an architec-
ture is to make the development of mobile robot applications easier and faster,
and to foster the modularity, portability, reusability, scalability, and maintain-
ability of robotics applications. The core idea of the design of Miro is to ad-
dress the challenges of autonomous mobile robotics as an application domain
by means of a flexible and scalable middleware-oriented software architecture.

Therefore, the requirements for this software architecture are twofold. On the
one hand, it needs to be portable, reusable, scalable, and maintainable in order
to provide a solid infrastructure for software development. On the other hand,
the design of the architecture needs to address the reusability and scalability
challenges associated with robotics applications that use this architecture.

The research on this topic is exemplified and evaluated in the Miro project.
Miro generically supports robotic applications with the peculiarities of the ap-
plication domain and separates them from other research problems targeted by
roboticists. Instead of providing another complete model for autonomous mo-
bile robot control, we follow a middleware-oriented design, providing extensible
abstractions for robotics software development. The architecture is therefore
organized into four interdependent layers that reside between the bare operating
system and the application. The thesis especially focuses on how the proposed
architecture provides support in mastering the aforementioned challenges of
robotics as an application domain.

In this chapter, the design of the Miro architecture will be introduced. First,
the basic requirements as well as the design principles of the architecture will
be discussed. Afterwards, the general idea of middleware technology, as well as
the actual design decisions of layering will be sketched and design aspects that
target specific issues of robotic software development will be highlighted.
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3.1 Requirements and Design Goals

From the related work covered in Section 2.4, a number of basic requirements for
a robot software architecture can be derived. They address the applicability of
the architecture for different scenarios as well as its portability and reusability.
The superset of requirements identified by the majority of related research
projects as listed in Table 2.1 reflects the consolidating design issues of robotics
software architectures, but does not address the second question of how to
propagate the reusability and scalability into the actual robotics applications.

Distributed systems design. The software architecture should provide a care-
fully designed set of interfaces for communication between objects and
for communications transparency, i.e. the programmer should not need to
worry much about where objects are actually allocated and which com-
munications protocol he needs to apply. Single robot and multi-robot
applications should be treated equally.

We suggest to adopt a client/server view at least for larger modules of a
robot control architecture: the modules, implemented as objects, provide
services to other modules (objects) through a set of interfaces. Most
modules of an application fulfill both the client and the server role, albeit
for different subsystems, using the services of sensor objects as clients and
providing services to actuator objects as servers.

Multi-platform support and interoperability. The applied software tech-
nologies should be available on a wide range of hardware platforms and
common operating systems. The use of different programming languages
for implementing different modules should be supported without requiring
much extra overhead cost for integration.

Real-time orientation. Even though classical robot scenarios like indoor nav-
igation typically have very lax timing constraints, the reactivity and de-
terministic response times become an important issue in highly dynamic
environments and have to be solved for robotic applications that need to
perform safely in natural environments.

Open development model. Considering the immense spectrum of different
hardware and software components used in mobile robot systems, adopt-
ing an open architecture approach including availability of all source code
seems indispensable. Only if applications programmers can access, mod-
ify and fine-tune all components of the software environment can the
integration of a heterogeneous set of hardware and software components
be successfully accomplished. Also, integration of new hardware devel-
opments and new computational methods developed in ongoing research
usually can be achieved much more easily and quickly, if all source code
is available for inspection, reuse and debugging purposes.

Modularity, reusability, stability and efficiency are major building blocks for
scalable, maintainable high-quality software applications. In order to achieve
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this in robotics, it is necessary to apply, extend and exploit the software tech-
nologies and concepts that target software development for large-scale applica-
tions. Such technologies are currently missing in commercially available robotic
software architectures. The approach taken in this thesis is to provide generic
support in the form of a robotics middleware for such non-functional aspects of
robotics applications. This goal is reflected in the design principles of Miro.

Object-Oriented Design: The software architecture should be designed us-
ing thoroughly the object-oriented paradigm. Object-oriented concepts
like information hiding, name spaces to prevent naming ambiguities when
using multiple mutually independent libraries, exception handling to sep-
arate normal program control flow from error recovery, abstraction, type
polymorphism, and inheritance can all significantly contribute to improve
the design and implementation of mobile robot software when applied
deliberately and consistently.

Suitable abstractions: A major goal for a successful design is to define suit-
able abstractions for the different (physical) devices of the various robots.
They need to precisely model their properties while at the same time
provide generalizations that allow for their abstract usage by client appli-
cations.

The object-oriented paradigm permits a clean abstraction of sensor and
actuator subsystems as well as low-level system services like communi-
cations, and provides a uniform interface design. A suitable level of ab-
straction from low-level system details may be a key element in attaining a
better understanding of how to integrate a significant number of different
hardware devices and computational methods.

Employment of existing technologies: Reusability and scalability of soft-
ware is often enhanced by actually reusing existing solutions. Therefore,
the application of existing software technology is favored over the rein-
vention of functionality specialized for the target domain. Necessary cus-
tomizations for the target domain actually provide valuable feedback for
the development of such base technologies.

Actively targeting the integration of additional methods: Autonomous
mobile robot applications require the integration of solutions from vari-
ous other research disciplines such as computer vision or neuroinformatics.
But the robotics domain, in turn, imposes severe additional constraints
on solutions from other research disciplines. Therefore, the application
of such methods requires active support from the infrastructure of the
application domain in order to actually become applicable.

Generalization and scaling of existing robotic core functionality:
Various solutions for many of the classical robotics problems such as
reactive control or localization do actually exist. It is not the goal of
the proposed design to select one apparently best suited solution for
exclusive application. Instead, the goal is to provide an infrastructure
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that supports a generalized, common view on the problem domain
and is applicable to different solution approaches. The design on such
generalizations should be focused on improving the scalability and
reusability of applied solutions.

Flexible Integration of User Interfaces: A commonly underestimated
problem in mobile robot research is the development and use of suitable
user interfaces for various tasks. The task-oriented user interface for
end users interacting with the robot requires careful design in order
to avoid compromising the robot’s autonomy and integrity. People
operating and supervising the robots need interfaces for monitoring its
operational state, while programmers may need even further internal
state information for debugging purposes. These user interfaces might be
activated only occasionally or under special circumstances. Nevertheless,
their effect on the runtime performance should be limited, and the
architecture should support the programmer in meeting this goal.

3.2 Middleware

The acronym Miro, which denotes the software project implementing the so-
lutions identified and discussed in this thesis, stands for “The Middleware for
Robots”. Instead of providing a complete model for a robot control architec-
ture, we propose a middleware-oriented design, that provides abstract, flexible
services and required functionality for the robotics domain without restricting
roboticists in their choice of solutions for the various sub-domains of an appli-
cation. The term middleware mostly denotes a software layer between the bare
operating system and the applications that provides application-independent
functionalities beyond what a usual operating system (OS) would support.
Wikipedia defines middleware as follows:

In computing, middleware consists of software agents acting as
an intermediary between different application components. It is
used most often to support complex, distributed applications. The
software agents involved may be one or many. [148].

The term middleware is often used as a synonym for distributed systems mid-
dleware as defined by the ‘Internet 2’ architecture. But apart from distributed
systems middleware other application domains also establish their own middle-
ware frameworks. A central goal of middleware is to hide the intrinsic complex-
ities of the necessary infrastructure from the applications [148]. There is also
growing interest in the integration of non-functional properties such as fault tol-
erance, response times, security and scalability into middleware technologies.
It has become evident that support for these characteristics of an application
relating to “Quality of Service” (QoS) can often be efficiently managed by a
middleware layer.
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Figure 3.1: The Miro architecture. The Miro device layer provides abstract in-
terfaces for specific platforms. The Communication and Service layers achieve
platform-independence, network and location transparency. The Miro frame-
works provides reusable designs for generic robot control functionality.

3.3 Architectural Layers

To further structure the various aspects of functionality required from a robotics
middleware, Miro is structured into four interwoven architectural layers that
reside between the bare OS and the robotics applications (see Figure 3.1). As
illustrated in the figure, robotic applications only interact with the two upper
layers and can also use the infrastructure provided by the communication and
configuration layer, but the low-level details of the robot’s sensor and actuator
devices are hidden from the application programmer in the device layer. The
four layers address different problems of the application domain that were iden-
tified in Section 2.3 for meeting the requirements and design goals defined at
the beginning of this chapter.

3.3.1 Hardware Abstraction

The Device Layer addresses the problem of the extreme heterogeneity in the
hardware of robotics devices by providing object-oriented interface abstractions
for all sensory and actuatory facilities of a robot. This is the platform-dependent
part of Miro. As the reuse of code is difficult in a programming environment
tightly bound to the individual hardware, conceptual reuse on this layer is prop-
agated by a pattern-oriented approach. This device layer-wraps the message or
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package-based communication links to the microcontroller boards (serial link,
Can bus, IEEE 1394, etc.) into classes to provide appropriate abstractions for
interaction with the service layer. At this level the asynchronous nature of the
low-level communication protocols is not yet hidden by the interfaces and can
be exploited for higher efficiency. Also, the application of the reactor pattern
circumvents multi-threaded polling of devices [108]. To the service, layer the
device layer provides a synchronous view of the data flow, using the half synch
half async pattern [109] for shielding most of the inherent concurrency in low-
level device processing from the higher layers of the architecture. The device
layer will not be discussed in more detail here. Further information can be
found in [133].

3.3.2 Infrastructure

The Communication Layer addresses the inherent distributedness of robotics
applications by offering a network transparent and programming language inde-
pendent communication infrastructure, which allows strictly typed communica-
tion in a distributed environment. For this purpose a consolidated distributed
computing technology, an open source implementation of CORBA, is employed
[111]. CORBA offers a rich set of features that are pre-configured and cus-
tomized on this layer for simplified use in the application domain. For this
purpose the communications infrastructure was carefully assessed and appro-
priate services were selected for extended use within Miro. The infrastructure
layer provides both the pull as well as the push model of communication. Addi-
tionally, bottlenecks in the communication, as they arise within every concrete
setup, are addressed on this layer.

A second important aspect is addressed on this layer. Complex distributed ap-
plications, especially in the context of robotics, require extensive configurability
and parameterization of the various modules within the system to provide the
expected flexibility as reusable components. On the other hand, large parameter
sets allow for another source of subtle and hard to trace errors, namely config-
uration errors, that can jeopardize the reliability of the resulting application.
This problem set is addressed in Miro by a parameter description language that
allows for a generic, extensible definition, use and initialization of application
parameters. It is used for automatic code generation for the target program-
ming language (C++) as well as by different GUI-based tools that support the
development process. The communication and configuration infrastructure will
be discussed in Section 4.

3.3.3 Services

The Miro Service Layer provides service abstractions for sensors and actuators
to overcome the of robotics solutions’ dependencies on the concrete physical
devices by decoupling them through a client/server-based design. On this layer,
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the sensors and actuators are therefore modeled as components with network-
transparent, platform-independent interfaces. The programmer uses standard
distributed systems technology to interface to any device either on the local or
a remote robot.

To ensure consistency in the access of abstract robotics devices, a set of required
functionality for sensors and actuators has been identified that is to be provided
by the service interfaces. The abstraction from the individual properties of the
physical devices is especially supported by two design concepts: metainforma-
tion provided by interfaces allows client applications to adapt to the properties
of an individual device, and interface hierarchies allow to interface to robotics
devices on different levels of abstraction. The various design aspects of different
service types are discussed in Section 5.

3.3.4 Extensible Frameworks

The higher-level Miro Class Frameworks provide a number of often used func-
tional modules for mobile robot control such as video processing, behavior gen-
eration, and self-localization. They provide generalizations of existing robotic
core functionalities and can be easily extended to the needs of individual robot
applications. The higher-level frameworks export their functionalities as ser-
vices to other modules of an application by the use of the communication layer.

Frameworks provide extensible modules of reusable code and reusable design
for the development of applications. Their integration into a middleware-
oriented, multi-platform robot software architecture facilitates the development
of reusable client applications. Their goal is to provide support for the generic
problem set of the application domain, allowing the application programmer
to focus on functionalities provided by the respective module targeted by the
framework. Thus, the frameworks address the problem of how the requirements
for reactivity and response times are met by managing the control flow and or-
ganizing the data flow in the sub-domain of the application. They also assist
in the handling of resource constraints of robot devices by providing sensor-
triggered evaluation models and arbitration methods for concurrent actuator
access. The most prominent class frameworks are discussed in Section 6.

3.4 Miro Support for Real-time Processing

As autonomous mobile robots operate in the real world, real-time constraints
are an issue in modern robot control architectures. The requirements of timing
awareness vary greatly in an autonomous system. Hard real-time (i.e. guaran-
teed) response times in the range of a few µ-seconds are only needed on rare
occasions for state of the art autonomous mobile robots. This concerns mostly
actuator controllers and can usually be restricted to microcontroller boards or
encapsulated in an RT-control kernel.
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Motor commands need to be processed with low latencies and sensor data such
as distance information has to be available with little jitter to ensure safe op-
eration in dynamic environments. But these requirements on response times
currently only lie in the range of milliseconds, since the maximum speed of au-
tonomous mobile robots usually is only a few meters per second. For example
if the reactive control loop of a robot running at 3 m/s is delayed by 10ms due
to OS latencies, the stopping distance will be prolonged by 0.03 m. On the
other hand, the controllers’ setpoint can often be altered to a much lower rate,
typically to between 30 ms to 100 ms. These response time requirements can
be met by modern general-purpose operating systems, if properly supported by
the robotics middleware [110].

Real-time constraints need to be met on all levels of an application. Therefore,
several points on the different layers of Miro were identified, where the software
architecture was able to facilitate the fulfillment of response time requirements
and improve the reactivity of its applications.

• On the device layer, all incoming sensor data is time-stamped and these
stamps are propagated to the sensor service implementations. This allows
to properly align different sensory sources and to compensate for latencies
introduced by sensor processing (e.g. image processing). The accuracy of
such time-stamps is improved by carefully applying real-time scheduling
and thread priorities to the low-level device handlers.

• The communication layer can improve the adherence to real-time con-
straints by the use of middleware technology aware of real time and qual-
ity of service (QoS) such as RT-CORBA for prioritizing the processing
of service interfaces. These features of the underlying implementation
of CORBA are currently not used within Miro. The application of this
technology within robotics applications is limited by the lack of quality of
service (QoS) features in current wireless network technology (WLAN) as
used in teams of autonomous mobile robots. WLAN even exhibits large
variations in bandwidth, which make it almost impossible to reliably stay
within a low network traffic situation where acceptable network latencies
could be provided. Miro approaches this issue in the context of team
communication on the communication layer.

• Sufficiently quick processing of sensory information favors a push model
of communication. Otherwise, a prompt reaction on new input data re-
quires excessive polling or frequent context switching to the various wait-
ing threads of control. The Miro architecture therefore requires for sensor
services to not only support the pull model within their interfaces, but to
also actively push sensory information as it becomes available.

• Higher-level frameworks are critical for ensuring the reactivity of an appli-
cation and the adherence to reactivity constraints. As these are designed
to be extended by the application developers’ code, it is almost impos-
sible to assess these properties a priori without severely restricting the
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applicability of such frameworks. On the other hand, the very nature
of class frameworks offers capabilities to facilitate the preservation of re-
sponsiveness and to allow for prioritized processing as well as for generic
performance assessment of end user applications.

3.5 Miro Support for Development

Integrated development environments (IDE), built systems like autoconf and
automake or version management systems like CVS are essential for managing
the software development process of large-scale applications. Robotic applica-
tions need additional tools to speed up development and prototyping of robotic
applications. It is part of the task of a robotics software architecture to of-
fer thorough development support and to help to prevent where possible the
subtle, hard to find, fatal or at least tedious errors that eat up development
time and take their toll on the roboticists’ nerves. In order to meet this goal,
Miro offers a set of GUI-based end user tools, that lower the bar for beginners
and speed up the development and debugging process by preventing avoidable
errors and facilitating the inspection and understanding of runtime processes
(also see Section 7).

3.5.1 Assessment, Adaptation and Learning

The inherent non-determinism of the environment, the robots’ mobility and the
physical dynamics of the environment have related implications for the devel-
opment process as well as for the methodology used within the applications.

Debugging, testing and evaluation of software always is difficult. But robotic
applications face additional problems in this respect due to the nature of this
application domain. The environment is inherently non-deterministic, the robot
moves, and the physical dynamics of the environment are also part of the prob-
lem domain. This makes it very difficult to reproduce occasional failures in the
system for closer inspection or to assess the interactions of the robot with its
environment in detail. This requires empirical evaluation of robotic applications
based on large amounts of data retrieved in real-world experiments.

The ubiquitous presence of sensor noise and the high variability of sensory ob-
servations from the same object (e.g. in images taken from different sides) call
for the application of statistical and neural methods for information process-
ing. Also, the abilities to learn and adapt are considered to be key factors
for successful robot applications, especially in natural environments. (The ac-
tual application of neural methods for robots in highly dynamic environments
cannot be covered in this thesis. Interested readers might refer to [80, 60].)

A crucial feature in supporting robotic applications with these problems is the
availability of technology for convenient sensor data acquisition and logging
from experiments that can be used for assessment, system adaptation and the
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training of learning algorithms. Therefore, Miro provides sophisticated logging
facilities that allow to store complete traces of the robot’s sensory and actuatory
processes. Along with appropriate tools for replaying and visualization, they
allow to carefully inspect the system’s internal states during an experimental
run.

3.6 Summary

In this chapter, important design issues for robotics middleware were discussed.
The identified requirements ensure the software architecture’s reusability with
and applicability to different robot platforms and the fulfillment of the require-
ments imposed by various scenarios. The formulated design goals target the
reusability, scalability and maintainability of modular client applications.

In order to not restrict developers in the design of an overall model of robot
control, a middleware-oriented design was chosen for the software architecture.
The proposed Miro architecture provides four layers of functionality that lie
between the bare operating system and the client applications. These provide
libraries for creating abstractions from the low-level interaction with micro-
controller boards, a standard-based communication infrastructure, sensor and
actuator abstractions with network-transparent interfaces and class frameworks
for the implementation of scalable and reusable modules of typical robot func-
tionalities.

Additional aspects identified for the applicability of the architecture are the
awareness of the real-time constraints present in more advanced robotics sce-
narios, the availability of tools that support the development process, and ca-
pabilities for assessment, adaptivity and learning from experimental real-world
data.



Chapter 4

Miro Infrastructure Layer

The communication and configuration layer of the Miro architecture is the low-
est layer visible to the applications programmer. It is the least robotic-centered
layer of Miro. Important infrastructure for the programming environment has
been provided and the applied technology has been configured and adapted for
the use in this application domain.

Communication is a central issue in a distributed environment. Sophisticated
solutions for distributed computing exist, but the feature set provided by these
solutions needs to be carefully assessed for its applicability within the robotics
domain. The related work discussed in Section 2.4 provided multiple examples
for the use of CORBA. But these projects differ in its configuration as well as in
their use of the provided CORBA services. Furthermore, different philosophies
about the visibility of CORBA technology to the application developer exist.
The mapping of CORBA IDL to C++ does not represent the state of the art in
C++ design and could be vastly improved [117]. Nevertheless, it defines a well
documented API with consistent semantics. Therefore the infrastructure layer
discussed here does not provide wrappers. They can shield the application
developer from some of the complexity, but they can also limit him in his
possibilities for using the infrastructure. Instead, we concentrated on a good
default configuration and a set of helper classes that facilitate the initialization
process.

Configurability is an important aspect of large-scale application design. Com-
ponent frameworks are developed to manage the entire lifecycle of the different
parts of an application such as the instantiation of components and the ini-
tialization of communication connections between components. However, Miro
does not make use of a full featured component architecture. Implementations
of the CORBA component model (CCM) [115] were not available when the
project was started and available component architectures like Enterprise Java
Beans [10] did not provide the required generality (i.e. programming language
transparency). Nevertheless, Miro incorporates many aspects of component-
based application design. While the idea of interchangeable components is ap-
pealing, it is an open question how sensor and actuator devices can be defined
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abstract and yet precise enough to be interchangeably used by robotics algo-
rithms such as obstacle avoidance or environment mapping. From a low-level
perspective, parameterization is a key factor for the flexible reuse of imple-
mented components. Therefore, the software architecture provides an infras-
tructure for efficient, flexible and extensible parameter management.

In this chapter the infrastructure provided by Miro will be introduced. The
communication and configuration facilities are discussed in detail. In addition,
important third-party toolkits and their provided functionalities will be briefly
sketched.

4.1 Communication Infrastructure

Robotic applications are inherently distributed. While this is fairly obvious
for multirobot scenarios, a single robot also often contains multiple on-board
computers to increase processing power, or parts of the computing may be
sourced out to workstation computers. Also, in the age of Bluetooth, WLAN,
and wireless ad hoc networking, users expect to communicate with a robot
through their personal digital assistant (PDA) or mobile phone. This makes
the appropriation of scalable, network-transparent communication facilities a
central issue. For this purpose, a type-safe high-level protocol is necessary to
keep the communicated data easily accessible and prevent subtle programming
errors that are hard to trace through a heterogeneous distributed environment.
It also facilitates adjustments to the communicated data structures as needed
during development.

Early robot control architectures introduced lightweight but proprietary and
very poorly scalable messaging protocols like TCX [30], or IPC [120]. Addi-
tionally theses have failed badly in providing compile time type checking and
runtime type safety. Therefore, instead of developing proprietary solutions, the
design of Miro is based on existing distributed systems technology. Distributed
middleware is an active research topic of a large scientific community and mul-
tiple powerful solutions for this domain exist. Distributedness is a central as-
pect of the application domain. So it is doubtful that a proprietary solution
would actually allow to do without much of the structural overhead introduced
by a full featured middleware in the long run. Miro uses distributed object
computing (DOC) middleware, namely the Common Object Request Broker
Architecture (CORBA) as part of a robot software architecture. Therefore,
important concepts of distributed systems middleware and different available
DOC technologies will be discussed in this section.

4.1.1 Distributed Systems Technology

A DOC middleware is usually divided into two parts: firstly the technical frame-
work that provides the communications infrastructure, and secondly a set of ser-
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vices that is implemented using the technical infrastructure and that supports
basic generalized tasks needed for making effective use of the infrastructure.

Most state-of-the-art middleware provides an object-request-broker-based (ORB)
communication model and adheres to the stub/skeleton paradigm. ORB-style
middleware allows to invoke methods on an object across the network in a
client/server model. For this purpose, the stub, a proxy object, resides in the
client’s address space. It offers the same interface as the remote server. The
client invokes the operations of the stub and the stub handles the actual com-
munication with the remote server. The skeleton handles the communication
on the server side and invokes the corresponding method on the remote object.
The matched pair stub/skeleton is automatically generated at compile time or
at runtime by the middleware technology used [15].

Various middleware technologies currently exist. The most important ones
today are probably CORBA, Sun’s Java/RMI and Microsoft .NET. These mid-
dleware technologies offer a similar set of functionality but differ in the types
of scenarios they are aimed at.

Java/RMI is heavily centered on the Java programming language and therefore
lacks interoperability. The Microsoft .NET technology is very new. It does
not yet address issues of application environments with real-time constraints.
Also, the XML-based representation of communicated data produces undesir-
able bandwidth and runtime overhead. Therefore, CORBA was selected as the
DOC technology for the Miro project. For an extensive review and comparison
of the various distributed systems technologies and their application in robotics,
please refer to [15, 72]

4.1.2 Service Interfaces

To overcome location and programming language dependencies, all of Miro’s
interfaces for sensor and actuator services have been designed as network trans-
parent CORBA objects, which can be accessed in any language and from any
platform for which language bindings are defined and an ORB implementation
is available. This enables the seamless integration of high-level robot control
subsystems like Lisp-based planners or Java-based user interfaces as demon-
strated in [35]. This in itself solves the basic problem of type-safe network
transparency and language interoperability. But the setup and configuration of
the functionalities and the services provided by the DOC middleware are cru-
cial for ensuring scalability and maintainability. For this reason, Miro provides
a customized model for using the communications infrastructure provided by
CORBA in teams of autonomous mobile robots that need to communicate via
unreliable wireless networks.



32 CHAPTER 4. MIRO INFRASTRUCTURE LAYER

Pull Model

The communication primitives used for the interface design of services also
implies an intended processing model on the client side. The pull model is the
most common way of object interaction. The client side invokes a method on
an object, performing an operation such as setting a value in the remote object.

Push Model

The classical pull model does not scale well anywhere in large-scale mobile robot
applications. This is especially true for the processing of sensory information in
a time-constrained, dynamic environment. Sensors usually produce measure-
ments either on demand (bumper) or at some fixed or maximum rate (LRF,
IR). In order to avoid missing a sensor reading, the consumer is required to
either continuously poll the sensor or to wait for the next reading. When fus-
ing information from multiple sensors, this can either lead to excessive polling
or implies multiple threads and frequent context switching. Furthermore, in a
well-behaved mobile robot a bump sensor should hardly ever be pressed. Nev-
ertheless, for safety reasons no bump situation must be missed. Sometimes
the interest lies not so much on the actual sensor reading, but on a particular
event like the bumper being pressed. Therefore, in addition to the method-call-
oriented interfaces, Miro also uses the push model in the form of an event-driven
communication paradigm as a central communication method.

4.1.3 CORBA Communications Technology

The “Common Object Request Broker Architecture” (CORBA) is an open stan-
dard, developed and maintained by the “Object Management Group” (OMG)
[46]. Several commercial and open source implementations of the standard
are available [111, 14]. Additional specifications address the special needs of
specific application domains such as resource-constrained embedded systems
(Minimum CORBA [44]) and real-time-constrained environments (RT-CORBA
[113]). CORBA was selected as the DOC middleware of Miro because of its very
general design, the quality of the available implementations, and because of its
high level of configurability for the needs of different application domains, A
good technical communication framework provides network-transparent, type-
safe communication within user applications, while making the distributedness
as transparent as possible for the application developers. In CORBA, this is
achieved through a set of different entities that will be briefly sketched in the
following paragraphs. An extensive coverage of CORBA can for instance be
found in [97, 50].

The Object Request Broker (ORB) defines the abstract client/server commu-
nications environment. Every application constructs a local reference (proxy
object) of the ORB to enable communication. The different ORB proxy ob-
jects communicate with each other using a common Inter Orb Protocol (IOP).
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The default protocol used is the TCP/IP-based Internet Inter Orb Protocol
(IIOP). Other protocols can be used to exploit optimization opportunities like
the colocation of two CORBA objects on the same machine. A servant is a re-
mote object that is defined by its interface. Interfaces consist of a set of methods
with arbitrarily structured parameters. Different object instances could also be
represented by different servant implementations that support the same inter-
face. A network-transparent object reference is denoted by an Interoperable
Object Reference (IOR). An IOR is therefore a unique identifier that enables
a client to address the remote object. User data, i.e. the parameters of the
interface methods, have to be serialized when transferred to a remote server via
a network and deserialized before the invocation of the servant. These tasks are
called marshaling and demarshaling in CORBA terminology. The standardized
representation of user data is called the Common Data Representation (CDR).
The serialized data results in a CDR stream.

In order to obtain interfaces that are programming language independent, type-
safe and network-transparent, the application programmer defines the inter-
faces in the CORBA Interface Definition Language (IDL). An IDL compiler
then translates these definitions into the target programming language. Stan-
dardized mappings for various programming languages do exist, enabling e.g.
Java-based clients to call Ada-based servers. On the client side, so called stub
code is generated. This code implements proxy objects that expose the same
interface as the remote object, but merely marshal the parameters and transfer
the request through the ORB to the actual servant. Proxy objects are initialized
by being provided with the IOR of the remote servant. On the server side the
IDL compiler generates so-called skeletons. In object-oriented language map-
ping, these are virtual base classes that are invoked on behalf of a request. The
ORB hands the request to the skeleton code that performs the demarshaling
of the parameters and invokes the actual interface methods of the servant. A
servant implementation is created through a simple derivation from the pure
virtual base class generated from its IDL-based definition and it implements
the defined interface methods.

4.1.4 CORBA Services

Apart from the communications infrastructure a communication middleware
has to provide a set of basic services in order to allow the applications to make
efficient use of the provided capabilites. The CORBA standard defines the inter-
faces and semantics of a broad set of services that can be provided by a CORBA
implementation such as resolving objects by name, clock synchronization or ser-
vices for event-based communication. The two most relevant CORBA services
for this thesis are the naming service and the notification service, because they
are extensively used in Miro.
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Naming Service

The CORBA naming service [43] allows to associate an IOR with a plain text
name, allowing clients to resolve remote objects by name, much like the DNS
service that maps domain names (www.uni-ulm.de) to numerical IP addresses
(134.60.1.2). It allows to define sub-partitioning by the use of so called naming
contexts, much like subdirectories in a file system.

When a servant is created, the ORB generates a unique IOR for the object.
As the IOR encodes all information necessary to access the object by a remote
client, the IOR of the same interface implementation running on a different
machine (with a different network address) will differ. If the server registers
the IORs of objects in the naming service under a plain text name, clients can
resolve the objects’ IORs by the names agreed upon. Only the IOR of the
naming service itself needs to be known by the client on startup. This can be
held consistent over multiple incarnations of the naming service as long as it is
started on the same machine.

As the use of the naming service is mostly restricted to program startup and
network latencies are usually not critical at this early stage of the program’s
execution, Miro by default uses one central naming service instance for all
robots of a multirobot team. Thus, client applications can conveniently resolve
the IORs for all the robots’ interfaces at a central service. To easily distinguish
the interfaces of different robots in the naming service, each robot registers its
interfaces within its own naming context. The naming context by convention
denotes the name of the robot.

Notification Service

The CORBA notification ser-
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Figure 4.1: Sample sketch of the Notification
Service.

vice [41] specifies a variant of
the publisher/subscriber archi-
tecture. Publishers (suppliers
in its terminology) offer events.
The so-called consumers sub-
scribe to those events. They
then receive the events gener-
ated by the supplier through the
event channel (see illustration

in Figure 4.1). This standardized specification of a real-time event channel
is part of various CORBA implementations [111, 14]. It is a rather weighty
protocol, but it not only supports type checking through the use of IDL-defined
data structures and the type-safety of the CORBA type code system, it also sup-
ports the specifications of QoS requirements like event timeouts or asynchronous
message processing. It can also be extended to meet end-to-end quality of ser-
vice requirements such as OS thread priorities to meet the requirements of the
RT-CORBA specification [40].
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Miro uses the notification service for providing the push model of sensor-driven
processing. The general idea is that on a robot, sensor data like odometry
values or distance measurements is sampled at discrete time steps. The sensor
services publish these values through an event channel, allowing for sensor-
driven processing in the system. Higher sensory or cognitive processes can also
publish their results this way in order to distribute them to other subsystems.

4.1.5 Group Communication

Basic support for multirobot control naturally comes with a distributed robot
software development environment as provided by Miro. Small groups of robots
can address each other by exchanging the object references if their respective
sensor/actuator configurations are known. Also,sharing of sensor data can be
achieved through filtered event processing frameworks-based upon the notifica-
tion service. However, today’s wireless networks suffer from severe deficiencies
like heavily varying link quality, latency and temporary breakdowns that cre-
ate problems when used with CORBA, which uses a connection-oriented (usu-
ally TCP/IP based) transport layer by default, especially in conjunction with
the publisher/subscriber protocol. Therefore, additional support to customize
the notification service for robot group communication was designed and im-
plemented in the context of Miro in order to enhance the applicability and
scalability of DOC technology [141].

For this purpose, a service federation quite similar to the one described in [49]
(for the proprietary “RT Event Channel” of TAO) was used. Similar to their
work, an event channel instance is run locally on each robot and only the events
that are subscribed to by consumers of other robots are transferred to the re-
spective robot’s local event channel instances. This message exchange is done
by Miro’s so-called Notify-Multicast module (NMC). NMC extends the above
sketched design by properties to automatically derive the minimal set of events
that need to be exchanged between the robots in the group at runtime. NMC
builds upon a connectionless, message-based protocol that is transferred by IP
multicast. This way, network breakdowns and latencies do not block the send-
ing robot. In consequence, events can become corrupted and get lost. But the
various filter rules (such as event time-outs) applicable to the service’s event
channels also mandate to design the communication through an event channel
in the form of unrelated, atomic messages. So as messages do not depend on
each other, events from other teammates can be integrated into a robot’s data
processing as soon as the network becomes available again. The multicast tech-
nology used also significantly reduces the required communication bandwidth,
since this way every message only needs to be broadcast once instead of being
sent n times for n remote consumers.
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Figure 4.2: A federated notification channel setup. All events that are sub-
scribed by remote consumers are exchanged between the event channels.

The Set of Exchanged Events

A “NMC event consumer” subscribes for all events that are offered only locally
but subscribed by other team mates and sends them to the multicast group. An
“NMC event supplier”, in turn, listens to all events published via IP-multicast
and pushes those into the local event channel that are subscribed but not offered
locally. To keep track of the offered and subscribed message types and to
dynamically adjust the set of events that need to be exchanged via the multicast
group, NMC utilizes two fields of the standard structured event message format:
the domain name and the type name. By its convention, a message’s domain
name contains the name of the robot producing the event. The type name
describes the payload of the event. These fields are also part of the native
offer/subscription management and filtering protocol of the notification service,
so robots can easily determine whether events they offer are currently subscribed
to in the team and skip their production entirely if there are no subscribers.
To determine at runtime the minimum set of events that need to be exchanged
via the multi-cast group, each NMC module periodically (by default every 5
seconds) posts the set of requested events as well as its available offers to the
group. The minimum set can then easily be calculated by simple set operations.

Figure 4.2 illustrates a sample configuration of the notification channel setup.
Two robots (A,B) produce two types of events (1, 2), the resulting events are
{A1, A2, B1, B2}. The events in the supplier and consumer boxes denote the
offered and subscribed events. The events labeling the arrows denote the actual
flow of events. Note that suppliers and consumers can offer or subscribe for
multiple events.
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4.2 Configuration and Parameter Management

Robotic applications need to be flexible, reconfigurable and adaptable to dif-
ferent scenarios, robot platforms etc. The reuse of modules and components in
large-scale software applications usually requires the adaptation and adjustment
of a large set of parameters in order to successfully adjust the configuration, the
behavior, and the performance of the autonomous mobile system to the new
target environment. There are several sources of configuration parameters in
robot control programs and robotic algorithms

• Different robot types vary in shape and sensor configuration, but also
different robots of the same type tend to vary slightly. Some robots, for
instance, are equipped with further sensor or actuator devices not present
in the standard configuration. Also, damage and repair of a robot’s parts
during its lifetime result in an individual robot which has its own unique
configuration.

• Furthermore, the environment provides a complete set of parameters:
lighting conditions, the shape and location of rooms and corridors, the
positions of obstacles like tables or stairs. The list could be continued
indefinitely. These parameters vary between different environments, but
also tend to change slightly over time. Light bulbs are changed, cupboards
added, tables moved etc.

• A third group of parameters is defined by the task the robot has to perform
or by the scenario the robot is designed to operate in. Generalized tool
boxes like planners or knowledge bases need to be populated with the
relevant actions and objects, and a reactive execution engine needs to be
configured with information on what actions to take in which situation.

These sets of parameters can either be configured by hand, with the help of tool-
supported methods, or fully autonomously. Nevertheless, configuration remains
a crucial part of a robot’s setup for every scenario. Distributing these configu-
ration parameters over a large-scale application in an unstructured manner or
hard-coding them as constant values within the various modules can endanger
the maintainability and adaptability of the resulting applications.

4.2.1 Related Work

Most large-scale software development environments offer facilities for configu-
ration parameter management. But most of them rely on a simple ini-file based
format that only provides simple key-value mapping and a partitioning of the
configuration file into multiple sections (e.g. the KDE project, OROCOS@FAW
[105]). Typically, only helper classes for parameter retrieval are provided.

The Windows registry allows to define subtrees, keys, subkeys and typed entries
for storing configuration data for both the system and installed applications. On
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the other hand, structured or user-defined parameter types are not supported
[84].

Especially Java-based applications also use XML-based configuration syntax
[85]. The ORCA project [12] also uses an XML-based description language to
specify the configuration of their components. Nevertheless, the parsing of the
individual parameter values at program startup is supported by helper classes,
but not otherwise automated.

Generally, hardly any stringent support for the editing of parameter values by
end-users exists. The regedit for the Windows registry, for example, cannot
provide its users with the names for subkeys that are processed by the ap-
plication, but currently not present in the registry. This functionality is also
missing in most robotic software environments. In consequence, the manual
for the Carnegie Mellon Robot Navigation Toolkit (CARMEN), for instance,
explicitly states that the provided list documenting the available parameters is
probably not complete [6].

Interestingly, the KDE project recently incorporated a quite similar approach
to parameter management as discussed in the following section [100]. But it
does not provide extensibility by user-defined types as provided by the approach
discussed here.

4.2.2 Design Constraints

Providing dedicated support for configuration management not only facilitates
the adaptability of the software architecture itself. A convenient, structured
approach of parameter handling can also encourage developers to model the
parameters of modules explicitly and that way improve the maintainability and
reusability of the resulting applications.

In a time-constrained environment such as robotics, parameter management
does not have to introduce significant runtime overhead compared to hard-
coded implementations in order to be acceptable on all levels of an application.
The parameters are not unstructured sets, but structured according to the
semantics of the module’s domain. For the management of the configuration
options, this is valuable information and therefore needs to be representable.

Because of their nature, configuration parameters need to be altered frequently
and therefore need to be easily accessible. On the down side, this can also en-
danger the stability of the deployed robot, because the wrong configuration can
easily crash an application. Thus, ensuring the consistency and the syntactic
correctness of configuration files is necessary in order not to introduce a new
source of bugs which might be difficult to trace.
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Figure 4.3: Toolkit-supported configuration and parameter management.

4.2.3 Parameter Descriptions

In order to enhance the configurability and maintainability of robotics software,
a sophisticated infrastructure for parameter and configuration management was
developed. It is sketched in Figure 4.3. With the Miro parameter toolkit,
the modules’ configuration parameters are separated into so-called parameter
description files in an XML-based syntax. These allow describing parameter sets
as arbitrarily complex structures that support aggregation, nesting, data types
of variable lengths and single inheritance. A parameter description can specify
properties such as its default value, the represented measure, or a verbatim
description of the parameter.

Miro provides a compiler for translating these descriptions into a target pro-
gramming language’s data structures and code for storing and parsing this data
to and from configuration files. Currently, C++ is supported. A configuration
file contains various instances of parameter sets as described in the parameter
description files. It is based on an XML syntax, too. The application parses
those files on startup to initialize the parameter data structures of its services.

The basic syntactic correctness of configuration

Figure 4.4: The corre-
sponding generic dialog.

files can be ensured by validating it with its doc-
ument type definition (DTD). However, due to
the extensible nature of parameter descriptions,
it cannot ensure the correctness of the mapping
of a parameter set in the configuration file to its
specification in the corresponding parameter de-
scription. Thus, for generic type-safe editing of
configuration files, the GUI-based ConfigEditor

has been provided. This editor will be covered in
more detail in Section 7.1. Figure 4.4 shows the
dialog provided by the editor for the parameter example outlined in Figure 4.3.
The editor dynamically generates this dialog from the parameter description at
runtime and edits the configuration file example from Figure 4.3.
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4.3 Cross Platform Toolkits

The primary implementation language of Miro is C++. But the power of
modern programming languages is more and more defined by the available ap-
plication programmer interfaces (APIs) that are provided by libraries for the
language in question. Apart from the C++ standard library, various powerful
libraries exist that contain APIs and frameworks for specific application do-
mains. Miro makes extensive use of multi-platform libraries in order to ease
portability.

4.3.1 Adaptive Communications Environment (ACE)

The Adaptive Communications Environment (ACE) is a multi-platform library
available for Linux, most Unixes, Windows and some real-time operating sys-
tems. This powerful toolkit encompasses various sets of functionality targeted
for network programming:

• the OS abstraction layer forms a common, C-oriented API that hides
most of the inconsistencies between the different operating systems. For
instance, simple methods like a query for the current system time are de-
noted by different names and return different data formats on the various
operating systems.

• Upon this OS abstraction a set of wrapper facades is built. E.g. the
socket wrapper facades form an object-oriented, strictly typed interface
to the ancient C socket APIs, which usually use untyped handles for
referencing the various types of connections. Another important set of
wrapper facades encompass multi-threading and synchronization.

• Upon these wrappers, frameworks for scalable communications infrastruc-
tures such as the Reactor framework for event demultiplexing or the ser-
vice manager framework for component-oriented service deployment are
built.

While the ACE toolkit provides various APIs for basic network programming,
it lacks the higher-level functionalities for type-safe, object-oriented network
transparency. Additionally, as it is targeted as a multi-platform toolkit, it
contains various APIs, e.g. container classes that are provided by reasonably
standard-conforming C++ compilers.

Miro makes intensive use of the Reactor framework as well as the multi-threading
and synchronization primitives. Also, the socket wrapper facades are used
within the low-level device framework.
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4.3.2 The ACE ORB (TAO)

The TAO package is an implementation of the CORBA standard based on
ACE [111]. It therefore runs on almost any platform that has a reasonably
complete port for ACE. This way, while delegating almost all of the platform
dependency in software development to ACE, it proves the reliability and power
of this toolkit. The focus of this CORBA implementation lies on scalability and
applicability to real-time applications. The tradeoff between performance and
scalability is deferred to the runtime configuration of various components of the
architecture.

TAO comes with a rich set of implementations of CORBA services such as a
naming service, various event services, a service repository, and many more.
Apart from the sheer mass of APIs and services, the flexibility of configurations
and options requires a fair amount of knowledge in order to provide a consistent
selection of functionalities that would form the ideal solution for the problem
at hand.

4.3.3 Qt

Qt is a graphical user interface application framework available for various Unix
derivates including Linux as well as Windows. It is actually a commercially
developed library that is also available under an open source license (GPL).
Qt is used within Miro for the construction of GUI-based applications such as
monitoring and visualization tools.

Additionally, Qt provides two standard APIs for processing XML files (Sax2
and Dom). In order to avoid further dependencies, Miro uses these APIs for
XML processing instead of introducing another dependency on a pure XML
processing library like libxml. Note that ACE also offers an XML module. But
it only supports the Sax2 API which is limited to the parsing of XML files.

4.4 Summary

In this chapter, the implementation infrastructure of Miro has been discussed.
It contributes to the state of the art in research on autonomous mobile robotics
a carefully designed configuration and customization of standard DOC middle-
ware that provides an efficient and scalable communications infrastructure for
teams of autonomous mobile robots.

First, an overview of the distributed object computing middleware and its con-
figuration and application was given. The use of CORBA technology allows to
model aspects of the distributedness on a very high level of abstraction. It bases
the communications infrastructure upon an open, proven and well-documented
standard, which provides interoperability over various implementations and dif-
ferent programming languages.



42 CHAPTER 4. MIRO INFRASTRUCTURE LAYER

Following these elaborations, the necessity to customizes its provided function-
ality to meet the requirements of autonomous mobile robots middleware was
demonstrated by the notify multicast module for group communication. The
design of the discussed NMC module successfully addresses scalability issues
in this context. Providing a resource-efficient and transparent model for group
communication further contributes to the solution of problems imposed by the
inherent distributedness of this application domain.

Afterwards, a toolkit for managing the consistent and structured handling
of configuration parameters in large-scale robotics applications was discussed.
This toolkit provides a solution approach for the inevitable dependence of
robotic software on external parameters without jeopardizing the reliability
of the resulting application. By providing a consistent, tool-oriented model for
its application, it vastly improves the maintainability of extensive configuration
management necessary in this application domain.

At the end of this chapter, the open source third party libraries used within
Miro, which significantly contribute to the infrastructure provided, were briefly
introduced. The consistent use of cross-platform toolkits for the required third-
party-provided infrastructure facilitates Miro’s portability.



Chapter 5

Miro Services

Sensors and actuators can be naturally modeled as objects, which can be con-
trolled and queried by their respective methods. Thus, mobile robot software
can be viewed as aggregations of sensory, actuatory and cognitive objects, which
are able to trade information and services in an agent-like manner. The Miro
Service Layer, provides object-oriented interfaces for all hardware components
of the supported robot platforms [140].

The definition of the term “service” is rather vague. In [112], for instance,
Douglas Schmidt defines a service as a “set of functionality, offered to a client
by a server”. This definition denotes the client/server-based design of services,
which implies a modular decoupling of functionalities but specifies little more.
Therefore, in this thesis the term service is used according to a stricter defini-
tion, which is actually much closer to a component-based approach. A service
in the context of the Miro service layer implies the following:

IDL defined interfaces. The available functionality of each service is acces-
sible by strictly typed, network-transparent, object-oriented interfaces.
Compile time type safety is an important issue, because it facilitates the
correct interoperability of modules within a large-scale system.

Uniform semantics. The semantics of the functionality provided by the ser-
vice’s interfaces need to be precisely defined. This allows to provide mul-
tiple implementations for a service with different robot platforms that
expose a uniform set of functionality to client applications. For instance,
a different locomotion system will require different motor speeds to pro-
duce a specific motion trajectory of the robot. This, in turn, will result in
individual implementations of the service. Nevertheless, the semantics of
the supported abstract interface will produce the same trajectory on dif-
ferent mobile platforms (within the boundaries of their maneuverability)
for the same set of parameters.

Generalizations of robotics devices. The purpose of the service layer is to
make devices of different physical robot platforms accessible in a uniform

43
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manner. This requires the generalization of similar functionalities that
also allows to designate their differences explicitly.

The design goal of the service layer is to provide abstractions for robotic de-
vices such as sensors and actuators that allow roboticists to develop generalized
algorithmic solutions on the client side written against abstract service specifi-
cations instead of a set of concrete physical devices.

In this chapter, Miro’s service layer will be covered in detail. First, a design for
actuator services allowing for generalization as well as specialization of client-
side access will be discussed. This design will be exemplified in a discussion of
the various locomotion systems of mobile robots and their respective mapping to
the Motion interfaces family. Second, we will take a closer look at the design of
sensor services and their interfaces, in particular at the RangeSensor interface.
It defines interface functionality common to sensors like infrareds, sonars, and
laser range finders. In Section 5.4, the logging service will be introduced as an
example of generic middleware services.

5.1 Actuator Services

Actuators are devices the robot can use in order to act within its environment.
While a mobile robot’s central actuator doubtlessly represents the mobile base
itself, various other actuators are also frequently used on autonomous mobile
robots. Simple grippers are often available, while more sophisticated robot arms
are less common, as their control consumes more battery and computational
power. Other actuators are used for active sensing tasks. Examples would
be pan, tilt and pan-tilt units, which move around a directed camera or other
sensors.

The purpose of actuator services is to control the actuator device and provide
an interface for client applications, through which the actuator’s offered func-
tionality can be accessed. This duty especially includes the interaction with the
device layer, which takes care of the communication with the low-level devices
and microcontrollers that control the actuator. This way, the individual diffi-
culties and low-level details are shielded from the application programmer, who
merely uses the services’ interfaces to access the actuator’s functionality. In the
discussion of actuator services we will concentrate on the interfaces publicly
exposed to their clients.

5.1.1 Design Principles

Robot actuators, even actuators belonging to a simple category such as the
robot’s drive, expose an extreme heterogeneity of physical properties and de-
signs. This results in different possible forces and velocities, differences in
maneuverability and in the available control modes such as setting the tar-
get velocity versus setting the target heading of a pan unit. The challenge in
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the design of actuator services is therefore to support and encourage reuse of
client applications by providing uniform actuator interfaces, while at the same
time offering full access to the unique feature set of the individual device. Fur-
thermore, the bounds and limitations of individual robot devices need to be
accessible in order to allow for an adaptation of client applications to proper-
ties such as the maximum permissible speed of a motor. Two design principles
have been identified to address these diverging goals of the interfaces defined in
the Miro service layer: class hierarchies and metainformation.

Class Hierarchies

Class hierarchies are used to specify generalized interfaces in the parent classes,
while offering access to the advanced features of the individual actuators in the
methods of the specialized, derived children. This way the generalized interface
allows to access similar devices without changing the client implementation.
Parallel to this, specially adopted algorithms can take advantage of the actua-
tor’s additional functionality and features.

Abstractions often make it necessary to idealize the physical properties of the
devices, as the generalization does not allow to model its characteristics pre-
cisely enough. On the other hand, this simplified view of the device typically
facilitates its use by the application programmer. Thus, interface hierarchies
not only allow to trade generalized applicability of client applications for a po-
tentially more powerful specialized solution, they also allow to trade a precise
model for simplicity.

Metainformation

While generalizations of the service layer offer a unified interface to access dif-
ferent instances of an actuator family, they also need to provide information on
the individual properties of the interfaced device on the corresponding abstrac-
tion level. Metainterfaces provide information about the varying properties of
an instance of the actuator class such as acceleration values and maximum ve-
locities. These can be used on the client side to adapt the parameterization
of algorithms such as for instance the safety distance of a collision avoidance
module to the actual physical robot.

This information also defines the permissible parameter ranges for the provided
interface methods of an actuator service. Client requests (e.g. for motor speeds)
that lie outside the specified ranges result in an exception to be thrown by the
service.

5.1.2 Requested Functionality

In order to promote a uniform view of actuator services and their offered func-
tionality, three types of methods are requested from each service interface.
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a) b) c) d)

Figure 5.1: Different locomotion systems of autonomous mobile robots: a)
Synchro Drive, b) Differential Drive, c) Ackerman Steering, d) Omni Drive

Set actuator. As physical devices cannot change their state instantaneously,
a ‘set’ method actually denotes a new setpoint for the controller in charge
of the actuator.

Query service state. Actuators have a physical state, such as the velocity
the robot is intended to move at. This has to be reflected by designing
an actuator service as a stateful service. Note that, as the control of an
actuator is usually delegated to some low-level controller board or even to
a part of the actuator device (e.g. a servo), the service’s state is not the
physical state of the actuator but actually represents the current actuator
setpoints. Information reflecting the physical state of an actuator such as
a robot’s odometry has therefore been modeled as a sensor service.

Query service metainformation. Metainformation such as the permissible
actuator values needs to be accessible to the client in order to correctly
adapt itself to the devices properties.

5.1.3 Actuator Service Example: Motion

The design principles defined in the last section help to obtain a consistent set
of functionality provided by actuator services. To illustrate the different design
aspects, a concrete actuator service will now be discussed in detail. A motion
service of Miro provides access to the central actuator of a mobile robot, the
locomotion system.

Several different physical drives are available for the various mobile platforms.
The synchro drive consists of three or more wheels, which are uniformly con-
trolled in their speed and can be rotated synchronously around their own axis
(Figure 5.1a). The locomotion properties of differential drive robots are simi-
lar, although their design is different. A differential drive robot has two fixed,
individually controllable wheels as well as one or more freely moving caster
wheels. Like a tracked vehicle, a differential drive robot drives forward and
backward and can turn by allocating different speeds to each of the two wheels
(see Figure 5.1b). Car-like “Ackerman” steering as illustrated in Figure 5.1c is
not very popular for indoor robots, as it does not allow the robot to turn on the
spot. Omnidirectional motion is frequently used by RoboCup midsize-league
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Figure 5.2: Permissible velocities for different locomotion systems: a) Synchro
Drive, b) Differential Drive, c) Ackerman Steering

soccer robots. These robots can move in any direction and turn, giving the
full 3 degrees of freedom (see Figure 5.1d). The special wheels have hardly any
sideward traction. Therefore, driving upward with the left and right motors
and to the right with the upper and lower ones, for instance, results in a di-
agonal movement of the robot. The capabilities of the different drives result
in different applicable velocities. Figure 5.2 illustrates the varying coverage of
the velocity space for the first three locomotion types. The x-axis denotes the
translational velocity in forward direction. The y-axis denotes the rotational
velocity. The red lines in Figure 5.2b denote the speeds of the different motors.

Interface Definition

The different locomotion systems described above need to be accessible through
an appropriate set of interfaces. The resulting class hierarchy of Miro’s different
locomotion interfaces is illustrated in Figure 5.3. The Motion interface forms
the base class of the hierarchy. It provides methods to set the translational
and rotational velocities (setVelocity), query the current desired translational
and rotational velocities (getVelocity) and query the minimum and maximum
translational and rotational velocities of the drive (getMinMaxVelocity). This
interface represents a compromise. On the one hand side, it deprives the omni-
drive-based platform of its most interesting feature, i.e. the ability to move
sideways. On the other hand, it does not allow to model the fact that the
steering-wheels-based drive cannot turn in place. Therefore, the service defini-
tion also documents how the implementations for different locomotion systems
have to react to velocity commands that are permissible for the bounds reported
by the metainformation query, but are nevertheless unachievable for the actual
locomotion system.

The derived classes SynchroMotion, DifferentialMotion, AckermanMotion
(which was contributed by Daniel Krüger [71]) and OmniMotion define addi-
tional methods for their respective kind of drive. Instances of such methods are
setting the velocities for the individual wheels for a differential drive robot or
setting the velocities for all axes of an omni-directional drive. Further entries,
such as corresponding query methods for these methods have been omitted in
the UML diagram for reasons of brevity. The specialization OmniMotion has
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Figure 5.3: Motion interface inheritance for different mobile bases.

not been implemented yet, as at the time of writing, no robot platform with
such locomotion systems is supported by the publicly available Miro sources
(even though a port for University of Graz’s omni-drive soccer robots does
exist [126]).

The individual robot platforms usually provide further specializations of these
interfaces in order to provide access to special features of their drives to their
clients. Thus, the B21 robot provides the B21Motion, the Pioneer and People-
Bot platforms provide the PioneerMotion interface, and robots of the Sparrows
family provide the SparrowMotion. FritzMotion is a specialization for a robot
custom-built at the Technical University of Chemnitz. The Sparrow99, for
instance, allows to run the robot in a wall-following mode based on infrared
sensors all embedded on its low-level controller board. The application would
then only set the motor power value to select the speed and choose between
forward and backward translation. While this admittedly does represent a very
non-portable functionality, it was extensively used to implement a very reliable
goalkeeper for the The Ulm Sparrows RoboCup team.

5.1.4 Service Implementation

As mentioned above, the service interfaces are defined in CORBA IDL. From
this definition, the IDL compiler generates stub and skeleton code. To ease the
service implementation initially, the IDL-compiler can also generate boiler-plate
files that contain empty servant implementations. These have to be populated
by the service programmer.
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Interface Semantics

Procedural programming languages make it difficult to ensure that the imple-
mentation of an interface definition adheres to the intended semantics. For
actuator services, support for the developer of a service in this respect is pro-
vided by mix-in classes. These provide partial implementations of the ser-
vice interfaces. Partial actuator service implementations provide member-
variable layouts and locking primitives that state an intended design for the
complete service implementation. Additionally, they provide helper methods
for bounds checking of client-provided parameters’ values and usually imple-
ment the query as well as the metainterface methods. The MotionImpl class,
for example, provides an implementation structure for derived motion inter-
faces. DifferentialMotionImpl is also derived from this partial implemen-
tation and provides similar functionality for the additional methods of the
DifferentialMotion interface and helper methods for converting the differ-
ent velocity specifications translation/rotation vs. left wheel/right wheel. This
way, these helper classes make it easier to perpetuate uniform semantics of the
motion service interfaces across the implementations for different platforms.
Note that use of these default implementations is not mandatory, if the pe-
culiarities of a concrete device violate the assumptions taken by the intended
design.

Service Configuration

Service implementations need to be parameterized to reflect the heterogeneity
of robot platforms. The robots of the pioneer series, for example, all feature a
differential drive and are also controllable by the same low-level controller proto-
cols (PSOS and P2OS). On the other hand, they reach very different maximum
velocities and accelerations. Therefore, the Miro services exploit the parameter
handling infrastructure described in section 4.2. Each service interface defini-
tion is accompanied by a corresponding description of its parameter set. The
parameter description of the Motion interface, for instance, holds the maximum
translational and rotational velocities. This way, the permissible velocities can
easily be defined for different robot types or adjusted within a configuration file
if, for instance, additional payload on the robot such as a laser scanner reduces
its permissible maximum velocity.

5.1.5 Other Services, Interfaces and Possible Extensions

Other actuator services for Miro’s common autonomous mobile robot actuators
adhere to the design principles and requested service functionalities discussed
above. The Gripper interface has been provided for simple robot grippers. The
Pan and Tilt interfaces form the two base classes for the PanTilt interface used
by the individual robot platforms pan-tilt services to access the different camera
pointing devices. Mobile platforms designed as robot companions usually come
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with capabilities for speech synthesis. A rather specialized actuator service
provided by Miro is the support for kicking devices used by the Sparrow soccer
robots.

An obvious omission in the above list are multiple degrees of freedom robot
arms. This omission is due to the fact that none of the robots available in
the robotics lab of Ulm had been equipped with a robot arm yet. But other
laboratories using Miro already have begun working on robot arm services and
appropriate metainterfaces for describing a robot arm’s properties.

5.2 Sensor Services

Sensors such as cameras, microphones, or bumpers allow a robot to collect data
on its environment. They can also be used to collect data on the robot itself,
such as dead reckoning sensors (also known as odometry). Sensors typically
used in robotics are range sensors like laser range finders (LRF), bumpers,
odometry and cameras for visual sensing. An autonomous mobile robot is
normally equipped with various different kinds of sensors, which make up its
sensor suite. Most of the processing power is typically used to interpret and
fuse sensor data and derive relevant information for the task at hand, such as
recognizing obstacles for safe navigation, land marks for localization and objects
(a ball and a free area in the opponent’s goal for instance), for interaction
(kicking the ball into the goal). The purpose of sensor services is to control
the sensory devices and to provide the sensor data to their clients for further
processing.

5.2.1 Design Principles

Apart from the challenges identified for the design of actuator interfaces, sen-
sor services need to address additional difficulties. The communication with
the controller boards generally is message-oriented and therefore asynchronous.
Device communication therefore implements the half synch/half async pattern
[109], with the servant implementation representing the synchronous part and
the device layer handling the asynchronous part. The upcalling servant thread
is therefore usually blocked until the data becomes available. For sensor ser-
vices this is often inadequate. It results in a large number of servant threads
bound by waiting on upcoming data for a commonly used sensor. On the client
side, this can also result in unacceptable latencies if data from multiple sensors
needs to be acquired.

An alternative implementation possibility is the asynchronous message handling
(AMH) servant implementation as offered by the TAO package [23]. This model
has been especially designed for middle-tier servers that hand the incoming
requests (the sensor query in this case) down to the actual processing unit (the
microcontroller board) for asynchronous processing, collects the replies from
the processing unit, and hands them back to the requesting clients. This design
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Figure 5.4: The bandwidth requirements of different sensor devices (on a loga-
rithmic scale).

can unite the servant and the device layer processing in one event loop, as
it circumvents the need for blocking calls and therefore avoids the need for
multiple threads that implies latencies and jitter due to context switches. But
the implementation of AMH is still in an experimental stage and does not
provide colocation support.

Sensor services are instead implemented as proactive services gathering sensor
data on their own initiative. The sensor data is collected proactively the device
layer. This layer is usually equipped with its own thread of control to ensure
quick processing of the messages exchanged with the different low-level con-
troller boards. This is also necessary for obtaining accurate time stamps for
the sensor data. The device layer pushes the data into the sensor services by
a local interface method provided by the service implementation. The sensor
data is then communicated to the clients by the service implementation.

Usually, sensor devices can be used to sample data at a fixed maximum rate,
but the different sensory devices supply very different amounts of sensor data
at different sampling rates. This results in very heterogeneous maximum band-
width needs (see Figure 5.4), which partly lie above the bandwidths typically
available. Nevertheless, choosing a uniform communication model is preferable
in order to achieve consistent design of sensor services. Miro provides such a
model with the exception of the service for video image processing. As the high
bandwidth requirements of this sensor impose severe additional challenges on
sensory data processing, the Video service actually hosts a powerful framework
for real-time constrained video image processing, which is covered in Section
6.1.

Interface hierarchies are less frequent for sensor services, as the variance in the
different devices less affects the interfacing to the device, but the qualitative
aspects associated with the sensor reading such as its accuracy or its reliability.
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5.2.2 Requested Functionality

The sensor services’ different requirements result in an extended set of requested
functionality in comparison to the one for actuator service interfaces. Most sen-
sor services are stateless. If, however, internal state such as different operating
modes of a sensor (e.g. normal versus differential GPS) does exist, the same
requirements as for actuator services apply. A sensor service’s metainforma-
tion describes the sensor configuration on the robot in order to enable flexible
integration of the data.

The main purpose of a sensor service obviously is to allow access to the sensory
information itself. A sensor service is requested to support three different kinds
of communication patterns in order to provide clients with sensor data.

The getSensor method will immediately provide the last sampled sensor value
and return. The getWaitSensor pattern actually waits on the server side un-
til the next sensor sample becomes available. Instead of active waiting for
new sensory information, the sensor-driven communications model is more ad-
equate for sensor processing in many cases. Fusing data from multiple sensors
could either require to wait in the different servants with multiple threads or
result in frequent polling. Therefore, a Miro sensor service needs to also pro-
vide the push model for communicating sensor samples and send them through
the notification service’s event channel. This facilitates a clean application of
the sensor-driven processing model as required frequently in time-constrained
robotic applications. Client applications simply subscribe for one or more sen-
sor streams at the event channel and then are automatically called whenever
new sensor samples become available.

Sensor interfaces also provide the time stamps with the sensor data’s sampling
time as reported by the device layer. This is mandatory in order to allow for a
precise correlation of sensor data samples (e.g. from different sensors) as needed
in highly dynamic environments and for temporal integration.

5.2.3 Sensor Interface Example: RangeSensor

A good example of the additional challenges to be considered in the design
of sensor services is the access to range sensor data. Such distance measure-
ment sensors are very frequent and come in a great variety. They are normally
mounted in groups in order to provide egocentric 2D-range scans. They en-
compass unreliable sonar, close-range infrared sensors and high-end laser range
finders. But bumpers can also be regarded as supplying very primitive, binary
range information. And camera images are also used to extract range sensor
information, thereby providing a virtual range sensor.

All range sensor devices therefore report a set of distance readings. The
RangeSensor service therefore organizes range sensors in scan groups, of which
several are allowed on one service interface. The main differences between the
devices from a performance point of view are covered in the range sensor de-
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scription provided as sensor metainformation by the service interface. This
description covers aspects such as minimum and maximum possible measuring
range, apex angle, the mounting point on the robot and its measuring direction.

The main distinguishing points from the client interface point of view are: the
number of scan points, the grouping and the frequency as well as the model of
sensor data sampling. Active sensors, like the sonar sensors especially, can in-
terfere heavily if physically neighboring sensors are fired simultaneously. Thus,
the sampling sequence of these sensors is often not linear. While this informa-
tion is also provided as part of the description, it has additional consequences
for the interface design.

The design of a uniform service interface for range sensor devices provides an
additional challenge because of a limitation of the middleware technology em-
ployed. The early versions of the CORBA specification do not allow to mix
the definitions of data structures and interfaces. Inheritance especially is only
supported for interface definitions. Data type definitions in IDL are therefore
very similar in expressiveness as classical structs in the programming language
C. This hinders the use of class hierarchies and specialization in the design of
the data types that are shipped as payload of the events generated by a sen-
sor service. On the other hand, it is desirable to only actually ship the data
requested by the client, as additional data fields would just waste bandwidth.
Therefore, specialized services need to offer additional event types that provide
the offered information.

Interface Definition

The main design goal of the range sensor service is to provide an interface, that
offers a uniform way to query for all kind of sensor scans. Like all of Miro’s
sensor services, it is to support querying the current sensor value, a blocking
query of the next sensor value and the push model, publishing range sensor data
on the event channel for the subscribed consumers. In correspondence with
the actuator services, the metainterface methods of the RangeSensor interface
provide information about the sensor layout and its properties such as the
minimum and maximum range measurable etc.

Different Types of Range Events In order to achieve the best possible
response times, the push model has to reflect the models of data sampling of
the different range sensor devices. So the range sensor service supports three
different kind of range sensor events that reflect the different types of sensor
data acquisition. But each service instance only produces one kind of event.

Full scan at once: The third kind of range sensor event is for reporting mea-
surements of all scan groups at once. This consists of a vector of scan
groups, each holding a vector of the successive sensor values. In contrast
to a scan matrix, each scan group can differ from the others in size.
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Scanning in groups: Most sensors report measurements in groups, since one
microcontroller usually controls one single scan group, especially if the
groups are not closely related physically. Therefore, scan group events are
supported that consist of the group index and the vector of the successive
sensor values.

Bunch wise scanning: Sonar sensors collect sensor data in interleaving sets
to minimize cross talk. If the service waited until a full scan was com-
pleted before pushing the data to the event channel, parts of the scan
would already have aged and would be less valuable. Therefore, the ser-
vice can push sensor scans in bunches in order to minimize latencies in
sensor processing. This event consists of a vector of sensor values, each
accompanied by its scan group index and index within the group.

5.2.4 Service Implementation

Unlike with actuator services, Miro offers complete default implementations for
sensor services such as the range sensor service.

Sensor Data from the Device Layer

Service implementations do not only offer an interface to remote clients, but
also offer local methods (not defined in IDL), for easy integration of new sensory
data from the device layer. The RangeSensor service for instance supports the
different scan modes discussed above by actually offering the device layer three
different methods for integrating new sensor data. The service implementations
take care of race conditions between servant threads and asynchronous low level
device processing by means of locking. They also dispatch the new sensory data
to the event channel. This complete default implementation greatly simplifies
ensuring a common semantics for services of sensor devices of the same category.

Service Configuration

The configuration parameters offered for a range sensor service instance con-
sist of the sensor layout and sensor capabilities as queryable by the service’s
metainformation interface. This way, the default implementation can be con-
figured to support any kind of range sensor by just providing the appropriate
configuration data.

Derived Interfaces

The base interfaces for sensory services only export query functionality as their
service interface. The service configuration is considered to be static and is ini-
tialized from the parameter and configuration management facilities at startup.



5.3. RELATED WORK ON SENSOR-ACTUATOR INTERFACES 55

But many range sensors have additional features, that might want to be manip-
ulated at runtime. Laser range finders often support long-range and short-range
scan modes that can be switched at runtime. Sonar sensors tick during opera-
tion, which can become quite annoying. Therefore it is often desirable to disable
them temporarily while they are not needed, without having to stop the entire
service. Support for those additional functionalities can be given by specialized
derived interfaces for individual range sensor services.

5.2.5 Other Interfaces and Possible Extensions

The design of sensory services discussed above is also reflected in Miro’s Odometry
and the Stall sensor services. What is currently missing in the provided
metainformation of sensor services is information on the sensors’ error model,
such as information on accuracy and reliability. While this would surely be a
valuable contribution to the reusability and genericity of sensory information
processing, this topic could not be fit into the scope of this thesis.

5.3 Related Work on Sensor-Actuator Interfaces

A basic requirement on robot core libraries is to provide access to the sensors
and actuators of the autonomous mobile robots. Therefore, all software archi-
tectures provide interfaces to access and control these devices. Nevertheless,
most existing architectures fail to provide reusable interface abstractions or
provide generalizations that do not allow to precisely model the properties of
specific devices for specialization. Furthermore, the notion of metainformation
is mostly absent from such architectures.

Most manufacturers of commercial robot platforms provide simple libraries that
provide methods for the control of the robot’s basic sensors and actuators such
as the locomotion system or sonar sensors [1]. Modern robot software environ-
ments as covered in Section 2.4.2 target multiple robot platforms and therefore
provide more sophisticated interfaces.

TeamBots is a Java-based software environment, which is especially targeted
for use in education [8]. It models each individual robot as a single object that
inherits all kinds of interfaces based upon the robot’s capabilities. The different
interfaces do cover multiple sensor or actuator devices at the same time and also
abstract sensors such as obstacle-detectors. This design often provokes naming
conflicts for methods from different inherited interfaces. It also encounters
difficulties in modeling a multi-PC robot design such as the B21. Distributing
a single object over the network is a task not handled by most DOC models.
However, approaches to integrate such a fine-grained distribution model into
standard ORB architectures do exist[99].

Player/Stage also provides a C++-based client library that provides object-
oriented interfaces [143]. It provides hand-coded local proxies to the various
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player devices. Actuators such as the locomotion system have been designed
as generalizations that offer a superset of the available functionality of the
different supported devices. Clients cannot determine beforehand whether a
robot actually supports the provided interface functionality (such as sideward
motion). Little generalizations are provided for sensor devices. SmartSoft-
/OROCOS@FAW takes a similar approach for a smaller set of supported robot
platforms [105].

5.4 Logging Service

Apart from the sensor and actuator services, the Miro service layer includes
functionality for the support of development and experimental evaluation. The
generic logging facility for experimental data acquisition plays a central role for
this purpose [137].

Autonomous mobile robots require advanced capabilities for data logging and
processing logged data for several reasons. Learning, debugging, performance
evaluation, and tuning are typical tasks that cannot be performed well without
the availability and analysis of real-world data obtained from the robot’s various
different software subsystems like its sensor suite or its behavior modules. The
domain characteristics such as the inherent parallelism or distributedness limit
the applicability of classical single-step mode debugging. As these systems
operate in a physical environment, executing a task on a slower time scale or
with interruptions for closer inspection by the operators would also change the
dynamics of the system. Simulation might help to some degree, but apart from
the significant effort required to build a reasonable simulation model, most
simulators fail to model the unexpected failures that occur during a real-world
operation of the system. Both performance tuning and experimental evaluation
of subsystems or the complete architecture also require reliable data about
their performance in the target environment. Without such data, assessing the
strengths and weaknesses of the subsystem becomes very difficult. Systematic
acquisition of real-world data can also be essential for many system development
tasks. Especially if partial system functionality is to be learned, most learning
methods either require the availability of sufficiently large sets of training data,
or the achievable learning performance can be enhanced if more data is available.

Data logging in complex, distributed, real-time environments is challenging.
First of all, the sheer mass of sensor data in a non-trivial autonomous mobile
robot can exceed the system’s bandwidth constraints if the logging facility is
not carefully designed. Secondly, when dealing with large amounts of data,
structured data types and strict type safety become necessary requirements in
order to manage the stored data effectively. Furthermore, distributed systems
introduced by multirobot scenarios like RoboCup introduce further challenges
to the task of building a useful logging facility such as distributed logging,
synchronization, and synchronized replay.

In this section, we will introduce Miro’s event logging capabilities. The general
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idea is the following: on a robot, sensor data like odometry values or distance
measurements is sampled at discrete time steps. The sensor services publish
these values through the event channel, allowing for sensor-driven processing in
the system. Higher sensory or cognitive processes can also publish their results
this way in order to distribute them to other subsystems. If these events are
logged to persistent storage, a comparatively complete and fairly exact trace of
the robot in action can be acquired.

5.4.1 Data Acquisition in Distributed Mobile Systems

As demonstrated in the paragraph above, data acquisition in distributed real-
time environments like mobile robots and multirobot teams is a non-trivial
problem. In the following paragraphs, required and desirable features for a
logging facility for such environments will be outlined.

Logging of Structured Data: Large collections of data usually need to be
structured in order to be maintainable by a program. Many software packages
support printf-style logging. But the data acquired during a robot’s experi-
mental runs in a natural environment is quite different from the data which
is normally written to system log files. Much of the data consists of num-
bers that represent time stamps, distances, 2D or 3D coordinates, classification
results or even images that can not easily be interpreted in a textual repre-
sentation. So instead of text-based logging facilities, capabilities are needed
to store structured, strictly-typed data collections that can be interpreted by
specialized visualization or other post-processing tools.

Distributed Logging: Data logging in distributed systems is especially chal-
lenging. Generating a central log is either very difficult or impossible due to
network bandwidth constraints, especially if WLAN is to be used. A partic-
ularly challenging problem is logging data of several robots in a robot soccer
team during an official game at RoboCup, where the available bandwidth is
usually far too small to allow for logging significant amounts of data. Therefore,
a distributed logging service is needed. But to locally log data on each robot
imposes the problem of having to synchronize the log files afterwards.

Maintenance of Logged Data: What is stored in the files from 2001? How
can we separate the irrelevant data from the interesting data (cutting logs)? As
collections of logged data can become quite large, tools for the management of
logged data are needed. Log files often contain lots of irrelevant data because
logging is not always deactivated between experiments. It is not unusual to have
logs with 10 minutes of the robot in action but also 15 minutes of inaction, where
sensor data was acquired while the robot was facing a wall and was waiting for
its next mission.
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Data structures tend to change over time. The data in the log files from two
years ago may not be readable anymore by the latest revision of the program.
While this can be regarded as a question of ensuring backward compatibility
on a software engineering level, help from the logging system in case of failure
might still be appreciated. Therefore, metadata on the type of stored data
becomes an interesting feature from a long-term perspective.

Replaying Data: It would be a pity if the acquired data were only usable
for statistical analysis. Acquiring data to debug, analyze and evaluate the per-
formance of an autonomous mobile system is essential. If we need to store
such data anyway, why not think of more advanced applications for those large
data collections? Having logged raw sensor data from an experiment enables a
roboticist to re-run the experiment with a later version of the software. This
facilitates system performance tuning and is very helpful for learning applica-
tions.

Performance: Large amounts of data (e.g. raw sensor data) need to be
recorded, but the available computational power is usually already used up by
the robotics application. Computational power on a robot is usually a scarce
resource. Image processing, planning and all the other subsystems of a robot
usually already use up most of what is available. Therefore, data acquisition
needs to come with little computational overhead. Additionally, there should
be almost no overhead if the logging facility is not in use.

Ease of Use: Roboticists want to concentrate on solving robotics problems,
not data acquisition problems. Although data logging may play a central role
especially in scientific applications of autonomous mobile robots, there is usually
not enough time that can be devoted to developing systematic solutions to such
peripheral problems. A successful data logging facility for a robotics system
must be transparent and easy to use in order to be valuable in everyday work.

5.4.2 Technical Solution

Miro’s logging facility is implemented as a simple consumer that subscribes for
events on the event channel. Along with a time stamp, each event is written to
persistent storage. In the current implementation, this is a memory-mapped file.
Log writing is vastly simplified by using the CORBA-provided infrastructure.

CORBA comes with a complete specification for object serialization, the com-
mon data representation (CDR), as needed for communication in a distributed
system [46]. Object serialization is called marshaling in CORBA technology.
Every data type that can be communicated via the Notification Service can be
serialized using its marshaling methods, that is every data type defined in IDL.
Note that arbitrarily complex structured, nested and variable sized data types
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can be defined in IDL. These are then mapped to the data types of a program-
ming language by the IDL compiler, which additionally provides corresponding
marshaling and demarshaling methods. The payload of an event in the event
channel is represented in a CORBA::Any data type. This is a strictly-typed void
pointer, which can hold any kind of data, but can only be dereferenced by cast-
ing it to the correct type. Thus, a log file is technically a CDR stream, which
is written to disk instead of a network connection.

Configuring which events are to be logged, can be easily managed by the event
channel’s subscription/offer management protocol. Additionally, the Notifica-
tion Service defines powerful filter mechanisms that can be applied to limit or
preselect the persistently stored data. This is especially useful, since the data
on an event channel is usually not published for logging or debugging purposes
only, but also for further processing elsewhere within the system. The logging
facility is just another consumer among potentially many others.

5.4.3 Logging Configurations

The conceptual approach of this logging facility is very powerful and flexible.
It allows for the efficient and optimized local and remote logging of events from
an event channel. Therefore, the same underlying mechanisms can be used for
quite different logging configurations.

Remote Logging of Single Event Channels: The simplest configuration
of the logging facility is depicted in Figure 5.5: a standalone logging program
is started on a remote computer, links to the robot’s event channel, and writes
the events to which it is subscribed into a log file on the remote computer. This
setup is very convenient for debugging purposes, where the remote computer is
usually the workstation used by the programmer.
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Figure 5.5: Ad-hoc logging in the lab: directly connecting to the robot’s event
channel from a remote machine.

Remote Logging of Multiple Event Channels: In multirobot applica-
tions such as RoboCup, it is often important to simultaneously log and analyze
data from multiple robots. In this scenario, group communication is handled by
a federated notification service as discussed in section 4.1.5. Thus in this config-
uration, a central logging client which features its own local event channel links
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Figure 5.6: Centralized logging: using the notify-multicast-based event channel
deliberation of the robots in a team to log data from multiple robots.

to all robots via NMC and writes a single log file of the delivered events (Figure
5.6). This configuration is especially useful if the data of interest has already
been exchanged between the robots as part of a team coordination mecha-
nism. In this case, logging this data requires no additional network bandwidth.
NMC also helps to circumvent the problem of clock synchronization between
the robots, although fairly sophisticated solutions are available for this purpose
(e.g. NTP[86]).

Distributed Local Logging with Synchronized Replay: The configura-
tion with the best performance in terms of data throughput is without doubt
achieved by colocating the logging client in the same address space as the event
channel on the robot itself (Figure 5.7). This configuration is used by our
RoboCup team, the The Ulm Sparrows, to log vast amounts of data during
a tournament game.
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Figure 5.7: Tournament mode: decentralized logging locally on each robot.
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5.4.4 Related Work On Data Acquisition

Storing program traces for debugging and system analysis has a long tradition in
computer sciences. Therefore, many software development environments come
with a more or less sophisticated set of logging facilities. In this section, four
logging facilities related to Miro will be discussed.

The Adaptive Communications Environment (ACE) features a general-purpose
C++-based logging facility. It is designed as a classical system log. It allows
printf-like debug messages with variably-sized arguments to be written to var-
ious destinations (standard error, system log, a file) or to be sent to a remote
logging server. Verbosity of logging can be configured at runtime. Additionally,
various macros customize the functionality and also allow to disable logging at
compile time. The log messages are plain text messages and no support is pro-
vided for parsing and post-processing of acquired data. Miro uses the ACE
logging framework for classical debug messages and system errors.

RLog is a C-based logging library that was developed by Kortenkamp et al [66]
for use in robotics. It defines data formats for storing built-in C data types like
int and double and provides routines for log file parsing and post-processing.
Another nice feature is the ability to register variables at the logging library
for timer-based probing. Additionally, a query language allows to select sets of
events from a log file, and it also contains basic generic visualization tools. The
main limitation of RLog is its lack of support for structured and/or variable-
length data types. Also, it lacks compile time type checking and strict runtime
type safety as provided by the IDL compiler and the CORBA::Any data type. In
[65], performance for logging to a local file is reported with 53 msec for 1100
logging calls on a PII running at 800 MHz. The logging payload contained only
one single instance of a basic data types like int, float or character string. Note
also that in difference to the Miro logging facilities, only dedicated messages
are logged by the library, instead of logging general purpose system events.

The Carnegie Mellon Robot Navigation Toolkit (CARMEN) provides a typical
example of a handcrafted distributed systems logging facility. CARMEN uses
the message passing library IPC [120] for publisher/subscriber-based commu-
nication. The logging facility can register for a fixed set of predefined message
types at the central IPC server and writes them to a file in a textual repre-
sentation. Every new message type or altered message structure has to be
manually added to the logging as well as the parsing facilities. This makes
logging scenario-specific output from higher processing levels with this facil-
ity impractical. IPC supports structured and variable length data types, but
lacks compile time type checking and needs to rely on interpretative marshaling.
Performance numbers for the CARMEN logging facility are not reported.

CORBA itself also provides a specification for a logging service based on its
Notification Service, the Telecom Log Service [45]. As in our approach, it
writes events received from the event channel to persistent storage. The con-
strained language defined for event filtering by event consumers can also be used
for querying the data base for sets of logged events. The specification differs
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from the approach taken by Miro insofar as it does not define a logging client,
but defines special logging-enabled channels which log the data in addition to
distributing them to consumers. Also, the Telecom Log Service specification fo-
cuses on log creation and logging management but does not provide any support
for log file management or for the timely replay of (possibly multiple) logs.

5.5 Summary

In this chapter the service layer of the Miro architecture has been discussed.
First a generic design for actuator services was proposed and illustrated by the
design of the interface hierarchy for the control of different locomotion devices
for mobile robots. Second, an analogous solution for sensor services taking into
account the requirements for flexible communication of sensor data to client
applications was outlined. Afterwards, the requirements and difficulties of data
acquisition in distributed environments such as robot teams were identified and
a scalable service for generic logging of data in multirobot experiments was
presented along with related work.

The proposed object-oriented design of interfaces to sensors and actuators,
along with the service orientation addresses several of the identified problems
hindering the portability and reusability of robotics software. The extreme het-
erogeneity of robotics devices is modeled by interface hierarchies that allow ac-
cessing a concrete sensor or actuator on different abstraction levels. The service-
based decoupling of clients and servers takes the distributedness of robotic
applications into account and the introduction of metainformation queries as
a required feature of sensor and actuator services helps client applications to
further overcome dependencies on the devices or the targeted environment. Ad-
ditionally, the time-stamping and the publisher/subscriber-based distribution
of sensory information fulfill important requirements for sensor processing in
time-constrained, highly-dynamic environments. The distributed logging ser-
vice, along with its replay capabilities plays a central role in addressing the
inherent problems of applications that need to cope with the stochastic prop-
erties of the physical world.

The chapter contains two contributions to the state of the art in research on
autonomous mobile robotics. First, a new, detailed design has been proposed
for modeling sensor and actuator devices as network transparent, pro-active ser-
vices with type-safe, object-oriented interfaces. Second, a solution for generic,
high-performance data acquisition in distributed environments was proposed.
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Extensible Frameworks

An essential step towards easier and faster development of mobile robot soft-
ware is the reuse of code and design for regularly occurring tasks. Since mobile
robots research has seen a constant flow of new methods and research results in
the past, this seemed to make little sense so far. However, a number of recently
developed methods and techniques seem to emerge as de-facto standard solu-
tions, e.g. grid-based probabilistic egocentric and allocentric mapping [131, 24],
self-localization based on segment matching [47] or particle filters (a.k.a. Monte
Carlo localization [33, 25]), behavior-based robot control [13, 104], or various
path planning methods. The Miro Framework Layer provides extensible frame-
works that implement commonly used techniques for mobile robot control in a
way that enables them to be applied uniformly on the different platforms sup-
ported. Available functionality includes a framework for video image processing
in time-constrained robotics applications [135], a behavior framework for struc-
tured reactive behavior-based control and hierarchical modularization [136], as
well as a sample-based pose estimation based on particle filters [26, 139]. Fur-
ther valuable extensions would be the integration of generic mapping such as
[24, 102, 69] and path planning functionality such as [134] or the integration of
frameworks for higher-level symbolic planning.

Frameworks are second-generation programming abstractions. While libraries
group related algorithms into pre-built packages, frameworks do not only fos-
ter the reuse of code, but also support the adaptation of a design [58]. They
often represent semi-complete applications for a specific target domain. By
providing abstractions for the control flow of the programming logic, the ap-
plication programmer merely needs to implement the individual functionality
of the target application. The framework then executes the implemented code
according to the execution logic [112]. Frameworks often organize the data flow,
too. Graphical user interface programming environments such as Qt (Section
4.3.3) are usually organized that way. The framework handles the input from
mouse and keyboard as well as the triggering of redraws for window elements
and provides standard window elements such as buttons or entry fields that can
be readily used or extended in their functionality by the programmer.

63
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Frameworks are also a key software concept for supporting developers with
the challenges of the robotics domain, since their design also allows to address
non-functional aspects of an application on an abstract, generic level.

Inversion of control flow. This common feature of a software framework can
be exploited in the framework design, to address issues of scalability and
reactivity, by providing different models of parallel or interleaved execu-
tion. A consequently optimized control flow management can also enhance
the efficiency of data processing in the target applications. Additionally,
this feature allows for a natural application of the sensor-driven processing
model as often required in time-constrained environments.

Management of data flow. Data flow management can shield an application
programmer from the various subtle problems of locking in multi-threaded
applications. Also, a poorly conceived organization of data flow can easily
lead to memory leaks, which represent a subtle and hard to trace category
of programming errors that compromise the overall stability of an appli-
cation. Additionally, distributing large amounts of data to the various
modules of a robotics application stresses the available memory band-
width, which can jeopardize cache utilization. Consequently, a careful
organization of data flow can reduce memory copying and thus improve
the overall system performance.

Implemented standard functionality. Providing building blocks of stan-
dard functionality for a target application domain is very easy and efficient
within the bounds of a framework. The reuse of the intended design by
the application programmer ensures the matching of the interfaces and
helps to eliminate the need for glue code that moderates between the
pre-built components and their new application.

In this chapter two frameworks of the Miro project will be covered in detail.
The video image processing (VIP) framework provides a software architecture
for the real-time-oriented processing of video image streams for autonomous
mobile robots [135]. Its goal is to enable and facilitate the use of computer
vision methodologies within the heavily time-constrained environment of an
autonomous mobile robot in a highly dynamic environment, like the RoboCup

mid-size league. The second framework is designed for structured, reactive
behavior-based control (BAP, an acronym derived from its key components:
behaviors, action patterns and policies). In this framework, concepts are ap-
plied to overcome the intrinsic scalability issues of behavior-based robot control
architectures. The key issue addressed by the design of BAP is how behaviors
can be organized in a hierarchical way. This allows for complexity reduction and
for the reuse of action patterns or complex sequences of actions either within
a single control system or for different scenarios [136]. Apart from the detailed
discussion of the domain-specific issues and requirements that need to be ad-
dressed by the design of the framework, an important aspect of the discussion
will be how the framework-based design can provide support for meeting the
challenges of software development for autonomous mobile robots
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6.1 Video Filter Framework

Vision is one of the most valuable sensors for autonomous mobile robots. Cam-
eras are relatively low cost and offer a huge and diverse set of information that
can be used for very different sensing tasks. Unfortunately, there is a severe lack
of advanced vision processing methodologies applied in todays robotic applica-
tions. Especially in highly dynamic environments and predominantly reactive
scenarios, research is still focused on model-based color blob detection [42, 48].
In consequence, vision processing in robotics lacks flexibility and scalability,
which makes it impossible to use such a vision system for different tasks and
multiple scenarios. This hinders advances in the scientific view on the problem
domain.

Applying advanced vision processing methodologies to autonomous mobile
robotics is difficult, as the requirements of this application domain add a whole
set of additional complexity to the original task of image understanding. For
instance, image processing binds a lot of computational resources and most
higher-level image processing operations are difficult to apply within the timeli-
ness constraints of a real-time reactive autonomous system. Addressing such is-
sues for a robotics vision system requires extensive architectural support, which
is not available in currently available image processing systems.

6.1.1 Image Processing on Autonomous Mobile Robots

Vision systems for mobile robots bring together the two very challenging prob-
lem domains of image processing and autonomous mobile systems. E.g. most
of the state of the art computer vision algorithms are computationally rather
expensive, even when efficiently implemented. So a very careful assessment of
their individual applicability is necessary. This on the other hand often dis-
courages experts in computer vision to work on robot vision, as most of the
advanced algorithms seem to be ruled out per se by timing constraints. In
consequence solutions in robot vision are often: (1) hard coded quick hacks
that try to enable micro optimizations by doing multiple operations at once,
(2) heavily model-based or heuristic, exploiting special circumstances with lit-
tle validity despite the one scenario they are targeted for, (3) in consequence
hardly maintainable and little flexible.

So to mediate between the partially contradictory requirements of advanced
vision processing in a real-time constraint environment, proper conceptual sup-
port from the vision processing architecture is necessary, to encapsulates the
vision application within this application domain. In order to better under-
stand the different requirements that need to be supported, we first take a brief
look at the two problem domains: computer vision and robot vision.
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Computer Vision and Image Understanding

The basic concept of computer vision is the application of operators to image
data such as the conversion of a color image into gray-scale, or filtering the
image for edges. Often operations transform more then one input image into a
new output image as e.g. a Canny edge detector [19] usually needs two images,
which are convolved using a horizontal respectively a vertical Sobel operator.
Other operators may use the same image result from different time stamps as
for example a operator using two timely consecutive images to detect the optical
flow [52].

More sophisticated operations do not only cover filter-like processing steps, but
all possible input-output mappings in general. So the result of a computer
vision operation doesn’t have to be again an image but can be every possible
data as e.g. a color histogram, a similarity value between two images or any
other image statistic measure.

Sequences of such image operators reveal features within the image that can
be used to identify regions of interest (ROIs). So subsequent image operations
don’t need to be applied on the whole image but can be restricted only to
relevant subwindows. This is done either to speed up the processing loop or to
be sure not to tamper the result with unwanted image structures from outside
the region. Further operators derive image features from these ROIs that enable
a reliable object recognition. Various feedback loops such as integration over
time [59] can speed up processing and improve classification results [80].

Robot Vision

Performing the above sketched operations on an autonomous mobile robot on
the video image stream of the robots camera(s) within a medium sized robotics
application adds a whole bunch of additional challenges to the problem set.

Efficient organization of control and data flow. Video image processing
on a mobile robot is usually sensor triggered and is started as soon as a new
image is available to the robot as an image taken one second before does not
necessarily resemble anymore the actual situation in a dynamic environment.
At the same time, the performed processing needs to be demand driven, to not
misspend the available computational resources.

Parallel and asynchronous evaluation. More and more robots are
equipped with multiple cameras for stereo vision, or to extend their field of
view. Multiple image sources, but also dual CPU boards as well as the upcom-
ing hyper-threading and multi-core processor technologies call for asynchronous,
parallel processing capabilities. Multiple image sources allow for interleaving
processing, and the true parallelism of the advanced hardware features stay un-
used by single-threaded applications. The actual challenge however, lies in the
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proper synchronization between different image processing tasks for the fusion
of their results.

Timeliness and resource management. Due to the computational cost of
most image operations, and the fact that the CPU is also used by other con-
current tasks of the system, the available processing power will usually not be
enough, to perform all possible evaluations on every single image. In order to
still meet the timeliness constraints of the reactive systems, different percep-
tual tasks (e.g. obstacle avoidance and face recognition) need to be properly
prioritized. E.g. the data for obstacle avoidance needs to be evaluated as of-
ten as possible, while the face recognition for greeting known pedestrians can
be evaluated whenever some CPU cycles are left. Additionally, not all im-
age processing tasks have to be performed over the whole time. The robots’
situatedness enforces the use of special vision routines for different purposes.

Communication of results. Last but not least, images as well as extracted
symbolic information of objects need to be accessible to the other modules of
the robot software. Interfacing is an issue in the context of image processing
on autonomous robots, as the information requested by client modules usu-
ally determines which information needs to be extracted from the image in a
given situation. Also, the communication of whole images to client applications
consumes large amounts of communication bandwidth and requires therefore a
careful design.

Related Work

Common vision related architectures and publications can be roughly divided
into three types: subroutine libraries, command languages and visual program-
ming languages.

Subroutine libraries are the most commonly used ones. They mostly concen-
trate on the efficient implementation of image operators. Therefore they consist
of normal functions, each responsible for a different image processing operation.
Classical examples are e.g. the well known SPIDER system [129] or NAG’s IPAL
package [20] written in C or Fortran. More recent approaches are e.g. LTI-Lib
[122] or VXL [123], which both are open-source, written in C++ and consist
of a wide range of operations, ranging from image processing methods, visual-
ization tools and I/O functions. The commercial Intel Performance Primitives
(IPP) [56] are an example for highly (MMX and SSE) optimized processing
routines with a normal C-API. What they all have in common is their lack
of support for some kind of flow control support. Yet another collection of
mutex or semaphore helper classes and some kind of thread abstraction is the
maximum of assistance in this respect.

More advanced command languages for image processing are mostly imple-
mented as scriptable command line tools that a developer can use to direct
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the vision package. In case of the imlib3d package [121], the image processing
operators can be called from the Unix command line, the CVIPtools [132] are
delivered with an extended tcl command language. So both packages have the
ability to include conditional and looping facilities. But again the programmer
not only has a flexible way of complete control over the system, but also the full
liability over the processing cycle. Additionally the scripting approach makes it
hard to meet the required performance constraints of this application domain.

The most sophisticated solutions are the visual programming languages. They
allow the user to connect a flow-chart of the intended processing pipeline us-
ing the mouse. They combine the expressiveness and the flexibility of both
above groups. Often they contain not only a real mass of image processing
functions and statistical tools, but also a complete integrated development en-
vironment. Most of these systems are commercial products. One of the most
advanced one is VisiQuest (formerly known as Khoros/Cantata). According
to their web site, it supports distributed computing capabilities for deploying
applications across a heterogeneous network, data transport abstractions (file,
mmap, stream, shared memory) for efficient data movement and some basic
utilities for memory allocation and data structure I/O.

But as of today, there is no concise design for image processing available that
combines all of our above described features like parallel and on demand pro-
cessing of parts of the filter tree in a flexible yet powerful way, making the
system suitable for a wider range of image processing tasks, like active vision
problems on autonomous mobile robots.

6.1.2 Solution Approach

The principal idea of the VIP framework is to manage the control flow and
organize the data flow of the vision application, for a clean separation of the
two problem domains. That is, the vision application programmer only needs
to implement the individual image operations (if not already available in form
of a library) and direct the data flow for the target application. The VIP frame-
work then executes the implemented code according to the needs of the client
modules, ensuring the correct evaluation order of the various image operators.

The basic processing unit is called a filter. This denotes not only a (non-)linear
image transformation function like a Sobel operator, but every input-output
mapping such as a neural classificator on image features. While the control
flow is evaluated in a tree in depth first order (subsequently referenced as the
processing tree), the data flow is much more flexibly organized as a directed
acyclic filter graph (DAG). The framework ensures the correct evaluation order.
Freely definable so-called metainformation such as a list of regions of interest,
histogram values etc. can also be passed through the DAG to successor filters.
This actually extends each filter instance to a general image processing node.
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Robotics Support

Support for the intrinsic problems of robotic vision is supplied on the basis of
the configurability and adaptivity of the framework and its execution logic, by
special purpose filters and also by additional development tools. As part of the
Miro project, VIP is currently implemented as a C++ white box framework.

To prevent excessive polling or context switching between waiting threads the
framework performs sensor triggered evaluation of filters. In order to maximize
performance in this highly time constraint environment, VIP keeps track of
which filters are actually queried by client modules. Based on this connection
management, a dynamic graph pruning is performed to process only the min-
imal required filter tree for each image. If a client module connects to a new
filter, the filter is guaranteed to be part of the processing tree, as soon as the
next image becomes available. The service-based design of the VIP framework
within the Miro software architecture provides support for network transparent
as well as co-location optimized access to images or higher-level sensory results
from the filter DAG to client applications. For colocated image queries a shared
memory-based approach is used with zero-copying.

Source Nodes of a Filter DAG

Video devices are also modeled as filters within the framework and form the
root node of a processing tree that is, source nodes in the data flow graph. The
framework supports various camera connections such as analog frame grabbers
(e.g. BTTV), IEEE 1394 and USB-cameras and also multiple cameras in par-
allel. Each processing tree its executed within its own thread and is processed
in parallel with other source nodes, while the data flow can stay connected.
The framework then ensures appropriate synchronization between the image
streams. Note that, as the framework takes care of synchronization, developers
do not need to worry about locking issues and the right usage of synchroniza-
tion primitives. Also, the data flow needs not necessarily stay synchronized
with the control flow, that is, a filter can hold a reference to an input image
over multiple invocations to perform operations on consecutively taken images,
such as optical flow.

Additional processing trees can be added to decouple time-consuming image
operations (a slow path) that can not be performed on each image of the input
source, from fast image evaluations, needed at full frame rate for reactive tasks
in the robotics application.

Real-time Constraint Image Processing

As one of the dominant features of robot vision is the timeliness constraint, VIP
integrates multiple concepts for real-time processing. Each processing tree can
be executed with its own thread priority and scheduler choice, which is directly
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Figure 6.1: Original image, intermediate processing steps (blurred, grayed and
convolved images) and resulting edge detection. The thick, solid lines denote
the data flow, the thinner, dashed lines the control flow.

mapped on the OS-native process scheduler by the framework. This is necessary
to minimize jitter and ensure correct priorization, especially under high load
situations. Additionally, detailed timing statistics are provided for each filter.
Different models for synchronization of filters between different processing trees
can be used to either optimize synchronization of image sources (stereo vision)
or minimize locking overhead and context switching between threads (slow/fast
path processing).

Development Support

Applications in robot vision require extensive testing and tuning of filter con-
figurations. Therefore VIP provides various concepts to ease the development
process. The extensive use of the configuration management support provided
by the infrastructure layer described in Section 4.2 allows to specify metainfor-
mation about newly developed filters for various means. Instead of simply defin-
ing the parameters of a service implementation, the VIP framework uses the
infrastructure, to provide complete specifications of filter graph configurations
by the help of the parameter description language, allowing to adapt processing
parameters, or to provide an entirely different image processing DAG without
recompiling a single filter. Such configurations can be built conveniently under
a graphical user interface, as illustrated in Section 7.1. Also, every filter, and
therefor every intermediate result, can be queried (e.g. for visualization) by
simple assigning it a name for the according interface. The middleware integra-
tion also enables to change filter parameters on the fly from client applications
in reaction to changes in the environment. By exchanging the physical video
device with an image file set based virtual device that replays a stored image
stream, the whole processing tree can equally used on- and offline.

6.1.3 Example Configuration

The above described feature set of the VIP framework is best understood by a
small illustrative example. Figure 6.1 illustrates the derivation of an edge image
from the classical test image of computer vision. The original image is Gaussian
blurred and transformed into a grey image. Then a horizontal and vertical Sobel
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operator is applied and in the last step the Canny operator is applied. The
screenshots are taken from the generic inspection tool. Metainformation is not
provided by these simple filters. The data flow and control flow is illustrated
in Figure 6.1. The thick, solid lines denote the data, while the dashed lines
illustrate the control flow.

6.1.4 Possible Extensions

Future work will be directed in two different directions. The first is to assess
carefully the optimization potential for used system resources, especially mem-
ory consumption. Improving cache hit rates for instance can tremendously
increase the performance of image algorithms and control flow and memory
management have a significant impact on it. One possibility is to switch to in-
place processing of filters, if the filter and the filter graph configuration allow
it. The other direction is to connect the priorization of the image processing
tasks with the real-time capabilities of the underlying distributed systems mid-
dleware (RT-CORBA), to ensure end to end quality of service between sensory
and actuatory processes, especially in combination with a real-time enabled
notification service configuration as discussed in [40].

6.2 BAP Framework

Mobile robots acting in dynamic environments populated by humans and other
robots must be able to react quickly to unexpected situations. Behavior-based
approaches have been suggested and successfully used to implement reactive
robot behavior for almost 20 years now [13, 5, 78]. Nevertheless, implementing a
broad set of different behavioral skills and coordinating them to achieve coherent
complex behavior is still an error-prone and very tedious task. To more than a
few, behavior programming therefore seems to be more of an art than a science.

Most robot programming environments provide little conceptual and tool sup-
port for behavior engineering issues such as modularization, configuration,
reusability and maintainability. Furthermore, although some behavior-based
approaches provide concepts for organizing reactive behavior in a hierarchical
manner, there is no widely accepted methodology for creating such hierarchies
in a systematic way.

In this section the behavior, action pattern, policy (BAP) framework for specify-
ing hierarchical, behavior-based control systems is discussed [136]. The frame-
work allows to adopt many well-known behavior-based approaches, such as
those based on subsumption [13], fuzzy control [103, 104], or potential fields
[5], but was designed to incorporate concepts of modern software technology,
like modularization and reuse. The BAP framework was designed to ease the
integration with planning-based methods and to foster the use of learning al-
gorithms. It also aims to overcome some of the scalability problems associated
with behavior-based approaches. The integration of the BAP framework into
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the Miro project facilitates reuse and generalization of behavior libraries in and
for different scenarios and robot platforms.

6.2.1 Desired Functionality

In practice, the design of a behavior-based reactive control system is very te-
dious and time-consuming for any non-trivial task. Due to the emergent nature
of the overall system behavior, designing a set of behaviors producing a par-
ticular desired system behavior often proves to be very tricky. In addition,
the behavior engineer must consider numerous issues related to system inte-
gration and interaction with the other system components. As a result, the
design and implementation of behavior-based systems often appears to have
little structure and seems to lack methodology, at least to outside observers.
Programming complex behavior-based robot applications could be significantly
improved by developing methods that allow for more systematic development,
support prevalent software engineering desirabilities like modularity, functional
abstraction, reuse, and reduce development time and effort by providing li-
braries, and appropriate tools for design, implementation, and evaluation of
partial or complete behavior-based systems. A few particular issues are ad-
dressed in the next few paragraphs.

Reactivity by supporting concurrent behavior execution. A basic no-
tion of all original behavior-based approaches is their intrinsic concurrency
[13, 5]. This allows the programmer to factor out detection and handling of
potential failure situations in separate behaviors and to retain a concise for-
mulation of the actual task. The concurrent execution of all behaviors ensures
automatic surveillance of potential failure situations. However, some more re-
cent behavior-based approaches have traded concurrent behavior execution in
favor of easier behavior sequencing. This puts the burden to ensure timely eval-
uation of failure conditions back on the programmer. Therefore, we consider
concurrent behavior execution for a generalized reactive control framework as
indispensable.

Taskability by supporting behavior sequencing. A common weakness
of the early behavior-based approaches is the difficulty to implement a wide set
of different tasks. Murphy uses the notion of taskability for describing how easy
it is to switch between different tasks [87]. Indeed, a wide spectrum of different
tasks requires a large number of behaviors not all of which are relevant in
all situations. If all behaviors are concurrently executed all the time, some
behaviors may get in your way in undesirable situations. A much more concise
approach is to only execute the minimal set of behaviors necessary to produce
the desired system functionality. Upon arisal of certain situations, the system
switches to another behavior set. Thus, temporal sequencing of behavior sets
is a highly desirable mechanism to provide easy taskability of the robot. Fewer
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concurrent behaviors also make it simpler for the programmer to understand
the emergent properties of the active behavior set.

Modularity by hierarchical policy specification. Simple temporal se-
quencing of behavior sets is often insufficient, if the application domain and
the task set gets more complex. For example, in robot soccer (and many sim-
ilar scenarios) there are numerous situations where the robot is supposed to
select and execute a contingent plan out of several options, e.g. when executing
one out of maybe 5 or 10 different special plays after a foul call. Each play
– a contingent plan – can usually be represented by sequencing behavior sets
(using e.g. a finite state machine). However, representing all such plays in a
single large finite state machine of behavior sets gets soon very unwieldy and
degrades maintainability. Therefore, concepts for hierarchically building poli-
cies, which implement such contingent plans and have proper entry and exit
semantics, would greatly simplify the overall structure of the behavior system
and increase modularity.

Functional abstraction by providing behavior parameterization. In
practice, there are many situations where behaviors in different behavior sets
are quite similar and differ only in a few parameter settings, like settings for
maximum translational and rotational velocities and accelerations, or safety
distances to be observed. This holds even for behaviors on different mobile
platforms, which may have different low-level sensing and actuating capabilities
and different sets of parameters like maximum speed, accuracy of odometry,
and so on. Thus, there is considerable potential for code reuse, if the behavior
architecture supports functional abstraction and concepts for parameterization.

As an example, consider a generic obstacle-avoidance behavior. The safety
distance upon which it needs to react and influence the robot’s movements
depends both on the scenario and inherent capabilities of the robot platform.
A tour guide robot should avoid crashing into exhibits and visitors at all cost,
while a rescue robot may have to account only for its own stability when pushing
its way through obstacles in the disaster area on its way to a victim. In robot
soccer, tackling (physical contact) is okay for a soccer playing robot as long as
the referee does not object, but such a behavior would need dynamic adaptation
after the robot has been shown a yellow card. So the parameterization of
behaviors can not solely be derived from the service-provided metainformation
for sensors and actuators.

Flexibility by allowing different arbitration mechanisms If more than
one behavior is active and producing inputs for motor control, then the be-
havior outputs are potentially in conflict and must be arbitrated. The various
different behavior-based approaches, like subsumption, potential field methods,
and fuzzy behaviors, mainly differ in what type of output the behaviors produce
and what methods are used to arbitrate these outputs [93]. As the different
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approaches often have complementary benefits and pitfalls, it is desirable to
use the most adequate approach in any particular situation. A general-purpose
behavior architecture should therefore support the use of multiple arbitration
mechanisms.

In order to professionalize software development for autonomous mobile robots,
a state-of-the-art system development environment should provide program-
ming concepts and tool support for implementing behavior-based reactive con-
trol systems, and its design should observe the above design criteria. The next
section presents the formal organization of behavior with the BAP framework,
which was developed specifically with these design criteria in mind.

6.2.2 A Formal View on Modeling Reactive Control

The next two paragraphs introduce the main concepts informally, before we
provide more formal definitions further on.

We assume a robot with multiple sensors, which are controlled by sensory pro-
cesses that read out or interface to the sensors and deliver their data into an
observation space O. Interpretation, fusion, and integration of sensor data is
performed by perceptual processes, which represent their results in a space of
state variables S. The robot’s effectors are controlled via low-level motory pro-
cesses, the inputs of which make up motor space C. Observation space and
state space, together constitute data space D, i.e. the set of variables constitut-
ing the information available to the robot at any time instant and the basis for
any decision making. A special type of perceptual processes are guards, which
observe particular conditions on data space, e.g. that an object is visible, or
detect state changes, e.g. that an previously visible object has been lost or that
a goal state has been reached. Guards signal events, which can be viewed as
logical predicates satisfied in a specific situation represented in data space.

Behaviors are mappings from data space to motor space. If several behaviors
run concurrently, an arbiter deals with their potentially conflicting outputs.
A set of concurrently running behaviors together with a set of guards and an
arbiter make up an action pattern, which can be viewed as a primitive, co-
herent action with safeguards. By combining a set of action patterns together
with an event-based transition relation we get a policy, which defines tempo-
rally coherent sequences of action patterns. The transition relation allows for
the specification of quite complex control structures, including sequences, con-
ditionals, and loops. Policies can take the place of action patterns in policy
definitions, thereby permitting hierarchical specifications of policies. The tem-
poral extent of action coherence increases, the higher we move up in policy
hierarchy.
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6.2.3 Behaviors

A single behavior b defines a mapping from data space D, which represent
observations of the environment, to motor space C (that is, actuator commands),
which change the state of the environment:

b : D → C

Usually, behaviors are parameterized map-
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Figure 6.2: Feedback loop of a
behavior.

pings, which we refer to as behavior schemata.
A set of n available behavior schemata in an
actual implementation is denoted by BS =
{BS1, . . . , BSn}. Behavior schemata must be
instantiated to produce actual behaviors that
can be used in action patterns. Instantiation
requires providing parameter settings. The
behaviors present within an implementation form the set of available behav-
iors:

B = {b1, . . . , bn}

The formalism does not make any assumption about the kind of mapping a
behavior implements nor about how a behavior is actually implemented. This
weakens the assumptions possible on a behavior, but allows to capture most of
the known behavior implementation methods, including augmented finite state
automata [13], potential field methods [5], and fuzzy behaviors [103, 104].

6.2.4 Arbiters

Concurrent execution of behaviors was iden-
Behavior 1
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Arbiter

D
ata S

pace

Motor Space

Figure 6.3: Arbitration of be-
haviors.

tified as one of the design requirements. Mul-
tiple behaviors that concurrently map into
motor space provoke quite undefined behav-
ior in practice. To resolve the issue, each be-
havior bi maps into a separate motorspace
Ci. The process of combining the actuator
commands of different concurrently running
behaviors is called arbitration. It can be re-
garded as mapping function f that fuses sev-
eral suggested actuator commands into one:

f : Cn → C

Similar to behaviors above, arbiters may be parameterized, resulting in arbiter
schemas analog to behavior schemas described above. The arbiters available
within an implementation form the set of available arbiters:
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F = {f1, . . . , fm}

As for behaviors, our definition of arbiters does not constrain the behavior de-
signer to a particular arbitration method. Some well-known arbitration meth-
ods are static or dynamic priorities, subsumption, superposition of potential
fields [5], or fuzzy inference and defuzzification [103]. However, dependencies
exist between the used arbitration scheme and the types of behaviors usable
with it; e.g. when using fuzzy arbitration the behavior outputs are usually re-
quired to be fuzzy variables.

6.2.5 Guards

While the control loop of a behavior forms a continuous sensor/actor mapping,
there may also be discrete conditions in the data space that a reactive sys-
tem has to take into account: the distance to the target falls below a certain
threshold, a timeout for achieving a certain goal elapses, the object to track
vanished etc. Thus conditions are recognized by so called guards g that signal
the event of detecting such a condition, by emitting a guard event. A guard
event e, therefore indicates a discrete event within the system. As an exception
for notational convenience, e0 denotes the empty event, that will be ignored.
The set of available guard events within the system is denoted by:

E = {e0, . . . , el}

Naturally, g does not need to be surjective. Therefor the subset of events
actually generated by g is denoted Eg, with Eg ⊆ E . A guard can be therefore
described as a mapping:

g : D → Eg, with e0 ∈ Eg

Events from Behaviors

Many conditions become recognized during
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Figure 6.4: Guards signal dis-
crete events.

the evaluation of the control loop of a behav-
ior. These conditions normally indicate that
a behavior has reached its goal, or that the
behavior is unlikely to reach its goal anymore,
as a necessary precondition no longer holds.
I.e. a wall following behavior will loose its

applicability, if no wall is detectable by its used range sensor(s). Therefore it
will be useful in implementation practice, to allow for behaviors to supply guard
events. However, for notation simplicity, we will treat such an implementation
as two distinct objects in the formal framework.
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Just as behaviors and arbiters, guards can also be instantiated from parame-
terized guard schemas. The guards present within an implementation form the
set of available guards:

G = {g1, . . . , gk}

External Events

Events may also be generated by processes outside of the behavior engine, e.g.
by sensor reading processes, motor control processes, or cognitive processes.
This is useful for interfacing the behavior architecture with other system com-
ponents and for overall system integration. Formally, we denote these events
by a set E⊲ ⊆ E . These events are treated just like events generated inside the
behavior architecture.

6.2.6 Action Patterns

An action pattern consists of a set of behaviors, a set of guards, and an arbiter,
all of which are concurrently executed. An action pattern is formally denoted
by a triple:

a = (B,G, f), with B = {b1, . . . , bm} ⊆ B, G = {g1, . . . , gn} ⊆ G, f ∈ F

When necessary, we distinguish ac-
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Actuators

S
ensory Inputs

Events

Behavior 1

Behavior 2

Figure 6.5: Structure of an action pat-
tern.

tion patterns and their components
by indexing them appropriately, as
e.g. in a1 and Ba. An action pat-
tern represents a controller for the
autonomous mobile system (see Fig-
ure 6.5). Its behaviors, guards, and
the arbiter form the emergent control
loop. Action patterns allow for mon-
itoring and control of many different
sensory and effectory capabilities in
a structured and modular way and
ensure timely responses (reactivity)
via concurrent execution of its con-
stituents.

For the execution of different tasks the capability of executing different action
patterns is necessary. The set of available action patterns is denoted by

A = {a1, . . . , ak}
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At any time, only a single action pattern is active. Behaviors, guards, and
arbiters are called active, if they belong to the active action pattern. Thus,
the action pattern is the central concept for capturing concurrent execution
of behavior-producing functionality (and thereby taking care of the reactiv-
ity requirement), while task sequencing will require to switch between action
patterns.

Of further importance is the set of events potentially signaled by the behaviors
and guards of an action pattern, also called internal events, which we denote
by

E⊳
a =

⋃

g∈Ga

Eg

The set of events possibly signaled while an action pattern is active consists of
the events signaled either internally or externally

Ea = E⊳
a ∪ E⊲

Whenever an (internal or external) event is signaled, the execution of an action
pattern is terminated.

6.2.7 Transitions

After defining the basic concepts for producing behaviors, arbitrating conflict-
ing behavior output, generating events for termination conditions, and the basic
activity unit for concurrent execution, we can now tackle task sequencing. As-
sume we have some set A of available action patterns, for each of which we
know the set Ea of possibly signaled events.

A transition specifies the successive action pattern, if an active action pattern
is terminated by a specific event e, and is formally denoted by a triple

t = (a, e, a′), with a, a′ ∈ A, e ∈ Ea

a is called the source, a′ the target of a transition. The event e is either
produced internally by a guard of the action pattern a or an external event.
So, while the guard event terminates an action pattern, a transition defines a
successor pattern in such an event. Transitions are atomic, that is they represent
synchronization points within the concurrent execution of behaviors, arbiters
and guards. Loops may be defined, i.e. transitions with a = a′. This can be
used to explicitly ignore the request of a guard for the termination of an action
pattern. For further reference, we define for a given set A of action patterns
and a given set E⊲ of external events the set of possible transitions over A and
E⊲ as follows:
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T (A, E⊲) = {(a, e, a′) | a, a′ ∈ A ∧ e ∈ Ea}

Additionally, the successor pattern defined by a transition is required to be
uniquely defined, to ensure deterministic results. That is,

∀(a0, e, a), (â0, ê, â) ∈ T : [(a0 = â0 ∧ e = ê) → a = â]

Transition Patterns

There often do exist situations within scenarios that require a uniform reaction
of the robot. Referee calls in RoboCup like the game start would qualify for
such a situation. For notational convenience, but also for the explicit notion of
universal validity, these events can be handled by a so called transition pattern
t∗ = (∗, e, a′) that denotes a set of transitions as follows:

t∗ = {(a, e, a′) : ∀a ∈ A}.

Note that t∗ is defined for all a ∈ A even if e /∈ Ea. Analogously to normal
transitions, the set of possible transition patterns T ∗(A, E⊲) and the uniqueness
of successor action patterns for t∗ are defined as follows:

T ∗(A, E⊲) = {(∗, e, a) | a ∈ A ∧ e ∈ EA} with EA =
⋃

a∈A Ea; and

∀(∗, e, a), (∗, ê, â) ∈ T ∗ : [(e = ê) → a = â].

6.2.8 Flat Policies

The combination of action patterns and transitions allows us to specify a higher-
level robot controller, which does not only handle a particular task like an action
pattern, but complex task sequences. Such a higher-level robot controller is
called a flat policy and formally specified by a quadruple

p = (A,T, T ∗, a0)

where A ⊆ A is a set of action patterns, a0 ∈ A is a uniquely determined
start pattern, T ⊆ T (A, E⊲) is a consistent set of transitions over A, and T ∗ ⊆
T ∗(A, E⊲) is a consistent set of transition patterns over A. Informally speaking,
a flat policy consists of a set of action patterns, a set of transitions associated
with the individual source patterns, a set of transition patterns associated with
the policy, and a dedicated start pattern, which is executed upon activation
of the policy. The targets of both transitions and transition patterns must be
elements of the flat policy’s set of action patterns.

Although we require both the set of transitions and the set of transition patterns
to be consistent, this does not necessarily hold for their union. That is a
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transition and a transition pattern could specify different successor patterns for
an event e:

t = (a, e, a′) ∈ T and t∗ = (∗, e, a′′) ∈ T ∗, with a′ 6= a′′

This problem is solved by the following precedence rule: Transitions take prece-
dence over transition patterns. That is, if e is signaled while a is active, the
successor action pattern is defined to be a′.

The enclosing (flat) policy defines the appropriate context for transition pat-
terns as already referred to previously. In fact, within a flat policy p, each
transition pattern t∗ = (∗, e, a) ∈ T ∗ is equivalent to a set of transitions:

t∗ = {(ai, e, a) | ai ∈ A ∧ ∀a′ = a : (ai, e, a) /∈ T},

i.e. we could replace a transition pattern by a set of transitions, one from each
of the policy’s action patterns as source and all of which sharing the event and
the target, unless there is already a different transition specified for the source
and the event.

Flat policies are terminated, if an event oc-
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Figure 6.6: Example of a simple
policy with sequencingand iter-
ation of tasks.

curs that is not covered either by a transition
with the currently active action pattern as
source or by a transition pattern. Formally,
the set of events terminating a policy, also
called unhandled events of a policy, is deter-
mined by

Ep =

n⋃

i=1

(
Eai

\ {e | ∃a′ : (ai, e, a) ∈ (T ∪ T ∗)}
)

If for any event possibly occurring during ex-
ecution of a policy p there is always an ap-
propriate transition specified, i.e. if Ep = ∅,
the policy will never be terminated. In this
case, we say that the policy is closed. In the
less constrained case, where the policy han-
dles at least all locally generated events, i.e.
Ep ⊆ E⊲, the policy is said to be locally closed.

For further reference, the set of available flat policies over A is denoted by

P0 = {p = (A,T, T ∗, a0) | A ⊆ A∧

T ⊆ T (A, E⊲) ∧ T ∗ ⊆ T ∗(A, E⊲) ∧ a0 ∈ A}

Figure 6.6 shows a simple example policy from the RoboCup domain. The
policy consists of two action pattern, GetBall and Score. The start pat-
tern is marked by asterisks around the pattern name. In the first action pat-
tern, two behaviors are active, which are arbitrated by a subsumption style
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PriorityArbiter. The BehindBall behavior maneuvers the robot behind the
ball in direction of the opponents goal and Avoid ensures a collision free motion
through the obstacles (opponent robots). The guard AtBall signals the event e1

as soon as the robot reached its destination. The second action pattern consists
of a behavior KickGoal that kicks the ball into the goal, again an Avoid be-
havior ensures collision avoidance and the second action pattern is terminated
by the event e2 as soon as the guard signals, that the ball was kicked. The two
transitions model a simple interleaving of the two action patterns.

6.2.9 Hierarchical Policies

The concepts introduced so far cover all design requirements except for mod-
ularity by hierarchical policy specification, which we will now introduce. The
basic idea is to also allow (sub)policies in the place of action patterns in the
definition of policies. In order to do that, a hierarchy of activity units Ui is
specified. Level 0 activity units are just the available action patterns: U0 := A.
Level 1 activity units extend U0 by the available flat policies defined above:
U1 := U0∪P0. Level n activity units are recursively constructed by adding level
n−1 policies (defined below) to the level n−1 activity units: Un := Un−1∪Pn−1.
Sets of possible transitions and transition patterns are now defined equivalently
over sets of activity units:

Ti(Ui, E
⊲) = {(u, e, u′) | u, u′ ∈ U, e ∈ Eu}

T ∗

i (Ui, E
⊲) = {(∗, e, u′) | u′ ∈ U, e ∈ EUi

}.

With these definitions, it is now straightforward to extend the definition of flat
policies towards hierarchical policies:

Pn := {(U, T, T ∗, u0) | U ⊆ Un ∧ T ⊆ Tn(U, E⊲) ∧ T ∗ ⊆ T ∗

n (U, E⊲) ∧ u0 ∈ U}

Hierarchical policies are illustrated in Figure 6.7. Here the action patterns of
Figure 6.6 are enriched with a guard that checks, whether the ball is still seen.
If not, the event e3 is signaled and the SearchBall subpolicy is executed. There
the robot turns in place and looks for the ball. BallFound will signal the event
e5 as soon as the ball is found, terminating the policy. If this takes too long, the
event e4 is signaled and the GoHome, subpolicy will drive the robot back to its
home position. Note, that policies can be embedded multiple times in different
higher-level policies, thereby facilitating code reuse. However, both direct and
indirect loops and recursion are excluded, i.e. the hierarchy of policies is indeed
well-defined. Note also, that in practice, events can be given arbitrary, more
meaningful names.

6.2.10 Implementation

The framework-based implementation of the BAP concept of structured, behavior-
based control offers various possibilities of supporting the application developer



82 CHAPTER 6. EXTENSIBLE FRAMEWORKS

e1

2e

e3

5e

4e

5e

Score

BallKicked

BallLost

PriorityArbiter

Avoid

KickGoal

Turn

PriorityArbiter

e3

5e

PriorityArbiter

Avoid

BehindBall

BallLost

TimeOut

BallFound

Attack

SearchBall

AtBall

* GetBall *

* LookAround *

SearchBall

GoHome

Figure 6.7: Example of a hierarchical policy. Searching for the ball is encapsu-
lated in a subpolicy.

with scalability and reactivity issues of the application domain.

Control Flow Management

A central concept of the framework is that behaviors and guards run asyn-
chronously in parallel. The BAP framework inverts the control flow by defining
a behavior base class with virtual methods (OO callback hooks), for starting,
stopping and reinitialization, as well as for calculating the output for a single
iteration of the control loop of a behavior. The behavior engine runs its own
control loop(s) and calls the different behavior and guard instances as speci-
fied in the configuration of the action pattern. Different concurrency models
exist that can be used simultaneously by different behaviors. They can either
be preemptively multi-tasked or triggered by timers. In the later case, each
behavior/guard can define its own pace, at which the evaluation of the control
loop is triggered. Additionally, they can also be modeled as consumers of an
event channel (Section 4.1.4). This allows reactive control loops that are driven
by the occurrence of sensory events, like the delivery of an infrared distance
sensor measurement, or the activation of a bumper. As a consequence, the
different behaviors/guards do not have to run altogether at the same pace, but
can choose their own, adequate evaluation rhythm.

Data Flow Organization

The formal specification of BAP also allows to organize much of the required
data flow for behavior instances such as configuration parameters and sensory
events. This eliminates in many cases the necessity for application programmers
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to handle locking issues for concurrently executed behaviors.

Predefined Components

The integration of BAP with the Miro architecture allows to implement frame-
work components independently of the robot platform, as the service layer takes
care of abstracting from the low-level details of a robots sensors and actuators
and provides metainterfaces for the adaptation of client applications. Therefore
the BAP framework also provides components ready for deployment into target
applications.

BAP provides two different arbitration schemes. The first is a priority-based
arbitration, which implements the subsumption architecture approach of Brooks
[13]. The second is an experimental arbitration scheme, which favors a multi-
valued approach. Its unique feature is to allow behaviors to prohibit values in
the motory space. Experiments for a potential-field-based arbitration approach
were also conducted.

Simple behaviors such as ’move to position’ or a primitive ’wall following’ are
also part of the framework implementation. The discussed work provides also
the foundations for the design of generic high-level behaviors such as generic
obstacle avoidance for highly dynamic environments. Nevertheless, this involves
the solution of severe additional challenges and therefore lies beyond the scope
of this thesis.

6.2.11 Configuration Management

The configuration of behaviors, arbiters, action patterns, transitions and sub-
policies into a policy is a substantial engineering effort in itself. The imple-
mented framework does not force such configurations to be hard wired within
the source code, but enables configurations (in particular parameterizations) to
be separated out into a configuration file using an XML-based grammar. This
allows for fast and easy reconfiguration of a policy without recompilation, which
is especially useful during development.

For this purpose, the BAP framework, too, makes heavy use of the configu-
ration management infrastructure. While the relevant properties of behaviors,
arbiters and guards such as their parameters and events can be specified by the
parameter descriptions, the hierarchic policy graph does not match very well the
expressiveness of the configuration language. Therefore the policy configura-
tion provides its own, extended XML-based grammar. It therefore also offers its
own editor for the graphical programming of hierarchical policy configurations,
which is discussed in Section 7.2.
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Dynamic Reconfiguration

Static configurations of a robot’s actuatory capabilities are sufficient, as long as
all of the robots actions can be defined a priori. But skill learning or the inter-
action with navigation modules such as described in [134] or with symbolic AI
planning make it desirable to overcome the limitations of static configurations.

In BAP, there are two levels of dynamic reconfiguration of a policy. The first
level is the reconfiguration of the parameter sets of guard, behavior and arbiter
instances. The second is addition and deletion of behaviors, action patterns,
subpolicies, transitions and transition patterns. The first level of reconfiguration
is fairly straightforward from the implementations perspective. Behaviors and
arbiters are already defined to work on different parameter sets within different
action patterns. Therefore, the change of a parameter set in a currently active
action pattern is equivalent to a transition to the same action pattern with the
new parameter set. The second level of reconfiguration is conceptionally well-
defined, but includes subtle locking issues to prevent actions from e.g. deleting
a currently executed action pattern and is therefore not implemented yet.

6.2.12 Possible Extensions

The proposed model of structured reactive control allows to describe complex
behavior of autonomous mobile robots in a modular way that fosters reuse in
this highly target application specific domain of robot programming. There
are various extensions possible to further enhance the expressive power of the
formalism.

Allowing guards to be instantiated on the policy level would allow to define
additional termination conditions for sets of previously defined action patterns
and subpolicies and would therefore enhance their reusability. Nevertheless,
the formalism needs to ensure the deterministic nature of the transitions if the
policy level guard events are also handled by transitions within the subpolicies.
The simplest solution would be to require the set of policy level guard events
and the set of events handled within the policy to be disjunct.

6.2.13 Related Work

The work discussed in this paper combines concepts from the theory of hybrid
automata [51] with the behavior-based decomposition of control loops, which is
then extended by the introduction of recursive structuring. The structuring of
reactive behavior is predominantly addressed on the second level of a classical
three tier architecture, that is, in the mapping of abstract, partially ordered
plans onto the reactive control regime of an autonomous mobile platform. This
resulted in very little support for structuring on the behavior layers itself. On
the other hand the robot control languages that mediate between the deliber-
ative and the reactive layer usually take a top down perspective and therefore
are very loosely coupled to behavior concepts like arbitration.
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Reactive Control Systems

The reactive layer of a robot control system is most often based upon a behavior-
oriented control regime. However, structuring reactive control is usually dele-
gated to the next higher level, so that few conceptual solutions exist on this
layer. Consequently the systems that support structuring are typically not
designed for a 3T architecture in the first place.

Subsumption architecture: The classical subsumption architecture [13] or-
ganizes reactive behavior in levels of competence. It uses a priority-based arbi-
tration scheme, as higher levels of competence can override the output of lower
levels. Aside of that there is little structural support, especially for behavior
sequencing. On the contrary, the basic idea is that lower levels stays active all
the time.

Saphira Fuzzy Controller: A formally more sophisticated arbitration scheme
was introduced by [103]. It was first used by Flakey and became then part of
the Saphira architecture [62]. It uses fuzzy control rules to combine outputs
of different behaviors. At runtime, behaviors calculate fuzzy variables as well
as their own activation value. The arbiter/defuzzyfier combines the values,
weighted by the activation of the behaviors. Behaviors can be excluded from
execution, but the control regime itself does not model this.

Dual Dynamics: A very interesting approach in organizing behavior sets into
different modes of control is taken by the Dual Dynamics approach [57]. Be-
havior sequencing modeled as a continuous system based on bifurcation points
in activation dynamics. Behaviors are organized by layering. Elementary be-
haviors calculate target dynamics (i.e. motor outputs). Higher level behaviors
(level 0, 1, ...) calculate activation dynamics (modes). The activation of a
behavior is calculated from the activation dynamics of behaviors of the next
higher level. The system is accompanied by flow-based graphical design tools
and a simulator [11]. The problem with reuse of behavior sets designed in DD
is, that still all behaviors have to know all activation values of the next higher
level, in order to respond correctly in all modes.

XABSL: The Extensible Agent Behavior Specification Language XABSL [75]
models finite state automatons (FSAs) but uses decision trees for hierarchical
structuring. The overall behavior is specified in a directed acyclic graph, with
actually forms the decision tree. In contrast to BAP every leaf node consists of
only one behavior. Each inner node (‘option’ in XABSL terminology) defines a
FSA that augments the decision taking by an internal state. The decision tree
is evaluated in every iteration. So options do not terminate themselves, but get
disabled by taking another branch somewhere higher in the decision hierarchy.
It does not support parameterization.
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The specification is interpreted at runtime, so interaction with other subsys-
tems like perception is done by registering their output variables at the XABSL
runtime engine on program startup. - This introduces the possibility of run-
time errors (i.e. unregistered variable) that actually should be detectable at
compile time. Also, this concept interacts badly with concurrency in the form
of preemptive multi-tasking.

Robot Control Languages

Robot control languages are designed to bridge the gap between the deliberative
layer and the reactive execution engine. They handle sequencing and parallel
execution at the task-level. But they are usually designed from a top down
perspective and have little conceptual connection to the behavior level.

Reactive Action Packages: An early robot control language is the “Re-
active Action Packages (RAP)”[32]. A RAP represents an action that can be
arbitrarily complex and structured. RAPs fits conceptually quite good to the hi-
erarchical planning approach, in that RAPs are executed by stepwise refinement
until they represent an executable atomic action (skills in their terminology that
are actually continuous processes). This includes sequencing and parallel exe-
cution. There can be multiple refinements for a RAP and preconditions can be
checked for the applicability of a refinement. Failure and completion of actions
is acknowledged by signals that can be linked to successor RAPs. Signals that
are not linked to successor states are lost, which makes it hard to intercept a
RAP from a higher-level perspective.

As most robot control languages, the coupling to the reactive layer is rather
loose. The problem of arbitration between reactive processes is circumvented
in that incompabilities of skills can be specified to prevent them from being
executed in parallel.

Saphira Tasklevel Controller: A similar design is provided by the Saphira
architecture. The two robot control languages PRS-lite [89] and Colbert [64]
that are available for the Saphira architecture [62] have no apparent link to
the behavior framework [103] of the system (which is based on fuzzy control
theory discussed above), even though they usually are needed to activate and
deactivate its behaviors for different tasks.

Task Definition Language: The Task Definition Language (TDL) [119],
was designed for space missions of NASA. It is similar to RAP, as it works on
a task tree that is expanded at runtime. It is implemented as an extension
to C++ that is compiled down to plain C++ and supported by a runtime
library. Its main constructs are a set of task identifiers (Goal, Command,
Monitor...) that are prefixes for a C++ global function, the spawn keyword
for starting parallel subtasks and a set of constraints for synchronization of



6.3. SUMMARY 87

spawned subtasks. Exception management is used for expressing failure, using
similar semantics as the event and binding semantics in BAP.

Structured Behavior-Based Control

The architecture most similar to Miro is probably MissionLab [4], an end-
user-oriented robot task-level control software, which is designed for mission
specifications in the military domain. It allows the composition of higher-level
agents by combining a set of (atomic) agents with a coordination operator.
The reactive behavior of robots can be specified by the use of a configuration
description language (CDL), for which a graphical frontend exists [77].

Coordination operators can select and fuse outputs from the agents and allow for
arbitration as well as for temporal sequencing by implementing a FSA. Events
are only handled directly by a coordination operator. Termination conditions
like successful completion or failure of a subtask need therefore be checked on
the next higher level and are not part of the agent itself. Also the approach for
multi-platform support differs significantly from the approach discussed in this
thesis: MissionLab uses different compiler backends to translate the specified
control program for different robots.

6.3 Summary

In this chapter, the design rationale of the framework layer of the Miro soft-
ware architecture has been discussed. Frameworks are not only a powerful
concept with which to foster the reuse of code and design for concisely defined
application domains. The properties of a framework-based design also make it
particularly suitable for addressing non-functional aspects as need to be consid-
ered for meeting the challenges of large-scale applications. These features were
highlighted in the discussion of two of Miro’s frameworks.

The VIP framework addresses the difficulties of meeting the requirements of the
application domain when applying advanced computer vision to autonomous
mobile robots in dynamic environments. It is designed to facilitate the appli-
cation of computer vision in robotics by dealing with the additional challenges
of robot vision in this domain. The middleware-based framework approach
especially makes it possible to support roboticists with the non-functional as-
pects like configuration and performance assessment. The inversion of control
flow and the management of data flow provided by the frameworks also allows
to effectively shield the developer from the various locking issues associated
with parallel data access and synchronization, and to provide a generic model
for task prioritization. Extensive development support is provided in the form
of parameter management, GUI-based configuration and generic inspection of
images and metainformation.

The BAP framework evaluates methods to overcome intrinsic scalability issues
of behavior-based robot control architectures. The key question dealt with in
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this section is how behaviors can be organized in a hierarchical way. This al-
lows for complexity reduction and for the reuse of action patterns or complex
sequences of actions either within a single control system or for different sce-
narios. The framework-based design allows for a flexible mixture of control
loop evaluation models. The middleware-provided configuration management
enables graphical modeling of action patterns and policies as well as the flexible
parameterization of their components and extensive development support.

This chapter contains two contributions to the state of the art in research on
autonomous mobile robotics. First, a new design for video image processing in
time-constrained dynamic environments was discussed. It features a control-
flow-oriented design, incorporating parallel execution and proper prioritization,
along with a stringent connection management, which guarantees a minimized
processing tree. Second, a formal method for the design of reusable, modular
patterns of robot behavior was defined, which encompasses most of the promi-
nent behavior-based approaches. The distinct separation of parallel execution,
sequencing, and modularization allows to derive features such as sets of un-
handled events of sub-policies, which are used for consistency checking by the
provided development tools.



Chapter 7

Tool Support

Tool support is an essential element of modern software development processes.
Modern text editors provide features that reach far beyond the capabilities of
classical syntax highlighting. Debuggers allow single-stepping through running
code and profiling tools help to identify hot spots in program execution and
can even report on cache utilization and processor pipeline stalls. In order to
support this process, additional tools for developing, debugging and evaluating
robotic applications are needed.

In the previous chapters, various solutions for addressing the challenges of the
robotics domain were proposed. These included specialized as well as cus-
tomized technologies such as extensive configurability support, logging or be-
havior engineering. These technologies need to be supported further to make
them easier to use and to speed up the development process.

In this chapter some of Miro’s high-level GUI-based tools will be briefly intro-
duced. They illustrate how robotic applications can be supported by generic
tools, a situation in which the identified solutions can be more easily propa-
gated to the developer level. All Miro tools have some basic design principles
in common:

Visualization: Because humans are very good at visually understanding struc-
tures and relations, the tools produce an editable visualization of the
problem domain. This is done by the use of standard GUI elements as
well as by producing customized visual representations.

Input Checking: Miro makes great efforts to prevent subtle and hard to de-
bug programming errors. This is why the tools have to provide the best
support for properties like type safety and correctness of editing function-
alities.

Generic Extensibility: Robotics middleware provides functionality that is to
be used and extended by the roboticists. Therefore, the tools provided by
the middleware layer have to be capable of extending their functionality
in order to be able to cope with the applications’ growing capabilities.

89
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This can be achieved for example by genericity within the tool itself or
by the use of a plug-in architecture.

Runtime Inspection: The most difficult problem in autonomous mobile robot
applications is the inspection of the processes at runtime. In order to
address this problem, the tools especially support the inspection of the
system during operation.

7.1 Configuration Management

The ConfigEditor

Figure 7.1: ConfigEditor — Type-safe editing of struc-
tured and nested configuration parameter sets.

supports the ap-
plication of a
toolkit from the
Miro infrastructure
layer, namely the
configuration and
parameter toolkit
as described in sec-
tion 4.2. Because
it allows for a pow-
erful and flexible
parameterization of
services and frame-
works, it is used
by many of Miro’s
components and
is also frequently
used in Miro-based
robotics solutions.
In consequence,
the XML-based
configuration files
can become quite
large. Even though
XML is a plain text
format, editing big
XML files without
further support
from the text edi-

tor is very tedious and error-prone. A number of XML editors that facilitate
the editing of files in compliance with a document type description (DTD) or a
Schema do exist. But the user-defined parameter descriptions are not covered
by the DTD and also contain features like inline documentation, which are
hardly representable within a DTD or a Schema.
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The editor provides a tree view of the configuration document, its sections and
parameter instances. This allows for fully type-safe editing of parameter entries
and supporting all types supported by the parameter framework. This includes
nested structured types, vectors and sets. The editor obtains the definitions of
parameter sets by parsing the user-defined parameter description files and thus
extends its editing capabilities generically to also include parameters defined
in user applications that build upon Miro. Also, changes in the parameter de-
scriptions such as additional parameter fields are reflected automatically within
the editor. Run-time inspection and configuration of parameter configurations
is a rather new feature and is therefore only supported by only a few interfaces.

The ConfigEditor is designed to provide a maximum of error safety and editing
comfort by making full use of the information provided by parameter descrip-
tion files. It displays the expected type, the physical measure if specified in
the parameter description, and also the provided default values as a tooltip.
Figure 7.1 shows the VIP framework sample configuration from Section 6.1.3.
It performs the processing steps for simple edge detection (upper window). The
lower dialog shows the parameter configuration window for the Canny filter.

7.2 Graphical Policy Programming

The design and implementation of policies for the BAP framework is much
more related to a programming task then to a mere configuration effort. It
consists not only of parameterization of behaviors, guards and arbiters, but
also includes behavior grouping, sub-partitioning of the problem domain and
conditional control flow directing by transition management in an iterative edit,
test, and debug cycle.

The policy editor visualizes the policy as the graph of the hybrid automaton
it describes. The functionality of the ConfigEditor is reused for parameter
handling and additional constraint checking is available for transition man-
agement. The parameter description framework is also reused for the generic
description of policies and their parameters. This enables the editor to incor-
porate user-written behaviors. For runtime support, policies can be sent to
a running robot. This allows to replace a robot’s policy without having to
restart its control program. This is especially helpful during debugging and for
parameter adaptation.

This tool allows for graphical programming of action patterns and policies. The
available behaviors, arbiters and guards can be grouped into action patterns and
their parameters can be adjusted to the peculiarities of the task. Transitions
can be added for sequencing action patterns in a policy. The graphical pro-
gramming environment checks whether all locally produced message are bound
by a transition. Modularization by means of subpolicies is also supported.

Figure 7.2 shows a small example of graphical policy programming. The window
on the left shows the graph structure of the policy document, while on the
right side a simple policy is visualized. The tree view on the left lists the
external transitions ‘Wait’ and ‘Play’, used for stopping/starting the robot’s
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Figure 7.2: Graphical behavior programming. The tree view on the left side
represents the structure of the policy document, while on the right side a policy
graph is visualized. The nodes represent action patterns (‘Wait’, ‘A’, ‘B’, ‘C’,
‘D’) or policy instances (‘Localize’) and the arrows denote transition. The
arrows from the upper right corner are transition patterns. The policy can be
edited in both windows.

activity from an external control panel, a subpolicy ‘Localize’ and the main
policy ‘Square’. It consists of transition patterns for the events ‘Wait’, ‘Play’,
‘Localized’ and ‘Delocalized’, the action patterns ‘Wait’, ‘A’, ‘B’, ‘C’ and ‘D’
and a subpolicy instance of ‘Localize’. The types of the entries are also displayed
in the list view, but the column is scrolled out in this screenshot. The right side
displays a policy graph, in this case the ‘Square’ policy. Transition patterns
originate in the right upper corner. The start pattern is denoted by enclosing
the name with two asterisks on either side. The ‘MoveToPosition’ behavior is
parameterized with different target coordinates in each action pattern. Each
time a goal is reached, a ‘TargetReached’ event is generated and the policy
switches to the next action pattern. The guard ‘SigDelocalized’ keeps track of
the successful localization of the robot and signals if it is delocalized by sending
the ‘Delocalized’ event. So if the localization fails, the ‘Localize’ subpolicy
for active relocalization is executed. Afterwards, the robot restarts the square
movement at pattern A. The ‘IrAvoid’ behavior ensures that the robot does
stay away from obstacles identified by its infrared sensors. The outputs from
the different behaviors are fused by the ‘MotionArbiter’, a simple priority based
arbiter implementing the subsumption scheme of action selection.
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7.3 Log file Management and Replay

The sheer mass of log data generated by the event logging service described
in Section 5.4 requires tool support for post processing, especially since the
performance-optimized binary file format renders standard text processing and
filtering tools such as regular expression processors useless. But on the positive
side, this binary data format does not only support efficient logging of large
amounts of data. One of it’s primary design goals was to make it possible to
replay these data logs as the original events through an event channel.

The appearance of the LogPlayer tool mimics a standard media player with a
control panel which supports play, pause, stop, slow-motion, single-stepping and
quick access to random parts of the data stream through a slider bar. An event
view window allows the inspection of individual events. Generic inspection of
the event payload would be possible due to the middleware-based design of the
logging facility. CORBA offers interpretative demarshaling of structured data
through the use of the DynAny specification. This feature, however, has not
been implemented yet.

As the essential processing

Figure 7.3: Tool to replay logged files.

tool for the acquired log files,
the GUI-based LogPlayer front
end (see Figure 7.3) allows to
access all the information stored
within a log file. It can re-
play log files in a timely man-
ner, pushing all logged events
into an event channel. It can
also replay multiple log files while synchronizing their time stamps as required
for debugging and for the assessment of data from multirobot experiments. For
log file management, functionality for extracting sequences out of log files and
filtering logged events based on the domain and event name is available.

7.4 Data Visualization

The data structures as communicated through the event channel, especially user
application defined data types, are mostly specialized for the robot’s application
domain. This is why hardly any general-purpose visualization and data analysis
tools exist so far. But the value of the insight provided by the event streams of
structured sensor and higher-level service data nevertheless calls for an easily
extensible framework for their visualization.

A powerful visualization tool, the so called Vizard was developed especially
for the RoboCup domain. It offers an OpenGL-based 2D visualization of the
application domain, allowing to display additional data in various dialog boxes
on demand. Further features for visualization can be integrated through its
visualization framework, so it would also be easily applicable to a SLAM or
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Figure 7.4: Visualization of the robot soccer team drawn up from the robots’
data. The position of the ball, the free area in the opponents’ goal and the
visible localization landmarks are displayed as observed by the robot in the
center circle.

navigation scenario, for example. Because of its strictly event-based design,
it can be used for online inspection of an active robot soccer team as well as
for offline visualization of multiple data streams as replayed by the LogPlayer

introduced in the previous section.

The Vizard tool displays the sensory event streams such as the robots positions,
their velocities and infrared range sensor scans as well as the results of higher-
level object recognition such as ball and goal positions. Additional information
like preprocessed images or the current state of the BAP engine can be displayed
in additional windows. For a more detailed perspective, the display of each
feature (and robot) can be turned on and off independently. Figure 7.4 shows
a pre-kickoff situation at RoboCup. The main window on the left displays
the football field and the visualized data. The tree view on the right allows
to select the various features for display. The three overlaid windows show the
preprocessed images of the three robots. The big window at the bottom left
belongs to the field player in possession of the ball, all observed features in the
image are marked by little boxes and are also displayed in the main window:
The ball is directly in front of the robot. The directions of the left goal post and
the right corner flag (which represent landmarks for localization) are displayed
by the yellow and blue and by the yellow and white lines respectively. The
yellow bar in the opponents’ goal visible in the image represents the biggest
free area observed in the goal. The field lines observed by the three robots
(which are also used as localization features) are displayed as gray dots in the
main window. The red dots represent position hypotheses created with the
applied sample-based Markov localization method.
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7.5 Summary

In this chapter a selection of GUI-based tools has been presented. They sup-
port the application of provided functionalities from the software architecture’s
different layers.

The ConfigEditor enables type-safe, generic editing of configurations, thus
preventing subtle errors like misspelling of parameter names. It also immedi-
ately propagates any change in the configurability of components to the user
level. The PolicyEditor provides graphical modeling capabilities for action
patterns, transitions and policies, and supports a rapid develop-test-cycle, by
utilizing the online configurability of the BAP implementation of robots in op-
eration. The LogPlayer provides capabilities for the maintenance and replay
of event stream acquired during robot experiments for visualization, evaluation
and learning purposes. The Vizard application provides a framework for the
visualization of event streams for online and offline inspection of multirobot
experiments such as RoboCup tournaments.

Such tools are necessary stepping stones for easing the applicability of the ad-
vanced features of a robotics software architecture in end-user applications.
They are therefore an integral part of the design on which Miro is based.
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Chapter 8

Experimental Evaluation

An extensive evaluation of the functionality implemented in the Miro architec-
ture is essential in order to assess the actual benefits provided by the solution
approach. However, it is difficult to experimentally verify design goals such as
reusability and scalability of the system as a whole. Additionally, qualitative
measures like reusability are difficult to verify quantitatively with justifiable
effort.

The evaluation of the discussed architecture has therefore been split up into
two chapters. This chapter focuses on an empirical evaluation with respect to
runtime properties achieved by the design and deliberately omits issues that
are difficult to quantify within the scope of this thesis. The next chapter will
present some of the proposed architecture’s qualitative results as derived from
various projects and applications based upon the Miro architecture.

In this chapter, assessments of selected functionality from the different layers
will be presented. On the infrastructure layer, the runtime performance of the
communications infrastructure as well as its scalability is of primary interest.
On the service layer, the efficiency of the logging service with respect to runtime
and space will be evaluated. On the framework layer, the support of the differ-
ent application sub-domains in their non-functional requirements is of concern.
Therefore, the VIP framework’s ability to adhere to QoS requirements such as
prioritization will be assessed. As the device layer is not part of the scope of
this thesis, it has been deliberately omitted from empirical evaluation as well.

8.1 Communication Overhead

A question often raised within the robotics domain is the overhead introduced
by large scale distributed systems technology such as CORBA. We evaluate
these questions with two experiments. First, the impact of inter-process com-
munication on the latencies introduced by the physical devices of a robot. Sec-
ond, the general performance of the employed CORBA middleware is discussed.

97
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8.1.1 Device Latencies and Inter-Process Communication

In a first experiment we tried to quantify the impact of the communication
infrastructure on sensor/actor-based feedback loops, typical for behavior-based
reactive control.

High performance and real-time conformance are still not really an issue for
many commercially available mobile robot platforms, due to the limited capa-
bilities of their hardware. The Pioneer controller board, as well as the B21
(pre-rFlex) motor controller are both attached to a PC via a slow serial link.
Furthermore, they do report their status to the PC only in 100 msec intervals.
The odometry resolution is in each case about 1cm. Therefore, a basic response
test, that is the time between issuing a motor command and the reflection
of the robots movement within an odometry reading is heavily dominated by
the latencies of the low level controller communication and can hardly reflect
the performance of the actual software architecture. Of the robots in our lab,
the Sparrow-99 controller board seemed most suited for performance measure-
ments. It is attached to the PC via a 1MHz CAN-Bus and, with currently used
firmware, capable of reporting odometry updates at 100Hz.

The basic response test was designed as follows. A motion command was issued
on a still standing robot and the time was measured till the first odometry
reading was received, which indicated that the robot had moved. Afterwards
the robot was halted randomly between one and two second, before the next
iteration of the test. We used three implementations of a basic response test.
The first was calling into the device layer directly. The second was invoking
the methods via the CORBA method interface, actively waiting for the next
odometry measurement. The third one was setting the velocity via a CORBA
method call and evaluating the odometry messages pushed to it by means of
the event channel. The CORBA-based tests were run on the same machine as
the sensor/actor services, but as separate tasks. Table 8.1 shows two runs of
each test with 100 iterations. The runs of the different implementations were
interleaved to compensate for the decreasing battery voltage.

response time
in µsec

min mean max var

4789 12519 20722 1878
raw Response

14613 20807 27164 4543
5459 13476 21257 6208

poll Response
10176 15660 22634 5321
8372 14115 21661 5060

notify Response
8511 15091 21917 6350

Table 8.1: Results of basic response test.

Looking at the performance stats of the CORBA implementation used within
Miro [94] one has to expect that even on this platform the basic response time
is still heavily dominated by the 100Hz update cycle of the odometry reports.
By doing a random wait before issuing the motor command, this latency is
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on average half an update cycle and should therefore contribute 5 msec to the
averaged latency. Nevertheless the remaining jitter, is much too high, to make
the existing latency of the CORBA overhead measurable. Only an increase of
the variance could be measured. But note that the variance itself is also heavily
biased by the 10 msec cycle of the odometry events.

8.1.2 CORBA Performance Considerations

It lies beyond the scope of this thesis to provide a detailed performance analysis
of the employed CORBA implementation. But as the performance of this com-
munication infrastructure is often provided as the standard argument against its
application in this domain, we will shortly discuss some of the relevant aspects.

Generally speaking, quantifying the overhead introduced by CORBA is a very
difficult task. The first counter question would be: Quantifying the overhead
compared to what? Raw TCP/IP surely can provide a better bandwidth uti-
lization and therefore higher throughput. On the other hand, DOC technology
provides many features such as marshaling of structured data, interoperability,
hosting of multiple objects in one remote server and colocation optimizations
that are not available for most ad hoc solutions. Additionally, in many appli-
cation, throughput is less important than scalability or the adherence to QoS
requirements etc.

In [39], Gokhale and Schmidt compare the throughput of the standard CORBA
transport protocol of the TAO CORBA implementation for various data types
against a raw TCP baseline. The results vary between almost as good as TCP
and about 30% of baseline TCP throughput. The great variance in the results
basically confirms both. The general applicability of CORBA, especially in
high-performance environments, as well as the occasional need for specialized
optimizations, to meet the requirements of some application domains.

An important aspect that is often totally missing in such a discussion is the
potential for generic optimizations on the transport layer. E.g. if the client
and the server reside on the same machine, or within the same address space,
high performance ORB architectures allow to (automatically) switch to other,
optimized transport protocols, without the need for any changes on the client
side interfaces. Such functionality is hardly provided by hand crafted or small
scale solutions such as IPC. The effect of this feature is illustrated in Figure
8.1 for the TAO ORB deployed by the Miro project. It shows the throughput
numbers of the standard ‘Cubit’ performance test provided by TAO. This test
is for instance used in the performance evaluation in [114]. The test calls
a CORBA object with different parameter types, resembling a representative
cross section of typical CORBA parameter data such as void, sequence and
struc types. The struct contains an octed, a long and a short. The short
sequences contain 4 bytes, while the long sequences contain 4 KB of data. The
tests are all run with clients and servers colocated on the same 1GHz AMD K7
machine with 512MB RAM.
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Figure 8.1: Throughput with different colocation optimizations.

We compare the standard IIOP implementation against TAO-specific proto-
cols, optimized for colocated clients and servers on the same machine and the
colocation optimizations applicable, for clients and servers that run in the same
address space. The different transport protocols are: ‘IIOP’, this is the standard
transport protocol using TCP. ‘UIOP’, which is a specialized protocol provided
by TAO, using named pipes. Note, that this protocol is based upon a standard
extension hook of the CORBA architecture. So other ORB implementations
can provide similar or additional optimized transport protocols. ‘Colocated’
denotes the test results for clients and servers located within the same address
space. Direct is an optimization that further omits some ORB-features and is
therefore not applicable to all CORBA scenarios. Note, that the throughput
numbers are plotted on a logarithmic scale.

The UIOP througput is on average 25% higher than the IIOP baseline. The
large sequence of structs shows the impact of marshaling complex data types on
the overall performance of IIOP and UIOP. The colocated configurations show
a tremendously (10 to 100 fold) better performance. As the parameters need
not be marshaled/demarshaled in this configuration, the performance degra-
dation for the large sequence of structs is not observable. These experiments
illustrate, that modern object-oriented distributed systems techonology allows
to provide generic network transparency without geopardizing performance for
none-distributed use cases.

8.2 Group Communication in Robot Teams

In Section 4.1.5 the design of a group communication facility in robot teams
was discussed. It features a federation of the standard CORBA notification
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service event channels by the use of IP-Multicast that automatically exchanges
events of types requested by remote consumers within the federation. In this
section we verify the design decisions by an empirical evaluation.

To assess the performance of the IP-Multicast-based federation we compare it
against two standard configurations of the notification service. For this puro-
pose, a fixed payload is sent through the event channel to a number of consumers
and the throughput is measured for different configurations of the experiment.
In each experimental run, a number of 1.000 events is send through the event
channel and the time for sending each event is measured. In the different runs
of each of the configurations, the number of clients is increased. The three
configurations of the experiment use different locations for the consumers.

Local consumers: In the first configuration the consumers are colocated with
the supplierers and the notification service on the same machine, and use
the standard IIOP protocol for communication. This is by far not the
most performant configuration of the notification service, but it provides
a setup with very deterministic timing characteristics as a base line. A de-
tailed analysis of event channel througput with supplieres and consumers
colocated in the same address space with the notification service is im-
plicitly given in the discussion of the performance of the logging service
in Section 8.3.

Remote consumers: The second configuration is similar to the first configu-
ration, but the consumers reside on remote machines in a WLAN. This
introduces a great source of noise in the performance measurements of
the experiment, but resembles the actual target environment. Also, the
absolut throughput numbers are not of primary interest in this experi-
ment. The focus lies on the relative performance numbers with different
numbers of consumers.

NMC: The third configuration resembles the NMC-based federated event chan-
nel configuration in the same WLAN. The consumers reside on remote
machines, but are connected to their own local event channel. The chan-
nels exchange the events through the multicast group.

The experiments were conducted on the robots of the The Ulm Sparrows

RoboCup team. The four robots are connected through IEEE 802.11b stan-
dard WLAN with 11 MBit/s. The three field players have 512 MB RAM and
Pentium Centrino 1.4 GHz processors. The goalie and the spare notebook are
equipped with Pentium III 1.2 GHz processors. The payload of the events is a
raw byte array of 1K. To minimize the variance in available network bandwidth,
the five laptops were the only machines on the WLAN. The tests were run using
the round-robin real-time scheduler to minimize jitter.

The results are illustrated in Figure 8.2. They show an average throughput
for the local consumers configuration of about 4,162.75 events/s with one con-
sumer, corresponding to 867.90 events/s when this consumer resides on a re-
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Figure 8.2: Event channel throughput in different configurations.

mote machine in the wireless LAN. The throughput of the event channel de-
creases as expected with a growing number of consumers. The NMC-based
federated event channel setup shows an almost constant throughput of about
1,150 events/s, with an increasing number of consumers. In these last series of
experiments a package loss of about 5 − 10% was measured. The NMC-based
setup performes even better than the second configuration with just one client.
This is most probably due to the fact, that IIOP by default requires a response
from the server to acknowledge the successful processing on the server side and
retransmissions of data due to packet loss. The NMC-based configuration al-
most draws level with the performance of the ‘local consumers’ setup with 4
consumers.

8.3 Efficient Data Acquisition

Logging should cause as little computational overhead as possible in order to
avoid jeopardizing the performance of the overall system. This section gives an
overview on the performance of the Miro event logging facilities. The time as
well as the space efficiency of the logging service are of concern, due to their
impact on the system performance when acquiring data from robot experiments.
Therefore, the performance is tested under three different aspects: i) time
needed to log an event by the logging client, ii) time needed to send an event
across an event channel and log it, and iii) size needed to store an event in a log
file. In the experiments, events with different payload sizes were used, resulting
also in different marshaling complexity, and each run logged 10,000 events. The
different payloads were:

None An event with no payload. This gives an indication about the basic
overhead for logging an event.
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Octet1K Octet sequences are unstructured byte sequences in CORBA. They
imply only minimal marshaling overhead. The payload size is 1KB.

Octet100K Same as before, but with 100KB payload. This comparatively
large payload size tests also how the performance of the notification service
scales with event size. Because storing 10,000 events of 100 KB each would
result in a log file of > 1GB, only 1,000 events were logged in this test.

Odometry A small event with fixed size (44 bytes), but containing a nested
data structure. This event is actually generated by an odometry service
of Miro.

RangeSensor An event which mainly consists of a variable-size array of in-
teger values, as for example sent by a range sensor like a laser scanner.
For this test, the structure is populated with 361 distance measurements,
resulting in a payload of about 1460 bytes.

SharedBelief The SharedBeliefState01 is a fairly complex structured data
type consisting mostly of a variable-size array of variable-sized arrays. It
is used to exchange beliefs states about the environment in the RoboCup

scenario between robots [141]. In our case, the data structure was popu-
lated with 17 objects on the field, resulting in a data size of about 1260
bytes. This test addresses especially the marshaling overhead of complex
data types.

The test was run on a computer with an AMD K7 1GHz CPU, with 512MB
RAM, and running under Linux 2.4. The CORBA implementation used was
TAO version 1.4. To minimize the influence of scheduling latencies on the timing
results, the tests were run with the round robin real-time process scheduler.
Note that the timing results have to be interpreted with care. As the timings
are in the µsec range, cache hit rates and related factors potentially have a
significant influence on the test results.

8.3.1 Runtime Performance

Table 8.2 shows the timing results for writing an event to a memory-mapped
log file. The average time for writing an event to a log file ranges from 4 µsec
to 595 µsec depending on the size of the events. Note that the median is always
smaller than the average value. The large maximum values are probably caused
by file buffer flushing operations. Access to hard disks is generally a problem
in a real-time setting. Using a memory-mapped file has advantages over a plain
memory buffer, as the operating system saves the logged data even in case of a
program crash. However, limitations imposed by the operating system have to
be kept in mind when operating on really big chunks of data. The min values
actually represent the raw marshaling overhead for data serialization.

Marshaling of the SharedBelief data structure requires 40 µsec on average. This
shows the penalty of serializing complex structured data types in contrast to flat
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performance in µsec min mean max std.dev. median

None 2 3 319 30 3

Octet1K 3 8 351 439 4

Octet100K 505 595 979 2621 580

Odometry 3 6 398 223 4

RangeSensor 4 12 357 646 6

SharedBelief 28 40 349 872 32

Table 8.2: Performance of the logging client.

performance in µsec min mean max std.dev. median delta

None 30 33 525 67 32 30

Octet1K 32 39 565 497 34 31

Octet100K 578 681 1292 3230 678 86

Odometry 32 37 680 284 34 31

RangeSensor 34 44 576 699 38 34

SharedBelief 59 73 583 935 64 33

Table 8.3: Performance including event channel overhead.

arrays (8 µsec per 1K). As an array of variable-sized arrays is implemented as
an array of pointers to arrays, this results in copying about 20 memory regions
independently allocated on the heap. On the other hand, higher-level cognition
data structures like the SharedBelief are likely to occur less frequently than
low-level data events.

Table 8.3 shows the timing results for distributing an event via the event channel
and processing it by the logging consumer. It therefore encompasses the timings
presented in Table 8.2. The last column, delta, denotes the difference of the
mean values of tables 8.2 and 8.3. The event channel overhead seems to be
almost constant between 30 and 35 µsec, with the exception of Octet100K,
where the extra overhead is likely to be attributable to parameter copying within
the CORBA event channel implementation. This is definitely not negligible but
tolerable, given the rich feature set of this service. Also, as the logging service
normally is not the only consumer of an event in the application, the event
channel processing for logging events will not be the full 40 µsec either.

8.3.2 Memory Footprint

The memory overhead of the log records is listed in Table 8.4, columns three
and four. As the numbers show, it can be significant. The empty payload test
yields an overhead of about 48 Byte. 8 are used by the time stamp, another 9
for the domain name (robot name) and type name fields, about 20 for the fixed
size part of the event data structure and the rest is used up by data alignment.

1On 1,000 events only.



8.4. PRIORITIZED VIDEO IMAGE PROCESSING 105

without Type Code Rep. with Type Code Rep.

storage payload file size overhead file size overhead

footprint (bytes/event) (bytes) (bytes/event) (bytes) (bytes/event)

None 0 480.000 48 520.012 52

Octet1K 1024 11.320.000 108 10.840.064 60

Octet100K1 102400 102.508.000 108 102.460.064 60

Odometry 44 5.840.000 540 1.000.508 56

RangeSensor 1460 18.520.000 392 15.160.352 56

SharedBelief 1268 28.799.996 1612 13.241.576 56

Table 8.4: Logging storage footprint for 10,000 entries.

The 60 additional bytes of overhead for the Octet1K payload are caused by
encoding the data type. For every event, the complete type description of
the payload is stored. This is unfortunate, as usually a small set of event
types are sent hundreds or thousands of times via the event channel. The type
code can easily exceed the size of the actual payload for small payloads like
odometry events. Also the type description accumulates to more than 1 KB for
the SharedBeliefState01 data structure. Even though this does not seem to
cause a significant performance overhead, the size overhead is still significant.
Unfortunately, the use of complete type codes is hard to avoid in a generic
logging facility based on the CORBA::Any data type. But, there is no need to
store type codes repeatedly within the log file. So rows five and six show the file
size and overhead achieved by using a type code repository that is prepended
to the event stream and contains the needed type codes. The type code in the
log record is replaced by its id in the repository. This way the size overhead
can be kept constant and within an admissible range. The use of the type
code repository yields the same runtime performance within the precision of
measurements.

8.4 Prioritized Video Image Processing

A critical part of robot vision is the timely processing of image data. The VIP
framework does not try to provide faster implementations for standard image
operations, as sufficient libraries for this purpose exist. These can be easily
utilized for the use by VIP, as done for IPP in our applications. Instead this
framework concentrates on improving the responsiveness of a vision application,
by allowing for proper priorization and synchronization of image processing
tasks with parallel and asynchronous control flow.

A typical use case for the processing of multiple filter trees, is the combination
of a fast path with an asynchronous slow path of vision processing, which then
needs correct priorization. We therefore assess in this section the capabilities
of the framework to correctly preserve processing priorities under high-load
situations.



106 CHAPTER 8. EXPERIMENTAL EVALUATION

Prioritized Unprioritized
Processing tree

Mean Std. Dev. Mean Std. Dev.

Fast path only

fast path 7,17 0,035 7,18 0,052

Medium load

fast path 7,22 0,017 7,26 0,479

slow path 1 30,46 25,197 8,32 10,000

High load

fast path 7,22 0,025 8,55 3,192

slow path 1 53,31 69,921 60,77 94,601

slow path 2 57,66 5,065 56,84 5,240

Table 8.5: Different timing statistics for the individual processing trees in both,
the prioritized and unprioritized case. The values are stated in µsec.

The typical scenario would be one camera-synchronous processing tree that
runs at full frame rate and extracts sensory information for the reactive control
module and one or more asynchronous processing trees, that are connected
to the data flow of the first tree and perform time-consuming computations
not possible at full frame rate, extracting information for higher-level cognitive
processes with relaxed timing constraints.

The configuration of the

Worker 2Asynch

Camera Worker 1

low priority

high priority

Asynch Worker 3

Figure 8.3: The filter configuration of the experi-
ment.

VIP module for this ex-
periment consist there-
fore of one high prior-
ity tree with the cam-
era as source node, run-
ning with a round robin
real-time scheduler (the
fast path) and one, resp.
two low priority asyn-
chronous processing trees
that are connected to
the camera tree, running
with default priority (the
slow paths). The config-

uration is illustrated in Figure 8.3. The low priority load is increased incre-
mentally in the experiment. In the first run, the synchronous processing tree
is run alone. In the second run one low priority processing tree is added to
the configuration, but still all processing threads can be completed at frame
rate (30Hz). In run three a second low priority tree is added and the system
load reaches saturation. The results are compared against the equivalent setup
without priorization.

Table 8.5 shows statistics on the overall time, the different processing trees
need for completion. In the unprioritized configuration, the completion time
of the camera-synchronous tree drops significantly in the third configuration,
as the thread is preempted before completion to perform work on the other
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Figure 8.4: Timings of the fast path with none, one and two slow paths running
concurrently. The left plot shows the unprioritized case, whereas the right plot
shows the fast path running with enabled real-time scheduling.

processing trees. This would cause significant delay for the consumers of this
sensor information (e.g. the reactive control unit).

In Figure 8.4 this effect is illustrates by plotting the individual timings for 100
runs of the fast path. It can be clearly observed that while the prioritized
processing three still runs with predictable completion time, the timings of the
unprioritized configuration worsen significantly under high load.

Another visualization of these preemptions is shown in Figure 8.5. From the
third setup a small section of the interleaving processing of the three processing
trees is plotted. Each tree is assigned a different color. Yellow was chosen for
the fast path, the slow paths are colored red and blue. To fit into the column,
a new line is added each time the processing of both slow paths is finished.
The completion of a processing tree is marked with a black box at the end
of the colored bar. While the real-time scheduled fast path always runs to
completion before its processing stops, it is occasionally interrupted without
priorization. Additional load on the system will worsen this effect. A medium
complex robotics application performs many other tasks in parallel to image
processing, which will contribute to the latencies in high load situations.

Prioritized fast path:

Unprioritized fast path:

Figure 8.5: Illustration of alternation between the different running processes
with a prioritized resp. unprioritized fast path.
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8.5 Conclusions from Experimentation

This chapter has provided an assessment of various runtime properties of the
discussed robotics software architecture. A set of experiments that evaluate the
situatedness of the resulting implementation in terms of efficiency, scalability
and the adherence to QoS requirements was presented.

In a first experiment, the performance-overhead of the CORBA ORB was com-
pared with the latencies of the robot’s physical devices. It was clearly shown
that in this respect the abstraction penalty of the communications layer can be
considered negligible.

Afterwards, a short discussion of the performance of CORBA as such was pro-
vided and its generic optimization capabilities were experimentally verified us-
ing a standard test tool provided by the ORB implementation. These generic
optimizations allow to take advantage of the configuration of the distributed
system without the need for any code changes. Such features are mostly missing
from small-scale communication packages or hand-crafted ad-hoc solutions.

The scalability of the suggested design of group communication facilities in
robot teams was verified in the third experiment. The evaluation of the IP-
multicast-based event channel federation could clearly show the improvement
in scalability over a standard “off the shelf” configuration of the notification
service. The multicast model provides a uniform performance unrelated to the
number of remote consumers.

The efficiency of the logging service is of importance, since the acquisition of
data from the robot under real-world experiments must have very little over-
head. Otherwise the overall behavior of the system under observation would
be altered. The runtime overhead and its space efficiency could be shown to be
low enough to obtain valid traces of real-world data from logged experiments.

In the last experiment, the support of QoS issues provided by the architecture
for end user applications based upon the framework layer was verified. The
prioritization of the VIP framework’s different processing trees allows for a
clean separation of evaluation tasks on image streams that perform on different
time scales and with varying response time requirements.

The discussed set of experiments was able to confirm the design decisions taken
to ensure efficiency, scalability and predictability in the implementation of the
various sub-systems of the proposed robotics middleware architecture.



Chapter 9

Results and Applications

Miro is being successfully used in several projects striving for autonomous
mobile robot control. In the different scenarios, the robots are required to
perform very diverse tasks. In the office scenario, the software architecture’s
services were used for research on neurosymbolic mapping of indoor environ-
ments [24], hybrid multi-representation world modeling [68, 69], autonomous
self-localization based on the Monte Carlo Localization method [25] and hierar-
chical path planning, reactive execution and human-robot interaction through
web-based user interfaces [35]. The MirrorBot project applied the architecture
in research on biomimetic learning processes such as the sophisticated neu-
ral processing of sensor data [88, 29] or visually guided docking [147]. In the
RoboCup scenario, it was applied for research on localization based on sporadic
features [139] and robust, real-time constrained image processing [81, 79, 80].

Meanwhile Miro is also used by other laboratories for the development of
robotics applications. The RoboCup teams of the TU Munich and TU Graz
use Miro for the control of their soccer robots [34, 127] as well as for team
communication. At the TU Chemnitz it is adapted for usage on a commercial
as well as a custom built autonomous outdoor robot platform [71, 142].

In this chapter, we will take a look at the results achieved within the architec-
ture itself and at applications of Miro and how they benefit from the software
concepts and technologies applied to the discussed architecture. We will sum-
marize our experiences and discuss how well (or not-so-well) Miro does achieve
the design goals.

9.1 Ensuring Software Quality

In order to ensure the longterm quality of a large scale project such as Miro,
additional precautions have to be taken. This is especially true, as many of the
well known methods for ensuring implementation quality (such as automated
regression tests) are difficult to apply in this application domain.
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Testing is the central method for ensuring software quality issues for the Miro
project. This is due to the experimental nature of the approach that makes it
difficult to model software properties formally in a top down manner. Also the
challenging properties of the application domain such as the tight coupling of
the lowest layer of Miro to the peculiarities of its controller boards, which often
lack a detailed specification, favor this approach.

For each robot platform and service abstraction a set of related tests exists
within the Miro sources. The test programs for robot platforms offer access to
the provided functionality entirely by the use of the device layer. Test programs
for service abstractions allow to test each method of the interfaces and also
provide test clients for the events supplied by sensor services. Unfortunately
this can not be generally modeled in the form of automated (regression) tests.
As the robot operates in the real world, sensor readings are dependent on the
environment the robot actually is positioned in. Actuator movements may not
even be possible, without endangering the robot or its environment. Simulation
is of little help for testing the device layer, as a detailed model of the low-level
device characteristics, like non-deterministic failure conditions is at least as
difficult to verify as the correctness of the device-layer implementation. The
service layer implementations can be easily verified by comparing the output of
the device-layer tests, against the results from the service abstractions tests.

For functionality such as configuration management or BAP policy parsing,
sets of test files together with the expected output are provided. For higher-
level frameworks test programs do exist too, to ensure the correctness of the
provided infrastructure. Additionally, the logging capabilities introduced in
Section 5.4 provide powerful capabilities for the testing and verification of target
applications as covered in Section 9.5.

As Miro is meanwhile developing into a community project, patch reviewing for
external contributors ensures the quality and consistency of the implementation
with respect to design principles and coding standards.

9.2 Available Platforms

Presently, Miro supports all mobile robot platforms at the robotics lab of the
University of Ulm. These are equipped with different sensors, actuators, and
computational equipment. They are used in different scenarios, ranging from
an office delivery to highly dynamic soccer games [28]. These platforms are:

• A B21 robot (see Figure 9.1, back row, right one), which is equipped with
bumpers, IRs, sonars, a laser range finder, and a vision system. It features
a synchro drive mobile base, and speech synthesis and is controlled by two
on-board PCs.

• Pioneer robots from ActiveMedia. These are a family of platforms that
are all based on the same low-level controller protocol. The lab owns
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Figure 9.1: The robot platforms of the Ulm robotics lab.

the Pioneer-1 (Figure 9.1, front row, left robot) and the PeopleBot robot
(back row, left one). But other robots such as the Pioneer-2 and the
Pioneer 2 AT for outdoor scenarios are also controlled by the use of Miro
at other labs. The base version is differential drive platform equipped
with sonar sensors only, which is controlled either via a laptop mounted
on top of a robot or by a host PC via a serial radio link. The various
configurations options include a gripper, cameras with pan-tilt units or
laser range finders.

• Sparrow-99 robots [101, 138], which are custom-built robots developed
in our lab at the University of Ulm (Figure 9.1, front row, middle one).
Sensors include sonars, IRs and a camera. The mobile base is a differential
drive system. The robot also has a pan unit and — for its special purpose
— a kicker. It is controlled via an on-board embedded PC.

• The Sparrow-2001 robots (Figure 9.1, front row, right) represent the sec-
ond generation of custom-built soccer robots [67]. They are not only faster
and equipped with bigger PCs. They also provide a different sensor suite.
The sonar sensors where dropped and an omni-directional camera was
added, the directed analog camera was exchanged by a digital camera,
with wider viewing angle and higher resolution. Also the pan-unit was
exchanged for a faster, more precise successor. The low-level controller
boards and the chassis were completely exchanged.
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9.3 Behavior Engineering

The BAP framework is used successfully in a robot indoor navigation office
scenario as well as in the highly reactive robot soccer scenario of the middle-
size league of RoboCup. It is the most high-level application framework of
Miro and therefore gives a good impression on the fulfillment of the design
goals such as reusability and scalability for robotics applications.

9.3.1 Reusable Components

Miro facilitates reuse by its interface abstractions for sensor and actuator de-
vices. This allows to write generic behaviors, guards and arbiters for different
robot platforms. On a second level the reuse of action-patterns and policies is
enabled by the modularization enabled in their specification.

This allows for highly interoperable applications, as demonstrated in the
RoboCup scenario by soccer robots of the The Ulm Sparrows team. During
the transition from the Sparrow-99 platform to the new Sparrow-2001 robots
the The Ulm Sparrows played with a mixed team of both robot platforms.
Those used exactly the same BAP setup, with a configuration that only differed
slightly in some parameters. Note that the behaviors weren’t written initially
with portability or reusability in mind. The interface abstractions resulted in
a natural genericity of behavior implementations and the metainformation pro-
vided by interfaces could be exploited to adapt the behaviors and guards to
most of the peculiarities of the different platforms. So only little parameters,
such as maximum velocities for specialized maneuvers needed to be adapted in
the policy configuration.

9.3.2 Specifying Complex Tasks with BAP

Scalability is also addressed on the implementation, as well as the configuration
level. Behaviors and guards can be based on different processing models, timer-
based, event triggered or concurrent in their own thread of control. On the
configuration level the provided tool support ensures the maintainability of
complex policies and the hierarchical decomposition allows for a task-oriented
partitioning of the behavior.

The power, expressiveness and simplicity of the BAP method for specifying
complex task for autonomous mobile robots is best illustrated by a real world
example. The most sophisticated use case for the BAP framework so far is its
application in the RoboCup environments. In the 2003 version of our soccer
code, a flat policy describing the complete behavior of a field player consisted
of 13 behaviors which were used by 20 action patterns. An action pattern is
typically composed of 4 to 5 behaviors. The policy graph was connected by 70
transitions.
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As the interaction of the robots with the referee is very limited at the moment,
and the strongly reactive nature of the scenario imposes little need for other
external event sources like higher-level reasoning systems, the number of exter-
nal transition messages is limited to 4 within this policy: Kickoff, Opponent
Kickoff, Stop and Formation. These are handled by transition patterns.

Although a graph of 20 nodes and 70 edges seems not to be very impressive,
it is large enough so that it becomes very difficult to fully grasp its behavioral
logic and to maintain and extend it. The flat policy can be naturally structured
into 7 different subpolicies, that represent the different tasks of the flat policy.
An 8th policy is actually a second instance of one of the 7 policies reached
from a different context. The hierarchical grouping also allows to define a
previous transition message as a transition pattern, as it always has a uniform
successor pattern in the different task contexts. As the hierarchically structured
policy has the same semantics as the flat one, the number of concrete action
patterns and transitions is actually the same. Nevertheless the savings in the
specification are obvious. Three action patterns could be saved by the reuse of
one single subpolicy. And various transitions were either replaced by transition
patterns or could be better structured by grouping them within subpolicies.

9.4 Advanced Image Processing

The VIP framework implements a very precise model for organizing robot vision
applications. This does not in any way limit its applicability, though. To the
contrary, it provides a flexible, scalable framework for the implementation of
reusable image processing components.

It is successfully in use in different robotic scenarios such as biologically moti-
vated neural learning and object classification [29] and reliable high speed image
processing in the RoboCup mid-size league [61, 79, 80]. It also provides the ba-
sis of a large, reusable filter library shared between the different scenarios. This
libVideoFilters currently contains about 100 filters, which range from gen-
eral purpose image transformations such as scaling or edge detection, over ROI
selection and ROI tracking up to neural object classifiers. To ensure efficient
implementations of standard image operations, the IPP library [56] is used. It’s
application in RoboCup consists of a dual camera setup, combining a directed
camera for object classification with an omni-directional camera for obstacle
avoidance and near range ball tracking. The application combines 66 filters
with 108 connections. One of the fastest path, a simple color-based football
goal detection takes around 4 msec to complete, while one of the slowest paths
(a complete neural robot classification) needs around 20 msec on average when
seeing one robot per image (measured on a 1.4 GHz Pentium M processor).

Currently, priorization of and synchronization between processing trees is not
yet used by the RoboCup application. The use of an omni-directional camera
as well as the real-time features of the framework were both added fairly re-
cently. But the promising results of Section 8.4 will definitely encourage their
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prompt application.

9.5 Logging Applications

The power and flexibility of the presented logging service is best described by
presenting different scenarios which exploit recorded robot data.

9.5.1 Learning-Data Acquisition

In the first example, the logging facility was used to collect data for learning
a dribbling behavior for our soccer robots. The robots can “dribble” the ball
by pushing it with their body towards a given target point on the field. The
dribbling task is quite complex: we know neither the robot’s nor the ball’s
precise physical properties and constraints. Therefore, it is very difficult to
model the dribbling behavior by hand. But if suitable training data is available,
an artificial neural network can be trained instead to learn the required input-
/output mapping function. However, for supervised learning methods, large
sets of high-quality training data are necessary. Sometimes such training data
can be generated using a simulator, but in our case a simulator modeling the
fine-grained physical dynamics and interactions between the robot and the ball
was neither available nor easy to build.

The Miro logging facilities were used to collect the required data sets for neural
network training directly on the robot. The robot was dribbling the ball while
being moved around either using a joystick or by pushing it by hand. During
robot motion, the relevant sensory and motion data were logged. It turned out
that the dribbling task is very difficult to achieve even for a human pushing
or joysticking the robot, and the logged data contained long sequences of data
useless for learning purposes, because the robot had lost the ball and needed to
catch it again before performing another dribbling sequence. The log files were
therefore inspected in slow-motion using the LogPlayer in order to identify and
extract subsequences usable for learning.

9.5.2 Multirobot Debugging

Debugging robot programs by just observing their behavior is extremely diffi-
cult, and sometimes impossible. Correlating a particular robot behavior to the
program parts causing this behavior without knowing which program parts are
actually executed and what the values of certain variables are is very hard, and
often guessing. Finding the reason for a program failure, however, is almost
impossible, especially in a distributed setting involving multiple robots. In or-
der to track down the causes of misbehaviors and identify potential failures, the
programmer needs to track the robot’s observations, its global position data,
internal states and even information communicated from other robots. The
Miro logging facilities allow to generate and record such information either by
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Figure 9.2: Old and new localization parameterization in direct comparison.

logging the required data separately on each robot or by using a centralized
remote logging sink.

We used these capabilities to debug the “shared belief” functionality on our
soccer robots. Each robot collects the observations (together with their uncer-
tainty values) from each of its teammates and tries to infer a coherent world
state from these informations. The amount of data shared between robots is
carefully tuned in order to not overstress the wireless network connection, espe-
cially in tournament situations. Both logging configurations (remote logging of
multiple robots and distributed local logging) are possible and have been used,
but for practical reasons we use distributed local logging most of the time.

9.5.3 Performance Comparison

During program development in a research setting, it is often necessary to com-
pare different algorithms, or different parameterizations of the same algorithm,
in order to assess the progress being made. Logging facilities are an indispens-
able utility for this task.

In the example in Figure 9.2, we used logged data and the supporting tools to
assess the improvements achieved by using some new features in our particle
filter-based self-localization framework [139]. We first collected a couple of log
files using our original, older version of self-localization. The log files included
odometry values, observed objects and the localization data itself. By replicat-



116 CHAPTER 9. RESULTS AND APPLICATIONS

ing the logged sensor information under another robots name for the improved
localization, we could visualize the old, logged localization data simultaneously
with those generated online by the new approach. Thereby we were able to
compare how the new method behaves in comparison to the old one. By this
direct comparison, it was for example easy to see how fast the position estimates
converge in each approach and to determine how many particles are needed in
the new method in order to achieve an equivalent performance level as the old
method. In Figure 9.2 the robot drawn further below resembles the logged data,
displaying the visible field lines and the direction of one goal post. The robot
drawn above visualizes the result of the optimized localization run. The red
dots represent localization hypothesis. The localization features match mutch
better for the upper robot. – Note, that in this case a fairly extreme example
was taken just for demonstration purposes. The preprocessed image from the
robots camera helps to verify the localization result for the developer.

9.6 Multirobot Teams Spanning Multiple Labs

A topic not yet mentioned in this thesis is the interoperability of robots from
different projects that try to achieve similar goals. This research area lies
beyond the scope of this thesis. Nevertheless, Miro was already applied for
conducting early experiments in this new and upcoming scientific topic as first
discussed in [141].

Due to scientific as well as pragmatic reasons, there is a growing interest in
the robotics field to join the efforts of different labs to form mixed teams of
autonomous mobile robots. In RoboCup, the pragmatic reasons are com-
pelling. The recent rule change in the mid-size league allows for more robots
per team, and in the RoboCup Rescue league a group of heterogeneous robots
with diverse capabilities is likely to perform better than one system that tries
to encapsulate them all. However, the limited financial resources and the ad-
ditional maintenance effort for further robots exceeds the capabilities of many
research labs. Also, the threshold for new research groups to participate in long
term scenarios such as RoboCup is lowered if they only need to contribute one
or two robots to a mixed team, instead of having to build an entire team.
Mixed teams are also motivated from a scientific perspective. They introduce
the research challenge of cooperation within teams of extremely heterogeneous
autonomous mobile systems.

As most robots in the middle-side league are custom built, or at least customized
commercial research platforms with unique configurations of actuator and sen-
sor configurations, mixed teams from different laboratories are extremely het-
erogeneous. There are few commonly used high-level libraries for sensor data
processing and reactive actuator design in the community. Furthermore there
is a multitude of methods and schools, each deliberately designing the con-
trol architecture of their robots fundamentally different to their competitors.
This makes the unification of the software of the different robots of a potential
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Ulm GrazMunich

Figure 9.3: Individual robot platforms from the different labs.

mixed team almost impossible without substantial rewriting of at least one of
the team’s software. In our opinion it would be also undesirable. Why should
an autonomous mobile robot have to commit to any kind of sensor processing
or control paradigm to be able to cooperate with another team mates, if both
are programmed to interact in the same problem domain?

The basic idea of the conducted experiments in mixed robot teams was, that
for cooperation between robots, the sharing of information about the environ-
ment is initially sufficient for successful cooperation. If all robots share both
the same belief about their environment, as well as the same set of goals, simi-
lar conclusions should be drawn. This is known as the Intentional Stance [22],
and has proven to be a successful way of coordinating behavior in RoboCup

scenarios [130, 18]. A central prerequisite for successful team cooperation was
therefore the unification of the beliefs about the world of the different agents.
The limitations of the individual sensors usually provide each robot with quite
limited information about the state of its environment. So it is unlikely that
the beliefs derived solely from the robots’ own sensors are automatically suf-
ficiently similar to coordinate behavior in a shared environment. Sharing of
information was therefore considered essential for solving this problem. As dif-
ferent autonomous mobile platforms robots are equipped with different sensor
suites that each provide their own unique perception of the environment, this
improves the quality of the information available to the robots, even if they ob-
serve exactly the same scene from similar positions. Compare for instance laser
range finders, which provide precise depth information, with color cameras,
which provide more certainty about object identity.

At the RoboCup WorldCup 2004 in Lisbon a heterogeneous mixed-team exper-
iment was conducted. For this purpose, one robot of the The Ulm Sparrows

joined the teams of the middle-size league teams of the TU Munich, the “Agilo
Robocuppers” [118] and the TU Graz team, “Mostly Harmless” (see Figure
9.3). For Agilo, Ulm provided the goal-keeper, in the Graz team, a striker was
added. All teams used the group communication facility provided by Miro to
exchange the beliefs of each robot with the other team mates. For this purpose,
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Figure 9.4: Tree of object classes for robot soccer.

a common representation for the robots observations was designed (the so-called
belief state). It defines a classification hierarchy on the objects present in the
robot soccer world (Figure 9.4), and models uncertainty as well as precision of
the observed objects. In a followup to this experiments, a diploma thesis at the
TU Munich currently evaluates methods of learning team-coordination based
solely on a fused belief state and knowledge about the individual properties of
the other robots in the team.

9.7 Achievement of Requirements and Design Goals

In this chapter, qualitative results achieved by the application of the proposed
robot software architecture have been discussed and real-world examples of the
application of Miro in various research projects were presented. The applica-
tions based upon the framework layer clearly reveal the benefits provided by the
interaction of generic infrastructure, abstract robotics services, and application
frameworks within a consistently designed robotics software architecture.

The requirements formulated in Section 3.1 were clearly met. Miro is highly
portable. It supports multiple commercial platforms and was ported to various
custom-built autonomous mobile robots from the Ulm Robotics Lab as well as
from other research groups. It provides a very performant, flexible and scal-
able communication infrastructure based upon the CORBA standard offering
compile-time type-safe interfaces to its various sensor and actuator services. Al-
though it does not use the real-time features of CORBA, it addresses reactivity
and timing constraints on the different layers of the architecture, ranging from
accurate time-stamping of sensor data to prioritized asynchronous processing
of image streams. It follows an open development model and is available as
an open source software 1. The stated design goals are consistently addressed
throughout the entire software architecture. In consequence, Miro is not only
reusable and scalable for various application scenarios in the robotics domain,
it also fosters reusability, scalability and maintainability in applications based
upon the architecture, especially through its higher-level frameworks. The ex-
periments conducted on cooperation within teams of extremely heterogeneous
robots illustrate a compelling long-range perspective for interoperability in the

1http://smart.informatik.uni-ulm.de/Miro
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autonomous mobile robotics domain.

For the service layer, a detailed model for the design of sensor and actuator ab-
stractions was proposed. The consistent and generalized service interfaces allow
for multirobot platform development as demonstrated with the BAP framework
in RoboCup. Existing software technologies such as CORBA or XML were
consistently applied, especially on the infrastructure layer. This provides in-
teroperability and allows for cooperation between very heterogeneous robots as
demonstrated in the experiment on mixed robot teams spanning several labs.
The architecture actively targets the integration of additional methods for use
in the robotics domain, e.g. computer vision in the VIP framework or neural
learning through the provided logging facilities.
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Chapter 10

Conclusions

In this chapter, we will summarize the scientific contributions of this dissertation
and suggest promising directions for future work.

The growing complexities of robot software development are not sufficiently
addressed by existing robot software development architectures. They espe-
cially fail to assist in ensuring the reusability, scalability and maintainability
of robotic software applications over time. There is a rising awareness in the
robotics community, that the growing complexity of robotics applications re-
quires a solid software infrastructure.

10.1 Contributions

This thesis contributes to this ongoing research by proposing the design for
an object-oriented distributed robot software architecture aimed at providing
improved reusability and scalability for robotic applications. The requirements
for a robot software architecture identified during the research presented here
are twofold: first, the architecture itself needs to be reusable, scalable and
maintainable. Furthermore, it has to actively facilitate the development of
reusable, scalable and maintainable client applications.

The proposed middleware-oriented architecture Miro addresses these require-
ments by identifying the inherent challenges of the robotics application domain
and separating them into the four different layers of the software architecture
(Section 3.3). The application developer only interacts with the top three lay-
ers, avoiding any dependency on the physical robot platform represented by the
lowest layer.

The first layer was not discussed in this thesis. It provides abstractions for the
low-level communication with robot devices. Its software pattern based design
and the consequent usage of an OS abstraction toolkit (ACE) ensures its high
portability.

The second layer provides an infrastructure of communication and configuration
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facilities for the architecture’s other layers as well as for end user applications.
For this purpose, it employs proven software technology such as CORBA and
XML, providing a detailed model of their configuration and application for
usage within the robotics domain. The scientific contribution lies in a detailed
assessment of the applicability of CORBA to robotics, and in a transparent
extension to overcome a bottleneck as identified for group communication in
robot teams on highly unreliable wireless networks (Section 4.1.5).

The proposed abstraction of sensor and actuator devices is addressed on the
third layer by providing a definition of robotics services. The client/server-
based design provides a natural decoupling of client applications from a robot’s
physical devices. Additionally, this layer provides generic support for high-
performance data acquisition as needed for debugging, assessment and adap-
tivity in this application domain. The scientific contribution of this layer lies in
the identification and detailed specification of functional requirements for the
design of sensor and actuator abstractions, which facilitate the development
of flexible and reusable client applications (Section 5.1f). Additionally, it con-
tributes supportive technology required at various stages of the development
cycle of robotic applications in the form of a logging service (Section 5.4).

The design goal of fostering the reusability of robotics applications with the
help of the proposed robotics software architecture is addressed on the fourth
layer of the architecture in the form of class frameworks for higher-level robotic
subsystems. The thesis discusses two frameworks of Miro, namely the VIP
framework for time-constrained video image processing (Section 6.1) and the
BAP framework for hierarchical reactive behavior-based control (Section 6.2).
These exemplify how the combination of communication and configuration in-
frastructure, along with service-based abstractions for physical robot devices
can be utilized by frameworks of reusable design and reusable code that fa-
cilitate the development of reusable components for individual sub-domains of
robotic applications. The scientific contribution of the VIP framework lies in
providing a flexible model for control flow and data flow for prioritized, par-
allel image processing and a sensor-triggered but demand-driven push model
of information processing. The BAP framework contributes a generalization
for the modeling of reactive control that is applicable to different schools of
behavior-based robotics. It extends them by introducing generic sequencing
capabilities and a method for hierarchical modularization, as well as by intro-
ducing reusability on the reactive control and sequencing layer.

10.2 Open Problems

As autonomous mobile platforms evolve, research on robotics will meet new
challenges and needs to fulfill additional requirements. This results in new
and upcoming research problems that will need to be addressed. Some of the
currently unsolved problems in research on robotics software architectures are
the following.
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10.2.1 Extended Service Meta-Information

The method for the modeling of sensor and actuator devices as abstract ser-
vices discussed here proposes a definition of interface functionality that provides
metainformation about the properties of the device. Such self-describing com-
ponents enable the autonomous adaptation of client applications to individual
devices. While Miro models basic properties such as the velocity bounds of
a locomotion system etc., the question of how to express detailed sensor and
actuator models in a generic extensible way in order to enable more sophis-
ticated applications such as generic, precise sensor fusion in highly dynamic
environments remains an unsolved research problem [83].

Sensor error models, for instance, can be rather complex. Laser range find-
ers see through glass doors, sonars have difficulties with perceiving flat walls
at obtuse angles and so on. Additionally, actuators also interact with sensor
precision, especially the self-movement of the mobile base (motion blur), which
also provides additional error sources for the integration of sensor values over
time (i.e. precision of dead reckoning sensors).

This requires the specification of extensible sensor metainformation on a more
general and flexible level. Additionally, since such information is partly depen-
dent on its environment and might change over time, complex sensor-actuator
systems such as mobile robots or sensor networks are required to obtain this in-
formation in an autonomous manner in order to keep the system maintainable.

10.2.2 Specification of Team Behavior

The BAP framework discussed in this thesis proposes a solution for the scal-
able, modular specification of reactive behavior for a single robot. Only very
few solutions supporting the specification of team behavior exist so far. The
MissionLab system, for example, allows for the specification of multirobot mis-
sions, but assumes a fixed assignment of roles [77]. Advanced multirobot sce-
narios such as RoboCup or sophisticated human-robot interaction requires the
flexible assignment of roles in cooperative and competitive reactive action se-
quences [128, 124]. Advanced cooperation also requires specifying the options
for the different individuals, as well as synchronization points of their respective
actions.

The double pass, for instance, is a reactive action sequence for two cooperative
players. The two passes between them form the synchronization points, where
both have to perform in a matching pair pattern. The movement of the players
between the passes is part of the sequence, but allows for much more individual
timing and is actually heavily constrained by the opposing player(s) and their
movements. This would require the extension of the BAP formalism by notions
of multirobot parallelism, synchronization and sequencing, as outlined in more
detail in the research proposal of the ongoing DFG SPP-1125 project at Ulm
[95].
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10.3 Future Work

Miro has gained some momentum as a community project and is now rapidly
evolving towards new application scenarios and challenges such as outdoor
robotics or large-scale robot fleets. To keep up with the growing number of
requirements, future work on this project will address the issues listed below.

Dynamic service configuration. The heavy growth in supported platforms
and robotics devices requires a more flexible and scalable design for meta-servers
[112] used for robotics services. While at present each binary holds a preselected
set of services, a flexible generic meta-server would allow to define the compo-
nents hosted by the server entirely based upon its configuration requirements
on startup (or even at runtime). According to the metainformation design,
the server’s configuration would then be required to be inspectable at runtime.
These efforts will allow for easier use of Miro services in new robot platforms
or in varying sensor/actuator configurations.

Additional high-level frameworks. The set of application frameworks pro-
vided by Miro needs to grow further and reflect the process of consolidation in
some of the areas of robotics research. While some potential frameworks are
actually already in existence at the Ulm Robotics Lab and essentially need a
proper assessment of their genericity and flexibility (SLAM, navigation), other
candidates would actually require an extended cooperation with other research
groups (for example in planning). This would further enhance the software
quality of applications based upon the Miro architecture.

End to end quality of service. Miro currently does not exploit the features
of the DOC technologies employed for real-time processing on the communi-
cations layer [113]. The increase of requirements for predictability in highly
dynamic environments necessitates their employment along with a stringent
model for priorities in a highly reactive autonomous mobile system. This will
be a major step towards enhancing the predictability of performance in au-
tonomous mobile systems and towards ensuring that QoS requirements in the
client/server model are met end to end.

Standardization. Apart from the various extensions that ensure the scala-
bility and maintainability of Miro, another pressing issue is the extension of
cooperation between the various other research projects on robotics software
architectures. Herman Bruyninckx suggested the standardization of measures
and their representations for the various projects. Miro already provides basic
support for Player/Stage and thus provides an interesting basis for enhanced
interoperability. Incorporating results from the research on RT-CORBA for
robotics carried out by MacDonald et al. [73] would extend the applicability of
the Miro robotics middleware to include further application scenarios.
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10.4 Outlook

A common notion of robotics middleware will be a key factor for the successful
deployment of robotic applications. It would allow to decouple robotics hard-
ware platforms from their provided software environment and thus enable faster,
more flexible software development independent of the success of an individual
robot platform and visa versa.

The solutions for addressing the inherent challenges of the robotics software
domain proposed in this thesis actually address a wider range of possible ap-
plications. They also naturally apply to the domain of sensor networks, i.e.
large sets of sensors (and actuators) statically distributed over a specified area,
where intensive research is being carried out at present. Indoor application
scenarios encompass instrumented buildings, usable for surveillance, assisted
living (care for the elderly) or household automatization. Sensor networks in
outdoor scenarios are considered to be used for coordinating rescue forces in
disaster areas, for environmental monitoring or in the military domain. These
scenarios exhibit very similar inherent domain problems such as distributedness,
parallelism, sensor/actuator variety etc. which are addressed by the research
discussed in this thesis. The large amount of sensors additionally necessitates
services for requirements-based flexible service discovery and for an extended
form of metainformation for the efficient interaction of reusable client applica-
tions.
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Zusammenfassung

Die Forschung im Bereich autonomer mobiler Roboter arbeitete in den letz-
ten Jahren an zunehmend komplexeren Problemstellungen, Anwendungssze-
narien und Roboterplattformen. Die Kernbereiche der anwendungsorientierten
Informatik haben auf ähnliche Komplexitätssteigerungen in ihren Anwendungs-
domänen mit der Entwicklung von flexiblen, skalierbaren Softwarearchitekturen
und einem begleitenden Methodenarsenal reagiert. Durch die verbreitete Fokus-
sierung der Robotikforschung auf Problemstellungen im perzeptorischen (Sen-
sorinterpretation und -fusion, Bild- und Sprachverarbeitung) und/oder aktua-
torischen (Regelung, Kollisionsvermeidung, Pfadplanung) Bereich ist eine ent-
sprechende Entwicklung der Software-Methodik bislang nur in Ansätzen erfolgt,
wie im Kapitel 2.4 diskutiert. Die dadurch noch weit verbreitet anzutreffenden
konzeptuellen Defizite der Softwarearchitekturen aktueller Demonstratorplatt-
formen erhöhen den Aufwand für die Entwicklung und die Fehleranfälligkeit der
Lösungen, schränken die Austauschbarkeit und Validierbarkeit wissenschaftli-
cher Ergebnisse ein und stehen einer Kommerzialisierung erarbeiteter Lösungen
im Wege.

Die Probleme der Software-Entwicklung in der Robotik erklären sich aus der
inhärenten Komplexität der Anwendungsdomäne. So müssen extrem hetero-
gene Hardware-Komponenten, die Notwendigkeit einer nebenläufigen und ver-
teilten Informationsverarbeitung, eine enge Verknüpfung von algorithmischen
Lösungen mit physikalischen Eigenschaften des Roboters und seiner Umge-
bung, die stochastischen Eigenschaften der physikalischen Welt, die Echtzeit-
oder zumindest Realzeit-Anforderungen sowie Resourcenbeschränkungen bei
der Entwicklung von Applikationen für autonome mobile Systeme gleicher-
massen berücksichtigt werden. Die strukturellen Probleme der Software führen
zu einer eingeschränkten Generalisierbarkeit von Forschungsergebnissen, der
häufigen Reimplementierung eigentlich gelöster Probleme, dem starken Ein-
satz heuristischer Lösungen und einer ungenügenden Auswertung und Analyse
der Applikationen. Dadurch bleiben viele Forschungsergebnisse der Robotik auf
einen reinen Demonstrationscharakter beschränkt.

In der Dissertation wurden daher verschiedene Konzepte zur Lösung der struk-
turellen Probleme aktueller Software für autonome mobile Roboter erarbei-
tet (siehe auch Kapitel 3): Der Einsatz moderner Softwaretechnologien wie
objektorientierte Programmiersprachen, Middleware und Auszeichnungsspra-
chen, die Einführung Service-orientierter Abstraktionen von Sensorik und Ak-

127



128 CHAPTER 10. CONCLUSIONS

tuatorik zur Förderung von Portabilität und Wiederverwendbarkeit sowie die
Framework-basierte Generalisierung von robotikspezifischen Aufgaben. Diese
Konzepte wurden am Beispiel des Entwurfs der Roboter Softwarearchitektur
Miro diskutiert, exemplarisch umgesetzt und in diesem Rahmen experimen-
tell evaluiert. Miro, die

”
Middleware for Robots“ ist eine objektorientierte,

Middleware-orientierte Softwarearchitektur für die Entwicklung portierbarer,
wiederverwendbarer und skalierbarer Applikationen für autonome mobile Robo-
ter, im Kontext nebenläufiger und verteilter Informationsverarbeitungsprozesse
unter den Realzeit-Bedingungen natürlicher Umgebungen.

Die Architektur ist in vier funktionale Ebenen unterteilt, die zwischen dem Be-
triebssystem und dem Anwendungsprogramm liegen (Kapitel 3.3). Die unterste
Schicht stellt die Hardware-Abstraktionsebene dar, welche die Kommunikation
mit den heterogenen Bus-Systemen und Mikrocontroller-Boards kapselt und als
Bibliotheken zur Verfügung stellt. Diese Ebene wird von den höheren Ebenen
der Architektur weiter gekapselt, um Applikationen eine weitestgehende Un-
abhängigkeit von der genutzten physikalischen autonomen mobilen Plattform
zu ermöglichen. Auf der zweiten Ebene wird Infrastruktur zur Kommunikation
und Konfiguration auf der Basis von CORBA und XML modelliert (Kapitel 4).
Die auf dieser Ebene zur Verfügung gestellte Funktionalität wird extensiv von
den höheren Ebenen der Architektur aber auch von den bereits auf Miro ba-
sierenden Anwendungsprogrammen genutzt. Auf der dritten Ebene werden die
Sensoren und Aktuatoren des autonomen mobilen Systems als netzwerktrans-
parente Dienste mit streng getypten Schnittstellen modelliert (Kapitel 5). Die
verschiedenen Sensor- und Aktuator-Typen werden dabei in ihren verschiedenen
Ausprägungen in generalisierte Schnittstellen gefasst. Die individuellen Merk-
male der Sensoren und Aktuatoren unterschiedlicher Hersteller werden durch
abgeleitete, spezialisierte Schnittstellen zur Verfügung gestellt. Robotiktypische
Aufgaben wie Video-Bildverarbeitung oder die reaktive Verhaltensmodellierung
werden auf der obersten Ebene von Software-Frameworks unterstützt (Kapitel
6). Diese Frameworks sind unter besonderer Berücksichtigung der Skalierbar-
keit, sowie der domänenspezifischen Echtzeitaspekte konzipiert. So ermöglicht
z.B. die Framework-basierte Steuerung des Kontrollflusses in zeitkritischen Auf-
gaben die Priorisierung der Informationsverarbeitung auf der abstrakten Ebene
des Frameworks generisch zu kontrollieren und zu konfigurieren.

Die zentrale Leistung dieser Dissertation stellt die Identifikation und Umset-
zung von Konzepten der aktuellen Software-Methodik zur Bewältigung der
inhärenten Komplexität der Anwendungsdomäne autonome mobile Roboter
dar: die konsequente Objektorientierung, der Einsatz und die Adaption der
Middleware-Technologie CORBA, die durchgängige Unterstützung nebenläufi-
ger Informationsverarbeitung sowie die Einführung von Modellierungswerkzeu-
gen für die Anwendungsentwicklung.

Die in dieser Arbeit konzipierten Dienste und Frameworks wurden erfolgreich
in so unterschiedlichen Szenarien wie

”
Simultanious Localization and Mapping“

(SLAM) für Service-Roboter, Roboterfußball oder biologisch motiviertes neuro-
nales Lernen eingesetzt. Die Frameworks konnten auch jeweils unabhängig ihre
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Leistungsfähigkeit unter Beweis stellen. Das
”
Video Image Processing“ Frame-

work (Kapitel 6.1) zur Bildverarbeitung unter Echtzeitbedingungen dient als
Basis für eine Szenario-unabhängige Bibliothek für fortgeschrittene Methoden
zur visuellen Objektklassifikation. Das

”
Behavior Actionpattern Policy“ Fra-

mework (Kapitel 6.2) wird zur Modellierung des umfangreichen Verhaltensre-
pertoires von Fußballrobotern im RoboCup eingesetzt. Miro wird mittlerweile
auch von anderen Forschungseinrichtungen zur Entwicklung von Anwendungen
in der Robotik genutzt. Die RoboCup Teams der TU München und Graz ver-
wenden Miro für die Steuerung und Gruppenkommunikation ihrer Fußballrobo-
ter (siehe auch Kapitel 9.6). An der TU Chemnitz wird Miro für den Einsatz auf
einer kommerziellen sowie einer eigenentwickelten Outdoor-Roboterplatform
portiert.
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Abbreviations

ACE Adaptive Communication Environment. A multi-platform, object-oriented
network programming toolkit in C++ (Section 4.3.1).

API Application Programmers Interface. A set of definitions of the ways one
piece of computer software communicates with another [149].

BAP Behavior, Action pattern, Policy. The application framework for struc-
tured behavior based control of autonomous mobile robots discussed in
this thesis (Section 6.2).

CDR Common Data Representation. A binary format for the serialization of
data structures, as defined by CORBA.

CORBA Common Object Request Broker Architecture. An open standard for ob-
ject oriented distributed systems communication (Section 4.1.3).

DAG Directed Acyclic Graph.

DOC Distributed Object Computing. An object oriented programming model
for distributed systems.

FSA Finite State Automaton.

IDL Interface Definition Language. A computer language for describing the
interface of a software component [149]. CORBA also defines an IDL.

IIOP Internet IOP. The TCP/IP based version of IOP.

IOP Inter ORB Protocol. A meta-protocol that defines the low-level commu-
nication between ORBs.

IOR Interoperable Object Reference. A reference to a remote object, as defined
by CORBA.

IPP Intel Performance Primitives. A commercial library with highly opti-
mized implementations of standard image operations.

IR Infrared sensor. A low-cost near range distance sensor.

LRF Laser Range Finder. A very accurate distance sensor.
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NMC Notify Multi-Cast. A module of the Miro architecture, that is used to
built a federation of event channels of the standard CORBA notification
service (Section 4.1.5).

OMG Object Management Group. The standardization consortium, which among
others, maintains the CORBA standard.

ORB Object Request Broker. The mediator for communication between dis-
tributed objects.

OS Operating System.

QoS Quality of Service. In general it refers to the ability of a server to meet
the requirements of a given service contract with a client.

ROI Region Of Interest. A sub-window of an image, containing potentially
important information for the task at hand.

RT Real-Time. An operation within a larger dynamic system is called a real-
time operation if the combined reaction- and operation-time of a task is
shorter than the maximum delay that is allowed, in view of circumstances
outside the operation [149].

RT-CORBA Real-Time CORBA. An extension of the CORBA standard, defining inter-
faces and functionality of real-time enabled ORB implementations.

SLAM Simultaneous Localization And Mapping. The problem of build up a map
within an unknown environment while at the same time keeping track of
its current position [149].

TAO The ACE ORB. A high-performance open-source CORBA implementation
(Section 4.3.2).

UIOP Unix IOP. A non-standard version of IOP available with TAO, optimized
for interprocess communication on a single Unix machine (Section 8.1.2).

VIP Video Image Processing. The application framework for computer vision
on autonomous mobile robots discussed in this thesis (Section 6.1).

WLAN Wireless Local Area Network. A wireless networking technology.
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[101] Stefan Sablatnög, Stefan Enderle, Mark Dettinger, Thomas Boß, Mo-
hammed Livani, Michael Dietz, Jan Giebel, Urban Meis, Heiko Folkerts,
Alexander Neubeck, Peter Schaeffer, Marcus Ritter, Hans Braxmeier, Do-
minik Maschke, Gerhard Kraetzschmar, Jörg Kaiser, and Günther Palm.
The Ulm Sparrows 99. In Veloso et al. [145].
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