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Zusammenfassung

Experimentelle Quantenoptik mit isolierten Quantensystemen ist ein jun-
ges Forschungsgebiet. Die technologischen Fortschritte der letzten Jahre ha-
ben viele grundlegende Experimente erst ermöglicht. Angespornt durch die
Versuche in der Gruppe von Mark Raizen (Austin) und Ton van Leeuwen
(Eindhoven) haben wir die Wechselwirkung von Lasern mit Atomstrahlen
untersucht. In diesen Experimenten wurde die transversale Struktur eines
Atomstrahls verändert. Diese Manipulationen werden durch die Modulation
des Laserfelds verursacht. Das Ziel dieser Arbeit ist die detaillierte Unter-
suchung verschiedener Laserfeldmodulationen in longitudinaler und trans-
versaler Richtung und deren Auswirkungen auf die Form des transversalen
Atomstrahlprofils. Zusätzlich arbeiten wir mit Dämpfung, um in bestimmten
Bereichen störende Atome zu beseitigen. Für unsere Untersuchungen verwen-
den wir analytische Näherungen und numerische Simulationen. Teile unserer
Arbeit wurden auch schon in Konstanz in der Gruppe von Jürgen Mlynek
experimentell realisiert. Dort ist das Ziel, Nanolithographie mit atomaren
Wellen zu entwickeln.

In unseren Überlegungen kommt ein Strahl aus Zweiniveau-Atomen zum
Einsatz, die ein stehendes Lichtfeld durchqueren. Der Laser spricht den Über-
gang von einem metastabilen Grundzustand zu einem angeregten Zustand
an. Von diesem aus ist zudem ein spontaner Zerfall möglich. Die transver-
sale Bewegung der Atome ist quantisiert. Wir haben nun die Auswirkungen
von Resonanz oder Verstimmung des Lasers bezüglich des Übergangs unter-
sucht. Dabei konzentrieren wir uns auf Orts- und Impulsverteilungen der
Atome im Grundzustand. In unseren Rechnungen nehmen wir an, daß alle
Atome mit gleichbleibend hoher Geschwindigkeit fliegen. Deshalb können
wir die Koordinate in Ausbreitungsrichtung des Strahls eliminieren und das
Problem eindimensional beschreiben.

Im ersten Teil haben wir gezeigt, daß ein stark verstimmtes, stehendes La-
serfeld einen Atomstrahl bündeln kann. Dabei wirken die einzelnen Schwin-
gungsknoten des Feldes als Linsen, die die Streuung des Atomstrahls verklei-
nern. Hier sind die Rollen von Licht und Materie im Gegensatz zur klassi-
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schen Optik vertauscht. Wir nutzen die Lichtwellen, um Materie abzulenken
und zu fokussieren. Dabei finden wir auch im Rahmen der Atomoptik

”
Lin-

senfehler“ oder Abberation. Für eine perfekte Fokussierung wären unendlich
hohe, parabolische Potentiale notwendig, die experimentell nicht realisierbar
sind. Stattdessen setzen wir das endliche Potential sin2 kx eines Feldes mit
Modenfunktion sin kx. Im Bereich der Knoten ist die parabolische Nähe-
rung sehr gut. Problematisch sind die Atome, die das Feld im Bereich der
Schwingungsbäuche passieren, denn dort verfügt das Laserfeld nicht über die
nötige Ablenkungskraft. Damit diese Teilchen den Effekt der Fokussierung
nicht verwischen, werden sie durch rein mechanische Blenden entfernt. So
wird auf technisch einfache Weise die Qualität der Fokussierung verbessert.

Eine andere Möglichkeit des Ausblendens kann mit einem zusätzlichen,
resonanten Laser erzielt werden. Dieser wird der bisherigen Anordnung vor-
geschaltet und induziert den Übergang in den angeregten Zustand. Dabei
erhalten wir mehr Zerfälle im Bereich der Schwingungbäuche und wenige bei
den Knoten. Daraus resultiert ein gaußförmiges Profil unseres Atomstrahls,
dessen Maximum in die Schwingungsknoten der verstimmten Laserwelle zur
Fokussierung geführt werden kann. Durch die Kombination von resonan-
tem und verstimmtem Laser haben wir somit eine Fokussierung mit hoher
Qualität durchgeführt.

Bei bestimmten Parametern liegt die Fokusebene im Laserfeld. Deshalb
untersuchen wir auch Techniken, diese Ebene zu verschieben. Dabei ist es
auch möglich, die Abstände der fokussierten Maxima zu verkleinern. Dies
wird durch den fraktionalen Talbot Effekt bewirkt. Der einfache Talbot
Effekt führt durch freie Propagation einer Welle zur Wiederholung einer pe-
riodischen Struktur. Dies geschieht in makroskopischen Dimensionen und
ermöglicht die Wiederholung unserer fokussierten Abbildung außerhalb des
Laserfelds. Jedoch können auch bei ganz bestimmten Beobachtungsebenen
diese fokussierten Punkte in hoher Anzahl mit entsprechend geringerer Am-
plitude beobachtet werden. Dies ist der fraktionale Talbot Effekt. In un-
serem Fall erreichen wir so Abbildungen des fokussierten Atomstrahlprofils
im Bereich von einigen Nanometern mit einem Abstand von einer zehntel
Laserwellenlänge.

Im nächsten Abschnitt unserer Untersuchungen haben die Atome nur ein
Laserfeld durchquert. Bei diesem wurde die Verstimmung während des Ex-
periments verändert. Entweder war der Laser anfangs rot und zum Ende hin
blau verstimmt oder umgekehrt. Dabei wurde die Verstimmung so geregelt,
daß der Laser zum Zeitpunkt der maximalen Intensität resonant war. Die-
ses Verhalten erzeugt sowohl Dämpfung im Bereich der Resonanz als auch
transversale Streuung der Atome. Bei anfänglich rot verstimmtem Licht
fallen beide Effekte zusammen und wir erhalten einen Quantenteppich mit
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einfachen Strukturen, da die stark beschleunigten Teilchen sofort gedämpft
werden. Wird der Laser zu Beginn jedoch blau verstimmt, werden Streuung
und Dämpfung räumlich getrennt. Es zerfallen vorwiegend die Atome, die
im ursprünglichen Zustand verblieben sind. Die Teilchen jedoch, die stark
abgelenkt wurden, befinden sich in Bereichen der schwachen Dämpfung und
erhalten hohe transversale Impulse und diese führen zu komplizierten Quan-
tenteppichen.

Im letzten Teil der Arbeit haben wir einen Strahlteiler simuliert. Dazu
wurden zwei stehende Laserfelder gekreuzt. Bei einem kleinen Winkel ent-
steht ein Feld mit einer zusätzlichen longitudinalen Modulation. Bei geeigne-
ter Wahl des Winkels erhalten wir die Doppler-Resonanz zu den transversalen
Impulszuständen. Diese führt dann in der Wechselwirkung mit den Atomen
zu transversaler Streuung. Diese Streuung betrifft je nach Parameter mehr
oder weniger Atome. Findet der Impulsübertrag auf die Mehrheit der Atome
statt, erhalten wir in jeder Periode des Ortsraums einen zweiten Peak. Je
mehr Atome im Ausgangszustand verbleiben, desto schwächer ist der Effekt
ausgeprägt. Wir haben aber auch einen Parameterbereich gefunden, in dem
fast alle Atome gestreut werden.

Um weitere atomare Maxima pro Ortsraumperiode zu bekommen, müssen
Zustände höherer transversaler Impulse besetzt werden. Wir haben ein Mo-
dell entwickelt, mit dem eine gezielte Streuung vorgenommen werden kann.
Dazu wird die vorige Anordnung verdoppelt. Wir benutzen also zwei Paare
stehender Laserfelder. Die Paare unterscheiden sich in der Intensität und im
Winkel oder in der longitudinalen Modulationsfrequenz. Die Frequenzen sind
so gewählt, daß die zugehörigen Energien für die Übergänge erreicht werden.
Diese Anordnung ist an das STIRAP Modell angelehnt. STIRAP steht für
STImulated Raman Adiabatic Passage. Hierbei werden Atome durch einen
Dunkelzustand in einen weiteren Zielzustand transferiert. In unserem Fall
jedoch ist der Übergang nicht adiabatisch. Wir betrachten die quantisierten
Impulszustände in transversaler Richtung, die nacheinander besetzt werden.
Es gibt bei unserem Modell keinen Dunkelzustand.

Um Zustände hoher kinetischer Energie mit verhältnismäßig geringer
Laserintensität zu erreichen, erfolgt der Transfer in Stufen zwischen den
Zuständen und nicht in einem Schritt. Wir dokumentieren den Effekt durch
einen Transfer vom Zustand ohne transversalen Impuls über den 2h̄k Zwi-
schenzustand in den 4h̄k Zielzustand. Des weiteren zeigen wir die Auswir-
kungen von nicht transferierten Teilchen.
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Chapter 1

Introduction

The progress in experimental quantum optics and especially the experiments
of Mark Raizen (Austin) and Ton van Leeuwen (Eindhoven) have motivated
us to investigate atom optics. These experiments have shown that stand-
ing laser fields can easily manipulate the transversal profile of an atomic
beam. The modulation of the field can be used for nanolithography. To
imprint structures we have to alternate the transversal profile of the atomic
beam. We reach this goal by modulating the laser field in longitudinal and
transversal direction. The aim of this thesis is to analyze in detail various
field configurations with respect to atomic beam modulation. Therefore, we
use analytic approximations and numerical methods.

Especially we focus on the role of the detuning in the interaction of the
laser field and the particles. We build lenses and deal with their faults like
in classical optics. Furthermore, we investigate scattering in different ways.
For all these ideas we need an atomic beam and a laser field in a special
configuration. Nevertheless, we do not insist on the beam geometry. We use
for our calculations the model of an atomic beam. Although, the realization
in a trap is possible as well.

1.1 Description of the Model

Throughout the thesis we consider the model of an atomic beam. We assume
that the atoms have the same velocity vz in z-direction. This velocity is
considered to be large and constant for the whole experiment. Therefore, we
treat this motion classically which yields for the position z = vz · t. This
implies scaling the propagation along the z-axis into a time evolution of a
position wave function. The treatment reduces this problem to a 1D-scheme.

In Fig. 1.1 we illustrate the setup. The atoms are prepared at an early
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3π

0

0

t0

x

t

atomic beam

laser field

Figure 1.1: The schematic model of our investigations. The periodicity of the
laser field along the x-direction is scaled to π. The atomic beam is prepared
at time t0. The atom is initially a plane wave moving towards the laser
field which has a time-dependent intensity. This envelope in t-direction is
described by a Gaussian and thus slowly switches on and off the interaction.

stage t0 and pass on their way in z-direction a standing laser field with a
Gaussian profile in time or space. This simulates a realistic laser field with
a spread.

The core of our investigation is the center-of-mass motion in the trans-
verse x-direction. This we treat quantum mechanically and look for position
and momentum distributions. Our special interest concentrates on the time
evolution of these quantities which is, due to our scaling, the 2D-solution of
the interaction with the laser field.

1.1.1 Normal Incident

The atom is prepared in an early stage t0 � 0. The preparation affects
only transversal properties. The longitudinal z-direction is treated as time
evolution due to the constant velocity vz of the beam. This paraxial approxi-
mation we describe in more detail in App. A. We can shape the cross-section
of the beam with a certain profile, for example a rectangle or a Gaussian

ψ(x, t0) = N exp

[
−
(
x− x0
2∆x

)2
]
.
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The profile is chosen such that the probability distribution |ψ|2 has the mean
value x0 and the spread ∆x. Alternatively we use a plane wave

ψ(x, t0) = N

which has no transversal profile. Additionally we can assume a general
transversal momentum which is the same for all particles.

In both examples N denotes the normalization constant. As shown in
Appendix E we use a discrete and finite description. To apply the Fast
Fourier Transform (FFT) we have to use a periodic setup. The periodicity is
determined by the wavelength of the laser field. Throughout this thesis we
calculate one period out of a perfect regular structure. Within this period we
can normalize the wave function ψ. To get a better impression of the results
we usually depict a few periods. This way of handling neglects marginal
effects. Indeed, they play no important role because the width of the atomic
beam is much broader than the wavelength of the laser. Therefore, the atoms
reach over many laser periods.

1.1.2 Incident under Bragg Angle

Since our model is restricted to an atom beam traveling along the z-axis,
we have to describe the non-normal incident of the atoms as transversal
momentum of the beam. We do not rotate the laser field but turn our
coordinate system. The superposition of normal incident and transversal
momenta has the same effect as shown in Fig. 1.2. A plane wave crossing
the potential field at the Bragg angle is written as

ψ(x, t0) = N exp (−ipϑx) .

According to standard quantum mechanics this wave function describes a
plane wave with a constant transversal momentum.

For the numerical integration it is not important, how complicated the
wave function is. The main input is the initial wave function at time t0 and
the corresponding potential.

1.1.3 Interaction with Laser Field

We use three-level atoms illustrated in Fig. 2.8. The atoms are prepared in a
metastable ground state |g〉. The laser field acts on the transition |g〉 ↔ |e〉.
From the excited state there exists a decay channel to a non-detected state
|nd〉 with a decay rate γ. In the weak saturation regime dE/h̄ � γ we can
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ϑ

vz∆t

pϑ∆t

wave front

effective path

normal incident

Figure 1.2: To make the atoms enter the laser field under the Bragg angle ϑ
we just combine the flight along the z-axis with velocity vz and a transversal
momentum pϑ. Simple geometry leads to the relation pϑ = vz/ tanϑ.

eliminate the excited state and describe the whole system only in the ground
level. Effectively, we describe the interaction by the potential

V (x, t) =
(dE)2

h̄

sin2 kx

∆+ iγ/2
.

Here d denotes the dipole moment of the atom and E represents the electric
field of the laser.

Since we consider a standing wave we have a sin kx modulation of the
field in transversal beam direction with wave number k. Further we take
into account the detuning of the laser frequency ∆. Spontaneous emission
back to the ground state is neglected.

In order to include the finite width of the laser field we extend our po-
tential to

V (x, t) =
(dE)2

h̄

sin2 kx

∆+ iγ/2
exp

(−t2/T 2
)

where T denotes the Gaussian width of the field.
Now we can start solving the time-dependent Schrödinger equation

ih̄
∂

∂t
ψ(x, t) =

[
p̂2

2M
+ V (x̂, t)

]
ψ(x, t)

for difficult potentials and initially given wave functions.
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B B
B

Zeeman
slower

Collimator

He*
source

MOC

Apertures

Interaction
region

2D-detectorMOL

B

Figure 1.3: Schematic illustration of the Eindhoven beam experiment for
metastable He∗ atoms. The source sends the atoms with a wide spread.
Hence via collimator and Zeeman slower the atoms are prepared. In the next
stage the atoms are focused to a beam with magneto-optical devices. Due to
apertures only central atoms are allowed to pass the interaction region and
finally the atoms are detected in their 2D-distribution.

Since it is impossible to diagonalize both operators simultaneously we
can solve these problems only numerically. Therefore, we describe the initial
wave function at an early time t0 and integrate this wave function with the
split-operator technique described in App. E.

1.2 Experimental Setup

The thesis represents a numerical simulation for an experimental situation.
Therefore, real atoms and experimental problems are not our main concern.
Nevertheless, these ideas are not out of the world and we want to show that
it is indeed possible to do the experiments.

1.2.1 Beam Setup

We have enjoyed an intensive collaboration with the group of Ton van Leeuwen
from Eindhoven. He plans to realize some of our suggestions with the exper-
imental setup shown in Fig. 1.3.

The special part of the Eindhoven group is the large size of the apparatus.
It is about 10 meters long including the oven, the Zeeman slower, the inter-
action chamber and some so-called “elbow-space” to make use of the Talbot
effect. Of course, there exist many atomic beam experiments but most of
them are too small to observe the Talbot effect. Nevertheless, this is no limit
for some ideas, since the fractional Talbot effect is a near field topic.

The detection of the atom is done in the following way: The atoms are
prepared in a metastable state. We are only interested in those atoms that
are finally still in the metastable state. A wire is moved through the beam
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and the atom induces a current by decaying into low energy state. This
yields immediately the spatial distribution. The momentum distribution is
only available as position distribution in the far field. Since the measure-
ment destroys the distribution we cannot repeat the measurement later for
evaluation of the momentum distribution. This repetition is only possible in
the trap scheme discussed in the next section.

1.2.2 Trap Setup

The other way of realizing experimentally our calculations is to use a magneto-
optical trap. Mark Raizen did many experiments proposed for beams in the
trap. In this case the idea of time evolution instead of propagation is realized,
too.

In Mark Raizen’s group the momentum distribution of the particles is
observed indirectly. Via CCD camera density pictures of the atom cloud
are taken. Out of a series in fixed time steps the momentum distribution is
calculated.

The advantage of the trap is that the spatial dimensions of the experiment
are much smaller than in the beam configuration. Another advantage we find
in Chapter 3 where we have to apply a position-dependent magnetic field. Its
intensity is connected to the velocity of the particles. In comparison to the
beam arrangement this can be realized in the beam setup much simpler: Here
we just need a time-dependent magnetic field. The strength is connected to
the laser intensity. These parameters can be controlled much easier.



Chapter 2

Focusing and Multiplication

A standing light wave can be used as an array of micro-lenses to focus an
atomic beam. In this chapter we present theoretical and practical consider-
ations related to this focusing effect. At the end of this chapter we extend
the technique to the production of regular structures with a much smaller
period than that of the standing light wave. For this, we make use of the
fractional Talbot effect which provides us with many shifted repetitions of
our focused structure. We investigate different initial conditions for the beam
and techniques to prepare the beam.

The combination of focusing with the fractional Talbot effect results in a
practical scheme to produce nanostructures. Masking of the incoming atomic
wave by an absorptive grating is used to eliminate atom-optical aberrations
that would otherwise wash out the fractional Talbot images. The scheme
allows the creation of structures of very small feature size as well as small
period.

2.1 Introduction

Focusing of atoms in optical standing waves creates periodic structures with
feature sizes in the nanometer region. The structures can be produced either
through direct deposition from an atomic beam [4,13,17–19,29,30,33,40], or
through exposing a resist layer on a substrate with metastable rare gas atoms
and subsequent processing [4, 17, 18, 33]. McClelland et al. [13, 19, 29, 30, 40]
used one- and two-dimensional standing waves as an array of cylindrical and
spherical micro-lenses to focus a beam of chromium atoms to an array of lines
or dots on a substrate. Feature sizes of 38 nm at spacings of 213 nm were
achieved. So far, metastable atoms have only been used without focusing
in a proximity printing process, but extension of the technique to include
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focusing should be straightforward.

The application of near field imaging in atom optics to the production
of regular nanostructures with a smaller period has been suggested, e.g., by
Janicke and Wilkens [20]. In the near field diffraction pattern of atoms pass-
ing through a regular structure (e.g., a transmission grating or an optical
standing wave), images with a regular structure with a period equal to an
integer fraction of the original period can arise [11]. The fundamental Tal-
bot image with a period equal to that the original structure, has been first
observed for atoms by Clauser and Li [16] and by Chapman et al. [14]. The
so-called fractional Talbot images have been observed by Nowak et al. [34]
using metastable helium atoms passing through a transmission grating.

In this chapter we will show that the combination of focusing and high-
order fractional Talbot imaging allows the production of structures with very
small feature sizes as well as a small period. We discuss the feasibility of such
an approach and present solutions to problems which arise. The calculations
of the atomic focusing and diffraction are based on a numerical integration
of the one-dimensional atomic wave equation.

2.2 Focusing Revisited

First we want to investigate the principle of focusing. Therefore, we apply a
highly detuned laser field to the atom beam. Due to the detuning the field
does not change populations or coherences of the internal levels of the atoms.
However, momentum can still be transfered to the atoms.

2.2.1 Focusing in Theory

The focusing action in a standing light wave is provided by the spatially
corrugated dipole potential which can be described by sin2 kx. For red de-
tuning, the minima of this potential are near the nodes where we can use
the parabolic approximation for the dipole potential. Hence, we assume the
Hamiltonian

H =
p̃2

2M
+ f(t)Mω20

x̃2

2

for a time-dependent harmonic oscillator. The function f(t) switches the
potential on and off as experienced by the atom crossing the standing light
wave. We assume for this switching function a Gaussian envelope

f
(
t̃
)
= exp

[
− (

α̃t̃
)2]

.



2.2. FOCUSING REVISITED 9

Note that this envelope is not normalized. Hence, the parameter α combines
the properties width and maximum of the envelope. For the sake of simplicity
we combine all in one parameter. We will see soon that this is no restriction
for experimental results.

With the scaling relations

p =
p̃

h̄k
, t =

h̄k2

M
t̃ = 2ωR and x =

√
Mω20
h̄2k2

x̃

we find the Hamiltonian

H =
p2

2
+ f(t)

x2

2

including the switching function

f(t) = exp
[−(αt)2]

in dimensionless coordinates. Here ωR denotes the recoil frequency. The only
free parameter α comes in via f(t).

The Hamiltonian shows the well-known problem of a time-dependent har-
monic oscillator. Hence, we need the solutions s(t) and c(t) of the set of
differential equations

c̈(t) + ω20f(t) c(t) = 0

s̈(t) + ω20f(t) s(t) = 0 (2.1)

with the initial conditions

ċ(t) = s(t0) = 0

c(t) = ṡ(t)/ω0 = 1.

With the solution of the time-dependent harmonic oscillator we apply the
parameter set for the parabolic approximation in the standing laser field.

In our theoretical considerations we use an initial Gaussian wave

ψ(x, t0) = N exp

[
−1

2

(
x

∆0

)2
]

(2.2)

located near a node of the light field. From Appendix B we find that the wave
function remains a Gaussian with the time evolution of the width following
from

∆(t) =

√
s2(t) + ∆4

0c
2(t)

∆0

. (2.3)
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2.2.2 Numerical Approach to Focusing

We can now solve the differential equations Eq. (2.1) numerically for different
parameters α and a fixed initial width ∆0 = 10 to find the parameter regimes
for good focusing. Fig. 2.1 displays the results for ∆(t). From the figure we
check the focus for two aspects in order to find a parameter regime suitable
for sharp focusing. First we are interested in the minimum focus width. The
second aspect is the location of the focus relative to the laser field. Two
parameter values seem to be of special interest: α = 0.6101 and α = 2.0.
The first will put the focus in the center while the effect of focusing vanishes
after the interaction. The other parameter value shows a clear focus in free
space.

2.2.3 Full Numerical Simulation

Now that we have identified the interesting parameter regimes, we can check
the results by a full numerical calculation. Here we integrate the wave func-
tion Eq. (2.2) with the split-operator technique and the potential

V (x, t) =
(dE)2

h̄

sin2 kx

∆+ iγ/2
exp

(−t2/T 2
)
.

Since we use the fast Fourier transform to integrate we need a periodic setup.
Hence, we extend our model to an array of beams. We have to prepare this
atomic beam in a special state: The transversal Gaussian distributions are
restricted to the nodes of the potential. Otherwise we are not able to use
the parabolic approximation. A rough collimation is necessary. When we
assume that this pre-collimation is done, we can guide the beam through the
potential. The result for α = 0.6101 is shown in Fig. 2.2.

The beam with the Gaussian profile moves from bottom to top. Magenta
and red denote high probability, blue a low one. The time scale is chosen in
such a way that the natural spread of the Gaussian due to free evolution is
negligible. The black line in the right graph just indicates the envelope of
the potential. This simulates the switching of the potential as it acts on the
atoms. The parameter α of the switching function is chosen such that the
focus is centered within the potential, at time t = 0.

The red line in the right diagram denotes the full width at half maximum
of the central wave packet. After t ∼= 2.8 the beam extends over the whole
period. At this time interferences arise from the overlap with the neighboring
beams. Therefore, we cannot calculate the width any more.

The focus has a non-zero background. This indicates abberation like
in classical optics. The potential does not provide perfect parabolas but
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Vmax(t)

T ime

∆(t)

Figure 2.1: Envelope and focusing function. In the upper part we show the
envelope of the laser field for α = 0.6101, 1.0 and 2.0. The bottom displays
the focusing function evaluated from Eq. (2.3). One can clearly see the
focus or the minimum width, respectively. In theory there is no important
difference in the focal width. The larger α is, the later the focus appears.
This has the advantage that the focus moves from the center of the potential
(α = 0.6101) to a place clearly outside (α = 2.0). Note, that in the case
of α = 0.6101 the output wave function has the same width as the input
function. The focus is located in the center.
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Figure 2.2: Focusing of a Gaussian beam by a sin2 kx potential. The right
diagram shows the evolution of the maximum potential intensity in time
(black line). The red line displays the FWHM width of the Gaussian wave
packet. From Fig. 2.1 we know that the final evolution is linear. Since
this extends the plot range the line is cut earlier. The left hand side shows a
density plot of the probability in time. Blue denotes low probability, magenta
is high. One can see clearly the focus at t = 0 and the following spread. Note
the abberation effect: Near the focus, the cyan background indicates a non-
zero base level of the central peak. This is due to the outer part of the
Gaussian wave packet which does not experience a strict parabolic potential
and hence, is not well focused.
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it is given by a sin2 function. Therefore, particles, which are too far from
the center, are not focused strongly enough and smear out the focus. This
is equivalent to the effect of spherical abberation in classical optics where
non-paraxial rays are not focused to the same spot as paraxial rays. Due
to the abberation there are interferences already around the focusing plane.
They disturb the picture and hence, we have to stop calculating the width
at t ∼= 1.5. Since the width evolves linearly we can easily predict the values
for times t > 1.5.

This parameter regime includes a particular property: The focus is cen-
tered in the laser field. This complicates the positioning of a substrate in
the focus plane. Nevertheless, due to experimental restrictions the focus in
the center of the field is sharper than outside. Hence, many experimentalists
prefer this setup. There are two principle ways to avoid this problem: (i)
We use the Talbot effect to reproduce the focus again after the half Talbot
time or (ii) we change our parameters such that we get the focus outside of
the potential accepting the loss of sharpness.

The first approach works. But since the potential is still there, we do
not have the required free evolution for the Talbot effect. This leads to
uncertainties and an increase of the focus size.

Changing the parameter regime is much simpler. In Fig. 2.3 we present
the focusing for a relatively narrow field envelope. The evolution of the
Gaussian beamlets before the interaction is the same as before. Now the
potential rises and decays faster. This is like a short symmetric kick on the
beam, equivalent to the effect of the thin lens in classical optics.

In the diagram on the right hand side we can clearly see that the focus
is outside of the potential. This gives enough space for working in an ex-
periment. Thus, there is enough room to position a substrate in the focus
plane.

Now we have realized a working regime for focusing of atomic beams.
This is one of the basic techniques in this chapter.

2.3 Talbot Effect

In 1836 H. F. Talbot reported in a paper [43] entitled “Facts Relating to
Optical Science” a diffraction experiment. He used a plate of glass covered
with gold leaf, on which several hundred parallel lines were cut in order to
transmit the light at equal intervals. It is interesting to note that this grating
was produced for him by Joseph Fraunhofer. Talbot viewed the light, which
had passed through the grating with a lens and found:

The appearance was very curious, being a regular alternation of
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Figure 2.3: Focusing of a Gaussian beam outside of the potential. Now the
potential is narrow. The interaction yields a momentum distribution such
that the beam is focused behind the interaction region. Since we use a sin2 kx
potential we find abberation. The atoms far from the nodes are not focused
well and cause interferences. We cannot determine the width of the atomic
beam further than t ≈ 2 This behavior is less important since the evolution
of the width is linear at this stage.
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numerous lines or band of red and green color, having their di-
rection parallel to the lines of the grating. On removing the lens
a little further from the grating, the bands again became red and
green. And this change continued to take place for an indefinite
number of times, as the distance between the lens grating in-
creased. IN all of cases, the bands exhibited two complementary
colors.

In contrast to H. F. Talbot we consider a monochromatic wave with trans-
verse periodic structure under free evolution. Hence, we find at a well-defined
distance the original structure again. This self-rebuilding effect is called the
Talbot effect. The required distance depends on the periodicity and the
wavelength, or in the case of atomic waves on the longitudinal velocity, which
determines the de Broglie wavelength λdB. The distance which is necessary
for self-rebuilding is called Talbot length and in terms of wavelength it reads

LT =
2a2

λdB

where a is the periodicity of the initial wave.

2.3.1 Talbot Images

In a periodic setup and with free evolution we find the Talbot effect. In this
regime we use the familiar Hamiltonian

H =
p2

2M
= − h̄2

2M

∂2

∂x2

of a free particle. Further we assume wave function ψ(x, t0) prepared in an
arbitrary state at a fixed time t0. Now we have to solve the time-dependent
Schrödinger equation

ih̄
dψ(x, t)

dt
= Hψ(x, t) = − h̄2

2M

∂2ψ(x, t)

∂x2
. (2.4)

Due to the periodic setup we can use the Fourier decomposition of the wave
function

ψ(x, t) =

∞∑
n=−∞

exp
[
2πinx

a

]
an(t) =

∞∑
n=−∞

εn an(t)

to substitute into the Schrödinger equation Eq. (2.4)

ih̄
∂

∂t

∞∑
n=−∞

εn an(t) = − h̄2

2M

∂2

∂x2

∞∑
n=−∞

εn an(t).
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The components of the series fulfill

ih̄ εn
∂

∂t
an(t) =

h̄2

2M

4π2n2

a2
εn an(t).

After introducing the so-called Talbot time

TT =Ma2/(πh̄)

the differential equation for an(t) reads

i
∂

∂t
an(t) =

2π

TT
n2 an(t)

and the corresponding solutions yield

an(t) = an(t0) exp

[
−2πin2 t− t0

TT

]
for the coefficients an and

ψ(x, t) =
∞∑

n=−∞
εn exp

[
−2πin2 t− t0

TT

]
an(t0)

for the wave function. When we chose the time t such that t− t0 is an integer
multiple of TT, ψ simplifies to

ψ(x, t) =
∞∑

n=−∞
εn exp

[−2πin2k] an(t0) = ψ(x, t0)

since exp[−2πin2k] ≡ 1.
For atomic waves not only the time but as well the distance plays an

important role. The measurement takes place at a certain location. There-
fore, we are interested in the length of free evolution. With the help of the
de Broglie wave length λdB = h/p we find

LT = vTT =
vMa2

h̄π
=

2pa2

h
=

2a2

λdB
.

We always assume a constant longitudinal velocity due to transformation
into the time evolution of a 1D-problem. Therefore, the Talbot distance LT

and Talbot time TT are connected by a constant. This means we can use
distance and time equally.
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Figure 2.4: Fractional Talbot effect. The inserted number gives the fraction
of time of the full Talbot time. t = 0 denotes the initial wave function.
At t = 0.5TT we find the same shape but a phase shift of a half period.
The other figures show the wave function at 1/4th, 1/6th, 1/8th and 1/10th
Talbot time.
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2.3.2 Fractional Talbot Effect

For our purpose the so-called fractional Talbot effect is more interesting. In
the preceeding section we have seen that the Talbot effect leads to a repetition
of a certain distribution by simple free evolution.

In Fig. 2.4 we take a closer look at the images of a fractional Talbot
evolution. We consider a Gaussian located at the center of a periodic space
with length π. The inserted numbers denote the passed time in units of the
Talbot time TT. The distribution at the half Talbot time t − t0 = 1

2
TT is

shifted by half a period. In an experimental setup this shift is irrelevant due
to the periodicity. For this reason the half Talbot time is called Talbot time
by some authors.

The other images show the distribution at different fractions of TT. We
recognize that for t = TT/2n we observe n equidistant peaks which are weaker
due to normalization. Note that the width we observe remains the same as
the initial peak. In the last picture we see that the individual peaks are
no longer separated and start to overlap. This is a major restriction in
constructing high periods with the fractional Talbot effect: We need sharp
initial wave packets in order to obtain separated spots.

2.4 Focus and High Period

Now we combine both effects: focusing and the fractional Talbot effect in
order to obtain sharp structures with a small period. Both effects have been
seen in experiments whereas the combination remains a challenge.

2.4.1 A Historic Review

The combination of focusing and the fractional Talbot effect was originally
suggested by Janicke et al. [20]. In this approach, the incoming atomic beam
is represented by a nearly plane de Broglie wave and the diffracting structure
is an off-resonant standing light wave as used in the focusing experiments.
When we examine this approach numerically one problem becomes aware.
Indeed, the atoms are focused after passing through the light field. Later, a
number of fractional Talbot images of these original foci are observed. For
these images a number of the initially focused peaks are superimposed. The
copies are shifted by a fraction of the laser field period and hence, this yields a
high repetition period. The fractional images, however, will only display clear
foci when the individual imaged copies do not overlap [41]. For the plane wave
focusing overlap cannot be avoided because of strong imaging aberrations and
no clear periodic structure is observed for high-order fractional images. This
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Figure 2.5: Plane wave focused. The bottom shows the best focus. The
dashed line is magnified by a factor 10. The other graphs are disturbed
distributions at t = TT/4, TT/8 and TT/16. The noise originates from abber-
ation.

is illustrated in Fig. 2.5, where for a plane atomic wave, focused by a standing
light field, the probability distribution as a function of transverse position is
shown in the focus plane zf and at distances of one quarter the Talbot length
LT/4, LT/8 and LT/16, where fractional images with a period of 1/2, 1/4
and 1/8 of the period of the diffracting standing light (d = λ/2) should be
observed. The full range in transverse position in the figure is a.

The original focus (bottom curve) is quite sharp, with a full width at half
maximum around 0.01 λ. However, the background is not zero as shown in
the ×10 magnified curve. This is caused by the fact, that the standing wave
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represents a sinusoidal phase grating for the atoms. Perfect focusing is only
achieved with a parabolic phase variation. Near the nodes of the light field,
where the atom phase has extrema, the sine square can be approximated by
a parabola. Hence, atoms passing close to the nodes are focused to a well-
defined spot. Atoms which do not pass close to a node, “off-axis atoms”, are
not imaged to the same focus. This “sinusoidal aberration”, a close analogon
to spherical aberration in light optics, results in the non-zero background.
Hence, the non-overlap condition can never be fulfilled. The images at LT/4
and LT /8 still show relatively clear doubled and quadrupled images respec-
tively, although the peaks are not equal in height and interference oscillations
are observed in between the peaks. At LT/16, the image is fully scrambled
and no a/8 periodicity is discernible.

2.4.2 Beam Aperturing

In light optics, the main solutions to spherical aberration are the use of more
complicated, aberration-corrected optics and the use of apertures to block far-
off-axis light. For atom optics, the first solution is impractical. Aperturing,
however, can be realized. The effect is illustrated in Fig. 2.6, where calculated
atomic probability distributions are shown with an incident plane wave (on
the right); with the incident atoms restricted by square apertures to the
nodes of the light field (width of the apertures ∆x = 0.5 d) (center); and
with incident “Gaussian beamlets” centered at the nodes with a root mean
square width of 0.088 a (left). The density plots of the two-dimensional
probability distribution (with the propagation direction of the atomic wave
shown vertically) show the characteristic “channel” or “quantum carpet”
pattern discussed extensively in the literature [23,42]. Cross-sections through
the distribution at z = zf and z = zf + LT/20 (see the dotted lines in the
figure) are shown at the bottom and top of the figure. It is obvious that,
while the quality of the focus does not differ markedly, the quality of the
high-order Talbot image is dramatically improved with the use of apertures.

Both, hard-edged square and Gaussian apertures, can be realized ex-
perimentally. For square apertures, freestanding nanostructure transmission
gratings with a period of 213 nm and slit widths around 100 nm, as would be
needed for the chromium example, can be produced with relative ease at a
number of facilities.

To obtain “soft-edged” Gaussian apertures physical transmission gratings
are of course of no use. However, for metastable rare gas atoms, Gaussian
apertures can be approximated with good accuracy by letting the incident
atomic beam pass first through a separate standing light wave [1, 22, 27].
In this standing wave, tuned to an optical pumping transition, the atoms
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Figure 2.6: Comparison of preparation at focus plane and Talbot image. The
left column shows the result using a simple plane wave. In the right column
the initial beam has a Gaussian profile and the center uses simple gratings to
block the disturbing atoms. The middle row shows a density plot for each.
This is the time evolution of the probability distribution. The dashed line
indicates the focusing plane. All the cuts at this plane show nice foci in the
bottom row. But the cuts for the Talbot image at the full line shows a drastic
difference.
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Figure 2.7: Comparison of damping result (dots) and a fitted Gaussian
(solid). We find that the output of the damping method is a perfect Gaussian
profile. Note, that this result is obtained by an approximation for the one
level model.

|g〉

|e〉

|nd〉

Ω γ

Figure 2.8: Level scheme of the atoms. The atoms are prepared in a
metastable level |g〉. The laser field invokes the atomic transition to the
excited state |e〉. Spontaneous emission back to |g〉 is neglected. The only
decay is towards a nondetected level |nd〉 with a decay rate γ.
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Figure 2.9: Full view on the Gaussian case. Gaussian profiles are produced
out of a plane wave by damping near t = 0. At the Talbot distance there is
the focusing laser. Both lasers are indicated by dashed lines. The zoomed
images show the focus and the 10 times Talbot regime with the cross sections,
respectively.
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Figure 2.10: Full view on the rectangle case. The profile is set up by a grating.
At the Talbot distance there is again the focusing laser. The zoomed images
are marked by the small brackets whereas the cross sections are denoted by
thin lines in the zoomed pictures.
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are excited from the metastable state |g〉 to an upper level which decays
preferentially to the atomic ground state shown in Fig. 2.8. This ground
state |nd〉 is not detected. Thus, the atoms end up in the ground state
except when they pass the standing wave near the nodes. Rare gas atoms
in the inert ground state do not contribute to exposing the resist layer and
hence can be neglected. The width of the “wave packets” of metastable atoms
which pass the nodes can be adjusted with the intensity of the light wave and
the interaction time. The transverse probability of the wave packets can be
made close to Gaussian, as is illustrated in Fig. 2.7 where calculated and fitted
Gaussian probability distributions are shown. The calculation is based on a
similar numerical integration of the one-dimensional wave equation as before,
including the spontaneous emission from the upper level of the transition to
the ground state as a damping term.

The resonant light wave used for the optical pumping is relatively weak,
just enough to saturate the transition. Because of this, the non-dissipative
part of the interaction of the metastable atoms with the light wave is weak
and does not cause appreciable focusing effects. For the focusing, an intense
light wave can be used which is far detuned with respect to the same optical
transition. By detuning, optical pumping can be suppressed while inducing
strong focusing. For example, the parameters used in Figs. 2.5 and 2.6 can
be achieved for (360m/s axial velocity) metastable argon atoms on the λ =
706.9 nm transition with a laser power of 35mW in a Gaussian beam with
a waist of 18µm and a detuning of 23GHz. The probability for optical
pumping will then be less than 2.5%.

In principle, the difference in wavelength between the resonant optical
pumping light field and the off-resonant focusing field causes a mismatch
between the periods of the incident array of Gaussian beamlets and the fo-
cusing array. However, even at 23GHz detuning the relative mismatch is
only 8 × 10−5. Hence, a few thousand periods of the focusing field can be
supplied with Gaussian beamlets positioned at the nodes with acceptable
tolerance.

In practice, positioning a mechanical grating immediately in front of the
focusing light field is difficult. Since after the grating, the initially square
wave packets spread quickly because of diffraction, this means that the atoms
cannot be restricted to the nodes of the focusing field. For the optical pump-
ing approach, the same problem exists: If the distance between the optical
pumping field and the focusing field is too short, overlap between the light
fields results in unwanted interference effects. The problem can be solved
by separating grating and focusing field (or the two light fields) by an axial
distance z = LT/2. At this distance, a Talbot image of the original wave
packets is produced which has the same periodicity as the original one, but is
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shifted by half a period. Using a mechanical transmission grating or optical
pumping leads to the full diffraction patterns shown in Figs. 2.9 and 2.10
respectively. The positions of the light waves and gratings are indicated in
the figure. The area near the focus (z ≡ zf ≈ 1.004LT/2) and an area near
z = zf + LT/20 (indicated by brackets) are depicted enlarged at the bottom
of each figure, the latter region illustrating the fractional Talbot images at
LT/20.

To get the result shown in Fig. 2.10 experimentally, we use metastable
argon atoms with 360m/s axial velocity and a laser beam with a Gaus-
sian waist radius wl = 25µm near-resonant with the λ = 811.5 nm two-
level transition, but with a larger laser power and detuning than in Fig. 2.5
(14mW at ∆ν = 44GHz). This leads to somewhat stronger focusing. For
Fig. 2.9, where optical pumping is used to produce near-Gaussian beamlets,
the weaker optical transition at λ = 706.9 nm requires even larger power
and detuning (260mW at ∆ν = 45GHz) as well as a smaller laser beam
(wl = 25µm).

The dashed lines in the figures indicate the positions of the two laser
beams or, in the grating case, the mechanical transmission grating and the
laser beam at z = 0 and z = LT/2. The probability distribution as a function
of x in the focus plane and at z = zf + LT/20 is shown at the right in the
figures.

2.5 Demands on Atomic Beam

2.5.1 Beam Collimation

In a real experimental setup, the perfectly monochromatic plane wave, as-
sumed in the calculations above, cannot be realized. The atomic beam origi-
nates from a finite-sized source and is collimated with apertures. As a result,
the beam can be described by an incoherent superposition of plane waves
incident under all angles allowed by the collimation ratio of the beam. After
passing through a regular structure, the Talbot image of each plane wave is
simply projected under the angle of incidence of the wave and the associated
probabilities have to be summed. In order for the high-order Talbot image
to be retained under the summation, the spread in position of the individual
images in the image plane has to be smaller than the distance between the
peaks in the image. We will first look at the visibility of the image at LT /2.
With LT = 2a2/λdB (a = λ/2 and λdB = h/mvz, with m the atomic mass
and vz the (axial) velocity of the atoms in the beam), we can also express
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the Talbot length as

LT =
λ2mv

2h
. (2.5)

At axial position z = LT /2, the transverse spread in position of the images
induced by an angular spread ∆ϕ of the incoming plane waves is ∆ϕLT/2.
Demanding that this spread is much smaller than the period λ/2 of the
imaged pattern, we obtain

∆ϕ vz � h

mλ
. (2.6)

As ∆ϕ vz is equal to the spread in transverse velocity ∆vx and h/mλ is equal
to the single-photon recoil velocity of the atom, this condition can be written

∆vx � vrecoil. (2.7)

The collimation thus requires either a sub-recoil transverse laser cooling
scheme or conventional collimation by slits. For a typical beam of argon
atoms at vz = 360m/s, the required collimation evaluates to be ∆vx �
0.02m/s or ∆ϕ � 6× 10−5 rad.

For the higher order fractional Talbot images, the axial position of the
fractional image plane is z = LT/2n and the period of the image λ/2n.
Hence, the same visibility condition (Eq. 2.7) is obtained. It is worthwhile
to note, that the actual minimum size of the features as determined by the
finite beam collimation becomes smaller as the order n of the Talbot image
increases.

2.5.2 Spread in Axial Velocity

The Talbot length scales linearly with the axial velocity vz. Therefore, for
different axial velocities the axial positions of the fractional Talbot planes
are different. The tolerance for the spread in vz is determined by the depth-
of-focus ∆zdof of the images, the axial distance over which the images are
“sharp”. Here, we define ∆zdof as the full width at 1/

√
e height of the focal

spot in the axial direction. We assume the depth-of-focus for our typical
parameter set to be ∆zdof ≈ 4× 10−4LT , independent of the fractional order
of the image and equal to that of the original focus.

From the depth-of-focus, a limit for the spread in vz which allows the
observation of a fractional Talbot image at z = LT/2n without considerable
image degradation is obtained:

∆vz
vz

≤ 2n
∆zdof
LT

. (2.8)
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Equation (2.8) shows, that obtaining sharp images is easiest for high order
images. Still, for the λ/20 period images, the allowed spread in axial velocity
is only 0.4%, which requires axial laser cooling of the atomic beam.

2.6 Conclusions

Focusing atomic beams using near-resonant optical standing waves as “micro-
lens arrays” allows the production of regular nanostructures with dimensions
on the order of a few nanometers. The fractional Talbot effect in the near-
field diffraction pattern of the atoms behind the standing light wave can be
used to produce nanostructures with a smaller spatial period than that of the
standing light wave. However, when starting from a normal atomic beam,
“clean” high-order fractional Talbot images do not appear due to aberrations
of the micro-lenses. We have shown that either a physical transmission grat-
ing or optical pumping in a separate standing light wave can be used as lens
aperture arrays for the atomic beam in order to effectively reduce the devi-
ation due to aberrations. This allows high-order Talbot images to be used.
The sample calculations that we have presented indicate that diffraction pat-
terns with clean, separated peaks can be obtained with periods of λ/20. For
our argon example, this amounts to a period of 41 nm; for chromium, to
21 nm. The demands on the incoming atomic beam are stringent, but within
the range of laser-cooled atomic beam technology.

The laser power needed for the focusing is, for all considered atoms and
transitions, not a limiting factor.



Chapter 3

Time-Dependent Detuning

We have met the detuning as a tool for damping or preparing atomic beams in
the preceding chapter. Now we discuss a much more subtile role of detuning:
In contrast to the last setup only one laser field acts on the beam of two-
level atoms with an additional decay channel from the excited state. The
laser field acts on the transition between ground and excited state and has
a time-dependent detuning. We start either with red detuned and change to
blue or vice versa. Both schemes include an area of resonance on the internal
levels of the atoms. We find that the cases differ strongly. When we start
with blue detuning the particles are gathered around the nodes of the laser
field. The damping occurs at the antinodes. Hence, the potential scatters
the atoms keep and they keep their acquired momenta. This effect creates
a complicated structure in the carpet. In contrast, the change from red to
blue detuning produces a quantum carpet with rather uninteresting design.
In this scheme the particles are gathered in the regions of strong damping.
The atoms with high transverse momenta decay through the excited state to
a level which we do not detect. Therefore, these atoms do not contribute to
the carpet structure.

3.1 Setup and Time Scales

We now analyze the dynamics of an atomic wave traversing a light crystal.
As shown in Sec. 2.4.2 we use atoms with the Λ-level scheme depicted in
Fig. 2.8. Moreover, we consider a Gaussian envelope with width T > 0.

The laser field E and the atomic center-of-mass motion are coupled via
the atomic dipole d on the transition |g〉 → |e〉. The rate of spontaneous
decay to the |nd〉-level is γ. In the weak saturation regime dE/h̄ � γ we can
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describe the process by an effective Hamiltonian

H =
p2

2M
+
(dE)2

h̄

sin2kx

∆(t) + iγ/2
exp

[−(t/T )2] . (3.1)

Here k denotes the wave number of the laser field. The time-dependent
detuning

∆(t) = ∆0 χ(t)

consists of a constant ∆0 and a dimensionless function χ(t) with a change
of sign at t = 0, that is χ(t) ∼= t/τ in the immediate vicinity of t = 0. The
detuning rate ∆0 is considered to be large compared to the damping rate
γ � |∆0|. Typically we assume

χ(t) = t/τ

or, in order to keep the detuning finite at t → ∞, we choose χ(t) =
arctan(t/τ).

For further considerations we focus on the regime with active damping.
This happens within a characteristic time

t0 =
γτ

2∆0

around t = 0. Note that we include the sign of ∆0 into t0. This will be useful
in the analysis in Appendix C.

With the help of this characteristic time we define three time zones: (i)
In the early stage for t < −|t0| the detuning is large and the damping is
negligible. Hence, the number of particles is conserved. The atoms are just
distributed in the potential wells. (ii) Due to the vanishing detuning for
|t| < |t0| the particles are in the damping zone. This region is quite small.
Nevertheless, the time is sufficient for many atoms to be transfered into the
nondetected level |nd〉. The particles reach quickly the third regime t > |t0|.
(iii) Now the detuning is large again but with the opposite sign. This moves
the position of the potential minima. As before the damping vanishes and
particle number is conserved.

3.2 Approximate Analysis

First we want to find some approximate analytical results. We study the
interaction and mixing of two waves roughly corresponding to transverse
momenta ±h̄k. Therefore, we solve the time-dependent Schrödinger equation
and find coefficients describing the amplitudes of the two waves.
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3.2.1 Mixing of Waves

We consider a simple function χ(t) = t/τ which yields the detuning func-
tion ∆(t) = ∆0t/τ . The Gaussian envelope is omitted since we discuss the
regime t ≈ 0. The solution takes into account mixing of the two waves with
transversal momenta ±h̄k+ δp, δp � h̄k mentioned in Sec. 1.1.2. For δp = 0
the beam falls under the Bragg angle into the field. Hence, δp plays the role
of an angular deviation of the Bragg angle. The center-of-mass wave function
for this approach has the form

ψ(x, t) = eiϕ(t) e−Γ(t)
[
c+(t) e

i(1+δp/h̄k)x + c−(t) ei(−1+δp/h̄k)x
]
.

The first term only contains the phase which cancels when we calculate the
modulus square of the probability distribution. From Appendix C we find
the damping rate

Γ(t) = 2λ
(
arctan(t/t0) +

π
2
sign∆0

) ≥ 0

with the boundary conditions

Γ(−∞) = 0 and Γ(+∞) = 2π|λ|.

Note that we have included the sign of the detuning in t0. Hence, we have
to consider the sign in Γ as well to keep the damping positive. This is an
envelope over the whole experiment. The scattering is only visible in the
coefficients c±(t). Here we introduced the notation

λ ≡
(
dE

h̄

)2
τ

4∆0
.

The initial beam is a single plane wave. Hence, c± have to fulfill the
conditions

c+(t → −∞) = e−iδt and c−(t → −∞) = 0

with the angular detuning δ = kδp/M . From Eq. (C.6) we get the final result

c±[z = δ(t+ it0)] = −i
√
π

8
e−δt0

[
eπλ/2

√
z H

(2)
1
2
+iλ

(z)± e−πλ/2
√
z H

(2)
1
2
−iλ

(z)

]
where H

(2)
µ denotes the Bessel function of the 3rd type. In the coordinate we

have included δ = kδp/M which plays the role of angular detuning.
The derivation holds true for δ �= 0. The case of δ = 0 is investigated

more carefully in the Sec. 3.2.3.
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3.2.2 Asymptotic Behavior for t → +∞
In this limit we have to distinguish two fundamentally different cases: ∆0 < 0
and ∆0 > 0. First we assume ∆0 > 0. This includes two subcases δ < 0 and
δ > 0. Again we start with the positive subcase, that is δ > 0. Here, arg z
changes from −π to −2π for −∞ < t < ∞. Using the properties shown in
Appendix C we find the results

c+(t = +∞) = e−iδt and c−(t = +∞) = −2 sinh πλ e−δt0+iδt

and, hence the probabilities

W+ = |c+|2 = e−4πλ and W− = |c−|2 = 4 sinh2 πλ e−4πλ e−4δt.

For δ < 0 arg z changes from 0 to −π. As depicted in Fig. C.1(b) the
splitting of the Bessel function is not possible. Hence, there is no scattering
but only damping which results in

W+ = e−4πλ and W− = 0.

If ∆0 < 0 the scattered wave vanishes for δ < 0. Hence, the angular
dependence shows a sharp asymmetry. The special case of δ = 0 is the
subject of Sec. 3.2.3.

3.2.3 Limit of Small Angular Detuning

The results of the preceding section are valid within the region |δ|, 1/|t0| �
1/T . The case |δ| � 1/T � 1/|t0| can be described with the help of the
perturbation theory.

To describe correctly the limit δ → 0 we introduce an envelope function

λ(t) ≡ λ exp
(−t2/T 2

)
.

Applying the perturbation theory for |δ|T � 1 we find

W−(δ) ≈ e−4π|λ|
[
sinh2(πλ) + δT sign∆0

]
in first order for the parameter |δ|/T . This results shows a linear behavior for
the scattering probability in the vicinity of t = 0. The derivative of W−(δ)
with respect to δ depends on the sign of ∆0. Following from the behavior of
W−(δ) at δ ∼= 0 we find that the maximum of W−(δ) is shifted depending on
the sign of ∆0.

Hence, the angular dependence of the scattering probability owns a sharp
asymmetry and includes two scales: |δ| ∼= 1/t0 and |δ| ∼= 1/T .
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3.3 ∆(t) = arctan(t)

Now we turn towards numerical calculations. For this purpose we introduce
dimensionless variables. With the help of the recoil frequency

2ωR =
h̄k2

M

we find the scaling relation

2ωRt = t̃.

Omitting the Gaussian envelope and introducing

kx = x̃

the Hamiltonian in scaled variables reads

H =
p̃2

2
+

A sin2 x̃

∆
(
t̃
)
+ iγ/2

.

Here

A =
(dE)2

h̄22ωR∆0

denotes the scaled field intensity. Note, that we measure the rate of sponta-
neous emission γ and the detuning ∆(t) in units of ∆0.

The numerator of the potential is the standing wave. The denominator
includes the detuning ∆(t) and the damping. The damping is realized with
the spontaneous emission from the excited state to a nondetected level as
shown in Fig. 2.8.

In this scheme we find the intuitive solution as shown in Fig. 3.1. In the
off-resonant regime the particles are collected in the potential wells. This is
clearly shown in the dark areas at time t < 0. In the short zone where the
laser field is resonant with the atom the damping is active. The collecting
force of the potential as well as the damping are proportional to the laser
intensity A. In this parameter regime the particles are gathered at the zone
of large damping. Therefore, most particles are lost.

In contrast, the damping is weak at the areas with low particle density.
Behind the damping zone the particles which are left, stay in the new po-
tential wells. Since the detuning changes the sign the new potential minima
are shifted. Therefore, the particles which were not damped remain at their
places. When the laser intensity decays the particles start to spread and
interfere with neighboring wells.
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Figure 3.1: Density plot of the wave function for the detuning ∆(t) =
arctan(t). Here we have integrated the full Hamiltonian Eq. (3.1) with the
scaled parameters A = 1.0 and γ = 0.02. On the left hand side we show the
real part of the potential (solid) and the Gaussian envelope (dashed). The
right hand side displays the density of particles. Dark denotes high proba-
bility, white is low probability. The particles are gathered in the potential
wells. In the very small resonant area given by the dimensionless time pa-
rameter γωRτ/∆0 � 1 most particles are damped. With decaying potential
the channels start to interfere.
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3.3.1 A Close View on the Potential

To understand in detail how this potential acts on the atom beam we separate
the potential

V (x, t) =

[
∆(t)

∆2(t) + (γ/2)2
− i

γ/2

∆2(t) + (γ/2)2

]
A sin2 x

into its real and imaginary part. The real part has the same sign as the
detuning. Therefore, the potential minimum is shifted with the change of
sign. Further one can see easily that the maximum damping occurs when
the detuning ∆(t) vanishes.

Both effects, the collimation and the damping are proportional to the in-
tensity of the field. Therefore, the antinodes play an important role. Damp-
ing is restricted to two conditions: The detuning is zero and the particle is
near an antinode. This was seen in Fig. 3.1 when the particles in the low
density regime are less damped.

3.3.2 Interpretation and Explanation

Fig. 3.2 shows all important quantities. The symmetric peak (blue line) is
the imaginary part of the potential which is responsible for the damping.
The damping only occurs in a small area around t = 0. Furthermore it is
proportional to the strength of the laser field. The field intensity modulation
is shown by the sin-functions. The bottom one represents the situation t < 0,
the upper plot depicts t > 0. The thin line denotes zero. The sign of the
sin2 function is taken from the real part which is drawn in the last curve
including the change of sign.

In our case of ∆(t) = arctan(t), the real part is negative for t < 0.
Therefore, the potential minima are coupled to the antinodes of the standing
laser field. Incoming particles are gathered at these antinodes and travel to
the damping zone.

The damping is proportional to the imaginary part of the potential and
proportional to the intensity of the laser. The potential is purely time-
dependent whereas the laser intensity is purely position-dependent. Hence,
the damping occurs at time t ∼= 0 at the antinodes. Since the particles
are collimated at the antinodes the damping and the collimation match and
many particles are lost.

Those atoms which remain uncollimated and reach the damping zone at
the nodes of the laser field are not damped. They stay and therefore the
gray-level does not change in the damping region.
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Figure 3.2: Real (green) and imaginary part (blue) of the potential and, the
nodes and antinodes of the laser field (red). Since we concentrate on the
time region −5 < t < 5. We can omit the Gaussian envelope. The thin
horizontal black line denotes the zero-level of the laser field. Depending on
the real part, the field points toward positive or negative direction at the
antinodes. The direction is fixed by the detuning function. Note that the
horizontal axis combines potential strength for the real and imaginary part.
Further the numbers denote periods for the sin2 x. For the modulation only
the sign is important. Hence, there are no values depicted for this function.
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For t > 0 the real part of the potential has a negative sign. Therefore,
the minima are at the nodes. The few particles which were in the damping
region but were not damped start to move into the new wells. The majority
of atoms which were not damped due to the passage at the nodes stay, since
they are already at the minima of the laser field.

Note that the Gaussian rise and decrease are not included in Fig. 3.2.
For the central region this does not play an important role. But the decrease
makes the potential vanish. For this regime the particles start to spread and
interference between atoms from different wells arises.

3.4 ∆(t) = −arctan(t)
Now we change our detuning function in the sign only: The change of sign
at t = 0 is no longer from − to +, but vice versa. On first sight one would
expect that this is only a minor difference and the plots just show a shift.
This does not hold true as a comparison between Figs. 3.1 and 3.3 displays
in an impressive way.

3.4.1 Time Evolution of the Beam

Similar to the case ∆(t) = arctan(t) the particles are gathered in the potential
wells for t < 0. Note that the wells are now shifted. The potential minima
are connected to the nodes, the maxima to the antinodes. The particles
are collected at the nodes or places of low damping, respectively. Reaching
the damping zone, white spots at low atomic density regimes arise. But
the damping does not clean up the structure of the carpet. The opposite
holds true. For t > 0 a complicated structure similar to the Talbot effect
emerges. In this scaled units the Talbot length is 2π. This indicates that
high transversal momenta are excited and the laser field is too weak to guide
the particles.

We emphasize, this is not the original Talbot effect, since this requires
free evolution. Nevertheless, the channels and periodic repetitions typical for
the Talbot effect occur.

3.4.2 Analysis of the Potential

The peak of the imaginary part of the potential has the same shape and
location as before. Since this is only important in the neighborhood of t = 0,
we concentrate on the real part which is for t < 0 positive. Therefore, the
antinodes of the potential mark the maxima and the nodes represent the
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Figure 3.3: Density plot of scattered atoms of the detuning ∆(t) =
−arctan(t). The parameters are A = 1.0 and γ = 0.02. The left hand
side shows the real part of the potential (solid) and the Gaussian envelope
(dashed). The right hand side displays the density of particles. As before,
dark denotes high probability, white is low probability. For t < 0 the par-
ticles are gathered in the potential wells. Note that the wells are shifted.
But from the damping zone on we find a completely different solution: Fine
structures appear. Moreover, no wells for t > 0 are visible.
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Figure 3.4: Real (green) and imaginary part (blue) of the potential as well as
the nodes and antinodes of the laser field (red). The vertical t-axis is marked
by “Time”. For the potential the numbers on the axis denote arbitrary units
whereas for the laser modulation the numbers indicate periods. The thin
lines denote for the sin2 x the zero-level, depending on the time. The laser
field amplitudes at the antinodes are positive or negative depending on the
sign of the detuning function. The Gaussian increase and decay are omitted.
Similar to Fig. 3.2 the horizontal axis combines potential values and periods
for the modulation function.
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Figure 3.5: Time evolution of occupation of momenta for different intensities.
The colors denote the momenta: p = 0, p = 2h̄k, p = 4h̄k, p = 6h̄k and
p = 8h̄k. With increasing intensity the highest populated momentum moves
to higher momentum states.

minima. The large detuning disables the damping and the atoms move into
the potential wells near the nodes.

When we reach the interaction zone the damping rises. But since the
damping is proportional to the intensity, at the nodes is no damping. The
places of collimation and damping are shifted against each other. The damp-
ing occurs at the places of low atom density whereas the collimation guides
the particles to regions of low damping.

In contrast to Sec. 3.3 now damping and collimation are separated. In the
preceding section the particles where gathered and damped together. The
force of the real part accelerated the atoms but they were damped immedi-
ately. Therefore, the probability to find higher momenta is negligible.

In the current case the atoms acquire a transversal momentum by a kick
from the potential. This kick arises from the peak of the real part of the
potential as shown in Fig. 3.4. Note, that the derivative of the real part
is huge and therefore high momenta could be achieved. Since the damping
around the particles is weak they keep the momenta and we can measure this
outside of the potential.
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3.5 Quantum Kicks

We have seen in the preceding sections that the sign in the detuning is very
important to select transversal momenta. So far we just know that we need
the detuning ∆(t) = −arctan(t) from Sec. 3.4 to produce atoms in high
transversal momentum states. The question is now if we are able to choose
the momentum. Can we perform coherent control or do state engineering of
momentum states?

In Fig. 3.5 we show the time evolution of the probabilities for various
momenta and different laser intensities. For A = 0.2, which is a quite weak
potential, only low momenta are excited. The most populated state is p =
2h̄k. The second most populated states at the end of the interaction are the
initial state p = 0 and p = 4h̄k. All other states do not play an important
role since the energy of the field is too weak to push the atoms into higher
states. Note the symmetry pn = p−n. The total number of scattered atoms
is the double of the plotted probability.

Increasing the intensity to A = 0.5 leads to a maximum population in the
p = 4h̄k-state. It is difficult to see in Fig. 3.5 that the states 2h̄k and 6h̄k
are equally populated. Note, that maximum probability has decreased from
approx. 15% to 7%.

When the laser power rises up to A = 1.2 the effect continues. The
maximum can be found for p = 6h̄k but only at a level of 2%. Again two
levels have almost the same probability, 4h̄k and 8h̄k have similar amplitudes.

From A = 2.5 on the maximum has a quite high momentum but the
probability to find this excited state is only about 0.3%.

Finally we can summarize that we can choose the transversal momentum
state which is populated maximally. But since the damping is proportional
to the intensity of the field the damping increases with rising field. Therefore,
the probability to find the chosen state reduces as well.

3.6 Experimental Realization

Finally we want to propose an experimental setup. The difficulty lies in the
change of the detuning. It is very complicated to modify the detuning of a
laser correlated to the velocity of the atomic beam. To solve this problem we
suggest a trap. The whole experiment can be done in a trap. A longitudinal
velocity is not necessary. Hence, we just switch on and off the laser field.

Parallel to the light the detuning is controlled via a magnetic field. Using
the Zeeman effect we adjust the energy distance between the atomic levels
which are affected by the laser. Hence, we change not the detuning at the
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laser but at the atoms. The magnetic field can be easily varied and since the
atoms have no longitudinal velocity vz we just combine the intensity of the
laser and the magnetic field.

The distribution is measured via pictures of a CCD camera. Note that
we are only interested in the atoms in the ground state. Therefore, we have
to illuminate those atoms and take the picture. This measurement destroys
the distribution and we have to repeat the experiment. The alternative is to
switch off the collimation lasers of the trap and wait for the free evolution to
represent the momentum distribution.



Chapter 4

The Beam-Splitter

In this chapter we apply a longitudinal modulation to the laser field. This
modulation is resonant to the Doppler frequency and is used to scatter the
atoms in transversal direction. The modulation is created by crossing two
laser beams under a small angle. Hence we assume for the whole field the
same envelope as for both individual beams. We investigate the effects of
the laser intensity and the crossing angle.

4.1 Model of a Light Crystal

The light crystal is formed by two standing laser fields crossing each other
at a small angle θ. Both laser beams have the same wave number k and
Gaussian envelopes with width L. Hence the resulting light field has the
form

E(z, x , t) = E e−z
2/L2

cos(kzz) sin(kxx ) e
−i∆t + c.c., (4.1)

where kx = k cos θ/2 ≈ k, kz = k sin θ/2 ≈ kθ/2. Again, ∆ is the detuning of
the laser frequency from the resonant atomic transition |g〉 ↔ |e〉.

As in the preceding chapters, we consider a monochromatic beam of atoms
with a longitudinal velocity pz/m = vz ≡ v which traverses a region where
the atoms interact with a standing light field. The velocity v is assumed to
be large enough so that it remains approximately constant during the inter-
action. Consequently we can consider the time evolution of a 1D-problem.
The laser field and the atomic center of mass motion are coupled through
the atomic dipole d on the transition |g〉 ↔ |e〉.

In the weak saturation regime, dE/h̄ � ∆, the dynamics of atomic waves
is governed by a nonstationary Hamiltonian

Ĥ =
p̂2

2M
+
(dE)2

h̄∆
e−(τ/T )

2

cos2(ωDτ) sin
2 kx̂ (4.2)
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with an effective (optical) potential for the ground state atoms.
The basic new feature of our model is the longitudinal modulation of

the light crystal which manifests itself in two terms entering the effective
potential Eq. (4.2): (i) The Gaussian envelope whose width T = L/v is
assumed to be large so that the overall intensity changes quite slowly, and
(ii) the time dependent modulation with the Doppler frequency ωD = kθv/2
given by the squared cosine dependence.

The latter is physically most interesting since it can significantly alter the
properties of the potential during the interaction. In particular, when the
frequency 2ωD is close to the separation εtr(n)− εtr(n− 1) of the transversal
kinetic energy

εtr(n) =
(2nh̄k)2

2M
the “Doppleron” [28] resonance occurs. Note, that from a mathematical
point of view the potential is not separable and a closed form expression for
the solutions is difficult to find. However, in certain physically interesting
regimes approximate solutions can be given.

By introducing dimensionless variables kx → x, 2ωRτ = t, where ωR =
h̄k2/(2M) is the recoil frequency, we transform the Schrödinger equation
using the Hamiltonian Eq. (4.2) into the form

i
∂ψ(x, t)

∂t
= −1

2

∂2ψ(x, t)

∂x2
+ Af(t) sin2x ψ(x, t), (4.3)

with the definitions f(t) = exp [−(t/T )2] cos2(ωmt), A = (dE)2/(2ωRh̄
2∆),

T = 2ωRL/v, and ωm = ωD/(2ωR).
For moderate amplitudes without the additional longitudinal modulation

the potential does not attract too much interest. In this case the normal inci-
dent wave, for instance, is adiabatically guided into the medium and changed
gradually. The atomic wave is channeled through the crystal via the valleys
and after the potential goes back to zero the modulation effect is reversed.
As a result, the outgoing atomic wave is not affected by the light crystal. The
additional modulation breaks the adiabaticity of the crystal. The crystal can
be viewed as a sequence of pulses of different amplitude, which acts on the
atomic wave. Already for a moderate modulation frequency, ωm ∼ 1, each
change of the potential intensity is fast and hence, we expect a significant
change of the atomic wave.

The free parameters in this model are the crossing angle θ which enters
our calculations via the modulation frequency ωm and the intensity of the
fields.

We emphasize that it is not necessary to perform the experiment with two
standing waves. It might even rather difficult to realize this experimentally.
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Atomic Plane Wave

θ

Figure 4.1: Setup of laser field. Two standing laser fields with transverse
Gaussian envelope enclose an angle θ. Since the angle is small we assume
a common Gaussian for the superposition. The angle defines an additional
modulation on the envelope as shown in Eq. (4.2).

However, in a magneto-optical trap the setup is simpler. We need only one
beam and the crossing angle can be realized by changing the intensity.

4.2 A Feeling for Parameters

First we want to see what effect results from a change of our parameters.
Therefore, we start with the simplest case ωm = 0, which means we that we
have no angle enclosed between the lasers and hence, no modulation. We
then increase θ and thus introduce the modulation. In the next step we
increase the laser intensity.

4.2.1 No Modulation

First we investigate the simple case of no longitudinal modulation, that is
ωm = 0. The particles just feel an off-resonant laser field rising and decaying.
The intensity of the potential is weak. We are in the regime of the Raman-
Nath approximation. Hence, the particles glide into the potential wells but
are not scattered. No momentum transfer is observed. With the lowering
of the field the particles immediately occupy the whole space and no effects
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of the earlier scattering phenomenon survives. This situation is shown in
Fig. 4.2 which consists of three parts. The area denoted by “Position” covers
the time evolution of the position wave function squared over three periods,
and a density plot for −20 ≤ t ≤ 20. Dark represents high probability to
find the atom at this point whereas white indicates a low probability.

In the “Potential” column we show the maximum of the potential. Since
the potential is modulated in x-direction with a sin2 x, we depict the potential
at an antinode to display the rise and decay.

The right columns described by “Probability” show the evolution of the
probability to find the atoms in the transversal momentum state p = 0. This
is a straight line. The probability to find the atoms in the originally prepared
state is constant. Hence, no scattering occurs. Since the probability is unity
for all times there is no occupation of other transverse momentum states.

The potential changes slowly which corresponds to a small derivative of
the potential. Since the force is the derivative of the potential there is a
negligible force on the particles and hence, no momentum transfer.

4.2.2 A Touch of Scattering

We now apply the same weak potential as before but the two laser beams
enclose a nonvanishing angle in order to get the modulation frequency ωm =
0.3. In the middle column of Fig. 4.3 we see that the Gaussian envelope of
the potential is modulated by cos2(ωmt). In the density plot we find a clear
spatial separation of the particles. As soon as the potential vanishes the
particles spread immediately. Since this occurs only at a very short period of
time the particles are pushed back to their old positions very rapidly yielding
a chessboard-like structure.

In addition to the move towards potential minima we observe the rapid
change of the potential. This change causes a large derivative in the potential
and thus a strong force. The force is large enough to scatter at least a few
particles. In the momenta probabilities we observe for the initial state dip.
The total amount of scattered atoms is small and since there is only one small
rising peak at t = 0 we find that only the lowest states p = ±2h̄k are occupied.
Note that the left momentum graph denotes the identical probabilities for 2h̄k
and −2h̄k. Since both graphs are identical due to symmetry we observe only
one. There is no damping included. Thus the total probability is constant.
All particles which are scattered from the original state are transfered into
the ±2h̄k states.
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Figure 4.2: Time evolution of position and momentum for ωm = 0. The left
column displays a density plot of the position wave function. In the middle
the time dependence of the potential is depicted by the envelope. The right
diagram presents the probability of finding the particle in the transversal
momentum state p = 0. Since this probability P is unity the particle does
not occupy any other momentum state. Moreover, no scattering has taken
place during the transit through the field.
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Figure 4.3: Time evolution of position and momentum for ωm = 0.3. The
small modulation already breaks the adiabacity. We find traces of scattering
in the momenta probabilities. The rapid change of the potential acts like a
kick on the particles and transfers some of them into the 2h̄k-state. There-
fore, a chessboard-like structure is observed. Moreover, from the position
density plot we recognize that the atoms spread over the whole space as the
potential vanishes.
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4.2.3 Result of Modulation

We have seen that the angle enclosed between the lasers rules the modula-
tion of the Gaussian envelope. If there is no modulation, the change of the
potential is adiabatic and therefore no scattering occurs. Scattering occurs
when the modulation breaks the adiabaticity. The key point is the rapid
change of the potential. Here the modulation plays an important role since
the cos2 ωmt part changes the envelope from the Gaussian value immediately
to zero. Certainly an appropriate intensity is required.

4.3 Effect of Intensity

In the preceding section we have analyzed the effect of the modulation. Now
we want to investigate the impact of the field intensity. To find scattering we
have to apply a modulation which we choose the resonant Doppler frequency
ωm = ωD/(2ωR) = 1.0. This modulation is fixed throughout the whole
section.

4.3.1 Introduction of Iterative Scattering

The intensity enters our model in the parameter A. We start with a quite
weak field at A = 0.5. Due to large interaction time, ωRτ � 1, the Raman-
Nath approximation is no longer valid as we see in Fig. 4.4.

The first impression is the chessboard structure in the density plot. Due
to the strong modulation the stripes have a similar length. But this we
have seen already in Sec. 4.2.2. From the time evolution of the momenta
probabilities we see a continuous scattering. The probability to find the
particles in the initial state of no transversal momentum decreases step by
step. We find that the steps are connected to the raise or decay of the
potential. Note, that the rising probability graphs are two identical graphs
for p = ±2h̄k. Behind the interaction zone only 50% of the particles are
left in the initial state. All the rest is scattered. Note that only the two
additional levels ±2h̄k are occupied. The energy is not sufficient to transfer
the atoms into higher transverse momentum states. Due to the absence of
damping about 25% are in each of the two first excited states.

4.3.2 Enforced Scattering

Since only the first momentum state could be reached till now, we increase
the intensity further. The new field strength should still be too weak for
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Figure 4.4: Time evolution of position and momentum for ωm = 1.0. We
apply a weak potential with A = 0.5. Note that this potential is only half in
size compared to the ones of Figs. 4.2 and 4.3. The strong modulation breaks
the adiabacity. The fast change of the potential kicks the particles. Since we
have a series of kicks a stepwise transfer pushes more and more atoms into
the scattered level. As the potential is weak only about 50% of the atoms
are transfered. This results in a chessboard-like structure in the density plot.
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Figure 4.5: Time evolution of position and momentum for ωm = 1.0. We
apply a moderate potential with A = 1.0. The kicks now transfer most of
the atoms into the scattered level. The potential is weak enough so that
only one level is populated. At the end of the interaction zone we find the
particles mainly in the 2h̄k state (blue) and therefore the density plot shows
two peaks per period in position space.

pushing to higher levels. Our first goal is to push almost all particles into
the p = ±2h̄k state.

In Fig. 4.5 we see two major differences. First, the areas of high probabil-
ity in the density plot start to overlap. Secondly, the position wave function
now has two maxima per period. This doubling is similar to the situation at
a beam splitter. We define quality by the ratio of maximum and minimum
of the position wave function. In the probability picture we find only few
particles in the original state. Hence, in the final stage almost all atoms are
transfered into the state ±2h̄k. The approximate probability distribution for
times t > 20 is

P (p) = 1
2
δ|p|,2h̄k

where δn,m denotes the Kronecker δ-function. Therefore, all particles are
scattered and the initial level is finally empty.
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Figure 4.6: Time evolution of position and momentum for ωm = 1.0. We
apply a strong potential with A = 1.5. The laser intensity is still too weak
to transfer atoms into the 4h̄k state but it is stronger than in Fig. 4.5. In
the early stage of the evolution we find that the probability for the excited
level rises. When the population in the scattered state is higher than in the
initial state, we again see the doubling in position space. However, for later
times we do not find saturation but backscattering: The probability for the
2h̄k-state (blue) decays and hence, the doubling slowly disappears.

Since the far field position distribution is the Fourier transform of the
above momentum distribution we expect to see a sin2 x function in the posi-
tion representation which indeed can be observed.

4.3.3 Back Scattering or Saturation?

In this step we increase the potential further. Still the potential is too weak
to scatter the atoms into a 4h̄k state as we see in Fig. 4.6. Therefore, we
investigate whether saturation or back scattering occurs in this regime.

We apply an intensity A = 1.5. In the momentum picture we find only
one excited momentum level. Hence, it is proven that the potential is weak
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enough. On the other hand we see the probability for p = ±2h̄k rising until
t ∼= 3. Here we clearly recognize that this effect has no saturation but back
scattering. The particles leave the ±2h̄k state and fall back to the initial
state.

Again we find the doubling of peaks in position space for the period
when the excited level is higher populated than the original one. Finally, the
amount of particles in the initial momentum state is large. Therefore, the
position wave function does not vanish at its minima. Further, the maxima
do not have equal height. This irregular structures occur together with the
population of the initial momentum state.

4.4 Conclusion

In this chapter we have found that with an appropriate intensity of the laser
field a full transfer from the original state to a scattered level is possible. Since
the energy is chosen weak enough no higher scattering levels are reachable.
Further we recognized the effect of backscattering rather than saturation.
That is, we observe Pendellösung behavior which is well known for a two-
level system driven by a resonant field.
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Chapter 5

Stepwise Scattering

Since larger interaction times do not lead to higher transversal momenta, we
have to choose another way. A configuration of our lasers described in the
STIRAP method described in [5] offers a solution. The acronym stands for
STImulated Raman Adiabatic Passage. A laser beam prepares the atom first
by a Stokes pulse and a second field triggers the transfer with the help of a
pump pulse. The difference to our system is, that the STIRAP model acts
on internal levels of the atoms with an intermediate dark state. In contrast,
we want to use this model to achieve higher transversal momentum states by
low laser intensities. We transfer the population stepwise and hence, we do
not have a dark state. In this sense we have no STIRAP method. We only
took the configuration.

In the present chapter we apply the ideas of this technique to our atomic
beam. Here we use an additional longitudinal modulation in the field to
transfer transversal momentum to the atoms. The passage will be used to
scatter the atoms directly into a high momentum state without populating
other levels.

5.1 The STIRAP Model

The original model is shown in Fig. 5.1. We emphasize that we have chosen
a notation for the levels different from Ref. [5] as to bring out the similarity
to our atom optics problem.

First we want to study the interaction of radiation with the atoms. In
contrast to our problem, we do not consider center-of-mass motion states.
In the next step we analyze analytically the process in a three-level state.
Finally, we apply these results to our model of transverse momentum states
numerically.
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5.1.1 Transitions in a Two-Level System

The goal is to transfer atoms from one state to another. We first study this
problem in a two-level system. There exist three principal ways of transfer-
ring the atoms into the desired state.

Incoherent excitation

To quantify excitation involving incoherent light one uses differential equa-
tions for excitation probabilities. Assuming that the atoms are in the ground
state at time t = 0 and that stimulated emission dominates spontaneous
emission, we find the excitation probability at time t

Pex(t) =
1
2

[
1− e−βF (t)

]
where β is the absorption coefficient and

F (t) =

t∫
−∞

dt′ I(t′)

denotes the integral over the intensity of the field. Hence, we find that popu-
lation of the excited state reaches 50% and the required time is proportional
to the intensity of the laser.

Coherent Excitation

In contrast, quantitative discussions of coherent excitation start from a time-
dependent Schrödinger equation

ih̄
d

dt
C(t) = H(t)C(t),

where C(t) is a vector of time-dependent probability amplitudes C0(t) and
C1(t). Their absolute squares provide the probability Pn(t) = |Cn(t)|2 of
finding the system at time t in the state |n〉. The time evolution of these
functions is dictated by the Hamiltonian matrix H(t). For radiative transi-
tions the excitation is induced by an electric field acting upon a transition
dipole moment. We idealize the radiation as a nearly monochromatic field,
of frequency ω, having magnitude E(t) cos(ωt). For coherent radiation the
key parameter is the Rabi frequency

Ω(t) =
dE(t)

h̄
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where d denotes the transition dipole moment along the field. This yields
the so-called Pendellösung

Pex(t) =
[
sin

(
1
2
A(t)

)]2
where

A(t) =

t∫
−∞

dt′Ω(t′)

is an integral over the time dependent Rabi frequency. Hence, the population
of the excited state oscillates and we find no saturation in the asymptotic
time limit but oscillations.

Adiabatic transfer

In order to achieve more efficient and coherently controlled excitation prob-
abilities than those just described, one can utilize coherent pulses whose
frequency sweeps slowly across the resonance. This is called adiabatic pas-
sage. With such schemes one can obtain efficient and selective population
transfer. The application of these techniques to three-state systems poses a
challenging task.

5.1.2 Processes in a Three-State System

For the simplest implementation of STIRAP shown in Fig. 5.1 we use the
Hamiltonian

H(t) =
h̄

2

 0 ΩP (t) 0
ΩP (t) 2∆P ΩS(t)
0 ΩS(t) 2(∆P −∆S)

 ,
which describes the coupling of the three states by two coherent radiation
fields within the rotating wave approximation. Here, ΩS and ΩP denote the
Rabi frequencies of the pump and the Stokes laser. Note that the envelopes
of the lasers are shifted against each other. The Stokes laser rises earlier than
the pulse laser. The delay between the two pulses is defined via the relation
of the corresponding Rabi frequencies

tanΘ =
ΩP (t)

ΩS(t)
.

At this point we are interested in a parameter regime to transfer the complete
population of the state |0〉 into the state |2〉 as shown in Fig. 5.2 (bottom).
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Figure 5.1: Atom used in original STIRAP model of Bergmann, Theuer and
Shore. Here we consider a three-level atom originally prepared in state |0〉.
The pump pulse (P) acts on the transition |0〉 ↔ |1〉 with a detuning ∆P .
The Stokes pulse (S) connects the states |1〉 and |2〉 including a detuning ∆S.
Spontaneous emission from state |1〉 to further levels is taken into account.
The main goal is to achieve a transition from |0〉 to |2〉 with a counter-intuitive
pulse sequence: The S-pulse is active before the P-pulse arises. Hence, the
S-pulse acts on an empty level. We emphasize that the detuning is important
in this model in order to avoid the population of state |1〉.

Analytical Solution Technique

For an analytical treatment we skip the detunings ∆P and ∆S. At this
stage we leave the STIRAP technique. In the experimental realization the
detunings are important to keep the dark state |1〉 which is never populated
in STIRAP. Hence, the two resonant lasers yield the simplified Hamiltonian

H(t) =
h̄

2

 0 ΩP (t) 0
ΩP (t) 0 ΩS(t)
0 ΩS(t) 0

 . (5.1)

In order to find the population rates for the three states we use the ansatz

|ψ〉 =
 c0

c1
c2

 =

 α0
α1
α2

 eiλt/2 (5.2)

and hence,

d |ψ〉
dt

= i
λ

2

 α0
α1
α2

 eiλt/2 (5.3)

for the wave function and its time derivative of a three-level system. Here we
have separated the time independent part αj from the time dependent part.
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Inserting Eqs. (5.1) and (5.2) into the time-dependent Schrödinger equation
yields

ih̄
d |ψ〉
dt

=
h̄

2

 0 ΩP (t) 0
ΩP (t) 0 ΩS(t)
0 ΩS(t) 0

 α0
α1
α2

 eiλt/2. (5.4)

In the next step we recall the time derivative of the wave function ansatz,
Eq. (5.3), and rewrite the system in the form λ ΩP (t) 0

ΩP (t) λ ΩS(t)
0 ΩS(t) λ

 α0
α1
α2

 = 0. (5.5)

The equation

det

∣∣∣∣∣∣
λ ΩP (t) 0

ΩP (t) λ ΩS(t)
0 ΩS(t) λ

∣∣∣∣∣∣ = 0

yields the characteristic polynomial

λ3 − λ
(
Ω2
P + Ω2

S

)
= 0

in which we immediately see the zeros

λ0 = 0 and λ1,2 = ±
√
Ω2
S + Ω2

P .

When we use the solution to λ0 = 0 and rewrite Eq. (5.5) in the form

λα0 + ΩP α1 = 0 (5.6)

ΩP α0 + λα1 + ΩS α2 = 0 (5.7)

ΩS α1 + λα2 = 0 (5.8)

we find from Eqs. (5.6) and (5.8) a quite remarkable equation:

α1 ≡ 0

holds true for all times. When we recall that |c1|2 = |α1|2 we recognize that
the state |1〉 is never populated and hence, the normalization

2∑
n=0

|αn|2 = 1

simplifies to
α20 + α22 = 1. (5.9)
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Together with Eq. (5.7) we find the final solution

α0 =
ΩP√

Ω2
P + Ω2

S

and α2 =
−ΩS√
Ω2
P + Ω2

S

.

The asymptotics in time reads now

t → −∞ ⇒ ΩS/ΩP → 0 ⇒ α0 → 1 , α1 → 0
t → +∞ ⇒ ΩP/ΩS → 0 ⇒ α0 → 0 , α1 → 1

We recognize that in the case of an adiabatic passage the population of the
initial state is completely transfered into the target state. This is the ideal
case. Since we transfer the momentum via longitudinal modulation of the
laser field our model is not adiabatic. This leads to an occupation of the
intermediate level. Therefore, we have no STIRAP model but a stepwise
transfer.

5.2 Our Setup

As seen in the previous chapters we investigate a beam with high velocity.
Therefore, we consider the center-of-mass motion in longitudinal direction
classically. The velocity is still high enough to remain constant and hence,
we treat the propagation in z-direction as time evolution of a 1D-problem

5.2.1 Energy Structure

The properties of our atoms in x-direction are treated quantum mechanically.
As outlined in Sec. 4.3 we want to scatter the particles into the px = ±4h̄k
states. For this purpose we can express the transverse kinetic energy

εtr(n) =
(2nh̄k)2

2M
= (2n)2 h̄ωR

in units of the recoil energy ωR = h̄k2/(2M) and find a 2n2 dependence. To
scatter the atoms into the ±4h̄k-level we have two principle ways: (i) Either
we provide the total required energy in one beam at a high intensity or (ii)
we distribute the energy over two beams with high modulation. Since the
energy grows with n2 the experimental limits of the laser in the one-beam
setup will be reached soon. Therefore, the laser power limits the highest
achievable momentum.

We see this clearly in an example: When we transfer the momentum from
the p = 0 to the p = 6h̄k state, we need the total energy 36h̄ωR. We can split
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Figure 5.2: Populations in the STIRAP model. On top we show the time-
dependent Rabi frequencies of the pulse (P) and Stokes (S) field. The delay
between the pulses, indicated by the two vertical lines, defines the angle Θ
shown in the middle. The bottom diagram displays the occupation proba-
bility for the states |0〉 which is initially populated with probability P0 = 1
and |2〉 which is not populated. The curves demonstrate the perfect transfer
of population from state |0〉 to |2〉. The picture is taken from Bergmann et
al., Rev. Mod. Phys. 70, 1003 (1998).

2h̄ω1

2h̄ω2

|n = 0〉

|n = 1〉

|n = 2〉

Figure 5.3: Kinetic energy of transversal momentum levels. The state |n〉
corresponds to a momentum p = 2nh̄k and an energy εtr(n). To demonstrate
the function of our model for momentum states we consider three states: |0〉,
|1〉 and |2〉 with the corresponding energies εtr(n) and the differences 2h̄ωj.
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this energy on the transitions |0〉 → |2〉 with an energy difference of 16h̄ωR
and |2〉 → |3〉 with a second energy difference of 20h̄ωR. Hence, we need only
half the laser power for the full transfer.

To demonstrate this scheme analytically we use the levels |0〉, |1〉 and
|2〉 depicted in Fig. 5.3. For the transitions we apply the corresponding
longitudinal modulation frequencies ω1,2 as shown in Sec. 5.2.2.

5.2.2 Laser Field Configuration

We apply one laser beam exciting the atoms from the motional state |0〉
corresponding to zero transverse momentum to state |1〉 corresponding to
one unit of transverse momentum. The parameters to achieve this goal are
well known from Chapter 4. These excited atoms can be scattered into the
destination level |2〉 with the help of a second laser field with high longitudinal
modulation.

We can express the energy difference

εtr(1)− εtr(0)

2h̄ωR
= 2

for the first transition and find with the help of the Doppler frequency ωD =
kvz/2 the Doppleron resonance

ω1 =
ωD
2ωR

= 1

as useful modulation for the excitation of the atoms.
Analogously we find the dimensionless energy difference

εtr(2)− εtr(1)

2h̄ωR
= 6

and hence
ω2 = 3

for the transition |1〉 ↔ |2〉.
Considering the STIRAP laser field configuration we apply in a counter-

intuive way the laser for the transition |1〉 ↔ |2〉 first. The center of this pulse
is located at time ts < 0. In this way we keep the laser for the transition
|0〉 ↔ |1〉 at the origin t = 0.

This yields the time and position dependent potential

V (x, t) =
d2

h̄∆
sin2(kx)×∣∣∣E1 cos(ω1t) e

−t2/(2T 2) + E2 cos(ω2t) e
−(t−ts)2/(2T 2)

∣∣∣2(5.10)
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similar to Eq. (4.2). The main difference is, that the quantities Ei, ωi and
the center of the envelope are different for the two laser beams. Note that
both lasers have the same envelope T . As mentioned above we apply the
Stokes laser, that is the laser with field E2, first which means ts < 0.

5.2.3 Analytical Solution

In this section we want to discuss the solutions of the Schrödinger equation

ih̄
∂ψ(x, t)

∂t
=

[
p2

2M
+ V (x, t)

]
ψ(x, t) (5.11)

corresponding to the potential Eq. (5.10) in an analytical way. Therefore, we
make some approximations and try to describe the process in scaled quanti-
ties.

We start with the electric fields of the laser

E1 = |E1| eiϕ1 and E2 = |E2| eiϕ2

and choose the phase such that

ϕ ≡ ϕ2 − ϕ1 = π/2.

This avoids the mixing terms in the potential Eq. (5.10) and together with
the scaled intensities

Ai ≡ d2E2
i

2h̄2∆ωR

we can rewrite the potential

V (x, t) =
d2

h̄∆
sin2(kx)×[

A1 cos
2(ω1t) e

−t2/T 2

+ A2 cos
2(ω2t) e

−(t−ts)2/T 2
]
.

To solve the Schrödinger equation Eq. (5.11) we use the ansatz

ψ(x, t) = exp

− i

2

t∫
−∞

dt′
[
A1 cos

2(ω1t
′) e−t

′2/T 2

+

A2 cos
2(ω2t

′) e−(t
′−ts)2/T 2

]}
×

∞∑
n=−∞

an(t) e
i2nx, (5.12)
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which yields the coupled differential equations

i
dan
dt

= 2n2 an − 1

4

[
A1 cos

2(ω1t) e
−t2/T 2

+

A2 cos
2(ω2t) e

−(t−ts)2/T 2
]
(an−1 + an+1) (5.13)

where the coefficients an(t) obey the relations

an(−∞) = δn,0 and an(t) = a∗−n(t) = a−n(t).

Here we assume that the incoming atom has no transverse momentum and
hence, the momentum distribution is a δ-function. Due to the symmetric
setup the symmetry of the momentum distribution holds true for the whole
experiment.

Separation of Longitudinal Modulation

In the next step we want to simplify the coupled Eqs. (5.13). Therefore,
we separate the envelopes of the fields resulting from the constants in the
longitudinal modulation

cos2(ωt) =
1

2
+
1

4

(
e−2iωt + e2iωt

)
.

We express the functions an in the form

an(t) = exp

 i
8

t∫
−∞

dt′
(
A1 e

−t′2/T 2

+ A2 e
−(t′−ts)2/T 2

) bn(t)

while bn(t) satisfies the new system of equations

i
dbn
dt

= 2n2 bn − 1

16

[
A1 e

t2/T 2 (
e−2iω1t + e2iω1t

)
+

A2 e
−(t−ts)2/T 2 (

e−2iω2t + e2iω2t
)]

(bn−1 + bn+1)

including the symmetry relation

bn = b−n.
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Intensity Coefficients

Since we are interested in the transfer to the second transversal momentum
state we can cut the coupled equations at b±2. Recalling the modulation
frequencies ω1 = 1 and ω2 = 3 from Sec. 5.2.2 we introduce the coefficients

c0 = b0, c1 = b1
√
2 e2it and c2 = b2

√
2 e8it

and the Rabi frequencies

Ω1 ≡ A1

16
e−t

2/T 2

and Ω2 ≡ A2

8
√
2
e−(t−ts)

2/T 2

.

From the standard STIRAP notation Eq. (5.4) we find a system of equations

i dc0/dt + Ω2(t) c1 = 0

Ω2(t) c0 + i dc1/dt + Ω1(t) c2 = 0

Ω1(t) c1 + i dc2/dt = 0

(5.14)

for the functions cn.
Now we can use the ansatz Eqs. (5.2) and (5.3)

d

dt

 c0
c1
c2

 =
d

dt

 α0
α1
α2

 eiλt/2 = i
λ

2

 α0
α1
α2

 eiλt/2

to simplify Eq. (5.14). This yields a familiar set of equations

λα0 + Ω2(t)α1 = 0
Ω2(t)α0 + λα1 + Ω1(t)α2 = 0

Ω1(t)α1 + λα2 = 0.
(5.15)

This is exactly Eq. (5.5) which we have solved already in Sec. 5.1.2.

5.3 Numerical Results

Now we are in a position to apply our knowledge about parameters to a
numerical simulation. We emphasize that a complete transfer is possible in
an adiabatic regime. The longitudinal modulation breaks the adiabaticity
and we try to realize transfer in two steps with two beams. In our parameter
regimes we mainly change the width and intensities of the beams. One setup
is characterized by an envelope with T = 15 whereas the wide beam is
described by a Gaussian with width T = 35.
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5.3.1 Narrow Beams

The atomic wave is prepared at time t0 and the particles fly towards a strong
laser field which activates the transition from 2h̄k to 4h̄k at a modulation
frequency ω2 = 3.0. After a delay the weak laser at ω1 = 1.0 turns on. This
second field takes the atoms from their initial state to the 2h̄k state. Since
the beam for the transition from level |1〉 to |2〉 is already active, the transfer
continues.

In Fig. 5.4 we plot the time dependence. The transition |0〉 ↔ |1〉 is
induced by the later field with intensity A1 = 0.6. The geometrically first
laser has an intensity A2 = 1.2. Hence, the delay is ts = −1.3. The width of
the Gaussian envelopes is T = 15.0. We find the decay of the probability for
p = 0 (black) and a rise for p = 2h̄k (blue). This population rate decreases
soon and the final state p = 4h̄k (green) appears. We end at the final
probabilities P0 ≈ P±1 ≈ 7% and P±2 ≈ 39%.

Since the 4h̄k state contains most of the atoms we find four peaks per
period in the position distribution. This is clearly shown in the position
density. The momentum diagram shows the beats of the different modulation
frequencies and the shift between the laser beams.

We do not find the doubling seen in Sec. 4.3.2 since there is no regime
when the first level is more populated than the original level. The scattering
to the 4h̄k state starts before the 2h̄k state is maximally populated.

Nevertheless, in the end there are some particles left which were not
transferred to the desired level. These atoms cause some asymmetries as
depicted in the left side of Fig. 5.6. Note that the probability does not
display zeros since there are too many peaks per period. Hence, they start
to overlap already.

5.3.2 Wide Beams

In order to improve the separation of the beams we change our laser fields to
a spread of T = 35. The setup is basically the same as before in Sec. 5.3.1.
Even the delay is again ts = −1.3. Besides the wide envelopes with long
interaction the fields are weaker with A1 = 0.43 and A2 = 0.81.

Both evolutions in position and momentum space are similar as before.
We find the four beams per period and the rise of the different probabilities
for the different momenta are comparable. The difference is based in the
individual probabilities. In this regime we find P0 ≈ 2%, P±1 ≈ 6% and
P±2 ≈ 43%.

As depicted in Fig. 5.6 the peaks are now more similar in height. Further
the minima in the cross section are deeper. Hence, the overlap is smaller or
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Figure 5.4: Time evolution of position and momentum for a stepwise setup
with narrow laser beams. The delay between the beams is |ts| = 1.3. There-
fore, the field intensity has beats. In the momentum picture we observe the
decay of the initial momentum state |0〉 (black) and the rise of the first scat-
tered level (blue). This decays soon and the final state (green) comes up.
Note that we have two symmetric momentum states. Hence, each state ap-
pears with probability 1/2. After the interaction the second level is mainly
populated and in the position picture we find four beams per period.
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Figure 5.5: STIRAP setup with wide beams. Here, in contrast to Fig. 5.3.1,
the envelope of the Gaussians is T = 35. The delay between the two beams
is the same, namely ts = 1.3. The evolution is the same. The main difference
occurs in the final probabilities.

11 22 33

0.10.1

0.20.2

t = 27.955 t = 27.455

|ψ(x)|2

x

Figure 5.6: Cross section of Figs. 5.4 (left) and 5.5 (right) at slightly different
times. We find more regular structures for the wide envelopes. Note that
a higher period without focusing is not possible, since the peaks already
overlap.
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the separation is better.

5.4 Conclusion

In this chapter we have demonstrated a method to transfer momenta to ap-
propriate transverse momentum states. This is mainly useful for the model
of a beam splitter. In contrast to some experiments by Ton van Leeuwen’s
group we can control which state is populated. The second advantage of
our regime is the passage through an intermediate state. We need less laser
power. We do not transfer the particles at once. Hence we do not provide
the complete energy in one step. It is sufficient to provide the energy for two
smaller steps. Of course, this is not quite convincing for the second momen-
tum state since the necessary field strength grows by 2n2. The advantage
becomes clear when we go on to the third level and assume the second state
as intermediate level. Then the energy difference is similar.
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Appendix A

Paraxial Approximation

In this Appendix we want to investigate the relation of the 2D-evolution and
the time evolution. Therefore, we show the derivation of the Schrödinger
equation in detail.

We start with the ordinary time-independent Schrödinger equation

Ĥφ = Eφ.

On the right hand side we express the energy in terms of h̄k[
8̂p 2

2M
+ V (8̂x)

]
φ =

[
− h̄2

2M
�+ V (8̂x)

]
φ =

(
(h̄k)2

2M
+ ε

)
φ (A.1)

plus a correction ε ∼= 0.
For slowly varying z we can make the ansatz

φ(x, y, z) = eikz ψ(x, y, z)

for the wave function. This ansatz yields the second derivative

�φ(x, y, z) =

(
eikz�+ 2ik eikz

d

dz
− k2 eikz

)
ψ(x, y, z)

which we substitute into Eq. (A.1)

h̄2

2M
2ik

d

dz
ψ(x, y, z) =

[
8̂p 2

2M
+ V (8̂x)

]
ψ(x, y, z) = Ĥψ(x, y, z). (A.2)

With the help of the scaling relation

h̄k = Mvz = M
dz

dt
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the left hand side of Eq. (A.2) simplifies to

ih̄
d

dt
ψ(x, y, z) = Ĥψ(x, y, z).

Hence, we find the time-dependent Schrödinger equation which we solve for
our 2D-problems. We have found a way to solve these problems in 1D-
schemes.



Appendix B

Focusing Function

In Sec. 2.2.1 we have used an analytical expression for the width ∆(t). In
the present Appendix we derive in detail how to get the formula.

We can write the time evolution as

ψ(x, t) =

∞∫
−∞

dx0K(x, t|x0, t0)ψ(x0, t0). (B.1)

where

K(x, t|x0, t0) ≡
√

1

2πi s(t)
exp

[
i

2

(
ċ(t)

c(t)
x2 +

c(t)

s(t)

(
x

c(t)
− x0

)2
)]

denotes the Green’s function [35] in scaled variables. For this purpose we
recall the solutions s(t) and c(t) of Eqs. (2.1). Note that in the case of a non
time-dependent harmonic oscillator these functions are sine and cosine.

In our case the initial wave function is a Gaussian

ψ(x) =
1

(π∆2
0)
1/4

exp

(
− x2

2∆2
0

)
.

Since this Gaussian is neither time-dependent nor contains a complex part,
the integral Eq. (B.1) results in

ψ(x, t) =
1

(π∆2(t))1/4
exp

[
−1

2

(
x

∆(t)

)2
]
exp

[
i
2
Φ(x, t)

]
. (B.2)

Note that the wave packet remains Gaussian through the whole process. The
phase Φ(x, t) is a rather complicated expression which we skip, since we are
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interested in measuring the width of the atomic beam. Hence, the probability
distribution

|ψ(x, t)|2 = 1

π∆2(t)
exp

[
− x2

∆2(t)

]
(B.3)

is more useful. In Eqs. (B.2) and (B.3) we have introduced the time-dependent
function

∆(t) ≡
√
s2(t) + ∆4

0 c(t)

∆0

to simplify the expressions. Note that this is the focusing function denoting
the time-dependent width of the Gaussian. The knowledge of s(t) and c(t)
is sufficient to calculate the theoretically expected width.



Appendix C

Analytical Solution of Two
Wave Mixing

In order to get some insight into the density distribution of the scattered
atoms obtained numerically in Sec. 3.3 we summarize the approximate an-
alytical solutions. We show in detail how to solve the Schrödinger equation
and explain our approximations. Therefore, we introduce the two waves
with amplitudes c± for each of the two waves and investigate the effects of
scattering and damping on them for different regimes.

C.1 Analytical Model

We investigate the system with the Hamiltonian Eq. (3.1)

H =
p2

2M
+
(dE)2

h̄

sin2kx

∆(t) + iγ/2
(C.1)

and the detuning function

∆(t) = ∆0 t/τ.

Here we have omitted the Gaussian envelope since we concentrate on the
vicinity of t = 0. In this regime the Gaussian plays no important role pro-
vided the Gaussian is much broader than the domain over which the detuning
changes, that is T � 1. From Secs. 3.2 and 3.3 we recall

λ =

(
dE

h̄

)2

· τ

4∆0
, t0 =

γτ

2∆0
and ωR =

h̄k2

2M
.
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C.1.1 Approximate Solution

If the inequality
(dE)2

h̄2
1

|∆(t) + iγ/2| � ωR

holds true, then only the incoming atomic wave which falls onto the crystal
near the Bragg angle effectively interacts with the periodic potential. The
laser field is weak an we can describe the process with two plan waves with
the momenta

px = ±h̄k + δp.

Here we introduced a momentum deviation |δp| � h̄k. For the mixing we
use the ansatz

ψ(x, t) = e−iϕ(t) e−Γ(t)
[
c+(t) e

i(1+ δp
h̄k)x + c−(t) e

i(−1+ δp
h̄k)x

]
where ϕ(t) denotes the phase which is of no physical importance. We insert
this ansatz into the time-dependent Schrödinger equation

ih̄
d

dt
ψ(x, t) = Hψ(x, t) (C.2)

with the Hamiltonian Eq. (C.1).
Hence, we find for the damping rate

Γ(t) = 2λ
(
arctan t

t0
+ π

2
sign∆0

)
.

For the physical solution a negative damping is forbidden. Since we have
included the sign of the initial detuning ∆0 in t0 we have to consider the sign-
function. We find that Γ(t) is positive and fulfills the boundary conditions

Γ(−∞) = 0 and Γ(+∞) = 2π|λ|.
From Eq. (C.2) we find for the derivatives of c± the differential equations

i
dc+
dt

= δ c+ +
λ

t+ it0
c−

i
dc−
dt

= δ c− +
λ

t+ it0
c+ (C.3)

where

δ ≡ k δp

M
plays the role of detuning. The amplitudes c± satisfy the initial conditions

c+(−∞) = e−iδt and c−(−∞) = 0.
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Decoupling of Differential Equations

For δ �= 0 we can introduce the superpositions

u = c+ + c− and v = c+ − c−

and the above differential equations, Eqs. (C.3), read

i
du

dt
=

λ

t + it0
u+ δv

i
dv

dt
=

λ

t + it0
v + δu

with the initial conditions

u(t → −∞) = v(t → −∞) = e−iδt. (C.4)

We can rewrite this system of coupled equations in one differential equation
of second order

d2u

dt2
+

[
δ2 −

(
1
2
+ iλ

)2 − 1
4

(t+ it0)2

]
u = 0. (C.5)

Kamke [25] presents the the solution of Eq. (C.5), subjected to the initial
conditions Eq. (C.4),

u = A
√
z H

(2)
1
2
+iλ

(z).

Here H
(2)
ν (z) is the Hankel function or Bessel function of the 3rd type of the

complex variable
z = δ(t+ it0).

The amplitude reads

A = −i
√

π
2
e

πλ
2
−δt0 .

Analogously we find the solution for v and therefore the complete solution
yields

c± = −i
√

π
8
e−δt0

[
e

πλ
2 H

(2)
1
2
+iλ

(z)± e−
πλ
2 H

(2)
1
2
−iλ(z)

]
. (C.6)

Note, that the whole calculation only holds true for δ �= 0.

C.1.2 Hankel Functions

In the expression Eq. (C.6) for the amplitudes c± Hankel functions play an
important role. Before we start discussing the results we have to get familiar
with these functions.
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argzargz
(a) (b)

Figure C.1: Complex z-plane with cut along the imaginary axis. In the left
picture denoted by (a) the cut is along the positive part of the imaginary
axis and the argument runs in negative direction. The right plot (b) displays
the cut in the negative part of the axis and the arguments runs in positive
direction.

Definition

From Abramowitz [2] we recall standard form of the Bessel-differential equa-
tion

z2
d2w

dz2
+ z

dw

dz
+
(
z2 − ν2

)
w = 0. (C.7)

The solutions for this equation are Bessel functions of different kinds. The
most familiar is the first kind J±ν(z). The second type is called Neumann’s
function and is denoted by Yν(z). The third kind of Bessel functions are

called Hankel functions H
(1,2)
ν (z).

The solutions of Eq. (C.7) are connected to each other via the relations

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)

and

H(1,2)
ν (z) = Jν(z)± i Yν(z).

Note that the Hankel functionsH (1,2) are holomorphic throughout the z-plane
cut along the negative real axis.

Integral Representation

Bateman [3] presents the integral representation

Γ
(
ν + 1

2

)
H(2)
ν (z) =

√
2

πz
e−i(z−

πν
2
−π

4 )
∞∫
0

dt e−t tν−
1
2

(
1− it

2z

)ν− 1
2

(C.8)
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of the Hankel functions for

Re ν > −1

2
and − 3π

2
< arg z <

π

2
.

We find that H
(2)
ν is an analytical function in the complex z-plane with a cut

along the positive imaginary axis as shown in Fig. C.1(a).

First Hankel Function

Since the Hankel function is a superposition of two Bessel functions there is
a symmetric and an antisymmetric way to combine these functions. For the
positive superposition

H(1)
ν (z) = Jν(z) + i Yν(z)

there is the integral expression

Γ
(
ν + 1

2

)
H(1)
ν (z) =

√
2

πz
e−i(z−

πν
2
−π

4 )
∞∫
0

dt e−t tν−
1
2

(
1 +

it

2z

)ν− 1
2

(C.9)

for

Re ν > −1

2
and − π

2
< arg z <

3π

2
.

This representation Eq. (C.9) is valid in the complex plane except a cut at
the negative imaginary axis as shown in Fig. C.1(b).

To connect the open ends of Eq. (C.8) we use the relation

H(2)
ν (z) = −H(2)

ν (z)− 2eiπν cos(πν)H(1)
ν (z). (C.10)

This is the complete set of equations and functions to solve the problem.
The equations provide the description for the effects in our model.

C.2 Regimes of Damping and Scattering

We have the solution of the two-wave mixing. Recalling the properties of the
Hankel function we can illustrate the physics in this system. Here we want to
mark the separated regions of damping or scattering, or find regimes where
both effects occur simultaneously.

C.2.1 Asymptotics after Interaction

We are ready to calculate the asymptotic behavior of the amplitudes c± for
t → ∞. The main difference in the amplitudes is connected to the sign of
∆0 ·δ.
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Blue Detuning

First we consider the case ∆0 > 0. Therefore, λ > 0 holds true. For δ > 0
we find that arg z = arg[δ(t+ it0)] changes from −π to −2π when t changes
from −∞ to ∞. Since the argument crosses the cut in the complex z-plane
we get following Eq. (C.10) a decomposition into two functions H

(1)
1
2
±iλ(z) and

H
(2)
1
2
±iλ(z). Using the integral relations Eqs. (C.9) and (C.8) we can calculate

the asymptotics

c+(t → +∞) = e−iδt

c−(t → +∞) = −2 sinh(πλ) e−2δt0 eiδt

Hence, we find the probabilities

W+ = e−2Γ(∞) |c+(+∞)|2 = e−4πλ

W− = e−2Γ(∞) |c−(+∞)|2 = 4 sinh2(πλ) e−4πλ e−4δt0 (C.11)

Now we turn to the case of δ < 0. Note, that ∆0 is still positive. So far
only the sign of ∆0δ has changed. In this case −π < arg z < 0 holds true.
Hence, the integral relation does not cross the cut in the complex plane.
Therefore, no splitting occurs and the result follows directly

c+(t → ∞) = e−iδt

c−(t → ∞) = 0.

We find that the amplitude for the scattering, c−, vanishes. In contrast to
Eqs. (C.11) we find only damping in the probabilities

W+ = e−4πλ

W− = 0.

When we consider the scattering probabilityWscatt = W−(δ) as a function
of the angular detuning δ we find a sharp asymmetry

Wscatt(δ) =

{
B(λ) e−4δt0 for d > 0 withB(λ) = 4 sinh2(πλ) e−4πλ

0 for d < 0

Red Detuning

For ∆0 and, hence λ < 0, the scattered wave vanishes for δ > 0. This yields
immediately the scattering probability

Wscatt(δ) =

{
0 for d > 0
B(|λ|) e−4δt0 for d < 0 with B(λ) = 4 sinh2(πλ) e−4πλ

.
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Figure C.2: The scattering function Wscatt(δ) for different ∆0. We observe a
shift of the maximum depending on the sign of ∆0. The dashed lines denote
our different regimes. Note, that we only made qualitative predictions for
the gaps.

The asymmetry of the scattering probability manifests itself as a jump at
δ = 0. The lack of continuity at this point is not quite satisfactory from a
physical point of view. It originates from the fact that the asymptotic regime
|z| � 1 is realized providing |t| � 1/|δ|. In other words, we need an infinite
interaction time when δ → 0. To describe correctly this limit we introduce
an envelope function

λ(t) = λ e−(t/T )
2

where T is large but finite. So far, our results are only valid in the regime

|δ|, 1/t0 � 1/T.

These inequalities guarantee that the asymptotic regime |z| � 1 may be
realized when 1/|δ| � |t| � T and λ(t) = λ = const.

The opposite case
|δ| ≤ 1/T � 1/t0

is investigated separately. Due to the known limitations of Hankel functions
this investigation cannot be done analytically. For

|δ| � 1/T � 1/t0

we can apply perturbation theory for a small parameter range of |δ|T � 1.
Simple calculations yield

Wscatt ≈ e−4π|λ| [sinh(πλ) + δT sign∆0] .

This yields the sign of the derivative ∂W−/∂δ is given by the sign of ∆0.
This derivative indicates the position of the maximum shown in Fig. C.2.
For t0 � T the width of the Bragg resonance given by 1/t0 is much larger
than the shift.
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C.2.2 Conclusion

To conclude we note that the angular dependence of the Bragg scattering
by the absorbing potential with the linear time-dependent detuning shows a
sharp asymmetry. It has two scales

|δ| ∼ 1

t0
and |δ| ∼ 1

T
,

the first one is connected with the slope of the function ∆(t). The second
scale is determined by the interaction time T . Considering the inequality
|t0| � T the slope of the curve Wscatt(δ) in the vicinity of δ = 0 is much
steeper than the other slope of the curve. The width of the Bragg resonance
is determined by the first scale, 1/t0, while the inverse interaction time, 1/T ,
determines a sharp asymmetry of the scattering probability in the vicinity of
the exact Bragg angle, which is δ = 0.



Appendix D

Scattering with Nonadiabatic
Modulation

In this appendix we will derive some approximate analytical solutions for
the dynamics of an atomic wave in a two-dimensional light crystal with the
geometry depicted in Fig. 4.1.

In the following analysis we concentrate mainly on the influence of two
parameters — the frequency ωm and the amplitude A > 0. We investigate
the in-crystal density of the atomic wave and the momentum components of
the outgoing atoms.

D.1 The Basic Dynamics

From Chapter 4 we recall the Schrödinger equation (Eq. 4.3)

i
∂ψ(x, t)

∂t
= −1

2

∂2ψ(x, t)

∂x2
+ Af(t) sin2x ψ(x, t).

The general ansatz for the solution can be written in the form

ψ(x, t) = exp

[
− i

A

2

t∫
−∞

f(t′) dt′
] ∞∑

−∞
cn(t)e

i2nx. (D.1)

Inserting Eq. (D.1) into equation Eq. (4.3) we obtain an infinite chain of
coupled equations for the unknown amplitudes cn(t)

i
dcn(t)

dt
= 2n2 cn − A

4
f(t) (cn−1 + cn+1) . (D.2)
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Since we start with a plane atomic wave without transversal momenta the
initial conditions for this set of equations read

cn(−∞) = δn,0 (D.3)

because we consider only normal incidence. From Eq. (D.2) and initial con-
dition, Eq. (D.3), we see that the problem is symmetric and the expansion
coefficients are real and satisfy the equation

cn(t) = c−n(t). (D.4)

Using this relation and the ansatz Eq. (D.1) the atomic density reads

|ψ(x, t)|2 =
∣∣∣∣∣c0(t) + 2

∞∑
n=1

cn(t) cos(2nx)

∣∣∣∣∣
2

.

D.1.1 Weakly modulated crystal

In Fig. 4.3 we studied the situation of a longitudinally weakly modulated
crystal under the assumptions that A < 1 and that the modulation frequency
is not too close to the Doppleron resonance, |ωm − 1|T ≥ 1, in which case
we expect only a small variation of the atomic wave function. This is valid
also for the momentum components. The zeroth momentum component of
the wave shows a deviation from its initial value only at the vicinity of the
maximum potential intensity. In this region the first momentum components
are slightly excited, resulting in an additional modulation of the in-crystal
density |ψ(x, t)|2. The atoms are not guided only through the minima of
the potential valleys. As soon as the zeros of the longitudinal modulation
cos2(ωmt) turn off the potential the atoms start to spread. Then the potential
is turned on again since the modulations damp the field only for a short time
and the atoms are forced back to their previous positions. After the potential
is totally switched off (t > T ), the atomic wave is almost in its initial state
because each of the switches can be considered as adiabatic.

The in-crystal behavior of the atomic wave can be treated analytically
using a three-wave ansatz

ψ(x, t) = c0(t) + c1(t) e
2ikx + c−1(t) e−2ikx

= c0(t) + 2c1(t) cos(2kx) (D.5)

for the wave function using Eq. (D.4).
This approximation is justified by the level structure of the kinetic energy

part of the Hamiltonian. The scaled energy levels are spaced as εtr(n) = 2n2.
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For a moderate potential amplitude only the transitions between the n = 0-
and n = 1-levels are important since the energy is not sufficient to transfer
the atoms into higher states. In the last step in Eq. (D.5) we used the
symmetry given by Eq. (D.4). The expansion coefficients c0(t) and c1(t)
obey the following set of coupled equations

i ċ0(t) = − 1
2
Af(t) c1(t)

i ċ1(t) = 2c1(t) − 1
4
Af(t) c0(t).

(D.6)

The amplitude of the zeroth momentum component does not change signifi-
cantly, that is

c0(t) ≈ c0(−∞) = 1. (D.7)

The equation for c1(t) takes the form

i ċ1(t) = 2c1(t)− A

4
f(t). (D.8)

The solution satisfying the initial condition c1(−∞) = 0 reads

c1(t) = i
A

4

t∫
−∞

dξ f(ξ) e−2i(t−ξ). (D.9)

Therefore, the in-crystal density has the form

|ψ(x, t)|2 ≈ 1 + A cos(2x)

∞∫
0

dξ f(t− ξ) sin(2ξ),

where we have neglected the second order term. The time-dependent integral
on the right hand side shows oscillatory behavior with changes in sign. It
leads to the alternation of brightness along the t axis in Fig. 4.3.

For large times t � T the outgoing atomic density

|ψ(x, t)|2 ≈ 1 +
AT

√
π

4

[
2e−T

2

+ e−T
2(ωm+1)2 + e−T

2(ωm−1)2
]
sin 2t cos 2x

(D.10)
looks like the superposition sin[2(t − x)] + sin[2(t + x)] of the two running
density waves on the background of the average density. We call them the
Doppleron density waves. For large T and ωm < 2 the T -dependent coefficient
in Eq. (D.10) is dominated by the third term in the brackets and shows the
resonance structure with the width |ωm− 1| ∼ 1/T given by the inverse time
of flight.
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D.1.2 Resonant modulation of the crystal

The results of the previous section corresponding to the weak coupling of the
c0 and c1 amplitudes are modified when we adjust the modulation frequency
to the resonance condition ωm = 1.

For our analysis we only take into account the resonant terms in Eq. (D.5)
and arrive at

i ċ0(t) = −1
8
Ae−t

2/T 2
e2it c1(t)

i ċ1(t) = 2 c1(t) − 1
16
Ae−t

2/T 2
e−2it c0(t).

(D.11)

The solution reads

c0(t) = cosϕ(t)

c1(t) = i√
2
e−2it sinϕ(t)

(D.12)

with the phase

ϕ(t) =
AT

16

√
π

2

1 +
2√
π

t/T∫
0

dξ eξ
2

 . (D.13)

Note that this phase ϕ(t) is closely related to the error function. The outgoing
wave has populated three momenta with the probabilities

P0(t) = |c0(t)|2 = cos2 ϕ(t)

P±1(t) = |c±1(t)|2 = 1
2
sin2 ϕ(t)

(D.14)

and the asymptotic value for the accumulated phase ϕ(t � T ) yields

ϕ(+∞) ≡ ϕ0 =
AT

8

√
π

2
. (D.15)

This is nothing but the area under the curve A/(8
√
2) exp(−t2/T 2) and there-

fore ϕ0 is proportional to the product AT . We can adjust the parameter AT
in such a way that the zeroth transversal momentum component vanishes.
Hence, P0 = 0 corresponds to ϕ0 = π/2. In this case, known in optics as
a π/2 pulse, the light crystal transforms the incident atomic wave with the
transversal momentum p = 0 into the two first momentum components and
acts like a highly efficient beam-splitter.
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Figure D.1: Comparison of numerical and analytical results for A = 0.5 (left)
and A = 1.0 (right). The dotted lines are taken from the probability evolu-
tions out of Figs. 4.4 and 4.5. The solid lines are calculated from Eq. (D.14)
and show a good agreement. Note, that the oscillations are not included in
the analytical approach yet and therefore the analytical solutions are smooth.

Review of Numerical Results

The results of the numerical solution of the Schrödinger equation (4.3) are
shown in Figs. 4.4 to 4.6 for the resonant modulation frequency ωm = 1, and
different values of the modulation amplitude A. For small values of A (see
for example Fig. 4.4) where we set A = 0.5, the atomic density acquires a
chessboard structure. The size of the dark and bright areas is comparable and
the contrast grows towards the end of the interaction region. The structure
becomes clear from the plots of the momentum components. First of all,
we see that only three of the momentum components are involved, c0 and
c±1. Their mutual coherence is responsible for the chessboard structure of
the atomic density. During the interaction the probability of the zeroth
momentum is decreasing while the probabilities of the first two ones build
up. The momenta are exchanged by a sequence of “kicks” on the background
of a regular behavior.

In Fig. D.1 we show the results from Eq. (D.14) for the intensities A = 0.5
and A = 1.0 (solid lines). With dashed lines we have plotted the previously
obtained results from our numerical simulations. These earlier results are
plotted in dashed style and taken from Figs. 4.4 and 4.5. Apart from the
oscillations in the momentum probabilities arising from the kicks in the po-
tential modulation both plots show the same tendency.

Beam-Splitter

In Fig. 4.5 we show the plots for A = 1. This case is now within the regime
of the π/2 pulse. Therefore, there is an almost complete exchange in the
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population of the involved momenta. The components c±1 take over almost
all the population. This means that the outgoing wave contains the first
two momentum components and the light crystal acts as a beam-splitter for
atomic waves.

We emphasize that this beam splitter differs from the usual one. In a
standard situation the incoming wave is split up into two parts: The contin-
uation of the infalling wave and a split-off. In the present case the infalling
wave completely vanishes and the two, previously completely absent, waves
appear.

The resulting structure for the atomic density is seen at the end of the
interaction region. The density shows a fractional space period compared
to the periodicity of the crystal. This structure is a direct consequence of
the beam-splitter properties of the setup. Note that this fractional period
appears at the end of the interaction and could be measured with near-field
methods.

Back Scattering

A further increase in the amplitude A leads to a larger number of oscillations
between the involved momentum components as shown in Fig. 4.6. Moreover,
the kicks in the momentum exchange become stronger. Nevertheless, the
atomic density exhibits essentially the same structures as in the previous case
because there are still only three momenta involved. When the population
of the momentum components is inverted we see a fractional period of the
atomic density.

Likewise, for even larger values of the amplitude A the excitation of ad-
ditional momentum components occurs. Their presence makes the atomic
density plots more complicated and we expect the generation of carpet like
structures [23, 42].

We found that the generation of the first momentum component for a
fixed modulation frequency and interaction time depends on the amplitude.
How is this situation influenced by a changing modulation frequency? In
Fig. D.2 we present the dependence of the probability of the zeroth compo-
nent on the modulation frequency ωm. The population of the first momentum
component is obtained by |c1(∞)|2 = (1 − |c0(∞)|2)/2. The amplitude A is
assumed to be moderate and kept fixed. The curve indicates a clear reso-
nance behavior near ωm = 1. The width of the resonance is determined by
the inverse time of flight 1/T . For small frequencies the system does not de-
part too far from the adiabatic regime. When the modulation is fast enough,
the system is not able to follow the rapid sequence of pulses and does not
accumulate a significant change. Only when the modulation is adjusted to
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Figure D.2: Probability of the initial momentum state in the far field. We
plot the probability |c0|2 to find the atoms in the transversal momentum state
p = 0 depending on the modulation frequency ωm with a fixed amplitude
A = 1.0.

the interaction time and to the amplitude we obtain a considerable popula-
tion transfer. Note, that the change of the modulation frequency ωm is easily
obtained by changing the crossing angle θ.

D.2 Quantum Kicks

When we include the nonresonant terms in Eq. (D.11) we find

i ċ0(t) = −1
4
Ae−t

2/T 2 [1
2
e2it +

(
1 + 1

2
e−2it

)]
c1(t)

i ċ1(t) = 2c1(t) − 1
8
Ae−t

2/T 2 [1
2
e−2itc0(t)−

(
1 + 1

2
e2it

)]
c0(t).

(D.16)

These nonresonant terms are obviously responsible for a series of “quantum
kicks” in the functions P0,±1(t). Using perturbation theory we find the cor-
rections ∂c0,1 of first order. Together with Eq. (D.12) these corrections yield

c0(t) = cosϕ(t) + ∂c0(t)

c1(t) =
i√
2
e−2it (sinϕ(t) + ∂c1(t))
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with(
∂c0
∂c1

)
=

A

4
√
2

t∫
−∞

dτ e−τ
2/T 2

{( − sinϕ(t)
cosϕ(t)

)(
cos 2τ + 1

2
cos 4τ

)
+

i

( − sin[ϕ(t)− ϕ(τ)]
cos[ϕ(t)− ϕ(τ)]

)(
sin 2τ + 1

2
sin 4τ

)}
where ϕ(t) is taken from Eq. (D.13). Hence, we find the probabilities

P0(t) = cos2 ϕ(t)− sin 2ϕ(t)
1√
32
A

t∫
−∞

dτ e−τ
2/T 2 (

cos 2τ + 1
2
cos 4τ

)
P±1(t) =

1− P0(t)

2
. (D.17)

Note, that the contributions from all higher momenta are negligible and
therefore the conservation law reads P0+P1+P−1 = 1. This will reappear in
Fig. D.3 where we compare the numerical results shown in Fig. 4.5 with the
analytical results taken from Eqs. (D.17). The numerical results are plotted
with dashed lines whereas the analytical approximation is shown in the solid
style.

For times t > 5 we see a small difference. The analytically calculated
value is too small. This we can understand since the perturbation theory
brings in corrections of first order. Therefore, we include in |ci|2, i = 0, 1,
only linear terms of ∂ci. Hence, the analytical value is too small for c0 or P0,
respectively. Since P±1 is calculated from P0 the deviation has the opposite
sign in this case.

D.3 Conclusions

We have studied the dynamics of a normal incident atomic wave on a two-
dimensional light crystal. The geometry of the crystal is obtained by crossing
two identical standing laser fields under the angle θ. The periodic modula-
tion in the longitudinal direction causes an additional transversal modulation
of the atomic wave. This modulation appears already for moderate ampli-
tudes of the crystal potential, that is for (dE)2/(2h̄2ωR∆) ∼ 1. Without
the additional modulation the overall dynamics would be very simple. The
incoming wave is almost unperturbed by the crystal and the outgoing wave
is identical to the incoming one. The longitudinal modulation is determined
by the Doppler frequency ωD which is easily controlled by the crossing angle
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Figure D.3: Comparison between numerical and analytical results including
the kicks for A = 1.0. The left pictures displays P0 whereas the right one
shows P±1. The dashed lines are the evolutions of probabilities taken from
Fig. 4.5. The solid lines are the results of Eq. (D.17). We find good agreement
at the beginning. In the later part there are small differences due to the
approximation of |ci|2, i = 0, 1, where we neglected the higher order terms
of the correction.

of the laser beams. It is interesting to note that the Doppler frequency is
given by the ration 2ωD = θ/θdiff where θdiff = 2h̄k/(Mv) is the diffraction
angle. The additional modulation breaks the adiabaticity condition for the
incoming wave leading to several interesting effects:

First, the periodicity of the modulation can be adjusted in such a way,
that the incoming wave is almost completely transformed into two outgoing
waves. This process can be viewed as the action of an atomic wave beam-
splitter. The incoming atomic wave, which can be viewed as being in the
momentum “ground state” p = 0, gives rise to two outgoing waves in the
“first excited state” p = ±2h̄k. The transfer is most efficient at the point of
the Doppleron resonance.

Second, due to the change in population of the momentum components
the atomic density is spatially modulated. In particular, the outgoing wave
can take the fractional transversal periodicity of the optical crystal.

The crystal can be used to detect the longitudinal components of the
incoming atomic wave. The longitudinal velocity controls the time of flight
of the particular components through the crystal and this can be resolved
via measuring the population of the higher momentum components.

The longitudinally modulated optical crystal shows interesting physical
effects. It provides a useful tool for the engineering of the transversal profile
of atomic waves and might serve as a detection tool for resolving the longi-
tudinal properties of atomic wave packets [37]. A sequence of such crystals
could be used to construct a beam splitter for any pair of even order mo-
mentum components. Such a device would then be a direct generalization of
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the ordinary beam-splitter and could be used to generate spatially periodic
atomic waves of higher spatial periodicities than that of the crystal [32].



Appendix E

The Numerics

The basic program during our work uses the operator-splitting technique.
With this scheme we can easily integrate one-level wave functions even with
rather complicated potentials.

The root is the time-dependent Schrödinger equation

ih̄
∂

∂t
ψ(x, t) = Ĥ(t)ψ(x, t).

Note that the Hamiltonian might be time-dependent, too. The solution of
this differential equation has a simple form

ψ(x, t) = T̂ exp

− i

h̄

t∫
t0

dt′Ĥ(t′)

 ψ(x, t0)

where T̂ denotes the time ordering operator. The difficulty comes from a
typical potential V (x̂). Indeed, the nonvanishing commutator between x̂ and
p̂ requires a special treatment. This can be done in an easy but tricky way.

For the sake of simplicity we consider in the numerical solution only a
single step of dt

ψ(x, t + dt) = exp

[
− i

h̄

(
p̂2

2
+ V (x̂)

)
dt

]
ψ(x, t)

which can be split up into two parts

ψ(x, t+ dt) = exp

[
− i

h̄

p̂2

2
dt

]
· exp

[
− i

h̄
V (x̂)dt

]
ψ(x, t).

From the Baker-Hausdorff theorem [39] we know that the nonvanishing com-
mutator of p̂ and x̂ introduces a series of commutators:

exp (p̂) exp (x̂) = exp
(
x̂+ p̂+ 1

2
[p̂, x̂] + . . .

)
.
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Since these commutators are weighted by powers of dt we can neglect higher
powers.

Since ψ is in position representation we can easily evaluate the exponential
with the potential term and reach

ψ(x, t + dt) = exp

[
− i

h̄

p̂2

2
dt

]
· ψ̃(x, t)

where we apply a Fourier transform to the equation and get the momentum
representation

φ(p, t+ dt) = exp

[
− i

h̄

p̂2

2
dt

]
· φ̃(p, t).

Then the second step of the propagation can take place. The momentum op-
erator in momentum space is simple and we after a second Fourier transform
we have solved the time step dt.

The crucial point of this approximation is the propagation after the first
Fourier transform. We express the kinetic propagator at a time which should
be already over. Nevertheless, if dt is small enough, we can neglect the
error [36].

One way to improve the result is to reduce the step in the propagators to
dt/2 and evaluate ψ̃ and φ̃ at t = t+ dt/2. With this scheme we can reduce
the error to the order of dt3. In fact, the time steps used in this thesis are
small enough that the approximation with full steps dt is good enough.
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• Mein allergrößter Dank gilt aber meinen Eltern. Ohne ihre Unterstüt-
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