
Semantic Foundation and Tool Support

for Model-Driven Development with
UML 2 Activity Diagrams

Dissertation
zur Erlangung des Doktorgrads Dr. rer. nat.

der Fakultät für Informatik der Universität Ulm

Stefan Sarstedt
aus Gummersbach

Universität Ulm
Fakultät für Informatik

Abteilung Programmiermethodik und Compilerbau
Leiter: Prof. Dr. Helmuth Partsch

2006

Amtierender Dekan: Prof. Dr. Helmuth Partsch

1. Gutachter: Prof. Dr. Helmuth Partsch

2. Gutachter: Prof. Dr. Friedrich v. Henke

3. Gutachter: Jürgen Dingel, Ph.D., Assistant Professor

Tag der Promotion: 5. Juli 2006

2

Danksagung

“Indes sie forschten, röntgten, filmten, funkten, entstand von selbst die köstlichste Erfindung:
der Umweg als die kürzeste Verbindung zwischen zwei Punkten.”

Erich Kästner

An dieser Stelle möchte ich mich bei allen Personen bedanken, die zum Gelingen meiner Arbeit
direkt oder indirekt beigetragen haben.

Zunächst möchte ich mich besonders bei Prof. Dr. Helmuth Partsch für das Ermöglichen meiner
Forschungsarbeit, die langjährige Unterstützung und angenehme Arbeitsatmosphäre bedanken. Für
Anliegen und Fragen aller Art hatte er stets ein offenes Ohr. Des Weiteren gilt mein Dank meinem
Zweitgutachter, Herrn Prof. Dr. Friedrich v. Henke, sowie meinem Drittgutachter, Prof. Dr. Jürgen
Dingel.

Ohne die Hilfe der gesamten Abteilung Programmiermethodik und Compilerbau an der Uni-
versität Ulm wäre diese Arbeit nicht möglich gewesen. Die Umgebung und der kollegiale Umgang
miteinander boten mir stets einen idealen Rahmen für meine Forschung. Mein herzlicher Dank gilt
besonders meinen “ActiveCharts”-Projektkollegen Jens Kohlmeyer, Alexander Raschke, Dominik
Gessenharter und Matthias Schneiderhan für Fallbeispiele, Diskussionen, Ideen und Hilfe bei der
Implementierung der “ActiveChartsIDE”. Von meinen sehr geschätzten Kollegen ist insbesondere
auch Walter Guttmann hervorzuheben, der durch zahlreiche Diskussionen und Anregungen zur Reife
der Formalisierung beigetragen hat.

Ohne die moralische Hilfe meiner Freundin Jessica, meines Vaters, meiner Mutter, meines Bruders
Marko und meines Freundeskreises hätte ich bereits früh aufgegeben. Für euren unerschütterlichen
Glauben an mich und den täglichen Ansporn bin ich euch allen sehr dankbar.

3

4

Contents

1 Introduction 9
1.1 Problems of current MDD-approaches . 9
1.2 Proposed approach . 10
1.3 Scope of this thesis . 10
1.4 Overview of this thesis . 11

2 UML 2 Activity Diagrams 13
2.1 Introduction . 13
2.2 Informal semantics . 14

3 Abstract State Machines 17
3.1 Basic, Structured and Asynchronous Multi-Agent ASMs 17

3.1.1 Basic ASMs . 17
3.1.2 Structured ASMs . 18
3.1.3 Asynchronous Multi-Agent ASMs . 18

3.2 ASM operators . 19
3.3 Additional ASM rules and operators . 20

4 Discussion of UML 2 Activity Diagram Semantics 21
4.1 Targeting controversial elements . 21
4.2 Problems and enhancements of signals . 22
4.3 Problems due to errors and obscure information . 22

4.3.1 Unclear terms . 23
4.3.2 Where to hold control tokens . 24
4.3.3 Confusion of the reader due to distributed information 24
4.3.4 Termination of accept event actions without incoming edges 25
4.3.5 Actions without incoming edges . 25
4.3.6 Actions without incoming edges but with input pins 25
4.3.7 Data tokens outrun control tokens . 25
4.3.8 Buffering of tokens at fork nodes . 26

4.4 Problems due to missing information . 26
4.4.1 Context object for call behavior action . 26
4.4.2 Which transitions to execute . 27
4.4.3 Multiple callers with “isSingleExecution” . 27
4.4.4 Interruptible activity regions . 28

5 An ASM Semantics for UML 2 Activity Diagrams 31
5.1 Overview . 31
5.2 Basic definitions . 33

5.2.1 Predefined base domains . 33
5.2.2 UML 2 meta model to ASM mapping . 34
5.2.3 Abbreviations . 38
5.2.4 Configuration of activity executions . 38

5

5.3 Model-based configuration of semantics . 39
5.4 ASM initialization . 40
5.5 Activity . 40

5.5.1 Events . 41
5.5.2 Controller loop . 42
5.5.3 Start . 43
5.5.4 Termination . 45
5.5.5 Abort . 45
5.5.6 Transitions . 46

5.6 Action . 47
5.6.1 Creation . 48
5.6.2 Enabling . 49
5.6.3 Termination . 49
5.6.4 Abort . 50
5.6.5 Execution . 51

5.7 Computation and selection of token offers . 61
5.7.1 Overview . 61
5.7.2 Data structures . 61
5.7.3 Creation of token offers . 63
5.7.4 Propagation of token offers . 65
5.7.5 Selection of token offers at targets . 71
5.7.6 Handling interruptible activity regions . 75
5.7.7 Handling accept event actions . 78
5.7.8 Buffering of token offers . 79
5.7.9 Discussion of the token offer computation . 80

5.8 Executing transitions . 82
5.9 Discussion . 84

5.9.1 Deviations from the specification . 84
5.9.2 Related Work . 85
5.9.3 Possible extensions and further work . 87
5.9.4 Concluding Remarks . 88

6 Tool Support 89
6.1 Architecture . 89
6.2 Working with the ActiveChartsIDE . 91
6.3 Discussion . 92

6.3.1 Related Work . 92
6.3.2 Possible Extensions . 93
6.3.3 Experiences . 93
6.3.4 Concluding Remarks . 93

7 Summary 95
7.1 Contributions . 95
7.2 Outlook . 96

A Mathematical Conventions 99

B Case Studies 101
B.1 Alarm Device . 101
B.2 Molding Press . 104
B.3 Microwave . 106

Zusammenfassung 109

6

List of Figures

2.1 Syntax of UML 2 activity diagrams . 15
2.2 Lifecycle of an ActionExecution . 15
2.3 Subset of the UML 2 meta model used . 16

4.1 Defining tagged values . 21
4.2 Tag definitions for semantic variation points for signals 23
4.3 Faster data tokens . 26
4.4 Motivation and problem with buffering at fork nodes 27
4.5 Definition of the semantic variation point for context objects 27
4.6 Multiple interrupting edges . 28
4.7 Definition of semantic variation points for InterruptibleActivityRegion 29

5.1 UML 2 meta model of behaviored classifiers . 32
5.2 Mapping UML activity diagrams to Multi-Agent ASMs 33
5.3 Mapping the UML 2 meta model to ASMs . 35
5.4 Enabling and termination of action executions . 42
5.5 Creation of an action execution for action B . 48
5.6 Enabling of an action execution . 50
5.7 Termination of an action execution . 51
5.8 Initiation of token flow computation . 64
5.9 Propagation of token offers at MergeNode . 66
5.10 Propagation of token offers at ForkNode . 67
5.11 Propagation of token offers at DecisionNode . 68
5.12 Propagation of token offers at JoinNode . 70
5.13 Selection of token offers for Action . 72
5.14 Selection of token offers for CentralBufferNode and outgoing ActivityParameterNode 73
5.15 Selection of token offers for FinalNode . 73
5.16 Removal of inconsistent offers . 74
5.17 Effect of removing inconsistent offers at join nodes 75
5.18 Leaving an interruptible activity region . 76
5.19 Buffering of offers . 80
5.20 Problematic cases if inconsistent offers were allowed 81
5.21 No order of token offers . 82

6.1 ActiveCharts Architecture . 90
6.2 ActiveChartsIDE . 91
6.3 Execution of the “Heartbeat” example . 94

B.1 Alarm device static structure . 102
B.2 Alarm device behaviors . 102
B.3 Alarm device action implementations . 103
B.4 Alarm device object setup . 103
B.5 Molding press static structure . 104
B.6 Molding press behaviors . 105

7

B.7 Microwave static structure . 106
B.8 Extract from microwave behavior . 107

8

Chapter 1

Introduction

Modern software development processes include more or less comprehensive analysis and design
phases where often various models describing the static structure and the dynamics of a system are
created [Pre04, Lar05]. The primary motivation is to gain a deeper understanding (for discussions
with developers and other stakeholders) and to provide a better documentation for the system.
Starting from these models, the implementation is created. Unfortunately, models are often not
maintained during later phases of the project which leads to divergence of technical documentation
and the final implementation, which furthermore impedes system maintenance.

Model-Driven Development (MDD) [BBG05] tries to bridge this gap between analysis/design
and implementation by enriching the design artifacts to enable the developer to build parts of the
application out of these models automatically. The Unified Modeling Language (UML), which was
released in August 2005 in its current version 2, is widely used in this area. One of the recent
approaches, which especially encourages the usage of UML for modeling, is the Model-Driven Ar-
chitecture (MDA) initiative [KWB03,MDA03,McN04] proposed by the Object Management Group
(OMG). According to MDA, the UML design artifacts should contain all required information for
building a whole application out of the models and extensions. The Executable UML [MB02] is a
prominent example for this approach. The static structure of a system is modeled with UML class
diagrams, and the behavior is described by UML state charts. An “action language” is used for
implementing additional behavior.

1.1 Problems of current MDD-approaches

In our view, there are several shortcomings with current approaches and tool implementations, which
we will describe in the following.

No formal semantics. The UML still has no formal semantics, which impedes acceptance by
developers and interchangeability of complex models among different tools. Developers and tool im-
plementors can, and frequently do, choose their own interpretation of the UML specification [Ber05].
As a consequence, often only “simple” diagram types, such as UML class diagrams, are used. To
tap the full potential of the UML, i.e. to not only serve for mere documentation purposes, especially
behavioral diagrams have to be employed for Model-Driven Development.

Predominance of state charts. If behavioral diagrams are supported at all, state charts are
predominant because they are well-established and suitable for describing the behavior of embedded
systems [Mat05, ILo05]. It is, however, worthwhile to investigate whether other types of behavioral
diagrams are also suitable for this or other fields of application.

Graphical information is not sufficient. It is also obvious that graphical information itself is
not sufficient to properly describe the functionality of a system [SGK+05]. Therefore, additional

9

languages were introduced, e.g., the Object Constraint Language (OCL) [WK03], or different syn-
taxes for the action semantics [UML05] (as utilized by Executable UML [MB02]). These languages
are not generally accepted by developers as they do not offer as many possibilities as modern pro-
gramming languages. In our view, it is necessary to use a common programming language, together
with diagrams, for a modern approach to be feasible. Some developers are also still critical of
using graphical models for systems development. Freedom should be left as to which functionality
should be modeled, and what should not, to lead to an easy transition to Model-Driven Development.

We, therefore, want to propose the following approach to Model-Driven Development which
targets these problems.

1.2 Proposed approach

We think that it is worthwhile to consider UML activity diagrams for Model-Driven Development.
Activity diagrams describe the sequencing of actions and include control and data flow, parameters,
decomposition and control structures such as decision nodes and parallel execution. During the
analysis phase of a project, requirements are written in form of Use Cases, which describe interactions
between users and a system [Lar05]. Because of the “imperative” style of Use Cases, they are often
accompanied by activity diagrams that graphically present the application control flow. It would
therefore be natural to directly use these diagrams for implementation, at least for prototyping
purposes. Although there are products which support UML activity diagrams, only the older versions
1.x of the UML are considered. The meta model and semantics of these diagrams are based on UML
state charts and include only a very restricted subset of the possibilities of the current UML 2 activity
diagrams. An adequate set of elements must, however, be provided to be useful for modeling the
behavior of a system. This is, in our view, given by the new version of the UML.

In our approach to Model-Driven Development the control flow (i.e., the behavior) of classes that
make up an application is modeled with UML 2 activity diagrams during analysis and design phases.
These diagrams are seamlessly reused for the implementation by interpreting them at runtime. It
is no longer necessary to (re-)code this control flow in a programming language, since the models
are executed by a runtime component. Together with generated code out of the static structure of
UML 2 class diagrams, this should substantially simplify the creation of applications and lead to a
continuous development process from the analysis/design phase to implementation.

Another goal of our approach is to retain the possibility of using regular “hand-written” code for a
special type of activity actions. This degree of functionality described by models versus functionality
described by code can, therefore, be chosen by the developer, which should improve acceptance of
modeling tasks and is particularly useful because not every aspect of a system can and should be
modeled graphically.

1.3 Scope of this thesis

We will not validate in this thesis whether our approach is feasible, but rather provide the pre-
requisites to carry out an investigation. Since the official UML 2 specification only describes the
semantics in textual form, misunderstandings arise in its interpretation. To provide a reliable basis
for Model-Driven Development, we discuss issues of UML 2 activity diagrams, propose solutions,
and provide a formal semantics by specifying Abstract State Machine rules in this work. Based on
our formalization, we also designed and implemented an interpreter for UML 2 activity diagrams,
accompanied by a model importer and a simulation and debugging component, so that the behavior
of an application in terms of the token flow of the activity diagrams can be executed and visualized.
This facilitates creating an experimental setting for the validation of our ideas.

Part of this work has already been published in [SRKS05,SGK+05,Sar05,Sar06,SG06].

10

1.4 Overview of this thesis

The structure of this thesis is as follows: in chapter 2 we describe the syntax and informal semantics
of UML 2 activity diagrams, and present the subset considered in this thesis. Chapter 3 gives a short
overview on the Abstract State Machine (ASM) formalism we use to describe the semantics. Issues
of the UML 2 specification which relate to activity diagrams, and their solutions, are discussed in
chapter 4. The main part of this thesis is contained in chapter 5, where the semantics of UML 2
activity diagrams is formally defined by using Asynchronous Multi-Agent Abstract State Machines.
We then discuss our tool implementation in chapter 6. A summary on contributions and an outlook
are finally given in chapter 7. Mathematical conventions and case studies are contained in the
appendix.

The PDF-version of this thesis has “active” links to sections and bibliographical references to
ease navigation among the document. This is especially helpful in chapter 5, where ASM rules can
be easily traced by using these links.

11

12

Chapter 2

UML 2 Activity Diagrams

This section provides an introduction to UML 2 activity diagrams and describes their informal
semantics. We do not go into details of each UML element in this chapter. To this end, we refer to
chapter 5, where the semantics is formally defined.

2.1 Introduction

Figure 2.1 shows the syntax of all supported elements of UML 2 activity diagrams. Activity diagrams
are used to model control and object (or data) flow between actions. Activities can have activity
parameter nodes, where incoming or outgoing data are provided. There may be multiple concurrent
executions of the same activity, which act independently of each other.

Actions specify transformations on the state of the system that are not further decomposed
within the given diagram. They are either implementation-dependent or more specific, e.g., used to
send and receive signals or to invoke behavior specified in other diagrams. Actions can have input
pins and output pins, where parameters are passed by incoming resp. outgoing object flows. We
support the following kinds of actions:

CallBehaviorAction: Call behavior actions are used to invoke other behaviors, which are activities,
in our case. Parameters in input or output pins are mapped to the corresponding activity
parameter nodes of the invoked activity.

CallOperationAction: Call operation actions invoke methods on objects. Parameters are provided
by input pins and return values are written to output pins.

AcceptEventAction: Accept event actions have triggers which indicate the type of event to wait. If
such an event (a signal or time event in our case) has occurred, the action terminates. Accept
event actions with a “time event”-trigger are also called “wait time actions”.

SendSignalAction: These types of actions are used to send signals to other objects. The signals are
received by the previously described accept event actions.

BroadcastSignalAction: Whereas send signal actions send signals to a single target only, broadcast
signal actions can have multiple targets. Computation of those targets is an explicit semantic
variation point in the UML specification.

Actions can have multiple pins and multiple incoming or outgoing control flows. As is the case with
activities, actions can also have multiple concurrent action executions.

Object nodes allow for object flows in contrast to control flows. The previously described input
pins and output pins attached to actions, are the object nodes allowing the delivery of data. On
the level of activities, objects can be passed through activity parameter nodes, which have also been
introduced above. Objects may also be buffered in central buffer nodes.

13

Edges connecting actions may pass through control nodes that coordinate the flows in an activity
diagram. A decision node chooses between different outgoing edges and the corresponding merge
node unites alternate, independent flows. On the other hand, a fork node splits a flow into concurrent
flows along all outgoing edges and the corresponding join node synchronizes all incoming flows.
Furthermore, flows may originate in initial nodes and terminate in final nodes. Final nodes further
decompose into flow final nodes, which terminate flows only, and activity final nodes, which terminate
the current activity execution. Edges may also have guards which can prevent control or object flow
to occur. Guards are particularly applied on outgoing edges of decision nodes.

An interruptible activity region marks a subset of nodes and edges supporting the termination
of parts of an activity diagram. If so-called interrupting edges, which lead out of those regions, are
passed, all actions and flows inside the region are aborted.

Several levels are defined in the UML 2 specification [UML05] that support different parts of
these concepts. The fundamental level defines activities, actions and activity groups. The basic level
adds control sequencing and data flow between actions. We mainly address the intermediate level
that additionally includes the before mentioned object nodes, concurrent flows with guards, and
decisions. Interruptible activity regions, which are contained in the complete level, are discussed as
an example of a useful feature with vague semantics (see chapter 4).

The UML specification provides a meta model to define the abstract syntax for activity diagrams.
The subset of this meta model we use in our work is illustrated in Figure 2.3. The only change with
respect to the original model is that we only allow for a single trigger to be provided for accept event
actions, rather of multiple triggers. This is not a limitation, because multiple accept event actions
can be used instead.

2.2 Informal semantics

The specification proposes a “petri-like semantics” for activity diagrams [UML05, p. 314]. Tokens
determine the current state of execution. Control tokens can be held on initial nodes and actions,
and data tokens can rest on object nodes. These tokens are offered to the outgoing edges of the
corresponding node. If “accepted” by targets, tokens traverse the whole path from the source node to
the target action or object node at once. This is called the traverse-to-completion principle [Boc04].
Control nodes, such as decision or join nodes, therefore only act as “traffic switches”, since tokens
cannot rest on those nodes.

There is also token competition among object flow edges. Although object nodes can have
multiple outgoing edges, only one edge is actually passed, even if other edges can be traversed.

If there are tokens on all incoming edges and on all input pins of an action, an action execution
can be created (see Figure 2.2 a). All data tokens are removed from the source object nodes and
moved to the input pins. To enable an action execution, and thus to put it into a “running” state,
data tokens are removed from the input pins and all control tokens on the incoming control flow
edges are deleted. This is depicted in Figure 2.2 b). If an action execution has terminated (see Figure
2.2 c), control tokens are offered on all outgoing edges and data tokens are created for all output
pins of the action. These new tokens are now available for the execution of consecutive actions.

Note that all data tokens are moved to the target input pins at once. The reason is, that otherwise
a deadlock situation can arise. An example is given in [Boc04].

14

Activity

B

A

[x>0]

5s

S

S

[else]

ActivityParameterNode

Activity
AcceptEventAction (SignalEvent)

AcceptEventAction (TimeEvent)

CallOperationAction

InputPin

SendSignalAction

FlowFinalNode

InitialNode

DecisionNode

JoinNode

CallBehaviorAction

MergeNode

ForkNode

InterruptibleActivityRegion

ActivityFinalNode

ObjectFlow

ControlFlow

Guard

C 7s

<<centralBuffer>>

OutputPin

CentralBufferNode

ControlFlow (interrupting edge)

Figure 2.1: Syntax of UML 2 activity diagrams

a) b)

Transition was executed and an
ActionExecution is created

ActionExecution is enabled
(and now running)

A

c)

ActionExecution has terminated

A

A

Figure 2.2: Lifecycle of an ActionExecution

15

*1
+target +incoming

*1

+source +outgoing

ObjectFlow ControlFlow

ActivityNode
guard

ActivityEdge

isSingleExecution

Activity

Behavior

*1

+activity +node

+edge1 *

ActivityParameterNodelower
upper

Pin

InitialNode

upperBound

ObjectNode
ExecutableNode

ControlNodeAction

*

+/superGroup
{union, subsets owner}

0..1
+/subGroup

{union, subsets ownedElement}

+/inGroup
{union}

+containedNode *

*

ActivityGroup

+group
{subsets ownedElement}

+activity
{subsets owner}

0..1

*

InterruptibleActivityRegion

FinalNode

ActivityFinalNode FlowFinalNode

ForkNode JoinNode DecisionNode MergeNode

InputPin OutputPin CentralBufferNode

*

*

+containedEdge

+inGroup
{union}

*+interruptingEdge

*

+interrupts

*

1

+/output
{ordered, union,

subsets ownedElement}

+/input
{ordered, union,

subsets ownedElement}

1

*

SendSignalAction

CallBehaviorAction

1

0..1

+target
{subsets input}

1

*

+behavior

*

+result
{ordered, subsets output}

*

+argument
{ordered,

subsets input}

InvocationAction

isSynchronous

CallAction

InputPin

OutputPin

InputPin

Behavior

CallOperationAction

Operation

1

*

+operation

+target
{subsets input}

0..11

BroadcastSignalAction

1+trigger

AcceptEventAction

Trigger

OutputPin
*

+result
{subsets output}

Parameter*

+ownedParameter
{ordered}

Signal

+signal

*

1

Signal

+signal

*

1

isRelative

TimeEvent

SignalEvent

Event

MessageEvent

+event
1

Signal
+signal

* 1

TimeExpression
+when

1

Change w.r.t. the original UML meta model

Figure 2.3: Subset of the UML 2 meta model used

16

Chapter 3

Abstract State Machines

An Abstract State Machine (ASM) is used to formally define the behavior of a system. The level
of abstraction can be chosen freely. We will use ASMs to define the semantics of UML 2 activity
diagrams in chapter 5. Here, we give a short overview of ASMs and introduce keywords that are
relevant in our context. ASMs were introduced by Gurevich [Gur94]. A comprehensive introduction
and overview is given in [BS03]. We also refer to the official standard of the Specification and
Description Language (SDL) [ITU02], which also uses ASMs for the definition of a formal semantics.
The layout of ASM rules and keywords for domains and function classifications are inspired by the
SDL formalization.

In Section 3.1 we give the basics of Abstract State Machines, and present the different types
of ASMs necessary in this work. Section 3.2 describes the ASM operators in details. Additional
operators are finally defined in Section 3.3.

3.1 Basic, Structured and Asynchronous Multi-Agent ASMs

In this section, we introduce the different types of ASMs used.

3.1.1 Basic ASMs

A basic ASM consists of a finite set of rules of the form

if condition then updates

Updates is a finite set of function assignments of the form f(x1, . . . , xn) := x. A state is given by
interpretations of all ASM functions. The updates of all applicable rules in a state are collected in an
update-set. All updates are then executed at once, resulting in a new state of the ASM. The following
rules yield the update-set {(x, 2), (y(0), 1)}, if the current state of the ASM is {(x, 1), (y(0), 2)}:

if x=1 then x:=y(0)
y(0):=x

If an update-set contains assignments which are in conflict with each other for a given func-
tion, the update-set is considered inconsistent. Updates are in conflict when different values are
assigned to the same location for a function. The following rules yield the inconsistent update-set
{(x, 1), (y, 3), (x, 2)}, due to the conflicting updates for x:

x:=1
y:=3
x:=2

We define that an ASM terminates if no more rules are applicable. Note that we do not want
an empty update-set to lead to termination of the ASM. The termination criterion can be freely
chosen [BS03] and differs among various ASM dialects and implementations.

17

Multiple operators are defined for ASMs. Synchronous parallelism, for example, is supported by
forall, and nondeterministic selection is achieved by choose. See Section 3.2 below for a description
of all operators that are relevant in our context.

ASM functions can be classified as follows [BS03, ITU00a]:

• static functions do not change during execution of the ASM, i.e. their values remain constant
among different states.

• controlled functions can be read and written by an ASM agent.

• shared functions can be read and written by multiple ASM agents (in case of Multi-Agent
ASMs, see below).

• monitored functions are modified by the environment and can only be read by ASM agents.

3.1.2 Structured ASMs

Structured ASMs provide sequencing of rules by using seq, local variables (local), and return values
(result). Sequencing enables structuring within a single rule, by making intermediate updates locally
visible. Only the resulting update-set is applied to the global ASM state. The following example
thus results in the update-set {(x, 2), (y, 1)}:

x:=1
seq
y:=x
x:=2

Note that our seq-operator separates whole blocks of statements instead of single function assign-
ments.

Additionally, Macros can be defined with parameters to provide abstraction and structuring of
rules:

Sum : P(Nat) → Nat
Sum(xs) ≡

local sum : Nat := 0
forall x with x ∈ xs

sum := sum + x
result := sum

3.1.3 Asynchronous Multi-Agent ASMs

Basic ASMs only execute a single ASM agent, i.e. only one ASM execution exists at a time. Multi-
Agent ASMs enhance basic ones, by allowing multiple concurrent agents running parallelly, each
one executing its own rule. These agents can communicate with each other by shared functions.
New agents are introduced and executed by obtaining a fresh element from the reserve-set of the
predefined domain Agent, and assigning the initial rule to ASM(agent):

let
myAgent = new(Agent)

in
ASM (myAgent) := AsmRuleToExecute

The initial agent is defined by

initially Agent = {init}
initially ASM (init) = AsmRuleToExecute

18

3.2 ASM operators

This section gives a short overview over the ASM operators we use in our rules.

ASM operators
forall x with ϕ P Executes P in parallel for all elements x that

satisfy ϕ.
choose x with ϕ P Chooses an element x nondeterministically,

that satisfies ϕ, and executes P. If no such
element exists, the update-set of this rule is
empty.
choose works as an angelic choice operator,
i.e. if a suitable element x that satisfies ϕ ex-
ists, it is chosen [WM97,BS03].

let x =expr in P Binds variable x to expression expr in rule P .
let x = new(X) in P Introduces a new element from the reserve set

Res(X) (see [BS03]) and binds it to x in rule
P .

iterate P Executes P repeatedly, until its update-set is
empty.

P seq Q Executes P, then Q with the (intermediate)
update-set of P. The resulting update-set for
the new state of the ASM is given by the com-
bination P⊕Q of both update-sets, see [BS03].

if condition then P Executes P , if condition is met.
if condition then P else Q Executes P , if condition is met, else Q.

case expr of x1 : P1,x2 : P2,. . . ,xn : Pn Executes rule Pi if expr evaluates to xi.
domain X Introduces a new domain X, see [ITU00c].

static, controlled, shared, monitored For classification of functions and domains.
Static functions do not change during exe-
cution of the ASM. Controlled functions are
local to the current ASM agent. Shared func-
tions can be read and written by multiple
agents, and are, therefore, used for communi-
cation between agents. Monitored functions
are modified by the environment and can only
be read by ASM agents.

local x : T :=expr Defines a local variable x of type T (optional)
and assigns expr to it.

skip Executes the empty rule. Leads to an empty
update-set.

result:=expr Returns result expr from the current macro.
add x to S, delete x from S Add element x to set S, resp. removes

it. Can be executed in parallel with other
add/remove commands without leading to
inconsistent update-sets, see [GT01].

add X to S, delete X from S Enhances the ordinary add/remove con-
structs by adding resp. removing all elements
x ∈ X from S, where X denotes a set.

initially ϕ Defines an initial condition ϕ for the ASM.
constraint ϕ Defines a constraint ϕ for the execution of the

ASM.
true, false, undefined Predefined for all ASMs.

19

3.3 Additional ASM rules and operators

We introduce the following additional ASM operators, which are defined in terms of existing ASM
constructs.

choose x with ϕ P . . . ifnone Q executes rule Q, if no element x, that satisfies ϕ, can be chosen:

choose x with ϕ P ifnone Q ≡
if ∃x : ϕ then

choose x with ϕ
P

else
Q

foreach x in S R executes R for each element x in set S, where R denotes a rule with x ∈ freeVar(R):

foreach x in S R ≡
local m := S
iterate

if |m| > 0 then
choose x with x ∈ m

m := m \ {x}
R

20

Chapter 4

Discussion of UML 2 Activity
Diagram Semantics

Several issues have been identified during our formalization process of UML 2 activity diagrams.
To leave some scope for elements which we consider controversial, we introduce a configuration
mechanism for the semantics which we already described in [Sar05] (Section 4.1). Section 4.2 gives
a short description of issues and enhancements of send signal and broadcast signal actions, which
are also treated extensively in [Sar05]. The following sections describe problems that relate to errors
and obscure information in the specification (Section 4.3), or missing information (Section 4.4).

4.1 Targeting controversial elements

The following sections discuss some problems where the intended semantics can only be guessed.
As will be seen, multiple interpretations may be useful for different scenarios. To provide the
necessary configuration properties in UML models to circumvent these deficiencies, we use tagged
values, a standard mechanism for extending the UML [UML05]. Tags designate simple key/value
pairs which add additional information to UML model elements. By interpreting our own tags,
which will be introduced as required in the following, the execution engine can adjust its behavior
at runtime accordingly. Therefore, all necessary information regarding the execution semantics is
directly contained in the diagrams. This mechanism was introduced by us in [Sar05].

New tagged values are defined by introducing stereotypes [UML05]. The notation is shown in
Figure 4.1, where a new stereotype with tags, which extends an existing UML meta class, is defined.
We will extend various kinds of meta classes, such as “Activity”, or “InterruptibleActivityRegion”,
which shall enable us to apply special tags to them. These tags will be queried by the ASM activity
interpreter (see chapter 5). All semantic variation points introduced in this chapter have been
implemented and tested in our tool (see chapter 6).

<<metaclass>>
UmlClass tag definition

tag definition
...

<<stereotype>>
StereotypeName

Figure 4.1: Defining tagged values

21

4.2 Problems and enhancements of signals

Problems relating to buffering, targeting and distribution of signals have already been discussed
in [Sar05] and will not be treated further, here. We, therefore, will only summarize the problems
and briefly describe our approach to solve them.

Specification of signal targets. Target objects for send signal actions are normally provided by
an input pin. This often leads to unnecessary preceding actions, whose only purpose is to provide
this object parameter, although it could often be derived from the current object configuration.
We, therefore, provide the possibility to annotate send signal actions with expressions to make the
target explicit. To this end, we use a subset of XPath [Kay04] for querying our current object graph,
resulting in a set of nodes where the signal should be sent to. Thus, the targets are more explicit,
and also guarantee flexibility by admitting parameters in the expressions. Querying object graphs
by means of XPath expressions has been introduced by [Sax03] and also applied to meta models
by [SG05].

Buffering of signals. Signals are always buffered in the event queue of an object, according to
the UML specification [UML05]. It may, however, sometimes be desirable to also disable buffer-
ing [Sar05]. We, therefore, allow the developer to either deactivate buffering for specific kinds of
signals or for all signals of an activity. Our molding-press case study (see Section B.2) makes use of
this feature.

Distribution of signals. Multiple behaviors can be associated with one context object at the
same time. This is due to nesting of activities by using call behavior actions, which “reuse” the
current context object for its execution, unless configured otherwise (see Section 4.4.1). According
to [UML05, p. 229], an event is only consumed by one action and one behavior:

“If the accept event action is executed and the object detected an event occurrence
matching one of the triggers on the action and the occurrence has not been accepted by
another action or otherwise consumed by another behavior, then the accept event action
completes and outputs a value describing the occurrence.”

Thus, on the one hand, multiple action executions compete for event occurrences, which is correctly
handled by our rules as becomes evident in chapter 5. On the other hand, there is also competition
among multiple activity executions for an event, which is not realized in our implementation. This
is due to the fact that we associate event queues with activity executions rather than with context
objects, which store event occurrences for multiple behavior executions (the reasons for this are
discussed in Section 5.9.1). To be able to send signals to “nested” activities anyway, we introduce
a signal “distribution” tag, which indicates whether signal objects are distributed among nested
activity executions.

Broadcasting of signals. Other issues relate to broadcast signal actions. It is not possible to
model a broadcast of signals graphically with UML 2, since there is no symbol proposed for this
type of action. We, therefore, propose to use a new symbol, which is a twofold SendSignalAction
(see [Sar05]). Since the determination of targets of broadcast signal action is considered an “official”
semantic variation point, we propose to use the same XPath-mechanism which has already been
described above for send signal actions.

Figure 4.2 shows the stereotypes and tagged values, which we defined for signal configuration.

4.3 Problems due to errors and obscure information

This section deals with errors and ambiguous information in the UML specification.

22

<<metaclass>>
Activity

buffer : SignalConfigKind
replace : SignalConfigKind

<<stereotype>>
SignalBufferingAndReplacement

distribute : SignalConfigKind

<<stereotype>>
SignalDistribution

<<metaclass>>
AcceptEventAction

<<metaclass>>
CallBehaviorAction

<<metaclass>>
BroadcastSignalAction

signalPath : String

<<stereotype>>
SignalTargeting

only for
SignalEvents

Yes
No
Unspecified

<<enumeration>>
SignalConfigKind

buffer/replace=“Yes“ for Activity,
“Unspecified“ for AcceptEventAction

distribute=“Yes“ for Activity,
“Unspecified“ for CallBehaviorAction

Figure 4.2: Tag definitions for semantic variation points for signals

4.3.1 Unclear terms

Multiple terms are neither clearly defined nor consistently used in the UML specification. Relevant
in our context are especially the notion of “target”, “traverse”, and “accept”, because they relate to
transition computation and execution. Our ASM formalization of transitions is described in Sections
5.7 and 5.8.

The specification describes that [UML05, p. 309]

“Edges have rules about when a token may be taken from the source node and moved
to the target node. A token traverses an edge when it satisfies the rules for target node,
edge, and source node all at once. This means a source node can only offer tokens to
the outgoing edges, rather than force them along the edge, because the tokens may be
rejected by the edge or the target node on the other side. . . . Tokens cannot rest at control
nodes, such as decisions and merges, waiting to move downstream. Control nodes act
as traffic switches managing tokens as they make their way between object nodes and
actions, which are the nodes where tokens can rest for a period of time. Initial nodes are
excepted from this rule.”

Since “a token traverses an edge when it satisfies the rules for target node, edge, and source node
all at once” and due to the fact that tokens cannot rest at control nodes, it is not quite clear how
these statements are to be applied when considering multiple consecutive edges with intermediary
control nodes. No information is given on what condition the token “satisfies” the “rule” of the
control node. One can imagine that all control nodes accept tokens. For join nodes, however, it may
also be assumed that tokens are accepted if the join condition is met, i.e., there are tokens on all
incoming edges of the join (see [UML05, p. 369]). Even worse, another term, “accept” comes into
play [UML05, p 363]

“Tokens arriving at a fork are duplicated across the outgoing edges. If at least one
outgoing edge accepts the token, duplicates of the token are made and one copy traverses
each edge that accepts the token.”

In addition to edges, targets can also “accept” tokens [UML05, p. 349] (description of decision nodes)

23

“Multiple edges may be offered the token, but if only one of them has a target that
accepts the token, then that edge is traversed.”

It would be useful to define these terms and above all provide examples of how they are used in
a non-local context (i.e. not only for a single edge). The prerequisite for the execution of transitions
is that the “final” target action or object node is able to receive a token. We, therefore, introduce
the term destination for those nodes. We use the term “target” for the, intended, local context and
avoid the term “accept”. “Traversal” always refers to the complete path from the original source to
the destination node.

4.3.2 Where to hold control tokens

For data tokens it is evident that they are held by object nodes, such as output pins, or central
buffers. For control tokens, on the other hand, it is not obvious where they are actually stored. For
initial nodes [UML05, p. 365] states:

“A control token is placed at the initial node when the activity starts, . . . Tokens in an
initial node are offered to all outgoing edges.”

Multiple edges can have an initial node as a source, and we also assume that these edges are
independent from each other, though not explicitly stated (nor excluded) by the specification. Thus,
according to the above quotation, the question is when to remove the single control token from an
initial node. Certainly, it must be deleted if a token has moved to a destination node, but in the
following it can no longer pass other outgoing edges of the initial node. We thus propose to store
tokens on the outgoing edges of initial nodes. Each of these tokens is offered to the respective initial
edge.

For actions, it even is not clear where control tokens are actually held, since no details are given
by the specification, except [UML05, p. 302]:

“When completed, an action execution offers object tokens on all its output pins and
control tokens on all its outgoing control edges.”

We, therefore, also hold control tokens directly on the outgoing edges of actions. These decisions
are reflected by the controlTokens-function in our formalization which is specified in Section 5.2.

4.3.3 Confusion of the reader due to distributed information

Accept event actions without incoming edges are started with the onset of the activity. This is
stated in [UML05, p. 229]:

“If an AcceptEventAction has no incoming edges, then the action starts when the contain-
ing activity or structured node does, whichever most immediately contains the action.”

The reader, however, is confused when further considering the description of interruptible activity
regions [UML05, p. 367]:

“AcceptEventActions in the region that do not have incoming edges are enabled only
when a token enters the region, even if the token is not directed at the accept event
action.”

Thus, not every accept event action is activated when the activity starts. Ambiguity often arises,
because related information is distributed among multiple UML elements in the specification. Thus,
the ambitious reader can never be sure to have understood an element without considering the whole
document.

24

4.3.4 Termination of accept event actions without incoming edges

As described before, accept event actions without incoming edges contained in interruptible activity
regions are enabled when a flow enters the region. It is, however, not clear when these actions are
terminated, because, according to [UML05, p. 229], they stay active (infinitely?):

“In addition, an AcceptEventAction with no incoming edges remains enabled after it
accepts an event. It does not terminate after accepting an event and outputting a value,
but continues to wait for other events.”

It is surely reasonable that these actions do not stay enabled after the region has been interrupted.
This is reflected by our rules in Section 5.6.5.3.

4.3.5 Actions without incoming edges

Actions without incoming edges are started when the associated activity starts [UML05, p. 365]. This
statement is inappropriately located in the description of initial nodes (and not in the description of
actions). Besides, it runs contrary to accept event actions regarding interruptible activity regions.
Accept event actions are also started when the activity starts, but only if they are not contained in
a region as described in Section 4.3.4. Since “accept event action” subsets “action”, it is no longer
clear what should be done with other types of actions in interruptible activity regions. We decided
to activate all actions except accept event actions without incoming edges, even if they are contained
in those regions.

4.3.6 Actions without incoming edges but with input pins

Another confusion arises when considering actions without incoming edges but with input pins. It
does not make sense to start these actions without any data, thus we do not start these actions when
the activity starts.

4.3.7 Data tokens outrun control tokens

The steps of starting an action are detailed in [UML05, p. 302]:

“The steps of executing an action with control and data flow are as follows:

1. An action execution is created when all its object flow and control flow prerequisites
have been satisfied (implicit join). . . . The flow prerequisite is satisfied when all of
the input pins are offered tokens and accept them all at once, precluding them from
being consumed by any other actions. This ensures that multiple action executions
competing for tokens do not accept only some of the tokens they need to begin,
causing deadlock as each execution waits for tokens that are already taken by others.

2. An action execution consumes the input control and object tokens and removes
them from the sources of control edges and from input pins. The action execution
is now enabled and may begin execution. If multiple control tokens are available on
a single edge, they are all consumed.”

Consider Figure 4.3. In a) the control and object flow prerequisites are given, thus an action
execution can be created (see b). Data tokens are moved to the input pins of action B, but the
control token which was used for creation is still located at the source edge. Since this control token
already contributed to the activation of action B, it should be removed. Otherwise, the control token
would continue to create further executions – an unwelcome effect in this case – since it has already
been “taken” before. Further confusion arises when incorporating a guard that changes after an
action execution has been created. In c) the guard switched to “false”, and traversal of the control
token over this edge when enabling the execution is not immediately obvious.

We, therefore, call this problem “outrun of control tokens”. In our formalization in chapter 5, we
deviate from the specification by removing control tokens from source edges when creating action
executions.

25

A

B

[true]

ActionExecution created

A

B

[true]

A

B

[false]

a) b) c)

ActionExecution enabled

() ???

Figure 4.3: Faster data tokens

4.3.8 Buffering of tokens at fork nodes

Buffering of tokens at fork nodes has been introduced late in the specification process. In [UML03,
p. 334]

“Tokens arriving at a fork are duplicated across the outgoing edges. Tokens offered by the
incoming edge are all offered to the outgoing edges. When an offered token is accepted
on all the outgoing edges, duplicates of the token are made and one copy traverses each
edge.”

This has been changed in the subsequent intermediate [UML04] and final version of the specification.
The final version describes [UML05, p. 363], that

“Tokens arriving at a fork are duplicated across the outgoing edges. If at least one
outgoing edge accepts the token, duplicates of the token are made and one copy traverses
each edge that accepts the token. The outgoing edges that did not accept the token due
to failure of their targets to accept it, keep their copy in an implicit FIFO queue until
it can be accepted by the target. The rest of the outgoing edges do not receive a token
(these are the ones with failing guards).”

Our motivation for the introduction of buffering is shown in Figure 4.4 a). Suppose that action A
offers a token, and action D does not yet. Without buffering, action B starts and consumes the
token, and action C cannot start if D now offers a token. This is possible, however, if the token
is buffered at the right outgoing edge of the fork node. Figure 4.4 b) illustrates a problem with
buffering at outgoing edges of fork nodes. If x > 0 when A emits a token, C cannot start due to a
missing token on the right incoming edge. Action B starts, and the token is buffered at the outgoing
edge of the fork node. Using the buffered token, C can start as soon as a token is provided on the
other incoming edge, but the guard may have switched to “false” in the meantime. This problem
can be compared to the “outrun of control tokens” presented in Section 4.3.7.

Buffering of tokens at fork nodes would also break the intuitive notion of control nodes acting as
“traffic switches”. Nevertheless we see that buffering is useful but propose to hold these tokens on
incoming edges of destination nodes rather than on outgoing edges of fork nodes. If the whole path
is open from the source node to a destination node that currently cannot consume the token, it is
buffered directly at the destination node. This reduces the issues with guards to a certain extend.

4.4 Problems due to missing information

4.4.1 Context object for call behavior action

A call behavior action takes a behavior to invoke as an argument. Parameters of the action are
mapped to corresponding activity parameter nodes. Although not stated explicitly, an activity

26

a) b)
A

CB

D

A

C

B [x>0]

Figure 4.4: Motivation and problem with buffering at fork nodes

execution has to be created, which represents the invocation. It is, however, not clear from the
specification which context object is to be used for this execution. Without any context object,
guards cannot refer to its attributes and relationships. It is also not useful to create a new context
object on the fly.

It is therefore necessary to identify the context object for a call behavior action. Thus, we use the
context object of the current activity execution for the newly created execution. However, we wish
to give the developer freedom by defining an explicit semantic variation point for the determination
of context objects. To this end, we define a tagged value called “context”, which can be applied to
call behavior actions (see Figure 4.4.1). We allow for XPath [Kay04] expressions for the computation
of the context in the same way as we use them for the configuration of signal targets [Sar05]. The
context object to use is computed at runtime by evaluating the expression which navigates the
current object graph.

<<metaclass>>
CallAction

context : String

<<stereotype>>
CallContext

Figure 4.5: Definition of the semantic variation point for context objects

4.4.2 Which transitions to execute

The specification does not include any information on how possible transitions are determined and
how many are executed concurrently. We rely on the nondeterminism of our chosen formalism –
Abstract State Machines – to provide the maximum freedom in our specification. We also provide
a slight modification of the rules, to obtain the execution of all possible transitions (see discussion
in Section 5.7.9). Our tool implementation takes this approach, due to practical reasons.

4.4.3 Multiple callers with “isSingleExecution”

If an activity is marked as “isSingleExecution” only one execution of this activity exists at a
time [UML05, p. 307]. Problems arise if multiple call behavior actions call this kind of activity
concurrently. When the activity execution terminates, all calling actions must terminate at once.
This scenario is not discussed in the specification. Besides, the specification allows for lower and
upper specifications on output pins, which determine the minimum and maximum number of tokens
that have to be available for termination. These specifications must not be in conflict with each
other for call behavior actions. We allow for multiple callers but, for the sake of simplicity, we define
lower = upper = 1 for output pins of call behavior actions.

27

4.4.4 Interruptible activity regions

If an interrupting edge is passed, all actions contained within the interrupted region are aborted,
and all tokens are removed. In Figure 4.6 a), flow 3 is removed if the interrupting edge 1 is passed.
Concurrent transitions beyond interrupted regions are, however, executed (flow 2) [UML05, p. 367].

a) c)

12

3

{singleInterrupt=true}

b)

{priority=1} {priority=2}1

2

{ignoreFlowIntoInterruptedRegion=true}
3

Figure 4.6: Multiple interrupting edges

4.4.4.1 Flows entering interruptible activity regions

One problem relates to flows into interrupted regions. When considering Figure 4.6 b), it is unclear
whether or not the concurrent flows 2 and 3 have to be removed, when the interrupting edge 1 is
being passed. Since both cases, allowing and preventing the transitions, are conceivable, we define
a variation point on how to handle flows entering interrupted regions. If “ignoreFlowIntoInterrupt-
edRegions” is set to “true”, incoming flows are removed when a region is interrupted.

4.4.4.2 Multiple interrupting edges

Multiple edges can interrupt an interruptible activity region. Since, according to the specification,
concurrent transitions are not interrupted, it can be assumed that concurrent interrupting edges are
also passed if tokens are available. We, however, think that there are scenarios where it may be
useful that only one interrupting edge is passed if mutually exclusive paths are to be taken. We thus
also provide a semantic variation point for specifying the intended behavior. In Figure 4.6 c), this
is shown by introducing a “singleInterrupt” tag for the region, and “priority”-tags for the edges. If
“singleInterrupt” is set to “true”, only the interrupting edge with the highest priority is passed.

4.4.4.3 Aborting nested interruptible activity regions

Interruptible activity regions, being activity groups, are also allowed to be nested. A major deficiency
of the UML specification is missing information about how to deal with them. According to the
specification [UML05, p. 323],“no node or edge in a group may be contained by its subgroups or its
containing groups, transitively”. This means that, when a region is aborted, its nested regions are
not. To avoid this unexpected behavior we propose to interrupt all nested regions.

4.4.4.4 AcceptEventActions in nested interruptible activity regions

According to [UML05, p. 367],

“AcceptEventActions in the region that do not have incoming edges are enabled only
when a token enters the region, even if the token is not directed at the accept event
action.”

28

It is, however, not clear how to treat accept event actions without incoming edges in nested regions.
We present another variation point, called “regionActivationPolicy”, which has options of activating
accept event actions on flows into the containing (“OnRegionFlow”) or parent region (“OnParent-
Flow”). A similar tagged value is applied for re-activating accept event actions: if such an action
does not have any incoming edges, it remains active [UML05, p. 299]. In our opinion, this is only
useful as long as there are tokens in the containing region or parent region. We thus also permit the
configuration of the “regionReactivationPolicy”.

4.4.4.5 All variation points for interruptible activity regions

All variation points relating to interruptible activity regions are shown in Figure 4.7.

<<metaclass>>
InterruptibleActivityRegion

singleInterrupt : Boolean = true
ignoreFlowIntoInterruptedRegion : Boolean = false
regionActivationPolicy : ActivationKind = OnParentFlow
regionReactivationPolicy : ReactivationKind = OnRegionActive

<<stereotype>>
InterruptibleActivityRegionHandling

<<metaclass>>
ActivityEdge

priority : Integer = 0

<<stereotype>>
InterruptPriority

OnParentFlow
OnRegionFlow

<<enumeration>>
ActivationKind

OnParentActive
OnRegionActive

<<enumeration>>
ReactivationKind

only for interrupting
edges

Figure 4.7: Definition of semantic variation points for InterruptibleActivityRegion

29

30

Chapter 5

An ASM Semantics for UML 2
Activity Diagrams

This chapter describes the ASM semantics for the subset of UML 2 activity diagrams as defined
in Section 2. The resulting rules can be traced back to requirements present in or absent from the
UML specification. The ASM formalization reveals topics where the UML specification is unclear
or not intuitional, and serves as a basis for tool support.

Section 5.1 introduces relevant terms and gives an overview of the mapping approach. Section 5.2
defines basic ASM domains and the mapping of the UML 2 meta model to ASMs. Tags for configuring
the semantics are given in Section 5.3. The initialization of the ASMs is presented in Section 5.4.
Section 5.5 deals with activities and the event-handling mechanism. The life cycle of Actions,
including execution of the supported kinds of actions, CallBehaviorAction, CallOperationAction,
AcceptEventAction, SendSignalAction and BroadcastSignalAction, is described in Section 5.6. The
semantics of token flow and execution of transitions is presented in Sections 5.7 and 5.8. Finally,
Section 5.9 discusses related work in formalizing UML activity diagrams and gives an outlook for
possible extensions and further work.

We specify the ASM domains and macros mostly in a top-down-approach, i.e. elements are often
used before they are defined in our specification. In the PDF-version of this thesis, hyperlinks can
be used to navigate between the ASM rules. Rule calls reference the definition of the rules’ body,
but only if it is not contained in the current section. All ASM functions are written in italics, and
domain names are additionally colored blue. ASM operators are marked in bold.

5.1 Overview

According to our vision of Model-Driven Development described in Section 1.2, we use class diagrams Classifiers and

behaviorsfor modeling the static structure of a system. The control flow of the application (i.e., the behavior) is
modeled with UML 2 activity diagrams, which are associated with “active” classes. Figure 5.1 shows
the relevant part of the UML 2 meta model for behaviored classifiers (taken from [UML05, p. 412]).
These classifiers, which are classes in our case, can have an associated behavior. Whereas UML 2
behaviors also comprise interactions and state machines, we only support activities as behaviors.
Regarding the relationship between behaviored classifiers and behaviors, the UML specification also
states that [UML05, p. 308]

“The classifier, if any, is referred to as the context of the activity. At runtime, the activity
has access to the attributes and operations of its context object and any objects linked
to the context object, transitively.”

Therefore, guards of activity edges can refer to attributes in the related context class, and actions
can invoke its methods.

Activities contain actions, which specify transformations on the state of the system, and are not Actions

31

Behaviored
Classifier

+classifierBehavior

0..1

0..1

+context
*0..1

Classifier

Behavior

Activity

Figure 5.1: UML 2 meta model of behaviored classifiers

further decomposed. The specification proposes a multitude of different types of actions. As we
want to leave ordinary programming tasks to the developer and only provide a higher-level view of
the control flow by using activity diagrams, we think it is not useful to support fine-grained actions.
Examples of such actions include ReadVariableAction [UML05, p. 267], which retrieves the values
of a variable, or CreateLinkAction [UML05, p. 243], which is used to link objects. These tasks can
be implemented more efficiently by using a normal programming language. We, therefore, support
only the following types of actions:

CallBehaviorAction [UML05, p. 237]
Invokes a behavior (i.e. an activity in our case). Recursive calls are allowed.

CallOperationAction [UML05, p. 239]
Invokes a method. Methods contain custom code, written in an ordinary programming lan-
guage.

AcceptEventAction [UML05, p. 228]
Waits for an event to occur. We support signal and time events.

SendSignalAction [UML05, p. 273]
Creates a signal instance from its inputs and sends it to a specific activity execution.

BroadcastSignalAction [UML05, p. 235]
Sends a signal instance to multiple activity executions.

Section 5.6 deals with the life cycle of actions.
Similar to objects representing instances of classes at runtime, “executions” symbolize runtimeExecutions

entities of activities and actions [UML05, p. 285]:

“An action execution corresponds to the execution of a particular action. Similarly, an
activity execution is the execution of an activity, ultimately including the executions of
actions within it. Each action in an activity may execute zero, one, or more times for
each activity execution.”

Each instance of an active (i.e. behavioral) class has an associated activity execution. Figure 5.2
shows the relationship between behaviored classes, activities, actions and their executions. Activity
and action executions are mapped to asynchronously executing ASM agents. Each activity execution
owns an event queue, which is polled by the activity execution controller, the ASM agent for an
activity execution. Action executions use this queue to communicate with the corresponding activity
execution, e.g. to inform it when the action execution has terminated. Signal events sent to an

32

:myObject

:myActivityExecution

+execution+context
Action

ActionExecution

ActionExecution

ActionExecution

Action

Activity Execution

:anotherObject

:anotherActivityExec

+classifierBehavior+context
Action

context object
ASM

ASM

ASMASM

ASM

MyClass MyActivity

+classifierBehavior

+context

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

Action ActionExecution ASM

a behaviored
classifier

context object

Activity Execution

a behavior

Figure 5.2: Mapping UML activity diagrams to Multi-Agent ASMs

activity execution are also stored in its event queue. Event handling and the controller loop are
dealt with in Sections 5.5.1 and 5.5.2.

We use an interpreter approach for executing activities with ASMs. The considered subset of Interpreter

approachthe UML 2 meta model for activity diagrams is translated to ASM domains. These domains are
initialized with instances of concrete, syntactically and semantically correct activity diagrams to be
executed and do not change during execution of the activities (and are therefore static domains).
The mapping is presented in Section 5.2.2. We decided to use interpretation rather than compilation
because it is easier to understand and less prone to errors. Moreover, modification of the ASM rules
and establishing new ones is simplified, which is of particular importance when considering revisions
and future versions of the UML specification.

As already mentioned in chapter 2, the semantics of activities is based on token flow [UML05, Token flow

p. 308]. Object nodes, like input pins for actions or central buffer nodes, can hold data tokens,
which flow along object flow edges. Control tokens can rest on actions and initial nodes, and flow
along control flow edges. The current positions of all data and control tokens constitute the current
configuration of an activity execution. Tokens resting on nodes can lead to transitions, which in
turn can lead to the execution of other actions. ASM rules for the computation and execution of
transitions are described in Sections 5.7 and 5.8.

We first present basic definitions, including the mapping of the UML 2 meta model to ASM
domains, in the following section.

5.2 Basic definitions

5.2.1 Predefined base domains

We introduce the following common domains for basic data types, including natural numbers, strings,
boolean values and a not further specified time domain.

static domain Nat natural numbers
static domain String strings

33

static domain Boolean boolean values
static domain Time time values

We also define a domain for behaviored classifiers, together with a function classifierBehavior which
maps to the association between “Behaviored Classifier” and “Behavior” shown in Figure 5.1. To
model instances of a behaviored classifier we use the BehavioredObject domain, which is a subset of
a domain for all objects. The classOf function returns the classifier for a specified instance. We use
these domains and function for starting the interpreter in Section 5.4. New activity executions are
started for elements of the domain BehavioredObject.

shared domain Classifier
shared domain BehavioredClassifier ⊆ Classifier
static classifierBehavior : BehavioredClassifier → Behavior
shared domain Object
shared domain BehavioredObject ⊆ Object
static classOf : Object → Classifier

We deliberately do not conform to the UML specification regarding the mapping of classes and
instances (there is no UML element called BehavioredObject), because we focus on the accurate
mapping of activity diagrams, and do not intend to provide a comprehensive formalization of other
UML packages. The UML Semantics Project [UML06] aims at providing such “a definitive and
complete formal semantics foundation for the UML2.0 standard”.

Actions of type CallBehaviorAction invoke methods on objects. To leave open how programming
language code is represented, we introduce an abstract Code domain for executable code.

static domain Code

5.2.2 UML 2 meta model to ASM mapping

This section presents the mapping of the used subset of the UML meta model, which was introduced
in Figure 2.3, to ASM domains and functions. Each class from the meta model is mapped to an ASM
domain. Attributes and associations are translated to ASM functions, which yield the particular
value. An example is shown in Figure 5.3, which maps to the following ASM rules:

static domain ActivityNode =def . . . (see below for a complete definition)
static incoming , outgoing : ActivityNode → P(ActivityEdge)
static domain ControlFlow
static domain ObjectFlow
static domain Element =def ActivityEdge ∪ . . .
static domain ActivityEdge =def ControlFlow ∪ObjectFlow
static source, target : ActivityEdge → ActivityNode

Note that all domains are static, meaning that they do not change during the execution of the ASM
rules. This is because we assume the domains to be initialized with concrete instances of activities,
before the actual execution of the interpreter begins.

The following ASM functions represent the subset of the UML 2 meta model for activity diagrams,Activity

illustrated in Figure 2.3. These functions will be used by the interpreter for executing the diagrams.
We start by modeling the “Activity” class, together with its collections of nodes (node) and edges
(edge). If an activity is marked as “isSingleExecution” [UML05, p. 307], there exists only one
execution of the activity. Further invocations do not result in the creation of new activity executions,
but in issuing new tokens in the existing instance. Activities can also contain groups, interruptible
activity region being the only group we support.

static domain Activity
static node : Activity → P(ActivityNode)
static edge : Activity → P(ActivityEdge)
static isSingleExecution : Activity → Boolean
static group : Activity → P(ActivityGroup)

34

*1
+target +incoming

*1

+source +outgoing

ObjectFlow ControlFlow

ActivityNode
(from FundamentalActivities) ActivityEdge

Element
(from Kernel)

Figure 5.3: Mapping the UML 2 meta model to ASMs

We also bring in a domain for the Behavior class. Behaviors can have parameters [UML05, p. 417], Behavior

activity parameter nodes for activities map to.

static domain Behavior =def Activity
static ownedParameters : Behavior → Parameter∗

The next paragraphs deal with actions. According to [UML05, p. 213] Action

“An action is the fundamental unit of behavior specification. An action takes a set of
inputs and converts them into a set of outputs, though either or both sets may be empty.”

We introduce call behavior actions, which call other behaviors (i.e. activities). Call operation actions
represent method invocations, the target object is provided by the target parameter. The operation
to call is specified by operation. Both types of actions derive from the abstract class “CallAction”,
which provides an attribute indicating whether the call is synchronous or asynchronous as well as a
list of results.

static domain CallBehaviorAction
static behavior : CallBehaviorAction → Behavior
static domain CallOperationAction
static target : CallOperationAction → InputPin
static operation : CallOperationAction → Operation
static domain Operation

static domain CallAction =def CallBehaviorAction ∪ CallOperationAction
static result : CallAction → OutputPin∗

static isSynchronous : CallAction → Boolean

A send signal action creates a signal instance of the type specified in signal and sends it to the
target object. It inherits from “InvocationAction”, which defines an argument function. The at-
tributes used for creating the signal instance are provided by this function. A broadcast signal action
transmits a signal to multiple targets. Since the computation of those targets is left open in the
UML specification, there is no appropriate parameter specified. We will use a monitored function,
defined in Section 5.6.5.4, which provides those target objects.

Accept event actions wait for events to occur, as determined by trigger . We deviate from the
specification in this point by only allowing exactly one trigger for each accept event action (the meta
model allows a set of triggers). The reason is, that graphical modeling of those actions with multiple
triggers is not feasible.

35

Actions use the input and output collections of pins, constituting their input and output param-
eters. Data tokens can flow into input pins and out of output pins. The before-mentioned argument
and result functions map to subsets of input and output . This is indicated by “subsets”-properties
in the meta model, e.g. [UML05, p. 217].

static domain SendSignalAction
static target : SendSignalAction → InputPin
static signal : SendSignalAction → Signal
static domain BroadcastSignalAction
static signal : BroadcastSignalAction → Signal

static domain InvocationAction =def CallAction ∪ SendSignalAction ∪ BroadcastSignalAction
static argument : InvocationAction → InputPin∗

static domain AcceptEventAction
static trigger : AcceptEventAction → Trigger

static domain Action =def InvocationAction ∪AcceptEventAction
static input : Action → InputPin∗

static output : Action → OutputPin∗

Control nodes determine the token flow of activity diagrams. Token flow starts at initial nodes.ControlNode

Decision nodes route tokens by using guards, which refer to attributes of the context object of the
current activity execution, or – in case of data tokens – to the token value. Merge nodes and join
nodes merge multiple flows into one, whereas join nodes also synchronize the incoming flows. Fork
nodes split one flow into multiple parallel flows, and token flow terminates at final nodes. Section
5.7 on flow computation discusses the semantics of each type of node in detail.

static domain DecisionNode
static domain MergeNode
static domain ForkNode
static domain JoinNode
static domain InitialNode

static domain ActivityFinalNode
static domain FlowFinalNode
static domain FinalNode =def ActivityFinalNode ∪ FlowFinalNode

static domain ControlNode =def DecisionNode ∪MergeNode ∪ ForkNode ∪ JoinNode
∪FinalNode ∪ InitialNode

Activity edges are used to specify the order of execution of actions. Control tokens flow along controlActivityEdge

edges, and data tokens flow along object flow edges, which target object nodes, such as input pins.
The source and target functions determine the source and target node. We extend the specification
by allowing edges to interrupt multiple interruptible activity regions (as specified by the interrupts
function), rather than only one. Each edge can also have a guard , which is especially used for the
decision nodes as described in chapter 2.

static domain ControlFlow
static domain ObjectFlow

static domain ActivityEdge =def ControlFlow ∪ObjectFlow
static source, target : ActivityEdge → ActivityNode
static interrupts : ActivityEdge → P(InterruptibleActivityRegion)
static guard : ActivityEdge → String

36

Object nodes are sources or targets of object flows and hold data tokens. As introduced above,ObjectNode

input pins and output pins define parameters and results of actions. Pins can have lower and upper
specifications, which determine the minimum and maximum number of data tokens taken for a single
execution of an action. The default values are 1. Central buffer nodes act as an intermediate buffer for
data tokens, and activity parameter nodes model incoming and outgoing parameters for activities.
Activity parameter nodes map to the corresponding parameters of the behavior representing the
activity. All object nodes can have an upperBound , which defines the maximum number of tokens
the node can hold. The upper bound defaults to infinite.

static domain CentralBufferNode

static domain ActivityParameterNode
static parameter : ActivityParameterNode → Parameter
static domain ParameterDirectionKind =def {in, inout, out, return}
static domain Parameter
static direction : Parameter → ParameterDirectionKind

static domain InputPin
static domain OutputPin
static domain Pin =def InputPin ∪OutputPin
static upper , lower : Pin → Nat

static domain ObjectNode =def CentralBufferNode ∪ Pin ∪ActivityParameterNode
monitored upperBound : ObjectNode → Nat

ActivityNode is the common base class for actions, control nodes and object nodes. The functions ActivityNode

incoming and outgoing return sets of incoming resp. outgoing activity edges. To determine the
interruptible activity regions where a node is contained in, inInterruptibleRegion is used.

static domain ActivityNode =def Action ∪ ControlNode ∪ObjectNode
static incoming , outgoing : ActivityNode → P(ActivityEdge)
static inInterruptibleRegion : ActivityNode → P(InterruptibleActivityRegion)

Interruptible activity regions are a subclass of activity group and denote a set of nodes (stored in Interruptible-

Activity-

Regions

containedNode) which are interrupted when interrupting edges are passed. Interrupting edges can be
control or object flow edges. Interruptible regions can be nested by using subGroup and superGroup.

static domain InterruptibleActivityRegion
static domain ActivityGroup =def InterruptibleActivityRegion
static superGroup : ActivityGroup → ActivityGroup
static subGroup : ActivityGroup → P(ActivityGroup)
static containedNode : ActivityGroup → P(ActivityNode)

Accept event actions are triggered upon occurrence of a given event. We support signal and time Triggers and

Eventsevents. A signal event is issued by send signal or broadcast signal actions, described above. Time
events can be relative, i.e. the event is issued when a relative time span (specified by when) has
elapsed. If not relative, when denotes an absolute time.

static domain Signal
static domain Trigger
static event : Trigger → Event
static domain TimeEvent
static isRelative : TimeEvent → Boolean
static when : TimeEvent → Time
static domain SignalEvent
static signal : SignalEvent → Signal
static domain MessageEvent =def SignalEvent
static domain Event =def TimeEvent ∪MessageEvent

37

The superclass of all UML classes is “Element”. Value specifications denote arbitrary expressions,Miscellaneous

which are used when evaluating UML tags for configuring the execution semantics.

static domain Element =def Behavior ∪ActivityGroup ∪ActivityEdge ∪ActivityNode
static domain ValueSpecification

5.2.3 Abbreviations

This section defines domains that act as abbreviations for a set of existing domains from the UML
meta model. These domains are used throughout this chapter.

static domain ActivityInputParameters =def {n ∈ ActivityParameterNode |
: n.parameter .direction ∈ {in, inout}}

static domain ActivityOutputParameters =def {n ∈ ActivityParameterNode |
: n.parameter .direction ∈ {inout, out, return}}

static domain ControlFlowSource =def Action ∪ InitialNode
static domain ControlFlowDestination =def Action ∪ FinalNode
static domain ObjectFlowSource =def OutputPin ∪ CentralBufferNode

∪ ActivityInputParameters
static domain ObjectFlowDestination =def InputPin ∪ CentralBufferNode

∪ ActivityOutputParameters
static domain FlowSource =def ControlFlowSource ∪ObjectFlowSource
static domain FlowDestination =def ControlFlowDestination ∪ObjectFlowDestination

We also define the following convenience functions, e.g. for accessing single input pins and edges.
Note that some of our macros described later assume an arbitrary order of the incoming and outgoing
edges of activity nodes. This is opposed to the UML specification but does not limit our approach in
any way. The following functions incoming(n, i) and outgoing(n, i), which we do not define further
here, return the i-th element of these (“ordered set” of) edges.

static input : Action×Nat → InputPin
input(n, i) =def elementAt(n, i)
static incoming , outgoing : ActivityNode×Nat → ActivityEdge

static predecessors : ActivityNode → P(ActivityNode)
predecessors(n) =def {p ∈ ActivityNode | ∃e ∈ ActivityEdge : source(e) = p ∧ target(e) = n}

static IsControlFlow : ActivityEdge → Boolean
IsControlFlow(e) =def e ∈ ControlFlow
static IsObjectFlow : ActivityEdge → Boolean
IsObjectFlow(e) =def e ∈ ObjectFlow

5.2.4 Configuration of activity executions

The current configuration of an activity execution is made up of control tokens and data tokens
resting at activity nodes or edges. To model these tokens, we create appropriate domains for tokens.
These domains are defined as controlled [BS03] to be local to a single activity execution. The
function value yields the value for a data token. The domain ValueSpecification holds arbitrary
values, such as numbers, strings, objects, and the like.

controlled domain ControlToken
controlled domain DataToken
static value : DataToken → ValueSpecification
controlled domain Token =def ControlToken ∪DataToken

38

Control tokens can only rest on outgoing edges of actions or initial nodes, data tokens can only rest
on object nodes. We, therefore, define the following functions, controlTokens and dataTokens, which
model tokens on edges and nodes. Lists are used, because we assume a FIFO order [UML05, p. 380]
on tokens. Initially, these functions are set to the empty list for all control flow edges resp. object
nodes.

controlled controlTokens : ControlFlow → ControlToken∗

initially ∀e ∈ ControlFlow : controlTokens(e) = []
constraint ∀e ∈ {e ∈ ControlFlow | e.source /∈ ControlFlowSource} : controlTokens(e) = []

controlled dataTokens : ObjectNode → DataToken∗

initially ∀n ∈ ObjectNode : dataTokens(n) = []

To prevent conflicts in accessing these functions, we only allow the activity execution controller to
move tokens. Concurrent access, therefore, is prevented. Terminating actions, for example, have
to inform the controller by an “Action Termination” event. During processing of this event, the
controller puts tokens on outgoing edges and output pins.

To determine whether a node offers a token (and, thus, a flow computation can be started, see
Section 5.7), the function HasToken is used. It returns true, if control or data tokens are available
on source edges or nodes.

HasToken : FlowSource → Boolean

HasToken(n) =def

 |dataTokens(n)| > 0, if n ∈ ObjectFlowSource
|
⋃
{controlTokens(e) | e ∈ n.outgoing}| > 0, if n ∈ ControlFlowSource

undefined , otherwise

The ASM macro Source is used to find the source node for a data token when executing transitions
(Section 5.8). It returns undefined if the token was already removed, and thus choose fails to select
a node. Note that there cannot be more than one object node holding the same token at any time.
Since each token is cloned during transitions (i.e. moving a token produces a new one), a token is
not reused for other nodes. Note that this is not true for values stored in data tokens (see value
function), which are not copied during transitions.

Source : DataToken → ObjectFlowSource
Source(t) ≡

choose n with n ∈ ObjectNode ∧ t ∈ dataTokens(n)
result := n

5.3 Model-based configuration of semantics

To allow for configuration of the interpreter semantics, we define the following domains. They
represent the tagged values which we specified in chapter 4. The ASM function tagValue is used
to query the model tags at runtime and adjust the interpreter behavior. This will become obvious
later in the ASM rules which execute activity diagrams.

static domain Stereotype
initially Stereotype = {SignalTargeting,SignalBufferingAndReplacement,SignalDistribution,

CallContext, InterruptibleActivityRegionHandling, InterruptPriority}
static domain Tag
initially Tag = {signalPath, buffer, replace, distribute, context, singleInterrupt,

ignoreFlowIntoInterruptedRegion, regionActivationPolicy, regionReactivationPolicy, priority}

static tagValue : Element× Stereotype× Tag → ValueSpecification

39

5.4 ASM initialization

This section deals with the initialization of the ASMs. The static domain Program contains all main
rules which are executed by distinct ASMs.

static domain Program
initially Program = {

Initialize,
ActivityExecutionController, (→ 5.5.2)
ExecuteCallBehaviorActionExecution, (→ 5.6.5.1)
ExecuteCallOperationActionExecution, (→ 5.6.5.2)
ExecuteAcceptEventActionExecution, (→ 5.6.5.3)
ExecuteSendSignalActionExecution, (→ 5.6.5.4)
ExecuteBroadcastSignalActionExecution (→ 5.6.5.4)}

The Initialize macro is executed first and only once to create the initial activity executions for
behavioral objects contained in BehavioredObject. We, therefore, define an initial agent called init ,
and assign the initialization macro as its main rule to the predefined ASM function [BS03].

initially Agent = {init}
initially ASM (init) = Initialize

Initialize ≡
forall object with object ∈ BehavioredObject

StartNewActivityExecution(object .classOf .classifierBehavior , object) (→ 5.5.3)

For each behavioral object, StartNewActivityExecution is called. The first parameter contains
the behaviored classifier (i.e. the activity), an activity execution should be created for. The second
parameter is the behavioral object, which will be assigned to the new execution as its context object.

The next section deals with the life cycle of activities, including creation, execution, termination
and abort. The activity execution controller is described, and its event-handling mechanism.

5.5 Activity

Activity executions model instances of activities at runtime which are executed by distinct ASM
agents. They, therefore, execute in parallel and have a local environment comprising their own token
configuration (Section 5.2.4), event queue (Section 5.5.1) and action executions (Section 5.6). The
domain Agent is predefined for Asynchronous Multi-Agent ASMs [BS03, p. 208] and contains all
agents. We impart a domain ActivityExecution, a subset of Agent, together with some functions,
which are local to each agent.

shared domain ActivityExecution ⊆ Agent

controlled activity : ActivityExecution → Activity
controlled callers : ActivityExecution → P(ActionExecution)
controlled terminated : ActivityExecution → Boolean
controlled context : ActivityExecution → BehavioredObject

The function activity returns the related activity instance, this execution is for. In case the activity
is marked as “isSingleExecution” [UML05, p. 307], multiple call behavior actions can call a single
activity execution. Thus, a set of callers is needed to keep track of all these actions. The activity
execution controller defined below executes until an “Activity Termination Event” has been pro-
cessed, which sets terminated to true. Finally, context contains a link to the context object of the
execution.

40

5.5.1 Events

This section describes the event queue, and the different event types.

5.5.1.1 Event queue

A separate event queue (ASM function eventQueue), is defined for each activity execution. This
queue is shared [BS03], because other agents must have write-access to it. Action executions that
are invoked by this activity execution, must e.g. inform the activity about their termination, and
signals can be received from other activity executions.

shared eventQueue : ActivityExecution → P(ControllerEvent)

The following macros are defined for event queues. Since there is concurrent access to the event
queue from other agents, we use the ASM add- and remove-functions, to prevent inconsistent
update sets [BS03]. EnqueueUniqueEvent is only defined for “Offer” and “Activity Termination”
events (discussed below), to prevent multiple instances of these events in the queue. NextEvent
selects an event to be processed by using a monitored function called chooseEvent . Thus, we leave
the scheduling mechanism open, as it is specified in the UML specification [UML05].

HasEvents : Boolean
HasEvents =def eventQueue(Self) 6= ∅

EnqueueEvent : ActivityExecution× ControllerEvent → Void
EnqueueEvent(exec, event) ≡

add event to eventQueue(exec)

EnqueueUniqueEvent : (OfferEvent ∪ActivityTerminationEvent) → Void
EnqueueUniqueEvent(event) ≡

if event /∈ eventQueue(Self) then
EnqueueEvent(Self , event)

ReEnqueueEvent : ControllerEvent → Void
ReEnqueueEvent(event) ≡

EnqueueEvent(Self , event)

monitored chooseEvent : ControllerEvent

NextEvent : ControllerEvent
NextEvent ≡

local scheduledEvent := chooseEvent
remove scheduledEvent from eventQueue(Self)
result := scheduledEvent

5.5.1.2 Event types

The activity execution and action execution agents communicate by using events. We define the
following event types and functions:

domain ActivityStartEvent =def {input : ActivityParameterNode → DataToken∗}
domain ActivityTerminationEvent
domain OfferEvent
domain SignalReceivedEvent =def {signal : Object}

41

domain ActionEnableEvent =def {execution : ActionExecution; input : InputPin → DataToken∗}
domain ActionTerminationEvent =def {execution : ActionExecution; keepRunning : Boolean;

output : OutputPin → DataToken∗}

domain ControllerEvent ≡ ActivityStartEvent ∪ActivityTerminationEvent ∪OfferEvent
∪SignalReceivedEvent ∪ActionEnableEvent ∪ActionTerminationEvent

ActivityStartEvent When an activity execution is created or an existing one is called (i.e. “isS-
ingleExecution” is true), an “Activity Start” event is issued. When the event is processed,
data tokens are put on incoming activity parameter nodes (as given by the input function)
and control tokens are stored on outgoing edges of initial nodes. See Section 5.5.3.

ActivityTerminationEvent When an activity final node is reached, an “Activity Termination”
event is generated. Outputs are written to the output pins of all callers and the activity
execution controller is terminated. See Section 5.5.4.

OfferEvent If there are tokens on control flow or object flow sources, an “Offer” event is created.
There is at most one offer event in the event queue. And with an offer event at hand, flow
computation is initiated (see Section 5.7).

SignalReceivedEvent A “Signal Received” event marks the receipt of a signal instance, which is
contained in signal . The signal was sent by send signal or broadcast signal actions included in
the same or in other activities. See Section 5.6.5.4 on signals.

ActionEnableEvent An “Action Enable” event is generated if an action execution (function exe-
cution) is created. The subsequent enabling step removes data tokens from the input pins of
the action and starts its execution (see Figure 5.4 a). The input data are contained in function
input . Note that there can be multiple data tokens on each input pin for one action execution.
See also Section 5.6.2.

a)

A

b)

ActionExecution has terminated

A

ActionExecution is enabled
(and now running)

Figure 5.4: Enabling and termination of action executions

ActionTerminationEvent When an action execution finishes, it stores an “Action Termination”
event in the event queue of the associated activity execution. Outputs of the terminated
execution are stored in output , and control tokens are issued on the outgoing edges (see Figure
5.4 b). Accept event actions without incoming edges possibly have to be kept “running”, as
discussed in Section 5.6.5.3. This is indicated by keepRunning .

5.5.2 Controller loop

When a new activity execution has been started, it executes the ActivityExecutionController
rule. The activity execution controller processes events from the associated event queue, until
terminated is set to true by a handled “Activity Termination” event.

42

ActivityExecutionController ≡
local event : ControllerEvent
if ¬Self .terminated then

if HasEvents then
event := NextEvent (→ 5.5.1.1)
seq
case event of

ActivityStartEvent :
HandleActivityStartEvent(event) (→ 5.5.3)

ActivityTerminationEvent :
HandleActivityTerminationEvent (→ 5.5.4)

ActionEnableEvent :
HandleActionEnableEvent(event) (→ 5.6.2)

ActionTerminationEvent :
HandleActionTerminationEvent(event) (→ 5.6.3)

SignalReceivedEvent :
HandleSignalReceivedEvent(event) (→ 5.6.5.4)

OfferEvent :
HandleOfferEvent (→ 5.5.6)

The handling of these events is discussed in subsequent sections.

5.5.3 Start

The creation of new activity executions is handled by the StartNewActivityExecution rule.
Two cases have to be differentiated:

1. “isSingleExecution” [UML05, p. 307] is false, i.e. each call of the rule creates a new, distinct
execution.

2. If there is only a single execution, only the first invocation of the rule starts a new activity
execution. All further calls result in reusing the existing execution and issuing new control
and data tokens in it.

The else-part handles the first case. A new activity execution is created by using the ASM new
keyword. The functions activity and context are initialized according to the parameters of the rule,
and terminated is set to false. If there is a calling action execution (see call behavior action in
Section 5.6.5.1), it is assigned to callers. By assigning the ActivityExecutionController-rule
to the predefined ASM -function, the execution of the controller loop is started. Finally, an “Activity
Start” event is enqueued in the event queue of the newly created activity execution. Handling of
this event is discussed below.

If there is only a single execution, the existing (unique) execution is chosen by Choose- Execution.
The function callers is updated with the new caller, and a new “Activity Start” event is issued for
the existing execution. Note that, in case of only one execution, it must be guaranteed that further
calls refer to the same context object. This is not reflected in our rules.

StartNewActivityExecution : Activity× BehavioredObject → ActivityExecution
StartNewActivityExecution(activity , context) ≡

result := StartNewActivityExecution(activity , context , ∅, undefined)

StartNewActivityExecution : Activity× BehavioredObject
×P(ActivityParameterNode×DataToken∗)×ActionExecution → ActivityExecution

StartNewActivityExecution(activity , context , input , callingExecution) ≡
if activity .isSingleExecution ∧ IsRunning(activity) then

43

let
exec = ChooseExecution(activity)

in
if callingExecution 6= undefined then

exec.callers := exec.callers ∪ {callingExecution}
EnqueueEvent(exec, ActivityStartEvent(input)) (→ 5.5.1.1)
result := exec

else
let

exec = new(ActivityExecution)
in

exec.activity := activity
exec.terminated := false
exec.context := context
if callingExecution 6= undefined then

exec.callers := {callingExecution}
else

exec.callers := ∅
ASM (exec) := ActivityExecutionController
EnqueueEvent(exec, ActivityStartEvent(input)) (→ 5.5.1.1)
result := exec

IsRunning : Activity → Boolean
IsRunning(activity) =def ∃exec ∈ ActivityExecution : exec.activity = activity ∧ ¬exec.terminated

ChooseExecution : Activity → ActivityExecution
ChooseExecution(activity) ≡

choose exec with exec ∈ ActivityExecution ∧ exec.activity = activity ∧ ¬exec.terminated
result := exec

The rule HandleActivityStartEvent is called by the activity execution controller 5.5.2, and
performs the creation of the initial tokens. It first fills all input parameter nodes with data tokens
given by the input function of the “Activity Start” event (see 5.5.1). According to the specification
[UML05, p. 365]

“An initial node is a starting point for executing an activity . . . A control token is placed
at the initial node when the activity starts, . . . If an activity has more than one initial
node, then invoking the activity starts multiple flows, one at each initial node.”

We, therefore, create new control tokens for each outgoing edge of each initial node. The reason for
putting control tokens on edges, rather than on nodes as described in the specification, is discussed
in Section 4.3.2. Accept event actions without incoming edges which are not contained in any
interruptible activity region also have to be activated. This, however is not evident when referring
solely to the section on accept event actions in [UML05, p. 365]

“If an AcceptEventAction has no incoming edges, then the action starts when the contain-
ing activity or structured node does, whichever most immediately contains the action.”

If the section on interruptible activity regions is taken into account [UML05, p. 367], it is obvious,
that we have to ignore accept event actions contained in those regions.

“AcceptEventActions in the region that do not have incoming edges are enabled only
when a token enters the region, even if the token is not directed at the accept event
action.”

44

Other kinds of actions without incoming edges are also started:

“In addition, when an activity starts, control tokens are placed at actions and structured
nodes that have no incoming edges” [UML05, p. 365]

The specification is missing that actions can also have input pins only. Data tokens can start these
actions. Thus, we also have to make sure that the set of input pins is empty when implementing
this rule.

HandleActivityStartEvent : ActivityStartEvent → Void
HandleActivityStartEvent(event) ≡

forall parameterNode with parameterNode ∈ (ActivityInputParameters ∩ Self .activity .node)
dataTokens(parameterNode) := dataTokens(parameterNode)] parameterNode.event .input

forall n with n ∈ (InitialNode ∩ Self .activity .node)
forall e with e ∈ n.outgoing

controlTokens(e) := controlTokens(e)⊕ new(ControlToken)
forall n with n ∈ (AcceptEventAction ∩ Self .activity .node) ∧ n.inInterruptibleRegion = ∅

∧ n.incoming = ∅
CreateActionExecution(n, ∅) (→ 5.6.1)

forall n with n ∈ ((Action \AcceptEventAction) ∩ Self .activity .node)
∧ n.incoming = ∅ ∧ n.input = ∅

CreateActionExecution(n, ∅) (→ 5.6.1)
seq
EnqueueUniqueEvent(OfferEvent) (→ 5.5.1.1)

At the end of the rule, an “Offer” event is issued, to indicate that tokens are available for possible
transitions.

5.5.4 Termination

If an activity final node is reached, an “Activity Termination” event is enqueued. The event is
handled by the following rule.

HandleActivityTerminationEvent ≡
forall n with n ∈ (Action ∩ Self .activity .node)

AbortAllActionExecutions(n,Self) (→ 5.6.4)
forall caller with caller ∈ Self .callers

forall n with n ∈ (ActivityOutputParameters ∩ Self .activity .node)
caller .callResult(n) := dataTokens(n)
dataTokens(n) := []

seq
Self .terminated := true

All running actions are aborted. Data tokens contained in output activity parameter nodes are saved
in callResult for each caller of the activity. If “isSingleExecution” is false, which is the normal case,
there is only one caller. The call result is used by the call behavior action to provide the data tokens
for the action termination (and, thus, for the output pins of the call action). Finally, terminated is
set to true, resulting in termination of the current activity execution controller.

5.5.5 Abort

When call behavior actions are aborted, the corresponding activity executions (which were created
by these call actions) must also be terminated. This is achieved by the following rule. Except for
setting the call results, it works like the HandleActivityTerminationEvent rule.

45

AbortActivityExecution : ActivityExecution → Void
AbortActivityExecution(exec) ≡

forall n with n ∈ (Action ∩ Self .activity .node)
AbortAllActionExecutions(n, exec) (→ 5.6.4)

seq
exec.terminated := true

5.5.6 Transitions

In this section we present our main ASM rule for the computation and execution of transitions,
describing the structure of the token flow semantics.

According to the UML specification [UML05], nodes offer tokens on outgoing edges. The exact
working of propagation of token offers and their selection at destination actions, final and object
nodes, however, is neither formally defined, nor adequately discussed in the specification. Our
proposal for transition computation and execution consists of the following main ASM rule that is
executed repeatedly as long as offer events are generated, i.e. control or data tokens are available
for the current activity execution:

HandleOfferEvent ≡
ComputeTokenOffers (→ 5.7.3)
seq
FetchBufferedTokens (→ 5.7.8)
seq
SelectTokenOffers (→ 5.7.5)
seq
RemoveFlowsInInterruptedRegions (→ 5.7.6)
seq
ActivateAcceptEventActions (→ 5.7.7)
seq
BufferTokens (→ 5.7.8)
seq
ExecuteTransition (→ 5.8)
seq
if ∃n ∈ FlowSource : n ∈ Self .activity .node ∧ HasToken(n) then

EnqueueUniqueEvent(OfferEvent) (→ 5.5.1.1)

The ComputeTokenOffers macro computes the spreading of token offers through the activ-
ity graph. After all possible offers have been computed, previously buffered offers are fetched by
FetchBufferedTokens. Then, subsets of all offers are selected by SelectTokenOffers at des-
tination actions, object and final nodes, preparing the traversal of the associated tokens. Note that
selecting token offers can invalidate other, conflicting token offers. Since aborting interruptible ac-
tivity regions can prevent tokens from traversal, the rule RemoveFlowsInInterruptedRegions
removes those selections. Accept event actions without incoming edges contained in interruptible ac-
tivity regions are initialized by ActivateAcceptEventActions. Finally, BufferTokens stores
offers, which have to be delayed due to the buffering semantics of fork nodes. All these rules are
described in detail in Section 5.7.

After all relevant offers have been selected, ExecuteTransition executes the token traversal
and performs the termination of actions and removal of tokens in interrupted regions, as discussed
in Section 5.8.

Finally, since ExecuteTransition selects transitions nondeterministically, and false guards and
missing tokens for join synchronizations can prevent other tokens from flowing, a new offer event is
generated if there are still tokens available.

46

5.6 Action

This section describes the life cycle of action executions. The first subsections deal with creation,
enabling, termination and aborting of action executions. Section 5.6.5 presents the execution rules
for call behavior, call operation, accept event, send signal and broadcast signal actions.

Similar to activity executions, each action execution is modeled as a separate ASM agent. We
introduce a domain ActionExecution which is a subset of the predefined domain Agent.

shared domain ActionExecution ⊆ Agent

A set of ASM functions is defined for all types of action executions. The function node refers to
the action this execution was created for. Input data, which is taken from the input pins of the
action, is provided by input . To obtain the activity execution, where this action execution runs in,
activityExecution is used.

controlled node : ActionExecution → Action
controlled input : ActionExecution → (InputPin → DataToken∗)
controlled activityExecution : ActionExecution → ActivityExecution

The steps of executing an action are detailed in [UML05, p. 302]:

1. “An action execution is created when all its object flow and control flow prerequisites
have been satisfied (implicit join). . . . The flow prerequisite is satisfied when all of
the input pins are offered tokens and accept them all at once, precluding them from
being consumed by any other actions. This ensures that multiple action executions
competing for tokens do not accept only some of the tokens they need to begin,
causing deadlock as each execution waits for tokens that are already taken by others.

2. An action execution consumes the input control and object tokens and removes
them from the sources of control edges and from input pins. The action execution
is now enabled and may begin execution. If multiple control tokens are available on
a single edge, they are all consumed.

3. An action continues executing until it has completed. . . . The detailed semantic of
execution an action and definition of completion depends on the particular subclass
of action.

4. When completed, an action execution offers object tokens on all its output pins
and control tokens on all its outgoing control edges (implicit fork), and it termi-
nates. . . . The output tokens are now available to satisfy the control or object flow
prerequisites for other action executions.”

Item 1 is assured by our flow computation and transition execution algorithm presented in Sections
5.7 and 5.8. When a transition is executed, the macro CreateActionExecution, which will be
discussed later in this section, is called.

After an action execution has been created, an “Action Enable” event is stored in the event
queue (see item 2). HandleActionEnableEvent removes the data tokens from the input pins
and enables the action to start executing. The ASM rules for execution (item 3) of the supported
types of actions are discussed in Section 5.6.5. In contrast to the specification, we already remove all
control tokens from source edges, when creating an action execution. The reason for this deviation
is discussed in Section 4.3.7.

When the action has completed (item 4), an “Action Termination” event is enqueued. Handle-
ActionTerminationEvent stores the results in the output pins and puts new control tokens on
the outgoing edges of the terminated action. This macro is described in Section 5.6.3.

To reflect these (and additional) states of an action execution, the function mode is used:

controlled mode : ActionExecution → ActionExecutionMode

static domain ActionExecutionMode
initially ActionExecutionMode = {created, enabled, running, completed, terminating,

terminated, abortRequested}

47

created When an action execution is created by using CreateActionExecution 5.6.1, its mode
is set to “created”. It does not begin execution until it is enabled. Thus, each action execution
in this mode only executes skip (see Section 5.6.5).

enabled After processing of an “Action Enable” event (see HandleActionEnableEvent in Sec-
tion 5.6.2), the execution mode is set to “enabled”. Some initialization tasks are performed
for some types of action and execution mode is set to “running”.

running The actual task of the action is performed in this mode. After an action has finished
executing, its mode is set to “completed”.

completed In most cases, the results are prepared, and an “Action Termination” event is issued in
this mode. The action execution goes into “terminating” state afterwards.

terminating When terminating, the ASM execution rule is no more applicable and therefore the
corresponding agent is terminated. The execution is, however, still considered not “terminated”
as long as the “Action Termination” event has not been handled. After handling this event,
mode is set to “terminated”.

terminated The execution has terminated and outputs have been written to the output pins.

abortRequested When leaving interruptible activity regions or terminating activity executions, all
contained action executions have to be aborted. In this case, AbortActionExecution (see
Section 5.6.4) is called which sets the execution state to “abortRequested”. If this is observed
by the execution rule, its agent is terminated immediately, by going into “terminated” mode.
Note that in this case, no “Action Termination” event is issued.

5.6.1 Creation

When transitions are executed, control tokens are removed from source edges and data tokens are
moved from source object nodes to targets. If the target of a transition is an action, a new execution
for this action is created [UML05, p. 302]. Our tool (see chapter 6) illustrates this by highlighting
the action border and traversed edges, and by moving control and data tokens to the destination.
An example is shown in Figure 5.5.

A

B

Figure 5.5: Creation of an action execution for action B

The following rule creates new executions for actions. Parameters are the type of action and
input data which are provided through its input pins. A new ASM agent is created by using the
new keyword, and its initial mode is set to “created”.

48

CreateActionExecution : Action× (InputPin → DataToken∗) → Void
CreateActionExecution(n, input) ≡

let
execution = new(ActionExecution)

in
execution.node := n
execution.input := input
execution.activityExecution := Self
execution.mode := created
if n ∈ CallBehaviorAction then

ASM (execution) := ExecuteCallBehaviorActionExecution (→ 5.6.5.1)
if n ∈ CallOperationAction then

ASM (execution) := ExecuteCallOperationActionExecution (→ 5.6.5.2)
if n ∈ AcceptEventAction then

ASM (execution) := ExecuteAcceptEventActionExecution (→ 5.6.5.3)
if n ∈ SendSignalAction then

ASM (execution) := ExecuteSendSignalActionExecution (→ 5.6.5.4)
if n ∈ BroadcastSignalAction then

ASM (execution) := ExecuteBroadcastSignalActionExecution (→ 5.6.5.4)
EnqueueEvent(Self , ActionEnableEvent(execution, input)) (→ 5.5.1.1)

Depending on the concrete type of action, a corresponding rule is assigned to the ASM function,
leading to the start of the agent. Additionally, an “Action Enable” event is enqueued. Handling
this event is discussed next.

5.6.2 Enabling

“Action Enable” events are handled by the following rule. As described at the beginning of Section
5.6, the specification states that all data tokens have to be removed from the input pins of the action:

HandleActionEnableEvent : ActionEnableEvent → Void
HandleActionEnableEvent(ev) ≡

forall inputPin with inputPin ∈ ev .execution.node.input
dataTokens(inputPin) := dataTokens(inputPin)� ev .input(inputPin)

ev .execution.mode := enabled

Control tokens have already been removed from the source edges, as discussed in Section 4.3.7. The
execution is enabled by setting its mode accordingly.

Figure 5.6 shows how our tool (see chapter 6) illustrates the enabling of an action execution.
The Action is highlighted and a token is put alongside.

5.6.3 Termination

When an action execution terminates, control tokens are offered on the outgoing edges and data
tokens for the results are stored in the output pins. An example is illustrated in Figure 5.7. Our
tool (see chapter 6) highlights terminated actions with a red border.

Since we allow lower and upper attributes for pins (pin is a multiplicity element [UML05, p. 90]),
we must put the following constraint on action terminations:

constraint
∀ev ∈ ActionTerminationEvent : ∀outputPin ∈ ev .execution.node.output :
lower(outputPin) ≤ |ev .output(outputPin)| ≤ upper(outputPin)

49

A

B

Figure 5.6: Enabling of an action execution

We, therefore, assume that each action produces “enough” results to be able to terminate. The
actual “Action Termination” event is processed as follows. If there is not enough space left in the
output pins, the event processing has to be deferred by calling ReEnqueueEvent. If there is space
available, control and data tokens are stored. If there is at least one outgoing edge or output pin, an
“Offer” event is generated, indicating possible transitions. Accept event actions without incoming
edges must eventually be kept running. Thus, in this case, mode is not set to “terminated”.

HandleActionTerminationEvent : ActionTerminationEvent → Void
HandleActionTerminationEvent(ev) ≡

if ∀pin ∈ ev .execution.node.output : (|dataTokens(pin)|+ |ev .output(pin)|)
≤ upperBound(pin) then

forall e with e ∈ ev .execution.node.outgoing
controlTokens(e) := controlTokens(e)⊕ new(ControlToken)

forall outputPin with outputPin ∈ ev .execution.node.output
dataTokens(outputPin) := dataTokens(outputPin)] ev .output(outputPin)

if |ev .execution.node.outgoing | > 0 ∨ |ev .execution.node.output | > 0 then
EnqueueUniqueEvent(OfferEvent) (→ 5.5.1.1)

if ¬ev .keepRunning then
ev .execution.mode := terminated

else
ReEnqueueEvent(ev) (→ 5.5.1.1)

5.6.4 Abort

If an interruptible activity region or an activity execution is terminated, all contained actions must
also be aborted. This is implemented by the following rules.

AbortAllActionExecutions : Action×ActivityExecution → Void
AbortAllActionExecutions(n, activityExecution) ≡

forall exec with exec ∈ ActionExecution ∧ exec.mode /∈ {terminating, terminated}
∧ exec.node = n ∧ exec.activityExecution = activityExecution

AbortActionExecution(exec)

AbortActionExecution : ActionExecution → Void
AbortActionExecution(exec) ≡

if exec.mode 6= abortRequested then
exec.mode := abortRequested

50

B

j : int

Figure 5.7: Termination of an action execution

else
if exec.mode 6= terminated then

skip

To abort an action execution, its mode is set to “abortRequested”. The “Abort” rule then waits for
the execution to terminate, which is indicated by its mode set to “terminated”.

5.6.5 Execution

Each type of action fulfills a specific task. This section describes the main rule for each “action”-
agent.

5.6.5.1 CallBehaviorAction

The semantics of a call behavior action is as follows [UML05, p, 238]:

1. “When all the prerequisites of the action execution are satisfied, CallBehaviorAc-
tion invokes its specified behavior with the values on the input pins as arguments.
When the behavior is finished, the output values are put on the output pins. Each
parameter of the behavior of the action provides output to a pin or takes input from
one. . . .

2. If the call is asynchronous, the action completes immediately. . . .

3. An asynchronous invocation completes when its behavior is started, or is at least
ensured to be started at some point. Any return or out values from the invoked
behavior are not passed back to the containing behavior. When an asynchronous
invocation is done, the containing behavior continues regardless of the status of the
invoked behavior. For example, the containing behavior may complete even though
the invoked behavior is not finished.

4. If the call is synchronous, execution of the calling action is blocked until it receives
a reply from the invoked behavior. The reply includes values for any return, out,
or inout parameters.

5. If the call is synchronous, when the execution of the invoked behavior completes,
the result values are placed on the result pins of the call behavior action, and the
execution of the action is complete . . . ”

As stated earlier, we only support activities as valid behaviors. Other possibilities would include
UML interactions and state machines.

The invocation does not start until the execution is in “running” mode. It creates a new activity Creating an

executionexecution by using the StartNewActivityExecution, which was described in Section 5.5.3.
Inputs are provided by the input pins of the call action. Before calling the macro, the inputs must

51

be mapped to the corresponding input activity parameter nodes of the called activity. This is
implemented by PinToParameter. Mapping is done by matching the index of the input pin and
parameter, as specified in [UML05, p. 238]:

“The type, ordering, and multiplicity of an argument or result pin is derived from the
corresponding parameter of the behavior.”

As discussed in Section 4.4.1, it is not clear which object should be supplied as the “contextContext object

object” for a new activity execution of a call behavior action. We leave this option open, by using a
“context” tag, introduced in Section 4.4.1. If this tag is not defined for a call behavior action, the
context object of the current activity execution is used as the context object for the called activity.
If the tag is provided, the following function is used to compute the context object:

monitored computeContext : BehavioredObject× String → BehavioredObject

It takes the current context object and a string as input and computes the object to use as the
context. We leave the meaning of the string parameter, and how computation is actually performed,
open at this point. In Section 4.4.1 we propose to use path expressions, loosely based on XPath
[Kay04], to navigate the current object graph. Context objects are then determined by querying
associations between objects. This is also implemented by our tool described in chapter 6.

If in “running” mode and if the call is synchronous, the action execution waits until the calledisSynchronous

activity execution has terminated. If asynchronous, the action execution immediately goes into
“completed” state. We deviate from the specification (see item 4 above), because we do not model
explicit “reply” messages from objects. This is because we do not want to provide a formalization
for all aspects of the UML 2, including event handling and messaging, as specified by the “Common
Behaviors” packages [UML05].

If an abort is requested (by AbortActionExecution 5.6.4), the invoked activity execution is
terminated. If mode is “completed”, the output activity parameter nodes are mapped to the output
pins of the calling action, by using ParameterToPin. Finally, an “Activity Termination” event is
issued.

controlled calledExecution : ActionExecution → ActivityExecution
controlled callResult : ActionExecution → (ActivityParameterNode → DataToken∗)

ExecuteCallBehaviorActionExecution ≡
local result : OutputPin → DataToken∗

local context : BehavioredObject
if Self .mode = created then

skip
if Self .mode = enabled then

if tagValue(Self .node,CallContext, context) = undefined then
context := Self .activityExecution.context

else
context := computeContext(Self .activityExecution.context ,

tagValue(Self .node,CallContext, context))
seq
Self .calledExecution := StartNewActivityExecution(Self .node.behavior ,

context , {(PinToParameter(n), ts) | (n, ts) ∈ Self .input},Self) (→ 5.5.3)
Self .mode := running

if Self .mode = running then
if Self .node.isSynchronous then

if ¬Self .calledExecution.terminated then
skip

else
Self .mode := completed

else

52

Self .mode := completed
if Self .mode = abortRequested then

AbortActivityExecution(Self .calledExecution) (→ 5.5.5)
Self .mode := terminated

if Self .mode = completed then
forall n with n ∈ (ActivityOutputParameters ∩ Self .node.behavior .node)

result(ParameterToPin(n,Self .node)) := Self .callResult(n)
seq
EnqueueEvent(Self .activityExecution,

ActionTerminationEvent(Self , false, result)) (→ 5.5.1.1)
Self .mode := terminating

ParameterToPin : ActivityParameterNode× CallBehaviorAction → OutputPin
ParameterToPin(n, callAction) ≡

let
outParameters = [p ∈ callAction.behavior .ownedParameters |

p.direction ∈ {inout, out, return}]
in

choose outputPin with outputPin ∈ callAction.result ∧ indexOf (callAction.result ,
outputPin) = indexOf (outParameters,n.parameter)

result := outputPin

PinToParameter : InputPin → ActivityParameterNode
PinToParameter(inputPin) ≡

choose callAction with callAction ∈ CallBehaviorAction
∧ inputPin ∈ callAction.argument

let
inParameters = [p ∈ callAction.behavior .ownedParameters |

p.direction ∈ {in, inout}]
in

choose n with n ∈ ActivityParameterNode ∧ indexOf (callAction.argument ,
inputPin) = indexOf (inParameters,n.parameter)

result := n

5.6.5.2 CallOperationAction

Call operation actions are used for method invocations [UML05, p. 239]:

“The inputs to the action determine the target object and additional actual arguments
of the call.

1. When all the prerequisites of the action execution are satisfied, information com-
prising the operation and the argument pin values of the action execution is created
and transmitted to the target object. The target objects may be local or remote.
The manner of transmitting the call, the amount of time required to transmit it,
the order in which the transmissions reach the various target objects, and the path
for reaching the target objects are undefined.

2. When a call arrives at a target object, it may invoke a behavior in the target object.
. . .

3. If the call is synchronous, when the execution of the invoked behavior completes,
its return results are transmitted back as a reply to the calling action execution.
. . .

53

4. If the call is asynchronous, the caller proceeds immediately and the execution of
the call operation action is complete. Any return or out values from the invoked
operation are not passed back to the containing behavior. If the call is synchronous,
the caller is blocked from further execution until it receives a reply from the invoked
behavior.

5. When the reply transmission arrives at the invoking action execution, the return
result values are placed on the result pins of the call operation action, and the
execution of the action is complete.”

Since we do not provide a semantics for messages and invocations, as specified by the “Common
Behaviors” package of the UML, we do not care about other call mechanisms but direct invocations
of the code. We use the following monitored function to locate a method. A context (i.e., target)
object and the operation to call are provided. An instance of “Code”, which is not further specified
here, is returned:

monitored locateMethod : Object×Operation → Code

Besides, we define two macros, that execute code synchronously resp. asynchronously. Exec-
Code executes one “step” (e.g. one statement) and then returns. A program counter and addi-
tional context information is handled internally. If the code terminates, its outputs are returned.
ExecCodeAsync starts execution of the code and returns immediately, without yielding any out-
put. The function terminated indicates whether execution of the code has finished. In [BFGS05]
and [SB04], an ASM semantics for C#, in terms of an abstract interpreter, is given, that could be
used in our rule. In our tool implementation (see chapter 6), user code is invoked by creating a new
thread. If the call action is synchronous, it waits for the thread to terminate.

ExecCode : Code → (OutputPin → DataToken∗)
ExecCodeAsync : Code → Void

monitored terminated : Code → Boolean

The following rule is executed by the agent for a call operation action. The context object to use is
computed the same way, as it is in the execution rule for call behavior actions (see 5.6.5.1). When
completed, an “Action Termination” event is issued, which includes the result of the (synchronous)
call.

ExecuteCallOperationActionExecution ≡
local code : Code
local output : OutputPin → DataToken∗

if Self .mode = created then
skip

if Self .mode = enabled then
if tagValue(Self .node,CallContext, context) = undefined then

code := locateMethod(Self .node.target ,Self .node.operation)
else

code := locateMethod(computeContext(Self .activityExecution.context ,
tagValue(Self .node,CallContext, context)),

Self .node.operation)
Self .mode := running

if Self .mode = running then
if Self .node.isSynchronous then

if ¬code.terminated then
output := ExecCode(code)

else
Self .mode := completed

else

54

ExecCodeAsync(code)
Self .mode := completed

if Self .mode = abortRequested then
Self .mode := terminated

if Self .mode = completed then
EnqueueEvent(Self .activityExecution,

ActionTerminationEvent(Self , false, output)) (→ 5.5.1.1)
Self .mode := terminating

5.6.5.3 AcceptEventAction

Accept event actions wait for the occurrence of an event meeting a specified condition [UML05,
p. 229]:

“Accept event actions handle event occurrences detected by the object owning the be-
havior . . . Event occurrences are detected by objects independently of actions and the
occurrences are stored by the object. The arrangement of detected event occurrences is
not defined, but it is expected that extensions or profiles will specify such arrangements.”

Since we do not provide a semantics for UML messaging mechanisms (see Section 5.9), we define
event types that are only needed in our context and also store those events at activity executions
instead of context objects mentioned above. We, however, also leave the arrangement of detected
event occurrences open by using the monitored function chooseEvent defined in Section 5.5.1.1.

Regarding the behavior of accept event actions, [UML05, p. 229] also states, that

“If the accept event action is executed and the object detected an event occurrence
matching one of the triggers on the action and the occurrence has not been accepted
by another action or otherwise consumed by another behavior, then the accept event
action completes and outputs a value describing the occurrence. If such a matching
occurrence is not available, the action waits until such an occurrence becomes available,
at which point the action may accept it. In a system with concurrency, several actions
or other behaviors might contend for an available event occurrence. Unless otherwise
specified by an extension or profile, only one action accepts a given occurrence, even if
the occurrence would satisfy multiple concurrently executing actions. If the occurrence
is a signal event occurrence and unmarshall is false, the result value contains a signal
object whose reception by the owning object caused the occurrence. . . . If the occurrence
is a time event occurrence, the result value contains the time at which the occurrence
transpired. . . . ”

We only support time and signal events as valid triggers. Although the UML meta model allows for
multiple triggers to be specified, we use only one trigger. As discussed in Section 5.9, this is useful,
because it is impossible to model multiple triggers graphically for one accept event action.

The execution rule for accept event actions first determines the type of event, and calls subrules
accordingly:

ExecuteAcceptEventActionExecution ≡
let

event = Self .node.trigger .event
in

if event ∈ TimeEvent then
ExecuteWaitTimeActionExecution(event)

else
ExecuteAcceptSignalActionExecution(event)

For time events we introduce a domain for the current time:

55

monitored now : Time

The execution rule is as follows. When enabled, now is used to compute the time to elapse, which is
stored in the function endTime. The computation depends on the meta model function “isRelative”,
which indicates whether the event is relative or absolute. When running, skip is executed until the
timer has elapsed. The “time at which the occurrence transpired” is stored in the output pin of the
accept event action, as required by the UML specification, and an “Action Termination” event is
issued.

controlled endTime : ActionExecution → Time

ExecuteWaitTimeActionExecution(event) ≡
local result : OutputPin → DataToken∗

if Self .mode = created then
skip

if Self .mode = enabled then
if event .isRelative then

Self .endTime := now + event .when
else

Self .endTime := event .when
Self .mode := running

if Self .mode = running then
if now < Self .endTime then

skip
else

forall outputPin with outputPin ∈ Self .node.output
result(outputPin) := [new(DataToken(now))]

seq
EnqueueEvent(Self .activityExecution,ActionTerminationEvent(Self ,

MustStayActive, result)) (→ 5.5.1.1)
if MustStayActive ∧ event .isRelative then

Self .endTime := now + event .when
else

Self .mode := completed
if Self .mode = completed then

Self .mode := terminating
if Self .mode = abortRequested then

Self .mode := terminated

Accept event actions eventually must stay active after activation [UML05, p. 299]

“. . . an AcceptEventAction with no incoming edges remains enabled after it accepts an
event. It does not terminate after accepting an event and outputting a value, but con-
tinues to wait for other events.”

It is not immediately clear from the specification, when the action has to terminate at all (see dis-
cussion in Section 4.3.4). There, it is also stated that “An AcceptEventAction with no incoming
edges and contained by a structured node is terminated when its container is terminated.”. Unfor-
tunately, this statement cannot be applied to interruptible activity regions, because they are not a
UML “structured node”. It is, however, reasonable to use the same rule for interruptible regions.
We, therefore, define the macro MustStayActive. If an accept event action is not contained in
any region, it remains active until termination of the activity execution. If it is contained in a region,
it checks whether the region or any parent regions are active. Parent regions are only tested if the
UML tag “OnParentActive” is set. This is a semantic variation point introduced by us, as described
in Section 4.4.4.

56

MustStayActive : Boolean
MustStayActive =def

Self .node.incoming = ∅ ∧ (Self .node.inInterruptibleRegion = ∅ ∨
(∃r ∈ InterruptibleActivityRegion : Self .node ∈ r .containedNode ∧ (IsActive(r)
∨ (∃r′ ∈ r .parents : IsActive(r′)
∧ ∀r′′ ∈ regionsFromTo(r, r′) :

tagValue(r′′, InterruptibleActivityRegionHandling, regionReactivationPolicy)
= OnParentActive))))

A region is “active”, if it contains tokens or active actions. An action, in turn, is “active” if it has
not been terminated or aborted yet.

IsActive : InterruptibleActivityRegion → Boolean
IsActive(r) =def ∃n ∈ innerNodes(r) : (n ∈ FlowSource ∧ HasToken(n))

∨ (n ∈ Action ∧ IsActive(n))

IsActive : Action → Boolean
IsActive(n) =def ∃exec ∈ ActionExecution : exec.node = n ∧ exec.activityExecution = Self

∧ exec.mode ∈ {created, enabled, running, completed, terminating}

Note that, when dealing with time events, MustStayActive is only useful if the time event is
relative, because absolute event expire only once. This is not indicated in the UML specification.

The other event type we support, are signal events. The execution rule behaves much the same
as ExecuteWaitTimeActionExecution, but waits for a signal instance to be “received”. This is
achieved by setting the function receivedSignal , when processing received signals in HandleSignal-
ReceivedEvent (see Section 5.6.5.4). The function is shared to allow the activity execution agent
to access it.

shared receivedSignal : ActionExecution → Object

The following rule handles accept event actions for signal events. ASM skip is executed until
receivedSignal is set. An “Action Termination” event is issued, and the resulting signal instance is
prepared for the output pin.

ExecuteAcceptSignalActionExecution(event) ≡
local result : OutputPin → DataToken∗

if Self .mode = created then
skip

if Self .mode = enabled then
Self .receivedSignal := undefined
Self .mode := running

if Self .mode = running then
if Self .receivedSignal = undefined then

skip
else

forall outputPin with outputPin ∈ Self .node.output
result(outputPin) := [new(DataToken(Self .receivedSignal))]

seq
EnqueueEvent(Self .activityExecution,ActionTerminationEvent(Self ,

MustStayActive, result)) (→ 5.5.1.1)
if MustStayActive then

Self .receivedSignal := undefined
else

Self .mode := completed
if Self .mode = completed then

Self .mode := terminating

57

if Self .mode = abortRequested then
Self .mode := terminated

5.6.5.4 SendSignalAction and BroadcastSignalAction

This section deals with send signal and broadcast signal actions, which send signal instances to
objects. The specification writes [UML05, p. 274]

1. “When all the prerequisites of the action execution are satisfied, a signal instance
of the type specified by signal is generated from the argument values and his signal
instance is transmitted to the identified target object. . . .

2. When a transmission arrives at a target object, it may invoke behavior in the target
object. . . .

3. A send signal action receives no reply from the invoked behavior; any attempted
reply is simply ignored, and no transmission is performed to the requestor.”

Thus, the following ASM rule for send signal action execution, creates a signal instance and uses
the SendSignal macro discussed below to send it to the specified target :

ExecuteSendSignalActionExecution ≡
if Self .mode = created then

skip
if Self .mode = enabled then

Self .mode := running
if Self .mode = running then

let
signal = createInstance(Self .node.signal , [head(Self .input(pin)).value |

pin ∈ Self .node.argument])
target = head(Self .input(Self .node.target)).value

in
SendSignal(signal , target)
Self .mode := completed

if Self .mode = completed then
EnqueueEvent(Self .activityExecution,

ActionTerminationEvent(Self , false, ∅)) (→ 5.5.1.1)
Self .mode := terminating

if Self .mode = abortRequested then
Self .mode := terminated

Creation of a signal instance is performed by the following monitored function createInstance. The
above rule uses data from the input pins to set the attributes of the signal instance, as required by
the specification.

monitored createInstance : Signal×Object∗ → Object

The macro SendSignal is defined as follows. It takes a signal object and an activity execution,
which is the target of the send action, as parameters. If the activity cannot handle the signal, i.e.
there are no accept event actions for signal events of the type of signal that is sent, it is discarded.
The function CanHandleSignal checks this prerequisite. Note, that accept event actions also accept
signals of any subtype of the specified signal type, as stated by [UML05, p. 228]

“For triggers with signal events, a signal of the specified type or any subtype of the
specified signal type is accepted.”

58

We, therefore, compare the signal types by using the classOf function, that was defined in Section
5.2.

If the signal can be handled, SendSignal uses the UML tag configuration to determine whether
buffering is to be used (see Section 4.2). If buffering is not wanted, HandleSignal (described
below) is called, which tries to handle the signal immediately. If there is no active accept event
action, HandleSignal discards the signal. If buffering is enabled, the “replace” tag is examined,
denoting whether the arrived signal replaces old signals in the event queue. If signals are to be
replaced (see Section 4.2), all matching previous signal objects are deleted. Finally, a new “Signal
Received” event is created for the signal, and the event is stored in the event queue of the target
activity execution.

Due to the reasons described in Section 4.2, we also introduce a “distribution” tag, which indicates
if a signal object is to be distributed to nested activity executions. This is implemented by the last
part of the SendSignal rule, which verifies this tag and sends the signal to all activity executions,
that are called by the current one, by calling SendSignal recursively.

SendSignal : Object×ActivityExecution → Void
SendSignal(signal , exec) ≡

if CanHandleSignal(signal , exec.activity) then
if tagValue(exec.activity ,SignalBufferingAndReplacement, buffer) = No

∨ (∃n ∈ handlingActions(signal , exec.activity) :
tagValue(n,SignalBufferingAndReplacement, buffer) = No) then

HandleSignal(signal , exec)
else

if (tagValue(exec.activity ,SignalBufferingAndReplacement, replace) = Yes
∧ (@n ∈ handlingActions(signal , exec.activity) :

tagValue(n,SignalBufferingAndReplacement, replace) = No))
∨ (tagValue(exec.activity ,SignalBufferingAndReplacement, replace) = No
∧ (∃n ∈ handlingActions(signal , exec.activity) :

tagValue(n,SignalBufferingAndReplacement, replace) = Yes)) then
remove {e ∈ eventQueue(exec) | e ∈ SignalReceivedEvent

∧ (classOf (signal) � classOf (e.signal)
∨ classOf (e.signal) � classOf (signal))} from eventQueue(exec)

seq
EnqueueEvent(exec,SignalReceivedEvent(signal)) (→ 5.5.1.1)

forall subExec with subExec ∈ {e.calledExecution | e ∈ ActionExecution ∧
e.node ∈ (CallBehaviorAction ∩ exec.activity .node)
∧ (tagValue(exec.activity ,SignalDistribution, distribute) = Yes

∨ tagValue(e.node,SignalDistribution, distribute) = Yes)}
SendSignal(signal , subExec)

CanHandleSignal : Object×Activity → Boolean
CanHandleSignal(signal , activity) =def handlingActions(signal , activity) 6= ∅

handlingActions : Object×Activity → P(AcceptEventAction)
handlingActions(signal , activity) =def {n ∈ (AcceptEventAction ∩ activity .node) |

n.trigger .event ∈ SignalEvent ∧ classOf (signal) � n.trigger .event .signal}

Handling of a signal is implemented by HandleSignal. The rule chooses an action execution for a
suitable accept event action and sets its function receivedSignal to the provided signal instance. Note
that, by using “choose”, only one execution is chosen nondeterministically, as required by the specifi-
cation. If no such execution exists, the signal is discarded. The rule HandleSignalReceivedEvent
processes received signals (i.e., “Signal Receive” events), by simply calling HandleSignal.

HandleSignal : Object×ActivityExecution → Void

59

HandleSignal(signal , activityExecution) ≡
choose exec with exec ∈ ActionExecution

∧ exec.node ∈ handlingActions(signal , activityExecution.activity)
∧ exec.activityExecution = activityExecution
∧ exec.mode ∈ {created, enabled, running}
∧ exec.receivedSignal = undefined

exec.receivedSignal := signal

HandleSignalReceivedEvent : SignalReceivedEvent → Void
HandleSignalReceivedEvent(e) ≡

HandleSignal(e.signal ,Self)

Another send action we support, is BroadcastSignalAction. According to [UML05, p. 236]

“When all the prerequisites of the action execution are satisfied, a signal object is gener-
ated from the argument values according to signal and this signal object is transmitted
concurrently to each of the implicit broadcast target objects in the system. The manner
of identifying the set of objects that are broadcast targets is a semantic variation point
and may be limited to some subset of all the objects that exist. There is no restriction on
the location of target objects. The manner of transmitting the signal object, the amount
of time required to transmit it, the order in which the transmissions reach the various
target objects, and the path for reaching the target objects are undefined.”

Thus, the only difference to send signal actions is the determination of targets. This computation
is performed by the function computeTargets, which uses a signal path expression (see Section 4.2)
and the current context object to compute a set of target activity executions. Signal paths are
implemented by our tool which is presented in chapter 6.

monitored computeTargets : String× BehavioredObject → P(ActivityExecution)

The following rule, ExecuteBroadcastSignalActionExecution, executes broadcast signal ac-
tions. SendSignal is used to send the provided signal instance to the computed target executions.

ExecuteBroadcastSignalActionExecution ≡
if Self .mode = created then

skip
if Self .mode = enabled then

Self .mode := running
if Self .mode = running then

let
signal = createInstance(Self .node.signal , [head(Self .input(pin)).value |

pin ∈ Self .node.argument])
targets = computeTargets(tagValue(Self .node,SignalTargeting, signalPath),

Self .activityExecution.context)
in

forall target with target ∈ targets
SendSignal(signal , target)

Self .mode := completed
if Self .mode = completed then

EnqueueEvent(Self .activityExecution,
ActionTerminationEvent(Self , false, ∅)) (→ 5.5.1.1)

Self .mode := terminating
if Self .mode = abortRequested then

Self .mode := terminated

60

5.7 Computation and selection of token offers

This section deals with computation of token flow in UML 2 activity diagrams. After giving an
overview in the next section, we introduce the relevant data structures in Section 5.7.2. The following
sections describe the different aspects of the token flow semantics.

5.7.1 Overview

According to the UML specification [UML05] (e.g. on p. 302 or on p. 365), nodes offer tokens on
outgoing edges. Further propagation of these offers and their selection at destinations is, however,
not discussed in the specification. Our approach to computation of relevant token offers is divided
into five steps:

1. Creation of initial token offers at flow sources which currently hold control or data tokens.

2. Propagation of token offers to flow destinations.

3. Selection of suitable token offers at those destinations.

4. Determining interruptible activity regions to be aborted and removing offers in these regions.

5. Creating additional selections for accept event actions without incoming edges and input pins
in interruptible activity regions.

First, new token offers are created for tokens resting on outgoing edges of actions or initial
nodes (being sources of control flows) or at object nodes (being sources of object flows). This is
elaborated in Section 5.7.3. Second, the token offers are propagated through the activity graph
towards the consuming destination nodes, namely actions, object nodes, and final nodes (Section
5.7.4). Third, offers can now be selected at those destination nodes (Section 5.7.5), preparing their
flow through the activity graph. Fourth, some of these still preliminary offers have to be removed if
they are contained in interruptible activity regions which are interrupted by other selections (Section
5.7.6). Finally, accept event actions without incoming edges and input pins contained in interruptible
activity regions have possibly to be activated (Section 5.7.7), if there is a flow entering the region.

Buffering of offers, which complements to the steps described before, is discussed in Section 5.7.8.

5.7.2 Data structures

The specification states that multiple token offers may exist on a single edge [UML05, p. 369],
therefore we use the function

controlled offers : ActivityEdge → P(TokenOffer)

to store temporary token offers. This function has to be controlled, since computation of offers
must not be shared among different activity executions, and, therefore, it must act locally to an
ASM agent.

We also define a function for buffering unsuccessful offers, which is used for the implementation
of fork node semantics. Buffers are only relevant at flow destination nodes, as discussed in Section
4.3.8. ASM Rules which relate to buffering are described in Section 5.7.8.

controlled buffer : ActivityEdge → P(TokenOffer)
initially ∀e ∈ ActivityEdge : buffer(e) = ∅

5.7.2.1 TokenOffer

An instance of the data structure TokenOffer represents the existence of a single data token on a
source object node or multiple control tokens from a single source edge which are able to flow to the
current position of this offer. We combine multiple control tokens in a single one because they act
as one if starting actions is concerned [UML05, p. 302]:

61

“If multiple control tokens are available on a single edge, they are all consumed.”

A token offer consists of the following components:

controlled domain TokenOffer =def {offeredToken : Token; paths : P(ActivityEdge∗);
exclude : P(TokenOffer); include : P(TokenOffer);
buffered : Boolean}

In the case of object flows, the function offeredToken holds the actual data token, whose possible
traversal is represented by this offer. For control flows, a dummy control token is stored which acts
as a substitute for all source control tokens. The component paths represents the path starting from
the source node of the token, leading to the current position of the offer. Actually, a set of paths
is needed, since control flows must be included when combined with object flows by a join node, as
described in Section 5.7.4.4. The function paths serves three purposes:

1. To remove control tokens from source edges in case of control flows or object flows joined with
control flows, see Section 5.8 on executing transitions.

2. To eliminate token selections in interruptible activity regions, see Section 5.7.6.

3. To highlight the edges being traversed if animation in a tool is desired (see Section 6).

According to the specification [UML05, p. 381], “a token in an object node can traverse only
one of the outgoing edges”. Thus, our algorithm must ensure that these offers exclude each other,
as is also the case in Section 5.7.4.3 for decision nodes with overlapping guards. Efficiency dictates
that we avoid to try all combinations possible for several nodes with competing edges. To this end,
the component exclude of TokenOffer collects all conflicting offers. The component include, finally,
contains those offers that have contributed to the current one. We use offers as static information,
i.e. they do not move along edges but result from previously computed offers on predecessor edges
of the current path. Both the exclude and include sets are used when selecting token offers at
destination nodes in Section 5.7.5.

The function buffered finally indicates whether the offer has been fetched by a buffer, which is
used to implement the fork node semantics, or else has recently been computed by the propagation
algorithm.

The following convenience functions are used by the token selection and transition execution
macros.

IsObjectFlowOffer : TokenOffer → Boolean
IsObjectFlowOffer(o) =def o.offeredToken ∈ DataToken
IsControlFlowOffer : TokenOffer → Boolean
IsControlFlowOffer(o) =def o.offeredToken ∈ ControlToken

offersForNode : ActivityNode → P(TokenOffer)
offersForNode(n) =def

⋃
{offers(e) | e ∈ incoming(n)}

sourceEdges : TokenOffer → P(ActivityEdge)
sourceEdges(o) =def {head(p) | p ∈ o.paths}
sources : TokenOffer → P(FlowSource)
sources(o) =def {e.source | e ∈ sourceEdges(o)}
target : TokenOffer → FlowDestination
target(o) =def last(elementAt(o.paths.asList , 1)).target

5.7.2.2 TokenSelection

After token offers have been computed, token selections are created by the rule SelectToken-
Offers described in Section 5.7.5. A token selection consists of a flow destination and a set of

62

token offers which may activate this destination node. A destination node comprises the domains
Action, FinalNode, CentralBufferNode and ActivityParameterNode with outgoing parameters. The
domain InputPin is omitted as a destination node for selections, because token offers for input pins
are included in the selection for the corresponding action.

Notice that the set of token offers can also be empty. This is the case if actions without incoming
edges and input pins have to be activated.

The domain TokenSelection represents token selections:

controlled domain TokenSelection =def (FlowDestination \ InputPin)× P(TokenOffer)

sources : TokenSelection → P(FlowSource)
sources((, O)) =def

⋃
o∈O

sources(o)

targets : TokenSelection → P(FlowDestination)
targets((, O)) =def {target(o) | o ∈ O}
paths : TokenSelection → P(ActivityEdge∗)
paths((, O)) =def

⋃
o∈O

o.paths

The functions sources, targets and paths aggregate the related values of all token offers contained in
the specified selection.

5.7.3 Creation of token offers

The first step in computation of token offers is the creation of initial offers at source edges of
flow sources. The rule ComputeTokenOffers creates these offers and calls the propagation rule
afterwards.

ComputeTokenOffers ≡
ClearFlowInformation
seq
InitializeFlowsForControlFlowSources
InitializeFlowsForObjectFlowSources
seq
PropagateFlowInformation (→ 5.7.4)

First, all previous computation results are cleared by calling ClearFlowInformation. To ensure
that the propagation algorithm visits each node only once, a visited -flag is introduced for each node.
This flag is initialized with false for control nodes and set to true for all other activity nodes.

controlled visited : ActivityNode → Boolean
ArePredecessorsVisited : ActivityNode → Boolean
ArePredecessorsVisited(n) =def ∀p ∈ predecessors(n) : visited(p)

ClearOffers : ActivityNode → Void
ClearOffers(n) ≡

forall e with e ∈ n.outgoing
offers(e) := ∅

ClearFlowInformation ≡
forall n with n ∈ Self .activity .node

visited(n) := n ∈ (ActivityNode \ ControlNode)
ClearOffers(n)

63

There are two InitializeFlows macros, one for control flows and one for object flows. Figures 5.8
a) and b) show two examples for control flow offers. In a), each outgoing edge of action A holds a
token, depicted by . These – resting – tokens are contained in the functions controlTokens. Only
the left token is offered () to its edge, since the false guard prevents the other from flow ability. In
b), both outgoing edges of the initial node hold control tokens, and thus, two offers are created.

A

[false]

A
<<centralBuffer>>

a) b) c) d)

these offers exclude
each other

Figure 5.8: Initiation of token flow computation

The following rule implements control flow initialization. It processes all sources of control flows,
namely Action and InitialNode, in parallel and creates new token offers on outgoing edges if they
hold at least one token and their guards evaluate to true. Only nodes of the current activity have
to be taken into account. Therefore the intersection is with Self .activity .node. Self denotes the
current activity execution and node, coming from the UML meta model 5.2.2, returns all nodes of
an activity.

InitializeFlowsForControlFlowSources ≡
forall n with n ∈ (ControlFlowSource ∩ Self .activity .node)

visited(n) := true
forall e with e ∈ n.outgoing

if |controlTokens(e)| > 0 ∧ IsGuardTrue(e,Self .context) then
let

t = new(TokenOffer)
in

t .offeredToken := new(ControlToken)
t .paths := {[e]}
t .exclude := ∅
t .include := ∅
t .buffered := false
offers(e) := {t}

A dummy control token is assigned for each token offer, which represents all control tokens at the
source edge (when flowing, all tokens will be removed). Paths is assigned a list with the current edge
and, being the first offer of a token, include is initialized as empty. Since tokens on outgoing edges
of control flow sources do not compete for traversal (in contrast to object flows), exclude is also set
to empty. The function buffered is initialized with false, as is the case for all other macros relating
to computation of token offer propagation. Finally, the offer is stored in the offers set of the edge.

For checking the guards, the following monitored (and thus not further specified [BS03]) function
IsGuardTrue is defined, which evaluates the guard of the given edge. As a guard can refer to
attributes of the context class and the current data token offered on the edge (see Section 5.1), the
corresponding arguments BehavioredObject and Token are provided. If the offered token is a control
token, the guard must not refer to the token value. This can be assured syntactically.

monitored IsGuardTrue : ActivityEdge× BehavioredObject× Token → Boolean
IsGuardTrue : ActivityEdge× BehavioredObject → Boolean
IsGuardTrue(e, o) =def IsGuardTrue(e, o, undefined)

64

For sources of object flow – we assume a FIFO order of data tokens on object nodes – [UML05,
p. 380], offeredToken holds the first data token from the function dataTokens of the node considered.
Further, according to p. 381

“A token in an object node can traverse only one of the outgoing edges.”

Therefore, exclude is initialized to contain all edges except the current, since all outgoing edges of
object nodes compete with each other. All other functions are treated similarly to control flows.
Figures 5.8 c) and d) show two examples for object flow offers. The offers in d) exclude each other,
since they originate from the same object node.

controlled t : Nat → TokenOffer

InitializeFlowsForObjectFlowSources ≡
forall n with n ∈ (ObjectFlowSource ∩ Self .activity .node) ∧ |dataTokens(n)| > 0

visited(n) := true
let

m = |n.outgoing |
in

forall i with 1 ≤ i ≤ m
t(i) := new(TokenOffer)

seq
forall i with 1 ≤ i ≤ m

let
e = outgoing(n, i)

in
if IsGuardTrue(e,Self .context , head(dataTokens(n))) then

t(i).offeredToken := head(dataTokens(n))
t(i).paths := {[e]}
t(i).exclude := {t(j) | 1 ≤ j ≤ m ∧ i 6= j}
t(i).include := ∅
t(i).buffered := false
offers(e) := {t(i)}

5.7.4 Propagation of token offers

After all initial offers have been created, PropagateFlowInformation distributes them by iter-
atively calling rules for the join, decision, merge, and fork nodes. Each node is processed once, and
only if all predecessors have been handled. The ASM iterate command executes all rules in parallel
until the update set is empty, i.e. no more changes occur.

PropagateFlowInformation ≡
iterate

PropagateFlowForMergeNode (→ 5.7.4.1)
PropagateFlowForForkNode (→ 5.7.4.2)
PropagateFlowForDecisionNode (→ 5.7.4.3)
PropagateFlowForJoinNode (→ 5.7.4.4)

5.7.4.1 MergeNode

The propagation for the merge nodes is simple, since [UML05, p. 374]

“All tokens offered on incoming edges are offered to the outgoing edge.”

65

Figure 5.9: Propagation of token offers at MergeNode

which is illustrated in Figure 5.9. We check whether the token satisfies the guard of the outgoing
edge, and calculate the new token offers as shown in the following rule.

PropagateFlowForMergeNode ≡
forall n with n ∈ (MergeNode ∩ Self .activity .node) ∧ ArePredecessorsVisited(n)

∧ ¬visited(n)
ClearOffers(n)
seq
visited(n) := true
forall e with e ∈ incoming(n)

forall t with t ∈ offers(e)
if IsGuardTrue(outgoing(n, 1),Self .context , t .offeredToken) then

let
tout = new(TokenOffer)

in
tout.offeredToken := t .offeredToken
tout.paths := {p⊕ outgoing(n, 1) | p ∈ t .paths}
tout.exclude := t .exclude
tout.include := t .include ∪ {t}
tout.buffered := false
add tout to offers(outgoing(n, 1))

Each propagation rule first clears all offers on all outgoing edges of the current node by calling
ClearOffers. This is because some offers must be re-computed when selecting tokens which
invalidate a join condition (see Section 5.7.5).

All paths from the function paths are extended by the current outgoing edge, and the base token
offer is added to the include set. Finally, the new offers are stored in the offers set of the outgoing
edge. The ASM add [GT01] command is used because of possibly concurrent updates, caused by
using forall for parallel execution of the rules’ body.

5.7.4.2 ForkNode

The behavior of fork nodes is illustrated in Figure 5.10. The specification states that [UML05, p. 363]

“Tokens arriving at a fork are duplicated across the outgoing edges. If at least one
outgoing edge accepts the token, duplicates of the token are made and one copy traverses
each edge that accepts the token.”

PropagateFlowForForkNode ≡

66

[blue][red]

Figure 5.10: Propagation of token offers at ForkNode

forall n with n ∈ (ForkNode ∩ Self .activity .node) ∧ ArePredecessorsVisited(n)
∧ ¬visited(n)

ClearOffers(n)
seq
visited(n) := true
forall t with t ∈ offers(incoming(n, 1))

forall e with e ∈ n.outgoing
if IsGuardTrue(e,Self .context , t .offeredToken) then

let
tout = new(TokenOffer)

in
tout.offeredToken := t .offeredToken
tout.paths := {p⊕ e | p ∈ t .paths}
tout.exclude := t .exclude
tout.include := t .include ∪ {t}
tout.buffered := false
add tout to offers(e)

The calculation of the offers is almost identical to merge nodes. In this respect we deviate from
the specification [UML05, p. 363] that requires tokens to be buffered at intermediate locations if the
guard is true but they are not accepted by target nodes, as stated by

“The outgoing edges that did not accept the token due to failure of their targets to accept
it, keep their copy in an implicit FIFO queue until it can be accepted by the target. The
rest of the outgoing edges do not receive a token (these are the ones with failing guards).
This is an exception to the rule that control nodes cannot hold tokens if they are blocked
from moving downstream.”

This requirement was introduced late in the specification process, after the final adopted version of
the specification [UML03] had been published. We decided against incorporating this functionality
in our ASM rules, because fork buffering may lead to unexpected behavior in combination with
guards, as is discussed in Section 4.3.8.

5.7.4.3 DecisionNode

The specification of decision nodes [UML05, p. 349] requires that

“Each token arriving at a decision node can traverse only one outgoing edge. [. . .] Each
token offered by the incoming edge is offered to the outgoing edges. Most commonly,
guards of the outgoing edges are evaluated to determine which edge should be traversed.”

67

The modeler, however, must ensure that only one outgoing edge is actually traversed. Additionally,
[UML05, p. 349] states that

“Notice that the semantics only requires that the token traverse one edge, rather than
be offered to only one edge. Multiple edges may be offered the token, but if only one of
them has a target that accepts the token, then that edge is traversed. If multiple edges
accept the token and have approval from their targets for traversal at the same time,
then the semantics is not defined.”

It is, however, left unspecified what the “approval” proviso means. As long as two outgoing edges
are not traversed simultaneously by the same token, we propose that any selection of token offers
may be chosen. This is achieved by filling the exclude sets of the outgoing offers accordingly.

An example is shown in Figure 5.11. A single offer is generated for whereas two competing
offers are created for . Since all ordinary guards fail for , it is offered to the “else” edge. The
predefined guard “else” may be defined for at most one outgoing edge. It succeeds if the token is
refused by all the other edges outgoing from the decision node.

[red]

[else][red or orange]

these offers exclude
each other

Figure 5.11: Propagation of token offers at DecisionNode

The following rules implement the distribution of token offers at decision nodes.

ElseEdge : ActivityNode → ActivityEdge
ElseEdge(n) ≡

choose e with e ∈ n.outgoing : e.guard = ′else ′

result := e

HasElseEdge : ActivityNode → Boolean
HasElseEdge(n) = ElseEdge(n) 6= undefined

PropagateFlowForDecisionNode ≡
forall n with n ∈ (DecisionNode ∩ Self .activity .node) ∧ ArePredecessorsVisited(n)

∧ ¬visited(n)
ClearOffers(n)
seq
visited(n) := true
forall t with t ∈ offers(incoming(n, 1))

let
acceptingEdges = [e ∈ n.outgoing | e 6= ElseEdge(n) ∧

IsGuardTrue(e,Self .context , t .offeredToken)]
in

if |acceptingEdges| > 0 then
forall i with 1 ≤ i ≤ |acceptingEdges|

68

t(i) := new(TokenOffer)
seq
forall i with 1 ≤ i ≤ |acceptingEdges|

t(i).offeredToken := t .offeredToken
t(i).paths := {p⊕ elementAt(acceptingEdges, i) | p ∈ t .paths}
t(i).exclude := {t(j) | 1 ≤ j ≤ |acceptingEdges| ∧ i 6= j} ∪ t .exclude
t(i).include := t .include ∪ {t}
t(i).buffered := false
add t(i) to offers(elementAt(acceptingEdges, i))

else
if HasElseEdge(n) then

let
tout = new(TokenOffer)

in
tout.offeredToken := t .offeredToken
tout.paths := {p⊕ elseEdge(n) | p ∈ t .paths}
tout.exclude := t .exclude
tout.include := t .include ∪ {t}
tout.buffered := false
add tout to offers(ElseEdge(n))

The variable acceptingEdges holds all outgoing edges, except the “else” edge, whose guards evaluate
to true. New, mutually exclusive, token offers are then created for these edges. The exclusion is
guaranteed by storing the competing accepting offers in the exclude set of the current offer. In case
of no edges accepting an offer, it is forwarded to the optional “else” edge.

5.7.4.4 JoinNode

Join nodes are the most complex kind of control nodes [UML05, p. 369]:

“If there is a token offered on all incoming edges, then tokens are offered on the outgoing
edge according to the following join rules:

1. If all the tokens offered on the incoming edges are control tokens, then one control
token is offered on the outgoing edge.

2. If some of the tokens offered on the incoming edges are control tokens and others
are data tokens, then only the data tokens are offered on the outgoing edge. Tokens
are offered on the outgoing edge in the same order they were offered to the join.

Multiple control tokens offered on the same incoming edge are combined into one before
applying the above rules.”

The first case is shown in Figure 5.12 a), where only data tokens are joined. Figure b) shows the
joining of control tokens. Note that we ignore any “order” of tokens, since this term is not clearly
described in the specification, as discussed in Section 5.9.

controlFlowOffers : ActivityNode → P(TokenOffer)
controlFlowOffers(n) =def

⋃
{offers(e) | e ∈ incoming(n) ∧ IsControlFlow(e)}

PropagateFlowForJoinNode ≡
forall n with n ∈ (JoinNode ∩ Self .activity .node) ∧ ArePredecessorsVisited(n)

∧ ¬visited(n)
ClearOffers(n)
seq

69

()
()
()

a) b) c)

Figure 5.12: Propagation of token offers at JoinNode

visited(n) := true
if ∀e ∈ incoming(n) : offers(e) 6= ∅ then

let
o = outgoing(n, 1)

in
if IsControlFlow(o) then

if IsGuardTrue(o,Self .context) then
let

tout = new(TokenOffer)
in

tout.offeredToken := new(ControlToken)
tout.paths := {p⊕ o | p ∈

⋃
{t .paths | t ∈ offersForNode(n)}}

tout.exclude :=
⋃
{t .exclude | t ∈ offersForNode(n)}

tout.include :=
⋃
{t .include ∪ {t} | t ∈ offersForNode(n)}

tout.buffered := false
add tout to offers(o)

else
forall e with e ∈ incoming(n) ∧ IsObjectFlow(e)

forall t with t ∈ offers(e)
if IsGuardTrue(o,Self .context , t .offeredToken) then

let
tout = new(TokenOffer)

in
tout.offeredToken := t .offeredToken
tout.paths := {p⊕ o | p ∈ t .paths} ∪

{p⊕ o | p ∈
⋃
{t ′.paths | t′ ∈ controlFlowOffers(n)}}

tout.exclude :=
⋃
{t ′.exclude | t′ ∈ offersForNode(n)}

tout.include :=
⋃
{t ′.include ∪ {t′} | t′ ∈ offersForNode(n)}

tout.buffered := false
add tout to offers(o)

If the outgoing edge is a control flow, all incoming edges are control flows [UML05, p. 369], and
only one control token has to be offered to the outgoing edge if its guard permits. The new exclude
and include sets consist of the union of all incoming exclude and include sets, respectively, to prevent
conflicting offers to flow that might invalidate the join condition. The function offersForNode, defined
in Section 5.7.2, is used for this calculation. It collects all offers from all incoming edges of a node.
The outgoing edge is appended to all incoming control flow paths that are joined to form the new
paths. This is done to be able to remove all control tokens on all source edges [UML05, p. 302] if
the token offer is selected at a destination node.

70

If some or all incoming edges are object flows, all offers from these flows have to be forwarded.
By joining all incoming control flows to the paths set of each transmitted token offer (illustrated in
Figure 5.12 c), they can be removed if the actual transition of the object token takes place. It is
reasonable to share the control flows among each offer, because they contribute to the join condition
of each data token. As in the case of having control flows only, the include and exclude sets of each
offer contain all flows to exclude competing offers. Examples of usage of these sets when join nodes
are involved in flow computation, are given in Section 5.7.5.

For efficiency reasons and to keep the algorithm concise, we assume that the incoming token
offers are consistent, i.e. they must not compete with each other, as discussed in Sections 5.7.5 and
5.7.9 in detail.

5.7.5 Selection of token offers at targets

Once the token offers have been computed, we select subsets of them to participate in the planned
transition. The transition may lead, e.g., to the start of a new action as described by the specification
[UML05, p. 302]:

“An action execution is created when all its object flow and control flow prerequisites
have been satisfied (implicit join). [...] The flow prerequisite is satisfied when all of the
input pins are offered tokens and accept them all at once, precluding them from being
consumed by any other actions.”

Other possibilities are moving tokens to central buffer nodes, outgoing activity parameter nodes,
and final nodes. The specification, however, does not indicate what to perform if there are enough
token offers to conduct several of these operations. We model this by using the ASM iteration and
choice constructs in our selection rule SelectTokenOffers now discussed.

The selected subsets are accumulated in tokenSelections, which is used afterwards for executing
the transitions in Section 5.8.

controlled tokenSelections : P(TokenSelection)

The local function taken keeps track of the selections for each object node to make sure they do not
overflow. The iteration may be stopped by choosing n = skipSelection at any stage. Otherwise, we
select token offers depending on the kind of node.

SelectTokenOffers ≡
local taken : ObjectNode → Nat
forall n with n ∈ (ObjectNode ∩ Self .activity .node)

taken(n) := 0
tokenSelections := ∅
seq
iterate

choose n with n ∈ ((Action ∪ CentralBufferNode ∪ {n′ ∈ ActivityParameterNode |
n ′.parameter .direction ∈ {out, inout, return}} ∪ FinalNode)
∩ Self .activity .node) ∪ {skipSelection}

if n ∈ Action then
SelectTokenOffersForAction(n, taken)

if n ∈ (CentralBufferNode ∪ActivityParameterNode) then
SelectTokenOffersForCentralBufferAndActParameterNode(n, taken)

if n ∈ FinalNode then
SelectTokenOffersForFinalNode(n, taken)

We do not specify if and how many transitions should be executed, by using a combination of
iterate, choose and skipSelection. This conforms to the specification as there is no information on
this topic (see Section 4.4.2). The ASM semantics of iterate can lead to termination of the rule,

71

although offers to select are still available. We propose a solution to this by introducing a slightly
modified choose construct in Section 5.7.9.

The selection for action nodes is performed according to the specification cited above. We select a
subset of token offers Si for each input pin i of the action. Conditions for the acceptance of tokens by
input pins are that the number of selected tokens is between lower and upper [UML05, p. 249], and
that the total number of tokens resting on each pin does not exceed its upper bound [UML05, p. 380].
If an appropriate selection has been found, we commit to it and update the remaining offers according
to the specification. To this end, the UpdateOffers discussed below removes all selected and
competing offers from the activity graph.

SelectTokenOffersForAction(n, taken) ≡
let

m = |incoming(n)|
p = |input(n)|

in
if ∀1 ≤ i ≤ m : offers(incoming(n, i)) 6= ∅ then

choose S1, . . . , Sp with ∀1 ≤ i ≤ p : Si ⊆ offersForNode(input(n, i))
∧ lower(input(n, i)) ≤ |Si| ≤ min(upper(input(n, i)),

upperBound(input(n, i))− |dataTokens(input(n, i))|
−taken(input(n, i)))

let
selection =

⋃
1≤i≤m

offers(incoming(n, i)) ∪
⋃

1≤i≤p

Si

in
UpdateOffers(selection)
tokenSelections := tokenSelections ∪ {(n, selection)}
forall i with 1 ≤ i ≤ p

taken(input(n, i)) := taken(input(n, i)) + |Si|

Figure 5.13 shows some scenarios for token selections. In a), all incoming control flow offers
() and either of the data token offers (or) may be chosen for a single selection. The input
pin only consumes a single data token, because lower and upper default to 1. The remaining data
token is not used for the creation of the execution for action A. In b), we have a single input pin
with lower=2 and upper=3. Therefore, we can choose any of the subsets { , }, { , }, { , } or
{ , , } for a selection.

A

a) b) c) d)

A

[2..3]

A A

{upperBound=1}

Figure 5.13: Selection of token offers for Action

Case c) yields two selections causing action A to start twice. Finally, in d), if the input pin does
not currently hold a token, only one selection (either with or) is generated due to upperBound=1.

The selection rule for central buffer nodes and outgoing activity parameter nodes is considerably
simpler. It can be viewed as a special case of the rule for actions with only one input pin and no
incoming control flows.

SelectTokenOffersForCentralBufferAndActParameterNode(n, taken) ≡

72

choose S with S ⊆ offersForNode(n)
∧ 0 < |S| ≤ upperBound(n)− |dataTokens(n)| − taken(n)

UpdateOffers(S)
tokenSelections := tokenSelections ∪ {(n, S)}
taken(n) := taken(n) + |S|

For Figure 5.14 a), any subset may be chosen for a selection, and, due to the iteration over all
nodes in SelectTokenOffers, multiple selections can be generated. In b), the central buffer node
has upperBound=2 and already holds token , therefore only one of the offers and may be
selected.

<<centralBuffer>>
<<centralBuffer>>
{upperBound=2}

a) b)

Figure 5.14: Selection of token offers for CentralBufferNode and outgoing ActivityParameterNode

The last selection rule refers to final nodes, subsuming ActivityFinalNode and FlowFinalNode.
Each offer on any incoming edge can yield a selection. Examples of final nodes with offers are shown
in Figure 5.15.

SelectTokenOffersForFinalNode(n, taken) ≡
choose e with e ∈ incoming(n) ∧ |offers(e)| > 0

choose d with d ∈ offers(e)
UpdateOffers({d})
tokenSelections := tokenSelections ∪ {(n, {d})}

Figure 5.15: Selection of token offers for FinalNode

To avoid an inefficient search and further dependencies at destination and join nodes, we as-
sume that the incoming token offers are consistent. The implications on the algorithm if allowing
inconsistent offers is discussed in Section 5.7.9. We define the following constraints for the ASM:

AreConsistent : TokenOffer× TokenOffer → Boolean
AreConsistent(t1, t2) =def (t1 .exclude ∩ (t2 .include ∪ {t2}) = ∅)

∧ (t2 .exclude ∩ (t1 .include ∪ {t1}) = ∅)

constraint ∀n ∈ ObjectNode ∪ JoinNode : ∀t1, t2 ∈ offersForNode(n) : AreConsistent(t1, t2)
constraint ∀n ∈ Action : ∀t1, t2 ∈ (offersForNode(n)

∪
⋃

i∈input(n)

offersForNode(i)) : AreConsistent(t1, t2)

73

The modeler can ensure this, e.g., by placing appropriate guards on competing edges that lead to
the same destination nodes. A stronger, syntactic condition is the absence of two paths from the
same decision or object node to the same action, join, or object node. Here, an action together with
its input pins is considered as one node.

The macro UpdateOffers, which is called after a selection has been made, removes the
selection of token offers and all offers inconsistent to it. This is implemented by the subrule
RemoveInconsistentAndSelectedOffers which in turn calls a rule for removing buffered of-
fers:

UpdateOffers : P(TokenOffer) → Void
UpdateOffers(selection) ≡

RemoveInconsistentAndSelectedOffers(selection)
InvalidateJoinsForInconsistentOffers(selection)
seq
PropagateFlowInformation (→ 5.7.4)
seq
FetchBufferedTokens

RemoveInconsistentAndSelectedOffers : P(TokenOffer) → Void
RemoveInconsistentAndSelectedOffers(selection) ≡

forall e with e ∈ (ActivityEdge ∩ Self .activity .edge)
offers(e) := {t ∈ offers(e) | t /∈ selection ∧ ∀t′ ∈ selection : AreConsistent(t, t′)}

RemoveInconsistentAndSelectedBufferedOffers(selection) (→ 5.7.8)

Figure 5.16 shows an example of an object node with several destinations. After the offer has been
accepted at action A, the competing offers for action B and the central buffer node are deleted
by this rule. Note that successful offers, from which the selected offer derives, do not need to be
removed from the graph. Therefore, the offer on the leftmost outgoing edge of the source object
node can be left untouched.

A B

.

.

.
.

.
.

. . .

<<centralBuffer>>
selected offer

Figure 5.16: Removal of inconsistent offers

If any inconsistent offers are removed from a join node, we re-propagate this information since
it may affect other token offers originating at that node. We, therefore, first reset the visited
flag of these join nodes and all successor control nodes to false. This is achieved by the rule
InvalidateJoinsForInconsistentOffers. Predecessor nodes remain unaffected. The propa-
gation rule PropagateFlowInformation rule introduced in Section 5.7.4 is called afterwards,
recomputing the flow information.

InvalidateJoinsForInconsistentOffers : P(TokenOffer) → Void
InvalidateJoinsForInconsistentOffers(selection) ≡

74

forall n with n ∈ (JoinNode ∩ Self .activity .node) ∧ ∃e ∈ n.incoming : ∃t ∈ offers(e) :
∃t′ ∈ selection : ¬AreConsistent(t, t′)

forall n′ with n′ ∈ (AllControlNodeSuccessors(n) ∪ {n})
visited(n ′) := false

AllControlNodeSuccessors : ActivityNode → P(ControlNode)
AllControlNodeSuccessors(n) ≡

local nodes : P(ControlNode) := ∅
forall e with e ∈ n.outgoing

if e.target ∈ ControlNode then
add e.target to nodes
add AllControlNodeSuccessors(e.target) to nodes

seq
result := nodes

We discuss the necessity for re-propagation starting from join nodes by means of the example in
Figure 5.17. In a), the join condition is met and offers 4 and 5 are put on the outgoing edge of the
join node. The effect of selecting offer 2, which competes with offer 1, and contributes to the join
condition, is shown in b): offer 1 must be removed, and thus the join condition is no longer valid.
Offer 5 must be withdrawn.

1

2
a) b)

1
2

3 1

2

3

d)

1

2

3
selected offer

selected offer

4(1)
5(3)

4(1)
5(3)

c)

5(4)3

selected offer

6(1)

4

7(5,4)
8(3)

Figure 5.17: Effect of removing inconsistent offers at join nodes

The effect of selecting offer 4, on the other hand, is depicted in c), where the competing offer 2
has to be removed. This is implemented by collecting all these offers in the exclude set, compare
the propagation rule for join nodes in Section 5.7.4.4.

A scenario where a removal of offers at join nodes does not prevent other tokens from flowing, is
illustrated in d). Although offer 6 is removed for selecting the competing offer 2, the join condition
is still valid since there is another offer on the same incoming edge of the join node (offer 5). Offers
7 and 8 (stemming from offer 3 resp. offer 5) can therefore be created.

5.7.6 Handling interruptible activity regions

The selections yielded by SelectTokenOffers are still preliminary. Some of the selections chosen
may contain interrupting edges that abort interruptible activity regions. Executing a transition for
such a selection aborts all inner actions and can invalidate other concurrent transitions in these
regions, as stated in [UML05, p. 367]:

“When a token leaves an interruptible region via edges designated by the region as
interrupting edges, all tokens and behaviors in the region are terminated.”

75

A B

Figure 5.18: Leaving an interruptible activity region

Figure 5.18 shows how our tool (see chapter 6) illustrates the abort of an interruptible activity
region.

We, therefore, must – besides determining the regions to be interrupted – remove all selections
conflicting with interrupting selections. Concurrent non-interrupting flows to nodes outside the
region, however, are executed [UML05, p. 367]:

“If a non-interrupting edge is passing a token from a source node in the region to target
node outside the region, then the transfer is completed and the token arrives at the target
even if an interruption occurs during the traversal.”

In addition to the informal semantics of interruptible activity regions discussed in the specification,
we also have to handle the following issues detailed in Section 4.4:

1. The specification gives no information on concurrent flows leading into aborted regions. Offers
along such flows may originate from a node outside the region, or may re-enter the region after
leaving it. Since either keeping or destroying such tokens can be useful, our algorithm can
be adapted to both alternatives. For this purpose we use the ignoreFlowIntoInterruptedRegion
configuration tag, as introduced in Section 4.4.4.

2. The passing of multiple interrupting edges is not discussed. There are scenarios where this
behavior should be avoided. By introducing a singleInterrupt tag for interruptible activity
regions and priority tags for interrupting edges, the required behavior can also be adjusted.

3. According to the definition of included nodes in ActivityGroup, nested regions are not aborted.
Instead of this unexpected behavior we propose to interrupt all nested regions.

The following macro handles the removal of token selections in interrupted regions, as well as
the determination of the regions to be interrupted.

RemoveFlowsInInterruptedRegions ≡
regionsToInterrupt := ∅
seq
forall r with r ∈ (InterruptibleActivityRegion ∩ Self .activity .group)

∧ IsInterrupted(r) ∧ (@r′ ∈ parents(r) : IsInterrupted(r′))
remove {s ∈ tokenSelections | HasInnerFlow(s, r)} from tokenSelections

76

if tagValue(r , InterruptibleActivityRegionHandling, ignoreFlowIntoInterruptedRegion)
= true then

remove {s ∈ tokenSelections | HasFlowInto(s, r)} from tokenSelections
let

e = ChooseInterruptingEdge(
⋃

s∈tokenSelections

interruptingEdge(s, r))

in
if tagValue(r , InterruptibleActivityRegionHandling, singleInterrupt) = true then

remove {s ∈ tokenSelections | Interrupts(s, r′) ∧ e /∈ interruptingEdge(s, r′)}
from tokenSelections

add ({r} ∪ children(r)) to regionsToInterrupt

We iterate all outmost interruptible activity regions which are interrupted by at least one token
offer. We then remove all token selections that contain at least one “inner flow”, denoting a flow
which is located completely inside the region or any subregion. To this end, we define the ASM
functions IsInterrupted and HasInnerFlow :

IsInterrupted : InterruptibleActivityRegion → Boolean
IsInterrupted(r) =def ∃s ∈ tokenSelections : Interrupts(s, r)

Interrupts : TokenSelection× InterruptibleActivityRegion → Boolean
Interrupts(s, r) =def interruptingEdge(s, r) 6= ∅

interruptingEdge : TokenSelection× InterruptibleActivityRegion → P(ActivityEdge)
interruptingEdge(s, r) =def {e ∈]asList(paths(s)) | r ∈ e.interrupts}

HasInnerFlow : TokenSelection× InterruptibleActivityRegion → Boolean
HasInnerFlow(s, r) =def ∃p ∈ paths(s) : nodesOnPath(p) ⊆ innerNodes(r)

innerNodes : InterruptibleActivityRegion → P(ActivityNode)
innerNodes(r) =def containedNode(r) ∪

⋃
r′∈children(r)

containedNode(r′)

nodesOnPath : ActivityEdge∗ → P(ActivityNode)
nodesOnPath(p) =def {e.source | e ∈ p} ∪ {e.target | e ∈ p}

The following functions parents and children collect all parent- resp. subregions and are used
for determining the outermost interrupted region and to collect all nodes including those in nested
regions (see function innerNodes above).

parents : InterruptibleActivityRegion → P(InterruptibleActivityRegion)

parents(r) =def

{
{superGroup(r)} ∪ parents(superGroup(r)), if superGroup(r) 6= undefined
∅, otherwise

children : InterruptibleActivityRegion → P(InterruptibleActivityRegion)

children(r) =def

{
subGroup(r) ∪

⋃
r′∈subGroup(r)

children(r′), if subGroup(r) 6= ∅

∅, otherwise

After removing all inner flows in RemoveFlowsInInterruptedRegions, we eliminate all
selected offers that do not leave the region, as checked by HasInnerFlow . This happens only if the
corresponding configuration tag is set.

HasFlowInto : TokenSelection× InterruptibleActivityRegion → Boolean
HasFlowInto(s, r) =def ∃p ∈ paths(s) : last(p).target ∈ innerNodes(r)

∧ nodesOnPath(p) \ innerNodes(r) 6= ∅

77

Furthermore, the singleInterrupt tag is checked and, if set, an interrupting edge with the highest
priority is chosen by ChooseInterruptingEdge. For the removal of token selections for concurrent
interrupting edges to work, we impose the following constraint:

constraint ∀s ∈ TokenSelection : ∀r ∈ InterruptibleActivityRegion : |interruptingEdge(s, r)| ≤ 1

It states that each token selection must only pass at most one interrupting edge. This would not be
the case if multiple interrupting flows were joined outside the interruptible region. This, however, is
without loss of generality, because these join nodes can be moved inside the region. This constraint
can be ensured by checking the syntax of the model accordingly.

ChooseInterruptingEdge : P(ActivityEdge) → ActivityEdge
ChooseInterruptingEdge(edges) ≡

choose e with e ∈ edges ∧ tagValue(e, InterruptPriority, priority) =
max

e′∈edges
(tagValue(e ′, InterruptPriority, priority))

result := e

Finally, we collect all regions and subregions to interrupt in regionsToInterrupt . This will be used
to remove all tokens and to abort all nodes, when executing the transitions in Section 5.8.

controlled regionsToInterrupt : P(InterruptibleActivityRegion)

5.7.7 Handling accept event actions

The next step of computing transitions is the activation of accept event actions contained in inter-
ruptible activity regions. According to the specification [UML05, p. 367]:

“AcceptEventActions in the region that do not have incoming edges are enabled only
when a token enters the region, even if the token is not directed at the accept event
action.”

We, therefore, check whether there is any token selection entering a region. To this end, the
ASM function HasFlowInto defined in the previous section is used. We then create additional token
selections for accept event actions if the following conditions hold:

• The action has no incoming edges.

• It is not already executing, as determined by IsRunning , defined in Section 5.6.

• It is contained immediately in the entered region (by checking containedNode, which comes
from the UML meta model) or it is contained in a child region and the regionActivationPolicy
tag is set to OnParentFlow for all regions in between. The latter targets the problem of nested
regions with accept event actions, see 4.4.4.

IsRunning : Action → Boolean
IsRunning(n) =def ∃exec ∈ ActionExecution : exec.node = n ∧ exec.activityExecution = Self

∧ exec.mode = running

ActivateAcceptEventActions ≡
forall r with r ∈ (InterruptibleActivityRegion ∩ Self .activity .group)

∧ ∃s ∈ tokenSelections : HasFlowInto(s, r)
add {(n, ∅) | n ∈ (AcceptEventAction ∩ Self .activity .node)

∧ n.incoming = ∅ ∧ (¬IsRunning(n) ∨ IsInterrupted(r))
∧ (n ∈ r.containedNode ∨ (∃r′ ∈ r.children : n ∈ r′.containedNode

∧ ∀r′′ ∈ regionsFromTo(r′, r) :
tagValue(r ′′, InterruptibleActivityRegionHandling, regionActivationPolicy)

78

= OnParentFlow))}
to tokenSelections

regionsFromTo : InterruptibleActivityRegion× InterruptibleActivityRegion
→ P(InterruptibleActivityRegion)

regionsFromTo(r, s) =def

{
{r}, if r .superGroup = s
{r} ∪ regionsFromTo(r .superGroup, s), otherwise

5.7.8 Buffering of token offers

Buffering of tokens due to the fork node semantics is adjacent to some of the flow computation
rules described in the previous sections. The specification [UML05, p. 363] proposes the following
semantics:

“Tokens arriving at a fork are duplicated across the outgoing edges. If at least one
outgoing edge accepts the token, duplicates of the token are made and one copy traverses
each edge that accepts the token. The outgoing edges that did not accept the token due
to failure of their targets to accept it, keep their copy in an implicit FIFO queue until
it can be accepted by the target. The rest of the outgoing edges do not receive a token
(these are the ones with failing guards).”

As discussed in Section 4.3.8, this semantics can lead to unexpected behavior in combination with
guards. Moreover, the intuition of control nodes acting solely as “traffic switches” [UML05, p. 309]
is negated. To alleviate these issues to a certain extend, we buffer tokens on incoming edges of
destination nodes instead of outgoing edges of fork nodes. To this end, the ASM function buffer ,
which is introduced in Section 5.7.2, holds token offers which must be buffered.

In order to make buffered offers available for SelectTokenOffers, we add these token of-
fers to the offers of the incoming edges of destination nodes. This is done after computation of
token offers, as well as after their re-computation due to invalidated join nodes. See calling of the
FetchBufferedTokens rule in Sections 5.5.6 and 5.7.5.

FetchBufferedTokens ≡
forall n with n ∈ (FlowDestination ∩ Self .activity .node)

forall e with e ∈ n.incoming
offers(e) := offers(e) ∪ buffer(e)

In addition to removing selected and inconsistent offers from offers, UpdateOffers also has to
eliminate buffered offers. This is achieved by the following rule:

RemoveInconsistentAndSelectedBufferedOffers : P(TokenOffer) → Void
RemoveInconsistentAndSelectedBufferedOffers(selection) ≡

forall e with e ∈ (ActivityEdge ∩ Self .activity .edge) ∧ e.target ∈ FlowDestination
buffer(e) := {t ∈ buffer(e) | t /∈ selection ∧ ∀t′ ∈ selection : AreConsistent(t, t′)}

Finally, after offers have been selected and further processed by RemoveFlowsInInterrupted-
Regions and ActivateAcceptEventActions, token offers to be buffered must be determined.
Figure 5.19 shows some scenarios where buffering is needed. In a), the offer on the incoming edge
of action A is selected. Since action B cannot start due to a missing token on its right edge, the
duplicated offer must be buffered on the left incoming edge. Thus, to determine whether a token
has to be buffered, the base tokens of offers have to be compared. Since join nodes also include all
incoming control flows with each outgoing token offer, all control tokens must also be incorporated.
This is illustrated in b), where a data token is selected that passed a join node with an incoming
control flow. Action A currently cannot accept the control token, which must be buffered, because
its flow is included with the flow of the selected data token to action B.

79

a) b)

B

A

selected offer

offer to
be buffered B

A ()

selected offer

offer to
be buffered

Figure 5.19: Buffering of offers

We use the following function allTokens to obtain all control tokens of an offer, together with
the actually offered base token:

allTokens : TokenOffer → P(Token)
allTokens(t) =def {t ′.offeredToken | t′ ∈ t .include ∧ IsControlFlowOffer(t′)} ∪ {t .offeredToken}

The ASM rule which buffers tokens is defined as follows. Besides storing relevant offers in
buffer , it has to mark all these offers as “buffered’, by setting buffered to true. This is necessary
to prevent these “delayed” transitions from removing tokens from the source node(s) (see Section
5.8). Otherwise, control tokens that have been generated after a token offer has been buffered, were
removed although they did not contribute to the buffered flow.

BufferTokens ≡
forall n with n ∈ (FlowDestination ∩ Self .activity .node)

forall e with e ∈ n.incoming
let

tokensToBuffer = {t ∈ offers(e) | ∃(, O) ∈ tokenSelections : ∃o ∈ O :
t .offeredToken ∈ allTokens(o)}

in
forall t with t ∈ tokensToBuffer

t .buffered := true
buffer(e) := buffer(e) ∪ tokensToBuffer

5.7.9 Discussion of the token offer computation

In this section, we discuss implications and constraints of the flow propagation algorithm. Hints
towards solutions are given for some issues. Incorporating these solutions would lead to unnecessary
constraints or to a higher complexity of the algorithm.

Only subsets of possible transitions are executed. To provide the maximum freedom for ex-
ecuting transitions (see 4.4.2), our selection algorithm in Section 5.7.5 relies on nondetermin-
ism by using ASM iterate and choice constructs. This may lead to unnecessary buffering
and re-computation of selections that would, otherwise, be possible. The reason is (besides
skipSelection) that iterate terminates as soon as a node with no possible selection is cho-
sen which yields an empty update set. To make iterate execute until no further selections
are possible, we remove skipSelection from the choose construct in SelectTokenOffers.
Additionally, we introduce the following modified choose command, called choose’:

80

choose’ x with ϕ P ≡
local z
if ∃x : ϕ then

choose x with ϕ
P

else
z := 0
z := 1

All calls of choose in the SelectTokenOfferFor* rules are to be substituted with choose’.
Since choose works as an angelic choice operator [WM97,BS03], which delays generating the
inconsistent update set (incorporated in choose’) as much as possible, all successful selections
are made first.

Requirement of consistent offers. As described in Section 5.7.5, we require all incoming offers
for actions, object nodes and join nodes to be consistent. This considerably simplifies the
selection algorithm, because interdependencies between incoming token offers can be neglected.
Figure 5.20 a) shows a problematic scenario in case inconsistent offers would be allowed: the
selection would fail if token were chosen for the left input pin of action B, because it
would invalidate the conflicting offer on the other input pin. Backtracking would have to be
used for a successful combination (on the left and on the right) to be found, which
makes the algorithm inefficient and harder to comprehend. The same goes for join nodes, if

A

B

a) b)

1 ()2

3(1)
()4(2)

()

Figure 5.20: Problematic cases if inconsistent offers were allowed

inconsistent offers were allowed. Backtracking would have to be used to determine whether the
join condition is met. Even worse, additional dependencies would arise between token offers
outgoing from the join node, as shown in b). If were not present, only and offer 4 of

could flow and offer 3 must be excluded. If, however, is present at the join node, no such
dependency would exist.

Inappropriate order of selections. There is no order on token offers, meaning that no offer is
preferred over another. In Figure 5.21, offers 1 and 2 may be chosen, leading to buffering of
offer 3, because it is blocked by the upper bound of the central buffer node. Intuitively, one
would rather select offers 2 and 3, because they stem from the same base token. To overcome
this dilemma, the selection algorithm would have to act “globally”, incorporating selections
on other nodes, which would further complicate the computation.

81

<<centralBuffer>>
<<centralBuffer>>
{upperBound=1}

2

1
3

Figure 5.21: No order of token offers

5.8 Executing transitions

After computing and selecting relevant offers (see Section 5.7), the actual transitions can be executed.
This results in interrupting regions and in moving base tokens from source nodes to target nodes.
The following ExecuteTransition macro performs these steps:

ExecuteTransition ≡
InterruptRegions
seq
MoveTokensAndCreateExecutions
seq
DetermineActivityTermination

The first step is to interrupt regions. The specification [UML05, p. 367] states, that

“When a token leaves an interruptible region via edges designated by the region as
interrupting edges, all tokens and behaviors in the region are terminated.”

The following macro performs the interrupt:

InterruptRegions ≡
foreach r in regionsToInterrupt

forall n with n ∈ (ControlFlowSource ∩ r .containedNode)
forall e with e ∈ n.outgoing

controlTokens(e) := []
forall n with n ∈ (FlowDestination ∩ r .containedNode)

forall e with e ∈ n.incoming
buffer(e) := ∅

forall n with n ∈ (ObjectNode ∩ r .containedNode)
dataTokens(n) := []

foreach n in (Action ∩ r .containedNode)
AbortAllActionExecutions(n,Self) (→ 5.6.4)
RemovePendingActionEvents(n)

Regions to be aborted have been determined by RemoveFlowsInInterruptedRegions 5.7.6
and stored in regionsToInterrupt . All control tokens, data tokens, and buffered offers are removed.
Additionally, all action executions of all actions which are contained in such regions, are aborted.
Pending “Termination”- and “Enable”-events for those actions must also be deleted from the event
queue of the current activity execution. Otherwise, the later processing of those events can lead to
the creation of new (but obsolete) tokens or executions.

82

RemovePendingActionEvents : Action → Void
RemovePendingActionEvents(n) ≡

remove pendingActionEvents(n) from eventQueue(Self)

pendingActionEvents : Action → ControllerEvent∗

pendingActionEvents(n) =def [ev ∈ eventQueue(Self) | ev ∈ (ActionTerminationEvent
∪ActionEnableEvent) ∧ ev .execution.node = n]

The next step of ExecuteTransition is to remove base tokens and to store them in target
nodes. In addition to that, new action executions are created for flow destinations being actions.
Our selection algorithm already ensured, that [UML05, p. 302]

“An action execution is created when all its object flow and control flow prerequisites have
been satisfied (implicit join). Exceptions to this are listed below. The flow prerequisite
is satisfied when all of the input pins are offered tokens and accept them all at once,
precluding them from being consumed by any other actions.”

In addition to accepting all data tokens for (i.e. moving them to) input pins, we also remove control
tokens from source edges, as discussed in Section 4.3.7. We have to remove all control tokens,
since [UML05, p. 302]

“If multiple control tokens are available on a single edge, they are all consumed..”

Note that tokens are only removed if they do not stem from a buffered offer (ensured by ¬o.buffered).
Otherwise, this would lead to removal of control tokens appearing later at the source nodes, which is
not wanted. Since a base token can have flows to multiple targets (see fork node semantics), copies
of these tokens are created by using the Clone macro, before storing them in targets. Instead of
cloning at fork nodes, we decided to clone at the time of transition execution, because this avoids
another field for cloned tokens of TokenOffer. The original base tokens would have to be included
anyway. Each data token therefore is only held at exactly one object node and never moved (un-
cloned) to other destinations.

MoveTokensAndCreateExecutions ≡
local activationData : InputPin → DataToken∗

foreach (n, O) in tokenSelections
if n ∈ Action then

forall i with i ∈ n.input
activationData(i) := []

seq
foreach o in O

if ¬o.buffered then
forall e with e ∈ sourceEdges(o) ∧ e.source ∈ ControlFlowSource

controlTokens(e) := []
if IsObjectFlowOffer(o) then

let
t = o.offeredToken
t′ = Clone(o.offeredToken)

in
if ¬o.buffered ∧ Source(t) 6= undefined then

dataTokens(Source(t)) := dataTokens(Source(t))� [t]
dataTokens(target(o)) := dataTokens(target(o))⊕ t′

if target(o) ∈ InputPin then
activationData(target(o)) := activationData(target(o))⊕ t′

seq
if n ∈ Action then

83

CreateActionExecution(n, activationData) (→ 5.6.1)

Clone : DataToken → DataToken
Clone(t) ≡

let
t′ = new(DataToken)

in
t′.value := t .value
result := t′

A token selection can lead to the creation of a new action execution. All relevant input data are
collected in activationData and handed on to CreateActionExection.

The last step of ExecuteTransition is to determine whether an “Activity Termination”-event
has to be generated. The specification [UML05, p. 320] includes the following:

“A token reaching an activity final node terminates the activity [. . .] Any object nodes
declared as outputs are passed out of the containing activity, using the null token for
object nodes that have nothing in them.”

The following macros handle this case.

DetermineActivityTermination ≡
if ∃(n,) ∈ tokenSelections : n ∈ (ActivityFinalNode ∩ Self .activity .node) then

forall n with n ∈ (ActivityOutputParameters ∩ Self .activity .node) ∧ |dataTokens(n)| = 0
dataTokens(n) := dataTokens(n)⊕ [NewNullToken]

EnqueueUniqueEvent(ActivityTerminationEvent) (→ 5.5.1.1)

NewNullToken : DataToken
NewNullToken ≡

let
t = new(DataToken)

in
t.value := undefined
result := t

5.9 Discussion

This section discusses our ASM semantics for UML 2 activity diagrams. First, important deviations
from the specification and their reasons are described. Related work concerning semantics of activity
diagrams is presented afterwards. Finally, extensions, experiences and concluding remarks are given.

5.9.1 Deviations from the specification

One of the most apparent deviations from the official UML 2 specification refers to messaging.
Although we provide a comprehensive execution environment for activity diagrams, we do not want
to give a broad formalization of the UML 2. Thus, we ignore the UML 2 “Common Behaviors” and
other basic packages. Normally, each behaviored object manages its own event queue, as described
in [UML05, p. 418]:

“The behavior executes within its context object, independently of and concurrently with
any existing behavior executions. The object that is the context of the behavior manages
the input pool holding the event occurrences to which a behavior may respond . . . As an

84

object may have a number of behaviors associated, all these behaviors may access the
same input pool. The object ensures that each event occurrence on the input pool is
consumed by only one behavior.”

We use event queues for activity executions, which handle their corresponding action, activity and
offer-computation events. Event types as defined by the UML 2 are not used. As we do not store
signal events at context objects, we need to impart the signal distribution tag [Sar05], to be able to
route signals to nested activity executions. There is no competition among event occurrences when
there are multiple activity executions for one context object. Nevertheless, it is easy to introduce
additional queues for each context object, for handling “Signal Receive” events. It would then be
straight forward to rewrite the rules dealing with signal handling to reflect the intention (namely,
event competition among executions) of the UML 2 specification.

Another important difference relates to the creation and enabling of action executions. In the
specification, control tokens are kept until the execution is enabled, although data tokens have
already been moved to the target input pins of the action. Since control tokens are reserved for
the execution anyway, we already remove these tokens upon creation of the execution (see Section
4.3.7). In our tool, this is shown by moving the control tokens to the edges at the destination nodes.

We also do not buffer tokens at fork nodes, as discussed in Section 4.3.8. The reason is, that
changing guards can confuse the modeler when debugging and executing. In addition, the intuitive
semantics of control nodes acting solely as “traffic switches” is softened. We, therefore, store tokens
that are refused directly at the edges of the destination node, which avoids these problems. Our
solution implies that tokens are not buffered if there is a join node on the path which does not
forward offers due to a missing join condition (for an example, see [Hau05]). This is because we
allow buffering only if the whole path towards the destination node is “open”, in contrast to [Hau05].
Since the term “target” is not clearly defined in the specification, both views are permitted.

A minor deviation relates to triggers for accept event actions. For mere practicability we allow
only a single trigger to be defined. When modeling accept event actions graphically with a tool (see
chapter 6), multiple triggers cannot be modeled or would confuse the developer.

5.9.2 Related Work

We basically discuss only UML 2.0 related work in the following, because of activity diagrams
having been completely redefined in the current version of the specification. UML 1.x activity
diagrams are special kinds of state charts: They inherit the semantics but provide only a special
notation. The semantics of UML 1.x activity diagrams is, for example, treated by Eshuis and
Wieringa, who provide a formalization for the execution of activity diagrams for workflow modeling
[EW01, Esh02, EW02, EW04]. For a comprehensive overview of work on UML 1.x semantics, see
[Stö04c] and [Hau05].

Börger et al define an ASM semantics for UML 1.x activity diagrams, but only present excerpts
in [BCR00a]. We use this work as an inspiration, but our approach is completely different, in that
we use agents for action and activity executions rather than for sub-diagrams. We provide a flow
computation algorithm and a more comprehensive treatment of activities and actions as a whole,
which is demanded by the raised complexity of the UML 2 specification. Other work which uses
Abstract State Machines for specifying the semantics of other types of UML diagrams, includes, for
example [BCR00b,Jür02,JEJ02] which formalize UML state charts.

Ober [Obe03] proposes a general approach to define the UML semantics in terms of ASMs.
She describes, for example, the semantics of classifiers, associations, operations and actions. An
automated mapping of the UML meta model to ASM functions is suggested as the basis for a
formalization. We also use agents to implement the execution of actions, but do not provide a
comprehensive semantics of UML basic elements. Besides, our mapping to ASMs is not performed
automatically. Although Ober defines a semantics for UML 1.4 [UML01], it could also be adapted
to UML 2.0, to serve as a basis for behavior diagrams, such as activity diagrams or state charts.

The work of [BFGS05] and [SB04] on the ASM semantics for C# can be used to obtain a better
and more complete formalization for call operation actions. We leave the integration of a concrete
programming language open in our mapping to ASMs, by using an abstract “ExecCode” macro.

85

However, we provide such an integration in our tool (see Section 6). Actions are implemented by
C# code, which is invoked by reflection.

The official documents for the Specification and Description Language (SDL) [ITU02, ITU00a,
ITU00b, ITU00c], served as a starting point for our formalization. We mainly use their syntax
for ASM domains and function classifications in our work. The SDL uses a compilation ap-
proach [EGGP00], as opposed to our interpreter approach. Discussion on how the signal handling
mechanisms of SDL compare to the UML signals can be found in our other work [Sar05].

Regarding UML 2.0 activity diagrams, Störrle [Stö04b,Stö04c,Stö04a,Stö05] proposes a mapping
to Petri-nets, which is manifest, because the UML specification envisions a “Petri-like semantics” for
activity diagrams [UML05, p. 314]. Different variants of Petri-nets are used, e.g., colored Petri-nets
for data flow, and procedural Petri-nets for activities. The treatment of join nodes having mixed
object and control flows is, however, neither discussed nor obvious. The development culminates
in [SH05] concluding that Petri-nets might, after all, not be appropriate for formalizing activity
diagrams. Especially mapping advanced concepts, such as interruptible activity regions, is found
not to be intuitive. Moreover, the lack of a unified Petri-net formalism, integrating the different
variants used to map different concepts, is observed. Ensuring the traverse-to-completion semantics
is identified as another problem. The specification demands that the whole path from the source
node to the destination be traversed at once. Since the mapping of control nodes to Petri-nets results
in having multiple intermediate places, traverse-to-completion is not given. Störrle proposes to use
yet another variant of Petri-nets, called “Zero-safe nets” [BM97], for this purpose.

Barros et al [BG03] also translate to Petri-nets. They omit mappings for the basic elements, such
as control nodes and edges and focus on call behavior actions with parameters, which they convert
to activities. They also do not take activity creation and destruction, signals, and token termination
into account.

Vitolins and Kalnins [VK05] present an algorithm for computing the token flow, proposing a
forward and backward search by using so-called “push” and “pull” engines. Several far-reaching re-
strictions are, however, imposed on activity diagrams. Decision nodes must have mutually exclusive
guards, and object nodes must not have any outgoing concurrent edges. This simplifies their algo-
rithm, since they do not have to pull all input tokens in one atomic step – traverse-to-completion is
thus not observed. Fork and join nodes must not be on the same path between two actions. Tokens
resulting from join nodes are grouped, which is neither excluded nor stated in the specification.
Additionally, guards can only reference token values but not attributes of the context class. Central
buffer nodes are not supported, and pins can have no upper bounds. Only call behavior actions are
taken into account.

Hausmann [Hau05] formalizes activity diagrams using “Dynamic Meta Modeling”, where graph
transformation rules operate on an instance of the UML meta model. The transformation engine is
responsible for resolving the nondeterminism occurring at competing edges of object and decision
nodes. This renders the approach too inefficient to serve as a basis for tool support. The semantics
of a large part of activity diagrams is described in great detail and problems of the UML specification
are discussed. Apart from this, several restrictions apply also to this work. Only one offer is allowed
per edge, and – as a consequence – when different data tokens are offered to a join node, only one
of them is forwarded. Guards and interruptible activity regions are not supported.

Bock and Gruninger [BG04,BG05] use the Process Specification Language (PSL) to define the
semantics of activity diagrams as constraints on runtime sequences of behavior execution. The term
“occurrence” is used as a substitute for “execution”. Only simple diagrams with call actions are
discussed.

The ongoing UML Semantics Project [UML06] aims at formalizing a subset of UML by providing
“a strong foundation for the definition of a UML virtual machine that is capable of executing UML
2.0 models”. The Modelware Project [Mod05,Hea06] implements a tool capable of simulating basic
activity diagrams, but only with control flows. Currently, no formalization of the algorithms behind
their execution engine is available.

All previously discussed work for UML 2.0 focusses on the preliminary versions of the UML
specification [UML03,UML04]. Besides being based on the final version [UML05], our formalization
shows how to deal with the restrictions mentioned before. To the best of our knowledge, there

86

is no other work that includes a comprehensive treatment of concurrent activities and discusses
the implementation of a variety of different types of actions, as shown in Section 5.6. Due to the
operational nature of ASM rules, an implementation can be derived with relative ease. Moreover,
none of the works discussed so far, and none that we know of, handles the problems presented in
Section 4.4.4 related to interruptible activity regions, including incoming flows, multiple interrupting
edges, and nested regions. The useful feature of lower and upper multiplicity bounds on pins, which
enable multiple data tokens to be consumed at once by one input pin, is also not treated elsewhere.
Like [Hau05] and [Obe03], we rely heavily on terms of the UML specification, as far as possible. This
especially includes the direct usage of the UML meta model for the interpreter and the concepts
of “activity execution”, “action execution”, “offers”, and the notion of “creation” and “enabling”
of executions. The ASM rules are traced back to requirements present in or absent from the UML
specification.

5.9.3 Possible extensions and further work

A tool implementation has been derived from the ASM specification (see chapter 6). It has, however,
not been generated automatically by an ASM tool. Although the partly operational style of our
ASM specification leads to a largely straightforward implementation, it cannot be assured that the
tool implements the ASM rules in a correct way. We, therefore, currently investigate the usage of
AsmL [GRS04,BGN+03,BS01] and its successor, Spec Explorer [CGN+05], which enable the direct
execution of the ASM rules [Fre06]. This way, syntactic and more or less trivial semantic errors have
already been revealed. Examples of severe errors found by [Fre06], are:

• a wrong behavior when keeping accept event actions active, due to an issue with the IsActive
predicate

• an unwanted duplication of data tokens in output pins of call behavior actions, due to a
problem in the HandleActivityTerminationEvent macro

• a missing seq-keyword in AllControlNodeSuccessors led to a false computation of the
return value

Another goal is to generate test cases, at least for the flow computation rules, to guarantee their
proper working in our implementation.

Other interesting areas to explore are test case generation from activity diagrams (see, for exam-
ple, [WYY+04]) or model checking [dMGMP02,Win01,CW00]. A translator from ASMs to PVS,
including a comprehensive example for multi-agent-ASMs, is discussed in [GR00], which could serve
as a starting point.

Extending the supported subset of UML 2 activity diagrams should also be considered. Impor-
tant elements to examine are, e.g. weight specifications for activity edges. There are contradictory
statements regarding the semantics of “weight”. In [UML05, p. 315], “weight” denotes the

“Number of objects consumed from the source node on each traversals”

On the next page it says, that

“The weight attribute dictates the minimum number of tokens that must traverse the
edge at the same time. It is a value specification evaluated every time a new token
becomes available at the source. It must evaluate to a positive LiteralUnlimitedNatural,
and may be a constant. When the minimum number of tokens are offered, all the tokens
at the source are offered to the target all at once.”

Due to these contradictions, the exact semantics has first to be clarified by the OMG. This also
includes constraints on permissible weight specifications of consecutive edges.

Another issue relates to reentrant behaviors, where it is not clear when a delayed call action
should be invoked (data tokens collect at input pins as stated by [UML05, p. 302]). This is especially
important when considering lower and upper specifications, which are not even discussed in the
semantics of “Action” on page 301.

87

Order of tokens is another problematic area. According to [UML05, p. 369] “Tokens are offered
on the outgoing edge in the same order they were offered to the join”. It is unclear what “order”
means and there is no statement on order of tokens at other places in the specification.

5.9.4 Concluding Remarks

In this section, we define the execution semantics of a subset of UML 2 activity diagrams by using
Abstract State Machines. The formalization provides insight into problems with the UML specifica-
tion, and their solutions. The resulting rules can be traced back to requirements present in or absent
from the UML specification. Semantic variation points have been used for missing or controversial
parts of UML activity diagrams, such as interruptible activity regions and signals.

The rigor of ASMs forces us to precisely define the semantics of UML activity diagram elements.
Thus, imprecise terms such as “offer”, “traversal” or “action execution” become more comprehensi-
ble. There are, however, parts of the specification, the meaning of which can only be guessed. The
OMG should, therefore, consider the definition of a semantics for the complete UML, a task that has
– to some extend – just begun by the UML semantics project [UML06]. Without a formal semantics,
the UML specification is of only limited use. This is especially true for the behavior part of the
UML. The specification also does not have a direct model of runtime execution yet, although terms
like “execution” are used throughout the document. It would certainly be useful to incorporate
runtime concepts into the UML meta model to clarify these terms.

Besides discussing the UML semantics, the operational style of the ASM rules provides a good
starting point for tool implementations. Our tool, which implements our proposed approach to
Model-Driven Development, is presented in the next chapter.

88

Chapter 6

Tool Support

This section shows some aspects of our tool implementation, comprising the interpreter runtime and
the “ActiveChartsIDE”. The IDE is used for diagram import, animation and debugging of activity
diagrams. Detailed information on the usage of our tool is given in [Sar06]. Further information
about our IDE is contained in [SGK+05]. The information in this chapter is partly taken from these
publications.

Section 6.1 describes the architecture of our implementation. A short survey of how the IDE is
used for Model-Driven Development is given in Section 6.2.

6.1 Architecture

Figure 6.1 shows an overview of our tool approach. We build on Microsoft Visio 2003 [Bia04,WE04]
for modeling and animation and use Microsoft C# [NEG05] as the implementation language for the
software under development. As is common in modern software development processes, the static
structure of a system is modeled using UML 2 class diagrams. These models – drawn in Microsoft
Visio 2003 – are translated into C# code by a generator (shown as the “Class Generator”-tool in
the Figure). The generated code implements all attributes and associations shown in the diagram,
including code to handle modifications (addition and removal of objects) of those relationships.
The implementation involves that when updating one end of an association, the opposite end is
automatically modified.

Since partial classes [Mic05] are used, additional C# code adding methods or other attributes
can (and should) be written in separate files. The ordinary Microsoft C# compiler merges all
matching class definitions when compiling the files. This leads to easier development cycles, because
modifications of the static structure and therefore regeneration of its code leaves custom C# code
untouched.

Application control flow is modeled using UML 2 activity diagrams (see “Dynamics” in the
Figure). Therefore, each class that should have its own behavior has an associated activity, describing
its functionality. UML 2 call operation actions (see Section 5.6.5.2) are used to invoke custom C#
code written by the developer. In Figure 6.1 this is indicated by an action named “DoSomething”
and its associated method declaration “void DoSomething()” in the lower left.

To connect classes to activities we again make use of UML tags. Activities are also drawn in
Visio 2003 and translated into a XML representation by our tool. When the compiled program is
finally executed, a runtime component (“ActiveCharts Runtime”, implemented as a dynamic link
library) reads the model file and executes the activities when needed. During execution, custom code
is called if an UML call operation action is reached in an activity. To integrate import, visualization
and debugging of activity execution, the “ActiveChartsIIDE” has been developed, which is discussed
in the following section.

89

C
C

ode
(partial classes;

unm
odified)

C
lass G

enerator
A

ctivity Im
porter

S
erialized

A
ctivities (X

M
L)

Static Structure
D

ynam
ics (C

ontrol Flow
)

…

C
C

om
piler

C
A

ssem
bly

(.exe)
handw

ritten
C

C
ode

A
ctiveC

harts
R

untim
e (.dll)

calls action
m

ethods
by reflection executes activity m

odel
by interpretation

Program
 Execution

Visualization / D
ebugging

(optional)

controls
step execution

visualizes activity execution

v
o
i
d

D
o
S
o
m
e
t
h
i
n
g
(
)

{
/
/

i
m
p
l
e
m
e
n
t
s

c
o
d
e

f
o
r

/
/

a
c
t
i
v
i
t
y

a
c
t
i
o
n

}

S
ensorB

ehavior

D
oSom

ething

S
ensorB

ehavior

D
oSom

ething
Visio 2003

associated
behavior

A
ctivity Execution

D
ebugger

LegendD
ocum

ent
•source code
•text
•binaries
•draw

ings

D
ocum

ent
•source code
•text
•binaries
•

m
odels

D
ocum

ent
•source code
•text
•binaries
•draw

ings

D
ocum

ent
•source code
•text
•binaries
•

m
odels

Tool
Tool

F
igure

6.1:
A

c
t
iv

e
C

h
a
r
t
s

A
rchitecture

90

6.2 Working with the ActiveChartsIDE

The “ActiveChartsIDE” (see Figure 6.2) is used for class and activity diagram import and for
visualizing and debugging activity executions [Ges05]. When started, executions can be controlled
and shown in the diagram previously drawn. Values of data tokens flowing between actions can also
be examined.

Figure 6.2: ActiveChartsIDE

Adjustments had to be made in the interpreter and tool to be convenient for the developer.
According to the UML 2 meta model, call operation actions determine the operation to call, and
the target object to use, by the operation resp. target relationships (see [UML05, p. 239]). It is not
clear how to provide this information in a graphical way. We, therefore, assume the target to be the
context object of the current activity execution and determine the operation by matching the name
of the call operation action with the methods of the context class. Operation parameters are matched
with input pins by their name, and type names must be annotated at the pins. A similar principle
is applied for signals, where the signal type is derived from the name of the send signal or accept
signal action. For wait time actions, valid time specifications have been defined, and isRelative is
computed automatically. A graphical symbol for broadcast signal actions, which is not provided in
the UML specification, has also been introduced by us. See our tutorial on “ActiveCharts” [Sar06]
for details on the usage of these actions.

Besides, the UML specification [UML05] neither defines a suitable language for guards, nor does
it give any hints to whether and how token values and attributes and relationships of the context
can be referenced. For practical purposes, we allow valid C# expressions as guards, with elements
of the context prefixed by “$”. A single “$” is used to reference the value of the current data token.
Thus, we can create complex guard expressions.

We envision the following development cycle for “ActiveCharts” projects.

1. A new project is created. All generated and handwritten code, as well as configuration and
project information is stored in the specified location.

2. Class diagrams are created which model the static structure of a system. For hints on
modeling, see [Lar05, Eva03]. These diagrams are then imported by the IDE, and code is

91

generated. If UML “behavior” tags refer to associated activities, a hint is given to create and
import the respective activity diagrams.

3. Activity diagrams are created for the behavioral classes and imported. Various syntax
and semantic checks are performed [Ges05]. The activity diagrams are serialized in an XML
file and stored at the project location. ActiveChartsIDE automatically generates interfaces
from action invocations in activity diagrams. These methods are added to interfaces the
corresponding context class must implement.

4. The developer is, therefore, forced to implement all action methods before successfully
compiling the project with a separate C# compiler. Input and output pins are used to build
the formal parameter list and return type.

5. The context objects have to be created, and their attributes and relationships be set. This
is normally done manually in the main method of the application. When creating the objects,
associated activity executions are instantiated automatically and, therefore, their behavior is
started.

6. The project can now be compiled using an external compiler or development environment,
such as Microsoft Visual Studio .NET. The ActiveCharts runtime library and the serialized
activity diagrams have to be included.

7. When starting the project stand alone, i.e. without using the ActiveChartsIDE, the dia-
grams are executed seamlessly and determine the control flow of the application.

8. To make use of the debugging possibilities of the ActiveChartsIDE, the compiled executable
must first be loaded into the IDE. The executable can then be started in debugging
mode without any adjustments to the application code. The IDE controls the step execution
and visualizes each step by highlighting edges and showing tokens in new Visio diagrams,
which represent the activity executions. Debugging functions include step-in, step-out, step-
over and auto-step. Breakpoints can be set on actions, and edges and values of data tokens
can be inspected. For an overview of the complete functionality, see [Sar06, SGK+05,Ges05].
A screenshot of the animation of our “Heartbeat” application (see appendix B) is shown in
Figure 6.3.

9. Changes can be applied to the diagrams and code independently, leading to re-import and/or
re-compilation of the application. Because of the strict separation of generated and compiled
code, no user code is affected when code is generated for classes.

6.3 Discussion

In this section, we discuss related work, provide hints to possible extensions, experiences and make
some concluding statements.

6.3.1 Related Work

A multitude of modeling and simulation tools currently exists on the market. The possibility of
code generation from the used diagrams — mainly state charts [Mat05, ILo05] — is best available
technology and widely used. Nevertheless, we decided to use UML 2 activity diagrams to model the
behavior of an application for several reasons: first of all, it is a natural proceeding to expand use
cases with activity diagrams. Many software development processes for object oriented applications,
e.g. the Rational Unified Process (RUP) [IBM05], propose this. The explicit actions used in these
diagrams can be seen as interactions between the different roles with the system. We, therefore, want
to provide an experimental environment to verify whether our approach is beneficial for software
development.

92

Second, activity diagrams model data flows in an explicit way, which can be used to model the
data used in an application, whereas state charts do not offer this potentiality. Since, on the other
hand, activity diagrams cannot model states, it is desirable to integrate these formalisms into a
unified approach to Model-Driven Development.

We decided to use Microsoft Visio 2003 as a drawing tool for our diagrams for flexibility rea-
sons. The use of other tools for drawing UML 2 compliant models is very restricted [Ber05]. It is
impossible to draw interruptible regions or wait time actions for example, which, in our opinion,
are fundamental elements. Visio provides great freedom in drawing as well as extensive possibilities
for extending its drawing-shapes, although it requires additional syntactic and semantic checks in
the ActiveChartsIDE. Further information on other tools and projects is given in our publication
on the ActiveChartsIDE [SGK+05]. Details, on how our approach compares to the Model-Driven
Architecture (MDA) [KWB03,MDA03,McN04] initiative of the Object Management Group (OMG),
are given in our publication [SRKS05].

6.3.2 Possible Extensions

Besides enhancing the usability of our tool by integrating modeling, import, debugging and compi-
lation into one integrated development environment, we want to provide further help in debugging
tasks. One idea is to define test cases by creating initial guard values and assignments of tokens
to object nodes. Different application scenarios could therefore be executed. It is also desirable to
modify guard values at runtime, to be able to try different paths of execution.

Currently, the initial object configuration must be implemented by handwritten code. Objects
are created, and attributes and relationships are set by user code, mostly on application startup.
UML object diagrams [UML05] could be used to provide these initial objects. This is especially
true for embedded systems, where objects often represent hardware, whose configuration does not
change at runtime.

6.3.3 Experiences

Several case studies (see appendix B) have been modeled and tested with our implemented tool.
These examples also serve as comprehensive test cases for the ASM rules given in chapter 5. In
addition to that, practical courses have been conducted with students, who contributed to the
maturity of the execution semantics by creating and testing small and large projects. Moreover,
insights on the appropriateness of our approach to Model-Driven Development have been gained.
Although not examined in an experimental setting, it should be noted that the feedback on our
approach and tool has been entirely positive.

6.3.4 Concluding Remarks

Our tool enables the developer to experiment with UML 2 activity diagrams in Model-Driven De-
velopment. It implements the semantics defined by our ASM rules in chapter 5, though some
adjustments have been made to enhance its usability for effective software development. Further ex-
periments can now be made to measure the implication on quality of software and its documentation,
as well as on the efficiency of software development projects.

93

F
igure

6.3:
E

xecution
of

the
“H

eartbeat”
exam

ple

94

Chapter 7

Summary

The aim of this thesis is to provide the basis for Model-Driven Development with UML 2 activity
diagrams. To this end, we define a semantics and provide a framework and tool implementation for
executing the diagrams.

7.1 Contributions

The most significant contributions of this thesis are the following:

Complete ASM Semantics. A complete ASM semantics has been defined for the selected subset
of UML 2 activity diagrams (see chapter 5). Requirements of the rules are traced back to infor-
mation present or absent in the UML specification. The UML 2 meta model for activity diagrams
is translated into ASM domains and functions, and serves as a starting point for the interpreter.
Asynchronous Multi-Agent ASMs are used to model multiple concurrent action and activity ex-
ecutions, which communicate by using events. We discuss the life-cycle of activities and actions.
An execution semantics for CallBehaviorAction, CallOperationAction, AcceptEventAction, SendSig-
nalAction, and BroadcastSignalAction is presented. An efficient flow computation algorithm for the
propagation and selection of token offers, which will also be published in [SG06], is proposed.

The ASM formalization provides a good starting point for implementations, because of the op-
erational nature of the ASM rules. It is also modular, in that new types of actions can be easily
added. As long as no fundamental adjustments are made in the UML specification, such as changing
the different states of actions as specified in [UML05, p. 301] (“created”, “enabled”, etc.), places
for modifications can be located straight forwardly. This is especially true for the flow computation
algorithm which is independent from other parts of the execution rules. Different flow and selection
algorithms can be substituted for the existing rules.

Discussion of UML semantics. A subset of UML 2 activity diagrams has been selected, and
problems of the specification are discussed (see chapter 4). This includes

• the positioning of control tokens

• the overtaking of control tokens by data tokens

• multiple problems with interruptible activity regions and nested interruptible activity regions

• issues with accept event actions

Variation Points. Although we tried to stick as closely as possible to the specification (in our –
subjective – view), modifications had to be made to make sense of the activity diagram semantics.
Wherever possible, freedom is left to adjust the semantics by introducing variation points (see
chapter 4). To integrate the configuration of semantics with the graphical models, UML tags are

95

used, which are a standard extension mechanism of the UML. Variation points have been defined
for

• handling flows out of and into interruptible activity regions

• activation and re-activation of accept event actions in nested interruptible activity regions

• determination of the context object to use for call behavior actions

• signal targets and buffering

Our approach for configuring the semantics with UML tags, and the application of tags for signals
has already been published in [Sar05].

Tool Support. To verify the working of the ASM rules and to provide an environment for experi-
menting with our approach, a prototype has been implemented (see chapter 6), called “ActiveChart-
sIDE”. The IDE is capable of importing class and activity diagrams and transforming them into
an XML representation, generating code out of class diagrams and animating and debugging the
execution of activity diagrams. Microsoft Visio 2003 is used for modeling because it turned out to
be the most flexible and extensible tool for us. The ActiveChartsIDE also integrates well in our
proposed development process. No other tool provides a similar coverage of the UML 2 notation
for activity diagrams. The interpreter implementation can also execute independently of our IDE,
without any modifications of the developed software. When used for debugging, the IDE “connects”
to the implemented system and controls its execution. Further discussion of our tool implementation
can be found in [SGK+05]. A tutorial for our tool is given in [Sar06].

Proposal to Model-Driven Development with UML Activity Diagrams. We propose an
approach to Model-Driven Development which integrates UML 2 activity and class diagrams (see
chapter 1). The control flow of the application (i.e., the behavior) is modeled with UML 2 activity
diagrams during analysis and design phases. These diagrams are seamlessly reused for the imple-
mentation by interpreting them at runtime. Together with generated code of the static structure
out of UML 2 class diagrams, the explicit modeling of the application control flow should simplify
the creation of applications and lead to a continuous development process from the analysis/design
phase to implementation. Actions are implemented by user code and executed by the diagram in-
terpreter. The degree of functionality described by models versus functionality described by code
can be freely chosen by the developer, which should improve acceptance of modeling tasks. This
is even more useful, as some tasks are almost impossible or at least too extensive to be modeled
(e.g., GUI-extensions, complex computations, database access, etc.). Our approach to Model-Driven
Development is presented in [SRKS05].

Ideas towards system evolution with activity diagrams, which are not further elaborated in this
thesis, are presented in [SKRS05].

7.2 Outlook

Several suggestions for further research are given in Sections 5.7.9, 5.9.3 and 6.3.2. Areas of interest
include the generation of test cases, model-checking and incorporating more UML elements. Exper-
iments can now be carried out to measure the possible improvements of our approach on software
development projects. We assume that explicitly modeled control flow leads to shorter development
cycles and enhances design documentation. In addition, the impact of our approach on system
evolution can be examined.

It is desirable to provide an integrated formalization of both the UML “fundamentals”, such
as the “Common Behaviors” package, and the actual diagrams, which build on these basics. One
step in this direction is to incorporate the event types as defined by the specification and to assign
additional event queues for UML-specific events to context objects rather than executions.

96

Also, a tighter integration between the ASM specification and the tool implementation should
be established. Several efforts of our group currently target these fields of research.

97

98

Appendix A

Mathematical Conventions

Operator Description
Misc

x.g function application, equivalent to g(x)
t1 � t2 true if type t1 is a subtype of or equal to type t2

Set operators
∪, ∩, ∈, ⊂, ⊆, \, ×, ∅ meaning as usual⋃

X union of all sets contained in the set of sets X
P(S) powerset of set S

{ s ∈ S | P (s) } or { F (s) | P (s) } set comprehension, P is a predicate, F is a function which is
evaluated on element s

|S| number of elements in set S; has lower precedence than “x.g”
asList(S) returns a list containing the elements of set S in a random order

List operators
A∗ list type

L1] L2 concatenation of two lists
]X concatenation of all lists contained in the list of lists X

L⊕ e add element e to list L, equivalent to L] [e]
L1 � L2 list difference, remove from L1 all elements contained in L2

[l ∈ L | P (l)] or [F (l) | P (l)] list comprehension, P is a predicate, F is a function which is
evaluated on list element l

l ∈ L element function
[] empty list
|L| number of elements in list L; has lower precedence than “x.g”

elementAt(L, i) gets the i-th element from list L
last(L) gets the last element from list L, equivalent to elementAt(L,|L|)

indexOf(L, e) returns the index of the first occurrence of element e in list L,
indexing starts at 1

99

100

Appendix B

Case Studies

This section presents some case studies, which have been implemented and tested with our tool
presented in chapter 6. Each case study is introduced by a short description. The class and activity
diagrams, which implement the requirements, are then presented. Action implementations are only
given for the alarm device, other actions are implemented similarly.

B.1 Alarm Device

Figure B.1 shows the static structure of a simple alarm device. Multiple sirens and sensors are
associated with a controller class, whereof only one instance exists at any time. We want to design
an alarm system which can detect broken sensors. Other functionality is omitted for brevity. We,
therefore, define the following requirements:

• Each sensor sends “Heartbeat” signals to the controller every three seconds.

• The controller manages timestamps for each sensor and updates them upon receipt of “Heart-
beat” signals.

• The controller checks all timestamps every 15 seconds. If at least one sensor is “late”, an
“Alarm” signal is sent to all sirens. The same is true, if no “Heartbeat” signal has been
received from any sensor within 10 seconds.

• Each siren waits for “Alarm” signals, and is activated upon receipt.

Figure B.2 shows the activity diagrams for the alarm device. Each sensor can be disabled for
testing purposes by setting its “defect” attribute to “true”. If defect, a guard ensures that the sensor
does not send any more “Heartbeat” signals to the controller.

The diagrams show three call operation actions (“MakeNoise”, “UpdateTimestamp”, and “Check-
Timestamps”) which have to be implemented with custom code. The code is shown in Figure B.3.
Each call behavior action maps to a method of the corresponding context class of the behavior.
“MakeNoise” simply shows a dialog-box to indicate that an alarm has been issued. “UpdateTimes-
tamp” updates the timestamp of the sensor where a signal was received for. “CheckTimestamp” is
called every 15 seconds to see if any sensor is “late”.

Finally, Figure B.4 shows the code to instantiate the objects and associations of an alarm device
with two sensors and one siren. Note that the diagrams and code shown are the only artifacts needed
to obtain a running alarm device with the above stated requirements.

101

defect : bool

Sensor
{behavior=SensorBehavior}AlarmDeviceController

{behavior=ControllerBehavior}
1..*1

device sensors

Siren
{behavior=SirenBehavior}

1..*

1device

sirens

<<signal>>
Alarm

<<signal>>
Heartbeat

Figure B.1: Alarm device static structure

ControllerBehavior

SensorBehavior

3s

Heartbeat 10s

UpdateTimestamp

signal : Heartbeat

signal : Heartbeat

SirenBehavior

Alarm

MakeNoise

Heartbeat

[(bool)@defect==false]

Alarm

CheckTimestamps

[(bool)$ == false]

15s

result : bool

[else]
time : string

Figure B.2: Alarm device behaviors

102

Figure B.3: Alarm device action implementations

Figure B.4: Alarm device object setup

103

B.2 Molding Press

The second example is a molding press, which consists of a piston and two buttons. The piston is
used to mold a work piece. The requirements are as follows:

• The piston starts moving downwards if its two buttons are pressed within 1 second. If the
time span is greater, both buttons have to be released before starting again.

• When the piston moves downwards and any button is released until the “Point of no return”
is reached (which is located at 3/4 of the total distance), the piston stops and moves upward
again in its starting position. This is for safety reasons.

• When the “Point of no Return” has been reached, the piston continues moving downward even
if any button is released after that.

• When the piston has reached the bottom position it stops and moves upward to its starting
position.

The class- and activity diagrams for the molding press are given in figures B.5 and B.6, respec-
tively. The behavior for the “PressController” class is defined by the “PressControllerBehavior”
activity. For moving the piston down and up, two separate activities, “MoveDown” and “MoveUp”
are introduced, which are invoked by using call behavior actions. Several UML tags must be attached
to the diagrams to make them work properly:

• Buffering of signals must be disabled for the whole activity. Otherwise they would lead to
incorrect behavior of the press (see variation point in Section 4.2).

• Since there are accept event actions without incoming edges in a nested interruptible activity
region, “regionActivationPolicy” has to be set to “OnParentFlow” (see variation point in
Section 4.4.4.4).

• “MoveDown” and “MoveUp” implement the actual piston movement by modifying the “posi-
tion” attribute of the piston class (the code is not shown here). Since this attribute is naturally
defined in the “Piston” class, the two activities must have this class as their context. To this
end, the UML “context” tag is used to invoke the call behavior actions with another context
class (see variation point in Section 4.4.1).

PressController
{behavior=PressControllerBehavior} position : int

Piston11

<<signal>>
LeftButtonPressed

<<signal>>
RightButtonPressed

<<signal>>
AnyButtonReleased

<<signal>>
PointOfNoReturn

Figure B.5: Molding press static structure

104

PressControllerBehavior

{bufferSignals=No}

MoveUp
[else]

MoveDownReached

PointOfNoReturn

AnyButtonReleased

{context=./piston}

LeftButtonPressed RightButtonPressed

1s

{context=./piston}

{regionActivationPolicy=OnParentFlow}

1

[@piston.position==0]

1

MoveDown

MoveUp

StepUp

[@position == 0]

[else]

StepDown

[@position == 100]

[else]

PointOfNoReturn

[@position == 75]

Figure B.6: Molding press behaviors

105

B.3 Microwave

The microwave was developed by students during a practical course. The static structure in Figure
B.7 shows a microwave and its technical components. Use cases that have been defined include:

• Cook

• Defrost

• Timer functionality and clock

• Programming

• Ensuring safety properties, such as deactivating the microwave when opening the door, etc.

Figure B.8 shows a small part of the behavior of the microwave, where the “cooking”-behavior
is modeled. When started, the microwave is activated (“EnableEverything”). This includes the
magnetron, turntable, and lamp. The microwave can be stopped at any time by pressing “Stop” on
the control panel, which is modeled with the “Stop” accept event action. Cooking has finished after
the timer has elapsed. During cooking, the door can be opened, which pauses the microwave. If the
door is not closed within 10 seconds, the microwave is stopped. Otherwise, cooking resumes.

HardwareDisplayConnectionOn: DisplayStatus
OperatingMode : int
Duration : int
Weight : int
Power : int
ShorterPressed : bool
LongerPressed : bool
DefrostAutomaticPressed : bool
StartPressed : bool
LanguagePressed : bool
InfoClockPressed : bool
StopPressed : bool

ControlPanel

Microwave
{behavior=MicrowaveBehavior}

1
1has

Turns : bool

TurnTable

Open : bool

Door

On : bool

Lamp

On : bool

Magnetron

UpperOn : bool
LowerOn : bool

HeatingCoil

1

1
has

11
has

11
has

11
has

11
has

Time : DateTime

Timer
{behavior=TimerBehavior}

1
1 has

<<signal>>
DoorOpened

<<signal>>
DoorClosed

<<signal>>
Start

<<signal>>
Stop

<<signal>>
TimerElapsed

{150 <= Power <= 1000}

operating mode constants:
COOK = 1
COOK_AND_UPPER_HEATINGCOIL = 2
COOK_AND_LOWER_HEATINGCOIL = 3
UPPER_HEATINGCOIL = 4
LOWER_HEATINGCOIL = 5
UPPER_AND_LOWER_HEATINGCOIL = 6

<<signal>>
TimerPaused

<<signal>>
TimerCountdown

<<signal>>
ShorterPressed

<<signal>>
LongerPressed

<<signal>>
InfoClockPressed

<<signal>>
DefrostPressed

OperatingMode : int
CookSecondsPerGram : float
Power : int

Profile

instances = {steaks,
mincedMeat, poultry, cakes,
bread}

5

1

has

Off
TimePower
Weight
Hours
Minutes

<<enumeration>>
DisplayStatus

Figure B.7: Microwave static structure

106

CookBehavior

EnableEverything

TimerElapsed DoorOpened

DoorClosed 10s

DisableEverythingDisableEverything

Stop DisableEverything

CookingFinished

2s

Figure B.8: Extract from microwave behavior

107

108

Zusammenfassung

Moderne Softwareentwicklungsprozesse propagieren die Verwendung grafischer Modelle in den Ana-
lyse- und Design-Phasen eines Projekts. Durch Abstraktion, Strukturierung und Kommunikation
soll auf diese Weise ein besseres Verständnis des zu entwickelnden Systems erlangt werden. Des
Weiteren wird die Produktdokumentation aufgewertet, da grafische Modelle einen besseren Überblick
ermöglichen. Trotzdem werden diese Modelle in späteren Phasen der Entwicklung oft nicht mehr
gepflegt, was zu einer Divergenz zwischen Implementierung und Dokumentation führt.

Die Modellgetriebene Softwareentwicklung versucht, dies durch direkte Verwendung der Modelle
für die Implementierung zu verhindern. Bisherige Ansätze fokussieren jedoch zu sehr auf statische
Strukturen, oder, falls das Verhalten einer Applikation überhaupt modelliert wird, auf die Verwen-
dung von Zustandsautomaten. Anforderungen sind jedoch oft “aktionsorientiert”, da Interaktionen
zwischen Benutzer und System in der Regel durch Anwendungsfälle (Use Cases) beschrieben werden.
Diese Use Cases werden oftmals zusätzlich in Form von UML Aktivitätsdiagrammen dargestellt.

Diese Arbeit befasst sich mit den Voraussetzungen für eine Verwendung von UML 2 Aktivitäts-
diagrammen für die Modellgetriebene Softwareentwicklung. Diese Voraussetzungen liegen in der
Definition einer formalen Semantik für UML 2 Aktivitätsdiagramme und der Bereitstellung eines
Tools für deren Ausführung, Animation und Debugging.

Kapitel 1 bis 3 beschreiben den Kontext und die Grundlagen der Arbeit. In Kapitel 1 schla-
gen wir einen neuartigen Ansatz zur Modellgetriebenen Softwareentwicklung vor, der Klassen- und
Aktivitätsdiagramme kombiniert. Unser Ziel ist es, die Softwareentwicklung zu verbessern, indem
die grafischen Modelle aus den Analyse/Design-Phasen für die Implementierung verwendet werden.
Aus Klassendiagrammen wird Code für Klassen und deren Attribute und Assoziationen erzeugt, der
die statischen Struktur des Systems umsetzt. Das Verhalten von aktiven Klassen – und damit der
Kontrollfluss – wird durch Aktivitätsdiagramme beschrieben, die zur Laufzeit interpretiert werden.
Dadurch muss die in den Modellen enthaltene Logik nicht nochmals “von Hand” implementiert wer-
den, was zu kürzeren Entwicklungszeiten führen soll. Da es nicht sinnvoll ist die gesamte Logik einer
Anwendung grafisch zu modellieren, kann handgeschriebener Code mit den Aktivitätsdiagrammen
integriert werden. Der erzeugte Klassencode wird dazu durch Methoden ergänzt, die an bestimmten
Punkten im Diagramm-Ablauf aufgerufen werden. Das Verhältnis von Modellierung und Codierung
kann vom Entwickler frei gewählt werden, was zu einer größeren Akzeptanz von Modellierungs-
ansätzen führen soll.

Kapitel 2 befasst sich mit den Grundlagen zu UML 2 Aktivitätsdiagrammen. Insbesondere wer-
den eine informelle Semantik für den Tokenfluss, sowie der für uns relevante Auszug aus dem UML 2
Metamodell beschrieben. In dieser Teilmenge enthalten sind alle für UML 2 Aktivitätsdiagramme
relevanten Elemente wie z.B. Kontroll- und Datenflüsse, Aktivitätsaufrufe, Methodenaufrufe, Ak-
tivitätsparameter, die Kommunikation mit Signalen sowie Unterbrechungsbereiche. Kapitel 3 gibt
schließlich eine kurze Einführung in Abstract State Machines (ASMs), die wir für die Definition einer
formalen Semantik für UML 2 Aktivitätsdiagramme verwenden.

Die folgenden Kapitel umfassen den Hauptteil der Arbeit. In Kapitel 4 diskutieren wir Probleme
der UML 2 Spezifikation in Bezug auf Aktivitätsdiagramme. Da die offizielle UML 2 Spezifikation
in rein textueller Form vorliegt, kommt es zu vielen Unklarheiten und Missverständnissen bei deren
Auslegung. Wir diskutieren zunächst Probleme der Spezifikation, wie beispielsweise der Tatsache,
dass Datentokens Kontrolltokens “überholen” können. Andere Probleme betreffen Signalempfänger,
Signale, Unterbrechungsbereiche, die Positionierung von Kontrolltokens sowie die Pufferung von

109

Tokens an Verzweigungsknoten. Für UML 2 Elemente, bei denen mehrere Interpretationen oder Op-
tionen sinnvoll sind, definieren wir “Semantische Variationspunkte”, die dem Entwickler Freiheiten
in der Modellierung lassen. Für die Konfiguration verwenden wir “UML tags”, einen Standardmecha-
nismus zur Erweiterung der UML. Konfigurierbar sind durch unsere Erweiterungen unter Anderem:

• die Behandlung von ein- und ausgehenden Flüssen in Unterbrechungsbereichen

• die Aktivierung und Re-Aktivierung von Signalempfängern in geschachtelten Unterbrechungs-
bereichen

• das zu verwendende Kontextobjekt bei einem Aktivitätsaufruf

• die Ziele von Signalen

• die Pufferung von Signalen

Ausgehend von der von uns geführten Diskussion über Probleme der UML 2 Spezifikation defi-
nieren wir in Kapitel 5 eine vollständige formale Semantik für die von uns untersuchte Teilmenge
der UML 2 Aktivitätsdiagramme mittels Ansynchronous Multi-Agent ASMs. Das Verhalten der Dia-
gramme wird durch einen Interpreter implementiert. Parallel ablaufende Aktivitäten und Aktionen
verwenden jeweils eigene ASM Agenten, die mittels Ereignissen kommunizieren. Die wesentlichen
Teile werden im Folgenden beschrieben.

• Zunächst wird gezeigt, wie das UML 2 Metamodell mit statischen ASM Domänen und Funk-
tionen umgesetzt wird. Darauf bauen die folgenden Interpreterfunktionen auf.

• Es wird die Erzeugung und Terminierung von Aktivitätsinstanzen beschrieben. Jede Instanz
wird in einer eigenen ASM ausgeführt, die eine Eventschleife implementiert. Events zur Kom-
munikation zwischen ASMs werden definiert.

• Die Semantik von Aktionen wird behandelt. Aktionen sind Elemente, die den Zustand des
Systems verändern und nicht weiter verfeinert werden können. Wir unterstützen die UML
Elemente CallBehaviorAction, CallOperationAction, AcceptEventAction, SendSignalAction,
sowie BroadcastSignalAction.

Wir führen verschiedenen Ausführungszustände von Aktionen ein und geben ASM Regeln für
deren Implementierung an.

• Ein weiterer zentraler Teil der Formalisierung ist die Flussberechung für die Tokens in Akti-
vitätsdiagrammen. Dieser besteht aus einer Propagierungsphase, bei der Tokenangebote von
Quellknoten zu Zielknoten verteilt werden, und einer Selektionsphase, bei der geeignete Token-
angebote an Zielknoten ausgewählt werden. Diese Auswahl führt schließlich zur Ausführung
von Transitionen und damit zur Aktivierung von Aktionen. Wir unterstützen insbesondere
auch lower - und upper -Angaben bei Aktionsparametern, was eine Konsumierung mehrere To-
kens in einem einzelnen Aktivierungsschritt einer Aktion ermöglicht.

Bei der Formalisierung lehnen wir uns so eng wie möglich an den UML Standard an und verwei-
sen jeweils auf die dort gemachten Aussagen. Da der Aufbau der ASM-Regeln modular ist, sind
Ergänzungen um neue Arten von Aktionen oder Änderungen am Flussalgorithmus ohne großen
Aufwand möglich.

Die Formalisierung ist die Voraussetzung für die Implementierung eines prototypischen Werk-
zeugs, der “ActiveChartsIDE”, welches in Kapitel 6 vorgestellt wird und mit dessen Hilfe unser
Ansatz der Modellgetriebenen Softwareentwicklung überprüft werden kann. Es wird zunächst die
Architektur vorgestellt und dann auf die Arbeitsweise eines Entwicklers mit der ActiveChartsIDE
eingegangen. Die Klassen- und Aktivitätsdiagramme werden mit Microsoft Visio 2003 erstellt, von
der ActiveChartsIDE importiert und in eine XML-Darstellung überführt. Der aus dem Klassendia-
gramm erzeugte Code wird durch eigene Methoden vom Entwickler in einer Entwicklungsumgebung
seiner Wahl ergänzt. Eine Laufzeitbibliothek führt die Diagramme aus und ruft die Methoden an den
entsprechenden Stellen auf. Die ActiveChartsIDE kann bei der Ausführung für das Debugging und

110

die Animation der Diagramme verwendet werden. Ohne unser Werkzeug wird die implementierte
Anwendung “standalone” und ohne jegliche Änderungen und Neugenerierung von Code ausgeführt.

Die abschließenden Kapitel enthalten eine Übersicht über die Beiträge dieser Arbeit, Mathe-
matische Konventionen sowie umfangreiche Fallbeispiele, die mit unserem Tool implementiert und
getestet wurden.

Teile dieser Arbeit wurden bereits in [SRKS05,SGK+05,Sar05,Sar06,SG06] veröffentlicht.

111

112

Bibliography

[BBG05] Sami Beydeda, Matthias Book, and Volker Gruhn. Model-Driven Software Develop-
ment. Springer, July 2005.

[BCR00a] E. Börger, A. Cavarra, and E. Riccobene. An ASM semantics for UML activity dia-
grams. In T Rus, editor, Algebraic Methodology and Software Technology, volume 1816
of Lecture Notes in Computer Science, pages 293–308. Springer-Verlag, 2000.

[BCR00b] Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. Modeling the Dynamics
of UML State Machines. In ASM ’00: Proceedings of the International Workshop on
Abstract State Machines, Theory and Applications, pages 223–241, London, UK, 2000.
Springer-Verlag.

[Ber05] Daniel Bernauer. Testfälle für Klassen- und Aktivitätsdiagramme der UML2 zur
Überprüfung der Sprachkonformität und -vollständigkeit von UML2 Werkzeugen. Mas-
ter’s thesis, Universität Ulm, September 2005.

[BFGS05] Egon Börger, Nicu G. Fruja, Vincenzo Gervasi, and Robert F. Stärk. A high-level
modular definition of the semantics of C#. volume 336, Issue 2-3 of Electronic Notes
in Theoretical Computer Science, pages 235–284. Elsevier, May 2005.

[BG03] J.P. Barros and L. Gomes. Actions as Activities and Activities as Petri nets. In
J. Jürjens, B. Rumpe, R. France, and E.B. Fernandez, editors, Critical Systems Devel-
opment with UML: Proceedings of the UML’03 workshop, pages 129–135. TUM-I0317,
September 2003.

[BG04] C. Bock and M. Gruninger. Inputs and Outputs in the Process Specification Language.
NISTIR 7152, National Institute of Standards and Technology, 2004.

[BG05] C. Bock and M. Gruninger. PSL: A semantic domain for flow models. In Software and
Systems Modeling, volume 4, pages 209–231, May 2005.

[BGN+03] Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai Till-
mann, and Margus Veanes. Model-Based Testing with AsmL.NET. In 1st European
Conference on Model-Driven Software Engineering, December 2003.

[Bia04] B. Biafore. Visio 2003 Bible. Wiley Publishing, Inc., 2004.

[BM97] R. Bruni and U. Montanari. Zero-Safe Nets, or Transition Synchronization Made
Simple. In Electronic Notes in Theoretical Computer Science: Proceedings of EX-
PRESS’97, 4th workshop on Expressiveness in Concurrency, volume 7, pages 1–19.
Elsevier Science, 1997.

[Boc04] C. Bock. UML 2 Activity and Action Models Part 4: Object Nodes. Journal of Object
Technology, 3(1):27–41, 2004. http://www.jot.fm/issues/issue 2004 01/column3.

[BS01] Mike Barnett and Wolfram Schulte. The ABCs of Specification: AsmL, Behavior, and
Components. Informatica, 25(4):517–526, Nov. 2001.

113

http://www.jot.fm/issues/issue_2004_01/column3

[BS03] E. Börger and R. Stärk. Abstract State Machines. Springer-Verlag, 2003.

[CGN+05] Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai
Tillmann, and Margus Veanes. Model-Based Testing of Object-Oriented Reactive Sys-
tems with Spec Explorer. Technical Report MSR-TR-2005-59, Microsoft Research,
May 2005.

[CW00] Giuseppe Del Castillo and Kirsten Winter. Model Checking Support for the ASM High-
Level Language. In S. Graf and M. Schwartzbach, editors, International Conference
TACAS, number 6 in LNCS 1785, pages 331–346. Springer-Verlag, 2000.

[dMGMP02] Maŕıa del Mar Gallardo, Pedro Merino, and Ernesto Pimentelis. Debugging UML De-
signs with Model Checking. Journal of Object Technology, 1(2):101–117, July-August
2002.

[EGGP00] R. Eschbach, U. Glässer, R. Gotzhein, and A. Prinz. On the Formal Semantics of SDL-
2000: A Compilation Approach based on an Abstract SDL Machine. In International
Workshop on Abstract State Machines (ASM 2000), LNCS. Springer-Verlag, 2000.

[Esh02] Rik Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow Mod-
elling. PhD thesis, University of Twente, 2002.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2003.

[EW01] Rik Eshuis and Roel Wieringa. A Real-Time Execution Semantics for UML Activity
Diagrams. In Heinrich Hussmann, editor, Fundamental Approaches to Software Engi-
neering. 4th International Conference, FASE 2001 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April
2-6. 2001 Proceedings, volume 2029, pages 76–90. Springer, 2001.

[EW02] Rik Eshuis and Roel Wieringa. Verification support for workflow design with UML
activity graphs. In ICSE ’02: Proceedings of the 24th International Conference on
Software Engineering, pages 166–176, New York, NY, USA, 2002. ACM Press.

[EW04] Rik Eshuis and Roel Wieringa. Tool Support for Verifying UML Activity Diagrams. In
IEEE Transactions on Software Engineering, volume 30, pages 437–447. IEEE, 2004.

[Fre06] Patrick Frey. Development and validation of an executable ASM specification of UML
2 Activity Diagrams. Master’s thesis, University of Ulm, 2006. (to appear).

[Ges05] Dominik Gessenharter. Visualisierung der Simulation von graphischen Prototypen als
Möglichkeit des interaktiven Debuggings von UML 2.0 Aktivitätsdiagrammen. Mas-
ter’s thesis, Universität Ulm, 2005.

[GR00] Angelo Gargantini and Elvinia Riccobene. Encoding Abstract State Machines in PVS.
In Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar Thiele, editors,
Abstract State Machines, volume 1912 of Lecture Notes in Computer Science, pages
303–322. Springer, 2000.

[GRS04] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic Essence of AsmL.
Technical Report MSR-TR-2004-27, Microsoft Research, 2004.

[GT01] Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Journal of Universal
Computer Science, 7(11):917–951, 2001.

[Gur94] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In Egon Börger, editor, Speci-
fication and Validation Methods, pages 9–37. Oxford University Press, 1994.

114

[Hau05] J.H. Hausmann. Dynamic Meta Modeling: A Semantics Description Technique for
Visual Modeling Languages. PhD thesis, Universität Paderborn, 2005.

[Hea06] A. Hartman and et al. Model Execution Project, 2006. http://www.haifa.ibm.com/
projects/software/ple/mex/.

[IBM05] IBM: Rational Unified Process, 2005. http://www-306.ibm.com/software/awdtools/
rup/.

[ILo05] ILogix, 2005. http://www.ilogix.com/.

[ITU00a] International Telecommunication Union ITU. Z.100 Annex F1 (11/00) SDL formal
definition - General overview, 2000. http://www.sdl-forum.org.

[ITU00b] International Telecommunication Union ITU. Z.100 Annex F2 (11/00) SDL formal
definition - Well-formedness and Transformation rules, 2000. http://www.sdl-forum.
org.

[ITU00c] International Telecommunication Union ITU. Z.100 Annex F3 (11/00) SDL formal
definition - Dynamic Semantics, 2000. http://www.sdl-forum.org.

[ITU02] International Telecommunication Union ITU. Z.100 (08/02) Specification and descrip-
tion language (SDL), 2002. http://www.sdl-forum.org.

[JEJ02] Yan Jin, Robert Esser, and Jorn W. Janneck. Describing the Syntax and Semantics
of UML Statecharts in a Heterogeneous Modelling Environment. In Diagrams, pages
320–334, 2002.

[Jür02] J. Jürjens. A UML statecharts semantics with message-passing. In ACM Symposium
on Applied Computing (SAC), pages 1009–1013. ACM Press, 2002.

[Kay04] Michael Kay. XPath 2.0 Programmer’s Reference. Wrox Press, 2004.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture — Practice and Promise. Addison–Wesley, 2003.

[Lar05] Craig Larman. Applying UML and Patterns. Prentice Hall, 2005.

[Mat05] Mathworks, 2005. http://www.mathworks.com/.

[MB02] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model
Driven Architecture. Addison–Wesley, 2002.

[McN04] Ashley McNeile. MDA: The Vision with the Hole?, 2004. http://www.metamaxim.
com/download/documents/MDAv1.pdf.

[MDA03] Object Management Group, MDA Guide 1.0.1, Document 03-06-01, June 2003, 2003.

[Mic05] Microsoft Developer Network. Create Elegant Code with Anonymous Methods, Iter-
ators, and Partial Classes, 2005. http://msdn.microsoft.com/msdnmag/issues/04/05/
c20/default.aspx.

[Mod05] Modelware Project, WP1 Modelling Techniques. Model Simulation Scheme – Defini-
tion, August 2005. http://www.modelware-ist.org/public area/publications/reports/
WP1 Modelling Techniques/D1.3 Model Simulation Scheme-Definition.pdf.

[NEG05] C. Nagel, B. Evjen, and J. Glynn. Professional C# 2005. Wrox Press, 2005.

[Obe03] I. Ober. An ASM semantics of UML derived from the meta-model and incorporat-
ing actions. In E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract State
Machines: Advances in Theory and Applications, volume 2589 of Lecture Notes in
Computer Science, pages 356–371. Springer-Verlag, 2003.

115

http://www.haifa.ibm.com/projects/software/ple/mex/
http://www.haifa.ibm.com/projects/software/ple/mex/
http://www-306.ibm.com/software/awdtools/rup/
http://www-306.ibm.com/software/awdtools/rup/
http://www.ilogix.com/
http://www.sdl-forum.org
http://www.sdl-forum.org
http://www.sdl-forum.org
http://www.sdl-forum.org
http://www.sdl-forum.org
http://www.mathworks.com/
http://www.metamaxim.com/download/documents/MDAv1.pdf
http://www.metamaxim.com/download/documents/MDAv1.pdf
http://msdn.microsoft.com/msdnmag/issues/04/05/c20/default.aspx
http://msdn.microsoft.com/msdnmag/issues/04/05/c20/default.aspx
http://www.modelware-ist.org/public_area/publications/reports/WP1_Modelling_Techniques/D1.3_Model_Simulation_Scheme-Definition.pdf
http://www.modelware-ist.org/public_area/publications/reports/WP1_Modelling_Techniques/D1.3_Model_Simulation_Scheme-Definition.pdf

[Pre04] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill
Science/Engineering/Math, 2004.

[Sar05] Stefan Sarstedt. Overcoming The Limitations of Signal Handling when Simulating
UML 2 Activity Charts. In J.M. Feliz-Teixeira and A.E. Carvalho Brito, editors,
Proceedings of the 2005 European Simulation and Modelling Conference (ESM’05),
pages 61–65, October 2005.

[Sar06] Stefan Sarstedt. Model-Driven Development with ActiveCharts - Tutorial. Technical
Report 2006-01, University of Ulm, March 2006.

[Sax03] Steve Saxon. XPath Querying Over Objects with ObjectXPathNavigator.
2003. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/
html/xml03172003.asp.

[SB04] Robert F. Stärk and Egon Börger. An ASM specification of C# threads and the .NET
memory model. In ASM 2004, pages 38–60, 2004.

[SG05] Rajesh Sudarsan and Jeff Gray. Meta-Model Search: Using XPath to Search Domain-
Specific Models. In The 2005 International Conference on Software Engineering Re-
search and Practice (SERP ’05), 2005.

[SG06] Stefan Sarstedt and Walter Guttmann. An ASM Semantics of Token Flow in UML
2 Activity Diagrams. In Perspectives of System Informatics, 6th International Andrei
Ershov Memorial Conference, PSI 2006. Springer, 2006. (to appear).

[SGK+05] S. Sarstedt, D. Gessenharter, J. Kohlmeyer, A. Raschke, and M. Schneiderhan. Ac-
tiveChartsIDE: An Integrated Software Development Environment Comprising a Com-
ponent for Simulating UML 2 Activity Charts. In J.M. Feliz-Teixeira and A.E. Car-
valho Brito, editors, Proceedings of the 2005 European Simulation and Modelling Con-
ference (ESM’05), pages 66–73, October 2005.

[SH05] H. Störrle and J.H. Hausmann. Towards a Formal Semantics of UML 2.0 Activities. In
P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Software Engineering 2005, volume
P-64 of Lecture Notes in Informatics, pages 117–128. Gesellschaft für Informatik, 2005.

[SKRS05] S. Sarstedt, J. Kohlmeyer, A. Raschke, and M. Schneiderhan. Targeting System Evo-
lution by Explicit Modeling of Control Flows using UML 2 Activity Charts. In Pro-
ceedings of the International Conference on Programming Languages and Compilers
(PLC ’05), Technical Session on Support for Unanticipated Software Evolution, 2005.

[SRKS05] S. Sarstedt, A. Raschke, J. Kohlmeyer, and M. Schneiderhan. A New Approach to
Combine Models and Code in Model Driven Development. In Proceedings of the In-
ternational Conference on Software Engineering Research and Practice (SERP ’05),
International Workshop on Applications of UML/MDA to Software Systems, 2005.

[Stö04a] H. Störrle. Semantics of Control-Flow in UML 2.0 Activities. In Symposium On Visual
Language And Human Centric Computing, pages 235–242. IEEE, sept 2004.

[Stö04b] H. Störrle. Semantics of Exceptions in UML 2.0 Activities. Technical Report TR0402,
Ludwig-Maximilians-Universität München, Institut für Informatik, apr 2004.

[Stö04c] H. Störrle. Semantics of Structured Nodes in UML 2.0 Activities. In K. et al. Koskimies,
editor, Nordic Workshop on UML, volume 2, pages 19–32, aug 2004.

[Stö05] H. Störrle. Semantics and Verification of Data Flow in UML 2.0 Activities. In M. Minas,
editor, Workshop on Visual Languages and Formal Methods, volume 127, Issue 4 of
Electronic Notes in Theoretical Computer Science, pages 35–52. Elsevier, 2005.

116

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml03172003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml03172003.asp

[UML01] Object Management Group. UML 1.4 Specification, September 2001.

[UML03] Object Management Group. UML 2.0 Superstructure Final Adopted Specification,
August 2003. http://www.omg.org/cgi-bin/doc?ptc/03-08-02.

[UML04] Object Management Group. UML 2.0 Superstructure Specification, Convenience Doc-
ument, October 2004. http://www.omg.org/cgi-bin/doc?ptc/04-10-02.

[UML05] Object Management Group. UML 2.0 Superstructure Specification, August 2005. http:
//www.omg.org/cgi-bin/doc?formal/05-07-04.

[UML06] UML 2.0 Semantics Project. Homepage, 2006. http://www.cs.queensu.ca/∼stl/
internal/uml2/.

[VK05] V. Vitolins and A. Kalnins. Semantics of UML 2.0 Activity Diagram for Business
Modeling by Means of Virtual Machine. In Ninth International EDOC Enterprise
Computing Conference, pages 181–192. IEEE, 2005.

[WE04] M. H. Walter and N. J. Eaton. Microsoft Office Visio 2003 Inside Out. Microsoft
Press, 2004.

[Win01] K. Winter. Model Checking Abstract State Machines. PhD thesis, Technical University
of Berlin, 2001.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language. Getting your models
ready for MDA. Addison-Wesley Professional, 2nd edition, September 2003.

[WM97] M. Walicki and S. Meldal. Algebraic approaches to nondeterminism - an overview.
ACM Computing Surveys, 29(1):30–81, 1997.

[WYY+04] Linzhang Wang, Jiesong Yuan, Xiaofeng Yu, Jun Hu, Xuandong Li, and Guoliang
Zheng. Generating Test Cases from UML Activity Diagram based on Gray-Box
Method. In APSEC, pages 284–291. IEEE Computer Society, 2004.

117

http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.omg.org/cgi-bin/doc?ptc/04-10-02
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.cs.queensu.ca/~stl/internal/uml2/
http://www.cs.queensu.ca/~stl/internal/uml2/

	Introduction
	Problems of current MDD-approaches
	Proposed approach
	Scope of this thesis
	Overview of this thesis

	UML 2 Activity Diagrams
	Introduction
	Informal semantics

	Abstract State Machines
	Basic, Structured and Asynchronous Multi-Agent ASMs
	Basic ASMs
	Structured ASMs
	Asynchronous Multi-Agent ASMs

	ASM operators
	Additional ASM rules and operators

	Discussion of UML 2 Activity Diagram Semantics
	Targeting controversial elements
	Problems and enhancements of signals
	Problems due to errors and obscure information
	Unclear terms
	Where to hold control tokens
	Confusion of the reader due to distributed information
	Termination of accept event actions without incoming edges
	Actions without incoming edges
	Actions without incoming edges but with input pins
	Data tokens outrun control tokens
	Buffering of tokens at fork nodes

	Problems due to missing information
	Context object for call behavior action
	Which transitions to execute
	Multiple callers with ``isSingleExecution''
	Interruptible activity regions

	An ASM Semantics for UML 2 Activity Diagrams
	Overview
	Basic definitions
	Predefined base domains
	UML 2 meta model to ASM mapping
	Abbreviations
	Configuration of activity executions

	Model-based configuration of semantics
	ASM initialization
	Activity
	Events
	Controller loop
	Start
	Termination
	Abort
	Transitions

	Action
	Creation
	Enabling
	Termination
	Abort
	Execution

	Computation and selection of token offers
	Overview
	Data structures
	Creation of token offers
	Propagation of token offers
	Selection of token offers at targets
	Handling interruptible activity regions
	Handling accept event actions
	Buffering of token offers
	Discussion of the token offer computation

	Executing transitions
	Discussion
	Deviations from the specification
	Related Work
	Possible extensions and further work
	Concluding Remarks

	Tool Support
	Architecture
	Working with the ActiveChartsIDE
	Discussion
	Related Work
	Possible Extensions
	Experiences
	Concluding Remarks

	Summary
	Contributions
	Outlook

	Mathematical Conventions
	Case Studies
	Alarm Device
	Molding Press
	Microwave

	Zusammenfassung

