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Abstract

Using object-based middleware infrastructures is popular for the development of
services in distributed systems. Active object replication is a suitable strategy
to increase the availability of such services. Existing replication architectures,
however, show some deficiencies in their flexibility and reconfigurability.

This thesis presents the FTflex architecture, which extends the CORBA-
based Aspectix middleware with flexible and reconfigurable replication mecha-
nisms. The contributions of this thesis support the development of replicated ob-
jects, enable a deterministic execution of object methods with multiple threads,
and provide a flexible and dynamically reconfigurable group communication
system.

First of all, this thesis designs an efficient replication architecture on the
basis of fragmented objects. The presented solution offers transparency for
clients and allows the relocation of parts of the service functionality to the
client side. The developer of a replicated object can use semantic annotations
to optimise the replication strategies. A tool for automated code generation
simplifies application development.

Second, this thesis addresses the concurrent execution of object methods.
The FTflex architecture provides new strategies that ensure determinism even
if multiple threads want to access the shared object state concurrently. FTflex
uses source code analysis and transformation as a novel way to influence the
thread coordination in the replica code.

The third contribution of this thesis is a reconfigurable, consensus-based
group communication system, which is used as a basis for active replication.
This system supports variable failure models, ranging from crash-stop to Byzan-
tine. A significant advantage of the system is its transparent support for
consistent reconfigurations at runtime. In addition, the system offers internal
instrumentation as a basis for autonomous adaptation and self-optimisation.
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Zusammenfassung

Bei der Entwicklung von Diensten in verteilten Systemen erfreuen sich objekt-
basierte Middleware-Infrastrukturen einer groflen Beliebtheit. Aktive Objek-
treplikation ist eine geeignete Strategie, um die Verfiigbarkeit solcher Dienste
zu erhohen. Bei existierenden Replikationsarchitekturen lassen sich allerdings
Defizite bei der Flexibilitdt und der Rekonfigurierbarkeit identifizieren.

Die in dieser Arbeit vorgestellte FTflez-Architektur ergéinzt die CORBA-
basierte Aspectix-Middleware um flexible und rekonfigurierbare Replikations-
mechanismen. Die Beitrdge dieser Arbeit unterstiitzen die Entwicklung von
replizierten Objekten, ermoglichen eine deterministische Ausfithrung von Ob-
jektmethoden mit mehreren Threads und stellen ein flexibles und dynamisch
rekonfigurierbares Gruppenkommunikationssystem bereit.

Zuniichst entwirft diese Arbeit eine effiziente Replikationsarchitektur auf der
Basis von fragmentierten Objekten. Die vorgestellte Losung bietet Transparenz
fiir Dienstnutzer und erméglicht es, Teile der Dienstfunktionalitdt auf Nutzer-
seite zu verlagern. Der Entwickler eines replizierten Objekts kann semantische
Annotationen verwenden, um die Replikationsstrategien zu optimieren. Ein
Werkzeug zur automatischen Codeerzeugung vereinfacht die Anwendungsent-
wicklung.

Als zweites befasst sich diese Arbeit mit der nebenldufigen Ausfithrung von
Objektmethoden. Die FTflex- Architektur stellt neue Strategien bereit, mit deren
Hilfe Determinismus beim konkurrierenden Zugriff mehrerer Threads auf den
Objektzustand erreicht wird. Dabei verwendet FTflex Quellcodeanalyse und
-transformation als einen neuen Weg, um die Threadkoordinierung im Pro-
grammcode zu beeinflussen.

Als drittes stellt diese Arbeit ein rekonfigurierbares, einigungsbasiertes Grup-
penkommunikationssystem bereit, welches als Grundlage zur aktiven Replikati-
on verwendet wird. Dieses System unterstiitzt verschiedene Fehlermodelle, von
“crash-stop” bis hin zu Byzantinischen Fehlern. Ein wesentlicher Vorteil des
Systems ist die transparente Unterstiitzung von konsistenten Rekonfigurationen
zur Laufzeit. Durch interne Instrumentierung bietet das System zudem eine
Grundlage fiir autonome Anpassung und Selbstoptimierung.
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Chapter 1

Introduction

The development of information technology in the past has lead to wide-spread
use of distributed computing systems. Software developers are faced with
new challenges due to the complexity of such systems. The use of distributed
middleware platforms is an established approach to reduce the complexity of
the development of distributed applications. The term middleware denotes an
infrastructure situated above the operating system that provides services to
the distributed application. Its functionality includes abstractions and mecha-
nisms for remote communication (e.g., remote method invocation), services for
referencing and finding remote applications, and mechanisms to convert data
between heterogeneous system components. Today, middleware functionality is
provided not only by dedicated platforms such as CORBA. Frequently, it is an
integral part of programming languages and execution environments, such as
Java RMI and .NET Remoting.

One important challenge for distributed applications is the ability to tol-
erate the failure of parts of the system. The inherent difficulty in developing
fault-tolerant distributed applications demands support by the middleware in-
frastructure. Fault-tolerant CORBA (FT-CORBA), which in 2001 has become
an integral part of the OMG’s core specification of CORBA [OMGO1], is an
important example for the integration of fault-tolerance support into existing
middleware. Other frameworks provide fault-tolerance support independently
from the core middleware infrastructure. For example, JBoss Cache [BWSS05]
provides replication for the JBoss Java application server [FR03].

Another important development of the past few years is towards autonomic
computing systems [KC03, LNP*03]. Such systems are characterised by a set
of self-x properties, such as self-configuring, self-optimising, self-repairing, self-
protecting, and self-documenting. Autonomous systems raise new challenges,
as they are much more dynamic than traditional systems. Applications and
middleware platforms need to support such dynamic behaviour.

1.1 Problem Statement

Currently, many fault-tolerant middleware systems use proprietary infrastruc-
tures. Object implementations not designed for fault-tolerant replication need
to be significantly modified to be used in such infrastructures. Portability
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between various fault-tolerance platforms is, in general, not supported at all.
Furthermore, existing middleware systems offer little flexibility. Replicated
objects are usually treated as remote “black boxes”, which impedes efficiency
optimisation such as using semantic knowledge to optimise access strategies
and moving some object functionality to the client side. In addition, method
invocations at replicated objects are, in most cases, executed with a single thread
only. The few exceptions to this rule are restricted to a simple, lock-based
coordination model. In addition, current fault-tolerant middleware typically
targets on static systems, with only little provision for flexible configuration,
runtime reconfiguration, and autonomous adaptation. It is thus questionable
whether existing fault-tolerant middleware systems can meet the new challenges
of autonomic computing systems.

1.2 Main Contributions

This thesis presents the FTflex architecture for the replication support in the
distributed object-oriented Aspectix middleware. The architecture uses frag-
mented objects as a novel way for integrating fault tolerance into an existing
middleware system. It offers flexibility in terms of supported fault models and
mechanisms for achieving replica consistency. FTflex provides innovative ap-
proaches to efficient multithreaded execution of object methods. Furthermore,
it offers novel consistency mechanisms that allow dynamic reconfiguration and
autonomous adaptation at runtime.

Fault-tolerance support is realised using the powerful fragmented-object
model of the Aspectix middleware. Full replication transparency is achieved
at the client side. No difference exists between accessing a replicated and a
non-replicated object, and remote references to replicated objects can be passed
transparently as reference parameters. Given a fragmented-object middleware,
no proprietary modifications to the middleware itself are required to support
fault-tolerant replication. In addition, the presented approach avoids unneces-
sary indirection steps that other fault-tolerance infrastructures require for each
access to a replicated object. No other existing replication middleware provides
all these advantages simultaneously. FTflex not only describes a new approach
to fault-tolerance support in object-based middleware systems, but also validates
the advantages of the fragmented-object model of Aspectix.

FTflex provides a code generation tool that simplifies the development of
replicated objects. This tool enables the developer to specify semantic anno-
tations that influence code generation. This way, replication strategies can be
better tailored to object-specific properties than it is possible in other replication
systems.

The problem of multithreading in replicated objects is another topic of
this thesis. Replica consistency usually requires deterministic behaviour, and
multithreading is a source of nondeterminism that is difficult to handle. Multi-
threading, however, is essential to avoid potential deadlocks that can occur in
a single-threaded execution model, and it allows better utilisation of computa-
tional resources. This thesis presents a detailed taxonomy for the problems and
benefits of single-threaded and multi-threaded execution models.

FTflex supports multithreaded method execution in replicated objects. To
avoid nondeterminism, the infrastructure must be able to control the scheduling
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of threads and thus must intercept all scheduling-related operations. Existing
multithreading-enabled systems use interception at the level of operating sys-
tem or virtual machine. This thesis proposes automated source-code analysis
and transformation to intercept synchronisation operations at a level that is
independent of low-level operating system or virtual machine.

This thesis proposes novel approaches for handling the intercepted scheduling
operations. It specifies four variants of a scheduling module that is responsi-
ble for obtaining deterministic behaviour. Unlike previous work in this area,
the presented scheduler modules fully support the native Java synchronisation
model, including reentrant locks, condition variables, and time-bounds on wait
operations.

At the level of replica consistency management, the FTflex infrastructure
supports a wide range of failure models. As a result, it not only covers the
domain of classic replication systems, which usually can tolerate only benign
crash failures, but also applies to the domain of intrusion-tolerant systems. In all
scenarios, the infrastructure currently uses active replication with strict replica
consistency. Other variants, such as passive replication and replication with
weaker consistency guarantees, are not considered in this thesis, but could easily
be added to the F'Tflex architecture.

The Aspectiz group communication system (AGC) is an internal part of
FTflex, which is used for managing replica consistency. The AGC uses an
instance of a distributed consensus algorithm that can be selected for various
failure modules, ranging from benign crash-stop failures to malicious Byzantine
failures. The configurable design allows the FTflex infrastructure to execute
applications with various degrees of fault-tolerance, without having to modify
the application.

For each failure model, the AGC provides algorithmic variants, allowing
the system to be tailored to developer requirements, network properties, failure
frequencies, and client interaction patterns. Due to the encapsulation of consis-
tency strategies within the group communication system, replicated objects can
be used in many environments without requiring changes to the replicated object
or the remaining middleware. A classification of variant properties allows the
selection of the best variant for given developer-defined parameters and observed
system conditions.

Another important contribution is the provision of mechanisms that allow
dynamic reconfigurations. Large-scale reconfigurations, such as the replacement
of the internal consensus algorithm, are supported in a way such that (a) strict
replica consistency is guaranteed across the reconfiguration, (b) the reconfigu-
ration is fault-tolerant (i.e., can tolerate concurrent failures), and (c¢) has only
minimal impact on the running application (i.e., is significantly more efficient
than simply shutting down the system and restarting it in a new configuration).
In addition, autonomous self-optimisation is partially supported. For example,
algorithms can be adjusted automatically to provide optimal performance given
the current network properties, the availability of nodes, and client interaction
patterns. Reconfigurability and adaptability increase the utility of the F'Tflex
architecture in the context of dynamic systems.

Deterministic Scheduling

Flexible Failure Models

Aspectix Group Communication

System

Configurable Consistency
Strategies

Runtime Reconfiguration and
Autonomous Adaptation
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1.3 Structure of this Thesis

This thesis is structured as follows:

Chapter 2 defines the context of the thesis by presenting the relevant back-
ground. It discusses the basic functionality of distributed object middleware.
Existing approaches to fault tolerance in distributed systems are summarised.
Special attention is given to replication support in object-oriented middleware
and to the architecture of Fault-Tolerant CORBA. Finally, the chapter provides
exact definitions of important terms and models that are used in this thesis.

Chapter 3 discusses problems in existing object replication systems. It
evaluates multithreaded execution of object methods. Furthermore, the chapter
discusses existing group communication technology and outlines deficiencies that
relate to this thesis. Finally, it presents an overview of the research goals; these
can be divided into three categories, which are the subjects of the subsequent
three chapters.

Chapter 4 proposes the realisation of fault tolerance in distributed systems
using fragmented objects. It presents the design of the flexible and recon-
figurable F'Iflex architecture, which adds replication support to the Aspectix
middleware. Special emphasis is put on consistency issues that are caused
by interactions between independent replicated objects. Code generation and
semantic annotations are presented as means to simplify the development of
replicated objects, to handle nondeterministic replica behaviour, and to auto-
mate state transfer between replicas. Finally, the chapter discusses management
and dynamic reconfiguration of replica groups from a high-level point of view.

Chapter 5 discusses deterministic multithreading in replicated objects and
introduces the Aspectix DEterministic Thread Scheduler (ADETS). It proposes
source-code transformation as a new approach to intercepting native Java syn-
chronisation mechanisms. The chapter presents four algorithms that ensure a
deterministic scheduling of threads in replicas. Furthermore, an experimental
analysis compares and evaluates all implemented scheduling strategies.

Chapter 6 takes a closer look at the low-level layer of the FTflex archi-
tecture. It presents the Aspectix group communication system (AGC), which
offers totally ordered multicast. The AGC is used for consistent active object
replication. It provides algorithmic variants, which offer variability in terms
of failure models and communication mechanisms. In addition, reconfiguration
support and autonomous adaptation are implemented at this low-level layer.

Finally, Chapter 7 presents concluding remarks. It summarises the con-
tributions and the limitations of this thesis and discusses open problems and
challenges for future work.



Chapter 2

Background

This chapter describes the wider scope of this thesis. It discusses the basics of
distributed object-orient programming and gives a review of strategies to provide
fault tolerance in distributed systems. Furthermore, it defines the system model
that is used in this thesis.

2.1 Distributed Object Middleware

Object-oriented programming has a long tradition in computer science, starting
in the 1960s with the programming languages Simula [DN66] and Smalltalk
[Kay93]. Today, it is one of the most popular programming paradigms, used in
languages such as C++ and Java. State (data) and behaviour (functionality)
are encapsulated in objects, which are accessed via methods of an interface.
The programming model provides abstraction, encapsulation, inheritance, and
polymorphism [Weg90]. The strength of object orientation is based on its
ability to separate interfaces from implementations, to substitute various ob-
ject implementations that have the same interface, to promote reusability and
modularisation, and to support hierarchical decomposition.

Distributed computing is a useful model for many applications, and, along
with the development of networked systems, is steadily rising in popularity.
Distributed applications are frequently structured on the basis of a client-server
model. In this model, a client requests a service operation from a remote server
and receives the operation result. Distributed object-oriented systems apply the
principle of object-oriented programming to distributed applications.

2.1.1 Distributed Object-Oriented Programming

In distributed object-oriented programming, a service is modelled as an object
with a public interface, and clients interact with the server using remote method
invocations. Ideally, such a remote invocation is fully transparent to caller
and callee; that is, no difference exists between a local and a remote method
invocation. Transparency is only partially achieved in practice. For example,
caller and callee may fail independently in a distributed system, which can lead
to situations that cannot occur locally. Furthermore, the data types that can
be passed as invocation parameters face limitations in the distributed case, as

Object-Oriented Programming

Distributed Computing

Distributed Object-Oriented

Programming
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local file handles, local memory references, etc., cannot easily be transferred to
a remote host.

The interface of a remote object is defined either using programming-lan-
guage constructs or using another special interface definition language. Usually,
the client uses synchronous remote invocations. This behaviour is identical to
that of local invocations: the client issues a remote invocation and, after that,
waits until it receives a response from the server that hosts the remote object.

The semantics of remote method invocations can be characterised by the
behaviour in failure situations. Spector [Spe82] provides the following classifi-
cation for invocation semantics’

o maybe (best effort): In optimal executions, the remote method is executed
once, and the client receives a reply. If any failure occurs, including
lost packets at the network level, the remote method may or may not
be executed, and the client may or may not receive a reply.

o at-least-once: Invocations are re-tried for as many times as it is necessary
to get a reply. This semantics is able to mask communication failures.
The call, however, may be executed multiple times at the servant. In case
of a client failure, the call may or may not be executed.

e [ast-of-many: This is an extension of at-least-once, which guarantees that
the reply that the client receives belongs to the last invocation.

e at-most-once: Invocations are executed at most once. In this semantics,
calls may be re-tried after communication failures. The servant guarantees
that it does not execute the invocation a second time, but instead retrans-
mits the previously obtained result. If the invocation is not successful due
to a failure, the servant method may have been executed zero or one times.

e cractly-once: This semantics guarantees that the remote method is exe-
cuted exactly once, in spite of all failures. It requires that the servant be
able to recover after failures. Exactly one execution in case of client failure
is guaranteed only if the client is able to recover as well.

In a distributed system, ezactly-once semantics are hard to achieve. It re-
quires transactional behaviour of the servant. As the implementation of exactly-
once semantics causes high runtime costs, weaker variants are used in practice.
CORBA and Java RMI, for example, provide an at-most-once semantics.

Remote method invocations are usually implemented on the basis of middle-
ware infrastructure. At the client side, the caller uses a stub to access the remote
service; this stub has the same interface as the remote service and, in general,
is automatically created on the basis of the interface definition. The stub maps
remote method invocations to messages that are sent to the remote host, and
maps incoming result messages to a value that is returned to the caller. Method
parameters are transformed into a transferable network format and vice versa,
a process called marshalling and unmarshalling. For this purpose, the stub
uses functionality that is directly provided by the middleware system. The
object that implements the remote service at the server is called the servant. A

Hnstead of Spector’s terms “only-once-type-1” and “only-once-type-2”, the more common
terms “at-most-once” and “exactly-once” are used respectively.
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skeleton or server-side stub maps incoming messages to method invocations at
the servant and passes the invocation result back to the client.

Clients and servers are not necessarily completely disjunctive entities.
Rather, it is possible that the server issues further remote invocations during
the execution of a remote method. In this case, the server acts as a client for
these invocations. Such invocations are called nested invocations.

Distributed object-oriented systems need unique references to distributed
objects. These addresses are globally valid. A client has to bind to the remote
object using this address to get access to the object. The binding operation
loads the corresponding stub code at the client and initialises the stub with
location information obtained from the reference data. Binding operations can
happen explicitly and implicitly. In an ezplicit binding operation, the client
application itself asks the middleware system to convert an external represen-
tation of a remote reference into a local reference to a stub. In contrast, in an
implicit binding operation, the stub is loaded automatically without a dedicated
application request. Implicit binding usually happens if the application receives
the remote reference as a marshalled parameter or return value of a remote
invocation. Only such an implicit binding allows transparent reference passing
across host boundaries, identical to what is locally possible in object-oriented
programs.

2.1.2 Popular Middleware Systems

CORBA (Common Object Request Broker Architecture) is an open and vendor-
independent middleware architecture for distributed object-based applications,
defined by the OMG (Object Management Group) [OMGO04]. It provides ba-
sic mechanisms for remote method invocation through an ORB (Object Re-
quest Broker). Interfaces are defined in CORBA IDL (interface definition
language). CORBA allows for interoperability between CORBA-based systems
implemented in various programming languages, or running on ORBs of different
vendors.

Other middleware systems work in a similar way. Java RMI supports remote
method invocations in the Java programming language [Sun04]. The main
difference to CORBA is the tighter language integration, which lacks support
for cross-language interactions, but improves transparency and simplifies the
system. Microsoft’s .NET Remoting is a similar approach, which is simpler than
CORBA but still allows cross-platform interoperability by defining a binary data
exchange format [MWNO2]. Web services are another approach to interoperable
network-based applications [ACKMO03]. They define interfaces in a public format
such as the web service definition language (WSDL), and use a client-server
structure for interaction on the basis of a remote invocation protocol such as
SOAP [CDK™02]. All such middleware systems use an RPC-based interaction
for invoking object methods at a remote location.

2.1.3 Aspectix

Aspectix is a middleware based on the fragmented-object model, which aims at
providing superior flexibility and adaptivity compared to other existing middle-
ware systems [HBGT01, RHKS03]. It supports heterogeneous systems, provides
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Figure 2.1: Comparison of client-server model and fragmented-object model

mechanisms to control the quality-of-service of applications, and facilitates dy-
namic reconfigurations at runtime.

The concept of fragmented objects has first been used by FOG [MGNS94]
and then by Globe [HvDvSt95]. It offers a distribution model that is more
flexible than the traditional RPC-based client-server model. An object is no
longer associated with a single location; the interaction from the client side is
no longer restricted to a remote invocation via a client-side stub. Instead, the
object itself is an entity that spans multiple nodes. Each client that interacts
with the object requires a local fragment; all fragments are conceptionally part
of the object (see Figure 2.1). A fragmented-object middleware infrastructure
allows arbitrary distribution of object functionality and state on the fragments
as well as arbitrary inter-fragment communication.

Aspectix supports this object model within a CORBA-compliant middleware
infrastructure. It uses CORBA interoperable object references (IORs) to refer-
ence fragmented objects. It provides client-side transparency by automatically
loading an object-specific local fragment instead of a standard stub when the
client binds to such an IOR.

A special focus of Aspectix is on the support for quality-of-service awareness.
The code that is loaded for a fragment can be selected individually from a set
of available implementations. This selection can also be changed at runtime by
transparently replacing the fragment implementation; as a result, systems can
adapt themselves to provide the desired quality-of-service. Thus, Aspectix offers
a flexible platform for dynamic reconfigurations.

If the object developer had to implement all fragment implementations man-
ually, the flexibility of the fragmented-object model would be outweighed by a
development complexity much higher than in the simple client-server model. In
practice, a fully manual implementation of fragment code is not necessary. The
Aspectix middleware provides a code generation tool that is able to automate
the creation of most fragment code for standard tasks. Only the specific object
functionality needs to be implemented by the developer.

In the context of this thesis, the Aspectix infrastructure provides important
mechanisms to simplify the support for flexible and reconfigurable object repli-
cation. The fragmented-object model of Aspectix transparently enables the
loading of object-specific fragment code at the client side. This advantage is
useful for loading tailored functionality for accessing a replica group. The code
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generation tools of Aspectix can support the flexible provision of object-specific
replication mechanisms. Furthermore, adaptivity and reconfigurability is also
inherently supported by Aspectix middleware mechanisms.

The Aspectix approach for supporting fragmented objects is not limited to
CORBA. Our FORMI architecture [KKSH05, KDH"06] demonstrates that the
same concepts can be used for Java RMI. Our replication prototype for .NET
Remoting [RDHO05] shows that this environment also offers a similar extensibil-
ity. This thesis concentrates on the support for object replication in the context
of CORBA-based distributed applications. The referenced prototypes show that
the FTflex architecture is also applicable to non-CORBA systems.

2.2 Fault Tolerance in Distributed Systems

Distributed systems are permanently faced with the problem of node failures.
A famous quote by Lamport puts it this way: “A distributed system is one in
which the failure of a computer you didn’t even know existed can render your
own computer unusable” [Lam87]. This problem can be addressed by hardware-
based mechanisms that reduce the probability of failures, by mechanisms that
support system recovery after failures, and by transparently masking the effect
of failures.

Dependability can be increased using special highly-reliable hardware (e.g.,
using error-correcting memory, redundant storage, or redundant power sup-
plies). This approach is typically used for applications with demanding avail-
ability requirements in mission-critical systems. An increase in reliability comes
along with significantly increased hardware costs. Software-based mechanisms
for fault tolerance are sometimes seen as a way to reduce these costs. It is,
however, more appropriate to consider hardware-based approaches as fully or-
thogonal to software-based approaches. Both concepts can independently be
used at the same time to increase the dependability of a system. Hardware-based
approaches to fault tolerance are not discussed in this thesis.

Recovery is usually supported by the periodic creation of consistent check-
points, which can be used to reset the system to this state after failures. Al-
though this approach has the advantage of minimal overhead in failure-free
operation, in case of failures it causes a loss of all state modifications since the
last checkpoint. In addition, it is faced with a period of unavailability while
the system recovers. It requires accurate and timely failure detection. Falsely
suspecting a failure causes unnecessarily high recovery costs and state loss; using
long timeouts for failure detection decreases the risk of false suspicions, but
increases the time until the system recovers and resumes operation. Given an
efficient checkpointing implementation, recovery-based fault tolerance is feasi-
ble in practical systems. For example, Plurix [SFGS04] provides an execution
model on the basis of restartable transaction with an optimistic synchronisation
scheme. The system handles node failures with a simple and fast reset of the
cluster, after which the execution of transactions may continue from a consistent
distributed state.

Replication is another approach to fault tolerance in distributed system.
The functionality of an entity is redundantly made available on multiple nodes.
After the failure of a node, the remaining replicas can still provide the full
functionality and can thus transparently mask the effect of the failure. Usually,
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the replicated entity has some state that has to be kept consistent. Replication
can be used at several levels of the distributed system. This section discusses
the replication of file systems, databases, and objects.

2.2.1 File System Replication

From a client point of view, a replicated file system appears as a single logical
remote file system. Internally, the replicated file system stores files redundantly
on the local file systems of multiple nodes.

Read-only replication and weak consistency strategies are popular in the
domain of file systems. In read-only replication, copies from a primary source
are made on secondary nodes to support load-balancing; data modifications are
only possible on the primary data source and lack fault tolerance. Solutions in
this category are, e.g., the replication support in the Andrew File System [Kaz88|
and in SharePlex [Uy02]. In optimistic replication strategies, modifications are
made without synchronisation, and updates are later propagated to all replicas.
If inconsistencies are detected, manual conflict resolution by the user becomes
necessary. Prominent examples for optimistic replication are Locus [WPET83],
Coda [SKK190], and Ficus [PGJH90].

Only file systems with strong replica consistency are comparable to the
replication mechanisms this thesis focuses on. An update-all strategy ensures
that all modifications are made in consistent order on all replicas. For example,
Deceit [MS88] uses this approach based on the totally ordered group commu-
nication provided by ISIS [BJ87]. A primary-copy approach is, for example,
used by the Harp File System [LGG'91]. In this system, all backup replicas
have to acknowledge all modifications. A majority-based view-change algorithm
excludes crashed backups and, after a primary crash, transparently selects a new
primary. Distributed consensus algorithms can also be used to replicate parts
of a distributed file server. For example, Frangipani [TML97] uses a lock server
that provides multiple-reader-single-writer locks to coordinate concurrent access
to replicated disk data. The lock server is fully decentralised to obtain scalability
and fault tolerance; it uses Lamport’s Paxos algorithm [Lam89] for consistent
replication of the global lock server state.

Recently, decentralised distributed file systems on the basis of struc-
tured peer-to-peer infrastructures have become popular, such as OceanStore
[KBCT00] (based on Tapestry [ZHS104]), CFS [DKK'01] (based on Chord
[SMK*01]), and PAST [RDO01a] (based on Pastry [RD01b]). File systems based
on peer-to-peer systems store files as sets of (key, data) blocks in the base
systems; these data blocks are read-only and may arbitrarily be cached and
replicated without provisions for consistency. The only exception to this rule
is a root object that identifies the set of blocks belonging to the most recent
version of a file. The root information needs to be replicated for fault-tolerance
reasons; usually, majority voting techniques are used make consistent updates
on a group of nodes. OceanStore, for example, uses Castro’s Byzantine variant
of the Paxos algorithm [CL99] for consistency of the root information.

2.2.2 Database Replication

Distributed database systems frequently use replication techniques. Often, these
techniques are justified primarily by efficiency reasons. Replication increases



2.2. FAULT TOLERANCE IN DISTRIBUTED SYSTEMS 11

scalability and improves response time, as more replicas balance the load and
handle more read requests in the same amount of time. The second purpose of
replication in database systems is to increase availability. The following litera-
ture review concentrates on the fault-tolerance aspect of database replication,
as this aspect corresponds to the focus of this thesis.

Similar to all other replication systems, the challenge for replicated databases
is to control the replicas such that they maintain a consistent shared state.
Existing approaches can be classified into primary-copy, read-one-write-all, and
quorum-based consensus. A more detailed discussion of approaches can be found
in Bernstein et al. [BHG87].

In a primary-copy approach [AD76, Sto79], an update is first processed by
a primary node. The primary then updates the state of the secondary replicas.
After a primary failure, a secondary is selected to become the new primary.
Efficiency reasons usually advocate an implementation in which the primary
updates all other copies only asynchronously. The non-primary copies may lag
behind with updates; they are unable to guarantee that read operations access
the most up-to-date state. Using local read operations on secondary replicas
is only possible with a weaker semantic model: instead of reading consistent
up-to-date values, snapshot semantics is provided, which ensures consistency
of the values read, but permits reading outdated values. Consistency may, for
example, be defined by a versioning concept [MPL92].

The read-one-write-all (ROWA) strategy achieves consistency of replicas by
updating them all on each state modification. This way, all replicas always have
an up-to-date state, and read operations can be done locally on any replica.
For read-only requests, this replication strategy offers optimal performance. In
contrast, the efficiency of write transactions is determined by the slowest node
in the system. If one node becomes unavailable, no modifications can be made.
This problem is reduced in the similar read-one-write-all-available (ROWAA)
approach [BG84]. In ROWAA, a crashed replica is not updated; after the replica
recovers, it needs to update its state before it may handle any requests. This
strategy requires accurate failure detection.

In a quorum consensus strategy, all write transactions need to be executed
at a write quorum W of nodes, and all read transactions have to be executed
at a read quorum R of nodes. Any two write quorums Wi, W5 and any pair of
read quorum R and write quorum W need to intersect in at least one element.
The intersection ensures that at least one node with the most recent state is
part of the quorum. All transactions will use this up-to-date state, which can
be identified by state revision numbers that are increased on each update or
by logical time stamps of the last modifications. An early example of quorum
consensus was the majority voting mechanism introduced by Thomas [Tho79],
in which all nodes are equal and numerical majority is used to define both read
and write quorums. More flexible approaches use weighted voting for replicated
data [Gif79], or other generalisations such as crumbling wall quorums [PW95]).

The use of group communication technology for replicating databases is
advocated by several researchers. Kemme et al. [KA98] argue that a tight in-
tegration of database replication strategies with low-level group communication
protocols leads to systems that are more fault-tolerant than primary-copy (in
which the primary is a single point of failure) and which are more efficient
than traditional ROWA strategies, while maintaining the same transactional
semantics found in centralised systems. Pedone et al. [PGS98] argue that the
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use of atomic broadcast primitives increases the efficiency of replicated databases
with deferred replica updates. More recently, Wiesmann [Wie02] has provided a
detailed discussion of the benefits from using group communication for database
replication. This means that group communication technology can be used
successfully for the consistent replication of distributed databases.

2.2.3 Object Replication

Object-based middleware uses objects as units of distribution (see Section 2.1.1).
An object at this level typically is a coarse-grained entity; the term service is
synonymously used for it. The (logical) distributed object can be composed
of multiple local objects at the programming-language level. The distributed
object has an explicitly defined interface, which is used as the basis for remote
invocations. An object replication system provides redundant instances of an
object at multiple nodes; both state (data) and functionality (code) of the object
are replicated. Passive replication and active replication are two fundamental
approaches to consistency management of replicated objects [CDK94].

In passive replication (also called primary-copy replication), requests are
processed by a single primary replica. The primary is responsible for updating
the state of the secondary replicas. Usually, the state transfer is not triggered
immediately after each state modification, as doing so would be too expensive.
Instead, updates are sent asynchronously in larger time intervals. If the primary
fails, one secondary replica needs to be selected as new primary. The secondary,
however, may lag behind with state updates compared to the failed primary. In
this case, the new primary has to re-execute all client operations that happened
after the last state transfer. For this purpose, a request log stores all client
requests that the primary has processed after the last successful state update of
all secondary nodes.

It is common to use secondary replicas only as backup nodes. Using them
for read-only operations is rarely done in practice as (a) the middleware often
does not know whether operations are read-only, and (b) secondary replicas can
lag behind with state updates, which results in a weaker semantics, and it is
unknown whether such a semantics is acceptable for clients.

In active replication, all replicas independently process the same set of client
requests. The term state-machine replication is also used for this approach
[Lam78]. The effect of executing a set of methods is assumed to be deterministic.
As a result, the state of the replicas remains consistent. The simplest strategy
is to assume a deterministic behaviour of each single method and to execute all
methods sequentially in total order. As all replicas keep an up-to-date object
state, masking the failure of a replica remains fully transparent to clients. All
replicas execute the method requested by the client; the client may receive a
reply from one available replica without any delay, even if other replicas fail.

Hybrid approaches that combine features of both replication styles are advo-
cated by some authors. In the Delta-4 project, Powell et al. [PCD90] introduced
the notion of semi-active replication. This replication style aims at combining
the fast recovery of active replication with relaxed determinism requirements.
All replicas autonomously execute all deterministic computations. One replica
is selected as leader and becomes responsible for all nondeterministic decisions.
The leader’s decisions are transferred to all other replicas as a kind of “mini-
checkpoint”.
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Semi-passive replication was defined by Défago et al. [DSS98] as a variation
of passive replication. A rotating coordinator paradigm is used to select one
node that processes a request. In ordinary passive replication, a new primary
is selected only after the previous primary is suspected to have crashed. The
suspected primary is excluded from the replica group; in case of a false suspicion,
it has to re-join the replica group in a costly operation. In semi-passive repli-
cation, the primary role may quickly be moved from one node to another based
on aggressive timeouts, while a second, conservative timeout is used for replica
group membership. Furthermore, clients send their requests to all replicas,
instead of sending them only to the primary as in passive replication. This
strategy eliminates the need to re-send the request after a primary failure.

Similar to non-replicated distributed objects (see Section 2.1.1), a replicated
object A can invoke a remote method of a replicated object B. Supporting such
invocations adds complexity to the replication infrastructure; this is why only
some existing systems provide the necessary support. For nested invocations, the
infrastructure has to make sure that the remote method at object B is invoked
only once, even if multiple replicas issue this invocation (due to active replication
or failover to a secondary in passive replication). In the other direction, the
result of the invocation at B has to be delivered to multiple replicas of object A.

Group communication is frequently used for replication strategies. Most
important of all, the usual implementation of active replication uses totally
ordered multicast for delivering requests to all replicas in total order. Semi-
active and semi-passive replication also require a multicast mechanism to send
requests to all replicas. Group communication protocols provide such multicast
facility with the desired semantics.

2.2.4 Summary of Replication Technologies

The possible approaches to replication are similar for all discussed replication
domains. Approaches with uncoordinated updates, which potentially require
manual intervention in case of conflicts, are most popular for file systems. In
a few systems, this method is also used for database replication (e.g., Garcia-
Molina et al. [GMAB™83]). Manual conflict resolution is only feasible if conflicts
happen only rarely in practice and if users have sufficient knowledge to manually
resolve conflicts. With the rising complexity of distributed systems, such an
approach will become less and less feasible in most scenarios.

Primary-backup systems exist in several variants. In the simplest form (e.g.,
passive replication of objects), the replicas serve only a backup role, taking over
the role of the primary after primary failure. Often, backup replicas are used
to handle read-only operations, which allows load-balancing. In this case, the
update strategy influences the read semantics. Primary-backup systems either
use a synchronous update of all replicas on each state modification, or offer
a weaker semantics that permits read operations on replicas that do not have
the most recent state. Modifications always have to access the primary. If the
primary fails, a failover to a backup replica is necessary to restore the ability to
modify the object state.

Consensus-based strategies eliminate the need for a coordinating primary.
The lack of dependency on a single node results in a faster reaction to failures;
ideally, node failures are fully hidden from users. In contrast, in a primary-
backup scheme the transition to a new primary after a primary failure results in
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Figure 2.2: Architecture of Fault-Tolerant CORBA

a period of system unavailability. Consensus-based strategies also avoid the
dependency on accurate failure detection. This separation is important for
asynchronous systems that do not permit accurate failure detection. A drawback
of consensus-based strategies is that they typically have higher overhead than
primary-copy approaches.

The focus of this thesis is on consensus-based strategies for active replication
of distributed objects. The FTflex architecture realises this replication style on
the basis of a totally ordered group communication system. The group com-
munication system integrates consensus-based strategies for consistency man-
agement. The FTflex architecture provides strict replica consistency and does
not consider weaker consistency models. The infrastructure offers mechanisms
to select and configure the consensus protocol for optimal efficiency for a given
execution environment and application.

2.3 Fault-Tolerant CORBA

Initially, the CORBA platform had no support for fault tolerance. Electra
[Maf95], Eternal [MMSN98], and Maestro [VB98] are early examples of systems
that add fault tolerance to CORBA. In 2001, the OMG added the fault-tolerant
CORBA specification (FT-CORBA) to its core CORBA specifications [OMGO1].
FT-CORBA defines a management architecture and basic interfaces, but leaves
details like consistency protocols to the concrete middleware implementations.

2.3.1 Management Architecture

The FT-CORBA standard describes a system architecture that is composed
of the replicas, factories that can create replicas, the replication manager, and
clients. In addition, services for request logging, checkpointing/recovery, and fail-
ure detection can be deployed. The overall architecture is shown in Figure 2.2.
All components are themselves implemented as CORBA objects.
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The replication manager is responsible for managing multiple replicated
objects within a replication domain. Typically, the replication manager is repli-
cated to avoid a single point of failure. The replication manager is responsible
for managing properties (such as replication style and the required number of
replicas), for the creation of replica groups, and the management of replicas
(e.g., the addition of new replicas to a replica group).

To create replicas, a factory approach is used. A factory needs to be provided
on each node on which a replica shall be placed. The factory offers methods to
remotely create objects. Factories are plain CORBA objects and can be used
remotely by the group manager.

The replica implementation is basically the same as a non-replicated CORBA
servant implementation. No difference exists for stateless services. For stateful
services, the replicated object needs to implement an additional interface for
state transfer.

2.3.2 References to Replication Groups

CORBA uses Interoperable Object References (IORs) to reference remote ob-
jects. Internally, the IOR is composed of a set of profiles. Each profile specifies
a way to contact the object. In addition, tagged components can be stored in a
multiple component profile to provide access-independent information, such as
a unique object ID. Plain COBRA objects, which can be accessed via IIOP, use
an [TOP profile in the IOR.

Replication requires that references point to a group of objects instead of
pointing to a single object on one node. FT-CORBA defines Interoperable Object
Group References (IOGRs) for this purpose. An IOGR is an IOR that contains
a separate IIOP profile for each replica. In addition, the IOR contains a global
object ID and a reference version number.

Using a special form of the IOR as a group reference permits a limited degree
of interoperability with non-fault-tolerant CORBA systems. Such a system will
iterate over all IOR profiles to find a contact address that allows remote access.
A non-fault-tolerant client will find an available contact replica even if some
of the replicas have failed. Only partial fault tolerance is achieved by this
approach. Failures that occur after initially finding a contact replica are not
handled transparently. If the client runs on a fault-tolerant ORB, it will provide
additional functionality, for example, to repeat the invocation after a failure.

During the lifetime of a replicated object, new replicas can be added to the
replica group or can substitute crashed ones. Such group changes invalidate the
information in the IOGR. Each modification to the replication group member-
ship creates a new version of the IOR. On each client interaction, the replicas
can inform the client about new versions of the IOR, which enables the client
to obtain the most recent contact information of the group.

2.4 System Model

This thesis uses Bal’s definition of a distributed computing system.

Definition 2.1 (Distributed System) “A computing distributed system is
composed of several autonomous processors without shared main memory, but
cooperating by message passing over a communication network” [Bal90].
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Processors are denoted by the symbols Py, Ps, .. .; the terms node and process
are used as synonyms for processor. The connections of the communication
network are called channels. Nodes exclusively interact by the exchange of
messages; no other way for exchanging information exists. This definition not
only excludes systems with shared main memory, but also shared disk storage
that is accessible from multiple nodes.

There are various system models that restrict the behaviour of processes
and communication channels. The synchrony model defines timing assumptions
about the behaviour of nodes and channels. The failure model defines the
behaviour of components that fail.

2.4.1 Synchrony Model

The synchrony model concerns two parameters. First, it defines bounds on the
execution speed of processors (i.e., how long it takes at most for a node to
execute a step). Second, it defines bounds on the message transmission delay
(i.e., the amount of time that elapses between the emission and the reception of
a message). The two extremes of the spectrum of synchrony models are given
by the synchronous and asynchronous system model.

Definition 2.2 (Synchronous System Model) A distributed system is syn-
chronous if known upper bounds exist for the execution time of each local
computation and for the messages transmission delay.

The strict timing assumption of the synchronous model provides a convenient
programming model. For example, algorithms can be executed in synchronous
rounds, and real-time clocks can be synchronised with a known upper bound
on the synchronisation error. Often, the synchronous model permits simple
and efficient algorithms that are not possible with other, less strict synchrony
models.

Definition 2.3 (Asynchronous System Model) A distributed system is
asynchronous if no concept of physical time is used. The duration of local
computation steps and message transmissions is unbounded.

The asynchronous system model makes no timing assumptions at all. It is
the most general synchrony model. Algorithms for the asynchronous system
model work in any synchrony model.

Although the synchronous model provides a convenient programming ab-
straction, it makes assumptions that are hard to maintain in a realistic envi-
ronment. For example, an Internet-based distributed application has no strict
guarantees on message delivery delay. On the other hand, the asynchronous
model is convenient because of its generality. Several important problems,
however, such as the distributed consensus problem [FLP85], cannot be solved
in an asynchronous model. In other words, neither the synchronous nor the
asynchronous model is adequate for most realistic distributed systems.

In practice, intermediate models with some partially synchronous assump-
tions have to be used. For example, processes might know an approximate time
bound for local computations or for message transmission delays [Lyn96], or
such bounds might exist but be unknown to all processes [DLS88]. A frequently
used model is that the system is basically synchronous, but that the bounds of
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the synchrony model may be violated to some extent. If those violations were
not restricted at all, this model would be equivalent to the asynchronous model.
The eventually synchronous model® provides a practical restriction [DLS8S].

Definition 2.4 (Eventually Synchronous Model) A distributed system is
eventually synchronous if there exists an unknown time T, after which the
execution time of computations and the message transmission delay is bounded
by a known upper limit.

Algorithms for the eventually synchronous model are similar to those for a
synchronous model, as they can use the timing properties that are guaranteed
to be valid after time T'. It is, however, necessary that such algorithms be able
to tolerate arbitrary violations of the timing assumptions before T'.

Other systems use an oracle approach. The system is assumed to be com-
pletely asynchronous, but an oracle provides some additional information. For
example, Chandra and Toueg [CT96] propose failure detector oracles to solve
the distributed consensus problem in an asynchronous system. Both reliable
failure detection and distributed consensus are problems that are impossible
to solve in a fully asynchronous system. With an oracle that gives information
about crashed nodes (with only weak accuracy semantics), distributed consensus
becomes solvable.

This approach enables the use of an algorithm in multiple environments.
The correctness verification of the algorithm does not depend on the specific
assumptions of a partially synchronous system model provided by the environ-
ment. Instead, the verification can be based on the abstract properties of the
oracle. All that is necessary is to provide an implementation of the oracle for
each environment in which the algorithm shall be used. The algorithm will work
correctly in the environment if the abstract oracle properties can be verified
given the specific properties of the real environment.

2.4.2 Failure Model

Components of a distributed system may fail in various ways. It is important
to define which kind of failures are expected to occur in the distributed system;
providing such a definition is the task of the failure model. If nodes fail in a way
not covered by the failure model, a complete system failure can occur.

Node Failures

Node failures can be attributed to hardware or software. Hardware may fail
due to reasons such as power failures, wear out, or design failures. Software
failures can happen in the operating system, the middleware, or the application
itself. From the point of view of the distributed system, it is not necessary to
distinguish between failures caused by software or hardware; all that is relevant
is that a node is no longer functioning correctly. The purpose of fault tolerance
is to maintain the functionality of the system even if some nodes are faulty.

2Throughout this thesis, the term eventually is used in its strict mathematical sense. An
event happens eventually if it definitively happens within an unknown but finite amount of
time.
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Functionality of a distributed system can be maintained only if sufficiently
many nodes are functioning correctly. In the extreme, the distributed system
will certainly fail if all nodes are faulty. It depends on the protocols and the
system model how many correct nodes need to be available to ensure proper
system operation.

In the design of a fault-tolerant application it is important that reasonable
measures are taken to make the failure of nodes independent. It would be fatal
if a single fault caused the failure of multiple or all replicas of a service. This
is more likely to be a problem with software failures (e.g., a bug in a service
implementation that manifests itself on all nodes) than with hardware failures.
Frequently, the same operating system, middleware system, and application will
be used on all nodes. One approach to tackle this problem is to use multi-version
programming, where independent implementations of these entities are used in
different nodes. Multi-version programming is not a main subject of this thesis,
but it can easily be combined with the presented replication architecture.

A further distinction can be made on the basis of the behaviour of faulty
processes. In a real system, arbitrary behaviour of faulty nodes may be expected.
If such arbitrary behaviour is considered to be sufficiently unlikely, different
failure models with restrictions on the behaviour of faulty nodes can be used;
such restrictions usually result in simpler and more efficient protocols. The two
extremes of failure models are crash-stop and Byzantine. Several intermediate
models may be used; important representatives defined in this section are the
models crash-recovery and restricted Byzantine.

Definition 2.5 (Crash-Stop Failure Model) In a crash-stop failure model,
a correct node never fails. A faulty node behaves identical to a correct node
up to a time t, and then crashes by halting.

Assuming that communication via the network is the only way of interaction
in the distributed system, a faulty node sends only messages that a correct node
would have sent and, at some time ¢, completely stops sending further messages.
Crash-stop is the simplest fault model. It is, however, a questionable assump-
tion that a correct process never crashes and a crashed one never recovers. A
more realistic assumption is made in the crash-recovery model. In this model,
processes fail by crashing and later may recover again. On failure, they loose
the content of their volatile memory. Algorithms for the crash-recovery model
usually make use of stable storage that can survive crashes.

Definition 2.6 (Crash-Recovery Failure Model) In a crash-recovery fail-
ure model, a node may be either up or down. When a node is up, it behaves
according to its specification; when it is down, it has stopped executing and does
not send any messages. An up node may crash any time, turning into the down
state. A down node may recover at any time, turning into the up state. A good
node is either one that never crashes, or one that crashes and recovers a finite
number of times and, after some time t, is eventually always up. A bad node
is one that crashes and recovers infinitely often or that, after some time t', is
permanently down.

The crash-recovery model is more realistic than the crash-stop model. Still,
both models make the same assumption that a node either behaves strictly
according to its specification or is stopped. This assumption may not always be
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true: Hardware failures may have unpredictable side effects that cause arbitrary
behaviour. Even worse, a node might get under control of an attacker, who could
force it to perform malicious steps that affect the whole distributed system. The
Byzantine failure model covers such kinds of misbehaviour.

Definition 2.7 (Byzantine Failure Model) In a Byzantine failure model, a
correct node behaves according to the specification. A faulty node may take
arbitrary steps and send out arbitrary messages to other nodes.

The Byzantine failure model is the most comprehensive of all. Faulty nodes
may show arbitrary behaviour; no assumptions about their behaviour are made.
Often, this model is too general in practice, as it permits that faulty nodes do
impractical things such as forging the digital signature of other correct nodes.

Definition 2.8 (Restricted Byzantine Failure Model) A restricted
Byzantine model is identical to a Byzantine model, with the exception that the
behaviour of faulty nodes is limited to computationally feasible steps.

This definition relays on the vague notion of computationally feasible steps.
For the analysis of specific algorithms, the definition needs to be made more pre-
cise. A frequently used clarification is the assumption that faulty nodes may not
forge cryptographic signatures of correct nodes. The restricted Byzantine model
allows the use of algorithms that function correctly given the unforgeability of
digital signatures.

This thesis uses only the failure models defined by Definitions 2.5-2.8. Some-
times, other authors use additional failure models; among these models, timing
failures, omission failures, and value failures are the most prominent cases. A
timing failure occurs if a message with the right content arrives late. Considering
such failures requires a synchronous system model and is not useful in the case
of asynchronous or eventually synchronous models. An omission failure occurs
if a message is not received at all. Instead of using such a failure model, this
thesis assumes a network with fair lossy channels (see subsequent definition).
Value failures are similar to Byzantine failures, but usually are restricted to
specific domains. For example, a replication infrastructure might assume that
the replicated application produces arbitrarily wrong values (value failures),
whereas the replication infrastructure does not.

Ideally, a replication infrastructure should support an arbitrary failure
model, selected according to application requirements. If an infrastructure
supports only limited variants of the failure model or just one fixed model, it will
not provide an optimal solution. A Byzantine failure model is the most general,
but usually requires a more complex and costly algorithm. If the application
requires tolerating crashes only, an infrastructure for the Byzantine failure model
will offer unnecessarily poor performance. Many existing fault-tolerant systems
are limited to tolerating crash-stop node failures. This limitation makes them
inadequate if other kinds of faults are to be expected. As a result, it is desirable
to have an infrastructure whose failure model can be tailored to the requirements
of the application.

Network Failures

A general approach to modelling communication channels is the fair lossy chan-
nel abstraction [BCBT96]. This abstraction is used throughout this thesis.
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Definition 2.9 (Fair Lossy Channel) A fair lossy channel is a communi-
cation channel that (a) does not invent any messages (i.e., if P, receives a
message m from Pp, then Py has sent the message m), (b) does not loose
messages infinitely often (i.e., if Py, sends a message m infinitely often to P,
P, will receive it infinitely often), and (¢) does not duplicate a message infinitely
often (i.e., if Py, sends a message m finitely often to P, P., will not receive
m infinitely often).

This definition makes only minimal assumptions about the channel be-
haviour. A fair lossy channel allows the implementation of quasi-reliable chan-
nels by retransmitting messages [BCBT96]. This model implicitly includes the
possibility of temporary link failures and temporary network partitions.

In an asynchronous or eventually synchronous model, it is not feasible to
distinguish between operational and non-operational channels. These models
do not impose fixed bounds on the message transmission delay. There is no
observable difference between a temporarily non-operational channel and one
that is just slow.

If, in practice, a communication channel fails or the network partitions, the
failure can have one of the following consequences. Either, the system continues
to operate in the largest available partition; for most protocols, this strategy
requires a quorum of nodes (usually a majority) to be part of this partition. Or,
the system blocks until sufficiently many channels become available again.

2.5 Summary

Distributed object-oriented systems apply the principles of object orientation to
distributed systems. Services are encapsulated as objects, and remote method
invocation is used for interaction. Adaptor code (stubs and skeletons) is auto-
matically generated from interface definitions; clients load the stub code when
binding to a remote reference. Popular middleware systems, such as CORBA,
Java RMI, and .NET Remoting, provide an infrastructure for systems with such
a client-server structure. The CORBA-based Aspectix middleware supports
a more general fragmented-object model; it allows the use of instance-specific
code instead of fixed stubs and provides mechanisms for dynamic quality-aware
adaptation.

The most important domains for replication are file systems, databases, and
distributed objects. In all cases, strategies for replica management are required
to keep replicas consistent. The focus of this thesis is on active object replication,
which uses a consensus-based consistency strategy. For CORBA objects, the
OMG offers FT-CORBA as a standard architecture for object replication. FT-
CORBA defines a management architecture, generic interfaces, and CORBA
references to replica groups, but leaves details such as consistency protocols to
individual vendor implementations.

The design and evaluation of a replication infrastructure requires an exact
definition of the system model. In this thesis, a distributed system is defined
as a set of processes that interact by exchanging messages over a computer
network. The synchrony model imposes bounds on execution speed and message
transmission delay. The failure model specifies the kind of failures that are
expected to happen in the distributed system.



Chapter 3

Existing Object Replication
Systems

This chapter examines in detail existing replication support in distributed object
middleware. The discussion focuses on middleware integration and development
support, thread execution models, and group communication architectures; em-
phasis is put on the deficiencies that this thesis addresses.

First, we define a set of criteria as a means to evaluate object replication
systems. The discussion of high-level aspects of these systems covers the addi-
tion of replication mechanisms to the middleware, the development process of
replicated objects, and mechanisms for reconfiguration and adaptation.

After that, the focus is put on thread execution models for replicated ob-
jects. As multithreading is a potential source of nondeterminism, many existing
systems use a simple single-threaded execution model. This approach, how-
ever, limits the performance, eliminates useful synchronisation concepts (such
as coordination with condition variables), and faces the risk of deadlocks.

Finally, group communication is discussed as a basic mechanism for main-
taining replica consistency. An overview of message ordering properties, reliabil-
ity guarantees, and variants of implementation strategies provides the necessary
background. The support for multiple failure models and dynamic reconfigura-
tion in existing systems are analysed in detail.

The contributions of this thesis address these three areas. First, replication
on the basis of fragmented objects, automated code generation, and the use of
semantic annotations allow a simple and flexible development of replicated ob-
jects. Second, this thesis defines new strategies for deterministic multithreaded
execution. Third, it presents a group communication system that allows vari-
ability of the failure model and supports dynamic reconfiguration in an efficient,
fault tolerant, and consistent way.

3.1 Middleware Support for Replication
This section analyses the state-of-the-art of replication support in distributed
object-based middleware systems. We define the PECSAR criteria (portability,

efficiency, client transparency, servant transparency, adaptivity, and reconfig-
urability) as a means to evaluate replication support in middleware systems.
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The discussion covers three main issues: first, the middleware integration from
a client point of view; second, the development process of replicated objects;
and third, the support for adaptation and reconfiguration.

3.1.1 The PECSAR Criteria

This thesis defines the six PECSAR criteria to evaluate a replication infras-
tructure: Portability, Efficiency, Client transparency, Servant transparency,
Adaptivity, and Reconfigurability.

PORTABILITY: A replication infrastructure is portable if it does not require
specific internal modifications to the middleware, but instead can be used as
an extension to a standard middleware system. With a portable infrastructure,
a fault-tolerant application can be used on any implementation of a specific
middleware system. Portability is more difficult to achieve for heterogeneous
platforms such as CORBA than for more homogeneous systems such as Java
RMI.

EFFICIENCY: The efficiency of replication support can be evaluated directly
by the latency and throughput of method invocations on a replicated object.
The latency is defined by the average total time that a method invocation takes,
while the throughput refers to the maximum number of invocations per time in-
terval the replicated object can handle. As the efficiency may differ significantly
between executions with and without failures, it is necessary to analyse both
cases. The efficiency without failures is evaluated in optimal executions without
node failures. As non-replicated systems do not handle node failures, it is a
proper criterion for a direct comparison between replicated and non-replicated
objects. The difference in latency and throughput characterises the overhead of
replication and the performance gain that can, for example, be obtained by load
balancing. The efficiency with failures is an important criterion for comparing
fault-tolerance properties of different replication infrastructures. It indicates
how well the infrastructure can hide failures from client applications. Ideally,
a failure should be masked fully, in which case the latency and throughput are
identical with and without node failures.

CLIENT TRANSPARENCY: The replication infrastructure provides client
transparency if a client application does not notice any syntactical or semantic
difference between accessing a non-replicated and a replicated object. In a trans-
parent system, a non-replicated object instance can be replaced by a replicated
one without requiring any modifications to the client. Full client transparency
means that no intervention at all is needed at the client side. If the client binds
to a remote reference, the middleware infrastructure automatically loads the
code for accessing the replica group. The decision about loading a different
code instead of a standard client stub is triggered internally on the basis of
information in the remote reference. Source-code client transparency is a weaker
form of client transparency. It may be necessary to explicitly inform the local
middleware instance about which object is replicated. This may, for example,
be done by registering information about replicated objects at system startup.
The client source code that is used to invoke remote methods, however, requires
no modification.

SERVANT TRANSPARENCY: The infrastructures offers servant transparency
if no modifications have to be made to a non-replicated object implementation
(servant) that is going to be replicated. Although this criterion looks similar to
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client transparency, it is much harder to achieve in practice. On the one hand,
the replicated entity must provide additional functionality, such as support for
state transfer. On the other hand, the replica implementation is subject to
restrictions imposed by the replication infrastructure, such as the requirement
of strictly deterministic behaviour.

ADAPTIVITY: A replication infrastructure is adaptive if it provides variants
for some task and is able to change the variant automatically without external
intervention. Adaptivity can be used for self-configuration and self-optimisation.
It requires some kind of observer /controller structure that observes system prop-
erties and autonomously requests configuration changes.

RECONFIGURABILITY: An infrastructure is reconfigurable if it implements
variants for some task and allows the variant to be changed manually at run-
time. That is, an external entity can request that the configuration of the
replication infrastructure be changed. This external entity usually is a (human)
administrator that interacts with the infrastructure; it can also be an application
that runs on top of the infrastructure.

3.1.2 Adding Fault-Tolerance Support to Object Middleware

This section discusses the addition of fault-tolerance support to distributed ob-
ject middleware. Existing systems for object replication are examined in detail
regarding the properties of portability, efficiency, and client transparency. The
main focus is put on replication support in CORBA-based middleware systems,
but most observations similarly apply to non-CORBA systems. CORBA has
to support heterogeneity and interoperability between platforms from multiple
vendors. In a homogeneous system such as Java RMI, portability and trans-
parency are less difficult to achieve.

Most existing implementation strategies use the interception approach, the
service approach, or the integration approach. In addition, some systems employ
hybrid approaches that do not exactly fit into a single category.

The interception approach was introduced by the Eternal system [MMSN9S].
Low-level ITOP messages are intercepted at the interface between the CORBA
ORB and the operating system. This approach makes replication fully trans-
parent to client applications. Furthermore, it works with any off-the-shelf
ORB without internal modifications; in other words, it supports cross-ORB
portability. On the negative side, the interception depends on support from
the operating system. In addition, the replication middleware has to analyse
low-level byte streams, and semantic information is not available to the repli-
cation middleware; this disadvantage introduces a slight performance penalty
that other approaches can avoid.

In the service approach, the fault-tolerance mechanisms are encapsulated
into an application-level service. Clients interact with an object group service
to access the replication group. Usually, the service is started locally on each
client to avoid that the service represents a single-point-of-failure. Prominent
systems that use this approach are OpenDREAMS/OGS [FGS98, Fel98] and
DOORS [NGYSO00]. Implementing the object group service as an ordinary
CORBA service makes it easily portable across different ORB implementations.
This approach, however, does not provide client transparency, as the client needs
to be aware of the object group service. All invocations to the client require
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the indirection step through the application-level group service. The indirection
adds overhead that decreases efficiency.

In the integration approach, the middleware ORB is directly augmented with
functionality for fault-tolerance support. The most prominent representatives
of the integration approach are Orbix+Isis [BR94] and Electra [Maf95]. This
approach usually requires that both client and server application run on the same
ORB implementation; it does not provide portability. On the positive side, this
approach is efficient, as no unnecessary indirections are used. Furthermore, it
provides client transparency.

A hybrid approach is used by FTS [FH02], which combines CORBA portable
interceptors with a custom group object adapter implementation (GOA) to
provide fault tolerance in a way that is not compliant to the FT-CORBA
standard. The portable interceptor automatically redirects invocations to a
group service. The interceptors are not implicitly defined by the IOR, but need
to be manually installed at the client. Hence, this approach does not achieve
full client transparency, but only source-code client transparency.

Replication support can also be added to non-CORBA middleware infra-
structures. A prominent example is the AROMA system [NMMS00], which
transparently enhances the Java RMI system with mechanisms for consistent
object replication. It intercepts TCP/IP connections of standard RMI remote
invocations at the transport layer and maps them to a reliable, totally ordered
group communication protocol. It thus applies the interception approach of
Eternal (see above) to Java RMI. As an alternative to such a low-level approach,
the Java RMI environment provides extensibility features that allow the devel-
oper to use custom mechanisms in place of the internal stub and skeleton layer
and remote reference layer. Jgroup [Mon99] and Filterfresh [BCH198] both
exploit these extensibility features to add replica groups to Java RMI, while
maintaining client transparency.

3.1.3 Development of Replicated Objects

Implementing a replicated object is more complicated than implementing a
non-replicated one. Although replication can be made transparent to clients
that access a replicated object, it is hard to achieve servant transparency. The
object developer usually has to adhere to strict requirements on replica imple-
mentations. On the one hand, he has to implement additional functionality, such
as mechanisms for state transfer. On the other hand, restrictions are imposed
on the replica implementation. For example, the targets of remote interactions
must support duplication suppression or need to be idempotent to maintain
invocation semantics. Usually, replica implementations must not contain sources
of nondeterminism. Furthermore, if the developer provides additional semantic
knowledge about the replicated object, the replication mechanisms can be made
more efficient.

State Transfer

State transfer is an essential mechanism for replication. It is needed to recover
crashed replicas and to create new replicas; the only exceptions are fully stateless
objects, which are not further discussed in this thesis.
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In a manual approach, the developer of a replicated object has to take di-
rect provisions for state transfer. For example, in a FT-CORBA infrastructure
[OMGO4] the developer has to implement a get_state() and a set_state()
method in all replicated objects (except for stateless replicated objects). This
approach requires the developer to manually provide code for serialising the
object state into transfer data and for initialising the object state form this
data. Infrastructure support is limited to implicitly invoking the state-transfer
methods on creation or recovery of a replica.

In a programming language approach, the existing serialisation support of a
programming language is used. For example, the Java programming language
allows automatic serialisation of classes that are marked with the Serializable
marker interface [GJSBO05]. This approach is fully transparent to the developer,
but it is only possible with some programming languages and it does not support
state transfer in heterogeneous systems.

Invocation Semantics

A replicated objects aims at providing the same invocation semantics as a non-
replicated one (see Section 2.1.1). Failure handling can cause a repetition of in-
vocations. A client that interacts with a single replica of a replication group has
to re-issue its invocation after the failure of the contact replica. As it is unknown
whether the replica group has received and executed the client invocation, it is
essential to detect and suppress a re-execution of the method. A similar kind of
re-invocation can happen if the client is a replica group that invokes a remote
invocation on another servant. Usually, a single client replica is selected to issue
the invocation and later distribute the result to all client replicas. The failure
of the interacting client replica makes a repetition of the invocation necessary.
The established solution to this problem is to include unique identifiers with all
invocation requests. For example, FT-CORBA [OMGO04] specifies that such an
ID is passed as invocation context together with the remote invocation. In a
replicated client, it is important that all clients generate the same identifier for
the same invocation.

Deterministic Replica Behaviour

Determinism is an important prerequisite for consistent object replication. A
reproducible state is obtained in all replicas only if the replica behaviour is
deterministic. An object implementation, however, can contain various sources
of nondeterminism. In local system interactions, an object obtains values from
the local system infrastructure (operating system and libraries). For example,
it calls API functions of the system to read or write local files from/to disk,
to query local values (e.g., system time, CPU load, and hostname), and to
generate random numbers. In external interactions with the environment, the
local instance interacts with external entities. For example, the object im-
plementation might resolve a hostname via the Internet domain name system
(DNS). A DNS server can return different IP addresses for the same name. This
behaviour is frequently found in practice, e.g., for the purpose of load balancing.
Multithreading is another source of nondeterminism. If state information of an
object is accessed by concurrent threads, mutexes are usually used to serialise
the access. In replicas, however, the relative execution speed of threads cannot
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be predicted, which can result in different orders in which threads access the
state. Section 3.2 discusses the multithreading problem in more detail.

In practice, non-replicated object implementations frequently use nondeter-
ministic operations. The requirement of replica determinism makes it difficult
to re-use these implementations for replicated objects. Several strategies exist
in practice to cope with this problem [SNOG].

In some instances, the nondeterminism of operations can simply be ignored.
This approach is trivially possible if the replica implementation makes a nonde-
terministic operation and ignores the result. More generally, nondeterminism is
acceptable if it does not influence the relevant replica state. As an example, a
replicated service could pass time stamps in messages that it sends to a client.
If the time stamp is not stored in replica state and the client uses one reply only
(which it receives from an arbitrary replica), it is irrelevant if other replicas
created a different time stamp.

The simplest approach, used by most existing systems (e.g., FT-CORBA
[OMGO04]), is to forbid any nondeterministic code in replicated objects. If a
potentially nondeterministic operation needs to be used, the developer must
use a deterministic implementation of this operation. For frequently used op-
erations (such as generating random numbers or time stamps), the replication
infrastructure can provide such alternative implementations that guarantee that
all replicas will obtain the same value. A simple re-use of existing non-replicated
object implementations is not possible in this approach, as the object needs to
be adjusted to use the deterministic alternatives.

Runtime interception can be used to transparently redirect nondeterministic
operations to deterministic variants provided by the replication infrastructure.
For example, the Eternal system intercepts library functions at the operating-
system level to provide consistent time or mutex locking for multiple threads
[NMMS97]. Another approach for interception is to use code analysis to replace
nondeterministic operation by deterministic variants in the replica code [SN04].

Semantic Knowledge

Transparency is often seen as a desirable feature of replication infrastructures.
Full servant transparency implies that a developer can use existing servant im-
plementations without modifications for replicated objects. Such existing imple-
mentations do not provide explicit semantic information. Felber et al. [FJRS01]
argue that the reliability and dependability of applications can be improved by
exploiting semantic knowledge. The authors present their vision of an intelligent
middleware which has access to some kind of semantic repository.

Semantic information can either be obtained automatically by code analysis
or can be provided by the servant developer. Automatically inferring semantics
from implementations preserves servant transparency, but is only possible in
some situations. For example, code analysis could reveal that a method im-
plementation only reads the object state, obtaining the semantic information
that the method is readonly. The servant developer usually knows exactly what
the properties of his implementation are, and thus he is easily able to explicitly
provide such semantic knowledge, even in cases in which automated inferring is
not feasible.

For the runtime support for semantic knowledge, it is irrelevant how the
semantic information is obtained. Both explicit developer annotations and
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knowledge obtained by automated code analysis can be used to provide the
relevant information to the runtime infrastructure. This infrastructure can then
adjust its behaviour accordingly.

3.1.4 Dynamic Adaptation and Reconfiguration

In the following, the focus is shifted from the static (portability, efficiency,
client transparency, and server transparency) to dynamic PECSAR criteria:
adaptivity and reconfigurability. These features can be used to optimise sys-
tem properties such as resource usage, throughput, and latency, while main-
taining the desired quality-of-service properties. In addition, adaptivity and
reconfigurability allow the system to react to changes in user expectations or
environment properties.

Variability in the provided replication mechanisms is the basic prerequisite
for any kind of adaptation and reconfiguration. Multiple variants for performing
individual tasks have to be provided by the infrastructure. Various tasks can
be considered for runtime reconfiguration, and some of them are also suitable
for autonomous adaptation. Adaptation usually is implemented by an internal
observer/controller component that observes the environment and aims at se-
lecting the optimal variant. Important tasks for reconfiguration are the number
of replicas, the replication style, the failure model, consistency protocols, and
internal timing parameters.

The number of replicas is usually reconfigurable in any replication infras-
tructure. The reconfigurability is essential for removing a failed replica from
or adding a new replica to a replication group. For example, the FT-CORBA
standard defines an automatic membership style, in which the replication man-
ager knows the minimal number of required replicas. If the actual number drops
below this limit due to failures, the manager uses pre-defined remote factories
to create a new replica on an available node. A dynamic adaptation of the
number of replicas can be found in some existing object-replication systems.
The most prominent example is AQuA [RBCT03], a fault-tolerant CORBA
infrastructure using the interception approach. AQuA provides an adaptive
and quality-of-service—aware architecture. The minimum number of replicas
is fixed, but the actual number is autonomously adapted on the basis of the
system load. On high-load situations, additional replicas can be created for
the purpose of load balancing. In addition, the type of operations (read-only
or modifying) is taken into account, as load balancing improves only read-only
operations, whereas modifications become more expensive with an increased
number of replicas.

The aspect of dynamically configuring the location and number of replicas
has also been addressed in other contexts such as distributed database systems.
Wolfson et al. [WJH97] propose an algorithm for distributed databases that ad-
justs the replica configuration according to read and write patterns of the client.
Bal et al. [BBHT98] analyse similar replica placement strategies for a distributed
shared memory system. It is generally understood that such strategies are useful
to increase application performance. Recently, in the vision of autonomous
computing systems, researchers have taken up the same idea in the context of
web services and grid applications [KC03, LNPT03]. In these scenarios, the
target is not only to improve the efficiency and throughput, but also to simplify
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administration. We have developed similar concepts for distributed resource
management and service placement in the Aspectix middleware [KHRO04].

In the context of distributed databases, a key focus of adaptability is on
the multiprogramming level, i.e., the number of parallel transactions. Similar to
concurrent request execution, the execution of multiple transactions in parallel
can increase efficiency. Too much parallelism, however, decreases efficiency, as
it causes context switches and increases the probability of conflicts between
transactions. For example, Heiss and Wagner [HW91] as well as Monkeberg
and Weikum [MW92] discuss the problem of dynamically selecting an optimal
multiprogramming level. Milan-Franco et al. present an adaptive middleware
for data replication that examines the system load and the type of requests to
perform both local adjustment of the multiprogramming level and global load
balancing.

Replication platforms often support variability in the replication style. In
general, the infrastructure offers mechanisms for both active and passive repli-
cation. The selection of a replication style is, in general, only supported at the
creation time of a replicated object. A reconfiguration of the replication style
could be made by shutting down and reinstantiating the replicated object; this
approach, however, results in a period of unavailability. An approach for dynam-
ically changing the replication style has been proposed by Felber et al. [FDES99].
This work enables the selection of the replication style with fine granularity on
a per-invocation basis. This approach allows, for example, the execution of
methods that are nondeterministic or that cause extensive computations with a
passive replication style, while other invocations can be executed with an active
replication style.

The status quo of existing object replication systems is to assume a fized
failure model. Most systems assume a fixed fail-stop or fail-recovery system
model; intrusion-tolerant systems, such as the system proposed by Sames et al.
[SMN*02], are based on a Byzantine failure model. In general, such existing
replication infrastructures do not support multiple variants and cannot offer
any adaptation or reconfiguration regarding the failure model. AQuA [RBC103]
supports an intermediate system model, which assumes fail-stop failures of repli-
cas but in addition handles omission failures and value failures. The AQuA in-
frastructure contains a voter component that is assumed not to fail maliciously;
this means that the infrastructure does not tolerate arbitrary Byzantine fail-
ures. Furthermore, in the Immune system [NKMMS99] the AQuA architecture
was combined with SecureRing [KMMS98], a Byzantine fault-tolerant group
communication system. This means that AQuA can be considered as a system
that supports variability in terms of failure model. Such an architecture can
support reconfigurability, but only at the cost of completely replacing the group
communication system.

At the internal consistency level, variability can be provided by multiple
consistency protocols and by adjustable parameters. Whereas adjusting pa-
rameters (e.g., failure detection timeouts) is usually possible at any time, the
replacement of protocols requires coordination with the execution of requests.
A more detailed discussion of existing systems that provide variability at this
level is given in Section 3.3.

Low-level communication has a high degree of variability. For example, nodes
may communicate with hardware multicast facilities, with unreliable datagrams
(such as UDP messages), with reliable channels (such as TCP connections),
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with encrypted channels (such as TLS connections), and with higher-level fa-
cility (such as over HTTP connections). It is state of the art that systems
allow the selection from a set of communication mechanisms. For example, the
JGroups group communication system [Ban98] support TCP connections as well
as UDP unicast and UDP multicast. In such systems, the selection of a specific
variant is done at startup, and thus it offers no runtime reconfiguration and
adaptation. The lack of reconfigurability and adaptivity, however, is a serious
deficiency of existing systems. Reconfigurability mainly becomes necessary if an
application administrator changes communication policies; such change might,
for example, demand encrypted communication instead of simple TCP channels.
Autonomous adaptation of the communication is important for self-organising
and mobile systems. The availability of communication mechanism and their
performance depends on the network environment; for example, hardware multi-
cast facilities often are available only in local-area networks. In a self-organising
system, the infrastructure might relocate existing replicas or place new replicas
on some dynamically selected nodes. After relocation, an autonomous selection
of the best low-level communication mechanism is desirable. In a mobile sys-
tem, a client node might change its network connectivity at runtime, requiring
dynamic adjustment of low-level communication.

3.2 Thread Execution Models for Replicated Ob-
jects

Many distributed object replication systems do not allow multithreading in
replicated objects. Method invocation requests from clients are executed in
a strictly sequential order. This approach avoids any nondeterminism that
can arise from thread scheduling. On the other hand, such a single-threaded
execution model has serious problems: it lacks performance, it complicates the
reuse of existing servant implementations (as these implementations might use
mechanisms, such as condition variables, that require multithreading), and it is
inherently deadlock-prone. This chapter offers a classification of these problems,
discusses existing concepts for multithreaded execution of replica methods, and
evaluates their capability to solve the aforementioned problems.

3.2.1 Problems Related to the Thread-Execution Model

Depending on the thread execution model, a servant implementation may face
the following problems:

CIRCULARDEADLOCK: Circular nested invocations can cause a deadlock.
For example, let’s assume that a replicated object A, while executing a method
ma1, invokes a remote method mp at object B, and method mp in turn invokes
a method m 4o at object A. If object A operates in a strictly sequential fashion, it
will not handle the method invocation of m 49 before m 41 returns. On the other
hand, m4; will return only after mp (and, consequently, m42) has returned;
this results in a deadlock (see Figure 3.1a).

MUTUALDEADLOCK: Mutual invocations can cause a deadlock. For exam-
ple, let’s assume that a replicated object A executes a method m4;, which
invokes a remote method mpa on object B. In parallel, object B executes a
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Figure 3.1: Deadlock situations without multithreading

method m g1, which invokes a remote method mapg at object A. Both the invo-
cations of m 45 and mp 4 cannot be handled in a strictly sequential execution, as
both objects will execute these invocation only after m 41 and mp1, respectively,
will have returned. Again, a deadlock is reached (see Figure 3.1b).

NoConNDITIONWAIT: Condition variables are a popular programming con-
cept in multithreaded software that allows a thread holding a mutex m to
atomically release the mutex and suspend. Another thread can acquire the
mutex m and notify the suspended thread to resume. The suspended thread
resumes after it has successfully re-acquired the mutex m. The use of condition
variables is possible only in a multi-threaded execution model. The thread
waiting on a condition variable needs to be notified by a second thread (see
Figure 3.1¢). If an implementation that uses condition variables is executed in a
single-threaded way, it deadlocks. Thus, without multithreading, workarounds
such as periodic polling or the installation of a callback object have to be used,
which usually have higher overhead than simply waiting on a condition variable.

NESTEDIDLING: Let’s assume that a replicated object A executes a method
ma1, which invokes a remote method mp on object B. In a single-threaded
execution model, object A will not process any other request before mpg returns
and m 4; finishes (see Figure 3.2a), but instead will remain idle until the reply is
received. This behaviour is less efficient than running a second thread to handle
the invocation of a method m 4o while the first thread waits for the reply from
the nested invocation. Avoiding NESTEDIDLING does not automatically imply
that multiple threads run concurrently. In fact, it is sufficient to have one active
thread at a time to efficiently use the idle time for processing additional requests
(see Figure 3.2b).

NOPARALLELISM: Modern computer architectures often include multiple
CPUs, allowing true parallel execution of requests. In such an environment,
the truly parallel execution of requests leads to better CPU utilisation and
consequently increases efficiency (see Figure 3.2c¢). If the infrastructure does
not permit such a concurrent execution of multiple active threads within one
object, it provides less efficiency.

ExpricITSYNC: If multiple threads may execute concurrently, access to the
shared object state has to be coordinated. The developer has to provide explicit
synchronisation statements (such as mutex locks), which serialise concurrent
modifications. This problem does not exist if the execution model provides
implicit synchronisation, as is the case in single-threaded execution. Concurrent
access to the shared state is the only problem related to the thread execution
model that is easier to solve without multithreading.



3.2. THREAD EXECUTION MODELS FOR REPLICATED OBJECTS 31

Object A Object B Object A Object B Object A Object B
request my, request my4 request my, |
request My, = nested invo-| requestmy, > nested invo- request myy, =, nested invo-
cation mg 51@ cation mg cation mg
i k reply my,
H reply my, <«
I I I T |
reply my4i reply m reply m,
A1 ‘A1 A1
reply my, ‘
(a) single-threaded (b) multi-threaded (c) multi-threaded
(single active thread) (parallel threads)

Figure 3.2: Performance comparison of single-threaded and multi-threaded ex-
ecution

3.2.2 Variants of the Execution Model

Many existing replication systems use a strictly sequential execution model, but
some approaches to multithreading that partially solve the preceding problems
have previously been published. Existing thread-scheduling strategies can be
classified into the following categories:

SEQUENTIAL: In a strictly sequential execution, a request is processed only Strictly Sequential Execution
after the preceding request has been completed. This model is widely used in
fault-tolerant middleware systems (e.g. OGS [FGS98], GroupPac [FMLF97]).

Given a total order of all incoming requests and deterministic replica behaviour,
consistency is easily obtained. The execution model provides implicit synchro-
nisation, removing the necessity to explicitly synchronise state access.

SINGLELOGICALTHREAD (SLT): In this model, a single logical thread of Execution with a Single Logical
execution exists. In a chain of nested invocations, the logical thread may call Thread
methods of the same object multiple times. For example, in an interaction
pattern as shown in Figure 3.1a, the thread that executes m ;1 at object A
starts a chain of nested invocations that ultimately calls method m 4o at object
A. In the SLT model, the object A can detect that the invocation m 42 belongs
to the same logical thread as m a1, permitting the execution of m 4. This way,
the CIRCULARDEADLOCK problem is removed. Technically, context information
that identifies the originating logical thread is propagated through remote call
chains. If an object detects that an incoming request belongs to the current log-
ical thread of executions, it can execute the request with an additional physical
thread. No nondeterminism can arise, as the first thread remains blocked in all
replicas during the execution of the nested invocation, and resumes only after
the additional physical thread has finished. This model was first used in the
Eternal system [NMMS99].

SINGLEACTIVETHREAD (SAT): In this model, multiple physical threads Execution with a Single Active
may exist within a replica, with only one of them being active at a time, and Thread
all others being blocked (e.g., waiting for a lock or for the return from a nested
invocation). Consistency is obtained by a deterministic selection of the active
thread. A running active thread is not preempted; if the active thread blocks
or terminates, a deterministic strategy is required to resume one of the existing
threads or to create a new active thread for handling the next request. If the
strategy guarantees that the same choice is made in all replicas, consistency is
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SEQUENTIAL SLT SAT MAT
CIRCULARDEADLOCK X
MUTUALDEADLOCK X X
NOCONDITIONWAIT X X
NESTEDIDLING X X
NOPARALLELISM X X X
EXPLICITSYNC X X

Figure 3.3: Taxonomy of execution models and solved problems

maintained. An algorithm using this model was first suggested by Jimenez-Peris
et al. [JPPMAOQO] for a transactional, conversational client-server interaction
model. Zhao et al. [ZMMSO05] proposed a similar model for RPC-based repli-
cated objects.

MuLTIPLEACTIVETHREADS (MAT): In this model, multiple threads may
concurrently be active. To maintain consistency, all access to shared data struc-
ture needs to be made in a consistent order. The only previously published algo-
rithms in this model are the Loose Synchronization Algorithm (LSA) [BWKI02]
and the Preemptive Deterministic Scheduling (PDS) algorithm [BKIO3]. LSA
uses a leader-follower model and offers a high degree of parallelism. As a
drawback, it adds communication for synchronisation and has disadvantages
if the leader fails. PDS is completely free of communication, but it makes strict
assumptions on the creation of threads and the acquisition of locks of all existing
threads within sequential rounds. Both algorithms assume that simple locks are
the only means of synchronisation.

Figure 3.3 shows to what extent the various execution models are able to
solve the aforementioned problems. Explicit synchronisation of access to shared
state is not necessary for algorithms in the SEQUENTIAL and SLT categories.
The only benefit from the SLT category, compared to SEQUENTIAL, is that
it avoids the CIRCULARDEADLOCK problem. On the other hand, SAT solves
all the problems except NOPARALLELISM and EXPLICITSYNC. MAT is the
only model that enables true parallelism, which makes it possible to use all
computational resources on a multi-CPU hardware or multi-core CPUs.

The nondeterminism that is caused by multithreading can be addressed at
several system levels. Some existing research projects use a modified Java virtual
machine to implement deterministic replication. Napper et al. (based on a
modified Sun JDK 1.2) [NAV03] and Friedman and Kama (based on a modified
JikesRVM) [FKO03] provide examples for this approach. Other systems ensure
determinism at an even lower system level. For example, MARS [KDK™'89]
is strictly time-driven and periodic at the hardware level, which makes all
functional and timing behaviour deterministic. The features of such a platform
can be used for deterministic replication [PBWBO00]. All these systems support
the MULTIPLEACTIVETHREADS category. They all require specifically designed
hardware, operating systems, or Java virtual machines to achieve determinism.
In contrast, this thesis uses means to enforce determinism of multithreaded
replicated services purely at the middleware level, without requiring special
low-level support in operating system or virtual machine.
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3.3 Group Communication

The term group communication in general denotes any form of reliable one-
to-many communication (i.e., multicast). Depending on the message ordering
properties the following specific variants have been defined by Birman [Bir97]:

e bcast: Reliable multicast to all group members, without message ordering
guarantees.

e fbcast: FIFO-ordered reliable multicast to all group members. If one
sender sends multiple messages to the group, these messages will arrive
in sender order. No order is guaranteed for messages originating from
different senders.

e cbcast: Causally ordered reliable multicast to all group members. If one
group message mo logically depends on my, it is guaranteed that m; will
be delivered before ms at all group members.

e abcast: Atomic reliable multicast to all group members. All group mem-
bers receive messages in identical order. Although it is theoretically possi-
ble to implement abcast without FIFO ordering, it is usually understood
to include the fbcast properties.

e cabcast: Atomic and causally ordered reliable multicast to all group
members; i.e., the properties of both cbcast and abcast are provided.

3.3.1 Implementation Variants of abcast

Totally ordered group communication is a synonym for abcast and can be im-
plemented in several ways. The survey of Défago et al. [DSU04] gives the
most complete overview of totally ordered group communication systems. Im-
plementation approaches can be classified into three different categories. First,
sequencer-based systems use a designated node (the “sequencer”) to specify the
message order. Second, sender-order systems define the order of messages di-
rectly at the sender side. Third, consensus-based group communication systems
use fault-tolerant consensus algorithms to obtain a consistent messages order.
Sequencer-based group communication can be implemented in various ways.
Usually, one fixed group member is elected as sequencer; if this node fails, a
new sequencer needs to be found. Let P; be the node that wants to send a
message m to all group members in total order. The sequencer needs to define
a consecutive sequence number seq(m) for each message m. The interaction of
P;, the sequencer, and the group is defined by a sequence of unicast (U) and
broadcast (B) operations, which can happen in one of the following ways.

e UUB model: P; unicasts a control message to the sequencer, which in
turn unicasts back a sequence number; finally, the node P; broadcasts m
together with seq(m) to all group members.

e UB model: P; sends its message m to the sequencer, which in turn broad-
casts m and the sequence number seq(m) to all group members.
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e BB model: P; broadcasts m to all group members (one of them being the
sequencer). After the reception of m, the sequencer defines the sequence
number of m and broadcasts this value together with a unique message
ID of m. Group nodes process a message only after having received its
sequence number.

None of the three methods is definitely superior to all others. The UB model
has minimal latency and minimal message cost. The disadvantage of this model
is that it causes the highest load on the sequencer, which has to handle all
broadcast operations itself. The BB model aims at reducing this overhead. The
sequencer no longer has to broadcast application messages, which is a benefit
particularly if the message size is large; in addition, it may define the message
order of multiple application messages with a single broadcast. The UUB model
fully decentralises the broadcast operation, but it adds one round-trip delay to
the message transmission, which increases message latency.

Algorithms such as the one proposed by Chang and Maxemchuck [CM84] use
a moving sequencer mechanism for load balancing to avoid that the sequencer
becomes a bottle-neck. Instead of having a fixed sequencer, the sequencer role
changes periodically. This approach is best combined with the BB model to
avoid that senders need to keep track of the sequencer. This approach, however,
involves coordination overhead for changing the sequencer and leads to more
complex protocols.

In sender-order group communication, the order of messages is defined by
the message senders. Such a strategy is easily implemented if only one sender at
a time is permitted. Otherwise, if multiple senders emit messages concurrently,
they can assign logical time stamps to the messages, which define a global total
order.

The single-sender variant of sender order is usually implemented with a
token-based approach. Only the token owner is allowed to send group messages
and to assign sequence numbers to messages. Some strategy to pass the token
around is used. On passing the token, the old token owner informs the next
node about the highest used sequence number. This simple approach does not
allow that multiple senders concurrently send messages to the group.

The alternative is to allow concurrent message transmission, but to include
logical time stamps in the messages. For example, Lamport’s logical clocks or
vector clocks can be used for this purpose. A node delivers a message as soon
it is sure that no other message with a smaller time stamp can arrive.

Using consensus algorithms for totally ordering group messages was first pro-
posed by Chandra and Toueg [CT96] and subsequently used by several existing
systems. For example, Rodrigues and Raynal [RR00] apply the Chandra-Toueg
transformation—which assumes a crash-stop fault model—to the crash-recovery
model. Mostefaoui and Raynal [MRO0] describe an optimisation that restricts
the use of the consensus algorithm to situations where asynchrony and crashes
prevent nodes from obtaining a simple agreement on message order. Consensus-
based group communication is also used in the Aspectix group communication
system this thesis will present in Chapter 6.
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Uniform and Non-Uniform Group Communication

Group communication variants can differ not only in their ordering properties,
but also in the reliability guarantees they offer in the case that nodes fail
during message transmission. A node P; delivers a message m if the group
communication system on that node passes this message to the application.

Definition 3.1 (Non-uniform reliable group communication)
Non-uniform multicast guarantees that if a non-faulty group member P; deliv-
ers a message m, all non-faulty group members will eventually deliver m.

Definition 3.2 (Uniform reliable group communication) Uniform multi-
cast guarantees that if any group member P; delivers a message m, all non-faulty
group members will eventually deliver m.

The difference between uniform and non-uniform group communication is
important if a node P; delivers a message m and subsequently crashes. With
non-uniform semantics, the surviving nodes may decide to deliver a different
message m’. As long as the behaviour of the crashed node is irrelevant, non-
uniform semantics is sufficient. Otherwise, if the delivery of m at P; has caused
side effects (e.g., external interactions or response messages), these side effects
will be inconsistent with the state of the nodes that did not crash. The conse-
quences that this aspect has on object-replication are discussed in more detail
in Section 4.2.

3.3.2 Failure Models, Reconfiguration, and Adaptation

Group communication systems exist for various failure models. For example,
systems such as Ensemble [Hay98], xAMp [RV92], Spread [ADS00], and JGroups
[Ban98] assume a fixed crash-stop or crash-recovery failure model. Byzantine
fault tolerance is found in intrusion-tolerant group communication systems such
as SecureRing [KMMS98] and RamPart [Rei94].

Variability of the failure model is not considered in existing systems. If a
replication infrastructure wants to offer configurable failure models with such
group communication systems, the only option is to use a different group com-
munication system for each model. While this is a feasible option at system
startup, changing the group communication system for reconfiguration at run-
time would be an expensive operation. It takes a significant amount of time
to shut down the old system and start the new system. Furthermore, such a
replacement requires coordination with all access to the group communication
system, and it causes intensive resource use (e.g., for loading and initialising the
library of the new communication system). In practice, existing systems usually
do not support such reconfiguration.

The static nature of existing group communication systems manifests itself
not only in the failure model, but also in other configurable elements. For
example, the JGroups system [Ban98] has a modular structure that offers a
high degree of configurability. The configuration of the modular protocol stack,
however, is determined at the creation time of a communication group. Once
again, the only way for runtime configuration is a complete re-creation of the
configuration group.
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Many configurable parameters of existing group communication systems can-
not be changed easily at runtime, which also excludes autonomous adaptation
of these parameters. Some existing works, however, discuss the adaptation of
single internal parameters such as retransmission or failure-detection timeouts.
For example, Bertier et al. [BMS02] present a failure-detector implementation
that observes communication to estimate future arrival times to minimise the
failure detection time while avoiding false detections. Such adaptive mechanisms
help to increase the performance of group communication systems, but they do
not consider large changes such as using a completely new message ordering
algorithm.

3.4 Contributions of this Thesis

The preceding discussion of existing object replication system allows the iden-
tification of several deficiencies. This thesis presents the FTflex architecture
for fault-tolerant object replication in distributed systems, which addresses
several of those deficiencies. The contributions of the FTflex architecture con-
cern (a) the middleware integration and development support, (b) deterministic
multithreading in replicated objects, and (c¢) flexible and reconfigurable group
communication.

3.4.1 Middleware Integration and Development Support

FTflex uses fragmented objects to provide fault-tolerant replication in a
CORBA-based architecture. It supports active replication with flexible failure
models, ranging from crash-stop to Byzantine failures. Chapter 4 describes
the FTflex architecture in detail. The FTflex approach offers advantages com-
pared to other existing middleware infrastructures for object replication. Our
PECSAR criteria can be used to evaluate these advantages:

At the client side, the objective is to combine portability with efficiency and
transparency. Portability requires the client-side middleware to load code for
accessing replica groups transparently, without having a priori provisions for
replication in the middleware. FTflex uses the Aspectix middleware, which en-
ables such code loading with the fragmented-object model. Remote references to
fragmented objects directly specify the instance-specific code that is to be used
for accessing replica groups. This results in a mechanism that is portable across
all platforms that can handle references to fragmented objects. Furthermore,
the F'Iflex approach offers full client transparency. As the code specified in the
reference is loaded directly, the approach avoids any unnecessary indirections
that occur in interception-based systems.

The FTflex system does not aim at providing full servant transparency. In-
stead, it offers the developer the possibility to directly influence the replication
mechanisms with semantic annotations. These annotations can be used to im-
prove the efficiency by optimising the execution strategy of remote invocations
and by placing functional code directly at the client side. In addition, FTflex
advocates code generation and transformation for simplifying the development
of replicated objects. Thus, the modifications that need to be made to existing
servant code for enabling replication are minimised. As a result, the FTflez in-
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frastructure offers better flexibility for developers and allows better optimisation
of replication strategies on the basis of semantic knowledge.

Dynamic adaptation and reconfiguration are another important topic of this
thesis. The F'Iflex prototype uses only active replication, without considering
variability in the replication style, as this issue has previously been discussed
in detail by Felber et al. [FDES99]. Adaptation and reconfiguration is mainly
provided at the level of group communication, which is used for low-level consis-
tency management. At the fragmented-object level, an interface of the Aspectix
middleware enables client applications to pass policies to the fragmented object,
which can trigger an internal reconfiguration. The broader problem of dis-
tributed management of services and resources, which includes the adaptation
of the number of replicas and the placement and migration of replicas, is also
addressed in the Aspectix project [KHR04, KRHO05], but is outside the scope of
this thesis.

3.4.2 Deterministic Multithreading in Replicated Objects

A single-threaded execution model is found in many existing replication infra-
structures, but it causes serious problems for many applications. The possibility
that existing non-replicated code depends on multithreading (for example, be-
cause it uses condition variables) would complicate the reuse of that code for
replicated objects. For this reason, this thesis proposes new strategies that en-
able multithreaded execution in combination with active replication of objects.
This topic is covered in detail in Chapter 5.

In previously existing solutions for multithreading, the synchronisation
model is limited to binary mutex locks. In contrast, the FTflex infrastructure of-
fers a synchronisation model that includes reentrant mutex, condition variables,
and time bounds on blocking wait operations. This model is comprehensive
enough to support all core synchronisation mechanisms of the Java programming
language, which simplifies the reuse of existing object implementations.

Obtaining determinism in multithreaded objects requires that the middle-
ware intercept all synchronisation statements in the object implementation.
This thesis proposes source-code analysis and transformation as a novel ap-
proach for such interception. The intercepted operations are forwarded to an
instance of the Aspectix Deterministic Thread Scheduler (ADETS).

This thesis presents four variants of the ADETS scheduler. ADETS-SAT
provides a solution for the SINGLEACTIVETHREAD model and includes support
for native Java synchronisation (i.e., reentrant locks, condition variables, and
time bounds on wait operations). ADETS-LSA and ADETS-PDS implement
the LSA and PDS algorithms of Basile et al. [BWKI02, BKI03], and extend
them for the synchronisation model of the FTflex infrastructure. Finally, this
thesis specifies ADETS-MAT, a novel scheduling algorithm in the MULTIPLE-
ACTIVETHREADS category. Unlike the LSA algorithm, ADETS-MAT does not
require communication for granting locks. Unlike the PDS algorithm, it has no
restrictions on the creation of threads by external requests or the number and
frequency in which threads acquire locks.
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3.4.3 Flexible and Reconfigurable Group Communication

The contributions of FTflex at the level of group communication and consistency
management focus on the support for variable failure models, runtime reconfig-
uration, and autonomous adaptation. Flexible and reconfigurable replica con-
sistency strategies are encapsulated within the Aspectix group communication
system (AGC). This system provides a consensus-based, totally ordered group
communication mechanism, and is described in detail in Chapter 6.

The first objective of the Aspectix group communication system is to sup-
port a wide range of failure models encapsulated within a homogeneous system.
The AGC uses implementations of well-known consensus algorithms for various
failure models to obtain total message ordering. The supported failure models
include crash-stop, crash-recovery, and Byzantine failures.

The realisation of the message-ordering strategy within a pluggable con-
sensus module not only permits multiple failure models, but also allows the
use of algorithmic variants for each failure model. Such variants can support
different synchrony models or can differ in metrics such as latency, best-case
versus worst-case overhead, and number of messages per consensus decision. By
allowing the selection of a specific variant, FTflex permits the developer to tailor
the group communication system to environment and interaction patterns.

Another important objective of the Aspectix group communication system
is to allow dynamic reconfiguration. This thesis defines an extended version
of the Chandra—Toueg algorithm for totally-ordered multicast on the basis of
distributed consensus. The extended version enables variability of the consensus
algorithm and the group membership. On this basis, the AGC supports efficient
and consistent run-time reconfiguration. Unlike other systems, the AGC allows
that policies can be changed at runtime while maintaining full system consis-
tency, that these reconfigurations have no or only minimal impact on the running
system, and that the reconfigurations are fault tolerant themselves. This allows
an administrator to dynamically change the configuration. Furthermore, FTflex
supports autonomous observer/controller components that analyse properties
such as network load in order to automatically trigger reconfigurations on the
basis of simple rules.

3.5 Summary

Existing object replication systems use various approaches for adding replica-
tion support to middleware infrastructures. The PECSAR criteria (portability,
efficiency, client transparency, servant transparency, adaptivity, and reconfig-
urability) allow an evaluation of such existing infrastructures.

Many replication systems provide static infrastructures that offer only little
flexibility. In Chapter 4, this thesis proposes the use of fragmented objects and
semantic annotations as a way to increase flexibility and efficiency of object
replication.

The thread execution model is an important aspect of an object replication
system. A single-threaded execution, which is used my most existing systems,
causes many problems, such as the risk of deadlocks and poor performance.
Chapter 5 presents new algorithms for deterministic thread scheduling and
proposes the use of source-code transformation for intercepting synchronisation.
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Middleware infrastructures usually implement active replication on the basis
of totally ordered group communication. Existing systems usually face two
limitations: they are restricted to a single failure model, and they lack reconfig-
urability. Chapter 6 proposes a new group communication architecture, which
is implemented in the Aspectix group communication system (AGC).

Flexible and Reconfigurable
Group Communication
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Chapter 4

Middleware Integration and
Development Support

This chapter presents the fundamental FTflex architecture [RKDHO06]. FTflex
adds support for fault-tolerant replication to the CORBA-based Aspectix mid-
dleware. The first section describes the use of the fragmented-object model
for replicating objects. This approach establishes the basis for the subsequent
contributions of this thesis. The next section discusses in detail consistency
challenges relating to failure model and group communication semantics and the
corresponding solutions in FTflex. Furthermore, the mechanisms for supporting
state transfer in the replication architecture are explained. After that, semantic
annotations are introduced for enabling the developer to tailor the middleware
infrastructure according to his needs. Moreover, this chapter discusses replica
group management, which is used for replica creation and runtime reconfigura-
tion. Finally, the benefits FTflex approach are evaluated.

4.1 Replication with Fragmented Objects

The Aspectix middleware provides a basic infrastructure for fragmented objects
(see Section 2.1.3). This infrastructure is used by the FTflex replication architec-
ture. FTflex directly supports loading object-specific fragment code and offers
transparency for clients. The client-side strategy for interacting with the replica
group and the replica-side strategy for consistency and group management is
implemented within fragments of a replicated object.

4.1.1 Development Process

The fragmented-object model of Aspectix allows the developer to create arbi-
trary fragment implementations. The FTflex system supports the development
of fragments of replicated objects by automatically creating major parts of
these fragments. Figure 4.1 illustrates the development process, which consists
of defining the global object interface in CORBA IDL, optionally specifying
semantic annotations, automatically creating fragment code, implementing the
functional parts of the object, and applying code transformations to the frag-
ment code before deployment.
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Figure 4.1: Development process of replicated objects with FTflex

The IDL specification of a replicated object is identical to that of a standard
CORBA object. This has the benefit that an existing client application that has
been developed on the basis of a standard interface definition can be reused with-
out modification to access a replicated object. In addition, FTflex enables the
developer to influence the IDL-based code generation process using his semantic
knowledge about the replicated object. For this purpose, the developer can add
annotations to the IDL interface specification. These annotations only influence
the internal code generation process, but are irrelevant for client applications.

Both the IDL specification and semantic annotations are used for the auto-
mated generation of code. The fragment architecture consists of two types of
fragments, access fragments and replica fragments, as shown in Figure 4.2. The
replica fragments contain code for consistency management, while the access
fragments are used by clients to access the replica group. For each fragment
type, the FTflex code generation tool creates a base class. Hence, the transition
from an existing implementation to a replicated one is automated as much as
possible, with only minimal developer intervention required.

The automated generation of code is an essential part of the presented archi-
tecture. First of all, such a generation process is important for the efficient use
of the fragmented-object model. If the developer had to implement the fragment
code completely manually, the required effort would make the approach hardly
acceptable. Besides, considering developer annotations in the generation process
enables a flexible customisation and optimisation of the replication mechanisms
on a per-object basis.

The current prototype of the code generation tool is based on IDIflex,
an IDL-compiler that generates customisable code [RSHO1]. IDLflez parses
CORBA IDL, evaluates an XML-based mapping specification, and uses this
specification to create arbitrary output code. It includes two standard mapping
specifications for the Java programming language, one for standard CORBA and
one for generic Aspectix fragmented objects. FTflez provides a specialisation of
the Aspectix mapping specification that defines the creation of access fragments
and replica fragments on the basis of IDL interface and semantic annotations.
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Figure 4.2: Architectural overview of a replicated object in FTflex

Next, the developer can individually add custom code to the generated basic
fragments. The functional implementation of the servant is, in general, imple-
mented in the replica fragments. The developer, however, may also choose
to implement some functionality directly in the client-side access fragment.
Section 4.4 discusses how the developer can use annotations to adjust the auto-
matically generated code depending on where object functionality is provided.

As a third step of the fragment development process, a code transformation
tool can modify the functional implementation that the developer provides. This
approach is used to intercept native Java synchronisation code. Synchronisa-
tion operations need to be intercepted and forwarded to a middleware plug-in
module that is responsible for deterministic thread scheduling (see Chapter 5).
The replacement of all relevant statements with custom code enables such an
interception without internal modification to JVM or operating system. The
same approach could be used to intercept Java API calls to nondeterministic
methods, such as the generation of time stamps or random numbers.

Finally, after compilation and deployment, the replicas of the object can
be started. FTflex provides a simple management infrastructure that enables
clients to create replicas on remote locations using a factory approach (see Sec-
tion 4.5). The factory is used to instantiate replica fragments and to join them to
the existing group of replicas. FTflex creates an IOR for the replicated object,
which can be used by clients for binding to and accessing the replica group.
This IOR contains an Aspectix profile that specifies the corresponding access
fragment as the initial fragment type that has to be loaded by the client-side
middleware infrastructure.

The Aspectix architecture provides a policy interface to configure the internal
structure and to request dynamic reconfigurations. Configuration can either be
supported internally within the fragment code, or it can trigger a consistent
replacement of the whole local fragment.

The development process of replicated objects using F'Tflex is more complex
than the development of a traditional CORBA servant. The main benefits from
the FTflex approach are the customisation of code generation via a specialised
mapping, the ability to use custom developer code at the client side, and the
use of code transformation for transparently adding mechanisms such as the
interception of synchronisation statements in the replica code.
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Figure 4.3: Internal architecture of replica fragments and access fragments

4.1.2 Internal Fragment Architecture

The internal structure of access and replica fragments is shown in Figure 4.3.
The fragments are internally divided into several components.

A client application accesses the fault-tolerant fragmented object via its
IDL-defined interface, as it would access any other CORBA object. If a client
binds to the remote reference of a replicated object, the fragmented-object
middleware automatically loads a local access fragment. All invocations on
the object interface go to the local access fragment.

Only access fragments handle client interactions. If a client is located at the
same node as a replica fragment, it also uses a local access fragment to access
the replicas. Essential functionality, such as the assignment of unique invocation
IDs, is implemented in the access fragment. A direct access from client code
to the replica fragment would require the duplication of this functionality in
the replica fragments. Such duplication was avoided in the FTflex architecture.
Instead, an access fragment is loaded in parallel to the replica fragment.

As shown in Figure 4.3, the access fragments may contain optional client-side
developer code. All client invocations are first passed to this developer code.
This allows the provision of object functionality directly at the client side or the
implementation of mechanisms such as client-side caching. For all methods that
have no custom developer code in the access fragments, the default behaviour
is to pass all invocations directly to the generated code that handles the remote
invocation at the replica fragments.

At the replica fragments, developer code provides the actual object imple-
mentation. All remote invocations from clients are finally passed to this object
implementation. The functional implementation is the only part of the fragment
code that is not automatically created. The code transformation process can,
however, manipulate the custom developer code. Such a code manipulation
can be used for intercepting nondeterministic operations. For example, the
transformation enables a transparent interception of Java synchronisation state-
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ments, which is needed for the deterministic multithreading support discussed
in Chapter 5.

The Scheduling component of the replica fragment is responsible for the
internal message management and interacts with a deterministic multithreading
plug-in for thread creation; the details of this plug-in are explained in Chapter 5.

The Context Handler is responsible for adding unique identifiers to requests.
The identifiers consist of a client ID, a client thread ID, and a continuously num-
bered request ID. It is needed for two purposes. First, it is required for request
duplication suppression. As described in Section 3.1.3, failures can trigger the
re-invocation of a method. A unique request identifier allows the servant group
to detect such duplicated invocations. Second, unique request identifiers are also
needed for logical thread identification. This requirement is not only needed for
a single-logical-thread scheduling strategy (SLT, see Section 3.2), which requires
information about the logical thread a request belongs to. In a leader-follower
synchronisation model, such as Basile’s loose synchronisation algorithm (LSA),
request-handling threads similarly need an ID that is consistent in all replicas.

The thread identification that is provided by the context handler is also
needed for supporting reentrant mutex locks. A mutex lock is reentrant if it can
be acquired multiple times by the same thread. A thread can invoke nested invo-
cations, which, ultimately, can lead to a circular invocation chain that invokes a
method at the originating object. This invocation logically belongs to the same
thread, even if it is handled locally by a new low-level thread. The logical thread
identification provided by the context handler can indicate that two low-level
threads belong to the same logical threads. Thus, reentrant lock request can be
granted to low-level threads using this logical thread identification.

The Marshalling component is responsible for the serialisation of invocation
data and the deserialisation of replies. The marshalling is identical to that of a
standard CORBA stub. Corresponding components exist at the client and the
server side.

The Communication components in all fragments provide the interaction
between fragments. The component depends on the concrete replication and
consistency model. This thesis uses a totally ordered group communication
system for strictly consistent active replication. The Communication component
represents an abstraction that makes the fragment implementation independent
from a specific group communication system. Section 4.2 discusses the influ-
ence of semantic properties of the group communication on the tasks of the
Context Handler. The implementation supports both open and closed group
communication systems. A closed system allows only group members to send
group messages, whereas an open system also permits external senders of group
messages.

If a closed group communication system is used (e.g., JGroups [Ban98]),
only replicas use group communication to exchange messages among themselves.
Access fragments need to communicate with a gateway to access the replica
group; each Communication component in a replica fragment can act as such a
gateway, passing requests to the local group communication. With the gateway
approach, the Communication element in the access replica is responsible for
transmitting calls to a single available replica. If this replica fails, the Com-
munication component transparently reconnects to another replica fragment
and reissues the call. If the call has already been processed by the replicas,
the duplication is detected and the invocation result is returned from a cache.
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Finally, the Communication component in replica fragments places all incoming
messages into a totally ordered queue for subsequent processing by the upper
layers.

The alternative is to use an open-group system, such as the Aspectix group
communication system (AGC), which is described in Chapter 6. This latter
approach can improve performance (e.g., the access fragment may directly
multicast its request to all replicas), and is also beneficial for the support for
Byzantine fault tolerance, as access fragments may receive replies from multiple
replicas and can use voting.

4.1.3 Benefits

Fragmented objects can be used to integrate replication support into distributed
object middleware. The FTflex architecture uses this approach to provide fault
tolerance. The PECSAR criteria, as defined in Section 3.1.1 of this thesis, are
used in the following to evaluate general aspects of this architecture.

The fragmented-object model allows supporting fault tolerance without mod-
ifying the middleware system. The FTflex replication system is portable across
platforms that support such a model; it requires only that the middleware
be able to understand remote references that address fragmented objects by
dynamically loading the code specified by the reference. This approach is
more flexible than, e.g., a standard CORBA system, in which a deviation of
the standard stub-servant structure is more difficult to realise. The support
for a fragmented-object model is easily added to existing middleware systems.
The Aspectix middleware, which is used as the basic infrastructure for FTflex,
demonstrates such integration into the JacORB CORBA system. Two addi-
tional prototypes show that this concept can also be used to add fragmented
objects to Java RMI [KKSHO05] and to .NET Remoting [RDHO05].

In the fragmented-object model, the fragment code is directly loaded at
the client side. The client application directly invokes methods at the access
fragment, which handles the interaction with the replication group. The direct
interaction with the local fragment avoids any indirection or interception and
results in optimal efficiency. Another advantage is that the fragment code can be
optimised on a per-object basis. It is even possible to have multiple variants for
the same object type. This differs from traditional approaches, which use static,
fixed code for replication. The use of semantic annotations and the automated
generation of fragment code are discussed in Section 4.4.

The FTflex architecture provides full client transparency on the basis of the
CORBA programming model. The interface of a traditional stub and that of
a local access fragment are identical, and the access fragment is automatically
loaded by the Aspectix middleware.

The fragment architecture of FTflex does not provide servant transparency.
It faces the same limitations that characterise other fault-tolerance platforms,
such as the requirement of explicit state-transfer support and the restriction
to deterministic behaviour. As a partial compensation, the next sections will
describe a few mechanisms that simplify the implementation of replicated ob-
jects and the re-use of existing object implementations. The most important
provisions are a partial automation of state transfer and deterministic multi-
threading.
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The use of fragmented objects simplifies the integration of runtime adaptivity
and reconfigurability. The current prototype considers adaptivity only for low-
level consistency mechanisms. These mechanisms are provided at the group-
communication level (see Chapter 6). For client-triggered reconfigurations, the
fragmented-object model of Aspectix provides a policy interface that allows
the specification of configuration requests at runtime. The FTflex replication
infrastructure uses a simplified version of this policy interface, as described in
Section 4.5.2.

4.2 Consistency Challenges

This section is about consistency issues that relate to the replica state, the
validity of external interactions, and the return values sent back to clients. It
discusses the necessity of total messages ordering at the group-communication
level and analyses the challenges that are caused by node failures. For various
failure models and group communication properties, the FTflex architecture
provides appropriate mechanisms that ensure replica consistency as well as
consistent external interactions and client return values.

4.2.1 Message Ordering Semantics

This thesis assumes that totally ordered group communication (i.e., abcast) is
used in order to provide active replication of objects. Weaker ordering semantics,
such as causal (cbcast) and FIFO (fbcast) message order, are not sufficient
in most cases. If two clients independently invoke replica methods that both
modify a state variable i (for example: (a) ¢ := ¢ + 1 and (b) @ := i % 2), the
result is deterministic only if the order of method invocations is the same on all
replicas. Only abcast provides such a total order for independent requests from
multiple clients.

The relative order of some requests is irrelevant. This is the case for requests
that access disjoint parts of the object or that have the same effect on the object
state regardless of their execution order (such as two increment operations on
a state variable). At the group communication level, however, such semantic
properties of requests are usually unknown. Because of this lack of knowledge,
there is no simple alternative to using totally ordered group communication for
all requests.

Totally ordered group communication is necessary not only for a strictly
sequential execution of object methods. In Chapter 5, this thesis presents
strategies for multithreaded execution of client requests. Such a multithreaded
request handling can result in the execution of multiple requests without adher-
ing to a strict global order. The scheduling strategies enable the execution of
multiple threads in a way that guarantees consistency even in spite of such a
concurrency. Despite of the concurrent execution, the scheduling algorithms all
require a global order of incoming requests, and thus do not work with weaker
ordering semantics at the group-communication level.
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4.2.2 Consistency Challenges with Failures

The FTflex architecture is based on the active replication of objects. This
replication style assumes deterministic object behaviour and thus achieves con-
sistent object state by redundant execution of the same methods in all non-faulty
replicas. The issue of consistency, however, not only addresses the internal state
of non-faulty replicas. It also concerns external effects of faulty replicas. While
the internal state of a replica after a failure can be considered irrelevant, what
matters in practice are potential interactions of such nodes with the environment
in form of nested invocations to other nodes and replies sent to clients. The
effects of these interactions still remain visible after a failure. Both non-benign
and benign failures require adequate provisions in the replication infrastructures:

Byzantine Failures

The necessity of provisions for faulty nodes is more obvious for non-benign
failures. In a Byzantine failure model, a faulty node can exhibit arbitrary
behaviour, which poses two challenges. First, a faulty node can send arbitrary
reply messages to clients that have sent a request. The client obtains a correct
reply only if the replication infrastructure makes sure that the reply received by
the client originates from a non-faulty node. Second, the faulty node can issue
invalid nested invocations. Such invocations can have unwanted external side
effects that seem to originate from a client request.

Benign Failures

The potential problems that arise from benign failures depend on the message
delivery semantics. Group communication can be implemented with uniform
and non-uniform message delivery semantics, as defined in Section 3.3.1. In
non-uniform multicast, if a set of nodes delivers a message m and all nodes of
this set subsequently fail, there is no guarantee that the surviving group nodes
will deliver m. This guarantee is strictly weaker than that of uniform multicast.
Uniformity requires that if any node delivers a message—even if it subsequently
fails—all other non-faulty nodes will deliver this message. This means that the
delivery of a message must be delayed as long as it is not sure that all other
non-faulty group nodes will receive the message. As a result, it typically has a
higher latency than non-uniform group communication.

The difference between both variants is only minor at a first glance, but in
practice has an important impact on object replication. Non-uniform communi-
cation is sufficient if the delivery of a message m affects only the internal state
of the receiving node. The difference, however, matters if the message reception
causes external side effects. Such side effects can be either subsequent external
interactions triggered by the message reception or a reply message sent back
to the sender of m. In the non-uniform case, a node P; can, for example, pass
a reply to the sender of m. If P; subsequently crashes, it is possible that the
surviving nodes do not know about this reply; they may even produce a different
reply, resulting in an inconsistent client state.

A benign failure model permits the use of a uniform group communication
system. This approach has the advantage that no consistency violations due to
node failures can occur. An operation returns a value to the client and issues a
nested invocation only if it is guaranteed that the replica group will execute the
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operation, even in case that some replicas fail. The Aspectix group communi-
cation system (AGC), which is discussed in Chapter 6, is able to provide such a
uniform semantics for benign crash-stop and crash-recovery failures. A uniform
group communication system thus avoids all problematic consistency problems.

Using uniform group communication is not always a possible choice. It
might be desirable to use an existing group communication that lacks support
for uniform group communication (this is, for example, currently the case for
the popular JGroups system [Ban98]). A further disadvantage of uniform group
communication is its performance. A message is delivered only if it is certain
that all other nodes will deliver that message after a crash. This requires at least
one additional message delay before a message may be processed, as sufficiently
many nodes have to confirm that they know about the message delivery. Hence,
the use of non-uniform group communication is desirable in practice for efficiency
reasons. If a non-uniform group communication system is used, consistency
problems can arise because of external interactions of a node that subsequently
fails, and thus the replication infrastructure has to provide adequate means for
avoiding these problems.

4.2.3 FTflex Solutions for the Consistency Challenges

The FTflex replication infrastructure provides flexible support for various failure
models and various group communication systems. The Aspectix group com-
munication system (AGC), which is presented in Chapter 6, offers uniform or
non-uniform semantics, depending on the failure model and on the selection of
the internal algorithms. In addition, FTflex can also be used with other group
communication systems such as JGroups [Ban98|. FTflex thus needs to provide
a solution that is able to support benign failures with uniform and non-uniform
group communication semantics as well as Byzantine failures. The use of uni-
form group communication in a crash-stop failure model is efficiently enabled
by disabling any additional measures. For all other cases, FIflex provides the
subsequently discussed solutions.

Solutions for a Benign Failure Model

If a request m, received by node P with non-uniform semantics, causes only
internal state modifications at node P, no consistency problems can arise. The
state modification is a local action at node P that is not visible on other nodes. If
node P fails, its local state becomes irrelevant for the remaining system. In this
situation, non-uniformity does not cause any semantic problems. In practice,
however, most requests will have some external side effects. The limitation to
internal state modifications is violated if (a) the execution of the requests causes
a nested invocation or (b) the request returns some value to the client.

If the execution of a request m at replica P causes a nested invocation, and
P subsequently fails, it may happen that the remaining replicas execute request
m in a different relative order to other requests. This can, for example, have
the effect that the remaining replicas invoke the nested invocation with different
arguments, resulting in an inconsistency. A practical solution, as implemented
by FTflex, is to delay the nested invocation as long as it is not yet known that
all replicas will process the requests in the same order and thus issue the same
nested invocation.
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If the client receives a reply from the replica group, this reply can originate
from a replica that later fails. The non-faulty replicas could later produce a
different reply (for example, because they process the requests in a different
order). In this case, the client state becomes inconsistent with the replica group.
The problem is avoided if the infrastructure delivers the reply to the client only
after it is sure that all nodes will process the same request.

Solutions for a Byzantine Failure Model

Byzantine nodes create a similar, albeit more severe problem, as faulty nodes
may show arbitrary erroneous behaviour. Again, it is necessary to ensure con-
sistent nested invocations and client-side consistency. In the following, it is
assumed that the number of node failures is limited by some value M.

Supporting a Byzantine failure model for consistent nested invocations re-
quires support in the target of the invocation. As a faulty node can have
arbitrary malicious behaviour, the target must verify that the invocation indeed
originates from a non-faulty node. Assuming a maximum of M faulty nodes in
a replica group with N members, receiving the invocation requests from M + 1
group member ensures that at least one non-faulty node supports the request.
The basic design of FTflex thus is to send an invocation request from all source
replica nodes and verify the reception of at least M + 1 identical requests at the
target of the invocation.

The same principle is also used for producing consistent return values for
clients. If at least M + 1 replicas have generated identical replies, it is certain
that at least one such reply originates from a non-faulty replica. Consequently,
all other non-faulty replicas will do the same because of the guarantees of non-
uniform semantics.

The verification of having M + 1 identical invocation requests or reply values
can also be done within the replica group. For this purpose, the replica group can
internally collect M 41 identical messages from replica nodes, with an individual
signature from each replica. In this case, only a single message needs to be passed
to the invocation target or client, carrying M + 1 signatures as proof that at
least one non-faulty node supports that message. This approach simplifies the
external communication of the replica group. It, however, adds the overhead
of using digital signatures, which not only causes additional processing time,
but also requires a public-key infrastructure that enable clients and invocation
targets to verify signatures of all replicas.

Sending multiple invocation or reply messages can cause a performance bot-
tleneck; this is especially the case for large reply messages. The recipient of the
message only needs a single message; all further messages are only used to verify
that other replicas have created the same message. It is thus sufficient that only
a single replica sends the full message, while all other replicas send only a short
message digest to proof the creation of the same invocation or reply message.

4.2.4 Read-Only Operations

There are various options for how to execute read-only operations, i.e., invoca-
tions of object methods that do not change the object state and do not issue
nested invocations that have external side effects. Most existing replication
infrastructures do not distinguish between read-only and modifying operations.
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For an active replication style, this means that read-only requests are distributed
to all replicas by totally ordered group communication.

One apparently obvious optimisation is the execution of read-only methods
at only a single replica. This approach requires the availability of semantic
information about a method being read-only; in FTflez, such information can
be provided by semantic annotations, as described in Section 4.4. Such handling
of read-only operations not only eliminates the cost of the reliable multicast
operation, but also saves computational resources by executing the method only
on a single node.

The drawback of the simple solution above is that the semantic properties
of the invocation order are lost. If a “shortcut” is used for read-only operations,
such an operation might be executed earlier than a modifying operation that
was issued before. This order violation can even disable simple read-your-writes
semantics. A modification operation can deliver a result to the client as soon as
it is sure that all replicas will eventually execute this request. A later read-only
operation of the same client can be executed on a replica that did not yet execute
the modification. Hence, the read-only operation will read an outdated state.

The first solution to this preceding semantic problem is the use of an update-
all strategy. This means that the invocation of a modifying method only returns
to the client after updating all replicas. This ensures that a subsequent read
operation will always read the most up-to-date state. The disadvantage of this
approach is the dependency on the availability of all nodes.

The F'Iflex architecture favours a second solution, which uses the invocation
context to detect read access to outdated states. The context information, which
is added by the ContextHandler component, consists of a unique client ID and
a unique invocation ID. All invocations of methods at a specific remote object
are numbered sequentially. A replica that receives a read-only operation can
use the invocation counter to check whether it already has received all prior
invocations from the same client. As a result, a read-your-writes semantics is
maintained.

The limitation of the second solution is that it ensures read-your-writes
semantics only between two directly interacting objects, but not for arbitrary
transitive interactions. For example, an object A might invoke a modifying
operation at object B, which in turn invokes a modifying operation at object
C. The invocation of A can return as soon as B and C will eventually execute
it. This means that there can be replicas of C' that have not yet received the
modifying operations; these replicas don’t known anything about the pending
modifying operation. If A later invokes a method at object C, the infrastructure
cannot guarantee that this read-only operation is performed after the preceding
modification.

An improved solution uses the propagation of explicit version numbers. This
strategy is not yet implemented by the FTflex prototype. The basic idea of
this variant is that each replica group knows its “version number”, denoted by
the local sequence number of the last successful modifying operations. This
version number is propagated to the client with replies, and back to replicas at
subsequent invocations from the client. In case of nested invocation, the version
numbers of all accessed replica groups are collected. The approach is similar
to the use of logical vector clocks; these clocks enable the exact detection of
causal relations. If a read operation is scheduled at a host and this host detects
that the client knows about a more recent operation, the host suspends the read
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operation until it has executed sufficient modifications and reaches the same
local version number. The disadvantage of this solution is the amount of data
that needs to be transferred with all requests and replies.

The last option for handling read-only operations is to treat them as mod-
ifying operations. This variant eliminates all semantic problems, but also fails
to draw any benefit from the semantic knowledge.

4.3 State Transfer

This section describes the realisation of state transfer in the FTflex architecture.
A state transfer mechanism retrieves the current state of a replicated object from
existing replicas and initialises a new replica with this state. Initialising a new
replica at runtime is necessary for increasing the total number of replicas and
for recovering crashed replicas.

4.3.1 Infrastructure Support in FTflex

Most replication middleware systems (e.g., FT-CORBA) use a manual approach
for state serialisation and deserialisation. This means that the developer has to
add methods for obtaining and for setting the replica state for each object
implementation. The advantage of this approach is that the developer gets
full control on how to serialise the object state. For this reasons, FTflex also
supports this simple, lightweight, and flexible approach. In Section 4.3.2, we
will briefly discuss extended variants.

The integration of support for state transfer in a replication infrastructure
faces several challenges:

e The state transfer must be synchronised with the processing of client
requests.

e The state transfer must be fault tolerant; this means that it should be
able to cope with the failure of a replica during the state transfer.

e The state transfer should have minimal impact on the normal operation
of the replicas (i.e., on the processing of client requests).

In the following, we first assume a simple model with a strictly sequential execu-
tion of requests. Later, this model is extended to multithreaded request execu-
tion. Figure 4.4 illustrates the state-transfer process for a joining replica. First,
the new replica joins the replica group at the level of the group-communication
system. The successful integration of the new node in the communication group
is signalled by a new wview event in the sequence of incoming messages.

The reception of the new view event defines the point in time on which the
state of the existing replicas needs to be captured. The new replica will receive
all client requests after this event, and thus needs the state that the replicas
have before the next request. A trivial strategy for a coordinated state transfer
would be to block the processing of new requests until the state is successfully
transferred to the new replica. Such an approach, however, has its deficiencies.
Blocking all replicas for the entire duration of the state transfer has a serious
impact on performance. Furthermore, if the new replica fails during the state
transfer, additional measures are necessary to avoid an infinite deadlock (the
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Replica 1 Replica 2 Replica 3 New Replica :
AQ) AQ) AQ)
B() B() B()
new view new view new view new view
C0 CO CO C0
D() DQ DQ D()
get state get state get state get state

Figure 4.4: State transfer for joining replicas

state transfer will never complete because of the failure, and the replicas are
blocked until the transfer completes). For this reason, the FTflex architecture
uses a slightly different strategy. Upon reception of the new view event, the
get_state() method of the replica implementation is called, triggering the
serialisation of the state into a temporary variable. This variable can later be
transferred to the new node, while all replicas can resume processing requests as
soon as the state serialisation has finished. This minimises the impact of state
transfer on the execution of other requests.

The state transfer must also be able to cope with node failures. On the
one hand, existing replicas can fail during the state transfer. These failures
should be tolerated on the basis of the same failure semantics as the group
uses to handle ordinary client requests. This means that with a crash-stop or
crash-recovery failure model, the state of a single non-faulty replica needs to
be transferred to the new node; with a Byzantine failure model, multiple nodes
must participate in the state transfer. The straightforward approach of FTflex is
to handle state-transfer requests in the same way as remote method invocation
requests. Therefore, a new node that joins a replica group invokes a remote
state-transfer method at the replica group after receiving the new view event.
This remote invocation transfers the replica state from the temporary variable,
which has previously been created in all replicas at the reception of the new view
event. As the state-transfer method does not access the replica implementation
(but only the temporary variable), this request can be executed “out of order”
concurrently with the execution of other client requests.

4.3.2 Extensions

The basic state-transfer support in FTflex can be extended for supporting par-
allel state transfer from multiple nodes, it can be partially automated, and it
can be combined with multithreaded execution of client requests.

The approach described above first serialises the state to a temporary vari-
able, and then transfers the replica state via a remote invocation at the replica
group. Zeman [Zem06] describes variants that enable a direct transfer with-
out creating a temporary copy of the state and support parallel state transfer
from multiple replicas on the basis of peer-to-peer technology. The details of
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these extensions are beyond the scope of this thesis. The main benefits of the
variants are improved efficiency for the transfer of huge object states (hundreds
of megabytes to gigabytes range) and faster state transfer over communication
channels with small capacity.

The manual implementation of get_state() and set_state() methods
complicates state transfer between independent implementations (the developers
have to agree on a common state exchange format), it causes additional work,
and thus adds additional complexity to the object development. Previous work
in the Aspectix project supports object migration with automated support for
state transfer via value types [KSHO05]. This mechanism can also be applied
to state transfer for replicated objects. A replicated service is defined as an
IDL value type that defines the object state in terms of IDL data types. Such a
value type can be automatically serialised, which provides a mechanism for state
transfer automation. Using this approach requires no modification to the FTflex
architecture, as long as the required get_state() and set_state() methods
are provided.

The advantage of the approach on the basis of IDL value types is that the
generic state definition in IDL allows an easy exchange of state between het-
erogeneous replica implementations. Several implementations of replicas, e.g.,
in different programming languages, with transparent state transfer between
them are feasible this way. Such an implementation redundancy is useful in
a Byzantine failure model, if multiple independent replica implementations are
provided to tolerate even implementation faults.

In Section 5.3, this thesis describes the support for multithreaded request
execution in the FTflex architecture. With such use of multithreading, it is not
sufficient to coordinate the state transfer with the preceding and following client
request. Instead, it is necessary that, at the moment of the state transfer, no
more threads of previous requests be active in the replicas. For this purpose,
the multithreading support must provide the functionality of waiting for the
termination of all active threads. This support is discussed in more detail in
Chapter 5.

4.4 Semantic Annotations

The code generation process of FTflex, which is described in detail in Sec-
tion 4.1.1, can automatically generate access fragments and replica fragments
on the basis of IDL interface definitions, similar to the creation of stubs and
skeletons by a traditional CORBA IDL compiler. The flexibility of the code
generation process is increased if the developer gets the possibility to influence
the generated code. For this reason, F'Tflex integrates semantic annotations into
the code generation process and thus offers a means to improve and customise
the replication mechanisms. Semantic annotations can specify behavioural and
structural properties of object methods. Behavioural annotations express the
developer’s knowledge of properties that allow an optimisation of remote invo-
cations. Structural annotations specify the distribution of functionality between
client-side access fragments and replica fragments.
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e readonly

e parallelizable(methodlist)
e local

e internal

e intercepted

Figure 4.5: Annotations supported by FTflex

4.4.1 Generic Specification of Annotations

The support for annotations in the FTflex architecture is generic. This means
that the integration of new annotations is easily possible. Technically, all devel-
oper annotations are parsed by the code generation tool and then evaluated
according to the mapping specification. The mapping specification can be
extended to create custom code for new annotations. The current prototype
uses #pragma statements to embed annotations directly into IDL specification.

One might doubt that the inclusion of semantic annotations into the IDL
specification is a good idea. In current object-oriented middleware systems, the
IDL has two distinct purposes: (a) it defines a contract for client developers,
specifying the interfaces that can be used for interactions, and (b) it is used as
the basis for the generation of stub and skeleton code. In traditional systems
such as CORBA, the same IDL information is used for both purposes. The
semantic annotations, however, are required only to influence the code gener-
ation process, but should not affect the client-side interface. A separation of
annotations and interface specifications could thus be justified. The current
FTflex prototype, however, uses the #pragma approach for the specification of
semantic knowledge, as it was not difficult to add the evaluation of #pragma
statements to the existing configurable IDIflex code generation tool. Further-
more, an IDL specification of a service without annotations, which is sufficient
for client application developers, can easily be generated from an annotated
IDL.

4.4.2 Supported Annotations

The current prototype defines a mapping for the set of annotations shown in Fig-
ure 4.5. This set includes behaviour annotations (readonly and paralleliz-
able) as well as structural annotations (local, intercepted, and internal).

The fragment code generator was extended to support semantic annotations
in IDL files, expressed as #pragma annotate statements. Within a custom
mapping specification, these annotations are evaluated and used to control the
code generation process.

A method marked as readonly does not modify the relevant replica state.
Within the limitations discussed in Section 4.2.4, it is possible to invoke a read-
only method on a single available replica, instead of executing it in total order
on all replicas.

If at least one readonly method is present, code is generated for the Com-
munication component that examines all invocation requests. If read-only op-
timisation is enabled and a method marked as read-only is requested, a replica
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fragment will pass the request directly to the upper layer, bypassing the emission
via totally ordered group communication.

A method marked as parallelizable with respect to a set of other methods
can be executed in parallel with the specified list of other methods. With this
annotation, the developer guarantees that any execution of a set of parallelis-
able methods with multiple threads will have the same effect, regardless of the
thread scheduling and the relative execution speed of the threads. For example,
methods that access only disjoint parts of the replica state are parallelisable.
Furthermore, methods that access a common part of the state, protected by a
mutex, are parallelisable, if the order in which the mutex is granted to threads
does not influence the result. This is the case for idempotent operations.

The Scheduling component in replica fragments is informed about all meth-
ods that are marked as readonly or parallelizable. The component uses an
instance of a deterministic thread-scheduling algorithm, as described in Chap-
ter 5. The algorithm instance can use the annotation information to optimise
the scheduling of such methods.

The implementation of a method marked as local is implemented in the
client-side fragment. As a result, methods that need no access to the replica
state can be executed locally at the client, while still being conceptionally part
of the distributed object. Such a method implementation cannot access the
replica state directly; however, it may invoke internal methods at the replica
fragments.

A method marked as internal is not part of the client-side object interface.
Such methods are implemented at the replica side and accessible via remote
invocations. They are not intended for direct client invocations, but they can
be invoked by the local methods of the client-side access fragment.

A method marked as intercepted will execute custom code at the client-
side before and after invoking the remote method at the replica group. The
interceptor code can be used for local preprocessing, for caching, or for the
accumulation of multiple client invocations into a single remote invocation to
the replica group.

The current prototype requires that developers manually implement the ad-
ditional client-side code. For each method annotated as intercepted, an abstract
method is created in the access fragment; the developer has to provide the actual
method implementation.

Intercepted methods are provided mainly for convenience reasons. In prin-
ciple, it is possible to simulate an intercepted method with a local and an in-
ternal method. In such scenario, the local method would provide the client-side
interception functionality and then invoke the remote internal method. An
intercepted method differs from a pair of local/internal methods in terms of
method naming in the fragment implementations. An intercepted method uses
its IDL name for the replica-side implementation; the replica implementation
is thus identical to a non-replicated object. With the alternative approach,
the local method and the internal method must have different names. As the
local method implements the IDL function that the client uses, the replica-side
internal method must have a different name. In other words, the intercepted
construct maintains servant transparency, while a local/internal pair does not.
On the other hand, local and internal methods provide a higher degree of free-
dom.
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module Library {
#pragma annotate parallelizable(borrowBook), readonly
User lookupUser(in String name);

#pragma annotate parallelizable(lookupUser)
void borrowBook(in User user, in Book book);

/] -

}

Figure 4.6: IDL definition of the library example with annotations

4.4.3 Use Cases

The following examples demonstrate typical use cases for semantic annotations. Example 1: Library Object
The first example uses an object-oriented implementation of a library applica-
tion. Figure 4.6 shows a part of the IDL interface of a library object. The IDL
defines two methods; the first one permits the client application to look up a
library user by name, and the second one offers the possibility to borrow a book.

The example demonstrates the use of the parallelizable and readonly an- Annotations parallelizable
notations. The lookup of a user does not modify the internal state of the library and readoniy
object, and thus the lookup can be executed by just a single replica, instead of
requesting the method execution at all replicas. Under the assumption that the
information about which book is borrowed by which user is not stored in the
user information (but instead in the book database), the borrowBook () method
does not modify any state information that is accessed by lookupUser(). It is
thus possible to execute both methods concurrently without risking conflicting
state modifications. The developer can provide this information to the FTflex
infrastructure with parallelizable annotations at both methods. The bor-
rowBook () method cannot be annotated as readonly, as it modifies the internal
object state.

The second example uses a credit-card processing service, which clients can Example 2: Credit-card
use to handle credit-card transactions. The simplified IDL in Figure 4.7 offers Processing Service
methods for charging money on a credit card and for verifying the validity of
a credit card; validate_card_checksum() only verifies whether the checksum
of the card number is valid (which can be confirmed by a simple numerical
calculation), while validate_card(), on the other hand, interacts with the
card issuer to verify whether the card indeed is valid (e.g., has not been reported
stolen).

Structural annotations can be used to implement an improved version of Annotations local and
the credit-card processing service without changing the client interface. First, intercepted
the validate_card_checksum method only performs a calculation without ac-
cessing any service state. It thus can be implemented directly in the client-side
fragment without having to use a remote invocation. For this purpose, the local
annotation can be used. Second, the validate_card method can be marked
as intercepted. Interception can be used to call validate_card_checksum first
before issuing the remote invocation that checks the validity with the card issuer.

If the checksum is false, the card is invalid, and validation can be aborted with
the CardNotValid exception without remote interaction.
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interface CC_processor {
transaction_id charge(in carddata card, in float amount)
raises (CardNotValid, TransactionFailed);

#pragma annotate local
boolean validate_card_checksum(in card_data card)
raises (CardNot Valid);

#pragma annotate intercepted

boolean valiade_card(in card data card)
raises (CardNotValid);

}’.

Figure 4.7: IDL definition of the credit-card processor example with semantic
annotations

interface GenericFragmentFactory {
Object create_initial replica (
in Key k,
in Credentials cred,
in Criteria the_criteria )
raises (NoFactory, InvalidCriteria, CannotMeetCriteria);

void create_replica (in APXObject fo,in Criteria the_criteria )
raises (NoFactory, InvalidCriteria, CannotMeetCriteria);

}’.

Figure 4.8: Interface of the generic fragment factory

4.5 Management of Replication Groups

Similar to other fault-tolerant middleware infrastructures, Aspectix uses the fac-
tory pattern to create and set up replicas. Replication groups are implemented
as self-managing entities; this design reduces the complexity of the necessary
infrastructure compared to other systems that require a dedicated replication
manager. In addition, the management automatically benefits from the same
fault-tolerance mechanisms as the replicated object itself.

4.5.1 Runtime Infrastructure

Starting a new replicated service involves several steps. First, a factory has to
be acquired via a factory finder. A factory finder represents a search scope for
possible places of execution, corresponding to the definition by the CORBA Life
Cycle Specification [OMGO02]. Currently, the factory finder is implemented in a
straightforward way in plain CORBA and well-known on every node within a
domain. Thus, a node can register its local factories and can look up factories
from all other nodes. Multiple factory finders can be provided for fault tolerance.

The generic factory for fragment creation offers two methods (Figure 4.8):
one for setting up an initial replica of a replicated fragmented object and another
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Figure 4.9: Creation of the first replica and of additional replicas

one for setting up additional replicas. After a lookup of one or more factories
via the factory finder, one of them is requested to instantiate the first replica via
create_initial_replica() (see Figure 4.9a). The factory creates the initial
replica and activates the fragment object. Afterwards, the object is returned
to the calling client; implicit binding causes the instantiation of a local access
fragment at the client side. The result is a simple client-server structure with
only one replica. The management code within this replica is able to control
the creation of additional replicas.

A management interface of the fragmented object is used to increase the Management Interface
desired number of replicas (see Figure 4.9b). An increase triggers the existing
replica group to add the necessary number of additional replicas. The replica-
side fragment contacts the factory finder to request additional factories. In the
next step, a reference to the fragmented object is passed to a factory. At the
factory side, the fragmented object is transparently bound by the middleware,
which loads the initial fragment. Under control of the factory, the local fragment
is reconfigured to be a replica fragment. The state of the existing replica group
is transferred to the new replica as described in Section 4.3. The addition of
replicas is repeated until the desired replication level is reached or until no
additional factories are found.

The failure of a replica in the group is detected by a failure-detection mech- Handling of Failures
anism at the group-communication level. After detecting a failure, the replica
group automatically sets up a new replica in the same way, as long as another
factory is available.

4.5.2 Dynamic Runtime Reconfigurations

The core of the Aspectix middleware provides complex facilities for dynamically Aspectix Policy Configurations
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interface Reconfigurable {
void set_policy (in String key, in String value);
String get_policy (in String key);
sequence<String> list_policies ();

}

Figure 4.10: Reconfigurable interface

configuring fragmented objects on the basis of policies!. Aspectix provides
powerful mechanisms for handling policy reconfigurations. Fragment imple-
mentations can receive notification about policy changes requested by the client,
and can use them to trigger reconfigurations. Furthermore, fragments can verify
whether a desired policy configuration is currently possible. If not, a fragment
can inform the application about this problem via registered callback handlers.

The FTflex infrastructure uses only a simplified version of the policy mech-
anisms of Aspectix. FTflex uses only string values as policy values instead of
arbitrary complex data types. It also does not make use of policy verification
and callback notifications back to the client. Instead, policy updates by the
client are simply passed to the fragment implementation. This simplification is
motivated by the fact that the extended Aspectix features are not essential for
the replication support. Furthermore, the simplified policy configuration model
makes it easier to port the FTflex infrastructure to other middleware systems
based on fragmented objects, such as our FORMI infrastructure [KKSHO5].

Figure 4.10 shows the IDL specification of the Reconfigurable interface. If
an object developer wants to enable client-side reconfigurability for some object,
this object has to inherit the Reconfigurable interface at the IDL level. The
code that is generated for the access fragment contains generic functionality to
forward policy updates to the infrastructure and to the fragment implementa-
tion.

4.6 Evaluation

Replication on the basis of fragmented objects provides flexibility. This flexibil-
ity manifests itself in various ways. First of all, an infrastructure for fragmented
objects can support replication without internal modifications to the middle-
ware. Currently, many middleware systems support replication only after intru-
sive extensions. Furthermore, the FTflex architecture provides a code-generation
tool that automatically creates fragment code. The tool offers the flexibility
to structure applications in a way not possible with traditional remote objects.
This flexibility can be used to provide parts of the replica code at the client-side,
while maintaining object identity. Section 4.6.1 discusses this advantage using
the example of a source-code version control system. In addition, the developer
can influence code generation with semantic annotations. Section 4.6.2 shows

1In the original Aspectix middleware, these policies are called aspects. With the rise of
aspect-oriented programming, the term aspect today is usually understood to mean a portion
of program code that is scattered around multiple functional modules of an application (i.e.,
“cross-cutting”), but belonging to a single (functional or non-functional) concern. An Aspectix
aspect, on the other hand, is a generic piece of data that influences the internal functionality
of a fragmented object.
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measurements that demonstrate the increase in performance that the developer
can obtain with these annotations.

4.6.1 Client-Side Code

The development process of a replicated service on the basis of fragmented
objects allows the implementation of client-side code. Using the F'Iflex infras-
tructure, Baumann [Bau06] has implemented a replicated source-code version
control system. This system internally uses the same mechanisms as git, the
source-code version control system that is currently used by the Linux kernel?.

A version control system stores the revision history of all file versions of a
project in a central repository. The most important functions of such a system
are mechanisms to check out a copy of the repository files into a client-side copy,
to commit local modifications to a new revision in the repository, and to update
the local copy to the most recent version in the repository. The implementation
of a version control system consists of server-side functionality for managing the
repository and client-side functionality for interacting with the (usually remote)
repository and manipulating the local copy.

With FTflex, a source-code repository of the version control system can be
represented by a fragmented object, identified by a CORBA TOR. Fragmented
objects allow the developer to provide client-side code for an object implemen-
tation. This code can implement functionality for reading and updating the
client-side copy. This means that functionality for modifying local files can be
implemented as conceptional part of the fragmented object. Current middleware
systems that are based on the notion of remote objects cannot provide such a
feature.

Related to this, it is an important observation that remote services that
use client-side computations are getting more and more important in other
domains. Recently, AJAX (Asynchronous JavaScript and XML [Gar05]) has
gained much popularity. AJAX enables the provision of client-side functionality
as part of interactive web applications and thus can be used to increase the
usability and interactivity of such applications. The FTflex approach allows a
similar application structure for CORBA-based distributed objects.

4.6.2 Benefits from Read-Only Annotations

Many distributed objects provide remote methods that do not modify object
state. For example, the source-code version control system discussed later
offers several methods that query the current state of the remote repository
and retrieve updates. As these operations only read the server-side repository,
they can be executed by a single replica. Traditional object middleware is
unable to distinguish between read-only and modifying requests due to the lack
of semantic knowledge. FTflex introduces semantic annotations to express such
knowledge, which developers can use for optimisation.

The following measurement demonstrates the difference in invocation time
between a read-only method and a modifying method. A single client accesses a
replica group with the number of replicas increasing from one to five nodes. The
measurement has been made on a set of PCs with a AMD Opteron 2.2 GHz CPU,

2see http://git.or.cz/ (valid 2006-09-16)
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Figure 4.11: Efficiency gain with read-only annotations

using Linux kernel 2.6.17 and connected by a 100 MBit/s switched Ethernet
network. The current prototype of the Aspectix middleware was used on the
basis of Sun’s Java runtime environment version 1.5.0_03. The service replicas
used JGroups 2.2.9.1 for communication, with a protocol stack configured to
use TCP connections and TOTAL ordering.

Figure 4.11 shows the average time per invocation of a simple no-op method
that is executed either as a read-only or a modifying method. The FTflex
infrastructure does not distributed the read-only method invocations via the
group-communication framework, but instead sends them directly to one of the
replicas. The figure shows the average time per invocation as measured at
the client side, obtained from ten runs with 5000 client invocations each. The
invocation cost for modifying methods is dominated by the cost of the totally
ordered group communication. For read-only invocations, the invocation time
does not depend on the number of replicas. This simple example underlines the
benefit that can be achieved with the use of semantic knowledge about object
methods.

4.7 Summary

The FTflex architecture uses the fragmented-object model of Aspectix to pro-
vide fault-tolerant replication support. Custom fragment code can be generated
automatically on a per-object basis using interface definitions, functional object
implementations, and semantic annotations.

The code generation process uses the IDIflex code generation tool of
Aspectix. This tool was extended to support semantic annotations that in-
fluence the code generation process. An additional code transformer allows
the interception of Java synchronisation mechanisms. Outside the scope of
this thesis, a more flexible Aspectiz Development Kit (ADK) is currently being
developed that extends the possibilities of the code generation process. For
example, languages other than Java will be supported, and the composability



4.7. SUMMARY 63

of multiple transformation processes is being studied. This thesis can be used
to define important use-cases, which help to design the new ADK.

Besides the basic code generation process, several mechanisms are incor-
porated in the FTflex architecture to simplify the development of replicated
services. Core Aspectix mechanisms for state transfer can be used directly
to automate state transfer between replicas. Code transformation is used to
intercept synchronisation operations, which are then handled by protocols for
deterministic multithreading in replicas. Similarly, the code transformation tool
could also be used to intercept other nondeterministic operations. The current
prototype implementation does not handle such nondeterminism, but it could
easily be extended.

Aspectix provides a flexible platform for distributed resource management,
which can be used for many complex management tasks. The details of this
architecture are outside the scope of this thesis. To simplify the management ar-
chitecture, a replicated object provides basic functionality for self-management.
This approach eliminates the need for fault-tolerant replication management,
which other fault-tolerant object platforms require.

At the fragmented-object level, the basic support for dynamic reconfigu-
ration is directly provided by Aspectix, for example by its ability to replace
fragment implementations at runtime and its support for dynamic, time-bound
IOR updates. A special management interface that can be used to trigger
reconfigurations is provided for client applications.

Supporting Object Development

Management of Groups

Runtime Reconfiguration
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Chapter 5

Deterministic Multithreading
in Replicated Objects

Thread scheduling in object replicas is a source of nondeterminism. The pur-
pose of this chapter is to describe the support for deterministic multithreaded
execution of object methods in the FTflex architecture. The primary aim of
the multithreading support in FTflex is to increase the performance of repli-
cated objects and to simplify the re-use of existing object implementations for
replication.

Exact definitions of the synchronisation model and thread model provide
the basis for a detailed discussion of deterministic scheduling algorithms. This
thesis proposes replica code transformation as a novel approach to intercept
synchronisation statements and to delegate them to a scheduler module. This
module is called the Aspectix DEterministic Thread Scheduler (ADETS). The
FTflex architecture provides four different variants of the ADETS module.

5.1 The FTflex Approach to Deterministic Multi-
threading

FTflex uses a synchronisation model that supports reentrant mutex locks, con-
dition variables, and time bounds on wait operations. The use of such a model
results in a flexibility that is superior to other existing systems, which, in general,
support only synchronisation with binary mutexes. The synchronisation model
of FTflex is comprehensive enough to fully support the native synchronisation
mechanisms of the Java programming language. This advantage allows the
developer to use a rich set of synchronisation methods and simplifies the reuse
of existing code.

The replication infrastructure has to intercept synchronisation statements
of the replicated object in order to support deterministic multithreading. This
thesis proposes code transformation as a novel approach for intercepting native
Java synchronisation. The intercepted statements are then delegated to an
instance of the ADETS module. The transformation approach works without
low-level modifications to the Java virtual machine (JVM) or operating system.
By contrast, existing systems intercept synchronisation at the operating sys-
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tem level (by internal modifications to the operating system or by intercepting
interactions with low-level thread libraries) or with a modified JVM.

The first variant of the ADETS module is ADETS-SAT, which uses a single
active thread model. It is based on prior work of Jimenez-Peris et al. [JPPMAOQO]
and Zhao et al. [ZMMSO05]. These existing systems assume a simple synchroni-
sation model that uses only binary mutexes. This thesis provides extensions for
reentrant locks, condition variables, and time bounds on wait operations.

ADETS-MAT is a novel algorithm that supports the concurrent execution of
multiple active threads, and thus allows more concurrency than ADETS-SAT.
Synchronisation is made deterministic by restricting some scheduling-related
operations to a deterministically chosen primary thread. Other threads may
perform local computations concurrently as long as they do not interfere with
synchronisation. Such an approach has not been used previously by other
systems. As in the ADETS-SAT algorithm, deterministic timeouts use com-
munication between replicas, whereas all other synchronisation operations on
mutexes and on condition variables require no communication at all.

The third strategy, ADETS-LSA, uses a leader-follower model inspired by the
loose synchronisation algorithm (LSA) of Basile et al. [BWKI02]. Modifications
to the original algorithm eliminate the dependency on global IDs for all mutexes.
In Java, any object can be used as mutex, and there are no globally consistent
IDs for object instances in multiple replicas. Furthermore, our ADETS-LSA
algorithm provides extensions for reentrant locks, condition variables, and time
bounds on wait operations.

The ADETS-PDS variant of the scheduling module is based on the PDS
algorithm of Basile et al. [BKI03]. PDS assumes that a known set of threads
executes in rounds. In each round, a thread may acquire only one (or, in
a modified version, two) locks; a new round starts as soon as all threads
have suspended. Similarly to the ADETS-SAT and ADETS-LSA variants, the
ADETS-PDS implementation extends the original PDS algorithm with support
for reentrant locks, condition variables, and timeouts.

Of all previously published algorithms, only LSA and PDS offer the pos-
sibility to execute multiple threads concurrently in replicated objects. This
thesis provides extended variants of both algorithms; these variants completely
support all native synchronisation mechanisms of the Java programming lan-
guage. In addition, this thesis presents the novel ADETS-MAT algorithm and
shows that there are situations in which it outperforms both LSA and PDS.
Hence, it provides a significant contribution to efficient active object replication
in distributed systems.

5.2 Basic Assumptions

A deterministic multithreaded execution of object methods is only possible if
two conditions are met: the access to object state in the replica must by coor-
dinated correctly and the replica implementation must itself be deterministic.
Without correct synchronisation, the object implementation will not even work
correctly in a non-replicated multithreaded execution. Without deterministic
behaviour of the object implementation, a thread scheduling strategy cannot
achieve determinism.
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5.2.1 Synchronisation Model

If multithreading is used, both replicated and non-replicated objects must co-
ordinate concurrent access to shared object data. If the implementation of
a non-replicated object is designed for single-threaded execution, it will not
contain synchronisation statements; consequently, it can be used only for a
single-threaded replicated object. The purpose of the ADETS schedulers is
to allow the replication of existing servant implementations that have been
designed for a multithreaded execution model, without requiring the developer
to re-implement synchronisation mechanisms in the servant code. Multithreaded
execution requires a correct synchronisation of the existing implementation with
explicit mutex locks.

Some basic data types of Java (such as integer variables) can be accessed
from multiple threads without using explicit synchronisation. The Java runtime
environment guarantees that any access to such a variable is atomic. If, for ex-
ample, two threads write a value to an integer variable without coordination, the
variable will finally contain one of the two values. The ADETS scheduler does
not support such uncoordinated variable access, and instead requires explicit
synchronisation of all access to shared state.

Using locks is not the only way to coordinate concurrent access to shared vari-
ables. In the past decade, non-blocking and wait-free algorithms have attracted
much research interest [FHS04]. Such algorithms are popular especially for
real-time systems, as they can avoid the priority inversion problem and have less
overhead than mutex synchronisation. However, they require the use of special
atomic processor instructions such as CAS (compare and swap), and are difficult
to implement [MS96]. This thesis assumes traditional thread synchronisation
with mutexes and does not support wait-free synchronisation.

This thesis focuses on servant objects that are implemented in the Java
programming language; most of the presented concepts, however, can similarly
be applied to other object-oriented languages. Java provides native mechanisms
for thread synchronisation, which include binary mutex locks and condition
variables [GJSBO05]. Other languages such as C++ require the use of exter-
nal libraries such as the POSIX thread library (pthreads) [KSS96]. For the
application developer, the Java approach simplifies the development of multi-
threaded applications, as synchronisation mechanisms are directly included in
the language syntax.

Java also permits the use of additional libraries with custom synchronisa-
tion code. A set of custom synchronisation mechanisms has been included in
Java JDK 5.0 in the java.util.concurrent package [GJSB05]. The FTflex
prototype implementation currently assumes traditional Java synchronisation
mechanisms as described in this section. Two possibilities exist to support
other custom synchronisation libraries as well. First, if the library internally
uses basic low-level Java synchronisation mechanisms, these mechanisms can
be intercepted. Second, the code generation tool of FTflex can be modified to
intercept calls to external synchronisation libraries and forward these calls to an
extended ADETS implementation that provides an equivalent implementation
of the synchronisation methods of the library.

Java associates a binary muter with each object. All mutexes are reentrant:
a single thread may acquire the same mutex lock multiple times. The lock is
released only if the number of unlock operations is equal to the number of lock
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operations. The ADETS modules presented in this thesis use such a reentrant
mutex model.

Condition variables provide a mechanism that allows a thread to wait for
a condition to become true inside a critical region protected by a mutex. If
a thread waits on a condition variable, it releases the associated mutex lock
and suspends. Another thread can signal the suspended thread to resume; the
resuming thread implicitly re-acquires the mutex lock. The traditional monitor
concept of Hoare [Hoa74] allows an arbitrary set of condition variables to be
used within a monitor. The Java programming language provides a simplified
form, in which any object can be used as mutex and as condition variable. This
approach establishes a one-to-one relationship between mutexes and condition
variables.

In addition, Java allows the developer to specify a timeout value for opera-
tions that wait on condition variables. After the timeout expires, the thread that
was suspended in a waiting operation resumes without having been notified. As
condition variables are an important mechanism for synchronisation, they are
supported in the synchronisation model of this thesis.

5.2.2 Details of Java Synchronisation

The Java programming language provides the synchronized keyword to specify
synchronisation operations on a mutex. Every instance of a Java object can be
used as a mutex. The synchronized keyword can be used as a method modifier
or as a modifier of a code block within a method.

e A synchronised instance method of an object will lock the mutex of the
object at method entry and unlock it when leaving.

e A synchronised static method of a class will lock the mutex of the class
meta object at method entry and unlock it when leaving.

e A block within a method preceded by the synchronized keyword (or,
briefly, a synchronised block) explicitly specifies an object that will be
locked at the beginning of the block and released at the end of the block.

A synchronized element implicitly specifies a lock and an unlock operation.
Such a structure is less error prone than explicit locking statements; a mutex
can neither be unlocked without having been locked before, nor can the unlock
be “forgotten”. An execution thread can pass through multiple nested synchro-
nized elements, which means that multiple mutexes are locked successively. The
implicit lock acquisition is less flexible than explicit lock and unlock operations,
as all locks have to be unlocked by the same thread and in reverse order of lock
acquisition.

In addition to a mutex, each object in Java provides a condition variable. For
this purpose, all objects inherit the final methods wait (), notify (), and noti-
fyA11() from the core java.lang.0bject class. These methods may be called
only after obtaining the mutex of the object. The wait () method releases the
mutex and blocks until it is woken up either by a notification or a timeout. The
notify() method signals one out of all threads blocked in a wait () operation
to resume. The notifyAll() method unblocks all waiting threads. Typically,
wait() is used in a loop that checks a condition.
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Multithreaded Java programs face several sources of nondeterminism related
to thread management:

a) The order in which parallel threads are scheduled is unpredictable. If two
threads concurrently access the same data and consequently request the
corresponding mutex, the order in which the mutex is granted is nonde-
terministic.

b) If a thread wants to acquire a mutex that is held by another thread, it
is suspended until the mutex becomes available. If multiple threads are
suspended, the selection of the thread to which the mutex is granted next
after an unlock operation is nondeterministic.

¢) In both notification operations (notify () and notifyAl1l()), one cannot
predict or specify the order in which waiting threads wake up and execute,
as such an order is not defined by the Java language specification.

Replicating an existing servant implementation that uses the native synchro-
nisation mechanisms of Java should not force the developer to change the syn-
chronisation code. This requirement makes it necessary for the fault-tolerance
infrastructure to remove all sources of nondeterminism that can arise from the
execution of concurrent threads. The order in which locks are granted and
waiting threads are resumed has to be made deterministic.

5.2.3 Replica Determinism

Deterministic replica behaviour is obtained only if the replica implementation
provides some form of predictability. For a single-threaded execution model, it
is easy to define a determinism requirement that the implementation must fulfil.

Definition 5.1 (Determinism in a Single-Threaded Model) Let S(t) be
the state of the object at time t, and v a client request. A replica implementation
is deterministic if the request r and the object state S(t,) at the beginning of the
execution of r uniquely define the object state S(ty) at the end of the execution

of .

In a multithreaded execution, the concurrent execution of threads is a po-
tential source of nondeterminism. The replica implementation cannot provide
determinism independently of the scheduling strategy. The preceding definition
of determinism is not useful for a multi-threaded model: during the execution
of request r, other threads can concurrently modify shared state data. Such
modifications invalidate the assumption that the state S(t) has a unique value
at the end of the execution of 7.

A definition of determinism that permits multithreaded execution must be
based on a more fine-grained observation of the object state. The ADETS sched-
uler assumes that all access to shared data is protected by mutexes. In addition,
a thread may access local data that is not accessible for other threads. Given a
specific set of locks, a thread will only modify (a) local data and (b) shared data
that is protected by the locks. These modifications have to be deterministic; no
other thread may modify this part of the object state concurrently.

This assumption can be defined in a more formal way. For this purpose, the
execution of a request is modelled as a sequence of thread execution intervals
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(see Definition 5.2). Piecewise thread determinism makes assumptions about
the thread behaviour during such an interval (see Definition 5.3). If the replica
implementation is piecewise deterministic and if the infrastructure provides de-
terministic thread scheduling, then the replica behaviour will be deterministic.

Definition 5.2 (Thread Execution Intervals) A scheduling point s; of a
thread T is defined by any of the following activities of T: thread creation,
request and release of a mutex lock, wait request on a condition variable, nested
invocation, and thread termination. An execution interval e; of a thread is the
activity of a thread between s; and s;41.

Thread creation always defines the first scheduling point sg, and thread
termination defines that last scheduling point sy. The scheduling points s, 0 <
k < N may temporarily suspend the thread waiting for a mutex, for a condition
variable, or for a nested invocation reply. In these cases, the next execution
interval ey, is started as soon as the lock is granted, the wait operation is notified
or times out, or the reply for the nested invocation arrives, respectively.

During an execution interval e;, the set of mutexes that the thread has locked
does not change. Any operation that changes the set of locked mutexes starts
a new execution interval. A nested invocation does not change the lock set. It
is, however, a potential source of nondeterminism that is outside the control of
the replica implementation. For this reason, nested invocations also start a new
execution interval.

Definition 5.3 (Piecewise Thread Determinism) Let L (t) be the local
state of a thread T at time t, and St (t) be the part of the shared object state
that thread T can access in execution interval e; on the basis of previous lock
operations. A thread T is piecewise deterministic iff the local state Lp(t,) and
the protected part of the shared state St ;(t,) at the beginning of e; uniquely
define the state of Ly (ty) and St,;(ty) at the end of the execution interval e;.

The developer of the replicated object has to make sure that the replica
implementation is piecewise deterministic and that during an execution interval
a thread reads or modifies only those parts of the shared object state that are
not concurrently modified by other threads.

5.2.4 Granularity of Synchronisation

In the following it is assumed that each instance of a replica group is independent
from other instances. Each instance accesses only internal data directly, and
interacts with other instances via remote invocations; each replica group has its
own totally ordered group communication facility to receive client requests and
replies from nested invocations. In this model, the unit of thread synchronisation
is the replica group instance. Internally, each replica uses a separate instance of
an ADETS module.

A replica group A may invoke remote methods of an independent replica
group B. In this case, the infrastructure makes sure that a single invocation is
made from A to B. This means that all replicas of A have to be coordinated to
make a joint invocation of a method at B. The result of this invocation is then
propagated to all replicas of A, as described in Section 4.2.
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Figure 5.1: Software transformation process for synchronisation transparency

It is possible to combine multiple objects within one replication group; in this
case, these objects can have access to common shared data. A nested invocation
from one object group to the other group can be implemented by local method
invocations. In this scenario, all objects of a single replication group must use
common thread synchronisation, which requires common group communication
and a common ADETS instance. This variant requires no modification of the
scheduling algorithms themselves.

5.3 Interception of Synchronisation

Using multiple threads in replicated objects requires that the replication in-
frastructure be able to control concurrent actions. This fact applies to all
approaches to deterministic multithreading. For this purpose, the infrastructure
must control the synchronisation actions that determine the order in which
shared state is accessed. This means that the infrastructure must intercept all
synchronisation-related statements in the replica code.

Interception can be implemented using low-level approaches, such as using
specifically modified hardware, operating systems, and Java virtual machines. In
contrast, FTflex aims at supporting deterministic multithreading without such
low-level means. In programming languages like C++, it is possible to redirect
local library calls to, e.g., the POSIX thread library [KSS96]. For example,
the Eternal system [NMMS99] uses this approach for transparent interception.
In Java, the thread synchronisation primitives are directly integrated in the
programming language [GJSBO05], which makes this approach less feasible.

As an alternative, this thesis proposes a code-transformation approach. A
software transformation tool of the FTflex middleware converts native Java syn-
chronisation primitives into synchronisation calls that interact with the ADETS
module [RKDHO06]. This approach is transparent to the application developer,
as the application can use all native Java primitives for synchronisation, without
consideration for the transformation process. Before application deployment,
the code is passed through the code transformation tool (Figure 5.1).

The synchronisation methods that need to be intercepted include all op-
erations on mutexes and condition variables. The code transformer of FTflex
replaces these operations with method invocations at the ADETS scheduler.
The interface of the ADETS module is shown in Figure 5.2; plug-in components
provide implementations of this module.

All synchronized elements in the source code need to be replaced by a
pair of lock()/unlock() invocations at the ADETS module. A try/finally
construct is used to make sure that unlock() is always called, even if the method
prematurely exits via an exception or a return statement. For a synchronised
instance method, this is passed as mutex reference to the lock and unlock
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interface ADETS {
void lock(Object 0);
void unlock(Object 0);

void swait(Object o) throws InterruptedException;

void swait(Object o, long timeout) throws InterruptedException;

void swait(Object o, long timeout, int nanos) throws InterruptedException
void snotify (Object o);

void snotify All (Object o);

Reply invokeNested(Request r);

void start ();

void stop ();

void getState(ObjectOutputStream o0os);
void setState (ObjectInputStream ois);

Figure 5.2: Generic interface of the ADETS module

statements. For synchronised static methods, a reference to the class meta object
(i.e., <classmame>.class) has to be passed instead. Synchronised blocks are
more complicated, as a reference to a custom variable can be passed as mutex
object and this reference can be changed within the synchronised block (e.g.,
synchronized(x){x=y;}). Consequently, a copy of the mutex reference must
be made in order to be able to call unlock() with the right reference at the end
of the block.

The example in Figure 5.3 illustrates the effect of the code transformation.
A synchronised method is converted to a lock() call at the beginning and an
unlock() call at the end of the method, passing the this reference as lock
object.

In addition to mutex synchronisation, the ADETS module also provides
methods for condition variables. Calls to the native wait(), notify() and
notifyAl11() methods are simply transformed to corresponding calls to the
scheduler instance of the replica. As these methods have reserved names that
cannot be used in custom object implementations, the Java implementation of
the ADETS interface uses the prefix “s” for the corresponding methods. For
simplicity, the descriptions of the ADETS algorithms in the next sections do
not use this prefix.

The ADETS scheduler also needs to be aware of nested invocations. These
invocations are potential scheduling points (e.g., in a single-active-thread
model), and the delivery of the invocation reply has to be coordinated by the
scheduler. For this purpose, an access fragment that handles a nested invocation
calls invokeNested at the scheduler. This method (a) informs the scheduler
about the invocations, (b) executes the actual nested invocation, and (c) lets
the scheduler decide when to resume to callee by returning the reply.

The ADETS module has to be integrated in the state-transfer mechanism
that is used to integrate new replicas. Therefore, the state transfer has to
be coordinated with the execution of client requests, and the scheduler state
itself needs to be transferred. The ADETS interface provides two methods,
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public class Queue extends ... { public class Queue extends ... {
public synchronized public void remove() {
void remove() scheduler.lock(this);
try {
while(data.size()==0) while(data.size()==0)
wait(); scheduler.swait (this);
return data.remove(0); return data.remove(0);
} } finally {
scheduler.unlock(this);
}

. = .
public synchronized public void append(String x) {
void append(String x) scheduler.lock(this);

try {

data.add(x); data.add(x);

notify(); scheduler.snotify (this);
} finally {

scheduler.unlock(this);
}
}
} }

Figure 5.3: Example of code transformation for Java mutexes and condition
variables

stop() and start(), that are called by the infrastructure before and after the
state transfer. A stop() operation signals the ADETS implementation to stop
processing new requests; the operation blocks until all requests that are still
being processed have finished. After that, a consistent state transfer without
concurrent execution of other replica methods can be performed. The state
transfer not only transfers the state of the replica implementation, but also
includes the state of the ADETS instance, which is accessible via the methods
getState() and setState().

5.4 ADETS-SAT: A Single Active Thread Algo-
rithm

This section defines the non-preemptive ADETS-SAT algorithm [DHRKO6],
which uses a single-active-thread approach. The algorithm is inspired by pre-
vious works of Zhao et al. [ZMMS05] and Jimenez-Peris et al. [JPPMAOO] (see
Section 3.2). The algorithm does not allow true concurrency; a new thread is
allowed to start only if the execution of a request is suspended due to a nested
invocation or an unavailable lock. ADETS-SAT is the simplest variant of the
ADETS algorithms defined by this thesis.

ADETS-SAT: Basics
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LockedMap: Map<Object,[ThreadID,count]>
MutexWaitMap: Map<Object, Queue<ThreadID>>
CondWaitMap: Map<Object, Queue<[ThreadID,UUID]>>
idle : boolean

Figure 5.4: Basic data structures of the ADETS-SAT algorithm

5.4.1 Thread States

Threads executing methods of a replica group can be in one of the following
states: runnable, suspended, or terminated.

e A thread is terminated if it has stopped executing and will never resume.
A terminated thread is later cleaned up by the garbage collector.

e A thread is suspended if it is (a) waiting for a new request, (b) waiting for
a mutex lock, (¢) waiting on a condition variable, or (d) waiting for the
reply of a nested invocation.

e A thread is runnable if it is neither terminated nor suspended.

The ADETS-SAT algorithm makes sure that only one deterministically cho-
sen thread is in the state runnable. The algorithm is non-preemptive, and
no explicit ready state is used. Instead, a new thread created or moved from
suspended to runnable state only after the currently runnable thread terminates
or suspends. The decision about which thread to resume or create is fully
deterministic under the control of the ADETS-SAT scheduler. This behaviour
is identical to the original algorithm of Zhao et al [ZMMS05].

5.4.2 Data Structures

Figure 5.4 shows the basic data structures used by the ADETS-SAT algorithm.
The term Object is used to refer both to a mutex and to a condition variable; this
implies the assumption that for each mutex there exists exactly one condition
variable!.

LockedMap maps object references to threads that hold the mutex lock of the
object. As the algorithm simulates the reentrant behaviour of Java monitors, a
single thread may lock the mutex multiple times. The lock count of the mutex
is stored in the map together with the thread ID. On unlock operations, the
lock count is decremented, and when it reaches zero the object is removed from
LockedMap.

MutexWaitMap maps object references to an ordered list of threads that want
to acquire the mutex lock of the object. Threads are added to MutexWaitMap if
they try to lock a mutex that is currently held by another thread (indicated by
an entry in LockedMap). Threads are also added to MutexWaitMap if they have
been suspended by a wait () call and subsequently are resumed by a notify()
operation or timeout.

CondWaitMap maps object references to an ordered list of threads that use

IThis assumption simplifies the description of the algorithm and is justified for the Java-
based environment, which provides such an one-to-one relation; the algorithm can be extended
to a more general condition variable concept by providing a mapping function from condition
variables to mutexes.
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this object to wait on a condition variable. A unique ID of the wait operation
is stored in the map together with the thread ID. The unique ID is required to
unambiguously map timeout messages to waiting threads.

idle is set to true if no thread is currently runnable. If a new message
arrives and idle is true, then the scheduler is triggered to use the new message
to create or resume a thread.

5.4.3 Description of the ADETS-SAT Algorithm

Figure 5.5 shows a pseudocode description of the ADETS-SAT algorithm. The
algorithm assumes that intercepted synchronisation statements of the servant
implementation are delegated to the corresponding scheduler methods. The code
provides methods for lock() and unlock() operations on reentrant mutexes as
well as for wait (), notify (), and notifyAll() operations on condition vari-
ables. Furthermore, it contains functionality for interrupting wait () operations
by time bounds.

The internal schedule() method (lines 1-21) is used to create or resume
the next active thread. A call to schedule() is only made when the currently
running thread blocks or terminates. A thread may block at a Llock () operation
(line 47), at a wait () operation (line 58), and when it makes a nested invocation
(line 35); in addition, termination is handled in line 32. The schedule () method
also calls itself recursively after processing a Timeout message. Furthermore, if
schedule() terminates due to an empty message queue (line 8), it sets idle to
true and is called again as soon as the next message arrives (line 29).

The schedule() method deterministically chooses the next thread to be
created or resumed. First, it checks whether a thread can be resumed without
processing any incoming messages (lines 2-6). This may happen if a thread wait-
ing on a lock() or wait () operation can continue due to a previous unlock(),
notify(), or timeout. In this case, there is an object entry in MutexWaitMap
that is not in LockedMap.

Otherwise, the first message from the incoming message queue is processed.
If no such message exists, schedule() exits, and the system remains idle until
the next message arrives, which causes schedule() to be called again. All
messages arrive at all replicas in total order. Messages can be new invocations,
replies from nested invocations, and Timeout messages that are used internally
to implement time-bounded wait operations.

The choice of the next message to process depends on the thread model
in use; common models are thread-per-request, thread-per-client, thread-per-
transaction, and thread-pool [ZMMSO05]. In a thread-per-request model, with
an unbounded number of threads, the message at the head of the incoming
queue can always be processed by creating a new thread if no existing thread
handles this message. In all other models, it can happen that a request message
cannot be processed, because a new thread for handling that request currently
cannot be created, or because it needs to be handled by an existing thread that is
currently suspended (waiting on a lock, condition variable, or nested invocation
reply). In that case, the message queue has to be implemented as a priority
queue that defers currently unprocessable requests.

An intercepted lock() operation checks if the requested mutex is either
available or locked by the current thread. In these cases, the mutex is success-
fully granted to the thread or the reentrance count is increased, respectively,

idle
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The schedule() Method
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function schedule ():
find obj in keys(MutexWaitMap)\keys(LockedMap)
if obj exists:
tid := MutexWaitMap(obj).removeFirst()
LockedMap(obj) := [tid,1]
tid . resume()
return
if inQueue.isEmpty():
idle := true;
return
msg := inQueue.removeFirst()
if msg is CLIENT_REQUEST:
start new request handler thread
if msg is TIMEOUT (obj,tid,uuid):
if CondWaitMap(obj).contains([tid,uuid]):
CondWaitMap(obj).remove([tid,uuid])
MutexWaitMap(obj).append (tid)
schedule()
if msg is NESTED_REPLY (tid,value):
tid . deliver (value)
tid . resume()

function receive(message):
if message is TIMEOUT(obj,tid,uuid)
Timer.cancel( TIMEOUT (obj,tid,uuid))
inQueue.append(message)

if idle == true:
idle := false
schedule()

On termination of thread tid:
schedule()

function invokeNested (request) of thread tid:
schedule()
request . invoke ();
tid .suspend()
return tid . getDelivered ()

// intercepted synchronisation functions
function lock(obj) called by thread tid:
[locktid,i] := LockedMap(obj)

if locktid == nil: LockedMap(obj) := [tid,]]
else if locktid == tid: LockedMap(obj) := [tid,i+1]
else :

MutexWaitMap(obj).append(tid)

schedule()

tid .suspend()

Figure 5.5: The ADETS-SAT algorithm
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function unlock(obj) called by thread tid:
[tid ’,i] := LockedMap(obj); assert tid’==tid
if i==1: LockedLockedMap.remove(obj)
else LockedMap(obj) := [tid,i—1]

function wait(obj, timeout) called by thread tid:
[tid,n] := LockedMap.remove(obj) // fully release lock
uuid := new unique ID
CondWaitMap(obj).append([tid, uuid])
schedule()
if timeout > 0:
Timer.setup(timeout, [obj, tid, uuid])
tid .suspend(); // until moved to LockedMap by schedule
LockedMap(obj) := [tid,n]

function notify(obj) called by thread tid:
if CondWaitMap(obj) # nil:
[tid ,uuid] := CondWaitMap(obj).removeFirst()
Timer.cancel([obj, tid, uuid])
MutexWaitMap(obj).append (tid)

function notifyAll(obj) called by thread tid:
for all elements [tid;, uuid;] in CondWaitMap(obj)
Timer.cancel(obj,tid;,uuid;)
MutexWaitMap(obj).append(tid;)
CondWaitMap.delete(obj)

function Timer.setup (timeout, message):
Schedule sending message via abcast after timeout ms

function Timer.cancel(message):
Cancel sending message if not yet sent

and the thread can continue. Otherwise, the lock is unavailable and the thread
is suspended.

Unlocking a mutex causes only a local modification to LockedMap (lines
49-52); other threads that might have been waiting for the released lock are not
resumed immediately. They are resumed later in schedule (), which is invoked
as soon as the current thread terminates or suspends.

An intercepted wait () operation first releases the corresponding mutex, and
then suspends. After the suspended thread is resumed, it has to re-acquire the
mutex lock with the same reentrance count as the mutex had before the wait ()
operation. A waiting thread can be resumed by a notify() or notifyAll()
operation, or by a timeout.

If the replicated application issues a time-bounded wait () operation, the
emission of a Timeout message is scheduled (line 60). The message is sent to all
group members via totally ordered group communication. A call to schedule(),
which processes Timeout messages in the same way as client requests or nested
invocation replies, is only made if the active thread suspends or terminates. If a
notify() or notifyAll() operation is called before a Timeout message arrives,

Unlock Operations

Operations on Condition
Variables

Handling Timeouts
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the unique ID of the wait () operation is removed from CondWaitMap (lines 66
and 74), and the Timeout message has no effect (line 15). The first reception of
a Timeout message with a specific ID cancels the emission of a Timeout message
with the same ID, if such a message has not yet been sent. If the timeout expires
locally in multiple nodes, no guarantee is made that no duplicated messages are
sent. At reception time, the unique ID makes sure that only the first Timeout
message has an effect, while duplicated messages with the same ID are ignored.

5.4.4 \Verification of the ADETS-SAT Algorithm

The following Lemma 5.1 shows that in a suspended state, the schedule()
method uses a deterministic strategy to select a new thread and to modify
the internal scheduling data structures. This lemma is subsequently used to
show that the scheduler, together with piecewise determinism of the replica
implementation, maintains replica consistency.

Lemma 5.1 Given a state S of the synchronisation data structures and a totally
ordered sequence M of incoming messages at the head of the message queue, the
thread that is resumed next and the modifications to the synchronisation data
structures are deterministically defined by S and M.

Verification of Lemma 5.1:

(1) The schedule() function is called only if (a) no thread is active and
a new message arrives, (b) the active thread terminates, (c) the active
thread issues a nested invocation, (d) the active threads suspends in a
lock() operation because the requested lock is held by another thread,
and (e) the active thread suspends in a wait () operation on a condition
variable. In all these cases, no other thread is active concurrently with
schedule().

(2) The first step that schedule() takes is to check whether there is any
object that has an entry in MutexWaitMap, but no corresponding entry in
LockedMap. An entry can appear in MutexWaitMap for two reasons. Either
a thread invoked lock() on an unavailable mutex and put itself into the
MutexWaitMap before suspending. Or a thread invoked wait () and a later
notify(), notifyAll(), or Timeout message caused the waiting thread
to continue, forcing it to re-acquire the previously held mutex lock. Due to
(1), no such action can occur concurrently with the schedule () execution.
Given that finding an object in MutexWaitMap that is not in LockedMap
is implemented with a deterministic strategy, the selection of the thread
to resume and the corresponding modification of the synchronisation data
structures are deterministic.

(3) If no thread is resumed in (2), the next message from the incoming message
queue is processed. The message queue can contain client requests, nested
invocation replies, and timeout messages. If the message was a nested
invocation reply or a request that is to be handled by an existing thread,
this thread is resumed. If the message is a new client requests, a new
thread is created and started. If it is a Timeout message, it causes a
deterministic modification of the synchronisation data structures and a
recursive call to schedule.
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(4) If no message is present in the incoming message queue, schedule() ter-
minates and is called again as soon as the first message arrives. Because
of this, the effect is the same as if the message had been available already
in the first schedule() execution.

Lemma 5.2 Given a consistent initial state, an identical sequence of messages
arriving at all replicas, and piecewise deterministic behaviour of the replica
implementations, the ADETS-SAT algorithm will maintain consistency of all
replicas.

Verification of Lemma 5.2:

(1) By assumption, the initial state of all replicas is identical, and no thread
is running. The first arriving message will trigger a schedule() call.

(2) Again by assumption, a single active thread will have piecewise determin-
istic behaviour. That is, it will execute the same sequence of operations
(state modifications, lock requests and releases, condition variable notifi-
cation, and nested invocation) in all replicas until it finally terminates or
suspends (in a lock operation, in a wait operation, in a nested invocation,
or when waiting for a new request).

(3) After the active thread terminates or suspends, a call to schedule() is
triggered. By Lemma 5.1, this call will make deterministic modifications
to the synchronisation data structures and will make a consistent selection
of the next active thread.

In other words, the execution of a replica implementation with an ADETS-
SAT instance is an execution sequence of (a) scheduling operations implemented
by the schedule() function of ADETS-SAT and (b) piecewise deterministic
execution intervals. The determinism of (a) is guaranteed by the ADETS-SAT
algorithm. The determinism of (b) has to be provided by the replica developer.

5.5 ADETS-MAT: A Multiple Active Thread Algo-
rithm

Unlike the previously discussed ADETS-SAT variant, the ADETS-MAT algo-
rithm [RHD"06] belongs to the MULTIPLEACTIVETHREADS (MAT) category.
Multiple threads can run concurrently within a single object. The discussion
of ADETS-MAT starts with an informal description of the data structures and
the functionality of the ADETS-MAT algorithm. A proof of correctness will be
given in Section 5.5.4.

The algorithm again requires that the implementation of a replicated object
protect the access to common state variables by mutex locks, and that it be
piecewise deterministic as defined in Section 5.2.3. The algorithm supports Java-
style condition variables (i.e., each mutex has an associated condition variable,
on which the application calls wait (), notify() and notifyAll() operations).
Threads that are blocked in a wait() operation can also be unblocked by a
timeout.

No Incoming Message
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Behaviour
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ActivePrimary: ThreadID

LockedMap: Map<Object,[ThreadID,count]>
MutexWaitMap: Map<Object, Queue<ThreadID>>
CondWaitMap: Map<Object, Queue<|[ThreadID,UUID]>>
PrimCandidates: Queue< [ThreadID, Queue<Action>]>
CurrentActionList: Map<ThreadID, reference to Queue<Action>>

Figure 5.6: Basic data structures of the ADETS-MAT algorithm

5.5.1 Data Structures

Figure 5.6 shows the essential data structures used by the ADETS-MAT algo-
rithm. Identical to the ADETS-SAT algorithm, the term Object is used to refer
both to a mutex and to a condition variable.

ActivePrimary specifies the currently active primary thread. This thread
locally defines the order of mutex lock acquisitions. An arbitrary number of
additional secondary threads can run in parallel, but these threads may not
influence the lock acquisition order. The transfer of the role of being the active
primary from one thread to another is defined by deterministic rules. Only the
active primary thread can acquire or release locks (i.e., modify the entries in
LockedMap) or adjust the list of threads waiting for a lock or condition variable
(i.e., modify the entries in MutexWaitMap and CondWaitMap).

LockedMap is used to store the information about which mutex is locked by
which thread. Reentrant locks are supported by a counter, which is incremented
on each lock operation requested by a single thread, and decremented on each
unlock operation of the same thread. If the counter reaches the value 0, the lock
is no longer held by the thread, and the mutex entry is removed from the map.
Any mutex not in LockedMap is free. Only the active primary thread may add
a new entry to LockedMap or remove an entry from it.

MutexWaitMap stores a list of threads that are waiting for a mutex. Only the
active primary thread will be added to this map; after the addition, the primary
will suspend and a new primary will be selected consistently in all replicas.

CondWaitMap stores all threads that are waiting on a condition variable.
Identical to MutexWaitMap, threads will be added only while they are active
primary. In addition to the thread ID, a unique ID is stored to identify the
wait () operation. The unique ID is used to correctly assign timeout messages
to wait () operations.

PrimCandidates is an ordered queue with an entry for each received mes-
sage. An entry contains a reference to a secondary thread T that handles the
message in parallel to the primary thread, and a list of deferred actions (e.g.,
unlock() and notify() operations) that Ty has requested, but which may only
be executed after Ty becomes the primary thread. This list is called the action
list of the thread. If T, performs an action that is not allowed for secondary
threads (lock() and wait()), the thread suspends until it becomes the active
primary.

Multiple entries in PrimCandidates can reference the same thread. This
situation arises if a thread issues multiple nested invocations while executing as
a secondary thread. Each invocation reply creates a new PrimCandidates entry.
Each entry references a separate action list to record the deferred actions that
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Figure 5.7: Transitions between thread states in the ADETS-MAT algorithm

the thread executed between two nested invocations. The CurrentActionList
maps thread IDs to the deferred action list in PrimCandidates that corresponds
to the current execution (i.e., the action list in the PrimCandidates entry by
which the thread was last resumed).

5.56.2 Overview of the ADETS-MAT Algorithm

Figure 5.7 illustrates the possible states of a thread and the possible transi-
tions between states. A thread belongs to the set of either the primary or
the secondary threads. The primary set consists of a single active thread
(stored in ActivePrimary) and a set of suspended threads that are waiting for
a lock or for a condition variable (stored in MutexWaitMap and CondWaitMap,
respectively). Secondary threads that are waiting for a nested invocation reply
are non-primary candidates (NPC); all other secondary threads are references
from an entry in PrimCandidates and are called primary candidates (PC). If
a primary candidate issues a nested invocation, it becomes NPC, but is still
referenced by a PrimCandidates entry.

The order in the PrimCandidates queue is defined by the total order of
messages received from group communication. Each entry in the queue has a
reference to a secondary thread. When the queue head is used to select the next
active primary thread, the referenced thread may still be running, it may be
suspended because of an operation that only the active primary may perform,
it may be suspended due to a nested invocation, or it may have terminated. If
the referenced thread has terminated or has issued a nested invocation, it is not
selected as new active primary; instead, the queue entry is used only to process
the corresponding action list of deferred actions that the thread executed before
terminating or issuing the nested invocation. The selection of the next active
primary then proceeds with the next PrimCandidates entry.

Every arriving message creates an entry in the PrimCandidates queue with
a reference to a corresponding thread. In case of a client request, this reference
points to the new thread that is created and started to handle the request. If the
message is a nested invocation reply, the reference points to the thread waiting
for this reply, and this thread is resumed. In case of a Timeout message, the
thread reference points to the thread that executed the corresponding wait ()
operation, and a timeout entry with the UUID from the message is stored in
the action list for processing as soon as the thread becomes primary.

Thread Classes

PrimCandidates

Message Arrival
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A schedule() operation is responsible for activating a new primary thread.
It is called if the current active primary terminates or suspends, or if an entry
is added to an empty PrimCandidates queue. The method first tries to select
a runnable thread from MutexWaitMap. If no such thread exists, the queue
head of PrimCandidates is examined. If the queue is empty, schedule()
terminates. Otherwise, the head element is removed from PrimCandidates and
the referenced thread becomes active primary.

If the primary thread issues a nested invocation, it cannot resume before
the corresponding reply arrives. Because of this, it is removed from the set
of primary threads and becomes an NPC member. As soon as the nested
invocation reply arrives, the reply message with a reference to the thread is
added to PrimCandidates; the thread becomes a PC and resumes execution as
a secondary thread.

5.56.3 Specification of the ADETS-MAT Algorithm

Figure 5.8 shows a specification of the ADETS-MAT algorithm in pseudocode.
The main component of the scheduler is the schedule() function implemented
in lines 1-26. The function is called (a) when no active primary exists and a new
message arrives (line 30; appendPrimCandidates is called from the receive()
function), (b) when the current primary thread terminates (line 44), and (c)
when it suspends (it issues a nested invocation, line 48; it calls lock() on a
mutex locked by another thread, line 79); or it calls wait on a condition variable,
line 89.

The schedule () implementation first examines MutexWaitMap for resumable
threads that are blocked on a synchronisation operation (lines 2-7). A thread
can be resumed if it has requested a mutex lock that is now available (i.e., has no
entry in LockedMap). This also covers threads that issued a wait () operation: if
a thread in CondWaitMap is notified by another thread or a timeout, it is moved
from CondWaitMap to MutexWaitMap, as it has to re-acquire the lock prior to
continuation. If a runnable thread is found, it is resumed (line 7). To make a
deterministic selection in case of multiple available threads, MutexWaitMap has
to be an ordered map, sorted, for example, by the sequence of lock requests.

If no resumable thread is found, the PrimCandidates queue is examined. If
the queue is empty, no primary thread is selected, and schedule() terminates
(line 9); it is re-invoked as soon as a new message arrives. Otherwise, sched-
ule() picks the first element from PrimCandidates (line 10) and processes the
action list from the queue entry (i.e., it executes deferred actions, lines 11-22).
If the thread that corresponds to the queue element has been blocked due to a
wait () or lock() call while being secondary, it is resumed. If the thread is not
runnable (it has terminated or has issued a nested invocation), schedule() is
called again to repeat the selection of a new primary thread (line 26). Otherwise,
it becomes the new primary thread.

Lines 3341 show the processing of new messages from the group commu-
nication system. Three kinds of messages may arrive: client requests, Timeout
messages, and nested invocation replies. For client requests, a new thread
is created. For nested invocation replies, the thread waiting for the reply is
resumed. In both cases, an entry is added to PrimCandidates with a reference
to the thread and an empty action list. For Timeout messages, an entry with
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function schedule ():
find obj with MutexWaitMap(obj) # nil and LockedMap(obj) = nil
if obj exists:
tid := MutexWaitMap(obj).removeFirst()
LockedMap(obj) := [tid,1]
ActivePrimary := tid;
tid .resume(); return // resume suspended thread
if (PrimCandidates.isEmpty())
ActivePrimary := nil; return
[tid, alist ] := PrimCandidates.removeFirst()
foreach entry in alist :
case TIMEOUT (uuid):
if [tid, uuid] € CondWaitMap(obj):
CondWaitMap(obj).remove([tid, uuid])
MutexWaitMap(obj).append (tid)
tid := nil
case TERMINATE, WAIT_NESTED:
tid := nil
case WAIT, LOCK:
// thread is resumed below as ActivePrimary
case UNLOCK(obj)/NOTIFY{|ALL}(obj):
call primary{Unlock|Notify|NotifyAll}(obj, tid)
if (tid!=nil):
ActivePrimary := tid
if (tid is suspended) tid.resume()
else schedule()

function appendPrimCandidate ([tid, alist ]):
PrimCandidates.append([tid,alist])
if (ActivePrimary==nil) schedule()
CurActionList(tid) := pointer to alist

function receive(message):

if message is new client request:
tid := new thread(message)
appendPrimCandidate([tid, ()]); tid.run()

if message is TIMEOUT (obj,tid,uuid)
Timer.cancel(TIMEOUT (obj,tid,uuid))
appendPrimCandidate([tid, (TIMEOUT (uuid))])

if message is nested invocation reply for thread tid:
appendPrimCandidate([tid, ()]); tid. deliver (message) // resume thread

On termination of thread tid:
if tid == ActivePrimary: schedule()
else CurActionList(tid).append(TERMINATE)

function invokeNested(request) by thread tid:
if ActivePrimary == tid: schedule()
if ActivePrimary # tid: CurActionList(tid).append(WAIT_NESTED)
request . invoke()
tid .suspend() // until reply is received
return tid.getDelivered ()

Figure 5.8: The ADETS-MAT algorithm
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function primaryUnlock(obj, tid):

[tid Y, k] := LockedMap(obj); assert tid‘ == tid
if k>1: LockedMap(obj) := [tid, k—1]
else: LockedMap.remove(obj)

function primaryNotify(obj):
[tid, uuid] := CondWaitMap(obj).removeFirst()
Timer.cancel( TIMEOUT (obj,tid,uuid))
MutexWaitMap(obj).append(tid)

function primaryNotify All(obj):
for all elements [tid,, uuid;] in CondWaitMap(obj):
Timer.cancel( TIMEOUT (obj,tid;,uuid;))
MutexWaitMap(obj).append(tid;)
CondWaitMap.remove(obj)

function lock(obj) called by thread tid:

if not primary:
CurActionList(tid).append (LOCK (obj))
tid .suspend() //until primary

if LockedMap(obj) == [tid, n]:  // reentrant lock
LockedMap(obj) := [tid, n+1]; return

else if LockedMap(obj) == nil:
LockedMap(obj) := [tid, 1] // grant lock

else if LockedMap(obj) == [tid‘, n] and tid#£tid‘:
MutexWaitMap(obj).append (tid, 1)
schedule (); tid.suspend()

function wait(obj, timeout) called by thread tid:
[locktid, count] := LockedMap(obj); assert locktid == tid
if not primary:
CurActionList(tid).append (WAIT (obj,timeout))
tid .suspend() // until primary
uuid := new unique ID
LockedMap.remove(obj)  // fully release lock
CondWaitMap(obj).append([tid, uuid])
schedule()
if timeout > 0: Timer.setup(timeout, TIMEOUT (obj,tid,uuid))
tid .suspend() // until resumed by schedule
LockedMap(obj) := [tid, count] // restore reentrance count

function unlock(obj) called by thread tid:
if (primary) primaryUnlock(obj, tid)
else CurActionList(tid).append(UNLOCK (obj))

function notify[All](obj) called by thread tid:
if (primary) primaryNotify[All](obj)
else CurActionList(tid).append(NOTIFY[_ALL](obj))

function Timer.setup (timeout, message):

Schedule sending message via abcast after timeout ms
function Timer.cancel(message):

Cancel sending message if not yet sent




5.5. ADETS-MAT: A MULTIPLE ACTIVE THREAD ALGORITHM 85

a reference to the thread to resume and an action list containing the Timeout
messages is added to PrimCandidates.

The handling of intercepted synchronisation operations is shown in lines
69-100. For lock() operations, a thread that is not primary has to suspend
until it becomes primary (the suspension is recorded in the action list of the
PrimCandidates entry that will make the thread primary). As soon as the
current thread is primary, it tries to acquire the lock. If 1ock() is called for an
already acquired mutex, only the reentrance count is increased (line 74). If the
mutex is free, the lock is granted by putting the thread into LockedMap (line
76). If it is locked by another thread, the primary thread creates an entry in
MutexWaitMap, calls schedule () and suspends (lines 77-79).

A wait () operation suspends any secondary thread until it becomes primary
(lines 83-85). Next, the thread is put into CondWaitMap, calls schedule (), and
suspends. If a timeout for wait () is given, the emission of a Timeout message
is scheduled after the given time (lines 81-91).

The unlock(), notify(), and notifyAll1() methods do not suspend a
secondary thread. Instead, these operations are simply recorded in the action
list of the corresponding PrimCandidates queue, and later executed as soon
as the action list is processed by schedule(). If a primary thread calls these
methods, they are executed immediately. Unlock operations decrease the lock
counter, and, if the counter reaches zero, remove the thread from LockedMap
(lines 53-56). The notify operations (notify () and notifyAll()) move the
first element or all elements, respectively, from CondWaitMap to MutexWaitMap,
as the notified threads have to re-acquire the lock prior to continuation (lines
58-67).

If the primary thread issues a nested invocation, it calls schedule() to
select a new primary thread. If a secondary thread issues a nested invocation,
this schedule() call is delayed until it becomes primary. For this purpose, an
action list entry is created. If schedule() selects the thread as new primary, it
processes the action list and re-calls schedule (), as the current thread, which
waits for a nested invocation reply, is not available as primary thread. This
means that a thread that waits for a nested invocation is never ActivePrimary,
and it is neither in MutexWaitMap nor in CondWaitMap. As long as it is waiting
for a nested invocation reply, it is an NPC. The arrival of the reply creates
a PrimCandidates member with a reference to the thread, and makes the
corresponding thread a primary candidate (PC).

When the method finally terminates, this fact is noted in the action list of
the PrimCandidates queue entry of the thread (line 45).

5.5.4 Verification of the ADETS-MAT Algorithm

For verifying the correctness of the ADETS-MAT algorithm, we assume that
all replicas have an identical initial state, no thread is initially active within the
replicas and all synchronisation data structures are initialised with an empty
state; the sequence of incoming messages is identical in all replicas, and the
replica behaviour is piecewise deterministic.

The piecewise determinism of a replica implementation guarantees that, for
an execution interval e; of thread T (see Definition 5.2 in Section 5.2.3), the
local state L7 and the mutex-protected part of the shared state Sr; at the
start of e; uniquely defined the local and shared state at the end of e;. While
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the local state only depends on message receptions (client request and nested-
invocation replies, which are both consistently delivered to all replicas by total-
order multicast) and on previous deterministic thread behaviour, the shared
state is also influenced by the activity of other threads. The key problem in
verifying ADETS-MAT thus is to show that these activities of other threads
take place in a consistent order, which implies that ADETS-MAT creates a
deterministic schedule for mutexes.

The following lemma first shows that each thread-execution interval has
a deterministic effect on the scheduling data structures. This is specifically
important if a thread-execution interval starts while a thread is not a primary;
the executing thread can become primary at a nondeterministic point of time,
either at any time during the thread-execution interval, or after the thread has
suspend.

Lemma 5.3 (Deterministic Thread-Execution Interval) Given a consis-
tent local and shared state at the start of the execution interval e;, the execution
of e; has a deterministic effect on the internal data structures of the scheduling
algorithm.

Verification of Lemma 5.3:

(1) The piecewise determinism assumption guarantees that the behaviour of
the replica implementation is deterministic during e;.

(2) If e; starts by obtaining a mutex lock or by resuming from a wait oper-
ation, e; will fully be executed by the primary thread. This means that
all intercepted operations will call the same ADETS-MAT functions in all
replicas, which will make deterministic modifications to the scheduler data
structures.

(3) Ife; is started by a client request or a nested-invocation reply, the scheduler
lets a secondary thread execute the corresponding request, and it creates
a PrimCandidates entry. This entry can be processed by the scheduler at
an arbitrary point in time, and thus the secondary thread can become the
primary thread. The transition from secondary to primary thread is not
coordinated between the replicas. As a consequence, some replicas can
execute an intercepted operation as secondary, while others will execute
the same intercepted operation as primary. It needs to be shown that both
variants have the same final effect.

(3.1) This claim is obviously true for wait and lock, as a secondary thread
issuing these operations simply blocks until it becomes primary.

(3.2) For unlock, notify, and notifyAll, a secondary thread records the
operations in the action list and then, after becoming active primary,
executes the same steps as it would have made had it already been
active primary.

(3.3) On nested invocations and on thread termination, the active primary
thread calls schedule, while the secondary instead adds a NESTED
entry to the action list. After the secondary becomes primary, the
NESTED entry causes the invocation of schedule, resulting again
in a consistent behaviour.
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In the following, we divide the progress within a replica into rounds R;. Each
round starts with the removal of an entry from PrimCandidates in schedule
(line 10) and ends with the next invocation of removeFirst in the same line.
After initialisation, schedule is called when the first element is added to Prim-
Candidates. MutexWaitMap is initially empty (line 2), and the invocation of
removeFirst (line 10) returns the first element from PrimCandidates, starting
the first round R;. Subsequent rounds are numbered consecutively. A single
round can consist of multiple execution intervals.

The following lemma shows that during each round, the ADETS-MAT algo-
rithm behaves deterministically.

Lemma 5.4 (Consistent ADETS-MAT Behaviour) During round R;, the
ADETS-MAT algorithm will make deterministic selections of the active primary
thread and will make deterministic modifications to the scheduler data structures,
giwen deterministic behaviour in all preceding rounds Ry, k < i.

Verification of Lemma 5.4:

(1) Initially, the head entry m from PrimCandidates is removed. By assump-
tion, the sequence of received messages (and, consequently, of PrimCan-
didates entries) is identical in all replicas.

(2) After removing m from PrimCandidates, the schedule function first pro-
cesses the action list of m. If the action list contains a TIMEOUT message,
it does not contain any other entries. The effect of such an entry m is
to notify the mutex by deterministically moving it from CondWaitMap to
MutexWaitMap, if the mutex is still waiting. After that, schedule is called.

(3) Otherwise, the entry m references a real thread and its action list can
contain an arbitrary sequence (zero or more elements) of UNLOCK and
NOTIFY/NOTIFYALL entries, optionally followed by a TERMINATE,
WAIT, LOCK, or NESTED entry. The referenced thread started with
a shared state that only depends on previous rounds, which had a de-
terministic effect by assumption. By Lemma 5.3, the thread will cause
a deterministic scheduler behaviour, independent of the time within its
current execution interval at which it becomes active primary. At the end
of the execution interval, schedule is called.

(4) Subsequently, schedule iterates over the entries in MutexWaitMap, select-
ing a new active thread or, if no suitable thread is found, terminating the
round. The selection of the new active thread is deterministically defined
by the content of MutexWaitMap and LockedMap. By Lemma 5.3, the
interactions of this thread with the ADETS-MAT algorithm will result in
consistent modifications to the scheduling data structures in all replicas
until the thread suspends or terminates, where it calls schedule to re-start
the procedure of (4).

(5) After the round has terminated, it directly follows from steps 1-4 that the
same threads have been selected as active primary thread and that the

scheduling data structures at the end of the round are deterministically
defined.
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Rounds

Lemma 5.4: Consistent
ADETS-MAT Behaviour

Identical Incoming Messages

TIMEOUT Messages

Other Messages

Activation of Suspended
Primary

Start of Next Round



Algorithm

Failover Strategy

Extending the Synchronisation
Mechanisms

Supporting Condition Variables

88 CHAPTER 5. DETERMINISTIC MULTITHREADING

Given a consistent initial state, Lemma 5.4 implies by induction on ¢ that
the scheduler activates the same threads and makes consistent modifications to
its data structures for all rounds.

5.6 ADETS-LSA: A Leader-Follower Algorithm

The loose synchronisation algorithm (LSA) of Basile et al. [BWKI02] uses a
leader-follower approach to achieve deterministic multithreaded execution in
replicas. The algorithm selects a single replica as primary node. This node
records the order in which locks are granted to threads as a sequence of (lock,
thread) pairs, and periodically broadcasts this data structure to all other repli-
cas. The original paper evaluates the algorithm with a thread pool containing
ten threads and suggests—on the basis of experimental evaluation—that in this
setting it is best to send out a message after every ten lock operations. All other
nodes suspend threads that request a lock until the corresponding broadcast is
received.

While the basic operation of LSA is very simple, it requires a strategy to han-
dle the failure of the primary node. Basile et al. define such a fail-over algorithm
for crash failures as well as for Byzantine failures. Failure handling requires addi-
tional communication between replicas to maintain consistent scheduling. This
is a significant difference to other algorithms that do not need any additional
computation or communication to handle node failures. An exact description
of the failover strategies can be found in the original publication [BWKI02] and
is not repeated here.

The FIflex infrastructure provides the ADETS-LSA algorithm, which ex-
tends Basile’s basic LSA algorithm. Instead of the simple synchronisation model
of LSA, which uses only binary mutexes, ADETS-LSA specifies extensions for
fully supporting the native Java synchronisation model. Reentrant locks are
implemented in a straightforward way by calling the original lock and unlock
operations only for the first lock operation and the last unlock operation of
a single thread. Nested invocations do not require any dedicated support in
the scheduler implementation, as they do not influence the order of mutex
assignments. Support for condition variables and time bounds on blocking wait
operations deserves further discussion.

The support for condition variables must implement wait() and no-
tify () /notifyAll() operations. A wait() operation simply needs to suspend
the current thread, which can be done locally at all replicas. What needs to
be made consistent is the relative order of wait() and notify()/notifyAll()
operations on the same condition variable. For example, a thread T7 might call
condvar.wait (), while a thread T> concurrently calls condvar.notify(). If
the call of thread T7 happens first, 77 will be resumed by the call of T5. If, on the
other hand, the notification happens first, it will have no effect on T}, and T} will
remain blocked. A deterministic order of such concurrent operations is easily
obtained in all replicas by the LSA algorithm. According to the Java language
specification, all operations on a condition variable must be protected by the
acquisition of the corresponding mutex. The basic LSA algorithm guarantees a
deterministic order of these mutex acquisitions. Hence, the order of operations
on the condition variable will be deterministic as well.
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Figure 5.9: Handling timeouts in the ADETS-LSA algorithm

Time bounds on wait operations represent a source of nondeterminism. For Nondeterminism Caused by
example, a thread T7 might be waiting on a condition variable, having specified a Time Bounds
time bound. A second thread, T5, might call anotify () operation. The timeout
of T7 and the notification of T5 are concurrent; the relative order in which
the timeout and the notification happen can result in two possible execution
sequences according: either, T5’s notification happens first, which causes T3
to be resumed by the notification and cancels the timeout; or, the timeout
happens first, with the effect that 77 is resumed by the timeout and, after that,

T5’s notification may potentially resume another thread.

Handling such timeouts deterministically requires a non-trivial extension to No Nondeterminism in
LSA. In the solution provided by the ADETS-LSA algorithm, a local timeout ADETS-LSA
of a wait operation does not resume the waiting thread directly. Instead, it
creates a new thread, which is also subject to the ADETS-LSA scheduling. The
thread tries to resume the waiting thread by locking the corresponding mutex
and signalling the wait () operation to resume.

A sample execution of this extension is shown in Figure 5.9. Thread T} calls Sample Execution

wait () with a timeout of 20ms. This call causes the LSA scheduler to create a
timeout thread (TO-Thread), which sleeps for 20ms and then tries to resume the
wait. Concurrently, thread T5 tries to call notify (). Both 7% and TO-Thread
need to lock the same mutex. On the leader node, T is faster, which causes the
notify () operation of 75 to resume 77, and the timeout thread has no effect.
On the follower node, the timeout thread requests the lock first. The LSA
scheduler, however, records the lock order at the leader node and broadcasts
this information to the follower nodes (sendMT). The follower nodes grant locks
in the order defined by this information (received in recvMT), resulting in a
deterministic behaviour.

The basic scheduling algorithm guarantees that, due to the lock, the sig- Determinism
nalling is done in a consistent order on all replicas. It is thus deterministic
whether the wait() is resumed by the timeout or by a different notification.

The signalling must be able to check this condition, and therefore the timeout
message must carry a unique identifier that specifies the wait () operation.
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Global IDs For Mutexes and The original LSA algorithm assumes that globally known IDs for mutexes
Threads and for threads exist. Basile et al. describe a method for dynamically adding
new mutexes and new threads by explicit notifications sent to the scheduler.
For thread creation, this is feasibly in practice: the middleware infrastructure
controls the creation of threads and thus can notify the scheduler. There is,
however, no explicit creation of mutexes. In Java, every object can be used as a
mutex, and there is no globally consistent ID for these objects. Therefore, the
ADETS-LSA implementation requires an additional modification to the LSA

algorithm.
Consistent Mutex IDs in In ADETS-LSA, the leader replica assigns new mutex IDs automatically on
ADETS-LSA the first lock operation on a not yet known mutex. Follower replicas instead

suspend a thread upon a lock operation with an unknown ID. On all replicas,
the lock operation can uniquely be identified by the thread ID, as the same
thread will lock the corresponding mutex on all replicas. The leader sends its
mutex ID with its periodic mutex table broadcast, which enables the follower
replicas to learn the new mutex ID.

5.7 ADETS-PDS: Preemptive Deterministic Schedul-
ing

Overview The preemptive deterministic scheduling algorithms of Basile et al. [BKI03],
PDS-1 and PDS-2, are a completely different approach to deterministic multi-
threading in replicated objects. These algorithms operate in sequential rounds.

PDS-1 In PDS-1, each thread can acquire at most one mutex per round. A thread is
suspended when it requests a mutex; as soon as all threads are suspended, a new
round is started; as the mutex requests of all threads are known at the beginning
of the round, the mutexes can be assigned deterministically to all threads. If
multiple threads request the same lock, they get the lock according to increasing
thread IDs. For example, if two threads 717 and T have both requested a mutex
m, T1 may execute and T remains suspended. As soon as 17 unlocks m, 15
may execute concurrently with 7. If T suspends in the current round without
unlocking m, T remains suspended.

PDS-2 The PDS-2 variant improves concurrency by allowing threads to acquire
up to two locks per round. A round is divided into two phases. Initially, a
round starts execution in phase 1 in the same way as PDS-1, granting mutexes
according to requests made before the start of the round. If a thread requests
a new mutex during phase 1, it is not immediately suspended (as it would be
in PDS-1). Instead, this second mutex is granted under the condition that it
is available and all threads with lower thread ID have already acquired such a
phase-1 mutex. After the mutex acquisition, the thread enter phase 2, in which
a mutex requests suspend a thread as in PDS-1. A new round is started as soon
as all threads are suspended.

Evaluation In both PDS algorithms, the number of threads is constant during the exe-
cution of a round. New threads may be created or removed only at the start of
a new round. Even then, a deterministic rule for changing the set of threads is
necessary. The state of the incoming message queue cannot be used for deciding
an adjustment of the thread pool size, as the group communication system only
ensures a consistent order of message reception, but no consistent time (i.e., some
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Figure 5.10: Assigning requests to threads in the ADETS-PDS algorithm

replica might already have received a message m that other replicas have not
yet received). The PDS algorithms work best if all threads repeatedly execute
lock-compute-unlock steps, with each thread having approximately identical
computation times. It requires no communication for deterministically assigning
mutex locks to threads. The algorithm has two main disadvantages. First, as
long as one single thread fails to request a mutex lock, no new round can be
started. Second, the number of threads must be known deterministically at the
start of each round. Incoming requests have to be mapped to a fixed-size thread
pool.

The PDS algorithm does not allow an asynchronous creating of new threads
for each incoming client request. The original publication simply assumes that
sufficiently many requests arrive, so that all threads can continuously execute,
without specifying a strategy for assigning requests to threads. In a practical
middleware infrastructure, however, such a strategy needs to be implemented.

The ADETS-PDS algorithm uses a synchronised request assignment strat-
egy. A thread that has finished processing its last request locks the mutex of
the incoming message queue. This mutex lock is granted consistently in all
replicas, because this operation is also under the control of the PDS algorithm.
Consequently each request is assigned to the same thread in all replicas.

Figure 5.10 shows a sample execution with two replicas, using the PDS-2
algorithm. In the figure, the threads 77 and 75 are executing in the first phase
of a round and have just finished processing the preceding request. Thus, they
need to obtain a new request. For this purpose, both threads try to acquire the
mutex of the message queue. This lock is synchronised by ADETS-PDS, and
thus all replicas assign requests to threads identically.

If no new requests are available, the system cannot start a new round (as
the idling thread will not acquire a lock). The only way to solve this problem is
to create artificial requests in case that client requests do not arrive sufficiently
frequently.

Reentrant locks can be added to the basic PDS with the same approach as
previously suggested for the LSA algorithm. Only the first lock and last unlock
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operation of a thread on a mutex is passed to the PDS algorithm, and all
additional operations are handled by incrementing and decrementing a counter.

From a consistency point of view, condition variables can be supported
in the PDS algorithm without much effort. According to the Java language
specification [GJSB05], all operations on condition variables must be protected
by mutex locks, and thus the relative order of these operations is deterministic
on all replicas. A wait() operation is added to the PDS algorithms by sus-
pending the thread, in a way similar to a lock() operation, combined with an
implicit release of the mutex that corresponds to the condition variable. The
notify() operation must deterministically choose a thread to resume. Such
determinism is not guaranteed by the native Java notification mechanisms.
Therefore, ADETS-PDS implements its own queue of waiting threads, which
is modified deterministically by each wait() operation. After the notifying
thread releases the mutex associated with the condition variable, the waiting
thread can re-acquire that mutex and resume.

With a fixed-size thread pool, the use of condition variables can cause dead-
locks. If all available threads suspend in wait() operations, no more threads
are available for handling requests that could resume a waiting thread. To
avoid this problem, ADETS-PDS uses a strategy for an automated adjustment
of the thread-pool size. The original PDS algorithm supports changing the set
of threads at the start of a new round. In a deadlock situation, the conditions
for a the start of a new round (i.e., all threads are blocked) are met. Thus,
at the start of each round, the number of threads not blocked in a wait()
operation is compared to a minimum threshold. If the number falls below the
threshold, additional threads are added to the thread pool. On the other hand, if
there are more non-waiting threads than the threshold and there are insufficient
incoming requests (i.e., the request assignment strategy has to suspend a thread
temporarily due to the lack of requests), the number of non-waiting threads is
reduced to the minimum threshold.

ADETS-PDS includes support for wait () operations bounded by a timeout.
Such timeouts are potentially concurrent with explicit notifications, and thus
the algorithm has to make sure that any nondeterminism is avoided. We propose
the same concept that we also use for ADETS-SAT and ADETS-MAT. After
a timeout occurs, a timeout message is sent to all replicas via group commu-
nication. This message is handled by a normal request handling thread, which
notifies the waiting thread. As all notifications are synchronised by mutexes, a
deterministic order is guaranteed.

Nested invocations can be supported in various ways in PDS, but all of them
have weaknesses. Most simply, nested invocations can used without specific
support by the scheduler. In this case, the thread that waits for a nested
invocation blocks all other threads from starting a new round. Alternatively,
the scheduler can consider a thread that has issued a nested invocation to be
suspended. This enables all other threads to continue executing rounds, but
requires a deterministic strategy to resume the thread. For example, if the
reply message is processed within some round, the suspended thread can be
scheduled for being resumed in the next round.
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5.8 Read-Only Operations in the ADETS algo-
rithms

The FTflex architecture supports read-only operations that are executed by a
single replica only. Handling read-only operations needs support by the thread
scheduler.

Read-only operations can only be used for serious purposes if they have
access to the object state. Such access needs to be protected from concurrent
state modifications. This means that read-only methods have to be able to
request and release mutex locks. In the ADETS scheduler implementations,
read-only operations are not allowed to use condition variables.

Read-only requests are handled by separate threads that are not subject
to the usual ADETS scheduling. Instead, all mutex operations of a read-only
request are forwarded to a specific ADETS-RO instance that interacts with the
current scheduling module.

A read-only thread can acquire a lock if this lock is not held by a modifying
thread. The effect of a read-only lock is that the lock is still considered available
for internal decisions of the ADETS scheduler. This ensures that the ADETS
module makes the same scheduling decision on all nodes, independently on
whether they execute the read-only method. If the ADETS module assigns
a lock, held by a read-only thread, to a modifying thread, this thread is silently
suspended until the read-only thread releases the lock.

5.9 Evaluation

Read-Only Operations

Synchronisation Model

Strategy

Read-Only Locks

This section gives an evaluation of the multithreading support in the FTflex Overview

architecture. A set of benchmarks capture typical interaction patterns of dis-
tributed applications. Each benchmark is executed with a pure single-threaded
execution model and with all four multithreaded ADETS variants. An object is
replicated on three nodes; a constant number of nodes are used in all benchmark,
as this number only influences the cost of group communication, but not the be-
haviour of the scheduling algorithms themselves. Client requests are distributed
using the JGroups group communication system [Ban98|, as the AGC system
has not yet been fully integrated into FTflex at the time of measurement. The
choice of the group communication system, however, has no significant impact
on the relative performance of the scheduling modules, as long as the same group
communication system is used for the evaluation of all ADETS variants.

The measurements presented in this section have been made on a set of PCs
with a AMD Athlon 2.0 GHz CPU and 1 GB RAM. The PCs have been using
Linux kernel 2.6.17 and have been connected by a 100 MBit/s switched Ethernet
network. The current prototype of the Aspectix middleware was used on the
basis of Sun’s Java runtime environment version 1.5.0_03 and JGroups 2.2.9.1.

The benchmarks cover four different kinds of scenarios. The first evaluation
uses only local computations with lock-protected access to shared state. Next,
the scheduler behaviour is analysed in combination with nested invocations.
After that, the evaluation addresses the support for condition variables. Last, a
complex scenario is considered. A final discussion analyses the advantages and
disadvantages of all variants, and provides a basis for selecting an appropriate
scheduling strategy for a given application. As there is no single variant that

Evaluation Environment

Benchmark Scenarios
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Figure 5.11: Variants of the local computations benchmark

is clearly superior to all others, it is an important advantage that FTflex offers
configurability of the ADETS module. In the diagrams, the terms SAT, PDS,
LSA, and MAT are used for the ADETS-SAT, ADETS-PDS, ADETS-LSA, and
ADETS-MAT module, respectively.

5.9.1 Local Computations

The first group of benchmarks assumes that the behaviour of object methods
is limited to performing local computations and requesting and releasing mutex
locks. In such a scenario, the only problem of a single-threaded execution is the
lack of parallel execution, which primarily is a disadvantage on multi-CPU ma-
chines. In the benchmarks, a variable number of clients invoke object methods
that have one of the behaviours shown in Figure 5.11.

The pattern (a) does not access the shared object state and thus does not
need any mutex access. The pattern (b) first computes and then locks a mutex,
updates the object state, and unlocks the mutex again. This is a typical pattern
for applications that first perform computations on the request arguments such
as verifying digital signatures and preprocessing the client data, and then use
this data to update the object state, using a mutex lock to synchronise the
update. Pattern (c) is typical for applications that require simultaneous access
to client arguments and object state for performing some calculations. The
whole request execution is protected by a mutex lock. Pattern (d) can be found
in practice mainly for methods that read the shared state and then perform
computations (e.g., transformations of state data) to produce the return value
for the client.

For the following measurements, it is assumed that the local computations
take 100 ms. The availability of multiple CPUs is approximated on the single-
CPU hardware used for the benchmarks by suspending the request-handler
thread for the duration of the computation time instead of performing real
computations. It is assumed that the number of CPUs exceeds or equals the
number of concurrently computing threads. Furthermore, it is assumed that the
methods of the replicated object use fine-grained locking. If all methods used
the same mutex lock, this would result in a sequential serialisation. Instead,
the benchmarks assume that 10 different mutexes are available, with each client
invocation using a randomly selected mutex. The state access itself is assumed
to take a negligible amount of time.

Figure 5.12 shows the result of the benchmarks executed with the remote
object replicated on three nodes and accessed by a variable number of clients.

In pattern (a), SAT executes all requests sequentially, while all other variants
allow a fully concurrent execution. MAT and LSA perform best, as they can
execute all requests immediately in the absence of any synchronisation. PDS
shows a small but negligible overhead, because it requires internal synchronisa-
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Figure 5.12: Measurements with local computations and mutex locks
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tion for assigning requests to threads (i.e., mutex locks for coordinating access
to the incoming message queue, see Section 5.7).

Pattern (b) results in a similar behaviour. While SAT processes all requests
sequentially, all other variants enable a concurrent execution of the computa-
tions. MAT is the superior variant, as LSA requires communication for the
mutex locks, while PDS uses additional mutex locks for assigning requests to
threads.

Pattern (c) produces different results. As all requests start with a lock
operation and do not define internal scheduling points, the MAT algorithm
delays all requests until they become primary. As a result, it serialises all
requests, which leads to the same poor performance as the SAT algorithm.
LSA and PDS both enable concurrency and show similar behaviour. With an
increasing number of clients, the probability that two requests require the same
mutex increases. Such a collision causes a sequential execution of both requests
within the same internal round and thus delays the start of a new round of the
PDS algorithm; thus, with many clients, the LSA algorithm is superior.

Pattern (d) is similar to (c¢); the only difference is that mutex locks are
released before the computation. The PDS algorithm benefits from this be-
haviour, as a collision between two request delays a new round only for the
short duration of the state access, and not for the duration of the computation.
As a result, PDS is the most efficient algorithm for this pattern, while LSA is
slightly slower due to the communication overhead, and both SAT and MAT
achieve no concurrent execution.

The different benchmark patterns demonstrate that for each algorithm, there
are situation in which it performs well, and others in which it does not. Most
important, the MAT algorithm is the most efficient one in the situations (a) and
(b), while it fails to provide any advantage compared to SAT in the situations (c)
and (d). The latter two situations represent worst-case scenarios for MAT. The
poor performance of MAT could be alleviated by the introduction of yield()
operations, which enables a deterministic selection of a new primary thread
without reaching an implicit scheduling point. The implemented prototype does
not yet provide such an extension.

5.9.2 Nested Invocations

The second set of benchmarks adds nested invocations to the patterns. As
explained in Section 3.2, nested invocations can result in deadlocks and reduce
performance by causing idle time in a single-threaded execution model. Hence,
application patterns with nested invocations are an important scenario even on
single-CPU machines.

In the first scenario, two replica groups A and B are created with each
consisting of 3 replicas. A varying number of clients call a method at group
A, which in turn calls a method at group B. Internally, both requests and
the reply from group B to group A are delivered via group communication.
This first experiment only uses nested invocation, but no mutex locks or local
computations.

This experiment compares strictly sequential execution with the performance
of the ADETS-SAT algorithm. No other algorithms have been evaluated in this
benchmark. As there are not lock operations, ADETS-MAT and ADETS-LSA
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would result in a performance similar to ADETS-SAT. On the other hand,
ADETS-PDS would require synchronisation for assigning requests to its internal
thread pool, adding some overhead.
Figure 5.13 shows the average invocation time measured by the clients, using Results of Simple Benchmark
(a) a strictly sequential execution and (b) the ADETS-SAT algorithm. The solid
lines (diamond and triangle symbols) refer to a measurement in which the nested
invocation returns immediately. Even in this situation, multithreading with
ADETS-SAT is increasingly better with a rising number of clients. In a second
measurement (dashed lines with circles and squares), the method called at B
suspends for 2 ms before it returns. In this case, the benefit from our multithread
approach (which allows accepting new requests at A while the invocation to B
is in progress) is even more evident.
In a second scenario, a set of more complex benchmarks offer a comparison Complex Variants
of all ADETS scheduling algorithms. In each benchmark, the replicas execute
the following operations:

e nested invocation (duration 100...150ms, denoted as IN)
e local computations (duration 75...125ms, denoted as C)
e synchronised state updates (lock und unlock operation, denoted as S)

The duration of the nested invocations and the local computations was varied
over the given interval with uniform distribution.

The three elements can be combined in six permutations (NCS, NSC, CNS, Measurements
CSN, SNC, SCN). Figure 5.14 shows the results of the benchmarks with above
parameters, each run with 10 clients.

The ADETS-SAT algorithm performs better than the single-threaded exe- ADETS-SAT
cution, because the idle time of a nested invocation is utilised. ADETS-SAT
cannot perform local computations in parallel though. Thus, it performs worse
than the other multithreading algorithms.
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Figure 5.14: Measurements with nested invocations, local computations and
mutex locks

The performance of the ADETS-MAT algorithm heavily depends on the
interaction patterns. In some situations (NCS, CSN), the algorithm performs
best of all. In others (NSC, SCN) it offers no significant advantage compared
to the SAT algorithm. The problematic pattern is a state update (S) followed
by a computation (C).

The ADETS-PDS performs well in all interaction patterns. The interac-
tion patters do not include the situation that a lock is held during a local
computation; as shown in the previous set, this would reduce the efficiency of
ADETS-PDS.

ADETS-LSA also performs well in all situations. There is again a slight
disadvantage compared to the best algorithm in each benchmark, which can be
explained by the communication overhead. This would be worse with increasing
network delays.

5.9.3 Condition Variables

Condition variables are an important mechanism that enables a request to wait
for another request. Two different sample applications, an unbounded buffer
and a bounded buffer, examine the performance of the scheduling algorithms in
combination with condition variables.

A replicated object that implemented the unbounded buffer provides two
methods, consume () and produce(). The consume () method returns an avail-
able datum, or blocks on a condition variable if no datum is available. The pro-
duce () method makes a datum available, and notifies another request-handling
thread that waits on the condition variable, if such a thread exists. Without
support for condition variables, the consume () method needs to be implemented
differently; to evaluate a sequential execution (which does not permit the use of
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Figure 5.15: Measurements with condition variables

condition variables), an alternative implementation of consume () with periodic
polling is used.

Figure 5.15(a) shows the result of this experiment, in which a single producer Experimental Results for

client and 1-10 consumer clients have been used. With an increasing number Unbounded Buffer
of consumers, the single-threaded execution shows an increasing disadvantage.
This behaviour is to be expected due to the periodic polling: the number of
unsuccessful iterations of consume () calls increases with an increasing number
of consumers competing for the producer. The other strategies, however, scale
linearly because a thread is only notified if a datum in the buffer exists. The
ADETS-SAT performs minimally better than ADETS-MAT and ADETS-PDS.
The ADETS-LSA, however, has a notable overhead due to the leader-follower
communication.

The second benchmark for evaluating the scheduler behaviour in combination Bounded Buffer
with condition variables implements a bounded buffer. In this experiment, both
produce () and consume() block if the buffer is full and empty, respectively.

Two condition variables are used: the first one is used to resume a blocked
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produce() call by a consume() call; the second one is used in the reverse
direction.

Figure 5.15(b) shows the result of the experiment, in which the same number
of producers and consumers, each ranging from 1-5, have been used. The size
of the buffer was set to 2. The graph shows the average time per consumer
invocation; exactly the same average time was obtained for producer invocations.

Both experiments show that ADETS-SAT and ADETS-MAT are superior
to all other execution strategies. ADETS-PDS and ADETS-LSA, on the other
hand, show poor performance. In the experiment with the bounded buffer,
they perform even worse than the sequential polling-based approach. With the
ADETS-SAT algorithm, this is due to the additional communication caused by
the scheduling algorithm. With ADETS-PDS, threads that resume from a wait
operation need to be delayed until the next internal round starts; this delay
increases the invocation times.

5.9.4 Complex Application Patterns

In the next benchmark, an artificial, complex scenario was tested. The replicated
object implements a method that executes 10 iterations of a loop. Each iteration
performs the following operations:

e with probability 0.2, a nested invocation (duration approx. 12 ms)
e with probability 0.2, a local computation (duration 10...20 ms)

e always, a lock—state update—unlock sequence with a mutex randomly cho-
sen out of a set of 100 mutexes

The random selection of the nested invocation and the local computation was
used to simulate different kinds of object behaviour. The experiment assumes
that the object uses fine-grained locking of the object state; for this purpose,
each iteration locks a mutex that is randomly chosen out of 100 available mu-
texes. In this scenario, all random selections have been determined by the clients
to obtain deterministic behaviour in all replicas.

The result of this benchmark is shown in Figure 5.16. The single-threaded
execution shows the worst performance. The ADETS-PDS strategy also shows
poor performance in this scenario. It performs even worse than ADETS-SAT,
in spite of ADETS-PDS supporting true multithreading and being able to lock
different mutexes concurrently in different threads. The main reason for this is
that with ADETS-PDS, if only a single thread performs a local computation,
all threads have to wait for this computation to start a new round. ADETS-
MAT performs better than ADETS-PDS and ADETS-SAT. The ADETS-LSA
algorithm, however, scales best in this scenario, because different mutexes can
be locked concurrently by different threads.

5.9.5 Conclusion

The benchmarks performed for the ADETS model for multithreaded method
execution clearly show that all ADETS variant are superior in performance
than a strictly sequential execution.
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Figure 5.16: Measurements with a complex artificial scenario

Besides that observation, it is evident that there is no “best” scheduling
variant. All algorithms are superior in some situations, while providing sub-
optimal performance in other situations.

The LSA algorithm offers optimal concurrency, as it poses no restrictions
on the behaviour of the primary node. The primary can execute methods
concurrently in the same way as a non-replicated node. It however suffers from
its communication overhead. While this overhead can probably be neglected
in a high-speed local-area network, it reduces the benefit of multithreading in
slower wide-area networks. More severe, the failure of the primary requires (a)
accurate and timely failure detection and (b) a costly reconfiguration process;
these disadvantages make LSA less useful for active replication of objects.

The PDS algorithm is a highly specialised algorithm that works fine if replica
methods have a behaviour that fits to the period execution in rounds (e.g., each
method requests locks a mutex and computes for an approximately constant
amount of time). It is not an appropriate algorithm for computations with a
highly variable duration, and the use of nested invocations is, in general, less
efficient than in the other variants.

The ADETS-MAT algorithm is the most efficient algorithm in some situa-
tion, but performs poorly for requests that request a lock and then compute
locally for an extended amount of time without defining a scheduling point.

Therefore, an interesting field for future research are improvements of the
ADETS-MAT algorithm that maintain its current efficiency, while reducing the
problems that the algorithm has in some situations. Such extensions might
include strategies that deterministically chose a new primary thread in other
situations. Hybrid algorithms that, for example, combine the use of secondary
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threads—as in ADETS-MAT—with a round-based scheduling-as in ADETS-
PDS—might also be interesting.

One very important contribution of the FTflex architecture is the configura-
bility of the scheduling algorithm. This enables the selection of a scheduling
algorithm that works best for a given application.

5.10 Summary

The FTflex architecture supports deterministic multithreaded method execution
in replicated objects. It supports a rich synchronisation model, uses code anal-
ysis and transformation as a novel way to intercept synchronisation statements,
and defines four algorithms for deterministic thread scheduling.

The architecture assumes that access to shared object state is protected
by mutex locks. By intercepting synchronisation operations (such as lock and
unlock statements), a scheduling module can provide determinism. Unlike other
existing systems, the FTflex implementation supports reentrant mutex locks,
condition variables, and time bounds on blocking wait operations.

For intercepting synchronisation operations in replica code, the FTflex archi-
tecture provides a source-code analysis and transformation tool. In contrast to
previous solutions, which intercept synchronisation operations at the operating
system level, this approach is independent of the operating system, and is the
first system that permits such interception with an unmodified Java virtual
machine.

The intercepted operations are delegated to an instance of the Aspectix
Deterministic Thread Scheduler (ADETS). Four variants of this module are
provided, one for single-active-thread execution on a single-CPU machine, and
three variants for true multithreaded execution on multi-core CPUs or multi-
CPU machines.

Each ADETS variant has its virtues and problems in specific application
scenarios. An experimental evaluation has given a detailed performance com-
parison of all variants. In all cases, a multithreaded scheduler offers better
performance than the sequential request execution that is used in most object
replication systems. In addition, the configurability of the ADETS module in
FTflex offers the possibility to select the optimal scheduler module for a given
application.



Chapter 6

Group Communication

The flexibility and reconfigurability of an object replication system highly de-
pends on the flexibility and reconfigurability of the low-level consistency man-
agement. The FTflex architecture uses totally ordered group communication for
active replication. The Aspectiz group communication system (AGC) provides a
reliable, totally ordered multicast mechanism [RBHO05]. The main novel features
of the AGC are its flexibility in terms of failure model and its support for runtime
reconfiguration. The purpose of this chapter is to describe the details of the AGC
architecture and to discuss its innovative elements.

6.1 The Aspectix Group Communication System

The AGC is a modular group communication system that uses an internal
consensus module to obtain total message order. Variants of the consensus
module support the crash-stop, crash-recovery, and Byzantine failure models.
Using a policy configuration, the developer can select a specific variant and thus
tailor the system specifically for a given application. Furthermore, the system
allows consistent reconfigurations at runtime.

The flexible support for multiple failure models is an important advantage
of the AGC. Group communication systems such as Ensemble [Hay98], Spread
[ADS00], and JGroups [Ban98] assume a fixed crash-stop or crash-recovery
failure model. Byzantine fault tolerance is found in intrusion-tolerant group
communication systems such as SecureRing [KMMS98] and RamPart [Rei94].
Supporting multiple failure models within a single group communication system
not only simplifies the implementation of the middleware infrastructure, but also
provides the basis for efficient runtime reconfigurations.

For each failure model, the AGC can support algorithmic variants that differ
in their communication patterns and their overhead in case of failures. Thus, the
developer can select the optimal variant for a given application, environment,
and client interaction pattern. At this level, the AGC provides a configurability
that is superior to other existing systems.

The AGC allows consistent dynamic reconfigurations at runtime. Group
members can, for example, decide to replace the instantiation of the consensus
module with another one to tolerate a different kind of faults or to adjust
parameters that influence performance. These reconfigurations do not cause
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// Called by external application to start the consensus instance cin
function propose(int cin, value v);

// Provided by extern application, called by the consensus implementation
function decide(int cin, value v);

Figure 6.1: Interface of consensus

any service interruption and are transparent to applications. Furthermore, the
configuration changes are done in a fault-tolerant way. Hence, node failures
cannot cause inconsistent configurations or prevent the reconfiguration.

The ability of changing the system configuration at runtime provides a basis
for autonomous self-optimisation. The AGC supports such self-optimisation us-
ing an observer/controller pattern. The current prototype provides instrumen-
tation in the internal components of the AGC. Observer/controller modules can
access the information obtained from the instrumentation in order to make their
reconfiguration decisions. Developers can specify their own implementation of
these modules and can thus customise the self-optimising behaviour.

6.2 Consensus-based Total Ordering

Consensus-based group communication requires a transformation algorithm that
provides totally-ordered multicast to the application on the basis of an internal
consensus algorithm. The Chandra—Toueg algorithm [CT96] is a well-known
approach for such a transformation. While originally intended for closed groups,
the algorithm can easily be used with external senders as well. An important
contribution of this thesis is the extension of the Chandra—Toueg transformation
to systems in which group membership and algorithms can be reconfigured
dynamically at runtime.

6.2.1 Consensus Algorithms

Chandra and Toueg [CT96] define the consensus problems in terms of two
primitives, propose(v) and decide(v). All correct processes propose a value and
must reach a common decision. The consensus problem is characterised by the
following properties:

o Termination: Every correct process eventually decides some value.
o Integrity: Every process decides at most once.
o Agreement: No two correct processes decide differently.

o Validity: If a process decides v, then v was proposed by some process.

For implementing a group communication system that continuously enables
the transmission of messages, having just a single consensus execution is not
sufficient. Multiple, independent instances of consensus are required. A consen-
sus instance number (cin) identifies a specific consensus instance. All instances
are independent from each other and fulfil the above properties on their own.
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function init ():
cin :=0
A _delivered := R_delivered := 0 // empty list of messages

function abcast(Message msg): //called by application
rbcast (msg)

function rdeliver(Message msg): //called by rbcast
R_delivered.append(msg)

function processor (): //called periodically by infrastructure
if R_delivered \ A_delivered == 0:
return
cin := cin+1
consensus.propose(cin, R_delivered \ A_delivered)
suspend(cin)
A_delivered.append(A_deliver(cin))
adeliver (A_deliver(cin))

function decide(int cin, MessageSet msgs):  //called by consensus
A_deliver(cin) := msgs \ A_delivered
resume(cin)

Figure 6.2: Original Chandra—Toueg algorithm

The consensus interface shown in Figure 6.1 includes these consensus instances
numbers in the propose() and decide() operation.

6.2.2 Using Consensus Algorithms for Group Communication

Chandra and Toueg have shown that atomic broadcast and distributed con-
sensus are equivalent problems [CT96]. They propose the algorithm shown in
Figure 6.2 to implement atomic broadcast given an implementation of consensus.
This broadcast algorithm successively executes independent consensus instances
with increasing cin. The k' consensus execution is used to determine the k"
batch of messages to be delivered. All consensus messages belonging to the k"
instance are tagged with the cin k.

The atomic multicast algorithm internally uses a reliable multicast (rbcast).
This reliable multicast ensures that a message m is delivered to all group mem-
bers, but does not guarantee any message order. The interface of rbcast is such
that the Chandra—Toueg algorithm calls a rbcast() method to broadcast a
message to all group members, and the reliable, unordered multicast implemen-
tation calls rdeliver () to deliver the message.

The processor () function periodically checks whether there exist messages
that the rbcast has delivered via rdeliver (), but which the consensus has not
decided yet via a decide() call; such messages are contained in R_delivered,
but not in A_delivered. If such a set of messages exists, the algorithm advances
to the next CIN and proposes this set to consensus. After proposing, the
processor () thread suspends.

As soon as the consensus algorithm decides the consensus instance cin, it
calls decide (). This function passes the message set from the proposal to the
processor () thread via the A_deliver(cin) variable. The suspended proces-
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sor () thread continues, adds the decided set of messages to the A_delivered
data structure, and delivers the messages to the application by calling rde-
liver().

6.2.3 External Senders

The Chandra—Toueg algorithm assumes a closed-group model, but it is easily
extended for open groups. In a closed group, all actors are group members; in
an open group, it is possible that the sender of a message is not a group member.
The difference between both variants is only relevant in the abcast () function.
This function is the only one that the application calls directly for sending a
message, and thus external nodes need an implementation of abcast(). In-
ternally, the only task of this function is to perform a reliable (but unordered)
multicast of the application message to all group members. All other functions
of the algorithm are executed only by group members.

External senders can perform the rbcast using a gateway approach. In this
approach, the external sender sends its message to a gateway. In the AGC, all
group members can act as a gateway. The gateway then rbcasts the message
to all group members in the same way as a group member would send a new
message. If the gateway fails during message transmission, the external sender
has to contact a new gateway and repeat the message transmission.

Alternatively, the external senders can perform the rbcast using a direct
approach. In this variant, the sender has to know all group members. This
approach is most efficient if the rbcast can use available hardware multicast
facilities. Without such facilities, the external sender can rbcast its message
to all group members using direct point-to-point connections. In all cases, the
direct approach avoids the delay caused by the gateway approach.

Either approach has its virtues in some situations. The gateway approach
has the advantage that the external senders need not have accurate knowledge
about the current group membership. Instead, they have to know only a single
available group member that can act as a gateway. In some scenarios, the
gateway approach is very efficient. For example, if the communication group is
located in a local-area network, whereas the external senders access the group via
a wide-area network, only a single point-to-point communication over the slow
wide-area network to the gateway is necessary, and all other communication
is done on the local-area network. On the other hand, the direct approach
eliminates an indirection step and thus reduces the message latency by one
message hop. The AGC prototype implements both variants; the developer can
select one of them in the group policy that defines the AGC configuration.

6.2.4 Variability of Membership and Configuration

The basic Chandra—Toueg algorithm does not consider the possibility of chang-
ing the group membership or the consensus algorithm. The reconfigurability of
the F'Iflex architecture, however, requires the possibility of such changes at run-
time. Our ConsensusBcast algorithm is a novel extension of the Chandra—Toueg
algorithm, which enables changes to the internal configuration at runtime.

In the following, the term group version is used to refer to a specific policy
configuration. The configuration specifies the group membership, the consensus
algorithm, and additional internal parameters. Each reconfiguration creates a
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group version | start cin | policy
consensus=MultiPaxos
0 0 nodes={Py, Pa, P3}

consensus=MultiPaxos
1 7 nodes:{Pl, PQ, ]337 P4}

consensus=BFT_PK
2 15 nodes={Py, Ps, P3, Py}

Figure 6.3: Example of a group policy table

new group version; the group version gv is a number that is increased by each
reconfiguration. The details of this reconfiguration process will be described in
Section 6.3.

It is necessary to establish an exact relation between consensus instance Associating Consensus Instances

numbers and group versions. Each consensus instance must have a fixed config- with Group Versions
uration policy. For this purpose, each group version starts at a specific consensus
instances number. A policy table stores group version, starting cin, and policy.
Figure 6.3 shows a table with three group versions. The AGC maps a consensus
instances z to a group version by searching the table for the largest start cin that
is less then or equal to x. For example, above table maps cin 13 to the group
version 1. The current group version is defined by the most recent configuration
stored in the table.

The policy configuration specifies the consensus algorithm and the group Extending the Chandra—Toueg
membership. Therefore, this thesis defines a modified version of the Chandra— Algorithm
Toueg algorithm, which adds information on the group version to all data
structures. Our extended algorithm is shown in Figure 6.4, with the extensions
being marked in yellow.

The first modification to the Chandra—Toueg algorithm affects the reliable Reliable Multicast
multicast. As soon as a client calls the abcast() function, the current group
version is assigned to the message. The group version also defines the group
membership for the rbcast () operation. Upon reception of the reliable mul-
ticast in rdeliver (), the messages are added to a list of messages specific for
this group version.

Without reconfigurations, the processor () function works identical to the Normal-Case Operation
original algorithm. In this situation, lines 13—19 have no effect, as there are
no messages for old group versions. Furthermore, the current group version is
equal to group version of the next consensus instance. Thus, only if there are
messages in R_delivered but not in A_delivered (line 22), these messages are
proposed to consensus. The consensus instance to which the value is proposed
is dynamically determined via the policy configuration (line 25).

If a new group version is created, it might happen that the new version New Versions after
is valid starting with a specific consensus instance cin;, while there are still Reconfiguration
consensus instances cing < cin; that have not yet been started. In this case, the
group version of the consensus instance to be started next is less than the current
instance (cingv < config.currentGV). It is desirable that the configuration
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function init ():

cin :=0
R_delivered := ()  // empty map from group version to messages
A_delivered := () // empty map from group version to messages

function abcast(Message msg):
rbcast(msg, config.currentGV)

function rdeliver(Version gv, Message msg): //executed by the rbcast protocol
R_delivered(gv).append(msg)

function processor(): // executed periodically

lastid := (lowest undecided consensus instance number) - 1

lastgv := gv(lastid)

// re-broadcast pending messages from fully decided group versions

for each oldgv with oldgv < lastgv:

for each msg in R_delivered(oldgv) A_delivered(oldgv)):

R_delivered(oldgv).remove(msg)
rbcast(msg, config.currentGV))

cingv := config.getVersionByCIN(cin+1) // group version of next instance

if cingv >= config.currentGV and R_delivered(cingv)\A_delivered(cingv) == 0:
return

cin :=cin + 1

consensus := config.getConsensusByCIN(cin)

consensus.propose(cin, R_delivered(cingv) \ A_delivered(cingv))

suspend(cin)

A_delivered(cingv).append(A_deliver(cin))

adeliver (A_deliver(cin))

function decide(CIN cin, MessageSet msgs):  // called by consensus
cingv := config.get VersionByCIN(cin)
A_deliver(cin) := msgs \ A_delivered(gv(cin))
resume(cin)

Figure 6.4: The ConsensusBcast algorithm for reconfigurable consensus-based
atomic multicast

belonging to the newest group version is used as soon as possible. The original
algorithm would propose values for cing < cin; (and thus advance the current
cin) only if new application messages are available for being proposed. In the
modified algorithm, the processor function will instead propose empty message
sets for those intermediate consensus instances if no messages are available.

After a reconfiguration, there can be messages in R_delivered(gv) for some
group version gv less than the current group version. If all consensus instances
of gv have been decided, these messages cannot be delivered any more within
that group version. Furthermore, these messages cannot simply be used in a
newer group version, because the group membership (which is also used in the
rbcast () operation) might have changed. As a solution, our ConsensusBcast
algorithm re-rbcast ()-s these messages with a new group version.

Figure 6.5 illustrates the interactions between the system components in the
absence of reconfigurations. In the example, the application sends two messages
(my and mg) using abcast (), which the ConsensusBcast then distributes via
rbcast (). Next, m; and my are proposed to consensus in a single message set.
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Figure 6.5: Interactions between functional parts of the AGC

This behaviour is configurable: the group policy can define a maximum number
of message to be included in a single proposal, and it can define a maximum
time to wait between receiving a message in rdeliver () and calling propose ()
at consensus with the collected messages. This approach may significantly
reduce the overhead caused by the consensus algorithm; however, it increases
the message latency by the period of time in which the system waits to collect
messages.

External senders that use the direct approach have to assign a group version
to their message in the abcast() function. The ConsensusBcast algorithm
makes sure that if a message is sent by rbcast () with some group membership
version guv, it is either adeliver ()-ed with a consensus instance of that gv, or
it is re-rbcast ()-ed with a newer gv. The re-broadcast adds some overhead;
optimal efficiency is obtained if the sender of a message uses the current group
version. Hence, external members should know about the current group version.
Usually, only group members learn about new group version automatically.
Therefore, ConsensusBcast implements a simple update strategy for external
senders. If a group member receives a rbcast from a non-member with an
outdated group membership version, it sends an version update message to
that client.

6.3 Consistent Reconfiguration

The ConsensusBcast algorithm assumes that there is a mapping from consensus
instances to group versions and group policies, with the policies specifying
consensus instance, group membership, and internal parameters. The recon-
figuration process that creates a new group version must fulfil two constraints:

e A reconfiguration must be made consistently on all group members.

e The configuration of a consensus execution already in progress must not
be changed.

Non-Member Membership
Updates

Consistent Reconfigurations
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Figure 6.6: Parallel execution of consensus instances

This section addresses the question of how to reconfigure the mapping in the
group policy table without violating these constraints.

6.3.1 Consistency on all Group Members

To perform all reconfigurations consistently on all group members, the AGC
sends each reconfiguration to the group as a group message. The semantics of
group message delivery ensures that all group members receive the reconfigu-
ration message reliably in an exactly defined position relative to other group
messages. Thus, the message not only defines a new configuration policy, but it
also determines exactly when the system shall start using the new policy.

In the simplest variant, the processor() function is executed in strictly
sequential way. This implies that a consensus instance i + 1 is only started
after instance i has been decided. In this variant, reconfiguration messages can
be applied immediately. The delivery of a reconfiguration by the decision of
instance ¢ can, without any problem, change the configuration of instance 7 + 1.
Thus, reconfigurations can have an immediate effect.

6.3.2 Parallel Execution of Consensus Instances

Besides a simple sequential execution, multiple consensus instances can be ex-
ecuted in parallel. This means that a new execution of processor() can be
started while a previous execution is still in progress. This approach can be used
to increase the efficiency, but it complicates the reconfiguration process. It im-
plies that a consensus instance k, with k& > i, may start executing before instance
1 has finished its decision. Obviously, inconsistencies will for example arise, if one
node starts a consensus instance k with a certain consensus algorithm defined
by an old configuration, while another node uses a different algorithm from a
newer configuration for the same instances k. Such inconsistencies have to be
avoided.

More generally, inconsistencies arise if a decision of cin ¢ can modify the
configuration of an instance k > i after cin k£ has started. As a solution to
this problem, the ConsensusBcast implementation limits the number of parallel
instances and schedules reconfigurations sufficiently far in the future. If a new
group policy configuration is decided in consensus instances 4, the system acti-
vates the new group version in instance ¢+ N, N being defined by a group policy.
Thus, instances ¢...7 + N — 1 may all execute in parallel without conflicting
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Group
Group(policy: GroupPolicy)

join()
leave()
changePolicy(policy: GroupPolicy)

sendMsg(msg: Message)
sendMsgDirect(msg: Message, dest: NodelD)
receiveMsg(): Message

Figure 6.7: Application interface of the Group component

with the reconfiguration. Consensus instances greater or equal to ¢ + N needs
to be delayed until all consensus instances up to cin ¢ have finally been decided.
Figure 6.6 illustrates this strategy for N = 5. Other group members can already
know the decision of cin ¢ and thus might send messages belonging to instance
i + N; these messages have to be queued until this instance can start locally.

Scheduling reconfigurations IV rounds into the future introduces a delay. The
new configuration is activated only after all intermediate consensus instances
are decided. The ConsensusBcast algorithm already contains provisions for
this case. As soon as a new group version is determined by a reconfiguration,
the transformation algorithm immediately proposes empty message sets for all
intermediate decisions for which no proposal has been made yet. Thus, the
resulting reconfiguration delay is minimal.

6.3.3 Garbage Collection

As soon as a reconfiguration starting in cin ¢ is decided, instances with old
and new configuration (e.g., ComSys or Consensus instantiation) will operate in
parallel. Even if a node has locally decided all instances less than i, it still may
not yet discard the old instances, because other nodes might still be executing
these instances. A cleanup operation may only be started if all decisions less
than 7 have been finished on all nodes.

To realise such a cleanup operation, a simple garbage collection mechanism
is implemented. All nodes periodically send information to the group about the
greatest cin, up to which they have finally decided all instances. This informa-
tion can be sent infrequently using piggybacking on other group messages, which
minimises the overhead. As soon as all group members confirm the decision of a
cin 4, all policies and component instantiations that are not needed by instances
greater than ¢ can be cleaned up.

6.4 Prototype Implementation
For the application (i.e., for the FTflex replication infrastructure), the Aspectix

group communication system offers the interface shown in Figure 6.7. This
interface offers methods to send messages to the whole group and to individual
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Figure 6.8: Modular structure of the reconfigurable consensus-based group com-
munication system

members, to receive messages, and to reconfigure the group by adjusting group
membership or the group policy.

Instantiating a new Group does not automatically join the group. Instead,
the new Group instance can be used to access the group as an external sender
and does not receive group messages. Calling join() turns the external node
into a group member, which then starts receiving all group messages. A node
can leave the communication group by calling leave(); as a result, the node
again becomes an external node.

The Group interface offers a pull model of interaction at the client interface.
This means that clients explicitly have to call a receiveMsg() method in order
to receive messages. An optional PushPullAdapter can be used by the client to
receive messages in a push model. In that model, the adapter actively invokes
a callback method at the client for each message that is locally received.

The following description explains the internal components of the AGC and
the implemented variants of consensus algorithms.

6.4.1 Internal Modular Structure of the AGC

The internal modular architecture of the Aspectix group communication sys-
tem is shown in Figure 6.8. The core component of any communication group
is Group. Consensus implements a consensus algorithm, and ConsensusBcast
transforms this algorithm into totally ordered multicast. The ComSys component
provides low-level communication. The PolicyManager component stores group
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ConsensusCallback

decide(cin: CIN, result: Proposal)

Consensus
init(com: ComSys, callback: ConsensusCallback,
groupVersion: int, policy: GroupPolicy)
destroy()
propose(cin: CIN, proposal: Proposal)

Figure 6.9: ConsensusCallback and Consensus interfaces

versions and corresponding policies, and makes this information available to the
other components.

The Group component implements the application interface. Its main func-
tionality is to pass messages addressed to individual nodes to ComSys and to pass
group messages and reconfiguration requests to the ConsensusBcast module.
It also implements the functionality needed for external senders. At an external
node, Group can forward all client interactions to a group member node. At
an internal node, Group acts as a gateway that receives the forwarded requests
from external senders.

The ConsensusBcast component implements the transformation algorithm
for realising totally ordered multicast on the basis of consensus algorithms, as
has been described in Section 6.2.4. It implements the ConsensusCallback
interface (see Figure 6.9), which is used by Consensus to deliver consensus
decisions.

The transformation algorithm interacts directly with the Consensus com-
ponent. This component supports executing independent instances of a dis-
tributed consensus algorithm, identified by an instance number cin, and im-
plements the interface shown in Figure 6.9. The propose operation passes a
proposal (a collection of group messages or reconfiguration requests) as input
to a specific Consensus instance, identified by cin. A final decision is delivered
to ConsensusBcast via the ConsensusCallback interface. Multiple instances,
distinguished by unique cin numbers, may execute in parallel. Multiple variants
of the Consensus component provide support for several failure models. The
implemented variants are discussed in the next section.

The RBcast component implements reliable, unordered multicast. It sends
messages from ConsensusBcast to all group members, and actively delivers
incoming messages from the network via the rdeliver () function of Consen-
susBcast.

The ComSys component encapsulates the specific low-level mechanisms that
are used for communication. It provides network-independent addressing, han-
dles message queueing, and re-establishes connections after failures. This com-
ponent fully supports reconfigurability. Depending on network abilities, different
variants like encrypted TLS channels, plain TCP connections, tunnelling via
SOAP/HTML, or the use of existing hardware multicast mechanisms can be
supported. The group policy defines the instantiation to be used as well as
internal parameters, such as timeouts for connection re-establishment. Con-
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sensus, ConsensusBcast (via RBcast), and Group all use the same instance of
ComSys for low-level communication between the participating nodes.

The configuration of all main components (Group, ComSys, ConsensusBcast,
and Consensus) is described by a GroupPolicy. This policy is internally repre-
sented as a set of key-value pairs; it defines the group membership, the algorithm
used by the consensus instance, the ComSys variant, and additional internal
parameters. The PolicyManager maintains a mapping from group versions to
group policies. The details of the reconfiguration process and a sample of the
group policy table stored by the policy manager have been given in Section 6.2.4

6.4.2 Consensus Variants

Many algorithm can be found in the literature that solve the consensus prob-
lem. These algorithms are faced with the FLP impossibility [FLP85]. The
FLP impossibility states that deterministic consensus is impossible in an asyn-
chronous distributed system if at least one node can fail. Practical solutions
to the consensus problem can use deterministic algorithms in a synchronous or
partially synchronous system model, and they can use randomised algorithms
in an asynchronous model.

The AGC architecture can be used with any distributed consensus algo-
rithm; this allows the use of the most appropriate algorithm in terms of system
model and performance characteristics. The current AGC prototype does not
use algorithms for a synchronous model, as in most practical scenarios, it is
impossible to make strict synchrony assumptions. Randomised algorithm such
as the two Ben-Or algorithms [BO83] and the ABBA algorithm [CKS00] work
in a completely asynchronous system with crash-stop and with Byzantine faults.
These algorithms are more relevant in practice; they are not yet included by the
prototype, but could easily be added. The AGC currently implements several
deterministic algorithms in a partially synchronous model.

More specifically, the current prototype implements several variants of the
Paxos algorithm [Lam89], which differ in fault model and interaction pattern.
The selection of a variant tailors the system to application requirements and
environment properties. The implemented variants are shown in Figure 6.10.

The Dummy algorithm does not offer a real consensus implementation. In-
stead, it immediately calls decide () for all values that are passed to propose().
Using this variant does not enable totally ordered communication. Instead, it
only offers reliable unordered multicast (rbcast). This means that using the
Dummy consensus instance, the AGC can be configured to provide weaker ordering
semantics.

MultiPaxosCR implements Lamport’s classic Paxos algorithm. This algo-
rithm assumes a benign crash-recovery fault model and works in three phases.
The internal message exchange behaviour is illustrated in Figure 6.11 (a). In
phase 1, a leader node merely collects information about values that may have
potentially been committed in previous rounds. In phase 2, the leader sends a
proposal to the group. This is either the value learned in the first phase, or an
external value provided by propose(). If sufficiently many nodes acknowledge
the reception of the proposal, the leader commits the proposal in phase 3.
Usually, the first phase is executed only when a new consensus attempt is started
(for example, after a leader change). After the first phase, the algorithm requires
three message delays for each consensus decision (Propose, Ack, and Commit).
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’ Class \ Mode \ Failure Model \ Comments ‘

Dummy - Non-uniform rbcast without
delivery guarantees;  only
used for analysing overhead
of transformation algorithm

MultiPaxos standard | crash-stop Total order with standard
Paxos using majority quo-
rums

fast crash-stop Fast variant of Paxos, with

higher network load but po-
tentially less latency

MultiPaxosCR | standard | crash-recovery | Standard Paxos recording all
essential state changes on
hard disk, thus enabling re-
covery after failure.

fast crash-recovery | Fast variant of Paxos with
state recording and recovery.

BFT_PK Byzantine Castro’s  algorithm  with
public-key cryptography.

Figure 6.10: Implemented consensus variants

One additional message delay arises from the necessity to send the proposal
to the leader node. The algorithm has to write essential state information to
stable storage. This information is necessary for consistent recovery of nodes
after failures. The current prototype uses synchronous writes to the local hard
disk as stable storage.

The idea of Brasileiro et al. [BGMRO1] can be used to obtain fast variants
of the Paxos algorithm, as shown in Figure 6.11 (b) and 6.11 (c¢) (Phase 1 is
omitted in both cases, as it is identical to the standard mode). Only the fast
variant (b) has been implemented in the current prototype. In this variant, the
Ack and Commit messages are combined by broadcasting the Ack to all group
nodes, which in turn may decide autonomously if sufficient Acks are received.
This variant reduces latency at the cost of an increased number of messages to
be sent. In the ultrafast variant (c), a proposal initially is sent not only to the
group leader, but to all nodes, resulting in the elimination of the Propose phase.
If sufficiently many nodes send an Ack for the same proposal, they may commit
immediately with only one communication step. If not—which may happen
if clients propose several values concurrently—a conflict is detected, and the
algorithm reverts to classic Paxos. This variant improves latency even further
in optimistic cases, at the cost of reduced performance in case of conflicts caused
by concurrent access.

The Paxos algorithm originally was proposed for a crash-stop failure model.
Our implementation is based on the modularisation of Paxos, as described by
Boichat et al. [BDFGO03]. The modularisation offers a simple way to obtain
variants. One variant is the elimination of write operation on stable storage,
which results in an algorithm for the crash-stop failure model (instead of the
crash-recovery model).

Fast Variants of Paxos

Crash-Stop vs. Crash-Recovery
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Figure 6.11: Speed variants of the generic Paxos implementation

Castro’s algorithm [Cas01] extends Paxos for Byzantine node failures. This
algorithm has an interaction pattern that requires three communication steps
in normal-case operation (i.e., in Phase 2 and 3). The current AGC prototype
implementation in the BFT_PX consensus module supports the Castro algorithm
based on public-key authentication. It is furthermore possible to reduce the
latency for Byzantine consensus to two communication steps [Zie04]. This
variant has not yet been integrated in the AGC prototype. In our experience,
the message latency of Castro’s algorithm is dominated by the computation time
for public-key signatures. Thus, reducing the network delay will have only little
practical impact in most situations.

The presented variants of Paxos yield two dimensions of configurability:
fault model and speed. The fault model is mainly subject to the application’s
requirements; dynamic reconfiguration is only necessary if the application ad-
ministrator explicitly requests a change. Different speed variants exist for all
fault models. The optimal selection is primarily subject to network properties
and application interaction patterns. As these conditions may easily change
at runtime, a dynamic reconfiguration is necessary; such a reconfiguration may
either be triggered manually, or it can be performed automatically using prede-
fined action rules.

6.4.3 Provisions for Self-Optimisation

The reconfigurability of the Aspectix group communication system can be used
to provide mechanisms for autonomous runtime adaptation. For this purpose,
the AGC provides a basic infrastructure that can be extended with custom
adaptation strategies. The implementation of specific adaptation strategies are
left to the developer and are not discussed by this thesis.
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Adaptation strategies need access to internal statistical information that
can be used to trigger adaptations. Therefore, the Group provides a getStats
method that returns a set of key/value pairs with internal statistics. The statis-
tics are collected from all internal components (i.e., all internal components also
implement such a getStats method, which are combined to provide the final
result).

The content of the monitoring data is individually defined by the com-
ponents. This makes it possible, e.g., to collect internal data in a Paxos or
FastPaxos instance of the Consensus module, and provide an observer/con-
troller module that uses these algorithm-specific data to switch between the
two variants. In the Group and ComSys component, information about internal
message queue lengths is provided. In addition, such observer/controller module
can access other external entities such as the network load or the CPU usage.
Such entities are not considered in the current prototype. In ongoing work,
which is not part of this thesis, a distributed resource management framework
[KHRO4] is being developed for the Aspectix middleware, which will contain
functionality to obtain such profiling information.

It is questionable if autonomous adaptation of the failure model is useful in
practice. What type of failures the system should be able to tolerate is a decision
that is made by the application administrator. This can be interpreted to mean
that autonomous adaptation is not desirable. There are, however, situations in
which autonomous adaptation can be advocated for increasing fault tolerance.
For example, with four replicas of some service, a replication protocol could
enable the toleration of a single Byzantine failure. If only three replicas of this
service exist, the protocol is no longer able to tolerate any benign or malicious
failure. Switching to another protocol that is able to tolerate the crash of one of
the three nodes (and switching back to the Byzantine protocol as soon as four
replicas are available) increases the availability of the application.

6.5 Evaluation

This section evaluates the Aspectix group communication system (AGC). Mea-
surements analyse the performance and the scalability of the current prototype
implementation. Furthermore, a discussion compares the properties of the AGC
in failure situations with other approaches.

6.5.1 Measurements

Two aspects are important in a reconfigurable group communication system: the
efficiency of sending plain group messages in such a reconfigurable implementa-
tion and the cost of reconfiguration operations. Sending normal group messages
is the dominant operation in a group, while reconfiguration usually will happen
far less frequently. For this reason, the measurements focus on the normal-case
efficiency of the reconfigurable architecture in various configurations. All ex-
periments described below have been carried out on Intel Pentium 4 (3.0 GHz)
workstations running Linux (kernel 2.4.30), connected via a switched 100-BaseT
network, and using TCP channels for low-level communication.

The most important factor in system performance of a consensus-based group
communication system is the efficiency of consensus decisions. Figure 6.12 shows
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the number of consensus decisions per second that the AGC system achieves in
relation to the number of core group nodes, for various consensus instantiations.
The recovery variants use synchronous writes to the local disk as stable storage;
the parallelism of consensus decision was limited to five parallel instances.

For all variants, the system scales well with an increasing number of nodes.
The limiting factor in the stable-storage variants is the synchronous write oper-
ations; thus there is only little difference between Classic Paxos and Fast Paxos
in these cases. The Byzantine consensus instance is, as it might be expected, the
most costly variant. The current prototype uses public-key based signatures; it
does not yet support the more efficient variant of Castro [Cas01] on the basis of
symmetric message authenticators.

Parallelism of consensus operations, as explained in Section 6.3, makes recon-
figuration a slightly more complicated task. Therefore, we examined in another
experiment the benefit of such parallelism. Figure 6.13 shows the number of
consensus decisions per second for different degrees of parallelism. For a small
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Figure 6.14: Measurements of the group message latency with different consen-
sus algorithms

number of nodes (less than nine), such parallelism increases the performance.
Somewhat unexpected, the performance decreases at a higher number of nodes,
which is probably due to the overhead of internal synchronization. The results
thus also show that a dynamic configuration of the parallelism depending on the
number of nodes is necessary to get optimal performance. Hardly any difference
exists between five and ten parallel rounds, which coincides with the exception
that a small number of parallel rounds is always sufficient.

From the application point of view, an essential parameter is the message
latency. Figure 6.14 shows the latency for three different consensus variants,
depending on the core group size. All times are per-message latencies aver-
aged over 100 messages sent to group, measured at the application-level group
interface.

6.5.2 Discussion of AGC Behaviour in Failure Situations

For relating the AGC system with other group communication system, the char-
acteristics of consensus-based group communication have to be re-iterated. Most
existing group-communication systems advocate a sequencer-based approach
(see Section 3.3). These systems are simple and efficient; their disadvantage is
the single point of failure that the sequencer represents.

Seamless fail-over mechanisms need an accurate failure detection, which gen-
erally is used both for ensuring liveness of the message ordering strategy and
for managing the group membership. Consensus-based group communication
hides the fail-over complexity within the consensus algorithm. Some consensus
algorithms work even fully decentralised. Others use a designated coordinator
node internally; yet in the latter case, consensus can use internal timeouts that
yield fast but inaccurate failure detection, which can be sufficient to ensure
liveness. At the group level, other failure-detection strategies—ranging from
conservative timeouts to manual management—can be used for managing group
membership.
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The separation of group membership management and failure detection for
obtaining liveness is a key advantage of the AGC. Short timeouts can be used
internally to ensure fast message delivery even in failure situations, while no
group members can erroneously be excluded from replica groups due to random
message delays.

6.6 Summary

The Aspectix group communication system (AGC) provides a totally ordered
multicast mechanism. It has a modular structure and realises consensus-based
total order.

The AGC supports multiple failure models. The developer can select be-
tween a crash-stop, crash-recovery, and Byzantine model. This way, the same
basic architecture and the same interfaces can be used for multiple application
scenarios. Thus, the FTflex infrastructure can easily support various failure
models.

For each failure model, several algorithmic variants can be used, which allows
the system to be tailored to the specific application and the network environ-
ment. The current prototype implements a “normal” and a “fast” variant of the
Paxos algorithm, both in the crash-stop and in the crash-recovery failure model.

On the basis of the given variability, the AGC supports consistent run-
time reconfiguration. Ordering protocols are extended with mechanisms that,
without violating ordering guarantees or other semantic properties of group
communication, allow the replacement of internal components. This feature is
also provided in a fault-tolerant way, which means that the system can tolerate
node failures during the reconfiguration process.

The given reconfigurability feature can also be used to implement self-
optimisation. All AGC components provide simple monitoring interfaces that al-
low external observer/controller modules to retrieve internal information about
message arrival rates, failure frequency, and queue lengths. The observer/con-
troller module can then request a new configuration at the group. This way,
extensible basic support for autonomous adaptation is provided.



Chapter 7

Conclusions

This thesis addresses three main problems in the area of fault-tolerant object
replication in distributed systems: middleware integration and development
support; deterministic multithreaded execution of object methods; and recon-
figurable group communication.

For middleware integration and development support, this thesis presents a
solution on the basis of the fragmented-object model. The solution advocates
the use of semantic annotations and automated code generation to simplify
application development.

For deterministic multithreaded execution of object methods, this thesis
specifies and evaluates a set of deterministic scheduling algorithms. In addition,
it proposes code transformation as a new way for intercepting synchronisation
statements in the object implementation.

For totally ordered group communication, this thesis presents the design of
a consensus-based group communication system, which offers flexible support
for various failure models and for dynamic runtime reconfiguration.

7.1 Contributions

The proposed architecture supports active replication for CORBA applications.
It uses the fragmented-object model of the Aspectix middleware and provides
a customisable replication infrastructure. The architecture enables portable,
efficient, and transparent mechanisms. Furthermore, it supports runtime recon-
figuration and autonomous adaptation.

The FTflex architecture enables the developer to explicitly specify semantic
knowledge by annotating objects on a per-method basis. These semantic anno-
tations provide structural and behavioural information. Structural annotations
can be used to locate parts of the object functionality directly at the client side.
Behavioural annotations specify semantic properties, for example that a method
is read-only. These annotations can be used by the infrastructure to optimise
the replication mechanisms.

We propose automated code generation as a means to provide custom repli-
cation code for each replicated object. The custom code includes a client-side
access fragment and a server-side replica fragment. Unlike other infrastructures,
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which create code on the basis of mere interface definitions, the FTflex code
generation tool considers semantic annotations to produce optimised code.

A major contribution of the presented FTflex architecture is the support
for multithreaded method execution in replicated objects. Multithreading lacks
support in most existing object replication infrastructures. Such a support,
however, is necessary to avoid potential deadlocks, to increase the performance,
and to simplify the reuse of existing servant implementations.

The multithreading support of FTflex uses a synchronisation model that
includes reentrant mutexes, condition variables, and time bounds on blocking
wait operations. This enhances the flexibility compared to other middleware
platforms with multithreading support, which allow only binary mutexes. The
FTflex model is comprehensive enough to offer full support for the native Java
synchronisation model. Hence, the development of servants and the re-use of
existing implementations is simplified.

Deterministic multithreading support requires the interception of synchroni-
sation operations of the replicas. For such an interception, this thesis proposes
the use of source-code analysis and transformation. Unlike other systems, which
rely on interception in the operating system or in thread libraries, our approach
does not require low-level system support.

The intercepted synchronisation operations are delegated to an instance of
the Aspectix Deterministic Thread Scheduling (ADETS) module. This thesis
specifies four variants of this module. ADETS-SAT offers a simple, single-active-
thread execution model; ADETS-LSA and ADETS-PDS extend the existing
LSA and PDS algorithms for our system model; and ADETS-MAT uses a
completely new algorithm that, in specific situations, is more efficient than
previously used approaches.

At the level of consistency management, this thesis contributes a consensus-
based group communication system (AGC). The AGC has a modular structure
that allows the integration of various consensus algorithms. Hence, the system
can support multiple failure models, ranging from crash-stop to Byzantine, and
algorithmic variants that allow tailoring the system for the application and the
environment.

A major contribution of the AGC is an extended algorithm for transforming
consensus algorithms into totally ordered group communication. This transfor-
mation algorithm enables the dynamic replacement of the consensus algorithm,
the adjustment of group membership, and the modification of other group con-
figuration parameters.

The AGC system uses a policy-based mechanism for runtime reconfiguration.
The reconfiguration process makes sure that new configurations are activated
consistently in all replicas, and that configuration changes are coordinated with
internal activities. Furthermore, simple instrumentations provide a basis for
autonomous self-adaptation.

7.2 Limitations and Future Work

The FTflex architecture addresses the domain of fault-tolerant object replica-
tion. Most importantly, the fragmented-object approach, together with the se-
mantic annotations and the code generation, is specific for the object-replication
domain. The ADETS scheduler family is also designed for the concurrent



7.2. LIMITATIONS AND FUTURE WORK 123

execution of methods of replicated objects. The ADETS prototype is used
in the FTflex infrastructure; the multithreading concept itself, however, could
easily be applied to other object-replication platforms. Finally, the AGC system
provides generic group communication facilities. As such, it is not limited to
object replication and could directly be used for other purposes.

The F'Iflex infrastructure assumes that the basic middleware supports frag-
mented objects. Popular middleware systems usually do not include such sup-
port. We have shown, however, that fragmented-object support can be added to
existing object-based middleware systems with little effort. For CORBA-based
systems, we have proposed a refactorisation that separates reference handling
from the ORB core, enabling the implementation of fragmented-object support
in a generic plug-in module [HKRS05]. For platforms such as Java RMI and
.NET Remoting, the support for fragmented objects can even be added trans-
parently without internal middleware modifications [KDH'06, RDHO05].

The FTflex prototype currently supports only active replication. While
this replication style has many benefits, reasons such as constrained computa-
tional resources and nondeterministic behaviour can favour other schemes such
as passive replication. A production system should include variability in the
replication model; such variability could be integrated into the reconfiguration
facilities of the current FTflex infrastructure.

This thesis does not provide a complete formal verification of its components.
The verification of the general architecture, of the ADETS family, and of the
AGC is based on informal correctness arguments and on empirical tests. A
better way of verification would be based on a formal verification. For example,
the presented algorithms for scheduling and group communication could be
specified in a language such as CSP and automatically shown to be correct by
verification tools. Such an approach could provide further reasons for confidence
in the FTflex architecture.

The infrastructure currently provides strict replica consistency. For some
applications, weaker semantic models could provide an efficiency gain. It would
be interesting to extend the concept of semantic annotations to the client side,
thus enabling client developers to specify the semantics that the client demands
from the replicated object.

Instead of using locks to synchronise concurrent threads in multithreaded
execution, mechanisms such as lock-free synchronisation could be considered.
Furthermore, approaches to synchronisation that are less nondeterministic than
traditional multithreading, such as the use of explicit rendezvous points for state
exchange between threads, could be integrated.

Fragmented-Object Middleware
Required

Focus on Active Replication

Formal Verification

Weaker Semantics

Other Synchronisation
Mechanism
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List of Abbreviations

ADETS ....... Aspectix DEterministic Thread Scheduler

ADK ......... Aspectix Development Kit

AGC ......... Aspectix Group Communication

APT ....... ... Application Programming Interface

CAS .......... Compare And Swap

CIN .......... Consensus Instance Number

CORBA ...... Common Object Request Broker Architecture

FIFO ......... First In, First Out

FO ........... Fragmented Object

FT-CORBA .. Fault-Tolerant CORBA

GIOR ........ Group-IOR

ID ............ Identifier

IDL .......... Interface Definition Language

IOR .......... Interoperable Object Reference

JVM ... Java Virtual Machine

LAN .......... Local Area Network

LSA .......... Loose Synchronisation Algorithm

MAT ......... Multiple Active Threads

NPC .......... Non-Primary Candidate

OMG ......... Object Management Group

ORB ......... Object Request Broker

PC ........... Primary Candidate

PDS .......... Preemptive Deterministic Scheduling

PECSAR ..... Portability, Efficiency, Client Transparency, Servant Trans-
parency, Adaptivity, Reconfigurability

RMI .......... Remote Method Invocation

ROWA ....... Read One Write All

SAT .......... Single Active Thread

SLT .......... Single Logical Thread

WAN ......... Wide Area Network
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