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Chapter 1

Introduction

1.1 Motivation

This thesis has been motivated by two ongoing research projects of the Institute of
Stochastics at Ulm University. In the first project, which is performed in cooperation
with France Télécom R&D, Paris, it is dealt with the modelling and the analysis of
network structures that occur in the field of telecommunication. In particular street
systems, for example of urban regions like Paris, but also telecommunication networks
on nationwide scales are analysed with respect to their geometrical structures and cost
characteristics connected to them. Figure 1.1 shows such an infrastructure system for
the example of Paris, while in Figure 1.2 a magnified cutout is displayed, where the
actual measurements are shown in red and the polygonal connections between them in
black. Figure 1.3a illustrates a modelling approach for telecommunication networks in
an urban area. Here, the streets are represented by random lines. Different types of
telecommunication equipment are then placed on these lines according to a given ran-
dom process. In Figure 1.3b we see a realisation for a modelling approach with respect
to telecommunication networks on a nationwide scale. In this case the network equip-
ment is placed randomly in the plane according to a given random process that reflects
the differences between urban and rural districts by assigning different intensities. The
subscribers are also distributed randomly according to a similar mechanism, thereby
reflecting the underlying population distribution. Aims of such modelling approaches
are, for example, to obtain inference about connected costs like the mean distance from
a subscriber to its nearest telecommunication equipment located along the streets or
about the capacities needed to connect all the subscribers.

In the second project which is performed jointly with co–workers from the Institute
of Internal Medicine 1 at Ulm University, the Central Electron Microscopy Facility at

9
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Figure 1.1: Urban infrastructure of Paris

Figure 1.2: Infrastructure in a region of Paris
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a) Realisation of a mathematical model that de-

scribes the serving zones of a telecommunication

network in an urban area

b) Realisation of a mathematical model that de-

scribes the population density and the serving

zones of a telecommunication network on a na-

tionwide scale

Figure 1.3: Modelling of telecommunication networks in urban areas and on a nation-
wide scale
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a) Image of keratin network by

electron microscopy
b) Segmented network structure

c) Suitable fitted tessellation

model

Figure 1.4: Investigation of keratin filament structures

a) Image of actin network by

electron microscopy
b) Segmented network structure

c) Suitable fitted tessellation

model

Figure 1.5: Investigation of actin filament structures

Ulm University, the Laboratory of Cell and Computational Biology at the University
of California at Davis, the Department of Physics at the University of Leipzig, and the
Department of Biology at the University of Pennsylvania, intracellular structures in
human cells are analysed. In particular, network structures formed by the cytoskeleton
are investigated with respect to their, both geometric and random, nature. Figure 1.4
shows the first data set investigated that consists of images from electron microscopy
showing keratin filament structures in the cytoskeleton. They have been segmented
using tools of morphological image analysis and afterwards modelled by a suitable
tessellation (network) structure. In Figure 1.5 a second type of filamentous network
structure in the cytoskeleton constructed by actin fibres is displayed which also has
been segmented and modelled by a suitable tessellation model.

Although at first sight these two projects do not seem to have too much in common
it became more and more obvious during the course of these projects that the mathe-
matical models, tools and techniques involved are quite similar. The data sets that are
analysed represent network structures in both cases, either on a macroscopic (telecom-
munication data) or on a microscopic, even nanoscopic, scale (cytoskeletal data). The
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a) Line type b) Voronoi type c) Nested Voronoi/line

Figure 1.6: Different tessellation models

connections between two vertices or nodes of these networks can be approximated quite
well by linear segments leading to almost polygon–like structures, where in some cases
of course convexity can not be guaranteed. This almost polygon–like structures have
led in both projects to an approach of modelling the network structures by so–called
random tessellations or in other words random mosaics that can be considered as a ran-
dom partition of the space into non–empty, non–overlapping polygons. Examples for
such tessellation models are shown in Figure 1.6, where in Figure 1.6a the tessellation
is formed by random lines. In Figure 1.6b a so–called Voronoi tessellation is displayed
which is based on a nearest neighbour principle, whereas in Figure 1.6c a combination
of the first two tessellations based on a nesting of the Voronoi tessellation into the line
tessellation is shown. A need for the determination of appropriate tessellation models
that are suitable to represent the observed networks in a proper way while on the other
hand are still remaining mathematically tractable by theoretical formulae or at least by
simulation studies is therefore a key necessity. Additionally, after the determination of
such a tessellation model it is often of interest to compute certain model characteristics.
Such characteristics comprise for example the mean perimeter of the polygons forming
the tessellation, the mean distance of a randomly chosen point to the nuclei of the
polygon it is located in, or the mean diameter of the maximal incircle of the polygon,
sometimes also called the average mesh size.

More specifically, with respect to the first project that is located in the field of telecom-
munication a main goal that is achieved in this thesis is the derivation and application
of efficient estimators for cost functionals in two–level hierarchical models that are
based on random point processes and random tessellation models. The results of such
estimations can then later be used for example to perform cost calculations or to do
risk analysis with respect to tail distributions or in other words extreme values occur-



14 1 Introduction

ing. In order to derive such efficient estimators, of course, some basic knowledge about
topics of stochastic geometry is necessary. It is also necessary to develop simulation
algorithms for the typical cell of specific types of random tessellations that are involved
in the two–level hierarchical models. Typical cell in this context means that from all
cells occuring, a representant is chosen according to the distribution that reflects the
probability of occurrence.

With regard to the second project that is based on image data of filament networks
in the cytoskeleton methods are described how to segment these images in order to
obtain graph structures that are suitable for later analysis. The graph structures are
then used in order to perform model fitting with random tessellation models where the
fitting algorithm is based on the comparison of estimated global characteristics like the
number of vertices or the total length of the edges to theoretical characteristics for the
models that can be computed by mean value formulae. In particular, for the example
dealing with actin networks, it is explained how to estimate a specific characteristic,
the average mesh size, based on the fitted tessellation model. This mean mesh size is
afterwards useful in order to compute characteristics for cell elasticity that determines
the ability of the cell to move and migrate.

This thesis will show some of the results that were obtained in these two research
projects and will thereby try to convince the reader of the universality of the applied
techniques of stochastic geometry and morphological image analysis with respect to
their applicability in various fields of scientific and industrial research. Basically this
means that methods that are applied in order to solve a specific type of problem for
one field of application can often be slightly modified and used to solve a problem in
a field of application that is quite different with respect to its scale and other types of
characteristics connected to it. To summarize things, the purposes of this thesis are

• to develop and describe efficient algorithms for the simulation of the typical cell
for different types of tessellation models. Additionally to the fact that valuable
inference is obtained with respect to characteristics of the typical cell itself, these
simulation algorithms serve as a cornerstone for an efficient cost analysis;

• to perform such an efficient cost analysis based on two–level hierarchical models.
Such a cost analysis can, for example, be used to allow for realistic cost calcula-
tions in the sector of telecommunication or to obtain information about biological
processes connected with the transport of vesicles in cell membrane trafficking;

• to generally discuss some possible software tests with respect to implementations
that occur, with a special regard to the fact that implementations in this context
often have a random input or output;
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• to show some useful techniques and methods from morphological image analysis
in order to preprocess given image data such that a later statistical analysis is
made possible;

• to perform such a statistical analysis for two examples from cell biology where
samples from the cytoskeleton are investigated. Here, apart from a basic statistical
examination, especially a model fitting algorithm for random tessellation models
is of interest. Such a model fitting approach is of course not restricted to examples
on a microscopic scale but can be applied, for example, to urban infrastructure
data;

• to show by all the points given above that the techniques and tools from stochastic
geometry and image analysis that have been applied are quite universal in the
sense that they can be used in various fields with problems that have a scale
ranging from macroscopic to microscopic or even nanoscopic.

1.2 Outline

After the introduction found in this chapter, some basic concepts of stochastic geometry
are given in Chapter 2. The aim is to provide the reader with enough foundations of
this particular mathematical discipline in order to be able to introduce the notion of
random tessellation, the one object that is common to all applications discussed in later
chapters. In Sections 2.1 random closed sets are defined, while in Section 2.2 random
point processes are introduced, both for the unmarked as well as for the marked case.
In this section also Palm distributions of random point processes and Neveu’s exchange
formula with respect to such Palm distributions are given that will become important
in Chapters 3 and 4. Other important models from stochastic geometry that will play a
role in Chapters 3 and 4 are the Boolean model and modulated Poisson point processes
that are based on the Boolean model. They are therefore introduced in Section 2.3.
In Sections 2.4, finally, deterministic as well as random tessellations are defined. Vari-
ous examples are provided that will become important during the course of this thesis
like Poisson–Voronoi tessellations, Poisson line tessellations, Poisson–Delaunay tessella-
tions, Cox–Voronoi tessellations, modulated tessellations, superpositions and nestings.
Note that in this thesis mostly the planar case is discussed but that there often exists
a canonical extension of these topics to higher dimensions.

In Chapter 3 some efficient algorithms for the simulation of the typical cell for various
tessellation models are introduced. Apart from indicating interesting results for charac-
teristics of the typical cell on its own right, we will apply these techniques in Chapter 4
in order to derive efficient estimators for cost functionals in two–level hierarchical mod-
els. In Section 3.1 some general aspects of such algorithms for the simulation of the
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typical cell for a random tessellation are discussed. We start with algorithms for the
simulation of Poisson point processes which provides a basis for all simulation algo-
rithms given in this chapter. Slivnyak’s theorem is introduced that allows to express
the Palm distribution of a Poisson point process by its (unconditional) distribution and
by adding a point in the origin. Based on the simulation algorithm for the Poisson
point process and on Slivnyak’s theorem a simulation algorithm for the typical cell of
a Poisson–Voronoi tessellation is provided. This simulation algorithm is extended in
Section 3.2 in order to simulate the typical cell of a Cox–Voronoi tessellation, where
the Cox–Voronoi tessellation is induced by a stationary Cox point processes whose ran-
dom driving measure is concentrated on the lines of a Poisson line tessellation. Some
numerical results for characteristics of the typical cell like empirical distributions for
the area and the perimeter are given. In Section 3.3 an algorithm for the simulation
of the typical cell for a different type of tessellation, the modulated Poisson–Voronoi
tessellation, is introduced. Here we have the case that the Voronoi tessellation is based
on a Cox point process whose random driving measure is induced by a Boolean model
with circular grains of a fixed or at least bounded radius. Numerical results are pro-
vided for some specific parameter configurations with respect to characteristics like the
distribution of the area of the typical cell and the number of vertices.

The aim of Chapter 4 is to derive efficient estimators for certain cost functionals in two
different two–level hierarchical models. As a preliminary step some basic notions of
graph theory are discussed in Section 4.1. In particular, after the definition of a graph
some well–known algorithms for the computation of shortest paths and their associated
lengths in a given graph like Dijkstra’s algorithm are introduced.

The first two–level hierarchical model that is discussed in Section 4.2 is based on two
Cox point processes with random driving measures that are concentrated on the lines of
a Poisson line process. A specific characteristic of interest is the shortest path length,
i.e., the distance along the lines between a point of the lower–level point process and its
nearest neighbour (in the Euclidean sense) belonging to the higher–level point process.
A characteristic that is closely related to the shortest path length in this two–level
hierarchical model is the subscriber line length. Here, instead of locating the points of
the lower–level point process on the lines of the Poisson line process, they are located
randomly in the plane and projected afterwards to the nearest point on the line system
that still belongs to the same influence zone, i.e., that has to be located in the Voronoi
cell of the nearest point belonging to the higher level point process. The subscriber line
length is then the distance along the lines of the Poisson line process from the projected
point to the nuclei of the Voronoi cell (the nearest neighbouring point that belongs to
the higher–level point process). Efficient estimators for mean values of both the shortest
path length as well as the mean subscriber line length are derived that are based on
the algorithms for the simulation of the typical cell introduced in Chapter 3 and on
Neveu’s exchange formula for Palm distributions described in Section 2.2. Some results
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of Monte–Carlo simulations are provided that in conjunction with a scaling invariance
property of the model enlight some possibilities for a usage of these techniques with
respect to cost calculation.

In Section 4.3 another two–level hierarchical model is discussed that is based on modu-
lated Poisson point processes introduced in Section 2.3. In particular the mean distance
from a point of the lower–level point process to its nearest neighbour belonging to the
higher–level point process is investigated. For this purpose an efficient estimator is
derived that is based on the algorithms for the simulation of the typical cell introduced
in Chapter 3 and on Neveu’s exchange formula for Palm distributions described in Sec-
tion 2.2 as it has been the case for the shortest path length and the mean subscriber
line length. Some numerical examples are given and it is discussed how to perform an
efficient cost analysis by the usage of a scaling invariance effect.

In Chapter 5 some methods for software tests with respect to implementations that
have a random input or output are discussed. In this context tests that are based on a
statistical oracle are a key concept which is introduced in Section 5.2. Some examples
for implementations of the algorithms described in Chapters 3 and 4 are provided.
In Section 5.3 the statistical oracle is combined with a technique called metamorphic
testing in order to obtain a second class of software tests for implementations with
random input or output. Also, for this class of tests, examples are given based on
implementations of simulation algorithms for the typical cell of different tessellation
models. A third class of tests is derived in Section 5.4 by combining a statistical oracle,
a metamorphic relation and another given (and already tested) implementation, the
so–called gold standard. After an introduction of this testing technique some examples
for applications of this class of tests are provided. The chapter ends with a summary
of the testing methods and a comparison between them.

The topic of Chapter 6 is the introduction of some concepts of morphological image anal-
ysis. They will be used in Chapter 8 to preprocess given sample images from electron
microscopy in order to allow for a subsequent statistical analysis and fitting of suitable
random tessellation models. In Section 6.1 digital grids and different types of digital
images like grey scale or RGB–images are defined. Additionally, methods of image fil-
tering are discussed with a special regard to low–pass filters like average or Gaussian
filters. Section 6.2 is dedicated to the explanation of a specific algorithm for morpho-
logical image analysis, the skeletonization by morphological operators which reduces
a given structure to a new structure with line width one that still resembles features
including the number of connected components in the old structure. A method that
is closely related to skeletonization is morphological watershed transformation which is
discussed in Section 6.3. In particular the algorithm of watershed transformation by
immersion is explained in detail. In the last section of this chapter further morpho-
logical operations are described that are applied in Chapter 8 in order to enhance the
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results. Such operations comprise, for example, an iterative pruning and merging of the
obtained binary structures.

In Chapter 7 a method for the fitting of random tessellation models to given network
structures is introduced. This method is applied in Chapter 8 to examples from cell
biology but due to its universality it can be applied to other types of network structures
like urban infrastructure data (cmp. [31], [92]). In Section 7.1 the used characteristics
of the input data as well as unbiased estimators for these characteristics are discussed.
The fitting procedure itself together with the choice of the distance function and the
optimal model is explained in Section 7.2. The pool of possible tessellation models
considered in later applications consists of Poisson–type basic tessellation models and
either one–fold nestings or one–fold superpositions.

Chapter 8 shows two applications from cell biology for the methods described in Chap-
ters 6 and 7. In the first application, discussed in Section 8.1, a statistical analysis
of keratin filament structures is performed. Such keratin filament structures are found
in the cytoskeleton of epithelia cancer cells and play an important role in cell mech-
anisms like motility and structural integrity. The main goal of this application is to
detect and describe morphological changes in the keratin network architecture that are
caused by the injection of substances that enhance tumor growth. After the description
of image acquisition and segmentation a basic statistical analysis of the filaments by
means of investigating their orientations and lengths is performed. One–fold nested ran-
dom tessellation models are fitted to the network structures using the fitting procedure
described in Chapter 7. The results of this fitting procedure show that indeed there
is a restructuring of the architecture in the keratin network caused by the addition of
tumor–enhancing substances and that it can be qualitatively as well as as quantitatively
described by the mathematical techniques described in this thesis.

In the second example from cell biology, introduced in Section 8.2, actin filament net-
works are investigated that are, as it is the case for the keratin filaments, located in the
cytoskeleton of different types of cells and that are responsible for the regulation of the
elasiticity of whole cells, thereby influencing cell migration. The aim of this analysis is
to determine a random tessellation that is capable of reflecting the basic characteristics
of the network structures given in sample images from electron microscopy. Afterwards,
based on these tessellation models, approximations for characteristics like the elastic
shear modulus are computed that are measuring cell elasticity. In Section 8.2.1 the
applied image segmentation algorithm is described in detail which is based on the mor-
phological watershed transformation given in Section 6.3. The results for the fitting
procedure of a one–fold superposed random tessellation model are documented in Sec-
tion 8.2.2 leading to an optimal tessellation model that is used in Section 8.2.3 in order
to derive estimates for the elastic shear modulus of the cell. These estimations are then
compared to an estimation that is purely based on the actin concentration. Therefore,
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this application demonstrates that the approach of fitting random tessellation models
is capable of providing useful information about various kinds of characteristics for
biological cells.

In Chapter 9 the results of this thesis are summarized and an outlook to further in-
teresting questions and problems is given. In particular, methods for the simulation
of the typical cell for other types of random tessellation models like the aggregated
Poisson–Voronoi tessellation are discussed. Possible extensions of the described meth-
ods for cost analysis of two–level hierarchical models, for example, with respect to the
determination of the distribution of the used characteristics, are explained. A short
outlook is given with regard to dynamic modelling and applications for dynamics as
well as for cost analysis in cell biology.

This thesis is wrapped up by an appendix that introduces some useful basic mathemat-
ical definitions. In the first two parts some notions from set theory and topology like
sets, metric spaces and denseness are given. In the last two parts basic concepts from
measure theory and probability calculus like measures, distributions and the central
limit theorem are explained.

1.3 The GeoStoch Library

The software developed in the course of this thesis is embedded in the GeoStoch library
which is a joint project between the Institute of Applied Information Processing and the
Institute of Stochastics at Ulm University ([62], [65]). This JAVA–based software library
comprises methods from stochastic geometry, spatial statistics and image analysis.

The basic idea behind this software project is to offer a core of general methods that are
useful for different kinds of applications thereby ensuring a high degree of reusability.
Additionally, the library is constantly extended in the course of the various research
projects, for example in the cooperation with France Télécom R&D and in the projects
concerning applications in cell biology. Further information about the GeoStoch soft-
ware library and some of the projects that are applying the software can be found on
its internet domain http://www.geostoch.de.
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Chapter 2

Random Tessellations and Basics

from Stochastic Geometry

The aim of this chapter is to introduce the notion of a random tessellation in IR2 and to
briefly discuss some particular tessellation models as well as to study their properties.
Note that in the following we will concentrate on IR2, but most of the definitions given
here can be canonically extended to IRd.

In order to define random tessellations in IR2 some basic concepts of stochastic geometry
have to be introduced first. Therefore, in the first parts of this chapter (Sections 2.1
and 2.2) we define random closed sets and random point processes. Topics like Palm
distributions and Neveu’s exchange theorem that will become important in Chapter 4
are also discussed there. Afterwards, in Section 2.3 a particuar model for a random
closed set, the Boolean model, is introduced in order to define so–called modulated
Poisson point processes based on these Boolean models. Finally, in Section 2.4 random
tessellations are defined and numerous examples, like Poisson–Voronoi tessellations,
modulated tessellations and iterated tessellations are provided.

For a detailed introduction to the development of stochastic geometry as well as for
a positioning among closely related fields like integral and convex geometry, spatial
statistics, and stereology we refer to [94]. With respect to even more basic concepts
from set theory, topology, measure theory and probability calculus have a look at the
appendix and the references therein. More informations on the topics discussed in this
chapter can be found in the existing literature. In particular, we refer to [70] and [69]
for a study of random closed sets and more specifically of the Boolean model. Random
point processes are discussed in [22], [46], [47], [61], and [108], whereas a profound dis-
cussion of stochastic geometry including models for more general settings can be found
in [2], [12], [37], [44], [68], [91], [94], [100], and [101]. Specific information about ran-
dom tessellations and their properties are, for example, given in [68], [72], [71], [78], [94],

21
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and [100]. Finally we mention [55] which, without neglecting the work and contribu-
tions of many mathematicians in former times, can be regarded as the starting point of
stochastic geometry as a mathematical discipline of its own right.

2.1 Random Closed Sets

One of the key elements of stochastic geometry are random closed sets. Examples of
such random closed sets are given by random point patterns and by balls with ran-
dom radius and random center points, respectively. We consider the two–dimensional
Euclidean space IR2 equipped with the Borel–σ–algebra B(IR2), where B0(IR2) denotes
the system of all bounded Borel sets in IR2. The two–dimensional Lebesgue measure
is denoted by ν2(B) for any B ∈ B(IR2). Furthermore, let F , C and K be the family
of all closed sets, the family of all compact sets, and the family of all convex bodies,
respectively. With respect to F we define the Borel–σ–algebra B(F) as the smallest σ–
algebra of F containing all sets {F ∈ F , F ∩ C 6= ∅} for arbitrary C ∈ C. By (Ω,A, IP)
we denote some probability space.

A (A, B(F))–measurable mapping Ξ : Ω → F which maps the probability space
(Ω, A, IP) into the space (F , B(F)) is called a random closed set in IR2. Additionally,
if IP(Ξ ∈ C) = 1 the set Ξ is called a random compact set. By PΞ : B(F) → [0, 1] we
denote the distribution of the random closed set Ξ, where PΞ is given by

PΞ(B) = IP(Ξ ∈ B) = IP({ω ∈ Ω : Ξ(ω) ∈ B})

for any B ∈ B(F). A random closed set Ξ is said to be

• stationary if its distribution PΞ is invariant under translation, i.e., PΞ+x = PΞ for
any x ∈ IR2, where Ξ + x is the random closed set Ξ shifted by the vector x,

• isotropic if PΞ is invariant under rotation, i.e., Pϑ(Ξ) = PΞ for any rotation ϑ :
IR2 → IR2 around the origin o, and

• motion–invariant if Ξ is both stationary and isotropic.

In Section 4.3 the coverage probability pΞ of a random closed set Ξ will play an impor-
tant role. For a stationary random closed set Ξ the coverage probability pΞ is defined
as

pΞ = IP(o ∈ Ξ). (2.1)

Note that pΞ = IE
[
ν2

(
Ξ ∩ [0, 1]2

)]
. In order to introduce ergodicity of a random closed

set Ξ we first have to define the notion of an averaging sequence. Hence a sequence of
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bounded Borel sets B1, B2, ... ∈ B0(IR2) is called an averaging sequence if the following
three conditions hold

• Bn is convex for all n ≥ 1,

• Bn ⊂ Bn+1 for all n ≥ 1,

• lim
n→∞

ρ(Bn) = ∞, where ρ(B) = sup {r ≥ 0 : b(x, r) ⊆ B, x ∈ B}.

A stationary random closed set Ξ ⊂ IR2 with distribution PΞ is called ergodic if for
every averaging sequence B1, B2, ... ∈ B0(IR2) and for all A,A′ ∈ B(F)

lim
n→∞

1

ν2(Bn)

∫

Bn

(PΞ(Ax ∩ A′) − PΞ(A)PΞ(A′))dx = 0,

where Ax = {y + x, y ∈ A} is the set A shifted by the vector x ∈ IR2.

2.2 Random Point Processes

Random point processes in IR2 are a very common model of stochastic geometry for
points randomly scattered in the plane. In this thesis we will concentrate on simple point
processes in the plane, i.e., point processes where at each location at most one point
can be located. Such point processes are used, for example, to model point patterns
that arise in various fields of economy and science like biology, forestry, medicine, and
telecommunication ([10], [25], [27], [57], [58], [59]).

2.2.1 Definition of Random Point Processes

A point x ∈ IR2 can be described by a point measure δx that is defined with respect to
A ∈ B(IR2) by

δx(A) =

{
1 if x ∈ A,
0 if x /∈ A.

Hence δx is a probability measure on the measurable space (IR2,B(IR2)). A finite (or
countably infinite) sum

ϕ =

k∑

i=1

δxi ,

where k ∈ IN0 ∪ {∞}, of such point measures is also a measure on (IR2,B(IR2)). This
measure ϕ is a counting measure with non–negative integer values where the value ’∞’
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is possible as well. The points x ∈ IR2 with ϕ({x}) > 0 are called atoms of the counting
measure ϕ. The set Sϕ = {x ∈ IR2 : ϕ({x}) > 0} of the atoms of ϕ is called the support
of ϕ. Later on we will concentrate on simple counting measures, where ϕ({x}) ≤ 1 for
all x ∈ IR2. Furthermore, we will only regard locally finite counting measures which
means that to every bounded Borel set B ∈ B0(IR2) a non–negative integer value ϕ(B)
is assigned, where

ϕ(B) =
∑

x∈Sϕ

ϕ({x})δx(B).

Let N denote the set of all non–negative locally finite counting measures ϕ : B(IR2) →
IN0 ∪ {∞} and let N denote the smallest σ–algebra of subsets of N that contains all
sets of the form {ϕ ∈ N : ϕ(B) = k}, where k ∈ IN0 and where B ∈ B0(IR2) is an
arbitrary bounded Borel set in IR2.

A random point process X in IR2 is a (A,N )–measurable mapping X : Ω → N that is
defined on the probability space (Ω,A, IP) and that has values in the measurable space
(N,N ). The distribution PX of X is given by

PX(A) = IP(X ∈ A) = IP({ω ∈ Ω : X(ω) ∈ A}),

for any A ∈ N .

The number of points of a random point process X in a set B ∈ B(IR2) is denoted by
X(B). Note that we will sometimes omit the notion random point process and instead
only write point process without changing the meaning.

Often it is useful to regard an alternative representation of a random point process
X which is given by X = {Xn}n≥1. In this case, the point process X is considered
as a sequence of random points X1, X2, ... instead of a measurable mapping into the
measurable space (N,N ). From this point of view, we can regard (simple) random
point processes as a special case of random closed sets introduced in Section 2.1.

2.2.2 Properties of Random Point Processes

A random point process X in IR2 is called

1. stationary if its distribution PX is invariant under translation, i.e., PTxX = PX
for any x ∈ IR2, where TxX(B) = X(B−x) for any B ∈ B(IR2), with B−x denoting
the set B translated by the vector −x ∈ IR2,

2. isotropic if its distribution is invariant under rotation, i. e., Pϑ(X) = PX for any
rotation ϑ around the origin o, and
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3. motion–invariant if X is both stationary and isotropic.

A basic characteristic for any random point process X in IR2 is its intensity measure
ΛX : B(IR2) → [0,∞] that is defined by

ΛX(B) = IEX(B) =

∫

N

ϕ(B)PX(dϕ),

for any B ∈ B(IR2). In the following we will only regard random point processes with a
locally finite intensity measure that is not equal to the zero measure, i.e., ΛX(B) <∞
for any bounded B ∈ B0(IR2) and ΛX(IR2) > 0.

If X is stationary we have that

ΛX(B) = IEX(B) = IETxX(B) = IEX(B−x) = ΛX(B−x)

for arbitrary x ∈ IR2, B ∈ B(IR2), where B−x denotes the set B translated by the vector
−x ∈ IR2. Now, due to the fact that every stationary Radon measure on (IR2,B(IR2)),
i.e., every Borel measure which is finite on compact sets, is a multiple of the Lebesgue
measure (cmp. Lemma A.1) the intensity measure ΛX can be expressed as

ΛX(B) = λXν2(B),

for any B ∈ B(IR2). The constant λX is called the intensity of the point process X.
It can be interpreted as the mean number of points of X per unit area, i.e., λX =
IEX([0, 1)2). Due to the fact that ΛX is locally finite and not equal to the zero measure
we have that λX ∈ (0,∞).

A property of random point processes that will often be used is ergodicity. A random
point process X in IR2 with distribution PX is said to be ergodic if for any averaging
sequence (cmp. Section 2.1) B1, B2, ... ∈ B0(IR2) and for all A,A′ ∈ N

lim
n→∞

1

ν2(Bn)

∫

Bn

(PX(TxA ∩ A′) − PX(A)PX(A′))dx = 0. (2.2)

In Sections 2.2.4 and 2.2.5 we will see examples for ergodic as well as for non–ergodic
random point processes. The property of ergodicity is useful in order to ensure that
statistical averages can be expressed by limits of spatial averages and vice versa. In other
words, if the point process is ergodic there is in a sense no difference between looking at
means with respect to different realisations or with respect to a large sampling window
(cmp. [100], p. 198).

Another important property that is related to stationarity is the following. We call a
stationary random point process X mixing if for all A,A′ ∈ N

PX(TxA ∩ A′) − PX(A)PX(A′) → 0 (2.3)
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for |x| → ∞, where |·| denotes the Euclidean norm. Furthermore, the following theorem
holds that describes a relationship between the ergodicity and the mixing property of
a random point process X.

Theorem 2.1 Let X be a random point process in IR2. If X is stationary and mixing
then X is ergodic.

Proof Consider a stationary and mixing point process X in IR2. Due to the mixing
property of X we have that for all ε > 0 there is an R > 0 such that for all x ∈ IR2 with
|x| > R it holds that |PX(TxA ∩A′) − PX(A)PX(A′)| < ε. By looking at the definition
of ergodicity we obtain that

lim
n→∞

1

ν2(Bn)

∫

Bn

(PX(TxA ∩A′) − PX(A)PX(A′))dx

= lim
n→∞

1

ν2(Bn)

∫

Bn∩{x:|x|≤R}

(PX(TxA ∩A′) − PX(A)PX(A′))dx

+ lim
n→∞

1

ν2(Bn)

∫

Bn\{x:|x|≤R}

(PX(TxA ∩A′) − PX(A)PX(A′))dx

Due to the fact that limn→∞

∫
Bn∩{x:|x|≤R}

(PX(TxA ∩ A′) − PX(A)PX(A′))dx < ∞ and

that ν2(Bn) → ∞ for n → ∞, the first summand converges towards 0 as n→ ∞. The
second summand also converges towards 0 as n→ ∞, because it is only integrated with
respect to x ∈ Bn with |x| > R. Due to the assumption that X is mixing, we therefore
get that the second summand becomes arbitrarily small. In summary, we obtain that
X is ergodic. 2

In order to check for ergodicity and for the mixing property the notion of a semiring
proves to be a useful tool. A semiring in (N,N ) is a non–empty family J ⊂ N of
subsets of N such that

• if E1, ..., En ∈ J then it follows that ∩nk=1Ek ∈ J ,

• if E,F ∈ J and E ⊂ F then there exists a finite sequence {C1, ..., Cn} of sets
in J such that E = C0 ⊂ C1 ⊂ ... ⊂ Cn = F and Di = Ci \ Ci−1 ∈ J for all
i = 1, ..., n.

Note that the family of all subsets of N that have the form

{ϕ ∈ N : ϕ(Ai) ∈ Bi, i = 1, ..., m} (2.4)
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for Ai ∈ B0(IR
2), Bi ∈ B(IR) and m ∈ IN, is a semiring in (N,N ) which is generating

the σ–algebra N .

With respect to ergodicity and mixing properties we can use the semiring described
by (2.4) in the following two lemmas.

Lemma 2.1 A stationary point process is ergodic if and only if (2.2) holds for any
A,A′ ∈ J , where J is a semiring which generates N .

Lemma 2.2 A stationary point process is mixing if and only if (2.3) holds for any
A,A′ ∈ J , where J is a semiring which generates N .

Proofs for Lemmas 2.1 and 2.2 are given in [22] on p. 342.

2.2.3 Palm Distributions and Campbell Measures

With regard to the analysis of random point processes it is often convenient to express
the distribution of a point process X in IR2 conditional to the event that a point of
X is located at a specific location x ∈ IR2. For example, an interesting probability
is of the form IP(X(b(x, r)) = 1| x ∈ X). In other words we want to look at the
probability that in the disc around a location x there is no other point of X under the
condition that x belongs to the point process X. Obviously it is not possible to express
such a probability as a conditional probability in the usual sense since in most cases
IP(x ∈ X) = 0. Hence, there is a need to define an alternative approach in order to
attack this problem. Such an approach is given by the Palm distribution which will be
introduced in the following.

Let X be a stationary random point process in IR2 with finite intensity λX > 0 and
B ∈ B(IR2) with 0 < ν2(B) <∞. Then we call the set function P ∗

X : N → [0, 1] defined
by

P ∗
X(A) =

1

λXν2(B)
IE

∑

x∈SX∩B

X({x})1IA(T−xX), A ∈ N (2.5)

the Palm distribution (with respect to the origin o) of X.

If X is an ergodic point process then its Palm distribution P ∗
X(A) may be interpreted

as the probability that a typical point x ∈ X has the property that T−xX belongs to
A ∈ N . It can be shown that P ∗

X has indeed the properties of a distribution function
and that, due to the stationarity of X, the Palm distribution is independent from the
choice of B ∈ B(IR2). It is also possible to define a Palm distribution P ∗

X with respect
to a general location x ∈ IR2 which is not necessarily the origin.



28 2 Random Tessellations and Basics from Stochastic Geometry

Note that another introduction of the Palm distribution P ∗
X of X can be given as the

Radon density of the Campbell measure with respect to the intensity measure at the
location o.

The Campbell measure CX : N × B(IR2) → [0,∞] is defined by

CX(A×B) =

∫

N

ϕ(B)1IA(ϕ)PX(dϕ) =

∫

N

∑

x∈Sϕ

ϕ({x})1IB(x)1IA(ϕ)PX(dϕ) (2.6)

Note that the Campbell measure can be regarded as a refinement of the intensity
measure ΛX since ΛX(B) = CX(N × B) for all B ∈ B(IR2). Due to the fact that the
intensity measure is locally finite we obtain the following decomposition of CX .

Theorem 2.2 For almost all (with respect to the intensity measure ΛX) x ∈ IR2 there

exists a uniquely determined distribution P
(x)
X on N such that

CX(A× B) =

∫

B

P
(x)
X (A)ΛX(dx) (2.7)

for all A ∈ N and for all B ∈ B(IR2).

For a proof of Theorem 2.2 have a look at [46], pp. 60 and 308. Note that in this

way a general Palm distribution P
(x)
X is defined that is not limited to stationary point

processes. For a stationary point process it holds that P
(x)
X (A) = P ∗

X(Ax) for any
A ∈ N .

The definition of the Campbell measure provided by (2.6) can be seen as a special case
of a more general relationship between the measures P ∗

X and CX given by the refined
Campbell theorem.

Theorem 2.3 (Refined Campbell theorem) Let X be a stationary point process in IR2

with a finite intensity λX > 0 and f : N × IR2 → [0,∞) an arbitrary measurable
function. Then it holds that

IE
∑

x∈SX

X({x})f(X, x) = λX

∫

IR2

IEP ∗

X
f(T−xX, x)dx, (2.8)

where IEP ∗

X
is the expectation with respect to P ∗

X.

For a proof of Theorem 2.3 for instance have a look at Sections 4.1 and 7.1 of [100] and
Chapter 4 of [94]. An immediate consequence of the refined Campbell theorem is given
by the Campbell theorem that is essential for working with point processes.
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Corollary 2.3 (Campbell theorem) Let X be a stationary point process in IR2 with a
finite intensity λX > 0 and f : IR2 → [0,∞) an arbitrary measurable function. Then it
holds that

IE
∑

x∈SX

X({x})f(x) = λX

∫

IR2

f(x)dx. (2.9)

2.2.4 Poisson Point Processes

The Poisson point process is the most prominent example of a point process model.
It reflects the state of complete spatial randomness, where all points are scattered
conditionally uniformly and independently of each other on the plane. Therefore, it is
often used as a reference model or as a basis for the construction of more sophisticated
models like the Matern–cluster model or the Boolean model that will be introduced in
Sections 2.2.5 and 2.3, respectively. In this section the main characteristics of a Poisson
point process are described.

Let X denote a point process in IR2. We call X a Poisson point process in IR2 with
intensity measure ΛX if the following two properties are fulfilled

1. Let B ∈ B0(IR
2) be any bounded Borel set. The number of points X(B) of X

occurring in B is Poisson distributed with mean ΛX(B), i.e.,

IP(X(B) = n) =
ΛX(B)n

n!
exp(−ΛX(B)), n ∈ IN0.

2. Let B1, ...Bk ∈ B(IR2), k ∈ IN, denote k pairwise disjoint Borel sets. The random
variables X(B1), ..., X(Bk) are mutually independent for all k ∈ IN.

In the case of a stationary Poisson point process X (as for any stationary point process)
we have that ΛX(B) = λXν2(B) for an intensity λX ∈ (0,∞). Often, even in insta-
tionary cases, it is possible to express ΛX with respect to the Lebesgue measure via a
density. This means that there exists a Borel–measurable mapping λX : IR2 → [0,∞)
such that

ΛX(B) =

∫

B

λX(x)dx, for all B ∈ B(IR2). (2.10)

Here, λX(x) can be considered as the local intensity of X at a location x ∈ IR2. In
Figure 2.1 realisations of an example for a stationary as well as an example for an
instationary Poisson point process are displayed. The void probabilities of stationary
Poisson point processes are given by

IP(X(B) = 0) = exp(−λXν2(B))
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a) Stationary Poisson point process b) Instationary Poisson point process

Figure 2.1: Realisations of Poisson point processes

for any B ∈ B(IR2) which follows directly from the first property of the Poisson point
process mentioned above by putting n = 0.

A stationary Poisson point process as defined above is always isotropic and therefore
motion–invariant. These properties may be verified by noting that the distributions
remain the same whether one uses a stationary Poisson point process X or its translation
TxX or its rotation ϑ(X) around the origin.

Lemma 2.4 A stationary Poisson point process X is mixing and therefore ergodic.

Proof Let X be a stationary Poisson point process. Furthermore let A,A′ ∈ J , where
J is the semiring given in (2.4). For x ∈ IR2 with |x| sufficiently large we obtain that

PX(TxA ∩A′) = PX(TxA)PX(A′) = PX(A)PX(A′).

Therefore, the stationary Poisson point process X is mixing and due to Theorem 2.1
also ergodic. 2

2.2.5 Other Examples of Random Point Processes

Apart from the Poisson point process defined in Section 2.2.4, there are various other
models for random point processes. Some of them are introduced here.
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The most simpliest point process consists only of a single (deterministic) point x. This
(degenerate) point process will be denoted by δx in the following. It will later be useful,
for example, in the representation of Slivnyak’s theorem (Section 3.1.2).

Based on the Poisson point process some related random point processes X can be
constructed. A first possibility is to take the intensity measure ΛX itself random. For
this purpose we consider N

′

, the set of all locally finite measures η : B(IR2) → [0,∞],
together with its corresponding σ–algebra N ′ which is the smallest σ–algebra such
that η → η(B) is a (N ′

,B(IR))–measurable mapping for any B ∈ B(IR2). We call
a measurable mapping Λ : Ω → N ′ a random measure if it is a mapping from a
probability space (Ω,A, IP) into the measurable space (N

′

,N ′

). This generalization
leads to doubly stochastic Poisson processes or Cox point processes. More formally,
consider an arbitrary locally finite random measure ΛX . We call X a Cox point process
with random intensity measure Λ if

IP(

n⋂

i=1

{X(Bi) = ki}) = IE

(
n∏

i=1

Λki(Bi)

ki!
exp(−Λki(Bi))

)
(2.11)

for any n ≥ 1, k1, ..., kn ≥ 0 and for pairwise disjoint B1, ..., Bn ∈ B0(IR2). Note that the
distribution PX : N ⊗N ′ → [0, 1] of X is induced by the distribution PΛ : N ′ → [0, 1],
where

IP(
n⋂

i=1

{X(Bi) = ki}) =

∫

N ′

n∏

i=1

ηki(Bi)

ki!
exp(−ηki(Bi))PΛX (dη). (2.12)

Hence we are able to describe the distribution of the Cox point process X as a mixture of
the distributions of (not necessarily stationary) Poisson point processes. Furthermore,
we can think of a Cox point process as a two–step random mechanism. In a first
step a realisation η of the random measure Λ is determined according to a distribution
PΛ. Afterwards, in a second step, a Poisson point process is generated according to the
intensity measure η. Some interesting examples of Cox point processes will be discussed
in the course of this thesis, for example in Sections 2.3.2 and 2.4.6.

From the definition of a Cox point process given in (2.11) we can directly deduce the
following lemma which will be useful in Section 2.3.2.

Lemma 2.5 Let X be a Cox point process with stationary random intensity measure
ΛX. Then X is a stationary point process.

A prominent example of a Cox point process that is also an example of a non–ergodic
point process is the mixed Poisson point process. It is defined as a stationary Poisson
point process X, where the intensity λX is randomly chosen. Therefore, the random
driving measure can be described as

ΛX(B) = Y ν2(B)



32 2 Random Tessellations and Basics from Stochastic Geometry

a) Intensity large b) Intensity small

Figure 2.2: Two realisations of a mixed Poisson point process

for any B ∈ B(IR2), where Y is some non–negative random variable on IR. By checking
the definition for ergodicity of a random point process given in Section 2.2.2 it can be
seen that a mixed Poisson point process is non–ergodic (see also [100] on p. 154). A con-
sequence of this fact is that spatial averages over a single realisation are not comparable
to arithmetical averages over a certain number, say n, realisations. Two realisations of
a specific mixed Poisson point process, where Y can only have two different values are
shown in Figure 2.2. Note that a realisation of a mixed Poisson point process always
looks like a realisation of a stationary (and therefore ergodic) Poisson point process
with the corresponding (deterministic) intensity.

Other important examples for random point processes whose construction principles
are based on the Poisson point process are Neyman–Scott processes and Matern hard-
core processes. The general model of a Neyman–Scott point process is provided by a
stationary Poisson point process whose points act as the parent points of the Neyman–
Scott process. Around each parent point, the points of the Neyman–Scott process are
scattered independently and with identical distribution. A special case of the Neyman–
Scott process is the Matern–cluster process, where the points are scattered around a
parent point according to another Poisson point process inside a disc with a fixed ra-
dius R. A realisation of a Matern–cluster process can be seen in Figure 2.3a. Such a
model is often useful in order to model point processes that show a clustering effect,
i.e., for distances below a certain value there is an attraction between point pairs of
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a) Realisation of a Matern–cluster process b) Realisation of a Matern hardcore process

Figure 2.3: Matern–cluster process and Poisson hardcore process

such a distance, whereas for larger distances the points behave independently (cmp.
e.g. [25], [27]).

If, instead of a clustering effect, a hardcore effect is observed the Matern hardcore process
might prove to be a useful model. Here, all the points belonging to the point process
have at least a certain minimal distance (the hardcore distance) to each other. Apart
from this property the points are scattered conditionally uniformly (cmp. e..g [100],
pp. 162–166). A realisation of a Matern hardcore process can be seen in Figure 2.3b.

2.2.6 Marked Point Processes

Marked point processes can be considered as a generalisation of random point processes.
We want to regard marked point processes as random counting measures on IR2 that are
equipped with a mark from the mark space M. In the following M denotes an arbitrary
Polish space and M the σ–algebra of the Borel sets of M.

For the definition of a random marked point process, regard the set NM = N(IR2 ×M)
of all measures ψ : B(IR2) ⊗M → IN0 ∪ {∞} which are locally finite and simple in the
first component. Therefore, each measure ψ ∈ NM can be written in the form

ψ(B × L) =
∑

(x,m)∈Sψ

δ[x,m](B × L), (2.13)
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where B ∈ B(IR2), L ∈ M and where Sψ denotes the support of ψ. So, ψ(B × L)
denotes the number of points x that are located in B and have a mark belonging to L.
Let NM = N (IR2×M) be the smallest σ–algebra containing all subsets of NM that are of
the form {ψ ∈ NM : ψ(B × L) = k}, with B ∈ B0(IR2), L ∈ M, and k ∈ IN0. A random
marked point process XD in IR2 with mark space (M,M) is given by the mapping
XD : Ω → NM, that maps the probability space (Ω, A, IP) into the measurable space
(NM, NM).

The distribution PXD of a marked point process XD is given by

PXD(A) = IP(XD ∈ A) = IP({ω ∈ Ω : XD(ω) ∈ A}) (2.14)

for any A ∈ NM. Analogously to random point processes without marks, we can write
the marked point process XD as XD = {(Xn, Dn)}n≥1 with the measurable mappings

Xn : Ω → IR2 and Dn : Ω → M. This means that instead of representing XD as
a measurable mapping into the space (NM,NM), we can regard it as a tupel of two
sequences {Xn}n≥1 and {Dn}n≥1, where {Xn}n≥1 is a sequence of random (unmarked)
points and {Dn}n≥1 is a sequence of random marks. The marked point process XD is
called independently marked if the sequences {Xn}n≥1 and {Dn}n≥1 are independent
and additionally, if {Dn}n≥1 consists of independent and identically distributed random
variables.

A marked point process XD = {[Xn, Dn]}n≥1 is called

• stationary if PXD = PTxXD , where TxXD = {(Xn + x,Dn)}n≥1 for any x ∈ IR2.

• isotropic if PXD = Pϑ(XD) for all rotations ϑ around the origin o, where ϑ(XD) =
{ϑ(Xn), Dn}n≥1.

• motion–invariant if XD is both stationary and isotropic.

The mapping ΛXD : B(IR2) ⊗M → [0,∞] given by

ΛXD(B × L) = IE (XD(B × L)) , B ∈ B(IR2), L ∈ M (2.15)

is called the intensity measure of XD, where XD(B×L) denotes the number of (marked)
points of XD located in B × L. Note that similarly to unmarked stationary point
processes we can define an intensity λXD for stationary marked point processes by
taking L = M in (2.15).

A stationary marked point process XD with distribution PXD is said to be ergodic if for
any averaging sequence B1, B2, ... ∈ B0(IR2) and for all A,A′ ∈ NM

lim
n→∞

1

ν2(Bn)

∫

Bn

(PXD(TxA ∩A′) − PXD(A)PXD(A′))dx = 0. (2.16)



2.2 Random Point Processes 35

We call a stationary marked point process XD mixing if for all A,A′ ∈ NM

PXD(TxA ∩ A′) − PXD(A)PXD(A′) → 0, for |x| → ∞. (2.17)

2.2.7 Neveu’s Exchange Formula for Palm Distributions

In this subsection Neveu’s exchange formula adapted to (marked) point process in
IR2 is presented. This formula allows to express the relationship of expectations for
functionals of two stationary marked point processes XD and X̃ eD with respect to their
Palm distributions P ∗

XD
and P ∗

eXeD

, respectively.

In order to capture the randomness of such a system of several random processes, we
consider a flow {θx : x ∈ IR2} on the space Ω, i.e., a family of bijective shift operators
θx : Ω → Ω such that θx ◦ θy = θx+y, where ◦ denotes the concatenation operator.
We additionally assume that the mapping f : IR2 × Ω → Ω with f(x, ω) = θxω is
measurable. For x ∈ IR2 let θx be compatible with the shift operator Tx as defined
above, which means that

XD(θxω,B × L) = TxXD(ω,B × L) = XD(ω,B−x × L) , (2.18)

for a given marked point process XD and all B ∈ B(IR2), L ∈ M. Note that we can
obtain the stationarity of XD by assuming that

PXD(θxA) = PXD(θ−1
x A) = PXD(A) , (2.19)

for all A ∈ A and x ∈ IR2, where θxA = {θxω : ω ∈ A} .

Also, using the definition of the operator θx, we introduce the Palm distribution P ∗
XD

for a stationary marked point process XD as a probability measure on the product
σ–algebra A⊗M given by

P ∗
XD

(A× L) =
1

λν2(B)

∫

Ω

∫

IR2×L

1IB(x) 1IA(θxω)X(ω, d(x, g))IP(dω) (2.20)

for any B ∈ B(IR2) with 0 < ν2(B) < ∞. In (2.20) the Palm distribution is defined as
a probability measure with respect to a set A × L, where A ∈ A. On first sight, this
seems to be contrary to the definition of the Palm distribution given in 2.5 with respect
to a set A ∈ N . But note that we are able to transfer (2.5) by refering to a canonical
probability space (Ω,A, IP) into a definition of the Palm distribution in the same spirit
as (2.20). The original formulation of the following theorem can be found in [75] (cmp.
also [53]).
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Theorem 2.4 (Neveu’s exchange formula) Let XD and X̃ eD be two arbitrary jointly

stationary marked point processes in IR2 with mark spaces M and M̃ and intensities λ
and λ̃, respectively. Then, for any measurable function f : IR2 × M × M̃ × Ω → [0,∞),

λ

∫

Ω×M

∫

IR2× eM

f(x, g, g̃, θxω)X̃ eD(ω, d(x, g̃))P ∗
XD

(d(ω, g))

= λ̃

∫

Ω×eM

∫

IR2×M

f(−x, g, g̃, ω)XD(ω, d(x, g))P ∗
eXeD

(d(ω, g̃)) .

(2.21)

2.3 The Boolean Model and Modulated Poisson Point

Processes

A relatively simple but very important model for stationary random closed sets is rep-
resented by the Boolean model. This model is a specification of a germ–grain model
where the germs are formed by a Poisson point process and where the grains are gen-
erated by a sequence of independent and identically distributed random closed sets. In
recent years the Boolean model has been used in various applications, for example, in
material sciences, telecommunication, and biology. A detailed study of it can be found
in [55] and [96]. In [70] and [100] overviews are given. In this thesis Boolean models are
mainly used in order to define modulated Poisson point processes that are modulated
by Boolean models (see Section 2.3.2).

2.3.1 Definition of the Boolean Model

The Boolean model can be considered as a special case of a germ–grain model that
is defined as a marked point process YD = {Yn,Mn} on IR2 if for the corresponding
mark space we have that (M,M) = (F ,B(F)). The point process YD = {Yn,Mn}
is called germ–grain process, where the sequence {Yn}n≥1 is called the germ process
and the sequence {Mn}n≥1 is called the grain process. Often, M0 is called the primary
grain and is a representant of the sequence {Mn}n≥1 in the sense that M1,M2, ... are
independent of each other and identically distributed with respect to M0.

For a formal definition of the Boolean model, regard a stationary Poisson point process
Y = {Yn}n≥1 in IR2 with intensity β > 0. Let {Mn}n≥1 denote a sequence of independent

and identically distributed random compact sets in IR2, where M0 is a random compact
set that has the same distribution as Mn. For any compact set K ⊂ IR2 let

IE(ν2(M0 ⊕K)) <∞,
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a) Balls with fixed radius
b) Rectangles of fixed length and

width and random orientation
c) Random polygons

Figure 2.4: Realisations of Boolean models with different grains

where ⊕ denotes Minkowsky addition (see A.1). Additionally, let the sequences {Yn}n≥1

and {Mn}n≥1 be independent. Then the random closed set Ψ given by

Ψ =
⋃

n≥1

(Mn + Yn)

is called a Boolean germ–grain model.

Note that due to the fact that the Poisson point process Y = {Yn}n≥1 is assumed to
be stationary and independent of the sequence of marks {Mn}n≥1 we can consider the
germ–grain process YD = {Yn,Mn} as a stationary Poisson point process in IR2 with
independent marks. It can be shown that the Boolean model is indeed a stationary
random closed set (cmp. [94], p. 100).

The coverage probability pΨ for a Boolean model can be computed explicitly as ([100],
pp. 64ff.)

pΨ = IP(o ∈ Ψ) = 1 − exp (−βIEν2(M0)) , (2.22)

where β is the intensity of the underlying stationary Poisson point process Y and M0

represents the primary grain.

In the following we will focus on Boolean models with circular grains of a fixed or a
random but bounded radius. But, in general, there are of course numerous possibilities
for the choice of the grains. Figure 2.4 illustrates some of these possibilities by displaying
realisations of Boolean models where the grains are given by balls with a fixed radius, by
rectangles of fixed length and width and random orientation, and by random polygons,
respectively.
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Figure 2.5: Realisation of a modulated Poisson point processes with corresponding
realisation of the Boolean model shown in red

2.3.2 Modulated Poisson Point Processes Based on Boolean

Models

Based on the Boolean model defined in Section 2.3.1 we are able to define modulated
Poisson point processes that are an extension of stationary Poisson point processes and
can be seen as a special type of Cox point processes introduced in Section 2.2.5.

Let Ψ be a Boolean model with finite intensity β > 0 and circular grains with a fixed
radius r. Furthermore, let X be a (planar) Cox point process that has a random driving
measure ΛX which is defined by

ΛX(dx) =

{
λX1dx if x ∈ Ψ,
λX2dx if x /∈ Ψ,

(2.23)

where 0 ≤ λXi <∞ for i ∈ {1, 2} and max{λX1, λX2} > 0. Then we call the Cox point
process X a modulated Poisson point process. We often refer to the Boolean model Ψ
as the corresponding or underlying Boolean model with respect to X. Obviously, the
modulated Poisson point process X with random driving measure ΛX given in (2.23)
can completely be described by the four parameters pΨ, β, λX1, λX2 since the (fixed)
radius r of the Boolean model Ψ can be computed, given β and pΨ, by using (2.22). In
Figure 2.5 a realisation of a modulated Poisson point process is displayed. Note that
an extension to the case where the grains of Ψ have a random but bounded radius is
possible without any problems.
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Lemma 2.6 Let X be a modulated Poisson point process with random driving measure
ΛX given in (2.23). Then X is stationary with intensity λX = pΨλX1 + (1 − pΨ)λX2,
where pΨ is given in (2.22).

Proof From the stationarity of the Boolean model Ψ and the definition of the mod-
ulated Poisson point process X the stationarity of X can directly be deduced using
Lemma 2.5. Let B ∈ B0(IR2) be an arbitrary bounded Borel set. It holds that

IEX(B) = IEX(B ∩ Ψ) + IEX(B ∩ Ψc)

Using the definition of ΛX given in (2.23) and the stationarity of Ψ we obtain that

IEX(B ∩ Ψ) = λX1IE [ν2(B ∩ Ψ)] = pΨλX1ν2(B)

and that
IEX(B ∩ Ψc) = λX2IE [ν2(B ∩ Ψc)] = (1 − pΨ)λX2ν2(B).

Altogether we get that

λXν2(B) = (pΨλX1 + (1 − pΨ)λX2)ν2(B).

Since B is chosen arbitrarily in B0(IR2) the proof is completed. 2

Another important property of the modulated Poisson point process X is provided by
the lemma hereafter.

Lemma 2.7 Let X be a modulated Poisson point process with random driving measure
ΛX given in (2.23). Then X is ergodic.

A proof of this lemma can be given analogously to the proof of Lemma 2.4 using the
semiring defined in (2.4). In particular we have for two sets B1, B2 ∈ B0(IR2) that
the random numbers of points X(B1) and X(B2) are independent if min{|x− y| : x ∈
B1, y ∈ B2} > 2r, where r is the (fixed) radius of the grains of the Boolean model Ψ.

Note that although the modulated Poisson point process is stationary, it is a very
flexible model that is suitable to model a large variety of scenarios. It is possible to
define modulated Poisson point processes in a more general setting using random or
deterministic partitions of the plane (cmp. [15], [16]). With regard to this thesis we
will focus on modulated Poisson point processes with respect to a Boolean model with
circular grains of a fixed or random but bounded radius.
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2.4 Definition of Random Tessellations with Exam-

ples

In this section we turn our attention to the introduction of random tessellations (also
called random mosaics), the particular model of stochastic geometry that is common to
all applications regarded in this thesis. After the definition of a deterministic tessella-
tion we will clarify what is meant by a random tessellation. Some examples for random
tessellations are shown that are used during the following chapters either for model
fitting of network structures or for cost analysis. Among them are the Poisson–Voronoi
tessellation, the Poisson–Delaunay tessellation, the Poisson line (or more general hyper-
plane) tessellation as well as more sophisticated models based on these basic tessellation
models like modulated and iterated tessellations.

2.4.1 Deterministic Tessellations

Consider P as the family of all compact and convex polygons P ⊂ IR2 with int P 6= ∅,
where int P denotes the interior of P . Recall that P is called a (convex) polygon
if it can be represented as the convex hull of a point set {x1, ..., xn} ∈ IR2. Now
regard T = {Pn}n≥1 ⊂ P as a sequence of polygons. The sequence T is said to be a
(deterministic) tessellation if

• int Pi ∩ int Pj = ∅, ∀ Pi, Pj ∈ T with Pi 6= Pj, i.e., {Pn}n≥1 are pairwise non–
overlapping,

• ⋃Pi∈T
Pi = IR2, i.e., the union of polygons covers the plane completely, and

• for any compact set C ∈ C the following statement holds
T (C) = {P ∈ T : P ∩ C 6= ∅} is finite, i.e., T is a locally finite family.

2.4.2 Definition of Random Tessellations

Based on the definition of deterministic tessellations we are able to define a random
tessellation in the following way.

Let T denote the class of all tessellations in IR2. A sequence τ = {Ξn}n≥1 of random
convex polygons is called a random tessellation if

IP
(
{Ξn}n≥1 ∈ T

)
= 1.
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With respect to random tessellations we can define stationarity and isotropy analo-
gously to the definitions for random (marked) point processes, meaning that a random
tessellation τ is stationary if its distribution Pτ is invariant under translation in IR2 and
it is isotropic if its distribution Pτ is invariant under rotation around the origin. If a
random tessellation is both stationary and isotropic it is called motion–invariant.

For many applications it is often very convenient to represent a (stationary) random
tessellation τ = {Ξn}n≥1 as a (stationary) random marked point process in IR2 by intro-
ducing the concept of associated points (see e.g Chapter 4 and in particular Satz 4.3.1
in [94]).

Let α : K → IR2 be a measurable mapping that satisfies

α(K) ∈ K and α(K + x) = α(K) + x (2.24)

for any K ∈ K and x ∈ IR2. For a stationary random tessellation τ = {Ξn}n≥1 we
call α(Ξn) the associated point of the nth cell Ξn, n ≥ 1. Some possible choices of
the associated point are the lexicographically smallest vertex or the nucleus of the cell.
Using the mapping α described in 2.24 we are able to express a stationary random
tessellation τ = {Ξn}n≥1 as a marked point process τX =

∑
n≥1 δ(α(Ξn),Ξon), where Ξo

n =
Ξn − α(Ξn) is called the nth centered cell containing the origin o.

In the course of this thesis both ways of expressing random tessellations are used, either
as a sequence of random convex polygons denoted by τ or as a marked point process,
where the marks are given by the random convex polygons and the locations are given
by the associated points with respect to the marks denoted as τX . Note that this is
not really a difference since we are always able to transfer τ into τX and vice versa
by defining suitable associated points for each random polygon and by looking at the
sequence of random polygons that is induced by τX , respectively.

Suppose that the random tessellation τX =
∑

n≥1 δ(α(Ξn),Ξon) is stationary with positive
and finite intensity λτ = IE#{n : α(Ξn) ∈ [0, 1)2}. Denote by Po the family of all
convex polytopes with their associated point at the origin. The Palm mark distribution
P ∗
τX

of τX is given by

P ∗
τX

(B) = λ−1
τ IE#{n : α(Ξn) ∈ [0, 1)2, Ξo

n ∈ B}

for any B ∈ B(F)∩Po. Notice that a random polytope Ξ∗
τ : Ω → Po, whose distribution

coincides with P ∗
τX

, is called the typical cell of the tessellation τX . Hence, we can think
of the typical cell as a cell that is drawn uniformly with respect to the pool of all cells
available for the random tessellation τX .

With regard to the expected area IEν2(Ξ
∗
τ ) of the typical cell Ξ∗

τ we obtain the following
result which states that the expected area of the typical cell is reciprocal to the intensity
λτ of the random tessellation τX .
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Lemma 2.8 Let τX be a stationary random tessellation with positive and finite inten-
sity λτ and let Ξ∗

τ denote the typical cell of τX . Then it holds that

IEν2(Ξ
∗
τ ) =

1

λτ
=

∫

Po
ν2(C) P ∗

τX
(dC). (2.25)

A proof for this lemma can be found in [95] on pp. 237f.

The cell Ξo
τ of a stationary random tessellation τ = {Ξn}n≥1 that contains the origin o

is often denoted as the zero cell, i.e.,

Ξo
τ = Ξk if o ∈ int Ξk.

With respect to the typical cell Ξ∗
τ and the zero cell Ξo

τ of a stationary random tessel-
lation τX we have the following relationship.

Lemma 2.9 Let τX be a stationary tessellation and let Ξ∗
τ and Ξo

τ be the corresponding
typical cell and zero cell, respectively. Additionally, let f : C → [0,∞) be an arbitrary,
translation–invariant, non–negative and measurable function. Then

IE [f(Ξo
τ )] = λτ IE [f(Ξ∗

τ )ν2(Ξ∗
τ )] . (2.26)

A proof for this lemma using the Campbell Theorem can be found in [95] on pp. 252f.
We can deduce from (2.26) that the distribution of the functional f(Ξo

τ ) of the zero cell
Ξo
τ can be considered as the area weighted distribution of the functional f(Ξ∗

τ) for the
typical cell Ξ∗

τ .

2.4.3 Poisson Line Tessellations

As a first example for a random tessellation we regard Poisson line tessellations. In
order to define them we have to define a line process first.

Let S be the set of all one–dimensional subspaces of IR2 and let L = {L ∈ S : o ∈ L}.
A point process Xℓ in F ′ = F \ {∅} is called a (planar) line process if for the intensity
measure ΛXℓ of Xℓ it holds that

ΛXℓ(F ′ \ S) = 0.

We can define stationarity, isotropy and motion–invariance of line processes analogously
to the case of point processes. If the line process Xℓ is stationary we can disintegrate
ΛXℓ as follows. Suppose that ΛXℓ is locally finite and not equal to the zero measure.
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There exists a constant λXℓ ∈ (0,∞) and a probability measure θ on B(L), called the
orientation distribution of Xℓ, such that

ΛXℓ(B) = λXℓ

∫

L

∫

L⊥

1IB(L + x)ν1(dx)θ(dL) (2.27)

for any B ∈ B(S), where ν1 denotes the one–dimensional Lebesgue measure on the
orthogonal complement L⊥ ∈ L of L ∈ L. Note that (2.27) yields that

λXℓ =
1

2
IEXℓ(L ∈ S : L ∩ b(o, 1) 6= ∅) , (2.28)

i.e., 2λXℓ is the expected number of lines hitting b(o, 1), the disc with center o and unit
radius.

In the following, we will consider the case that Xℓ is a stationary and isotropic Poisson
line process. Then, Xℓ can be represented in the form Xℓ =

∑
n≥1 δℓ(Rn,Vn)

, where
{Rn} is a stationary Poisson point process in IR+ with intensity 2λXℓ and {Vn} is an
independent sequence of independent and identically distributed random variables with
uniform distribution on [0, 2π). For each line ℓ(Rn,Vn), the angle Vn is measured in anti–
clockwise direction between the (positive) x–axis and the outer orientation vector of
the line, whereas Rn denotes the perpendicular distance of the line to the origin. Note
that, for a stationary isotropic line process, (2.27) can be written as

ΛXℓ(B) =
λℓ
2π

∫ 2π

0

∫ ∞

0

1IB(ℓ(r,v))drdv , B ∈ B(S) . (2.29)

Recall that each line ℓ(Rn,Vn) in IR2 can be described by its Hessian normal form
ℓ(Rn,Vn) = {(x, y) ∈ IR2 : x cos Vn + y sinVn = Rn}. It can be shown that the ex-
pected total length IE

∑
n≥1 ν1(ℓ(Rn,Vn) ∩ b(o, 1)) of lines ℓ(Rn,Vn) in b(o, 1) is given by

πλXℓ (cmp. e.g. p. 324 in [100]). Thus, γ = λXℓ is the expected total length of the lines
per unit area and is called the intensity of the random closed set Xℓ =

⋃
n≥1 ℓ(Rn,Vn). In

the following, we will focus on isotropic Poisson line processes but keep in mind that
other choices with respect to the orientation distribution of the lines are also possible.

From the definition of Poisson line processes a definition of Poisson line tessellations is
derived in a canonical way. Let Xℓ be a Poisson line process. The random tessellation
τXℓ induced by Xℓ is called a Poisson line tessellation (PLT). Figure 2.6 shows a realisa-
tion of an isotropic Poisson line tessellation, whereas Figure 2.7 shows two realisations
for anisotropic cases. In Figure 2.7a we can see the so–called Manhattan model, where
the angles of the lines with respect to the x–axis are either 0 or π/2. In Figure 2.7b the
angles of the lines with respect to the x–axis are uniformly distributed on the interval
[0, 1]. Note that, for dimensions greater than two, Poisson line tessellations are called
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Figure 2.6: Realisation of an isotropic Poisson line tessellation

Poisson hyperplane tessellations. An isotropic Poisson line tessellation τXℓ can be de-
scribed completely by the parameter γ which is the intensity of the Poisson line process
Xℓ that induces τXℓ . Recall that γ in this context represents the mean total length of
the lines of Xℓ per unit area.

2.4.4 Poisson–Voronoi Tessellations

One of the most famous examples for a random tessellation is given by the Poisson–
Voronoi tessellation. A Voronoi tessellation is based on a given locally finite set of
points B ⊂ IR2. It uses the nearest neighbour principle. A point belongs to a certain
cell containing a so–called nucleus x ∈ B if its nearest neighbour with respect to B is
x. A very detailed discussion of Voronoi tessellations in general can be found in [78].
Formally, a (deterministic) Voronoi tessellation can be defined as follows.

Let B = {x1, x2, ...} be a locally finite set of points in IR2 whose convex hull convB is
the whole Euclidean plane IR2. For xn, xm ∈ B define the halfplane H(xn, xm) by

H(xn, xm) = {x ∈ IR2 : |x− xn| ≤ |x− xm|}.

Then we call the polygon P (xn) given by

P (xn) =
⋂

m6=n

H(pn, pm) = {x ∈ IR2 : |x− xn| ≤ |x− xn|, ∀ m 6= n} (2.30)
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a) Manhattan model b) Angles uniformly distributed on [0, 1]

Figure 2.7: Realisations of anisotropic Poisson line tessellations

the Voronoi cell of the point xn. The sequence τ = {P (xn) : xn ∈ B} is called the
Voronoi tessellation with respect to B. The point xn is often denoted as the nucleus
of P (xn). Note that due to the assumption given above that convB = IR2, i.e. that the
convex hull of B is the whole Euclidean plane we obtain that the polygons P (xn) are
bounded for any n ≥ 1 (cmp. p. 256 in [94]).

After the definition of a deterministic Voronoi tessellation the Poisson–Voronoi tessel-
lation (PVT) can be defined in a very natural fashion as the Voronoi tessellation τX
that is induced by a Poisson point process X = {X1, X2, ...}, i.e., where X acts as the
(random) set of nuclei. Therefore, a Poisson–Voronoi tessellation can be derived by a
two step mechanism. First we have a Poisson point process X = {X1, X2, ...} and in
the second step a Voronoi tessellation τX is constructed based on X = {X1, X2, ...}. A
realisation of a stationary Poisson–Voronoi tessellation is shown in Figure 2.8a, while a
realisation of an instationary Poisson–Voronoi tessellation is displayed in Figure 2.8b.
Due to the definition we are able to describe a stationary Poisson–Voronoi tessellation
τX by a single parameter γ that reflects the intensity of the generating stationary Pois-
son point process that is the same as the expected number of nuclei in a window of unit
area.

For a Voronoi tessellation τX that is induced by a random point process X (not nec-
essarily Poisson), i.e., whose nuclei are generated by a random point process, it is easy
to see that stationarity, isotropy and motion–invariance of τX directly follow from the
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a) Stationary b) Instationary

Figure 2.8: Realisation of Poisson–Voronoi tessellations

same properties for X, since this is a direct consequence of the construction principle.
The same relationship holds with respect to ergodicity.

Note that it is possible to define a Voronoi tessellation not only with respect to a locally
finite set B of points in IR2 but to more general sets. For example, we can regard a
(locally finite) set B′ of lines in IR2 and construct the Voronoi tessellation τ ′ with respect
to B′. In this case, each line segment that is the result of the lines intersecting each
other forms a Voronoi cell by using the nearest neighbour principle described in (2.30).
Analogously to the case of a Poisson–Voronoi tessellation that is induced by a Poisson
point process we are also able to define a Voronoi tessellation that is induced by the
segments of a Poisson line process introduced in Section 2.4.3. A realisation of such a
Voronoi–tessellation with respect to the lines of a Poisson line process is displayed in
Figure 2.9.

2.4.5 Poisson–Delaunay Tessellations

A tessellation model that is very closely related to Poisson–Voronoi tessellations are
Poisson–Delaunay tessellations or more precisely Poisson–Delaunay triangulations. A
Delaunay tessellation can be considered as the dual graph to the Voronoi tessellation in
the sense that there is a one–to–one relationship between the vertices of the Delaunay
tessellation and the cells of the corresponding Voronoi tessellation.
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Figure 2.9: Realisation of a Voronoi tessellation (blue) induced by the segments of a
Poisson line process (red)

Let B ⊂ IR2 be a set of points that is not collinear, i.e., if xi, xj , xk are three pairwise
different points in B it holds that there does not exist a line with the property that
xi, xj , xk are all located on that line. Furtermore, let τ ′ = {P (xn)} be the Voronoi
tessellation with respect to B. Let Q = {q1, q2, ...} be the set of vertices of τ ′ and
xi1 , ..., xiki be the points in B whose Voronoi cells share the vertex qi. Let

Ti = {x ∈ IR2 : x =

ki∑

j=1

λjxij ,

ki∑

j=1

λj = 1, λj ≥ 0}

and let τ = {T1, T2, ...}. If ki = 3 for all i the set τ is called the Delaunay tessellation
with respect to B.

Note that if ki > 3 for at least one i, the tessellation τ is called a Delaunay pretriangula-
tion. Otherwise we call it a Delaunay triangulation. The term triangulation here means
that every polygon of the tessellation is a triangle. It is easily possible to construct a
triangulation out of a pretriangulation.

The definition of the Poisson–Delaunay triangulation is achieved similarily to the defini-
tion of the Poisson–Voronoi tessellation. Let X = {X1, X2, ...} be a stationary Poisson
point process and let τ ′X be the Poisson–Voronoi tessellation induced by X. Then, the
corresponding Delaunay tessellation τX that is induced by X and τ ′X is called a Poisson–
Delaunay tessellation (PDT). Hence, similarly as for a Poisson–Voronoi tessellation, we
can think of a Poisson–Delaunay tessellation as a two step mechanism. First we have
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a) Stationary b) Instationary

Figure 2.10: Realisations of Poisson–Delaunay tessellations

a Poisson point process X = {X1, X2, ...} and in a second step the Delaunay tessel-
lation is derived that is based on X. A realisation of a stationary Poisson–Delaunay
tessellation is displayed in Figure 2.10a, while a realisation of an instationary Poisson–
Delaunay tessellation is shown in Figure 2.10b. Note that, similarly to the Poisson–
Voronoi tessellation, the stationary Poisson–Delaunay tessellation can be described by
a single parameter γ that reflects the intensity of the generating stationary Poisson
point process. Hence, this parameter describes the expected number of vertices of the
Poisson–Delaunay tessellation per unit area.

As mentioned in the introduction, the Delaunay tessellation can be considered as a dual
graph to a corresponding Voronoi tesssellation in the sense that

1. each triangle of the Delaunay tessellation corresponds to a vertex of the Voronoi
tessellation,

2. each edge of the Delaunay tessellation corresponds to an edge of the Voronoi
tessellation,

3. each vertex of the Delaunay tessellation corresponds to a cell of the Voronoi
tessellation.



2.4 Definition of Random Tessellations and Examples 49

2.4.6 Cox–Voronoi Tessellations Based on a Poisson Line Pro-

cess

Using the concept of doubly stochastic Poisson or Cox point processes introduced in
Section 2.2.5 and Poisson line processes introduced in Section 2.4.3, we are able to
define a Cox point process in IR2 that is located on the (random) lines of a Poisson
line process. More precisely, let Xℓ be a stationary and isotropic Poisson line process
with intensity γ. Then, define the Cox process Xc as a doubly stochastic Poisson point
process with random driving measure ΛXc given by

ΛXc(B) = λℓν1(B ∩Xℓ) (2.31)

for some λℓ > 0, B ∈ B(IR2). The definition of the random driving measure ΛXc

in (2.31) induces that a realisation of Xc can be obtained by first realising a Poisson
line process Xℓ and afterwards realising (linear and stationary) Poisson point processes
with intensity λℓ on the lines of the realisation of Xℓ.

Lemma 2.10 Let Xc be a Cox point process with random driving measure ΛXc defined
in (2.31). Then Xc is stationary and isotropic and the intensity λXc of Xc is given by
λXc = λℓγ.

Proof The stationarity and isotropy of Xc follow directly from the stationarity and
isotropy of Xℓ and from the Poissonian placement of the points of Xc on Xℓ. The
random driving measure ΛXc of Xc given in (2.31) yields for any B ∈ B0(IR2) the
relationship

ΛXc(B) = IEXc(B) = λℓIEν1(B ∩Xℓ) = λℓΛXℓ(B),

where ΛXℓ(B) is the intensity measure of Xℓ. For a stationary and isotropic Poisson
line process Xℓ it holds that

ΛXℓ(B) = IEXℓ(B) = γν2(B).

Hence, we obtain that
ΛXc(B) = λℓγν2(B),

for arbitrary B ∈ B0(IR2). Therefore, Xc has intensity λXc = λℓγ. 2

Note that if we regard Xc with respect to a specific line of Xℓ, it represents a one–
dimensional Poisson point process with intensity λℓ. Hence, we can interpret λℓ as the
mean number of points per unit length of Xℓ. In Figure 2.11b, a realisation of a Cox
point process Xc with random driving measure ΛXc defined in (2.31) is shown which
is based on a realisation of a Poisson line process Xℓ displayed in Figure 2.11a. A
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Voronoi tessellation τXc that is induced by the Cox point process Xc can be obtained
in the canonical way by using the points of Xc as the (random) nuclei of τXc and by
applying the nearest neighbour principle given in (2.30). In Figures 2.11c and 2.11d it
is visualized how such a Cox–Voronoi tessellation (CVT) is obtained.

a) Realisation of a Poisson line process Xℓ b) Realisation of points of Xc on the lines of Xℓ

c) Voronoi cells having points of Xc as nuclei d) Realisation of a Cox–Voronoi tessellation τXc

Figure 2.11: Construction principle for the Cox–Voronoi tessellation τXc

Scaling property

With respect to the Cox–Voronoi tessellation τXc that is induced by a Cox point process
Xc with random driving measure ΛXc given in (2.31) an important scaling property can
be stated. Scaling in this context means that for specific parameter configurations iden-
tical random structures can be observed but on different length scales. More precisely,
consider the parameters of the Cox–Voronoi tessellation given as γ, the parameter of
the Poisson line process Xℓ, and as λℓ, the average number of points of Xc per unit
length of Xℓ, respectively. Then, if we introduce the scaling parameter κ = γ/λℓ, a
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scaling effect is realised for this specific tessellation model (Figure 2.12). Especially for
characteristics of the typical cell Ξ∗

τ of the Cox–Voronoi tessellation τXc this is a useful
property.

For example, assuming κ = γ/λℓ to be constant, the mean perimeter and the square
root of the mean area of the typical cell behave linearly with respect to 1/γ (the mean
edge length for the Poisson line tessellation). This is due to the fact that for constant
κ we are realising identical random structures but on different length scales, where a
suitable measurement for the length scale is the mean edge length of the underlying
Poisson line tessellation. Hence we have that the product of mean perimeter of the
typical cell times γ is constant as well as the product of the square root of the mean
area of the typical cell times γ as long as κ is fixed. Note that, with respect to the
scaling invariance of the square root of the mean area of the typical cell, it is also
possible to provide a proof using Lemmas 2.6 and 2.8.

In this sense a scaling invariance property is given which can be used to partition
the originally two–dimensional parameter space into equivalence classes and to thereby
reduce in a certain sense the number of parameters from two, γ and λℓ, to a single
one κ = γ/λℓ. Additionally, this property provides us with a suitable criterion for the
development of software tests which will be applied in Chapter 5.

Figure 2.12: Scaling effect, same random structures but on different scales

2.4.7 Modulated Tessellations

Based on the Voronoi tessellation and the Delaunay tessellation introduced in Sec-
tions 2.4.4 and 2.4.5, respectively, and based on the modulated Poisson point process
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X with random driving measure ΛX introduced in Section 2.3.2 we are able to construct
more sophisticated tessellation models that are useful for applications like in the field
of telecommunication.

Let X be a modulated Poisson point process with random driving measure ΛX given
in (2.23). Then we call the (random) Voronoi tessellation τX that is induced by X
a modulated Poisson–Voronoi tessellation and, analogously, we call the corresponding
Delaunay tessellation τ ′X which is also induced by X a modulated Poisson–Delaunay
tessellation. A realisation of a modulated Poisson–Voronoi tessellation and a realisation
of a modulated Poisson–Delaunay tessellation are displayed in Figures 2.13a and 2.13b,
respectively. Two special cases of modulated tessellations are given if either λX1 = 0
or if λX2 = 0. If λX1 = 0 we speak about a Swiss cheese model (Figure 2.14a), whereas
the case λX2 = 0 is denoted as an Inner–city model (Figure 2.14b).

Scaling property

Similarly to the scaling property described in Section 2.4.6 for the case of a Voronoi
tessellation τXc induced by a Cox point process Xc, we are able to provide a scaling
invariance effect for a Voronoi tessellation τX that is induced by a modulated Poisson
point process X. Recall that a modulated Poisson point processX as well as the Voronoi
tessellation τX induced by X can be completely described by a vector of four parameters
(pΨ, β, λX1, λX2), where β is the intensity of the germs of the Boolean model Ψ, pΨ is
the coverage probability of Ψ given in (2.22) and λX1 and λX2 are the two intensities
appearing in the definition of the random driving measure ΛX of X given in (2.23).
Now regard the vector κ′ = (pΨ, λX1/β, λX2/β).

Then it holds for two different Voronoi tessellations τ
(1)
X and τ

(2)
X that are induced by

two modulated Poisson point processes X(1) and X(2) with corresponding parameter
vectors (p

(1)
Ψ , β(1), λ

(1)
X1
, λ

(1)
X2

) and (p
(2)
Ψ , β(2), λ

(2)
X1
, λ

(2)
X2

) that a scaling invariance effect is

realised if κ′(1) = κ′(2). Scaling invariance in this case means that, with respect to the
typical cell Ξ∗

τ of τX , it holds that

IE
[
ν1(∂Ξ∗(1)

τ )
]√

β(1) = IE
[
ν1(∂Ξ∗(2)

τ )
]√

β(2), (2.32)

and that √
IE
[
ν2(Ξ

∗(1)
τ )

]√
β(1) =

√
IE
[
ν2(Ξ

∗(2)
τ )

]√
β(2), (2.33)

if κ′(1) = κ′(2). Note that, with regard to the mean number of vertices for the typical cell,
no rescaling has to be performed since it is always equal to 6 and independent of the pa-
rameters used. The relationships (2.32) and (2.33) for the Voronoi tessellation induced
by a modulated Poisson point process X are very similar to the relationships given in
Section 2.4.6 for the Voronoi tessellation induced by a Cox point process Xc. Once more,
we obtain in (2.32) that the mean perimeter times a suitable length scale is constant
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a) Modulated Poisson–Voronoi b) Modulated Poisson–Delaunay

Figure 2.13: Realisations of modulated Poisson–type tessellations with realisations of
corresponding Boolean models in red

for different parameter configurations asuming that a scaling parameter (vector) is kept
constant. A similar relationship for the square root of the mean area is given in (2.33)
which could in this case also be proven using Lemmas 2.6 and 2.8. An implication of
this scaling invariance property is that it suffices to regard a three–dimensional parame-
ter space (pΨ, λX1/β, λX2/β) instead of the originally four–dimensional parameter space
(pΨ, β, λX1, λX2). Thereby a systematic analysis is of course enormously facilitated.

2.4.8 Iterated Tessellations

With regard to applications there is often a need to have a repertoire of possible models
that are more flexible than the tessellation models introduced in Sections 2.4.4–2.4.7.
Such quite basic models often do not reflect the given data to a satisfactory extend.
Thus, these tessellation models must be extended to more sophisticated tessellation
models that are able to cope with real data structures. On the other hand it is obvious
that these models should still be tractable at least from a computational point of view.
Examples for construction principles that lead to more flexible and sophisticated tes-
sellation models are the superposition and the nesting of random tessellations or more
generally the iteration of tessellations. Here, each cell of an initial tessellation is further
subdivided into smaller cells by so–called component tessellations.
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a) Swiss cheese model (λX1
= 0) b) Inner–city model (λX2

= 0)

Figure 2.14: Special cases of modulated Poisson–Voronoi tessellations with realisations
of corresponding Boolean models in red

Let τX0 = {Ξ1,Ξ2, ...} be a stationary random tessellation in IR2 and let {τXn}n≥1 be
a sequence of stationary tessellations τXn = {Ξn1 ,Ξn2, ...} in IR2 that are exchangeable
that means

(τX1 , ..., τXn)
d
= (τXπ(1)

, ..., τXπ(n)
)

for every n and every permutation π : {1, ..., n} → {1, ..., n}. Moreover, let τX0 and
{τXn}n≥1 be independent. Then, the tessellation τX given by

τX = {Ξnν ∩ Ξn : int Ξnν ∩ int Ξn 6= ∅, n, ν = 1, 2, ...}
is called an iterated tessellation in IR2 with initial tessellation τX0 and component tes-
sellations {τXn}n≥1. More specifically, if the component tessellations {τXn}n≥1 satisfy
the condition that τX1 = τX2 = ... we call the stationary iterated tessellation τX a
superposition, whereas if the sequence {τXn}n≥1 of component tessellations consists of
independent and identically distributed stationary tessellations independent of τX0 , we
call τX a nesting.

In Figure 2.15 some realisations of different types of one–fold superpositions are shown.
Note that there is no hierarchy in the two tessellations involved in a superposition,
this means that, for example, a PVT/PLT superposition has the same distribution
as a PLT/PVT superposition with reversed parameters, and that a realisation of a
superposition of a PLT with parameter γ1 by another PLT with parameter γ2 is identical
to a realisation of a PLT with parameter γ1 + γ2.
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a) PLT/PVT superposition b) PLT/PDT superposition c) PLT/PLT superposition

d) PVT/PVT superposition e) PVT/PDT superposition f) PDT/PDT superposition

Figure 2.15: Realisations of one–fold superpositions using PVT, PDT and PLT as basic
models shown in red

Figure 2.16 displays the nine possible models for a one–fold nesting that arise if the
three basic models PVT, PDT, and PLT are possible choices for the initial tessellation
as well as for the component tessellation of an iterated tessellation. Note that it is also
possible to further extend the model of iterated tessellations. A natural extension of
one–fold iterated tessellations is given by a k–fold iterated tessellation, where k ≥ 2.
This means that the cells of a (k − 1)–fold iterated tessellation are further tessellated
(cmp. Figure 2.17 for the cases of a two–fold superposition and a two–fold nesting).
In this thesis we will only focus on one–fold iterated tessellations. Another extension
possibility is to regard a nesting, where the component tessellations do not have to be
identically distributed (but are still independent of each other). Such a model is called
a multitype nesting of tessellations (cmp. [40], [92]). An important variation of a nesting
for tessellations is given by the introduction of a Bernoulli probability pB that represents
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the probability for an initial cell Ξn to be further iterated by a component tessellation.
Figure 2.18 shows some examples of realisations of such a Bernoulli thinning with
parameter pB = 0.75 for different iterated tessellation models.
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a) PLT/PLT b) PLT/PVT c) PLT/PDT

d) PVT/PLT e) PVT/PVT f) PVT/PDT

g) PDT/PLT h) PDT/PVT i) PDT/PDT

Figure 2.16: Realisations of one–fold nestings using PVT, PDT and PLT as basic models
shown in red
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a) Realisation of a PLT/PVT/PDT two–fold

superposition

b) Realisation of a PVT/PVT/PLT two–fold

nesting

Figure 2.17: Examples of two–fold iterated tessellations

a) PLT/PVT b) PVT/PLT c) PVT/PDT

Figure 2.18: Realisations of one–fold nested tessellations with Bernoulli thinning (pB =
0.75)



Chapter 3

Simulation Algorithms for the

Typical Cell of Random

Tessellations

A key component for an analysis of random tessellation models is the typical cell in-
troduced in Section 2.4.2. Briefly, a typical cell Ξ∗

τ of a random stationary tessellation
τX is a random polygon that is distributed according to the Palm mark distribution
P ∗
τX

of the corresponding tessellation τX . More concrete, a realisation of the typical
cell is obtained by drawing uniformly from the pool of all cells available for the specific
tessellation model.

It is important to note that as long as the tessellation models considered are ergodic,
which is the case for the examples we will have a look at, characteristics of the typical
cell can be used to obtain inference about characteristics that are obtained from spatial
averaging in large sampling windows like the mean perimeter of the cells. Hence, we
are able to get information about spatial averages without having to simulate in large
sampling windows and without having to face problems connected with such methods
like occurring edge effects, computer memory problems and difficulties in parallelisation
of computations. Another important advantage of a typical cell approach is that, since
independent and identically distributed samples are obtained, we are able to apply well–
known mathematical facts like the Central Limit Theorem (Theorem A.1) in order to
obtain knowledge at least about the asymptotic behavior of certain estimators and
statistics of interest.

All algorithms for simulations of the typical cell for random tessellation models intro-
duced in this chapter are more or less based on the simulation of Poisson point processes.
Therefore, in Section 3.1 techniques for the simulation of stationary as well as insta-
tionary Poisson point processes are discussed. Slivnyak’s theorem is introduced that

59
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allows the construction of efficient algorithms for the simulation of the typical cell for
random tessellations that are based on Poisson point processes. Finally, a simulation
algorithm for the typical cell of a Poisson–Voronoi tessellation is discussed.

In Section 3.2 a simulation algorithm for the typical cell of a Cox–Voronoi tessellation
defined in Section 2.4.6 is developed. Some results of Monte–Carlo simulations based
on this algorithm are provided. Characteristics of interest for such Monte–Carlo simu-
lations are for example the area, the perimeter or the number of vertices of the typical
cell, in all three cases with respect to distributions and resulting moments.

In Section 3.3 it is described how to simulate the typical cell of a modulated Poisson–
Voronoi tessellation defined in Section 2.4.7. Monte–Carlo simulations are performed
in order to obtain inference about cell characteristics similar as in Section 3.2. Note
that the simulation algorithms introduced in Sections 3.2 and 3.3 will be applied in
Chapter 4 to derive estimations of cost functionals for models based on the random
tessellations involved.

3.1 General Aspects

In this section algorithms for the simulation of Poisson point processes and for the
simulation of the typical cell for a Poisson–Voronoi tessellation are summarized.

3.1.1 Simulation of Poisson Point Processes

With respect to the simulation of stationary Poisson point processes in IR2 we can dis-
tinguish between two different techniques. If the sampling window is known beforehand
a simulation algorithm based on the definition of the planar Poisson point process given
in Section 2.2.4 can be used. In the case that the sampling window is undefined yet or
that we do not want to restrict the simulation to a fixed sampling window a method
called radial simulation is advisable. Both types of simulation are described in the
following.

Simulation in a fixed and bounded sampling window

If the simulation is to be performed in a known fixed and bounded sampling window,
the definition of a stationary Poisson point process introduced in Section 2.2.4 can
directly be used for the construction of a simulation algorithm. More precisely, given
an arbitrary but fixed and bounded sampling window B ∈ B0(IR2) we can realise a
stationary Poisson point process X with intensity λX as follows. First, a Poisson
distributed real–valued random variable X(B) with IEX(B) = λXν2(B) is realised
representing the number of points of X located in B. Afterwards for i = 1, ..., X(B)



3.1 General Aspects 61

the location of each point Xi ∈ X is determined independently of each other and
according to a uniform distribution on B. This means that if B is a rectangle of the
form [a1, b1] × [a2, b2], where a1, b1, a2, b2 ∈ IR and a1 < b1 and a2 < b2, the location of
Xi is given as (Xi1 , Xi2), where Xi1 ∼ U(a1, b1) and Xi2 ∼ U(a2, b2) are both uniformly
distributed. For other shapes of B a rectangle B′ can be regarded with B ⊂ B′ and
a technique of rejection sampling can be applied, i.e., point proposals X∗

i ∈ B′ are
generated but only kept as a point Xi ∈ X if X∗

i ∈ B, otherwise the proposal is
discarded and a new proposal for the i–th point is generated. By performing the
simulation in this way it is assured that the points X1, ..., XX(B) are all conditionally
uniformly distributed on B since P (Xi ∈ A|Xi ∈ B) = ν2(A)/ν2(B) for all subsets A
of B and i = 1, ..., X(B).

Radial simulation of stationary Poisson point processes

An alternative approach to the simulation of stationary Poisson point processes is given
by radial simulation, where radial in this context means that the simulated points have
an increasing distance to the origin. A more general description and mathematical de-
tails for the radial generation of Poisson point processes is provided in [86]. Recall that
a point x = (x1, x2) ∈ IR2 can be represented in polar coordinates as x = (r, z), where
x1 = r cos z and x2 = r sin z. Consider a sequence of random variables {Ri}i≥1 with
R0 < R1 < ... such that {Ri} is a (linear) stationary Poisson point process with param-
eter γ. Furthermore, consider another sequence {Zi}i≥1 of independent and U((0, 2π])–
distributed random variables, independent of {Ri}. Then the sequence {((Ri/π)1/2, Zi)}
is a (two–dimensional) stationary Poisson point process with parameter γ.

Hence, we can generate a stationary Poisson point process radially by simulating inde-
pendent random variables Uj ∼ U(0, 1) and Vi ∼ U(0, 2π) and by putting

Ri = −1

γ

i∑

j=0

logUj (3.1)

and
Zi = Vi. (3.2)

Simulation of instationary Poisson point processes

With respect to the simulation of instationary Poisson point processes a thinning
method can be applied. Let X be an instationary Poisson point process with intensity
measure ΛX which has a representation of the form given in (2.10). Furthermore, for
a bounded sampling window B ∈ B0(IR

2) let λmax = maxx∈B{λX(x)} where we assume
that 0 < λmax < ∞. Then we can generate realisations of X in the sampling window
B as follows.

As it was described above, we generate a realisation of a stationary Poisson point
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process X ′ with intensity λmax in B. Then, for each point x′i of the realisation we per-

form a Bernoulli thinning procedure with parameter pi = λX(xi)
λmax

. This means that x′i is
kept with probability pi and discarded with probability 1− pi. This Bernoulli thinning
is done for each point independently. The point pattern that results from the points
that are not discarded is then a realisation of the instationary Poisson point process X
with intensity measure ΛX .

3.1.2 Slivnyak’s Theorem

For a stationary Poisson point process X it is possible to derive a relationship between
the distribution PX of the Poisson point process and its Palm distribution P ∗

X . This
relationship is given by Slivnyak’s theorem ([98]).

Theorem 3.1 (Slivnyak’s theorem) Let X be a stationary Poisson point process with
distribution PX and Palm distribution P ∗

X. Then the following holds

P ∗
X(X ∈ A) = PX(X + δo ∈ A), A ∈ N , (3.3)

where δo denotes the degenerate point process that consists only of a deterministic point
in o.

A proof of Slivnyak’s theorem can be found for example in [94], pp. 87f. Note that
while in Chapter 2 the point process X has been defined on a general probability space
(Ω,A, IP), we are now regarding the point process on the so–called canonical probability
spaces (N,N , PX) and (N,N , P ∗

X), respectively.

Slivnyak’s theorem provides a very useful representation for the Palm distribution of
stationary Poisson point processes. Hence, we are able to simulate Palm distributions of
stationary Poisson point process by simulating unconditional distributions of stationary
Poisson point processes and by afterwards adding a point at the origin. A direct appli-
cation for Slivnyak’s theorem is the simulation of the typical cell for Poisson–Voronoi
tessellations that is explained in the following.

3.1.3 Simulation of the Typical Cell for Poisson–Voronoi Tes-

sellations

The simulation algorithm of the typical cell Ξ∗
τ for a Poisson–Voronoi tessellation τX

that is introduced in the following is based on the algorithm explained in [86]. We
will later on reuse some ideas of this algorithm for the simulation of the typical cell for
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other Voronoi–type tessellations. The algorithm uses the fact that due to the one–to–
one correspondence between the Poisson–Voronoi cells and their nuclei it is useful for
the simulation of the typical Poisson–Voronoi cell to simulate a point process according
to the Palm distribution P ∗

X of the generating Poisson point process X. In other words,
by using Slivnyak’s theorem introduced in Section 3.1.2, it holds that the typical cell
of a Poisson–Voronoi tessellation τX induced by a Poisson point process X has the
same distribution as the Voronoi cell with nucleus at o that is induced by the point
process X + δo. Therefore, we have to simulate the point process X + δo in order to
obtain a Voronoi cell with nucleus at o that is equal (with respect to its distribution)
to the typical cell of a Poisson–Voronoi tessellation generated by X. In order to derive
such a simulation, we are able to use techniques of radial simulation for Poisson point
processes introduced in Section 3.1.1. We first add a point X0 at the origin. Then, a
Poisson point process is radially simulated by generating random points X1, X2, ... with
an increasing distance to the origin according to the description given in Section 3.1.1.

Construction of an initial cell

An important problem in the efficient simulation of the typical cell Ξ∗
τ for Poisson–

Voronoi tessellations is the construction of an initial cell. In other words, if we regard
the bisectors of (X0, Xi) for i = 1, ..., n we are looking for the smallest n that fulfills
the condition that X0 is completely surrounded by a convex polygon formed by these
bisectors. A procedure for the construction of the initial cell in the Poisson–Voronoi
case is visualized in Figure 3.1. The lines X1X0 and X2X0 form with probability one a
cone S2 with respect to the opposite side of X0. If the nearest point X3 lies inside of
this cone the algorithm stops and an initial cell can be constructed using the bisectors
(X0, X1), (X0, X2) and (X0, X3). Otherwise the cone S3 is taken as the maximal cone
formed by two of the three lines X1X0, X2X0 and X3X0 on the opposite side of X0.
Afterwards the point X4 is taken into account with respect to S3 (Figure 3.1a). This
procedure is repeated until Xi+1 ∈ Si. With probability one this algorithm stops after
a finite number of steps (cmp. [113]) and an initial cell can be constructed by using
the corresponding bisectors (Figure 3.1b). Note that there are other stopping criterions
thinkable for Voronoi tessellations in general which might prove to be more efficient for
specific situations, especially with regard to runtime optimization.

Stopping criterion and construction of the typical cell

After the creation of an initial cell a stopping criterion for the simulation of the typical
cell Ξ∗

τ of a Poisson–Voronoi tessellation τX can be provided ([86]). If dmax denotes
the maximal distance of the vertices for the initial cell to the origin (that is identical
to X0 in this case) then only points that are located inside the disc with radius 2dmax

centered at the origin can influence the shape of the typical cell. Hence, it is sufficient
to simulate points Xi ∈ X until |Xi| > 2dmax. Note that each time a new point Xi

is simulated it is possible that it cuts the initial cell, thereby modifying it and that
thus also the maximal distance is reduced. The final result after fulfilling the stopping
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Figure 3.1: Stopping criterion for an initial cell of the typical cell and its construction

criterion is a realisation ξ∗τ of the typical cell Ξ∗
τ for a Poisson–Voronoi tessellation τX .

3.2 Cox–Voronoi Tessellations Based on Poisson Line

Processes

In Section 2.4.6 a Cox–Voronoi tessellation τXc has been introduced that is induced
by a Cox point process Xc with random driving measure ΛXc given in (2.31). In this
section we present an algorithm for the simulation of the typical cell of such a Cox–
Voronoi tessellation τXc . The algorithm will be used in Section 3.2.3 in order to derive
estimations about characteristics of the typical cell by Monte–Carlo simulation. In
Section 4.2 the algorithm will prove to be useful for the analysis of cost functionals in
two–level hierarchical models based on two Cox point processes. The material presented
in Section 3.2 is based partially on results obtained in [31].

3.2.1 Representation of the Typical Cell

As it is the case for the cells of a Poisson–Voronoi tessellation, we have a one–to–one
correspondence between the cells of the Cox–Voronoi tessellation τXc induced by the
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Cox point process Xc and the generating Cox point process Xc itself that represents the
nuclei of the cells. Therefore, in order to describe the distribution of the typical cell Ξτ

for the Cox–Voronoi tessellation τXc , it is useful to describe the Palm distribution P ∗
Xc

of Xc which is done in the following.

Let Xc be a (stationary) Cox point process with random driving measure ΛXc given
in (2.31) and with intensity λc = λℓγ that is induced by (linear) Poisson point processes
with (linear) intensity λℓ on the lines of a Poisson line process Xℓ with intensity γ.
Furthermore, let ℓ(o,Z0) be a line through the origin with random orientation angle Z0

which is independent of Xc and uniformly distributed on [0, 2π). Given Z0, consider X ′

as a (linear) stationary Poisson point process on ℓ(o,Z0) with (linear) intensity λ, again
independent of Xc. Then, the Palm distribution P ∗

Xc
of Xc has the form

P ∗
Xc(Xc ∈ A) = PXc(Xc +X ′ + δo ∈ A), A ∈ N , (3.4)

where δo is the degenerate point process that consists solely of the (deterministic) point
o (cmp. also [93]). The palm representation given in (3.4) is based on the independent
(and isotropic) placement of the lines of the underlying Poisson line process with respect
to each other as well as on the subsequent independent placement of the points of Xc

on these lines.

Hence, in order to simulate the typical cell Ξ∗
τ of the Voronoi tessellation τXc induced by

Xc we have to simulate the point process Xc +X ′ + δo. Note that, analogously to (3.3),
the processes Xc and Xc + X ′ in (3.4) are regarded with respect to the canonical
probability spaces (Ω,N , P ∗

Xc) and (Ω,N , PXc), respectively. The Voronoi cell with o
as its nuclei is then, with respect to its distribution, identical to the typical cell Ξ∗

τ of
the Cox–Voronoi tessellation τXc induced by Xc.

3.2.2 Simulation Algorithm

Using the representation of the typical cell Ξ∗
τ given in Section 3.2.1, we start our algo-

rithm (Fig. 3.2), by adding a point X0 at the origin o and by the simulation of an initial
line ℓ0 = ℓ(o,Z0) passing through X0 = o with a uniform orientation on [0, 2π). With
respect to X0 = o on ℓ0, the nearest neighbour points X1 and X2 in each direction of ℓ0
then have Euclidean distances D1 and D2 from X0, where D1 and D2 are independent
and Exp(λ)–distributed due to the properties of the one–dimensional Poisson point
process (Figure 3.2a).

Construction of the initial cell

In order to construct an initial cell we then simulate a second line ℓ1. Recall that for the
purpose of simulating a Poisson line process Xℓ radially, i.e., with increasing distance
to the origin, it suffices to simulate independent random variables Tj ∼ Exp(2γ) and
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Zi ∼ U [0, 2π] for each i ∈ {1, . . . , k} and for some k ≥ 1 (cmp. Sections 2.4.3 and 3.1.1).
Then, k simulated lines can be obtained from the pairs (Ri, Zi), where Ri =

∑i
j=1 Tj.

Therefore, a uniformly oriented second line ℓ1 = ℓ(R1,Z1) is simulated, where R1 ∼
Exp(2γ) , and the point of intersection P(ℓ0,ℓ1) between ℓ0 and ℓ1 is computed. Then,
the nearest neighbour points of P(ℓ0,ℓ1), say X3 and X4, are simulated on ℓ1 using the
memoryless property of the one–dimensional Poisson point process on ℓ1. This means
that the distances of the nearest neighbour points in each direction of ℓ1 from the point
of intersection P(ℓ0,ℓ1) are again Exp(λ)–distributed (Figure 3.2b). The four points X1,
X2, X3, and X4, together with the origin X0, can now be used in order to construct a
first initial cell with nucleus at o by constructing the Voronoi cell of X0 with respect to
the set {X1, X2, X3, X4} and their corresponding bisectors to X0 (Figure 3.2c).

Stopping criterion and construction of the typical cell

By using the general construction principle of Voronoi tessellations and similarly as
for the case of the simulation for the typical cell of the Poisson–Voronoi tessellation
described in Section 3.1.3, the initial cell for the typical cell of a Cox–Voronoi tessellation
τXc induced by a Cox point process Xc provides an upper bound for the maximum
distance from X0 to all those lines of Xℓ that can influence the shape of the Voronoi
cell with X0 as its nucleus. This maximum distance equals two times the maximum
distance of all vertices for the initial cell from X0 (Figure 3.2c). Note that it is not
necessary to simulate further points located on ℓo with respect to the simulation of the
typical cell, since these further points on ℓ0 are unable to influence the typical cell. This
is due to the fact that all bisectors of points on ℓ0 with respect to X0 are parallel and
hence have no point of intersection with each other. For ℓ1 this is not true, meaning
that further points have to be simulated with an exponentially distributed distance to
the adjacent point on ℓ1 until the stopping criterion is met, i.e. until the distance of
the simulated points becomes larger than two times the maximum distance of all the
vertices of the initial cell from X0. By simulating further lines ℓi+1 = ℓ(Ri+1,Zi+1) , i ≥ 1
with Ri−1 < Ri and Ri−Ri−1 ∼ Exp(2γ), and by simulating points of Xc on these lines
until the stopping criterion is met, it is possible to generate a cell whose distribution
coincides with the distribution of the typical cell Ξ∗

τ of Xc (Figure 3.2d). With respect
to an efficient implementation it is advisable to adjust the new maximum distance after
having simulated a new line with simulated points on it and after having constructed
the corresponding bisectors with regard to X0. More precisely, if the considered cell is
split by a bisector of one of the newly simulated points, the regarded maximum distance
can possibly be reduced. The whole procedure of reducing the maximum distance is
carried out until the distance of the next simulated line from X0 is bigger than the
maximum distance, which is equal to two times the maximum distance from all vertices
of the regarded cell to X0.
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Figure 3.2: Simulation algorithm for the typical Cox–Voronoi cell Ξ∗
τ induced by Xc

3.2.3 Results of Monte–Carlo Simulations

We now present some results of Monte–Carlo simulations that have been obtained
by an implementation of the algorithm developed in Section 3.2.2. These results were
obtained in cooperation with M. Rösch and are also partially documented in his diploma
thesis ([88]). Of particular interest for the typical cell Ξ∗

τ of a Cox–Voronoi tessellation
τX that is induced by a Cox point process Xc are distributional properties as well as
first–order and second–order moments of cell characteristics such as area, perimeter,
and number of vertices. Additionally, we will examine differences in the behavior of
corresponding characteristics for the typical cell of τXc compared to the typical cell
of a Poisson–Voronoi tessellation with the same intensity, i.e. in particular with the
same mean area. Due to the scaling invariance property of τXc that has been explained
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in Section 2.4.6 we mostly reduce ourselves to an examination of results for the one–
dimensional parameter κ = γ/λ instead of the vector (γ, λ).
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Figure 3.3: Histograms for characteristics of the typical Cox–Voronoi cell

Distributional properties

For the Monte–Carlo simulations leading to the results shown in the following we used
n = 2,000,000 iterations. Although this seems to be quite a large number, for some
specific evaluations, especially with respect to a comparison to characteristics for the
typical cell of a Poisson–Voronoi tessellation, such a large number of iterations proved
to be necessary in order to ensure sufficient accuracy. In Figure 3.3 histograms for the
area ν2(Ξ

∗
τ ), the number of vertices η(Ξ∗

τ), and the perimeter ν1(∂Ξ∗
τ ) of the typical

Cox–Voronoi cell Ξ∗
τ are displayed, where γ = 0.125 and κ = 20 or κ = 120, respec-

tively. At first sight, the area in both cases seems to be similar to a γ–distribution (see
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Appendix A.4), whereas the histograms for the perimeter of the typical cell look like
a histogram of a normal distribution. The histograms of the number of vertices seem
to have a similar shape compared to the ones for the area, but of course in a discrete
setting. Note furthermore that the modes for histograms of the vertices coincide with
the expected value IEη(Ξ∗

τ ) = 6 of the theoretical distributions. For other choices of the
parameter κ, the histograms look very similar. Recall that due to the scaling invariance
property, the histograms have identical shapes as long as κ remains fixed. Only the
scales may change of course (except for the number of vertices, where even the scale
stays the same).

First–order and second–order moments

In Table 3.1 results for functionals f(Ξ∗
τ ) of the typical Cox–Voronoi cell Ξ∗

τ are shown,
where the functional f(Ξ∗

τ) represents either the area ν2(Ξ∗
τ ), the perimeter ν1(∂Ξ∗

τ ), or
the number of vertices η(Ξ∗

τ ). Apart from the expectations IEf(Ξ∗
τ ), also the variances

Varf(Ξ∗
τ ) as well as the coefficients of variation cvf(Ξ∗

τ ) = 100
√

Varf(Ξ∗
τ )/IEf(Ξ∗

τ ) (i.e.,
standard deviation times 100 divided by expectation) are displayed in Table 3.1. Results
are shown for different values of γ and for fixed parameter κ = γ/λ = 50. Recall that
for different values of γ and fixed κ, the moments IEf(Ξ∗

τ ) and Varf(Ξ∗
τ ), respectively,

are related to each other by scaling. For example, IEη(Ξ∗
τ ) is independent of γ, whereas

IEν1(∂Ξ∗
τ ) and

√
IEν2(Ξ∗

τ ) behave linearly with respect to 1/γ. The scaling properties
mentioned are reflected by the simulated estimates given in Table 3.1. In particular,
the coefficients of variation displayed in Table 3.1 are almost constant for different val-
ues of γ as long as κ is kept fixed. In Table 3.2, the dual case is considered, meaning
that γ is fixed, while κ is variable. By the same scaling properties as mentioned above,
the simulated estimates given in Table 3.2 can be used in order to compute estimates
for IEf(Ξ∗

τ), Varf(Ξ∗
τ), and cvf(Ξ∗

τ ) for any κ ∈ {10, 20, 30, 40, 50, 60, 90, 120} and γ
arbitrarily chosen. For example, for κ = 40 and γ = 0.25, we would get the estimates
6.002, 100.712, and 640.1525 for IEη(Ξ∗

τ), IEν1(∂Ξ∗
τ ), and IEν2(Ξ∗

τ ), respectively. If we
would like to consider some κ 6∈ {10, 20, 30, 40, 50, 60, 90, 120}, estimates could either
be determined by interpolation or extrapolation from the data given in Table 3.2, or by
simulation for the value of κ under consideration and for some fixed γ and, afterwards,
for the desired values of γ, by using scaling properties. Moreover, looking at the esti-
mates for IEη(Ξ∗

τ) given in Table 3.2, we see that these estimates are almost identical
to 6 for any κ, which is in confirmation with the scaling invariance of IEη(Ξ∗

τ ). The
estimates for the variances Varη(Ξ∗

τ ) seem to slightly decrease for increasing scaling pa-
rameter κ. On the other hand, the estimates for expectations and variances of perimeter
and area, respectively, are increasing for an increasing κ, whereas the estimates for the
coefficients of variation decrease for an increasing κ.

Comparison to PVT

For the purpose of analysing characteristics of the typical cell Ξ∗
τ for a Cox–Voronoi

tessellations τXc it is very interesting to compare them to characteristics for the typical
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Table 3.1: Estimates for first–order and second–order moments for κ = 50 and different
values of γ

γ IEf(Ξ∗
τ ) Varf(Ξ∗

τ ) cvf(Ξ∗
τ )

0.125 6.000 1.892 22.925
0.25 6.001 1.896 22.945
0.4 5.998 1.896 22.957

η(Ξ∗
τ) 0.5 5.999 1.897 22.959

0.8 6.000 1.895 22.943
1.0 6.001 1.896 22.945

1.25 6.001 1.900 22.970
1.5 6.001 1.900 22.970

0.125 225.207 3912.919 27.776
0.25 112.617 976.756 27.752
0.4 70.370 382.203 27.782

ν1(∂Ξ∗
τ ) 0.5 56.297 244.286 27.763

0.8 35.205 95.521 27.762
1.0 28.165 61.139 27.762

1.25 22.540 39.168 27.766
1.5 18.766 27.134 27.758

0.125 3198.954 3747622.689 60.516
0.25 799.828 233774.327 60.451
0.4 312.300 35711.831 60.511

ν2(Ξ
∗
τ ) 0.5 199.882 14625.775 60.504

0.8 78.172 2234.666 60.472
1.0 50.026 914.832 60.461

1.25 32.040 375.760 60.501
1.5 22.212 180.516 60.488
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Table 3.2: Estimates for first–order and second–order moments for γ = 0.125 and
different values of κ

κ IEf(Ξ∗
τ ) Varf(Ξ∗

τ ) cvf(Ξ∗
τ)

10 5.998 2.088 24.091
20 6.001 1.981 23.454
30 6.002 1.939 23.200

η(Ξ∗
τ ) 40 6.002 1.915 23.056

50 5.999 1.892 22.929
60 6.000 1.883 22.870
90 5.999 1.863 22.752

120 6.000 1.850 22.669

10 100.500 1000.239 31.469
20 142.271 1771.053 29.580
30 174.355 2501.238 28.684

ν1(∂Ξ∗
τ ) 40 201.424 3210.422 28.130

50 225.207 3912.919 27.776
60 246.843 4599.240 27.474
90 302.432 6640.160 26.944

120 349.528 8637.773 26.590

10 639.216 197578.455 69.538
20 1280.290 688685.388 64.819
30 1920.488 1447118.677 62.638
40 2560.610 2467092.919 61.340

ν2(Ξ∗
τ ) 50 3198.953 3747622.689 60.516

60 3840.243 5272317.126 59.792
90 5758.732 11386016.845 58.595

120 7684.181 19751363.890 57.836
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Table 3.3: Expected perimeters of Ξ∗
τ ′ and Ξ∗

τ provided that IEν2(Ξ∗
τ ′) = IEν2(Ξ∗

τ ) = 100

κ γ λ λp CVT PVT

10 0.3162 0.03162 0.0100 39.731 40.000
20 0.4472 0.02237 0.0100 39.785 40.000
30 0.5477 0.01826 0.0100 39.793 40.000
40 0.6325 0.01581 0.0100 39.807 40.000
50 0.7071 0.01414 0.0100 39.832 40.000
60 0.77460 0.01291 0.0100 39.834 40.000
90 0.9487 0.01054 0.0100 39.848 40.000

120 1.095 0.00913 0.0100 39.879 40.000

cell Ξ∗
τ ′ for a suitable Poisson–Voronoi tessellation τ ′X , where suitable means that the

typical cell Ξ∗
τ ′ of the Poisson–Voronoi tessellation has the same mean area as the

typical cell Ξ∗
τ of the Cox–Voronoi tessellation. Such a comparison is of interest since

the Poisson–Voronoi tessellation can be considered as the limit (in the sense of weak
convergence) of a sequence of Cox–Voronoi tessellations, having all the same mean area
and monotonously increasing coefficient κ as κ → ∞. Unfortunately, we are not able
to observe characteristics for the typical cell of a Cox–Voronoi tessellation if κ becomes
too large since this means that too many lines have to be simulated in order to obtain
the tessellation. Therefore, we restrict the following analysis to κ ≤ 120. Especially
interesting is the comparison of the expected perimeter IEν1(∂Ξ∗

τ ) of the typical cell Ξ∗
τ

for a Cox–Voronoi tessellation with the expected perimeter IEν1(∂Ξ∗
τ ′) of the typical cell

Ξ∗
τ ′ of a Poisson–Voronoi tessellation with the same intensity. Same intensity here means

that λc = λp, where λc = λγ is the intensity of the Cox line process and λp represents
the intensity of the Poisson point process, respectively. Recall that for the typical cell
Ξ∗
τ ′ of a Poisson–Voronoi tessellation with intensity λp it holds that (cmp. [78])

IEν2(Ξ
∗
τ ′) =

1

λp
, IEν1(∂Ξ∗

τ ′) =
4√
λp
, IEη(Ξ∗

τ ′) = 6 .

In particular, IEη(Ξ∗
τ ′) = IEη(Ξ∗

τ ) and, assuming that λp = λγ, we have IEν2(Ξ
∗
τ ′) =

IEν2(Ξ∗
τ ). Furthermore, we are able to compare the expected perimeter IEν1(∂Ξ∗

τ ′) to the
estimate for IEν1(∂Ξ∗

τ ) obtained by the simulation algorithm described in Section 3.2.2.
Some results of Monte–Carlo simulations are displayed in Tables 3.3 and 3.4, where the
expected areas IEν2(Ξ

∗
τ ′) and IEν2(Ξ∗

τ ) coincide, being equal to 100 and 625, respectively.
Similar results are obtained for other values of 1/λp, where we can observe the following
qualitative behavior. Estimates for the expected perimeter of the typical Cox–Voronoi
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Table 3.4: Expected perimeters of Ξ∗
τ ′ and Ξ∗

τ provided that IEν2(Ξ∗
τ ′) = IEν2(Ξ∗

τ ) = 625

κ γ λ λp CVT PVT

10 0.1265 0.01265 0.00160 99.312 100.000
20 0.1789 0.00895 0.00160 99.407 100.000
30 0.2191 0.00730 0.00160 99.472 100.000
40 0.2530 0.00633 0.00160 99.518 100.000
50 0.2828 0.00566 0.00160 99.593 100.000
60 0.3098 0.00516 0.00160 99.598 100.000
90 0.3795 0.00422 0.00160 99.615 100.000

120 0.4382 0.00365 0.00160 99.699 100.000

cell increase with respect to an increasing scaling parameter κ but it seems that they are
in any case smaller than the expected perimeter of the typical cell of a Poisson–Voronoi
tessellation of the same intensity. It might be difficult to come up with an analytical
proof of this fact but a possible explanation of this interesting behavior could be that
the typical cell of the Cox–Voronoi tesellation is more regularly shaped than the typical
cell of the Poisson–Voronoi tessellation, because two edges of the typical Cox–Voronoi
cell can be parallel with some positive probability. In the case of a Poisson–Voronoi
tessellation this probability equals zero.

3.3 Voronoi Tessellations Based on Modulated Pois-

son Point Processes

A third kind of the typical cell for Voronoi tessellations is the typical cell Ξ∗
τ of a

Voronoi tessellation τX that is induced by a modulated Poisson point process X with
random driving measure ΛX introduced in Sections 2.3.2 and 2.4.7. Apart from being an
interesting mathematical object to analyse, the typical cell of Voronoi tessellations based
on such modulated Poisson point processes has, for example, a considerable importance
in the modelling of telecommunication networks on a nationwide scale. Here, they
can represent structures like typical serving zones of antennas in mobile scenarios or
of Wired Center Stations, a specific type of telecommunication equipment in access
networks. The results of Section 3.3 are partially based on results obtained in [28].
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3.3.1 Representation of the Typical Cell

We can describe the typical cell Ξ∗
X of a modulated Poisson–Voronoi tessellation τX

as follows. Let the modulated Poisson point process X have random driving measure
ΛX given in (2.23) and let Ψ be the corresponding Boolean model. Consider the Palm
distribution Q∗ of the stationary random measure ΛX (cmp. p. 229 in [100]) and denote
by X∗ a Cox point process with random driving measure ΛX∗ having distribution Q∗,
where

Q∗(·) =
λX1

λX
IP(ΛX ∈ ·, o ∈ Ψ) +

λX2

λX
IP(ΛX ∈ ·, o /∈ Ψ). (3.5)

The Palm distribution Q∗ of ΛX∗ given in (3.5) has an alternative representation as
(cmp. also [93])

Q∗(·) = pcIP(ΛX ∈ · | o ∈ Ψ) + (1 − pc)IP(ΛX ∈ · | o /∈ Ψ), (3.6)

where

pc =
pΨλX1

λX
(3.7)

is the conditional coverage probability pc = P ∗
X(o ∈ Ψ) of the origin o by the Boolean

model Ψ with respect to the Palm probability measure P ∗
X , which means conditional to

the event that at the origin a point of X is located. Recall that pΨ was defined in (2.22)
and that it represents the (unconditional) coverage probability of o by the Boolean
model Ψ, whereas λX is the intensity of X given in Lemma 2.6. Note that (3.6) can be
obtained by an application of Bayes’ Rule (cmp. p. 21 in [19]) and that (3.5) follows
from (3.6) by using the definition of conditional probabilities. Note furthermore that
in (3.5) as well as in (3.6) we are using the general probability space (Ω,A, IP) due to
the fact that we have two random objects (ΛX and Ψ) referring to it.

With respect to its Palm probability measure P ∗
X , the Cox point process X has then

the same distribution as δo +X∗ has with respect to the original probability measure,
i.e.,

P ∗
X(X ∈ ·) = IP(X∗ + δo ∈ ·). (3.8)

We can deduce the representation provided in (3.8) from the fact that, given a realisation
η of the random driving measure of X, the points of X are placed independently of
each other which allows a representation similar to Theorem 3.1. Thus, we obtain that
the typical cell Ξ∗

τ of τX has the same distribution as the Voronoi cell with nucleus at
o that is induced by the point process X∗ + δo.

3.3.2 Simulation Algorithm

By using (3.5)–(3.7) we are able to obtain a theoretical basis for the simulation of the
typical cell Ξ∗

τ for a modulated Poisson–Voronoi tessellation τX induced by a modulated
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Poisson point process X. It is indicated by (3.8) that the typical cell of τX is equivalent
(with respect to its distribution) to the Voronoi cell with nucleus at o of the point
process X∗ + δo. Therefore, a way to get a realisation of the typical cell of τX is to
simulate the modulated Poisson point process X∗ = {X∗

n}n≥1 with a random driving
measure that has distribution Q∗ given in (3.5). Note that due to (3.5) in order to
simulate X∗ we have to simulate the Boolean model Ψ∗, conditional to the events that
the origin is covered by Ψ or not. This means that Ψ∗ is simulated conditional to
the event that o ∈ X, thereby inducing corresponding probabilities for o ∈ Ψ and
o /∈ Ψ according to (3.7). The simulation of X∗ and Ψ∗ is performed radially, i.e., with
increasing distance to o and in an alternating fashion between the points of X∗ and
the germs of Ψ∗. As an initial step a point X∗

0 is placed at the origin (Figure 3.4a).
Thereby, the degenerate point process δo consisting of a (deterministic) point in o is
represented (cmp. 3.8). Afterwards, it is determined by a Bernoulli experiment with
success probability pc defined in (3.7) whether X∗

0 is covered by Ψ or not. In case that
o ∈ Ψ the distance of Y ∗

1 , the germ of Ψ∗ which is nearest to X0, to the origin has
to be less than or equal to r, the (fixed) radius of the germs of Ψ∗. Otherwise, i.e.,
in case that o /∈ Ψ, the distance of Y ∗

1 to o has to be bigger than r. Therefore, we
have to simulate the distance of the first germ Y ∗

1 to the origin conditional to o ∈ Ψ
or o /∈ Ψ, respectively (Figure 3.4b). A practical way to perform such a conditional
simulation is to generate a proposal distance R1 of the first germ Y ∗

1 to the origin
according to (3.1) with γ = β. The proposal distance is accepted or rejected based on
the conditions R1 ≤ r or R1 > r, respectively. In case of a rejection another proposal
distance R1 of Y ∗

1 to o is generated and the procedure is repeated until a proposal
distance is accepted. After the generation of the distance R1 of Y ∗

1 to o an angle Z1 is
simulated according to (3.2). Then, further points Xi = (Ri, Zi) are simulated radially
by using (3.1) and (3.2) with intensity γ = max{λX1, λX2}. For each of these points it
is checked whether it is covered by Ψ∗ or not (Figure 3.4c). This check is performed by
simulating further germs Y ∗

j of Ψ∗ until either the distance of a germ to Xi becomes
smaller than or equal to r or if the distance of Y ∗

j to o becomes greater than |Xi| + r,
where |Xi| is the distance of Xi to the origin. In the first case, clearly, Xi is covered
by Ψ∗, in the second it is not. After we have checked whether Xi is covered by the
conditional Boolean model Ψ∗, in one of the two cases a thinning procedure has to
be performed (cmp. Section 3.1.1). So, if without loss of generality λ1 > λ2 and
Xi /∈ Ψ∗ then the probability of discarding Xi is given by 1λ2/λ1. Altogether, this
method simulates X∗ = {X∗

n}n≥1 by an alternating simulation of a stationary Poisson
point process Xmax with intensity γ = max{λX1 , λX2} and a conditional Boolean model
Ψ∗ and by applying the thinning procedure described above (Figure 3.4d). Note that
an unconditional simulation of a (stationary) modulated Poisson point process in the
plane can be done in a similar way by an alternating radial simulation of Xmax and the
(unconditional) Boolean model Ψ.
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Construction of an initial cell

With respect to the construction of an initial cell for the typical cell of a Voronoi
tessellation that is induced by a modulated Poisson point process we are able to apply
methods analogously to the case of a simulation algorithm for the typical cell of a
Poisson–Voronoi tessellation. This means that as it has been explained in Section 3.1.3
given a nucleus X∗

0 and two other points X∗
1 and X∗

2 , with probability one, we are able
to construct a cone S2 that is formed by the lines X∗

1X
∗
0 and X∗

2X
∗
0 with respect to the

opposite side of X∗
0 (Figure 3.1a). If X∗

3 , the next point to be considered, is located in
S2 an initial cell can be constructed. Otherwise a new cone S3 is taken as the maximal
cone formed by two of the three lines X∗

1X
∗
0 , X∗

2X
∗
0 and X∗

3X
∗
0 on the opposite side

of X∗
0 . Afterwards another point X∗

4 is considered and the procedure is repeated until
the cone Si is finally hit by a point X∗

i+1 which happens with probability one after
a finite number of steps. Then an initial cell can be constructed using the bisectors
(Figure 3.1b).

Stopping criterion

The stopping criterion for the simulation of the typical cell for a Voronoi tessellation
that is induced by a modulated Poisson point process is analogous to the stopping
criterion for the typical cell of Poisson–Voronoi tessellations given in Section 3.1.3. If
dmax denotes the maximal distance of the vertices of the initial cell to the origin (that
is identical to X0) then the simulation of the points X∗

i ∈ X∗ has to be continued until
the distance of X∗

i is bigger than 2dmax (Figure 3.5). Note that dmax might be reduced
during alterations of the cell (Figures 3.5b and 3.5c) and that therefore the stopping
criterion should be adapted accordingly in order to ensure faster runtimes. The final
result after fulfilling the stopping criterion is a realisation ξ∗τ of the typical cell Ξ∗

τ for a
modulated Poisson–Voronoi tessellation τX (Figure 3.5d).

Modifications for random radii

So far we simulated the typical cell Ξ∗
τ of Voronoi tessellations τX induced by a mod-

ulated Poisson point process X with respect to the assumption that the grains of the
underlying Boolean model Ψ have a fixed radius. If instead the radius R of the cir-
cular grains of Ψ is random but bounded, for example, if R ∼ U [r − δ, r + δ] with
0 < δ < r, two modifications to the algorithm already introduced for a deterministic
radius r have to be applied. It is important to note that, with respect to the simulation
of the modulated Poisson point process X∗, in the case that the origin is covered by
the conditional Boolean model Ψ∗, the grain generated by the first germ Y ∗

1 of Ψ∗ with
random radius R∗

1 needs not necessarily cover the origin o. However, it is possible that
another grain covers o. Therefore, after determining whether X∗

0 = o is covered by
Ψ∗, the conditional radial simulation of the distances of the germs of Ψ∗ to the origin
together with the radii of the corresponding grains has to be performed in a way such
that in the case o ∈ Ψ∗ at least one grain Y ∗

i + M∗
i covers X∗

0 . On the other hand, if
o /∈ Ψ∗ one has to simulate grains Y ∗

i +M∗
i that do not cover X∗

0 until the distance of
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their corresponding germs to X∗
0 is larger than the maximal possible radius rmax (in the

example of uniform distribution above rmax = r+ δ). For the simulation algorithm this
means that given o ∈ Ψ∗ or o /∈ Ψ∗ a proposal sequence of germs {Yi +Mi} is radially
generated for i = 0, .., Imax, where |YImax| > rmax. Afterwards it is checked whether this
sequence fulfills the given condition or not. In the first case the sequence is accepted
and the simulation of the grains is continued radially with the grain YImax+1 +MImax+1,
otherwise a new proposal sequence is radially generated by starting at the origin again.
This procedure is repeated until a sequence is found that can be accepted. An analo-
gous modification has to be performed with respect to the necessary amount of grains
that have to be simulated in order to know if a point Xi is covered by Ψ∗ or not. In the
case of a deterministic radius r of the grains it suffices to simulate until the distance
of the germs of Ψ∗ to the origin is bigger than |Xi| + r. Now for random radii, the
necessary distance to the origin has to be bigger than |Xi| + rmax, where again rmax is
the maximal possible radius (r + δ in the example).

3.3.3 Results of Monte–Carlo Simulations

With regard to numerical evaluations of characteristics for the typical cell Ξ∗
τ of the

Voronoi tessellation τX induced by a modulated Poisson point process X considered in
this section a first statement that can be made is that due to the relatively large number
of parameters needed, a complete analysis is almost impossible to achieve. Therefore
we only concentrate on some specific scenarios to show some of the interesting effects
that appear. The results of Section 3.3.3 have been obtained in cooperation with K.
Posch and are also partially documented in her diploma thesis ([84]).

Transition to Swiss cheese model

The scenario we want to consider as a first example consists of a transition to a Swiss
cheese model meaning that λX1 → 0 while the intensity λX given in Lemma 2.6 is kept
fixed. In particular we consider few large grains, where the (unconditional) coverage
probability of the Boolean model Ψ is given by pΨ = 0.6 and where the intensity
of the germs of Ψ is given by β = 0.2. Note that by using this parameter values
and by applying (2.22) we then obtain a fixed radius r = 1.20761. We assume a
fixed intensity λX = 12 such that the mean area of the typical cell remains fixed
as IEν2(Ξ∗

τ ) = λ−1
X = 0.8333 (cmp. Lemma 2.8). We now let the parameter λX1

tend to 0 and regard the behavior of the distribution of the perimeter for the typical
cell. Histograms of some sample cases for the choice of λX1 and λX2 are displayed in
Figure 3.6, where the bars of the histograms have a width of 0.05 and with respect
to each pair (λX1 , λX2) a sample size of n = 2,000,000 is regarded. For the case of a
stationary Poisson–Voronoi tessellation (Figure 3.6a), where λX1 = λX2 , a symmetrical
look of the histogram for the perimeter of the typical cell Ξ∗

τ can be observed. This
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Figure 3.6: Histograms for the perimeter of the typical cell Ξ∗
τ

behavior is changing as λX1 tends to 0 resulting in a shape being skewed to the left.
Another interesting effect that can be noticed is the existence of a second local maximum
for the histogram, especially in the case of very small values for λX1. This second local
maximum is mainly due to cells that cover the grains of the corresponding Boolean
model since inside of the Boolean model there are almost no points located if λX1 tends
to be small.

Random radii of the grains

In a second example we regard a scenario where the radii are no longer fixed, but
random. In particular, we consider fixed intensities λX1 = 30 and λX2 = 9. The
random radius R of the grains of the Boolean model is given as R ∼ U(r − δ, r + δ),
where r and δ are chosen such that IE(R2) = 4.5 and δ < r. Together with the choice
of the intensity of the germs of the Boolean model as β = 0.05 we obtain by (2.22) the
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Table 3.5: Mean values of characteristics for the typical cell Ξ∗
τ if R is random

r δ ν2(Ξ∗
τ ) η(Ξ∗

τ ) ν1(∂Ξ∗
τ )

1.84 1.83 0.05092 6.00049 0.87061
1.88 1.70 0.05091 5.99894 0.87066
1.92 1.56 0.05090 5.99863 0.87062
1.96 1.41 0.05092 6.00023 0.87093
2.00 1.22 0.05090 5.99915 0.87079
2.04 1.01 0.05090 5.99969 0.87082
2.08 0.72 0.05092 6.00001 0.87111
2.12 0.00 0.05090 5.99814 0.87110

unconditional coverage probability pΨ = 0.50681 and the intensity of the modulated
Poisson point process λX = 19.64298. We now let r tend towards

√
4.5 under the

condition that r ≤
√

4.5 which is equivalent to δ tending to 0 under the condition that
δ ≥ 0. Results for mean characteristics obtained by simulations with n = 5,000,000 for
each pair of parameters (r, δ) are displayed in Table 3.5. By looking at the estimated
values for the mean area of the typical cell ν2(Ξ∗

τ ) and the mean number of vertices η(Ξ∗
τ)

we can deduce that the expected theoretical values of IE(ν2(Ξ
∗
τ )) = 1/λX = 0.05091 and

IE(η(Ξ∗
τ )) = 6 are quite well repeated, while for the mean perimeter of the typical cell

ν1(∂Ξ∗
τ ) it seems to be the case that for less randomness (small δ) the mean perimeter

seems to slightly increase.
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Chapter 4

Estimation of Cost Functionals for

Random Tessellation Models

In the following chapter we apply the results derived in Chapter 3 in order to efficiently
estimate cost functionals connected to hierarchical models based on the random tessel-
lation models regarded. More precisely, two–level hierarchical models are investigated,
where both levels are based on the same type of tessellation, either the Cox–Voronoi
tessellation induced by the Cox point process Xc introduced in Section 2.4.6 or the
Voronoi tessellation induced by a modulated Poisson point process X with random
driving measure ΛX given in (2.23). For the hierarchical models inspected it is shown
how to derive efficient estimators that are able to estimate specific cost functionals like
the shortest path length or the Euclidean distance to the nearest element of higher order
without having to simulate any lower–level elements. In order to derive these estimators
Neveu’s exchange formula for Palm distributions is applied that has been introduced
in Section 2.2.7. In the first part of this chapter we recall some basic notions of graph
theory. Algorithms for the computation of shortest paths and their corresponding path
lengths will also be briefly discussed. Afterwards, in Section 4.2, we introduce the first
two–level hierarchical model that is based on two Cox point processes in the sense of
Section 2.4.6 that have a common underlying line process Xℓ and that are independent
of each other, given Xℓ. With respect to this two–level hierarchical model efficient
estimators for the mean shortest path length as well as for the mean subscriber line
length are derived based on the simulation of the typical Voronoi cell Ξ∗

τ given in Sec-
tion 3.2 that is induced by the upper–level Cox point process and on Neveu’s exchange
formula for Palm distributions introduced in Section 2.2.7. An analysis of the results
for Monte–Carlo simulations of the model is provided that enables a calculation of the
considered cost functionals for any given vector of parameters (γ, λ) without any further
simulation necessary.

83
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Another two–level hierarchical model that is regarded is based on two modulated Pois-
son point processes that have a common underlying Boolean model Ψ, but are inde-
pendent of each other, given Ψ. Here, a cost functional of interest is the mean distance
of a point belonging to the lower–level point process to its nearest neighbour that be-
longs to the point process of higher level. In order to derive an estimator for this cost
functional the simulation of the typical cell Ξ∗

τ described in Section 3.3 for a Voronoi
tessellation τX that is induced by a modulated Poisson point process as well as Neveu’s
exchange formula for Palm distributions are utilized. Results of estimations based on
Monte–Carlo simulations are provided.

4.1 Graphs and Shortest Paths

In this section basic notions of graph theory are briefly recalled. For more detailed
information the reader is, for example, referred to [23] and [42].

4.1.1 Definition of a Graph

First we want to define a graph for a given set of vertices. For this purpose we consider
a non–empty set of vertices or nodes V (most of the times V ⊂ IR2) and a non–
empty set E of edges that connects exactly two such nodes (not necessarily different).
Additionally, we consider a mapping α : E → V × V that assigns to an edge in E a
pair of nodes in V . Then we call the triple G = (V,E, α) a (directed) graph.

Let G = (V,E, α) be a directed graph and consider a specific edge e ∈ E. If α(e) = (u, v)
for some u, v ∈ V the node u is called the initial node of e, while v is called terminal
node of e. If there exists such an edge e, i.e., α(e) = (u, v), the node v is said to be a
direct successor of u and u is said to be a direct ancestor of v.

A directed graph G = (V,E, α) is called simple if α is one–to–one, this means that
there are no multiple edges between two nodes. Furthermore, G is called complete if
α : E → M0 is a surjective mapping, where M0 = {(u, v); u 6= v; u, v ∈ V }. The graph
G is called finite if V and E are finite.

The edge e having the property that α(e) = (u, u) for a u ∈ V is called a loop. Thereby
we can state that a simple graph does not contain any loops. A finite simple directed
graph is called a digraph. In the following only digraphs of the form G = (V,E, α) are
regarded, where V = {v1, ..., vm}.

An important type of graphs are weighted graphs, where a cost function is assigned to
each edge of the graph. A mapping c : E → IR is called a cost or weight function. We
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call a digraph G = (V,E, α) together with a corresponding cost function c a weighted
digraph. Often the cost function c can be written as a cost matrix C = (cij), where

cij =





0 if i = j,
c(e) if α(e) = (vi, vj),
∞ if α−1(vi, vj) = ∅.

Note that, for example if the digraph is not simple such a representation is not possible.

Now we turn to the notion of paths and in particular shortest paths that will play an
important role in Section 4.2. Let G = (V,E, α, c) be a weighted digraph and consider
a sequence P = (e1, e2, ..., er). Suppose that the following conditions hold

1. α(e1) = (u, x), x ∈ V ,

2. α(er) = (y, v), y ∈ V ,

3. ei ∈ E, i = 1, ..., r,

4. The initial node of ei is the terminal node of ei−1, i = 2, ..., r.

Then P is called a path from u to v in G. A path that leads from a vertex v ∈ V to the
identical vertex v is called a cycle. Often it is not specifically the path P = (e1, e2, ..., er)
that is of interest but the path length c(P ) of P which is given as

c(P ) =
r∑

i=1

c(ei).

If a path P ∗ from u to v in G has minimal path length with respect to all possible
paths from u to v in G we call P ∗ the shortest or optimal path from u to v in G. It is
important to note that such a shortest path needs not always to exist. For example, it
is possible that some paths might contain loops of negative length. In such cases it is
easy to see that for any given constant c ∈ IR there exists a path P such that c(P ) < c.
If two or more paths from u to v in G have the same minimal length with respect to
all paths from u to v in G, usually one of them is chosen to be the shortest path.

Shortest paths and their lengths can be utilized to define the distance matrix as well as
the path matrix of a graph. Let G = (V,E, α, c) be a weighted digraph without cycles
of negative length. Denote by kij the shortest path length between two elements vi and
vj of V . The matrix D = {dij} with elements

dij =





0 if i = j,
kij if i 6= j and there exists a path between vi and vj,
∞ if there is no path between vi and vj ,
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is called the distance matrix of G. The matrix W = {wij} with elements

wij =





i if i = j,
k if vk is the direct ancestor of vj on the shortest path from vi to vj,
0 else,

is called the path matrix of G. Note that if the path matrix is known it is possible to
compute the shortest path between two vertices of the graph by a recursive determina-
tion of the edges involved.

4.1.2 Shortest Path Algorithms

Given a weighted digraph there are several algorithms known that can compute shortest
paths and their corresponding lengths. In principle one can differ between single–source
shortest path algorithms, where shortest paths are computed from a specific vertex to
all other vertices and multi–source shortest path algorithms, where shortest paths are
computed between all the vertices in the graph. In the following representants for both
types of shortest path algorithms, Dijkstra’s algorithm (single–source) and the Floyd–
Warshall algorithm (multi–source), will be explained in detail. As denotations we will
use V , the set of vertices or nodes; a the index of the initial vertex in V ; va, the initial
vertex; m = cardV , the number of vertices in V ; N(vi), the set of successors of the
vertex vi, and cij , the associated costs of edge e = (vi, vj). Dijkstra’s algorithm is one
of the most common algorithms for single–source shortest path algorithms. A small
drawback is that this algorithm requires exclusively non–negative edge costs, hence
it is only applicable for specific graphs. Effectively, Dijkstra’s algorithm constructs a
shortest path spanning tree by constructing a sequence of sets Mk with Mk ⊂ V and
sequences (with respect to the index k) of vectors d

(k)
j and w

(k)
j in IRm for k, j = 1, ..., m.

In a first step M1, w(1) and d
(1)
j are initialised as

M1 = V \ {va},
w

(1)
j =

{
a if (vavj) exists,
0 else,

d
(1)
j = caj , 1 ≤ j ≤ m.

In a second step for k = 2, ..., m a vertex vi ∈ Mk−1 is determined that fulfills the
condition

d
(k−1)
i = min

j:vj∈Mk−1

d
(k−1)
j .

The new set Mk is then given as Mk = Mk−1 \ {vi}, while for each vj ∈Mk−1 we put

w
(k)
j =

{
i if d

(k)
j < d

(k−1)
j ,

w
(k−1)
j else,

d
(k)
j = min {d(k−1)

j , d
(k−1)
i + cij}.
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Figure 4.1: Sample graph for Dijkstra’s algorithm

Under the necessary assumption that the weighted digraph has only non–negative edge
costs the algorithm ends after at most m steps or as soon as Mk = ∅. In this case we
obtain that

d
(m)
j = cost or length of the shortest path from va to vj ,

w
(m)
j = index in V of the direct ancestor of vj along this path.

Therefore the costs of the shortest paths from the initial vertex va to all other vertices
as well as the shortest paths themselves can be easily obtained from the two vectors
d(m) = (d

(m)
1 , ..., d

(m)
m ) and w(m) = (w

(m)
1 , ..., w

(m)
m ). As a computational example regard

the graph given in Figure 4.1, where v4 is assumed to be the initial vertex. Applying
Dikstra’s algorithm we obtain the results displayed in Table 4.1 which, for example, tell
us that the shortest path from v4 to v3 has a length of 4 and goes from v4 to v6 until it
reaches v3.

Floyd–Warshall algorithm

As an example for a multi–source shortest path algorithm we consider the Floyd–
Warshall algorithm. Here, the shortest paths from each node to each other node are
computed in a single algorithm. As an initial step two matrices D0 = {d(0)

ij } and

W0 = {w(0)
ij } are constructed as

d
(0)
ij = cij ,

w
(0)
ij =

{
i if i = j or e = (vivj) exists,
0 else.
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Table 4.1: Example for Dijkstra’s algorithm, where v4 is the initial vertex

It.nr 1 2 3 4 5 6
Vertex dj wj dj wj dj wj dj wj dj wj dj wj
v1 ∞ ∞ ∞ 6 3 6 3 6 3
v2 ∞ ∞ ∞ 8 3 7 1 7 1
v3 ∞ 4 6 4 6 4 6 4 6 4 6
v4 0 0 0 0 0 0
v5 1 4 1 4 1 4 1 4 1 4 1 4
v6 1 4 1 4 1 4 1 4 1 4 1 4
Mk {1, 2, 3, 5, 6} {1, 2, 3, 5} {1, 2, 3} {1, 2} {2} ∅
vi 4 6 5 3 1 2
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Figure 4.2: Sample graph for the Floyd–Warshall algorithm

Then, for k = 1, ..., m, where m is the number of vertices in V matrices Dk = {d(k)
ij }

and Wk = {w(k)
ij } are computed as

d
(k)
ij =

{
d

(k−1)
ij if i = j, i = k or j = k,

min {d(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj } else,

w
(k)
ij =

{
w

(k−1)
kj if d

(k)
ij < d

(k−1)
ij ,

w
(k−1)
ij else.

The value d
(m)
ij represents the length or cost of the shortest path from vi to vj, while the

value w
(m)
ij denotes the direct ancestor of vj along the shortest path from vi to vj . Using

the matrix Wk it is easily possible to obtain the whole shortest path from a vertex vi
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to another vertex vj in a recursive fashion. As a computational example consider the
graph displayed in Figure 4.2. With respect to the matrices Dk and Wk for k = 0, .., 5
we obtain the following.

D0 =




0 1 ∞ 2 ∞
∞ 0 2 4 1
2 4 0 ∞ ∞
∞ 4 ∞ 0 1
∞ ∞ 4 3 0




D1 =




0 1 ∞ 2 ∞
∞ 0 2 4 1
2 3 0 4 ∞
∞ 4 ∞ 0 1
∞ ∞ 4 3 0




D2 =




0 1 3 2 2
∞ 0 2 4 1
2 3 0 4 5
∞ 4 6 0 1
∞ ∞ 4 3 0




D3 =




0 1 3 2 2
4 0 2 4 1
2 3 0 4 5
8 4 6 0 1
6 7 4 3 0




D4 =




0 1 3 2 2
4 0 2 4 1
2 3 0 4 5
8 4 6 0 1
6 7 4 3 0




D5 =




0 1 3 2 2
4 0 2 4 1
2 3 0 4 5
7 4 5 0 1
6 7 4 3 0




W0 =




1 1 0 1 0
0 2 2 2 2
3 3 3 0 0
0 4 0 4 4
0 0 5 5 5




W1 =




1 1 0 1 0
0 2 2 2 2
3 1 3 1 0
0 4 0 4 4
0 0 5 5 5




W2 =




1 1 2 1 2
0 2 2 2 2
3 1 3 1 2
0 4 2 4 4
0 0 5 5 5




W3 =




1 1 2 1 2
3 2 2 2 2
3 1 3 1 2
3 4 2 4 4
3 3 5 5 5




W4 =




1 1 2 1 2
3 2 2 2 2
3 1 3 1 2
3 4 2 4 4
3 3 5 5 5




W5 =




1 1 2 1 2
3 2 2 2 2
3 1 3 1 2
5 4 5 4 4
3 3 5 5 5



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So, for example, the path from v5 to v2 has a length of 7 and passes through v5, v3, v1,
and v2. Note that this is a good example for a non–unique shortest path since also the
path from v5 to v2 that passes through v4 has a length of 7.

4.2 Cost Analysis for Hierarchical Models Based on

Poisson Line Processes

In this section we investigate a first scenario with respect to cost analysis. In par-
ticular, two–level hierarchical models based on two Cox point processes as defined in
Section 2.4.6 are considered. Here, a characteristic that is of importance is the shortest
path length, i.e., the distance measured along the lines of the underlying Poisson line
process Xℓ between a point of the lower–level point process XL to its nearest (with
respect to Euclidean distance) neighbour of the higher–level point process XH . The
results of Section 4.2 are partially based on results obtained in [33] and [34].

4.2.1 Model Definition

With respect to a stationary and isotropic Poisson line process Xℓ with intensity γ
consider a (non–marked) Cox point process (see Section 2.4.6) XH = {Xn}n≥1 with
random driving measure

ΛXH (B) = λHℓν1(B ∩Xℓ),

and finite intensity λH = λHℓγ > 0. Additionally, regard a second Cox point process

X̃L = {X̃n}n≥1 with random driving measure

ΛXL(B) = λLℓν1(B ∩Xℓ),

and finite intensity λL = λLℓγ > 0. Note that, given Xℓ, the two point processes

XH and X̃L are considered to be independent. Furthermore, we denote by N(X̃n) the
location of the nearest (in the Euclidean sense) point of XH with respect to the point

X̃n ∈ X̃L. The point processes XH and X̃L then form a two–level hierarchical model
(Figure 4.3). Note that although, with respect to the choice of the point processes that
are based on the Poisson line process Xℓ we restrict ourselves to Cox point processes
in the sense of Section 2.4.6, some of the results can be extended to other types of
(stationary and ergodic) point processes. In the following we suppose that each point
Xn of XH has an influence zone Ξ(Xn) given by the Voronoi cell of Xn with respect to
XH . Thereby the sequence of influence zones {Ξ(Xn)}m≥1 forms a Voronoi tessellation
τX induced by XH (Figure 4.3c).
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a) Poisson line process b) Two–level hierarchical model c) Influence zones

Figure 4.3: Two–level hierarchical model based on two Cox point processes XH and XL

Theorem 4.1 Let Ξ∗
τ denote the typical cell of the Voronoi tessellation τ = {Ξ(Xn)}n≥1

induced by the stationary point process XH = {Xn}n≥1 of higher–level points. Then,

λHℓ =
1

IEXHν1(L(Ξ∗
τ ))

, (4.1)

where IEXH denotes expectation with respect to the Palm probability measure P ∗
XH

intro-
duced in (2.5) and where L(Ξ∗

τ ) denotes the (Palm) line system within the typical cell
Ξ∗
τ .

Proof Using λH = λHℓγ and (2.25), it becomes immediately clear that

1

λHℓγ
= IEXHν2(Ξ∗

τ ) .

Furthermore, we have IEXH (ν1(L(Ξ∗
τ ))) = γIEXHν2(Ξ

∗
τ ) (cmp. [34]). This proves (4.1). 2

4.2.2 Transformation to Graph Structure

The two–level hierarchical model based on a common underlying Poisson line process
Xℓ described in Section 4.2 can also be regarded as a graph structure (Figure 4.4).
For this purpose we regard the segments or edges that are formed by the lines of the
Poisson line process Xℓ. Points of XH and XL are considered as nodes of the graph.
If an edge contains a node of the graph the edge is subdivided into two edges. Now,
a cost or weight c(e) is assigned to each edge e, e.g., the length of e. By introducing
an additional connection rule between the nodes of the graph inference, for example,
about the average distance between a node of the lower–level to its nearest neighbouring
higher–level node can be obtained.
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c5

c3

L12c

c1 H1

c4 L2 c6

L3

c9 c
11

c10
L4

8cc7

a) Two–level hierarchical model

b) Corresponding graph structure with

higher–level node H1, lower–level nodes Li and

edge costs ci

Figure 4.4: Transformation of two–level hierarchical model into graph structure

4.2.3 Mean Shortest Path Lengths and Mean Subscriber Line

Lengths

For the two–level hierarchical model defined in Section 4.2.1 a cost functional of interest
is the shortest path length, in particular the mean shortest path length csp that is defined

as the mean distance from a point of the lower–level Cox point process X̃L to the nearest
(in the Euclidean sense) point belonging to the higher–level Cox point process XH . This
distance is measured along the lines of the underlying Poisson line processXℓ, or in other
words along the edges of the transformed graph structure (cmp. Section 4.2.2). So, in

order to analyse shortest path lengths, each location X̃n of X̃ ′
L is associated with the

mark c(P (N(X̃n), X̃n)) > 0 representing the length of the shortest path P (N(X̃n), X̃n)

between the location of a lower–level point X̃n and its nearest higher–level point N(X̃n).
Thereby a stationary marked point process

XL = {[X̃n, c(P (X̃n, N(X̃n)))]}n≥1 , (4.2)

can be constructed whose mark space is the non–negative x–axis. The mean shortest
path length csp is then the average with respect to the Palm mark distribution of XL.
Therefore, due to the stationarity of XL, we are able to express csp by

csp =
1

λLν2(B)
IE
∑

n≥1

1IB(X̃n)c(P (X̃n, N(X̃n))) = IEXLc(P (o,N(o))) . (4.3)

Recall that the symbol B in (4.3) means an arbitrary (bounded) Borel set B ∈ B(IR2)
with 0 < ν2(B) <∞ and IEXL denotes expectation with respect to the Palm probability
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measure IP∗
XL

introduced in (2.20).

Note that, by using the ergodicity of the point process XL, it is possible to represent
the mean shortest path length csp in an alternative fashion as the limit of a spatial
average. For this purpose we define csp(W ) as the average shortest path length in a
sampling window W , where

csp(W ) =
1

#{n : X̃n ∈W}
∑

n≥1

1IW (X̃n)c(P (X̃n, N(X̃n))) . (4.4)

If we consider an averaging sequence {Wi}i≥1 of bounded sampling windows (cmp.
Section 2.1) then we get that (cmp. [93])

lim
i→∞

csp(Wi) = csp (4.5)

holds with probability one, where csp is given by (4.3). Note that, with respect to the
estimation of csp, edge effects can occur, e.g. if X̃n ∈ W but N(X̃n) /∈ W and that it
might be hard to come up with an edge–corrected estimator.

A slight modification of the mean shortest path length csp is given by the mean subscriber
line length csl. Here, the locations of the lower–level points are not distributed according
to a Cox point process X̃L with random intensity measure ΛXL described in Section 4.2.1

but according to a (stationary) Poisson point process X̃ ′
L with (planar) intensity λ′L that

is independent of Xℓ and XH . As in the scenario for the mean shortest path length a
lower–level point X̃ ′

n ∈ X̃ ′
L is connected to its nearest (in the Euclidean sense) point

N(X̃ ′
n) ∈ XH . For this purpose we first connect the point X̃ ′

n to its nearest point X̃ ′′
n of

the line system L(Ξn) (Figure 4.5), where Ξn = Ξ(N(X̃ ′
n)) is the Voronoi cell of N(X̃ ′

n)
and L(Ξn) is given by the restriction of the Poisson line process Xℓ to Ξn. The distance

c(P (X̃ ′
n, N(X̃ ′

n))) from the lower–level point X̃ ′
L to N(X̃ ′

n) ∈ XH can then be expressed
by

c(P (X̃ ′
n, N(X̃ ′

n))) = c′(X̃ ′
n, X̃

′′
n) + c(P (X̃ ′′

n, N(X̃ ′
n))) , (4.6)

where c′(X̃ ′
n, X̃

′′
n) is considered to be the cost value of the (virtual) edge with respective

endpoints X̃ ′
n and X̃ ′′

n. Note that in the context of telecommunication the (virtual)

edge between a lower–level point X̃ ′
n and its projected point X̃ ′′

n ∈ L(Ξn) is often called
the last meter. With respect to the results of Monte–Carlo simulations presented in
Section 4.2.8 we take c′(X̃ ′

n, X̃
′′
n) = 0 but note that other choices are also possible, e.g.

the Euclidean distance.

The mean subscriber line length csl can now be defined as

csl =
1

λLν2(B)
IE
∑

n≥1

1IB(X ′
n) c(P (X̃ ′

n, N(X̃ ′
n))) = IEX′

L
c(P (o,N(o))) (4.7)
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Higher−level point

Lower−level point

Last meter

Higher−level point

Lower−level point

Projected point

a) Linear placement on lines (mean shortest

path length csp)

b) Spatial placement and projection to nearest

line (mean subscriber line length csl)

Figure 4.5: Two scenarios for the two–level hierarchical model

for some (bounded) Borel set B ∈ B(IR2) with 0 < ν2(B) < ∞, where the cost value

c(P (X̃ ′
n, N(X̃ ′

n))) of the shortest path from X̃ ′
n to N(X̃ ′

n) is given in (4.6).

Similar to the case of the mean shortest path length csp, we are able to provide an
alternative representation of the mean subscriber line length csl by utilizing the ergod-
icitiy of X ′

L. Let csl(W ) be the mean subscriber line length with respect to a sampling
window W ⊂ IR2 being defined by

csl(W ) =
1

#{n : X̃ ′
n ∈W}

∑

n≥1

1IW (X̃ ′
n) c(P (X̃ ′

n, N(X̃ ′
n))). (4.8)

By the ergodicity of X ′
L we obtain that (cmp. [93])

lim
i→∞

csl(Wi) = csl. (4.9)

if {Wi}i≥1 is an averaging sequence of bounded sampling windows (cmp. Section 2.1).
Note that the estimation of csl(W ) is hindered by occuring edge effects and that there-
fore in the following an alternative representation as well as an alternative estimator is
derived.

4.2.4 Application of Neveu’s Formula

Regarding the alternative representations for the mean shortest path length csp as well
as the mean subscriber line length csl that are provided in (4.5) and (4.9) a natural way
of estimating these two characteristics is induced. In a possibly large sampling window
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W the processes Xℓ, XH and X̃L or X̃ ′
L, respectively, are realised and the mean over

all distances between the locations of lower–level points to their nearest higher–level
point is taken as an estimator for csp or csl, respectively. However, it turns out that by
an application of Neveu’s exchange formula given in (2.21) alternative estimators for
csp and csl can be derived that completely avoid the simulation of lower–level locations.
Such efficient estimators for csp and csl are based on the following two theorems.

Theorem 4.2 Consider the point process XH = {Xn}n≥1 of higher–level points and

the (marked) point process XL = {[X̃n, c(P (X̃n, N(X̃n)))]}n≥1 defined in (4.2). Then,

IEXL c(P (o,N(o))) =
1

IEXHν1(L(Ξ∗
τ ))

IEXH

∫

L(Ξ∗
τ )

c(P (u, o)) du , (4.10)

where Ξ∗
τ denotes the typical cell of the Voronoi tessellation τ induced by XH and L(Ξ∗

τ )
is the (Palm) line system within Ξ∗

τ .

Proof The proof of Theorem 4.2 is based on Neveu’s exchange formula (see (2.21))
for jointly stationary point processes, which are defined on a common probability space
(Ω,A, IP) equipped with some flow {θx, x ∈ IR2}. We use (2.21) with XD and X̃ eD

being equal to XH and XL, respectively. Thus, the mark space M will be omitted and
M̃ = [0,∞). Recall that both intensities λH and λL of XH and XL, respectively, can
be expressed by λHℓ , λLℓ , and γ (cmp. Section 4.2.1). In particular,

λH = λHℓγ and λL = λLℓγ . (4.11)

Additionally, we consider the function f : IR2 × [0,∞) × Ω → [0,∞) that is given by

f(x, g̃, ω) =

{
g̃ if XH(θ−xω,B

6=
|x|(x)) = 0 ,

0 otherwise
(4.12)

for any x ∈ IR2, g̃ = c(P (x, o)) ≥ 0, and ω ∈ Ω, where B 6=
|x|(x) = {y ∈ IR2 : |y−x| < |x|}.

Then, f(x, g̃, ω) = g̃ if −x ∈ IR2 is an atom of the counting measure XH(ω, ·) such that
there are no other atoms of XH(ω, ·) which are closer (in the Euclidean sense) to the
origin o than −x. Hence, applying Neveu’s exchange formula (2.21), we obtain that

IEXLc(P (o,N(o))) =

∫

Ω×M

∫

IR2

f(−x, g̃, ω)XH(ω, dx)P ∗
XL

(d(ω, g̃))

=
λH
λL

∫

Ω

∫

IR2×M

f(x, g̃, θxω)XL(ω, d(x, g̃))P ∗
XH

(dω) .

(4.13)
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Note that, given the typical Voronoi cell Ξ∗
τ and the (typical) line system L(Ξ∗

τ ) within
Ξ∗
τ , the (random) number of points of XL on L(Ξ∗

τ ) is Poisson distributed with expecta-
tion η = λLℓν1(L(Ξ∗

τ )). Thus, taking into account the definition of the function f given
in (4.12), the inner integral on the right hand side of (4.13) can be expressed as

∫

IR2×M

f(x, g̃, θxω)XL(ω, d(x, g̃)) =

∞∑

k=1

e−η
ηk

k!

∫

L(Ξ∗
τ )

. . .

∫

L(Ξ∗
τ )

k∑

i=1

c(P (ui, o))

ν1(L(Ξ∗
τ ))

k
du1 . . . duk ,

due to the conditional uniform distribution of the lower–level points on L(Ξ∗
τ ). Thus,

∫

IR2×M

f(x, g̃, θxω)XL(ω, d(x, g̃)) =

∞∑

k=1

e−η
ηk

k!

k

ν1(L(Ξ∗
τ ))

∫

L(Ξ∗
τ )

c(P (u, o)) du

= λLℓ

∫

L(Ξ∗
τ )

c(P (u, o)) du .

Summarizing things, we get that

IEXLc(P (o,N(o))) =
λH
λL

λLℓ IEXH

∫

L(Ξ∗
τ )

c(P (u, o)) du .

Combining this with (4.1) and (4.11) completes the proof of the theorem. 2

Analogously to Theorem 4.2 for the case of the mean shortest path length csp the
following theorem can be given for the case of the mean subscriber line length csl.

Theorem 4.3 Consider the point process XH = {Xn}n≥1 of higher–level points and the

(marked) point process X ′
L = {[X̃ ′

n, c(P (X̃ ′
n, N(X̃ ′

n)))]}n≥1 constructed by the sequence

of lower–level points {X̃ ′
n}n≥1 and the marks c(P (X̃ ′

n, N(X̃ ′
n))) defined in (4.6). Then,

IEX′

L
c(P (o,N(o))) =

1

IEXHν2(Ξ∗
τ )

IEXH

∫

Ξ∗
τ

c(P (u, o)) du , (4.14)

where Ξ∗
τ denotes the typical cell of the Voronoi tessellation τ induced by XH .

Proof Using Neveu’s exchange formula (2.21) and proceeding similarly as in the
proof of Theorem 4.2, we obtain that

IEX′

L
c(P (o,N(o))) =

λH
λL

λL IEXH

∫

Ξ∗
τ

c(P (u, o)) du = λH IEXH

∫

Ξ∗
τ

c(P (u, o)) du ,

where in the first equality it is used that, given the typical Voronoi cell Ξ∗
τ and the

(typical) line system L(Ξ∗
τ ) restricted to Ξ∗

τ , the random number of points of X ′
L within
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a) High intensity b) Low intensity

Figure 4.6: Different intensities of lower–level points but same mean distance to the
nearest higher–level point

Ξ∗
τ is Poisson distributed with expectation η′ = λLν2(Ξ∗

τ ). The proof is then finished
by using that λ−1

H = IEXHν2(Ξ∗
τ ). 2

Note that by using Theorems 4.2 and 4.3 it is possible to simplify the computation of
the mean shortest path length csp and the mean subscriber line length csl, respectively,
by estimating the quotients of expectations appearing on the right–hand sides of (4.10)
and (4.14), respectively. In order to estimate these quotients the typical serving zone
Ξ∗
τ of higher–level points has to be simulated, together with their corresponding (typ-

ical) line system, where L(Ξ∗
τ ) denotes this line system restricted to Ξ∗

τ . A simulation
algorithm that is capable of performing such a simulation is explained in Section 3.2.2
since the typical serving zone Ξ∗

τ coincides with the typical cell of the Cox–Voronoi
tessellation τ induced by a Cox point process Xc given in Section 2.4.6. It should also
be remarked that the expression for IEXLc(P (o,N(o))) given in (4.10) can alternatively
be written in the form

IEXL c(P (o,N(o))) = λHℓIEXH

∫

L(Ξ∗
τ )

c(P (u, o)) du . (4.15)

This is an immediate corollary from Theorems 4.1 and 4.2. In particular this represen-
tation of csp shows that it does not depend on λLℓ (cmp. Figure 4.6).

4.2.5 Efficient Estimation of the Mean Shortest Path Length

In order to derive an efficient estimator ĉsp for the mean shortest path length csp, we can
use the representation of csp given in Theorem 4.2. Thus, the basic idea is a simulation
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of the typical Voronoi cell Ξ∗
τ and of the (typical) line system L(Ξ∗

τ ) a certain number
of times, n say. Additionally, we partition the line system L(Ξ∗

τi
) in Ξ∗

τi
for i = 1, ..., n

into its line segments Ei = {S(1)
i , S

(2)
i .., S

(Mi)
i }, where Mi is the total number of line

segments in Ξ∗
τi

for 1 ≤ i ≤ n. Note that the line segment containing the origin (and
therefore the higher–level point) is subdivided into two segments (Figure 4.7a).

Taking a classical sample mean it is obtained that limn→∞ ĉsp(n) = csp with probability
one, where

ĉsp(n) =
1

1
n

∑n
i=1 ν1(L(Ξ∗

i ))

1

n

n∑

i=1

Mi∑

j=1

∫

S
(j)
i

c(P (u, o)) du, (4.16)

=
1∑n

i=1 ν1(L(Ξ∗
i ))

n∑

i=1

Mi∑

j=1

∫

S
(j)
i

c(P (u, o)) du . (4.17)

Note that if the (linear) intensity λHℓ is known then, by using the relationship (4.15)
an alternative estimator čsp(n) for csp can be derived, where

čsp(n) = λHℓ
1

n

n∑

i=1

Mi∑

j=1

∫

S
(j)
i

c(P (u, o)) du . (4.18)

For both estimators ĉsp(n) and čsp(n) a question that arises is how to compute the
integrals appearing on the righ–hand sides of (4.17) and (4.18), respectively. This
question is answered by the following theorem, where some additional assumptions are
made on the cost function c : E → [0,∞) introduced in Section 4.1.

Theorem 4.4 Let the values c(e) of the cost function c : E → [0,∞) only depend on
the lengths of the edges e ∈ E and suppose that c(e) is monotonously increasing with
respect to the length of e, where c(e) = 0 if ν1(e) = 0. Furthermore, let S = S(A,B) be
a line segment with respective endpoints A and B, and let δS = c(P (B, o))−c(P (A, o)).
Then it holds that

c(P (A,B)) ≥ |δS| . (4.19)

and that there exists a point D ∈ S such that

c(P (A, o)) + c(P (D,A)) = c(P (B, o)) + c(P (D,B)) (4.20)

and
∫

S

c(P (u, o)) du = c(P (A, o))ν1(D − A) +

∫ A

D

c(P (A, u)) du

+c(P (B, o))ν1(D − B) +

∫ B

D

c(P (B, u)) du . (4.21)
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Proof First it is shown that (4.19) holds. If c(P (B, o)) = c(P (A, o)), we obviously
have that c(P (A,B)) ≥ |δS| = 0. Now let c(P (B, o)) > c(P (A, o)) and suppose that

c(P (B, o)) > c(P (A,B)) + c(P (A, o)) .

Then the path length c(P (A,B)) + c(P (A, o)) from B to o passing through A would be
smaller than c(P (B, o)), which is a contradiction to the definition of the shortest path
length c(P (B, o)). Therefore, (4.19) is shown. If c(P (A,B)) = 0, then, by using the
monotonicity of c : E → [0,∞), we obtain that

c(P (B, u)) = c(P (A, u))

for each u ∈ S. Furthermore, (4.19) implies that

c(P (B, o)) = c(P (A, o)) ,

and this means that (4.20) and (4.21) are obviously true for any D ∈ S. We now assume
that c(P (A,B)) > 0. First suppose that

c(P (B, o)) = c(P (A,B)) + c(P (A, o)) .

It is easy to see that (4.20) and (4.21) hold for D = B. If c(P (B, o)) > c(P (A, o)) and

c(P (B, o)) < c(P (A,B)) + c(P (A, o)) ,

then, by the monotonicity of c : E → [0,∞), there is a distance peak D which lies
between the two endpoints A and B, respectively, of S (see Figure 4.7b). Note that the
distance peak D can be defined as an inner point of the segment S, where c(P (D, o))
takes the same value no matter if the origin o is reached passing through A or passing
through B. In other words, (4.20) and (4.21) hold. 2

For the special case of c(S) being the length of the segment S the following corollary
can be provided that facilitates the computation of the integral appearing on the left
hand side of (4.21).

Corollary 4.1 Let c(S) be the length of the segment S = S(A,B), that means c(S) =
ν1(S), then

∫

S

c(P (u, o)) du = f(ν1(S); c(P (A(S), o)), c(P (B(S), o))) , (4.22)

where

f(x; θ1, θ2) =
1

4
x2 +

1

2
(θ1 + θ2)x− 1

4
(θ2 − θ1)2 . (4.23)
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Figure 4.7: Partitioning and weighted mean shortest path length

Proof Utilizing the abbreviations cA(S) = c(P (A, o)) and cB(S) = c(P (B, o)) as well
as δS = cB(S)−cA(S) (defined in Theorem 4.4) and bearing in mind that c(S) = ν1(S),
(4.20) induces that

ν1(D − A) =
ν1(S) + cB(S) − cA(S)

2
,

and that

ν1(D − B) =
ν1(S) + cA(S) − cB(S)

2
.

Additionally, we can write (4.21) in the form

∫

S

c(P (u, o)) du = f1(ν1(S); cA(S), cB(S)) + f2(ν1(S); cA(S), cB(S)) ,

where

f1(x; θ1, θ2) =
x + θ2 − θ1

2

2θ1 + 1/2(x+ θ2 − θ1))

2
(4.24)

and

f2(x; θ1, θ2) =
x + θ1 − θ2

2

θ1 + θ2 + 1/2(x+ θ2 − θ1))

2
. (4.25)

Note that f1(ν1(S); cA(S), cB(S)) represents the sum of the first two summands in
(4.21), whereas f2(ν1(S); cA(S), cB(S)) represents the sum of the last two summands in
(4.21). By simple calculations, we now get that the sum of the expressions in (4.24)
and (4.25) gives (4.23). 2
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By Corollary 4.1, we immediately obtain the following expressions for the estimators
ĉsp(n) and čsp(n) under the assumption that c(S) is given by ν1(S).

Corollary 4.2 For each n ≥ 1 let Ei = {S(j)
i }Mi

j=1 be the partition of the line sys-

tem L(Ξ∗
τi

) restricted to the ith typical cell Ξ∗
τi

for i = 1, . . . , n and let A
(j)
i and B

(j)
i ,

respectively, denote the endpoints of the segment S
(j)
i . Then,

ĉsp(n) =
1∑n

i=1 ν1(L(Ξ∗
τi

))

n∑

i=1

Mi∑

j=1

f(ν1(S
(j)
i ); c(P (A

(j)
i ), o), c(P (B

(j)
i , o))) (4.26)

and

čsp(n) =
λHℓ
n

n∑

i=1

Mi∑

j=1

f(ν1(S
(j)
i ); c(P (A

(j)
i ), o), c(P (B

(j)
i , o))) , (4.27)

where the function f is given in (4.23).

Applying the representation formulae (4.26) and (4.27) it is sufficient to compute path

lengths c(P (A
(j)
i ), o) and c(P (B

(j)
i ), o) for j = 1, . . . ,Mi and i = 1, . . . , k for the deter-

mination of the estimators ĉsp(k) and čsp(k). Herefore, for example, Dijkstra’s algorithm
explained in Section 4.1.2 can be used.

4.2.6 Efficient Estimation of the Mean Subscriber Line Length

Using (4.7) and (4.14), it is possible to derive an estimator ĉsl for the mean subscriber
line length csl considered in (4.8). As in the case for the estimation of the mean shortest
path length csp we start by simulating the typical Voronoi cell Ξ∗

τ and the typical line
system both with respect to the higher–level points n times, obtaining n independent
and identically distributed copies Ξ∗

τ,1, ...,Ξ
∗
τ,n of Ξ∗

τ , where n > 0 is an arbitrary and
fixed integer. In Figure 4.8 a sample for the typical Voronoi cell and the corresponding
line system restricted to the typical cell is displayed. Apart from the nucleus of the
typical Voronoi cell (thick gray dot), the typical Voronoi cell itself (blue line segments),
the underlying line system restricted to the typical Voronoi cell (thick red line segments),
and the inner Voronoi tessellation with respect to the restricted underlying line system
(thin red line segments) are displayed. The cells of the inner Voronoi tessellation are
induced by the set of edges for the cells of the underlying line system as described in
Section 2.4.4. Note however that the inner Voronoi cells are not formed with respect
to the boundary of the typical Voronoi cell Ξ∗

τ due to the fact that a lower–level point
located in Ξ∗

τ is projected solely to a segment of the underlying line system L(Ξ∗
τ )

restricted to Ξ∗
τ . For example, in the realisation of the typical Voronoi cell Ξ∗

τ shown
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Figure 4.8: Sample of the typical Voronoi cell Ξ∗
τ with restricted underlying line struc-

ture L(Ξ∗
τ ) and inner Voronoi tessellation with respect to L(Ξ∗

τ )

in Figure 4.8, all points of the small triangle in the right corner are projected onto
an isolated segment of the restricted line system L(Ξ∗

τ ). This means that the shortest
path from these points to the corresponding higher–level point, located at the origin, is
not completely contained in the typical Voronoi cell Ξ∗

τ . The inner–Voronoi tessellation
partitions the typical cell into a random number K of micro–cells {Υ(j)}j=1,...,K, where
each of these micro–cells Υ corresponds to a segment S = S(A,B) of the line system
L(Ξ∗

τ ) restricted to Ξ∗
τ . The segment S is always an edge of two micro–cells. Each micro–

cell Υ can further be partitioned into three non–overlapping subsets ΥA, ΥB, and ΥC ,
respectively, as shown in Figure 4.9. In this example, we have that B(S) = ΥB and the
thick line on the left side is part of the boundary of the typical Voronoi cell Ξ∗

τ . Lower–
level points that are located in ΥB are connected to the endpoint B(S), whereas the
locations in ΥC are projected onto S. Note that if the origin o (the higher–level point)
belongs to the interior of the line segment S, then S is decomposed into two subsegments
(A, o) and (B, o) and ΥC is split into two sets corresponding to these two subsegments.
For each i = 1, ..., n, we have that the inner Voronoi tessellation completely partitions
the ith copy Ξ∗

i of the typical cell into the micro–cells {Υ
(j)
i }j=1,...,Ki. Therefore, by

taking classical sample means it is obtained that limn→∞ ĉsl(n) = csl with probability
one, where

ĉsl(n) =
1∑n

i=1 ν2(Ξ∗
τi

)

n∑

i=1

Ki∑

j=1

∫

Υ
(j)
i

c(P (u, o)) du . (4.28)
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Figure 4.9: Partition of the micro–cell Υ into three subsets ΥA, ΥB, and ΥC

Recall that the expression for IEX′

L
c(P (o,N(o))) provided in (4.14) has an alternative

representation of the form

IEX′

L
c(P (o,N(o))) = λHℓγ IEXH

∫

Ξ∗
τ

c(P (u, o)) du . (4.29)

Hence, for λHℓ and γ known, an alternative estimator čsl for csl is given by

čsl(n) = λHℓγ
1

n

n∑

i=1

Ki∑

j=1

∫

Υ
(j)
i

c(P (u, o) du . (4.30)

Suppose now for the remaining part of this section in order to simplify the computations,
that the cost value c′(X ′

n, X
′′
n) of the edge with respective endpoints X ′

n and X ′′
n equals

zero. Note that with some slight modifications it is possible to account for some other
choices of c′(X ′

n, X
′′
n) like the Euclidean distance. Obviously, by (4.6), we have that

c(P (X ′
n, N(X ′

n))) = c(P (X ′′
n, N(X ′

n))) .

Additionally, for the integral appearing in (4.28) and (4.30), we obtain that

∫

Υ
(j)
i

c(P (u, o) du =

∫

Υ
(j)
i

c(P (up, o) du ,

where up denotes the closest point, with respect to u, of the line system L(Ξ∗
τi

) within

the set Υ
(j)
i . The following theorem displays a way in order to compute this integral

analytically.
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Theorem 4.5 Let Υ be a micro–cell within the typical cell Ξ∗
τ and let S = S(A,B)

be the corresponding segment with endpoints A and B, respectively, of the underlying
line system L(Ξ∗

τ ) restricted to Ξ∗
τ . Then, with the abbreviation cA(S) = c(P (A, o)) and

cB(S) = c(P (B, o)),

∫

Υ

c(P (u, o)) du = cA(S)ν2(ΥA) + cB(S)ν2(ΥB) +

∫

ΥC

c(P (u, o)) du . (4.31)

Theorem 4.5 immediately follows from additivity of the Lebesgue integral with respect
to the integration domain.

It is important to mention that the first two summands on the right–hand side of (4.31)
can be easily computed if Dijkstra’s algorithm is used to determine cA(S) and cB(S),
respectively (cmp. Section 4.2.8). Considering the computation of the third summand
of (4.31), it is possible to proceed similarly as in the proof of formula (4.21) derived in
Theorem 4.4. However, due to the necessity of subdividing ΥC in order to obtain linear
functions as integrands, the computation might become a little more challenging but
no principle problems occur.

4.2.7 Scaling Invariance Properties

In order to allow for an efficient analysis of the mean shortest path lengths and the
mean subscriber line lengths some scaling invariance properties have to be discussed
first. Recall that we assume XH to be a Cox point process as defined in Section 4.2.1 and
that the whole two–level hierarchical model can be completely described by the three
parameters λL, λHℓ and γ, where λH = γλHℓ is the intensity of XH and λL denotes the

intensity of the lower level point process X̃ ′
L (either a Cox point process or a Poisson

point process). Besides, it is assumed that c(S) is the length of the segment S, i.e.,
c(S) = ν1(S). In Section 4.2.4 it has been shown that both characteristics, the mean
shortest path lengths csp as well as the mean subscriber line lengths csl are independent
of the model parameter λL. Furthermore, it has been explained in Section 2.4.6 for
characteristics of the typical cell that with respect to the two remaining parameters λHℓ
and γ, a scaling invariance property holds for any fixed value of the quotient κ = γ/λHℓ.
Now, we derive a similar scaling invariance effect for csp and csl.

The following theorem shows that it is possible to provide estimates for the mean
shortest path length as well as the mean subscriber line length with respect to a given
parameter pair (γ, λHℓ) by using estimates for a different parameter pair that has the
same quotient κ and by performing a suitable standardisation afterwards.
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Theorem 4.6 For any pair (γ, λHℓ) of parameters γ, λHℓ > 0, consider the charac-
teristics csp = csp(γ, λHℓ) and csl = csl(γ, λHℓ) given in (4.3) and (4.7), respectively.
Then

γ(1) csp(γ
(1), λ

(1)
Hℓ

) = γ(2) csp(γ
(2), λ

(2)
Hℓ

) (4.32)

and
γ(1) csl(γ

(1), λ
(1)
Hℓ

) = γ(2) csl(γ
(2), λ

(2)
Hℓ

) (4.33)

provided that γ(1)/λ
(1)
Hℓ

= γ(2)/λ
(2)
Hℓ

.

Proof It is only shown that (4.32) holds, because the proof of (4.33) is analogous. Let

γ(2) = a γ(1) and λ
(2)
Hℓ

= a λ
(1)
Hℓ

for some a > 0. Then, we can use the scaling properties of

the typical cell Ξ
∗(i)
τ of the Voronoi tessellation τ

(i)
X induced by the (Cox) point process

X
(i)
H of higher–level points with parameter pair (γ(i), λ

(i)
Hℓ

) (cmp. Section 2.4.6). These
scaling properties induce that

IE
X

(1)
H

∫

L(1)(Ξ
∗(1)
τ )

ν1(P (1)(u, o)) du = a2 IE
X

(2)
H

∫

L(2)(Ξ
∗(2)
τ )

ν1(P (2)(u, o)) du , (4.34)

where L(i)(Ξ
∗(i)
τ ) is the (typical) line system within Ξ

∗(i)
τ and ν1(P (i)(u, o)) is the length

of the corresponding shortest path from u to o. Hence, by using (4.1) and (4.10), we
obtain that

γ(1) csp(γ
(1), λ

(1)
Hℓ

) = γ(1)λ
(1)
Hℓ

IE
X

(1)
H

∫

L(1)(Ξ
∗(1)
τ )

c(P (1)(u, o)) du

=
γ(2)λ

(2)
Hℓ

a2
IE
X

(1)
H

∫

L(1)(Ξ
∗(1)
τ )

c(P (1)(u, o)) du

= γ(2)λ
(2)
Hℓ

IE
X

(2)
H

∫

L(2)(Ξ
∗(2)
τ )

c(P (2)(u, o)) du

= γ(2) csp(γ
(2), λ

(2)
Hℓ

) ,

where, in the third equality, (4.34) has been used together with the assumption that
the cost value of any segment of the path P (i)(u, o) is its length. 2

4.2.8 Results of Monte–Carlo Simulations

In this section we present estimations for the two regarded characteristics of two–level
hierarchical models, the mean shortest path length csp and the mean subscriber line
length csl, respectively. The results of Section 4.2.8 have been obtained in cooperation
with M. Rösch and are also partially documented in [88]. By using the estimators
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Figure 4.10: Network characteristics for κ = 10 (o), κ = 50 (+) and κ = 120 (⋄)

described in Sections 4.2.5 and 4.2.6 it is no longer necessary to simulate any lower–level
points in order to estimate csp and csl. However, the most limiting factor with respect to
fast runtimes remains the computation of shortest path lengths cA(S) = c(P (A(S), o))
and cB(S) = c(P (B(S), o)) by Dijkstra’s algorithm. This computation still has to be
performed for a certain set of vertices for the underlying line system as well as for their
intersection points with the boundary of the typical cell Ξ∗

τ . The fastest implementation
of Dijkstra’s algorithm is of order O(n+m logm) (cmp. [42]), where m is the size of the
vertices (nodes) in the corresponding graph and n is the size of the edges. Hence, it can
easily be seen that the possibility to omit a simulation of lower–level points is a huge
advantage with regard to efficiency, since the simulation itself is no longer necessary and
even more important the application of Dijkstra’s algorithm is accelerated due to the
reduced graph size with respect to the number of vertices and edges that are contained
in the graph, in particular for large values of λLℓ . This reduced graph size is due to the
fact that the lower level elements are eleminated from the graph. Especially for a large
parameter κ = γ/λHℓ, however, runtime can still become very long. In such a case we
have that the size of the set of vertices of the graph considered above is quite large.
Hence, we must provide an upper bound for κ with respect to evaluation. On the other
hand, if κ is too small, there are few lines with relatively many higher–level points on
them. For many applications, e.g. in telecommunication, this does not seem to be a very
realistic assumption. Therefore, the parameter κ is investigated for κ ∈ [10, 120]. As a
number of iterations for the estimation of the mean shortest path length as well as the
mean subscriber line length n = 50,000 is used. In Figure 4.10 the scaling invariance
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Table 4.2: Estimates of mean shortest path length csp and mean subscriber line length
csl (without last meter) for different values of γ

a) κ = 10

γ ĉsp ĉsl

0.125 17.355 23.894
0.25 8.615 11.870
0.4 5.409 7.435
0.5 4.323 5.950
0.8 2.711 3.726
1.0 2.169 2.981
1.25 1.727 2.374
1.5 1.440 1.974

b) κ = 50

γ ĉsp ĉsl

0.125 36.074 47.494
0.25 17.972 23.665
0.4 11.267 14.815
0.5 9.003 11.857
0.8 5.618 7.397
1.0 4.499 5.920
1.25 3.600 4.735
1.5 2.996 3.942

c) κ = 120

γ ĉsp ĉsl

0.125 53.355 68.841
0.25 26.641 34.360
0.4 16.669 21.502
0.5 13.317 17.191
0.8 8.310 10.723
1.0 6.668 8.609
1.25 5.316 6.865
1.5 4.427 5.710

Table 4.3: Quotient of estimated mean shortest path length ĉsp and estimated mean
subscriber line length ĉsl for different values of κ

κ 10 20 30 40 50 60 90 120
ĉsp/ĉsl 0.727 0.739 0.751 0.756 0.760 0.763 0.770 0.775

effect described in Section 4.2.7 is clearly visible. If we take the scaling parameter
κ to be fixed for different values of γ then, due to (4.32) and (4.33), respectively, the
estimated results for csp as well as for csl are (apart from some randomness caused by the
estimator) proportional to 1/γ. Hence, we see that the graphs displayed in Figure 4.10
for the different parameter values κ = 10, κ = 50 , and κ = 120 are almost linear and
should (at least theoretically) pass through the origin. Unfortunately, it is not possible
to check the last property since this would mean that γ → ∞. The corresponding
estimated values for csp and csl are displayed in Table 4.2. Note that for the same
parameter pair (γ, λ1) we can make the observation that ĉsp < ĉsl is astonishing but is
of course favored by the fact that the last meter is chosen to be zero.

If the scaling parameter κ increases, the quotient ĉsp/ĉsl also slightly increases. This
means that the mean shortest path length csp becomes larger in relation to the mean
subscriber line length csl (Table 4.3). For increasing κ we can remark that both char-
acteristics csp as well as csl seem to increase. Obviously, a property that is at least
partially responsible for this effect is that the expected area IEν2(Ξ

∗
τ ) of the typical cell

Ξ∗
τ of the Voronoi tessellation induced by XH , the Cox point process of the higher–level
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Table 4.4: Estimates of the mean shortest path length csp and the mean subscriber line

length csl scaled by
√

IE(ν2(Ξ∗
τ ))

κ 10 20 30 40 50 60 90 120

ĉsp/
√

IE(ν2(Ξ∗
τ )) 0.686 0.667 0.653 0.644 0.638 0.632 0.617 0.609

ĉsl/
√

IE(ν2(Ξ∗
τ )) 0.944 0.903 0.870 0.852 0.840 0.828 0.801 0.786

points, also increases. In order to eliminate the effect of increasing mean areas of the
typical cell it is worth looking at Table 4.4, where the characteristics csp and csl are
scaled by the square root of the expected area for the typical cell, i.e., by (γλHℓ)

−1/2.
Here, we can see that for an increasing scaling parameter κ the quotient csp/(ν2(Ξ

∗
τ ))

1/2

is decreasing for the mean shortest path length as well as csl/(ν2(Ξ
∗
τ ))

1/2 is decreasing
for the mean subscriber line length. A possible way of explaining these effects is that
for increasing κ and a fixed expected area of the typical cell, the number of lines in
the typical cell is increasing. Therefore, due to a higher connectivity in the cell, the
mean shortest path lengths as well as the mean subscriber line lengths have a decreased
value. Another possible explanation might be, as shown in Section 3.2.3, that the mean
perimeter of the typical Voronoi cell induced by XH decreases for increasing κ under
the condition that IE(ν2(Ξ

∗
τ )), the mean area of the typical cell, is kept constant. The

decreasing perimeter causes the typical cells to be more compact on average and hence
values for the regarded functionals csp and csl tend to be smaller.

Recall that by Theorem 4.6 we get the following representations for csp and csl, respec-
tively.

csp(γ, λ1) = m(κ) γ−1 (4.35)

and
csl(γ, λ1) = m′(κ) γ−1 , (4.36)

where m(κ) and m′(κ) are constants that depend only on the scaling parameter κ =
γ/λ1. By using the relationships (4.35) and (4.36), and by looking at the graphs dis-
played in Figure 4.10, we are able to obtain estimates m̂(κ) and m̂′(κ) for the slopes
m(κ) and m′(κ) of the lines for κ being constant and 1/γ variable. Hence, due to the
knowledge of m̂(κ) and m̂′(κ) we have the possibility to estimate csp and csl without a
necessity to do simulations for any given pair of parameters (γ, λHℓ), since only these
parameter values need to be put into (4.35) and (4.36) in order to obtain estimates
for csp and csl. From a computational point of view, we can estimate these slopes for
certain discrete values of κ and afterwards a function can be fitted to the measurement
points. In Figure 4.11 some values of estimated slopes as well as a fitted function are
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Figure 4.11: Estimates for the slopes m(κ) and m′(κ) for different κ and the fitted
function

displayed. For the fitted function we used a power function of the type

m(κ) = aκb and m′(κ) = a′κb
′

,

where a, a′ ∈ IR and b, b′ ∈ (0, 1]. Applying the least squares estimation method we
obtained a = 0.7739, b = 0.450 and a′ = 1.1242, b′ = 0.425.

4.3 Average Distances to Nuclei in Modulated Poisson–

Voronoi Tessellations

In this section another cost functional is introduced and investigated, namely the aver-
age cost from a randomly placed point to the nearest nucleus of the Voronoi tessellation
τ that is induced by a modulated Poisson point process X with random driving measure
ΛX given in (2.23). The random placement might take place purely random, in other
words following the distribution of a stationary Poisson point process, or again might
be a modulated Poisson point process connected to the identical Boolean model Ψ that
appears in the definition of the random driving measure ΛX . The results of this section
are partially based on results obtained in [28].
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4.3.1 Definition of a Cost Functional

In the following let XH = {Xn}n≥1 be a modulated Poisson point process connected to
a Boolean model Ψ with random driving measure

ΛH(dx) =

{
λH1dx if x ∈ Ψ,
λH2dx if x /∈ Ψ,

(4.37)

where λH1 , λH2 ≥ 0 and max{λH1, λH2} > 0. Let X̃L = {X̃n}n≥1 be another modulated
Poisson point process connected to the same Boolean model Ψ with random driving
measure

ΛL(dx) =

{
λL1dx if x ∈ Ψ,
λL2dx if x /∈ Ψ,

(4.38)

where λL1 , λL2 ≥ 0 and max{λL1 , λL2} > 0. Note that both random driving measures
ΛH and ΛL are connected to a common Boolean model Ψ and that, given Ψ, XH and
X̃L are assumed to be independent. Furthermore, if N(X̃n) denotes the location of the

nearest (in the Euclidean sense) point of XH with respect to X̃n ∈ X̃L consider the

marked point process XL = {X̃n, |X̃n − N(X̃n)|}n≥1. Recall that, due to Lemma 2.6,
the intensities of XH and XL are given by pΨλH1 +(1−pΨ)λH2 and pΨλL1 +(1−pΨ)λL2,
respectively, where pΨ is the coverage probability of the Boolean model Ψ given in (2.22).

The functional we are especially interested in is the average distance c̄ from the typical
point of XL to its nearest point of XH . Using the Palm probability measure P ∗

XL
of

XL (cmp. (2.20)) and due to the stationarity of XL given in Lemma 2.6 we are able to
express c̄ by

c̄ = IEXL|N(o)|, (4.39)

where IEXL is the expectation with respect to the Palm probability measure P ∗
XL

. Note
that due to the ergodicity of XL (cmp. Lemma 2.7) it is possible to alternatively express
the expectation c̄ as the limit of spatial averages with respect to an averaging sequence
{Wi}i≥1 of unboundedly increasing sampling windows Wi. This means that if c̄(W )
given by

c̄(W ) =
1

#{n : X̃n ∈W}
∑

n≥1

1IW (X̃n)|X̃n −N(X̃n)| (4.40)

denotes the average distance from a point of XL to its nearest point of XH with respect
to a sampling window W and if {Wi}i≥1 is an averaging sequence of unboundedly in-
creasing sampling windows as defined in Section 2.1, the following holds with probability
1 (cmp. [22] and [93]).

c̄ = lim
i→∞

c̄(Wi). (4.41)
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Note that the special cases of either XH or X̃L being stationary Poisson point processes
are included in the setting described above by putting λH1 = λH2 or λL1 = λL2, respec-
tively. Furthermore one can remark that an estimation that is based on c̄(W ) might be
hard to achieve due to occurring edge effects.

4.3.2 Application of Neveu’s Formula

The results obtained in this section allow for a practically more feasible representation
of the cost functional c̄ = IEXL(|N(o)|) introduced in (4.39). Thereby a more efficient
way of computing an approximation for c̄ is derived.

Theorem 4.7 Consider the modulated Poisson point process XH = {Xn}n≥1 and the

(marked) modulated Poisson point process XL = {X̃n, |X̃n−N(X̃n)|}n≥1 whose random
driving measures ΛH and ΛL are given by (4.37) and (4.38), respectively, both with
respect to a common Boolean model Ψ. Let pΨ represent the coverage probability of Ψ
defined in (2.22) and let λH = pΨλH1 + (1 − pΨ)λH2 and λL = pΨλL1 + (1 − pΨ)λL2 be
the intensities of XH and XL, respectively. Then

c̄ = IEXL(|N(o)|) =
λH
λL

IEXH

(
λL1

∫

Ξ∗
τ∩Ψ

|u|du+ λL2

∫

Ξ∗
τ∩Ψc

|u|du
)
, (4.42)

where Ξ∗
τ denotes the cell of the Voronoi tessellation induced by XH which contains the

origin, and where IEXH is the expectation with respect to the Palm probability measure
P ∗
XH

.

Proof The proof of Theorem 4.7 is based on Neveu’s exchange formula (see (2.21))
for jointly stationary point processes, which are defined on a common probability space
(Ω,A, IP) equipped with some flow {θx, x ∈ IR2}. We use (2.21) with XD and X̃ eD

being equal to XH and XL, respectively. Thus, the mark space M will be omitted and
M̃ = [0,∞). Consider the function f : IR2 × [0,∞) × Ω → [0,∞) given by

f(x, g̃, ω) =

{
g̃ if XH(θ−xω,B

6=
|x|(x)) = 0 ,

0 otherwise
(4.43)

for any x ∈ IR2, g̃ ≥ 0, and ω ∈ Ω, where B 6=
|x|(x) = {y ∈ IR2 : |y − x| < |x|}. Note

that if x ∈ IR2 is an atom of the counting measure XH(ω, ·), then f(−x, g̃, ω) = g̃ only
if there are no other atoms of XH(ω, ·) which have a distance of less than |x| to the
origin. Hence by applying Neveu’s exchange formula (2.4) we obtain that

IEXL(|N(o)|) =

∫

Ω×eM

∫

IR2

f(−x, g̃, ω)XH(ω, dx)P ∗
XL

(d(ω, g̃))

=
λH
λL

∫

Ω

∫

IR2×eM

f(x, g̃, θxω)XL(ω, d(x, g̃))P ∗
XH

(dω) .

(4.44)
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Given the Boolean model Ψ the inner integral on the right–hand side of (4.44) can be
expressed as

∫

IR2×eM

f(x, g̃, θxω)XL(ω, d(x, g̃)) =

∫

(IR2∩Ψ)× eM

f(x, g̃, θxω)XL(ω, d(x, g̃))

+

∫

(IR2∩Ψc)× eM

f(x, g̃, θxω)XL(ω, d(x, g̃)).

(4.45)

Additionally, given Ψ and the Voronoi cell Ξ∗
τ of XH that contains the origin, note that

the random number of points of XL in Ξ∗
τ ∩ Ψ is Poisson distributed with expectation

η1 = λL1|Ξ∗
τ ∩ Ψ|, while the random number of points of XL in Ξ∗

τ ∩ Ψc is Poisson
distributed with expectation η2 = λL2 |Ξ∗

τ ∩Ψc|. Hence, by the definition of the function
f given in (4.43) the first integral on the right side of (4.45) can be written as

∫

(IR2∩Ψ)× eM

f(x, g̃, θxω)XL(ω, d(x, g̃)) =

∞∑

k=1

e−η1
ηk1
k!

∫

Ξ∗
τ∩Ψ

. . .

∫

Ξ∗
τ∩Ψ

k∑

i=1

|ui|
|Ξ∗

τ ∩ Ψ|k du1 . . . duk ,

due to the independence and the conditional uniform distribution of the points of XL

in Ξ∗ ∩ Ψ. Therefore,

∫

(IR2∩Ψ)× eM

f(x, g̃, θxω)XL(ω, d(x, g̃)) =

∞∑

k=1

e−η1
ηk1
k!

k

|Ξ∗
τ ∩ Ψ|

∫

Ξ∗
τ∩Ψ

|u| du

= λL1

∫

Ξ∗
τ∩Ψ

|u| du .

Analogously, it can be shown that

∫

(IR2∩Ψc)× eM

f(x, g̃, θxω)XL(ω, d(x, g̃)) =
∞∑

k=1

e−η2
ηk2
k!

k

|Ξ∗
τ ∩ Ψc|

∫

Ξ∗
τ∩Ψc

|u| du

= λL2

∫

Ξ∗
τ∩Ψc

|u| du .

Altogether we get that

IEXL(|N(o)|) =
λH
λL

IEXH

(∫

Ξ∗
τ∩Ψ

λL1 |u|du+

∫

Ξ∗
τ∩Ψc

λL2 |u|du
)
,

which completes the proof of the theorem. 2

In the special case that λL1 = λL2, i.e., {X̃L} is a stationary Poisson point process
Theorem 4.7 can be restated as follows.
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Corollary 4.3 Supppose that λL1 = λL2, i.e., {X̃L} is a stationary Poisson point
process with intensity λL. Then

c̄ = IEXL(|N(o)|) = λHIEXH

∫

Ξ∗
τ

|u|du. (4.46)

Note that (4.46) induces in particular that c̄ is independent of λL. In the Poisson case,
i.e., if λH1 = λH2 and λL1 = λL2 , the cost functional c̄ = IEXL |N(o)| can be analytically
computed as (see also [4] and [16])

c̄ = λHIEXH

∫

Ξ∗

|u|du = λH

∫

IR2

|u| exp (−λHπ|u|2)du =
1

2
√
λH

. (4.47)

4.3.3 Estimation Based on Monte-Carlo Simulation

Theorem 4.7 induces a useful approach for the construction of an estimator for the cost
functional c̄ which is given in the following lemma.

Lemma 4.4 Let {(Ξ∗
1,Ψ

∗
1)..., (Ξ

∗
n,Ψ

∗
n)} be a sequence of independent copies of (Ξ∗

τ ,Ψ)
under the Palm probability measure P ∗

XH
. The estimator ̂̄c given by

̂̄c =
λH
λL

1

n

n∑

i=1

∫

Ξ∗

τ,i

|u|Λ̃L,i(du), (4.48)

where

Λ̃L,i(dx) =

{
λL1dx if x ∈ Ψ∗

i ,
λL2dx if x /∈ Ψ∗

i ,
(4.49)

is an unbiased and consistent estimator for c̄.

The estimator ̂̄c given in Lemma 4.4 will be used in Section 4.3.4 in order to obtain
numerical results for some sample scenarios. Note that if λL1 = λL2 then the integral∫
Ξ∗

τ,i
|u|Λ̃L,i(du) is computed analytically, otherwise it is computed via numerical ap-

proximation. This is due to the fact that in the first case, by applying (4.46), we are
able to rewrite the integral as an integral with respect to the Lebesgue measure. If
λL1 6= λL2 integration must be performed with respect to the measure Λ̃L,i and there-
fore the shape of Ψ∗

i has to be taken into account. Another important fact concerning
a numerical evaluation is that it is not necessary to simulate any points of XL in order
to apply the estimator ̂̄c given in (4.48).
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4.3.4 Numerical Examples

The results of Section 4.3.4 have been obtained in cooperation with K. Posch and A.
Upowsky and are partially documented in their respective diploma theses ([84], [107]).
With respect to the parameters β, the intensity of the germs of the Boolean model Ψ,
pΨ, the coverage probability of Ψ introduced in (2.22) and r, the fixed radius of the
grains of Ψ we regard the same values as in the first example of Section 3.3.3, i.e., we
have that β = 0.2, pΨ = 0.6 and therefore, due to (2.22), it is obtained that r = 1.20761.
With regard to the estimated values of the cost functional c̄ defined in Section 4.3.2 it
can be stated that it increases as λH1 tends to 0 (Figure 4.12a) with respect to a fixed
intensity λH = 12. Note that for this example the intensities of the process XL are
assumed to be equal, i.e., λL1 = λL2 The sample size is n = 2,000,000 for each pair of
parameters (λH1, λH2). The effect of an increasing value of the cost functional if λH1

tends to 0 can possibly be explained by the appearance of cells that have a relatively
large ratio of perimeter to area that causes a relatively large mean distance to the
cell nuclei. Note that in the case of a Poisson–Voronoi tessellation (λH1 = λH2) the
estimated value for the mean distance to the cell nuclei of 0.14437 coincides well with
the theoretical value of (2

√
λH)−1 = 0.14434.

As a second numerical example we have a look at a scenario where λL1 6= λL2 . For
this scenario we take the same values for β, pΨ and r as above and additionally keep
λH1 = 4 and λH2 = 24 fixed. The values for λL1 and λL2 are varied under the condition
that λL = 1. The results shown in Figure 4.12b reflect quite well the linear relationship
between the value of λL1 and the estimated cost functional ̂̄c in this case. This linear
relationship is a direct consequence of (4.42). Due to this linear relationship it is
sufficient to estimate two expectations IEX(

∫
ΞX∩Ψ

|u|du) and IEX(
∫
ΞX∩Ψc

|u|du) for a
specific pair of parameters λL1 and λL2 in order to obtain estimates of c̄ for all pairs of
parameters λL1 and λL2 based on (4.42).

Notice that numerical evaluations of examples where λL1 6= λL2 are more time con-
suming due to the numerical computation of the estimator ̂̄c introduced in (4.48), as
opposed to the case where λL1 = λL2 since here ̂̄c is computed analytically, given reali-
sations of the typical cell (cmp. Section 4.3.2). Therefore, for cases where ̂̄c had to be
computed numerically we took n = 100,000.
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Figure 4.12: Estimated cost functionals for λH = 12 fixed
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Chapter 5

Testing Methods for Programs with

Random Input or Output

In Chapters 3 and 4 some algorithms for simulations of the typical cell for different
random tessellation models as well as for the estimation of related cost functionals with
respect to two–level hierarchical models have been introduced. A major problem that
is connected with actual simulations and computations is how to ensure that the im-
plementations based on these algorithms deliver results that are correct, this means in
our context provide correct results for the characteristics to be evaluated. This problem
leads to a necessity for the application of software tests, in particular of software tests
for software that has a random input or output. In the following chapter some funda-
mental principles of such software tests for software with random input or output are
introduced. These fundamental principles are then applied in order to develop tests for
implementations of the algorithms described in Chapters 3 and 4. Three approaches
for testing the implementations are considered in particular. In Section 5.2 tests based
on a statistical oracle are introduced and applied. A statistical oracle that is deduced
from some known theoretical relationships is used in order to get inference about the
correctness of the implementation. In Section 5.3 the statistical oracle is combined with
a technique called metamorphic testing. Metamorphic testing means a simultaneous
testing of different test cases that are connected via a metamorphic relation, where a
metamorphic relation represents an expected relation among the related inputs and out-
puts of multiple executions for the implementation unit under test (IUT). An example
for such a combined testing method of a statistical oracle and a metamorphic relation
is provided. Finally, in Section 5.4, the techniques derived in Sections 5.2 and 5.3 are
used in order to develop software tests that are based on the comparison to an already
tested (and validated) gold–standard implementation. A slight modification of this
testing technique is to test two implementations versus each other. For more detailed

117
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information on software tests in general and on some of the techniques applied in this
thesis the reader is, for example, referred to [14], [20], [39], [63], and [64].

5.1 General Principles of Software Testing

A software test is a possible method in computer science for the partial verification and
validation of an IUT. It is the process used to identify the correctness, completeness,
security and quality of developed computer software. In particular, software testing
means to compare the actual behaviour of the IUT with the specifications or expected
behaviour of the software by the help of constructed test cases. In this context a test
case is a set of conditions or variables (in our case often input parameters) under which
a tester can determine if a requirement of an application is fully or at least partially
satisfied. Usually, a test case possesses a known input and an expected output which
is determined before the actual test is executed. Hence, the known input should test a
precondition, whereas the expected output tests a postcondition.

In the following we will focus ourselves on black–box testing, where black–box means
that, contrary to white–box testing, the IUT considered is only accessed through the
same interfaces that a customer or user would use. More specifically we will focus on
function–oriented tests where the main aim of the test cases is to check for functional
correctness of the IUT in the sense that, given a set of input parameters, correct values
for the output parameters are computed. The principal structure of the software tests
considered in this thesis is described in Figure 5.1. The input parameters, in our cases
mostly values for the parameters of the mathematical model, are provided to the IUT
via a suitable interface. The IUT then computes the actual results that are afterwards,
once more via a suitable interface, given to the analyser. The analyser transforms the
actual results in characteristics that the comparator can use to compare them to the
expected output. Thereby it can be determined if the test passes or not. The problem
of how to obtain a useful analyser and a subsequent comparator is also known as the
test oracle problem. A possible solution with respect to software that has a random
output will be discussed in the following.

5.2 Testing Based on Statistical Oracles

5.2.1 Basic Principle

A main aspect of software testing is the oracle problem. This means, as described in
Section 5.1, that rules or conditions must be provided that are able to indicate whether
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Test Input
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Comparator

Under Test (IUT)
ImplementationTest Case

Inputs

Actual

Yes/No
Test Decision

Results
Analyser

Characteristics

Rule/Relation

Figure 5.1: Structure of a software test

a test passes or not. In other words a construction principle for the comparator of a
software test has to be found. Then, a method has to be given that can be used by
the analyser in order to transform the actual results of the IUT, given the test input
parameters, into characteristics that can be used by the comparator to decide whether
the test passes or not.

In the following we will introduce the statistical oracle that can be considered as a special
case of the Heuristic Oracle ([39]) and the Parametric Oracle ([14]), respectively. The
basis for a statistical oracle is given by some statistical methods, especially statistical
tests where the intent is to verify some statistical characteristics like the first–order
or higher–order moments of the actual test results. In practice, this means that the
analyser for our software test is given by a statistical analyser that for example consists
of an estimator for moments of a specific characteristic based on a sample provided by
the IUT. These estimated moments, which are of a random nature, are afterwards given
to the comparator. In the case of a statistical oracle we have that the comparator itself
is also of a random nature, meaning that the comparison between the characteristics
provided by the statistical analyser to the expected output are performed by the help
of statistical test methods. Hence, due to the random nature of the analyser as well
as the comparator, we can not expect that the decision of a statistical oracle is always
correct in a deterministic sense but only in the sense of the statistical tests involved in
the comparator. An advantage, on the other hand, is that statistical oracles are useable
for software with random inputs or outputs and for randomly generated test cases.

Note that all tests considered in this chapter are at least partially based on a statistical
oracle. In the examples of this section we will consider tests that are almost purely based
on a statistical oracle while in the following sections tests are constructed that utilise a
statistical oracle in conjunction with metamorphic testing relationships and with results
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from gold–standard implementations or with results from a second implementation,
respectively.

5.2.2 Examples

As an example for a test of software with random output we have a look at the simu-
lation of the typical cell for different types of random tessellations that is described in
Sections 3.1.3 and 3.3. Given a random tessellation τ that is induced by a (stationary)
random point process X we are able to use (2.25) in order to construct a statistical
oracle. Recall that (2.25) states that

IE [ν2(Ξ
∗
τ )] =

1

λτ
,

where τ is a random tessellation with finite and positive intensity λτ and where Ξ∗
τ

is the typical cell of τ . Note that for the cases of Voronoi tessellations that will be
regarded in the following we have that λτ = λX , where λX represents the intensity of
the random point process X that induces the Voronoi tessellation τ . In other words
the fact that the mean area of the typical cell for a tessellation τ is given by the re-
ciprocal of the corresponding intensity λX of X induces the following null–hypothesis
under test. The expected results for the area of the typical cell Ξ∗

τ provided by the
implemented algorithm should be equal to λ−1

X for various intensities λX . To evaluate
such a hypothesis a well–known statistical test can be used. Let ξ̃∗τ,1, .., ξ̃

∗
τ,n be n reali-

sations of the implemented version Ξ̃∗
τ of the typical cell Ξ∗

τ , where n is supposed to be
large. These realisations are generated in order to get an estimate 1

n

∑n
i=1 ν̃2(ξ̃∗τ,i) for

IEν2(Ξ∗
τ ), where ν̃2(ξ̃∗τ,i) is the result for the area of a particular realisation ξ̃∗τ,i provided

by the IUT. Due to the fact that we suppose the underlying variances of ν̃2(Ξ̃∗
τ,i) to be

finite and the different realisations of Ξ̃∗
τ to be independent and identically distributed

and since the sample size n is supposed to be large, the test statistic

T =
√
n

1
n

∑n
i=1 ν̃2(Ξ̃∗

τ,i) − (λX)−1

√
1

n−1

∑n
i=1

(
ν̃2(Ξ̃∗

τ,i) − 1
n

∑n
j=1 ν̃2(Ξ̃∗

τ,j)
)2 (5.1)

is approximately standard normal distributed due to the Central Limit Theorem given
in Theorem A.1. Hence, an asymptotic Gaussian test can be applied in this situation
in order to obtain inference about the null–hypothesis and thereby in order to obtain
inference about the correctness of the implementation. We construct a statistical anal-
yser that, given realisations of the typical cell Ξ∗

τ computes the test statistic T . Then
the actual value of T can be used by the comparator to determine whether the test
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passes or not by the help of an asymptotic Gaussian test for the null-hypothesis that
is based on (2.25).

Tests of this type have proven to be very sensitive for the detection of errors during our
experiments, especially for very large numbers of iterations n which is equivalent to a
very large sample size for the compuation of the test statistic in the statistical analyser.

An alternative approach (cmp. [64]) to the one presented in this section would be to
test for inequalities rather than to test for equality. For example, some fixed ε > 0 can
be defined and hypotheses like IE(ν̃2(Ξ̃∗

τ )) /∈ [(λX)−1−ε, (λX)−1 +ε] can be tested. From
a statistical point of view, this approach leads to intersection–union tests (cmp. [19],
Chapter 8) and to test statistics of the form

T1 =
√
n

1
n

∑n
i=1 ν̃2(Ξ̃∗

τ,i) − (λX)−1 + ε
√

1
n−1

∑n
i=1

(
ν̃2(Ξ̃∗

τ,i) − 1
n

∑n
j=1 ν̃2(Ξ̃∗

τ,j)
)2 (5.2)

and

T2 =
√
n

1
n

∑n
i=1 ν̃2(Ξ̃∗

τ,i) − (λX)−1 − ε
√

1
n−1

∑n
i=1

(
ν̃2(Ξ̃∗

τ,i) − 1
n

∑n
j=1 ν̃2(Ξ̃∗

τ,j)
)2 (5.3)

where, under the null–hypothesis, the statistics T1 and T2 are assumed to be nearly
normal distributed. Compared to the first approach based on equality that will be used
in the following, this approach has some advantages as well as disadvantages. First of
all, it is possible by using the approach based on inequalities to control the error of
classifying an incorrect IUT as correct. But, apart from an increased complexity of the
testing method and apart from the fact that, for example, a choice of the parameter ε
is not obvious, a main disadvantage is that the probability for a misclassification of a
correct IUT as incorrect can not be arbitrarily fixed. Naturally, this might lead to a
danger of searching for non–existent implementation errors.

We now turn our attention to more concrete examples for software tests based on a
statistical oracle that is induced by the relationship given in (2.25). First we have a
look at the typical cell Ξ∗

τ of the Voronoi tessellation τ that is induced by a Cox point
process Xc with random driving measure ΛXc introduced in Section 2.4.6. Recall that
Lemma 2.10 states that for this type of tessellation the intensity λc of the generating
point process Xc is given by λc = λℓγ, where γ denotes the intensity of the underlying
Poisson line process Xℓ, while λℓ is the (linear) intensity of the Cox point process on
the Poisson lines. Therefore, we obtain a test statistic of the form

T =
√
n

1
n

∑n
i=1 ν̃2(Ξ̃∗

τ,i) − (λc)
−1

√
1

n−1

∑n
i=1

(
ν̃2(Ξ̃∗

τ,i) − 1
n

∑n
j=1 ν̃2(Ξ̃∗

τ,j)
)2 (5.4)
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Table 5.1: Area tests for the typical Voronoi cell induced by a Cox point process by
means of p–values

γ 0.125 0.25 0.4 0.5 0.8 1.0 1.25 1.5

κ=10 0.994 0.608 0.972 0.675 0.958 0.979 0.582 0.158
κ=50 0.778 0.693 0.932 0.917 0.082 0.114 0.002 0.798
κ=120 0.092 0.745 0.760 0.434 0.436 0.880 0.347 0.306

which is (for large n) approximately standard normal distributed.

Table 5.1 shows p–values of such a test for different values of γ, scaling invariance
parameter κ = γ/λℓ, introduced in Section 2.4.6, and a sample size of n = 2,000,000.
Recall that the meaning of the p–value is that the null–hypothesis is rejected if the
chosen significance level α is larger or equal to the p–value. For a (given) significance
level α = 0.05 the null–hypothesis is therefore rejected once for all regarded cases
(γ = 1.25 and κ = 50). The one significant rejection among the 24 test cases coincides
quite well with the definition of the significance level since, supposed the IUT is correct,
we would (theoretically) expect 24 ∗ 0.05 = 1.2 rejection cases. Due to the fact that the
number of rejections we obtained is even smaller than the expected number under the
null–hypothesis we can assume that the IUT provides correct values for the mean area
of the typical Voronoi cell induced by a Cox point process with random driving random
measure given in (2.31).

As a second example consider the typical Voronoi cell that is induced by a modulated
Poisson process as defined in Section 2.4.7. Recall that by Lemma 2.6 we have that
the intensity of the generating modulated Poisson point process X is given by λX =
pΨλX1 + (1 − pΨ)λX2. Hence, using once more (2.25), we obtain a test statistic to be
applied that can be written as

T =
√
n

1
n

∑n
i=1 ν̃2(Ξ̃

∗
τ,i) − (pΨλX1 + (1 − pΨ)λX2)−1

√
1

n−1

∑n
i=1

(
ν̃2(Ξ̃∗

τ,i) − 1
n

∑n
j=1 ν̃2(Ξ̃∗

τ,j)
)2 , (5.5)

where, for large sample size n, T is nearly standard normal distributed. In Table 5.2
some results of testing in form of p–values for different input values of λX1 and κ′ =
(p, λX1/β, λX2/β) are displayed. Recall that κ′ denotes the scaling invariance vector
for a Voronoi tessellation that is induced by a modulated Poisson point process (cmp.
Section 2.4.7). For a test level of α = 0.05 the null–hypothesis is rejected in a number
of cases that is smaller than the expected one (1.2 cases). Therefore, it is justified to
assume that the IUT provides correct estimates for the mean area of the typical cell of
a Voronoi tessellation generated by a modulated Poisson process.
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Table 5.2: Area tests for the typical Voronoi cell induced by a modulated Poisson
process by means of p–values

λX1 60 70 80 90 100 110 120 130

κ′=(0.2; 100; 10) 0.725 0.644 0.351 0.495 0.628 0.945 0.321 0.059
κ′=(0.2; 100; 20) 0.656 0.364 0.728 0.960 0.752 0.936 0.234 0.195
κ′=(0.8; 50; 5) 0.379 0.066 0.098 0.187 0.742 0.433 0.510 0.904

Another example for a test based on a statistical oracle is related to the computation
of the cost functional c̄ introduced in Section 4.3. In particular we have a look at the
special case, where λH1 = λH2 and λL1 = λL2 . This means that the modulated Poisson
point process is indeed a Poisson point process and that the corresponding Voronoi
tessellation is a Poisson–Voronoi tessellation. Hence, we obtain for λH = λH1 = λH2

and for λL1 = λL2 = 1 that (cmp. [78])

IEXH

∫

Ξ∗
τ

|u|du =
1

2
√
λH

3
(5.6)

and that therefore

c̄ = λHIEXH

∫

Ξ∗
τ

|u|du =
1

2
√
λH

(5.7)

These equations induce a test statistic T given by

T =
√
n

1
n

∑n
i=1

∫
Ξ̃∗

τ,i
|u|du− 1

2
√
λH

3

√
1

n−1

∑n
i=1

(∫
Ξ̃∗

τ,i
|u|du− 1

n

∑n
j=1

∫
Ξ̃∗

τ,j
|u|du

)2 , (5.8)

which for a large sample size n is approximately standard normal distributed. In Ta-
ble 5.3 resulting p–values are shown for different values of λH and a sample size of
n = 1,000,000. None of the regarded test cases shows a rejection for a test level of
α = 0.05. Hence, it is justified to say that the implementation of the cost functional c̄
provides correct results at least with respect to Poisson–Voronoi tessellations.

5.3 Statistical Metamorphic Testing

5.3.1 Basic Principle

In the absence of a statistical oracle that is directly usable or as an extension to tests
based on statistical oracles, a technique called metamorphic testing can be applied to
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Table 5.3: Tests for accuracy of the implementation for the cost functional c̄ with
respect to Poisson–Voronoi tessellations

λH 10 20 30 40 50 60 70
p–value 0.8109 0.3101 0.881 0.4416 0.8589 0.8159 0.5903

λH 80 90 100 110 120 130 140
p–value 0.5816 0.9711 0.366 0.2849 0.6072 0.1375 0.3341

λH 150 160 170 180 190 200 210
p–value 0.7617 0.4691 0.2479 0.5362 0.0353 0.9433 0.2173

mathematical, in particular statistical, software. More precisely, metamorphic testing
means the simultaneous test of different test cases that are connected via a metamorphic
relation (MR), where a MR is an expected relation among the related inputs and outputs
of multiple executions of the IUT. Examples for MR are numerous among mathemat-
ical problems, for example, there are various MR for matrices with real–valued entries
(cmp. [63]) or for trigonometrical functions (cmp. [20]). Metamorphic testing can be
considered as a kind of a self testing approach (cmp. [17] and [18]) which means that
the IUT is tested vs. itself. In general, we check two related test cases t1 and t2 and
their respective outputs o(t1) and o(t2), given by the IUT, against the MR. If the MR
can not be satisfied then an error in the IUT is indicated.

As an example for a deterministic MR regard the greatest common divisor gcd(a, b) of
two natural numbers a and b. It is a well-known fact that the greatest common divisor
is commutative in the sense that

gcd(a, b) = gcd(b, a). (5.9)

Now, we can use (5.9) as a MR in the following way. Consider an IUT that should
compute the greatest common divisor of two natural numbers and a test case t1, where
the input parameters are given by a, b ∈ IN. Then, the choice of t1 and the MR implies
that the test case t2 should have input parameters b and a and that with respect to the
outcomes o(t1) and o(t2) of t1 and t2, respectively, we have that o(t1) = o(t2) if the IUT
works correctly. Therefore, in this example, the analyser simply provides the two values
o(t1) and o(t2) to the comparator. Afterwards the comparator checks the metamorphic
relationship o(t1) = o(t2) in order to decide whether the test passes or not.

With regard to the applications we want to have a look at in this thesis, settings
are a bit different since the IUT typically produces a random output. Therefore the
testing technique using metamorpic relations has to be slightly modified in order to
account for this property of the IUT. More specifically, we do not use deterministic
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metamorphic relations as in the example for the greatest common divisor. Instead
statistical metamorphic relations are applied in order to check whether the test passes
or not. This means that the tests regarded in the following represent a combination
of tests using metamorphic relations and a statistical oracle as described in Secion 5.2
Therefore, we obtain a comparator that is on the one hand based on a statistical oracle,
but on the other hand also on a (statistical) MR which means, for example, a MR
for first–order or higher–order moments of random characteristics. Of course, as in
Section 5.2, we then have to regard the results of software testing not in a deterministic
sense but in the sense of results for a statistical test.

5.3.2 Examples

In our examples that are based on the algorithm introduced in Section 3.3 the scaling
invariance effect explained in Section 2.4.6 is used in order to derive statistical meta-
morphic relations. If we consider the mean perimeters IEν1(∂Ξ

∗(1)
τ ) and IEν1(∂Ξ

∗(2)
τ ) of

the typical cell of a Cox–Voronoi tessellation induced by a Cox point process defined
in Section 2.4.6 for two different pairs of parameters (γ(1), λ

(1)
ℓ ) and (γ(2), λ

(2)
ℓ ), where

κ = γ(1)/λ
(1)
ℓ = γ(2)/λ

(2)
ℓ , we obtain that

γ(1)IEν1(∂Ξ∗(1)
τ ) = γ(2)IEν1(∂Ξ∗(2)

τ ). (5.10)

The relation given in (5.10) can now be used in the sense of metamorphic testing as

a statistical MR. Consider a test case t1 given by t1 : (γ, λℓ) = (γ(1), λ
(1)
ℓ ). Then,

the choice of t1 and (5.10) induce that the second test case t2 should be of the form

t2 : (γ, λℓ) = (γ(2), λ
(2)
ℓ ), where γ(1)/λ

(1)
ℓ = γ(2)/λ

(2)
ℓ = κ. Note that if one of the two

test cases is regarded individually no direct statistical oracle is available with respect
to the mean perimeter of the typical cell. Instead, under the assumption that we have
an equal sample size n for both test cases, the statistical MR given in (5.10) allows us
to construct a test statistic of the form

T =

∑n
i=1

(
γ(1)ν̃1(∂Ξ̃

∗(1)
τ,i ) − γ(2)ν̃1(∂Ξ̃

∗(2)
τ,i )

)
√

(n− 1)(S2
(1) + S2

(2))
, (5.11)

where in this case
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)2
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S2
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(
γ(2)ν̃1(∂Ξ̃

∗(2)
τ,i ) − 1
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.
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Table 5.4: Tests for equality of expected perimeter estimates for κ = 50 by means of
p–values

γ(1)\γ(2) 0.125 0.25 0.4 0.5 0.8 1.0 1.25 1.5

0.125 – 0.636 0.373 0.393 0.918 0.928 0.995 0.437
0.25 0.636 – 0.251 0.268 0.851 0.867 0.986 0.306
0.4 0.373 0.251 – 0.521 0.957 0.963 0.998 0.566
0.5 0.3933 0.268 0.521 – 0.951 0.958 0.998 0.544
0.8 0.918 0.851 0.957 0.951 – 0.527 0.878 0.061
1.0 0.928 0.86679 0.962 0.958 0.527 – 0.863 0.053
1.25 0.995 0.986 0.998 0.998 0.878 0.863 – 0.003
1.5 0.437 0.306 0.566 0.544 0.061 0.053 0.003 –

The test statistic given in (5.11) is nearly standard normal distributed for large sample
sizes n of the two test cases t1 and t2 which allows for the construction of an asymptotic
Gaussian test. Therefore, if the analyser computes the values of the test statistic T
based on the ouputs o(t1) and o(t2) of t1 and t2, respectively, the comparator is able to
decide whether the test passes or not based on the value of T provided by the analyser
and on an asymptotic Gaussian test.

In Table 5.4 some results for the statistical metamorphic testing procedure are described
given our IUT, sample sizes n = 2,000,000 for t1 and t2 each and a scaling invariance
parameter κ = 50. The p–values that are displayed indicate that the scaling invariance
effect is reflected quite well by the test results since, given 28 pairs of parameters, only
for one pair (γ(1), γ(2)) = (1.25, 1.5) we have a p–value of less than 0.05. Hence, it
is deducable that our IUT passes the test based on the metamorphic relation given
in (5.10).

In order to derive a second example for a test based on the combination of metampor-
phic testing and a statistical oracle we use the fact that the scaling invariance effect for
the typical cell of a Cox–Voronoi tessellation that is based on a Poisson line tessellation
described in Section 2.4.6, is not restricted to first moments but is also valid, for exam-
ple, with respect to variances. So, if we use the number of vertices of the typical cell
η(Ξ∗

τ ) as a characteristic, we are able to state the following metamorphic relationship

Var η(Ξ∗(1)
τ ) = ... = Var η(Ξ∗(k)

τ ), (5.12)

where the test cases are ti : (γ, λℓ) = (γ(i), λ
(i)
ℓ ) for i = 1, ..., k. The statistical MR

given in (5.12) may lead to Levene–type tests (cmp. [48]) that can be used by the
comparator since in this case we have a strong similarity between the test based on the
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Table 5.5: Test for equality of variances by means of p–values

κ η̃(Ξ̃∗
τ ) ν̃1(∂Ξ̃∗

τ ) ν̃2(Ξ̃
∗
τ )

10 0.457 0.883 0.907
50 0.034 0.623 0.296
120 0.449 0.608 0.603

statistical MR and a test for homoscedasticity of random variables. Note that similar
statistical metamorpic relations can be given if the characteristic η(Ξ∗

τ ) is replaced by
ν1(∂Ξ∗

τ ) or ν2(Ξ
∗
τ ), respectively. Results for statistical metamorphic tests based on these

metamorphic relations are shown in Table 5.5 for three different scaling parameters
κ = 10, κ = 50, and κ = 120, for eight different values of γ per scaling parameter and
for a sample size of n = 2,000,000 per test case. It is viewable that the p–values are
quite well uniformly distributed in [0, 1] which should be the case if the null hypothesis
holds. Hence, it is justified to say that the IUT fulfills the statistical metamorphic
relations with respect to the variances of the number of vertices, the perimeter and the
area of the typical cell.

5.4 Tests by Comparison to Gold–Standard

5.4.1 Basic Principle

In Sections 5.2 and 5.3 methods for testing software with random inputs and outputs
have been introduced based on statistical oracles and on metamorphic relations. In
this section an extension to this approach is shown, where the statistical oracle and the
metamorphic relations are combined with a second implementation that is used to test
the IUT. Here, the basic principle is to test two implementations against each other.
One of the two implementations might be an already working implementation of the
algorithm (often called the gold–standard). Due to the fact that in our regarded cases
already implemented algorithms are usually not available we turn our attention to a
slight modification. Implementations of algorithms for the simulation of the zero cell for
the specific tessellation are used in order to test the results for the IUT that simulates
the typical cell of the tessellation. Note that algorithms for the simulation of the zero
cell are usually much more straight forwardly to derive and implement. Therefore,
they are ideal candidates in order to be utilized as a gold–standard for testing an IUT
that is simulating the typical cell of the same tessellation type. The test itself is based
on statistical metamorphic relations between the typical cell and the zero cell of a
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tessellation and the test decision is given by a statistical oracle where the decision of
the comparator is based on a statistical test. Note that from a very strict viewpoint we
do not apply metamorphic testing here, since two different implementations are tested
versus each other. But, since the whole procedure is very similar for a relation between
two implementations compared to the testing based on a MR for a single implementation
it is justified to speak about metamorphic relations also in the context of two involved
implemenations.

More precisely, we will look at examples where we construct two related test cases t1
and t2 with outputs o(t1) and o(t2). The first test case is performed with the IUT, while
t2 is performed with respect to a second implementation which is connected to the IUT
via a statistical MR of their specifications for the input parameters of t1 and t2. This
means that, assuming the IUT and the second implementation are working correctly,
the outputs o(t1) and o(t2) of the IUT and the second implementation are fulfilling a
statistical MR. As in Sections 5.2 and 5.3 the comparator makes the decision whether
the test passes or not based on a statistical test and on a value of a test statistic that
is provided by the analyser.

5.4.2 Examples

With respect to the examples considered in this section a comparison is performed be-
tween the results for the IUT that simulates the typical cell of a random tessellation and
a second implementation that simulates the zero cell of the same random tessellation.
The statistical MR that is applied is given by Lemma 2.9, which tells us that, given a
stationary tessellation τ with typical cell Ξ∗

τ and zero cell Ξo
τ and a translation–invariant,

non–negative and measurable function f : C → [0,∞) we have that

IE [f(Ξo
τ )] = λτ IE [f(Ξ∗

τ )ν2(Ξ∗
τ )] .

In particular, if, for example, we take f to be the number of vertices η we obtain the
following relationship

IE [η(Ξo
τ )] = λτ IE [η(Ξ∗

τ )ν2(Ξ∗
τ )] , (5.13)

which provides us with a usable statistical MR.

In the specific example the implementation for the simulation of the typical cell for
a Voronoi tessellation that is induced by a Cox point process is considered (see Sec-
tions 2.4.6 and 3.1.3). For an intensity λX = γλℓ, a given scaling invariance parameter
κ = γ/λℓ, an intensity of the Poisson line process of γ = 0.125 and a fixed sample
size of n = 2,000,000 the mean number of vertices for the typical cell Ξ∗

τ provided by
the IUT are compared to the same characteristic provided by an implementation for
the simulation of the zero cell Ξ0

τ of the same tessellation type. This means that if we
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consider a test case t1 for our IUT, the statistical MR (5.13) induces a test case t2 for
the implementation of the simulation of the zero cell Ξ0

τ of the same tessellation type
with the same parameter values as t1.

Applying (5.13) we can derive a test statistic of the form

T =

∑n
i=1

(
λX ν̃2(Ξ̃∗

τ,i)η̃(Ξ̃∗
τ,i) − η̃(Ξ̃0

τ,i)
)

√
(n− 1)(S2

(∗) + S2
(0))

, (5.14)

where

S2
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n∑
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(
λX ν̃2(Ξ̃∗
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1

n

n∑
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λX ν̃2(Ξ̃∗
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and

S2
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i=1

(
η̃(Ξ̃0

τ,i) −
1

n

n∑

j=1

η̃(Ξ̃0
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)2
.

For a large sample size n the test statistic T can be assumed to be approximately
standard normal distributed which allows the construction of an asymptotic Gaussian
test. Note that test statistics with respect to the mean perimeter and the mean area
as well as equivalent tests can be derived analogously. Now, if the analyser computes
the test statistic T based on the outputs o(t1) and o(t2) of t1 and t2, respectively, the
comparator is able to decide whether the test passes or not based on the value of T and
on the asymptotic Gaussian test. Therefore a software test for two implementations is
realised based on the combination of a statistical oracle and a statistical MR.

In Table 5.6 some results of tests for a parameter value of κ = 10 and κ = 120 are
displayed. The p–values are quite uniformly distributed in [0, 1] which should be the
case if the null hypothesis holds. Hence, if the implementation of the simulation for
the zero cell of the tessellation is correct we can assume that the IUT produces correct
results with respect to the statistical MR given in (5.14) and the characteristics IEη(Ξ∗

τ ),
IEν1(∂Ξ∗

τ ) and IEν2(Ξ∗
τ ).

5.5 Summary of Testing Methods

In this chapter we regarded different methods for tests of software with random output,
in particular for implementations of the algorithms described in Chapters 3 and 4. All of
these testing methods are at least partially based on statistical oracles and therefore only
provide results of testing in a statistical sense. Nevertheless, during the implementation
and testing work we obtained the experience that these statistical testing methods
proved to be very useful in order to detect errors in the implementations. Mostly due
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Table 5.6: Tests by comparison with zero cell algorithm (fixed κ): p–values

a) κ = 10

γ η ν1 ν2

0.125 0.067 0.068 0.139
0.25 0.187 0.308 0.237
0.4 0.104 0.020 0.057
0.5 0.391 0.536 0.780
0.8 0.174 0.377 0.255
1.0 0.108 0.019 0.033
1.25 0.696 0.632 0.673
1.5 0.805 0.508 0.431

b) κ = 120

γ η ν1 ν2

0.125 0.741 0.827 0.759
0.25 0.284 0.080 0.057
0.4 0.335 0.157 0.160
0.5 0.652 0.632 0.758
0.8 0.673 0.749 0.829
1.0 0.285 0.178 0.232
1.25 0.471 0.509 0.387
1.5 0.637 0.756 0.793

to the large sample sizes that can be quite easily simulated it becomes very unlikely
that an error is not detected during the testing procedures. This is very plausible
since for a large sample size, the probability that the results of an implementation
that behaves differently (e.g. that produces a different mean value) compared to the
expected outcome, do not lead to a rejection becomes very small which can be justified
by considering the construction principle of the tests that are mostly based on the
central limit theorem.

Especially the tests introduced in Section 5.2 that are constructed by the application
of a statistical oracle that is based on a theoretical property of a characteristic tend
to detect implementation errors very rapidly. With respect to tests that are based on
statistical metamorphic relations (Section 5.3) we have the impression that one has to
be a bit more cautious since, although some errors are detected, sometimes they are
not able to detect an error due to the fact that this error is influencing all test cases
in the same manner and therefore can become simply undetectable by a method based
on a particular statistical MR. Of course, this varies if different kinds of statistical
metamporphic relations are considered. For example, the tests that are given by a
comparison to a gold–standard implementation as described in Section 5.4 showed quite
a good capability of detecting implementation errors although also in this case a the
testing procedure is based partially on a statistical MR. Here, the implementations for
the simulation of the zero cell for the given tessellation provide a very good tool for
testing the implementation of the simulation for the typical cell due to their relative
simplicity. For a more detailed discussion of the selection of good metamorphic relations
see, for example, [63].



Chapter 6

Concepts of Morphological Image

Analysis

The presentation of random geometrical structures like networks is often based on
imaging procedures, such as microscopy or photography. The specific demands of the
investigative projects determine the properties of the image, for example, the spatial
resolution, the dimensionality, etc. Typically for many applications such data is given in
the form of grey scale images or color images, e.g. microscopic images or photographical
images. Preprocessing in this context means, apart from the removal of disturbances
(noise), a segmentation of the image into meaningful regions that can be analysed later
on. In order to achieve such a segmentation morphological image analysis provides a
powerful set of tools. In this chapter some of these tools are introduced. In particular,
after the definition of some basic notions and image filters in Section 6.1, in Section 6.2,
the morphological skeletonization is introduced that is applied in Section 8.1.1 for the
segmentation of image data from electron microscopy. In Section 6.3 the morphological
watershed transformation is discussed which is a key component of the image segmen-
tation algorithm given in Section 8.2.1 that is used in order to segment microscopic
images of actin filament networks. Finally, in Section 6.4 some further morphologi-
cal operations like pruning and merging are introduced that are also applied in the
image segmentation examples given in Chapter 8. For more detailed informations on
morphological image analysis in general see, for example, [41], [96], and [99].

131
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a) 4–connectivity with respect to the central pixel b) 8–connectivity with respect to the central pixel

Figure 6.1: Connectivity examples

6.1 Basics of Morphological Image Analysis

6.1.1 Digital Grids and Digital Images

A digital grid resembles a special kind of graph (cmp. Section 4.1). We usually work
with a square grid D ⊂ Z

2, where the vertices of D are called pixels. In the following
we will postulate that D is finite. Then, the size of D is the number of points in D. We
can endow the set of pixels D with a graph structure G = (V,E) by setting the domain
D as V and by setting a certain subset of V ×V as E, thereby defining the connectivity.
Typical choices with respect to E are 4–connectivity (4–neighbourhood), i.e., each pixel
possesses horizontal and vertical neighbours, or 8–connectivity (8–neighbourhood) where
each pixel is connected to its horizontal, vertical and diagonal neighbours (Figure 6.1).
Another possibility is, for example, a 6–connectivity (6–neighbourhood). In this case
it must be differed between two different types of 6–connectivity. It can be either
realised as a modification of 8–connectivity by prefering specific directions (Figure 6.2a)
or alternatively one can regard grids that have a honeycomb–structure and connect
neighboring combs (Figure 6.2b). By associating a non–negative cost or weight c(e) to
each edge e = (p, q) it is possible to introduce distances between neighbouring pixels in
a digital grid. The distance between non–neighbouring pixels of the digital grid is then
defined in a canonical way as the shortest path length between them (cmp. Section 4.1).
A (digital) grey scale image is a triple (D,E, fg), where (D,E) is a graph (usually a
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a) 6–connectivity with respect to the central

pixel on a square grid

b) 6–connectivity with respect to the central

pixel on a honeycomb grid

Figure 6.2: Different 6–connectivities

digital grid) and where fg : D → IN∪{0} is a mapping assigning a non–negative integer
value to each p ∈ D. Often we will only refer to the mapping fg as the grey scale
image. A binary image fb is an image with only two pixel values, e.g. 0 or 1. For
p ∈ D we call f(p) the grey value. Typically the grey values in a grey scale image range
between 0 and 255 but other choices are also possible. Note that the range of the grey
values determines the grey scale resolution of the image which is an important factor for
the amount of information contained in the image, especially with respect to contrast
between different objects displayed. Another aspect is that the grey scale resolution in
combination with the size of the image determines the amount of memory needed for
storing the image.

A possible extension of a grey scale image in order to represent colored structures is the
RGB image (truecolor image). Here, the mapping fc : D → IN3 assigns to each pixel of
the image three non–negative integer values that represent the intensity of the red, the
green and the blue component. Hence, there exists a natural representation of a grey
scale image fg as an RGB–image fc by putting fc(p) = (fg(p), fg(p), fg(p)), where fg(p)
is the grey scale value for the pixel p, wheras fc(p) is the value of the RGB image at p.
Note that, apart from RGB–images, various other ways of representing colored images
exist, for example, HSI–images or CMY–images.

Transformations of grey scale images into binary images and of RGB images into grey
scale images are not obvious and in general connected to a loss of information. A
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possible method for the transformation of a grey scale image into a binary image is
given by the operation of thresholding that is explained in Section 6.1.2.

6.1.2 Image Filtering

A way of improving results of image segmentation is to preprocess the given image by
filtering before applying morphological operations to the image. In general we can define
a filter or a neighbourhood operation as an operation that, given an image, combines
the pixel values of a small neighbourhood in an appropriate manner in order to yield a
result that forms a new image. This new image might have a different content than the
original image, but usually the aim is to preserve or extract certain characteristics from
the original image. In the following some basic filters are introduced that are applied
in Chapter 8. For more details on image filtering see, for example, [41].

Thresholding

One of the simpliest filters is given by thresholding which serves for the purpose of
binarizing a grey scale image fg. An operator T[tl,tu] : {0, ..., tmax} → {0, 1} is a threshold
operator if

[T[tl,tu]](fg(p)) = 1I{tl(p)<fg(p)<tu(p)} (6.1)

The operation of thresholding can be further divided into constant and dynamic thresh-
olding depending on how the bounds tl(p) and tu(p) are chosen. In particular, we have
a constant thresholding if the bounds tl(p) and tu(p) are independent of p for all p ∈ D.
A dynamic thresholding means that tl(p) and tu(p) indeed depend on the argument
p. Examples for a constant thresholding are displayed in Figure 6.3. Obviously, it is
crucial for the resulting binary image how the thresholds tl and tu are chosen. A plateau
or a connected component of grey value h is a set of pixels of constant grey value h,
where for each pair of pixels (pi, pj) in the same plateau of grey value h it holds that
there exists a path between pi and pj and vice versa such that each pixel along the path
also has a grey value of h. We call a set Th a threshold set of fg at level h if

Th = {p ∈ D|fg(p) ≤ h}. (6.2)

Low–pass filters

In later applications the disturbances are typically of a high frequency, meaning that
compared to the rather smooth grey scale values for the objects themselves, disturbances
are strongly concentrated in a small region with comparable large differences in the grey
scale values. Therefore, it is useful to apply low–pass filters that are able to supress such
high–frequential noise and that on the other hand retain low–frequential pixel values
quite well. A prominent example for such a low–pass filter is the mean or average filter
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a) Grey scale image with grey

values between 0 and 255

b) Binary image after

thresholding with tl = 100 and

tu = tmax = 255

c) Binary image after

thresholding with tl = 50 and

tu = 100

Figure 6.3: Examples for thresholding

where the pixel value of the center pixel is replaced by an average with respect to a
given neighbourhood. If fg denotes the original image and f ′

g is the image after applying
an average filter we have that for a pixel p with its neighborhood H(p)

f ′
g(p) =

∑
i∈H(p)wifg(pi)∑

i∈H(p) wi
,

where wi denotes the weight for the pixel pi. Usually the weights are chosen such that
they sum up to one, i.e.,

∑
i∈H(p)wi = 1 for all p ∈ D. Thereby it is achieved that the

mean grey scale value of the image is not changed, where mean grey scale value means
the arithemic mean of the grey values with respect to all the pixels in the image. The
application of the mean filter is usually performed by using a convolution mask such as
the following 3 × 3 matrix for an 8–neighbourhood which describes the weights for the
different pixels with respect to the center pixel




1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9



 .

Mean filter in general tend to blur images as you can see in Figure 6.4, where the
blurring effect becomes stronger the larger the convolution mask is chosen.
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a) Grey scale image b) Image after mean filtering c) Image after median filtering

Figure 6.4: Examples for mean and median filtering

A second type of low–pass filter is given by the median filter, whose construction prin-
ciple is similar to that of a mean filter. Instead of the average value with respect to
the pixel values in a given neighbourhood, the median of the pixel values in a neigh-
bourhood is taken as a replacement for the original value. More precisely, if fg and f ′

g

denotes the grey scale image before and after application of the median filter and H(p)
is a given neighborhood with respect to the pixel p we obtain that

f ′
g(p) = medpi∈H(p)fg(pi),

where medpi∈H(p) denotes the median with respect to all pixels in the neigborhood of
p. Such median filters are often used in order to reduce the noise in images while
preserving sharp edges in the image (Figure 6.4).

A third example for a low–pass filter which is a special type of averaging filter is
the Gaussian filter that is based on the Gaussian distribution for a two–dimensional
random variable. Recall that we call a random variable X = (X1, X2) with X : Ω →
IR2 (bivariate) Gaussian or normally distributed with mean vector (0, 0)⊤ if its (two–
dimensional) density is given by

fX(x1, x2) =
1

2πσX1σX2

√
1 − ρ2

exp

(
− 1

2(1 − ρ2)
(
x2

1

σ2
X1

+
x2

2

σ2
X2

− 2ρx1x2

(σX1σX2)
)

)
,

where ρ denotes the correlation coefficient of X1 and X2, and σ2
X1

and σ2
X2

are the
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variances of X1 and X2, respectively. If ρ = 0 and σX1 = σX2 = σX we get

fX(x1, x2) =
1

2πσ2
X

exp (−x
2
1 + x2

2

2σ2
X

). (6.3)

The basic principle of a Gaussian filter is to construct a convolution matrix that is
an approximation of the bivariate Gaussian distribution given by (6.3). Theoretically
we have that the density of the Gaussian distribution is non–zero everywhere, which
would require an infinitely large convolution matrix (and therefore an infinitely large
neighborhood) but in practice it can be assumed that the density is effectively zero more
than about three standard deviations from the mean and so we are able to truncate the
convolution matrix at this point. Figure 6.5 displays a sample kernel for a size of 5 and
a standard deviation σX = 1.

The effect of Gaussian filtering is, like for other low–pass filters, to blur an image. The
degree of smoothing is determined by the given standard deviation of the underlying
Gaussian distribution. For larger standard deviations, of course larger convolution
matrices should be used in order to be accurately represented. The result of a Gaussian
filtering can be considered as a weighted average of each pixel’s neighbourhood, where,
compared to a filter with equal weights, the average is weighted more towards the values
of the central pixels. Due to this fact, and with respect to a similarly sized average filter
with equal weights, we have that the Gaussian filter in general provides more gentle
smoothing in the sense that edges are better preserved. An example for an image that
is processed by a Gaussian filter is shown in Figure 6.6.

Note that with respect to low-pass filters various various other techniques exist, for
example, anisotropic diffusion filters ([30], [81]). In this case the filter itself is defined
as a diffusion process that encourages intraregion smoothing while inhibiting interregion
smoothing.

6.2 Skeletonization by Morphological Operators

The aim of morphological skeletonization algorithms is to replace given structures or
objects by thin skeletons, idealistically of width one pixel, while preserving the main
shape characteristics and the number of objects and holes in the structure. In particular,
we use skeletonization by morphological operators in binary images. Here, eight struc-
tural elements M1, ..,M8 are utilized in order to transform a given binary image into a
skeleton structure. These structural elements are given by the matrices (cmp. [35])

M1 =




0 ∗ ∗
0 1 1
0 ∗ 1



 ,M2 =




∗ 1 ∗
0 1 1
0 0 ∗



 ,M3 =




∗ 1 1
∗ 1 ∗
0 0 0



 ,M4 =




∗ 1 ∗
1 1 0
∗ 0 0



 ,
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Figure 6.5: Gaussian filter matrix for σX = 1.0

a) Grey scale image b) Image after Gaussian filtering

Figure 6.6: Example for Gaussian filtering
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M5 =




1 ∗ 0
1 1 0
∗ ∗ 0


 ,M6 =




∗ 0 0
1 1 0
∗ 1 ∗


 ,M7 =




0 0 0
∗ 1 ∗
1 1 ∗


 ,M8 =




0 0 ∗
0 1 1
∗ 1 ∗


 ,

where ’∗’ denotes an arbitrary entry (0 or 1 for binary images). A pixel with entry 1 is
set to 0 in the kth step if its corresponding matrix of neighbour entries fulfills all the
conditions given by the matrix M(k mod 8)+1. More precisely in the kth step the matrix
M(k mod 8)+1 is applied to the binary image in the following way. Let pk−1(i, j) denote the
value of the pixel at position (i, j) ∈ Z

2 after k−1 steps of the algorithm. Then pk(i, j) =
0 if either pk−1(i, j) = 0 or if pk−1(i, j) fulfills the conditions imposed by M(k mod 8)+1.
Otherwise pk(i, j) = 1. For example, in the 12th step the structural element is given by
M(12 mod 8)+1 = M5. A pixel p12(i, j) is set to 0 if either p11(i, j) = 0, or if p11(i, j) = 1
and the following holds. The pixels p11(i−1, j) and p11(i−1, j+1) have to be 1 and the
pixels p11(i+ 1, j − 1), p11(i+ 1, j) and p11(i+ 1, j + 1) must equal 0. The other three
pixels in the direct neighbourhood, namely p11(i−1, j−1), p11(i, j−1) and p11(i, j+1)
can be of arbitrary value (0 or 1). Notice that if after the k∗th step pk∗(i, j) = 0 then
pk(i, j) = 0 for all k ≥ k∗. The application of the structuring elements in a rotating
fashion to the binary image is performed until

∑
i,j pk(i, j) =

∑
i,j pk+8(i, j), i.e., the

number of pixels that have values equal to 1 has not changed for a whole cycle of
the eight structuring elements M(k mod 8)+1,M((k+1) mod 8)+1, ...,M((k+7) mod 8)+1. Due to
the assumption that the number of pixels in the binary image is finite, the algorithm
terminates after a finite number of steps and due to the algorithm structure the resulting
binary structures have a thickness of one pixel. An example for an application of this
skeletonization algorithm to a binary image is displayed in Figure 6.7. As it is already
viewable from this sample, skeletonization algorithms provide a powerful tool for the
segmentation of binary images. Beyond that, after a suitable thresholding, they are
also capable of segmenting certain grey scale images.

6.3 Morphological Watershed Transformation

A skeletonization by morphological operators as explained in Section 6.2 requires a bi-
narization of the grey scale image which can lead to the loss of information. Hence, in
some cases it is worthwhile to regard an alternative approach for the segmentation of
grey scale images compared to thresholding and a subsequent skeletonization which is
given by morphological watershed transformation. The idea of the watershed transfor-
mation originally comes from geoscience where a watershed denotes the boundary of
the influence zones for two neighbouring rivers which is explained in Figure 6.8. This
meaning is translated into the context of image segmentation by regarding a grey scale
image f as a representation of height values, where the heights are given by the en-
tries for each pixel of f . In the following we focus on watershed transformation based
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a) Binary image b) Skeleton of the black phase

Figure 6.7: Skeletonization

R

R R

W

W

W

Figure 6.8: Illustration of watersheds, where R denotes the rivers and W the watersheds
between them
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on immersion, also called successive flooding ([110]). With regard to other watershed
algorithms like marker controlled watershed see, for example, [87] and [99].

A characteristic that is important for watershed algorithms is the geodesic distance.
Let D ⊂ Z

2 be a (finite) digital grid and let p1 and p2 be two elements in D. The
geodesic distance dD(p1, p2) between p1 and p2 within D is given by the minimum path
length among all paths within D from p1 to p2. If D′ is a subset of D we define

dD(p,D′) = min
p′∈D′

dD(p, p′)

for any p ∈ D. Now consider a subset D′ ⊂ D that is partitioned into k connected
components D′

i, i = 1, ..., k. The geodesic influence zone of the set D′
i within D is

defined as

izD(D′
i) = {p ∈ D|∀j ∈ {1, ..., k} \ {i} : dD(p,D′

i) < dD(p,D′
j)}. (6.4)

The set IZ(D′) is then the union of the geodesic influence zones of the connected
components of D′, i.e.,

IZD(D′) =
k⋃

i=1

izD(D′
i).

Now we are able to provide a definition of the watershed transformation by simulated
immersion. Let fg be a grey scale image where hmin and hmax are the minimal and
maximal values of fg. Let the grey level h increase from hmin to hmax and define a
recursion in which the basins of fg generated by the local minima of fg are successively
expanded. By Xh we denote the union of the set of basins that are computed at grey
level h. Then, with respect to a connected component of the threshold set Th+1 there
are two possibilities. It might either be a new (local) minimum or it might be an
extension of a basin in Xh. In the latter case the geodesic influence zones of Xh in Th+1

are computed, resulting in an update Xh+1. If minh denotes the set of local minima at
level h we can construct the recursion as follows.

{
Xhmin

= {p ∈ D|f(p) = hmin},
Xh+1 = minh ∪IZTh+1

(Xh), h ∈ [hmin, hmax],
(6.5)

The watershed Wshed(fg) of fg is the complement of Xhmax in D

Wshed(fg) = D \Xhmax. (6.6)

For an example of a watershed transformation based on the above recurrence see Fig-
ure 6.9, where A, B, C, and D are labels of basins and W denotes pixels that belong
to the watershed. An important property of the watershed algorithm is its dependancy
on the given connectivity, meaning that for different given connectivity relations dif-
ferent watersheds are obtained. In practice, often a binary image is constructed that
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a) Original image b) h = 0 c) h = 1 d) h = 2 e) h = 3

Figure 6.9: Watershed transform by simulated immersion on the 8–connected grid

represents the pixels of the watershed as foreground pixels and the other pixels as
background pixels. Furthermore, keep in mind that the watershed algorithm can only
produce closed networks in the sense that there are no open branches or in other words
dead ends in the segmented network structure.

6.4 Other Morphological Operations

In this section we describe some other morphological operations that are sometimes
required in order to process and enhance the results of, e.g., a prior skeletonization or
watershed transformation.

6.4.1 Processing of Line Structures

Given a binary image f and a connectivity (e.g. 8–neighbourhood) it is often neces-
sary to classify the pixels of f into endpoints (having only one neighbour), linepoints
(having exactly two neighbours) and crosspoints (having more than two neighbours).
The connection (based on the neighbouring relationship) between two crosspoints, a
crosspoint and an endpoint or two endpoints is called a connection path if otherwise
only line points are involved. Note that often a classification using merely the num-
ber of neighbour pixels is not satisfactorily since this would result in very many pixels
being classified as crosspoints and hence very short connection paths between them.
Therefore criterions should be used in order to improve results (Figure 6.10). Such an
improved classification should preserve the number of connected components while the
number of connection paths should become minimal. A criterion to decide between
different possible solutions is to regard the difference of angles for the connections of a
pixel to its neighbours, where angles close to π are preferred.
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a) Binary image
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b) Classification by number of neighbours based

on 8–neighbourhood

c) Classification according to minimal

connections while preserving number of

connected components (here 1)

Figure 6.10: Classification and its improvement, where C denotes crosspoints and L
denotes linepoints
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reclassification

Figure 6.11: Example of iterative pruning

6.4.2 Pruning

The operation that removes endpoints from a given classified pixel structure is called
pruning. After a subsequent reclassification of the pixels it is possible to apply this
pruning operation in an iterative fashion. If this iterative pruning is performed a suffi-
cient number of times all dead ends of the structure are removed. An iterative pruning
procedure is often useful, e.g. if the segmented structure after applying an algorithm
like skeletonization contains some open branches although it is known that the real
structure does not contain such dead ends. For an example of an iterative pruning
operation with a subsequent reclassification of the pixels see Figure 6.11.

6.4.3 Merging

Due to the width of the natural objects that are visualised in the images it might hap-
pen that algorithms like skeletonization might produce a segmentation that gives a false
impression, especially with respect to crossings under a small angle (cmp. Figure 6.12).
Therefore, it is often useful, after a transformation of a pixel structure into a graph, to
apply an operation called merging to the resulting graph.

Transformation of a pixel structure into a graph

By assigning to connections between crosspoints a weight that is proportional to the
distance between the crosspoints, a pixel structure can be transformed into a weighted
graph or, seen from a different viewpoint, into a line segment structure, where each
pair of crosspoints that has a connection path is represented as a line segment between
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a) Original image, two crossing lines with a

certain width

b) Result of skeletonization, a segment in the

middle appears that does not reflect a structure

of the original image

Figure 6.12: Errors caused by skeletonization

them (Figures 6.13a and 6.13b).

Merging of nearby crosspoints

Given the graph structure that is the result of the transformation of the pixel struc-
ture it is possible to apply merging, where merging in this context means that two or
more crosspoints are merged into a single one using the center of gravity of the in-
volved crosspoints as a new crosspoint and modifying the graph structure accordingly
(Figure 6.13). Typically, merging is performed for crosspoints with a distance of less
than a given constant dmax and in an ascending sequence, meaning that crosspoints of
a smaller distance are merged first.

6.5 Summary

In this chapter we introduced methods of morphological image segmentation like skele-
tonization and the watershed algorithm. Basically the usefulness of these methods for
the applications discussed in Chapter 8 are two–fold. First of all it is a key necessity to
transform the pixel–based images that represent the data into segmented structures that
can be used, for example, in order to perform a statistical analysis and a later model
fitting. For this purpose, the algorithms explained in Sections 6.2 and 6.3 have proven
to be useful tools. Apart from that, techniques like the ones given in Sections 6.1.2
and 6.4 are able to help to improve the results by, for example, removing artifacts that
are caused by disturbances in data measurement (noise, preparation artifacts, etc.).
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a) Sample structure

b) Transformation into a graph structure c) Merging of nearby crosspoints

Figure 6.13: Transformation and improvement of the structure



Chapter 7

Fitting Random Tessellation

Models to Network Structures

In this chapter an algorithm is introduced that can be used in order to fit random
tessellation models to network structures, such as, for example, segmented microscopic
images of the cytoskeleton or urban infrastructures. The algorithm is based on the
construction of a distance function that is able to determine the distance between a
theoretical tessellation model and a given data set that represents a network structure.
Thereby, given a set of possible tessellation models, an optimal model as well as cor-
responding optimal model parameters can be determined. Data that is representing
network structures in such a context means that the data is more or less represented by
line segments that are connected to each other at their respective endpoints and that
form cells or meshes. Often, in order to obtain such structures from observed data it is
necessary to apply preprocessing techniques like the ones explained in Chapter 6. The
fields of applications where such a modelling approach of representing network struc-
tures by random tessellations is useful are numerous, for example, in biology, material
science, medicine and telecommunication. In Chapter 8 some applications of the model
fitting algorithm introduced here with respect to cytoskeletal structures of cancer cells
are discussed. Additional information about the model fitting algorithm, including ex-
amples for simulated input data and an application to network structures coming from
the field of telecommunication, can be found in [32]. Mathematical definitions of the
tessellation models used are provided in Section 2.4.

147
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Table 7.1: Considered characteristics with respect to unit area

Characteristic Meaning
λ1 Number of vertices (nodes)
λ2 Number of edges
λ3 Number of cells (meshes)
λ4 Total length of edges

7.1 Characteristics of Input Data and Estimation of

Global Characteristics

7.1.1 Input Data Characteristics

In the following we assume that (the possibly preprocessed) input data is given in a
rectangular sampling window W . A first step for a later model fitting algorithm is
to extract certain characteristics that describe the spatial–geometric features of the
input data that represents a network structure (cmp. Figure 7.1). In particular, we
consider the characteristics λ1, ..., λ4, which represent the mean number of vertices, the
mean number of edges, the mean number of cells or meshes and the mean total length
of edges, respectively, always with respect to the unit area (cmp. Table 7.1) Note
that these characteristics λ1, ..., λ4 can be considered as global characteristics from the
purpose of model fitting. Besides such global characteristics one could also think of
local characteristics which refer to single cells of the network structure like the mean
area or the mean perimeter per cell. However, it turns out that in general the local
characteristics are less useful due to the facts that often unbiased estimators are not
obvious and that they do not reflect the network structure as a whole ([38]). Hence, in
the following it is focused on the vector of global characteristics

λ = (λ1, ..., λ4)
⊤. (7.1)

7.1.2 Unbiased Estimation

In order to estimate the vector λ given in (7.1) a vector of estimators

λ̂ = (λ̂1, ..., λ̂4)
⊤ (7.2)
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Vertex

Cell/Mesh
Edge

Figure 7.1: A given network structure with vertices, edges, and cells (meshes)

is needed, where each entry of the vector in (7.2) is a suitable estimator for the corre-
sponding entry in (7.1). In the course of this thesis the vector of estimators

λ̂ =
1

|W |(nν , ne, nc, le)
⊤ (7.3)

is used, where nν is the number of vertices contained within the sampling window W .
In order to get an estimate for λ2, the mean number of edges per unit area, we use ne,
the number of edges whose lexicographically smaller end point is located in W , and
divide afterwards by the area of W . An estimator for λ3, the mean number of cells per
unit area, is given by nc, the number of cells whose lexicographically smallest vertice is
located in W , divided once more by the area of W . Finally, λ4, the mean total length
of edges per unit area can be estimated by le/|W |, where le measures the total length
of the edge–set contained in W .

7.2 Fitting Algorithm

7.2.1 Distance Functions

In order to enable a later comparison of the estimated vector of characteristics to
a corresponding vector of calculated mean values for a given theoretical tessellation
model a distance function has to be considered. In this thesis we regard the relative
Euclidean distance function given by

dre(x, y) =

(
m∑

i=1

(
xi − yi
xi

)2
)1/2

, (7.4)
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where x = (x1, . . . , xm)⊤ ∈ IRm and y = (y1, . . . , ym)⊤ ∈ IRm denote two vectors with m
(in our case 4) real–valued entries. Apart from the relative Euclidean distance function
other choices are possible like the absolute Euclidean distance function given by

de(x, y) =

(
m∑

i=1

(xi − yi)
2

)1/2

, (7.5)

the relative absolute value distance function dra(x, y) and the absolute absolute value
distance function da(x, y) given by

dra(x, y) =
m∑

i=1

∣∣∣∣
xi − yi
xi

∣∣∣∣ , (7.6)

and by

da(x, y) =
m∑

i=1

|xi − yi|, (7.7)

respectively. Finally, one could, for example, also consider the relative maximum norm
distance function drm(x, y) and the absolute maximum norm distance function dm(x, y)
that are given by

drm(x, y) = max
i=1,...,m

∣∣∣∣
xi − yi
xi

∣∣∣∣ , (7.8)

and by
dm(x, y) = max

i=1,...,m
|xi − yi|, (7.9)

respectively.

Note that in general relative distance functions are preferable compared to absolute
ones. They are scaling invariant, i.e., they are in a sense independent from the scale the
data is measured on, and each component of the vector has the same influence on the
result of the fitting procedure, which might not be true for absolute distance functions.
Thus, absolute distance functions can be strongly influenced by a single component with
a possibly extreme value. Obviously such an effect is not very convenient. Other choices
(than the relative Euclidean) of relative distance functions are of course possible, but in
general our experience is that the results for different relative distance functions did not
vary much with respect to the choice of the optimal model as well as the values of the
corresponding model parameters. Hence, we will concentrate on the relative Euclidean
distance in the following. An important property of the relative distance functions that
has to be noted is that they are not symmetric in their arguments x and y anymore.
Therefore, some attention has to be spend in order to always use the same reference
argument.
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7.2.2 Optimal Model Choice

The fitting algorithm leading to an optimal tessellation model with optimal parameters
can be summarized as follows. Given a pool of possible tessellation models considered
and an input image, the vector of characteristics λ = (λ1, ..., λ4)

⊤ is estimated leading to

estimates λ̂ = (λ̂1, ..., λ̂4)
⊤ as described in Section 7.1. Using the relative Euclidean dis-

tance function introduced in (7.4) for each of the possible tessellation models separatly
a relative distance function

fmodel(θ) =




4∑

i=1

(
λ̂i − λmodeli (θ)

λ̂i

)2



1/2

(7.10)

can be constructed, where θ is the vector of corresponding model parameters (for ex-
ample, in the case of a one–fold iterated tessellation model without Bernoulli thinning
that can be described by two parameters γ0 and γ1, we have that θ = (γ0, γ1)). The
values λmodeli (θ) are the theoretical model characteristics depending on the choice of
the model and of the model parameter vector θ. Now, for each model separately an
optimal parameter vector θ∗model is determined that minimizes fmodel(θ) for the given
model. Finally, a model is considered optimal among all possible models if the optimal
value fmodel(θ

∗
model) is minimal with respect to all models. In other words we have a

two step mechanism. First, for each model seperately an optimal parameter vector is
determined and afterwards the optimal model is determined by comparing the optimal
values for each model. For approaches with respect to the solution of the minimization
problem based on the functional given in (7.10) see [92] and [106]. Note that the fitting
procedure can be slightly modified if instead of a single input image a set of n images
with n > 1 is given, where the images are independent of each other and sampled from
an identically distributed population. In this case, instead of considering the estimates

λ̂ = (λ̂1, ..., λ̂4)
⊤, a vector of mean characteristics

¯̂
λ = ((

¯̂
λ1,

¯̂
λ2,

¯̂
λ3,

¯̂
λ4)

⊤ is estimated
from the n samples by

¯̂
λi =

1

n

n∑

j=1

λ̂ij , (7.11)

where i = 1, ..., 4 and where λ̂ij is the estimated ith characteristic for the jth sample.

With respect to the relative distance function fmodel(θ) the estimated vector λ̂ is then

replaced by the estimated mean vector
¯̂
λ.
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a) PLT b) PVT c) PDT

Figure 7.2: Sample realisations for basic tessellations of Poisson–type

7.3 Possible Tessellation Models Considered

In the examples that will be presented in Chapter 8 we will regard certain sets of possible
tessellation models. All of them are based on three basic tessellations of Poisson–type,
the (stationary) Poisson line tessellation (PLT), the (stationary) Poisson–Voronoi tessel-
lation (PVT), and the (stationary) Poisson–Delaunay tessellation (PDT) (Figure 7.2).
In particular, apart from the three basic tessellation models mentioned, we will consider
one–fold nestings (including a Bernoulli thinning) of these three basic models and one–
fold superpositions of the basic models (cmp. Section 2.4 and Figures 7.3–7.5). Note
that for nestings we end up with nine different combinations of the three basic models,
whereas for superpositions we have only six different models since in this case there
is no hierarchical order between the two layers and therefore, as already mentioned
in Section 2.4.8, for example a PVT/PLT superposition has the same distribution as
a PLT/PVT superposition. Furthermore, note that an n–fold superposition of PLT
tessellations with parameters γ1,...,γn is equal in distribution to a basic PLT tessel-
lation with parameter γ =

∑n
i=1 γi. A similar relationship is not given with respect

to the two other tesellation models considered, the Poisson–Voronoi tessellation and
the Poisson–Delaunay tessellation. This means that, for example, an n–fold superposi-
tion of Poisson–Voronoi tessellations can not be expressed as a basic Poisson–Voronoi
tessellation with respect to its distribution.

With respect to the tessellation models regarded, namely basic tessellation models as
well as one–fold nestings and one–fold superpositions, we are able to derive theoretical
formulae for the components of the vector of characteristics λ = (λ1, ..., λ4)

⊤ defined
in (7.1) (Tables 7.2–7.4). Note that these theoretical formulae for specific stationary tes-
sellation models are based on more general formulae for stationary iterated tessellations
that can be found in [54], [67], and [90].
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a) PLT/PLT b) PLT/PVT c) PLT/PDT

d) PVT/PLT e) PVT/PVT f) PVT/PDT

g) PDT/PLT h) PDT/PVT i) PDT/PDT

Figure 7.3: Realisations of one–fold nestings with PLT, PVT and PDT as basic tessel-
lations shown in red



154 7 Fitting Random Tessellation Models to Network Structures

Table 7.2: Values of λ1, . . . , λ4 for a given basic tessellation with parameter γ

Tessellation λ1 λ2 λ3 λ4

PLT 1
π
γ2 2

π
γ2 1

π
γ2 γ

PVT 2γ 3γ γ 2
√
γ

PDT γ 3γ 2γ 32
3π

√
γ

Table 7.3: Mean value formulae for one–fold nestings with Bernoulli thinning

PLT/PLT PLT/PVT PLT/PDT

λ1
1
π γ2

0 + 1
π pBγ2

1 + 4
π pBγ0γ1

1
π γ2

0 + 2pBγ1 + 8
π pBγ0

√
γ1

1
π γ2

0 + pBγ1 + 128
3π2 pBγ0

√
γ1

λ2
2
π γ2

0 + 2
π pBγ2

1 + 6
π pBγ0γ1

2
π γ2

0 + 3pBγ1 + 12
π pBγ0

√
γ1

2
π γ2

0 + 3pBγ1 + 64
π2 pBγ0

√
γ1

λ3
1
π γ2

0 + 1
π pBγ2

1 + 2
π pBγ0γ1

1
π γ2

0 + pBγ1 + 4
π pBγ0

√
γ1

1
π γ2

0 + 2pBγ1 + 64
3π2 pBγ0

√
γ1

λ4 γ0 + pBγ1 γ0 + 2pB
√

γ1 γ0 + 32
3π pB

√
γ1

PVT/PLT PVT/PVT PVT/PDT

λ1
1
π pBγ2

1 + 2γ0 + 8
π pBγ1

√
γ0 2(γ0 + pBγ1) + 16

π pB
√

γ0γ1 2γ0 + pBγ1 + 256
3π2 pB

√
γ0γ1

λ2
2
π pBγ2

1 + 3γ0 + 12
π pBγ1

√
γ0 3(γ0 + pBγ1) + 24

π pB
√

γ0γ1 3(γ0 + pBγ1) + 128
π2 pB

√
γ0γ1

λ3
1
π pBγ2

1 + γ0 + 4
π pBγ1

√
γ0 γ0 + pBγ1 + 8

π pB
√

γ0γ1 γ0 + 2pBγ1 + 128
3π2 pB

√
γ0γ1

λ4 pBγ1 + 2
√

γ0 2(
√

γ0 + pB
√

γ1) 2
√

γ0 + 32
3πpB

√
γ1

PDT/PLT PDT/PVT PDT/PDT

λ1
1
π pBγ2

1 + γ0 + 128
3π2 pBγ1

√
γ0 2pBγ1 + γ0 + 256

3π2 pB
√

γ1γ0 γ0 + pBγ1 + 4096
9π3 pB

√
γ0γ1

λ2
2
π pBγ2

1 + 3γ0 + 64
π2 pBγ1

√
γ0 3(pBγ1 + γ0) + 128

π2 pB
√

γ1γ0 3(γ0 + pBγ1) + 2048
3π3 pB

√
γ0γ1

λ3
1
π pBγ2

1 + 2γ0 + 64
3π2 pBγ1

√
γ0 pBγ1 + 2γ0 + 128

3π2 pB
√

γ1γ0 2(γ0 + pBγ1) + 2048
9π3 pB

√
γ1γ0

λ4 pBγ1 + 32
3π

√
γ0 2pB

√
γ1 + 32

3π

√
γ0

32
3π (

√
γ0 + pB

√
γ1)
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a) PLT/PVT b) PVT/PLT c) PDT/PVT

Figure 7.4: Realisations of one–fold nested tessellations with Bernoulli thinning (pB =
0.8)

Table 7.4: Mean value formulae for one–fold superpositions

PLT/PLT PLT/PVT PLT/PDT

λ1
1
π (γ0 + γ1)

2 1
πγ2

0 + 2γ1 + 4
πγ0

√
γ1

1
πγ2

0 + γ1 + 64
3π2 γ0

√
γ1

λ2
2
π (γ0 + γ1)

2 2
πγ2

0 + 3γ1 + 8
πγ0

√
γ1

2
πγ2

0 + 3γ1 + 128
3π2 γ0

√
γ1

λ3
1
π (γ0 + γ1)

2 1
πγ2

0 + γ1 + 4
πγ0

√
γ1

1
πγ2

0 + 2γ1 + 64
3π2 γ0

√
γ1

λ4 γ0 + γ1 γ0 + 2
√

γ1 γ0 + 32
3π

√
γ1

PVT/PVT PVT/PDT PDT/PDT

λ1 2γ0 + 2γ1 + 8
π

√
γ0γ1 2γ0 + γ1 + 128

3π2

√
γ0γ1 γ0 + γ1 + 2048

9π3

√
γ0γ1

λ2 3γ0 + 3γ1 + 16
π

√
γ0γ1 3γ0 + 3γ1 + 256

3π2

√
γ0γ1 3γ0 + 3γ1 + 4096

9π3

√
γ0γ1

λ3 γ0 + γ1 + 8
π

√
γ0γ1 γ0 + 2γ1 + 128

3π2

√
γ0γ1 2γ0 + 2γ1 + 2048

9π3

√
γ0γ1

λ4 2
√

γ0 + 2
√

γ1 2
√

γ0 + 32
3π

√
γ1

32
3π

√
γ0 + 32

3π

√
γ1
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a) PLT/PVT superposition b) PLT/PDT superposition c) PLT/PLT superposition

d) PVT/PVT superposition e) PVT/PDT superposition f) PDT/PDT superposition

Figure 7.5: Realisations of one–fold superpositions with PLT, PVT and PDT as basic
tessellations shown in red



Chapter 8

Applications to Electron

Microscopy Images of Cytoskeletal

Networks

In this chapter two applications for the methods introduced in Chapters 6 and 7 are
discussed. Both of them deal with the analysis of electron microscopy images of cy-
toskeletal network structures in tumor cells, the first application with keratin filament
networks, the second with actin network structures.

The cytoskeleton is a three–dimensional cellular scaffold within the cytoplasm. It rep-
resents a dynamic structure that is responsible for the maintenance of cell shape and
for cell motility and that plays a key–role in intracellular transport as well as in cell
division. The filaments or fibres of the cytoskeleton represents protein polymers. The
primary types of filaments comprising the cytoskeleton are microfilaments, intermediate
filaments and microtubules ([1], [49]).

The microtubules are cylindric in shape with a diameter of about 25 nm which makes
them the thickest of all cytoskeletal filaments. They are formed by 13 profilaments
that, in turn, are polymeres of α– and β–tubulin. Microtubules represent a scaffold
that determine cell shape and provide a set of tracks for cell organelles and vesicles to
move on ([76]).

The intermediate filaments have a diameter of 8 to 11 nm. Different intermediate
filaments are

• keratin filaments, found, for example, in skin cells, hairs and nails,

• vimentin filaments, being the common structural support of many cells,

157
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• neurofilaments in neural cells, and

• lamin filaments, giving structural support to the nuclear envelope of the cell.

Intermediate filaments represent the more stable part of the cytoskeleton due to the
fact that they are relatively strongly bound to each other ([79]).

Microfilaments (actin) are fine and thread–like protein filaments with a diameter of
about 3–6 nm, thereby making them the thinest type of filaments in the cytoskeleton.
An actin filament is composed of two actin chains oriented in a helicoidal shape. Mostly
they are concentrated near the plasma membrane in the so–called lamellipodium, where
they keep the cell shape from cytoplasmic protuberances and where they participate in
cell–to–cell or cell–to–matrix junctions as well as in the transduction of signals. They
also possess a certain importance with respect to cytokinesis and muscular contraction
([82]). For more information on the cytoskeleton in general and on other aspects of cell
biology see, for example, [1] and [49].

8.1 Statistical Analysis of Keratin Filament Struc-

tures

In the first example from cell biology we regard cytoskeletal structures that are formed
by keratin filaments. Keratins belong to the group of intermediate filaments and are
expressed in epithelial cells. The keratin cytoskeleton plays an important role for bio-
physical properties of the cell. In this section the remodelling of keratin filament net-
works in pancreatic cancer cells is investigated, where the remodelling is caused by the
addition of transforming growth factor α (TGFα), which is involved in cancer cell pro-
gression. The image segmentation procedure that leads to the detection of the network
structures from the given electron microscopy images is described in Section 8.1.1. In
Section 8.1.2 a basic quantitative analysis of the detected segments with respect to
their lengths and their orientations is performed whose results show that TGFα indeed
causes a remodelling of the keratin network in the cytoskeleton. In Section 8.1.3 finally,
this remodelling is investigated in more detail by fitting one–fold nested tessellation
models to the given scenarios. Here, the remodelling manifests itself by having different
optimal nested tessellation models with respect to the structures after TGFα incubation
compared to a control group. The results of Section 8.1 are also partially documented
in [8] and [9].
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8.1.1 Image Acquisition and Segmentation

Human Panc–1 pancreatic cancer cells (American Type Culture Collection, Manassas,
VA) are grown on glass chamber slides. The cells were treated with 100 ng/ml TGFα
(R&D Systems, Minneapolis, MN) for 30 min. After washing the cells with phosphate–
buffered saline (PBS), an extraction solution (1% of Triton X–100, 2.2% PEG (molecular
weight, 35 kDa), 50 mM imidazole, 50 mM potassium chloride, 0.5 mM magnesium
chloride, 0.1 mM EDTA and 1 mM EGTA, pH 6.9) is added for 20 min at 4 C. Cells
are rinsed four times with PBS and fixed with 4.0% formaldehyde (ultrapure EM grade,
methanol free, Polysciences, Eppelheim, Germany) in 0.1 M cacodylate buffer (pH 7.3)
for 10 min at room temperature. After rinsing with PBS, the slides are gradually
dehydrated in propanol (30%, 50%, 70%, 90% and two times in 100% for 5 min each
step) and finally subjected to critical point drying using carbon dioxide as transitional
medium (Critical Point Dryer CPD 030, Bal–Tec, Principality of Liechtenstein). After
drying the cover slips are cutted to fit onto the Hitachi S–5200 specimen holders (5 x
8 mm) using a home made diamond cutter. The cutted glass slides are then mounted
on the Hitachi holders using double sticking tape and liquid silver paint to improve
electrical conductivity. Samples are subsequently rotary coated with 3 nm of platinum–
carbon by electron beam evaporation using a Bal–Tec Baf 300 freeze etching device
(Bal–Tec, Principality of Liechtenstein) and imaged with a Hitachi S–5200 in–lens SEM
(Tokyo, Japan) at an accelerating voltage of 4 kV using the secondary electron signal.
Note that this method depletes actin filaments and microtubules and preserves keratin
filaments ([11]).

To analyse the filamentous structures of the keratin network for Panc1 human pancre-
atic cancer cells sample regions are imaged at a primary magnification of 35000x (pixel
size 2.63 nm). In order to enable a subsequent analysis with respect to two–dimensional
images and structures, sample regions are chosen from the subcortical compartment of
the cells, directly adjacent to the cytoplasmic membrane. This procedure results in
sample images that contain a thin (almost two–dimensional) layer of filaments. Alto-
gether 15 sample images are analysed, 7 from cells after an incubation with TGFα and
8 from untreated cells.

The aim of the image segmentation algorithm that is applied, is to transform the given
grey scale images into a graph or network structure. This network structure should
contain segments that are formed by the filaments of the original keratin network. Due
to measurement artifacts and noisy images such an image segmentation can of course
never be perfect. Figure 8.1 displays the different image segmentation steps that are
applied. As a first step the grey scale image fg is binarized into an image fb using a con-
stant threshold operator T[tl,tu] (Section 6.1.2) with thresholds tl = f̄g and tu = fmax

g +1,
where f̄g is the mean and fmax

g is the maximal grey scale value within fg, respectively.
The resulting binary image fb is afterwards skeletonized by applying the skeletonization
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algorithm explained in Section 6.2 thereby preserving the number of connected objects
and connectivity relations. After a classification of the pixels that belong to the skeleton
(Section 6.4.1) it is possible to first prune iteratively the skeleton in order to remove, for
example, dead ends or disturbances caused by measurement artifacts (Section 6.4.2).
After the pixel classification and the iterative pruning, a structure is obtained that con-
sists of line segments. Finally, these line segment structures are modified by merging
nearby crossings to obtain line segment structures that can be statistically analysed
in the following (Section 6.4.3). The maximal merging distance is chosen as dmax = 8
pixels (≈ 20 nm), thereby reflecting quite well twice the thickness of the filaments.

Figure 8.2 shows some visual results of the image segmentation algorithm explained
above with respect to three different sample images. Problems are visible, where spaces
between filaments are extremely narrow, in other words where filaments are touching
each other, or naturally where filament connections can hardly differentiated, even by
the human eye. From these examples it is also deduceable that an assumption of
piecewise linearity of connections between crosspoints is a reasonable choice since most
of the connections are quite small and longer connections are approximately linear.

8.1.2 Analysis of Filament Lengths and Orientations

As a first approach in order to analyse the effects of TGFα incubation on keratin
cytoskeleton networks, the lengths and the orientations of the line segments resulting
from the application of the image segmentation algorithm described in Section 8.1.1 are
investigated.

Estimation of segment lengths and orientation angle

Segment lengths are estimated by using the Euclidean distance between the two end-
points of the segment. Segment lengths are taken into account if the typical point of
the segment, in this case the lexicographically smaller endpoint, is located inside the
sampling window. Note that with respect to the measurement of segment lengths the
sampling window has to be chosen sufficiently small with respect to the observed image
in order to avoid edge effects caused by the inability to determine whole lengths of
relevant segments. With regard to the analysis of segment lengths the sampling win-
dow is chosen to be quadratic with a side length of 500 pixels which corresponds to
approximately 1320 nm. It is centred at the midpoint of the image.

Orientations of segments are determined as the angle between the segment and the
horizontal axis. Note that in this particular example we have axial data given. This
means that a line segment has two possible directions of which neither is preferred.
Therefore, the interval for possible angles can be reduced to [−π/2, π/2] by simply
taking the direction of the segment which has an angle that lies in this interval. Only
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a) Grey scale sample image fg

b) Binary image fb after thresholding c) Skeleton of the binary image fb

d) Graph structure after iterative pruning e) Graph structure after merging of nearby

crossings

Figure 8.1: Intermediate steps of image segmentation
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Original image from control group Graph structure

Original image from TGFα group Graph structure

Original image from TGFα group Graph structure

Figure 8.2: Results of image segmentation algorithm
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segments whose lexicographically smaller endpoint is located in the sampling window
are considered. With respect to orientation analysis it is higly advisable to choose a
circular sampling window in order to avoid anisotropy effects purely caused by the choice
of a sampling window that favors specific directions. For the orientation analysis the
sampling window is chosen to be circular with a radius of 300 pixels that corresponds
to approximately 790 nm.

Orientation characteristics

Whereas characteristics for the lengths and numbers of segments are straightforward,
it is more difficult to come up with characteristics that reflect the degree of anisotropy
of the segments. A possible characteristic for an orientation analysis is the circular
standard deviation that is closely related to the circular standard variance. In the fol-
lowing this characteristic will be explained. For an overview with respect to orientation
analysis have a look at, for example, [6] and [66].

Let z1, ..., zn be a sample of line segment angles measured with respect to the horizontal
axis and having corresponding unit vectors u1, ..., un in IR2. Then, the mean direction z̄
of z1, ..., zn is the direction of the centre of mass ū of u1, ..., un, where ū can be described
in Cartesian coordinates by

ū = (C̄, S̄), (8.1)

with

C̄ =
1

n

n∑

j=1

cos zj (8.2)

and

S̄ =
1

n

n∑

j=1

sin zj , (8.3)

respectively. Therefore, given that R̄ > 0, we obtain that the mean direction z̄ is the
solution of the system of equations

C̄ = R̄ cos z̄, S̄ = R̄ sin z̄, (8.4)

where the mean resultant length R̄ is defined by

R̄ = (C̄2 + S̄2)1/2. (8.5)

The sample circular variance V can now be defined as

V = 1 − R̄. (8.6)

It is used as a function of dispersion because if the n observed angles z1, ..., zn are
tightly clustered about the mean direction z̄, the sample circular variance V will be



164 8 Applications to Electron Microscopy Images of Cytoskeletal Networks

almost 0. If, on the other hand, the directions are widely dispersed, we get that V is
near 1. Analogously to the standard deviation in the linear case, it is possible to define
a circular standard deviation σ as

σ = (−2 log(1 − V ))1/2. (8.7)

It has similar dispersion function properties as V , therefore, if z1 = (z11, ..., z1n1), ...,
zm = (zm1, ..., zmnm) denote m samples of line segment angles with sizes n1, ..., nm,
respectively, we investigate the sample circular standard deviations σ1, ..., σm in order
to obtain information with respect to orientation distributions.

Apart from the information obtained by the circular standard deviation it is often
necessary to perform formal statistical tests on isotropy or in other words on uniform
distribution of the angles. Such a test is, for example, given by Kuiper’s test ([66], pp.
99–103). Other choices of such tests as, for example, Rayleigh’s test or Watson’s U2

test ([66], pp. 94–98 and pp. 103–105) are of course also possible.

Results for the number of segments and segment lengths

Figure 8.3 shows for both regarded groups, TGFα–incubated as well as untreated con-
trol cells, a sample histogram of segment lengths for a specific image and a cumulated
histogram for all segment lengths with respect to all images of a group. Although, at
first sight, the shape of the histograms seems to be similar for the two groups, the his-
tograms indicate that the mean segment length are reduced in the case of TGFα–treated
cells compared with the untreated ones. Note that due to the applied image segmen-
tation algorithm the minimal length of a line segment has to be 8 pixels (≈ 20 nm)
which equals the merging parameter dmax chosen in Section 8.1.1. Thereby the mean
number of detected segments is of course reduced. Figure 8.4 displays boxplots for the
total number of segments and the mean segment length per sampling region for the
TGFα–treated and and the untreated group, respectively. Note that in this particular
case it does not make a difference to regard total numbers of segments per sampling
regions instead of mean numbers per unit area, since the sampling regions are of a fixed
and equal size. Tests based on the Wilcoxon–Mann–Whitney test ([114]) show that the
hypotheses of equality of the mean number of segments and equality of mean segment
length for the two groups are both rejected at a significance level of 5 %.

Results of orientation analysis

In Figure 8.5 sample histograms representing the estimated distribution of the angles
are displayed for both groups. Within each group a strong variability of the shape of
the histograms can be noted. Nevertheless, it seems to be the case that the orientation
distribution for the TGFα–treated group seems to be more uniform than the orientation
distribution for the untreated group. Kuiper’s test for uniform orientation distribution
shows that for the untreated group seven of eight sample images lead to a rejection
of the null–hypothesis of uniform orientation distribution for a test level of 5 %. For
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Figure 8.3: Histograms of segment length
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Figure 8.4: Boxplots of the mean number of segments and mean segment length (the
median is depicted as the line in the middle of the box, the first and third quartile as the
upper and lower border of the box, and the minimal and maximal value are depicted
as the upper and lower hook)
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the TGFα–incubated group only four of seven sample images lead to a rejection of
the same hypothesis at the same test level. To investigate this behaviour in more
detail a boxplot of estimates for the circular standard deviation given in (8.7) for the
two groups is shown in Figure 8.6. A Wilcoxon test for equality of expected circular
standard deviations with respect to the two groups leads to rejection for a test level
of 5 %. This means that the expected circular standard deviation is considered to be
greater for the TGFα treated group than for the untreated group. Therefore, filaments
of the control group seem to be more uniformly orientated than those of the TGFα
treated group. In summary, together with the analysis of the segment lengths and
segment numbers, the orientation analysis shows that there are distinct changes of the
keratin network architecture in pancreatic cancer cells in response to TGFα. These
changes will be investigated further in Section 8.1.3 on the basis of a fitting of suitable
tessellation models.

8.1.3 Fitting of Nested Tessellation Models

In Section 8.1.2 it is shown that there are significant changes in the keratin network
structure of pancreatic cancer cells caused by the incubation of TGFα. Whereas this
investigation is based on a single–object analysis of the line segments we now turn our
attention to an analysis of the global network architecture that can be achieved by
an application of the model fitting procedure introduced in Chapter 7. As the results
of this section will show, there is indeed a difference in the global architecture of the
keratin network caused by the incubation with TGFα since different optimal tessellation
models are detected for the two groups of untreated and TGFα–treated cells.

As a set of possible tessellation models for this example, one–fold nestings of random
tessellations are chosen where the initial random tessellation models regarded comprise
the Poisson line tessellation, the Poisson–Voronoi tessellation and the Poisson–Delaunay
tessellation. With respect to the one–fold nesting the Bernoulli thinning probability pB
is chosen between 0.9 and 1 thereby reflecting the small probability of a non–iterated
mesh, for example, due to vacuoles.

These three initial models and the nine possible combinations for one–fold nestings
resulting from them in conjunction with the Bernoulli thinning probability already cover
a broad spectrum of scenarios for cytoskeletal networks, although, regarded separately
are still quite simple and theoretically tractable, for example, with respect to certain
mean value formulae (cmp. Section 7.3). With respect to distance functions the relative
Eulidean distance function is used, but results do not vary much if other (relative)
distance functions are used.

Model fitting for single sample images

The results of the model fitting algorithm for single sample images are summarized in
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Figure 8.5: Histograms of segment orientations as depicted by its angle with the x–axis
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Figure 8.6: Boxplot of circular standard deviation (the median is depicted as the line in
the middle of the box, the first and third quartile as the upper and lower border of the
box, and the minimal and maximal value are depicted as the upper and lower hook)
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Table 8.1: Optimal models for individual sample images of the group of untreated cells

sample optimal model distance

1 PVT/PLT 0.0325

2 PVT/PLT 0.0011

3 PVT/PLT or PLT/PLT 0.0019

4 PVT/PLT 0.0079

5 PVT/PLT or PLT/PVT 0.0161

6 PVT/PLT 0.0274

7 PVT/PLT 0.0071

8 PVT/PLT or PLT/PVT 0.0066

Tables 8.1 and 8.2. It can be deduced that for the group of untreated cells a relatively
clear decision is made in favor of the PVT/PLT in all cases. This means that the
PVT/PLT is always considered to be the optimal model with respect to the set of the
nine possible models. Note that in some cases it is possible that the decision for an
optimal model is not unique due to the symmetries in the corresponding formulae (cmp.
Table 7.3), especially in the cases where for the Bernoulli thinning factor pB it holds
that pB = 1. Looking at the group of cells that are treated with TGFα a different
decision is viewable. While for four samples the optimal model is still a PVT/PLT, for
the other three samples we have that the optimal model turns out to be a PDT/PLT.
It is also important to note that for all samples we obtain that models for branched
filaments (PVT or PDT) are preferred compared to an interaction–free model (PLT),
thereby emphasizing that the keratin cytoskeleton is representing a branched filament
network. Note that a comparison between the optimal nested model and the optimal
basic model, i.e., the model that has minimal distance out of the three models PLT,
PDT, PVT, yields a large improvement with respect to the quality of approximation
(Tables 8.1 and 8.2) which can be deduced from the drastical reduction of the measured
distances.

Model fitting for the vectors of mean characteristics

In order to enhance the results that are obtained for single sample images, we look
at the results of the fitting procedure for the vectors of mean characteristics (cmp.
Section 7.2.2). Recall that such a technique is possible since the samples (and therefore
also the resulting vectors of mean values) can be considered to be independent and
identically distributed. In Tables 8.3 and 8.4 the results of the fitting for the vectors
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Table 8.2: Optimal models for individual sample images of the TGFα–incubated group
of cells

sample optimal model distance

1 PDT/PLT or PLT/PDT 0.0104

2 PDT/PLT 0.0146

3 PDT/PLT or PLT/PDT 0.0138

4 PVT/PLT or PLT/PLT 0.0040

5 PVT/PLT 0.0044

6 PVT/PLT or PLT/PLT 0.0026

7 PVT/PLT or PLT/PVT 0.0050

of mean characteristics for the two groups are displayed. For the group of untreated
cells the decision is in favor of a PVT/PLT as it has been the case for all individual
sample images. For the group of TGFα treated cells the optimal model is a PDT/PLT,
enhancing the effect observed for individual sample images that there is a structural
difference between the filament network architecture of the two regarded groups.

Segmented graph structures of both groups, as a result of the applied image segmenta-
tion algorithm, together with sample realisations of the optimal models for the vectors of
mean characteristics, are displayed in Figure 8.7. Clearly, the similarity between these
illustrations can not be perfect, since there is a certain variability between different
realisations of the same model.

8.1.4 Summary of the Results

The results of Sections 8.1.2 and 8.1.3 show that TGFα induces a profound change of
the keratin filament network in pancreatic cancer cells, demonstrating that an approach
based on the image segmentation techniques introduced in Chapter 6 and on the model
fitting algorithm explained in Chapter 7 can provide important insights into the pro-
cesses that govern network morphology in the cytoskeleton. In particular, with respect
to the network structure, we can deduce from the results of Section 8.1.3 that there
is a remodelling caused by TGFα. Whereas the untreated cells have uniformly the
PVT/PLT model as a best fit, the cells after stimulation with TGFα show a mixed be-
haviour between PVT/PLT and PDT/PLT. A possible explanation for this behaviour is
that some cells have not finished yet the transition and therefore still indicate PVT/PLT
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a) Segmented graph structure and sample realisation of optimal PVT/PLT model for the group of

untreated cells

b) Segmented graph structure and sample realisation of optimal PDT/PLT model for the group of

cells stimulated with TGFα

Figure 8.7: Comparison between segmented image data and realisations of optimal
model for both groups
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Table 8.3: Optimal parameter choices for possible models concerning mean values for
the group of untreated cells

Model Distance γ0 γ1 p

One–fold nestings

PLT/PLT 0.0057 0.022031 0.025125 0.9

PLT/PVT 0.0205 0.031608 0.000057 0.9

PLT/PDT 0.0560 0.029103 0.000033 0.9

PVT/PLT 0.0015 0.000049 0.033860 0.9

PVT/PVT 0.2023 0.000298 0.000030 1.0

PVT/PDT 0.1054 0.000101 0.000083 0.9

PDT/PLT 0.0447 0.000026 0.0331583 0.9

PDT/PVT 0.1123 0.000067 0.000123 0.9

PDT/PDT 0.1477 0.000053 0.000070 0.9

Basic tessellations

PLT 0.2994 0.048714 - -

PVT 0.2077 0.000539 - -

PDT 0.8492 0.000362 - -
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Table 8.4: Optimal parameter choices for possible models concerning mean values for
the group of cells stimulated with TGFα

Model Distance γ0 γ1 p

One–fold nestings

PLT/PLT 0.0084 0.040824 0.018099 1.0

PLT/PVT 0.0024 0.044430 0.000054 1.0

PLT/PDT 0.0129 0.040115 0.000042 0.9

PVT/PLT 0.0024 0.044430 0.000054 1.0

PVT/PVT 0.2311 0.000835 0.000000 1.0

PVT/PDT 0.0911 0.000131 0.000177 0.9

PDT/PLT 0.0005 0.000038 0.041888 0.915

PDT/PVT 0.1030 0.000145 0.000160 0.9

PDT/PDT 0.1068 0.000087 0.000121 0.9

Basic tessellations

PLT 0.2605 0.063116 - -

PVT 0.2312 0.000827 - -

PDT 0.8103 0.000622 - -
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as an optimal model, while others are already in a structural state that indicates an
optimal PDT/PLT model. For more details on biological interpretations of these results
see [8] and [9].
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8.2 Model–based Analysis of Actin Filament Net-

works

The second example from cell biology where techniques from Chapters 6 and 7 are
applied deals with the actin filament network in the cytoskeleton in lamellipodia. The
actin filament network regulates the elasticity of whole cells and, consequently, influ-
ences cell migration ([11], [80]). It is formed by two distinct structures, lamellipodia
and filopodia with the latter arising from the dendritic actin network of lamellipodia
([82], [102]). Although lamellipodia represent a very thin cytoplasmic compartment,
they can contain several superimposed layers of flat actin networks ([103]). Therefore
a topological problem arises that has to be dealt with when extracting structural prop-
erties from the (usually two dimensional) images. In this section we analyze a set of
sample images showing the lamellipodia of the mouse melanoma cell line B16F1 with
respect to these structural properties. In particular, after a description of image ac-
quisition and image segmentation in Section 8.2.1, we apply in Section 8.2.2 the model
fitting algorithm introduced in Chapter 7 in order to fit a one–fold superposed tessel-
lation model to the given data, thereby representing a tessellation model for the actin
network structure that consists of two independent layers. The results of this model
fitting algorithm show that the actin filament network possesses two distinctive lay-
ers. Based on these layers it is possible to compute important characterstics for the
structural properties of a cell as, for example, the elastic modulus which is done in
Section 8.2.3. The results of Section 8.2 are also partially documented in [26].

8.2.1 Image Segmentation

Images were provided by T. Svitkina (Department of Biology, University of Pennsyl-
vania) For details on the cell culture, specimen preparation and on image acquisition
see [103]. Altogether, seven sample images from four different cells are analysed with
varying sizes, where the total area is 10.91 µm2 (length of 1 pixel ≈ 1.1 nm). Recall
once more that, especially with respect to the accuracy of the analysis of vectors of
mean characteristics, it is more important how large the total area of the investigated
images is compared to the total number of images. The sample images are smaller
cutouts of larger images, where the sample images are chosen such that they have a
varying distance to the cell membrane and that artifacts caused by preparation and
imaging are mostly avoided (Figure 8.8).

Due to the constant diameter of actin filaments in the images, noise effects can be re-
duced by applying a Gaussian filtering (Section 6.1.2) with a fixed filter size of 10 pixels
which reflects quite well the width of the filaments. A watershed algorithm based on
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immersion (Section 6.3) is applied to the filtered image in order to detect the actin cy-
toskeleton that can be approximated by a network of line segments where all endpoints
are connected, i.e., where there are no dead ends. The pixels belonging to the resulting
dam structure are classified into crosspoints and linepoints (Section 6.4.1). Afterwards,
the dam structure is compared to the original image. With respect to each dam we
regard the grey scale value at the corresponding pixel coordinates. In case that the
minimum of these values is bigger than a given threshold, the dam is kept, otherwise it
is deleted from the structure. Such a procedure is used in order to remove dams that
result from topological disturbances and that do not correspond to actin filaments. The
dams are replaced by straight lines between the two endpoints of the dam assuming
that a straight line approximates an actin filament due to its sufficiently large persis-
tence length. Finally, we correct topological disturbances of the primary segmentation
by merging neighboured branching points (Section 6.4.3), where the merging parame-
ter dmax is chosen as 10 pixels reflecting the width of the filaments. This means that
branching points are merged in an ascending order if they are less than dmax = 10 pixels
apart from each other. Results of the image segmentation algorithm for an increasing
complexity of the original image are displayed in Figure 8.9.

8.2.2 Fitting of Superposed Tessellation Models

In order to obtain objective features of global network architecture random tessellation
models are fitted to the graphs resulting from the segmentation of the original images
showing the actin filament networks using the methods described in Chapter 7. As-
suming that the actin network consists of at least two independent two–dimensional
layers a one–fold superposition is fitted to the data. Basic tessellation models for this
superposition are given by PLT, PVT, and PDT which results in six different possible
combinations for the one–fold superposition (Figure 7.5). As a distance function the
relative Eulidean distance is applied.

The results of the model fitting for the vector of mean characteristics are shown in
Table 8.5. From these results it can be deduced that the optimal one–fold superposed
model is given by a PVT/PDT superposition, where the two parameters are given by
γPV T = 0.000582 and γPDT = 0.000041 (recall that the parameters γ have a different
meaning for different basic tessellation types, cmp. Sections 2.4.3 –2.4.5). The results
for the vector of mean characteristics are validated by the results for the optimal model
of single sample images displayed in Table 8.6. Here, in each case a PVT/PDT su-
perposition is the optimal model, always with parameters in a narrow range. Recall
the fact that a PVT/PDT superposition is equivalent with respect to distribution to a
PDT/PVT superposition. By a comparison of non–superposed to one–fold superposed
models it becomes visible that there is a large improvement in the quality of approx-
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a) Overview of the actin filament network

b) First sample image of actin network c) Second sample image of actin network

Figure 8.8: Actin filament networks in B16F1 mouse melanoma cells
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Original image of an actin network Corresponding graph structure

Original image of an actin network Corresponding graph structure

Figure 8.9: Results of image segmentation for actin networks

imation that manifests itself in a remarkably reduced measured distance. A sample
image and a realisation of the optimal superposed model are given in Figure 8.10.

8.2.3 Estimation of Actin Network Elasticity

A characteristic that is of vital interest with respect to actin networks is the elastic
shear modulus G. It describes the tendency of the network to shear that means the
deformation of shape at constant volume, when acted upon by opposing forces. The
elastic shear modulus is defined as shear stress over shear strain. In order to determine
G for the actin networks analysed in Sections 8.2.1 and 8.2.2 an approach will be
introduced that is based on the model fitting performed and on the determination of
the mean mesh size for the optimal superposed tessellation model. The mean mesh size
is determined since the value for the elastic shear modulus is directly dependent from it
and approximately scales as mean mesh size to the power of −4.4. Note that in general
we can derive an estimation for the mean mesh size only via simulations, especially with
regard to one–fold superposed tessellation models as used in the following. As a control
computation also the measurement of the actin concentration that can be derived from
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Table 8.5: Goodness–of–fit and model parameters for actin networks

Model Distance γ0 γ1

Basic tessellations

PLT 0.2496 6.981 ∗ 10−2 -

PVT 0.2534 1.086 ∗ 10−3 -

PDT 0.7369 7.905 ∗ 10−4 -

One–fold superpositions

PLT/PLT 0.2496 3.491 ∗ 10−2 3.491 ∗ 10−2

PLT/PVT 0.0562 2.167 ∗ 10−2 5.488 ∗ 10−4

PLT/PDT 0.2467 6.850 ∗ 10−2 1.168 ∗ 10−7

PVT/PVT 0.0584 2.920 ∗ 10−4 2.920 ∗ 10−4

PVT/PDT 0.0322 5.802 ∗ 10−4 4.116 ∗ 10−5

PDT/PDT 0.3923 1.254 ∗ 10−4 1.254 ∗ 10−4

Table 8.6: Optimal models for individual sample images of the actin network

sample optimal model distance

1 PVT/PDT 0.0140

2 PVT/PDT 0.0026

3 PVT/PDT 0.0109

4 PVT/PDT 0.0383

5 PVT/PDT 0.0404

6 PVT/PDT 0.0273

7 PVT/PDT 0.0698
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Figure 8.10: Comparison between sample image and realisation of optimal PVT/PDT
superposed model fitted to actin networks

the total length of the segmented filament structures is used. Thereby an alternative
estimate for the average mesh size is obtained that can be used to estimate G.

With respect to an isotropic crosslinked actin filament network we can calculate G in
general as ([51])

G = 6kbT l
2
p/(l

3
eζ

2) (8.8)

with kb being the Boltzman constant (1.3806505∗10−23 J/K), T the temperature in K,
lp being the persistence length of actin filaments (17 µm), le the entanglement length
and ζ the average mesh size. The entanglement length le is defined as the average
distance between points along an actin filament that are effectively constraint. For a
fully crosslinked network (i.e., a network where all crossings are really linked and not
only overlapping) le is determined by the distance between the crosslinks. In [43] it is
stated that the entanglement length is 2.2 µm for an actin network with a concentration
of 1 mg/ml and that it is proportional to ρ−0.4. The average mesh size ζ represents the
average distance between neighbouring actin filaments. Due to the fact that we assume
a superposition of filament layers, ζ can not be determined directly from the observed
images but has to be estimated from the optimal tessellation models. For this purpose
we estimated the average mesh size ζ by estimating the average maximum diameter
of circles inscribed into the meshes (i.e., cells) of simulated networks for each of the
two layers of the optimal model (PVT and PDT) seperately. This leads to estimations
for ζ of 34 nm with respect to the PVT layer and to 78 nm with respect to the PDT
layer. Note that the estimations have to be performed by simulation since no analytical
formulae are available.

As a control (or alternative) computation for the average mesh sizes that we obtained
by simulations of the fitted one–fold superposed model we used the following. In [73]
it is stated that the mesh size of an actin network depends on its actin concentration ρ
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and that this relation can be described by

ρ = 1/ζ2. (8.9)

So, as a first step in order to determine the concentration of filamentous actin, we
calculated the total amount of filamentous actin per unit area by measuring the total
length of the skeletal lines in the images and dividing by the total area regarded after-
wards. Note that the precision of this method is hardly affected by a possible overlay
of actin filaments from different layers since the skeletal lines have a negligible width
and since they are mainly oriented orthogonally to the vertical axis. With respect to
the total length of the skeletal lines per unit area we obtained 7.24 ∗ 10−2 nm/nm2 =
7.24 ∗ 101 µm/µm2. Using the optimal parameter values obtained for the two different
optimal layers (γPV T = 0.000582 and γPDT = 0.000041) obtained in Section 8.2.2 we
get the estimation that approximately 68.8% which is equivalent to 4.98 ∗ 101 µm/µm2

belong to the PVT layer, whereas 31.2% (2.26∗101 µm/µm2) belong to the PDT layer.
Due to the thickness of the lamellipodia which can be assumed as approximately 200 nm
and if we additionally assume that the two layers are both occupying the same amount
of height (100 nm each), we are able to rewrite the two total lengths as total lengths per
unit volume and obtain 4.98 ∗ 102 µm/µm3 for the PVT layer and 2.26 ∗ 102 µm/µm3

for the PDT layer. Furthermore, by assuming that an actin filament with a length
of 1 µm consists of 370 molecules with a molecular weight of 43 kDa per molecule
(cmp. [104]) we finally obtain actin concentrations of 13.25 mg/ml for the PVT layer
and 5.95 mg/ml for the PDT layer. Plugging these values into (8.9) average mesh
sizes ζ of 44 nm and 66 nm for the PVT layer and the PDT layer respectively are ob-
tained that conincide quite well with the estimates obtained from the simulated optimal
tessellation models (34 nm and 78 nm).

Based on (8.8) and by using the estimates for ζ with respect to the two tessellation
layers (34 nm for PVT and 78 nm for PDT) we are now able to derive estimations
for the elastic shear modulus G as 23.4 kPa (PVT layer) and 0.6 kPa (PDT layer),
respectively. Note that (8.8) refers to isotropic 3D networks and although the actin
networks in lamellipodia basically represent 2D structures, this formula provides good
estimates for G.

8.2.4 Summary of the Results

Due to the observation that lamellipodia are composed of flat actin filament networks
([97]), in Section 8.2.2 a suitable one–fold superposed tessellation model has been fitted
to the actin filament networks. The usage of statistical tessellation models allows the
coverage of a wide range of morphological scenarios without restricting to specific topo-
logical patterns. In particular the fact that the optimal model for all sample images is
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given by a PVT/PDT superposed tessellation with a very narrow range of optimal pa-
rameters shows that this model is quite convenient for modelling the observed network
structures and that a uniform network morphology exists for this cytoskeletal compart-
ment. These impression are further enhanced by visual comparisons. Note that the
modelling of actin filament networks as a one-fold superposition fits well with previous
observations ([83]), which have shown that the lamellipodium consists of two distinct
actin networks.

In Section 8.2.3 the fitted model has been used in order to obtain estimates for the
mean meshwidths of the two layers (PVT and the PDT), which then have been utilised
to derive estimations for the elastic shear modulus G by estimating the average mesh
sizes. An alternative way in order to estimate G is by using the actin concentration
that can be estimated by measuring the mean total length of actin filaments per unit
area. This total actin concentration in lamellipodia was measured to be 9.6 mg/ml
which is in accordance to previously measured data ([116]). The calculation of the total
filament length by measuring the projection of filaments provides good estimates of
actin concentrations since actin networks appear to be spatially restricted ([97]). The
superposed tessellation model fitted to the data provided the opportunity to analyse the
structural properties of the different actin network layers separately, where this analysis
revealed that the two layers are non-identical and differ with respect to morphology and
actin concentration. By a comparison of the density of actin filaments determined for
the different layers and the original images it can be deduced that the lower layer of the
actin network can be described by the PVT layer, while the upper layer is represented
by the PDT model. The comparison of the estimates for the average mesh sizes of
34 nm for the PVT layer and of 78 nm for the PDT layer, respectively, to an estimate
obtained purely by considering the actin concentrations (44 nm and 66 nm for the PVT
layer and the PDT layer, respectively) show that they are of comparable sizes, differing
only by 18% and 23%, respectively, from those calculated from actin concentrations
([73]). This variation might be caused by an unequal division of the cytoplasmic space
between the two layers of the actin network which affects the concentration values
directly. However, these small differences show that the properties of the fitted model
indeed reflect the structural characteristics of the multi–layer actin network. Based
on the estimations for the mesh sizes, the elastic shear modulus G was found to be
23.4 kPa for the PVT and 0.6 kPa for the PDT layer, respectively, which is within the
range of previously measured data ([3]). The difference in the value of G for the two
different layers may cause an asymmetry of the elastic properties of the lamellipodium,
where the stiffer layer determines the leading edges ability to push the cell forward. The
response to small forces perpendicular to the lamellipodium however might be regulated
by the softer PDT layer. For a more detailled discussion of the biological aspects for
the results of Section 8.2 the reader is referred to [26].
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Chapter 9

Conclusions and Outlook

This thesis has shown that techniques and tools from stochastic geometry and image
analysis can be applied to different fields of applications like cell biology and telecom-
munication almost independent of the scale the corresponding data is measured in. In
particular efficient algorithms for the simulation of the typical cell for different types
of tessellations have been developed and described. Characteristics for the typical cell
like the area or the perimeter have been analysed which can provide information in
different kinds of applications like transport problems in membrane cell trafficking or
cost analysis in telecommunication networks. Examples for such a cost analysis based
on the simulation algorithms for the typical cell have been performed and inference for
different cost characteristics like the mean shortest path length or the mean distance
to the nearest cell nuclei have been obtained. Problems connected to the correct and
efficient implementations of the corresponding algorithms either for typical cell simu-
lation or for cost analysis have also been discussed. For two sets of images from cell
biology, network structures have been extracted by means of morphological analysis.
These network structures have been analysed with respect to their basic statistical
characteristics like the mean number of segments per image or the orientation distri-
bution of the segments. Additionally suitable iterated tessellation models have been
fitted to these networks using an automatised fitting procedure. These fitted random
tessellation models have afterwards been used in order to obtain valuable information
about geometric features of the networks like the average mesh size and the elastic shear
modulus. Obviously, such an approach is not limited to examples from cell biology but
has already been successfully applied to an example coming from telecommunication
(cmp. [31]).

Looking at the results of this thesis the question for extensions and further develop-
ment naturally arises. For example, with respect to the development of algorithms for
the simulation of the typical cell different types of tessellations or partitions based on
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Figure 9.1: Realisation of an aggregated Poisson–Voronoi tessellation, where different
colours denote different cells

tessellations can be considered. In cooperation with M. Wauer some preliminary results
have been obtained for the simulation of the typical cell for aggregated Poisson–Voronoi
tessellations (cmp. [5], [29], [105]) which are partially documented in his diploma the-
sis ([112]). A realisation of an aggregated Poisson–Voronoi tessellation is displayed in
Figure 9.1. In particular, a comparison of the results for the simulation algorithm with
respect to the distribution of the area for the typical cell to an approximation formula
based on known distributions for tessellations in the Poisson–Voronoi case has been
performed. With respect to tessellations that are based on modulated Poisson point
processes, algorithms for the simulation of the typical cell for modulated Delaunay tes-
sellations as well as for multi–modulated tessellations are thinkable. Multi–modulated
in this context means that instead of one Boolean model that induces the random driv-
ing measure for the modulated Poisson point process we have several Boolean models
with a certain hierarchy among them and different intensities connected to them.

With regard to cost analysis a natural extension of the results shown in this thesis is to
regard distributional properties of the cost characteristics apart from the first moment.
In cooperation with D. Wolfmüller some preliminary results have been obtained for the
estimation of the densities for the shortest path length as well as for the subscriber
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Figure 9.2: Estimated densities of shortest path length and subscriber line length for
κ = 50 (taken from [115])

line length (cmp. Figure 9.2 and Section 4.2) which are documented in his diploma
thesis ([115]). Other cost functionals apart from the Euclidean distance for the costs
on a single segment have also been regarded in this diploma thesis, for example, an
assignment of a constant cost to a line segment that is independent of the segment
length. Such a choice of the costs leads to problems of capacity analysis which will also
be interesting to analyse in the future.

A different aspect is to change the underlying tessellation model for the cost analysis.
In this thesis we have regarded Voronoi tessellations that are based on a Cox point
process that is concentrated on the lines of a Poisson line process. It might instead
be interesting, for example, to regard models that are based on a Cox point process
that is concentrated on the edges of a Poisson–Voronoi tessellation or on the edges of a
one–fold nesting of tessellations (cmp. Figure 9.3). Especially by a comparison to the
case regarded in this thesis interesting information about the influence of the underlying
geometrical structure on the cost functionals can be obtained.

The model fitting algorithm introduced in Chapter 7 can be refined and extended.
For example, more input parameters for the vector of input characteristics can be
considered. Possible candidates are the angles between segments or the number of
neighbouring vertices with respect to a vertex. Of course it might be difficult to derive
theoretical formulae for mean values of these characteristics and hence the computation
has to be done by simulation. Another interesting topic is the generation of intensity
maps or even type–intensity maps from the model fitting. This means that based on
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a) Two–level hierarchical model based on PVT
b) Two–level hierarchical model based on

PLT/PLT nesting

Figure 9.3: Different underlying geometrical models for two–level hierarchies

the algorithm for different locations as center point of the sampling window an optimal
model together with corresponding parameters is determined. If this is done for a
single tessellation model thereby intensity maps can be generated using an extrapolation
technique like kriging (cmp. [111]). If different optimal random tessellation models are
obtained, this method might be extended to type–intensity maps, where various possible
approaches of how to handle borders between regions of different optimal models are
thinkable. First results for intensity maps with respect to urban infrastructure data of
Paris are documented in [106]. A similar approach might be helpful for the investigation
of the filamentous networks that have been investigated in this thesis. In this context
of course a problem of image acquisition occurs since the size of the images is restricted
by technical constraints of the electron microscope.

Another interesting aspect for future work is the introduction of certain dynamics to
the scenarios investigated in this thesis. For example, the location of the lower–level
points in the two–level hierarchical models for cost analysis might no longer be fixed
but they might be moving according to a dynamic model. This leads to models that
might be able to reflect mobile telecommunication settings quite well. Also for the cases
regarded in cell biology dynamics are worthy to add to the model. Here an interesting
question is how to model the transition from one network state into another one like
after injection of TGFα into the keratin filament network. Some preliminary results of
such a modelling are summarised in [50].
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a) Gas–diffusion layer in a fuel cell b) Blood arteries in a mouse

Figure 9.4: Network structures occurring in material science and medicine

A challenging problem for the future will be the extension of the techniques to three–
dimensional data. With the progress in imaging techniques like 3D–electron tomogra-
phy or similar methods more and more 3D data will be available soon. While most of
the techniques introduced here are extendable to the third dimension of course some
adaptions have to be performed. For example, with regard to image segmentation using
more sophisticated algorithms like grey scale skeletonization ([109]) have to be used.

Finally we would like to mention that as it has been stated in the beginning all the
techniques described in this thesis are not restricted to the fields of telecommunication
and cell biology but can also be applied to various other fields where similar network
structures are occurring, for example, in material science and medicine (cmp. Figure 9.4,
graciously provided by the ZSW, Ulm and by the Institute of Physiological Chemistry,
Ulm University, respectively).
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Appendix A

Basic Mathematical Definitions

In the appendix a short overview of some basic definitions and theorems in set the-
ory, topology, measure theory, and probability calculus is provided. For a more de-
tailed description of these topics the reader is referred to the literature, for example,
to [7], [13], [19], [45], and [89].

A.1 Set Theory

We describe by a set M a collection of arbitrary distinct objects, where a single object
x as part of this set is called an element and is denoted by x ∈M . The notation x /∈ M
denotes an object x that does not belong to M . A set A is said to be a subset A ⊂ M
if for all x ∈ A we have that x ∈ M . A set that contains no elements is called an
empty set and is denoted by ∅. As customary, the union and the intersection of two
sets A,B ⊂M can be defined as

A ∩ B = {x : x ∈ A and x ∈ B}

and
A ∪B = {x : x ∈ A or x ∈ B} ,

respectively. Furthermore, let Ac denote the complement of A defined by

Ac = {x : x ∈M and x /∈ A} ,

and let
A \B = {x : x ∈ A and x /∈ B}
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be the difference A\B. For arbitrary sets M1, ...,Mn we can define the Cartesian product
as the set of all vectors (x1, ..., xn), where xi ∈Mi. It is denoted by M1 × ...×Mn with

M1 × ...×Mn = {(x1, ..., xn) : x1 ∈M1, ..., xn ∈Mn} .

In this thesis mainly the two–dimensional set of real numbers IR2 is regarded. Therefore
we now recall some operations on IR2.

The elements of IR2 are called points or vectors. A point x ∈ IR2 consists of 2 real–
valued components, in other words x = (x1, x2), where xi ∈ IR for i = 1, 2. The point
o = (0, 0) ∈ IR2 is referred to as the origin. In addition, a scalar multiplication of
x ∈ IR2 by a number c ∈ IR is given by

cx = (cx1, cx2).

The addition of two vectors x, y ∈ IRd is defined in a componentwise fashion as

x+ y = (x1 + y1, x2 + y2).

For A ∈ IR2 and c ∈ IR let
cA = {cx : x ∈ A} .

In particular, if (−1)A = A the set A ⊂ IR2 is called symmetric. The translation of a
set A ⊂ IR2 by a vector x ∈ IR2 is given by

Ax = A+ x = {y + x : y ∈ A} ,

while the rotation of the set A ⊂ IR2 around the origin can be defined as

ϑR(A) = {Rx : x ∈ A} ,

where R ∈ IR2×2 is an orthogonal matrix with detR = 1. The Minkowski sum A ⊕ B
of two sets A,B ∈ IRd is given as

A⊕B = {x+ y : x ∈ A, y ∈ B}.

It can easily be shown that the operation ’⊕’ is associative as well as commutative.

A.2 Topology

Let M ⊂ IR2 be an arbitrary set with elements x, y ∈M . A mapping ρ : M ×M → IR+

is called a metric with respect to M ⊂ IR2 if the following properties hold
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1. ρ(x, y) = 0 if and only if x = y,

2. ρ(x, y) = ρ(y, x), and

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z), ∀ x, y, z ∈M.

The tuple (M, ρ) then denotes a metric space.

A sequence x1, x2, ... in (M, ρ) is called a Cauchy sequence, if for any ǫ > 0 there exists
a number n0 ∈ IN such that for n, n′ > n0 it holds that

ρ(xn, xn′) < ǫ.

A metric space (M, ρ) is called complete, if all Cauchy sequences in (M, ρ) are converg-
ing. This means that for any Cauchy sequence x1, x2, ... in (M, ρ) there exists a limit
x ∈M such that for any ǫ > 0 there is a number n0 ∈ IN with

ρ(xn, x) < ǫ

for all n ≥ n0.

Let (M1, ρ1) and (M2, ρ2) be two metric spaces. A mapping f : M1 → M2 is called
continuous in x0 ∈M1 if for all ǫ > 0 there exists a δ(ǫ, x0) such that ρ2(f(x0), f(x)) <
δ(ǫ, x0) holds for any x with ρ1(x0, x) < ǫ.

The closure cl A of a set A ⊂M ⊂ IR2 is defined as the intersection of all open subsets
of M that contain A. The subset A is called dense in M if cl A = M and the set M is
called separable if it contains a countable, dense subset.

Consider a metric space (M, ρ) and let b(a, r) = {x ∈M : ρ(x, a) ≤ r} be the ball with
center a ∈M and radius r. Then a subset A ⊂ M is called

• bounded if there is an a ∈ IRd and an r > 0 such that A ⊂ b(a, r),

• open if ∀ x ∈ A ∃ ǫ > 0 : b(x, ǫ) ⊂ A,

• closed if its complement Ac = M \ A is open,

• convex if λx + (1 − λ)y ∈ A for arbitrary x, y ∈ A and λ ∈ (0, 1).

Let E be a non–empty set and T a system of subsets of E. Then T is called a topology
on E if the following holds

1. ∅ ∈ T , E ∈ T ,
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2. if I is an index set and Oi ∈ T for all i ∈ I then
⋃
i∈I Oi ∈ T ,

3. if O1, ..., Ok ∈ T then
⋂k
i=1Oi ∈ T .

The tupel (E, T ) is then called a topological space and every element of T is called an
open set of the topological space (E, T ).

Note that every metric space (E, ρ) is a topological space (E, T ), where T is the system
of open sets in (E, ρ). The topology T is said to be induced by ρ. Analogously to a
metric space, a topological space in which a countable, dense subset exists is called
separable.

A system BN = {Bν | ν ∈ N,N index set} of open subsets Bν of the topological space
(E, T ) is a basis of T if any open set in (E, T ) is a union of sets from BN . A topological
space is called a Polish space if there exists a complete metric that defines the topology
and if the topology possesses a countable basis.

Maybe the most prominent example of a metric space is IR2 equipped with the Euclidean
metric |.| that is defined as

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2,

for all x = (x1, x2) and y = (y1, y2) in IR2. Due to the fact that the set IQ2, the set of all
points in IR2 whose coordinates are rational, is countable and dense in IR2 we obtain
that (IR2, | · |), the metric space IR2 equiped with the Euclidean metric is a complete,
separable, metric space. A subset A ⊂ IR2 is called compact if it is closed and bounded.

A.3 Measure Theory

Let Ω 6= ∅ be an arbitrary set and let P(Ω) be the power set of Ω. A system of sets
A ⊂ P(Ω) is called a σ–algebra with respect to Ω if

1. Ω ∈ A,

2. A ∈ A =⇒ Ac ∈ A, and

3. Ai ∈ A, i ∈ IN =⇒ ⋃∞
i=1Ai ∈ A.

A tupel (Ω,A), where A is a σ–algebra with respect to Ω is called a measurable space.
A prominent example for a σ–algebra is the Borel–σ–algebra denoted by B(Ω). It is
defined as the smallest σ–algebra with respect to the set Ω which contains all open
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subsets of Ω. The corresponding measurable space is denoted by (Ω,B(Ω)). Note that
in this example Ω together with some topology T has to be a topological space. In
general, if E denotes a non–empty set and if E denotes a family of non–empty subsets
of E, we call the set σ(E) which is the smallest σ–algebra which contains E the σ–algebra
that is induced by E .

Let (Ω,A) be a measurable space. A mapping µ : A → IR ∪ {∞} is called a measure
on the measurable space (Ω,A) if

1. µ(A) ≥ 0, ∀ A ∈ A,

2. µ(∅) = 0, and

3. µ (
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) for any Ai ∈ A, i ∈ IN with Ak∩Al = ∅ for any k, l ∈ IN

with k 6= l,

where the third property is called the σ–additivity of the measure µ. If the mapping µ
is of the form µ : B(Ω) → [0,∞], the mapping µ is called a Borel measure. A measure
IP is called a probability measure if IP(Ω) = 1. A triple (Ω,A, µ) that is constructed
by a measurable space (Ω,A) and a measure µ is a measure space. In the case that
the measure is additionally a probability measure, the measure space is referred to
as a probability space. Measures with non–negative integer values are called counting
measures and a measure µ on a measurable space (IR2,B(IR2)) is said to be locally finite
or a Radon measure if for all bounded subsets B ∈ B0(IR2) we have that µ(B) <∞. In
case that the counting measure µ is defined with respect to a measurable space (Ω,A)
and that furthermore {ω} ∈ A for all ω ∈ Ω we can define the support of µ as the set
supp µ = {ω ∈ Ω : µ({ω}) > 0} A counting measure µ is called simple if µ({ω}) = 1
for all ω ∈ supp µ almost surely.

The Dirac measure is an example of a simple counting measure. It is of the form δω(A) =
1 if ω ∈ A and 0 otherwise. Another very prominent measure is the (two–dimensional)
Lebesgue measure ν2 on the two–dimensional measurable space (IR2,B(IR2)). The
Lebesgue measure is uniquely defined by its property that it assigns to each half–
open rectangle B ∈ B(IR2) with B = [a1, b1) × [a2, b2) its corresponding area ν2(B) =
(b1 − a1) · (b2 − a2). For the Lebesgue measure we have the following properties

• ν2 is motion–invariant, i.e. ν2(B) = ν2(Bx) = ν2(ϑ(B)) for any B ∈ B(IR2), where
Bx is the set B shifted by an arbitrary vector x ∈ IR2 and where ϑ(B) is the set
B rotated around the origin by an arbitrary rotation ϑ;

• ν2 is locally finite, i.e. ν2(B) <∞ for all bounded sets B ⊆ IR2, and

• ν2 is a diffuse measure, i. e. ν2({x}) = 0 for all x ∈ IR2.
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An important property of the Lebesgue measure is summarised in Haar’s Lemma.

Lemma A.1 (Haar’s Lemma) Let µ : B(IR2) → [0,∞] be a locally finite and motion–
invariant measure. Then there exists a constant c ∈ [0,∞) such that

µ(B) = cν2(B)

for all B ∈ B(IR2).

A proof of this lemma can be found, for example, in [36] on pp. 251f.

A function f : Ω → Ω′, where (Ω,A) and (Ω′,A′) are two measurable spaces, is called
(A,A′)–measurable if f−1(A′) = {ω ∈ Ω : f(ω) ∈ A′} ∈ A for all A′ ∈ A′. If addition-
ally (Ω′,A′) = (IRd,B(IRd)) we call the function f Borel–measurable.

A function f : Ω → (−∞,∞) is called µ–integrable if f is measurable and if the integrals∫
f+dµ and

∫
f−dµ exist, where f+(ω) = max {0, f(ω)} and f−(ω) = max {0,−f(ω)}.

In such a case we denote by
∫
fdµ =

∫
f+dµ−

∫
f−dµ

the µ-integral of f with respect to Ω.

Let µ be a measure on a σ–algebra A of Ω. We call a set N0 ∈ A a null set with respect
to µ if µ(N0) = 0. Furthermore we say that a property η holds (µ–)almost everywhere
or (µ–)almost surely on Ω if there exists a null set N0 with respect to µ such that η
holds for all ω ∈ Ω \N0.

A.4 Probability Calculus

Consider a probability space (Ω,A, IP) and a measurable space (Ω′,A′). A random vari-
able X is a measurable mapping X : Ω → Ω′. In particular, we call a random variable
X : Ω → IR a real–valued random variable. Analogously a vector X = (X1, ...Xd)

⊤ of
real–valued random variables X1, ...Xd is called a random vector. The distribution PX
of a random variable X is given by

PX(A′) = IP(X ∈ A′) = IP({ω ∈ Ω : X(ω) ∈ A′}), A′ ∈ A′.

More specifically, if we consider a random vector X = (X1, ...Xd)
⊤ the function FX :

IRd → [0, 1] with

FX(x1, ..., xd) = IP(X1 ≤ x1, ..., Xd ≤ xd) = PX(X1 ∈ (−∞, x1], ..., Xd ∈ (−∞, xd])
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is called the (cumulative) distribution function (cdf) of X. With respect to the cdf a
function that is often of interest is the quantile function. In general, if F : IR → IR is a
non–decreasing and right–continuous function we have that the function F−1 : IR → IR
given by

F−1(y) = inf{x : F (x) ≥ y}
is called the generalized inverse function of F , where inf ∅ = ∞. Now, if we consider
the cdf FX of a random variable X on (Ω,A, IP) we call the function F−1

X the quan-
tile function of X. We say that a sequence {Xn}n≥1 of real–valued random variables

converges in distribution to a real–valued random variable X and write Xn
d→ X if

FXn(x) → FX(x) for every point x such that IP(X = x) = 0.

If two random variables X1 and X2 on (Ω,A, IP) are considered they are said to be
identically distributed if it holds that IP(X1 ∈ A′) = IP(X2 ∈ A′) for all A′ ∈ A′. They
are said to be independent if

IP(X1 ∈ A′
1, X2 ∈ A′

2) = IP(X1 ∈ A′
1)IP(X1 ∈ A′

1)

for all A′
1, A

′
2 ∈ A′. Note that this definition can be canonically extended to the case

of n random variables.

The kth moment IE(Xk) of a real–valued random variable X with
∫∞

−∞
|xk|dFX(x) <∞

can be given by

IE(Xk) =

∫

Ω

Xk(ω)IP(dω) =

∫ ∞

−∞

xkdFX(x), k ∈ IN,

where FX is the cdf of X. More specifically, IE(X) is said to be the expectation or the
mean of X. Moreover, V arX defined by

V arX = IE(X − IEX)2 = IEX2 − (IEX)2

is called the variance of X.

In the following some specific distributions FX for a real–valued random variable X
are introduced. A (real–valued) random variable X is called Poisson distributed with
IE(X) = λ if X : Ω → IN0 and

IP(X = k) = exp (−λ)
λk

k!
,

for k ∈ IN0.

We call a (real–valued) random variable X : Ω → [a, b] ⊂ IR uniformly distributed on
the interval [a, b] if its cdf FX is given by

FX(x) =

∫ x

a

1

b− a
dt =

x− a

b− a
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for x ∈ [a, b]. Note that IE(X) = (b+ a)/2.

A (real–valued) random variable X : Ω → [0,∞) with IE = λ−1 is called exponentially
distributed if its cdf FX can be given by

FX(x) =

∫ x

0

λ exp−λt dt = 1 − exp−λx,

for x ∈ [0,∞).

We call a (real–valued) random variable X : Ω → IR+∪{0} with mean αβ and variance
αβ2, where α, β > 0, γ–distributed if its pdf fX(x) can be given by

fX(x) =
β−α

Γ(α)
xα−1 exp− x

β ,

for x ∈ [0,∞).

A (real–valued) random variable X : Ω → IR with mean µ ∈ IR and variance σ2 > 0 is
called normally distributed if its cdf FX is given by

FX(x) =
1

(2πσ2)1/2

∫ x

−∞

exp− 1
2
( t−µ
σ

)2 dt,

for x ∈ IR. If furthermore µ = 0 and σ = 1 we call X standard normal distributed.

An important theorem that is connected to the normal distribution is the central limit
theorem.

Theorem A.1 (Central Limit Theorem) Let {Xi}i≥1 be a sequence of independent and
identically distributed (real–valued) random variables with (common) expectation µ and
variance σ2 > 0. Then, if Sn =

∑n
i=1Xi it holds that

Sn − nµ

σ
√
n

d→ Z,

where Z follows a standard normal distribution.

For a proof of this theorem see, for example, [19], pp. 216ff.



Appendix B

Zusammenfassung

B.1 Ziele

Diese Arbeit basiert auf Ergebnissen die im Rahmen zweier noch andauernder For-
schungsprojekte des Instituts für Stochastik der Universität Ulm erzielt wurden. In-
nerhalb des ersten Projekts, das in Kooperation mit France Télècom R&D Division,
Paris, durchgeführt wird, steht im Vordergrund die Modellierung und die Analyse von
Netzwerkstrukturen, die im Bereich der Telekommunikation auftreten. Insbesondere
werden Straßensysteme städtischer Regionen wie beispielsweise Paris, aber auch na-
tionale Telekommunikationsnetzwerke analysiert, wobei hauptsächlich die (zufällige)
geometrische Struktur, sowie damit verbundene Kostenfunktionale von Interesse sind.
Ziele der gewählten Modellansätze sind daher z.B. Aussagen über mittlere Abstände der
Kunden zum nächstliegenden Telekommunikationsknoten oder über damit verbundene
Kapazitätsfunktionale zu erhalten.

Das zweite Projekt, das in Zusammenarbeit mit Kollegen aus der Abteilung Innere
Medizin I der Universität Ulm, der Zentralen Einrichtung Elektronenmikroskopie der
Universität Ulm, des Laboratory of Cell and Computational Biology der University
of California, der Abteilung Physik der Universität Leipzig sowie des Departments of
Biology der University of Pennsylvania durchgeführt wird, beschäftigt sich mit der
Untersuchung von intrazellulären Strukturen in menschlichen Zellen. Insbesondere
ist hierbei das Zytoskelett von Interesse, welches innerhalb der Zelle netzwerkartige
Strukturen ausbildet und somit der Zelle einerseits Stabilität verleiht und andererseits
eine Schlüsselrolle für deren Fortbewegung einnimmt. Modelle für solche Skelettstruk-
turen können Informationen über abhängige Größen wie beispielsweise die Zellelastizität
liefern.

Obwohl die beiden zu Beginn beschriebenen Projekte auf den ersten Blick nicht sehr viel
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Gemeinsamkeiten hinsichtlich der untersuchten Objekte aufweisen, wurde es im Verlauf
dieser Arbeit immer klarer, dass die zugrundeliegenden mathematischen Modelle, Ver-
fahren und Techniken, die zur Beantwortung der entstehenden Fragen dienen, sehr ähn-
lich sind. In beiden Fällen können die erhobenenen Daten durch Netzwerkstrukturen
dargestellt werden, entweder auf einer makroskopischen (Telekommunikation) oder einer
mikroskopischen bzw. nanoskopischen Skala (Zytoskelett). Die Verbindungen zwischen
zwei Ecken oder Knoten können relativ gut durch Liniensegmente beschrieben werden,
was zu polygonähnlichen Strukturen führt. Diese Strukturen haben in beiden Projek-
ten dazu geführt, dass zur Modellierung zufällige Mosaike verwendet werden, die als
zufällige Partition der Ebene mit nichtleeren und nichtüberlappenden Polygonen aufge-
fasst werden können. Aus einem solchen Modellansatz ergibt sich die Notwendigkeit
geeignete Modelle für zufällige Mosaike auszuwählen, die einerseits geeignet sind, die
Daten gut widerzuspiegeln und andererseits immer noch mathematisch handhabbar
sind, z.B. hinsichtlich von Mittelwertsformeln für einfache geometrische Charakteris-
tiken. Zusätzlich ist es häufig von Interesse, nach der Bestimmung eines geeigneten
Mosaikmodells, gewisse weitere Modellcharakteristiken zu bestimmen. Dies können
beispielsweise der mittlere Umfang der Polygone sein, die das Mosaik bilden oder auch
der mittlere Abstand eines zufällig gewählten Punkts zum Mittelpunkt des Polygons
des Mosaiks, indem dieser enthalten ist.

Im Speziellen werden im ersten Teil dieser Arbeit effiziente Schätzer für Kostenfunk-
tionale in hierarchischen Modellen, die auf zufälligen Punktprozessen und zufälligen
Mosaiken basieren, hergeleitet und angewandt. Die Ergebnisse solcher Schätzungen
können beispielsweise für Kostenberechnungen oder Risikoanalysen dienen. Um zu
solchen effizienten Schätzern zu gelangen werden Grundkenntnisse über Themenbereiche
innerhalb der stochastischen Geometrie benötigt. Desweiteren müssen Simulationsalgo-
rithmen für die typische Zelle von speziellen Arten von zufälligen Mosaiken entwickelt
werden. Typische Zelle bedeutet hierbei eine vollkommen zufällig ausgewählte Zelle aus
den entstehenden Zellen des Mosaiks.

Der zweite Teil dieser Arbeit beginnt mit einer Beschreibung der angewandten Verfahren
zur Bildsegmentierung. Insbesondere werden die Bilddaten der Filamentnetzwerke des
Zytoskeletts in Graphenstrukturen umgewandelt, die für spätere statistische Unter-
suchungen geeignet sind. An diese Graphenstrukturen wird im Folgenden ein Modell
eines zufälligen Mosaiks angepasst, wobei der Anpassungsalgorithmus auf dem Ver-
gleich globaler Netzwerkcharakteristiken wie z.B. der Anzahl der Ecken (Knoten) oder
der Gesamtlänge der Kanten pro Flächeneinheit, zwischen der beobachteten Graphen-
struktur und den theoretischen Modellen beruht. Die angepassten Modelle können dann
wiederum zur Schätzung weiterer Größen wie beispielsweise der Maschenbreite genutzt
werden.

Zusammenfassend werden in der vorliegenden Arbeit einige Ergebnisse der beiden be-
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schriebenen Projekte vorgestellt. Dadurch soll der Leser von der Universalität der
vorgestellten Methoden der stochastischen Geometrie und der morphologischen Bild-
analyse bezüglich ihrer Anwendbarkeit auf unterschiedlichste Gebiete der wissenschaft-
lichen und industriellen Forschung überzeugt werden. Methoden, die verwendet werden,
um eine spezielle Frage für eine bestimmte Anwendung zu beantworten, können oft in
nur leicht abgewandelter Form dazu dienen, ein Problem in einem vollkommen anderen
Anwendungsgebiet zu lösen. Noch genauer sind die Ziele dieser Arbeit:

• Die Entwicklung und Beschreibung effizienter Algorithmen zur Simulation der
typischen Zelle für verschiedene Mosaikmodelle. Zusätzlich zu der Tatsache, dass
die Anwendung solcher Algorithmen wertvolle Informationen über die Charakter-
istiken der typischen Zelle selber bereit stellt, dienen sie auch als Grundlage für
spätere effiziente Kostenanalysen.

• Eine solche effiziente Kostenanalyse für hierarchische Modelle durchzuführen. Die
Ergebnisse können anschließend beispielsweise realistische Kostenberechnungen
im Bereich der Telekommunikation ermöglichen oder Erkenntnisse liefern hin-
sichtlich biologischer Prozesse, die im Zusammenhang mit dem Transport von
Vesikeln in intrazellulären Strukturen stehen.

• Einige Fragen hinsichtlich der Möglichkeiten für Softwaretests zu beantworten,
wobei hier das besondere Augenmerk auf das Testen von Software mit zufälligen
Ein- bzw. Ausgaben gerichtet ist.

• Einige nützliche Methoden und Verfahren der morphologischen Bildanlyse vorzu-
stellen, die in der Lage sind gegebene Bilddaten im Hinblick auf nachgelagerte
statistische Analysen vorzuverarbeiten.

• Statistische Analysen für zwei Beispiele aus dem Bereich der Zellbiologie durch-
zuführen. Hierbei ist neben einer Untersuchung grundlegender statistischer Kenn-
größen hauptsächlich ein Anpassungsalgorithmus für Modelle zufälliger Mosaike
von Interesse. Ein solcher Anpassungsalgorithmus ist natürlich nicht nur auf zell-
biologische Daten, sondern beispielsweise auch auf städtische Infrastrukturdaten
anwendbar.

• Durch alle obig genannten Ziele aufzuzeigen, daß die Methoden und Verfahren
der stochastischen Geometrie und der morphologischen Bildanalyse sehr vielseitig
sind im Sinne einer Anwendbarkeit auf unterschiedlichste Problemstellungen für
Bilddaten deren Maßstäbe makro–, mikro– oder sogar nanoskopisch sein können.
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B.2 Gliederung

Nach der Einleitung in Kapitel 1 werden einige grundlegende Konzepte der stochas-
tischen Geometrie in Kapitel 2 erläutert. Ziel ist es dem Leser genügend Grundlagen
zur Verfügung zu stellen, um den Begriff der zufälligen Mosaike einführen zu können,
da diese in allen späteren Anwendungen Verwendung finden. In Abschnitt 2.1 werden
zufällige abgeschlossene Mengen definiert, während in Abschnitt 2.2 zufällige Punkt-
prozesse eingeführt werden, sowohl für den markierten als auch für den unmarkierten
Fall. In diesem Abschnitt werden ebenfalls Palmverteilungen für zufällige Punkt-
prozesse sowie Neveus Austauschformel für solche Palmverteilungen besprochen, die
in den Kapiteln 3 und 4 ihre Anwendung finden. Weitere wichtige Modelle aus der
stochastischen Geometrie, die in den Kapiteln 3 und 4 benötigt werden, sind Boolesche
Modelle und darauf basierende modulierte Poissonprozesse. Sie werden daher in Ab-
schnitt 2.3 eingeführt. In Abschnitt 2.4 werden schließlich deterministische und zufällige
Mosaike definiert. Verschiedene Beispiele werden vorgestellt, die im Verlauf dieser Ar-
beit von Bedeutung sind, unter anderem das Poisson–Voronoi Mosaik, das Poissonsche
Geradenmosaik, das Poisson–Delaunay Mosaik, Cox–Voronoi Mosaike, modulierte Mo-
saike, Superpositionen und Nestings. Es sei an dieser Stelle bemerkt, dass hauptsächlich
der planare Fall betrachtet wird, wobei allerdings meistens kanonische Erweiterungen
hinsichtlich höherer Dimensionen existieren.

In Kapitel 3 werden einige effiziente Algorithmen zur Simulation typischer Zellen für
verschiedene zufällige Mosaike beschrieben. Abgesehen von der Möglichkeit durch deren
Anwendung Informationen über Charakteristiken der typischen Zelle zu erhalten, wer-
den diese Algorithmen auch in Kapitel 4 hinsichtlich der Herleitung von effizienten
Schätzern für Kostenfunktionale in hierarchischen Modellen von Bedeutung sein. In
Abschnitt 3.1 werden einige allgemeine Aspekte solcher Algorithmen für die Simulation
der typischen Zelle eines zufälligen Mosaiks diskutiert. Begonnen wird mit Algorithmen
zur Simulation eines Poissonschen Punktprozesses, der die Grundlage für alle Simula-
tionsalgorithmen darstellt, die in diesem Kapitel betrachtet werden. Slivnyaks Theorem
wird erläutert, welches die Darstellung der Palmverteilung eines Poissonschen Punkt-
prozesses mit Hilfe seiner (unbedingten) Verteilung und eines zusätzlichen (determinis-
tischen) Punkts im Nullpunkt ermöglicht. Basierend auf dem Simulationsalgorithmus
des Poissonschen Punktprozesses und auf Slivnyaks Theorem wird ein Simulations-
algorithmus für die typische Zelle eines Poisson–Voronoi Mosaiks hergeleitet. Dieser
Simulationsalgorithmus wird in Abschnitt 3.2 erweitert, um die Simulation der typi-
schen Zelle eines Cox–Voronoi Mosaiks zu ermöglichen, wobei das Cox–Voronoi Mo-
saik durch einen stationären Coxprozess auf den Linien eines Poissonschen Geraden-
mosaiks induziert wird. Einige Resultate numerischer Auswertungen bezüglich der
Charakteristiken der typischen Zelle wie der empirischen Verteilung der Fläche oder
des Umfangs werden gezeigt. In Abschnitt 3.3 wird ein Algorithmus zur Simulation der
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typischen Zelle eines modulierten Poisson–Voronoi Mosaiks vorgestellt. Hier wird der
Fall betrachtet, dass das Voronoi Mosaik auf einem Coxprozess basiert, dessen zufälliges
Maß durch ein Boolesches Modell mit kreisförmigen Körnern eines fixen oder zumindest
beschränkten Radiuses erzeugt wird. Numerische Resultate einiger Charakteristiken wie
der Verteilungen der Fläche der typischen Zelle für spezielle Parameterkonfigurationen
bilden den Abschluss dieses Kapitels.

Ziel von Kapitel 4 ist die Herleitung von effizienten Schätzern für Kostenfunktionale in
zwei verschiedenen hierarchischen Modellen. Als Vorbereitung werden zunächst in Ab-
schnitt 4.1 einige grundlegende Begriffe der Graphentheorie eingeführt. Insbesondere
werden, nach der Definition eines Graphen, einige bekannte Algorithmen zur Berech-
nung kürzester Wege und deren Längen in gegebenen Graphen besprochen. Das erste
hierarchische Modell, welches in Abschnitt 4.2 untersucht wird, basiert auf zwei Cox-
prozessen, deren zufällige Intensitätsmaße sich auf die Linien eines gemeinsamen Pois-
sonschen Geradenmosaiks konzentrieren. Eine Charakteristik von besonderem Interesse
ist die kürzeste Weglänge, d.h. der Abstand entlang der Linien zwischen einem Punkt
niederer Ordnung und seines (im Euklidischen Sinne) nächsten Nachbars höherer Ord-
nung. Eine weitere, eng verwandte Größe ist die sogenannte Subscriber Line Länge.
Hier sind die Punkte niederer Ordnung nicht entlang der Linien platziert sondern rein
zufällig in der gesamten Ebene verteilt und werden anschließend auf das nächstliegende
Liniensegment innerhalb derselben Voronoizelle bzgl. der Punkte höherer Ordnung
projiziert. Die Subscriber Line Länge ist dann durch den Abstand des projizierten
Punkts niederer Ordnung zu dem Punkt höherer Ordnung der besagte Voronoizelle
gegeben. Effiziente Schätzer für sowohl die mittlere kürzeste Weglänge als auch die
mittlere Subscriber Line Länge werden hergeleitet, wobei die Algorithmen zur Simula-
tion der typischen Zelle aus Kapitel 3 und Neveus Austauschformel für Palmverteilun-
gen (Abschnitt 2.2) Verwendung finden. Ergebnisse von Monte–Carlo Simulationen
zeigen in Verbindung mit theoretischen Resultaten zur Skalierungsinvarianz innerhalb
dieses Modells Möglichkeiten für eine Nutzung der Methoden zur Kostenberechnung auf.
In Abschnitt 4.3 wird ein weiteres hierarchisches Modell erläutert, dessen Grundlage
die in Abschnitt 2.3 eingeführten modulierten Poissonschen Punktprozesse darstellen.
Im Fokus der Untersuchungen ist hierbei der mittlere Abstand eines Punkts niederer
Ordnung zu seinem nächsten Nachbarpunkt höherer Ordnung. Zu diesem Zweck wird
ein effizienter Schätzer hergeleitet, der auf den Algorithmen zur Simulation der ty-
pischen Zelle (Kapitel 3) sowie auf Neveus Austauschformel für Palmverteilungen (Ab-
schnitt 2.2) basiert. Einige numerische Resultate und die Diskussion von Möglichkeiten
zur Nutzung hinsichtlich einer effizienten Kostenanalyse stehen am Ende von Kapitel 4.

Das Thema von Kapitel 5 sind Methoden zum Testen von Software mit zufälliger Ein–
oder Ausgabe. In diesem Zusammenhang stellen Tests unter Verwendung eines statisti-
schen Orakels einen zentralen Baustein dar. Diese werden in Abschnitt 5.2 erläutert.
Einige Beispiele von Tests für Implementationen der Algorithmen aus den Kapiteln 3
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und 4 werden besprochen. Abschnitt 5.3 beschäftigt sich mit Tests, die ein statisti-
sches Orakel mit einem Verfahren kombinieren, das metamorphisches Testen genannt
wird. Für diese Art von Softwaretests werden ebenfalls einige Beispiele demonstriert,
die die Korrektheit der Algorithmen aus Kapitel 3 überprüfen. Eine dritte Klasse
an Tests wird in Abschnitt 5.4 betrachtet. Bei dieser Art von Tests wird zusätzlich
zu einem statistischen Orakel und einer metamorphischen Beziehung noch eine weitere,
gegebene (und möglichst bereits getestete) Implementierung betrachtet, der sogenannte
Goldstandard. Nach einer Einführung in diese Klasse von Tests werden einige Beispiele
für Anwendungen gegeben. Kapitel 5 endet mit einer Zusammenfasssung und einem
Vergleich der betrachteten Testmethoden.

Kapitel 6 stellt eine Einführung in grundlegende Begriffe und Methoden der morpho-
logischen Bildanalyse dar. Diese werden in Kapitel 8 dazu verwendet gegebene Bild-
daten aus der Elektronenmikroskopie vorzuverarbeiten, um eine nachgelagerte statisti-
sche Analyse sowie ein Anpassen eines geeigneten Mosaikmodells zu ermöglichen. In Ab-
schnitt 6.1 werden (digitale) Gitter und unterschiedliche Arten von digitalen Bildern wie
z.B. Grauwert– oder RGB Bilder definiert. Zusätzlich werden Verfahren zur Bilderver-
besserung durch das Anwenden von Filtern besprochen. Abschnitt 6.2 widmet sich
der Beschreibung der Skelettierung durch morphologische Operatoren. Hierdurch wird
eine gegebene Struktur in eine neue Struktur transformiert, die eine Breite von einem
Pixel hat, aber Eigenschaften der alten Struktur, beispielsweise die Anzahl an ver-
bundenen Komponenten beibehält. Ein zur Skelettierung eng verwandtes Verfahren
ist die Wasserscheidentransformation, die in Abschnitt 6.3 behandelt wird. Im De-
tail wird der Algorithmus zur Wasserscheidentransformation mittels Immersion (Ein-
tauchen) erläutert. Der letzte Abschnitt dieses Kapitels betrachtet einige weitere mor-
phologische Operatoren, die in Kapitel 8 zur Verbesserung der Segmentierungsergeb-
nisse angewandt werden. Darunter fallen Operatoren wie iterative Entbartung oder die
Fusionierung benachbarter Kreuzungspunkte.

In Kapitel 7 wird ein Verfahren zur Anpassung zufälliger Mosaike an gegebene Netz-
werkstrukturen erläutert. Dieses Verfahren wird in Kapitel 8 auf Beispiele aus der
Zellbiologie angewandt, kann aber aufgrund seiner Allgemeinheit auch Zur Analyse an-
derer Arten von Netzwerkstrukturen wie beispielsweise städtische Infrastrukturdaten
verwendet werden. In Abschnitt 7.1 werden die verwendeten Kenngrößen der Ein-
gangsdaten sowie zugehörige Schätzer erklärt. Das eigentliche Anpassungsverfahren
einschließlich der Wahl der Abstandsfunktion und des optimalen Modells wird in Ab-
schnitt 7.2 beschrieben.

Zwei Anwendungen für Bilddaten aus der Zellbiologie der in den Kapiteln 6 und 7
beschriebenen Techniken sind der Gegenstand von Kapitel 8. Im ersten Beispiel wird
eine statistische Analyse von Keratin Filamentstrukturen durchgeführt. Solche Fila-
mentstrukturen befinden sich im Zytoskelett von Epithelzellen und spielen für die
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Migration und Stabilität der Zelle eine entscheidende Rolle. Hauptziel der Unter-
suchung ist die Detektion und Beschreibung struktureller Veränderungen der Architek-
tur des Keratinnetzwerks bei Hinzugabe einer tumorfördernden Substanz. Nach einer
Erläuterung der Datengewinnung und –segmentierung wird als erstes eine statistische
Analyse grundlegender Charakteristiken, wie beispielsweise Orientierung und Länge
der Filamentsegmente vollzogen. Zufällige Mosaike werden unter Verwendung des in
Kapitel 7 beschriebenen Verfahrens an die Netzwerkstrukturen angepasst. Die Ergeb-
nisse der Modellanpassung zeigen, dass tatsächlich eine Umstrukturierung der Netz-
werkstruktur beobachtet werden kann, die durch Hinzugabe einer tumorfördernden Sub-
stanz induziert wird. Desweiteren kann diese durch die angewandten mathematischen
Verfahren und Modelle sowohl qualitativ als auch quantitativ beschrieben werden.

Im zweiten Anwendungsbeispiel aus dem Bereich der Zellbiologie, das der Gegenstand
von Abschnitt 8.2 ist, werden Aktin Filamentnetzwerke betrachtet, die ebenso wie
die Keratinnetzwerke, einen Teil des Zytoskeletts in Zellen bilden. Diese Aktinnetz-
werke sind verantwortlich für die Regulierung der Zellelastizität wodurch natürlich auch
die Zellmigration beeinflusst wird. Ziel der Untersuchungen ist es ein zufälliges Mo-
saik zu finden, das die grundlegenden Eigenschaften der Netzwerkstrukturen in realen
Beispieldaten möglichst gut widerspiegelt. Anschließend werden, basierend auf diesem
angepassten Mosaikmodell, Näherungen für den elastischen Schermodul berechnet, der
ein gutes Maß für die Zellelastizität darstellt. In Abschnitt 8.2.1 wird der angewandte
Bildsegmentierungsalgorithmus detailliert beschrieben, dessen Grundlage die in Ab-
schnitt 6.3 erklärte morphologische Wasserscheidentransformation ist. Ergebnisse der
Anpassung von einfachen Superpositionsmodellen sind in Abschnitt 8.2.2 zu finden. Das
hieraus resultierende optimale Mosaikmodell wird in Abschnitt 8.2.3 dazu verwendet
Schätzungen für den elastischen Schermodul zu erhalten. Diese Schätzungen werden
anschliessend mit rein auf Konzentrationen basierenden Schätzungen verglichen. Im
Verlauf dieser Untersuchungen wird deutlich, dass der Ansatz des Anpassens von zufälli-
gen Mosaiken geeignet ist, um nützliche Informationen über verschiedenste Größen der
biologischen Zelle zu erhalten.

In Kapitel 9 werden die Ergebnisse der vorliegenden Arbeit zusammengefasst. Des
Weiteren wird ein Ausblick auf darüber hinausgehende Fragestellungen und Probleme
gegeben. Speziell kommen Verfahren zur Simulation von typischen Zellen für weitere
Arten von zufälligen Mosaiken wie beispielsweise des aggregierten Poisson–Voronoi Mo-
saiks zur Sprache. Es werden mögliche Erweiterungen der beschriebenen Methoden zur
effizienten Schätzung von Kostenfunktionalen in hierarchischen Modellen diskutiert,
z.B. im Hinblick auf die Schätzung von Verteilungen und Dichten. Eine kurze Betrach-
tung von dynamischen Modellierungsansätzen und von Kostenanalysen im Bereich der
Zellbiologie bilden den Schlusspunkt dieses Kapitels.

Zur Abrundung werden im Appendix einige grundlegende mathematische Begriffe ein-
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geführt. Die ersten beiden Abschnitte behandeln vornehmlich Themen aus der Mengen-
theorie und der Topologie wie beispielsweise Mengen, metrische Räume und Dichtheit.
In den letzten beiden Abschnitten stehen Konzepte aus der Maßtheorie und der Wahr-
scheinlichkeitsrechnung im Vordergrund. Als Beispiele seien hier Maße, Verteilungen
und der zentrale Grenzwertsatz genannt.
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