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Chapter 1

Introduction

1.1 The history of the bond market

The origin of organized markets dates back to the 12th century France and 13th

century Belgium. In France, the first brokers traded in debts of agricultural com-

munities. In Bruges, commodity traders met inside the house of Van der Beurse.

These meetings where then institutionalized as Brugse Beurse. Later, organized

markets for debts, stocks and commodities were founded in Italy and the Nether-

lands. The Amsterdam Stock Exchange is considered to be the first modern market,

allowing continuous trade in options and other derivatives already in the 17th cen-

tury. Today, corporate and government bonds are traded on every stock exchange

in large volume. According to a recent study of the ECMI 1, the outstanding vol-

ume of corporate bonds in the US, Eurozone and Japan amounts to about 2.2, 1.2

and 0.6 trillion Euro in 2004, respectively. For government bonds, an outstanding

volume of about 4.0, 5.0 and 4.6 trillion Euro, respectively, is reported for the same

year.

Compared to the long history of bond markets, the global market of credit deriva-

tives is surprisingly young. It arose in the early 1990s in London and New York

and grew from virtually nothing to an outstanding notional amount of 26.0 trillion

US$, as reported by Bloomberg News on September 19, 2006. Today, the largest

market share is still occupied by single-name instruments2, but the importance

of multi-name derivatives such as collateralized debt obligations grew significantly

over the last years. Without doubt, the volume and growth of this market explain

and justify the scientific interest in sophisticated credit-risk models.

1 European capital market institute: Statistical package, 2006 edition.
2 August 31, 2006: The Wall Street Journal reports the notional in credit default swaps (CDS)

to exceed 17.0 trillion US$.

9



10 Chapter 1. Introduction

1.2 Credit risk: Definition and models

Today, debt is viewed as an instrument which allows companies to pursue economic

activities they could not finance from their own funds. Debtor and creditor agree

on the standard of deferred payments, which typically includes the principal sum

plus interest. This interest3 is interpreted as the price of debt which has to be

determined based on economic considerations. Substantial influence on the amount

of interest is founded by the creditworthiness of the obligor. More abstractly, we

follow Schönbucher (2003) and define credit risk as ”the risk that an obligor does

not honour his payment obligations.”4 Over the last decades, several credit-risk

models have been set up to quantify this credit risk and to price bonds and credit

derivatives. The vast majority of all modern credit-risk models is based on one of

the following principles: The structural approach or the reduced-form approach.

Univariate structural default models

Structural default models aim to explain the economic cause of credit default of a

company. More precisely, default is assumed to be the consequence of insufficient

financial strength of a company. Solvency is linked to the ratio of the firm’s assets

and liabilities via the assumption that default is triggered when the value of the

firm falls below a certain threshold5. Consequently, the model of the firm-value

process implicitly specifies the term structure of default probabilities. Therefore,

this process plays the pivotal role in structural default models. Corporate bonds

and credit derivatives are then priced based on this implied term structure of de-

fault probabilities.

A natural criterion to distinguish structural default models is to classify them ac-

cording to the underlying firm-value process. This classification is closely related

to the historical development, as the model of the firm-value process has been

generalized over the years. The first structural default model was published by

Black and Scholes (1973), it relies on a geometric Brownian motion as firm-value

process. Originally, this model was designed to describe stock prices rather than

the value of a firm. Then, the observation ”It is not generally realized, that corpo-

rate liabilities other than warrants may be viewed as options.” 6 transformed their

3 A well written article about the history and criticism of interest can be found in: DIE ZEIT,
June 2003, ”Ein paar Prozent Streit”, http://www.zeit.de/2003/06/Zinsgeschichte.

4 Schönbucher (2003), page 1.
5 The company’s total liabilities are often used as default threshold. Other popular interpre-

tations are weighted averages of short- and long-term liabilities, KMV : Crosbie and Bohn
(2003), or a minimum firm value which is required to operate the company, compare Black
and Cox (1976).

6 Black and Scholes (1973), Journal of Political Economy 81, page 649.

http://www.zeit.de/2003/06/Zinsgeschichte
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Figure 1.1: Two paths of the firm’s asset process, the lower with default.

stock price model into the first structural default model. Their idea was worked

out in detail by Merton (1974), who slightly changed the underlying stochastic

differential equation of the firm-value process to include dividends and interest

payments. However, the solution of this equation is still a geometric Brownian

motion. Moreover, as in Black and Scholes (1973), default is only possible at ma-

turity. This shortcoming was corrected by Black and Cox (1976), who criticize the

original model as follows: ”Furthermore, it assumes that the fortunes of the firm

may cause its value to rise to an arbitrary high level or dwindle to nearly nothing

without any sort of reorganization occurring in the firm’s financial arrangement.

More generally, there may be both lower and upper boundaries at which the firm’s

securities must take on specific values.” 7 To correct this unrealistic assumption,

they propose to continuously test for default and define the time of default as the

first-passage time of the firm-value process below a given barrier. Further general-

izations of the model address the economic framework, allowing coupon bonds and

bond indenture provisions as in Geske (1977), or include stochastic interest rates

as in Longstaff and Schwartz (1995).

Still, all these models suffer from the same defect. In pure diffusion models, the

time of default, if defined as a first-passage time of the firm-value process, is a pre-

dictable8 stopping time with respect to the filtration generated by the Brownian

motion. This property turns out to imply vanishing credit spreads for bonds with

short maturities, which contradicts the empirical observation that credit spreads

7 Black and Cox (1976), The Journal of Finance 31, page 352.
8 Mathematically, this means that there exists an increasing sequence of stopping times which

converges a.s. to the time of default. Intuitively, this means that the time of default is
announced.



12 Chapter 1. Introduction

have a positive limit at the short end of the term structure. This problem can

be approached from two sides. First of all, it is possible to reduce or blur the

filtration available to all investors. Alternatively, one can relax the assumption of

a continuous firm-value process. In either case, the aim is to modify the model

such that the time of default is no longer announced in advance.

Duffie and Lando (2001) address the first approach as follows: ”In practice, it

is typically difficult for investors in the secondary market for corporate bonds to

observe a firm’s assets directly, because of noisy or delayed accounting reports, or

barriers to monitoring by other means.” 9 Their model is still based on a geomet-

ric Brownian motion, but default probabilities are obtained conditional on noisy

accounting data and survivorship of the firm. They show that in this scenario, the

default time admits an intensity process and the limit of credit spreads at time

zero is positive. Subsequently, several authors considered the problem of incom-

plete information. Let us mention Giesecke (2006, with Goldberg (2004)), leaving

the investor uncertain about the default threshold, Kusuoka (1999), who allows

bond investors to receive noisy asset reports by observing some process whose drift

is a function of the firm’s value process and Çetin et al. (2002), who model the

cash-flow process of a company and only allow investors to observe the sign of this

process.

In contrast to Duffie and Lando, Zhou (2001a) does not change the filtration but

suggests modeling the firm-value process as the superposition of a diffusion and

a jump component instead, the latter with normally distributed jumps. He also

presents a simple Monte Carlo algorithm to evaluate bond prices within his model.

Moreover, he shows that the limit of credit spreads as implied by the model is pos-

itive. In this thesis, we further generalize Zhou’s single-firm model and present two

tractable pricing routines for bonds and CDS contracts. Furthermore, we derive

several new theoretical results within this framework.

Finally, Leland (1994, with Toft (1996)) proposed a framework in which the default

threshold is not exogenously given. Instead, shareholders are free to choose the

default threshold such that the value of the firm’s equity is maximized10. Mathe-

matically, this translates in an optimal stopping problem. Generalizations of this

approach have been proposed by Hilberink and Rogers (2002), allowing down-

ward jumps in the firm-value process, and recently by Chen and Kou (2005), Acar

(2006) and Dao and Jeanblanc (2006) to jump-diffusion processes with two-sided

exponentially distributed jumps.

9 Duffie and Lando (2001), Econometrica 69, page 634.
10 Anderson and Sundaresan (1996) consider this approach with a game theoretical perspective.
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Univariate reduced-form models

Unlike structural default models, reduced-form models (or intensity-based mod-

els) do not intend to explain the default of a company by means of an economic

construction. Instead, the time of default is exogenously given and assumed to

agree with the jump time of some one-jump stochastic process. The distribution of

this totally inaccessible random variable depends on its default-intensity process,

for which models with different complexity exist. Recent models often allow this

default-intensity process to depend on a vector of state variables. Another impor-

tant issue is the amount of information based on which bond and derivative prices

are derived. Typical examples are the filtration generated by the default indicator

process, the filtration of the state variables, or some given filtration enlarged by the

default indicator. Each investor then calculates default probabilities conditional

on the available information. The focus of this thesis lies in the forthcoming of

structural default models. Therefore, we refer the interested reader to the original

papers of Pye (1974), Ramaswamy and Sundaresan (1986), Jarrow and Turnbull

(1995), Lando (1998) and Duffie and Singleton (1999a) for more information on

reduced-form models. Comprehensive summaries of reduced-form models includ-

ing further references are given in the books of Lando (2004) and Bielecki and

Rutkowski (2002).

Correlated default

The growing popularity of derivatives on credit portfolios, such as collateralized

debt obligations or nth -to default contracts, gives rise to research in models which

explain the default correlation among different companies. Intuitively, we mean by

default correlation the tendency of different companies to default jointly. Another

important phenomenon which dependence models try to capture are default clus-

ters, i.e. short time periods with several defaults. Ultimately, pricing derivatives

on a credit portfolio translates in the mathematical problem of modeling the term

structure of portfolio losses. This loss distribution is specified by the term struc-

ture of individual default probabilities, combined with the dependence among the

companies. Just as for univariate models, the same categorization in structural

and reduced-form models applies to most dependence models.

Multivariate structural default models

The generalization of univariate to multivariate structural default models is quite

intuitive. For each company, a stochastic process representing the firm’s assets is

considered. Default is again triggered by insufficient asset values of the respec-
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tive company. In such a model, default correlation is implicitly modeled through

dependence of the individual firm-value processes. It is difficult to distinguish

existing models according to their approach of introducing dependence, as most

models incorporate more than one concept. Therefore, we list and briefly explain

the popular concepts of coupling the individual firm-value processes.

In a multivariate extension of Merton’s model, a straightforward approach is to as-

sume correlated Brownian motions. This assumption is proposed by Zhou (2001b)

and others. Allowing the interpretation of common macroeconomic factors, the

resulting dependence structure is referred to by Giesecke (2004) as cyclical default

correlation. However, this first approach does not match the empirical observa-

tion of default clusters, which arise from the fact that the default of a company

may substantially increase the default probability of affiliated companies. Giesecke

(2004) terms this effect contagion default correlation and proposes to include this

property by making the default thresholds unobservable to investors or by chang-

ing the parameters of the model if one of the companies defaults.

Factor models interpret the asset process of a firm as the superposition of an in-

dividual factor and one (or more) common factor(s)11. The first factor model was

Vasicek’s asymptotic single factor model12. This model extends Merton’s model to

several firms and assumes all idiosyncratic factors and the common market factor to

be normally distributed13. In the sequel, several generalizations of Vasicek’s model

have been proposed, most of them are concerned with relaxing its assumptions or

proposing different distributions for the factors. Among others, Hull and White

(2004) propose a t -distribution framework, Kalemanova et al. (2005) implement

factors with NIG distribution and Albrecher et al. (2006) present a general one-

factor Lévy framework. Let us also mention that most factor models are static

models in the sense that they do not test continuously for default. This concession

is often necessary to achieve numerical tractability.

Multivariate reduced-form models

Multivariate reduced-form models introduce correlation via dependent intensity

processes. Conversely, this assumption implies that defaults are independent con-

ditional on the sample paths of the underlying intensity processes. Focusing on

structural models, we only give a brief overview of the popular approaches to add

correlation to the default intensity processes.

11 These models often attach economic interpretations to their factors, from which estimation
methods for the respective factors based on fundamental data are derived.

12 The original reference is Vasicek (1987).
13 Vasicek’s model is often referred to as Gaussian-copula model, due to the dependence structure

the assumption of normally distributed factors implies.
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Quite intuitive is the class of conditionally independent default models, where all

individual intensity processes are functions of some common variables. These mod-

els can be generalized by allowing common jumps in the default intensity processes

or by considering events which may cause several defaults simultaneously, compare

Duffie and Singleton (1999) and Kijima (2000). To incorporate the contagion effect,

it is reasonable to increase the default intensity of a firm if an affiliated company

defaults. These models are studied by Davis and Lo (1999) and Jarrow and Yu

(2001). Finally, it is possible to use copula functions to link independent survival

probabilities or default thresholds, as proposed by Li (1999) and Schönbucher and

Schubert (2001).
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1.3 Our contribution and aim of this thesis

The aim of this thesis is to thoroughly study structural default models based on

jump-diffusion processes. As noted earlier, jump-diffusion models were first pro-

posed by Zhou (2001a), who also showed that these models have several desirable

properties, most important, positive short-term spreads. On the other side, these

models turned out to be complicated to implement, as the distribution of the run-

ning minimum of a jump-diffusion process is not known. We show that an efficient

implementation of jump-diffusion models is possible and even fast enough to al-

low a calibration to market data. Moreover, we derive new theoretical results and

generalize the model to jointly consider different companies.

1.3.1 Our findings in Zhou’s univariate model

To incorporate sudden defaults, Zhou (2001a) suggested superposing the tradi-

tional diffusion model by a compound Poisson component. Obviously, this exten-

sion is a realistic generalization, since purely continuous firm-value processes are

often not adequate. Unfortunately, this model is not as tractable as a continuous

model, as the distribution of first-passage times of a jump-diffusion process is un-

known. Therefore, simulation and approximation techniques are required to derive

prices in this framework. The first algorithmic implementation of the bond pricing

formula was suggested by Zhou (2001a). This approach relied on simulations of

trajectories of the firm-value process on a small grid, which is straightforward to

implement. However, this algorithm is slow and suffers from a massive discretiza-

tion bias. What we propose is a Monte Carlo simulation which simulates as little

as possible and calculates the remainder. More precisely, the idea and theoret-

ical justification of our algorithm is to express the pricing formula of a bond in

terms of a nested conditional expectation. Conditioned on the number and loca-

tion of possible jumps, and the firm-value process at these jump times, we present

a closed-form expression of bond prices. The distributions of all random variables

on which we condition are known and straightforward to simulate. Our Algorithm

4.3.1 simulates these quantities in each Monte Carlo step. Then, the correspond-

ing expected payoff is computed. This leads to an unbiased and extremely fast

algorithm, which is not restricted to a specific jump-size distribution.

In terms of speed, we could further improve our Monte Carlo simulation by ap-

proximating an integral which occurs in the conditional payoff of the bond. This

approximation is presented in Theorem 4.3.3. Our result is an improved variant of

an approximation which was originally suggested by Metwally and Atiya (2002) in

the context of option pricing. In Section 4.8.2, we present several numerical exper-
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iments which illustrate the improvement in precision if our approximation is used.

Also, this section provides an extensive analysis of all available pricing algorithms.

Considering credit default swaps (CDS), Algorithm 4.4.1 is closely related to the

bond-pricing simulation before. We designed this Monte Carlo simulation to price

CDS contracts in the same jump-diffusion framework. Again, the idea of this al-

gorithm is to rewrite the expected discounted premium and default leg of a CDS

in terms of nested conditional expectations.

When we used our algorithm to perform numerical experiments with different

sets of parameters, we noticed that the limit of credit spreads at the short end

of the term structure is positive and independent of the parameters of the diffusion

component. The observation of a positive limit of spreads was predicted by Zhou

(2001a). Moreover, independence of the limit of spreads of the diffusion component

seems natural, since this limit is zero in a continuous model. We combined both

observations in Theorem 4.3.4, where we present an exact formula of the limit of

credit spreads in an arbitrary jump-diffusion model. This limit is found to be the

product of the local default rate and the fractional loss at default. In Theorem

4.2.1, we further show that the local default rate is the product of the jump inten-

sity and the probability of a jump to exceed the distance to default.

In the following sections, we present several generalizations of Zhou’s model. First

of all, we show how the random undershot of the firm-value process below the de-

fault threshold is used to endogenously define the recovery rate. Up to this point,

the recovery rate was one of the deterministic parameters of the model. More re-

alistically, however, is the assumption of a random variable which is drawn at the

time of default. Since structural default models explicitly describe the firm-value

process of a company, it seems natural to use the value of this process at the time

of default to specify the recovery rate. This approach is redundant in a contin-

uous model, as in this model the firm-value process necessarily agrees with the

deterministic default threshold at default. In contrast, jumps allow the firm-value

process to fall below the default threshold. This unknown undershot is used to

induce a random recovery rate. While this idea is straightforward to implement

in a simulation relying on complete trajectories of the firm-value process, we show

in Section 4.5.1 how the same feature is embedded in our algorithm. Our general-

ization of Section 4.5.2 relaxes the assumption of a flat term-structure of interest

rates. In this section, we explain how short-rate models are included in our frame-

work. Exemplarily, we implement Vasicek’s short-rate model and the CIR model.

Our next generalization of the structural default model is based on the observation

that the difference of two jump-diffusion processes is again a jump-diffusion pro-

cess. This result is used in Section 4.5.3 to include a stochastic default threshold.

An important special case of this generalization of the model is the popular exam-
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ple of an exponential default threshold. Finally, we present pricing routines based

on reduced filtrations in Section 4.5.4. This extension of the model is inspired

by relaxing the unrealistic assumption of being able to continuously observe the

firm-value process. Instead, we provide updates of the firm-value process on a pe-

riodic schedule, which are interpreted as accounting reports. The expected payoffs

of bonds and CDS contracts, relative to different reduced filtrations, are derived.

These results are interpreted and illustrated using a numerical experiment. Also,

we present closed-form expressions of bonds and CDS contracts in a pure diffusion

framework, relative to different reduced filtrations.

Up to this point, all available pricing routines relied on different Monte Carlo

simulations. Given a set of parameters, we showed that such a routine provides re-

liable prices in a very short time. However, a calibration of the model requires the

minimization of some distance of model to market prices over the parameter space.

Typically, this leads to hundreds of evaluations of the objective function. Also, an

efficient minimization routine requires the numerical approximation of the gradi-

ents of the objective function. For neither of them, a Monte Carlo estimation is

suitable. We could overcome this problem by specifying the jump-size distribution

to be a two-sided exponential distribution. In this scenario, the Laplace transform

of first-passage times was derived by Kou and Wang (2003). This Laplace trans-

form involves the roots of a quartic polynomial and is only known on the positive

axis. Therefore, these first-passage probabilities can not be inverted explicitly from

the transform. However, we can recover them numerically using the Gaver-Stehfest

algorithm. Based on these approximated survival probabilities, we introduce an

algorithm to price bonds and CDS contracts in fractions of seconds with high pre-

cision. This elegant approach is worked out in detail in Section 4.6. Moreover, the

implementation of the resulting Algorithm 4.6.1 is explained and illustrated using

several numerical examples.

Given this efficient pricing routine, we were able to calibrate the model to bond

prices and CDS quotes. The first part of Section 4.9 explains a calibration of the

model to bond prices of DaimlerChrysler and GM. Then, we calibrate the firm-

value process of each of the 125 companies of the iTraxx CDS portfolio. This is done

for 16 trading days, which amounts to 2,000 calibrations. The same calibration

is performed in a pure diffusion model. Given these results, we conclude that the

jump-diffusion model is capable to fitting observed prices with excellent accuracy.

The pure diffusion model was outperformed by far in terms of fitting capability,

especially for contracts with small maturities. Finally, we used our Laplace-pricing

algorithm for an extensive study of the analytical properties of the model. More

precisely, in Section 4.7 we present a sensitivity analysis of model prices with re-

spect to changes in the parameters. Again, we conclude that the model is extremely

flexible in producing different term structures of credit spreads.
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1.3.2 Our new multidimensional model

Our next step was to generalize the model to a portfolio model consisting of several

dependent firms. This model is then used to price multi-firm credit derivatives such

as CDOs and nth -to default contracts. Our objective was to present a mechanism

of coupling the individual firm-value processes based on a firm economic rationale.

This is achieved by partially replacing the Brownian motion of each individual

firm-value process by a Brownian motion of the market. This common factor is

interpreted as an indicator of the current macroeconomic situation. Moreover, we

introduce dependence through common jumps in some of the firm-value processes.

For this, we define a ticker process which reports the arrival of unexpected infor-

mation. Jumps of the ticker process then induce jumps in some of the individual

firm-value processes. Additionally, we present a variant of the model which is based

on different industry sectors. From a firm-individual perspective, our construction

of introducing dependence preserves the marginal default probabilities.

In a continuous model, the correlation of two firm-value processes is easily ex-

pressed in terms of their interdependence with the common market factor. We

generalize this formula in Theorems 5.2.1 and 5.2.2 for our jump-diffusion model.

Moreover, we perform several numerical investigations to determine the influence

of common jumps on the default correlation of two firms. Compared to the possi-

bility of simultaneous jumps, we conclude that a common market factor requires

significantly more time to produce a relevant default correlation.

The calibration of our model to CDO quotes requires a fast method of computing

the respective model spreads. We present a Monte Carlo simulation which is able

to price CDOs within minutes on a standard notebook. This algorithm exploits

the integral approximation of Theorem 4.3.3 and other results of the univariate

model to achieve the required speed. Several numerical experiments are performed

to illustrate the sensitivity of model spreads with respect to changes in the param-

eters of the dependence structure.

An important property of our multidimensional generalization is the option of

calibrating the model in two steps. This is possible, as the parameters of the indi-

vidual default probabilities are separated from the parameters of the dependence

structure. Such a calibration is explained in detail in Section 5.3.4. At first, we

calibrate the parameters of each firm-value process to CDS or bond quotes of the

respective firm. In a second step, we use CDO quotes to calibrate the dependence

parameters of the model. Our calibration of the model to 16 trading days shows

that the model is able to match observed prices with high precision. At the same

time, the model explains the term structure of CDS spreads of each company of the

portfolio. Considering this, the fitting capability of the model is even more impres-
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sive. Moreover, our model is designed to describe the term structure of portfolio

losses, which enables us to price CDOs with different maturities in a consistent

framework.

Up to this point, we primarily focused on the pricing of CDOs. However, our

algorithm is easily adapted to the pricing of other portfolio derivatives. As an ex-

ample, we show how nth -to default contracts are priced using our model. Finally,

we analyze the sensitivity of nth -to default spreads with respect to changes in the

parameters of the model.

1.3.3 Organization of this thesis

Following this introduction, Chapter 2 reviews the fundamental concepts of Lévy

processes and the Laplace transform. In doing so, the notations of this thesis are

introduced. Chapter 3 is devoted to the products we aim to price based on our

default model. Explained are pricing issues, contractual terms and the payment

streams of all contractual partners. The univariate default model of Chapter 4

is used to price bonds and single-name credit derivatives. Our multidimensional

generalization allows the pricing of portfolio derivatives, as explained in Chapter

5. The content and organization of both chapters goes along with the description

of our contribution. Finally, the Appendix contains several proofs, lists of tables

and figures and the bibliography.



Chapter 2

Technical background

2.1 An introduction to Lévy processes

The fundamental object of our structural default model is the class of jump-

diffusion processes, a subclass of the set of Lévy processes. In this section, we

introduce the definition of a Lévy process and list all properties of Lévy processes

used in this thesis. Then, we focus on the class of jump-diffusion processes, ex-

plaining their construction and deriving all relevant results for the context of credit

risk. A well motivated introduction to Lévy processes and their applications in fi-

nance is presented in Cont and Tankov (2004), more technical details and results

can be found in Sato (1999).

2.1.1 The probabilistic framework

Throughout this thesis, we work on a filtered probability space (Ω,F ,F, IP) . Our

sample space Ω is equipped with the σ -algebra F , that is a family of subsets1

which is stable under countably many set operations. We use a stochastic process2

V = {Vt}t≥0 to model the value of a company over time. At time zero, an investor

only knows the initial value of the process V . As time goes on, the firm-value

process is gradually revealed. The model for this dynamic information flow is

called filtration and is denoted by F . More precisely, the filtration F = {Ft}t≥0

on (Ω,F , IP) is an increasing family of σ -algebras, meaning that Fs ⊂ Ft ⊂ F
for all 0 ≤ s ≤ t . In our framework, this filtration is said to be generated by the

1 The richness of F is specified below.
2 A stochastic process is a family of random variables, in our context indexed by the time

variable t ≥ 0 .

21
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firm-value process, i.e.

Ft = σ(Vs : 0 ≤ s ≤ t) ∨N ∀ t ≥ 0,

completed by all null sets N of IP . One can interpret Ft as the information about

the history of the firm-value process up to time t . Including the set N already at

time zero corresponds to knowing right from the beginning which evolutions of the

firm-value process are virtually impossible. Moreover, we assume F to be right

continuous, that is Ft =
⋂

s>t Fs for all t > 0 .

We let N , Z , Q , R and C denote all natural numbers, all integers, all rational

numbers and all complex numbers, respectively. Moreover, we define N0 := N∪{0}
and let Q+ and R+ denote the positive elements of Q and R , respectively. All

random variables used in this thesis are real valued. Given the distribution IPY of

a random variable Y , where IPY (A) := IP (Y −1(A)) for all A ∈ B(R) 3, we denote

by FY (x) := IPY ((−∞, x]) the cumulative distribution function of Y .

Given their existence, we denote the expectation and variance of Y by IE[Y ] :=
∫

Ω
Y dIP and Var(Y ) := IE[Y 2] − IE[Y ]2 , respectively. The covariance of the

random variables Y and Z is given by Cov(Y, Z) := IE[Y Z] − IE[Y ]IE[Z] .

Distribution functions and their abbreviations

In this chapter, we briefly introduce all distribution functions which are needed to

construct our structural default model. Also, we list their density functions and

moments. To begin with, let us remark that the distribution of a random variable

Y is uniquely specified by its characteristic function ΦY : R → C , which we

denote by

ΦY (z) := IE
[

eizY
]

=

∫ ∞

−∞
eizudFY (u) z ∈ R.

Further, we denote by Φ the cumulative distribution function of a standard normal

distributed random variable, i.e.

Φ(x) :=

∫ x

−∞

1√
2π

exp

(

−y
2

2

)

dy.

Other required distributions include the Poisson distribution with intensity param-

eter λ > 0 , which is abbreviated as Poi(λ) . The probability-mass function of a

3 B(R) denotes the Borel σ -algebra, which is generated by the set of open intervals.
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Poisson distributed random variable X satisfies

IP(X = n) = e−λλ
n

n!
n ∈ N0.

A Bernoulli experiment is a yes/no experiment with success probability p ∈ [0, 1] .

The number of successes X in a sequence of n i.i.d. Bernoulli experiments is

referred to as binomial distribution with parameters n ∈ N and p ∈ [0, 1] . For

brevity, we write X ∼ B(n, p) . The probability-mass function of X satisfies

IP(X = k) =

(

n

k

)

pk(1 − p)n−k 0 ≤ k ≤ n.

The non-standard normal distribution with mean µ and standard deviation σ > 0

is abbreviated as N (µ, σ2) . Its density function is given by

ϕµ,σ2(x) =
1√
2πσ

exp

(

−1

2

(

x− µ

σ

)2
)

µ ∈ R, σ > 0.

The continuous uniform distribution on [a, b] with density function fa,b is abbre-

viated as Uni[a, b] 4. For this distribution, the density function satisfies

fa,b(x) =
1

b− a
1{a≤x≤b}.

The exponential distribution with parameter λ > 0 is abbreviated as Exp(λ) .

The density function of an exponential distribution has the form

f(x) = λe−λx1{x≥0} λ > 0.

Finally, the two-sided exponential distribution with parameters p ∈ [0, 1] , λ⊕ > 0

and λ⊖ > 0 is abbreviated as 2-Exp(λ⊕, λ⊖, p) . In this case, the density function

is given by

f(x) = pλ⊕e
−λ⊕x1{x≥0} + (1 − p)λ⊖e

λ⊖x1{x<0}.

Let us remark that the distribution of a random number drawn from a two-sided ex-

ponential distribution can be interpreted as the combination of an initial Bernoulli

experiment with success probability p , determining the sign of the random number,

followed by an independent draw of an exponential distribution with parameter λ⊕
or λ⊖ , respectively.

For the reader’s convenience, we summarize the first two moments of these dis-

tributions in Table 2.1.

4 If the endpoints are excluded, we abbreviate the uniform distribution on (a, b) as Uni(a, b) .
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Distribution Mean Variance Second moment

Poi(λ) λ λ λ(λ+ 1)
B(n, p) np np(1 − p) np(1 − p+ np)
N (µ, σ2) µ σ2 σ2 + µ2

Uni[a, b] 1
2
(a+ b) 1

12
(b− a)2 1

3
(a2 + ab+ b2)

Exp(λ) λ−1 λ−2 2λ−2

2-Exp(λ⊕, λ⊖, p)
p

λ⊕
− 1−p

λ⊖

p(2−p)

λ2
⊕

+ 1−p2

λ2
⊖

+ 2p(1−p)
λ⊕λ⊖

2p
λ2
⊕

+ 2(1−p)

λ2
⊖

Table 2.1: Distributions and their first two moments.

2.1.2 Stopping times and martingales

A stochastic process X = {Xt}t≥0 is said to be adapted to the filtration F , if

Xt is Ft -measurable for all t ≥ 0 . For instance, the firm-value process V of

the structural default model of Chapter 4 is adapted to its natural filtration by

construction. An important class of stochastic processes is the set of all processes

whose sample paths are almost surely right continuous with left limits. Such pro-

cesses are called càdlàg, the french acronym for continue à droite, limites à gauche.

For a càdlàg process X , we define Xt− := limsրtXs and ∆Xt := Xt−Xt− , where

we set X0− := X0 .

In the context of a structural credit-risk model, the time of default is typically

defined to be the first time the firm-value process passes a certain barrier. More

precisely, we define the first-passage times of the process X below, respectively

above, the barrier b , respectively b̃ , as

τb := inf {t ≥ 0 : Xt ≤ b} , τ b̃ := inf
{

t ≥ 0 : Xt ≥ b̃
}

, b < X0 < b̃, (2.1)

with the convention inf ∅ := ∞ . One can show5 that first-passage times of càdlàg

processes are stopping times6 with respect to the filtration F .

A càdlàg process X is said to be a martingale with respect to (Ω,F ,F, IP) , if

X is adapted to the filtration F , IE[|Xt|] <∞ for all t ≥ 0 and IE[Xs|Ft] = Xt

whenever s > t . An intuitive interpretation of this property is that the best pre-

diction for the future is the present level. This defining property of martingales is

5 Compare Rogers and Williams (1994), pages 182 and 186.
6 That is, a non-negative, real-valued random variable τ , such that the event {τ ≤ t} is
Ft -measurable for all t ≥ 0 .
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generalized to stopping times by the so called sampling theorem. More precisely,

given a martingale X and stopping times 0 ≤ τ1 ≤ τ2 ≤ T for some fixed terminal

time horizon T < ∞ , we have7 IE [Xτ2 |Fτ1 ] = Xτ1 . A well known example for

a martingale is the Brownian motion, sometimes referred to as Wiener process,

which we define below.

Definition 2.1.1 (Brownian motion)

An adapted, real-valued process W = {Wt}t≥0 on (Ω,F ,F, IP) , with W0 = 0 , is

called Brownian motion, if W satisfies the following properties.

1. W has independent increments, i.e. whenever 0 = t0 < t1 < . . . < tn , the

increments Wt1 −Wt0 , . . . ,Wtn −Wtn−1 are independent random variables.

2. W has stationary, normally distributed increments, i.e.

∀t ≥ 0 : Wt+h −Wt ∼ N (0, h) ∀h > 0.

3. W has almost surely continuous paths, that is the function t 7→ Wt(ω) is

continuous for almost all ω ∈ Ω .

From this definition, it is easily checked that W is a martingale. Let us further

remark that a process of the form Xt = γt+σWt is usually referred to as diffusion

or Brownian motion with drift.

2.1.3 General properties of Lévy processes

Definition 2.1.2 (Lévy process)

An adapted cádlág process X = {Xt}t≥0 on (Ω,F ,F, IP) , with X0 = 0 , is a

real-valued Lévy process, if it satisfies the following properties.

1. X has independent increments, i.e. whenever 0 = t0 < t1 < . . . < tn , the

increments Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent random variables.

2. X has stationary increments, that is the distribution of Xt+h −Xt does not

depend on t for all t > 0 , h > 0 .

3. X is stochastically continuous, that is

∀t ≥ 0, ∀ǫ > 0 : lim
hց0

IP (|Xt+h −Xt| ≥ ǫ) = 0.

7 The stopping time σ -algebra of τ is defined by Fτ := {A ∈ F : A∩{τ ≤ t} ∈ Ft, ∀t ∈ [0, T ]} .
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Let us remark that a stochastically continuous process can have discontinuous

sample paths, as we shall see below. Moreover, the jump structure of the Lévy

process X is specified by its jump measure JX or by the corresponding Lévy

measure ν . This random measure JX : Ω×B(R+
0 ×R) → R+

0 , (ω,C) 7→ JX(ω)(C) ,

is defined by

JX(A×B) :=
∑

t≥0:∆Xt>0

1{t∈A}1{∆Xt∈B} ∀A× B ∈ B(R+
0 × R).

Based on the jump measure JX , the Lévy measure ν : B(R) → R+
0 is defined by

ν(B) := IE[JX([0, 1] ×B)] ∀B ∈ B(R).

The Lévy measure of a set B ∈ B(R) can be interpreted as the expected number

of jumps within a unit-time interval such that the jump size of X falls into the

set B . We are now equipped with all definitions which are required to state the

Lévy-Itô decomposition. A proof of this characterization is given in Sato (1999),

pages 120 and 125.

Theorem 2.1.1 (Lévy-Itô decomposition of a Lévy process)

Given a Lévy process X with jump measure JX and Lévy measure ν . Then, there

exists γ1 ∈ R , σ ≥ 0 and a Brownian motion W such that

Xt = γ1t+ σWt +X1,t + lim
ǫց0

X̃ǫ
t , (2.2)

where

X1,t :=

∫

|x|>1,s∈[0,t]

xJX(ds× dx),

X̃ǫ
t :=

∫

ǫ≤|x|≤1,s∈[0,t]

x (JX(ds× dx) − ν(dx)ds) .

In Equation (2.2), the processes W , X1 and limǫց0 X̃
ǫ are mutually independent.

However, this representation is not unique. The integral
∫

|x|>1
|x|ν(dx) being not

necessarily finite requires to truncate large jumps, which is done in Equation (2.2)

via the truncation function 1{|x|≤1} . Instead of truncating at the level one, every

other positive constant can be used to truncate large jumps8. To emphasize the

dependence of the Lévy-Itô decomposition on the choice of truncation function,

we introduced the subscript ”1” in the definition of γ1 and X1 . Nevertheless,

as soon as a truncation function is chosen, the distribution of a Lévy process is

8 Different alternative truncation functions have been proposed in the literature. For instance,
Paul Lévy suggested 1

1+x2 .
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fully specified by the triplet γ1 , σ2 and ν . This observation motivates the next

definition.

Definition 2.1.3 (Lévy (or characteristic) triplet)

Given a Lévy process X , the triplet (γ1, σ
2, ν)1 , where γ1 , σ2 and ν are given

as in Theorem 2.1.1, is called Lévy or characteristic triplet of X with respect to

the truncation function 1{|x|≤1} . If large jumps do not have to be truncated, that is

if
∫

|x|>1
|x|ν(dx) is finite, then γc := γ1 +

∫

|x|>1
xν(dx) is called the center of the

process X and (γc, σ
2, ν)c is the corresponding Lévy triplet without truncation.

Another characterization of a Lévy process relies on the characteristic function of

Xt for all t > 0 . More precisely, the following theorem holds.

Theorem 2.1.2 (Lévy-Khinchin representation)

Given a Lévy process X with characteristic triplet (γ1, σ
2, ν)1 , the characteristic

function of Xt satisfies ΦXt
(z) = exp (tψ(z)) for all z ∈ R , where

ψ(z) := −1

2
σ2z2 + iγz +

∫ ∞

−∞

(

eiuz − 1 − iuz1{|u|≤1}
)

ν(du). (2.3)

If
∫

|x|>1
|x|ν(dx) is finite, Equation (2.3) simplifies to

ψ(z) := −1

2
σ2z2 + iγcz +

∫ ∞

−∞

(

eiuz − 1 − iuz
)

ν(du).

2.1.4 Building a jump-diffusion process

In what follows, we introduce the notion of a jump-diffusion process. We already

defined the Brownian motion in Definition 2.1.1. Below, we introduce the com-

pound Poisson process as a second building block of jump-diffusion processes and

list some of its properties. If no other reference is given, proofs of the following

results can be found in Cont and Tankow (2004).

Definition 2.1.4 (Poisson process, compound Poisson process)

Given a sequence {τn}n∈N of independent, Exp(λ) -distributed random variables,

we define Tn :=
∑n

i=1 τi . Then, the process Nt :=
∑

n≥1 1{t≥Tn} is called Poisson

process with intensity λ . Given a Poisson process N = {Nt}t≥0 and a sequence

of independent random variables {Yi}i∈N with distribution IPY , the process Mt :=
∑Nt

i=1 Yi is called compound Poisson process with intensity λ > 0 and jump-size

distribution IPY .



28 Chapter 2. Technical background

Let us remark that Nt follows a Poi(λt) distribution, as shown for instance in

Billingsley (1995), page 299. Additionally, we need the following result on thinning

and superposing Poisson processes. A proof of Lemma 2.1.1 is given in Durrett

(1999), page 140.

Lemma 2.1.1 (Thinning and superposing Poisson processes)

Assume as given a Poisson process N with intensity λ and a sequence {Bj}j∈N

of independent Bernoulli distributed random variables with success probability b ∈
(0, 1] . Each jump time τj of N is then associated with the outcome of the cor-

responding Bernoulli experiment Bj . The thinned-out Poisson process Nt(b) is

defined as the sum of all successful Bernoulli experiments up to time t . For this

process, it holds that

• N(b) = {Nt(b)}t≥0 is again a Poisson process with intensity bλ .

Given m independent Poisson processes N1, . . . , Nm with intensity λ1, . . . , λm ,

respectively. Then, it holds that

• the superposition
∑m

i=1N
i is again a Poisson process with intensity

∑m
i=1 λ

i .

Definition 2.1.5 (Jump-diffusion process)

The superposition of a diffusion and a compound Poisson process is called jump-

diffusion process. More precisely, with the notations of Definitions 2.1.1 and 2.1.4,

the stochastic process X = {Xt}t≥0 is called jump-diffusion process with linear

drift γ ∈ R , volatility of the diffusion component σ > 0 , jump-intensity λ > 0

and jump-size distribution IPY , where

Xt := γt+ σWt +
Nt
∑

i=1

Yi.

All random variables of this definition are mutually independent.

Lemma 2.1.2 (The Lévy triplet of a jump-diffusion process)

All building blocks of a jump-diffusion process are Lévy processes. For a diffusion,

this follows immediately from the definition of a Brownian motion. The required

calculations in the case of a compound Poisson process are given in Cont and

Tankov (2004), page 71. Due to independence of diffusion and jump component,

the characteristic function of a jump-diffusion process is easily obtained, and so is

its Lévy triplet.
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1. A Brownian motion has the Lévy triplets

(0, 1, 0)1, (0, 1, 0)c.

2. With respect to 1{|x|≤1} , the Lévy triplet of a compound Poisson process with

intensity λ and jump-size distribution IPY is given by

(

λ

∫

R

u1{|u|≤1}IPY (du), 0, λIPY (du)

)

1

.

If IE[Y ] exists, then large jumps do not have to be truncated, and we obtain

(

λ

∫

R

uIPY (du), 0, λIPY (du)

)

c

.

3. A jump-diffusion process, compare Definition 2.1.5, has the Lévy triplet

(

γ + λ

∫

R

u1{|u|≤1}IPY (du), σ2, λIPY (du)

)

1

.

If IE[Y ] exists, then its Lévy triplet without truncation is given by

(

γ + λ

∫

R

uIPY (du), σ2, λIPY (du)

)

c

.

Lemma 2.1.3 (Moments of a jump-diffusion process)

Given a jump-diffusion process X as in Definition 2.1.5, we obtain the following

results by using the definition of a Brownian motion and by conditioning on Nt .

1. If the jump-size distribution IPY is integrable, then

IE[Xt] = t (γ + λIE[Y1]) ∀ t ≥ 0.

2. If the jump-size distribution IPY is square integrable, then

Var(Xt) = t
(

σ2 + λIE[Y 2
1 ]
)

∀ t ≥ 0.

Lemma 2.1.4 (Itô’s formula for jump-diffusion processes)

Let X = {Xt}t∈[0,T ] be a jump-diffusion process as in Definition 2.1.5 with addi-

tional starting value X0 and finite time horizon T . Further, let f : [0, T ]×R → R
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be a C1,2 function 9. Then, the process Zt := f(t, Xt) satisfies

f(t, Xt) = f(0, X0) +

∫ t

0

(

ft(s,Xs) + γfx(s,Xs) +
σ2

2
fxx(s,Xs)

)

ds

+

∫ t

0

σfx(s,Xs)dWs +
∑

{i∈N,Ti≤t}
(f(Ti, XTi− + Yi) − f(Ti, XTi−)) .

2.2 The Laplace transform

The Laplace transform is an important tool for analyzing stochastic variables and is

used several times within this thesis. Therefore, we briefly summarize its definition

and all properties which will be used. A detailed introduction to the theory of the

Laplace transform and the proofs of Lemma 2.2.1 are given in the textbook of

Schiff (1999).

2.2.1 Definition and basic properties

Definition 2.2.1 (The Laplace transform of a function)

Given a real or complex-valued function f of the time variable t , we define

cf := inf

{

α ∈ R :

∫ ∞

0

e−αtf(t)dt exists

}

, Uf := {s ∈ C : Re(s) > cf} .

Then, if Uf 6= ∅ , the Laplace transform of f is defined by 10

L(f) : Uf → C, (L(f)) (s) :=

∫ ∞

0

e−stf(t)dt.

The Laplace inverse L−1 is the inverse function of the Laplace transform, i.e. the

inverse Laplace transform of L (f(t)) = F (s) is denoted by

L−1 (F (s)) = f(t) t ≥ 0.

Lemma 2.2.1 (Properties of the Laplace transform)

For the reader’s convenience, we summarize several important properties of the

Laplace transform and its inverse in this lemma.

9 f ∈ C1,2 means that f is continuously differentiable with respect to its first argument and
twice continuously differentiable with respect to its second argument.

10 The symbol L is the Laplace transformation. This operator assigns the new function F (s) :=
L (f(t)) to the function f = f(t) .
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1. Linearity

The Laplace transformation is linear. Given the functions f and g with

Laplace transforms defined on Uf and Ug , respectively. Then, for arbitrary

constants β1, β2 ∈ C , on Ũf+g := {s ∈ C : Re(s) > max{cf , cg}} it holds

that

L (β1f + β2g) = β1L (f) + β2L (g) .

2. The shift theorem

Assume as given a function f with Laplace transform defined on Uf . Then,

for all a ∈ R , the Laplace transform of e−atf(t) is defined on Ũf := {s ∈
C : Re(s) > cf − a} and is given by

(

L(e−atf(t))
)

(s) = (L(f)) (s+ a).

3. The Laplace transform takes convolutions into products

Given the functions f and g with Laplace transforms defined on Uf and

Ug , respectively. Then, the Laplace transform of f ⋆g 11 is defined on Ũf⋆g :=

{s ∈ C : Re(s) > max{cf , cg}} and is given by

(L(f ⋆ g)) (s) = (L(f)) (s) · (L(g)) (s).

4. The Laplace inverse

The Laplace inverse is given as the following complex integral

f(t) =
1

2πi

∫ y+i∞

y−i∞
ets (L(f)) (s)ds, (2.4)

where all singularities of (L(f)) (s) are to the left of y ∈ R .

Let us remark that the integral representation of Equation (2.4) establishes

that L−1 is a linear operator.

2.2.2 The Gaver-Stehfest algorithm

Lemma 2.2.1 presents a closed-form expression of the Laplace inverse as a com-

plex integral. Inverting the Laplace transform becomes necessary in Section 4.6,

where we obtain the Laplace transform of certain default probabilities. Unfor-

tunately, Equation (2.4) is not applicable in this context, as we only know the

Laplace transform of first-passage times on the positive axis. To overcome this

11 The convolution of f and g is defined as (f ⋆ g)(t) :=
∫∞

−∞
f(t − s)g(s)ds .
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problem we introduce the algorithm of Gaver and Stehfest, which only requires the

Laplace transform of a function at certain positive values. Other advantages and

disadvantages of this algorithm, and the following lemma on which this method is

based on, are described in Abate and Whitt (1992).

Lemma 2.2.2 (Gaver (1966) and Stehfest (1970))

For a bounded and real-valued function f , continuous at t , it holds that

f(t) = lim
n→∞

log (2)

t

(2n)!

n!(n− 1)!

n
∑

k=0

(−1)k

(

n

k

)

(L(f))

(

log (2)(n+ k)

t

)

.

In what follows, we abbreviate the sequence of functions inside the limit by

F̃n(t) :=
log (2)

t

(2n)!

n!(n− 1)!

n
∑

k=0

(−1)k

(

n

k

)

(L(f))

(

log (2)(n+ k)

t

)

.

Another sequence of weights was suggested by Stehfest. He showed that it is possible

to approximate f(t) via

F̂N(t) :=

N
∑

k=1

w(k,N)F̃k(t), w(k,N) :=
(−1)N−kkN

k!(N − k)!
.

Application: Laplace approximation of first-passage times

Relevant for pricing bonds and credit derivatives is the distribution of the time of

default τ . In a structural default model, this translates in finding the probability

of the firm-value process not to pass a certain barrier over a given period of time.

In Chapter 4, we express these probabilities in terms of first-passage times τb of

a jump-diffusion process X . In this context, the threshold b is linked to the

firm’s initial leverage ratio d/v0 via the relation b = log (d/v0) . If the jump-size

distribution of X is assumed to be two-sided exponential, then it is possible to

compute the Laplace transform of IP(τb ≤ t) , as shown by Kou and Wang (2003).

This Laplace transform involves the roots of a function G(x)−α , which is related

to the moment-generating function of Xt . At this point, we omit further details

and refer the reader to Section 4.6.

Algorithm 2.2.1 (Laplace approximation of first-passage times)

We assume as given a jump-diffusion process X with IPY = 2-Exp(λ⊕, λ⊖, p) .

The stopping time τb is defined as in Equation (2.1). Based on Lemma 2.2.2, we
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then approximate IP(τb ≤ t) via

ÎPN (τb ≤ t) :=

N
∑

k=1

w(k,N)F̃k+B(t) ≈ IP(τb ≤ t).

For more stability, Kou and Wang (2003) propose to skip some of the first values

of F̃k . They suggest to choose B = 2 or B = 3 as burning-out number, on which

we comment below.

The approximation of Algorithm 2.2.1 converges very quickly. In fact, we found

that N chosen from {7, . . . , 10} provides the best results for inverting transforms

of first-passage times. However, the algorithm is extremely sensitive with respect

to the precision of which the roots of G(x)−α are calculated. For more numerical

stability, we suggest rewriting this problem in terms of a quartic polynomial. An

algebraic expression of the roots of a quartic polynomial is provided by Ferrari’s

algorithm, which is presented in Section 6.2. If instead a numerical routine is used,

one has to carefully choose the terminating condition to guarantee a high precision.

We found it difficult to perpetuate a sufficient precision for N ≥ 12 , compare the

last row of Table 2.2. Moreover, the results of several of our experiments do not

support a better performance if the burning out number B = 2 is used. We found

that if B > 0 , the algorithm provides better results for small values of N . On

the other side, larger values of B imply an increasing sensitive of the algorithm

with respect to the precision of the roots. The result are massive rounding errors

for larger values of N .

B = 0 B = 1 B = 2 B = 5
N Polyn. Pegas. Polyn. Pegas. Polyn. Pegas. Polyn. Pegas.

1 .769618 .769618 .791044 .791044 .799781 .799781 .809496 .809496
3 .819645 .819645 .816698 .816698 .815467 .815467 .815259 .815259
5 .820272 .820272 .820084 .820084 .819701 .819701 .818776 .818776
7 .820214 .820214 .820215 .820215 .820185 .820185 .819915 .819925
8 .820211 .820211 .820212 .820213 .820210 .820208 .820279 .820211
9 .820210 .820211 .820219 .820212 .820190 .820211 .827487 .818163
10 .820232 .820213 .820149 .820210 .820025 .820147 .502319 .850449
11 .820031 .820206 .819783 .820045 .823876 .822291 6.73095 .473994
12 .819259 .819782 .830194 .825787 .938046 .779469 -43.289 3.40704

Table 2.2: IP(τ > 5) for different values of N .

Table 2.2 compares the results of Algorithm 2.2.1 for different values of N , different

burning-out numbers B and two different methods of finding the required roots of

G(x) − α . More precisely, we implemented the Pegasus algorithm as an example
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for a numerical approach and Ferrari’s algebraic solution of a quartic polynomial.

For this example, the parameters of the process X are γ = 0.025 , σ = 0.05 ,

λ = 2 , IPY = 2-Exp
(

20, 20, 1
2

)

and d/v0 = 80% . A Monte Carlo simulation with

Algorithm 4.2.1, based on 100,000 runs, estimates IP(τ > 5) by 0.820281.
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Products and pricing issues

3.1 Corporate bonds

Bonds are debt securities which are traded on fixed income markets. As compensa-

tion for granting a loan to the issuer of the bond, the bondholder receives periodic

premium payments, called coupons, and the principal of the bond at maturity.

Bonds are often classified according to their issuer in government and corporate

bonds. However, when the fair price of a bond has to be assessed, the relevant clas-

sification criteria is the credit quality. While government bonds, such as German

Bundesschatzbriefe or American Treasure notes, are considered to be default-free

investments, corporate bonds and government bonds of emerging markets are sub-

ject to the possibility of credit default of the issuer. Consequently, the holder of a

defaultable bond demands a higher interest rate for bearing this credit risk. This

additional interest, called credit spread, primarily1 depends on the market’s view

of the creditworthiness of the issuer. In what follows, we focus on the analysis and

pricing of corporate bonds.

If a company defaults, its management loses control and the remaining assets

are liquidated. The revenues of the liquidation are then distributed pro rata2 in

accordance to the invested principal of each bondholder. This fraction of the prin-

cipal is referred to as recovery rate and abbreviated as R ∈ [0, 1] in our model.

In what follows, we concentrate on the pricing of defaultable zero-coupon bonds3,

as any coupon bond can be replicated using a portfolio of zero-coupon bonds4.

1 Other factors, such as liquidity risk, play a subsidiary role in explaining credit spreads.
2 If no priority rule was specified.
3 The payment schedule of a zero-coupon bond only consists of the final payment, which we

standardize to one unit of the respective currency.
4 The converse, separating coupons from final payment, is called stripping of a bond.

35
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More precisely, we use the following lemma, which is a direct consequence of the

no-arbitrage condition.

Lemma 3.1.1 (Replicating a coupon bond)

The payoff of a coupon bond with face value 5 F and coupon payments q1, . . . , qn
at the times 0 < t1 < . . . < tn = T agrees with the payoff of a portfolio consisting

of qj zero-coupon bonds with maturity tj for j ∈ {1, . . . , n} and F zero-coupon

bonds with maturity T .

Therefore, we focus on the analysis of zero-coupon bonds, even if most corporate

bonds are bonds with promised coupon payments. In what follows, we assume

as given a pricing measure IP and discount all future payments using the flat

interest rate r ≥ 0 6. The time of default is denoted by τ . This random variable

and its distribution are specified in Chapter 4 by our structural default model.

The fair price of a defaultable zero-coupon bond is then given as the expectation,

given the investor’s information F , of its discounted payoff with respect to the

pricing measure IP . Without loss of generality, we assume a unit face value. If

the company survives until maturity, the payoff of the zero-coupon bond is one.

Otherwise, the investor receives the fraction R at the time of default.

Lemma 3.1.2 (Price of a zero-coupon bond)

We denote by φ(t, T ) the fair price of a defaultable zero-coupon bond at time t

with maturity T . As long as τ > t , this price satisfies

φ(t, T ) = e−r(T−t)IP(τ > T |Ft) + IE
[

e−r(τ−t)R1{t<τ≤T}
∣

∣Ft

]

. (3.1)

The credit spread which corresponds to φ(0, T ) is denoted by ηT . It is defined as

the real number that solves the equation

φ(0, T ) = exp (−(r + ηT )T ) . (3.2)

Alternative recovery schemes

Let us briefly remark that sometimes other recovery schemes are used to model

the payoff at τ . In Equation (3.1), we assumed fractional recovery of face value,

which is the scheme used by Moody’s and Standard & Poor’s. Here, bondholders

5 The term face value is used synonym to the term principal of a bond. It is the promised final
payment at maturity.

6 The interest rate r is understood as a continuously compounded interest rate. For instance,
a payment at maturity T is discounted by exp(−rT ) .
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receive the fraction R of the bond’s face value at the time of default. The scheme

fractional recovery of treasury value defers the same payoff to the maturity of the

bond. This assumption is unrealistic, but simplifies the evaluation of the pricing

formula in first-passage models. Fractional recovery of market value implies that

bondholders receive some fraction of the bond price immediately prior to default,

i.e. R ·φ(τ−, T ) , which is often used in intensity-based models. Finally, structural

models suggest the scheme fractional recovery of firm value, where the recovery

rate at τ is a function of the firm value Vτ . We generalize our model to allow for

this scheme in Section 4.5.1.
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3.2 Credit default swaps

Intuitively, credit default swaps (CDS) are insurance policies against the credit

risk of some reference company. More precisely, these are contracts between a pro-

tection buyer and a protection seller, whereby the protection buyer makes periodic

premium payments over a predetermined number of years and the protection seller

commits to make a payment in the event of credit default of the reference entity.

This contractual structure suggests that the term structure of default probabilities

of the reference entity is the crucial factor in pricing CDS. In our context, we im-

plicitly define the term structure of default probabilities by means of a structural

default model.

CDS are the most important credit derivatives, in both market activity and no-

tional amount7. In addition to the original idea of buying or selling default risk,

CDS are interesting building blocks for different portfolio strategies and complex

credit derivatives. For instance, CDS are often used to build a short position in

credit risk. A comprehensive introduction to the common use and to contractual

variants of CDS is presented in Bomfim (2005).

Equipped with the structure of an insurance policy against the default risk of

a reference entity, pricing CDS is sometimes interpreted as an application of the

actuarial principle of equivalence under the pricing measure, meaning that the

premium is chosen such that the expected discounted payoffs of both contractual

parties agree. A common simplification is to assume that the insurance buyer con-

tinuously8 pays the spread c as long as the reference entity is solvent, whereas the

insurance seller indemnifies the insurance buyer by paying the difference of face

value minus recovery in the event of credit default.

We again discount all future payments using the flat interest rate r ≥ 0 and

assume as given the pricing measure IP . With τ , denoting the time of default of

the reference entity, we obtain the following expression for the price of a contract9

with face value one, continuous premium payments c and maturity T .

CDS(0, T ) = IE

[

e−rτ (1 − R)1{τ≤T} −
∫ T

0

ce−rt1{τ>t}dt

]

= (1 −R)

∫ T

0

e−rtdIP(τ ≤ t) − c

∫ T

0

e−rtIP(τ > t)dt. (3.3)

7 According to the Britisch Bankers Association, compare Bomfim (2005), page 20.
8 This is easily generalized to periodic premium payments by replacing the integral with a sum

over all premium dates in the second integral of Equation (3.3).
9 This formula reflects the view of the insurance buyer, the insurance seller uses the same

formula with opposite signs.
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Market prices for CDS contracts are typically not quoted as in Equation (3.3).

Instead, the spread which allows both parties to enter the contract at zero cost is

quoted10. This spread is called par spread11 and obtained from solving Equation

(3.3) for c . The par spread of a CDS with maturity T is considered as a function

of the maturity and given by

cT =
(1 −R)

∫ T

0
e−rtdIP(τ ≤ t)

∫ T

0
e−rtIP(τ > t)dt

. (3.4)

10 More details about iTraxx quotes are given in Section 4.9.2.
11 Synonymously, the terms fair spread or CDS spread are used.
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3.3 Collateralized debt obligations

Belonging to the class of asset-backed securities, the idea behind collateralized

debt obligations (CDOs) is to pool financial assets which are subject to credit

risk12 and resell the resulting portfolio in several tranches with different seniority.

CDOs first appeared at around 1990 and are now among the fastest growing credit

derivatives. From a mathematical point of view, a CDO contract is of special

interest, as its price is determined to large extent by the correlation among the

pooled companies. A capacious introduction to CDOs has been published by one

of the important market participants: JP Morgan, compare Lukas (2001). Besides

the rationale of CDOs, this handbook covers legal issues, taxation and accounting

questions.

CDOs can be classified, by purpose of the issuing party, in balance sheet and

arbitrage CDOs. Balance sheet CDOs are typically issued by commercial banks

or insurance companies who want, or have to, transfer some risk from their bal-

ance sheet. This is achieved by issuing debt against the CDO portfolio. Arbitrage

CDOs aim to profit from reselling the securitized assets to investors who search

for tranches that suit their personal risk-profile. Often, senior tranches13 of the

portfolio are sold and risker tranches are kept.

The most subordinate tranche in a CDO is usually called equity tranche and sus-

tains all credit losses as long as the overall portfolio loss does not exceed the

nominal value of this first tranche. Then, losses affect the second tranche, and so

on. Investors who expose themselves to the credit risk of a certain tranche are

compensated by receiving periodic premium payments until the maturity of the

CDO. Those premium payments depend on the riskiness and the remaining nomi-

nal of the respective tranche. This construction of seniority, sometimes illustrated

as a cascading waterfall, implies that premium payments are strictly decreasing in

the seniority of a tranche.

The credit risk of each tranche is affected by the following components: Idiosyn-

cratic default probabilities14 of the pooled assets and the default correlation among

them. While markets have developed a deep understanding and a vast toolbox for

the description of single-name derivatives, the valuation of CDO contracts chal-

lenges us with finding a realistic model for the dependence structure among the

12 Prevailing assets are corporate bonds, commercial loans and mortgages. In the first two
cases, the terms CBO and CLO are used synonym to CDO. A different variant is the class
of synthetic CDOs which consist of a portfolio of CDS contracts. This construction does not
require the issuer of the CDO to own the securitized assets.

13 The term senior tranches refers to the safest slices of the CDO portfolio.
14 Including the individual default severity.
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securitized assets. At this point, we hope to learn from the fast growing market of

synthetic CDOs. Whereas most traditional CDOs are traded over the counter, the

launch of indices such as iTraxx and DJ CDX made it possible for us to implicitly

observe the dependence structure among the listed companies.

In what follows, we introduce the basic notations of CDOs and describe the pay-

ment streams of a synthetic CDO. For simplicity, we assume the CDO contract to

be newly issued today. We further assume that our portfolio consists of I CDS

contracts, indexed by i , and is segmented in J tranches, which we index by j .

Name Description

CDSi A CDS contract written on a bond of company i.
τ i The default time of company i.
N i The nominal value of CDSi within the CDO.
Ri The recovery rate of company i.
lj, uj The lower and upper attachment point of tranche j.
M The total nominal of the CDO.

M j
t The remaining nominal of tranche j at time t.

Lt The cumulated loss of the CDO up to time t.

Lj
t The cumulated loss in tranche j up to time t.
sj The annualized spread of tranche j.

Table 3.1: The basic notations related to CDOs.

Obviously, the total nominal value of the CDO is given by M =
∑I

i=1N
i . This

nominal value is segmented using the upper and lower attachment points of each

tranche. More precisely, we define the partition15 0 = l1 < u1 = l2 < · · · < uJ−1 =

lJ < uJ = M . Today, the market standard is defined by different synthetic portfo-

lios of the International Index Company, called iTraxx, and the portfolio managed

by Dow Jones, called DJ CDX. Table 3.2 lists their respective tranches.

I = 125 companies iTraxx DJ CDX
Tranche j lj in % uj in % lj in % uj in %

Equity 1 0% 3% 0% 3%
Junior mezzanine 2 3% 6% 3% 7%
Senior mezzanine 3 6% 9% 7% 10%
Senior 4 9% 12% 10% 15%
Super senior 5 12% 22% 15% 30%

6 22% 100% 30% 100%

Table 3.2: The iTraxx and DJ CDX segmentation.

15 Instead of absolute values, these attachment points are often converted in percentages of the
portfolio, as done in Table 3.2. However, all definitions of Table 3.1 are in absolute values.
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The premium leg of tranche j

The premium leg of tranche j is calculated as follows. In the beginning, a payment

schedule 0 < t1 < . . . < tn = T is specified. Most CDOs are based on quarter-

yearly premium payments. This implies that the payment frequency is set to

η = 1
4
, and tk = kη for k = 1, . . . , 4T . At each payment date, the protection

buyer is committed to pay the product of the remaining nominal value and the

spread for this tranche corresponding to the length of the preceding period. Hence,

the premium leg of tranche j is given by

PLj =
n
∑

k=1

sj∆tkM
j
tk

=
n
∑

k=1

sj∆tk
(

uj − lj − Lj
tk

)

. (3.5)

The corresponding expected discounted premium leg, based on a flat interest rate

r ≥ 0 and a given pricing measure IP , is then given by

EDPLj =

n
∑

k=1

sj∆tke
−rtk

(

uj − lj − IE[Lj
tk

]
)

. (3.6)

The default leg of tranche j

The default or protection leg of tranche j allows payments at any time up to

maturity. A default payment becomes due if some company defaults, say company

i , and the overall loss immediately before time τ i is either within tranche j , i.e.

Lτ i− ∈ [lj , uj] , or vaults into this tranche, i.e. Lτ i− < lj < Lτ i . Formally, this is

described as follows16

DLj =

I
∑

i=1

min
{

(1 − Ri)N i, uj − Lτ i−
}

1{τ i≤T}1{L
τi−

∈[lj ,uj ]} +

I
∑

i=1

(

Lτ i − lj
)

1{τ i≤T}1{L
τi−

<lj<L
τi}. (3.7)

The first sum collects all payments that occur while the overall loss is within tranche

j , the minimum limits the last loss of this tranche to the remaining nominal value

of the tranche. The second sum consists of at most one non-zero summand, which

is the default that increases the overall loss into tranche j . In order to simplify

calculations, it is often assumed that default payments are deferred to the next

16 At this point, we assume that the default of a single company can not cause a loss which
exceeds the entire tranche j .
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premium payment date. This assumption simplifies the default leg to

DLj =
n
∑

k=1

(

Lj
tk
− Lj

tk−1

)

. (3.8)

The expected discounted default leg corresponding to Equation (3.7) is given by

EDDLj =
I
∑

i=1

IE
[

e−rτ i

min
{

(1 − Ri)N i, uj − Lτ i−
}

1{τ i≤T}1{L
τi−

∈[lj ,uj ]}

]

+

I
∑

i=1

IE
[

e−rτ i (

Lτ i − lj
)

1{τ i≤T}1{L
τi−

<lj<L
τi}

]

. (3.9)

The fair spread of tranche j

Similar to CDS contracts, market prices for CDO tranches are quoted in terms

of their fair spread. This fair spread is chosen such that the expected discounted

default leg agrees with the expected discounted premium leg of the same tranche,

which results in the following formula for the annualized fair spread of tranche j

sj
f =

EDDLj

n
∑

k=1

∆tke−rtk
(

uj − lj − IE[Lj
tk

]
)

.

The upfront payment

It has become market practice to modify the premium stream of the equity tranche

using a fixed spread of 500 basis points17. To adjust for this artificial spread, which

is typically below the fair spread of the equity tranche, an additional upfront

payment is introduced which has to be paid as soon as the contract is settled. The

amount of upfront payment is quoted in percent of the nominal of the first tranche.

The fair upfront payment therefore satisfies the relation

(upfront in %) ·
(

u1 − l1
)

+
n
∑

k=1

0.05 ∆tke
−rtk

(

u1 − l1 − IE[L1
tk

]
)

= EDDL1.

17 One basis point (bp) is equal to one hundredth of one percent.
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Including accrued interest for defaulted companies

Depending on the terms of contract, accrued interest for defaulted companies is

often stipulated. This means that if company i defaults within the premium

payment dates tk−1 and tk , i.e. τ i ∈ (tk−1, tk) , and the total loss at τ i is within

tranche j , then accrued interest for tranche j in the amount of sj · (τ i− tk−1) ·N i

has to be paid at tk , additionally to the usual premium payment.
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3.4 Portfolio CDS

Portfolio CDS18 are often introduced as a tranche of a synthetic CDO which covers

the complete portfolio, that is l1 = 0% and u1 = 100% . Indeed, depending

on the terms of contract, this definition often holds. More precisely, the default

leg compensates the insurance buyer for all losses from defaulted names in the

portfolio, the premium leg is paid on the remaining nominal M of the portfolio.

In what follows, we adopt the notations of Section 3.3 and assume a unit initial

notional M0 = 1 and I equally weighted companies, that is N i = 1/I . Then,

the expected discounted default leg is given by

EDDL = IE

[

I
∑

i=1

e−rτ i

N i(1 −Ri)1{0≤τ i≤T}

]

.

Depending on the terms of contract, the default of CDSi reduces the remaining

nominal M of the portfolio by either 1/I or (1 − Ri)/I . The first alternative

corresponds to the iTraxx convention, the second alternative corresponds to the

interpretation of the portfolio CDS as a special tranche of a CDO19. Given the

annualized spread s , the expected discounted premium leg satisfies

EDPL = IE

[

n
∑

k=1

se−rtk∆tkMtk

]

.

Finally, the fair spread sf is obtained by equating both legs and solving for s .

18 Also, the term credit index is often used.
19 As long as the number of defaulted companies is small, both assumptions yield very similar

prices. This holds, as premium payments are relative to the large proportion of non-defaulted
companies.
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3.5 nth -to default contracts

An nth -to default contract is a portfolio derivative with payment streams de-

pending on the time of the nth default in the portfolio. Given the default times

τ 1, . . . , τ I , we denote their order statistics by τ(1) ≤ . . . ≤ τ(n) ≤ . . . ≤ τ(I) . Pre-

mium payments are due on the schedule 0 < t1 < . . . < tm = T . However, these

premium payments are conditional to fewer than n defaults. The amount of each

premium payment is the product of the nominal value N of the contract, the time

since the preceding premium payment in years20, and the annualized spread s(n)

of the nth -to default contract. Also, it is possible to agree on accrued interest for

the time τ(n) − tk−1 , where tk−1 < τ(n) < tk . At the premium payment date after

the nth default, a default payment has to be paid in the amount of (1−R) times

the nominal value N , where R is a pre-specified recovery rate. Hence, the ex-

pected discounted premium and default legs of an nth -to default contract, without

accrued interest payments, are given by

EDPL(n) = IE

[

m
∑

k=1

Ns(n)∆tke
−rtk1{τ(n)>tk}

]

= Ns(n)
m
∑

k=1

∆tke
−rtkIP(τ(n) > tk),

EDDL(n) = IE

[

(1 − R)N

m
∑

k=1

e−rtk1{tk−1<τ(n)≤tk}

]

= (1 −R)N
m
∑

k=1

e−rtkIP(tk−1 < τ(n) ≤ tk).

Finally, the fair spread s
(n)
f , which allows both parties to enter the contract at

zero cost, is obtained from equating both legs and solving for s(n) . This yields

s
(n)
f =

(1 −R)
∑m

k=1 e
−rtkIP(tk−1 < τ(n) ≤ tk)

∑m
k=1 ∆tke−rtkIP(τ(n) > tk)

.

20 Typically, premium payments are made periodically with payment frequency η = 1

4
years.



Chapter 4

The univariate model

In the preceding chapter, we introduced the economic fundamentals as well as the

payment streams of corporate bonds and CDS contracts. To assess prices to these

single-name contracts we have to specify the distribution of the time of default

τ . In what follows, we explain τ by means of a first-passage model and derive

algorithms to evaluate the respective pricing formulas.

To begin with, we introduce all objects of our structural default model in Section

4.1. Section 4.2 is then concerned with default probabilities and the local-default

rate of τ , as implied by the model. An efficient Monte Carlo algorithm to evaluate

bond and CDS prices is given in Sections 4.3 and 4.4, respectively. Several gener-

alizations of the model are worked out in Section 4.5. The restriction to two-sided

exponentially distributed jumps allows the approximation of bond and CDS prices

based on the Laplace transform of first-passage times. This approach is explained

in Section 4.6. The resulting algorithm enables us to present a detailed analysis

of sensitivities with respect to the parameters of the model in Section 4.7. Both

algorithms are compared in Section 4.8 to the algorithm of Zhou (2001a) in terms

of run time and precision. It turns out that our algorithm is fast enough to im-

plement a calibration of the model to bond and CDS data. The results of this

calibration, as well as a comparison to a calibration of a pure diffusion model, are

given in Section 4.9. Finally, Chapter 4 is summarized in Section 4.10.

4.1 Model description

We assume the value of the modeled company to start at some initial level v0 > 0

and to evolve stochastically over time. Moreover, we want to incorporate small and

unsystematic changes of the value process, resulting from daily business activities,

47
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as well as sudden jumps due to unexpected events. Finally, we assume the total

value of all assets to remain positive. Therefore, we model the value of a company

as a stochastic process V = {Vt}t≥0 on the filtered probability space (Ω,F ,F, IP) ,

where

Vt = v0 exp(Xt) v0 > 0, ∀t ≥ 0.

The process X = {Xt}t≥0 is a jump-diffusion process as introduced in Definition

2.1.5 and given as

Xt = γt+ σWt +
Nt
∑

i=1

Yi. (4.1)

Throughout this chapter, we assume as given the pricing measure IP . The filtration

F = {Ft}t≥0 denotes the natural filtration of the firm-value process, i.e.

Ft = σ(Vs : 0 ≤ s ≤ t) ∨N = σ(Xs : 0 ≤ s ≤ t) ∨ N ,

augmented to satisfy the usual conditions of completeness and right continuity.

To exclude degenerated cases, we impose the constraints σ > 0 , λ > 0 and

IPY 6= δ0
1. Following Black and Cox (1976), we define τ as the first passage of

the firm-value process below the debt level of the company, which we denote by

d . Formally, the time of default is defined by2

τ := inf{t > 0 : Vt ≤ d}.

All model parameters and a brief interpretation are listed in the table below.

Parameter Interpretation

γ ∈ R The linear trend of the diffusion component.
σ ∈ R+ The volatility of the diffusion component.
λ ∈ R+

0 The jump intensity.
IPY The jump-size distribution.

v0 ∈ R+ The initial value of the company.
d ∈ R+ The default threshold, satisfying d < v0.

Table 4.1: The parameters of our default model.

1 δx denotes the Dirac measure, i.e. δx(A) = 1{x∈A} for all A ∈ B(R) .
2 In this scenario, τ is a stopping time with respect to F , compare Section 2.1.2.
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4.2 First-passage times

Formulating a first-passage model raises the natural question of calculating the

probability for the firm-value process to remain above the default threshold for

some interval of time. In our scenario, we first observe that this problem can be

formulated in terms of the infimum of the process X , as

IP(τ > t) = IP

(

inf
0≤s≤t

Vs > d

)

= IP

(

inf
0≤s≤t

Xs > log (d/v0)

)

.

In what follows, we use the process xt := − log (d/Vt) as distance to default for

X 3. While the distribution of the running minimum of a Brownian motion is known

explicitly, closed-form expressions are not available in a jump-diffusion scenario.

To overcome this problem, we present an unbiased end extremely fast Monte-Carlo

simulation in Section 4.2.3. This algorithm requires the distribution of the running

minimum of a Brownian bridge, which is given below. The local default rate of

τ is computed in Section 4.2.2 for a pure diffusion model, in Section 4.2.4 for a

jump-diffusion model.

4.2.1 First-passage times in a pure diffusion scenario

In a pure diffusion scenario, the firm-value process simplifies to Vt = v0 exp(γt +

σWt) , which corresponds to λ = 0 in Equation (4.1). The pure diffusion model is

not only a degenerated case of our model, the main reason for studying its prop-

erties is the idea of conditioning on the number, the location and size of possible

jumps. As soon as these quantities are fixed, the remaining problem is to find

the distribution of the running minimum of a Brownian motion and a Brownian

bridge. The distribution of these functionals is known and given below.

The running minimum of a Brownian motion with drift is inverse Gaussian dis-

tributed, and so are first-passage times in a pure diffusion model. More precisely,

we obtain the following result.

Lemma 4.2.1 (The minimum of a Brownian motion)

Let Xt = γt+ σWt denote a Brownian motion with drift over the interval [t0, t1] ,

starting at Xt0 . Further, let b ∈ R denote an arbitrary barrier and define ∆t :=

3 Let us remark that in a pure diffusion scenario, the distance to default is usually measured
in terms of standard deviations. Here, the volatility of the process X does not only depend
on σ , but also on the jump-measure of X . Therefore, we do not normalize the distance to
default.
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t1 − t0 . Then, we obtain for the probability of X to remain above the threshold b

ΦBM
b,γ,σ(Xt0 ,∆t) := IP

(

min
t0≤s≤t1

(σWs + γs) > b
∣

∣

∣
Xt0

)

= 1{Xt0>b}Φ

(

Xt0 − b+ γ∆t

σ
√

∆t

)

−

1{Xt0>b}e
−2γ(Xt0−b)σ−2

Φ

(−(Xt0 − b) + γ∆t

σ
√

∆t

)

,

where Φ denotes the cumulative distribution function of the standard normal dis-

tribution.

A proof of Lemma 4.2.1 is given in Musiela and Rutkowski (2004), page 61. With

x0 = − log (d/v0) and v0 > d we thus obtain

IP(τ > t) = Φ

(

x0 + γt

σ
√
t

)

− e−2γx0σ−2

Φ

(−x0 + γt

σ
√
t

)

. (4.2)

The probability of a Brownian bridge not crossing a certain barrier b is calculated

by Metwally and Atiya (2002). We present a simplified expression which is more

convenient to work with. Similar results for the maximum of a Brownian bridge

can be found in Borodin and Salminen (1996), page 61, or in Karatzas and Shreve

(1997), page 265.

Lemma 4.2.2 (The minimum of a Brownian bridge)

Let X = {Xt}t∈[t0,t1] denote a Brownian bridge 4 over [t0, t1] with volatility σ ,

pinned at Xt0 and Xt1 . Let b ∈ R denote an arbitrary barrier. Then, we define

Ct := {ω ∈ Ω : {Xs(ω)}t0≤s≤t1 passes b for the first time in [t, t+ dt]}

and obtain for t ∈ (t0, t1]

g(t)dt := IP(Ct ∈ dt|Xt0, Xt1) (4.3)

= 1{Xt0>b}
Xt0 − b

2yπσ2(t− t0)3/2(t1 − t)1/2
·

exp

(

− (Xt1 − b)2

2(t1 − t)σ2
− (Xt0 − b)2

2(t− t0)σ2

)

dt,

where y is defined by

y :=
1

√

2πσ2(t1 − t0)
exp

(

−(Xt1 −Xt0)
2

2σ2(t1 − t0)

)

.

4 A definition and some properties of a Brownian bridge are given in Durrett (1999), page 245.
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By integration, we obtain the probability of X falling below the barrier b

Φ̃BB
b,σ (Xt0 , Xt1 ,∆t) := IP

(

min
t0≤s≤t1

Xs ≤ b
∣

∣

∣
Xt0 , Xt1

)

= 1{Xt0≤b or Xt1≤b} +

1{Xt0>b and Xt1>b} exp

(

−2(Xt0 − b)(Xt1 − b)

(t1 − t0)σ2

)

.

Finally, we define ΦBB
b,σ (Xt0 , Xt1 ,∆t) := 1− Φ̃BB

b,σ (Xt0 , Xt1 ,∆t) to be the probability

of the Brownian bridge to remain above the threshold b within the interval [t0, t1] .

4.2.2 The local default rate in a pure diffusion scenario

It is a common property of first-passage models that the probability for the firm

to default within h units of time tends to zero in h . What distinguishes a jump-

diffusion model from a pure diffusion model is the rate of convergence. We shall see

that the limit of credit spreads at the short end of the term structure essentially

depends on the local default rate, which is defined below.

Definition 4.2.1 (The local default rate of τ )

The local default rate of τ is abbreviated as LDRτ and defined by

LDRτ := lim
hց0

1

h
IP(τ ≤ h).

In pure diffusion models, the local default rate of τ is zero. More precisely, we

apply Lemma 4.2.1, l’Hospital’s rule and some algebraic manipulations to find the

following result for a solvent company, for which x0 = − log(d/v0) = −b > 0 .

LDRτ = lim
hց0

1

h

(

1 − ΦBM
b,γ,σ(0, h)

)

= lim
hց0

1

h

(

1 − Φ

(−b + γh

σ
√
h

)

+ e2γbσ−2

Φ

(

b+ γh

σ
√
h

))

= lim
hց0

−b√
2πσh3/2

exp

(

−1

2

(−b+ γh

σ
√
h

)2
)

= 0. (4.4)

It turns out that this fact forces credit spreads of zero-coupon bonds in a pure

diffusion model to tend to zero in the maturity, as shown by Duffie and Lando

(2001). Later, we show that allowing negative jumps in the firm-value process
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results in a positive local default rate and a positive limit of credit spreads for

short maturities. This positive limit of credit spreads coincides with empirical

observations of bond and CDS spreads for contracts with short maturities.

4.2.3 First-passage times in a jump-diffusion scenario

As mentioned earlier, closed-form expressions of the distribution of first-passage

times are not known in a jump-diffusion scenario. A probabilistic approach to

estimating survival probabilities is to perform a Monte Carlo simulation. A näıve

approach would require one to sample the firm-value process on a discrete grid and

test for default on this grid. Not only is this computationally expensive, it also

implies a systematic discretisation bias, as a possible default in between two grid

points is not considered.

The algorithm we propose is a variant of an algorithm for pricing barrier options.

A description in this context can be found in Cont and Tankov (2004), page 176,

or in Metwally and Atiya (2002). The idea of our algorithm is as follows. To

efficiently estimate passage probabilities of the jump-diffusion process X over the

interval [0, T ] it is sufficient to simulate the number of jumps NT , their location

0 < τ1 < . . . < τNT
< T and the process X , respectively its left limit X− , at

those times. In a second step, we calculate the probability for Brownian bridges

that connect those jumps not to fall below the passage threshold b . More precisely,

we rewrite the survival probability of the process X conditioned on the number

of jumps. This gives

IP

(

inf
0≤s≤T

Xs > b

)

=
∞
∑

k=0

IP

(

inf
0≤s≤T

Xs > b
∣

∣

∣
NT = k

)

IP(NT = k). (4.5)

Knowing the number of jumps NT = k allows us to further rewrite IP(inf0≤s≤T Xs >

b|NT = k) by conditioning on the location of the jumps 0 < τ1 < . . . < τk < T ,

the size of the jumps y1, . . . , yk and the increments of the pure diffusion in be-

tween two jumps x1, . . . , xk . Conditioned on the number of jumps, the jump times

are distributed as order statistics of NT = k independent Uni(0, T ) distributed

random variables, compare Sato (1999), page 17. Jump sizes are assumed to be

i.i.d. with distribution IPY and the increments of the pure diffusion are normally

distributed with mean γ∆τj and variance σ2∆τj . For k ≥ 1 , this yields for the

conditional survival probability of Equation (4.5)

∫

(τ1,...,τk)

∈[0,T ]k

∫

(x1,...,xk)

∈(−∞,∞)k

∫

(y1,...,yk)

∈(−∞,∞)k

ΦBM
b,γ,σ(Xτk

, T − τk) ·
k
∏

j=1

ΦBB
b,σ (Xτj−1

, Xτj−,∆τj)·
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k
∏

j=1

IPY (dyj) ·
k
∏

j=1

ϕγ∆τj ,σ2∆τj
(xj)dxj · 1{0<τ1<...<τk<T}

k!

T k
d(τ1, . . . , τk),

where τ0 = 0 , ∆τj = τj − τj−1 and ϕµ,σ2 denotes the density of a normal distri-

bution with the respective parameters. This artificial reformulation of the survival

probability does not only motivate the following Monte Carlo simulation, it also

shows that the algorithm is unbiased.

Algorithm 4.2.1 (Monte Carlo simulation of first-passage times)

Repeat the following steps K times and calculate the average over the resulting

conditional survival probabilities {SPn}n=1,...,K . We then obtain the estimate

IP(τb > T ) ≈ 1

K

K
∑

n=1

SPn.

1. Simulate the compound Poisson process and the diffusion component of X .

(a) Simulate the number of jumps NT from a Poi (λT ) distribution.

(b) Simulate the jump times 0 < τ1 < . . . < τNT
< T . As mentioned before,

conditional on NT , these jump times are distributed as order statistics

of Uni(0, T ) distributed random variables. Therefore, it is sufficient to

simulate NT independent Uni (0, T ) distributed random numbers and

rearrange them in increasing order.

(c) Generate two series of random numbers x1, . . . , xNT
, the increments

of the diffusion in between two jumps, and y1, . . . , yNT
, the jump sizes

of the compound Poisson process. All random numbers are mutually

independent and independent of NT and τ1, . . . , τNT
. Further, they are

distributed as follows

xj ∼ N
(

γ∆τj , σ
2∆τj

)

,

yj ∼ IPY .

(d) Calculate successively X0, Xτ1−, Xτ1 , Xτ2−, . . . , XτNT
by

Xτ0 = 0,

Xτj− = Xτj−1
+ xj , ∀ j ∈ {1, . . . , NT},

Xτj
= Xτj− + yj, ∀ j ∈ {1, . . . , NT}.

2. Calculate each conditional survival probability SPn .
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(a) Let F∗ be given by

F∗ = σ
{

NT ; 0 < τ1 < . . . < τNT
< T ; X0, . . . , Xτj−, Xτj

, . . . , XNT

}

.

(b) Calculate the probability of each Brownian bridge connecting Xτj−1
with

Xτj− and the Brownian motion starting at XτNT
not to fall below the

threshold b . This yields

SPn := IP

(

inf
0≤s≤T

Xs > b
∣

∣

∣
F∗
)

= ΦBM
b,γ,σ(XτNT

, T − τNT
) ·

NT
∏

j=1

ΦBB
b,σ (Xτj−1

, Xτj−,∆τj).

4.2.4 The local default rate in a jump-diffusion scenario

In this section, we derive the local default rate of τ in a jump-diffusion environ-

ment. The first version of this result is given in Scherer (2005) for the special case

IPY = 2-Exp(λ⊕, λ⊖, p) . Then, we derived a generalization to continuous jump-

size distributions as described in Example 4.2.1. Finally, a further generalization

to arbitrary jump-size distributions was worked out with Johannes Ruf. A detailed

version of the proof of Theorem 4.2.1 is given in Ruf (2006).

Theorem 4.2.1 (The local default rate of τ )

Let FY denote the cumulative jump-size distribution function. At time zero, the

distance to default for X is given by x0 = − log (d/v0) . We then obtain

LDRτ = λFY ((−x0)−) +
λ

2
IP(Y = −x0).

If the jump-size distribution is absolutely continuous, this simplifies to

LDRτ = λFY (−x0) = ν((−∞,−x0]),

where ν denotes the Lévy measure of X . This shows that the local default rate is

determined by the Lévy measure of the logarithm of the firm-value process and the

distance to default.

Proof : We condition on the number Nh of jumps which occurred up to time h

and denote the first jump time by τ(h) . We obtain

lim
hց0

1

h
IP(τ ≤ h)
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= lim
hց0

1

h

∞
∑

n=0

IP(Nh = n)IP

(

inf
0≤s≤h

Xs ≤ −x0

∣

∣

∣
Nh = n

)

(4.6)

= lim
hց0

e−λh

h
IP

(

inf
0≤s≤h

(γs+ σWs) ≤ −x0

)

+

lim
hց0

λe−λhIP

(

inf
0≤s≤h

(

γs+ σWs + 1{s≥τ(h)}Y1

)

≤ −x0

)

+

lim
hց0

1

h

∞
∑

n=2

e−λh(λh)n

n!
IP

(

inf
0≤s≤h

(

γs+ σWs +
Ns
∑

j=1

Yj

)

≤ −x0

∣

∣

∣
Nh = n

)

.

The first limit, representing a pure diffusion setup, is zero by l’Hospital’s rule5.

Considering the last limit, a dominated convergence argument allows us to inter-

change limit and summation, establishing that this limit also equals zero. We now

examine the second limit, the case of exactly one jump. Writing Bs := γs+ σWs ,

At(x) := {ω ∈ Ω : inf0≤s<tBs(ω) ≤ x} and AC
t (x) := Ω \ At(x) for brevity, we

obtain by conditioning

IP

(

inf
0≤s≤h

(

Bs + 1{s≥τ(h)}Y1

)

≤ −x0

)

= IP
(

Aτ(h)(−x0)
)

+ IE
[

IE
[

1AC
τ(h)

(−x0)∩Ãh−τ(h)(−x0−Y1−Bτ(h))

∣

∣

∣
Bτ(h), Y1

]]

,

where Ãt(x) is defined as At(x) with B being replaced by the Brownian motion

B̃s := Bτ(h)+s − Bτ(h) . Since τ(h) ≤ h holds, the limit of the first term tends

to zero with h . If Y1 > −x0 , the conditional expectation tends to zero, since

IP(Bτ(h) ≤ −x0 − y) decreases to zero for all y > −x0 for h tending to zero, due

to the continuity of the diffusion part. If Y1 < −x0 , the conditional expectation

tends to one, since so does IP(Bτ(h) ≤ −x0 − y) for all y < −x0 for h tending

to zero. If Y1 = −x0 then the conditional expectation tends to zero if Bτ(h) > 0 ,

and to one if Bτ(h) ≤ 0 with h . ♦

This result can be interpreted as follows. If a negative jump exceeds the distance to

default with positive probability, that is FY ((−x0)−) > 0 , then the local default

rate is positive. Based on this local default rate we are later able to calculate the

exact limit of credit spreads as maturity decreases to zero.

Example 4.2.1 (Continuous jump-size distribution)

This example is designed to illustrate the final step of the proof of Theorem 4.2.1.

For simplicity, we assume a continuous jump-size distribution, for instance IPY =

2-Exp(λ⊕, λ⊖, p) or IPY = N (0, σ̂2) . This simplification allows us to present an

alternative proof, which we feel is more intuitive. We proceed as in Equation (4.6),

5 Compare Equation (4.4).
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except for the case of exactly one jump, where we additionally condition on whether

this jump is negative or not. Obviously, only the case of a negative jump is of

interest. We let Bt := γt+ σWt and find

IP (Bh + Y1 ≤ −x0|Y1 < 0)

≤ IP

(

inf
0≤s≤h

(

Bs + 1{s≥τ1}Y1

)

≤ −x0

∣

∣

∣
Nh = 1, Y1 < 0

)

≤ IP

(

inf
0≤s≤h

Bs + Y1 ≤ −x0

∣

∣

∣
Y1 < 0

)

.

The sequence of events Ah := {ω ∈ Ω : inf0≤s≤hBs + Y1 ≤ −x0, Y1 < 0} is

decreasing in h . Therefore, by the continuity of the probability measure, we obtain

the following result for the limit of upper bounds

lim
hց0

IP(Ah) = IP(A0). (4.7)

From Equation (4.7), it follows that

lim
hց0

IP

(

inf
0≤s≤h

Bs + Y1 ≤ −x0

∣

∣

∣
Y1 < 0

)

= IP(Y1 ≤ −x0|Y1 < 0).

Showing that this limit agrees with the limit of lower bounds is straightforward if

Bh + Y1 conditioned on Y1 < 0 has a closed-form expression 6. In general, this

can be shown as follows. For arbitrary c > 0 , we have

lim inf
hց0

IP (Bh + Y1 ≤ −x0|Y1 < 0)

≥ lim inf
hց0

IP
(

Bh + Y1 ≤ −x0, Bh ≤ γh+ c
√
hσ2

∣

∣

∣
Y1 < 0

)

≥ lim inf
hց0

IP
(

Y1 ≤ −x0 − γh− c
√
hσ2

∣

∣

∣Y1 < 0
)

IP
(

Bh ≤ γh+ c
√
hσ2
)

= IP(Y1 ≤ −x0|Y1 < 0)Φ(c).

Since c > 0 was chosen arbitrarily, we are allowed to let c tend to infinity and

obtain the result. ♦

Resuming with our initial example, if IPY = 2-Exp(λ⊕, λ⊖, p) or IPY = N (0, σ̂2) ,

the local default rate of τ is given by λ(1 − p) exp(−x0λ⊖) and λΦ(−x0/σ̂) , re-

spectively.

6 This holds for instance if IPY = 2-Exp(λ⊕, λ⊖, p) , compare Scherer (2005).
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4.3 Pricing corporate bonds

The fair price of a zero-coupon bond is given in terms of its expected discounted

cash flow with respect to the pricing measure IP , as motivated in Equation (3.1).

The crucial factor of this formula is the distribution of the time of default τ . In

the following sections, we provide different methods to evaluate the pricing formula

of a zero-coupon bond, depending on the respective choice of firm-value process.

4.3.1 Pricing in a pure diffusion scenario

If the firm-value process is the exponential of a diffusion it is possible to explicitly

evaluate Equation (3.1). To begin with7, we assume t = 0 and rewrite the pricing

formula in terms of a discounted survival probability and an integral with respect

to the distribution of τ . We obtain

φ(0, T ) = e−rT IP(τ > T ) +R

∫ T

0

e−rtdIP(τ ≤ t). (4.8)

This equation is simplified in Theorem 4.3.1 below.

Theorem 4.3.1 (Zero-coupon bond prices in a pure diffusion model)

The price of a defaultable zero-coupon bond with maturity T is given by

φ(0, T ) = e−rT ΦBM
b,γ,σ(0, T ) +Re−b(γ̃−γ)σ−2 (

1 − ΦBM
b,γ̃,σ(0, T )

)

, (4.9)

where γ̃ =
√

γ2 + 2rσ2 and b = log(d/v0) .

Proof : In this scenario, the distribution of τ is explicitly known and given in

Equation (4.2). This leads to the following formula for the default probability of

the modeled company

IP(τ ≤ t) = Φ

(

b− γt

σ
√
t

)

+ e2γbσ−2

Φ

(

b+ γt

σ
√
t

)

.

To evaluate the Riemann-Stieltjes integral of Equation (4.8) we make use of a

lemma which is presented in Bielecki and Rutkowski (2002), page 74. For the

reader’s convenience, we restate it as Lemma 4.3.1 below.

Lemma 4.3.1

7 Generalizations are presented in Theorem 4.5.2.
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For real numbers a , b and c , satisfying b < 0 and c2 > a , we have

∫ y

0

eaxdΦ

(

b− cx√
x

)

=
d+ c

2d
g(y) +

d− c

2d
h(y),

with the abbreviations d =
√
c2 − 2a and

g(y) = eb(c−d)Φ
(

(b− dy)y−1/2
)

, h(y) = eb(c+d)Φ
(

(b+ dy)y−1/2
)

.

Finally, a rather tedious than complicated calculation using Lemma 4.3.1 leads to

∫ T

0

e−rtdΦ

(

b− γt

σ
√
t

)

=
1

2

(

1 +
γ

γ̃

)

eb(γ−γ̃)σ−2

Φ

(

b− γ̃T

σ
√
T

)

+

1

2

(

1 − γ

γ̃

)

eb(γ+γ̃)σ−2

Φ

(

b+ γ̃T

σ
√
T

)

.

Moreover, using the same result, it holds that

e2γbσ−2

∫ T

0

e−rtdΦ

(

b+ γt

σ
√
t

)

=
1

2

(

1 − γ

γ̃

)

eb(γ−γ̃)σ−2

Φ

(

b− γ̃T

σ
√
T

)

+

1

2

(

1 +
γ

γ̃

)

eb(γ+γ̃)σ−2

Φ

(

b+ γ̃T

σ
√
T

)

.

Combined, this yields

R

∫ T

0

e−rtdIP(τ ≤ t) = R

(

eb(γ−γ̃)σ−2

Φ

(

b− γ̃T

σ
√
T

)

+ eb(γ+γ̃)σ−2

Φ

(

b+ γ̃T

σ
√
T

))

.

Some rearrangements based on Lemma 4.2.1 complete the proof. ♦

4.3.2 Pricing in a jump-diffusion scenario

Zhou (2001a) suggested an algorithm for calculating bond prices in a jump-diffusion

framework. His idea is to discretize the time to maturity and to sample trajecto-

ries of the firm-value process on this grid. Then, on each grid point it is checked

whether the company defaults or not. A detailed description of Zhou’s algorithm

is given in Section 6.3. However, we show in Section 4.8.2 that this algorithm pro-

duces biased bond prices and is very time-consuming. In what follows, we therefore

propose a different algorithm.

We present an algorithm which not only produces unbiased results, but is also
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significantly faster than Zhou’s algorithm. The principal idea of our algorithm is

to condition on the number of jumps of the firm-value process up to time T , the

location of the jump times and the values of the jump-diffusion process at these

times. We further generalize the algorithm to include stochastic recovery rates in

Section 4.5.1 and to allow a stochastic short-rate process in Section 4.5.2. We begin

with a theorem which motivates the algorithm which we introduce later. This the-

orem is a reformulation of the pricing formula in terms of conditional expectations.

Theorem 4.3.2 (Price of a zero-coupon bond)

The zero-coupon bond price of Equation (3.1) can be expressed as

φ(0, T ) = IE
[

IE
[

1{τ>T}e
−rT +R1{τ≤T}e

−rτ
∣

∣F∗]] (4.10)

=

∞
∑

k=0

∫

(τ1,...,τk)

∈[0;T ]k

∫

(x1,...,xk+1)

∈(−∞;∞)k+1

∫

(y1,...,yk)

∈(−∞;∞)k

IE
[

1{τ>T}e
−rT +R1{τ≤T}e

−rτ
∣

∣F∗] ·

k
∏

j=1

IPY (dyj) ·
k+1
∏

j=1

ϕγ∆τj ,σ2∆τj
(xj)dxj ·

1{0<τ1<...<τk<T}
k!

T k
d(τ1, . . . , τk) ·

(λT )k

k!
e−λT , (4.11)

where

F∗ := σ {NT ; 0 < τ1 < . . . < τNT
< T ; Xτ1−, Xτ1 , . . . , Xτi−, Xτi

, . . . , XT} (4.12)

is the σ -algebra representing the information from the number of jumps, their

location and the values of X immediately before the jump times, at the jump times

and at maturity. The function ϕγ∆τj ,σ2∆τj
represents the density function of the

normal distribution with mean γ(τj − τj−1) and variance σ2(τj − τj−1) , where

τ0 = 0 and τNT +1 = T . With b = log(d/v0) , the conditional expectation satisfies

IE
[

1{τ>T}e
−rT +R1{τ≤T}e

−rτ
∣

∣F∗]

= R
U
∑

i=1

i−1
∏

j=1

ΦBB
b (j)

∫ τi

τi−1

e−rsgi(s)ds+

R1{I 6=0}e
−rτI

I
∏

j=1

ΦBB
b (j) + 1{I=0}e

−rT

NT +1
∏

j=1

ΦBB
b (j), (4.13)

where

I := min {i ∈ {1, . . . , NT} : Xτi
≤ b} , min ∅ := 0,
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denotes the index of the first jump time such that XτI
crosses the barrier and

U :=

{

I if I 6= 0,

NT + 1 if I = 0.

Finally, ΦBB
b (j) := ΦBB

b,σ (Xτj−1
, Xτj−, τj − τj−1) represents the probability of the

company not defaulting within the interval (τj−1, τj) and gi(t) is defined as in

Equation (4.3), with Xt0 and Xt1 replaced by Xτi−1
and Xτi− , respectively.

Proof : Equation (4.10) is obtained from applying the tower property of condi-

tional expectation on Equation (3.1) with t = 0 . Considering the densities in

Equation (4.11), the number of jumps up to time T follows a Poi(λT ) distribu-

tion, conditioned on which the jump times are distributed as order statistics of

Uni(0, T ) distributed random variables, compare Sato (1999), page 17. Finally,

the increments of the diffusion component in between two jumps as well as the

jump sizes are independent of each other and distributed N (γ∆τj , σ
2∆τj) and

IPY , respectively.

In what follows, we explain the three summands in Equation (4.13). The firm-

value process is only sampled at τi and τi− , which opens three possibilities for

the time of default. First of all, default is possible at some τi by jump, which

corresponds to Xτi− > b and Xτi
≤ b . Then, it is possible that the diffusion

component in between τi−1 and τi− declines below the default threshold, that is

Xτi−1
> b and Xτi− ≤ b . Finally, we have to consider an unobserved default in

between two jump times, which happens when the diffusion component starts and

ends above b but declines below this threshold somewhere in (τi−1, τi) .

The case I = 0 corresponds to no default at some τi . However, we have to

multiply the resulting discounted payoff by the probability of no default by diffu-

sion prior to T , which equals
∏NT +1

j=1 ΦBB
b (j) . Otherwise, default is caused by the

I th jump at time τI , which corresponds to a payoff of R , discounted by e−rτI ,

conditional on survivorship up to τI . Default by diffusion is considered via the

first summand in Equation (4.13). Unobserved defaults have to be considered up

to an observed default or up to maturity, whichever occurs first. The variable U is

set accordingly. The conditional density of τ within (τi−1, τi) , given the start and

endpoint of the Brownian bridge connecting Xτi−1
with Xτi− , is denoted by gi

and defined as in Equation (4.3). Conditional on the firm’s survivorship up to τi−1 ,

the integral
∫ τi

τi−1
e−rsgi(s)ds takes into account all possible recovery payments for

defaults within (τi−1, τi) . ♦

Finally, we notice that Equation (4.13) simplifies remarkably if the recovery scheme

fractional recovery of treasury value is used, which corresponds to deferring the re-
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covery payment to the bond’s maturity T . In this case, e−rτ is replaced by e−rT

and
∫ τi

τi−1
e−rsgi(s)ds by ΦBB

b (i) in Equation (4.13).

Based on Theorem 4.3.2, we now formally introduce our Brownian-bridge pric-

ing algorithm.

Algorithm 4.3.1 (Brownian-bridge pricing algorithm)

Choose the number of simulation runs K and approximate φ(0, T ) by

φ(0, T ) ≈ 1

K

K
∑

j=1

φj(0, T ),

where each φj(0, T ) is calculated by the following steps.

1. Simulate the number of jumps NT from a Poi (λT ) distribution.

2. Simulate the jump times 0 < τ1 < τ2 < . . . < τNT
< T . Conditioned on NT ,

these jump times are distributed as order statistics of Uni(0, T ) distributed

random variables on [0, T ] .

3. Generate two series of mutually independent random numbers x1, . . . , xNT +1

and y1, . . . , yNT
, independent from NT and τ1, . . . , τNT

, with

xi ∼ N
(

γ(τi − τi−1), σ
2(τi − τi−1)

)

,

yi ∼ IPY .

4. Calculate successively X0, Xτ1−, Xτ1 , Xτ2−, . . . , XτNT
, XτNT +1− = XτNT +1

by

Xτ0 = 0,

Xτi− = Xτi−1
+ xi, ∀ i ∈ {1, . . . , NT + 1},

Xτi
= Xτi− + yi, ∀ i ∈ {1, . . . , NT}.

5. Determine I , U and b as in Theorem 4.3.2.

6. Calculate

φj(0, T ) = IE
[

1{τ>T}e
−rT +R1{τ≤T}e

−rτ
∣

∣F∗]

as described in Equation (4.13) of Theorem 4.3.2.

The run time of this algorithm strongly depends on the expected number of jumps

λT . The larger the jump intensity λ , the more samples have to be drawn and the

more integrals have to be calculated. We illustrate the performance of Algorithm
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4.3.1 in Section 4.8, where we compare the run time of this algorithm using different

sets of parameters.

4.3.3 Accelerating the algorithm

The most time-consuming step of Algorithm 4.3.1 is the computation of the inte-

grals
∫

e−rsgi(s)ds . Metwally and Atiya (2002) suggest an approximation of these

integrals which we improve in Theorem 4.3.3. The idea of this approximation is

to compute the Laplace transform of the integral, which can be represented as

the convolution of two functions. Then, this Laplace transform is expanded into

a Taylor series in r . In the next step, the Laplace inverse of the second-order

approximation is obtained. The reason for reexamining the original result was to

check whether applying the inverse Laplace transform increases the error of the

Taylor approximation or not. We showed that this is not the case, but we also

found a slightly different result for the inverse Laplace transform compared to the

approximation of Metwally and Atiya (2002). However, we ran several numerical

experiments and found that our approximation is more accurate. The results of

these experiments are presented in Section 4.8.2. The proof of Theorem 4.3.3 is

based on joint work with Johannes Ruf. An outline of this proof is given in the

Appendix, a very detailed version can be found in Ruf (2006).

Theorem 4.3.3 (Approximation of the integral)

We assume that the firm-value process starts above the default threshold, that is

Xτi−1
> b . The integral of Equation (4.13) can then be approximated by 8

∫ τi

τi−1

e−rsgi(s)ds = e−rτi−1

(

exp

(

−2(Xτi−1
− b)(Xτi− − b)

∆τiσ2

)

+ (4.14)

r(Xτi−1
− b)

4σ
(A1 + C1B)

)

+ O(r3)

if Xτi− > b and by

∫ τi

τi−1

e−rsgi(s)ds = e−rτi−1

(

1 +
r(Xτi−1

− b)

4σ
(A2 + C2B)

)

+ O(r3) (4.15)

if Xτi− ≤ b , where ∆τi := τi − τi−1 , ∆Xi := Xτi− −Xτi−1
and

A1 := − r

σ
∆τi∆Xi exp

(

−2(Xτi−1
− b)(Xτi− − b)

∆τiσ2

)

,

8 The function f : R → R belongs to O(g(x)) , if f(x)/g(x) is bounded.
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C1 := −
√

2π∆τi exp

(

(∆Xi)
2

2∆τiσ2

)

Φ

(

2b−Xτi− −Xτi−1√
∆τiσ2

)

,

B := 4 − r∆τi −
r

σ2
∆Xi

(

Xτi− +Xτi−1
− 2b

)

,

A2 :=
r

σ
∆τi

(

Xτi− +Xτi−1
− 2b

)

,

C2 := −
√

2π∆τi exp

(

(∆Xi)
2

2∆τiσ2

)

Φ

(

∆Xi√
∆τiσ2

)

.

4.3.4 The limit of credit spreads for short maturities

Zhou (2001a) presents an intuitive argument why the limit of credit spreads in a

jump-diffusion model should be positive. He argues: ”Because a diffusion process

is almost unlikely to cause a default in a short period of time, the defaults of

short-term bonds are usually caused by the jump component of the firm value.” 9

This argument is derived from comparing the vanishing probability of a default by

diffusion with the probability of a default caused by a single jump. We made his

argument precise in Theorem 4.2.1, where we showed that the local default rate of

τ does not depend on the diffusion component of X . In what follows, we present

the exact limit of credit spreads at time zero. A similar result for the limit of CDS

spreads is presented in Theorem 4.4.2.

Theorem 4.3.4 (Credit spreads at time zero)

The limit of credit spreads at time zero is given by

lim
hց0

ηh = (1 − R)LDRτ .

Proof : We let t = 0 in Equation (3.1) of Lemma 3.1.2 and notice that the second

discount factor is bounded by e−rh ≤ e−rτ ≤ 1 . Thus, a lower bound for the bond

price φ(0, h) is given by

φ̃(0, h) := e−rh (IP(τ > h) +R · IP(τ ≤ h)) ,

an upper bound by

φ̂(0, h) := e−rhIP(τ > h) +R · IP(τ ≤ h).

The functions φ̃ and φ̂ can both be interpreted as bonds with different recovery

schemes. The bond φ̃(0, h) , respectively φ̂(0, h) , pays in the case of a default the

fraction R , respectively Rerh , of the bond’s face value at maturity. It turns out

9 Zhou (2001a), Journal of Banking and Finance 25, page 2027.
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that both recovery schemes imply the same limit of credit spreads. This is shown

for the lower bound φ̃ , the result for the upper bound φ̂ is obtained similarly. By

the definition of credit spreads, we find

lim
hց0

η̃h = lim
hց0

−1

h
ln
(

φ̃(0, h)
)

− r

= − ∂

∂h
ln (IP(τ > h) +R · IP(τ ≤ h))

∣

∣

∣

∣

h=0

= LDRτ (1 − R).

As credit spreads are monotone decreasing functions of the bond value, we obtain

limhց0 ηh . ♦

We found that the limit of credit spreads at the short end of the term struc-

ture is the product of the local default rate of τ and the fractional loss at default.

This is economically reasonable, as the potential loss at default is decreasing in

the recovery rate, which implies smaller credit spreads. Moreover, the local default

rate of τ approximates the probability of default within small intervals of time.

Therefore, credit spreads of bonds with small maturities merely depend on the

probability of a sudden default. In other words, their credit spreads are increasing

in the local default rate.
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4.4 Pricing CDS contracts

Pricing CDS bears close analogy to pricing corporate bonds. Again, it requires the

evaluation of an expectation which depends on the distribution of τ . To begin

with, we use the integration by parts formula and find

∫ T

0

e−rtdIP(τ ≤ t) = e−rT IP(τ ≤ T ) + r

∫ T

0

IP(τ ≤ t)e−rtdt

= e−rT (1 − IP(τ > T )) + r

∫ T

0

(1 − IP(τ > t))e−rtdt

= 1 − e−rT IP(τ > T ) − r

∫ T

0

IP(τ > t)e−rtdt.

Using this, Equation (3.3) is rearranged as follows

CDS(0, T )

=
(

1 −R +
c

r

)

∫ T

0

e−rtdIP(τ ≤ t) − c

r

(

1 − e−rT IP(τ > T )
)

(4.16)

= ((R− 1)r − c)

∫ T

0

e−rtIP(τ > t)dt+ (1 − R)
(

1 − e−rT IP(τ > T )
)

. (4.17)

Still, these formulas all depend on the distribution of τ . In what follows, we

present a closed-form expression of CDS spreads in a pure diffusion model, com-

pare Theorem 4.4.1. The general case is again approached by means of the Monte

Carlo simulation in Section 4.4.2. Alternatively, Algorithm 4.6.1 provides an ap-

proximation of CDS prices for the case IPY = 2-Exp(λ⊕, λ⊖, p) .

4.4.1 Pricing CDS in a pure diffusion scenario

Without jumps, we again rely on Equation (4.2) to evaluate Equation (4.16) ex-

plicitly. The required calculation is rather long than complicated. Nevertheless, it

can be simplified considerably using Lemma 4.3.1. Finally, we obtain the following

result.

Theorem 4.4.1 (Pricing CDS in a pure diffusion model)

We consider a CDS contract with continuous spread c and unit notional. At time

zero, the price of this contract with maturity T satisfies

CDS(0, T ) =
(

1 − R +
c

r

)

A− c

r

(

1 − e−rTB
)

, (4.18)
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where b = log(d/v0) , γ̃ =
√

γ2 + 2rσ2 and

A = ebσ−2(γ−γ̃)Φ

(

b− γ̃T

σ
√
T

)

+ ebσ−2(γ+γ̃)Φ

(

b+ γ̃T

σ
√
T

)

= ebσ−2(γ−γ̃)
(

1 − ΦBM
b,γ̃,σ(0, T )

)

, (4.19)

B = Φ

(−b+ γT

σ
√
T

)

− e2γbσ−2

Φ

(

b+ γT

σ
√
T

)

= ΦBM
b,γ,σ(0, T ). (4.20)

The premium that allows both parties to enter the contract at par is given by

cT =
r(1 − R)A

1 − e−rTB − A
. (4.21)

Proof : We combine Equation (4.16) with the explicit formula of
∫ T

0
e−rtdIP(τ ≤ t)

as computed in the proof of Theorem 4.3.1. ♦

4.4.2 Pricing CDS in a jump-diffusion scenario

The idea of efficiently estimating the price of a CDS contract by means of a Monte

Carlo simulation is similar to the idea of the respective bond-pricing algorithm.

We again condition the pricing formula, here Equation (4.16), on the information

F∗ which is defined as in Equation (4.12) before. Then, we find

IE

[

e−rτ (1 −R)1{τ≤T} −
∫ T

0

ce−rt1{τ>t}dt
∣

∣

∣
F∗
]

=
(

1 − R +
c

r

)

A−c
r

(

1 − e−rTB
)

,

where we define the abbreviations

A :=
U
∑

i=1

(

i−1
∏

j=1

ΦBB
b (j)

)

∫ τi

τi−1

e−rtgi(t)dt+ 1{I 6=0}e
−rτI

I
∏

j=1

ΦBB
b (j), (4.22)

B := 1{I=0}

NT +1
∏

j=1

ΦBB
b (j). (4.23)

The variables I , U and ΦBB
b (j) are defined as in Theorem 4.3.2.

Algorithm 4.4.1 (Monte Carlo pricing of CDS)

We consider a CDS contract with continuous spread c and unit notional. The
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initial price of this contract with maturity T is estimated as follows. Choose the

number of simulation runs K and estimate CDS(0, T ) via

CDS(0, T ) ≈
(

1 − R +
c

r

)

ĀK − c

r

(

1 − e−rT B̄K

)

,

where we let

ĀK :=
1

K

K
∑

n=1

An, B̄K :=
1

K

K
∑

n=1

Bn.

In each step of the simulation, An and Bn are calculated as described in Equations

(4.22) and (4.23) from a new set of simulated jumps, with default threshold b =

log (d/v0) . The par spread cT is then estimated via

cT ≈ r(1 −R)ĀK

1 − e−rT B̄K − ĀK

.

4.4.3 The limit of CDS spreads for short maturities

Previously, we already worked out that in pure diffusion models it is virtually

impossible for solvent companies to default within a small interval of time, due to

the continuity of their firm-value processes. Moreover, just as for bond spreads,

we show that par spreads of CDS tend to zero in the maturity of the contract. To

prove this claim, we consider the abbreviations A and B from Equations (4.19)

and (4.20) as functions of T . Then, we observe that as long as the company is

solvent or, in other words, as long as the distance to default x0 = − log (d/v0) is

positive, we obtain the following limits

lim
Tց0

A(T ) = lim
Tց0

A′(T ) = lim
Tց0

B′(T ) = 0, lim
Tց0

B(T ) = 1.

L’Hospital’s rule finally establishes

lim
Tց0

cT = lim
Tց0

r(1 −R)A′(T )

re−rTB(T ) − e−rTB′(T ) − A′(T )
= 0. (4.24)

In a jump-diffusion model, the limit of CDS par spreads at the short end of the

term structure is positive and can be found using the local default rate of τ .

Theorem 4.4.2 (The limit of CDS spreads with jumps)

Within the setup of our jump-diffusion model, the limit of CDS spreads at the short

end of the term structure agrees with the limit of bond spreads. Hence, it is given

by

lim
Tց0

cT = (1 − R)LDRτ .
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Proof : At first, we rewrite cT as

cT =

1
T
(1 − R)

(

1 − e−rT IP(τ > T ) − r
∫ T

0
IP(τ > t)e−rtdt

)

1
T

∫ T

0
e−rtIP(τ > t)dt

.

Using Tonelli’s theorem, we find

1

T

∫ T

0

e−rtIP(τ > t)dt =
1

T
IE

[
∫ τ∧T

0

e−rtdt

]

. (4.25)

Chen and Kou (2005) consider a model with endogenously given default threshold

and IPY = 2-Exp(λ⊕, λ⊖, p) . However, we can take over their argument from

Appendix C and conclude that if T tends to zero, the limit in Equation (4.25) is

one. Equipped with this limit and the local default rate of τ from Theorem 4.2.1,

we find that in our model

lim
Tց0

cT = lim
Tց0

1
T
(1 − R)

(

1 − e−rT IP(τ > T ) − r
∫ T

0
IP(τ > t)e−rtdt

)

1
T

∫ T

0
e−rtIP(τ > t)dt

= lim
Tց0

(1 −R)

(

1 − e−rT

T
+
e−rT IP(τ ≤ T )

T
− r

T

∫ T

0

IP(τ > t)e−rtdt

)

= (1 − R)(r + 1 · LDRτ − r).

♦
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4.5 Generalizations of the model

In this section, we present several generalizations of the model and explain how

these extensions are included into our Monte Carlo pricing algorithm for zero-

coupon bonds. However, the same generalizations apply to the problem of pricing

CDS, with the obvious changes in the respective algorithm. To begin with, we show

how jump-diffusion models endogenously define a stochastic recovery rate and how

this feature is implemented in Algorithm 4.3.1. Then, we relax the assumption of

a flat risk-free interest rate in Section 4.5.2 by allowing short-rate processes which

imply closed-form expressions of default-free zero-coupon bonds. Another assump-

tion of our initial default model is a constant default threshold, which is relaxed

in Section 4.5.3. Finally, the question of what information about the firm-value

process are available to an ordinary investor is examined in Section 4.5.4. Here,

we present formulas for bond and CDS prices based on reduced filtrations. Before

we proceed, we note that Sections 4.5.1 and 4.5.3 were worked out in cooperation

with Johannes Ruf.

4.5.1 Including a stochastic recovery rate

In the event of credit default, a company is liquidated and the remaining assets are

distributed among the bondholders. So far, we assumed the bondholders to receive

the constant and predetermined fraction R of their invested principal. However,

it is more realistically to assume the recovery rate to be a random variable which

is drawn at the time of default. This economic consideration translates in an Fτ -

measurable random variable in our mathematical model. For structural models,

we feel that a natural determinant of the recovery rate is the firm-value process at

the time of default, as this value represents the remaining assets of the company.

At this point, another advantage of allowing jumps in the firm-value process is

revealed. In contrast to pure diffusion models, where the value of the company

at time τ necessarily agrees with the default threshold, the possibility of passing

the default threshold by jump suggests a natural model of the default severity of

the company. More precisely, we can use the random undershot d − Vτ to en-

dogenously specify the recovery rate by the model. This idea was first proposed

by Zhou (2001a), we slightly alter his definitions and show how this approach is

embedded into our Monte Carlo algorithm.

In what follows, we model the recovery rate as an Fτ -measurable random variable

which is determined by the ratio of the firm-value process and the default threshold

at the time of default, that is Rτ = w(Vτ/d) , where the function w : [0, 1] → [0, 1]



70 Chapter 4. The univariate model

is non-decreasing10. Reconsidering Formula (4.13), we observe that this expression

can be viewed as a weighted sum of three summands with the following interpre-

tation. The first summand corresponds to the payoff of the bond in the event of

default by diffusion, the second to the event of default by jump. The last summand

corresponds to the bond’s payoff in the event of no default. The weights are the

conditional probabilities for the respective events to occur. These weights depend

on the simulated jumps and Brownian increments within each simulation run. The

recovery rate in the event of default by diffusion is given by Rτ = w(1) , as this

case corresponds to Vτ = d . In our algorithm, the variable I is used to indicate

whether a jump forced the company to default or not. If I > 0 , the recovery rate

at τ = τI is given by Rτ = w(VτI
/d) . Based on these considerations, we alter

Formula (4.13) and the respective step of Algorithm 4.3.1 as follows

IE
[

1{τ>T}e
−rT + w (Vτ/d)1{τ≤T}e

−rτ
∣

∣F∗]

= w(1)

U
∑

i=1

i−1
∏

j=1

ΦBB
b (j)

∫ τi

τi−1

e−rsgi(s)ds+

w (VτI
/d)1{I 6=0}e

−rτI

I
∏

j=1

ΦBB
b (j) + 1{I=0}e

−rT

NT +1
∏

j=1

ΦBB
b (j). (4.26)

Function w Parameter Interpretation

w0(x) = R R ∈ [0, 1] Constant recovery
w1(x) = Rx R ∈ [0, 1] Linear dependence on Vτ/d
w2(x) = max{r0 + r1x, 1} r0, r1 ∈ [0, 1] Linear, with lower bound r0

Table 4.2: Different recovery functions w .

4.5.2 Including a short-rate model

In this section, the flat risk-free interest rate is replaced by an F -adapted, time-

homogeneous short-rate process r = {rt}t≥0 . This process is also modeled under

the pricing measure IP . At time t , the price of a default-free zero-coupon bond

with maturity T is given in terms of its expected discounted payoff with respect

to IP . Therefore, we define

ϕ(t, T ) := IE
[

e−
R T

t
rsds
∣

∣

∣
Ft

]

. (4.27)

10 This assumption is not only reasonable from an economic perspective, it also guarantees that
w(Vτ /d) is measurable with respect to Fτ .
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If the distribution of exp(−
∫ T

t
rsds) is analytically tractable, then it is possible to

express the price of a default-free zero-coupon bond as a function of the parameters

of the respective short-rate process. For instance, such an expression is available

for Vasicek’s (V) model11, where the short-rate process is modeled as

drt = k(θ − rt)dt+ σ̂dŴt r0 > 0, (4.28)

and the Cox, Ingersoll and Ross (CIR) model12, where the short-rate dynamics

evolve according to the stochastic differential equation

drt = k(θ − rt)dt+ σ̂
√
rtdŴt r0 > 0. (4.29)

In both examples, the structure of ϕ(t, T ) is given by

ϕ(t, T ) = A(t, T )e−B(t,T )rt , (4.30)

where the functions A and B of the respective model are defined as follows

AV (t, T ) := exp

{(

θ − σ̂2

2k2

)

(

BV (t, T ) − T + t
)

− σ̂2

4k
BV (t, T )2

}

,

BV (t, T ) :=
1

k

(

1 − e−k(T−t)
)

,

ACIR(t, T ) :=

(

2he(k+h)(T−t)/2

2h+ (k + h)(e(T−t)h − 1)

)2kθ/σ̂2

,

BCIR(t, T ) :=
2e(T−t)h − 2

2h+ (k + h)(e(T−t)h − 1)
,

h :=
√
k2 + 2σ̂2.

A proof of these formulas is given in Brigo and Mercurio (2001), Chapter 3.2.

Including the stochastic short-rate in the pricing formula of the bond

The assumption that the Brownian motions of the short-rate processes in Equa-

tions (4.28) and (4.29) are independent of the Brownian motion of the firm-value

process allows us to replace the discount factor exp(−rs) by ϕ(0, s) in The-

orem 4.3.2 and Algorithm 4.3.1. An implementation of this generalized Monte

11 In Vasicek’s model, the short-rate process is assumed to follow an Ornstein-Uhlenbeck process
with constant coefficients. The parameter θ > 0 can be interpreted as the mean-reverting
level of the process, k > 0 specifies how fast the process returns to this long-term mean and
σ̂ > 0 is the volatility of the Brownian component.

12 Again, the parameters θ , k and σ̂ are positive. The additional factor
√

rt combined with
the condition 2kθ > σ̂2 implies that the process r remains positive, which is not guaranteed
in Vasicek’s model.
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Carlo pricing algorithm requires to numerically evaluate integrals of the form
∫

ϕ(0, s)gi(s)ds instead of
∫

e−rsgi(s)ds . Computationally, this is only slightly

more expensive, due to the closed form of ϕ(0, s) as given in Equation (4.30).

To illustrate the effect of including a short-rate model, we initially calculated cor-

porate bond prices based on a flat interest rate, then using the short-rate mod-

els of Equations (4.28) and (4.29). The results after 50,000 simulation runs are

presented in Table 4.313. The parameter setup of this experiment is r = 0.03 ,

T = 5 , R = 42% , γ = 0.045 , σ = 0.05 , λ = 2 , IPY = 2-Exp(20, 20, 0.5) ,

d/v0 = 85% and θV = θCIR = rV
0 = rCIR

0 = 0.035 , kV = kCIR = 0.1 , σ̂V = 0.01 ,

σ̂CIR = 0.05 .

Short rate r Corporate bond Default-free bond Spread

Constant r φ(0, T ) = 0.7717 exp(−rT ) = 0.8607 218 bp
Vasicek model φ(0, T ) = 0.7546 ϕ(0, T ) = 0.8407 216 bp

CIR model φ(0, T ) = 0.7554 ϕ(0, T ) = 0.8405 214 bp

Table 4.3: Bond prices using a short-rate model.

Our choice of risk-neutral parameters implies a premium for the risk of stochastic

interest rates. Therefore, it is not surprising that the resulting default-free bonds

trade below the default-free bond in an environment with a flat term-structure of

interest rates. However, we were surprised by the fact that including a stochastic

short-rate process affects defaultable and default-free bonds alike. This is reflected

in credit spreads which remain at about the same level if computed relative to the

corresponding default-free bond.

Let us conclude this section with the remark that if the firm-value process and

the short-rate process have correlated Brownian motions, then one can still use the

Monte Carlo pricing algorithm of Zhou (2001a). This algorithm samples trajecto-

ries of the processes r and V on a fine grid and computes the respective payoff of

the bond in each simulation run. Again, such a Monte Carlo simulation produces

biased bond prices and is very time consuming.

4.5.3 Including a stochastic default threshold

Up to this point, a constant default threshold was assumed. However, a simple cal-

culation shows that this restriction can easily be relaxed to default thresholds that

are modeled using a second jump-diffusion process. More precisely, the constant

13 In this table, spreads are calculated relative to the default-free bond of the same row.
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threshold d is replaced by an F -adapted process D = {Dt}t≥0 of the form

Dt = d0 exp{dt}, dt = γ̃t+ σ̃W̃t +

Ñt
∑

i=1

Ỹi 0 < d0 < v0.

With respect to IP , the process d = {dt}t≥0 is also a jump-diffusion process

with jump-size distribution IPỸ . The Brownian motion of the firm-value process

and the Brownian motion of the default threshold are correlated with coefficient

ρ ∈ (−1, 1) . All other random variables are assumed to be mutually independent.

The time of default is then given by

τ̃ = inf{t > 0 : Vt ≤ Dt} = inf{t > 0 : Xt − dt ≤ log(d0/v0)},

which differs only slightly from the time of default which was used earlier, namely

τ = inf{t > 0 : Vt ≤ d} = inf{t > 0 : Xt ≤ log(d/v0)}.

In fact, to show that the parameters of the model can be chosen such that both

times of default agree in distribution, and therefore imply the same bond and CDS

prices, it is enough to show that the difference of two jump-diffusion processes is

again a jump-diffusion process. This result is given in the theorem below.

Theorem 4.5.1 (The difference of two jump-diffusion processes)

We consider the difference of the jump-diffusion processes X and d , given by

Xt = γt+ σWt +

Nt
∑

i=1

Yi, dt = γ̃t+ σ̃W̃t +

Ñt
∑

i=1

Ỹi, (4.31)

with Cov (Xt, dt) = σσ̃Cov (Wt, W̃t) = σσ̃ρt , where ρ ∈ (−1, 1) . All other random

variables of Equation (4.31) are mutually independent. Moreover, let the intensity

of N and Ñ be denoted by λ and λ̃ , respectively, the jump-size distribution of

Yi and Ỹi by IPY and IPỸ , respectively. Then, the difference X − d is again a

jump-diffusion process which agrees in distribution with the process

X̂t = γ̂t+ σ̂Ŵt +

N̂t
∑

i=1

Ŷi,

where γ̂ = γ − γ̃ , σ̂ =
√

σ2 + σ̃2 − 2ρσσ̃ , Ŵ is a Brownian motion, N̂ is a

Poisson process with intensity λ̂ = λ + λ̃ and the jump-size distribution of Ŷi is

given by IPŶ = λ/(λ+ λ̃)IPY + λ̃/(λ+ λ̃)IP−Ỹ .
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Proof : The deterministic part is clear. From the definition of a Brownian motion

and the stability of the normal distribution under convolution, we obtain that

Ŵt =d
1

√

σ2 + σ̃2 − 2ρσσ̃

(

σWt − σ̃W̃t

)

∼ N (0, t).

Being independent, the characteristic function of the sum of the compound Pois-

son processes Mt :=
∑N̂t

i=1 Ŷi and M̃t :=
∑Ñt

i=1(−Ỹi) is the product of the two

individual characteristic functions. Hence, we find

ΦMt+M̃t
(z) = exp

(

t

∫

R

(eiuz − 1)
(

λIPY (du) + λ̃IP−Ỹ (du)
)

)

= exp

(

tλ̂

∫

R

(eiuz − 1)

(

λ

λ̂
IPY (du) +

λ̃

λ̂
IP−Ỹ (du)

))

.

This last expression is the characteristic function of a compound Poisson process

with intensity λ̂ and jump-size distribution IPŶ . ♦

4.5.4 Pricing based on reduced information

Pricing corporate bonds and CDS based on the filtration F , the filtration gener-

ated by the firm-value process, is convenient from a mathematical point of view.

However, the justification of this model from an economic perspective is ques-

tionable, as this assumption requires investors to observe the firm-value process

continuously. While quotes of stocks and other liquidly traded objects are avail-

able continuously, the firm-value process is not a traded object and is generally

not observable at all. However, the assumption that investors get periodic infor-

mation about the value of the firm in terms of balance sheets (on a fixed schedule

0 = t0 < t1 < . . . < tn = T ) is realistic. Additionally, we assume that all investors

are informed whether or not the company has defaulted so far. Motivated by those

economic considerations, we define the filtrations

Ht := σ(Vs : 0 ≤ s ≤ ti, ti ≤ t < ti+1) ∨N ,

Gt := Ht ∨ σ(τ ≤ t),

Ft := σ(Vs : 0 ≤ s ≤ t) ∨N .

Ht is the history of the firm-value process up to time ti , the time of the last update,

which can be interpreted as the last published balance sheet. Gt additionally

contains the information whether the company defaulted up to time t . Finally,

Ft contains the complete history of the firm value process up to time t . At first,
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we observe that Ht ⊂ Gt ⊂ Ft for all t ≥ 0 . We then notice that the σ -algebras

coincide at the dates when the filtrations H and G are updated. It is now possible

to compute default probabilities conditioned on the respective information, as done

in a continuous model by Jeanblanc and Valchev (2005). We follow their arguments

and obtain for ti ≤ t < ti+1

IP(τ > T |Ht) = 1{τ>ti}IP(τ > T |Fti)

= 1{τ>ti}IP

(

inf
ti≤s≤T

Xs > log(d/v0)
∣

∣

∣
Fti

)

, (4.32)

IP(τ > T |Gt) = 1{τ>t}
IP(τ > T |Fti)

IP(τ > t|Fti)

= 1{τ>t}
IP
(

infti≤s≤T Xs > log(d/v0)
∣

∣

∣
Fti

)

IP
(

infti≤s≤tXs > log(d/v0)
∣

∣

∣
Fti

) , (4.33)

IP(τ > T |Ft) = 1{τ>t}IP

(

inf
t≤s≤T

Xs > log(d/v0)
∣

∣

∣
Ft

)

. (4.34)

The price process of a zero-coupon bond in a reduced filtration

Let us fix a filtration J ∈ {H,G,F} . We then evaluate the pricing formula of a

zero-coupon bond with maturity T conditioned on the σ -algebra Jt . We find

φJ(t, T ) := IE
[

e−r(T−t)1{τ>T} +Re−r(τ−t)1{t≤τ≤T}|Jt

]

= e−r(T−t)IP(τ > T |Jt) +R

∫ T

t

e−r(s−t)dIP(τ ≤ s|Jt) (4.35)

= e−r(T−t)IP(τ > T |Jt)(1 − R) +R

(

1 − r

∫ T

t

e−r(s−t)IP(τ > s|Jt)ds

)

.

The last formula is convenient for numerical implementations. Given Jt , an im-

plementation only requires the evaluation of a Riemann integral. The respective

default probabilities are estimated within a jump-diffusion model by means of the

Monte Carlo simulation of Section 4.2.3 or approximated via the Laplace method

of Section 4.6, if two-sided exponentially distributed jumps are assumed. In a pure

diffusion scenario it is even possible to explicitly evaluate the pricing formulas of

zero-coupon bonds and CDS contracts. The required calculations are of moder-

ate difficulty but extremely lengthy. Comparable calculations can be found in a

slightly different setup in Jeanblanc and Valchev (2005). Within our model, we

obtain the following formulas for the zero-coupon bond of Equation (4.35) given

the respective filtration.
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Theorem 4.5.2 (Pricing given J ∈ {H,G,F} in a pure diffusion scenario)

In all formulas, let b = log(d/v0) and γ̃ =
√

γ2 + 2rσ2 . The price process of a

zero-coupon bond, conditioned on the respective filtration, is then given as follows.

H : For ti < t < ti+1 and τ > ti , we have

φH(t, T ) = e−r(T−t)ΦBM
b,γ,σ(Xti, T − ti) +Re−r(ti−t)e(Xti

−b)(γ̃−γ)σ−2 ·
(

ΦBM
b,γ̃,σ(Xti , t− ti) − ΦBM

b,γ̃,σ(Xti , T − ti)
)

.

G : For ti < t < ti+1 and τ > t , we have

φG(t, T ) = e−r(T−t)
ΦBM

b,γ,σ(Xti, T − ti)

ΦBM
b,γ,σ(Xti , t− ti)

+
Re−r(ti−t)e(Xti

−b)(γ̃−γ)σ−2

ΦBM
b,γ,σ(Xti , t− ti)

·
(

ΦBM
b,γ̃,σ(Xti , t− ti) − ΦBM

b,γ̃,σ(Xti , T − ti)
)

.

F : For τ > t , we have

φF(t, T ) = e−r(T−t)ΦBM
b,γ,σ(Xt, T − t) +

Re(Xt−b)(γ̃−γ)σ−2 (

1 − ΦBM
b,γ̃,σ(Xt, T − t)

)

.

Sketch of the proof : To begin with, we use Lemma 4.2.1 to express the prob-

abilities IP(τ > T |Jt) of Equations (4.32), (4.33) and (4.34) in terms of survival

probabilities of a Brownian motion with drift, for Jt ∈ {Ht,Gt,Ft} . The next step

is to evaluate the respective Riemann-Stieltjes integrals of Equation (4.35) using

Lemma 4.3.1, which yields extremely long terms. However, most of them allow

to be expressed in terms of survival probabilities of a Brownian motion with some

suitably adjusted drift. ♦

Interpretation of Theorem 4.5.2 and a numerical experiment

If we examine the formulas of Theorem 4.5.2 from the perspective of how an in-

vestor uses the available information about the firm-value process to assess the

price of a bond, we observe that all knowledge about the company occurs in the

respective pricing formula as expected. Given H , the best information about the

firm-value process is the value as revealed with the latest update. As pricing based

on H also involves uncertainty about whether the company is still solvent or not,

the price conditioned on H is always below the price conditioned on G . Of course,

this only holds as long as the company is solvent. Based on G , the pricing formula

contains the last available information about the value of the firm and additionally
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the default status of the company. Finally, pricing based on F is done based on

the current observation of the firm-value process and the history of this process

which determines the default status.

To illustrate the effect of reduced information on bond prices, we simulated a

sample path of the firm-value process on the time interval [0, 10] . Then, we com-

puted the respective prices φJ(t, 10) given the full information F and the sub-

filtration G . The parameters of this experiment are γ = 0 , σ = 0.05 , λ = 0.5 ,

IPY = 2-Exp(20, 20, 0.5) , r = 0.02 , R = 42% and d/v0 = 85% . The results of

this experiment are presented in Figure 4.1, the left-hand side showing the dis-

tance to default of X as seen given F and G , the right-hand side exhibits the

corresponding price processes φJ(t, 10) .
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Figure 4.1: A sample path of Xt − b and bond prices based on G and F .

Examining Figure 4.1, we observe that if the distance to default widened since

the last update, then bond prices based on F are above the corresponding prices

based on G , and vice versa. This is reasonable, as the widened distance to default

is instantaneously considered given F . Moreover, whenever the filtration G is

updated, the price process based on G jumps to match the price process com-

puted under F . This is also natural, as the filtrations coincide at the times of each

update.
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The price process of a CDS in a reduced filtration

We conclude this section with the corresponding results for a CDS with unit no-

tional. The price process of this CDS, conditioned on J ∈ {H,G,F} , satisfies

CDSJ(t, T ) = IE

[

(1 − R)e−r(τ−t)1{t≤τ≤T} −
∫ T

t

c1{τ>s}e
−r(s−t)ds

∣

∣

∣
Jt

]

= (1 −R)
(

1 − e−r(T−t)IP(τ > T |Jt)
)

+

((R− 1)r − c)

∫ T

t

e−r(s−t)IP(τ > s|Jt)ds

=
(

1 − R +
c

r

)

∫ T

t

e−r(s−t)dIP(τ ≤ s|Jt) −
c

r

(

1 − e−r(T−t)IP(τ > T |Jt)
)

. (4.36)

In a pure diffusion model, we computed Equation (4.36) as before, given the filtra-

tion J ∈ {H,G,F} . These results are presented in Theorem 4.5.3.

Theorem 4.5.3 (CDS prices given J ∈ {H,G,F} , pure diffusion scenario)

In all formulas, we use the abbreviations b = log(d/v0) , γ̃ =
√

γ2 + 2rσ2 and

A =
(

1 −R + c
r

)

exp{(Xti − b)(γ̃ − γ)σ−2} . The CDS price process, conditioned

on the respective filtration, is then given as follows.

H : For ti < t < ti+1 and τ > ti , we have

CDSH(t, T ) = Ae−r(ti−t)
(

ΦBM
b,γ̃,σ(Xti , t− ti) − ΦBM

b,γ̃,σ(Xti , T − ti)
)

−
c

r

(

1 − e−r(T−t)ΦBM
b,γ,σ(Xti , T − ti)

)

.

G : For ti < t < ti+1 and τ > t , we have

CDSG(t, T ) = Ae−r(ti−t)

(

ΦBM
b,γ̃,σ(Xti , t− ti) − ΦBM

b,γ̃,σ(Xti , T − ti)
)

ΦBM
b,γ,σ(Xti , t− ti)

−

c

r

(

1 − e−r(T−t)
ΦBM

b,γ,σ(Xti , T − ti)

ΦBM
b,γ,σ(Xti , t− ti)

)

.

F : For τ > t , we have

CDSF(t, T ) =
(

1 − R +
c

r

)

e(Xt−b)(γ̃−γ)σ−2 (

1 − ΦBM
b,γ̃,σ(Xt, T − t)

)

−
c

r

(

1 − e−r(T−t)ΦBM
b,γ,σ(Xt, T − t)

)

.
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Let us remark that the corresponding par-spread processes cJ,T−t are easily obtained

by solving CDSJ(t, T ) = 0 for c .

Sketch of the proof : We again omit the exact calculations involved in Theorem

4.5.3, as they are simple but extremely long. The relevant terms of Equation (4.36)

are closely related to the terms of Equation (4.35), which we already simplified in

the proof of Theorem 4.5.2. ♦
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4.6 The two-sided exponential distribution

In this section, we specify the jump-size distribution of the jump-diffusion process

X to be a two-sided exponential distribution, that is IPY = 2-Exp(λ⊕, λ⊖, p) . For

the reader’s convenience, let us recall that the density of this distribution is given

by

f(x) = pλ⊕e
−λ⊕x1{x>0} + (1 − p)λ⊖e

λ⊖x1{x<0}. (4.37)

The parameters of this distribution allow the following interpretation. A jump is

positive with probability p ∈ [0, 1] and negative with probability 1 − p . Positive

and negative jumps are exponentially distributed with parameters λ⊕ > 0 and

λ⊖ > 0 , respectively. This jump-size distribution along with the corresponding

jump-diffusion process was introduced to the financial literature as a model for

stock prices by Kou (2002).

In the context of credit risk, we feel that this jump-size distribution has several

desirable properties. First of all, the tails of this distribution are semi-heavy, and

therefore heavier as in the model of Zhou (2001a), which relies on normally dis-

tributed jumps14. Moreover, the two-sided exponential distribution is leptokurtic,

which implies that a larger fraction of the variance is due to infrequent extreme

deviations, compared to the normal distribution. Another desirable property is the

possibility to choose the parameters of this distribution such that jumps are asym-

metric, which allows to intensify downside jumps. Finally, it turns out that this

choice of jump-size distribution allows the computation of the Laplace transform

of first-passage times. Based on this result, we derive an extremely fast and accu-

rate approximation of bond and CDS prices. This algorithm makes the structural

default model tractable for applications such as a calibration to market quotes, as

presented in Section 4.9.

4.6.1 Basic properties of Kou’s stock-price model

According to Lemma 2.1.2, the Lévy density of the jump-diffusion process X

factorizes to ν(dx) = λf(x)dx . The nth -absolute moment of Xt exists for some

t > 0 or, equivalently for all t ≥ 0 , if and only if
∫

|x|≥1
|x|nν(dx) < ∞ . This is

guaranteed for all n ∈ N by the exponential tails of the jump-size distribution.

We define

µc := γ + λ

(

p

λ⊕
− 1 − p

λ⊖

)

(4.38)

14 Consequently, the jump-size distribution of the returns in Zhou’s firm-value model is a log-
normal distribution.
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to be the center of the process X and obtain from Lemma 2.1.3

IE[Xt] = tµc, Var(Xt) = t

(

σ2 + 2λ

(

p

λ2
⊕

+
1 − p

λ2
⊖

))

. (4.39)

For θ ∈ (−λ⊖, λ⊕) , the moment-generating function of the jump-size distribution

IPY exists and is given by

IE
[

eθY
]

=
pλ⊕
λ⊕ − θ

+
(1 − p)λ⊖
λ⊖ + θ

. (4.40)

From Equation (4.40), the moment-generating function of Xt is deduced as fol-

lows. The diffusion component is normally distributed with well-known moment-

generating function

IE
[

eθ(γt+σWt)
]

= exp

(

t

(

γθ +
θ2σ2

2

))

θ ∈ R. (4.41)

As the diffusion and jump component are independent, the moment-generating

function of Xt is easily obtained from Equations (4.40) and (4.41). For θ ∈
(−λ⊖, λ⊕) , it holds that IE

[

eθXt
]

= eG(θ)t , where G : R\{λ⊕,−λ⊖} → R is

defined as

G(x) := xγ +
1

2
x2σ2 + λ

(

pλ⊕
λ⊕ − x

+
(1 − p)λ⊖
λ⊖ + x

− 1

)

. (4.42)

For the structural firm-value model, this implies that the nth moment of Vt = v0e
Xt

exists, if and only if the corresponding exponential moment of Xt is finite. This

is fulfilled15 as long as λ⊕ > n . Given their existence, the first two moments of Vt

satisfy

IE[Vt] = v0 exp

(

γt+
1

2
σ2t+ λt

(

pλ⊕
λ⊕ − 1

+
(1 − p)λ⊖
λ⊖ + 1

− 1

))

,

Var(Vt) = v2
0

(

etG(2) − e2tG(1)
)

.

Given the moment-generating function of Xt from Equation (4.42) it is straightfor-

ward to derive the closely related Lévy-Khinchin representation of the process X .

This characterization is given by IE
[

eizXt
]

= etΨ(z) for z ∈ R , with characteristic

exponent

Ψ(z) := izγ − 1

2
z2σ2 + λ

(

pλ⊕
λ⊕ − iz

+
(1 − p)λ⊖
λ⊖ + iz

− 1

)

. (4.43)

15 Degenerated cases such as p = 0 or λ = 0 may require weaker conditions.
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As the jump-size distribution is integrable, we can compute the Lévy triplet of

X without truncating large jumps, see Cont and Tankov (2004), page 83. Using

Lemma 2.1.2 and the abbreviation

µ1 := γ +

∫

|x|≤1

xf(x)dx

= γ + λ

(

(1 − p)e−λ⊖

λ⊖

(

1 + λ⊖ − eλ⊖
)

+
pe−λ⊕

λ⊕

(

−1 − λ⊕ + eλ⊕
)

)

,

we obtain the following Lévy triplets of X

(

µ1, σ
2, λf(x)dx

)

1
,
(

µc, σ
2, λf(x)dx

)

c
,

computed relative to 1{|x|≤1} and no truncation, respectively.

4.6.2 The Laplace transform of first-passage times

Previously, we observed that pricing corporate bonds and credit derivatives requires

the distribution of first-passage times, compare Equations (3.1) and (3.3). We also

pointed out that for an arbitrary jump-diffusion process a closed-form expression

of this distribution is not known. However, due to the memoryless property of the

exponential distribution it is possible to explicitly calculate the Laplace transform16

of first-passage times if two-sided exponentially distributed jumps are assumed. To

begin with, we recall the definitions

τb := inf {t ≥ 0 : Xt ≤ b} , τ b̃ := inf
{

t ≥ 0 : Xt ≥ b̃
}

, b < X0 < b̃.

To derive an approximation of default probabilities, we proceed as follows. Given

the Laplace transform of IP(τb ≤ t) , which is derived in Theorem 4.6.1, the sec-

ond step is to numerically recover IP(τb ≤ t) from this transform. To do so, we

implemented the Gaver-Stehfest algorithm which is explained in Section 2.2.2.

The Laplace transform of IP(τb ≤ t)

For brevity, we define ϕ(α) := (L(IP(τb ≤ t))) (α) . Using integration by parts, we

rewrite the Laplace transform of IP(τb ≤ t) as the following expectation

ϕ(α) =

∫ ∞

0

e−αtIP(τb ≤ t)dt =
1

α

∫ ∞

0

e−αtdIP(τb ≤ t) =
1

α
IE[e−ατb ]. (4.44)

16 The definition of this transform and a collection of its properties was given in Section 2.2.
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This expectation admits an analytical solution which is presented in Theorem

4.6.1. To derive this result, we need the following lemma about the function G(x)

of Equation (4.42).

Lemma 4.6.1 (Kou and Wang (2003): The roots of G(x) − α )

For α > 0 , the function G(x)−α has exactly four roots. These roots are denoted

by β1,α , β2,α , −β3,α and −β4,α . Moreover, all roots are real and satisfy

0 < β1,α < λ⊕ < β2,α <∞, 0 < β3,α < λ⊖ < β4,α <∞.

Kou and Wang (2003) expressed the Laplace transform of IP(τ b ≤ t) in terms of

these roots. They showed that IE
[

exp(−ατ b̃)
]

= A1e
−b̃β1,α +B1e

−b̃β2,α , where

A1 =
λ⊕ − β1,α

λ⊕

β2,α

β2,α − β1,α
, B1 =

β2,α − λ⊕
λ⊕

β1,α

β2,α − β1,α
.

We adapt their proof to obtain the corresponding Laplace transforms of IP(τb ≤ t) .

Theorem 4.6.1 (The Laplace transform of IP(τb ≤ t) )

Let α > 0 and b < 0 . Then

IE[e−ατb ] = A2e
bβ3,α +B2e

bβ4,α, (4.45)

where the factors A2 and B2 are defined as

A2 :=
λ⊖ − β3,α

λ⊖

β4,α

β4,α − β3,α
, B2 :=

β4,α − λ⊖
λ⊖

β3,α

β4,α − β3,α
.

The Laplace transform of IP(τb ≤ t) is then obtained from Equation (4.44).

Sketch of the proof: This proof is based on the corresponding proof of Kou and

Wang (2003) for the running maximum. For brevity, we write βi = βi,α and define

u(x) :=

{

1 : x ≤ b,

A2e
β3(b−x) +B2e

β4(b−x) : x > b.

After some lengthy algebraic manipulations, we find

−αu(x) + (G(u)) (x) = 0 ∀x > b,
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where the infinitesimal generator G of the jump-diffusion process X is given by

(G(v)) (x) =
1

2
σ2v′′(x) + γv′(x) + λ

∫ ∞

−∞
(v(x+ y) − v(x)) f(y)dy,

with density function f from Equation (4.37), for all v ∈ C2 . We approximate

u using a sequence {un}n∈N of C2 functions with properties un = u on x ≥ b ,

un ≡ 1 on x ≤ b− 1/n and un ≤ 2 . For all x > b , this gives

(G(un)) (x) = αu(x) + λ

∫ b−x

b−x−1/n

un(x+ y)f(y)dy − λ

∫ b−x

b−x−1/n

u(x+ y)f(y)dy,

which we use to establish

| − αun(x) + (G(un)) (x)| ≤ λλ⊖
n

∀x > b.

An application of Lemma 2.1.4 (Itô’s formula for jump-diffusion processes) gives

e−α(t∧τb)un(Xt∧τb
) = un(X0) +

∫ t∧τb

0

e−αs (−αun(Xs) + (G(un)) (Xs)) ds+

∫ t∧τb

0

e−αsσu′n(Xs)dWs +

∫ t∧τb

0

e−αs

∫ ∞

−∞
(un(Xs− + y) − un(Xs−)) (JX(ds× dy) − λf(y)dyds) ,

from which it follows that

Mn
t := e−α(t∧τb)un(Xt∧τb

) −
∫ t∧τb

0

e−αs (−αun(Xs) + (G(un)) (Xs)) ds

is a local martingale starting at un(0) = u(0) . By dominated convergence, Mn is

even a martingale. Hence, we have

IE[Mn
t ] = IE

[

e−α(t∧τb)un(Xt∧τb
) −

∫ t∧τb

0

e−αs (−αun(Xs) + (G(un)) (Xs)) ds

]

= u(0).

By uniform convergence, we observe that the second summand vanishes as n tends

to infinity. This gives

u(0) = IE
[

e−α(t∧τb)u(Xt∧τb
)
]

= IE
[

e−α(t∧τb)u(Xt∧τb
)1{τb<∞}

]

+ IE
[

e−α(t∧τb)u(Xt∧τb
)1{τb=∞}

]

.
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Finally, we let t tend to infinity and use that u is bounded and u(Xτb
) = 1 on

the set {τb <∞} . We conclude

u(0) = IE
[

e−ατbu(Xτb
)
]

= IE
[

e−ατb
]

,

establishing the claim. ♦

4.6.3 Bond and CDS pricing using the Laplace transform

Given the explicit expression of the Laplace transform of IP(τb ≤ t) from Equation

(4.45), we need an algorithm that numerically recovers this probability. In what

follows, our implementations are based on the Gaver-Stehfest algorithm, as this

algorithm has the advantage of working purely on the real line. This feature is im-

portant, as the Laplace transform of IP(τb ≤ t) is only derived for positive values

of α . As a result of several numerical experiments, we found that the precision of

this inversion algorithm strongly depends on the precision of the roots of Lemma

4.6.1. Also, we are interested in a fast implementation of finding these roots. We

found that instead of numerically solving G(x) − α = 0 , a better performance in

terms of precision and speed is achieved if the expression G(x) − α = 0 is rewrit-

ten in terms of a quartic polynomial. Using Ferrari’s algorithm, it is then possible

to find these roots algebraically, as illustrated in Section 6.2. Alternatively, we

obtained a comparable performance in terms of precision and speed using the Pe-

gasus algorithm, which is explained in Engeln-Müllges and Reuter (1991), page 34.

The advantage of Ferrari’s algorithm is obvious, the roots are given by algebraic

formulas. However, these formulas are very long and require a complex arithmetic,

which possibly leads to an accumulation of round-off errors that exceed the preci-

sion of an approximation algorithm with given terminal condition. Therefore, it is

often more convenient to implement the real-valued Pegasus algorithm.

Given the approximation of first-passage probabilities, the idea of our Laplace-

pricing algorithm is to approximate the Riemann-Stieltjes integral of Equation

(3.1) as a Riemann-Stieltjes sum. The integrator is evaluated at the points of the

partition using the inverse Laplace method. Considering CDS prices, we apply the

same approach to Equation (4.17).

Algorithm 4.6.1 (Bond and CDS pricing using the Laplace transform)

Choose K, N ∈ N , where K denotes the number of subintervals of [0, T ] and N

denotes the precision of the inverse Laplace algorithm17.

17 As a rule of thumb, we suggest K = 50T and N = 9 .
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1. Partition the interval [0, T ] into K equidistant subintervals. Denote the

endpoints of these subintervals by tj := jT/K for j ∈ {0, . . . , K} .

2. Approximate the required default probabilities using the Gaver-Stehfest algo-

rithm. With the notations of Algorithm 2.2.1, compute for j ∈ {1, . . . , K}

ÎPN(τ ≤ tj) =

N
∑

k=1

w(k,N)F̃k+2(tj).

3. Approximate the zero-coupon bond price φ(0, T ) by

φK,N(0, T ) := e−rT
(

1 − ÎPN(τ ≤ T )
)

+

R

K
∑

j=1

exp

(

−r tj−1 + tj
2

)

ÎPN (tj−1 < τ ≤ tj) .

4. Approximate the CDS price CDS(0, T ) and the par spread cT by

CDSK,N(0, T ) := ((R− 1)r − c)DK + (1 − R)
(

1 − e−rT ÎPN(τ > T )
)

,

cK,N
T :=

(1 − R)
(

1 − e−rT ÎPN(τ > T ) − rDK

)

DK

,

where the integral
∫ T

0
IP(τ > t)e−rtdt is approximated via

DK :=
T

K

K
∑

j=1

ÎPN

(

τ >
tj−1 + tj

2

)

exp

(

−r tj−1 + tj
2

)

.

The vector
(

ÎPN (τ > (tj−1 + tj)/2)
)K

j=1
is computed as in Step 2.

In Section 4.8, we provide a comparison of Algorithm 4.6.1 with the Monte Carlo

simulation of Zhou (2001a) and our Monte Carlo approach of Section 4.3.2 based

on different fictitious scenarios. This analysis shows that Algorithm 4.6.1 is highly

accurate and by far the fastest pricing algorithm in a framework with two-sided

exponentially distributed jumps.
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4.7 Sensitivity of the model parameters

In this section, we analyze the sensitivity of bond and CDS spreads in a structural

jump-diffusion model with respect to changes in the parameters of the model.

Throughout this paragraph, two-sided exponentially distributed jumps are as-

sumed, as this choice of jump-size distribution allows us to use Algorithm 4.6.1

to obtain the presented graphs. The risk-free interest rate and the recovery rate

are assumed to equal r = 0.03 and R = 40% , respectively, the maturity varies

within T ∈ [0, 5] years. We present two graphs for each set of firm-value pa-

rameters. The graph on the left-hand side of the corresponding figure exhibits

credit spreads of a zero-coupon bond, the graph on the right-hand side presents

par spreads of a CDS contract written on this bond. The standard case for this

analysis is a company with parameters18 as given in Table 4.4. In each of the

following subsections, we fix all but one parameter. This parameter is then varied

within an appropriate range.

γi σi IPY λ d/v0

0.025 0.05 2-Exp(20, 20, 0.5) 2.0 80.0%

Table 4.4: The standard case of Section 4.7.

4.7.1 Sensitivity with respect to the drift

To begin with, we vary the drift of X within {−0.01, 0.01, 0.03, 0.05, 0.07} . In-

tuitively, the drift specifies the systematic growth of the modeled company. We

observe that the resulting term structures of spreads are decreasing in γ , meaning

that the highest curves in both graphs of Figure 4.2 correspond to the smallest

gamma, and vice versa. This result is as expected, since default probabilities are

obviously decreasing in γ . Also, we observe that the influence of the drift is more

pronounced for long maturities. Finally, we find that the limit of spreads at the

short end of the term structure does not depend on the drift of the diffusion. This

property was predicted by Theorems 4.3.4 and 4.4.2, which state that the limit of

spreads does not depend on the diffusion component of X .

Conclusion 1

Spreads are decreasing in γ . However, the impact of γ strongly depends on the

time to maturity. In our example, spreads corresponding to maturities T < 1
2

hardly changed with γ , whereas for T > 1 a strong dependence was observed.

18 Based on the results of our calibration in Section 4.9.2, we feel that these parameters are
realistic for a speculative-grade company.
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Figure 4.2: Bond and CDS spreads depending on γ .

4.7.2 Sensitivity with respect to the diffusion volatility

We now return to the original drift γ = 0.025 and vary the parameter σ > 0 within

{0.01, 0.03, 0.05, 0.07, 0.09} . The volatility of Xt linearly grows in σ2 , which im-

plies increasing default probabilities in this parameter19. As a result, spreads are

increasing in σ . Consequently, larger values of σ correspond to higher curves in

both graphs of Figure 4.3. Moreover, we observe that the limit of spreads as matu-

rity decreases to zero does not depend on the volatility of the diffusion component,

which is again a consequence of Theorems 4.3.4 and 4.4.2. Another interesting ob-

servation is that increasing values of σ imply that the diffusion component starts

dominating the overall behavior of the process Xt . As a result, the typical hump-

size structure of spreads, as implied by pure diffusion models, is more pronounced.

Conclusion 2

For realistic firm-value parameters, spreads are increasing in σ . The limit of

spreads at time zero is positive and independent of the diffusion component of X .

In our examples, contracts maturing within one or three years showed the strongest

dependence on σ .

19 This statement holds in our standard case, where the drift is positive and jumps are sym-
metric around zero. However, if the drift or the expectation of the jump-size distribution are
extremely negative, then it might happen that larger values of σ reduce the default proba-
bility up to some maturity. We constructed such examples, but the required parameters are
extremely unrealistic for the firm-value process of a company.
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Figure 4.3: Bond and CDS spreads depending on σ .

4.7.3 Sensitivity with respect to the jump intensity

In this section, we show that the influence of the jump intensity λ on credit and

CDS spreads depends on the jump-size distribution IPY . To begin with, let us

recall that the expectation and variance of Xt are given by t (γ + λIE[Y ]) and

t (σ2 + λIE[Y 2]) , respectively. Hence, the sign of IE[Y ] determines whether the

center of the process X is increasing or decreasing in λ . In contrast, the variance

of Xt is always increasing in λ . If the expectation of Y is less than or equal to

zero, then spreads are obviously increasing in λ . More ambiguous is a positive

expectation of Y , since both the center of the process X and the variance of

Xt are increasing in λ . Whichever effect dominates depends on the jump-size

distribution and the time to maturity. For short maturities, spreads are close to

being linearly increasing in λ , compare Theorems 4.3.4 and 4.4.2. For longer

maturities, additional jumps with positive expectations possibly reduce spreads.

To illustrate this claim, we construct two sets of parameters. The first example

is IPY = 2-Exp
(

20, 20, 1
2

)

, which corresponds to an expectation of zero. Our

second choice is IPY = 2-Exp
(

10, 30, 4
5

)

, corresponding to a positive expectation20.

Then, we fix the diffusion and leverage ratio d/v0 as in Table 4.4 and vary λ in

{0, 0.5, 1, 2, 3} . As a result, we obtain Figures 4.4 and 4.5. The different curves

of these four graphs can easily be distinguished according to their values at time

zero, which are increasing in λ .

Conclusion 3

For short maturities, spreads are close to being linearly increasing in λ . The long-

20 The obvious case of a negative expectation of Y is omitted.
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term effect of λ depends on the sign of IE[Y ] . However, if the expectation of Y

is not extremely positive, then spreads are increasing in λ for all maturities. In

our experiments, spreads of contracts maturing within one or three years showed

the strongest dependence on λ .
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Figure 4.4: Bond and CDS spreads depending on λ , IPY = 2-Exp
(

20, 20, 1
2

)

.
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Figure 4.5: Bond and CDS spreads depending on λ , IPY =
(

10, 30, 4
5

)

.

4.7.4 Sensitivity with respect to the influence of jumps

Equation (4.39) allows us to determine what percentage of Var(Xt) is explained by

jumps. Given IPY as in Table 4.4, the compound Poisson component contributes
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the fraction 2λ/(λ2
⊕σ

2+2λ) to the overall variance of Xt . We fix Var(Xt) = t(0.1)2

and choose σ and λ such that Var(Xt) is explained to 0%, 25%, 50%, 75% and

95% by jumps. To distinguish the curves of Figure 4.6, let us remark that at time

zero the spread is strictly increasing in λ . We also observe that especially for small

maturities, an increasing probability of defaulting by jump results in significantly

larger spreads, which is again a consequence of Theorems 4.3.4 and 4.4.2. However,

it turns out that the key-factor for long maturities is the volatility of the diffusion

component.

Conclusion 4

For short maturities, spreads primarily depend on the frequency and size of possible

jumps. Spreads of contracts with long maturities depend to a large extent on the

parameters of the diffusion component of X .
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Figure 4.6: Bond and CDS spreads depending on the source of variance.

4.7.5 Sensitivity with respect to the leverage ratio

Finally, we fix all parameters but the leverage ratio as in Table 4.4. We then

vary d/v0 in {75%, 80%, 85%, 90%, 92.5%} . Obviously, spreads are increasing in

d/v0 , as so are default probabilities. Surprising is how sensitive spreads of highly

leveraged companies are, compare the tall peaks in Figure 4.7. Also, we notice that

spreads of highly leveraged companies exhibit the typical hump-size structure. In

contrast, the term structure of spreads of companies with more equity capital is

upward sloping, at least on the interval T ∈ [0, 5] . Both observations are supported

by empirical evidence.
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Conclusion 5

Spreads are increasing in the leverage ratio of the company. For highly leveraged

companies, the hump-size structure of spreads is more pronounced.
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Figure 4.7: Bond and CDS spreads depending on the ratio d/v0 .

4.7.6 Summary

At first, we conclude that spreads react to changes in the parameters of the model

as expected. For reasonable parameters, spreads are decreasing in the drift and in-

creasing in the volatility of the diffusion component of X . A larger jump intensity

increases the volatility of Xt , which typically implies increasing spreads21. Finally,

spreads are increasing in the leverage ratio of the company. The property of being

consistent with our intuition is a very important feature for practical applications,

as it allows us to attach an interpretation to each of the parameters. Given such

interpretations, the mechanisms of the model are easily understood and accepted

by practitioners.

Our next observation is the extreme flexibility of the model in explaining different

term structures of spreads. This flexibility enables the model to match prices of a

vast spectrum of companies. The drawbacks of pure diffusion models, i.e. vanish-

ing spreads and the restriction to the typical hump-size structure, are overcome by

allowing negative jumps. For most real companies, we observed the term structure

of spreads to be increasing with positive limit at the short end, which is matched

by the model using appropriate parameters.

21 As long as the jump-size distribution is not essentially located on the positive axis.



4.7. Sensitivity of the model parameters 93

As a result of our investigations, we finally suggest the following rule of thumb.

While the jump component essentially explains the short-term behavior of spreads,

the long-term structure is explained to a large extent by the diffusion component.

This rule is useful if the parameters of the model are calibrated to market quotes.
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4.8 A comparison of the different algorithms

In this section, we provide a numerical comparison of all algorithms mentioned

earlier. We implemented all algorithms in C, using the NAG-software library22 to

generate the required random numbers. We worked on a Sun computer equipped

with an UltraSPARC-III+ processor with 900MHz. To provide a benchmark of

the run time, the output user time of the Unix command timex was chosen.

4.8.1 Run time and precision

Concerning Zhou’s algorithm, we used two different discretizations. The number

of grid points was set to 12T and 250T , where T denotes the maturity in years,

which corresponds to checking whether the bond defaulted once per month or once

per trading day, respectively. As parameters, we chose r = 0.04 , γ = 0.045 ,

σ = 0.05 and T = 5 . Jump sizes are assumed to be two-sided exponentially dis-

tributed with p = 0.5 and different choices of λ⊕ = λ⊖ . The leverage ratio d/v0

is set to 80% . We performed all simulations in four different scenarios. In the first

three scenarios, the recovery rate is kept constant, that is w0(x) ≡ 40% with the

notation of Section 4.5.1. In the scenario entitled Low, we expect only λ = 0.5

jumps per year, but they are expected to be large, so we choose λ⊖ = λ⊕ = 10 .

The scenario Middle corresponds to λ = 2 and λ⊖ = λ⊕ = 20 . In the scenario

High, λ = 8 jumps per year are expected with λ⊖ = λ⊕ = 40 . Finally, the

scenario Stochastic has the same jump structure as the scenario Middle, but the

recovery rate is stochastic with w1(x) = 0.5x . It can be shown that the volatility

and expectation of the underlying Lévy process X remain the same in all sce-

narios. We performed one million simulations per Monte Carlo algorithm. Since

the Brownian-bridge pricing technique generates an unbiased price, we addition-

ally performed ten million runs of this algorithm and interpreted the result as the

correct price.

We did two parts of simulations. In the first part, each Monte Carlo algorithm

was run one million times individually and the respective run time was taken. In

the second part, we measured the accuracy of each algorithm. In order to obtain

a comparison of the Brownian bridge algorithm with both of its approximations

which is not based on different samples, we initially generated one million samples

of F∗ , compare Equation (4.12). Then, we computed the resulting output of the

three algorithms based on the same samples of F∗ . The results of this experiment

are presented in Table 4.5 below.

22 See http://www.nag.co.uk for details.

http://www.nag.co.uk
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Low Middle High Stochastic

Zhou’s algorithm, Spread in bp 104.52 116.98 125.14 97.07
Algorithm 6.3.1 Rel. error in % 7.3486 9.8142 11.1032 9.5424

(K=12T ) h:min:sec 0:07:32 0:07:57 0:10:17 0:8:11
Zhou’s algorithm, Spread in bp 109.60 125.77 136.19 103.01
Algorithm 6.3.1 Rel. error in % 2.8455 3.0375 3.2535 4.0071

(K=250T ) h:min:sec 2:33:09 2:31:48 2:34:49 2:32:48
Brownian-bridge Spread in bp 112.65 129.80 140.96 107.35
pricing technique, Rel. error in % 0.1418 -0.0694 -0.1350 -0.0373
Algorithm 4.3.1 h:min:sec 0:06:39 0:19:05 0:58:47 0:19:08
Original integral Spread in bp 113.48 130.30 141.10 107.97
approximation of Rel. error in % -0.5939 -0.4549 -0.2344 -0.6150

Metwally and Atiya h:min:sec 0:00:44 0:02:28 0:9:24 0:2:28
Our integral Spread in bp 112.54 129.69 140.85 107.22

approximation, Rel. error in % 0.2393 0.0154 -0.0568 0.0839
Theorem 4.3.3 h:min:sec 0:00:45 0:02:25 0:9:17 0:2:25

Laplace pricing, Spread in bp 113.49 130.24 141.33 n.a.
Algorithm 4.6.1 Rel. error in % -0.6028 -0.4049 -0.3991 n.a.
(N=4, K=50T ) h:min:sec 0:00:00 0:00:00 0:00:00 n.a.
Laplace pricing, Spread in bp 112.81 129.64 140.85 n.a.
Algorithm 4.6.1 Rel. error in % 0.0012 0.0524 -0.0535 n.a.
(N=7, K=50T ) h:min:sec 0:00:00 0:00:00 0:00:00 n.a.
Laplace pricing, Spread in bp 112.83 129.72 140.90 n.a.
Algorithm 4.6.1 Rel. error in % -0.0172 -0.0061 -0.0940 n.a.
(N=10, K=50T ) h:min:sec 0:00:00 0:00:00 0:00:00 n.a.

Brownian bridge, 107 runs, in bp 112.81 129.71 140.77 107.31

Table 4.5: Comparison of the algorithms.

Table 4.5 contains, beside the run time and the generated credit spread of each

algorithm and scenario, the relative error of the credit spread, which we define as

(spread - generated spread)/spread 23.

The data set shows that Zhou’s algorithm produces a significant bias. When simu-

lating with only 12 grid points per year, the relative error exceeds 7% . Even with

250 grid points per year, the relative error is at least 2.8% , which is still above

bid-ask spreads. Examining the run time of the Brownian-bridge pricing technique

shows that it depends strongly on the expected number of jumps. The reason for

this is the dependence of the number of random numbers that have to be drawn

and the number of integrals which have to be calculated on the number of jumps.

We also observe that the approximation of the integrals significantly reduces the

23 While spread denotes the credit spread obtained from the Brownian-bridge simulation with ten
million runs, generated spread represents the credit spread from the corresponding algorithm.
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run time, without producing a relevant bias.

In terms of speed, the Laplace algorithm outperforms every Monte Carlo simu-

lation by far. Algorithm 4.6.1 is able to price bonds in fractions of seconds, it is

therefore the best choice for applications such as a calibration, where the pricing

formula has to be evaluated several times. Another advantage of this approxima-

tion compared to a Monte Carlo simulation is the following. While two Monte

Carlo runs with the same parameters most likely provide different results, it is

possible to interpret the output of Algorithm 4.6.1 as a real valued function of

the parameter space. Hence, it is possible to numerically approximate its partial

derivatives, which is required in most numerical optimization routines. However,

the drawback of this approach is that it is only available for two-sided exponentially

distributed jumps. Also, generalizations to stochastic recovery rates or stochastic

interest rates are not available.

4.8.2 A closer comparison of both integral approximations

Our approximation of
∫

e−rsgi(s)ds differs slightly from the approximation of Met-

wally and Atiya (2002). They obtain the additional factor exp (−∆τi) and evaluate

Φ at different points24. Since the error terms in Equations (4.14) and (4.15) are

negative, we expect bond prices generated by both approximations to be slightly

larger than real prices. Said differently, we expect that the corresponding credit

spreads are slightly lower. In order to compare the accuracy of both approxima-

tions, we performed two kinds of simulations. Firstly, we compared the approxi-

mations for randomly generated parameters. Secondly, we compared bond prices

obtained by both approximations.

A comparison based on random numbers

We generated random numbers for r , σ , τ1 , b and Xτ1 − b . More precisely,

in every step we draw a uniformly distributed random number on [0, 0.1] (resp.

[0.1, 0.5], [0.5, 2.0], [−0.2,−0.01], [−0.2, 0.2] ) for r (resp. σ , τ1 , b , Xτ1 − b ). We

chose those ranges as they are realistic for our bond-pricing problem. For every

such parameter set, we calculated the relative error of the approximation suggested

by Metwally and Atiya (2002) and of our approximation of
∫ τ1
0
e−rsg1(s)ds . We

compared those results with a highly accurate25 numerical approximation of the

24 To be more precise, in Metwally and Atiya (2002) the second term in the sums of Equa-
tions (4.14) and (4.15) is multiplied by e−∆τi . Moreover, Φ is evaluated at (2b − Xτi− −
Xτi−1

)/
√

2∆τiσ2 and ∆Xi/
√

2∆τiσ2 in C1 and C2 , respectively.
25 We used the NAG routine d01ajc with parameter epsabs = 10−8 for the absolute error.
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integral, which we interpreted as the correct value. After 500,000 simulations, the

average relative error of the original and our approximation was found to be 1.553%

and 0.001%, respectively.

The effect of both approximations on bond prices

To test the impact of the improved and the original approximation on resulting

bond prices, we implemented Algorithm 4.3.1 using both approximations and cal-

culated bond prices for different parameter sets and different interest rates. Our

simulations show that our approximation almost always implies a lower relative

pricing error26. While the pricing error of the original algorithm increases signifi-

cantly in r , the pricing error of our modification remains small when the interest

rate increases. Our formulas always produce a bias as expected, namely bond

prices which are slightly too high. In contrast, the original formulas imply bond

prices which are too low.
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Figure 4.8: The relative pricing error of the original and our approximation.

26 Except for the scenario High, when r equals 2.5% .
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Figure 4.8 displays the absolute values of the relative pricing errors of both ap-

proximations in different scenarios. More precisely, it shows |(pu − pa)/pu| , where

pu and pa represent the unbiased and approximated bond price, respectively. We

calculated the pricing error in the first three scenarios of Table 4.5 with parameters

γ = 0.025 , σ = 0.05 and two-sided exponentially distributed jumps with p = 0.5 .

The recovery rate was set constant to R = 40% and T = 5 was chosen as matu-

rity. For each scenario and interest rate, we performed ten million simulations. For

the scenario Low, the relative pricing error of the original Taylor approximation

increases to 4.41%, when the interest rate tends to 25%27. In the scenario Middle,

the pricing error increases to 1.25%, and even in the scenario High, the pricing

error still exceeds 0.33%. In contrast, applying our formulas, the pricing error

remains relatively small, namely around 0.036%, 0.018% and 0.015%, respectively.

The exact numbers underlying this graph are given in Table 4.6.

Low Middle High
r Original Our Original Our Original Our

0.025 0.072560 -0.006450 0.035636 -0.008159 0.008500 -0.008627
0.050 0.183640 -0.007161 0.089252 -0.008701 0.027612 -0.009191
0.075 0.339830 -0.008382 0.154848 -0.009499 0.049408 -0.010083
0.100 0.550475 -0.009074 0.239234 -0.010398 0.074507 -0.010582
0.125 0.836835 -0.010999 0.338649 -0.011148 0.105069 -0.011337
0.150 1.228662 -0.012840 0.462425 -0.012113 0.139050 -0.010996
0.175 1.747642 -0.016792 0.603955 -0.013367 0.177395 -0.012765
0.200 2.400023 -0.021394 0.788351 -0.014252 0.221226 -0.013789
0.225 3.288684 -0.028168 0.993531 -0.015914 0.272949 -0.013913
0.250 4.414416 -0.036117 1.253171 -0.017627 0.330520 -0.014954

Table 4.6: The relative error of the original and our approximation in %.

27 Of course, r = 0.25 is not realistic. Nevertheless, simulations with high interest rates illustrate
how fast the original approximation becomes inaccurate. However, even for r = 0.05 , the
relative pricing error of the original approach is 0.18%, which exceeds the relative pricing error
of 0.007% in our approximation by far.
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4.9 Calibration

In this section, we present an approach on how parameter estimates for the firm-

value process of a company may be obtained from market data. One problem

we have to overcome is that the value of the modeled company is only observ-

able at the dates when the firm’s balance sheet is published. This snapshot on

the firm’s financial situation is typically published at the end of each fiscal year,

which excludes statistical estimation techniques based on the complete history of

the firm-value process. Therefore, instead of past trajectories of the firm-value

process we use market quotes of bonds and CDS contracts to calibrate the model.

Nevertheless, our objective is to calibrate the firm-value process with respect to the

pricing measure IP . Therefore, using up-to-date market quotes is rather a natural

approach than just a makeshift. Most data used in Section 4.9 was provided by

Bloomberg L.P.. This data service is available at the Universität Ulm due to the

generous support of the Landesbank Baden-Württemberg (LBBW).

4.9.1 Calibration to corporate bonds

The assets of all major companies are financed to a large proportion by bonds with

different maturities. The quoted prices of these bonds reflect the market’s view

on the creditworthiness of the respective company. In what follows, we attempt

to choose the parameters of our model such that the model implies the same term

structure of default probabilities as the market. Said differently, the model implies

the same bond prices.

In what follows, we denote the bonds of a company by B1, . . . , Bn . For these

bonds, we obtain model prices BM
1 , . . . , B

M
n from Equation (3.1) and Lemma 3.1.1.

These model prices depend on the parameters of the underlying firm-value process.

To begin with, we specify the jump-size distribution IPY to be a two-sided expo-

nential distribution, as this choice allows the use of Algorithm 4.6.1. Hence, the

firm-value process is fully specified by the parameters (γ, σ, λ, λ⊕, λ⊖, p) . The set

of market prices which we seek to match with our model is denoted by BR
1 , . . . , B

R
n .

Our next concern is a suitable measure of distance of model to market prices. Pop-

ular examples for this error functional are the sum of absolute, relative or squared

distances. Within this section, we choose to minimize the sum of squared distances

of model to market prices. Formally, we obtain the minimization problem

(

γ̂, σ̂, λ̂, λ̂⊕, λ̂⊖, p̂
)

= argmin
n
∑

i=1

(

BR
i − BM

i

)2
,
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where γ ∈ R , σ, λ, λ⊕, λ⊖ ∈ R+ and p ∈ [0, 1].

The companies DaimlerChrysler (DCX) and General Motors (GM)

We decided to exemplarily fit the parameters of the firm-value processes of Daim-

lerChrysler (DCX) and General Motors (GM). Both companies have issued several

liquidly traded bonds with different maturities. While DCX is considered to be an

investment-grade company, GM is rated as sub investment-grade company at the

time of the calibration. We slightly modify Formula (3.1), replacing the constant

risk-free interest rate by a deterministic risk-free yield curve. For the respective

day, we obtained this yield curve from market prices of Bundesanleihen, as pub-

lished by Stuttgart’s stock exchange28. Both companies publish their debt-to-value

ratio every quarter. These numbers are obtained from Bloomberg. The last pa-

rameter of our model which has to be specified is the recovery rate. Here, we rely

on historical numbers as published by Altman and Kishore (1996). All industry

sectors combined, they report an average recovery rate of about 41% . Consider-

ing the business structure of DCX and GM and reported recoveries for different

industry sectors, we chose the recovery rate for DCX and GM a notch higher, that

is R = 42% . Before we present the results of our calibration in Tables 4.7, 4.8 and

4.9, let us first add some remarks on the numerical implementation.

Numerical details

Our optimization problem is to minimize a function of several variables with un-

known partial derivatives. Moreover, the parameters show functional dependence

and different local minima complicate the optimization. The required time to

evaluate our objective function, which is the sum of squared differences of model

to market prices given a set of parameters, strongly depends on the accuracy of

the Laplace inversion in Algorithm 2.2.1. We obtained a good performance by

gradually increasing this accuracy from N = 3 to N = 9 . The minimization pro-

cedure of our choice is the routine nag opt bounds no deriv of the NAG-software

library. According to the documentation, this procedure is implemented as follows.

In each iteration step, the gradient at the current position is estimated by means of

a finite-difference approximation. Further, an approximation of the Hesse-matrix

is also obtained and a search direction is computed. The objective function is then

minimized along the search direction and all variables are updated for the next

step. A more detailed description of this algorithm is given in the documentation

of the NAG-software library.

28 Available online for maturities T ∈ {0, . . . , 10} , compare http://www.boerse-stuttgart.de.
Non-integer maturities are obtained from a linear interpolation.

http://www.boerse-stuttgart.de
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Setup and results for DCX and GM

We used bond quotes as of August 25, 2005 from Stuttgart’s stock exchange. These

prices include accrued interest, which we considered in our pricing formula. Consid-

ering the other input parameters, we used a debt-to-value ratio of d/v0 = 82.3913%

for DCX and d/v0 = 94.47131% for GM. These ratios are obtained from the re-

spective balance sheets of the second quarter of 2005. The risk-free yield curve is

obtained from Bundesanleihen. The lists of bonds (currency of all bonds: Euro)

which were used for the calibration are given in Table 4.8 and 4.9. Using this setup,

we obtained the following results.

γ̂ σ̂ p̂ λ̂ λ̂⊕ λ̂⊖
∑

(BM
i −BR

i )2

DCX .00445 .02026 .47689 .85278 35.791 28.512 0.39046
GM -.00391 .01231 .50553 .37310 96.599 38.350 2.49747

Table 4.7: Calibrated parameters for DCX and GM, August 25, 2005.

WKN Coupon Maturity BM BR Rel. error

369293 4.625 10.03.2006 103.306861 103.19 -0.1132%
611867 6.125 21.03.2006 104.712257 104.67 -0.0404%
689080 5.625 06.07.2006 103.498493 103.42 -0.0759%

A0DB7Z 2.000 05.09.2006 101.547979 101.54 -0.0079%
907882 3.750 02.10.2006 104.799059 104.73 -0.0659%
829942 5.625 16.01.2007 107.656132 107.46 -0.1825%

A0DHP3 2.475 16.03.2007 101.017892 101.22 0.1997%
851890 6.125 27.03.2007 108.038199 107.80 -0.2210%

A0BD90 2.608 02.07.2007 100.416606 100.78 0.3606%
A0DZP6 3.125 10.03.2008 102.317418 102.39 0.0709%
765013 3.750 04.06.2008 103.311009 103.19 -0.1173%

A0ACD4 4.125 23.01.2009 106.146911 106.19 0.0406%
611868 7.000 21.03.2011 121.048224 120.84 -0.1723%

A0DDFR 4.250 04.10.2011 107.844546 108.02 0.1624%

Table 4.8: Model and market prices of DaimlerChrysler.
In this table, the relative error is calculated as (BR − BM)/BR .

Interpretation of the results

At first, we observe the excellent fitting capability of the model, both for small and

long maturities. For all bonds, the differences of model to market prices are far
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below bid-ask spreads. The estimated parameters for DCX and GM correspond to

IE[X1] = 0.000166 and −0.006771 , respectively. The variances of X1 are given

by Var(X1) = 0.002143 and 0.000443 , respectively. In absolute values, these vari-

ances seem to be extremely small. However, the initial distance to default of the

process X is given by x0 = − log(d/v0) , which is also very small. If we divide

this distance to default by the root of Var(X1) , we observe the process X to be

only 4.18 and 2.70 standard deviations above default, respectively.

Another interesting observation is that the variance of Xt is only explained to

19.15% and 34.22% by the diffusion component, respectively, the jump compo-

nent accounts for the remainder. This indicates that including jumps in a tradi-

tional diffusion model is not just a realistic, but also a necessary generalization, if

a fit to bonds with different maturities is required. While the diffusion component

explains the long-term behavior of credit spreads, the jump component corrects

unrealistic small spreads for bonds with short maturities. Finally, we observe that

in both examples negative jumps are pronounced, that is λ̂⊖ < λ̂⊕ .

WKN Coupon Maturity BM BR rel. error

183098 7.000 15.11.2005 106.142388 106.21 0.0637%
291815 4.000 09.02.2006 102.234274 102.48 0.2398%
610260 5.750 14.02.2006 103.897810 104.15 0.2421%
776306 4.174 03.03.2006 102.130616 102.22 0.0874%

A0BC23 2.625 14.06.2006 99.430427 99.43 -0.0004%
908510 4.375 26.09.2006 104.190749 104.50 0.2959%
748413 6.000 16.10.2006 107.077676 107.15 0.0675%

A0DACL 3.040 15.02.2007 99.598528 98.60 -1.0127%
850892 6.125 15.03.2007 105.091735 105.23 0.1314%

A0E8A5 4.125 02.06.2007 99.988892 100.45 0.4590%
A0E7D3 5.625 13.07.2007 102.130365 102.16 0.0290%
819413 4.750 16.07.2007 100.433439 100.22 -0.2130%

A0DCTX 2.923 14.09.2007 98.939518 99.27 0.3329%
A0DG6B 3.674 03.12.2007 99.648395 99.45 -0.1995%
894454 6.000 03.07.2008 101.925706 101.32 -0.5978%
905302 3.920 12.09.2008 98.760729 98.76 -0.0007%

A0BEAR 3.429 30.06.2009 90.925046 91.51 0.6392%
A0DCTY 4.750 14.09.2009 98.718413 98.60 -0.1201%
908511 5.750 27.09.2010 100.522887 100.24 -0.2822%

A0AWBL 5.375 06.06.2011 93.247923 93.43 0.1949%

Table 4.9: Model and market prices of General Motors.
The relative error is calculated as (BR − BM)/BR .
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4.9.2 Calibration to iTraxx CDS quotes

Bonds are highly standardized products which are typically traded on public mar-

kets. In contrast, most CDS are traded over the counter and are based on different

terms of contract. Therefore, it is extremely difficult to obtain and compare CDS

quotes. In order to make the CDS market more transparent, several leading invest-

ment banks founded the joint venture International Index Company 29 (IIC), which

launched the first standardized CDS index in 2004. Since then, different series of

selected CDS contracts have been issued. These quotes provide us with the mar-

ket’s view on the term structure of default probabilities of the listed companies.

What makes this set of data even more valuable is the fact that for some series, not

only CDS quotes, but also prices of portfolio derivatives are listed. These quotes

are used in Section 5.3.4 to calibrate our multidimensional generalization of the

model.

The data set

We used CDS quotes of the fifth European iTraxx series. This inhomogeneous port-

folio contains 125 companies from six business sectors30, their ratings vary from

AA+ to BBB-. CDS spreads are quoted for each firm for contracts maturing in one,

three, five, seven and ten years, respectively. All contracts are computed based on

a recovery rate of 40%. Unfortunately, not all contracts are traded liquidly enough

to provide daily quotes for all maturities. More concrete, daily quotes for contracts

maturing in three, five or ten years are available for most companies. On the other

side, about half of the CDS quotes for contracts with maturities of one or seven

years are not available in Bloomberg. In this case, we extrapolated or interpolated

empty cells of our database using the average slope of all available companies, at-

tached to the listed CDS contract with the closest maturity of the same company31.

Besides CDS quotes, we obtained the term structure of default-free interest rates

in the Eurozone from Bloomberg. These interest rates are available day-to-day for

integer-valued maturities, other maturities are obtained from a linear interpola-

tion. This deterministic term structure of interest rates is used to replace the flat

interest rate in the CDS pricing formula.

29 http://www.indexco.com
30 Auto 8%, Consumer 24%, Energy 16%, Financial 20%, Industrial 16% and TMT 16%.
31 For instance, if the one-year spread of a company was not available, then this value was

extrapolated starting at the three-year quote of the same firm. For this, the average slope of
all other companies with available one and three-year quote was computed.

http://www.indexco.com
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The calibration algorithm

In what follows, we present our calibration method which is used to calibrate

each firm-value process of the 125 companies of the iTraxx portfolio. We again

assume two-sided exponentially distributed jumps. Though, we fix p = 1
2

and

λ⊕ = λ⊖ to reduce the dimension of the parameter space. This reduction of

dimension is done for two reasons. First of all, it significantly accelerates the

convergence of the minimization. Moreover, it accounts for the fact that our data

set only contains five data points per company, which makes a calibration of more

parameters very unstable. Unlike bonds which trade around their par value, CDS

spreads for different maturities are not around the same level. Typically, CDS

spreads are increasing in the maturity of the contract. For instance, we observed

the ten-year CDS spread of several companies to exceed the corresponding one-year

spread by more than factor ten. Therefore, we changed our objective function to

be the sum of relative differences, that is

(

γ̂, σ̂, λ̂, λ̂⊕ = λ̂⊖

)

= argmin
∑

t∈{1,3,5,7,10}

∣

∣

∣

∣

cRt − cMt
cRt

∣

∣

∣

∣

, (4.46)

where cMt is the model spread depending on the set of parameters and cRt is the

market quote for the respective maturity. Using this construction it is guaranteed

that all maturities are considered to equal parts in the minimization. The initial

leverage ratio was obtained from the last available balance sheet of each company,

as reported by Bloomberg.

Again, we used the procedure nag opt bounds no deriv of the NAG-software li-

brary to perform the required minimization. Our first approach was to use identical

initial parameters for all companies. This approach was not satisfying, as the min-

imization routine often stopped in some local minimum close to the initial value.

The reason therefor is the inhomogeneity of the companies in the portfolio. We

fixed this problem using the following two-step approach.

1. For each company, find an appropriate initial position

To begin with, we define a coarse grid on the parameter space. Then, we

perform a näıve search for initial parameters by evaluating the objective

function at each of these points. The position of the minimum on this grid

is stored.

2. Start the actual minimization at this position

The minimization routine nag opt bounds no deriv is then started at the

optimal grid point of the previous step. It turned out that the minimization

routine converged extremely fast from this initial position.
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Results of the calibration

We fitted the model to data of an eight week period, beginning May 2006. The

calibration is performed using iTraxx CDS quotes of each Tuesday and Thursday

of this period. This corresponds to 2,000 individual calibrations, resulting from

125 companies at 16 different dates.
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Figure 4.9: Implied average default probabilities and portfolio CDS spreads.

The left-hand side of Figure 4.9 displays the average implied default probability

over a period of one, three, five, seven and ten years, respectively, as obtained

from the calibration. The right-hand side shows quoted portfolio CDS spreads

for a contract maturing in three, five and ten years, respectively. We notice that

within the observed period, the average implied default probabilities are slightly

increasing, but do not exhibit sudden changes. This result is realistic, as for the

same period we observe increasing portfolio CDS spreads, which essentially depend

on the average default probability over the respective period.

Figure 4.10 exhibits the average pricing error for each day of the calibration, in

absolute values on the left-hand side, in relative values on the right-hand side.

Considering that the companies within the portfolio are extremely inhomogeneous,

we conclude that the fitting capability of the model is excellent32. For all days and

maturities, the average pricing error is below three basis points, which is within

the bid-ask interval for almost all companies. In contrast, if we fit a pure diffusion

32 This fitting capability is further improved if asymmetric jumps are allowed or a finer grid for
the search of initial parameters is used. This was computationally too expensive for 2,000
calibrations.
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Figure 4.10: Average pricing error.

model to the same data, we observe that such a model is not able to match a

realistic term structure of spreads. The typical hump-size structure of spreads, as

implied by a pure diffusion model, and the zero limit of spreads for short maturities

lead to a massive underpricing of contracts with maturities of one and ten years,

and a slight overpricing of contracts with maturities of three, five and seven years,

respectively. Figure 4.11 illustrates that the implied spreads of CDS maturing in

one and ten years, respectively, are far off a realistic range. In absolute values, the

average pricing error in a continuous model is about eight times larger for CDS

maturing in one and ten years, respectively. For the remaining maturities, the

average pricing error is still reduced by about 50% if jumps are allowed.
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Figure 4.11: Calibration in a pure diffusion model.
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4.10 Summary of the univariate model

Structural default models are based on the economic interpretation of default as a

result of insufficient asset values. In daily practice, most structural default models

still rely on a geometric Brownian motion as model for the firm-value process, which

is rather a concession to its analytical tractability than to its capability of matching

empirical facts. The major drawback of this approach is that the continuity of the

Brownian motion allows investors to predict the time of default, contradicting the

sudden bankrupt of several prominent companies33 over the last decades. Conse-

quently, it is virtually impossible for a solvent company to default within a short

amount of time, which forces credit spreads to tend to zero in the time to maturity.

It was Zhou (2001a) who first proposed to overcome this shortfall by superpos-

ing the diffusion of the asset value process with a compound Poisson process. In

such a model, default is possible by diffusion and by jump, the latter of which

is unpredictable. This possibility of a negative jump, prevailing even in a short

amount of time, leads to a positive limit of spreads, which we succeeded to com-

pute in closed form. However, the distribution of first-passage times in a general

jump-diffusion model is still an open mathematical problem. The pricing of bonds

and single-name derivatives is therefore usually done by means of a Monte Carlo

simulation, for which we presented an unbiased and efficient approach. Another

feature of jump-diffusion models is the possibility of using the random undershot

in the event of default by jump to explain the recovery rate as an endogenously

specified random variable. This property is also included in our algorithm. More-

over, we generalized the model to random default thresholds, short-rate processes

and different filtrations.

If two-sided exponentially distributed jumps are assumed, then the Laplace trans-

form of first-passage times is known, due to Kou and Wang (2003). Combined

with an inverse Laplace algorithm, this result suggests an extremely fast and ac-

curate method of approximating the pricing formula of single-name derivatives.

We worked out this approach in detail and compared it to different Monte Carlo

simulations. As an application of this algorithm, we presented a calibration of

the model to market data and an analysis of the sensitivity of model prices with

respect to changes in the parameters of the firm-value process. We found that the

term structure of spreads, as induced by a structural default model based on a

jump-diffusion process, is extremely flexible and able to match observed prices far

better than a continuous model.

33 For instance, let us mention the bankrupts of PanAM (1991), Enron (2001), Sabena (2001),
WorldCom (2002) and Swissair (2002).
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Chapter 5

The multidimensional model

So far, we were primarily concerned with the pricing of single-name credit deriva-

tives. More generally, we considered contracts with payment streams depending

on the creditworthiness of a single obligor. In this chapter, we generalize the struc-

tural default model of Chapter 4 to a multidimensional model. This model is able

to simultaneously1 explain the individual default probabilities of different firms

and their default correlation. These two variables determine the loss distribution

of a credit portfolio. Our model is then used to price multi-name credit derivatives

such as CDOs and nth -to default contracts. Also, our intention is to present a nu-

merically tractable model which allows for a calibration to market quotes. Before

we formally introduce our model, let us first collect some empirical observations

which we want to incorporate.

The first property we want to match is the dependence of each firm-value pro-

cess on the macroeconomic situation. This sensitivity to common macroeconomic

factors differs from company to company, depending on the business structure of

the respective firm. If translated in joint default probabilities, this phenomenon is

often referred to as cyclical default correlation.

The second property we want to incorporate is the phenomenon of default clusters,

i.e. time periods with several defaults. For a jump-diffusion model, we feel that it

is natural to specify the model such that common jumps are possible with positive

probability. This idea also accounts for the fact that different companies simul-

taneously respond to unexpected events with jumps in their firm-value processes.

The consequence of allowing common jumps is a larger default correlation, com-

pared to a continuous model with a single market factor. In such a factor model,

companies are independent conditioned on this variable.

1 Most portfolio models consider individual default probabilities as given input variables and
focus on modeling the default correlation alone.
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Our last concern is to generalize the model without changing the structure of

the individual firm-value processes. Such a generalization allows us to transfer

most of the properties and algorithms which we developed in the previous chapter.

Moreover, it provides the possibility of using a large pool of data2 to calibrate

the marginal default probabilities of the model. Being consistent with single-name

derivatives, it remains to calibrate the dependence structure such that prices of

multi-name derivatives are matched.

5.1 The multivariate firm-value model

In the sequel, we assume a credit portfolio consisting of I ∈ N firms which we

index by i ∈ {1, . . . , I} . As in Chapter 4, our model for each individual firm-value

process is the exponential of a jump-diffusion process. In what follows, we develop

different concepts on how dependence may be introduced to these processes. Also,

we show how derivatives on a credit portfolio are priced based on the respective

generalization of the model.

5.1.1 A common market factor and common jumps

In this first approach, we introduce dependence through a common market factor

and via jumps that are triggered by a joint Poisson process. The common market

factor accounts for the observation that most companies are sensitive to business

cycles. The current macroeconomic situation is modeled using a Brownian motion

of the market, which is denoted by WM = {WM
t }t≥0 . The individual Brownian

motion W i = {W i
t }t≥0 of company i is then replaced by the weighted sum

aiW
M +

√

1 − a2
iW

i,

where the factor ai ∈ (−1, 1) assesses the degree of systematic dependence of com-

pany i on the market. Our mechanism of triggering common jumps is motivated by

the following economic interpretation. Intuitively, jumps of the firm-value process

of some company are triggered if unexpected information or events are revealed.

Mathematically, this translates into a Poisson process N = {Nt}t≥0 , whose jumps

are interpreted as the arrival of new information. Admittedly, not all informa-

tion is relevant for company i . Therefore, we introduce the factor bi ∈ (0, 1] to

represent the probability of company i to respond with a jump in its firm-value

process to a jump of the ticker process N . This construction corresponds to a

2 Compare Section 4.9, where we presented a calibration to bond and CDS quotes.
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thinned-out Poisson process with intensity λ , the intensity of the trigger process

N , and thinning probability (1 − bi) . In what follows, this object is denoted by

N(bi) = {Nt(bi)}t≥0 . Finally, we obtain the following model for the firm-value

process of company i

V i
t = vi

0 exp
{

X i
t

}

, X i
t = γit+ σi

(

aiW
M
t +

√

1 − a2
iW

i
t

)

+

Nt(bi)
∑

j=1

Y i
j . (5.1)

In Equation (5.1), the Brownian motions WM and W i , as well as all random

variables defining the jump component, are assumed to be mutually independent.

Moreover, all firm-individual parameters vi
0 , γi and σi and the jump-size distri-

bution IPY i obey the same restrictions as in Chapter 4. The first consequence of

this construction is the following lemma.

Lemma 5.1.1 (Original jump-diffusion model for all margins)

In distribution, the firm-value process of company i agrees with vi
0 times the expo-

nential of a jump-diffusion process with diffusion volatility σi , jump intensity biλ

and jump-size distribution IPY i .

Proof : WM
t and W i

t being independent, their weighted sum aiW
M
t +

√

1 − a2
iW

i
t

agrees in distribution with a Brownian motion at time t . This is easily checked

from the properties of a Brownian motion and the properties of the normal distri-

bution. Moreover, it is deduced from the definition that the thinned-out Poisson

process N(bi) agrees in distribution with a regular Poisson process with intensity

biλ , compare Lemma 2.1.1. ♦

5.1.2 A common market factor and dependent jumps

So far, we assumed all jumps to be mutually independent. However, it seems

reasonable that most news affect different firms in a similar manner. Therefore,

we propose to classify new information as being good or bad for the economy.

Even if there might exist examples for information which are positive for some

and negative for other companies, a well accepted phenomenon is that markets

are highly correlated in extreme events. Based on this observation, we relax the

assumption of independent jumps and assume that jumps at the same jump time

have a common sign. However, they do not have identical jump sizes. The sign of all

jumps at some jump time τl is determined by an initial Bernoulli experiment with

success probability p = 0.5 . The outcome of this experiment specifies whether

an information is considered to be good or bad. In order to not changing the
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individual default probabilities, we have to restrict the set of possible jump-size

distributions of each individual firm-value process using the condition

IPY i

(

Y i
l > 0

)

= IPY i

(

Y i
l < 0

)

= 0.5 ∀i ∈ {1, . . . , I}, ∀l ∈ N.

The implementation of this variant of the model simplifies considerably if a jump-

size distribution is chosen where up and downward jumps are easy to distinguish.

For instance, we implemented the model using two-sided exponentially distributed

jumps with IPY i = 2-Exp(λi
⊕, λ

i
⊖,

1
2
) and normally distributed jumps with zero

mean, i.e. IPY i = N (0, (σ̃i)2) .

Consequences of dependent jumps

Our numerical investigations of Section 5.2 show that the assumption of dependent

jumps significantly increases the default correlation among the firms. The effect of

this augmented correlation leads to larger spreads in the senior tranches of a CDO,

as illustrated in Tables 5.3 and 5.4. A sample plot of three dependent firm-value

processes is given in Figure 5.1.

t
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Figure 5.1: The sample paths of three dependent firm-value processes.

In Figure 5.1, the first jump at τ1 = 0.53 only affects a single firm. In contrast,

the second jump at τ2 = 2.17 affects the other two firms. The jumps at these τl
have the same direction but different sizes. The diffusion components are coupled

to the market using ai = 0.5 for all i ∈ {1, 2, 3} . Following each negative jump, it

is likely that several firms default simultaneously, which we interpret as a default

cluster.
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5.1.3 Segmentation by industry sector

This approach on coupling the individual firm-value processes is inspired by map-

ping each company to a specific branche. For instance, each company of the Eu-

ropean iTraxx portfolio is assigned to one of the six branches: Auto, Consumer,

Energy, Financial, Industrial and TMT. The idea for this variant of the model

came up in a discussion3 with Wim Schoutens, K.U. Leuven, whom I want to

thank at this point.

More precisely, we assume as given S ∈ N different industry sectors, indexed

by s ∈ {1, . . . , S} . Further, the mapping of each company to the set of industry

sectors is well-defined. Considering common factors, we introduce a common fac-

tor of the market WM = {WM
t }t≥0 and a common factor of each industry sector

W s = {W s
t }t≥0 . Then, the Brownian motion of each company is replaced by a

weighted sum consisting of its individual Brownian motion W i = {W i
t }t≥0 , the

Brownian motion of the respective industry sector W s and the Brownian motion

of the market WM . These processes are assumed to be mutually independent. As

abbreviation, we introduce

W̃ i
t (ai, ci) := aiW

M
t + ciW

s
t +

√

1 − a2
i − c2iW

i
t , ai, ci ∈ (−1, 1), a2

i + c2i ≤ 1.

In this framework, our concept of incorporating dependence via jumps combines

the idea of using common factors with the idea of supporting common jumps

from Section 5.1.1. More precisely, we assume that some information is relevant

to all companies, others affect a specific industry sector. Finally, some news are

only relevant to an individual company. The ticker processes which report these

pieces of information are independent Poisson processes which we denote by NM =

{NM
t }t≥0 , N s = {N s

t }t≥0 and N i = {N i
t}t≥0 , respectively, where s ∈ {1, . . . S}

and i ∈ {1, . . . , I} . Their intensities are denoted by λM , λs and λi , respectively.

For company i , relevant news are reported by the superposition of market, sector

and individual Poisson process. This superposition is abbreviated as

Ñ i
t := NM

t +N s
t +N i

t .

The model of the firm-value process of company i is then given as

V i
t = vi

0 exp
{

X i
t

}

, X i
t = γit+ σiW̃

i
t (ai, ci) +

Ñ i
t

∑

j=1

Y i
j , (5.2)

3 At the conference on credit risk in Ulm, September 2005.
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where we impose the same restrictions on the individual firm-value parameters as

in Chapter 4. Again, we find that the univariate margins agree with the single-firm

model of Chapter 4. More precisely, we obtain the following lemma.

Lemma 5.1.2 (Original jump-diffusion model for all margins)

The firm-value process of company i , belonging to sector s , agrees in distribution

with vi
0 times the exponential of a jump-diffusion process with diffusion volatility

σi , jump intensity λi = λM + λs + λi and jump-size distribution IPY i .

Proof : Using basic properties of the normal distribution and independence of

the Brownian motions WM
t , W s

t and W i
t , it is easily checked that the weighted

sum W̃ i
t (ai, ci) agrees in distribution with a Brownian motion at time t . Lemma

2.1.1 establishes that the superposition of independent Poisson processes is again

a Poisson process. Moreover, the intensity of the superposition is the sum of the

intensities of the summands. ♦

In Section 5.3, we introduce an algorithm for the pricing of CDOs within the

models of Sections 5.1.1 and 5.1.2. Altering this algorithm for an implementation

of the model with different industry sectors only requires minor changes. However,

we focus on the first two versions of the model, as we do not have sufficient market

data to fit this latter variant of the model.

5.1.4 Properties and applications of the model

One important feature of our model is the possibility of modeling different firms

with different sets of firm-value parameters. This distinguishes our approach from

models which accept the simplification of a homogeneous portfolio. Also, we model

the evolution of each firm-value process over time. In this section, we briefly

comment on consequences and possible applications of these properties.

1. Sensitivity and hedging

If a company defaults, it is very likely that this company was rated below

the average rating of the portfolio. In a model with identical companies,

CDO spreads of the remaining portfolio remain unchanged. In our model,

the average default probability of the remaining portfolio decreases, if one of

the substandard companies defaults. The result is that spreads of a newly

issued CDO contract, based on the remaining companies, are decreasing. We

interpret this as the relief of the market that one of the substantial risk fac-

tors is removed from the portfolio. The opposite holds, if a company defaults

which was considered to be a safe investment. Then, the average default
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probability of the remaining portfolio increases, and so do spreads of a new

CDO contract on the remaining portfolio.

More generally, these considerations suggest an analysis of the sensitivity

of CDO spreads with respect to single companies. For instance, hedging a

CDO using single-name CDS requires such results.

2. Creating sub-portfolios

Given identical companies, the loss distribution of each sub-portfolio only

depends on its size. In contrast, a sub-portfolio in our model is automatically

equipped with a realistic default structure. An important application of this

property is the pricing of CDS sector indices, that are sub-portfolios of the

iTraxx CDO portfolio consisting of companies of the same industry sector.

3. Modifying the portfolio

The composition of the iTraxx portfolio changes about twice per year. In

this case, several companies are delisted from the portfolio and replaced by

new firms. The default structure of the updated portfolio obviously depends

on the relative creditworthiness of the new companies compared to the old

firms. Capturing this feature also requires heterogeneous companies.

4. Simultaneously describing single and multi-name derivatives

Our model is designed to realistically describe the term structure of default

probabilities of each company in the portfolio. While this property is pre-

sumably the major advantage compared to pure dependence models, when

it comes to a calibration of the model, it turns out to be a burden and an

advantage at the same time. A burden, as a large number of parameters

have to be adjusted. An advantage, as it allows us to use a vast quantity of

market information as input for the calibration. We will comment on this in

detail in Section 5.3.4.

5. A time consistent framework

Another important aspect is the consistency of our model with respect to

the time, as we explicitly model the evolution of each firm-value process.

Therefore, the model specifies the complete term structure of default proba-

bilities of each company and the overall portfolio loss. This allows us to price

portfolio derivatives with different maturities within a consistent framework.

5.1.5 Existing structural portfolio models

At the moment, most structural portfolio models are static models in the sense that

the underlying firm-value processes are only considered at the premium payment
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dates. Typically, these models are generalizations of Vasicek’s model4 and relax

some of its assumptions or change the embedded distributions. A list of structural

models which are comparable to our approach is given below.

Hull et al. (2005) model the asset process of each company as a geometric Brow-

nian motion, where dependence is introduced using one or more common factors

which partially replace the Brownian motion of each individual firm-value process.

The model is implemented via a Monte Carlo simulation, default is only tested on

a grid. As a result, their prices are close to prices in Vasicek’s model. Compared

to our approach, this model is the special case of Equation (5.1) where jumps are

not allowed5. Moreover, we continuously test for default.

Willemann (2005) models each firm-value process as Zhou (2001a), assuming a

jump-diffusion model with normally distributed jumps. He splits the diffusion

component of each company into a common and an idiosyncratic factor. Jumps

in this model are triggered by a common Poisson process, which implies an iden-

tical jump intensity for all companies. The combination of normally distributed

jumps and the simplification that default is only possible at the premium payment

dates allows to obtain default probabilities as infinite series. This is achieved by

conditioning on the number of jumps of the trigger process. Willemann presents a

calibration method and concludes that his model allows a better fit to market data

than Vasicek’s model. However, he reports an extremely small implied jump inten-

sity. Willemann’s model corresponds to choosing bi = 1 and IPY i = N (µi, (σ̂i)
2)

for all i in Equation (5.1) of our model. Moreover, our model generalizes this

model in the sense that we continuously test for default.

Finally, two models relying on specific choices of Lévy processes have been proposed

by Moosbrucker (2006) and Kassberger (2006). Moosbrucker presents several gen-

eralizations of the model of Luciano and Schoutens (2005), where the value process

of each firm is the exponential of a variance-gamma process. He introduces depen-

dence using correlated Brownian motions, correlated gamma processes or through

a common time shift, which is interpreted as business time. The resulting CDO

spreads of the different tranches exhibit a correlation smile and a good fit to market

quotes. Kassberger develops a general Lévy setup and implements a model with

firm-value processes following NIG distributions. To achieve a good fit to portfolio

CDS quotes, the default thresholds in this model are time dependent. Kassberger

derives a good fit to CDO quotes with a relatively small number of parameters.

The model is implemented using a Monte Carlo simulation.

4 Compare Section 6.4.
5 That is, we set λ = 0 , bi = 0 or IPY i = δ0 for all i .
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5.2 Default, asset and implied correlation

At several points in this thesis, the term default correlation was used without a

formal introduction. In this section, we state a mathematical definition and explain

the dependence of this quantity on the parameters of our multivariate model. Also,

we explicitly derive the asset correlation of two companies in the models of Sections

5.1.1 and 5.1.2. Finally, we present some numerical investigations considering the

implied correlation of our model.

5.2.1 Default correlation

Definition 5.2.1 (Default correlation)

Let the default status of company i ∈ {1, . . . , I} at time t be explained by the

indicator variable Di = {Di
t}t≥0 , where

Di
t := 1{τ i≤t}.

The default correlation of two companies i, j up to time t > 0 is then defined as

ρD
t := Corr

(

Di
t, D

j
t

)

=
IE
[

Di
tD

j
t

]

− IE[Di
t]IE[Dj

t ]
√

Var (Di
t)Var (Dj

t )
.

Being Bernoulli distributed random variables, the expectation and variance of Di
t

can easily be expressed in terms of default probabilities6. More delicate is the cal-

culation of IE[Di
tD

j
t ] , which is the probability of a default of company i and j up

to time t . This expectation is difficult to obtain, as for non-degenerated choices

of model parameters, the firm-value processes of both companies are dependent

random variables, and so are their running minimums. However, in a purely con-

tinuous model it is possible to express the default correlation of two companies in

terms of a double integral of Bessel functions. This result was derived by Zhou

(2001b) using several results of Rebholz (1994). In the presence of jumps, we

have to rely on a Monte Carlo simulation to estimate these quantities. Before we

present our findings, let us remark that such a Monte Carlo simulation requires a

large number of runs to produce reliable results, since multiple defaults are rare

events. Our Monte Carlo simulation is a simple modification of the first part of

Algorithm 5.3.1, we allow ourselves to omit the details. We controlled the accuracy

of this algorithm by reproducing some of the tables of Zhou (2001b).

6 Without jumps, these default probabilities are known in closed-form. In the presence of jumps,
these default probabilities are estimated or approximated as shown in Sections 4.2.3 and 4.6.
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Figure 5.2: Implied default correlations for fixed a and b , respectively.

Figure 5.2 exhibits simulated default correlations of two identical companies with

parameters γ = 0 , σ = 0.05 , IPY = 2-Exp
(

20, 20, 1
2

)

and d/v0 = 85% . This

experiment is performed in the framework of Section 5.1.2 with dependent jumps.

On the left-hand side, we fix a = 0.5 and vary b 7. The figure on the right-hand

side is calculated based on a fixed level of b = 0.5, λ = 4 and different levels of a .

Our first remark is that our model has two parameters to adjust the default corre-

lation, contrasting pure diffusion models with a single common factor. Moreover,

supporting common jumps produces simultaneous defaults already for small matu-

rities. This differs from the situation in a continuous model, where defaults within

the first year are extremely rare events, and so are multiple defaults. The fact that

a continuous model requires more time to generate a relevant default correlation

becomes even more evident in Figure 5.3. This figure is produced using the same

setup as before8, the three scenarios differ by the influence of jumps.

More precisely, the largest default correlation was implied for all maturities by

the model of Section 5.1.2 with dependent jumps. Anticipating Theorem 5.2.1,

adding independent jumps with zero expectation to a continuous model decreases

the asset-value correlation. Still, the model of Section 5.1.1 with independent jumps

implies a larger default correlation than a continuous model for small maturities.

On a longer time horizon, the opposite holds. The phenomenon that continuous

7 To keep the individual default probabilities constant, we fix the individual jump intensity,
which is the product bλ .

8 Parameters: γ = 0 , σ = 0.05 , IPY = 2-Exp
(

20, 20, 1

2

)

, d/v0 = 85% , a = 0.4 , b = 0.5 .
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models require some time to produce a relevant default correlation should be kept

in mind, if the objective is to price portfolio derivatives with short maturities.
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Figure 5.3: Default correlations with independent, dependent and no jumps.

Conclusion 6

Common jumps imply a significant default correlation already for small maturities.

In contrast, a common Brownian motion requires some time to induce multiple

defaults. For short maturities, a larger asset-value correlation does not necessarily

imply a larger default correlation.

5.2.2 Asset-value correlation

In the previous section, we had to rely on simulation techniques to estimate the

default correlation of two companies i 6= j . In this section, we present a closed-

form expression of the correlation of X i
t and Xj

t , the exponents of the respective

firm-value processes. If both processes are continuous, that is

X l
t = γlt+ σl

(

alW
M
t +

√

1 − a2
lW

l
t

)

l ∈ {i, j},

then Cov
(

X i
t , X

j
t

)

= σiσjaiajt is deduced from independence of all Brownian

motions and basic properties of the covariance. Therefore, the correlation of X i
t

and Xj
t is the product of the factors al , i.e.

Corr
(

X i
t , X

j
t

)

= aiaj . (5.3)
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The continuous model being a special case of the jump-diffusion framework, a

general result necessarily boils down to Equation (5.3) if λ = 0 , bi = bj = 0 or

IPi
Y = IPj

Y = δ0 . This property is easily checked to hold in Theorems 5.2.1 and

5.2.2.

Theorem 5.2.1 (Asset-value correlation, independent jumps)

Given the model of Section 5.1.1 with square integrable jump-size distributions IPi
Y

and IPj
Y , the processes X i and Xj satisfy

ρX := Corr
(

X i
t , X

j
t

)

=
σiσjaiaj + λbibjIE[Y i]IE[Y j]

√

σ2
i + λbiIE

[

(Y i)2]
√

σ2
j + λbjIE

[

(Y j)2]
.

Proof : By independence of both diffusion and jump components, and by using

the same arguments as in the pure diffusion case, we obtain

Cov
(

X i
t , X

j
t

)

= σiσjCov
(

aiW
M
t , ajW

M
t

)

+ Cov
(

CP i
t , CP

j
t

)

= σiσjaiajt+ λtbibjIE[Y i]IE[Y j], (5.4)

where the abbreviation CP l
t :=

∑Nt(bl)
k=1 Y l

k for l ∈ {i, j} is used. To justify Equa-

tion (5.4), we have to derive the covariance of the jump components. This is

achieved by first conditioning on the number of information Nt = k , then on the

number of jumps Nt(bi) = li and Nt(bj) = lj , respectively. Given the Poi(λt)

distributed random variable Nt , the number of jumps of the thinned-out Poisson

processes Nt(bi) and Nt(bj) follow binomial distributions with respective param-

eters. We identify the sums involved in the following computation as the expecta-

tion of a binomial distribution and the second moment of a Poisson distribution.

Therefore, we find

IE
[

CP i
tCP

j
t

]

= IE [IE[CPiCPj |σ(Nt, Nt(bi), Nt(bj))]]

= IE

[ ∞
∑

k=0

( k
∑

li=0

k
∑

lj=0

(

li
∑

l=1

Y i
l

)(

lj
∑

l=1

Y j
l

)

·

(

k

li

)

bl
i

i (1 − bi)
k−li

(

k

lj

)

bl
j

j (1 − bj)
k−lj
)

(λt)ke−λt

k!

]

= bibjIE[Y i]IE[Y j ]

∞
∑

k=0

k2 (λt)ke−λt

k!

= bibjIE[Y i]IE[Y j ]
(

(λt)2 + λt
)

.

The claim follows, since IE[CP l
t ] = tλblIE[Y l] for l ∈ {i, j} and the variances of

the jump-diffusion processes X l
t are given by Var(X l

t) = t
(

σ2
l + λblIE[(Y l)2]

)

for
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l ∈ {i, j} , respectively. ♦

The assumption of independent jumps considerably simplified the main compu-

tation of this proof. If jumps in the same direction are imposed instead, then one

has to additionally condition on the number of jumps of both companies in either

direction. Under some mild conditions on the symmetry of the jump-size distri-

butions, we were able to obtain the corresponding result in the context of Section

5.1.2.

Theorem 5.2.2 (Asset-value correlation, dependent jumps)

We now consider the model of Section 5.1.2 with jumps in the same direction. As

this model requires jumps in a pre-specified direction, we define Y l
⊕ and Y l

⊖ for

l ∈ {i, j} to be the size of a positive and negative jump, respectively, given the

sign of Y l . More precisely, the distributions of Y l
⊕ and Y l

⊖ are given for x > 0

by IP(Y l
⊕ ≤ x) = IP(Y l ≤ x|Y l > 0) and IP(Y l

⊖ ≤ x) = IP(−Y l ≤ x|Y l < 0) ,

respectively. Then, we again assume square integrable jump-size distributions IPY l

for l ∈ {i, j} . Further, we impose the following assumption on the symmetry of

the jump-size distributions

IPY l

(

Y l > 0
)

= IPY l

(

Y l < 0
)

= 0.5 l ∈ {i, j}.

Moreover, we need

IE
[

Y i
⊕
]

= IE
[

Y i
⊖
]

= IE
[

|Y i|
]

, IE
[

Y j
⊕
]

= IE
[

Y j
⊖
]

= IE
[

|Y j|
]

.

Then, the processes X i and Xj satisfy

ρX := Corr
(

X i
t , X

j
t

)

=
σiσjaiaj + λbibjIE[|Y i|]IE[|Y j|]

√

σ2
i + λbiIE

[

(Y i)2]
√

σ2
j + λbjIE

[

(Y j)2]
.

Proof : Large parts of this proof are similar to the proof of Theorem 5.2.1. The

main difference is the delicate computation of the expectation of the product of

the jump components, i.e. IE[CP i
tCP

j
t ] . The evaluation of this expectation is

complicated, as jump sizes at common jump times are forced to have the same

sign.

To begin with, we again condition on the amount of information up to time t .

By construction, this equals the maximum number of jumps of the processes X i

and Xj . Following a Poi(λt) distribution, we have IP(Nt = k) = (λt)ke−λt/k! .

Given Nt = k , we additionally condition on how much of this news is positive.
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This yields

IP(l|k) := IP( l positive news |Nt = k) =

(

k

l

)

0.5l(1 − 0.5)k−l 0 ≤ l ≤ k.

Given k news, from which l are classified as good, the number of bad news is

k − l . The conditional probabilities of X i to have exactly li⊕ upward and li⊖
downward jumps are therefore given and abbreviated as

IP(li⊕|l) :=

(

l

li⊕

)

b
li
⊕

i (1 − bi)
l−li

⊕ 0 ≤ li⊕ ≤ l,

IP(li⊖|l) :=

(

k − l

li⊖

)

b
li
⊖

i (1 − bi)
k−l−li

⊖ 0 ≤ li⊖ ≤ k − l.

The probabilities IP(lj⊕|l) and IP(lj⊖|l) are defined similarly for Xj . Using these

abbreviations, we rewrite IE
[

CP i
tCP

j
t

]

as

IE

[ ∞
∑

k=0

(

k
∑

l=0

ISi(l, k)ISj(l, k)IP(l|k)
)

IP(Nt = k)

]

, (5.5)

where the inner sums ISi(l, k) and ISj(l, k) are defined as

ISi(l, k) :=
l
∑

li
⊕

=0

k−l
∑

li
⊖

=0





li
⊕
∑

h=1

Y i
⊕h

−
li
⊖
∑

h=1

Y i
⊖h



 IP(li⊕|l)IP(li⊖|l),

ISj(l, k) :=
l
∑

lj
⊕

=0

k−l
∑

lj
⊖

=0





lj
⊕
∑

h=1

Y j
⊕h

−
lj
⊖
∑

h=1

Y j
⊖h



 IP(lj⊕|l)IP(lj⊖|l).

We take the expectation inside in Equation (5.5) and use that IE [|Y i|] = IE
[

Y i
⊕
]

=

IE
[

Y i
⊖
]

. Using the expectation of a binomial distribution with l , respectively k−l ,
experiments and success probability bi , we find

IE
[

ISi(l, k)
]

=

l
∑

li
⊕

=0

k−l
∑

li
⊖

=0

(

li⊕IE[|Y i|] − li⊖IE[|Y i|]
)

IP(li⊕|l)IP(li⊖|l)

= (2l − k)biIE
[

|Y i|
]

.

Similarly, it holds that IE
[

ISj(l, k)
]

= (2l−k)bjIE [|Y j |] . We further observe that

k
∑

l=0

(2l − k)2bibjIE[|Y j|]IE[|Y i|]IP(l|k) = bibjIE[|Y j |]IE[|Y i|]k.
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This holds, since the sum allows the interpretation of being 4bibjIE[|Y j |]IE[|Y i|]
times the variance of a binomial distribution with k experiments and success

probability 0.5 . Finally, the outer sum is bibjIE[|Y j |]IE[|Y i|] times the expectation

of a Poi(λt) distribution. Therefore, we find

IE[CP i
tCP

j
t ] = λtbibjIE[|Y j |]IE[|Y i|].

At the same time, this is the covariance of the jump components, since IE[CP i
t ] =

IE[CP j
t ] = 0 , by the initial assumptions on the symmetry of IPY i and IPY j . ♦

Let us finish this section with a brief remark on the results of Theorems 5.2.1

and 5.2.2. First of all, the postulated correlations are within the required range of

[−1, 1] , due to the Cauchy-Schwarz inequality. Moreover, both results contain the

pure diffusion model as a special case. The fact that allowing common jumps does

not necessarily increase the asset correlation is remarkably. For instance, if the

expectations of the jump-size distributions of two companies have opposite signs,

then even a negative correlation of X i and Xj is possible. However, modeling

jumps using common signs implies a positive correlation of the respective jump

components.

5.2.3 Implied correlations

If a new option-pricing model is proposed, it is common practice to compare it

with the model of Black and Scholes (1973). For derivatives on a credit portfolio,

the standard benchmark is Vasicek’s asymptotic single factor model9. This model

is chosen as reference for various reasons. First of all, it is easy to implement. It

even allows for an analytical solution of most portfolio derivatives. Secondly, the

correlation among the companies is adjusted using the single parameter ρ . This

construction allows to invert prices of derivatives for the parameter ρ , which is

then interpreted as implied correlation. Finally, the model is still used by many

market participants.

Implied correlations of CDO tranches

Quoted CDO spreads provide us with the market’s view on the correlation struc-

ture of the respective portfolio. Given the price of some portfolio derivative, the

idea behind the notion of implied correlations is to invert Vasicek’s model for the

correlation. This means, the correlation is adjusted such that the market quote of

9 This model is also known as Gaussian-copula model. A description of Vasicek’s model is
postponed to Section 6.4 of the Appendix.
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the respective derivative is matched by the model. If a CDO is considered, this

corresponds to matching the market spread of a certain tranche10.

From a mathematical perspective, we first observe that this notion is not nec-

essarily well defined. While spreads of the equity tranche are decreasing in the

correlation, spreads of the senior tranches are typically increasing. Both stem from

the fact that adding correlation increases the probability for multiple defaults, but

also the probability of a small number of defaults. In contrast, the reaction of the

mezzanine tranches on increasing correlation is ambiguous, especially the spread

of the junior mezzanine tranche is typically not monotone in ρ . This complicates

the interpretation and computation of implied correlations, as the equation

market price = model price (ρ) (5.6)

may be solved by several values of ρ . We therefore define the implied correlation of

CDO tranches as in Definition 5.2.2 below. Implied correlations of other derivatives

are defined similarly.

Definition 5.2.2 (Implied correlation of CDO tranches)

Given tranche j ∈ {1, . . . , J} of a CDO with maturity T , we define

ρI,j
T := inf

{

ρ ∈ (−1, 1) : market quote of sj
f = model price of sj

f (ρ)
}

.

If no solution of Equation (5.6) is found, that is inf ∅ , then ρI,j
T is defined to be

the smallest minimizer of the difference of model to market prices.

The correlation skew

Examining market data suggests that implied correlations are not constant across

different tranches. More precisely, the implied correlations of the equity and se-

nior tranche are typically observed to be larger than the implied correlations of

mezzanine tranches. This observation is known as correlation skew, a detailed de-

scription of this phenomenon is given in Lehnert et al. (2005). Also, it is observed

that the implied correlation of a tranche is typically not constant for contracts with

different maturities.

Anticipating the numerical investigations of Section 5.3.3, we conclude that our

model produced very realistic implied correlations. More precisely, we used our

10 Alternatively, instead of considering a single tranche of the CDO, it is possible to consider
some fraction [0, x%] of the portfolio. The resulting implied correlations of this approach are
known as base correlations.
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model to derive CDO spreads based on several fictitious portfolios and different

assumptions on the correlation structure. Then, we interpreted these spreads as

real prices and computed the implied correlations. The results of this experiment

are given in Tables 5.3 and 5.4. As expected, we observe that implied correlations

are increasing in the parameters a and b . It is surprising by how much the implied

correlation increases if the model is run with jumps in the same direction instead

of independent jumps. Also, and this coincides with market quotes, a correlation

skew is implied by our model in most examples of the experiment.
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5.3 Pricing CDOs via Monte Carlo simulation

In this section, we introduce a Monte Carlo simulation which is designed to price

CDOs in a very general setting. Most notations are already given in Section 3.3,

some more are introduced below. So far, we did not specify the individual default

times τ i . Again, we define the time of default of company i as the first-passage

time of its firm-value process below its default threshold, which is denoted by di .

This definition seems natural, since it agrees with the time of default in the univari-

ate model. Nevertheless, let us again stress the fact that most structural models

only test for default at the times of the premium payments. This concession is

typically accepted to avoid computational difficulties.

The algorithm we introduce estimates the expected discounted payment streams

as given in Equations (3.6) and (3.9). Later, for a calibration to CDO quotes, we

need some adjustments of the algorithm to match the exact contractual terms of

the iTraxx portfolio. However, these adjustments are rather tedious to implement

than mathematically challenging. Our algorithm is based on the models of Sec-

tions 5.1.1 and 5.1.2, a model with different industry sectors as in Section 5.1.3 is

implemented similarly.

Algorithm 5.3.1 (Monte Carlo estimation of CDO prices)

For simplicity, we assume periodic premium payments with frequency η years. De-

pending on the terms of contract, this algorithm might require minor changes.

Within each simulation run, perform the following steps.

I) Simulate the required random variables

1. Simulate the number of information arriving within [0, T ] . This corresponds

to simulating a realization of NT from a Poi(λT ) -distribution.

2. Simulate the location of these news 0 < τ1 < . . . < τNT
< T . Conditioned

on NT , these random times are distributed as order statistics of Uni(0, T )

distributed random variables on [0, T ] .

3. Create an equidistant grid on [0, T ] with mesh 11 κ . This grid needs to be

fine enough to contain all premium payment dates, as the computation of the

premium leg requires the expected loss at these times 12. Therefore, we need

η = κk for some k ∈ N .

11 For an equidistant grid, the mesh is the difference of any two consecutive points.
12 If η = 1

4
, we propose to choose a monthly grid, that is κ = 1

12
.
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4. Combine this grid with τ1 < . . . < τNT
to a refined partition of [0, T ] . Denote

the attachment points of this partition by 0 = t0 < t1 < . . . < tn < tn+1 = T .

This partition is no longer equidistant, but contains the jump times of all

companies and the times of all premium payments. Store the information

whether tl is a jump of N or not.

5. Simulate a realization of the Brownian motion of the market WM , sampled at

the partition above. More precisely, generate a series of independent random

variables x1, . . . , xn+1 , where xj ∼ N (0,∆tl) . Then, inductively compute

WM
tl

via

WM
t0 = 0, WM

tl
= WM

tl−1
+ xl ∀l ∈ {1, . . . , n+ 1}.

6. Simulate realizations of the exponent of each firm-value process at, that is

Xtl , and immediately before, that is Xtl− , the points of the partition.

First, determine the jumps of each firm-value process. Simulate I times a

series of NT independent Bernoulli experiments, where the success probabili-

ties in the ith series are given by bi . The outcomes of these experiments are

denoted by Bi
l and specify the jump times of each firm-value process. More

precisely, a success in experiment l of series i , i.e. Bi
l = 1 , corresponds to

a jump of V i at position τl .

The next step depends on whether we assume independent jump sizes, that

corresponds to the model of Section 5.1.1, or jumps with the same sign, which

corresponds to the variant of Section 5.1.2.

(a) If jumps are assumed to be independent, simulate I times NT indepen-

dent random numbers, denoted by yi
l , where

yi
l ∼

{

IPY i : Bi
l = 1,

δ0 : Bi
l = 0.

(b) If the model of Section 5.1.2 is used, perform NT independent Bernoulli

experiment with success probability p = 0.5 to determine the common

sign at each τl . Then, simulate each yi
l as above, conditioned on the

respective sign.

Finally, simulate the increments of the diffusion components in between the

points of the grid. This corresponds to simulating I times n+1 independent

random numbers xi
l , where xi

l ∼ N (0,∆tl) , and the construction below.

For each company, inductively compute X i
t0
, X i

t1−, X
i
t1
, . . . , X i

tn+1
by

X i
t0

= 0,



128 Chapter 5. The multidimensional model

X i
tl− = X i

tl−1
+ γi∆tl + σi

(

ai∆W
M
tl

+
√

1 − a2
ix

i
l

)

∀ l ∈ {1, . . . , n+ 1},

X i
tl

=

{

X i
tl− + yi

l : ∃ j ∈ {1, . . . , NT} : tl = τj ,

X i
tl− : tl 6= τj , ∀ j ∈ {1, . . . , NT},

∀ l ∈ {1, . . . , n+ 1}.

7. Define F∗ as the information of all firm-value processes on the grid, i.e.

F∗ = σ
{

X i
tl−, X

i
tl
, tl : l ∈ {0, . . . , n+ 1}, i ∈ {1, . . . , I}

}

.

8. Calculate conditional survival probabilities of each company up to each point

of the grid. These probabilities are easily expressed in terms of the distribution

of the running minimum of a Brownian bridge, compare Lemma 4.2.2.

IPIPi
l := IP

(

τ i ≥ tl|F∗)

= IP

(

inf
0≤s<tl

X i
s > log

(

di

vi
0

)

∣

∣

∣
F∗
)

=
l
∏

j=1

ΦBB
b,σi

(X i
tj−1

, X i
tj−,∆tj), b = log(di/vi

0).

Moreover, we also need the conditional probability of each firm not to default

within [tl−1, tl) , which is given by

IPi
l := IP

(

τ i /∈ [tl−1, tl)|F∗)

= IP

(

inf
tl−1≤s<tl

X i
s > log

(

di

vi
0

)

∣

∣

∣
F∗
)

= ΦBB
b,σi

(X i
tl−1

, X i
tl−,∆tl), b = log(di/vi

0).

II) Estimate the expected loss at each tl− and tl

1. Initialize
(

L̂t0−, . . . , L̂tn+1−

)

, as well as
(

L̂t0 , . . . , L̂tn+1

)

, by (0, . . . , 0) .

2. The following computations have to be performed for i ∈ {1, . . . , I} . For

company i , let l ∈ {0, . . . , n} loop through each point of the grid and consider

the following exclusive cases.

(a) X i
tl+1− > log (di/vi

0) and X i
tl+1

> log (di/vi
0) .

These conditions prevent company i from defaulting exactly at time

tl+1 , which excludes a default by jump at tl+1 . Nevertheless, even if

the firm-value process at time tl+1 is above di , the probability of its



5.3. Pricing CDOs via Monte Carlo simulation 129

running minimum to touch this level is given by 1− IPi
l+1 . We consider

this probability of overseeing such a default by increasing L̂tl+1− by

IPIPi
l

(

1 − IPi
l+1

)

N i(1 −Ri).

In short, the factor IPIPi
l

(

1 − IPi
l+1

)

is the conditional probability given

F∗ of company i to survive up to tl− and default in [tl, tl+1) . The

resulting loss is the nominal N i times the fractional loss at default

(1 − Ri) .

(b) X i
tl+1− > log (di/vi

0) and X i
tl+1

≤ log (di/vi
0) .

In this case, a jump causes company i to default at time tl+1 . The con-

ditional probability of no prior default is given by IPIPi
l+1 , we therefore

increase L̂tl+1
by

IPIPi
l+1N

i(1 −Ri).

Still, we must not ignore a possible default of company i on [tl, tl+1) .

We account for this possibility by increasing L̂tl+1− by

IPIPi
l

(

1 − IPi
l+1

)

N i(1 −Ri),

which is explained as in the previous case.

(c) X i
tl+1− ≤ log (di/vi

0) .

Here, default is caused within the interval [tl, tl+1) by diffusion, the

probability of no default up to time tl is given by IPIPi
l . Hence, we

increase L̂tl+1− by

IPIPi
lN

i(1 −Ri).

3. So far, we calculated the losses which occurred exactly at, or in the interval

before each point of the partition. These losses are now aggregated to obtain

the cumulative loss up to tl and at tl . To do so, we loop l = 0, . . . , n and

increase L̂tl+1− by L̂tl and L̂tl+1
by L̂tl+1−

, respectively.

III) Estimate the expected discounted premium leg of each tranche

1. Initialize the estimate ˆEDPL
j

by zero for all tranches j ∈ {1, . . . , J} .

2. For each tranche j ∈ {1, . . . , J} , let tpl loop through all premium payment

dates {tp1, . . . , tpn} 13. At each date, compute the estimated expected discounted

premium of tranche j given F∗ . This premium depends on the time since

the last premium payment ∆tpl = tpl − tpl−1 , the discount factor exp(−rtpl )
and the expected remaining nominal of tranche j at time tpl , that is M̂ j

tp
l

14.

13 That is tpl ∈ {η, 2η, . . . , T} for a new contract with payment frequency η -years.
14 Given the estimate L̂t

p

l
, we obtain M̂ j

t
p

l

= uj − lj − min{max{0, L̂t
p

l
− lj}, uj − lj} .
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Moreover, if the market value of a running contract has to be assessed, then

the spread of this tranche sj is known and also a factor. In this case, increase
ˆEDPL

j
by

e−rtp
l ∆tpl s

j
(

uj − lj − min
{

max
{

0, L̂tp
l
− lj

}

, uj − lj
})

.

However, if we are interested in the fair spread sj
f , increase ˆEDPL

j
by

e−rtp
l ∆tpl

(

uj − lj − min
{

max
{

0, L̂tp
l
− lj

}

, uj − lj
})

.

3. If the contract demands for accrued interest for defaulted companies, we can

approximate this quantity as follows. Given the premium payment dates tpl−1

and tpl and the corresponding losses L̂j
tp
l−1

≤ L̂j
tp
l

within tranche j , we have to

assess where these losses occurred, which corresponds to assessing the accrued

interest. To do so, we let tk loop through all points of the grid, starting at

the grid point after tpl−1 and ending at tpl . For each tk , we then increase

ˆEDPL
j

by

e−rtp
l

(

tk + tk−1

2
− tpl−1

)

(

L̂j
tk
− L̂j

tk−1

)

,

or alternatively by sj times this number, depending on wether sj
f has to be

found or not. This increment consists of the discount factor corresponding to

the premium payment date tpl , the distance between the midpoint of tk−1 and

tk to the previous premium payment date tpl−1 , and the loss within tranche

j in between tk−1 and tk .

IV) Estimate the expected discounted default leg of each tranche

1. Initialize the estimate ˆEDDL
j

by zero for all tranches j ∈ {1, . . . , J} .

2. Find the index of the first and the last time of the partition where the overall

loss given F∗ , respectively its left limit, is within tranche j . Define

kj :=

{

0 : L̂tl < lj, ∀ l = 1, . . . , n+ 1,

min
{

l : L̂tl ∈ [lj , uj]
}

: otherwise,

mj :=

{

0 : kj = 0,

max
{

l : L̂tl ∈ [lj , uj]
}

: otherwise.

Similarly define kj
− and mj

− , with L̂tl replaced by L̂tl− .
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3. A loss at time tkj , respectively tkj− , only affects tranche j with the fraction

which exceeds the remaining nominal of the preceding tranche, the same holds

for the loss at time tmj+1 , respectively tmj+1− . Here, the subsequent tranche

is affected by the loss exceeding tranche j .

4. Losses in tranche j occur from time tkj , respectively tkj− , to tmj+1 , re-

spectively tmj+1− , depending on whether the first or the last loss of tranche

j was caused by jump or by diffusion.

For each l = max{kj, 1}, . . . ,min{mj + 1, n+ 1} do the following.

(a) Define the correction factors xj
tl

and xj
tl− as

xj
tl

:=



































1 : l = kj and kj = kj
−,

L̂tl
−lj

L̂tl
−L̂tl−

: l = kj and kj < kj
−,

0 : l = mj + 1 and mj = mj
−,

uj−L̂tl−

L̂tl
−L̂tl−

: l = mj + 1 and mj < mj
−,

1 : otherwise,

xj
tl− :=



































L̂tl−
−lj

L̂tl−
−L̂tl−1

: l = kj and kj = kj
−,

0 : l = kj and kj < kj
−,

uj−L̂tl−1

L̂tl−
−L̂tl−1

: l = mj + 1 and mj = mj
−,

1 : l = mj + 1 and mj < mj
−,

1 : otherwise.

(b) Loop through all companies i ∈ {1, . . . , I} and do the following.

Check, whether a jump causes company i to default at tl . If so, increase
ˆEDDL

j
by the discounted loss caused by company i at this point, cor-

rected by the probability of no prior default and the correction factor.

This corresponds to

xj
tl
IPIPi

tl
e−rtlN i(1 − Ri).

If default was not caused by a jump at tl , increase ˆEDDL
j

by

xj
tl−IPIPi

tl−1

∫ tl

tl−1

e−rsgi
l(s)dsN

i(1 − Ri),

where gi is the density of the first-passage time τ i conditioned on F∗ ,

compare Equation (4.3). The justification of this step is done by con-

sidering the same three cases as in the calculation of the expected loss.

V) Summarizing each Monte Carlo run
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1. After each Monte Carlo run, store the expected discounted premium and de-

fault leg of all tranches j ∈ {1, . . . , J} , indexed by the number of the current

run.

2. Reinitialize all variables and proceed with the next run.

3. After the final run, calculate the average of all expected discounted premium

and default legs of each tranche, as simulated in the different runs. These

quantities are then used to estimate the expected fair spread of the corre-

sponding tranche or to assess the market value of the contract, whichever is

of interest.

5.3.1 Discussion of the pricing algorithm

It is typical for numerical routines to face a tradeoff between speed and accuracy.

In what follows, we explain how the algorithm is efficiently implemented. Also,

we address some numerical pitfalls which have to be considered. A common con-

figuration of CDO portfolios (iTraxx convention) sets the number of companies

to I = 125 , which emphasizes the importance of a fast implementation of this

high-dimensional problem.

1. To begin with, let us discuss on how many random numbers the algorithm

requires in each Monte Carlo run. In total, we have to simulate I firm-

value processes on a grid. On average, this grid consists of IE[NT ] = λT

random times and Tκ−1 + 1 systematic points. For each increment ∆tl ,

a realization of a normally distributed random variable is required for each

company and the Brownian motion of the market. At each τl it is further

required to check for jumps via a Bernoulli experiment and to simulate a jump

size if the respective experiment succeeds. In total, about O(T (3λ+ κ−1)I)

simulations of random numbers are required15. In our implementation, we

use the random-number generators of the NAG-software library.

2. For each company, it is further required to compute the conditional survival

probabilities IPIPi
l and IPi

l . To do so, the iteration IPIPi
l+1 = IPIPi

l · IPi
l+1 is

useful. Moreover, as soon as IPIPi
l = 0 for some l , this iteration is stopped

and all following IPIPi
k are set to zero. The remaining IPi

k are not required

any more.

3. A large fraction of the overall run time is needed for the evaluation of integrals

of the form
∫

e−rsgi(s)ds . We showed that it is possible to approximate these

integrals with high precision by either the approach of Metwally and Atiya

15 For a typical 5-year contract in an iTraxx framework, this number is around 20,000.
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(2002) or our approximation from Section 4.3.3. Such an approximation

significantly increases the speed of the algorithm.

4. An important concern is the mesh κ of the systematic grid of [0, T ] , as

our algorithm implies a small discretization bias with respect to the common

factor WM . In between two points of the grid, we take into account the

individual probability of a company to default unobserved. What we do

not control is the evolution of the common factor WM , which is possibly

responsible for multiple defaults. Therefore, we slightly underestimate the

default correlation of the model. However, several numerical experiments

have shown that a monthly grid is fine enough for pricing CDOs. In these

experiments, a finer grid did not change spreads below the noise of the Monte

Carlo simulation.
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Figure 5.4: Implied default correlation for different κ .

The implications of different κ on the default correlation are illustrated in

Figure 5.4, which illustrates the default correlation of two identical companies

with parameters γ = 0 , σ = 0.1 and d/v0 = 85% in a model without jumps,

based on ten million Monte Carlo runs. This setup represents in some sense

the worst-case scenario for the discretization bias, as the default correlation

is fully explained by the common market factor. We find that even in this

worst-case scenario a mesh of κ = 1
24

is acceptable, and a larger mesh does

not significantly increase the default correlation.

5. If a CDO contract is already on the run, the time until the first premium

payment does not agree with the time between every other two premium

payments. In this case, an equidistant grid typically does not contain all
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premium payment dates. Therefore, we have to insert one additional small

interval, for instance, ∆t1 < κ could be chosen appropriately.

6. Let us finish this paragraph with a remark on an infrequent but possible

event, which has to be considered in an implementation of the algorithm.

One feature of our model is to produce simultaneous defaults by allowing

common jumps. When we experimented with portfolios containing very risky

companies, it occurred that at some point in time the portfolio loss increased

by more than the nominal of a complete tranche j . The result was that

the variables kj and mj were not well defined. This is considered in our

implementation by controlling the increments of the portfolio loss before the

variables kj and mj are set. If the loss exceeds the complete tranche j at

time tl , this loss affects the default leg of tranche j only at tl , and the

correction factors of the adjoining tranches are set appropriately.

5.3.2 The convergence of estimated CDO spreads

Written in C, our implementation of Algorithm 5.3.1 is able to perform about

60,000 simulation runs per hour on a standard notebook16. Our numerical exper-

iments suggest that CDO spreads of the equity and junior tranche converge fast,

but senior tranches require significantly more simulation runs until their spreads

stabilize. This is not surprising, as losses in senior tranches are rare events, while

losses in subordinate tranches occur in almost every simulation run. More pre-

cisely, Figure 5.5 exhibits the spread of each tranche after the nth Monte Carlo

run. The setup of this experiment is described in Section 5.3.3. It is the fictitious

portfolio M with medium correlation and dependent jumps. We observe that for

this scenario, about 10,000 Monte Carlo runs are enough to capture the spreads of

the first three tranches within a band of ±2.5% around their terminal value after

60,000 runs. To obtain a similar precision in tranche 4 and 5, we propose to use at

least 30,000 runs. Finally, the super senior tranche requires at least 50,000 simu-

lation runs to attain stability. Still, this estimate should be handled with caution.

16 Apple iBook G4, equipped with a 1.2 GHz processor and 512 MB Ram.
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Figure 5.5: The speed of convergence of the different tranches.
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5.3.3 Numerical experiments with fictitious portfolios

We construct three fictitious portfolios to analyze our model and Algorithm 5.3.1.

The first portfolio (IG) is designed to represent a portfolio containing 125 invest-

ment-grade companies, the second portfolio (SG) is set up to match a portfolio

consisting of speculative-grade companies. Finally, the last portfolio (M) is inho-

mogeneous, it contains 75 investment-grade and 50 speculative-grade companies.

General setup and individual default probabilities

We assume a risk-free interest rate of r = 0.03 and a recovery rate of Ri = 40% for

each company. Each portfolio contains I = 125 companies, all of which contribute

N i = 1, 000 to the overall nominal of the CDO. Premium payments are made

on a quarter-yearly basis, i.e. η = 1
4
, the contract matures in five years. The

attachment points of each tranche are chosen as in a standard iTraxx portfolio.

The individual jump-size distributions are assumed to be IPY i = 2-Exp(λi
⊕, λ

i
⊖,

1
2
) ,

the firm-value parameters of each company are randomly drawn from uniform

distributions17.

Portfolio γ σ λ⊕ λ⊖ d/v0 IP(τ ≤ 1) IP(τ ≤ 5)

IG 0.035 0.044 30.27 30.50 75.0% 0.067% 0.722%
SG 0.020 0.060 22.51 22.49 84.9% 4.656% 21.830%
M 0.029 0.051 27.30 27.07 79.2% 1.985% 9.507%

Table 5.1: Average parameters and default probabilities of the portfolios.

Different scenarios for the dependence

We measure the influence of the common market factor and common jumps by cal-

culating CDO spreads based on three scenarios for each portfolio. These scenarios

correspond to high, medium and low dependence. For simplicity, we assume all

companies to have the same parameters a ≡ ai and b ≡ bi . These parameters

are chosen as described in Table 5.2 below. Depending on the scenario, we have

to adjust the intensity of the ticker process N to keep the intensity biλ of each

individual firm-value processes constant, which implies the same individual default

probabilities for all experiments. As well as varying the parameters a and b ,

17 Their ranges are specified such that the resulting one and five-year default probabilities agree
with historical default rates of investment-grade (respectively speculative-grade) companies
from 1983-2000, as reported by Moody’s Investors Service, Gupton (2001), Exhibit 41.
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we additionally change the dependence structure by running each scenario initially

with independent jumps, and later with jumps in the same direction, corresponding

to the models of Sections 5.1.1 and 5.1.2, respectively.

Scenario a2
i = b2i ai = bi λ

High dependence 0.50 0.707 1.414
Medium dependence 0.25 0.500 2.000
Low dependence 0.05 0.224 4.472

Table 5.2: The three scenarios.

Results of the experiment

The results of our experiment are given in Tables 5.3 and 5.4. From an economic

perspective, we observe that the model reacts to changes in the correlation structure

as expected. Spreads of senior tranches are increasing in correlation, the opposite is

true for junior tranches. An important observation is the large difference of prices

if independent jumps are replaced by jumps in the same direction. Considering the

implied correlations, we first observe that spreads of equity tranches correspond

to the largest implied correlation. We also find that in most examples implied

correlations are skewed towards the mezzanine tranches.
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Scenario High Medium Low

CDO j ŝj
f in bp ρI,j

T ŝj
f in bp ρI,j

T ŝj
f in bp ρI,j

T

1 292.65 0.500 307.20 0.450 312.33 0.430
IG 2 10.34 0.440 2.77 0.350 0.15 0.255

3 1.20 0.435 0.06 0.330 0.00 n.a.
4 0.28 0.440 0.00 n.a. 0.00 n.a.
5 0.02 0.430 0.00 n.a. 0.00 n.a.
6 0.00 n.a. 0.00 n.a. 0.00 n.a.

1 8875.76 0.485 12053.79 0.385 16004.76 0.270
SG 2 3927.42 0.450 5074.60 0.340 6522.83 0.205

3 2345.13 0.445 2883.59 0.330 3740.90 0.195
4 1520.71 0.430 1726.57 0.315 2104.04 0.185
5 653.19 0.465 576.57 0.350 412.58 0.200
6 23.44 0.460 8.20 0.335 0.30 0.185

1 4706.73 0.405 5928.61 0.315 7443.69 0.225
M 2 1523.44 0.330 1734.36 0.250 2009.67 0.165

3 621.37 0.510 555.66 0.325 399.45 0.190
4 251.61 0.380 145.65 0.275 30.93 0.170
5 40.49 0.350 10.16 0.260 0.21 0.160
6 0.09 0.335 0.0 0 n.a. 0.00 n.a.

Table 5.3: Independent jumps: Monte Carlo simulation with 100,000 runs.

Parameter a (b=100% fix, independent jumps)
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Figure 5.6: Portfolio M, spreads depending on a ≡ ai or b ≡ bi .
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Scenario High Medium Low

CDO j ŝj
f in bp ρI,j

T ŝj
f in bp ρI,j

T ŝj
f in bp ρI,j

T

1 259.88 0.605 291.24 0.515 313.97 0.440
IG 2 28.80 0.570 13.87 0.465 1.57 0.325

3 8.09 0.565 1.60 0.445 0.01 0.295
4 2.57 0.555 0.38 0.445 0.00 n.a.
5 0.38 0.540 0.02 0.435 0.00 n.a.
6 0.00 n.a. 0.00 n.a. 0.00 n.a.

1 5669.98 0.625 8342.23 0.510 13314.19 0.350
SG 2 2977.33 0.575 3850.05 0.460 5590.83 0.295

3 1972.45 0.555 2332.98 0.445 3150.86 0.285
4 1406.25 0.525 1523.11 0.430 1827.61 0.275
5 721.90 0.645 667.22 0.490 530.45 0.300
6 49.46 0.600 24.47 0.465 4.26 0.285

1 3413.05 0.520 4521.08 0.420 6414.60 0.290
M 2 1340.74 0.430 1510.49 0.340 1814.22 0.225

3 689.10 0.505 637.06 0.510 518.57 0.275
4 369.13 0.555 265.39 0.395 108.38 0.245
5 102.61 0.470 45.06 0.360 5.17 0.235
6 0.91 0.430 0.10 0.340 0.00 n.a.

Table 5.4: Dependent jumps: Monte Carlo simulation with 100,000 runs.

Parameter a (b=100% fix, dependent jumps)
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Figure 5.7: Portfolio M, spreads depending on a ≡ ai or b ≡ bi .
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5.3.4 Calibration to iTraxx quotes

”The effects of correlation can be most simply thought of in terms of a long, thin

balloon: if you squeeze the middle, it will swell at some other point.”18

A calibration of our structural model seems to be extremely difficult, since the

model contains a large number of parameters. On the other side, we designed the

model to simultaneously explain single and multi-name derivatives, which allows

the use of a vast quantity of market quotes as input variables. The key observa-

tion for fitting the model is hidden in Lemma 5.1.1. This results shows that the

parameter ai does not affect the distribution of τ i . Also, as long as the prod-

uct biλ is kept constant, one can adjust bi without altering the term structure of

default probabilities of company i . Summarized, this suggest to initially fit the

individual firm-value parameters, followed by a calibration of the parameters of

the dependence structure. In what follows, we proceed according to the two-step

scheme presented below.

1. Fitting each firm-value process individually

In this first step, we fit the parameters γi , σi , λ
i = biλ , di/vi

0 and IPY i to

single-name derivatives of company i . For instance, CDS spreads and bond

quotes are possible input variables for this calibration. For more numerical

tractability, we suggest to obtain di/vi
0 from balance-sheet data and to choose

a jump-size distribution with at most two parameters. In our calibration, we

proceed as described in Section 4.9.2 of the univariate models, assuming

IPY i = 2-Exp
(

λi
⊕, λ

i
⊖,

1
2

)

, with the constraint λi
⊕ = λi

⊖ .

2. Adjusting the dependence structure

To adjust the dependence among the companies, we have to rely on quoted

CDO spreads. To this day, these are the only liquidly traded portfolio deriva-

tives with available market quotes which depend on the correlation among the

companies. Theoretically, other portfolio derivatives, such as nth -to default

contracts, are further input variables for the fit of the dependence structure.

The data set

We use the same set of CDS data as in Section 4.9.2. Additionally, iTraxx provides

portfolio CDS spreads and spreads for the different tranches of the CDO. Further

input parameters are the term structures of interest rates of default-free bonds

and the last available debt-to-value ratio of each company, both are obtained from

18 Paul J. Davies, ”Market rally cuts riskiest CDO spreads”, Financial Times, Nov. 9, 2006.
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Bloomberg. These term structures of interest rates are used to replace the flat

interest rate in all pricing formulas.

Fitting each firm-value process to CDS spreads

This step is closely related to the fitting approach presented in Section 4.9.2. Ad-

ditionally, the condition λ ≥ maxi∈{1,...,I} λ̂
i is required, as the implied jump in-

tensities λ̂i of the pooled companies are not identical and jumps are triggered by

a common ticker process with intensity λ . Therefore, we sacrifice some fitting

capability and restrict each parameter λi by some artificial upper bound λmax in

Equation (4.46). We found that most companies of the iTraxx portfolio have an

implied jump intensity of less than one, so λmax = 2 is a restriction which does not

decrease the fitting capability of the model. In the search for the implied param-

eters of the dependence structure, the initial value for bi is set to bi = λ̂i/λmax ,

the initial intensity λ of the ticker process N is set to λmax .

The calibration to CDO spreads

At first, we have to specify a measure of distance, for which we describe two

alternatives. In practice and for our calibration, the first approach is preferred.

1. The first approach is to choose the parameters of the dependence structure

such that the quoted equity tranche is perfectly matched by the model. Then,

the sum of absolute distances of model to market spreads over all remaining

tranches is used as a measure of the fitting capability of the model. Most mod-

els imply the spread of the equity tranche to be a continuous and monotone

function of the parameters adjusting the dependence. Therefore, a perfect fit

of the equity tranche is possible. If the dependence is adjusted by more than

a single parameter, then it is typically possible to match the first tranche by

several combinations of these parameters. Restricted to these combinations,

the fit of the remaining tranches is optimized. An argument for this approach

is the level of the spread of the equity tranche, which exceeds the remaining

spreads by far19, compare Tables 5.3 and 5.4. Therefore, the constraint of a

perfect fit of the first tranche is reasonable.

2. Alternatively, it is possible to choose the dependence parameters such that

some measure of distance of market to model prices is minimized. This

19 This property is often overseen if the first tranche is quoted in terms of an upfront payment,
as this quotation hides the true spread of the equity tranche. However, the running spread of
500 bp alone exceeds the spread of any other tranche by far.
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approach suffers from the fact that the first tranche is usually quoted in

terms of an upfront payment, whereas all other tranches are quoted in basis

points. This upfront payment can not be converted into basis points without

introducing some implicit assumptions on the default and premium leg of

the first tranche. As these assumptions vary from investor to investor, we

suggest to use the sum of relative distances as a measure of distance. This

measure does not require such a transformation and puts equal weight on all

tranches.

The CDO pricing algorithm for our model is a Monte Carlo simulation. Therefore,

sophisticated search routines based on estimated gradients are not applicable. In-

stead, we implement a näıve search on a grid over the parameter space of the model.

To make this approach numerically tractable, we have to reduce the dimension of

this space. To do so, we assume a homogeneous correlation of all firms to the mar-

ket factor, i.e. a ≡ ai for all i ∈ {1, . . . , I} . At this point, recall that changing

the parameter ai does not affect the distribution of τ i . Adjusting the parameters

bi is done conditional on the constraint λ̂i = biλ for all i ∈ {1, . . . , I} , which is

required for preserving the previously calibrated individual default probabilities.

Therefore, we gradually increase λ and adjust each bi appropriately. The implied

dependence is obviously decreasing in λ . More precisely, with λmax as described

in the calibration of each individual firm-value process, we define

λ(x) :=
λmax

x
, bi(x) :=

λ̂ix

λmax
, x ∈ (0, 1]. (5.7)

This construction guarantees a constant jump intensity of bi(x)λ(x) ≡ λ̂i for each

firm and all x ∈ (0, 1] . Given this construction, we proceed as follows.

1. Define a grid on [0, 1)×(0, 1] . In our calibration, we rely on a grid consisting

of 30 × 30 points, where a ∈ {0, 1/30, . . . , 29/30} and x ∈ {1/30, . . . , 1} .

2. Derive CDO spreads using Algorithm 5.3.1 for each point of the grid.

3. Compute the required measure of distance for each point of the grid.

4. Find the minimal distance of model to market prices on the grid.

5. Use Equation (5.7) to retrieve b̂i from x̂ , λmax and λ̂i .

Adjusting d/v0 to match portfolio CDS spreads

Up to this point, we only used individual CDS and CDO tranche quotes to fit

the model. Additionally, iTraxx provides portfolio CDS quotes of the respective
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portfolio for the maturities three, five, seven and ten years. The pricing formula

for this derivative does not depend on the correlation, due to the linearity of the

expectation. Therefore, one can use quoted spreads of portfolio CDS to check

whether the combined individual default probabilities agree with the market’s ex-

pectation. In our calibration, we observed that these prices are matched relatively

well. Typically, a deviation of less than two basis points was observed for the five

year spread20. To incorporate these prices, it is possible to adjust the individual

default probabilities of all companies until a perfect fit to observed portfolio CDS

spreads is achieved. To do so, we suggest multiplying each leverage ratio di/vi
0

by an appropriate correction term, which is determined prior to the calibration to

CDO quotes. In our calibration, a correction of less than 1.5% was usually suffi-

cient. Let us add the warning that adjusting the individual default probabilities

goes along with sacrificing some precision in matching individual CDS contracts.

Therefore, this adjustment should not be used if individual and portfolio deriva-

tives are priced simultaneously. Also, in our calibration we considered the portfolio

CDS as a single tranche of the CDO which covers the complete portfolio. This as-

sumption differs slightly from the iTraxx convention, but is already implemented

as a special case of Algorithm 5.3.1. As long as the overall portfolio loss is small,

we feel that this simplification is acceptable.

Results of the calibration 1: Contracts maturing in five years

Before presenting our results, we want to thank Dr. Heike Koch-Beuttenmüller

and Michael Lehn of the KIZ 21 and UZWR22, respectively, for providing the re-

quired computation time on their machines. All calculations are based on 100,000

simulation runs, which is time consuming but ensures a high precision. At first,

we fitted our model to CDOs maturing in five years, as these are the most liquidly

traded contracts. For each day, we run the fitting procedure with independent,

dependent and without jumps, respectively. Also, we performed each calibration

with an initial adjustment to portfolio CDS quotes. The results are listed in Ta-

bles 5.6 - 5.10. The results of a continuous model without initial adjustment to

portfolio CDS prices are omitted, as these results are far from leading to realis-

tic prices. Each of the following tables contains the parameters that correspond

to the minimal distance23. Then, the upfront payment and the model spreads of

tranche 2-5 are reported. The columns d1 , d2−5 and dCDS contain the absolute

pricing errors for the upfront payment, the sum of distances of tranche 2-5, and

the portfolio CDS, respectively.

20 In the observed period, this spread traded around 31 bp.
21 http://www.kiz.uni-ulm.de
22 http://www.informatik.uni-ulm.de/uzwr
23 For this, we accepted a deviation of the upfront payment of 0.1 , which is below bid-ask

spreads. Then, we minimized over the sum of distances of the remaining tranches.

http://www.kiz.uni-ulm.de
http://www.informatik.uni-ulm.de/uzwr
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Day up s2 s3 s4 s5 CDS

2.05 16.750 46.750 12.500 4.250 2.832 26.669
4.05 17.126 43.750 13.000 4.877 2.832 27.450
9.05 18.141 45.708 13.833 5.167 3.000 28.727

11.05 19.344 51.563 14.906 5.875 3.167 28.485
16.05 20.344 53.906 16.375 6.313 3.583 30.396
18.05 21.183 57.333 17.500 6.438 3.708 31.085
23.05 23.438 66.125 20.000 7.625 4.083 32.200
25.05 24.031 68.719 21.000 8.063 4.167 32.690
30.05 21.813 61.250 17.667 6.417 3.500 32.210
1.06 22.985 68.125 19.313 7.500 3.917 31.821
6.06 22.047 68.875 18.750 6.931 3.688 32.349
8.06 22.891 73.313 19.938 7.438 3.917 33.438

13.06 24.174 78.250 21.500 7.875 4.333 33.955
15.06 24.480 80.417 21.625 7.917 4.438 34.032
20.06 24.502 81.250 22.000 8.345 4.415 33.695
22.06 24.424 81.313 22.188 8.470 4.415 34.156

Table 5.5: CDO market quotes (5 years).

Day â ûp ŝ2
f ŝ3

f ŝ4
f ŝ5

f d1 d2−5 dCDS

2.05 0.27 17.15 60.08 3.72 0.24 0.01 0.40 28.95 0.05
4.05 0.30 17.16 76.51 6.45 0.67 0.02 0.03 46.33 0.26
9.05 0.33 17.70 102.45 13.25 1.74 0.08 0.44 63.68 0.26

11.05 0.27 19.58 71.38 4.76 0.33 0.01 0.23 38.67 0.04
16.05 0.30 20.88 97.77 8.99 0.97 0.03 0.54 60.14 0.30
18.05 0.30 21.67 103.21 9.96 1.09 0.04 0.49 62.43 0.32
23.05 0.30 22.93 112.69 11.49 1.28 0.05 0.51 65.46 0.32
25.05 0.30 23.60 116.66 12.03 1.33 0.05 0.43 67.77 0.30
30.05 0.33 21.80 130.54 18.85 2.76 0.14 0.01 77.49 0.27
1.06 0.30 22.43 110.01 10.88 1.11 0.05 0.55 60.59 0.34
6.06 0.33 21.86 132.55 19.40 2.86 0.13 0.19 71.96 0.24
8.06 0.33 23.13 141.81 21.46 3.28 0.14 0.24 77.95 0.26

13.06 0.33 23.84 146.56 22.50 3.47 0.15 0.34 77.90 0.22
15.06 0.30 24.97 128.04 13.95 1.50 0.07 0.49 66.09 0.37
20.06 0.30 24.72 124.25 13.19 1.43 0.07 0.22 63.07 0.38
22.06 0.33 24.06 147.64 22.78 3.51 0.16 0.37 76.13 0.20

Table 5.6: Fitted CDO prices (5 years): continuous model, adjusted d/v0 .
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Day â x̂ ûp ŝ2
f ŝ3

f ŝ4
f ŝ5

f d1 d2−5 dCDS

2.05 0.77 0.97 16.83 119.64 28.81 9.81 1.85 0.08 95.74 2.69
4.05 0.77 0.80 17.07 115.39 27.46 8.93 1.53 0.06 91.45 1.90
9.05 0.90 0.03 18.11 114.11 34.81 15.70 4.58 0.03 101.49 1.62

11.05 0.80 0.37 19.31 113.96 27.17 9.45 1.95 0.03 79.45 2.18
16.06 0.83 0.63 20.42 129.59 33.48 13.17 2.99 0.08 100.24 1.75
18.05 0.83 0.03 21.11 131.06 37.79 15.59 4.10 0.07 103.56 1.56
23.05 0.70 0.53 23.46 127.02 24.92 6.97 0.96 0.02 69.59 0.97
25.05 0.73 0.33 23.96 126.35 24.49 6.91 1.18 0.07 65.26 0.79
30.05 0.87 0.07 21.84 127.87 35.16 15.13 4.27 0.03 93.60 0.90
1.06 0.77 0.27 22.98 125.67 28.10 8.68 1.56 0.00 69.87 1.27
6.06 0.77 0.43 22.12 124.50 28.32 9.24 1.55 0.07 69.64 0.19
8.06 0.80 0.07 22.87 124.04 30.39 10.64 2.16 0.02 66.14 0.40

13.06 0.73 0.13 24.12 124.72 25.90 7.81 1.01 0.05 54.26 0.48
15.06 0.73 0.50 24.53 135.00 26.80 7.58 1.08 0.05 63.45 0.13
20.06 0.83 0.47 24.60 154.88 40.02 15.33 3.75 0.10 99.30 2.09
22.06 0.90 0.07 24.51 153.82 46.23 20.65 6.08 0.09 110.39 1.92

Table 5.7: Fitted CDO prices (5 years): independent jumps.

Day â x̂ ûp ŝ2
f ŝ3

f ŝ4
f ŝ5

f d1 d2−5 dCDS

2.05 0.63 0.07 16.80 68.01 9.93 2.15 0.22 0.05 28.54 0.00
4.05 0.67 0.33 17.17 81.94 13.85 3.44 0.46 0.04 42.85 0.00
9.05 0.73 0.40 18.20 91.73 17.20 5.13 0.79 0.06 51.64 0.02

11.05 0.67 0.07 19.37 76.65 11.40 2.30 0.23 0.03 35.11 0.02
16.06 0.77 0.17 20.41 103.51 22.02 6.95 1.27 0.07 58.20 0.02
18.05 0.73 0.10 21.12 109.09 23.19 6.74 1.03 0.06 60.43 0.00
23.05 0.67 0.20 23.42 107.35 18.37 4.49 0.49 0.02 49.58 0.01
25.05 0.70 0.10 24.11 110.82 19.41 5.11 0.65 0.08 50.16 0.01
30.05 0.80 0.07 21.89 116.37 27.62 10.02 2.02 0.08 70.16 0.00
1.06 0.70 0.13 22.99 104.75 18.98 4.89 0.59 0.00 42.89 0.02
6.06 0.80 0.03 22.03 119.82 29.88 11.00 2.40 0.02 67.43 0.00
8.06 0.80 0.30 22.94 131.80 32.71 11.78 2.42 0.05 77.10 0.01

13.06 0.73 0.23 24.21 132.11 28.18 8.26 1.21 0.04 64.05 0.01
15.06 0.77 0.13 24.57 129.38 28.28 9.12 1.62 0.09 59.64 0.01
20.06 0.77 0.07 24.44 124.51 27.12 8.59 1.45 0.06 51.59 0.00
22.06 0.70 0.73 24.49 135.52 24.84 6.46 0.68 0.07 62.60 0.00

Table 5.8: Fitted CDO prices (5 years): independent jumps, adjusted d/v0 .
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Day â x̂ ûp ŝ2
f ŝ3

f ŝ4
f ŝ5

f d1 d2−5 dCDS

2.05 0.80 0.13 16.77 115.05 31.50 12.73 2.72 0.02 95.89 2.69
4.05 0.67 0.47 17.12 120.77 25.36 6.68 0.90 0.01 93.11 1.91
9.05 0.73 0.40 18.24 125.03 27.58 8.02 1.22 0.10 97.70 1.63

11.05 0.70 0.37 19.36 121.88 24.11 6.11 0.86 0.02 82.06 2.17
16.05 0.80 0.23 20.39 130.73 32.00 11.17 2.32 0.05 98.57 1.74
18.05 0.70 0.33 21.16 139.10 30.54 8.72 1.29 0.02 99.51 1.55
23.05 0.63 0.27 23.37 129.84 21.91 4.54 0.49 0.07 72.30 0.96
25.05 0.73 0.10 24.09 131.72 27.37 8.17 1.36 0.06 72.29 0.77
30.05 0.80 0.17 21.83 138.88 35.07 12.72 2.79 0.02 102.05 0.90
1.06 0.77 0.10 23.01 130.77 30.42 9.96 1.80 0.03 78.33 1.26
6.06 0.70 0.27 22.02 133.16 26.25 6.69 0.91 0.03 74.80 0.19
8.06 0.80 0.03 22.88 124.62 30.19 10.97 2.42 0.01 66.59 0.43

13.06 0.70 0.13 24.08 129.00 25.01 7.12 1.10 0.09 58.25 0.49
15.06 0.77 0.07 24.52 135.21 31.13 10.10 2.09 0.04 68.83 0.13
20.06 0.83 0.17 24.48 164.30 43.68 17.19 4.12 0.02 113.87 2.08
22.06 0.83 0.17 24.37 165.11 44.10 16.92 3.97 0.05 114.60 1.93

Table 5.9: Fitted CDO prices (5 years): dependent jumps.

Day â x̂ ûp ŝ2
f ŝ3

f ŝ4
f ŝ5

f d1 d2−5 dCDS

2.05 0.63 0.03 16.69 69.95 10.45 2.23 0.23 0.06 29.87 0.00
4.05 0.63 0.13 17.20 79.52 11.65 2.48 0.24 0.07 42.11 0.01
9.05 0.67 0.27 18.12 95.01 15.49 3.40 0.40 0.02 55.33 0.01

11.05 0.67 0.03 19.34 79.18 11.37 2.28 0.19 0.00 37.73 0.01
16.05 0.77 0.07 20.29 103.83 21.43 6.93 1.41 0.05 57.77 0.01
18.05 0.63 0.23 21.15 110.18 18.16 3.90 0.35 0.03 59.40 0.01
23.05 0.67 0.10 23.41 113.58 19.35 4.77 0.52 0.03 54.52 0.03
25.05 0.70 0.03 24.09 112.24 20.40 5.38 0.68 0.06 50.29 0.02
30.05 0.57 0.50 21.83 134.92 21.16 3.81 0.28 0.02 82.99 0.02
1.06 0.67 0.10 22.98 110.64 18.79 4.30 0.47 0.00 49.69 0.01
6.06 0.70 0.20 21.99 123.52 23.69 5.99 0.87 0.06 63.34 0.03
8.06 0.70 0.27 22.90 138.93 28.63 7.87 0.97 0.01 77.69 0.03

13.06 0.67 0.23 24.16 139.21 26.78 6.65 0.74 0.01 71.06 0.02
15.06 0.63 0.27 24.55 137.79 22.27 4.79 0.50 0.07 65.08 0.01
20.06 0.73 0.07 24.53 125.25 24.82 7.26 1.01 0.03 51.31 0.00
22.06 0.60 0.37 24.48 142.77 23.09 4.33 0.39 0.06 70.52 0.00

Table 5.10: Fitted CDO prices (5 years): dependent jumps, adjusted d/v0 .
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Interpretation of the results

First of all, we notice that a jump-diffusion model produces significantly better

results than a continuous model. This observation is not surprising, since the con-

tinuous model is a special case of the jump-diffusion model. It is more difficult

to determine the reason why our model performs better. For this, we feel that

the improved fit to individual default probabilities, compare Section 4.9.2, and

the additional factor to adjust the dependence structure are responsible to equal

parts. The improved fit to individual default probabilities becomes apparent when

the continuous model is run without initial adjustment to portfolio CDS prices.

In this case, the resulting prices turned out to be far off real CDO and portfolio

CDS quotes. More precisely, an adjustment of the initial leverage ratios of up to

15% was required to obtain the prices of Table 5.6. Therefore, it was not possible

for us to simultaneously describe single-firm derivatives and portfolio derivatives

within a continuous model. On a portfolio level, including common jumps creates

the possibility of multiple defaults, which increases spreads of the mezzanine and

senior tranches. Relative to the continuous model, this rise was impressive. In

absolute values, however, the jump-diffusion model still slightly underprices these

tranches.

Focusing on the fitting capability of the jump-diffusion model, we notice that the

fit of the second tranche is not satisfying. As long as a perfect fit to the equity

tranche is required, the second tranche is systematically overpriced by the model.

The same phenomenon is observed by all models that work with an embedded

normal distribution24. In our model, this overpricing is reduced by the presence

of jumps, but is not eliminated completely. Important for us is the fact that our

model is able to produce realistic CDO prices without an adjustment of the initial

leverage ratios. This means that all individual contracts, as well as all tranches of

the CDO and the portfolio CDS, are simultaneously explained by the model. We

feel that this property distinguishes our model from most of the other approaches.

If a fit to individual contracts is not required, then it is possible to further improve

the fit to CDO quotes by adjusting the firm’s leverage ratios. These ratios are

adjusted such that the observed portfolio CDS spread is matched.

Finally, let us stress the fact that independent jumps implied a better fit than

dependent jumps for most days of the observed period. This property was surpris-

ing to us, as the interpretation of jumps in the same direction seems very reasonable

from an economic perspective.

24 In Vasicek’s model, this property is referred to as correlation skew.
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Results of the calibration 2: The term structure of CDO spreads

A new issue in modeling CDOs is the problem of explaining the term structure

of CDO spreads. Most existing models are designed to match CDO spreads of a

certain maturity. In contrast, our dynamic model allows to simultaneously price

contracts with different maturities. Unfortunately, portfolio CDS spreads are not

available for contracts maturing in seven years. Therefore, all further results are

computed without an initial adjustment of d/v0 to portfolio CDS spreads. To begin

with, we present the results of a calibration of our model to contracts maturing in

five, seven and ten years, respectively. These results are presented in Table 5.12,

the corresponding market quotes are given in Table 5.11. Computationally, this

calibration is more expensive than the calibration before. Therefore, we considered

only two trading days.

Day up s2 s3 s4 s5 T

1.06 22.985 68.125 19.313 7.500 3.917 5
1.06 41.219 184.500 47.375 25.313 8.500 7
1.06 50.323 520.875 119.875 55.250 19.906 10
6.06 22.047 68.875 18.75 6.931 3.688 5
6.06 40.048 185.063 45.500 24.438 8.188 7
6.06 49.829 510.750 119.063 52.500 20.063 10

Table 5.11: CDO market quotes.

In a second step, we run the pricing formula for contracts maturing in five, seven

and ten years, respectively. For this, we used the implied parameters â and x̂ as

obtained from the fit to contracts maturing in five years. We chose the five-year

contracts as reference, as these are traded the most liquidly. The results of this

experiment are presented in Table 5.13. Let us emphasize again that using these

parameters, the model simultaneously describes the term structure of CDO spreads

and the term structure of individual CDS spreads.

Interpretation of the results

First of all, we conclude from Table 5.12 that our model is able to match CDO

spreads of all maturities based on identical term structures of default probabilities.

Moreover, the implied parameters of the dependence structure, as obtained from

fits to different maturities, are close to each other. In our example, the implied

correlation of contracts maturing in seven years was slightly below the implied

correlation of contracts maturing in five and ten years, respectively. Still, we

conclude from Table 5.13 that our model is able to simultaneously produce realistic

term structures of CDO and CDS spreads.
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Independent jumps
Day â x̂ ûp ŝ2

f ŝ3
f ŝ4

f ŝ5
f d1 d2−5 T

1.06 0.77 0.27 22.98 125.67 28.10 8.68 1.56 0.00 69.87 5
1.06 0.67 0.27 41.38 316.14 84.32 26.55 4.38 0.16 173.94 7
1.06 0.77 0.10 50.37 522.41 220.11 104.29 29.86 0.05 160.76 10

6.06 0.77 0.43 22.12 124.50 28.32 9.24 1.55 0.07 69.64 5
6.06 0.67 0.27 40.23 301.65 80.39 25.56 4.03 0.18 156.76 7
6.06 0.77 0.13 49.64 513.07 215.33 102.36 29.35 0.19 157.73 10

Dependent jumps
Day â x̂ ûp ŝ2

f ŝ3
f ŝ4

f ŝ5
f d1 d2−5 T

1.06 0.77 0.10 23.01 130.77 30.42 9.96 1.80 0.03 78.33 5
1.06 0.63 0.10 41.30 317.17 81.69 23.62 3.58 0.08 173.60 7
1.06 0.70 0.13 50.32 543.73 228.18 102.18 26.12 0.00 184.30 10

6.06 0.70 0.27 22.02 133.16 26.25 6.69 0.91 0.03 74.80 5
6.06 0.67 0.07 40.17 304.53 81.74 26.72 4.36 0.12 161.82 7
6.06 0.70 0.13 49.79 534.14 225.14 101.37 25.64 0.04 183.91 10

Table 5.12: Fitted CDO prices for different maturities.

Independent jumps
Day a x ûp ŝ2

f ŝ3
f ŝ4

f ŝ5
f d1 d2−5 T

1.06 0.77 0.27 22.98 125.67 28.10 8.68 1.56 0.00 69.87 5
1.06 0.77 0.27 38.27 304.59 96.38 38.87 9.18 2.95 183.34 7
1.06 0.77 0.27 49.87 523.61 220.87 103.83 29.38 0.46 161.79 10

6.06 0.77 0.43 22.12 124.50 28.32 9.24 1.55 0.07 69.64 5
6.06 0.77 0.43 37.42 304.10 97.48 38.82 8.91 2.63 186.12 7
6.06 0.77 0.43 49.02 517.43 221.72 106.30 31.13 0.81 174.20 10

Dependent jumps
Day a x ûp ŝ2

f ŝ3
f ŝ4

f ŝ5
f d1 d2−5 T

1.06 0.77 0.10 23.01 130.77 30.42 9.96 1.80 0.03 78.33 5
1.06 0.77 0.10 37.87 311.06 101.31 41.70 9.66 3.34 198.04 7
1.06 0.77 0.10 48.91 520.33 225.67 108.53 31.39 1.41 171.11 10

6.06 0.70 0.27 22.02 133.16 26.25 6.69 0.91 0.03 74.80 5
6.06 0.70 0.27 36.67 314.59 96.65 34.23 6.51 3.37 192.15 7
6.06 0.70 0.27 47.03 518.53 231.25 112.04 31.92 2.80 191.37 10

Table 5.13: The term structure of model prices.
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5.4 Pricing nth -to default contracts via Monte

Carlo simulation

In the following, we describe how nth -to default contracts, as introduced in Section

3.5, are priced within our multivariate default model. Depending on the terms of

contract, the presented algorithm may require minor adjustments.

5.4.1 Implementation of the pricing formula

Large parts of our Monte Carlo simulation agree with Algorithm 5.3.1, the imple-

mentation of the CDO pricing formula. For the pricing of nth -to default contracts

we can use the first step of Algorithm 5.3.1 to compute the expected portfolio loss

at each payment date t1 < . . . < tm , given a set of simulated jumps F∗ . Given

this, we derive the expected discounted premium and default legs of the current

run. At the end, we compute the average premium and default legs to obtain the

fair spread. A precise formulation of the algorithm is given below.

Algorithm 5.4.1 (Monte Carlo estimation of nth -to default contracts)

Chose the number of simulation runs K . Within each run, compute the following

Steps 1 to 4. Proceed with Step 5 afterwards.

1. Compute step I.1-I.8 of Algorithm 5.3.1.

2. For each time t1 < . . . < tm , calculate the expected number of defaults,

conditioned on F∗ . This number is given by

X∗
tl

:=
I
∑

i=1

(

1 − IPIPi
tl

)

.

3. Calculate the period in which τ(n) is expected to fall. Define the time of the

last premium payment as

t(n) := max
{

tl ∈ {t1, . . . , tm} : X∗
tl
< n

}

, max ∅ := 0.

4. Calculate the expected discounted premium and default legs, conditioned on

F∗ . These payment streams are given by

ˆEDPL
(n)

=
∑

tl∈{t1,...,t(n)}

Ne−rtl∆tl,
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ˆEDDL
(n)

=

{

(1 − R)Ne−r(t(n)+∆) : t(n) < T,

0 : t(n) = T,

where ∆ denotes the time between the last premium date t(n) and the set-

tlement date of the default leg.

5. Calculate the average ˆEDPL
(n)

and ˆEDDL
(n)

of the K simulation runs.

6. Use these averages to obtain the fair spread s
(n)
f .

5.4.2 Numerical examples

We use Algorithm 5.4.1 to compute fair spreads of nth -to default contracts based

on a portfolio consisting of ten identical companies, with parameters as described in

Table 5.14. The jump-size distribution of each process X i is chosen to be two-sided

exponential. The parameters a and b , which adjust the dependence among the

companies, correspond to the scenarios of Table 5.2. Also, we computed spreads

given the model of Section 5.1.1 with independent, and the model of Section 5.1.2

with dependent jumps. The results are presented in Table 5.15, which also contains

the asset value and default correlation between any two companies of the portfolio,

which we computed using Theorems 5.2.1 and 5.2.2, or estimated based on ten

million Monte Carlo runs. nth -to default spreads are computed with 100,000

Monte Carlo runs.

Interpretation of the results

Obviously, spreads have to be decreasing in n , as τ(n) ≤ τ(m) for n < m , which

holds for our examples. Further, we observe that spreads of large25 values of n are

increasing in correlation, the opposite is true for spreads of small values of n . Val-

ues in between do not behave monotonically. This observation is reasonable, since

multiple defaults, or no defaults at all, are more likely if the correlation among the

companies is large.

In Figures 5.8 and 5.9, we either fix b or a and vary the other parameter. Here,

we observe that the limit of spreads for small maturities depends on b but not on

a . Also, we observe a positive limit of spreads for short maturities. For longer ma-

turities, spreads behave as expected, meaning that the spread of the first-to default

contract is shifted to contracts for larger values of n if the correlation becomes

25 In this context, small (resp. large) is meant to hold relative to the expected number of defaults.
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larger. This holds independently of whether the correlation is introduced through

diffusion or common jumps.

Firm-value parameters Dependence Contract setup
γi σi λi

⊕=λi
⊖ di/vi

0 Ri λ ai bi I r T ∆tl

0.025 0.05 20.0 80.0% 40.0% 2.0 Table 5.2 10 0.03 5 0.25

Table 5.14: The setup of the fictitious nth -to default contract.

High Medium Low
n IJ DJ IJ DJ IJ DJ

1 815.15 643.61 890.82 748.68 955.64 878.30
2 256.36 257.30 250.41 260.62 236.12 246.59
3 88.72 124.46 71.15 104.96 53.86 71.69
4 28.81 62.53 17.48 40.76 8.92 17.39
5 8.64 31.35 3.81 16.10 1.15 4.09
6 2.14 14.49 0.62 5.75 0.06 0.87
7 0.42 6.43 0.06 1.68 0.00 0.14
8 0.08 2.41 0.02 0.47 0.00 0.02
9 0.01 0.75 0.00 0.06 0.00 0.01
10 0.00 0.15 0.00 0.00 0.00 0.00

ρX 13.06% 39.18% 8.33% 25.00% 2.64% 7.92%
ρD

T 5.47% 14.95% 2.93% 8.55% 0.85% 3.08%

Table 5.15: Fair spread in bp: Monte Carlo simulation with 100,000 runs.
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Figure 5.8: nth -to default spreads depending on a , n ∈ {1, 3, 5} .
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Figure 5.9: nth -to default spreads depending on b , n ∈ {1, 3, 5} .
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5.5 Summary of the multivariate model

We have shown that it is possible to couple univariate jump-diffusion processes

to a multidimensional model based on a firm economic interpretation. An impor-

tant feature of our approach is that the distribution of the individual firm-value

processes remains unchanged. Hence, the term structure of marginal default prob-

abilities is also retained and can therefore be fitted individually. In addition to the

common approach of introducing a market factor to which all firm-value processes

are correlated, we propose a mechanism to support common jumps based on a joint

ticker process. The result is an additional factor to adjust the dependence among

the companies. Moreover, it is possible to implement the model using dependent

jumps, which further increases the default correlation among the modeled compa-

nies. We ran several experiments to test how the default correlation depends on the

model parameters and found that especially for short maturities, the possibility of

a joint default by jump significantly increases the default correlation, compared to

a continuous model. Analytically, we succeeded in expressing the asset correlation

of two companies in terms of the model parameters. This result contains the pure

diffusion approach as a special case.

Given that the pricing of single-name credit derivatives based on jump-diffusion

models is already delicate, one should not expect a pricing formula for multi-name

derivatives in closed form. What makes the situation even more complicated is

that a typical CDO portfolio consists of 125 companies, which makes an imple-

mentation of the pricing formula via a Monte Carlo simulation extremely time

consuming. What we present are two Monte Carlo simulations for the pricing of

CDOs and nth -to default contracts which take advantage of several approxima-

tions and a clever implementation. Finally, these algorithms are fast enough to

price both contracts on a standard computer.

We extensively tested these algorithms using several numerical examples based

on different fictitious portfolios and scenarios. These experiments also provide

valuable insight in the characteristics of our default model.

Computationally, the most challenging problem was to fit the model. Most CDO

models assume a portfolio of identical companies and focus on explaining the

tranches of the CDO alone. Our approach was to fit every single company and the

CDO simultaneously. En passant, the model also explains CDS portfolio spreads

with high precision. In Section 5.3.4, we presented a two-step procedure to fit the

model. In a first step, each individual firm-value processes was calibrated to match

the corresponding term structure of single-name CDS spreads. In the second step,

the parameters of the dependence structure were adjusted to match observed CDO
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tranche spreads. The result of a calibration to 16 trading days is that the model

outperforms a continuous model by far, and is able to reproduce observed CDO

spreads with high precision. Moreover, we addressed the new problem of explain-

ing the term structure of CDO spreads. The results of this calibration were also

very promising.



Chapter 6

Appendix

6.1 The proof of Theorem 4.3.3

The proof of Theorem 4.3.3 was developed together with Johannes Ruf. A more

detailed version of this proof is given in Ruf’s diploma thesis, compare Ruf (2006).

Also, we would like to thank Dr. Ludwig Tomm, who helped us simplifying some

of the involved identities.

Proof of Theorem 4.3.3: At first, we rewrite the integral
∫

e−rsgi(s)ds as a

convolution. More precisely, we have

∫ τi

τi−1

e−rsgi(s)ds = e−rτi−1

∫ ∆τi

0

f(x)h(∆τi − x)dx,

where the functions f and h are given by

f(x) =
e−rx∆0√

2πσ2
x−

3
2 exp

(

− ∆2
0

2xσ2

)

, h(x) =
x−

1
2√

2πσ2y
exp

(

− ∆2
1

2xσ2

)

,

y is defined as in Lemma 4.2.2, ∆0 := Xτi−1
− b and ∆1 := Xτi

− b . The Laplace

transform of this convolution is the product of the Laplace transforms of f and

h , compare Lemma 2.2.1, which can be obtained from tables of known Laplace

transforms1. Using these tables and the shift theorem, we find

(L(f)) (s) = exp

(

−
√

2∆0

σ

√
s + r

)

, (L(h)) (s) =
exp

(

−
√

2|∆1|
σ

√
s
)

√
2sσy

.

1 We used Oberhettinger and Badii (1973), page 41.
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We now define α := (
√

2σy)−1 =
√
π∆τi exp

(

− (∆Xi)
2

2σ2∆τi

)

and obtain

lr(s) =

(

L(

∫ t

0

f(x)h(t− x)dx)

)

(s)

=
α√
s

exp

(

−
√

2∆0

σ

√
s+ r

)

· exp

(

−
√

2|∆1|
σ

√
s

)

.

This Laplace transform can now be interpreted as a function in r , which we develop

into a Taylor series of the second order around r0 = 0 . We obtain

lr(s) = l0(s) + r · l10(s) +
r2

2
· l20(s) +

r3

6
· l3r̃s

(s),

where r̃s ∈ (0, r) is depending on s and l1r(s) , l2r(s) and l3r(s) are given by

l1r(s) = −∆0α√
2σ

·
exp

(

−
√

2∆0

σ

√
s+ r

)

√
s+ r

·
exp

(

−
√

2|∆1|
σ

√
s
)

√
s

,

l2r(s) =
∆2

0α

2σ2
·
exp

(

−
√

2∆0

σ

√
s+ r

)

s+ r
·
exp

(

−
√

2|∆1|
σ

√
s
)

√
s

+

∆0α

2
3
2σ

·
exp

(

−
√

2∆0

σ

√
s+ r

)

(s+ r)
3
2

·
exp

(

−
√

2|∆1|
σ

√
s
)

√
s

,

l3r(s) =
5
∑

j=3

cj ·
exp

(

−
√

2∆0

σ

√
s+ r

)

(s+ r)
j

2

·
exp

(

−
√

2|∆1|
σ

√
s
)

√
s

,

for some constants c3 , c4 and c5 . Linearity of the inverse Laplace transformation

allows us to examine each summand separately. Considering the last summand,

we show that the inverse Laplace transform is uniformly bounded in r̃s ∈ (0, s) .

This justifies that the error which is caused by truncating the Taylor series after

the quadratic term remains of order O(r3) .

∣

∣

∣

∣

∣

∣



L−1





exp
(

−
√

2∆0

σ

√
s+ r̃s

)

(s+ r̃s)
j

2

·
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−
√

2|∆1|
σ

√
s
)

√
s


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 (t)
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≤
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eyt

∫ y+i∞

y−i∞

∣

∣

∣

∣

∣

∣

exp
(

−∆0

σ

√

|s+ r̃s|
)

(|s+ r̃s|)
j

2

·
exp

(

− |∆1|
σ

√

|s|
)

√

|s|

∣

∣

∣

∣

∣

∣

ds ≤

eyt

∫ ∞

−∞

exp
(

−∆0+|∆1|
σ

√

|x|
)

|x| j+1
2

dx < ∞,

for j ∈ {3, 4, 5} . We now derive the inverse Laplace transform of the second

order Taylor approximation of lr(s) . The Formulas (5.83), (5.89) and (5.92) of

Oberhettinger and Badii (1973), page 258-259, and a lengthy calculation give

(

L−1

(

exp(−2a
√
s)√

s

))

(t) =
exp

(

−a2

t

)

√
πt

,

(

L−1

(

exp(−2a
√
s)

s

))

(t) = 2

(

1 − Φ

(√
2a√
t

))

,

(

L−1

(

exp(−2a
√
s)

s
3
2

))

(t) =
2
√
t exp

(

−a2

t

)

√
π

− 4a

(

1 − Φ

(√
2a√
t

))

,

(

L−1

(

exp(−2a
√
s)

s2

))

(t) = −
2a

√
t exp

(

−a2

t

)

√
π

+ 2
(

t+ 2a2
)

(

1 − Φ

(√
2a√
t

))

.

Another lengthy calculation involving the formulas above and a = (∆0+|∆1|)/(
√

2σ)

establishes the approximation of the integral
∫

e−rsgi(s)ds . ♦
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6.2 The roots of a quartic polynomial

The Laplace transform of first-passage times requires the roots of G(x)−α , com-

pare Section 4.6, which is equivalent to finding the roots of the quartic polynomial

P (x) = ax4 + bx3 + cx2 + dx+ e,

where a = σ2 , b = 2γ − σ2(λ⊕ − λ⊖) , c = −σ2λ⊕λ⊖ − 2γ(λ⊕ − λ⊖) − 2λ − 2α ,

d = −2γλ⊕λ⊖ − 2λp(λ⊕ + λ⊖) + 2λλ⊕ + 2α(λ⊕ − λ⊖) and e = 2αλ⊕λ⊖ . Kou

et al. (2005) adapt Ferrari’s algorithm to the present situation. They present the

following formulas

β1,α = − b

4a
+
p1 − p̃1

2
, β2,α = − b

4a
+
p1 + p̃1

2
,

β3,α =
b

4a
+
p1 − p2

2
, β4,α =

b

4a
+
p1 + p2

2
,

where B0 = c2 − 3bd + 12ae , B1 = 2c3 − 9bcd + 27ad2 + 27b2e − 72ace , B2 =
√

B2
1 − 4B3

0 , B3 = b2

4a2 − 2c
3a

, B4 = b2

2a2 − 4c
3a

, B5 = 4bc
a2 − 8d

a
− b3

a3 , B6 =
3
√
B1 +B2 , B7 =

3√2B0

3aB6
and B8 = B6

3 3√2a
. Moreover, p1 =

√
B3 +B7 +B8 ,

p2 =
√

B4 − B7 − B8 − B5

4p1
and p̃2 =

√

B4 −B7 − B8 + B5

4p1
.

Let us remark that an implementation of these formulas requires a complex algebra.

We implemented the algorithm using the standard C++ Class Complex. Figure 6.1

illustrates an example with γ = 0.025 , σ = 0.05 , λ = 2 , IPY = 2-Exp(30, 20, 1
2
)

and α = 2 .
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Figure 6.1: G(x) − α and the corresponding polynomial P (x) .
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6.3 Zhou’s bond-pricing algorithm

In Zhou (2001a), a simple Monte Carlo simulation for the pricing of corporate bonds

is presented. The idea of this simulation is to discretize the interval [0, T ] into N

equidistant bins. Then, several trajectories of the firm-value process are sampled

on this grid. Default is only tested at each point of the grid, which implies biased

bond prices, as the probability of a default in between two points of the grid is not

considered. Another drawback of this algorithm is that it requires the simulation of

a large number of random numbers2, which makes this algorithm very slow. Using

several numerical examples, we illustrated both shortfalls in Section 4.8. However,

the algorithm is very intuitive and straightforward to implement.

Algorithm 6.3.1 (Zhou’s bond-pricing algorithm)

Choose the number of simulation runs K and the number of grid points N . Specify

the jump-size distribution IPY and the recovery rate R , or the recovery function

w(x) of Section 4.5.1. Approximate the price φ(0, T ) of a zero-coupon bond by

φ(0, T ) ≈ 1

K

K
∑

n=1

φN
n (0, T ),

where in each simulation run φN
n (0, T ) is calculated as follows.

1. Partition the interval [0, T ] , i.e. define ti := i T
N

for i ∈ {0, . . . , N} .

2. Sample the firm-value process on this grid, i.e. generate mutually independent

random variables xi ∼ N
(

γ T
N
, σ2 T

N

)

, yi ∼ IPY and πi ∼ B
(

1, λ T
N

)

for

i ∈ {1, . . . , N} .

3. Successively construct the sampled firm-value process V̂ .

V̂t0 := v0, V̂ti := V̂ti−1
exp(xi + πiyi) i ∈ {1, . . . , N}.

4. Find the first point of the grid, such that V̂ti ≤ d . If such an i exists, let 3

φN
n (0, T ) = w(V̂ti/d) exp

(

−r ti + ti−1

2

)

.

Otherwise, the company survives and φN
n (0, T ) is set to be

φN
n (0, T ) = exp (−rT ).

2 More precisely, with the notations of Algorithm 6.3.1, we need 3NK random numbers.
3 A constant recovery rate corresponds to w(x) ≡ R .
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6.4 Vasicek’s asymptotic single factor model

Vasicek’s model4 is a multidimensional generalization of Merton’s structural firm-

value model. The different firm-value processes are assumed to evolve according

to correlated geometric Brownian motions, default is tested at maturity only. The

model for each individual firm-value process is given by

dV i
t = V i

t (γidt+ σidW
i
t ) v0 > 0.

We solve this stochastic differential equation using Itô’s formula and rewrite the

firm value of company i at maturity as

V i
T = V i

t exp

{(

γi −
σ2

i

2

)

(T − t) + σi

√
T − tX i

t

}

,

where X i
t := (W i

T −W i
t )/

√
T − t follows a standard normal distribution. To incor-

porate correlation among the companies, we partially explain X i
t by the common

market factor Mt and the idiosyncratic risk factors ǫit , i.e. we redefine X i
t to

X i
t := ρMt +

√

1 − ρ2ǫit ρ ∈ (0, 1),

where Mt, ǫ
1
t , . . . , ǫ

I
t are i.i.d. N (0, 1) distributed. First of all, we notice that this

construction implies Corr(X i
t , X

k
t ) = ρ2 for i 6= k . Moreover, each X i

t is again

distributed according to the standard normal law. The next observation is that the

firm-value processes are independent, conditional on the market factor Mt . Con-

sequently, conditional on Mt , all individual default probabilities are independent.

We denote these conditional default probability by pi(Mt) and obtain

pi(Mt) := IP(τ i < t|Mt) = Φ

(

ki
t − ρMt
√

1 − ρ2

)

,

where

ki
t :=

log
(

di

V i
t

)

−
(

γi − σ2
i

2

)

(T − t)

σi

√
T − t

.

The purpose of Vasicek’s model is to explain the dependence among the companies,

not the individual default probabilities. Therefore, we assume the term structure

of individual default probabilities as given and set Φ−1(pi
t) := ki

t . The next sim-

plification is to assume all companies to have identical default probabilities, the

4 A detailed description of this standard model, including all calculations which we omit, is
presented in Elizalde (2005). The original reference is Vasicek (1987).
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same portfolio weights and the same recovery rates. Therefore, we have

p(Mt) := pi(Mt) = Φ

(

Φ−1(pt) − ρMt
√

1 − ρ2

)

.

We now define Ωt as the random variable that describes the fraction of defaults

in the CDO portfolio up to time t . The distribution of Ωt depends on two pa-

rameters. These parameters are the individual default probabilities pt and the

correlation ρ among the companies. In what follows, we denote the distribution

function of Ωt by

Fpt,ρ(x) := IP(Ωt ≤ x).

The last simplification is to assume the number of companies within the CDO

portfolio to be large enough to justify the use of the strong law of large numbers to

approximate IP(Ωt ≤ x) by p(Mt) . A straightforward calculation then establishes

Fpt,ρ(x) ≈ Φ

(

√

1 − ρ2Φ−1(x) − Φ−1(pt)

ρ

)

.

This approximation is continuous and strictly increasing in x . As it further maps

the unit interval onto itself it is a distribution function, too. The expected dis-

counted premium and default legs are now given as5

EDPLj =
∑

t∈{η,2η,...,T}
ηe−rtsjIE[uj − lj − Lj

t ],

EDDLj =
∑

t∈{η,2η,...,T}
e−rtIE[Lj

t − Lj
t−1].

The fair spread of tranche j is then found by equating the expected discounted

payment legs and solving this relation for sj . The last remaining problem is the

evaluation of IE[Lj
t ] . This expectation is derived by numerically evaluating the

integral

IE[Lj
t ] =

∫ 1

0

min
{

(1 − R)xM, uj
}

− min
{

(1 − R)xM, lj
}

dFpt,ρ(x).

5 Default payments within a period are deferred to the next payment date, premium payments
are paid at the end of a period. The premium schedule is 0 < t1 < . . . < tn = T , with
payment frequency ∆tk ≡ η years. The attachment points lj and uj are given in absolute
values.
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Chapter 7

Zusammenfassung

Das Ziel dieser Arbeit ist es, die Forschung von strukturellen Kreditrisikomodellen

voranzutreiben. Dabei verlassen wir die übliche Klasse der stetigen Modelle, da

diese Modelle Marktpreise von Unternehmensanleihen und Credit Default Swap

(CDS) Verträgen nur unzureichend erklären, und widmen uns stattdessen Mo-

dellen, welche den Wert einer Firma als das Exponential einer Sprungdiffusion

beschreiben. Zhou (2001a) formulierte als Erster solch ein Modell und beschrieb

dessen Vorzüge. Allerdings gelang es ihm nicht, einen schnellen Algorithmus für die

Auswertung der Preisformel von Null-Kupon Anleihen zu finden. Unser Hauptau-

genmerk gilt demnach zunächst der Entwicklung eines solchen Algorithmus, wofür

wir zwei Lösungen anbieten. Der zweite Teil dieser Arbeit trägt dem rasch wach-

senden Markt an Derivaten auf ein Portfolio von Kreditverträgen Rechnung. Hier

entwickeln wir eine elegante Verallgemeinerung des Modells auf mehrere Firmen.

Diese Verallgemeinerung verändert nicht die Randverteilungen der einzelnen Fir-

men, was es wiederum ermöglicht, verschiedene Derivate gleichzeitig mit einem

Modell zu beschreiben. Die Abhängigkeit zwischen den Firmen wird dabei durch

gemeinsame Sprünge und korrelierte Brown’sche Bewegungen erzeugt. Diese Kon-

struktion kann darüberhinaus auch ökonomisch motiviert werden. Basierend auf

diesem Modell erläutern wir, wie Preise für unterschiedliche Derivate kalkuliert

werden. Im Folgenden geben wir eine detaillierte Zusammenfassung der einzelnen

Kapitel dieser Arbeit.

Einleitung

Einleitend geben wir einen Abriss über die historische Entwicklung verschiede-

ner Finanzmärkte. Speziell beschreiben wir das rasante Wachstum des Marktes

für Kreditderivate und unterstreichen dessen Bedeutung durch aktuelle Handels-

165
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volumina. Es wird auf das Ausfallrisiko einer Firma als wichtigste Kenngröße zur

Bewertung von Kreditverträgen verwiesen und Kreditrisiko als abstrakter Begriff

definiert. Zur Quantifizierung dieses Kreditrisikos existieren verschiedene Modelle,

welche in strukturelle- und intensitätsbasierende Modelle unterteilt werden. Diese

Arbeit fokusiert auf Modelle der ersten Klasse, daher beschränkt sich die Einlei-

tung auf eine kurze Literaturübersicht der intensitätsbasierenden Modelle.

Strukturelle Ausfallmodelle, auch Firmenwertmodelle genannt, erklären die Insol-

venz einer Firma als den ersten Zeitpunkt, an dem der Firmenwert die Verbindlich-

keiten der Firma unterschreitet. Feiner klassifiziert werden diese Modelle anhand

des stochastischen Prozesses, welcher den Firmenwert beschreibt. Seit Black und

Scholes (1973) wurden diese Modelle mehrmals verallgemeinert, aktuell bedient

man sich der Klasse der Lévy-Prozesse als stochastisches Hilfsmittel. Der Haupt-

kritikpunkt an den lange beliebten stetigen Modellen ist deren Eigenschaft des

sich vorab abzeichnenden Ausfalls. Einerseits gab es in der Vergangenheit mehrere

prominente Fälle von unerwarteten Insolvenzen, was gegen stetige Firmenwert-

prozesse spricht. Andererseits impliziert die Vorhersagbarkeit von Firmenausfällen

sehr unrealistisch Preise für kurzlaufende Kreditverträge, da kurzfristige Risiken

unterschätzt werden. Eine Lösungsmöglichkeit ist es, Sprünge im Firmenwert zu-

zulassen, welche dann die benötigten überraschenden Ausfälle erzeugen können.

In einem größeren Absatz werden Derivate auf Portfolios von Kreditverträgen be-

schrieben. Die Bewertung solcher Produkte erfordert zusätzlich ein Modell der

Abhängigkeitsstruktur von Firmenausfällen, wofür wir verschiedene Ansätze dis-

kutieren.

Der letzte Absatz der Einführung grenzt unseren wissenschaftlichen Beitrag von

der existierenden Literatur ab.

Technisches Rahmenwerk

In Kapitel 2 fassen wir die für diese Arbeit benötigten mathematischen Objekte zu-

sammen und beschreiben deren wichtigste Eigenschaften. Nachdem das wahrschein-

lichkeitstheoretische Fundament aus Grundraum, σ -Algebra, Filtration und Wahr-

scheinlichkeitsmaß gelegt ist, werden stochastische Prozesse als Familien von Zu-

fallsvariablen eingeführt. Speziell definieren wir dann die Klasse der Lévy-Prozesse.

Das sind Prozesse, die stetig in Wahrscheinlichkeit sind, und sowohl unabhängige

als auch stationäre Zuwächse besitzen. Repräsentanten aus der für uns wichtigen

Unterklasse der Sprungdiffusionen können dabei höchstens endlich viele Sprünge

auf einem beschränkten Zeitintervall besitzen. Lévy-Prozesse können mit Hilfe

der Lévy-Itô-Zerlegung charakterisiert werden, was wiederum die Definition des

Lévy-Triplets ermöglicht. Alternativ kann ein Lévy-Prozess mittels der berühmten



167

Lévy-Kinchin-Darstellung ihrer charakteristischen Funktion beschrieben werden.

Wir zeigen weiter, dass Sprungdiffusionen stets aus einem linearen Drift, einer

Brown’schen Bewegung sowie einer zufälligen Zahl an Sprüngen mit einer ge-

wissen Sprunghöhenverteilung bestehen. Für diese Basisprozesse bestimmen wir

das charakteristische Lévy-Triplet, die ersten Momente sowie eine spezielle Itô-

Transformationsformel. Neben den stochastischen Hilfsmitteln benötigen wir an

zwei wichtigen Stellen dieser Arbeit die Laplace-Transformation und ihre Inverse.

Explizit wird in Section 4.6 die Laplace-Transformation von Firmenausfallwahr-

scheinlichkeiten berechnet. Deren Darstellung ist allerdings zu kompliziert, um

in geschlossener Form invertiert zu werden. Daher präsentieren wir den Appro-

ximationsalgorithmus von Gaver und Stehfest, welcher später in den numerischen

Implementierungen des Modells eingesetzt wird.

Finanzkontrakte und deren Eigenschaften

Nachdem das mathematische Rahmenwerk abgesteckt ist, werden nun die zu bewer-

tenden Kreditverträge eingeführt. Dabei beginnen wir mit Unternehmensanleihen

und deren vereinfachter Version ohne periodische Zinszahlungen, welche als Null-

kuponanleihen bezeichnet werden. Die Zahlungsströme dieser Wertpapiere hängen

im Wesentlichen von der Zahlungsfähigkeit des Emittenten und den genauen Ver-

tragsbedingungen ab. Auf Modellebene übersetzt entspricht dies der Verteilung der

Ausfallzeit und dem angenommenen Rückgewinnung-Schema im Schadensfall, für

welches wir verschiedene Modellierungsansätze anbieten. Schließlich wird mit dem

Zinsaufschlag von Unternehmensanleihen zu nicht ausfallbehafteten Staatsanleihen

eine wichtige Kenngröße zur Beschreibung des Risikos eines Kredites definiert. Zur

Absicherung gegen den Ausfall von Unternehmensanleihen gibt es Credit Default

Swap (CDS) Verträge, die in ihrer Funktion vergleichbar mit Versicherungspolicen

sind. Dieses Kreditderivat wird mittlerweile in größerem Volumen als das Basis-

objekt Anleihe gehandelt, weil damit unter anderem komplexe Handelsstrategien,

wie das Verkaufen von Ausfallrisiko, möglich sind. Die Zahlungsflüsse eines CDS

hängen wieder vom Ausfallzeitpunkt der zugrundeliegenden Firma ab.

Die Kreditderivate, die im Folgenden dargestellt werden, unterscheiden sich da-

durch von Unternehmensanleihen und CDS-Verträgen, dass ihre Zahlungsströme

von einem Portfolio an Einzelkrediten abhängen. Bei der Bewertung erfordert dies

die zusätzliche Modellierung der Abhängigkeiten zwischen den Firmen, bzw. de-

ren Ausfällen, da gerade in konjunkturell schlechten Zeiten Firmenausfälle gehäuft

auftreten. Die von uns betrachteten Verträge werden Collateralized Debt Obliga-

tion (CDO) und nth -to default genannt. Bei einem CDO wird ein Portfolio von

Krediten in kleine Tranchen unterschiedlicher Seniorität aufgeteilt, diese werden

dann einzeln weiterverkauft. Fallen Kredite im Portfolio aus, so betreffen diese
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Ausfälle zunächst die unterste Tranche, bis diese komplett aufgezehrt ist. Die fol-

genden Ausfälle werden von der nächsthöheren Tranche aufgefangen, und so weiter.

Bei nth -to default Verträgen wird Zins gezahlt, solange weniger als n Firmen des

Portfolios ausgefallen sind. Dann muß der Versicherungsgeber den Versicherungs-

nehmer für den n -ten Ausfall entschädigen. Wir beschreiben die Zahlungsströme

beider Derivate explizit und entwickeln in Kapitel 5 ein Modell, was sowohl die

individuellen Ausfallrisiken als auch die gemeinsame Ausfallstruktur beschreibt.

Das Einfirmen-Modell

Kapitel 4 behandelt das strukturelle Ausfallmodell für einzelne Firmen. Der Fir-

menwert wird dabei als das Exponential einer Sprungdiffusion beschrieben, der

Ausfall der Firma ist der erste Zeitpunkt an dem der Firmenwert eine vorab fest-

gelegte Schranke passiert. Nachdem die Modellannahmen diskutiert sind, wird das

Problem der Bestimmung von Ausfallwahrscheinlichkeiten in diesem Rahmenwerk

angegangen. Dazu fassen wir zunächst die bekannten Resultate über die Vertei-

lung des Minimums einer Brown’schen Bewegung bzw. einer Brown’schen Brücke

zusammen und passen diese auf das Modell an. Für Sprungdiffusionen ist die Ver-

teilung des Minimums nicht bekannt. Allerdings ist es möglich, diese in Form

eines Mehrfachintegrals über bedingte Wahrscheinlichkeiten umzuschreiben, was

die Konstruktion eines schnellen und unverzerrten Monte-Carlo-Schätzalgorithmus

ermöglicht. Als wichtiges theoretisches Resultat berechnen wir die lokale Ausfallra-

te einer Sprungdiffusion, das ist quasi die Ableitung der Ausfallwahrscheinlichkeit

zur Zeit Null. Diese lokale Ausfallrate ist im Wesentlichen das Produkt aus Sprung-

intensität und der Wahrscheinlichkeit, durch einen Sprung einen Firmenausfall zu

erzeugen.

Preise von Anleihen und CDS Verträgen

Um nun den Preis einer Firmenanleihe zu bestimmen, genügt es, die Verteilung

des Ausfallzeitpunktes zu kennen. Im stetigen Fall reduziert sich daher die Berech-

nung von Preisen für Firmenanleihen auf die Auswertung eines Riemann-Stieltjes

Integrals. Im allgemeinen Fall sind wir wieder auf statistische Schätzverfahren an-

gewiesen. Unser Vorschlag ist es, den Wert einer Firmenanleihe wiederum künstlich

als ein Mehrfachintegral über einen bedingten Erwartungswert zu schreiben. Da-

bei integrieren wir über alle Möglichkeiten für die Anzahl an Sprüngen, deren Lage

sowie den Firmenwert zu diesen Sprungzeiten. Sind diese Größen fixiert, so kann

die erwartete Auszahlung der Anleihe explizit bestimmt werden. Diese Darstellung

ist die Basis für einen schnellen Monte-Carlo-Algorithmus. In jedem Schritt des

Algorithmus simulieren wir so wenig wie nötig - das sind die Anzahl und Lage der
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Sprünge sowie der Firmenwert zu den Sprungzeiten - und berechnen so viel wie

möglich, das ist die erwartete Auszahlung gegeben den simulierten Größen.

Dieser sehr schnelle Algorithmus kann noch zusätzlich beschleunigt werden, indem

man ein in der bedingten Auszahlung auftretendes Integral approximiert. Diese

Approximation wurde ursprünglich von Metwally und Atiya (2002) im Zusammen-

hang mit der Bewertung von Barrier-Optionen vorgeschlagen. Es gelang uns, diese

Approximation weiter zu verbessern. Als weiteres theoretisches Resultat ermitteln

wir den Grenzwert des Zinsaufschlags von Unternehmensanleihen für kurzlaufende

Maturitäten. Dieser Grenzwert ist positiv und setzt sich faktoriell aus der zuvor be-

stimmten lokalen Ausfallrate und dem erwarteten Verlust beim Ausfall zusammen.

Der dann folgende Abschnitt behandelt die Auswertung der CDS Preisformel, was

in weiten Zügen analog zur Bewertung von Unternehmensanleihen erfolgt. Auch

hier geben wir einen Simulationsalgorithmus an und berechnen den Grenzwert von

CDS Beiträgen für kurzlaufende Maturitäten.

Verallgemeinerungen des Modells

Nun wenden wir uns verschiedenen Verallgemeinerungen des Modells zu und be-

schreiben, wie diese in unseren Simulationsalgorithmen berücksichtigt werden kön-

nen. Die erste Erweiterung des Modells betrifft die Rückholrate beim Firmenaus-

fall, welche bisher als konstant angenommen wurde. Da strukturelle Modelle aber

gerade den Firmenwert modellieren, liegt es nahe, dessen Wert am Ausfallzeit-

punkt als Determinante der Rückholrate einzubinden. Diese Modellannahme bringt

bei stetigen Modellen mit konstanter Ausfallrate keine neue Erkenntnis, da dort

der Firmenwert beim Ausfall notwendigerweise mit der Ausfallrate übereinstimmt.

Werden hingegen Sprünge im Firmenwert zugelassen, so ist dieser Wert zum Aus-

fallzeitpunkt zufällig, da unklar ist, wie tief der Firmenwert bei einem plötzlichen

Ausfall unter die Ausfallschranke springt. Da in unserem Algorithmus der Firmen-

wert aber gerade an den Sprungzeiten simuliert wird und bei einem Ausfall durch

Diffusion mit der Ausfallschranke übereinstimmt, kann diese Verallgemeinerung el-

legant in unseren Algorithmus aufgenommen werden.

Bisher benutzten wir eine konstante Zinsrate, um zukünftige Zahlungsströme ab-

zuzinsen. Im Folgenden wird diese Zinsrate durch einen stochastischen Prozess

ersetzt, für welchen wir exemplarisch die Standardmodelle von Vasicek sowie von

Cox, Ingersoll und Ross betrachten. Unter der Annahme der stochastischen Un-

abhängigkeit von Firmenwert und Zinsprozess zeigen wir, wie diese Erweiterung in

unseren Monte-Carlo-Algorithmus eingebunden werden kann.

Die nächste Verallgemeinerung beruht auf der Tatsache, dass die Differenz zwei-
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er Sprungdiffusionen wiederum eine Sprungdiffusion ist. Wir benutzen dieses un-

scheinbare Resultat, um die bisher konstante Ausfallrate durch das Exponential

einer Sprungdiffusion zu ersetzen, was auch den populären Spezialfall einer expo-

nentiell ansteigenden Ausfallrate beinhaltet.

Abschließend diskutieren wir die der Bewertung von Anleihen und CDS zugrun-

deliegende Basis an Informationen. Bisher erlaubten wir es allen Investoren, den

Firmenwertprozess stetig zu beobachten, was in der Praxis selbst für Firmenin-

sider unrealistisch ist. Plausibler hingegen ist die Modellannahme, dass der Fir-

menwert in periodischen Abständen veröffentlicht wird, z.B. in Form einer Bilanz.

Zusätzlich sind die Investoren zu jedem Zeitpunkt über den Ausfallstatus der Firma

informiert. Für ein stetiges Modell können wir wieder geschlossene Preisformeln,

basierend auf den jeweiligen Filtrationen, anbieten. In unstetigen Modellen muss

auf die bekannte Simulationstechnik zurückgegriffen werden. Wir illustrieren den

Einfluss dieser Filtrationsverkleinerung anhand eines numerischen Beispiels, wel-

ches sich sehr anschaulich interpretieren lässt.

Der Laplace Ansatz

Bis zu diesem Abschnitt vertrauten wir auf stochastische Simulationen, um Preise

für Anleihen und CDS zu ermitteln. Dieser Ansatz ist schnell und präzise ge-

nug, wenn Preise zu gegebenen Modellparametern bestimmt werden sollen. Ist das

Ziel hingegen die Kalibrierung des Modells, so erfordert dies einerseits das wie-

derholte Auswerten der Preisformel, andererseits arbeiten die üblichen Minimie-

rungsalgorithmen mit numerisch approximierten Gradienten, was bei einer Monte-

Carlo-Formel problematisch ist. Wählt man nun als Sprungverteilung zweiseitig

exponentiell verteilte Sprünge, so läßt sich die Laplace-Transformation von Aus-

fall und Überlebenswahrscheinlichkeiten einer Sprungdiffusion bestimmen. Mit-

tels des Laplace-Inversionsalgorithmus von Gaver und Stehfest lassen sich diese

Überlebenswahrscheinlichkeiten mit hoher Präzision zurückgewinnen. Auf Basis

dieser theoretischen Resultate konstruieren wir einen sehr schnellen Approximati-

onsalgorithmus für Anleihenpreise und CDS-Verträge.

In Abschnitt 4.7 untersuchen wir die Reaktion der Preisstrukturkurven von Anlei-

hen und CDS Verträgen auf Veränderungen in den Modellparametern. Dies führen

wir unter der Annahme von zweiseitig exponentiell verteilten Sprüngen durch, was

es uns ermöglicht, den Approximationsalgorithmus aus dem vorigen Abschnitt ein-

zusetzen. Zunächst ändern wir den Drift bzw. die Volatilität der Diffusionskom-

ponente. Dies führt zu dem erwarteten Ergebnis, dass Zinsaufschläge und CDS

Prämien fallend im Drift und steigend in der Volatilität sind. Allerdings - und

dies ist im Einklang mit unseren theoretischen Ergebnissen - ist der Grenzwert
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für kurzlaufende Verträge unabhängig von den Parametern der Diffusionskompo-

nente. Anschließend untersuchen wir den Einfluss der Sprungintensität, dem re-

lativen Anteil an der Gesamtvarianz welcher durch Sprünge induziert wird sowie

dem Verschuldungsgrad der Firma. Es zeigt sich, dass das Modell wie erwartet auf

Veränderungen in den Parametern reagiert, was eine anschauliche Interpretation

der Parameter zuläßt. Eine weitere Beobachtung ist die große Bandbreite an Struk-

turkurven von Anleihen und CDS Preisen, die das Modell nachzubilden vermag.

Neben Zhou’s Algorithmus stehen uns mit unserem Simulationsalgorithmus, des-

sen Integralapproximation sowie dem Laplace-Algorithmus mehrere Möglichkeiten

zur Verfügung, um Unternehmensanleihen zu bewerten. Um die spezifischen Vor-

und Nachteile der Algorithmen zu illustrieren, konstruieren wir vier Szenarien in

denen wir Anleihenpreise berechnen. Es stellt sich heraus, dass Zhou’s Algorithmus

bei weitem der langsamste ist und selbst für ein sehr feines Grid verzerrte Preise

ausgibt. Alle anderen Algorithmen zeichnen sich durch eine ähnlich hohe Präzision

aus, der Laplace-Algorithmus ist zusätzlich in der Lage, Preise in Bruchteilen von

Sekunden zu berechnen. In einem weiteren Abschnitt untersuchen wir unsere Inte-

gralapproximation mit der von Metwally und Atiya (2002). Basierend auf verschie-

denen Szenarien stellt sich auch hier unser Ansatz als der deutlich genauere heraus.

Im abschließenden Abschnitt über das Einfirmen-Modell stellen wir uns der Her-

ausforderung, das Modell zu kalibrieren. Gelingt uns dies, so ist einerseits der

Nachweis erbracht, dass das Modell in der Lage ist, realistische Preisstrukturkur-

ven zu erzeugen. Andererseits unterstreicht dies die praktische Relevanz von un-

serem Laplace-Algorithmus, da solch eine Kalibrierung bisher nicht möglich war.

Der Firmenwertprozess selbst ist nicht beobachtbar, da nicht am Markt gehandelt.

Daher wählen wir den Ansatz einer risikoneutralen Kalibrierung der Modellpa-

rameter. Dies bedeutet, dass gegeben den beobachteten Anleihen oder CDS einer

Firma, die Parameter des Modells so gewählt werden, dass ein Fehlerfunktional von

Marktpreisen zu Modellpreisen minimiert wird. Wie schon angeschnitten erfordert

diese Minimierung über den Parameterraum das mehrmalige präzise Auswerten der

jeweiligen Preisformel. Zunächst kalibrieren wir die jeweiligen Firmenwertprozesse

von DaimlerChrysler und General Motors an deren Anleihen. Dann kalibrieren

wir jede der 125 Firmen des iTraxx Index an deren CDS Quotierungen verschie-

dener Laufzeiten. Zum Vergleich führen wir die identische Kalibrierung in einem

Modell ohne Sprünge durch. Es zeigt sich, dass das Sprungdiffusions-Modell in der

Lage ist, die Strukturkurven von Anleihen und CDS unterschiedlichster Firmen

nachzubilden. Die Präzision dieser Kalibrierung ist um Längen besser als in einem

vergleichbaren stetigen Modell.
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Das Mehrfirmen-Modell

In den letzten Jahren stieg die Marktkapitalisierung und damit auch das Interesse

an Derivaten auf ein Portfolio von Kreditprodukten sprunghaft an. Um solche De-

rivate bewerten zu können, benötigen wir ein Modell, welches die Abhängigkeiten

zwischen den Firmen beschreibt. Unsere Ansprüche an solch ein Modell sind sehr

hoch. Einerseits soll die Abhängigkeit zwischen den Firmen durch einen gemein-

samen Marktfaktor beschrieben werden, was sich als Konjunkturzyklus interpre-

tieren lässt. Andererseits soll das Modell kurze Perioden mit unerwartet vielen

Ausfällen erzeugen können, sogenannte Ausfallcluster. Diese Ausfallcluster inter-

pretieren wir als die Reaktion des Marktes auf unerwartete negative Ereignisse, z.B.

den Ausfall eines großen Konzerns, welcher die Insolvenz vieler Zulieferer nach sich

zieht. Darüber hinaus streben wir es im Gegensatz zu puren Abhängigkeitsmodellen

an, innerhalb des Modells auch weiterhin realistische Preise für Derivate auf alle

Einzelfirmen erzeugen zu können, was sehr ambitioniert ist. Da unser Einfirmen-

Modell allen Ansprüchen auf firmenindividueller Ebene genügt, ist unser Ansatz

dessen Verallgemeinerung auf mehrere Firmen. Das bedeutet, dass die einzelnen

Firmenwertprozesse mittels neu eingeführter Variablen abhängig gemacht werden,

ohne die individuellen Randverteilungen zu verändern. Dies wiederum sichert die

Konsistenz von Derivatpreisen auf Kredite einzelner Firmen. Im Folgenden stellen

wir drei Möglichkeiten vor, wie diese mehrdimensionale Verallgemeinerung erreicht

werden kann. Darüber hinaus erläutern wir die jeweilige ökonomische Interpreta-

tion dieser Erweiterungen.

Die drei Ansätze für ein Portfolio Modell

Im ersten Ansatz modellieren wir die Abhängigkeit zwischen den Firmen durch

einen gemeinsamen Marktfaktor und mittels gemeinsamer Sprünge. Dazu wird

die Brown’sche Bewegung eines jeden Firmenwertprozesses in einen gemeinsamen

Marktfaktor und einen individuellen Faktor aufgespalten. Der relative Anteil des

Marktfaktors bestimmt dann den Grad der systematischen Abhängigkeit zwischen

den Firmen. Zusätzlich definieren wir einen Zählprozess, welcher das Eintreffen

wichtiger Informationen ankündigt. Jede Firma reagiert mit individueller Wahr-

scheinlichkeit mit einem Sprung in ihrem Firmenwertprozess auf das Eintreffen

einer neuen Nachricht. Mathematisch entspricht diese Konstruktion einem aus-

gedünnten Poisson-Prozess. Mit steigender Wahrscheinlichkeit, auf neue Informa-

tionen mit einem Sprung im Firmenwert zu reagieren, wächst auch die Wahr-

scheinlichkeit für gemeinsame Sprünge und damit für simultane Firmenausfälle.

Die durch gemeinsame Sprünge induzierte Abhängigkeit kann noch deutlich ge-

steigert werden, wenn Sprünge zu identischen Zeitpunkten das gleiche Vorzeichen

besitzen. In dieser zweiten Variante des Modells wird jede Information zunächst als
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gut oder schlecht für die Gesamtwirtschaft klassifiziert. Abhängig von dieser Eintei-

lung werden dann an dem zugehörigen Zeitpunkt ausschließlich Aufwärtssprünge

beziehungsweise Abwärtssprünge zugelassen. In der dritten Variante des Modells

ordnen wir zunächst jeder Firma einen Sektor zu, etwa Automobil, Konsum, Tele-

komunikation, usw. Neben dem globalen Marktfaktor definieren wir einen Faktor

für jeden Sektor und jede Firma. Die Brown’schen Bewegungen der individuel-

len Firmenwertprozesse werden dann in den Marktfaktor, den jeweiligen Faktor

des Sektors sowie den firmenindividuellen Faktor aufgespalten. Analog gehen wir

bei der Definition von Sprüngen vor. Wir betrachten einen Nachrichtenticker für

den Gesamtmarkt, für jeden Sektor sowie für jede Firma. Die Superposition dieser

Tickerprozesse bestimmt dann das Sprungverhalten der jeweiligen Firma.

Die Abhängigkeit zwischen den Firmen

Im nun folgenden Abschnitt untersuchen wir die durch das Modell implizierte

Abhängigkeitsstruktur genauer. Dazu definieren wir zunächst den Begriff der Aus-

fallkorrelation bis zu einem Zeitpunkt, welche wir dann in verschiedenen Szenarien

mittels einer Monte-Carlo-Simulation bestimmen. Es zeigt sich, dass gemeinsa-

me Sprünge schon innerhalb von kurzen Zeiträumen eine relevante Ausfallkorre-

lation erzeugen, wohingegen ein stetiger Marktfaktor ein viel längeres Zeitfenster

benötigt, um einen meßbaren Einfluß auf die Ausfallkorrelation aufzubauen. Im

Anschluß daran leiten wir die Korrelation zweier Firmenwertprozesse zu einem ge-

gebenen Zeitpunkt her. Im stetigen Fall ist dies gerade das Produkt der Anteile

des Marktfaktors an den Firmanwertprozessen der betrachteten Firmen. Diese For-

mel kann elegant um den Einfluß gemeinsamer Sprünge erweitert werden. In einer

aufwändigen Rechnung gelingt es uns sogar, das zugehörige Ergebnis bei Sprüngen

in die gleiche Richtung herzuleiten. Wie erwartet ist die Korrelation in dieser Mo-

dellvariante höher als bei unabhängigen Sprüngen.

Der Algorithmus zur Bewertung von CDO-Verträgen

Im Mittelpunkt dieses Abschnitts steht die Herleitung eines Monte-Carlo-Algo-

rithmus zur Bewertung der unterschiedlichen Tranchen eines CDO-Vertrags. Die-

ser Algorithmus bedient sich mehrerer schon im Einfirmen-Modell hergeleiteter

Hilfsmittel. Wieder simulieren wir in jedem Schritt zunächst die Anzahl und Lage

der Sprünge des Tickerprozesses. Anschließend simulieren wir den gemeinsamen

Marktfaktor sowie die einzelnen Firmenwertprozesse zu diesen Zeitpunkten. Nun

zeigt sich auch der Vorteil des Modells bei der Implementierung. Dadurch, dass ein

gemeinsamer Zählprozess mögliche Sprünge in den einzelnen Firmenwerten vor-

gibt, ist sichergestellt, dass alle Firmenwertprozesse zwischen diesen Sprungzeiten
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stetig verlaufen. Mittels Brown’scher Brücken können wir daher wieder deren Aus-

fallwahrscheinlichkeit, bedingt an die simulierten Größen, bestimmen. Diese Aus-

fallwahrscheinlichkeiten werden aggregiert, um damit die erwarteten Verluste im

Portfolio zu jedem Zeitpunkt bestimmen zu können. Auf Basis dieser Portfoliover-

luste werden dann Prämien und Ausfallkompensationszahlungen aller Tranchen

bestimmt. Um den numerischen Aufwand erträglich zu halten, werden Hilfsmittel

wie die Integralapproximation eingesetzt. Dies ist unumgänglich, da der Berech-

nungsaufwand linear in der Anzahl der Firmen steigt und ein typisches iTraxx

Portfolio 125 Firmen beinhaltet.

Im Anschluß an die formale Darstellung des Algorithmus gehen wir detailliert

auf mögliche Schwierigkeiten bei dessen Implementierung ein. Wir ermitteln heu-

ristisch, wie viele Monte-Carlo-Schritte benötigt werden, um verlässliche Ergeb-

nisse erzielen zu können. Um die Mechanismen des Modells besser zu verste-

hen, konstruieren wir verschiedene Szenarien für die Kreditwürdigkeit sowie die

Abhängigkeitsstruktur der Firmen innerhalb eines Portfolios. Für diese Szenarien

berechnen wir dann Preise der unterschiedlichen Tranchen eines CDOs. Es zeigt

sich, dass die vom Modell ermittelten Preise wie erwartet auf Veränderungen in

der Abhängigkeitsstruktur reagieren.

Die Kalibrierung des mehrdimensionalen Modells

Eine Kalibrierung des mehrdimensionalen Modells ist ambitioniert, da das Modell

sehr viele Parameter enthält. Zwei Tatsachen machen diese Kalibrierung letztend-

lich doch möglich. Zum einen kann das Modell die verschiedensten Wertpapiere

beschreiben, was es ermöglicht eine Vielzahl an Marktinformationen in die Ka-

librierung des Modells einfließen zu lassen. Zum anderen können die Parameter

der Abhängigkeitsstruktur unabhängig von den individuellen Parametern, welche

die firmenspezifischen Ausfallwahrscheinlichkeiten adjustieren, geschätzt werden.

Wir kombinieren diese Beobachtungen zu folgendem zweistufigen Verfahren. Im

ersten Schritt ermitteln wir die Parameter der einzelnen Firmenwertprozesse aus

CDS-Quotierungen unterschiedlicher Laufzeit. Für den zweiten Schritt fassen wir

zunächst die Firmen zu einem Portfolio zusammen. Dann verändern wir die Pa-

rameter der Abhängigkeitsstruktur, bis das Modell CDO-Preise möglichst optimal

nachbildet. Diese Kalibrierung führen wir exemplarisch an 16 Tagen durch. Es

zeigt sich, dass das Modell in der Lage ist, gleichzeitig die Preise von individuel-

len CDS, Portfolio-CDS sowie den verschiedenen Tranchen eines CDOs mit hoher

Genauigkeit zu beschreiben.
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Die Bewertung von nth -to default Verträgen

Der letzte Abschnitt über das mehrdimensionale Modell illustriert, wie einfach

unser Algorithmus auf die Bewertung anderer Portfolioderivate adaptierbar ist.

Speziell beschreiben wir die Bewertung eines nth -to default Vertrags. Auch für

dieses Kreditderivat konstruieren wir verschiedene Beispiele, die verdeutlichen, wie

in unserem Modell Preise zustande kommen.

Anhang

Im Anhang wird zunächst der sehr lange und technische Beweis der Approxima-

tion des Integrals über die abdiskontierte Ausfalldichte einer Brown’schen Brücke

vorgestellt. Danach präsentieren wir Ferrari’s Algorithmus zur Auflösung einer bi-

quadratischen Gleichung, angepasst auf das Problem der Bestimmung der Laplace-

Transformation von Ausfallwahrscheinlichkeiten. In einem weiteren Abschnitt wird

der oft zitierte Algorithmus von Zhou (2001a) beschrieben. Schließlich erläutern wir

Vasicek’s Portfolio Modell, welches bis heute die Referenz bei der Bestimmung von

impliziten Korrelationen ist.
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