
Universität Ulm
Fakultät für Ingenieurwissenschaften
und Informatik
Institut für Neuroinformatik
Direktor: Prof. Dr. Günther Palm

Feature Selection and Information Fusion

in Hierarchical Neural Networks

for Iterative 3D-Object Recognition

Dissertation zur Erlangung des Doktorgrades
Doktor der Naturwissenschaften (Dr. rer. nat.)
der Fakultät für Ingenieurwissenschaften und Informatik
der Universität Ulm

vorgelegt von
Rebecca Fay
aus Lich

Ulm 2007

Amtierender Dekan der Fakultät für Ingenieurwissenschaften und Informatik:
Prof. Dr. Helmut Partsch

Gutachter: Prof. Dr. Günther Palm
Gutachter: Prof. Dr. Heiko Neumann
Gutachter: Prof. Dr. Friedrich W. von Henke

Tag der Promotion: 20. Juli 2007

to my family

i

Zusammenfassung

Die zuverlässige Erkennung von dreidimensionalen Objekten anhand von zweidi-
mensionalen Kamerabildern stellt immer noch ein großes Problem der Bildver-
arbeitung sowie der künstlichen Intelligenz dar. Hierfür existiert eine Vielzahl
von Ansätzen, die jedoch im Allgemeinen weder die grundlegende hierarchische
Natur von Klassifikationsproblemen ausnutzen noch das Hinzulernen neuer Ob-
jekte während der Erkundungsphase ermöglichen.

Bei Objekterkennungsaufgaben handelt es sich im Allgemeinen um Multi-Klassen-
probleme, bei der die Anzahl der Klassen deutlich größer als zwei ist. Diese
Arbeit bietet einen neuen Ansatz für die Lösung derartiger Probleme, indem die
komplexe Aufgabe in mehrere hierarchisch angeordnete Teilprobleme zerlegt wird,
die einfacher zu lösen sind.

Die vorliegende Arbeit behandelt mehrere Aspekte der Objekterkennung mit hie-
rarchischen neuronalen Netzen:

1. Generierung geeigneter Klassifikatorhierarchien

2. Auswertung dieser Hierarchien (Informationsfusion)

3. Auswahl geeigneter Merkmale für die Klassifikation

4. Erweiterbarkeit / Adaptivität der Hierarchien

5. Generierung ähnlichkeitserhaltender spärlicher Binarcodes

Die Auswahl geeigneter Merkmalstypen für die Klassifikation von Objekten un-
terschiedlicher Domänen ist ein wichtiger Aspekt bei der 3D-Objekterkennung.
Im Rahmen dieser Arbeit wurden unterschiedlichste Merkmalstypen verwendet
und bewertet.

Für die Auswertung der Klassifikatorhierarchien wurden verschiedene Ansätze
entwickelt und evaluiert. Als die vielversprechendsten Ansätze erwiesen sich

iii

die Evaluation analog zu Entscheidungsbäumen, die Evaluation mit Hilfe der
Dempster-Shafer Evidenztheorie sowie die Evaluation mit Hilfe von ähnlichkeit-
serhaltenden Codes bzw. Inter-State Decision Templates.

Die Generierung ähnlichkeitserhaltender spärlicher Binärcodes stellt einen zu-
sätzlichen Aspekt bei der Objekterkennung mit Klassifikatorhierarchien dar. Im
Rahmen dieser Arbeit wurden unterschiedliche Strategien für die Generierung
solcher Codes basierend auf den Aktivierungen der neuronalen Klassifikatoren
innerhalb der Hierarchie entwickelt und ausgewertet.

Einen weiteren Schwerpunkt bildet das inkrementelle Hinzulernen von bisher un-
bekannten Objekten. Dies ist in komplexeren Realwelt-Umgebungen oft wün-
schenswert, da die Wahrscheinlichkeit, mit bislang unbekannten Objekten kon-
frontiert zu werden, relativ hoch ist. Im Rahmen dieser Arbeit wurde ein Ver-
fahren entwickelt, welches es ermöglicht, nachträglich neue Objekte effizient zu
lernen, ohne jedoch die Erkennungsleistung zuvor gelernter Objekte negativ zu
beeinflussen.

Die Funktionalität des Ansatzes konnte in statistischen Experimenten auf un-
terschiedlichsten Datensätzen sowie durch die Anwendung auf einem autonomen
mobilen Roboter bestätigt werden.

iv

Abstract

The reliable recognition of three-dimensional objects from two-dimensional cam-
era images is still a major problem in computer vision and artificial intelligence.
For this problem exist numerous approaches which in general neither incorporate
the inherent hierarchical nature of classification problems nor offer the possibility
to learn new objects during the exploration phase.

Object recognitions tasks are in general multi-class problems where the number
of classes is considerably higher than two. This work offers a novel approach for
solving such problems by dividing the complex task into several hierarchically
structured sub-problems that are easier to solve.

The work at hand covers several aspects of object recognition with hierarchical
neural networks:

1. Generation of appropriate classifier hierarchies

2. Evaluation of these hierarchies (information fusion)

3. Selection of suitable features for the classification

4. Extensibility / adaptivity of the hierarchies

5. Generation of similarity preserving sparse binary codes

The selection of suitable feature types for the classification of objects from various
domains is an important aspect for the recognition of three-dimensional objects.
In the context of this work diverse feature types were deployed and evaluated.

Different strategies for the retrieval of the combined classification result from
the classifier hierarchies were developed and evaluated. The most promising ap-
proaches were the retrieval strategy similar to decision trees, the retrieval strat-
egy utilising the Dempster-Shafer evidence theory as well as the retrieval strategy
utilising similarity preserving codes and inter-state decision templates.

v

The generation of similarity preserving sparse binary codes is an additional aspect
of the object recognition with hierarchical neural network classifiers. Within the
scope of this work several strategies for the generation of such codes based on
the activation of the neural classifiers within the hierarchy were developed and
evaluated.

Another focus was the incremental learning of hitherto unknown objects. In com-
plex real-world environments this is a often desirable capability as the confronta-
tion with so far unfamiliar objects is very likely. Within the scope of this work
a method for subsequently learning new objects in an efficient manner without
negatively influencing the classification performance of previously learnt objects.

The functionality of the approach could be confirmed by means of statistical ex-
periments on various data sets as well as by the implementation on an autonomous
mobile robot.

vi

Acknowledgments

I would like to express my profound thanks to the various people who, during
the time that it took to complete this thesis, provided me with their useful and
helpful assistance.

My deepest gratitude goes to Prof. Dr. Günther Palm, my PhD supervisor, for
supporting this work with his inspiring ideas, suggestions, recommendations and
constructive criticisms.

I am indebted to my mentor Dr. Friedhelm Schwenker, who, despite his own
immense workload and tight schedule, always could spare me time and who con-
tributed to this thesis with his knowledgable advice and guidance, his generous
assistance and numerous motivating and valuable discussions.

I thank Prof. Dr. Heiko Neumann for his helpful recommendations and for kindly
furnishing the second expert’s opinion. My thanks go also to Prof. Dr. Friedrich
von Henke for his commitment to act as third referee for this thesis.

My gratitude also to the German National Merit Foundation whose doctoral
scholarship financed this thesis.

For their generous assistance and splendid company, I would like to acknowledge
my colleagues at the Institute of Neural Information Processing of the University
of Ulm.

Particular thanks are also due to Heiner Markert and Eduard Metzker for a critical
reading of this thesis and for their useful comments and suggestions.

Thanks also to my parents for their continued support and encouragement and
to my friends for encouraging and tolerating me through the long time of writing
this thesis and for their patience and friendship.

Ulm Rebecca Fay
February, 2007.

vii

Contents

Zusammenfassung iii

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Goals and Solution Approach 2
1.3 Working Hypotheses . 3
1.4 Structure of This Work . 5

I Basic Methods 7

2 Neural Networks 9
2.1 k-Means Clustering . 11

2.1.1 Initialisation Methods . 12
2.2 Nearest Neighbour Classifier . 14

2.2.1 k-Nearest Neighbour Classifier 14
2.2.2 Fuzzy k-Nearest Neighbour Classifier 15

2.3 Learning Vector Quantisation . 15
2.3.1 LVQ1 . 16
2.3.2 Optimised Learning Rate LVQ1 17
2.3.3 LVQ2.1 . 18
2.3.4 LVQ3 . 19
2.3.5 Initialisation Methods . 19

2.4 Radial Basis Function Networks 20
2.4.1 Radial Basis Functions . 20
2.4.2 Network Architecture . 20
2.4.3 Initialisation Methods . 22
2.4.4 Training Methods . 23

2.5 Associative Memories . 26
2.6 Discussion . 28

ix

3 Uncertainty 31
3.1 Probability Theory . 31
3.2 Fuzzy Set Theory . 33
3.3 Possibility Theory . 38
3.4 Belief theory . 42

3.4.1 Basic Concepts . 42
3.4.2 Transferable Belief Model 45

3.5 Comparison of Theories for Representing Uncertainty 46
3.6 Discussion . 49

4 Preprocessing Methods 51
4.1 Data Transformation . 51
4.2 Reduction of Dimensionality . 52
4.3 Discussion . 53

5 Evaluation Methods 55
5.1 Cross-Validation . 55
5.2 Testing for Significance . 56

5.2.1 t-Test . 57
5.2.2 Corrected Repeated k-Fold Cross Validation t-Test 58
5.2.3 Maximum Test . 59
5.2.4 Sign Test . 59
5.2.5 Wilcoxon Matched Pairs Signed Rank Test 60
5.2.6 Quantile-Quantile Plot . 61

5.3 Discussion . 62

II Developed Methods 63

6 Hierarchical Neural Networks 65
6.1 Basics of Hierarchical Neural Networks 65
6.2 Hierarchy Generation . 67
6.3 Hierarchy Training . 71
6.4 Classification within the Hierarchy 71

6.4.1 Evaluate Hierarchy Analogous to Decision Tree 72
6.4.2 Evaluate End Nodes . 73
6.4.3 Evaluate Hierarchy Utilising a Voting Scheme 74
6.4.4 Evaluate Hierarchy Utilising Dempster-Shafer Evidence The-

ory . 75
6.4.5 Evaluate Hierarchy Utilising Similarity Preserving Codes . 77
6.4.6 Inter-State Decision Templates 78

6.5 Outlier Detection . 79
6.6 Discussion . 80

x

6.6.1 Features and Benefits of Hierarchical Networks 80
6.6.2 Comparison of Hierarchy Evaluation Methods 81

7 Adaptive Incremental Learning of Novel Classes 85
7.1 Incremental Learning of New Classes 85
7.2 Incremental Learning of New Classes by Adding New Leaves . . . 86
7.3 Incremental Learning of New Classes by Adding New Nodes . . . 88
7.4 Incremental Training of Radial Basis Function Networks 89
7.5 Retraining . 89
7.6 Discussion . 90

8 Distributed Similarity Preserving Sparse Binary Codes 93
8.1 Generation of Code Vectors . 93
8.2 Discussion . 98

III Application and Evaluation 99

9 Applications 101
9.1 Visual Object Recognition . 101
9.2 MirrorBot Project . 103
9.3 Discussion . 105

10 Data 107
10.1 3D Data Sets . 107

10.1.1 Fruits . 107
10.1.2 Columbia Object Image Library (COIL) 107

10.2 Benchmarking Data Sets . 109
10.2.1 Letter Image Recognition Data 109
10.2.2 Handwritten Digits . 112

10.3 Discussion . 113

11 Features 115
11.1 Orientation Histograms . 115

11.1.1 Orientation Histograms Utilising Sobel Operator for Edge
Detection . 117

11.1.2 Orientation Histograms Utilising Canny Operator for Edge
Detection . 118

11.1.3 Orientation Histograms Based on Opponent Colours 119
11.2 Colour Histograms . 120
11.3 Curvature Histograms . 120
11.4 Orientation-Curvature Histograms 121
11.5 Geometric Features . 122
11.6 Hu Invariant Moments . 123

xi

11.7 Mean Colour Information . 125

11.8 Wavelets . 126

11.9 Discussion . 128

12 Statistical Evaluation 129

12.1 Hierarchical Neural Networks . 129

12.2 Hierarchy Evaluation . 132

12.2.1 Comparison of the Different Fusion Strategies 132

12.2.2 Comparison of the Evidence-Theoretic Fusion Strategy Against
the Decision Tree Like Fusion Strategy 133

12.2.3 Evaluation of the Retrieval Strategy Utilising Similarity
Preserving Sparse Codes 140

12.2.4 Evaluation of the Inter-State Decision Template Approach 142

12.3 Adaptive Incremental Learning of Novel Classes 143

12.3.1 Extension of Existing Hierarchies by Adaptive Incremental
Learning . 143

12.3.2 Incrementally Building Classifier Hierarchies 146

12.4 Features for 3D-Object Recognition 148

12.5 Discussion . 155

IV Discussion 157

13 Summary 159

14 Main Contributions 161

15 Comparison With Related Approaches 165

15.1 Related Work . 165

15.1.1 Hierarchical Classification Approaches 165

15.1.2 Classification Approaches Utilising Dempster-Shafer Evi-
dence Theory . 167

15.1.3 Incremental Learning Approaches 168

15.2 Classification of Work . 168

16 Conclusions 171

Bibliography 173

Bibliography 175

xii

Appendix 185

A Detailed Results of the Statistical Evaluation 187
A.1 Features for 3D-Object Recognition 187

xiii

List of Figures

1.1 Example of a hierarchically structured object recognition problem 2
1.2 Different views of a cup . 3

2.1 k-means network . 11
2.2 LVQ network . 17
2.3 RBF network . 21

3.1 Typology of the different uncertainty measures 46

5.1 Examples of qq-plots . 61

6.1 Example of a hierarchical neural network classifier 66
6.2 Hierarchy generation . 67
6.3 Retrieval of the classification result analogous to decision trees . 73
6.4 Retrieval of the classification result evaluating the end nodes of

the hierarchy . 74
6.5 Retrieval of the classification result using a simple voting scheme 75
6.6 Retrieval of the classification result using Dempster-Shafer evi-

dence theory . 75
6.7 Retrieval of the classification result using similarity preserving

codes . 77
6.8 Retrieval of the classification result using inter-state decision tem-

plates . 78
6.9 Comparison of the different fusion strategies 82

7.1 Identification of the common path. 87
7.2 Incremental learning by adding new leaves. 87
7.3 Incremental learning by adding new nodes. 88

8.1 Codes generated from classifier hierarchies 94
8.2 Controlling the sparseness of codes generated from classifier hi-

erarchies . 95
8.3 Controlling the sparseness of codes generated from classifier hi-

erarchies . 95
8.4 Generating codes considering the classification path 96
8.5 Generating codes by directly encoding the classification path . . 96

xiv

8.6 Generating codes by inclusion of the classification result 97

9.1 Three-stage Process for Object Recognition 102
9.2 MirrorBot Test Scenario . 103
9.3 MirrorBot control GUI . 104

10.1 Fruits . 107
10.2 COIL-20 . 108
10.3 COIL-100 . 109
10.4 Letter Image Recognition Data 110
10.5 STATLOG Digits . 112

11.1 Orientation Histogram . 116
11.2 Sobel masks . 117
11.3 Gaussian mask . 118
11.4 Wavelet Decomposition . 126
11.5 Wavelet Decomposition Example 127
11.6 Haar Lowpass and Highpass Filters 127
11.7 Comparison of the different features types 128

12.1 Error rates . 130
12.2 Error rates for the different retrieval strategies 132
12.3 Hierarchies for the classification of the COIL-20 objects 134
12.4 Error rates for the evidence theoretic and the decision tree like

retrieval strategies . 135
12.5 Error rates for the evidence theoretic and the decision tree like

retrieval strategies on manually generated hierarchies 136
12.6 Error rates for normal and weak classifiers assigned to the root

node . 139
12.7 Error rates for the different similarity preserving codes 141
12.8 Error rates for the different inter-state decision templates 142
12.9 Classifier hierarchy for the classification of 10 classes of the COIL20

data set . 144
12.10 Error rates for the incremental learning of novel classes 145
12.11 Positions of the added novel classes 145
12.12 Confusion matrix for the experiments using incremental learning. 147
12.13 Error rates for the incremental learning of novel classes 147
12.14 Features for 3D-Object Recognition of Fruits 149
12.15 Features for 3D-Object Recognition of Fruits 150
12.16 Features for 3D-Object Recognition of COIL-20 151
12.17 Features for 3D-Object Recognition of COIL-20 152
12.18 Features for 3D-Object Recognition of COIL-100 154

xv

List of Tables

3.1 Comparison of the different theories for representing uncertainty. 47
3.2 Comparison of the different theories for representing uncertainty. 48
3.3 Comparison of the different theories for representing uncertainty

with respect to requirements arising in the context of classifier
hierarchies. 50

10.1 Class Distribution of Letter Image Recognition Data. 112
10.2 Classification of the different data sets used. 113
10.3 Classification of the different data sets used. 113

12.1 Error rates hierarchical classifiers 131
12.2 Results of the significance tests comparing classifier hierarchies

and non-hierarchical classifiers 131
12.3 Error rates for the different retrieval strategies 133
12.4 Error rates for the evidence theoretic and the decision tree like

retrieval strategies . 137
12.5 Error rates for the evidence theoretic and the decision tree like

retrieval strategies on manually generated hierarchies 137
12.6 Results of the significance tests for the evidence theoretic and the

decision tree like retrieval strategies 138
12.7 Results of the significance tests for the evidence theoretic and

the decision tree like retrieval strategies on manually generated
hierarchies . 138

12.8 Error rates for for normal and weak classifiers assigned to the
root node . 139

12.9 Results of the significance tests for normal and weak classifiers
assigned to the root node . 140

12.10 Error rates extend hierarchy . 146
12.11 Results of the significance tests for incrementally learning novel

objects . 146
12.12 Error rates for incrementally building a classifier hierarchy . . . 148
12.13 Results of the significance tests for incrementally building a clas-

sifier hierarchy . 148

A.1 Feature types extracted from different data sets 187

xvi

A.2 Feature types extracted from different data sets 188
A.3 Error rates for different feature types on the fruits data set . . . 189
A.4 Error rates for different feature types on the fruits data set . . . 190
A.5 Error rates for different feature types on the fruits data set . . . 191
A.6 Error rates for different feature types on the COIL-20 data set . 192
A.7 Error rates for different feature types on the COIL-20 data set . 193
A.8 Error rates for different feature types on the COIL-20 data set . 194
A.9 Error rates for different feature types on the COIL-100 data set 195
A.10 Error rates for different feature types on the COIL-100 data set 196

xvii

1 Introduction

This chapter gives an overview of the background and motivation of the thesis at
hand. Research goals are formulated and the solution approach is sketched. On
the basis of working hypotheses the main research questions are stressed. At the
end of this chapter the structure of this work is outlined.

1.1 Background and Motivation

Object recognition has been subject to extensive research since numerous years
resulting in various approaches that differ substantially including non-hierarchical
classifiers, multiple classifier systems and hierarchical classifiers.

Pattern recognition in general and object recognition in particular are of impor-
tance in various domains and disciplines. In the automotive domain the reliable
recognition of traffic signs, pedestrians and vehicles play an important role. For
any robotic application the identification of miscellaneous objects is an essential
capability. The recognition of written or typed characters is profitably applied
e.g. in the postal domain. Other domains are speech recognition, personal iden-
tification, classification of text documents or the analysis of DNA sequences.

The thesis at hand focuses on the recognition of three-dimensional objects from
two-dimensional camera images utilising hierarchical neural network classifiers.

In realistic applications object recognition problems are generally complex multi-
class problems where the number of classes to discriminate between is consid-
erably larger than two. To solve these multi-class problems is a vastly more
demanding task than solving binary classification problems.

Many classification problems show a hierarchical structure, i.e. the classes to
discriminate between can be grouped in a hierarchical manner. Figure 1.1 gives an
example of such a hierarchically structured object domain. Findings in cognitive
neuroscience [29] also indicate that categorisation, i.e. the grouping of objects
into meaningful categories, and learning of categories plays an important role in

1

2 Chapter 1. Introduction

Figure 1.1: Example of a hierarchically structured object recognition problem.

advanced animals and humans.

These facts suggest that a divide-and-conquer-strategy might be suitable for solv-
ing such problems. Hierarchical neural network classifiers are an approach deploy-
ing such a divide-and-conquer-strategy.

Another problem also addressed within the scope of this research is the adaptive
extension of the set of objects the recognition system can handle. In complex
scenarios it is likely that the classifier has to identify so far unknown objects.
Thus the capability of learning this new object is extremely useful.

One well-established domain of application for object recognition is the robotic
field. For robots it is essential to be able to identify and categorise objects of
various kind. Robots have e.g. to be able to identify obstacles in order to avoid
them or to classify objects in order to manipulate them according to commands
they are given. The approach proposed in this work has been deployed in this
context.

1.2 Research Goals and Solution Approach

The research presented in this work was basically motivated by the aim of reliable
recognition of three-dimensional objects from two-dimensional camera images.
The recognition of three-dimensional objects shows several intricatenesses. Three-
dimensional objects often have strongly varying appearances depending on the
point of view. Figure 1.2 depicts this. It gives three considerably differing views of
one object, that cannot straightforwardly be recognised as belonging to the same
object. Other problems when classifying three-dimensional objects are inter alia
the varying illumination conditions, occlusion, unfamiliar objects and cluttered
scenes.

Taking these suppositions into account a straightforward implication is the usage
of feature types appropriate for the recognition of three-dimensional objects. Thus

1.3. Working Hypotheses 3

Figure 1.2: Different views of a cup. The appearance of a three-dimensional object
such as a cup vary strongly depending on the point of view.

one focus of this thesis is the identification of feature types which enable the
reliable recognition of three-dimensional objects.

As approach for the object classification hierarchical neural network classifiers
were chosen due to the advantages they provide such as the availability of inter-
mediate results, easy extensibility and incorporation of the hierarchical nature
of classification problems, and their suitability for solving large-scale multi-class
problems.

1.3 Working Hypotheses

In this thesis several research questions were elaborated. This section summarises
and formulates these questions as six working hypotheses. The working hypothe-
ses are evaluated by means of several statistical experiments.

H1: Hierarchical neural network classifiers are suitable for solving com-
plex classification problems.

Large scale multi-class problems are intricate and difficult to solve whereas classi-
fication with a small number of classes such as binary classification problems are
considerably easier to solve. Thus a divide-and-conquer strategy which reduces
the complex multi-class problem to several simple classification problems seems
a promising approach. Moreover it seems favourably to exploit the hierarchical
structure often inherent to realistic classification tasks. Therefore it is neces-
sary to find an appropriate way of decomposing the original classification task in
smaller tasks that are easier to cope with.

4 Chapter 1. Introduction

H2: Complex strategies considering the complete hierarchy for retriev-
ing the combined classification result are superior to simple evaluation
strategies only considering part of the classifiers.

When only considering part of the classifiers in the decision process information
provided by the classifiers not involved is disregarded. The individual classifiers
only provide isolated information. In case one of the classifier provides flawed
information this can more easily be compensated for in a global context. If
for example in a decision tree like manner only the classifiers on the path with
the highest evidence are taken into account wrong decisions at higher levels of
the hierarchy cannot be corrected or when only considering the results of the
end nodes and disregarding the information coming from the upper classifiers
erroneous classifiers may have a strong impact which cannot be rectified.

H3: The Dempster-Shafer theory of evidence is an appropriate frame-
work for combining the information provided by the individual classi-
fiers within the hierarchy.

Hierarchical neural network classifiers provide hierarchically structured informa-
tion. The information provided does not only apply to single classes but also to
sets of classes. Moreover the classifier outputs express both uncertainty and igno-
rance. During the retrieval phase a non negligible number of classifiers within the
hierarchy are presented samples of classes they have not been trained with. Then
this should be expressed as ignorance. In case a classifier is in doubt regarding the
classification result this should be expressed as uncertainty. Moreover the classi-
fiers within the hierarchy only provide incomplete knowledge. The classifiers do
not give evidence for each individual class but only for a subset of classes and in
many cases this information cannot be further subdivided between the elements
of a group of classes. Eventually the evidences provided by the individual classi-
fiers need to be combined to a collective result. The Dempster-Shafer theory of
evidence addresses all of the above listed issues and thus is likely to be a suitable
framework for fusing the different classifier outputs to a combined output. An
additional benefit is the availability of combined evidences for all classes as well
as possible sets of classes.

H4: Classifier hierarchies are eligible for adding new classes during
run-time.

Hierarchical classifiers can rather easily be extended as only local adaption is re-
quired and the major part of the hierarchy remains unchanged. If non-hierarchical
classifiers have to be adapted global changes are required and the complete clas-
sifier is affected.

1.4. Structure of This Work 5

A requirement for the incremental adaption of classifiers is that new classes should
be learnt with sufficient quality and in adequate time, while not negatively ef-
fecting the classification quality of the previously learnt classes. The fact that
only local changes are required when incrementally extending the hierarchy gives
reason for the assumption that classifier hierarchies facilitate this.

H5: Visual similarity preserving codes can be generated rather facile
and straightforward from classifier hierarchies.

As the hierarchy is generated finding natural groups within the data in the differ-
ent feature spaces it represents similarity with respect to the feature space. This
similarity is a visual similarity as the features are extracted from camera images
of the objects to be classified. Hence codes generated from the activation of the
neurons of the neural classifiers within the hierarchy are likely to represent visual
similarity.

H6: Complex histogram based features such as orientation histograms
and colour histograms are appropriate for the classification of three-
dimensional objects.

Histogram based features show several beneficial features. They are invariant to
translation. Furthermore colour-based histograms are also invariant to rotation.
Simple features presumably do not have enough discrimination power. Moreover
during the hierarchy generation process supposably the powerful feature types
are preferred to less powerful feature types.

1.4 Structure of This Work

This thesis is composed of three main parts. The first part describes the theoreti-
cal foundations of this work. As neural networks are a central building block of the
developed approach, their basics and how they relate to the goals of this work are
particularised. Furthermore theories for representing uncertainty are introduced.
The section describes how these theories can be applied to the problem of infor-
mation fusion in general. The most suitable of these theories, the belief theory,
has been utilised for information fusion within the hierarchical neural network
classifiers. Moreover this part shortly describes methods for preprocessing the
data as well as methods for statistically evaluating the proposed approaches. In
part II the solution approach developed within the scope of this thesis is outlined.
This approach comprises several aspects of hierarchical neural network classifiers
such as the generation of reasonable hierarchies, the selection of appropriate fea-
tures, strategies for fusing the information within the hierarchy, extending the

6 Chapter 1. Introduction

hierarchy as well as the generation of sparse codes from these hierarchies. The
third part shows different applications of classifier hierarchies and the results of
the evaluation of the proposed approach. In part IV a summary of this work is
given and the proposed approach is discussed. The methods developed within
the scope of this thesis is also compared to related approaches and the main
contributions of this work are emphasised.

Part I: Basic Methods

In the following four chapters the theoretical founda-
tions of this work are described.

7

2 Neural Networks

This chapter focuses on artificial neural networks which are a core element of this
work. At first neural networks are introduced in general and their application
to classification problems in particular is exemplified. Then the neural networks
used within the scope of this thesis are described. This chapter is concluded by
comparing the different types of neural networks, outlining their advantages and
drawbacks as well as their application within the developed approach.

Neural networks have been subject to comprehensive research for many years.
An artificial neural network or simply neural network is a massively parallel
computing paradigm that roughly follows cortical structures of the brain. Its
interconnected processing units are called neurons which produce a collaborative
output. The neurons utilise mathematical models for information processing on a
connectionistic basis. Neural networks are very robust and fault tolerant as their
overall functionality is not severely compromised by a few malfunctioning neurons
owing to the collective performance of the function. Neural networks are train-
able, i.e. they learn to solve complex tasks from a set of representative examples
and generalise the thereby attained knowledge thus being able to accomplish so
far unseen tasks. Neural networks can model complex non-linear dependencies
between the network inputs and outputs. Neural networks are used for various
tasks such as data mining, function approximation or classification.

Neural networks play an essential role in this thesis. In the following the neural
networks utilised within the scope of this thesis are described compendiously. In
the context of this work these neural networks are used for two tasks: classifi-
cation and clustering. Classification incorporates the construction of a classifier
on the basis of labelled data and the categorisation of data utilising this trained
classifier. The aim of clustering is the partition of not necessarily labelled data
into groups consisting of similar data points. The former task is conducted by k-
nearest neighbour classifiers, fuzzy k-nearest neighbour classifiers, learning vector
quantisation networks, radial basis function networks and associative memories.
The k-means algorithm and the learning vector quantisation networks can be
used for the latter task.

9

10 Chapter 2. Neural Networks

The objective of a given classification problem is the assignment of one of l pre-
defined classes to a presented input sample. If neural networks are used for
object recognition an object is represented by a number of features, which form
a d dimensional feature vector x within the feature space X ⊆ IRd. A classi-
fier therefore realises a mapping from feature space X to a finite set of classes
Ω = {1, 2, ..., l} which estimates the class ω of a pattern x. A neural network
is trained to approximate this unknown mapping and thus perform a classifi-
cation task using supervised learning algorithms. A set of training examples
τ := {(xµ, tµ), µ = 1, 2, ...,M} is presented to the network. The training set con-
sists of M feature vectors xµ ∈ X each labelled with a class membership tµ ∈ Ω.
The set of feature vectors is denoted by X = {xµ,µ=1,2,...,M} and the set of training
vectors is denoted by T = {tµ,µ=1,2,...,M}. During the training phase the network
parameters are adapted to approximate this mapping as accurately as possible.
This is accomplished by successively presenting the network all training examples
xµ of the training data set τ . Depending on the network output the weights of
the network are adapted in order to adjust the network output to the desired
output tµ. The presentation of a sample xµ to the network is interpreted as one
learning step t. The samples of the training data set τ are presented repeatedly to
the network until the network output is sufficiently accurate. There are different
strategies for neural network learning: incremental or online learning and batch-
mode learning. When using online learning the weights of the neural network are
adapted immediately after the presentation of one training sample xµ without
considering the next training sample. In batch-mode learning the weights are
updated after the presentation of all training samples in the training data set τ
and the learning rule averages over all presented training samples. Batch-mode
learning is a deterministic process whereas online learning is a stochastic process
as it depends on the order of the presented samples. With regards to storage
capacity online learning is less demanding than batch-mode learning. Within the
scope of this thesis online learning has been deployed. In the classification phase
unlabelled data xµ ∈ X are presented to the trained network. The network out-
put K(xµ) = ω ∈ Ω can be interpreted as an estimation of the class corresponding
to the input vector x given a sufficient generalisation capability of the classifier.

The number of classes l is used to categorise l-class classification problems. A two-
class problem is the simple case l = 2. Such a problem is also called dichotomous
classification problem. If l > 2 the problem at hand is a multi-class problem or a
so called polychotomous classification problem.

The following five sections introduce the most important neural architectures used
in this thesis.

2.1. k-Means Clustering 11

2.1 k-Means Clustering

The k-means cluster analysis [50] is an unsupervised algorithm utilising competi-
tive learning for determining groups, so called clusters, of data points that belong
together. The distance in the feature space is used as a similarity measure. Data
points having a small distance in the feature space will be grouped together in
one cluster, which is defined by a prototype vector cj. It divides the input space
X into k disjoint regions Rj ⊂ IRd that are represented by corresponding k pro-
totype vectors cj on the basis of the Euclidean distance. These regions Rj are
defined by

Rj = {x ∈ X : ‖x− cj‖ = min
i=1,2,...,k

‖x− ci‖} (2.1)

and form a Voronoi tessellation. These regions divide the data set τ into k disjoint
subsets called clusters:

Cj = Rj ∩X (2.2)

where X is the set of feature vectors in the data set τ .

The clustering algorithm minimises the sum-of-square criterion

E =
k∑

j=1

∑
xµ∈Cj

‖xµ − cj‖2 (2.3)

searching for the optimal values for cj, j = 1, 2, ..., k.

A k-means network consists of an input layer and a hidden layer. Figure 2.1
depicts the k-means network architecture.

Figure 2.1: k-means network. A k-means network is a two-layer network with n
neurons in the input layer and k neurons in the hidden layer.

First of all the number of clusters k ≥ 1 is defined and the cluster centres are ini-
tialised. In the training phase the training samples xµ are consecutively presented

12 Chapter 2. Neural Networks

to the network. For each prototype cj the Euclidean distance dj = ‖xµ − cj‖ to
the presented sample xµ is calculated and the index of the prototype with the
smallest distance is determined by

j∗ = argminj‖dj‖. (2.4)

The winning prototype cj∗ is then adapted using the following learning rule

cj∗ = cj∗ + ηt(x
µ − cj∗) (2.5)

which moves the prototype cj∗ in direction of the sample xµ. The learning rate
ηt is defined by

ηt =
1

|Cj∗|+ 1
(2.6)

where |Cj∗| is the number of data points assigned to cluster Cj∗ .

2.1.1 Initialisation Methods

As the k-means clustering algorithm is sensitive to the initialisation of the proto-
types such that the results differ considerably depending on the initialisation and
inappropriate initialisation is likely to lead to poor performance, appropriate ini-
tialisation strategies are beneficial. The different initialisation strategies strongly
differ with regard to their computational complexity. The different initialisation
methods can be categorised as data independent, i.e. completely neglecting the
positions of the data points in the feature space, simple data dependent, i.e. the
locations of the data points are utilised in the initialisation process, and sophis-
ticated, i.e. complex algorithms are used to initialise the cluster centres.

A simple data independent approach is the initialisation of the prototypes with
random values, i.e. the prototypes are placed randomly across the feature space.
As this method does not take the distribution of the data across the feature
space into consideration the selection of the initial prototypes could possibly be
disadvantageous in such that the prototypes could be located far off the data
points. Random sampling, an initialisation with randomly chosen data points,
makes allowance for this. Nevertheless this simple data dependent method cannot
ensure that the prototypes are properly spread out over the data. Moreover it is
very sensitive to how well the chosen data points represent the overall population
of the data.

A more sophisticated and less arbitrary data dependent approach is the maximin
algorithm [3], which uses data points xµ to initialise the prototypes cj, but takes

2.1. k-Means Clustering 13

the distance between the data points into account. Prototypes lying close to-
gether are avoided by maximising the distances between them. It also allows for
controlling the number of prototypes by a parameter γ ∈ [0, 1].

The algorithm starts with randomly selecting one data point xµ1 ∈ τ out of the
training data set. This data point forms the first prototype c1 = xµ1 . The second
prototype is set to the data point xµ2 ∈ τ \ {xµ1} whose distance to the first
prototype c1 is maximal:

µ2 = argmaxµ=1,2,...,M ;µ 6=µ1
‖xµ − c1‖2. (2.7)

The additional centres are determined by identifying the data points lying far-
thest aside of the prototypes. They are chosen as additional prototypes if the
distance to the prototypes exceeds a certain amount that is a fraction of the mean
prototype distance (see equation 2.10). The process of selecting data points as
additional prototypes is repeatedly carried out until the newly selected data point
lies to close to the already chosen prototypes.

Let k̃ be the number of prototypes initialised so far. For each data point xµ ∈
τ \ {xµj}j=1,2,...,k̃ in the training remaining data the distances to the k̃ prototypes

cj, j = 1, 2, ..., k̃ is calculated and the closest prototype cj∗µ is identified:

j∗µ = argminj=1,2,...,k̃‖x
µ − cj‖. (2.8)

Then the maximin distance dmaximin is given by

dmaximin = max
µ∈{1,2,...,M}\{µ1,µ2,...,µk̃}

min
j=1,2,...,k̃

‖xµ − cj‖. (2.9)

Thus the corresponding data point xµk̃+1 which has the largest distance to its
nearest prototype cj∗µ

k̃
is determined.

If the maximin distance dmaximin is greater than the mean cluster distance mul-
tiplied by the factor γ the data point cj∗µ

k̃
is chosen as a new prototype otherwise

the algorithm terminates:

dmaximin > γ
1

k̃(k̃−1)
2

k̃∑
i=1

k̃∑
j=i

‖ci − cj‖. (2.10)

If there is a considerable decrease of the maximin distance dmaximin from one
selection step to the next this is an indication for the fact that with the last
selection the number of prototypes exceeded the number of clusters that can be
found in the data set. Thus this last chosen prototype should not be added. The

14 Chapter 2. Neural Networks

amount of decrease still allowed is defined by the parameter γ. The choice of
the parameter γ has a direct influence on the number of prototypes selected. For
γ = 0 all data points in τ will be selected as prototypes.

One drawback of this initialisation algorithm besides its computational complex-
ity is its sensitivity to outliers, which tend to be chosen as prototypes by the
algorithm.

2.2 Nearest Neighbour Classifier

The nearest neighbour algorithm is a classification method based on the closest
training samples in the feature space with respect to some distance d. It does
neither require extensive training nor the adjustment of numerous parameters.
The classifier is trained by making all M training samples xµ ∈ τ to prototypes
cj resulting in m = M prototypes. To each prototype the class ω(cj) = tµ of
the corresponding training sample xµ is assigned where ω : X → Ω is a function
specifying the class of a training sample or a prototype. No further adjustment
is required. The only parameter to be determined is the number of prototypes k
included in the decision process.

2.2.1 k-Nearest Neighbour Classifier

The k-nearest neighbour classifier assigns a class ω to a presented sample x by
identifying the k ≤ m nearest neighbours cυi

out of the set of m prototypes
regardless of their class. Let dj = ‖x − cj‖ be the Euclidean distance of the
presented data point x and (υi)

m
i=1 with υi ∈ 1, 2, ...,m a permutation such that

dυ1 ≤ dυ2 ≤ ... ≤ dυm . Then the set of the k nearest neighbours is given by

Nk(x) = {cυ1 , ..., cυk
}. (2.11)

The subset containing the nearest neighbours which belong to class j is defined
as

N j
k = {c ∈ Nk(x)|ω(c) = j}. (2.12)

The class ω ∈ {1, 2, ..., l} assigned to the sample x is determined by

ω = argmaxj=1,2,...,l|N
j
k (x)| (2.13)

i.e. the class which is most frequently represented in the set of the k nearest
neighbours.

2.3. Learning Vector Quantisation 15

A special case is the 1-nearest neighbour classifier. This is the simplest form of
this classifier type, which only considers the nearest prototype to the presented
sample. The sample is then assigned the class of this prototype.

2.2.2 Fuzzy k-Nearest Neighbour Classifier

The fuzzy k-nearest neighbour classifier provides an estimation for the degree of
membership of an input vector x to each class j ∈ {1, 2, ..., l}. The distances
between the data vector x and the k nearest prototype vectors are incorporated
in the calculation of these membership values. Therefore the k nearest neigh-
bours Nk(x) and the distribution of the class affiliations N j

k (x) of these nearest
neighbours are determined where Nk(x) is the set of the k nearest prototypes to
the input vector x (see equation 2.11) and N j

k (x) is the set of the prototypes of
the k nearest prototypes that belong to class j (see equation 2.12).

The class membership Ξ is represented by a mapping Ξ : X → [0, 1]l specifying
for a given input vector x its membership to each of the l classes such that
Ξ(x) = (Ξ1(x), ..., Ξl(x)) is a normalised vector with

Ξj(x) =
ξj(x)∑l
i=1 ξi(x)

(2.14)

and ξj(x) is defined as

ξj(x) =
1∑

ci∈N j
k
‖x− ci‖+ α

(2.15)

where the parameter α is used to amplify small distances.

The so calculated class memberships Ξj(x) obviously satisfy the following condi-

tions: Ξj(x) ∈ [0, 1] and
∑l

j=1 Ξj(x) = 1.

The class ω assigned to the presented sample x is then the class with the highest
class membership

ω = argmaxj=1,2,...,lΞj(x). (2.16)

2.3 Learning Vector Quantisation

Learning Vector Quantisation (LVQ) [43] is a competitive supervised prototype-
based learning algorithm for solving classification problems. It is closely related

16 Chapter 2. Neural Networks

to the k-nearest neighbour classifier1.

The underlying principle of the classification of data points is the comparison
of the data points xµ to a set of k prototypes cj. The prototypes are located
in the feature space and can be interpreted as an exemplary representation of
typical data. To each prototype cj a class ω(cj) is assigned. The localisation
of the prototypes within the feature space is determined during the learning
phase in a supervised manner by means of labelled training data. The similarity
between the presented data points and the prototypes is measured in terms of
Euclidean distances in the feature space. The decision boundaries are defined
by the nearest-neighbour rule utilising the Euclidean distance. Hence the feature
space IRd is divided into a Voronoi tessellation. The class assigned to a data point
x is the corresponding class ω(cj∗) of the nearest prototype cj∗ . The index j∗ of
the nearest prototype is determined by

j∗ = argminj‖x− cj‖. (2.17)

This decision process is identical to the decision process utilised by the 1-nearest
neighbour classifier.

In the training phase a set of M training samples τ = {(xµ, tµ)|µ = 1, 2, ...,M}
is repeatedly presented to the network. The prototypes are adapted according
to their distance to the presented training data and the identicalness of their
corresponding class and the class of the presented data. The learning rule rewards
correct classifications and penalises incorrect classifications. There are several
learning strategies which differ inter alia in the number of prototypes adapted in
one learning step. Some of the established learning schemes are described below.

An LVQ network consists of an input layer and one hidden layer. The neurons
in the hidden layer are called prototypes or code vectors. Figure 2.2 shows an
example of an LVQ network.

In the following variants [44] of the LVQ algorithm, namely LVQ1, OLVQ1,
LVQ2.1 and LVQ3, exploiting different learning algorithms are described. The
initialisation and the retrieval of the classification result is identical for all vari-
ants.

2.3.1 LVQ1

This learning algorithm is the basic version of the LVQ algorithm. It is a so called
winner-takes-all scheme, where only the prototype closest to the presented data

1 A 1-nearest neighbour classifier can straightforwardly be realised as an LVQ network by
constituting a prototype out of each data point in the training set. No learning is conducted
and the classification is performed by identifying the prototype closest to the presented data
point and assigning the corresponding label.

2.3. Learning Vector Quantisation 17

Figure 2.2: Learning Vector Quantisation network. An LVQ network is a two-layer
network with n neurons in the input layer and k neurons in the hidden layer.

point, the winner neuron, is adapted. The winner cj∗ is identified as follows:

dj = ‖xt − ct
j‖ (2.18)

where dj is the distance of the prototype cj to the presented data point x at a
given learn step t.

The index of the winner neuron is given by

j∗ = argminjdj. (2.19)

The update rules are defined as:

ct+1
j =

ct
j∗ + η(t)[xt − ct

j∗] : ω(xt) = ω(ct
j∗), j = j∗

ct
j∗ − η(t)[xt − ct

j∗] : ω(xt) 6= ω(ct
j∗), j = j∗

ct
j : j 6= j∗

(2.20)

Only the winner neuron is updated. If the class of the winner neuron is identical
to the class of the presented data point the centre of the winner neuron is shifted
towards the presented data point, otherwise it is pushed away.

The learning rate η(t) with 0 ≤ η(t) ≤ 1 can either have a constant value or
decrease monotonically with time t.

2.3.2 Optimised Learning Rate LVQ1

The Optimised Learning Rate LVQ1 (OLVQ1) algorithm is a modification of the
LVQ1 algorithm such that an individual learning rate ηj(t) is assigned to each
prototype cj. This optimisation of the learning rate yields accelerated conver-
gence.

18 Chapter 2. Neural Networks

The learning rule is defined as

ct+1
j =

ct
j∗ + ηj(t)[x

t − ct
j∗] : ω(xt) = ω(ct

j∗), j = j∗

ct
j∗ − ηj(t)[x

t − ct
j∗] : ω(xt) 6= ω(ct

j∗), j = j∗

ct
j : j 6= j∗

(2.21)

The individual learning rates are determined by

ηj(t) = min(
ηj(t− 1)

1 + s(t)ηj(t− 1)
, ηmax) (2.22)

with s(t) = 1 if cj and x belong to the same class and s(t) = −1 otherwise.

As the learning rate ηj can also increase in time, it is necessary to restrict ηt
j by

ηmax.

2.3.3 LVQ2.1

The learning in this version of the LVQ algorithm is performed by concurrently
adapting the two prototypes cj∗ and cj∗∗ that are closest to the presented sample
xt, where cj∗ is the prototype closest to the sample xt and cj∗∗ is the second closest
prototype. The update is only performed if two requirements are met:

1. One of the two prototypes must belong to the same class as the presented
sample xt and the other prototype must belong to a different class.

2. The data point xt falls into a so called window of relative width w.

The window is a zone of values defined around the midplane of dj∗ and dj∗∗ . The
data point xt falls into this window if

dj∗

dj∗∗
>

1− w

1 + w
(2.23)

where dj∗ and dj∗∗ are the Euclidean distances of the data point xt to the two
closest prototypes cj∗ and cj∗∗ respectively.

The corresponding learning rules for the case ω(cj∗) = ω(xt) and ω(cj∗∗) 6= ω(xt)
given by

ct+1
j∗ = ct

j∗ + η(t)[xt − ct
j∗] (2.24)

ct+1
j∗∗ = ct

j∗∗ − η(t)[xt − ct
j∗∗] . (2.25)

The case ω(cj∗) 6= ω(xt) and ω(cj∗∗) = ω(xt) is defined analogously.

2.3. Learning Vector Quantisation 19

2.3.4 LVQ3

This variant of the LVQ algorithm like the LVQ2.1 variant updates the two closest
prototypes cj∗ and cj∗∗ , where cj∗ is the prototype closest to the sample xt and
cj∗∗ is the second closest prototype. The prototypes are only adapted if at least
one of the two closest prototypes belongs to the same class as the presented data
point xt. Moreover the data point xt must fall into the window of relative width
w.

The corresponding learning rules for the case ω(cj∗) = ω(xt) and ω(cj∗∗) 6= ω(xt)
if xt falls into the window w are given by

ct+1
j∗ = ct

j∗ + η(t)[xt − ct
j∗] (2.26)

ct+1
j∗∗ = ct

j∗ − η(t)[xt − ct
j∗] (2.27)

The case ω(cj∗) 6= ω(xt) and ω(cj∗∗) = ω(xt) if xt falls into the window w is
defined accordingly.

In the case ω(cj∗) = ω(cj∗∗) = ω(xt) the learning rule is defined as

ct+1
j∗ = ct

j∗ + εη(t)[xt − ct
j∗] (2.28)

ct+1
j∗∗ = ct

j∗ + εη(t)[xt − ct
j∗] (2.29)

where ε is a scaling factor depending on the size of the window w.

2.3.5 Initialisation Methods

The prototypes can be initialised randomly or with k randomly chosen data points
of the training data set τ . When using data points to initialise the prototypes
there are some strategies for improving this simple initialisation procedure. It is
beneficial to use only data points for initialising the prototypes that are no outliers
but are surrounded by data points of the same class. Thus only data points whose
k nearest neighbours belong to the same class are chosen as possible data points
for initialisation. Also the distribution of the classes across the prototypes should
be considered. Two straightforward strategies for this are on the one hand the
equal distribution of the classes across the prototype and on the other hand the
distribution of the classes across the prototypes proportional to the distribution
of data points across the classes. The former strategy initialises the prototypes
such that approximately the same number of prototypes belongs to each class.
The latter one initialises the prototypes such that a contingently different number
of prototypes belongs to the individual classes.

20 Chapter 2. Neural Networks

2.4 Radial Basis Function Networks

Radial Basis Function (RBF) networks were first introduced to neural network
literature in the late 1980s [9]. They originate from regularisation theory and
multivariate function approximation theory. They are applied to regression and
classification problems. Another field of application is time series prediction. Ra-
dial basis function networks are non-parametric models, i.e. no a priori knowledge
about the function to be approximated is used.

2.4.1 Radial Basis Functions

Radial basis functions form a special class of functions which monotonically de-
crease or increase with increasing distance from the centre complying the general
equation

h(x) = Φ((x− c)T R−1(x− c)) (2.30)

where Φ : IRd → IR is the respective radial basis function, c is the centre of
the radial basis function and R is called metric. The term (x − c)T R−1(x − c)
defines the distance between the input vector x and the centre c of the radial
basis function in the metric given by R. In case of the Euclidean metric R = r2I
for a given scalar radius r with I being the identity matrix equation 2.30 reduces
to

h(x) = Φ(
(x− c)T (x− c)

r2
) = Φ(

‖x− c‖2
2

r2
). (2.31)

Common examples of radial basis functions used in RBF networks are the Gaus-
sian Φ(u) = e−u, the Cauchy or inverse quadric Φ(u) = (1 + u)−1, the multi-

quadric Φ(u) = (1 + u)
1
2 and the inverse multi-quadric Φ(u) = (1 + u)−

1
2 .

Radial basis functions show local response behaviour, i.e. they respond only to a
small region of the input space close to their centres. This resembles the locally
tuned responses observed in biologic neurons, e.g. in the auditory and visual
system.

2.4.2 Network Architecture

An RBF network consists of an input layer with n neurons, one non-linear hidden
layer consisting of k neurons and one linear output layer comprising l neurons.
The neurons in the hidden layer use radial basis functions as transfer functions

2.4. Radial Basis Function Networks 21

(see below). They are determined by the centres cj of the radial basis functions
and are called prototypes. An example of an RBF network is shown in figure 2.3.

Figure 2.3: Radial Basis Function network. An RBF network is a three-layer network
with n neurons in the input layer, k RBF neurons in the hidden layer and l linear
neurons in the output layer.

In the following the Gaussian and the inverse multi-quadric function are used as
RBF.

The output of the RBF prototypes yj is calculated by applying the transfer func-
tion h, the RBF, to the activation of the RBF neuron that is calculated as the
distance between the presented data point x and the centre cj of the RBF proto-
type. The RBF is defined by the parameter σj specifying the width of the RBF
of the jth prototype. σj can be either be real-valued σj ∈ IR or specified as a
vector σj ∈ IRd or as a matrix σj ∈ IRd×d.

In case σj is real-valued and the RBF is the Gaussian function the output of the
jth RBF prototype is calculated by

yj = hj(x) = e
−
‖x−cj‖

2
2

2σ2
j , j = 1, 2...., k. (2.32)

A vector-valued σj yields the following calculation of the output yj

yj = hj(x) = e
−

∑d
i=1

‖xi−ci,j‖
2
2

2σ2
i,j , j = 1, 2...., k (2.33)

where σi,j determines the width of the jth Gaussian function in the ith dimension
of the feature space.

22 Chapter 2. Neural Networks

The output of the linear layer zj is computed by a weighted sum of the outputs
of the k RBF prototypes:

zm =
k∑

j=1

wj,kyj, m = 1, 2...., l. (2.34)

If applied to classification problems the number of classes to be categorised defines
the size of the output layer. The different classes are represented as a one-out-of-l
code where l is the number of classes. Thus zm can be interpreted as the degree
of affiliation of the presented pattern x to class m.

2.4.3 Initialisation Methods

There exists miscellaneous strategies for initialising the different weights of an
RBF network.

A rather simple approach to initialise the RBF centres cj is the usage of random
values. Another simple strategy is the initialisation with randomly chosen data
points. If the RBF network is used to solve a classification problem it is beneficial
to utilise the class information for the initialisation procedure. Hence a more
sophisticated way to determine the initial centers ci,j of the RBF neurons is to
perform class specific k-means clusterings. For each class ω ∈ Ω a k-means
clustering is conducted with all samples of this class. The resulting k-means
prototypes are then used to initialise the RFB centres. LVQ clustering can also
be used to initialise the RBF weights. The RBF centres are initialised with the
LVQ prototypes.

The widths parameters σj of the RBFs can either be initialised randomly or
estimated by local heuristics, e.g., by setting the σj of each prototype cj equal
to a multiple of the average distance to the p nearest other prototypes or by
estimating the variance of the data points belonging to the respective clusters.
The choice of the width parameters σj is a crucial factor for the classification
quality of an RBF network. It has a direct impact on the degree of smoothness
of the function approximated by the network. The smaller the widths are the less
smoother are the realised functions.

The output weights wj,k can also be initialised randomly. When applied to a clas-
sification problem a slightly more complex approach is the initialisation according
to the class distribution of the corresponding RBF prototype. The weight wj,k

is set to the rate of samples in cluster j belonging to class k. A similar strategy
only considers the class k∗ represented most in cluster j. The weight wj,k∗ is set
to one, all other weights are set to zero.

2.4. Radial Basis Function Networks 23

2.4.4 Training Methods

Let τ = {(xµ, tµ) : µ = 1, 2, ...,M} be a set of M labelled training samples where
xµ is a d-dimensional feature vector and tµ is the corresponding m-dimensional
target vector specifying the class of the sample xµ as an one-out-of-m code.

2.4.4.1 Pseudo Inverse Learning

The pseudo inverse [64] learning is one way to calculate the output weights wj,m.

The output of the jth prototype when being presented the µth sample xµ is
Hj

µ = hj(x
µ). The outputs of all k prototypes for all M samples form the matrix

H = (Hj
µ)µ=1,2,...,M

j=1,2,...,k . The mth element of the target vector tµ of the µth sample
xµ is given by tµm. The matrix of the target vectors of all samples is given by
T = (tµm)µ=1,2,...,M

m=1,2,...,l .

The matrix of the output layer weights W = (wj,m)j=1,2,...,k
m=1,2,...,l can be calculated

using the pseudo inverse H+:

W = H+T (2.35)

where H+ is the pseudo inverse matrix of the matrix H. The pseudo inverse
matrix H+ is calculated as

H+ = lim
α→0+

(HT H + αI)−1HT (2.36)

where I is the identity matrix.

If the matrix HT H is invertible the calculatation of the pseud inverse matrix
reduces to

H+ = (HT H)−1HT . (2.37)

The weight matrix W minimises the error function

E(W) = ‖HW − T‖2. (2.38)

2.4.4.2 Error Backpropagation

This gradient descent optimisation realises a combined training of the complete
network. The parameters ci,j, σi,j and wj,m are adapted to minimise an error
function E which gives a measurement for the difference between the network

24 Chapter 2. Neural Networks

output z and a teacher signal t specifying the desired output. A commonly used
function is the mean square error:

E =
1

2

M∑
µ=1

l∑
m=1

(tµm − zµ
m)2. (2.39)

From the error function E learning rules for the different weights ci,j, σi,j and
wj,m can be derived as follows:

The output weights wj,m are updated using the following learning rule:

wj,m = wj,m − ηwhj(x
µ)(tµm − zµ

m) (2.40)

where ηw is the corresponding learning rate.

The learning rules of the weights ci,j and σi,j depend on the RBF used. When
the Gaussian function is used as RBF the following learning rules for the weights
ci,j and σi,j are obtained:

ci,j = ci,j − ηchj(x
µ)

xµ
i − ci,j

σ2
i,j

l∑
m=1

wj,m(xµ)(tµm − zµ
m) (2.41)

σi,j = σi,j − ησhj(x
µ)

(xµ
i − ci,j)

2

σ3
i,j

l∑
m=1

wj,m(xµ)(tµm − zµ
m) (2.42)

where ηc and ησ are the respective learning rates.

The usage of the inverse multi-quadric RBF leads to the following learning rules:

ci,j = ci,j − ηchj(x
µ)3xµ

i − ci,j

σ2
i,j

l∑
m=1

wj,m(xµ)(tµm − zµ
m) (2.43)

σi,j = σi,j − ησhj(x
µ)3 (xµ

i − ci,j)
2

σ3
i,j

l∑
m=1

wj,m(xµ)(tµm − zµ
m). (2.44)

For other types of RBF the corresponding learning rules can be deduced by min-
imising the respective error functions with regards to the different weights ci,j

and σi,j.

2.4.4.3 Learning Strategies

The training of the weights of the RBF network can be performed in different
stages [75]. The three different learning schemes described in the following exploit

2.4. Radial Basis Function Networks 25

this. The individual learning procedures implement a different number of learning
phases, where the computational complexity and classification performance that
can be achieved increases with the number of learning phases conducted.

2.4.4.3.1 One-Phase Learning

This learning scheme adjusts only the output weights wj,k by a supervised opti-
misation of an error function. This can be accomplished e.g. by pseudo inverse
learning (see equation 2.35) or by gradient descent optimisation (see equation
2.40). The centres cj of the RBF prototypes are chosen randomly from the set of
training samples. The scaling parameters σj are set equally for all prototypes to
a predetermined value σ ∈ IR.

2.4.4.3.2 Two-Phase Learning

The usage of radial basis function that only respond locally allows for decoupling
the estimation of the weights into a two-stage process as this ensures that only
few radial basis functions will considerably be activated at a given time. Thus
the hidden and the output layer of the RBF network are trained consecutively.
In the first step the centres cj of the RBF neurons and the corresponding scaling
parameters σj are calculated utilising class-specific k-means, LVQ or decision
trees (see section 2.4.3). The so obtained parameters of the radial basis functions
are then kept fix, i.e. the transformation between the network input and the
output of the hidden layer is fixed. Thus the network can now be treated like
a single-layer network with a linear output layer. In the second step the output
weights wj,m for the previously calculated centres cj and widths σj can then be
determined by pseudo inverse learning (see equation 2.35) or by gradient descent
optimisation (see equation 2.40). This learning scheme is efficient and provides
good classification results.

2.4.4.3.3 Three-Phase Learning

This learning scheme consists of three stages. The first two stages are identical to
the steps conducted in two-phase learning. There the hidden and the output layer
are trained separately. In the following learn step all parameters of the network
cj, σj and wj,m are further optimised simultaneously using error-backpropagation
(see equations 2.41 and 2.42 or 2.43 and 2.44). This learning scheme utilises
non-linear optimisation and is computationally expensive but yields improved
classification results compared to the two-stage learning scheme.

26 Chapter 2. Neural Networks

2.5 Associative Memories

Associative memories [86] (AM) are content-addressable structures that store a
set of M associations between specific binary input representations uµ ∈ {0, 1}n

and specific binary output representations vµ ∈ {0, 1}m with µ = 1, 2, ...,M .
After storing the M pairs of pattern {(uµ, vµ), µ = 1, 2, ...,M} an address pattern
ũ can be used to retrieve an associated pattern ṽ, where the recall of data is
based on the resemblance between the address pattern and the stored patterns.
Associative memories show a certain error-correction ability and are fault-tolerant
and robust.

A distinction is made between two types of associative memories: hetero-asso-
ciative memories and auto-associative memories. In hetero-associative memories
the output patterns are in general different from the input patterns, i.e. patterns
are associated to other pattern, whereas in associative memories only pairs of
identical pattern are stored, i.e. the patterns are associated with themselves.
Auto-associative memories retrieve perviously stored pattern that most closely
match the address pattern. Hence this type of associative memory allows for
pattern correction or completion in case of addressing with noisy or incomplete
pattern.

An associative memory is represented by synaptic connections between two neu-
ron populations namely the address population associated with the input pat-
terns uµ and the retrieval population corresponding to the output patterns vµ.
The memory matrix A embodies the synaptic connections where the synaptic
weight connecting neuron i of the address population to neuron j of the retrieval
population is specified by the matrix entry Ai,j which is determined from the
superposition of the outer products of the input and output pattern. There are
different ways of determining the entries of the memory matrix A when stor-
ing pairs of pattern. The most common approach uses clipped Hebbian learning
yielding a binary memory matrix A ∈ {0, 1}n×m:

Ai,j = min(1,
M∑

µ=1

uµ
i v

µ
j) ∈ {0, 1}. (2.45)

Another learning strategy in use is the linear additive Hebbian learning:

Ai,j =
M∑

µ=1

uµ
i v

µ
j ∈ IN0. (2.46)

A modification of the linear additive Hebbian learning which has been applied in
the context of this work and restrains the accumulation of the synaptic weights

2.5. Associative Memories 27

following the geometric series:

Ai,j = g(q,
M∑

µ=1

uµ
i v

µ
j − 1) ∈ [0, 2] (2.47)

with

g(q, n) =

{
n + 1, q = 1
qn+1−1

q−1
, otherwise

(2.48)

where q = 1
2
.

Once the M pairs of pattern are stored the associative memory can be addressed
with a pattern ũ in order to retrieve the output pattern ṽ. If the address pattern ũ
sufficiently resembles a stored pattern uµ the output pattern ṽ will ideally equal
vµ. Thus the associative memory can be addressed with noisy versions of the
stored patterns and is nevertheless able to retrieve the correct output pattern. A
common way of obtaining the output pattern is the application of a threshold Θ
to the outer product of the address pattern ũ with the memory matrix A:

ṽj =

{
1 :

∑n
i=1 ũiAi,j ≥ Θ

0 : otherwise
(2.49)

The threshold Θ is determined by the number of ones in the address pattern ũ:

Θ =
n∑

i=1

ũi. (2.50)

A more general way of retrieving the output pattern determines the maximum of
the outer product of the address pattern ũ with the memory matrix A:

ṽj =

{
1 :

∑n
i=1 ũiAi,j ≥ maxj=1,2,...,m(

∑n
i=1 ũiAi,j)− θ

0 : otherwise
(2.51)

where θ ≥ 0 controls the number of ones in the retrieved pattern ṽ: the higher θ
is chosen the more ones contains the output pattern. Thus the most restrictive
case is θ = 0.

When using associative memories for classification the patterns to be classified are
stored in a hetero-associative memory where the data forms the input patterns
and the one-out-of-m coded classes constitute the output patterns. Hence the
positions of the ones in the output patterns corresponds to the associated classes.
If in the retrieval phase the output vector contains more than a single one a
selection needs to be performed identifying the most likely class.

28 Chapter 2. Neural Networks

2.6 Discussion

There are various types of neural networks. Criteria for the differentiation of
neural networks are the network topology, the characteristics of the used arti-
ficial neurons, the utilised training strategy and the way how the activation of
the hidden layer is calculated. Either the scalar product of the input vector and
a weight vector or the distance between the input vector and a prototype can
serve as input to the neurons in the hidden layer. Multi-Layer Perceptrons are an
example of the former class of artificial neural networks. Radial Basis Function
networks and Learning Vector Quantisation networks form examples of the lat-
ter. All used networks are prototype-based networks that learn a representation
of the training data in the feature space. The used networks also differ in their
architecture. The RBF networks are three-layered feed-forward networks, con-
sisting of an input layer, a hidden layer and an output layer with unidirectional
connections between the layers, whereas the LVQ networks and the k-means net-
works are two-layered networks consisting of an input layer and a hidden layer
performing a clustering task. Within an RBF network the neurons in the hidden
layer use radial basis functions as transfer functions and the neurons in the output
layer have linear transfer functions. The LVQ networks and the k-means identify
the classifier output according to the k-nearest neighbour rule. These networks
are competitive networks and the learning is performed utilising a winner-takes-
all strategy. The learning in RBF networks is performed by means of gradient
descent methods. The k-means network and the LVQ network differ insofar as
the former one is trained using an unsupervised learning algorithm where as the
latter one is trained supervised.

A major advantage of the k-NN classifiers and fuzzy k-NN classifiers is the
marginal number of parameters to be specified despite showing reasonable and
robust classification performance. The 1-NN classifier does not require parametri-
sation at all. The k-NN classifier only requires the specification of the number
k of prototypes included in the decision process. For the fuzzy k-NN classifier
only the additional parameter α needs to be selected. Moreover the provision of
membership values is an eligible property of the fuzzy k-NN classifier. Another
advantage is the fact that no training is required. A disadvantage of this approach
is the long computational time required in the classification phase.

The outputs of an RBF network can be interpreted as an estimation of the a
posteriori probabilities. A disadvantage of RBF networks is the large number
of parameters that have to be adjusted and which have a crucial impact on the
classification performance. The time required for classification is shorter than
that required by the nearest neighbour classifiers as the number of prototypes is
considerably lower. A disadvantage is the extensive training time.

A rather different approach are associative memories. They store the training

2.6. Discussion 29

data by means of sparse binary patterns. Thus they require sparse binary repre-
sentations of the data to be classified. These codes usually can not be generated
straightforwardly. If the codes are generated in a proper way associative memories
show a high and robust classification performance.

In the scope of this work different network types were used fulfilling diverse tasks.
They were used for the hierarchy generation and for initialising classifiers and they
were used as classifiers. The k-means algorithm was used within the hierarchy
generation phase. LVQ networks and k-means clustering was utilised to initialise
RBF networks. As classifiers within the hierarchy RBF networks, k-NN classifiers
and fuzzy k-NN classifiers were used. Hetero-associative memories were employed
as classifiers in connection with sparse similarity preserving codes generated from
the classifier hierarchies.

3 Uncertainty

Dealing with uncertainty is an important concept in artificial intelligence. There
are several approaches addressing this problem such as probability theory, fuzzy
set theory, possibility theory and belief theory. Due to its straightforward appli-
cability to the domain of hierarchical neural networks, belief theory was chosen
above other frameworks for representing uncertainty.

In the following several concepts for representing and dealing with uncertainty are
briefly described. For reasons of simplicity only finite universes Ω are considered.
This is justified insofar as within the scope of classification problems, which are
the domain of application in this work, the universe is represented by the finite
set of classes Ω = {1, 2, ..., l}.

3.1 Probability Theory

The probability theory is a well-established approach to pattern recognition. Re-
quirements for the applicability of this approach are the posing of the decision
problem in terms of probabilities and the availability of all relevant probability
values. The Bayes’ rule is used within this framework for the fusion of informa-
tion.

The sample space Ω = {ω1, ..., ωl} is a finite set of l mutually exclusive atomic hy-
potheses. Within the scope of the probability theory framework these hypotheses
are interpreted as the possible outcomes of a random experiment and they are
called elementary events. A subset A ⊆ Ω is called an event. The powerset of Ω
is denoted by 2Ω and contains all possible subsets of Ω.

A function p : Ω → [0, 1] is called probability distribution if
∑

ωi∈Ω p(ωi) = 1.
Given such a probability distribution p the corresponding probability measure

31

32 Chapter 3. Uncertainty

P : 2Ω → [0, 1] is uniquely defined by:

• P ({ωi}) = p(ωi)

• P (A) ∈ [0, 1],∀A ⊆ Ω

• P (Ω) = 1

• A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B) (additivity)

The probability P (A) specifies the likeliness of the occurrence of the event A. In
case of ignorance, i.e. if nothing is known about the probability of the elementary
events ωi ∈ Ω, each elementary event is assigned the probability p(ωi) = 1

l
,∀ωi ∈

Ω. This is also the case if all elements are equally probable.

A probability measure P shows the following additional properties:

• P (∅) = 0

• A ⊆ B ⇒ P (A) ≤ P (B)

• P (A) = 1− P (A)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

The conditional probability1 P (A|B) of an event A given B is defined as

P (A|B) =
P (A ∩B)

P (B)
=

P (B|A)P (A)

P (B)
(3.1)

with P (B) > 0.

Applied to the problem of classification the following equation results

p(ωi|x) =
p(x|ωi)p(ωi)

p(x)
=

p(x|ωi)p(ωi)∑l
i=1 p(x|ωi)p(ωi)

(3.2)

where p(ωi) is the a priori probability of the event or class ωi, p(ωi|x) is the a
posteriori probability of the correct class being ωi given x, p(x|ωi) is the class
conditional probability of x for the class ωi and x is the information provided by
the classifier. p(x) acts as a normalisation factor ensuring that the a posteriori
probabilities sum up to one.

1 If P (B) = 0 the conditional probability P (A|B) is not defined. If A ⊆ B the conditional
probability yields P (A|B) = P (A)

P (B) . Moreover it holds P (A|A) = P (A)

3.2. Fuzzy Set Theory 33

By means of the Bayesian combination rule information from different sources x1

and x2 can be combined.

p(ωi|x1, x2) =
p(x1|ωi, x2)p(x1|ωi)p(ωi)

p(x1, x2)
. (3.3)

In case of independent sources the rule can be simplified to

p(ωi|x1, x2) =
p(x2|ωi)p(x2|ωi)p(ωi)

p(x1)p(x2)
. (3.4)

The combination rule for more than two sources is given by

p(ωi|x1, ..., xk) =
p(xk|ωi, x1, ..., xk−1)...p(x1|ωi)p(ωi)

p(x1, ..., xk)
) (3.5)

where k is the number of sources to be fused.

In case of independence between the sources the rule can analogously be reduced
to

p(ωi|x1, ..., xk) =
p(ωi)

∏k
j=1 p(xj|ωi)∏k

j=1 p(xj)
. (3.6)

This fusion operator is only applicable if the k sources are completely reliable. If
this is not the case, the fusion operator has to be adapted incorporating knowledge
about the reliability of the individual sources [71]. The reliability of sources is
often estimated utilising the classification performance of the source.

3.2 Fuzzy Set Theory

The fuzzy set theory [89] is a generalisation of the classical set theory which allows
the representation and handling of imprecise knowledge. An essential feature is
the possibility of specifying partial membership.

A set A in the classical sense can be defined by listing all elements belonging to
this set A = {a1, a2, ..., an}. The set A can also be represented by its characteristic
function µA : Ω → {0, 1}, that takes the value one if ωi is an element of the set
A and zero otherwise:

µA(ωi) =

{
1, ωi ∈ A
0, ωi /∈ A

(3.7)

34 Chapter 3. Uncertainty

Sets whose characteristic function µA : Ω → [0, 1] can take any value in the inter-
val [0, 1] is called a fuzzy set A where µA(ωi) represents the grade of membership
of the element ωi ∈ Ω to the set A and µA is called membership function or degree
of membership. Hence the classic sets or so called crisp sets are a special case of
fuzzy sets.

In the following the basic features of fuzzy sets as well as the operations on fuzzy
sets are briefly described.

The set of all fuzzy sets of Ω is denoted by F(Ω). Let A ∈ F(Ω) be a fuzzy set
defined on Ω. The degree of membership of an element ωi ∈ Ω to the fuzzy set A
is denoted by µA(ωi).

The support supp(A) of the fuzzy set A is the crisp set that contains all elements
ωi of Ω which belong to A with a positive degree of membership:

supp(A) = {ωi ∈ Ω|µA(ωi) > 0}. (3.8)

The kernel ker(A) of the fuzzy set A is the crisp set that contains all elements
ωi of Ω which belong to the fuzzy set A with degree of membership one:

ker(A) = {ωi ∈ Ω|µA(ωi) = 1}. (3.9)

A set A is a crisp set iff A = supp(A) = ker(A).

The boundary bnd(A) of the fuzzy set A is the crisp set that contains all elements
ωi of Ω which belong to the support supp(A) but not to the kernel ker(A) of the
fuzzy set A:

bnd(A) = suoo(A) \ ker(A) = {ωi ∈ Ω|0 < µA(ωi) < 1}. (3.10)

The boundary of a crisp set is the empty set.

The height hgt(A) of the fuzzy set A is the highest degree of membership with
which an element ωi of Ω belongs to the fuzzy set A, i.e. it is the highest value
of the characteristic function µA:

hgt(A) = max
ωi∈Ω

µA(ωi). (3.11)

If the height hgt(A) of a fuzzy set A equals one it is called normal, otherwise it
is called subnormal. Thus a fuzzy set A is normal if at least one element ωi of Ω
exists that belongs absolutely to the fuzzy set A, i.e. the degree of membership
of the element ωi equals one.

A crisp set is always normal.

3.2. Fuzzy Set Theory 35

The cardinality |A| of a fuzzy set A is the overall degree with which the elements
ωi of Ω belong to the fuzzy set A:

|A| =
∑
ωi∈Ω

µA(ωi). (3.12)

The cardinality of a crisp set is the number of its elements.

Two fuzzy sets A ∈ F(Ω) and B ∈ F(Ω) that are both defined on Ω are equal if
their membership functions µA and µB are equal, i.e. they take the same value
for each element ωi ∈ Ω:

A = B ⇔ µA(ωi) = µB(ωi),∀ωi ∈ Ω. (3.13)

Two fuzzy sets A ∈ F(Ω) and B ∈ F(Ω) that are both defined on Ω are regarded
similar if their kernels and their supports are equal:

A ≈ B ⇔ ker(A) = ker(B) and supp(A) = supp(B). (3.14)

A fuzzy set A ∈ F(Ω) is included in the fuzzy set B ∈ F(Ω) if all elements ωi of
Ω that belong to the set A also belong to the set B at least to the same degree:

A ⊆ B ⇔ µA(ωi) ≤ µB(ωi),∀ωi ∈ Ω. (3.15)

The complement A of a fuzzy set A ∈ F(Ω) is givn by:

µA = 1− µA,∀ωi ∈ Ω. (3.16)

The complement fulfills the De Morgan’s laws known from classical set theory,

i.e. A ∩B = A ∪ B and A ∪B = A ∩ B as well as the involution A = A. In
contrast to the classical set theory the equations A ∩ A = ∅ and A ∪ A = Ω are
no longer valid when using fuzzy sets.

The intersection i(A, B) of two fuzzy sets A ∈ F(Ω) and B ∈ F(Ω) is defined via a
mapping i : [0, 1]×[0, 1] → [0, 1] such that µA∩B(ωi) := i(µA(ωi), µB(ωi)),∀ωi ∈ Ω.
The function 2 i : [0, 1]2 → [0, 1] is required to fulfill the following conditions

2 Formally speaking the function i is realised by t-norms[73] [88] [17] [85].

36 Chapter 3. Uncertainty

∀a, b, c ∈ [0, 1]:

• i1: i(a, 1) = a (closure condition)

• i2: b ≤ c ⇒ i(a, b) ≤ i(a, c) (monotonicity)

• i3: i(a, b) = i(b, a) (commutativity)

• i4: i(a, i(b, c)) = i(i(a, b), c) (associativity)

• i5: i is a continuous function (continuity)

• i6: i(a, a) < a (sub-idempotency)

• i7: a1 < a2 and b1 < b2 ⇒ i(a1, b1) < i(a2, b2) (strict monotonicity)

Note that i is not uniquely determined by these conditions.

The conditions i1 - i4 are mandatory conditions whereas the conditions i5 - i7
are additional conditions limiting the amount of possible fuzzy intersections. The
axioms i2 and i3 ensure that the intersection will not increase the degree of mem-
bership when there is a decrease of the degree of membership of the fuzzy set A
or B. Moreover condition i3 ensures the symmetry of the intersection. Condition
i4 ensures that any number of fuzzy sets can be intersected regardless of the or-
der. Condition i5 ensures that a small change of the degree of membership of the
fuzzy set A or B will not yield a large change of the degree of membership of the
intersection. Condition i6 ensures that in case of identical degrees of membership
a of set A and B the degree of membership of the intersection A∩B does not sur-
pass the degree of membership a. This requirement is weaker than idempotency
(i(a, a) = a).

The most common functions fulfilling these conditions are ∀a, b ∈ [0, 1]:

• is(a, b) = min(a, b) (standard intersection)

• ip(a, b) = a · b (algebraic product)

• idi(a, b) = max(0, a + b− 1) (limited difference)

• id(a, b) =

a, b = 1
b, a = 1
0, otherwise

(drastic intersection)

These functions are related such that
id(a, b) ≤ idi(a, b) ≤ ip(a, b) ≤ is(a, b),∀a, b ∈ [0, 1].

3.2. Fuzzy Set Theory 37

The union u(A, B) of two fuzzy sets A ∈ F(Ω) and B ∈ F(Ω) is defined via a
mapping u : [0, 1]× [0, 1] → [0, 1] such that µA∪B(ωi) = u(µA(ωi), µB(ωi)),∀ωi ∈
Ω. The function 3 u : [0, 1]2 → [0, 1] is required to satisfy the following conditions
∀a, b, c ∈ [0, 1]:

• u1: u(a, 0) = a (closure condition)

• u2: b ≤ c ⇒ u(a, b) ≤ u(a, c) (monotonicity)

• u3: u(a, b) = u(b, a) (commutativity)

• u4: u(a, u(b, c)) = u(u(a, b), c) (associativity)

• u5: u is a continuous function (continuity)

• u6: u(a, a) > a (super-idempotency)

• u7: a1 < a2 and b1 < b2 ⇒ u(a1, b1) < u(a2, b2) (strict monotonicity)

The justification of the conditions u1 − u7 is analogous to the justifications of
the conditions i1 − i7. Compared to the conditions i1 − i7 only the boundary
conditions specified by the conditions i1 and u1 and the sub-idempotency and
super-idempotency conditions specified by the axioms i6 and u6 are different.

The most common functions fulfilling these conditions are ∀a, b ∈ [0, 1]:

• us(a, b) = max(a, b) (standard union)

• usum(a, b) = a + b− a · b (algebraic sum)

• ub(a, b) = min(1, a + b) (boundary sum)

• ud(a, b) =

a, b = 0
b, a = 0

1, otherwise
(drastic union)

These functions are related such that
us(a, b) ≤ usum(a, b) ≤ ub(a, b) ≤ ud(a, b),∀a, b ∈ [0, 1].

The α-cut Aα of a fuzzy set A is the crisp set Aα ∈ Ω that contains all elements
ωi of Ω that belong to the fuzzy set A with at least the degree of membership
α ∈ [0, 1].

Aα = {ωi ∈ Ω|µA(ωi) ≥ α} (3.17)

3 Formally speaking the function i is realised by s-norms or t-conorms.

38 Chapter 3. Uncertainty

It holds α1 ≤ α2 ⇒ Aα1 ⊆ Aα2 . Moreover the α-cut fulfills the property A∩B ⇒
Aα ∩Bα. Furthermore the α-cut is commutative with respect to intersection and
union, i.e. (A ∩ B)α = Aα ∩ Bα and (A ∪ B)α = Aα ∪ Bα. Furthermore, it holds
Aα=0 = Ω and Aα=1 = ker(A).

3.3 Possibility Theory

Possibility theory is an extension of the fuzzy set theory and is an alternative to
probability theory. It is a framework for dealing with non-probabilistic concepts
of uncertainty. This framework provides means for representing both inaccuracy
and uncertainty. Inaccurate information can be represented utilising the concept
of fuzzy sets. Uncertainty can be quantified by means two measures: possibility
and necessity.

A possibility distribution π : Ω → [0, 1] can be interpreted as the membership
function of a normal fuzzy set.

The universe of discourse Ω = {ω1, ..., ωl} is a finite set of l mutually exclusive
atomic hypotheses. The powerset of Ω is denoted by 2Ω and contains all possible
subsets of Ω.

The possibility Π over a universe of discourse Ω is a function Π : 2Ω → [0, 1] such
that Π({ωi}) = π(ωi). It is a measure for the likeliness of a hypotheses or a set of
hypotheses (so called events), where possibility Π(A) = 0 means that the event
A is completely impossible and possibility Π(A) = 1 expresses that the event A
is completely possible. The relation to probability theory is stated by the fact
that an event that is probable is also possible. This is expressed by the inequality
P (A) ≤ Π(A). The possibility fulfills the following conditions:

Π(∅) = 0 (3.18)

Π(Ω) = 1 (3.19)

Π(A ∪B) = max(Π(A), Π(B)),∀A, B ∈ 2Ω (3.20)

Π(
⋃

i=1,2,...

Ai) = max
i=1,2,...

(Π(Ai)),∀Ai ∈ 2Ω (3.21)

The fact that no possibility can be assigned to the empty set ∅ expresses the
closed world assumption, i.e. the universe of discourse Ω is assumed to be an
exhaustive description of the world and no belief is given to elements outside Ω.

3.3. Possibility Theory 39

The condition that the universe of discourse Ω is completely possible specifies
the assumption that there is no conflict between the evidences from which the
possibility Π was built. This implicates that at least one element in Ω is com-
pletely possible. The definition of the possibility of the union of two possibilities
implies that the occurrence of one of two events obtains the same possibility as
the occurrence of the most possible event of those two. Moreover it can eas-
ily be deduced that at least the event A ∈ 2Ω or its complement A must be
completely possible, i.e. max(Π(A), Π(A)) = 1,∀A ∈ 2Ω and hence it follows
Π(A) + Π(A) ≥ 1,∀A ∈ 2Ω. Thus complete ignorance about the occurrence of A
can be expressed when the event A as well as its complement A are both com-
pletely possible, i.e. Π(A) = 1 and Π(A) = 1. The certain occurrence of A can
be specified when its complement A is completely impossible as this implies that
the event A is completely possible, i.e. Π(A) = 1 and Π(A) = 0. There is an
interaction between the possibility Π(A) of the event A and the possibility Π(A)
of its complement A: If either of them is not completely possible, i.e. the possi-
bility is less than one, the other must be completely possible, i.e. the possibility
must equal one.

The possibility measure on finite or countably infinite sets is determined by the
possibility of the atomic elements it is composed of:

Π(A) = max
ωi∈A

Π(ωi). (3.22)

As the possibility of a union can be determined from the possibility of each
component, the possibility measure is compositional with respect to the union
operator.

Regarding the intersection operator the following proposition can be derived:

Π(A ∩B) ≤ min(Π(A), Π(B)),∀A, B ∈ 2Ω. (3.23)

This implies that despite two events A and B are possible, i.e. Π(A) > 0 and
Π(B) > 0, their coinstantaneous occurrence might be impossible, i.e. Π(A∩B) =
0.

In order to be able to completely describe the uncertainty of an event A the
possibility theory utilises the necessity measure N which is a complement of the
possibility measure Π.

The necessity N over a universe of discourse Ω is a function N : 2Ω → [0, 1]. It
specifies the degree with which the occurrence of an event A is certain. It fulfills

40 Chapter 3. Uncertainty

the following conditions:

N(∅) = 0 (3.24)

N(Ω) = 1 (3.25)

N(A ∩B) = min(N(A), N(B)),∀A, B ∈ 2Ω (3.26)

N(
⋂

i=1,2,...

Ai) = min
i=1,2,...

(N(Ai)),∀Ai ∈ 2Ω (3.27)

These conditions imply that N is monotone:

A ⊆ B ⇒ N(A) ≤ N(B),∀A, B ∈ 2Ω. (3.28)

The following property of the union operator can be derived:

N(A ∪B) ≥ max(N(A), N(B)),∀A, B ∈ 2Ω. (3.29)

Regarding the necessity of on event A and the necessity of its complement A
it holds min(N(A), N(A)) = 0 and N(A) + N(A) ≤ 1. Moreover there exits a
relation between the necessity of the event A and the necessity of its complement
A such that if either of them is greater than zero the other must be zero and if
one of them equals zero, the other can take any value.

The necessity function can be constructed from the possibility distribution as
follows:

N(A) = min
ωi /∈A

(1− Π(ωi)). (3.30)

There exists a duality between possibility Π and necessity N such that:

N(A) = 1− Π(A) (3.31)

where A is the complement of A with respect to Ω.

This duality expresses the fact that A is the more certain the more A is impossible.
The greater the necessity of the event A is, the less is its complement possible,
i.e. the more certain is the occurrence of the event A. The occurrence of an event
A is completely certain if and only if its complement A is completely impossible,

3.3. Possibility Theory 41

which implicates that the event A is completely possible: N(A) = 1 ⇔ Π(A) =
0 ⇒ Π(A) = 1.

This duality is also expressed in the conditions Π(A) ≥ N(A) and max(Π(A), 1−
N(A)) = 1. These conditions imply that any event A whose occurrence is even
slightly certain is completely possible: N(A) > 0 ⇒ Π(A) = 1. Furthermore they
implicate that if an event is not completely possible but only relative possible there
is no certainty about the occurrence of this event at all: Π(A) > 1 ⇒ N(A) = 0.

Certain pairs of possibility and necessity can be interpreted as follows:

• N(A) = 1 ⇒ Π(A) = 1: The event A is certainly true.

• Π(A) = 0 ⇒ N(A) = 0: The event A is certainly false.

• N(A) = 0 and Π(A) = 1: This states the indetermination that nothing is
known about the event A.

There are various methods for fusing individual possibility distributions. These
fusion strategies differ considerably in their behaviour, outcome and applicability.
Examples for fusion strategies are:

• Conjunctive fusion:
πconj(ωi) = min(π1(ωi), π2(ωi)),∀ωi ∈ Ω

• Renormalised conjunctive fusion:
πrenorm(ωi) =

πconj(ωi)

h(π1,π2)
= min(π1(ωi),π2(ωi))

maxωi∈Ω(min(π1(ωi),π2(ωi)))
,∀ωi ∈ Ω

• Disjunctive fusion:
πdisj(ωi) = max(π1(ωi), π2(ωi)),∀ωi ∈ Ω

• Adaptive fusion:
πad(ωi) = max(πrenorm(ωi), min(1− h(π1, π2), πdisj(ωi))),∀ωi ∈ Ω

• Quantified adaptive fusion:
πadq(ωi = max(πrenorm(n)

, min(1− h(n), πdisj(m)
)),∀ωi ∈ Ω

where k is the total number of sources to be fused, J is any subset of sources,
h(J) = maxωi∈Ω(minj∈J(πj(ωi))) is the degree of consensus of the subset J of the
sources, m = max{|J |, h(J) = 1} is the pessimistic estimation of the number of
reliable sources and n = max{|J |, h(J) > 0} is the optimistic estimation of the
number of reliable sources.

The conflict c between the individual possibility distributions to be fused is ex-
pressed by c = 1 − h(π1, π2). Thus h(π1, π2) is a measure for the consensus
between the sources providing the different possibility distributions. The sources

42 Chapter 3. Uncertainty

are considered reliable if h(π1, π2) = 1, i.e. no conflict exists between the sources.
They are regarded as totally contradictory if h(π1, π2) = 0. If 0 < h(π1, π2) < 1
there exists some conflict between the sources which is the stronger the lower
h(π1, π2) is.

3.4 Belief theory

The Dempster-Shafer evidence theory or belief theory is a mathematical theory
of evidence based on belief functions and plausible reasoning. It provides means
of representing and combining measures of evidence.

Major advantages of the belief theory are the possibility to discriminate between
ignorance and uncertainty, i.e. a lack of knowledge caused e.g. by unknown ob-
jects can be distinguished from doubtful situations where several alternatives are
almost equally likely, the ability to easily represent evidence at different levels of
abstraction, i.e. it allows for associating evidence to intervals and sets, and the
possibility to combine information from multiple sources and to give an indiction
of the conflict between the individual sources. The theory allows for only rep-
resenting the actual knowledge without enforcing more detailed propositions in
case of ignorance.

This theory is a generalisation of the Bayesian probability theory, but is more
flexible than probability theory in case of incomplete knowledge and when dealing
with uncertainty and ignorance.

In the following the basic concepts of the Dempster-Shafer evidence theory are
briefly explained.

3.4.1 Basic Concepts

The frame of discernment is a finite set of l mutually exclusive atomic hypotheses
Ω = {ω1, ..., ωl} representing the universe of discourse. Let 2Ω denote the power
set of Ω.

In Dempster-Shafer theory there are three principal functions:

1. the basic probability assignment function or mass function m

2. the belief function Bel

3. the plausibility function Pl

A basic probability assignment or mass function m over a frame of discernment

3.4. Belief theory 43

Ω is a function m : 2Ω → [0, 1] that satisfies the following two conditions:

m(∅) = 0 (3.32)

and ∑
A⊆Ω

m(A) = 1. (3.33)

By definition, the mass of the empty set ∅ is zero, i.e. no evidence is assigned to
the impossible event ∅ and the masses of the remaining elements of the power set
2Ω sum up to one, i.e. the total evidence of a source sums up to a total of one.
The subsets A ⊆ Ω with m(A) > 0 are called focal elements of m.

The fact that no mass can be assigned to the empty set ∅ expresses the closed
world assumption. The frame of discernment Ω is regarded as being a complete
description of the world. Hence no evidence pointing to some hypothesis not in
Ω is allowed.

The belief Bel(A) is defined as the sum of all masses of the proper subsets of
the set A. With m being a basic probability assignment the belief function Bel :
2Ω → [0, 1] is defined as follows:

Bel(A) =
∑

B:B⊆A

m(B). (3.34)

The plausibility Pl(A) is defined as the sum of all masses of the sets B that
intersect the set A. If m is a basic probability assignment the plausibility function
Pl : 2Ω → [0, 1] is defined as:

Pl(A) =
∑

B:A∩B 6=∅

m(B). (3.35)

Basic probabilities cannot only be assigned to atomic hypothesis ωi ∈ Ω but also
to sets A ⊆ Ω of atomic hypotheses. The basic probability assignment m(A)
specifies the degree of belief that is assigned to exactly the set A ⊆ Ω and not
to any subset of A. The value of m(A) is only related to the set A. It makes no
additional assertion about any subset of A as each subset of A has its own mass.
In particular unlike to probability theory it is not required to specify explicitly
the basic probability assignment of each element of the frame of discernment Ω.
If A is a non-atomic hypothesis m(A) reflects ignorance or partial knowledge as it
is not possible to further subdivide the belief in A among the subsets of A. The
mass m(A) specifies the belief supporting A. It could support any subset of A
given further information indicating this, but the available information justifies
only the support of A. The belief Bel(A) also takes into account the degree
of belief assigned to events that are subsets of A. It specifies the total belief

44 Chapter 3. Uncertainty

that is certainly assigned to A. The plausibility Pl(A) is a measure for the belief
that could potentially be assigned to A, i.e. the belief assigned to some set B
that is consistent with A. It specifies the degree of belief that is not assigned to
events that falsify A. The belief interval [Bel(A), P l(A)] represents the complete
information about the degree of belief in A. This probability interval contains
the actual probability P (A) of the set A: Bel(A) ≤ P (A) ≤ Pl(A),∀A ⊆ Ω.

The vacuous basic probability assignment mvac is used to represent the extreme
case of total ignorance. It is specified by mvac(Ω) = 1 and mvac = 0,∀A ⊂ Ω.
The corresponding plausibilities are all zero and the corresponding beliefs are all
equal to one. Thus the resulting belief intervals are [0, 1] for all subsets A ⊂ Ω.

If an event ωi is known to be definitely true this is represented by m(ωi) = 1 and
m(A) = 0,∀A 6= ωi ⊆ Ω. If an event A ⊂ Ω is known to be definitely false this is
represented by assigning a basic probability assignment m(A) corresponding to
the belief Bel(A) = 1 or the plausibility Pl(A) = 0.

If evidences are available for all elementary events ωi the basic probability assign-
ment m is reduced to a classical probability. Then

∑
ωi∈Ω m(ωi) = 1 holds and

m(A) = 0,∀A ∈ Ω with |A| > 1.

Both Bel and Pl are monotone functions. If A ⊆ B then Bel(A) ≤ Bel(B) and
Pl(A) ≤ Pl(B). Furthermore both functions are non-additive.

There exists a duality between Bel(A) and Pl(A) such that Pl(A) = 1−Bel(A)
and Bel(A) = 1− Pl(A) where A is the complement of A with respect to Ω.

Multiple sources that provide different assessments for the same frame of dis-
cernment can be combined within the framework of belief theory. The basic
probability assignments m1 and m2 of two independent sources can be combined
via the orthogonal sum m1,2 = m1 ⊕m2 which is given by:

m1,2(C) = K−1
∑

A,B:A∩B=C

m1(A) ·m2(B) (3.36)

where K is a scale factor and 1−K is a measure for the conflict between the two
sources. The scale factor K is given by:

K = 1−
∑

A,B:A∩B=∅

m1(A) ·m2(B) =
∑

A,B:A∩B 6=∅

m1(A) ·m2(B). (3.37)

The orthogonal sum m1⊕m2 does only exists if K 6= 0 and the result m1,2 is then
a basic probability assignment. Otherwise the two sources are said to be totally
contradictory.

The operator ⊕ is commutative and associative. Thus the orthogonal sum can
be generalised to combine evidence from multiple sources by sequentially using

3.4. Belief theory 45

3.36. The combination of k sources is defined as:

m1,2,...,k = m1 ⊕m2 ⊕ ...⊕mk =
⊕

i=1,2,...,k

mi. (3.38)

The combined basic probability assignment m1,2,...,k exists if at least two of the k
sources are not totally contradictory. It is then given by

m1,2,...,k(C) = K−1
∑

A1∩...∩Ak=C

k∏
i=1

mi(Ai) (3.39)

where

K = 1−
∑

A1∩...∩Ak=∅

k∏
i=1

mi(Ai) =
∑

A1∩...∩Ak 6=∅

k∏
i=1

mi(Ai). (3.40)

3.4.2 Transferable Belief Model

The transferable belief model [79] is an interpretation of the Dempster-Shafer
theory of evidence.

Within the transferable belief model positive masses can be assigned to the empty
set ∅. The mass function m is then just required to fulfill the following condition:

∑
A⊆Ω

m(A) = 1. (3.41)

The rule for combining evidences from different sources is changed to:

m1,2(C) =
∑

A,B:A∩B=C

m1(A) ·m2(B), ∀C ⊆ Ω (3.42)

entailing unnormalised basic probability assignments [78].

A high value for the mass of the empty set ∅ indicates a high conflict between
the sources.

The possible assignment of positive masses to the impossible event ∅ reflects the
fact that the frame of discernment Ω might not include all possible hypotheses.
This assumption is referred to as open-world-assumption in contrast to the closed-
world-assumption where Ω is assumed to completely describe all possible states
and thus no belief is assigned to the impossible event ∅ and normalisation is
required when combining evidences.

The orthogonal sum is a conjunctive fusion method and is applicable if the sources
to be fused are reliable. If this can not be guaranteed a disjunctive fusion method

46 Chapter 3. Uncertainty

is appropriate. This fusion method is realised by utilising the union operator
instead of the intersection operator:

m1∪2(C) =
∑

A,B:A∪B=C

m1(A) ·m2(B), ∀C ⊆ Ω. (3.43)

For basic probability assignments from k sources the fusion method is given by

m1∪2∪...∪k(C) =
∑

A1∪...∪Ak=C

k∏
i=1

mi(Ai). (3.44)

3.5 Comparison of Theories for Representing Un-

certainty

A major advantage of the fuzzy set theory is the capability of modelling impre-
cise or vague knowledge. However, it is not possible to handle both imprecision
and uncertainty in the same framework. The possibility theory framework pro-
vides means for dealing with uncertainties on imprecise knowledge as it allows for
reasoning on inaccurate knowledge.

Figure 3.1: Typology of the different uncertainty measures [33].

Probability theory and possibility bear resemblance as they are both based on
set theory, but within the framework of possibility theory a pair of dual set
functions, possibility and necessity, is used whereas probability theory only uses
one set function.

3.5.
C
om

parison
of

T
heories

for
R
epresen

tin
g

U
n
certain

ty
47

Probability Possibility Belief Fuzzy Sets

Universe sample space Ω universe of discourse Ω frame of discernment Ω universe of discourse Ω
Distribution p : Ω → [0, 1] π : Ω → [0, 1] - µ : Ω → [0, 1]
Measures probability P : 2Ω →

[0, 1]
possibility Π : 2Ω →
[0, 1], necessity N :
2Ω → [0, 1]

mass m : 2Ω → [0, 1],
belief Bel : 2Ω → [0, 1],
plausibility Pl : 2Ω →
[0, 1]

membership µ : Ω →
[0, 1]

Constraints P (∅) = 0, P (Ω) = 1,
P (A) =

∑
ωi∈A p(ωi)

Π(∅) = 0, N(∅) = 0,
Π(Ω) = 1, N(Ω) = 1,
Π(A) = maxωi∈A(π(ωi))

∑
A⊆Ω m(A) = 1

(closed-world assump-
tion: m(∅) = 0)

−

Monotony A ⊆ B ⇒ P (A) ≤
P (B)

A ⊆ B ⇒ Π(A) ≤
Π(B), A ⊆ B ⇒
N(A) ≤ N(B)

A ⊆ B ⇒ Bel(A) ≤
Bel(B), A ⊆ B ⇒
Pl(A) ≤ Pl(B)

A ⊆ B ⇒ µA(ωi) ≤
µB(ωi),∀ωi ∈ Ω

Union A∪B P (A ∪ B) = P (A) +
P (B)− P (A ∩B)

Π(A ∪ B) =
max(Π(A), Π(B)),
N(A ∪ B) ≥
max(N(A), N(B))

Bel(A ∪B) µA∪B = max(µA, µB) or
µA∪B = µA +µB−µAµB

Intersection
A ∩B

P (A ∩B) = P (A)P (B) N(A ∩ B) =
min(N(A), N(B))

Bel(A ∪B) ≥ Bel(A) +
Bel(B), Pl(A ∪ B) ≤
Pl(A) + Pl(B)

µa∩b(ωi) =
min(µa(ωi), µb(ωi))

Table 3.1: Comparison of the different theories for representing uncertainty.

48
C
hapter

3.
U

n
certain

ty
Probability Possibility Belief Fuzzy Sets

Ignorance p(ωi) = 1
|Ω| ,∀ωi ∈ Ω π(ωi) = 1,∀ωi ∈ Ω m(Ω) = 1, m(A) =

0,∀A ⊂ Ω
µ(ωi) = 0,∀ωi ∈ Ω

Conflict − c = 1− h(π1, π2) c =
∑

A,B:A∩B=∅ m1(A) ·
m2(B)

c = 1− h(µ1, µ2)

Duality P (A) + P (A) = 1 Π(A) + N(A) = 1 Pl(A) + Bel(A) = 1 µA(ωi) + µA(ωi) = 1

Special Ad-
ditivity

P (A) + P (A) = 1 Π(A) + Π(A) ≥ 1,
N(A) + N(A) ≤ 1,
max(Π(A), Π(A)) = 1,
min(N(A), N(A)) = 0

m(A) + m(A) ≤ 1,
Bel(A) + Bel(A) ≤ 1

µA(ωi) + µA(ωi) = 1

Dominance P (A) N(A) ≤ P (A) ≤ Π(A) Bel(A) ≤ P (A) ≤
Pl(A)

−

Conjunctive
Fusion

p(ωi|x1, ..., xk) =
p(ωi)

∏k
j=1 p(xj |ωi)∏k

j=1 p(xj)

πconj(ωi) =
mink

j=1 πj(ωi),∀ωi ∈ Ω
m1,2,...,k(C) =∑

A1∩...∩Ak=C

∏k
i=1 mi(Ai)

µ1,2,...,k(ωi) =
minj=1,2,...,k µj(ωi)

Disjunctive
Fusion

− πdisj(ωi) =
maxk

j=1 πj(ωi),∀ωi ∈ Ω
m1∪2∪...∪k(C) =∑

A1∪...∪Ak=C

∏k
i=1 mi(Ai)

µ1,2,...,k(ωi) =
maxj=1,2,...,k µj(ωi)

Table 3.2: Comparison of the different theories for representing uncertainty.

3.6. Discussion 49

In contrast to the other theories for handling uncertainty facilitates the belief
theory, in particuar the Transferable Belief Model, an open-world assumption,
i.e. the universe of discourse is not assumed to be exhaustive.

Probabilistic product fusion, possibilistic minimum fusion and the orthogonal sum
show all a conjunctive behaviour [6] and are all associative and commutative.

Figure 3.1 relates the different uncertainty measures to each other.

The different concepts of the explicated frameworks for dealing with uncertainty
are contrasted in the tables 3.1 and 3.2.

3.6 Discussion

For the evaluation of hierarchical classifier Dempster-Shafer evidence theory has
been chosen over possibility theory, fuzzy set theory and probability theory as
it provides means for representing evidence for sets of events, for dealing with
uncertainty and ignorance and for combining separate pieces of information or
evidence.

Probability theory does not allow to differentiate between uncertainty and igno-
rance. Both cases are represented in an identical manner. In contrast the belief
theory allows to represent both cases in a different manner. Ignorance is repre-
sented by assigning evidence to the frame of discernment Ω. In case of uncertainty
evidence can be assigned to the individual hypotheses one is in doubt about or to
the set of these hypotheses. Moreover probability theory requires the assignment
of a probability value to each element of the sample space Ω, i.e. the knowledge to
be represented needs to be complete whereas belief theory allows for the represen-
tation of partial knowledge. Furthermore within probability theory a prerequisite
for the fusion of information from different sources is the total reliability of the
sources. Within the belief theory framework the disjunctive fusion rule can be
used to combine not totally reliable sources.

Though comprising methods for combining evidence of different sources, possibil-
ity theory does not facilitate the discrimination of doubt and ignorance. Moreover
possibility theory proceeds on the closed-world assumption. In contrast belief the-
ory facilitates also an open-world assumption.

The classifier hierarchy inherently provides evidence at different levels of abstrac-
tion due to the coarse to fine hierarchical class grouping. In probability theory
there is no straightforward way of assigning evidence to a set of events.

Moreover, not all classifiers within the hierarchy have been trained with all classes.
Thus when presenting a sample x of a certain class c to all classifiers within the
hierarchy some of the classifiers have not been trained with this class and therefore
their response should indicate ignorance, i.e. the sample is an outlier or belongs to

50 Chapter 3. Uncertainty

an unknown class. But this representation of ignorance should be distinguishable
from the representation of uncertainty or doubt. In probability theory both cases
are represented in an identical manner and are thus indistinguishable: One cannot
distinguish between a lack of belief and disbelief, or in other words: belief cannot
be withhold from a proposition without assigning that belief to the negation of
this proposition.

The individual classifiers within the hierarchy each form a separate source of
information providing evidence about the real class c of a sample x. Hence it
is necessary to combine this information in a suitable manner in order to ob-
tain a collective classification result. Belief theory provides means for combining
evidence from different sources in a straightforward way.

Table 3.3 summarises the discussed advantages and drawbacks and compares the
different theories for handling uncertainty with respect to constraints emerging
in the context of hierarchical neural network classifiers. This comparison shows
the suitability of the belief theory for being applied to classifier hierarchies as
it in contrast to the other theories fulfills all requirements and thus justifies the
selection of the belief theory.

Requirement Probability Possibility Belief Fuzzy Sets

Assign belief only to the
level of detail that is jus-
tified

− − + −

Open world assumption − − + −
Different representation
for uncertainty and ig-
norance

− − + −

Conflict − + + +
Combination rule + + + +

Table 3.3: Comparison of the different theories for representing uncertainty with re-
spect to requirements arising when applying the theories in the context of classifier
hierarchies. The table indicates for each theory whether the individual requirements are
facilitated or not.

4 Preprocessing Methods

The preprocessing of the input data of a neural network is an important factor for
the performance of such a network. Preprocessing may involve a transformation
of the input data as well as a reduction of the dimensionality of the input data.
The former is performed to ensure that the input data span similar ranges. The
latter counteracts the curse of dimensionality [4], which is the fact that in a
high-dimensional feature space a vast number of data points is required to cover
the space appropriately. Hence previously mapping high-dimensional data into a
space of lower dimensionality can yield a potential improvement of the network
performance.

4.1 Data Transformation

In order to ensure that the data does not differ significantly with respect to the
individual dimensions of the feature space a linear transformation is performed
which treats the dimensions as independent. The data is normalised to have
zero mean and unit standard deviation. Therefore the mean xi and the variance
σ2

i with respect to the training data set τ are calculated for each dimension
i = 1, 2, ..., d as

xi =
1

M

M∑
µ=1

xµ
i (4.1)

and

σ2
i =

1

M − 1

M∑
µ=1

(xµ
i − xi)

2 (4.2)

where M is the number of instances in the data set and xµ
i is the value of the µth

feature vector in the ith dimension with i = 1, 2, ..., d.

51

52 Chapter 4. Preprocessing Methods

The data is then rescaled using the following transformation

x̃µ
i =

xµ
i − xi

σi

. (4.3)

4.2 Reduction of Dimensionality

A reduction of the dimensionality of the input data entails a loss of informa-
tion. The dimensionality reduction therefore aims at retaining as much relevant
information as possible. The goal is to map the d-dimensional input space to a
d̃-dimensional space with d̃ < d.

The principal component analysis or Karhunen-Loève transformation is a linear
transformation that reduces the dimensionality d of the original feature space
where the reduced feature space comprehends the maximum possible variance of
the original feature space. It represents significant features as linear combinations
of the original features.

In order to be able to perform the principle component analysis the data X =
(xµ

i)i=1,2,...,d
µ=1,2,...,M has to be mean rectified such that for each dimension the mean

value over the M samples equals zero. This is achieved by calculating for each
dimension i = 1, 2, ..., d the mean xi:

xi =
1

M

M∑
µ=1

xµ
i . (4.4)

Afterwards the means are subtracted from the original data:

xµ
i
′ = xµ

i − xi (4.5)

with i = 1, 2, ..., d and µ = 1, 2, ...,M .

Therefore the eigenvectors and the eigenvalues of the covariance matrix of the
mean rectified data X ′ (see equation 4.5) are calculated.

The resulting matrix of the mean rectified data X ′ = (xµ
i
′)i=1,2,...,d

µ=1,2,...,M is used to
calculate the covariance matrix C as follows:

C =
M∑

µ=1

xµ(xµ)T . (4.6)

4.3. Discussion 53

where the individual components ci,j of the covariance matrix are given by

ci,j =
1

M

M∑
µ=1

xµ
i x

µ
j . (4.7)

The covariance matrix C is a symmetric d×d matrix, i.e. ci,j = cj,i. The elements
ci,i on the diagonal of the covariance matrix denote the variance of the data along
the ith dimension.

From the covariance matrix C the corresponding eigenvalues ui and eigenvalues
λi are calculated where ui is the eigenvector belonging to the eigenvalue λi. The
eigenvectors ui are called principal components. The eigenvectors ui belonging
to the largest eigenvalues λi correlate to the dimensions that show the strongest
variance. As the matrix C is symmetric all eigenvalues λi are real-valued and the
eigenvectors ui are pairwise orthogonal.

The eigenvalues and the corresponding eigenvectors are then sorted such that
λ1 ≥ λ2 ≥ ... ≥ ...λi ≥ ... ≥ λd ≥ 0. The corresponding eigenvectors are
sorted accordingly. To yield the intended reduction in dimensionality the data
matrix X ′ is transformed using the d̃ eigenvectors corresponding to the d̃ strongest
eigenvalues by projecting the data vectors xµ′ onto the eigenvectors ui.

4.3 Discussion

Preprocessing may comprise according to requirements miscellaneous operations
of different complexity such as linear transformation of the input data, reduction
of the dimensionality of the input data, expurgating the input data if the data
suffers from outliers, incorrect teacher signals or missing input values, or usage of
prior knowledge. Within the context of this work only the former two methods
were applied.

The linear rescaling yielding similar values of the input data in all dimensions
of the feature space is essential inter alia for nearest-neighbour classifiers as this
avoids that one dimension of the feature space prevails the other dimensions. The
values of the different dimensions of the feature space might considerably differ in
magnitude but this might not reflect the importance of the different features for
the classfication. In case of RBF networks the input normalisation allows for the
usage of a scalar value width parameter σ as the data shows the same variance
in all dimensions.

The reduction of the input dimensionality obviates the sparseness resulting from
too few samples in too high dimensional feature spaces which is a problem par-
ticularly for RBF networks.

54 Chapter 4. Preprocessing Methods

Besides the features used for classification the preprocessing of the data has a
considerable influence on the performance of neural network classifiers. Applying
a reasonable preprocessing transformation to the input data before it is presented
to the neural network is advantageous in most instances and leads to improved
classification performances [5].

5 Evaluation Methods

In order to compare different learning algorithms it is necessary to estimate their
performance. As the performance of learning algorithms shows a certain vari-
ance, results on the basis of a single run of the algorithm are neither reliable nor
meaningful. Moreover is it not sufficient to only evaluate the learning algorithm
on the training data as this results are too optimistic. Thus the usage of a test
data set different from the training data set is necessary for the more realistic
assessment of a learning algorithm. A method accounting for this is the cross-
validation approach. This approach estimates the classification accuracy of the
evaluated learning algorithm. The estimated classification accuracies can than
be compared by means of statistical significance tests which evaluate whether the
results of two learning algorithms differ considerably.

5.1 Cross-Validation

Cross-validation is a common technique for assessing the capability of learning
algorithms when only a limited amount of data is available for evaluation. The
idea behind it is not to use the complete data set for training the algorithm but
to use only a part of the data set for training and the remaining part of the data
set for testing the performance of the algorithm.

To conduct one cross-validation run the data is randomly permutated and divided
into k subsets of equal size where it might not always be possible to split the data
into subsets of exactly the same size. These k subsets are called folds. The
number of folds is naturally limited to 2 ≤ k ≤ M where M is the total number
of samples in the data set. Then k experiments are performed in each of which
one of the k subsets is respectively used as test set and the remaining k−1 subsets
are used as training set. If the permutation and splitting of the data is iterated
more than once this is referred to as repeated cross-validation. One iteration is
called a run. There are r runs. Thus for r-times k-fold cross-validation r × k
experiments are conducted where ai,j is the accuracy of the evaluated algorithm

55

56 Chapter 5. Evaluation Methods

for fold i in run j with 1 ≤ i ≤ k and 1 ≤ j ≤ r. In this experiment all data
except the data in fold i of run j is used to train the algorithm. The data in fold
i of run j is employed for testing.

The r × k accuracies ai,j can then be used to calculate a mean accuracy a =
1
rk

∑k
i=1

∑r
j=1 ai,j. If two algorithms A and B are to be compared each of the r×k

experiments is conducted with both algorithms and the respective accuracies ai,j

and bi,j are gained so that exactly the same training and test data is used to
obtain both ai,j and bi,j. Thus the accuracies are paired and the differences of the
accuracies di,j = ai,j − bi,j can be used as input for paired statistical significance
tests.

Although for one cross-validation run there is no overlap of the k different test
data sets, the data sets used for training overlap considerably as each two training
sets always consist of k − 2 identical folds. Considering different runs, there is
also overlap as well for the training data as for the test data. This violates the
independence assumption most significance tests require.

Depending on the choice for k there are different variants of cross-validation. The
holdout method is the simplest form of cross-validation. It chooses k = 2, which
means that the data set is split into two sets, the training and the test set. The
most costly form of cross-validation is leave-one-out cross-validation with k = M ,
i.e. the number of folds is equal to the number of data points in the data set.
With 2 < k < M the variant is called k-fold cross-validation.

In order to account for potential differences of the class frequencies in the data
set so-called stratified cross-validation is used which considers the relative class
frequencies when splitting the data set into folds such that the relative class
frequencies in each fold are the same as in the complete data set.

5.2 Testing for Significance

Significance tests are used to statistically detect differences or effects on the basis
of observed values. Previously formulated hypotheses are examined where the
null hypothesis H0 assumes no difference or effect and the alternative hypothesis
H1 assumes a difference or an effect.

Significance tests can distinguish an observed result from chance with a low prob-
ability of error. This probability of error is defined by the significance level α and
confines the error probability to reject the null hypothesis although the null hy-
pothesis is correct.

The quality of a statistical test is typically valuated on the basis of type I and
type II errors. A type I error is the erroneous rejection of the null hypothesis,
i.e. detecting a difference when actually no difference exists. The probability of

5.2. Testing for Significance 57

committing a type I error is specified by the significance level α. A type II error
corresponds to the erroneous acceptance of the null hypothesis, i.e. indicating
that there is no difference when actually a difference exists. The probability of
the occurrence of a type II error is denoted by β. There exists an interdependency
between the two types of errors. The reduction of the probability of making one
error increases the probability of the occurrence of the other error. The size of a
statistical test is the probability of a type I error. The power of a statistical test
is defined by the probability of correctly rejecting a false null hypothesis. The
power is defined as 1− β.

Significance tests usually provide a test statistic T by means of which the sta-
tistical significance is assessed. The distribution of the test statistic specifies the
probability that the test statistic takes a certain value depending on the number
of observations and the utilised test procedure. The corresponding probability is
the so-called p-value. This value is used to decide whether the observed differ-
ence is statistically significant or not. The observation is regarded as statistically
significant if the p-value is smaller than the perviously defined significance level
α. The null hypothesis H0 can than be rejected in favour of the alternative hy-
pothesis H1. A small p-value supports the fact that there is statistical evidence
for a difference of unspecified strength.

Statistical significance test can be distinguished into parametric and non-para-
metric tests. Parametric tests, such as the t-test, require the observed values
to follow a particular distribution and thus rely on the estimation of parameters
specifying this distribution. Non-parametric or distribution-free test, such as
the maximum test, the sign test or the signed rank test, make no requirements
concerning the distribution the data follows.

When comparing two learn algorithms A and B by means of statistical signif-
icance tests a common approach is to conduct a r-times k-fold cross-validation
experiment for each algorithm. From the individual classification accuracies ai

and bi n = rk differences di = ai − bi with i = 1, 2, ..., n are calculated. These
difference form the input for the statistical significance tests.

5.2.1 t-Test

The t-test is a parametric significance test requiring the observed values to follow
a normal distribution and to be independent.In the following the pairwise t-test
based on r-times repeated k-fold cross validation is described. An r-times k-fold
cross-validation comprises r runs and k folds.

Each of the two algorithms A and B to be compared are tested using the same
splitting of the data sets based on the r-times k-fold cross validation. The corre-
sponding individual results ai,j and bi,j are pairwise subtracted resulting in n = rk
differences di,j = ai,j − bi,j. On the basis of these distances the mean m and the

58 Chapter 5. Evaluation Methods

variance σ̂2 could be estimated as:

m =
1

kr

k∑
i=1

r∑
j=1

di,j (5.1)

and

σ̂2 =
1

kr − 1

k∑
i=1

r∑
j=1

(di,j −m)2. (5.2)

Under the assumption that the distances di,j are independent the test statistic t
is then given by

t =
m√
1
kr

σ̂2
(5.3)

and follows a t-distribution with df = kr − 1 degrees of freedom.

This test statistic t is then compared against the Student’s t-distribution to de-
termine the corresponding p-value.

5.2.2 Corrected Repeated k-Fold Cross Validation t-Test

The corrected repeated k-fold cross validation t-test [7] is a pairwise t-test based
on r-times repeated k-fold cross validation with a variance correction to compen-
sate the highly violated independence assumption.

As the independence assumption is violated in case of cross-validation experi-
ments and thus the variance is underestimated, the standard t-test is not appli-
cable to these experiments.

The test statistic t̃ is calculated analogously to the t-value of the t-test utilising a
r-times k-fold cross validation. It only differs in an addiional variance correction
resulting in the following calculation of the corrected test statistic t̃:

t̃ =
m√

(1
kr

+ n2

n1
)σ̂2

. (5.4)

Here n1 is the number of samples in the training data set and n2 is the number
of samples in the test data set.

This test statistic t̃ is then used to determine the corresponding p-value according
to a t-distribution df = kr − 1 degrees of freedom.

A suitable choice for the values r and k are: r = 10 and k = 10.

5.2. Testing for Significance 59

5.2.3 Maximum Test

The maximum test [84] is a simple non-parametric test for comparing two paired
data series. The differences are sorted according to their absolute value. The
number of the absolute highest differences which have the same sign determines
the p-value. If two differences have the same absolute value but different signs,
they are sorted so that an existing sequence of identical signs is decreased in
length.

The null hypothesis, which states that the paired differences are symmetrically
distributed around zero, can be rejected at a significance level α = 2−t+1 if the t
absolute highest differences have the same sign.

The maximum test can be used to independently verify the well established t-test
(see section 5.2.1) though being no replacement for the t-test.

5.2.4 Sign Test

The sign test is a non-parametric significance test. This test only considers the
signs of the individual differences. The magnitude of the differences are not taken
into account.

The null hypothesis for the sign test states that the differences of paired obser-
vations on average do not differ from zero or the median of the distribution of
the differences equals zero. It is expected that approximately half of the differ-
ences are smaller than zero, i.e. have a negative sign, and half of the difference
are greater than zero, i.e. have a positive sign. Thus the underlying distribu-
tion of both the positive and the negative differences is the binomial distribution
with success probability p = 1

2
and number of trial n = ñ, where ñ is the num-

ber of non-zero differences as only the positive and the negative differences are
considered. Zero differences are ignored.

The test statistic T is determined as the maximum of the number of positive
differences T+ =

∑
di>0 1 and the number of negative differences T− =

∑
di<0 1:

T := max(T+, T−). (5.5)

The number of considered non-zero differences ñ = T+ + T− can thus be smaller
than the number of total differences n.

The p-value is obtained by determining the probability of observing a value of at
least T under the binomial distribution with p = 1

2
and n = ñ and doubling this

probability.

60 Chapter 5. Evaluation Methods

5.2.5 Wilcoxon Matched Pairs Signed Rank Test

A more powerful test than the sign test is the Wilcoxon signed rank test. It
is a non-parametric alternative to the paired t-test (see section 5.2.1) to test
the difference between paired data. The test checks whether the distribution
underlying the differences of matched pairs of observations from two samples is
symmetric with zero median µ̃d = 0. Thus the null hypothesis H0 states that the
paired differences di emanate from a population with the distribution function
F (d) where F (+d) + F (−d) = 1 or the density f(d) where f(+d) = f(−d). A
rejection of the null hypothesis therefore implies that either the population is not
symmetrical around the median, i.e. the median of the differences does not equal
zero, or the two samples have different distributions.

The test considers the direction of the differences of the value pairs, i.e. the sign
as well as the amount of deviation.

No assumptions about the form of the distribution of the data is required. Thus
the test can be used if the distributional assumption that underlies the paired
t-test is violated.

To perform the test the differences di are sorted regardless of their sign in ascend-
ing order, i.e. the absolute difference values |di| are sorted, and rank numbers
R̃i = rank(|di|) ∈ [1, n] are assigned to the sorted differences where the rank of a
value corresponds to the position of this value in the ordered list of values such
that the rank 1 is assigned to the lowest value and the rank n is assigned to the
highest value. Zero differences di = 0 will be disregarded, i.e. only pairs with
different values will be considered. If any differences are equal their ranks are
averaged. Thus the rank R̃i of the distance di indicates how many distances are
smaller than or equal to the distance di. As zero differences di = 0 are excluded
the number of ranked differences ñ might be smaller than the total number of
differences n ≥ ñ.

The positive and the negative rank numbers are summed separately yielding

T+ =
∑
di>0

R̃i ∈ [0,
ñ(ñ + 1)

2
] (5.6)

and

T− =
∑
di<0

R̃i ∈ [0,
ñ(ñ + 1)

2
] (5.7)

where T+ + T− =
∑ñ

i=1 i = ñ(ñ+1)
2

.

The smaller rank sum is used as test statistic T :

T = min(t+, t−). (5.8)

5.2. Testing for Significance 61

The mean and variance of the test statistic T are ñ(ñ+1)
4

and ñ(ñ+1)(2ñ+1)
24

, re-
spectively. For large sample sizes (approximately ñ > 25) the standard normal

distribution with mean µt = ñ(ñ+1)
4

and variance vart = ñ(ñ+1)(2ñ+1)
24

is an approx-
imation of the test statistic T .

The p-value is determined by calculating the value z̃ and comparing this value
against the standard normal distribution.

z̃ =
|t− ñ(ñ+1)

4
|√

ñ(ñ+1)(2ñ+1
24

(5.9)

5.2.6 Quantile-Quantile Plot

A technique for graphically ascertaining whether two data sets origin from pop-
ulations with identical distributions is the quantile-quantile plot. Therefore the
quantiles of the first data set are plotted against the quantiles of the second data
set with a quantile being a measure which realises a subdivision of a distribution
into equidistant percentage points such that the resulting partitions comprise
equal proportions of the distribution.

Figure 5.1: Examples of quantile-quantile plots. The left plot charts data originating
from a normal distribution whereas the right plot depicts data originating from a non
normal distribution.

The value of a specific quantile, the p-quantile, specifies the value that separates
the lower p · 100 percent of the data points and the upper (1− p) · 100 percent of
the data points, i.e. it gives the point of the distribution below which fall p · 100
percent of the data. If the two data sets follow the same underlying distribution
the qq-plot is approximately linear, i.e. the plotted points approximately yield a
straight line.

Quantile-quantile plots can be used to verify whether the data fulfills the normal-
ity requirement.

62 Chapter 5. Evaluation Methods

5.3 Discussion

Within the scope of this thesis the four significance test described above are used
to statistically evaluate the proposed approach.

The sign test is a simple and rather insensitive significance test. No assumptions
are required for this test, which makes it easy to apply.

The signed rank test is similar to the sign test but shows a much greater sensitiv-
ity. For large number of samples this test shows nearly the same sensitivity as the
t-test. For unknown distributions and small number of samples this test shows
a higher sensitivity than the t-test. Although not assuming normally distributed
data, this test requires a symmetric distribution. Thus it is a more powerful
alternative to the sign test, but it is more stringent.

The t-test is the most sensitive significance test of the tests used within the scope
of this thesis, but it is also the test with the most stringent requirements as it
assumes normally distributed data.

The maximum test is simple significance test which can be used to independently
validate the t-test.

When applying significance tests to classification results yielding from cross-
validation experiments the independence assumption is violated and the normality
requirements cannot be guaranteed. The corrected t-test makes allowance for the
former. The latter can be verified using quantile-quantile plots.

If the requirements for a significance test are not fulfilled completely, which in case
of classification results from cross-validation experiments cannot be guaranteed,
the outcome of the significance test can only be considered as indication.

Part II: Developed Methods

This part describes the developed approach of hier-
archical neural network classifiers and the different
aspects examined within the scope of this thesis.

63

6 Hierarchical Neural Networks

This chapter deals with the different aspects of hierarchical neural network classi-
fiers which form the basic of this thesis. Initially the basic concept of hierarchical
neural networks is described. Afterwards the different stages that are relevant
for hierarchical neural network classifiers are explained. After delineating the
developed strategies for building and training classifier hierarchies, the informa-
tion fusion aspect is dealt with in terms of the different methods deployed in
the classification phase. Another aspect of classifier hierarchies also treated is
the estimation of the classification quality with the main focus of detecting out-
lier. Finally the features and benefits as well as the disadvantages of hierarchical
neural network classifiers in general and the presented aspects in particular are
discussed.

6.1 Basics of Hierarchical Neural Networks

Hierarchical neural networks consist of several simple neural networks that are
combined in a tree or more general in a rooted directed acyclic graph, i.e. the
nodes within the hierarchy represent individual neural networks. In the context
of this thesis hierarchical neural network classifiers were investigated were the
nodes within the hierarchy are clasifiers. Different neural classifiers were used
such as RBF networks, LVQ networks or k-NN classifiers.

The basic idea of hierarchical neural networks is the hierarchical decomposition
of a complex classification problem into several less complex ones. This yields
hierarchical class grouping whereby the decision process is split into multiple steps
exploiting rough to detailed classification. The hierarchy emerges from recursive
partitioning of the original set of classes C into several disjoint subsets Ci until
subsets consisting of single classes result. Ci is the subset of classes to be classified
by node i, where i is a recursively composed index reflecting the path from the
root node to node i. The subset Ci of node i is decomposed into si disjoint subsets
Ci,j, where Ci,j ⊂ Ci, Ci = ∪si−1

j=0 Ci,j and Ci,j ∩ Ci,k = ∅ for j 6= k. The total

65

66 Chapter 6. Hierarchical Neural Networks

set of classes C0 = C is assigned to the root node. Consequently nodes at higher
levels of the hierarchy classify between larger subsets of classes whereas nodes at
the lowest level discriminate between single classes.

Figure 6.1: Example of a hierarchical neural network classifier for the classification
of eight classes A,B, ...,H. Each of the seven nodes 0, 1, 2, ..., 6 within the hierarchy
represents an individual classifier.

This divide-and-conquer strategy yields several simple classifiers that are more
easily manageable, instead of one extensive classifier. These simple classifiers can
be amended much more easily to the decomposed simple classification tasks than
one classifier could be adapted to the original complex classification task. In case
of a binary tree architecture the hierarchy consists of l − 1 internal nodes which
represent a neural classifier and l leaf nodes which represent the classes to be
classified, where l is the number of classes to be classified. If the binary tree is
balanced the hierarchy depth is log2 l. In case of an unbalanced tree the maximal
depth is l−1. Furthermore different feature types Xi are used within the hierarchy,
i.e. the classifiers work on different feature spaces. For each classification task
the feature type that allows for the best discrimination is chosen. An example of
such a hierarchy is shown in figure 6.1.

The proposed approach of hierarchical neural network classifiers comprises three
independent phases:

1. Hierarchy generation

2. Hierarchy training

3. Classification

In the generation phase the structure of the hierarchy, which is defined by the
hierarchical class grouping, is determined and the suitable feature types are se-
lected. In the following training phase the types of classifiers used within the
hierarchy are selected and the classifiers are trained. In the last phase the com-
bined classification result is retrieved by applying a certain fusion strategy.

6.2. Hierarchy Generation 67

This separation of the individual stages allows for a sizeable flexibility. The same
hierarchy generated during the generation phase can e.g. be trained with different
classifier types. Moreover in the classification phase several retrieval strategies can
be applied to the same hierarchy. In the following the three phases are explained
in more detail.

6.2 Hierarchy Generation

The hierarchy is generated by unsupervised k-means clustering [83]. In order to
decompose the set of classes Ci assigned to one node i into si disjoint subsets a
k-means clustering is performed with all data points Xi = {xµ|tµ ∈ Ci} belonging
to the classes under consideration. Depending on the distribution of the classes
across the k-means clusters si disjoint subsets Ci,j are formed. One successor
node j corresponds to each subset. For each successor node j again a k-means
clustering is performed to further decompose the corresponding subset Ci,j. The
k-means clustering is performed for each feature type. The different clusterings
are evaluated and the clusterings which group data according to their class labels
are preferred. Since the k-means algorithm depends on the initialisation of the
clusters, k-means clustering is performed several times per feature type. Out
of these clusterings the best clustering is chosen using a valuation function (see
equation 6.1). This clustering then determines not only the partitioning of the
classes but also the used feature type.

Figure 6.2: Hierarchy generation.

The number of clusters k must be at least the number of successor nodes or
the number of subsets s respectively but can also exceed this number. If the

68 Chapter 6. Hierarchical Neural Networks

number of clusters is higher than the number of successor nodes, several clusters
are grouped together so that the number of groups equals the number of successor
nodes. All possible groupings determined and evaluated.

In the following all equations only refer to clusterings for reasons of simplicity,
i.e. the number of clusters k equals the number of successor nodes s. A valuation
function is used to rate the clusterings or groupings respectively. The valuation
function prefers unambiguous clusterings that group data according to their class
labels. A clustering is regarded as unambiguous if the data of one class are for the
most part assigned to one cluster. Ideally all samples of one class are assigned to
the same cluster. Clusterings where data is uniformly distributed across clusters
notwithstanding their class labels receive low ratings, i.e. it is rewarded if the
data of one class is basically assigned to one cluster and it is penalised if the data
of one class is spread over several clusters. Furthermore clusterings are preferred
which result in balanced hierarchies. This is the case if the sets of classes are
divided into subsets of approximately the same size. Thus clustering that evenly
divide the classes with respect to the number of data points favoured. Thus the
valuation function rewards unambiguity regarding the class affiliation of the data
assigned to a prototype as well as uniform distribution regarding the number of
data points assigned to each prototype.

The valuation function V (p) consists of two terms regulated by a scaling param-
eter λ ∈ [0, 1] where p is a stochastic matrix giving the distribution of the data
points across the different clusters and classes. The first term E(p) calculates the
entropy [69] of the distribution of each class across the different clusters and is a
measure for the pureness of the clusters. This accounts for unambiguous distri-
bution of the data considering the corresponding classes, i.e. it attempts to group
data of the same class into the same cluster. The term E(p) becomes minimal if
it is ensured for all classes that all data belonging to one class is assigned to the
same cluster. It becomes maximal if all data belonging to one class is uniformly
distributed across all clusters. In this term also other homogeneity measures such
as the Gini index [69] could be used instead of the entropy replacing the term
E(p) with G(p) showing the same properties as the term E(p). The second term
D(p) computes the deviation from the uniform distribution. It rewards cluster-
ings where the same number of classes is assigned to each cluster. This term
becomes minimal if the clusters have equal cardinality. This supports the even
division of the classes into subsets. During the hierarchy generation phase clus-
terings that minimise the valuation function V (p) are looked for. The influence
of the respective term is regulated by the scaling parameter λ. Both terms are
normalised so that they return values in the interval [0, 1]. This adjustment of
the scaling parameter is e.g. reasonable if there is a considerable difference in the
number of similar objects best being represented by a non-balanced hierarchy.

6.2. Hierarchy Generation 69

The valuation function V (p) is given by

V (p) = (1− λ)
1

l log2(k)
E(p) + λ

1

l(k − 1)
D(p) → min . (6.1)

The following concepts are necessary for the definition of the terms E(p) and
D(p).

The Voronoi cell [18] defined by cluster j is denoted by:

Rj = {x ∈ X |j = argmini=1,2,...,k‖x− ci‖} (6.2)

where ci is the center of cluster i.

The set of data points that were assigned to cluster j is given by

Cj = Rj ∩X. (6.3)

The set of data points that belong to class i is defined by:

X i = {xµ|µ = 1, 2, ...,M ; tµ = i} ⊆ X. (6.4)

The rate of patterns from class i, that belong to cluster j is given by:

pj
i =

|X i ∩ Zj|
|Xi|

. (6.5)

The two elementary terms the valuation function is composed of are then calcu-
lated as:

E(p) = −
l∑

i=1

k∑
j=1

pj
i log2(p

j
i) (6.6)

and

D(p) =
k∑

j=1

|
l∑

i=1

pj
i −

l

k
|. (6.7)

If the Gini index is used as homogeneity measure the valuation function V (p)
becomes:

V (p) = (1− λ)
1

l(1− 1
k
)
G(p) + λ

1

l(k − 1)
D(p) → min . (6.8)

70 Chapter 6. Hierarchical Neural Networks

The term assessing the pureness of the clusters is then calculated as:

G(p) =
l∑

i=1

(1−
k∑

j=1

(pj
i)

2). (6.9)

The valuation function V (p) uses more or less sub-symbolic criteria for assessing
the different clusterings. Other criteria than the pureness of the clusters, the
decidedness of the class distribution and the uniformness of the distribution of
the different classes could be used which could as well be on a sub-symbolic level,
such as measures for the separateness of the clusters, e.g expressed by means of
the inter-class variance and the intra-class variance and rewarding clusters that
lie clearly apart in the feature space, or on a symbolic level, such as task specific
criteria, taking similarity other than in the feature space into account. The classes
could, e.g. be grouped in a manner suitable for the task at hand according to
functional similarity of the objects to be classified or be arranged in an optimal
way for the code generation such that more frequent classes have shorter codes.

The best clustering, i.e. the one that minimises the valuation function V (p), is
chosen and used for determining the division of the set of classes into subsets.
Moreover this also determines which feature type Xi will be used for the corre-
sponding classifier. So each classifier within the hierarchy can potentially use its
own feature type. To identify which classes will be added to which subset the
distribution of the data across the clusters is considered. The division in subsets
Cj is carried out by maximum detection. The set of classes belonging to subset
Cj is defined as:

Cj = {i ∈ C|j = argmax{qi,1, ..., qi,k}} (6.10)

where qi,j =
|Xi∩Zj |
|Zj | denotes the rate of class i in cluster j. For each class it is

determined to which cluster j∗ the majority of data points belonging to this class
were associated. The class label will then be added to the corresponding subset
Cj∗ .

The decomposition into disjoints subsets of classes does not necessarily have to
be performed utilising unsupervised clustering. Instead of determining clusters,
an alternative approach being rather simple and straightforward is considering
the class centroids xω:

xω =
1

lω

∑
{xµ∈Xi:tµ=ω}

xµ (6.11)

where lω is the number of data points belonging to class ω ∈ Ω.

6.3. Hierarchy Training 71

The two centroids having the greatest distance are identified. The distance to
these two centroids xω

∗ and xω
∗∗ is used to split the classes into two disjoint

subsets by determining for each centroid xω the closest of the two centroids xω
∗

and xω
∗∗.

This simple method does not consider possibly distributed localisations of samples
of one class.

To generate the hierarchy at first the set of all classes is assigned to the root node.
Starting with a clustering on the complete data set the set of classes is divided
into subsets. Each subset is assigned to a successor node of the root node. Now
the decomposition of the subsets is continued until no further decomposition is
possible or until the decomposition does not lead to a new division.

6.3 Hierarchy Training

The hierarchy is trained by separately training the individual classifiers with the
data {xµ ∈ Xi|tµ ∈ Ci} that belong to the subsets of classes assigned to each
classifier. For the training the respective feature type Xi identified during the
hierarchy generation phase is used. In order to be able to train the classifiers
with the si classes corresponding to the class grouping the data will be relabelled
such that all data points of the classes belonging to one subset Ci,j have the same
label j, i.e. t̃µ = j, xµ ∈ Xi, t

µ ∈ Ci,j. The number of input neurons of the
single classifiers is defined by the dimension di of the respective feature type Xi

assigned to the corresponding node i. The number of output nodes equals the
number of successor nodes si. The classifiers are trained using supervised learning
algorithms. The classifiers within the hierarchy can be trained independently, i.e.
all classifiers can be trained in parallel.

Within the hierarchy different types of classifiers can be used. Examples of
classifiers would be Radial Basis Function networks, learning vector quantisa-
tion networks, k-nearest neighbour classifiers, multi-layer perceptrons networks
or support vector machines.

6.4 Classification within the Hierarchy

After the classifiers within the hierarchy have been trained they can be used to
classify samples of which the corresponding class is not known. Therefore the
sample to be classified is presented to the different classifiers within the hierar-
chy that individually provide provide classification results on different levels of
abstraction. There are various ways to fuse these classification results of the in-
dividual classifiers within the hierarchy to one collective result. These strategies

72 Chapter 6. Hierarchical Neural Networks

differ inter alia in complexity, performance and output type. A different number
of classifiers is involved in the fusion process for the different fusion strategies.

The different evaluation strategies all work on the same hierarchy. In the following
the different retrieval strategies are developed in the context of this work are
described.

6.4.1 Evaluate Hierarchy Analogous to Decision Tree

A simple and fast way to obtain the classification result is to evaluate the hier-
archy similar to the retrieval process in decision trees [18] where a path from the
root node of the hierarchy to the leaf node that specifies the resulting class is
determined following the strongest evidence at each node. Starting with the root
node the classification results of the individual classifiers are used to decide which
classifier at the next lower level will be looked at next, i.e. to which successor
node the decision will be delegated. Therefore the respective feature vector of
the object to be classified is presented to the trained classifier. By means of the
classification output the next classifier to categorise the data point is determined,
i.e. the classifier j∗ corresponding to the highest output value o(j∗) is chosen such
that j∗ = argmaxj=1..si

{o(j)}. Classifier i that discriminates between si disjoint
subsets Ci,j decides to which of these subsets Ci,j∗ the presented sample most
likely belongs. As a result the j∗th successor node is the next classifier looked at.
This is successively repeated until a leaf node is reached. Thus a path through the
hierarchy from the root node to an end node is obtained which not only represents
the class of the object but also the subsets of classes to which the object most
likely belongs. Hence the data point is not presented to all classifiers within the
hierarchy and the hierarchical decomposition of the classification problem yields
additional intermediate information.

This evaluation method only considers a subset of the classifiers within the hier-
archy. Figure 6.3 visualises this decision process and shows which classifiers are
involved.

The result of this decision process is only the resulting class as well the information
to which supersets of classes the sample to be classified belongs. No estimation of
the degree of memberships to the other classes of the presented sample is given.

This method features a simple way of combining the results of multiple classifiers.
It yields good classification results in rather short classification time, but a ma-
jor disadvantage is the missing ability to correct misclassifications that occur at
higher levels of the hierarchy. The consideration of only a part of the classifiers
within the hierarchy has on the one hand a positive effect on the computation
time but on the other hand this might result in disregarding potentially relevant
information. Hence it would be beneficial not only to take a single path within
the hierarchy into account but to consider all classifiers of the hierarchy. However,

6.4. Classification within the Hierarchy 73

Figure 6.3: Retrieval of the classification result analogous to decision trees. A path
through the hierarchy is determined leading to the resulting class. The highlighted path
(in dark grey) shows the nodes activated during the classification of a sample that is
classified as class F.

in contrast to a simple classifier the the classifier hierarchy features the usage of
different feature types as well as the availability of class estimations at different
levels of abstraction.

6.4.2 Evaluate End Nodes

Another simple way of evaluating the hierarchy is to take only the outputs of
the classifiers that are end nodes into account. As the hierarchy is generated by
splitting the set of classes into disjoint subsets, each class is only represented by
one leaf node. Thus when considering the end node classifiers for each class ω ∈ Ω
there is one corresponding classifier output z̃ ∈ IRl. The collective classification
result is the class j∗ = argmaxj=1...l{z̃j} corresponding to the highest classifier
output.

Figure 6.4 depicts the retrieval of the classification result considering only the
end nodes. The nodes that are evaluated, i.e. the end nodes, are highlighted.

The result of this fusion strategy is not only the class that the presented sample
most likely belongs to, but also an estimation of how likely the presented sample
belongs to the remaining classes as all end nodes are considered and thus classifier
outputs for all classes are available.

The fact that only part of the classifiers need to be considered which even can
be evaluated in parallel allows for a fast retrieval of the classification result. A
disadvantage of this method is the fact that the end nodes during retrieval are
presented samples of classes they have nt been trained with as the sample to be
classified is presented to all end nodes but each end node has only been trained
with a small subset of classes. Thus in general only one end node has been
trained with samples of the class of the presented sample, whereas all other end

74 Chapter 6. Hierarchical Neural Networks

Figure 6.4: Retrieval of the classification result evaluating the end nodes of the hier-
archy. Only the end nodes are considered when calculating the classification result.

nodes are presented a sample of an unknown class. Unfortunately it cannot be
guaranteed that the classifiers always show low responses when being presented a
sample of an unknown class. These potentially erroneous classifier responses can
superimpose the result of the actually responsible classifier.

6.4.3 Evaluate Hierarchy Utilising a Voting Scheme

Another approach for combining the results of the individual classifiers within
the hierarchy is a majority voting principle. Each classifier within the hierarchy
votes for a class or a set of classes. The voting for sets of classes is equally divided
among the elements of the respective set. The classification result is the class that
gains the most votes.

This voting scheme is similar to the voting principle used to combine the classi-
fication results of pairwise coupled binary classifiers [32].

Figure 6.5 shows the voting fusion scheme. The classifiers involved are high-
lighted.

The result of the fusion is the winning class as well as an estimation of the
probabilities of the presented sample to belong to the individual classes as the
classifiers overall can vote for all classes.

For this approach all classifiers have to be evaluated which however can be per-
formed in parallel. Another severity is the fact that during retrieval many clas-
sifiers are presented samples of classes they have not been trained with. These
classifiers also vote for a class or set of classes. In case the votes of these clas-
sifiers do not diverge sufficiently their votes might possibly outvote the actually
responsible classifiers.

6.4. Classification within the Hierarchy 75

Figure 6.5: Retrieval of the classification result utilising a simple voting scheme. All
classifiers are considered when calculating the classification result.

6.4.4 Evaluate Hierarchy Utilising Dempster-Shafer Evi-
dence Theory

A more complex way of combining the results that involves all classifiers of the
hierarchy is an approach utilising the belief theory. The sample to be classified
is presented to all classifiers within the hierarchy and the individual results are
then combined to one collective result. The strengths of the individual results are
incorporated by this method. The combination is performed utilising Dempster-
Shafer theory of evidence.

Figure 6.6 depicts which classifiers are considered for this decision process.

Figure 6.6: Retrieval of the classification result utilising Dempster-Shafer evidence
theory. All classifiers are considered when calculating the classification result.

In order to apply Dempster-Shafer theory for the evaluation of the classifier hier-
archy it is at first necessary to derive basic probability assignments mi from the
outputs of the individual classifiers within the hierarchy expressing the likelihood
that the presented sample belongs to the corresponding subsets of classes. Not
all neural classifiers produce output that satisfies the conditions for probability
assignments (see equation 3.41). In these cases a transformation of the outputs

76 Chapter 6. Hierarchical Neural Networks

is necessary. The output of fuzzy k-nearest neighbour classifiers Ξj(x) fulfils the
conditions for basic probability assignments as the class memberships satisfy the
conditions Ξj(x) ∈ [0, 1] and

∑si

j=1 Ξj(x) = 1 where si is the number of classes the
classifier discriminates between whereas the output of radial basis function net-
works zj(x) does not necessarily do so. To enforce the fulfillment of the condition
zj(x) ∈ [0, 1] a ramp function

Θ(zj(x)) =

0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

(6.12)

is is applied to the classifier output setting all negative values to zero and all
values greater than 1 to 1. This is justified insofar as typically only a negligible
number of output values violate this condition. In order to account for ignorance
which is represented by low classifier outputs the difference to one is assigned to
Ω. If the sum of the classifier outputs is equal to or greater than one nothing is
assigned to Ω. In the latter case the output is then normalised to sum up to one.
Hence in either case the total evidence assigned by one classifier sums up to one.

These transformations are applied if necessary to the outputs of all classifiers and
then the resulting basic probability assignments mj of all classifiers are combined
using the orthogonal sum without normalisation (equation 3.42).

According to the hierarchy structure each classifier provides evidence for the
specific subsets of Ω between which the classifier discriminates and for Ω itself.
In case of ignorance strong evidence is assigned to Ω.

Furthermore, a discounting technique is used propagating the classifier responses
at higher levels of the hierarchy down: Classifier responses along pathes that at a
higher level contain a classifier that assigned low responses are weakened strongly
whereas pathes below classifiers with strong output are hardly weakened. The
discounting is realised by successively multiplying the classifier responses with
the classifier output of the respective predecessor node. Hence the root node is
not discounted. The discounting accounts for the fact that within the hierarchy
there are a not negligible number of classifier that have to provide results for
samples belonging to classes they have not been trained with. Hence low clas-
sifier responses, as would be desired, cannot be guaranteed in that cases. The
discounting thus weakens insular strong responses, which are likely to be caused
by a classifier that has been presented a sample of an unknown class, whereas
if only one classifier within a specific path shows a low response but all other
classifiers responses are high this leads only to a moderate attenuation. The
discounting is applied directly after the transformation of the classifier outputs
to basic probability assignments. As a multiplication with the discounting fac-
tors di ∈ [0, 1] decreases the basic probability assignments if di < 1, their sum∑si−1

j=0 dimi(Ci,j) is then smaller than one. The difference to one originating from

6.4. Classification within the Hierarchy 77

this is then assigned to Ω: mi(Ω) = 1−
∑si−1

j=0 dimi(Ci,j).

This fusion strategy yield not only the class to which the presented sample most
likely belongs but also an estimate of the class memberships of this sample.

6.4.5 Evaluate Hierarchy Utilising Similarity Preserving
Codes

Another way of retrieving the combined classification results also incorporating
all classifiers within the hierarchy is a method utilising similarity preserving codes
generated from the classifier hierarchy (see chapter 8). This strategy involves all
classifiers as the codes used are generated from the activation of all classifiers
within the hierarchy. This is illustrated in figure 6.7.

Figure 6.7: Retrieval of the classification result utilising similarity preserving codes.
All classifiers are considered when calculating the classification result.

For each sample of the training data set τ a binary code is composed by presenting
the individual samples xµ to the trained hierarchy and encoding the activation of
the neural networks within the hierarchy. The so obtained codes and the corre-
sponding class affiliation are then either stored in a hetero-associative memory or
used to train a simple nearest neighbour classifier. The classification result is then
attained by generating the codes from the samples using the trained hierarchy
and afterwards classifying the code by means of the trained associative memory
or nearest neighbour classifier respectively.

The classification result is then obtained by presenting the sample to be classified
to the trained hierarchy and retrieving the activation vector. The memory matrix
A is then addressed with the so calculated activation vector. The positions of the
ones in the retrieved output vector corresponds to the associated classes. If the
output vector contains more than one element that equals one, the appropriate
class needs to be identified by a suitable selection procedure.

The result of this complex fusion strategy is merely the resulting class. No infor-
mation about the class membership of the sample to be classified is provided.

78 Chapter 6. Hierarchical Neural Networks

This approach is rather complex as it involves the evaluation of all classifiers, the
generation of the code vector as well as the classification of the code vector but
it benefits from the incorporation of the information provided by all classifiers.

6.4.6 Inter-State Decision Templates

A slightly different approach closely related to decision templates directly utilises
the activations of the neural networks instead of binarised codes. This technique
is very similar to the fusion method incorporating the similarity preserving codes.
It also involves all classifiers within the hierarchy. This is sketched in figure 6.8.

Figure 6.8: Retrieval of the classification result utilising inter-state decision templates.
All classifiers are considered when calculating the classification result.

The activation vectors are obtained from the trained hierarchy by presenting the
samples xµ of the training data set τ and by concatenating the activations rµ

i

of the individual classifiers within the hierarchy. These M activation vectors rµ

form the activation matrix R. A memory matrix A that can be used analogously
to an associative memory is then calculated using the pseudo inverse:

A = R+T (6.13)

where T is the matrix containing the classes tµ of the samples xµ as one-out-of-l
code.

The classification result is retrieved analogously to the retrieval of the fusion
strategy that utilises similarity preserving codes.

This complex fusion strategy exploits the entire information available within the
classifier hierarchy at a rather detailed level. The usage of this information makes
the approach rather powerful but also time-consuming as not only all classifiers
are involved in the decision process, but also the activation vector has to be
composed and a downstream classification of the activation vector needs to be
performed.

6.5. Outlier Detection 79

6.5 Outlier Detection

Outliers, i.e. samples of classes the classifier has not been trained with, can
massively deteriorate the classification performance of a classifier. Therefore it is
beneficial to identify such samples and to reject them.

There are different approaches to determine the classification quality for the in-
dividual evaluation strategies which take the strength of the classifier responses
or the combined evidences respectively into consideration.

In the case of RBF networks low classifier outputs, i.e. all outputs are below a
certain threshold θlower indicate that it is not likely that the sample to be classified
belongs to the corresponding class, whereas high classifier outputs support the
option that the sample presumably belongs to the corresponding class. If there
are several outputs of approximately similar strength that differ at most by an
amount of θdist this gives rise to the supposition that the classifier is in doubt,
i.e. no clear decision between the corresponding classes is possible. The decision
is ambiguous and is considered as uncertain. A singular high response being
higher than θupper is an indication for a confident decision. If all classifier outputs
are weak it is likely that the presented sample belongs to neither of the classes
between which the classifier discriminates. The sample is considered to be an
outlier and to belong to an unknown class.

This suggests the usage of three thresholds θlower, θupper and θdist, with θlower ≤
θupper. The threshold θlower is used to identify outliers. If all outputs zi(x

µ)
of a classifier with i = 1, 2, ..., l where l is the number of classes the classifier
discriminates between are lower than θlower the sample xµ is regarded to belong
to an unknown class. If the highest classifier output zi∗(x

µ) exceeds the threshold
θupper and the distance di∗,i∗∗(x

µ) = zi∗(x
µ)−zi∗∗(x

µ) to the second highest output
zi∗∗(x

µ) is greater than θdist the decision is reckoned an unambiguous decision.
Otherwise the decision is regarded as uncertain.

These thresholds can be determined by evaluating the classifier outputs on the
training data set τ . The strength of the winner outputs zi∗(x

µ) for the correctly
classified samples are looked at and the threshold θupper is set to the lowest of
these values: θupper := minµ=1,2,...,M zi∗(x

µ). In order to account for outliers the
threshold θupper can also be determined as p-quantile, where p has to be chosen
appropriately. The threshold θdist is determined analogously: The distances di∗,i∗∗

between the highest and the second highest output for the correctly classified
samples are evaluated and the threshold θdist is set to the minimal value θdist =
minµ=1,2,...,M di∗,i∗∗(x

µ). Here the usage of the p-quantile might be advisable as
well. The threshold θlower is calculated by examining the strength of the winner
outputs zi∗(x

µ) for the incorrectly classified samples if there are any. Otherwise
the threshold θlower is set to an arbitrary value between zero and θupper, e.g.

θlower = θupper

2
.

80 Chapter 6. Hierarchical Neural Networks

When using the decision-tree like strategy to retrieve the combined classification
result in a classifier hierarchy the individual classification qualities of the involved
classifiers are taken into account. If the decisions of all considered classifiers
are unambiguous the overall decision is also considered as unambiguous. If all
involved classifiers indicate that the sample belongs to an unknown class, the
presented sample is regarded as an outlier. Otherwise the decision is considered
as uncertain.

The belief theory framework as utilised within the scope of this thesis offers a
straightforward way for estimating the classification quality. The evidence as-
signed to the impossible event ∅ and to the frame of discernment Ω give indi-
cations for the quality of the classification result. The evidence m(∅) assigned
to the empty set ∅ is a measure for the conflict between the different sources of
information. If the information to be combined is inconsistent a large part of the
evidence will be assigned to the empty set ∅. The evidence m(Ω) dedicated to
the frame of discernment Ω represents ignorance as this is the information that
cannot further be subdivided onto the subsets of Ω.

6.6 Discussion

6.6.1 Features and Benefits of Hierarchical Networks

The hierarchical approach makes intermediate classification results available. If
only intermediate results are of interest it is not necessary to evaluate the complete
path. In order to solve a task it might be sufficient to know whether the object to
be recognised belongs to a set of classes and the knowledge of the specific category
of the object might not add any value. If the task for example is to grasp a cup,
it is not necessary to distinguish between red and green cups. Moreover, when
looking for a specific object it might in some cases not be necessary to retrieve
the final classification result if a decision at a higher level of the hierarchy already
excludes this object.

The hierarchy also facilitates a link between symbolic information and sub-sym-
bolic information processing. The classification itself is performed using feature
vectors which represent sub-symbolic information, whereas symbolic knowledge
can be provided concomitantly via the information about the affiliation to certain
subsets of classes. The usage of neural networks allows the representation of
uncertainty of the membership to these classes since the original output of the
neurons is not discrete but continuous.

Moreover similarity preserving sparse binary codes can easily be generated from
the neural hierarchy. Since the hierarchy is generated using features which are
based on the appearance of the objects such as orientation or colour information

6.6. Discussion 81

it primarily reflects visual similarity. Thus it allows the generation of a sparse
similarity preserving representation of the objects. A straightforward approach is
the usage of binary vectors of length corresponding to the total number of neurons
in the output layer of all networks in the hierarchy. The code is created identifying
the strongest activated output neurons for each node. The corresponding elements
of the code vector are then set to 1, the remaining elements are set to 0. These
properties are extremely useful in the field of neuro-symbolic integration [10]
[63] [53]. For the limited task of object localisation and classification a similarity
preserving code may not be relevant, but when integrating the object classification
system into an overall cortical model realised by associative memories (like e.g.
in [41] [23]) this is an important aspect.

6.6.2 Comparison of Hierarchy Evaluation Methods

The evaluation of the classifier hierarchy by means of Dempster-Shafer evidence
theory as well as the fusion strategy utilising similarity preserving codes and
the inter-state decision template approach yields improved classification results
compared to other evaluation methods. When compared directly the evidence-
theoretic approach outperformed the decision tree like approach in all tested
cases.

The evidence-theoretic approach and the inter-state decision template approach
do not require further adjustment of parameters which makes them easily appli-
cable, whereas in order to achieve good classification results when applying the
fusion strategy utilising similarity preserving codes it is necessary to adapt certain
parameters, such as the learning strategy for the associative memory, the coding
strategy and the sparseness of the generated codes, to the given problem. If the
parameters are chosen unfortunately the approach might yield poor classification
results.

With respect to computation time the Dempster-Shafer alternative, the fusion
strategy utilising silimarity preserving codes and the inter-state decision template
method are the most expensive as all classifiers within the hierarchy are used and
additional calculations for transforming the classifier outputs and combining the
individual classification results are needed. For the decision-tree-like method and
the end node method only part of the classifiers are evaluated. For the voting
approach all classifiers have to be evaluated, but no time consuming calculations
need to be performed thereafter.

Thus in time critical applications an efficient approach would be to first use the
simple and faster decision-tree-like method that already yields good classification
results to classify the objects in question. If this method does not yield unam-
biguous results, the more time consuming methods such as the evidence-theoretic
approach, the inter-state decision templates or the fusion strategy based on gen-

82 Chapter 6. Hierarchical Neural Networks

erated codes should be used. If time is no critical factor, the usage of the more
exhaustive approaches is justified and recommended.

Since the individual classifiers within the hierarchy can be evaluated indepen-
dently of each other, it would be possible to evaluated all classifiers in parallel.
Thus the difference in time on multi-processor machines is solely determined by
the additional calculation required to combine the classifier outputs. Thus if all
classifiers are evaluated in parallel the time aspect becomes less significant.

Figure 6.9: Comparison of the different fusion strategies with regards to complexity
and classification power. The strategies evaluated were the Dempster-Shafer method
(DS), the decision tree method (DT), the voting scheme method (VS), the end node
method (EN), the retrieval strategy utilising similarity preserving codes and associative
memories (CA), the retrieval strategy utilising similarity preserving codes and non-
hierarchical nearest-neighbour classifiers (CN) and the inter-state decision template
method (IS).

When not using the decision tree approach the advantage of the availability of in-
termediate classification outputs and the resulting savings of computation time do
no longer apply as all classifiers within the hierarchy or all end nodes respectively
need to be evaluated. However, the Dempster-Shafer approach provides not only
the resulting class but also a measure how likely the presented samples belongs
to the specific classes. The voting scheme method and the end node evaluation

6.6. Discussion 83

approach also provide measures for all classes. The inter-state decision template
approach and the approach utilising similarity preserving codes only provide the
resulting class and if any the alternatives that are also likely.

A major drawback of the decision-tree-like evaluation method is the fact that
there is no possibility to later on correct misclassifications that occur at higher
levels of the hierarchy. As the evidence based approach considers all classifiers
within the hierarchy a misclassification at higher levels of the hierarchy can be
compensated for if the decisions made by the classifiers at the lower levels are
correct.

The evidence theoretic approach can only compensate misclassifications at higher
levels of the hierarchy. If the misclassification takes place at the responsible leaf
node, this wrong decision cannot be corrected any more. The evidence theoretic
approach can also not compensate for misclassifications where the majority of the
classifiers supports the wrong decision.

In figure 6.9 the different retrieval strategies developed within the context of
this work are assess with respect to classification performance and computational
complexity.

7 Adaptive Incremental Learning
of Novel Classes

Within the context of this thesis methods for incrementally learning new classes
have been developed. This chapter first sketches the basic principles when incre-
mentally extending classifier hierarchies. Afterwards the different strategies for
effectively adding new classes to the hierarchy are presented. Another aspect of
incremental learning dealt with is the incremental adaption of RBF networks and
the retraining of incrementally learnt hierarchies in order to improve the classi-
fication performance. This chapter concludes with a discussion of the developed
adaptive incremental learning approach.

7.1 Incremental Learning of New Classes

An important aspect of object recognition systems that are deployed in non-trivial
real-world environments which are subject to numerous changes is the ability of
the system to adapt to new situations. Thus the ability to incrementally learn
new classes during run-time is an essential skill for such systems.

Requirements for the incremental learning are on the one hand the attainment of
a sufficient classification quality for the newly learnt classes while not negatively
affecting the classification quality of the previously learnt classes and on the other
hand fast training times.

In the following an approach is proposed in which the incremental learning of new
objects is performed in two stages. In the first stage fast but less sophisticated
methods are used to obtain initial results, i.e. the novel objects are learnt but
the recognition rate might be weak. In this first stage the recognition rate can
be improved by using a similar method to retrain the new object with additional
data. In a second stage more complex algorithms are used to adapt the system
and to further improve the classification results.

85

86 Chapter 7. Adaptive Incremental Learning of Novel Classes

For the incremental learning of a novel object N data samples S̃ := {(xν , c̃), ν =
1, 2, ..., N} of the new class c̃ /∈ C are needed, where C is the set of classes known
so far and the number of samples N available for the new class c̃ is considerably
lower than the number of samples used for learning the already known classes C.

Before learning new objects it is necessary to identify whether the presented object
is already known or whether it is in fact a new object. This is accomplished by
presenting the new data xν to the trained classifier and taking the strength of
the classifier response into account. Thereby a strong response is considered as
an unambiguous decision and weak responses indicate a dubious decision which
could be evoked by unknown classes or if the object to classify bears resemblance
to more than one class. The thresholds for this are derived from the classifier
responses when testing the known data. If a significant majority of the new data
is unambiguously classified as a certain class c it is assumed that the object is
already known and belongs to class c, hence nothing is learnt. Otherwise the
object is regarded as a hitherto unknown object. If an object is identified as
unfamiliar it is learnt by fitting it into the hierarchy and if necessary retraining
the affected nodes.

Within the scope of this thesis two different methods for fitting the new classes
into the hierarchy were developed. These methods are presented in the following
two sections.

7.2 Incremental Learning of New Classes by

Adding New Leaves

When learning new classes by adding leaves the new class c̃ /∈ C associated with
the unknown object is inserted into the hierarchy as a new leaf. The position
of the new leaf is determined by classifying all new data xν and evaluating the
corresponding paths through the hierarchy. The leaf will be inserted where the
paths start to diverge. As complete identicalness for all data cannot be presumed
even at the root node since the network has not been trained with this data a
certain variance needs to be considered. Otherwise the new leaf would in most
instances be added at the root node. Thus the common path is successively
determined similar to retrieving the classification result. Starting with the root
node all new samples are presented to the corresponding classifier. Depending
on the classification results either the next node in the path is determined or the
search is stopped and the new class is added as a new leaf at this node.

If all new samples xν are assigned to one successor node j by classifier i node
i is added to the common path without retraining and classifier j is the next
classifier. If the classification result of one classifier is not completely consistent,
i.e. not all new samples but a significant majority of the data points were assigned

7.2. Incremental Learning of New Classes by Adding New Leaves 87

Figure 7.1: Identification of the common path which all new samples take through
the hierarchy. All new samples of the unfamiliar object are presented to the hierarchy.
Their pathes through the hierarchy are compared and the least common path starting
with the root node is determined.

to the same successor node j, this classifier is retrained using the samples of the
known objects S or in case of large training data sets only a subset of S as well
as the new samples S̃ and node i is then added to the common path and the
classification results for this node are obtained. If there is no clear decision, i.e.
no significant majority of the samples is assigned to the same successor node, or
if an end node is reached, the new class c̃ is inserted as an additional leaf of this
node and the node is afterwards retrained.

The identification of the common path is illustrated in fugure 7.1. Figure 7.2
depicts how a new class is inserted into the hierarchy by means of the proposed
incremental learning approach at the end of the so identified common path.

Figure 7.2: Example of the incremental learning of a new class I by adding a leaf.
At first the position where to insert the new class is determined. Then the new class is
added as a new leaf and the affected nodes are retrained. Here the new class is added to
node 4. The classifiers 0 and 1 are retrained with the samples of the additional class I
and the samples used for previous training. One additional node is added to the output
layer of classifier 4 and the classifier is then retrained.

This incremental learning approach can also be used for non-hierarchical neural
networks. However, here it is not necessary to determine the position were to
insert the new leaf as non-hierarchical networks can be regarded as hierarchical
networks consisting only of one node, but a retraining of the complete network
takes place whereas only parts of the hierarchical network is amended.

88 Chapter 7. Adaptive Incremental Learning of Novel Classes

This approach is a fast method for adding new clsses to existing classifier hierar-
ches. Nevertheless this method does not further expand the hierarchy structure,
i.e. only leaves are added to the existing hierarchy structure and the hierarchy
depth is not increased.

7.3 Incremental Learning of New Classes by

Adding New Nodes

An alternative approach for adding new classes to the hierarchy more resembling
the hierarchy generation process is not to simply add the new classes as new
leaf, but to add new nodes to the hierarchy by utilising unsupervised k-means
clustering. At first the common path and the nodes on this path that need to be
retrained are determined as described in section 7.2. Instead of adding a new leaf
the part of the hierarchy emerging from the last common node is reconstructed
analogue to the hierarchy generation (see section 6.2). This is depicted in figure
7.3.

Figure 7.3: Example of the incremental learning of a new class I by adding new
nodes. At first the position where to insert the new class is determined by identifying
the common path which all new samples take through the hierarchy. Then the new class
groupings are calculated by means of unsupervised k-means clustering, new nodes are
added accordingly and the affected nodes are retrained. Node 4 is rebuilt and a new
node 7 is inserted. The classifiers 0 and 1 are retrained.

This alternative approach is more time consuming than the previous approach,
but further adapts the hierarchy structure as new nodes are generated. This
allows for an incremental building of the hierarchy.

7.4. Incremental Training of Radial Basis Function Networks 89

7.4 Incremental Training of Radial Basis Func-

tion Networks

The retraining or incremental training of the classifiers is conducted by adding
a new neuron to the hidden layer and then retraining the output weights with
the joint sample set of old and new samples Ŝ = S ∪ S̃. The centre ck+1 of the
new prototype is determined by the mean of all new samples: ck+1 := 1

N

∑N
ν=1 xν

(here k is the number of prototypes of the RBF classifier before learning). The
width σk+1 of the corresponding gaussian function is set to the mean distance
of the new samples to the new centre: σk+1 := 1

N

∑N
ν=1 xν − ck+1, and the new

output weights are learnt by calculating the pseudo-inverse [64], which is a fast
method already yielding good classification results.

The incremental training of the classifiers by adding a single prototype works
well for data not spread widely. In order to account for scattered data the usage
of more prototypes could yield better results. Hence two other ways of rapidly
adding initial prototypes have been exploited, namely using all new samples as
prototypes and performing a k-means clustering with k = N/2 clusters where N
is the number of new samples. For each classifier to be retrained it must then
be decided which method to use. Initially the method of adding one prototype
is used. If optimal results, i.e. all samples are classified correctly, are achieved
with this method, nothing more is done. Otherwise the k-means method and
the method of adding all samples as prototypes are also performed and the one
achieving the best classification results is chosen. To evaluate this the mean
classification error per class

MCEC(Ŝ) =
1

|C|+ 1

∑
i∈C∪c̃

1

|{xµ ∈ Ŝ : tµ = i}|

∑
{xµ∈Ŝ:tµ=i,K(xµ)=i}

1 (7.1)

is calculated.

The incremental training of the RBF networks is used when adjusting the nodes
during the incremental learning, but it is also used when simply retraining an
already learnt class.

7.5 Retraining

Within the context of this work two strategies for further improving the classifica-
tion performance of incrementally trained hierarchical neural network classifiers
have been proposed. The first method is a fast online retraining of the hierarchy
using additional samples that takes place during run-time and the second method

90 Chapter 7. Adaptive Incremental Learning of Novel Classes

is a more extensive offline approach utilising sophisticated learning schemes and
is applied after run-time.

A mechanism similar to the incremental learning approach is applied when re-
training already learnt classes utilising additional training samples. The only
differences are that no additional leaf or node is added and that the path through
the hierarchy of the new class is already known. The single classifiers on this path
are retrained if there are any incorrect or ambiguous decisions. This retraining
can be used in order to further improve the classification results of the new classes
learnt online that are only represented by few samples.

Scenarios for retraining an already learnt class could be when a class is only
represented by few samples or the classification performance for this class is not
satisfactory. The classification rate of novel classes is likely to be lower than the
classification rate for the previously learnt classes. Thus a retraining of all affected
nodes can yield improved classification results once sufficient additional samples
for the novel class are available. Another reason could be that a new instance of
a known class with noticeably different characteristics has to be learnt.

In order to improve the classification results a more elaborate and more time-
consuming learning method can be applied to the incrementally learnt hierarchies
after the first training took place as described above. This online learning phase
therefore is followed by an offline learning phase where more sophisticated learning
algorithms such as three phase learning (see section 2.4.4.3.3) are used which will
further improve the classification performance. All nodes to which the novel
classes have been assigned are newly trained using elaborate learning schemes.
As these algorithms are very time consuming it might not be advisable to apply
them during run time.

7.6 Discussion

As a consequence of the hierarchy composition when adding new classes to an
existing hierarchy only parts of the hierarchy need to be amended while the rest
remains unchanged. This makes classifier hierarchies applicative for adaptive
incremental learning.

The adaptive incremental learning approach is a fast method for soundly learning
new classes during run-time. The usage of fast training methods provides for rapid
learning of the new classes which meets the requirements of a real-world robotic
application. The fact that only parts of the hierarchy have to be adapted also
adds to this.

The two different strategies for adding new classes to existing classifier hierarchies
developed in the context of this thesis show different complexity. If only a limited
number of new objects have to be learnt and if time is a critical factor, adding the

7.6. Discussion 91

new classes as leaves would be the preferred method. In longer intermissions the
hierarchy could then be retrained or even restructured in order to further improve
the classification performance. If for the scenario at hand several classes have to
be learnt and time is a non-critic factor, adding the novel classes by adding new
nodes would be the preferred method.

A drawback of the usage of simple but fast training algorithm is the lower classifi-
cation accuracy resulting from this. A lower classification performance is also due
to the fact that not all information is available when constructing the hierarchy
but is only gradually available. This only allows for a suboptimal generation of
the hierarchy. However these drawbacks can be compensated for by retraining
or even rebuilding the hierarchy in an intermission phase. The approach never-
theless facilitates fast learning of novel objects while still being able to recognise
previously learnt objects.

8 Distributed Similarity
Preserving Sparse Binary Codes

The problem of finding meaningful representations is an important question in
the field of artificial neural networks. A special aspect of this problem is the
conversion of non-binary data samples into sparse binary codes such that existing
similarities between data samples are reflected in the generated codes. These
similarity preserving sparse codes are of particular interest when dealing with
associative memories. In the following different ways of generating such codes
from hierarchical neural network classifiers are presented.

8.1 Generation of Code Vectors

When generating codes from artificial neural networks a straightforward approach
is to use the neural activation of the different layers. In case of radial basis
function networks the activations of the hidden layer and the activation of the
output layer come into question. The number of neurons in the hidden layer
is defined by the problem complexity and can be varied whereas the number
of output neurons is determined by the number of classes of the classification
problem to be solved and it cannot be chosen at liberty. Moreover the number
of hidden neurons is usually notably larger than the number of output neurons.
The activation of the output neurons is information at a more abstract level and
is rather symbolic. The activation of the hidden neurons is closer to the data
level and thus represents rather sub-symbolic information.

The characteristic of radial basis functions to respond strongly to input similar
to the learnt input and with decreasing strength in case of increasing distance of
the presented input to the learnt in feature space the usage of RBF classifiers is
suggesting when attempting to represent similarities in the feature space. In [19]
[20] an ensemble of RBF classifiers has been successfully used for categorising
objects according to visual similarity. In the scope of this appearance-based
approach the individual classifiers were each trained to recognise one class. The

93

94 Chapter 8. Distributed Similarity Preserving Sparse Binary Codes

combined output of the classifiers was found to encode similarity.

Figure 8.1: Codes from classifier hierarchies can either be generated from the activa-
tion of the hidden layer of the individual classifiers (left) or from the activation of the
output layer (right). Next to each classifier the activation of the considered layer is de-
picted as bar chart. Below the hierarchy the emerging vector containing all activations
is shown. This vector forms the basis for the subsequent calculation of the code.

The sample to be classified is presented to all classifiers within the hierarchy
and their neural activations, either the output activation or the activation of the
hidden layer, are then concatenated to form the code vector. The concatena-
tion is carried out level-wise starting with the root node. Figure 8.1 depicts the
generation of codes from the hidden and the output layer activation respectively.

There are diverse ways of controlling the sparseness of the generated codes. The
strategies used in the scope of this work are defining the number or the percentage
of active neurons or using a threshold. The different approaches for impacting the
sparseness are equivalent and can be converted into each other. The choice of the
technique for controlling the sparseness therefore only depends on the constraints
of the given problem.

If the sparseness is controlled by defining the number 1 ≤ a ≤ t of active neurons
the a strongest activations of the concatenated activation vector are kept and
all other activations are set to zero. This way of controlling the sparseness of
the codes is shown in figure 8.2. The number of active neurons can also be
defined as a proportion p ∈ [0, 1] of the total number of activations t. From this
percentage the corresponding number of active neurons a = bt · pc can easily be
calculated. A different way of manipulating the sparseness of the code vector is
the usage of a threshold θ. All activations that are smaller than the threshold are
set to zero. The activations equal to or greater then the threshold are retained.
Figure 8.3 illustrates this. The predefined numbers, percentages or thresholds
can used either globally referring to the complete hierarchy or locally referring to
the individual levels or to the single classifiers.

In order to extenuate the abruptness of the suppression of the weaker activations
activations that are only a predefined percentage of the weakest so far considered

8.1. Generation of Code Vectors 95

Figure 8.2: Controlling the sparseness of codes generated from classifier hierarchies
by defining the number of the strongest activations to be considered. The strongest
activations are numbered in descending order according to their strength. This strategy
can be applied to both the activation of the hidden layers (left) and the activation of the
output layer (right).

Figure 8.3: Controlling the sparseness of codes generated from classifier hierarchies
by applying a threshold. This threshold is marked in the bar charts as horizontal line.
This strategy can be applied to both the activation of the hidden layers (left) and the
activation of the output layer (right).

96 Chapter 8. Distributed Similarity Preserving Sparse Binary Codes

activation lower are also considered. If there is a large distance between the weak-
est of the considered activations and the next lowest activation no modification
is caused, whereas if there are activations approximately as strong as the weakest
activation still retained it would be unnatural to suppress these activations.

Figure 8.4: Generating codes considering the classification path. The classifiers that
do not belong to the classification path are greyed out as their activations do not con-
tribute to the code generation.

In order to attach more importance to the classification result only the activations
of the nodes within the decision path that emerges when classifying the sample
utilising the decision-tree retrieval strategy can be considered. The activations of
all other nodes are set to zero. This is depicted in figure 8.4. From this coding
scheme a simple strategy for generating a code vector can be derived, which
directly encodes the classification result analogous to the decision tree retrieval
strategy (see section 6.4.1). For each classifier along the classification path the
output neuron activated strongest is retained. Figure 8.5 illustrates this.

Figure 8.5: Generating codes by directly encoding the classification path. For each
classifier in the classification path the strongest output activation is considered.

Another way of including the actual classification result in the generated code is
to add l additional elements to the code vector, where l is the total number of

8.1. Generation of Code Vectors 97

classes. These additional l elements are used to encode the resulting class l∗ by
means of a one-out-of-l coding scheme, i.e. all elements are set to zero except for
the l∗st element which is set to one. This strategy is shown in figure 8.6.

Figure 8.6: Generating codes by inclusion of the classification result.

If the classifiers provide additional information about the quality of the respective
classification result this quality can also be encoded by adding two additional
elements to the activation vector of each classifier. The classification quality is
expressed by one of three states. The first state is related to the case if a clear
decision for exactly one class with negligible uncertainty can be made. In the
second case no clear decision in favour of one class can be made but several
classes seem to be qualified. Thus the classifier is in doubt. The third state is
assigned if no decision for any of the given classes can be made, i.e. none of the
classes seems to be qualified. The sample to be classified is then likely to be an
outlier and to belong to a different class. The two additional vector elements
represent the doubt and the outlier state respectively. They are set to one if the
classifier decision is dubious or it reveals nescience respectively and they are set
to zero otherwise.

The different ways of generating the codes, such as using the activation of the
hidden layer or the output layer, considering only nodes along the classification
path or including the classification result or quality, and controlling the sparseness
of the codes, such as using thresholds or defining the number of ones or the
percentage of ones in the binary code either globally or locally, can be combined
quite arbitrarily.

In a final step the codes can be binarised, i.e. the codes are transformed from IRt

to {0, 1}t. This is achieved by setting all values greater than zero to one. The
other values are set to zero. But if applicable the codes can also be used in their
continuous form.

98 Chapter 8. Distributed Similarity Preserving Sparse Binary Codes

8.2 Discussion

There are various ways of generating meaningful codes from classifier hierarchies.
Within the scope of this research a number of straightforward generating strate-
gies have been developed. The different methods can be chosen according to the
task they are needed for.

As the hierarchy is built exploiting similarity regarding the used features the
codes generated from the hierarchy are similarity preserving.

When only the classification result is of interest the generation of codes from the
hierarchy lacks motivation, but when e.g. the classification is embedded in a su-
perordinated cortical model that is realised by means of associative memories the
necessity of the usage of codes becomes obvious (see [41] [23]). These codes are
then a suitable representation for subsequent processing with associative memo-
ries.

Part III: Application to 3D Object
Recognition and Evaluation

In this part the functionality and the general appli-
cability of the proposed approach is demonstrated by
means of statistical experiments and by presenting
different domains of applications.

99

9 Applications

The suitability and universality of the approach developed within the scope of this
thesis could be shown in several classification experiments with different neural
classifiers and data sets from various domains as well by successfully implementing
the proposed approach on a robot and the effective testing of the implementation
in a realistic scenario.

9.1 Visual Object Recognition

A special classification problem is visual 3D object recognition. The appearance
of three-dimensional objects shows great variance depending on the pose of the
object with respect to the beholder making the recognition of three-dimensional
objects a complex endeavour. There are two diverging types of approaches to
3D object recognition: primitive-based (also called model- or structural-based)
approaches and view-based approaches. The principle behind the primitive-based
approaches is the decomposition of objects into volumetric components resulting
in a three-dimensional viewpoint invariant representation of the object. These
approaches are object centred. View-based approaches are viewpoint dependent.
The three-dimensional objects are represented by a collection of two-dimensional
characteristic views showing the object under different poses and illumination
conditions. From these views abstract features are acquired. These approaches
describe the object in a viewer centred manner by view-specific two-dimensional
representations.

View-based recognition of three-dimensional objects is typically performed on
information gathered from a single two-dimensional image. Therefore a set of
features is extracted from this image and is compared against object models
learnt by neural networks. Within the scope of this work the recognition process

101

102 Chapter 9. Applications

is performed in the following three stages:

1. Object localisation

2. Feature extraction

3. Object classification

As the camera images do neither solely contain the object of interest but also
other objects as well as background, nor is assured that the object of interest is
always located in the centre of the image, it is at first necessary to localise the
potential objects within the image. Thus initially a figure-ground segmentation
is performed which determines regions of interest within the image potentially
containing objects to be classified. A region of interest is the smallest rectangle
containing such an object of interest. This upstream stage of localising the objects
reduces the computational effort of the subsequent stages since thenceforward
all calculations are conducted on a part of the complete image. Moreover it
attains position and scale independence of the recognition process. As the figure-
ground segmentation is not in the main focus of this thesis only simple not very
sophisticated algorithms, such as thresholding or identifying regions of similar
predefined colours, are used to determine the regions of interest.

Figure 9.1: Three-stage process for object recognition.

Afterwards the different characteristic feature vectors such as orientation or colour
histograms describing the three-dimensional objects are extracted from these re-
gions of interest. For each region of interest all utilised feature types are extracted.
The different feature types used within the scope of this thesis are explained in
more detail in chapter 11. Using representative and meaningful features instead
of the raw image data is reasonable insofar as the image data contains a great
many of redundant and dispensable information. Moreover the usage of feature
vectors yield a considerable reduction of the dimensionality as instead of using
all pixels of the camera image condensed information is utilised.

In a final stage the extracted feature vectors are presented to a classifier trained
to recognise the contemplable objects. The result of this stage are the predicted
classes of the localised objects.

The individual stages and the interstage results, such as regions of interests,
feature vectors and classification results, as well as their interrelationships are
depicted in figure 9.1.

9.2. MirrorBot Project 103

9.2 MirrorBot Project

The approach of hierarchical neural network classifiers developed in the scope of
this thesis has successfully been implemented on a robot, an ActivMedia People-
Bot. This implementation was part of the MirrorBot project of the European
Union (EU-IST-FET). In the context of the MirrorBot project a scenario has
been defined where the robot has to perform object manipulating tasks such as
grasping or pointing to certain objects. The contemplable objects lie on a table.
The robot is situated near to the table and has to respond to spoken commands
concerning these objects. The scenario is depicted in figure 9.2. The commands
are formulated utilising a simple language with a restricted vocabulary and an
elementary grammar. An example of such a command is ”Bot show orange”.

Figure 9.2: MirrorBot test scenario. In the test scenario the robot is situated in front
of a table. Different objects are lying on this table. The robot has to grasp or point to
specified objects.

In order to be able to fulfill the requested tasks the robot needs to be capable
of recognising a certain set of objects. The fruits data set described in section
10.1.1 was generated in the scope of this project. It was recorded under conditions
simulating the described scenario: Images of fruits placed on a table were taken
from a robot’s point of view. The data set depicts a large part of the objects used
in the scenario. The object recognition is performed by means of hierarchical

104 Chapter 9. Applications

neural network classifiers developed in this work which were trained to classify
seven different fruits. For the training features extracted from images of the
fruits were used. The features that proved most suitable for the recognition
under challenging constraints of real-world robotic applications were orientation
and colour histograms.

Figure 9.3: MirrorBot control GUI.

The conditions are characterised by changing lighting conditions, massively alter-
nating cast shadows, strongly varying object positions, views and size, occlusion,
only partially visible objects due to the limited visual field, cluttered backgrounds
and numerous unfamiliar objects. The varying object views and size is dealt with
by applying a figure-background separation stage before the actual object recogni-
tion stage. During this stage the object is localised and a region of interest solely
containing the object is determined. This regions of interest are varied during
the feature extraction process and thus yielding robustness against not perfectly
determined regions of interest or only partially visible objects. The issue of un-
known objects is addressed by not only giving the classification result, i.e. the
class to which the object in the robot’s visual field most likely belongs, but also
the quality of the classification, i.e. whether the decision is certain or uncertain
or whether the object is unfamiliar. Also the possibility of incrementally learning
new objects during run-time was successfully implemented. The learning of new
objects is triggered by the command ”This is” followed by the object name. Then
the robot is shown ten different views of the novel object. These views are then

9.3. Discussion 105

learnt using the incremental learning approach. In typical scenarios it could be
demonstrated that the previously learnt classes are still correctly recognised and
the new objects can also be classified. The robotic platform also allowed to show
that more than one new object can be successfully learnt.

Figure 9.3 shows the graphical user interface used to instruct the robot. The
interface also shows the robots camera image, the regions of interest (in the
example shown there is only one region of interest in the robot’s visual field) and
the outcome of the robot’s classification process.

9.3 Discussion

The approach developed within the scope of this thesis has been applied to differ-
ent problem areas showing the universality of this approach. The main problem
domain was the visual recognition of three-dimensional objects. The feasibility
of the proposed approach was not only demonstrated by statistical evaluation by
means of previously recorded data sets but also by the implementation on a robot
under real-world conditions where beyond the typical object recognition problems
additional difficulties such as changing illumination conditions, inaccuracies of the
visual sensors and varying environments arise. The approach can deal with these
difficulties sufficiently well such that the approach could successfully be integrated
on a mobile robot.

10 Data

Miscellaneous data sets from different domains were used to evaluate the pro-
posed approach. One part of the data sets are two-dimensional images of three-
dimensional objects. From these images different features as described in chapter
11 were extracted from these images and used for classification. Another part
of the data sets originates from the domain of optical character recognition were
the objects to be classified are letters and digits. These data sets are already
preprocessed and provide a specific set of features each and as such were used as
benchmarking data sets. In the following these data sets are described.

10.1 3D Data Sets

10.1.1 Fruits

The fruits data set consists of RGB colour images of the size 384× 288 pixels of
7 different fruits. There are 120 images per object. The fruits were placed on
a white table and were recorded from different views and at different positions.
Figure 10.1 shows sample images of the seven different fruits.

Figure 10.1: Fruits

This data set was generated within the scope of this thesis.

10.1.2 Columbia Object Image Library (COIL)

The Columbia Object Image Library offers two data sets of different size. Both
data sets consist of images of three-dimensional objects. The objects are articles

107

108 Chapter 10. Data

use such as toys, cups, cosmetics and drugs.

10.1.2.1 COIL-20

The COIL-20 data set [62] consists of 1440 size-normalised grey-scale images of
20 different objects in front of a unicoloured black background. The images were
recorded under clearly defined conditions. The images are of size 128 × 128.
There are 72 images per object from different views at pose intervals of 5 degree
covering a total of 360 degrees. Figure 10.2 shows frontal views of the twenty
different objects.

Figure 10.2: COIL-20

10.1.2.2 COIL-100

The COIL-100 data set [61] comprises 7200 size-normalised colour images of 100
different objects. The objects are recorded in front of a single-coloured black
background. The recording conditions were clearly defined. The objects were
recorded from different views at pose intervals of 5 degree covering a total of 360

10.2. Benchmarking Data Sets 109

degrees resulting 72 images per object. The image size is 128×128. Frontal views
of the different objects are shown in figure 10.3.

Figure 10.3: COIL-100

10.2 Benchmarking Data Sets

10.2.1 Letter Image Recognition Data

The Letter Image Recognition data set [31] consists of 20,000 samples of the 26
capital letters in the English alphabet. From black and white images of the char-
acters 16 primitive numerical features were derived representing simple statistical

110 Chapter 10. Data

characteristics of the pixel distribution. The features are integer valued. They are
linearly scaled to a range from 0 to 15. To generate the images 20 different fonts
were used and randomly distorted resulting in 20,000 unique samples. Figure
10.4 shows examples of the samples used.

Figure 10.4: Letter Image Recognition Data

This data set represents a rather complex classification problem due to the wide
variety of the fonts used and the simplicity of the extracted attributes.

The sixteen different features are described in the following.

1. x-ROI: Horizontal position of the centre of the smallest rectangle com-
pletely containing the object, the so called region of interest. The pixels are
counted from the left edge of the image.

2. y-ROI: Vertical position of the centre of the region of interest. The pixels
are counted from the bottom of the image.

3. width-ROI: Width of the region of interest in pixels.

4. height-ROI: Height of the region of interest in pixels.

5. object-pix: Number of pixels in the image belonging to the object.

6. x-mean: Mean horizontal position of all pixels belonging to the object
relative to the centre of the region of interest and normalised by the width

10.2. Benchmarking Data Sets 111

of the region of interest. For left-sided characters such as the letter ”L” this
feature will have a negative value.

7. y-mean: Mean vertical position of all pixels belonging to the object relative
to the centre of the region of interest and normalised by the height of the
region of interest.

8. x-var: Mean x variance, i.e. mean squared values of the horizontal pixel
distances x-mean. For characters that show a wider separation in the hori-
zontal direction such as the letters ”M” and ”W” this feature has a higher
value.

9. y-var: Mean y variance, i.e. mean squared values of the vertical pixel
distances y-mean.

10. xy-correlation: Mean x-y correlation, i.e. mean product of the horizontal
and vertical pixel distances x-mean and y-mean for each object pixel. For
diagonal lines oriented from bottom left to top right this feature takes pos-
itive values. For diagonal lines running from top left to bottom right it has
negative values.

11. x2y: Mean of x * x * y, i.e. mean value of the squared horizontal distance
times the vertical distance for each object pixel. This feature is a measure
for the correlation between the horizontal variance and the vertical position.

12. xy2: Mean of x * y * y, i.e. mean value of the horizontal distance times the
squared vertical distance for each object pixel. This feature is a measure for
the correlation between the vertical variance and the horizontal position.

13. x-edge: Mean edge count left to right, i.e. mean number of edges detected
from left to right over all vertical positions within the region of interest. An
edge is defined as an object pixel directly above to the right of a background
pixel or the image border. This feature allows to discriminate between
letters like ”M” and ”W” or letters like ”I” and ”L”.

14. x-edge-y-correlation: Correlation of mean edge count left to right with y,
i.e. sum of the vertical positions of the edges x-edge detected in horizontal
direction from left to right. For characters such as the letter ”Y” which
have more edges at the top of the region of interest, this feature will have
a higher value.

15. y-edge: Mean edge count bottom to top, i.e. mean number of edges de-
tected from bottom to top over all horizontal positions within the region of
interest. An edge is defined as an object pixel directly above a background
pixel or the image border.

112 Chapter 10. Data

16. y-edge-x-correlation: Correlation of mean edge count bottom to top with
x, i.e. sum of the horizontal positions of the edges y-edge detected in vertical
direction from bottom to top.

Letter A B C D E F G H I J K L M

Number of
samples

789 789 736 805 768 775 773 734 755 747 739 761 792

Letter N O P Q R S T U V W X Y Z

Number of
samples

783 753 803 783 758 748 796 813 764 752 787 786 734

Table 10.1: Class distribution of letter image recognition data. The number of samples
per letter ranges from 734 to 813.

Table 10.1 shows the class distribution of the data set, i.e. the number of samples
per class.

The data set was evaluated inter alia in [31] and [21].

10.2.2 Handwritten Digits

The handwritten-digits data set [45] consists of 20,000 images of 10 handwritten
digits from German postcodes. The grey valued images are of size 16 × 16 with
8 bit quantisation, i.e. 256 grey levels, and they are normalised in width and
height. There are 2,000 images per class.

Figure 10.5: STATLOG digits. Examples of the handwritten digits.

10.3. Discussion 113

The data set is divided into a predefined training and a test set containing 10,000
samples each. Each class is represented with 1,000 samples. This division is used
in a couple of experiments in order to obtain benchmarking results.

The data set was evaluated inter alia in [45], [57] and [75].

Figure 10.5 shows some examples of the digits within this data set.

10.3 Discussion

The data used within the cope of this work differs widely inter alia in the domain
of application, the type of patters to be classified, the number of classes, the
number of samples, the number and types of features used and complexity. The
tables 10.2 and 10.3 list the different properties [90] of the used data sets.

name attribute
type

number
of at-
tributes

data set
size

number
of classes

default
accuracy
[%]

entropy
[bit]

letters numeric
(integer)
[0, 15]

16 20000 26 4.06 0.6194

digits numeric
(integer)
[0, 255]

256 20000 10 0.1 0

Table 10.2: Classification of the different data sets used.

name data set size number of
classes

default accu-
racy [%]

entropy [bit]

fruits 840 7 0.1429 0
COIL-20 1440 20 0.05 0
COIL-100 7200 100 0.01 0

Table 10.3: Classification of the different data sets used.

The attribute type defines the data type of the elements of the feature vectors.
Possible attribute types are binary, nominal, ordinal, numeric and mixed. The
number of attributes gives the dimension d of the feature vectors. The data set
size specifies the number of samples M within the data set. Another property
is the number l of different classes that are represented within the data set.
The default accuracy is the frequency of the most common class and reflects the
complexity of the underlying classification problem. The entropy of a data set

114 Chapter 10. Data

calculates the expected amount of information for classifying a sample taking the
class distribution of the data set into account:

E = −
l∑

i=1

P (Ci) log2 P (Ci). (10.1)

The data sets consisting of images from three-dimensional objects, namely the
fruits data set, the COIL-20 data set and the COIL-100 data set, were used to
extract several different features from which define the attribute type and the
number of attributes. The two-dimensional data sets, namely the digits data set
and the letters data set, consist of a set of fixed features.

11 Features

One problem when classifying 3D objects from 2D camera images is the extraction
of features representing the objects in a suitable way.

The selection of the features depends among other things on the objects to be
classified. The features should be meaningful for the specific objects as different
objects are characterised by different attributes. For the distinction of different
fruits e.g. features representing colour and form of the object are an appropriate
choice.

The described feature types differ in complexity, dimensionality, classification
performance, discrimination power, expressiveness and suitability for the given
classification task.

As in real world applications the camera images seldom contain solely the object of
interest but also other objects as well as background it is necessary to first localise
the object within the image and to separate it from the background. Once the
pixels belonging to the object are identified the region of interest is placed around
the object. The so called region of interest is the smallest rectangle containing
the object. The features are not extracted from the whole image but only from
this region of interest. As the region of interest is also rectangular the region of
interest can be treated as an image I(x, y). Some of the features are extracted
from the mask B(x, y) which is a binary image defining the object pixels.

This chapter describes the different feature types extracted from the regions of
interest containing the object hypotheses.

11.1 Orientation Histograms

A feature type which represents the form of the object are orientation histograms
[30][16], summing up all orientations within a given region of interest. Orienta-
tion histograms show the frequency of occurrence of the different directions of
orientation in this region. When graphically visualising orientation histograms

115

116 Chapter 11. Features

the x-axis specifies the different orientations and the y-axis gives the frequency
of occurrence of these orientations.

To calculate the orientation histograms the gradient in x and y direction of the
grey value image I(x, y) is calculated using an edge detector such as the Sobel
or the Canny edge detector. The gradient angles are discretised therefor the
gradient angle range is divided into b sections. The discrete gradient directions
are weighted with the absolute gradient value and summed to form the orientation
histogram. The orientation histogram provides information about the directions
of the edges and their intensity.

Figure 11.1: The image is split into sub-images. For each sub-image an orientation
histogram is calculated by summing up the orientations that occur in this sub-image.
For reasons of simplicity non-overlapping sub-images are depicted.

It has been found that the results achieved could be improved if not only one
orientation histogram per region of interest is used to represent the form of the
object but several orientation histograms are calculated from different parts of the
region of interest. The region of interest is therefore split into m×m potentially
overlapping parts of equal size. For each part a separate orientation histogram
is calculated. The concatenated orientation histograms then form the b×m×m
dimensional feature vector. If the parts overlap the result improves further as this
compensates for non-optimally detected regions of interest. On the one hand the
number of orientation sections b should be high enough to be able to distinguish
between the orientations occurring in the image, but on the other hand number of
orientation sections b should be as low as possible in order to reduce computational
costs. Figure 11.1 illustrates how an orientation histogram is generated.

The dimension of the feature vector depends only on the number of sub-images
(m×m) and the number of sections b used to discretise the gradient angle. The
orientation histogram is also largely independent of the resolution of the image
used to extract the features.

For the data sets used suitable values for m are 1, 2, 3 and 4. An appropriate
value for the number of different orientations b is 8. And an overlap of 20% gives

11.1. Orientation Histograms 117

good results.

11.1.1 Orientation Histograms Utilising Sobel Operator
for Edge Detection

In images edges are represented by areas with strong intensity contrasts, i.e. a
strong ascent or descent of the intensity over a short distance. Thus the one-
dimensional shape of an edge is a ramp. Consequently locating the maxima and
minima of the first derivative of an image indicate the presence of an edge.

The Sobel operator [34] estimates the gradient ∇I(x, y) of a two-dimensional
grey-value image I(x, y). It consists of a pair of 3 × 3 convolution masks. One
mask Sx estimates the gradient Ix(x, y) in the x-direction (columns) and the other
mask Sy estimates the gradient Iy(x, y) in the y-direction (rows). These masks
are shown in figure 11.2.

Sx = 1
8

-1 0 1
-2 0 2
-1 0 1

Sy = 1
8

1 2 1
0 0 0
-1 -2 -1

Figure 11.2: 3× 3 Sobel masks.

The grey-value image I(x, y) is convolved with the two masks Sx and Sy respec-
tively. The resulting images Ix(x, y) and Iy(x, y) give the horizontal and vertical
orientations respectively:

Ix(x, y) = I(x, y) ∗ Sx (11.1)

Iy(x, y) = I(x, y) ∗ Sy. (11.2)

The gradient ∇I(x, y) is then given by

∇I(x, y) =

(
Ix(x, y)
Iy(x, y)

)
, (11.3)

the gradient direction θ is calculated as

θ(x, y) = arctan
Ix(x, y)

Iy(x, y)
(11.4)

and the gradient strength |∇I(x, y)| is defined as

|∇I(x, y)| =
√

Ix(x, y)2 + Iy(x, y)2. (11.5)

118 Chapter 11. Features

To calculate the orientation histogram the gradient directions θ(x, y) are dis-
cretisised. The parameter b specifies the number of discrete orientations di

and determines b orientation rages [rlow
i , rhigh

i]. The orientation ranges are de-
fined by rlow

i = i180◦

b
and rhigh

i = (i + 1)180◦

b
with i = 0, 1, 2, ..., b − 1. The

corresponding discrete orientations di are then given by di = (i + 1
2
)180◦

b
with

i = 0, 1, 2, ..., b − 1. The gradient direction θ(x, y) is then assigned the discrete
direction di if rlow

i ≤ θ(x, y) ≤ rhigh
i . For each discrete direction di the gradient

strength |∇I| of the pixels having this gradient direction is summed up.

11.1.2 Orientation Histograms Utilising Canny Operator
for Edge Detection

Another more sophisticated way of calculating edges within an image is the Canny
edge detector [12]. The gradients of the edges detected with the Canny edge
detector are used to calculate an orientation histogram.

The detection of edges with the Canny operator is a multi-stage process.

Step 1: Noise reduction

In a first step the image is smoothed by convolving the image with a gaussian
filter in order to reduce the noise. The result is a blurred but less noisy image.
Figure 11.3 shows a sample gaussian mask.

1
115

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

Figure 11.3: 5 × 5 Gaussian filter. Discrete approximation of the two-dimensional
gaussian function with σ = 1.4

Step 2: Calculating the intensity gradient of the image

Afterwards the Sobel operator is used to calculate the intensity gradient of the
smoothed image. As described above the gradient is estimated in horizontal and
vertical direction. From these estimates the gradient strength and direction can
be calculated.

11.1. Orientation Histograms 119

Step 3: Non-maximum suppression

The aim of the non-maximum suppression is to find local maxima in the direction
of the gradient and to suppress all others ensuring only one response to a single
edge. The result of this non-maximum suppression are single pixel thin edges. The
local maxima is found by comparing the strength of the gradient of a pixel with
the strength of the gradient of its neighbors along the direction of the gradient.
All other pixel are set to zero.

Step 4: Hysteresis

Pixels with high intensity gradients are more likely to belong to an edge. Thus
a thresholding is performed eliminating pixels with low gradient strength. The
so called hysteresis uses two thresholds thigh and tlow with thigh > tlow. All pixels
whose gradient strength is greater than thigh are unconditionally accepted as edge
pixels. Pixels with a gradient strength lower than tlow are immediately discarded
and are set to zero. Pixels having a gradient value lower than thigh but higher than
tlow are only regarded as edges if they are connected to a pixel already selected
as an edge pixel.

The orientation histogram is then calculated alike to the orientation histogram
utilising the Sobel operator on potentially overlapping subimages using different
discretisations of the orientations. As the gradients of non-edge pixels are set to
zero only gradients of edge pixels are taken into account.

11.1.3 Orientation Histograms Based on Opponent Colour
Channels

Another complex feature type are orientation histograms calculated on opponent
colour channels. Calculating the orientation histograms on the different channels
of a colour space takes the colour information besides the form information into
consideration. An appropriate colour space is the opponent colour space [11],
where the different colour channels are based on colour information of opponent
colours.

The initial trichromatic colour information is transformed into an achromatic (A:
black / white) and two opponent chromatic channels (P: red / green and Q: yellow
/ blue). On each of these three channels an orientation histogram is calculated
utilising the sobel edge detector as described in 11.1.1 resulting in three different
feature types combining colour and form information.

The conversion from the RGB colour space to the APQ colour space is performed

120 Chapter 11. Features

by applying the following transformation:

 A
P
Q

 =

 0.887 0.461 0.0009
−0.46 0.88 0.01
0.004 −0.01 0.99

 R
G
B

 (11.6)

The orientation histograms are then calculated on each of the three colour chan-
nels analog to the orientation histograms on the grey-value images utilising the
Sobel edge detector. This results in three different feature types. As the previ-
ously described orientation histograms the orientation histograms on the different
opponent colour channels can be calculated not only on the complete image but
also on m×m potentially overlapping subimages. The orientation histograms of
these subimages are then concatenated to b×m×m-dimensional feature vectors.

11.2 Colour Histograms

Colour histograms are calculated on the original RGB colour image and specify
for each colour channel the frequency of occurrence of the different colour values,
i.e. the number of pixels of the individual colour values are determined. For
each of the three colour channels this frequency is calculated. In the graphical
visualisation of colour histograms the x-axis specifies the colour value, the y-axis
specifies the frequency of occurrence of the different colour values and the z-axis
defines the colour channel.

The colour histograms are also calculated on m×m potentially overlapping subim-
ages in order to make allowance for a certain amount of rotation of the object of
interest. The colour histograms are 3× b×m×m-dimensional feature vectors.

If the colour histograms are calculated on grey scale images simply a grey value
histogram is calculated.

11.3 Curvature Histograms

The curvature histograms [52] are a feature type considering the cornerness. The
x-axis shows the curvatures and the y-axis gives the frequency of occurrence of
these curvatures.

The curvatures are calculated on the grey-value image using the structure tensor
[36] [28]. The structure tensor is a measure which can discriminate between
homogenous regions, edges and corners. The structure tensor J0 is calculated by

11.4. Orientation-Curvature Histograms 121

the covariance matrix of the gradient ∇I(x, y) of the grey-value image:

J0(x, y) = ∇I(x, y) · ∇I(x, y)T =

[
I2
x(x, y) Ix(x, y) · Iy(x, y)

Ix(x, y) · Iy(x, y) I2
y (x, y)

]
.

(11.7)

The structure tensor J0 is then weighted and averaged by convolving it with a
two-dimensional gaussian filter Gρ resulting in the matrix

Jρ(x, y) = Gρ(x, y) ∗ J0(x, y) =

[
Jxx(x, y) Jxy(x, y)
Jxy(x, y) Jyy(x, y)

]
(11.8)

where ∗ is the convolution operator.

The eigenvalues λ1 and λ2 of the smoothed structure tensor Jρ are then calculated
as

λ1,2(x, y) =
1

2

(
Jxx(x, y) + Jyy(x, y)±

√
(Jxx(x, y)− Jyy(x, y))2 + 4J2

xy(x, y)
)

(11.9)

with λ1 ≥ λ2.

Depending on the values for λ1 and λ2 the following can be stated about the
image structure: If both eigenvalues are approximately zero (λ1 ≈ λ2 ≈ 0), no
structure is given, i.e. the region observed shows constant intensity. The structure
is intrinsically 0-dimensional. In case the greater eigenvalue λ1 is clearly greater
than zero and the smaller eigenvalue λ2 is approximately zero (λ1 � λ2 ≈ 0),
the observed structure is intrinsically 1-dimensional, i.e. there is an edge in the
image. If both eigenvalues are significantly greater than zero (λ1 ≥ λ2 � 0), the
observed structure is intrinsically 2-dimensional, i.e. the examined region shows
e.g. a corner.

The curvatures c at position x, y are expressed as ratio of the two eigenvalues λ1

and λ2.

c(x, y) =
λ2(x, y)

λ1(x, y)
. (11.10)

11.4 Orientation-Curvature Histograms

Orientation-curvature histograms [52] are multi-dimensional histograms relating
orientations and local curvatures. When visualising orientation-curvature his-
tograms the x-axis shows the orientations, the y-axis shows the strength of the

122 Chapter 11. Features

local curvatures and the z-axis gives the frequency of the occurrence of the re-
spective orientations and curvatures.

The orientations and their strengths are determined utilising the Sobel edge de-
tector (see section 11.1.1). The curvatures are calculated using the structure
tensor as described in section 11.3.

11.5 Geometric Features

Geometric features [72] describe the two-dimensional shape of an object. They
are calculated from the binary image B(x, y) which discriminates pixels belong-
ing to the object of interest O (value 1) and pixels belonging to the background
(value 0). The resulting features are simple one-dimensional features. Five ge-
ometric features were used within the scope of this work which are described
below: form factor f , roundness r, compactness c, extent e and aspect ratio of
the bounding rectangle b. Moreover a concatenation of these five features forming
a five-dimensional feature vector was also used.

The area A is defined by the number of pixels belonging to the object O.

A(O) =
∑
p∈O

1 =
∑

x

∑
y

B(x, y). (11.11)

The form factor f expresses the ratio of area A to perimeter P . The form factor
of a circle is 1. For other shapes the form factor is smaller than 1. The form
factor f is defined as

f =
4πA

P 2
=

4π

c
(11.12)

where c is the compactness (see equation 11.15).

From the area A the equivalent circular diameter Dcircular can be calculated which
is the diameter a circle with area A would have. It is defined as

Dcircular =

√
4

π
A. (11.13)

The roundness r expresses the ratio of the squared equivalent circular diameter
Dcircular to the squared maximal diameter Dmax. The roundness of a circle equals
1 and is smaller than 1 for elongated shapes. The roundness r is defined as

r =
D2

circ

D2
max

=
4A

πD2
max

(11.14)

11.6. Hu Invariant Moments 123

where Dmax is the maximal diameter or the length.

The compactness c expresses the ratio of the equivalent circular diameter Dcircular

to the maximal diameter Dmax. The compactness of a circle is 1. The compactness
c is defined as

c =
Dcircular

Dmax

=

√
4
π
A

Dmax

=
P 2

A
. (11.15)

Thus it holds r = c2.

The area of the bounding rectangle AROI , the so called region of interest, is
defined by the width w and the height h of the region of interest.

AROI = wh. (11.16)

The extent e expresses the ratio of area A to the area of the region of interest
AROI . The extend e is defined as

e =
A

AROI

. (11.17)

The aspect ratio of the bounding rectangle b is determined by the width and the
height of the bounding rectangle. It is defined as

b =
min(w, h)

max(w, h)
. (11.18)

11.6 Hu Invariant Moments

The Hu invariant moments [37] are a set of absolute orthogonal two-dimensional
moment invariants and one skew invariant moment. They can be applied to
rotation, scale and translation invariant pattern recognition.

The seven Hu invariant moments were used as one-dimensional features as well
as a concatenation of these seven moments forming a seven-dimensional feature
vector.

The image I(x, y) is considered as a probability density function.

A two-dimensional (p + q)th order moment mpq of a grey-value image I(x, y) of

124 Chapter 11. Features

size M ×N is defined as

mpq =
M−1∑
x=0

N−1∑
y=0

xpyqI(x, y) (11.19)

where p, q ∈ IN0.

The central (p + q)th order moment µpq of a grey-value image I(x, y) is defined
as

µpq =
∑M−1

x=0

∑N−1
y=0 (x− x)p(y − y)qI(x, y)

=
∑p

m=0

∑q
n=0

(
p
m

)(
q
n

)
(−x)(p−m)(−y)(q−n)Mmn

(11.20)

for p, q ∈ IN0 where x = m10

m00
and y = m01

m00
. The centroid of the image is (x, y).

The central moments are calculated using the image’s centroid such that the
calculation corresponds to the calculation of regular moments of an image that
has been shifted such that its centre coincides with its centroid. Thus central
moments are translation invariant.

The central moments of order zero to three are

µ00 = m00 = µ (11.21)

µ10 = 0 (11.22)

µ01 = 0 (11.23)

µ11 = m11 − xm01 = m11 − ym10 (11.24)

µ20 = m20 − xm10 (11.25)

µ02 = m02 − ym01 (11.26)

µ21 = m21 − xm11 − ym20 + 2x2m01 (11.27)

µ12 = m12 − ym11 − xm02 + 2y2m10 (11.28)

µ30 = m30 − 3xm20 + 2x2m10 (11.29)

µ03 = m03 − 3ym02 + 2y2m01 (11.30)

By normalising the central moments with the γth power of the zeroth central
moment µ00 scale invariance is achieved. The (p + q)th order normalised central
moment νpq is defined as

νpq =
µpq

µγ
00

(11.31)

where γ = p+q
2

+ 1 with p, q ∈ IN0 and p + q ≥ 2.

11.7. Mean Colour Information 125

The Hu invariant moments are calculated from normalised central moments up to
order three. Hn is the nth Hu invariant moment. Utilising the second and third
order normalised central moments the following six absolute orthogonal moments
can be derived:

H1 = ν20 + ν02 (11.32)

H2 = (ν20 − ν02)
2 + 4ν112 (11.33)

H3 = (ν30 − 3ν12)
2 + (3ν21 − ν03)

2 (11.34)

H4 = (ν30 + ν12)
2 + (ν21 + ν03)

2 (11.35)

H5 = (ν30 − 3ν12)(ν30 + ν12)[(ν30 + ν12)
2 − 3(ν21 + ν03)

2] + (11.36)

(3ν21 − ν03)(ν21 + ν03)[3(ν30 + ν12)
2 − (ν21 + ν03)

2]

H6 = (ν20 − ν02)[(ν30 + ν12)
2 − (ν21 + ν03)

2] + (11.37)

4ν11(ν30 + ν12)(ν21 + ν03)

One additional skew orthogonal moment can be calculated:

H7 = (3ν21 − ν03)(ν30 + ν12)[(ν30 + ν12)
2 − 3(ν21 + ν03)

2]−
(ν30 − 3ν12)(ν21 + ν03)[3(ν30 + ν12)

2 − (ν21 + ν03)
2]

(11.38)

11.7 Mean Colour Information

A simple feature representing the object colour are the mean colour values of the
HSV representation of the detected object of interest.

To determine the mean colour values the camera image I(x, y) is converted from
RGB colour space to HSV colour space [80]. The different channels of the HSV
colour space represent hue, saturation and value respectively.

For each of the three colour channels the mean value of the localised object within
the region of interest is calculated. Therfore the colour values of the pixels (x, y)
that belong to the object, i.e. B(x, y) = 1, are averaged for each colour channel
separately.

h =
1

MN

M−1∑
x=0

N−1∑
y=0

IH(x, y)B(x, y) (11.39)

s =
1

MN

M−1∑
x=0

N−1∑
y=0

IS(x, y)B(x, y) (11.40)

126 Chapter 11. Features

v =
1

MN

M−1∑
x=0

N−1∑
y=0

IV (x, y)B(x, y) (11.41)

The resulting feature vector is a three-dimensional vector generated by concate-
nating the mean values of the three colour channels. Additionally only the mean
value of the hue channel is used as a one-dimensional feature.

Colour information is helpful to distinguish e.g. between green and red apple.
Advantages of colour information are its scale and rotation invariance as well
as its robustness to partial occlusion. Furthermore colour information can be
effectively calculated.

11.8 Wavelets

Another complex feature type is calculated concatenating the mean coefficients of
the two-dimensional wavelet decomposition. The wavelet transform is performed
on grey-level images. If the original images are colour images first a transforma-
tion from colour to grey scale is performed.

Figure 11.4: Wavelet decomposition.

A wavelet decomposition can be described by a sequence of separate convolutions
and dyadic down-sampling. Figure 11.4 gives an overview of the different con-
volution and scaling operations performed in one decomposition step. Starting
from the original grey-scale image I(x, y) of size M × N these operations are

11.8. Wavelets 127

successively applied to decompose the image into different components. In each
step j of the wavelet decomposition four equally sized output images of half of
the width and half of the height of the input image are obtained. A complete de-
composition requires jmax = log2 min(M, N) steps. The four images obtained in
each step j show different properties. The approximation image Aj is a smoothed
down scaled version of the input image Aj−1. It is the result of vertical and hor-
izontal lowpass filtering of the input image and thus contains the low-frequency
components. The approximation image Aj is the input image for the next step
j + 1. The original image I is input image A0 for level j = 1 The output image
containing the horizontal details Hj is obtained by vertical highpass filtering and
horizontal lowpass filtering the input image. It contains the high-frquency com-
ponents in x-direction. When vertical lowpass filtering and horizontal highpass
filtering the input image the resulting output image Vj contains the vertical de-
tails, i.e. the high-frequency components in y-direction. An image containing the
diagonal details Dj is obtained by vertical and horizontal highpass filtering of the
input image. It contains the high-frequency components in xy-direction.

Figure 11.5: Wavelet decomposition example.

Figure 11.5 depicts the successive decomposition of the input image I into the four
lower resolution output images Aj, Hj, Vj and Dj at a time. The decomposition
is shown for level j = 1 and j = 2.

l = 1√
2

1 1 h = 1√
2

-1 1

Figure 11.6: Haar lowpass and highpass filter masks.

The highpass and lowpass filters h and l used depend on the wavelet basis used.
Example for common wavelet bases are the Haar wavelet and Daubechies wavelet.
Figure 11.6 shows the highpass and lowpass filter mask based on the Haar wavelet.

The wavelet features are calculated on m×m potentially overlapping subimages.

128 Chapter 11. Features

11.9 Discussion

The different feature types described above vary in extraction effort and their suit-
ability for the classification of three-dimensional objects. Figure 11.7 compares
the different feature types and arranges them with regards to their complexity
and their classification power on the data sets used in the context of this thesis.

Figure 11.7: Comparison of the different features types with regards to complexity and
classification power evaluated on the data used within the scope of this thesis.

The simple features show rather weak classification power, whereas the classifi-
cation power of the complex features is generally rather good.

12 Statistical Evaluation

In this chapter the statistical experiments conducted to evaluate the proposed
approach are described. The experiments examine the different aspects of the
hierarchical neural network classifiers such as the classification performance of
classifier hierarchies compared to non-hierarchical classifiers, the performance of
the different strategies to combine the individual classifier outputs to a collective
result, the capability of learning new objects during run time, the quality of
the codes generated from the hierarchy activation and the suitability of different
feature types for the classification of three-dimensional objects as well as their
applicability in classifier hierarchies.

The experiments are conducted utilising 10-times 10-fold cross-validation. When
comparing different approaches each approach has been evaluated using the same
partition of the data in order to allow for paired significance testing. Both para-
metric and non-parametric tests were used as significance tests. The tests used are
the corrected repeated k-fold cross validation t-test, the sign test, the Wilcoxon
signed rank test and the maximum test.

The classification performance of the different classification approaches is ex-
pressed by means of mean error rates which are determined utilising 10-times
10-fold cross-validation experiments. The results are depicted by means of box-
plots and error-bars.

12.1 Hierarchical Neural Networks

In order to benchmark the classification performance of hierarchical classifiers
they are directly compared to non-hierarchical classifiers. In the experiments
should be verified whether and in which cases hierarchical classifiers show im-
proved classification performance compared to non-hierarchical classifiers. There-
fore different classifiers types were used in their original non-hierarchical form as
well as in a hierarchical arrangement. The classifier types (see chapter 2) used are

129

130 Chapter 12. Statistical Evaluation

RBF networks, k-NN classifiers with k = 3 and k = 5 and fuzzy k-NN classifiers
with k = 3 and k = 5. The experiments were conducted using different data sets.
The data sets are from various domains, such as optical character recognition
and three-dimensional object recognition. The data sets (see chapter 10) used
are the fruits data set and the COIL-20 data set where orientation histograms
with m = 3 and b = 8 were used as feature type (see chapter 11).

Figure 12.1: Mean error rates for the two data sets (COIL-20, fruits) on the test
data for hierarchical and non-hierarchical classifiers. As classifier RBF networks, fuzzy
k-NN classifiers and k-NN classifiers were used. The box plots as well as the error bars
indicate that hierarchical classifiers show lower error rates or at least the same error
rates as the non-hierarchical approaches on both data sets.

In order to show the universality of the presented approach different classifier
types and data sets are used in the experiments. The experiments verify that

12.1. Hierarchical Neural Networks 131

hierarchical neural network classifiers are applicable to various problem domains
as well as to different types of classifiers.

Data RBF Fuzzy 3-NN Fuzzy 5-NN 3-NN 5-NN
H NH H NH H NH H NH H NH

COIL-20 3.24±
1.52%

4.91±
1.97%

0.49±
0.65%

0.86±
0.84%

7.17±
1.71%

6.33±
1.91%

0.13±
0.34%

0.11±
0.34%

0.63±
0.71%

0.52±
0.66%

Fruits 9.17±
2.60%

9.77±
3.24%

5.86±
2.61%

6.33±
2.50%

8.36±
3.22%

12.67±
3.43%

2.17±
1.60%

2.44±
1.82%

2.62±
1.59%

3.01±
1.90%

Table 12.1: Mean error rates for the different data sets on the test data for classifier
hierarchies (H) and corresponding non-hierarchical classifiers (NH) for the radial ba-
sis function network (RBF), k-nearest neighbour classifier (k-NN) and fuzzy k-nearest
neighbour classifier (fuzzy k-NN). The average classification rates of the hierarchical
approach are mostly higher than or almost equal to the classification rates of the non-
hierarchical classifiers.

The classification results are depicted in figure 12.1 by means of box-plots and
error-bars. The mean error rates are listed in table 12.1. The results of the
significance test are specified in table 12.2. In most cases the hierarchical classi-
fier showed significantly better classification performance compared to the non-
hierarchical classifier or no significant difference could be observed.

Data Significance test RBF Fuzzy 3-
NN

Fuzzy 5-
NN

3-NN 5-NN

COIL-20

t-test 4.06e-2 1.27e-1 2.19e-1 7.96e-1 4.01e-1
sign test 1.60e-10 2.03e-6 2.64e-3 7.27e-1 8.13e-3
signed rank test 6.63e-8 2.38e-6 3.45e-5 8.44e-1 6.90e-3
maximum test 1.91e-6 3.91e-3 1.00e+0 1.00e+0 6.25e-2

Fruits

t-test 5.69e-1 7.14e-1 8.50e-3 7.50e-1 6.58e-1
sign test 6.62e-2 3.48e-1 5.78e-11 8.26e-1 1.35e-1
signed rank test 1.00e-1 2.24e-1 1.16e-12 3.35e-1 2.24e-1
maximum test 3.13e-2 1.00e+0 1.19e-7 5.00e-1 6.25e-2

Table 12.2: Results of the significance tests for the different data sets on the test data
comparing classifier hierarchies and corresponding non-hierarchical classifiers for the
radial basis function network (RBF), k-nearest neighbour classifier (k-NN) and fuzzy
k-nearest neighbour classifier (fuzzy k-NN). The table gives the calculated p-values. If a
significant difference at the significance level α = 5% could be observed the corresponding
p-values are coloured in light grey. The significance tests indicate that no significant
differences between the classification results of the two different methods can be observed
for most data sets.

132 Chapter 12. Statistical Evaluation

12.2 Hierarchy Evaluation

The following experiments assess the performance of the different fusion strategies
developed within the context of this work. The Demster-Shafer approach and the
decision tree inspired approach are the main focus of this evaluation.

12.2.1 Comparison of the Different Fusion Strategies

The comparison of the different strategies for fusing the results of the classifiers
within the hierarchy is performed using different data sets and different classifier
types. For each data set and classifier type a hierarchy is generated and trained
and to this hierarchy the different fusion strategies are applied. This ensures
the direct comparability of the results. As classifiers RBF networks and fuzzy
k-NN classifiers with k = 3 and k = 5 were deployed. The usage of the latter
is motivated by the simplicity and the low training effort of this approach as
well as by the fact that no parameters except k need to be optimised for this
type of classifier. The experiments were conducted on the fruits data set and the
COIL-20 data set using orientation histograms with m = 3 and b = 8 as feature
type. The fusion strategies examined are the evidence theoretic approach, the
decision-tree like approach, the voting scheme approach, the end nodes approach
and the approach utilising similarity preserving codes.

Figure 12.2: Mean error rates for the COIL-20 data set and the fruits data set on
the test data for the different retrieval strategies as well as for non-hierarchical clas-
sifiers. The strategies evaluated were the Dempster-Shafer method (DS), the decision
tree method (DT), the voting scheme method (VS), the end node method (EN), the
retrieval strategy utilising similarity preserving codes and associative memories (CA),
the retrieval strategy utilising similarity preserving codes and non-hierarchical nearest-
neighbour classifiers (CN), the inter-state decision template method (IS) and non-
hierarchical classifiers (NH). As classifier radial basis function networks were used.
The box plots as well as the error bars indicate that Dempster-Shafer method performs
better than the other strategies.

12.2. Hierarchy Evaluation 133

In the experiments should be ascertained which of the fusion strategies yields the
best classification results and whether these results can be observed on all data
sets and for all classifiers or whether certain strategies are suitable for specific
classifiers and data sets whereas other classifiers yield better results on other
data sets.

Data DS DT CA CN IS NH EN VS

COIL-20 3.24±
1.52%

4.38±
1.71%

0.93±
0.85%

0.78±
0.79%

1.39±
1.04%

4.91±
1.97%

12.00±
4.14%

20.30±
3.65%

Fruits 9.17±
2.60%

9.35±
2.77%

8.91±
2.91%

11.00±
4.05%

9.87±
2.90%

9.77±
3.24%

25.64±
6.21%

28.52±
4.08%

Table 12.3: Mean error rates for the different data sets on the test data for the different
retrieval strategies for the radial basis function network. The strategies evaluated were
the Dempster-Shafer (DS) method, the decision tree method (DT), the voting scheme
method (VS), the end node method (EN), the retrieval strategy utilising similarity pre-
serving codes and associative memories (CA), the retrieval strategy utilising similarity
preserving codes and non-hierarchical nearest-neighbour classifiers (CN), the interstate
decision template method (IS) and the non-hierarchical classifiers (NH). The complex
retrieval strategies show superior classification results in all experiments.

The error rates for the different data sets are charted in figure 12.2 by means of
box plots and error bars and are listed in table 12.3. The simple fusions strate-
gies such as the voting scheme approach and the end node approach consistently
showed weak performances. The more complex fusion strategies showed consid-
erably stronger classification performances on the tested data sets. The decision
tree-like approach yield good classification results in all experiments but was
always outperformed by the evidence theoretic approach. The fusion strategy
utilising similarity preserving codes and associative memories showed excellent
performance that even exceeded the classification performance of the evidence
theoretic approach on the data sets tested, but required exhaustive adjustment
of the parameters to the given problem.

12.2.2 Comparison of the Evidence-Theoretic Fusion Strat-
egy Against the Decision Tree Like Fusion Strategy

Another experiment was conducted evaluating the fusion strategy utilising the
Dempster-Shafer theory of evidence and fusion strategy analogous to decision
trees. The experiments were performed such that both fusion strategies were ap-
plied to the same trained classifier hierarchy in order to ensure maximal commen-
surability. Different data sets and classifiers were exploited in the experiments.
As data sets the COIL-20 data set, the STATLOG digits data set and the letter-

134 Chapter 12. Statistical Evaluation

recognition data set were utilised. The classifiers used were RBF networks and
fuzzy k-NN classifiers with k = 3 and k = 5.

Figure 12.3: Hierarchies for the classification of the COIL-20 objects. The upper
hierarchy was automatically generated by unsupervised k-means clustering, the lower
hierarchy was manually created grouping objects in a plausible way such that meaningful
groups result.

The approach was not only evaluated on automatically generated hierarchies but
also on hierarchies that were manually created grouping classes in a plausible
manner such that meaningful groups emerge and the classes within one group
bear resemblance to each other in order to examine whether the proposed fusion
strategies are also applicable to dictated hierarchies. Figure 12.3 depicts the
two hierarchies for the COIL-20 data set generated in the described ways. The
experiments clearly indicate the superiority of the evidence theoretic approach
over the decision tree like approach.

12.2. Hierarchy Evaluation 135

Figure 12.4: Mean error rates for the three data sets (letters, digits, COIL-20) on the
test data for the evidence based (DS) and the decision-tree-like (DT) approach on the
automatically generated hierarchies. As classifier radial basis function networks were
used. The box plots as well as the error bars indicate that Dempster-Shafer method
performs better than the decision tree method on all three data sets.

136 Chapter 12. Statistical Evaluation

Figure 12.5: Mean error rates for the three data sets (letters, digits, COIL-20) on the
test data for the evidence based (DS) and the decision-tree-like (DT) approach on the
manually generated hierarchies. As classifier radial basis function networks were used.
The box plots as well as the error bars indicate that Dempster-Shafer method yields the
same or even better classification rates than the decision tree method on all three data
sets.

12.2. Hierarchy Evaluation 137

Repeated k-fold cross validation experiments were conducted to assess the results
of the different experiments statistically. The results for the automatically and
manually generated hierarchies are visualised in figure 12.4 and 12.5 respectively
by means of box plots and error bars. The tables 12.4 and 12.5 list the error
rates for the different experiments performed on the automatically and manually
generated hierarchies respectively. The results of the significance tests for the
different experiments are listed in the tables 12.6 and 12.7. These tests imply
that the classification results for the evidence theoretic approach are significantly
better than the results for the decision-tree-like approach.

Data RBF Fuzzy 3-NN Fuzzy 5-NN
DS DT DS DT DS DT

Letters 13.31 ±
0.78%

14.56 ±
0.77%

9.22 ±
0.64%

10.78 ±
0.69%

17.07 ±
0.76%

18.66 ±
0.78%

Digits 5.95 ±
0.79%

6.74 ±
0.80%

5.42 ±
0.60%

5.76 ±
0.62%

9.65 ±
0.90%

10.07 ±
0.91%

COIL-20 3.24 ±
1.52%

4.38 ±
1.71%

0.49 ±
0.65%

0.83 ±
0.77%

7.17 ±
1.71%

7.74 ±
1.74%

Table 12.4: Mean error rates for the different data sets on the test data for the
Dempster-Shafer method (DS) and the decision tree method (DT) for the radial ba-
sis function network (RBF) and fuzzy k-nearest neighbour classifier (fuzzy k-NN) on
automatically generated hierarchies. The evidence theoretic approach outperforms the
decision tree approach in all experiments.

Data RBF Fuzzy 3-NN Fuzzy 5-NN
DS DT DS DT DS DT

Letters 13.49 ±
1.00%

15.29 ±
0.93%

9.29 ±
0.62%

10.96 ±
0.72%

17.35 ±
0.84%

19.09 ±
0.61%

Digits 5.75 ±
0.84%

6.46 ±
0.80%

5.30 ±
0.48%

6.14 ±
0.61%

9.85 ±
0.69%

10.31 ±
0.68%

COIL-20 3.99 ±
2.03%

4.60 ±
2.18%

0.95 ±
0.93%

0.97 ±
0.90%

7.70 ±
1.87%

7.74 ±
1.83%

Table 12.5: Mean error rates for the different data sets on the test data for the
Dempster-Shafer method (DS) and the decision tree method (DT) for the radial basis
function network (RBF) and fuzzy k-nearest neighbour classifier (k-NN) on manually
generated hierarchies. The average error rates of the Dempster-Shafer approach are
always lower than the error rates of the decision-tree method.

A further experiment was conducted to emphasise the advantages of the evidence
theoretic retrieval strategy. In this experiment the classification performance of a
classification hierarchy where the classifier assigned to the root node shows a weak

138 Chapter 12. Statistical Evaluation

Data Significance test RBF Fuzzy 3-NN Fuzzy 5-NN

Letters

t-test 4.68e-12 4.98e-29 5.21e-28
sign test 4.46e-10 4.16e-23 4.16e-23
signed rank test 3.50e-9 3.81e-18 3.86e-18
maximum test 2.84e-14 1.58e-30 1.58e-30

Digits

t-test 3.84e-7 4.78e-6 1.11e-7
sign test 1.40e-20 2.52e-29 6.31e-30
signed rank test 1.28e-17 1.57e-17 7.61e-18
maximum test 1.08e-19 2.52e-29 6.31e-30

COIL-20

t-test 2.58e-2 4.38e-2 9.59e-3
sign test 5.80e-13 1.96e-11 6.94e-18
signed rank test 3.95e-10 7.06e-8 2.44e-11
maximum test 7.81e-3 1.53e-5 6.94e-18

Table 12.6: Results of the significance tests for the different data sets on the test
data comparing the Dempster-Shafer (DS) method and the decision tree method (DT)
for the radial basis function network (RBF) and fuzzy k-nearest neighbour classifier (k-
NN) on automatically generated hierarchies. The table gives the calculated p-values. If a
significant difference at the significance level α = 5% could be observed the corresponding
p-values are coloured in light grey. The significance tests indicates that the evidence
theoretic approach outperforms the decision tree approach significantly.

Data Significance test RBF Fuzzy 3-NN Fuzzy 5-NN

Letters

t-test 3.78e-6 1.35e-7 8.97e-7
sign test 1.95e-3 1.95e-3 1.95e-3
signed rank test 1.95e-3 1.95e-3 1.95e-3
maximum test 1.95e-3 1.95e-3 1.95e-3

Digits

t-test 4.27e-3 1.72e-5 1.41e-3
sign test 2.38e-1 9.63e-2 2.38e-1
signed rank test 7.32e-4 2.44e-4 4.88e-4
maximum test 9.77e-4 2.44e-4 4.88e-4

COIL-20

t-test 2.12e-1 7.61e-1 8.55e-1
sign test 3.32e-1 5.49e-1 8.56e-1
signed rank test 5.18e-3 1.00e+0 4.71e-1
maximum test 7.81e-3 1.00e+0 1.00e+0

Table 12.7: Results of the significance tests for the different data sets on the test data
comparing the Dempster-Shafer (DS) method and the decision tree method (DT) for the
radial basis function network (RBF) and fuzzy k-nearest neighbour classifier (k-NN) on
manually generated hierarchies. The table gives the calculated p-values. If a significant
difference at the significance level α = 5% could be observed the corresponding p-values
are coloured in light grey. The significance tests indicate that the evidence theoretic
approach shows significantly better classification performance or yields approximately
the same classification results as the decision-tree approach.

12.2. Hierarchy Evaluation 139

performance is looked at. Therefore two almost identical classifier hierarchies are
compared where only the root node classifiers differ insofar that one classifier has
a considerably lower classification performance.

Figure 12.6: Mean error rates for for the COIL-20 data sets on the test data com-
paring the Dempster-Shafer (DS) method and the decision tree method (DT) utilising
RBF networks regarding their classification performance when having a weak classifier
(weak) assigned to the root node of the hierarchy compared the a hierarchy with a normal
classifier (normal) assigned to the root node.

Data Weak Normal
DS DT DS DT

COIL-20 5.14± 1.91% 10.20± 2.47% 3.24± 1.52% 4.38± 1.71%

Table 12.8: Mean error rates on the test data comparing normally generated hierar-
chies (normal) and hierarchies with weak root nodes (weak) utilising RBF networks.
The classification performance of the normal hierarchy is significantly higher than the
classification performance of the weakened hierarchy for both retrieval strategies the
evidence theoretic approach and the decision-tree approach. The evidence-theoretic ap-
proach however is much more robust against weak classifiers at high levels of the hier-
archy.

Figure 12.6 depicts the classification performance as error rates by means of box-

140 Chapter 12. Statistical Evaluation

plots and error-bars. The mean classification errors as well as the results of the
statistic significance tests are listed in the tables 12.8 and 12.9 respectively.

This experiment shows that when using the decision-tree approach the classifica-
tion performance is highly degraded when the classifier at the root node shows
a weak classification performance. The evidence theoretic approach is affected
much less and clearly outperforms the decision tree approach.

Data t-test sign test signed rank
test

maximum test

COIL-20
normal DS
vs DT

2.58e− 2 5.80e− 13 3.95e− 10 7.81e− 3

COIL-20
weak DS
vs DT

1.90e− 8 3.16e− 28 5.70e− 18 1.26e− 29

COIL-20
DT normal
vs weak

1.39e− 10 6.31e− 30 8.07e− 18 6.31e− 30

COIL-20
DS normal
vs weak

5.10e− 4 5.78e− 19 9.62e− 16 1.06e− 22

Table 12.9: Results of the significance tests for the COIL-20 data set on the test data
comparing normally generated hierarchies and hierarchies with weak root nodes utilising
RBF networks and the evidence theoretic retrieval strategy as well as the decision-tree
retrieval strategy. The table gives the calculated p-values. If a significant difference at
the significance level α = 5% could be observed the corresponding p-values are coloured
in light grey. The significance tests indicate that there are significant differences between
the classification results when comparing the two different hierarchies as well as when
comparing the two different retrieval strategies on both hierarchies.

12.2.3 Evaluation of the Retrieval Strategy Utilising Sim-
ilarity Preserving Sparse Codes

In order to evaluate the fusion strategy utilising similarity preserving sparse codes
generated from the classifier hierarchies 10-times 10-fold cross-validation exper-
iments have been performed on the fruits data set and on the COIL-20 data
set. The classifier type used were RBF networks and orientation histograms with
m = 3 and b = 8 were deployed as feature type.

The experiments should compare the classification results when utilising selected
strategies for generating codes from the classifier hierarchy. The main focus of

12.2. Hierarchy Evaluation 141

the experiments was the comparison between codes generated from the activation
of the hidden layer and codes generated from the activation of the output layer.
As the different techniques for controlling the sparseness are equivalent they were
not subject to the experiments.

Depending on the specific problems different learning strategies for the associative
memories yield the best classification results. The dependencies of the input data
is likely to be responsible for this behaviour as the input data are not independent,
but so far the theory of associative memory only studied the case of independent
input data. As this topic is out of scope of this thesis in the following the learning
strategy that yield the best classification results has been chosen without further
looking into the reasons for this behaviour. In the majority of cases the additive
learning strategy that restrains the accumulation of the synaptic weights following
the geometric series showed the best classification performance.

Figure 12.7: Mean error rates for the COIL-20 data set and the fruits data set on the
test data for the different inter-state decision template retrieval strategies. Two different
variants of the similarity preserving sparse binary codes (CA) either use the activation
of the hidden or the output layers of the neural classifiers within the hierarchy. As
classifier radial basis function networks were used. The box plots as well as the error
bars indicate that usage of the codes generated from the hidden layer yields considerably
better results.

The results of the experiments are depicted in figure 12.7 by means of box plots
and error bars. The experiments show that the codes generated from the hidden
activation yield a considerably higher classification performance or show at least
the same classification performance. This is likely due to the fact that more
information is contained in the activation of the hidden layer and that due to
the higher number of neurons in the hidden layer the corresponding code is much
more sparse.

142 Chapter 12. Statistical Evaluation

12.2.4 Evaluation of the Inter-State Decision Template
Approach

Within the context of this work two different types of inter-state decision tem-
plates as fusion strategies were developed. They differ only in the kind of neural
activation they use. One variant utilises the activation of the neurons in the hid-
den layers of the neural classifiers and the other variant utilises the activation of
the output layers.

The two variants were evaluated on two data sets, namely the fruits data set
and the COIL-20 data set, by conducting 10-times 10-fold cross-validation exper-
iments. As feature types orientation histograms (see chapter 11) with m = 3 and
b = 8 were used.

Figure 12.8: Mean error rates for the COIL-20 data set and the fruits data set on
the test data for the different inter-state decision template retrieval strategies. The two
different variants of the inter-state decision templates (IS) either use the activation
of the hidden or the output layers of the neural classifiers within the hierarchy. As
classifier radial basis function networks were used. The box plots as well as the error
bars indicate that usage of the activation of the output layer yields considerably better
results.

Figure 12.8 charts the classification results of the two variants by means of box
plots and error bars. The variant utilising the activation of the output layers
clearly outperforms the variant utilising the activation of the hidden layers on
the tested data sets. The former variant even yields very good classification
results.

12.3. Adaptive Incremental Learning of Novel Classes 143

12.3 Adaptive Incremental Learning of Novel

Classes

By means of classification experiments the suitability of hierarchical neural net-
works for extension was examined. It could be verified that new classes which
are only represented by a few samples can be learnt sufficiently well in moderate
time and whether it is possible to learn new classes without negatively affecting
the classification performance of already learnt classes. It is also looked at the
positions were the newly learnt classes are inserted into the hierarchy. Are new
classes added at arbitrary positions or can accumulations be observed? Another
question to be evaluated is whether it is possible to incrementally learn the hier-
archy from scratch while achieving sufficient classification quality. The differences
between incrementally generated and hierarchies generated at a stroke are also
looked at.

To evaluate these question the following experiments were conducted with RBF
classifiers on the COIL-20 data set using orientation histograms with m = 3 and
b = 8 as feature type.

12.3.1 Extension of Existing Hierarchies by Adaptive In-
cremental Learning

The first experiment added an unknown class to an already trained hierarchy.
For this experiments 10 classes of the 20 classes of the COIL20 data set were
chosen to represent the familiar objects. The remaining 10 classes formed a pool
of potentially new objects. The first 10 classes were used to generate and train
hierarchies in a 10-times 10-fold cross-validation experiment. To train the hier-
archy sophisticated learning algorithms were used. Here the three-phase learning
for RBF networks was used. The hierarchy structure was held constant for rea-
sons of comparability while the hierarchy training was subject to cross-validation.
This means the same hierarchy was trained 10×10 times resulting in 100 trained
hierarchies. These trained hierarchies for the classification of the first 10 classes
formed the basis for the incremental learning experiments. To each of these hier-
archies one of the remaining 10 classes is added utilising the proposed incremental
learning approach resulting in 10× 10× 10 hierarchies each classifying 11 classes.
The number of samples for the added classes is considerably lower than the num-
ber of the classes used to generate and train the hierarchy in the first instance.
For the incremental learning 10 samples of the unknown class were used compared
to 64 to 65 samples (depending on the specific cross-validation run) of the other
classes. In the test data set all classes are represented with the same number of
samples.

144 Chapter 12. Statistical Evaluation

In these experiments the position within the hierarchy to which the respective new
class was added is looked at. In order to validate whether the previously learnt
classes were negatively affected, the classification accuracies of the individual
classes in the hierarchies trained with 10 and with 11 classes are compared.

Figure 12.9: Classifier hierarchy generated for the classification of 10 classes of the
COIL20 data set using orientation histograms as feature type. Each node within the
hierarchy represents a neural network which is used as a classifier. The end nodes
represent classes. To each node a feature type and a set of classes is assigned. The
corresponding neural network uses the assigned feature type to discriminate between the
assigned classes. The highlighted path shows the nodes activated during the classification
of a sample that is classified as class 8.

The overall classification results of this approach were compared to the results
achieved with a alternative approach for incrementally learning novel classes dur-
ing run-time. This approach requires a complete rebuild of the hierarchy. The
hierarchy is generated and trained using the samples of the old classes and the
new class coinstantaneously. Thus each hierarchy is trained with 11 classes also
resulting in 10 × 10 × 10 hierarchies. For the cross-validation experiments the
same partition was used as for the experiment evaluating the incremental learn-
ing approach. As the time is a crucial factor only fast learning algorithms for the
training of the individual classifiers such as the two-phase learning scheme can
be applied.

Despite the usage of a fast training procedure this approach shows a higher com-
putation time than the incremental learning approach as the hierarchy needs to
be generated and all classifiers have to be trained. The incremental learning
approach leaves the majority of the classifiers unchanged and only a few clas-
sifiers need to be adjusted. The advantage of the rebuilding approach is that
all classes can be considered when building the hierarchy structure and thus an
optimal structure can be determined, but the higher computation time as well as
the simple training algorithm are disadvantageous. In contrast the incremental

12.3. Adaptive Incremental Learning of Novel Classes 145

Figure 12.10: Error rates for the incremental learning of novel classes.

learning approach shows the advantages that a large part of the classifiers, that
are trained using a sophisticated training scheme such as three-phase learning,
remains unchanged and that only a few classifiers have to be retrained resulting
in faster computation time. A drawback is the fact that contingently not the
optimal hierarchy structure is identified as no restructuring of the hierarchy is
allowed for.

Figure 12.11: Positions of the added novel classes. For each of the 10 × 10 cross-
validation experiments conducted for each of the new classes 10 to 19 a leaf was added
to different nodes of the classification hierarchy. For each new class is shown in percent
to which node the corresponding leaf was added.

Both approaches showed essentially the same classification quality. Despite being
less extensive the incremental learning approach achieved the same results. Figure
12.10 visualises these results as box plots. Table 12.10 gives the mean error rates
for both approaches utilising the decision-tree and the evidence theoretic retrieval
strategy. The results of the statistical significance tests are listed in table 12.11.

146 Chapter 12. Statistical Evaluation

The results of the significance tests indicate that there is no significant difference
between the classification results of the two approaches.

Data Incremental Rebuild

COIL-20 4.43± 3.02% 4.13± 3.68%

Table 12.10: Mean error rates on the test data comparing the incremental learning
approach and the rebuild approach for adding one class utilising RBF networks. Both
approaches yield approximately the same error rates.

The confusion matrix for the incremental learning experiments displayed in figure
12.12 shows that although being represented by a significantly lower number of
samples the classification rates of the new classes is equal to the classification
rates of the primarily learnt classes.

Data t-test sign test signed rank
test

maximum test

COIL-20 0.8689 3.11e− 6 0.2795 0.0625

Table 12.11: Results of the significance tests on the test data for comparing the incre-
mental learning approach and the rebuild approach for adding one class utilising RBF
networks and the evidence theoretic retrieval strategy. The table gives the calculated p-
values. If a significant difference at the significance level α = 5% could be observed the
corresponding p-values are coloured in light grey. The significance tests indicate that no
significant differences between the classification results of the two different approaches
can be observed. Both approaches show essentially the same performance.

Having a look at the positions within the hierarchy were the new classes were
added, it could be found that in the most instances a class was mainly assigned
to one node. If this is not the case then at least the class was added to nodes
lying on the same path of the hierarchy as can be observed for class 13. The
only exception to this is class 11, which is distributed over different pathes of the
hierarchy. This might result from deficient resemblance between class 11 and the
10 classes used to train the hierarchy. Figure 12.11 illustrates for each new class
how often it was added to which node of the hierarchy shown in figure 12.9.

These results show that the new classes are not added arbitrarily to the hierarchy
but for each class preferred positions emerge. The noticeable frequency of node
8 is likely to be a characteristic of the COIL20 data set.

12.3.2 Incrementally Building Classifier Hierarchies

In a second experiment the question regarding the ability to incrementally build
hierarchies from scratch was addressed. For this experiment each of the 20 classes

12.3. Adaptive Incremental Learning of Novel Classes 147

Figure 12.12: Confusion matrix for the experiments utilising incremental learning.

was consecutively added to the hierarchy using the incremental learning approach
of adding new nodes. The classification accuracies of the resulting hierarchies was
compared to the classification results of hierarchies generated and trained with all
20 classes at once and using a fast learning algorithm. As the hierarchy structure
generated by means of the incremental learning approach depends on the order
the classes added, the experiments were conducted with several different orders
of the classes. Figure 12.13 charts the mean error rates by means of box plots
and error bars. Table 12.12 lists the mean error rates and table 12.13 gives the
results of the significance tests.

Figure 12.13: Mean error rates for the incremental learning of novel classes from
scratch.

The rebuild approach shows better performances in all experiments, but the in-
cremental approach still shows good classification results. The superiority of the
rebuild approach is likely to be due to the fact that all information is available at
once which facilitates the generation of a hierarchy optimally adapted to the data
at hand. The hierarchy generated by the incremental approach is influenced by
the order of the added classes and can only adapt the hierarchy to the sofar learnt
data. Nevertheless it is possible to incrementally build classifier hierarchies with
sufficient classification performance. When applying this approach in the robotic

148 Chapter 12. Statistical Evaluation

field this is satisfactory to begin with. Nevertheless it is possible to retrain or
even rebuilt the hierarchy in a longer intermission.

Data Incremental Rebuild
DS DT DS DT

Order 1 9.24± 3.53% 12.81± 4.87% 6.28± 2.41% 7.80± 2.58%
Order 2 9.65± 4.00% 11.11± 3.63% 6.28± 2.41% 7.80± 2.58%
Order 3 9.89± 3.76% 11.10± 3.47% 6.28± 2.41% 7.80± 2.58%
Order 4 10.04± 3.84% 12.78± 4.31% 6.28± 2.41% 7.80± 2.58%

Table 12.12: Mean error rates for the different class orders on the test data comparing
the incremental learning approach and the rebuild approach utilising RBF networks.
The average error rates of the rebuild approach are lower than the error rates of the
incremental learning approach and do not depend on the order of the class items.

Data t-test sign test signed rank
test

maximum test

Order 1 0.0248 5.15e− 9 2.08e− 10 7.28e− 12
Order 2 0.0415 1.18e− 9 1.01e− 9 2.38e− 7
Order 3 0.0079 4.03e− 12 2.95e− 12 7.45e− 9
Order 4 0.0124 7.38e− 12 1.69e− 12 3.05e− 5

Table 12.13: Results of the significance tests for the different class orders on the test
data comparing the incremental learning approach and the rebuild approach utilising
RBF networks and the evidence theoretic retrieval strategy. The table gives the cal-
culated p-values. If a significant difference at the significance level α = 5% could be
observed the corresponding p-values are coloured in light grey. The significance tests
indicate that significant differences between the classification results of the two differ-
ent approaches can be observed for all orders. The rebuild approach outperforms the
incremental approach with respect to classification performance.

12.4 Features for 3D-Object Recognition

The following section examines the suitability of different feature types (see chap-
ter 11) for 3D-object recognition. The features were extracted from different
data sets and were evaluated utilising non-hierarchical nearest-neighbour classi-
fiers. The data sets used are the fruits data set, the COIL-20 data set and the
COIL-100 data set (see chapter 10).

12.4.
F
eatu

res
for

3D
-O

bject
R
ecogn

ition
149Figure 12.14: Classification results for different features extracted from images of the fruits data set. The features were extracted

from the previously identified regions of interest.

150 Chapter 12. Statistical Evaluation

Before extracting the features from the fruit data set the objects were localised
within the image using a simple colour-based attention control mechanism [38].
From the so identified regions of interest which contained the fruits the features
were extracted. On the COIL-20 data set also regions of interest were determined
for the feature extraction. For the COIL-100 data set the features were extracted
from the complete image, i.e. the regions of interest are identical to the image,
as the objects almost fill the complete image.

Figure 12.15: Usage of the different features extracted from images of the fruits data
set within classifier hierarchies. The features were extracted from the previously identi-
fied regions of interest.

Not all feature types could be extracted from all data sets as e.g. feature types
based on colour information are not very meaningful for grey scale images, for
other features it is necessary to first localise the object of interest as the features
are calculated from a binary image defining the object pixels. If applicable the
features were extracted utilising a division of the regions of interest into over-
lapping subimages. Divisions into 1 × 1, 2 × 2, 3 × 3 and 4 × 4 subimages were
used.

12.4.
F
eatu

res
for

3D
-O

bject
R
ecogn

ition
151Figure 12.16: Classification results for different features extracted from images of the COIL-20 data set. The features were

extracted from the previously identified regions of interest.

152 Chapter 12. Statistical Evaluation

The different features were evaluated on the three data sets using k-nearest neigh-
bour classifiers with k = 1, 3, 5 as well as fuzzy k-nearest neighbour classifiers with
k = 3, 5. For the evaluation 10-times 10-fold cross-validation experiments were
conducted with each classifier for each feature type on each data set. For each
data set the results of the individual classifiers are used to rank the different fea-
ture types according to their respective classification accuracy. The ranks of the
different data sets averaged over the individual classifier performances are then
compared to each other in order to assess the different feature types and their
suitability for the classification of three-dimensional objects.

Figure 12.17: Usage of the different features extracted from images of the COIL-20
data set within classifier hierarchies. The features were extracted from the previously
identified regions of interest.

The figures 12.14, 12.16 and 12.18 show the classification results for the individual
feature types on the different data sets averaged over the different classifiers. The
feature types are sorted according to their average classification performance and
are ranked accordingly. For the detailed information on the error rates and ranks
see appendix A.

Although the error rates for the different classifiers vary per feature type, the
ranks, i.e. the relative order of the feature types with respect to the achieved clas-

12.4. Features for 3D-Object Recognition 153

sification performance, remain mainly constant per feature type. Similar rankings
of the feature types can be observed across the different data sets.

The classification results indicate that the complex, high-dimensional feature
types are suitable for the recognition of three-dimensional objects as represented
in the test data sets since these feature types show continuously high classifi-
cation performances in all experiments conducted. The colour histograms fol-
lowed by the different types of orientation histograms showed the best classifica-
tion results. Feature types also showing good classification results are wavelets,
orientation-curvature histograms and curvature histograms. The classification re-
sults achieved with simple, low-dimensional feature types are considerably lower
compared to the other feature types. These feature types are presumably not
complex enough in order to facilitate the discrimination of the nontrivial objects
the used data sets comprise.

The figures 12.15 and 12.17 show the frequency of usage of the different feature
types within automatically generated hierarchies.

The feature types used were primarily complex feature types showing at least good
classification results when tested separately. The simple feature types that are
characterised by low classification performance were generally not used. The only
exception is the mean colour information which was selected frequently and the
geometric feature type compactness which was selected exceptionally. This result
substantiate the appropriateness of the feature selection mechanism included in
the hierarchy generation.

154
C
hapter

12.
S
tatistical

E
valu

ation

Figure 12.18: Classification results for different features extracted from images of the COIL-100 data set. The features were
extracted from the complete images.

12.5. Discussion 155

12.5 Discussion

Within the scope of this thesis several fusion strategies that yield considerable
classification performance were developed. The most promising strategies were
the evidence-theoretic approach, the fusion strategy analogous to decision trees,
the inter-state decision templates and the approach utilising similarity preserving
codes where the decision tree like retrieval strategy yields slightly lower classifica-
tion results but is less expensive with regards to computation time. The results
achieved by means of the simple voting strategy and the approach taking only
the end nodes into account were considerably lower than the results obtained by
the other fusion strategies.

When directly comparing the two approaches the evaluation of the classifier hi-
erarchy by means of Dempster-Shafer evidence theory yields improved or at least
the same classification results compared to the simple decision-tree-like evaluation
method on all data sets used and with all classifier types deployed. Hierarchies
automatically generated show more stable results than manually generated hi-
erarchies, but the manually hierarchies also show good results. It could also be
shown that the evidence-theoretic approach is more robust against weak classifiers
at higher levels of the hierarchy.

It could be shown that the incremental learning of novel classes proved functional.
If only a small number of new classes are added the performance of the incremental
learning approach can be compared with the rebuild approach. If the complete
hierarchy is built incrementally the rebuild approach outperforms the incremental
approach as the availability of the complete data during the construction phase
facilitates a more reasonable generation of the hierarchy.

The more complex feature types proved more suitable for the recognition of three-
dimensional objects than the simple feature types. The colour histograms con-
sistently showed the best classification results. The different types of orientation
histograms also yield respectable results. These observations are also underpinned
by the fact that during the hierarchy generation primarily the strong feature types
are chosen and the weak feature types are scarcely selected.

Part IV: Discussion

This part summarises the main findings of this thesis,
compares the proposed method to related approaches
and discusses the developed approach.

157

13 Summary

Hierarchical neural network classifiers form the basis of the research presented
in this work. Different aspects of hierarchical classifiers were evaluated. These
aspects include the hierarchy generation, the selection of suitable features, the
hierarchy training, the fusion of information within the hierarchy for retrieving
the final classification result, the detection of outliers, the incremental extension
of classifier hierarchies and the generation of similarity preserving sparse binary
codes from the hierarchy. Another aspect investigated was the recognition of
three-dimensional objects by means of hierarchical classifiers and the suitability
of different feature types for this purpose.

A method for generating classifier hierarchies and selecting appropriate features
utilising unsupervised clustering has been proposed within the scope of this work.
The generation strategy yields balanced hierarchies that show good classification
performance and exhibit a reasonable choice of features. The concurrent usage of
several feature types within a classifier hierarchy is also a notable characteristic
of the developed approach.

A main focus of the work at hand is the information fusion utilising the Dempster-
Shafer theory of evidence. This strategy yields excellent classification results and
continuously shows a higher classification performance than the simple strategies
such as the decision tree like method, the voting scheme strategy and the approach
only considering the end nodes. Moreover the availability of estimates for the class
memberships of the individual classes and even of the possible sets of classes is a
valuable by-product.

Two other very promising fusion strategies were developed within the scope of
this thesis, namely the inter-state decision template method and an approach
utilising similarity preserving codes generated from the classifier hierarchies. Both
methods show a considerable classification performance.

Not only within this context, but also in connection with the integration of the
proposed approach into a comprehensive cortical model consisting of associative
memories the generation of similarity preserving sparse binary codes from hier-

159

160 Chapter 13. Summary

archical neural network classifiers plays an important role. This thesis proposes
several strategies to generate such codes which can be applied according to the
specific requirements of the task at hand.

Another important aspect of hierarchical neural network classifiers examined in
the context of this work is the adaptive incremental learning of novel classes. Two
slightly different approaches for the incremental extension of classifier hierarchies
have been proposed and successfully deployed. The approaches facilitate the
learning of new objects during run-time in moderated time yielding appropriate
classification results.

The general applicability of the approach could be shown by deploying different
types of classifiers as well as evaluating the approach on data sets from different
domains. Furthermore the approach has successfully been implemented on a
mobile service robot. The hierarchies can be adjusted to a given classification
task either by manually generating the hierarchy accordingly or by adapting the
validation function underlying the hierarchy generation process.

As this thesis is concerned with the recognition of three-dimensional objects fea-
ture types suitable for this task are another noteworthy aspect of this work.
Various feature types for representing three-dimensional objects have been ex-
amined in detail. The most promising feature types were colour histograms and
orientation histograms.

14 Main Contributions

In this chapter the main contributions and findings of this thesis are specified fol-
lowing loosely the working hypotheses (see section 1.3) which formed the starting
point of this work.

The contributions were no publications emerged from are either supplemental
investigations or recent studies.

C1: Application of divide-and-conquer strategy to classifier fusion in-
corporating multiple feature types

The thesis introduces a new method for generating suitable classifier hierarchies
employing unsupervised clustering methods. This method performs a coarse to
fine output space decomposition with coinstantaneous feature selection [24]. The
hierarchies generated utilise multiple feature types. The coinstantaneous usage
of a large number of feature types separates the proposed approach from other
methods. Moreover a strategy for the robust identification of unknown classes
has been developed. Another notable characteristic is the universal applicability
of the proposed approach with regards as well to the objects to be classified as
well as the classifiers and feature types to be used. The classifier hierarchies show
a number of benefits such as the availability of intermediate results, easy extensi-
bility and enhanced controllability of complex classification tasks by subdividing
the problem.

C2: Different Methods for the Evaluation of Hierarchical Neural Net-
work Classifiers

The approach developed provides several strategies for the retrieval of the com-
bined classification result out of the individual classifier results within the hierar-
chy. These strategies were developed, implemented and evaluated. The following

161

162 Chapter 14. Main Contributions

methods for fusing the classifier results were developed:

• Retrieval analogous to decision trees [24] [26] [27]

• Combining classifier results via Dempster-Shafer evidence theory [26] [27]

• Evaluating results of end node classifiers

• Using a simple voting scheme

• Classifying sparse binary codes generated from the classifier hierarchy by
means of associative memories

• Inter-state decision templates

The evidence theoretic approach, the inter-state decision template method, the
fusion strategy utilising sprase binary codes adn the decision tree like approach
continuously showed good classification results whereas the classification results
of the voting scheme and the end node evaluations were considerably weaker.

The usage of the evidence theory framework for fusing information within clas-
sifier hierarchies is a central point of this thesis and is an innovation compared
to other approaches which only use the belief theory to fuse singe classifiers or
classifiers that provide hierarchical output.

C3: Applying Dempster-Shafer Evidence Theory to Hierarchical Neu-
ral Network Classifiers

In the context of this thesis several theories for handling uncertainty have been
examined, compared and assessed regarding their suitability when applied to hi-
erarchical neural network classifiers. The belief theory was chosen above the other
approaches as it offers the possibility to assign belief to hypotheses that are not
part of the universe of discourse, i.e. it allows for dealing with unknown objects.
Moreover within this framework it can be distinguished between uncertainty and
ignorance and belief does not need to be particularised if no information is avail-
able for doing so.

The experiments performed within the scope of this work show that the Dempster-
Shafer theory of evidence is suitable for the application to hierarchical neural
classifier hierarchies. It is used to fuse the information provided by the individual
classifiers to a common result. This fusion method does not only provide the
resulting class but also an estimate of the class memberships of the samples to
be classified. The classification performance of this evidence theoretic approach
outperformed in all tested cases the performance of the straightforward approach
of retrieving the classification results analogue to decision trees [26] [27].

163

C4: Adaptive Incremental Learning of Novel Classes

The thesis proposes two strategies for incrementally extending the classifier hier-
archies. The new classes can either be added as new leaves or as new nodes. The
latter approach allows for expanding the hierarchy structure, i.e. the hierarchy
can evolve in depth, and thus facilitates the incremental generation of hierarchies.
Furthermore a strategy for the incremental adaptive training of RBF networks
has been developed. These strategies facilitate the learning of novel classes during
run-time in adequate time and with sufficient classification quality without con-
siderably negatively impacting the classification quality of the previously learnt
classes [25]. Moreover hierarchies can completely be learnt incrementally.

The ability of learning new classes during run-time is an important capability for
autonomous mobile robots employed in real-world environments. The function-
ality of the incremental learning strategy could not only be proved in statistical
experiments but also by successfully implementing the proposed approach on a
robot.

C5: Generation of Distributed Similarity Preserving Sparse Codes

The thesis introduces diverse concepts for generating distributed visual similarity
preserving sparse codes from hierarchical neural network classifiers. These codes
are either generated from the activation of the hidden layer of the individual
classifiers within the hierarchy or from their output activation. Also different
methods for controlling the sparseness of the code vectors have been employed.
Moreover information provided by the classifiers such as classification quality or
the overall classification result have been incorporated.

The so generated codes could successfully be employed for classification with
associative memories or non-hierarchical nearest-neighbour classifiers.

C6: Evaluation of Different Features for 3-D Object Recognition

Within the scope of this thesis several feature types for the recognition of three-
dimensional objects were either employed or developed and their suitability for
the recognition of three-dimensional objects from two-dimensional camera images
was investigated. The following feature types were used:

• Orientation histograms utilising the Sobel edge detector

• Orientation histograms utilising the Canny edge detector

• Colour-based orientation histograms on the different channels of the opponent-
colour system

164 Chapter 14. Main Contributions

• Curvature histograms

• Orientation-curvature histograms

• Colour histograms

• Wavelet coefficients

• Mean colour values (HSV)

• Geometric features

• Invariant Hu moments

For a preliminary evaluation of the different feature types non-hierarchical nearest-
neighbour classifiers were used. On the data sets used where the features are ex-
tracted from a previously identified region of interest eliminating as much of the
background as possible the high-dimensional histogram-based feature types such
as colour histograms and the different orientation histogram feature types showed
the best performance, whereas the low-dimensional features such as geometric fea-
tures, invariant hu moments and mean colour values continuously showed weak
performance.

When utilised within classifier hierarchies feature types that show good clas-
sification results are selected preferentially. The usage of a variety of diverse
feature types distinguishes the proposed approach from other object recognition
approaches.

C7: Implementation and Integration of the Developed Approach on a
Robot

In order to show the feasibility and the operability of the proposed approach it has
been integrated into a comprehensive cortical model and has been implemented
on an autonomous mobile robot [23] [41]. The robot’s functionality was inter alia
presented on a NeuroBotic workshop [22].

15 Comparison of Hierarchical
Classification Approach With

Related Approaches

This chapter relates the approach developed within the context of this thesis to
related research fields.

15.1 Related Work

The thesis at hand is related to varying degrees to the fields of pattern recognition,
classifier fusion and uncertainty theory. In the following a choice of approaches
of these fields is described.

In current literature there is much evidence for the usefulness of hierarchical ap-
proaches as well as the incorporation of uncertain knowledge in object recognition.

15.1.1 Hierarchical Classification Approaches

Object recognition is a well known problem in current literature. There are many
approaches to classify objects from images. There are various approaches for
three-dimensional object recognition e.g. [8] [49]. A biologically motivated ap-
proach emphasising the categorisation aspect is described in [68] [42] [76]. A
hierarchical image representation that is scale and translation invariant is ob-
tained by hierarchically building complex cells from simple cells. The so derived
representation is then used to perform diverse object recognition tasks such as
identification and categorisation.

Multiple classifier systems for 3D-object recognition are described in [1] [40].
These architectures are serial multiple classifier systems exploiting hierarchical
output coding. It has been shown that improved recognition performance could be
achieved by decomposing the decision process into several stages utilising coarse

165

166 Chapter 15. Comparison With Related Approaches

to fine classification. These approaches rank among model-based object recog-
nition [66]. The approach presented in this paper is not model-based, but it
classifies objects from single views. Poggio et. al. used a radial basis function
network architecture for view-invariant object recognition [65]. An appearance-
based approach to object recognition using colour, shape and texture histograms
and a feed-forward neural network is presented in [54] [55]. Fairly expensive
features are used in this approach. Objects are not localised before classifica-
tion. Nayar and Murase describe in [59] [60] another appearance-based object
recognition approach which comprehends image segmentation, feature extraction
and appearance matching utilising splines and radial basis function networks for
object classification. Eigenspace representations are used as features.

As the decomposition of problems into simpler sub-problems features advantages
such as effectiveness and efficiency in learning and interpretability modular learn-
ing has attracted much interest recently. There are various ways of dividing a
problem into less complex sub-problems. One possible way is a partitioning of
the output space. In [46] [47] a hierarchical decomposition of a multi-class prob-
lem into several two-class problems is performed utilising Fisher discriminant
analysis in combination with a deterministic annealing process. The grouping
of the classes is based on the class distributions resulting in a binary tree ar-
chitecture. Simple Bayesian classifiers are used to solve the sub-problems. The
approach is applied to the problem of categorising landcover using hyperspectral
data. Instead of Bayesian classifiers support vector machines are used in [67].
The approach has been evaluated on several pattern recognition problems. An
alternative method for the decomposition of the output space is applied in [14].
A max-cut algorithm is successively applied in order to find those class partitions
that have a maximal distance. As classifiers support vector machines are used.
Another approach for building a hierarchical binary tree classifier architecture is
proposed in [15] where a self-organising map is trained in the kernel space where
classification by the deployed support vector machines takes place. On the basis
of the trained self-organising map the class grouping is determined by identify-
ing the grouping that maximises the inter-group distance while minimising the
intra-group variance. In this architecture no disjoint partitioning of the classes is
forced, but overlaps are allowed and are shown to improve the performance.

In [39] [74] [77] examples of object recognition approaches developed and investi-
gated within our department are presented. The hierarchical approaches showed
encouraging results. The approaches differ in particular with respect to the way
the classifier hierarchy is generated and the kind of features and classifiers used
within the hierarchy.

15.1. Related Work 167

15.1.2 Classification Approaches Utilising Dempster-Shafer
Evidence Theory

Dempster-Shafer evidence theory has been applied to classifier fusion in numerous
applications for pattern recognition.

Dempster-Shafer theory was used for multiple classifier fusion in [51]. This ap-
proach uses prototype-based classifiers and calculates belief functions from dis-
tance measures of different classifiers which are then combined utilising Dempster-
Shafer evidence theory. As distance measures the inter-class-distances and intra-
class-distances were used. The approach was evaluated in the field of online script
recognition.

In [87] classification rates, misclassification rates and rejection rates were used
to derive basic probability assignments. Dempster’s combination rule is applied
to combine the evidences. This approach considers an extra class representing
unknown classes or ignorance and it assigns belief to singleton hypotheses, their
complement and to the universal proposition Ω. In contrast to the method de-
veloped in this thesis the classifiers used in [87] only have class labels as output
and do not produce information that can be interpreted as class memberships or
other measurements. The approach was applied to the problem of recognising
handwritten numerals and scored well compared to other approaches.

A technique closely related to decision templates [48] is used to calculate degrees
of belief in [70]. The distances between the classifier outputs for the sample to
be classified and the mean classifier outputs calculated on the training samples
are transformed into basic probability assignments. The so calculated evidences
are then combined using the orthogonal sum. Several experiments in the field of
digits and character recognition have been conducted to test this method and it
was also part of the experimental comparison of the decision templates approach
for classifier fusion to other well-established methods in [48] where it compared
favourably well.

In [2] this approach has been varied by using reference outputs adapted to the
training data so that the overall mean square error is minimised instead of simply
using the mean classifier outputs.

Dempster-Shafer evidence theory is used to combine the normalised outputs of
multiple classifiers and to reject samples in case of highly conflicting information
in [82].

If at all, these approaches only exploit the possibility to allocate evidence to
non-atomic hypotheses by assigning masses to atomic hypotheses θi and to their
not necessarily atomic complement θi or to the frame of discernment Ω. The
approach presented in this work utilises the possibility to also assign masses
to sets of hypotheses as the classifier hierarchy naturally provides classification

168 Chapter 15. Comparison With Related Approaches

results for sets of classes.

In [58] expert knowledge about the domain of application, namely the detection of
anti-personnel mines, is used to calculate basic probability assignments not only
for atomic hypotheses but also for composite hypotheses. Hence this approach is
rather specific and less general than the proposed approach.

An approach based on [87] for the fusion of multi-level decisions utilising the
transferable belief model is proposed in [56]. In this method a classifier ensemble
is used where the individual classifiers each provide decisions in a hierarchical
decision space, i.e. their decisions can either be a single class, a set of classes or
a rejection. The hierarchy spanning the decision space is either given or can be
build on the basis of the confusion matrix. Like in [87] the classifiers used are
abstract level classifiers providing only class labels as classification result. The
basic probability assignments are therefore calculated from a confusion matrix
determined on a training data set. This approach a classifier ensemble instead
of a classifier hierarchy and does not incorporate the strength of the classifier
responses that provide information on the degree of class membership.

15.1.3 Incremental Learning Approaches

An example for an incremental learning approaches are Adaptive Resonance
Theory (ART) networks. ART networks [35] [13] allow for online learning of
evolving data sets. If a presented sample is similar enough to an learnt prototype
this prototype is adjusted to the sample, otherwise a new prototype is defined by
the sample. In the ARAM model [81] new classes can be learnt while preserving
previously learnt classes and so the stability-plasticity dilemma is regarded. How-
ever, ART networks are non-hierarchical networks and they consider new samples
one at a time, whereas in this work more than one sample is allowed for and the
resulting classifiers develop a hierarchical structure.

15.2 Classification of Work

The proposed approach provides general framework for pattern recognition. The
research presented in this thesis focused on the recognition of three-dimensional
objects as one possible domain of application. For the object recognition a view-
based approach was chosen. The majority of the feature types used were his-
togram based.

The presented approach is characterised inter alia by the usage of multiple feature
types, the general applicability of the approach and the ability to incrementally
learn new classes. Hence the the proposed approach in particular features versa-
tility.

15.2. Classification of Work 169

The application of the Dempster-Shafer evidence theory to hierarchical neural
network classifiers is another main subject matter. The evidence theory could
successfully be used for fusing the information provided by the individual classi-
fiers within the hierarchy. Hereby hierarchically structured information provided
by the single classifiers is combined resulting not only in evidence for the single
classes but also for the possible sets of classes.

16 Conclusions

The presented approach of hierarchical neural network classifiers was thoroughly
evaluated and substantially examined under miscellaneous aspects. The approach
proved functional and showed encouraging results and various advantages.

The approach offers a substantial universality: The developed classifier hierarchies
can be applied to diverse pattern recognition problems of variable size. Within
the hierarchies miscellaneous classifier types can be utilised and the usage of
various feature types is immanent. Thus classifier types and feature types can be
chosen according to the classification problem at hand. The hierarchy generation
can also easily be adapted to a given classification problem by varying the size
of the simple classification problems that the complex classification problem is
decomposed into or by adjusting the valuating function that forms the basis of
the hierarchy generation process. There is also the possibility of a customised
manual definition of the hierarchy structure.

For classifiers only applicable to binary classification problems such as support
vector machines it provides means to solve multi-class problems by splitting the
original classification problem into several binary classification problems. The
availability of intermediate results is especially beneficial when the classification
problem is deployed in order to fulfill certain task that only require coarse infor-
mation.

Hierarchical neural network classifiers compare favourably well to simple classi-
fiers. With regards to classification results they yield the same or even improved
performance. Within the context of this work several strategies for fusing the
individual classifier results in a classifier hierarchy were developed. The complex
fusion strategies such as the decision tree like approach, the evidence theoretic
approach and the approach utilising codes generated from the classifier hierarchy
consistently showed good classification performance.

Hierarchical neural network classifiers proved most suitable for the application of
the belief theory. The potentially uncertain information provided by the classifier
hierarchies could be processed adequately by the concepts offered by the belief

171

172 Chapter 16. Conclusions

theory resulting in a fusion strategy that yields constantly good classification
performance.

The generation of similarity preserving sparse binary codes is facilitated by hierar-
chical neural network classifiers. This allows for easy integration of the proposed
object recognition approach into comprehensive cortical models that are based
on associative memories.

The easy extendability of the classifier hierarchies makes them particulary suitable
for the application in environments where unfamiliar objects are likely to be
encountered as it is possible to incrementally learn new objects during run-time.

These advantages and capabilities make hierarchical neural network classifiers a
universal and promising approach that is applicable for various problem areas
and offers diverse possibilities for further enhancements.

Bibliography

173

Bibliography

[1] Alireza R. Ahmadyfard and Josef Kittler. A multiple classifier system ap-
proach to affine invariant object recognition. In James L. Crowley, Justus H.
Piater, Markus Vincze, and Lucas Paletta, editors, Computer Vision Sys-
tems, Third International Conference, ICVS, volume 2626 of Lecture Note
in Computer Science LNCS, pages 438–447, Graz, Austria, 2003. Springer.

[2] Ahmed Al-Ani. A new technique for combining multiple classifiers using
the dempster-shafer theory of evidence. Journal of Artificial Intelligence
Research, 17:333–361, 2002.

[3] B. G. Batchelor and B. R. Wilkins. Method for location of clusters of patterns
to initialize a learning machine. Electronics Letters, 5(20):481–483, 1969.

[4] Richard E. Bellman. Adaptive Control Processes. Princeton University Press,
Princeton, NJ., 1961.

[5] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 2000.

[6] Isabelle Bloch. Information combination operators for data fusion: A com-
perative review with classification. IEEE Transactions on Systems, Man and
Cybernetics - Part A: Systems and Humans, 26(1):52–67, 1996.

[7] Remco R. Bouckaert and Frank Eibe. Evaluating the replicability of signifi-
cance tests for comparing learning algorithms. In Honghua Dai, Ramakrish-
nan Srikant, and Chengqi Zhang, editors, Advances in Knowledge Discovery
and Data Mining, Proceedings of the 8th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, PAKDD 2004, Sydney, Australia, May
26-28, 2004, volume 3056 of Lecture Notes in Artificial Intelligence LNAI,
pages 3–12. Springer, 2004.

175

176 Bibliography

[8] R. Brooks. Model-based three-dimensional interpretations of two-
dimensional images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5:140–149, 1983.

[9] D. Broomhead and D. Lowe. Multivariable functional interpolation and
adaptive networks. Complex Systems, 2:321–355, 1988.

[10] Antony Browne and Ron Sun. Connectionist inference models. Neural Net-
works, 14(10):1331–1355, 2001.

[11] G. Buchsbaum and A. Gottschalk. Trichromacy, opponent colours coding
and optimum colour information transmission in the retina. Porceedings of
the Royal Socienty of London B Biological Science, 220(1218):89–113, 1983.

[12] John Francis Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI, 8(6):679–
698, 1986.

[13] Gail A. Carpenter and Stephen Grossberg. Adaptive resonance theory. In
Michael A. Arbib, editor, The Handbook of Brain Theory and Neural Net-
works, pages 87–90. MIT Press, Cambridge, 2nd edition, 2002.

[14] Yangchi Chen, Melba M. Crawford, and Joydeep Ghosh. Integrating support
vector machines in a hierarchical output space decomposition framework. In
IEEE International Geoscience and Remote Sensing Symposium, volume II,
pages 949 – 952, 2004.

[15] Sungmoon Cheong, Sang Hoon Oh, and Soo-Young Lee. Support vector
machines with binary tree architecture for multi-class classification. Neural
Information Processing - Letters and Reviews, 2(3):47–51, 2004.

[16] David M. Coppola, Harriett R. Purves, Allison N. McCoy, and Dale Purves.
The distribution of oriented contours in the real world. Proceedings of the
National Academy of Sciences USA, 95(7):4002–4006, 1998.

[17] József Dombi. A general class of fuzzy operators, the de morgan class of
fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy
Sets and Systems, 8:149–163, 1982.

[18] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
John Wiley & Sons, New York, 2nd edition, 2001.

[19] Sharon Duvdevani-Bar and Shimon Edelman. Visual recognition and catego-
rization on the basis of similarities to multiple class prototypes. International
Journal of Computer Vision, 33(3):201–228, 1999.

Bibliography 177

[20] Shimon Edelman and Sharon Duvdevani-Bar. A model of visual recognition
and categorization. Philosophical Transactions of the Royal Society London
(B): Biological Sciences, 352(1358):1191–1202, 1997.

[21] Peter W. Eklund and Anh Hoang. A comparative study of public domain
supervised classifer performance on the uci database. Australian Journal of
Intelligent Systems, 9(1):1–47, 2006.

[22] Rebecca Fay, Ulrich Kaufmann, Andreas Knoblauch, Heiner Markert, and
Gn̈ther Palm. Integrating Object Recognition, Visual Attention, Language
and Action Processing on a Robot Using a Neurobiologically Plaussible As-
sociative Architecture. In KI Workshop on NeuroBotics, Ulm, September
2004, 2004.

[23] Rebecca Fay, Ulrich Kaufmann, Andreas Knoblauch, Heiner MArkert, and
Gnther Palm. Combining visual attention, object recognition and associative
information processing in a neurobotic system. In Stefan Wermter, Günther
Palm, and Mark Elshaw, editors, Biomimetic Neural Learning for Intelligent
Robots. Intelligent Systems, Cognitive Robotics, and Neuroscience., volume
3575 of Lecture Notes in Computer Science LNAI, pages 118–143. Springer,
Berlin, Heidelberg, 2005.

[24] Rebecca Fay, Ulrich Kaufmann, Friedelm Schwenker, and Günther Palm.
Learning object recognition in an neurobotic system. 3rd IWK Workshop
SOAVE2004 - SelfOrganization of AdaptiVE behavior, Illmenau, Germany,
pages 198–209, 2004.

[25] Rebecca Fay, Friedhelm Schwenker, and Günther Palm. Incremental learn-
ing in hierarchical neural networks for object recognition. In Joaquim Fil-
ipe, Juan Andrade-Cetto, and Jean-Louis Ferrier, editors, Proceedings of the
Second International Confernece on Informatics in Control, Automation and
Robotics ICINCO 2005, Barcelona, Spain, September 14-17, 2005, 4 Volumes
/ CD, volume III, pages 298–303. INSTICC Press, 2005.

[26] Rebecca Fay, Friedhelm Schwenker, and Günther Palm. Evidence Based
Reasoning in Classifier Hierarchies. In Second International Workshop on
Neural-Symbolic Learning and Reasoning NeSy 2006., 2006.

[27] Rebecca Fay, Friedhelm Schwenker, Christian Thiel, and Günther Palm. Hi-
erarchical Neural Networks Utilising Dempster-Shafer Evidence Theory. In
Friedhelm Schwenker, editor, 2nd IAPR TC3 International Workshop on
Artificial Neural Networks in Pattern Recognition ANNPR 2006.., volume
4087 of Lecture Notes in Artifical Intelligence LNAI, pages 198–209. Springer,
Berlin, Heidelberg, 2006.

178 Bibliography

[28] Wolfgang Förstner. A framework for low-level feature extraction. In Jan-Olof
Eklundh, editor, Computer Vision - ECCV 1994. Proceedings of the Third
European Conference on Computer Vision. Volume II. Stockholm, Sweden,
May 2-6, 1994., volume 801 of Lecture Notes in Computer Science LNCS,
pages 383–394, Berlin, Heidelberg, 1994. Springer.

[29] David J. Freedman, Maximilian Riesenhuber, Tomaso Poggio, and Earl K.
Miller. Categorical representation of visual stimuli in the primate prefrontal
cortex. Science, 291(5502):312–316, 2001.

[30] Wiliam T. Freeman and Michael Roth. Orientation histograms for hand
gesture recognition. In IEEE International Workshop on Automatic Face-
and Gesture-Recognition, pages 296–301, Zürich, Switzerland, 1995.

[31] Peter W. Frey and David J. Slate. Letter recognition using holland-style
adaptive classifiers. Machine Learning, 6(2):161–182, 1991.

[32] Jerome H. Friedman. Another approach to polychotomous classification.
Technical report, Stanford University, 1996.

[33] Luis Garmendia. The evolution of the concept of fuzzy measure. In Da Ruan,
Guoqing Chen, Etienne E. Kerre, and Geert Wets, editors, Intelligent Data
Mining. Techniques and Applications, volume 5 of Studies in Computational
Intelligence, pages 185–200. Springer, Berlin, Heidelberg, 2005.

[34] Rafael C. Gonzales and R. E. Woods. Digital Image Processing. Addison-
Wesley, 2nd edition, 1992.

[35] Stephen Grossberg. Adaptive resonance theory. Technical Report TR-2000-
024, Center for Adaptive Systems and Department of Cognitive and Neural
Science, Boston University, 2000.

[36] Chris Harris and Mike Stephens. A combined corner and edge detector. In
Proceedings of the 4th Alvey Vision Conference, Manchester, 1988., pages
147–151, 1988.

[37] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE Trans-
actions on Information Theory, 8:179–187, 1962.

[38] Ulrich Kaufmann, Rebecca Fay, Heiner Markert, and Günther Palm. Neu-
ral networks for visual object recognition based on selective attention. In
SenseMaker Workshop on Life Like Perception Systems, 2005.

[39] Hans A. Kestler, Stefan Sablatnög, Steffen Simon, Stefan Enderle, Axel
Baune, Gerhrad K. Kraetzschmar, Friedhelm Schwenker, and Günther
Palm. Concurrent object identification and localization for a mobile robot.
Künstliche Intelligenz, pages 23–29, 2000.

Bibliography 179

[40] Josef Kittler, Alireza R. Ahmadyfard, and David Windridge. Serial multiple
classifier systems expoiting a coarse to fine output coding. In Terry Windeatt
and Fabio Roli, editors, Multiple Classifier Systems, 4th International Work-
shop, MCS, volume 2709 of Lecture Notes in Computer Science LNCS, pages
106–114, Guilford, UK, 2003. Springer.

[41] Andreas Knoblauch, Rebecca Fay, Ulrich Kaufmann, Heiner Markert, and
Günter Palm. Associating words to visually recognized objects. In S. Corade-
schi and A. Saffiotti, editors, Anchoring symbols to sensor data. Papers from
the AAAI Workshop. Technical Report WS-04-03, pages 10–16. AAAI Press,
Menlo Park, California, 2004.

[42] Ulf Knoblich, Maximilian Riesenhuber, David J. Freedman, Earl K. Miller,
and Tomaso Poggio. Visual categorization: How the monkey brain does it.
In Heinrich H. Bülthoff, Seong-Whan Lee, Tomaso A. Poggio, and Christian
Wallraven, editors, Biologically Motivated Computer Vision: Second Interna-
tional Workshop, BMCV 2002, Tübingen, Germany, November 22-24, 2002,
volume 2525 of Lecture Notes in Computer Science LNCS, pages 273–281,
Berlin, Heidelberg, 2002. Springer.

[43] T. Kohonen. Self-organizing maps. Springer, Berlin, 1995.

[44] Teuvo Kohonen, Jussi Hynninen, Jari Kangas, Jorma Laaksonen, and Kari
Torkkola. Lvq pak: The learning vector quantization program package. Tech-
nical Report A30, Helsinki University of Technology, 1996.

[45] Ulrich H.-G. Kressel. The impact of the learning-set size in handwritten-
digit recognition. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kan-
gas, editors, Proceedings of the International Confernece on Artificial Neural
Networks, ICANN 1991, Helsinki, Finland, pages 1685–1689, Amsterdam,
North-Holland, 1991. Elsevier Science Publishers B.V.

[46] Shailesh Kumar, Joydeep Ghosh, and Melba M. Crawford. A hierarchical
multiclassifier system for hyperspectral data analysis. In Josef Kittler and
Fabio Roli, editors, Multiple Classifier Systems, volume 1857 of Lecture Notes
in Computer Science LNCS, pages 270–279. Springer, 2000.

[47] Shailesh Kumar, Joydeep Ghosh, and Melba M. Crawford. Hierarchical fu-
sion of multiple classifiers for hyperspectral data analysis. International Jour-
nal on Pattern Analysis and Applications, 5(2):210–220, 2002.

[48] Ludmila I. Kuncheva, James C. Bezdek, and Robert P. W. Duin. Decision
templates for multiple classifier fusion: An experimental comparison. Pattern
Recognition, 34(2):299–314, 2001.

180 Bibliography

[49] D. Lowe. Three-dimensional object recognition from single two-dimensional
images. Artificial Intelligence, 31:355–395, 1987.

[50] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In L. M. Le Cam and J. Neyman, editors, Proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297. Berkeley: University of California Press, 1967.

[51] Eberhard Mandler and Jürgen Schürmann. Combining the classification
results of independent classifiers based on the dempaster/shafer theory of
evidence. In Pattern Recognition and Artificial Intelligence PRAI, pages
381–393, 1988.

[52] Gerd Mayer. Objekterkennung in hochdynamischen Systemen. PhD thesis,
University of Ulm, 2006.

[53] Kenneth McGarry, Stefan Wermter, and John MacIntyre. Hybrid neural
systems: From simple coupling to fully integrated neural networks. Neural
Computing Surveys, 2:62–93, 1999.

[54] Bartlett W. Mel. Seemore: A view-based approach to 3-d object recogni-
tion using multiple visual cues. In David S. Touretzky, Michael Mozer, and
Michael E. Hasselmo, editors, Advances in Neural Infrormation Processing
Systems NIPS 1996, volume 8, pages 865–871. MIT Press, 1995.

[55] Bartlett W. Mel. Seemore: Combining color, shape, and texture histogram-
ming in a neurally inspired approach to visual object recognition. Neural
Computation, 9:777–804, 1997.

[56] David Mercier, Genevieve Cron, Thierry Denoeux, and Mylene Masson. Fu-
sion of multi-level decision systems using the transferable belief model. In
The Eighth International Conference on Information Fusion FUSION 2005,
July 25-29, Philadelphia, USA, volume 2, 2005.

[57] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural
and Statistical Classification. Ellis Horwood, 1994.

[58] Nada Milisavljevic and Isabelle Bloch. Sensor fusion in anti-personnel mine
detection using a two-level belief function model. IEEE Transactions on Sys-
tems, Man and Cybernetics - Part C: Applications and Reviews, 33(2):269–
283, 2003.

[59] Hiroshi Murase and Shree K. Nayar. Visual learning and recognition of
3d objects from appearance. International Journal of Computer Vision,
14(1):5–24, 1995.

Bibliography 181

[60] Shree K. Nayar, Sameer A. Nene, and Hiroshi Murase. Real-time 100 ob-
ject recognition system. In ARPA Image Understanding Workshop IUW 96,
pages 1223–1227, 1996.

[61] Sameer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia Object
Image Library (COIL-100). Technical Report Technical Report CUCS-006-
96, Department of Computer Science, Columbia University, February 1996.

[62] Sameer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia Object
Image Library (COIL-20). Technical Report Technical Report CUCS-005-
96, Department of Computer Science, Columbia University, February 1996.

[63] Günther Palm and Gerhard K. Kraetzschmar. Sfb 527: Integration symbol-
ischer und subsymbolischer informationsverarbeitng in adaptiven sensomo-
torischen systemen. In Matthias Jarke, Klaus Pasedach, and Klaus Pohl,
editors, Informatik ’97 - Informatik als Innovationsmotor, 27. Jahrestagung
der Gesellschaft für Informatik, Aachen, 1997. Springer.

[64] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of
the Cambridge Philosophical Society, 51:406–413, 1955.

[65] Tomasio Poggio and Shimon Edelman. A network that learns to recognize
three-dimensional objects. Letters to Nature, 343:263–266, 1990.

[66] Arthur R. Pope. Model-based object recognition - a survey of recent research.
Technical Report TR-94-04, University of British Columbia, Vancouver, BC,
Canada, 1994.

[67] Suju Rajan and Joydeep Ghosh. An empirical comparison of hierarchical vs.
two-level approaches to multiclass problems. In Fabio Roli, Josef Kittler, and
Terry Windeatt, editors, Multiple Classifier Systems, volume 3077 of Lecture
Notes in Computer Science LNCS, pages 283–292. Springer, 2004.

[68] Maximilian Riesenhuber. and Tomaso Poggio. Models of object recognition.
Nature Neuroscience, 3:1199–1204, 2000.

[69] Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, January 1996.

[70] Galina L. Rogova. Combining the results of several neural network classifiers.
Neural Networks, 7(5):777–781, 1994.

[71] Galina L. Rogova and Vincent Nimier. Reliability in information fusion:
Literature survey. In Per Svensson and Johan Schubert, editors, Proceedings
of the Seventh International Conference on Information Fusion, volume II,
pages 1158–1165, Mountain View, CA, Jun 2004. International Society of
Information Fusion.

182 Bibliography

[72] John C. Russ. The Image Processing Handbook. CRC Press, 3rd edition,
1998.

[73] B. Schweizer and A. Skalar. Associative functions and statistical triangle
inequalities. Publicationes Mathematicae Debrecen, 8:169–186, 1961.

[74] Friedhelm Schwenker and Hans A. Kestler. 3-d visual object classification
with hierarchical radial basis function network. In Robert J. Howlett and
Lakhmi C. Jain, editors, Radial Bais Function Networks, volume 2, pages
269–293. Physica-Verlag, Heidelberg, New York, 2001.

[75] Friedhelm Schwenker, Hans A. Kestler, and Günther Palm. Three learn-
ing phases for radial-basis-function networks. Neural Networks, 14:439–458,
2001.

[76] Thomas Serre, Maximilian Riesenhuber, Jennifer Louie, and Tomaso Poggio.
On the role of object-specific features for real world object recognition in
biological vision. In Heinrich H. Bülthoff, Seong-Whan Lee, Tomaso A.
Poggio, and Christian Wallraven, editors, Biologically Motivated Computer
Vision: Second International Workshop, BMCV 2002, Tübingen, Germany,
November 22-24, 2002, volume 2525 of Lecture Notes in Computer Science
LNCS, pages 387–397, Berlin, Heidelberg, 2002. Springer.

[77] Steffen Simon, Friedhelm Schwenker, Hans A. Kestler, Gerhrad K. Kraet-
zschmar, and Günther Palm. Hierarchical object classification for au-
tonomous mobile robots. In International Conference on Artificial Neural
Networks (ICANN), pages 831–836, 2002.

[78] Philippe Smets. The combination of evidence in the transferable belief model.
IEEE Transactions on Pattern Analysis and Machine Learning, 12(5):447–
458, 1990.

[79] Philippe Smets and Robert Kennes. The transferable belief model. Artificial
Intelligence, 66(2):191–234, 1994.

[80] Alvy Ray Smith. Color gamut transform pairs. Computer Graphics,
12(3):12–19, 1978.

[81] Ah-Hwee Tan. Adaptive resonance associative map. Neural Networks,
8(3):437–446, 1995.

[82] Christian Thiel, Friedhelm Schwenker, and Günther Palm. Using dempster-
shafer theory in mcf systems to reject samples. In Nikunj C. Oza, Robi
Polikar, Josef Kittler, and Fabio Roli, editors, Proceedings of the 6th Inter-
national Workshop on Multiple Classifier Systems MCS 2005, volume 3541
of Lecture Notes in Computer Science LNCS, pages 118–127. Springer, 2005.

Bibliography 183

[83] Julius T. Tou and Rafael C. Gonzales. Pattern Recognition Principles.
Addison-Wesley, 1979.

[84] Edward Walter. Einige einfache nichtparametrische überall wirksame tests
zur prüfung der zweistichprobenhypothese mit paarigen beobachtungen.
Metrika, 1(4):81–88, 1958.

[85] S. Weber. A general concept of fuzzy connectives, negations and implications
based on t-norms and t-conorms. Fuzzy Sets and Systems, 11:115–134, 1983.

[86] D.J. Willshaw, O.P. Buneman, and H.C. Longuet-Higgins. Non-holographic
associative memory. Nature, 222:960–962, 1969.

[87] Lei Xu, Adam Krzyzak, and Ching Y. Suen. Methods of combining multiple
classifiers and their application to handwriting recognition. IEEE Transac-
tion on Systems, Man and Cybernetics, 22(3):418–435, 1992.

[88] Ronald R. Yager. On a general class of fuzzy connectives. Fuzzy Sets and
Systems, 4:235–242, 1980.

[89] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[90] Zijian Zheng. A benchmark for classifier learning. Technical Report 474,
University of Sydney, 1993.

Appendix

185

A Detailed Results of the
Statistical Evaluation

A.1 Features for 3D-Object Recognition

The tables A.1 and A.2 list which feature types were used on which data set.

Feature Fruits COIL-20 COIL-100
colorh + - -
colorhsv + - -
colorhist1x1 + + +
colorhist2x2 + + +
colorhist3x3 + + +
colorhist4x4 + + +
APQYB1x1 + - +
APQYB2x2 + - +
APQYB3x3 + - +
APQYB4x4 + - +
APQRG1x1 + - +
APQRG2x2 + - +
APQRG3x3 + - +
APQRG4x4 + - +
APQBW1x1 + + +
APQBW2x2 + + +
APQBW3x3 + + +
APQBW4x4 + + +

Table A.1: Feature types extracted from different data sets (continued on the next
page). The feature types APQYB, APQRG, APQBW are the orientation histograms
on the yellow-blue, red-green and black-white opponent colour channels respectively.

187

188 Appendix A. Detailed Results of the Statistical Evaluation

Feature Fruits COIL-20 COIL-100
geometricroundness + + -
geometriccompactness + + -
geometricformFactor + + -
geometricboundingBoxRatio + + -
geometricobjectRatio + + -
geometricall + + -
hu1 + + -
hu2 + + -
hu3 + + -
hu4 + + -
hu5 + + -
hu6 + + -
hu7 + + -
huall + + -
orientcurvehist1x1 + + +
orientcurvehist2x2 + + +
orientcurvehist3x3 + + +
orientcurvehist4x4 + + +
curvehist1x1 + + +
curvehist2x2 + + +
curvehist3x3 + + +
curvehist4x4 + + +
canny1x1 + + +
canny2x2 + + +
canny3x3 + + +
canny4x4 + + +
sobel1x1 + + +
sobel2x2 + + +
sobel3x3 + + +
sobel4x4 + + +
wavelet1x1 + + +
wavelet2x2 + + +
wavelet3x3 + + +
wavelet4x4 + + +

Table A.2: Feature types extracted from different data sets.

A.1. Features for 3D-Object Recognition 189

The mean classification errors and the averaged ranks for the different feature
types and classifiers on the different data sets are listed in the tables A.3, A.4,
A.5, A.6, A.7, A.8, A.9 and A.10.

Feature 1-NN 3-NN 5-NN Fuzzy 3-NN Fuzzy 5-NN Mean

error rank error rank error rank error rank error rank error rank

APQBW1x1 21.82±
4.24%

25 21.45±
4.53%

24 21.94±
4.16%

24 31.79±
5.01%

23 44.93±
4.97%

23 28.39±
10.23%

24

APQBW2x2 10.27±
3.32%

12 12.61±
3.27%

11 12.62±
3.38%

8 20.26±
4.44%

11 33.98±
5.36%

14 17.95±
9.59%

11

APQBW3x3 10.82±
3.23%

13 13.39±
3.92%

14 15.69±
3.65%

18 20.50±
3.88%

12 34.42±
4.35%

15 18.96±
9.19%

14

APQBW4x4 9.32±
2.88%

9 12.58±
3.17%

10 15.19±
3.49%

15 21.08±
4.06%

14 33.89±
4.64%

12 18.41±
9.41%

12

APQRG1x1 36.49±
5.35%

32 33.88±
5.43%

31 34.38±
4.50%

31 48.71±
4.89%

32 60.43±
4.54%

30 42.78±
11.48%

31

APQRG2x2 22.12±
4.11%

26 21.08±
4.42%

23 19.74±
3.68%

21 35.04±
4.67%

25 51.74±
4.73%

27 29.94±
12.96%

24

APQRG3x3 12.51±
3.74%

15 13.75±
3.71%

16 14.00±
3.59%

9 25.86±
4.42%

20 41.68±
4.78%

21 21.56±
11.89%

16

APQRG4x4 13.17±
3.47%

17 13.69±
3.45%

15 14.81±
3.63%

14 22.27±
4.41%

15 35.93±
5.23%

19 19.97±
9.55%

16

APQYB1x1 41.82±
5.64%

35 39.87±
5.00%

34 36.88±
4.69%

33 52.08±
4.82%

34 62.05±
4.99%

33 46.54±
10.56%

34

APQYB2x2 24.48±
4.44%

29 24.17±
3.93%

25 23.08±
4.46%

25 35.80±
4.69%

26 47.12±
5.29%

25 30.93±
10.39%

26

APQYB3x3 16.48±
3.95%

20 15.00±
3.56%

17 15.25±
3.42%

16 25.58±
4.73%

19 34.96±
4.82%

17 21.45±
8.83%

18

APQYB4x4 15.06±
3.49%

19 15.12±
3.58%

18 15.61±
3.75%

17 24.64±
4.05%

17 34.89±
4.63%

16 21.06±
8.74%

17

canny1x1 43.18±
5.35%

36 41.93±
4.73%

35 40.85±
4.58%

35 52.04±
4.63%

33 64.88±
4.74%

35 48.57±
10.26%

35

canny2x2 9.05±
3.11%

8 11.74±
3.31%

9 14.54±
3.18%

11 19.26±
4.12%

8 31.20±
4.79%

9 17.16±
8.65%

9

canny3x3 5.02±
2.65%

5 8.74±
3.10%

6 10.11±
2.98%

6 11.82±
3.30%

6 23.37±
4.18%

6 11.81±
7.01%

6

canny4x4 5.20±
2.48%

6 8.20±
2.90%

5 9.98±
2.56%

5 11.25±
3.21%

5 21.50±
3.82%

5 11.23±
6.30%

5

colorh 65.73±
2.79%

40 61.95±
3.15%

40 61.44±
3.20%

40 - 52 - 52 - 45

colorhsv 17.24±
3.38%

21 16.85±
3.44%

20 16.51±
3.22%

19 20.90±
3.78%

13 27.94±
4.21%

7 19.89±
5.64%

16

colorhist1x1 4.85±
2.35%

4 5.48±
2.63%

4 6.52±
2.80%

4 9.36±
2.85%

4 15.23±
3.42%

3 8.29±
4.73%

4

colorhist2x2 3.07±
1.78%

3 4.44±
2.06%

3 5.18±
2.27%

3 8.89±
2.68%

3 15.83±
3.84%

4 7.48±
5.29%

3

colorhist3x3 2.96±
1.78%

2 3.08±
1.77%

2 3.43±
2.00%

2 6.45±
2.51%

2 12.25±
3.36%

1 5.64±
4.26%

2

colorhist4x4 2.31±
1.49%

1 2.44±
1.82%

1 3.01±
1.90%

1 6.33±
2.50%

1 12.67±
3.43%

2 5.35±
4.58%

1

Table A.3: Mean error rates and ranks for the different feature types on the fruits
data set (continued on the next page).

190 Appendix A. Detailed Results of the Statistical Evaluation

Feature 1-NN 3-NN 5-NN Fuzzy 3-NN Fuzzy 5-NN Mean

error rank error rank error rank error rank error rank error rank

curvehist1x1 56.79±
4.49%

39 55.21±
5.15%

39 51.70±
5.48%

39 62.61±
5.33%

38 72.58±
4.98%

38 59.78±
8.90%

39

curvehist2x2 38.62±
4.86%

33 37.77±
5.11%

33 39.17±
5.15%

34 53.70±
5.19%

36 64.58±
5.10%

34 46.77±
11.83%

34

curvehist3x3 28.75±
4.40%

31 29.83±
4.83%

28 29.80±
4.36%

28 46.42±
5.09%

31 61.68±
5.52%

32 39.30±
13.87%

30

curvehist4x4 21.45±
4.05%

24 24.81±
4.25%

27 25.51±
4.07%

26 38.37±
5.06%

28 54.90±
4.55%

29 33.01±
13.14%

27

geometricall 46.76±
4.67%

37 43.94±
4.74%

37 41.77±
4.62%

36 53.55±
4.92%

35 66.54±
4.69%

37 50.51±
10.11%

36

geometric-
bounding-
BoxRatio

74.08±
4.47%

46 74.55±
4.21%

46 74.89±
4.07%

47 - 52 - 52 - 48

geometric-
compactness

72.33±
4.85%

43 73.42±
3.52%

45 72.25±
5.01%

44 72.73±
4.32%

41 74.63±
4.23%

40 73.07±
4.49%

43

geometric-
formFactor

72.52±
5.25%

45 70.69±
4.85%

43 70.21±
4.70%

43 74.82±
4.33%

44 78.06±
4.38%

45 73.26±
5.52%

44

geometric-
objectRatio

70.77±
4.57%

42 68.45±
4.36%

42 66.37±
4.93%

42 71.99±
4.91%

40 74.77±
4.36%

42 70.47±
5.44%

42

geometric-
roundness

72.39±
4.91%

44 73.33±
3.49%

44 72.33±
4.99%

45 72.98±
4.39%

43 74.75±
4.19%

41 73.16±
4.50%

43

hu1 68.96±
4.88%

41 65.35±
4.67%

41 62.55±
4.68%

41 72.80±
4.43%

42 75.86±
3.86%

43 69.10±
6.60%

42

hu2 75.43±
4.16%

48 75.99±
4.60%

48 77.18±
4.67%

52 76.74±
4.01%

46 77.31±
3.97%

44 76.53±
4.33%

48

hu3 79.95±
3.79%

52 78.36±
3.97%

52 76.49±
3.51%

50 80.10±
4.26%

49 81.75±
3.66%

49 79.33±
4.23%

50

hu4 75.25±
4.71%

47 75.04±
3.99%

47 75.04±
4.22%

48 77.08±
4.63%

47 78.43±
4.38%

46 76.17±
4.59%

47

hu5 79.27±
4.64%

51 76.64±
4.46%

50 73.57±
4.53%

46 80.12±
4.41%

50 82.38±
4.37%

50 78.40±
5.40%

49

hu6 77.43±
4.18%

50 76.20±
4.02%

49 76.51±
4.08%

51 76.74±
4.15%

45 78.43±
4.26%

47 77.06±
4.20%

48

hu7 76.46±
4.23%

49 77.44±
4.16%

51 75.45±
3.68%

49 77.94±
4.27%

48 79.85±
4.10%

48 77.43±
4.34%

49

huall 53.98±
5.41%

38 53.48±
5.20%

38 51.24±
5.74%

38 62.93±
5.00%

39 73.73±
4.48%

39 59.07±
9.82%

38

orientcurve-
hist1x1

40.46±
5.07%

34 43.87±
5.00%

36 42.10±
4.54%

37 53.88±
5.09%

37 66.01±
4.27%

36 49.26±
10.73%

36

orientcurve-
hist2x2

28.71±
4.14%

30 34.57±
4.21%

32 35.30±
4.72%

32 45.19±
4.97%

30 61.43±
5.37%

31 41.04±
12.42%

31

orientcurve-
hist3x3

23.85±
5.03%

28 30.44±
4.74%

29 33.33±
5.09%

30 39.90±
4.93%

29 53.17±
5.34%

28 36.14±
11.15%

29

orientcurve-
hist4x4

22.65±
4.14%

27 30.61±
4.45%

30 32.46±
4.08%

29 37.19±
5.07%

27 51.08±
5.19%

26 34.80±
10.47%

28

Table A.4: Mean error rates and ranks for the different feature types on the fruits
data set (continued on the next page).

A.1. Features for 3D-Object Recognition 191

Feature 1-NN 3-NN 5-NN Fuzzy 3-NN Fuzzy 5-NN Mean

error rank error rank error rank error rank error rank error rank

sobel1x1 20.08±
4.28%

22 19.37±
3.65%

22 20.73±
3.66%

23 30.21±
4.82%

22 43.26±
5.17%

22 26.73±
10.15%

22

sobel2x2 9.80±
3.14%

11 11.52±
3.21%

8 11.85±
3.04%

7 17.17±
3.64%

7 28.54±
4.78%

8 15.77±
7.74%

8

sobel3x3 9.63±
2.90%

10 12.93±
3.33%

13 14.74±
3.60%

13 19.63±
4.10%

10 32.37±
5.04%

11 17.86±
8.83%

11

sobel4x4 6.70±
2.73%

7 11.26±
3.05%

7 14.07±
3.07%

10 19.58±
3.99%

9 32.00±
4.51%

10 16.72±
9.40%

9

wavelet1x1 21.18±
4.31%

23 24.31±
4.57%

26 27.24±
4.52%

27 32.86±
4.88%

24 46.64±
5.45%

24 30.45±
10.15%

25

wavelet2x2 14.29±
3.53%

18 17.90±
3.54%

21 19.77±
3.84%

22 26.38±
4.73%

21 37.21±
5.66%

20 23.11±
9.16%

20

wavelet3x3 11.39±
3.26%

14 12.77±
3.80%

12 14.71±
3.83%

12 23.31±
4.37%

16 35.04±
4.68%

18 19.45±
9.70%

14

wavelet4x4 12.77±
3.44%

16 16.02±
4.19%

19 19.55±
3.83%

20 24.74±
4.38%

18 33.95±
4.33%

13 21.41±
8.45%

17

Table A.5: Mean error rates and ranks for the different feature types on the fruits
data set.

192 Appendix A. Detailed Results of the Statistical Evaluation

Feature 1-NN 3-NN 5-NN Fuzzy 3-NN Fuzzy 5-NN Mean

error rank error rank error rank error rank error rank error rank

APQBW1x1 6.47±
2.10%

23 9.56±
2.25%

22 12.17±
3.06%

22 14.09±
2.72%

23 23.51±
2.97%

21 13.16±
6.36%

22

APQBW2x2 0.44±
0.55%

7 1.03±
0.91%

11 2.47±
1.40%

11 2.85±
1.40%

10 9.36±
2.30%

11 3.23±
3.50%

10

APQBW3x3 0.25±
0.42%

5 0.56±
0.67%

3 1.40±
0.93%

6 1.52±
0.88%

5 6.08±
1.77%

4 1.96±
2.36%

5

APQBW4x4 0.58±
0.61%

10 0.92±
0.85%

8 1.62±
1.04%

9 2.60±
1.23%

9 9.00±
2.03%

9 2.94±
3.35%

9

canny1x1 28.87±
3.24%

29 29.30±
3.12%

29 29.60±
3.32%

29 38.31±
3.50%

29 51.78±
3.86%

29 35.57±
9.47%

29

canny2x2 0.67±
0.63%

12 1.40±
1.04%

12 2.62±
1.29%

12 3.58±
1.28%

12 9.15±
2.44%

10 3.49±
3.34%

12

canny3x3 0.47±
0.61%

9 0.76±
0.72%

6 1.24±
0.91%

4 1.80±
1.07%

6 6.59±
2.02%

6 2.17±
2.54%

6

canny4x4 0.33±
0.48%

6 0.79±
0.74%

7 1.08±
1.01%

3 1.97±
1.16%

7 7.82±
2.06%

7 2.40±
3.02%

6

colorh 95.00±
0.28%

44 95.00±
0.28%

44 95.00±
0.28%

44 - 42 - 42 - 43

colorhsv 77.63±
1.59%

38 75.66±
1.82%

37 73.97±
1.97%

40 - 42 - 42 - 40

colorhist1x1 4.67±
1.64%

21 6.31±
1.74%

19 9.05±
2.04%

18 10.83±
2.19%

20 17.22±
2.64%

14 9.62±
4.83%

18

colorhist2x2 0.10±
0.27%

3 0.68±
0.73%

5 1.42±
0.97%

7 0.77±
0.80%

3 5.38±
1.55%

3 1.67±
2.13%

4

colorhist3x3 0.01±
0.10%

2 0.22±
0.35%

2 0.60±
0.64%

2 0.24±
0.45%

1 3.37±
1.49%

2 0.89±
1.47%

2

colorhist4x4 0.00±
0.00%

1 0.05±
0.20%

1 0.33±
0.48%

1 0.36±
0.48%

2 2.72±
1.23%

1 0.69±
1.20%

1

curvehist1x1 68.57±
3.75%

33 66.97±
3.11%

33 66.13±
3.06%

33 75.58±
3.54%

33 81.15±
3.25%

34 71.68±
6.69%

33

curvehist2x2 7.45±
1.95%

25 10.69±
2.30%

24 13.85±
2.74%

24 21.75±
3.24%

26 42.13±
3.69%

28 19.17±
12.75%

25

curvehist3x3 1.56±
1.04%

17 2.83±
1.30%

17 4.51±
1.69%

15 7.61±
2.02%

16 22.10±
2.81%

20 7.72±
7.71%

17

curvehist4x4 0.77±
0.62%

14 1.64±
1.09%

13 2.82±
1.37%

13 5.63±
1.68%

13 17.46±
2.59%

15 5.66±
6.33%

14

Table A.6: Mean error rates and ranks for the different feature types on the COIL-20
data set (continued on the next page).

A.1. Features for 3D-Object Recognition 193

Feature 1-NN 3-NN 5-NN Fuzzy 3-NN Fuzzy 5-NN Mean

error rank error rank error rank error rank error rank error rank

geometricall 13.29±
2.33%

26 13.73±
2.47%

26 13.96±
2.65%

26 18.94±
2.82%

24 27.47±
3.28%

24 17.48±
6.05%

25

geometric-
bounding-
BoxRatio

90.12±
1.76%

43 88.77±
1.84%

43 88.72±
1.65%

43 - 42 - 42 - 43

geometric-
compactness

62.11±
3.00%

30 61.00±
3.40%

31 57.57±
3.18%

30 67.58±
3.65%

31 76.19±
3.60%

31 64.89±
7.33%

31

geometric-
formFactor

74.08±
2.51%

34 72.38±
2.89%

34 69.98±
3.40%

34 76.71±
2.71%

34 78.90±
2.86%

32 74.41±
4.26%

34

geometric-
objectRatio

77.78±
3.30%

39 77.81±
3.21%

40 71.59±
3.30%

37 80.91±
2.99%

39 85.93±
2.60%

40 78.80±
5.60%

39

geometric-
roundness

62.24±
2.98%

31 60.95±
3.37%

30 57.57±
3.18%

30 67.48±
3.70%

30 76.08±
3.60%

30 64.86±
7.28%

30

hu1 75.31±
3.10%

36 74.74±
2.82%

35 70.92±
3.01%

35 77.45±
3.13%

35 82.33±
3.07%

35 76.15±
4.81%

35

hu2 79.13±
2.92%

42 79.24±
2.75%

41 74.56±
2.99%

41 81.47±
2.82%

41 85.03±
2.58%

39 79.89±
4.42%

41

hu3 76.99±
3.34%

37 76.35±
2.88%

38 72.15±
2.73%

38 80.90±
3.21%

38 86.15±
2.76%

41 78.51±
5.59%

38

hu4 78.83±
2.97%

41 76.88±
2.91%

39 73.96±
3.29%

39 81.15±
2.93%

40 84.67±
2.94%

38 79.10±
4.73%

39

hu5 75.02±
3.32%

35 75.11±
2.87%

36 71.18±
3.20%

36 79.26±
3.41%

36 84.37±
2.93%

37 76.99±
5.48%

36

hu6 67.03±
3.31%

32 62.85±
2.93%

32 58.69±
3.22%

32 70.72±
3.30%

32 78.99±
3.29%

33 67.66±
7.66%

32

hu7 78.10±
2.98%

40 80.25±
2.80%

42 76.66±
2.66%

42 80.70±
3.01%

37 84.35±
2.56%

36 80.01±
3.83%

39

huall 19.49±
2.89%

28 21.15±
3.24%

27 23.54±
3.11%

27 26.43±
3.21%

27 36.38±
3.16%

25 25.40±
6.73%

27

orientcurve-
hist1x1

6.56±
1.99%

24 10.72±
2.52%

25 13.94±
2.86%

25 19.34±
3.37%

25 39.90±
3.44%

27 18.09±
12.04%

25

orientcurve-
hist2x2

1.03±
0.85%

16 2.80±
1.39%

16 4.56±
1.87%

16 5.92±
2.09%

15 21.64±
3.31%

19 7.19±
7.70%

16

orientcurve-
hist3x3

0.67±
0.60%

13 2.03±
1.19%

14 3.83±
1.73%

14 5.75±
1.76%

14 21.06±
2.61%

17 6.67±
7.60%

14

orientcurve-
hist4x4

0.86±
0.71%

15 2.35±
1.23%

15 4.91±
1.73%

17 8.92±
2.34%

17 25.31±
3.29%

23 8.47±
9.09%

17

Table A.7: Mean error rates and ranks for the different feature types on the COIL-20
data set (continued on the next page).

194 Appendix A. Detailed Results of the Statistical Evaluation

Feature 1-NN 3-NN 5-NN Fuzzy 3-NN Fuzzy 5-NN Mean

error rank error rank error rank error rank error rank error rank

sobel1x1 6.45±
2.09%

22 9.69±
2.22%

23 12.31±
3.11%

23 14.04±
2.87%

22 23.70±
3.19%

22 13.24±
6.44%

22

sobel2x2 0.44±
0.55%

7 0.97±
0.87%

10 2.42±
1.43%

10 2.90±
1.45%

11 9.36±
2.27%

12 3.22±
3.51%

10

sobel3x3 0.24±
0.41%

4 0.57±
0.71%

4 1.36±
0.93%

5 1.46±
0.92%

4 6.25±
1.75%

5 1.98±
2.42%

4

sobel4x4 0.58±
0.61%

10 0.93±
0.84%

9 1.60±
1.04%

8 2.52±
1.20%

8 8.93±
2.07%

8 2.91±
3.33%

9

wavelet1x1 19.41±
2.64%

27 24.08±
2.87%

28 26.87±
3.09%

28 28.44±
3.11%

28 39.14±
3.60%

26 27.59±
7.23%

27

wavelet2x2 2.81±
1.31%

19 6.73±
1.95%

20 11.12±
2.18%

20 10.15±
2.12%

18 19.33±
2.60%

16 10.03±
5.87%

19

wavelet3x3 4.38±
1.56%

20 7.95±
2.10%

21 12.10±
2.37%

21 11.69±
2.31%

21 21.24±
2.81%

18 11.47±
6.07%

20

wavelet4x4 2.61±
1.21%

18 5.67±
1.78%

18 9.45±
1.94%

19 10.23±
2.04%

19 16.10±
2.62%

13 8.81±
4.96%

17

Table A.8: Mean error rates and ranks for the different feature types on the COIL-20
data set.

A.1. Features for 3D-Object Recognition 195

Feature 1-NN 3-NN 5-NN Fuzzy 3-NN Fuzzy 5-NN Mean

error rank error rank error rank error rank error rank error rank

APQBW1x1 12.63±
1.04%

29 16.49±
1.17%

29 20.31±
1.49%

30 21.04±
1.50%

30 34.13±
1.60%

29 19.59±
7.44%

29

APQBW2x2 2.09±
0.52%

9 4.00±
0.70%

10 6.25±
0.86%

11 7.02±
0.73%

11 17.86±
1.18%

14 6.58±
5.47%

11

APQBW3x3 2.12±
0.51%

11 4.18±
0.65%

12 6.41±
0.79%

12 6.88±
0.94%

10 17.41±
1.09%

12 6.55±
5.28%

11

APQBW4x4 3.79±
0.57%

22 6.16±
0.82%

21 8.14±
0.90%

19 9.59±
1.03%

18 19.80±
1.17%

16 8.58±
5.54%

19

APQRG1x1 16.47±
1.17%

32 19.85±
1.17%

32 22.26±
1.26%

31 25.77±
1.23%

31 39.24±
1.54%

31 23.33±
7.92%

31

APQRG2x2 1.48±
0.44%

7 3.24±
0.64%

8 5.39±
0.75%

9 6.53±
0.66%

9 17.02±
1.13%

10 5.86±
5.38%

9

APQRG3x3 1.02±
0.34%

4 2.14±
0.49%

5 3.60±
0.74%

5 4.82±
0.71%

5 14.04±
1.27%

5 4.44±
4.57%

5

APQRG4x4 2.10±
0.47%

10 3.51±
0.60%

9 5.03±
0.68%

8 6.39±
0.81%

8 14.92±
1.24%

6 5.67±
4.48%

8

APQYB1x1 27.35±
1.25%

34 29.55±
1.33%

34 30.69±
1.35%

34 37.76±
1.47%

33 50.58±
1.39%

33 33.88±
8.37%

34

APQYB2x2 4.34±
0.84%

24 5.83±
0.84%

20 7.65±
1.01%

18 10.99±
1.10%

21 23.84±
1.47%

21 9.50±
6.90%

21

APQYB3x3 1.57±
0.42%

8 2.60±
0.56%

7 3.95±
0.65%

7 5.86±
0.94%

7 15.68±
1.08%

8 5.17±
4.94%

7

APQYB4x4 2.55±
0.55%

16 4.06±
0.72%

11 5.69±
0.83%

10 7.15±
0.87%

12 16.39±
1.40%

9 6.37±
4.84%

12

canny1x1 35.64±
1.69%

35 37.60±
1.30%

35 37.98±
1.40%

35 46.04±
1.73%

35 58.86±
1.48%

34 42.00±
8.50%

35

canny2x2 3.08±
0.63%

21 4.62±
0.70%

15 6.88±
1.02%

14 9.27±
0.94%

16 21.97±
1.22%

20 8.18±
6.63%

17

canny3x3 1.03±
0.31%

5 1.87±
0.51%

4 3.19±
0.65%

4 5.20±
0.67%

6 15.29±
1.06%

7 4.62±
5.05%

5

canny4x4 2.86±
0.52%

17 4.86±
0.65%

17 6.53±
0.70%

13 8.45±
0.74%

15 17.12±
1.04%

11 7.14±
4.96%

15

colorhist1x1 1.07±
0.37%

6 2.25±
0.50%

6 3.65±
0.63%

6 3.13±
0.62%

4 8.00±
0.94%

4 3.16±
2.43%

5

colorhist2x2 0.07±
0.10%

3 0.26±
0.21%

3 0.68±
0.37%

3 0.52±
0.24%

3 2.88±
0.64%

3 0.74±
1.03%

3

colorhist3x3 0.01±
0.04%

2 0.12±
0.14%

2 0.38±
0.26%

2 0.35±
0.23%

2 2.64±
0.55%

2 0.70±
1.02%

2

colorhist4x4 0.01±
0.04%

1 0.10±
0.12%

1 0.34±
0.21%

1 0.31±
0.20%

1 2.33±
0.46%

1 0.51±
0.85%

1

Table A.9: Mean error rates and ranks for the different feature types on the COIL-100
data set (continued on the next page).

196 Appendix A. Detailed Results of the Statistical Evaluation

Feature 1-NN 3-NN 5-NN Fuzzy 3-NN Fuzzy 5-NN Mean

error rank error rank error rank error rank error rank error rank

curvehist1x1 88.63±
1.13%

36 88.60±
1.06%

36 87.18±
1.25%

36 90.56±
0.94%

36 92.22±
0.96%

36 89.29±
1.95%

36

curvehist2x2 21.88±
1.45%

33 27.54±
1.54%

33 29.52±
1.41%

33 40.48±
1.42%

34 61.11±
1.60%

35 33.57±
13.81%

34

curvehist3x3 4.71±
0.74%

25 7.91±
0.85%

25 10.39±
0.90%

25 16.05±
1.34%

26 32.96±
1.41%

27 12.68±
9.86%

26

curvehist4x4 2.90±
0.60%

18 5.49±
0.79%

19 7.57±
0.81%

17 11.59±
1.20%

22 25.92±
1.52%

22 9.25±
8.00%

20

orientcurve-
hist1x1

12.74±
1.09%

30 19.31±
1.56%

31 22.86±
1.20%

32 30.03±
1.33%

32 50.43±
1.64%

32 24.44±
13.04%

31

orientcurve-
hist2x2

3.07±
0.58%

20 6.71±
0.74%

23 10.08±
0.84%

24 12.86±
1.02%

23 31.28±
1.56%

26 11.01±
9.69%

23

orientcurve-
hist3x3

2.99±
0.64%

19 6.52±
0.78%

22 9.49±
1.01%

23 12.89±
1.10%

24 30.48±
1.44%

25 10.73±
9.47%

23

orientcurve-
hist4x4

5.88±
0.88%

27 10.30±
0.90%

27 13.25±
0.99%

26 17.38±
1.25%

27 33.95±
1.81%

28 14.26±
9.67%

27

sobel1x1 12.77±
1.11%

31 16.84±
1.31%

30 20.10±
1.40%

29 20.86±
1.38%

29 34.67±
1.55%

30 19.71±
7.53%

30

sobel2x2 2.32±
0.52%

12 4.38±
0.63%

13 6.91±
0.77%

15 7.32±
0.76%

13 19.07±
1.19%

15 7.08±
5.79%

14

sobel3x3 2.49±
0.53%

14 4.48±
0.75%

14 7.00±
0.82%

16 7.48±
0.84%

14 17.78±
1.07%

13 6.98±
5.29%

14

sobel4x4 4.32±
0.58%

23 7.15±
0.85%

24 9.41±
0.85%

22 9.89±
1.05%

19 19.89±
1.15%

17 9.20±
5.35%

21

wavelet1x1 8.94±
0.95%

28 12.70±
1.03%

28 15.99±
1.14%

28 18.14±
1.05%

28 29.65±
1.45%

24 15.58±
7.17%

27

wavelet2x2 2.33±
0.58%

13 4.83±
0.81%

16 8.88±
0.92%

21 9.30±
0.92%

17 20.84±
1.31%

19 7.96±
6.41%

17

wavelet3x3 5.22±
0.72%

26 8.66±
0.96%

26 13.74±
1.26%

27 14.54±
1.09%

25 26.47±
1.56%

23 12.16±
7.41%

25

wavelet4x4 2.55±
0.54%

15 4.88±
0.63%

18 8.67±
0.81%

20 10.00±
0.98%

20 20.31±
1.28%

18 8.04±
6.18%

18

Table A.10: Mean error rates and ranks for the different feature types on the COIL-
100 data set.

A.1. Features for 3D-Object Recognition 197

	Zusammenfassung
	Abstract
	Acknowledgments
	Contents

	Introduction
	Background and Motivation
	Research Goals and Solution Approach
	Working Hypotheses
	Structure of This Work

	I Basic Methods
	Neural Networks
	k-Means Clustering
	Initialisation Methods

	Nearest Neighbour Classifier
	k-Nearest Neighbour Classifier
	Fuzzy k-Nearest Neighbour Classifier

	Learning Vector Quantisation
	LVQ1
	Optimised Learning Rate LVQ1
	LVQ2.1
	LVQ3
	Initialisation Methods

	Radial Basis Function Networks
	Radial Basis Functions
	Network Architecture
	Initialisation Methods
	Training Methods

	Associative Memories
	Discussion

	Uncertainty
	Probability Theory
	Fuzzy Set Theory
	Possibility Theory
	Belief theory
	Basic Concepts
	Transferable Belief Model

	Comparison of Theories for Representing Uncertainty
	Discussion

	Preprocessing Methods
	Data Transformation
	Reduction of Dimensionality
	Discussion

	Evaluation Methods
	Cross-Validation
	Testing for Significance
	t-Test
	Corrected Repeated k-Fold Cross Validation t-Test
	Maximum Test
	Sign Test
	Wilcoxon Matched Pairs Signed Rank Test
	Quantile-Quantile Plot

	Discussion

	II Developed Methods
	Hierarchical Neural Networks
	Basics of Hierarchical Neural Networks
	Hierarchy Generation
	Hierarchy Training
	Classification within the Hierarchy
	Evaluate Hierarchy Analogous to Decision Tree
	Evaluate End Nodes
	Evaluate Hierarchy Utilising a Voting Scheme
	Evaluate Hierarchy Utilising Dempster-Shafer Evidence Theory
	Evaluate Hierarchy Utilising Similarity Preserving Codes
	Inter-State Decision Templates

	Outlier Detection
	Discussion
	Features and Benefits of Hierarchical Networks
	Comparison of Hierarchy Evaluation Methods

	Adaptive Incremental Learning of Novel Classes
	Incremental Learning of New Classes
	Incremental Learning of New Classes by Adding New Leaves
	Incremental Learning of New Classes by Adding New Nodes
	Incremental Training of Radial Basis Function Networks
	Retraining
	Discussion

	Distributed Similarity Preserving Sparse Binary Codes
	Generation of Code Vectors
	Discussion

	III Application and Evaluation
	Applications
	Visual Object Recognition
	MirrorBot Project
	Discussion

	Data
	3D Data Sets
	Fruits
	Columbia Object Image Library (COIL)

	Benchmarking Data Sets
	Letter Image Recognition Data
	Handwritten Digits

	Discussion

	Features
	Orientation Histograms
	Orientation Histograms Utilising Sobel Operator for Edge Detection
	Orientation Histograms Utilising Canny Operator for Edge Detection
	Orientation Histograms Based on Opponent Colours

	Colour Histograms
	Curvature Histograms
	Orientation-Curvature Histograms
	Geometric Features
	Hu Invariant Moments
	Mean Colour Information
	Wavelets
	Discussion

	Statistical Evaluation
	Hierarchical Neural Networks
	Hierarchy Evaluation
	Comparison of the Different Fusion Strategies
	Comparison of the Evidence-Theoretic Fusion Strategy Against the Decision Tree Like Fusion Strategy
	Evaluation of the Retrieval Strategy Utilising Similarity Preserving Sparse Codes
	Evaluation of the Inter-State Decision Template Approach

	Adaptive Incremental Learning of Novel Classes
	Extension of Existing Hierarchies by Adaptive Incremental Learning
	Incrementally Building Classifier Hierarchies

	Features for 3D-Object Recognition
	Discussion

	IV Discussion
	Summary
	Main Contributions
	Comparison With Related Approaches
	Related Work
	Hierarchical Classification Approaches
	Classification Approaches Utilising Dempster-Shafer Evidence Theory
	Incremental Learning Approaches

	Classification of Work

	Conclusions

	Bibliography
	Bibliography

	Appendix
	Detailed Results of the Statistical Evaluation
	Features for 3D-Object Recognition

