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Abstract—This paper presents an iterative technique for the

design of planar coupled-resonator microwave filters, which ex-

ploits initial information on the equivalent circuit elements within

the space-mapping technique. To accelerate the convergence of

the design process, information on the dependence of the elements

of the equivalent circuit on adjustable geometrical and physical

parameters, which is available from the initial design step, is

used. The technique is applied to design harmonic-reject planar

filters. Results from applications to fourth- and sixth-order filters

show that the successful designs are achieved with at most two

iterations. A sixth-order harmonic-reject filter is then fabricated

and measured.

Index Terms—Design, harmonic reject, microwave filters, opti-
mization, space mapping (SM).

I. INTRODUCTION

T
HE DESIGN of microwave filters continues to attract

considerable attention. Although direct design techniques

that yield relatively good initial responses have been known

for some time, the final designs are obtained only through an

optimization process. Over the last few years, new efficient op-

timization strategies have been introduced [1]–[4]. The success

of these algorithms is due to their use of circuit models as an

intermediary step instead of a direct optimization in which a

full-wave simulator is driven by an optimization algorithm. The

circuit model embodies only the essential information needed

to meet the specifications of the filter and sheds all the re-

dundant information that the fine model behind the full-wave

simulator contains. Indeed, it is now possible to use inten-

sive and slow numerical techniques to optimize large filtering

structures that are simply impossible to handle through a direct

optimization [4].

A general framework within this paradigm is the space-map-

ping (SM) technique [1]. In this technique, with its multitude of

variations, two different optimization spaces, i.e., the fine and

the coarse, are used. The fine model can be a full-wave model
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based on the method of moments, mode-matching, finite-ele-

ment, or other numerical techniques or simply direct measure-

ment. It is assumed to produce an accurate representation of the

response of the structure. This can be achieved by using a fine

mesh or by keeping a large enough number of modes. On the

other hand, the coarse model may be a less accurate version of

the fine model in which a larger mesh or fewer modes are used

or a mono-mode equivalent circuit. A mapping is then estab-

lished between the points of the fine and coarse spaces at each

iteration. A point in the coarse space is mapped onto one in the

fine space if the corresponding fine and coarse models yield the

same response. The technique has been applied to engineering

problems in many areas [5]. Some of its convergence properties

have also been investigated [6].

The use of a coarse model, such as a finite-element analysis

with a larger mesh size or a mode-matching analysis with a

reduced number of modes, introduces an element of arbitrari-

ness in the process. Although the use of faster exploratory tests

through the coarse model can be fruitful in quickly establishing

regions of possible solutions in the coarse domain, there is no

means to deciding what the boundary of coarseness is. The re-

liability of this rather intuitive process that has been used by

engineers for decades is not guaranteed, especially for higher

order and strongly correlated systems.

From an examination of the physics of the problems we are

dealing with, i.e., microwave filters, it is obvious that their re-

sponse is fully specified by their physical and geometrical char-

acteristics. The need for two separate spaces to represent the

structure is not obvious. Despite this, it is undeniable that the

SM modeling provides a vastly superior design strategy than

classical brut-force optimization [5].

In this paper, we propose arguments to explain why using

an equivalent circuit (surrogate) converges considerably faster

than employing a classic “brut-force” optimization. Arguments

are advanced to show that the process is equivalent to a non-

linearity “localization.” The nonlinearity is mainly kept in the

parameter extraction (PE) step of the process. Since this in-

volves much simpler electrical networks and only manipulation

of the data from a single full-wave analysis or measurement at

a time, it can be carried out in negligible CPU times. A simple

example, with well-defined assumptions, is used to show that

the nonlinearity in the cost function of the corresponding clas-

sical brut-force optimization based on the scattering parameters

is reduced to a linear programming problem by the introduction

of an equivalent circuit. The results of this example provide a

crucial clue that allows better design strategies to be established

through a judicious use of a priori information on the elements

of the equivalent circuit. This a priori information is most often

0018-9480/$20.00 © 2006 IEEE



2154 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 5, MAY 2006

Fig. 1. Coupling and routing scheme of a second-order Chebyshev filter. The
structure is symmetric with respect to its center.

available as a prelude to the initial design. In microwave coupled

resonator filter design, for example, curves giving the coupling

coefficients versus geometrical parameters, such as separation

between resonators, are first determined and then used in the

initial design. In fact, the design curves are not more than an ap-

proximation to the mapping of the SM formulation. This simple

connection does seem to have been made by microwave filter

designers. Here, we propose to use this information not only for

the initial design, but during the optimization process as well.

We then apply the technique to design planar harmonic-reject

filters of orders 4 and 6.

II. EXAMPLE

For simplicity, we focus attention on a second-order Cheby-

shev filter whose coupling and routing scheme is shown in

Fig. 1. Here, the dark disks represent resonators and the empty

ones are the input and output loads normalized to unity. The

resonators are modeled as unit capacitors in parallel with fre-

quency-independent reactances to account for the shifts in

the resonant frequencies. The lines between any two nodes are

frequency-independent inverters (coupling coefficients). The

normalized low-pass frequency is denoted by . We assume

that this model provides a faithful description of the response

of the actual system within the frequency range of interest. In

other words, a set of values of the elements of the model to

match the actual response of the filter is assumed to exist. This

is a very crucial assumption.

In order to show the effect of using an equivalent circuit as

an intermediary step in the design (SM), we assume that the

coupling coefficients depend linearly on dedicated optimization

variables such that

(1)

Here, – are constants and and are optimization pa-

rameters. The scattering parameters of this network, as a func-

tion of the normalized frequency , are easily found to be [7]

(2)

The main task of the design is to determine the optimal values

and such that the scattering parameters are equal

to the specifications as given by and . This can be done

by minimizing a cost function of the form

(3)

where are judiciously chosen frequency points. Other cost

functions are naturally possible and may even be more adequate

[8]; this is not important for our discussion. If a cost function

based directly on the scattering parameters in (2) is used to

determine the optimal values of the parameters and

to meet a given set of specifications, it is obvious that we

are dealing with a highly nonlinear function in the optimization

variables despite the fact that the elements of the equivalent net-

work are linear functions of these very same variables as given

by (1). The crucial task is to preserve the simple relationship be-

tween the optimization variables and the elements of the equiv-

alent network during the optimization process.

Let us now assume that a full-wave (and time-consuming)

simulation is carried out on an initial design and produced scat-

tering parameters and . If the initial design falls within

the range of the model, then a set of parameters

and can be extracted in such a way that the response of

the model is equal to that of the initial design as obtained from

the full-wave analysis. It is very important to emphasize that

the values of and are obtained here from

the full-wave simulation through PE and are not those obtained

from the synthesis. For example, for a Chebyshev filter, the ex-

tracted value of is not necessarily zero, whereas its value

obtained from the synthesis is indeed zero. If the initial values

of the optimization variables are denoted by and ,

the PE process gives the following relations:

(4)

Given the linear relationships between the coupling coeffi-

cients and the optimization variables, we only need one more

independent PE per parameter in order to fully determine the

constants in (1) or (4). In actual problems, the linearity holds

only for small changes in the adjustable variables. We can, there-

fore, perturb the variables around the initial design to calcu-

late the gradient of the coupling coefficients. This can be done

by finite differencing and would require three additional full-

wave simulations in this example, or analytically in some cases

with no additional full-wave simulation. The dependence of the

coupling coefficients on the optimization variables is now fully

established.
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To obtain the optimal values and , we can

simply use (1) since the constants – are now known. As long

as (1) hold, the process will converge in one iteration.

At this point, it seems that the nonlinearity in the initial op-

timization problem simply disappeared. In fact, what happened

is the following. The initial nonlinear optimization problem was

replaced by the following two-step procedure within the SM

procedure.

Step 1) A PE problem. This step still contains the initial non-

linearity. However, the PE is much less CPU taxing

and involves only one full-wave simulation at a time.

It simply manipulates the data obtained from the

full-wave simulation in order to extract the elements

of the equivalent network.

Step 2) An inversion of the relationships between the cou-

pling coefficients (1) to get the next value of opti-

mization variables.

This discussion brings out the PE step as the most crucial step

of the procedure. In fact, it is known that SM fails to converge

when multiple solutions to the PE problem exist [9]. Techniques

to tackle this problem have been proposed [9]. For microwave

filters, it is known that the PE problem has a unique solution for

canonical topologies such as folded structures or direct-coupled

resonator filters.

In actual implementations of SM, it is often assumed that the

relationship between the elements of the equivalent circuit and

the optimization variables is linear. This holds only for small

changes in the variables. Most importantly, for coupled res-

onator microwave filter design, these relationships can be quite

adequately established by using well-known techniques as long

as higher order modes and parasitic effects are not significant

[10], [11]. From the plots of the elements of the equivalent cir-

cuit versus the optimization variables, the correctness of the

linear approximation can be assessed and then used to set ac-

ceptable step sizes in the design process. Should these relation-

ships be correctly approximated by simple and invertible func-

tions, the number of iterations can be reduced significantly by

using such a priori information. It should, however, be stressed

that microwave filters whose design curves are rapidly varying

functions of the optimization variables are likely to be of limited

practical value because of their increased sensitivity to manufac-

turing errors.

III. FILTER STRUCTURE AND INITIAL DESIGN

We are interested in designing planar bandpass filters with

wide stopbands, i.e., harmonic-reject filters. To achieve this, it

is necessary to increase the separation in frequency between

the dominant resonance and higher order resonances. One pos-

sibility is to use what is called stepped-impedance resonators

(SIRs), as shown in Fig. 2 for the case of a four-resonator filter.

The dimensions of each resonator are first adjusted to put the

first spurious resonance at more than four times the dominant

one. The steps are detailed, for example, in [12]. Other consid-

erations such as the factors of the resonators can be handled

at this stage by forcing a tradeoff between the width of the spu-

rious-free stopband and the factor.

Once the resonators have been dimensioned, the next step in

the design is the extraction of a coupling matrix that meets the

Fig. 2. Layout of a four-resonator stripline harmonic-reject filter. The structure
is surrounded by a metallic enclosure to prevent radiation.

Fig. 3. Coupling coefficient versus separation distance between two resonators.
Solid line: full-wave simulation. Dashed–dotted line: quadratic approximation.
Dashed line: linear approximation.

specifications of the filter. This can be done analytically in some

cases or by optimization [7], [13]. To implement the coupling

coefficient between two resonators, the techniques described in

[10] or [11] can be used. At this stage, it is advantageous to per-

form this for few values of the controlling geometrical parame-

ters in order to establish an approximate functional relationship

between the coupling coefficient and the corresponding dimen-

sions. This is, in fact, nothing other than the mapping that is

central to the SM technique in which the equivalent circuit is

used as the “coarse” model. In our specific case, Fig. 3 shows a

plot of the coupling coefficient between two resonators versus

the spacing between them (solid line). The de-normalized cou-

pling coefficient is calculated from the resonant frequencies

of the even and odd modes and using the simple equation

(5)
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Also shown in Fig. 3 (dashed line) are a linear (dotted line)

and a parabolic (dashed–dotted line) approximation around an

initial point. It is amply clear from this figure that the quadratic

approximation is very accurate over practically the entire range.

On the other hand, the linear approximation is accurate only in

the vicinity of the initial point.

From this observation, it is expected that a linear approxima-

tion (Jacobian) will converge slowly and may not even converge

if the starting point is away from the desired response. On the

other hand, the parabolic approximation is expected to converge

much more rapidly. It is indeed shown below that six iterations

are needed for the linear approximation, but only two for the

parabolic one.

IV. LINEAR APPROXIMATION

In order to demonstrate the effect of including the informa-

tion acquired during the preliminary steps of the initial design,

we first use the linear approximation to design four- and six-res-

onator Chebyshev filters. The layout of the four-resonator filter

is shown in Fig. 1. The conducting strips are sandwiched be-

tween two layers of dielectric substrate of thickness 0.635 mm

and dielectric constant . The structure is enclosed in a

metallic box to eliminate radiation.

Since this version of the SM has been presented and discussed

by many researchers, only a summary of the important steps is

given here. The reader is referred to any of a number of papers

for details [2], [4]. It is worth mentioning that the process can be

accelerated by calculating the Jacobian analytically [14], [15].

In the actual implementation of this algorithm, it is important

to keep in mind that the linear approximation is valid only over

a small range around the basis point. If the basis point is not

close to the target or ideal position, the process might converge

slowly or even fail. This has been found to be the case for the fil-

ters investigated here. To overcome this problem, the algorithm

is applied in few steps by setting intermediary target points. For

example, in order to design a filter with an in-band return loss

of 20 dB, we can use ideal responses with the same bandwidth,

but with intermediary in-band return loss of 5, 10, and 15 dB.

By doing so, we can increase the likelihood that the linear ap-

proximation remains valid at each iteration. In order to decide

on the size of the step in the in-band return loss, design curves

such as shown in Fig. 3 can be used.

A. Four-Resonator Filter

We first apply the linear approximation to design a four-res-

onator bandpass Chebyshev filter, as shown in Fig. 2. The pass-

band of the filter is centered at 1.5 GHz with a bandwidth of

150 MHz and in-band return loss of 21 dB.

The ideal coupling matrix that meets these specifications is

found to be

(6)

Fig. 4. Response of initial design of four-resonator filter. Results from Zeland’s
IE3D.

Fig. 5. Convergence of iterative process based on linear approximation for a
four-resonator filter. It takes five iterations to reach specifications.

The response of the initial design is shown in Fig. 4. The center

and width of the passband are relatively well predicted by the

initial design although the in-band return loss is much lower than

the specified values. From the examination of the design curves,

e.g., Fig. 3, it was estimated that a 5-dB step was adequate to

stay within the range of validity of the linear approximation.

Ideal normalized coupling matrices that correspond to 5, 10, and

15 dB were first extracted. It took five iterations to reach the

specifications, as shown in Fig. 5. The first two iterations had

targets of 5, 10, and 15 dB, respectively. The last two iterations

had both the final ideal response as a target since one iteration

alone did not give satisfactory results.

B. Six-Resonator Filter

The linear approximation was also applied to a six-resonator

Chebyshev filter. The passband of 150-MHz width is centered

at 1.5 GHz with an in-band return loss of 21 dB.
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Fig. 6. Simulated response of initial design of six-resonator filter.

Fig. 7. Convergence of iterative process based on linear approximation for a
six-resonator filter. It takes six iterations to reach the specifications.

The response of the initial design is given in Fig. 6 where a

minimum return loss of 5 dB is achieved over the entire pass-

band. Using the linear approximation with 5-dB steps, it took

six iterations to meet the specifications. The evolution of the re-

sponse versus the number of iterations is shown in Fig. 7. Only

the results of the fourth and sixth iteration are shown in order

not to crowd the figure.

V. PARABOLIC APPROXIMATION

In order to highlight the advantage of using a priori infor-

mation, the parabolic or quadratic approximation was used to

design the same two filters.

The strategy is the same as in the case of the linear approxima-

tion previously discussed, except that the relationship between

the entries of the coupling matrix and the optimization variables

is assumed quadratic instead of linear. In order to determine the

coefficients of the quadratic functions, full-wave sim-

ulations are carried out along with the corresponding parame-

ters’ extractions for a filter with optimization variables. Here,

it is important to take advantage of the sparsity of the Jaco-

bian and the Hessian matrices since specific entries in the cou-

pling matrix are mainly controlled by specific optimization vari-

ables. For example, the coupling coefficient is mainly con-

trolled by the spacing between the first and second resonators.

In other words, each entry in the coupling matrix is assumed to

be a second-order polynomial in the optimization variable that

is used to control it.

From the dependence of the coupling coefficient between two

adjacent resonators on the spacing between them, as shown in

Fig. 3, we expect the quadratic approximation to be valid over

the entire range. Consequently, the target of the first iteration is

set equal to the ideal desired response that meets the specifica-

tions. From the response of the initial design, the entries of the

coupling matrix, including the diagonal elements, are first ex-

tracted. Since the entries of the ideal coupling matrix meeting

the specifications are known, the values of the optimization pa-

rameters at the next iteration are obtained by directly solving

the corresponding quadratic equations. The process is repeated

again until convergence is reached.

It is important to mention at this point that. after the first iter-

ation, the response is very close to the ideal response for all the

cases examined thus far. Admittedly, this would not be the case

if the design curve in Fig. 3 were substantially deviating from

a quadratic function. If the CPU time required by the full-wave

simulation is of serious concern, it is more efficient to switch to a

linear approximation after the first iteration. It was also noticed

that after the first quadratic iteration, only few entries in the cou-

pling matrix deviated appreciably from their ideal values. Con-

sequently, the second iteration involved the adjustments of only

few optimization variables, typically two or three for the class

of filters investigated here.

A. Four-Resonator Filter

The initial design is the same as in the linear approximation

(Fig. 4).

The evolution of the response for the first and second itera-

tions is shown in Fig. 8. It can be seen that the first iteration

already achieves a return loss of more than 16 dB over the en-

tire passband and accurately locates the passband of the filter.

These results show the advantage of using the quadratic approx-

imation. Compared to the linear approximation, the CPU time

saving is approximately 40%.

B. Six-Resonator Filter

The quadratic approximation was also used to design the six-

resonator filter discussed in Section IV-B. It took only two iter-

ations to reach a response that satisfies the specifications. Fur-

thermore, the response after the first iteration is close enough to

the desired response for a linear approximation to be valid. This

results in reducing the number of full-wave simulations.

The responses of the filter for the two iterations are shown in

Fig. 9. The convergence of the design process is evident. Com-

pared to the linear approximation, the CPU time saving for this

filter is approximately 46%.
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Fig. 8. Convergence of iterative process based on quadratic approximation for
a four-resonator filter. It takes two iterations to reach the specifications.

Fig. 9. Convergence of iterative process based on quadratic approximation for
a six-resonator filter. It takes two iterations to reach specifications.

VI. EXPERIMENTAL VALIDATION

To validate the designed filters, the six-resonator filter was

selected for fabrication and measurement.

The filter was etched on one substrate, cut out, and placed into

the mount. A second empty substrate was placed into the other

part of the mount, and the substrates were pressed together by

screws. As the grove in one part of the mount is smaller, its edge

is used for ground connection (by pressure as well).

A photograph of the fabricated filter is shown in Fig. 10. The

measured and simulated responses of this filter are shown in

Fig. 11. The measured bandwidth is slightly larger than the sim-

ulated one due to manufacturing errors in the coupling gaps. The

filter was also measured by soldering subminiature A (SMA)

connectors to the feeding microstrip lines. The flanges of the

SMA connectors are not taken into account, this explains partly

the larger deviations between the two results at higher frequen-

cies. Still the overall trend of the measured response is in reason-

ably good agreement with the simulated results. The measured

Fig. 10. Fabricated six-resonator filter.

Fig. 11. Measured (solid lines) and simulated (dashed lines) frequency
response of sixth-order harmonic-reject filter.

minimum insertion loss in the passband is less than 2 dB in-

cluding the effects of the connectors. This is significantly lower

than what is achievable by standard planar filters based, for ex-

ample, on half-wavelength resonators. The insertion loss per-

formance of the filter may be enhanced even further by using

suspended strip line (SSL) technology if an increase in size and

a reduction in the upper stopbands are acceptable. A minimum

attenuation of 30 dB is achieved up to four times the center of the

main passband. If only a 20-dB attenuation is required, then a

usable stopband extending up to more than five times the center

of the passband is also achieved.

VII. DISCUSSION

The results presented in this paper point to the importance

of using whatever a priori information one might have on the

behavior of the elements of the equivalent circuit versus the

optimization variables (mapping). One might then ask whether

using a higher order approximant such as polynomials of order

three of higher or rational functions (Padé) can lead to more ef-

ficient optimization. From practical considerations, the use of
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filter implementations where the elements of the equivalent cir-

cuit are rapidly varying functions of the optimization variables

should be avoided for the resulting filters are likely to be too

sensitive to manufacturing errors, especially for narrowband ap-

plications. A survey of the voluminous literature on microwave

bandpass filters shows that the design curves giving the coupling

coefficients in terms of the controlling geometrical dimensions

are smooth functions [11]. In all the cases investigated thus far,

higher order approximants have not been necessary.

VIII. CONCLUSION

This paper has presented arguments to explain the reasons

behind the tremendous success of optimization techniques that

exploit equivalent circuits (coarse models) in connection with

full-wave field solvers (fine models). By exploiting a priori in-

formation on the elements of the equivalent network as acquired

during the initial design, it has been shown that a set of planar

harmonic-reject filters can be designed within two iterations.
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