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Zusammenfassung der Dissertation: “Phasengleichgewichte in 

Binärsystemen mit ionischen Flüssigkeiten: theoretische Betrachtung 
 

Die Dissertation „Phasengleichgewichte in Binärsystemen mit ionischen 

Flüssigkeiten: theoretische Betrachtung“ von Artem A. Aerov besteht aus einer 

Einleitung, einer Literaturrecherche, vier neu erarbeiteten Abschnitten, den 

Schlussfolgerungen, einem Anhang bestehend aus zwei Kapiteln, einem 

Literaturverzeichnis und den Danksagungen. 

In der Einleitung  wird die technische Bedeutung ionischer Flüssigkeiten und 

die Relevanz theoretischer Untersuchungen diskutiert. Die Bedeutung der 

vorliegenden Arbeit und deren Ziele werden erläutert. 

Die Literaturrecherche (Kapitel 1) setzt sich aus zwei Teilen zusammen. 

Der erste Teil stellt eine kurze Übersicht über die aus Experimenten bekannten 

interessantesten und wichtigsten Eigenschaften der ionischen Flüssigkeiten und 

deren Anwendungen vor. Detailliert werden diejenigen Arbeiten betrachtet, die sich 

mit den Wechselwirkungen ionischer Flüssigkeiten mit Kohlenstoffnanoröhrchen 

beschäftigen. Der zweite Teil widmet sich den theoretischen Arbeiten und 

Computersimulationen, in denen Systeme betrachtet werden, die Ionen enthalten. 

Eine besondere Aufmerksamkeit wird auf diejenigen Arbeiten gelegt, in denen 

Phasengleichgewichte und Grenzflächenphänomene mit jeweils einer Komponente 

in Form einer ionischen Substanz untersucht werden. In der Mehrzahl dieser Fälle 

wird das so genannte „restricted primitive model“ verwendet. Darüber hinaus 

werden Studien betrachtet, in denen der Einfluss ionischer Beimischungen auf die 

Oberflächenspannung von Zweiphasensystemen untersucht wird. 

In den folgenden vier Kapiteln werden die neuen Ergebnisse aus dieser Arbeit 

vorgestellt. Die Lösung der in dieser Arbeit betrachteten Probleme basiert auf dem 

Flory-Huggins Gitteransatz. 
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Im Kapitel 2 wird ein Erklärungsansatz vorgestellt, der zeigt, wieso ionische 

Flüssigkeiten gute Lösungsmittel für verschiedene Stoffklassen sind. Eine homogene 

Mischung einer ionischen Flüssigkeit und einer zufälligen nicht-ionischen 

Flüssigkeit wird betrachtet. Die Spinodale der makroskopischen Trennung wird 

erstellt und es wird gezeigt, dass mit zunehmender Bindungsenergie der Kationen 

und Anionen der ionischen Flüssigkeit, die durch die van-der-Waals-Kräfte 

hervorgerufen wird, also mit steigender Inkompatibilität, die Löslichkeit der nicht-

ionischen Flüssigkeit in der ionischen Flüssigkeit zunimmt. 

Das Kapitel 3 behandelt die Studie einer Mischung von ionischen und nicht-

ionischen Flüssigkeiten, die aus zwei makroskopisch getrennten Phasen besteht. Die 

Konzentrationen der Komponenten in den Bulkphasen sowie die Konzentrationen 

der ionischen Spezies an der Phasengrenze werden bestimmt. Zusätzlich wird die 

Oberflächenspannung der Grenzfläche berechnet. 

Es wird gezeigt, dass sich an der Grenzfläche eine doppelte elektrostatische 

Schicht bildet, und dass die elektrostatische Energie umso größer ist, desto größer 

die Differenz der Affinität der Kationen und Anionen der ionischen Flüssigkeit zu 

den neutralen Molekülen ist. Außerdem wird gezeigt, dass die Oberflächenspannung 

an der Phasengrenzfläche mit zunehmender Differenz der Affinitäten abnimmt und 

sogar auf Null absinken kann. Folglich wird bewiesen, dass es möglich ist, dass ab 

einem bestimmten Grenzwert dieser Differenz die Bildung mikroheterogener 

Strukturen in der Mischung möglich ist, da in diesem Fall ein zweiphasiges System 

nicht mehr stabil ist. 

Das Kapitel 4 ist einer zusätzlichen Studie über die im Kapitel 3 festgestellte 

Möglichkeit der Bildung mikroheterogener Strukturen in einer Mischung einer 

ionischen Flüssigkeit mit einer nicht-ionischen Flüssigkeit gewidmet. Die Stabilität 

des räumlich homogenen Zustands gegenüber der mikroskopischen Trennung wird 

zusätzlich durch die Methode der Random-Phase-Approximation analysiert. Das 
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Ergebnis aus Kapitel 3 wird dadurch bestätigt. Konkret wird bewiesen, dass die 

Bildung der mikroheterogenen Mischung ionischer und nicht-ionischer Flüssigkeiten 

möglich wird, wenn die Differenz der Affinitäten der Kationen und Anionen der 

ionischen Flüssigkeit zu den neutralen Molekülen einen bestimmten Grenzwert 

überschreitet. 

Das Kapitel 5 erweitert die grundsätzliche Idee der Kapitel 3 und 4 für den 

Fall, wenn ein Gel-Netzwerk als zweite Komponente an die Stelle der nicht-

ionischen Flüssigkeit tritt. Dazu wird die Quellung eines Mikrogels mit 

immobilisierten Kohlenstoffnanoröhrchen in einer ionischen Flüssigkeit betrachtet. 

Die Nanoröhrchen verhalten sich im verwendeten Modell als ein Netzwerk von 

Leitern, das verhindert, dass die nicht kompensierten Ionen innerhalb des Gels sich 

gegenseitig abstoßen. Es wird gezeigt, dass die Quellrate des Mikrogels von dessen 

Größe abhängt, falls ein Unterschied in den Affinitäten der Kationen und Anionen 

der ionischen Flüssigkeit zum Gel-Netzwerk besteht. Wenn die Affinität der 

ionischen Flüssigkeit als Gesamtes zum Gel-Netzwerk geringfügig höher ist als die 

Affinität, bei der sich das Gel in einem normalen Ein-Komponenten-Lösungsmittel 

zusammenfalten würde, dann existieren kleinere Mikrogele im zusammengefalteten 

Zustand und größere Mikorgele im aufgequollenen Zustand in der betreffenden 

ionischen Flüssigkeit. 

In den Schlussfolgerungen werden die wichtigsten Ergebnisse dieser Arbeit 

wieder zusammengefasst. Details der komplexen mathematischen Herleitungen sind 

in den beiden Kapiteln des Anhangs dargestellt. 
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The abstract of the PhD thesis “Phase Equilibria in Binary systems 

comprising Ionic Liquids: theoretical study.” 
 

The PhD thesis “Phase Equilibria in Binary systems comprising Ionic Liquids: 

theoretical study.” written by Artem A. Aerov contains introduction, literature 

review, four original parts, conclusions, two appendices, list of references, and 

acknowledgements. 

 In the introduction the significance of ionic liquids (ILs) in technology and 

importance of their theoretical investigation is discussed. Relevance of the present 

thesis and its objectives are explained. 

 The literature review (Chapter 1) consists of two parts. The first part is a 

brief review of the known from experiment most interesting and important 

properties of ILs and their applications. In more detail the works are discussed in 

which phenomena are considered that are connected with interaction of ILs and 

carbon nanotubes. The second part is devoted to theoretical and computer simulation 

works in which ion containing systems have been studied. Particular attention is paid 

to the works in which phase equilibrium and phase boundaries in binary systems 

comprising an ionic substance as one of the components are considered. In the 

majority of these works the so-called restricted primitive model is used. Besides 

those works are considered in which influence of an ionic admixture on the surface 

tension in a biphasic system is investigated.  

In the next four chapters the original results are presented. Solution of all the 

problems considered therein is based on the Flory-Huggins type lattice approach. 

 In the Chapter 2 an explanation is proposed of why many ILs are good 

solvents for different types of solutes. A homogeneous mixture of an IL and an 

arbitrary nonionic liquid (nIL) is considered. The spinodal of the mixture’s 

macrophase separation is built and it is demonstrated that the higher is the energy of 
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the IL’s cation and anion contact caused by their Van der Waals interaction, i.e. the 

stronger is their incompatibility, the stronger is the solvent power of this IL with 

respect to the nIL.  

 In the Chapter 3 the study of a macroscopically phase separated mixture of 

an IL and a nIL is presented. The components concentrations in the two phases and 

the ions concentrations profiles near the phase boundary are determined. Besides, 

the surface tension of the boundary is calculated.  

It is demonstrated that a double electrostatic layer is formed at the boundary 

and its electrostatic energy is the higher the higher is the difference in the affinities 

of the IL’s cations and the IL’s anions to the neutral molecules. It is also 

demonstrated that the surface tension of the phase boundary decreases with the 

growth of the difference and it can even reach zero. Hence it is proved that if the 

difference exceeds a certain threshold value then formation of a microheterogeneous 

structure is possible in the mixture, since a biphasic system can’t exist any more in 

this case.  

The Chapter 4 is devoted to an extra study of the found in the chapter 3 

possibility of a microheterogenous structure formation in the mixture of an IL and a 

nIL. The stability of the mixture’s spatially homogeneous state towards microphase 

separation is analyzed additionally by means of the random phase approximation 

method. The result of the chapter 3 is corroborated. Namely it is proved that the 

formation of the microheterogeneous IL/nIL mixture becomes possible if the 

difference in the affinities of the IL’s cations and the IL’s anions to the neutral 

molecules exceeds a certain threshold value. 

The Chapter 5 extends the main idea of the chapters 3 and 4 for the case 

when a gel network acts as the second component in the system instead of a nIL. 

The swelling in an IL of a microgel with immobilized carbon nanotubes is studied. 

The nanotubes act in the applied model as a network of conductor that doesn’t allow 
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uncompensated ions inside the gel to repel each other. It is demonstrated that the 

swelling ratio of the microgel depends on its size if there is a difference in affinities 

of the IL’s anions and the IL’s cations to the network of the gel. If the affinity of the 

IL as a whole to the network is a bit higher than the affinity at which the gel would 

collapse in a normal one-component solvent then a smaller microgel is in the 

collapsed state in this IL and a larger microgel is in the swollen state in this IL. 

The main results of the thesis are summarized in the Conclusions. Details of 

the most cumbersome mathematical expressions derivations can be found in the two 

appendiсes. 
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Introduction.  

 The present dissertation is devoted to theoretical study of effects connected 

with ions equilibrium distribution in systems comprising an ionic liquid (IL) as one 

of the components. 

 Relevance of investigation of ILs is in the first place caused by the possibility 

of utilization of ILs in environment friendly technologies. ILs are treated along with 

supercritical carbon dioxide as most prospective reaction media allowing significant 

decrease of the environment pollution and improvement of such reaction 

characteristics as speed, yield and selectivity (in comparison with traditional organic 

solvents). 

 Majority of liquids we normally have to do with regardless of their being 

polar or nonpolar consist of molecules. But ionic liquids consist of ions only and 

nevertheless they are liquid at normal conditions (room temperature and atmospheric 

pressure). For this reason one could reasonably suppose that ionic liquids possess a 

number of unique properties that are not inherent to common molecular liquids. This 

happens to be so indeed. Namely, for example, ILs have a very low vapor pressure. 

This eliminates the problem of technological equipment hermetization and makes 

the technological processes more ecologically safe. For the same reason ILs can be 

used as lubricants and as plasticizers.  

This peculiarity of ILs is supplemented by their other important property lying 

in the fact that many of ILs solubilize easily different polar as well as nonpolar 

substances. The latter property in itself makes ILs more promising solvents as the 

traditional ones.  

Besides, there is a possibility to produce ILs with desirable properties by 

means of combining different pairs of cation and anion that were synthesized 

separately.  
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ILs are successfully utilized in biphasic catalysis when reaction takes place at 

the phase boundary of an IL, containing the catalyst, and a nonionic liquid 

containing the substrate. One of the most outstanding developments of chemical 

technology in the field of ionic liquids is the invention of the new cellulose 

processing technique in which an IL is used as the solvent of cellulose. It should also 

be noticed that at present it is intensively investigated whether ILs can be useful for 

the solution of the important scientific and technical problem of fuel cells creation. 

Furthermore it has been already proven that ILs are very promising as electrolytes 

for supercapacitors.  

Very interesting are phenomena connected with interaction of ILs and carbon 

nanotubes. It has been found out that a dispersion of the nanotubes in an IL forms a 

physical gel. Besides, an actuator can be formed by two thin layers of such a gel 

which are separated by the third thin layer of a polymer gel impregnated with the 

same IL. If voltage is applied to the two surface layers the three-layered film bends. 

Although first ILs were known already in 19-th century, they became a 

popular object of scientific research as recently as in the very end of the 20-th 

century. Number of publications on the subject of ILs is already large and it grows 

rapidly. But the majority of these papers have to do with synthesis and experimental 

investigation of ILs properties. There are also a few works on computer simulation 

of several individual ILs. And the theoretical study of ILs is nowadays on an early 

developmental stage. For example, a universally acknowledged theoretical model 

describing some general properties of ILs as a whole class of substances still doesn’t 

exist. Majority of theoretical works devoted to study of electrolyte systems have to 

do with low concentrations of ions, while it is evident that if one needs to work out a 

theory describing properties peculiar to ILs it is crucial to allow for the fact that 

volume fraction of ions in the mixture can approach unity. 

In the present dissertation the theory has been developed that describes 

generally several properties of ILs as a whole class of substances. The theory is 
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based on a Flory-Huggins type lattice model. In the second chapter of the text, an 

explanation is proposed of why many ILs are good solvents for different types of 

solutes. The explanation is based on the ionic nature of an IL and on the peculiarities 

of the ionic liquid’s cations and anions interaction. The proposed approach allows to 

predict qualitatively solvent power of an IL in respect to an arbitrary solute. 

Utilization of the approach can significantly facilitate the experimental search of the 

most strong solvents among ILs. This seems to be rather important while it is 

possible to synthesize an enormous number of different ILs, and experimental 

investigation of the properties of all of them would take a long time. 

The third chapter of the dissertation text contains an elaboration of the model 

proposed in the second chapter. Therein properties of the phase boundary between 

an IL and a nonionic liquid (nIL) are considered. It is investigated how the 

properties depend on the difference in the interactions of the IL’s cations and the 

IL’s anions with the molecules of the nIL. This part of the present dissertation work 

also seems to be relevant because it is known that IL based liquid-liquid biphasic 

catalysis is promising and in some cases has been already proved to be very 

effective. Inter alia in the third chapter the surface tension coefficient of the phase 

boundary is calculated, and it is shown that the coefficient can be negative at some 

values of parameters describing the system. Negative value of the surface tension 

coefficient means that the mixture of the IL and the nIL can’t consist of two separate 

macrophases, and a microheterogeneous structure must be formed in it.  

 Microheterogeneous mixtures including an IL as one of the components have 

been already observed in experiment but haven’t yet found a practical application. 

Nevertheless it is evident that they can be very useful. Namely, if one somehow 

creates a microheterogeneous analogue of an IL based liquid-liquid biphasic 

catalytic system, the whole volume of such a reaction mixture will act as a set of 

nanoreactors having a very large total surface area what provides an easy access of 
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reagents into the reaction zone. Reaction rate in such a microheterogeneous system 

is to be many times higher than in an analogous biphasic system. 

Therefore, the fourth chapter of the dissertation is devoted to an extra study of 

the found in the third chapter possibility of a microheterogenous structure formation 

in the mixture of an IL and a nIL. Therein possibility of a microphase separation in 

the homogeneous mixture of the two substances is additionally investigated by 

means of the random phase approximation method (RPA). The results obtained in 

the third and in the fourth chapters are in agreement.  

 The last (the fifth) chapter of the dissertation is the extension of the third 

chapter for the case when a gel network acts as the second component in the system 

instead of a nIL, i.e. the IL acts as the solvent in which the gel is immersed. The 

considered gel comprises polymer network and carbon nanotubes that form a 

conducting network. It is investigated how the swelling ratio of the gel depends on 

the difference in the interactions of the IL’s cations and the IL’s anions with the gel 

network. It is demonstrated that in some cases the size of the gel particle can be the 

factor determining if the gel will be in the collapsed or in the swollen state. The 

predicted in the fifth chapter phenomenon complements the range of interesting 

phenomena connected with interaction of ILs and carbon nanotubes. 

Main objectives of the present dissertation work are the following: 

1. Investigation of the influence of the interaction nature of cations and anions of 

an IL on the IL’s solvent power within the framework of the Flory-Huggins 

lattice approach  

2. Study of the phase boundary between an IL and a nIL. Namely, determination 

of the components concentration profiles at the boundary and determination of 

the surface tension of the boundary. Investigation of the phase boundary 

properties dependence on the interaction nature of the IL’s ions and the 

molecules of the nIL.  
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3. Search of the values of parameters describing the interactions of the IL’s 

cations, the IL’s anions and the nIL’s molecules at which in the mixture of the 

IL and the nIL a microheterogeneous system is formed. 

4. Investigation of the behavior of a polymer gel with immobilized carbon 

nanotubes in an IL. Namely, investigation of the gel swelling ratio dependence 

on the interaction nature of the IL’s ions and the gel network. 

The dissertation text consists of introduction, five chapters, references, and 

two appendixes in which details of the most cumbersome mathematical expressions 

derivations are presented. The text contains 115 pages including figures, table of 

contents and references. 

The text is organized as follows. The first chapter is the literature review 

consisting of two parts. The first of the parts is the review of some experimental 

works and reviews where most important and interesting properties of ILs and their 

possible applications are reported. In more detail those works are discussed in which 

phenomena are considered that are connected with interaction of ILs and carbon 

nanotubes. In the second part the theoretical and computer simulation works are 

considered in which ion containing systems have been studied. Particular attention is 

paid to the works in which phase equilibriums and phase boundaries are considered 

in binary systems comprising an ionic substance as one of the components. In the 

majority of the reviewed works the so-called restricted primitive model is used. 

Besides those works are considered in which an ionic admixture influence on the 

surface tension in a biphasic system is investigated. The already mentioned chapters 

2-5 contain original results obtained by the author. 

The main results of the present dissertation work have been published in three 

papers. One more paper has been submitted. Additionally the results have been 

reported on six international conferences. 
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1. Literature Review. 

1.1  Properties of ionic liquids. 

ILs are substances that are liquid at normal conditions (room temperature and 

atmospheric pressure) and consist of ions only [1,2]. Previously two different terms 

“ionic liquids” and “molten salts” were used to identify the same substances. Later a 

definition has been formulated [3] to differentiate two different classes of liquids 

composed entirely of ions. According to the definition ILs are the substances with 

the melting point less than 100 oC and molten salts have a higher melting 

temperature. Molten salts are highly viscous and are very corrosive. As it is much 

more convenient to use in chemical technology solvents that are liquid at normal 

conditions ILs and not molten salts are more popular in scientific study. 

Normally ILs consist of a large organic cation and a small inorganic anion [3]. 

The cation usually has a functionalized side chain [4]. The charge of the cation is 

surrounded by a bulky shell of neutral atoms. Therefore distance between the 

opposite charges of neighboring cations and anions in an IL is rather large, and at 

room temperature the energy of the ions electrostatic attraction happens to be not 

high enough in comparison with the thermal motion energy. This is the first reason 

why ILs don’t crystallize at room temperature. The other reason is that an IL’s 

cations significantly differ in size from the anions and are strongly asymmetric [4]. 

Melting temperature of an IL depends strongly on the degree of the IL’s cations 

skewness, namely on the nature of its side chain. Although ILs do not crystallize at 

room temperature, some of them that comprise the 1,3 dialkylimmidazolium cation 

(an example is presented in the upper right corner of the Figure 1) are believed to 

form a hydrogen-bonded superstructure in the liquid state [5].  

ILs can be divided into two classes: protic ionic liquids (PILs) and aprotic 

ionic liquids (AILs). PILs are a subset of ILs that are produced through a 

combination of a BrØnsted acid and a BrØnsted base. The key property that 
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distinguishes PILs from AILs is the proton transfer from the acid to the base, leading 

to the presence of proton-donor and -acceptor sites [6]. In PILs the proton transfer 

from the BrØnsted acid to the BrØnsted base is reversible. That’s why in PILs in the 

equilibrium state there is always a part of electroneutral acid and base species 

present. It is generally assumed that a PIL can be termed as an IL if it has not more 

than 1% of neutral species. If concentration of neutral species in a PIL is higher it is 

better to treat it as a mixture of an IL and a nonionic liquid [7].  

One of the most important peculiarities of ILs is their very low volatility [8]. 

AILs are composed entirely of ions, and for this reason possess extremely low 

volatility. Until now only a few of them have been distilled at a high temperature 

and low pressure [9]. PILs are distilled easier than AILs because they contain a 

fraction of neutral molecules that are easier transferred to the gas phase [6]. Main 

advantage of the low volatility of ILs is the possibility of their application in 

industrial chemical processes as “green” solvents that do not penetrate into the 

environment [10]. However, there are also other applications of ILs that are 

straightforwardly connected with their low volatility. Namely, ILs can be used as 

lubricants, plasticizers, and heat transfer fluids [11].  

The other indispensable property of ILs is that many of them are good 

solvents for many substances both polar and nonpolar [1,3]. The high solvent power 

of ILs is the property that allowed the development of the new effective cellulose 

processing technique [12]. In this technique cellulose fibers are dissolved in an IL 

without any chemical pretreatment [12]. The high solvent power of ILs in respect to 

both polar and nonpolar solutes also makes them promising in application to gas 

chromatography. It has been demonstrated [13,14] that stationary phases formed by 

some ILs have a dual property acting as a polar stationary phase with polar 

compounds and as a low-polarity phase with nonpolar compounds. Moreover some 

chiral ILs have also been used as stationary phases for separation of chiral 
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compounds [15]. In the third chapter of the present dissertation a possible 

explanation of ILs high solvent power is proposed [16].  

The low volatility of ILs and their high solvent power are complemented by 

another helpful for chemical technology property of ILs. Namely, majority of ILs are 

nonflammable [17]. 

There are almost unlimited possibilities of creating ILs with different 

properties by means of combining different pairs of cation and anion. Since 

functional side chains of cations can be varied already now more than a million of 

different ILs can be synthesized [18]. Also the so-called mixtures of two ILs with a 

common ion may possess useful properties. These liquids are composed of ions of 

three different types and more than 1012 substances of this type can be hypothetically 

produced [18]. It is impossible in practice to produce all these substances and study 

their properties in experiment. That’s why it is important to have a criterion for 

preselection of ILs that are likely to possess interesting useful properties prior to 

investigating the ILs experimentally. This is one of the reasons of why the 

theoretical models proposed in the present dissertation [16,19,20] may be useful.  

ILs are electrolytes but at room temperature ion conductivity of ILs is not very 

high due to their high viscosity [21]. Nevertheless ILs are promising in application 

to electrochemical processes [17] as they can act simultaneously as a solvent and as 

an electrolyte. Besides ILs can be used as electrolytes in supercapacitors [22] and in 

solar cells [23]. 

PILs are able to conduct protons and in distinction from water their boiling 

temperature is higher than 100 oiС. For this reason utilization of PILs in proton 

conducting membranes of fuel cells is more convenient than utilization of water 

solutions of electrolytes. That’s why application of PILs to production of fuel cells is 

intensively studied [6]. 

In chemical technology ILs probably have proved to be most useful in 

application to the organometallic biphasic catalysis. The most popular ILs used in 
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the biphasic catalysis (and, probably, in the majority of the other applications) are 

the tetrafluorborate and hexafluorphosphate of 1-butyl-3-methylimidazolium (noted 

in literature as (BMI)BF4 and (BMI)PF6 respectively). (The structure of the BMI 

cation is presented in the upper right corner of the Figure 1.)  In the process an IL is 

the phase in which a transition metal based catalyst is immobilized. The substrate is 

dissolved in the coexisting phase – in a nonionic organic solvent. The fact is that 

transition metal complexes, which act as catalysts, are well soluble in the ILs [3] and 

they are not extracted from the ILs by nonpolar organic solvents. Besides it is 

believed that transition-metal complexes do not undergo in the ILs solvation and 

solvolysis, while these phenomena are usually present in molecular solvents such as 

water and acetonitrile [3]. It was determined that in most of the cases the reaction 

occurs preferentially in the IL phase as the substrate diffuses inside the IL from the 

organic solvent. Theoretical description of such a biphasic system consisting of an 

IL and a nIL is proposed in the third chapter of the present dissertation [19]. 

Another substantial advantage of the IL based biphasic catalytic systems lies 

in the ease of the processes of product separation and catalyst recovery. As the 

catalyst is not extracted from the IL phase, this catalyst containing phase can be 

easily separated by filtration from the organic phase containing product. Moreover in 

some cases when the reaction mixture is cooled the IL with immobilized catalyst 

freezes earlier than the other phase and, hence, it can be separated from the latter one 

simply by decantation [3].  

The number of the catalytic mixture reuses can be additionally increased by 

means of covalent linking the catalytic complexes and ions of the IL. Thus the 

washing out of the catalytic centers into the organic phase is even more suppressed 

[24].  

One more important for chemical industry property of ILs is their ability to 

catalyze some reactions thus acting simultaneously as a solvent and as a catalyst [6]. 
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 In ILs the ordering of molecules in the layer adjacent to a gas phase has been 

observed [25]. In the work [25] a neutron reflection study has been performed to 

examine the structure of the free surface of two ILs: 1-butyl-3-methylimidazolium 

tetrafluoroborate and 1-octyl-methylimidazolium hexafluorophosphate. It has been 

determined that in the 50 Å thick surface layer an ordering of the ions takes place, 

namely, several layers enriched with headgroups or alkyl chains are formed.  

Mixtures of IL and nIL usually possess an upper critical solution temperature 

[26,27]. However, in some cases the two-phase regions on the temperature-

concentration phase diagrams have been found to be closed [28]. The other 

interesting fact is that ternary mixtures IL-ethanol-water can be homogeneous while 

binary mixtures of the same IL with water or ethanol segregate [29]. 

Probably the most interesting properties of ionic liquids from the point of 

view of a physicist are associated with interaction of ILs with carbon nanotubes. 

Carbon nanotubes are cylindrical molecules composed of carbon atoms. Their 

diameter can be as little as 1 nanometer and their length can reach many 

micrometers [30]. They consist of carbon atoms and can essentially be thought of as 

a singe layer of graphite that has been wrapped into a cylinder. The main properties 

of carbon nanotubes are their record-high elastic modulus and conductivity. The 

latter one seems to be most important in connection with the interaction of the tubes 

with ILs. Depending on the chirality of the hexagonal carbon lattice along the carbon 

nanotube it can be a metal or a semi-conductor. It turns out that that about two-thirds 

of the tubes are semiconducting and one-third are metallic [30]. Carbon nanotubes 

can be single-wall (SWNTs) or multiwall. The SWNTs are a more interesting object 

of scientific study because of their greater aspect ratio [31]. 

First interesting phenomenon associated both with ILs and SWNTs is the 

formation of a physical gel by SWNTs ground in imidazolium ion-based ILs (the so-

called bucky gels). In the work [32] gels composed of an IL and SWNTs were 

produced. They contained only 0.5% wt of SWNTs. Usually SWNTs exist as 
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bundles. But upon gelation in the ILs the bundles exfoliate to form much finer 

bundles [32]. The thus obtained gels are thermally stable and they don’t shrivel, 

even under reduced pressure. The exfoliation is very probably caused by the ILs 

high solvent power and the stability of the gels is obviously caused by the low 

volatility of ILs. Such physical gels could be obtained neither by means of grinding  

SWNTs in common organic solvents nor by means of grinding other carbon 

allotropes such as graphite (1 to 2 μm) and  C60  in ILs [32] .  

It is interesting that the rheological study of the gels [32] has proved that their 

elasticity is governed more likely not by the entanglement of the SWNTs bundles 

but by a large number of physical cross-links between the bundles, for which 

molecular ordering of ILs is likely to be responsible. The  unimodal crystal growth 

in the gel at low temperature observed besides in the work  [32] results most likely 

from controlled nucleation initiated by this local molecular orientation. According to 

the work  [32]  authors point of view the molecular ordering is caused by the ability 

of SWNTs to orient the imidazolium ions on their π-electronic surfaces by way of  a 

possible “cation- π” interaction.  

For our opinion, there may be another explanation of appearing of the 

physical cross-links between the nanotubes that doesn’t involve any structural 

features of ILs or SWNTs. Namely, a conductor attracts a charged particle by the 

charge induced on the conductor by the very particle. So, a charged particle (IL’s 

ion), or a pair of two oppositely charged particles can act as a sticker between two 

conducting parts (SWNTs).   

An extension of the finding is the synthesis of the physical gel from SWNTs 

and a polymerizable IL with the further polymerization of the IL [31]. Interesting 

feature of the thus obtained gel lies in the fact that its Young’s modulus is many 

times higher than the one of a reference gel polymerized without SWNTs. A 7% 

content of SWNTs could cause a 120-fold enhancement of the Young’s modulus. 
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The reason of this effect lies also in the interaction of the IL polymer network and 

the SWNTs. 

An important in the framework of the present dissertation fact mentioned in 

the works [31] and [32] is that the described gels containing SWNTs are highly 

electroconductive in contrast to the reference gels containing no SWNTs, that are 

insulators. Furthermore, in the work [31] it has been determined by means of 

scanning electron microscopy and atomic force microscopy that SWNTs are 

uniformly dispersed without agglomeration in the matrix of the investigated gel and 

they form a crosslinked network. This means that the considered in the fifth chapter 

of the present dissertation gel with immobilized SWNTs forming a conducting 

network can really exist.  

As to polymers composed of monomer units that are ions of an IL, let us 

mention another interesting fact connected with them. It has been found out in the 

work [33] that some of these polymers in solid state at room temperature are good 

selective absorbers of carbon dioxide with higher absorption capacity than ILs [34]. 

Sorption and desorption are very fast and the desorption by vacuuming is completely 

reversible. It has been proved that the sorption takes place mostly in the bulk of the 

polymer particles and not at their surface. The polymers are promising as solid 

absorbent for carbon dioxide separation.  

The other very interesting object that can be created with using SWNTs and 

ILs is an actuator [35]. An actuator is a thin film consisting of three layers. The 

central layer is a polymer gel impregnated with an IL. The two surface layers 

comprise the same components and a dispersion of SWNTs in addition. The surface 

layers act as electrodes. If a voltage is applied to them the actuator bends in the 

direction of the cathode (see Figure 1). The edge of a 0.28.mm thick and 15.mm long 

film can shift 10.mm away from its initial position when the 3.5.V voltage is applied 

[35]. 
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Figure 1. Bucky-gel-based bimorph actuator. a) Schematic structure of the actuator 
strip composed of a polymer gel supported ionic-liquid electrolyte layer sandwiched 
by bucky-gel electrode layers. b) Molecular structures of the IL BMIBF4 and of the 
gel polymer PVdF(HFP). [35] 

A possible explanation of the phenomenon is based on the difference in sizes 

of the cations and the anions. Namely, when the voltage is applied the cations of the 

IL move into the anode and the anions move into the cathode of the actuator. Since 

the cations are larger than the anions, volume of the anode increases and volume of 

the cathode decreases. This causes the bending of the actuator towards the cathode 

[35]. The role of the SWNTs is indispensable in the actuator. Namely, due to the fact 

that the electrodes are volumetric networks in which the ions can penetrate, the 

number of uncompensated ions appearing in the electrodes as a result of the voltage  

applying turns out to be high enough to cause the bending.  

The phenomena appearing in the systems comprising both ILs and SWNTs 

[31,32,35] inspired the author of the present dissertation to model theoretically one 
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more phenomenon of this type. The predicted phenomenon is described in the fifth 

chapter. 

1.2  Theoretical study and computer simulation of liquids containing ions.  

In the majority of theoretical works devoted to the study of electrolyte systems and 

also in many works on their computer simulation the so-called primitive model is 

used [36,37]. It is supposed in the model that likely charged ions of the electrolyte 

are spheres of the same size. The solvent in which the ions are moving is represented 

as a continuous structureless medium having the dielectric constant ε. For simplicity 

in some works this constant is assumed to be equal to unity [38]. If cations and 

anions are represented as spheres having the same diameter σ, the model is called 

“restricted primitive model” (RPM). If additionally the absolute charge values of the 

cations and the anions are supposed to be the same one has to do with the symmetric 

restricted primitive model [37]. Usually if in the literature nothing is mentioned 

about the cations and the anions absolute charges ratio the latter case is under 

consideration.  

 In the RPM a system is characterized by two reduced thermodynamic 

variables, namely, the temperature and the number density that are introduced via 

T*.=.kTεσ/q2 and ρ*=.ρσ3. Here k is the Boltzmann’s constant, T is the temperature, q 

is the absolute value of the ions charge, ρ is the concentration of ions.  

 Normally, in the works where the RPM is used for the description of 

electrolyte systems only electrostatic interactions of the charged particles and their 

excluded volume interactions are allowed for. The latter interactions are modeled by 

the hard spheres repulsion potential. Thus peculiarities of the Van der Waals 

interactions of the ions with the solvent molecules and with each other, as well as 

hydrogen bonds, are not taken into account. Although the RPM seems to be rather 

simple, a comprehensive commonly accepted theory of electrolyte systems in the 
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framework of RPM has not appeared yet [39]. Such a conclusion can be done if one 

examines the many different RPM based approaches [39-41]. 

 The interest to the RPM that doesn’t allow for peculiarities of particles 

interaction connected with their affinity has arisen after the appearance of the 

experimental work [42] which was later corroborated by the work [43]. In the work 

[42] a two component system consisting of the triethyl-n-hexylammonium thiethyl-

n-hexylboride salt dissolved in diphenyl ether has been studied. It has been found 

that at room temperature the mixture segregates into two phases having different 

concentrations of the salt. When the mixture is heated the difference of the two 

phases becomes less pronounced and disappears when the temperature is 

approximately equal to 45 0C. Thus the two phases can be treated as the “liquid” and 

the “gaseous” states of the salt, while the ether can be treated as a medium with a 

fixed value of dielectric constant. The temperature 45 0C can be treated then as the 

“critical temperature” Tc of the salt. 

 Interest to the binary system was caused mostly by the fact that the difference 

of the two phases refractive indices Δ.n in the vicinity of the critical temperature Tc  

depends on temperature T as: 

                  1.1 ( )
1

2~ cn T TΔ −

Thus it is described by the classical exponent βi≈i1/2. That’s why a hypothesis has 

appeared that the long range Coulombic interactions determine the system’s 

behavior. The fact is that it had been proven both theoretically and in experiment 

that a nonionic system’s near critical behavior is Ising-like [40]. Namely in the case 

of a mixture of two nonionic substances the expression analogous to the expression 

1.1 must comprise a different critical exponent β equal to ≈ 0.32. 

 The value of the parameter u=q2/εkTσ has been calculated for the system 

studied in the work [42]. This parameter characterizes the ratio of the energies of 

electrostatic interactions and of thermal motion in the system.  The value turned to 
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be equal to 15. That is about ten times higher than in other electrolytes, for example, 

the water based ones. The reason for that is the low dielectric constant of the 

diphenyl ether (ε.~.4). That’s why it has been concluded that electrostatic 

interactions have the key role in the system and they are the main reason of the 

phase segregation. This means that the RPM is appropriate for describing the 

system’s behavior. 

 However it has been mentioned by the authors of the work [42] that the 

studied in the work system is more likely to be an exception. Normally for 

describing an electrolyte’s behavior it is crucial to allow for peculiarities of the 

component species contact interactions [42]. This is the explanation of the 

divergence of results obtained in the work [42] and in the other experimental work 

[44] devoted to the same subject. To be more exact, in the work [44] the critical 

behavior of tetra-n-pentylammonium bromide aqueous solution near it’s consolute 

point was studied. Behavior of this mixture is determined primarily by the 

hydrophobic effect that drives also the phase separation. Therefore the critical 

exponent value β for this mixture turned out to be equal to 0.319-0.337. That 

corresponds to the so-called Ising-like behavior.  

 According to the terminology that appeared in the domain of science 

connected with electrolyte systems, the mixtures investigated in the works [42] and 

[44] are representatives of the two different classes of the systems [45]. In the work 

[44] one of the so-called solvophobic systems has been studied. In solvophobic 

systems phase separation is principally driven by the same factor as in nonelectrolyte 

systems. Namely, by the “dislike” of the solute (an ionizable one in our case) for the 

solvent. In the vicinity of the critical point the solvophibic systems as well as 

nonionic systems exhibit the Ising-like behavior.  

 But the system investigated in the work [42] is one of the so-called Coulombic 

systems. Behavior of such systems is driven by electrostatic interactions. The RPM 

that doesn’t allow for peculiarities of particles interaction is applicable to the 
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Coulombic systems. The critical exponent of Coulombic systems is classical, 

β.≈.1/2. An important characteristic of Coulombic systems is the fact that phase 

separation occurs in them at very low concentrations of ions. Let us note that in all 

the chapters of the present dissertation solvophobic systems are considered. 

 Theoretical and computer simulation studies of electrolyte systems within the 

framework of RPM have been primarily devoted to the determination of the critical 

temperatures and the critical ions concentrations and to the plotting of the systems 

coexistence curves. 

 When one tries to build the coexistence curve of a Coulombic system by 

means of computer simulation in the framework of the RPM the main obstacle 

occurs due to the fact that the curve is located in the region of low temperatures. At 

the low temperatures association of ions is significant and for this reason 

equilibration of the system happens to be very slow [46]. 

In the work [38] a Monte Carlo simulation of a Coulombic system in the 

framework of the RPM has been carried out. The technique used was the one 

described by the same authors in the paper [47]. The simulation cell was the surface 

of a four-dimensional sphere (hypersphere, for short), and the ensemble comprised 

512 “ion pairs” each consisting of a cation and an anion located in opposite points of 

the hypersphere. The excluded volume interaction of the ion pairs were represented 

by the hard spheres repulsion potential, and electrostatic interaction w12 of two ion 

pairs was described by the so-called Coulomb-Schrödinger potential: 

( )

2

12 21

qw
R

=
−

1 2

1 2

z z

z z
               1.2 

where R is the radius of the hypersphere, q – is the absolute value of an ions charge, 

and z1 and z2  are the unit vectors pointed from the center of the hypersphere to the 

cations of the two ion pairs. 
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 The obtained in the work [38] coexistence curve (see Fig.2, a).) and the values 

of the critical temperature Тс*=.0.055-0.06 and the critical ions volume fraction 

ρс*=.0.025-0.05 do not coincide with the ones obtained in the work [37]. But in the 

work [37] a system consisting of only 32 ions was simulated. Besides the interaction 

of ions was represented there by means of the common Coulomb potential and the 

simulation cell was a simple cube with periodic boundary conditions. But 

application of the interaction potential decaying as 1/r in a system with periodic 

boundary conditions can lead to a significant error [38]. It has been proved that the 

Figure 2.  Built in the dimensionless variables coexistence curves of a 

Coulombic electrolyte system in the framework of the RPM obtained: (а) by 

means of computer simulation in the work [38] (diamonds), (b) by means of 

computer simulation in the work [46] (stars), (c) by means of calculation within 

the framework of the DH approach with taking into account the size of an ion 

[45] (dashed line) (d.) by means of calculation within the framework of the DH 

approach with taking into account the size of an ion and also with allowing for  

the presence of strongly bound ion pairs that interact as dipoles with the 

surrounding medium of free ions (solid line) [45].     [36] 
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simulation on the surface of a four-dimensional sphere with utilization of the 

Coulomb-Schrödinger potential is just the way to get over the difficulty. Moreover 

the results of the work [38] roughly coincide with the results of the works [46,48] 

devoted to the same subject (see Fig.2, b).), although in the latter ones a different 

geometry of the simulation cell was used. Therefore the works [38,46,48] devoted to 

computer simulation of Coulombic electrolyte systems in the framework of the RPM 

are considered as more reliable. 

 Among the theoretical approaches to description of Coulombic electrolyte 

systems in the framework of the RPM the one should be first mentioned that is based 

on the Debye-Hückel (DH) theory. In the work [45] the coexistence curve has been 

built with the help of the DH theory. It has been allowed for therein in the solution 

of the Poisson-Boltzmann’s equation that an ion is a sphere with a non-zero radius. 

The obtained in this way coexistence curve coincided qualitatively with the 

coexistence curves obtained in the works [38,46] (see Fig.2 c).). Moreover [45] it has 

been proved that the critical exponent of the system is classical. The calculated value 

of the critical temperature turned to be equal to Tc
*=i0.0625. That is almost equal to 

the one obtained in the computer simulation [38]. But the obtained value of the 

critical ions volume fraction turned to be equal to 0.005, that is more than five times 

less than the value obtained in computer simulation [38,46].  

 The authors of the work [45] supposed that the discrepancy is caused by the 

ability of the ions to couple into ion pairs. This leads to decrease of the concentration 

of free unassociated ions which take part in the electrostatic charge screening that 

drives the phase separation. Thus a higher total concentration of ions is required to 

produce a particular density of free ions for reaching the critical state. That’s why 

the authors introduced in their model also strongly bound neutral ion pairs, that were 

represented as neutral particles diameter of which was assigned to be equal to 3σ , 

where σ is the diameter of an ion. The ratio of concentrations of the ion pairs and the 
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free ions was determined by means of the Bjerrum method (this approach was 

proposed earlier in the work [49]). 

 Namely, let Z+, Z-, and Z+- be the internal partition functions of the free and 

paired ions, respectively. It is supposed that a chemical equilibrium exists between 

the free ions and the ion pairs and it is governed by the association constant        

K(T)  = Z+Z./.Z+-  equal to: 

2( ) 4 exp( )
R

K T u r
σ

π σ
+−

= ∫ r dr               1.3 

where ui=iq2/kBTεσ, and R+-= uσ/2 [39]. The calculation next proceeds within the 

framework of the chemical model in imposing the equality of the chemical potentials 

μ++μ- = μ+- between the free ions and the ion pairs. From this chemical equilibrium 

one deduces the fraction of free ions. 

 In the system modeled in this way phase separation and the critical state 

happened to be still possible. The calculated value of the critical temperature was the 

same as in the previous case and the calculated value of the critical ions volume 

fraction turned to be significantly higher and equal to 0.045 i.e. also roughly 

coinciding with the value obtained by means of computer simulation. But generally 

the new phase diagram differed significantly from the phase diagrams obtained by 

means of computer simulation in the works [38,46]. Moreover the phase diagram 

looked unreliable because it admitted emerging of the “liquid” (the phase with the 

higher concentration of ions) in the “gas” (the phase with the lower concentration of 

ions) in the course of isochoric heating. 

 To get rid of the new calculations disadvantage the authors [45] took into 

account that although an ion pair is as a whole neutral it possesses a dipole moment. 

And the effect of the electrostatic field produced by ion pairs should also be allowed 

for especially in the case when the concentration of free ions is low, i.e. at low total 

concentrations of ions and at low temperature. (The phase diagram built without 
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taking this effect into account has the strange peculiarity right in this region.) That’s 

why one more additive to the free energy of the system has been calculated in the 

framework of the DH approach. This additive arises due to interaction of ion pairs 

represented as spheres having a dipole moment and the surrounding them gas 

composed of free ions. The contributions to the free energy caused by interaction of 

a higher order multipoles have not been allowed for by the authors because 

according to their estimates influence of these terms on the system’s behavior is 

insignificant. 

 The obtained eventually coexistence curve and (see Fig.2 d).) the values of the 

critical temperature Tc
*i= 0.057 and the critical ions volume fraction ρc

* = 0.028 

coincide well with the results of the computer simulation in the works [38,46]. The 

Fisher-Levin theory of phase separation in Coulombic electrolyte systems presented 

in the paper [45] and named after the authors of the work is accepted as the most 

successful one [36,50]. 

 In the two subsequent works [51,52] devoted to the RPM computer simulation 

of Coulombic electrolyte systems the distortions have been thoroughly taken into 

account that arise due to finiteness of the simulation cell, and somewhat different 

values of the critical temperature Tc
*i=i0.049 and the critical ions volume fraction 

ρc
*i=i0.07.-.0.08 have been obtained. The possible explanation is that the Fisher-

Levin theory is a mean field theory, and for this reason it is not well applicable in the 

vicinity of the critical point, where fluctuations play a significant role. However in 

the region far from the critical point the coexistence curve obtained in the work [51] 

anyway coincides well with the one obtained by Fisher and Levin. 

 In subsequent theoretical works [39] and [50] an attempt has been made to 

develop further the Fisher-Levin theory by means of taking into account also dipole-

dipole interactions. However the derived in these works critical ions volume fraction 

happened to be even less than in the work [45]. Thus the obtained therein results fit 
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even worse with the computer experiment results [38,46,51] than the ones obtained 

by means of the original Fisher-Levin theory. 

 In the theoretical work [36] the liquid-gas phase boundary in a Coulombic 

system has been studied in the framework of RPM. The near-boundary ions 

concentration profiles and the surface tension of the boundary have been calculated 

at different values of temperature. The calculations have been carried out in the 

framework of the Fisher-Levin approach. To account for the contribution of 

components concentrations inhomogeneities near the boundary the expansion of the 

system’s free energy in powers of the ions concentration gradient has been carried 

out in the work [36]. The expansion has been truncated after the square-gradient 

term. This can be done only if the concentrations gradients are not too large. Thus, 

the results of the study are reliable only not far from the critical point.  

 On the other hand, as it has been already mentioned, the used in the 

calculations Fisher-Levin theory is not well applicable in the vicinity of the critical 

temperature Tc. For this reason, authors of the work [36] pretend to a reliability of 

their results only in the case if the temperature T of the system under investigation 

lies in the interval 0.85.<.T/.Tc.<.0.95. One can see from the figures representing the 

calculation results of the work [36] that the thickness of the transition layer between 

the two phases (the thickness of the phase boundary) is at T/.Tc = 0.8 of order of 

several ion diameters and it increases only when the system’s temperature T 

becomes very close to the critical one. 

 This is in agreement with the results described in the third chapter of the 

present dissertation where a solvophibic two-component electrolyte system is 

considered. Approaching of the system to the critical state is modeled there by the 

decrease of the parameter. χ~ .and it’s approaching to the threshold value of.. *~χ , when 

the mixture turns into a homogeneous one.  

 Since a Coulombic system has been considered in the work [36] an 

asymmetry in interaction of cations and anions with the neutral molecules has not 
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been taken there into account. In contrast to the approach described in the third 

chapter of the present dissertation such an approach implies that concentrations of 

cations and anions are equal in any point of the mixture, and therefore formation of 

an electrostatic double layer at the interface is impossible. 

 In this respect the approach presented in the third chapter is more close to the 

one in the theoretical work [53] of Onuki, where distribution of a salt’s ions in a 

biphasic system has been studied. It has been allowed for by Onuki that cations and 

anions interact with the different phases in a different way (i.e. the system has been 

modeled as a solvophibic one). Thereto solvation chemical potentials of the cations 

and the anions in both of the phases were introduced. The concentration profiles of 

the ions in the near-boundary layer have been calculated and it has been 

demonstrated that equality of the cations and the anions concentrations in the 

vicinity of the phase boundary is broken if there exists a difference of their solvation 

chemical potentials in the two phases. This means that an electrostatic double layer 

appears at the phase boundary. That causes the emergence of the potentials 

difference between the two phases (the one known in electrochemistry as the 

Galvani potential difference [53]). 

 Besides it has been demonstrated in the work [53] that the surface tension of 

the phase boundary increases with the increase of the average salt concentration in 

the system and the mixture’s critical temperature (the temperature at which the 

mixture turns into a homogeneous one) depends significantly on the salt 

concentration. The fundamental distinction between the system studied in the work 

[53] and the system studied in the third chapter of the present dissertation lies in the 

concentrations of ions. Namely, in the system modeled by Onuki the concentration 

of ions is supposed to be very low while in the third chapter of the present work a 

system is studied in which one of the phases (an IL) is composed almost entirely of 

ions. 
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 In the last four years Onuki published also three interesting theoretical works 

[54-56] based on the Ginzburg-Landau theory which are devoted to phenomena 

connected with solvation of ions in various media. In the work [54] behavior of a gas 

composed of polar molecules near an ion has been studied. It has been proved that 

near an ion a drop of liquid is formed and it’s size has been calculated. (For the first 

time this phenomenon was observed by Wilson more than hundred years ago). Thus 

in the work [54] both effects of electrostriction and of polarization alignment of gas 

molecules near the ion have been allowed for to describe the solvation of the ion. 

In the work [55] a theory has been built describing solvation of an ion in a 

near-critical binary mixture of two polar liquids. In the work [56] solvation of an ion 

in a liquid crystal has been studied. It has been shown therein that the ion’s 

electrostatic field violates orientation of the liquid crystal on a large scale as 

compared with the size of the. 

 The theoretically proved in the work [53] effect of phase boundary surface 

tension growth with the growth of an ionic admixture concentration had been 

observed in experiment already long before [57]. For example, the work [58] is one 

of the recent experimental works devoted to this subject. The phenomenon has been 

attracting the interest of researchers for a long time already. The fact is that there 

exists an opposite much better known effect of an admixture small concentration on 

the surface tension of a phase boundary. Namely, when a surfactant is added to a 

biphasic system, the surface tension of the phase boundary decreases. 

 The excess of admixture at a gas-liquid interface can be determined as: 

                  1.4 Γ = −[ ]
0

( ) bc z c dz
∞

∫
where integral is taken over the coordinate z, perpendicular to the interface and 

pointed in the direction of the liquid, c(z) is the concentration of the admixture at the 

distance z from the interface, and cb  is the admixture’s concentration in the liquid far 
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from the interface. Then the following relation obtained from the Gibbs-Duhem 

equation must be valid [59]: 

                   1.5 
,T V

d
d
γ Γ⎜ ⎟μ

⎛ ⎞
= −

⎝ ⎠
where μ is the chemical potential of the admixture and γ is the surface tension of the 

phase boundary.  

 If an admixture is surface active its concentrating at the interface is favorable: 

. Thermodynamic stability requires that the chemical potential of a system’s 

component grows when its concentration increases: dμ/dc

0Γ >
.>.0. Thus, it follows from 

the eq. 1.5 that an increase of the average surfactant concentration in the system (or 

at the phase boundary, what is equivalent) must lead to a decrease of the surface 

tension of the phase boundary: dγ/dc<0.  

Vice versa, if the surface tension increases when the average concentration of 

an admixture in the biphasic system is increased, then, as it follows from the eq. 1.5, 

the concentration of this admixture near the interface must be less than in the bulk of 

the liquid phase:  [59]. 0Γ <

 Onsager and Samaras published in the year 1934 one of the first theoretical 

works [60] where it was demonstrated that concentration of an ionic admixture at a 

liquid’s surface adjacent to a gas is less than in the bulk of the liquid far from the 

surface, and the surface tension of this phase boundary increases with growth of the 

admixture’s concentration in the liquid. In the Onsager-Samaras (OS) model the 

system is represented as a plane separating a medium with dielectric constant equal 

to unity (gas) and a medium with a fixed dielectric constant (liquid) containing ions. 

In such a system decrease of the ions concentration near the interface as compared to 

the bulk of the liquid appears due to the dielectric constant discontinuity at the phase 

boundary. Namely, electrostatic field of an ion polarizes the boundary and induces 

on it a charge of the sign similar to that of the ion. This induced charge repels the 

ion. The calculations of Onsager and Samaras were also based on the DH theory. 
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 The results obtained by means of the OS approach are in good agreement with 

experiment at concentrations of ions in the system less than 0.1.mole/liter. According 

to the calculations based on this approach the characteristic thickness of the near-

surface layer where concentration of ions is less than in the bulk of the liquid is of 

the same order of magnitude as the Debye radius, reciprocal of which is expressed as 

κ = [8πcb.z2e2/εkBT]1/2, where ε is the dielectric constant of the liquid, e is the 

elementary charge, and ze is the charge of an ion. The change of the phase boundary 

surface tension caused by the ionic admixture in the limit of very low ions 

concentrations is equal to:   

 
3ln 2

2 2
b

b B b E
lc k Tl κγ γ⎡ ⎤Δ = − − +⎢ ⎥⎣ ⎦

             1.6 

where lb  = e2/εkBT is the Bjerrum length and γE = 0.5772. 

Not long ago the OS approach was further developed in the theoretical work 

[57] predictions of which are in agreement with experimental data concerning NaCl 

solutions [58] up to ions concentration of 1.mole/liter. It has been additionally taken 

into account in the work [57] that solvate shells are formed around an ion. These 

solvate shells don’t allow the ions to be closer to the surface of the liquid than the 

distance equal to the thickness of the shells. This leads to an extra increase of the 

surface tension. 

In the work [61] the proposed in the work [57] model was generalized for the 

case of an asymmetric electrolyte, namely, an electrolyte comprising the so-called 

multivalent ions. This means that in this electrolyte ratio of oppositely charged ions 

amounts is not equal to unity. Several counterions fall to the share of each 

multivalent ion. This number is the so-called valence of the multivalent ion. Results 

of the calculations carried out in the work [61] are in excellent agreement with the 

results of the measurement carried out in the work [58] for the case of a MgCl2 

solution. However, in the model proposed in the work [61] the thickness of the near-

surface layer of liquid where ions can’t enter because of their solvate shells is not an 
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a priori fixed parameter. Value of this parameter has not been calculated by the 

authors on basis of experimental data concerning structure of the solvate shells. It 

has been just chosen to provide the best coincidence of the calculations results and 

the experimental data [58] concerning the surface tension.  

Let us also briefly mention here our work [62], in which distribution of an 

asymmetric electrolyte in a porous polyelectrolyte gel has been studied. It has been 

shown therein by means of simple entropy and electrostatic field energy estimates 

that the ratio of the multivalent ions concentrations in the pores and in the network 

of the gel increases dramatically with increase of the multivalent ions valence. 

Another attempt to generalize the OS theory has appeared in literature almost 

simultaneously with the work [57]. Namely, in the work [63] it has been taken into 

account that a cation and an anion possess different polarizabilities. The ability of an 

ion to be polarized originates an additive to his potential in the field produced by the 

charge induced on the phase boundary by the very ion. Hence, such a break in the 

symmetry of the oppositely charged ions leads to the inequality of their 

concentrations near the phase boundary. This means that at the interface an 

electrostatic double layer arises. That causes the origination of one more additive to 

the ions potential. Since the introduced in the model complication doesn’t allow an 

analytical treatment the system has been studied by the authors [63] numerically. It 

has been proved that polarazabilities of ions also exert a significant influence on the 

phase boundary surface tension.   

In the work [59] the effect of a solvent droplet surface tension growth with the 

increase of an admixture concentration (including an ionic admixture) has been 

analyzed theoretically and demonstrated by means of computer simulation on basis 

of a more general assumption. Namely, it has been supposed that energy of an 

admixture molecule attraction to a molecule of the solvent is higher than the energy 

of two solvent molecules attraction. For this reason the total interaction energy of the 

mixture’s molecules is less if a given admixture molecule is in the bulk of the 
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solvent than if it is near the phase boundary (because in the bulk the admixture 

molecule screens a larger number of contacts between the solvent molecules which 

are less energetically favorable than contacts of this molecule with the solvent 

molecules). Thus the admixture molecules are drawn into the bulk of the solvent and 

their concentration therein is higher than near the phase boundary. This causes the  

decrease in the surface tension with the increase of the average admixture 

concentration.  

In the work [64] the effect of a solution/gas interface surface tension growth 

with the increase of an ionic admixture concentration in the solution has been 

studied by means of a Monte Carlo computer simulation. To avoid possible 

problems related to the finiteness of the simulation cell an entire drop of liquid has 

been simulated. The solution was modeled as a Coulombic electrolyte system in the 

framework of the RPM. Electrostatic interactions of the ions have been calculated on 

each step directly by means of solving the Poisson equation.  

The advantage of an RPM based computer simulation of a Coulombic system 

over its RPM based OS analytical treatment lies in the fact that the former has no 

limitations connected with possible values of the ions concentration, while the latter 

is applicable only at low ions concentrations at which the DH approach is valid. As 

to the solvate shells of ions, their presence can be allowed for in the computer 

simulation just by means of specifying a larger radius of the ions. 

In the work [64] it has been demonstrated that the excess amount of ions Г at 

the surface of a liquid drop and the surface tension are proportional to the ions 

average concentration in the drop. The computer simulation results coincide with the 

OS theory predictions at low concentrations of ions, and they are in agreement with 

the experimental results up to ions concentrations of order 1 mole/liter [64]. Besides, 

it has been found out in the work [64] that the thickness of the solution near-surface 

ions depleted layer is roughly three times larger than an ion’s diameter. This is in 
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agreement with the results concerning the thickness of the phase boundary transition 

zone that have been obtained in the third chapter of the present dissertation. 

Computer simulation of a liquid-vapour phase boundary has been carried out 

also for the case of an IL. In the work [65] by means of the Monte Carlo and 

molecular dynamics methods it has been demonstrated in the framework of RPM 

that the surface of an IL is rather rough and has a larger thickness than interfaces of 

simple liquids and water (especially at the temperature close to the critical one); and 

in the bulk of the IL cavities that have size of several ion diameters can be 

spontaneously formed. It has been also demonstrated in the work [65] that surface 

tension of the ionic interface is much higher than that of simple fluids, and of the 

same order of magnitude as the water surface tension, that is in agreement [65] with 

experimental data despite the simplicity of the RPM.  

To conclude the review of theoretical works devoted to study of ion 

containing systems, let us mention the papers in which a Flory-Huggins type lattice 

approach has been used for explaining the properties of ILs. The works [26] and [66] 

are experimental in the first place. Therein macrophase separation of the mixtures 

IL/nIL has been investigated. In order to explain the experimentally obtained phase 

diagrams some calculations on basis of the Flory-Huggins approach have been 

carried out. The obtained by means of these calculations phase diagrams coincided 

well with the ones obtained in experiment. 

Let us note here that the models of IL/nIL mixtures described in the chapters 

2,3,4 of the present dissertation are also based on the Flory-Huggins approach. 

However the latter have almost nothing to do with the considerations proposed in the 

works [26] and [66]. The fact is that in the models proposed in these works a base 

unit of an IL is represented as a single molecular entity. In other words, it is 

supposed that all ions of the IL form strongly bound neutral ion pairs. Thus in this 

theoretical treatment it is just not taken into account that an IL is actually composed 

of ions. Vice versa, in the models proposed in the present dissertation [16,19,20] the 
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fact that an IL consists of ions that are not strongly bound to each other is of primary 

importance. 

It is supposed in the works [26] and [66] that a “molecule” of the IL is larger 

than a molecule of the nonionic solvent. To allow for this fact it is supposed that an 

IL molecule is a polymer molecule that consists of monomer units having the same 

size as the molecules of the nonionic solvent. This assumption is rather debatable. 

But it allows applying of  the Flory-Huggins theory expressions describing the free 

energy of a polymer solution to the modeled system. The coincidence of the 

experimental and the theoretical curves is achieved in the works [26] and [66] by 

means of choosing the optimal values of an IL “molecule” “degree of 

polymerization” and of the Flory-Huggins parameter characterizing the IL 

“molecule” interaction with a molecule of the nonionic solvent. The obtained thus in 

the work [66] ratio of the IL’s cation and anion total volume to the volume of a 

nonionic solvent molecule for the (BMI)BF4.+.water system happened to be two 

times smaller than the actual ratio. 
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2. Explanation of the high solvent power of ionic liquids. 

In the present chapter [16] a mixture of an ionic liquid and a normal nonionic 

solvent is considered. The goal of the consideration is the determination of the 

conditions under which the mixture is homogeneous. Main subject of the 

investigation is the influence of the Van der Waals interactions of the IL’s cations 

with the IL’s anions and of the ions with the molecules of the nonionic solvent on 

the IL’s solvent power. 

Cations and anions are considered as individual components of the mixture 

which is represented thus as a ternary one, i.e. consisting of cations, anions and 

neutral molecules. Formation of ion pairs is not taken into account for the sake of 

simplicity. Allowing for this effect would not change the obtained results 

qualitatively.  

The following qualitative explanation of the high solvent power of ILs can be 

proposed. Let us imagine that the contact of an IL’s cation and an IL’s anion is 

energetically very unfavorable or, in other words, they are strongly incompatible. 

Theoretically, if these particles lost their charge but their Van der Waals interactions 

stayed the same then a homogenous mixture of these particles could not exist, and 

phase separation would necessarily occur. But since the cations and the anions are in 

fact oppositely charged their segregation is impossible since it would originate an 

electrostatic field with a very high energy. That’s why they are homogeneously 

mixed.  

Now let us imagine that the energies of a solute molecule contacts with a 

cation and an anion of the IL are much less than their mutual contact energy. If such 

a molecule is inserted in the bulk of the IL several energetically unfavorable contacts 

of cations and anions disappear and they are replaced by more energetically 

favorable contacts of the molecule and the surrounding ions. On the other hand, 

when the neutral solute molecules appear in the bulk of the IL the IL’s cations and 

 33



anions remain homogeneously mixed in the solution, hence, average electrostatic 

charge remains equal to zero in any point of the mixture and no extra energy of 

electrostatic field arises. 

Thus dissolution of such neutral molecules in the IL turns out to be 

energetically favorable. Generally, solvent power of an IL increases with the growth 

of the incompatibility of its cations with its anions. As to possible formation of ion 

pairs, their appearance would decrease the total number of “active” ions in the IL 

and hence would decrease its solvent power, but it would not change qualitatively 

the dependence of the solvent power on the character of the IL’s cations and anions 

Van der Waals interaction. This reasoning can be supported in the following way by 

analytical derivation. 

Let us consider a homogeneous mixture IL/nIL. For definiteness, let us 

assume that cations and anions of the IL and neutral molecules of the nIL are of the 

same size. It needs no saying that it is not the case in real systems. It is well known, 

for example, that the most popular as an object of scientific study imidazolium ILs 

(like (BMI)BF4) are composed of a cation and an anion that have significantly 

different sizes. However, difference in the mixture components molecules sizes is 

also not the major factor of the predicted here phenomenon. The allowing for of this 

difference would introduce significant complication in the theoretical treatment but 

it would not change qualitatively the main prediction of the theory. 

To describe the system we use a lattice model. It is supposed that the whole 

volume of the mixture is composed of identical elementary cubic cells and each of 

the cells contains one molecule of a component of the mixture. Each molecule of the 

system is located strictly within the bounds of one of the cells. Since it is supposed 

that there are no empty cells it is allowed for in the model that not a gas but an 

uncompressible mixture is considered. The mixture’s entropy is determined by 

means of counting the number of different arrangements of the components 

molecules set over the set of the elementary cells. 
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To each couple of molecules located in adjacent cells the contact energy is 

assigned which is determined by the types of the two molecules, and sum of all the 

energies of the contacts in the system is calculated to obtain the total Van der Waals 

interactions energy. To characterize quantitatively mutual contacts energies of 

different components molecules corresponding Flory-Huggins parameters are 

introduced. In the case under consideration there are three types of contacts: cation – 

anion, cation – neutral molecule, anion – neutral molecule. They are described by 

the parameters χ+-, χ+, χ- (see fig. 3.), respectively. The larger is the value of a Flory-

Huggins parameter the less energetically favorable is the corresponding molecules 

contact. (Meaning of the parameter χ~  presented in the figure 3 is explained in the 

next chapter.) 

Let us note here that according to the terminology used in theoretical works 

devoted to study of electrolyte systems the used in the present chapter model can be 
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Figure 3. Schematic diagram representing parameters used for the 

description of the Van der Waals interactions in the system.  
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termed as a symmetric restricted primitive model on a lattice. The system described 

by the model is of no doubt a solvophobic one.  

Let Φ+ and Φ- be the volume fractions in the solution of the IL’s cations and 

the IL’s anions, respectively. The unoccupied by the ions space of the mixture is 

occupied by nonionic liquid and volume fraction of the latter in the mixture is, 

hence, equal to 1-Φ+-Φ-.. The normalized to the number of elementary lattice cells 

entropic contribution fent to the free energy of the system caused by translational 

motion of the cations, the anions, and the neutral molecules is equal to: 

( ) ( )−+−+−−++ −−−−++= ΦΦΦΦΦΦΦΦ 1ln1lnlnkTf ent          2.1 

The normalized to the number of elementary lattice cells contribution fint to the free 

energy caused by Van der Waals interactions of the molecules is equal to: 

( ) ( )−+−−−+++−+−+ −−+−−+= ΦΦΦχΦΦΦχΦΦχ 11kTfint           2.2 

The characterizing contact of two molecules of the types А and В parameter χAB is 

equal to: 
6

2

A A B B
A B

A B
E EE k Tχ

⎛ ⎞+
= −⎜ ⎟

⎝ ⎠
       2.3 

where EAB, EAA, and EBB are the contact energies of the located in the adjacent cells 

molecules of the types A and B, A and A, and B and B, respectively. These values 

can be determined by means of the molecules interaction computer simulation [67]. 

The formula 2.2 is a special case of the general expression describing the 

contribution to a mixture’s free energy caused by its molecules Van der Waals 

interactions for the case when the mixture is not spatially homogeneous. Derivation 

of that expression is given in the appendix 1.  

Since a spatially homogeneous solution is considered, concentrations of the 

cations and of the anions in all its points are equal to each other, and, hence, 

electrostatic charge is equal to zero in all the points and the energy of electrostatic 

field is equal to zero. The contribution to the electrostatic free energy caused by the 

ions concentrations fluctuations is also not taken into account while its influence on 

 36



the predicted phenomenon is negligible. Nevertheless the fact that the system is 

ionic plays implicitly the key role in the present theoretical treatment. Namely, 

opposite charges of the cations and the anions are the very reason of why the 

concentrations of the cations and the anions are equal in al the points of the solution. 

From the equality of the concentrations and from the assumption of the 

equality in sizes of the cations and the anions it follows that their volume fractions in 

the homogeneous solution must be equal to: 

2ΦΦΦ == −+                 2.4 

where Ф is the volume fraction of the entire IL in the mixture. The total free energy 

of the system normalized to the number of elementary lattice cells is equal to the 

sum of the equations 2.1 and 2.2. With taking into account the equation 2.4 it can be 

written as: 

                  2.5 ( ) ( ) ( )
2

ln 1 ln 1 1
2 4

f
kT

Φ ΦΦ χ Φ Φ χ Φ Φ+− + − − + −= +

where χ is the average parameter describing simultaneously both interactions of the 

cations and the anions of the IL with the neutral solute molecules: 

( )
2

+− +=
χχχ                 2.6 

As a matter of fact, χ is the parameter characterizing interaction of a solute molecule 

and an IL molecule consisting of two ions. 

 If one knows the expression of a mixture’s free energy one can obtain the 

equation describing the spinodal of the mixture’s macrophase separation by means 

of equating the second derivative of the free energy to zero: 022 =∂∂ Φf [68].  

After applying this procedure to the expression 2.5 one obtains: 

( )
1

2 1 4
χχ

Φ Φ
+ −= +

−
               2.7

 The dependence 2.7 of the parameter χ on the volume fraction Ф of the IL in 

the mixture is represented in the figure 4 (curve a).). The value of the parameter χ+-  
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is taken in this case to be equal to 12. The figure 4 is the phase diagram of the 

mixture IL/nIL. It has the following physical meaning. If the system is described by 

the couple of parameters (Φ, χ) which correspond to a point located over the curve 

a) then such a mixture would be unstable in the homogeneous state. In this case the 

mixture must segregate into two macrophases. But if the point with coordinates    

(Φ,..χ) is located below the curve a), then the corresponding to this point 

homogeneous mixture IL/nIL is stable. 

 In general, the last condition is not the sufficient one to ensure the 

homogeneous mixture’s stability. A homogeneous mixture is absolutely stable if the 

value of the system’s free energy is equal to its absolute minimum. This condition is 

fulfilled if the point (Φ, χ) is below the binodal curve which is located somewhat 

lower than the spinodal curve. However, if we treated the binodal curve instead of 

the spinodal curve as the boundary of the phase separation domain our analytical 

Figure 4. Spinodal of the mixture IL/nIL macrophase separation at the value of 

the parameter χ+- equal to 12 (a), and the spinodal of macrophase separation of 

the mixture of the same nIL and a nonionic solvent equivalent to the IL (b). 
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treatment would become a bit more complicated, but the main result of our 

speculations would stay the same. The binodal of the mixture is considered in the 

next chapter. 

 For comparison, let us consider a mixture of two normal nonionic liquids 

olec

lattice cells free energy f0 of 

m ules of which are also of the same size. Let us denote the volume fraction of 

one of the components again as Ф and the Flory-Huggins parameter characterizing 

interaction of the two components molecules again as χ. 

 The normalized to the total number of elementary 

this two-components system can be expressed as: 

 ( ) ( ) ( )1χ Φ Φ+ −          2.8 

here the first two terms represent the entropic contribution to th yste

e 

energy

            2.9 

d in the figure 4 by the curve b) which is located 

n ratio of two mixed components concentrations one starts 

0 ln 1 ln 1f k T Φ Φ Φ Φ= + − −

w e s m’s free 

energy which is caused by the translational motion of the two components molecules 

and the last term represents the contribution caused by the molecules interactions.  

After equating again to zero the second derivative of the describing the fre

 expression one can obtain the following equation which describes the 

mixture’s macrophase separation spinodal:    

         
( )

1χ =
2 1Φ Φ−

This dependence is also presente

lower than the curve a).  

 Thus, if at any give

at a high value of χ and decreases it (on the phase diagram this corresponds to the 

motion downwards from a point located in the upper part) then in the both 

considered cases the mixture from a heterogeneous one turns into a homogeneous 

one as the point representing the system’s state passes the corresponding spinodal 

curve. But the homogeneous mixture of an IL and a nIL is formed earlier than the 

homogeneous mixture of the same nIL and a nonionic solvent equivalent to the IL. 

(According to our definition, equivalence of two solvents with respect to a solute 
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means that the Flory-Huggins parameters characterizing interactions of the both 

solvents molecules with the solute molecules are the same.)   

 The IL “extra solvent power domain” is shaded on the phase diagram 

 of the present chapter let us mention a possible erroneous 

 matter of fact such a two 

ompo

of the extra 

anions incompatibility that is generally possible in nature.  

presented in the figure 4. The width of this domain, i.e. the distance between its 

boundaries along the χ coordinate axis is equal to χ+-./4. (Compare the equations 2.7 

and 2.9). Thus, it has been proven that the stronger is the incompatibility between 

cations and anions of an IL the higher is the solvent power of the IL with respect to 

an arbitrary solute. 

 In conclusion

deduction concerning the preceding argumentation. Namely, the argumentation is 

formally valid for any equimolar mixture of two nonionic components A and B 

acting as a binary co-solvent for a third nonionic liquid. According to the same 

argumentation if the parameter χAB which describes the interaction of the A and B 

components is positive their equimolar mixture is also to have some extra solvent 

power and it is not clear what the unique role of an IL is. 

 The answer to this objection is the following. As a

c nents AB solvent can exist only if the two components do not segregate. This 

is possible only if the value of the parameter χAB is less than 2. That follows from the 

equation 2.9, if one substitutes in it the values of the components volume fractions, 

which are in this case equal to 0.5. Thus, for this AB co-solvent the boundary of the 

homogeneous state domain on the phase diagram of its mixture with a nIL (similar 

to the curve a) in the figure 4.) can be higher than the boundary for the case of a 

normal one-component solvent (curve b).) not more than by χAB./4 = 0.5. 

 But in the case if an IL is the solvent, there are no such limitations 

solvent power caused by the cations and the anions incompatibility, since, as it has 

been already mentioned, segregation of oppositely charged ions is impossible. The 

maximal value of χ+-./4 in this case is limited only by the maximal cations and 
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Let us summarize briefly the chapter 2. It has been demonstrated that the 

higher is the energy of an IL’s cation and anion contact caused by their Van der 

Waals interaction, i.e. the stronger is their incompatibility, the stronger is the 

solvent power of  this IL with respect to an arbitrary nonionic liquid. 
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3. Study of the phase boundary between an ionic liquid and a 

nonionic liquid. 

In this chapter the study of a macroscopically phase separated mixture of 

an ionic liquid and a normal nonionic solvent [19] is presented. The subject of the 

study is the interface between the two phases. Namely, the components 

concentrations profiles near the interface, surface tension of the interface, and the 

thickness of the transition region between the two phases are determined. As in 

the previous chapter the investigation is focused on the influence of the 

components Van der Waals interactions on the system’s properties. The lattice 

model with the same main assumptions as in the previous chapter and with the 

same notation of parameters characterizing the mixture’s components Van der 

Waals interactions (see the figure 3 and the equation 2.6) is used. 

3.1  Binodal of the studied mixture. 

A flat phase boundary is considered. Hence, the problem is one-

dimensional and the components concentrations vary only along one coordinate 

perpendicular to the boundary. Let us denote the coordinate by x. The 

concentrations gradient is present only in the transition region at the interface. On 

the both sides far from the interface concentrations of the cations and the anions 

of the IL must be equal, otherwise electrostatic field having infinite energy would 

arise. That’s why far from the interface the mixture’s free energy f per one 

elementary lattice cell is expressed by the equation 2.5. 

Concentrations of the IL far from the phase boundary can be determined 

with the help of the phase equilibrium condition. Namely, chemical potentials of 

each component in the two phases and osmotic pressures must be equated: 

,    

    3.1 
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where as Ф+∞ and Ф-∞ the sought volume fractions of the IL on the both sides far 

from  the  phase  boundary   are  denoted.   The  system  of  equations  3.1  can be  

∞+∞−
∂

∂
=

∂

∂

ΦΦ ΦΦ
ff f ff f

Φ Φ

Φ Φ
Φ Φ

+∞ −

∂ ∂⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
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simplified. If one adds to f the linear in Φ term Φ.(ln2 - χ+-./4) one obtains the 

value fsymm which is described by expression that is invariant with respect to 

substitution of  1- Φ for Φ and vice versa: 

( ) ( ) ( ) ( ) ( )ΦΦχΦΦχΦΦΦΦ −+
−

−−−+= −+ 1
4

11ln1lnsymmf       3.2 

Terms of  f  which are linear in Φ are cancelled when f is substituted in the 

system of equations 3.1. That’s why in order to get the sought values Φ+∞ and    

Φ-∞ the value  fsymm .can be substituted in the system 3.1 instead of  the value  f.   

 As a matter of fact, the system of equations 3.1 solution is the finding of 

the two points of the representing the function f.(Φ) curve, which have a common 

tangent. The function fsymm.(Φ) has on the segment [0,1] either two inflections and 

two minima in the points symmetrical with respect to the value of Φ = 0.5 or only 

one minimum in the point Φ = 0.5. This depends on the values of the Flory-

Huggins parameters characterizing the system. Since the function is symmetrical 

with respect to the value of Φ = 0.5, if its tangents in two different points 

coincide, then this common tangent must be horizontal. Therefore, the solution of 

the system of equations 3.1 with fsymm substituted for f is equivalent to the   

solution of one simple equation: 

( ) ( ) 0~211lnln:0 =−+−−=
∂
∂

χΦΦΦ
Φ

          
f symm          3.3 

The equation 3.3 can have two sought solutions Φ+∞ and Φ-∞.=.1-.Φ+∞ , and it 

always has the root Φ = 0.5, that has no physical meaning. In the expression 3.3 

the following parameter has been introduced: 

4
2

4~
−+

−+
−+ −

+
=−= χχχχχχ           3.4 

χ~  is the only one parameter determining the macrophase behavior of the system. 

Namely, it determines whether the mixture is homogeneous, and in the case if the 

mixture segregates in two phases, this parameter determines the compositions of 

the two phases. Generally, when one has to do with macrophase separation only, 

if concentrations of the cations and the anions of an IL are equal in all the points 
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of the system, the IL is equivalent to the solvent interaction of which with the 

given solute is characterized by the Flory-Huggins parameter χ~ . 

 The solution of the equation 3.3 (the binodal curve) is presented in the 

figure 5 (curve a).). This is a phase diagram having the following physical 

meaning. If in the considered mixture the average volume fraction Φ of IL is such 

that the point with coordinates (Φ, χ~ ) is located below the binodal curve then the 

spatially homogeneous state of the mixture is stable. But if the point is located 

over the curve, then the homogeneous mixture is not stable, and when it 

segregates, the volume fractions of the IL in the two emerging phases are equal to 

the abscissa coordinates of the points where the horizontal line with the ordinate 

χ~  intersects the binodal curve. 

 For comparison, the spinodal of the mixture IL/nIL considered in the 

previous chapter is also presented in the figure 5 (curve b).). As in the present 
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Figure 5. Binodal (a) and spinodal (b) curves of the mixture IL/nIL 

macrophase separation in the coordinates χ~ , Φ.  
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chapter a phase boundary is considered it is implied that the studied system is 

characterized by the point on the phase diagram (figure 5) that is located in the 

phase separation domain, i.e. over the binodal curve.    

3.2   The model of the phase boundary. 

If cations and anions of an IL had the same affinity to the solvent (χ+ = χ-), 

because of the symmetry, their concentrations would be equal to each other in all 

points of the system and the mixture would behave as a binary one. Then the 

parameter χ~  would be the only parameter determining its behavior. Let us 

consider the general case when the parameters .χ+  and  χ- are different, and, 

hence, concentrations of the cations and the anions near the phase boundary can 

be also different. That means appearing of a local electrostatic charge. Density 

ρ(r) of the charge in the point of the mixture described by the vector r is 

connected with the cations and the anions volume fractions in the point via the 

relation: 

                3.5 ( )3( ) ( ) ( )a eρ Φ Φ+ −= −r r r

where e is the absolute value of an ion’s charge, which is supposed to be equal to 

the elementary charge,  and a3 is the volume of an elementary lattice cell. Let us 

note that actually in the strict sense Φ+(r) and Φ -(r) are the volume fractions of 

elementary lattice cells occupied by the cations and the anions, respectively. But 

for short they are referred to everywhere in the text of the present dissertation just 

as the volume fractions of the cations and the anions, respectively.  

 The energy of the electrostatic field in the system is equal to: 

31 ( ) ( )
2el-stE d ρ ϕ= ∫

V

r r r            3.6 

where φ(r) is the potential of the electrostatic field in the point r and the integral 

is taken over the whole volume V of the mixture. 

 The potential φ(r) and the charge density ρ(r) are connected via the Poisson 

equation: 

                 3.7 ( )( ) 4 ρϕ π
ε

Δ = −
rr
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where ε is the dielectric constant of the medium between the charges. This is the 

dielectric constant the considered mixture would possess if theoretically the 

charges of its ions disappeared but all other properties of its components stayed 

the same. In general, this value can’t be invariant in space while it must depend 

on the local mixture composition. But in the first approach we suppose that the 

value is equal to a constant in all points of the mixture. 

 There is no electrostatic field far from the phase boundary, i.e. 0)( =±∞′ϕ , 

since the electrostatic charge ρ is localized only at the interface and the system is 

electroneutral as a whole. Only the gradient of the electrostatic field potential, but 

not its absolute value is important. Hence it can be assumed for definiteness that      

φ(-∞) = 0. Let us take into account that all the variables describing the system 

depend only on the coordinate x. After integrating the equation 3.7 and 

substituting the obtained result in the equation 3.6 one gets the expression 

describing the contribution Fel-st of electrostatic field to the free energy 

normalized to the area of the phase boundary: 

( ) (2

2 ( ) ( ) ( ) ( )
x x

el stF u dx dx dx x x x x
kT a

π Φ Φ Φ Φ     3.8 )
′+∞

−
+ − + −

−∞ −∞ −∞

′ ′′ ′′ ′′= − − −∫ ∫ ∫
where u is the dimensionless parameter equal to the ratio of the adjacent ions 

electrostatic interaction energy and the thermal energy kT: 

akTeu ε2=               3.9 

At room temperature, for sodium chloride ions (diameter of a Cl atom is equal to 

~.2.0*10-10m and diameter of a Na atom is equal to ~.3.6*10-10m, thus the 

distance a between their charges when they touch each other is approximately 

equal to ~.2.8*10-10m) dissolved in water (ε.~.80) this parameter is of the order of 

unity. Size of an IL’s ions is in average larger than the size of the sodium 

chloride ions but dielectric constant of an IL is lower than the one of water. So, 

we assume that the parameter u in the studied system is also of order unity. Let us 

suppose in this chapter that it is equal to 2. 

 Let us note that in the expression 3.8 while integration the transformation 

to dimensionless coordinates has been done. Increase of such a coordinate by one 
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corresponds to a real spatial shift over one lattice cell size a. In all the following 

expressions of the present chapter the dimensionless coordinates are used. 

Total free energy Ftot of the system is composed of  the electrostatic field 

energy Fel-st, of the entropic contribution Ftr-ent caused by translational motion of 

the mixture components molecules, and of the term Fint appearing due to the 

molecules Van der Waals interactions: 

intenttrsteltot FFFF ++= −−           3.10 

The entropic contribution is expressed in the common way: 

  3.11 ( ))(ln)()(ln)()(ln)(1
2 xxxxxxdx

akT
F

ss
enttr ΦΦΦΦΦΦ ++= −−++

+∞

∞−

− ∫
where Φs(x) denotes the volume fraction of neutral molecules in the having the 

coordinate x layer parallel to the phase boundary. It is connected with the volume 

fractions of the cations and the anions via the relation: 

1)()()( =++ −+ xxx sΦΦΦ          3.12 

 Derivation of the general expression A1.15 describing energy of molecules 

contact interactions in a spatially nonhomogeneous ternary mixture is presented 

in the Appendix 1. For the case of the considered in the present chapter one-

dimensional system this term can be written as: 

[ ( ) ( ) ( ) ( ) ( ) ( )
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1

1
2

 3.13 

In the expression 3.13 the last three terms are not equal to zero if there exist 

gradients of the mixture’s components concentrations. These are the very terms 

that provide in the proposed model that the transition zone near the phase 

boundary has a non-zero thickness. Otherwise the sum of these terms tends to 

infinity. Like the contribution Fel-st to the free energy the contributions Fint and   

Ftr-ent, and the total free energy of the system Ftot are normalized to the area of the 

phase boundary. 
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The equilibrium components concentrations profiles near the phase 

boundary can be obtained by means of minimization of the Ftot functional over 

the functions Φ+(x) and Φ-(x). The boundary conditions imposed on these 

functions are the equalities of the mixture components concentrations far from 

the boundary to the corresponding concentrations in the two phases that are in 

equilibrium at the given value of. χ~ . In other words the binodal conditions must 

be fulfilled (see eq. 3.3): 

2)()( ∞−−+ =−∞=−∞ ΦΦΦ  

2)()( ∞+−+ =+∞=+∞ ΦΦΦ          3.14 

A simplification has been introduced in the calculations related with the 

search of the functions Φ+(x) and Φ-(x) corresponding to the minimum of the 

functional Ftot. Namely, the search has been limited. It has been done not among 

all the continuous functions but only among the trial ones belonging to the 

collection of exponent step like functions expressed as: 
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                  3.15 

where α+ and α- are the unknown exponent parameters values of which have been 

determined. 

 Thus the problem of finding the two optimal functions has been reduced to 

the problem of finding the optimal values of the two variables α+ and α-. All the 

trial functions belonging to the collection 3.15 fulfill the boundary conditions 

3.14 and are obviously similar to the functions Φ+(x) and Φ-(x) corresponding to 

the absolute minimum of the functional Ftot. Physical meaning of the parameter 

α+ (respectively α-) lies in the fact that its reciprocal is of the same order of 

magnitude as the thickness of the transition zone in which concentration of the 

cations (respectively anions) varies from the one constant value Φ-∞./.2 to the 

other constant value Φ+∞i/2. 
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Search of the function Ftot minimum over the variables α+ and α- is 

equivalent to the system of equations solution: 

0 , 0to t to tF F
α α+ −

∂ ∂
= =

∂ ∂   3.16 

The system of equations 3.16 has been solved numerically. Let us note that for 

calculation of the partial derivatives 3.16 one needs to compute numerically the 

values of the integrals 3.8, 3.11, 3.13 in which the expressions 3.15 are 

substituted. Analytical treatment allows only a partial simplification of the 

numerical calculations, for which a lot of computer time is required. Utilization 

of any numerical algorithm for solution of the system 3.16 requires a manifold 

calculation of the partial derivatives at different values of α+ and α-. Moreover in 

the present study the system of equations 3.16 must be solved many times at 

different values of the Flory-Huggins parameters characterizing the system.  

 For this reason, the calculation process has been speeded up in the 

following way. At first all the possible integrals appearing while the calculation 

of the derivatives 3.16 have been computed for the given set of possible different 

values of the variables α+, α-, and Φ+∞. In other words, integral tables have been 

created. As a result, the possibility has appeared to obtain fast the required values 

of the derivatives 3.16 for any set of the variables α+ , α-, and Φ+∞ just by means 

of interpolation of the taken from these tables data that correspond to the closest 

values of these variables. 

 As soon as the equilibrium values of α+  and α- are known the structure of 

the phase boundary is determined and its surface tension σ can be calculated in 

the following way. Let us imagine that there are two separate volumes of 

homogeneous mixture in which volume fractions of the IL are equal to Φ+∞ and 

Φ-∞. Let us imagine that the volumes are brought into contact. Then, by 

definition, the resulting increase of their total free energy normalized to the area 

of the emerged phase boundary surface is exactly equal to the surface tension of 

the boundary. That is: 

 0FFtot −=σ                      3.17 
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where  
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3.18 

It is worthy to be noted that as a matter of fact the values Ftot and F0 are not 

defined, because they depend on the thickness of the mixture layers at the both 

sides from the phase boundary, which are assumed in the model to be infinite. 

But in the considered calculations only the difference of the two values and their 

derivatives are used. As to the difference and the derivatives, they are well 

defined, since they depend on the properties of the phase boundary only.  

3.3 The obtained results. 

Let us assume for definiteness, that Φ-∞ > Φ+∞, and the cations are less 

compatible with the neutral molecules than the anions, i.e. χ+  > χ-. Then the 

thickness of the near-boundary transition layer in which the concentration of the 

cations varies, is less than the thickness of the corresponding layer of anions, i.e. 

1/ α+ < 1/α-. 

Let us introduce the parameter Δχ: 

( ) 2χ χ χ+ −Δ = −   3.19 

This parameter characterizes difference in the affinities of the anions and of the 

cations of the IL to the molecules of the nIL. To characterize the system under 

investigation it is more convenient to use the set of parameters ( χ~ , Δχ, χ+-) than 

the equivalent to it set (χ+, χ-, χ+-). Our calculations have shown that at fixed 

values of the parameters χ~  and Δχ variation of the parameter χ+- doesn’t 

influence significantly the structure of the phase boundary. (Different plots 

illustrating this fact are not of interest and for this reason are not presented here.) 
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That’s why it is supposed in the present chapter for definiteness that the value of 

χ+-  is equal to zero. 

 In the figure 6 a typical ions distribution near the phase boundary is 

presented. It corresponds to the set of parameters ( 3~ =χ , Δχ = 5), at which, as 

our calculations have shown, the values of the exponent parameters α+ and α-  are 

equal to 2.6 and 2, respectively. The curves a) and b) represent the dependencies 

of the volume fractions of the cations and the anions, respectively, on the 

coordinate x perpendicular to the phase boundary. The volume fractions are 

normalized to their maximal value Φ-∞./.2. The curve c) represents the 

dependence on x of the local charge density. ρ~ , that is also normalized to its 

maximal value.  

Figure 6. Dependence of the volume fractions of the cations (a) and the   
anions (b) of an IL, and of the electrostatic charge density (c), normalized to their 
maximal values, on the coordinate x, perpendicular to the phase boundary. 

3, 5, 0χ χ χ+−= Δ = = , u = 2. 

a)
b)

c)
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 It can be seen that if the affinities of the cations and the anions to the 

neutral molecules are different (Δχ.≠.0) there appear two layers near the phase 

boundary. One of them is charged positively and the other one is charged 

negatively. As a result, an electrostatic field appears near the phase boundary. 

The figure 7 represents the dependence of this double layer electrostatic energy 

on the parameter Δχ. The energy is normalized to the thermal energy kT and to 

the total number of elementary cells composing one layer parallel to the phase 

boundary. Two different curves correspond to different values of the parameter 

χ~ : χ~  = 4 а), χ~  = 2.5 b). 

 One can see on the plot that the energy of electrostatic field increases with 

the growth of the difference in affinities of the IL’s cations and the IL’s anions to 

the neutral molecules and also with the growth of incompatibility of the IL as a 

whole  to  the  nonionic  solvent.  Let  us  note  that  possibility  of  such  a double  

a) 

kT
aF stel

2
−

b) 

χΔ
Figure 7.  Dependence of the electrostatic field free energy Fel-stia2/kT on the 
value of the parameter Δχ. The energy is normalized to the thermal motion energy 
and to the total number of elementary cells composing one layer parallel to the phase 
boundary. 
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electrostatic layer appearing has been proved experimentally in the work [69].

 Main results of our numerical calculations are presented in the figures 8-

12. Curves a) and b) in all the figures represent dependencies of the exponent 

parameters α+ and α- , respectively, on the difference in affinities Δχ of the IL’s 

cations and the IL’s anions to the neutral molecules. The curves c) represent 

dependence of the dimensionless phase boundary surface tension on the same 

variable. Dimensionless surface tension of the phase boundary is its energy 

normalized to kT and to the total number of elementary cells composing one layer 

parallel to the boundary. The only difference between the figures 8-12 is that they 

correspond to different values of the parameter χ~ . 

The thickness of the zone where both concentrations of the cations and of 

the anions of the IL vary from  their  one  constant  value to  their  other  constant  

Figure 8. Dependence of the exponent parameters α+ (а) and α- (b), and of the 
dimensionless surface tension σa2/kT of the phase boundary (c) on the value of the 
parameter Δχ at χ~ = 4, 0=−+χ , u = 2. 

a) 

b) 

c) 
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value can be treated as the thickness of the phase boundary. That is, the thickness 

of the phase boundary is of the same order of magnitude as the maximal of the 

two values (1/α+, 1/α-). Since it is assumed that χ+ > χ- the thickness is of the same 

order of magnitude as 1/α-.  

The following can be seen in the figures 8-12. The higher is the value of 

Δχ, the higher is the difference of the values α+ and α- reciprocal to the sizes of 

the concentration transition zones of the cations and the anions. Since 

concentrations of the IL in the bulk of the adjacent phases depend on the value of 

the parameter χ~  (see figure 5) it is reasonable that the value of this parameter 

influences also the structure of the interface between the phases. 

It can be seen in the figures 8-12 that at Δχ = 0 the concentrations profiles 

of the cations and the anions coincide. This means that there is no double 

electrostatic layer and the system behaves as a binary one, as it has  been  already  

Figure 9. Dependence of the exponent parameters α+ (a) and α- (b), and of the 
dimensionless surface tension σa2/kT of the phase boundary (c) on the value of the 
parameter Δχ at χ~ = 3,  0=−+χ ,  u = 2. 

b) 

с) 

a) 
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mentioned.  In  this  case  the  thickness  of  the  phase  boundary  grows  with the  

decrease of χ~ . In other words, the closer are the compositions of the two phases 

the more stretched is the transition zone between them. The reason is that the 

decrease of the parameter χ~  means the increase of the IL affinity as a whole to 

the nonionic solvent. This in its turn means, that a deeper interpenetration of the 

two liquids becomes more favorable. When the parameter χ~  tends to the critical 

value of 2, at which any difference between the two phases disappears and 

macrophase separation becomes impossible, the thickness of the phase boundary 

tends to infinity. 

As the value of the parameter Δχ grows the influence of the parameter χ~  

on the thickness of the phase boundary becomes less pronounced. If the value of 

χ~  is significantly higher than the critical value of 2 (see figure 8), i.e. the IL and 

Figure 10. Dependence of the exponent parameters α+ (а) and α- (b), and of the 
dimensionless surface tension σa2/kT of the phase boundary (c) on the value of the 
parameter Δχ at χ~ = 2.5, 0=−+χ , u = 2. 

a) 

b) 

c) 
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the nIL are poorly mixable, then the thickness of the phase boundary grows with 

the increase of Δχ. Vice versa, if the value of χ~  is close to the critical value of 2 

(see figure 12), i.e. the IL and the nIL are almost completely mixable, then the 

thickness of the phase boundary decreases with the increase of Δχ. 

 If one analyses the curves c) of the figures 8-12 one can notice that the 

phase boundary surface tension is always positive if Δχ is equal to zero and as the 

value of Δχ increases the surface tension decreases monotonically. One can 

conclude that the separation of the cations and the anions near the phase 

boundary is the very reason of the surface tension decrease.  

 Moreover, if the difference in affinities of the cations and the anions to the 

neutral molecules exceeds a certain threshold level (i.e. if the value of the 

parameter Δχ exceeds the certain threshold value Δχ*.) then the surface tension of 

the phase boundary becomes negative. The latter means that the larger is the  area  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 

c) 

Figure 11. Dependence of the exponent parameters α+ (а) and α- (b), and of the 
dimensionless surface tension σa2/kT of the phase boundary (c) on the value of the 
parameter Δχ at χ~ = 2.1, 0=−+ , u = 2. χ
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of the boundary separating the two phases, the lower is the free energy of the 

system. Hence, the area of the phase boundary must unrestrictedly grow and, 

thus, existence of two individual macrophases is, as a matter of fact, in this case 

impossible. It can be seen in the figures 8-12 that the critical value Δχ* grows 

with the increase of χ~ . 

 Thus, if in a IL/nIL mixture the average volume fraction Φ of IL and the 

characterized by the parameter χ~  affinity of the components to each other 

correspond to the point on the phase diagram in coordinates (Φ, χ~ ) (see figure 5) 

that is located over the binodal curve, then the mixture on the one hand can’t be 

homogeneous. But on the other hand, if in addition Δχ > Δχ*, then a macrophase 

separation of the mixture is also impossible. Hence, a microheterogeneous 

structure must be formed in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Dependence of the exponent parameters α+ (а) and α- (b), and of the 
dimensionless surface tension σa2/kT of the phase boundary (c) on the value of the 
parameter Δχ at 

a) 

b) 

c) 

χ~ , u = 2. = 2.01, 0=−+χ
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 This is in agreement with the results of the computer simulation works [70] 

and [71] in which microphase separation in a pure IL and in a IL/nIL mixture, 

respectively, has been also predicted. Besides possibility of a 

microheterogeneous clathrate structure origination in IL/benzene mixtures has 

been proved experimentally [72,73]. 

 In the previous chapter it has been demonstrated that the solvent power of 

an IL grows with the increase of the incompatibility of the IL’s cations and the 

IL’s anions. This means that if the parameter χ is fixed a mixture of an IL and a 

nIL turns into a homogeneous one if the parameter χ+- exceeds a certain threshold 

value. In the present chapter this statement is extended. Namely, if existence of a 

homogeneous IL/nIL mixture is impossible, while the value of χ~ .doesn’t allow 

that, then there still remains a possibility that the two substances can be 

intermixed by means of forming a microheterogeneous structure. The latter is 

possible if the difference in the IL’s cations and anions affinities to the molecules 

of the nonionic liquid is high enough.  

 In the figure 13 the phase diagram of a mixture IL/nIL in the coordinates 

( χ~ ,.Δχ) is presented. There are three domains on the phase diagram that 

correspond to the three possible states of the system: homogeneous mixture, 

microheterogeneous mixture, and macrophase separation. The mixture is 

homogeneous if the value of the parameter χ~  is less than the threshold value 
*~χ which is determined from the binodal condition (see figure 5 and the equation 

3.3). The phase diagram presented on the figure 13 corresponds to a mixture in 

which the volume fraction Φ of IL is equal to 0.5. Hence in this case *~χ = 2. As 

to the curve which is the boundary between the macrophase separation domain 

and the microheterogeneous state domain, it is obtained from the condition of 

equality to zero of the phase boundary surface tension. Actually, this curve is the 

dependence of  Δχ* .on χ~  taken from the set of the figures 8-12.  

At a given value of χ~  macrophase separated state and microheterogeneous 

state of the system are possible only if the average volume fraction Φ of IL in the 
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Figure 13. Phase diagram of the IL/nIL mixture in the coordinates  ( χ~ , Δχ ), at  

Φ = 0.5,  −+χ = 0,   u = 2. 
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mixture is such that χ~ > *~χ . But the location on the phase diagram (figure 13) of 

the boundary between the macrophase separated state and the 

microheterogeneous state doesn’t depend on Φ. 

How does the mentioned microheterogeneous state of the mixture IL/nIL 

look like? One can suppose that if the concentration of IL is not very high, then 

clusters can be formed in the system, like it occurs in polymer systems [74,75]. In 

the considered case the clusters consist of ions. They have a certain optimal 

radius and between the clusters there is a homogeneous solution in which volume 

fraction of the IL is much lower than its average volume fraction in the system.  

The microheterogeneous structure of the mixture is schematically 

presented in the figure 14. The gray and the unpainted circles represent the 
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cations and the anions of the IL, respectively. As to the neutral molecules of the 

nIL, they occupy the rest of the mixture volume and are not depicted. 

As a whole, the clusters are electroneutral, but not homogeneous. The IL’s 

anions, which have a higher affinity to the nIL, are located closer to the surface 

of the cluster, while the cations are in average closer to its center. However the 

cations and the anions can’t disperse, since they are held by the localized in the 

clusters electrostatic field. The size of the clusters is determined by the balance of 

the long-range electrostatic interactions and the short-range contact interactions 

[74,75]. Let us mention here that the formation of such IL clusters (micelles) in a 

nIL (water) has been recently observed in experiment [76]. At higher average 

concentrations of IL in the mixture a more intricate microstructure with a 

spatially nonuniform distribution of the IL’s ions is to be formed instead of 

separate IL clusters. 

Figure 14.  Schematic illustration of the ion cluster that can be formed in a 

IL/nIL mixture. The cations and the anions are represented by gray and 

unpainted circles, correspondingly. The neutral molecules occupying the rest 

of the mixture volume are not depicted. 
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 The microheterogeneous IL/nIL mixture can be useful in application to 

heterogeneous catalysis. Let us suppose that a catalyst is immobilized in an IL 

which serves as one of the two phases of the system, and the reagent is dissolved 

in the other phase (a nIL). The reaction in which they are involved takes place as 

the reagent diffuses through the phase boundary into the IL. The reaction rate 

obviously increases with the growth of the two phases contact surface [77,78]. 

Hence, the reaction rate is to be maximal if the IL and the nIL form a 

microheterogeneous mixture. Besides, if in the given mixture the value of the 

parameter Δχ is close to the critical value. Δχ* .the reaction rate can be effectively 

controlled by means of varying the system’s temperature and thus making the 

system transfer from the macrophase separated state to the microheterogeneous 

state and back.  

 Let us briefly summarize the chapter 3. The phase boundary between an IL 

and a nIL has been investigated. It has been found out that a double electrostatic 

layer is formed at the boundary and the electrostatic energy of the layer is the 

higher the higher is the difference in the affinities of the IL’s cations and the IL’s 

anions to the to the neutral molecules. 

 If the IL as a whole is poorly mixable with the nIL then the thickness of the 

phase boundary increases with the growth of the difference in the affinities of the 

IL’s cations and the IL’s anions to the neutral molecules. Vice versa, if the IL and 

the nIL are almost absolutely mixable, the thickness of the phase boundary 

decreases. 

 The surface tension of the phase boundary decreases with the increase of 

the compatibility of the nIL and the IL as a whole. The surface tension decreases 

also with the growth of the difference in the affinities of the IL’s cations and the 

IL’s anions to the neutral molecules. 

 If the difference in the affinities of the IL’s cations and the IL’s anions to 

the neutral molecules is higher than a certain threshold value then formation of a 

microheterogeneous structure is possible in the IL/nIL mixture. This threshold 

value is the higher the lower is the compatibility of the IL and the nIL. 
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4. Microphase separation in a mixture of an ionic liquid and a 

nonionic liquid. 

The present chapter [20] is devoted to the started in the previous chapter 

investigation of the possibility of a microheterogeneous IL/nIL mixture existence. 

As in the previous two chapters the study is focused on the influence of the contact 

interactions of the mixture components on the behavior of the mixture. The mixture 

is treated again as a ternary one and again the lattice model is used with the same 

main assumptions and the same notation of  the parameters characterizing the 

components contact interactions (see figure 3 and the expressions 2.6, 3.4 and 3.19). 

This time the subject of the investigation is the stability of the system in its spatially 

homogeneous state towards microphase separation. As the instrument of the 

investigation the so-called random phase approximation technique is utilized. The 

same technique is used for theoretical investigation of microphase separation in 

polymer systems [79-81]. 

Let us suppose that a small perturbation of the homogeneous IL/nIL mixture 

has spontaneously appeared and, as a result of it, the volume fractions of the IL’s 

cations and anions in an arbitrary point r of the system have become equal to: 

( ) 2 ( )
( ) 2 ( )

Φ Φ δΦ
Φ Φ δΦ

+

− −

= +
= +

r r
r

+

r                 4.1 

where δΦ+(r) and δΦ-(r) are the small fluctuations of volume fractions of the cations 

and the anions, respectively, and Φ/2 is the average value of the cations and the 

anions volume fractions. As to the fluctuation δΦSi(r) of the neutral molecules 

volume fraction, it follows from the assumption of the mixture incompressibility that 

it is connected with the fluctuations of the cations and the anions volume fractions 

via the relation: 

       4.2 ( ) ( ) ( ) 0SδΦ δΦ δΦ+ −+ +r r r =
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Besides, since when the fluctuations appear in the mixture, total amounts of 

the components in the mixture are not changed, the following equations must be 

fulfilled: 

                  4.3 

where the integration is carried out over the whole volume V of the mixture. It is 

also supposed that the functions δΦ+(r) and δΦ-(r) are continuous and their gradients 

are not large. 

We investigate if the free energy of the system decreases when the 

aforementioned perturbation appears in it. Let us suppose that the appeared in the 

system fluctuation of the cations (the anions) volume fraction is a harmonic one 

described by the following expression:  

( ) ( )( ) cos( )AδΦ+ − + −=r qr

3 =∫r r r r r r

                     4.4 

3 3( ) ( ) ( ) 0S
V V V

d d dδΦ δΦ δΦ+ −= =∫ ∫

where A+(-) is the amplitude of the cations (the anions) volume fraction fluctuation 

and q is the wave vector. If one minimizes the free energy of the system over all 

possible fluctuations of the anions (or the cations, respectively) volume fraction, one 

obtains that the minimal additive δF to the system’s free energy, that corresponds to 

the given fluctuation of the cations (the anions) volume fraction is  equal to: 

                          4.5 

where the value G is expressed as: 
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where aqq =~  is the dimensionless wave vector. The theoretical justification of why 

the additive to the free energy is expressed by the equations 4.5 and 4.6 is presented 

in the appendix 2 of the present dissertation. Let us shortly identify the value δF as 

the free energy of the fluctuation to which it corresponds. 

 Let us note that the value G depends only on the modulus .q~ of the wave 

vector . If G is positive at all values of .q~ q~ then the homogeneous state of the 

system is stable because the corresponding to it free energy is less than in any of the 

perturbed states. This is due to the fact that any function δΦ+(-)(r) can be expressed 

as a linear combination of harmonic components of the type described by the 

equation 4.4. As to the free energy of the fluctuation δΦ+(-)(r), it is exactly equal to 

the sum of the harmonic components free energies (see the appendix 2 and the 

formulas A2.12, A2.14). 

 But if the value G is negative at a certain nonzero value of .q~ which is less 

than unity, then the spatially homogeneous state of the system is not stable, since 

there exists a microheterogeneous structure with the spatial period , which 

possesses a lower free energy, whatever small is the amplitude of the concentration 

fluctuation in the structure. (The values of   that are larger than unity are excluded 

because they correspond to unreal microstructures having spatial periods smaller 

than the diameter a of a molecule.) 

qa ~/

q~

 In other words, on the phase diagram, the boundary of the zone of the 

homogeneous mixture stability towards microphase separation (the spinodal curve of 

microphase separation) is determined by the conditions of equality to zero of the 

function G( ) minimum. That is: q~

 ,0)~( * =qG   0~* =∂∂ qG              4.7 

where *q~ is the value of the wave vector modulus  at which the function G( ) 

reaches its minimal value. 

q~ q~
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 If the value G first reaches zero at =q~ .0, then in the system a microphase 

separation with an infinitely large size of heterogeneities is to start. In other words, it 

means that a macrophase separation is to take place in the system.     

 The system of equations 4.7 can be solved numerically, and at first the 

problem has been solved by us in this wise. However, it has been noticed later that 

the same results with only minor deviations can be obtained also analytically with 

the help of some approximations. Namely, let us expand the value G into series of 

the value  powers and leave only the three terms of the highest order: q~

2
0G G Bq Cq≈ + + 4                     4.8 

where: 
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As our numerical estimates have shown, the expansion 4.9 is a good 

approximation of the value G up to the value of .q~ reaching 0.2. Higher values of  

are anyway of no interest, because they correspond to microstructures having a very 

short spatial period, for which the utilized here model is not well applicable. 

Namely, first, using of the expression A2.9 comprising gradient terms implies that 

only smooth concentration fluctuations are considered. Second, it is assumed in the 

utilized model that the sizes of all the mixture components molecules are the same. 

But if the microheterogeneous structure of a mixture has a very small period, the 

difference in the components molecules sizes is obviously important and must be 

taken into account if one needs to describe the properties of the structure. 

q~
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 So, below, only small values of .q~ are considered, and the expression 4.8 is 

used for representing of the value G. Let us build the spinodal of the mixture IL/nIL. 

As in the previous chapter, for definiteness we assume that χ =.0. If the value B is 

positive, then the expression 4.8 can turn into zero only at  = 0, if the value of G  

is equal to zero. As it has been already mentioned, this means that only macrophase 

separation can take place in the system, and, obviously, the equality of G to zero is 

nothing else than the mixture IL/nIL macrophase separation spinodal condition (see 

eq. 2.7).  

+-

q~ 0

0 

 If B<0, the value G has a minimum at a positive value of the wave vector 

modulus equal to: 
2/1

*

2
~ ⎟

⎠
⎞

⎜
⎝
⎛ −=

C
Bq               4.10 

In this case, as it follows from the equations 4.7, microphase separation becomes 

possible in the system if: 

 0
4

2

0 =−
C

BG               4.11 

 It follows from the equations 4.10 and 4.11 that: 

 ( )
C
G

q 02*~ =              4.12 

Since in the considered space of the parameters characterizing the system, the value 

C is of order unity (as it is known from our numerical calculations), and only small 

values of   are considered, the value of Gq~ 0.is very small on the considered spinodal 

(even if the value *q~ .doesn’t exceed 0.3 it follows from the expression 4.12 that 

then the value of G  is less than 0.01). That’s why after substituting the expressions 

4.9 representing the values B and C into the equation 4.11 an expansion into series 

of the G  powers can be done and terms only of the highest order can be left. 

Moreover, since the value of G  is very small on the considered spinodal, it can be 

0 

0

0
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roughly assumed that the equality )1(21~ ΦΦχ −=  is valid (see the equation 4.9). As a 

result, the following approximate expression describing the microphase separation 

spinodal can be obtained: 

                4.13 
0Δχ = +

2 6 (1 )
3 (1 )

u Cu Gπ π Φ Φ
Φ Φ

−
−

 One can see that if  Δχ < Δχmin = (8πu/3)1/2 then the equation 4.13 can’t be 

fulfilled, i.e. the microphase separation is not possible. This follows from the fact 

that the minimal value of the second term in 4.13 is equal to zero (if G0 = 0) and the 

minimal value of the first term is attained at Ф = 0.5. If the value of Δχ is fixed, the 

stronger Ф differs from 0.5 the less is the value of G0. When the value of G0 turns 

into zero the microphase separation spinodal coincides with the macrophase 

separation spinodal. As it follows from the equation 4.13, this is fulfilled if:     

                     4.14 
23

In the points where spinodal curves of microphase and macrophase separation 

coincide (В = 0, G0 = 0), the so-called Lifshitz points [82], the value of B changes its 

sign (see the equation 4.9). Hence, the Lifshitz points determine the boundaries of 

the microphase separation domain.  

 In the figure 15 the spinodal curves of the mixture IL/nIL are presented in the 

coordinates (Ф, χ~ ) for two different values of the parameter Δχ:   Δχ = 3 (а),  Δχ = 

2.7 (b). The value of 4πu has been taken to be equal to 10.  For this value of u the 

value of Δχmin  is approximately equal to 2.58. Р1, Р2  and М1, М2 are the Lifshitz 

points of the curves (а) and (b), respectively. The Lifshitz points are located 

symmetrically with respect to the value of Ф = 0.5, because if G0 = 0, the expression 

4.13 is symmetrical with respect to interchang of Ф and 1i-iФ. One can see that the 

larger is the value of Δχ, the lower is the part of the spinodal curve that is located 

between the Lifshitz points and corresponds to the microphase separation. As  to  the  

4 u
χχ
π
Δ

=
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a) 

b) 

Figure 15.  Spinodal of the IL/nIL mixture at Δχ = 3 (a), Δχ = 2.7 (b), 0

parts of the spinodal curve that are located on the outside of the Lifshitz points, they 

coincide with the spinodal curve of the mixture’s macrophase separation. The larger 

is Δχ the larger is the value χ~  corresponding to the Lifshitz points, and the broader 

is the microphase separation domain on the phase diagram.  

 The physical meaning of the phase diagram presented on the figure 15 is the 

following. If a point with the coordinates (Φ, χ~ ) is located below the spinodal curve, 

then the mixture to which the point corresponds is to be homogeneous. If now the 

parameters describing the mixture are changed in such a way that the point 

overpasses the spinodal curve, then a phase separation is to take place in the mixture. 

Herein two cases are possible. Namely, if the spinodal curve is overpassed in its part 

located between the Lifshitz points then a microphase separation is to take place in 

=−+χ ,   

4πu = 10.  P1, P2  and  M1, M2  are the Lifshitz points for the cases  (a) and (b), 

respectively. 
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the system. But if the curve is overpassed in any of the two parts lying on the outside 

of the Lifshitz points, then a macrophase separation is to take place in the system.      

Thus, if the values of the parameters Δχ and u are fixed the microphase 

separation of the IL/nIL mixture becomes possible if the value of the parameter χ~ , 

characterizing interaction of the mixture’s two components, is less than the threshold 

value determined by the expression 4.14, or, in other words, if the ordinate of the 

Lifshitz points on the presented on the figure 15 phase diagram is larger than χ~ . 

In the figure 16 the phase diagram of the system in the coordinates ( χ~ , Δχ ) is 

presented, which illustrates the stated above. The value of the parameter u is taken to 

be equal to 2 as in the case presented in the previous chapter on the phase diagram in  
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Figure 16.  Phase diagram of the IL/nIL mixture in the coordinates  ( χ~ , Δχ.)  at  

−+χ = 0, u = 2. a) The lower boundary of the domain of the possible mixture 

microphase separation described by the expression 4.14. b) The lower boundary of the 

domain of the mixture microheterogeneous state obtained in the chapter 3. 

q = 0 
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the same coordinates (see figure 13). The curve a) is the lower boundary of the 

domain in which microphase separation is possible. This curve is described by the 

equation 4.14. The curve b) is the lower boundary of the domain corresponding to 

the microhetrogeneous state of the mixture, which has been obtained in the chapter 3 

by means of the phase boundary surface energy calculation. If χ~  < 2, the mixture is 

in the homogeneous state. This corresponds to the domain of the phase diagram 

which is located on the left of the vertical curve.  

 (In fact, the microphase separation is possible also at values of χ~  that are a bit 

less than 2, since the microphase separation spinodal curve lies a bit lower than the 

macrophase separation spinodal curve, as it can be seen in the figure 15. But the 

domain located on the left of the vertical curve and also corresponding to the 

possible microphase separation of the mixture is not presented on the phase diagram 

of the figure 16, because it is very narrow.) 

 So, one can see that the results obtained in the present chapter and in the 

previous one are in qualitative agreement. Namely, in the both chapters by means of 

two different methods the following has been found out. If the value of the 

parameter χ~  characterizing affinity of a nIL and an IL exceeds 2 then these two 

substances can form a microheterogeneous mixture in the case if the value of the 

parameter Δχ characterizing difference in the affinities of the IL’s anions and of the 

IL’s cations to the nIL molecules exceeds a certain critical value Δχ*. This value is 

the higher the higher is the value of χ~ .   

 The possibility of microphase separation in a pure IL can be also investigated 

by means of the method described above. This subject is also of interest because 

possibility of microphase separation in a pure IL has been predicted in the computer 

simulation work [70]. In this case the fluctuations of the cations and of the anions 

volume fractions are not independent. They are connected via the relation 

δΦ+(x)i+iδΦ-(x)i=i0 that follows from the condition of the IL incompressibility,  and 

the value G is expressed as: 
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                        4.15 
2

2

82
6
q uπ

(see the appendix 2, equation A2.15). The minimum of this expression can attain 

zero at a non-zero value of the wave vector modulus . Formally, this means that a 

microphase separation can take place in the system.  

q~

 In the considered case appearing of a microstructure is caused by 

counteraction first of the tendency of the cations and the anions to segregate and thus 

decrease the amount of energetically unfavorable mutual contacts and second, of the 

electrostatic field effect that tends to equalize the concentrations of the cations and 

the anions in the whole volume of the IL. Spatial period of the microstructure having 

the lowest free energy is determined by the compromise of the two factors. In the 

considered case the spinodal conditions expressed by the equations 4.7 take the 

following form:  

                      4.16 

As one can see, it follows from the requirement that the spatial period of the 

possible microheterogeneous structure must not be too small ( *~q <<1) the equalities 

4.16 can be fulfilled only at a very small value of u, that is unattainable in reality. 

Thus, it follows from the present consideration that hypothetically a microphase 

separation could take place in a pure IL consisting of huge ions, but in real systems 

it is impossible. However, this is not in a direct contradiction with the results of the 

work [70], because therein another more complicated and more detailed model of an 

IL has been considered.  

Let us briefly summarize the chapter 4. It has been demonstrated that the 

spatially homogeneous state of the IL/nIL mixture is not stable towards microphase 

separation if the difference of the IL’s anions and the IL’s cations affinities to the 

neutral molecules exceeds a certain threshold value. This threshold value is the 

larger the lower is the compatibility of the IL as a whole and the nonionic liquid. 

G
q

χ χ+− +−= − + +
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This result is in agreement with the results obtained in the chapter 3. Besides, it has 

been demonstrated that in the framework of the utilized model a microphase 

separation is not possible in a pure IL. 
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5. Swelling of a microgel with immobilized carbon nanotubes in an 
Ionic Liquid. 

The present chapter is devoted to the study of swelling of a microgel with 

immobilized carbon nanotubes in an IL. It is an extension of the previous two 

chapters main idea for the case when a gel network acts as the second component in 

the system instead of a nIL. The investigation is focused again on the influence of 

the Van der Waals interactions of the system’s components on the state of the 

system. Namely, it is supposed that the contact interactions of an IL’s cations and 

anions with the gel network are different. This contact interactions difference leads 

to the break in the local equality of the cations and the anions concentrations inside 

the gel. The latter, in its turn, causes the predicted phenomenon, which lies in the 

fact that a smaller gel particle can be in the collapsed state while a larger gel particle 

having the same composition can be in the swollen state in the same IL. 

5.1 The model of the system. 

In more detail, the following model of the system is considered. As in the 

previous chapters a lattice model is utilized, in which it is supposed that the cations 

and the anions of the IL are spheres of the same diameter a. The behavior of a single 

particle of entangled by carbon nanotubes gel immersed in an IL is investigated (for 

short the words gel or microgel are used in the text below to denote a gel particle). 

It is supposed that the nanotubes are distributed uniformly over the gel and are 

arbitrarily oriented. The concentrations of the nanotubes in the gel is supposed to be 

high enough so that a percolation cluster is formed by them. Hence, it is supposed 

that the whole volume of the gel is entangled by a network of conductor, and this is 

the very reason why the carbon nanotubes have been introduced in the model. 

It is supposed that the concentration of the nanotubes in the gel is low enough, 

so that they do not contribute to the elasticity of the gel and the simple well-known 
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expression [83] can be used for the description of the gel’s network deformation free 

energy F.el: 

                  5.1 ( ) ⎟
⎟

⎜
⎜ ⎟

⎠
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2 α

M
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⎞

⎝
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2

2 13 αF el

where M is the total number of the gel’s subchains, and α is the gel’s swelling ratio 

which relates the polymer volume fraction in the swollen gel, Фgel,  with the fraction 

in the gel in the reference state, , in the following way: 0
gelФ

                  5.2 

The reference state of the gel is the state in which its subchains have the 

Gaussian size. 

Let us introduce the Flory-Huggins parameters χ+-, χ+, χ- which characterize 

the Van der Waals interactions respectively of the cations with the anions, of the 

cations with the gel network, and of the anions with the gel network. The meaning of 

these parameters is represented schematically in the figure 17. Let us also introduce 

the parameter χ~  that characterizes affinity of the IL as a whole to the gel network. 

This parameter is related with the parameters χ+-, χ+, χ- via the same expression as 

the one used in the chapter 3 to relate the similarly denoted parameters (see eq. 3.4).  
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Figure 17. Schematic diagram 
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It is supposed for definiteness, that the affinity of the anions to the gel 

network is higher than the affinity of the cations, i.e. χ+> χ-i. As a consequence, 

because the anions are attracted to the gel network stronger than the cations, 

concentration of the anions inside the gel turns out to be a bit higher than the 

concentration of the cations, i.e. a number of uncompensated anions appear inside 

the gel.  

An electrostatic field can’t appear in the volume entangled by a network of 

conductor. Therefore, each of the uncompensated anions is screened by the charge 

induced on the network. Hence, the uncompensated anions do not repel each other 

and, for this reason, they are spread uniformly over the volume of the gel. The 

charge opposite to this screening charge is distributed over the ends of the nanotubes 

at the surface of the gel. Charge of the gel is equal to the total charge of the 

uncompensated anions inside it.  

An IL is an electrolyte with uppermost possible volume fraction of ions. For 

this reason, any charge located inside an IL is screened by an oppositely charged 

shell of uncompensated ions of the IL. Therefore the produced by the 

uncompensated anions charge of the gel is screened by a shell containing 

uncompensated cations. Because of a very high concentration of ions in an IL it is 

hard to describe the variation of ions concentration in the screening shell. For 

example, the Debye-Hückel approach is not applicable in this case. That’s why we 

just suppose that the uncompensated cations are spread uniformly over the screening 

envelope (shell) of the gel. Total charge of the gel and the shell is equal to zero. The 

boundaries between the gel and the shell, and between the shell and the outer 

solution (pure IL) are sharp. In the outer solution cations and anions are 

compensated and their volume fractions are equal.  

The model of the system is presented schematically in the figure 18. The black 

curves represent the polymer network of the gel and the network formed by carbon 

nanotubes in common. The uncompensated cations  and  anions  are  represented  by  
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spheres (large ones) marked with the corresponding signs. The compensated ions are 

not depicted. The charges induced on the network of carbon nanotubes are 

represented by the small spheres marked with the corresponding signs. 

Let us briefly set out the main idea of the predicted phenomenon. 

Hypothetically, if concentrations of the cations and the anions in all the points of the 

system were always same, then the gel would behave in the IL as in a normal one-

component solvent interaction of which with the gel network is characterized by the 

parameter χ~ . (The same statement for the mixture of an IL and a nIL has been 
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Figure 18. The schematic illustration of the considered model of the 

microgel with immobilized carbon nanotubes immersed in an ionic liquid. 

Black curves represent simultaneously the polymer network of the gel and 

the conducting network  formed by the carbon nanotubes. 
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explained in the chapter 3). If the subchains of the gel are stiff enough, then the 

dependence of the gel swelling ratio α on the parameter. χ~ .would be like the one 

presented in the figure 19 (curve a).). When χ~  exceeds some certain threshold value 

thrχ~ , the gel collapses. The two states of the gel corresponding to the value thrχ~  

possess the same free energies. This dependence would be valid for any sample of 

the gel independently of the number of subchains it consists of.  

But in reality, if the anions of the IL have a higher affinity to the gel network 

than the cations, the concentrations of the cations and of the anions are different in 

the gel, as it has been already mentioned. As a result, the free energy of the system is 

less than in the case of equal concentrations. The higher is the density of the gel 

Figure 19. Dependence of the swelling ratio α of a microgel with immobilized 
carbon nanotubes immobilized in an IL on its affinity to the IL as a whole 
characterized by the parameter χ~ .  (a) In the hypothetical case when the cations and 
the anions of the IL can’t segregate. (b) In reality.  

α

χχΔ
thrχ~

a)b)

α

χχΔ
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network inside the gel, the stronger is the violation of the concentrations equality 

and the larger is the decrease of the system free energy as compared to the case of 

equal concentrations. Thus, equality of the system free energies in the two states 

corresponding to thrχ~ .is broken. Namely, the collapsed state happens to be more 

energetically favorable. This means that the value of the parameter χ~ , at which in 

reality the collapsed and the swollen states of the gel are in equilibrium is less by a 

value of χ~Δ  than thrχ~ .(see figure 19, curve b).). 

Segregation of the cations and the anions is counteracted by electrostatic field 

appearing in the screening shell of the gel. Decrease of the total system free energy 

with increase of the anions concentration inside the gel is due to decrease of the part 

of the free energy corresponding to the contact Van der Waals interactions. The 

latter decrease is roughly proportional to the concentration of the uncompensated 

anions inside the gel and to the volume of the gel. On the other hand, if the 

concentration of the uncompensated anions inside the gel is fixed, the divided by the 

gel’s volume energy of the electrostatic field grows with the growth of the volume. 

Hence, the larger is the gel, the stronger is the influence of the electrostatic field 

appearing due to the oppositely charged ions segregation and the less is the 

equilibrium concentration of uncompensated anions inside the gel. 

This means that the larger is the number of subchains in a gel, the smaller is 

the shift χ~Δ .of the χ~  threshold value from the value thrχ~  corresponding to the case 

of a normal one-component solvent. If the gel is very large then the electrostatic 

field completely prevents any segregation of oppositely charged ions inside the gel, 

and the gel behaves in the IL as in a normal one-component solvent, i.e. χ~Δ  = 0. 

An interesting fact follows from the foregoing speculations. Namely, if the 

value of the parameter χ~  which describes affinity of the gel network to the IL as a 

whole is a bit less than the value thrχ~  at which the gel would collapse in a normal 

one-component solvent, then the state of the gel depends on the number of subchains 

it consists of. 
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Now let us present the idea in a more rigorous way with using formulas and 

figures. In the considered model the system consists of, so to say, three zones: the 

gel, the screening shell, and the outer solution. The three zones are spatially 

homogeneous. The free energy Fitot of the system comprises the electrostatic field 

energy Fiel-st,  the entropic contribution Fient,  the contribution Fiint caused by Van der 

Waals interactions, the surface energy Fisurf, and of gel network deformation energy 

Fiel  which has been already described (see eq. 5.1).  

The uncompensated electrostatic charge is present at the ends of the carbon 

nanotubes at the surface of the gel, and in the screening shell. In fact, with relation to 

electrostatics, the system is a uniformly charged sphere of the radius r (the radius of 

the gel) that is surrounded by an oppositely uniformly charged spherical shell (the 

screening shell of the gel), having the thickness d. Energy of electrostatic field in 

such a system is equal to: 

                  5.3 
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where the parameter u is the one that has been first introduced in the chapter 3 (see 

eq. 3.9), ω is the ratio of the outer shell radius to the gel radius ω = (r + d.)./.r, and q 

is the normalized to the elementary charge e total charge of the gel (of the sphere), 

which is equal to: 

                   5.4 
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where Φ is the volume fraction of uncompensated anions inside the gel. 

 The entropic contribution to the free energy is caused by the translational 

motion of the cations and the anions and in the framework of the lattice model it is 

expressed in the ordinary way: 
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where the multipliers before the three terms containing logarithms are the volumes 

of the gel, the shell, and the outer solution, respectively. V is the whole volume of 

the system, which is a constant value and, hence, the comprising it term can be 

excluded. The last multiplier ln 2 in the expression 5.5 has appeared because the 

volume fractions of the cations and the anions in the outer solution are equal to 0.5.  

 and inin
−+ φφ , outout

−+ φφ , .are the volume fractions respectively of the cations and of the 

anions in the gel and in the shell. Due to the conditions of the solution 

incompressibility and of the total electroneutrality of the gel and the shell these 

volume fractions are related with the variables Φ and ω via the following equations: 

   ( ) ( )1 2 1in in
gel gelФ Фφ Φ φ Φ+ −= − − = − + 2

3 3

1 1
2 2( 1) 2 2( 1)

out outΦ Φφ φ
ω ω+ −= + = −

− −
       5.6 

 In a similar way, the contribution of the Van der Waals interactions to the free 

energy of the system is expressed as: 
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The last contribution to the system free energy is the surface free energy Fisurf. 

It should be allowed for since there are two interfaces in the considered model: 

between the gel and the screening shell and between the shell and the outer solution. 

The interfaces are supposed to be infinitely thin.  

In this case the surface energy can be calculated within the framework of the 

lattice approach in the following way. Let us suppose that there are two neighboring 

volumes of mixtures. Each mixture consists of the same N different enumerated 

components and the volume fractions of the i-th component in the first and in the 

second volume are equal to , , respectively. Let us imagine that the whole 

volume of the system is divided into elementary cells and each of them contains one 

i
1φ

j
2φ
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molecule of a component. Let us denote as the interaction energy of two adjacent 

cells in the case if the molecules of the components i and j are located inside these 

cells. Let us suppose that the interface is flat and S is its area.  

ijJ

The energy of interaction of adjacent cells that belong to the two different 

phases, i.e. the energy of contacts within the interface, is: 
 

                  5.8 
j

q
i

ppq a
E φφ∑∑= 2

N
i

N

j

ijJS
= =1 1

where p ≡ 1, q ≡ 2. The contact of the two different mixtures can be produced for 

example in the following way. Two volumes of the two different mixtures are 

divided by a plane in two parts each. After that the two parts of the first type are 

brought in contact with the two parts of the second type. This means that with 

origination of the contact between the two different mixtures two other contacts 

between similar mixtures terminate. Area of each of the terminated contacts is two 

times less than the area of the originated contact. Hence, the energy of the phase 

boundary is: 

                   5.9 
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 Finally, with the help of the equation A1.8 relating the Flory-Huggins 

parameters and the energies  the expression 5.9 can be transformed into the 

following one:  

ijJ
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where χij are the Flory-Huggins parameters describing the Van der Waals 

interactions of the i-th and the j-th components. With the help of the equation 5.10 

one can obtain the expression describing the surface energy in the considered 

system: 
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 The independent variables determining the state of the gel are α, Φ, and ω. 

The independent parameters characterizing the system are the already introduced 
0
gelΦ  (see eq. 5.2), u (see eq. 5.3), χ~ , χ+- and also the parameters Δχ, Nv/a3,           

and r0
 /a.  

The parameter Δχ represents the difference in affinities of the IL’s anions and 

the IL’s cations to the network of the gel and is related with the parameters χ+ and χ- 

via the same expression as the one used in the chapter 3 to relate the similarly 

denoted parameters (see eq. 3.19). The parameter Nv/a3 is the normalized to a3 

volume of one gel’s subchain. The volume of a subchain is the product of the 

number N of elementary units the subchain consists and the volume v one unit. The 

last parameter r0
 /a is the ratio of the gel’s radius in the reference state to the size a 

of an elementary cell. Let us identify r0 shortly as reference-state radius. In the 

considered model this parameter characterizes the size of the gel. In order not to 

overcomplicate the treatment with minor parts the parameter χ+- is supposed to be 

equal to zero everywhere in the present chapter. 

 At the given set of the system parameters the three variables determining the 

state of the system, were found by means of the free energy numerical minimization. 

As it has been mentioned, such a set of parameters has been chosen at which the gel 

is close to the swelling-collapse transition ( χ~  is a bit less than thrχ ). This means that 

at the considered values of parameters the free energy has two minima 

corresponding to two different sets (α, Φ, ω). Therefore, after the numerical search 

of the minima the one corresponding to the lowest value of the free energy has been 

chosen. The two different values of α correspond to the collapsed and to the swollen 

states of the gel. 

While the numerical calculations a simplification has been introduced. 

Namely, it has been noticed in the course of the calculations that at the minimum of 

the system’s free energy either the thickness d of the screening shell is less than the 
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diameter a of an ion or the value of ω is almost equal to the minimal value (1+Φ)1/3 

at which the shell is composed of cations only. 

First case is most frequent and it obviously has no physical meaning. In this 

case such a value of ω was taken that the value of d was exactly equal to a. In 

reality, this corresponds to a number of uncompensated cations that are spread over 

the surface of the gel not closely to each other and screen the gel’s charge. In the 

second case it was supposed in the course of the calculations that the volume 

fraction of cations in the shell is exactly equal to unity and ω is equal to (1+Φ)1/3. 

Thus the value of ω was uniquely determined by the value of Φ. 

Let us give an analytical corroboration of the aforementioned approximation. 

Let us find the equilibrium value of ω corresponding to some fixed values of α and 

Φ in the case when the screening shell composed of cations only has the thickness 

larger than a. Let us suppose that: 

                5.12 

where Δ2 is a value that is much less than Φ. Later on, we will prove that. As our 

numerical calculations have shown the volume fraction Φ of the uncompensated 

anions inside the gel is small and, hence, Δ is small. Therefore the energy of 

electrostatic field (see eq. 5.3) can be expanded into series of the value Δ powers and 

only the highest order term can be left: 

2
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 With taking into account that Φ is small and Δ2 is much smaller than Φ one 

can obtain by means of an expansion that the depending on Δ2  part of the free energy 

corresponding to the gel-shell interface is approximately equal to: 

                 5.14 2
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The last depending on the value Δ2  part of the free energy is the one corresponding 

to the ions entropy in the shell. By means of the same procedure one can  obtain  that 
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it is approximately equal to: 
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 Finally, after taking the derivative over Δ2  of the sum of the expressions   

5.13-5.15 and equating it to zero one can obtain the  equilibrium value of Δ2 :  

                 5.16 
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The parameter u is of order unity. Besides the inequality 3r aΦ >  is valid since the 

case is considered when all the screening uncompensated cations can’t find room in 

a one-ion thick layer around the gel. In the swollen state the volume fraction Φgel  is 

very low and therefore, as it follows from the equation 5.16, the ratio Δ2./.Φ in this 

case is less than 0.02. So, it can be supposed that Δ2 = 0 what was to be proved.  

Among the numerically investigated systems the collapsed gel (Φgel
..≈.0 .6) at 

Δχ = 20 and 3a rΦ =  corresponds to the maximum of the expression 5.16, which is 

equal to 0.6. Anyway, if one takes a bit larger value 2 1.2*3a rΦ =  (i.e. the thickness 

of the shell composed of only the screening cations is 1.2a instead of a) then the 

expression 5.16 turns into 0.05 and Δ2 can be supposed to be equal to zero. It is 

evident that the screening shell corresponding to Φ < Φ2  is thinner than the one 

corresponding to Φ2 but it can’t be thinner than a. So, even if we suppose that Δ2 = 0 

for a value of Φ that belongs to the interval (3a r ;1.2*3a r ) the obtained as a result 

of calculations value of d will differ from its actual value less than by 20%.  

Same speculation concerns the case when the screening cations can’t fill the 

one-ion thick layer. Namely, the thickness of the shell in this case is less than the 

thickness of the shell corresponding to the larger number of screening cations that 

can fill the layer completely. Since in the second case d = a is an appropriate 

approximation it is to be appropriate in the first case as well. 
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5.2 The obtained results. 

Results of our calculations for a system with a fixed set of the parameters 
0
gelΦ , u,  χ+- , Nv/a3 are presented in the figure 20. Let us explain its meaning. As it 

has been already mentioned a gel composed of a smaller number of subchains (and 

hence having smaller reference-state radius r0) can be in the collapsed state in an IL 

while a gel of the same composition having a larger r0 is in the swollen state in the 

same IL. Thus there exists the threshold value .of the reference-state radius 

demarcating the smaller gels that are to collapse and the larger gels that are to be 

swollen in the IL.  

*
0r

 

Figure 20.  Dependence of the threshold value *
0r  of the microgel reference-state 

radius on the characterized by the parameter Δχ difference in affinities of the IL’s 
anions and the IL’s cations to the gel network.  0 0.003gelΦ = , 100/ 3 =aNv ,  u = 1,  

0=−+χ , 45964.1~ =thrχ  a) 410*4.6~ −=Δχ  b) 310*6.4~ −=Δχ  c) 210*0.6~ −=Δχ   
d.) 16.0~ =Δχ  e) 46.0~ =Δχ . In the considered case number M of the gel’s subchains 
is equal to one at r0 = 20a. 
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The figure 20 represents the dependence of the threshold value  on the 

parameter Δχ. Different curves correspond to the different values of 

*
0r

χ~Δ . In other 

words the figure 20 is a phase diagram in the coordinates (Δχ ,r0) which has the 

following physical meaning. Let us take for example the value of χ~Δ  equal to 0.06. 

If a point on the phase diagram is located below the curve c) then the gel, which has 

the corresponding reference-state radius r0 will be in the collapsed state in the IL, so 

long as the difference in affinities of its cations and anions to the gel network is 

characterized by the corresponding value Δχ. If the point is above the curve, then the 

gel will be in the swollen state in this IL. It follows from the figure 20 that if a 

synthesized sample of the gel is ground down and the obtained dispersion is 

immersed in an IL, it is possible that the smaller gel particles will collapse and the 

larger ones will be in the swollen state. 

One can see in the figure that the higher is Δχ, the larger is the maximal size 

of a collapsed gel. The maximal size of a collapsed gel also increases when χ~  

approaches the threshold value thrχ~ .at which the gel would collapse in a normal one-

component solvent.  

With the help of the figure 20 it becomes evident why the word “microgel”, 

and not just a “gel” stays in the title of the chapter. The radius of the gel is measured 

in diameters a of an ion. Since the average size of an IL’s ions is rather large it can 

be supposed that a is of order one nanometer. One can see then in the figure that a 

normal threshold size of a gel between the collapsed and the swollen state is of order 

not higher than one micrometer. The predicted phenomenon most probably can be 

observed at small microscale gel sizes.  

However if χ~  is very close to thrχ~ .the threshold value  can be rather large. 

In theory, if 

*
0r

χ~  tends to.
thrχ~ , the maximal size of a collapsed gel tends to infinity. 

For example, in the case represented by the curve a) it reaches one millimeter. But it 

may be hard to find a corresponding system in reality. Let us also note that the 
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minimal reference state radius of the gel that has a physical meaning is the one at 

which the gel consists of only single subchain. For the case presented in the figure 

20 this radius is equal to ≈ 20a. 

The figure 21 represents the dependence of threshold value .*
0r of the microgel 

reference-state radius on the value of χ~  at a fixed value of Δχ. Actually, the figure 

repeats the data presented in the figure 20. In the figure one can see again that when 

χ~  approaches the threshold value thrχ~ .the maximal reference state radius  of the 

gel grows. It can be seen that it grows asymptotically. 

*
0r

It has been noticed that the product *
0r χ~Δ  is approximately constant. We have 

explained this fact analytically. The gel is considered that is close to the collapse-

swelling transition.  In fact, the  swelling  ratio  of  the gel in the considered  swollen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Dependence of the threshold value *
0r  of the microgel reference-state 

radius on the parameter χ~ . Δχ = 10, 0 0.003gelΦ = , 100/ 3 =aNv , u = 1, 0=−+χ , 
45964.1~ =thrχ . In the considered case number M of the gel’s subchains is equal to 

one at r0 = 20a. 
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state is close to the one the gel would have in the swollen state if the parameter Δχ 

were equal to zero. Same concerns the swelling ratio of the gel in its collapsed state.  

In the swollen state the concentration of uncompensated anions inside the gel 

as well as the caused by it change of the system’s free energy is much less than in 

the collapsed state, since the concentration of the gel chains inside the gel is much 

less in the swollen state than in the collapsed state. That’s why, for simplicity let us 

take into account only the break in the cations and the anions concentrations equality 

that takes place in the collapsed state.  

If Δχ = 0 and χ~  = thrχ~  then the corresponding to the collapsed and the 

swollen states of the gel free energies are equal. If the parameter χ~  is changed by a 

small value χ~Δ , then the difference of the free energies in the swollen and in the 

collapsed states becomes equal to:  
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In the equation 5.17 the first term in the square brackets appears due to the caused 

by the change of χ~  change of the energies of Van der Waals interactions in the 

swollen and in the collapsed states. The second term appears due to the caused by 

the change of χ~ .change of the swelling ratios of the gel in the two states. For the 

considered by us system the second term is 104 times less than the first one and it 

can be neglected. 

If the parameter Δχ becomes higher than zero, then uncompensated anions 

appear in a collapsed gel (for a swollen gel we don’t take this into account) and it 
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also causes the change in its free energy. Namely, the energy of Van der Waals 

interactions inside the gel decreases by: 

                 5.18 
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The equivalence of the product *
0r χ~Δ  to a constant value is best fulfilled at large 

values of and therefore, this case is considered. At large values of  the thickness 

of the screening shell is larger than a and, as it has been proved in the end of the 

section 5.1, it can be assumed in this case that the volume fraction of the cations in 

the screening shell is equal to unity. Hence, the appearing due to ions segregation 

increase of the free energy entopic part corresponding to the zone occupied by the 

screening shell is equal to:  
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The volume fraction Φ of the uncompensated anions inside the gel is small. 

Therefore, the expression 5.13 can be used for the description of the electrostatic 

field energy (with substituting Δ2 = 0). 

 By means of expanding into series of the value Φ powers and leaving only the 

highest order term one can obtain that the decrease of the entropic contribution to the 

free energy caused by translational motion of ions inside the gel is equal to:   
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Since large values of r0 are considered, the contribution 5.20 is negligible as 

compared to the electrostatic contribution and can be omitted. The last contribution 

to the change of the system free energy is the one corresponding to the interface 

between the gel and the shell:  
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 If one now minimizes over Φ the composed of the contributions 5.13, 5.18, 

5.19, 5.21 free energy corresponding to the collapsed state of the gel one can obtain 

the following expression for the equilibrium value of Φ:     

             

                 5.22 
0 3

0

In the expression 5.22 the value C has been introduced. In the considered case of 

large values of r0 the term of the expression 5.22 located in the square brackets 

which has r0  in the denominator can be omitted. Then C doesn’t depend on r0. 

 After substituting this equilibrium value of Φ into the equations 5.13, 5.18, 

5.19, 5.21 and taking into account the equation 5.17 one can get the following 

expression which describes the difference of the free energies corresponding to the 

collapsed and to the swollen states:   
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Finally, after equating to zero this difference one can obtain the expression which 

relates the value of the parameter χ~Δ .and the maximal reference state radius  of a 

collapsed gel: 
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 Thus it has been proven that at fixed values of the parameters 0
gelΦ , u, χ~ ,    

χ+- = 0, Δχ, and Nv/a3 the product *
0r χ~Δ  is a constant at large values of . 

Comparison between some values of this product obtained by means of numerical 

calculations and by means the expression 5.24 is presented in the table 1. 
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    Table1.  

  

  

 

 

*
0

5 20 21.8 
10 100 111 
20 350 398 

  

 Let us summarize briefly the chapter 5. It has been demonstrated that the 

swelling ratio of an immersed in an IL microgel with immobilized carbon nanotubes 

depends on the microgel’s size if there is a difference in affinities of the IL’s anions 

and the IL’s cations to the network of the microgel. If the affinity of the IL as a 

whole to the network of the microgel is a bit higher than the affinity at which the 

microgel would collapse if a one-component solvent were instead of the IL, then a 

smaller microgel can be in the collapsed state in this IL while a larger microgel is in 

the swollen state in this IL. Maximal size of a collapsed microgel increases with the 

increase of the difference in the affinities of the IL’s anions and the IL’s cations to 

the network of the microgel. Maximal reference-state radius of a collapsed microgel 

grows asymptotically as the affinity of the IL as a whole to the network of the 

microgel approaches the aforementioned value at which the microgel would 

collapse in a normal one-component solvent. 
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Conclusions. 

In the present dissertation several phenomena related with ions equilibrium 

distribution in binary systems containing ILs have been theoretically considered. 

Mainly binary mixtures of an IL and a nonionic liquid have been investigated. Main 

results of the work are the following: 

1. In the chapter 2 it has been demonstrated that the higher is the energy of an 

IL’s cation and anion contact caused by their Van der Waals interaction, i.e. 

the stronger is their incompatibility, the stronger is the solvent power of this 

IL with respect to an arbitrary nonionic liquid. 

2. In the chapter 3 the phase boundary between an IL and a nonionic liquid has 

been investigated. It has been found out that a double electrostatic layer is 

formed at the boundary and the electrostatic energy of the layer is the higher 

the higher is the difference in the affinities of the IL’s cations and the IL’s 

anions to the to the neutral molecules. 

3. It has been also demonstrated in the chapter 3 that if an IL as a whole is poorly 

mixable with a nIL then the thickness of the phase boundary between them 

increases with the growth of the difference in the affinities of the IL’s cations 

and the IL’s anions to the neutral molecules. Vice versa, if the IL and the nIL 

are almost absolutely mixable the thickness of the phase boundary decreases. 

4. The surface tension of the phase boundary between an IL and a nIL has been 

also calculated in the chapter 3 and it has been found out that the surface 

tension decreases with the increase of the compatibility of the nIL and the IL 

as a whole. The surface tension decreases also with the growth of the 

difference in the affinities of the IL’s cations and the IL’s anions to the neutral 

molecules. 

5. It has been found out that if two volumes of an IL and a nIL can’t form a 

homogeneous solution and if the difference in the affinities of the IL’s cations 
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and the IL’s anions to the molecules of the nIL is higher than a certain 

threshold value then formation of a microheterogeneous structure is possible 

in the IL/nIL mixture. The mentioned threshold value is the higher the lower 

is the compatibility of the IL and the nIL. This result has been obtained in the 

chapters 3 and 4 by means of two different methods. Namely, in the chapter 3 

it has been obtained by means of calculation of the surface tension of the 

phase boundary between an IL and a nIL, and in the chapter 4 it has been 

obtained by means of investigating of the homogeneous IL/nIL mixture 

stability towards microphase separation.  

6. In the chapter 5 it has been demonstrated that the swelling ratio of an 

immersed in an IL microgel with immobilized carbon nanotubes depends on 

it’s size if there is a difference in affinities of the IL’s anions and the IL’s 

cations to the network of the microgel. If the affinity of the IL as a whole to 

the network of the microgel is a bit higher than the affinity of a one-

component solvent to the network at which the microgel would collapse then a 

smaller micrgel is in the collapsed state in this IL and a larger microgel is in 

the swollen state in this IL. Maximal size of a collapsed microgel increases 

with increase of the difference in the affinities of the IL’s anions and the IL’s 

cations to the network of the microgel. 
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Appendix 1.  

Free energy of a ternary mixture molecules contacts in the case when there 

exists a gradient of the mixture’s components concentrations. 

In this section there is presented the derivation of the expression describing 

the free energy of contacts of a ternary mixture molecules for the general case when 

the mixture is not homogeneous, i.e. there exists a gradient of its components 

concentrations. It is supposed that molecules of all the components of the considered 

mixture are spheres of the same radius. The presented below derivation is a 

generalization of the derivation presented in the textbook [84] for the case of a 

binary mixture. 

It is supposed that the whole volume of the mixture is composed of similar 

elementary cells, and each of them is occupied by a molecule of the type A, B or C. 

The cells are enumerated, and for each cell with a number i two variables pi and qi 

are introduced. The value of the variable pi (qi) is equal to unity if there is a molecule 

of the type A (B) in the cell, and otherwise it is equal to zero. If the both variables pi 

and qi are equal to zero, then the cell with the number i contains neither a molecule 

of the type A nor a molecule of the type B. This means that a molecule of the type C 

occupies this cell.  

The interaction energy Kij of two cells with the indexes i and j can be 

expressed as: 

 K

[ ]+−−+−− +
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where. EF
ijJ denotes the interaction energy of the cells i and j in the case if the 

molecules of the types E and F are located inside them (E,F = A,B or C). It is 
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supposed here that the energy of two molecules interaction depends only on the 

location of the two molecules but depends nowise on the other molecules. The 

expression A1.1 is composed in such a manner that if the molecules of the types E 

and F are located in the cells i and j then the depending on the variables pi, qi, pj, qj 

part of the containing the multiplier  term turns into unity, and other terms of the 

expression A1.1 turn into zero. 

EF
ijJ

 Hence, for any pair of molecules E and F located in the cells i and j the 

expression A1.1 representing the energy of the two cells interaction is exactly equal 

to the energy of the two molecules interaction. This is as it should be. Each of the 

last three terms of the expression A1.1 comprises two summands that are invariant 

with respect to interchange of the indexes i and j. This is due to the fact that the 

energy of two molecules interaction is invariant with respect to their interchange. 

That is, each of the last three terms allows for the both configurations of the two 

molecules in the case if the molecules are of different types.      

In any state of the system the total energy Fint of its molecules interaction is 

expressed as: 

                 A1.2 ∑= KF 1

where summation is carried out over all the cells of the system and the average is 

taken over all the microstates or, in other words, over all the molecules 

configurations corresponding to the given state of the system. The factor ½ is 

introduced into the expression A1.2 in order not to take an account of the same 

configurations of molecules twice. That happens necessarily when summation over 

two indexes is carried out. 

 To simplify the expression A1.1 for the further operations with it let us add to 

it and then subtract from it the term:  

    

                A1.3 

ji
ij

,
int 2

1)(1(

)1)(1(

jji
CC
ij

BB
ij

jji
CC
ij

AA
ijji

BB
ij

AA
ij

pqJJ

qppJJqpJJ

−+

+−−+++( ) ( )
( ) )q−+
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As a result, the energy Kij of the cells i and j interaction can be expressed as a sum of 

the two following expressions:  

                A1.4 
{ }

 

and 

 

 

                A1.5 

 

{
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)1)(1)(1)(1()1)(1(
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+

 Let us now simplify the expression A1.4 by means of opening in it the 

brackets, collecting, and excluding the summands containing the multipliers pj
.qj or 

pi
.qi, which are equal to zero because two different molecules of the types A and B 

can’t be in the same cell simultaneously. As a result we obtain: 
( )jj

CC
ijijjii

BB
iji

AA
ij

a
ij qpJqpqpqJpJK −−+−++= 1)(       A1.6 

In the present consideration only contact interactions of molecules that are 

spherically symmetrical are taken into account. Hence, it is assumed that the 

interaction energy of the located in the cells i and j two molecules of the types E and 

F is equal to zero if the cells are not adjacent or coincide (a molecule can’t interact 

with itself) and it is equal to a fixed constant value JiEF if the cells are adjacent.   

Let us sum the value Kij  expressed as a sum of the expressions A1.5 and A1.6  

over all the elementary cells and take the average of the result according to the 

expression A1.2. First let us sum the expression A1.6: 

 

               A1.7 
( )

( )BA
CCBBAA

iiiij
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ji
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i
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i
AAa

ij

NNNJNJNJ

qpJqJpJK
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=−−++= ∑ ∑∑∑
666

1666
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Where N is the total amount of elementary cells, NA is the total amount of the 

molecules of the type A, and NB is the total amount of the molecules of the type B in 

the system. After the first summation the appearing of the multiplier 6 in front of 

each term is due to the fact that each cell with the number i has 6 adjacent cells 

which give same contributions while the summation over the index j. As a system 

with an invariable volume and composition is considered, the expression A1.7 

represents a constant value. Hence, this contribution to the free energy can be 

excluded while it is of no importance. 

 Before the summation of the expression A1.5 let us introduce in it the 

following substitutions for all the pairs of molecules of the types E and F  (E,F = 

A,B or C): 

                A1.8 kTJJJ EF
EF ⎟⎟

⎞
⎜⎜
⎛ +

−= 6χ
FFEE

⎠⎝ 2

where χEF  is the Flory-Huggins parameter characterizing the contact interaction of 

the two molecules of the types E and F. The factor, reciprocal to the temperature T 

and the Boltzmann constant k, is introduced in the expression A1.8 to make the 

parameter χEF dimensionless. Again after excluding the terms containing the 

multipliers pj
.qj or pi

.qi and taking into account that terms invariant with respect to 

interchange of the indexes i and j produce the same result after summation, one 

obtains:       

                    A1.9 ( ) ( ){ }=< ∑ 6kT
>−−+−−+

)(
111

iij
ijjBCijjACjiAB

int qqppqpqpF χχχ

where summation over the first index i is carried out over all the cells of the system 

and summation over the second index j is carried out over the six cells that are 

adjacent to the cell with the given index i. In the expression A1.9 the terms linear in 

pi or in qi can be excluded because they produce a constant contribution to the free 

energy. As to the terms comprising product of the variables p and q having different 

indexes i and  j, they can be transformed in the following way:  
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Let us denote as x, y, z the coordinates of the center of the elementary cell 

having index i. Then, for example, the first term of A1.9, in which the constant 

factor χАВ/6 has been temporarily omitted, can be transformed as follows:  

 

             A1.10 
{

}

3
3

( )

1 ( , , ) ( , , )

( , , ) ( , , ) ( , , )

( , , ) ( , , )

i j A B

 

where ФА and ФВ are the volume fractions of the components А and В, respectively, 

in the points of the system, coordinates of which are indicated in the round brackets, 

and а is the length of an elementary cubic cell edge (а3 is the volume of the cell).  

To obtain the expression A1.10 first summation over the index j has been 

carried out, i.e. all the six summands enumerated by the index j that are produced by 

the cells adjacent to the cell with the index i have been explicitly written. After that, 

averaging of each summand has been performed with taking into account that the 

variables p and q with different indices are independent and, hence, an average of 

their product is the product of their averages. It has been also taken into account that 

averages of the variables pi and qi  are nothing else but the volume fractions of the 

components A and B, respectively, in the point of the system where the center of the 

cell with the index i is located. At last, a transition from summation over all the 

elementary cells to integration over the whole volume V of the mixture has been 

performed. 

The last transformation implies that spatial variations of concentrations in the 

considered system are smooth, and the characteristic spatial scale of the variations is 

significantly larger than the size a of an elementary cell. If one assumes this, besides 

an approximate equality that connects the volume fractions of components in the 

adjacent cells can be used. Namely, expansion into the Taylor series can be done, 

and only the two terms of the highest order can be left in it. For example: 

 

ij Vi

B B B

B B
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             A1.11 
2

2
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x
x

∂

By means of applying the transformation expressed by the equation A1.11 to the 

summands of the expression A1.10 the latter one can be transformed to: 

             A1.12 { }3 21 d∫
Let us transform the second term of the expression A.12 after temporarily omitting 

its constant factor 1/a: 
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Finally, in the expression A1.13 the first term is equal to zero because: 
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where in the right part of the equation the integration is performed over an envelope 

surface of the considered system.  

 As a result, after applying the described above procedure (see expressions 

A1.10-A1.14) to all the summands of the expression A1.9 and returning all the 

temporarily omitted constant factors one can obtain the following expression which 

describes the free energy that corresponds to contacts of a ternary mixture 

molecules: 

     

  A1.15 
[

( )] consta

rda
kT
F

CBBCCAACBAAB
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int
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2
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Appendix 2.   

Increment of the free energy of a homogeneous mixture of an ionic liquid and a 

nonionic liquid caused by a fluctuation of the components concentrations.  

In this section there is presented the derivation of the expression describing 

the increment of the IL/nIL homogeneous mixture free energy which appears due to 

the origination in the mixture of a small deviation of the components concentrations 

from their average values. The components concentrations fluctuations (their 

deviations from the average values) are expressed by the equations 4.1 - 4.3. As a 

special case, there is considered the increment of the free energy of a pure IL 

appearing due to a small fluctuation of the cations and the anions concentrations. 

The notations which are not explained in the present section are taken from the 

chapters 2, 3, and 4. 

Let us perform a transition into the reciprocal Fourier space. Namely, instead 

of dealing with different functions depending on the coordinates of a mixture point 

described by the vector r let us deal with their Fourier transforms which are 

functions of the coordinates of a located in the reciprocal Fourier space point that is 

described by the wave vector q. A function φ(r) (let us take, as an example, the 

potential of the electrostatic field) and its Fourier transform φq(q) are connected via 

the equations: 

                          A2.1 ( )3 3( ) 2 exp( ) ( )d iϕ π ϕ= −∫q q r qr r
( )

3

3( ) exp( ) ( )
2
d iϕ ϕ
π

= ∫ qqr qr q
V

In the first equation of A2.1 the integration is performed over the whole volume of 

the mixture, which is supposed to be infinite, though. The integration in the second 

equation of A2.1 is performed over the whole reciprocal Fourier space. 

 The density of electrostatic charge that appears in an arbitrary point r of the 

mixture as a result of the concentrations fluctuations is equal to: 
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3

)()(
)(

a
e

rr
r −+ −

=
ΦδΦδ

ρ            A2.2 

(see for comparison the expression 3.5). 

Electrostatic field energy of the mixture is expressed in terms of the 

electrostatic charge density ρ(r) and the electrostatic field potential φ(r) via the 

expression 3.6. For any vector or scalar function f that tends to zero at infinity the 

following  lemma is valid:  

if  )()( rfrg ∇= ,  then                A2.3 )()( qfqqg qq i=

With the help of the relations A2.3 and of the Poisson equation (see expression 3.7) 

one can obtain: 

                          A2.4 2

( )( ) 4 ρϕ π=
q

q qq
q

For any two functions φ and ρ (let us take, as an example, the electrostatic 

field potential and the local electrostatic charge density) the following equation is 

valid: 

               A2.5 ( )

3
3

3( ) ( ) ( ) ( )
2
dd ϕ ρ ϕ ρ
π

= −∫ ∫ q qqr r r q q

Let us transform the expression 3.6 which describes the energy of electrostatic field 

in the system by means of first successively applying the expressions A2.5 and A2.4 

and, second, substituting the expression A2.2. If the system is in the unperturbed 

state, i.e. there are no fluctuations of its components concentrations, there is no 

electrostatic field in it. Therefore, after these transformations one obtains the caused 

by electrostatic field increment δFel-st of the system’s free energy in the perturbed 

state as compared to the unperturbed state: 

               A2.6 ( ) ( )
( )

3

3 2 2

( ) ( ) ( ) ( )

2 2
el-st

kT a

δΦ δΦ δΦ
π

π
+ −− − − −

=
q q q qq q q qq

q

31F a d 4 u
δΦδ + −

∫

 Entropic contribution to the system’s free energy is expressed in the common 

way: 

               A2.7 ( )3
3

1 ( ) ln ( ) ( ) ln ( ) ( ) ln ( )tr-entF d
kT a

= +Φ Φ Φ Φ Φ Φ+ + − − +∫ s s
V

r r r r r r r
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The difference of the entropic contribution δFtr-ent in the perturbed and in the 

unperturbed states is equal to: 

               

               A2.8 

 ( ) ( )

3

23 2 2

( , )

1 1( ) ( ) ( ) ( )
2(1 )

tr-entF a

For the derivation of the equation A2.8 expansion of the expression A2.7 into the 

Taylor series in terms of the small volume fraction fluctuations δФ+(r) and δФ-(r) 

has been done with using the expression 3.12. The expansion has been truncated 

after the second-order term. In addition, the terms linear in δФ+(r) and δФ-(r) have 

been excluded, because they produce contributions that are equal to zero, as it 

follows from the equation 4.3.  

 As compared to the unperturbed state, in the perturbed state of the system 

increment δFint of its free energy related to contact interactions of the components 

molecules (see eq. A1.15) is exactly equal to: 

 

 

 

   

An IL/nIL homogeneous mixture free energy total increment δF caused by the 

appearing in it of the small components concentrations fluctuations is equal to the 

sum of the electrostatic and the entropic increments and of the increment caused by  

contact interactions of the components molecules. That is, it is equal to the sum of 

the expressions A2.6, A2.8, and A2.9: 

 el st tr ent intF F F Fδ δ δ δ− −= + +                    A2.10 

Let us use again the equations A2.3 and A2.5 to express the contributions δFtr-ent  and 

δFint in the reciprocal Fourier coordinates. After that the sum A2.10 can be 
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calculated and the following expression of the total free energy increment δF in the 

reciprocal Fourier coordinates can be obtained:  
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 A2.11 

 To obtain the value of the free energy increment corresponding to the 

fluctuation δФ+(r) of the cations volume fraction one needs to minimize the 

expression A2.11 over the fluctuation δФ-(r) of the anions volume fraction (of 

course, the cations and the anions could be interchanged in this statement). As a 

result, one obtains:  

              A2.12 
( )

( )3( ) ( ) ( ) , , , , ,
2
dF G u q constδ δΦ δΦ δΦ χ Δχ χ Φ
π

+ + + +−= − +∫ q qq q q

About the technique of this minimization one can read, for example, in the work 

[85]. The value G depends on the parameters χ, Δχ, χ+-, u, Ф, and on the modulus q 

of the wave vector. The final expression which describes the value G is presented in 

the chapter 4 (see eq. 4.6) where it is used later on. 

If the cations volume fraction fluctuation is a harmonic one: 

             A2.13 

then its Fourier transform is expressed as: 

              A2.14 [ ]3
0 0

1( ) (2 ) ( ) ( )
2

АδΦ+ +π δ δ= − + +q q q q q q

cos( )А 0( )δΦ+ +=r q r
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The corresponding to this fluctuation mixture’s free energy increment can be 

obtained by means of substituting the expression A2.14 into the expression A2.12. 

As a result, the expression 4.5 can be obtained.  

 Now let us consider a small concentrations fluctuation in a pure IL. In this 

case, fluctuations of the cations and the anions volume fractions are not independent, 

but they are connected via the equality δΦ+(r) + δΦ-(r) = 0 because the IL is 

supposed to be incompressible. Besides, in this case, the volume fraction of IL is 

equal to unity in all points of the system. With taking this into account, one can 

obtain the expression of the free energy increment δF caused by the fluctuation 

δΦ+(r) as a special case of the expression A2.11 after excluding from it all the terms 

connected with the nonionic solvent: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
++−−= −+−+++

+ ∫ 22

22

3

3 8
6

2)()(
2

)(
a
uad

kT
aF 3

q
qqqq πχχΦδΦδ

π
Φδδ

    A2.15 

where the square brackets comprise nothing else but the expression of the variable G 

for the considered case (see the equation 4.15). 
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