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List of Symbols and Notation

We list all important expressions occurring in the text according to their order of

first appearance. In order to discern between constants, stochastic processes and

functions, we use the following notation:

Constants and sets are denoted by plain symbols, primary stochastic processes are

followed by “(t)”, whereas other stochastic processes as well as functions (which

may map stochastic processes) are followed by brackets either explicitly showing

their dependencies or just their dependence on time t.

In the text we will use vector- and matrix-notation throughout. This means that for

a function f : R2 → RI , f(x, y) = (f1(x, y), . . . , fI(x, y))T denotes an I-dimensional

columnvector and fT (x, y) its transpose. We write f(Π)(x, y) for the |Π|-dimensional

sub-vector of f(x, y) that contains all coordinates fi(x, y), i ∈ Π ⊆ {1, . . . , I}, and

f\i(x, y) denotes the vector which consists of all components of the original vector

f(x, y) except the i-th component. Comparisons between vectors f and constants

c ∈ RI are to be understood component-wise, e.g. f > c corresponds to fi > ci

for all i ∈ {1, . . . , I}; if c is one-dimensional, f > c corresponds to fi > c for all

i ∈ {1, . . . , I}.

Chapter 2

F = (Ft)0≤t≤T∗ General model filtration

FX =
(

FX
t

)

0≤t≤T∗ Subfiltration generated by a process X

τ I-dimensional vector of F-stopping times

I Dimension of τ

N(t) I-dimensional indicator process associated with τ

E I-dimensional vector of mutually independent,

Exp(1)-distributed random variables
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Chapter 1

Introduction

1.1 Motivation and Formulation of the Problem

Capital markets have a long history: Merchants have traded financial securities

long before the first bank was built on Wall Street – or even before Manhattan

was acquired by Peter Minuit in 1626. For instance, the English word “bourse”

as well as the German word “Börse” are said to have their roots in the name of a

Dutch merchant family in Bruges called “van der Burse”. In the 16th century, busi-

nessmen held meetings in front of the family’s house for trading purposes. Since

then, the world has seen a large number of financial innovations: Milestones are,

for example, the initiation of a public trade with stocks in Amsterdam in the 17th

century, or the issuance of the first traded government bonds in 1672 by the Dutch

government.

In comparison with this long and eventful history of capital markets in general,

the history of the financial innovation constituting the central topic of this thesis

is relatively short: Structured finance products represent a young asset class with

the first deals dating back to the 1970s. In spite of this brief history, they have

already caused a great turmoil that reached its peak with the outbreak of a global

financial crisis in 2007. The crisis has been accompanied by massive distortions of

the financial system and dramatic losses of many market participants eventually

resulting in an intervention of governments with the attempt to confine its impact.

Still the crisis is present and there is an ongoing argument on the reasons leading

to this financial disaster.

According to Fender and Mitchell (2005) p. 67, “structured finance involves the

pooling of assets and the subsequent sale to investors of tranched claims on the

cash flows backed by these pools”. In other words, cash flows of assets are repack-

aged into new securities, called tranches, that differ in their risk profile and are

traded in capital markets. For example, a so-called Collateralized Debt Obligation

1



2 CHAPTER 1. INTRODUCTION

(CDO) tranche is a contingent claim on a debt portfolio. Cash flows from the debt

portfolio are first used to serve the most senior tranche. Remaining funds are then

distributed according to the tranches’ rank in the seniority ladder. The market

for such products has shown tremendous growth (see e.g. Duffie et al. (2007) or

Fender and Mitchell (2005)) in the last years for various reasons: The issuance of

structured securities, for instance, allows financial intermediaries to reduce their

economic capital or realize arbitrage opportunities. On the other hand, investors

can gain access to new asset classes such as mortality contingent securities. More-

over, the tranching allows for them to invest according to their risk appetite.

Due to this striking trade record, much research has been devoted to the topic

of modeling the new securities. In particular, the number of CDO models has

reached a vast number. Examples are the models of Duffie and Gârleanu (2001),

Kalemanova et al. (2007), Papageorgiou and Sircar (2007), Graziano and Rogers

(2006) or Herbertsson and Rootzén (2006). A common characteristic of structured

finance is that the products usually reference a portfolio of securities where the pay-

off of each security is intimately linked to one particular event, and the challenge

is to model the joint distribution of these events. For instance, a CDO tranche

may reference a portfolio of corporate bonds, and its return strongly depends on

the firms’ default times.

Translated into mathematical terms, the primary task is to model a vector of

stopping times, which correspond to the incidence of the relevant events in the

underlying portfolio. In the scientific literature, there prevail two basic method-

ologies in order to approach the problem: The so-called structural approach and

the reduced-form framework. For a detailed discussion, we refer to the books of

Lando (2004) or Bielecki and Rutkowski (2002). Both approaches originate from

the credit risk modeling world, but the latter – the reduced-form framework – has

also been adopted to other fields of finance such as the modeling of mortality con-

tingent securities (see Section 2.8).

In the structural approach, a firm’s asset value process is modeled, and the de-

fault time is defined as the first time the asset value process falls below some given

threshold. In most specifications of this model class, the default time can be pre-

dicted based on an interpretable factor, namely the firm’s asset value. For examples

of structural credit models, see e.g. the pioneering models of Merton (1974) and

Black and Cox (1976) or – for a more recent contribution – the model of Kiesel

and Scherer (2007). In the reduced-form framework, on the other hand, the default

times are modeled as inaccessible stopping times by definition. Loosely speaking,

this means that they come as a “surprise” and cannot be predicted. Model exam-

ples are Lando (1998) or Duffie and Gârleanu (2001).

Apart from this elementary difference, however, both approaches take advantage
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of the same concepts in order to introduce inter-dependencies between the single

default times: Common factors like the business cycle usually induce correlations

in individual firms’ default probabilities. Conditional on the stochastic evolution

of common factors, defaults are independent, although some models additionally

allow for the possibility that the failure of one company triggers other defaults, i.e.

for so-called contagion effects.

In this thesis, we model default times as inaccessible stopping times and follow the

reduced-form framework for several reasons. On the one hand, we will consider

an application of our model framework in an insurance-related field and analyze

securities depending on the future evolution of mortality rates (see Chapter 4).

Similarities between reduced-form credit risk modeling on one hand and stochas-

tic mortality modeling on the other hand are well-known and have been already

pointed out by Artzner and Delbaen (1995) (see also Section 2.8), but it is far

from obvious how to specify a stochastic mortality model within the structural

approach. On the other hand, as pointed out by Duffie and Lando (2001), if the

factors generating the stopping times are not perfectly observed a structural model

automatically becomes a reduced-form model.

Our general model setup builds on the contributions by Lando (1998), Jarrow and

Yu (2001) and Yu (2007). While Lando (1998) assumes that the realizations of the

stopping times are independent conditional on some background driving process,

in the Primary-Secondary Framework of Jarrow and Yu (2001) the realizations of a

subset of stopping times (the primary stopping times) are allowed to influence the

stopping times not belonging to this subset (the secondary stopping times) but not

vice versa. Yu (2007) extends Jarrow and Yu (2001) and considers a setup with a

background driving process, which is independent of the stopping times, but where

the realizations of the stopping times can influence each other. Moreover, several

authors have investigated model specifications with the possibility of simultaneous

defaults (see e.g. Joshi and Stacey (2006)).

Our definition of the stopping times links both strands in the literature. It al-

lows for conditional survival probabilities, i.e. the probabilities that the stopping

times do not lie in a particular future time interval conditional on todays infor-

mation, to depend on past realizations of the stopping times as well as on some

background process which evolves independently of the stopping times. Further-

more, realizations of the stopping times may coincide. Hence, our final framework

can be described as a Yu (2007) model extended by the possibility of simultaneous

defaults.

This model setup builds the “platform” for our investigation of structured finance

products. More precisely, we will focus on the following questions:
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• What types of models are needed to explain the characteristics of structured

finance securities?

• Do different models imply similar profiles for the securities?

• When do simple and complex models lead to comparable results?

Answering these questions requires a holistic approach. We tackle this problem

from two directions: The first is a theoretical one. As already mentioned, in the

recent past a heap of articles has been published all suggesting different models,

but discussions in the papers are often limited to the respective model under con-

sideration. Here, we neither focus only on one specific model, nor do we propose a

particular model. We rather try to give a comparison of different models within our

general model setup. The second direction from which we approach our basic ques-

tions is an empirical one: We investigate them in the context of real data. More

precisely, when introducing new models we compare them with simpler, already

established models from the literature whenever possible.

1.2 Outline and Contributions

This thesis is divided into three major chapters and two appendices. Following

the introduction, Chapter 2 contains most of the theoretical results and builds the

foundation for our applications in Chapters 3 and 4. In Chapter 3, we discuss the

modeling and the risk analysis of structured credit products. Chapter 4 provides

an investigation of mortality contingent catastrophe bonds.

In what follows, we provide a concise overview on the main contributions of this

thesis and discuss the central results. A brief synopsis of the principal findings

including final remarks can also be found at the end of each chapter.

As mentioned above, Chapter 2 lays the groundwork for the applications of Chap-

ters 3 and 4 and comprises most of the theoretical contributions. Here, we introduce

and discuss a framework for modeling a vector of stopping times. Later in the ap-

plications, these stopping times will model the default times of firms in a credit

portfolio or the insureds’ times of death, respectively. What is special and novel

about our disquisition is that it covers many models that have been proposed in

literature and that are included in this framework as special cases.1 Hence, our

findings not only provide a deeper understanding of this type of models, but also

help to structure the vast number of credit portfolio and CDO models presented

1Examples are Duffie and Gârleanu (2001), Lindskog and McNeil (2003), Mortensen (2006),

Joshi and Stacey (2006), Graziano and Rogers (2006), Papageorgiou and Sircar (2007) and

Chapovsky et al. (2006).
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in the literature. For example, our investigations reveal that some specifications

effectively imply similar or even almost identical models.

The chapter starts off with Section 2.1, in which the basic stopping times model

considered throughout this thesis is introduced (Definitions 2.1.1 and 2.1.2). The

model represents a flexible modeling “platform” that offers many appealing fea-

tures: Conditional survival probabilities depend on some background process, which

evolves independently of the stopping times, as well as on the past realizations of

the stopping times. In addition, realizations of the stopping times can coincide.

Speaking in terms of the credit portfolio application considered in Chapter 3, de-

faults in the portfolio can affect the default probabilities of the surviving firms and

simultaneous defaults are possible.

In Section 2.2, we start our model analysis by initially focussing on one single

stopping time. Proposition 2.2.2 derives the intensity of the one-jump process as-

sociated with this stopping time. As our discussion of this intensity process shows,

jumps of the process “triggering” the stopping time are dispensable from a single

stopping time perspective. Based on the intensity process, in Proposition 2.2.1

we provide an expression for the single survival probability in our setup. In addi-

tion, similarities between our model and the setup studied in Collin-Dufresne et al.

(2004) in the case of one single stopping time are pointed out.

Subsequently, in Section 2.3, we derive joint survival probabilities and the corre-

sponding intensities for the entire vector. We show that joint jumps of the compo-

nents of the process “triggering” the stopping times play an important role for the

dependence structure between the stopping times. More precisely, without such

jumps realizations of the stopping times cannot coincide. In addition, we establish

in equation (2.2) an interesting link between our setup and the common Poisson

shock models studied in Lindskog and McNeil (2003). As an example, we show that

the Intensity Gamma model introduced by Joshi and Stacey (2006) is essentially

a common Poisson shock model (Example 2.3.1).

Section 2.4 provides a construction and simulation algorithm for our stopping times

model (Algorithm 2.4.1). Since the stopping times may coincide in our setup, the

algorithm presents an extension of an algorithm given by Yu (2007).

Adjacently, we analyze the model-implied dependence structure from a static point

of view, meaning that we consider the dependence structure between the survival

events over a fixed time horizon. We introduce the important notions of conditional

independence and contagion and in Proposition 2.5.1 state conditions under which

our stopping times model becomes a conditional independence setup. Given condi-

tional independence, in Theorem 2.5.2 we show that the model-implied dependence
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structure is the one implied by the copula function studied in Marshall and Olkin

(1988). Our result implies that many time-continuous models proposed in scientific

literature entail a well-known dependence structure.

In addition, we examine the clustering of the stopping times in time by investigat-

ing the dynamics of the loss process, which counts the occurrence of the stopping

times. This presents a dynamic characterization of dependencies between the stop-

ping times. First, in Corollary 2.6.1 we adapt a time-change result which is due

to Meyer (1971) to our setting. This will be at the bottom of our statistical tests

considered in Subsection 3.1.4. We then introduce a quantity, which we call the

expected volatility of the loss process, and propose to consider this quantity as a

measure for the clustering of the stopping times. We discuss the measure’s proper-

ties and demonstrate its usefulness in the context of concrete model specifications

in Subsection 2.6.2.

Afterwards, in Section 2.7 we address the issue of model tractability. As a first

step, in Subsection 2.7.1 we state conditions under which the characteristic func-

tion of a stochastic process can be computed semi-analytically by solving a system

of ordinary differential equations. This is then proven in Theorem 2.7.1. Although

we allow for more flexible specifications than are possible within the so-called ex-

ponential affine model class considered in Duffie et al. (2000) and Duffie et al.

(2003), we get a comparable, high degree of analytical tractability. We then dis-

cuss in Subsection 2.7.2 how our stopping times model has to be customized such

that the general result can be applied to the computation of survival probabilities

and the distribution of the loss process. Both represent quantities which are central

to our applications in Chapters 3 and 4.

We conclude the second chapter by establishing a link between the general stopping

times model and the more specific setups considered for the applications. Also, we

demonstrate the usefulness of the developed theoretical tools for analyzing concrete

model specifications. As an example, the credit portfolio model proposed by Duffie

and Gârleanu (2001) is discussed.

In Chapter 3, we link theory and application. The key challenge when modeling

structured credit products is to correctly model the underlying portfolio and, in

particular, its dependence structure. For example, misspecified dependence struc-

tures affect the forecasted loss distribution of the structured credit product in a

non-linear way. Therefore, the primary focus of this chapter is the question of

which model specifications describe the dynamics of credit portfolios observed in

real data best. The implications of our findings for structured credit modeling are

discussed.

In the first section of the chapter, we estimate default intensities for a large sample
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of US and non-US corporates. In contrast to Das et al. (2007), we show that es-

timated default intensities are able to account for the observed default clustering,

although we estimate the intensities based on observable covariates such as the

firms’ Expected Default Frequency (EDF) and do not introduce additional con-

tagion effects or “frailty” variables (Table 3.3). In addition, when examining the

ability of our regression intensity model to rank firms according to their default

likeliness we find that its predictive power is higher than that reported by Duffie et

al. (2007) for their regression intensity model and a similar data set (Table 3.2).

Subsequently, in Section 3.2 we introduce a time-continuous model in order to

model the joint dynamics of the intensities. The model includes other established

models as special cases. In the simplest case, intensities follow a Cox-Ingersoll-Ross

process (see Cox et al. (1985)). Based on our theoretical results from Chapter 2,

we derive a formula which is important for the model implementation (Proposition

3.2.1) and analyze the dynamics of the different model versions. In general, the

model represents a solid basis for our empirical investigation since the different

nested model versions can easily be compared. In particular, we can analyze the

question of whether and of when simpler models are sufficient to model the inten-

sities.

Having introduced the model, we consider its calibration on a single firm basis

in Section 3.3. After developing a calibration algorithm in Subsection 3.3.1, we

compare the ability of the different model versions to explain the intensity of each

single firm and examine the predictive power of the models. Especially for firms

of bad credit worthiness, we find that models with intensity jumps are better able

to model the intensity dynamics than purely diffusion-based models (Table 3.7).

Concerning default prediction, however, we find that more complex models do not

lead to better results (Table 3.8).

Since all versions of the introduced model rely on the assumption of conditionally

independent defaults, in Section 3.4 we investigate the implications of this assump-

tion in detail. We simulate default data based on a model in which past defaults

affect the default intensities of the firms. Subsequently, we estimate wrong models

– all based on the conditional independence assumption – as well as the original

model, which has actually generated the data, and investigate the ability of each

model to forecast the portfolio loss distribution. We find that estimation errors

are by far more influential than errors related to the assumption of conditional

independence (Table 3.9). Even though contagion effects played a dominant role

in the data generating model, some of the conditional independence models “lead”

to results that are similar to those obtained from the estimated true model (Table

3.10).

Towards the end of this chapter, we present the model estimation on a portfolio
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basis. After introducing our estimation algorithm in Subsection 3.5.1, we conduct

model inference and compare the estimated model versions with respect to their

ability to explain the portfolio intensity. In a second step, using the estimated

parameters we simulate paths of the portfolio loss process and the corresponding

portfolio intensity. In this way, we can compute a time series of ratings for hypo-

thetical, structured credit products referencing the portfolio and eventually obtain

transition matrices for these products. This allows us to compare the different

model versions with respect to these matrices. We find that based on our data

set simple and complex models eventually imply similar risk profiles of structured

credit products (Table 3.17). In particular, general quantities like the average de-

fault rate in the underlying portfolio have a much stronger effect on the results

than the model choice.

Chapter 4 at last, presents the second application of our stopping times model to

the analysis and pricing of mortality contingent catastrophe bonds.

Since we focus on concrete transactions in the investigation, the chapter starts out

with a concise overview on the market for such securities in Section 4.1 and briefly

describes the transactions to be analyzed.

This is followed by the introduction of our model for analyzing and pricing morta-

lity contingent catastrophe bonds in Section 4.2. The model specification consists

of two components: A Baseline Component, which models the “regular” random

fluctuations of mortality over time and is driven by a diffusion, and a Catastrophe

Component governed by a non-Gaussian Ornstein-Uhlenbeck process. To the best

of our knowledge, our model presents the first fully-dynamic approach for modeling

these securities proposed in literature. Our discussion of the model illustrates that

the model offers many appealing features. In particular, survival probabilities can

be determined analytically up to the solution of ordinary differential equations as

shown in Proposition 4.2.1, and – on this basis – the “classical actuarial toolbox”

can be used to compute insurance premiums or benefit reserves.

Model inference is conducted in Section 4.3. There, we introduce and discuss in

detail three different estimation procedures for the model: First, in Subsection

4.3.1, we consider the calibration of the model based on historical mortality data.

We find that particularly the parameters of the catastrophe component are sub-

ject to high uncertainties. In a second step, in Subsections 4.3.3 and 4.3.2 we

derive risk-adjusted parametrizations based on insurance prices and market quotes

of catastrophe mortality bonds, respectively.

Finally, in Section 4.4 we compute loss profiles and spread levels for the considered

securities using the estimated model parametrizations from Section 4.3. Our re-

sults are then compared to risk profiles provided by so-called risk modeling firms,
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which present the primary basis for rating agencies’ and investors’ decisions. In

general, we find that the profiles are subject to high uncertainties regarding the

underlying data and should therefore be treated precautiously by all stakeholders.

In particular, risk measures provided by the risk modeling firms are substantially

lower than our results for all considered parametrizations although there are no

structural differences in the outcomes, which indicates that the parametrizations

used by the risk modeling firms are rather “optimistic” (Table 4.9). In addition,

by analyzing the obtained risk-adjusted parametrizations we are eventually able

to give an explanation for the fast growth of the mortality contingent catastrophe

bond market in recent years.

Appendix A states a closed-form expression for an important transform of a so-

called basic-affine jump diffusion process, which is due to Duffie and Gârleanu

(2001). We also derive an exact simulation algorithm (Algorithm A.0.1) for this

model. The algorithm extends the exact simulation algorithm for a special case of

the model, a Cox-Ingersoll-Ross process, that can be found in Glasserman (2004),

p. 124. Aside from this algorithm, the appendix contains further implementation

details for the models of Chapter 3.

In Appendix B, we show how an approximate distribution of the underlying com-

bined mortality index can be derived in the model of Chapter 4. Additional figures

containing parameter sensitivities of this model are presented, too.
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Chapter 2

A Model for a Vector of Stopping

Times

Many structured finance products reference a portfolio of securities where the payoff

of each security is intimately linked to one particular event. Consider for example

a portfolio of term-life insurance contracts. It is self-evident that the insureds’

death times are the most important risk driver of the portfolio. Another example

would be a portfolio of corporate bonds; its return will strongly depend on the joint

distribution of the firms’ default times. To analyze securities that are contingent

on the evolution of such portfolios, one needs to model the event times determining

the risk profile of the underlying portfolio.

By introducing such a model, the current chapter builds the foundation for our

analysis of structured finance products in Chapters 3 and 4. Considered from a

mathematical point of view, the problem is the following: Specify a model for a

vector of stopping times (associated with the incidence of the relevant events such as

defaults), which provides enough flexibility to incorporate important phenomena

observed in reality and whose parameters remain interpretable. We define the

stopping times in a very intuitive way as

τi := inf {t : Λi(t) ≥ Ei} ,
where the Ei are standard-exponentially distributed, mutually independent ran-

dom variables, and Λi is a non-decreasing RCLL (right-continuous with left limits)

process modulated by some background process X1 as well as by the realizations of

the τis themselves. Our specification covers many models that have been proposed

in the literature as special cases. Consequently, the results of our model analysis

provide a deeper understanding of these models and, in particular, help to structure

the vast number of credit portfolio and CDO models which have been presented in

the recent past.

The remainder of this chapter is organized as follows. After defining the stopping

11



12 CHAPTER 2. A MODEL FOR A VECTOR OF STOPPING TIMES

times in Section 2.1 and introducing the basic quantities which will be important

throughout the chapter, Section 2.2 shows how single survival probabilities can be

calculated within the considered framework. In particular, we derive the intensi-

ties of the stopping times. In Section 2.3, we obtain joint survival probabilities

and investigate the conditions under which realizations of the stopping times can

coincide. A construction of the stopping times model is provided in Section 2.4;

it represents a natural simulation algorithm for our model. Section 2.5 explores

the model-implied dependence structure: In 2.5.1, we state conditions under which

the considered setup eventually becomes a conditional independence setup and in

Subsection 2.5.2 show that under certain conditions the model-implied dependence

structure between the stopping times over a fixed time horizon can be identified

with a well-known family of copula functions. The process counting the stopping

times is investigated in Section 2.6: We present a time change result in Subsec-

tion 2.6.1, which will be at the bottom of our statistical tests conducted in 3.1.4,

and in Subsection 2.6.2 propose a new measure to quantify the volatility of the

aggregated process, i.e. a measure of the clustering of the stopping times in time.

Section 2.7 addresses the problem of model tractability. In Subsection 2.7.1, we

state conditions under which an important transform, often encountered in appli-

cations, can be calculated semi-analytically. In 2.7.2, we then show how this result

can be applied to the computation of survival probabilities and the distribution of

the aggregated loss process. Section 2.8 subsequently establishes the link between

the general stopping times model and the more specific setups considered for our

applications in Chapter 3 and Chapter 4. Furthermore, we demonstrate how the

developed theoretical tools can be applied to analyze concrete model specifications.

Section 2.9 concludes.

2.1 Definition of the Stopping Times Model

In this thesis, all stochastic processes and random variables are defined on a filtered

probability space
(

Ω,F ,F = (Ft)0≤t≤T ∗ , P
)

where F models the flow of informa-

tion and where FT ∗ = F ; F is further assumed to satisfy the usual conditions of

P-completeness and right-continuity. The basic object of the following investiga-

tion is an I-dimensional vector τ of F-stopping times τ = (τ1, . . . , τI)
T and its

corresponding indicator process1

N(t) = (1τ1≤t, . . . , 1τI≤t)
T .

Our basic stopping times model is defined as follows:

1A non-negative random variable τi is called an F-stopping time if {τi ≤ t} ∈ Ft for every

t ≥ 0 (see e.g. Definition I.1 of Protter (2005)).
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Definition 2.1.1 Each τi is defined as

τi := inf {t : Λi(t) ≥ Ei} ,

where E = (E1, . . . , EI)
T denotes a vector of unit-exponentially distributed, mutu-

ally independent random variables and the jump-trigger process Λ = (Λ(t))0≤t≤T ∗

is defined as an F-adapted, I-dimensional, non-negative, strictly increasing process

starting at zero, i.e. Λ(0) = 0, which is assumed to be RCLL. We assume that Λ

can be written as

Λ(t) =

∫ t

0

b′(s)ds + J(t),

with some integrable positive process b′ and a pure jump process J showing only

positive jumps. In addition, we are given

• an F-adapted, d1-dimensional real-valued background process

X1 = (X1(t))0≤t≤T ∗ ,

• an F-adapted, d2-dimensional real-valued contagion process

X2 = (X2(t))0≤t≤T ∗ as well as

• positive, continuous functions

b1(·, ·, ·) : R0+ ×R
d1 ×R

d2 → R
I
0+

b2(·, ·, ·) : R0+ ×R
d1 ×R

d2 → R
M
0+

and

• an M-dimensional vector ν of possibly time-dependent Lévy measures, con-

centrated on RI
0+ such that νm(t, Ξ) < ∞ if Ξ is Borel on RI

0+ and bounded

away from 0, νm({0}) = 0 and

∫

|ς|≤1

|ς|2 νm(t, dς) < ∞

for each t ≥ 0 and 1 ≤ m ≤M .2

Then, the characteristics (B(t), C(t), ϑ(dt, dς)) of Λ are given as

B(t) =

∫ t

0

b1(s, X1(s), X2(s)) ds

C(t) ≡ 0

ϑ(dt, dς) = ν
(

t, dς)T b2(t, X1(t), X2(t)
)

dt.

2For details, see e.g. Theorem I.44 of Protter (2005).
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Remark 2.1.1 As a consequence of our definition, the jump-trigger process Λ con-

sists of a continuous part of finite variation and a jump part, i.e. the Brownian

component is given by C(t) ≡ 0. b1 is formulated throughout the text with respect

to the truncation function χ(ς) := 1|ς|≤1.
3

As usual, when considering a particular model setup, the information flow plays a

crucial role. To model this flow, we introduce the following subfiltrations of F:

Definition 2.1.2

• FX1

=
(

FX1

0≤t≤T ∗

)

is defined as the filtration generated by the background

process X1, that is4

FX1

t = σ
{

X1(s), 0 ≤ s ≤ t
}

.

• FΛ =
(

FΛ
0≤t≤T ∗

)

is defined as the filtration generated by the jump-trigger

process Λ, that is

FΛ
t = σ {Λ(s), 0 ≤ s ≤ t} .

• FNi =
(

FNi

0≤t≤T ∗

)

is defined as the filtration generated by Ni, i.e.

FNi
t = σ {Ni(s), 0 ≤ s ≤ t} .

and FN is generated by all coordinates of N , i.e. FN
t = FN1

t ∨ . . .∨FNI
t . We

assume that the contagion process X2 is adapted to FN and that FX1

T ∗ and

FN
t are independent conditional on FX1

t .

• The general filtration F is collectively generated by the processes Λ, X1, and

N , i.e.

Ft = FX1

t ∨ FΛ
t ∨ FN

t .

Definition 2.1.2 ensures that the background process X1 can essentially be consid-

ered as an exogenous process since the evolution of X1 does not depend on the

jumps of N . On the other hand, being adapted to FN , the contagion process X2

reflects the influence of past jumps on the Ni. At this stage, it is important to

note that – so far – we have only defined a model framework. However, it is not

obvious whether the defined object is well-defined. As pointed out by Bielecki and

Rutkowski (2002), this is a question which is not trivial in the case where past

jumps of Ni are allowed to influence the jump probabilities of other Nj . We defer

3For a discussion of different truncation functions in the context of Lévy processes, see e.g.

Cont and Tankov (2004), p. 83.
4We assume all filtrations to be augmented by the null sets of P.
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this question to Section 2.4, where we provide a construction of the introduced

setup.

After the introduction of our model setup, it is worth discussing the possible roles

that the processes which were involved in the definition of τ could play in later

applications. As an illustration, we consider the Intensity Gamma model, which

has been proposed by Joshi and Stacey (2006) to model the default times τ in a

credit portfolio; it fits well into our framework:

Example 2.1.1 Intensity Gamma (Joshi and Stacey (2006)). In this model, the

default times τ are defined as in Definition 2.1.1 with

Λi(t) =

p
∑

j=1

N−1
∑

n=1

ain (Jj(tn)− Jj(tn−1))+

p
∑

j=1

aiN (Jj(t)− Jj(tN−1)) , t ∈ [tN−1, tN ],

where 0 = t0 < t1 < . . . < tN−1 < tN < . . . and the ain are positive constants.

J denotes a p-dimensional Gamma process with mutually independent coordinates;

that is each coordinate of J is characterized through the Lévy measure ϑj(dςj) =

1ςj>0
cje−djςj

ςj
dςj (cj, dj > 0) and evolves independently of E = (E1, . . . , EI)

T , too.5

In terms of Definition 2.1.1, we therefore have for all s ≥ 0:

0 ≡ X1(s) = X2(s)

0 ≡ b1(s, X1(s), X2(s))

1 ≡ b2(s, X1(s), X2(s)) and

ν(s, dς) =

p
∑

j=1

cje
− dj

a1n
ς1

ς1
1ς1=

a1n
a2n

ς2=...=
a1n
aIn

ςI>0 dς, s ∈ [tn−1, tn].

In Example 2.1.1 as well as in our general setup, the riskiness of each bond intu-

itively depends on how fast the single coordinates of the jump-trigger process Λ

increase: If we have a high probability that Λi grows very fast, the likelihood of the

bond to survive will be low. In the current example, this likelihood depends on two

quantities: First, it depends on the specification of J . Second, it depends on the

constants ain which determine how strong each Λi is exposed to J . Consequently,

the ain reflect different levels of default probabilities among the portfolio objects,

while the specification of J is important for the dependence structure between the

default times τi: Jumps of the Jj represent “shock events” which all objects are

exposed to.

It is important to note that the Intensity Gamma model does – by far – not exhaust

the full flexibility of the stopping times model introduced in Definition 2.1.1. The

5For further properties of a Gamma process we refer to Cont and Tankov (2004), Section 4.4.2.
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example model does not make use of the background process X1 that could, for

example, model general macroeconomic conditions such as the current level of inter-

est rates, on which default probabilities might depend. Generally, the background

process may include all variables having an impact on default probabilities but that

are themselves not influenced by defaults. Furthermore, the possibility of allowing

past defaults to influence the default probabilities of the remaining, non-defaulted

objects is not exploited since 0 ≡ b1(s, X1(s), X2(s)) and 1 ≡ b2(s, X1(s), X2(s)).

It is worth mentioning that credit portfolio models in which defaults have an influ-

ence on the default probabilities of the surviving firms are typically called contagion

models explaining the name of the contagion process X2.

When analyzing a particular model, one is usually interested in the single or joint

survival probabilities associated with the τi, which are the probabilities that the

corresponding coordinates of N do not jump over a time interval [t, T ] given the

information up to time t. We introduce these quantities next:

Definition 2.1.3 1. Pi(t, T ) is defined as the probability of the event {τi > T}
given the information until time t, i.e.

Pi(t, T ) := P (τi > T | Ft) = E [1−Ni(T )| Ft] = E [1τi>T | Ft] ,

and Qi(t, T ) := E [1t<τi≤T | Ft]. The corresponding probabilities conditional

on {τi > t} are denoted by

T,tpi := P (τi > T | Ft ∧ {τi > t})

and T,tqi := P (t < τi ≤ T | Ft ∧ {τi > t}).

2. PΠ(t, T ), Π ⊆ {1, . . . , I}, is defined as the probability of the event
⋂

i∈Π {τi > T} given the information until time t, i.e.

PΠ(t, T ) := E

[

∏

i∈Π

(1−Ni(T ))

∣

∣

∣

∣

∣

Ft

]

= E

[

∏

i∈Π

1τi>T

∣

∣

∣

∣

∣

Ft

]

,

and QΠ(t, T ) := E
[
∏

i∈Π 1t<τi≤T

∣

∣Ft

]

. The corresponding probabilities condi-

tional on
⋂

i∈Π {τi > t} are denoted by

T,tpΠ := P (τΠ > T | Ft ∧ {τΠ > t}) .

and T,tqΠ := P (t < τΠ ≤ T | Ft ∧ {τΠ > t}).

Single and joint survival probabilities will play an important role for pricing fi-

nancial contracts or analyzing their risk-profiles. For example, in Chapter 4 we
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calculate prices of term-life insurances, which can be considered as contingent-

claims on the death time τi of an insured. Their values will depend on the single

survival probability of the insured over the considered time period. On the other

hand, joint survival probabilities are of particular importance when considering

contracts depending on a vector of τi. Due to this importance, in the next two

sections we provide a detailed discussion of how to derive survival probabilities

within our setup.

2.2 Single Survival and Jump Probabilities

In this section, we calculate the compensators of the one-jump processes Ni and

derive a general expression for the single survival probabilities.

In order to calculate single survival probabilities, we first need to compute another

important quantity – the so-called intensity of Ni: Since Ni(t) = 1τi≤t is a uniformly

integrable submartingale starting in 0, the famous Doob-Meyer Decomposition

(see e.g. Theorem 3.15 of Jacod and Shiryaev (1987), p. 32) states that there

exists a unique predictable process Ai = (Ai(t))0≤t≤T ∗ (sometimes called the dual

predictable projection) with Ai(0) = 0 such that

1τi≤t − Ai(t)

is a uniformly integrable martingale. If Ai(t) is absolutely continuous with respect

to the Lebesgue measure, i.e. if Ai can be written as

Ai(t) =

∫ t

0

1τi>sλi(s)ds

for some strictly positive, F-adapted process λi, one speaks of λi as the intensity

process of 1τi≤T .6 λi(t)∆ can be interpreted as the instantaneous probability of a

jump of 1τi≤t over the next infinitesimally small time step ∆, given that the jump

has not occurred yet. Under technical conditions stated in Aven (1985), the inten-

sity of Ni can be calculated by differentiating the conditional jump probabilities:

Lemma 2.2.1 (Aven (1985)) Let (kn)∞n=1 be a sequence decreasing to zero and

Y n
i (t) :=

1

kn
E [Ni(t + kn)−Ni(t)|Ft] .

Furthermore, there are non-negative and F-adapted processes µi and yi such that

1. for each t and i

lim
n→∞

Y i
n(t) = µi(t) a.s.

6Strictly speaking, the intensity process would be 1τi>tλi(t), but in the following we refer to

λi(t) as the intensity process.
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2. for each t and i there exists for almost all ω ∈ Ω an n0
i = n0

i (t, ω) such that

|Y n
i (s, ω)− µi(s, ω)| ≤ yi(s, ω) ∀s ≤ t, n ≥ n0

i .

3. for each t and i
∫ t

0

yi(s)ds <∞, a.s.

Then,

Ni(t)−
∫ t

0

µi(s)ds

is an F-martingale.

The next proposition derives the intensity process of 1τi≤t in our stopping times

model:

Proposition 2.2.1 Let νl describe the jump behavior of Λ at τi and let

λi(s) := b1
i (s)−

∫

(e−zi − 1 + zi1|z|≤1)ν\l(s, dz)T b2
\l(s)

be bounded. If

Y n
i (s)− 1τi>sλi(s)

satisfies the conditions stated in Lemma 2.2.1, then

Ni(t)−
∫ t

0

1τi>sλi(s)ds (2.1)

is an F-martingale.

Proof: For proving the martingale property of (2.1), we need an auxiliary result:

Using the Itô-formula for semimartingales (cf. Bingham and Kiesel (2003), p. 212),

we obtain for the bounded supermartingale Ξ(t) := e−Λi(t):

Ξ(t) = 1−
∫ t

0+

e−Λi(u−)dΛi(u) +

∆Λi(u) 6=0
∑

s<u≤t

e−Λi(u−)
(

e−∆Λi(u) − 1
)

− e−Λi(u−)∆Λi(u)

= 1−
∫ t

0

e−Λi(u−)

(

b1
i (u)−

∫

(

e−zi − 1 + zi1|z|≤1

)

ν(u, dz)T b2(u)

)

du + M(t).

The last line represents the semimartingale decomposition of Ξ, where M(t) denotes

the martingale part. Therefore, with t > s we have

1− e−Λi(t)+Λi(s) = M̃(t) +

t
∫

s

e−Λi(u)+Λi(s)
(

b1
i (u)

−
∫

(

e−zi − 1 + zi1|z|≤1

)

ν(u, dz)T b2(u)
)

du (∗)
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with M̃(t) being a martingale.

Note that by definition the sets

{τi > t} = {Ni(t) = 0} = {Λi(t) < Ei}

are equivalent and instead of considering {Λi(t) < Ei}, we may equivalently con-

sider

{Λi (t; ni(t) = 0) < Ei},

where Λi (t; ni(t) = 0) denotes that Ni(t) = 0 a.s. in the specification of Λi. In

addition, in case that ni(t) = 0, Λi(t) and Ei are independent. Based on the

exponential distribution of the Ei, by applying (∗) and w.l.o.g. assuming that νl

describes the jump behavior of Λ at τi, we obtain

E[ Ni(t + ∆) − Ni(t) | Ft ] = P ( t < τi ≤ t + ∆| Ft) = 1τi>tE [ (1− 1τi>t+∆)| Ft]

= 1τi>tE

[

1− e−Λ
{i}=0
i

(t+∆)+Λ
{i}=0
i

(t)
∣

∣

∣Ft

]

= 1τi>tE

[ t+∆
∫

t

e−Λ
{i}=0
i (u)+Λ

{i}=0
i (t)

(

b
1{i}=0
i (u) du−

−
∫

(

e−zi − 1 + zi1|z|≤1

)

ν\l (u, dz)
T

b
2{i}=0
\l

(u) du

)∣

∣

∣

∣

∣

Ft

]

,

where we marked a process with “{i} = 0” if in its specification ni(t + ∆) = 0 is

presumed. By assumption,

hi(t) := b
1{i}=0
i (t)−

∫

(

e−zi − 1 + zi1|z|≤1

)

ν\l (t, dz)
T

b
2{i}=0
\l

(t)

is bounded, and based on the dominated convergence theorem (DCT) we can in-

terchange expectation and the limit, which yields

lim
∆→0

1
∆ P ( t < τi ≤ t + ∆| Ft)

DCT
=

= 1τi>t

(

b
1{i}=0
i (t)−

∫

(

e−zi − 1 + zi1|z|≤1

)

ν\l (t, dz)T b
2{i}=0
\l

(t)

)

= 1τi>t

(

b1
i (t)−

∫

(

e−zi − 1 + zi1|z|≤1

)

ν\l (t, dz)
T

b2
\l(t)

)

,

where we also applied the fact that λi is considered on {τi > t}. Thus, ni(t) = 0

can be omitted in the specification of b1 and b2. Since all conditions of Lemma

2.2.1 are fulfilled, the claim follows.

2
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In the following, we always presume that the technical conditions of Lemma 2.2.1

are satisfied. As the proposition shows, the compensator of 1τi≤t is then given by
∫ t

0
1τi>sλi(s)ds with intensity process

λi(s) := b1
i (s)−

∫

(e−zi − 1 + zi1|z|≤1)ν\l(s, dz)T b2
\l(s).

This result leads us to the following two conclusions: First, the compensator of

1τi≤t is continuous. Therefore (see Dellacherie and Meyer (1980)), we deal with a

collection τ of totally inaccessible stopping times and work indeed in a true reduced-

form setup.7 Second, from a single object perspective, i.e. if we were only interested

in modeling one default time τi, the jump part of Λi would be dispensable because

we could directly specify a model for Λi without jump component and with a

positive process b1∗
i (s) := λi(s) instead of b1

i . Such a model would entail exactly the

same Ni(t) dynamics because the one-jump process Ni is completely characterized

through its intensity. Considered only from a single object’s perspective, the jump

part of Λ could therefore be omitted.

However, it is important to note that this is only true as long as we merely focus on

the dynamics of one single Ni; from a portfolio perspective, the jump part of the

jump-trigger process Λ plays a crucial role in modeling the dependence structure

between the τis as we show in the next section.

Based on the intensity of Ni, we are now able to derive an explicit formula for the

single survival probabilities. The next result has already been derived by Collin-

Dufresne et al. (2004) for a setup which is comparable to ours in case that only

one single Ni is considered:

Proposition 2.2.2 For any FT -measurable random variable Υ satisfying

E [|Υ|] < ∞,

it holds true that

E [1τi>T Υ| Ft] = 1τi>tE
i
[

Υe−
R T

t
λi(s)ds

∣

∣

∣
Ft

]

where Ei[·] denotes expectation with respect to an absolutely continuous measure Pi

which is characterized by the density process

Σi(t) :=
dPi

dP

∣

∣

∣

∣

Ft

= 1τi>t∧T e
R t∧T

0
λi(s)ds.

7τi is called totally inaccessible if P(ω : T (ω) = τi(ω) <∞) = 0 for every predictable stopping

time T (cf. Protter (2005), p. 104). Broadly speaking, this means that τi comes as a “surprise”.
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Thereby, the filtration F is assumed to be the augmentation of the original filtration

by the null sets of Pi. As a special case, for Pi(t, T ) defined as in Definition 2.1.3

we obtain

Pi(t, T ) = 1τi>tE
i
[

e−Λi(T )+Λi(t)
∣

∣Ft

]

.

Proof: Although we proceed similar to Collin-Dufresne et al. (2004), we provide

the proof in detail since our setup is slightly different. First, we prove that Σi(t) :=

1τi>t∧T exp
(

∫ t∧T

0
λi(s)ds

)

is an F-martingale starting in 1. Since the martingale

property on [T, T ∗] is self-evident, we restrict ourselves to [0, T ]. Using the Itô-

formula for semimartingales, we obtain

d1τi>te
R t
0 λi(s)ds = 1τi>t−de

R t
0 λi(s)ds + e

R t−
0 λi(s)dsd1τi>t + 0

= 1τi>t−e
R t−
0

λi(s)dsλi(t)dt + e
R t−
0

λi(s)dsd(1− 1τi≤t)

= 1τi>t−e
R t−
0

λi(s)ds (λi(t)dt− d1τi≤t) .

While the first equality follows from the fact that the quadratic covariation is 0,

the second and third equality follow by simple rearrangements. In total, since

1τi>t− (λi(t)dt− d1τi≤t) is a uniformly integrable martingale and λi is bounded

(recall that the technical assumptions stated in Proposition 2.2.1 are presumed

throughout the text), 1τi>t−e
R t−
0 λi(s)ds (λi(t)dt− d1τi≤t) is a uniformly integrable

martingale.

Being a martingale, the process

E

[

1τi>t∗∧T e
R t∗∧T
0 λi(s)ds

∣

∣

∣
Ft

]

= Σi(t) = 1τi>t∧T e
R t∧T
0 λi(s)ds

with t < t∗ ≤ T is the unique density process corresponding to the absolutely

continuous change of measure (cf. Theorem 3.4, Jacod and Shiryaev (1987), p.

166)

dP
i

dP
= 1τi>T e

R T
0 λi(s)ds,

and it finally follows that

E [1τi>T Υ| Ft] = 1τi>te
R t
0 λi(s)ds

E
i
[

Υe−
R T
0 λi(s)ds

∣

∣

∣
Ft

]

= E
i
[

e−
R T

t
λi(s)dsΥ

∣

∣

∣
Ft

]

.

As a special case, we have

Pi(t, T ) = 1τi>tE
i
[

e−
R T
t

λi(s)ds
∣

∣

∣
Ft

]

= 1τi>tE
i
[

e−Λi(T )+Λi(t)
∣

∣Ft

]

,

since both expressions are equal because λi is specified through the characteristics
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of Λi, and Λi cannot jump under Pi at τi, i.e. the jump part related to νl can be

set to 0 (This can also be formally shown by applying a suitable version of the

Girsanov Theorem, e.g. Theorem III.41 of Protter (2005), but is omitted here).

2

The two most important implications of Proposition 2.2.2 are the following: First,

survival probabilities over the time period [t, T ] are given as simple expectations

of an exponential of the increments of Λi. Second, this expectation has to be

calculated with respect to a modified measure Pi, under which Ni never jumps

prior to time T P
i-a.s because

P
i ({τi ≤ T}) = E

i [1τi≤T ] = E

[

1τi>T e
R T
0 λi(s)ds1τi≤T

]

= 0.

This means that the sets {τi ≤ T} become null sets under Pi, which is rather

intuitive: As already indicated in the proof of 2.2.1, in order to compute the

survival probability we need to calculate the probability that {Λi(T ) < Ei}. In

this computation, we have to presume Ni(T ) = 0 for Λi, because by definition

{ω : Ni(T, ω) = 0} = {ω : Λi(T, ω) < Ei(ω)}.

We already mentioned that this intuitive yet very important result originates from

Collin-Dufresne et al. (2004) (Theorem 1). Collin-Dufresne et al. (2004) were the

first who showed that expectations like E [1τi>T Υ| Ft] for some random variable Υ

and some F-stopping time τi can still be calculated as expectations of the form

1τi>tV (t) with V (t) := E

[

Y e−
R T
t

λi(s)ds
∣

∣

∣
Ft

]

, even if ∆Vτi
6= 0, i.e. if V is not con-

tinuous at τi. However, the expectation has to be computed with respect to some

measure that excludes a jump prior to T . In the literature, one usually refers to

the situation ∆Vτi
6= 0 as the case where the “no jump-condition” is violated. Also,

Collin-Dufresne et al. (2004) derive a formula for the expectation E [10<τi≤T Rτi
]

with R some predictable process. We do not state the corresponding formula for

our setting since, in this thesis, we primarily focus on modeling the coordinates

of τ and possible dependencies between them and we aim not at modeling what

“happens” at τi.
8

In our model, the stopping times are defined as the first time when Λi(t) ≥ Ei,

whereas in Collin-Dufresne et al. (2004) the stopping times are directly character-

ized via their intensity. The equivalence between both approaches from a single

object’s perspective is documented through the equation

1τi>tE
i
[

e−Λi(T )+Λi(t)
∣

∣Ft

]

= 1τi>tE
i
[

e−
R T
t

λi(s)ds
∣

∣

∣
Ft

]

.

This result is no surprise. Remember that instead of calculating the intensity of τi

based on our definition of τi, we could have directly started by specifying τi through

8Although it is possible to derive such a formula within our setup.
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its intensity similar to Collin-Dufresne et al. (2004). Nonetheless, it is important

to note that there remains a substantial difference between our and their setup:

Although providing examples with more than one stopping time, contrarily to this

thesis a general discussion of the multivariate case is missing in Collin-Dufresne et

al. (2004). The examples for the multivariate case presented there do not exhaust

the full flexibility of our approach. For example, simultaneous jumps of the Ni are

not considered.

2.3 Joint Survival Probabilities

This section shows how joint survival probabilities can be calculated in our setup.

We further derive a representation of N in terms of orthogonal point processes,

i.e. point processes that never jump together. As previously indicated, for pricing

financial contracts that depend on a vector of τi or analyzing their risk-profiles

joint survival probabilities play an important role. To arrive at a formula for joint

survival probabilities, we take – similar to the preceding section – the route via the

intensity.

Proposition 2.3.1 Let νl and νk describe the jump behavior of Λ at τi and τj, and
let

hij(t) :=
∑

k=i,j

b1
k (t)−

∫



e−zi−zj − 1 +
∑

k=i,j

zk1|z|≤1



 ν\{l,k} (t, dz)
T

b2
\{l,k} (t)

be bounded. If

1

kn
E

[

1τ({i,j})>t − 1τ({i,j})>t+kn

∣

∣

∣
Ft

]

− 1τ({i,j})>thij(t)

satisfies the conditions stated in Lemma 2.2.1 with kn a sequence decreasing to zero,

then

1− 1τ({i,j})>t −
∫ t

0

1τ({i,j})>shij(s)ds

is an F-martingale. Furthermore, we have that

1τi=τj≤t −
∫ t

0

1τ({i,j})>sλij(s)ds,

where

λij(t) :=

∫

(

e−zi−zj − 1 +
∑

k=i,j

zk1|z|≤1

)

ν\{l,k} (t, dz)T b2
\{l,k}(t)

−
∑

k=i,j

∫

(

e−zk − 1 + zk1|z|≤1

)

ν\{l,k} (t, dz)T b2
\{l,k}(t),

is an F-martingale, too.
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Proof: The proof utilizes similar ideas like the one of Proposition 2.2.1. By applying

the Itô-formula for semimartingales, we arrive at the following representation of

1− e−
P

k=i,j Λk(t)+Λk(s) for t > s:

1 − e−
P

k=i,j(Λk(t)−Λk(s)) = M̃(t) +

t
∫

s

e−
P

k=i,j(Λk(u)−Λk(s))

(

∑

k=i,j

b1
k(u)

−
∫

(

e−zi−zj − 1 +
∑

k=i,j

zk1|z|≤1

)

ν(u, dz)T b2(u)

)

du

with M̃(t) a martingale. We use this to calculate first the intensity of 1− 1τ({i,j})>t

and finally the intensity of 1τi=τj≤t.

Note that by definition the events

{τi > t, τj > t} = {Ni(t) = 0, Nj(t) = 0} = {Λi(t) < Ei, Λj(t) < Ei}

are equivalent and instead of considering {Λi(t) < Ei, Λj(t) < Ej} we may equiva-

lently consider

{Λi

(

t; n({i,j})(t) = 0
)

< Ei, Λi

(

t; n({i,j})(t) = 0
)

< Ei},
where we use the same notation as in Proposition 2.2.1. Since Λ({i,j})(t), Ei and

Ej are independent on {N({i,j})(t) = 0}, we therefore obtain (Ei and Ej are inde-

pendently, exponentially-distributed):

E[(1 − 1τ({i,j})>t+∆)− (1− 1τ({i,j})>t)|Ft] = 1τ({i,j})>tE
[(

1− 1τ({i,j})>t+∆

)∣

∣Ft

]

= 1τi>tE

[

1− e
−

P

k=i,j

“

Λ
{i,j}=0
k

(t+∆)−Λ
{i,j}=0
k

(t)
”

∣

∣

∣

∣

Ft

]

= 1τi>tE

[ t+∆
∫

t

e
−

P

k=i,j

“

Λ
{i,j}=0
k

(u)−Λ
{i,j}=0
k

(t)
”

(

∑

k=i,j

b
1{i,j}=0
k (u)−

−
∫



e−zi−zj − 1 +
∑

k=i,j

zk1|z|≤1



 ν\{l,k} (u, dz)
T

b
2{i,j}=0
\{l,k} (u)

)

du|Ft

]

where we marked a process with “{i, j} = 0” if in its specification N{i,j}(t+∆) = 0

is assumed. By interchanging expectation and the limit based on the dominated

convergence theorem (DCT), we obtain that

1− 1τ({i,j})>t −
∫ t

0

1τ({i,j})>uhij(u)du

is an F-martingale (since the remaining conditions of Lemma 2.2.1 are satisfied by

assumption) with hij defined as above. Note further that

d1τi≤t1τj≤t = 1τi≤t−d1τj≤t + 1τj≤t−d1τi≤t + d
[

1τi≤t, 1τj≤t

]

(t)

= d1τj≤t + d1τi≤t − d
(

1− 1τ({i,j})>t

)

,



2.3. JOINT SURVIVAL PROBABILITIES 25

where the first equality is due to the Itô-formula and the last line is 1τi≤t1τj≤t =

1τi≤t + 1τj≤t −
(

1− 1τ({i,j})>t

)

written using differential notation. Thus,

d
[

1τi≤t, 1τj≤t

]

(t) = d1τj≤t + d1τi≤t − d
(

1− 1τ({i,j})>t

)

− 1τi≤t−d1τj≤t − 1τj≤t−d1τi≤t

= 1τi>t−d1τj≤t + 1τj>t−d1τi≤t − d
(

1− 1τ({i,j})>t

)

(∗)
= 1τ({i,j})>t

(

∫ (

e−zi−zj − 1 +
∑

k=i,j

zk1|z|≤1

)

ν\{l,k} (t, dz)T
b2
\{l,k}(t)

−
∑

k=i,j

∫

(

e−zk − 1 + zk1|z|≤1

)

ν\{l,k} (t, dz)T b2
\{l,k}(t)

)

dt + dM(t)

= 1τ({i,j})>tλij(t)dt + dM(t)

with λij defined as above and where (∗) follows from the intensity of 1− 1τ({i,j})>t

and the intensities of 1τi≤t (1τj≤t) on {τj > t−} ({τi > t−}) and M denotes some

martingale. This finally yields the claim.

2

Remark 2.3.1 From Proposition 2.3.1, it follows that λij(t) ≡ 0 if Λi and Λj

never jump together. In this case, simultaneous jumps of Ni and Nj cannot occur.

Recently, various authors have introduced the notion of Lévy copula to characterize

the dependence structure between jump processes in a dynamic way, see Chapter 5

of Cont and Tankov (2004) for a comprehensive introduction to the field of Lévy

copulas. In terms of Lévy copulas, the case where two processes never jump together

corresponds to the independence Lévy copula.

Note that the case where both jump parts are 0 is included as a special case in

Remark 2.3.1. At the end of Section 2.2, we have already demonstrated that when

considering only one single stopping time τi the jump part of the jump-trigger

process Λi is dispensable since we could specify a model with identical dynamics

but without jumps. However, this does not hold true for several stopping times:

Simultaneous jumps of the coordinates of N can only occur if the coordinates of Λ

jump together.9 Depending on the respective field of application, such simultaneous

jumps of the Ni might be necessary to generate “enough” dependence between the

Ni. For example, Longstaff and Rajan (2008) document the importance of such

simultaneous jumps for explaining the price dynamics of credit portfolio derivatives.

Proposition 2.3.1 gives rise to an interesting interpretation of our stopping times

model: We could calculate intensities λΠ for all Π ⊆ {1, . . . , I} corresponding to

9Consequently, jumps of Λ are always dispensable if they are specified to occur independently.
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the jump processes NΠ := 1∀ i6=j∈Π: τi=τj≤t, and then recursively define the following

quantities:10

λ∗
{1,2,...,I}(t) := λ{1,2,...,I}(t)

λ∗
{1,2,...,I}\i(t) := λ{1,2,...,I}\i(t)− λ∗

{1,2,...,I}(t)

...

λ∗
Π(t) := λΠ −

∑

Π′⊆{1,...,I}: Π⊂Π′

λ∗
Π′(t)

...

λ∗
I(t) := λI −

∑

Π′⊆{1,...,I}: I∈Π′,|Π′|≥2

λ∗
Π′(t) (2.2)

The λ∗
Π represent the intensities of the one-jump processes that jump only at the

point in time where all Ni, i ∈ Π, jump simultaneously and the remaining Nj ,

j /∈ Π, do not jump. In the following, we denote these processes by N∗
Π, that is

N∗
Π(t) := 1∀i6=j∈Π, l /∈Π: τi=τj≤t, τi 6=τl

,

and we have that

N∗
Π(t)−

∫ t

0

1τ(Π)>sλ
∗
Π(s)ds

is an F-martingale. Then, each Ni can be expressed in terms of the N∗
Π as follows:

Ni(t) =
∑

Π⊆{1,...,I}
1i∈ΠN∗

Π(t).

By definition, the one-jump processes N∗
Π are orthogonal, i.e. never jump together.

The above model formulation provides a link between our setup and so-called com-

mon Poisson shock models, see Lindskog and McNeil (2003) for a study of this

model class in an insurance and credit risk context. In these models, one directly

specifies constant intensities λ∗
Π for the N∗

Π to arrive at a model of the Ni. There-

fore, provided that the λ∗
Π are constant our setup also possesses an interpretation as

a common Poisson shock model. We will come back to this observation in Sections

2.4 and 2.6. For the time being, we illustrate our considerations with the following

example:

Example 2.3.1 Intensity Gamma cont. (Joshi and Stacey (2006)). For ease of

exposition let us consider the model introduced in Example 2.1.1 for the case I = 2,

p = 1 and an = a1n = a2n for each n. Based on Proposition 2.3.1, we obtain for

10Presuming that the necessary, previously discussed technical conditions are fulfilled.
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the intensities λ∗
12, λ∗

1 and λ∗
2 with t ∈ [tn−1, tn]:

λ∗
12(t) = λ12(t) =

∫

(

e−2ς − 1
) ce−

d
an

ς

ς
dς −

∑

k=1,2

∫

(

e−ς − 1
) ce−

d
an

ς

ς
dς

= log
(

1 + 2
an

d

)−c

− 2 log
(

1 +
an

d

)−c

= c log

(

(

1 + an

d

)2

(

1 + 2an

d

)

)

and

λ∗
k(t) = λ1(t)− λ∗

12(t) = c log
(

1 +
an

d

)

− c log

(

(

1 + an

d

)2

(

1 + 2an

d

)

)

= c log

(

(

1 + 2an

d

)

(

1 + an

d

)

)

for k = {1, 2}.

This shows that the Intensity Gamma model is in fact a common Poisson shock

model with constant intensities over each time interval [tn−1, tn]. The whole depen-

dence stems from the occurrence of simultaneous jumps. At this point, it is worth

mentioning that it would be easy to show that in fact every model where Λ is an

additive process, i.e. a time-inhomogeneous “Lévy” process, can be represented as

a common Poisson shock model with time-dependent intensities.

Based on Proposition 2.3.1, we are now able to state a formula for the joint survival

probability of two objects:

Proposition 2.3.2 The joint survival probability Pij(t, T ) of two portfolio objects

i and j is given as

Pij(t, T ) = 1τ({i,j})>tE
ij

[

e
− P

k=i,j

(Λk(T )−Λk(t))
∣

∣

∣

∣

Ft

]

,

where E
ij [·] denotes expectation with respect to an absolutely continuous measure

Pij which is characterized by the density process

Σij(t) =
dP

ij

dP

∣

∣

∣

∣

Ft

= 1τ({i,j})>t∧T e
R t∧T
0 hij(s)ds,

and where the filtration F is assumed to be the augmentation of the original filtration

by the null sets of Pij. For the joint jump probability, we obtain

E
[

1t<τi,τj≤T

∣

∣Ft

]

= 1τi>t1τj>t (Pij(t, T ) + 1− Pi(t, T )− Pj(t, T )) .

Proof: The martingale property of Σij follows analogously to the martingale prop-

erty of Σi in the proof of Proposition 2.2.2. Therefore, under Pij {τi ≤ T}∨{τj ≤ T}
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becomes a null set, and we have that

Pij(t, T ) = E

[

1τ({i,j})>T

∣

∣

∣
Ft

]

= 1τ({i,j})>tE
ij
[

e−
R T
t

hij(s)ds
∣

∣

∣
Ft

]

= 1τ({i,j})>tE
ij

[

e
− P

k=i,j

(Λk(T )−Λk(t))
∣

∣

∣

∣

Ft

]

.

For the second part, we simply use that

1t<τi,τj≤T = 1t<τi,t<τj

(

1τi>T,τj>T + 1− 1τi>T − 1τj>T

)

.

By taking expectations, we obtain the claim:

E
[

1t<τi≤T,t<τj≤T

∣

∣Ft

]

= 1t<τi,t<τj
(Pij(t, T ) + 1− Pi(t, T )− Pj(t, T )) .

2

It is now straight-forward to consider an arbitrary subset Π ⊆ {1, . . . , I} instead of

{i, j} in Proposition 2.3.2 and derive the corresponding joint survival probability

for this set of objects. It is given as

PΠ(t, T ) = 1τ(Π)>t E
Π

[

e
− P

k∈Π
(Λk(T )−Λk(t))

∣

∣

∣

∣

Ft

]

, (2.3)

where EΠ[·] denotes expectation with respect to an absolutely continuous measure

P
Π which is defined by the density process

ΣΠ =
dPΠ

dP

∣

∣

∣

∣

Ft

= 1τ(Π)>t∧T e
R t∧T
0 hΠ(s)ds,

and where the filtration F is assumed to be the augmentation of the original filtra-

tion by the null sets of PΠ. Again, this formula is fairly intuitive: When calculating

the joint survival probability of the objects belonging to Π, we may naturally pre-

sume that Ni(T ) = 0 for each i ∈ Π because otherwise the objects would not have

survived. Due to the independence of E(Π) and Λ(Π) in case that N(Π)(T ) = 0 and

due to the exponential distribution of E(Π), we obtain exp

(

− ∑
k∈Π

(Λk(T )− Λk(t))

)

in equation (2.3).

2.4 Construction of the Stopping Times

While in the previous sections we have defined a vector of stopping times and

demonstrated how important quantities can be computed based on this definition,

in this section we provide a construction of the considered setup, i.e. we show that
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the setup is well-defined. The methodology follows Norros (1986), Shaked and

Shanthikumar (1987) and Yu (2007). More precisely, we extend the construction

given in Yu (2007), which is itself based on the total hazard construction of Norros

(1986) and Shaked and Shanthikumar (1987), to the situation where simultaneous

jumps of the Ni are possible. The construction represents a natural simulation

algorithm for our model.

Before stating a construction algorithm, let us recall a result from the previous sec-

tion. There, we showed that our model can be formulated by means of orthogonal

point processes N∗
Π with intensities 1τ(Π)>sλ

∗
Π(s) that jump only if exactly all Ni,

i ∈ Π, jump at the same time. The jump times of these processes are denoted by

τ ∗
Π in the following, i.e.

τ ∗
Π := inf{t : N∗

Π > 0}.

Having written our setup in terms of orthogonal one-jump point processes N∗
Π, we

have set the stage to apply the construction algorithm stated in Yu (2007).

To do so, we first need to introduce some notation: Following Yu (2007), we denote

by In = {k1, . . . , kn} the identities of the n processes which have already jumped at

time t; km identifies the process N∗
km

as the process which has jumped as number

m. Tn = {t1, . . . , tn} denotes the set of jump times associated with the jumps of

(Nk1, . . . , Nkn) and the intensity λ∗
Π(s) = λ∗

Π(s|In, Tn, X1) is given as a deterministic

function (defined on the interval (tn, tn+1]) of time, jump history and the realization

of the background process X1. The total hazard accumulated at time t ∈ [tn, tn+1]

by Π is denoted by

VΠ(t|In, Tn, X1) :=
n
∑

m=1

UΠ(tm − tm−1|Im−1, Tm−1, X
1) + UΠ(t− tn|In, Tn, X

1)

where t0 := 0 and

UΠ(s|Im, Tm, X1) =

∫ tm+s

tm

1τ(Π)>uλ
∗
Π(u|Im, Tm, X1)du.

Furthermore, we define U−1
Π (c|Im, Tm, X1) = T ∗, if UΠ(T ∗|Im, Tm, X1) < c. Based

on these definitions, we are now able to state the following construction algorithm:
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Algorithm 2.4.1

1. Draw a sequence E = (E1, . . . , EI , E12, . . . , E{1,...,I})
T of i.i.d.

Exp(1)-distributed random variables.

2. Draw a sample path of the background process X1 independent of E.

3. (a) Obtain k1 as

k1 = arg min
Π⊆{1,...,I}

U−1
Π (EΠ),

and set

τ̂ ∗
k1

= U−1
k1

(Ek1).

Proceed with 3 (c).

(b) Let (τ̂k1 , . . . , τ̂km−1) with m ≥ 2 and Tm−1 = {t1, . . . , tm−1} and Im−1 =

{k1, . . . , km−1} be given. Then,

km := arg min
Π/∈Im−1

U−1
Π (EΠ − VΠ(tm−1|Im−1, Tm−1)| Im−1, Tm−1)

and

τ̂ ∗
km

:= tm−1 + U−1
km

(Ekm − Vkm(tm−1|Im−1, Tm−1)| Im−1, Tm−1) .

Proceed with 3 (c).

(c) If
∑m

n=1 |kn| = I or τ̂ ∗
km

= T ∗ stop, otherwise increase m by 1 and

proceed with 3 (b).

As pointed out by Yu (2007), one can now specify a new probability space
(

Ω̂, F̂ , F̂ =
(

F̂t

)

0≤t≤T ∗
, P̂

)

where P̂ is the probability measure generated by the

law of the background process X1 and the law of τ̂ ∗ conditional on each path of

X1; F̂ is the filtration generated by the background process X1 and the indicator

processes associated with τ̂ ∗. Then, τ ∗ and τ̂ ∗ are equal in law conditional on

each path of X1 and the indicator processes associated with τ̂ ∗ have F̂-intensities

1τ(Π)>sλ
∗
Π(s). It is important to note that Algorithm 2.4.1 also represents a simu-

lation algorithm for our stopping times model.

Furthermore, we would like to mention a slight difference between the assumptions

of Yu (2007) and our setup. Since we consider in contrast to his work a final time

horizon T ∗, the Ni do not necessarily jump within that finite time period [0, T ∗).

The situation where not all coordinates Ni have jumped before T ∗ corresponds to
∑m

n=1 |kn| < I and τ̂ ∗
km

= T ∗ in step 3 (c) of Algorithm 2.4.1.



2.5. MODEL-IMPLIED DEPENDENCE STRUCTURE 31

2.5 Model-Implied Dependence Structure

After having derived formulas for single and joint survival probabilities, we now

examine the dependence structure between the coordinates of N : By definition,

any dependence between survival and non-survival of the portfolio objects stems

from dependencies between the coordinates of the jump-trigger process Λ.11 The

joint dynamics of (Λ1, . . . , ΛI) determine the dynamics of the joint survival and

jump probabilities.

Our main goal in this section is to analyze the dependence between the coordinates

of τ over a fixed time horizon [t, T ] and discuss how several specifications of the

jump-trigger process Λ influence this dependence structure.12 In particular, we

deal with the following questions:

• Can we characterize the dependence structure implied by this framework?

• Can the dependence structure implied by our approach be compared to depen-

dence structures generated by other approaches in the literature?

Those two questions are of great importance when one intends to analyze differ-

ences and similarities between our approach and other approaches in the literature.

For the characterization of the dependence structure, the notion of conditional in-

dependence is important. It is introduced in the next subsection.

2.5.1 Conditional Independence and Contagion

In the credit risk literature, there is an ongoing debate whether corporate defaults

are conditionally independent or whether contagion is needed in order to explain the

observed default behavior. In this thesis, we investigate this question empirically

in Sections 3.1 and 3.4. Loosely speaking, contagion corresponds to the situation

where the dynamics of the single objects’ current default probabilities depend on

past defaults of other objects and conditional independence where they do not.13

The rigorous mathematical definition of conditional independence, which we con-

sider, is the following:

11Note that the exponentially-distributed random variables Ei, on which the definition of the

τi is based, are i.i.d.
12The clustering of the jumps of N in time, i.e. an analysis of the dependence structure of N

from a dynamic point of view, is examined in the next section.
13This is a topic which is of lower relevance in an insurance context, since in most situations it is

reasonable to assume that past deaths do not influence future mortality rates, see also Subsection

2.8.2.
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Definition 2.5.1 We say that the vector N(Π) is conditionally independent on

[0, T ∗] with respect to a subfiltration G ⊆ F if and only if for all s ∈ [0, T ∗]I :

P
(

τ(Π) > s(Π)

∣

∣GT ∗

)

=
∏

i∈Π

P (τi > si| GT ∗) .

This definition of conditional independence is similar to the one that can be found

in Bielecki and Rutkowski (2002), p. 268. A trivial example of a filtration with

respect to which N(Π) is conditionally independent is the general model filtration

F.

The interesting cases are given by true subfiltrations of F to which none of the

coordinates of N(Π) is adapted to. These are also the setups that are usually called

conditional independence models. Typically, in such a model one has common

factors evolving independently of N(Π) and conditional on these factors the coordi-

nates of N(Π) are independent. This modeling approach originates from the seminal

paper of Lando (1998) and is popular in practice since it guarantees a high degree

of tractability for a large range of model specifications. Note that we will tackle

the issue of model tractability in Section 2.7.

The next proposition considers a particularly interesting case of conditional inde-

pendence and derives the corresponding survival probabilities:

Proposition 2.5.1 If the σ-fields
∨

i∈Π σ(Ei) and FΛ(Π)

T ∗ are independent,

1. N(Π) is conditionally independent on [0, T ∗] with respect to FΛ(Π), and

2. single and joint survival probabilities are given as

PΠ′(t, T ) = 1τ(Π′)>tE

[

∏

i∈Π′

e−Λi(T )+Λi(t)

∣

∣

∣

∣

∣

FN\Π

t ∨ FΛ
t ∨ FX1

t

]

for any subset Π′ ⊆ Π.

Proof: Note first that for s ∈ [0, T ∗]I and for any sub-σ-field G of F satisfying

FΛ(Π)

T ∗ ⊆ G we have

P
(

τ(Π) > s(Π)

∣

∣G
)

= P

(

⋂

i∈Π

{Λi(si) ≤ Ei}
∣

∣

∣

∣

∣

G
)

=
∏

i∈Π

e−Λi(si) (∗)

=
∏

i∈Π

P (τi > si| G) ,

because the Ei are mutually independent, FΛ(Π)

T ∗ and
∨

i∈Π σ(Ei) are independent

and Λ(Π)(s) is G-measurable. For G = FΛ(Π)

T ∗ , this yields the conditional indepen-

dence of N(Π) with respect to FΛ(Π)

T ∗ .
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For the second part of the claim, we use that for an arbitrary sub-σ-field K of F and

for s > t the following can be shown (cf. Lemma 9.1.2 of Bielecki and Rutkowski

(2002), p. 271):

P

(

τ(Π′) > s
∣

∣K ∨ FN(Π′)

t

)

= 1τ(Π′)>t

P
(

τ(Π′) > s
∣

∣K
)

P
(

τ(Π′) > t
∣

∣K
) (∗∗).

Combining (∗) and (∗∗) we get for any subset Π′ ⊆ Π with K = FΛ
t ∨F

N\Π′

t ∨FX1

t

PΠ′(t, T ) = E

[

1τ(Π′)>T

∣

∣

∣
K ∨ FN(Π′)

t

]

(∗∗)
= 1τ(Π′)>t

E

[

E

[

1τ(Π′)>T

∣

∣

∣
FΛ(Π′)

T ∗ ∨ FΛ\Π′

t ∨ FN\Π′

t ∨ FX1

t

]∣

∣

∣
K
]

E

[

1τ(Π′)>t

∣

∣

∣
K
]

(∗)
= 1τ(Π′)>tE

[

∏

i∈Π′

e−Λi(T )+Λi(t)

∣

∣

∣

∣

∣

K
]

= 1τ(Π′)>tE

[

∏

i∈Π′

e−Λi(T )+Λi(t)

∣

∣

∣

∣

∣

FN\Π

t ∨ FΛ
t ∨ FX1

t

]

,

where we also used the law of iterated expectations. The last equality follows from

the fact that
∨

i∈Π,i/∈Π′ σ(Ei) and FΛ(Π′)

T ∗ are independent (for a detailed argument

see Lando (1998)). Alternatively, the survival probabilities could be derived by

applying Propositions 2.2.2 and 2.3.2 and using the Girsanov theorem afterwards

in order to show that the dynamics of Λ(Π) are the same under P and PΠ.

2

If the conditions of Proposition 2.5.1 are fulfilled, conditional on the history of the

jump-trigger process Λ(Π) the coordinates of N(Π) are independent. Note that this

does not imply that jumps of N\Π cannot influence the survival probabilities of

N(Π) or vice versa but it implies that the jumps of the Ni with i ∈ Π cannot affect

each other. It is worth mentioning that such a model includes as a special case a

setup investigated in Jarrow and Yu (2001). In the so-called Primary-Secondary

credit portfolio framework considered there, defaults of primary firms (j /∈ Π) can

affect the default probabilities of secondary firms (i ∈ Π) but not vice versa.

The next definition introduces the notion of contagion and distinguishes between

different types of contagion.

Definition 2.5.2 Contagion is not present among the coordinates of N(Π) if and

only if the σ-fields
∨

i∈Π σ(Ei) and FΛ(Π)

T ∗ are independent. Furthermore, considering
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a fixed time horizon [t, T ], we say that positive (negative) contagion is present

among the coordinates of N(Π) in [t, T ] if for all i ∈ Π and ai > 0 we always have

E
i [exp (−ai (Λi(T )− Λi(t)))| Ft]

(≥)

≤ E
Π [exp (−ai (Λi(T )− Λi(t)))| Ft] ,

and if in addition there exists at least one j ∈ Π for which

E
j [exp (−aj (Λj(T )− Λj(t)))| Ft]

(>)
< E

Π [exp (aj (−Λj(T )− Λj(t)))| Ft]

holds true.

Definition 2.5.2 determines contagion not to be present among a subset Π of ob-

jects if the independence assumption stated in Proposition 2.5.1 is satisfied. As

already mentioned, this assumption guarantees that the survival probabilities of

all objects i ∈ Π do not depend on jumps of N(Π). Following the literature, we

will henceforth exchangeably use the terms conditional independence setup, setup

without contagion or doubly stochastic setup to denote such a model. Contrarily,

a model where this assumption is violated will be called a setup with contagion or

a contagion model.

Also, Definition 2.5.2 distinguishes between different types of contagion. Positive

(negative) contagion is said to be present among a subset of portfolio objects if

the possibility of other defaults j ∈ Π, j 6= i within this subset reduces (increases)

the survival chances of each object i ∈ Π over a fixed time period, since the prob-

ability of large realizations of Λi(T ) − Λi(t) is increased (decreased). This means

that other defaults may have (and have at least in case of one object) a negative

(positive) impact on the survival probability of the surviving firms. Furthermore,

the direction of this impact is for each object the same: Either its survival prob-

ability is affected in a negative (positive) way or it is not affected at all. When

characterizing the model-implied dependence structure in the next subsection, we

will get back to the situation when positive (negative) contagion is present among

the objects and discuss the implications for the dependence structure.

Table 2.1 summarizes general classifications of the model-implied dependence struc-

ture. As pointed out in the preceding section, simultaneous jumps of Λi and Λj ,

i 6= j, imply a positive probability for simultaneous jumps of Ni and Nj, and the

independence of the σ-fields
∨

i∈Π σ(Ei) and FΛ(Π)

T ∗ implies a setup where contagion

is ruled out among the objects belonging to Π.
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∨

i∈Π

σ(Ei), F
Λ(Π)

T ∗ ind.
∨

i∈Π

σ(Ei), F
Λ(Π)

T ∗ not ind.

No contagion, Contagion,

No simult. jumps of Λ(Π) No simult. jumps No simult. jumps

of N(Π) of N(Π)

No contagion, Contagion,

Simult. jumps of Λ(Π) Simult. jumps Simult. jumps

of N(Π) of N(Π)

Table 2.1: General classifications of the model-implied dependence structure be-

tween the coordinates of N(Π) with respect to contagion and simultaneous jumps.

2.5.2 A Characterization Result for the Dependence Struc-

ture

Next, we describe the dependence structure between the components of τ in more

detail. We establish a link between our time-continuous setup and the static con-

cept of copulas – a popular tool in the context of dependence modeling. In recent

years, copulas (or equivalently copula functions) have enjoyed increasing popular-

ity in the finance community for basically one reason: They represent a simple,

ad-hoc method to introduce dependence between random variables; given the mar-

gins of a random vector, one only needs to specify an arbitrary copula function to

obtain a multivariate distribution function for the vector. In an application, for

example, this allows for calibrating the margins and the dependence between the

single random variables in two separate steps significantly simplifying the estima-

tion procedure.

The idea behind the characterization of the model-implied dependence structure

that follows now, is simple and possibly best described by an example. Consider a

time-continuous model consisting of two correlated Brownian motions. We could

now “switch” from the time-continuous to a static setting by analyzing only the dis-

tribution of the Brownian motions at the end of some fixed time interval as implied

by the time-continuous model. This distribution is a two-dimensional Gaussian

distribution and dependence between both Brownian motions is described by a

Gaussian copula. In the following, we conduct exactly the same analysis for our –

by far more complicated – time-continuous model of multiple stopping times.

The motivation supporting our investigation is twofold: First, the established link

allows us to use results from the well-developed copula theory for a further analy-

sis of the dependence structure of concrete model specifications. Second, the link
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makes our model better comparable with other models in the literature, especially

to the static copula models, see e.g. Li (2000) for a credit portfolio model based

on the Gaussian copula and Burtschell et al. (2007) for a comparative analysis of

different copula functions applied to the pricing of credit portfolio derivatives.14

Important Definitions and Results from the Theory of Copula Functions

If not stated otherwise, the following standard definitions, results and their proofs

can be found in Nelsen (2006), Joe (1997) or McNeil et al. (2005), where also

further properties and details regarding copulas not discussed in this thesis are

presented. A copula function is formally defined as follows:

Definition 2.5.3 A function C : [0, 1]I → [0, 1] is called a copula if it has the

following properties:

1. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i = 1, . . . , I, ui ∈ [0, 1] and C(u) = 0 for

every u ∈ [0, 1]I if at least one coordinate of the vector u is 0;

2. For all a,b ∈ [0, 1]I with ai ≤ bi, 1 ≤ i ≤ I, the volume of the hypercube with

corners a, b is positive:

2
∑

j1=1

2
∑

j2=1

. . .
2
∑

jI=1

(−1)j1+j2+...+jIC(u1j1
, u2j2

, . . . , uIjI
) ≥ 0

where ui1 = ai and ui2 = bi for all i = 1, . . . , I.

Definition 2.5.3 implies that a copula function is a multivariate distribution function

with uniform margins. The central theorem in the context of copula functions is

Sklar’s theorem. It establishes the link between copula function, joint distribution

function and the marginal distributions of random vectors.

Theorem 2.5.1 (Sklar) Let V1, V2, . . . , VI be random variables with marginal dis-

tribution functions G1, G2, . . . , GI and joint distribution function G. Then, there

exists an I-dimensional copula C such that for all v ∈ RI

G(v1, . . . , vI) = C(G1(v1), . . . , GI(vI)).

If G1, G2, . . . , GI are continuous, then C is unique. Otherwise C is uniquely deter-

mined on Ran(G1)×Ran(G2)× · · · ×Ran(GI), where Ran(Gi) denotes the range

of Gi for i = 1, 2, . . . , I.

14The copula method has also been applied in a time-continuous setting, see e.g. Schönbucher

and Schubert (2001). However, while its application seems reasonable in a static setup where

only one fixed time horizon is considered and where one essentially deals with random variables

its application to a dynamic framework is more than questionable: For example, Rogge and

Schönbucher (2003) point out that the copula method applied to a dynamic credit portfolio

context can result in completely unrealistic model dynamics.
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Sklar’s theorem highlights the aforementioned power of the copula concept in de-

pendence modeling: On the one hand, copulas allow to separate the dependence

part of the joint distribution function, described by the copula function, from the

marginal distributions. On the other hand, a joint distribution function can be

constructed by transforming given margins by an arbitrary copula.

A particular class of copulas, which will be important for the characterization of

the model-implied dependence structure, is given by the next definition:

Definition 2.5.4 Let be given an I-dimensional vector V = (V1, . . . , VI)
T of posi-

tive random variables. Then, we call the copula function defined by

C (u1, . . . , uI) = E

[

I
∏

i=1

exp
(

−Viϕ
−1
i (ui)

)

]

with

ϕi(x) = E [exp (−xVi)] 1 ≤ i ≤ I (2.4)

a copula of the Marshall-Olkin type.

The copula introduced in Definition 2.5.4, is a special case of an even more general

copula class introduced in Theorem 2.1 of Marshall and Olkin (1988), p. 835. It is

important to note that the copula of the Marshall-Olkin type considered here and

the so-called Marshall Olkin copula (see e.g. Nelsen (2006), p. 53, for a definition)

represent different copula functions.

Remark 2.5.1 A further – particularly nice – subclass of the Marshall-Olkin type

copulas are the LT-Archimedean copulas, which have been studied by Rogge and

Schönbucher (2003) and McNeil et al. (2005).15 In case of a LT-Archimedean

copula, each Vi can be decomposed as

Vi =

p
∑

j=1

AijUj , (2.5)

i.e. each Vi exhibits a certain factor structure, where A ∈ R
I×p
0+ , and the factors Uj

are assumed to be positive, independent random variables. In the special case p = 1

and Ai1 = Ak1 for all i 6= k, equation (2.5) reduces to

C (u1, . . . , uI) = ϕ

(

I
∑

i=1

ϕ(−1)(ui)

)

. (2.6)

In the literature, such a copula is called an Archimedean copula function and one

refers to φ = ϕ−1 as its generator.16 It is worth mentioning that the copula func-

tions constructed by means of equation (2.6) constitute only a subset of the ordinary

15“LT” stands for Laplace transform indicating that the copulas are constructed based on

Laplace transforms of positive random variables.
16To discern between the general and the special case we refer to them as LT-Archimedean and

ordinary or simple Archimedean copulas in the following.
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Archimedean copula functions since the Archimedean copula class is usually defined

in a broader sense (cf. Nelsen (2006) or Joe (1997)).

As a consequence of its definition, a LT-Archimedean copula function can be written

as

C (u1, . . . , uI) =

p
∏

j=1

E

[

exp

(

−Uj

I
∑

i=1

Aijϕ
(−1)
i (ui)

)]

.

Characterization of the Model-Implied Dependence Structure

For the analysis of the model-implied dependence structure, we restrict ourselves

now to an arbitrary, fixed time horizon [t, T ]. Thereby, we focus on the following

questions:

Given that we scale the Λis introduced in Definition 2.1.1 by positive constants

ai, what is the function that maps the different individual survival probabilities

corresponding to different values a = (a1, . . . , aI)
T to the joint survival probability?

Can we characterize the mechanism linking single and joint survival probabilities

in this case?

These questions are not only interesting from an academic point of view. They

become particularly important when calibrating a model to a given data set. To

further illustrate this point, let us consider the following potential credit portfolio

application of our stopping times model: Its calibration to prices of securities that

reference the whole portfolio and to prices of securities that only reference the single

objects in the portfolio. As already indicated in connection with Example 2.1.1,

the most natural way of doing this would be to scale the Λi by positive constants

ai to match the different levels of individual prices and adjust the parameters that

describe the joint dynamics of the jump-trigger processes Λi to fit the prices of

the securities referencing the whole portfolio. In Mortensen (2006) and Feldhütter

(2008), for example, such a scaling is applied in the calibration of the Duffie and

Gârleanu (2001) credit portfolio model.

The scaling of the Λi intrinsically changes the measure P since now

τi := inf {t : aiΛi(t) ≥ Ei}

and we write Pa (or PΠ,a for Π ⊆ {1, . . . , I} if we change to one of the measures

considered in the previous sections).17 As the probability measure is changed,

even single survival probabilities may depend on the whole vector a (changing the

17Note that model calibration is per se the procedure of finding the “right” measure. Usually,

one a priori restricts the set of possible measures. Here, we restrict ourselves to the measures

which correspond to a scaling of the Λi.
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survival probability of one object can change the survival probability of another

object, too) and we write T,tpi(a) instead of T,tpi to emphasize the dependence

of the survival probabilities on a. Moreover, whenever we restrict ourselves to a

subset of objects Π ⊆ {1, . . . , I}, different combinations of ai are only considered

for i ∈ Π, while the aj ≡ 1, j /∈ Π, are kept fixed.

We now focus on the mechanism linking the different possible marginal survival

probabilities T,tpi(a) of a subset Π of objects to their joint survival probability, given

the information up to time t and leaving the specification of Λ itself unchanged.

We are interested in the following function:

Definition 2.5.5 Consider the mapping P : a 7→ T,tp(Π) (a) with a ∈ R
|Π|
0+ and

denote by RAN(P ) its range. We call the function T,tFΠ : RAN(P ) → [0, 1] with

property

T,tpΠ (a) = T,tFΠ

(

T,tp(Π) (a)
)

∀a ∈ R
|Π|
0+,

the dependence function of N(Π).
18

Remark 2.5.2 We limit our attention to the dependence function conditional on

survival of the objects Π in order to simplify notation; this is not a real restriction

since the “unconditional” function F satisfying PΠ(t, T ) = F
(

P(Π)(t, T )
)

coincides

with T,tFΠ on
⋂

i∈Π{τi > t}.

In connection with the dependence function, it is important to note the following:

First, the function T,tFΠ should not be mistaken for the model-implied survival

times copula, which is often considered in the literature (for an example see Georges

et al. (2001)). The survival times copula C is the copula linking the marginal

survival probabilities over different time horizons to the joint survival probability,

i.e.

P (τ > T | Ft ∧ ∩i∈Π{τi > t}) = C ( T1,tp1 , . . . , TI ,tpI )

with T = (T1, . . . , TI)
T > t. Contrarily, we consider the function which maps

possible combinations of survival probabilities over the same time horizon to the

joint survival probability. Nevertheless, for fixed a and T = T1 = . . . = TI both

functions yield the same value, i.e.

T ,tp{1,...,I} = P
(

τ > T
∣

∣Ft ∧ ∩i∈Π{τi > t}
)

= C
(

T ,tp1 , . . . , T ,tpI

)

.

From a practical point of view, the dependence function is the more important

quantity since in an application we are usually first interested in the dependence

18Watch the notation: T,tp(Π) denotes the |Π|-dimensional sub-vector of ( T,tp1 , . . . , T,tpI )
T

with elements T,tpi, i ∈ Π while T,tpΠ denotes the joint conditional survival probability of all

i ∈ Π.
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between Ni(T ) and Nj(T ) and to a lesser extent in dependencies between Ni(Ti)

and Nj(Tj), i 6= j.

Second, the dependence function is not the copula function linking the probabil-

ities of the Bernoulli-events {“survival”, “non-survival”}, but this copula can be

expressed in terms of the function.

Third, focusing on the survival events is not a restriction since the function T,tFΠ

with Π = {i, j} for the jump events can easily be obtained from T,tF{i,j} (higher

dimensional cases can be treated similarly):

T,tF {i,j} ( T,tqi , T,tqj ) = 1− T,tpi − T,tpj + T,tF{i,j}
(

T,tp({i,j})
)

.

For the characterization of T,tFΠ, Laplace transforms of the increments of Λ will

play a crucial role:

Definition 2.5.6 Π′,a
T,t ϕΛ(Π)

with Π′ ⊆ {1, . . . , I} is defined as the joint Laplace

transform under the measure PΠ′,a of the increments of Λ(Π) over the time interval

[t, T ] conditional on the information until time t, i.e.

Π′,a
T,t ϕΛ(Π)

(

u(Π)

)

= E
Π′,a

[

e
− P

i∈Π
ui(Λi(T )−Λi(t))

∣

∣

∣

∣

Ft

]

with u ∈ R
I
0+.

With Definition 2.5.6 at hand, we have set the stage for a first, very general char-

acterization result for the dependence function T,tFΠ of N(Π) over [t, T ]:

Proposition 2.5.2 The dependence function T,tFΠ is given as

T,tFΠ

(

T,tp(Π) (a)
)

= Π
T,tϕΛ(Π)

(

u(Π)

)

,

where

u =
(

1,a
T,tϕ

−1
Λ1

(T,tp1(a)) , . . . ,I,a
T,t ϕ

−1
ΛI

(T,tpI(a))
)

.

Proof: From Proposition 2.2.2 it directly follows for all i ∈ {1, . . . , I} that

T,tpi (a) = i,a
T,tϕaiΛi

(1) = i,a
T,tϕΛi

(ai) ⇒ i,a
T,tϕ

−1
Λi

( T,tpi (a)) = ai,

since the Laplace transform is invertible and the distribution of Λi(T )−Λi(t) does

under Pi,a not depend on ai. Furthermore, based on Proposition 2.3.2 we obtain

T,tpΠ (a) = Π
T,tϕΛ(Π)

(

u(Π)

)

= T,tFΠ

(

T,tp(Π) (a)
)
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with u =
(

1,a
T,tϕ

−1
Λ1

( T,tp1 (a)) , . . . , I,a
T,tϕ

−1
ΛI

( T,tpI (a))
)T

as claimed.

2

Note that Π
T,tϕΛ(Π)

in Proposition 2.5.2 does not depend on a anymore and “a” is

dropped because under the measure PΠ jumps of the objects Π do not occur before

T (recall that all aj , j /∈ Π are kept fixed). a does therefore have no influence on

the distribution of Λi(T ) − Λi(t). Proposition 2.5.2 highlights the importance of

the increments of Λ for the dependence structure of N : The dependence structure

is completely determined by the multivariate and univariate Laplace transforms of

these increments under the different measures.

The next theorem shows that for a setup without contagion the dependence func-

tion is a copula function. More precisely, the dependence function is a copula of

the Marshall-Olkin type (cf. Definition 2.5.4) in this case.

Theorem 2.5.2 The model-implied dependence function T,tFΠ defines a copula

function of the Marshall-Olkin type if among the coordinates N(Π) contagion is

not present in the sense of Definition 2.5.2.

Proof: Given conditional independence, we can use Proposition 2.5.1 to get for the

single survival probabilities:

T,tpi (a) =i,a
T,t ϕΛi

(ai) =T,t ϕΛi
(ai) = T,tpi (ai).

This means that the Laplace transform is independent of a, and since Λi(T )−Λi(t)

is a positive random variable we therefore find for each p ∈ [0, 1]|Π| an a ∈ R
|Π|
0+

such that

T,tϕΛi
(ai) = pi, for all i ∈ Π,

by setting ai = T,tϕ
−1
Λi

(pi). This implies that RAN(P ) = [0, 1]|Π|, i.e. in a condi-

tional independence model any combination of p ∈ [0, 1]|Π| can be reproduced by

scaling the Λi and the dependence function is defined on [0, 1]|Π|.

Based on the conditional independence, we finally obtain for the dependence func-

tion T,tFΠ that

T,tpΠ = E
Π

[

∏

i∈Π

e−ai(Λi(T )−Λi(t))

∣

∣

∣

∣

∣

Ft

]

= E

[

∏

i∈Π

e−ai(Λi(T )−Λi(t))

∣

∣

∣

∣

∣

Ft

]

= E

[

∏

i∈Π

e
− T,tϕ

−1
Λi

( T,tpi )(Λi(T )−Λi(t))

∣

∣

∣

∣

∣

Ft

]

= T,tFΠ

(

T,tp(Π)

)
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where the expectation and the transforms T,tϕΛi
are calculated with respect to the

same measure P, which proves that the dependence function is a copula of the

Marshall-Olkin type (cf. Definition 2.5.4).

2

In connection with Theorem 2.5.2 we can state the subsequent corollary:

Corollary 2.5.1

1. The function T,tCΠ : [0, 1]Π → [0, 1] with

T,tCΠ (u) := Π
T,tϕΛ(Π)

(

(

Π
T,tϕ

−1
Λ1

(u1) , . . . , Π
T,tϕ

−1
ΛI

(uI)
)

(Π)

)

(2.7)

always defines a copula function of the Marshall-Olkin type.

2. If for all i ∈ Π Λi(t) can be written under PΠ as

Λi(t) =

p
∑

j=1

AijΛ
∗
j(t),

where the Λ∗
j are of the general form considered in equation (2.1), i.e. each

Λ∗
j only consists of a drift and a jump part, and if

E
Π

[

e
−

p
P

j=1
Aij(Λ∗

j (T )−Λ∗
j (t))

∣

∣

∣

∣

∣

Ft

]

=

p
∏

j=1

E
Π
[

e−Aij(Λ∗
j (T )−Λ∗

j (t))
∣

∣

∣
Ft

]

for all i ∈ Π and arbitrary Aij ≥ 0, then T,tCΠ, defined in equation (2.7),

is an LT-Archimedean copula. In the special case p = 1 and Ai1 = Ak1 for

k 6= i ∈ Π, T,tCΠ is an ordinary Archimedean copula function.

Proof: The first part follows from Definition 2.5.4, and the second part follows

from the definition of the LT-Archimedean and the ordinary Archimedean copula

function (cf. Remark 2.5.1).

2

Theorem 2.5.2 and Corollary 2.5.1 establish an important link between our dynamic

setup and the static copula approach. In the static copula approach, a particular

copula function is exogenously imposed in order to link the marginal survival prob-

abilities to the joint survival probability. We, however, specified a dynamic model

for the jump times of N and studied then its implied dependence structure over

a fixed time horizon. We found that in our stopping times model the dependence
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mechanism which transforms single survival probabilities to joint survival proba-

bilities is closely related to a copula function which has already been investigated

by Marshall and Olkin (1988).

In the contagion case, the function linking single and joint survival probabilities is

not a copula since the Laplace transforms are calculated with respect to different

measures in this case. Also, in such a model possibly not every combination of sin-

gle survival probabilities can be reproduced by multiplying the processes Λi with

some positive factor. To see this, consider the following very simple two object

example which is again taken from the field of credit portfolio risk modeling: Over

a fixed time horizon, firm 1 survives with probability p1, and firm 2 survives when-

ever 1 survives. In addition, firm 2 survives alone with some probability p∗. Then

of course, firm 2 has survival probability p2 = p1 + p∗, which can never be smaller

than p1. Furthermore, the dependence function linking both survival probabilities

is in this case only defined on (p1, p1 + p∗) for all p1, p∗ > 0 such that p1 + p∗ ≤ 1.

If a model does not exhibit contagion, Theorem 2.5.2 states that the single and

joint survival probabilities are connected as implied by a copula function of the

Marshall-Olkin type. Model calibration as described in this section corresponds to

the calibration of a copula of a Marshall-Olkin type. A particular subclass of this

very broad class of copula functions is given by the LT-Archimedean and by the or-

dinary Archimedean copulas. They are obtained by imposing a certain structure of

independent factors on the Λi. It is worth noting that many credit portfolio models

which have been proposed in the literature, are based on such a factor structure

and therefore imply a LT-Archimedean dependence structure, see e.g. the models

by Mortensen (2006), Joshi and Stacey (2006), Graziano and Rogers (2006), Pa-

pageorgiou and Sircar (2007) or Chapovsky et al. (2006). It further follows that

any one-factor model that does not exhibit contagion – as considered in the sec-

ond part of Corollary 2.5.1 – implicitly assumes an ordinary Archimedean copula

dependence structure. Examples are the model by Graziano and Rogers (2006) or

the one-factor versions of the other models above. We come back to this point in

Section 2.8, where we will explicitly derive the copula function of the Duffie and

Gârleanu (2001) model.

Therefore, Theorem 2.5.2 and Corollary 2.5.1 demonstrate that the dependence

structures implied by many time-continuous models proposed in literature are com-

parable to the ones of static Archimedean copula models.

The next proposition compares models that exhibit positive or negative contagion

to models not featuring contagion effects.
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Proposition 2.5.3 If there exists positive contagion among N(Π) in the sense of

Definition 2.5.2 for all a ≥ 0, we have the following relationship between the model-

implied dependence function T,tFΠ and the copula function T,tCΠ defined by equation

(2.7):

T,tCΠ ≺ T,tFΠ.

Proof: By Definition 2.5.2, we can find an j ∈ Π such that for all aj ≥ 0:

T,tpj (a) = j,a
T,tϕΛj

(aj) < Π
T,tϕΛi

(aj)

and for i ∈ Π, i 6= j, the relation holds with a ≤ in place of <. Since the Laplace

transform is strictly decreasing,

Π
T,tϕ

−1
Λj

(T,tpj(a)) > j,a
T,tϕ

−1
Λj

(T,tpj(a)) = aj .

This finally yields that

T,tCΠ

(

T,tp(Π) (a)
)

= E
Π

[

e
− P

i∈Π

Π
T,tϕ

−1
Λi

( T,tpi (a))(Λi(T )−Λi(t))
∣

∣

∣

∣

Ft

]

≤ E
Π

[

e
− P

i∈Π

i,a
T,tϕ

−1
Λi

( T,tpi (a))(Λi(T )−Λi(t))
∣

∣

∣

∣

Ft

]

= T,tFΠ ( T,tp(Π) (a))

for all a ≥ 0.

2

Of course, the counterpart holds true in case of negative contagion. Again, the

result is fairly intuitive: The dependence between the default and survival events

increases if positive contagion is present compared to a setting without contagion.

On the other hand, negative contagion lowers dependence and has a diversification

effect: The occurrence of jumps of N(Π) make further jumps more unlikely.

In practical applications of a model, one often has to rely on Monte-Carlo sim-

ulations for calculating integrals if analytical solutions are not available. In this

case, a simulation algorithm is needed. We end our discussion of the model-implied

dependence structure by providing an algorithm for the simulation of random vari-

ables which are distributed according to the copula function T,tCΠ. It is inspired

by an algorithm stated in Marshall and Olkin (1988):

Algorithm 2.5.1 Follow the algorithm:

1. Simulate |Π| random variables Xi, 1 ≤ i ≤ |Π|, uniform on [0, 1], i.i.d.

2. Simulate Λ(Π)(T ) − Λ(Π)(t) under the measure PΠ conditional on the infor-

mation until time t, expressed through the sigma-field Ft.
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3. Define

Ui := Π
T,tϕi

(

1

Λi(T )− Λi(t)
· (− ln Xi)

)

i ∈ Π.

Then, the joint distribution function of the Ui is given by T,tCΠ.

Dependence Measures

In the following, we introduce and briefly discuss several dependence measures,

which we will subsequently apply (see e.g. Section 2.8). The first measure is the

linear correlation coefficient between the jump events:

Definition 2.5.7 The jump correlation T ρij
t of two objects i 6= j is defined as the

linear correlation coefficient between the jump events:19

T,tρij :=
T,tqij − T,tqi · T,tqj

√

T,tqi (1− T,tqi ) T,tqj (1− T,tqj )

Note that jump and survival correlation are equivalent and depend on the depen-

dence function introduced in Definition 2.5.5, as the following simple transforma-

tion shows:

T,tρij =
T,tqij − T,tqi · T,tqj

√

T,tqi (1− T,tqi ) T,tqj (1− T,tqj )

=
1− T,tpi − T,tpj + T,tpij − (1− T,tpi )(1− T,tpj )

√

T,tpi (1− T,tpi ) T,tpj (1− T,tpj )

=
T,tFij ( T,tpi , T,tpj )− T,tpi T,tpj

√

T,tpi (1− T,tpi ) T,tpj (1− T,tpj )
.

Therefore, for two different models 1 and 2 it holds true that

T,tρ
1
ij ≺ T,tρ

2
ij

if T,tF
1
ij ≺ T,tF

2
ij. Besides linear correlation, we will consider the following depen-

dence measures:

19In the credit risk related literature, the jump correlation is usually called the default correla-

tion.
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Definition 2.5.8 Given two random variables X1, X2 with copula C,

1. the lower and upper tail dependence coefficient, ζL and ζU , are defined as

ζL = lim
u→0

C(u, u)

u
,

ζU = lim
u→1

1− u− u + C(1− u, 1− u)

1− u
,

given that the limits exist.

2. Kendall’s tau Ψ is defined as

Ψ = 4

∫

[0,1]2
C(u1, u2)dC(u1, u2)− 1.

For a discussion of advantages and disadvantages of the different dependence mea-

sures, see e.g. Embrechts et al. (2002). Both measures introduced in Definition

2.5.8 are copula-based, i.e. can only be calculated if no contagion is present among

{i, j} and the model-implied dependence function is a copula (cf. Theorem 2.5.2).

Nevertheless, at least the computation of the upper and lower tail dependence co-

efficient is feasible if the dependence function is defined for all T,tpi = T,tpj as it

is usually the case in applications.

In case of an Archimedean copula function C the tail dependence coefficient as well

as Kendall’s tau can conveniently be calculated as follows:

Ψ = 1 + 4

∫ 1

0

ϕ−1(u)
∂
∂u

ϕ−1(u)
du,

ζl = lim
u→0

2 ∂
∂u

ϕ(2ϕ−1(u))
∂
∂u

ϕ(ϕ−1(u))
,

ζu = 2− lim
u→1

2 ∂
∂u

ϕ(2ϕ−1(u))
∂
∂u

ϕ(ϕ−1(u))
.

For a proof of the first equality see Corollary 5.1.4 of Nelsen (2006), p. 163, and to

obtain the second equality apply l’Hospital’s rule.
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2.6 The Loss Process

The perspective which we have taken so far was the static portfolio perspective, i.e.

we considered each single jump process Ni and described the joint distribution of

these one-point jump processes over a fixed time period. Subsequently, we directly

consider the aggregated process L, which we refer to in the following as the loss

process and which is defined as

L(t) :=

I
∑

i=1

1τi≤t =

I
∑

i=1

Ni(t).

By definition, L is a bounded, pure jump process which only jumps at a maximum

of I different points with jump sizes between 1 and I. The first contribution of

this section is the characterization of the dynamics of L. Furthermore, we provide

a time-change result which will be at the bottom of an important statistical test

considered in Section 3.1. As a second contribution, we propose a new measure to

characterize the volatility of L and discuss the properties of this measure.

2.6.1 Formulation by Means of Orthogonal Point Processes

and Time-Change

With L being a uniformly integrable submartingale, the first natural question that

arises is about the compensator A of the process. Due to the linearity of the

expectation operator, this compensator is given as

A(t) =

I
∑

i=1

Ai(t) =

I
∑

i=1

∫ t

0

λi(s)1τi>sds, (2.8)

i.e. L(t)−∑I
i=1

∫ t

0
λi(s)1τi>sds is an F-martingale, with λi as in Proposition 2.2.1.

However, the compensator alone does not characterize L, because simultaneous

jumps of the coordinates of N may occur and ∆L(t) ≤ 1 does therefore not hold

true in general. Such a complete characterization of L can be obtained by calcu-

lating its characteristics.

Instead of calculating these characteristics, we will consider a different quantity,

which eventually contains the same information in the case examined here. This

quantity is the compensator of the quadratic variation of L. The quadratic varia-

tion process of L, [L, L], is given by

[L, L] (t) =

∆L(s)6=0
∑

0<s≤t

(∆L(s))2

since L is a pure jump process; it equals L if the jump size of L is always 1.

[L, L] (t) = L(t) therefore corresponds to the situation where [Ni, Nj ](t) = 0, for
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all i, j ∈ {1, . . . , I}, i 6= j and t > 0. Generally, we can derive the following

decomposition of L (cf. Section 2.3):

L(t) =
I
∑

k=1

Hk(t) · k,

where Hk is defined as

Hk(t) :=
∑

Π⊆{1,...,I}: |Π|=k

N∗
Π(t).

Hence, Hk counts the jumps of L with size k. By construction, we have that

[Hk, Hl](t) = 0 ∀t ∈ [0, T ∗],

that is for k 6= l Hk and Hl are orthogonal. With [L, L] being a pure jump process,

we can again consider its compensator, 〈L, L〉, which can be written as:

Proposition 2.6.1 The compensator 〈L, L〉 of the quadratic variation of L is given

by

〈L, L〉(t) =

I
∑

k=1

k2
∑

Π⊆{1,...,I}: |Π|=k

∫ t

0

1τ(Π)>u
λ∗

Π(u)du

=

I
∑

k=1

k2

∫ t

0

λ⊥
k (u)du,

where

λ⊥
k (u) :=

∑

Π⊆{1,...,I}: |Π|=k

1τ(Π)>u
λ∗

Π(u).

Note that in connection with Proposition 2.3.1 we presented a recursive scheme for

the computation of the λ∗
Π.

As already mentioned, in later applications we will make use of a time-change result

regarding the portfolio loss process L. The basis of this time-change is the following

theorem due to Meyer (1971)):

Theorem 2.6.1 (Meyer (1971)) If a multivariate point process (Φ1, . . . , ΦK) has a

continuous compensator (A1, . . . , AK) such that Ak(∞) =∞ for each k = 1, . . . , K,

then the point processes (Φ∗
1, . . . , Φ

∗
K) defined by

(Φ∗
1(t), . . . , Φ

∗
K(t)) :=

(

Φ1

(

A−1
1 (t)

)

, . . . , ΦK

(

A−1
K (t)

))

are independent Poisson processes.
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Note that a multivariate point process is a point process whose coordinates are

orthogonal (see e.g. Brémaud (1981)). The next corollary is a direct consequence

of Theorem 2.6.1 applied to our setup:

Corollary 2.6.1 The inter-arrival times of the jumps of

Φ∗
k(t) := Hk

(

A−1
k (t)

)

, 1 ≤ k ≤ I,

with

Ak(s) =
∑

Π⊆{1,...,I}:|Π|=k

∫ s

0

λ∗
Π(u) 1τ(Π)>udu =

∫ s

0

λ⊥
k (u)du

form a finite sequence of independently, Exp(1)-distributed random variables, with

λ⊥
k defined as in Proposition 2.6.1.

Note that in Corollary 2.6.1 Ak(∞) =∞ does not hold true, but as pointed out by

Brown and Nair (1988) Theorem 2.6.1 can easily be generalized to this situation. In

this case, we obtain a finite sequence of exponentially distributed random variables

and not an infinite series, i.e. a Poisson process.

Corollary 2.6.1 will be at the bottom of our statistical tests which we consider

in Subsection 3.1.4 when we explore the question of whether a path of observed

portfolio defaults is likely to have been generated by an estimated model of the

default intensities.

2.6.2 Volatility Structure of the Point Process and a Mea-

sure of Default Clustering

In the preceding section, we characterized the dependence structure between the

Ni over a fixed time horizon. This investigation was eventually static in the sense

that we considered the question: Given the information up to time t what is the

dependence structure between the random variables Ni(T )? While the dependence

structure explored there is closely related to the distribution of L(T ) at the end of

the period [t, T ], in the following, we rather want to characterize the paths of L

over [t, T ].

To motivate the following investigation, let us consider the following simple example

of two point processes N ′
1 and N ′

2 over the time period [0, 2t] both having jumps

of size 1: While the jumps of N ′
2 arrive with intensities λ′

2 = const., N ′
1 jumps

according to a stochastic intensity λ′
1: With probability p the intensity is λ′

1 = λ′
2,

and with probability 1 − p we have that λ′
1(s) = c1 > 0 for all s ∈ [0, t] and

λ′
1(s) = c2 > 0 for all s ∈ [t, 2t]. Moreover, we assume that c2 >> c1 and set

λ′
2 = c1+c2

2
. Then,

E [N ′
1(2t)] = E [N ′

2(2t)] = λ′
22t = V ar [N ′

1(2t)] = V ar [N ′
2(2t)]
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because N ′
1(2t) and N ′

2(2t) are identically distributed. Nevertheless, from a dy-

namic perspective N ′
1 intuitively represents the riskier process since with probabil-

ity 1 − p jumps of N ′
1 can be expected to be heavily clustered in [t, 2t], while the

jumps of N ′
2 will always be relatively evenly distributed over [0, 2t]. Imagine, for

example, that N ′
1 and N ′

2 model the loss process of two different credit portfolios,

1 and 2. Then, the portfolio with a higher probability of a large number of losses

within a small time interval, i.e. portfolio 1, is the riskier one from an investor’s

perspective. This higher risk of portfolio 1 is intimately linked to the path proper-

ties of N ′
1 whose paths are likely to show a more volatile behavior than the paths

of N ′
2.

Our example shows that in a time-continuous setup it can be insufficient to merely

focus on traditional risk measures such as the expected loss or the variance of the

loss process, which are based on the distribution of L at the end of a particular

time period [t, T ]. In such a setup, also the path behavior of L over [t, T ] should be

examined because this behavior is connected to the default clustering within [t, T ].

We propose the following measure in order to describe a volatile path behavior of

the loss process L:

Definition 2.6.1 The expected volatility T,tσL of the loss process L over a time

period [t, T ] is defined by

T,tσL := E

[ ([

I
∑

k=1

kλ⊥
k + L,

I
∑

k=1

kλ⊥
k + L

]

(T )−
[

I
∑

k=1

kλ⊥
k + L,

I
∑

k=1

kλ⊥
k + L

]

(t)

)∣

∣

∣

∣

∣

Ft

]

= E

[ (〈

I
∑

k=1

kλ⊥
k + L,

I
∑

k=1

kλ⊥
k + L

〉

(T )−
〈

I
∑

k=1

kλ⊥
k + L,

I
∑

k=1

kλ⊥
k + L

〉

(t)

)∣

∣

∣

∣

∣

Ft

]

.

By simple transformations, we obtain

T,tσL = E

[ (〈

I
∑

k=1

kλ⊥
k ,

I
∑

k=1

kλ⊥
k

〉

(T )−
〈

I
∑

k=1

kλ⊥
k ,

I
∑

k=1

kλ⊥
k

〉

(t)

)∣

∣

∣

∣

∣

Ft

]

+ E

[

2 ·
(〈

L,

I
∑

k=1

kλ⊥
k

〉

(T )−
〈

L,

I
∑

k=1

kλ⊥
k

〉

(t)

)

+ (〈L, L〉 (T )− 〈L, L〉 (t))
∣

∣

∣

∣

∣

Ft

]

= E

[ (〈

I
∑

k=1

kλ⊥
k ,

I
∑

k=1

kλ⊥
k

〉

(T )−
〈

I
∑

k=1

kλ⊥
k ,

I
∑

k=1

kλ⊥
k

〉

(t)

)∣

∣

∣

∣

∣

Ft

]

+ E

[

2 ·
(〈

I
∑

k=1

k ·Hk,

I
∑

k=1

kλ⊥
k

〉

(T )−
〈

I
∑

k=1

k ·Hk,

I
∑

k=1

kλ⊥
k

〉

(t)

)∣

∣

∣

∣

∣

Ft

]

+ E

[ (〈

I
∑

k=1

k ·Hk,

I
∑

k=1

k ·Hk

〉

(T )−
〈

I
∑

k=1

k ·Hk,

I
∑

k=1

k ·Hk

〉

(t)

)∣

∣

∣

∣

∣

Ft

]

. (2.9)
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T,tσL measures the expected variation of the jumps of L. This jump clustering

depends on the loss process as well as on its intensity and possible dependencies

between both. Each of the three terms of equation (2.9) carries different informa-

tion on the volatility of L: The first represents the variation of L’s intensity, the

second accounts for dependencies between the loss process and its compensator

and the third contains the contributions of the loss process L itself to T,tσL . It is

worth noting that in case of a conditional independence setup without simultane-

ous jumps it will be sufficient to consider only the first term, since the second will

be 0 and the third does not carry any information on the dependence structure in

this case. Also, with t+∆,tσL being an F-adapted process reflecting the expected

jump clustering in [t, t + ∆], it is worthwhile to study its dynamics. If t+∆,tσL

does not vary a lot, the clustering of the jump times stays relatively stable over

time, too. In particular, in case of a homogeneous model, i.e. λ⊥
k (t) ≡ λ⊥

k for all

t ≥ 0 or a time-inhomogeneous but deterministic model, where the λ⊥
k (t) are only

deterministic functions of time, t+∆,tσL will be also deterministic.20

The third term of (2.9) accounts for simultaneous jumps of the objects: Larger

jumps of L enter with a higher weight, since

[L, L] (t) =
I
∑

k=1

k2Hk ≥
I
∑

k=1

k ·Hk = L(t).

This results in the nice property that two different models whose loss process

compensator is identical but where model 1 does allow for jump sizes larger than

1 and model 2 does not, we always have

T,tσL1 ≥ T,tσL2 ,

showing that expected volatility as a measure of default clustering reacts as desired

in this case.

At this point, we would like to stress that we do not suggest to use the expected

volatility on its own in order to compare the riskiness of different models. Rather,

we propose to augment the set of measures, which is used so far to compare two

different models, by the expected volatility. In addition, when examining a par-

ticular model it is useful to study the dynamics of T,tσL. If expected volatility

fluctuates a lot, the default clustering in time and thus the dependence structure

will vary a lot, too.

We conclude this discussion by returning to our initial, motivating example for

which we find that

2t,0σN ′
2

= λ′
22t < λ′

22t + (1− p)(c2 − c1) = 2t,0σN ′
1
.

20For instance, in the Intensity Gamma model, which has been studied in Examples 2.1.1 and

2.3.1, t+∆,tσL evolves deterministically.
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Conditional Independence vs. Contagion

We now apply T,tσL introduced in Definition 2.6.1 in order to analyze differences

between the jump behavior of a loss process L whose default intensities do not

depend on past defaults, i.e. a conditional independence model, and a process

whose jumps exhibit a feedback property, i.e. a model with contagion.

For simplicity of exposition, we assume that

L(t) =
I
∑

k=1

k ·Hk(t)

as above but where the compensator intensities of the Hks are now – different to

their initial definition in Proposition 2.6.1 – given as

λ⊥
k (t) :=

∑

Π⊆{1,...,I}:|Π|=k

λ∗
Π(t) .

This assumption is solely made to keep notation simple by avoiding the downward

jumps of the intensities after a default, which can be observed in a conditional

independence as well as in a contagion setup; the assumption implies that the

number of jumps of L is not bounded by I anymore. Technically (cf. Definition 7

of Brémaud (1981)), we have to presume in this case

∫ t

0

λ∗
Π(s)ds <∞ ∀t ∈ [0, T ∗] (2.10)

such that explosions are avoided.

Being the sum of processes that depend on the background process X1 and on the

contagion process X2, the λ⊥
k are again functions of X1 and X2. For simplicity, we

assume that

λ⊥
k (t) = µ1

k(X
1(t)) +

∆L(s)6=0
∑

0<s≤t

c ∆L(s) e−κ(t−s), (2.11)

where c and κ are positive constants, X1 as always evolves independently of L –

that is the σ-fields FX1

T ∗ and FN
t are independent conditional on FX1

t – and µ1
k is a

continuous function defined on the state space of X1.21 Then, the compensator of
[

∑I
k=1 kλ⊥

k ,
∑I

k=1 kλ⊥
k

]

is given by

21For more general specifications of the intensities, a qualitatively identical result holds, but

the notation becomes substantially more involved without providing further insights.
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〈

I
∑

k=1

kλ⊥
k ,

I
∑

k=1

kλ⊥
k

〉

(t) =

〈

I
∑

k=1

kµ1
k,

I
∑

k=1

kµ1
k

〉

(t)

+

(

c

I
∑

k=1

k

)2〈∆L(s) 6=0
∑

0<s≤•

∆L(s) ,

∆L(s) 6=0
∑

0<s≤•

∆L(s)

〉

(t)

=

〈

I
∑

k=1

kµ1
k,

I
∑

k=1

kµ1
k

〉

(t) +

(

I
∑

k=1

k

)2
∫ t

0

I
∑

n=1

(cn)2λ⊥
n (s)ds

>

〈

I
∑

k=1

kµ1
k,

I
∑

k=1

kµ1
k

〉

(t).

For the contagion component of the expected volatility we obtain

〈

L,

I
∑

k=1

kλ⊥
k

〉

(t) =

(

c

I
∑

k=1

k

)

·
〈

∆L(s) 6=0
∑

0<s≤•

∆L(s),

∆L(s) 6=0
∑

0<s≤•

∆L(s)

〉

(t)

= c
I(I + 1)

2

∫ t

0

I
∑

k=1

k2λ⊥
k (s)ds > 0

and the compensator of [L, L] has the form

〈L, L〉(t) =

∫ t

0

I
∑

k=1

k2λ⊥
k (s)ds >

∫ t

0

I
∑

k=1

k2µ1
k(s)ds.

This shows that all three components of the expected volatility are increased com-

pared to a model that does not exhibit joint jumps of the intensity and the loss

process L, i.e. a model where λ⊥
k (t) = µ1

k(X
1(t)) for each k. Adding positive con-

tagion effects to a conditional independence specification therefore increases the

expected volatility, which is not surprising since an increase can be expected when-

ever an additional risk source is added to a specification.

But what is the difference between adding the loss process and adding an indepen-

dent jump process as an extra risk driver? To further explore this question, let us

consider an intensity specification of the form

λ
⊥(2)
k (t) = µ1

k(X
1(t)) +

∆J(s)6=0
∑

0<s≤t

c ∆J(s) e−κ(t−s), (2.12)

where we assume [J, L] = 0, J =
∑I

k=1 k ·H(2)
k and the H

(2)
k to be orthogonal point

processes with intensities λ
⊥(2)
k . This model represents a conditional independence

model because the λ
⊥(2)
k evolve independently of L. Furthermore, the random

variables 〈L, L〉(t) and
〈

∑I
k=1 kλ⊥

k ,
∑I

k=1 kλ⊥
k

〉

(t) have in both models given by
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equations (2.11) and (2.12) the same distribution (and hence the same expectation).

The only difference is that in case of the latter
〈

∑I
k=1 kλ

⊥(2)
k , L(2)

〉

(t) = 0, which

still implies that

T,tσL(2) < T,tσL

for a conditional independence model ( T,tσL(2) ) and a model with contagion ( T,tσL ),

even if the intensity processes λ⊥
k show in both models the same marginal dynam-

ics. When characterizing the jump clustering of the loss process, it is therefore

important not only to consider the volatility of its intensity process but also to

take possible dependencies between both into account.

We conclude this section by emphasizing that the results presented in this subsec-

tion do not suggest that conditional independence models are not able to provide

enough flexibility for modeling a certain pattern of jump clustering. Rather, they

show that expected volatility as a measure of jump clustering reacts in a reasonable

way: Adding observed defaults as an additional risk source increases the measure.

Furthermore, we showed that it is not sufficient to consider merely the dynamics of

the intensity in order to assess the jump clustering, but also possible dependencies

between intensity and loss process have to be taken into account.

The question of whether conditional independence models provide enough mod-

eling pliability or if contagion models are coercively necessary in order to gain a

sufficient degree of flexibility for modeling the dynamics of credit portfolios will be

further investigated in Sections 3.1 and 3.4.

2.7 Analytically Tractable Model Specifications

So far, we have characterized the model-implied dependence structure from a static

as well as from a dynamic point of view. We have also obtained general formulas for

important quantities such as survival probabilities. In this section, we investigate

the question for which type of model specifications these general formulas can

analytically or at least semi-analytically be solved. This represents an important

issue, since analytical tractability of a model greatly facilitates its implementation

and closed-form solutions always have the advantage that parameter sensitivities

can easily be computed.

The first contribution of this section is the calculation of an important, general

transform. This very general result could also be useful in a totally different context

than considered in this thesis and is based on the works by Duffie et al. (2000) and

Duffie et al. (2003). In a second step, we then show how the result can be applied

to compute the quantities which are of particular interest in this thesis.
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2.7.1 A General Formula for Determining the Character-

istic Function of a Process

It is well-known that the class of so-called exponential-affine processes has many

appealing features. In particular, their characteristic function and further impor-

tant transforms are known in closed-form up to the solution of generalized Riccati

equations (see Duffie et al. (2000) and Duffie et al. (2003)). Not surprisingly,

one therefore often relies on an affine model when it comes to a concrete model

specification; for examples of affine credit portfolio models see Hurd and Kuznetsov

(2007) and Chen and Filipović (2007), and for affine model examples in an insur-

ance context see Biffis (2005), Dahl (2004) or Schrager (2006).

In this subsection, we show that one can eventually obtain a comparable degree of

analytical tractability in a more flexible framework than given by the exponential-

affine model class. Before stating the main result of this subsection, we need to

make some assumptions:

Assumption 2.7.1 Let X = (Y 1, Y 2, Z) be a (d′
1 + d′

2 + 1)-dimensional Markov

process (in the following d′ := d′
1 + d′

2 + 1) on a filtered probability space
(

Ω′,F ′,F′ = (F ′
t)0≤t≤T ∗ , P′) with state space Rd′1 × R

d′2
+ × D, where D denotes

the finite state space {e1, . . . , er} of Z with em = (11=m, 12=m, . . . , 1r=m) for all

m ∈ {1, . . . , r}. We assume that X evolves according to the following stochastic

differential equation (SDE):

dX(t) = β(t, X(t))dt + σ(t, X(t))dW (t) + dJ(t)

where W denotes a d′-dimensional Brownian motion and J a jump process whose

jumps are characterized through ϑ(t, X(t−); dt, dx). We assume that with x =

(y1, y2, z) ∈ Rd′1 × R
d′2
+ ×D

β(t, x) = zβ1(t) + β2(t)y

σ(t, x)σ(t, x)T = zγ1(t) + γ2(t)y2

ϑ(t, x; dt, dς) = zν1(t, dς) + ν2(t, dς1, . . . , dςd′−1)y
2dt.

Furthermore, β1, β2, γ1, γ2, ν1 and ν2 are r-dimensional and time-dependent such

that for each t ≥ 0 and m ∈ {1, . . . , r} the following holds:

β1
m(t) ∈ R

d′1 ×R
d′2
0+ × {0}

β2(t) ∈ R
d′×(d′−1) with restrictions :

β2
kl(t) ≡ 0 d′

1 < k ≤ d′ − 1, 1 ≤ l ≤ d′
1

β2
kl(t) > 0 d′

1 < k 6= l ≤ d′ − 1

β2
d′l(t) ≡ 0 1 ≤ l ≤ d′ − 1
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γ1
m(t) ∈ R

d′×d′ a symmetric, positive semidefinite matrix

with restriction

γ1
mkl(t) ≡ 0 d′

1 < k, l

γ2(t) ∈ R
d′×d′×d′2 , where for each l ∈ {1, . . . , d′

2}
(

γ2
k1k2l

)

1≤k1,k2≤d′

a symmetric, positive semidefinite matrix whose entries

satisfy for d′
1 < k1, k2 < d′

γ2
k1k2l(t)

{ ≥ 0 , k1 = k2 = (l + d′
1)

= 0 , else
,

and γ2
k1k2l = 0 for k1 = d′ or k2 = d′.

ν1
m(t) is a Lévy measure satisfying for each t ≥ 0

ν1
m(t, Rd′1 ×R

d′2
+ ×D′) <∞

ν2
l (t) is a Lévy measure satisfying for each l ∈ {1, . . . , d′

2} and t ≥ 0

ν2
l (t, R

d′1 ×R
d′2
+ ) <∞

with D′ := {en − em : n 6= m}.

Remark 2.7.1 The imposed parameter restrictions of Assumption 2.7.1 regarding

(Y 1, Y 2) are those from Duffie et al. (2003) who state them for the exponential

affine case. For a detailed discussion we therefore refer to their work. Note that

for each fixed state m of Z, (Y 1, Y 2) belongs to the class of exponential affine

processes studied in Duffie et al. (2003). The introduced restrictions ensure, for

example, that C is a symmetric non-negative matrix and that Y 2 is a non-negative

process. Our restrictions regarding the Lévy measures entail that the jumps of X

show finite activity. It is possible to relax this assumption and consider jumps with

infinite activity. In this case, additional restrictions stated in Duffie et al. (2003)

have to be taken into account.

An Ornstein-Uhlenbeck process Y 1 and a CIR process Y 2 (see Section 3.2), which

are both driven by independent Brownian motions and whose drift and volatility

parameters depend on an independent Markov Chain Z, represent a simple example

of a process X = (Y 1, Y 2, Z) that satisfies Assumption 2.7.1. More generally, Duffie

et al. (2003) show for the exponential affine case that if Y 2 = 0, Y 1 will be an

Ornstein-Uhlenbeck type process. Although knowing that Y 1 is in general not an

Ornstein-Uhlenbeck type process, we will refer to it in the following as the Ornstein-

Uhlenbeck component of the process while we call Y 2 the non-negative component

of X and Z its regime.

It is worthwhile to further investigate the implications of our specification for the
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regime process Z. Assumption 2.7.1 entails that Z is a pure jump process with

transition intensities. This means that ϑ(dt, dxd′) can be written as

ϑ(dt, dxd′) =
∑

n 6=Z(t−)

εen−Z(t−)(dxd)µn(t, X(t))dt, where

µn(t, X(t)) = Z(t)χ1
n(t),

and On(t)−
∫ t

0
µn(X(s))ds is an F-martingale with On(t) :=

∑

0≤s≤t

1Z(s−)6=en,Z(s)=en

denoting the point process that counts transitions of Z into state n. εen−em(dxd)

denotes the positive point mass measure at en − em of size one. Moreover, χ1

denotes some matrix-valued function.

Although our setup constitutes an extension of the exponential affine setups usually

considered in the literature, the next theorem shows that we obtain a comparable

degree of complexity when calculating important transforms of the process Y =

(Y 1, Y 2):

Theorem 2.7.1 Let X = (Y 1, Y 2, Z) satisfy Assumption 2.7.1 and let u(·, T ) :

[0, T ] → Cr and v(·, T ) : [0, T ] → C1×(d′−1) be complex-valued deterministic func-

tions solving the following system of ordinary differential equations (ODEs):22 u

solves

0 = u̇ + vβ1
(Ξ) +

1

2
vγ1

(Ξ,Ξ)v
T

+

∫

(

exd′u+vx(Ξ) − 1
)

ν1(dx),
(2.13)

and for each l ∈ {1, . . . , d′ − 1} vl solves

0 = v̇l + vβ2
(Ξ)l l ≤ d′

1

0 = v̇l + vβ2
(Ξ)l +

1

2
vγ2

(Ξ,Ξ)(l−d′1)v
T +

∫

(

evx(Ξ) − 1
)

ν2
(l−d′1)(dx(Ξ)) l > d′

1

(2.14)

with boundary conditions vl(T, T ) = −cl and um(T, T ) = 0 for all 1 ≤ m ≤ r.

Furthermore, Ξ denotes the subset Ξ := {1, . . . , d′−1}. Then, the transform T,tϕY

is given as

T,tϕY (c) := E

[

e−cT (Y (T )−Y (t))
∣

∣

∣
F ′

t

]

= eZ(t)u(t,T )+(v(t,T )+cT )Y (t) (2.15)

for

c =

{ −iw , w ∈ Rd′−1 or

w , w ∈ R
d′−1
0+ ,

22We suppress the dependence of β1, β2, γ1, γ2, ν1 and ν2 on t. Also, the dependence of u and

v on t and the final time T is suppressed. The ODEs have to be understood as ODEs in t.
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given that the following conditions are fulfilled:

∞ > E [|H(T )|] ,

∞ > E

[

∫ T

0

H(t)v
(

Z(t)γ1(t) + γ2(t)Y 2(t)
)

vT H(t)dt

]

, (2.16)

∞ > E

[

∫ T

0

∣

∣

∣H(t)
(

∫

(

evx(Ξ) − 1
)

ν2(dx(Ξ))Y
2(t)

+Z(t)

∫

(

exd′u+vx(Ξ) − 1
)

ν1(dx)
)∣

∣

∣dt

]

, (2.17)

where H is defined as

H(t) := eZ(t)u(t,T )+v(t,T )Y (t).

Proof: For H defined as above, it follows from the Itô-formula that

dH(t) = H(t)

(

(Z(t)u̇ + v̇Y (t)) + v
(

Z(t)β1
(Ξ) + β2

(Ξ)Y (t)
)

+
1

2
v
(

Z(t)γ1
(Ξ,Ξ) +

(

γ2Y 2(t)
)

(Ξ,Ξ)

)

vT

+

(

d′−1
∑

l=d′1+1

(
∫

(

evx(Ξ) − 1
)

ν2
(l−d′1)(dx(Ξ))Y

2
l (t)

)

+Z(t)

∫

(

exd′u(t,T )+v(t,T )x(Ξ) − 1
)

ν1(dx)

))

dt

+H(t)v
(

(

Z(t)γ1
(Ξ) + (γ2Y 2(t))(Ξ,Ξ)

)
1
2 dW (t)

)

+H(t−)

∫

(

exd′u+vx(Ξ) − 1
)

J̃(dt, dx),

where J̃ denotes the compensated jump process associated with the jumps of X.

Since u and v solve the ODE system (2.13) and (2.14), the drift of H is 0. Further-

more, the second term is a martingale due to condition (2.16) and the last term

is a martingale due to condition (2.17) (see e.g. Theorem 8 of Brémaud (1981), p.

27).

Hence, H is a martingale, i.e. H(t) = E[H(T )|Ft], and we have that

E

[

e−cT Y (T )
∣

∣

∣
Ft

]

= eZ(t)u(t,T )+v(t,T )Y (t),

which finally yields the claim.

2

The bottom line of Theorem 2.7.1 is the following: Given a process Y whose char-

acteristics depend on the state of a finite state Markov process Z but are affine in Y
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for each state of the regime process Z, the characteristic function (or equivalently

the Laplace transform) of its increments can be calculated by solving a system of

ODEs. The complexity of the problem therefore remains comparable to the one of

the exponential affine setup, which is a special case of the setup considered here.

However, in our case the ODE system in fact becomes a system of an ODE system

– for each state of Z we obtain an extra ODE; the dimension of the overall system

thus grows in the dimension r of the state space of the regime process Z.

If no particularly “nice” dependence of the characteristics of Y on (Y, Z) is pre-

sumed, we would generally obtain a Partial-Integro-Differential equation (PIDE)

instead of the ODE system. The main advantage of obtaining an ODE system

compared to a PIDE is that ODEs can numerically much easier be treated. Es-

pecially for model implementations, efficient ODE solvers are readily available in

standard software.

It is important to note that our general result may be useful for a much broader

class of applications than considered in this thesis. For example, it could also be

employed to price plain-vanilla options on stock prices whose characteristics fit

into the general setup of Theorem 2.7.1 since in this case the characteristic func-

tion of the stock price is given analytically up to the solution of equations (2.13)

and (2.14). Based on the characteristic function, prices could then be obtained by

Fourier inversion (see Carr and Madan (1999)). However, most important in the

context of this thesis Theorem 2.7.1 will be our central tool for the computation of

survival probabilities and the distribution of the loss process L in our applications

of Chapters 3 and 4.

2.7.2 Calculation of Survival Probabilities and the Loss

Distribution

Based on Theorem 2.7.1, we next consider the computation of survival probabilities

and of the distribution of the loss process. Both represent quantities which are

central to the applications in this thesis. In order to apply the theorem, we have

to customize our stopping times model of Definition 2.1.1 such that Assumption

2.7.1 is fulfilled.

In Section 2.3, we have shown that in our model each Ni can be expressed in

terms of orthogonal point processes
(

N∗
1 , N∗

2 , . . . , N∗
Π′, . . . , N∗

{1,...,I}

)

. For all Π′ ⊆
{1, . . . , I}, the processes N∗

Π′ jump at most once and have compensators of the form

∫ t

0

λ∗
Π′(s, X1(s), X2(s))1τ(Π′)>sds.
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The single jump processes Ni are reobtained as

Ni =
∑

Π′⊆{1,...,I}
1i∈Π′N∗

Π′.

In order to calculate the survival probability of a subset Π of objects, we have to

compute the following expectation (cf. Proposition 2.3.2):

T,tpΠ = Π
T,tϕΛ(Π)

(1) = E
Π

[

∏

i∈Π

e−Λi(T )+Λi(t)

∣

∣

∣

∣

∣

Ft

]

=

= E
Π

[

e
−

R T
t

P

Π∩Π′ 6=∅

λ∗
Π′(s)ds

∣

∣

∣

∣

∣

Ft

]

=: Π
T,tϕΓ(Ψ)

(1). (2.18)

Here, Ψ denotes a subset of the power set P ({1, . . . , I}) and is defined as

Ψ := {Π′ ⊆ {1, . . . , I} : Π′ ∩Π 6= ∅},

and each coordinate ΓΠ′ of the |P ({1, . . . , I}) |-dimensional process Γ is given by

the integrated intensity λ∗
Π′, i.e. we have

ΓΠ′(t) :=

∫ t

0

λ∗
Π′(s)ds ∀t ∈ [0, T ∗].

It is now important to note that the calculation of the expectation in equation

(2.18) looks very much like a problem to which Theorem 2.7.1 can be applied,

because we evaluate the joint Laplace transform of all integrated intensities which

are related to a jump of N(Π). In fact, an application would be possible for any Π

if the process

(X1, X2, N∗, λ′, Γ),

describing the state of the whole system, satisfies Assumption 2.7.1. Here, λ′

denotes the |P ({1, . . . , I}) |-dimensional process whose coordinates are given by

the intensities λ∗
Π′(t)1τ(Π′)>t. Using the theorem, we could then semi-analytically

calculate survival probabilities and based on these survival probabilities derive the

loss distribution, too, as shown below.

In order to obtain a setup in which (X1, X2, N∗, λ′, Γ) is of the desired form, we

have to consider a slight modification of our stopping times model. Namely, we

have to presume that the compensator of each N∗
Π is given by

∫ t

0

λ∗
Π(s, X1(s), X2(s))ds, (2.19)

leaving everything else unchanged. Note that a similar modification has already

been considered at the end of Subsection 2.6.2. The modification implies that the
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N∗
Π are now “normal” point processes and not only one-jump point processes. The

first jump is still associated with 1∀i6=j∈Π, l /∈Π: τi=τj≤t, τi 6=τl
and the stopping times

τi, but after the first jump the process remains “active” and may further jump

and influence the other processes. Technically, we again have to impose condition

(2.10) such that non-existing integrals are avoided.

In addition, we make the following assumptions:

1. The background process X1 satisfies Assumption 2.7.1, i.e. can be written

as X1 = (Y 1, Y 2, Z) with Y 1 the OU-type component, Y 2 the non-negative

component and Z the regime process.

2. The contagion process X2 evolves according to the stochastic differential

equation (SDE)

dX2(t) =
(

χ1 + χ2X2(t)
)

dt + χ3dN∗(t)

with χ1 being a constant vector and χ2 and χ3 being constant matrices such

that X2 is a non-negative process.

3. The intensities λ∗
Π′ are given as

λ∗
Π′(t) = (Z(t)χ∗1(t) + χ∗2(t)Y 2(t) + χ∗3(t)X2(t)),

where χ1∗, χ2∗ and χ3∗ denote positive vector-valued, vector-valued and

matrix-valued functions of time.

One can easily check that under these assumptions, with

Y 1′ := Y 1,

Y 2′ := (Y 2, X2, N∗, λ∗, Γ) and

Z ′ := Z

the process

(Y 1′, Y 2′, Z ′) = (X1, X2, N∗, λ∗, Γ) (2.20)

satisfies Assumption 2.7.1.

Since we have that

λi(t) =
∑

Π′⊆{1,...,I}
1i∈Π′λ∗

Π(t),

our assumptions entail that the intensities of the Ni exhibit an affine dependence on

Y 2 and X2. In terms of Definition 2.1.1, the assumptions therefore correspond to a

drift and a jump part of the jump-trigger process Λ, showing an affine dependence

on Y 2 and X2 for each state of Z, and a contagion process X2, which is affine in
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N∗.

It is, however, important to note that without the modification made in (2.19)

the process describing the state of the system is not of the desired form because

without modification the intensities of N∗
Π are given by 1τ(Π′)>tλ

∗
Π(t). They are

therefore not affine in N∗
Π. However, the modification will only be necessary as

long as the N∗
Π can influence the λ∗

Π. In a conditional independence setup, i.e.

if the σ-fields
∨

i∈{1,...,I} σ(Ei) and FΛ
T ∗ are independent (see Proposition 2.5.1 and

Definition 2.5.2), the modification can be omitted. In this case, conditional survival

probabilities only depend on the process

(Y 1′, Y 2′, Z ′) = (Y 1, (Y 2, λ∗, Γ), Z), (2.21)

which already satisfies Assumption 2.7.1 if the first and the third of our three basic

assumptions with χ∗3(t) ≡ 0 are fulfilled.

Calculation of Survival Probabilities

Depending on whether we work in a conditional independence setup or in a model

with contagion, we now assume that (Y 1′, Y 2′, Z ′) is either of the form given by

equation (2.21) or by equation (2.20) and satisfies Assumption 2.7.1. Then, we

obtain for the survival probability

T,tpΠ = E
Π

[

e
− P

Π′∩Π 6=∅

R T
t

λ∗
Π′(s)ds

∣

∣

∣

∣

∣

Ft

]

= eZ′(t)u(t,T )+v(t,T )Y ′(t),

where u and v solve equations (2.13) and (2.14) with appropriate parameters c, β1,

β2, γ1, γ2, ν1 and ν2.23 While in the contagion case the transform is calculated

under PΠ, for a conditional independence model it is computed under the original

measure P. In this case, the dynamics of λ∗ are the same under P
Π and P.

All in all, Theorem 2.7.1 therefore presents a very useful tool based on which

survival probabilities for a large range of model specifications can conveniently be

computed. It is worth mentioning that finite state Markov processes have already

been proposed for modeling the term structure of interest rates, see e.g. Landén

(2000) and Bansal and Zhou (2002).24 In particular, the Landén (2000) setup can

be considered as a one-dimensional, special case of the setup considered here.

23In Collin-Dufresne et al. (2004), a similar result for the special case of the single survival

probability and a purely affine setup is derived.
24Observe that the computation of the expectation in (2.18) comes close to the calculation of

zero-coupon prices in an interest rate setup.
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Calculation of the Loss Distribution

Apart from the survival probabilities, the most important quantity to be computed

in applications is the loss distribution. Assuming that Π ⊆ {1, . . . , I} objects have

survived until t and all Nj for j /∈ Π have already jumped, we obtain for the loss

distribution with 0 ≤ n ≤ |Π|

P

(

L(T ) = n + I − |Π|
∣

∣

∣

∣

∣

Ft ∧
⋂

i∈Π

{τi > t} ∧
⋂

i/∈Π

{τi ≤ t}
)

=
∑

Π′⊆Π:|Π′|=|Π|−n

|Π|−|Π′|
∑

k=0

(−1)k
∑

Π′′⊆Π\Π′:|Π′′|=k

T,tpΠ′∪Π′′ ,

where we set T,tp∅ = 1.25 Here, the first sum runs over all events where exactly

|Π| − n objects survive, and the second and third sum compute the corresponding

probability of this event. In the case of a homogeneous portfolio (i.e. if T,tpΠ′ =

T,tpΠ′′ for all {Π′′, Π′ ⊆ Π : |Π′| = |Π′′|}), the formula collapses to

P

(

L(T ) = n + I − |Π|
∣

∣

∣

∣

∣

Ft ∧
⋂

i∈Π

{τi > t} ∧
⋂

i/∈Π

{τi ≤ t}
)

=

( |Π|
|Π| − n

) n
∑

k=0

(

n

k

)

(−1)k
T,tp{1,...,k+|Π|−n}.

Here, T,tp{1,...,k+|Π|−n} is defined as the survival probability of the first k + |Π| − n

objects, which is the same for any subset containing k + |Π| − n objects due to the

presumed homogeneity.

If the process given by equation (2.20) satisfies Assumption 2.7.1, we can compute

the survival probabilities T,tp{1} , . . . , T,tp{1,...,n} and derive the portfolio loss dis-

tribution. However, this procedure works only in principle for arbitrary portfolio

sizes I. While in the heterogeneous case the number of summands quickly exceeds

computational resources as I grows, in the homogeneous case we face the problem

that for large I we have to multiply large values like
(|Π|−n

k

)

with typically small

values like T,tp{1,...,k} generating large error terms.26

The described computation of the loss distribution based on survival probabilities

is possible for a contagion as well as a conditional independence setup, but it is

limited to portfolios consisting only of few objects. Contrarily, the technique which

we explain next is feasible for arbitrary portfolio sizes but strongly depends on the

25We assume that ∅ ∈ Π for any subset Π of {1, . . . , I}.
26In numerical experiments, we found that the described approach typically loses its compu-

tational tractability for portfolio sizes of about 15 objects depending on the respective model

parametrization.
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conditional independence assumption; it goes back to an algorithm introduced by

Andersen et al. (2003) and has been applied the first time to a dynamic setup by

Mortensen (2006). As previously pointed out in this subsection, in order to apply

Theorem 2.7.1 in the conditional independence case it is sufficient that the process

given by equation (2.21) satisfies Assumption 2.7.1.

In Section 2.5, we have shown that the conditional independence setup eventually

corresponds to a model-implied dependence structure which is characterized by a

copula of the Marshall-Olkin type. As pointed out there, it is convenient to assume

a certain factor structure for the coordinates of the jump-trigger process Λ such

that the dependence structure simplifies to a LT-Archimedean copula. Following

Section 2.5, we denote this p-dimensional factor process by Λ∗.

As a result, conditional on the evolution of this factor the jumps of N are inde-

pendent, which is at the bottom of the Andersen et al. (2003) / Mortensen (2006)

approach. It exploits that the survival probability of each object i conditional on

the factor realization x can be written as

T,tpi (x) := P (τi > T | Ft ∧ {Λ∗(T )− Λ∗(t) = x} ∧ {τi > t}) .

Using the conditional independence, we then obtain27

P

(

K
∑

i=1

1τi≤T = n

∣

∣

∣

∣

∣

Ft ∧ {Λ∗(T )− Λ∗(t) = x} ∧
I
⋂

i=1

{τi > t}
)

= (2.22)

P

(

K−1
∑

i=1

1τi≤T = n

∣

∣

∣

∣

∣

Ft ∧ {Λ∗(T )− Λ∗(t) = x} ∧
I
⋂

i=1

{τi > t}
)

T,tpK (x)

+ (1− T,tpK (x)) P

(

K−1
∑

i=1

1τi≤T = n− 1

∣

∣

∣

∣

∣

Ft ∧ {Λ∗(T )− Λ∗(t) = x} ∧
I
⋂

i=1

{τi > t}
)

.

For K = I, this finally yields the conditional loss distribution and the loss distri-

bution itself by integrating the p-dimensional factor:

P

(

L(T ) = n

∣

∣

∣

∣

∣

Ft ∧ {Λ∗(T )− Λ∗(t) = x} ∧
I
⋂

i=1

{τi > t}
)

(2.23)

=

∫

P

(

L(T ) = n

∣

∣

∣

∣

∣

Ft ∧ {Λ∗(T )− Λ∗(t) = x} ∧
I
⋂

i=1

{τi > t}
)

d T,tGΛ∗ (x),

where T,tGΛ∗ denotes the distribution function of Λ∗(T )−Λ∗(t) conditional on Ft.

Given that the process (Y 1′, Y 2′, Z ′) defined by equation (2.21) satisfies Assumption

27To keep notation simple, we now assume that all I objects have survived until t. The case

where only a subset Π has survived can be treated analogously.
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2.7.1, the characteristic function of the independent coordinates Λ∗
j(T )−Λ∗

j (t) can

semi-analytically be calculated by applying Theorem 2.7.1, and afterwards inverted

to get the corresponding density via

T,tgΛ∗
j
(x) =

1

2π

∫ ∞

−∞
e−iwx

T,tϕΛ∗
j
(−iw)dw. (2.24)

In order to keep the computation of the multi-dimensional integral in equation

(2.23) tractable, one usually assumes a low-dimensional factor structure. For in-

stance, in Mortensen (2006) a one-factor structure of the Duffie and Gârleanu

(2001) credit portfolio model is considered.

It is worth mentioning that in the conditional independence setup, also a limiting

loss distribution can be derived (for details see Jarrow et al. (2005)). Namely, it

is the distribution that is obtained by letting I → ∞. For example, under the

homogeneity assumption one obtains

1

I
L −→ 1− T,tp (Λ∗(T )− Λ∗(t)) (I →∞). (2.25)

Convergence is in the L2 sense (see Jarrow et al. (2005)). Using the limiting

loss distribution, the recursive calculation of the conditional loss distribution from

equation (2.22) can be avoided. In addition, for very simple model specifications

(distributions of Λ∗(T )− Λ∗(t)), analytical formulas for the prices of plain vanilla

options on the loss can be derived.

We end this section by briefly introducing a third possibility of calculating the loss

distribution which arises from the fact that, under the assumption that X1 and

X2 are Markov processes, the loss process itself is a finite state Markov process of

state space dimension 2|I|. For an investigation of this link see e.g. Schönbucher

(2005), Herbertsson and Rootzén (2006) or Frey and Backhaus (2007). Under the

homogeneity assumption, the state space dimension reduces to (I +1) since merely

the number of already jumped processes is relevant and the single processes do not

have to be identified in order to determine the probabilities of further jumps.

Under the (rather restrictive) assumption that the generator matrix A(t, X1(t))

associated with the finite state Markov process L can be decomposed as28

A(t, X1(t)) = V diag(−α1(X
1(t)), . . . ,−αD−1(X

1(t)), 0) V −1

with αd being positive functions of X1, the transition probabilities of L are given

as (see e.g. Lemma 1 of Hurd and Kuznetsov (2007), p. 10):

P(L(T ) = j|L(t) = i) =
D
∑

d=1

vidṽdjE

[

e−
R T

t
αi(X1(s))ds

∣

∣

∣
Ft

]

. (2.26)

28Since the last state is usually associated with the situation where all objects have jumped

and therefore is an absorbing state, the last row of A only contains zeros.
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Here, vid and ṽdj denote the entries of the matrices V and V −1. Let now X1 =

(Y 1, Y 2, Z) satisfy Assumption 2.7.1 and the αd be affine in Y 2 for each state of the

regime Z. Then, the expectation in equation (2.26) – and thus the distribution of

L – can semi-analytically be computed by applying Theorem 2.7.1. This approach

has been introduced by Lando (1998) to model a firm’s rating transitions and has

been also used by Hurd and Kuznetsov (2007).

2.8 Towards Applications: Credit Portfolio Risk

and Stochastic Mortality Modeling

After having analyzed the dependence structure of our general stopping times

model introduced in Definition 2.1.1 and having addressed the issue of model

tractability, this section provides a link between the general setup and the more

specific models considered for the applications of Chapters 3 and 4. Namely, we will

apply our stopping times setup to dynamically model credit portfolios in Chapter

3 and to price and analyze catastrophe mortality linked securities in Chapter 4.

2.8.1 Credit Portfolio Risk Modeling

Credit portfolio modeling is an important task for banks and other financial in-

stitutions which have credit-sensitive securities on their balance sheets. Broadly

speaking, the credit risk associated with each single object is the risk that an ob-

ject’s ability to pay back its financial obligations might substantially deteriorate.

As a result, its probability to default could increase or the company might even

default. To assess and control these risks, credit portfolio models are needed which

are able to account for the different risk drivers of a credit portfolio.

In addition, since the mid 90s banks have begun to actively manage their credit

risks by means of securitization, i.e. by repackaging single risks and selling them to

investors. The market for such structured credit products has shown tremendous

growth during recent years (see e.g. Duffie (2007)). By construction, the securities

reference a whole portfolio and not merely one single object anymore. In order

to price these securities or assess their risk, the dynamics of the whole underlying

portfolio have to be modeled.

As already pointed out at the beginning of this chapter, our stopping times model

of Definition 2.1.1 belongs to the reduced-form model class because we model the

default times as inaccessible stopping times (see Section 2.2). It represents an ideal

candidate for modeling portfolio credit risks since it can incorporate many different

phenomena. Namely, default probabilities of firms can depend on past defaults of

others through the dependence of the default-trigger processes Λi on N . On the
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other hand, the background process X1, on which the Λi also depend, can model

firm-specific risk drivers or macroeconomic sources of risk such as interest rates,

which may have an influence on defaults. Also, simultaneous defaults are possible

in the model because the Λi are allowed to jump together.

Reduced-form credit portfolio models can be further subdivided into Bottom-Up

and Top-Down models. Bottom-Up means that one specifies a model for the joint

dynamics of the single processes Ni. Based on this specification, one then derives

the dynamics of the aggregate process L =
∑I

i=1 Ni. Contrarily, in the Top-Down

approach one directly specifies a model of L. While our setup comes closer to the

Bottom-Up approach, we can also choose the Top-Down perspective as shown in

Section 2.6.

In order to illustrate the usefulness of the theoretical tools developed in this chap-

ter, in the context of a credit portfolio application, we apply these next to analyze

the Duffie and Gârleanu (2001) model; it can be considered as the standard model

within the reduced-form modeling approach due to its popularity and many ap-

pealing features (see Mortensen (2006), Feldhütter (2008) and Eckner (2007) for

empirical investigations of the model).

Example: Analysis of the Duffie and Gârleanu (2001) Model

Basically, the Duffie and Gârleanu (2001) model aims at modeling single and port-

folio credit risks at the same time, i.e. represents a Bottom-Up model, and relies

on the conditional independence assumption (see Subsection 2.5.1). In terms of

our stopping times model, this means that the default-trigger process Λ evolves in-

dependently of past defaults. Duffie and Gârleanu (2001) further propose a factor

structure for the Λi such that

Λi(t) =

p
∑

j=1

∫ t

0

λc
j(s)ds +

∫ t

0

λ̃i(s)ds.

In terms of Definition 2.1.1:

• The background process X1 is given by

X1 =
(

λc
1, . . . , λ

c
p, λ̃1, . . . , λ̃I

)

.

Its coordinates are assumed to be positive processes, which evolve mutually

independently (for details see below), and FX1

T ∗ = FΛ
T ∗ and FN

t are indepen-

dent given FX1

t .

• bi(s, X
1(s), X2(s)) =

∑p
j=1 λc

j(s) + λ̃i(s).
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• νm(s, RI
0+) = 0, for each m.

Since νm(s, RI
0+) = 0, simultaneous defaults are not possible in the Duffie and

Gârleanu (2001) model (cf. Proposition 2.3.1).

The interpretation of the λc
j is the one of common risk factors which all firms are

exposed to; the λ̃i represent firm-specific risks that are in the credit portfolio risk

terminology called idiosyncratic risks. In Duffie and Gârleanu (2001), each λc
j and

λ̃i evolves according to the SDE

dλ(t) = κ (η − λ(t)) dt + σ
√

λ(t) dW (t) + dJ(t), λ(0) = λ. (2.27)

Here κ, σ and η are positive constants, W is a standard Wiener process and J

a Poisson process that jumps with intensity µ and has positive, independently

Exp
(

1
ζ

)

-distributed jumps. Following Duffie and Gârleanu (2001), we call a process

of the form (2.27) a basic affine jump diffusion and denote it by

BAJD
(

λ0, η, κ, σ, µ, ζ
)

.

For ease of exposition, we restrict ourselves in the following model analysis to

the parsimonious model specification of Mortensen (2006), which constitutes a

slight modification of the original model. This modification is usually considered

in empirical investigations of the model (see Mortensen (2006), Feldhütter (2008)

and Eckner (2007)). We would like to mention that the following results carry over

to the general case, but the notation becomes substantially more involved without

leading to further insights. In Mortensen (2006), a one-factor version of the model

is considered where a positive constant determines how strong each firm is exposed

to the common factor. More precisely,

Λi(t) =

∫ t

0

aiλ
c(s)ds +

∫ t

0

aiλ̃i(s)ds,

where ai > 0 for all i ∈ {1, . . . , I} and

λc is a BAJD
(

λ
c
, ̟η, κ, σ, ̟µ, ζ

)

,

λ̃i is a BAJD
(

λi, (1−̟)η, κ, σ, (1−̟)µ, ζ
)

and ̟ ∈ [0, 1] is a constant. Note that ̟ controls the level of dependence between

the portfolio objects. Assume, for example, ̟ = 1. Then, jumps of the default

intensities are purely systematic, i.e. the jump intensities always jump at the same

time and λ̃i never jumps in this case. However, jump sizes can still be different

due to different ai values. Contrarily, if ̟ = 0 intensities will never jump together

because λc never jumps. Therefore, ̟ can be interpreted as the weight of the
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common factor in the intensity specification.29

An application of the Itô-formula, with λc and λ̃i being independent basic affine

jump diffusions with the same jump intensity and speed of mean reversion yields

that

ai

(

λc(s) + λ̃i(s)
)

is a BAJD
(

ai

(

λ
c
+ λi

)

aiη, κ,
√

aiσ, µ, aiζ
)

,

i.e. that the jump intensity µ and the speed of mean reversion κ of all default

intensities are the same. Furthermore, their mean reversion level aiη, their volatility√
aiσ and their jump size mean aiζ depend on common values but are scaled by a

positive constant ai.
30

As indicated in Section 2.5, in the model calibration conducted by Mortensen (2006)

the ais are used to match individual risk levels, while the remaining parameters are

primarily adjusted to fit dependencies between the single risks. Since the model

does not exhibit contagion, the model’s dependence function is a copula of the

Marshall-Olkin type (cf. Theorem 2.5.2); single survival probabilities can further

be written as

T,tpi = E

[

e−ai(
PI+1

j=1 Aij(Λ∗
j (T )−Λ∗

j (t)))
∣

∣

∣
λ(t)

]

,

where

Λ∗
1(t) :=

∫ t

0

λc(s)ds

Λ∗
j(t) :=

∫ t

0

λ̃j−1(s)ds, 2 ≤ j ≤ I + 1,

and A ∈ RI×(I+1) is of the form

A =











1 1 0 · · · 0

1 0 1 · · · 0
...

...
. . .

...

1 0 · · · · · · 1











.

From Corollary 2.5.1 it therefore follows that the model-implied dependence struc-

ture is characterized by a LT-Archimedean copula function (with factors Λ∗(T )−
Λ∗(t) and a matrix A as above), which we want to further investigate next.

To keep calculations simple, we set λi = 0 for all i ∈ {1, . . . , I} and ̟ = 1 implying

29Note that ̟ does not only determine the degree of common jumps, it also determines the mean

reversion levels of factor and idiosyncratic components and therefore influences the Brownian

components of the processes, too.
30In Proposition 1 of Duffie and Gârleanu (2001), an alternative derivation of this result can

be found based on the Laplace transforms of the processes.
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that λ̃i(s) ≡ 0 for all s ≥ 0; under this assumption, the model-implied dependence

structure is given by an ordinary Archimedean copula function (cf. Corollary 2.5.1)

where ϕ of equation (2.6) is given by

ϕ(u) := T,tϕR •
0 λc(s)ds (u) = E

[

e−u
R T

t
λc(s)ds

∣

∣

∣
λ(t)c

]

.

Fortunately, this Laplace transform can be calculated analytically (cf. Appendix A)

facilitating the calculation of dependence measures such as Kendall’s tau.31 Figure

2.1 displays Kendall’s tau for different initial intensity states λ
c
.32 We find that the

dependence level decreases in the initial intensity state, which might be surprising

at first sight since high λ
c

values imply a higher risk for all portfolio objects.

However, from a dependence perspective the randomness of the integrated process
∫ T

t
λc(s)ds alone is the critical quantity. For higher initial intensity states λ

c
, the

joint evolution of future intensities becomes less random since high intensities are

almost deterministically pulled down towards the mean reversion level η. In this

regard, note that if
∫ T

t
λc(s)ds was deterministic one would obtain the independence

copula as a limiting case.

Our findings are confirmed by Figure 2.2, where we present 2000 simulations from

the copulas corresponding to initial intensity states of λ
c

= 0.2 and λ
c

= 0.0002,

keeping the other parameters fixed. While for λ
c

= 0.2 realizations seem to be

almost equally distributed, in case of λ
c

= 0.0002 dependence is visible as points

are more clustered around the 45◦ line.

We now focus on the characterization of the model-implied default clustering from

a dynamic point of view. Since simultaneous defaults occur with probability 0 in

the considered model, the compensator of the loss process equals the compensator

of the quadratic variation of the loss process (cf. Section 2.6); it is given by

〈L, L〉(t) =
I
∑

i=1

Λi(t) =

∫ t

0

(

I
∑

i=1

ai1τi>s

)

λc(s)ds +
I
∑

i=1

∫ t

0

1τi>saiλ̃i(s)ds.

The expected volatility (cf. Definition 2.6.1) associated with the model is therefore

31Nevertheless, computation has to be done numerically. The lacking smoothness of the graph

in Figure 2.1 has to be attributed to numerical errors.
32For illustration purposes we used the model parametrization estimated in Mortensen (2006)

with the only differences that ̟ = 1.0 and λi = 0. However, since ̟ = 0.91 in Mortensen (2006)

differences should be minor.
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Figure 2.1: Kendall’s tau with respect to different intensity states λ
c

for the five-

year horizon in the Duffie and Gârleanu (2001) model. Remaining parameters are

fixed at κ = 0.27, ̟ = 1, η = 0.0046, σ = 0.05, µ = 0.017, ζ = 0.078 and λi = 0.

T,tσL = E [ [L, L](T )− [L, L](t)| Ft]

+E

[([

I
∑

i=1

ai1τi>•
(

λc(•) + λ̃i(•)
)

,

I
∑

i=1

ai1τi>•
(

λc(•) + λ̃i(•)
)

]

(T )

−
[

I
∑

i=1

ai1τi>•
(

λc(•) + λ̃i(•)
)

,

I
∑

i=1

ai1τi>•
(

λc(•) + λ̃i(•)
)

]

(t)

)∣

∣

∣

∣

∣

Ft

]

.

By simple transformations, we obtain

T,tσL = E

[

I
∑

i=1

∫ T

t
ai1τi>s

(

λc(s) + λ̃i(s)
)

ds

∣

∣

∣

∣

∣

λ(t)

]

+E





∫ T

t

(

I
∑

i=1

1τi>sai

)2

σ2λc(s)ds + 2ζ2̟µ

∫ T

t

(

I
∑

i=1

1τi>sai

)2

ds

∣

∣

∣

∣

∣

∣

λc(t)





+

I
∑

i=1

E

[
∫ T

t
1τi>sa

2
i σ

2λ̃i(s)ds + 2ζ2(1−̟)µ

∫ T

t
1τi>sa

2
i ds

∣

∣

∣

∣

λ̃i(t)

]

+E

[

∫ T

t

I
∑

i=1

1τi>sa
3
i

(

λc(s) + λ̃i(s)
)3

ds

∣

∣

∣

∣

∣

λ(t)

]

, (2.28)



72 CHAPTER 2. A MODEL FOR A VECTOR OF STOPPING TIMES

which follows from a calculation of the quadratic variation of the Brownian compo-

nent and the jump part of λ := (λc, λ̃1, . . . , λ̃I) exploiting the independence of its

coordinates and the independence of λ from L. Moreover, due to the Markovian

model structure, FX1

t can be replaced by λ(t).
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Figure 2.2: 2000 simulations from the copula implied by the Duffie and Gârleanu

(2001) model with initial intensity state λ
c

= 0.2 (left) and λ
c

= 0.0002 (right).

Remaining parameters are fixed at κ = 0.27, ̟ = 1, η = 0.0046, σ = 0.05,

µ = 0.017, ζ = 0.078 and λi = 0. The considered time horizon is five years.

The second term of equation (2.28) represents the contribution of the common

factor λc to the expected volatility of the loss process, the third term contains the

contributions of the idiosyncratic risks, while the last term includes contributions

of defaults. We find that expected volatility in the Duffie and Gârleanu (2001)

model increases ceteris paribus in ̟, i.e. the measure grows with an increasing

weight ̟ of the common factor since

(

I
∑

i=1

ai

)2

>

I
∑

i=1

a2
i .

The intensity of the loss process and the defaults become more volatile as the single

risks are more and more exposed to systematic risk, represented by the factor λc.

Furthermore, since for aI+1 > 0

(

I+1
∑

i=1

ai

)2

−
I+1
∑

i=1

a2
i >

(

I
∑

i=1

ai

)2

−
I
∑

i=1

a2
i ,

the relative weights between the common factor and the idiosyncratic components

in the calculation of the expected volatility are moved towards the common factor

as the number of portfolio objects gets bigger. This is in concordance with a result

of Vasicek (1991) who shows in a static setting that the idiosyncratic components
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“disappear” in the calculation of the loss distribution as the number of portfolio

objects increases to infinity (note that similar considerations have lead to equation

(2.25)).

We now focus on the dependence structure by considering only the second and the

third term of equation (2.28) and disregard effects on expected volatility that stem

from the downward jumps of the aggregated intensity at defaults.33 We find that

in the Duffie and Gârleanu (2001) model both terms, considered as functions in

λ(t), evolve relatively stable over time since

E



2ζ2̟µ

∫ T

t

(

I
∑

i=1

ai

)2

ds + 2ζ2(1−̟)µ

∫ T

t

I
∑

i=1

a2
i ds

∣

∣

∣

∣

∣

∣

λ(t)



 = const.

Only the contributions due to the Brownian components in the intensity specifica-

tion depend on λ, but these contributions will usually be small since σ is typically

small. Therefore, the Duffie and Gârleanu (2001) model comes close to a model

where the default clustering does not vary over time.34

In summary, our examination of the Duffie and Gârleanu (2001) model yields

that the model is able to generate realistic degrees of dependence, but for typ-

ical parametrizations the model comes close to a time-homogeneous model with

respect to default clustering. Our results confirm the findings of an empirical

study by Feldhütter (2008). He investigates the model’s ability to capture the

price dynamics of structured credit products. Following our theoretical reasoning,

it is not surprising that he finds that the model cannot capture the price variation

of the securities which are most exposed to changes in the dependence structure of

the underlying portfolio – the so-called senior tranches. Without going into details

at this point (for such details see Chapter 3), the riskiness of such senior tranches

increases as the dependencies among the portfolio objects grow. Feldhütter (2008)

further finds that the tranches’ risk, represented by their prices, is negatively cor-

related with the state of the common factor λc. This again is no surprise since the

model-implied dependence structure decreases in the state of λc as our analysis of

the model-implied copula has demonstrated. Put differently, dependence structure

and common factor cannot be positively correlated – at least for reasonable model

parametrizations.

Our findings show that the developed tools represent valuable instruments for the

analysis of credit portfolio models.

33This is not a too restrictive assumption since when analyzing the price dynamics of structured

credit derivatives such as Itraxx CDO tranches usually no defaults are observed.
34Of course, this only holds true for parametrizations where σ is small and the jump part

represents a significant part of the risk. However, these are the parametrizations which are

typically obtained when calibrating the model to prices of structured credit products, see e.g.

Mortensen (2006) and Feldhütter (2008).
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2.8.2 Stochastic Mortality Modeling

The second application of our stopping times model introduced in this chapter are

the valuation and risk analysis of catastrophe mortality linked securities considered

in Chapter 4: We introduce a new model for analyzing and pricing these securites.

The current subsection therefore provides a link between our general setting and

the more specific setup considered for the application in an insurance related field.

In particular, we introduce and formulate the quantities in terms of Definition 2.1.1,

which will be of particular importance in Chapter 4.

One of the primary sources of risk that a (re)insurance company selling annuities

or life insurance contracts faces is mortality risk. Broadly speaking, mortality risk

is the possibility of future, systematic deviations of mortality rates from expected

rates. In this context, one usually distinguishes between longevity risk and catastro-

phe mortality risk. While longevity risk is the risk – from an insurance company’s

point of view – that customers who bought annuities systematically live longer

than expected, catastrophe mortality risk corresponds to the risk that mortality

rates suddenly increase leading to a large payout in connection with the insurer’s

life business.

In order to assess mortality risk, one needs to specify a model of the future evolution

of mortality rates as a first step. The first contributions on stochastic mortality

modeling have followed approaches different from the one introduced in this sub-

section. By replacing formerly constant parameters in the Gompertz mortality law,

Milevsky and Promislow (2001) were among the first to propose a stochastic hazard

rate or spot force of mortality.35

Since then, there have been several articles utilizing ideas from credit risk model-

ing for the modeling of stochastic mortality rates.36 We use an approach similar to

the one of Miltersen and Persson (2005), which is based on the so-called intensity-

based approach from Lando (1998) and arises as a special case of the setup con-

sidered in Proposition 2.5.1. For modeling the mortality rates of a portfolio of

insureds, we now associate the death times of the insureds with the stopping times

τ = (τ1, . . . , τI) introduced in Definition 2.1.1 – similar to the default times of firms

in the credit portfolio setup discussed in the previous subsection.

However, there are some points that are special about an application in an in-

surance context: Consider a portfolio of insureds all having the same age and a

35Mortality laws are certain parametric functions which are used to model human mortality;

see Gompertz (1825) for a classical example or Bowers et al. (1997) for an overview on mortality

laws.
36Even earlier, Artzner and Delbaen (1995) pointed out similarities between “default risk in-

surance” and life insurance.
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particular mortality rate. By assuming a large enough portfolio (more precisely

an infinitely large portfolio), it suffices to model only the mortality rate and the

actual realizations of the jumps, i.e. the deaths of the insureds, become irrelevant

(cf. 2.25). Our reasoning further implies that when pricing a mortality contingent

security depending on the evolution of mortality rates of such a large portfolio we

should only attach a risk premium to the risk factors driving the mortality rate.

There should be no compensation for taking the risk of the single jumps of N , i.e.

the deaths, because this risk can be diversified away.

Nevertheless, there may be other situations where such a risk premium is justified.

For example, it may be justified when considering only small cohorts. For a gen-

eral discussion of this issue, see Bauer and Russ (2006). Since we want to apply

the framework in Chapter 4 for modeling securities which depend on the mortality

rates of very large cohorts (such as the male population in the U.S.), the following

assumptions seem to be justified:

Assumption 2.8.1

1. People who die do not influence the mortality rates of the surviving people.

2. People with the same age have the same survival probabilities over the same

future time period.

Translated into the modeling context of Definition 2.1.1, our assumptions imply

that a stochastic mortality model should not exhibit contagion (cf. Definition 2.5.2)

and that we have to specify a stochastic mortality rate model for each age since

the age naturally plays an important role for a person’s likelihood of dying. This

suggests to model the time of death τx0 of an individual of age x0, as the first jump

time of a doubly stochastic point process with intensity λ(x0 + t, X1(t)). in terms

of Definition 2.1.1, we therefore consider the following setup:

Definition 2.8.1 The time of death of an x0 year old person at inception is mod-

eled as in Definition 2.1.1 with

Λx0(t) =

∫ t

0

λx0(s) ds,

where we call

λx0(s) := λ(x0 + s, X1(s))

the mortality intensity.

As a consequence of Definition 2.8.1, the mortality intensity, which gives the instan-

taneous probability for dying of an x0 + s year old person at time s, is influenced
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by two sources: First, there is a deterministic component related to the age of

the person. Second, mortality intensities are influenced by the background process

X1, which evolves independently of deaths and represents the stochastic nature of

future mortality rates; X1 can symbolize general market factors such as interest

rates, too. Furthermore, our specification of the death times rules out simultaneous

deaths (see Table 2.1), which is not a problem since the realizations of the jumps

itself are not relevant anymore as argued above.

Generally, our definition of the mortality intensity entails the conditional indepen-

dence setup considered in Proposition 2.5.1. In particular, from Proposition 2.5.1

it follows that expectations contingent on survival of the person can be written as37

E

[

1{τx0>T}Υ
∣

∣

∣
Ft

]

= 1{τx0>t}E
[

exp

{

−
∫ T

t

λx0(s) ds

}

Υ

∣

∣

∣

∣

FX1

t

]

,

and, in particular, the conditional survival probability of the person over [t, T ] is

given by

T,tpx0 = E

[

exp

{

−
∫ T

t

λx0(s) ds

}∣

∣

∣

∣

FX1

t

]

.

In the literature on stochastic mortality modeling, the model approach presented

here, which is a special case of the general setup of Definition 2.1.1, is often referred

to as the spot force mortality modeling approach since by specifying a model for

λx0(s) we model the instantaneous rate of dying per unit time, i.e. the so-called

spot force of mortality.

Within our setup – instead of modeling the spot force of mortality – we could also

setup a model of the “forward” intensities similar to the Heath-Jarrow-Morton

approach for modeling interest rates, see for example Bauer and Russ (2006). For

a general overview and a categorization of continuous mortality models, see Cairns

et al. (2006). However, the more “direct outcome” of the general setup considered

here are spot force models; hence, most model specifications proposed within our

setup in the literature belong to this class.

In particular, the application of affine processes (see Section 2.7) to stochastic

mortality modeling has been brought forward by a number of authors due to their

relatively nice properties (see e.g. Biffis (2005), Dahl (2004), or Schrager (2006)).

These nice properties carry over to the more general setup studied in Section 2.7,

which extends the affine modeling approach: Given that X1 = (Y 1, Y 2, Z) of

Definition 2.8.1 satisfies the conditions stated in Assumption 2.7.1 and that λx0(s)

can be written as

λx0(s) = λ(x0 + s, X1(s)) = Z(t)χ1(x0 + s) + χ2(x0 + s)Y 2(s)

37Under the technical integrability conditions regarding Υ stated in Proposition 2.2.2.
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with χ1(t) ∈ Rr
0+ and χ2(t)T ∈ R

d2
0+ positive functions for all t ≥ 0, we have

T,tpx0+t = eZ(t)u(t,T )+v(t,T )Y (t).

Here, u and v solve equations (2.13) and (2.14) with appropriate parameters but

additionally depend on the person’s age x0 at t since χ1 and χ2 are functions of

x0 + t.

In a concrete specification, χ1 and χ2 usually represent parametric functions of age,

i.e. mortality laws f(x0 +s; θ). An example of such a mortality law, is the so-called

Gompertz law:

f(x0 + s; θ = (a, b)) = ea(x0+s)+b.

We end this subsection by stating a general result regarding the dependence struc-

ture between the survival events of a cohort; it is a corollary of Theorem 2.5.2:

Corollary 2.8.1 The single survival probabilities T,tpx0 of the persons with age

x0 at inception are transformed to the joint survival probability as implied by an

Archimedean copula with generator φ = T,tϕ
−1
R •
0 λx0 (s)ds

, where

T,tϕR •
0 λx0(s)ds (u) = E

[

exp

{

−u

∫ T

t

λx0(s) ds

}∣

∣

∣

∣

FX1

t

]

.

2.9 Summary and Remarks

This chapter introduces a flexible framework for modeling a vector of stopping

times and builds the foundation for the analysis of structured finance products

in Chapters 3 and 4. In the proposed stopping times model, conditional survival

probabilities depend on past realizations of the τis as well as on some exogenous

background process X1. This process can model factors that influence the jumps of

N but do not depend on these jumps. For example, in a credit portfolio application

it is usually reasonable to assume that the general macroeconomic environment has

an impact on the default likeliness of single firms but not vice versa. Furthermore,

realizations of the τis can coincide in our setup, i.e. simultaneous jumps of the Ni

are possible.

We provide a rigorous mathematical discussion of the introduced framework, demon-

strate that it is well-defined and show how important quantities such as survival

probabilities can be calculated. In addition, we state conditions under which the

setup reduces to other setups which have already been studied in detail in sci-

entific literature such as the Lando (1998) setup or the common Poisson shock

models of Lindskog and McNeil (2003). As a further contribution, we analyze the

dependence structure between the stopping times as implied by the model from
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two different perspectives. The first perspective is eventually a static one meaning

that we consider the dependence structure between the survival events over a fixed

time horizon. We find that the model-implied dependence structure is the one

implied by the copula function studied in Marshall and Olkin (1988). Moreover,

we examine the dynamics of the process counting the occurrence of the stopping

times and introduce a new measure to describe the volatility of this process. This

represents a dynamic approach to characterize dependencies between the stopping

times because we measure the clustering of the events in time.

Our findings provide a deeper understanding of the dependence structure implied

by many models proposed in the literature since most concrete model specifications

can be formulated within our general framework. They further help to structure

the vast number of credit portfolio and CDO models which have been published

in the recent past. As our results show, some specifications imply in fact similar

or even almost identical models. For example, we show that the Joshi and Stacey

(2006) model eventually is a common Poisson shock model (cf. Example 2.3.1).

Also, we provide a detailed discussion of the Duffie and Gârleanu (2001) model

based on the developed theoretical tools.

Moreover, we investigate in detail the question of how to arrive at models that

guarantee a certain degree of analytical tractability within our setup. In partic-

ular, we identify situations where the distribution of the loss process as well as

survival probabilities can be calculated at least semi-analytically. Finally, we es-

tablish a link between our general setup and the more specific setups considered

for the applications in Chapters 3 and 4.

Future research should contain a further analysis of the aggregate losses implied by

different model specifications. For example, Cousin and Laurent (2007) consider

the ordering of stop-loss premiums and convex risk measures on aggregate losses

for the case of exchangeable Bernoulli-mixture models which are a special case of

the conditional independence setup encountered in this chapter. An interesting

question would be, how results change when allowing for contagion effects and how

contagion models can be compared with conditional independence models.



Chapter 3

Application I: Modeling of

Structured Credit Products

Corporate defaults tend to cluster in time and in industries. In 2002, for example,

the annual corporate default rate recorded by Moody’s Investors Service (2003) was

3%, more than twice the long-run average; telecommunications issuers like Global-

Crossing or Worldcom constituted 31% of all defaulted issuers. While the clustering

of defaults is already important for the management of credit portfolios, it becomes

even more important when analyzing structured credit products. A CDO tranche,

for example, is a contingent claim on a debt portfolio. Cash flows from the debt

portfolio are first used to serve the most senior tranche. Remaining funds are then

distributed according to the tranches’ rank in the seniority ladder. By construc-

tion, the single tranches reference different “slices” of the underlying portfolio’s loss

distribution. For instance, the risk profiles of the more senior tranches relate to the

tail of the loss distribution. Even one of the tranche’s simplest risk measures, its ex-

pected loss, strongly depends on the portfolio dependence structure. By investing

into tranches, investors can therefore take a position in the dependence structure

of the underlying portfolio, and the trading with structured credit products can be

considered as a “dependence structure” trading.1 Consequently, the key challenge,

which we face when modeling structured credit products, is to correctly model

the underlying portfolio and, in particular, its dependence structure. Missspecified

dependence structures will affect the forecasted loss distribution of the structured

credit product in a non-linear way.

In standard credit risk models, default clusters are usually explained by common

factors like the business cycle or stock market valuations that induce correlations

in individual firms’ default probabilities. Conditional on the stochastic evolution

of common factors, defaults are independent (cf. Subsection 2.5.1). The approach

is ubiquitous in financial institutions. Key applications range from industry mod-

1Not surprisingly, the financial industry often speaks of “correlation” trading.

79
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els of portfolio credit risk (see e.g. Crouhy et al. (2000)) and the new capital

requirements (e.g. Gordy (2003)) to the pricing of structured finance instruments

like collateralized debt obligations (e.g. Duffie and Gârleanu (2001)).

Up to date, most of the time-continuous models discussed in scientific literature

have been studied in a pricing context (see e.g. Mortensen (2006), Feldhütter (2008)

or Kiesel and Scherer (2007)). However, less is known about the performance of

these models under the objective, i.e. the real world, measure. The present chapter

aims to close this gap. Within our general stopping times model introduced in the

previous chapter, we provide a detailed empirical investigation of different model

specifications in the context of a data set that consists of 250090 default intensities

for 3241 different firms. Considered models comprise purely diffusion-based mod-

els, specifications with jumps and models which are additionally driven by regime

processes. Also, the importance of contagion effects for explaining defaults is in-

vestigated, but since we find these effects of minor importance we primarily work

with models that satisfy the conditional independence assumption.

The remainder of this chapter is structured as follows: Section 3.1 contains the

estimation of the firms’ default intensities and investigates whether the intensities

are able to explain the observed default behavior. In Section 3.2, we introduce

a model for the joint intensity dynamics and discuss its properties. The calibra-

tion of the model on a single firm basis follows in Section 3.3. In Section 3.4, we

consider the issue of model risk in connection with the conditional independence

assumption. Section 3.5 provides the estimation of the portfolio model and derives

transition matrices of structured credit products. Section 3.6 concludes.

3.1 Estimation of the Firm’s Default Intensities

In this section, first default intensities for a large number of US and non-US corpo-

rates are estimated. In a second step, we then assess the quality of our estimations

with respect to default prediction and default clustering.

For the estimation, we use a model that satisfies the conditional independence (or

equivalently doubly stochastic) assumption (cf. Subsection 2.5.1). More precisely,

we presume that defaults are independent conditional on observable factor variables

and that these factor variables themselves are not affected by defaults in the port-

folio. Das et al. (2007) conducted the first rigid empirical test of this assumption.

They test whether defaults of US corporates are consistent with the model-implied

default clustering of the intensity model introduced by Duffie et al. (2007). Das

et al. (2007) find that observed default clustering exceeds the one implied by the

estimated model. Therefore, they conclude that the doubly stochastic assumption
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is invalid and that credit risk models should be enriched by contagion effects or

“frailty”, i.e. unobservable variables, in order to account for the extra correlation.

Otherwise, one might incur significant errors in the assessment of credit portfolio

risk or the pricing of structured finance products.

As pointed out by Das et al. (2007), their statistical tests are joint tests of well-

specified default intensities and the doubly stochastic assumption.2 In our tests,

we use a data set that is very similar to the one used by Das et al. (2007) but in-

troduce two modifications to the estimation of default intensities. First, we model

intra-month patterns in observed defaults. Second, we estimate default intensities

on an out-of-sample basis, which brings our estimates closer to the ones financial

institutions implementing the models would actually have used. We find that both

modifications increase the ability of the intensity model to explain observed default

clustering. When both modifications are made, the test suggested by Das et al.

(2007) no longer rejects the validity of the doubly stochastic assumption.

The remainder of the section is organized as follows. After introducing the general

model in Subsection 3.1.1, we describe our data set in Subsection 3.1.2. Our spec-

ification of the default intensities and their estimation follows in Subsection 3.1.3;

the predictive power of the model is assessed in this subsection, too. Subsection

3.1.4 analyzes whether the estimated models are able to account for the default

clustering observed in the data.

3.1.1 Model

As previously mentioned, for the estimation of the default intensities we rely on a

conditional independence model.3 More precisely, in terms of Definition 2.1.1 we

assume that

Λi(t) =

∫ t

0

λi(s, X
1(s)) ds.

Since the σ-fields
∨

1≤i≤I σ(Ei) and FX1

T ∗ are independent, the defaults of the port-

folio objects are conditionally independent with respect to FX1

(cf. Proposition

2.5.1), and simultaneous defaults are ruled out (see Table 2.1). In addition, λi(t)∆

2As pointed out by Lando and Nielsen (2008) the statistical tests are unfit to uncover a special

type of contagion in which the default of one firm affects the factor variables and thus the default

intensity of others. A passed test has therefore to be interpreted as follows: Observed defaults

are likely to have been generated by the aggregated path of estimated default intensities and one

needs not introduce contagion effects in addition to the already used explanatory variables to

explain the observed default clustering.
3This assumption is not significant to the estimation and could be relaxed towards intensities

that simply depend on observable factor variables no matter whether these factor variables evolve

independently of defaults or not.
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presents the instantaneous probability of a firm to default over the next infinitesi-

mally small time step ∆ because we have

lim
∆→0

P (t < τi ≤ t + ∆| τi > t)

∆
= λi(t).

In the concrete model implementation, which we consider in Subsection 3.1.3, the

background process X1 = (R1, R2) will be given by the explanatory variables or

covariates, where in this chapter

• R1 will represent macroeconomic variables such as the S&P 500 index return,

and

• R2 = (R2
1, . . . , R

2
I)

T
will summarize all firm-specific variables such as the

firms’ long-term debt rating.

As a consequence, the dimension of R1 simply corresponds to the number of macroe-

conomic variables used, while the dimension of R2 is the number of firms in the

portfolio times the number of firm-specific variables considered.

Furthermore, as is common in the literature we will consider a parametric function

for the default intensities λi such that

λi(t, X
1(t)) := λ

(

t, θ, R1(t), R2
i (t)
)

with θ ∈ Rd some parameter vector. Given θ and a path x1 = (r1, r2) of X1, the

likelihood L(θ; r1, r2) of observing some vector τ = (τ1, . . . , τI) of default times is

given by

L(θ; r1, r2) =
∏

i∈I
e−

R τi
0 λ(u,θ,r1(u),r2

i (u))duλ
(

τi, θ, r
1(τi), r

2
i (τi)

)

, (3.1)

since the probability of firm i to default at t = τi conditional on the path of X1 is

given by e−
R t
0 λ(u,θ,r1(u),r2

i (u))duλ (t, θ, r1(t), r2
i (t)), and conditional on a path of the

background process X1 the default times are independent (cf. Proposition 2.5.1).

To obtain the conditional density of τi, we simply differentiate the conditional

survival probability.

For the portfolio loss process,

L(t) :=

I
∑

i=1

1τi≤t,

it follows that

M(t) := L(f−1(t))
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is a standard Poisson process (cf. Theorem 2.6.1) where

f(s) :=
∑I

i=1

∫ s

0
1u<τi

λi(u, X1(u))du, i.e. its increments

M(T )−M(t) ∼ Poi(T − t). (3.2)

In addition, we have (cf. Corollary 2.6.1)

I
∑

i=1

∫ τ(i)

τ(i−1)

1u<τi
λi(u, X1(u))du ∼ Exp(1), (3.3)

where τ(0) := 0 < τ(1) < . . . < τ(I) denote the ordered default times of the portfolio

objects. Inspired by Das et al. (2007), we will make use of this relationship in

Subsection 3.1.4 when testing whether the estimated models are able to explain

the observed default clustering.

3.1.2 Data

We use data on US and non-US corporates which have a traded equity and a

Moody’s rating. The data extend from January 1980 to April 2005. The informa-

tion provided include daily default times and two firm-specific variables that we

are going to use as default predictors:

• The firms’ one-year Expected Default Frequencies (EDFs) provided by

Moody’sKMV, which are month-end values ranging from 0.02% to 20%; a

firm’s one-year EDF is a non-parametric estimator of its one-year default

probability based on the firm’s “distance-to-default” which itself is a leverage

measure adjusted for asset volatility that goes back to the firm value model

of Merton (1974). For a more detailed description of the EDF as a measure

of a firm’s default risk see for example Berndt et al. (2005) who use the EDF

in order to estimate and analyze risk premia of corporate bonds.

• The Moody’s long-term rating of the firms with values

{“Aaa”, “Aa1”, . . . , “C”} which we transform to the cardinal numbers

{1, . . . , 21} where 1 corresponds to a “Aaa” Rating and 21 to a “C” rating.

Rating actions such as downgrades or upgrades are reported on a daily basis.

Our use of both EDFs and ratings as explanatory variables for default prediction

is inspired by Löffler (2007) who shows within a static logit regression model that

adding ratings to EDFs increases predictive power.

The original data set contains observations for which one of the two variables (EDF,

rating) is missing. A possible solution to this problem would be to extrapolate or

interpolate missing EDFs or ratings. However, this could make later results sen-

sitive to the chosen interpolation method. Therefore, we remove data points with
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missing variables. Furthermore, we disregard multiple defaults of firms which can

be observed in the data set, i.e. observations after the first default of a firm are

not taken into account. We also exclude observations of firms that are a 100%

subsidiary of a holding and that defaulted together with this holding at the same

date.4
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Figure 3.1: Monthly default rate in the data set in the time period from 02/1980

to 04/2005.

Finally, we end up with a data set consisting of 370345 observation months for

3989 different firms across the time period from 01/1980 to 04/2005. The sample

includes 511 defaults which is more than the 495 defaults in Das et al. (2007) and

the 370 defaults in Lando and Nielsen (2008). The number of firms in the data set

increases from 1980 on, reaches its maximum of approximately 1950 firms around

the year 1999 and slowly declines afterwards. Figure 3.1 shows the monthly default

rates. The recessions in 1990-91 and 2001 are visible with monthly default rates

peaking at around 0.6%.

Apart from the stated firm-specific variables we also use macroeconomic variables

for the estimation of the intensities. Duffie et al. (2007) point out that one can

4More precisely, we removed Safety-Kleen Corporation and Laidlaw One, Inc. which defaulted

together with Laidlaw Inc. on 05/15/2000 and DecisionOne Corporation that defaulted together

with DecisionOne Holdings Corp. on 08/02/1999.
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gain predictive power by including macroeconomic variables into the estimation.

The macroeconomic variables (all monthly) that we use are5

• The one-year trailing return on the S&P 500 index.

• The 3-month US-Treasury bill rate.

• The one-year percentage change in US Industrial production, calculated from

the gross value of final products and nonindustrial supplies (seasonally ad-

justed). We use this variable with a 1-month lag since this data is always

published in the middle of the next month.

• Spread between the ten-year and one-year treasury rate.

The first two variables have been used in Duffie et al. (2007) and Das et al. (2007)

and the last two have been suggested by Lando and Nielsen (2008).

3.1.3 Estimation Results

After having decided on the covariates that influence the default intensities λi,

it remains to specify a parametric function. For our specification, we rely on a

Proportional Hazards Rate Model, see e.g. Therneau and Grambsch (2001), in which

a firm’s default intensity λi(t) is linked to the observable variables (R1(t), R2
i (t))

via the relationship

λi(t) = λ
(

t, θ, R1(t), R2
i (t)
)

= λ0(t) exp

(

N
∑

n=1

θnR
1
n(t) +

M
∑

m=1

θN+mR2
mi(t)

)

.

As already mentioned, R1(t) = (R1
1(t), . . . , R

2
N(t)) denotes the time t values of

the macroeconomic variables, R2
i (t) = (R2

1i(t), . . . , R
2
Mi(t)) the values of the firm-

specific variables of firm i and (θ1, . . . , θN+M) the coefficients describing how the

variables influence the intensity; λ0(t) denotes a possibly time-dependent intercept

that may capture recurring intra-month patterns in default times and which we

refer to as the Baseline Component in the following. So far, our model is the same

as utilized by Duffie et al. (2007) and Lando and Nielsen (2008) except for the

choice of firm-specific variables and for the Baseline Component. Differences in

firm-specific variables should be minor, though. Both Duffie et al. (2007) and

Lando and Nielsen (2008) employ a measure of distance-to-default which is also at

the heart of the EDF that we use.

5All macroeconomic variables have been downloaded from the Federal Reserve Board Website.
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The Baseline Component

Since later model specification tests strongly depend on the clustering of defaults

over time – even on the clustering within small time intervals such as months –

the estimation of the firms’ default intensities described next will take the timing

of defaults within the corresponding default months into account, too. Figure 3.2

shows how defaults are distributed across the single days of a month. Defaults are

heavily clustered around the 1st and the 15th of each month, presumably because

default is often declared after a missed coupon payment (the 1st and the 15th are

common choices for coupon payment dates). Loosely speaking, if a firm has sur-

vived the 15th of a month, it has very good chances to survive the whole month

since the dates around the 1st and the 15th account for more than 60% of the

defaults.
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Figure 3.2: Histogram of intra-month default dates in the data set (left) and cor-

responding estimated density (right).

As baseline hazard rate we therefore use a periodical function with period 1 month

of the form

λ0(t) :=
1

12
eθ0 h

(

t− [12 · t]
12

)

,

where [·] rounds any real argument to the next lower integer and h represents

the kernel density estimator associated with the observed default frequency on

the different dates; this kernel density estimator is plotted in Figure 3.2, too. To

estimate the density, we used 256 nodes and a Gaussian kernel with appropriate

bandwidth. The calculated Baseline Component is used in all estimations even if

we apply the model out-of-sample since we assume that the intra-month default

timing is fixed over time. To support this assumption, as a robustness check, we

calculated the densities of the first 50% and the last 50% of defaults in the data set.

These are presented in Figure 3.3. The distribution seems to remain stable over
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Figure 3.3: Estimated density of intra-month default dates based on the first or

the second half of defaults in the data set.

time. Furthermore, since
∫ t+ 1

12

t
λ0(s)ds = 1

12
eθ0, the Baseline Component leaves

a firm’s default probability over the next month unchanged and does only very

weakly change the estimated values of the coefficients (θ0, . . . , θN+M), i.e. estimated

coefficients (θ̂0, . . . , θ̂N+M) almost coincide for a model with and without Baseline

Component.

Estimation Results with Fixed Coefficients

Having specified the Baseline Component, we have finally set the stage for con-

ducting model inference via ML. We start by estimating intensities in-sample, i.e.

coefficients are fixed for the entire sample period. Since observations for individual

firms may start at different dates, the likelihood function (3.1) that is actually used

in the estimation has the form

L(θ; r1, r2) =
∏

i∈I

exp

(

−
∫

1u∈Ti,u<τi
λ(u, θ, r1(u), r2

i (u))du

)

·
(

1τi∈Ti
λ(τi, θ, r

1(τi), r
2
i (τi)) + 1τi /∈Ti

)

,

where Ti denotes the union of intervals for which all variables of firm i that we

want to use (default information, rating, EDF) are available. Since we disregard

multiple defaults, max Ti = τi in case of a default of i.

The ML estimator θ̂ of θ is then given as

θ̂ = arg max
θ

L(θ; r1, r2).
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Although rating information is available on a daily basis, we only use the month-

end rating implying that observable variables are constant during a month and

changes in the intensity during that time are only due to variations of λ0(t). Rat-

ings enter in the coding from 1 (Aaa) to 21 (C) described above; the EDF enters as

logarithm of EDF. As documented in Löffler (2007), these simple transformations

work relatively well compared to other alternatives.

Models

I II III IV

Constant -7.08 -13.2 -7.45 -14.8

(29.2) (31.6) (24.4) (28.8)

S&P 500 -0.0210 -0.199 0.600 0.438

(0.0748) (0.704) (1.94) (1.43)

3-month rate -0.00901 0.152 0.0784 0.306

(0.357) (5.71) (2.39) (8.99)

Industrial Production – – -0.0787 -0.0588

– – (4.20) (3.05)

Spread 10year-1year – – 0.153 0.362

– – (2.40) (5.67)

Log(EDF) 2.08 1.40 2.08 1.40

(26.4) (17.0) (26.9) (17.0)

Rating – 0.448 – 0.475

– (18.9) – (19.0)

Log-Likelihood 231 425 245 449

Table 3.1: ML estimates of intensity models in four specifications (in-sample). Each

model includes the estimated Baseline Component. T-statistics in parentheses.

The estimated default intensity parameters θ̂ as well as their t-statistics are dis-

played in Table 3.1 for the basic four model specifications which we will consider

throughout the text.6 Here as in all later tests, we restrict the sample period from

01/1985 to 04/2005 because this is the time period for which we can estimate

the intensities with our alternative approach (rolling estimations with a five-year

estimation window). Using the entire available data for the fixed coefficients esti-

mation does not lead to qualitatively different results.

6t-statistics are derived by inverting the Fisher-Information matrix at θ = θ̂.
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In most cases the coefficients exhibit the expected sign. Default intensities are

increasing in EDF, rating and they are decreasing in industrial production.7 Ex-

ceptions are the S&P 500 index, the spread between the 10 year and the 1 year

rate and the 3-month US-Treasury bill rate. At first sight, one would probably

have expected all three coefficients to have a negative sign because boom periods

(with defaults below average) are usually accompanied by positive stock returns,

high interest rates and an upward sloping yield curve. However, the sign of the

S&P 500 index is only positive after controlling for the other variables. An in-

creased survival probability of firms during a stock market boom might already be

captured by variation in the EDF. Short-term interest rates could go along with

higher default rates because they impact borrowing costs or mark the end of a

boom. Note that in Duffie et al. (2007) the coefficients on the S&P 500 is positive,

too; the one on short-term interest rates is negative. The coefficient for the spread

between the 10 year and the 1 year rate is positive in Lando and Nielsen (2008),

too.

Estimation Results with Rolling Estimation Windows

The in-sample estimation from the previous section presumes that the functional

relationship between explanatory variables such as the EDF or rating and the inten-

sities is constant over a time period of 25 years. Even though default information

providers like Moody’s or Moody’sKMV aim at the time-consistency of their de-

fault risk assessments, it is unclear whether they achieve perfect consistency. Two

possible reasons for non-stationary behavior are changes in the information content

of accounting measures (cf. Jorion et al. (2008)) or sampling error in the estimation

and calibration of risk measures. EDFs, for example, use estimated stock market

volatilities and are calibrated on past default behavior which exposes them to sam-

pling error; sampling errors can be correlated across firms and therefore affect the

average precision of EDFs. In addition, the information content of macroeconomic

variables such as the term spread can change over time (see e.g. Benati and Good-

hart (2007)).

Therefore, working with constant coefficients over long time periods is possibly in-

appropriate. In order to account for possible variations of the covariates’ influence

on default intensities, we allow the coefficients to change over time. More precisely,

for each θ(t) we determine an estimation period U(t) which ends in t and estimate

θ(t) based on the observed covariates and defaults during this period. The forecasts

of the intensities are therefore obtained on an out-of-sample basis, which provides

another motivation for favoring this approach. We only use information that a

financial institution which implemented the model would have had at the time of

7Note that a higher rating is a worse rating due to the chosen transformation.
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implementation. When we later test whether observed default clustering is consis-

tent with the doubly stochastic approach, we therefore can interpret the results in

the sense that actual users of that approach would have incurred significant errors

in predicting default clusters or not. With in-sample estimates, test results could

be biased in some unknown way.

With the estimation sample restricted to U(t), the likelihood function of θ(t) has

the form

L(θ;U(t), r1, r2) =
∏

i∈I

exp

(

−
∫

1u∈Ti∩U(t)λ(u, θ, r1(u), r2
i (u))du

)

·
(

1τi∈Ti∩U(t)λ(τi, θ, r
1(τi), r

2
i (τi)) + 1τi /∈Ti∩U(t)

)

and

θ̂(t) = arg max
θ

L(θ;U(t), r1, r2).

Our proceeding eventually yields a time series of θ̂(t).
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Figure 3.4: The default intensity of a hypothetical firm whose covariates are con-

stant over time based on rolling estimations with five-year estimation windows.

Figure 3.4 illustrates the effects of changing coefficients on intensity estimates.

We fix both firm-specific and macroeconomic variables at their means and use the

estimated coefficients (θ̂0(t), . . . , θ̂N+M(t)) to determine the intensity in t. Thus,

changes in the intensity solely originate from changes in the coefficient estimates.
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Because of the five-year estimation period used, the time series θ̂ starts with Jan-

uary 1985 and each of its values θ̂(t) reflects the past default behavior across the

last 5 years. For example, the value of the coefficients at the end of January 1985

are based on the relation between defaults and observable variables during 02/1980

to 01/1985.

The intensity which is implied by the corresponding estimation based on fixed co-

efficients is also displayed in Figure 3.4. We find that until December 1995 the

time-varying intensity lies above the fixed one whereas after 1995 it drops below.

This indicates that around 1995 the meaning of some of the variables used in the

estimation might have changed.

We choose the five-year estimation period because it is a common choice in the

financial industry and because it appears to achieve a good balance between op-

posing effects. On the one hand, increasing the estimation period should lower

estimation errors. On the other hand, it could mean that we use more outdated

historical data. Also, it would force us to ignore more observations when testing

the models’ performance because the first estimates are only available after the

difference between the current date t and the start of the data is larger than the

estimation period.

Predictive Power

While the focus of this section is on the validity of the doubly stochastic assumption,

the test we will use is a joint test of the doubly stochastic assumption and well-

specified intensities. It is therefore worthwhile to investigate the models’ predictive

ability. We follow the literature and use the Accuracy Ratio AR to measure the

ability to rank firms according to their default probability.

The accuracy ratio is based on the so-called power curve. The power curve pc :

[0, 1] 7→ [0, 1] associated with a model is a function that can be obtained by ranking

all firms of the portfolio according to some criterion, which is supposed to carry

as much information as possible on the firms’ default probability over the period

one is interested in. Usually, this criterion would be the firms’ default probability

over this time period implied by the estimated model. The power curve pc maps

the fraction x of worst ranked firms onto the fraction of defaults which these firm

account for; it tells us that when we pick the worst ranked firms, a fraction x of all

firms accounts for y = pc(x) of the defaults.

We follow Duffie et al. (2007) and define the accuracy ratio to be twice the area

between the power curve and the 45◦ line, i.e.

AR = 2

∫ 1

0

(pc(x)− x) dx.
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The 45◦ line is the power curve one would expect to obtain by ranking firms com-

pletely randomly. By definition, the maximum value of the accuracy ratio is 1

minus the fraction of actually defaulted firms.

It remains to choose a criterion for ranking the firms. A natural candidate would

be the default probability over the prediction period, e.g. the one-year default prob-

ability if the prediction horizon is one year. However, to derive such a probability,

we would have to set up a model for the dynamics of the firms’ default intensities.

Therefore, instead of horizon-matched default probabilities we simply use the firms’

current default intensities in order to rank them.
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Figure 3.5: The 45◦ line (dotted) and average one-year and five-year ahead power

curves, averaged from 1985 on. Intensities are estimated with model IV and rolling

five-year estimation windows.

In Figure 3.5 averaged one-year and five-year ahead power curves are displayed.

As awaited, the one-year ahead power curve lies above the five-year ahead power

curve since the predictive power of the firms’ current default intensities is expected

to decrease with increasing forecast horizons. Note that a firm’s current default

intensity only provides its default probability over the next small time step.

Figure 3.6 shows the time series of one-year and five-year ahead accuracy ratios

from 1985 for a model with rating (model IV) and a model without rating (model
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Figure 3.6: One-year and five-year ahead accuracy ratios for a model with rating

(model IV) and for a model without rating (model III) from 1985 on. Intensities

are estimated with rolling five-year estimation windows.

III). From 1992 on the higher predictive power of a model with rating is visible.

Note that the time series of five-year ahead accuracy ratios ends in 2000 due to

the chosen five-year prediction horizon, whereas the time series of one-year ahead

ratios ends in 2003.

Finally, Table 3.2 summarizes results for default prediction horizons of one and five

years, respectively. It shows accuracy ratios for the model with fixed coefficients,

which are therefore in-sample, as well as accuracy ratios for the rolling estimation.

The accuracy ratios of the model with fixed coefficients are higher, which is un-

surprising due to the in-sample nature of these values, but the difference is quite

small. Furthermore, in case that the firm rating is not used as a covariate, the

obtained accuracy ratios are about the same as the ones reported by Duffie et al.

(2007) for a comparable data set over the time period from 1993 on. After taking

the firm rating into account, these accuracy ratios considerably increase showing

that if one wants to sort firms according to their default probability, the firm rating

should be taken into account in the intensity estimation.

We do not want to conceal a problem with the definition of the accuracy ratio used

in this investigation: Low default rates can favor high accuracy ratios since their

maximum value depends on the fraction of defaulters. We follow this definition



94 CHAPTER 3. MODELING OF STRUCTURED CREDIT PRODUCTS

1985-2005 1993-2005

1-year horizon 5-year horizon 1-year horizon 5-year horizon

Fixed coefficients (in-sample)

Model I 0.878 0.723 0.883 0.697

Model II 0.893 0.765 0.901 0.760

Model III 0.878 0.723 0.883 0.697

Model IV 0.893 0.765 0.901 0.761

Rolling estimation (out-of-sample)

Model I 0.878 0.723 0.883 0.697

Model II 0.891 0.759 0.900 0.751

Model III 0.878 0.723 0.883 0.697

Model IV 0.891 0.760 0.900 0.752

Compared to prior studies (out-of-sample)

Duffie et al. (2007) 0.88 0.69

Table 3.2: Accuracy ratios of the different regression intensity models averaged

from 1985 on and from 1993 on. Rolling estimations have been conducted with

five-year estimation windows.

in order to keep our results comparable, because it has been also used in a prior

study by Duffie et al. (2007). To make results even more comparable, however, it

would be desirable that all studies use an accuracy ratio which is normalized by

the fraction of firms that have survived (for such a definition see Tasche (2007)).

3.1.4 Comparing Model-implied and Observed Default

Behavior

In this subsection, we assess the quality of our intensity estimations with respect

to model-implied

• default clustering and

• single default probabilities.

In particular we test whether observed defaults are likely to have been generated

by estimated intensities. For investigating the default clustering, on the one hand,

we will consider defaults and intensities on an aggregate, i.e. portfolio, basis. On

the other hand, when testing the estimated models for well-specified single default

probabilities we examine defaults and default intensities on a single firm basis.
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Default Clustering

We now assess whether the intensity estimates provide default forecasts which

are consistent with observed default clustering. For this purpose, we will consider

defaults and default intensities on an aggregate, i.e. portfolio, basis. More precisely,

we explore the question of whether the path of observed portfolio defaults is likely

to have been generated by the (aggregated) paths of default intensities that have

been estimated in the previous section.

Our analysis of aggregated intensities and defaults is based on a so-called Fisher’s

dispersion test. Das et al. (2007) have introduced this test to the credit risk

literature in order to test the doubly stochastic assumption. In the test, one exploits

the fact that the time-changed portfolio loss process M is a standard Poisson

process (cf. equation (3.2)), i.e.

M(t + δ)−M(t) ∼ Poi(δ).

By dividing the total estimated aggregated intensity
∑I

i=1

∫∞
0

1u<τi
λi(u)du into

bins of equal size δ, we obtain a series of i.i.d. Poi(δ)-distributed random variables.

More precisely, we calculate calendar times t0, t1, t2, . . . such that
∑I

i=1

∫ ti+1

ti
1u<τi

λi(u)du = δ. Then, the

Uk := M(kδ)−M((k − 1)δ) =

I
∑

i=1

1tk−1<τi≤tk

form a series of i.i.d. Poi(δ)-distributed random variables. A simple test if the

Uk, k ∈ N are indeed Poisson distributed is Fisher’s dispersion test (cf. Cochran

(1954)): Given Uk ∼ Poi(δ), k ∈ N,

K
∑

k=1

(Uk − δ)2

δ
∼ χ2

K−1,

for arbitrary δ > 0.

In Table 3.3, the p-values of Fisher’s dispersion test with respect to different bin

sizes δ for fixed coefficients as well as for rolling estimations (with 5 year estimation

windows) are presented. The tests are performed for 490 defaults over the time

period from January 1985 to April 2005 since for this period both estimates are

available.
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i) Fixed coefficients (in-sample):

Without Baseline Component

1 2 4 6 8 10 16

Model I (closest to Das et al. (2007)) 3.74e-06∗∗∗ 0.00238∗∗ 0.0134∗ 0.0304∗ 5.86e-04∗∗∗ 0.00497∗∗ 8.01e-05∗∗∗

Model II 7.98e-05∗∗∗ 0.00382∗∗ 1.71e-05∗∗∗ 5.96e-08∗∗∗ 2.10e-08∗∗∗ 1.21e-08∗∗∗ 3.45e-09∗∗∗

Model III (closest to Lando and Nielsen (2008)) 0.0352∗ 0.278 0.630 0.146 0.882 0.302 0.148

Model IV 0.00113∗∗ 0.0974 0.0261∗ 0.0151∗ 0.00385∗∗ 0.00245∗∗ 0.0145∗

With Baseline Component

1 2 4 6 8 10 16

Model I 0.0143∗ 0.0564 0.0182∗ 0.0515 0.00163∗∗ 0.00976∗∗ 1.13e-04∗∗∗

Model II 5.25e-04∗∗∗ 2.64e-04∗∗∗ 7.59e-05∗∗∗ 1.06e-06∗∗∗ 3.53e-08∗∗∗ 1.46e-08∗∗∗ 3.61e-09∗∗∗

Model III 0.228 0.578 0.726 0.290 0.793 0.386 0.0913

Model IV 0.108 0.349 0.0261∗ 0.0282∗ 0.00330∗∗ 0.00729∗∗ 0.0151∗

ii) Rolling estimation (out-of-sample):

Without Baseline Component

1 2 4 6 8 10 16

Model I 0.157 0.267 0.0955 0.244 0.0229∗ 0.00206∗∗ 7.71e-04∗∗∗

Model II 0.225 0.671 0.248 0.132 0.138 0.0254∗ 0.00178∗∗

Model III 0.0214∗ 0.268 0.313 0.0660 0.117 0.0321∗ 0.0569

Model IV 0.0681 0.329 0.223 0.221 0.0795 0.0302∗ 0.0740

With Baseline Component

1 2 4 6 8 10 16

Model I 0.340 0.540 0.0909 0.189 0.0318∗ 6.83e-04∗∗∗ 7.71e-04∗∗∗

Model II 0.788 0.908 0.580 0.123 0.195 0.0292∗ 0.00215∗∗

Model III 0.145 0.296 0.282 0.0988 0.106 0.0180∗ 0.133

Model IV 0.930 0.955 0.520 0.418 0.0880 0.0359∗ 0.0910

Table 3.3: p-values of Fisher’s dispersion test for bin sizes 1, 2, 4, 6, 8, 10, 16. Intensity models I to IV differ in explanatory

variables (models III and IV add the term spread and industrial production, models II and IV add the rating). Results are

presented for all combinations of two further estimation specifications: in-sample or out-of-sample estimation, estimation with

or without Baseline Component. The Baseline Component captures the intra-month pattern of defaults. Low p-values would

lead to rejection of the doubly stochastic assumption.
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With fixed coefficients, no Baseline Component and the macroeconomic variables

from Das et al. (2007), the levels of the p-values are similar to the ones derived

by Das et al. (2007) for the Duffie et al. (2007) model. Based on these p-values

one would clearly reject the hypothesis that default times are generated by the

estimated default intensities. After adding the macroeconomic variables suggested

by Lando and Nielsen (2008), which is done in models III and IV, p-values go up.

If the rating is not included (model III), the test no longer rejects for bin sizes

2 to 16. Thus, the results of Lando and Nielsen (2008) are broadly confirmed in

our sample. With the rating included (model IV), the test again rejects for most

bin sizes, but the p-values are larger than without the macroeconomic variables

proposed by Lando and Nielsen (2008).

Adding the Baseline Component to the specification of the intensities tends to in-

crease the p-values, in particular for smaller bin sizes. To see why it particularly

effects smaller bin sizes, note that the intra-month timing does not affect a model’s

performance if a test is based on the defaults during an entire month. It only

matters if a bin starts or ends with a fractional month. If the bin ends on a 16th,

for example, the true expected default count would be almost equal to the default

count over the entire month as most defaults occur before the 16th. If intra-month

patterns are ignored, however, the expected default count for the time from the

1st to the 16th would be little more than one half of the expected monthly default

count. The larger the bin size, the smaller is the weight of any fractional months

at the beginning or the end of the bin compared to the full months within the bin,

and the lower is their impact on the test.

With rolling estimation, p-values are moved away from rejection for models I, II

and IV, which showed low p-values with fixed coefficients, and p-values are gener-

ally less dependent on the variables used in the intensity specification. Even with

the choice of macro-variables suggested by Das et al. (2007) one would not reject

for bin sizes one to six or one to eight (depending on whether the rating is included

or not). The effect of adding the macro variables suggested by Lando and Nielsen

(2008) is weaker than before; it only increases p-values for bin sizes 4, 10 and 16

(without Baseline Component). Moreover, adding the rating as is done in model

IV no longer reduces the p-values. This could be due to a changing information

content of ratings, which is captured through rolling estimation but which cannot

be captured with fixed coefficients.

As before, adding the Baseline Component mostly leads to an increase of p-values.

Overall, however, moving from an in-sample estimation to a rolling estimation has

a stronger effect on p-values than the inclusion of the Baseline Component. Our

findings are particularly important for practical applications, where one would typi-

cally use the most significant variables for the intensity specification. For example,
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the rating has been found to be strongly significant in the model estimation of

Section 3.1.3. We further found that the predictive power of a model with rating

outperforms the one of a model without rating. Nevertheless, the rejection of a

rating-based model (models II and IV) with fixed coefficients could mislead us to

the conclusion that one would have incurred significant errors in predicting default

clusters in the past implementing such a model. Our results with rolling estimation

show that this is not the case.

Apart from Fisher’s dispersion test, Das et al. (2007) also consider Prahl’s Test

(cf. Prahl (1999)) of clustered defaults. This test utilizes that aggregated intensi-

ties between the jumps of L are unit-exponentially distributed (cf. equation (3.3)

if defaults are generated by the estimated intensities. Based on this test, Das et

al. (2007) reject the H0 hypothesis of correctly specified default intensities for the

Duffie et al. (2007) model another time.

We do not consider this test because without further assumptions we doubt its

significance for basically one reason: In our data set, there are many days at which

several firms default. For instance, in the considered test period from 1985 on there

are 490 defaults but only 416 different default dates. There are 60 dates at which

more than one firm defaults and the maximum number of defaulted firms at a single

day is 5. The question is: What is the aggregated intensity between default events

at the same day? Not surprisingly, taking this intensity to be 0 by assuming that

all firms jointly default at the end of this day would dramatically lower the chances

of passing the test since we would obtain a large number of “0”-realizations of ran-

dom variables, which are supposed to be unit-exponentially distributed. Another

possibility would be to distribute the defaults equally across the date which would

in connection with a re-estimated Baseline Component probably lead to sufficient

results. Nonetheless, in either case, calculated p-values would depend to a possibly

large extent on the way how we treat these defaults. Note further that the exponen-

tial distribution has been implicitly tested by testing for the Poisson distribution

because this Poisson distribution is based on the same series of unit-exponentially

distributed random variables which we would consider in Prahl’s test.

Default Probabilities

After having explored the question of whether the path of observed portfolio de-

faults is likely to have been generated by the aggregated paths of default intensities,

we now assess if estimated single default intensities provide default forecasts which

are consistent with observed defaults on a single firm basis.

We base our analysis of model-implied default probabilities and defaults on a so-

called Spiegelhalter test, see Tasche (2007). The test uses as input the default
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probabilities of independent firms. In the setup considered here, conditional on

a realization of the background process X1 the firms are independent, and their

conditional default probabilities are given as (cf. Proposition 2.5.1)

T,tqi (x
1) := P

(

t < τi ≤ T | FX1

T ∗ ∧ {τi > t}
)

= 1− exp

(

−
∫ T

t

λi(u, x1(u))

)

.

Furthermore, defaults of the portfolio objects in any two disjoint time intervals,

[t1, T1] and [t2, T2] with [t1, T1] ∩ [t2, T2] = ∅, are independent conditional on a

realization of X1. This can be utilized for a Spiegelhalter test to check whether

firms default according to their estimated default probabilities

T,tqi (r
1, r2) = 1− exp

(

−
∫ T

t

λ(u, θ̂(u), r1(u), r2
i (u))du

)

in the following way: Given our portfolio of I (conditionally) independent firms

with (conditional) default probabilities T,tqi (r
1, r2

i ) over the time period [t, T ], the

Spiegelhalter test considers the mean squared errorM between default probabilities

and default indicators, i.e.

M =
1

I

I
∑

i=1

(1τi∈[t,T ] − T,tqi (r
1, r2

i ))
2.

If defaults are independent and occur according to estimated default probabilities

T,tqi (r
1, r2

i ), we have that

E[M] =
1

I

I
∑

i=1

T,tqi (r
1, r2

i )(1− T,tqi (r
1, r2

i )) and

V ar[M] =
1

I2

I
∑

i=1

T,tqi (r
1, r2

i )(1− T,tqi (r
1, r2

i ))(1− 2 T,tqi (r
1, r2

i ))
2.

Moreover, by the central limit theorem the random variable

M− E [M]
√

V ar [M]

is asymptotically standard normally distributed. Based on this observation, we can

conduct a test of the H0 hypothesis “single firms default according to the estimated

default probabilities” (and hence default intensities).

Since the test only uses default probabilities and not intensities, we have to specify

a time grid t0 = 0 < t1 < . . . < tK for which we want to consider the default

probabilities of the single firms. In case of the equidistant time grid with grid size

δ that we will use, the mean squared error which is actually used in the test is

M =
1

n∗

K
∑

k=1

I
∑

i=1

(

1δ(k−1)<τi≤δk − δk,δ(k−1)qi (r
1, r2

i ))
)2

,
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where n∗ denotes the total number of observations. Thereby, a firm contributes

to the MSE in period (δ(k − 1), δk] if either all its variables are observed at the

beginning of the period and the firm defaults during (δ(k − 1), δk] or if all its

variables are observed at the beginning and at the end / after the end of the period,

i.e. if the firm has not defaulted during (δ(k − 1), δk]. It is worth mentioning that

a firm usually enters several times but each time for a different time period; this

does not impair the test since conditional on the path of X1 defaults in disjoint

time intervals are independent as previously pointed out.

In Table 3.4, the p-values of the Spiegelhalter test with respect to different grid

sizes δ for fixed coefficients as well as for estimates derived with five-year rolling

estimation windows are presented. The tests are performed for the defaults over the

time period from January 1985 to April 2005 since for this period both estimates

are available. In case of the considered one-year time grid, we assume that a firm’s

default intensity is constant during each time interval (k − 1, k] and given by the

estimated intensity at the beginning of the period.

Fixed Coefficients Rolling Estimation

1-month grid size 1-year grid size 1-month grid size 1-year grid size

Model I 0.903 0.000∗∗∗ 0.040∗ 0.000∗∗∗

Model II 0.915 0.000∗∗∗ 0.006∗∗ 0.000∗∗∗

Model III 0.923 0.000∗∗∗ 0.019∗ 0.000∗∗∗

Model IV 0.928 0.000∗∗∗ 0.004∗∗ 0.000∗∗∗

Table 3.4: p-values of the Spiegelhalter test for equidistant time grids with sizes
1
12

and 1. Intensity models I to IV differ in explanatory variables. Results are

presented for fixed coefficients and rolling estimation. Low p-values would lead to

a rejection of the hypothesis of well-specified intensities on a single firm basis.

The presented results for the one-year grid size show that current default intensities

do not provide a good proxy for the single default probabilities over the subsequent

year – no matter which model specification or estimation approach we consider.

This has to be attributed to the decreasing predictive power of the intensities. As

previously mentioned, a default intensity only provides a firm’s default probability

over the next infinitesimally small time step.

Regarding the one-month time grid, we find that the Spiegelhalter test is gener-

ally more favorable for the models with fixed coefficients: The p-values of all four

specifications are about 90% in this case. With rolling estimations, p-values are
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considerably lower leading to a rejection of all estimated models at the 5% signif-

icance level. One possible explanation of this outcome is that the total estimated

aggregated intensity is larger than the number of observed defaults, while with fixed

coefficients the aggregated intensity matches the number of observed defaults.8 If

the observed number of defaults is smaller than the expected number, the observed

mean squared error M tends to be smaller than its estimated expectation; the

smaller the observed mean squared error M is in comparison with its expecta-

tion, the more likely becomes a rejection of the estimated model on a single firm

basis. The results of the Spiegelhalter test therefore show that in case of rolling

estimations at least some of the default intensities might not be consistent with the

observed default behavior on a single firm basis. However, the fact that switching

between different explanatory variables (models I-IV) has only a minor effect on

the results, indicates that – without further investigations – these findings have to

be treated precautiously. This provides a new area of future research.

In summary, we conclude that Baseline Component and rolling estimations con-

siderably improve the estimation results for the default intensities on a portfolio

basis. When both modifications are made, the test suggested by Das et al. (2007)

no longer rejects the hypothesis of a well-specified aggregated portfolio intensity.

In a recent contribution, Lando and Nielsen (2008) arrive at similar results regard-

ing the aggregated portfolio intensity. Specifically, they modify the intensity model

of Duffie et al. (2007) by adding explanatory variables. In our data set, adding in-

dustrial production and the term spread as suggested by Lando and Nielsen (2008)

also renders the model forecasts consistent with observed default clustering. As

long as estimation is conducted in-sample, however, the results are sensitive to the

inclusion of the credit rating, which is a natural candidate for inclusion because

it significantly improves standard metrics of default prediction power. Taken to-

gether, the results presented by Lando and Nielsen (2008) and ourselves provide a

strong case for reconsidering the results of Das et al. (2007).

3.2 A Model for Default Intensities

In the previous Section 3.1, we estimated default intensities for a large number of

US and non-US corporates and assessed the quality of our estimations with respect

to default prediction and default clustering. Further investigations regarding the

dynamics of the estimated intensities will follow in Sections 3.3 and 3.5. By in-

troducing a model for the joint intensity dynamics, the current section builds the

foundation of this analysis.

8For example, in case of model IV with rolling estimations the aggregated integrated intensity

is 568.70 compared with only 490 observed defaults.
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The model that we introduce in the following is inspired by Duffie and Gârleanu

(2001) and Mortensen (2006) but also includes our findings presented in Section

2.8, where we gave a detailed discussion of the Duffie and Gârleanu (2001) and its

potential shortcomings. By introducing additional features, which we consider to

be important, we obtain a model that represents an extension of their model. As

already mentioned, the performance of the different model versions in the context

of actual and simulated default (intensity) data is then assessed in Sections 3.3, 3.4

and 3.5.

Introduction of Our Intensity Model

Like the Duffie and Gârleanu (2001) model, our model also represents a Bottom-

Up model and relies on the conditional independence assumption (see Subsection

2.5.1). Also, we use the same idea as in Mortensen (2006) of one common factor

λc which all intensities are exposed to and propose default-trigger processes Λi of

the form9

Λi(t) = ai

(
∫ t

0

λc(s)ds +

∫ t

0

λ̃i(s)ds

)

.

In terms of Definition 2.1.1, we assume the following:

• The background process X1 is given by

X1 =
(

λc, λ̃1, . . . , λ̃I , Z
)

,

where the regime process Z denotes a Markov-Chain, i.e. a finite state Markov

process with constant transition intensities. We denote by Z its initial state

and by Q its generator matrix containing the transition intensities. Moreover,

the r-dimensional state space of Z is as in Section 2.7 given by {e1, . . . , er}
with em = (11=m, 12=m, . . . , 1r=m) for all m ∈ {1, . . . , r}. For simplicity, we

assume that Z evolves independently of
(

λc, λ̃1, . . . , λ̃I

)

, although extensions

with dependencies between both processes are straight-forward. The remain-

ing, first I + 1 coordinates of the background process X1 are assumed to be

positive processes, which are not necessarily independent (for details see be-

low). As always, we assume that FX1

T ∗ = FΛ
T ∗ and FN

t
are independent given

FX1

t .

• bi(s, X
1(s), X2(s)) = ai

(

λc(s) + λ̃i(s)
)

.

• νm(s, RI
0+) = 0, for each m.

It is worth noting that simultaneous defaults are not possible in our model since

νm(s, RI
0+) = 0 (cf. Proposition 2.3.1).

9As usual, generalizations to p-dimensional factor processes are straight-forward.
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Apart from the regime process Z, so far our model is the same as in Mortensen

(2006). Both models, however, differ in the dynamics which are presumed for
(

λc, λ̃1, . . . , λ̃I

)

. We assume that each λc and λ̃i evolves according to the SDE

dλ(t) = κ (Z(t)̟η − λ(t)) dt + σ
√

λ(t) dW (t) + dJ(t), λ(0) = λ. (3.4)

Here ̟ ∈ [0, 1]r and κ, σ and η are positive constants, W is a standard Wiener

process and J is now – different to the BAJD model considered in Section 2.8 – a

point process that jumps with intensity

Z(t)̟µ + ξ(1)λ(t) + ξ(2)Θ(t) (3.5)

and has positive, independently Exp
(

1
ζ

)

-distributed jumps. The process Θ that

shows up in the jump intensity specification is given by the SDE

dΘ(t) = (λ(t)− ǫΘ(t)) dt, Θ(0) = Θ (3.6)

with solution

Θ(t) = Θ +

∫ t

0

λ(s)e−ǫ(t−s)ds. (3.7)

Furthermore, µ, ζ, ξ(1), ǫ and ξ(2) are positive constants. We will call a process λ

of the form given by equations (3.4), (3.5) and (3.6) a basic jump diffusion and

denote it by

BJD
(

λ, Θ, Z,Q, ̟, η, κ, σ, µ, ζ, ξ(1), ǫ, ξ(2)
)

.

Having defined the marginal dynamics of each λc and λ̃i in our model, it still

remains to specify their joint dynamics. To do so, we presume that

λc is a BJD
(

λ, Θ, Z,Q, ̟, η, κ, σ, µ, ζ, ξ(1), ǫ, ξ(2)
)

and

λ̃i is a BJD
(

λ, Θ, Z,Q, 1−̟, η, κ, σ, µ, ζ, ξ(1), ǫ, ξ(2)
)

. (3.8)

In addition, we assume that λc and λ̃i are driven by independent Wiener processes

W and jump processes J that are assumed to be orthogonal. This means that

conditional on the path of the regime process Z the λc and λ̃i are independent.

Like in the Duffie and Gârleanu (2001) model investigated in Section 2.8, ̟ controls

the dependence level between the portfolio objects. Values close to 1 imply a strong

dependence between the intensities, while values close to 0 entail that intensities

evolve almost independently. However, the dependence level now depends on the

regime of Z, too, because the state of Z identifies one of the coordinates of ̟ as

the current dependence level. Our model can therefore incorporate times with low

dependencies and times with strong dependencies between the firms’ intensities.



104 CHAPTER 3. MODELING OF STRUCTURED CREDIT PRODUCTS

The probability for a change in the dependence level depends on the generator

matrix Q. It is worth noting that the Duffie and Gârleanu (2001) model is included

as a special case in our model; it is obtained by assuming only one regime for Z,

i.e. r = 1, and by setting ξ(1) = ξ(2) = 0.

Model Properties and Important Formulas

Before analyzing the marginal intensity dynamics in our model, we first state some

important “calculation rules”, which apply when working with basic jump diffu-

sions. Also, these rules will be very useful in Section 3.5. Given two basic jump dif-

fusions λ1 and λ2 with parameters BJD
(

λk, Θk, Z,Q, ̟k, η, κ, σ, µk, ζ, ξ(1), ǫ, ξ(2)
)

and k ∈ {1, 2}, which are independent conditional on the path of the regime process

Z, we have that

λ1 + λ2 is a BJD
(

λ1 + λ2, Θ1 + Θ2, Z,Q, ̟1 + ̟2, η, κ, σ, µ1 + µ2, ζ, ξ(1), ǫ, ξ(2)
)

(3.9)

aλk is a BJD

(

λk, Θk, Z,Q, ̟k, aη, κ,
√

aσ, µk, aζ,
ξ(1)

a
, ǫ,

ξ(2)

a

)

. (3.10)

Both results can easily be shown using the Itô-formula. We use these rules to

investigate the marginal dynamics of the default intensities in our model. Namely,

an application of equations (3.9) and (3.10) yields that a firm’s default intensity

λi, i.e.

λi := ai(λ
c + λ̃i),

evolves according to the SDE

dλi(t) = κ (aiη − λi(t)) dt +
√

aiσ
√

λi(t) dW (t) + dJ(t), (3.11)

λi(0) = λi = ai

(

λ
c
+ λ̃i

)

,

where J jumps with intensity

µ +
ξ(1)

ai

λ(t) +
ξ(2)

ai

Θi(t) (3.12)

and has positive, independently Exp
(

1
aiζ

)

-distributed jumps. Θi is again given by

the SDE

dΘi(t) = (λi(t)− ǫΘi(t)) dt, Θi(0) = ai

(

Θ
c
+ Θ̃i

)

. (3.13)

Observe that the dynamics of the single λi do not depend on the regime process Z

anymore. Since Z only affects their joint dynamics, it can therefore be interpreted

as the process that drives the portfolio dependence structure. In the following, we
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call a process λi of the form given by equations (3.11), (3.12) and (3.13) a self-

affecting affine jump diffusion with memory effect (for an explanation of this name

see below) and denote it by

SAJDM

(

λi, Θi, aiη, κ,
√

aiσ, µ, aiζ,
ξ(1)

ai

, ǫ,
ξ(2)

ai

)

.

As previously indicated, our credit portfolio model includes other models as special

cases. In particular, the single intensity version of the model, given by equations

(3.11), (3.12) and (3.13), includes:

• µ = ξ(1) = ξ(2) = 0: Cox-Ingersoll-Ross model (CIR). Model without jumps.

This process has been introduced by Cox et al. (1985) as a model of the short

rate.

• ξ(1) = ξ(2) = 0: Basic affine jump diffusion (BAJD). Jumps occur inde-

pendently of the state of λi. This model has been proposed by Duffie and

Gârleanu (2001) as a model of the default intensity within a credit portfolio

application (see Section 2.8).

• ξ(2) = 0: The jump intensity of J is state dependent but does not depend

on the process Θi. We refer to such a model as a self-affecting affine jump

diffusion (SAJD) in the following.

As the main difference between our model and the well-known CIR and BAJD

models, the jump intensity of J now depends on the state of λi as well as on a

process Θi. This process keeps hold of the past intensity, where more weight is put

on the more recent history (cf. equation (3.7)). How strong past intensities enter

depends on the parameter ǫ. For ǫ very large, for example, only the very recent

intensity history will be relevant. In summary, jumps of the intensity increase the

probability of further jumps in our model, and high intensities in the past imply

a high likelihood for future intensity jumps. This means that periods of high in-

tensity volatility are likely to be followed by a high activity of the intensity in the

future resulting in “volatility explosions”.

After having analyzed the marginal intensity dynamics in our model, we now re-

turn to the portfolio perspective. First, we apply Theorem 2.7.1 to calculate an

important transform of an integrated basic jump diffusion:

Proposition 3.2.1 If the process λ evolves according to equations (3.4), (3.5) and

(3.6), we have that

T,tϕR •
0 λ(s)ds (c) = E

[

e−c
R T

t
λ(s)ds

∣

∣

∣
λ(t), Θ(t), Z(t)

]

= eZ(t)u(t,T )+v1(t,T )λ(t)+v2(t,T )Θ(t), (3.14)
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where c is of the form

c =

{ −iw , w ∈ R or

w , w ∈ R0+.

Furthermore, the complex-valued functions u, v1 and v2 of equation (3.14) solve the

following system of ODEs: For all m ∈ {1, . . . , r}, um solves

0 = u̇m + v1κη̟m + µ̟m
ζv1

1− ζv1

+
∑

n 6=m

(

eun−um − 1
)

Qmn,

and v1 and v2 solve

0 = v̇1 − c− v1κ + v2 + 0.5v2
1σ

2 + ξ(1) ζv1

1− ζv1
,

0 = v̇2 + ξ(2) ζv1

1− ζv1
− ǫv2

with terminal conditions u(T, T ) = v1(T, T ) = v2(T, T ) = 0.

Proof: The result is a special case of Theorem 2.7.1 and the ODEs stated there.

Here, we apply the theorem to Y ′ = (
∫ •
0

λ(s)ds, λ, Θ) with (c′1, c
′
2, c

′
3) = (c, 0, 0).

First, we get that v′
1(t, T ) ≡ −c and can therefore plug v′

1(t, T ) ≡ −c into the

ODEs for v′
2 and v′

3. By finally setting v1(t, T ) = v′
2(t, T ) and v2(t, T ) = v′

3(t, T ),

the claim follows.

2

Since the SAJDM model represents a special case of the BJD model, Proposition

3.2.1 can be used to calculate single survival probabilities. These are obtained by

calculating the transform (3.14) for c = 1 and by setting the term which is related

to jumps of the regime process Z to 0, because in this case the intensity dynamics

do not depend on Z. Then, u, v1 and v2 are given as solutions of

0 = u̇ + v1κη + µ
ζv1

1− ζv1
,

0 = v̇1 − 1− v1κ + v2 + 0.5v2
1σ

2 + ξ(1) ζv1

1− ζv1

,

0 = v̇2 + ξ(2) ζv1

1− ζv1
− ǫv2,

with terminal conditions u(T, T ) = v1(T, T ) = v2(T, T ) = 0. As we will show in

Section 3.5, Proposition 3.2.1 will be also very useful for calculating the portfolio

loss distribution.
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By analyzing the expected volatility (cf. Definition 2.6.1 on p. 50) of the Duffie

and Gârleanu (2001) model in Section 2.8, we found that defaults are relatively

evenly distributed over time in this model. In our model, the expected volatility

can similarly be calculated as

T,tσL = E

[

I
∑

i=1

∫ T

t

ai1τi>s

(

λc(s) + λ̃i(s)
)

ds

∣

∣

∣

∣

∣

X1(t)

]

+E

[

∫ T

t





(

I
∑

i=1

1τi>sai

)2

σ2λc(s) +

I
∑

i=1

1τi>sa
2
i σ

2λ̃i(s)



 ds

+2ζ2

∫ T

t

(

Z(s)̟µ + ξ(1)λc(s) + ξ(2)Θc(s)
)

(

I
∑

i=1

1τi>sai

)2

ds

+2ζ2
I
∑

i=1

∫ T

t

(

Z(s)(1−̟)µ + ξ(1)λ̃i(s) + ξ(2)Θ̃i(s)
)

1τi>sa
2
i ds

∣

∣

∣

∣

∣

X1(t)

]

+E

[

∫ T

t

I
∑

i=1

1τi>sa
3
i

(

λc(s) + λ̃i(s)
)3

ds

∣

∣

∣

∣

∣

X1(t)

]

.

The first term, the second and the last term are equal in the Duffie and Gârleanu

(2001) model. What is different are the two terms in the middle, which are related

to the jump behavior of the intensities. Now, both terms depend on the state of

the intensity as well as on the averaged, weighted past intensity. This shows that in

our model the default clustering will vary much more over time than in the Duffie

and Gârleanu (2001) model.

Figure 3.7 displays simulated paths of a BAJD and a SAJD model. While in the

first model intensity jumps are evenly distributed over time, in the SAJD model

they are clustered (in the example path around year 3). Let us, for instance, assume

that the displayed paths represent the factor λc in our portfolio model. Then, in

the SAJD model defaults would be heavily clustered around year 3, while in the

BAJD model the observed default clustering would be less pronounced.

All in all, the introduced model represents a flexible approach for modeling the

dynamics of default intensities. From a mathematical point of view, the analytical

tractability of the model is a further appealing and important feature. A detailed

discussion of our model choice in the context of actual default intensity data is

postponed to Sections 3.3 and 3.5 where we present its calibration to the default

intensities estimated in Section 3.1.
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Figure 3.7: Simulated paths of a BAJD and a SAJD model over a five-year period.

The parametrization of the diffusion component is in both models η = 0.005, κ =

5.5 and σ = 0.1. For the BAJD model, the jump parameters are µ = 0.975 and

ζ = 0.07, while for the SAJD model we have µ = 0, ζ = 0.07 and ξ(1) = 60. Both

models imply a five-year default rate of about 8%.

3.3 Single Firm Modeling

We now consider the estimation of the different versions of our model introduced

in the previous section to the intensities estimated in Section 3.1. While Section

3.5 addresses the challenge of modeling the joint dynamics of the estimated default

intensities, in this section we focus on modeling default intensities on a single firm

basis. In particular, we deal with the following questions:

• What models describe the single intensity dynamics best from a statistical

point of view?

• How do the different models perform with respect to default prediction?

Our analysis uses estimated intensities based on model IV with Baseline component

and rolling estimation windows of five years and also – as a robustness check –

intensities based on model III with fixed coefficients and Baseline component since

both models where not rejected by Fisher’s dispersion test conducted in Section

3.1 (cf. Table 3.3 on p. 96).

The remainder of the section is organized as follows. Subsection 3.3.1 describes our
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methodology. In Subsection 3.3.2, we then present the estimation results, compare

the statistical significance of the different models and assess their predictive power.

3.3.1 Model Properties and Estimation Methodology

Table 3.5 summarizes model-implied instantaneous means and variances of default

intensities for the four single intensity models (CIR, BAJD, SAJD, SAJDM), which

we will consider throughout this section. It shows that a default intensity following

a SAJD or SAJDM model allows for stronger “volatility explosions” than the tra-

ditional models. Although in case of a CIR or BAJD model the volatility σ
√

λ(t)

is also state dependent, very fast, sudden increases of the intensities are less likely.

Making the jump intensity of J state dependent and dependent on the averaged,

weighted past intensity represents a feasible way of enriching the established mod-

els by such effects.

i) Mean

CIR BAJD SAJD
Et[dλ(t)]

dt
κ(η − λ(t)) κ(η − λ(t)) + µζ κ(η − λ(t)) + ζ(µ + ξ(1)λ(t))

SAJDM
Et[dλ(t)]

dt
κ(η − λ(t)) + ζ(µ + ξ(1)λ(t) + ξ(2)Θ(t))

Et[dΘ(t)]
dt

λ(t)− ǫΘ(t)

ii) Variance

CIR BAJD SAJD
V art[dλ(t)]

dt
σ2λ(t) σ2λ(t) + µ2ζ2 σ2λ(t) + 2ζ2(µ + ξ(1)λ(t))

SAJDM
V art[dλ(t)]

dt
σ2λ(t) + 2ζ2(µ + ξ(1)λ(t) + ξ(2)Θ(t))

V art[dΘ(t)]
dt

0

Table 3.5: Instantaneous mean and variance of the default intensity λ in a CIR,

BAJD, SAJD or SAJDM single firm intensity model.

Our data set comprises 331954 (monthly) default intensities for 3846 different firms

which have been estimated in Section 3.1. For the time being, we are only inter-

ested in calibrating the four different models to the default intensity time series of
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each single firm. Unfortunately, our data set contains firms for which only few ob-

servations are available. To reduce variances of the estimators on the one hand but

to diminish the data set not too strongly on the other, we disregard firms with less

than 24 observations. This constraint reduces the data set to 250090 observations

belonging to 3241 different firms.

Model inference is conducted via ML. Given that we observe a firm’s default in-

tensity λ on a time grid t1 < . . . < tK , – due to the Markovian model structure –

the corresponding likelihood function L(θ; λ) is given by

L(θ; λ) =

K
∏

k=2

tk ,tk−1
gλ (λ(tk); θ), (3.15)

where t+∆,tgλ denotes the conditional density of λ(t+∆) given λ(t) and a particular

model parametrization θ. As usual, the ML estimator θ̂i is obtained as

θ̂i = arg max
θ

L(θ; λ).

In the most general case of a SAJDM model, the parameter vector θ has 8 entries,

i.e. θ =
(

η, κ, σ, µ, η, ξ(1), ξ(2), ǫ
)T

. The main difficulty in the ML estimation is to

derive the transition density t+∆,tgλ for the intensity models considered.

Since all models represent exponential affine models, a possible way of obtaining

this density is the Fourier inversion of the corresponding conditional characteristic

function of λ(t + ∆) given λ(t):

t+∆,tϕλ (−iw) = E
[

eiw(λ(t+∆)−λ(t))
∣

∣λ(t), Θ(t)
]

= (3.16)

= e(u(t,t+∆)+(v1(t,t+∆)−iw)λ(t)+v2(t,t+∆)Θ(t)).

It can be calculated based on Theorem 2.7.1 and is given semi-analytically in our

model up to the solution of an ODE system. Here, the complex-valued functions

u, v1 and v2 solve the following system of ODEs

0 = u̇ + v1κη + µ
ζv1

1− ζv1
,

0 = v̇1 − v1κ + v2 + 0.5v2
1σ

2 + ξ(1) ζv1

1− ζv1

, (3.17)

0 = v̇2 + ξ(2) ζv1

1− ζv1
− ǫv2,

with terminal conditions u(t+∆, t+∆) = 0 = v2(t+∆, t+∆) and v1(t+∆, t+∆) =

iw. In case of a BAJD model (ξ(1) = ξ(2) = 0), even explicit solutions of the ODEs

can be stated, for details see Appendix A. As hinted by Singleton (2001), t+∆,tgλ (x)

can then be calculated by Fourier inversion:

t+∆,tgλ (x; θ) =
1

π

∫

R+

Re
[

e−iwx
t+∆,tϕλ (−iw)

]

dw,
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where Re denotes the real part of complex numbers. For a detailed discussion of

ML estimation based on the characteristic function we refer to Singleton (2001).

However, in view of our large data set with 250090 observations inverting the char-

acteristic function is computationally too cumbersome since for each point of each

intensity time series, the characteristic function has to be inverted. Therefore,

instead of applying ML estimation based on the characteristic function we approx-

imate the conditional density t+∆,tgλ (·; θ) and estimate parameters based on this

approximation. ML estimates derived from an inversion of the characteristic func-

tion are only used to check the quality of the approximation.

The basis of our approximation of t+∆,tgλ (·; θ) is the time-discretization of the SDE

(3.11), which yields

λ(t + ∆)− λ(t) = κ(η − λ(t))∆ + σ
√

λ(t)∆N0,1 + Υ∆J(t) (3.18)

with N0,1 denoting a standard-normally random variable. Υ is given as an Exp
(

1
ζ

)

-

distributed random variable and ∆J(t) is Bernoulli-distributed with parameter

1−exp(−∆(µ+ξ(1)λ(t)+ξ(2)Θ(t))). Based on this discretization, the approximate

conditional density t+∆,tg̃λ (·; θ) is given by a convolution of a Gaussian and a mix-

ture of an exponential and a Bernoulli-distributed random variable. In particular,

given ∆J(t) = 1 and given λ(t), the likelihood of observing λ(t + ∆) is

h(o(1), o(2)) :=

∫ ∞

0

1

ζ
e−

x
ζ

1√
2πo(2)

e
−0.5

„

o(1)−x

o(2)

«2

dx, (3.19)

where o(1) := λ(t + ∆)− λ(t)− κ(η − λ(t))∆ and o(2) := σ
√

λ(t)∆. Therefore the

approximate transition likelihood is given by

t+∆,tg̃λ (λ(t + ∆); θ) =
(

1− e−∆(µ+ξ(1)λ(t)+ξ(2)Θ(t))
)

h(o(1), o(2)) (3.20)

+e−∆(µ+ξ(1)λ(t)+ξ(2)Θ(t))fN
κ(η−λ(t))∆,σ

√
λ(t)∆

(λ(t + ∆)− λ(t)) ,

where fǫ1,ǫ2 denotes the density of a Gaussian random variable with mean ǫ1 and

standard deviation ǫ2. It is important to note that the integral (3.19) can substan-

tially be simplified by considering integration with respect to

z :=
1

o(2)

(

x−
(

o(1) − o(2)o(2)

ζ

))
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instead of x, which yields

∞
∫

0

1

ζ
e−

x
ζ

1√
2πo(2)

e
−0.5

„

o(1)−x

o(2)

«2

dx

=
1

ζ
e
− o(1)

ζ
+ o(2)o(2)

2ζ2

∞
∫

− 1

o(2)

“

o(1)− o(2)o(2)

ζ

”

1√
2π

e−0.5z2

dz

=
1

ζ
e
− o(1)

ζ
+ o(2)o(2)

2ζ2

(

1− FN0,1

(

−o(1)

o(2)
+

o(2)

ζ

))

.

Here, FN0,1 denotes the CDF of a standard Gaussian random variable. We already

pointed out that computational efficiency is crucial to our problem due to the large

data set considered. After our integral transformations – instead of calculating the

integral (3.19) by brute force numerical integration – the likelihood can be very

efficiently computed by evaluating a standard Gaussian CDF and by multiplying

it with some factor. Still, there remains one problem: For small values of ζ , e.g.

ζ < 0.01, the factor becomes very large while the CDF approaches 0. To avoid

numerical instabilities, we rely in this case on Gauss-Laguerre integration (see e.g.

Press et al. (2007)) of the basic integral (3.19). We found that using 10 points in

the Gauss-Laguerre integration is sufficient to guarantee a high degree of accuracy,

in particular a higher degree of accuracy than provided by the numerical integration

routines implemented in the GNU Scientific Library (GSL).10 On the other hand,

integration still remains faster by approximately a factor of 100 compared to brute

force numerical integration based on the GSL. In total, the approximation of the

SDE in combination with the efficient calculation of the integral (3.19) gives rise

to a very fast ML estimation algorithm.

3.3.2 Estimation Results for the Single Firm Intensity Mod-

els

In the following, we provide the results of our estimation. First we assess the

goodness of the approximation (3.18) of the transition density in the context of two

extreme example default intensity paths, which can be found in the data set. We

then investigate the ability of the different models to explain the default intensities

of all firms. Finally, we measure the predictive power of the intensity models.

Goodness of the Approximation

In Figure 3.8 the estimated default intensities of two firms in the data set, General

Electric and Waxman Industries, are displayed. Both firms represent extreme de-

10See www.gnu.org for detailed information.
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Figure 3.8: Estimated default intensities of General Electric (left) and Waxman

Industries (right) based on model IV with Baseline Component and rolling five-

year estimation windows.

fault intensity examples: While General Electric exhibits one of the lowest default

intensities in the data set with values of magnitude 10−5, Waxman Industries’s

maximum observed intensity is close to 4 and the firm defaulted at the end of the

time series in June 2000 after a missed coupon payment. It is worth mentioning

that a default intensity of 10−5 implies a monthly default probability of 0.0000833%

whereas an intensity of 4 corresponds to a monthly default probability of more than

28%.

η κ σ µ ζ ξ(1)

General Electric

CIR Model 2.92e-08 0.118 0.00115 – – –

(1.71e-07) (0.314) (0.00136) – – –

Waxman Industries

CIR Model 100 0.000278 0.768842 – – –

(1.03e-07) (1.85e-06) (0.338) – – –

BAJD Model 0.0247 1.16 0.383 1.00 0.499 –

(1.43e-12) (0.911) (0.291) (1.32) (0.401) –

SAJD Model 0.0173 2.38 0.316 0.0 0.345 17.9

(0.0320) (2.83) (0.290) (0.0) (0.422) (22.7)

Table 3.6: Parameter estimates of three models (CIR, BAJD, SAJD) for General

Electric and Waxman Industries based on the approximation of the transition den-

sity. For General Electric the jump part has been estimated to be 0; for Waxman

Industries, the memory effect was insignificant. Estimates based on the character-

istic function are provided in parentheses.
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Parameter estimates for the two example firms are presented in Table 3.6. We do

not report estimates of the jump models in case of General Electric since the jump

component was estimated to be 0. Furthermore, in case of Waxman Industries

the memory effect was insignificant. Estimates obtained from an inversion of the

characteristic function are provided in parentheses. By simply looking at Figure

3.8, one would have probably guessed that a jump-diffusion model is by far better

able to explain the observed intensity path of Waxman Industries. This conjecture

is underpinned by our estimates. For the CIR, estimates are rather “dubious”,

but as soon as we include the possibility of jumps estimated parameters become

much more plausible: The mean reversion level drops, the speed of mean reversion

increases and volatility moves from the Brownian part into the jump part. In

particular, when incorporating a self-affecting model feature jumps are estimated

to be of pure self-affecting nature since µ is 0.

Furthermore, when comparing the estimates based on our approximation with the

results derived from an inversion of the characteristic function we observe that

the values are similar aside from the CIR estimates in case of Waxman Industries.

However, in this case, the CIR model is obviously not capable of modeling the

intensity path sufficiently well probably leading to unstable estimators. All in all,

the proposed approximation seems to give rise to reliable estimates.

Comparing the Statistical Significance of the Different Models

The examples of Waxman Industries and General Electric show that there are firms

in the data set whose default intensities are strongly driven by jumps (Waxman

Industries) and other firms whose default intensity dynamics seem to be sufficiently

well described by a simple CIR process (General Electric). In this subsection, we

formalize our investigation of the question of which of the four models appears to

be most appropriate in order to model the default intensity dynamics.

The typical way of comparing nested models estimated by ML is to apply a χ2-

significance test. By standard ML theory,

−2
(

log
(

L0(θ̂0)
)

− log
(

L1(θ̂1)
))

is asymptotically χ2-distributed with n1 − n0 degrees of freedom. Here, L0 (L1)

denotes the likelihood function under H0 (H1) and n0 (n1) the number of parame-

ters under H0 (H1).

An alternative approach, which is sometimes considered in the literature and does

not depend on large sample theory, is to consider the so-called Bayes factor, see

Kass and Raftery (1995) or Eraker et al. (2003). When following this approach,

one basically utilizes the same information, i.e. the marginal likelihoods, in order
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to compare the different models but compares the marginal likelihoods directly.

As already indicated through its name, when comparing the quality of the different

models’ fit based on the Bayes factor we follow a Bayesian approach: Given two

different models “a” and “b” and assuming positive priors for the two models, the

posterior odds ratio is given as

P(a|λ)

P(b|λ)
=

P(λ|a)

P(λ|b) ·
P(a)

P(b)
=
La(θ̂a)

Lb(θ̂b)
· P(a)

P(b)
(3.21)

where one usually refers to the first ratio of the right hand side of equation (3.21)

as the Bayes factor. In other words, “posterior-odds-ratio = Bayes factor × prior-

odds-ratio”. The interpretation of the obtained odds ratio is the following: Given

prior ignorance, i.e. P(a)
P(b)

= 1, one would favor model “a” against “b” with a ratio

of P(λ|a)
P(λ|b) to be the “right” model.

In order to interpret the Bayes factor La(θ̂a)

Lb(θ̂b)
, Kass and Raftery (1995) provide the

following scale:

2 log

(

La(θ̂a)

Lb(θ̂b)

)

∈



















[0, 2) → not to mention

[2, 6) → positive evidence against “b”

[6, 10) → strong evidence against “b”

[10,∞) → very strong evidence against “b”

When considering model “a” vs. “b”, a Bayes factor value of 15 would for exam-

ple indicate strong evidence against model “b”. It is important to note that due

to their marginal structure odds ratios do not automatically prefer more complex

models (cf. Eraker et al. (2003)). One therefore often refers to the Bayes factor as

an “automatic Occam’s razor” (see Smith and Spiegelhalter (1982)).

As previously depicted, in case of Waxman Industries a jump diffusion model pro-

vides a much better fit to the data than a pure diffusion model. Not surprisingly,

based on the Bayes factor and according Kass and Raftery (1995) we find very

strong evidence against a BAJD and a CIR model. While in addition both models

are rejected by a χ2-significance test with p-values of approximately 0, the test

does not reject the SAJD model. In case of General Electric, on the other hand,

the CIR model is not rejected, and we do not find any evidence against the CIR

model leading to the conclusion that the intensity dynamics of General Electric are

sufficiently well described by a CIR process.

But how is the situation in the whole data set? In Table 3.7, the results for all

3241 firms are displayed. We provide the number of firms for which we find evi-

dence against a particular model as well as the number of firms among these that
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CIR vs. BAJD BAJD vs. SAJD SAJD vs. SAJDM

i) Intensities based on model III (fixed coefficients)

χ2-significance Test (0.1%)

Not Significant 1176 (65) 2565 (239) 2990 (376)

Significant 2065 (322) 676 (148) 251 (11)

Bayes factor

Not to mention 1099 (39) 2078 (128) 2611 (296)

Positive 2142 (348) 1163 (259) 630 (91)

Strong 2118 (340) 879 (205) 395 (29)

Very strong 2096 (332) 703 (157) 308 (18)

ii) Intensities based on model IV (rolling estimations)

χ2-significance Test (0.1%)

Not Significant 1448 (61) 2593 (229) 2951 (376)

Significant 1793 (326) 648 (158) 290 (11)

Bayes factor

Not to mention 1365 (33) 2100 (92) 2617 (318)

Positive 1876 (354) 1141 (295) 624 (69)

Strong 1842 (339) 850 (224) 419 (26)

Very strong 1821 (336) 680 (167) 350 (17)

Table 3.7: Comparison of the single firm intensity models with respect to their

statistical significance based on a standard χ2-significance test (significance level

0.1%) and the Bayes factor with number of defaulted firms in parentheses. The

total number of defaults in the considered data set is 387.

eventually defaulted (in parentheses). Furthermore, we state the number of firms

(and the number of corresponding defaulters) for which a particular model was

rejected at a significance level of 0.1% based on a standard χ2-significance test.

First, we observe that differences between the two data sets are minor. Second, we

find for up to two thirds of the firms (56 % in case of data set (ii)) strong evidence

against a CIR model when compared to a BAJD model. Even more importantly,

for approximately 85% (86%) of the defaulted firms we find very strong evidence

against a CIR model. Still for almost 36 % (35%) of the firms and for 67% (76%)

of the defaulted firms we find evidence against a BAJD in favor of a SAJD model.

Finally, Table 3.7 also provides evidence against a SAJD in case of 19% (19%) of

all firms and 24 % (18%) of the defaulted firms.
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In total, we see evidence for jumps of the intensities, in particular, for firms of bad

creditworthiness which eventually defaulted. We therefore conclude that jumps

should be taken into consideration when setting up a model of the default in-

tensities for firms of lower creditworthiness. Also, in this case it is advisable to

incorporate a self-affecting feature into a model, while the memory effect seems to

be of lower relevance.

To the best of our knowledge, we are the first who investigate the dynamics of

intensities under the objective, i.e. real-world, measure. Our findings are of great

importance from a credit portfolio management perspective and for model spec-

ification under the real-world measure in general. So far, Mortensen (2006) has

pointed out the importance of jumps under the risk-neutral measure for being

able to calibrate an intensity-based credit portfolio model to quoted prices of stan-

dardized structured credit products such as the Itraxx tranches. However, due to

manifold possibilities of switching from the risk-neutral to the actual measure, in

particular, when a risk premium is attached to the default event itself it is impor-

tant to note that the results of Mortensen (2006) do not necessarily imply jumps

of the intensities under the actual measure.

Default Prediction

In Subsection 3.1.3 we used the accuracy ratio AR to measure the ability of the

different models to rank firms according to their default probability. We found

that ranking firms based on their current default intensity yields excellent results,

in particular compared with a previous study of Duffie et al. (2007). Nevertheless,

when ordering firms according to their default intensity one eventually “throws

away” any time series information on the intensities. For instance, a currently high

default intensity might again go down and therefore does not necessarily imply a

high default likeliness of the firm in the future. The probability for default inten-

sity changes depends on the model which we belief to be the true underlying data

generating model and can be estimated from observed default intensities based on

this model.

In the following, we investigate the predictive power of the different default in-

tensity models introduced in Section 3.2. Based on parameter estimates for our

four basic single firm intensity models (CIR, BAJD, SAJD, SAJDM), we calculate

model-implied default probabilities and rank the firms according to this default

probability. As previously mentioned, the default probability over the prediction

horizon represents the natural ranking criterion when analyzing a model’s predic-

tive power. In the exponential-affine setup considered here, default probabilities

can conveniently be calculated (cf. Proposition 3.2.1). Of course, when computing

out-of-sample accuracy ratios parameter estimates are only based on past intensity
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observations.

1985-2005 1993-2005

1-year horizon 5-year horizon 1-year horizon 5-year horizon

In-sample

Current Intensity 0.908 0.797 0.920 0.796

CIR Model 0.909 0.787 0.919 0.773

BAJD Model 0.897 0.861 0.912 0.869

SAJD Model 0.911 0.866 0.925 0.874

SAJDM Model 0.914 0.870 0.930 0.880

Out-of-sample

Current Intensity 0.908 0.797 0.920 0.796

CIR Model 0.907 0.792 0.919 0.793

BAJD Model 0.894 0.768 0.903 0.755

SAJD Model 0.898 0.771 0.906 0.759

SAJDM Model 0.897 0.772 0.906 0.762

Table 3.8: Accuracy ratios of the single firm intensity models averaged from 1985

on and from 1993 on. Underlying default intensities have been estimated based on

model IV with rolling, five-year estimation windows. The total number of defaults

in the considered data set was 387.

In Table 3.8, one-year ahead and five-year ahead accuracy ratios – averaged from

1985 and from 2003 on – are displayed for the considered models. Moreover, we

provide accuracy ratios derived from ranking firms merely based on their current

intensity. The underlying default intensities have been estimated based on model

IV with rolling estimations.11 We observe that accuracy ratios based on current

intensities are higher than those reported in Table 3.2. This has to be attributed to

the definition of the accuracy ratio that we use. Recall that our definition follows

Duffie et al. (2007); we do not normalize the accuracy ratio by the fraction of

survivors as suggested by Tasche (2007). We already pointed out that low default

rates can favor high accuracy ratios in this case.12

In addition, we find that out-of-sample accuracy ratios for the intensity models are

11Results remain qualitatively the same for default intensities estimated with model III and

fixed coefficients. Only the levels of the accuracy ratios are generally lower since in this case the

rating is not included as an explanatory variable in the intensity estimation, see Subsection 3.1.3.
12The total number of defaults in the data set considered here is 387 compared with 490 in

Subsection 3.1.3.
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lower than the ones derived from ranking firms only based on their current intensity.

Based on our results, it is advisable to simply use the current intensity for default

prediction instead of ranking firms based on model-implied default probabilities. A

possible explanation are estimation errors. Note that we estimate parameters for a

firm the first time when at least 24 intensity observations are available particularly

exposing the first estimates to estimation errors.13

In-sample, the jump diffusion models (BAJD, SAJD, SAJDM) do a much better

job than the CIR model. In this case, estimation errors should also be significantly

reduced since the parameters of each firm are only estimated once – based on the

whole intensity path – and not repeatedly. Furthermore, as documented by Table

3.7 a jump-diffusion behavior of intensities can be particularly often observed in

connection with defaults. In-sample, parameter estimates therefore reflect the later

occurrence of the jumps (and defaults). Nevertheless, the CIR model is not able

to “use” this information.

In summary, the presented results provide evidence for jumps of default intensi-

ties under the real-world measure. Jumps play a particularly important role for

defaults: The intensities of many firms that eventually defaulted show a jump-

diffusion behavior. Nevertheless out-of-sample we cannot benefit from these find-

ings. Accuracy ratios based on the intensity models are even worse when compared

with accuracy ratios derived from current intensities. Apart from estimation er-

rors, the problem is the following: Before a jump has not occurred, its probability

is estimated to be 0, but soon after the first jumps the firm will probably be de-

faulted. A possible strategy to solve this problem would be to group firms and

estimate probabilities for intensity jumps based on the groups, reducing estima-

tion errors and attaching positive jump probabilities to firms which have not yet

jumped. However, it is questionable if this would really improve results. Note that,

for example, the inclusion of different macroeconomic variables in Section 3.1 had

no effect on the models’ predictive power because it corresponded to a shift of all

default intensities (probabilities). Here, we would shift the default probabilities of

possibly large groups by attaching a particular jump probability.

3.4 Assessing Model Risk: Conditional Indepen-

dence vs. Contagion

In Subsection 2.6.2, we have discussed from a theoretical standpoint differences

between a conditional independence setup and a model specification where past

13The issue of estimation errors will also be addressed in the next section. As we show there,

estimation errors are indeed considerable even when the intensities can be much more frequently

observed than it is the case here.
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defaults are allowed to influence the default probabilities of the other firms in the

portfolio. In Section 3.1, we showed that the doubly stochastic assumption is not

rejected in the context of actual corporate bond default data when default inten-

sities are estimated out-of-sample with five-year estimation windows. However, as

pointed out by Lando and Nielsen (2008) the statistical tests conducted in Section

3.1 are unfit to uncover a special type of contagion in which the default of one firm

affects the factor variables and thus the default intensity of others. The results of

Section 3.1 have rather to be interpreted as follows: Observed defaults are likely to

have been generated by the aggregated path of estimated default intensities and we

need not introduce contagion effects in addition to the already used explanatory

variables to explain the observed default clustering.

Therefore, there still remains the risk that one works with a model that is based

on the conditional independence assumption while in reality contagion effects ac-

count to a possibly large extent for observed defaults. In the following, we want to

quantify this risk and focus on the following questions:

• Given that the true data generating process exhibits contagion effects, what

are the implications of calibrating a conditional independence model to this

data?

• Would we incur considerable errors in forecasting the portfolio loss distribu-

tion in this case?

• Would we incur considerable errors in assessing the risk of synthetic struc-

tured credit products?

To answer these questions, we will draw paths of the portfolio loss process and the

corresponding portfolio intensity based on a model in which past defaults affect

the default intensities of the firms. Afterwards, we estimate wrong models – all

based on the conditional independence assumption – as well as the original model,

which has actually generated the data, and investigate the ability of the models

to forecast the portfolio loss distribution. Furthermore, we analyze the ability of

the different models to forecast important risk measures such as the expected loss

(EL) of structured credit products referencing the portfolio.

The remainder of the section is structured as follows: After a brief introduction

to synthetic structured credit products and their valuation in Subsection 3.4.1, we

describe the methodology in Subsection 3.4.2. Subsection 3.4.3 finally presents the

results.
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3.4.1 Synthetic Structured Credit Products and their Val-

uation

As already mentioned at the beginning of this thesis, in structured finance transac-

tions portfolio cash flows are repackaged into new securities that are called tranches

and differ in their seniority.

In the following, we restrict ourselves to synthetic structured credit products that

represent pure options on the aggregated loss process

L(t) =
1

I

I
∑

i=1

Ni(t)

of the underlying credit portfolio.14 If not stated otherwise, they can be regarded

as a collection of plain-vanilla options all having as underlying the portfolio loss

process L. For example, the percentage time t loss, LKl,Ku(t), of a synthetic CDO

tranche with attachment point Kl and detachment point Ku depends on the un-

derlying credit portfolio loss L(t) in the following way:

LKl,Ku(t) :=
LKl,1(t)− LKu,1(t)

Ku −Kl
with

LK,1(t) = (L(t)−K)+,

which demonstrates the well-known option-like character of CDO tranches and il-

lustrates that the key ingredient to assess the risk of synthetic CDO tranches is

the loss distribution of the reference portfolio.

The expected loss (EL) of such a tranche is obtained by integrating over the dis-

tribution of L(t).15 As pointed out in Subsection 2.7.2, in case of a conditional

independence setup using the limiting loss distribution and assuming a simple

model for the default-trigger process Λ even analytical formulas can be stated for

the expected loss of a CDO tranche.

The valuation of CDO tranches is not in the focus of this thesis. Nevertheless, it is

worth mentioning that in this case the tranche’s expected loss is the main ingredient

entering into the valuation formula, too, but the expected loss is then calculated

under a pricing measure. Generally, valuation of a synthetic CDO tranche is closely

14The word “synthetic” refers to the fact that these transactions reference portfolios of Credit

Default Swaps (CDSs), i.e. synthetic portfolios. Examples are standardized contracts such as the

iTraxx or CDX indices. Also, note that different to Chapter 2 we will consider in the following

the normalized loss process, that is L(t) ∈ [0, 1] for each t.
15A common measure for the risk of a credit-sensitive security is its expected loss. For instance,

Moody’s claims consistency of its structured finance ratings with the expected loss (see e.g.

Yoshizawa (2003)).
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related to the pricing of an ordinary CDS or a term-life insurance contract: In each

case the contract’s payment stream can be decomposed into a premium leg (ac-

counting for the premia payments of the contract) and a default leg (accounting

for payments with respect to defaults); the tranche spread is then determined such

that the expected values of both are the same under the pricing measure at the

valuation date. The only difference is that the expected loss of a CDO tranche

depends on a whole portfolio and not merely on one single entity.

3.4.2 Methodology

In order to investigate the issue of model risk for the time-continuous setup consid-

ered in this thesis, we follow a methodology that is inspired by Hamerle and Rösch

(2005). In their study, they examine implications of misspecified copulas for the

portfolio loss distribution in a static copula credit portfolio setting. More precisely,

they simulate default paths based on a so-called t-copula and afterwards calibrate

a Gaussian copula (for definitions see e.g. McNeil et al. (2005)) to the generated

data. The t-copula thereby represents the more complex model, while the Gaus-

sian copula is common choice in practice. They find that parameter estimates for

the Gaussian copula are biased, but that forecasts of the portfolio loss distribution

may still be adequate compared with the true underlying data generating t-copula

model. All in all, their findings reduce model risk regarding the copula choice in

practical applications.

In the following, we conduct a similar analysis and investigate the issue of model

risk with respect to the conditional independence assumption. We generate default

data using a model in which this assumption is violated by allowing past defaults

to affect the default intensities of the other firms; afterwards, we estimate different

models, all based on the assumption of conditionally independent defaults, as well

as the original model, which has actually generated the data, and finally analyze

the models’ ability to forecast the portfolio loss distribution.

In Subsection 2.6.2, we already introduced a model with a feedback event, i.e. a

model where past defaults affect the survival probabilities of the other firms. Here,

we will consider a similar model. We assume that simultaneous defaults are ruled

out and that the intensity of each object in our stylized portfolio is given as

dλi(t) = κ(η − λi(t))dt + σ
√

λi(t)dW (t) + dJ(t) λi(0) = λ. (3.22)

The parameters κ, b and σ and the Brownian motion W are the same for each object

i. J denotes a point process that jumps whenever L jumps and whose jump sizes

are independently, Exp
(

1
ζ

)

-distributed. Then, we have that λi(t) = λj(t) := λ(t)
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for all i 6= j and that

L(t)−
∫ t

0

λ(s)

I
∑

i=1

1τi>s(s)ds (3.23)

is an F-martingale. It is worth mentioning that without the jumps of J at defaults

the intensity λ reduces to a CIR process (cf. equation (3.11)) and the portfolio

model becomes a conditional independence setup. Our specification of the default

intensities entails that we consider a homogeneous credit portfolio where all firms

have identical default probabilities and where the risk stemming from the inten-

sities is purely systemic; all firms are exposed to one common risk driver which

consists of two factors: A diffusion component representing regular fluctuations of

default rates and an independent contagion component reflecting the influence of

past defaults on intensities.
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Figure 3.9: Simulated, monthly integrated portfolio intensities and defaults over a

ten years period of two models that differ only in the contagion component. In both

models the diffusion component is given by the mean reversion level η = 0.0005,

the speed of mean reversion κ = 15 and the volatility σ = 0.1, but the jump size

mean is 1
ζ

= 0.0138 in the model with contagion (left) and 1
ζ

= 0.0 in the model

without contagion (right). The number of firms in the hypothetical portfolio is

1500.

In Figure 3.9, simulated portfolio intensities and defaults of a model with and

without contagion are displayed. In the model with contagion, defaults trigger

intensity jumps and possibly lead to further defaults. If no further defaults occur,

the portfolio intensity will be almost deterministically pulled down again towards

the mean reversion level, which is roughly 1500 ·0.0005 = 0.75 for the parametriza-

tion considered in the example (note that the graphs show the monthly, integrated

portfolio intensity which is therefore pulled down towards ≈ 0.75/12 = 0.0625).

Also, for the considered parametrization most of the portfolio risk stems from the

contagion component; without contagion effects the integrated intensity stays close
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to 0.0625 over time which has to be attributed to the high κ value. Consequently,

defaults are almost evenly distributed over time.

Estimation of the Data Generating Contagion Model

The estimation of the contagion model of equations (3.22) and (3.23) is similar

to the estimation of the conditional independence models described in Subsection

3.3.1. Since the transition density of the intensities is again complex, we approxi-

mate it based on a time-discretization of the SDE (3.22). In case of the contagion

model, however, we know that jumps of the intensities can only occur at defaults.

The approximate transition density we therefore have to use is

t+∆,tg̃λ (λ(t + ∆); θ) = 1L(t+∆)−L(t)=1

(

1− e−∆λ(t)(I−L(t))
)

h(o(1), o(2))

+1L(t+∆)−L(t)=0e
−∆λ(t)(I−L(t))fN

κ(η−λ(t))∆,σ
√

λ(t)∆
(λ(t + ∆)− λ(t)) .

Here, fNǫ1,ǫ2
denotes the density of a Gaussian random variable with mean ǫ1 and

standard deviation ǫ2; the function h, and the quantities o(1) and o(2) have been

defined in equation (3.19). Based on this transition density, we maximize the

likelihood function (3.15) with respect to the four-dimensional parameter vector

θ = (η, κ, σ, ζ)T .

Estimation of the Conditional Independence Models

Under the conditional independence assumption, the portfolio intensity path evolves

independently of defaults and completely characterizes the portfolio loss distribu-

tion (cf. Section 2.6). Someone assuming conditional independence would therefore

directly specify a model for the aggregated intensity path and totally disregard ob-

served defaults.

In the following, we purposely act as someone who trusts in the conditional inde-

pendence assumption and directly calibrate our four basic single intensity models

(CIR, BAJD, SAJD, SAJDM) introduced in Section 3.2 to the observed portfolio

intensity path. More precisely, we presume that the observed portfolio intensity

paths λP (t, ω) =
∑I

i=1 1τi(ω)>tλi(t, ω) are generated by a factor process λc such that

λP (t) =

I
∑

i=1

1τi>tλi(t) = λc(t)

I
∑

i=1

1τi>t, (3.24)

where λc is a coordinate of the background process X1, portfolio defaults as always

do not affect X1 and λc evolves according to one of our four basic single intensity

models. For instance, such a portfolio model would result from the assumption that

the default intensity λi of each portfolio object is λi(t) = λc(t). The parameters

of λc are then estimated based on the ML estimation procedure introduced in
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Subsection 3.3.1 with the approximation of the transition density described there.

It is self-evident that we will incur an error by proceeding in this way if the data

generating model does not satisfy the conditional independence assumption. To

see this, consider the following simple time-discrete two-period example: In the

first period a default occurs with probability 20%. Having observed a default in

the first period, the default probability in the second period increases to 40% and

remains at 20% otherwise. On the other hand, let us consider a model, where the

default probability has the same dynamics but is independent of defaults: In the

first period it is always 20% and in the second period it increases with probability

20% to 40% and remains at 20% otherwise. In both models the default probability

has the same “dynamics” and the expected number of defaults is 0.44, but in the

first model the probability of observing a default in both periods is 0.2 · 0.4 = 0.08

compared to only 0.048 = 0.2 · 0.2 · 0.4 + 0.2 · 0.8 · 0.2 in the second model. Since

– roughly speaking – default probabilities in the time-discrete setting correspond

to default intensities in the time-continuous setup, our example shows that even if

we are able to perfectly describe the dynamics of the intensities we will incur an

error and underestimate the tail probabilities of the loss distribution in case that

the conditional independence assumption is violated.16 Nonetheless, knowing that

we make an error, we want to examine its size and character.

Estimation based on the Loss Process

Model estimation solely based on the aggregated intensity process eventually “throws

away” any information on defaults, which is justified in case that the data gener-

ating process obeys the conditional independence assumption. The approach is

feasible as long as information on the portfolio intensity is available. However, in

reality the portfolio intensity is usually unobserved; only defaults can be observed.

The intensity can then be estimated based on observed defaults (cf. Section 3.1),

but depending on the respective application and the available data this can possi-

bly become a very involved task. Therefore, in many applications one would have

to directly estimate the models based on observed defaults or at least take these

defaults into account, too.

Furthermore, estimators based on the portfolio intensity and on the loss realiza-

tions should – disregarding estimation errors – yield the same parameter values in

a conditional independence setup. Consequently, even if the portfolio intensity is

observed it is advisable to conduct an estimation based on observed defaults since

parameter estimates derived from actual defaults represent a good robustness check

16Of course, presuming that the dependence between intensity and loss process is positive.

Otherwise, we would overestimate the tail probabilities.
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for intensity-based estimates.

Given K independent realizations l1, . . . , lK of the portfolio loss, the corresponding

likelihood is given as

L(θ; l) =

K
∏

k=1

gL(lk; θ)

where fL(x; θ) denotes the probability distribution function of the portfolio loss;

for the computation of the portfolio loss distribution in a conditional independence

setup we refer to Subsection 2.7.2. To derive the distribution for the introduced

contagion model, we have to rely on Monte-Carlo methods.17 The length of the

parameter vector θ depends on which of the models we choose for the portfolio

intensity. Estimation is conducted via ML.

3.4.3 Estimation Results and the Quantification of Model

Risk

By introducing estimation procedures for the portfolio models considered in this

section, we finally set the stage to answer the question which is at the heart of this

section: What are the implications of estimating conditional independence models

based on default data which has actually been generated by a contagion driven

model?

Using Algorithm A.0.2 in Appendix A, we simulate 1000 paths of default history

(defaults and aggregated portfolio intensity) with length ten years on an equidistant

time grid of size 1
3600

. This corresponds to observing portfolio intensity and defaults

on a daily basis. We examine six different stylized portfolios: Each portfolio con-

sists of 1500 firms all having default intensities as specified in equation (3.22) but

portfolios differ in intensity parametrizations: We consider two portfolios (I and II)

with a low ten-year default probability of roughly 1%, two portfolios (III and IV)

with a medium default probability of about 3-6% and two portfolios (V and VI)

showing a high ten-year default probability of roughly 16%. Furthermore, in port-

folios I, III and V the portfolio intensity shows a diffusion-like behavior, i.e. jumps

are smaller and the influence of the Brownian component is more pronounced, while

in portfolios II, IV and VI jumps account for most of the variation in the portfolio

intensity. For instance, the path displayed in Figure 3.9 is a representative of port-

folio VI. In each portfolio, contagion effects significantly contribute to the default

probability of the firms meaning that without these effects the default probability

of the firms would be reduced by at least 50%.

17In the estimation procedure, we simulated 50000 paths of default history for each distribution.
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Estimation Results

In Table 3.9 on p. 130, average parameter estimates based on the portfolio inten-

sity for three conditional independence models (CIR, BAJD, SAJD) as well as for

the original contagion model that has generated the data (Contagion Model) are

presented.18 The true parameters of the data generating model are stated, too

(True Contagion Model). Not surprisingly, the models with jumps provide a better

fit to the data, particularly in case of portfolios II, IV and VI where jumps of the

intensity account for most of its volatility.

As usual, we find that the volatility σ of the Brownian component can be identified

best. Only for the CIR model, parameter estimates are biased because in this case

the diffusion component has to account for the whole volatility generated by the

underlying contagion model, i.e. for fluctuations due to the Brownian motion and

due to jumps. However, apart from σ standard deviations of the estimators are

considerable. Specifically, in case of low or medium risk portfolios with a diffusion-

like character of the portfolio intensity (portfolios I and III), the mean reversion

level η and the jump parameters µ, ζ and ξ(1) show high variances for all mod-

els. First, this has to be attributed to the fact that there are fewer jumps for low

risk portfolios, which naturally increases the variance of the estimators.19 Second,

jumps are smaller for diffusion-like specifications of the portfolio intensity, and it is

therefore much harder to separate them from the diffusion part. As jumps become

more pronounced, estimation errors decrease. The high values for ξ(1) in case of

the SAJD model can be explained by the number of portfolio objects considered:

The probability of observing an intensity jump over the next infinitesimally small

time step ∆, is ∆ ·∑I
i=1 1τi>tλ(t) in the true model, where

∑I
i=1 1τi>t will be most

of the time close to 1500 for the low and medium risk portfolios. For portfolios I,

II, III and V we obtain an ξ(1) > 1500, but note that in these cases the estimated

mean of the jump size distribution is also smaller than the true value.

All in all, we find that for all models estimation errors are considerable and errors

decrease as the jump part becomes more dominant. Nonetheless, at this stage it

is hard to tell whether we would overstate or understate the risk of the underlying

portfolios using the derived estimates.

As a robustness check, we also conduct an estimation based on the 1000 portfolio

loss realizations that we have given. The results of this estimation can be found

18The table does not contain estimates for the SAJDM model introduced in Section 3.2, since

variances of the estimators were high for this model and the model did not provide a better fit

to the data than the other considered conditional independence models.
19Remember that in the data generating model jumps occur only at defaults. Naturally, there

are therefore fewer jumps for low and medium risk model specifications.
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in Table 3.11 on p. 132.20 Since in such a static application of the model the pa-

rameters of the portfolio intensity are difficult to identify separately, we merely

estimate two parameters of each model and keep the remaining ones fixed at the

values reported in Table 3.9.21 For the CIR model we calculate the mean reversion

level η and the volatility σ, in case of the jump-diffusion models we estimate the

jump parameters and for the contagion model we calibrate the mean reversion level

η and the jump size mean ζ . For the CIR model, we find significant deviations of

the estimates from the portfolio intensity-based ones. Since in this case the new

parameters imply a by far more risky parametrization (particularly for portfolio

IV), this already indicates that the portfolio intensity-based estimates of the CIR

model will tend to underestimate the true portfolio risk.

Forecasting the Loss Distribution and Assessing the Risk of Structured

Credit Products

Table 3.10 on p. 131 summarizes results for the average parameter estimates pre-

sented in Table 3.9, which were based on the portfolio intensity. It shows descriptive

statistics of ten-year loss distributions.22 Also, the expected loss (EL) of the whole

portfolio as well as of hypothetical CDO tranches referencing the portfolio (cf.

Subsection 3.4.1) are presented.23 As is common in the credit risk literature, in all

computations we presumed a constant Loss-Given Default (LGD) rate of 60%. In

addition, the table contains results for a model whose marginal dynamics of the

portfolio intensity are exactly the same as in the underlying contagion model but

whose intensity evolves independently of defaults (True Intensity Model without

Contagion). The corresponding loss distribution would be obtained if we were able

to correctly model and estimate the marginal dynamics of the portfolio intensity

but wrongly assume conditional independence. In Subsection 3.4.2, we pointed

out that this inevitably leads to an underestimation of the loss distribution’s tail

probabilities. However, as Table 3.10 on p. 131 shows this underestimation is not

very large.

In addition, we find that the BAJD and SAJD model tend to overestimate the

20For ease of exposition, we only display the results for portfolios III and IV. For the other

portfolios, the results are qualitatively the same.
21From a static point of view, only the distributional properties of the integrated portfolio

intensity are relevant. However, different parameters have a similar effect on this distribution.

For example, the speed of mean reversion κ, the volatility σ, the jump intensity parameters µ,

ξ(1) and the jump size mean ζ jointly control its variance.
22For the models where we had to rely on Monte-Carlo simulations in order to compute the

portfolio loss distribution we drew 100000 random samples for each distribution.
23The considered attachment and detachment points of the tranches are common. For in-

stance, standardized CDO tranches referencing the iTraxx index exhibit the same attachment

and detachment points.
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expected portfolio loss and therefore the default probability of the portfolio ob-

jects. Contrarily, the CIR model underestimates the expected loss for jump-like

specifications of the portfolio intensity (portfolios II, IV and VI). This means that

– although parameter estimates for the CIR model were biased in this case– the

model is not capable of explaining portfolio defaults when jumps account for most

of the portfolio intensity’s volatility.

Particularly for jump-like specifications of the portfolio intensity, the CIR model

also strongly understates the tail probabilities of the loss distribution. The same

holds true for the BAJD model. Apart from portfolio I, the 99.9% quantile of the

loss distribution computed with a CIR or BAJD model is always smaller than the

true quantile. Contrarily, for portfolios I, III and VI the quantiles obtained with

the SAJD model are larger than those of the true model. For the other portfolios,

the SAJD model underestimates the risk but is closer to the true values than the

CIR or BAJD model. This can be attributed to the self-affecting model feature:

Jumps of the portfolio intensity make further jumps and thus defaults more likely

meaning that in this case more probability mass is shifted into the tails of the

portfolio loss distribution. Note that in the BAJD model the jump likelihood of

the intensity is constant and intensity jumps are evenly distributed over time (cf.

Figure 3.7 on p. 108). For portfolios III and V, quantiles computed with the SAJD

model are even closer to the true values than those obtained from the estimated

contagion model (Contagion Model). When comparing results from the estimated

contagion model with those of the True Intensity Model without Contagion, we

find that calculated quantiles based on the latter are closer to the true values for

portfolios I, III, IV, V and VI.

Results remain qualitatively the same when considering the expected loss of CDO

tranches with the different portfolios as underlying: CIR and BAJD model would

lead to an understatement of risk, while risk figures obtained from the SAJD model

are slightly more conservative than the true values. Again, the estimated SAJD

and contagion model lead to comparable results. In particular, using a SAJD model

one would not have understated the risk of the tranches more often than with the

contagion model.

In Table 3.12 on p. 132, we present results which are computed with the parameter

estimates of Table 3.11. Recall that these estimates were based on the portfolio

loss. We find that – aside from the BAJD model in case of portfolio IV – all con-

ditional independence models now tend to overstate the tail probabilities of the

portfolio loss distribution and the risk of the more senior tranches; the estimated

default probabilities are close to the true ones. This shows that all conditional

independence models are able to model the loss distribution if they are estimated

based on observed losses.
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Average η Average κ Average σ Average µ Average ζ Average ξ(1) Average Log-Likelihood

Portfolio I (1.08% Default Probability, Diffusion-like behavior of the portfolio intensity)

CIR Model 0.00066 (0.00098) 0.85860 (0.63916) 0.05683 (0.00281) – – – 30643

BAJD Model 0.00010 (0.00020) 1.96765 (1.06293) 0.04893 (0.00127) 84.89080 (97.98832) 0.00017 (0.00024) – 31285

SAJD Model 0.00033 (0.00068) 1.45352 (0.66740) 0.05162 (0.00142) – 0.00022 (0.00019) 7944.61909 (3094.73559) 31059

Contagion Model 0.00026 (0.00024) 1.36746 (0.56829) 0.05495 (0.00315) – 0.00091 (0.00368) – 30754

True Contagion Model 0.00040 1.50000 0.05000 – 0.00070 – –

Portfolio II (1.08% Default Probability, Jump-like behavior of the portfolio intensity)

CIR Model 0.00059 (0.00006) 13.62045 (1.70017) 0.10184 (0.00262) – – – 26919

BAJD Model 0.00054 (0.00005) 14.55317 (1.29745) 0.09833 (0.00139) 2.35634 (7.30635) 0.00419 (0.00172) – 27340

SAJD Model 0.00054 (0.00004) 14.93498 (1.30244) 0.09857 (0.00127) – 0.00408 (0.00153) 1814.53303 (837.33557) 27346

Contagion Model 0.00055 (0.00004) 14.90333 (1.30273) 0.09911 (0.00128) – 0.00471 (0.00144) – 27325

True Contagion Model 0.00055 15.00000 0.10000 – 0.00500 – –

Portfolio III (6.10% Default Probability, Diffusion-like behavior of the portfolio intensity)

CIR Model 0.00839 (0.00814) 0.82657 (0.57050) 0.10590 (0.00202) – – – 24040

BAJD Model 0.00304 (0.00272) 1.39846 (0.69509) 0.09961 (0.00171) 12.06576 (23.52674) 0.00066 (0.00032) – 24147

SAJD Model 0.00183 (0.00135) 2.57481 (0.86002) 0.09860 (0.00175) – 0.00050 (0.00019) 5139.89561 (3293.43322) 24141

Contagion Model 0.00266 (0.00143) 1.75822 (0.56590) 0.10093 (0.00172) – 0.00069 (0.00010) – 23815

True Contagion Model 0.00260 1.50000 0.10000 – 0.00070 – –

Portfolio IV (3.9% Default Probability, Jump-like behavior of the portfolio intensity)

CIR Model 0.00064 (0.00019) 11.10342 (3.01584) 0.11701 (0.02355) – – – 25536

BAJD Model 0.00049 (0.00005) 14.16444 (1.00765) 0.09894 (0.00132) 5.10384 (7.69370) 0.00981 (0.00309) – 26660

SAJD Model 0.00049 (0.00004) 14.82276 (0.91136) 0.09888 (0.00125) – 0.00866 (0.00229) 1470.15231 (519.06702) 26716

Contagion Model 0.00050 (0.00005) 14.83484 (0.91685) 0.09929 (0.00129) – 0.00910 (0.00194) – 26665

True Contagion Model 0.00050 15.00000 0.10000 – 0.01000 – –

Portfolio V (16.07% Default Probability, Diffusion-like behavior of the portfolio intensity)

CIR Model 0.02020 (0.00776) 1.02429 (0.52463) 0.10570 (0.00162) – – – 21190

BAJD Model 0.00868 (0.00389) 1.26446 (0.54975) 0.10006 (0.00165) 17.83564 (13.24354) 0.00080 (0.00020) – 21238

SAJD Model 0.00742 (0.00298) 2.43960 (0.75957) 0.09799 (0.00191) – 0.00061 (0.00014) 3103.41721 (2037.05905) 21241

Contagion Model 0.00935 (0.00280) 1.88721 (0.51283) 0.09972 (0.00117) – 0.00070 (0.00006) – 20500

True Contagion Model 0.00800 1.50000 0.10000 – 0.00070 – –

Portfolio VI (16.2% Default Probability, Jump-like behavior of the portfolio intensity)

CIR Model 0.00181 (0.00136) 5.25416 (4.35906) 0.21798 (0.08466) – – – 22076

BAJD Model 0.00050 (0.00005) 13.60518 (0.83200) 0.10028 (0.00170) 18.64582 (12.83383) 0.01578 (0.00361) – 24523

SAJD Model 0.00049 (0.00005) 14.74777 (0.59349) 0.09872 (0.00133) – 0.01283 (0.00245) 1321.02317 (340.10108) 24755

Contagion Model 0.00050 (0.00005) 14.78073 (0.60041) 0.09899 (0.00135) – 0.01298 (0.00207) – 24589

True Contagion Model 0.00050 15.00000 0.10000 – 0.01380 – –

Table 3.9: Average parameter estimates based on the aggregated portfolio intensity and 1000 simulated paths of default history. Estimates

are presented for three models (CIR, BAJD, SAJD) satisfying the conditional independence assumption as well as for estimates of the

model that has generated the data (Contagion Model). Six different portfolios are considered: Low risk portfolios (I and II), medium

risk portfolios (III and IV) and high risk portfolios (V and VI). In portfolios I, III and V the portfolio intensity shows a diffusion-like

behavior; in portfolios II, IV and VI it is strongly driven by jumps. Standard deviations in parentheses.
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EL of CDO Tranches [Kl, Ku] and of the whole Portfolio Quantiles of the Loss Distribution

[0,0.03] [0.03,0.06] [0.06,0.09] [0.09,0.12] [0.12,0.22] [0.22,1] Portfolio 0.95 0.99 0.995 0.999

Portfolio I (1.08% Default Probability, Diffusion-like behavior of the portfolio intensity)

CIR Model (CI) 0.1240 0.0000 0.0000 0.0000 0.0000 0.0000 0.0037 0.010 0.015 0.018 0.023

BAJD Model (CI) 0.9993 0.3982 0.0001 0.0000 0.0000 0.0000 0.0419 0.052 0.056 0.058 0.062

SAJD Model (CI) 0.5207 0.1798 0.0472 0.0057 0.0001 0.0000 0.0226 0.073 0.096 0.104 0.120

Contagion Model 0.2541 0.0587 0.0183 0.0048 0.0004 0.0000 0.0101 0.048 0.088 0.103 0.135

True Contagion Model 0.2102 0.0044 0.0001 0.0000 0.0000 0.0000 0.0064 0.021 0.034 0.040 0.054

True Intensity Model without Contagion (CI) 0.2131 0.0031 0.0000 0.0000 0.0000 0.0000 0.0065 0.020 0.032 0.037 0.050

Portfolio II (1.08% Default Probability, Jump-like behavior of the portfolio intensity)

CIR Model (CI) 0.1163 0.0000 0.0000 0.0000 0.0000 0.0000 0.0035 0.006 0.007 0.007 0.008

BAJD Model (CI) 0.2411 0.0000 0.0000 0.0000 0.0000 0.0000 0.0072 0.011 0.013 0.014 0.015

SAJD Model (CI) 0.2105 0.0000 0.0000 0.0000 0.0000 0.0000 0.0063 0.012 0.014 0.016 0.018

Contagion Model 0.2046 0.0000 0.0000 0.0000 0.0000 0.0000 0.0061 0.013 0.016 0.018 0.022

True Contagion Model 0.2148 0.0000 0.0000 0.0000 0.0000 0.0000 0.0064 0.014 0.018 0.020 0.024

True Intensity Model without Contagion (CI) 0.2154 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.012 0.015 0.016 0.020

Portfolio III (6.10% Default Probability, Diffusion-like behavior of the portfolio intensity)

CIR Model (CI) 0.9554 0.4144 0.0607 0.0054 0.0001 0.0000 0.0431 0.076 0.095 0.103 0.122

BAJD Model (CI) 0.9947 0.5545 0.0397 0.0004 0.0000 0.0000 0.0477 0.070 0.081 0.086 0.095

SAJD Model (CI) 0.9678 0.6625 0.2822 0.0720 0.0030 0.0000 0.0598 0.110 0.132 0.140 0.155

Contagion Model 0.8281 0.2049 0.0216 0.0014 0.0000 0.0000 0.0317 0.062 0.082 0.089 0.105

True Contagion Model 0.8400 0.3004 0.0698 0.0121 0.0005 0.0000 0.0367 0.080 0.106 0.116 0.138

True Intensity Model without Contagion (CI) 0.8508 0.2998 0.0656 0.0105 0.0004 0.0000 0.0368 0.078 0.104 0.114 0.138

Portfolio IV (3.9% Default Probability, Jump-like behavior of the portfolio intensity)

CIR Model (CI) 0.1276 0.0000 0.0000 0.0000 0.0000 0.0000 0.0038 0.006 0.008 0.008 0.009

BAJD Model (CI) 0.7647 0.0078 0.0000 0.0000 0.0000 0.0000 0.0232 0.032 0.036 0.038 0.040

SAJD Model (CI) 0.4525 0.0363 0.0021 0.0001 0.0000 0.0000 0.0147 0.039 0.056 0.063 0.078

Contagion Model 0.5014 0.0723 0.0059 0.0001 0.0000 0.0000 0.0174 0.048 0.067 0.074 0.088

True Contagion Model 0.5901 0.1595 0.0282 0.0025 0.0000 0.0000 0.0234 0.064 0.087 0.095 0.110

True Intensity Model without Contagion (CI) 0.6138 0.1528 0.0230 0.0016 0.0000 0.0000 0.0237 0.062 0.083 0.091 0.106

Portfolio V (16.07% Default Probability, Diffusion-like behavior of the portfolio intensity)

CIR Model (CI) 1.0000 0.9988 0.8784 0.3752 0.0180 0.0000 0.0994 0.134 0.152 0.159 0.174

BAJD Model (CI) 1.0000 0.9998 0.9341 0.4579 0.0200 0.0000 0.1038 0.135 0.150 0.156 0.168

SAJD Model (CI) 1.0000 0.9996 0.9531 0.6254 0.0625 0.0000 0.1136 0.153 0.170 0.177 0.190

Contagion Model 1.0000 0.9929 0.7722 0.2533 0.0086 0.0000 0.0914 0.126 0.143 0.149 0.162

True Contagion Model 1.0000 0.9787 0.7588 0.3599 0.0355 0.0000 0.0965 0.146 0.170 0.179 0.198

True Intensity Model without Contagion (CI) 1.0000 0.9825 0.7662 0.3567 0.0327 0.0000 0.0964 0.144 0.167 0.176 0.194

Portfolio VI (16.2% Default Probability, Jump-like behavior of the portfolio intensity)

CIR Model (CI) 0.3511 0.0000 0.0000 0.0000 0.0000 0.0000 0.0105 0.018 0.022 0.023 0.027

BAJD Model (CI) 1.0000 1.0000 0.9959 0.6444 0.0131 0.0000 0.1105 0.130 0.138 0.141 0.147

SAJD Model (CI) 0.7414 0.4610 0.3087 0.1969 0.0669 0.0007 0.0585 0.177 0.241 0.264 0.306

Contagion Model 0.8425 0.6857 0.5357 0.3506 0.0715 0.0000 0.0796 0.166 0.194 0.203 0.222

True Contagion Model 0.8730 0.7617 0.6504 0.4905 0.1382 0.0001 0.0972 0.186 0.213 0.222 0.240

True Intensity Model without Contagion (CI) 0.8876 0.7677 0.6572 0.4947 0.1359 0.0000 0.0978 0.185 0.210 0.218 0.234

Table 3.10: Ten-year portfolio loss distributions derived with average parameter estimates based on the portfolio intensity. Results are

presented for estimates of four conditional independence models (CIR, BAJD, SAJD) as well as for estimates of the model that has

generated the data (Contagion Model). Also, the true loss distribution is stated for each portfolio (True Contagion Model) and the loss

distribution which results from a conditional independence model with the same marginal intensity dynamics like the data generating

model (True Intensity Model without Contagion). Models satisfying the conditional independence assumption are marked by “CI”.
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η κ σ µ ζ ξ(1) Log-Likelihood

Portfolio III (6.10% Default Probability, Diffusion-like behavior of the portfolio intensity)

CIR Model 0.00820 (0.00839) 0.82657 0.17889 (0.10590) – – – -5246

BAJD Model 0.00304 1.39846 0.09961 0.19240 (12.06576) 0.04074 (0.00066) – -5276

SAJD Model 0.00183 2.57481 0.09860 – 0.00290 (0.00050) 714.63401 (5139.89561) -5260

Contagion Model 0.00200 (0.00266) 1.75822 0.10093 – 0.00099 (0.00069) – -5278

True Contagion Model 0.00260 1.50000 0.10000 – 0.00070 – –

Portfolio IV (5.87% Default Probability, Jump-like behavior of the portfolio intensity)

CIR Model 0.02354 (0.00064) 11.10342 4.90064 (0.11701) – – – -5148

BAJD Model 0.00049 14.16444 0.09894 0.17421(5.10384) 0.58323(0.00981) – -5108

SAJD Model 0.00049 14.82276 0.09888 – 0.01100 (0.00866) 1302.80978 (1470.15231) -5073

Contagion Model 0.00051(0.00050) 14.83484 0.09929 – 0.00991 (0.00910) – -5029

True Contagion Model 0.00050 15.00000 0.10000 – 0.01000 – –

Table 3.11: Parameter estimates based on the portfolio loss and 1000 simulated paths of default history. Estimates are presented for

three models (CIR, BAJD, SAJD) satisfying the conditional independence assumption as well as for the original model that has generated

the data (Contagion Model). For each model, only two parameters are estimated, while the others are kept fixed at the values reported

in Table 3.9. For the estimated parameters, the corresponding values of Table 3.9 are given in parentheses.

EL of CDO Tranches [Kl, Ku] and of the whole Portfolio Quantiles of the Loss Distribution

[0,0.03] [0.03,0.06] [0.06,0.09] [0.09,0.12] [0.12,0.22] [0.22,1] Portfolio 0.95 0.99 0.995 0.999

Portfolio III (6.10% Default Probability, Diffusion-like behavior of the portfolio intensity)

CIR Model (CI) 0.8629 0.3481 0.1064 0.0316 0.0034 0.0000 0.0408 0.092 0.131 0.146 0.179

BAJD Model (CI) 0.8713 0.4282 0.1698 0.0573 0.0065 0.0000 0.0465 0.108 0.145 0.160 0.192

SAJD Model (CI) 0.8436 0.3442 0.1194 0.0408 0.0052 0.0000 0.0410 0.098 0.140 0.156 0.190

Contagion Model 0.8388 0.3676 0.1250 0.0343 0.0025 0.0000 0.0412 0.096 0.128 0.140 0.162

True Contagion Model 0.8407 0.3008 0.0688 0.0123 0.0005 0.0000 0.0367 0.080 0.106 0.117 0.138

Portfolio IV (3.9% Default Probability, Jump-like behavior of the portfolio intensity)

CIR Model (CI) 0.9570 0.5359 0.1623 0.0363 0.0023 0.0000 0.0510 0.098 0.126 0.138 0.163

BAJD Model (CI) 0.6300 0.1545 0.0185 0.0012 0.0000 0.0000 0.0241 0.060 0.080 0.088 0.104

SAJD Model (CI) 0.5635 0.1452 0.0363 0.0076 0.0005 0.0000 0.0226 0.067 0.098 0.111 0.138

Contagion Model 0.6038 0.1702 0.0320 0.0032 0.0000 0.0000 0.0243 0.066 0.090 0.098 0.114

True Contagion Model 0.5901 0.1595 0.0282 0.0025 0.0000 0.0000 0.0234 0.064 0.087 0.095 0.110

Table 3.12: Ten-year portfolio loss distributions derived with parameter estimates based on the portfolio loss. Results are presented for

estimates of thre conditional independence models (CIR, BAJD, SAJD) as well as for estimates of the original model that has generated

the data (Contagion Model). The true loss distribution is stated for each portfolio, too (True Contagion Model). Models satisfying the

conditional independence assumption are marked by “CI”.
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All in all, it appears that for applications the issue of estimation risk is more impor-

tant than the question of whether defaults are conditionally independent or not. If

we were able to perfectly model and estimate the dynamics of the portfolio inten-

sity but wrongly assume conditional independence, we would have predicted the

quantiles of the loss distribution more accurate in more than 50% of the examples

than with the estimated contagion model (cf. Table 3.10). Also, our results do not

suggest that the SAJD model does a worse job than the estimated contagion model.

The model performance is comparable to the one of the estimated contagion model.

In particular, we would not have understated the risk of structured credit products

using a SAJD model. Rather, risk figures tend to be conservative in this case.

Furthermore, it is important to note that the loss distributions presented in Table

3.10 are based on average parameter estimates. However, in reality only one default

history will be available and estimation errors can have a considerable effect on the

results. For instance, in case of portfolio IV the average jump size mean estimated

for the Contagion Model is 0.0091 (cf. Table 3.9) yielding a 99.9% quantile of 0.088

(cf. Table 3.10). Using instead a jump size mean of 0.011 in the computation of

the loss distribution, which corresponds to roughly adding one standard deviation

to the average value, and keeping the other parameters fixed at their average esti-

mates, would result in a 99.9% quantile of 0.151.

Based on our findings, we can finally answer the questions raised at the beginning

of this section: First, loss distributions computed from models satisfying the con-

ditional independence assumption and from models with contagion differ when the

data generating model exhibits contagion effects. However, differences are minor

in comparison with estimation errors.24

In this context, it is important to note that we were able to observe simulated

default intensities on a daily basis but in reality they cannot usually be observed

on more than a monthly basis (cf. Subsection 3.1). Second, using a CIR or BAJD

model we would have understated the tails of the portfolio loss distribution. This

does not hold true for a SAJD model whose performance is comparable to that of

the contagion model. Third, with a CIR or BAJD model we would have incurred

considerable errors in assessing the risk of CDO tranches referencing the portfolios,

while for the SAJD model risk measures tend to be rather conservative. Therefore,

the choice of the right model for the intensity dynamics still remains an important

issue. To reduce model risk, it is worthwhile to conduct additional estimations

based on realized portfolio losses. If the resulting parameters imply a by far more

risky model parametrization than those obtained from the portfolio intensity, this

will be a strong indicator for a model that misses large parts of the true portfolio

24For static credit portfolio models, the influence of estimation errors on risk measures of credit

portfolio risk has already been investigated by Löffler (2003).



134 CHAPTER 3. MODELING OF STRUCTURED CREDIT PRODUCTS

risk.

In summary, our results support the continued use of the conditional independence

based models introduced in Section 3.2 to model the joint dynamics of default

intensities in the next section.

3.5 Portfolio Modeling

The results presented in the previous section suggest that conditional independence

and contagion models lead to comparable results when applied to real data, even

if the data was generated by a model in which contagion effects played a dominant

role.

Our findings therefore encourage the use of the conditional independence models

introduced in Section 3.2 for modeling the intensity dynamics on a portfolio level.

In the following, we consider their calibration to the intensities estimated in Section

3.1 and examine implications for the modeling of structured credit products. We

will try to answer the following questions:

• Which of the different versions of the model introduced in Section 3.2 describes

the portfolio intensity dynamics best?

• What are the implications of the model choice for the risk characteristics of

structured credit products?

• Do simple and complex models lead to comparable results?

We address these questions following a two step approach: First, we estimate the

different model versions based on the provided default intensity data. This allows

us then to compare the different model versions with respect to their statistical

significance and the Bayes factors associated with them (cf. Section 3.3). Since we

only observe the default intensities but not the common factor and the idiosyncratic

components governing the intensities, we have to deal with unobservable processes

in the estimation.

In a second step, using the estimated parameters we simulate paths of the portfolio

loss process and the corresponding portfolio intensity. By doing this, we can com-

pute a time series of ratings for hypothetical, structured credit products referencing

the portfolio and eventually obtain transition matrices for these products. Finally,

we compare the different models with respect to these matrices.

The remainder of the section is structured as follows: In Subsection 3.5.1, we

describe the methodology. Subsection 3.5.2 contains our estimation results. In

Subsection 3.5.3, transition matrices of structured credit products are derived.
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3.5.1 Estimation Methodology

Figure 3.10 shows the two estimated portfolio intensity paths which could explain

the observed default clustering (for details see Section 3.1).25 Each path comprises

243 monthly observed portfolio intensities. Also, the corresponding averaged de-

fault intensities are displayed. The recessions in 1990-91 and 2001 are visible with

average intensities peaking at around 0.1. As always when modeling the risk of

a particular portfolio, the key challenge is to explain the dynamics of the port-

folio intensity. Since we assume conditional independence, however, the portfolio

intensity can directly be modeled, and defaults can be disregarded.
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Figure 3.10: Estimated aggregated (left) and averaged (right) default intensities

for the two regression intensity models that could explain the observed default

clustering (for details see Section (3.1)).

Modeling the Portfolio Intensity

In order to model the portfolio intensity dynamics, we consider two basic ap-

proaches. The first approach is in line with the previous section where we presumed

that the portfolio intensity λP is given as

λP (t) =
I
∑

i=1

1τi>tλi(t) = λc(t)
I
∑

i=1

1τi>t. (3.25)

Thereby, portfolio defaults did not affect the factor process λc, and λc evolved ac-

cording to one of our single firm intensity models (CIR, BAJD and SAJD model).

Here, we will consider a more general specification for this factor process by as-

suming that λc is a basic jump diffusion (BJD) (see Section 3.2). As pointed out

in the previous section, a model of the form given by equation (3.25) would result

25For ease of exposition, all results presented in the following are based on intensities that have

been estimated with regression intensity model IV (out-of-sample).
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from the assumption that the intensity of each portfolio object is λi(t) = λc(t), i.e.

that the intensities of all portfolio objects are equal. It is, however, important to

note that also models with heterogeneous default intensities of the form

λi(t) = aiλ
c(t) (3.26)

come practically very close to the homogeneous model of equation (3.25) because

it is convenient to determine the ais in a way such that
∑I

i=1 ai = I. This gives the

ais the interpretation of portfolio weights; they control how strong each firm con-

tributes to the expected portfolio loss. For example, the ais estimated in Mortensen

(2006) and Feldhütter (2008) satisfy this condition. In both studies, the pricing of

structured credit products in the Duffie and Gârleanu (2001) model is addressed,

and CDS spreads are used as a proxy for the ais: A firm’s portfolio weight ai is

calculated as the firm’s average five-year CDS spread across the estimation period

divided by the average five-year CDS spread across all firms and time. We adapt

this approach to our problem and compute each portfolio weight as the firm’s av-

eraged observed intensity λAvg
i divided by the intensity average λAvg in the whole

sample. If the intensities of all firms were equally often observed, this would ensure

that
∑I

i=1 ai = I and that the portfolio intensity is in both models the same as

long as no default occurs.

Unfortunately, in our data set we do not observe the firms’ intensities equally often.

Also, there are defaults and other “exits” of firms from the data set, but Figure

3.11 shows that differences between the estimated factor λc in a homogeneous

and in a heterogeneous model are still minor. Recall that the portfolio weights

ai are computed using estimated default intensities and are therefore exposed to

estimation errors, too. When taking the potential estimation errors in connection

with the single default intensities into account, differences between both paths in

Figure 3.11 become negligible. We base our model estimation on the factor path

which has been derived under the assumption of heterogeneous default intensities.

In the depicted approach, all default intensities are solely governed by one common

factor λc and the risk stemming from the intensities is therefore purely systemic. By

assuming a model for the factor process λc, this allows us to estimate the portfolio

model more or less directly based on the observed portfolio intensity path because

in this case – given the portfolio weights ai – the factor path can immediately be

derived.

In the second approach, which we describe next, this is not the case anymore. Like

in the original portfolio model of Section 3.2, we now assume that the firms’ default
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Figure 3.11: The estimated factor λc in a model with homogeneous intensities

and in a model with heterogeneous intensities. In the homogeneous model, all

default intensities are assumed to be of the form λi = λc. In the heterogeneous

case, intensities are given as λi = aiλ
c, where each ai :=

λAvg
i

λAvg . λAvg
i and λAvg

denote the average intensity of firm i and the average intensity in the whole sample,

respectively.

intensities are given as

λi(t) = ai

(

λc(t) + λ̃i(t)
)

(3.27)

with λc as always denoting the factor and λ̃i the idiosyncratic component of the

firm’s default intensity. Both processes are assumed to follow basic jump diffu-

sion models (BJDs) as specified in equation (3.8). This implies that the portfolio

intensity is given as the sum of I + 1 unobservable processes, which significantly

complicates model inference.

To better structure the problem, we write the portfolio intensity as

I
∑

i=1

λi(t) = Iλc(t) + λ̃idio(t),

where we set λ̃idio :=
∑I

i=1 aiλ̃i and assume that
∑I

i=1 ai = I. In the following,

we refer to λ̃idio as the idiosyncratic component of the portfolio intensity. Given

homogeneity of the portfolio objects, i.e. given that ai = aj = 1 for all i 6= j, we

can apply “calculation rule” (3.9), which yields for the idiosyncratic component of
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the portfolio intensity λ̃idio that

λ̃idio is a BJD

(

I
∑

i=1

λ̃i,
I
∑

i=1

Θi, Z,Q, 1−̟, I · η, κ, σ, I · µ, ζ, ξ(1), ǫ, ξ(2)

)

.

This means that in the parsimonious, homogeneous model specification, which we

will consider in the following, the portfolio intensity is the sum of two processes.

Both processes cannot still be observed, but the dimension of the problem is con-

siderably reduced from I + 1 to 2.

It is self-evident that by proceeding in this way we will incur an error because the

underlying portfolio does definitely not satisfy the homogeneity assumption (see

Figure 3.8 on p. 113 for an example of two extremely different default intensities

in the data set). By assuming homogeneity, we understate the volatility of the id-

iosyncratic component λ̃idio, i.e. the idiosyncratic component is assumed to be more

diversified than it is in reality. Therefore, we can expect estimated model param-

eters to give more weight to the factor component because the factor component

has to account for more of the portfolio intensity’s overall volatility. Neverthe-

less, we consider our approach to be appropriate for a couple of reasons: First,

it significantly simplifies the estimation procedure because the dimension of the

problem is considerably reduced. Second and more important, we want to apply

the estimated model to calculate transition matrices of structured credit products.

The risk of these products depends on the volatility of the loss process which itself

is completely determined by the volatility of the portfolio intensity. Whether the

volatility of the portfolio intensity stems from the factor component or from the

idiosyncratic component is not important at all as long as the volatility is suffi-

ciently well explained.26

Also, this can be seen as a strong argument for the more or less direct estimation of

the model in our first estimation approach of equations (3.25) and (3.26). In sum-

mary, both introduced approaches come close to top-down approaches, i.e. models

that directly model the portfolio loss, but the “roots” of these approaches lie in a

bottom-up model.

Estimation Methodology

Although we made simplifying assumptions to obtain a parsimonious model spec-

ification, in both approaches presented above we have to deal with unobservable

processes. Direct model inference based on the ML estimation procedure intro-

duced in Subsection 3.3.1 is only possible in the first approach when the regime

26The issue of the volatility “source” would become very important in a pricing context in order

to compute hedge ratios for synthetic structured credit products with respect to changes in one

of the underlying CDS contracts.
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process Z is a trivial process, i.e. exhibits only one state. Otherwise, we have to

cope with the unobserved regime process Z. In the second approach, we also have

to handle the unobserved factor and idiosyncratic component that sum up to the

portfolio intensity.

To tackle the problem of unobserved processes, we rely on the expectation

-maximization (henceforth EM) algorithm, see Dempster et al. (1977); for its gen-

eral examination and theoretical results see Robert and Casella (1999) and for a

discussion in the context of hidden Markov models we refer to Cappé et al. (2005).

Basically, the EM algorithm derives a sequence of parameter estimates θ(m), which

corresponds to a non-decreasing sequence of log-likelihoods. If the algorithm ever

stops at a point, this point represents a local maximum of the log-likelihood (see

Cappé et al. (2005), pp. 349). At the heart of the algorithm is a so-called inter-

mediate quantity, which is defined as

I(θ, θ′) =

∫

logL
(

λP , w; θ
)

pW(w; θ′|λP )dw.

Here,W denotes the path of the unobserved process and w a realization. L
(

λP , w; θ
)

is the complete likelihood of the observed portfolio intensity and a realization of the

unobserved process w at θ. pW( ·; θ′|λP ) represents the conditional density of the

unobserved process given the realization of the portfolio intensity and a particular

model parametrization θ′.

Having defined the intermediate quantity, we set the stage for introducing the EM

algorithm:

Algorithm 3.5.1 Set m = 0 and choose an initial parameter guess θ(0). Proceed

then as follows:

1. E-Step: Compute I(θ, θ(m)).

2. M-Step: Maximize the intermediate quantity I(θ, θ(m)) with respect to θ and

set

θ(m+1) = arg max
θ

I(θ, θ(m))

3. As long as no sufficient convergence is obtained, increase m by 1 and proceed

with step 1.

The key challenge is to compute the intermediate quantity I(θ, θ′) in the algorithm.

In the setup considered here, it is not possible to derive this quantity analytically.

Rather, we have to approximate it in the following way:

I(θ, θ′) ≈ Ĩ(θ, θ′) =
1

K

K
∑

k=1

logL
(

λP , w(k); θ
)

, (3.28)
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where w(k) symoblizes a simulated path of the unobserved process, which is drawn

from the conditional density pW( ·; θ′|λP ). Since we rely on Monte-Carlo methods,

the algorithm that we eventually apply is a so-called Monte-Carlo EM algorithm

(see Robert and Casella (1999) and Cappé et al. (2005)).27

Depending on the form of the conditional density pW( ·; θ′|λP ), we have to consider

different simulation procedures. If direct simulation of the unobserved process

from its conditional density pW( ·; θ′| λP ) is possible, we draw i.i.d. paths. This

will be the case in our second approach for models in which the regime process

Z is a trivial one-state process. To sample from the conditional density we draw

paths of the idiosyncratic component λ̃idio of the portfolio intensity according to

the assumed model. A path λ̃idio(k) will be saved if it satisfies λP (tl) ≥ λ̃idio(tl) at

each point in time tl. Otherwise, the path will be discarded. If the path is saved,

the corresponding factor path λc(k) is given as λc(k)(t) = λP (t)−λ̃idio(t)
PI

i=1 1τi>t
.

In the models with a non-trivial regime process Z, we have to rely on a Markov-

Chain Monte-Carlo (MCMC) approach for simulation. In this case, we simulate a

Markov-Chain with stationary distribution pW( ·; θ′|λP ). As described in Appendix

A, we do this by applying the Gibbs sampler, see e.g. Geman and Geman (1984).

3.5.2 Estimation Results for the Portfolio Models

In Table 3.13 parameter estimates based on our first estimation approach are pre-

sented. The approach takes the heterogeneity of the underlying portfolio into

account, but assumes that intensities are solely governed by the common factor

λc. In addition, we state the corresponding estimates that are obtained under the

assumption of homogeneous default intensities. As expected, differences between

the heterogeneous and the homogeneous models are only slight.

In the estimation, we observe a pattern which we have already encountered in Sec-

tion 3.3: As soon as the possibility of jumps is included the mean reversion level

drops, the speed of mean reversion increases and volatility moves from the Brow-

nian part into the jump part. When incorporating a self-affecting model feature,

jumps are estimated to be of pure self-affecting nature since µ = 0. A comparison of

the different models based on the log-likelihoods and the Bayes factors as discussed

in Section 3.3 yields very strong evidence against a CIR model in favor of a BAJD

model and strong evidence against a BAJD model in favor of a SAJD model even-

tually corresponding to evidence of jumps of the portfolio intensity. Nonetheless,

at this stage it is hard to tell whether the estimated models really imply different

27For implementation details regarding the Monte-Carlo EM algorithm we refer to Appendix

A.
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CIR Model BAJD Model SAJD Model

Mean reversion level η 0.02298 0.01346 0.01250

(0.02068) (0.01171) (0.01117)

Speed of mean reversion κ 0.75407 1.41005 1.83351

(0.68577) (1.34831) (1.70350)

Volatility σ 0.12144 0.08924 0.08446

(0.12069) (0.08881) (0.08528)

Jump intensity µ – 1.46516 0.00000

– (1.41013) (0.00000)

Jump size mean ζ – 0.00921 0.00760

– (0.00917) (0.00776)

Jump intensity ξ1 – – 127.87000

– – (117.18500)

Log-Likelihood 954.46 975.72 980.52

(963.35) (984.60) (989.15)

Table 3.13: Parameter estimates of the portfolio models based on our first estima-

tion approach. Estimates have been calculated by taking the heterogeneity of the

portfolio objects into account. Estimates that are obtained under the assumption

of homogeneous default intensities are given in parentheses.

risk characteristics of structured credit products.

We have also estimated versions of the CIR, BAJD, and SAJD model under the

additional inclusion of a regime process as discussed in Section 3.2. Namely, we

specified the mean reversion level η and the jump intensity parameter µ of the fac-

tor to be governed by such a process. In this case, model inference was conducted

using the Monte-Carlo EM algorithm introduced in the previous subsection. We

found that the maximum likelihood was attained in each of the models with a

trivial regime process that never changed its state and for the parameter values of

Table 3.13.

In the second estimation approach presented in the previous subsection, we cannot

directly estimate the portfolio model based on the observed portfolio intensity path

and we have to rely on the Monte-Carlo EM algorithm right from the beginning.

We estimated three models in which factor and idiosyncratic component evolved

according to a CIR, a BAJD, and a SAJD model as suggested by Section 3.2. In



142 CHAPTER 3. MODELING OF STRUCTURED CREDIT PRODUCTS

each case, however, we found that the maximum likelihood was attained at ̟ = 1

and the parameters reported in Table 3.13 for the assumption of homogeneous

default intensities. Note that in our second estimation approach we presume ho-

mogeneity of the default intensities, too. A parameter value of ̟ = 1 means that

the idiosyncratic component λ̃idio = 0 and implies that the default risk of each firm

stemming from its intensity is purely systemic.

This is surprising but in line with results of Feldhütter (2008). In his empirical

investigation of the Duffie and Gârleanu (2001) model, which in our terminology is

called the BAJD model, he reports an estimated ̟ parameter of 0.9742. Although

he assesses the ability of the model to explain the prices of synthetic structured

credit products referencing the CDX index over time, the ̟ value that he obtains

does not reflect risk premiums and has to be considered as a real-world measure

parameter.

3.5.3 Simulating Transition Matrices of Structured Credit

Products

Having estimated the different models, we finally set the stage to answer the ques-

tion which is at the heart of this section: What are the implications of the model

choice for the risk characteristics of structured credit products?

An important risk characteristic of a structured finance product is its rating, be-

cause many market participants base their investment decisions on it, and ratings

play an important role in the Basel II capital requirements. The rating of a se-

curity is usually based on the first moment of its loss distribution. Moody’s, for

instance, claims consistency of its structured finance ratings with the expected loss

(see e.g. Yoshizawa (2003)). A corporate bond and a structured finance security

can therefore be identically rated, although their risk characteristics differ. Due

to the tranching of claims, the probability of suffering large losses will usually be

higher for a structured finance security than for a corporate bond with the same

rating. For a typical loss distribution of a tranche see Figure 4.9 on p. 188. Also,

the structured finance security will usually be much more exposed to systemic risk

than the corporate bond. In the wake of the current crisis, this has been criticized

a lot and some market participants now doubt the appropriateness of ratings to

describe the risk of structured finance products sufficiently well. It is, however,

important to note that this issue has been pointed out earlier, see e.g. Fender and

Mitchell (2005).
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Methodology

Despite the described shortcomings, the rating is very likely to stay one of the most

important publicly available risk measures for structured finance products in the

future. We base our investigation on the rating without discussing its appropriate-

ness. Rather, we intend to characterize its dynamics. We proceed as follows:

1. First, we simulate 2000 portfolio loss paths using the estimated models from

the previous subsection over a five-year period, which relates to the typical

five-year maturity of a CDO. To avoid giving too much weight to the starting

value of the factor λc, each path uses the end value of the preceding path as

starting value.

2. In a second step, we calculate for each path ratings of tranches [Kl, Ku]

referencing the simulated portfolio; ratings are calculated year-wise and the

attachment and detachment points that we consider are the same six as those

of Section 3.4.1: [0, 0.03], [0.03, 0.06], [0.06, 0.09], [0.09, 0.12], [0.12, 0.22], and

[0.22, 1]. Consistent with Yoshizawa (2003), a tranche’s rating at time t is

obtained by the following procedure: Given the observed losses in the port-

folio up to time t and the realization of the factor we calculate the tranche’s

expected loss at maturity. The expected loss is then “translated” into a rat-

ing using “Moody’s Idealized Expected Loss Table” for CDOs as stated in

Yoshizawa (2003). In total, this yields 6 × 2000 = 12, 000 paths of rating

history, where each path comprises five, yearly observations. To compute

the tranches’ expected loss, we apply an approach that is based on Fourier

inversion and is described in Appendix A; it guarantees a fast and accurate

computation of the expected loss.

3. Based on the generated rating transition data, we finally compute one-year

transition matrices.

As previously indicated, our primary focus will be on differences between the sim-

ulated transition matrices with respect to the underlying models and between sim-

ulated matrices and real-world matrices which have been derived from CDO rating

changes in the past.

Results

For illustration purposes, Table 3.14 shows the one-year rating transition matrix

which is obtained from our basic regression intensity data set of Section 3.1. It

should be mentioned that rating withdrawals were not taken into account in the
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computation of the matrix.28 The obtained matrix resembles the one reported by

Moody’s Investors Service (2007) for the time period 1984-2006. Our downgrade

and upgrade rates presented in Table 3.17 on p. 146 are similar, too.

Aaa Aa A Baa Ba B Caa Ca or C

Aaa 0.8686 0.1222 0.0092

Aa 0.0034 0.8946 0.0972 0.0042 0.0006

A 0.0002 0.0149 0.9117 0.0653 0.0063 0.0013 0.0002

Baa 0.0005 0.0402 0.8959 0.0538 0.0083 0.0011 0.0002

Ba 0.0018 0.0488 0.8449 0.1000 0.0044 0.0002

B 0.0008 0.0025 0.0654 0.8744 0.0477 0.0091

Caa 0.0138 0.1077 0.8227 0.0558

Ca or below 0.0062 0.0083 0.0971 0.2397 0.6488

Table 3.14: One-year rating transition matrix of corporates based on our basic regression

intensity data set of Section 3.1. Rating withdrawals are not taken into account.

In our study of structured finance rating transitions, we examine two different

stylized portfolios: Each portfolio consists of 125 homogeneous firms, but portfolios

differ in average creditworthiness: In portfolio I, firms have a low five-year default

probability of about 1% and in portfolio II the default probability is about 5%.

Different default probabilities are obtained by choosing different ai values for the

intensities (see e.g. equation (3.27)). The factor parametrizations used are those

which have been derived in the previous section.

In Table 3.15, we present the one-year CDO rating transition matrix implied by

the estimated CIR model and portfolio II showing a high average default rate.

The rating transition matrix is stated with respect to the broad rating categories

{“Aaa”, “Aa”, . . . , “Caa or below”}. In Table 3.17 on p. 146, the corresponding

global rating transition statistics are displayed. Measures such as rating volatility

are widely used in order to describe the rating transition behavior. For their

definition, we refer to Moody’s Investors Service (2007). We find that, excluding

the top-level rating category, the rating stability is much lower than the one of

the corporates. Although the upgrade rate is very high, downgrade rates in lower

rating categories are substantially higher than in the corporate finance transition

matrix of Table 3.14.

The observed high upgrade rate has to be attributed to the fact that our esti-

mated models imply an upward-sloping rating “term-structure”. This means, for

28More precisely, a changed or unchanged rating only enters into the computation of the matrix

if the firm has not defaulted during the considered one-year period and all explanatory variables

of the firm are available at least at the beginning and the end of this period.
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Aaa Aa A Baa Ba B Caa or below Default

Aaa 0.9786 0.0213 0.0001

Aa 0.4692 0.4524 0.0660 0.0107 0.0016

A 0.0746 0.4970 0.2937 0.1087 0.0229 0.0029 0.0003

Baa 0.0141 0.1421 0.3149 0.3548 0.1452 0.0232 0.0055 0.0003

Ba 0.0006 0.0140 0.0835 0.3725 0.3577 0.1255 0.0457 0.0006

B 0.0004 0.0078 0.0776 0.3306 0.3250 0.2483 0.0104

Caa or below 0.0002 0.0014 0.0258 0.1363 0.5222 0.3141

Default 1.0000

Table 3.15: Simulated, one-year CDO rating transition matrix based on the estimated

CIR model and a reference portfolio with a high default rate of about 5%.

instance, that tranches are rated “Caa2” with respect to their five-year expected

loss but would be rated “Baa1” if their one-year expected loss was chosen as rating

criterion. For a typical rating term-structure, see Table 3.16. On average, ratings

will therefore be upgraded as time evolves leading to higher upgrade rates than

downgrade rates.

Maturity

Tranche 1 2 3 4 5 6 7 8 9 10

[0.00,0.03] Caa3 Ca Ca Ca Ca Ca Ca Ca Ca Ca

[0.03,0.06] Baa1 Ba1 B1 B3 Caa2 Caa3 Ca Ca Ca Ca

[0.06,0.09] Aaa Aa3 A3 Baa3 Ba1 Ba2 B1 B3 Caa1 Caa2

[0.09,0.12] Aaa Aaa Aa1 Aa2 A1 A3 Baa2 Baa3 Ba1 Ba2

[0.12,0.22] Aaa Aaa Aaa Aaa Aa1 Aa1 Aa1 Aa2 Aa3 A1

[0.22,1.00] Aaa Aaa Aaa Aaa Aaa Aaa Aaa Aaa Aaa Aaa

Table 3.16: Typical rating term-structure presented for the CIR model and portfolio II

showing a high five-year average default probability of about 5%. As starting value for

the factor process the estimated mean reversion level η was chosen. Here, rating category

“Ca” is short for “Ca or below”.

Table 3.18 on p. 146 shows the one-year transition matrix based on the SAJD

model and the high default portfolio II. A juxtaposition of the matrices and the

corresponding global rating transition statistics implied by the different models

reveals that differences between the models are small. In the CIR model, rating

transitions between the broad rating categories seem to occur even more often than

in the SAJD model. Overall, the rating volatility is comparable in both models,

but the SAJD model yields a higher upgrade rate.
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Corporates Structured Finance

Low default portfolio I High default portfolio II

CIR BAJD SAJD CIR BAJD SAJD CIR, No Term-Structure

Downgrade Rate 0.1458 0.0653 0.0594 0.0667 0.1746 0.1646 0.1695 0.2555

Upgrade Rate 0.0820 0.1278 0.1171 0.1425 0.3059 0.2439 0.3548 0.0580

Downgrade/Upgrade Ratio 1.7779 0.5113 0.5072 0.4680 0.5706 0.6749 0.4776 4.4017

Downgrade Rate (notch weighted) 0.2637 0.1619 0.1529 0.1601 0.3181 0.2755 0.2840 0.8244

Upgrade Rate (notch weighted) 0.1148 0.1762 0.1315 0.2017 0.7097 0.4539 0.7418 0.1097

Downgrade/Upgrade Ratio (notch weighted) 2.2981 0.9188 1.1627 0.7936 0.4482 0.6071 0.3828 7.5141

Rating Drift (notch weighted) -0.1490 0.0143 -0.0214 0.0416 0.3916 0.1784 0.4578 -0.7146

Rating Volatility (notch weighted) 0.3785 0.3382 0.2844 0.3618 1.0278 0.7294 1.0257 0.9341

Rating Stability 0.7721 0.8069 0.8235 0.7909 0.5195 0.5914 0.4757 0.6865

Table 3.17: Global rating transition statistics. Statistics are stated for a low default portfolio with a five-year default probability of

about 1% and a high default portfolio with a default probability of 5%. Rating transitions are based on 2000 simulated paths of our

three estimated portfolio models (CIR, BAJD, SAJD). “No Term-Structure” means that the rating is in this case determined based on

the one-year ahead expected loss instead of the expected loss at maturity.

Aaa Aa A Baa Ba B Caa or below Default

Aaa 0.9924 0.0076

Aa 0.3836 0.5800 0.0326 0.0035 0.0003

A 0.0533 0.4209 0.4050 0.1070 0.0123 0.0013 0.0003

Baa 0.0032 0.0931 0.4459 0.3440 0.0980 0.0135 0.0022

Ba 0.0036 0.0581 0.3283 0.4599 0.1197 0.0297 0.0008

B 0.0035 0.0614 0.4077 0.3203 0.1980 0.0091

Caa or below 0.0003 0.0162 0.1091 0.5807 0.2937

Default 1.0000

Table 3.18: Simulated, one-year CDO rating transition matrix based on the estimated SAJD model and a reference portfolio with a high

default rate of about 5%.
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Aaa Aa A Baa Ba B Caa or below Default

Aaa 0.9199 0.0580 0.0163 0.0049 0.0008 0.0001

Aa 0.1846 0.3187 0.2697 0.1632 0.0451 0.0163 0.0023

A 0.0126 0.1124 0.2963 0.3349 0.1688 0.0548 0.0193 0.0008

Baa 0.0007 0.0180 0.1330 0.3175 0.3085 0.1495 0.0692 0.0036

Ba 0.0022 0.0139 0.1314 0.3156 0.2596 0.2357 0.0416

B 0.0190 0.1188 0.2834 0.4321 0.1467

Caa or below 0.0013 0.0201 0.3388 0.6398

Default 1.0000

Table 3.19: Simulated, one-year CDO rating transition matrix based on the esti-

mated CIR model, a reference portfolio with a high default rate (five-year default

probability of about 5%) and ratings determined according to the expected loss at

the one-year horizon.

Maturity

Tranche 1 2 3 4 5 6 7 8 9 10

[0.00,0.03] Caa2 Caa2 Caa2 Caa2 Caa2 Caa3 Caa3 Caa3 Caa3 Caa3

[0.03,0.06] B2 B2 B2 B2 B2 B2 B2 B3 B3 B3

[0.06,0.09] B1 B1 Ba3 Ba3 Ba3 Ba3 B1 B1 B1 B1

[0.09,0.12] Ba2 Ba3 Ba3 Ba2 Ba2 Ba2 Ba3 Ba3 Ba3 Ba3

[0.12,0.22] Baa3 Ba1 Ba1 Ba1 Ba1 Ba1 Ba1 Ba1 Ba1 Ba1

[0.22,1.00] Aa3 A3 A3 A2 A2 A2 A2 A2 A2 A2

Table 3.20: Rating term-structure in case of the adjusted CIR model (η = 0.00715,

κ = 0.754, σ = 0.714) a portfolio with a default probability of about 3.1%. As starting

value for the factor process the estimated mean reversion level η was chosen. Model

parameters were determined such that the rating of each security is the same for as

many maturities as possible.

Aaa Aa A Baa Ba B Caa or below Default

Aaa

Aa 0.0483 0.0322 0.9115 0.0054 0.0027

A 0.0349 0.0484 0.8817 0.0188 0.0108 0.0054

Baa 0.0145 0.0156 0.9219 0.0268 0.0112 0.0096 0.0004

Ba 0.0003 0.0313 0.9026 0.0303 0.0296 0.0059

B 0.0003 0.0244 0.0678 0.7765 0.0386 0.0924

Caa or below 0.0427 0.3205 0.2054 0.0345 0.3969

Default 1.0000

Table 3.21: Simulated, one-year CDO rating transition matrix based on a CIR

model which implies an almost flat rating term-structure and ratings determined

according to the expected loss at the one-year horizon.

Compared with the influence of the model choice, the effect of considering a differ-

ent underlying portfolio is much stronger. When considering a low default portfolio,

the rating stability strongly increases and downgrade and upgrade rates generally
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go down. The decrease of the downgrade rate can be explained by the diminished

number of defaults which is observed in the low default portfolio, because at a

default the expected losses of all tranches jump up often resulting in downgrades.

More defaults therefore mean higher downgrade rates. The decreased upgrade rate

might be puzzling at first, but note that in the low default portfolio many more

securities are rated “Aaa”.

As previously pointed out, there is a mismatch between the rating term-structure

implied by our estimated models and the model which is at the bottom of Moody’s

ratings. In order to further investigate this issue, we first remove the term-structure

effect from our ratings by determining the rating based on the expected loss after

a fixed future time period instead of the expected loss at maturity. We choose the

one-year horizon because of the five-year maturity of the securities.

Tables 3.17 and 3.19 present the global rating statistics and the corresponding

rating transition matrix based on the estimated CIR model and the high default

portfolio II. We find that the term-structure mismatch has a strong effect on the

matrices: As soon as it is removed, the rating stability increases, the upgrade

rate strongly goes down and the downgrade rate increases. Also, the rating drift

becomes negative meaning that on average ratings are downgraded now, and the

probability of a default in a low rating category is higher. The Downgrade/Upgrade

ratio is larger than the one of corporate finance, but still below the 7.47 reported

by Moody’s Investors Service (2007) for CDOs over the time period 1997-2006.

Another possibility of eliminating the term-structure effect is to choose the param-

eters of our model such that the ratings of the considered securities are equal for

all maturities: We keep the speed of mean reversion fixed at κ = 0.754 and adjust

the mean reversion level η and the volatility σ of the CIR model, which yields

η = 0.00715 and σ = 0.714. The corresponding rating term-structure is displayed

in Table 3.20. Although the derived parameters imply a much stronger dependence

structure between the default events than our parameters estimated based on the

portfolio intensity, the implied term-structure is not completely flat. This can be

attributed to the fact that dependencies between the portfolio objects decrease for

shorter maturities, because the considered models exclude simultaneous defaults.

Table 3.21 shows the transition matrix derived with the adjusted CIR model. On

the one hand, we find that there are high downgrade probabilities in the high and

in the low rating categories. On the other hand, “Baa”, “Ba” and “B” ratings are

relatively stable.

In total, these results indicate that we have to be careful with definite conclusions

because of the problems that we encountered during our investigation. The prob-

lems were primarily related to the fact that our estimated models do not imply
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consistent ratings for all considered maturities, and the missmatch has a strong

impact on the results. It is possible to remove this effect by computing a security’s

rating based on the one-year ahead expected loss and not based on the expected

loss at maturity, for example, but it is not clear whether this is appropriate. In par-

ticular, it contradicts the rating methodology of Moody’s (see Yoshizawa (2003)).

A common feature of all structured finance rating transition matrices which have

been derived in our investigation is that they implied a rating stability that de-

creases in the riskiness of the underlying portfolio. High default rates in this

portfolio imply a higher overall rating volatility and higher downgrade rates, a

fact, which should be taken into account by investors. Also, the simulated rating

transition data suggests a high default probability of structured finance products

having a low rating. In comparison with these general effects the consequence of

changing from one model to another was only small, which reduces the possibility

of high model risk regarding the considered models.

3.6 Summary and Remarks

In this chapter, we investigate the question of which type of models are needed in

order to model the dynamics of credit portfolios that are observed in real data. The

implications of our findings for structured credit modeling are discussed. We start

by estimating default intensities for a large sample of US and non-US corporates.

In contrast to Das et al. (2007), we show that estimated default intensities are

able to explain the observed default clustering, although we estimate the intensi-

ties based on observable covariates such as the firms’ Expected Default Frequency

(EDF) and do not introduce additional contagion effects or “frailty” variables.

We modify their estimation approach in two ways. First, we model intra-month

patterns in observed defaults. Second, we estimate default intensities on an out-

of-sample basis, which brings our estimates closer to the ones financial institutions

implementing the models would actually have used. Once intensity estimation is

modified in these ways, the hypothesis of well-specified intensities is no longer re-

jected. In addition, when examining the ability of our regression intensity model

to rank firms according to their default likeliness we find that its predictive power

is higher than that reported by Duffie et al. (2007) for their regression intensity

model and a similar data set.

Subsequently, we introduce a time-continuous model in order to explain the joint

dynamics of the intensities. The model includes other established models in liter-

ature as special cases. In the simplest case, intensities follow a Cox-Ingersoll-Ross

process (see Cox et al. (1985)). In general, the model represents a solid basis for

our empirical investigation since it exhibits a high degree of analytical tractability,
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and the different nested models can easily be compared.

In the first application of the model, we compare the ability of the different model

versions to explain the intensity of each single firm and examine the predictive

power of the models. Especially for firms of bad creditworthiness, we find that

models with intensity jumps are better able to model the intensity dynamics than

purely diffusion-based models. Concerning default prediction, however, we find

that more complex models do not yield better results.

Afterwards, we investigate the issue of model risk in connection with the assump-

tion of conditional independence. Our simulation study reveals that estimation

errors are by far more influential than errors related to this assumption. Even

though contagion effects played a dominant role in the data generating model,

some of the conditional independence models “lead” to results that are similar to

those obtained from the estimated true model.

Towards the end of this chapter, we present the model estimation on a portfolio

basis. We compare the estimated model versions with respect to their ability to

explain the portfolio intensity. In a second step, using the estimated parameters

we simulate paths of the portfolio loss process and the corresponding portfolio

intensity. In this way, we can compute a time series of ratings for hypothetical,

structured credit products referencing the portfolio and eventually obtain transi-

tion matrices for these products. This allows us to compare the different model

versions with respect to these matrices. We find that simple and complex models

eventually imply comparable risk profiles of structured credit products.

In summary, the findings of this chapter show that – as expected – simple and

more complex models yield different results. However, the influence of different

specifications on the results is minor in our data set when compared with general

problems that apply to all model versions. In particular, estimation errors are

considerable and their size usually increases in the number of parameters to be

estimated. For practical applications such as the risk analysis of structured credit

products, the issue of how to reduce these estimation errors is therefore by far more

important than the model choice and needs to be solved first – if even possible –

before considering more complex models.



Chapter 4

Application II: Analysis of

Mortality Contingent Catastrophe

Bonds

As mentioned earlier in this thesis, (re)insurance companies are exposed to differ-

ent sources of risk: Changes in interest rates, people who live systematically longer

than expected or catastrophe events like earthquakes or hurricanes could cause

large losses. To actively manage these risks on their balance sheets, (re) insurance

companies have started to transfer some of them to the capital markets – similar to

the way how banks deal with their credit risk exposure. By means of securitization,

i.e. isolating the cash flows that are linked to insurance liabilities and repackaging

them into cash flows that are traded in capital markets, insurers and reinsurers

have begun to step away from their traditional risk warehousing function towards

a business model of risk intermediation.

One prominent example of Insurance Linked Securities (ILS) which enables (re)

insurers to load extreme tail risks off their balance sheets are so-called Catastro-

phe (CAT) Bonds, the coupons and principal payments of which depend on the

incurrence of certain catastrophic events. They have been traded since the mid

1990s and present interesting investment possibilities as they are “low-beta” in-

vestments, i.e. their returns show a low correlation to financial markets, and thus

increase diversification possibilities for investors (see Cox et al. (2000)). Moreover,

they offer several potential advantages over alternative methods for insurers to deal

with catastrophic risk. For instance, in comparison with traditional (re) insurance

catastrophe bonds bear less credit risk (see Niehaus (2002)).

The market for CAT securities and the pricing of CAT bonds have been studied

in various contributions (see e.g. Doherty (1997), Froot (2001) and Lee and Yu

(2002), Young (2004), respectively). However, the amount of capital that has been

151
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raised within securitizations of catastrophic risk remains small (Cummins (2006)).

One possible explanation is that these bonds may be expensive relative to conven-

tional reinsurance since investors often charge a high risk premium on the bonds

(cf. Bantwal and Kunreuther (1999), Froot (2001)).

A more recent capital market innovation are so-called CAT Mortality Bonds (hence-

forth CATM bonds). While most CAT bonds and other CAT derivatives depend

on underlying loss indices such as the Property Claim Services (PCS) loss index,

CATM bonds are contingent on less artificial events: They are triggered by a catas-

trophic evolution of death rates of a certain population. Investors’ demand for these

securities seems to be very high, and in contrast to “conventional” CAT bonds the

number of deals has increased considerably over the last years: There were four

major deals in 2006 with a total volume of more than $1.2 Billion. Surprisingly,

there have been only very few contributions in the scientific literature on CATM

bonds.

Lin and Cox (2006) and Cox et al. (2006) develop an asset pricing model for morta-

lity contingent securities in an incomplete market framework with jump processes.

In particular, they propose a pricing method for CATM bonds. Modeling the under-

lying combined mortality index which triggers the bond by a geometric Brownian

motion with a multiplicative jump component and distorting the resulting distri-

butions by the so-called Wang transform (see Wang (2000) and Wang (2002)), they

are able to explain market outcomes of existing mortality securitizations regarding

investors’ demand by analyzing the implied risk premiums. However, their pricing

model remains static in the sense that no risk-adjusted dynamics are derived. Fur-

thermore, they only focus on a single transaction, namely the first one, and do not

provide an overview on the CATM market thus far; particularly, the stability of

their findings regarding subsequent transactions is not examined. Also, modeling

the index rather than the evolution of the underlying mortality may not be ade-

quate as the index corresponds to one specific deal.

The present chapter aims to close this gap in the literature. Aside from providing

a concise overview on the market history, we develop a risk assessment and pricing

model which is based on stochastic modeling of the mortality intensity (cf. Sub-

section 2.8.2). Parametrizations of the proposed model based on three different

calibration procedures are derived; we provide the resulting loss profiles as well as

prices, and discuss the consequences of our findings.

The remainder of this chapter is organized as follows. After explaining the general

structure of CATM bonds based on the so-called Tartan bond1 in Subsection 4.1.1,

1Tartan Capital Ltd. Series 1 arranged by Goldman Sachs for the reinsurer Scottish Re Group

Ltd. (Scottish Re), issued in May 2006.
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Subsection 4.1.2 provides an overview on the development of the CATM securitiza-

tion market thus far. In particular, we present the characteristics of all deals until

the end of 2006. After a short overview in Subsection 4.1.3 on general modeling

approaches with a focus on those used in practice, we introduce in 4.2 our model

based on the stochastic mortality modeling approach described in Subsection 2.8.2.

Our model consists of two components: A baseline component governed by a diffu-

sion reflecting the “regular” fluctuations of mortality over time and a catastrophe

component driven by a jump process representing catastrophic events. Three cali-

bration procedures for this model are presented in Section 4.3: First, best estimate

parametrizations based on historical data and viewpoints from the demographic

literature are derived; the other two risk-adjusted parametrizations are extracted

from market prices of term life insurance policies and past catastrophe mortality

securitizations, respectively. Section 4.4 presents our results; we provide prices in

terms of excess spread levels, loss probabilities as well as expected losses corre-

sponding to the parametrizations derived in Section 4.3 and compare our results to

loss profiles provided by the issuers and market prices. Moreover, similarities to the

credit risky securities considered in Chapter 3 are pointed out. After a discussion

of our findings, Section 4.5 concludes.

4.1 An Overview on Catastrophe Mortality Bonds

Securitization transactions are usually highly complex and involve several parties

such as lawyers, rating agencies, trustees, etc. Providing a general overview on

securitization transactions is far beyond the scope of this thesis (see e.g. Deacon

(2006) or Jeffrey (2006) for an introduction to securitization and Asset Backed

Securities (ABS) in general, or Cowley and Cummins (2005) for life insurance se-

curitization). The basic idea is to isolate and pool cash flows that are linked to

certain assets or liabilities, repackage them into cash flows which support certain

related securities and issue these securities to capital markets.

Within CATM securitizations, insurers and reinsurers transfer catastrophe morta-

lity risk, which arises from a possible occurrence of, for example, severe pandemics

or catastrophic terrorist attacks from their liability side to the capital market by

means of CATM bonds. Traditionally, these risks were shared between insurers and

reinsurers via reinsurance or retrocession. However, in contrast to these classical

approaches, securitization avoids credit risk (see also Niehaus (2002)). Moreover,

a traditional risk transfer may be more expensive as possible transaction partners

usually already have this type of risk in their books and thus their appetite for it

is limited. Also, retrocession would require the disclosure of the own business to

possible competitors.
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FGIC

SALIC Ltd. Tartan Capital Ltd. Investors

Collateral Account

Goldman Sachs

interest and principal

proceeds

fixed payments

interest and principal guaranteeguarantee premium

LIBOR - fee proceeds

interest swap

payout

Figure 4.1: Description of the Tartan deal structure (Source: Linfoot (2007)).

Thus far, there have been five public transactions. While they differed in their

coverage area, credit ratings, or spread levels, the basic structure is the same: A

certain underlying mortality index based on the mortality experience in the cov-

erage area is defined; if this index exceeds certain pre-specified levels, the bond is

triggered, i.e. the investors start to loose their principal. As it is cumbersome to

present the characteristics of all available CATM bonds at the same time, in Sub-

section 4.1.1, we detail out the structure of one representative example, namely the

third of all five transactions: the Tartan transaction arranged by Goldman Sachs

for the reinsurer Scottish Re (cf. Linfoot (2007)). In Subsection 4.1.2, we then

compare this deal to the other transactions so far.

4.1.1 Structure of the Securities

In Figure 4.1, the structure of the Tartan transaction is illustrated. SALIC2, a

member of the Scottish Re Group Ltd., entered into a counter-party agreement

with the special purpose vehicle Tartan Capital Ltd. (Tartan). Under this agree-

ment Tartan is obligated to make payments to SALIC in case a certain index is

triggered. In return, SALIC agreed to pay Tartan a certain fixed amount quar-

terly. In order to raise funds for the conditional payments to SALIC, Tartan issued

and sold bonds to capital market investors; the proceeds were used to buy eligi-

ble securities which act as collateral. As these collateral assets could decrease in

market value, Tartan went into a swap agreement with Goldman Sachs, who have

also structured the deal: In return for the variable investment income from the

collateral account, Goldman Sachs agreed to pay the 3-month LIBOR3 minus a fee

of 10 basis points (bps).

2Scottish Annuity & Life Insurance Company (Cayman) Ltd.
3London Interbank Offered Rate.
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Tartan issued 2 series of 3-year notes: a $75 million (mn) (Class A) and an $80

mn (Class B) tranche with different risk exposures. In particular, within the Class

A notes both interest payments and the investors’ principal are guaranteed by the

monoline insurer Financial Guaranty Insurance Co. (FGIC). Therefore, the only

risk that investors in the Class A notes have to face is credit risk. In return for the

guarantee, FGIC received a premium from Tartan. Class B investors, on the other

hand, are actually exposed to catastrophe mortality risk, i.e. they will lose interest

and principal in case of a trigger event.

The bonds and thus the payment to SALIC are triggered if a well defined paramet-

ric index exceeds a certain level. This so-called combined mortality index (CMI) is

contingent on the mortality experience of certain populations, and the objective is

to design it such that the actual catastrophe mortality exposure of the protection

buyer (SALIC / Scottish Re) is reflected as well as is possible. Within the Tartan

transaction, this index is solely based on US population mortality. For each rele-

vant point in time (calendar year) t, the mortality rates, i.e. the probabilities to

decease within the following year for certain partitions of the whole population as

reported from the Centers for Disease Control and Prevention (CDC), are weighted

to determine a weighted population death rate q̂t:

q̂t =
∑

all x

ωx,m q̂m,x,t + ωx,f q̂f,x,t, (4.1)

where q̂m,x,t and q̂f,x,t are the mortality rates for age group x in calendar year t

for males and females, respectively, and ωx,m / ωx,f are the weights applied to

the corresponding mortality rates. The weights for the Tartan transaction are

displayed in Table 4.1. Now, the actual index at time t, say it, is derived from

the underlying weighted population death rates at times t and t− 1 as well as the

weighted population death rates for the reference years 2004 and 2005, which are

determined according to equation (4.1), by the relationship

it =
1
2
(q̂t + q̂t−1)

1
2
(q̂2005 + q̂2004)

. (4.2)

Since the index relies on the experience of two consecutive years and since Tartan

issued bonds with a three year tenor, there are only two dates at which the index

is calculated and at which the principal may be reduced due to a potential catas-

trophic event: at the end of 2007 for the years 2006 and 2007 and at the end of

2008 for the years 2007 and 2008. In particular, this implies that investors cannot

lose principal in the first two years. However, the data for the index calculation

will usually not be available until a while after the respective measurement dates.

Therefore, Tartan has the possibility to extend the tenor of the notes up to a max-

imum of 30 months, but the securities cannot suffer any losses due to a possible
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Age Groups (x) Age Weights: Male (ωx,m) Age Weights: Female (ωx,f)

1–4 0% 0%

5–14 0.1% 0.1%

15–24 0.4% 0.4%

25–34 8.2% 6.1%

35–44 26.0% 12.7%

45–54 21.4% 7.8%

55–64 9.8% 2.7%

65–74 2.3% 0.8%

75–84 0.6% 0.4%

84+ 0.1% 0.1%

Total 68.8% 31.2%

Table 4.1: Gender and age weights for the Tartan transaction (Source: Linfoot

(2007)).

event within the extension period, and investors will receive ongoing interest pay-

ments.

Furthermore, only if the index exceeds a certain level, the so-called trigger level or

attachment point a, investors will lose principal. If the index exceeds the so-called

exhaustion level or detachment point d, their complete principal will be lost. For

index levels between the attachment and detachment points, the loss percentage of

the principal at time t = 2007, 2008, lt, is determined as follows:

lt = min

{

max

{

lt−1,
it − a

d− a

}

, 100%

}

, (4.3)

where l2006 := 0. Coupons are only paid on the remaining principal. Table 4.2

provides the trigger and exhaustion levels as well as the interest on the Tartan

notes.

Interest on the notes is paid quarterly. It is worth mentioning that the spread

levels are not fixed from the beginning of the marketing phase of the notes – they

depend on investors’ demand and market conditions.

4Rating at Issuance from Moody’s Investors Service (Moody’s) and Standard and Poor’s

(S&P).
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Class A Notes Class B Notes

Tranche Size $75mn $80mn

Term 3 years 3 years

Trigger Level 115% 110%

Exhaustion Level 120% 115%

Coupon (bps) LIBOR+19 LIBOR+300

Rating4 Aaa/AAA Baa3/BBB

Table 4.2: Program summary of the notes issued by Tartan (Source: Linfoot

(2007)).

4.1.2 Market Development5

As mentioned earlier in this section, Tartan was the third public catastrophe mor-

tality transaction. Table 4.3 provides an overview on all such transactions so far.

Vita Capital Ltd. (Vita I) was the first CATM securitization transaction out of

the $2 billion (bn) multi-currency shelf program6 established by Swiss Reinsurance

Company (Swiss Re). While the latter four deals are still ongoing, Vita I matured

in the end of December 2006 and was not extended as there was no extreme mor-

tality event during the risk period. In contrast to the Tartan deal, it only had

one single tranche and the underlying index was based on the population from

several countries rather than just one.7 When structuring the transaction, Swiss

Re wanted to involve an American monoline insurer to “wrap” the bond, but even-

tually due to regulatory issues no cooperation was established. Swiss Re managed

the challenge of selling this new type of risk to the market, and the notes were

placed successfully.

About 18 months after Vita I, again Swiss Re came to the market with their sec-

ond transaction, Vita Capital II Ltd. (Vita II). In contrast to Vita I, Vita II has

three tranches with different, decreasing seniorities due to decreasing trigger and

exhaustion levels, but all of them are of a lower seniority than the single Vita I

tranche. Despite this fact, the spread level within the first transaction exceeds the

5Based on Logisch (2007).
6Shelf program means that not the total capacity is issued initially – some “sits on a shelf”.

Establishing a shelf program reduces costs for future transactions as the legal work, modeling,

etc. are done for a relatively large amount. Moreover, it reduces the time from the decision to

access the capital market and the closure of the deal enabling the issuer to quickly react when

protection is needed or investors’ appetite is large enough to absorb the extra issued bonds.
7In this case, the combined mortality index is defined as the weighted average over the indices

from the individual countries determined according to equation (4.2) with country weights as

provided in Table 4.3.
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level of the Class B note from Vita II. This tight pricing was possible since the

bond was over-subscribed indicating that within Vita I investors had demanded a

considerable novelty premium, i.e. an additional premium for the unknown asset

class. However, Swiss Re did not seem to be surprised by this fact since they chose

to issue the riskier and potentially more expensive tranches after the market had

got acquainted with this type of security. As indicated in Table 4.3, S&P upgraded

all three Vita II classes by one notch in April 2006. According to Standard and

Poor’s (2006), this upgrade was mainly due to the availability of new mortality

data showing mortality improvements, advances in vaccine research and continu-

ing work of governments regarding their pandemic preparedness plans.

As mentioned above, Tartan was the third CATM transaction, and so far the only

one without involvement of Swiss Re. This first issue out of Scottish Re’s $300mn

shelf structure was also the first issue with a tranche wrapped by a monoline in-

surer. In comparison to the Vita II Class D tranche, the non-guaranteed Class

B note is priced considerably higher even though both have the same trigger and

exhaustion levels. This may be due to the fact that, in contrast to the deals before,

Tartan is solely based on US mortality experience and, thus, there is no diversifi-

cation effect among several populations. However, the more important reason was

likely timing: During the marketing period of the transaction in the beginning of

2006, the international press had paid an increased attention to possible outbreaks

of Avian Flu and to pandemics in general (see e.g. the Pandemic Theme Index

provided by Conquest Investment Advisory AG).

Six months after Tartan, once the public discussions regarding pandemic fears had

calmed down, the fourth series of CATM bonds were issued by OSIRIS Capital Plc

(OSIRIS). Again, Swiss Re was involved as structurer and lead underwriter for the

underlying EUR1.0bn shelf program but not as the protection buyer; the program

has been structured as a securitization for the catastrophe mortality risk within the

books of AXA Cessions (AXA), a subcompany of the French AXA group. There-

fore, it is the first deal which involves a primary insurer, and for the first time

the underlying CMI is not dominated by US mortality experience. Aside from

Swiss Re, IXIS Corporate and Investment Bank (IXIS) and Lehman Brothers Inc.

(Lehman) were invited to act as co-underwriters. According to a press release from

Swiss Re on 11/13/2006, investors’ demand was very strong and all classes were

oversubscribed. Euroweek (2006) even reports that all tranches were increased in

size due to high investor demand and that all classes were priced well within the

price guidance. However, even though the Baa2/BBB rated Class C tranche was

priced tighter than the Baa3/BBB+ Class B note from Tartan, its price is still far

from the level of the similar Vita II Class D Bond. This may be a consequence of

increased investors’ expectations after the Tartan transaction. The high demand

was mainly due to the fact that in addition to specialized CAT bond investors Swiss
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Re, IXIS, and Lehman also approached traditional ABS investors. Furthermore,

with the Ba1/BB+ rated Class D note a non-investment grade tranche was offered

within a CATM securitization for the first time. Thus, the deal has also drawn

attention from hedge funds. All in all, 50% of the bonds were sold to asset man-

agers, 20% to banks, and 25% to hedge funds (cf. International Financing Review

(2006)).

In late December of 2006, Vita Capital III Ltd. (Vita III) issued the third series

of bonds out of Swiss Re’s shelf program with the key objective to replace Vita I,

which had expired in the same month. However, the total amount was increased

in comparison to Vita I. All offered tranches are of a high seniority with all ratings

above A, and they were priced similarly to the comparable OSIRIS notes. It is

worth noting that five of the nine tranches are wrapped by three different monoline

insurers.

In conclusion, it appears that in the relatively short history of the CATM market

the spectrum of investors has broadened considerably. While the initial transac-

tions were mainly geared towards specialized CAT bond investors, more and more

fixed-income and traditional ABS investors seem to be interested. This may be

reasoned with the low correlation or the one-way relationship with debt capital

and equity markets and the resulting diversification possibilities, but the attractive

risk-return profile when comparing CATM bonds to similar rated Mortage Backed

Securities (MBS) or Collateralized Debt Obligation (CDO) tranches certainly plays

a role, too.8 For example, an anonymous investor explained that he is investing in

CATM bonds because of the relative high spread margins and added: “If there will

be one day such a severe world-wide pandemic that one of the bonds I bought will

be triggered, there will be more important things to look after than an investment

portfolio.”

In order to estimate and analyze the risks within CATM bonds, investment man-

agers started hiring actuaries to act as specialists on insurance risks. However, so

far the market participants mainly rely on the advice of so-called modeling firms.

In the next section, after providing an overview of these consultants and their

modeling approaches we introduce a model which can be used to price and analyze

extreme mortality risks.

8The term one-way relationship means that adverse events in the financial market have no

impact on the performance of a CATM bond, whereas a severe pandemic could affect the financial

markets considerably.
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Vita Capital Ltd. Vita Capital II Ltd. Tartan Capital Ltd.

Issued Nov. 2003 Apr. 2006 May 2006

Class9 A B C D A∗ B

Tranche Size $400mn $62mn $200mn $100mn $75mn $80mn

Arranger Swiss Re Swiss Re Goldman Sachs

Protection for Swiss Re Swiss Re Scottish Re

Rating10 A3/A+ Aa3/A-∗∗ A2/BBB+∗∗ Baa2/BBB-∗∗ Aaa/AAA Baa3/BBB+

Attachment Point 130% 120% 115% 110% 115% 110%

Detachment Point 150% 125% 120% 115% 120% 115%

Coupon (bps) LIBOR+135 LIBOR+90 LIBOR+140 LIBOR+190 LIBOR+19 LIBOR+300

Expected Maturity 4 years 5 years 5 years 5 years 3 years 3 years

Covered Area US 70%, UK 15%, F 7.5%, US 62.5%, UK 17.5%, US 100%

I 5%, CH 2.5% D 7.5%, J 7.5%, CAN 5%

Osiris Capital Plc.

Issued Nov. 2006

Class B1∗ B2 C D

Tranche Size Euro 100mn Euro 50mn $150mn $100mn

Arranger Swiss Re

Protection for AXA

Rating Aaa/AAA A3/A- Baa2/BBB Ba1/BB+

Attachment Point 114% 114% 110% 106%

Detachment Point 119% 119% 114% 110%

Coupon (bps) EURIBOR+20 EURIBOR+120 LIBOR+285 LIBOR+500

Expected Maturity 4 years 4 years 4 years 4 years

Covered Area F 60%, J 25%, US 15%

Vita Capital III Ltd.

Issued Dec. 2006

Class A-IV∗ A-V∗ A-VI∗ A-VII B-I B-II B-III BV∗ BVI∗

Tranche Size $100mn $100mn Euro 55mn Euro 100mn $90mn $50mn Euro 30mn $ 50mn Euro 55mn

Arranger Swiss Re

Protection for Swiss Re

Rating Aaa/AAA Aaa/AAA Aaa/AAA Aa2/AA- A1/A A1/A A1/A Aaa/AAA Aaa/AAA

Attachment Point 125% 125% 125% 125% 120% 120% 120% 120% 120%

Detachment Point 145% 145% 145% 145% 125% 125% 125% 125% 125%

Coupon (bps) LIBOR+21 LIBOR+20 EURIBOR+21 EURIBOR+80 LIBOR+110 LIBOR+112 EURIBOR+110 LIBOR+21 EURIBOR+22

Expected Maturity 4 years 5 years 4 years 5 years 4 years 5 years 4 years 5 years 4 years

Covered Area US 62.5%, UK 17.5%, D 7.5%, J 7.5%, CAN 5%

Table 4.3: Comparison of all CATM deals from 2003 until 2006 (Source: New Issue Reports from S&P and Moody’s; Bloomberg

data).

9The tranches marked with ∗ are guaranteed by monoline insurers.
10Rating at Issuance from Moody’s / S&P – the ratings marked with ∗∗ were upgraded by S&P.



4.1. AN OVERVIEW ON CATASTROPHE MORTALITY BONDS 161

4.1.3 Modeling Approaches in Practice

Aside from the arranger, SPV managers, rating agencies etc., so-called risk mod-

eling firms play an important role in a catastrophe mortality securitization. They

are appointed to calculate loss probabilities and expected losses for the different

tranches of a transaction. These loss profiles are important as investors and rat-

ing agencies usually base their decisions on this data. Furthermore, they are in

charge of calculating the combined mortality index; thus, they are also referred to

as calculation agents. To date, the global acting actuarial consultant Milliman Inc.

(Milliman) was hired as the calculation agent in all transactions so far. However,

within the Vita III transaction the US based company Risk Management Solutions

(RMS) was also involved as an adviser for the monoline insurer Financial Security

Assurance Inc. (FSA). The modeling approaches of Milliman and RMS differ con-

siderably: While Miliman bases its analysis on an actuarial model, RMS uses an

epidemiological approach. Although no mathematical details on their respective

models can be presented as to our knowledge these are not published, an overview

of their approaches based on the available information is provided in Subsection

4.1.3. In Subsection 4.2, we present our approach based on stochastic mortality

modeling.

RMS: An Epidemiological Approach11

RMS reports that its catastrophe mortality model is based on epidemiological data

and research rather than historical data, and that it was supported by world-wide

experts in influenza research when developing its methodology. However, historical

data is used to test the model. It is worth mentioning that RMS’s model does not

include man made catastrophes such as terrorism acts.

Within its model, event tree techniques are applied to produce 1,890 probability

weighted scenarios; Figure 4.2 shows the underlying event tree. Regarding the prob-

ability of an outbreak, RMS mentions that there have historically been an average

of three pandemics per century. Thus, RMS assumes an annual outbreak probabil-

ity of 3-4%. However, as industrialized livestock husbandry and other conditions

fostering mutations of viruses have increased in recent decades it is possible that

the situation has worsened. Furthermore, the ongoing scientific debate of whether

the risk of a pandemic is increased due to H5N1 prevalence in bird populations

(the so-called Avian Flu) is another indication that the historical probability may

be too low. Therefore, RMS advises using levels of 5% and 6.7% for stress-testing

purposes.

11Based on Logisch (2007), who reports a web presentation held by an RMS modeling expert

in January 2007 as his primary source.
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Probability of Pandemic

Infectiousness and Lethality

Demographic Impact

Location of Outbreak

Vaccine Production

National Counter-Measures

Pandemic Lifecycle

Figure 4.2: RMS Pandemic Influenza Model Framework (Source: Logisch (2007)).

The parameters determining infectiousness and lethality are fixed based on in-

fluenza research. In particular, RMS researched what proportion of the population

is susceptible to a virus, which proportion will be affected and what the corre-

sponding recovery rates are. More precisely, the demographic impact of a virus is

considered in its model as usually the very young and the elderly – those with a

weaker immune system – are most affected by a virus. However, due to so-called

“cytokine storms”, i.e. potentially fatal immune reactions, a strong immune system

may rather be a disadvantage than an advantage. For example, within the Spanish

Flu from 1918, the most severe pandemic in the last century a disproportionate

amount of young adults had been killed, which is believed to be the consequence of

cytokine storms. Furthermore, human deaths from H5N1 usually involve cytokine

storms.12

The location of an outbreak is another important influence factor within the RMS

model: Five world regions are being distinguished, and a regional as well as an

interregional spread rate is modeled. For example, the underlying data includes

maps of the connections between international airports. According to RMS, its

spread model yields results which are consistent with the models used by the US

government, the UK government and the World Health Organization. The location

of the outbreak also determines the effectiveness of the country-specific emergency

plans and countermeasures as well as vaccine production scenarios and their prob-

abilities.

RMS claims consistency of its model with all historic data. In its opinion, a se-

vere pandemic would arise from the combination of a virulent and infectious virus,

a high incidence of cytokine storms, a delayed vaccine and a failed government

12From www.wikipedia.org, 02/09/2007.
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Baseline Component Disease Component Terrorism Component

Combined Model

Results Analyzer

Figure 4.3: Milliman model overview (Source: Logisch (2007)).

response.

Milliman: An Actuarial Approach13

As noted above, Milliman’s approach differs considerably from the one presented

by RMS as Milliman models the future evolution of mortality with actuarial and

statistical methods based on historical data. As shown in Figure 4.3, its framework

consists of three basic components:

1. The Baseline Component models random fluctuations within annual morta-

lity rates as long as no catastrophic event occurs. Using time-series models,

Milliman develops stochastic forecasts of the mortality evolution for every

country covered in the combined mortality index, which are applied to pro-

duce simulations of the weighted combined death rates (cf. equation (4.1)).

2. The Disease Component captures the excess mortality due to a pandemic

outbreak. The frequency and severity of an outbreak are modeled separately

based on data from past pandemics. The same model is used for each relevant

country, and it is assumed that pandemics occur simultaneously in these

countries. Furthermore, Milliman assumes that these events are independent

between calendar years.

3. The Terrorism Component produces simulations for mortality shocks arising

from a terrorist attack based on a multi-level trinomial tree. In each level,

there are three possible outcomes with different probabilities: “Failure”, i.e.

no deaths have occurred; “Success” of the attack, so a random number of

deaths within a given range is assumed; or “Escalate”, which means that

the attack was more severe than attacks corresponding to the current level

implying that the model jumps to the next level with a higher range of pos-

sible death counts. According to Linfoot (2007), the probabilities and ranges

are calibrated to the terrorism model from the US State Department (for

1999-2003) and the National Counterterrorism Center (for 2004).

13Based on Linfoot (2007) and Logisch (2007).
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For each basic component 250,000 simulations are produced and combined to esti-

mate annualized as well as cumulative expected losses and several loss probabilities

such as the probability that the trigger level of a certain tranche will be reached.

Even though the terrorism component only has a marginal impact for these estima-

tions, it was included into Milliman’s model since the Vita II deal upon investors’

requests. Furthermore, mortality shocks due to natural disasters are not modeled

explicitly as “such events would not have resulted in a large enough number of

deaths to cause a loss to any Class of the Notes [within the Tartan deal].”14

As noted above, Milliman’s model was the primary basis for investors’ and rat-

ing agencies’ decisions within all CATM transactions thus far since Milliman was

appointed as the risk modeling firm in each deal. The reason for this “monopoly-

position” is probably that Milliman was the first to have a model for catastrophe

mortality risk which was accepted by the market. Since they are part of several

ongoing shelf programs and since investors have become accustomed to seeing Mil-

liman involved in the deals, it is very likely that they also will play a dominant

role in the future. However, rumors in the market indicate that RMS is currently

working on a transaction together with a large American insurer. As RMS reports

substantially higher loss probabilities than Milliman, the consequences of an in-

volvement of RMS in future transactions may considerably change current spread

levels.

While RMS’ idea of building an epidemiological model is interesting, from a math-

ematical point of view the massive amount of necessary parameters is problematic.

For example, when including parameter uncertainty or when conducting sensitivity

analyses confidence bands for the loss probabilities become very large; therefore,

we will follow Milliman’s approach and present an actuarial model in the next sub-

section. Following the same basic approach, we also keep our results comparable

to the risk profiles derived by Milliman, which have been used in the transactions

considered in this thesis.

4.2 Our Model for Analyzing and Pricing Mor-

tality Contingent Catastrophe Bonds

In order to analyze and eventually price CATM bonds, it is necessary to model

the underlying combined mortality index. While Lin and Cox (2006) and Cox et

al. (2006) directly model the weighted population death rate from equation (4.1),

we consider modeling the underlying cohort specific death rates. Understanding

the index as a function of these death rates is, in our opinion, more adequate as

14cf. Linfoot (2007).
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the combined index corresponds to the specifications of a certain transaction, and

therefore, a “direct” model of the index or the weighted population death rate will

naturally be bound to the deal in view. Furthermore, we believe that the more

basic approach coheres better with the structure of the problem and permits the

consideration of more general transaction structures.

Our model specification belongs to the general setup considered in Subsection 2.8.2,

which is in line with Miltersen and Persson (2005), who define the force of mortality

based on the so-called intensity based approach from Lando (1998). As previously

discussed, in order to guarantee analytical tractability of a model specification, it

is sufficient to specify a process X1 = (Y 1, Y 2, Z) satisfying the conditions stated

in Assumption 2.7.1 as well as positive functions χ1 ∈ Rr
0+ and χ2(t) ∈ R

1×d2
0+ such

that mortality intensities λx0(t) can be written as

λx0(t) = λ(xt, t) = λ(xt, X
1(t)) = Z(t)χ1(xt) + χ2(xt)Y

2(t)

with xt = x0 + t. Dahl et al. (2006) propose mortality intensities λ(xt, t) of the

form

λ(xt, X
1(t)) = χ2(xt) Y 2(t),

where Y 2 is a time in-homogeneous mean reverting square root diffusion process,

the parameters of which can also depend on x0, and the initial mortality intensities

χ2 are of the Gompertz-Makeham form. However, as pointed out by Lin and Cox

(2006) “mortality jumps” arising from catastrophes such as pandemics should be

taken into account when modeling the evolution of mortality, particularly when

focusing on catastrophic mortality risk. Therefore, we extend the model by Dahl

et al. (2006) on the one hand by including mortality jumps in the form of a

“self-affecting” Ornstein-Uhlenbeck process Y 2
2 but restrict it by choosing a time

homogeneous mean reverting square root diffusion Y 2
1 and considering a simpler,

pure Gompertz form for the initial mortality intensities. Thus, we choose Y 2 =

(Y 2
1 , Y 2

2 ) and propose mortality intensities of the form15

λ(xt, t) := λ(xt, Y1(t), Y2(t)) = Y1(t) eb xt+c + Y2(t), (4.4)

where b, c ∈ R+, Y1 evolves according to the SDE

dY1(t) = α (η − Y1(t)) dt + σ
√

Y1(t) dW (t), Y1(0) > 0 (4.5)

and Y2(t) is governed by the SDE

dY2(t) = −κY2(t) dt + dJ(t), Y2(0) = 0. (4.6)

15For ease of exposition, we simply write (Y1, Y2) instead of (Y 2
1 , Y 2

2 ) in the following.
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Here α, η, σ, κ are positive constants, W is a standard one dimensional Brownian

motion, and J a point process with intensity

µ(t) = µ0 + ξ(1)Y2(t), µ0, ξ
(1) > 0,

and positive, independent Exp
(

1
ζ

)

-distributed jump sizes. Note that the specifi-

cation of the jump intensity µ entails a feedback property of mortality jumps. Past

jumps make further jumps more likely which allows for modeling a possible “shock

wave” behavior of pandemics.

In general, the proposed mortality intensities in (4.4) have an affine structure (cf.

Section 2.7) which gives rise to a semi-analytical formula for the survival proba-

bilities implied by them. In the particular nice case of µ(t) ≡ µ0, i.e. ξ(1) = 0, Y2

becomes a so-called Gamma-OU process (see e.g. Chapter 15 of Cont and Tankov

(2004)) yielding the following formula for the survival probabilities:

Proposition 4.2.1 If mortality intensities λ(xt, t) satisfy (4.4) and Y1 and Y2

evolve according to the SDEs (4.5) and (4.6) with µ(t) ≡ µ0, survival probabilities

are given semi-analytically as

T,tpx0+t = E

[

exp

{

−
∫ T

t

λ (x0 + s, Y1(s), Y2(s)) ds

}∣

∣

∣

∣

Y1(t), Y2(t)

]

= exp
{

u(T − t) + v(T − t)Y1(t)e
b(x0+t)+c

}

exp

{

−Y2(t)

κ

(

1− e−κ(T−t)
)

− µ0ζ(T − t)

κ + ζ

}

exp

{

µ0ζ

κ + ζ
log

[

1 +
ζ

κ

(

1− e−κ(T−t)
)

]}

, (4.7)

where u and v satisfy the following Riccatti ordinary differential equations (ODEs)16

u̇(x) = αη v(x) eb(x0+T−x)+c, u(0) = 0, (4.8)

v̇(x) = −1− (α− b) v(x) +
1

2
σ2 (v(x))2 eb(x0+T−x)+c, v(0) = 0.

Proof: The result is a special case of Theorem 2.7.1 and the ODEs stated there.

Generally, due to their independence Baseline and Catastrophe Component can

separately be considered yielding two independent systems of ODEs. The explicit

solutions of the ODEs in case of the Catastrophe Component are obtained from a

special case of the transform in Appendix A.

2

16The ODEs have to be understood as ODEs in x.
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Since data on catastrophe mortality events is extremely sparse (see in particular the

next section), the specification of Proposition 4.2.1 with constant jump intensity

µ0 will be the one which we consider for the remainder of the chapter. The more

general specification would be an alternative if more data was available. Based on

Proposition 4.2.1, by solving the ODEs from equation (4.8), we are able to com-

pute survival probabilities and then use the “classical actuarial toolbox” to price

life insurance products.

So far, we have fixed a specific probability measure P even though different in-

vestors may have different opinions regarding the evolution of the future mortality

implying different individual measures. Furthermore, prices for mortality contin-

gent claims may include a risk premium for the inherent risk, which also leads to

a different probability measure, the so-called pricing measure Q. Informally, by a

change of measure, the structure of the model can be altered considerably: Not

only could it affect the intensity process λ, but a market price for unsystematic or

idiosyncratic risk may be included (see e.g. Biffis et al. (2005)). We will not con-

sider loadings for the idiosyncratic component as we regard a whole population.

However, when limiting the perspective to an insurer’s portfolio, there may (or

may not) be reasons for a premium for unsystematic risk (see Subsection 2.8.2 and

Bauer and Russ (2006) for a discussion of this issue). Furthermore, when allowing

for an (almost) arbitrary change of measure the structure of the force of mortality

could change tremendously under the “new” measure. Therefore, similarly to Dahl

et al. (2006) we restrict ourselves to choices where the parameters of our setup can

be changed but not the process’ structure.

From a mathematical point of view, the analytical tractability of the presented

model is a valuable and important feature that can be considered as a first advan-

tage. A detailed discussion of our model choice in the context of actual mortality

data is postponed to the next section where different calibration procedures are

presented.

4.3 Calibration of the Model

When applying a financial model to determine risk-measures such as loss probabil-

ities or expected losses, historical data is usually used to determine a parametriza-

tion which matches the past experience. However, as we are considering the evo-

lution of mortality not only past experiences but also the particular properties of

mortality have to be taken into account. For example, mortality rates are positive.

Furthermore, the projection of future death rates is not a purely statistical problem

as demographic considerations should also be taken into account. Therefore, when

calibrating our model to historic data in Subsection 4.3.1, we also incorporate de-
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mographical aspects.

When pricing contingent claims, on the other hand, it is usually not sufficient to

rely on historical data as prices include premiums for the adopted risk. This risk

premium generally cannot be determined endogenously, but it is implied by the

market. Aside from catastrophe mortality securitization transactions, life insur-

ance prices are subject to catastrophic mortality risk. Hence, a natural approach

for determining a risk-adjusted parametrization for our model is to extract it from

insurance prices. This indirect approach is presented in Subsection 4.3.2, whereas

in Subsection 4.3.3 we calibrate the model using data directly from CATM securi-

tization transactions.

4.3.1 Backtesting the Model and Historical Parametriza-

tions

Most CATM transactions to date were primarily exposed to US mortality expe-

rience. Therefore, we limit our considerations to American mortality data. Fur-

thermore, we focus on male mortality experience because male death rates are

usually weighted more heavily than female death rates within the combined mor-

tality indices (see Table 4.1); however, when assuming independence of the “regu-

lar” mortality evolution for the different cohorts and a simultaneous occurrence of

pandemics in the relevant countries as in the Milliman model, including female or

non-US mortality data is straight-forward. Without these rather rigorous assump-

tions, i.e. when allowing for correlations and diversification effects across genders

and populations, the calibration procedure will get more complex as correlations

need to be estimated and incorporated into the model. We leave the exploration

of this issue for future work.

Our model consists of two independent components: A diffusion part which models

the “regular” evolution of mortality, i.e. when no catastrophic event occurs, and a

jump-part which models pandemics and other catastrophes. In what follows, we

will refer to these two components as the Baseline Component and the Catastrophe

Component, respectively. The independence of the two components allows us to

carry out the calibration procedures separately.
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The Baseline Component17

We use annual, periodic male mortality data as available from the Human Morta-

lity Database for our considerations.18 There, age specific death rates m(x, t) are

available for each year t from 1959 until 2003. From these death rates, we derive

the sample mortality intensities λ̃ by the following approximation (for a proper

definition and properties of death rates m(x, t) see e.g. Bowers et al. (1997)):

λ̃(xt + 0.5, t + 0.5) = λ̃(xt + 0.5, t + 0.5)

∫ 1

0
l(xt + s, t + s) ds

∫ 1

0
l(xt + s, t + s) ds

≈
∫ 1

0
l(xt + s, t + s) λ(xt + s, t + s) ds

∫ 1

0
l(xt + s, t + s) ds

= m(xt, t), (4.9)

where l(xt, t) denotes the exposures, i.e. the number of individuals within the rel-

evant cohort of xt-year aged males at time t. In order to simplify notation, we set

the inception date t = 0 to mid 1959, i.e. 30.06.1959, and thus we are given the spot

intensities λ̃(xt, t) for ages xt ∈ {0.5, 1.5, ..., 100.5} in years t = 0 (1959.5) through

t = 44 (2003.5).19 Within our model, neglecting the influence of the catastrophe

component, the endogenous intensities λ(xt, t) are of the form (see equation (4.4))

λ(xt, t) = Y1(t) eb xt+c, (4.10)

where we conveniently set Y1(0) = 1. Therefore, λ(x0, 0) = eb x0+c is simply given

by the Gompertz form, and the parameters b as well as c can be determined by an

exponential regression on λ̃(x0, 0); we obtain b = 0.08117916 and c = −8.7674591.

The comparison of the “actual” and model-endogenous mortality intensities is dis-

played in Figure 4.4. We find that the Gompertz approximation fits the data quite

well. Particularly for years below 85, which are most relevant for the calculation

of the combined mortality index (cf. Table 4.1), we only see slight deviations.

Similarly, Gompertz forms can be derived for all years t. However, within our

model, b and c are constant over the years. By the relationship

λ(xt, t) = eb xt+c+log{Y1(t)} ⇔ log {λ(xt, t)} − b xt − c = log {Y1(t)} ,

17The Baseline Component considered here should not be confused with the Baseline Compo-

nent introduced in Section 3.1. In Section 3.1, the Baseline Component modeled an observed

deterministic intra-month default pattern, while here the “regular” yet stochastic evolution of

mortality is modeled.
18Human Mortality Database. University of California, Berkeley (USA), and Max

Planck Institute for Demographic Research (Germany). Available at www.mortality.org or

www.humanmortality.de (downloaded 11/03/2006 (1959-2002) and 04/11/2007 (2003)).
19Since the mortality index is only slightly affected by ages less than 30 and since there are

structural deviations for very young ages and ages around 20 (so-called mortality humps), we

only consider ages above 30 for the calibration.
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Figure 4.4: Original and calibrated mortality intensities for year 0 (1959).
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Figure 4.5: Original (“Data”) and calibrated (“Model”) mortality intensities for

years 36 (1995) and 43 (2002). Estimations of Gompertz mortality intensities which

are only based on the respective year are displayed, too.

we can estimate log {Y1(t)} as the mean of log
{

λ̃(xt, t)
}

− b xt− c, xt = 0.5, 1.5, ...

and, hence, our model λ(xt, t) by equation (4.10). For example, in Figure 4.5

the actual-, the model-, and the Gompertz-mortality intensities for the years 36

(1995.5) and 43 (2002.5) are shown. Again, we can see that the model and the

Gompertz intensities fit the data well in the relevant ages. However, the growth

of the actual intensities is super-exponential for older ages, i.e. while the curve

gets less steep for younger ages, it increases very fast for older ages. Furthermore,

we find that the model and the Gompertz intensities are very close; for year 36

deviations are hardly noticeable, and for year 43 the deviations in the more relevant

ages below 85 are also rather small.

By this procedure, we obtain a time series of the Y1(t) for t = 0, ..., 43, shown in

Figure 4.6, which can be used to estimate the parameters of the square root diffusion



4.3. CALIBRATION OF THE MODEL 171

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

t

Y1(t)

Figure 4.6: Estimated time series of the Baseline Component Y1 from year 0 (1959)

to 44 (2003).

process α, η, and σ by estimators for the Cox-Ingersoll-Ross (CIR) interest rate

model (see Cox et al. (1985)). However, there are two potential pitfalls.

Since we want to separate the influences of catastrophic events, such as pandemics,

and “regular” deviations in mortality, we should not include peaks which are due to

such catastrophic events. In the time between 1959 and 2003, there were two major

occurrences: the so-called Hong-Kong Flu from 1968 and the so-called Russian Flu

from 1977. The first is quite noticeable in our time series as there is a peak at the

data point t = 9 (1968.5). In order to disregard these influences, we smooth the

time series by linearly interpolating these data points by the surrounding ones and

taking the interpolated value instead of the recorded one whenever the interpolated

value is lower.

We cannot observe a mean reversion trend in the time series. This fact could

be interpreted as a problem with the specification or the general structure of the

model, i.e. that a mean reverting process does not present a suitable choice. In

fact, the question whether mean reverting processes are adequate for describing

the evolution of mortality has been raised before in the literature (see e.g. Luciano

and Vigna (2005)).

In this regard, Oeppen and Vaupel (2002) show that the average life expectancy in

the country with the current highest life expectancy has increased almost linearly

by slightly less than three months per year over the last 160 years. Even though the

annual records were set by only two nations since 1975, namely Iceland and Japan,

the observations for other industrialized countries are quite similar. Therefore,
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they do not believe in a barrier for the life expectancy, which would be implied by

a positive mean reversion level. Furthermore, they note that there is a long history

of conjectured barriers, which were all broken only shortly after their publication.

A continuing linear trend of life expectancies may even require mortality intensities

to decrease faster than observed over recent years: Keyfitz (1985) shows that a

reduction of mortality intensities across all ages of δ % would imply an increase of

the life expectancy by δ H(t) %, where H(t) is the so-called demographic entropy

at time t, and investigations by Olivieri (2001) and Pitacco (2004) indicate that

the demographic entropy is decreasing towards zero.20

However, Olshansky et al. (2001) believe that a faster decrease of death rates is

very improbable. They argue that, on the one hand, death rates for young ages are

almost at their minimum value.21 Therefore, reductions in high ages would need to

account for increasing life expectancies, which eventually would lead to a so-called

negligible senescence, i.e. mortality rates would remain constant for all attainable

ages and aging would not reduce survival probabilities. According to the authors,

this contradicts basic biological ideas and is thus not likely, if not impossible. On

the other hand, they note that social-political and economic reasons indicate that

life expectancies will not increase continuously.

We do not want to join this discussion (see Kristen (2007) for more details). All

in all, there is no general agreement among demographers regarding the future

evolution of life expectancies.

Our model does not allow for systematically faster decreasing mortality rates in the

future when choosing a positive mean reversion level η and speed of mean reversion

α.22 Furthermore, when applying the maximum likelihood estimators from Walter

(1996) these result in a negative speed of mean reversion α and a mean reversion

level η greater than 1, which indicates a strictly negative drift term of the process

displayed in Figure 4.6. We may solve this problem by allowing for a deterministic

function ηt as the mean reversion level in our specification of Y1 (see equation (4.5))

rather than a constant. For example, η could be replaced by

η(t) = e−η1t + η2, η1,η2 > 0.

20In the literature, this development is usually referred to as rectangularization as the shape

of the mortality intensity curve gets more “rectangular”, i.e. deaths occurrence is concentrated

around a certain modal age (see also Figure 4.5).
21Demographers generally assume a minimal level of death rates for all age groups, which is

motivated by the natural occurrence of accidents etc.
22This is due to the fact that in our specification, the drift of Y1 decreases as it gets closer to

the mean reversion level.
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A deterministic mean reversion level η(t) would not affect the analytical tractability

of the proposed model. However, the number of model parameters would increase

complicating calibration procedures. This particularly seems problematic in view of

the limited data availability of only 44 data points. Moreover, even with a constant

mean reversion level, our specification permits modeling all presented demographic

viewpoints by choosing a coherent value of η. Therefore, we restrict ourselves to

constant mean reversion levels; exploring the possibility of choosing a deterministic

mean reversion level would be an interesting topic of future research.

Instead of following only one particular demographic opinion, we will consider three

parametrizations P1, P2, and P3, where the first (η = 0.6) and the third (η = 0)

correspond to the “extreme” points of view from Olshansky et al. (2001) and

Oeppen and Vaupel (2002), respectively, whereas P2 (η = 0.4) is a choice in the

middle. Keeping η fixed, we can obtain η-“adjusted” estimators for α and σ as

follows: Discretizing the SDE for Y1 from equation (4.5) yields

Y1(t + 1)− Y1(t) = α (η − Y1(t)) + σ
√

Y1(t)N(t),

where N(t), t = 0, ..., T − 1 = 43 are independent N(0, 1)-distributed random

variables. Therefore,

σN(t) =
Y1(t + 1)
√

Y1(t)
−
√

Y1(t) + α
√

Y1(t)−
αη

√

Y1(t)
,

and the standard estimators for the mean and the variance (ideally) give

1

T

T−1
∑

t=0

Y1(t + 1)
√

Y1(t)
−
√

Y1(t) + α
√

Y1(t)−
αη

√

Y1(t)

!
= 0 and

1

T − 1

T−1
∑

t=0

(

Y1(t + 1)
√

Y1(t)
−
√

Y1(t) + α
√

Y1(t)−
αη

√

Y1(t)

)2

!
= σ2,

respectively. As η is given, solving the first equation for α yields the estimator

α̂ =

∑T−1
t=0

Y1(t+1)√
Y1(t)
−
√

Y1(t)

∑T−1
t=0

η√
Y1(t)
−
√

Y1(t)
,

and plugging α̂ back into the second equation gives the estimator for σ,

σ̂ =

√

√

√

√

1

T − 1

T−1
∑

t=0

(

Y1(t + 1)
√

Y1(t)
−
√

Y1(t) + α̂
√

Y1(t)−
α̂η

√

Y1(t)

)2

.

Table 4.4 displays the resulting parametrizations.
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Fixed Estimated

η α σ

P1 0.6 0.0325 0.01647

P2 0.4 0.01829 0.01582

P3 0.0 0.00976 0.01552

Table 4.4: Estimated parametrizations of the Baseline Component Y1 for fixed η.

The Catastrophe Component

In Lin and Cox (2006), catastrophic events are modeled as multiplicative shocks on

the combined mortality index. While this approach could be reasoned by the idea

that due to weaker immune systems the elderly population may be most affected

by a possible pandemic in absolute terms, cytokine storms, which are believed to

have been present during severe pandemics such as the Spanish Flu, may lead to a

disproportionate amount of deaths in younger ages (cf. Section 4.1.3). Furthermore,

man made catastrophic events such as severe terror attacks are not likely to affect

older aged individuals more than younger individuals. Therefore, it seems to be

appropriate to model catastrophic events as additive shocks, and we included the

catastrophe component as an additive jump part to the mortality intensities (see

equation (4.4)).

For the calibration of the catastrophe component, we rely on the data from Linfoot

(2007), where the frequency and severity of historical occurrences of infectious

disease epidemics based on U.S. population experience are provided. This choice is

motivated by the fact that this data was used by the risk modeling firm Milliman

within the Tartan transaction, and we want to keep our findings comparable.

Linfoot (2007) reports an annual frequency of 7.4% (31 occurrences in the past

420 years) and severities for 5 (6) specific occurrences (model points)23. Therefore,

we set the jump intensity of the compound Poisson process within the catastrophe

component to µ0 = 7.4%. Percentiles for the likelihood of each model point are

derived by considering the number of equal or worse pandemics in relation to all

occurrences. For example, the Spanish Flu is taken as a 1 in 420 years event, and

given the annual frequency of 7.4%, this yields the 1
420

1
0.074
≈ 0.032 percentile.

The impact on the force of mortality which a catastrophic event implies τ years

after its first occurrence in our model is given by ∆e−κτ with ∆ denoting the initial

“jump”. We assume that the event basically affects the mortality for one year only,

231918 (Spanish Flu), 1957 (Asian Flu), 1968 (Hongkong Flu), 1977 (Russian Flu) and 2003

(SARS). We omitted one data point called “Adjusted 1918-20” as it was fixed at the 0.0 Percentile

Level.
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i.e. that the influence after a year has decreased to only 1% of the initial impact,

and thus set

∆e−κ·1 = 0.01∆⇐⇒ κ = 4.6052.

For fitting the exponential distribution of ∆, the given severities for the five model

points are used. However, there the (multiplicative) excess mortality as a percent-

age of the mortality probability over all ages is provided. In order to use them

for our considerations, they need to be “translated” to additive excess mortality

intensities. As the population is not homogeneous across all ages, it is not sufficient

to compute excess mortality intensities resulting from distorted mortality rates for

every age and take the mean, but they have to be properly weighted: For the male

population death rate at time t, we have

q̃m
t =

∑

all ages x

ω̃(t)
x q̂m,x,t,

where ω̃
(t)
x are the male population weights, and q̂m,x,t is the mortality rate for

an x-year old male at time t.24 Hence, if ε denotes the excess mortality rate, the

corresponding initial impact ∆ of the catastrophic occurrence can be approximated

by

(1 + ε)q̃m
t = (1 + ε)

∑

all ages x

ω̃(t)
x q̂m,x,t

!
=

∑

all ages x

ω̃(t)
x

(

1− e−
R 1
0

λ(x+s,t+s)+∆e−κs ds
)

⇒ ∆

κ

(

1− e−κ
)

= log

{

1− q̃m
t

1− (1 + ε)q̃m
t

}

. (4.11)

Therefore, given ε, we still need to fix mortality rates and population weights

to determine ∆. We use mortality rates as implied by the Gompertz forms and

population weights as provided by the U.S. Census Bureau25 for years 1959 and

2003, respectively. By matching the quantiles of an exponential distribution for the

model points, we arrive at the parameters displayed in Table 4.5. Aside from an

exponential distribution for the jumps, we also fit a Gamma distribution. Keeping

the mean at the same level as for the exponential distribution in order to obtain

comparable results and choosing the parameters that provide the best match with

the model points in a (weighted) Least Squares sense, we arrive at the parameters

24Note that the weights ω̃
(t)
x are the actual population weights and, thus, do not coincide with

the deal-specific weights from equation (4.1).
25U.S. Census Bureau. National population estimates (male), www.census.gov/popest (down-

loaded 04/19/2007).



176 CHAPTER 4. ANALYSIS OF CATASTROPHE MORTALITY BONDS

1959 2003

Exp(1
ζ
) Distribution ζ 0.003147 0.002799

Gamma(g1,g2) Distribution g1 0.57298 0.57293

g2 182.08 204.71

Table 4.5: Estimated parametrizations for the jump size distributions.

displayed in Table 4.5.

We find that for a different demographic structure and different mortality rates,

the calibrated parameters are quite different: For the exponential distribution, the

mean is reduced by approximately 11% from the 1959 to the 2003 estimates. How-

ever, it is not clear which parametrization is more adequate; on the one hand, the

2003 demographic structure resembles the actual structure today, but on the other

hand, the 1959 demographic structure may better cohere with the demographic

structure when (severe) pandemics occurred. In order to keep our presentation

concise, if not stated otherwise, we rely on the parametrization for 2003 and expo-

nentially distributed jumps.

It is worth noting that due to the data used, the catastrophic component is subject

to a high parameter uncertainty. For example, when only considering pandemic

data from the last century, we may still use the data points from Linfoot (2007),

but the resulting quantiles change considerably: When proceeding analogously, for

the Spanish Flu we would obtain the 1
100

1
0.074
≈ 0.135 > 0.032 percentile. Moreover,

the given annual frequency of 7.4% is rather high in comparison to the frequency

proposed by RMS (3−4%) or by Cox et al. (2006) (≈ 3.3%). Thus, it is necessary

to conduct detailed sensitivity analyses for the catastrophe component. Further-

more, man made catastrophes are not explicitly modeled because we assume that

the structural affect on mortality rates is very similar to a pandemic occurrence.

However, as past events had a negligible effect on general population mortality they

are not considered in our calibration procedure.

4.3.2 Risk-Adjusted Calibration Based on Insurance Prices

If life insurers knew the future evolution of mortality, mortality risk management

would be simple: With an increasing number of insured, the risk per sold policy

would decrease to zero by the Law of Large Numbers. However, aside from this di-

versifiable, “unsystematic” mortality risk insurance companies are also exposed to

“systematic” mortality risk as the future evolution of aggregate mortality actually
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is not deterministic. Catastrophe mortality transactions allow insurers to transfer

a part of this systematic risk, namely the part due to the possible occurrence of a

catastrophic event, to the capital market. These transactions or, more specifically,

the excess spreads are financed by the insurer and, hence, eventually by insurance

premiums. This means that these premiums must account for catastrophic mor-

tality risk. Thus, it is a natural idea to use life insurance prices to derive a risk

adjusted parametrization for the mortality intensity process.

Similar ideas have been proposed for pricing longevity bonds (see Lin and Cox

(2005)) and classical catastrophe derivatives (see Muermann (2003)). As pointed

out by Bauer and Russ (2006), some conditions need to be satisfied regarding in-

surance prices and the insurance market in order to derive the risk premium for

systematic mortality risk from insurance prices. In particular, insurance prices

should not include a loading for unsystematic mortality risk,26 and the insurance

market should be free of arbitrage. We refer to their article for a discussion of these

assumptions.

The basic approach is straight-forward: Using our model, we compute prices for

term life insurance policies and derive parameters such that the model-endogenous

prices match market quotes optimally in the least squares sense. We consider term

life insurance contracts with different maturities Ti and individuals of different ages

x0 at inception,27 who get paid a fixed death benefit D against fixed, monthly pre-

miums P. Hence, the expected discounted value of the benefits EBTi,x0(D) and the

premiums PBTi,x0(P) are given by the following equations:

EBTi,x0(D) = E

[

Ti12−1
∑

t=0

De−r t+1
12 1 t

12
<τx0≤ t+1

12

]

=

Ti12−1
∑

t=0

De−r t+1
12

(

E

[

1τx0> t
12

]

− E

[

1τx0> t+1
12

])

= D

Ti12−1
∑

t=0

e−r t+1
12

(

t
12

,0px0 − t+1
12

,0px0

)

,

PBTi,x0(P) = E

[

Ti12−1
∑

t=0

Pe−r t
12 1τx0> t

12

]

= P

Ti12−1
∑

t=0

e−r t
12 t

12
,0px0 ,

26Technically, this means that the change of measure implied by including a risk premium

should not affect the idiosyncratic jump component (cf. Section 4.2).
27Note that in contrast to the last subsection, for the remainder of the text we set the inception

date 0 to January 1st, 2006.
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where r denotes the (constant) rate of interest. For the remainder of the chapter,

we assume a constant short rate of r = 5.05%, which corresponds to the 1 year

U.S. treasury constant maturity date rate from 01/11/2007.28 For a given set

of parameters, the quantities t,0px0 can be conveniently calculated using equation

(4.7). By the actuarial principle of equivalence (see e.g. Bowers et al. (1997)), we

then obtain the model-endogenous premiums

P̂Ti,x0 =
EBTi,x0(D)

PBTi,x0(1)
,

which depend on the parameter choice. Hence, the task is to find parameters such

that the target function

∑

Ti,x0

(

P̂Ti,x0 − PTi,x0

)2

→ min

is minimized, where PTi,x0 are the actual market quotes. Our data set contains

prices as provided by Quickquote.com for male Californians29 with ages ranging

from 25 to 55 and maturities from 10 up to 30 years. This calibration routine as

well as all other numerical calculations are implemented in C++ using routines

from the GNU Scientific Library (GSL); in particular, we make use of an ODE

solver provided in the GSL based on the Runge-Kutta method.

But again, there are two potential pitfalls:

1. Death rates for the population of insured and the general population dif-

fer considerably, but CATM bond prices depend on population mortalities,

whereas insurance prices depend on insured mortalities. Hence, assuming

equality would not be adequate. However, this is not the case for mortality

improvements: Even though mortality improvements were somewhat higher

for the population of insured in comparison to the general population, the de-

viation is rather small. For example, for the incorporation of mortality trends

into the Valuation Basic Table 2001 (VBT 2001) the American Academy of

Actuaries reports that they relied on the improvements for the general pop-

ulation (cf. American Academy of Actuaries (2002)). Therefore, we assume

that mortality improvements, which in our model are governed by the pro-

cess Y1, are alike for the population of insured and the general population.

Furthermore, it seems to be reasonable that the exposure to catastrophes do

not differ between the two populations, and therefore we also assume that

28FRED (Federal Reserve Economic Data) provided by the St. Louis Federal Reserve Bank

(www.research.stlouisfed.org). As the yield curve has only a mild downward slope, we consider

the one year treasury yield as a fair proxy for our considerations.
29Non-Smoking, Standard-Plus, monthly premium payments, $100,000 coverage.
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the process Y2 is the same for both populations. Thus, it is sufficient to ap-

ply different parametrizations for the initial mortality intensity ebx0+c to the

different populations.

2. Insurance prices include adjustments for selection effects, which e.g. arise due

to mandatory health examinations before underwriting the policies. Hence,

when determining insurance prices based on mortality rates without selec-

tion effects included the resulting prices are higher than corresponding prices

based on selection tables. Since our model does not take selection effects into

account, resulting parametrizations tend to underestimate risk and respective

premiums included in insurance prices but yield a lower bound.

In order to carry out the optimization algorithm, we still need to fix the initial

mortality intensity, i.e. we need to find appropriate parameters b and c. We use the

VBT 2001, where period (spot) mortality rates q
(2001)
x are provided. By a similar

approximation to the one used in equation (4.9), we can derive mortality intensities

via the relationship

q(2001)
xt

= 1− e−
R 1
0 λ̃(xt+s,2001+s) ds

≈ 1− e−λ̃(xt+0.5,2001+0.5). (4.12)

However, mortality intensities for t = 0, i.e. 2006+0 rather than for 2001+0.5, are

needed. We approximate them using the same methodology as was implemented

for the derivation of the VBT 2001 (see American Academy of Actuaries (2002));

here, the 2001 data was extrapolated from 1990-1995 Basic Tables derived by the

Society of Actuaries’ (SOA) Individual Experience Committee. By applying the

same trends, we further extrapolate the 2001 data to 2005.5 and derive mortality

intensities λ̃(x, 2006) by relationship (4.12), and hence, parameter b = 0.09697 and

parameter c = −10.62217 by exponential regression. Of course, when choosing

the starting value of the continuous part Y0 different than 1, c has to be adjusted

accordingly.

In the calibration procedure, we encounter numerical instabilities due to local min-

ima of the target function. As usual, we solve this problem by considering a large

set of different starting values for the optimization algorithm and choose the param-

eters which imply the minimum value for the target function within the considered

set. The resulting parameter estimates are displayed in Table 4.6.30

We find that the parametrization for the baseline component significantly differs

from the results in the foregoing section. This may be a sign that the death rates

30Y1(0) was fixed at the same level as for the 2006 population mortality (cf. Section 4.3.3), and

c was adjusted accordingly.
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Fixed Parameters

b c Y1(0) Y2(0)

0.09697472 -10.16051938 0.630240494 0

Estimated Parameters

α η σ κ ζ µ0

0.1528 0.2234 0.0003393 6.370e-16 0.002860 0.06441

Table 4.6: Estimated parameters based on insurance prices.

derived from the VBT 2001 do not present a very good match to the death rates

underlying the population of insured in view: The high mean reversion speed as

well as the low volatility imply that the spot mortality intensities decrease very

rapidly to levels close to ηebx+c. For the catastrophe component, on the other hand,

the resulting expected jump size ζ (jump intensity µ0) is only slightly increased

(decreased) compared to the historical value, but the impact over time, which the

occurrence of a pandemic has on mortality rates, is substantially higher since κ is

almost zero.

These outcomes indicate that we have to be careful with definite conclusions since

we did not include selection effects and since we can not be sure whether the

initial mortality data from the VBT 2001 presents a good approximation for the

population of insured in view. Considering other mortality tables or a different set

of insurance quotes may yield more reliable results. For example, using prices from

continuing options for existing term life insurance contracts, where selection effects

usually are less dominant, may be worthwhile.

4.3.3 Parameters Implied by Market Prices

When pricing credit derivatives, the parameters of a given model are usually cali-

brated to market prices of certain securities such as Credit Default Swaps (CDSs)

or CDOs with different maturities. Similarly, we may also parametrize our model

based on prices of different CATM transactions or tranches within one transac-

tion. In order to derive such an implied parametrization, but also to eventually

analyze and price a transaction given some parameters, it is necessary to model

the combined mortality index contingent on the basic quantities within our model,

i.e. mortality intensities.

As noted earlier in this section, we limit our considerations to one gender and one

population only. Actual transactions were based on both genders, but differences
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in the evolution of male and female death rates are rather small, particularly in

view of catastrophic events. This may not be the case for different populations

as a possible epidemic or a severe terrorist attack may occur locally. Into a mul-

tidimensional version of our model, a complex dependence structure between the

catastrophe components can be incorporated. However, for the baseline compo-

nent restrictions need to be imposed; for example, independently or fully correlated

evolving baseline components will sustain the model’s analytical tractability, but

empirical investigations are necessary to support such assumptions. Furthermore,

the number of parameters will naturally increase.

As mentioned earlier in the text, we primarily focus on the Tartan transaction,

which is solely based on US mortality experience. Denoting 1
2
(q̂2005 + q̂2004) by i0,

the combined mortality index it at times t = 2(2007), 3(2008) in terms of our model

is given by (cf. equation (4.2))31

it =
1

2i0
(q̂t + qt−1)

=
1

2i0

∑

x

ωx,m

((

1− e−
R 1
0 λ(x+s,t−1+s)ds

)

+
(

1− e−
R 1
0 λ(x+s,t+s) ds

))

=
1

i0
−
∑

x

ωx,m

2i0

(

e−
R 1
0 λ(x+s,t−1+s) ds + e−

R 1
0 λ(x+s,t+s) ds

)

(4.13)

In order to determine “the value”, i.e. the expected discounted payoff under a cer-

tain model parametrization, we need to determine the cash flows of the security.

As explained in Section 4.1.1, the investor is entitled to coupon payments. During

the first measurement period, that is the time before the index is calculated for the

first time (here t = 2), the coupon payments are not at risk. For the remaining

time, interest is only paid on the remaining principal, which is determined accord-

ing to equation (4.3). At maturity, interest for the last period and the remaining

principal are disbursed. Table 4.7 shows the resulting cash flows for a nominal of 1

and spread s within the Tartan transaction. To simplify notation, annual instead

of quarterly coupon payments are assumed; a and d denote the attachment and

detachment point, respectively. Thus, it is sufficient to determine the (joint) dis-

tributions of i2 and i3 to derive the value as the sum of the expected discounted

cash flows.

While there is an approximative method to solve the valuation problem semi-

analytically, the derivation is computationally involved as it requires numerical

methods for inverting multidimensional Fourier/Laplace transforms and the nu-

merical computation of multidimensional integrals (see the Appendix for details).

31Note that in comparison to Table 4.1, the weights ωx,m need to be adjusted as we consider

only male and single age rather than age group weightings.
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Cash Flows

t = 0 −1

t = 1 (LIBOR + s)1

t = 2 (LIBOR + s)1

t = 3 (LIBOR + s)
(

1−min
{

1, max
{

i2−a
d−a

, 0
}})

+
(

1−min
{

1, max
{

i2−a
d−a

, i3−a
d−a

, 0
}})

Table 4.7: Simplified (yearly instead of quarterly) cash flow scheme for the Tartan

bonds.

But aside from the computational difficulties, we are faced with a practical con-

straint: There are only very few market prices available. Naturally, we need at

least as many quotes as there are parameters to be calibrated. In particular, for the

Tartan deal there is only a single price available as there is only one (unwrapped)

tranche which enables us to only calibrate one parameter implicitly. While we may

additionally consider prices of other transactions, as for example the OSIRIS or the

Vita III deals, within these securities, the combined mortality index is subject to

several different populations (e.g. 60% France for OSIRIS), and assuming the same

evolution for the underlying mortality would be rather harsh without empirical

investigations.

Therefore, we limit our considerations to the single Tartan tranche. For both im-

plicitly calibrating the parameter(s) as well as analyzing and pricing the contracts,

we rely on Monte Carlo methods by simulating the index. This is computation-

ally procurable for only one free parameter and has the additional advantage that

we can carry out the computation “exactly” rather than using an approximation.

However, when there are more prices available Monte Carlo simulations may not

present a feasible choice for calibrating several parameters at a time and the ap-

proximative method from the Appendix may be a valuable alternative.

In the calibration procedure, we are left with the choice of which parameters to

fix and which parameter to keep variable since only one free parameter may be

included. We choose the expected jump size: On the one hand, the baseline com-

ponent, by definition, does not reflect the attitude towards catastrophic events,

which are most important for the transactions, and is, therefore, set to the con-

servative parametrization P1 (see Table 4.4). On the other hand, as we want

to interpret a jump of the catastrophe component solely as a catastrophic event,

relatively high values for the jump intensity µ0 or very low values for κ are not

preferable. Hence, we fix µ0 and κ to the parameter values 0.074 and 4.6052 which

were estimated in Subsection 4.3.1. Similarly as for pricing insurance contracts,

we further need to fix a parametrization for the initial mortality intensity ebx+c.
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Cl. B Tranche(110%-115%) Cl. A Tranche(115%-120%)

Scenario PD(%) EL(%) Spread(bps) PD(%) EL (%) Spread(bps)

P1 2.4856 1.5675 61.80 0.9162 0.5789 22.65

P2 2.0954 1.3223 52.53 0.7710 0.4856 19.20

P3 1.8896 1.1908 47.70 0.6844 0.4346 17.29

Table 4.8: Influence of the Baseline Component on the risk profile of the Tartan

tranches. Calculated PDs, ELs and tranche spreads are based on the estimated

parameters in scenarios P1, P2 and P3. P1 assumes only very mild mortality

improvements in the future, P2 medium improvements and P3 assumes strong

mortality improvements.

We proceed analogously to the last subsection, i.e we derive λ(x0, 0) based on the

given 2003 population mortality data and the projection method from the Amer-

ican Academy of Actuaries (2002). Now, given the spread level of 300bps for the

Class B notes of the Tartan deal, we choose ζ such that we fit the price – we obtain

an expected jump size of ζ = 0.0075726.

Based on the different parameter choices that we derived in this section, we are

now able to price and analyze the CATM bonds from different perspectives.

4.4 Results

For rating agencies and traditional ABS investors, the Probability of Default (PD),

that is the probability that the investors’ principal will be reduced due to the occur-

rence of a catastrophic event, as well as the Expected Loss (EL), i.e. the expected

percentage of the principal loss, are important comparative statistics. Furthermore,

the corresponding spread level leading to an “actuarially fair” contract in the sense

that the sum of the expected discounted cash flows equals zero is of interest, for

example, in order to analyze risk premiums included in market prices.

In Table 4.8, the loss profiles as well as the respective spread levels are displayed

for the two tranches within the Tartan deal and the three different historical

parametrizations for the baseline component32 P1, P2, and P3. The results clearly

reflect the increased exposure to catastrophic mortality risk of the lower Class B

32While discussing the influence of the baseline component, we always assume the following

parametrization for the catastrophe component: κ = 4.6052, λ = 0.074, ζ = 0.002799 (cf. Table

4.5).
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Figure 4.7: Estimated distribution of the index value for scenarios P1 and P3. P1

assumes only very mild mortality improvements in the future, while P3 presumes

strong mortality improvements.

notes in comparison to the more senior Class A notes: All three risk measures are

reduced by more than 63%. This does not seem surprising considering the fact

that the lower tranche will be completely exhausted if the higher tranche is trig-

gered. Moreover, all three quantities are relatively high for the more conservative

parametrization P1, where only very mild future mortality improvements are as-

sumed. While this general trend also does not seem peculiar, it occurs that the

influence of the baseline component is quite pronounced: From parametrization

P1 to P2, the expected loss is reduced by almost 16%, and from P2 to P3 the

reduction is still about 10%. This reveals that despite the rather short maturity of

three years the baseline component considerably affects the loss profile.

This does not mean that the bond may be triggered by an adverse evolution of

the baseline component. In fact, when neglecting the catastrophe component, the

default probability is at an almost negligible level for all three parametrizations

of the baseline component – but differences in mortality improvements due to the

parametrization of the baseline component affect the probability that the tranche

is triggered given a “jump” occurred. In Figure 4.7, the discretized distribution of

the index at time t = 3, i3, is plotted for parametrizations P1 and P3. We find that

the right tail is only slowly declining in comparison to the left tail. This “skewness”

is due to the influence of the catastrophe component, i.e. the influence of the (pos-

itive) jumps of the mortality intensity. When comparing the distributions of the
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index implied by the two baseline parametrizations, it appears that the shape is

very similar but that more pronounced mortality improvements lead to a left shift.

This means that for higher mortality improvements, catastrophic occurrences may

be leveled to the point where they do not lead to a trigger event.

However, the catastrophe component is the more important risk driver for CATM

securitizations. In particular, the uncertainties regarding the corresponding pa-

rameters have a significant effect: The loss profile of the bonds is very sensitive

to changes in all three parameters affecting the catastrophe component.33 As in-

dicated in Section 4.3.1, there are particular problems when trying to find an

adequate parametrization for the expected jump size ζ since different observation

periods or different demographic structures may yield considerably different out-

comes of the calibration procedure. In Table 4.9, comparative statistics for different

parametrizations are presented. For the middle choice of the baseline component

(P2), aside from risk measures resulting from parameters corresponding to the 2003

demographic structure (P2 and P2′) the results implied by the 1959 demographic

structure (P21 and P21′) for exponentially as well as Gamma distributed jumps,

respectively, are provided. Moreover, the loss profile for the Tartan bonds as quoted

from Linfoot (2007) is shown.

We find that there are distinct differences between the two contemplated jump dis-

tributions, which emanate from a higher variance of the Gamma distributed jumps.

For the utilized data consisting of only five model points, it is arguable whether the

additional degree of freedom within the Gamma distribution is essential or even

appropriate, but for larger data-sets it may prove necessary in order to obtain a

significantly better fit to the empirical distribution. Moreover, in comparison to

the jump size distribution, the influence of the population structure appears to

be similarly pronounced. The expected loss is reduced by approximately 20% to

30% for the different tranches and jump distributions when considering the 2003

opposed to the 1959 demographic structure.

The risk measures from Linfoot (2007) are considerably lower than our results for

the 2003 population, but when comparing the results for Class A and B notes as

well as the ratios of default probabilities and expected losses within one set of

results to our outcomes the implicit structure is quite similar. This observation

indicates that the deviations of our findings in comparison to the “official” quotes

from Linfoot (2007) do not result from a distinctive structural difference in the

33See Figures B.1, B.2, and B.3 in the Appendix for sensitivities of the expected tranche loss to

changes in µ0, κ, and ζ, respectively. The basic parametrization of the catastrophe component,

which this sensitivity analysis is based on, is again κ = 4.6052, λ = 0.074, and ζ = 0.002799 (cf.

Table 4.5).
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Cl. B Tranche (110%-115%) Cl. A Tranche (115%-120%)

Scenario PD(%) EL(%) Spread(bps) PD(%) EL (%) Spread(bps)

P21 2.6464 1.7507 70.06 1.0854 0.7181 28.55

P21′ 2.9376 2.1615 88.16 1.5460 1.1594 47.27

P2 2.0954 1.3223 52.53 0.7710 0.4856 19.20

P2′ 2.4742 1.7639 71.74 1.2208 0.8841 35.87

Quoted 0.88 0.54 - 0.29 0.16 -

Table 4.9: Influence of the Catastrophe Component on the risk profile of the Tartan

tranches. Calculated PDs, ELs and tranche spreads are based on the estimated

parameters in the different scenarios. All scenarios presume medium mortality im-

provements in the future, but differ in assumed demographic structures and jump

size distributions: P2 and P2′ rely on the 2003 demographic structure, while P21

and P21′ assume the 1959 demographic structure. P2 and P21 presume exponen-

tially distributed jumps, P2′ and P21′ Gamma distributed jumps. Quoted values

are from Linfoot (2007).

model specification but rather from differences in the considered parametrizations,

in particular for the expected jump size ζ and the mean reversion parameter κ.

Regarding the difficulties which come along with the calibration procedure, these

deviations indicate that the estimates provided by risk modeling firms should be

interpreted carefully by investors and, especially, rating agencies.

Even though the resulting spreads for our parametrizations are presumably higher

than the spread levels corresponding to the loss profiles from Linfoot (2007), they

are clearly still well below the market level of 300bps. Figure 4.8 shows the sensitiv-

ity of the spread level to changes in the expected jump size ζ . For relatively low val-

ues, the tranche spreads increase exponentially in the expected jump size.34 How-

ever, as ζ increases the sensitivity lessens and the curve becomes, ceteris paribus,

concave. This peculiarity is due to the structure of the deal: If a jump is large

enough such that the complete principal is exhausted, it is not relevant by how

much the jump exceeds this critical value. In particular, this means that the dif-

ferences between the spread levels for the two different tranches decrease with an

increasing expected jump size, as – beyond some critical point – most jumps will

fully exhaust both tranches. Thus, we obtain an upper bound of approximately

34See also Figure B.3 in the Appendix for the same observation of the sensitivity of the expected

tranche loss.
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Figure 4.8: Influence of the expected jump size ζ on the Tartan tranche spreads.

1200bps for the spread level since for “infinitely” large jumps, the only question

in view is whether a jump occurs or not which is controlled by the jump intensity

µ0 = 0.074.

This structure is similar to the one of CDO tranches. In fact, the tranche loss

distributions displayed in Figure 4.9 have exactly the same shape as for CDOs.

The left tail of the index distribution is attributed to the 0% loss, whereas the

outer right tail is attributed to a full loss. In particular, it is worth noting that the

cumulated loss probabilities for the Class A tranche exceeding the 0% level add up

to the full loss probability of the Class B tranche. Moreover, we can again observe

the “shift” of the distributions when comparing the histograms for parametrization

P1 and P3.

The relatively young history of the CATM market and the unfamiliarity of ABS in-

vestors with mortality contingent securities suggest that the spread levels investors

can earn within CATM transactions are likely to be above the levels for CDOs with

a similar PD and EL, i.e. with a similar rating (for a comparison see e.g. Logisch

(2007)).35 This idea is also backed by a comparison of the different CATM deals

35Although many market participants base their decisions merely on the rating, it is, of course,

not sufficient to characterize the total risk of a security. For instance, senior CDO tranches are

usually much more exposed to systemic risk than corporate bonds with the same rating suggesting

higher spread levels of the tranches. Since CATM securities are low-beta investments, however,

their high spread levels in comparison with traditional structured finance securities indicate that

they include a novelty premium.
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Figure 4.9: Discretized loss distributions of the Tartan tranches for scenarios P1

and P3. P1 assumes only very mild mortality improvements in the future, while P3

presumes strong mortality improvements. The probability of a 0% loss is capped

at 0.0125.

so far. In Table 4.10, risk measures and spread levels as implied by the Tartan

price (cf. Section 4.3.3) as well as the quoted market spreads for tranches from the

Vita I and the Vita III transactions are displayed.36 It appears that the quoted

spread level within the Vita I deal was considerably higher than the spread level

implied by the Tartan price. This does not seem surprising as Vita I was the first

CATM transaction, and consequently the spreads included a considerable novelty

premium. Conversely, the actual spread level for the B-II notes of the Vita III

transaction is considerably lower than the respective spread implied by Tartan.

This relationship cannot be observed for the A-VII tranche: Here, the market

spread slightly exceeds the Tartan-implied spread. However, the difference of the

market spreads between the two Vita tranches seems rather small considering the

significantly higher exposure of the Class B-II note to catastrophic occurrences.

In particular, if we adjust the expected jump size to match one of the two prices,

the other model-endogenous spread will be far from the observed one. However,

we only adjust one parameter, namely the expected jump size; as depicted earlier

in this section, the sensitivity of the spread level to the expected jump size fades

36Note that using the same parametrization would suggest that the underlying population is

the same for all transactions, which is not the case. Thus, our findings have to be considered

with care as e.g. diversification effects are not included.
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Vita I

Cl. A Tranche (130%-150%)

PD(%) EL(%) Spread(bps)

Calibration 2.7508 1.4408 47.12

Quoted - - 135

Vita III

Cl. B-II Tranche (120%-125%) Cl. A-VII Tranche (125%-145%)

PD(%) EL(%) Spread(bps) PD(%) EL(%) Spread(bps)

Calibration 7.1754 4.9992 190.26 6.0290 2.6332 74.97

Quoted - - 112 - - 80

Table 4.10: Summary of results for risk-adjusted parametrization based on the

Tartan tranche. Quoted values are from Table 4.3.

for higher values of ζ (see Figure 4.8), whereas the spread level decreases expo-

nentially in κ and increases almost linearly in the jump intensity µ0.
37 Therefore,

using our model, it is possible to mimic price structures as observed within the Vita

III transaction by simultaneously adjusting several parameters instead of a single

one. However, a calibration via Monte Carlo simulations as was carried out in

Section 4.3.3 will become cumbersome. Thus, when calibrating our model to sev-

eral tranche prices as e.g. within the Osiris or Vita III transaction the calibration

procedure based on the approximative derivation of the index distribution from the

Appendix, which is also adverted in Section 4.3.3, may be advisable.

Table 4.11 shows the results for the risk-adjusted parametrization based on insur-

ance prices as was explained in Section 4.3.2. In comparison to the results from

the real-world measure parametrizations, we find that all risk measures increase

dramatically. Despite the problems with the calibration due to selection effects

and differences in the populations considered as described in the foregoing section,

these large deviations indicate that insurance prices include considerable margins

for adverse mortality evolutions due to occurrences of catastrophic events. In par-

ticular, we find that the resulting spread level of approximately 277bps for the

Class B notes is only slightly lower than the market spread of 300bps. Disregard-

ing possible flaws, this means that Scottish Re was able to bin the catastrophic

mortality risk from their books for less than 23bps since the 277bps constitute a

37See Figures B.1 and B.2 in the Appendix for the sensitivity of the expected tranche loss to

changes in the jump intensity and the speed of mean reversion.
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Cl. B Tranche (110%-115%) Cl. A Tranche (115%-120%)

PD(%) EL(%) Spread(bps) PD(%) EL (%) Spread(bps)

Calibration 7.1272 6.6586 277.29 6.2092 5.8092 239.36

Quoted - - 300 - - -

Table 4.11: Summary of results for risk-adjusted parametrization based on insur-

ance prices. Quoted values are from Table 4.3.

lower bound for the spread level implied by insurance prices (cf. 4.3.2). Further-

more, as detailed in Section 4.1.2 and indicated in Table 4.10, the Tartan deal was

priced wider than many other deals, meaning that this difference may have even

been smaller for other transactions. Hence, it is even conceivable that within some

tighter priced notes, such as the Vita III Class B-II notes, (re)insurers were able to

lay off their catastrophic mortality risk by earning rather than paying a premium.

These observations provide us with a possible answer to the question of why the

CATM market has grown so quickly over the last years: For ABS investors, CATM

transactions provide investment opportunities with a familiar payoff structure, but

the spreads one can earn seem to exceed the ones within the credit market, possi-

bly due to considerable novelty premiums. However, the margins for catastrophic

mortality risk within insurance prices appear to be, if at all, only slightly lower

than the margins within the CATM bonds. Thus, for (re)insurers CATM trans-

actions seem to provide relatively cheap – or even profitable – means to remove

catastrophic mortality risks from their liability side.

In this regard, it is worth noting that a growing CATM market with decreasing

spread margins may eventually yield decreasing life insurance premiums, which in

turn would induce welfare gains.

4.5 Summary

Catastrophe Mortality Bonds are a recent capital market innovation providing in-

surers and reinsurers with the possibility to transfer catastrophe mortality risk off

their balance sheets to capital markets. While the various transactions differ in

the composition of the underlying reference population, the basic structure is the

same: Based on mortality data as reported by official entities, a combined mor-

tality index is calculated. If this index exceeds a certain level, the bonds will be

triggered and the investors’ principal will be reduced. In return, investors receive
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coupon payments on their principal including spread margins for the adopted risk,

a basic structure which is similar to the one of CDO transactions.

So far, there have been five public deals in the market, four of which Swiss Re has

been involved in as protection buyer and/or arranger. Since the first deal in late

2003, in which only one tranche with a relatively low risk exposure was issued, the

market has developed considerably – more recent deals include several tranches

with different seniorities. Moreover, the spectrum of investors has widened sub-

stantially: While the first bond was mainly sold within the insurance world or to

specialized CAT bond investors, now several tranches are wrapped by monoline

insurers and traditional ABS investors as well as hedge funds have found interest

in these securities.

An important role in the arrangement and the execution of these transactions is

played by so-called risk modeling firms, who are in charge of the calculation of

the combined mortality index and the provision of comparative statistics such as

default probabilities or expected losses of the securities for investors and rating

agencies. Despite the growing market and the increasing bandwidth of investors,

so far only one company, the actuarial consultant Milliman, was appointed as the

calculation agent for all deals. However, within the last transaction (Vita III), the

consulting firm Risk Management Solutions was hired as an adviser by one of the

involved monoline insurers. Their modeling approaches differ considerably: While

Milliman uses statistical forecasts based on an actuarial model, RMS relies on their

expertise regarding pandemic occurrences in a causal modeling approach.

In this chapter, a time-continuous actuarial model for analyzing and pricing morta-

lity contingent securities is introduced. The model consists of two additive parts: A

baseline component, which models the “regular” random fluctuations of mortality

over time and is driven by a diffusion, and a catastrophe component governed by a

jump process. Due to its affine structure, survival probabilities can be determined

analytically up to the solution of ordinary differential equations, and – on this basis

– the “classical actuarial toolbox” can be used to determine insurance premiums,

for example.

In order to apply this model for analyzing mortality contingent securities, it natu-

rally needs to be calibrated. We provide a detailed discussion of different calibration

procedures and resulting parametrizations. In addition to a calibration based on

historical data, we derive risk-adjusted parametrizations based on insurance quotes

and market prices of catastrophe mortality bonds, respectively.

Our discussion shows that finding adequate parameters based on the data used in

practice is very difficult, particularly for the catastrophe component. Therefore, we



192 CHAPTER 4. ANALYSIS OF CATASTROPHE MORTALITY BONDS

do not consider a single set of parameters but several parametrizations and conduct

detailed sensitivity analyses. We find that the outcomes regarding expected losses

and default probabilities of the considered securities differ significantly among the

different sets of parameters, which leads to the conclusion that loss profiles as pro-

vided by the risk modeling firms have to be considered with care. In particular,

the provided risk measures are substantially lower than our results for all consid-

ered parametrizations although there are no structural differences in the outcomes,

which indicates that the parametrizations used by the calculation agents are rather

“optimistic”. A collaboration of actuaries and experts in epidemiological research

may potentially lead to more reliable results.

Analyzing the loss distribution of the notes, one detects that they look very simi-

lar to loss distributions of CDO tranches, suggesting that ABS investors may feel

quite comfortable with these securities as they are used to their structure. More-

over, when comparing loss probabilities and expected losses, the risk-return profile

of CATM bonds seems to be very attractive. However, one has to keep in mind

that the structure of the underlying risk is not alike meaning that comparisons

based on low order moments or partial moments may be misleading. Nevertheless,

a comparison of the pricing of the different transactions suggests that there is a

substantial novelty premium included in the spread margins, which explains the

investors’ interest in the notes.

Comparing the spread margins to notional margins in term life insurance prices,

the differences seem to be rather small. This indicates that insurers and reinsurers

can take advantage of the risk transfer at a relatively low cost or even by earning

a premium, which may explain the quick growth of the market from the insurer’s

perspective.

For assessing CATM bonds with more than one underlying population, as a next

step, the model can be extended to multiple dimensions. As depicted in Section

4.3.3, the model structure and, in particular, the analytic properties will remain

the same under certain assumptions on the dependence of the respective baseline

components.
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Conclusion

This thesis introduces a mathematical framework for modeling a vector of stopping

times, which serves as an abstract setup for modeling various real-world phenom-

ena. In particular, several models that have been proposed in financial literature

are included as special cases. After providing a detailed discussion of its properties,

we apply this framework in order to model and empirically analyze two different

classes of structured finance securities: Structured credit products and mortality

contingent catastrophe bonds. A synopsis of the principal findings of these inves-

tigations can be found in Sections 2.9, 3.6 and 4.5.

We conclude by providing answers to the basic questions raised in the introduction

of this thesis:

What types of models are needed to explain the characteristics of structured finance

securities?

The clustering of defaults presents one of the major risk drivers for structured

credit products. Nevertheless, our findings indicate that in order to explain this

clustering, it is sufficient to model observable variables such as the firms Expected

Default Frequency (EDF) or the S&P 500 index. More specifically, it does not

appear necessary to include additional contagion effects or frailty variables.

When estimating different time-continuous default intensity models, we found that

models with jumps are better capable of explaining the intensity dynamics. In

particular, our analysis suggests including jumps when modeling firms of low cred-

itworthiness.

From a practical perspective, however, more complex models do not necessarily

lead to significantly different results than simple models. For instance, we show

that simulated transition matrices of structured credit products relying on purely

diffusion-based specifications and jump-diffusion models are quite similar.

Regarding the question of whether or not contagion effects should be incorporated

to explain the risk characteristics of structured credit products, we observe that
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in practical model applications, estimation errors are by far more influential than

deviations stemming from the assumption of conditional independence. Even if

contagion effects play a dominant role in the data-generating model, results derived

with an estimated conditional independence model and results based on estimates

of the true model may be very close.

For modeling mortality contingent catastrophe bonds, on the other hand, we show

that an appropriate model should consist of at least two components: One relating

to regular fluctuations of mortality rates and another one driven by jumps, where

the latter represents catastrophic events. However, it is necessary to point out that

the catastrophe component will always be subject to high parameter uncertainty

since data on past events is sparse.

Do different models imply similar profiles for the securities? When do simple and

complex models lead to comparable results?

Our theoretical investigation of model-implied dependence patterns reveals that

many time-continuous models from scientific literature yield a similar dependence

structure between the stopping times over a fixed time horizon, which can be de-

scribed by a well-known copula class. Moreover, by simulating transition matrices

of structured credit products, we found that estimated models with and without

jumps yield similar results. We also demonstrate that the issue of contagion effects

is of lower relevance in comparison with general problems applying to all models

such as estimation errors. A suitable conditional independence model will usually

lead to risk profiles that are close to those obtained from an estimated contagion

model as long as the distributional properties of the integrated portfolio intensity

are described sufficiently well.

However, while these observations support the continued use of standard models,

our results do not imply that models with contagion effects or intensity jumps

are generally irrelevant when modeling structured credit products. It is conceiv-

able that such effects only appear small in the data set that we examined, which

comprised rated corporate bond issuers with traded equity. For example, a bank

wishing to assess the risk of a structured credit security referencing a private loan

portfolio or a portfolio of residential mortgages may be well advised to take inten-

sity jumps into account. Future research should examine whether the results of

this thesis carry over to such more general situations.
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Appendix to Chapter 3

The BAJD model: Closed-form Solutions of an Important

Transform and an Exact Simulation Algorithm

This part of the appendix states a closed-form expression for an important trans-

form of a process λ which evolves according to the SDE (2.27), i.e. follows a BAJD

model. Moreover, we derive an exact simulation algorithm for λ. This algorithm

extends the exact simulation algorithm for the CIR model that can be found in

Glasserman (2004), p. 124.

Let us first consider the calculation of the following transform for which we obtain

based on Theorem 2.7.1

T,tϕR •
0

λ(s)ds,λ(•) (c′1, c
′
2) := E

[

e−c′1
R T
t

λ(s)ds−c′2(λ(T )−λ(t))
∣

∣

∣
λ(t)

]

= eu′(t,T )+(v′(t,T )+c′2)λ(t)

where (c′1, c
′
2) as in Theorem 2.7.1 and u′ and v′ are solutions of the following ODE

system:

u̇′ = −v′κη − µ
ζv′

1− ζv′ ,

v̇′ = c′1 + v′κ− 0.5(v′)2σ2

with terminal conditions u′(T, T ) = 0, v′(T, T ) = −c′2. By substituting v(T − t) :=

v′(t, T ) and u(T − t) := u′(t, T ) and setting c1 := −c′1 and c2 := −c′2, we finally

obtain

u̇ = vκη + µ
ζv

1− ζv
,

v̇ = c1 − vκ + 0.5v2σ2
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with initial conditions u(0) = 0 and v(0) = c2. Duffie and Gârleanu (2001) provide

the following explicit solutions for this ODE system:

u(T − t) =
ηκ(a1e1 − d1)

γe1d1
log

e1 + d1e
γ(T−t)

e1 + d1
+

ηκ

e1
(T − t)

+
µ(a2e2 − d2)

γe2d2
log

e2 + d2e
γ(T−t)

e2 + d2
+

(

µ

e2
− µ

)

(T − t)

v(T − t) =
1 + a1e

γ(T−t)

e1 + d1eγ(T−t)

with

e1 =
κ +
√

κ2 − 2σ2c1

2c1
e2 = 1− ζ

e1

d1 = (1− e1c2)
−κ + σ2c2 +

√
κ2 − 2σ2c1

−2κc2 + σ2c2
2 + 2c1

a1 = (d1 + e1)c2 − 1

γ =
d1(−κ + 2c1e1) + a1(−κe1 + σ2)

a1e1 − d1

d2 =
d1 − ζa1

e1

a2 =
d1

e1

Therefore,

T,tϕR •
0 λ(s)ds,λ(•) (c′1, c

′
2) = eu(T−t)+(v(T−t)−c2)λ(t)

Subsequently, we present an exact simulation algorithm for a process λ following a

BAJD model.

Algorithm A.0.1 Assume that λ evolves according to the SDE (2.27) and let

ν := 4ηκ
σ2 . Then, in order to draw a path of λ on the time grid 0 = t0 < t1 < . . . < tK

proceed as follows

CASE ν > 1:

Specify λ(0)

for i = 0, . . . , K − 1

generate M ∼ Poi (µ (ti+1 − ti))

U0 ← 0

for j = 1, . . . , M

generate Uj ∼ U[0,(ti+1−ti)]

end

λ∗
0 ← λ(ti)

for j = 1, . . . , M

c← σ2
(

1− e−κ(U(i)−U(i−1))
)

/(4κ)

p← λ∗
j−1

(

e−κ(U(i)−U(i−1))
)

/c

generate Z ∼ N0,1
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generate X ∼ χ2
ν−1

generate Y ∼ Exp
(

1
ζ

)

λ∗
j ←

(

(Z +
√

p)2 + X + Y
)

end

c← σ2
(

1− e−κ(ti+1−U(M))
)

/(4κ)

p← λ∗
M

(

e−κ(ti+1−U(M))
)

/c

generate Z ∼ N0,1

generate X ∼ χ2
ν−1

λ(ti+1)←
(

(Z +
√

p)2 + X
)

end

CASE 0 < ν ≤ 1:

Specify λ(0)

for i = 0, . . . , K − 1

generate M ∼ Poi (µ (ti+1 − ti))

U0 ← 0

for j = 1, . . . , M

generate Uj ∼ U[0,(ti+1−ti)]

end

λ∗
0 ← λ(ti)

for j = 1, . . . , M

c← σ2
(

1− e−κ(U(i)−U(i−1))
)

/(4κ)

p← λ∗
j−1

(

e−κ(U(i)−U(i−1))
)

/c

generate N ∼ Poi
(

p
2

)

generate X ∼ χ2
ν+2N

generate Y ∼ Exp
(

1
ζ

)

λ∗
j ← (cX + Y )

end

c← σ2
(

1− e−κ(ti+1−U(M))
)

/(4κ)

p← λ∗
M

(

e−κ(ti+1−U(M))
)

/c

generate N ∼ Poi
(

p
2

)

generate X ∼ χ2
ν+2N

λ(ti+1)← cX

end

The developed simulation Algorithm A.0.1 extends the exact simulation algorithm

for a CIR process that can be found in Glasserman (2004), p. 124. Our algorithm

exploits that, in case of a BAJD model, jumps occur independently of the Brow-

nian component and that between jump arrivals the increments of the process are

distributed as the increments of a CIR process. Furthermore, it is a well-known
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fact that the increments of a CIR process stem from a non-central χ2-distribution

with ν degrees of freedom. Depending on the value of ν, one either has to com-

bine a standard-normally and a χ2-distributed, or a Poisson- and a χ2-distributed

random variable in order to simulate a non-central χ2-distribution (for details see

Glasserman (2004)).

A Simulation Algorithm for the Contagion Model given by

the SDEs (3.22) and (3.23)

Exact simulation of processes λ and L that evolve according to the SDEs (3.22)

and (3.23) is not feasible. In this case, we therefore rely on an Euler discretization

of the SDEs.

Algorithm A.0.2 Assume that λ and L evolve according to the SDEs (3.22) and

(3.23). Then, in order to draw a path of λ and the loss process L(t) = 1
I

∑I
i=1 Ni(t)

on the time grid 0 = t0 < t1 < . . . < tK proceed as follows:

L(0)← 0

Specify λ(0)

for i = 0, . . . , K − 1

generate M ∼ CIR (λ(ti), η, κ, σ, ti+1 − ti) (based on Algorithm A.0.1)

generate Z ∼ BERNOULLI (1− exp (−I(1− L(ti))λ(ti) (ti+1 − ti)))

generate Y ∼ Exp
(

1
ζ

)

λ(ti+1)←M + Y · Z
L(ti+1)← L(ti) + 1

I
Z

end

“CIR” in the algorithm denotes that we draw – based on the exact simulation

Algorithm A.0.1 – a single realization of a CIR process at ti+1, given an initial

value of λ(ti). Therefore, if no jumps are observed the discretization error implied

by our algorithm will be zero, because errors are generally related to the jump

part: First, in our algorithm a jump within [ti, ti+1] occurs independently from the

continuous part of the process. Second the number of jumps in each time interval

is bounded by one. However, discretization errors are minor as long as fine enough

time grids are considered.

A Simulation Algorithm for the SAJDM Model

Exact simulation of a process λ that evolves according to the SDE (3.11) is not

feasible. In this case, we therefore rely on an Euler discretization of the SDE.
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Algorithm A.0.3 Assume that λ evolves according to the SDE (3.11). Then, in

order to draw a path of λ on the time grid 0 = t0 < t1 < . . . < tK proceed as

follows:

Specify λ(0)

for i = 0, . . . , K − 1

generate M ∼ CIR (λ(ti), η, κ, σ, ti+1 − ti) (based on Algorithm A.0.1)

generate Z ∼ BERNOULLI
(

1− exp
(

−
(

µ + ξ(1)λ(ti) + ξ(2)H(ti)
)

(ti+1 − ti)
))

generate Y ∼ Exp
(

1
ζ

)

λ(ti+1)←M + Y · Z
H(ti+1)← 1

ǫ
λ(t0)e

−ti+1 +
∫ ti+1

0
e−ǫ(ti+1−s)λ(s)ds

end

Like in Algorithm A.0.2, “CIR” denotes that we draw – based on the exact sim-

ulation Algorithm A.0.1 – a single realization of a CIR process at ti+1, given an

initial value of λ(ti). Therefore, if no jumps are observed the discretization error

implied by our algorithm will be zero, because errors are generally related to the

jump part: First, in our algorithm a jump within [ti, ti+1] occurs independently

from the continuous part of the process. Second the number of jumps in each time

interval is bounded by one. However, discretization errors are minor as long as fine

enough time grids are considered.

Implementation of the EM algorithm of Section 3.5.1

In our implementation of the EM algorithm, the number of simulations increases

quadratically in each step as suggested by Cappé et al. (2005). We consider a

maximum simulation number of 7500. As usual, to solve the problem of local

maximums we run the algorithm a couple of times – each time with a different

starting value.

The simulation of the conditional density in our second estimation approach is

straight-forward and has already been described in the main text. In the following,

we show how the regime process can be simulated that governs the factor in the first

estimation approach. For ease of exposition, we demonstrate this for the BAJD

model.

Let zk and λc
k denote the realization of the regime process and the factor at tk with

k ∈ {1, . . . , K}. In addition, we set ∆ = tk+1−tk = tk−tk−1 for all k ∈ {2, . . . , K−
1}. To simulate a whole path of the unobserved regime process, we apply the

Gibbs sampler, which breaks the difficult task of simulating z = (z1, . . . , zK) given

λc = (λc
1, . . . , λ

c
K) down into simulating the zks given (z1, . . . , zk−1, zk+1, . . . , zK)

and λc = (λc
1, . . . , λ

c
K) (see Robert and Casella (1999), pp. 286).
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Latter simulation is feasible because according to Bayes theorem we have that1

P
(

Zk|zk−1, zk+1, λ
c
k−1, λ

c
k, λ

c
k+1

)

∝
∏

l=k−1,k

(

(

1− e−∆zl̟µ
)

h(o
(1)
l , o

(2)
l )

+e−∆zl̟µfN
κ(zl̟η−λc

l
)∆,σ
√

λc
l
∆

(

λc
l+1 − λc

l

)

)

·
∏

l=k−1,k

((

1− e−∆Q12
)

1zl 6=zl+1
+ e−∆Q121zl=zl+1

)

where

o
(1)
l : = λc

l+1 − λc
l − κ(η − λc

l )∆

o
(2)
l : = σ

√

λc
l ∆

with appropriate modifications for the terminal cases Z1 and ZK .

Calculation of the tranches’ expected loss in Section 3.5.3

In order to calculate the portfolio loss distribution, we apply the method described

in Subsection 2.7.2. Since we assume homogeneity of the objects and work with

a conditional independence model, the portfolio loss conditional on the integrated

factor
∫ t

0
λc(s)ds follows a binomial distribution. The density of the integrated

factor is derived by Fourier inversion (see equation (2.24)) based on Fast Fourier

Transforms (FFTs).2 In the most general case, we proceed as follows:

1. We evaluate the characteristic function of the integrated factor on an un-

equally spaced grid of length 216 by solving the ODE system stated in Propo-

sition 3.2.1. We use a grid that is equally-spaced on a logarithmic scale. The

mesh size of this equally-spaced grid depends on the variance of the inte-

grated factor. For dispersed integrated factors, for example, we use a smaller

mesh size.

2. The computed values of the characteristic function are then interpolated on

an equally-spaced grid of length 218 using a cubic-spline.

3. By applying the FFT, we finally get the density of the integrated factor.

Using the described interpolation is inspired by Eckner (2007). It is only applied in

the models in which no analytic solution of the characteristic function is available,

1In our model implementation we presumed that Q12 = Q21 in order to reduce the dimension

of the parameter space for the optimization. The h(·, ·) function is defined in equation (3.19) on

p. 111.
2We used the FFT implementation of the GSL.
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i.e. only for the SAJD model (note that the other models without analytical solu-

tions were rejected by a standard significance test). Otherwise, the characteristic

function is directly evaluated on an equally-spaced grid of length 218. Apart from

the general reduction of evaluation points, another effect of using an interpolation

is that the number of large points for which the characteristic function has be eval-

uated is diminished, too.3 The solution of the ODE system for these large points

is computationally burdensome. Since the interpolation introduces an error, the

number of points at which the characteristic function is originally evaluated should

not be too small. Our choice of 216 points guarantees that the computation of the

density is not subject to significant interpolation errors.

3Note that due to the applied exponential transform, the mesh size between the evaluation

points is closest at 0
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Appendix B

Appendix to Chapter 4

Approximative Derivation of the Joint Distribution of i2 and i3, and

Additional Figures

By equation (4.13), we have

it =
1

i0
−
∑

allx

ωx,m

2i0

(

e−
R 1
0

λ(x+s,t−1+s) ds + e−
R 1
0

λ(x+s,t+s) ds
)

Taylor
≈ 1

i0
−
∑

allx

ωx,m

2i0

((

1−
∫ 1

0

λ(x + s, t− 1 + s) ds

)

+

(

1−
∫ 1

0

λ(x + s, t + s) ds

))

=
∑

allx

ωx,m

2i0

∫ 1

0

Y2(t− 1 + s) ds +
∑

allx

ωx,m

2i0

∫ 1

0

Y2(t + s) ds

+
∑

allx

ωx,m

2i0

∫ 1

0

Y1(t− 1 + s)eb(x+s)+c ds +
∑

allx

ωx,m

2i0

∫ 1

0

Y1(t + s)eb(x+s)+c ds

=
1

2i0

(∫ t

t−1

Y2(s) ds +

∫ t+1

t

Y2(s) ds

)

+

∫ t

t−1

Y1(s)e
bs ds

∑

allx

ωx,m

2i0
eb(x−t+1)+c

+

∫ t+1

t

Y1(s)e
bs ds

∑

allx

ωx,m

2i0
eb(x−t)+c,

where we used the simple Taylor expansion ex = (1 + x) for x close to one. As

the relevant quantities, in particular for the most relevant ages, are very small, the

approximation will be close. In order to compute the (joint) distribution of i2 and

i3, we need to compute the joint distributions of the random variables

Continuous Part : Ξ1 :=

∫ 1

0

Y1(s)e
bs ds, Ξ2 :=

∫ 2

1

Y1(s)e
bs ds, Ξ3 :=

∫ 3

2

Y1(s)e
bs ds

Jump Part : Θ1 =

∫ 1

0

Y2(s) ds, Θ2 =

∫ 2

1

Y2(s) ds, Θ3 =

∫ 3

2

Y2(s) ds
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with Y1(0) > 0 and Y2(0) = 0. As the jump part and the continuous part are

independent, it is sufficient to derive the joint densities for Ξ1, Ξ2, and Ξ3 as well

as for Θ1, Θ2, and Θ3, respectively. The joint density will be given by the product

of the two densities. We will focus on the continuous part Y1, but the jump part

may be considered analogously.

It is important to note that Ξ1, Ξ2, and Ξ3 are independent given Y1(1) and Y1(2).

Therefore, for Borel sets B1, B2, B3, B̃1, B̃2 we have

P

(

Ξ1 ∈ B1, Y1(1) ∈ B̃1, Ξ2 ∈ B2, Y1(2) ∈ B̃2, Ξ3 ∈ B3

)

= P

(

Ξ1 ∈ B1, Ξ2 ∈ B2, Ξ3 ∈ B3|Y1(1) ∈ B̃1, Y1(2) ∈ B̃2

)

P

(

Y1(1) ∈ B̃1, Y1(2) ∈ B̃2

)

= P

(

Ξ1 ∈ B1|Y1(1) ∈ B̃1, Y1(2) ∈ B̃2

)

P

(

Ξ2 ∈ B2|Y1(1) ∈ B̃1, Y1(2) ∈ B̃2

)

P

(

Ξ3 ∈ B3|Y1(1) ∈ B̃1, Y1(2) ∈ B̃2

)

P

(

Y1(1) ∈ B̃1, Y1(2) ∈ B̃2

)

= P

(

Ξ1 ∈ B1, Y1(1) ∈ B̃1

)

P

(

Ξ2 ∈ B2, Y1(2) ∈ B̃2

∣

∣

∣
Y1(1) ∈ B̃1

)

P

(

Ξ3 ∈ B3|Y1(2) ∈ B̃2

)

.

So, the joint density fΞ1,Ξ2,Ξ3(x, y, z) can be derived from the (conditional) densities

fΞ1,Y1(1)(x, y), fΞ2,Y1(2)|Y1(1)(x, y | z), and fΞ3|Y1(2)(x | y) by

fΞ1,Ξ2,Ξ3(x, y, z) =

∫

R

∫

R

fΞ1,Y1(1)(x, u)fΞ2,Y1(2)|Y1(1)(y, v | u)fΞ3|Y1(2)(z | v) dudv.

Since we are working in an affine framework, we can derive the (joint) Laplace or

Fourier transforms for Ξ1, Y1(1), for Ξ2, Y1(2) given Y1(1), and for Ξ3 given Y1(2)

analytically up to the solution of ODEs similarly to the derivation of equation 4.7

above (see Duffie et al. (2000) for details). From these, we can derive the corre-

sponding densities by inverting the respective transform (see e.g. Petrella (2004))

and compute the joint density of fΞ1,Ξ2,Ξ3(x, y, z) as above; thus, we are given the

(joint) distribution of i2, i3 as deterministic functions of Ξ1, Ξ2, and Ξ3.
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Zusammenfassung

In der vorliegenden Arbeit beschäftigen wir uns mit der Frage, welche Modelle für

die Modellierung von strukturierten Finanzprodukten notwendig und geeignet sind.

Diese Frage wird aus zwei Richtungen beleuchtet. Einerseits erstellen wir einen Mo-

dellrahmen, der viele Modelle aus der Literatur einschließt, und leiten strukturelle

Aussagen innerhalb dieses Rahmens her. Andererseits untersuchen wir konkrete

Modellspezifikationen im Zusammenhang mit tatsächlichen Daten und können so

die Modelle hinsichtlich ihrer Fähigkeit vergleichen, diese Daten zu erklären. Neben

einer kurzen Einleitung untergliedert sich die Arbeit in drei Hauptkapitel sowie zwei

Anhänge, deren wichtigste Beiträge wir im Folgenden kurz zusammenfassen und

diskutieren.

Kapitel 2 bildet die Grundlage für die Anwendungen in den Kapiteln 3 und 4

und beinhaltet die meisten theoretischen Ergebnisse der Arbeit. Wir führen in

diesem Kapitel einen Modellrahmen ein, um einen Vektor von Stoppzeiten abzu-

bilden. In den späteren Anwendungen stellen diese Stoppzeiten die Ausfallzeit-

punkte von Unternehmen oder die Sterbezeitpunkte von Versicherten dar. Das

Besondere an unserem Vorgehen ist, dass unser Ansatz viele Modelle aus der Li-

teratur als Spezialfälle beinhaltet. Dadurch trägt unsere Untersuchung einerseits

zu einem tieferen Verständnis dieser Modelle bei, und andererseits helfen unsere

Ergebnisse die Vielzahl der Kreditportfolio- und CDO-Modelle in der Literatur zu

strukturieren. Beispielsweise zeigen unsere Analysen, dass einige Spezifikationen

letztendlich ähnliche oder beinahe identische Modelle mit sich bringen.

Wir beginnen dieses Kapitel mit der Einführung unseres Stoppzeitmodells (stop-

ping times model), welches grundlegend für alle Fragestellungen dieser Disserta-

tion ist. Das Modell stellt eine flexible ,,Modell-Plattform” dar mit zahlreichen

nützlichen Eigenschaften. So hängen bedingte Überlebenswahrscheinlichkeiten im

Modell sowohl von einem Hintergrundprozess (background process) ab, der sich un-

abhängig von den Stoppzeiten entwickelt, als auch von den Realisationen der Stopp-

zeiten selbst. Des Weiteren können Realisationen der Stoppzeiten zusammenfallen.

Übersetzt in einen Kreditportfoliokontext bedeutet dies, dass in unserem Modell

gemeinsame Ausfälle möglich sind sowie Ansteckungseffekte auftreten können, bei

denen Ausfälle im Portfolio die Überlebenswahrscheinlichkeiten der anderen Un-
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ternehmen beeinflussen.

Anschließend, im Abschnitt 2.2, beginnen wir mit der Analyse unseres Modell-

rahmens, beschränken uns dabei zunächst aber nur auf eine einzelne Stoppzeit.

In Proposition 2.2.1 leiten wir die Intensität des Prozesses her, der das Auftreten

der Stoppzeit beschreibt. Unsere Diskussion zeigt, dass Sprünge des die Stopp-

zeit ,,auslösenden” Prozesses überflüssig sind, so lange man nur an einer Stopp-

zeit interessiert ist. Basierend auf dem Intensitätsprozess, erhalten wir dann eine

Formel für die Einzelüberlebenswahrscheinlichkeiten. Zusätzlich weisen wir auf

eine Verbindung zwischen unserem Modell und dem Ansatz aus Collin-Dufresne et

al. (2004) für den Fall einer einzelnen Stoppzeit hin.

Im folgenden Abschnitt 2.3 berechnen wir dann gemeinsame Überlebenswahrschein-

lichkeiten und die entsprechenden Intensitäten für den ganzen Vektor von Stopp-

zeiten. Wir zeigen, dass gemeinsame Sprünge der Prozesse, die die Stoppzeiten

,,auslösen”, eine ganz entscheidende Rolle für deren Abhängigkeitsstruktur spielen.

Es zeigt sich, dass ohne diese Sprünge Realisationen von Stoppzeiten nicht zusam-

menfallen können. Darüber hinaus stellen wir eine interessante Querverbindung

zwischen unserem Modell und den common Poisson shock models her, die in Lind-

skog and McNeil (2003) behandelt werden. Wir illustrieren diese Verbindung mit

einem Beispiel und zeigen, dass das Intensity Gamma Modell aus Joshi and Stacey

(2006) letztendlich ein solches Modell darstellt (Beispiel 2.3.1).

Abschnitt 2.4 legt einen Konstruktions- und Simulationsalgorithmus für unser Stopp-

zeitmodell vor (Algorithmus 2.4.1). Da die Stoppzeiten in unserem Modellrahmen

zusammenfallen können, stellt dieser eine Erweiterung des Algorithmus von Yu

(2007) dar.

Aus einem statischen Blickwinkel heraus analysieren wir nachfolgend die modell-

implizite Abhängigkeitsstruktur, d.h. wir betrachten Abhängigkeiten zwischen den

Überlebensereignissen über einen festen Zeitraum. Wir führen zunächst die wich-

tigen Begriffe der bedingten Unabhängigkeit (conditional independence) sowie der

Ansteckung (contagion) ein und formulieren dann in Proposition 2.5.1 Bedingung-

en, unter denen unser Stoppzeitmodell der Annahme der bedingten Unabhängigkeit

genügt. Ist diese Annahme erfüllt, so kann die modellimplizite Abhängigkeits-

struktur über eine Copula Funktion charakterisiert werden, die bereits in Marshall

and Olkin (1988) untersucht wurde. Dies zeigen wir in Satz 2.5.2. Unser Ergebnis

bringt mit sich, dass viele Modelle in der Literatur eine schon bekannte Abhängig-

keitsstruktur zwischen den Stoppzeiten implizieren.

Des Weiteren diskutieren wir das Clustering der Stoppzeiten in der Zeit, indem wir

die Dynamik des Verlustprozesses (loss process) untersuchen, welcher das Auftreten
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der Stoppzeiten zählt. Dadurch liefern wir eine dynamische Charakterisierung der

Abhängigkeiten zwischen den Stoppzeiten. In einem ersten Schritt passen wir in

Korollar 2.6.1 ein Resultat von Meyer (1971) an unseren Modellrahmen an. Dieses

bildet die Grundlage für einen wichtigen statistischen Test, der in Unterabschnitt

3.1.4 betrachtet wird. Anschließend führen wir eine Größe ein, die wir als erwartete

Volatilität (expected volatility) bezeichnen, und schlagen diese als Maß für das Clus-

tering der Stoppzeiten in der Zeit vor. Wir diskutieren dessen Eigenschaften und

zeigen seinen Wert für die Analyse von konkreten Modellspezifikationen.

Im Anschluss befassen wir uns mit der Frage der analytischen Handhabbarkeit

unseres Modellrahmens. In einem ersten Schritt formulieren wir in Unterabschnitt

2.7.1 Bedingungen, unter denen die charakteristische Funktion eines stochastischen

Prozesses semi-analytisch berechnet werden kann, indem man ein System von

gewöhnlichen Differentialgleichungen löst. Dies wird dann in Satz 2.7.1 bewiesen.

Obwohl wir flexiblere Spezifikationen als in Duffie et al. (2000) und Duffie et al.

(2003) zulassen, erhalten wir einen vergleichbaren, hohen Grad an analytischer

Handhabbarkeit. In einem zweiten Schritt, in Unterabschnitt 2.7.2, zeigen wir

dann, wie unser Stoppzeitmodell angepasst werden muss, damit dieses generelle Er-

gebnis für die Berechnung von Überlebenswahrscheinlichkeiten und der Verteilung

des Verlustprozesses angewandt werden kann. Diese stellen zentrale Größen für die

Anwendungen in den Kapiteln 3 und 4 dar.

Wir schließen dieses Kapitel, indem wir eine Brücke zwischen unserem allgemeinen

Stoppzeitmodell auf der einen und den spezifischeren Modellen auf der anderen

Seite schlagen, die für die Anwendungen betrachtet werden. Darüber hinaus veran-

schaulichen wir den Nutzen der entwickelten theoretischen Resultate für die Ana-

lyse von konkreten Modellspezifikationen in einer beispielhaften Diskussion des

Kreditportfoliomodells von Duffie and Gârleanu (2001).

In Kapitel 3 verknüpfen wir Theorie und Anwendung. Die größte Schwierigkeit

bei der Modellierung von strukturierten Kreditprodukten besteht darin, das zu-

grunde liegende Portfolio und insbesondere seine Abhängigkeitsstruktur richtig zu

beschreiben. Fehlspezifikationen in Verbindung mit dieser Abhängigkeitsstruktur

gehen auf eine nicht-lineare Weise in die geschätzte Verlustverteilung des struktu-

rierten Kreditprodukts ein. Das Hauptaugenmerk des dritten Kapitels liegt deshalb

zum einen auf der Frage, welche Modelle die in tatsächlichen Daten beobachtete

Dynamik von Kreditportfolios am besten beschreiben, und zum anderen auf den

Konsequenzen der Ergebnisse für die Modellierung von strukturierten Kreditpro-

dukten.

Im ersten Abschnitt dieses Kapitels schätzen wir Ausfallintensitäten für eine große

Anzahl von US- und Nicht-US-Unternehmen. Im Gegensatz zu Das et al. (2007)
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zeigen wir, dass die geschätzten Intensitäten in der Lage sind, das beobachtete

Clustering von Ausfallzeitpunkten in der Zeit zu erklären, obwohl wir unsere In-

tensitäten basierend auf beobachteten Größen wie der Expected Default Frequency

(EDF) schätzen und keine zusätzlichen Ansteckungseffekte oder unbeobachtbare

Prozesse einführen (Tabelle 3.3). Des Weiteren untersuchen wir die Fähigkeit un-

seres Modells, Firmen aufgrund ihrer Ausfallwahrscheinlichkeit zu sortieren. Wir

stellen fest, dass unser Modell Prognosewerte liefert, die besser sind als jene, die

von Duffie et al. (2007) für deren Regressionsmodell und einen ähnlichen Datensatz

angegeben werden (Tabelle 3.2).

In Abschnitt 3.2 führen wir dann unser zeitstetiges Modell ein, mit der Absicht,

die gemeinsame Dynamik der Ausfallintensitäten abzubilden. Das Modell schließt

andere bekannte Modelle in der Literatur mit ein. Im einfachsten Fall folgen die In-

tensitäten einem Cox-Ingersoll-Ross-Prozess (siehe Cox et al. (1985)). Basierend

auf unseren theoretischen Ergebnissen aus Kapitel 2 leiten wir eine Formel her

(Proposition 3.2.1), die für die Modellumsetzung wichtig ist, und analysieren die

Dynamik der Intensitäten in den verschiedenen Modellversionen. Insgesamt bildet

das Modell eine hervorragende Grundlage für unsere empirische Analyse, da die

ineinander geschachtelten Modellversionen gut verglichen werden können. Insbe-

sondere können wir der Fragestellung nachgehen, ob und wann einfache Modelle

ausreichen, um die Ausfallintensitäten treffend zu beschreiben.

Nachdem wir unser Modell eingeführt haben, betrachten wir in Abschnitt 3.3 dessen

Kalibrierung auf Einzelfirmenebene. Nach der Entwicklung eines Schätzalgorithmus

in Unterabschnitt 3.3.1 vergleichen wir die einzelnen Modellversionen hinsichtlich

ihre Fähigkeit, die Ausfallintensitäten jeder einzelnen Firma zu erklären und unter-

suchen die Ausfallprognosekraft der Modelle. Speziell für Unternehmen niedriger

Bonität stellen wir fest, dass Modelle mit Intensitätssprüngen besser in der Lage

sind, die Intensitäten abzubilden als Modelle, welche ausschließlich auf Diffusionen

basieren (Tabelle 3.7). Allerdings führen komplexere Modelle nicht zu besseren

Ergebnissen hinsichtlich der Prognose von Ausfällen (Tabelle 3.8).

Da alle Versionen des betrachteten Intensitätsmodells auf der Annahme von be-

dingt unabhängigen Ausfällen beruhen, untersuchen wir in Abschnitt 3.4 detail-

liert die Folgen dieser Annahme. Wir simulieren Ausfalldaten basierend auf einem

Modell, in dem Ausfälle die Intensitäten der überlebenden Firmen beeinflussen.

Anschließend schätzen wir falsche Modelle – alle basierend auf der Annahme der be-

dingten Unabhängigkeit – als auch das richtige Modell, das die Daten ursprünglich

erzeugt hat, und untersuchen die Fähigkeit der Modelle, die Portfolioverlustvertei-

lung zu prognostizieren. Wir stellen fest, das Schätzfehler einen deutlich größeren

Einfluss auf die Ergebnisse besitzen als die Annahme der bedingten Unabhängig-

keit (Tabelle 3.9). Obgleich Ansteckungseffekte eine entscheidende Rolle im Daten
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erzeugenden Modell gespielt haben, führen Modelle, die auf der bedingten Unab-

hängigkeit beruhen, zu ähnlichen Ergebnissen wie das geschätzte, richtige Modell

(Tabelle 3.10).

Gegen Ende des Kapitels präsentieren wir unsere Modellschätzung auf Portfolio-

ebene. Nach der Einführung eines Schätzalgorithmus in Unterabschnitt 3.5.1,

schätzen wir die verschiedenen Modellversionen und vergleichen deren Befähigung,

die Portfoliointensität zu erklären. Unter Verwendung der geschätzten Parame-

ter simulieren wir dann Pfade der Portfoliointensität und des zugehörigen Port-

folioverlustes. Auf diese Weise können wir Zeitreihen von Ratings für hypothe-

tische, strukturierte Kreditprodukte berechnen, denen das simulierte Portfolio zu-

grunde liegt, und erhalten schlussendlich dadurch Rating-Transitionsmatrizen. Wir

stellen fest, dass basierend auf dem betrachteten Datensatz einfache und kom-

plexe Modelle zu ähnlichen Risikoprofilen für strukturierte Kreditprodukte führen

(Tabelle 3.17) und dass generelle Größen, wie die durchschnittliche Ausfallrate im

zugrunde liegenden Portfolio, einen wesentlich größeren Einfluss auf die Ergebnisse

besitzen als die Modellwahl.

Kapitel 4 stellt zuletzt die zweite Anwendung unseres Stoppzeitmodells für die

Analyse von mortalitätsbedingten Katastrophenbonds vor.

Da wir in unserer Untersuchung konkrete Transaktionen betrachten, beginnen wir

in Abschnitt 4.1 mit einem kurz gefassten Überblick über den Markt für diese

Wertpapiere und beschreiben die Transaktionen, die untersucht werden.

Darauf folgt in Abschnitt 4.2 die Einführung unseres Modells für die Analyse und

Bewertung von mortalitätsbedingten Katastrophenbonds. Die Modellspezifikation

beinhaltet zwei Komponenten: Eine Grundkomponente (Baseline Component), die

einer Diffusionsspezifikation folgt und die normale Entwicklung der Sterblichkeit

über die Zeit beschreibt, und eine Katastrophenkomponente, die von einem Nicht-

Gausschen Ornstein-Uhlenbeck Prozess getrieben wird. Unseres Wissens nach stellt

dieses Modell den ersten vollständig dynamischen Ansatz in der Literatur dar, diese

Wertpapiere zu modellieren. Unsere Diskussion des Modells zeigt, dass es vielver-

sprechende Eigenschaften besitzt. Insbesondere können Überlebenswahrscheinlich-

keiten semi-analytisch berechnet werden und darauf basierend Versicherungsprä-

mien oder -leistungen bestimmt werden.

Die Schätzung unseres Modells erfolgt in Abschnitt 4.3. Wir diskutieren dort drei

verschiedene Kalibrierungsarten für unser Modell: In Unterabschnitt 4.3.1 betrach-

ten wir zunächst dessen Kalibrierung basierend auf historischen Sterblichkeits-

daten. Wir stellen fest, dass insbesondere die Parameter der Katastrophenkom-

ponente großen Unsicherheiten unterliegen. In einem zweiten Schritt schätzen
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wir risiko-adjustierte Parametrisierungen des Modells sowohl basierend auf Ver-

sicherungspreisen als auch auf Marktpreisen von mortalitätsbedingten Katastroph-

enbonds.

Im Anschluss daran berechnen wir in Abschnitt 4.4 Risikoprofile und Spread Level

für die betrachteten Wertpapiere unter Verwendung der Parametrisierungen aus

Abschnitt 4.3. Wir vergleichen unsere Ergebnisse mit denen von so genannten

Risikomodellierungsfirmen (risk modeling firms), auf denen die Entscheidungen

von Ratingagenturen und Investoren maßgeblich beruhen. Insgesamt stellen wir

fest, dass die Profile großen Unsicherheiten ausgesetzt sind in Bezug auf die zu-

grunde liegenden Daten und deshalb von allen Marktteilnehmern mit Vorsicht be-

trachtet werden sollten. Insbesondere sind die Risikokennzahlen der Risikomo-

dellierungsfirmen niedriger als unsere, obwohl keine strukturellen Unterschiede in

den Ergebnissen vorliegen (Tabelle 4.9). Dies deutet darauf hin, dass die zu-

grunde liegenden Annahmen der Risikomodellierungsfirmen eher ,,optimistisch”

sind. Durch die Analyse der erhaltenen risiko-adjustierten Parametrisierungen

können wir darüber hinaus eine Erklärung für das schnelle Wachstum des Marktes

für mortalitätsbedingte Katastrophenbonds in den letzten Jahren geben.

Anhang A präsentiert eine geschlossene Formel für eine wichtige Transforma-

tion einer so genannten basic affine jump diffusion, die auf Duffie and Gârleanu

(2001) zurückgeht. Außerdem leiten wir einen exakten Simulationsprozess (Algo-

rithmus A.0.1) für dieses Modell her. Dieser erweitert den Algorithmus, der für

einen Spezialfall des Modells – einen Cox-Ingersoll-Ross-Prozess – bekannt ist und

den man in Glasserman (2004) auf Seite 124 findet. Neben diesem Algorithmus

liefern wir weitere Details zu unserer Implementierung der Modelle aus Kapitel 3.

Im Anhang B zeigen wir, wie man im Modell aus Kapitel 4 die approxima-

tive Verteilung des kombinierten Sterblichkeitsindex (combined mortality index )

berechnet. Weitere Graphiken mit Parametersensitivitäten werden für dieses Mo-

dell präsentiert.
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