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Introduction

In this thesis we study Galois covers of algebraic curves. In characteristic 0 , the Galois theory
of curves is well understood. This is in strong contrast to the situation in characteristic p where
less is known. One technique for studying Galois covers in characteristic p is to relate them to the
Galois theory of curves in characteristic 0 . Reducing Galois covers of curves in characteristic 0 to
characteristic p is one way to prove existence of Galois covers in characteristic p with a given Galois
group. In the opposite direction, the lifting problem asks which covers of curves in characteristic p
lift to characteristic 0 . It is known that not all Galois covers in characteristic p lift to characteristic
0 . In our work we prove results regarding the liftability of Galois covers of algebraic curves. For some
Galois covers in characteristic 2 , we explicitly construct lifts to characteristic 0 . We also introduce a
new necessary condition for the liftability of Galois covers. We then use our new necessary condition
to show that certain Galois covers do not lift to characteristic 0 .

Background

It is known that the set of Galois covers of a punctured Riemann surface can be described in terms of
its topological fundamental group. Indeed, if S is a Riemann surface of genus g with n punctures,
then the quotients of its topological fundamental group Γg,n correspond to the Galois covers of S .
An explicit description of the fundamental group Γg,n is known in terms of the genus g and the
number of punctures n , namely it is the free profinite group on 2g + n− 1 generators for n > 0 .

This theory can also be used to describe the Galois theory of curves defined over the complex num-
bers. This is accomplished by using algebraization techniques, which essentially state that there is an
equivalence between the category of compact Riemann surfaces and the category of smooth projec-
tive algebraic curves defined over the complex numbers. This correspondence respects finite branched
covers. Furthermore, one knows that inertia groups of a characteristic- 0 Galois cover D → C , i.e.
the stabilizers of the fixed points of D , are always cyclic.

The Galois theory of curves becomes more difficult in characteristic p . One problem is that the clas-
sical analytic techniques used in the study of Riemann surfaces cannot be used in characteristic p .
However, there exists an algebraic definition of the fundamental group of a punctured curve which
works over any base field. In the case of a genus- g curve over the complex numbers with n punc-
tures, this algebraic fundamental group is the profinite completion of the topological fundamental
group Γg,n . For more details on this see Grothendieck et al [13].

One knows that the Galois theory of a curve in characteristic p can be described completely via the
algebraic fundamental group. A serious problem is that in general an explicit description of the fun-
damental group is not known. Abhyankar’s conjecture, proved by Raynaud [34] and Harbater [17],
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explicitly states which groups occur as Galois groups of curves in characteristic p . However, simply
knowing which groups can occur as Galois groups is not enough to determine the structure of the
algebraic fundamental group. As an example of the subtleties in characteristic p , one knows that the
affine line A1 is no longer simply connected. Another subtlety is that the inertia groups of a cover in
characteristic p need not be cyclic. In general they are extensions of cyclic by p -groups (see Serre
[37]).

Grothendieck has studied the situation when one restricts to tame covers of curves. These are covers
of which the inertia groups have order relatively prime to p . In this case the inertia groups are always
cyclic and the theory is completely described in terms of the tame fundamental group. Grothendieck
proved that the tame fundamental group is a quotient of the topological fundamental group Γg,n ,
where g is the genus of the curve and n is the number of branch points.

The lifting problem

One technique for obtaining information about the Galois theory in characteristic p is by reduction.
Let k be a field of characteristic p and let R be a discrete valuation ring of characteristic 0 with
residue field k . It is helpful to think of k = Fp and R = Zp , the ring of p -adic integers. Let
D → C be a Galois cover of curves defined over R . The curves D and C as well as the finite map
between them are given by polynomial equations. One may now consider the k -varieties which result
when one reduces the defining polynomials modulo the prime of R .

However, these are in general not smooth. If the singularities are as mild as possible, i.e. ordinary
double points, then we say that the cover has semistable reduction. It is known that after extending
R , there exists a suitable set of defining polynomials such that the reduction is semistable (this can be
made more precise). If the reduction happens to be a separable cover D → C of smooth irreducible
curves, then we say that the cover D → C has good reduction. One knows that in this case the
reduction D → C is also Galois. For more information on this see Liu [24].

One can also ask to go in the opposite direction, namely given a Galois cover D → C of curves over
k , does there exist a Galois cover D → C of curves over R which reduces to D → C ? If this is the
case then we say that the cover D → C lifts to characteristic 0 , and the cover D → C is a lift of
D → C .

Lifting and reduction is one way of relating the Galois theory in characteristic 0 to that in character-
istic p . Several interesting questions arise in this context. The first more general but very difficult
question is to ask whether or not there is a necessary and sufficient condition for a Galois cover to be
liftable.

Question A Do there exist necessary and sufficient conditions for a cover in characteristic p to
be liftable?

The Oort conjecture states that all cyclic covers lift from characteristic p to characteristic 0 (see
[30]). A weaker question is to ask, given a group G , does there exist some G -Galois cover of curves
in characteristic p which lifts to characteristic 0 . Matignon [27] asked what the situation in this
context is for nonabelian p -groups. More precisely, he asked the following question.
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Question B Does there exist a G -Galois cover in characteristic p which lifts to characteristic
0 , where G is a nonabelian group of order p3 ?

A slightly different question was posed by Chinburg, Guralnick and Harbater [8] for the general-
ized quaternion groups.

Question C Do all G -Galois covers in characteristic 2 lift to characteristic 0 , where G is a
generalized quaternion group of order exceeding 8 ?

Grothendieck’s result on the tame fundamental group proves that all G -covers lift if the order of
G is relatively prime to p , the characteristic of k . However, the lifting problem becomes very diffi-
cult if the order of G is a multiple of p . Several results are known for the lifting problem. Sekiguchi,
Oort and Suwa [36] proved the Oort conjecture for the group G = Z/pZ , and this result was later
extended by Green and Matignon [15] for the case G = Z/mZ , where p2 strictly divides m . Pagot
[32] also proved that all Klein four Galois covers lift to characteristic 0 . Later, Bouw and Wewers [4]
proved that all Dp -covers lift, where p is an odd prime.

In our work we shall give partial answers to the question of Matignon and the question of Chinburg,
Guralnick and Harbater. We shall identify a family of D4 -actions in characteristic 2 , where D4

is the dihedral group of order 8 , which lift to characteristic 0 (work taken from Brewis [5]). We
shall also give examples of generalized quaternion actions which do not lift to characteristic 0 (work
taken from Brewis–Wewers [6]). This is done by introducing a new necessary condition for liftability,
namely the Hurwitz-tree condition. Thereafter we show that our necessary condition always holds
for cyclic actions in characteristic p . This provides some new evidence for the validity of the Oort
conjecture.

Our contributions

Let Ck/k be a curve over a field k of characteristic p and let G ↪→ Autk(Ck) be a G-action on
Ck . One says this action lifts to characteristic 0 if there exists a local ring R of characteristic 0 with
residue field k, a smooth R-curve CR/R together with a map G ↪→ AutR(CR) which reduces to
the given G-action on Ck . This is the global lifting problem for the group G.

Similarly one has the local lifting problem: let G ↪→ Autk(k[[t]]), a so-called local G -action. We
ask when one can find an embedding G ↪→ AutR(R[[T ]]) reducing to the given one. By considering
inertia subgroups one sees that each global lifting problem induces, by localisation and completion at
each ramification point, several local lifting problems. In fact, the local-global principle of Green–
Matignon [15] states that these two types of problems are equivalent. For more information on this
see also Bertin–Mézard [2] or Henrio [19].

In Henrio [19], following ideas of Green and Matignon [16], a new understanding of the lifting prob-
lem in the case of Z/pZ -actions was given in terms of the so-called Hurwitz trees. Let G := Z/pZ
act on the p -adic open disc Y := Spf(R[[z]]) , where R is an extension of W (k) . Then Henrio
associated a combinatorial object, the Hurwitz tree, with the action. The Hurwitz tree is an object
that is defined purely in characteristic p by a semistable k -curve and differentials of the individual
components of the semistable curve. It reflects the relative positions of the geometric branch points
as well as the ramification theory locally around each branch point. Henrio also proved that each
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Hurwitz tree is induced by a Z/pZ -action on the open disc. This technique was later exploited by
Bouw and Wewers [4], who generalized the Hurwitz-tree theory to the group Dp where p 6= 2 , and
they used this to prove that all local Dp -actions lift from characteristic p to characteristic 0 .

In this thesis we study the ramification theory of the p -adic open disc in terms of representation
theory and we combine this with the techniques of Kato [21], [22], Kato–Saito [23] and Huber [20].
These techniques were developed to study the higher local class field theory of two-dimensional local
fields (the boundary of the p -adic open disc for instance). This provides new insight into the local
lifting problem.

Using Kato’s theory, in particular his differential Swan conductor, one can associate differential forms
with an action on the p -adic open disc, and many properties are known. We also associate ramifica-
tion groups with such an action. These can be related to Huber’s Artin and depth characters. In our
work we shall prove some relations between the representations of the ramification groups, Kato’s
differential Swan conductor and Huber’s Artin and depth characters (Chapter two).

We partially succeeded in generalizing the Hurwitz-tree concept to arbitrary p -groups (Chapter three).
The crucial new ingredient in our construction is the systematic use of the Artin and depth characters.
This leads to a new necessary condition for the liftability of a local action in characteristic p , called
the Hurwitz-tree obstruction. If our new necessary condition holds, then we say that the Hurwitz-tree
obstruction vanishes.

Theorem 3.6.2 Let G ↪→ Autk(k[[z]]) be a local G -action, where G is a p -group. Let aG be
the classical Artin character of the action. If the action lifts to characteristic 0 , then there exists a
Hurwitz tree T with depth 0 and Artin character aG .

This condition is of a representation-theoretic flavour, and by studying the representation theory of
the generalized quaternion group more closely, we are able to answer Question 1.3 of Chinburg–
Guralnick–Harbater [8] negatively.

Theorem 3.6.6 There exist local generalized-quaternion actions in characteristic 2 for which the
Hurwitz-tree condition does not vanish. Hence, there exist local generalized-quaternion actions in
characteristic 2 which do not lift to characteristic 0 .

We also show that our new necessary condition holds for all Z/pnZ -actions.

Theorem 4.3.4 Let G ↪→ Autk(k[[z]]) be a local G -action, where G = Z/pnZ . Let aG be the
Artin character of this action. Then there exists a Hurwitz tree T for the group Z/pnZ with depth
0 and Artin character aG . Hence the Hurwitz-tree obstruction vanishes for cyclic actions in charac-
teristic p .

This provides some new evidence for the validity of the Oort conjecture.

A crucial question that remains is whether each Hurwitz tree is induced by an action on the p -adic
open disc. We highlight some of the problems that one encounters when one attempts to give a full
generalization of Henrio’s theory using Kato’s differential Swan conductor (Chapter five). We explore
the differential Swan conductor more thoroughly with examples in the case of Z/p2Z -Galois exten-
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sions and we prove some properties of the differentials that occur as differential Swan conductors.

Finally, we study liftability of D4 -actions in characteristic 2 (Chapter six). More precisely, we study
the so-called supersimple local D4 -actions. These are actions which can be compactified, using the
Katz–Gabber compactification, into covers D → P1

k , where D/H is a projective line and H is the
centralizer of D4 . Our theorem is then that all supersimple actions lift to characteristic 0 .

Theorem 6.5.1 All supersimple local D4 -actions in characteristic 2 lift to characteristic 0 .

Furthermore, the genus of D is not bounded from above.

Overview

In the first chapter, we recall the definition of Kato’s differential Swan conductor and its relation to
the differentials that Henrio uses to study Z/pZ -extensions of two-dimensional local fields (Lemma
1.4.2 and Lemma 1.4.3). This is done in Sections 1.3.1 – 1.6. We also gather some results on the
differential Swan conductor from Kato [22]. Lastly in Section 1.7 we study the differential Swan
conductor explicitly in the cases of (Z/pZ)2 and generalized quaternion Galois extensions.

In Chapter two we study ramification filtrations of a Galois cover of p -adic open discs. We recall the
filtration that Kato and Saito [23] introduced. Furthermore, in Section 2.3 we simplify their filtration
into what we call the simplified ramification filtration. Following the classical approach (Serre [37]),
we prove some structural results on the quotients of the simplified ramification filtration (Theorem
2.3.16).

In Section 2.4 we shall also introduce Huber’s Artin and depth characters. We then prove a powerful
relation between these, Kato’s differential Swan conductor, and the ramification filtration of Kato and
Saito (Theorem 2.4.5 and Theorem 2.4.11).

Still restricting to Galois covers of p -adic open discs, we build the theory of Hurwitz trees in Chapter
three. The crucial new ingredient in this construction is the use of the Artin and depth characters
introduced in Chapter two. We introduce a new necessary condition for the liftability of a local action
in characteristic p (see Theorem 3.6.2). We call this the Hurwitz-tree obstruction, and we say that
if the necessary condition holds, then the Hurwitz-tree obstruction vanishes. We also apply our new
theory in Section 3.6.6 to study actions of generalized quaternion groups. Lastly, in Section 3.7 we
generalize an old theorem of Green and Matignon [15] on the branch points of (Z/pZ)2 -covers of
p -adic open discs.

Chapter four deals exclusively with local cyclic actions in characteristic p . We prove that the Hurwitz-
tree obstruction vanishes for all local Z/pnZ -actions in characteristic p (Theorem 4.3.4).

The fifth chapter serves as an illustration of the problems encountered when one attempts to general-
ize Henrio’s work for arbitrary p -groups. We sketch three problems relating to the values of Kato’s
differential Swan conductors (Section 5.2), to which extend they classify Galois extensions up to con-
jugation (Section 5.3), and what the role of simplified ramification filtration is in the theory of Hurwitz
trees (Section 5.4). We hope that these ideas will serve as guidelines for future studies of Hurwitz trees.



12

Lastly in the sixth chapter we consider the problem of Matignon. We study a particular class of
D4 -actions in characteristic 2 , namely the supersimple D4 -actions. Here D4 denotes the dihedral
group of order 8 . The chapter culminates in a theorem stating that all supersimple D4 -actions lift
from characteristic 2 to characteristic 0 (Theorem 6.5.1).

Ulm, April 2009 Louis Hugo Brewis



Chapter 1

Swan conductors I : Kato’s differential
character

Consider a G-Galois extension E/F of complete discrete valuation fields. In this chapter we shall
introduce Kato’s differential Swan conductor. In order to do this we first define the type of field ex-
tensions we shall be interested in, namely the so-called Case-II type extensions (Definition 1.2.1).

In Section 1.3.1 we then define the group S̃E in which the differential Swan conductor will take its
values. This group is an extension of the group E

∗, where E denotes the residue field of E. We also
define an order function on this group, which extends the order function on E in the case that E is
also a discrete valuation field.

We then turn to Kato’s differential Swan conductor in Section 1.3.3. Following this, we discuss
and compute the differential Swan conductor explicitly in the case of Z/pZ-Galois extensions in
Section 1.4. In this case the differential Swan conductor corresponds to the differentials that Henrio
[19] associates to Z/pZ-Galois extensions. Thereafter we state Kato’s very important version of the
Hasse–Arf theorem (see Theorem 1.5.1). We conclude with examples, where the differential Swan
conductor is related to those of intermediate cyclic extensions in the case that G = (Z/pZ)2 or G is
the quaternion group.

1.1 Notation

In this chapter we let K be a complete discrete valuation field of characteristic 0 with perfect residue
field k of characteristic p. We shall denote the ring of integers of K by R. We fix a pth-root of
unity ζp ∈ K , and we define λ := ζp − 1 ∈ R. We shall also denote by vK the valuation on the
field K , and we denote by πK a parameter of K . We assume that vK has been normalized such
that vK(πK) = 1 .

We let F be a complete discrete valuation field with residue field F and with parameter πF . We
denote by OF the ring of integers of F . We shall assume that F contains the discrete valuation field
K . Furthermore, the valuation vF : F ∗ → Z on F is assumed to extend the valuation vK : K∗ → Z
on K , i.e. that vF |K∗ = vK . We shall assume that πF = πK , i.e. we assume that the parameter of
K is also a parameter of F .

13



14 CHAPTER 1. SWAN CONDUCTORS I : KATO’S DIFFERENTIAL CHARACTER

Notice that by definition we have an embedding of characteristic- p fields

k ⊂ F .

When we refer to a finite Galois extension F ⊂ E, we shall write OE for the ring of integers of the
(complete) discrete valuation field E. We shall write E for the residue field of E and e ∈ E for
the reduction of an element e ∈ OE .

1.2 Assumption and setting

In [21], Kato developed his theory for two cases of Galois extensions of the field F . In our work we
shall primarily be concerned with the second case that he considered, namely, the so-called Galois
extensions of Case-II type.

1.2.1 Definition. Let F ⊂ E be a Galois extension. We say that the extension is of Case-II type if
the induced extension F ⊂ E is purely inseparable, has the same degree as F ⊂ E, i.e.

[E : F ] = [E : F ],

and furthermore, that the field extension F ⊂ E is generated by one element, i.e. there exists at least
one element y ∈ OE such that

E = F (y),

where y denotes the reduction of y. Such an element is called a generator of the Case-II type
extension F ⊂ E.

1.2.2 Remark. Notice that if F ⊂ E is a Galois extension of Case-II type with generator y ∈ E,
then it follows that y ∈ O∗E .

1.2.3 Remark. For a Galois extension F ⊂ E of Case-II type, the local parameter πF of F is also
a local parameter of E.

In this chapter, we shall restrict to discrete valuation fields with residue fields which satisfy the fol-
lowing condition.

1.2.4 Assumption. The residue field F of F is either the function field of a smooth k-curve, or a
local power series field over k, i.e.

F ' k((t)).

1.2.5 Remark. Let F ⊂ E be a finite extension of discrete valuation fields. Assuming that F
satisfies Assumption 1.2.4, one sees that so does E.

1.2.6 Remark. Notice that the F -module of absolute differentials ΩF is generated by one element,
i.e. is a one-dimensional vector space over F .

In the case that F is the function field of a smooth k-curve, the following lemma will be useful later
on. To make it clear we also give its proof.
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1.2.7 Lemma. Let k(x) ⊂ L be a purely inseparable extension of fields of degree pn. Then there
exists a y ∈ L such that L = k(y), and furthermore, such that yp

n
= x.

PROOF. We start with the case n = 1. In this case, there exists a z ∈ L, and a f =
∑
aix

i∑
bixi
∈ k(x)

such that L = k(x)[z], where z satisfies

zp = f =
∑
aix

i∑
bixi

.

Consider the field M := k(x)[y], where y satisfies

yp = x.

Notice that M contains an element g, where gp = f .

Therefore, M contains the field L, and since both are of degree p, we see that L = M = k(y). The
general case follows by induction on n, and writing k(x) ⊂ L as a tower of degree- p inseparable
extensions

k(x) ⊂ L1 ⊂ . . . . . . ⊂ L. �

1.2.8 Remark. A slightly more general result can be found in Liu [24] Proposition 7.4.21.

Sometimes, we shall also deal with the case that F is local power series field. We leave the proof of
the following proposition for the reader.

1.2.9 Proposition. Let k((x)) ⊂ L be a purely inseparable extension of degree pn. Then there exists
a y ∈ L such that L := k((y)), and furthermore, such that x := yp

n
.

1.3 Kato’s Swan conductor

1.3.1 The value group of Kato’s Swan conductor

In this section we shall work only with Case-II type extensions of F , where F is a complete discrete
valuation field assumed only to satisfy Assumption 1.2.4. Following Kato [21], for a p-extension
E/F of Case-II type we define the abelian group SE to be the group of units of the E-algebra

AE :=
⊕
i,j∈Z

mi
E /mi+1

E ⊗EΩ⊗j
E
,

where E denotes the residue field of the discrete valuation field E, and mE the maximal ideal of
the discrete valuation field E.

We shall write [dy] for the class of the differential dy ∈ ΩE inside the group SE . Furthermore, if
f ∈ OE , then there exists an unique n ∈ Z such that f ∈ mn

E but f /∈ mn+1
E . We shall then simply

write [f ] ∈ SE for the class of f mod mn+1
E .
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For a tower F ⊂ M ⊂ E of Case-II type extensions of F , we may define an injection SM ↪→ SE
as follows. First of all, since πK is a parameter of both M and E, there exists a canonical mapping
of mi

M /mi+1
M → mi

E /mi+1
E for each i ∈ Z. Next we define a map ΩM → Ω⊗[E:M ]

E
. Namely, for

an element x ∈M , we map

[dx] 7→ [(dy)⊗[E:M ]]

where y ∈ E is the unique element such that y[E:M ] = x inside E.

Assume that E/F is a Case-II type G-Galois where G is a finite p-group. Let y ∈ OE be a
generator (see Definition 1.2.1) for the extension. We define Kato’s Swan character swE/F with
values in SE as the function

swE/F (σ) = [dy]− [y − σy]

for σ 6= 1 and

swE/F (1) = −
∑
σ 6=1

swE/F (σ).

1.3.1 Remark. The definition of swE/F is independent of the choice of y, see Kato [21] p.319 for
details.

1.3.2 Definition. We define the different of F ⊂ E as the element

DE/F := −
∑
σ 6=1

swE/F (σ) ∈ SE .

1.3.2 Order functions

For this section only we assume that the residue field F is a discrete valuation field, i.e. a local power
series field over k. Therefore the space of differentials Ω⊗j

E
has a natural order function ordE . We

can now define three order functions ordE,π , ordE,Ω and ordE,E on the group SE .

1.3.3 Definition. Namely, for an element u := [πn]− [ω] ∈ SE with ω ∈ Ω⊗j
E

, we define

ordE,π(u) := n, ordE,Ω(u) := j, ordE,E(u) := ordE(ω).

Consider the group S̃E := SE⊗ZZ̃. We may extend the three order functions above to order functions
of S̃E by considering the bilinear functions SE × Z̃→ Z̃

(u, α) 7→ ordE,π(u) · α, (u, α) 7→ ordE,Ω(u) · α, (u, α) 7→ ordE,E(u) · α

where u ∈ SE and α ∈ Z. In this way we obtain three order functions, also denoted by ordE,π ,
ordE,Ω and ordE,E , on the group S̃E .

1.3.4 Remark. Consider a sum u :=
∑
i
ui ⊗ αi ∈ S̃E . Assume that u ∈ SE , i.e. that u = v ⊗ 1

with v ∈ SE . If

ordE,π(ui) = ordE,Ω(ui) = ordE,E(ui) = 0

for each i, then

ordE,π(v) = ordE,Ω(v) = ordE,E(v) = 0.



1.3. KATO’S SWAN CONDUCTOR 17

1.3.5 Remark. It seems that the group S̃E := SE ⊗Z Z̃ is the value group of some mysterious
arithmetic object E′ which contains the elements of the form xα, where x ∈ E and α ∈ Z̃.

1.3.3 Kato’s Swan conductor

In order to define Kato’s Swan conductor, we now introduce a normalization term ε(ζp). Let r ∈ Z
be relatively prime to p. For an extension M/F of Case-II type we define

εM (ζrp) :=
∑
a∈F∗p

[a]⊗ ζarp ∈ S̃M .

One checks that under the embedding S̃F ↪→ S̃M the element εF (ζrp) ∈ S̃F maps to εM (ζrp) ∈ S̃M ,
and therefore we shall make no further use of the subscript emphasizing the field F .

1.3.6 Lemma. For any r ∈ Z relatively prime to p, we have that ε(ζp) + [r]⊗ 1 = ε(ζrp) inside the
group S̃F .

Finally we can define Kato’s Swan conductor.

1.3.7 Definition. Let χ be a character of the group G. We define the Swan conductor SwE/F (χ)
of χ as

SwE/F (χ) :=
∑
σ∈G

swE/F (σ)⊗ χ(σ) + χ(1) · ε(ζp) ∈ S̃E .

Let us state some important properties of Kato’s Swan conductor.

1.3.8 Theorem (Kato [21] Proposition 3.3). Let H /G be a normal subgroup and denote by M :=
EH the fixed field of E under H . Then M ⊂ E is a Galois extension which is also of Case-II type.
Let χ be a character of H . Then the following identity holds.

SwE/F (IndGH χ) = [G : H] ·
(

SwE/M (χ) + χ(1) · DM/F

)
.

1.3.9 Theorem (Kato [21] Proposition 3.3). Assume the notation of Theorem 1.3.8. Let χ be a
character of G/H and denote by χ|G the restriction of χ to G → G/H . Then we have the
following identity.

SwE/F (χ|G) = SwM/F (χ).

1.3.4 Functorial properties

Let F ⊂ F ′ be an extension of complete discrete valuation fields, not necessarily assumed to be
finite, and both satisfying Assumption 1.2.4. Assume that the parameter πF of F is also a parameter
of F ′, and furthermore, that the extension F ⊂ F ′ induces an embedding of F -vector spaces

ΩF ↪→ ΩF ′ .

1.3.10 Remark. The condition that ΩF embeds into ΩF ′ is not automatic, since the extension F ⊂
F ′ may be purely inseparable and nontrivial, in which case the induced map ΩF ↪→ ΩF ′ is simply
the zero map, i.e. not injective.
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Let F ⊂ E denote a Galois extension of Case-II type. We define E′ := F ′E and our aim is to study
the extension F ′ ⊂ E′.

Notice that we have an embedding
ΩE ↪→ ΩE′ .

The assumption that πF is a parameter for both F and F ′ implies that we can define embeddings
iF
′

F : SF ↪→ SF ′ and iE
′

E : SE ↪→ SE′ . Furthermore, one checks that the extension F ′ ⊂ E′ is
Galois and still of Case-II type, and that the following diagram is commutative

SF
iF
′

F−−−−→ SF ′yiEF yiE′F ′
SE

iE
′

E−−−−→ SE′ .

Let χ be a virtual character of the group G := Gal(E/F ). Since the field extensions F ⊂ E and
F ⊂ F ′ are linearly disjoint, one sees that the restriction morphism

Gal(E′/F ′)→ Gal(E/F )

is an isomorphism, and hence we denote by χ′ the character of Gal(E′/F ′) obtained by the compo-
sition

χ′ : Gal(E′/F ′) ' Gal(E/F )
χ→ Z̃.

1.3.11 Proposition. The following compatibility holds inside the group S̃F ′ .

iF
′

F (SwE/F (χ)) = SwE′/F ′(χ
′).

PROOF. Let y ∈ OE be a generator (in the sense of Definition 1.2.1) of the Case-II type extension
F ⊂ E. One checks that y is also a generator of F ′ ⊂ E′ (in the sense of Definition 1.2.1).
Therefore, one reduces to checking the following:

iE
′

E (swE/F (σ)) = swE′/F ′(σ).

But this follows from the definition of swE/F and the fact that πF is a parameter for all of F, F ′, E
and E′. �

1.4 Z/pZ-extensions

Following the unpublished Bouw [3] we do the example where G ' Z/pZ. We shall often return to
this example in the future, and therefore it is useful to include it here. In the following we let F be a
complete discrete valuation field satisfying Assumption 1.2.4.

Let us start with the following theorem found in Henrio [19] (Proposition 5.1.6, Corollaire 5.1.8)
which classifies Case-II type Z/pZ-Galois extensions of F (see also Kato [22] Proposition 4.1(6)).
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1.4.1 Theorem. Let F ⊂ E be a Z/pZ-Galois extension and assume that πK ∈ OK is a parameter
for both F and E. Then there exists an integer n ∈ Z with 0 ≤ n ≤ vF (λ1), and a unit u ∈ O∗F
with u /∈ F ∗p such that E = F (y), where y satisfies

yp = 1 + πnpu.

Our aim is to calculate Kato’s Swan conductor using this explicit generating equation. We distinguish
two cases, namely n = 0 or the so-called logarithmic case (see Lemma 1.4.2), and n > 0, or the
so-called exact case (see Lemma 1.4.3).

1.4.2 Lemma (Logarithmic case). Let x ∈ O∗F such that x /∈ F p. Let E := F (y) be the Z/pZ-
Galois extension generated by y, where y satisfies

yp = 1 + x.

Let σ ∈ G := Gal(E/F ) be the automorphism

σ : y 7→ ζpy.

We let χb be the irreducible character of G defined by

χb : σ 7→ ζbp,

where b ∈ F∗p. Then

SwE/F (χb) := [λp1]− [b
dx

1 + x
].

PROOF. We follow Bouw [3] exactly. One checks that E = F (y), and hence

swE/F (σr) = [dy]− [y]− [λ1]− [r]− [−1] = [
dy
y

]− [λ1]− [r]− [−1],

where r ∈ F∗p. Then by definition we have

SwE/F (χ) : =
∑
r∈Fp

swE/F (σr)⊗ ζbrp + ε(ζp)

=
∑
r∈F∗p

swE/F (σr)⊗ ζbrp + swE/F (1G)⊗ 1 + ε(ζp)

=
∑
r∈F∗p

([
dy
y

]− [λ1]− [r]− [−1])⊗ ζbrp −
∑
r∈F∗p

([
dy
y

]− [λ1]− [r]− [−1]) + ε(ζp)

=
(

[
dy
y

]− [λ1]− [−1]
)
⊗
(∑
r∈F∗p

ζbrp − (p− 1)
)
−ε(ζbp) + ε(ζp) + [−1],

from which the result follows. �

Still following Bouw [3] word-for-word, we also state the following important variation of Lemma
1.4.2.
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1.4.3 Lemma (Exact case). Let u ∈ O∗F such that u /∈ F p, and let 0 < n < vK(λ1) be a positive
integer. We let E := F (y), where y satisfies

yp = 1 + πnpK u.

Let σ ∈ G := Gal(E/F ) be the automorphism

y 7→ ζpy,

and let χb be the irreducible character
σ 7→ ζbp,

where b ∈ F∗p. Then we have that

SwE/F (χb) = [λp1π
−pn
K ]− [b du].

PROOF. Again we calculate. We define an element v ∈ OE by the substitution

y = 1 + πnKv.

One checks that v ∈ OE is a generator for the Case-II type extension F ⊂ E, and furthermore, that

vp = u

inside the purely inseparable extension of residue fields F ⊂ E.

Notice that σ : y 7→ ζpy acts on v as

σr : v 7→ (λr)π−nK + ζrpv.

where we have defined λr := ζrp − 1.

Therefore, for any r ∈ F∗p we obtain

swE/F (σr) : = [dv]− [v − σrv]

= [dv]− [−λrπ−nK − λrv]
= [dv]− [λrπ−nK ]− [−1]
= [dv]− [r]− [λ1π

−n
K ]− [−1].

Thus

SwE/F (χ) : =
∑
r∈Fp

swE/F (σr)⊗ ζbrp + ε(ζp)

=
∑
r∈F∗p

swE/F (σr)⊗ ζbrp + swE/F (1G)⊗ 1 + ε(ζp)

=
∑
r∈F∗p

([dv]− [λ1]− [r]− [−1])⊗ ζbrp −
∑
r∈F∗p

([dv]− [λ1]− [r]− [−1]) + ε(ζp)

=
(

[dv]− [λ1]− [−1]
)
⊗
(∑
r∈F∗p

ζbrp − (p− 1)
)
−ε(ζbp) + ε(ζp) + [−1],

and the result follows once again. �
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1.4.4 Remark. Let E/F be Z/pZ-Galois of Case-II type and let χ be a nontrivial character of the
Galois group Gal(E/F ). We write SwE/F (χ) = [πδ]− [ω]. Then p|δ.

The following is also an useful result.

1.4.5 Lemma. Let F ⊂ E, G and χb be as in Lemma 1.4.2 or Lemma 1.4.3. Then we have the
following relation between the different DE/F and SwE/F (χb).

p · DE/F = (p− 1) · SwE/F (χb) + [−1]

inside the group SE .

PROOF. This follows directly from computation. We shall prove the result in the logarithmic case and
leave the exact case to the reader. By definition

p · DE/F : = −p ·
∑
r∈F∗p

swE/F (σr)

= −p ·
∑
r∈F∗p

[[
dy
y

]− [λ1]− [r]− [−1]]

=
∑
r∈F∗p

[r] + p(p− 1) · [λ1] + p(p− 1) · [−1]− p(p− 1) · [dy
y

]

= p(p− 1) · [λ1] + [−1]− (p− 1) · [d(1 + x)
1 + x

]

= (p− 1) · SwE/F (χ) + [−1]. �

We can now state a preliminary version of Kato’s Hasse–Arf Theorem (see Theorem 1.5.1 for the full
version).

1.4.6 Theorem (Kato [21] Theorem 3.4). Assume that F ⊂ E are complete discrete valuation
fields satisfying Assumption 1.2.4, and that the extension F ⊂ E is Z/pZ-Galois and of Case-II
type. Then it holds that

SwE/F (χ) ∈ SF ⊗Z 1 ⊂ SE ⊗Z Z̃

where χ is an irreducible nontrivial character of Z/pZ.

1.5 Kato’s Hasse–Arf theorem

Our aim for this section is to give the full statement of Kato’s Hasse–Arf theorem. We shall state the
theorem, then some concepts and definitions which will be useful to us later.

1.5.1 Theorem (Kato [21] Theorem 3.4). Let E/F be a G-Galois extension of Case-II type and let
χ be an irreducible nontrivial character of G. Then it holds that

SwE/F (χ) ∈ SF ⊗Z 1 ⊂ SE ⊗Z Z̃.
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1.5.2 Definition. Let F ⊂ E and G be as in Theorem 1.5.1 and let χ be an irreducible nontrivial
character of G. Then there exists a unique integer, denoted by δχ, and a unique differential, denoted
ωχ ∈ Ω⊗n

F
for some n ∈ Z, such that

SwE/F (χ) = [πδχF ]− [ωχ] = δχ.[πK ]− [ωχ].

The integer δχ is called the depth of the character χ, and the differential ωχ will be called the
differential Swan conductor of the character χ with respect to the choice of the parameter πF of the
discrete valuation field F .

1.5.3 Remark. The integer δχ is independent of the choice of the parameter πF , however, notice
that the differential Swan conductor is dependent on the choice of the parameter. For instance, when
πF and π′F are both parameters for F , then one has the following identity.

SwE/F (χ) = [πδχF ]− [ωχ]

= [(π′F )δχ ]− [(
π′F
πF

)δχωχ].

1.5.4 Convention. In the future, when referring to the field F , we shall always assume that a choice
of a parameter πF has been fixed, and therefore, when referring to the differential Swan conductor
we shall always mean the differential Swan conductor with respect to this parameter.

1.6 Vector space property

Let χ1 and χ2 be two characters of degree 1 of the p-group G. Kato’s Swan conductor SwE/F

associates to each a differential form in ΩF . The following is then known and taken from Kato–
Saito [23] Corollary 4.6 and Kato [21] Theorem 3.7 (see also Kato [22] Corollary 5.2 and the remark
following Proposition 6.8).

1.6.1 Theorem. Let χ1, χ2 be two characters of degree 1, and let δχi ∈ Z and ωχi ∈ ΩF be the
depths and differentials associated to these characters via the Swan conductor. Assume that δχ1 =
δχ2 . Then we have that

δχ1χ2 ≤ δχ1 = δχ2 .

Furthermore, equality holds if and only if ωχ1 + ωχ2 6= 0. In this case it also holds that

ωχ1χ2 = ωχ1 + ωχ2 .

1.6.2 Remark. Notice that in the particular cases that χ2 = χr1, with r relatively prime to p and χi
of order p, Theorem 1.6.1 is a special case of Lemma 1.4.2 and Lemma 1.4.3.

1.6.3 Example. Let F be a two-dimensional local field, and let u0 and u∞ be two elements of
O∗F which do not reduce to pth-powers of F . Let Ei := F (yi) where yi satisfies yp = 1 + πnui
for i = 0 or i = ∞, where n > 0. Both E0/F and E∞/F are Z/pZ-extensions of F , and the
compositum E := E0E∞ is a (Z/pZ)2-Galois extension. The differentials associated to E0 and
E∞ are exact and are du0 and du∞ respectively.
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Let Ei := F (yi) denote the Z/pZ-subextension of E/F generated by yi, where yi satisfies

ypi = (1 + πnu0)(1 + πnu∞)i

= 1 + πn(u0 + iu∞) + terms of higher π-order.

We see that du0 + i du∞ 6= 0 if and only if u0 + iu∞ does not reduce to a pth-power inside F , and
in this case the differential of Ei/F is simply the sum d(u0 + iu∞) = du0 + i du∞.

1.7 Examples

1.7.1 Example : (Z/pZ)2-extensions

Let E/F be a G-Galois extension where G = (Z/pZ)2. We denote by H0, . . . ,Hp the p + 1
subgroups of G of order p, and similarly by Ei := EHi . Notice that each Ei/F is a Z/pZ-Galois
extension of Case-II type.

Let χ be an irreducible nontrivial character of H0. Then there are exactly p characters χ1, . . . , χp
of G such that

χi|H0 = χ.

It follows that

IndGH0
χ =

∑
χi.

Assume now that E/F is of Case-II type. We see from Theorem 1.3.8 that∑
SwE/F (χi) = SwE/F (IndGH0

χ) = p · SwE/E0
(χ) + p · DE0/E .

We denote by χ0 any irreducible character of G with kernel exactly H0. Then we see from Lemma
1.4.5 that

p · DE0/E = (p− 1) · SwE0/E(χ0) + [−1]

and hence we obtain∑
SwE/F (χi) = p · SwE/E0

(χ) + (p− 1) · SwE0/E(χ0) + [−1].

Let us write SwE/F (χi) = [πδi ]− [ωi] where ωi ∈ ΩF , and SwE/E0
(χ) = [πδ]− [ω]. We see that

we obtain ∑
1≤i≤p

δi = p · δ + (p− 1) · δ0 (1.1)

and ∑
1≤i≤p

[ωi] = p · [ω] + (p− 1) · [ω0] + [−1] (1.2)

inside SE0 . From Remark 1.4.4 we obtain the following theorem.
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1.7.1 Theorem. Let E/F be a (Z/pZ)2-Galois extension such that each Ei/F is of Case-II type.
Assume that K ′/K is an algebraic Galois extension such that EK ′/FK ′ is also of Case-II type and
that this is the smallest extension with this property. If p2 does not divide

∑
1≤i≤p

δi − (p− 1)δ0 then

the ramification index of K ′/K is a multiple of p.

1.7.2 Example. Let K = Qp(ζp) with local parameter λ := ζp − 1. Let F be a discrete valuation
field containing K and with parameter λ such that the reduction F is the rational function field
k(t) in one variable. We define E0/F to be the Z/pZ-Galois extension generated by y0, where y0

satisfies

yp0 = x. (1.3)

For i = 1, . . . , p we define Ei/F to be the Z/pZ-Galois extension generated by yi, where yi
satisfies

ypi = x(1− x)i. (1.4)

We let E/F be the G-Galois extension which is the compositum of the Ei/F , where

G = (Z/pZ)2.

One checks that each Ei/F is of Case-II type. Let Hi := Gal(E/Ei) and define the δi as above.
Then a calculation shows that

δ0 = . . . = δp = p · vK(λ) = p.

Therefore p26 |
∑

1≤i≤p
δi−(p−1)δ0 and we see that the smallest extension K ′/K such that EK ′/FK ′

is of Case-II type has ramification index divisible by p.

1.7.3 Remark. The example above is inspired by the Fermat curve xp + yp = 1. It is known that
G := (Z/pZ)2 acts on this curve, and quotients of the curve by the Z/pZ-subgroups of G are given
by the equations (1.3) and (1.4) above.

We continue with the situation before Example 1.7.2. We now assume that the residue field F is a
complete discrete valuation field, i.e. a local power series field F ' k((t)). We see that E0 = k((v))
where vp = t. We may therefore write

ωi = tniui dt

where ni ∈ Z and ui is a unit inside k((t)). Similarly, we may write

ω = vnu dv

where n ∈ Z and u is an unit inside k((v)). We then obtain from (1.2) that∑
1≤i≤p

ni = n+ (p− 1) · n0

and hence we obtain the following theorem.
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1.7.4 Theorem. Let E/F be a G-Galois cover of Case-II type where G is the group (Z/pZ)2.
Let Ei/F , i = 0, . . . , p, be the Z/pZ-subextensions of E/F , and let ωi ∈ F be the differential
Swan conductor associated with a nontrivial irreducible character of Gal(Ei/F ). Let ω ∈ E0 be the
differential Swan conductor associated with a nontrivial irreducible character of Gal(E/E0). Then
we have that ∑

1≤i≤p
ordF ωi = ordE0

ω + (p− 1) · ordF ω0.

1.7.2 Example : generalized quaternion extensions

In this section we consider a G-Galois extension E/F of case-II type, where G = Q2n+1 is the
generalized quaternion group with finite presentation

Q2n+1 =
〈
a, b| a2n = 1, a2n−1

= b2, bab−1 = a−1
〉
.

Let H = 〈a〉. Notice that H is a normal subgroup of G. We let L := EH and we notice that L/F
is a Z/2Z-Galois extension of Case-II type.

Let χ be any irreducible character of H of order 2n. We let ψ be a nontrivial irreducible character
of G/H ' Z/2Z. The character IndGH χ is irreducible of rank 2. From Theorem 1.3.8 it follows
that

SwE/F (IndGH χ) = 2 · SwE/L(χ) + 2 · DL/F .

Let us write
SwE/L(χ) = [πδ]− [ω],

where ω ∈ ΩE . We also write
SwL/F (ψ) = [πδ0 ]− [ω0],

where ω0 ∈ ΩF . Furthermore, we write

SwE/F (IndGH χ) = [πδ
′
]− [ω′].

Then it follows from Theorem 1.3.8 and Lemma 1.4.5 that

[πδ
′
]− [ω′] = 2 · [πδ]− 2 · [ω] + [πδ0 ]− [−ω0].

It follows that

δ′ = 2 · δ + δ0 (1.5)

and
[ω′] = 2 · [ω] + [−ω0].

In terms of orders of the differentials, we have that

ordF (ω′) = ordL(ω) + ordF (ω0).
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1.7.3 Example : depths at double points

Let A := R[[X,Y ]]/(XY − πn). Notice that there exists exactly two codimension-one prime ideals
p1 and p2 of A which contain the element π. We denote by F1 the fraction field of the discrete
valuation ring Ap1 and similarly F2 that of Ap2 . Assume that B/A is a G-Galois extension such
that B is also of the form B := R[[X ′, Y ′]]/(X ′Y ′ − πm). One checks that n := m · |G| and
furthermore, the Galois extension B/A induces G-Galois extensions E1/F1 and E2/F2, where
both E1 and E2 are 2-local fields with parameter π. The aim of this section is to prove the following
theorem.

1.7.5 Theorem. Assume that G := Z/pnZ. Let χ be an irreducible character of G and assume that
E1/F1 is of Case-II type. We write SwEi/Fi(χ) = [πδi ]− [ωi] where i = 1, 2 and where ωi ∈ ΩFi

.
Then we have that

δ2 = δ1 − n(ordF1
(ω1)− 1).

PROOF. The case G := Z/pZ has already been proved by Green–Matignon [16] and later Henrio
[19]. Let us now consider the general case and we proceed by induction on the integer n. Assume
that Theorem 1.7.5 has been proved for all n < s where s ∈ N. We shall now prove it also for n = s.

Denote by B1/A the intermediate Z/pZ-Galois extension, and notice that we may write

B1 := R[[X ′′, Y ′′]]/(X ′′Y ′′ − πr)

where rp = n. The Z/pZ-Galois extension B1/A induces a Z/pZ-Galois subextension L1/F1 of
the Z/pnZ-Galois subextension E1/F1, and similarly a Z/pZ-Galois extension L2/F2.

Let χ′ be a character of Gal(L1/F1) ' Z/pZ and let χ′′ be the restriction of χ to the group

Gal(E1/L1) ' Z/ps−1Z.

We may write SwLi/Fi(χ
′) = [πδ

′
i ]−[ω′i] and similarly SwEi/Li(χ

′′) = [πδ
′′
i ]−[ω′′i ] where ω′i ∈ ΩFi

and ω′′i ∈ ΩLi
.

By the induction hypothesis we see that we have

δ′′2 = δ′′1 − r(ordL1
(ω′′1)− 1).

Furthermore, since the extension B1/A is Z/pZ-Galois we have that

δ′2 = δ′1 − n(ordF1
(ω′1)− 1).

We finish the induction step by noting that from Proposition 1.3.8 and Lemma 1.4.5 it follows that

pδi = pδ′′i + (p− 1)δ′i

and

p ordF1
(ω1) = (p− 1) ordF1

(ω′1) + ordL1
(ω′′1)

from which the result follows. �
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1.7.6 Corollary. Assume now that B/A is a G := Q8-Galois extension. Let χ be the irreducible
character of Q8 of rank two. We write SwEi/Fi(χ) = [πδi ] − [ωi]. One has that ω1 ∈ Ω⊗2

F1
and it

follows that

δ2 = δ1 − n(ordF1
(ω′1)− 2).

PROOF. The proof is essentially exactly as before. We let H ⊂ G be a Z/4Z-subgroup. We let
Li := EHi and we let χH : H → C∗ be an irreducible character of H with trivial kernel. Let χ′ be
a nontrivial character of Gal(Li/Fi) ' Z/2Z. We may write

SwEi/Li(χH) = [πδ
′′
i ]− [ω′′i ]

and similarly

SwLi/Fi(χ
′) = [πδ

′
i ]− [ω′i].

This time Proposition 1.3.8 implies that

δi = δ′i + 2δ′′i

and similarly

ordF1
(ω1) = ordF1

(ω′1) + ordL1
(ω′′1),

from which the result now follows exactly as before. �

1.7.7 Remark. In Chapter three (see Proposition 3.4.5) we shall proof a powerful generalization of
this result, namely to arbitrary p-groups G.
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Chapter 2

Swan conductors II: Ramification groups

In Serre [37] a ramification filtration is introduced for Galois extensions of complete discrete valuation
fields of which the residue field extension is separable. In the current chapter we follow Kato–Saito
[23] to develop this idea in the case of Case-II type extensions. However, we restrict to the case where
the extension is induced by the boundary extension of local power series rings (in a manner to be made
more precise in Section 2.1). This has the advantage that it significantly simplifies the proof that the
higher ramification groups are normal subgroups of the Galois group and that they are independent of
the choices of local parameters used.

In Section 2.2 we start with the definition of Kato–Saito [23]. We also introduce a simplified ramifi-
cation filtration in Section 2.3 which will prove useful to us later in the third chapter and important for
the fifth chapter. In Spriano [39] and Zhukov [42] similar ramification filtrations were also studied,
and in Section 2.3.1 we shall reconcile our definition with that of Zhukov. In Section 2.4 we introduce
two new characters, the Artin and depth characters of the Galois extension. We then relate Kato’s
differential Swan conductor to these as well as to the associated upper ramification filtration. We
conclude by giving a structure theorem on the quotients of the simplified upper ramification filtration
in terms of the Kato Swan-conductor differentials and vector spaces thereof.

2.1 Notation and setting

As in the previous chapter, we let K be a complete discrete valuation field of characteristic 0 with
perfect residue field k of characteristic p and ring of integers R. We denote by vK the valuation of
the field K , and by πK ∈ R a local parameter of K . We shall assume that vK has been normalized
such that vK(πK) = 1 . We shall assume ζp ∈ K and we set λ := ζp − 1.

We let A := R[[t]] and F := Frac Â(πA). Notice that F is a two-dimensional local field with
parameter πK and residue field F = k((t)). We denote by vF the discrete valuation of F , and by
vF the discrete valuation of F .

2.1.1 Definition. We define the rank- 2 valuation vF : F ∗ → Z2 by the rule:

vF : x ∈ F 7→ (vF (x̃), vF (x)),

where x̃ ∈ F is the reduction of xπ−vF (x)
K ∈ O∗F to F .

29
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Let G be a p-group and let B/A be a G-Galois extension such that B is also a power series ring
over R, i.e. B = R[[z]]. We define E := B ⊗A F . Notice that E/F is a G-Galois extension and
that πK is by assumption also a local parameter of E. Denote by vE the valuation of E and by
vE the valuation of the discrete valuation field E which is the reduction of F . As in the case of F ,
we may construct a rank- 2 valuation vE on E. We assume that vE has been normalized such that
vE |F = vF . In order to emphasize this normalization we shall from now on denote vE simply by
vF .

2.1.2 Assumption. We shall from now on always assume that E/F is of Case-II type.

2.1.3 Remark. For an element x ∈ E we have that

vF (x) = (
m

eE/F
, n)

where n := vF (x) and where m := vE(xπ−nK ) is the valuation of xπ−nK inside the residue field E.
Here eE/F is defined to be the ramification index of the residue field extension F ⊂ E. Since we
have assumed that E/F is of Case-II type, we see that eE/F = [E : F ] = [E : F ].

2.1.4 Definition. An element x ∈ E is called a local geometric parameter of E if B = R[[x]].

2.2 Ramification groups

Assume the notation and setting as introduced above. We shall very briefly introduce the higher
ramification filtration, for more details see Kato–Saito [23]. We remind the reader of the reversed
lexicographic ordering < on Q2.

2.2.1 Definition. For any (a, b) ∈ Q2 and (c, d) ∈ Q2 we declare that (a, b) ≤ (c, d) if and only if
either b = d and a ≤ c or if b < d.

2.2.2 Notation. We shall denote the second projection Q2 → Q by p2, i.e. p2((a, b)) = b, where
a, b ∈ Q.

2.2.3 Remark. If t, t′ ∈ Q2 such that t ≤ t′, then p2(t) ≤ p2(t′).

We now come to the definition of the ramification filtration of G.

2.2.4 Definition. For t ∈ Q2, we define

Gt := {σ ∈ G|vF (
σ(xE)
xE

− 1) ≥ t},

where xE is any geometric local parameter of E.

2.2.5 Proposition. This definition is independent of the choice of xE . Furthermore, the subgroup Gt
is a normal subgroup of G.
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PROOF. Let xE and yE be local geometric parameters of E. Therefore B = R[[xE ]] = R[[yE ]]. We
see that we can find (ai)i∈N∪{0} and (bi)i∈N∪{0} such that

yE = a0 +
∑
i≥1

ai · xiE and xE = b0 +
∑
j≥1

bi · yjE . (2.1)

One checks that a0, b0 ∈ πKR and that a1 and b1 are units of R.

Let us write

σ(xE)− xE = πmK · p(xE) · u (2.2)

where u ∈ B is a unit and p(xE) is a distinguished polynomial of degree n. Since E/F is of
Case-II type, we see that m > 0. Therefore we have that

vF (σ(xE)− xE) = (
n

[E : F ]
,m).

Now we calculate σ(yE)− yE in terms of xE . Indeed we have that

σ(yE)− yE =
∑
1≤i

ai · (σ(xE)i − xiE).

For each i ≥ 1 we notice from (2.2) that we may write

σ(xE)i = xiE + i · xi−1
E · πm · p(xE) · u+ αi,

where αi ∈ B with vE(αi) > m. Hence we have

σ(xE)i − xiE = i · xi−1
E · πm · p(xE) · u+ αi.

It follows that

σ(yE)− yE = πm · p(x) · u · (
∑
i≥1

i · xi−1
E ) + α

where α ∈ B with vE(α) > m. It follows that

vF (σ(yE)− yE) = (
n

[E : F ]
,m) = vF (σ(xE)− xE).

Therefore we see that the Gt is independent of the choice of local geometric parameter xE .

Next we check the normality. Let r and s be defined by t = ( s−1
[E:F ] , r). We define the B-ideal

I :=
〈
πrxsE , π

r+1
〉
. We shall now show that I ⊂ B is fixed by the action of G. Let τ ∈ G. Then

since E/F is of Case-II type, we may write

τ(xE) = xE + πrτατ (2.3)

where rτ > 0 and ατ ∈ B. Therefore we have that

πr(τ(xE))s = πrxsE + α
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where α ∈ πr+1B. We see thus that I is fixed by G. We may therefore consider the ring B0 := B/I
and we notice that the G-action on B induces a G-action on B0.

Assume that ρ ∈ G acts trivially on B0. Therefore

ρ(xE) = xE + πrxsEβ1 + πr+1β2 (2.4)

where β1, β2 ∈ B. We see thus that

vF (ρ(xE)− xE) ≥ (
s

[E : F ]
, r)

and hence

vF (
ρ(xE)
xE

− 1) ≥ t.

Hence we have that ρ ∈ Gt.

Now let σ ∈ Gt and let τ ∈ G. First we show that σ acts trivially on B0. Define m, p(x) ∈ B
and u ∈ B by (2.2). If m > r then we see that σ acts trivially on the ring B0. Assume now that
m = r and let n be the degree of p(x). Then we see that

vF (
σ(xE)
xE

− 1) = (
n− 1

[E : F ]
, r)

and since σ ∈ Gt we see that n ≥ s. Therefore also in this case we have that σ acts trivially on the
ring B0. Hence τστ−1 also acts trivially on B0. It follows that τστ−1 ∈ Gt. �

We have the following lemma.

2.2.6 Lemma. Let t ∈ Q2 and σ ∈ G. Then the following statements are equivalent.

• We have that σ ∈ Gt and σ /∈ Gt′ for all t′ ∈ Q2 with t < t′.

• We have that vF (σ(xE)
xE
− 1) = t where xE is any geometric local parameter.

PROOF. Assume that σ ∈ Gt and σ /∈ Gt′ for all t′ ∈ Q2 with t < t′. By definition of Gt we see
that

vF (
σ(xE)
xE

− 1) ≥ t.

Let t̂ := vF (σ(xE)
xE
− 1) ∈ Q2. We see that σ ∈ Gt̂. Therefore, by hypothesis and the fact that t̂ ≥ t,

we see that t̂ = t. The converse direction we leave to the reader. �

2.2.7 Definition. We shall say that t ∈ Q2 is a lower ramification jump if Gt 6= Gt′ for all t′ ∈ Q2

with t′ > t.
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In order to introduce the higher ramification filtration on G, one defines a generalization φ : Q2 →
Q2 of the classical Herbrandt function as follows:

φ(s) :=

s∫
0

|Gw|dw, s ∈ Q2

and

ψ := φ−1,

for the notion of integration on the ordered Q2 see Kato–Saito [23] Sections 1 and 2. We briefly

recall the definition of the integral
s∫
0

|Gw|dw. Let s1, . . . , sj ∈ Q2 be the set of lower ramification

jumps not exceeding t. Then we define

s∫
0

|Gw|dw := s1 · |Gs1 |+ (s2 − s1) · |Gs2 |+ . . .+ (sj − sj−1) · |Gsj |+ (s− sj) · |Gs| ∈ Q2.

One then defines the higher ramification filtration by setting for t ∈ Q2

Gt := Gψ(t)

for t ∈ Q2.

2.2.8 Definition. We shall say that t ∈ Q2 is an upper ramification jump if for all t′ ∈ Q2 with
t′ > t we have that Gt 6= Gt

′
.

2.2.9 Remark. Notice that s ∈ Q2 is a lower ramification jump if and only if φ(s) is a higher
ramification jump.

Furthermore, one proves that for a t ∈ Q2 we have

ψ(t) :=

t∫
0

(|Gw|)−1dw,

see Kato-Saito [23] Lemma 2.3. For convenience, let us make this integral explicit. Let t1, . . . , tj be
the set of upper ramification jumps not exceeding t. Then we define

t∫
0

(|Gw|)−1dw :=
t1
|Gt1 |

+
t2 − t1
|Gt2 |

+ . . .+
tj − tj−1

|Gtj |
+
t− tj
|Gt|

. (2.5)

The following proposition shows that the upper ramification filtration Gt, t ∈ Q2, behaves well with
respect to quotients.

2.2.10 Proposition (Kato–Saito [23] Corollary 3.3). Let H/G be a normal subgroup, and consider
the G/H-Galois extension of two-dimensional local fields F ⊂ EH . Then the higher ramification
filtration on G/H is compatible with that of G, i.e. for any t ∈ Q2 we have that

(G/H)t = (GtH)/H.
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Later in this chapter we shall prove that the set of upper ramification jumps are related to Kato’s
Swan conductors. More precisely, let ρ : G → GLn(C) be an irreducible representation of G with
associated character χ, and let t ∈ Q2 be the maximal upper ramification jump such that ρ|Gt is not
trivial. We write SwE/F (χ) = [πδ]− [ω]. Then we shall see that ω ∈ Ωrk(χ), see Theorem 2.4.5, and
furthermore, that

rk(χ) · t = (− ordF ω − rk(χ), δ),

see Corollary 2.4.12. In the case that G is abelian, we obtain the following theorem.

2.2.11 Theorem. Assume that the group G is abelian. Then the upper ramification jumps are ele-
ments of (Z)2.

2.3 The simplified ramification groups Ĝ

2.3.1 Definitions

We start by defining Ĝ0 = G. Consider the upper ramification jumps t1 < . . . < tN of the group
G. For each j we write tj = (mj , nj), where mj , nj ∈ Q. For i ∈ Q≥0, we define

Ĝi :=
⋃

j:nj≥i
Gtj .

We shall refer to this filtration Ĝi, i ∈ Q, on G = Ĝ0 as the simplified upper ramification filtration.
It behaves well with respect to normal subgroups, as the following consequence of Proposition 2.2.10
states.

2.3.1 Proposition. Let H / G be a normal subgroup of G. Then the simplified upper filtrations of
G and G/H are related via

Ĝ/H
i

= ĜiH/H.

PROOF. This follows directly from the definition of the simplified upper ramification filtration, as
well as the corresponding property Proposition 2.2.10 for the two-dimensional upper ramification
filtration. �

2.3.2 Definition. We shall say that n ∈ Q is a simplified upper ramification jump if Ĝn 6= Ĝn
′

for
all n′ ∈ Q with n < n′.

2.3.3 Lemma. Let n be a simplified upper ramification jump. Then there exists an a ∈ Q such that
(a, n) is an upper ramification jump.

PROOF. Indeed, if Ĝn 6= Ĝn
′

for all n′ ∈ Q with n′ > n, then there exists a nontrivial σ ∈ Ĝn
such that σ /∈ Ĝn′ . Thus, by the definition of Ĝn for some a ∈ Q we have that

σ ∈ G(a,n).

Since σ is nontrivial, there exists an upper ramification jump t ∈ Q such that σ ∈ Gt and σ /∈ Gt′

for all t′ ∈ Q2 with t′ > t. Furthermore, we thus have that (a, n) ≤ t.

However, if t = (b, n′) for some b, n′ ∈ Q with n′ > n, then σ ∈ G(b′,n′) for all b′ ∈ Q with
b′ < b, and hence σ ∈ Ĝn′ . Thus n′ = n, completing the proof. �
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2.3.4 Definition. We define the simplified Hasse–Arf function ψ̂ by defining for i ∈ Q

ψ̂(i) :=

i∫
0

|Ĝs|−1ds

and setting φ̂ := ψ̂−1.

2.3.5 Definition. We define the lower simplified ramification filtration by

Ĝi := Gφ̂(i).

Let us now compare the functions ψ and ψ̂.

2.3.6 Lemma. The functions ψ : Q2 → Q2 and ψ̂ : Q→ Q are related by

p2(ψ(T )) = ψ̂(p2(T )),

where p2 : Q2 → Q denotes the second projection of Q2, i.e. p2((a, b)) = b for a, b ∈ Q2.

PROOF. Let T = (T1, T2). Let t1, . . . , tN be the set of upper ramification jumps of G not exceeding
T . Assume first that T > t1. We write tj = (aj , bj) for aj , bj ∈ Q. We define the indices
j1 < . . . < js by j1 = 1 and

b1 = b2 = . . . = bj2−1, bj2 = bj2+1 = . . . = bj3−1, . . . , bjs = . . . = bN

and such that bj1 < . . . < bjs . Notice that the simplified upper ramification jumps not exceeding T2

are bj1 < . . . < bjs and possibly T2 itself. Furthermore, it follows that

Gtji = Ĝbji , i = 1, . . . , s.

Define t0 = (0, 0) ∈ Q2, j0 = 0 and b0 = 0. Then

p2(ψ(T )) = p2(
∑

1≤j≤N

tj − tj−1

|Gtj |
+
T − tN
|GT |

)

=
∑

1≤j≤N

bj − bj−1

|Gtj |
+
T2 − bN
|GT |

=
∑

1≤i≤s

bji − bji−1

|Ĝbji |
+
T2 − bjs
|GT |

.

If T2 = bjs then we have that T2−bjs
|GT | = 0 = T2−bjs

|ĜT2 |
. Hence we obtain from the definition of ψ̂ that

p2(ψ(T2)) = ψ̂(T2), since the simplified upper ramification jumps not exceeding T2 are bj1 , . . . , bjs .
Next assume that T2 > bjs . Then we see that GT = ĜT2 and hence the result follows once again.
We leave the case T ≤ t1 to the reader. �

2.3.7 Lemma. Assume that i ∈ Q and that σ ∈ Ĝi = Ĝφ̂(i). Then

vF (
σ(xE)
xE

− 1) ≥ i.
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PROOF. Let tl ∈ Q2 be an upper ramification jump such that Gφ̂(i) = Gtl . Thus p2(tl) ≥ φ̂(i).
Therefore σ ∈ Gtl and hence σ ∈ Gψ(tl). Thus,

vF (
σ(xE)
xE

− 1) ≥ ψ(tl). (2.6)

Therefore

vF (
σ(xE)
xE

− 1) = p2(vF (
σ(xE)
xE

− 1)) since p2 ◦ vF = vF

≥ p2(ψ(tl)) by (2.6)

= ψ̂(p2(tl)) by Lemma 2.3.6

≥ ψ̂(φ̂(i))
= i. �

2.3.8 Lemma. Assume that i ∈ Q and that σ /∈ Ĝi = Ĝφ̂(i). Then

vF (
σ(xE)
xE

− 1) < i.

PROOF. Once again, let t1, . . . , tN be the upper ramification jumps. Let bj := p2(tj) for j =
1, . . . , N . Assume that Ĝφ̂(i) = Gtl for some index l. Therefore, we obtain that by assumption
σ /∈ Gtl . Notice that tl 6= t1, since Gt1 = G and would therefore have contained σ. Thus l ≥ 2.

Since Ĝφ̂(i) = Gtl we see that bl−1 < φ̂(i) ≤ bl. Let j be the largest index such that σ ∈ Gψ(tj) =
Gtj . We see thus that tj < tl. By Lemma 2.2.6 we have

vF (
σ(xE)
xE

− 1)) = ψ(tj).

Thus we obtain

vF (
σ(xE)
xE

− 1)) = p2(ψ(tj))

= ψ̂(p2(tj))

≤ ψ̂(p2(tl−1)) since tj ≤ tl−1 and hence p2(tj) ≤ p2(tl−1)

= ψ̂(bl−1)

< ψ̂(φ̂(i)) since bl−1 < φ̂(i)
= i. �

As a consequence, we obtain the following proposition

2.3.9 Proposition. Assume that i ∈ Q. Then

Ĝi = {σ ∈ G|vF (
σ(xE)
xE

− 1) ≥ i}.
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2.3.10 Remark. We have shown that our ramification filtration is the same as that of Zhukov [42].

2.3.11 Remark. We see thus that we may also define Ĝn by

Ĝn :=
⋃
bj≥n

G(aj ,bj), (2.7)

where the set {(a1, b1), . . . , (aN , bN )} ⊂ Q2 are the lower ramification jumps.

2.3.2 The quotients Ĝn/Ĝn+1

We fix a geometric local parameter xE of the field E. Assume that n ∈ Z is a simplified lower rami-
fication jump corresponding to the simplified lower filtration on G := Gal(E/F ). By Remark 2.3.11
there exists a lower ramification jump t ∈ Q2 such that Ĝn = Gt. Let us write t = ( n

[E:F ] ,m),
where m,n ∈ Z.

Let σ ∈ Ĝn. Then by the Weierstrass preparation theorem we may write

σ(xE) = xE + πrK · pσ · uσ

where pσ is a distinguished polynomial of degree d and uσ a unit of B = R[[xE ]]. Furthermore,
since σ ∈ Ĝn, we have that r ≥ m. If r = m then we have that d ≥ n+ 1. We may therefore write

σ(xE) = xE + πrK · xdE · uσ + πr+1 · lσ

where lσ ∈ OF (however notice that lσ need not be in B ).

We define vσ := πr−mK · xd−n−1
E · uσ for σ 6= 1 and v1 = 0.

We have that vσ ∈ O∗E if and only if σ /∈ Ĝm+1. After fixing the choice of xE , each σ ∈
Ĝm − Ĝm+1 determines an unique vσ ∈ E, and if σ ∈ Ĝm′ for some m′ > m, then we find that
vσ = 0. We leave the proof of the following calculation to the reader.

2.3.12 Lemma. Let σ and τ be two elements of Ĝm− Ĝm+1. Then τσ ∈ Ĝm− Ĝm+1 if and only
if vσ + vτ 6= 0. In this case we also obtain vτσ = vτ + vσ . Furthermore we have that vσ−1 = −vσ .

A similar calculation yields also the following

2.3.13 Lemma. Let σ ∈ Ĝm but not in Ĝm+1 and let τ ∈ Ĝm+1. Then στ ∈ Ĝm − Ĝm+1, and
furthermore,

vσ = vστ .

This also holds for the automorphism τσ.

2.3.14 Remark. The assumption that E/F is of Case-II type is essential for the two lemmata above.

We now construct a mapping γmE/F : Ĝm → E by defining

γmE/F : σ 7→ vσ ∈ E, σ ∈ Ĝm.

From the lemmata above we see that γmE/F induces a group homomorphism Ĝm/Ĝm+1 → E.
Furthermore γnE/F is an injective group homomorphism.
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2.3.15 Remark. Notice that the definition of γmE/F depends on the choice of xE . This is different
from the classical construction in Serre [37] Chapter IV for the case of a one-dimensional local field.
A further distinction is that our construction only works because we have assumed that E/F is of
Case-II type.

We thus obtain the following theorem.

2.3.16 Theorem. The quotient group Ĝm/Ĝm+1 can be embedded into the additive group E. Thus
each quotient Ĝm/Ĝm+1 is an elementary abelian p-group.

2.3.17 Remark. We stress the point once again that this theorem only holds because we have made
the assumption that E/F is of Case-II type.

2.3.18 Corollary. Assume that G is cyclic of order pN . Then there exist exactly N distinct lower
(respectively upper) simplified ramification jumps.

PROOF. The group Z/pNZ has exactly N nontrivial subgroups, and hence there are at most N
lower ramification jumps, and at most N lower simplified ramification jumps. However, each quo-
tient of consecutive lower ramification groups must be elementary abelian, and hence the result fol-
lows. �

2.3.19 Example. Assume that G = Q8, the quaternion group of eight elements. Then there exist at
least two simplified ramification jumps.

A consequence of our work is the following lemma.

2.3.20 Lemma. Let σ ∈ G and σ 6= 1G. Then for any b ∈ Z relatively prime to p, we have that

swE/F (σb) = swE/F (σ)− [b].

PROOF. Let xE be a geometric local parameter of E, and assume that σ ∈ Ĝm, but not in Ĝm+1, for
m ∈ Z. Let t ∈ Q2 be the least lower ramification jump with second coordinate m, i.e. p2(t) = m,
and write

t = (
n

[E : F ]
,m),

where m and n are integers. We thus have

swE/F (σ) = [dxE ]− [−xn+1
E πmvσ]

= [dxE ]− [−xn+1
E πm]− [vσ] since vσ ∈ O∗E

= [dxE ]− [−xn+1
E πm]− [γmE/F (σ)].

Thus

swE/F (σb) = [dxE ]− [−xn+1
E πm]− [γmE/F (σb)]

= [dxE ]− [−xn+1
E πm]− [γmE/F (σ)]− [b]

= swE/F (σ)− [b]. �

A consequence of this is
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2.3.21 Theorem. Let χ be a character of degree 1, i.e. χ is a homomorphism G→ C∗. Let H ⊂ G
be a normal subgroup of G and consider the induced tower of Galois extensions F ⊂ EH ⊂ E. This
induces embeddings SF ↪→ SEH ↪→ SE . Let DEH/F ∈ SEH denote the different of the extension
F ⊂ EH . Then we have the following identity inside SEH .

SwE/EH (χ|H) +DEH/F = SwE/F (χ).

PROOF. The proof is exactly the proof of Lemma 3.12 of Kato [21]. There Kato uses the equality

swE/F (σi) = swE/F (σ)− [i],

which follows directly from Lemma 2.3.20. �

2.3.22 Corollary. Let χ be a character of degree 1, and let r ∈ Z be an integer relatively prime to
p. Then

SwE/F (χr) = SwE/F (χ)− [r].

In particular, restricting to the differential components, we have

ωχr = [ωχ] + [r] = [rωχ].

PROOF. From Theorem 2.3.21 it suffices to prove this in the case that χ is a character of order p. But
then the result is an immediate consequence of the explicit calculations in Lemma 1.4.2 and Lemma
1.4.3. �

2.3.23 Remark. In this section we embedded the quotient groups Ĝm/Ĝm+1 into the ring E =
OE /πOE . However, we simply comment that it is in fact possible to refine our calculations and
to prove and even stronger statement, namely that it is possible to embed Ĝm/Ĝm+1 into the ring
Em := OE /πmOE .

2.4 Artin and depth characters

Let f ∈ E∗.

2.4.1 Definition. We define the order #f of f as

#f := vE(f̃) = vE(f/πvE(f)).

Let xE be a local geometric parameter of E.

2.4.2 Definition. We define the Artin character of E/F as the class function of G defined by

aE/F (σ) := −#(σ(xE)− xE), for σ 6= 1

and

aE/F (1) := −
∑
σ 6=1

aE/F (σ).

We define the Swan character of E/F as the class function of G defined by

sE/F := aE/F − uG,

where uG is the augmentation character of G.
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2.4.3 Definition. We define the depth character δE/F with respect to xE by

δE/F (σ) := −|G| · vE(σ(xE)− xE), for σ 6= 1

and

δE/F (1) := −
∑
σ 6=1

δE/F (σ).

2.4.4 Remark. By the fact that the Gt for t ∈ Q2 are independent of xE , by Lemma 2.2.6, we see
that the δE/F , aE/F and sE/F are independent of the choice of xE .

2.4.1 Relation to Kato’s Swan conductor

Let χ be a character of G. Let us write SwE/F (χ) = [πδχ ] − [ωχ], where ωχ ∈ Ω⊗ rk(χ)

F
. Define

mσ := vF (xE − σxE) and nσ := #(xE − σ(xE)). Notice that for each σ ∈ G with σ 6= 1, there
exists a uσ ∈ E such that

xE − σ(xE) = πmσ · xnσE · uσ. (2.8)

Furthermore by the definitions of δE/F and aE/F , we have that both uσ ∈ E (respectively its re-
duction uσ ∈ E ) are units, i.e. vE(uσ) = 0 (respectively vE(uσ) = 0 ).

Let us now calculate δχ and ωχ explicitly from δE/F and aE/F . Indeed we see that inside S̃E

SwE/F (χ) =
∑
σ∈G

swE/F (σ)⊗ χ(σ) + χ(1) · ε(ζp)

=
∑
σ 6=1

([dxE ]− [πmσxnσE uσ])⊗ (χ(σ)− rk(χ)) + χ(1) · ε(ζp) from (2.8).

The term − rk(χ) in the factors (χ(σ)− rk(χ) comes from the fact that we have defined

swE/F (1G) = −
∑
σ 6=1G

swE/F (σ)

and the fact that χ(1) = rk(χ).

First we concentrate on the terms
∑
σ 6=1

[dxE ]⊗ (χ(σ)− rk(χ)). We find

∑
σ 6=1

[dxE ]⊗ (χ(σ)− rk(χ)) = −|G| · rk(χ) · [dxE ]

= − rk(χ) · [dxF ]

where xF is an element of F such that in the reduction xF := xE
|G| (and hence xF is a local

geometric parameter of F ). Consider now the terms

−
∑
σ 6=1

[πmσxnσE uσ])⊗ (χ(σ)− rk(χ)).
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We notice that inside S̃E we have that

[πmσxnσE uσ] = [πmσ ] + [xnσE ] + [uσ].

A calculation reveals that

−
∑
σ 6=1

[πmσ ]⊗ (χ(σ)− rk(χ)) = [πδE/F (χ)]

and that

−
∑
σ 6=1

[xnσE ]⊗ (χ(σ)− rk(χ)) = [x
−|G|·aE/F (χ)

E ] = [x
−aE/F (χ)

F ].

Therefore we obtain that

SwE/F (χ) = [πδE/F (χ)]− [x
−aE/F (χ)

F ]− rk(χ) · [dxF ]

−
∑
σ 6=1

[uσ]⊗ (χ(σ)− rk(χ)) + χ(1) · ε(ζp).

Define u ∈ S̃E by

u := −
∑
σ 6=1

[uσ]⊗ (χ(σ)− rk(χ)) + χ(1) · ε(ζp).

By Kato’s Hasse-Arf theorem (Theorem 1.5.1), we see that u ∈ SF . Furthermore, we have that

ordE,π(u) = ordE,Ω(u) = ordE,E(u) = 0

and hence we obtain the following theorem.

2.4.5 Theorem. Let SwE/F (χ) = [πn]− [ω], where ω ∈ Ω⊗j
F

and n ∈ Z. Then we have that

j = rk(χ), n = δE/F (χ)

and finally the order of ω in F is given by

ordF ω = −aE/F (χ).

We obtain as a corollary of Theorem 2.4.5 the following.

2.4.6 Corollary. The values of aE/F and δE/F at the irreducible characters of G are integers.

2.4.7 Remark. In the next chapter we shall see that the values of aE/F and δE/F at the irreducible
characters of G are nonnegative integers.
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2.4.2 The upper ramification jumps

In this section we shall relate the Artin and depth characters (and hence by means of Theorem 2.4.5
also Kato’s Swan conductor) to the upper ramification jumps of G. Let t1 < . . . < tm ∈ Q2 be
the sequence of upper ramification jumps of G. To help us reach our goal, we shall also work with
the lower ramification jumps, and we denote them by s1 < . . . < sm ∈ Q2. We write si = (ai, bi)
where ai, bi ∈ Q.

We define a class function λ on G with values in Q2 by

−|G| · λ := t1 · uG +
∑
j<m

(tj+1 − tj) · IndG
Gtj+1 uGtj+1 . (2.9)

Let σ ∈ G be an element of Gsi −
⋃

s′>si

Gs′ . Then we see that by the definition of sE/F and δE/F

we have

sE/F (σ) = −|G| · ai, δE/F = −|G| · bi. (2.10)

Since σ ∈ Gsi −
⋃

s′>si

Gs′ , we see that σ ∈ Gti −
⋃
t′>ti

Gt
′
. Therefore by the normality of the Gti in

G and by (2.9) we have that

λ(σ) =
t1
|G|

+
∑
j<i

tj+1 − tj
|Gti+1 |

= si (2.11)

by the relation (2.5) between the lower and upper ramification jumps. We now write ti = (hi, di)
with hi, di ∈ Q. Then we obtain the following theorem.

2.4.8 Theorem. We have that

sE/F = h1 · uG +
∑
j

(hj+1 − hj) · IndG
Gtj+1 uGtj+1 (2.12)

and

δE/F = d1 · uG +
∑
j

(dj+1 − dj) · IndG
Gtj+1 uGtj+1 . (2.13)

PROOF. Let σ 6= 1. Then there exists a lower jump si such that σ ∈ Gsi −
⋃

s′>si

Gs′ . By (2.11) we

see that

λ(σ) = si.

Therefore by (2.9) and the (2.10) we see that (2.12) and (2.13) holds for all elements of G differ-
ent from 1. However, since both the left hand sides and right hand sides of (2.12) and (2.13) are
orthogonal to the trivial character 1G, we see that they are also equal at the element 1G. �

Following Serre [37] we now define χ(Gt), where t is an upper ramification jump and χ is a class
function of G, as follows:

φ(Gt) :=
1
|Gt|

∑
σ∈Gt

χ(σ).

We leave the proof of the following for the reader.
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2.4.9 Lemma. Let t be an upper ramification jump and let χ be a character of G. Then we have
that 〈

χ, IndGGt uGt
〉

= 〈χ|Gt , uGt〉 = χ(1)− χ(Gt).

Therefore we obtain as a corollary of Theorem 2.4.8 the following.

2.4.10 Corollary. Let χ be a character of G. Then we have that

sE/F (χ) = h1 · (χ(1)− χ(G)) +
∑
j

(hj+1 − hj) · (χ(1)− χ(Gtj+1))

and

δE/F (χ) = d1 · (χ(1)− χ(G)) +
∑
j

(dj+1 − dj) · (χ(1)− χ(Gtj+1)).

Finally we are able to prove the following theorem.

2.4.11 Theorem. Let ρ : G → GLn(C) be an irreducible representation of G and let χ be the
corresponding character. Assume that t ∈ Q2 is the largest upper ramification jump such that
ρ(Gt) 6= 1. Let t = (h, d) with h, d ∈ Q. Then we have that

sE/F (χ) = rk(χ) · h

and

δE/F (χ) = rk(χ) · d.

In particular, we have the following generalization of Serre [37] Exercise VI.2.2:

aE/F (χ) = rk(χ) · (h+ 1).

PROOF. Let s ∈ Q2 be such that s > t. Then since ρ(Gs) = 1, we have that χ(Gs) = rk(χ) =
χ(1). Therefore we have that

sE/F (χ) = h1 · (χ(1)− χ(G)) +
∑
j<i

(hj+1 − hj) · (χ(1)− χ(Gtj+1))

where ti = t (i.e. t is the i th upper jump).

Let us now assume that s ≤ t and we shall study χ(Gs). Since ρ|Gs is not the trivial representation
on Gs, there exists a nontrivial irreducible character µ of Gs such that 〈χ|Gs , µ〉 6= 0. We have
that the Gs are normal subgroups of G. For a g ∈ G, denote by τg the conjugation of Gs → Gs

by g. Then by Clifford’s theorem (Dornhoff [11] Theorem 14.1), there exists integers e and f and
elements g1, . . . , gf ∈ G such that

χ|Gs = e ·
∑

1≤j≤f
µ ◦ τgi .



44 CHAPTER 2. SWAN CONDUCTORS II: RAMIFICATION GROUPS

Furthermore, each µ ◦ τgi is an irreducible nontrivial character of Gs. Therefore we have that

χ(Gs) = 〈χ|Gs , 1Gs〉

= e ·
∑

1≤j≤f
〈µ ◦ τgi , 1Gs〉

= 0.

We see therefore that for each s ≤ t we have that

χ(1)− χ(Gs) = rk(χ).

The result now follows. �

2.4.12 Corollary. Let ρ : G → GLn(C) be an irreducible representation of G and let χ be the
corresponding character. Assume that t ∈ Q2 is the largest upper ramification jump such that
ρ(Gt) 6= 1. Let t = (h, d) with h, d ∈ Q. Let SwE/F (χ) = [πn] − [ω] where n ∈ Z and

ω ∈ Ω⊗ rk(χ)

F
. Then we have that

n = rk(χ) · d, − ordF ω = rk(χ) · (1 + h).

2.4.3 Example : G = (Z/pZ)2

For our example we let G = (Z/pZ)2. What follows is a continuation of Example 1.7.2. Let K
be a finite extension of Qp(ζp) such that the ramification index eK/Qp(ζp) satisfies eK/Qp(ζp) < p.
Let π be a local parameter of K . Let Y → X be a G-Galois cover of smooth projective K-curves
and assume that Y attains semistable reduction over K . Let Y → spec(OK) be a semistable model
of Y such that the G-action extends to Y . We denote by X := Y/G the quotient model of X .
Furthermore we denote by Yk the special fibre of Y .

2.4.13 Theorem. There exists no component Γ̃ of Yk with inertia group G.

PROOF. Assume that such a Γ̃ existed, and denote by Γ ⊂ Xk its image inside the special fibre Xk .
Let x ∈ Γ be a smooth point and let y be its preimage. Assume that y is also a smooth point. We set
A := ÔX ,x and B := ÔY,y . Notice that B/A is a G-Galois extension. We let F := Frac(Â(πA))
and E := B ⊗A F . By assumption on the inertia group of Γ̃, we see that E/F is a G-Galois
extension of Case-II type of two-dimensional local fields. We are thus in the situation of this chapter.

We let Hi, i = 0, 1, . . . , p, be the order- p subgroups of G, and for each i = 0, 1, . . . , p, we choose
an irreducible G-character χi with kernel Hi. We define δi := δE/F (χi). Notice that by Theorem
2.4.11 we may assume that δ1 = . . . = δp (since we may assume that none of H1, . . . ,Hp is a
higher ramification group).

Let χ be an irreducible character of H0. We define δ := δE/EH0 (χ). Then we have by (1.1) of
Section 1.7 that

p · δ1 =
∑

1≤i≤p
δi = p · δ + (p− 1) · δ0.
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Notice that by Remark 1.4.4 we have that p|δ and since δ1 = . . . = δp, we have that p2|δ0. However,

0 < δ0 ≤ vK(λp) = p · eK/Qp(ζp) < p2

inside K , a contradiction. �

2.5 The local vector-space theorem: trivial filtration case

We now define vector spaces associated to the differentials ωχ, where the χ range over the irreducible
characters of the group G. For an integer i, we define the set V i

E/F ⊂ ΩF by

V i
E/F := {ωχ|δχ = i} ∪ {0}.

From Theorem 1.6.1 it follows that V i
E/F is a Fp-vector space. Our aim is to prove the following

theorem

2.5.1 Theorem. Assume that G is abelian. Then the vector space V i
E/F isomorphic to the group

HomFp(Ĝ
i/Ĝi+1,C∗), and therefore isomorphic to the quotient itself.

2.5.2 Remark. It is clear that this theorem needs refinement if we are to handle nonabelian G as
well.

In the rest of this section we shall deduce this theorem in the case that F ⊂ E induces a trivial
simplified higher ramification filtration, i.e. Ĝi is either G or {1G}. We shall leave the general case
for Section 2.6.

Let us denote the unique simplified higher ramification jump by n. Notice that by Theorem 2.3.16
our assumption implies that G ' (Z/pZ)N for some N .

Let X(G) := Hom(G,C∗) denote the group of irreducible degree one characters of G.

Let χ1, χ2 ∈ X(G) be nontrivial. By assumption on the filtration of G, we see from Corollary 2.4.12
that

δχ1 = δχ2 = n.

Assume that χ2 6= χ−1
1 . In this case we have that χ1χ2 is nontrivial on G = Ĝn. Therefore, it too

satisfies δχ1χ2 = n.

Thus by Theorem 1.6.1 we have that

ωχ1χ2 = ωχ1 + ωχ2 6= 0.

Furthermore, we have that

ωχ−1
1

= −ωχ1 .

Hence the association ω : X(G)→ V n
E/F ⊂ ΩF

ω : χ 7→ ωχ

is a group homomorphism, and is in fact an embedding. However, we see that ω is also onto, since
the cardinality of V n

E/F can by definition not exceed the cardinality of X(G) = X(Ĝn). This proves
Theorem 2.5.1 in the special case of exactly one simplified upper ramification jump.
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2.6 The local vector-space theorem: general case

We now prove Theorem 2.5.1 in the general case. Let G therefore be an abelian group and let the
simplified upper ramification jumps be i1, . . . , iN .

2.6.1 Claim. Theorem 2.5.1 holds for the first simplified upper jump i1, i.e. X(Ĝi1/Ĝi1+1) ' V i1
E/F .

PROOF. From Corollary 2.4.12 any character with δχ = i1 vanishes on Ĝi1+1. Therefore, all such
characters induce characters of G/Ĝi1+1. It therefore suffices to consider the subextension F ⊂
EG

i1+1
with Galois group G/Ĝi1+1. But in this case the theorem has already been proved in Section

2.5. �

Assume now that the theorem has been proved for the indices i = i1, . . . , ir−1, i.e. for each j ≤ r−1
we have that

X(Ĝij/Ĝij+1) ' V ij
E/F .

We shall now prove Theorem 2.5.1 for the index i = ir . Consider the subextension F ⊂ F ′ :=
EĜ

ir+1
with Galois group G′ := G/Ĝir+1. Notice that the simplified upper ramification jumps of

G′ are given by i1 < . . . < ir . Furthermore, by Corollary 2.4.12, every G-character χ with δχ ≤ ir
vanishes on Ĝir+1, and therefore comes from a character on G′ = G/Ĝir+1. The spaces V ir

F ′/F

and V ir
E/F are thus isomorphic by Theorem 1.3.9. By restricting our attention to the subextension

F ⊂ F ′, we may thus assume that Ĝir+1 = {0} is trivial.

Consider the exact sequence of groups

0→ Ĝir → Ĝ→ Ĝ/Ĝir → 0.

We now use the assumption that G is abelian.

2.6.2 Claim. By applying X(−) := Hom(−,C∗), we obtain an exact sequence

0→ X(Ĝ/Ĝir)→ X(Ĝ)→ X(Ĝir)→ 0.

PROOF. We have an exact sequence

0→ X(Ĝ/Ĝir)→ X(Ĝ)→ X(Ĝir).

One notes that for an abelian group M , every irreducible representation is of degree 1 and hence we
have that |X(M)| = |M |. Thus by a cardinality argument, we see that the last homomorphism is also
surjective. �

Let χ1, χ2 ∈ X(Ĝ) which maps to the same nontrivial element of X(Ĝir), i.e.

χ1|Ĝir = χ2|Ĝir .

We see that χ1χ
−1
2 vanishes identically on the subgroup Ĝir , and therefore by Corollary 2.4.12 it

follows that

δχ1χ
−1
2
< δχ1 = δχ2 = ir.



2.6. THE LOCAL VECTOR-SPACE THEOREM: GENERAL CASE 47

Thus by Theorem 1.6.1 we see that

ωχ1 = ωχ2 .

We may therefore define a function ωir : X(Ĝir)→ V ir
E/F by defining

ωir : χ 7→ ωχ̂,

where χ̂ is any character of G restricting to χ on Ĝir . By Corollary 2.4.12 we see that this map is
injective and surjective. This finishes the proof of Theorem 2.5.1.
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Chapter 3

Group actions on the open disc

In Green–Matignon [16] and later Henrio [19], a combinatorial object, the so-called Hurwitz tree, was
introduced in order to study Z/pZ -actions on the p -adic open disc. These objects simultaneously
reflected the local ramification theory of such an action, as well as the relative positions of the geo-
metric ramification points.

In this chapter we shall partially generalize the concept of Hurwitz trees to general p -groups. Most
of the work in this chapter is taken from Brewis–Wewers [6]. Our aim is to introduce a combinatorial
object which reflects the ramification theory of a Galois extension of the p-adic open disc, as well as
the relative positions of the geometric fixed points. The new ingredient in our approach is the use of
the Artin and depth characters introduced in Chapter two. These were originally introduced by Huber
[20] as generalizations of the classical Artin character.

First we define the underlying objects of Hurwitz trees in Section 3.2.2, the metric trees. These are
essentially ordered trees which are related to the geometry of the fixed points of an action on the open
disc. Thereafter in Section 3.2.3 we consider the very technical definition of a Hurwitz tree. This is a
metric tree with additional data which measures the ramification around the fixed points in the open
disc.

In Section 3.3 we introduce the notion of density of a Hurwitz tree. Roughly speaking, this can be
interpreted as a measure of the relative distances between the branch points. It will be a fundamental
tool in Section 3.6.2 for showing that certain generalized quaternion actions in characteristic 2 do not
lift to characteristic 0. We show in particular how the density of the branch points can be determined
by means of the representation theory of G and the depth characters (to be introduced later) of the
Hurwitz tree.

Thereafter the difficult part of associating a Hurwitz tree to a group action on the open disc begins.
This is done in Section 3.5, first by localizing around a single branch point, and then building the tree
in an inductive manner by moving away from the branch point.

Finally, in Section 3.6 we introduce a new obstruction to the lifting problem, namely the existence of
suitable Hurwitz trees.

Chinburg, Guralnick and Harbater ([8], [9]) call a group G a local Bertin group if the Bertin obstruc-

49
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tion (see Bertin [1]) of every local G-action vanishes. They call G a local Oort group if every local
G-action lifts to characteristic zero. They prove that the generalized quaternion groups are local Bertin
groups if their orders exceed 8 . However, using our results on the density of Hurwitz trees, we shall
see in Section 3.6.2 that there exist generalized quaternion actions, the so-called simple actions, which
cannot be lifted to characteristic 0. This answers Question 1.3 of Chinburg–Guralnick–Harbater [8]
negatively. Furthermore, this shows that our necessary condition is strictly stronger than that of Bertin.

Finally, we also generalize an old theorem of Green–Matignon [15] which studies the geometric
branch points of a (Z/pZ)2-Galois cover of the open disc.

3.1 Notations and setting

Let K be a complete discrete valuation field of characteristic 0 with algebraically closed residue
field k of characteristic p. We denote by R the ring of integers of K , and by π a local parameter.
We denote by vK the valuation of K , and by K̃ the algebraic closure of K . We shall always nor-
malize vK such that vK(π) = 1 . We shall write | · |K̃ for the norm on the normed field K̃ .

Let G be a finite group. We denote by R(G) the Grothendieck group of the category of C[G]-
modules of finite type. We may identify elements of R(G) with their virtual characters χ : G→ C.
We denote by R+(G) ⊂ R(G) the submonoid of true characters.

We write 1G ∈ R+(G) for the unit character, rG ∈ R+(G) for the regular character and uG =
rG − 1G ∈ R+(G) for the augmentation character.

3.2 Hurwitz trees

A Hurwitz tree T consists of an oriented metric tree T and certain additional data attached to each
vertex and edge of T , satisfying certain conditions. These additional data are related to a finite group
G. We postpone all motivation and explanation of the following definitions to Section 3.4.

In Section 3.3 we discuss the notion of density. Later on in Section 3.6 this will be our main tool for
showing that certain Hurwitz trees and, therefore, certain group actions on the disc, are impossible.

3.2.1 The multiplicative character

We start by introducing an important character to be used later in our work. Fix the field K .

3.2.1 Definition. Let G = 〈σ〉 ∼= Z/pmZ be a finite cyclic group of order pm, with m ≥ 0. We
define an element δmult

G ∈ R(G) via the following class function. For a 6≡ 0 (mod pm) we set

δmult
G (σa) := − pi+1

p− 1
· vK(p),

where i := ordp(a) < m is the exponent of p in a ; furthermore,

δmult
G (1) := −

pm−1∑
a=1

δmult
G (σa) = mpm · vK(p).



3.2. HURWITZ TREES 51

Let χ ∈ R+(G) be an irreducible character of G of order pn (with 0 ≤ n ≤ m ). One checks that

δmult
G (χ) =

{
np−n+1
p−1 · vK(p) n > 0,

0 χ = 1G.
(3.1)

It follows that δmult
G ∈ R+(G). The superscript mult stands for multiplicative and was chosen be-

cause δmult describes the ramification of a torsor under the multiplicative group scheme µpn . See
Lemma 3.5.2.

3.2.2 Metric trees

3.2.2 Definition. Let T be a connected tree, with set of vertices V and set of edges E and with one
distinguished vertex v0 ∈ V , called the root. We call T a rooted tree if the root v0 is connected to a
unique edge e0 ∈ E (which we call the trunk of T ).

A rooted tree T carries a natural orientation, determined by source and target maps s, t : E → V ,
as follows. Given an edge e ∈ E, the source s(e) (resp. the target t(e) ) is the vertex adjacent to
e contained in same connected component of T\{e} as v0 (resp. in the connected component not
containing v0 ). If v = s(e) and v′ = t(e) we call v′ a successor of v ; notation: v → v′. There
is a natural partial ordering ≤ on V , where v1 ≤ v2 if and only if there is an oriented path starting
from v1 and ending at v2.

It is clear that the root v0 is the unique minimal vertex with respect to this ordering. A maximal
vertex is called a leaf. We write B ⊂ V for the set of all leaves. It follows from Definition 3.2.2 that
B is nonempty and does not contain the root v0. For any vertex v we define

Bv := { b ∈ B | v ≤ b }

as the set of leaves which can be reached from v along an oriented path.

3.2.3 Definition. Let T be a rooted tree. A metric on T is given by a map ε : E → Z≥0, e 7→ εe
such that εe = 0 if and only if t(e) is a leaf. We call εe the thickness of the edge e. The pair (T, ε)
is called a metric tree. Sometimes we write T instead of (T, ε), if no confusion can arise.

3.2.3 Hurwitz trees

Let G be a finite p-group. Fix the field K .

3.2.4 Definition. A G-Hurwitz tree over K is a datum T = (T, [Gv], ae, δv), where

• T = (T, ε) is a metric tree (with root v0, trunk e0 and set of leaves B ),

• [Gv] is the conjugacy class of a subgroup Gv ⊂ G, for every vertex v of T ,

• ae ∈ R+(G) is a character of G, for every edge e of T ,

• δv ∈ R+(G) is a character of G, for all vertices v.

We call Gv the monodromy group and δv the depth of the vertex v. We call ae the Artin character
of the edge e ∈ E.

The datum T is required to satisfy the following conditions:
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(H1) Let v be a vertex. Then, up to conjugation in G, we have

Gv′ ⊂ Gv,

for every successor v′ of v. Moreover, we have∑
v→v′

[Gv : Gv′ ] > 1,

except if v = v0 is the root, in which case there exists exactly one successor v′ and we have
Gv = Gv′ = G.

(H2) The group Gb is nontrivial and cyclic, for every leaf b ∈ B.

(H3) For all e ∈ E we have

ae =

{ ∑
t(e)=s(e′) ae′ t(e) 6∈ B,

u∗Gb b = t(e) ∈ B.

(H4) For all e ∈ E we have

δt(e) = δs(e) + εe · se,

where se := ae − u∗Gt(e) ∈ R(G).

(H5) For b ∈ B we have that

δb = (δmult
Gb

)∗.

Here δmult
Gb

is given by Definition 3.2.1 for the field K .

We set

δT := δv0 , aT := ae0 ,

which we call the depth and the Artin character of the Hurwitz tree T .

3.2.5 Remark. Let T = (T, [Gv], ae, δv) be a Hurwitz tree, as in Definition 3.2.4.

1. Condition (H3) is equivalent to the following claim: for all edges e we have

ae =
∑

b∈Bt(e)

u∗Gb .

This follows immediately from induction over the tree T .

2. It follows from (1) that the Artin characters ae are already determined by the tree T and the
conjugacy classes of (cyclic) subgroups ([Gb])b∈B . Moreover, using (H4) and (H5) we see that
the depth δv is determined by the metrized tree (T, ε) and the conjugacy classes ([Gv])v∈V .
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3.2.6 Definition. Let TK and TK′ be two Hurwitz trees over K and K ′ respectively, where K ′ is
an extension of K . Let eK′/K denote the ramification index of K ′/K . We say that TK and TK′
are equivalent if

1. the underlying trees are isomorphic and the roots and trunks correspond,

2. the metrics are scaled by eK′/K , i.e. if e is an edge then the thickness of e in TK′ is eK′/K
times its thickness as an edge of TK ,

3. the depth characters of the vertices are scaled by eK′/K , i.e. if v is a vertex then its depth
character in TK′ is eK′/K times its depth characters as a vertex of TK ,

4. and finally if the monodromy group associated to a vertex of TK is the same as that associated
to the vertex in TK′ .

3.3 Densities

We fix a G-Hurwitz tree T = (T, [Gv], ae, δv), with set of leaves B.

3.3.1 Definition. 1. Let b1, b2 ∈ B be two distinct leaves. The inverse distance of b1 and b2
is the positive rational number d(b1, b2) ∈ Q>0 defined as follows. Let (v0, v1, . . . , vr) be
the longest oriented path in T starting from the root v0 and ending in a vertex vr 6∈ B with
vr ≤ b1, b2. For i = 1, . . . , r let ei be the edge with s(ei) = vi−1 and t(ei) = vi. Then we
set

d(b1, b2) :=
r∑
i=1

εei .

2. Let A ⊂ B be a nonempty set of leaves and b ∈ A. The density of A at b is the rational
number

d(A, b) :=
∑

b′∈A\{b}

d(b, b′).

Note that d(A, b) only depends on A, b and the metrized tree T .

3.3.2 Lemma. Let A, b be as in Definition 3.3.1.

1. Let (v0, v1, . . . , vr, b) be the unique oriented path from the root to b. For i = 1, . . . , r let ei
be the edge with s(ei) = vi−1 and t(ei) = vi. Then

d(A, b) =
r∑
i=1

εei · n(A, vi),

where

n(A, v) := |{b′ ∈ A | b′ 6= b, v ≤ b′ }|.
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2. Let χ ∈ R(G)+ be a character such that

〈χ, u∗Ga〉G =

{
m a ∈ A,
0 a ∈ B\A,

where m := 〈χ, uG〉G. Then

m · d(A, b) = δb(χ)− δv0(χ).

PROOF. The proof of (1) follows from an induction argument which we leave to the reader. For the
proof of (2) we may assume that Gb ⊂ Gvr ⊂ Gvr−1 ⊂ . . . ⊂ G, by Condition (H1) of Definition
3.2.4. We deduce the following sequence of inequalities

m = 〈χ, u∗Gb〉 ≤ 〈χ, u
∗
Gvr
〉 ≤ . . . ≤ 〈χ, uG〉 = m,

which, a posteriori, turn out to be equalities. Using Remark 3.2.5 and the hypothesis on χ we there-
fore get

sei(χ) = aei(χ)−m =
∑
a∈Bvi

〈χ, u∗Ga〉 −m = m · n(A, vi). (3.2)

Now we compute:

δb(χ)− δv0(χ) =
r∑
i=1

δvi(χ)− δvi−1(χ)

(H3)
=

r∑
i=1

εei · sei(χ)

(3.2)= m ·
∑
i

εei · n(A, vi)

(i)
= m · d(A, b). �

3.3.3 Example. Assume that G = Z/pnZ and let b ∈ B such that Gb = G. Let χ be an irreducible
character of G with trivial kernel. Then by Lemma 3.3.2, (H5) and (3.1) we have

d(B, b) =
np− n+ 1
p− 1

· vK(p)− δT (χ).

If δT = 0 (which is the interesting case for us) we thus get a simple formula for the density d(B, b)
which puts a strong restriction on the metric of the tree T .

3.4 Group actions on the disk

3.4.1 Setting

We fix the following notation. We fix an open rigid-analytic disk Y over K and a subgroup
G ⊂ AutK(Y). We assume that there exists at least one fixed point, i.e. a point in Y with a nontrivial
stabilizer. The goal of this section is to attach to (Y, G) a G-Hurwitz tree T = (T, [Gv], ae, δv).

This construction is based on Huber’s theory of Artin and Swan characters for rigid-analytic curves
(Huber [20]). But since we only consider a very special case (a disc), we can do everything in an
elementary and self-contained way, and we do not have to actually use any of the results of [20].
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3.4.2 The depth character

At the beginning we shall work with a slightly more general situation than announced above. The ring
B will either denote the ring of formal power series R[[z]] or the ring R{z} of convergent powers
series in z. It gives rise to a formal scheme Y := Spf B and a rigid-analytic space Y := Y ⊗K . In
the first case, Y is an open disk, i.e.

Y = { z ∈ K̃ | |z|K̃ < 1 }.

In the second case it is a closed disk, and we have a bijection

Y = { z ∈ K̃ | |z|K̃ ≤ 1 }.

We let valY : B\{0} → Z denote the Gauss valuation, i.e.

valY
( ∑

aiz
i
)

= min
i

val(ai).

We set B̄ := B/(π) and let f̄ ∈ B̄ denote the image of f ∈ B. We have B̄ = k[[z]] or B̄ = k[z].

Suppose we are given a finite subgroup G ⊂ AutK(Y) of automorphisms of Y. The action of G
extends uniquely to the formal model Y and hence induces an action of G on the ring B.

Our first goal is to define an invariant δGY ∈ R+(G), called the depth character. It measures the
ramification of G with respect to valY , i.e. the amount to which the induced map G → Autk(B̄)
fails to be injective.

Let I �G be the inertia group with respect to valY , i.e. the normal subgroup consisting of elements
σ ∈ G with valY(σ(z)− z) > 0.

In Section 2.4 we introduced the depth character of a Galois extension. We reintroduce this here in
order to emphasize that it is an invariant of Y.

3.4.1 Definition. The depth character associated to (Y, G) is the character δGY ∈ R(G,Q) associ-
ated to the following class function:

δGY (σ) := −|G| · valY(σ(z)− z)

for σ ∈ G\{1} and

δGY (1) := −
∑
σ 6=1

δGY (σ).

By definition we have δGY = 0 if and only if I = {1}.

3.4.3 The Artin character

We continue with the notation introduced above. But from now on we assume that B = R[[z]], i.e.
that Y is an open disk. Our goal is to define an Artin character aGY ∈ R+(G) which describes the
action of G on the boundary of Y. We let E be the boundary of B, i.e. E is the fraction field of
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B̂πB = R[[z]]
〈
z−1
〉
. We let F be the fixed field of E under the induced action of G. Notice that

the situation E/F is that of Chapter two.

We define

#Yf := ordz
(
f/πvalY(f)

)
.

Here ordz : k[[z]] → Z ∪ {∞} is the usual order function and πvalY(f) ∈ R is an arbitrary element
with valuation valY(f). The Weierstrass preparation theorem shows that #Yf is the number of zeros
of f on Y, counted with multiplicity.

3.4.2 Definition. The Artin character of (Y, G) is the element of R+(G) associated to the class
function defined by

aGY (σ) := −#Y(σ(z)− z), for σ 6= 1

and

aGY (1) := −
∑
σ 6=1

aGY (σ).

3.4.3 Remark. Notice that aY = aE/F .

We now relate aY to the permutation representation arising from the set of fixed points. For σ ∈
G\{1} let ∆σ ⊂ Y(K̄) denote the set of (geometric) fixed points of σ. Set

∆ := ∪σ 6=1 ∆σ.

This is a finite G-set. Let B := ∆/G denote the orbit space. Choose, for each b ∈ B, an element
y ∈ ∆ belonging to b and let Gb ⊂ G denote the stabilizer of y.

3.4.4 Proposition. We have

aGY =
∑
b∈B

u∗Gb .

In particular, aGY is an element of R+(G).

PROOF. Fix an element σ ∈ G\{1}. Then ∆σ is the set of zeros of the function fσ := σ(z) − z.
An easy local calculation, coupled with the assumption that σ has finite order and that char(K) = 0,
shows that all zeros of fσ are simple (cf. Green–Matignon [16], §II.1). Therefore, by Definition 3.4.2
and the Weierstrass preparation theorem we have

aGY (σ) = −#Yfσ = −|∆σ|.

The proposition follows immediately. �
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3.4.4 Relation between the depth and Artin characters

The next proposition is the key result behind the construction of the Hurwitz tree associated to (Y, G).

3.4.5 Proposition. Let D ⊂ Y be a closed disk which contains the set ∆ and is fixed by the action
of G. Let E ⊂ D denote the residue class of a K-rational point y in D. Let H ⊂ G denote the
stabilizer of E. Then

δGD = IndGH δ
H
E = δGY + |G| · ε · sGY , (3.3)

where sGY := aGY − uG and where ε ∈ Z>0 is the thickness of the annulus Y\D (after a possible
extension of K ).

PROOF. After a change of parameter we may assume that the point y is given by the equation z = 0.
Then

D = { z | val(z) ≥ ε }, E = { z | val(z) > ε }.

After replacing K by some finite extension, we may further assume that there exists an element a ∈
R with val(a) = ε. We obtain formal models D = (Spf R{w})⊗R K and E = (Spf R[[w]])⊗K ,
where w := a−1z. By definition, we have valD = valE |R{w} and therefore

δGD (σ) =

{
[G : H] · δHE (σ) σ ∈ H\{1}

0 σ ∈ G\H.

Now the first equality in (3.3) is obvious.

Fix an element σ ∈ G\{1} and set fσ := σ(z)− z ∈ R[[z]] ⊂ R{w}. By the assumption on D, the
function fσ has no zero on the annulus Y\D. It follows that

valD(fσ) = valY(fσ) + ε ·#Yfσ, (3.4)

see e.g. the proof of [19], Proposition 1.10. We compute:

δGD (σ) = −|G| · valD(σ(w)− w) = −|G| ·
(

valD(fσ)− ε
)

(3.4)= −|G| · valY(fσ)− |G| · ε · (#Y(fσ)− 1)

= δGY (σ) + |G| · ε · sGY .

This proves the second equality in (3.3). �

3.5 Definition of the Hurwitz tree

We can now state and prove our main theorem.

3.5.1 Theorem. Let Y = (Spf R[[z]]) ⊗ K be an open rigid disk over K and G ⊂ AutK(Y) be
a finite p -group of automorphisms. Suppose that the set of fixed points ∆ ⊂ Y is nonempty. Then
after possibly extending K there exists a G-Hurwitz tree T over K with

δT = δGY , aT = aGY . (3.5)
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PROOF. Our proof is by induction over the number of elements of ∆.
We first assume that |∆| = 1. In this case the theorem is essentially equivalent to the following
lemma.

3.5.2 Lemma. Let y ∈ ∆ be the unique fixed point. Then

1. the group G is cyclic,

2. aGY = uG, and

3. δGY = δmult
G .

PROOF. It is clear that every element of G fixes the point y. So (2) follows directly from Proposition
3.4.4.

After a change of parameter we may assume that y is the point z = 0. Then for an element σ ∈ G
we have

σ(z) = χ(σ) z (1 + a1z + a2z
2 + . . .), (3.6)

where χ : G ↪→ K× is an injective character (Green–Matignon [16], §II.1). This proves (1). Let us
fix an element σ ∈ G of order npm, with (n, p) = 1 and m ≥ 0. By (3.6) we have

fσ := σ(z)− z = (χ(σ)− 1) z + χ(σ) a1z
2 + . . .

Since z = 0 is the only zero of fσ , we have #fσ = 1 and therefore

valY(fσ) = val(χ(σ)− 1) =

{
0 m = 0,

1
(p−1)pm−1 · vK(p) m > 0.

Now (3) follows from Definition 3.2.1 and a direct computation. �

So in the case |∆| = 1 we define the Hurwitz tree T = (T, [Gv], δv, ae) as follows.

• The tree T has two vertices v0, v1 and one edge e0 with s(e0) = v0 and t(e0) = v1. The
metric ε is trivial, i.e. we set εe0 := 0.

• We define

δv0 = δv1 := δGY .

• We define Gv0 = Gv1 := G and ae0 := uG.

The validity of the axioms (H2) and (H5) follows from Lemma 3.5.2; all the other axioms and (3.5)
hold by definition. This finishes the proof of the theorem in the case |∆| = 1.

We may now assume that |∆| ≥ 2. Then there exists a smallest closed disk D ⊂ Y which contains
∆. Clearly, D is fixed by the G-action. There also exists a finite family (Ej)j∈J of residue classes
Ej ⊂ D with

∆j := Ej ∩∆ 6= ∅ and ∆ ⊂ ∪jEj . (3.7)
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For j ∈ J we let Gj ⊂ G denote the stabilizer of Ej . By induction, there exists a Hurwitz tree Tj
for the group Gj with

δTj = δ
Gj
Ej
, aTj = a

Gj
Ej
. (3.8)

The Hurwitz tree T = (T, [Gv], ae, δv) associated to (Y, G) is defined as follows.

• Let Tj denote the metric tree underlying the Hurwitz tree Tj . Choose a system of representa-
tives J ′ ⊂ J of J/G. The metric tree T underlying T is obtained by patching together the
metric trees Tj , j ∈ J ′, at their roots, i.e. we identify the set of roots of the trees Tj , j ∈ J ′
with one vertex v1 of T . We complete T by adding another vertex v0 (the root of T ) and
an edge e0 with s(e0) = v0, t(e0) = v1. The value of the metric ε on the edge e0 is defined
as the thickness of the annulus Y\D, multiplied with |G|. (In fact, εe0 is the thickness of the
quotient annulus (Y\D)/G.)

• If v is a vertex of T other than v0 and v1, it corresponds to a vertex v′ of one of the Tj
which is not the root. We define Gv := Gv′ and δv := IndGGv′ δv′ .

• Let e be an edge of T which corresponds to an edge e′ of Tj . We define ae := IndG ae′ .

• We set Gv0 = Gv1 := G, δv0 := δGY , δv1 := δGD and ae0 := aGY .

It remains to show that T satisfies the axioms (H1)-(H5). Since these axioms hold for the Hurwitz
trees Tj , many of them hold for T by construction. For instance, this is clear for (H1) and (H2).

It follows from (3.7), (3.8) and Proposition 3.4.4 that

ae0 = aGY =
∑
j∈J/G

IndGGj a
Gj
Ej

=
∑

s(e)=v1

ae. (3.9)

Therefore, (H3) holds for the edge e0. For the other edges it holds by construction.
To check the axioms (H4) and (H5) we remark that

δv1 = δGD = IndG δTj , (3.10)

for all j ∈ J , by the first equality in (3.3). This means that our definition of δv1 is consistent with
the fact that the vertex v1 corresponds to the roots of the Hurwitz trees Tj , j ∈ J ′. It follows that
(H5) holds automatically and that we have to check (H4) only for the edge e0. But for the edge e0

the statement of (H4) follows directly from Proposition 3.4.5. This concludes the proof of Theorem
Theorem 3.5.1. �

3.5.3 Remark. An alternative way to construct the metric tree T is the following (cf. Henrio [19]
and Bouw–Wewers [4]). Let Y be the minimal semistable model of the disk Y which separates the
points of ∆. Then the G-action on Y extends to Y , and the quotient X := Y/G is a semistable
model of the disk X = Y/G which separates the points of B := ∆/G. Now there is a standard way
to associate to the pair (X , B) a metric tree T with set of leaves B (see e.g. Bouw–Wewers [4],
§3.2). Essentially, T is a modification of the graph of components of the special fiber of X .

The construction of T in the proof of Theorem 3.5.1 avoids the use of semistable models and may
therefore be considered as more elementary. However, semistable models become inevitable if one
wants to construct G-actions on the disk with given Hurwitz tree.
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3.5.4 Remark. Assume that G acts on R[[z]] and that the associated Hurwitz tree TK is defined
over K . We may also consider an extension K ′/K and the induced action of G on R′[[z]], where
R′ is the discrete valuation ring of K ′. Let TK′ be the induced Hurwitz tree. Then one checks that
the Hurwitz tree TK defined over K and the Hurwitz tree TK′ defined over K ′ are equivalent (see
Definition 3.2.6).

3.6 Applications to the lifting problem

3.6.1 A new obstruction

Let k be an algebraically closed field of characteristic p > 0 and G be a finite group. A local
G-action is a faithful and k-linear action φ : G ↪→ Autk(k[[z]]) on a ring of formal power series in
one variable over k.

The local lifting problem asks: can φ be lifted to an action φR : G ↪→ AutR(R[[z]]), where R is
some discrete valuation ring of characteristic zero with residue field k. If it does then we say that φ
lifts to characteristic zero.

From our main result we can deduce a new necessary condition for liftability of local G-actions.
Before we state it, we recall the definition of the classical Artin character (see Serre [37] Chapter VI).

3.6.1 Definition. Let φ be a local G-action. The Artin character of φ is the element aφ ∈ R+(G)
defined by

aφ(σ) := − ordz(σ(z)− z)

for σ 6= 1 and

aφ(1) := −
∑
σ 6=1

aφ(σ).

See [37], VI, §2.

3.6.2 Theorem (Hurwitz-tree obstruction). Let φ : G ↪→ Autk(k((t))) be a local G-action. If φ
lifts to characteristic 0 then there exists a G-Hurwitz tree T over some K such that

aT = aφ and δT = 0.

PROOF. A lift of φ gives rise to a G-action on the disk Y = (Spf R[[z]])⊗K . Since φ is injective
by assumption, we have δGY = 0 (Definition 3.4.1) and aGY = aφ ( Definition 3.4.2). Therefore,
Theorem 3.6.2 is a direct consequence of Theorem 3.5.1. �

By the theorem, the existence of a Hurwitz tree T with given Artin character aT = aφ and trivial
depth δT = 0 is a necessary condition for φ to lift. In this case, if such that a Hurwitz tree exists,
we shall say that the Hurwitz-tree obstruction vanishes. If one can show that such a Hurwitz tree does
not exist, i.e. that the obstruction does not vanish, then one has found an obstruction against liftability
of φ.
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As a special case of this criterion, we obtain the well-known Bertin obstruction, see Bertin [1].
Namely, if T = (T, [Gv], ae, δv) is a Hurwitz tree with aT = aφ, then Remark 3.2.5 shows that

aφ =
∑
b∈B

u∗Gb . (3.11)

This equality is easily seen to imply the following statement: there exists a finite G-set ∆, with cyclic
stabilizers, such that

aφ = m · rG − χ∆. (3.12)

Here χ∆ ∈ R+(G) is the character of the permutation representation realized by ∆ and m :=
|∆/G|. However, there exist local G-actions φ whose Artin character can not be written in this form
(see e.g. Bertin [1] and Chinburg–Guralnick–Harbater [9]). It follows from Theorem 3.6.2 that such
a φ does not lift to characteristic zero.

The examples presented in the following section show that our new obstruction is strictly stronger
than the Bertin obstruction. However, it should be pointed out that the converse of Theorem 3.6.2
does not hold. For G = Z/p×Z/p, Pagot has shown in Pagot [31] that certain local G-actions φ do
not lift to characteristic zero. For such a φ it is straightforward to write down a Hurwitz tree T with
aT = aφ and δT = 0.

3.6.2 Simple quaternion actions

We fix an integer n ≥ 2 and let G = Q2n+1 denote the generalized quaternion group of order 2n+1,
with presentation

Q2n+1 = 〈σ, τ | τ2n = 1, τ2n−1
= σ2, στσ−1 = τ−1 〉. (3.13)

Our base field k is assumed to be of characteristic 2.

Chinburg, Guralnick and Harbater [9] have proved that G is a local Bertin group for n ≥ 3, which
means that the Bertin obstruction of every local G-action over k vanishes. The goal of this section
is to construct certain G-actions which do not lift to characteristic zero. This result gives a negative
answer to Question 1.3 of Chinburg–Guralnick–Harbater [9].

We first introduce some more notation. Set

H0 := 〈τ〉, H1 := 〈σ〉, H2 := 〈στ〉;

these are cyclic subgroups of G of order 2n, 4 and 4, respectively. For i = 0, 1, 2 there exists a
unique character χi : G → {±1} of order 2 such that Hi ⊂ Ker(χi). Clearly, χ0, χ1, χ2 define
pairwise distinct irreducible characters of the quotient group

Ḡ := G/〈τ2〉 ∼= Z/2× Z/2.

3.6.3 Definition. A local G-action φ is called simple if

aφ(χ0) = 2, aφ(χ1) = aφ(χ2) ≥ 2.
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3.6.4 Proposition. There exists a simple G-action over k, for every n ≥ 2.

PROOF. Choose an embedding of abelian groups Ḡ ↪→ (k,+). We obtain a local Ḡ-action φ̄ : Ḡ ↪→
Autk(k[[t]]) by sending µ ∈ Ḡ to the automorphism

t 7→ t

1 + µt
= t− µt2 + µ2t3 − . . . .

One checks that

aφ̄(χi) = 2, for i = 0, 1, 2.

By [8], Lemma 2.10, we can extend φ̄ to a local G-action φ : G ↪→ Autk(k[[z]]), such that k[[t]] =
k[[z]]〈τ

2〉. It follows from [37], Proposition IV.3, that

aφ(χi) = aφ̄(χi), i = 0, 1, 2.

We conclude that φ is simple. �

3.6.5 Remark. It is possible to give an alternative proof of the proposition above using local class
field theory. We sketch the idea here and leave the details for the reader. Let F := k((t)) and let L/F
be a Z/2Z-extension with local degree of different exactly 2. We know from Pop’s theorem that we
can find a Z/2nZ-Galois extension E/L such that the extension E/F is D2n -Galois, where D2n

denotes the dihedral group of order 2n+1. This is due to a very special splitting property of the group
D2n .

We also know that we can find a Z/4Z-Galois extension M/L such that M/F is a Q8-extension.
Let χE : GL → Q/Z (respectively χM : GL → Q/Z ) be the irreducible character of order
2n (respectively of order 4 ) associated with the extension E/L (respectively M/L ), where GL
denotes the absolute Galois group of L. The composite character χE ◦ χM induces a Z/2nZ-
Galois extension N/L, and using the Verlagerung morphism one proves that N/F is a Q2n+1 -Galois
extension. Since it contains L, it is simple.

3.6.6 Theorem. Let φ be a simple G-action over k. Then φ does not lift to characteristic zero.

PROOF. Suppose that φ lifts to characteristic zero. After a possible extension of K , by Theorem
3.6.2, there exists a G-Hurwitz tree T = (T, [Gv], ae, δv) over K , with Artin character aT = aφ
and vanishing depth δT = 0. We will show that such a Hurwitz tree (up to equivalence) cannot exist.
Our main tool is the notion of density introduced in Section 3.3.

Let B denote the set of leaves of the tree T . For i = 0, 1, 2 we set

Bi := {b ∈ B | [Gb] = [Hi]}, B′ := B0
·
∪ B1

·
∪ B2

and

Bi := B′\Bi.

Then for all b ∈ B we have

〈IndGGb uGb , χi〉 =

{
1 b ∈ Bi,

0 b ∈ B\Bi.
(3.14)
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So Lemma 3.3.2 (ii), Condition (H5) of Definition 3.2.4 and (3.1) show that

d(Bi, b) = δb(χi) = 2 · vK(2), (3.15)

for all b ∈ Bi.

From (3.11) and (3.14) we conclude that

aφ(χi) = |Bi| =
∑
j 6=i
|Bj |. (3.16)

So the assumption that φ is simple (Definition 3.6.3) implies that

|B1| = |B2| = 1, |B0| ≥ 1.

Let b0 denote the unique element of B2. Since the Bi are disjoint, we have B0 ∩B1 = B2 = {b0}
and B0 ∪B1 = B′. Using Definition 3.3.1 (ii) and (3.15) we therefore get

d(B′, b0) = d(B0, b0) + d(B1, b0) = 2 · vK(2) + 2 · vK(2) = 4 · vK(2). (3.17)

Let χ : H0 ↪→ C× be an injective irreducible character. The induced character ψ := IndGH0
χ has

the following property. For any nontrivial cyclic subgroup C ⊂ G, the restriction ψ|C is the sum of
two nontrivial irreducible characters of C , ψ|C = ψ1 + ψ2. Applying this to C = Gb, we obtain

〈IndGGb uGb , ψ〉G = 〈ψ1, uGb〉+ 〈ψ2, uGb〉 = 2,

for all b ∈ B. We may therefore apply Lemma 3.3.2 (ii) and conclude that

d(B, b0) = δb0(ψ)/2. (3.18)

Moreover, the restriction of ψ to Gb0 = H2
∼= Z/4 is the sum of two irreducible characters ψ1, ψ2

of order 4. From (H5) and (3.1) we get

δb0(ψ) = δmult
H2

(ψ1) + δmult
H2

(ψ2) = 3 · vK(2) + 3 · vK(2) = 6 · vK(2). (3.19)

We now obtain a contradiction by comparing (3.17), (3.18) and (3.19):

4 = d(B′, b0) ≤ d(B, b0) = 3 · vK(2).

We conclude that there does not exist a G-Hurwitz tree T (up to equivalence) with aT = aφ and
δT = 0. Theorem 3.6.6 follows. �

3.6.3 Example : G = Q8

Let K := Q2 and let R be its ring of integers with parameter πK . Let A := R[[t]] and assume
that B/A is a G-Galois extension such that B is also a local power series ring. We do not however
assume that the geometric branch points of B/A are K-rational. Let K ′/K now be such that all
branch points are K ′-rational and consider the induced extension B′/A′ of A′ = R′[[t]], where R′

is the ring of integers of K ′. We let πK′ be a local parameter of K ′. We denote by eK′/K the
ramification index of R′/R.
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We let F := Â(πKA) and we let F ′ := Â(πK′A
′). Furthermore, we let E := F ⊗A B and E′ :=

F ′ ⊗A′ B′. Notice that both E′/F ′ and E/F are of Case-II type and hence we are in the situation
of Chapter two. One checks that

δE′/F ′ = eK′/K · δE/F . (3.20)

Consider the simplified upper ramification filtration of the G-Galois extension E/F . Let i1 be the
first simplified upper ramification jump. We see that since G is not elementary abelian, we have that
Ĝi1+1 6= 1. Let φ be an irreducible one-dimensional character of G with kernel containing Ĝi1+1.
From Lemma 2.3.3 and Corollary 2.4.12 we see that δE/F (φ) = i1.

Let φ have kernel H and let χ be an irreducible character of H of order 4. Let ψ := IndGH χ. We
see from (1.5) in Section 1.7 that

δE/F (ψ) = 2 · δE/EH (χ) + δE/F (φ) = 2 · δE/EH (χ) + i1. (3.21)

From (3.21) and Remark 1.4.4 we see thus that δE/F (ψ) ∈ Z.

Furthermore, let j ∈ Q be the largest simplified upper ramification jump such that the underlying
representation of ψ is not trivial on Ĝj . We conclude that Ĝj+1 = {1}. Since Ĝi1+1 6= 1 we see
that j > i1. Furthermore, from Lemma 2.3.3 there exists some t := (h, j) ∈ Q2 such that t is an
upper (usual) ramification jump and such that Ĝj ⊃ Gt. Furthermore since Ĝj+1 = {1}, we can
choose h such that t = (h, j) is the last upper (usual) ramification jump. By Corollary 2.4.12 it
follows that δE/F (ψ) = 2 · j.

Now assume that there exist at least two geometric branch points in the geometric cover Spf B′ →
Spf A′, one of which is a point b ∈ Spf A′ with inertia group cyclic of order 4. Then using the
technique used (3.19) we see that δE′/F ′(ψ) < 6.vK′(2) (after assuming that K ′ has been extended
such that the Hurwitz tree is defined over K ′ ). However vK′(2) = eK′/K · vK(2) and hence from
(3.20) it follows that

j =
δE/F (ψ)

2
< 3 · vK(2) = 3

We see thus that i1 < j ≤ 2. However 2|i1 from Remark 1.4.4 and hence we obtain a contradiction.
We therefore have the following theorem.

3.6.7 Theorem. There exists no Q8-Galois extension B/A of formal power series rings over R with
at least two geometric branch points (not necessarily R-rational), one of which has inertia Z/4Z and
which induces a purely inseparable extension of A := k[[t]].

3.7 Theorem of Green–Matignon

Let G := (Z/pZ)2 and consider a G-action on the ring B := R[[z]]. Let A := BG and notice that
we can find a t ∈ A such that A = R[[t]]. We let F be the field of fractions of R[[t]]

〈
t−1
〉

and,
similarly, we let E be the field of fractions of R[[z]]

〈
z−1
〉
. Notice that E/F is also a G-Galois

extension.
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Let us enumerate the subgroups of order p of G by H0, . . . ,Hp. We let Bi := BHi for i =
0, . . . , p. Consider the formal R-scheme X := Spf B and the quotient Xi := Spf Bi. Our aim for
this section is study the relations between the geometric branch points of the different Z/pZ-covers
Xi → Y := Spf A.

Let Bi, i = 0, . . . , p, be the set of branch points of Xi → Y . We let ni := |Bi|. In Green–Matignon
[15] it is shown that if the residue field extension k((t)) ⊂ k((z)) of F ⊂ E is separable, then p|n0

where we have assumed without loss of generality that n0 is the minimum of {n0, n1, . . . , np}. This
is a version of the Bertin-obstruction (see Bertin [1]) for the group G = (Z/pZ)2. Furthermore, it
is shown in Green–Matignon [15] that for i 6= 0, the covers Xi → Y and X0 → Y share exactly
p−1
p · n0 common geometric branch points.

Our aim for this section is to give an analog of this result for the case that E/F is of Case–II type.
After possibly extending R, let T be the Hurwitz tree defined over R associated with the action of
G on B = R[[z]]. Let e0 be its trunk and consider the Artin character ae0 of the trunk e0. We let
aE/F be the Artin character of the extension E/F . By construction of T we see that ae0 = aE/F .

One sees that the leaves b with monodromy group Gb 6= Hi are exactly in correspondence to the
branch points of Xi → Y . Let us define mi := |{b|Gb = Hi}|. Therefore we have that ni =

∑
j 6=i

mj .

We consider two cases dependent on the upper ramification filtration of the Galois extension E/F .
The first case is when there is exactly one upper jump t1 ∈ Z2, i.e. the filtration is G = Gt1 ⊃ {1},
and the second case is where there are exactly two upper jumps t1 < t2 ∈ Z2, i.e. the filtration is
G = Gt1 ⊃ Gt2 ⊃ {1}.

We consider the first case first, i.e. the case of exactly one upper jump t1 ∈ Z2 on the filtration of G.
We write t1 = (a1, b1). Let χi be a homomorphism G → C∗ with kernel exactly Hi. Notice that
we may view χi as an irreducible character of G. By Theorem 2.4.11 we see that

ae0(χi) = aE/F (χi) = a1 + 1. (3.22)

By Definition 3.2.4 (H3) we see that we may also write ae0 as

ae0 =
∑
i

mi · IndGHi uHi . (3.23)

It follows from (3.22) and (3.23) that for all i we have

a1 + 1 = ae0(χi) =
∑
i 6=j

mj . (3.24)

We see therefore that m0 = m1 = . . . = mp.

In particular it follows that p|(a1 + 1) and furthermore that Xi → Y and Xj → Y share p−1
p ·

(a1 + 1) common geometric branch points.

Now we consider the case where the upper ramification filtration of G has two upper jumps, namely
t1 < t2 ∈ Z2. We write t1 = (a1, b1) and t2 = (a2, b2). Without loss of generality we may assume
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that Gt2 = H0. It follows that ae0(χ0) = aE/F (χ0) = a1 + 1 and ae0(χi) = aE/F (χi) = a2 + 1
for i = 1, . . . , p. From (3.23) we see that

a1 + 1 =
∑
j 6=0

mj

and

a2 + 1 = ae0(χi) =
∑
i 6=j

mj , i = 1, . . . , p.

We see that m1 = . . . = mp. Therefore we obtain the following theorem.

3.7.1 Theorem. We have that p|(a1 + 1). Furthermore, the covers X0 → Y and Xi → Y , i =
1, . . . , p, share exactly p−1

p · (a1 + 1) common geometric branch points.

We can deduce another interesting property. Indeed, it may occur that a1 > a2 (with t1 < t2 then
due to the second component b1 < b2 ). Notice that this cannot occur in the case that the residue
field extension of E/F is separable. In this case (where a1 > a2 ) we see that X0 → Y has exactly
a1 + 1 geometric branch points, and the covers Xi → Y for i = 1, . . . , p each have exactly a2 + 1
geometric branch points. However, p−1

p · (a1 + 1) cannot exceed a2 + 1, therefore we obtain the
following inequality on the number of branch points for the different covers Xi → Y .

3.7.2 Theorem. If n0 > ni for i = 1, . . . , p, then we have

n0 > ni ≥
p− 1
p
· n0.

3.7.3 Remark. The proof of Theorem 3.7.1 using the representation theory approach of the Hurwitz
trees was shown to the author by Stefan Wewers in an earlier version of Brewis–Wewers [6]. One can
also deduce this result by studying the differentials of the associated differential Hurwitz tree closely
together with the results on G-actions of Section 1.7.



Chapter 4

Hurwitz-tree obstruction to cyclic actions

Let F := k((t)) be a local power series field, where k is an algebraically closed field of characteristic
p. Let n be a positive integer and let E/F be a Z/pnZ-Galois extension. Associated with E/F is
the Artin character aE/F .

The Oort conjecture states that the Galois extension E/F should lift to a Z/pnZ -Galois extension
of local power series rings over R , where R is some dominant extension of the Witt vectors W (k) .
Recall from Theorem 3.6.2 that if this is the case, then there exists a Hurwitz tree T with trunk e
such that ae = aE/F and depth 0 . Our main goal for this chapter is to prove that such a Hurwitz tree
always exists. This provides some new evidence for the validity of the strong Oort conjecture.

We now give an overview of this chapter. Let χj denote an irreducible character of the group Z/pnZ
of order pj , i.e. a homomorphism G→ C∗ with image of order pj . In Section 4.2 we begin by stat-
ing inequalities between the aE/F (χj) as j varies. The main idea is to study the upper ramification
jumps of the extension E/F . In particular, we recall a result of Schmid [38] which relates the upper
ramification jumps via inequalities. We then interpret these inequalities in terms of the values of the
Artin character aE/F at the characters χj .

In Section 4.3 we focus on the problem of constructing a Hurwitz tree for the Artin character aE/F .
The inequalities discussed in Section 4.2 are crucial ingredients in this construction. Essentially, the
main problem is to fit the depth characters in such a way that we obtain the multiplicative depth char-
acters at the leaves of the constructed Hurwitz trees (see Definition 3.2.4 (H5)).

Let us briefly outline our strategy for constructing Hurwitz trees for the character aE/F . Let the upper
jumps of E/F be r1, . . . , rn. One knows from Serre [37] Proposition VI.5 that aE/F (χj) = rj + 1.
We define integers m1, . . . ,mn by writing

r1 = m1, r2 = m1 +m2, . . . , rn = m1 + . . .+mn.

Let Tn be a Hurwitz tree with trunk e. If ae = aE/F , then by Definition 3.2.4 (H3), for j ≥ 2
exactly mj leaves of Tn have monodromy group Z/pn+1−jZ and exactly m1 + 1 leaves have
monodromy group Z/pnZ. Thus, in order to construct a Hurwitz tree with trunk e and ae = aE/F ,
we first have to accomplish that the monodromy groups of the leaves agree with this.

It is helpful to think of the monodromy groups associated with the leaves as follows. If the Hurwitz
tree Tn was induced by a G-Galois extension of p-adic open discs, then the branch points with

67
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inertia group Z/piZ correspond to the leaves with the same monodromy group. Therefore, there will
be exactly mj branch points with monodromy group Z/pn+1−jZ for j 6= 1 and exactly m1 + 1
branch points with monodromy group Z/pnZ. The distinction for the case j = 1 and j 6= 1 comes
from the expression

aE/F (χj) = 1 +m1 + . . .+mj .

The construction will be carried out inductively. First we construct a Hurwitz tree T1 for the group
Z/pZ with exactly m1 + 1 leaves in Section 4.3.1 and Section 4.3.2. We then assume that a
Hurwitz tree Tn−1 has been constructed for the group Z/pn−1Z and the sequence of integers
m1 < . . . < mn−1 , where the mi have to satisfy certain inequalities (see Definition 4.3.1). In
this case Tn−1 has exactly mi leaves with monodromy group Z/pn−iZ, where i = 2, . . . , n − 1,
and exactly m1 + 1 leaves with monodromy group Z/pn−1Z . We construct a tree Tn for the
group Z/pnZ which essentially contains the underlying tree Tn−1 (with the root and trunk of Tn−1

deleted), and with mn new leaves.

The difficult part is now to fit the thicknesses of the edges of Tn in a correct way. This is done in
Section 4.3.3. Notice that by requiring that the depth at the root is 0, a choice of the thicknesses of
the edges automatically fixes the depth characters at each vertex of Tn. Thus we have to be careful
in this step, since the depths at the leaves are required to be the induced multiplicative characters (see
Definition 3.2.4 (H5)). We shall check that this is indeed the case in Section 4.3.4.

4.1 Notation

As always, we let K be a complete discrete valuation field of characteristic 0 with perfect residue
field k of characteristic p. We denote by vK the valuation of the field K and we denote by π a local
parameter for the discrete valuation field K . We shall always normalize vK such that vK(π) = 1 .
The letter F will denote the local power series field k((t)) .

4.2 Artin characters of Z/pnZ-Galois extensions

Let E/F be a totally ramified Z/pnZ-Galois extension of F . Let r1, . . . , rn be the upper ramifica-
tion jumps associated with E/F . By the classical Hasse–Arf theorem (see Serre [37] IV.3) we have
that the ri are integers. Then the following theorem is known.

4.2.1 Theorem (Schmid [38]). We have that rj ≥ p · rj−1 for j = 2, . . . , n.

Let us denote by aE/F the Artin character of E/F . We define n positive integers m1, . . . ,mn by
requiring that aE/F (χj) = 1 + m1 + . . . + mj , where χj is a character of Z/pnZ of order pj . It
is known (see Serre [37] Proposition VI.5) that

aE/F (χj) = rj + 1.

4.2.2 Remark. The condition that rj ≥ p · rj−1 for j = 2, . . . , n is therefore equivalent to mj ≥
(p− 1) · (m1 + . . .+mj−1) for j = 2, . . . , n.
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4.3 Vanishing of obstruction

Let n ∈ Z be a positive integer and consider a set of positive integers m1 < m2 . . . < mn. In view
of Remark 4.2.2 we make the following definition.

4.3.1 Definition. We say that the natural numbers m1 < . . . < mn form an admissible set if for
every j ≥ 2 we have that mj ≥ (p− 1) · (m1 + . . .+mj−1).

4.3.2 Definition. Let T be a Hurwitz tree for the group Z/pnZ with trunk e . The branching se-
quence of T is the unique sequence of integers m1, . . . ,mn such that ae(χj) = 1+m1 + . . .+mj ,
where χj is an irreducible character of Z/pnZ of order pj .

4.3.3 Definition. A Z/pnZ-Hurwitz tree with root v0 and trunk e0 is said to be admissible if its
branching sequence m1, . . . ,mn is an admissible set and such that

[AH 1] δv0 = 0,

[AH 2] ae0(χj) = 1 +m1 + . . .+mj where χj is a character of G with order pj (Compare with
Remark 4.2.2),

[AH 3] εe0 >
vK(λ)

m1+...+mn
(see Remark 4.3.5).

Our main theorem for this chapter is the following.

4.3.4 Theorem. After a possible extension of K , an admissible Hurwitz tree defined over K exists
for every n and every set of admissible positive integers m1 < . . . < mn. Therefore, for every
Z/pnZ-Galois extension E/F with Artin character aE/F there exists a Hurwitz tree for the group
Z/pnZ with root v0 and trunk e0 such that δv0 = 0 and ae0 = aE/F .

4.3.5 Remark. The condition (AH3) is a technical condition which will allow us to prove that the
thicknesses we associate to the edges are all positive. This will become clear in Section 4.3.3.

We start with the case n = 1, i.e. the case G = Z/pZ. Let m1 > 1 be an integer. By definition, the
singleton {m1} is admissible. Let B be the normalization of A := R[[t]] inside the field extension
generated by the Kummer equation Y p = 1 + λpt−m1 . One checks that B is again a formal power
series ring over R and that the residue extension k[[t]] ⊂ B ⊗ k is a separable extension of local
power series rings. One also checks that the associated Hurwitz tree is admissible with respect to the
admissible singleton {m1}.

Now we proceed to the case n > 1. In order to continue, we make the following assumption.

4.3.6 Assumption. We assume that p 6= 2.

At the end of our construction we shall return to the case p = 2.

We assume that we are given admissible integers m1 < . . . < mn. Let us assume that an admissible
Hurwitz tree Tn−1 has been constructed for the group G′ := Z/pn−1Z and the admissible integers
m1 < . . . < mn−1. We let v′0 be the root of this tree and e′0 be its trunk. For an edge e of Tn−1

we write a′e for its Artin character, s′e for its Swan character, and for a vertex v of Tn−1 we write
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G′v ⊂ G′ for the group associated with the vertex. For an edge e of Tn−1 we write εe for its
thickness. Notice that by assumption (see Definition 4.3.3 (AH3))

εe′0 >
vK(λ)

m1 + . . .+mn−1
.

4.3.1 Underlying tree

We define T ′n−1 to be the tree Tn−1 with the root v′0 and trunk e′0 deleted. Notice that T ′n−1

is a rooted tree and we denote this root by v′1. We now distinguish two cases. Since the integers
m1 < . . . < mn form an admissible set, we see that mn ≥ (p − 1) · (m1 + . . . + mn−1). The first
case we shall consider is the case

mn = (p− 1) · (m1 + . . .+mn−1) (4.1)

and the second case is

mn > (p− 1) · (m1 + . . .+mn−1). (4.2)

The reason we distinguish these two cases is that the construction of the underlying trees for these
cases are different. In both cases we shall make use of mn copies of an auxiliary object called the
new chain T̃ . Each copy T̃i is defined as follows. The new chain T̃i consists of n + 1 vertices
ṽi,0, ṽi,1, . . . , ṽi,n−1, ṽi,n and n edges ẽi,j , j = 1, . . . , n, where ẽi,j connects ṽi,j−1 to ṽi,j .

First case (4.1)

Now we define the underlying tree of the G-Hurwitz tree. We consider the first case first, i.e. the case
of (4.1). Let Tn be the tree defined as follows. We let v0, w1, w2 be three vertices. We connect v0

to w1 with an edge e0, and we connect w1 with w2 with an edge f0. Next we connect T ′n−1 to
w2 by identifying the vertex w2 with the vertex v′1. Furthermore, we connect the mn copies T̃i of
the new chain to the vertex w1 by identifying for each copy the vertex ṽi,0 with the vertex w1. This
completes the definition of the tree Tn and we choose v0 to be its root and e0 to be its trunk.
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 T̃i, i = 1 . . . ,mn

Figure 1: The underlying tree Tn for the first case (4.1).

Second case (4.2)

For the second case, i.e. the case of (4.2), we define the tree Tn as follows. We let v0, w1, w2, w3

be four vertices. We connect v0 to w1 with an edge e0, and we connected w1 with w2 with an
edge f0. Furthermore, we connect w1 and w3 via an edge g0. Next we connect T ′n−1 to w2

by identifying the vertex w2 with the vertex v′1. Furthermore, we connect the mn copies T̃i to
the vertex w3 by identifying for each copy the vertex ṽi,0 with the vertex w3. This completes the
definition of the tree Tn and we choose v0 to be its root and e0 to be its trunk.
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Figure 2: The underlying tree Tn for the second case (4.2).

4.3.7 Remark. In both cases the leaves of Tn are the leaves of Tn−1 together with mn new leaves,
one for the endpoint of each copy T̃i, i.e. the vertices ṽi,n.

4.3.2 Monodromy groups

Let us now associate a group with each vertex of the tree Tn. In the first case, with the vertices v0, w1

and w2 we associate the group G, i.e. we set Gv0 = Gw1 = Gw2 := G. In the second case, with the
vertices v0, w1, w2 and w3 we associate the group G, i.e. Gv0 = Gw1 = Gw2 = Gw3 := G.

Let us now consider the vertices of Tn coming from the subtree T ′n−1. Since Tn−1 was a Hurwitz
tree for the group G′ = Z/pn−1Z, we see that with each vertex v′ , subgroup G′v′ of G′ = Z/pn−1Z .
is associated. Let v′ be a vertex of T ′n−1 . Then with v′ considered as a vertex of Tn we associate
the preimage of G′v′ under the surjection Z/pnZ→ Z/pn−1Z . Notice that #Gv′ = p ·#G′v′ .

Since in both cases we identified the vertex w2 with the vertex v′1 of T ′n−1, we need to check that
there is no contradiction at this vertex. Indeed, with w2 we have associated the group G = Z/pnZ.
However, with v′1 the group G′v′1

= G′ = Z/pn−1Z was associated in the Hurwitz tree Tn−1, and
hence there is no contradiction in our definition.

Next we consider the vertices ṽi,1, . . . , ṽi,n of the copies T̃i. With the vertex ṽi,j we associate the
subgroup Gṽi,j := Z/pn−j+1Z ⊂ G. Notice that with the leaf ṽi,n we have associated the subgroup
Gṽi,n = Z/pZ ⊂ G.

The choices of associations of subgroups of G with the vertices now also determine by Definition
3.2.4 (H3) the Artin characters associated to the edges of Tn. Furthermore, setting se := ae −
IndGGt(e) uGt(e) for an edge e also defines the Swan character of the edge e. The proof of the following
lemma is left to the reader.

4.3.8 Lemma. Let χj be a character of G of order pj . Let b be a vertex of Tn. Assume that
Gb = Z/pmZ. Then χj restricts to the trivial character on Gb if and only if n − m + 1 > j.
Therefore we have that

〈
IndGGb uGb , χj

〉
=

{
1 n−m+ 1 ≤ j,
0 n−m+ 1 > j.

(4.3)

The following lemma follows from Definition 3.2.4 (H3) and Lemma 4.3.8.
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4.3.9 Lemma. For an edge e of Tn, we have that ae(χj) = nj where nj is the number of leaves
b ≥ t(e) such that Z/pn−j+1Z / Gb. In particular for the edge e0 we have ae0(χj) = m1 + . . .+
mj + 1.

PROOF. There are exactly 1+m1 leaves with the group Z/pnZ associated with them, and for i ≥ 2
there are exactly mi leaves associated with the group Z/pn+1−iZ. Therefore, ae0(χj) is the number
of the leaves with associated group containing Z/pn−j+1Z, and this is therefore 1+m1+. . .+mj . �

Let us also make Artin and Swan characters explicit for the edge e0 and f0, as well as the edge g0

in the second case (4.2).

4.3.10 Lemma. We have

〈ae0 , χj〉 = 1 +m1 + . . .+mj , 〈af0 , χj〉 = 1 +m1 + . . .+mmin{j,n−1}

and

〈se0 , χj〉 = m1 + . . .+mj , 〈sf0 , χj〉 = m1 + . . .+mmin{j,n−1}.

In the second case, i.e. the case of (4.2), we have for the edge g0 that

〈ag0 , χn〉 = mn, 〈sg0 , χn〉 = mn − 1.

We leave the proof to the reader.

4.3.3 Thicknesses

Next we define the thicknesses of the edges. Since Tn−1 was originally a Hurwitz tree, we define the
thickness of an edge of the subtree T ′n−1 of Tn to be its thickness in the tree Tn−1.

The first case (4.1)

We now consider the thicknesses of the edges e0 and f0 in the first case (4.1). We define εe0 such
that

εe0 ·mn = vK(p) (4.4)

and we define εf0 such that

εe0 + εf0 = εe′0 . (4.5)

4.3.11 Remark. To ensure that εe0 and εf0 are integers we might need to extend K .

Our first priority is to check that εf0 is positive. Indeed it suffices to show that εe0 < εe′0 . For this we
note

εe′0 >
vK(λ)

m1 + . . .+mn−1
by Definition 4.3.3 (AH3) for Tn−1

≥ vK(λ)(p− 1)
mn
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since mn ≥ (p− 1) · (m1 + . . .+mn−1) and hence we have that

εe′0 >
vK(p)
mn

= εe0

by (4.4). This shows the positivity of εf0 .

Since vK(λ) ≤ vK(p), we also have that εe0 >
vK(λ)

m1+...+mn
, hence satisfying (AH3) of Definition

4.3.3.

Next we define the thicknesses of the edges ẽi,j coming from the mn copies T̃i of the new chain.
We define

εẽi,j := εe0 ·mj (4.6)

for j = 1, . . . , n− 1 and εẽi,n := 0.

4.3.12 Remark. The reason the thicknesses are defined in this way is to make sure that Definition
3.2.4 (H5) holds for the mn new leaves of the tree. This will become clear toward the end of Section
4.3.4.

The second case (4.2)

For the second case, we define εe0 respectively εf0 again by (4.4) respectively (4.5). We define εg0
such that

εe0 · (m1 + . . .+mn) + εg0 · (mn − 1) = vK(λp). (4.7)

Our first priority is to show that εg0 is positive. For this we notice that by (4.2) we have

m1 + . . .+mn <
p

p− 1
·mn

in the second case. Hence

εe0 · (m1 + . . .+mn) <
p

p− 1
·mn · εe0 = vK(λp)

which shows the positivity of εg0 . As a side remark to be used later, we prove the following lemma
now.

4.3.13 Lemma. We have that εe0 ·m1 > εg0 .

PROOF. By (4.7) we have that

εg0 · (mn − 1) = vK(λp)− εe0 · (m1 + . . .+mn).

By (4.4) we have that

εg0 · (mn − 1) = vK(λp)− εe0 ·mn − εe0 · (m1 + . . .+mn−1)
= vK(λ)− εe0 · (m1 + . . .+mn−1).
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It follows that

εg0 =
vK(λ)
mn − 1

− (p− 1) · vK(λ)
mn(mn − 1)

· (m1 + . . .+mn−1)

=
vK(λ)
mn

· mn − (p− 1) · (m1 + . . .+mn−1)
mn − 1

<
vK(p)
mn

,

since p > 2 by Assumption 4.3.6. �

4.3.14 Remark. The proof of this lemma also works in the case p = 2 and n ≥ 3 . However, it fails
in the specific case p = 2 , n = 2 and m1 = 1 .

We define εẽi,1 := εe0 ·m1 − εg0 and εẽi,j := εe0 ·mj for j = 2, . . . , n − 1 and εẽi,n := 0. By
Lemma 4.3.13 it follows that all εẽi,j are positive.

4.3.4 Depth characters

We have now defined the thickness of each edge of Tn. By defining δv0 := 0, we see that by Defini-
tion 3.2.4 (H4) this also fixes the choices of depth characters at each vertex of the tree Tn. Our aim
now is to check Definition 3.2.4 (H5), i.e. to show that for a leaf b we have δb = IndGGb δ

mult
Gb

.

Let us first do this for the leaves coming from the subtree T ′n−1 ⊂ Tn. Our strategy is as follows. We

shall show that for every irreducible character χ of G we have that 〈δb, χ〉 =
〈
δmultGb

, χ|Gb
〉

. Let us
start with the trivial character 1G. Indeed, we have that 〈se, 1G〉 = 0 for each edge e of the tree Tn,
and hence it follows that

〈δb, 1G〉 = 0 =
〈
δmultGb

, 1G|Gb
〉
.

Let χl be an irreducible character of G with order pl for l = 1, . . . , n and let χ′l be an irreducible
character of G′ = Z/pn−1Z of order pl for l = 1, . . . , n− 1. Let e be an edge of T ′n−1 and let a′e
denote the Artin character of the Hurwitz tree Tn−1 associated to the edge e. Let us first consider the
case that l ≤ n− 1. Our first observation is the following relation between ae and a′e which follows
from Lemma 4.3.9.

4.3.15 Lemma. We have that 〈ae, χl〉 = 〈a′e, χ′l〉.

Our next observation concerns the relation between IndG
′

G′
t(e)

uG′
t(e)

and IndGGt(e) uGt(e) . From Lemma

4.3.8 and the fact that #Gt(e) = p ·#Gt(e)′ we deduce the following lemma.

4.3.16 Lemma. We have that〈
IndG

′
Gt(e)′

uG′
t(e)
, χ′l

〉
=
〈

IndGGt(e) uGt(e) , χl
〉
.

Therefore we obtain the following important lemma.

4.3.17 Lemma. For l ≤ n− 1 we have that

〈se, χl〉 =
〈
s′e, χ

′
l

〉
.
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Let us now study explicitly what the defined depth character at a leaf b ∈ T ′n−1 is. We treat both cases
(4.1) and (4.2) simultaneously. Let v0 < w1 < w2 < z1 < . . . < zm < b be the unique chain of
vertices of Tn starting at the root v0 and ending at the leaf b. The vertices z1, . . . , zm, b are vertices
of the subtree T ′n−1. Let h1 be the edge connecting w2 and z1, and let hi be the edge connecting
zi−1 to zi, for i = 2, . . . ,m. Then from the definition of δb (Definition 3.2.4 (H4)), we obtain

〈δb, χl〉 = εe0 · 〈se0 , χl〉+ εf0 · 〈sf0 , χl〉+
∑
i

εhi · 〈shi , χl〉 (Definition 3.2.4 (H4))

= εe0 · (m1 + . . .+ml) + εf0 · (m1 + . . .+ml) +
∑
i

εhi · 〈shi , χl〉 (Lemma 4.3.10)

= (εe0 + εf0) · (m1 + . . .+ml) +
∑
i

εhi · 〈shi , χl〉

= εe′0 ·
〈
s′e′0
, χ′l

〉
+
∑
i

εhi ·
〈
s′hi , χ

′
l

〉
(Lemma 4.3.17)

=
〈
δmultG′b

, χ′l|G′b
〉

(Definition 3.2.4 (H5) for Tn−1).

Therefore, if we can prove that the order of χ′l|G′b is the same as that of χl|Gb , then by (3.1) of
Chapter three we have the equality

〈δb, χl〉 =
〈
δmultGb

, χl|Gb
〉
.

Let us now check that the order of χ′l|G′b is the same as that of χl|Gb . Let Gb ' Z/pmZ , where
m ∈ N . Furthermore, the kernel of χl is the subgroup Z/pn−lZ of G = Z/pnZ . Therefore, χl|Gb
is trivial if and only if n− l ≥ m . If n− l < m , then the kernel of χl|Gb is the subgroup Z/pn−lZ ,
and hence χl|Gb has order m− (n− l) .

The subgroup G′b is isomorphic to Z/pm−1Z . Similarly, χ′l|G′b is trivial if and only if n− 1− l ≥
m − 1 . If n − 1 − l < m − 1 , then the kernel of χ′l|G′b is the subgroup Z/pn−1−lZ , and hence
χl|G′b has order m− 1− (n− 1− l) , which is the same as m− (n− l) . We see therefore that the
order of χ′l|G′b is the same as that of χl|Gb .

We leave the details of the case of l = n to the reader. Next we turn our attention to the mn new
leaves of the tree Tn. Let b be one of the new leaves of Tn, i.e. a leaf of Tn that is not in T ′n−1.

The first case (4.1)

We consider the first case first. We consider the chain v0 < w1 < ṽi,1 < . . . < b starting at v0 and
ending at the endpoint b of the copy T̃i. Notice that Gb = Z/pZ. First of all we remark once again
that for the trivial character 1G of G, we have that

〈δb, 1G〉 = 0 =
〈
δmultGb

, 1G
〉
.

It remains to prove that for a nontrivial irreducible character χ of G, we have that

〈δb, χ〉 =
〈
δmultGb

, χ|Gb
〉
.
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Consider the vertex ṽi,j coming from a new chain T̃i in Tn. Since the group Gṽi,j associated
with ṽi,j is Z/pn+1−jZ, we see from Lemma 4.3.8 that χl restricts to the trivial character on Gṽi,j
exactly when j > l. Therefore we obtain that〈

IndGGṽi,j uGṽi,j , χl
〉

=

{
1 j ≤ l,
0 j > l.

Furthermore, the leaf b is the only leaf with ṽi,1 ≤ b. We see that since Gb = Z/pZ, we have by the
fact that aẽi,j = IndGGb uGb that

〈
aẽi,j , χl

〉
=

{
0 l < n,

1 l = n.

Therefore, for l < n we have that 〈
sẽi,j , χl

〉
=

{
−1 j ≤ l,
0 j > l,

(4.8)

and for l = n we have that 〈
sẽi,j , χl

〉
= 0. (4.9)

Let us now compute 〈δb, χl〉. We note that by Lemma 4.3.10 we have

〈se0 , χl〉 = m1 + . . .+ml.

Therefore for l ≤ n− 1,

〈δb, χl〉 = εe0 · (m1 + . . .+ml) +
∑
j≤n

〈
sẽi,j , χl

〉
· εẽi,j

= εe0 · (m1 + . . .+ml) +
∑
j≤l
−1 · εẽi,j + 0 (by (4.8))

= εe0 · (m1 + . . .+ml) +
∑
j≤l
−1 · εe0 ·mj (by (4.6))

= 0.

Hence we see that 〈δb, χl〉 = 0. However
〈
δmultGb

, χl|Gb
〉

= 0 since χl restricts to the trivial
character on Gb if l < n. Therefore we have that

〈δb, χl〉 = 0 =
〈
δmultGb

, χl|Gb
〉
∀l ≤ n− 1.

We now consider the remaining case l = n, i.e. the case of a character χn of order pn. Indeed, in
this case we obtain

〈δb, χn〉 = εe0 · (m1 + . . .+mn) +
∑
j≤n

〈
sẽi,j , χn

〉
· εẽi,j

= εe0 · (m1 + . . .+mn) (by (4.9))

= εe0 ·
p

p− 1
·mn (by (4.1))

= vK(λp)

=
〈
δmultGb

, χn|Gb
〉
.
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Finally, we have proved that δb = IndGGb δ
mult
Gb

for the new leaves b of the tree Tn. We have thus
proved that the datum Tn is indeed a Hurwitz tree in the first case.

The second case (4.2)

For the second case, we proceed as follows. Consider the chain v0 < w1 < w3 < ṽi,1 . . . < b starting
from the root v0 and ending at the new leaf b which is the endpoint of the copy T̃i. As usual, we
shall show that δb = IndGGb δ

mult
Gb

by showing that

〈χ, δb〉 =
〈
δmultGb

, χ|Gb
〉

for every irreducible character χ of G. We consider the case χ = χn, a character of order pn of G.

We find

〈δb, χn〉 = εe0 · 〈se0 , χn〉+ εg0 · 〈sg0 , χn〉+
∑
j

εẽi,j ·
〈
sẽi,j , χn

〉
. (4.10)

We concentrate on the values
〈
sẽi,j , χn

〉
. Namely, by (4.9) we see that these are all 0. Therefore,

putting this into (4.10) we obtain

δb(χn) = εe0 · (m1 + . . .+mn) + εg0 · (mn − 1) + 0 (by Lemma 4.3.10)

= vK(λp) (by definition of εg0)

=
〈
δmultGb

, χn|Gb
〉

since Gb is a cyclic group of order p. We leave the details of the other irreducible characters to the
reader.

Finally we say something about the case p = 2. One can attempt the exact same construction as
above in the case p = 2. However one encounters a problem with Lemma 4.3.13 for the case n = 2
and m1 = 1. To remedy this problem, we start the induction at n = 3 in the case of p = 2.
Then the base step of the induction process, where n = 2, is given by the explicit liftings of Green–
Matignon [15] for Z/p2Z-extensions. One checks that the Hurwitz trees induced by their liftings are
admissible (for instance, by applying the Newton polygon to the polynomial G(T−1) of Lemma 5.4
in Green–Matignon [15]). The proof then goes through exactly as we have done it above.
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Chapter 5

Towards the lifting problem

In Henrio [19] it was proved that every Z/pZ -Hurwitz tree is induced by a Z/pZ -action on the p -
adic open disc. Let us explain Henrio’s method in some more detail.

A fundamental ingredient that Henrio used was an association of differential forms to the vertices of
the Hurwitz tree. Henrio proved that the differentials associated to the vertices are either exact or
logarithmic, and that this depends on the depth associated to the vertex (see for instance Lemma 1.4.2
and Lemma 1.4.3).

A further ingredient was a classification result, which classifies the Z/pZ -Galois actions on a two-
dimensional local field up to conjugation. In particular, Henrio proved that if the depths and differen-
tials associated to two Z/pZ -actions are equal, then the actions are conjugate.

He then exploited this to construct Z/pZ-automorphisms of the open disc which induce a given
Z/pZ-Hurwitz tree. The technique is based on patching certain rigid analytic spaces with G-actions
along their boundaries. Since the boundaries of spaces that Henrio used are essentially two-dimensional
local fields, one needs a classification result, up to conjugation, of the spirit above in order to apply
the patching techniques. A similar technique was used in Bouw–Wewers [4] for the case that G is
the dihedral group of order 2p, where p is an odd prime.

In this chapter, we shall consider some problems that are present when one attempts to generalize
Henrio’s work to the case of general p -group actions. It is possible to extend our definition of a
Hurwitz tree, by using Kato’s differential Swan conductor, in order to associate differential forms to
the vertices of the Hurwitz tree. However, a fundamental problem that we shall illustrate, is that the
differential forms need not only be exact or logarithmic. Instead, as we shall see in Section 5.2, it
seems that the space in which these differential forms take their values can be very big. Therefore, it
is not clear what the correct conditions are that have to be imposed on the differential forms.

The second issue to which we turn our attention is the classification result of Henrio. Unfortunately
we shall see in Section 5.3 that this does not generalize to Z/p2Z -actions. We shall show that there
exist two Z/p2Z -actions on a two-dimensional local field, with the same Swan-conductor informa-
tion, which are not conjugate.

Lastly, we return to the case of a Q8 -action in Section 5.4, where Q8 denotes the quaternion group

79
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of order 8 . We shall explicitly write down a Huwritz tree for Q8 which cannot be induced from an
action on the p -adic open disc. It seems that the crucial ingredient that is missing is the simplified
ramification filtration, which is trivial for a Z/pZ -action, together with Theorem 2.4.11.

5.1 Notation and setting

As in the previous chapter, we let K be a complete discrete valuation field of characteristic 0 with
perfect residue field k of characteristic p and ring of integers R. We denote by vK the valuation
of the field K , and by π ∈ R a local parameter of K . We shall always normalize vK such that
vK(π) = 1 . In Section 5.2 and Section 5.3 we shall assume ζp2 ∈ K and we set λ := ζp − 1. In
Section 5.4 we shall assume that p = 2 and K is such that vK(2) = 5.

5.2 Towards differential Hurwitz trees

Let B be either R[[z]] or the ring of convergent power series R{z}. We let E := Frac B̂πB . Let G
be a finite p-group and assume that G acts on B fixing R. We let A := BG and F := EG.

Assume that E/F is a Case-II type G-Galois extension. To every character χ of G, we may now
associate a differential ωχ ∈ Ω⊗ rk(χ)

F
via Kato’s Swan conductor. Using this and the technique of

Section 3.5, we may now extend the definition of Hurwitz trees to also include differential data.

Before this approach can be pursued further, one needs a better understanding of the values that the
differential Swan conductor can take. In this section we would like to illustrate that the space of
differentials that can occur as differential Swan conductors can be very big.

5.2.1 Example : nonlogarithmic nonexact differential Swan conductor

Consider the polynomial

x2 + 6x+ 6 (5.1)

and let α ∈ Q̃2 be a root of (5.1). We let K := Q2(α, i, 2
1
4 ,
√

2α+ 2) and we denote by R the ring
of integers of K . Let πK ∈ R be a parameter for K . We set b := 2α + 2. Let A := R[[t]] and let
B be the normalization of A inside the Z/4Z-extension of A generated by y, where y satisfies

y4 = (1 + 4t−1)(1− bt−1)2. (5.2)

5.2.1 Remark. One can prove that the ring B is a local power series ring, i.e. B = R[[z]]. Further-
more, one shows that the residue extension F2[[t]] ⊂ F2[[z]] is separable. Therefore, the extension
B/A has good reduction.

5.2.2 Remark. Notice that vK(α) = vK(
√

2) and therefore vK(b) = vK(2). Lastly we note that

vK(b− 2) > vK(2).

We now consider the ring A′ := R{v} where v and t are related by t = 2v. The Z/4Z-extension
B/A induces a Z/4Z-extension B′/A′ of normal rings.
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5.2.3 Remark. One checks again that B′ is a ring of convergent power series, i.e. B′ = R{s} for
some s ∈ B′. However this time the residue extension k[v] ⊂ k[s] is purely inseparable.

Let F := Frac(Â′(πA′)) and let E := F ⊗A′ B′. The fields F and E are discrete valuation fields
with parameter πK . One checks that E/F is a Z/4Z-Galois extension of Case-II type. Our aim is
now to calculate the differential Swan conductors of the characters of Z/4Z for the extension E/F .
Notice that the residue field F is k(v).

Let M/F be the intermediate Z/2Z-extension of E/F . One checks that M/F is generated by x
where x satisfies

x2 = 1 + 2v−1. (5.3)

We make the substitution x = 1−
√

2w−1 and we thus obtain from (5.3) that M/F is generated by

(1−
√

2w−1)2 = 1 + 2v−1. (5.4)

One obtains from (5.4) that

w−2 −
√

2w−1 = v−1. (5.5)

Let φ (respectively χ ) be characters of order 2 (respectively 4 ) of the group Z/4Z. Then one
obtains immediately from (5.3) that

SwE/F (φ) = [2]− [dv−1] = [2]− [−v−2 · dv]. (5.6)

Let us now also calculate SwE/F (χ). To do this we shall use the identity (see Theorem 2.3.21)

p · SwE/F (χ) = p · (SwE/M (χ|H) +DM/F ) (5.7)

inside the group SM and where H := Gal(E/M) and p = 2. Set b = 2β where β ∈ R∗. From
(5.2) and (5.5) we see that E/M is generated by y where y satisfies

y2 = (1−
√

2w−1)(1− βw−2 + β
√

2w−1) (5.8)

= 1− βw−2 −
√

2(β − 1)w−1 + β
√

2w−3 − 2βw−2. (5.9)

We set y′ = y·w
w+i
√
β

to obtain a generating equation

(y′)2 = 1 +
√

2β
w−1

(w + i
√
β)2

+
√

2N (5.10)

for E/M and where N ∈ πK · OM . From (5.10) one sees that

SwE/M (χ|H) = [2
√

2]− [−β · w−2(w + i
√
β)−2 · dw]. (5.11)

Now we substitute (5.6) and (5.11) into (5.7) to find SwE/F (χ). One obtains

2 · SwE/F (χ) = [16]− [βw−4(w2 − β)−2v−2 · (dv)⊗2]

= [16]− [βv−4(v − β)−2 · (dv)⊗2].

We find thus that

SwE/F (χ) = [4]− [
√
β

v2(v − β)
dv].

Notice that the differential part is neither exact nor logarithmic.
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5.2.2 Example : special extensions

In this section we consider again general K such that ζp2 ∈ K . Let F be a two-dimensional local
field containing the field K and such that πK is a parameter for F . Assume that the residue field
of F is F = k((t)). Let VE ⊂ ΩF (respectively VL ⊂ ΩF ) denote the space of exact (respectively
logarithmic) differentials of F , and let V := VE + VL ⊂ ΩF . Our goal for this paragraph is to show
the following theorem.

5.2.4 Theorem. For every ω ∈ V , there exists a Z/p2Z-Galois extension Eω/F of Case-II type
together with a character of Gal(Eω/F ) = Z/p2Z such that

SwEω/F (χ) = [πn]− [ω],

where n = vK(λp) .

Our strategy for doing this is as follows. Firstly one knows that for every logarithmic differential
ωL ∈ VL, there exists a Z/pZ-extension EωL/F and an irreducible character χωL of Gal(EωL/F )
such that

SwEωL/F
(χωL) = [λp]− [ωL].

Notice that we may consider χωL as a one-dimensional representation of the absolute Galois group
GF of F . Secondly, we shall show that for every ωE ∈ VE , there exists a Z/p2Z-extension EωE/F
together with a character χωE of Z/p2Z = Gal(EωE/F ) such that

SwEωE /F
(χωE ) = [λp]− [ωE ].

Again we may consider χωE as an irreducible character of the absolute Galois group GF of F . Let
H ⊂ GF be the kernel of the one-dimensional character χ := χωL ·χωE . The embedding H ↪→ GF
induces a Z/p2Z-Galois extension E/F together with a character, also denoted by χ, of the Galois
group Gal(E/F ). By Theorem 1.6.1 we then obtain

SwE/F (χ) = [λp]− [ωL + ωE ]

giving our result.

Before we proceed to proving Theorem 5.2.4, we make two remarks.

5.2.5 Remark. It seems that the choice n = vK(λp) is not special. Indeed, one can find other values
for n such that the set of differential Swan conductors still contain logarithmic and exact differentials
simultaneously. We leave to the reader to find such examples.

5.2.6 Remark. For the logarithmic differentials ωL ∈ VL we used a character χωL of order p.
However, twisting χωL by an appropriate character of order p2, we see that we can find a character
of order p2 with differential Swan conductor ωL.

We now proceed to the proof of Theorem 5.2.4. By the strategy above, it suffices to consider a
ωE ∈ VE . Let ωE = df where f ∈ F . Note that f is not a p th-power in F

∗. Let m be an
integer such that vK(p) = m · p. After extending K , we may assume that p|m. Define E to be the
Z/p2Z-extension of F generated by y where y satisfies

yp
2

= 1 + πmpf. (5.12)
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Let M/F be the intermediate Z/pZ-extension. Let H := Gal(E/M). One sees from (5.12) that
M/F is generated by w = yp , where w satisfies

wp = 1 + πmpf (5.13)

and hence for an irreducible Gal(E/F )-character χ′ of order p, we have

SwE/F (χ′) = [λpπ−mp]− [b · df ] = [λpπ−mp]− [b · ωE ] (5.14)

where b ∈ F∗p.

Let χ now be a character of Gal(E/F ) of order p2. We make the substitution

w = 1 + πmv

and substituting this into (5.12) we obtain the following generating equation for the Z/pZ-extension
E/M :

yp = 1 + πmv. (5.15)

One verifies that since p|m we have by (5.15) that

SwE/M (χ|H) = [λpπ−m]− [c · dv]. (5.16)

where c ∈ F∗p.

Using (5.7) we see from (5.16) that

p · SwE/F (χ) = p · [λpπ−m]− p · [c · dv] + (p− 1) · [λpπ−mp]− (p− 1) · [df ]

= [λp · pp · π−mp2 ]− [d · (df)⊗p]

where d ∈ F∗p. However we have that m · p = vK(p) and hence the above shows that

SwE/F (χ) = [λp]− [df ] = [λp]− [ωE ].

This proves Theorem 5.2.4.

We now raise two questions. Let χ ∈ X(GF ) := Hom(GF ,C∗) be a one-dimensional representa-
tion. Let Eχ be the induced cyclic extension of F and notice that we may consider χ as a character
of Gal(Eχ/F ). We assume that Eχ/F is of Case-II type. We may therefore define the depth δχ and
the associated differential ωχ via Kato’s Swan conductor of the extension Eχ/F .

Define V i
F := {ωχ|δχ = i}.

5.2.7 Question. What is the space V i
F ⊂ ΩF ? Can it happen for instance that the differential tp−1 dt

occurs as a differential Swan conductor?

The examples above show that V vK(λp)
F ⊃ E + L.

Let A be a formal power series ring and identify F with Frac(ÂπA) (after an extension of K this
is always possible). We say a character χ ∈ X(GF ) is smooth if there exists a cyclic cover B/A
of formal power series rings such that χ induces the extension E/F where E := B ⊗A F . Let
X0(GF ) denote the group of characters generated by all smooth characters.
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5.2.8 Question. What is the space V i
F,0 := {ωχ|χ ∈ X0(GF ) and δχ = i} ?

One can show for instance that for certain i, VF,0 ⊃ E∞, where E∞ ⊂ ΩF denotes the space of
exact differentials on F with a pole.

5.3 Classification problem

In this section we let F be again a two-dimensional local field. Let G be a finite p-group and let
E1/F and E2/F be two G-Galois extensions of Case-II type. Assume that for every character χ
of G we have that SwE1/F (χ) = SwE2/F (χ). Our goal for this section is to ask whether or not E1

and E2 are G-equivariantly conjugate, i.e. if there exists a K-isomorphism φ : E1 ' E2 which
commutes with the action of G. Notice that we do not require φ to be a F -isomorphism.

As we have already pointed out in the introduction of this chapter, in Henrio [19] it was proved that
this is indeed the case for G = Z/pZ. There this has been exploited to show that every Z/pZ -
Hurwitz tree is induced by an action on the p -adic open disc.

We shall now show that in the case of G = Z/p2Z this is no longer true. Therefore we see that we
are still far away from constructing Z/p2Z-automorphisms of the disc which induce a given Z/p2Z-
Hurwitz tree.

Our strategy for constructing the example is as follows. First in Section 5.3.1 we shall explicitly
define the two Z/p2Z-Galois covers of F . We shall choose suitable isomorphisms of their Galois
groups with G := Z/p2Z. Then we make some remarks on the Galois theory of the two G-Galois
extensions. This is done in Section 5.3.2. Thereafter in Section 5.3.3 we shall show that there exists
no K-isomorphism between the two fields which are also G-equivariant. Finally in Section 5.3.4 we
shall show that for every character χ of G we have that the Swan conductors of χ agrees for both
extensions.

5.3.1 Remark. We point out that Tossici [40], [41] has introduced stronger invariants than the dif-
ferential Swan conductor for Z/p2Z -actions. One might ask if his invariants are strong enough to
classify Z/p2Z -actions up to conjugation.

5.3.1 Definitions of the extensions

Let A := R[[t]] and let F := Frac Â(πA). Notice that F is a two-dimensional local field with residue
field F = k((t)). Let n ∈ N be a positive integer satisfying the following conditions.

[n1] vK(πnp
2
) < vK(p),

[n2] vK(πn) < vK(pπ−np),

[n3] p2 < n and p2|n.

5.3.2 Remark. Let us give an example of K and n where these conditions are satisfied. Let n =
2 · p2 and choose K to be an extension of Qp(ζp2) with ramification index 2 · p4 . Let π be a
parameter of K . Since vK(π) = 1 , we see that

vK(πnp
2
) = n · p2 < vK(p).
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We construct two Z/p2Z-extensions of F as follows. Let f1 := 1 + πnpt and g1 := 1 + πpt. Let
f2 := 1 + πnpt and g2 := 1. We define E1/F to be the extension of F generated by y1 , where y1

satisfies

yp
2

1 = f1 · gp1 . (5.17)

We define E2/F to be the extension of F generated by y2 , where y2 satisfies

yp
2

2 = f2 · gp2 . (5.18)

Throughout what follows let σ be a generator of G = Z/p2Z. We identify Gal(E1/F ) (respectively
Gal(E2/F ) ) with G by declaring that σy1 = ζp2 · y1 (respectively σy2 = ζp2 · y2 ).

5.3.2 Galois theory of E1/F and E2/F

Assume that there exists a K-isomorphism φ : E1 ' E2 which is also G-equivariant.

5.3.3 Remark. Since φ is G-equivariant, we see that φ restricts to an isomorphism φ|F : F ' F .
This need not be the identity.

Let H be the unique subgroup of G of order p. Our first result is the following lemma.

5.3.4 Lemma. We have that φ(f1)
f2
∈ F ∗ is a p-power inside F ∗.

PROOF. Let u1 = φ(y
p
1
g1

) ∈ E2. Notice that u1 ∈ EH2 and furthermore, we have that

up1 = φ(f1).

Furthermore,
σ · u1 = ζp · u1.

Similarly, we have that u2 := yp2
g2
∈ EH2 and

σ · u2 = ζp · u2.

We have therefore that u1
u2

is an element of F . However,

(
u1

u2
)p =

φ(f1)
f2

and the lemma follows. �

Our second result is the following.

5.3.5 Lemma. We have that φ|F (f1g
p
1)

(f2g
p
2)
∈ F ∗ is a p2-power of F ∗.



86 CHAPTER 5. TOWARDS THE LIFTING PROBLEM

PROOF. Let w = φ(y1) ∈ E2. We have that

wp
2

= φ(f1g
p
1)

and therefore E2/F is generated by both the Kummer equations

wp
2

= φ(f1g
p
1)

as well as the equation
yp

2

2 = f2g
p
2 .

Notice that since φ is G-equivariant, we have that σ ·w = ζp2 ·w and furthermore σ · y2 = ζp2 · y2.
Therefore the element w

y2
is fixed under σ and therefore w

y2
∈ F . However,

(
w

y2
)p

2
=
φ(f1g

p
1)

(f2g
p
2)
.

The lemma follows. �

5.3.3 Conjugation theorem

Our goal for this section is to prove the following theorem.

5.3.6 Theorem. There exists no G-equivariant K-isomorphism E1 ' E2.

PROOF. Assume that a G-equivariant R-isomorphism φ : E1 ' E2 exists. By the Remark 5.3.3, we
see that φ restricts to an isomorphism of φ|F : F ' F . Since the reduction of t is a parameter of F ,
we see that φ(t) must also reduce to a parameter of F . We define f ∈ F to be such that φ(t) = t+f .

Therefore we have

φ(f1g
p
1) = φ((1 + πnpt)(1 + πpt)p)

= (1 + πnp(t+ f))(1 + πp(t+ f))p.

By Lemma 5.3.5 we see therefore that

(1 + πnp(t+ f))(1 + πp(t+ f))p

(1 + πnpt)

must be a p2-power. We expand using [n1] and [n3] and we find the following approximation:

1 + πnp(t+ f))(1 + πp(t+ f))p

(1 + πnpt)
= 1 + πp

2
(tp + fp) +O(πp

2+1)

where O(πp
2+1) means a term of valuation exceeding vK(πp

2
).

Therefore, since vK(πp
2
) < vK(p) by (n1), we see that the reduction of tp + fp must be a p2-

power in F . In particular, we see that the reduction of f cannot be a p-power in F .
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However, from Lemma 5.3.4, we see that

1 + πnp(t+ f)
1 + πnpt

must be a p -power in F . Expanding, we find

1 + πnp(t+ f)
1 + πnpt

= 1 + πnpf +O(πnp+1).

Therefore, since vK(πnp) < vK(p) by (n1), we see that the reduction of f must be a p-power in
F , a contradiction. �

5.3.4 The Swan conductors of the extensions

In this section we shall show the following theorem.

5.3.7 Theorem. For every character χ of G we have that SwE1/F (χ) = SwE2/F (χ).

PROOF. In what follows we let H denote the subgroup of G of index p. Let χ be the character of
G with χ(σ) = ζp2 .

The characters of order p

We start with χp. Notice that EH1 ' EH2 as Z/pZ-extensions of F . Furthermore, this extensions is
generated by w := yp1

g1
, where w satisfies the Kummer-type equation

wp = f1 = f2.

We see from the definition of w that G/H acts on w by

σ · w = ζp · w = χp(σ) · w.

From Lemma 1.4.3 it follows that

SwE1/F (χp) = [λpπ−np]− [dt] = SwE2/F (χp).

Therefore, for all i with (i, p) = 1 we see that SwE1/F (χip) = SwE2/F (χip).

The characters of order p2

In order to calculate SwE1/F (χ) we use the identity from Lemma 2.3.21

SwEi/F (χ) = SwEi/L(χ|H) +DL/F

where L := EH1 = EH2 .

It therefore suffices to compute SwEi/L(χ|H) ∈ SL.

We may find a v ∈ L such that

(1 + πnv)p = 1 + πnpt = f1 = f2. (5.19)
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Therefore it follows that

(1 + πnv)p = yp
2

2 .

It follows that (1 + πnv) = ζjp · yp2 for some j ∈ N.

Therefore E2/L is generated by y2 , where y2 satisfies the Kummer equation

yp2 = ζ−jp · (1 + πnv) (5.20)

and where the identification of Gal(E2/L) with H is such that

σp · y2 = ζp · y2.

Since χ maps σp to ζp it follows from Lemma 1.4.3 and (5.20) that SwE2/L(χ|H) = [λπ−n]− [dv].

Next we calculate SwE1/L(χ|H). In order to do this, we use again the element v of L. Notice that

yp1
g1

= ζ−lp · (1 + πnv)

for some l ∈ Z and therefore E1/L is generated by y1 where y1 satisfies the Kummer equation

yp1 = ζ−lp · (1 + πnv) · g1,

and where Gal(E1/L) is identified with H via

σp · y1 = ζp · y1.

The relation (5.19) implies that vK(t − vp) > vK(pπ−np) . Set a := t − vp . We see therefore that
E1/L is generated by y1 , where y1 satisfies the Kummer equation

yp1 = ζ−jp · (1 + πnv) · (1 + πp(vp + a)).

We concentrate on the factor 1 + πp(vp + a) for a moment. We may write

1 + πp(vp + a) = (1 + πv)p −O(p) + πpa

= (1 + πv)p[1 +O(pπ−np)]

where O(p) (respectively O(pπ−np) ) denotes terms of valuation not smaller than vK(p) (respec-
tively vK(pπ−np) ). Therefore, E1/F is generated by a Kummer equation of the form

wp = ζ−jp · (1 + πnv) · (1 +O(pπ−np))

where w = y1
1+πv and such that σp · w = ζp · w.

Since vK(πn) < vK(λ) (from (n1)) and vK(πn) < vK(pπ−np) (from (n2)) we see that E1/L is
therefore generated by a Kummer equation

wp = 1 + πnv +O(πn+1)

where the identification of Gal(E1/L) with H is via

σp · w = ζp · w = χ(σp) · w.
Therefore from Lemma 1.4.3

SwE1/L(χ|H) = [λpπ−n]− [dv]. �

It follows that SwE1/F (χ) = SwE2/F (χ) and hence SwE1/F (χi) = SwE2/F (χi) for all (i, p) = 1.
We are done.
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5.4 The role of the simplified ramification groups

In this section we want to illustrate that in order to have a more complete theory of Hurwitz trees, one
still needs to incorporate the simplified ramification filtration into the definition of a Hurwitz tree. To
illustrate this, we shall explicitly write down a Hurwitz tree for the group G := Q8 , where the depth
character at the root will not be 0. However, assuming that such a Hurwitz tree was induced by an
action on the open disc (up to equivalence, see Definition 3.2.6), then a consideration of the associated
simplified upper ramification filtration will yield a contradiction, hence showing that the Hurwitz tree
was not induced by an action on a local power series ring over R.

5.4.1 Remark. The Hurwitz tree that we shall construct will have δ(φ) > 0 , where δ is the depth
character at the root of the Hurwitz tree, for all characters φ of Q8 . This will imply in particular that
if the Hurwitz tree was induced by an action on the p -adic open disc, then the boundary extension
(see Chapter two for an explanation of this) will be of Case-II type.

We start with the following situation. Let B := R[[z]] and assume that the group Q8 acts on B.
We let E := Frac B̂(πB) and we let F := EG. Notice that E/F is a Q8-Galois extension of two-
dimensional local fields, and we assume that E/F is of Case-II type.

Let δE/F be the depth character of E/F . We denote by χ the unique irreducible character of rank
two on Q8. Our first goal is to prove the following theorem, which will be become useful to us later.

5.4.2 Theorem. There exists a rank-one character ψ of Q8 such that
〈
δE/F , χ

〉
> 2 ·

〈
δE/F , ψ

〉
.

PROOF. We let the first simplified upper ramification jump of the extension E/F be i1. Since Q8

is not abelian, we see from Theorem 2.3.16 that there exists at least a second simplified upper ramifi-
cation jump i2 with i2 > i1.

By Lemma 2.3.3 we can find an upper (usual) ramification jump t := (h, d) ∈ Q2 such that d = i2.
Notice that Gt 6= {1} since t is an upper ramification jump of E/F . Furthermore, we have
Ĝi2 ⊃ Gt and hence Gt 6= G. Denote by ρ : G ↪→ GL2(C) the rank-two representation asso-
ciated with the character χ. Then we see that ρ is nontrivial on Gt and hence by Theorem 2.4.11
we see that

〈
δE/F , χ

〉
≥ 2 · i2.

Let t′ := (h′, d′) ∈ Q2 be an upper ramification jump such that d′ = i1. Then there exists a rank-one
character ψ such that ψ is trivial on Gt

′′
for all t′′ ∈ Q2 with t′′ > t′. Therefore we see again by

Theorem 2.4.11 that
〈
δE/F , ψ

〉
≤ i1. We see thus that since i2 > i1 we have that〈

δE/F , χ
〉
> 2 ·

〈
δE/F , ψ

〉
. �

Let p = 2 and let K be such that vK(2) = 5. We define eleven vertices v0, . . . , v4 and w1, . . . , w6

as well as seven leaves b0, . . . , b6.

Let us also associate the monodromy groups with the vertices and leaves. We define τ, σ ∈ Q8 by the
relation (3.13) of Section 3.6.2 in the case that n = 2. With all vertices v0, . . . , v3 and w1, . . . , w6

we associate the group G = Q8. With the leaf b0 and the vertex v4 we associate the subgroup
〈
τ2
〉
.

With the leaves b1 and b2 we associate the subgroup 〈τ〉, with b3 and b4 we associate 〈σ〉 and
finally with b5 and b6 we associate 〈τσ〉.
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We connect the vertices in a tree T as follows.
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Figure 3: Hurwitz tree T for the group Q8

Now we choose the thicknesses of the edges e1, . . . , e4 and the fi. We choose εe1 = εe2 = εe4 := 1
and ε3 := 7. Furthermore, we choose εfi := 10.

By Definition 3.2.4 (H3) we can now define the Artin and Swan characters of the tree. Let us make
them explicit. Let χ denote the irreducible character of rank two of G. We see that

〈ae1 , χ〉 = 14, 〈ae2 , χ〉 = 12, 〈afi , χ〉 = 〈ae3 , χ〉 = 〈ae4 , χ〉 = 2.

Therefore we obtain

〈se1 , χ〉 = 12, 〈se2 , χ〉 = 10, 〈sfi , χ〉 = 〈se3 , χ〉 = 〈se4 , χ〉 = 0.

Let us also make these characters explicit for the irreducible rank-one characters of G. Let ψτ respec-
tively ψσ respectively ψστ denote the irreducible rank-one character with kernel 〈τ〉 respectively
〈σ〉 respectively 〈στ〉. Then we obtain

〈ae1 , ψj〉 = 〈ae2 , ψj〉 = 4, 〈ae3 , ψj〉 = 〈ae4 , ψj〉 = 0

where j ∈ {τ, σ, στ}. Thus we obtain

〈se1 , ψj〉 = 〈se2 , ψj〉 = 3, 〈se3 , ψj〉 = −1, 〈se4 , ψj〉 = 0

where j ∈ {τ, σ, στ}. Note the difference between se3 and se4 . This is because the monodromy
groups of v3 and v4 are G and

〈
τ2
〉

respectively and hence the induced augmentation characters
differ. Finally for the edges fi we note

〈af1 , ψj〉 = 〈af2 , ψj〉 = 1, 〈sf1 , ψj〉 = 〈sf2 , ψj〉 = 0

for j ∈ {σ, στ}. However for ψτ we have that

〈af1 , ψτ 〉 = 〈af2 , ψτ 〉 = 0, 〈sf1 , ψτ 〉 = 〈sf2 , ψτ 〉 = −1.

Similar expressions hold for the other edges.

Let us now also define the depth characters of the tree. We define δv0 by

δv0 := 4 · ψτ + 4 · ψσ + 4 · ψστ + 8 · χ.
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Notice that by definition this is a character of G. Using Definition 3.2.4 (H4) we can now extend
this definition to define the depth characters of the vertices v1, . . . , v4 and w1, . . . , w6 as well as the
seven leaves b0, . . . , b6.

What is left is to verify that our construction is indeed a Hurwitz tree. We need to show that for a leaf
b we have that IndGGb δ

mult
Gb

= δb, where Gb denotes the monodromy group of the leaf b, and δb is
the depth character as defined above. We do this for the leaf b1 first. The case of the leaves b2, . . . , b6
are similar. Thereafter we do the case of the leaf b0.

Proceeding to the leaf b := b1, we notice that〈
IndGGb δ

mult
Gb

, χ
〉

= 6 · vK(2) = 30.

Furthermore, we have that〈
IndGGb δ

mult
Gb

, ψσ

〉
=
〈

IndGGb δ
mult
Gb

, ψστ

〉
= 2 · vK(2) = 10.

and 〈
IndGGb δ

mult
Gb

, ψτ

〉
= 0,

since ψτ restricts to the trivial character on 〈τ〉. Let us now also calculate δb1 as we have defined it
above. We obtain

〈δb1 , χ〉 = 〈δv0 , χ〉+ εe1 · 〈se1 , χ〉+ εe2 · 〈se2 , χ〉+ εf1 · 〈sf1 , χ〉 by Definition 3.2.4 (H4)

= 8 + 1 · 12 + 1 · 10
= 30

=
〈

IndGGb δ
mult
Gb

, χ
〉
.

Furthermore, for ψσ we have

〈δb1 , ψσ〉 = 〈δv0 , ψσ〉+ εe1 · 〈se1 , ψσ〉+ εe2 · 〈se2 , ψσ〉+ εf1 · 〈sf1 , ψσ〉
= 4 + 1 · 3 + 1 · 3 + 0
= 10

=
〈

IndGGb δ
mult
Gb

, ψσ

〉
.

It is similar for ψστ . Lastly, for ψτ we obtain

〈δb1 , ψτ 〉 = 〈δv0 , ψτ 〉+ εe1 · 〈se1 , ψτ 〉+ εe2 · 〈se2 , ψτ 〉+ εf1 · 〈sf1 , ψτ 〉
= 4 + 1 · 3 + 1 · 3 + 10 · (−1)
= 0

=
〈

IndGGb δ
mult
Gb

, ψτ

〉
.

We see therefore that IndGGb δ
mult
Gb

= δb1 as characters of G. The cases of the leaves b2, . . . , b6 are
similar.
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Let us turn to the leaf b0. We see that〈
IndGGb0 δ

mult
Gb0

, χ
〉

= 4 · vK(2) = 20

and furthermore 〈
IndGGb0 δ

mult
Gb0

, ψj

〉
= 0

for j ∈ {τ, σ, στ}. We calculate δb0 . For χ we obtain

〈δb0 , χ〉 = 〈δv0 , χ〉+ εe1 · 〈se1 , χ〉+ εe3 · 〈se3 , χ〉+ εe4 · 〈se4 , χ〉
= 8 + 1 · 12 + 0 + 0
= 20

=
〈

IndGGb0 δ
mult
Gb0

, χ
〉
.

Lastly for ψj , j ∈ {τ, σ, στ}, we obtain

〈δb0 , ψj〉 = 〈δv0 , ψj〉+ εe1 · 〈se1 , ψj〉+ εe3 · 〈se3 , ψj〉+ εe4 · 〈se4 , ψj〉
= 4 + 1 · 3 + 7 · (−1)
= 0

=
〈

IndGGb0 δ
mult
Gb0

, ψj

〉
.

We have therefore checked that δb0 = IndGGb0 δ
mult
Gb0

and hence that our construction is indeed a Hur-
witz tree.

Assume now that the Hurwitz tree T was induced up to equivalence (see Definition 3.2.6) by some
Q8-action on B := R′[[z]], where R′/R is an extension of R. We denote by eR′/R the ramification
index of R′/R. Let E := Frac B̂πB and let F := EG. We see that

〈
δE/F , χ

〉
= 8 · eR′/R and〈

δE/F , ψj
〉

= 4 · eR′/R for all j ∈ {τ, σ, στ}. A contradiction now follows from Theorem 5.4.2.



Chapter 6

Dihedral actions

Another interesting question with regard to lifting is whether a group G admits some local action in
characteristic p which can be lifted to characteristic 0. This is the weak lifting problem for the group
G . Matignon [26] has shown that this is true in the case that G is an elementary abelian p-group,
and later Green [14] showed a similar result in the case that G is a cyclic p-group.

In [27], Matignon asks what the situation for nonabelian p-groups is. In this chapter we give the first
results in this direction by studying the situation in the case that p = 2. This work is taken from
Brewis [5]. Let D4 be the dihedral group of order 8. Our main theorem for this chapter is to prove
that there exist examples of D4-actions on k[[z]], k of characteristic 2, which can be lifted to char-
acteristic 0.

In fact, we exhibit a family of local D4-actions, the supersimple D4-actions, which can always be
lifted. Furthermore, the local degrees of different of these actions are not bounded from above, i.e. the
genera of the respective Katz–Gabber compactifications (see Remark 6.2.11) of these actions are not
bounded from above. This provides some evidence for a conjecture of Chinburg–Guralnick–Harbater,
see for instance Chinburg [7], which states that all actions of dihedral groups Dpn should lift to char-
acteristic 0.

The first part of this chapter is a general overview of the Galois theory that we shall be using. In
Section 6.2.1 we study field extensions with Galois group D4. We also interpret these results in the
context of covers of curves. Most notably, we give a method for producing D4-Galois extensions by
composing two Z/2Z-Galois extensions and taking the Galois closure.

In Section 6.2.2 we focus on the connection between the Galois theory of cyclic extensions and the
theory of group cohomology, following Serre [37]. We then focus once again on D4-Galois exten-
sions. The group D4 has several subgroups of order (and others of index) 2, and therefore, contained
in a D4-Galois extension are several Z/2Z-subextensions. We study the Galois-theoretic connections
between these subextensions. Finally in Section 6.2.3 we remind the reader of Artin–Schreier theory
and its connection with the cohomological interpretation of cyclic Galois theory.

Section 6.2.4 and Section 6.2.5 are concerned exclusively with the supersimple D4-Galois exten-
sions. Here we deal exclusively with characteristic 2. As we have already pointed out, it is sufficient
to study lifting problems in the local context, and therefore, all fields concerned in these two sections
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will be local power series fields. First we shall define the notion of a local supersimple D4-extension
(Definition 6.2.10), and then we classify them in Theorem 6.2.20.

In the second part of this chapter our focus shifts to questions of good reduction. Although our goal is
to eventually lift local actions, this part is of a global nature. In Section 6.3 we consider a D4-Galois
cover C3 → P1

K of smooth projective curves over a 2-adic field K . Let C2 be the quotient of C3

under a nonnormal subgroup of order 2. Given certain good reduction properties of the intermediate
cover C2 → P1

K , we ask when we can deduce that the curve C3 has potentially good reduction. This
culminates in Theorem 6.3.7, which is a criterion for potential good reduction.

The assumptions required in Section 6.3 are difficult to check, and the purpose of Section 6.4 is to
give a method for producing D4-Galois covers of curves which satisfy these assumptions. Finally, we
conclude by giving an explicit family of examples. Furthermore, by explicitly studying their reduc-
tions to characteristic 2, we see that by localizing and completing these families at their ramification
points, we obtain liftable examples of local D4-Galois actions in characteristic 2.

Finally, in Section 6.5 we prove Theorem 6.5.1 which is our main result for this chapter, stating that
all supersimple local D4-actions lift to characteristic 0.

6.1 Notation

Let k be an algebraically closed field of characteristic 2. Let R0 denote the Witt vectors of k and
K0 its fraction field. We shall reserve the letter K for a finite field extension of the field K0 and R
for the normalization of R0 inside K0. The field K will always be assumed to contain

√
2.

If C is a smooth projective curve over a field F , then we write g(C) to mean its genus, and F (C)
its function field. Lastly, if A is ring, then we write P1

A,z for the projective A-line with distinguished
parameter z. For the notion of a local degree of different see Serre [37] Chapter III.

Let D4 denote the dihedral group of order 8. We fix once and for all two generators a, b ∈ D4 with
the relations

a4 = b2 = 1, bab = a3.

Whenever L is a field, GL will denote the absolute Galois group of L. If G denotes a finite group,
then by saying that two G-Galois extensions of L are isomorphic, we are implicitly assuming that a
field isomorphism can be found which respects the identification of the respective Galois groups with
G.

6.2 Some Galois theory

6.2.1 General Galois theory of D4-extensions

The aim of this section is to state and prove two facts on constructing D4-Galois extensions. We start
by studying the situation for field extensions. Later we shall also interpret the results in the context of
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covers of smooth algebraic curves.

Let L0 be a field. We assume that we are given two Z/2Z-Galois extensions L0 ⊂ L1 and L1 ⊂ L2.
The extension L0 ⊂ L2 is of degree 4, but not necessarily Galois. We denote the Galois closure of
this extension by L0 ⊂ L̃2 and the Galois group by G. The following lemma will be crucial to our
studies later on in this work.

6.2.1 Lemma. Assume that L0 ⊂ L2 is not a Galois extension, i.e. L2 6= L̃2. Then the Galois
extension L0 ⊂ L̃2 is a D4-extension, i.e. G ' D4.

PROOF. Since L0 ⊂ L2 is an extension of degree 4, we notice that G ⊂ S4. We also see that G
must be nonabelian since L0 ⊂ L2 is not Galois. Furthermore, the fact that L0 ⊂ L1 and L1 ⊂ L2

are both Galois immediately places restrictions on the subgroups of G. One checks that all subgroups
of S4 satisfying all these conditions are isomorphic to D4. 2 �

We leave the proof of the following lemma to the reader.

6.2.2 Lemma. Assume the notation of above. Then there exists an isomorphism

Gal(L̃2/L0) ' D4

such that L2 is the fixed field under the subgroup

〈b〉 ⊂ D4 ' Gal(L̃2/L0).

6.2.3 Remark. Notice that the results of this section can also be applied to separable covers of curves.
Let us make this precise. Let C0 be a smooth projective curve over an algebraically closed field k.
Assume that we are given two Z/2Z-Galois covers C1 → C0 and C2 → C1, where C1 and C2 are
smooth projective k-curves, such that the composite cover C2 → C0 is of degree 4, but not Galois.

This tower of Galois covers induces a field extension k(C0) ⊂ k(C1) ⊂ k(C2) of degree 4 which is
separable. Let us denote the Galois closure of this extension by k(C0) ⊂ L̃. By Lemma 6.2.1, we see
that k(C0) ⊂ L̃ is a D4-Galois extension. Since L̃ is an algebraic function field of transcendence
degree one over k, there exists a smooth projective k-curve C̃ , such that the function field of C̃ is
exactly L̃. Therefore, the separable Galois extension of fields k(C0) ⊂ L̃ induces a Galois cover
C̃ → C0 of curves, and this is a D4-Galois cover.

6.2.2 Cohomological Galois theory of fields

In this section we shall gather some more facts on the Galois theory of fields, and in particular its
cohomological interpretation. Our reference is essentially the book of Serre [37].

Let L1/L0 be a Z/2Z-Galois extension of the field L0. It is known that we have the inflation-
restriction exact sequence (see Serre [37] p.118)

0→ H1(Gal(L1/L0),Q/Z)→ H1(GL0 ,Q/Z)→ H1(GL1 ,Q/Z)Gal(L1/L0)

→ H2(Gal(L1/L0),Q/Z)→ . . .
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Furthermore, one sees that

H1(Gal(L1/L0),Q/Z) ' Z/2Z

and

H2(Gal(L1/L0),Q/Z) ' 0,

see for instance Serre [37] p.134. We thus obtain the exact sequence

0→ H1(Gal(L1/L0),Q/Z)→ H1(GL0 ,Q/Z)→ H1(GL1 ,Q/Z)Gal(L1/L0) → 0. (6.1)

Let us very briefly remind ourselves what these cohomology groups mean and how they relate to Ga-
lois theory.

Consider the absolute Galois group GL0 of the field L0. The set of Z/nZ-Galois extensions of L0

corresponds bijectively to the elements of the group HomZ(GL0 ,Q/Z), and therefore, if we consider
the group Q/Z as a trivial GL0 -module, the set of cyclic Galois extensions of L0 corresponds
bijectively to the set of elements of the group

lim
n→∞

HomZ(GL0 ,Z/nZ) ' HomZ(GL0 ,Q/Z) ' H1(GL0 ,Q/Z), (6.2)

i.e. to the group of GL0 -characters.

We can now interpret the exact sequence (6.1) in terms of Galois theory. Let L′/L0 be a cyclic
extension of the field L0. This extension corresponds to an element

χ ∈ HomZ(GL0 ,Q/Z) ' H1(GL0 ,Q/Z).

Notice that the compositum L′L1 of L′ and L1 over L0 is a cyclic extension of L1 of degree
dividing n, and therefore, this corresponds to a character

χ′ ∈ HomZ(GL1 ,Q/Z) ' H1(GL1 ,Q/Z).

One checks that the image of χ ∈ H1(GL0 ,Q/Z) under the restriction map

H1(GL0 ,Q/Z)→ H1(GL1 ,Q/Z) (6.3)

is exactly χ′.

Let us now list two properties which will be used later on. We give only a short proof of the last of
these and leave the other for the reader.

6.2.4 Lemma. Let χ ∈ H1(GL0 ,Q/Z) be an element which maps to an element of order 2 inside
H1(GL1 ,Q/Z) under the restriction map (6.3). Then the order of χ is a divisor of 4.

PROOF. Use (6.1). 2 �

6.2.5 Lemma. Let χi ∈ H1(GL0 ,Q/Z) for i = 1, 2 be two elements of order 4 which map to
elements of order 2 inside H1(GL1 ,Q/Z). Then the difference χ1 − χ2 is an element of order at
most 2 inside H1(GL0 ,Q/Z).
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PROOF. By assumption and exactness of (6.1), we see that both 2χ1 and 2χ2 are of order 2 and in
fact contained in the group

Z/2Z ' Gal(L1/L0) ⊂ H1(GL0 ,Q/Z). (6.4)

Therefore 2χ1 = 2χ2 and the result follows. 2 �

Let us now apply this formalism of characters to study D4-Galois extensions of a field L0. Let
L0 ⊂ L be D4-Galois and fix an isomorphism Gal(L/L0) ' D4. Let L1 be the field L〈a2,b〉 fixed
by the subgroup

〈
a2, b

〉
⊂ D4. Notice that L1 ⊂ L is a (Z/2Z)2-Galois extension.

There are exactly three proper subfields of L containing L1 other than L1 itself. These are L〈a2〉,
L〈b〉 and L〈a2b〉. Each is a Z/2Z-Galois extension of L1 and therefore, these fields correspond to
order 2 characters χa2 , χb and χa2b, respectively, of the group GL1 . Hence we may regard the χ∗
as elements of the group

HomZ(GL1 ,Q/Z) ' H1(GL1 ,Q/Z). (6.5)

We leave the proof of the following lemma to the reader.

6.2.6 Lemma. We have the following relations.

1. The character χa2 is fixed under the Galois action Gal(L1/L0) on the group H1(GL1 ,Q/Z).

2. The characters χb and χa2b are conjugate under this action.

3. The sum of χb and χa2b is χa2 .

The following lemma will be useful for lifting D4-actions later on.

6.2.7 Lemma. Let L0 ⊂ L and L0 ⊂ L′ be two D4-Galois extensions. Assume that there exists a
L0-isomorphism between L〈b〉 and L′〈b〉. Then there is also a L0-isomorphism between L and L′.

PROOF. Use the uniqueness of the Galois closure. 2 �

6.2.8 Remark. Although a simple lemma, the above tells us that the essential information of the
D4-Galois extension L0 ⊂ L is stored inside the subextension L0 ⊂ L〈b〉.

6.2.9 Notation. From now on, whenever we are given extensions as above and a character

χ ∈ H1(GL1 ,Q/Z),

we shall denote by Nχ the norm (some reference refer to this as the trace) of χ under the action
of Gal(L1/L0) on H1(GL1 ,Q/Z), i.e. the sum of χ and its conjugate σ∗χ, where σ is the gen-
erator of Gal(L1/L0). Furthermore, we reserve the notation χa2 , χb and χa2b for the characters
corresponding to the Z/2Z-extensions L〈a2〉, L〈b〉 and L〈a2b〉 of the field L1 = L〈a2,b〉.
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6.2.3 Artin–Schreier theory of power series fields in characteristic 2

Let Lz be the local field k((z)) with parameter z. The following identification will be used often:

k((z))/℘k((z)) ' H1
et(spec(k((z))),Z/2Z) ' H1(GLz ,Q/Z)[2] (6.6)

where

℘ : k((z))→ k((z)), y 7→ y2 − y

is the Artin–Schreier operator in characteristic 2. The identification (6.6) associates to the element

f ∈ k((z))

the Z/2Z-extension of k((z)) generated by w, where w satisfies

w2 − w = f.

Often we shall denote the associated class of f simply by

[f ] ∈ H1(GLz ,Z/2Z) ' H1(GLz ,Q/Z)[2].

Notice that for f1 and f2 both elements of k((z)), we have that

[f1] = [f2]

if and only if there exists a q ∈ k((z)), such that

f1 = q2 − q + f2

inside the field k((z)).

Let f ∈ k[z] ⊂ k((z)). In this case, one can always find a f0 ∈ k((z)) such that

f2
0 − f0 = f,

and therefore,

[f ] = 0

in this case. Therefore, if f :=
∑
−N≤i

ciz
i ∈ k((z)) is a general element of the field k((z)) for ci ∈ k,

then

[f ] = [
∑
−N≤i

ciz
i] = [

∑
N≤i<0

ciz
i]. (6.7)

Furthermore, we also have

[c2mz
−2m] = [

√
c2mz

−m]

since k is assumed to be algebraically closed. Therefore, we can also get rid of the terms of f in the
expansion (6.7) of degree −2m, where m ranges over the natural numbers.
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6.2.4 Supersimple D4-extensions

We now define and study the type of D4-extensions that we are interested in lifting. Assume through-
out this section that L0 is a local power series field with characteristic 2.

6.2.10 Definition. A local D4-Galois extension L0 ⊂ L is said to be supersimple if the following
conditions hold.

1. The local degree of different of L〈a2,b〉 ⊂ L〈a2〉 is 2,

2. the local degree of different of L0 ⊂ L〈a
2,b〉 is 2.

6.2.11 Remark. Let G be a finite p-group and consider a G-Galois extension of local power series
fields

k((z)) ⊂ LG.

We use LG with the subscript G to emphasize that we are not restricted to supersimple extensions
in this remark.

It is known that there exists a G-Galois cover of smooth curves

C → P1
k,z

which is étale over A1
k ⊂ P1

k , completely branched over the complement (z = 0) ∈ P1
k , and which

induces k((z)) ⊂ LG after localization and completion at z = 0. This cover is known as the Katz–
Gabber cover associated to the extension k((z)) ⊂ LG. For details on this and for the more general
Katz–Gabber compactification, see for instance the account in Gille [12].

Applying this to the case G = D4 with L0 = k((z)) and LG = L, one sees that L0 ⊂ L is
supersimple if and only if

C/
〈
a2
〉
' P1

k,

where C → P1
k is the Katz–Gabber cover associated to L0 ⊂ L. Notice that this compactification is

therefore a hyperelliptic curve.

Let us now construct some examples of supersimple extensions. First we set some notation.

6.2.12 Notation. From now on, we shall reserve the notation L0 for the local power series field
k((t)), and the notation L1 for the local power series field k((v)), where the variables t and v are
related by

v−2 − v−1 = t−1 (6.8)

Also, we shall let σ denote the generator of Gal(L1/L0) ' Z/2Z.

6.2.13 Example. In view of Lemma 6.2.1, we now construct some Z/2Z-extensions of L1 which,
when considered as degree 4-extensions of L0, are not Galois.
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Let η ∈ k and consider the element fη ∈ L1 given by

fη = η2v−3 − η2v−2 = η2t−1v−1.

Notice that the sum of fη and its conjugate σ∗fη is simply η2t−1. One checks quickly that for
η /∈ F2, the Artin–Schreier class of η2t−1 is non-trivial in the group H1(GL1 ,Q/Z). Therefore, the
extension L2 of L1, defined by

w2 − w = η2t−1v−1,

induces an extension of L0 which is of degree 4 and not Galois. As we have already pointed out in
Lemma 6.2.1, this then produces a D4-Galois extension L0 ⊂ L by taking the Galois closure. One
notes that, by Lemma 6.2.2 the Galois group can be identified with D4 such that L1 is the fixed field
of
〈
a2, b

〉
and also L2 that of 〈b〉. The extension of L1 defined by

s2 − s = η2t−1 (6.9)

is, by Lemma 6.2.6 (3), exactly the field extension defined by L1 = L〈a2,b〉 ⊂ L〈a2〉, which one
checks has local degree of different exactly 2. Therefore, the D4-Galois extension L0 ⊂ L is
supersimple.

The idea of this example is that it is somewhat representative of supersimple D4-actions. In fact, it
will be useful for classifying them (Theorem 6.2.20).

6.2.14 Definition. For a η ∈ k, we denote by ψη the character of Gk((v)) corresponding to the
Z/2Z-extension generated by w2 − w = η2t−1v−1, i.e. ψη denotes the image of the polynomial
η2t−1v−1 in H1(GL1 ,Q/Z) under (6.6).

6.2.15 Remark. It is important to note that Definition 6.2.14 depends on the choices of the parameters
t and v.

6.2.16 Remark. For the value η = 1, the character ψ1 induces a Z/4Z-Galois extension of L0.
Furthermore, one can show that there exists a character ψ′1 of the group GL0

ψ′1 : GL0 � Z/4Z,

which maps to ψ1 under the restriction mapping

HomZ(GL0 ,Q/Z) ' H1(GL0 ,Q/Z)→ H1(GL1 ,Q/Z) ' HomZ(GL1 ,Q/Z)

of (6.1). Furthermore, the character ψ′1 generates the torsion subgroup of

H1(GL1 ,Z/4Z) ⊂ H1(GL1 ,Q/Z) ' HomZ(GL1 ,Q/Z) (6.10)

of order-4 characters.

6.2.17 Remark. Notice that we have the following identity in H1(GL1 ,Q/Z) for all η ∈ k.

ψη+1 = ψη + ψ1. (6.11)
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6.2.5 Classifying supersimple D4-extensions

The aim of this section is to classify the local supersimple D4-Galois extensions. Assume throughout
that k((t)) = L0 ⊂ L is a supersimple D4-Galois extension.

6.2.18 Lemma. By possibly changing the parameter t of L0, we may assume that the intermediate
field extension L0 ⊂ L〈a

2,b〉 is generated by v, where v and t are related by

v−2 − v−1 = t−1. (6.12)

PROOF. This result follows from the fact that the local degree of different of L0 ⊂ L〈a2,b〉 is 2.
2 �

From now on we set L1 = L〈a2,b〉. We consider the elements t and v fixed, and use the notation of
Definition 6.2.14.

6.2.19 Lemma. Consider the Z/2Z-Galois extension L〈b〉/L1 and the associated GL1 -character

χb ∈ H1(GL1 ,Q,Z)

of order 2. Then there exists an η ∈ k such that the GL1-character χb − ψη is the image of a
2-torsion element of H1(GL0 ,Q/Z) under the restriction map

H1(GL0 ,Q/Z)→ H1(GL1 ,Q/Z).

PROOF. By definition the local degree of different of L1 ⊂ L〈a2〉 is 2 and therefore, this extension
is generated by an Artin–Schreier equation of the form

s2 − s = αv−1, (6.13)

for some α ∈ k. By Lemma 6.2.6 the norm of χb is the character χa2 . The latter corresponds to the
field extension L1 ⊂ La

2
and therefore corresponds to the Artin–Schreier class [αv−1].

Choose η ∈ k such that η2 + η = α. One checks that the Artin–Schreier classes of [αv−1] and
[η2t−1] are the same inside H1(G1,Q/Z).

Consider the norm Nψη of the character ψη ∈ H1(GL1 ,Q/Z). We see that this corresponds to the
Z/2Z-Galois extension of L1 generated by s̃, where s̃ satisfies

s̃2 − s̃ = η2t−1.

However, by definition of α and η, this is exactly the extension L1 ⊂ La
2
, see (6.13).

Hence the norm Nψη and the character χa2 = Nχb are equal inside the group H1(GL1 ,Q/Z), and
hence the difference χb − ψη is fixed under the action of Gal(L1/L0).

Therefore, χb − ψη is an element of H1(GL1 ,Q/Z)Gal(L1/L0), and thus, by the right exactness of
(6.1), the image of some χ′ ∈ H1(GL0 ,Q/Z) under the restriction map

H1(GL0 ,Q/Z)→ H1(GL1 ,Q/Z). (6.14)
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By Lemma 6.2.4, we may conclude that χ′ has order a divisor of 4.

By Remark 6.2.16, we notice that ψ1 is also the image of an order 4 element ψ′1 of H1(GL0 ,Q/Z).
Hence, by Lemma 6.2.5, either χ′ or χ′ − ψ′1 is an order 2 element of H1(GL0 ,Q/Z).

If χ′ is of order 2, then we have found a suitable η satisfying the hypothesis of the lemma.

Assume this is not the case, i.e. χ′−ψ′1 is of order 2. Then the image of χ′−ψ′1 inside H1(G1,Q/Z)
under the restriction map (6.14) is exactly

χb − ψη − ψ1 = χb − ψη+1,

and therefore, the value η + 1 satisfies the hypothesis of the lemma. �

6.2.20 Theorem. There exists a polynomial

Q(t−1) ∈ k[t−1] ⊂ k((t))

and an η ∈ k, such that the field extension

L1 = L〈a2,b〉 ⊂ L〈b〉

is generated by an Artin–Schreier equation of the form

w2 − w = η2t−1v−1 +Q(t−1). (6.15)

Furthermore, the polynomial Q can be chosen to have only odd degree terms in the variable t−1.

PROOF. We let η be as in Lemma 6.2.19. Let χ′ be an element of H1(GL0 ,Q/Z) which maps to

χb − ψη ∈ H1(GL1 ,Q/Z)

under the restriction map

H1(GL0 ,Q/Z)→ H1(GL1 ,Q/Z)

and which has order at most 2.

The character χ′ corresponds to a cyclic Galois extension of the field L0 of degree at most 2. There-
fore, we can find an element Q of the field L0 = k((t)) with associated Artin–Schreier class inducing
this extension.

As remarked in Section 6.2.3, we see that we can even choose Q to be inside the subring

k[t−1] ⊂ k((t)) = L0

of polynomials in the variable t−1. The comments of Section 6.2.3 also allow us to find a Q with
only odd degree terms. We have proved the lemma. 2 �

The following lemma will be useful later on and we shall leave the proof to the reader.
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6.2.21 Lemma. We use the notations of Theorem 6.2.20. If the degree of Q is denoted by d for some
odd integer d, then the degree of local different of

L1 = L〈a2,b〉 ⊂ L〈b〉

is exactly the maximum max(4, 2d).

PROOF. One uses the relation (6.12) together with the Artin–Schreier equation (6.15) for the field
extension L1 ⊂ L〈b〉. 2 �

6.2.22 Remark. Recall (Theorem 6.2.20) that the extension L1 ⊂ L〈b〉 is given by (6.15). The
proof of Lemma 6.2.21 shows that if deg(Q) ≤ 1, then the term η2t−1v−1 of (6.15) dominates the
degree of different of L1 ⊂ L〈b〉, i.e. it is then 4. If deg(Q) ≥ 3, then the term Q dominates
this. In Section 6.5, we shall prove that all supersimple actions lift to characteristic 0. There we
shall distinguish a supersimple action according to the distinction remarked here, i.e. according to the
degree of different of L1 ⊂ L〈b〉, and we shall need to adapt our lifting technique according to the
case we are considering.

6.3 Good reduction of Galois closures

Before we give a brief introduction and overview on this section, we first set some notation. Let

C1 → P1
K =: C0, C2 → C1

be two Z/2Z-Galois covers of smooth projective K-curves. We shall assume that the composite
extension C2 → C0 ' P1

K of degree 4 is not a Galois cover. We let C3 → C0 ' P1
K be the Galois

closure.

In Section 6.2.1 it was shown that we can identify the Galois group Gal(C3/P1
K) with D4 in such a

manner that C2 is the quotient of C3 under the subgroup

〈b〉 ⊂ D4 ' Gal(C3/C0).

From now on we shall assume this to be the case.

In this section we shall be concerned with the following question: what reduction conditions on the
intermediate cover C2 → C0 ' P1

K are necessary to conclude that the curve C3 has good reduc-
tion? In Section 6.4, we shall make specific choices for the curves C0,C1 and C2 which will satisfy
these conditions. These choices will be such that after studying their reductions, we shall show that
by localizing and completing these covers at their branch points, we obtain lifts for all supersimple
D4-actions. For our purposes it is convenient to assume that g(C2) ≥ 1. In this section we shall
place no restrictions on the genus of C1, however, in Section 6.4 we shall work only with the case
that g(C1) = 0, i.e. C1 ' P1

K .

One sees that if C3 has potentially good reduction, then so must the curve C2. Therefore, we shall
always assume that C2 admits a smooth model C2. We introduce the following assumption on the
cover C2 → C0.
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6.3.1 Assumption (‘Good reduction’ Assumption). There exists smooth models Ci, i = 0, 1, of
the curves Ci, i = 0, 1, together with finite maps

C2 → C1 → C0 (6.16)

which have generic fibre C2 → C1 → C0. The induced map of smooth k-curves

C2,k → C1,k → C0,k ' P1
k (6.17)

is a separable cover of degree 4. Furthermore, we assume that (6.17) is totally branched at some point
x ∈ C0,k .

6.3.2 Remark. It follows from Liu–Lorenzini [25] Proposition 1.6 that since C2 is smooth, the quo-
tients C1 and C0 are also smooth R-curves. Furthermore, it follows from Liu [24] Proposition 10.3.38
that if furthermore g(C1) ≥ 2, then (6.17) is separable.

Furthermore, one sees that the following assumption, which does not necessarily hold, is necessary to
deduce potentially good reduction for the curve C3.

6.3.3 Assumption (‘NonGalois reduction’ Assumption). The special fibre cover (6.17)

C2,k → C1,k → C0,k ' P1
k

is not Galois.

Let us now study the stable model Ĉ3 of the curve C3. The group D4 acts on this model, and we
denote by Ĉi, i ∈ {0, 1, 2}, the quotients of this model corresponding to the K-curves C0, C1 and
C2 respectively. It is known that all these are themselves semistable R-curves, see for instance Ray-
naud [33] Appendice.

Since C2 is a smooth R-curve with positive genus, we see that there exists a birational blowup
morphism

Ĉ2 → C2. (6.18)

Therefore, we may conclude by the universal property of quotient schemes, that similar blowup mor-
phisms

Ĉ1 → C1, Ĉ0 → C0 (6.19)

exist for C1 and C0, even if their genera are 0.

We denote the strict transform of the smooth k-curve C2,k under the map of (6.18) by Γ2, and using
(6.19) we define the components Γ1 and Γ0 similarly. Each Γi, for i = 0, 1, 2, is therefore a smooth
k-curve, and furthermore, we have a separable degree-4 covering

Γ2 → Γ1 → Γ0 (6.20)

which is nothing else than the covering

C2,k → C1,k → C0,k ' P1
k. (6.21)
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Let Γ3 be any component of Ĉ3,k which maps surjectively onto Γ2 under the finite map Ĉ3,k → Ĉ2,k .
Since Ĉ3,k was assumed to be the stable model of C3, we see that each component of Ĉ3,k is reduced,
and, in particular, the closed subscheme Γ3 is an integral scheme. We may therefore consider the
extension of function fields

k(Γ0) ⊂ k(Γ1) ⊂ k(Γ2) ⊂ k(Γ3). (6.22)

6.3.4 Proposition. The component Γ3 is the only component of Ĉ3,k mapping surjectively onto Γ2.
Furthermore, the field extension (6.22) is a D4-Galois extension.

PROOF. Let D(Γ3) (respectively I(Γ3)) denote the decomposition (respectively inertia) group of
Γ3. Let L be the separable closure of k(Γ0) inside the normal field extension (6.22). There exists an
exact sequence of groups (see Serre [37] Proposition I.20)

0→ I(Γ3)→ D(Γ3)→ Gal(L/k(Γ0))→ 0.

Notice that by Assumption 6.3.1 the Galois extension k(Γ0) ⊂ L contains the subextension

k(Γ0) ⊂ k(Γ2).

Furthermore, by Assumption 6.3.3, we see that [L : k(Γ0)] > 4 and therefore, the order of Gal(L/k(Γ0))
must exceed 4. However, D(Γ3) is a subgroup of D4, and therefore, the result follows. �

Our next step is to study the normalization of the component Γ3. Let Γ̃3 denote the normalization of
Γ3. In order to deduce smoothness of the stable R-curve Ĉ3, we shall now ask for a condition under
which the geometric genus g(Γ̃3) of Γ̃3 is equal to the geometric genus g(C3) of the generic fibre
C3. It is known that the latter is never strictly less than the former. Furthermore, since Ĉ3 is assumed
to be the stable model of the K-curve C3, equality of g(Γ̃3) and g(C3) would imply smoothness of
Ĉ3. We thus proceed to bounding g(Γ̃3) from below.

6.3.5 Assumption (‘Different’ Assumption). We assume the degree of geometric different of the
cover C3 → C2 is 2.

6.3.6 Lemma. The genus of C3 is 2g(C2). In particular, we have the following inequalities.

g(Γ̃3) ≤ 2g(C2). (6.23)

PROOF. Apply the Hurwitz Formula to the cover of smooth K-curves C3 → C2. �

6.3.7 Theorem. The curve Ĉ3 is a smooth R-curve.

PROOF. By Assumption 6.3.5, the cover of K-curves C3 → C2 has exactly two geometric branch
points x1, x2, and after possibly extending K , we may assume that these two points are distinct points
of C2(K). From Theorem 1 of Saïdi [35], we see that since Γ3 → Γ2 is a separable covering, both
x1 and x2 specialize to the same point x of C2,k . Note that Γ̃3 → Γ2 is branched at this point. This
implies that

g(Γ̃3) ≥ 2g(Γ2) = 2g(C2), (6.24)

and hence is equal to exactly this. Therefore, Ĉ3 is a smooth R-curve. 2 �
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6.4 Lifting supersimple D4-actions.

In this section we shall give a method for producing covers of curves which satisfy the assumptions
needed to apply the results in the previous section. Let us first set some notation and then we explain
our goals and strategy.

In Section 6.3, we dealt with towers of Z/2Z-covers C2 → C1 → C0 of composite degree 4. Our
first step is to construct suitable choices for the curves C1 and C0. We let C0 denote the projective
R-line P1

R,t with parameter t.

To define the R-curve C1, we define an algebraic extension of K(t) by adjoining the element v,
where v satisfies the relation

t−1 = v−2 − v−1.

We now define C1 to be the normalization of the projective line C0 inside the field K(t)(v). We
leave for the reader to verify that C1 is again a projective R-line with parameter v, and that the
induced special fibre cover C1,k → C0,k is a separable cover of smooth projective lines. By localizing
and completing at the point t = 0, we see that the Z/2Z-Galois cover

P1
R,v = C1 → C0 = P1

R,t

already provides a lift for the Z/2Z-Galois extension of local fields L0 ⊂ L1 of Notation 6.2.12.

Now we want to construct some Z/2Z-Galois extensions of the curve C1. Let F and G be two
elements of R[v−1] ⊂ K(v−1). We denote the reductions of F and G to the ring k[v−1] by F and
G, respectively. We define a field extension K(v) ⊂ K(v, w) where w satisfies

w2 − wG = F. (6.25)

We let CF,G2 be the normalization of C1 = P1
R,v inside K(v, w). We have included the superscripts

F and G to emphasize that our definition depends on the choices of F and G.

Our strategy now is to find suitable F and G such that the generic fibre of the finite tower of Z/2Z-
Galois extensions

CF,G2 → C1 = P1
R,v → C0 = P1

R,t (6.26)

satisfies Assumptions 6.3.1, 6.3.3 and 6.3.5.

To check the ‘good reduction’ (Assumption 6.3.1), the form of equation (6.25) will be useful (Lemma
6.4.1). However, to check Assumption 6.3.5, we shall need to rewrite this equation in a Kummer form.
Here we shall restrict the choices of F and G (Lemma 6.4.2). A further restriction (Lemmas 6.4.3
and 6.4.4) on the choices of F and G will also aid us in checking that the ‘reduction is not Galois’
(Assumption 6.3.3).

Assume that the degrees of F and F are both 2g+1, where g is some positive integer. Furthermore,
assume that the degree of G does not exceed 2g, and that the reduction G is a unit of k (and hence
of degree 0, but that G 6= 0 inside k[v−1]).
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6.4.1 Lemma. (a) The scheme CF,G2 is a smooth projective R-curve of genus g. Furthermore, the
action of the Galois group Gal(K(v, w)/K(v)) extends to the scheme CF,G2 , and the quotient of
CF,G2 by this action is C1 = P1

R,v . Lastly, the induced map of special fibres

CF,G2,k → C1,k ' P1
k,v

is generically separable, and is in fact branched uniquely at the point v = 0.
(b) By localizing and completing at this point, the cover CF,G2 → C1 induces a Z/2Z-Galois exten-
sion of k((v)) generated by w, where w satisfies

w2 − wG = F . (6.27)

The local degree of different is 2g + 2.

PROOF. This is essentially Exercise 10.1.9 of Liu [24]. 2 �

So far, we have constructed a tower of smooth projective curves

CF,G2 → C1 → C0 ' P1
R. (6.28)

For convenience we set CF,G2 := CF,G2,K and similarly for C1 and C0. As in Section 6.3, we define

CF,G3 to be the Galois closure of CF,G2 → C0. Notice that in order to apply the results of Section 6.3,
we also need to know that CF,G2 6= CF,G3 . This will be true for the choices of F and G that we shall
later choose.

6.4.2 Lemma. Assume that we can find an element

H ∈ R[t−1] ⊂ K(t) ⊂ K(v),

as well as an η ∈ R such that the following identity holds.

4F +G2 = (1− 2ηv−1)H.

If η 6= 1, then CF,G2 6= CF,G3 , i.e. the cover CF,G2 → C0 is not Galois, and furthermore, the degree
of geometric different of CF,G3 → CF,G2 is 2.

PROOF. By construction, the cover

P1
K,v ' C1 → C0 ' P1

K,t

is ramified at exactly v = 0 and v = 2. Notice that the function field K(v, w) of CF,G2 is also
generated over K(v) by w′, where w′ = −2w+G, i.e. w′ satisfies the following Kummer equation

(w′)2 = (−2w +G)2 = 4F +G2 = (1− 2ηv−1)H.

Therefore, the cover CF,G2 → C1 is branched at exactly v = 0, v = 2η and the zeros of

H ∈ K(t) ⊂ K(v).

If η 6= 1, then the conjugate of the point v = 2η (under the action of Gal(C1/C0)) is not branched
in the cover CF,G2 → C1. This already implies that CF,G2 → C0 is not Galois, i.e. CF,G2 6= CF,G3 .
Furthermore, one checks that the points of CF,G2 lying above the conjugate of the point v = 2η are
exactly the branch points of the cover CF,G3 → CF,G2 . There are exactly two points, and hence the
degree of geometric different of CF,G3 → CF,G2 is 2. 2 �
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Before we state the main theorems of this section, we give two computational results. Let L0 ⊂ L be
a local supersimple D4-Galois extension in characteristic 2. Recall from Lemma 6.2.21 and Remark
6.2.22 that we can distinguish between two cases, namely the case where the local different degree
of L〈a2,b〉 ⊂ Lb is 4, and the case where it is 2d, for some odd integer d. In proving that all
supersimple actions lift to characteristic 0, we shall deal with these two cases separately. In both
cases, we shall need a similar computation, and it is these that we state in the following two lemmas.
Both of these results are essentially computations, and we used the computer package Magma to
verify our calculations.

6.4.3 Lemma. Let η ∈ R∗. We assume R has been extended to include a solution, β, of the follow-
ing equation.

β2 +
√

2β + η = 0. (6.29)

Let Q′ ∈ R[t−1] of degree less than or equal to 1. Then we have the following identity.

(1− 2ηv−1)(1 + 2β2t−1 + 4Q′) = G2 + 4F,

where

G := 1 +
√

2βv−1

and

F := Q′ − ηβ2v−1t−1 − 2ηv−1Q′.

6.4.4 Lemma. Let η and β be as in Lemma 6.4.3. Let m be a positive integer, and let Q′ be any
element of R[t−1] of degree strictly less than 2m. Furthermore, let γ ∈ R∗ be any unit of R. Then
we have the following identity.

(1− 2ηv−1)(1 + 2β2t−1 + 2γ2t−2m + 2
√

2γt−m + 4Q′) = G2 + 4F,

where

G := 1 +
√

2βv−1 +
√

2γt−m

and

F := Q′ − ηβ2v−1t−1 − 2ηv−1Q′ − ηγ2t−2mv−1 −
√

2ηγv−1t−m − γβv−1t−m.

6.4.5 Remark. The equation (6.29) implies that we have the following equality in k after reduction

β
2 = η. (6.30)

6.4.6 Remark. The polynomial F in Lemma 6.4.4 reduces to

F := Q′ + ηβ2v−1t−1.

If F is selected as in Lemma 6.4.4, then it reduces to

F := Q′ + ηβ2v−1t−1 + ηγ2t−2mv−1 + βγt−mv−1.

In both cases G reduces to the constant polynomial 1 ∈ k.
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The following theorem is our first main result. It constructs a family of D4-Galois covers which, by
localizing and completing at branch points, induce local supersimple extensions after reduction. We
define the normal R-curve CF,G3 to be the normalization of CF,G2 inside the extension CF,G3 → CF,G2 .

6.4.7 Theorem. Let either η, Q′ be as in Lemma 6.4.3, or let η, γ, m and Q′ be as in Lemma
6.4.4, and let F and G be selected as in these lemmas. Consider the D4-Galois extension of normal
projective R-schemes

CF,G3 → CF,G2 → C1 → C0 = P1
R,t. (6.31)

Then each CF,Gi is a smooth R-scheme. Furthermore, by localizing and completing at the point
t = 0 of the scheme C0 = P1

R,t, we obtain a lifting of the local D4-Galois extension obtained by
taking the Galois closure of

k((t)) ⊂ k((v)) ⊂ k((v))(w),

where w satisfies

w2 − w = F .

Here F denotes the reduction of the polynomial F , refer to Remark 6.4.6 for an explicit expression
of F .

PROOF. We shall proof the theorem in the case that F and G have been selected as in Lemma 6.4.4
and leave the (easier) case of Lemma 6.4.3 to the reader.

First we see from Lemma 6.4.1 that Assumption 6.3.1 is satisfied for the extension (6.31). In fact,
the model CF,G2 is a smooth model for its generic fibre CF,G2 , and by construction the special fibre
subcover

CF,G2,k → C1,k = P1
k,v → C0 = P1

k,t (6.32)

is separable. Lemma 6.4.2 tells us that Assumption 6.3.5 is also satisfied for this extension.

Let us check that the induced cover

CF,G2,k → C1,k → C0,k (6.33)

is not a Galois cover, thereby verifying Assumption 6.3.3. By localizing and completing at the point
v = 0 of C1,k ' P1

k,v , we obtain a cover of k((v)) generated by w, where w satisfies

w2 − w = F = η2t−1v−1 +Q′ + ηγ2t−2mv−1 + βγt−mv−1.

One checks that the composite field extension k((t)) ⊂ k((v)) ⊂ k((v))(w) is not Galois if η 6= 1.
Therefore, the composite cover (6.33) cannot be Galois. By Theorem 6.3.7, we see that the curve
CF,G3 has potentially good reduction. Since the smooth model CF,G2 of CF,G2 is unique (recall that
g(C2) ≥ 1 ), we see that CF,G3 is smooth. We are done. 2 �
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6.5 Proof of main result

The aim of this section is to prove our main result.

6.5.1 Theorem. All supersimple D4-actions lift to characteristic 0.

Assume throughout this section that we have been given a supersimple D4-Galois extension of local
power series fields

L0 := k((t)) ⊂ L.

We use the notation of Section Section 6.2.4 and Section 6.2.5. In particular, we set L1 := L〈a2,b〉
with parameter v, where v and t are related by

v−2 − v−1 = t−1. (6.34)

We have already pointed out (Remark 6.2.7) that the field extension L0 ⊂ L is completely determined
by the subextension

L0 ⊂ L1 ⊂ L2 := L〈b〉.

By Lemma 6.2.21, we see that there are two cases to consider, namely the case that the degree of
different of L1 ⊂ L2 is 4 or the case that it is 2d, where d > 1 is an odd integer.

In both cases, we apply Theorem 6.4.7 for suitable choices of η, γ, m and Q′. In the first case, we
shall choose the F and G as in Lemma 6.4.3, and in the second as in Lemma 6.4.4. We shall give
the details only for the second case, and leave the detailed proof of the first (easier) case to the reader.

Proof of Theorem 6.5.1 We assume that the local different degree of L1 ⊂ L2 is of the form 2d,
where d > 1 is an odd integer. Define m by the relation d = 2m+ 1.

From Theorem 6.2.20 and Lemma 6.2.21, we see that we can find a polynomial Q ∈ k[t−1] of degree
exactly 2m+1, as well as an η ∈ k−F2, such that the extension L1 ⊂ L2 is generated by w, where
w satisfies

w2 − w = η2t−1v−1 +Q. (6.35)

Recall (Theorem 6.2.20) that we can choose Q to have only odd degree terms in t−1. Furthermore,
since k was assumed algebraically closed, we can find a γ ∈ k∗ such that

Q = γ2ηt−(2m+1) +Q′,

where Q′ ∈ k[t−1] has degree strictly smaller than 2m.

Let us lift the elements η and γ to units of R. We abuse notation and denote these lifts again by η
and γ, respectively. We then choose a polynomial Q′ ∈ R[t−1], of degree less than 2m, which lifts
the polynomial Q′ ∈ k[t−1].

We now apply Theorem 6.4.7 with these choices of η, γ, m and Q′ and we choose F and G as
in Lemma 6.4.4. In view Theorem 6.4.7, we only need to check that the Artin–Schreier class of F is
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the same as η2t−1v−1 +Q.

From Remark 6.4.6, we have the following equality of Artin–Schreier classes inside H1(GL1 ,Z/2Z)

[F ] = [ηβ2v−1t−1 +Q′ + ηγ2t−2mv−1 + βγt−mv−1].

Since β2 = η inside k (Remark 6.4.5), we see that

[F ] = [η2v−1t−1 +Q′ + ηγ2t−2m−1] = [η2v−1t−1 +Q].

This is exactly the class of the extension L1 ⊂ L2, see (6.35). We conclude by applying Theorem
6.4.7.
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Zusammenfassung

Sei k ein Körper von Charakteristik p und sei C → spec(k) eine glatte projektive Kurve mit einer
G-Aktion φ : G ↪→ Autk(C) auf C , wobei G eine endliche Gruppe ist. Das globale Hochhe-
bungsproblem fragt, ob es eine Erweiterung R der Witt-Vektoren W (k), eine Kurve C → spec(R)
und eine Aktion φ : G ↪→ AutR(C) gibt, die nach φ reduziert. Man sagt, dass die Aktion φ nach
Charakteristik 0 hochhebt, falls solch ein φ existiert.

Analog dazu gibt es auch das lokale Hochhebungsproblem: Sei φ : G ↪→ Autk(k[[t]]) eine lokale
G-Aktion. Das lokale Hochhebungsproblem fragt, ob es eine Aktion φ : G ↪→ AutR(R[[t]]) gibt,
die nach φ reduziert. Durch eine Betrachtung von Verzweigungsgruppen sieht man, dass jedes glob-
ale Hochhebungsproblem ein lokales Problem induziert. Ferner zeigt der Lokal-Global-Prinzip von
Green und Matignon [15], dass diese zwei Probleme äquivalent sind.

Es ist bekannt, dass das lokale Lifting-Problem sehr schwer ist, falls p die Ordnung von G teilt.
Einige Ergebnisse sind bekannt. Oort, Sekiguchi und Suwa [36] haben gezeigt, dass alle lokalen
Z/pZ-Aktionen nach Charakteristik 0 hochheben. Green und Matignon [15] haben dieses Ergebnis
auf den Fall G = Z/p2Z veralgemeinert.

Für nicht-zyklische Gruppen haben Bouw und Wewers [4] gezeigt, dass alle G-Aktionen hochheben,
falls G die Dieder Gruppe der Ordnung 2p ist (wobei p eine ungerade Primzahl ist). Pagot [32] hat
das gleiche Ergebnis für G = (Z/2Z)2 gezeigt.

In dieser Dissertation studieren wir das lokale Hochhebungsproblem durch die Verzweigungstheo-
rie der p-adischen offenen Kreisscheibe. Unsere Theorie basiert auf den Theorien von Kato [21],
[22], Kato und Saito [23] und Huber [20]. Im ersten Kapitel zeigen wir insbesondere, eine Idee von
Irene Bouw folgend, dass Katos differentieller Swan-Führer die Differenziale von Henrio (im Fall von
Z/pZ-Erweiterungen) verallgemeinert.

Im zweiten Kapitel betrachten wir die Verzweigunsgruppen von Kato und Saito [23]. Wir führen
eine vereinfachte Verzweigungsfiltrierung ein, und wir zeigen, dass die Quotienten der Filtrierung el-
ementare abelsche Gruppen sind. Wir führen auch zwei Charaktere, die Artin- und Tiefen-Charaktere,
ein, und wir beweisen einen Zusammenhang zwischen denselben, Katos Swan-Führern und der Verzwei-
gungsfiltrierung. Diese Ergebnisse verwenden wir in einem Beispiel im dritten Kapitel, und wir zeigen
im fünften Kapitel, dass sie auch relevant für das lokale Hochhebungsproblem sind.

Henrio hat in [16], eine Idee von Green und Matignon [16] folgend, kombinatorische Objekte, die
sogenannten Hurwitz-Bäume, für Z/pZ-Aktionen auf der p-adischen Kreisscheibe eingeführt. Ein
Hurwitz-Baum spiegelt die Geometrie der Verzweigungspunkte einer Z/pZ-Aktion wider. Im drit-
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ten Kapitel dieser Dissertation verallgemeinern wir die Konstruktion von Green und Matignon auf
den algemeinen Fall mit beliebigen p-Gruppen. Die in diesem Kapitel erzielten Ergebnisse sind in
Zusammenarbeit mit Stefan Wewers. Die Neuerung bei unserer Konstruktion ist der Artin-Charakter
der p-Gruppe. Weiterhin führen wir ein neues Hindernis für Hochhebbarkeit einer lokalen Aktion
in Charakteristik p ein. Wir verwenden unsere neue Bedingung, um ein Problem von Chinburg,
Guralnick und Harbater (siehe [8], Frage 1.3) zu studieren. Wir zeigen insbesondere, dass lokale ve-
rallgemeinerte Quaternion-Aktionen in Charakteristik 2 existieren, die nicht nach Charakteristik 0
hochheben. Unser Ergebnis beantwortet Frage 1.3 von [8] damit negativ.

Im vierten Kapitel zeigen wir, dass das neue Hindernis für zyklische p-Gruppen verschwindet. Dies
ist ein neues Indiz für die Gültigkeit der Oort-Vermutung, welche sagt, dass alle zyklischen Aktionen
nach Charakteristik 0 hochheben.

Eine weitere Frage ist, ob für eine gegebene Gruppe G eine lokale Aktion in Charakteristik p ex-
istiert, die sich nach Charakteristik Null hochheben lässt. In [27] fragt Matignon, was für nicht
Abelshe p-Gruppen gilt. Im sechsten Kapitel geben wir das erste Ergebnis in dieser Richtung. Sei
D4 die Dieder Gruppe der Ordnung 8. Wir zeigen, dass es Beispiele von D4-Aktionen in Charakter-
istik 2 gibt, die nach Charakteristik 0 hochheben. Insbesondere geben wir eine Familie von solche
Aktionen, sogenannte sehr einfachen D4-Aktionen, die alle nach Charakteristik 0 hochheben. Der
Führer der von uns konstruierten Aktionen ist nicht nach oben beschränkt.
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