A Universal Unification Algorithm
Based on Unification-Driven

Leftmost Outermost Narrowing

Heinz Faflbender* and Heiko Vogler

Abt. Theoretische Informatik, Universitat Ulm
Oberer Eselsberg, W-7900 Ulm, Germany

e-mail: {fassbend,vogler}@informatik.uni-ulm.de

Abstract

We formalize a universal unification algorithm for the class of equational theories
which 1s induced by the class of canonical, totally-defined, not strictly subunifiable
term rewriting systems (for short: ctn-trs). For a ctn-trs R and for two terms ¢ and
s, the algorithm computes a ground-complete set of Fg-unifiers of ¢ and s, where
E'r is the set of rewrite rules of R viewed as equations. The algorithm is based on
the unification-driven leftmost outermost narrowing relation (for short: wlo narrowing
relation) which is introduced in this paper. The ulo narrowing relation combines
usual leftmost outermost narrowing steps and unification steps. Since the unification
steps are applied as early as possible, some of the nonsuccessful derivations can be
stopped earlier than in other approaches to Er-unification. Furthermore, we formalize
a deterministic version of our universal unification algorithm that is based on a depth-
first left-to-right traversal through the narrowing trees.

*The work of this author has been supported by the Deutsche Forschungsgemeinschaft (DFQ).

1 Introduction

The unification problem is to determine whether or not, for two given terms ¢ and s, there
exists a unifier ¢ of ¢ and s, i.e., a substitution ¢ such that ¢(?) = ¢(s). It is well-known
that the unification problem for first-order terms is decidable [Rob65]. Actually, there are
algorithms which compute the most general unifier of ¢t and s, if there exists a unifier at

all (cf., e.g., [PWT78, MM82]).

The problem of unification generalizes to the problem of F-unification if one considers
the equality modulo a set F of equations, denoted by =g, rather than the usual equality;
= is also called the equational theory induced by FE. The FE-unification problem is to
determine whether or not, for two given terms ¢ and s, there exists a substitution ¢ such
that ¢(t) =g ¢(s); then ¢ is called an F-unifier of ¢ and s. Clearly, the decidability of the
FE-unification problem depends on the set £ of equations. If ¥ is the empty set, then the F-
unification problem coincides with the unification problem and henceforth it is decidable.
If F is the set of Peano’s axioms, then the F-unification problem becomes undecidable,
because it is precisely Hilbert’s tenth problem, which was shown to be undecidable [Mat70].
Upto now the F-unification problem has been studied in particular for sets of algebraic
laws like the laws of commutativity, associativity, idempotence, or distributivity. A survey
about these investigations can be found in [Sie89].

For a class £ of equational theories, a universal unification algorithm for £ is an al-
gorithm which takes as input an equational theory =g from the class £ and two terms
t and s, and which computes a complete set of F-unifiers of ¢ and s. In this paper, we
will concentrate on universal unification algorithms for classes of equational theories which
are induced by particular term rewriting systems (for short: trs’s). A trs R induces the
equational theory =pg,, where Ex is the set of rules of R viewed as equations. Since
now, a lot of research has been carried out to construct universal unification algorithms
for classes & of equational theories which are induced by trs’s. In fact, all the approaches
are based on the concept of narrowing [Lan75]. More precisely, every investigation shows
that the use of a particular narrowing relation is complete for a particular class of trs’s.
Here we list some of the investigations by showing the corresponding pairs of narrowing
relation and class of trs’s.

e narrowing and canonical trs’s [Fay79, Hul80]

¢ basic narrowing and canonical trs’s [Hul80, MH92]

e outer narrowing and confluent, constructor-based trs’s [You89]

e any innermost narrowing strategy and totally-defined trs’s [Fri85]

e any narrowing strategy and canonical, totally-defined, not strictly subunifiable trs’s

[Ech8&8].

We note that a narrowing strategy is a narrowing relation in which the narrowing occur-
rence is fixed. We also recall that a trs is canonical, if it is confluent and noetherian. A trs
is constructor-based, if its ranked alphabet € is partitioned into sets F' and A of function

symbols and constructor symbols, respectively; moreover, the left-hand sides of rules are
linear terms f(#1,...,t,) where f is a function symbol, #,...,%, are terms over A UV
where V is the set of variables (cf. [You89]). A trs is totally-defined, if it is constructor-
based and every function symbol is completely defined over its domain or, equivalently:
every normal form is a constructor term (cf., e.g., [Ech88]). A trs is not strictly subunifi-
able, if, roughly speaking, two rules cannot be applied at the same occurrence under the
same substitution (cf. [Ech88] and Subsection 6.2 of the present paper).

In this paper we present a universal unification algorithm for the class of equational
theories which are induced by canonical, totally-defined, not strictly subunifiable trs’s (for
short: ctn-trs ’s). Although, at first glance, it might seem that our approach is subsumed
by the results of [Ech88], we will show later that this is not true. To give the reader
an idea about the power of ctn-trs’s, we mention that every modular tree transducer
[EVI1] is a trs of this type; the class of modular tree transducers characterizes the class of
primitive recursive tree functions [Hup78]. But in fact, ctn-trs’s are even more powerful
than modular tree transducers. Our universal unification algorithm is based on the so-
called wunification-driven leftmost outermost narrowing relation (for short: ulo narrowing
relation) which is introduced in this paper. For a trs R, the ulo narrowing relation is
denoted by ~4x. Roughly speaking, this relation combines the usual leftmost outermost
narrowing strategy with steps which are adopted from the usual unification algorithm for
terms. More precisely, the leftmost outermost narrowing is modified such that as soon
as possible a rule can be applied which is known as decomposition rule in the unification
algorithm of [MMS82]; in this sense, the ulo narrowing relation is unification-driven. In
[Fri85] a similar idea has been applied in the context of innermost narrowing. Let us give
an example at which we can illustrate the ulo narrowing relation.

In Figure 1 a set Ry of rules of the ctn-trs R4 is shown where we assume to have a ranked
alphabet F' = {sh(®), mi(M} of function symbols and a ranked alphabet A = {¢(?), (9} of
constructor symbols. Intuitively, R, defines two functions shovel and mirror with arity
2 and 1, respectively; meirror reflects terms over A at the vertical center line, and shovel
accumulates in its second argument the merror-image of the second subterm of its first
argument. If we consider, e.g., the term ¢ = o(o(a, s1), s2) for some subterm s; and s3,
then for an arbitrary term tq, shovel(t1,t3) is the term o(mirror(sy),o(mirror(ss),ts2)).

sh(a,y1) — (1)
sh(o(z1,22),y1) — sh(zy,o0(mi(z2),11)) (2)
mi(a) — o (3)
mi(o(ar,2)) — o(mi(es)mi(er) (4)

Figure 1: Set of rules of the ctn-trs R.

Now we consider the Er -unification problem, where the set Er, of equations is ob-
tained from Ry by simply considering the rules as equations. In particular, we want to
compute an Fr, -unifier for the terms sh(z1,) and mi(o(z2,@)) in which z; and z; are
free variables. Similar to Hullot in [Hul80], we combine the two terms into one term
equ(sh(z,a), mi(o(z2,«))) with a new binary symbols equ (which is called H in [Hul80]).

However, now we do not perform the narrowing relation with the trs Ry but with the trs
R1 which contains the set Ry U R(A) of rules; the set R(A) of equal-rules of A is shown
in Figure 2.

equ(a,a) — « (5)
equ(o(xy,x2),0(xs,24)) — olequ(ay,xs), equ(az, 24)) (6)

Figure 2: Set of equal-rules of A.

Then a derivation by '&7?1 starting from equ(sh(z1, a), mi(o(z2, @))) may look as follows

where we have attached to '&7@1 in every step the narrowing occurrence (in Dewey’s
notation), the applied rule, and the unifier as additional indices; ¢y denotes the empty
substitution.

equ(sh(z,a), mi(o(z2,a)))
N R () [fo (o)) CQU(SH(73, 0 (mi(24), @), mi(0 (22, @)))
R, (1) g/ equ{o(mi(z),), mi(o(z2, a)))

f R equ(o(mi(z4),), 0 (mi(a), mi(z)))
ok 437@17&(6)7% o(equ(mi(zy), mi(a)), equ(a, mi(z2)))

$ﬁ17117(3)7[24/a] o(equ(a, mi(a)), equ{a, mi(z3)))
'&7@17127(3)7% o(equ(a, @), equ(a, mi(zz)))
'&7%1,1,(5),% o(a, equ(a, mi(22)))
,$7Q1722,(3),[22/a] o(a, equ(a, a))
'&7@1,2,(5),% o(a,a)

If we compose the unifiers which are involved in the narrowing steps, then we ob-
tain the substitution ¢ = [z1/0(a,a), zz/a]; in fact, ¢ is an Eg,-unifier of sh(z,a) and
mi(o(z2,)). Note that ¢ is not an Ej -unifier, because the equational theory is gener-
ated by Eg,. The narrowing step at * shows how the ulo narrowing relation deviates from
the leftmost outermost narrowing relation. For the latter relation, 11 is the narrowing
occurrence in the term equ(o(mi(zy),), mi(o(z2,a))) and the subterm mi(z4) has to be
narrowed. But it is clear that any normal form s} of the first argument s; = o(mi(z4), @)
of equ is unifiable with a normal form s} of the second argument sy = mi(o(z2,«)) of
equ only if the constructors at the root of s{ and s} are identical. Because of reasons of
efficiency, it is of course important to check this equality as soon as possible. And since
s1 is already evaluated in constructor head normal form, we narrow s, at step * and try
to get it also into head normal form. Actually, this form is reached immediately. Then,
at step *k, the equality of root symbols is checked by applying the equal-rule (6).

Thus, in general, in the ulo narrowing relation the leftmost occurrence tmpQO of the equ
symbol is important in the sense that its direct sons decide how to proceed further:

o If the first son of ¢mpO is labeled by a function symbol, then a usual leftmost
outermost narrowing step on the basis of the original rules is performed on the
subterm which starts at the first son of ¢mp0O.

o If the first son of impO is labeled by a constructor or a variable and the second son
of impO is labeled by a function symbol, then a usual leftmost outermost narrowing
step is performed on the subterm which starts at the second son of impO (as, e.g.,
derivation step * in our example).

o If the first son and the second son of émpQO are labeled by the same constructor or, if
one of the sons is labeled by a variable and the other son is labeled by a constructor,
then an equal-rule is applied to impO (as, e.g., in the derivation step *x).

One situation is still missing, viz., if both sons of impQO are variables, say, z; and z3. We
call this situation binding modus (for short: bm), and the ulo narrowing relation performs
the following step:

U
equ(21, 22) ~> A b1 /2] 22+

As usual for narrowing relations, if the term equ(z1, 22) occurs as a subterm of the current
derivation form ¢, then the substitution [z1/2;] has to be applied to the whole term ¢. It is
clear that, by applying equal-rules as soon as possible, some unsuccessful derivations can
be stopped early. By means of the binding modus, we have kept the computed Er-unifier
as general as possible.

Now let us briefly discuss why our approach is not subsumed by the results of [Ech88].
In order to compare the approaches, one has to consider equ as an additional function
symbol. But it behaves quite differently in our approach. For instance, equ is not totally
defined, because the normal form of the term ¢ = equ(o(a, a),) is not a constructor term
(but it is ¢ itself which contains equ). Moreover, the binding mode which is applied to the
term equ(z1, z2), should be simulated by the additional rule

equ(z1,z1) — #1.

However, this rule is not linear in its left-hand side. Moreover, its left-hand side is strictly
subunifiable with the left-hand sides of all the other equal-rules. Hence, the resulting trs
is not a ctn-trs, and thus, the approach of [Ech88] is not applicable here.

Actually, for a ctn-trs R with set A of constructors and two terms ¢ and s, our universal
unification algorithm computes a ground complete set of (Er,A)-unifiers of t and s. An
(FRr,A)-unifier of ¢t and s is an Eg-unifier in which all the images are terms over A UV,
where V is the set of variables; in particular, this means that we do not consider unifiers
of the form [z1/ f(t)] for some function symbol f. Roughly speaking, a set S of (EFr,A)-
unifiers of ¢ and s is ground complete, if, for every ground (Fg,A)-unifier ¢ of ¢ and s
(i.e., the images of ¢ do not contain variables), there is a 1) € S which is more general
than ¢. This notion will be formalized in Section 6.

If one studies or introduces particular narrowing strategies, then one should ask about
the efficiency of the proposed formalisms. How can such an efficiency be measured or, at
least, be illustrated? We will illustrate the efficiency of our approach by means of trees in
which, for terms like

t = equ(sh(z,a), mi(c(z2,a))),

all the possible derivations are collected which are induced by some narrowing relation ~»
and which start from ¢; we call such a tree the narrowing tree of t and we denote it by

nar-tree(~,t). The nodes of nar-tree(~,t) are labeled by terms over QUV; in particular,
the root is labeled by ¢. If a node nd of the narrowing tree is labeled by a term s and if s
derives by the narrowing relation in k different ways to the terms sy, ..., sg, then nd has k
children which are labeled by sq1,...,s;. In the context of PROLOG programs, such trees
are known as SLD-trees [L1087]. Then, as a rough measurement, a narrowing relation ~»;
is more efficient than the narrowing relation ~+5, if the set of terms is partitioned into
two sets T« and T- such that (1) for every t € T, the size of nar-tree(~+1,t) is smaller
than the size of nar-tree(~3,t) and, for every t € T, the sizes of nar-tree(~1,t) and
nar-tree(~+3,t) are equal, and (2) T« # 0.

In general, two sources of nondeterminism form the building principles for narrowing
trees:

1. there may be more than one narrowing occurrence in the current derivation form ¢
and

2. at one narrowing occurrence, the corresponding subterm of ¢ may be unifiable with
the left hand sides of more than one rule.

In the sequel we will order the successors of a term ¢, i.e., the elements of the set {¢;[t ~
t;}, by first considering the lexicographical ordering on the narrowing occurrences of ¢ and
second, if more than one rule is applicable at one occurrence, taking an implicite ordering
of the rules into account. To give an example of a narrowing tree, we again consider the
term

t = equ(sh(z1,a), mi(o(z,a))).

Figure 3 shows the narrowing tree of ¢ induced by the ulo-narrowing relation. This tree
should be compared with the leftmost outermost narrowing tree in Figure 6 which, in its
turn, should be compared with the narrowing tree in Figure 5. This comparison shows that
both changes (from narrowing to leftmost outermost narrowing, and from leftmost outer-
most narrowing to ulo-narrowing) may increase the efficiency of the unification algorithm
in the sense explained above.

The presentation of the unification algorithm and of the ulo narrowing relation in this
paper is formal; in particular, we prove the completeness of our algorithm. We develop
our approach in a stepwise fashion by recalling a sequence of known universal unification
algorithms (Theorem 4.12, Theorem 5.5 cf. [Hul80], Theorem 6.10 cf. [Ech88], Theorem
7.8) which leads us to our algorithm in Theorem 7.9. And in fact, during trying to formalize
the algorithms, we have felt a strong need to recall the basic concepts of F-unification and
of narrowing also in a formal way. This is the reason why this paper has become a bit
lengthy. Readers who are familiar with these concepts, may skip Section 2 to Section 5
and start immediately with Section 6.

This paper is organized in nine sections where the second section contains preliminaries;
in particular, there we formalize the framework of derivation calculus and derivation trees
which will later be instantiated to narrowing trees for the narrowing relation, the leftmost
outermost narrowing relation, and the ulo-narrowing relation. In Section 3 we recall
notions about E-unification from [HO80]. In Section 4 we present an overview over the
notations and results of term rewriting systems as far as they are needed in the present

equ(sh(z1,a),mi(o(z2,)))

/

equ(a, mi(o (22, o)

equ(a, o(mi(a), mi(22)))

equ(sh(zs,o(mi(z4), mi(o(z2,))

/\

equ(o(mi(zs), @), o(mi(a), mi(22)))

equ CT mi Z4 OZ

o(equ(mi(zs), mi(a)), equ(a, mi(22)
o(equ(o, mi(a)), equ(cr, mi(z2) o(equ(o(mi(zg), mi(zs) (a)),equ(c, mi(22)))

olequier), equler, mi(z2))) o(equ(a(mi(zg), mi(zs)), o), equ(c, mi(22)))

o(o, equ(a, mi(22)))

/
(o, equ(a, o))

o(a, equ(er, o (mi(z4), mi(z3))))

oo, a)

success!

Figure 3: Narrowing tree for ¢ induced by the ulo narrowing relation.

6

paper. In Section 5 we recall the algorithm from [Hul80] and introduce the narrowing
derivation calculus. In Section 6 the leftmost outermost narrowing derivation calculus
and ctn-trs’s are introduced and the corresponding algorithm of [Ech88] is recalled. In
Section 7 we define the unification-driven leftmost outermost narrowing derivation calculus
and formalize the universal unification algorithm for the class of equational theories which
are characterized by ctn-trs’s. In Section 8 we define the deterministic version of our
universal unification algorithm which is based on a depth-first left-to-right traversal over
the ulo-narrowing trees. Finally, Section 9 contains some concluding remarks and indicates
further research topics.

2 Preliminaries

We recall and collect some notations, basic definitions, and terminology which will be used
in the rest of the paper. We tried to be in accordance with the notations in [Hue80] and
[DJ91] as much as possible.

2.1 General notations

We denote the set of nonnegative integers by IN. The empty set is denoted by (. For
j € IN, [j] denotes the set {1,...,j}; thus [0] = (and for 4,5 € IN, [¢,j] denotes the
interval {7, 4 1,...,j}. For a finite set A, P(A) is the set of subsets of A and card(A)
denotes the cardinality of A. For n € IN, I(n) denotes the set U; ;[n)[?, j] of intervals of
[0,7]. As usual for a set A, A* denotes the set |, ,en{a1a2...a, | forevery i € [n] 1 a; € A}
that is called the set of words over A.

2.2 Ranked Alphabets, Variables, and Terms

A pair (2, rankq) is called ranked alphabet, if is an alphabet and rankqg : € — INisa
total function. For f € Q, rankq(f) is called rank of f; maxzrank$ denotes the maximum
of the image of rankq. The subset Q™) of O consists of all symbols of rank m (m > 0).
Note that, for ¢ # j, Q) and QU) are disjoint. We can define a ranked alphabet (Q, rankq)
either by enumerating the finite subsets Q™) that are not empty, or by giving a set of
symbols that are indexed with their (unique) rank. For example, if @ = {a,b,c} and
rankqg : Q@ — IN with rankq(a) = 0, rankq(b) = 2, and rankq(c) = 7, then we can
describe (Q, rankq) either by Q©) = {a}, Q3 = {b}, and Q) = {¢} or by {a(®, (), (M},
If the ranks of the symbols are clear from the context, then we drop the function rankg
from the denotation of the ranked alphabet (2, rankq) and simply write €.

In the rest of the paper we let V denote a fixed enumerable set. Its elements are called
variables. In the following we use the notations x,z1,29,..., %, ¥1,¥Y2, ..., 2, 21, 22, . . . for
variables.

Let (Q,rankq) be a ranked alphabet and let S be an arbitrary set. Then the set of
terms over) indexed by S, denoted by Tq(5), is defined inductively as follows:

(i) S CT(Q)(S5).
(i) For every f € Q) with k > 0 and t1,....ts € T(Q)(S): f(t1,...,tr) € T(Q)(S).

The set T(2)(0), denoted by T(£2), is called the set of ground terms over Q.

Let A denote the empty word. For a term ¢t € T(Q)(V), the set of occurrences of t,
denoted by O(t), is a subset of IN* and it is defined inductively on the structure of ¢ as
follows:

(i) If t = @ where 2 € V, then O(t) = {A}.

(i) If t = f where f € Q) then O(t) = {A}.

(i) It = f(t1,...,t,) where f € QU and n > 0, and for every i € [n] : t; € T(Q)(V),

The prefix order on O(t) is denoted by < and the lexicographical order on O(t) is denoted
by <jer. The minimal element with respect to <., in a subset S of O(%) is denoted by
minge;S. For a term ¢ € T(Q2)(V) and an occurrence u of ¢, t/u denotes the subterm of
t at occurrence u, and t[u] denotes the label of t at occurrence u. We use V(1) to denote
the set of variables occurring in ¢; that is, € V(¢), if 2 € V and there exists a u € O(t)
such that t/u = 2. Finally, we define t{u < s] as the term ¢ in which we have replaced the
subterm at occurrence u by the term s.

2.3 Algebras, Substitutions, and Congruences

Let (2, rankq) be a ranked alphabet.

An Q-algebra is a pair (A, int4), where A is a set and int4 is a mapping such that:

int4(f) € A, if rankq(f) =0, and
inta(f): A" — A, if rankq(f) = n.

The pair (T{Q)(V),intr), where for every f € Q) and for every t; € T(Q)(V) with
i € [n] @ antr(f)(t,. .., t,) = f(t1,...,t,), is an Q-algebra. It is called the Q-term
algebra. The Q-term algebra is a free Q-algebra (cf. [HOS80]).

If (A,inty) and (B,intg) are two Q-algebras, we say that h : A — B is a homomor-
phism, if for every f € Q) with n > 0 and for every a; € A with 7 € [n], we have

h(inta(f)(ar,...,a,)) = intg(f)(h(ar),..., h(a,)).
A mapping v : V — A is called an A-assignment.

The property that every A-assignment can be extended in a unique way to a homo-
morphism from T(Q)(V) to A is called the universal property for the free Q-algebras in
[HO80]. We use v to denote both the A-assignment and its extension.

A T{Q)(V)-assignment ¢, where the set {z | ¢(x) # x,2 € V}is finite, is called a (V, Q)-
substitution. The set {z | p(z) # x} is denoted by D(p) and is called the domain of ¢.
If D(p) = {x1,..., 2.}, then @ is represented as [x1/¢(x1),..., 20 /¢(x,)]. If D(¢) =0,
then ¢ is denoted by ¢y. We say that ¢ is ground, if for every @ € D(p) : V(p(2)) = 0.
The set J,ep(y) V(p(2)) is denoted by Z(y) and is called the set of variables introduced by
¢. The set of (V,Q)-substitutions and the set of ground (V, Q)-substitutions are denoted
by Sub(V,) and gSub(V,), respectively. The composition of two substitutions ¢ and
is the T(Q)(V)-assignment which is defined by ¥(¢(2)) for every @ € V. It is denoted by
poi.

An equivalence relation ~ on T(Q)(V) is called an Q-congruence over T(Q)(V), if for
every f € Q) with n > 0 and for every t1,s1,...,t,, s, € T{Q)(V) with t; ~ s1,...,1, ~
Sp

f(tl,. . .,tn) ~ f(Sl,. . .,Sn).

2.4 Derivation Calculus

A derivation calculus, denoted by D, is a pair (D,F) where D is a set and F is a binary
relation over D. (In the sequel it will always be clear whether D denotes the domain of
a substitution or a derivation calculus.) The elements of D are called derivation forms
and F is called a derivation relation. An element (d,d') € I is denoted by d F d’ and we
say that d derives to d' by . We use the standard notations -+ and F* to denote the
transitive closure and the transitive-reflexive closure of -, respectively. d * d’ and d + d’
are also called derivation by & starting with d and derivation step by -, respectively. For
a derivation form d € D, the set {d' € D | d F d'}, denoted by Suc(d,l), is called the set
of successors of d.

A derivation form d € D is irreducible or in normal form, if Suc(d,F)is empty; d' is a
normal form of d, if d =* d’" and d’ is in normal form. A substitution ¢ is in normal form,
if for every o € D(¢) : ¢(2) is in normal form.

Let D = (D,F) be a derivation calculus. An indexed derivation calculus for D, denoted
by Dy, is a triple (D, (J,<),(F; | 7 € J)), such that the following conditions hold:

1. J is an index-set.
2. < is a total order on J.

3. For every j € J, I; is a binary relation on D and (U;ey ;) = F.

Let Dy = (D,(J,<),(F; | j € J)) be an indexed derivation calculus, and let d € D.
A derivation tree for Dy and d is a tree, denoted by T(Dj,d) such that the following
conditions hold:

1. Every node of T(Dy,d) is labeled by a derivation form d’ € D.
2. The root of T(Dy,d) is labeled by d.

3. Let d’' be the label of a node nd in T(Dy,d), and let {j € J | there is a d* € D :
d'F; d*} be the set {ji,...,j,} such that j; < j» < ... < j,. Then nd has n sons
and for every k € [n], the k-th son of nd is labeled by d, if d' +-;, d.

Intuitively, every path through 7'(Dys,d) shows a derivation by F starting with d and,
vice versa, every derivation by F starting with d is represented by a path through T'(Dy, d).
Hence, the size of (D, d) gives an idea of the complexity of enumerating the derivations
that start with d.

Hier Definition von Menge der narrowing interfaces rein

10

3 E-Unlification

The aim of this section is to recall the definition of F-unification. Since this concept is
a central notion in our whole investigation, we will take some effort for its introduction.
First of all we have to specify what an equation is. Recall that Q denotes an arbitrary
ranked alphabet and V denotes a fixed enumerable set of variables.

Definition 3.1 An equation over Q and V is a pair (¢, s), where t,s € T(Q)(V). ey,

For the time being we do not follow the usual convention of denoting an equation (¢,s)
by t = s, because we want to keep for a moment also on the syntactic level the difference
between an equation and the binary equality-relation. Of course, later we will identify
(t,s) with ¢t = s.

Definition 3.2 Let F be a finite set of equations over and V. The F-equality, denoted
by =g, is the finest Q-congruence over T'(Q)(V) containing every pair (1(t),(s)), where
(t,s) € E and v is an arbitrary (V,Q)-substitution. If ¢ =g s, then ¢ and s are called
F-equal. P

Now we are able to recall the definition of F-unification of two terms ¢ and s.

Definition 3.3 (cf. [Sie89] page 220) Let E be a finite set of equations over and V.

o Two terms t,s € T(Q)(V) are called E-unifiable, if there exists a (V, Q)-substitution
¢ such that ¢(t) =g ¢(s).

o Theset {¢ | p(t) =g ¢(s)} is called the set of E-unifiers of t and s, and it is denoted
by Ug(t,s). b

In the following example we present the set E'r, of equations which is induced by the term
rewriting system R; in Figure 1, and an Fx,-unifier of two terms.

Example 3.4 The set F'r, induced by R consists of the following equations:

sh(a,1n) = 0
sh(o(z1,22),y1) = sh(zy,0(mi(x2),y1))
mi(a) = «
mi(o(zy,22)) = o(mi(zg), mi(z1))

The substitution ¢ = [z1/0(a,a),zz/a] is an Eg,-unifier of the terms sh(z1,a) and
mi(o(z2, a)), because sh(o(a,a), a) =g, mi(o(a,a)). b

Considering the set Ug(t,s) of all E-unifiers of ¢ and s, immediately the question arises
whether two unifiers ¢1 and @9 in Ug(t, s) are related. To answer this question, we need

a tool to compare unifiers.

11

Definition 3.5 (cf. [Sie89] page 220) Let £ be a finite set of equations over @ and V.
The instantiation preorder <g is defined over T(Q)(V) by:

t <p s, if there exists a (V, Q)-substitution ¢ such that p(t) = s.
Let V' be a finite subset of V. We define a preorder <g (V') on (V, Q)-substitutions by

¢ < ¢ (V), if there exists a (V, Q)-substitution ¢ such that for every z € V :
U(e(2) =p ¢'(@). ®

If we consider the case where F is the empty set, then E-unification reduces to (usual)
unification [Rob65]; two terms ¢ and s are unifiable, if there is a substitution ¢ such that
o(t) = ¢(s). It is decidable whether two terms are unifiable yes or no, and there are a
couple of algorithms which produce such unifiers (cf. [Sie89] for a survey). In fact, for
every two terms ¢t and s, the set Uy(t, s) contains a smallest element with respect to <y
which is called the most general unifier of t and s.

If £ is an arbitrary set of equations, then the situation is different. In general, it is not
decidable whether, for a set E of equations and two terms ¢ and s, t and s are E-unifiable
yes or no (cf., e.g., [HO80]). Moreover, U (%, s) needs not contain a smallest element, but
clearly there are minimal elements.

Actually, one does not have to consider all the elements of Ug(¢,s) when studying
F-unification. Rather it suffices to consider the elements of so called complete sets of
E-unifiers of t and s. The set of minimal elements of Ug (%, s) is always a subset of such a
complete set of F-unifiers. In fact, the minimal complete set of F-unifiers is exactly the
set of minimal F-unifiers.

Definition 3.6 (cf. [HO80] page 359) Let I be a finite set of equations over © and V.
Let ¢t,s € T{(Q)(V) and let W be a finite set of variables containing V' = V(t) U V(s). A
set S of (V,Q)-substitutions is a complete set of E-unifiers of t and s away from W, if the
following three conditions hold:

1. For every p € 5: D(¢) CV and Z(¢) N W = (.
2. 5C UE(t,S).

3. For every ¢ € Ug(t, s) there is a 1 € 5 such that ¢ <g ¢ (V).

The set is said to be minimal, if it satifies the additional condition (4).
4. For every ¢, € S :if o # ¢, then ¢ £g ¢ (V). &b

In Figure 4 we illustrate the notions of Definition 3.6. We suppose that ¢1,...,¢g9 are
the F-unifiers of the terms ¢ and s. If ¢; <g ¢; (V), then there exists a tour between
@i and ¢;, and ¢; is written above ;. The set {¢1, @2} is the minimal complete set of
FE-unifiers of t and s, and the set {©1, v2, ¥4, s, 7} is a complete set of E-unifiers of ¢

12

8 ®9

/ Complete set of F-unifiers

#5 ¥6 7
¥3 P4
N — /— - —x + o | minimal complete set of E-unifiers
I ¥ Y2
L - - - - - - J

Figure 4: Complete Sets of I/-Unifiers.

and s. Any set that does not contain one of the substitutions ¢ and ¢ is not a complete
set of IJ-unifiers of ¢ and s.

At the end of this section we present a theorem which implies a naive universal unifi-
cation algorithm for the computation of a complete set of F-unifiers of two terms ¢ and
s, where F is any equational theory. In fact, this algorithm is only an application of the
definition of F-unifiers.

Theorem 3.7 Let E be a finite set of equations over Q and V, let t,s € T(Q)(V), and
let W be a finite set of variables containing V' = V(¢) U V(s). Let S be the set of (V,Q)-
substitutions ¢ such that ¢ is in § iff the following two conditions hold:

1. @(t) =g ¢(s).
2. D(¢) CVand I(p) N W = 0.

Then 5 is a complete set of F-unifiers away from W.

Proof: From Definition 3.3 follows that the set of all substitutions which satisfy Condition
1,is the set Ug(t,s). Thus, Conditions 2 and 3 in Definition 3.6 are satisfied. Furthermore,
Condition 1 in Definition 3.6 is exactly the same as Condition 2 in the construction of 5.
Thus, 5 is a complete set of F-unifiers away from W. P

The algorithm implied by Theorem 3.7 consists of first guessing a substitution ¢ and
second checking whether ¢(s) =g ¢(t). This is very inefficient, because many substitutions
that are not F-unifiers, are guessed and subsequently checked. Furthermore, it is not easy
to check whether ¢(s) =g ¢(t) yes or no, because this involves the construction of the
congruence relation =g.

13

4 Term Rewriting Systems

In order to present a more efficient universal unification algorithm for the class &, in
particular, to avoid the construction of the congruence relation =g, we restrict £ to the
class of equational theories characterized by canonical term rewriting systems. For an
arbitrary term rewriting system R, we denote by Fx the set of equations that results
from replacing every rewrite rule [— r by the equation [= r. In [HOS80] it is shown that
=g, is equal to the transitive, reflexive, symmetric closure <=-% of the reduction relation
associated with R. Furthermore, in a canonical term rewriting system R, every term
has its unique normal form. In [Hue80] it is shown that, for a canonical term rewriting
system R, two terms are related by <=-% iff their normal forms are equal. This yields the
following simple test for Fr-equality of two terms ¢ and s: Compute the normal forms of
t and s and check whether the normal forms are equal or not.

For a complete introduction of canonical term rewriting systems, we recall the definition
of term rewriting systems from [HO80]. Afterwards, we define the reduction relation asso-
clated with a term rewriting system and the reduction calculus. Then we define canonical
term rewriting systems and present a theorem which implies a universal unification algo-
rithm for the class of equational theories which are induced by canonical term rewriting
systems.

4.1 Term Rewriting Systems and the Reduction Calculus

We start this subsection by defining term rewriting systems.

Definition 4.1 A term rewriting system, denoted by R, is a pair (€2, R), where © is a
ranked alphabet and R is a finite set of rules of the form [— r such that [, € T(Q)(V)
and V(r) C V(I). @

Remark 4.2 With every term rewriting system R = (€, R), a bijection 7 : R — [card(R)]
is associated implicitely that describes an enumeration of R. P

An example of a term rewriting system is illustrated in Figure 1. There the associated
function 7 is given by the enumeration on the right of the rewrite rules (e.g., 7(mi(a) —
a) = 3). In the following we always refer to this example and the involved enumeration.

With every term rewriting system R, a reduction relation is associated. By means of
this reduction relation, a term ¢ derives to a term ¢/, if there is an occurrence w in t such
that the subterm of ¢ at u is an instance of the left hand side [of a rule [— r. Then ¢
results from replacing t/u by the corresponding instance of r.

Definition 4.3 Let R = (2, R) be a term rewriting system and let ¢ € T(Q)(V).

o The set of redex interfaces for R and t, denoted by redI(R,t), is the set

{(u,p,l = 1) | ueO) witht/u g V,p € Sub(V,Q),l — r € R with o(I) =t/u}.

14

o The set of redex occurrences for R and t, denoted by redO(R,t), is the set

{u] (u,p,l = 1) €redl(R,t)}.

o The reduction relation associated with R, denoted by =, is defined as follows:
For every t,s € T(Q)(V) : t =>x s, if the following two conditions hold:

1. There is a redex interface (u,p,l — r) € redI(R,1).
2. s =tu — o(r)]. b

Recall, if t =5 s, then we say that ¢ derives to s by =x. If ‘R is clear from the context,
we write = instead of == x. We use the standard notation <= to denote the symmetric
closure of =. Note that we sometimes use components of the redex interface as indices
for =1 tonotice the redex occurrence, the substitution, or the applied rule. For instance,
=R ,u,p,l—r denotes the reduction step in Definition 4.3. Pieces of the redex interface can
be dropped, if they are not relevant. Furthermore, we often replace the applied rule by
its number. A derivation by =%, where R is the term rewriting system in Figure 1, is
illustrated in the following example.

Example 4.4 Let Ry be the term rewriting system in Figure 1 and let ¢ be the term
Sh(U(a, Zl)v mi(U(a, Zl)))‘

Then, the following derivation is a derivation by =%, starting with ¢.

== Ry,22,(4) sh :
=R, 22,3 Shla,o(mi
=Ry A1) o(mi(z1),0(mi(z1),a))

(
=R, A(2) shEa, o(mi(z), mi(o(a, z1))))
(

The term o(mi(z1),0(mi(z1),a)) is a normal form of ¢. Note that this is not the only
derivation by =, starting with ¢, e.g., in the first reduction step we can also reduce at
occurrence 2 by rule (4). b

As described in the previous example, the reduction relation is nondeterministic: there
may be more than one redex occurrence in a term ¢ and, for the same redex occurrence
in ¢, the set redI(R,t) may contain more than one redex interface. All possible ways
to derive t by == are collected in the concept of reduction tree which is based on the
concept of reduction calculus of R. Reduction tree and reduction calculus are instances of
the concepts of derivation tree and indexed derivation calculus, respectively (cf. Section
2). We choose the set IN* X R as index-set, because the two forms of nondeterminism
depend on the occurrences and the applied rules. As total order we define a combination
of the lexicographical order on IN* and the total order induced by the enumeration = on

R.

15

Definition 4.5 Let R = (2, R) be a term rewriting system with enumeration 7 on R.

o The reduction calculus of R, denoted by D,.q4r, is the indexed derivation calculus
(T()(V),(N* X R, <),(=Rui—r | (u,l — 1)€N"x R))for (T(Q)(V),=r)
where < is the total order on IN* X R defined as follows: for every (u,! — r), (u/,lI' —
'y e N* X R, (u,l — r) < (u/,I" = '), if one of the following conditions holds:

1w <pep .

2. u=v and 7(l = r) < a(I" = +').

o A reduction tree of R is a derivation tree of D,.gr. P
For every term rewriting system R, we consider the related set Fr of equations.

Definition 4.6 Let R = (2, R) be a term rewriting system. Theset {{=7r|]— r € R},
denoted by Fr,is the set of equations related to R. P

The set Er, of equations related to the term rewriting system in Figure 1 is shown in
Example 3.4. In the following lemma we recall from [HO80] the connection between the
transitive, reflexive, symmetric closure of =% and the Fr-equality .

Lemma 4.7 (cf. [HO80] page 362) Let R be a term rewriting system and let Er be the
related set of equations.
<:>;‘2 = =Ex

D

This lemma will be very important in the following subsection. There we consider canonical
term rewriting systems R and present a theorem which implies a more efficient algorithm
for Fr-unification than the algorithm implied by Theorem 3.7.

4.2 Canonical Term Rewriting Systems

For the definition of a canonical term rewriting system, we need the definitions of conflu-
ence and termination.

Definition 4.8 Let R = (2, R) be a term rewriting system.

1. R is confluent, if for every s,t,t' € T(Q)(V): s =% t and s =% t' implies that
there is some s’ € T(Q)(V) such that t =% s’ and t/ =} .

2. R is noetherian, if no infinite reduction derivation t =% t; = ty =R - - - exists.

3. R is canonical, if R is confluent and noetherian. P

16

The term rewriting system in Figure 1 is canonical, because it is a macro tree transducer;
and macro tree transducers are canonical term rewriting systems (cf. [EV85, FHVV93]).

The following two lemmas are the main foundations of our further investigations.

Lemma 4.9 Let R = (2, R) be a canonical term rewriting system. Every term ¢ €
T(Q)(V) has a unique normal form which is called the R-normal form of t.

Proof: The existence of a normal form of ¢ follows from the fact that R is noetherian.
Suppose, that ¢ and t” are two normal forms of ¢. By the confluence of R we obtain that
there exists an s such that ¢ =% s and ¢ =% s. This implies that ¢ = s = ¢/, because
t" and ¢ are in normal form. &

The R-normal form of ¢ is denoted by nfg(¢). In [Hue80] it is shown that two terms are
related by <=-% iff their normal forms are equal. From this fact and from Lemma 4.7,
the following lemma follows immediately.

Lemma 4.10 Let R = (2, R) be a canonical term rewriting system and let ¢, s € T(Q)(V).
t =gy siff nfr(t) = nfr(s).

D

By applying Lemma 4.10 we show that the substitution ¢ in Example 3.4 is really an
B, -unifier.

Example 4.11 Let Ry be the term rewriting system in Figure 1, let ¢t = sh(z1,a), let
s = mi(o(z2,a)), and let ¢ = [z1/0(a,), z2/a]. Then there exist the following two
derivations by ==, starting with ¢(¢) and ¢(s), respectively, which yield the same
normal forms.

o(t) = sh(o(a,a), a) =R, .A(2) sh(a, o(mi(a), o))
=R ,A,(1) o(mi(a), a)
==R4,1,(3) ala,a)

@(s) = mi(o(a,a)) =g, A @ o(mila),mi(a))
==Ry,2,(3) o(mi(
—Rr;1,3) Jda.a

Thus, the normal forms of ¢(¢) and ¢(s) are equal. It follows from Lemma 4.10 and
Definition 3.3 that ¢ is an Ex,-unifier of ¢ and s. P

We finish this section by presenting the theorem which implies a universal unification
algorithm for equational theories =, where R is a canonical term rewriting system.

17

Theorem 4.12 Let R = (2, R) be a canonical term rewriting system, let ¢,s € T(Q)(V),
and let W be a finite set of variables containing V' = V(¢) U V(s). Let S be the set of
(V, Q)-substitutions ¢ such that ¢ is in S iff the following two conditions hold:

Lo nfr(e(t)) = nfr(e(s))-
2. D(¢) CVand I(p) N W = 0.

Then 5 is a complete set of Fr-unifiers away from W.

Proof: From Condition 1 and Lemma 4.10 follows ¢(t) =g, ¢(s). Thus, from Theorem
3.7 follows § is a complete set of Er-unifiers away from W. P

The algorithm implied by Theorem 4.12 consists of guessing a substitution ¢ and checking
whether ¢(s) =g, @(t). It is more efficient than the algorithm implied by Theorem 3.7,
because the test on Eg-equality is realized by computing the R-normal forms of ¢(s) and
¢(t) and by checking their equality. This is always a finite process. Nevertheless, this
algorithm is very ineflicient, because still many substitutions are checked which are not
FEpr-unifiers.

18

5 FEgr-Unification by Narrowing

In this section we eliminate the deficiency in the algorithm that is implied by Theorem 4.12,
by recalling an algorithm from [Hul80] by means of which a substitution ¢ is computed step
by step during the derivation. Actually, it is not a derivation by the reduction relation any
more, but it is a derivation by the narrowing relation. Roughly speaking, the composition
of the substitutions 1, @2, @3, ..., @, which are involved in the derivation steps by the
narrowing relation, composed with the most general unifier u of the two terms at the end
of the derivation, constitute the desired substitution ¢.

The intention of Hullot’s algorithm is very similar to the intention of the resolution
principle for logic programs in [Rob65]: Hullot’s algorithm is superior to "guessing ¢ and
computing nfr(¢(s))” in the same way as resolution is superior to level saturation (cf.,
e.g., [HK89]). The advantage of Hullot’s algorithm is the fact that a substitution ¢; is
chosen only if ¢; allows for a derivation step, i.e., ; must be the most general unifier of
a subtree of the current derivation form and the right hand side of a rule. Thereby the
set of all possible substitutions is reduced which leads to a more efficient Eg-unification
algorithm.

We start this section by introducing the narrowing derivation calculus which is needed
in Hullot’s algorithm. Hullot’s algorithm is defined only for canonical term rewriting
systems, but we will define the narrowing derivation calculus for arbitrary term rewriting
systems, because the restriction to canonical term rewriting systems is not necessary in
its definition.

5.1 The Narrowing Calculus

A term ¢ derives by the reduction relation to a term ¢, if there exists a redex interface
(u,p,l — 7) such that t/u and (1) are equal. In the narrowing relation, we take the most
general unifier ¢ of t/u and p(!) where p is a variable renaming such that V(p(1))NV(t) = 0.
That means, the condition ¢(p(1)) = ¢(t/u) must hold. Moreover, ¢ must be applied to
r and to the context of t/u, too.

In order to keep track of the substitutions which have occurred in previous narrowing
derivation steps, every derivation form of the narrowing relation is a pair (¢,1) where ¢
is a term and % is a substitution. Roughly speaking, 1) comprises the composition of all
most general unifiers of previous derivation steps by the narrowing relation. Clearly, we
are only interested in substitutions of variables that occur in ¢ and we are not interested in
substitutions of variables that occur in the left hand side of a rule. Thus, if (¢,1) derives
to (#',1') by the narrowing relation, then ¢’ is the composition of ¢ and the restriction of
the most general unifier ¢ to the set of variables in t.

Definition 5.1 Let R = (2, R) be a term rewriting system and let ¢ € T(Q)(V).

o The set of narrowing interfaces for R and t, denoted by narl(R,t),is the set

19

{(uy 0,1 = 71,p) | w€O):t/uéd V,l —r € R,pis arenaming of variables in [
such that V(p(1))NV(t) =0, € Sub(V,Q) is the most general
unifier of p(!) and t/u}.

o The set of narrowing occurrences for R and t, denoted by narO(R,t), is the set
{ul (w0 — 1, p) € nar[(R,1)}.

o The narrowing relation associated with R, denoted by ~+x, is defined as follows: For
every t,s € T(Q)(V) and ¢, 9" € Sub(V,Q): (t,v) ~r (s,v), if the following three

conditions hold:

1. There is a narrowing interface (u,p,l — 7,p) € narl(R,t).
2. s = g(tlu = p(r)])
3. ¢ = 1o (plyw)) &5,

In the following, we use the notations for the narrowing relation in analogy to the notations
for the reduction relation. In Example 5.2 we show a derivation by the narrowing relation
that starts with the same term ¢ as the derivation by the reduction relation in Example
4.4 and where derivation steps 1 - 6 are analog to the derivation steps by the reduction
relation in Example 4.4.

Example 5.2 Let Ry be the term rewriting system in Figure 1 and let ¢ be the term
Sh(U(a, Zl)v mi(U(a, Zl)))‘
Then, the following derivation is a derivation by ~-%, starting with (¢, ¢y).
) (shia(a,z1), mi(o(a,21))), ¢y)
Ry (a(mi(z1), 0(mi(z1), @), pp)
()
(

(
~Ry21a /el (o(mila),o(a,a)),[x1/a]
Ry en(3) o(a,o(a,a)),[z1/a])

(*)

Remark that in narrowing step (*) also rule (4) can be applied by the substitution
[21/0 (22, 23)]- ®

As illustrated in the introduction and in Example 5.2, the narrowing relation is nondeter-
ministic. There are the same two forms of nondeterminism in the narrowing relation as
in the reduction relation, i.e., (1) there may be more than one narrowing occurrence and
(2) more than one rule may be applied at one narrowing occurrence. For the purpose of
enumerating all the possibilities, we introduce narrowing trees which are derivation trees
of the narrowing calculus. In the definition of the narrowing calculus we choose the same
index set and the same total order as in the reduction calculus.

20

Definition 5.3 Let R = (2, R) be a term rewriting system with enumeration 7 on R.

o The narrowing calculus of 'R, denoted by D,.,r, is the indexed derivation calculus
(T{Q)(V)x Sub(V,Q),(IN*X R, <), (~Rouimr | (u,l — 1) € N*XR)) for (T(Q)(V)x
Sub(V,Q),~r) where < is the total order on IN* x R defined as follows: for every
(u,l — r), (v, ' = 1"y € N* x R, (u,l — r) < (u,I'! = r"), if one of the following
conditions holds:

1w <jpep '

2ou=vand 7({l —r)<a(l' = 1').

o A narrowing tree of R is a derivation tree of D, 4. P

5.2 Hullot’s I'z-Unification

In [Hul80] Hullot presents a theorem which says that, for every canonical term rewriting
system R, the Er-unifiability of two terms ¢ and s can be checked nondeterministically
by narrowing and unification. He starts the derivation by the narrowing relation with the
pair (equ(t, s), pp) where equ ¢ Q2 UV is a new binary symbol (in [Hul80] the symbol equ
is denoted by H). Hullot shows that ¢t and s are Exg-unifiable, if (equ(t, s), py) derives to
some pair (equ(ty, s,), ¢n) by ~%, and t, and s, are unifiable. (We assume that ~-5 is
extended in an obvious way to objects of the form (equ(t, s),¢) for t,s € T(Q)(V).) If u
is the most general unifier of ¢,, and s,, then ¢, o is a substitution which satisfies the
condition for ¢ in Theorem 4.12, i.e., nfr(p(vn(t))) = nfr(p(en(s))), and hence, ¢, o u
is an Eg-unifier of ¢ and s. In the following example we show, how the Eg -unifier in
Example 4.11 can be computed by Hullot’s method.

Example 5.4 Let Ry be the term rewriting system in Figure 1, let ¢ = sh(z1,a), and
let s = mi(o(z2,)). Then there exists the following derivation by ~+g, starting with
(equ(t,s),pp) (also cf. Figure 5).

mi(o(22,@))), #p)
73,0 ml(1), @), mi(a(z2,), [21/0(23, 24)])
mi(o(z2, @))), 1/ (@, z4)])
(227 D), [z1/o(e, a)))
(mi(a),mi(z2))),[z1/0(a, a)])
yo(a,mi(22))), [21/0(a,)

(@, @), [z1/a(a; @), z5/a])

(equ(
~R1,1,(2) ((
M R1,1,(1) ((
P R1,11,(3) (equ(o
~MRy,2,(4) ((
~R1,21,(3) ((

(equ(

~R1,22,(3)
The two subterms of the first component in the result of the last derivation step are equal.

Thus, ¢p is their most general unifier, and hence the substitution ¢ = [z1/0(a, a), z3/a]
is an Eg,-unifier of ¢ and s. @

Hullot’s method is also a method to construct a complete set of Er-unifiers of ¢ and s.

21

Theorem 5.5 (cf. Theorem 2 of [Hul80]) Let R = (£, R) be a canonical term rewriting
system, let t,s € T(Q)(V), and let V' be the set V(¢) U V(s). Let S be the set of all
(V, Q)-substitutions ¢ such that ¢ is in 5 iff there exists a derivation by ~~x of the form:

(equ(t, 5)7 99@) ~R (equ(tlv 81)7 991) ~R (equ(tz, 82)7 992) MR TR (equ(tnv Sn)v 9971)7

where for every ¢ € [n] : ; is in normal form, ¢, and s, are unifiable with most general
unifier p, and ¢ = (¢, o p)|v. Then S is a complete set of Fr-unifiers of ¢t and s away
from V. &P

In Figure 5 a narrowing tree which is associated to a computation of the algorithm implied
by Theorem 5.5, is shown. We call trees of this form Hullot’s narrowing trees. The nodes
at the front of such trees have the form (equ(t’,s’),). Every such leaf for which ¢’ and
s’ are unifiable, yields an Eg-unifier. Thus, for the computation of an Eg-unifier the
branches are lengthened by the unification. However, to reduce the space of the figure, we
omit the substitutions in the nodes of Hullot’s narrowing tree in Figure 5.

22

equ(sh(z1,a),mi(o(z2,)))

equ(e, o (mi(a), 0 (mi(z4), mi(z23)))) / ‘ \

contootaa) [| AN\ AAN
&

equ(o(mi(zs),a),mi(o(z2,)))

equ(o(a, o), mi(o(z2, @))) /\

equ(o(a, o), o(mi(a), mi(22)))
equ(o(a, a),0(a, mi(z2)))
equ(o(a, a),o(a, a)) equ(o(a, a),o(mi(a), o))

bl bl [bl
unifiable?

equ(o(a, a),o(a, o))

Figure 5: Hullot’s narrowing tree.

23

6 FEgp-Unification by Leftmost Outermost Narrowing

In this section we increase the efficiency of the universal unification algorithm implied by
Theorem 5.5, by allowing narrowing derivations only at the leftmost outermost narrowing
occurrence. By fixing one narrowing occurrence the breadth of Hullot’s narrowing trees
is reduced. Furthermore, we choose the leftmost outermost narrowing strategy, because
it omits the evaluation of arguments which are deleted by a function call. Thus, also the
depth of Hullot’s narrowing trees is reduced. In [Ech88] it is shown that the universal
unification algorithm presented in this section, computes a complete set of Fr-unifiers
only for a restricted class of canonical term rewriting systems. We call the term rewriting
systems in this class ctn-trs’s.

We start this section by introducing the leftmost outermost narrowing calculus. Then
we define ctn-trs’s and recall the universal unification algorithm from [Ech88].

6.1 The Leftmost Outermost Narrowing Calculus

In the leftmost outermost narrowing relation a pair (¢,) derives to a pair (',1) at the
minimal element of the set of narrowing occurrences in ¢.

Definition 6.1 Let R = (2, R) be a term rewriting system and let ¢ € T(Q)(V).

e The leftmost outermost narrowing occurrence for R and t, denoted by lo-narO(R, 1),
is the narrowing occurrence min.,narO(R,1).

o The set of leftmost outermost narrowing interfaces for R and t, denoted by lo-
narl(R,t),is the set

{(u, 0,0l = 7,p) | (u, 0,0l = 7r,p) € narl(R,t) and u = lo-narO(R,t)}.

o The leftmost outermost narrowing relation associated with R, denoted by '@R, is
defined as follows: For every t,s € T(Q)(V)and ¥, 9" € Sub(V,8): (t,v) Br (s, "),
if the following three conditions hold:

1. Thereis aleftmost outermost narrowing interface (u, p,l — 7, p) € lo-narl(R,1).
2. s = g(tlu = p(r)])
3. ¢ = Yo (elyy) &)

It is obvious, that '@R C~sp. Fuarthermore, in the leftmost outermost narrowing relation
there only exists the nondeterminism of the second type, i.e, more than one rule can
be applied at the leftmost outermost narrowing occurrence. Similar to the reduction
relation and the narrowing relation, we also define an indexed derivation calculus for
the leftmost outermost narrowing relation. This indexed derivation calculus is called the
leftmost outermost narrowing calculus. We choose the set of rules as index set and the
total order on it is implied by the enumeration = of the rules as required in Remark 4.2.

24

Definition 6.2 Let R = (2, R) be a term rewriting system with enumeration 7 on R.

o The leftmost outermost narrowing calculus of R, denoted by Dy,_p4rr, is the in-
dexed derivation calculus (T(Q)(V) x Sub(V,Q), (R, <)7(’I\%R,l—>r | l — r € R)) for
(T(2)(V) x Sub(V,Q),'@R) where < is the total order on R defined as follows: for

every [=1, l' = 1" € R I —r <=7 ifa(l —r)<w(l' = 1').

o A leftmost outermost narrowing tree of R is a derivation tree of Dy,_,arr- P

Clearly, a leftmost outermost narrowing tree for a term ¢ results from the narrowing tree
for ¢ by deleting the branches corresponding to narrowing derivations at other occurrences
than the leftmost outermost one. In Figure 6 we illustrate the leftmost outermost narrow-
ing tree for the term equ(sh(z1,), mi(o(z2, «))) by recalling Hullot’s narrowing tree from
Figure 5 and shading the deleted areas. We call trees like the tree in Figure 6 Hullot’s
leftmost outermost narrowing trees.

Now, the question arises, whether Theorem 5.5 holds, if the narrowing relation is re-
placed by the leftmost outermost narrowing relation. In the following example it is illus-
trated that this question is answered by 'no’.

Example 6.3 (cf. [Ech88] Example 1). Let R = (2, R) be a term rewriting system where
Q= {f® 1) o} and let R contain the following rules:

fla,a) — a (1)
f(y(z),0) — () (2)
f@,7(y) — v(v(a)) (3)

The only derivation by ’@R starting with the term f(f(z1,22), z3) has the form

(f(f(21,22), 23), p) “lgR,A,[x/f(Zl,22),23”(@,)],(3) (Y(v()), [z3/7(9)])-

But there exists the following derivation by ~% starting with the term f(f(z1, 22), 23)

(f(f(21522),23), 00) ~R1 21 fanza /o] (1) (f@, 23), [21] @, 22/ a])

MR/l (@ [a]y s /e, z3/al)

Thus, from Theorem 5.5 follows that the substitution [z1/a, 23/, z3/a] is an Eg-unifier
of the terms ¢ = f(f(z1,22),23) and s = «a. But this substitution is not in the set
which is constructed in Theorem 5.5, if the narrowing relation is replaced by the leftmost
outermost narrowing relation. P

In [Ech88] it is shown that the modification of Theorem 5.5 which is obtained by replacing
the narrowing relation by the leftmost outermost narrowing relation, holds for canonical
term rewriting systems that have the property of free strategies. We call these term rewrit-
ing systems canonical, totally defined, not strictly sub-unifiable term rewriting systems, for
short: cin-trs.

25

6.2 CTN-TRS

A ctn-trs R = (Q, R) is a canonical term rewriting system, where € is divided into two
disjoint ranked alphabets, denoted by £ and A. F is called the set of function symbols
and A is called the set of working symbols or constructors. This partition is motivated
by declarative programming languages. The left hand sides of the rewrite rules in R
are linear; function symbols only occur at the root of a left hand side. Thus, ctn-trs’s
are constructor-based term rewriting systems (cf. [You89]). Furthermore, every function
symbol in F'is totally defined over its domain (cf. Definition 12 in [Ech88]), i.e., if a term is
in normal form, then it is in T(A)(V). For obtaining the completeness of the lo-narrowing
relation, the left hand sides of the rules in R must be pairwise not strictly sub-unifiable.
We recall the definitions of sub-unifiability and of strictly sub-unifiability from [Ech88].

Definition 6.4 (cf. [Ech88] Definition 10 and Definition 11). Let ¢,¢" € T(Q)(V).

o t and t' are sub-unifiable, if there exists an occurrence u in O(t) N O(t') such that
the following two conditions hold:

1. t/u and p(t'/u) are unifiable with most general unifier o,, where p is a variable-
renaming such that V(t/u) N V(p(t'/u)) = 0.
2. For all occurrences w with w < w, t/w and t'/w have the same label at the

root.

o t and t' are strictly sub-unifiable, if there exists an occurrence u where ¢ and ' are
sub-unifiable and the corresponding most general unifier o, is neither a variable
renaming nor the empty substitution. P

Example 6.5
o In the term rewriting system R in Example 6.3, the left hand sides of rule 1 and rule
3 are strictly sub-unifiable at occurrence 1; the same holds for rule 2 and rule 3.

e The left hand sides of rule 1 and rule 2 are sub-unifiable at occurrence 2 but not
strictly sub-unifiable, because the most general unifier o is the empty substitution.

o Let R = (Q, R') be a term rewriting system where Q@ = { (), y(1) o} and let R’
contain the following rules:

fla,a) — a (1)
f(y(z),0) — () (2)
flasy(y) — ~v(v(@)) (3)

F(v(@),v(y) — v(v(a)) (4)

The left hand sides of the rules in R’ are pairwise not strictly sub-unifiable. Fur-
thermore, the left hand sides of the rules 2 and 3 are not sub-unifiable. &P

Now, we are able to define ctn-trs.

26

Definition 6.6 Let R = (Q, R) be a term rewriting system. R is a canonical, totally
defined, not strictly sub-unifiable term rewriting system, for short ctn-trs, if the following
conditions hold:

1. R is canonical.
2. Q=FUAand FNA=0.
3. Every left hand side is linear in V.

4. Every left hand side has the form f(¢1,...,%,) where f € F) and for every i € [n] :
t; € T(AYV).

5. For every t € T(Q)(V) : nfr(t) € T(A)(V).

6. The left hand sides of the rewrite rules in R are pairwise not strictly sub-unifiable.
We note that, e.g., every modular tree transducer [EV91] is a ctn-trs; the class of modular
tree transducer characterizes the class of primitive recursive tree functions [Hup78]. An

example of a ctn-trs is shown in Figure 1. Remark, that R denotes the triple (£, A, R).
As a second example, we present the description of the multiplication by a ctn-trs.

Example 6.7 The term rewriting system R = (F,A, R), where F' = {mult®), add®},
A = {71, a®}, and R contains the following rules:

mult(a,y) — « (1)
mult(y(z),y) — add(y,mult(z,y)) (2)
add(o,y) — 'y (3)
add(y(z),y) — 7(add(z,y)) (4)
is a ctn-trs, because it is a modular tree transducer. P

If we start from a ctn-trs R and we want to compute an Fg-unifier of two terms ¢ and s,
then we are not interested in substitutions of the following form [z / f(y)], where f € F. For
instance, if we have the ctn-trs in Example 6.7 and we want to compute Fxr-unifiers of the
terms add(x,y) and z, then we are not interested in the minimal Fr-unifier [z/add(z,y)].
In fact, we are interested in Fr-unifiers of which the images are elements of T'(A). For
instance, we should be able to compute the Fg-unifier [z/y(y(y(a))),z/v(a), y/v(v(a))].
Such an Exg-unifier is called a ground (FEg, A)-unifier.

Definition 6.8 Let R = (F,A,R) be a ctn-trs, let t,s € T(FUA)V), and let ¢ €
Ug, (t,s) be an Er-unifier of ¢ and s.

e ©is an (Fr,A)-unifier of t and s, if ¢ € Sub(V,A).

e ¢ is a ground (Er,A)-unifier of t and s, if ¢ € gSub(V,A).

27

The sets of (Eg,A)-unifiers and of ground (Fgr,A)-unifiers of t and s are denoted by
Uik a1, 8) and gl (g, A)(1,), respectively.)

Similar to the situation of F-unifiers of two terms ¢ and s, we do not have to compute
the whole set gU(ERA)(t,s), but rather an approximation of it. It suffices to compute a
ground complete set of (Er,A)-unifiers of ¢ and s.

Definition 6.9 (cf. [Ech88] page 92) Let R = (F,A,R) be a ctn-trs. Let t,s €
T(FUAYV) and let W be a finite set of variables containing V = V(¢) U V(s). A set §
of (V, A)-substitutions is a ground complete set of (Er,A)-unifiers of t and s away from
W, if the following three conditions hold:

1. Forevery ¢ € 5: D(¢) CV and I(¢) N W = (.
2. 5 Q U(ER,A)(tv‘S)'

3. For every ¢ € gl g, a)(1,s) there is a i) € such that ¢ <g, ¢ (V). &P

For ctn-trs’s, a modification of Theorem 5.5 obtained by replacing the narrowing relation
by an arbitrary strategy, is presented in [Ech88] in Theorem 3. A ground complete set of
(FRr,A)-unifiers is computed by the universal unification algorithm which is implied by
this theorem. We present an instance of this theorem where we choose the strategy of
taking the leftmost outermost narrowing occurrence. Also for 'l\iR we assume that it is
extended to objects of the form (equ(?,s),) in an obvious way.

Theorem 6.10 (cf. [Ech88] Theorem 3) Let R = (F,A,R) be a ctn-trs. Let ¢,s €
T(FUA)V),and let V be the set V(t)UV(s). Let S be the set of all (V, A)-substitutions

@ such that ¢ is in 5 iff there exists a derivation by '@R:

lo lo lo lo
(equ(t, 8)7 9‘9@) ~MR (equ(tlv 81)7 991) ~R (equ(tQ, 82)7 992) MR TR (equ(tnv Sn)v S‘Qn)v

where for every ¢ € [n] : ¢; is in normal form, ¢, and s, are in normal form and unifiable
with most general unifier p, and ¢ = (¢, o p)|y. Then S is a ground complete set of
(Er, A)-unifiers of ¢ and s away from V. b

In Figure 6 the leftmost outermost narrowing tree for the term equ(sh(z1,), mi(o (22, @)))
which is associated to a computation of the algorithm implied by Theorem 6.10, is shown,
where the shaded areas do not belong to this tree. Remark that this tree is a part of
Hullot’s narrowing tree in Figure 5. Also note that, as in the tree in Figure 5, the branches
are lengthened by the unification of the two subterms at the leaves.

28

equ(sh(z1,a),mi(o(z2,)))

equ(o(a, o), mi(o(z2, @)))

equ(o(a, o), o(mi(a), mi(22)))

equ(o(a, a),0(a, mi(z2)))

e

equ(o(a,), o(a, o))

Figure 6: Hullot’s leftmost outermost narrowing tree.

29

7 Egr-Unification by Unification-Driven LO-Narrowing

In this section we further increase the efficiency of the universal unification algorithm
implied by Theorem 6.10, by splitting the unifications at the front of Hullot’s leftmost
outermost narrowing trees into steps which correspond to decomposition steps in the uni-
fication algorithm of [MM82] and by applying them as early as possible. By means of this
strategy, some derivations that do not yield an (Fr,A)-unifier, are stopped earlier than
in the algorithm implied by Theorem 6.10. For instance, in Hullot’s leftmost outermost
narrowing tree in Figure 6, the infinite tree at the left the root of which is labeled by
equ(a, o(a, mi(z2))), is cut, because the subterms are not unifiable. For formalizing this
strategy, for every ctn-trs R = (F, A, R), we introduce a term rewriting system which is
called the equal-part of R. The union of the equal-part of R and R itself is called the
equal-extension of R. Then, roughly speaking, leftmost outermost narrowing is performed
on the basis of the equal-extension of R. This is formalized by the unification-driven
leftmost outermost narrowing relation.

We start this section with the definition of the equal-part and the equal-extension of a
ctn-trs. Then we introduce the unification-driven leftmost outermost narrowing relation
and present a theorem which implies a universal unification algorithm for the class of
equational theories =g, where R is a ctn-trs. For this purpose, we show that a most
general unifier of two terms ¢,s € T(A)(V) can be computed by a derivation by the
unification-driven leftmost outermost narrowing relation which is restricted to the equal-
part of the ctn-trs.

7.1 The Equal-Part and the Equal-Extension of a CTN-TRS

We start with the definition of the equal-part of a ctn-trs R.

Definition 7.1 Let R = (F,A, R) be a ctn-trs. The equal-part of R, denoted by R(A),
is the triple (¥, A, R(A)) where
« F=FU {equ} where equ is a new binary symbol.

e R(A) contains, for every o € AW with k> 0, the rule

equ(o(x1y ..o, 2k), 0(Thg1y .- 22r)) — olequ(y, Tpy1), . . .o equ(ag, T2g)).

D

A rule in R(A) is called an equal-rule. Later we will see that the unification of two terms
t,s € T(A)(V) can be realized by some derivation associated with R(A). But the equal-
rules are also part of the term rewriting system for which we define the unification-driven
leftmost outermost narrowing relation. The original term rewriting system R enriched by
the equal-part of R is the equal-extension of R.

30

Definition 7.2 Let R = (F,A, R) be a ctn-trs and let R(A) = (F, F,A, R(A)) be the

equal-part of R. The equal-extension of R, denoted by R, is the triple (F,A, R) where R
is the set R U R(A). &>,

The enumeration of the rules in R is given by the bijection # : R — [card(R)] such that
7|r = m where 7 is the bijection that induces the enumeration of R, and the equal-rules
are enumerated in any arbitrary order (which is irrelevant in the future).

In Figure 7 the rules of the equal extension Ry = (Fl, Al, }A{l) of Ry (cf. Figure 1) are

shown where F} = {sh(® mi) equ®} and Ay = {o), a0},
sh(a, yl) — 5 (1)
sh(o(z1,22),y1) — sh(zi,0(mi(za),y1)) (2)
mi(a) - a (3)
mi(o(z1,22)) — o(mi(az), mi(xy)) (4)
equ(a,a) — « (5)
equ(o(xy,x2),0(xs,24)) — olequ(zy,as), equ(xe,xq)) (6)

Figure 7: Set of rules of an equal-extension.

In the following subsection we introduce the unification-driven leftmost outermost
derivation calculus.

7.2 The Unification-Driven LO-Narrowing Calculus

Roughly speaking, the unification-driven leftmost outermost narrowing relation is almost
the same as the leftmost outermost narrowing relation associated with R. But there
are the following three differences between the two relations. Let (¢,¢) be the current
derivation form.

1. The term ¢t = equ(a,o(a,mi(z;))) at the leftmost node in the tree in Figure 6
derives by the leftmost outermost narrowing relation at the leftmost outermost nar-
rowing occurrence 22. But the derivation of the unification-driven leftmost outer-
most narrowing relation stops at this point, because the two direct subterms a and
o(a, mi(z3)) cannot be unified because of different root symbols. Thus, the occur-
rence A of ¢t is important for further narrowing on ¢, because the nonunifiability of
the two subterms of ¢ is recognized exactly at this occurrence. In Definition 7.3 we
fix this occurrence and call it the important occurrence in t, for short impO(t).

2. If t/impO(t) = equ(z;, z;) for two variables z; and z;, then, by means of the left-
most outermost narrowing relation, (¢, ¢) derives to card(A) many terms by unifying
t/impO(t) with the left hand sides of the equal-rules. Thus, 2; and z; are substi-
tuted by the same term which has the form o(zp41,..., 2k4n) Where o € Al Ag
mentioned before, the unification at the end of Hullot’s algorithm is realized by
equal-rules. Thus, the leftmost outermost narrowing relation yields the substitution

31

[2:/0(Zht1s -« s Zhan)y 25/ O(Zhg1s - - -5 Zhtn)] @s most general unifier of z; and z;. But
the most general unifier of z; and z; is [z;/2;] (cf. [MMS82]). To be correct with respect
to the algorithm in [MMS82], a derivation form (¢,) with ¢/impO(t) = equ(z;, z;)
derives by the unification-driven leftmost outermost narrowing relation as follows:
t/impO(t) is replaced by z;, every occurrence of z; in ¢ is replaced by z;, and ¢ is
composed with the substitution [2;/z;].

- I t/impO(t) = equ(z;,t') or t/impO(t) = equ(t’, z;) where t' € T(F U A)(V)\V, then

we have to check whether z; occurs in the (A U V)-prefix of ¢’ or not. This check is
called the occur check in unification algorithms. In Theorem 5.5 it is done implicitly
during the unification of ¢,, and s, at the end of the derivation. But, since in our
algorithm the unification is realized by equal-rules, we have to apply the occur check
explicitly. The (A U V)-prefix of the term s consists of all occurrences u in s such
that there is no occurrence v which is a prefix of u and which is labeled by a function
symbol. In Figure 8, the (A UV)-prefix of the tree o(o(o(21, @), 22), o(sh(a, z1), @))
is inside the frame.

g

/U\
\z h Q

/N

(8% 4l

/

zZ1

O'/U
\Oé

Figure 8: (AU V)-Prefix.

Before we introduce the unification-driven leftmost outermost narrowing relation, we
define some notions which are used in Definition 7.4.

Definition 7.3 Let R = (F, A, R) be a ctn-trs and let t € T(F U A)(V).

The set of equal occurrences in t, denoted by equO(t), is the set {u € O(t) | t[u] =
equ}.

The important occurrence in t, denoted by impO(t), is the occurrence min.,equO(t).
tis in binding form, if t{impO(t)1], t{impO(1)2] € V.
The (A UV)-prefiz of t is the set

{u € O(t) | there does not exist any v € O(t),v < w and t[v] € F}.

The occur check for t succeeds, if the following conditions hold:

32

1. tis not in binding form.

2. tlimpO(t)i] € V for exactly one i € [2].

3. There exists a u in the (A U V)-prefix of ¢/(¢mpO(t)(3 — 7)) such that
t/(impO(1)(3 = 1))[u] = t{impO(1)d] ®

Now we are able to present the definition of the unification-driven leftmost outermost
narrowing relation.

Definition 7.4 Let R = (F,A, R) be a ctn-trs. The uniﬁcation-driven leftmost outermost
narrowing relation associated with R, denoted by ~& %, is defined as follows: For every
t,s € T(FUAYV) and ¢, € Sub(V,A): (t,%) '&7@ (s,9), if t/impO(t) = equ(ty,t3)
where 1,13 € T(F U A)(V) and one of the following conditions holds:

t1[A], t2[A] € A and t1[A] = #3[A]) or (((t1[A] € A and £3[A] € V) or (#1[A] € V and

L. (t
to[A] € A)) and the occur check fails for ¢) and the following three conditions hold:

(a) (equiti,t2), ¢p) ZLria) (', ¢).
) —

)
(b) s = ' (HimpO(t) — t']).
(c) ' =o'
2. 11[A], t2[A] € V and the following three conditions hold:
(a) ¢ = [t1/t2].
(b) s = P (UlimpO(t) — 1]
(¢) ¢ =doy

3. t1[A] € F and the following three conditions hold:

(a) (t1,20) S ().
(b) s = ([lmpO()L —1]).
(c) &' =

4. t1[A] ¢ F and #3]A] € F and the following three conditions hold:

(a) (t2.00) S (1,
(b) s = ¢ (t[impO(1)2 — t']).
(c) &/ =doy @

In the cases 1, 3, and 4, i.e., in the case of an application of a rule [— r € R, we write

s . In case 2 we write %, to indicate that the current term is in binding mode.
R,—r R,bm

In the following example a nonsuccessful derivation and a successful derivation by the
unification-driven leftmost outermost narrowing relation for the equal-extension Rq are
shown (cf. Figure 7 for the set of rules).

33

Example 7.5 (a) Eg,-unification of the terms sh(z1,0(a, 22)) and o(mi(z1),0(z2, @)).

¢ ~
T R1LL(1)
¢ A~
T Ry,A,(6)
U

~R1,12,(3)
u

~R1LLL(5)

D

qu(sh(z1,0(a, z)), 0(mi(z1), 0(22, @))), ¢p)
equ(o(a, z3),0(mi(a),o(z,a))),[z21/])
o(equ(a, mi(a)), equ(zz, 0(22, a))), [21/])
o(equ(a, @), equ(zg, 0(z2,@))), [#1/a])
(

o(a, equ(za,0(22,@))), [z1/a])

(
(
(
(
(

Here the derivation stops, because the occur check succeeds.

(b) Er,-unification of the terms sh(z,o(a, z2)) and o(mi(z1),0(z3,a)). Derivation steps
(1)-(4) are analog to those one in (a).

4
Ry
R1,2,(6)

R1,21,bm

= (= {= (=

R1,22,(5)

equ(Sh(Zlv U(av 22))7 U(mi('zl)v 0(237 a)))v 99(2))

U(av equ(Z% 0(237 a)))v [Zl/a])

(
(
(o(
(o(a,0(z3, equ(zs,), [21/a, z2/0 (23, 25)])
(o(

o(a,0(z3,)), 71/, z22/0(z3,)])

Here the derivation yields the Eg, -unifier [z1/a, z2/0(23, @)].

o(a,o(equ(zy, z3), equ(zs,), [21/a, 22/ 0(24, 25)])

D

Similar to the reduction relation, the narrowing relation, and the leftmost outermost
narrowing relation, we also define an indexed derivation calculus for the unification-driven

leftmost outermost narrowing relation.

This indexed derivation calculus is called the

unification-driven leftmost outermost narrowing calculus. We choose the set R U {bm} as
index set where the symbol bm indicates a derivation step of the form '&ﬁ - Lhe total

order is implied by the enumeration # of the rules in R and we define bm as the minimal

element of the index set.

Definition 7.6 Let R = (F, A, R) be a ctn-trs with enumeration 7 on R.

e The wunification-driven leftmost outermost narrowing calculus of R, de}loted by
Dy—narr, is the indexed derivation calculus (T'(F'U A)(V) x Sub(V, A),(RU {bm},
<),('3f>7iw | ¥ € RU{bm})) for (T(FUA)V) x Sub(V,A),~>;) where < is the
total order on R U {bm} defined as follows: for every ¢, ¢’ € RU {bm}, ¥ < o, if

one of the following conditions hold:

1. ¥ = bm and ¢’ # bm
2. 0 #£bm, Y # bm, and 7(¢) < 7(¢").

o A unification-driven leftmost outermost narrowing tree of R is a derivation tree of

Du—naTR .

D

The unification-driven leftmost outermost narrowing tree of R for the Ex,-unification of
the terms sh(z, «) and mi(o(z2, @)) is shown in Figure 3.

34

7.3 Unification by ~g(a)

As an intermediate result between Theorem 6.10 and the intended universal unification
algorithm in Theorem 7.9 which is based on the unification driven leftmost outermost
narrowing relation, we show in this subsection that the unification of two terms t,s €
T(A)(V) can be realized by a derivation by the unification-driven leftmost outermost
narrowing relation associated with R(A).

Lemma 7.7 Let R = (F, A, R) be a ctn-trs and let t,s € T{A)(V). ¢t and s are unifiable
with most general unifier ¢ iff there exists a derivation by ’&R(a) of the following form

(equ(t,), 20) “r(a) (') and ¢ € T(A)(V).

Proof: We show that every transformation of the unification algorithm in [MMS82] can
be realized by a derivation by '&R(A), and vice versa, every derivation by '&R(A) can be
realized by a finite number of transformations of the unification algorithm in [MM82]. For
this purpose, we first recall the unification algorithm from [MMS&2]. In this algorithm the
unification of ¢ and s starts with a set P with one unordered pair (¢,s). Then, a finite
number of transformations are applied step by step to this set. The transformations are
of the following three forms:

1. Ifthereis an unordered pair (z;, z;) in P, then P is transformed to the set P\{(z;, ;) }.

2. If there is an unordered pair (o(t1,...,t%),0(s1,...,s;)) in P, then P is transformed
to the set P\{(o(t1,...,tk),0(s1,...,56)) FU{{t1,51), ..., {tr, sk}

3. If there is an unordered pair (z;,s) € P such that z; does not occur in s, then P is
transformed to ¢(P\{(z;,s)})U{(z,s)}, where ¢ = [z;/s] and the p-image of a set
is defined as the set of the ¢-images of its elements.

The algorithm stops, if P is in solved form, i.e., P = {(z;,;) | i € [n]} where for every
i,j € [n]:z # z; for i # j and z; does not occur in any ¢;. Then, [21/t1,..., z,/t,] is the
most general unifier of ¢ and s.

To decrease the number of used notations, we only explain the correspondence of every
transformation of type 1 - 3 with a derivation by “pra). Let (t,¢) € T{(FUA)(V) x
Sub(V, A).

1. A transformation of type 1 corresponds to the derivation (¢, ¢) ’&R(A) (t[tmpO(t) —
zi],), because t/impO(t) = equ(z;, z;). Then, the substitution ¢ is not changed.

2. A transformation of type 2 corresponds to the derivation (¢,) ’&R(A) (t',), where
t = timpO(t) — ol(equ(ty,s1),...,equ(ty,si))] and ¢ is not changed, because
t/impO(t) = equ(o(ty,...,t5),0(s1,...,5%)). Thus, an application of an equal-rule
covers the transformation of type 2.

3. A transformation of type 3 corresponds to the derivation (¢,) '&%(A) (t',polzi/s]),
where t' is the term that results from ¢ by replacing every occurrence of z; by s. The
length of this derivation is size(s), because the equal-rules are applied node by node

in s. P

35

The unification of the terms ¢ = o(z1,22) and s = o(0o(23,),) via a derivation by
$R1(A1) is shown in Figure 9 (for Ry and Ay cf. Figure 1). The most general unifier is
0 =[z/0(a,a),z/al.

(equio(z1. 22), 0(a (22, @),), pp)
$R1(A1)7(6) (o(equ(z1,0(22,), equ(z2,), ¢g)
R (A1),(6) (o(o(equ(zs, 22), equ(za,), equz2, @), [21/ 0 (23, 24)])
$R1(A1),bm (o(0(z2, equ(zs, @), equ(za, a)), [21/ 0 (22, 24)])
Ry (A1),(5) (0(0(22,), equ(z2, @), [21/0 (22, @)])
'&R1(A1)7(5) (o(o(a,a),a),[z1/0(a, a), 22/a])

Figure 9: A unification by a derivation by $R1(A1).

Now we present a theorem which is a simple modification of Theorem 6.10 obtained by
replacing the unification by a derivation by '&R(A).

Theorem 7.8 Let R = (F, A, R) be a ctn-trs. Let t,s € T(F UA)V), and let V' be the
set V(1)U V(s). Let S be the set of all (V, A)-substitutions ¢ such that ¢ is in 5 iff there

exists a derivation by '@R:
l { { {
(equ(t, 8)7 9‘9@) ’\gR (equ(tlv 81)7 991) ’\gR (equ(tQ, 82)7 992) ’\gR U '\gR (equ(tnv Sn)v S‘Qn)v

where for every i € [n] : ¢; is in normal form, ¢, and s, are in normal form, and there
exists a derivation by '&R(A):

/

(equ(tn, 50), ¢n) ~r(a) (15,

and ¢ = ¢'|y. Then S is a ground complete set of (Er,A)-unifiers of ¢ and s away from
V.

Proof: The correctness of Theorem 7.8 immediately follows from Theorem 6.10 and from
Lemma 7.7. &P

7.4 FEx-Unification by ~5%.
We finish this section by showing that we can compute a ground complete set of (Er, A)-

unifiers of two terms t and s by derivations by the unification-driven leftmost outermost
narrowing relation.

Theorem 7.9 Let R = (F, A, R) be a ctn-trs. Let t,s € T(F UA)V), and let V' be the
set V(1)U V(s). Let S be the set of all (V, A)-substitutions ¢ such that ¢ is in 5 iff there
exists a derivation by '337@:

(equ(t, 5)7 99@) 'igfz (tlv 991) 'igfz (t27 992) 'igfz e 'ig?i (tnv 997%)7

36

where for every i € [n] : ¢; is in normal form, ¢, € T{A)(V), and ¢ = ¢,|v. Then S is a
ground complete set of (Eg,A)-unifiers of ¢ and s away from V.

Proof: We show that there exists a derivation

lo* u * x ok
(equ(t, 5)7 99@) ~MR (equ(tlv 5/)7 99/) MR(A) (t » P)7 (1)
where ¢/, s, 1* € T(A)(V) and ¢, " € Sub(V, A) iff there exists a derivation

(equ(t, s), 0p) > (1%, ¢7) (2)

Furthermore, we show that the lengths of derivation 1 and derivation 2 are equal. Then
from Theorem 7.8 the correctness of the Theorem follows.

Derivation 1 = Derivation 2

First, we show that for every derivation 1, there exists a derivation 2. For this purpose,
we introduce the function egpos : T(F U A)V) x T(F UA)(V) — IN that yields, for two
terms ¢y and t, the number of occurrences u € O(¢1) N O(ty) where an equal-rule can be
applied or where the subterms t;/u and t3/u are in binding form, and such that u is less
with respect to <j., than the leftmost outermost occurrence in O(t1) N O(tz) at which no
equal-rule is applicable. The latter occurrence is denoted by lonotunioce(ty,t2) and it is
defined as follows:

mine{u € O(t1) N O(tz2) | t1]u] € F or t3[u] € F or
(t1[u] € A and t3]u] € A and t1[u] # t3]u]) or
the occur check for equ(ty[u], t2[u]) succeeds}

Then egpos(ty,tz) is defined as follows:

Z equsteps(ty, ta, u)
{ue0(t1)NO(t2) | u<ieylonotunioce(ty,t2)}

equsteps(ty,ty, u) is the number of equal-rule applications at occurrence u. It is defined
as follows

1oy if 4y fu], tofu] € A and #[u] = to[u]
equsteps(ty,ta,u)=<¢ n ; ifi€[2]:t, € V,tz_; € T(FUA)V) and
n = card({w € O(t5_;) | w <jex Mming{v | ts—i[v] € F'}})

Furthermore, we prove the following Claim by induction on k.

Claim 1 For every k > 0, (;, (s € T(FUAYY), ¢ € T(FUA)V), and for every ¢, €
Sub(V,A): If there exists a derivation

lo k u €qpos(Ce,Cs)
(equ(tvs)v@qj) ~MR (equ(ctvcs)v@) MR(A) (Cv¢)7
then there exists a derivation

u_k+eqpos(Ci,Cs)

(equ(t, s), pp) ~p (¢,).

37

Induction on k:

k=0:(=1tand (; =s. We have (equ(t, s), ¢p) '&%pos (Gt (C).

From R(A) C R follows (equ(t, s), ¢g) ~ eqpos (Goce (C).

k — k41 : There exist ¢/,¢, € T(FUA)V), ¢ € T(FUA)V), ¢4 € Sub(V,A), and

there exists the following derivation:

o k o u €qpos C;v(é
(eqult, s). op) S (equ(Cr. G 0) B (equich (). ') Siay) (¢).

Now we split the derivation by ’&R(A) into two derivations: There exist (€ T<F U ANV),
@ € Sub(V,A), and there exists the following derivation:

ok 0 w eqpos(Ce,Cs) = _
(equit, s),p) 2 (equ(GeCo)s) r (equiCl (1)) 2 iny) (¢, 9)

u €qpos(({,CL)—eqpos(((s
LRy I (1 g,

There exist (' € T(FUA)(V), ¢ € Sub(V,A), and there exists the following derivation
by changing the order of applications of rules in the previous derivation:

0¥ u eqpos(Ce,ls) = .\ u -
(equ(t, s), op) ~r (€qu(C Cs) @) ~Rr(a) (¢ @) ~p (C0)

u €9pos(({,CL)—eqpos((eyCs
Ly T (1,

Changing the order of the derivation is correct, because in the derivation step (equ((t, (s), ¢)

’@R (equ((}, (L), ¢'), a function is applied at the leftmost outermost narrowing occurrence.
From the definition of egpos it follows that this occurrence is the leftmost outermost
narrowing occurrence in (', too. Furthermore, in the case of a function application, the

relations 'l\iR and '&7@ yield the same result.
The existence of the following derivation follows from the induction hypothesis:

u k+egpos((t (s _ u u €qpos(({,CL)—eqpos(((s
(equt.), p0) 5 @) g () RIS (¢,

The existence of the following derivation follows from R(A) C R:

u k+1+eqpos({],CL)

(equ(t,s),cp@) ~p L (C/7¢/)'
This finishes the proof of Claim 1.

Especially, if k is equal to the length of the derivation by ’@R in derivation 1, it follows
that for every derivation 1, there exists a derivation 2.

38

Derivation 2 = Derivation 1

Now we show that for every derivation 2, there exists a derivation 1. For this purpose,
we introduce the function egapp : T(F U A)(V) — IN that yields, for a term ¢, the sum of
applications of equal-rules and steps started by a term in binding form, in the derivation
by 'v> 5 up to t.

eqapp(t) = card({u € O(1) | u <ie 1mpO(1)})

Furthermore, we prove the following claim by induction on k.

Claim 2 For every k > 0, (€ T(FUA)V), and ¢ € Sub(V,A) : If there exists a

derivation A
(equ(t, s),09) % (C,0),
then there exist (¢, (s € T(FUA)V), ¢ € Sub(V,A), and there exists a derivation

lo F=eqapp(C) u eqapp

(equ(tvs)ﬂ‘%) MR (equ(Ctacs)vg‘o) ~MR(A (C ¢)

Induction on k:

kE=0:¢=equ(t,s), ¥ = ¢g. Thus, eqapp(¢) = 0. We have

0-0

lo u 0
(equ(tvs)ﬂO@) ~R (€QU(Q,C5),99@) MR(A) (Cv¢)
k — k4 1: There exist (' € T(FUA)V), ' € Sub(V,A), and there exists the following

derivation: L
(equ(t, 5)7 990)) 'ig?i (Cv ¢) 'ig?i (Clv ¢/)
From the induction hypothesis it follows that there exists the following derivation:

lo F=eqapp(C) u eqapp

(equ(l, s),09) ~x (equ(Ce, Cs)s) ~r(a () g (),
Now we have to distinguish the following two cases:

Case 1 : eqapp(¢") = eqapp((). Then, the k+ 1th derivation step is a function application.
The same function application can be applied to the term equ((, () in a derivation step

by '@R. Furthermore, the eqapp(() derivation steps by ’&R(A) work only on occurrences
that are less with respect to <., than the occurrence where the function is applied. Thus,
there exist (/,(, € T(FUA)V), ¢' € Sub(V,A), and there exists a derivation:

Ok—e a (C) o ;o PTG ’
(cqu(t, s)pg) Zr T (equ(Ce Co)s) Sr (equ(C () S (¢).

Then we obtain the following derivation:

o K +1—eqapp(C’) u eqapp

(equ(tvs)ﬂ‘%) ~MR (6(]%({2,{;),@/) ~MR(A (C/ ¢)

Case 2 : eqapp(¢') = eqapp(¢) + 1. One of the cases 1 and 2 in Definition 7.4 is applied
in the added step. In these cases '&7@ exactly works as '&R(A)' We get the following
derivation:

lo k=eqapp(C) u eqapp

(equ(t, s), pp) ~r (equ(Ct, Cs), ¢) ~MR(A (C ¢) (A) (C/7¢/)'

39

From eqapp({’) = eqapp(¢) + 1 follows:

o k—(eqapp(¢')-1) w eqapp(C!
(equ(t, s), pp) 2 (equ(Ce, Co)y2) i (¢).

Here we obtain the following derivation:

o kA+1—eqapp(¢’) w eqapp(C’
(equ(t, s), o) 2 (equiCe, &)) S remn) (¢,).

Especially, if k is equal to the length of the derivation by '&7@ in derivation 2, it follows
that for every derivation 2, there exists a derivation 1. This finishes the proof of Claim 2.

D

40

8 Deterministic Unification-Driven LO-Narrowing

In this section we formalize a deterministic universal unification algorithm for the class
of equational theories =g, where R = (F, A, R) is a ctn-trs. This algorithm is the for-
malization of a depth-first left-to-right traversal through the unification-driven leftmost
outermost narrowing tree of R. We choose this strategy, because the strategy that for-
malizes a breadth-first left-to-right traversal is to inefficient. Whereas the latter strategy
yields a ground complete set of (Fg,A)-unifiers, it is clear that the depth-first left-to-
right strategy is not complete: If there is an infinite branch left to a branch that yields
an (Er,A)-unifier ¢, then ¢ is not computed by our strategy. The same problem arises
in deterministic algorithms for SLD-resolution of PROLOG-programs in [Llo87]. Here we
define the deterministic algorithm to compute at most one (Fx, A)-unifier. At the end of
this section we show that the deterministic universal unification algorithm is correct.

We do not introduce the definition of a derivation calculus for the deterministic unifica-
tion-driven leftmost outermost narrowing relation. This would make no sense, because this
relation is deterministic. We only introduce the deterministic unification-driven leftmost
outermost narrowing relation and its derivation forms.

Roughly speaking, a derivation form represents a path through the unification-driven
leftmost outermost narrowing tree starting from its root. Technically, a derivation form
is a word of triples where the first two components constitutes derivation forms of '&7@.
The additional third component contains an interval which includes the indices of the
rules that are not yet applied. In Figure 10 the derivation form representing the leftmost
branch in Figure 3 is shown.

(equ(Sh(Zlv a)v mi(U(ZQ, a)))v P> [27 2]) (equ(a, mi(U(ZQ, a)))v [2’1/04], [57 4])
(equ(a, o(mi(a), mi(z3))),[=1/al,[1,0])

Figure 10: A deterministic derivation form.

Definition 8.1 The set of derivation forms of the deterministic unification-driven left-

most outermost narrowing relation, denoted by DDF(R), is the set
(T(FUAYV)x Sub(V,A) x I(card(F) - card(A))* U (T(A)V) x Sub(V,A)).
D

The second set in the union includes the results of the deterministic unification-driven
leftmost outermost narrowing relation; a result is a pair consisting of a normalform and
an (Eg, A)-unifier. In the initial deterministic derivation forms, we must distinguish three
cases to be consistent with the usage of deterministic derivation forms in Definition 8.3.
If the term ¢ in the first component is not in binding form and if it derives by '&7@, then
the interval contains the indices of the applicable rules. Recall that every index of a rule
is greater than zero. If (¢,¢) does not derive by '&7@, then the interval is empty. This is
denoted by [1,0]. In this case, ¢ is not in binding form. To indicate that ¢ is in binding
form, the interval contains only the element 0 which is not an index of a rule.

41

Definition 8.2 The set of initial derivation forms of the deterministic unification-driven
leftmost outermost narrowing relation, denoted by initDDF(R), is the union of the fol-
lowing three sets:

L. {(t,¢g,[m,n]) | t = equ(s,s’) where s,s" € T(F UA)(V), t is not in binding form,
(tv @) deI’lVGS by M and [mvn] = {ﬁ-(l - T) | (tv@@) ’igR [—r (/799)}}‘

2. {(t,9,[1,0]) | t = equ(s,s’) where s,s" € T(FUA)(V), and (¢, ¢y) does not derive
by ~>z}-
3. {(t,¢4,[0,0]) | t = equ(s,s’) where s,s" € V}. &)

Now we are able to define the deterministic unification-driven leftmost outermost narrow-
ing relation.

Definition 8.3 The deterministic unification-driven leftmost outermost narrowing rela-
tion associated with 7@, denoted by '&7@, is defined as follows: For every 31, 35 € DDF(7A€) :

3 '&7@ 2, if the following two conditions hold:

1. There are 3, € DDF(R), (t,) € T(FUA)V)x Sub(V,A), and m,n € IN such
that gy = ﬁi(tv > [mv n])
2. 0 < m < n (application of a rule): Let (¢,¢) %5, (¥,¢') and let #(1 — r) = m.
(a) If impO(1') exists and

i. ¢ is not in binding form, (¢',¢’) derives by ~> 5, and [m/,n'] =
{71 =) [(1) > p e (L)),
then 52 = (i + 1m0, o).
ii. (¢,') does not derive by ~ ~p, then By = (1, ¢, [m+1,n])(¥, ¢, [1,0]).
iii. ¢’ is in binding form, then ﬁg = Bi(t, o, [m+ 1,n])(t, ¢, [0,0]).
(b) If impO(t') does not exist, then gy = (', ¢').
0 =m =n (tis in binding form): Let (¢,) '&ﬁ,bm (t',).
(a) If impO(t') exists and
i. ¢ is not in binding form, (¢, ¢’) derives by ~> 5, and [m/,n'] =
{71 =) [() > p 0 (L)),
then By = Bi(t. ¢, [1,0])(t', ", [/, n']).
ii. (¥',¢') does not derive by ~> 5, then By = 31 (¢ 0Dt
iii. ¢’ is in binding form, then 8y = B1(t, ¢, [1,0D) (¥, ¢, [0 ,0])
(b) If impO(t') does not exist, then fy = (¢, ¢').
m > n (backtracking): f#; = 4. b

42

Note that the case 0 = m < n does not occur, because m = 0 only if ¢’ is in binding
form and then n = 0, too. In Figure 11 the derivation by the deterministic unification-
driven leftmost outermost narrowing relation associated with R4 starting with the triple
(equ(sh(z1,a), mi(o(z3,a))), pp,[1,2]) is shown. The result of this derivation is the leaf
in the unification-driven leftmost outermost narrowing tree in Figure 3 which is marked
by ‘success!’.

As mentioned before, the deterministic unification-driven leftmost outermost narrowing
relation is not complete, but it is correct.

Lemma 8.4 Let ¢,s € T(F UA)(V). If there exists a derivation (equ(t, s), ¢g, [m, n]) '&;
(t',) where [m, n] is defined as in Definition 8.2, then ¢ is an (Eg, A)-unifier of ¢ and s.

Proof: 1f (equ(t, s), g, [m, n]) '\d»; (t',), then (¥',¢) is the label of the leftmost leave in
the unification-driven leftmost outermost narrowing tree of R for (equ(t, s), ¢g) which is la-
beled by an element of T(A)(V) x Sub(V, A). Thus, there exists a derivation (equ(t, s), ¢y)
'3»;2 (t',¢) and, by Theorem 7.9, ¢ is an element of a ground complete set of (Eg,A)-
unifiers of ¢ and s. From Definition 6.9 it follows that, in particular, ¢ is an (£, A)-unifier

of t and s. P

In the following remark we discuss how the deterministic unification-driven leftmost outer-
most narrowing relation can be modified to increase its efficiency and to compute more
than one (Fr,A)-unifier.

Remark 8.5 The number of steps in the derivation by the deterministic unification-
driven leftmost outermost narrowing relation can be reduced, if the rightmost triple of

the derivation form of '\d»ﬁ is deleted immediately after the application of the last possible
rule, i.e., if 0 < m = n. Roughly speaking, in the unification-driven leftmost outermost
narrowing tree, the information of a node is deleted, if we walk to its rightmost son, because
this information is not needed in further backtracking. This modification is realized in
the implementation of PROLOG on the Warren Abstract Machine in [War83] by the
application of the trust_me_else_fail-instruction. By applying this instruction, a choice
point that indicates the rules which are not yet applied, is deleted, if the last possible rule
is applied.

We can also modify the definition of the deterministic unification-driven leftmost out-
ermost narrowing relation to compute more than one (E'z, A)-unifier as follows:

e A component is added to every derivation form of '&ﬁ that includes the set Fun of
(FRr,A)-unifiers which are computed up to now.

o If there is the derivation step §i(¢,¢,[m,n]) '&7@ (t',¢"), then ¢’ is put into Eun
and the next (Fr,A)-unifier is computed by starting with the derivation form 3, =
Bi(t, e, [m+ 1, n]).

o If 35 is the empty word, then Fun is a ground complete set of (Eg,A)-unifiers,
because the depth-first left-to-right traversal through the unification-driven leftmost
outermost narrowing tree is finished. P

43

~ o~ —~
<t <t <t
<t L0 LD
3 3 3
— — —
™ ™ ™
= . ~~ ~~ ~~ ~~ ~~ ~~
) = ~ ~ ~ ~ = ~ = ~ =
A “ — ~ TR — N = N T N =
& & & - - - @ s e - e
o~ - - ~
))) % ¥ — 4].%. 4.|__w_\l/ 4.|__w_\l/3 4.|__w_\l/3
=T = R R ¢ AT 24]7~M 24]7%7 24]7%7
s = 5 5 ¢ 5= 5= 5= e, NI
T T T N [S [PR N R R o R I e =T A e v
S S S & — 5= & E— & % g —= &g = E - ST T e
— e ~— g = /\l/a /\l/aU /\l/aga /\l/aga6
s 3 3 — 17A~..A 17A~...U 17A~_..U/ 17A~_..U/7 17A~...U/7_|_
el el =l 1N N ™ ™ 7.% ™ Y] N N o f—
< < < [N [R R L e~ W e~ W ey
—_ - — - - 3 - 3 o~ - 8 - - 8 = - S = ~
~ — —~ —~ W —~Z n _= —~ an b A2 & b S
NN N NN N Nl N L S NN WL Ay N2 gl
- - P - - - - — - — - — o~ o~ — o~ o~ — o~ Tl
T T T o I T - r B S - JEA 3272)23272)2“4\3272)22 . 3272\)2“4\70.“_
B e e e L O P = R N o S AR
s = = = = S = SN N S TN @/I\\l/(m @/I\\l/(m\l/ @/I\\l/.(\m\l/Z 3
S~ S~ S S- S- @:U U\l/ U\l/l U\l/l - @:U\l/l - S @:U\l/l -
- - - = - - Ny 7/“\& 7/“\am 7/“\ama 7(ama7~ 7/|\a aZ\l.Na
e e T e e —~ —~ o~ . —~ . = —~ - = =
\l/\)\l/[\l/\l/\l/m \l/m 7\l/m 7)\l/m o /I\\l/m -~ ~— —_— -~ ~— U
e — N~ o — o s o~ N um —~ o um\?‘/
—~ N ~ N - 3 77~aq 77~aq 77~aq ~
s 8 5228 8 52 s a5 oS g 2SS g xS . 5 2R S L &S
a a a= a a a8 S B S o b 'S S b S 67 S o b 'S 67& S B 'S 67&”\2
& &Fg & & T Tz § I §SE S NS ESAy S E Sy
S— S— S’ e’ S— S— \I.N /I\\I.N /I\\I.N ~— /I\\I.N ~— T /I\\I.N ~— T /I\\I.N /I\\/u —
E & BT & & &% 83L& &8 FEF 8 FEES8 £ FEEIT ETERIT o
/I\/I\(m R V) ~— W - = W - e = W - e = ~— N 77.(\6 ~— W 77./|\€a2
o« T < T < T I [=~ L~ ~Z I R T A e P\
R E EZSE E EET EZC EFoS EETeSE ErociEz EIcoccecET g
B T e T T = TU L~
g 3 T 83 3 b S b J S b J | S b J § 8 T o g2 TbIJ 8T < -
- - - m - - - -~ - o e - o e e - O e e e - O e e e m - 7(((m S 3
FE ae & a af o8 o8TF S 8TTT S FTTTI SETTTICS
Ty s s sy el gxlf g 888 g EEES sy EEEss g
L~ B B R S S S S S R o w v b b w o b b 3 w oo b b 33 W oH b b 33 3@
e e e e e e e e e e e S S e e e e v e T e e e e Y O e e e e T S Y o
s 3 323 3 3 332 3 3 83 S 3 3 3 3 3 3 3 © S ¥ 8 3 L w I 23 3 v w S
el el o el el o oo o o jea B R B = A = = R ST S o e e
T YU 0 YU YUY YWY Y Y e w ewbhb vy 0o b b T U LW w b bbb
e N e . Y e e Y i U i S e D e i e i . S e S e S e e

@ @ @ @ @ @ @ 9 3 ~
dM dM dM dM dM dM dM dM dM 3

d

Figure 11: A derivation by ~p
44

(U(av a)v [Zl/g(av a), 2’2/04])

’\z—%le

9 Conclusion

In this paper we have formalized a universal unification algorithm for equational theo-
ries which are characterized by ctn-trs’s. This algorithm is at least as efficient as the
algorithm which is implied by Theorem 3 in [Ech88], but sometimes it is more efficient
because many derivation steps which do not yield an (£g, A)-unifier, are omitted. For this
purpose, we have introduced the unification-driven leftmost outermost narrowing relation
which is a combination of unification and leftmost outermost narrowing. Furthermore, we
have formalized a deterministic version of our universal unification algorithm that formal-
izes a depth-first left-to-right traversal through a unification-driven leftmost outermost
narrowing tree. Similar to deterministic algorithms for SLD-resolution, the deterministic
universal unification algorithm presented in this paper, is not complete, but it is correct.

Two implementations of leftmost outermost reduction for special ctn-trs’s which are
called macro tree transducers, are formalized in [FV92, GFV91]. In our current research
we modify the implementation in [GFV91] to an implementation of the presented deter-
ministic universal unification algorithm by adding features for unification and backtracking
to the implementation of leftmost outermost reduction [FVW92]. As further research in-
vestigation, we will modify this implementation to the implementation of a deterministic
universal unification algorithm for equational theories which are characterized by modular
tree transducers. Modular tree transducers are ctn-trs’s which describe primitive recursive
tree functions.

45

References

[DJ91]

[Ech88]

[EV85]

[EV91]

[FayT79]

[FHVV93]

[Fri85]

[FV92]

[FVW92]

[GFV91]

[HKS9]

[HOS0]

[Hue80]

[Hul80]

N. Dershowitz and J.P. Jouannaud. Notations for rewriting. Bulletin of the
FATCS, 43:162-172, 1991.

R. Echahed. On completeness of narrowing strategies. In CAA P, pages 89—101.
Springer-Verlag, 1988. LNCS 299.

J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Computer and
System Sciences, 31:71-145, 1985.

J. Engelfriet and H. Vogler. Modular tree transducers. Theoretical Computer
Science, 78:267-304, 1991.

M. Fay. First-order unification in an equational theory. In Proceeding of the
4th workshop on automated deduction, Austin, pages 161-167, 1979.

7. Filop, F. Herrmann, S. Vagvolgyi, and H. Vogler. Tree transducers with
external functions, accepted for publication in Theoretical Computer Science .
1993.

L. Fribourg. A logic programming language interpreter based on clausual super-
position and rewriting. In Proceedings of the IEFE International Symposium
on logic programming, pages 172-184. IEEE Computer Society Press, 1985.

H. Falbender and H. Vogler. An implementation of syntax directed functional
programming on nested-stack machines. Formal Aspects of Computing, 4:341—
375, 1992.

H. FaBbender, H. Vogler, and A. Wedel. Syntax-directed runtime-stack ma-
chine for the solution of E-unification with macro tree transducers. Technical
report, University of Ulm, 1992. in preparation.

K. Gladitz, H. Fafibender, and H. Vogler. Compiler-based implementation of
syntax directed functional programming. Technical Report 10, Aachen Uni-
versity of Technology, Fachgruppe Informatik, Ahornstr. 55, W-5100 Aachen,
FRG, 1991.

D. Hofbauer and R.D. Kutsche. Grundlagen des maschinellen Beweisens.
Vieweg, 1989.

G. Huet and D.C. Oppen. Equations and rewrite rules: a survey. In R. Book,
editor, Formal Language Theory: Perspectives and Open Problems. Academic
Press, New York, 1980.

G. Huet. Confluent reductions: abstract properties and applications to term
rewriting systems. J. Assoc. Comput. Mach., 27:797-821, 1980.

J.M. Hullot. Canonical forms and unification. In Proceedings of the 5th con-
ference on automated deduction, LNCS 87, pages 318-334. Springer-Verlag,
1980.

46

[Hup78]

[Lan75]

[L1087]

[Mat70]

[MI92]

[MMS82]

[PW78]

[Rob65]

[Sie89]
[War83]

[You&9]

U. Hupach. Rekursive Funktionen in mehrsortigen Algebren. FElektron. Infor-
mationsverarb. Kybernetik, 15:491-506, 1978.

D.S. Lankford. Canonical inference. Technical Report ATP-32, Department of
Mathematics and Computer Science, University of Texas at Austin, 1975.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. Sec-
ond, extended edition.

Y. Matiyasevich. Diophantine representation of recursively enumerable pred-
icates. In Proceedings of the Second Scandinavian Logic Symposium. North-
Holland, 1970.

A. Middeldorp and E. Hamoen. Counterexamples to completeness results for
basic narrowing. In Conference on algebraic and logic programming, pages

244-258. Springer-Verlag, 1992. LNCS 632.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans-
actions on Programming Languages Systems, 4:258-282, 1982.

M. S. Paterson and M. N. Wegman. Linear unification. J. Comput. System
Sei., 16:158-167, 1978.

J.A. Robinson. A machine-oriented logic based on the resolution principle. J.
Assoc. Comput. Mach., 20:23-41, 1965.

J.H. Siekmann. Unification theory. J. Symbolic Computation, 7:207-274, 1989.

D.H.D. Warren. An abstract prolog instruction set. Technical Report 309, SRI
International, 1983.

J.H. You. Enumerating outer narrowing derivations for constructor-based term
rewriting systems. Journal of Symbolic Computation, 7:319-341, 1989.

47

