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1 Introduction

In most applications in control engineering a measurement of all state variables is either
impossible or avoided for reasons of cost-effectiveness or because of the lack of reliable sen-
sors. Especially in nonlinear control, however, also the knowledge of non-measured system
state variables is required. Also process monitoring of safety critical processes requires often
knowledge about state variables which are not accessible by measurements. Therefore, state
observers are employed to compute estimates for the whole state vector. For the observer
design in addition to the system model a measurement model which takes into account mea-
surement errors and sensor parameters is needed.
For the mathematical description of nonlinear dynamical systems and measurement processes
state space representations are well suited. In control engineering, a state space represen-
tation is a mathematical model of a physical system described by a set of input, output
and state variables which are related by first-order differential equations. The internal state
variables are the smallest possible subset of system variables that can represent the entire
state of the system at any given time.
The modeling of dynamical system is usually affected by uncertainty. For example the system
parameters may be uncertain due to manufacturing tolerances in technical systems. Often
also the initial states of the state variables are not exactly known.
In engineering both stochastic uncertainty and set-valued uncertainty are used. Depending
on the situation and the system the appropriate representation of the uncertainty has to be
employed. Stochastic uncertainty requires knowledge about the probability density function
of the corresponding uncertainty. On the other hand the representation of an uncertainty as
set-valued uncertainty requires guaranteed bounds for their range.

From the theory of dynamical systems different concepts of state and parameter estimation
are known. In recursive state and parameter estimation non-measured state variables and
parameters are reconstructed with the help of the measured values and a model describing
the sensor characteristics under consideration of the system dynamics. The consideration
of several measurements at different points of time, the integration of several sensors and
the measurements of different physical values makes it possible not only to reconstruct the
non-measured state variables but also to decrease the uncertainty of the estimates. In case
of knowledge about conservative upper and lower bounds of set-valued model- and measure-
ment uncertainty interval methods are able to compute tight and at the same time verified
enclosures of the complete state and parameter vector. In contrast to stochastic estimation
approaches like the often applied extensions of Kalman-filters for nonlinear systems with
standard normal distribution uncertainty, interval methods are a suitable approach for a
verified estimation in case of interval uncertainty. The main challenge for the implementa-
tion of algorithms based on interval methods for verified state and parameter estimation is
the reduction of overestimation, which occurs if so called naive interval methods are applied.

2
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The verified state and parameter estimation consists of a recursive application of prediction
and correction steps. The prediction step corresponds to a verified integration of the system
model describing the system dynamics between two points of time at which measured data
is available. Verified integration means that the obtained results guarantee to enclose the
solution of the flow of the differential equation regarding all uncertainty including also time
discretization and round off errors. In the correction step the state variables and parameters
are reconstructed from the measurements and the measurement equation. The resulting es-
timates are intersected with the results from the prediction step. The obtained set after the
intersection is the enclosure used for the next prediction step. The resulting enclosures are
guaranteed enclosures of those state variables and parameters, which comply with the system
and measurement model and all uncertainty. In order to give guaranteed estimations for a
given system in the real world, the system and measurement models have to be accurate. To
cope with modeling errors beside parameter uncertainty – e.g. errors in the model structure
itself – it must be possible to consider such errors in form of intervals in the system and
measurement equations.

1.1 State of the Art

Concepts of verified state and parameter estimators for nonlinear systems were first developed
for discrete time systems by Kieffer [30]. In publications of Jaulin, Walter, Kieffer and
Ditrit [27, 30, 31] the state vector and the vector of uncertain parameters are enclosed by
multiple interval vectors. The components of an interval vector are the corresponding interval
enclosures for each state variable and uncertain parameter of the state vector and the vector
of uncertain parameters.
Alamo developed a verified state and parameter estimator based on zonotopes1 [1].
The first verified estimator for continuous-time systems was proposed by Jaulin in [26]. Here,
the sets are again described by multiple interval vectors. Like verified estimators for discrete
time systems, verified estimators for continuous-time systems also calculate enclosures of the
state vector at discrete points of time. However, for the truncation errors in the integration
process guaranteed bounds are calculated additionally.
A verified estimator for cooperative systems2, where the state variables are enclosed by a
single interval vector, was presented by Gouze in [19].
In [32] Kieffer introduced also a verified estimator for cooperative systems. In contrast
to [19] multiple interval vectors are used for the state enclosures. An algorithm, which uses
preconditioning techniques, without interval splitting in the prediction step, was proposed
by Raissi in [58]. The application of preconditioning techniques leads to parallelepiped
enclosures.

1A zonotope is the the Minkowski sum of line segments.
2Cooperative systems have a monotonic behavior. In order to determine guaranteed upper and lower

bounds, only calculations with the lower and upper bounds of the uncertainty and not with the whole
intervals are required.
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1.2 Goals of this Contribution

In this dissertation two different types of verified state and parameter estimators for con-
tinuous time systems are considered. The first approach employs interval vectors and it
combines interval splitting and merging techniques with preconditioning techniques [36]. In
the following, this type of estimator will be called interval observer. The second approach is
based on Taylor models, which was proposed the first time in [37]. A Taylor model consists
of a multivariate polynomial part and an interval remainder bound. In the following, this
method will be designated as Taylor model observer. The concepts are applied to practical
relevant systems from the field of engineering.
Both estimation concepts are implemented in C++ to enable a fair comparison. The interval
observer uses the toolboxes PROFIL/BIAS and FADBAD++. PROFIL/BIAS [39] provides
interval operations and FADBAD++ [72] is required for automatic differentiation. The Tay-
lor model observer implementation is based on the C++ interface of COSY-INFINITY [45].
A further contribution is the application of interval methods for a verified robustness anal-
ysis of a controlled system including a traditional observer concept [33]. The goal of this
robustness analysis is to find the set of parameter values and values for the initial conditions
for which the controlled system with the traditional observer concept fulfills given robustness
requirements. In this thesis also an application of verified state and parameter estimators in
closed loop control is presented. Consistency techniques based on backward integration for
the reduction of overestimation are also described.

1.3 Overview

This dissertation is structured as follows. Chapter 2 gives a detailed description for the
applications which are studied in this work. In Chapter 3 an introduction to interval analysis
and Taylor model arithmetic is given. In Chapter 4 algorithms for the verified integration of
systems with interval uncertainty are presented. They are the basis of the prediction step.
First concepts using interval enclosures for the state vector and the parameter vector are
discussed. Also algorithms for systems with model switching characteristics are presented.
Then methods employing Taylor model enclosures are introduced. In Chapter 5 the two
different approaches for a verified state and parameter estimation which have been mentioned
above are introduced. The underlying algorithms and corresponding estimation results are
given separately for each of both concepts. A comparison of the approaches on the basis of
estimation results is presented in the final section of Chapter 5.
Chapter 6 describes the application of interval methods for a verified robustness analysis of
a controlled system including a traditional observer concept. The estimations in Chapter 5
are carried out for open loop systems. Chapter 7 shows an application of verified state and
parameter estimators in closed loop control. The conclusion and outlook on future research
are given in Chapter 8.



2 Applications

In this section the main applications which are studied in this dissertation are described.
Academic examples are explained in the corresponding section, where they have been used.

2.1 Non-Isothermal Stirred Tank Reactor

Consider a jacketed non-isothermal stirred tank reactor (NISTR) [13] as depicted in Fig.2.1,
in which cyclopentenol is produced from cyclopentadiene by an acid catalytic electrophilic
addition of water. The reaction takes place under 15 bar in a nitrogen inert continuous
operated stirred tank reactor.
In case the jacket temperature has to be known, because it should not exceed a given value
for safety reasons, but the measurement is not possible or too costly, the temperature has to
be estimated. The same holds, if a concentration cannot be measured but knowledge about
it is crucial for the operation of the reactor.
The reactor with the volume VR is equipped with a jacket cooling. The input volume stream
only contains the reactant cyclopentadiene in form of a diluted solution. Because of the
reaction ability of both cyclopentadien and cyclopentenol, cyclopentanediol emerges as a
side-product and dicyclopentadiene is produced as a by-product in a parallel reaction. The
complex reaction mechanisms which have first been described by van de Vusse can be sum-
marized by the following reaction scheme:

A
k1→ B

k2→ C ,

2A
k3→ D.

(2.1)

Component A represents the reactant cyclopentadiene, B is the desired product cyclopen-
tenol, component C is the unwanted side product cyclopentanediol, and D is dicyclopenta-
diene, the product of the undesirable parallel reaction. The temperature in the reactor is
denoted by v, the jacket temperature by vK . The input stream V̇ contents only component
A with the concentration ca0. The total reaction is considered to be constant in volume. For
the process relevant concentrations ca of component A and cb of component B the differential
balance equations

ċa =
V̇

VR

(ca0 − ca)− k1(v)ca − k3(v)c
2
a ,

ċb = − V̇

VR

cb + k1(v)ca − k2(v)cb

(2.2)

5
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V̇
ca , cb , v

AR , kwm k

Q̇ k

V̇
ca0 , v0

V R


v k

Figure 2.1: Non-isothermal stirred tank reactor.

are obtained, assuming an ideal stirred tank reactor.

The heat-balance equation for the inner reactor temperature v is

v̇ =
V̇

VR

(v0−v)+
kwAr

ρCpVR

(vK−v)−
1

ρCp

(
k1(v)ca∆HRAB

+ k2(v)cb∆HRBC
+ k3(v)c

2
a∆HRAD

)
,

(2.3)
where the ∆HRi

denote the reaction enthalpies for the released energy and v0 denotes the
temperature of the reactor input. An external heat exchanger revokes the heat stream Q̇K

out of the cooling medium of the reactor jacket. For the temperature vK the following
balance equation

˙vK =
1

mKCpk

(Q̇K + kwAR(v − vK)) (2.4)

is obtained. The reaction rate coefficients ki, which are related to the educt of the particular
partial reaction, are temperature dependent, according to

ki(v) = ki,0e
−Ei

v+273.15 , i = 1, 2, 3 . (2.5)

Furthermore

k1(v) = k2(v) (2.6)
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holds [13]. The Ei in the exponential term represent the activation energies. In summary,
the following system of four coupled nonlinear differential equations are obtained:

ċa =
V̇

VR

(ca0 − ca)− k1(v)ca − k3(v)c
2
a ,

ċb = − V̇

VR

cb + k1(v)ca − k2(v)cb ,

v̇ =
V̇

VR

(v0 − v) +
kwAr

ρCpVR

(vK − v) ,

− 1

ρCp

(k1(v)ca∆HRAB
+ k2(v)cb∆HRBC

+ k3(v)c
2
a∆HRAD

) ,

˙vK =
1

mKCpk

(Q̇K + kwAR(v − vK)) .

(2.7)

The nominal values of the parameters are listed in Tab. 2.1.

Table 2.1: Nominal values of the NISTR system parameters.

Parameter Physical meaning Nominal value

V̇ influent flow rate of Component A 141.9 l/h
VR volume of the reactor 10 l

Q̇K power of the heat exchanger −1113.5 kJ/h
cA0 influent concentration of component A 5.1 mol/l
v0 temperature in the inflow 104.9 ◦C

∆HRAB
reaction enthalpy for A→ B 4.2 kJ

kgK

∆HRBC
reaction enthalpy for B → C −11 kJ

kgK

∆HRAD
reaction enthalpy for A→ D −41.85 kJ

kgK

Cpk heat capacity of the cooling 2 kJ
kgK

mK fluid mass in the cooling circuit 5 kg
k1,0 multiplicative coefficient in reaction rate coefficient k1 1.287 · 1012 h−1

k2,0 multiplicative coefficient in reaction rate coefficient k2 1.287 · 1012 h−1

k3,0 multiplicative coefficient in reaction rate coefficient k3 9.043 · 109 h−1

ρ average density of the reactor content 0.9342 kg/m3

Cp average heat capacity of the reactor content 3.01 kJ
kgK

kw heat transfer coefficient 4032 kJ
hKm2

AR area of the cooling jacket 0.215 m2

E1 activation energy in reaction rate coefficient k1 9758.3 K
E2 activation energy in reaction rate coefficient k2 9758.3 K
E3 activation energy in reaction rate coefficient k3 8560 K

For the concentrations the following restrictions hold additionally:

ca ≥ 0, cb ≥ 0 . (2.8)

The concentration cb and the reactor temperature v are measured [13]. The concentration
ca and the jacket temperature vk have to be estimated.
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2.2 Mechanical Positioning System

This example is used to illustrate the influence of friction forces in dynamical systems. The
system is affected by static and sliding friction. The system equation with the nonlinear
friction characteristic Ff (x2) and the driving force Fa(t) is given by

ẋ1 = x2 ,

ẋ2 =
1

m
(Fa(t)− Ff (x2)) .

(2.9)

The friction characteristic is illustrated in Fig. 2.2 and is assumed to be symmetric. Fs

denotes the static friction force and µ the sliding friction coefficient.

F S

−FS

F S x2

−FS x2

F f

x2

Figure 2.2: Friction characteristic.

If the system is in motion, the resulting sliding friction force is given by

Ff (x2) =

{
−Fs + µ · x2 for x2 < 0 ,
+Fs + µ · x2 for x2 > 0 .

(2.10)

The static friction force in the idle state is given by

Ff (x2) =


Ff (x2) = Fs for x2 = 0 ∧ Fa ≥ Fs ,
Ff (x2) = Fa for x2 = 0 ∧ |Fa| < Fs ,
Ff (x2) = −Fs for x2 = 0 ∧ Fa ≤ −Fs .

(2.11)
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The static friction leads to a discontinuity in the friction characteristic at x2 = 0. For x2 = 0
the system remains in the idle state as long as the driving force Fa(t) is below the positive
friction force Fs and above the negative static friction force −Fs. When this is no longer the
case the system is set in motion.
On the other hand the system only goes back into the idle state if the velocity is zero –
x2 = 0 – and the driving force Fa(t) is smaller than the static friction. More complicated
friction models have been studied in [7, 49,69].

2.3 Double Pendulum

The third system under consideration is a double pendulum [73], which is depicted in Fig. 2.3.
The double pendulum is a well known application for the illustration of chaotic motions.

x2

x1
y2

y1 l1

l2
r2

r1
y0m1

m2

θ1

θ2

x0 

Figure 2.3: Double pendulum.

The position x1 and x2 of the ends of each pendulum are given by

x1 = l1 · sin(θ1) ,

y1 = −l1 · cos(θ1) ,

x2 = l1 · sin(θ1) + l2 · sin(θ2) ,

y2 = −l1 · cos(θ1)− l2 · cos(θ2) .

(2.12)

The two forms of energy of the system are the potential energy E1 = Epot(θ1, θ2) and the
kinetic energy E2 = Ekin(θ1, θ2, θ̇1, θ̇2). For the deviation of the differential equations, which
describe this system the Lagrange−Equations L = E2−E1 have to be solved. The potential
energy is given by

E1 = m1gy1 +m2gy2

= −(m1 +m2)gl1cos(θ1)−m2gl2cos(θ2) ,
(2.13)
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the kinetic energy E2 is described by

E2 =
1

2
m1v

2
1 +

1

2
m2v

2
2

=
1

2
m1l

2
1θ̇

2
1 +

1

2
m2[l

2
1θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2cos(θ1 − θ2)] .

(2.14)

The Lagrangian L is then

L = E2 − E1 =
1

2
m1l

2
1θ̇

2
1 +

1

2
m2[l

2
1θ̇

2
1 + l22θ̇

2
2

+2l1l2θ̇1θ̇2cos(θ1 − θ2)]− [(m1 +m2)gl1cos(θ1)−m2gl2cos(θ2)]

=
1

2
(m1 +m2)l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2cos(θ1 − θ2)

+(m1 +m2)gl1cos(θ1) +m2gl2cos(θ2) . (2.15)

Therefore for θ1

∂L
∂θ̇1

= m1l
2
1θ̇1 +m2l

2
1θ̇1 +m2l1l2θ̇2cos(θ1 − θ2) ,

d

dt

∂L
∂θ̇1

= (m1 +m2)l
2
1θ̈1 +m2l1l2θ̈2cos(θ1 − θ2)−m2l1l2θ̇2sin(θ1 − θ2)(θ̇1 − θ̇2)

∂L
∂θ1

= −l1g(m1 +m2)sin(θ1)−m2l1l2θ̇1θ̇2sin(θ1 − θ2)

(2.16)

holds. The Euler-Lagrangian differential equation

d

dt

∂L
∂θ̇1

− ∂L
∂θ1

= 0 (2.17)

is then

(m1 +m2)l
2
1θ̈1 +m2l1l2θ̈2cos(θ1− θ2)+m2l1l2θ̇

2
2sin(θ1− θ2)+ l1g(m1 +m2)sin(θ1) = 0 (2.18)

and dividing by l1 yields

(m1 +m2)l1θ̈1 +m2l2θ̈2cos(θ1 − θ2) +m2l2θ̇
2
2sin(θ1 − θ2) + g(m1 +m2)sin(θ1) = 0 . (2.19)

Similar, for θ2 the following expressions are obtained

∂L
∂θ̇2

= m2l
2
2θ̇2 +m2l1l2θ̇1 + cos(θ1 − θ2) ,

d

dt

∂L
∂θ̇2

= m2l
2
2θ̈2 +m2l1l2θ̈1cos(θ1 − θ2)−m2l1l2θ̇1sin(θ1 − θ2)(θ̇1 − θ̇2) ,

∂L
∂θ2

= m2l1l2θ̇1θ̇2sin(θ1 − θ2)− l2m2gsin(θ2) .

(2.20)

The Euler-Lagrangian differential equation

d

dt

∂L
∂θ̇2

− ∂L
∂θ2

= 0 (2.21)
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is then

m2l
2
2θ̈2 +m2l1l2θ̈1cos(θ1 − θ2)−m2l1l2θ̇

2
1sin(θ1 − θ2) + l2m2gsin(θ2) = 0 (2.22)

and dividing by l2 yields

m2l2θ̈2 +m2l1θ̈1cos(θ1 − θ2)−m2l1θ̇
2
1sin(θ1 − θ2) +m2gsin(θ2) = 0 . (2.23)

From the two Euler-Lagrangian differential equations derived above, the following system of
first order differential equations is obtained when setting θ3 = θ̇1 and θ4 = θ̇2:

θ̇1 = θ3 ,

θ̇2 = θ4 ,

θ̇3 =
−(gsin(θ1)m1 + gsin(θ1)m2 +m2l2sin(θ1 − θ2)θ̇

2
2 − cos(θ1 − θ2)m2gsin(θ2))

l1(m1 +m2 −m2cos2(θ1 − θ2))

−(cos(θ1 − θ2)m2l1sin(θ1 − θ2)θ̇
2
1)

l1(m1 +m2 −m2cos2(θ1 − θ2))
,

θ̇4 =
(cos(θ1 − θ2)gsin(θ1)m1 + cos(θ1 − θ2)gsin(θ1)m2 + cos(θ1 − θ2)m2l2sin(θ1 − θ2)θ̇

2
2)

l2(m1 +m2 −m2cos2(θ1 − θ2))

+
(−m1gsin(θ2) +m1l1sin(θ1 − θ2)θ̇

2
1 − gm2sin(θ2) +m2l1sin(θ1 − θ2)θ̇

2
1)

l2(m1 +m2 −m2cos2(θ1 − θ2))
. (2.24)

The friction forces are neglected here. The chaotic behavior of this system results especially
from the disregard of the velocity proportional friction forces.

A distance sensor, which has been installed at a fixed position, measures the distance of the
balls at the end of each pendulum (see Fig. 2.3). For r1 and r2

r1 =
√

(x1 − x0)2 + (y1 − y0)2 ,

r2 =
√

(x2 − x0)2 + (y2 − y0)2
(2.25)

holds. Rewriting these equation in terms of θ1 and θ2 yields

r1 =
√

(l1sin(θ1)− x0)2 + (−l1cos(θ1)− y0)2 ,

r2 =
√

(l1sin(θ1) + l2sin(θ2)− x0)2 + (−l1cos(θ1)− l2cos(θ2)− y0)2 .
(2.26)

Thus, θ1 and θ2 can be reconstructed from the measurements of r1 and r2. The angular
velocities θ3 and θ4 have to be estimated.

2.4 Biological Waste Water Treatment Plant

The task of a biological waste water treatment plant (BWTP) [25,29] is to remove the culture
medium characteristic of waste water and to eliminate polluting substances or reduce them
below a required measure. Modern wastewater treatment plants are complex biochemical
systems consisting of several activated sludge tanks, also called aeration tanks, and settler
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tanks. Purification takes place in the aeration tanks, where heterotrophic and autotrophic
bacteria consume biodegradable matter. The ASM1 (Activated Sludge Model No. 1) of the
IWA (International Water Association) is a suitable mathematical description of wastewater
treatment processes. It consists of a system of 13 coupled nonlinear ordinary differential
equations for the aeration tank together with a multi-layer model for the settler. Purification
processes include reduction of organic matter (substrate) and removal of nitrogen fractions
from the wastewater. They are characterized by additive nonlinear kinetics describing the
growth rates of bacteria. Uncertainties of the system parameters in the ASM1 are caused
by disturbances in composition and amount of the influent wastewater as well as changing
temperature and weather conditions. These uncertainties significantly influence the system
dynamics and, hence, also the performance of the complete wastewater treatment plant. In
this thesis a subsystem of the ASM1 is considered including only reduction of organic matter
as described by the block diagram in Fig. 2.4.

Heterotrophic bacteria need organic carbon compounds (substrate) for the synthesis of their
cell components and for the covering of their energy demand. The aeration tank in Fig. 2.4
is considered as a continuous ideal stirred tank reactor which is fed with wastewater. The
degradation via mineralization can approximately be described by a mass balance of the fast
degradable substrate S(t):

Ṡ = D (SW − S)− ρS, ρS =
ρH

YH

, (2.27)

where D = QW

VA
is the dilution rate, which is the time-varying influent wastewater flow rate

QW divided by the constant reaction volume VA of the aeration tank, and SW is the influent
biodegradable substrate concentration in the waste water. The reaction rate is given in form
of a Monod kinetic:

ρH = µH(S, SO)X ,

µH (S, SO) = µ̂H
S

S +KS

SO

SO +KOS

.
(2.28)

The change of the Substrate concentration S(t) over time depends on the inflow and outflow
and on the degradation through the heterotrophic bacteria with concentration X(t). YH

is the yield coefficient and µ̂H = µHmax the maximum specific growth rate. KS and KOH

are the half saturation coefficients of the reaction kinetics. The balance equation for the
heterotrophic bacteria results in:

Ẋ = D (Xin −X) + (µH − bH)X , (2.29)

where Xin is the influent bacteria concentration. The last term in this equation describes
the net growth of the organism (growth minus decay). The oxygen which is used for min-
eralization given by the concentration SO(t) is fed in externally by the influent oxygen flow
rate SOW in the waste water and the control variable uO2. The oxygen attrition rate is given
by ρO. The oxygen balance results in

ṠO = D (SOW − SO)− ρO + (1− SO

SOSat

)uO2 , (2.30)
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where SOW is the influent oxygen concentration in the waste water. Oxygen can only be fed
in up to a temperature and pressure dependent saturation concentration SOsat . The oxygen
attrition rate ρO can be described by:

ρO = ρH(1− YH)/YH . (2.31)

The settler tank has also to be modeled. The inflow concentration in the aeration tank Xin

is assumed to be depending only on the concentration XRS of the heterotrophic bacteria
in the feedback sludge, which is equivalent to the concentration XSet in the settler. Hence,
XSet = Xin = XRS. Assuming an ideal separation of the purified waste water and the
activated sludge the balance equation for the settler is

VSetẊSet = ((QW +QRS)X − (QEX +QRS)XSet) . (2.32)

VSet is the volume of the settler, QRS is the flow rate of the return sludge, and QEX is the
flow rate of the excess sludge, which is removed from the waste water in the settler.
These equations can be summarized by a set of four nonlinear coupled differential equations:

Ṡ =
QW

VA

(SW − S)− µH (S, SO)
1

YH

X,

Ẋ = −QW

VA

X +
QRS

VA

(XSet −X) + (µH (S, SO)− b)X,

ṠO =
QW

VA

(SOW − SO)− µH (S, SO)
1− YH

YH

X +
ρO2

VA

(
1− SO

SO,sat

)
uO2,

ẊSet =
((QW +QRS)X − (QEX +QRS)XSet)

VSet

.

(2.33)

The four state variables represent the concentration S of biologically degradable organic
matter (substrate), the concentration X of substrate consuming bacteria in the aeration
tank, the concentration SO of dissolved oxygen in the aeration tank, and the concentration
XSet of bacteria in the settler (see Tab. 2.2). For the state variables the following restrictions
must hold additionally,

S ≥ 0, X ≥ 0, XSet ≥ 0,

0 ≤ SO ≤ SO,Sat.
(2.34)

These inequalities point out the physical restrictions, namely, all concentrations have to be
non-negative for all times. Furthermore, the concentration SO of dissolved oxygen is limited
by the saturation concentration SO,Sat. The nominal values of the system parameters are
shown in Tab. 2.3. The BWTP is a stiff system, since the time constant for the oxygen
concentration is much smaller than the time constants of the other state variables.

The oxygen concentration SO and the substrate concentration S are measured [25,29], both
bacteria concentrations X and XSet have to be estimated. Knowledge about the state vari-
ables is especially important in safety critical systems like a BWTP. For example the sub-
strate concentration S in the plant has to be below a specified value after a given time-span.
S can be measured, but since these measurements are usually affected by uncertainty the
combination of the measurements and the knowledge about the dynamical behavior of the
system in the estimation process leads often to an improved estimation of S reducing the
uncertainty of the measurement.
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QW −QEX
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Figure 2.4: Block diagram of a biological waste water treatment plant.

Table 2.2: System state variables.

State variable Physical meaning unit

S Substrate concentration kg/m3

X Concentration of heterotrophic bacteria kg/m3

SO Concentration of dissolved oxygen (O2) kg/m3

XSet Bacteria concentration in the settler kg/m3

Table 2.3: Nominal values of the BWTP system parameters.

Parameter Physical meaning Nominal value

VA volume of the aeration tank 8000 m3

VSet volume of the settler 4545 m3

QW influent waste water flow rate 0.153 m3/s
QRS flow rate of return sludge 0.0916 m3/s
QEX flow rate of excess sludge 0.005 m3/s
SW influent biodegradable substrate concentration 0.616 kg/m3

SOW influent oxygen concentration in the wastewater 0.5 · 10−3 kg/m3

SO,Sat saturation concentration of dissolved oxygen 5.3 · 10−3 kg/m3

YH yield coefficient of heterotrophic biomass 0.67 kg CSB/kg CSB
µ̂H max. specific growth rate of heterotrophic biomass 1/14400 1/s
b specific decay rate of heterotrophic biomass 7.176 · 10−6 1/s
KS half saturation coefficient for heterotrophic biomass 0.02 kg/m3

KOS oxygen half saturation coefficient 2 · 10−4 kg/m3

uO2 influent oxygen flow rate (here: constant) 1.487 m3/s
ρO2 normal density of molecular oxygen 1.428 kg/m3

2.5 Magnetic Levitation System

In Fig. 2.5 a magnetic levitation is shown [41]. This example is used for the verified robustness
analysis in Chapter 6 and the verified state and parameter estimation in closed loop control
in Chapter 7. It is a popular benchmark example in nonlinear control.
The system consists of a ferromagnetic sphere, which is located under an electromagnet. The
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Figure 2.5: Magnetic levitation system.

electromagnet is fed by the coil current u. Because of a mechanical stopper, the distance
of the surface of the sphere from the brace of the electromagnet is at least c. The sphere
is affected by the magnetic force FM in upward direction. The gravity force FG affects the
sphere in opposite direction. With

mÿ = FM − FG (2.35)

the force balance equation is then given by

mÿ =
ku2

(c− y)2
−mg . (2.36)

The parameter k describes the permeability of the air gap, the properties of the iron core
and other influences affecting the system. The coil current u is the control variable. With
x1 = y and x2 = ẏ the state space representation

ẋ1 = x2 , (2.37)

ẋ2 =
k

m

u2

(c− x1)2
− g (2.38)

is obtained. Here, the position x1 is measured and the velocity has to be estimated.



3 Interval Analysis and Taylor Models

First publications about interval arithmetic appeared in 1924 and 1931 [6, 74]. The devel-
opment of modern interval arithmetic began in 1966 with the book of R. E. Moore [50] and
it became an important tool to calculate verified enclosures of the solutions of numerical
problems.

3.1 Interval Computation

In this section the basic rules and definitions for calculation with intervals are introduced
[23,27,50,51]. A real interval [x] is a connected subset of R

[x] = [x;x] ⊂ R : x ≤ x ≤ x, (3.1)

where x is called the infimum or lower bound and x is called the supremum or upper bound
of the interval [x]. In addition also the notations

inf([x]) := x and sup([x]) := x (3.2)

are used in this work.

The set of all intervals over R is denoted by IR where

IR = [x;x] : ∀ x, x ∈ R, x ≤ x . (3.3)

Other important characteristic values of an interval are the midpoint of [x],

mid([x]) =
1

2
(x+ x) , (3.4)

the diameter of [x],
diam([x]) = x− x , (3.5)

and the radius of [x],

rad([x]) =
1

2
(x− x) . (3.6)

The midpoint a and radius r of an interval can represent an interval as 〈a, r〉.
If an interval has zero diameter it is called a point interval and contains only a single point.

16
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Infimum and supremum always have to be chosen such that they are floating point numbers
enclosing the considered real value of x ∈ R.

The absolute value of [x] is defined by

|[x]| = max {|x| ; |x|} . (3.7)

All set-theoretic operations can be applied to intervals. The intersection of two non-empty
intervals [x] and [y] is also an interval and defined as

[x] ∩ [y] =

{ [
max

{
x, y
}

; min {x, y}
]
, if max

{
x, y
}
≤ min {x, y} ,

∅, otherwise .
(3.8)

The union operation is defined in a different way in interval arithmetic and is called the
interval hull which is defined as

[x] ∪ [y] =
[
min

{
x, y
}

; max {x, y}
]
. (3.9)

For instance, the interval hull of [2; 3] ∪ [5; 7] is the interval [2; 7], since the result has to be
a connected subset of R.

An interval [x] is a subset of an interval [y], [x] ⊆ [y], if and only if y ≤ x and y ≥ x.

If α is a real number and [x] a non-empty interval, then multiplication of a real number and
the interval gives

α · [x] =

{
[αx;αx] if α ≥ 0 ,
[αx;αx] if α < 0 .

(3.10)

The four classical operations of real arithmetic, namely addition (+), subtraction (−), mul-
tiplication (·), and division (/) can be extended to intervals. Interval arithmetic operations
are defined on IR such that the interval result encloses all possible real results. Given the
two intervals [x] = [x;x] and [y] = [y; y] the four elementary operations are defined by

[x] + [y] =
[
x+ y ; x+ y

]
,

[x]− [y] =
[
x− y ; x− y

]
,

[x] · [y] =
[
min

{
x y, x y, x y;x y

}
; max

{
x y, x y, x y, x y

}]
,

[x]

[y]
= [x] ·

[
1

y
;

1

y

]
for 0 6∈ y .

(3.11)

In definition (3.11) division by an interval containing zero is not defined. In extended interval
arithmetic this operation is defined as

[x]

[y]
=



[
x/y;∞

]
if x ≤ 0 and y = 0 ,

[−∞;x/y] ∪
[
x/y;∞

]
if x ≤ 0 and y < 0 < y ,

[−∞;x/y] if x ≤ 0 and y = 0 ,
[−∞;∞] if x ≤ 0 ≤ x ,[
−∞;x/y

]
if x ≥ 0 and y = 0 ,[

−∞;x/y
]
∪ [x/y;∞] if x ≥ 0 and y ≤ 0 ≤ y ,

[x/y;∞] if x ≥ 0 and y = 0 .

(3.12)
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Addition and subtraction of infinite or semi-infinite intervals are given by

[x;x] + [−∞; y] = [−∞;x+ y] ,

[x;x] +
[
y;∞

]
=
[
x+ y;∞

]
,

[x;x] + [−∞;∞] = [−∞;∞] ,

[x;x]− [−∞; y] = [x− y;∞] ,

[x;x]−
[
y;∞

]
=
[
−∞;x− y

]
,

[x;x]− [−∞;∞] = [−∞;∞] .

(3.13)

The properties of the basic operators for intervals differ from their properties in R. For exam-
ple [x]−[x] is generally not equal to [0; 0]. This is because [x]−[x] = {x− y | x ∈ [x], y ∈ [x]}
rather than {x− x | x ∈ [x]}. The subtraction of interval values thus does not take into ac-
count that both operands are identical in this example. This effect is called dependency effect
or dependency problem.

Addition and multiplication remain associative and commutative. However, multiplication
is no longer distributive with respect to addition. Instead

[x] ([y] + [z]) ⊆ [x][y] + [x][z] , (3.14)

a property known as subdistributivity holds, which is a direct consequence of the dependency
effect, as [x] appears only once on the left-hand side but twice on the right-hand side. As a
result, it is recommended to factorize expanded forms as much as possible.

Interval Vectors and Matrices

An interval vector [x] is a subset of Rn that can be defined as the Cartesian product of n
intervals. The interval vector is simply called a box and written as

[x] = [x1]× [x2]× . . .× [xn], with [xi] = [xi;xi] ∈ IR, i = 1, . . . n . (3.15)

Its i-th interval component [xi] is the projection of [x] onto the i-th axis. The set of all
n-dimensional boxes is denoted by IRn. Non-empty boxes are n-dimensional axis-aligned
parallelepipeds. Figure 3.1 illustrates the case n = 2, with [x] = [x1]× [x2] ∈ IR2.

Many of the previously introduced notations for intervals are directly applicable to boxes.
The lower bound (infimum) of an interval vector [x] is a vector consisting of the lower bounds
of all its interval components

x = [x1, x2, . . . , xn]T . (3.16)

Similarly, the upper bound (supremum) of an interval vector [x] is the vector

x = [x1, x2, . . . , xn]T . (3.17)

The midpoint of [x] is

mid([x]) = [mid([x1]),mid([x2]), . . .mid([xn])]T . (3.18)
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Figure 3.1: Interval vector for n=2.

The diameter of an interval vector [x] is the vector consisting of the diameters of all its
components

diam([x]) = [diam([x1]), diam([x2]), . . . diam([xn])]T . (3.19)

Analogously, an (m× n)-dimensional interval matrix is defined as

[A] =

 [a11] . . . [a1n]
...

...
[am1] . . . [amn]

 . (3.20)

The space of all m× n matrices is denoted by IRm×n.

The lower bound (infimum) of an interval matrix [A] is the matrix made up with the lower
bounds of all its interval components

A =

 a11 . . . a1n
...

...
am1 . . . amn

 (3.21)

and similarly, the upper bound (supremum) of A is

A =

 a11 . . . a1n
...

...
am1 . . . amn

 . (3.22)
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The midpoint of the matrix [A] is given by

mid ([A]) =

 mid ([a11]) . . . mid ([a1n])
...

...
mid ([am1]) . . . mid ([amn])

 . (3.23)

The diameter of the matrix [A] is

diam ([A]) =

 diam ([a11]) . . . diam ([a1n])
...

...
diam ([am1]) . . . diam ([amn])

 . (3.24)

Arithmetic operations on interval vectors and matrices are carried out according to the
operations on IR in the same way that real vector and matrix operations are carried out
according to real operations. The intersection, interval hull, and comparison of interval
vectors and matrices are carried out component wise.

In the following, the notation of scalars and vectors will be simplified. For example, a vector
x is from now on denoted as x and its components with subscript index as xi. Where there
are exceptions, extra notations will be mentioned within the corresponding section.

Evaluation of Functions with Interval Arguments

The range of f over an interval vector [x] = [[x1], [x2], . . . , [xn]]T is defined by

Rg(f ; [x]) = {f(x)|x ∈ [x]} . (3.25)

Rg(f ; [x]) is the exact mapping for the interval vector [x] by the function f and will in the
following be denoted by f([x]). A important problem in interval arithmetic is to compute
an enclosure for f([x]). This enclosure should be as tight as possible.

The interval arithmetic evaluation of f on [x] is obtained by replacing each occurrence
of a real variable with a corresponding interval, by replacing the standard functions with
enclosures of their ranges. The interval bound of this exact mapping f([x]) is given by [f ]([x]).
The natural inclusion function [fN ]([x]) is obtained by performing the previously introduced
interval arithmetic operations instead of the real operations. This kind of evaluation is also
called naive or natural interval evaluation.

Another important property of interval arithmetic is the inclusion monotonicity

[xi] ⊆[yi] (i = 1, . . . , n)

⇒ [f ]([x1], . . . , [xn]) ⊆ [f ]([y1], . . . , [yn]) .
(3.26)

If an interval [x] is split into subintervals [x(l)], l = 1, . . . , L with

L⋃
l=1

[x(l)] = [x],with intr
{
[x(l1)]

}
∩ intr

{
[x(l2)]

}
= ∅, (l1 6= l2) . (3.27)
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inclusion monotonicity yields

L⋃
l=1

[f ]([x(l)]) ⊆ [f ]([x]) . (3.28)

The operator intr {·} denotes the interior of the corresponding interval.

In practice, [f ]([x]) is not unique, because it depends on how f is evaluated in interval
arithmetic. For example, expressions that are mathematically equivalent for scalars, such as
x(y + z) and xy + xz, may have different values if x, y, and z are intervals. No matter how
[f ]([x]) is evaluated, it follows from the inclusion monotonicity of the interval operations
that

f([x]) ⊆ [f ]([x]) . (3.29)

Elementary functions such as exp, tan, sin, cos etc. extend to intervals [23,27,50,51]. Interval
extensions of these functions are implemented in various function libraries [39,45,67,68,72].

3.2 Rounding in Interval Analysis

Digital computers basically have a limited computational accuracy. Therefore one has to
take care when interval computation is performed on a computer. Consider the addition

[0.123; 0.456] + [0.0116; 0.0214] = [0.1346; 0.4774] . (3.30)

Using a computational precision of 3 decimal digits the result is usually rounded to the next
presentable number. In this case

[0.135; 0.477] 6⊇ [0.1346; 0.4774] (3.31)

is obtained. As it can be seen the exact interval is not contained in the rounded interval. To
cope with this problem a so called directed rounding [24] has to be applied. For this example

[0.134; 0.478] ⊃ [0.1346; 0.4774] (3.32)

is obtained.

3.3 Interval Newton Methods

Interval Newton methods [2,22,23,55] are extensions of the Newton method for the solution
of nonlinear systems of equations and have the following properties:

1. The existence of a solution can be guaranteed.
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2. The non-existence of a solution can be guaranteed.

3. The method converges quadratically.

From the various interval Newton methods the Krawczyk method [55] is discussed in more
detail. Consider a nonlinear function

f : Rn 7→ Rn (3.33)

and the system of equations
f(x) = 0 with x ∈ [x] . (3.34)

The iteration rule for the Krawczyk-method is given by

[K]([xit]) = xm − Y f(xm) +

(
I− Y

[
∂f

∂x

∣∣∣
x=[xit]

])
([xit]− xm), (3.35)

with Y −1 ∈
[

∂f
∂x

∣∣∣
x=[xit]

]
, xm = mid([xit]) and it denotes the it-th iteration. The iteration is

initialized by
[x0] = [x]. (3.36)

The iteration
[xit+1] = [K]([xit]) ∩ [xit] (3.37)

is called Krawczyk iteration and leads to an iterative improvement of the enclosure of the
solution set.

If
[K]([xit]) ⊂ [xit] (3.38)

than it can be guaranteed, that a zero exists in the box [xit]. On the other hand if

[K]([xit]) ∩ [xit] = ∅ (3.39)

than it can be guaranteed, that no zero exists in [xit] and therefore also not in [x0].

For
[K]([xit]) 6⊂ [xit] and [K]([xit]) ∩ [xit] 6= ∅ (3.40)

the iteration is continued. However, if [xit+1] ≈ [xit] and hence no further tightening of the
solution set is achieved the iteration is stopped.

3.4 Dependency Problem and Wrapping Effect

Interval arithmetic is sometimes affected by overestimation [23, 27, 50]. It often occurs in
case of the previously described natural interval evaluation.
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3.4.1 Dependency Problem

Overestimation is often caused by the dependency problem [23, 27, 50], which is the lack
of interval arithmetic to identify different occurrences of the same variable. The probably
simplest example, which has already been mentioned in Section 3.1, is the operation x− x,
which is zero for all x ∈ R. If x − x is evaluated over the interval [x] = [1; 2] by replacing
the algebraic operation with their interval equivalents

[x]− [x] = [1; 2]− [1; 2] = [−1; 1] (3.41)

is obtained. Another example is

f(x) = −x2 + 4 · x+ 1 . (3.42)

An evaluation with natural interval methods over the interval [x] = [1; 3] yields

−[1; 3] · [1; 3] + 4 · [1; 3] + 1 = [−9; 1] + [4; 12] + 1 = [−9;−1] + [5; 13] = [−4; 12] . (3.43)

Rewriting f results in
f(x) = −(x− 2)2 + 5 (3.44)

and for the enclosure

−([x]− 2)2 + 5 = −(([1; 3]− 2) · ([1; 3]− 2)) + 5 = [−1; 1] + 5 = [4; 6] , (3.45)

is obtained, which is already significantly tighter. The application of the rule

xn =


[1; 1] for n = 0,
[xn;xn] for x ≥ 0 or for x ≤ 0 ≤ x and odd n,
[xn;xn] for x ≤ 0,
[0; max(xn, xn)] for x ≤ 0 ≤ x and even n

(3.46)

on −([x]− 2)2 + 5 determines the exact enclosure

−([x]− 2)2 + 5 = −([1; 3]− 2)2 + 5 = −([−1; 1])2 + 5 = [4; 5] . (3.47)

In general algebraic expressions should be simplified as much as possible before the evaluation
with interval arguments to reduce the number of dependent variables, resulting in a reduction
of the dependency problem.

3.4.2 Wrapping Effect

Another source of overestimation is the so called wrapping effect, which was first observed by
Moore in 1966 [50]. It appears when intermediate results of a computation are enclosed into
intervals, whereas the exact solution set is a complexly shaped region. This can be shown
with the following example. Consider the discrete time system

xk+1 = A · xk . (3.48)
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with A = 1
2

√
2

[
1 1
−1 1

]
, perfoming a 45◦ rotation on xk.

A natural interval evaluation over three time steps with an initial interval vector

[x0] =

[
[−1 ; 1]
[−1 ; 1]

]
(3.49)

is applied. The results are depicted in Fig. 3.2. The exact solution at k = 1 is the rotated
box, which is enclosed by the box resulting from the interval computation. At k = 2 the
smaller axes parallel box is the exact solution obtained from the exact solution at k = 1.
The rotated box is the exact solution resulting from the interval enclosure of the result at
k = 1, which is again enclosed by an box. As it can be seen the box becomes larger in each
time step. If the calculation is continued, the overestimation caused by the wrapping effect
will increase exponentially in this example.
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Figure 3.2: Illustration of the wrapping-effect.

The wrapping effect is one major problem in verified integrators of ordinary differential
equations (ODEs) as it may lead to accumulation of overestimation over simulation time.

3.5 Optimized Interval Methods

In this section optimized interval methods for reduction of the dependency problem are
summarized. Advanced techniques for reduction of the wrapping effect are discussed in
Chapter 4.

3.5.1 Taylor Inclusion Functions

The Taylor expansion of order ρ of a function

f : Rn 7→ R (3.50)
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around x̂ is defined by

f(x) =

ρ∑
i=0

 1

i!

[
n∑

l=1

(xl − x̂l)
∂

∂x̃

]i

f(x̃)


x̃=x̂

+R(x, x̂, ξ) ξ ∈ [x, x̂] (3.51)

with

R(x, x̂, ξ) =
1

(ρ+ 1)!

[
n∑

l=1

(xl − x̂l)
∂

∂xl

]ρ+1

f(ξ). (3.52)

If x and x̂ are in the interval [x], then the remainder error R is enclosed by [45]

R(x, x̂, ξ) ⊂ [R](x, x̂, [x]) =
1

(ρ+ 1)!

[
n∑

l=1

([xl]− x̂l)
∂

∂xl

]ρ+1

[f ]([x]) . (3.53)

If the function f is evaluated over an interval vector [x], then

f([x]) ⊆ [fT ]([x]) =

ρ∑
i=0

 1

i!

[
n∑

l=1

([xl]− x̂l)
∂

∂x̃l

]i

f(x̃)


x̃=x̂

+

 1

(ρ+ 1)!

[
n∑

l=1

([xl]− x̂l)
∂

∂xl

]ρ+1

[f ]([x])


(3.54)

holds. Where [fT ] is the Taylor inclusion function.

Midpoint Inclusion Function

The so called midpoint-rule inclusion function [23,27] for f : Rn 7→ R is given by

f ([x]) ⊆ [fM ] ([x]) = f (xm) +

[
∂f

∂x

]T

([x]) · ([x]− xm) , (3.55)

which is a zero-order Taylor series expansion of the function f at the midpoint xm = mid([x])
with an interval evaluation of the first-order remainder term, where

[
∂f
∂x

]
([x]) is an inclusion

function of the gradient of f . For vector valued functions f : Rn 7→ Rm, in (3.55) the deriva-
tive is a Jacobian matrix.
When the width of [x] is small, the effect of the pessimism possibly resulting from the interval
evaluation of

[
∂f
∂x

]
([x]) is reduced by the scalar product with ([x] − xm), which is a small

interval centered on zero.
In general it is not a priori clear whether the midpoint-rule gives tighter enclosures than
natural interval evaluation, especially if the interval vector [x] has large components [27].
In [8] it is shown that overestimation for a decreasing width of the interval arguments de-
creases quadratically for the mid-point rule (quadratic approximation order), whereas it only
decreases linearly for natural interval evaluation (linear approximation order). This means
for sufficient small intervals the mid-point rule yields tighter enclosures. Therefore usually
an intersection of both the result of the natural function evaluation and the result of the
midpoint-rule is determined, if a function is evaluated for larger intervals. If the order of the
expansion is ρ = 1, then a cubic approximation order is obtained if the polynomial part can
be bounded without overestimation [24].
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Examples

Higher order evaluation is often successful in the computation of ranges of expressions which
have severe cancellation. Because of dependent intervals, the natural interval arithmetic
or the midpoint-rule then suffer from much overestimation. In the following a few scalar
examples are studied. The expansion is performed around the midpoint of the interval.

Consider the current-voltage-characteristic of a tunnel-diode which is given by the polynomial
function [28]

f1(x) = 17.76x− 103.79x2 + 229.62x3 − 226.31x4 + 83.72x5 . (3.56)

This function which is depicted in Fig. 3.3 is evaluated with different orders ρ over different
intervals.The expansion was performed in the midpoint of each interval and the obtained
diameters of the interval enclosures [f1,T ]([x]) are listed in Tab. 3.1. The enclosure of the

Table 3.1: Interval diameters for f1(x).
naiv ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4 ρ = 5

[x] = [0; 1] 661.2000 1.1252·103 721.7875 268.9688 31.8513 11.9844 11.9844
[x] = [0; 2] 8.5876·103 1.8942·104 1.3532·103 7.2461·103 1.2496·103 772.1000 772.1000
[x] = [0; 3] 4.5201·104 7.8023·104 3.7635·104 1.9886·104 1.0733·104 1.0482·104 1.0482·104

0-th order expansion is wider than the enclosure obtained by a naive evaluation. However,
with increasing order the enclosure becomes tighter.

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

x

f 1(x
)

Figure 3.3: Current-Voltage characteristic of a tunnel diode.
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Still, it cannot be guaranteed that increasing the order leads always to tighter results, espe-
cially if the intervals become wider [56]. This is illustrated with the function

f2(x) =
1

1 + x
+

1

1− x
− 2

1− x2
(3.57)

which is equal zero for all x. In Tab. 3.2 the bounds obtained for different orders for the
expansion around the interval midpoint and different intervals are shown. For the interval
[x] = [2.9; 3.1] the diameter of the resulting enclosure becomes smaller if the order is in-
creased. However, if f2 is evaluated over a larger interval [x] = [2; 4] increasing the order has
the opposite effect.

Table 3.2: Interval diameters for f2(x).
naiv ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

[x] = [2.9; 3.1] 0.1003 0.01296 0.00133 1.4931 · 10−4 1.4215 · 10−5 1.5731 · 10−6

[x] = [2; 4] 1.3333 3.5556 5.9366 25.2745 39.5233 180.9808

Taylor forms lose their advantages when no cancellation is present, or when some higher
order terms in Taylor expansion have a large coefficient [56].

For some arithmetic expressions, Taylor forms even generate dependence. This can be seen
in examples such as

1

1− x
= 1 + x+ x2 + · · ·+ x2k

1− x
, (3.58)

where the original expression has no dependence. In such cases, the interval evaluation
gives exact results, while Taylor forms produce overestimation. In this example much of the
dependence is of a particularly simple kind, namely additive except in the remainder term.

The function
f3(x) = (1 + x)4 (3.59)

is evaluated optimally by natural interval arithmetic with application of rule (3.46). In
Fig. 3.4 the function has been plotted for values between −10 and 10. In Tab. 3.3 the
resulting interval diameters for different intervals [x] are shown. The widest enclosures are
obatined for the midepoint-rule (ρ = 0). When increasing the order the enclosures get
tighter, but never achieve the result of the naive evaluation.

Table 3.3: Interval diameters for f3(x).
naiv ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

[x] = [−0.1; 0.1] 0.808 1.0648 0.8726 0.8688 0.8681 0.8681
[x] = [−1; 1] 16 64 32 30 23 23

[x] = [−10; 10] 14641 106480 72680 88680 18680 18680

The effect of large Taylor coefficients can be seen from

f4(x) =
1

1 + x+ 100x2
, (3.60)
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Figure 3.4: Example function f3(x) .

which has on x = [−0.1; 0.1] the range [10/21; 400/399] (the maximum is attained at
x = −0.005). Naive interval evaluation gives [10/21; 10/9] with exact lower bound. A plot
of f4(x) is presented in Fig. 3.5. With increasing expansion order the obtained enclosure
becomes wider ( see Tab. 3.4). The Taylor coefficients are shown in Tab. 3.5, their magnitude
increases with the order.

Table 3.4: Interval diameters for f4(x).
naiv ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

[x] = [−0.1; 0.1] 0.6349 5.1852 7.2572 39.8457 55.9519 268.3878

Table 3.5: Taylor coefficients for f4(x).
ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

x̂ = 0 1 -1 -99 199 9701

The examples in this subsection have illustrated, that increasing the expansion order of
the Taylor expansion does not automatically lead to tighter enclosures. A more detailed
discussion about this topic can be found in [56].

3.5.2 Monotonicity Test

Consider a nonlinear function
f : Rn 7→ Rm . (3.61)

If an interval argument [x] leads to monotonic behavior in the function f (x), the function
evaluation can be simplified by replacing the function interval vector arguments with point
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Figure 3.5: Example function f4(x) .

vectors [23,24,59]. Namely, the infimum f and the supremum f can be evaluated by replacing
[x] in f with their lower and upper bounds x, x in case of monotonicity. The overestimation of
interval evaluation is reduced significantly, since now as many components of point intervals
x, x as possible are used in computation instead of intervals [x] with non-zero diameters.

Monotonicity can easily be checked by interval evaluation of the Jacobian J , where

Ji,j =
∂fi

∂xj

i = 1, . . . ,m, j = 1, . . . , n, (3.62)

are the derivatives of the i-th component fi of f with respect to the j-th component of x.
If the lower bound of the interval [Ji,j] is strictly positive or if the upper bound is strictly
negative, the intervals [x] can be replaced by the values summarized in Tab. 3.6. The

Table 3.6: Replacement of state and parameter variables in case of monotonicity.
J i,j > 0 J i,j < 0

inf
{

fi (x)|xj=ξj

}
ξj = xj ξj = xj

sup
{

fi (x)|xj=ξj

}
ξj = xj ξj = xj

enclosure of f over [x] is then given by the interval which is specified by the infima and
suprema corresponding to the rows of Tab. 3.6.

Interval evaluation with functions simplified after monotonicity test according to Tab. 3.6
improves the estimation of the true range of f . If replacement of the intervals by infimum or
supremum is not possible due to non-monotonic behavior of the function f (x), the enclosure
of the intervals can be improved iteratively with the help of interval splitting as described
in the following subsection.
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3.5.3 Iterative Improvement of Infimum and Supremum

If the monotonicity test is not successful in at least one component [xi] of the interval
argument [x] of f(x), the interval vector [x] can be split into several subboxes which are
tested for monotonicity again [23, 59]. Mapping each of these subboxes will lead to tighter
approximations of the exact set. If only the upper and lower bounds of f(x) are desired, the
union of all resulting subboxes can be determined by searching for the smallest lower and
largest upper bound of all subboxes obtained after the evaluation of f(x).

This computation is done for each component fi of f separately. If an interval vector is split
into subboxes, first the splitting direction has to determined. The splitting direction denotes
the component in which an interval vector is split.

The splitting can be done in the direction j∗i determined by the component wise product
of diameters of the gradient ∂fi

∂x
and of the components of the interval vector [x] [9, 59], as

follows

j∗i = arg max
j=1...n

{
diag

(
diam

([
∂fi

∂xj

∣∣∣
x=[x]

]))
· diam ([x])

}
. (3.63)

Alternative rules [27] are

j∗i = arg max
j=1...n

{
diag

(
∂fi

∂xj

∣∣∣
x=mid([x])

)
· diam ([x])

}
, (3.64)

or [9]

j∗i = arg max
j=1...n

{
diam

(
diag

([
∂fi

∂xj

∣∣∣
x=[x]

])
· ([x]−mid([x]))

)}
. (3.65)

3.6 Taylor Models

3.6.1 Definition of Taylor Models

The key idea of Taylor models is to describe the bulk of functional dependency through a
Taylor polynomial and bound the deviation of the original function from the Taylor polyno-
mial by an interval [45].

Taylor models are based on the Taylor expansion of order ρ of a function f (see also (3.51)).
The Taylor expansion of a function

f : Rn 7→ R (3.66)

of order ρ around x̂ is defined by

f(x) =

ρ∑
i=0

 1

i!

[
n∑

l=1

(xl − x̂l)
∂

∂x̃

]i

f(x̃)


x̃=x̂

+R(x, x̂, ξ) ξ ∈ [x, x̂] (3.67)
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with

R(x, x̂, ξ) =
1

(ρ+ 1)!

[
n∑

l=1

(xl − x̂l)
∂

∂xl

]ρ+1

f(ξ). (3.68)

If x and x̂ are in the interval [x], then

R(x, x̂, ξ) ⊂ R(x, x̂, [x]) =
1

(ρ+ 1)!

[
n∑

l=1

([xl]− x̂l)
∂

∂xl

]ρ+1

f([x]) (3.69)

and

f(x) ∈
ρ∑

i=0

 1

i!

[
n∑

l=1

(xl − x̂l)
∂

∂x̃l

]i

f(x̃)


x̃=x̂︸ ︷︷ ︸

Polynomial Pρ,f (x−x̂)

+

 1

(ρ+ 1)!

[
n∑

l=1

([xl]− x̂l)
∂

∂xl

]ρ+1

f([x])

︸ ︷︷ ︸
Interval remainder Iρ,f

∀x ∈ [x]

(3.70)

holds [45].

Definition of a Taylor Model [45]

Let f : [x] ⊂ IRn → IR be a function that is (ρ+1) times continuously partially differentiable
on the n-dimensional domain interval vector [x]. Let x̂ be a point in [x]. Pρ,f is the ρ-th
order Taylor polynomial of f around x̂. Let Iρ,f be an interval such that

f(x) ∈ Pρ,f (x− x̂) + Iρ,f , ∀x ∈ [x]. (3.71)

The pair (Pρ,f , Iρ,f ) is an ρ-th order Taylor model of f around x̂ ∈ [x] [45]. A pair (Pρ,f , Iρ,f )
satisfying (3.71) is called a Taylor model of f and denoted by

Tρ,f = (Pρ,f , Iρ,f ) (3.72)

or
Tρ,f = Pρ,f + Iρ,f . (3.73)

A Taylor model vector is a vector with Taylor model components. When no ambiguity
arises, a Taylor model vector is simply called a Taylor model. Arithmetic operations for
Taylor model vectors are defined component wise.

In interval arithmetic the basic data type are intervals in Taylor model arithmetic the basic
data type are Taylor models. In computations that involve a Taylor model Tρ,f , the polyno-
mial part is propagated by symbolic calculations wherever possible. The interval remainder
term is processed according to the rules of interval arithmetic. The Taylor coefficients are
floating point numbers as all truncation and roundoff errors in intermediate operations are
also enclosed into the remainder interval of the final result.
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3.6.2 Taylor Model Arithmetic

Taylor models of complicated functions f can be determined by carrying Taylor model arith-
metic through binary operations and intrinsic functions which compose the function f se-
quentially [45].

Addition of Taylor Models

Consider the Taylor models for f and g as Tρ,f = (Pρ,f , Iρ,f ) and Tρ,g = (Pρ,g, Iρ,g), then
Taylor models of the sum and difference of f and g can be obtained as

Tρ,f ± Tρ,g = (Pρ,f ± Pρ,g, Iρ,f ± Iρ,g) . (3.74)

Multiplication of Taylor Models

The Taylor models for the product of f and g can be obtained as

Tρ,f · Tρ,g = (Pρ,f ·g, Iρ,f ·g) , (3.75)

where Pρ,f ·Pρ,g = Pρ,f ·g +Pe with Pρ,f ·g being the ρ-th order polynomial of the result of the
left hand side, and Pe the part of the product polynomial with order from ρ+ 1 to 2ρ, and

Iρ,f ·g = B(Pe) +B(Pρ,f ) · Iρ,g +B(Pρ,g) · Iρ,f + Iρ,f · Iρ,g , (3.76)

where B(·) denotes the interval bounds obtained for the Taylor polynomials when they are
evaluated over their corresponding domain interval vector. Pe is absorbed in the remainder
bound to avoid an increase of the order.

Range of Taylor Models

Evaluating a Taylor model Tρ(x− x̂) = Pρ(x− x̂) + Iρ for all x ∈ [x] the range

Rg(Tρ) := {P (x− x̂) + a|x ∈ [x], a ∈ Iρ} (3.77)

of Tρ(x− x̂) is obtained.

Composition of Taylor Models

Two Taylor models T1 and T2 can be composed to the Taylor model T , namely

T (z) = (T1 ◦ T2)(z) = (P1(x) + I1) ◦ (P2(z) + I2) = (P1(P2(z) + I2) + I1) . (3.78)

The composition of the two Taylor models is obtained by insertion of the Taylor model T2 into
the polynomial P1 via Taylor model addition and multiplication, and subsequent addition of
the remainder bound I1. The i-th component of xi is replaced by the i-th of T2. However, it
is required that the domain interval vector [x] of T1 contains the range of T2 [54]:

Rg(T2) ⊆ [x] . (3.79)
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Intrinsic Functions of Taylor Models

In the following the computation of Taylor models for intrinsic functions is studied. It is
assumed that a Taylor model Tρ,f for the function f is given, such that
f(x) ∈ Pρ,f (x− x̂) + Iρ,f . Let cf = f(x̂), and f̄ be defined by f̄(x) = f(x)− cf . The Taylor
model of f̄ is given by Tρ,f̄ = Pρ,f̄ + Iρ,f̄ , with Pρ,f̄ (x− x̂) = Pρ,f (x− x̂)− cf and Iρ,f̄ = Iρ,f .

For the intrinsic functions, here only the exponential, logarithmic, and, the reciprocal applied
to a given function f from the Taylor model of f is discussed. Other intrinsic functions are
explained in [45].

Exponential

Consider the exponential function evaluated for f(x):

exp(f(x)) (3.80)

with f : Rn 7→ R. This expression can be rewritten according to

exp(f(x)) = exp(cf + f(x)) = exp(cf ) · exp(f(x))

= exp(cf ) ·
{

1 + f(x) +
1

2!
(f(x))2 . . .+

1

ρ̃!
(f(x))ρ̃

+
1

(ρ̃+ 1)!
(f(x))ρ̃+1 exp

(
Θf(x)

)}
(3.81)

where 0 < Θ < 1. Taking ρ̃ ≥ ρ, the part

exp(cf ) ·
{

1 + f̄(x) +
1

2!
(f̄(x))2 + · · ·+ 1

ρ!
(f̄(x))ρ

}
(3.82)

is only a polynomial of f̄ , of which the Taylor model is obtained by applying the rules for
multiplication and addition.

The remainder part of exp(f(x)), the expression

exp(cf ) ·
{

1

(ρ+ 1)!
(f̄(x))ρ+1 + · · ·+ 1

(ρ̃+ 1)!
(f̄(x))ρ̃+1 exp(Θ · f̄(x))

}
, (3.83)

will be bounded by an interval. One first observes that since the Taylor polynomial of f̄
does not have a constant part, the (ρ+ 1)-st through (ρ̃+ 1)-st powers of the Taylor model
(Pρ,f̄ , Iρ,f ) of f̄ will have disappearing polynomial part, and thus the entire remainder part
(3.83). The remainder bound interval for the Lagrange remainder term

exp(cf )
1

(ρ̃+ 1)!
(f̄(x))ρ̃+1 exp(Θ · f̄(x)) (3.84)
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can be estimated because, for any x ∈ [x], Pρ,f̄ (x− x̂) ∈ B(Pρ,f̄ ), and 0 < Θ < 1, and so

(f̄(x))ρ̃+1 exp
(
Θ · f̄(x)

)
∈
(
B(Pρ,f̄ ) + Iρ,f

)ρ̃+1 · exp
(
[0; 1] ·

(
B(Pρ,f̄ ) + Iρ,f̄

))
. (3.85)

For the estimation of the interval bounds of exp
(
[0; 1] ·

(
B(Pρ,f̄ ) + Iρ,f̄

))
interval arithmetic

is used. It takes consideration of the fact that the exponential function is monotonically
increasing. Thus, it is sufficient to insert the lower and upper bounds of the argument in the
exponential.
One may choose ρ̃ = ρ for simplicity [45], but it is not a priori clear which value of ρ̃ would
yield the sharpest enclosures.

Logarithm

With the condition ∀x ∈ [x], Pρ,f (x − x̂) + Iρ,f ⊂ [0,∞], the logarithm equation can be
written as

log(f(x)) = log(cf + f̄(x)) = log(

{
cf )

(
1 +

f̄(x)

cf

)}
= log(cf ) +

f̄(x)

cf
− 1

2

(f̄(x))2

c2f
− . . .+ (−1)ρ̃+1 1

ρ̃

(f̄(x))ρ̃

ckf

+(−1)ρ̃+2 1

ρ̃+ 1

(f̄(x))ρ̃+1

cρ̃+1
f

1(
1 + Θ · f̄(x)

cf

)ρ̃+1
. (3.86)

The polynomial part and interval remainder can be computed in a similar way to the pre-
viously described exponential function. With ρ̃ = ρ, the second line is only Taylor addition
and multiplication, and the third line gets an interval contribution, because the Taylor model
(P̄ρ,f , Iρ,f ) of f̄ , when raised to the (ρ̃+ 1)-st power, disappears and produces no polynomial
part.

Multiplicative Inverse

Under the condition ∀x ∈ [x], 0 /∈ Pρ,f (x− x̂) + Iρ,f , the multiplicative inverse equation is

1

f(x)
=

1

cf

{
1− f̄(x)

cf
+

(f̄(x))2

c2f
− . . .+ (−1)ρ̃ (f̄(x))ρ̃

ckf

}

+(−1)ρ̃+1 (f̄(x))ρ̃+1

cρ̃+2
f

1(
1 + Θ · f̄(x)

cf

)ρ̃+2
(3.87)

and when evaluated in Taylor model arithmetic for ρ̃ = ρ , the second addition part only
yields an interval contribution.
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Integration of Taylor Models

The integration rule for of Taylor models is given by

∂−1
i (Pρ,f , Iρ,f ) = (Pρ,∂−1f , Iρ,∂−1f ) =

(∫ xi

0

Pρ−1,fdxi, Iρ,∂−1
i f

)
, with xi ∈ [xi] , (3.88)

where
Iρ,∂−1

i f = (B(Pρ,f − Pρ−1,f ) + Iρ,f ) · [xi] . (3.89)

B(Pρ,f − Pρ−1,f ) is the interval bound of the ρ-th order part of Pρ,f . Thus, the order of the
Taylor model with respect to xi does not increase.

A definite integral over variable xi from xil to xiu, which are both in the domain interval [xi]
is determined by∫ xiu

xil

f(x)dxi ∈ (Pρ,∂−1f (x|xi=xiu−x̂i
)− Pρ,∂−1f (x|xi=xil−x̂i

), Iρ,∂−1f ) . (3.90)

The integration rule plays an important role in the verified integration of ordinary differential
equations with Taylor models (see Section 4.4).

3.6.3 Range Bounding of Taylor Models

At the end of Section 3.5.1 univariate Taylor models of different order for various examples
have been bounded over an interval, by performing natural interval evaluation of the Taylor
models. It has been shown that increasing the order not always guarantees tighter enclosures.
There are several possibilities to obtain the lower and upper bounds of a Taylor model Tρ.
And the way this is done determines the quality of the enclosure. The simplest approach
is the application of natural interval arithmetic on Tρ. The use of the Horner scheme may
improve the enclosure quality [56]. A so called linear dominated range bounder [45] leads
to tight enclosures if the linear part of the polynomial Pρ of Tρ is dominating, or in other
words, if the nonlinear terms contribute less then the linear parts. A detailed description
of this method can be found in [45, 56]. In [45] it is proposed to evaluate the exact range
including the quadratics and to treat higher order terms by simple interval arithmetic, which
however increases the computational effort significantly [56]. Optimized methods like the
monotonicity test or iterative range computation as described in the Section 3.5 can be
applied to obtain tighter bounds of a Taylor model.



4 Verified Simulation of Nonlinear
Uncertain Systems

The nonlinear dynamical systems considered in this thesis are described by ordinary nonlinear
differential equations (ODEs) according to

ẋ(t) = fx(x(t), p(t), t), (4.1)

where x ∈ Rnx is the state vector and p ∈ Rnp the parameter vector.The parameter vector
p and the initial conditions x(0) are assumed to be uncertain with p ∈ [p; p] and x(0) ∈
[x(0); x(0)].
If the parameters may vary over time this has also to be considered. In case no explicit
expression of this time-variance is known, upper and lower bounds of the variation rates are
sufficient for a verified integration of the ODE. The system equations are extended by the
variation rates ∆p according to[

ẋ(t)
ṗ(t)

]
=

[
fx(x(t), p(t), t)
∆p

]
. (4.2)

Introducing the extended state vector z(t) =
[
xT (t), pT (t)

]T
results in

ż(t) = f(z(t), t) with f(z(t), t) =

[
fx(x(t), p(t), t)
∆p

]
(4.3)

with ∆p ∈ [∆p; ∆p], f : Rn+1 7→ Rn, and Rn = Rnx × Rnp . Components pi of the uncertain
parameter vector which are time-invariant are described by ∆pi = 0.

In control engineering dynamical systems are often given in the form of

ż(t) = f(z(t), u(t), t) with z ∈ Rn (4.4)

in open loop control and
ż(t) = f(z(t), u(z(t), t), t) (4.5)

in closed loop control respectively. The variable u ∈ Rnu denotes the vector of control or
input variables. Both expressions – (4.4) and (4.5) – can be rewritten to the form of (4.3).

In the following a grid t0 < t1 < · · · tkmax < tf is considered, which is not necessarily equally
spaced. The step size from tk to tk+1 is denoted by hk with hk = tk+1− tk. The step from tk
to tk+1 is referred to as the (k + 1)-st step. The solution of (4.3) is denoted with an initial

36
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condition z(tk) at tk by z(t; tk, z(tk)). For an interval vector [z(tk)], the set of solutions is
denoted by

z(t; tk, [z(tk)]) = {z(t; tk, z(tk))|z(tk) ∈ [z(tk)]} . (4.6)

The goal is to compute interval vectors [z(tk)] k = 1, 2, · · · , kmax, that are guaranteed to
contain the solution of (4.3) at t1, t2, · · · , tkmax . That is

z(tk; t0, [z0]) ⊆ [z(tk)], for k = 1, 2, · · · , kmax. (4.7)

In this chapter different methods for a verified integration of nonlinear uncertain systems are
discussed in detail. They are required for the prediction step in verified state and parameter
estimation. The algorithms presented in Sections 4.1–4.3 are based on a Taylor series in
time and the extended state vector is enclosed by intervals and/or parallelepipeds. The
integration algorithm in Section 4.4 performs in addition to a Taylor expansion in time also
an expansion in the initial conditions of the extended state vector. Here, the extended state
vector is enclosed by Taylor models.

4.1 Verified Techniques Based on Interval Enclosures

4.1.1 Basic Algorithm

The most traditional approach for a verified integration of ODEs is based on a Taylor series
expansion of the solution of the ODE in time [43,53,63], namely

z (tk+1) = z (tk) +
ν∑

i=1

hi
k

i!
f (i−1) (z (tk) , tk) + e (z (ξk) , ξk) with tk ≤ ξk ≤ tk+1 , (4.8)

where ν is the order and hk is the integration step-size, i.e., hk = tk+1 − tk and e(·) is the
truncation error

e (z (ξk) , ξk) =
hν+1

k

(ν + 1)!
f (ν) (z (ξk) , ξk) := ek . (4.9)

The approach consists of two stages. In stage one the existence and uniqueness of the solution
is proven and an a priori enclosure of the solution is computed. In stage two a tight enclosure
of the solution of the ODE is determined using the results from stage one. Both stages are
summarized below.

Stage 1: Computing an a priori enclosure of the solution

In stage one an a priori enclosure [Bk] of the solution is computed such that z(t; tk, z(tk))
is guaranteed to exist for all t ∈ [tk, tk+1] and all z(tk) ∈ [z(tk)]; and the set of solutions
z(t; tk, [z(tk)]) is a subset of [Bk] for all t ∈ [tk, tk+1]. Banach’s fixed-point theorem is applied
to the Picard operator here [43,53,63], resulting into

Φ([Bk]) = [z(tk)] + [0, hk]f([Bk], [tk; tk+1]) . (4.10)
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The interval vector [z(tk)] is a tight enclosure of the solution at t = tk. Using the Picard
operator, the a priori enclosure [Bk] is determined iteratively. In (4.10), [Bk] is initialized
by [z(tk)]. If Φ([Bk]) 6⊆ [Bk], then [Bk] is enlarged and the calculation has to be repeated
until Φ([Bk]) ⊆ [Bk], then [Bk] and Φ([Bk]) are a priori enclosures, which enclose all possible
values of the extended state vector z in the considered time interval. In order to tighten
[Bk], (4.10) is repeated recursively until the deviation between Φ([Bk]) and [Bk] is smaller
than a desired value. In case that the algorithm does not converge the step-size has to be
reduced.

Stage 2: Tightening the enclosure of the solution

In stage two the result of stage one is used to calculate a tight enclosure at tk+1 using the
Taylor expansion of the solution of the ODE.

Applying interval methods it is possible to give guaranteed bounds for the time discretization
or truncation error e(·). For the truncation error the following relation holds:

e (z (ξk) , ξk) ⊆
hν+1

k

(ν + 1)!
[f (ν)] ([Bk], [tk; tk+1]) := [ek] . (4.11)

In case that [ek] is too large, the step-size can be reduced. The tight interval enclosure
[z(tk+1)] of the flow of the ODE in the time interval [tk; tk+1] is then given by

[z (tk+1)] = [z (tk)] +
ν∑

i=1

hi
k

i!
[f (i−1)] ([z (tk)]), tk) + [ek] . (4.12)

This equation is summarized by

[z (tk+1)] = [g]([z(tk)], tk) + [ek] . (4.13)

Analytical expressions of the higher derivatives f (1) = ẍ, f (2) =
...
x , . . . , f (ν) = x(ν+1) of

the right hand side of the differential equation can be derived recursively with the following
relation

f (0) (z(t), t) = f (z(t), t) ,

f (τ) (z(t), t) =
∂f (τ−1) (z(t), t)

∂t
+
∂f (τ−1) (z(t), t)

∂z
f (0) (z(t), t) .

(4.14)

In practice the higher order Taylor coefficients are obtained numerically by automatic differ-
entiation [43, 52], because the analytical expression for the higher order coefficients usually
become very large.

Remark to Stage 1:
The method used in step one is based on a first order expansion. It can be extended to a
ν − th order expansion resulting into

Φ([Bk]) = [z (tk)]+
ν∑

i=1

[0, hk]
i

i!
[f (i−1)] ([z (tk)]), tk)+

[0, hk]
ν+1

(ν + 1)!
[f (ν)] ([Bk], [tk; tk+1]) . (4.15)

Other methods for the calculation of a priori enclosures can be found in [64].

In order to simplify the notation, z (tk+1) is replaced by zk+1. Then (4.13) becomes

[zk+1] = [g]([zk)], tk) + [ek] . (4.16)



4 Verified Simulation of Nonlinear Uncertain Systems 39

4.1.2 Mean value form

To reduce the dependency problem, when evaluating equation (4.12), the midpoint rule or
mean value evaluation is applied to the Taylor expansion leading to the so called mean value
form

[zk+1] = ẑk +
ν∑

i=1

hi
k

i!
f (i−1) (ẑk, tk) + [ek] (4.17)

+

(
I +

ν∑
i=1

hi
k

i!
[J ]
(
f (i−1) ([zk] , tk)

))
([zk]− ẑk) (4.18)

= g(ẑ, tk) +

[
∂g

∂zk

∣∣∣
zk=[zk]

]
· ([zk]− ẑ) + [ek] (4.19)

= g(ẑ, tk) + [J̃ ]([zk]) · ([zk]− ẑ) + [ek] (4.20)

with ẑ = mid([zk]) , (4.21)

where I is the n×n identity matrix, J denotes the Jacobian of the Taylor-coefficients and J̃
the Jacobian of the whole sum expression with respect to the extended state vector zk. For
even tighter bounds the intersection of the result of the naive evaluation of equation (4.12)
and the mean value form is calculated.

4.1.3 Monotonicity Test and Iterative Range Computation

The interval enclosure of the Jacobian [J̃ ]([zk]) in (4.17) obtained by the application of the
mean-vale form can directly be used for a monotonicity test as described in Section 3.5.2
for the evaluation of g in the Taylor series expansion. When the Jacobian J̃([zk]) has been
calculated, the monotonicity properties for each component gi of g are investigated. For each
gi(·) the corresponding modified interval arguments according to Table 3.6 are determined.
In case of non-monotonic behavior for at least one component of the interval arguments in
(4.12) of at least one component of [zk] iterative range computation as described in Section
3.5.3 can be applied. The corresponding interval vector can be split into subboxes and
the monotonicity is repeated for the subboxes. In order to reduce the computational effort
the monotonicity test and iterative range computation can be restricted to the lower order
coefficients. The Taylor series expansion is split up into two parts:

[zk+1] = [zk] +

ν1∑
i=1

hi
k

i!
[f (i−1)] ([zk]), tk)

+
ν∑

i=ν1+1

hi
k

i!
[f (i−1)] ([zk]), tk) + [ek]

= [g(1)]([zk], tk) + [g(2)]([zk], tk) + [ek]

with tk ≤ ξk ≤ tk+1 . (4.22)
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Then the monotonicity test and iterative range computation respectively is only applied for
g(1) and the interval enclosure of g(2) is added after wards. In this thesis the subboxes in the
iterative range computation are evaluated with a combination of natural interval arithmetic,
midpoint-rule and monotonicity test.

4.1.4 Implicit Methods

The Taylor expansion in (4.12) corresponds to an explicit integration method, an implicit
integration method [35,65] is obtained by

[zk] = [zk+1] +
ν∑

i=1

(−hk)
i

i!
[f (i−1)] ([zk+1]), tk+1) + [ek] (4.23)

with

[ek] =
(−h)ν+1

k

(ν + 1)!
[f (ν)] ([Bk], [tk ; tk+1]) . (4.24)

The implicit method often provides tighter solutions [65], however, the computational effort
is bigger, since in order to determine [zk+1] an interval Newton method has to be applied to

0 = [zk+1] +
ν∑

i=1

(−hk)
i

i!
[f (i−1)] ([zk+1]), tk+1) + [ek]− [zk] . (4.25)

Usually the explicit and implicit methods are used in combination. The solution obtained
from the explicit method is used as the initial enclosure for the interval Newton method of
the implicit method.

4.1.5 Coordinate Transformations

For the Reduction of the wrapping effect Lohner [43], Nedialkov [53] and others developed
algorithms for the verified integration of ODEs which include a linear coordinate transforma-
tion in each time-step. This leads to a reduction of the wrapping effect because the enclosure
of the solution at each time-step is represented as a linear transformation of a box and not by
rectangular box. In the following the algorithm developed by Lohner [43,53,63] is described.
Depending on the way the coordinate transformation is done either the parallelepiped method
or the QR method is obtained. Both methods are summarized below, for a detailed discussion
see [43,53,63].

For derivation of the Lohner method first the following definitions are made:

sk+1 = mid([ek]) , (4.26)

z̄k+1 = z̄k +
ν∑

i=1

hi
k

i!
f (i−1)(z̄k, tk) + sk+1 , (4.27)
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Sk = I +
ν−1∑
i=1

hi
k

i!
J(f (i−1)(zk, tk)) ,

∈ I +
ν−1∑
i=1

hi
k

i!
[J ](f (i−1)([zk], tk)) =: [Sk] ,

(4.28)

with z̄0 = mid([z0]). (4.29)

In view of (4.26) - (4.29)

z1 = z̄1 + S0(z0 − z̄0) + e0 − s1

∈ z̄1 + ([S0]A0)[r0] + [e0]− s1 =: [z1
1 ]

(4.30)

with [r0] = [z0]−mid([z0]), A0 = I and

z1 = z̄1 + S0(z0 − z̄0) + e0 − s1

= z̄1 + A1{(A−1
1 S0A0)r0 + A−1

1 (e0 − s1)}
= z̄1 + A1r1

∈ z̄1 + A1[r1] =: [z2
1 ] ,

(4.31)

where A1 ∈ Rnxn is regular, and

r1 = (A−1
1 S0A0)r0 + A−1

1 (e0 − s1)

∈ (A−1
1 ([S0]A0))[r0] + A−1

1 ([e0]− s1) =: [r1] .
(4.32)

holds. It is shown later how Ak is chosen. From (4.31) and (4.32) follows, that z1 is contained
in the intersection of [z1

1 ] and [z2
1 ], hence

z1 ∈ [z1
1 ] ∩ [z2

1 ] =: [z1] . (4.33)

The expression z1 ∈ z̄1 + A1[r1] is a parallelepiped enclosure for z1.

Let z1 ∈ [z1], then the calculation of [z2] is done in the same way:

z2 = z̄2 + S1(z1 − z̄1) + e1 − s2

= z̄2 + (S1A1)r1 + e2 − s2

∈ z̄2 + ([S1]A1)[r1] + [e1]− s2 =: [z1
2 ] ,

(4.34)

and

z2 = z̄2 + S1(z1 − z̄1) + e1 − s2

= z̄2 + A2{(A−1
2 S1A1)r1 + A−1

2 (e1 − s2)}
= z̄2 + A2r2

∈ z̄2 + A2[r2] =: [z2
2 ] ,

(4.35)

where z1 is replaced by its parallelepiped enclosure z1 ∈ z̄1 + A1[r1], A2 ∈ Rnxn is regular
and

r2 = (A−1
2 S1A1)r1 + A−1

2 (e1 − s2)

∈ (A−1
2 ([S1]A1))[r1] + A−1

2 ([e1]− s2) =: [r2] .
(4.36)
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holds. Like in (4.33),
[z2] := [z1

2 ] ∩ [z2
2 ] (4.37)

holds.

Hence instead of propagating the interval enclosures of the extended state vector zk, par-
allelepiped enclosures are propagated. The interval enclosures, however, are needed for the
calculation of the interval enclosures of the Jacobians in each time-step.

The algorithm for the k + 1-st step is then given by the following steps:

1. For k = 0: Initialization with given initial interval [z0]:

z̄0 = mid([z0]),

[r0] = [z0]− z̄0,

A0 = I .

(4.38)

2. Calculations in time-step k + 1 with known state variables at time-step k:

sk+1 = mid([ek]),

z̄k+1 = z̄k +
ν∑

i=1

hi
k

i!
f (i−1) (z̄k), tk) + sk+1,

[Sk] = I +
ν∑

i=1

[J ]

(
hi

k

i!
f (i−1) ([z (tk)] , tk)

)
,

[rk+1] = (A−1
k+1([Sk]Ak))[rk] + A−1

k+1([ek]− sk+1),

[z1
k+1] = z̄k+1 + ([Sk]Ak)[rk] + [ek]− sk+1,

[z2
k+1] = z̄k+1 + Ak+1[rk+1],

(4.39)

where [ek] is calculated as described in Section 4.1.1 and J(·) is the Jacobian of the
Taylor coefficients. How to determine Ak+1 is described further below.

3. The state enclosure at time-step k + 1 is given by:

[zk+1] = [z1
k+1] ∩ [z2

k+1]. (4.40)

Parallelepiped Method

For
Ak+1 = mid([Sk]AK) (4.41)

the parallelepiped method is obtained.

If diam([Jk]) is small and Ak is well conditioned, then

A−1
k+1[Jk]Ak = I + [Ek] , (4.42)

where [Ek] is small [53]. Then the overestimation in the evaluation of (A−1
k+1([Sk]Ak))[rk] is

small. However, the choice of Ak does not guarantee the regularity of the matrix. And if the
condition number cond(Ak) is large, then large overestimation may occur.
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QR Method

The parallelepiped method has the disadvantage that the matrices Ak+1 may become ill-
conditioned leading to large overestimation. To preserve good condition numbers in the
matrices Ak+1 , Lohner [43] developed the QR method, which stabilizes the iteration through
orthogonalization. Each parallelepiped is wrapped by a rotated n-dimensional rectangle such
that the longest edge of the rectangle coincides with the longest edge of the parallelepiped.
Orthogonalization is then performed in the order of decreasing lengths of the edges of the
parallelepiped [43]. When ill-conditioned matrices Ak+1 arise in the parallelepiped method,
then the excess area in the QR method is smaller than the excess area in acute spikes of
the parallelepiped enclosure. Instead of inverting the matrix Ak+1 only its transpose has to
be determined. In the QR-method Ak+1 is given by the orthogonal matrix Qk+1 obtained
from a QR decomposition of the matrix Ãk+1, which is obtained by sorting the columns of
mid([Sk]AK) by size in descending order:

Ãk+1 = Qk+1Rk+1 . (4.43)

Qk+1 is an orthogonal matrix with Qk+1 ·QT
k+1 = I. Rk+1 is an upper triangular matrix

Rk+1 =


r1,1 r1,2 · · · r1,n

0
. . . . . .

...
...

. . . . . . rn−1,n

0 · · · 0 rn,n

 . (4.44)

Such a decomposition always exists.

Intersection of Two Parallelepipeds

In [43] it is shown, how to intersect two parallelepipeds with different matrices Akwhich
is interesting when different methods are combined, e.g. the parallepiped method and the
QR-method, to obtain tighter enclosures. In this thesis this is extended to the case when
also z̄k are different for both enclosures. Consider two parallelepipeds described by

za
k+1 ∈ z̄a

k+1 + Ak+1[r
a
k+1] (4.45)

and

zb
k+1 ∈ z̄b

k+1 +Bk+1[r
b
k+1] . (4.46)

Both parallelepipeds can be rewritten according to

za
k+1 ∈ z̄a

k+1 + Ak+1[r
a
k+1]

= z̄a
k+1 + z̄b

k+1 − z̄b
k+1 + Ak+1[r

a
k+1]

= z̄b
k+1 +Bk+1B

−1
k+1(z̄

a
k+1 − z̄b

k+1 + Ak+1[r
a
k+1])

= z̄b
k+1 +Bk+1(B

−1
k+1(z̄

a
k+1 − z̄b

k+1 + Ak+1[r
a
k+1]))

(4.47)
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and

zb
k+1 ∈ z̄b

k+1 +Bk+1[r
b
k+1]

= z̄b
k+1 + z̄a

k+1 − z̄a
k+1 +Bk+1[r

b
k+1]

= z̄a
k+1 + Ak+1A

−1
k+1(z̄

b
k+1 − z̄a

k+1 +Bk+1[r
b
k+1])

= z̄a
k+1 + Ak+1(A

−1
k+1(z̄

b
k+1 − z̄a

k+1 +Bk+1[r
b
k+1])) .

(4.48)

In view of equations (4.45)–(4.48)

za
k+1 ∈ z̄a

k+1 + Ak+1([r
a
k+1] ∩ (A−1

k+1(z̄
b
k+1 − z̄a

k+1 +Bk+1[r
b
k+1]︸ ︷︷ ︸

=[r̄a
k+1]

))) (4.49)

and

zb
k+1 ∈ z̄b

k+1 +Bk+1([r
b
k+1] ∩ (B−1

k+1(z̄
a
k+1 − z̄b

k+1 + Ak+1[r
a
k+1]︸ ︷︷ ︸

=[r̄b
k+1]

))) (4.50)

holds.

This intersection procedure can be repeated iteratively, by setting [ra
k+1] = [r̄a

k+1] and [rb
k+1] =

[r̄b
k+1] and repeating (4.49) and (4.50) until no further significant decrease in size is achieved.

This procedure can be applied when several methods are combined, e.g. Lohner’s method
and the naive evaluation of the Taylor series, where the state vector is propagated in form
of interval enclosures. And an interval enclosure for zk+1 can also be described as a paral-
lelepiped with z̄k+1 = 0, [rk+1] = [zk+1] and Ak+1 = I, where I is the identity matrix.

Consider for example the parallelepiped

za
k+1 ∈ z̄a

k+1 + Aa
k+1[r

a
k+1] =

(
1
1

)
+

(
1 −1
1 1

)(
[−1; 1]
[−4; 4]

)
(4.51)

and the interval vector [[−1; 3], [−5; 7]]T , described by the parallelepiped representation

zb
k+1 ∈ z̄b

k+1 + Ab
k+1[r

b
k+1] =

(
0
0

)
+

(
1 0
0 1

)(
[−1; 3]
[−5; 7]

)
. (4.52)

Both za
k+1 and zb

k+1, are depicted in Fig. 4.1, the results for 1,2,5 and 10 iterations are shown
in Fig. 4.2 and Fig. 4.3.

In order to provide that the computation steps in (4.39) are correct it is important that the
vectors z̄a

k+1 and z̄b
k+1 are included in the interval vectors [za

k+1] and [zb
k+1], respectively. An

algorithm to ensure this is described in Section 4.1.7.
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Figure 4.1: Intersection of two parallelepipeds: Initial enclosures.

(a) After 1 Iteration. (b) After 2 Iterations.

Figure 4.2: Intersection of two parallelepipeds after 1 and after 2 iterations. .

(a) After 5 Iterations. (b) After 10 Iterations.

Figure 4.3: Intersection of two parallelepipeds after 5 and after 10 iterations.
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4.1.6 Interval Splitting

In nonlinear uncertain systems the solution sets are often given by complexly shaped non-
convex regions. An enclosure of such sets by a single interval vector or a parallelepiped may
lead to overestimation. However, if several interval vectors are used for enclosing the solu-
tion [26, 35, 36, 59, 62], the overestimation is reduced significantly as illustrated in Fig. 4.4.
The extended state vector in time-step k is then enclosed by a list Zk of interval vectors:

zk ∈ Zk =
{

[z
(1)
k ], [z

(2)
k ], . . . , [z

(Lk)
k ]

}
with Lk ≤ Lmax. (4.53)

To avoid an exponential growth of the number of subboxes from time-step to time-step

[z k1]=[ g ][zk ] , t k [ek ]time-step k time-step k+1

z2, k

z1,k z1,k1

z2, k1
approximation
by four boxes 

   
 

approximation  
by a single box

z2, k

z1,k z1,k1

z2, k1

 
exact solution

time-step k time-step k+1[z k1]=[ g ][zk ] , t k [ek ]

Figure 4.4: Enclosure of the solution set by a single interval vector and by several interval vectors.

efficient selection, splitting and merging strategies are required.

Selection Strategy

In every time-step a specified number of interval vectors is split into subboxes. The selection
criterion is the pseudo volume of the interval vectors. The pseudo volume V ol([z]) of a
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n-dimensonal interval vector [z] is calculated by the multiplication of the interval diameters
of all its components:

V ol([z]) =
n∏

i=1

diam([zi]) . (4.54)

In [40] a criterion which considers the stability properties of the interval vectors has been
proposed. The interval vectors for which the system has potential instable behavior are
selected for splitting. However, this criterion is not used in this work.

Splitting Strategy

If an interval vector is split into subboxes, first the splitting direction has to be determined
[9,27,35,36,59,62]. Let [z] be an interval vector which has to be split, the simplest splitting
strategy is to split the interval vector in the direction µ with the largest diameter, according
to

µ = arg max
i=1...n

{diam ([zi])} . (4.55)

The bisection is usually performed in the midpoint of the selected component µ of the cor-
responding interval vector. However, this strategy requires usually a global scaling of the
system, as each component of the interval vector may be related to a different physical unit.
And such a global scaling is usually difficult.

A more efficient splitting strategy is described in the following. Consider a function F (z) :
Rn 7−→ Rm which is evaluated over the interval vector [z]. The goal is now to find the com-
ponent of z for which F is most sensitive. The 2-dimensional example in Fig. 4.5 illustrates
that issue. Splitting an interval vector [z] in the component [z1] before evaluation of F leads
to two boxes with only little intersection in contrast to the case when the interval vector is
split in the component [z2]. Consequently the interval vector should be split in [z1] as the
function F is more sensitive for this variable. The efficiency of the splitting can be calculated
by

η =
Vol([F ]([z]))

Vol([F ]([zα])) + Vol([F ]([zβ]))− Vol([F ]([zα]) ∩ [F ]([zβ]))
(4.56)

where [zα] and [zβ] are two subboxes obtained from the splitting operation. The splitting
direction µ, which leads to the smallest η is chosen for splitting. This approach has the
drawback that the function F has to be evaluated n times.

However, this criterion can be approximated by the following approach. First all

di,j = diam([zi]) ·
∣∣∣∣∂Fj

∂zi

∣∣∣∣
z=mid([z])

, i = 1...n, j = 1...m, (4.57)

are determined. Alternatively the di,j can be calculated by

di,j = diam([zi]) · diam

([
∂Fj

∂zi

∣∣∣
z=[z]

])
, i = 1...n, j = 1...m, (4.58)
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or

di,j = diam

([
∂Fj

∂zi

∣∣∣
z=[z]

]
· ([zi]−mid([zi]))

)
, i = 1...n, j = 1...m. (4.59)

The box is split in the component µ for which

µ = arg max
i=1...n

{
m∑

j=1

di,j

}
(4.60)

holds. Here, the function F corresponds to equation (4.12) and [z] corresponds to the interval

[F ][ z ]

z 2

z1 z1

z 2

   
 

z 2

z1 z1

z 2

[F ][ z ]

exact solution

exact solution

Figure 4.5: Inefficient and efficient splitting of an interval vector [z].

vector [z
(l)
k ] from the list Zk which has been selected for splitting.

Merging Strategy

In order to avoid an exponential growth of the number of interval vectors during simulation
time, efficient merging strategies have to be applied [35, 36, 59, 62]. The merging of two
intervals [za] and [zb] means that they are replaced by the smallest possible interval vector
around both. Two interval vectors are merged if they fulfill the following criterion:

The overestimation δhull in % in relation to the pseudo volume of the two interval vectors
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Figure 4.6: Merging of two interval vectors.

without the overlapping parts of the resulting overestimation has to be smaller then a spec-
ified value δhull,limit, i.e.

δhull ≤ δhull,limit . (4.61)

For the calculation of δhull the relation

δhull =
Vol([za] ∪ [zb])− {Vol([za]) + Vol([zb])− Vol([za] ∩ [zb])}

Vol([za]) + Vol([zb])− Vol([za] ∩ [zb])
· 100% (4.62)

holds.

For a second criterion the overlapping of the intersecting domain of [za] and [zb] with the
smaller interval vector of both

δintersect =
Vol([za] ∩ [zb])

min{Vol([za]),Vol([zb])}
· 100% (4.63)

can be used. For interval merging

δintersect ≥ δintersect,limit (4.64)

has to be fulfilled, where δintersect,limit is a specified value. The choice of δhull,limit and δintersect

is system dependent and relies on experience. The merging of two interval vectors is shown
in Fig. 4.6

Reapproximation by Disjoint Interval Vectors

If a lot of interval vectors are overlapping splitting becomes inefficient. Since if one interval
vector which is split is largely overlapped by another interval vector which is not split the
splitting of the interval vector is actually useless. Thus, a reapproximation by disjoint interval
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vectors [27, 62] becomes necessary. Starting with the hull of all subboxes, which is a single
interval box, splitting into disjoint subboxes is performed. The split subboxes are compared
with the original set and an intersection is performed. Subintervals, for which the intersection
is an empty set, are deleted. The reapproximation procedure usually improves simulation
quality after short-term widening of the bounds of the state variables, since splitting of
disjoint intervals obtained after reapproximation is more efficient.

4.1.7 Combination of Interval Splitting and Coordinate Transformation

In the following it is shown how interval splitting can be combined with coordinate transfor-
mation in an efficient way. It is assumed that Lohners method, which uses parallelepipeds,
is combined with a method employing interval vectors for the state enclosure, e.g. the naive
evaluation or iterative evaluation of (4.12). The parallelepipeds are given by

zp
k+1 := z̄k+1 + Ak+1[rk+1] (4.65)

and the interval enclosures by [zi
k+1]. The extended state vector zk+1 is enclosed by

zk+1 ∈ z̄k+1 + Ak+1[rk+1] ∩ [zi
k+1] . (4.66)

The first possibility is now to split the interval [rk+1] into subboxes [r̃k+1] leading to multiple
parallelepipeds

z̃p
k+1 := z̄k+1 + Ak+1[r̃k+1] . (4.67)

After the splitting each parallelepiped is intersected with the interval vector [zi
k+1] accord-

ing to the algorithm described in 4.1.5, leading to a new subboxes [z̃i
k+1] for each subbox

[r̃k+1] of [rk+1]. This is depicted in Fig. 4.7 a) and Fig. 4.7 b). Fig. 4.7 a) shows two par-
allelepipeds obtained from the splitting of [rk+1] in two subboxes together with the interval
vector [zi

k+1]. Fig. 4.7 b) shows the final result after the intersection. The boxes [z̃i
k+1]

are used for calculation of the Jacobian enclosure [Sk+1] in the Lohner method in the next
time-step. However, in order to provide that the computation steps in (4.39) are correct it
is important that the vector z̄k+1 is included in the interval vector [zi

k+1] obtained after the
intersection of z̃p

k+1 ∈ z̄k+1 + Ak+1[r̃k+1] and [zi
k+1]. To provide this first z̄k+1 and Ak+1 are

modified. Therefore the interval vector [r̃k+1] is expressed in terms of [rk+1]:

[r̃k+1] = inf([r̃k+1])−D · inf([rk+1]) +D · [rk+1] (4.68)

where D is a diagonal matrix with

di,i =
diam([r̃i,k+1])

diam([ri,k+1])
. (4.69)

This results again in a modified representation of the same parallelepiped

z̃p
k+1 := z̄k+1 + Ak+1(inf([r̃k+1])−D · inf([rk+1])) +D · [rk+1])

= z̄k+1 + Ak+1(inf([r̃k+1])−D · inf([rk+1]))) + Ak+1(D · [rk+1])

= ˜̄zk+1 + Ãk+1[rk+1] .

(4.70)
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(a) Initial Enclosure. (b) After 2 Iterations.

Figure 4.7: Intersection of two parallelepipeds with an interval vector.

Now, the parallelepiped is centered around ˜̄zk+1. If ˜̄zk+1 is still not included in [z̃i
k+1] the

hull around [z̃i
k+1] and ˜̄zk+1 has to be used the calculation of [Sk+1] instead. This method

has also to be applied when two parallelepipeds are intersected according to Section 4.1.5.
If now instead of the parallelepipeds the interval vectors [zi

k+1] are split, then the subboxes
[z̃i

k+1] should be intersected with the parallelepiped z̄k+1 + Ak+1[rk+1] in order to improve
the enclosure by the parallelepiped. This procedure is illustrated in Fig. 4.8. Fig. 4.8 a)

(a) Initial Enclosure. (b) After 2 Iterations.

Figure 4.8: Intersection of an interval vector with two parallelepipeds.

shows two subboxes obtained from the splitting of [zi
k+1] in two subboxes together with

the parallelepiped enclosure z̄k+1 + Ak+1[rk+1]. Fig. 4.8 b) shows the final result after the
intersection. The parallelepipeds are modified as described previously. If ˜̄zi,k+1 is still not
enclosed by the interval enclosure obtained after the intersection, the hull around ˜̄zi,k+1 and
the interval vector has been used when calculating [Sk+1] in the next integration step of the
Lohner method.

If two subboxes [za
k+1] and [zb

k+1] are merged to the interval vector [zk+1] the transformation
matrix Ak+1, the interval vector [rk+1] and z̄k+1 are reinitialized according to (4.38).

In summary, the extended state vector zk+1 at t = tk+1 is enclosed by

zk+1 ∈ Zk+1 =
{

[z
(1)
k+1], [z

(2)
k+1], . . . , [z

(Lk+1)
k+1 ]

}
∩
{
z̄

(1)
k+1 + A

(1)
k+1[r

(1)
k+1], z̄

(2)
k+1 + A

(2)
k+1[r

(2)
k+1], . . . , z̄

(Lk+1)
k+1 + A

(Lk+1)
k+1 [r

(Lk+1)
k+1 ]

}
with Lk+1 ≤ Lmax.

(4.71)
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The list Zk+1 then contains in addition to the interval enclosures [z
(l)
k+1] the information for

the enclosures by the parallelepipeds namely z̄
(l)
k+1, A

(l)
k+1 and [r

(l)
k+1].

Illustrative Example: Lotka-Volterra Equations

The Lotka–Volterra equations are given by:

ż1 = z1(a− bz2) ,

ż2 = z2(cz1 − d) .
(4.72)

For a = 1, b = 0.01, c = 0.02 ,and d = 1 the equations become

ż1 = z1(1− 0.01z2) ,

ż2 = z2(0.02z1 − 1) .
(4.73)

Three simulations were carried out over 1200 time-steps. The initial state variables were
z1(0), z2(0) ∈ [49; 51]. In all simulations, the order was ν = 1 and the step size was h = 0.005.
In the first interval splitting and merging techniques without coordinate transformation was
applied. The computation time was 263 s. The second employed additionally a coordinate
transformation, and the computation time was 273 s. In the third simulation also a coor-
dinate transformation was applied but the parallelepiped enclosures have been split. The
computation time was 281 s. The maximum number of splittings and interval vectors was 20.
Splitting and merging was performed every 20 time-steps. The widest bounds are obtained
in the first case. The results of the second simulation are much tighter with only a slight
increase in computation time. The third simulation lead to the best enclosures, however,
they are only slightly better than those of the second case and the computation time was 8 s
longer.

4.2 Consistency Techniques for Reduction of
Overestimation

The simulation algorithms described so far rely on a forward integration of the system
equation. The consistency tests [11,35,38] described in this section are based on the backward
integration of the system equation according to

[zk] = [zk+1] +
ν∑

i=1

(−hk)
i

i!
f (i−1)([zk+1], tk+1) + [ek+1]. (4.74)

for subboxes and a comparison of the results with the solution obtained from the forward
integration. The result gives information, if the subbox belongs to the solution of the ODE
at time-step k + 1 or if it is a result from overestimation.
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(b) Interval enclosures for z2.

Figure 4.9: Comparison of the interval enclosures resulting from the verified integration of the
Lotka-Volterra Equations.
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4.2.1 One Step Consistency Tests

In the following a one-step consistency test [35,38] is described which consists of an alternat-
ing application of forward an backward steps. This illustrated in Fig. 4.10. First a forward
step from time-step k to k + 1 is performed resulting into [zk+1]. The exact set is given by
Žk+1. Then subboxes [z̃k+1] of the obtained solution are backward integrated resulting into
[z̃k]. Now three different cases have to be distinguished:

a) [z̃k] ∩ [zk] = ∅
The backward integrated interval vector lies completely outside of [zk]. Therefore, [z̃k+1] is
inconsistent with respect to the enclosure at time-step k and resulted from overestimation
in the forward integration. It belongs not to the solution at k + 1 with respect to [zk] and
can be deleted.

b) [z̃k] ⊂ [zk]
In this case, [z̃k] lies completely inside of [zk]. That means [z̃k+1] is consistent and belongs
to the exact solution of time step k + 1 with respect to [zk].

c) [z̃k] ∩ [zk] 6= ∅ and [z̃k] 6⊂ [zk]
In this case, no conclusion can be made because the interval vector [z̃k] is only included
partially in [zk] and further splitting of [z̃k+1] is required.

The repeated application of splitting and backward calculation yields an improved approxi-
mation of the actual solution in time step k + 1.

Figure 4.10: Distinction between three different cases: In case a) the box is inconsistent and can
be deleted; the box in case b) is consistent and belongs to the solution set; in case
c) further splitting is required.
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Selection Strategy

If after the application of the consistency test no conclusion about the consistency can be
made, the corresponding interval vector has to be split further. During the consistency test,
for many subboxes no conclusion can be made and the corresponding intervals have to be
split further. In order to limit the computational effort the number of allowed splitting
operations is limited. Therefore, efficient selection strategies are required. In case c) after
the consistency test [z̃k] and [zk] have an intersecting set given by the interval

[χk] = [z̃k] ∩ [zk]. (4.75)

The ratio between the volume of [χk] and the volume of the subbox [z̃k] in time-step k is
given by

γk =
Vol([χk])

Vol([z̃k])
. (4.76)

The larger γk, the larger is the intersection of [z̃k] with [zk] in relation to the total volume of
[z̃k]. It is unlikely that, if an interval with a large value of γk is split into two subboxes, the
consistency test will be successful and lead to case a) or b). If however γk is small, then also
the intersection of [z̃k] with [zk] in relation to the total volume of [z̃k] is small and a splitting
of [z̃k+1] increases the probability of a successful consistency test after splitting. This is also
depicted in Fig. 4.11.

In order to prevent that already very small intervals are split further, γk is weighted with
the inverse of the pseudo volume of [z̃k+1] according to

γ∗k =
γk

Vol([z̃k+1])
. (4.77)

A specified number of intervals with small γ∗k are selected for the consistency test.

Figure 4.11: Comparison of two interval vectors with different overlapping regions.

Splitting Strategy

An efficient strategy to determine the splitting direction enables a faster deletion of incon-
sistent subbox. To determine the splitting direction the criterion described in Section 4.1.6
is applied. The sensitivity analysis is performed to equation (4.74).
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Flow Diagram

Fig. 4.12 summarizes the algorithm. At time-step k + 1 the state vector zk+1 is enclosed by
a list of interval vectors Zk+1:

zk+1 ∈ Zk+1 =
{

[z
(1)
k+1], [z

(2)
k+1], . . . , [z

(Lk+1)
k+1 ]

}
with Lk+1 ≤ Lmax. (4.78)

After the forward step first the values γ∗ for each interval [z̃
(l)
k+1)] is set to 1

Vol([z̃
(l)
k+1])

. Then a

given number of interval vectors is selected for the consistency test. After the evaluation of
the splitting criterion, the subboxes are split and the backward step is applied. Inconsistent
boxes are deleted; consistent boxes are stored in a different list and are not split further. For
the remaining interval vectors, the values for γ∗k according to equation (4.77) are calculated.
Next, a user specified number of new intervals with the smallest value of γ∗ are selected for
the consistency test. This procedure is repeated until a given maximum number of interval
vectors or splitting operations is reached.

The consistency test can be combined with the previously described reapproximation routine.
Then the algorithm starts with a single box enclosing all interval vectors. The resulting
enclosure then consists of disjoint interval vectors.

Selection of boxes for consistency test

    Evaluation of a splitting criterion
   Splitting of the selected boxes

Backward integration

Merging routine

            Consistency test:
   inconsistent boxes are deleted

Max. number of 
splittings or 

boxes reached ?

yes

no

z kZ

z kẐ

Figure 4.12: Flow diagram of the consistency test.

4.2.2 Merging Strategy

The consistency test and the associated splitting leads inevitably to an increasing number
of interval vectors. To avoid an exponential growth of the interval vector number from time-
step to time-step also efficient merging strategies have to be applied. Two interval vectors
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can be merged if the smallest interval around both leads to no or only little overestimation.
The merging consists of several steps. During the splitting of an interval vector, each subbox
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(a) Tree after splitting and deleting of inconsistent
subboxes.

(b) Intervals after split-
ting and deleting of in-
consistent subboxes.
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(c) Tree after merging. (d) Intervals after merg-
ing.

Figure 4.13: Binary tree after splitting and after merging.

gets a binary number that is stored in a tree structure. If an interval vector is split into
two subboxes each subbox gets a new binary number consisting of the binary number of
the original interval vector and an additional 0 or 1 respectively at the end leading to a
binary tree with two new branches after each splitting. If an interval vector is deleted by
the consistency test, no new branches arise from this interval vector. After the splitting,
the tree gives information about interval vectors, which can be merged without further
overestimation. It just has to be checked if two subboxes descend from the same original
box. This is the case if the corresponding binary number differs only at the last digit. After
the merging with the help of the tree there may be still some boxes left which could be
merged. Therefore the merging routine described in Section 4.1.6 is used. The merging
routine is illustrated in Fig. 4.13. The dark gray boxes (Fig. 4.13 (b)) have been deleted
exemplarily as well as the corresponding branches in binary tree (Fig. 4.13 (a)). The gray
boxes around the boxes in Fig. 4.13 (d) mark boxes, which are merged by the second merging
routine.

4.2.3 Multi-Step Consistency Techniques

In this work, it is shown how the previous described consistency tests can be extended
to a so-called multi-step consistency test. In a multi-step consistency test the backward



4 Verified Simulation of Nonlinear Uncertain Systems 58

integration is done over several time-steps. This has the advantage that also overestimation
with respect to previous time-steps can be reduced. For the backward step again (4.74) is
used and is evaluated over several time-steps. In each backward step, the obtained result
is compared with the result from the forward propagation and can be therefore checked for
consistency. Fig. 4.14 illustrates the basic principle of the multi-step consistency test. A
forward calculation of the box [zk] has been done over two time-steps. The exact solution
at k + 1 is given by the set Zk+1 and the interval enclosure of zk+1 is denoted by [zk+1].
In time k + 2, the exact solution set with respect to Zk+1 is the set Zk+2, whereas the
exact solution with respect to [zk+1] is given by the set Žk+2, which is enclosed by the
interval vector [zk+2]. In this illustrative example the overestimation of [zk+2] compared
to the real solution set Zk+2 is already large. The consistency test is now applied to four
different subboxes α, β, Υ, and X of [zk+2]. The subbox α lies completely outside of Zk+2

and [zk+2]. After the backward step the exact solution set in time-step k + 1 is already
completely outside of [zk+1], but the interval enclosure is intersecting [zk+1]. The interval
that forms the intersection is now backward propagated to time step k. The resulting exact
solution and the corresponding interval enclosure are completely outside of [zk]. Therefore,
the inconsistency of α has been prove and α is deleted. Interval β lies completely inside of
Žk+2 but completely outside of Zk+2. It is therefore consistent with [Zk+1] but inconsistent
with respect to Zk+1 and therefore also inconsistent with respect to [zk]. This has to be
proven by the backward calculation. It is first backward calculated to time-step k + 1 and
then further backward calculated. The exact solution is now already completely outside of
[zk+1], however the interval enclosure is intersecting this box. After the second backward
step the resulting interval vector is lying completely outside of [zk]. The third interval Υ is
completely inside Zk+2 after two backward steps the resulting box is also completely inside
[zk]. Therefore, it has been proved that Υ belongs to the exact solution set Zk+2 with respect
to [zk]. The forth interval X lies partially inside and partially outside of Zk+2. The resulting
interval at k after two backward steps lies also partially inside and partially outside of zk.
This interval has to be split further and the backward computation has to be repeated for
the corresponding subboxes.

Figure 4.14: Backward calculation over three time-steps.

This illustrative example employed only a single box in the forward calculation. If multiple
interval boxes are used, then the result of the backward calculation has to be compared with
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all interval vectors in each backward step. Around the sets defining the intersection with
each subbox an interval hull has to be determined to continue the backward computation.
This is depicted in Fig. 4.15.

Figure 4.15: Intersection with several interval vectors in the backward calculation and enclosure
of the intersecting set by an interval vector.

Selection Strategy

In order to keep the computational effort as low as possible it is important to apply efficient
strategies for the selection of intervals for the consistency test. The following three strategies
are proposed:

1. One strategy is to choose the interval vector with the largest pseudo-volume.

2. If in the forward step interval splitting had been applied, it is also possible to select
boxes with maximum distance to the balance point of the original set, where for the bal-
ance point an approximate value is sufficient. However, before this value is calculated,
a normalization of the original set has to be done.

3. The selection criterion described in Section 4.1.6 can also be used for the multi-step
consistency test. If it has been carried out from time-step k + 1 over N time-steps
(N < k + 1), then the sum over the values of γk in each time is calculated, namely

γkN =
N∑

l=0

γk−l . (4.79)
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Additionally a weighting with the inverse of the pseudo-volume of the corresponding
interval [zk+1] at time-step k + 1 is done in accordance to (4.77), which results in

γ∗kN =
γkN

Vol([zk+1])
. (4.80)

The interval vectors with the smallest value of γ∗kN are selected for the consistency test.

Terminating Condition

The γ-values can be used to judge if it makes sense to continue the backward integration.
For that purpose the γ-values are compared if the value of γ remains constant or is even
increasing. The integration is stopped if over a particular number of M backward steps

γk̃ ≤ γk̃−1 ≤ γk̃−2 . . . ≤ γk̃−M . (4.81)

holds. Then new intervals are selected for the consistency test, since it becomes improbable
that the interval can be deleted after further backward calculation. If k + 1 is the starting
point of the backward integration, then k̃ ≤ k holds. This terminating condition leads to a
reduction of computational effort. If γ is decreasing in between the counting of the backward
steps is set to zero again.

Splitting Strategy

The splitting strategy described in Subsection 4.2.1 can be extended to the multi-step con-
sistency test. Therefore, the influence of the components of the state variable z is analyzed
over several time-steps Ñ ≤ N , where N is the maximum allowed number of backward steps.
For the calculation of the state vector over Ñ time-steps

[zk] = [g−k+1]([zk+1]) + [ek+1]) ,

[zk−1] = [g−k ]([zk]) + [ek] = [g−k ](g−k+1([zk+1]) + [ek+1]) + [ek] ,

...

[zk−Ñ ] = [g−
k−Ñ−1

](. . . g−k (g−k+1([zk+1]) + [ek+1]) + [ek], . . .) + [ek−Ñ−1]

(4.82)

holds. The − in g−k indicates the backward integration and the index k denotes g in time-step
k, hence

g−k (zk) := g−(zk, tk) . (4.83)
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Applying the chain rule and neglecting the error terms, the gradient results in

∂zk

∂zk+1

=
∂g−k+1

∂zk+1

,

∂zk−1

∂zk+1

=
∂g−k
∂g−k+1

·
∂g−k+1

∂zk+1

=
∂g−k
∂zk

·
∂g−k+1

∂zk+1

,

...

∂zk−Ñ

∂zk+1

=
∂g−

k−Ñ+1

∂g−
k−Ñ+2

. . . · ∂g
−
k

∂g−k+1

∂g−k+1

∂zk+1

,

=
∂g−

k−Ñ+1

∂zk−Ñ+1

. . . · ∂g
−
k

∂zk

∂g−k+1

∂zk+1

.

(4.84)

Next, all values

di,j = diam([zi,k])
N∑

l=0

∣∣∣∣ ∂zj,k−l

∂zi,k−l+1

∣∣∣
zk−l+1=mid([zk−l+1])

∣∣∣∣
i, j = 1, . . . ,n

(4.85)

are calculated. Alternatively the di,j can be calculated by

di,j = diam([zi]) · diam

(
N∑

l=0

[
∂zj,k−l

∂zi,k−l+1

∣∣∣
zk=[zk]

])
, i = 1...n, j = 1...m, (4.86)

or

di,j = diam

(
N∑

l=0

[
∂zj,k−l

∂zi,k−l+1

∣∣∣
zk=[zk]

]
· ([x]−mid([x]))

)
, i = 1...n, j = 1...m. (4.87)

The splitting direction µ is determined according to

µ = arg max
j=1...n

{
n∑

i=1

di,j

}
. (4.88)

Flow Diagram

A block diagram of the multi-step consistency test is given in Fig. 4.16. If in the forward
integration multiple interval vectors have been used it can be advantageous to replace these
interval vectors by a single box. Especially if there are a lot of overlapping boxes. This
assures that after the consistency test the interval vectors are disjoint. Then this single box
is backward integrated and the splitting direction is determined. Next, the box is split into
two subboxes. These subboxes are backward integrated again. This is repeated until the
number of interval vectors is above a particular number L̃. Then only L̃ interval vectors are
selected for the next application of the consistency test according to the chosen selection
strategy. The consistency test is repeated IT times. If this number has been reached, the
remaining interval vectors are merged and the forward integration can be continued.
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Selection of interval boxes for consistency test
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Figure 4.16: Flow diagram of the multi-step consistency test.

4.2.4 Application: Non-Isothermal Stirred Tank Reactor

In this section, the simulation results of a non-isothermal stirred tank reactor show the
performance and the significant improvement of the result when the proposed algorithm
is applied. The parameter that denotes the maximum number of backward steps is N .
M is the number used for the termination criterion. The initial conditions were given by
ca(0) ∈ [0; 1]mol/l, cb(0) ∈ [0; 1]mol/l, ν(0) ∈ [100; 110]◦C, νK(0) ∈ [100; 110]◦C. ∆Hrab was
assumed to be uncertain with ∆Hrab ∈ [4.2 − 2.36; 4.2 + 2.36] kJ

kgK
[13]. The variation rate

of ∆Hrab was chosen to ˙∆Hrab ∈ [−0.1; 0.1] kJ
kgKh

. The extended state vector z(t) is defined

as z(t) = [ca, cb, v, vk,∆Hrab]
T . The step-size was chosen as T = 0.0005h and the Taylor

series was truncated after order ν = 1. A maximum of Lmax = 500 interval vectors was
allowed during the forward propagation. Iterative calculation of infimum and supremum in
combination with naive interval evaluation, mean-value evaluation, and monotonicity test
was applied in the forward propagation. In each time-step, the maximum number of splittings
during the iterative computation was 10 for each box.

The simulation results are shown in Fig. 4.17. The dark gray curves show simulation results
where only the forward step was applied. It can be observed that after t = 0.25h the results
blow up dramatically. The bright gray results show the results, where a consistency test
was performed at t = 0.25h, with IT = 50, L̃ = 100, M = 10 and N = 20 was used. In
the backward integration only naive interval analysis was applied. Optimized techniques
could be used to improve the results further at the cost of more computation time. The
selection criterion which uses the distance to the approximate balance-point of the original
set was used (selection strategy 2). The splitting direction was determined by calculating
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the sensitivity only with respect to the first backward-step. After the consistency test, the
simulation continued with the forward propagation. It can be seen clearly, that the results
have been improved significantly by the consistency test.

(a) Cyclopentadiene concentration ca. (b) Cyclopentenol concentration cb.

(c) Reactor temperature v. (d) Jacket temperature vk.

Figure 4.17: Simulation results without and with consistency test.

Fig. 4.18 shows the result for fixed values of IT , M and L̃ and different values of M in the
[v, vk]-plane. Fig. 4.19 depicts the results for fixed values of IT , N and L̃ and different values
of N .

The results show that it is crucial, not to stop the backward propagation too early. In the
first case the results for M = 20 are much better than for M = 5. For variable values of N
the results also differ a lot between N = 20 and N = 100.

In Fig. 4.20 simulation results for fixed values of L̃ and M and for different values of N
and IT are shown. The different values of N and IT were chosen in a way that their
product is 1000. Increasing the number of backward steps leads to better results with fewer
splitting operations, if the overestimation between two backward steps is not too large.
This means also that after the consistency test fewer boxes have to be forward calculated.
Usually the number of maximum number of intervals for the forward propagation is also
restricted. If after the consistency test too interval vectors are present no interval splitting is
allowed until the merging routine has reduced this number below its maximum allowed value.
Nevertheless, if the number of Iterations IT becomes too low while the maximum allowed
number of backward steps N is increased at the same time, the quality of the simulation
results also decreases.
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Figure 4.18: Projection in the [v, vk]-plane for N = 100, L̃ = 100, IT = 50 and different values
of M .

Figure 4.19: Projection in the [v, vk]-plane for M = 10, L̃ = 100, IT = 50 and different values of
N .
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Figure 4.20: Projection in the [v, vk]-plane for M = 10, L̃ = 100 and different values of N and
IT .

In Fig. 4.21 the results from Fig. 4.17 are compared with results if selection strategy 3 is used.
The dark enclosures represent the result for selection strategy 3. The bright enclosures the
results for selection strategy 2. The results when applying selection strategy 2 are slightly
better; however the computational effort for evaluation of this criterion is larger.

4.3 Verified Integration of Uncertain Systems with
State-Dependant Switching Characteristics

For many technical systems, the influence of friction or hysteresis effects [7,49,69] cannot be
neglected. For the simulation of such systems the switching between different models has to
be taken into account [61], e.g. the switching between static friction and sliding friction. A
system with switching characteristics can be described by l different models

S = {S1, S2, ..., Sl} . (4.89)

Each of these models is described by a its state space representation

ż = fSi
(z(t), t), i = 1, ..., l . (4.90)

A transition from model Si to another model Sj with i, j = 1, ..., l occurs, if the necessary
transition conditions T j

i (z, t) are fulfilled [61]. If the transition conditions are not fulfilled,
the current model remains. In the case of systems with interval uncertainty, the transition
conditions also become intervals. Therefore, the possibility has to be considered that more
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(a) Cyclopentadiene concentration ca. (b) Cyclopentenol concentration cb.

(c) Reactor temperature v. (d) Jacket temperature vk.

Figure 4.21: Comparison of selection strategies.
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than one of the model Si can be active simultaneously. Note, that for the real system still
only one state is active at each point of time. The fact that more than one model can be
active at the same point of time in the simulation model reflects the dependency of the
switching between the different models upon the parameters of the friction characteristic.
This is taken into account by the fact that in the case of interval uncertainty more than one
transition condition starting from the same model can be active simultaneously. The true
system behavior is always included in the verified simulation results, which is guaranteed by
a conservative choice of the parameters of the friction characteristic.

4.3.1 Basic Algorithm

The algorithm for the simulation of systems with model switching includes the following
major points in each time step:

• a simulative detection of all possible points of time when a transition between two
models may occur,

• the simulation of the dynamical system model, which includes all active partial models
and,

• a check, which models can be deactivated in the next time-step.

Too obtain guaranteed enclosures of all reachable states in case of state dependent transi-
tions between multiple continuous-time system models, the simulation algorithm described
in Section 4.1 is extended, such that all possible points of time, were a transition condition
T j

i for the transition from model Si to Sj is active, are included. The deactivation of models
has to be done as soon as possible to obtain tight enclosures of the reachable states. The
basic algorithm consists of the following four steps [61]:

• Step 1: Calculation of a coarse enclosure [Ba,k] for all reachable states in the time
interval [tk; tk+1].
For that purpose, the Picard Iteration is applied for the state equation fa(z(t), t), which
is a union of all models that are active at t = tk, i.e.

fa([zk], tk) ⊇
⋃
i∈Ia

fSi
([zk], tk) , (4.91)

where

Ia =
{
i
∣∣ Si = true

}
for t = tk . (4.92)
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• Step 2: Test, if additional transition conditions for one of the active models
Si, i ∈ Ia becomes active.
The coarse enclosure [Ba,k] from Step 1 has to be recalculated under consideration of
all additional active models, if Ĩa 6= Ia, where

Ĩa =Ia ∪ {j
∣∣(T j

i ([Ba,k], [tk; tk+1]) = true ∩ (i ∈ Ia)} . (4.93)

After the assignment of Ĩa by Ia, the modified system equation
f̃a(z(t), u(t), t) is now enclosed such that

f̃a([Ba,k], [tk; tk+1]) ⊇
⋃

i∈f̃Ia

fSi
([Ba,k], [tk; tk+1]) . (4.94)

If Ĩa = Ia, the substitutions fa = f̃a and Ia = Ĩa are carried out and the evaluation is
continued in Step 3.

• Step 3: Calculation of the interval enclosure of the state [zk+1] at tk+1 by evalu-
ation of equation (4.12).
Hereby the state equation f(z(t), t) has to be replaced by fa(z(t), t).
The bounding box [Bk] corresponds to [Ba,k].

• Step 4: Deactivation of models, which can no longer be active at tk+1.
All states that correspond to the indices Ia have to be checked for their admissibility.
Deleting of an index is possible, if there exists a contradiction between the definition
of a model and the interval enclosure [zk+1].

4.3.2 Optimized Algorithm

In this thesis, the basic algorithm described above is extended to the simulation with interval
splitting similar to Section 4.1.6. Therefore, the list of interval vectors Zk is divided into l
different Lists (see Fig. 4.22):

⇒ The first list L1 contains all interval vectors with one active model,
⇒ the second list L2 contains all interval vectors with two active models
...
⇒ the l -th list Ll contains all interval vectors with l active models.

The interval vectors in each list are sorted according to their pseudo-volume, where the
first interval vector in each list is the interval vector with the largest pseudo-volume. All l
lists are assembled in one list, where the interval vectors of the list Ll are at the beginning
of the entire list, then the interval vectors of the list Ll−1 and at the end the interval vectors
of list L1. The following steps are identical to the algorithm described in Section 4.1.6.
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Figure 4.22: Flow diagram of the simulation algorithm.

4.3.3 Application: Mechanical Positioning System

In this section, simulation results for the mechanical positioning system described in Section
2.2 are presented. The friction characteristic Ff (x2) is described by three different models
S = {S1, S2, S3}:

• model S1: sliding friction for motion in negative (backward) direction (x2 < 0),

• model S2: static friction (x2 = 0),

• model S3: sliding friction for motion in positive (forward) direction (x2 > 0) .

The model transition diagram in Fig. 4.23 shows all possible transitions for nominal param-
eter values, i.e. the static friction and the sliding friction coefficients are point intervals. In
this case, only one model can be active at the same time.

Friction characteristic with parameter uncertainties

The influence of an uncertain static friction Fs ∈ [Fs;Fs] and an uncertain sliding friction
coefficient µ ∈ [µ;µ] on the friction characteristic is illustrated in Fig. 4.24. The friction
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Figure 4.23: Switching between different models for nominal parameters.

characteristic is assumed to be symmetric. The dashed lines are the characteristics obtained
for µ; the solid lines are the characteristics for µ. If these parameters are uncertain also the
position x1 and the velocity x2 become intervals. Therefore it is possible that more than one
model is active at the same point of time. The transition diagram for uncertain parameters
is depicted in Fig. 4.25. If the system is in motion, the resulting sliding friction force is

−[ FS ][ ] x2

[F S ][ ] x2

[F S ]
static friction
[F S

max ]

{

x2

F f

Figure 4.24: Friction characteristic with uncertain parameters.

given by

Ff (x2) =

{
−[Fs] + [µ] · x2 for S1 = active ,
+[Fs] + [µ] · x2 for S3 = active .

(4.95)

The static friction force in the idle state is given by

Ff (x2) ∈ [Fmax
s ] = [−Fs;Fs], S2 = active . (4.96)
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Figure 4.25: Switching between different models for uncertain parameters.

During the simulation, the active models are stored in a mode vector mode according to

• mode=[1 0 0] only the model for sliding friction for motion in negative (backward)
direction (x2 < 0) is active,

• mode=[0 1 0] only the model for static friction is active,

• mode=[0 0 1] only the model for sliding friction for motion in positive (forward) direc-
tion (x2 < 0) is active,

• mode=[1 1 0] the model for sliding friction for motion in negative (backward) direction
(x2 < 0) and for static friction are active,

• mode=[0 1 1] the model for sliding friction for motion in positive (forward) direction
(x2 < 0) and for static friction are active,

• mode=[1 1 1] all models are active,

• mode=[1 0 1] cannot occur.
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The transition from one model Si to another model Sj takes only place if the corresponding
transition condition is fulfilled. Model transitions are described in so-called transition ma-
trices. If for example the system is in the idle state – hence only the model for static friction
is active– and the driving force is negative (Fa < 0), then the following transition conditions
hold as long Fa ∈ −[Fs]:

T 1
2 = inf([Fa]) ≤ −inf([Fs]) and T 2

2 = [Fa] ∩ [Fmax
s ] 6= ∅ . (4.97)

Analogously for a positive driving force(Fa > 0) as long Fa ∈ [Fs]:

T 3
2 = sup[Fa]) ≥ inf([Fs]) and T 2

2 = [Fa] ∩ [Fmax
s ] 6= ∅ . (4.98)

As mentioned above deleting of an index is possible, if there exists a contradiction between
the definition of a state and the interval enclosure [zk+1]. Depending upon the considered
application, it is possible to check further conditions allowing guaranteed statements whether
one or more of the discrete states can be deactivated.

In the considered scenario, the following additional constraints are applicable:

If (S1 (tk) = true)∩(sup (Fa ([tk ; tk+1])) ≥ 0) (or (S3 (tk) = true)∩(inf (Fa ([tk ; tk+1])) ≤ 0)),

S1 (S3) can be deactivated if simulation by the Steps 1 to 3 of the largest possible subinterval
of [zk] which is compatible with S1 (S3) leads to a result which is no longer compatible with
S1 (S3). A similar statement can additionally be provided for state S2. After wards the
simulation is continued with Step 1 for the next time interval [tk+1 ; tk+2].

The following simulation results are based on normalized parameter values. The mass was
given by m = 1. Fs and µ were uncertain with Fs ∈ [0.0125; 0.015], µ ∈ [0.001; 0.0015]. Both
uncertain parameters were assumed to be time-invariant. The initial conditions were given
by x1(0) ∈ [0; 0] and x2(0) ∈ [−0.05;−0.02]. The step-size was constant with h = 0.1. The
simulation was carried out for t ∈ [0; 100] with Fa(t) = 0.020 · sin(0.1t). Fig. 4.26 (a) and
Fig. 4.26 (b) show the the resulting interval enclosures for x1 and x2, respectively. The solid
lines depict the resulting enclosures without interval splitting and merging. The dashed lines
represent the results of a simulation with the application of interval splitting and merging,
however, without the list sorting algorithm described in Section 4.3.2. And the dotted lines
depict results with additional application of the list sorting according to Section 4.3.2. With-
out interval splitting the results for x1 the are quite pessimistic. Interval splitting leads to
a drastic improvement. The enclosure of x1 is tightened further when the interval vectors
are sorted according to the number of activated models. For the velocity x2 no difference
between the three results can be seen. In contrast to the simulation with nominal system
parameters Fs and µ, more than one model S = {S1, S2, S3} can be active at the same
time if the system parameters are described by interval uncertainties. This is depicted in
Fig. 4.26 (c). Here only the results for the strategy with sorting for the number of active
models is shown.
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Figure 4.26: Interval enclosures of position and velocity.



4 Verified Simulation of Nonlinear Uncertain Systems 74

4.4 Verified Techniques Based on Taylor Models

The verified integration methods described so far employ only a Taylor expansion in time.
Validated techniques based on Taylor models as developed by Berz and Makino [5, 45–47]
and implemented in COSY-VI perform also an expansion in the initial state vector, which is
in the following denoted by z. The domain interval vector for z is given by [z]. The expansion
point for the expansion in the initial state vector z is given by ẑ with ẑ ∈ [z]. The expansion
point for the expansion in time is tk. The flow of the differential equation in a given time
interval [tk; tk+1] is enclosed by a n-dimensional Taylor model

Tρ(z− ẑ, t− tk) := Pρ(z− ẑ, t− tk) + Iρ,k+1,

with z ∈ [z] and t ∈ [tk; tk + 1] ,
(4.99)

where Pρ(z− ẑ, t− tk) is the multivariate polynomial part of order ρ and Iρ,k+1 the remainder
interval vector. Components i of Tρ(z− ẑ, t− tk) are denoted by Tρ,i(z− ẑ, t− tk). The Taylor
model at t = tk+1 is

Tρ,k+1(z− ẑ) := Pρ,k+1(z− ẑ) + Iρ,k+1 . (4.100)

Components i of Tρ,k+1(z− ẑ) are given by Tρ,i,k+1(z− ẑ).

The flow representation by Taylor models makes it possible to obtain tight enclosures of
non-convex sets and leads to a reduction of both the dependency problem and the wrapping
effect.

4.4.1 Basic Principle

In the following the key elements of verified integration based on Taylor model methods are
explained. First the differential equation

ż(t) = f(z(t), t) (4.101)

is rewritten into integral form:

z(t) = z(t0) +

∫ t

t0

f(z(t′), t′)dt′, (4.102)

where z(t0) denotes the solution of the ODE at t = t0. The initial value problem has a
(unique) solution if and only if the corresponding integral equation has a (unique) solution.
Now the operator

O : ~C0[t0, t1] → ~C0[t0, t1] (4.103)

on the space of continuous functions from [t0, t1] to Rn via

O (z) (t) := z(t0) +

∫ t

t0

f(z(t′), t′)dt′ (4.104)
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is introduced. The problem of finding a solution to the differential equation is reduced to a
fixed-point problem

z = O(z) . (4.105)

For the verified in integration of the flow of the ODE in a given time-interval [tk, tk+1] the
goal is now to find a Taylor model Tρ(z− ẑ, t− tk) = Pρ(z− ẑ, t− tk) + Iρ,k+1 such that

O(Pρ(z− ẑ, t− tk) + Iρ,k+1) ⊂ Pρ(z− ẑ, t− tk) + Iρ,k+1

∀z ∈ [z; z] and ∀t ∈ [tk; tk+1].
(4.106)

holds. This Taylor model provides a verified enclosure of the solution of the flow of the ODE
in the time interval [tk; tk + 1].

In [5, 45] Schauder’s fixpoint theorem is applied to show that a Taylor model with the
property (4.106) proves the existence of a solution of the fixpoint equation – but not the
uniqueness of the solution. In [12] Banach’s fix-point theorem is established to show that a
Taylor model according to (4.106) prove the existence and uniqueness of the solution of the
fix-point equation.

Applying the Operator O to a Taylor model for the integration in the time-interval [tk; tk+1]
yields

O(Pρ(z− ẑ, t− tk) + Iρ,k+1) = z(tk) +

∫ t

tk

f(Pρ(z− ẑ, t′ − tk) + Iρ,k+1)dt
′ , (4.107)

where z(tk) is represented by its corresponding Taylor model enclosure at t = tk

Tρ,k = Pρ,k(z− ẑ) + Iρ,k . (4.108)

This leads to

O(Pρ(z− ẑ, t− tk) + Iρ,k+1) = Pρ,k(z− ẑ) + Iρ,k +

∫ t

tk

f(Pρ(z− ẑ, t− tk) + Iρ,k+1)dt
′ .

(4.109)

The task is to find a suitable choice for Pρ(z− ẑ, t− tk) and Iρ,k+1 which fulfill (4.106), and
furthermore it is desirable to have Iρ,k+1 as tight as possible.

The basic algorithm consists of two stages:

Stage 1: Computing a polynomial part

For a sufficient order ρ the polynomial part Pρ(z−ẑ, t−tk) is already close to the solution. The
polynomial Pρ(z− ẑ, t− tk) is obtained by iteratively apply the fix point equation according
to

P (j+1)(z− ẑ, t− tk) = O(P (j)(z− ẑ, t− tk)) . (4.110)
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This iteration is also called Picard iteration. P (0)(z − ẑ, t − tk) is given by the polynomial
Pρ,k(z− ẑ) part of the Taylor model Tρ,k of z(tk), hence

P (0)(z− ẑ, t− tk) = Pρ,k(z− ẑ) (4.111)

and

P (j+1)(z− ẑ, t− tk) = O(P (j)(z− ẑ, t− tk)) = P (0)(z− ẑ, t− tk) +

∫ t

tk

f(P (j)(z− ẑ, t− tk))dt
′

= Pρ,k(z− ẑ) +

∫ t

tk

f(P (j)(z− ẑ, t′ − tk))dt
′.

(4.112)

Note, that this computation is a pure symbolic integration with respect to the time variable
t. No accumulation of remainder errors takes place in this stage. After each iteration j + 1,
terms higher than order j + 1 are truncated. After ρ steps the ρ-th order expansion

Pρ(z− ẑ, t− tk) = P (ρ)(z− ẑ, t− tk) (4.113)

is obtained and terms higher than ρ are omitted.

Stage 2: Determination of the interval remainder

Now an interval remainder bound Iρ,k+1 has to be found such that the inclusion requirement

O(Pρ(z− ẑ, t− tk) + Iρ,k+1) ⊂ Pρ(z− ẑ, t− tk) + Iρ,k+1

∀ z ∈ [z; z] and ∀ t ∈ [tk; tk + 1]
(4.114)

is fulfilled. Here the integration rule for Taylor models from equation (3.88) has to be applied,
leading to

O(Pρ(z− ẑ, t− tk) + Iρ,k+1) = Pρ,k(z− ẑ) + Iρ,k +

∫ t

tk

f(Pρ(z− ẑ, t′ − tk) + Iρ,k+1)︸ ︷︷ ︸
P̂ρ(z−ẑ,t′−tk)+Îρ,k+1

dt′

= Pρ,k(z− ẑ) + Iρ,k +

∫ t

tk

P̂ρ−1(z− ẑ, t′ − tk)dt
′

+ {B(P̂ρ(z− ẑ, t− tk)− P̂ρ−1(z− ẑ, t− tk)) + Îρ,k+1)} · ([tk; tk+1]− tk)︸ ︷︷ ︸
=[0;hk]

= Pρ(z− ẑ, t− tk) + I∗ρ,k+1

∀ z ∈ [z; z] and ∀ t ∈ [tk; tk + 1] .

(4.115)

Note that the polynomial part is reproduced in the integration [5, 12, 45], only the interval
remainder changes. Thus, the inclusion property (4.106) is fulfilled for

I∗ρ,k+1 ⊂ Iρ,k+1 . (4.116)
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The suitable choice for Iρ,k+1 requires some trial and error. First an initial estimate I
(0)
ρ,k+1

has to be determined. This can be done by

Pρ(z− ẑ, t− tk) + I
(0)
ρ,k+1 = O(Pρ(z− ẑ, t− tk) + [0; 0]n)

= Pρ,k(z− ẑ) + Iρ,k +

∫ t

tk

f(Pρ(z− ẑ, t′ − tk) + [0; 0]n)dt′ .
(4.117)

However, in most applications I
(0)
ρ,k+1 is obtained iteratively by

Pρ(z− ẑ, t− tk) + I
(0,j+1)
ρ,k+1 ) = O(Pρ(z− ẑ, t− tk) + I

(0,j)
ρ,k+1)

= Pρ,k(z− ẑ) + Iρ,k +

∫ t

tk

f(Pρ(z− ẑ, t′ − tk) + I
(0,j)
ρ,k+1)dt

′ ,

(4.118)

with

I
(0,0)
ρ,k+1 = [0; 0]n . (4.119)

If the iteration is stopped after j∗ iterations, then

I
(0)
ρ,k+1 = I

(0,j∗+1)
ρ,k+1 (4.120)

holds. In most applications the iteration is repeated two times.

The interval remainder is now iteratively increased by I
(j)
ρ,k+1 = qj · I(0)

ρ,k+1 with q > 1, i.e.

Pρ(z− ẑ, t− tk) + I
∗(j)
ρ,k+1) = O(Pρ(z− ẑ, t− tk) + I

(j)
ρ,k+1)

= Pρ,k(z− ẑ) + Iρ,k +

∫ t

tk

f(Pρ(z− ẑ, t′ − tk) + I
(j)
ρ,k+1)dt

′ .
(4.121)

until a computational inclusion

Pρ(z− ẑ, t− tk) + I
∗(j)
ρ,k+1 = O(Pρ(z− ẑ, t− tk) + I

(j)
ρ,k+1) ⊂ Pρ(z− ẑ, t− tk) + I

(j)
ρ,k+1

∀ z ∈ [z; z] and ∀ t ∈ [tk; tk + 1]
(4.122)

is found.

In practice, a computational inclusion can be found in a few iterations with q between 1 and
2. If this is not the case, it can be forced by slightly reducing the integration step size, which
reduces the main contribution of the remainder bound of the mapped set.

Let I
∗(j∗)
ρ,k+1 be the desired interval remainder fulfilling (4.106), which has bee obtained after j∗

iterations. The width of the remainder interval can be decreased now by iteratively applying
the fixed point operator. Denoting Ĩ

(0)
ρ,k+1 = I

∗(j∗)
ρ,k+1, the sequence of Taylor models

Pρ(z− ẑ, t− tk) + Ĩ
(j+1)
ρ,k+1 = O(Pρ(z− ẑ, t− tk) + Ĩ

(j)
ρ,k+1)

with Ĩ
(j+1)
ρ,k+1 ⊂ Ĩ

(j)
ρ,k

(4.123)
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is applied iteratively until no further significant decrease in size of the interval remainder is
achieved.

As a result after j∗ refinement iterations,

Tρ(z− ẑ, t− tk) = Pρ,k+1(z− ẑ, t− tk) + Iρ,k+1 with Iρ,k+1 = Ĩ
(j∗)
ρ,k+1 (4.124)

is the desired sharp inclusion of the flow of the ODE in the considered time-interval. The
Taylor model obtained at t = tk+1 of the current integration step is given by

Tρ,k+1 = Pρ,k+1(z− ẑ) + Iρ,k+1. (4.125)

To integrate over time, the procedure is applied at each time step. Automatic step-size
controllers can be used to assure that if the solution at a time step is not favorable, the
step-size is decreased [5,45–47]. On the other hand, if a time step can proceed without much
growth of errors, the next step size is increased.

For numerical and implementation reasons it is advantageous to have the unit box [−1; 1]n

as domain interval vector and 0 in each component of the expansion point for the initial state
vector in each integration step [46, 47]. If at t = 0 the initial vector is given by an interval
box with z(0) ∈ [z0], this interval box is expressed as a Taylor model

z(0) ∈ Trho,0 = c+Dz with zi ∈ [−1; 1] , i = 1 . . . , n , (4.126)

where c is the midpoint of [z0] and D is a diagonal matrix with di,i = rad([z0]).

Because the solution set is described as a Taylor model describing the dependence on initial
conditions, the dependency problem based on the repeated use of the solution set in sub-
sequent operations is reduced. And because the sets are represented by Taylor models also
non-convex sets can be enclosed much more efficiently than by a single interval vector or by
a parallelepiped. Thus, also the wrapping effect is reduced.
However, the interval remainder part the integration is still affected by overestimation. The
polynomial parts of the Taylor models are independent of the initial domain intervals and
independent of the step size, but the interval remainder bounds are not.

Transversal Weighting

COSY supports sparsity, i.e. coefficients which are below a pre-specified accuracy threshold
are included in the interval remainder. Thus, only coefficients which are larger than this
threshold contribute to computational effort. In cases where the interval enclosures of some
components zi(0) of the initial state vector z(0) are small, the expansion order in the corre-
sponding normalized initial state variables zi (with zi ∈ [−1; 1], i = 1, 2, . . . , n) , can be kept
lower than for the components with larger interval enclosures. This is done by a weighting
of these coefficients by some suitable odd integer power w [48]. In this way, throughout the
computation, only powers of zi that are multiples of w appear, which limits the expansion in
initial state variables to the largest ρ̃ that satisfies ρ ≤ w · ρ̃. Combined with sparsity meth-
ods, this can drastically reduce computational expense and storage requirements. Without
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sparsity support, the number of possible coefficients Nc of order ρ in n initial conditions with
weighting factor w for one component of a n-dimensional Taylor model enclosing z is given
by [48]

Nc(ρ, n, w) =

int(ρ/w)∑
j=0

(j + n− 1)!

j! · (n− 1)!
(ρ− w · j + 1) . (4.127)

Here int(ρ/w) denotes the smallest integer not exceeding ρ/w. The number Nc also considers
the expansion in time in addition to the expansion in the n initial state variables. To obtain
the number of coefficients for the complete n-dimensional Taylor model vector,Nc has to be
multiplied by n. If w = 1, then this number is given by

Nc,tot(ρ, n, w = 1) = n · ((n+ 1) + ρ)!

ρ! · (n+ 1)!
. (4.128)

Example for Solving Linear Ordinary Differential Equations by Taylor Model Methods

In order to illustrate verified integration of Taylor model methods and in order to obtain a
better understanding of the previously described algorithm, a simple linear example [44] is
considered below. A nonlinear example is given in A.1. The differential equation is given by:

ż1 = −z2 ,

ż2 = z1 .
(4.129)

The following initial conditions are considered,

z1(0) ∈ [1; 3] ,

z2(0) ∈ [−1; 1] ,
(4.130)

which leads to the initial Taylor model

Tρ,1,0 = 2 + z1 ,

Tρ,2,0 = 0 + z2 with z1, z2 ∈ [−1; 1] .
(4.131)

The following calculation is intended to show the procedures of the algorithms.

The First Time Step

The fixed point equations are

z1(t) = z1(t0) +

∫ t

t0

(−z2(t
′))dt′ = O1(z(t)) ,

z2(t) = z2(t0) +

∫ t

t0

(z1(t
′))dt′ = O2(z(t)) .

(4.132)

with t0 = 0. First the polynomial part is determined, and then Taylor models which sat-
isfy the inclusion requirement have to be found. Finally the Taylor models are refined. The
step size is constant with h = π

6
and the order is set to ρ = 5 in time and initial state varibales.
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Calculation of the Polynomial Part

The initial polynomial P (0) is given by Tρ,1,0 and Tρ,2,0.

Fixed point iteration: Step 1

P
(1)
1 (z, t) = 2 + z1 +

∫ t

0

[−z2]dt
′ = 2 + z1 − z2t ,

P
(1)
2 (z, t) = z2 +

∫ t

0

[2 + z1]dt
′ = z2 + (2 + z1)t .

(4.133)

Fixed point iteration: Step 2

P
(2)
1 (z, t) = 2 + z1 +

∫ t

0

[−z2 − (2 + z1)t
′]dt′ = 2 + z1 − z2t− (2 + z1)

t2

2
,

P
(2)
2 (z, t) = z2 +

∫ t

0

[2 + z1 − z2t
′]dt′ = z2 + (2 + z1)t− z2

t2

2
.

(4.134)

This is repeated until Step 5.

P
(5)
1 (z, t) = 2 + z1 − z2t− (2 + z1)

t2

2
+ z2

t3

3!
+ (2 + z1)

t4

4!
− z2

t5

5!
,

P
(5)
2 (z, t) = z2 + (2 + z1)t− z2

t2

2
− (2 + z1)

t3

3!
+ z2

t4

4!
+ (2 + z1)

t5

5!
.

(4.135)

So for the order ρ = 5 depending on time t and the initial state vector z, the polynomial is
given by

Pρ,1(z, t) = 2 + z1 − z2t− (2 + z1)
t2

2
+ z2

t3

3!
+ (2 + z1)

t4

4!
,

Pρ,2(z, t) = z2 + (2 + z1)t− z2
t2

2
− (2 + z1)

t3

3!
+ z2

t4

4!
+ 2 · t

5

5!
.

(4.136)

Calculation of the Interval Remainder

Using the polynomial solution part (4.136), the initial estimate I
(0)
ρ,1 is determined by

Pρ,1(z, t) + I
(0)
ρ,1,1 = 2 + z1 +

∫ t

0

[−z2(t)]dt

= Pρ,1(z, t) +

{
B

(
−z2

t4

4!
− 2 · t

5

5!

)
+ [0; 0]

}
· [0;h]

= Pρ,1(z, t) + I
(0)
ρ,1,1 ,

Pρ,2(z, t) + I
(0)
ρ,2,1 = Pρ,2(z, t) +

{
B

(
z1
t4

4!

)
+ [0; 0]

}
· [0;h]

= Pρ,2(z, t) + I
(0)
ρ,2,1 .

(4.137)
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And so

I
(0)
ρ,1,1 = [−1.99× 10−3; 1.64× 10−3] ,

I
(0)
ρ,2,1 = [−1.64× 10−3; 1.64× 10−3]

(4.138)

holds. Note, that here only a single iteration has been carried out for determining the
initial estimate of the interval remainder. As mentioned previously in many application this
iteration is repeated.

The remainder bound is inflated repeatedly by 2 until it satisfies the self inclusion condition

I
(1)
ρ,1,1 = 2 · I(0)

ρ,1,1 = [−3.97× 10−3; 3.28× 10−3] ,

I
(1)
ρ,2,1 = 2 · I(0)

ρ,2,1 = [−1.64× 10−3; 1.64× 10−3] .
(4.139)

Applying the Picard operation iteratively, then yields

I
∗(1)
ρ,1,1 = [−3.71× 10−3; 3.36× 10−3] ,

I
∗(1)
ρ,2,1 = [−3.72× 10−3; 3.36× 10−3] ,

(4.140)

I
(2)
ρ,1,1 = 22 · I(0)

ρ,1,1 = [−7.94× 10−3; 6.56× 10−3] ,

I
(2)
ρ,2,1 = 22 · I(0)

ρ,2,1 = [−6.56× 10−3; 6.36× 10−3] ,
(4.141)

I
∗(2)
ρ,1,1 = [−5.42× 10−3; 5.08× 10−3] ,

I
∗(2)
ρ,2,1 = [−5.80× 10−3; 5.08× 10−3] .

(4.142)

Thus, a self including solution Pρ(z, t) + I
∗(2)
ρ has been found.

Now, the Picard operation is applied repeatedly until the desired sharpness of enclosure
is achieved. The refinement is initialzed by Ĩ

(0)
ρ,1 = I

∗(2)
ρ,1 . The first refinement iteration yields

Pρ(z, t) + Ĩ
(1)
ρ,1 = O(Pρ(z, t) + Ĩ

(0)
ρ,1) = Pρ(z, t) +

(
[−4.64× 10−3; 4.68× 10−3]
[−4.48× 10−3; 4.30× 10−3]

)
,

Pρ(z, t) + Ĩ
(2)
ρ,1 = O(Pρ(z, t) + Ĩ

(1)
ρ,1) = Pρ(z, t) +

(
[−4.24× 10−3; 3.99× 10−3]
[−4.07× 10−3; 4.09× 10−3]

)
.

(4.143)

Continuing until the relative tolerance of 1% is met, results in

Pρ(z, t) + Ĩ
(7)
ρ,1 = O(Pρ(z, t) + Ĩ

(6)
ρ,1) = Pρ(z, t) +

(
[−3.84× 10−3; 3.57× 10−3]
[−3.66× 10−3; 3.52× 10−3]

)
. (4.144)

The desired interval remainder Iρ,1 is then given by Iρ,1 = Ĩ
(7)
ρ,1 .

Taylor Model Solution at t =
π

6

z1(t =
π

6
) ∈ Tρ,1,1(z) = Pρ,1(z, t =

π

6
) + Iρ,1,1 = Pρ,1,1(z) + Iρ,1,1

= 1.732 + 0.866z1 − 0.500z2 + [−3.84× 10−3; 3.57× 10−3] ,

z2(t =
π

6
) ∈ Tρ,2,1(z) = Pρ,2(z, t =

π

6
) + Iρ,2,1 = Pρ,2,1(z) + Iρ,2,1

= 1.000 + 0.500z1 + 0.866z2 + [−3.66× 10−3; 3.52× 10−3] .

(4.145)
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In Fig. 4.27 and Tab. 4.1 the result is illustrated. The region between outer rotated square

Table 4.1: Initial position and mapped position
Initial position (z1, z2) at t = 0 Mapped position (Pρ,1,1, Pρ,2,1) at t = π

6

(0, 0) (1.732, 1.000)
(1, 1) (2.098, 2.366)

(−1, 1) (0.366, 1.366)
(−1,−1) (1.366,−0.366)
(1,−1) (3.098, 0.634)

Figure 4.27: Initial position and mapped position.

and inner rotated square in Fig. 4.27 denotes the remainder bounds.

Taylor Model Solution at the Second Time Step (t = 2 · π
6

=
π

3
)

z1(t =
π

3
) ∈ Tρ,1,2(z) = Pρ,1(z, t =

π

3
) + Iρ,1,2 = Pρ,1,2(z) + Iρ,1,2

= 1.000 + 0.500z1 − 0.866z2 + [−3.84× 10−3; 3.57× 10−3] ,

z2(t =
π

3
) ∈ Tρ,1,2(z) = Pρ,2(z, t =

π

3
) + Iρ,2,2 = Pρ,2,2(z) + Iρ,2,2

= 1.732 + 0.866z1 + 0.500z2 + [−3.66× 10−3; 3.52× 10−3] .

(4.146)
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The initial Taylor model for the integration from
π

6
to

π

3
is the resulting Taylor model from

t =
π

6
.

Taylor Model Solution at the Third Time Step (t = 3 · π
6

=
π

2
)

z1(t =
π

2
) ∈ Tρ,1,3(z) = Pρ,1,3(z1) + Iρ,1,3

= −1.000z2 + [−1.29× 10−2; 1.26× 10−2] ,

z2(t =
π

2
) ∈ Tρ,2,3(z) = Pρ,2,3(z) + Iρ,2,3

= 2.000 + 1.000z1 + [−1.24× 10−2; 1.28× 10−2] .

(4.147)

4.4.2 Reduction of the Wrapping Effect in Taylor Model based Verified
Integrators

In the k-th integration step, the solution of the ODE is enclosed by the region occupied by
the Taylor model

Tρ,k(z− ẑ) = Pρ,k(z− ẑ) + Iρ,k . (4.148)

This Taylor model presents the initial state enclosure for the next integration step as dis-
cussed in the previous section. Assuming zi ∈ [−1; 1], i = 1, 2..n and ẑi = 0, i = 1, 2..n the
Taylor model results in

Tρ,k(z) = Pρ,k(z) + Iρ,k . (4.149)

As already mentioned, the expansion in initial conditions reduces the dependency problem
and the wrapping effect. The interval remainder part however is affected by the dependency
problem and the wrapping effect like the integration methods in Section 4.1. In order to
limit the long-term growth of the truncation error and to further reduce overestimation the
following strategies can be applied [37,46,47].

Shrink Wrapping

Shrink wrapping [47] is a method to control the long term growth of integration errors. The
idea is to include remainder error in the range of the polynomial part of Taylor model.

This problem can be reduced to only linear algebra while in the linear case, but the situation
is more complicated in the nonlinear case [47].

After the application of shrink wrapping a Taylor model T SW
ρ,k very similar to the original

Taylor model Tρ,k, with

Tρ,k(z) ⊂ T SW
ρ,k (z) = P SW

ρ,k (z) + ISW
ρ,k , (4.150)
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is obtained. P SW
ρ,k is a slightly modified polynomial, and ISW

ρ,k is a significantly reduced interval
of the size of machine precision.
The Taylor model is rewritten according to

Tρ,k(z) = ck + P̃ρ,k(z) = ck + Ck · z +Nρ,k(z) + Iρ,k, (4.151)

where ck is the constant part, Ck · z the linear part and Nρ,k(z) the nonlinear part of Pρ,k.

Shrink wrapping consists of the following steps.

1. First the constant part is removed resulting into

T̃ρ,k(z) = P̃ρ,k(z) + Iρ,k = Ck · z +Nρ,k(z) + Iρ,k (4.152)

2. Next, the obtained Taylor model T̃ρ,k is multiplied by C−1
k , resulting into

T̂ρ,k(z) = z + N̂ρ,k(z) + Îρ,k . (4.153)

The inversion of Ck will be successful if it is sufficiently well-conditioned. If not,
additional steps may be necessary [46].
Because of rounding errors in the inversion, there are some tiny linear corrections.

3. Îρ,k is included into the interval box d · [−1; 1]n, where d is a small number.

4. Next, the nonlinearity N̂ρ,k(z) and its Jacobian
∂N̂ρ,k

∂z
are estimated by the number s

and t according to

s ≥
∣∣∣N̂ρ,i,k(z)

∣∣∣ ,∀z ∈ [−1; 1]n, 1 ≤ i ≤ n,

t ≥

∣∣∣∣∣∂N̂ρ,i,k

∂zj

∣∣∣∣∣ ,∀z ∈ [−1; 1]n, 1 ≤ i, j ≤ n .
(4.154)

5. Then the so called shrink wrap factor is defined as follows [47]:

q = 1 + d · 1

(1− (n− 1)t)(1− s)
. (4.155)

The bounds s and t for the polynomials N̂ρ,i,k and ∂N̂i

∂zj
can be computed by interval

evaluation.

6. Now the Polynomial part of T̃ρ,k is multiplied by q and the constant ck is added resulting
into

T SW
ρ,k (z) = ck + (q · P̃ρ,k(z)) + ISW

ρ,k = P SW
ρ,k (z) + ISW

ρ,k (4.156)

with an interval remainder ISW
ρ,k , which is close to machine precision, and the property

Tρ,k(z) ⊂ T SW
ρ,k (z) . (4.157)

The interval remainder of Tρ,k is absorbed by the polynomial part of T SW
ρ,k and the

integration is continued with T SW
ρ,k .
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On the first glance it seems to be a drawback that the enclosure of the state vector is blown
up due to the absorption of the interval remainder in polynomial part. However, because the
new interval remainder term is close to zero the dependency problem is drastically reduced
in the following integration step. Also the wrapping effect is decreased. However, there
are also limitations for shrink wrapping. The measures of nonlinearities s, and t must not
become too large. Besides, the application of the inverse of the linear part should not lead
to large increases in the size of remainder bounds. If the matrix Ck is not invertible, a QR
decomposition as described in Section 4.1.5 can be applied, which however may increase s and
t too much. In [47] a more sensitive method called blunting is proposed. Blunting provides
an upper bound for the condition number of the modified matrix, by an appropriate increase
of the angel between the column vectors.

Example for Shrink Wrapping [54]

The following Taylor model vector is considered:

Tρ,1(z) = 2 + 4z1 +
1

2
z2
1 + [−0.2; 0.2],

Tρ,2(z) = 1 + 3z2 + z1z2 + [−0.1; 0.1]

with z1, z2 ∈ [−1; 1] .

(4.158)

First the constant part ck of the polynomial is removed and the following equation is obtained:

T̃ρ,1(z) = 4z1 +
1

2
z2
1 + [−0.2; 0.2],

T̃ρ,2(z) = 3z2 + z1z2 + [−0.1; 0.1].
(4.159)

The matrix associate with the linear part of the Taylor model (4.158) is

C :=

(
4 0
0 3

)
. (4.160)

Multiplying (4.159) with C−1, then gives

T̂ρ,1(z) = z1 +
1

8
z2
1 + [−0.05; 0.05],

T̂ρ,2(z) = z2 +
1

3
z1z2 + [−0.034; 0.034].

(4.161)

Estimating the nonlinear part and the interval terms as described above, numbers s, t, and
d satisfying

s ≥
∣∣∣∣18z1

2

∣∣∣∣ , s ≥ ∣∣∣∣13z1z2

∣∣∣∣ ∀ z1, z2 ∈ [−1; 1],

t ≥
∣∣∣∣14z1

∣∣∣∣ , t ≥ ∣∣∣∣13z2

∣∣∣∣ , t ≥ ∣∣∣∣13z1

∣∣∣∣ ∀ z1, z2 ∈ [−1; 1],

d ≥ 0.05, d ≥ 0.034

(4.162)

are computed.
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These conditions are fulfilled for s = t =
1

3
and d = 0.05, from which the shrink wrap factor

is deduced (4.155)

q = 1 + d · 1

(1− (m− 1)t)(1− s)
=

89

80
. (4.163)

The final Taylor model after shrink wrapping is

T sw
ρ,1 (z) = c1,1 + qP̃1(z) = 2 +

89

20
z1 +

89

160
z1

2,

T sw
ρ,2 (z) = c2,1 + qP̃2(z) = 1 +

287

80
z2 +

89

80
z1z2.

(4.164)

The sets of the Taylor models before (4.158) and after shrink wrapping (4.164) are shown in

Original Taylor model

Polynomial of original 
Taylor model

Interval remainder of 
original Taylor model

Taylor model after 
shrink wrapping

Figure 4.28: Sets of the Taylor models before and after shrink wrapping.

Fig. 4.28. The dotted line is the boundary of the set that is described by the polynomial of
the original Taylor model. The white area is the set described by the original Taylor model,
including the interval remainder. The excess area introduced by shrink wrapping is shaded
in gray.

Preconditioning

Another method for reduction of overestimation in Taylor model based verified integration
is based on preconditioned Taylor models [46, 54]. In this method the flow of the ODE is
represented by a composition of a left and a right Taylor model

Tl ◦ Tr = (Pl + Il) ◦ (Pr + Ir). (4.165)
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The composition

Tρ(z) := (Pl(z̄) + Il) ◦ (Pr(z) + Ir) (4.166)

of the two Taylor models

Tl(z̄) = Pl(z̄) + Il , z̄ ∈ [̄z] (4.167)

and

Tr(z) = Pr(z) + Ir , z ∈ [z] (4.168)

is called preconditioned Taylor model if

Rg(Tr) ⊆ z̄ . (4.169)

Tl is the preconditioner and Tr the conditioned Taylor model. Pl + Il is chosen in a way that
Il is zero up to roundoff, and the operations on Ir are minimized. For practical purposes
(Pr +Ir) is normalized in the factorization [46], such that each of its components has a range
in [−1; 1].The left Taylor model Tl can be seen as a specific coordinate system in which the
flow of the ODE is studied.

If the flow of an ODE is enclosed by the composition Tl ◦ Tr, then in order to compute the
enclosure of flow in the next integration step it is sufficient to integrate the ODE for the
set enclosed by Rg(Tl) , and to compose the integrated Taylor model with Tr. Higher order
terms appearing in the composition process are included in the interval remainder of the
result.
This has the effect that during the integration between two time-steps only the left Taylor
model is affected the right Taylor model Tr remains unchanged [46, 54]. In practice the
interval bound in the Picard iteration is not determined for the z̄ ∈ Rg(Tr) but for the larger
set z̄ ∈ [̄z]. This is a potential source of overestimation. However, the dependency problem
is reduced since the remainder error Il is close to zero. The advantage of preconditioning
becomes apparent after several integration steps.

In the following the computations for preconditioning in each integration step are outlined.
Let

Tρ,k(z) = Tl,k ◦ Tr,k = (Pl,k + Il,k) ◦ (Pr,k + Ir,k) (4.170)

be a factored Taylor model that encloses the flow of the ODE at time tk. Let

Ťl,k+1 = P̌l,k+1 + Ǐl,k+1 (4.171)

be the result of integrating Tl,k(z) from tk to tk+1. Then

Ťρ,k+1 = (P̌l,k+1 + Ǐl,k+1) ◦ (Pr,k + Ir,k) (4.172)

is a factorization of the flow at time tk+1 [46].

In the beginning at t = 0 of the integration, the flow of the initial condition box can be
represented as the composition of two identity Taylor models

z̄ ◦ z . (4.173)
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The beneficial use of the method, and in particular its use in reducing the growth of remainder
terms, is the moving terms between the left and right factors [46]. This is described in the
following.

To get the factorization, the following steps are necessary. The inclusion of the flow in the
k+ 1-st integration step is given by the Taylor model (P̌l,k+1 + Ǐl,k+1) ◦ (Pr,k + Ir,k). Let čk+1

be the constant part of P̌l,k+1, Čk+1 the linear part of P̌l,k+1, and Ňk+1 includes the nonlinear
part and the remainder interval. So Ťl,k+1 = čk+1 + Čk+1 + Ňk+1. Set cl,k+1 = čk+1 and
assume that Cl,k+1 is the desired linear part of the left factor. Later it will be shown how to
choose Cl,k+1. The identity transformation (Cl,k+1 ◦ C−1

l,k+1), is inserted and the inclusion of
the flow results in,

(čk+1 + Čk+1 + Ňk+1) ◦ (Pr,k + Ir,k)

= čk+1 + (Čk+1 + Ňk+1) ◦ (Pr,k + Ir,k)

= cl,k+1 + (Cl,k+1 + [0, 0]) ◦
(
C−1

l,k+1 ◦ (Čk+1 + Ňk+1) ◦ (Pr,k + Ir,k)
)

= (cl,k+1 + Cl,k+1 + [0, 0]) ◦
{
(C−1

l,k+1 ◦ Čk+1 + C−1
l,k+1 ◦ Ňk+1) ◦ (Pr,k + Ir,k)

}
.

(4.174)

The expression in the curly brackets is denoted by (P̄r,k+1+ Īr,k+1) and its component interval
bounds are calculated. In order to continue the integration with the left Taylor model with
the unit box as domain interval, a scaling matrix Sk+1 is determined such that the new right
Taylor model is bounded by [−1; 1]n. To this effect the identity transformation (Sk+1 ◦S−1

k+1)
is introduced in (4.174) according to

(cl,k+1 + Cl,k+1 + [0, 0]) ◦ (Sk+1 ◦ S−1
k+1) ◦ (P̄r,k+1 + Īr,k+1) . (4.175)

Denoting (Pr,k+1 + Ir,k+1) = S−1
k+1 ◦ (P̄r,k+1 + Īr,k+1), an enclosure of the flow at tk+1 is given

by the composition

Tρ,k+1 = (cl,k+1 + Cl,k+1 + [0, 0]) ◦ Sk+1︸ ︷︷ ︸
Tl,k+1

◦ (Pr,k+1 + Ir,k+1)︸ ︷︷ ︸
Tr,k+1

= Tl,k+1 ◦ Tr,k+1
(4.176)

As mentioned above, in the next integration step only Tl,k+1 is affected by the integration.
There are several points to analyze the effects of this procedure [46,54].

1. This method is successful, if the amount of overestimation arising by the wrapping of
Ťρ,k+1 = Ťl,k+1 ◦Tρ,r,k in Tρ,k+1 = Tl,k+1 ◦Tr,k+1 is sufficiently small and if the Rg(Tl,k+1)
is more appropriate for continuing the integration than Ťl,k+1.

2. The polynomial part of C−1
l,k+1 ◦ Ňk+1 is nonlinear, so its action on (Pr,k + Ir,k) via

composition will introduce only a small contribution to the remainder bound, if Ir,k is
still small.

3. The remainder part of C−1
l,k+1 ◦ Ňk+1, which contains as one important contribution

the action of C−1
l,k+1 on the remainder interval of Ňk+1, will be added to Ir,k. The

magnification of the remainder bound of Ňk+1 by the action of C−1
l,k+1 is proportional

to the condition number of Cl,k+1.
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4. Contributions of a similar magnitude as Ir,k come from application of the linear term
C−1

l,k+1 ◦ Čk+1 to Ir,k. If this term is not chosen properly, exponential growth of the
remainder bound over time could happen.

There are several choices for the determination of Cl,k+1. Three different types are imple-
mented in COSY VI, which are QR, curvilinear and blunting.

The QR preconditioning is to choose Cl,k+1 as the matrix Q of the matrix of the QR factor-
ization of the matrix, which is obtained by sorting the columns of Čk+1 by size in descending
order. The matrix is determined in the same way as described in Section 4.1.5. The QR
preconditioning leads to a coordinate system that is orthogonal, and thus the transformation
in and out of this system is well conditioned [46].

Further preconditioning techniques are curvilinear preconditioning and blunted parallelepiped
preconditioning. The curvilinear preconditioning results also in an orthogonal coordinate sys-
tem.The blunted parallelepiped preconditioning is to choose Cl,k+1 to be the q-blunting of
Čk+1, where q is a suitable blunting factor. The q-blunting provides an upper bound for the
condition number of the matrix Cl,k+1, and thus a strict upper limit to the overestimation.
A detailed description for both is given in [46]. In this thesis only QR-preconditioning is
used, as it is the most robust method for all studied applications.

An example for the application of preconditioning can be found in Appendix A.2.

Splitting of the Domain Interval Vector

In the following, splitting of the domain interval vector into subboxes [37] is proposed as a
tool for reduction of overestimation. The state vector zk+1 is then enclosed by a list Tk+1 of
Taylor models:

zk+1 ∈ Tk+1 =
{
T

(1)
ρ,k+1(z), T

(2)
ρ,k+1(z), . . . T

(Lk+1)
ρ,k+1 (z)

}
with zi = [−1; 1], i = 1, 2, . . . , n and Lk+1 ≤ Lmax .

(4.177)

Consider a Taylor model Tρ,k+1(z) with the domain interval vector [z], hence z ∈ [z] . The
domain interval vector of this Taylor model is split into subboxes [̃z].

For numerical and implementation reasons it is advantageous to have the unit box [−1; 1]n

as a domain interval vector in each integration step [47]. To obtain again the unit box as a
domain interval vector, [̃z] is expressed as a Taylor model according to

[̃z] = T̃ (z) = c̃+ D̃ z

with zi ∈ [−1; 1] , i = 1 . . . , n ,
(4.178)
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where c̃ is the midpoint of [̃z] and D̃ is a diagonal matrix with d̃i,i = ·rad([̃zi]). The com-
ponents of the vector of the original initial state vector z of Tρ,k+1(z) are replaced by the
components of T̃ (z) by substituting T̃i(z) for zi, which results in a modified Taylor model

T̃ρ,k+1(z) = Tρ,k+1(T̃ (z)) (4.179)

for each subbox [̃z].

To determine the component in which the domain interval vector has to be split, a sensitivity
analysis is performed. The component µ of the domain interval vector z is chosen for splitting
in which the Taylor model Tρ,k+1(z) is most sensitive. For that purpose, all wi,j

wi,j = diam([zi]) ·
∣∣∣∣∂Tρ,k+1,j(z)

∂zi

∣∣∣
z=mid([z])

∣∣∣∣
i = 1, . . . ,n, j = 1, . . . , n

(4.180)

have to be calculated and the component µ is determined by

µ = arg max
i=1...n

(
n∑

j=1

wi,j

)
. (4.181)

Alternatively the wi,j can be computed by

wi,j = diam([zi]) · diam

([
∂Tρ,k+1,j(z)

∂zi

∣∣∣
z=[z]

])
i = 1, . . . ,n, j = 1, . . . , n

(4.182)

or

wi,j = diam

([
∂Tρ,k+1,j(z)

∂zi

∣∣∣
z=[z]

]
· ([zi]−mid([zi]))

)
i = 1, . . . ,n, j = 1, . . . , n.

(4.183)

In (4.180), the results are the coefficients of the linear part of the Taylor model Tρ,k+1(z)
multiplied by the factor 2, because mid([zi]) = 0 and diam([zi]) = 2 for zi ∈ [−1; 1] , i =
1, . . . , n.

If several Taylor models are already present, the most appropriate Taylor model for the
splitting of the domain interval vector has to be selected. This is done by calculating the
interval enclosure of each Taylor model and the corresponding pseudo volume of the resulting
interval vector. The Taylor model with the largest pseudo volume is selected for splitting.
Alternatively Taylor models with the largest interval remainder can be selected for splitting.

Example

Consider the following two dimensional Taylor model (for simplicity the remainder interval
is set to zero) enclosing the state vector z = [z1, z2]

T :

z1 ⊆ T1 =1 + 0.5z1 + 2z2 − z2
1 − z2

2 ,

z2 ⊆ T2 =1 + 0.5z1 + z2
2

with z1, z2 ∈ [−1; 1] .

(4.184)
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Figure 4.29: Before Splitting.

The domain interval vector is split in the second component; hence [z2] is split in [za
2] = [0; 1]

and [zb
2] = [−1; 0]. The obtained subintervals [za

2] and [zb
2] are expressed as Taylor models

with domain interval [−1; 1]:

za
2 ∈Ta = 0.5 + 0.5z2 ,

zb
2 ∈Tb = −0.5 + 0.5z2

with z2 ∈ [−1; 1] .

(4.185)

T a and T b are substituted for z2 in T leading to two Taylor models:

T a
1 = 1.75 + 0.5z1 + 0.5z2 − z2

1 − 0.25z2
2 ,

T a
2 = 1.25 + 0.5z1 + 0.5z2 + 0.25z2

2

with z1 and z2 ∈ [−1; 1]

(4.186)

and

T b
1 = −0.25 + 0.5z1 + 1.5z1 − 0.25z2

2 − z2
1 ,

T b
2 = 1.25 + 0.5z1 − 0.5z2 + 0.25z2

2

with z1 and z2 ∈ [−1; 1] .

(4.187)

In Figs. 4.29 and 4.30, the Taylor models before and after splitting are depicted in terms
of points obtained by evaluation of the Taylor models with multiple points of the domain
interval vectors.

Splitting in Combination with Preconditioning

If preconditioning techniques are applied the flow of the ODE in the k+1-st integration step
is enclosed by the composition

Tρ,k+1(z) := (Pl,k+1(z̄) + Il,k+1) ◦ (Pr,k+1(z) + Ir,k+1) . (4.188)
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Figure 4.30: After Splitting.

The initial state vector is given by z. Thus, if the domain interval vector of a component zi

is split the right Taylor model is affected. The splitting is done before the application of the
scaling to the unit box. Before the scaling the Taylor model

(cl,k+1 + Cl,k+1 + [0, 0]) ◦ (P̄r,k+1 + Īr,k+1) (4.189)

is given.

Since when the domain interval of a component zi is split, each subinterval is again defined
by a Taylor model with the unit box as domain interval a constant part ˜̄cr appears in the
right Taylor models. Each Taylor model T̃ρ,k+1(z) after splitting is then given by

T̃ρ,k+1(z) =(cl,k+1 + Cl,k+1 + [0, 0]) ◦ (˜̄cr + ˜̄Cr,k+1 + ˜̄Nr,k+1 + Īr,k+1) , (4.190)

where ˜̄cr,k+1 is the constant part, ˜̄Cr,k+1 the linear part and ˜̄Nr,k+1 the nonlinear part of the
new right Taylor model, after splitting. The remainder term is not effected, thus it is the
same for each new Taylor model. The constant part is extracted leading to

(cl,k+1 + Cl,k+1 ◦ ˜̄cr︸ ︷︷ ︸
c̃l,k+1

+Cl,k+1 + [0, 0]) ◦ ( ˜̄Cr,k+1 + ˜̄Nr,k+1 + Īr,k+1) .
(4.191)

Now the scaling can be applied to (4.191):

(c̃l,k+1 + Cl,k+1 + [0, 0]) ◦ (Sk+1 ◦ S−1
k+1) ◦ ( ˜̄Cr,k+1 + ˜̄Nr,k+1 + Īr,k+1) . (4.192)

Denoting (P̃r,k+1 + Ir,k+1) = S−1
k+1 ◦ ( ˜̄Cr,k+1 + ˜̄Nr,k+1 + Īr,k+1). The l-th Taylor model after

splitting is given by

T
(l)
ρ,k+1 = (c̃l,k+1 + Cl,k+1 + [0, 0]) ◦ Sk+1︸ ︷︷ ︸

T̃
(l)
l,k+1

◦ (P̃r,k+1 + Ir,k+1)︸ ︷︷ ︸
T̃

(l)
r,k+1

= T̃
(l)
l,k+1 ◦ T̃

(l)
r,k+1 .

(4.193)
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4.5 Summary

In this Chapter algorithms for the integration of nonlinear uncertain systems have been
presented. The methods and Section 4.1 are based on a interval evaluation of the Taylor
series expansion of the extended state vector in time. After the basic computation method,
advanced methods like the mean-value evaluation, monotonicity tests and iterative range
computation, and implicit integration have been explained in detail. These concepts are
especially suited to fight the dependency problem.

Algorithms for reduction of the wrapping effect have also been developed in this work. Meth-
ods based on coordinate transformation like Lohner’s methods, which has been described in
this chapter, employ parallelepipeds for the state vector enclosure. In this thesis an effi-
cient algorithm to calculate the intersection of different parallelepipeds, and therefore also
the intersection of a parallelepiped with an interval vector, has been introduced.In order to
obtain tight enclosures for non-convex several interval vectors are used. Therefore, efficient
splitting and merging routines have to be applied. A combination of coordinate transforma-
tion and interval splitting can lead to even tighter enclosures as the illustrative example has
shown. Coordinate transformation and interval splitting are important methods reducing of
the wrapping effect.

The consistency tests through backward integration developed in Section 4.2 are efficient
to reduce overestimation, which has been accumulated over one or several integration steps.
This method reduces already occurred overestimation, whereas the methods from Section 4.1
try to avoid the occurrence overestimation in the first place. The combination of an efficient
forward evaluation and the consistency test as applied here is a very powerful method for
obtaining tight enclosures of the solution sets.

Interval methods also allow integrating systems with state depended switching characteristics
and can therefore also be used for models including friction effects. This has been illustrated
here by a system with static and sliding friction.

Section 4.4 has been devoted to verified integration based on Taylor models. In addition to
an expansion in time, also an expansion in the initial states is performed. The expansion
in the initial states reduces the dependency problem and the wrapping effect. The interval
remainder part of the Taylor model, however, is affected by the dependency problem and the
wrapping effect like the integration methods in Section 4.1. Methods to limit the long-term
growth of the truncation error and to further reduce overestimation are shrink wrapping
and preconditioned Taylor models. The first method is only suitable if the non-linearities
are not strong, the later method is much more efficient and robust. However, in order to
handle large uncertainty, splitting of the domain interval vector becomes unavoidable. The
extended state vector is then enclosed by a list of Taylor models.



5 Verified State and Parameter
Estimators

5.1 Problem Formulation

Control strategies in engineering require [13,70] information about the state variables. How-
ever, in many systems not all state variables can be measured or the measurement is too
costly. Provided that the system is observable, a state observer performs a model based
reconstruction of the non-measured state variables by taking into account the system dy-
namics described by the system model. In addition to an estimation of the state variables
often also an estimation of uncertain system parameters is required.

Observers are used in open and closed loop control systems. A general observer concept
for open loop control is depicted in Fig. 5.1. The control variable of the plant is also fed
into the observer. With the help of the system dynamics and the measured values the state
and parameters are estimated by the observer. In closed loop control the estimated state
variables and parameters are fed back into the controller (see Fig. 5.2). Classical observer
concepts are, e.g., the Luenberger observer [17] or the nonlinear tracking observer [16]. In
this thesis an introduction to the design of a nonlinear tracking observer is given in Section
6.2.4. In case of interval uncertainty a classical observer concept is not able to give worst
case estimations of the state variables and parameters, i.e., to determine guaranteed bounds
of all possible values of the the systems states and parameters.
A so called verified state and parameter estimator (VSPE) takes into account the knowledge
about the guaranteed state and parameter enclosures during the reconstruction of the non-
measured state variables and parameters.

 Estimated
 state variables
 and parameters

Plant ObserverMeasurements
Control
variable

Figure 5.1: Observer in open loop control.
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Feedback-
controller Plant

Observer

Estimated
state variables 
and parameters

Reference 
variable Measurements

Control 
variable

Figure 5.2: Observer in closed loop control.

In this chapter only open loop estimation is considered. In Chapter 7 it is shown how a
VSPE is applied in closed loop control.

A VSPE requires in addition to the system model and the measured values a measurement
model model describing the sensor characteristics. The ideal measurement equation depend-
ing on the extended state vector z(t) and time t is given by

y̌(t) = ȟ (z (t) , t) (5.1)

with ȟ : D 7→ Rm × R, D ⊂ Rn. The vector y̌(t) denotes the ideal measurement vector. In
the following it is assumed that the measurements are affected by an additive measurement
noise δ(t) and the vector y of measured values is given by

y(t) = y̌(t) + δ(t) = ȟ (z (t) , t) + δ (t) . (5.2)

The additive measurement noise is assumed to be bounded by an upper bound δ for the
absolute value of the measurement error, hence δ(t) ∈ Rm is bounded by δ(t) ∈ [−δ; δ] for
all t. And the ideal measurement vector is contained in the interval vector given by addition
of the measured values and the interval vector of the measurement error, namely,

y̌(t) ∈ [y(t)] = [y(t)− δ, y(t) + δ] . (5.3)

If additionally uncertain parameters q in the sensor model are considered, the measurement
equation is given by

y(t) = ȟ (z (t) , q (t) , t) + δ (t) = h (z (t) , q (t) , δ (t) , t) . (5.4)

with h : D 7→ Rm, D ⊂ Rn × Rnq × Rm × R. The parameter vector q(t) ∈ Rnq of the
measurement equation containing also non-additive uncertainties is bounded by q(t) ∈ [q; q]
for all t. In general also uncertain parameters q(t) can be estimated by the VSPE. If measured
data is available at discrete points of time the measurement equation becomes.

y(tk+1) = ȟ (z (tk+1) , q (tk+1) , tk+1) + δ (tk+1) = h (z (tk+1) , q (tk+1) , δ (tk+1) , tk+1) . (5.5)
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Here y(tk+1) denotes the measurements at the discrete points of time tk+1. To simplify the
notation (5.5) is rewritten according to

yk+1 = ȟ (zk+1, qk+1, tk+1) + δk+1 = h (zk+1, qk+1, δk+1, tk+1) . (5.6)

The estimation consists of two steps. Step 1 is the so called prediction step and it performs a
prediction of the extended state vector and parameters between two points of time at which
measured data is available. The time-span between two measurements is denoted by ∆Tm.
If the system is described by a set of ODEs which is assumed in this thesis, the prediction
corresponds to a verified integration of the system under consideration of all uncertainties.
As a result a worst case enclosure of all reachable state variables and parameters is obtained.
Step 2 is called correction step in which subsets of the predicted set are eliminated, which
are inconsistent with the measurement model, the measured data and all uncertainties. If
measured values are available after each integration step of the ODE, then ∆Tm is equivalent
to the step-size hk of the verified integration.

As a result, verified enclosures of state variables and parameters are obtained that comply
with the system and measurement model and all uncertainties. Due to the fact that the
system dynamics are considered the measurement error can be reduced, as the enclosure
for the measured state variables estimated by the VSPE may be tighter than the vector of
measured values plus the interval vector for the measurement uncertainty.

In contrast to stochastic state estimation approaches [10, 57], the verified estimation leads
to guaranteed bounds. It also does not require any information about any distribution of
the uncertainty. It also allows for the consideration of nonlinearities without any previous
linearization like in the case of the Extended Kalman-filter [10,57].

The main advantages of both set valued estimation approaches and stochastic estimation
approaches are:

• The reconstruction of non-measured system state variables and parameters, provided
that the system is observable.

• In case of stochastic estimators (stochastic uncertainties) and VSPEs (interval un-
certainties), the estimation directly delivers statements about the accuracy of the es-
timates. For stochastic uncertainties this is expressed in terms of covariances and
correlations. For set valued uncertainties such as intervals the accuracy is expressed in
terms of the width of the interval bounds enclosing the estimates.

• Measurement data collected from different sensors is combined in a fusion process for
reduction of the uncertainty of the estimated state variables and parameters.

• It is not required that the complete history of measured data is stored, since the
estimates of all desired values are computed only in terms of the current measured value
and previously in the prediction step calculated estimates. This allows for improvement
of the current estimate as soon as new measured values are available.
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The basic concept of the VSPE is illustrated in Fig. 5.3. At a given point of time tk the
set enclosing the extended state vector is predicted by a verified integration of the system
model to tk+1. If at tk+1 measured values are available the state variables and parameters are
reconstructed with the help of the measurement model and sub domains of the predicted set
which are inconsistent with the measured data and the measurement equation are deleted,
which results in an improved enclosure which is used for the next prediction step. This
procedure is repeated recursively. The set enclosing the extended state vector is predicted
until the next measured values are available, then the next correction step is performed. The
way the prediction and correction steps are performed depends on the underlying type of
VSPE.

An important aspect of verified state and parameter estimation is the observability of the
considered system. This is discussed in Section 5.2. In the Sections 5.3–5.5 two different
types of VSPEs are introduced and compared. In Section 5.3 a verified state and parameter
estimation concept based on interval splitting and merging routines in combination with
preconditioning techniques is presented — the so called interval observer. The Taylor model
observer in Section 5.4 uses Taylor models in order to enclose the extended state vector.
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Figure 5.3: Interval observer concept.
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5.2 Observability Analysis

5.2.1 Observability in Linear Systems

Consider a liner system of the form

ż(t) = A · z(t) +B · u(t) ,
y = C · z(t) +D · u(t)

(5.7)

with z(t) ∈ Rn, u(t) ∈ Rnu , y(t) ∈ Rm, A ∈ Rn× ∈ Rn, B ∈ Rn× ∈ Rnu , C ∈ Rm× ∈ Rn,
and D ∈ Rm× ∈ Rnu .

A system is observable if the Kalman observability matrix

Q =


C
CA
...
CAn−1

 (5.8)

has the full column rank [17], hence

rank(Q) = n . (5.9)

5.2.2 Observability in Nonlinear Systems

Consider the following nonlinear system model

ż(t) = f(z(t)) (5.10)

and a measurement model

y(t) = h(z(t)) . (5.11)

Since non-autonomous dynamical models can easily be rewritten as autonomous ones, dis-
cussion is restricted to the autonomous case. If the linearized system is observable in a given
operating point zs, then the nonlinear system is also is observable. For the linearized system

∆ż = A∆z (5.12)

and

∆y = C∆z (5.13)

with

∆z = (z − zs), A =
∂f

∂z

∣∣∣
z=zs

, and C =
∂h

∂z

∣∣∣
z=zs

(5.14)
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holds. Therefore it has to checked if the Kalman observability matrix

Q =


C
CA
...
CAn−1

 (5.15)

has the full column rank [13], hence

rank(Q) = n . (5.16)

However, if the linearized system is not observable, it is still possible that the corresponding
nonlinear system is observable. Consider the following scalar example:

ż1 = f(z1) ,

y = z3
1 .

(5.17)

Linearization in zs = 0 leads to the linearized measurement equation ∆y = 0. Whereas the
original measurement equation can be solved uniquely for z1 with z1 = 3

√
y.

One approach of nonlinear observability analysis is based on the so called observability
map [13]

q(z) =


q1(z)
q2(z)
...
qm(z)

 with qi(z) =


yi

ẏi
...

y
(µi−1)
i

 =


L0

fhi(z)
Lfhi(z)
...

Lµi−1
f hi(z)


with µ =

∑m
i=1 µi and µ ≥ n, where for the Lie-derivatives

Lr
fhi(z) =

∂(Lr−1
f hi(z))

∂z
f(z) with L0

fhi(z) = hi(z) (5.18)

holds.

The observability map states a relation between the state variables and the time-derivatives
of the output variables yi(t), i = 1, . . . ,m. The time-derivatives of the functions hi(z) along
the system trajectory z(t) are obtained by recursive application of the Lie-derivative (5.18).
A difference to linear systems is the non fixed number of time derivatives µi, i = 1, . . . ,m.

In a so called selection map qa at least n arbitrary equations of the observability map are
collected. If qa is invertible, then also q is invertible and the system is observable. If for an
observability map q more than one qa exists, the measurement equation is called redundant,
because there are several possibilities to reconstruct the state vector z from the measurements
y.

In nonlinear systems it has to be distinguished between global and local observability. If
the system observability matrix is globally uniquely invertible, the corresponding system is
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f 1,1

(a) Global observability.
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f 1,1

z 2,1 z 2,2 z 2,3 z 2
(b) Local observability.

Figure 5.4: Comparison between global and local observability.

globally observable. However, if the system observability matrix is locally uniquely invertible
the corresponding system is locally observable.

This shall be illustrated by the following example. Consider the system

ż1 =f1(z1, z2) ,

ż2 =f2(z1, z2)
(5.19)

with the measurement equation
y = z1 . (5.20)

The observability map is

y =z1 ,

ẏ =f1(z1, z2) .
(5.21)

As z1 is known, only the second equation of (5.21) has to be solved for z2. The function
f1(z1, z2) in Fig. 5.4a) can be solved globally unique for z2, therefore the system would be
globally observable. The function f1(z1, z2) in Fig. 5.4b) can be solved only locally unique
for z2, therefore the system would just be locally observable.

For systems of the form

ż =



f1(z1, z2, . . . , zm+1)
f2(z1, z2, . . . , zm+2)
...
fn−m(z1, z2, . . . , zn)
...
fn(z1, z2, . . . , zn)


, y =


h1(z1)
h2(z1, z2)
...
hm(z1, z2, . . . , zm)

 (5.22)

and
∂hi

∂zi

6= 0 i = 1, . . . ,m,
∂fi

∂zm+i

6= 0 i = 1, . . . , n−m ∀z ∈ Rn (5.23)

a global observability can be guaranteed [13]. Condition (5.23) ensures, that the functions
fi and hi are monotonic with respect to the last variable. Because of the global invertibility
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of these functions, the first m state variables z1, z2, . . . , zm can be determined from the
measurement equation of (5.22). The remaining state variables zm+1, zm+2, . . . , zn can be
derived from the n − m differential equations. In general it is very difficult to proof the
global observability as it has to be proven that the observability map is invertible for all z.

It is much easier to investigate the local observability of a system and the local invertibility
of q(z) respectively in the neighborhood of a point zs, by checking the rank of the Jacobian

Q(z) =
∂q

∂z
. (5.24)

A nonlinear system is locally observable in a given point z = zs, if

rank(Q(zs)) = n (5.25)

holds [13]. However this criterion is only sufficient as the previous example (5.17) has shown.

5.2.3 Verified Observability Analysis

The purpose of a verified observability analysis is to calculate a guaranteed enclosure of
the set of observable state vectors for a given system. The main tool for this purpose is
the investigation of the rank of Q(z). Let [z] be an interval vector for which a system is
checked for observability. The system is observable over [z] if Q(z) has full rank for all
z ∈ [z]. Therefore the interval matrix [Q]([z]) is checked for full rank. In practice it is often
necessary to split the considered interval [z] into subboxes [z̃] and check the full rank for
each [Q̃] corresponding to each subinterval [z̃]. For those subboxes [z̃] where a full rank is
obtained, it has been proven that the system is observable in the corresponding subinterval.
Those subboxes [z̃] for which a full rank cannot be guaranteed have to be split further and
the test has to be repeated.
In the following an algorithm to check the rank of an interval matrix [Q] is briefly described
[66].

First [Q] is expressed as

[Q] = [Qm −∆, Qm + ∆] , with Qm = mid([Q]) and ∆ = rad([Q]) . (5.26)

A sufficient condition for a full rank is

σ(|(QT
mQm)−1QT

m|∆) < 1 , (5.27)

where σ(·) is the spectral radius. For square systems this is equivalent to

(I− |(QT
mQm)−1QT

m|∆)−1 ≥ 0 . (5.28)
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Illustrative example:

Consider the nonlinear system

ẋ1 = x2 ,

ẋ2 =
1

3
k1x

3
1 − k2x1x2 .

(5.29)

The measurement equation is given by

y = x2 . (5.30)

It is assumed that the parameters k1 and k2 are uncertain with k1 ∈ [1; 2] and k2 ∈ [2; 3].
The observability map is

q(x) =

[
y
ẏ

]
=

[
x2
1
3
k1x

3
1 − k2x1x2

]
. (5.31)

The Jacobian of Q(x) with respect to the state vector is given by:

∂q

∂x
=

[
∂q1

∂x1

∂q1

∂x2
∂q2

∂x1

∂q2

∂x2

]

=

[
0 1

k1x
2
1 − k2x2 −k2x2

]
.

(5.32)

The observability analysis is performed for x1 ∈ [−10; 10] and x2 ∈ [−2; 10]. The Jacobian is
invertible – and thus the system observable – for 0 /∈ k1x

2
1−k2x2. The initial box of the state

variables, is subdivided into subboxes and the rank condition test is performed each subbox.
If the test fails, the corresponding box is split further. The result is depicted in Fig. (5.5).
The light gray boxes are boxes, where the Jacobian Q has rank n. For the dark gray boxes

the rank condition (5.28) is not fulfilled. The black curves x2 =
k1x2

1

k2
and x2 =

k1x2
1

k2
bound

the region where the Jacobian Q does not fulfill the rank condition. Additionally to the
interval vector [x] enclosing the system state vector x also the intervals for the parameters
k1 and k2 can be split, leading to an observability analysis of the extended state vector
z = [x1, x2, k1, k2]

T .

In this example it was quite easy to perform an observability analysis for the whole domain.
The observability analysis for large boxes can be performed offline, while smaller boxes can
be checked for observability online. The computation time can be reduced by the application
of automatic differentiation for the generation of the observability map.

Remark:
It is important to point out that even if not all state variables and parameters are observable,
it is still possible to calculate guaranteed enclosure of those state variables by integration of
the system model.
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Figure 5.5: Result of the observability analysis.

5.3 Interval Observers

In the interval observer concept [26, 36] the extended state vector is enclosed by a list Z of
interval vectors. At time-step k

zk ∈ Zk =
{

[z
(1)
k ], [z

(2)
k ], . . . , [z

(Lk)
k ]

}
with Lk ≤ Lmax (5.33)

holds.

5.3.1 Prediction Step

In the prediction step a verified integration between two points of time when measurements
are available is carried out. The prediction step from time-step k to time-step k + 1 for the
interval observer concept consists of the evaluation of (4.12).

The prediction step is illustrated in Fig. 5.6. At time step k the set is described by a list
of interval vectors Zk. First the largest box (the box with the largest pseudo-volume) of
the list Zk is selected for splitting. Next a splitting criterion is evaluated and the selected
box is split. This is repeated recursively until a maximum number of splittings or maximum
number of interval vectors Lmax is reached. Then for each box (4.12) is evaluated, with a
combination of naive evaluation, midpoint-rule evaluation, monotonicity test, and iterative
range computation (see Section 4.1).
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If additional a coordinate transformation is applied (see Fig. 5.7), in parallel each box is
evaluated by the corresponding method for the coordinate transformation. Here the Lohner-
method described in Section 4.1.5 is used. The results are then intersected by the algorithm
derived in Section 4.1.5. The state vector zk is enclosed by

zk ∈ Zk =
{

[z
(1)
k ], [z

(2)
k ], . . . , [z

(Lk)
k ]

}
∩
{
z̄

(1)
k + A

(1)
k [r

(1)
k ], z̄

(2)
k + A

(2)
k [r

(2)
k ], . . . , z̄

(Lk)
k + A

(Lk)
k [r

(Lk)
k ]

}
with Lk ≤ Lmax.

(5.34)

The list Zk then contains in addition to the interval vector enclosures [z
(l)
k ] the information

for the enclosures by the parallelepipeds namely z̄
(l)
k , A

(l)
k and [r

(l)
k ]. In Fig. 5.8 an interval

[z
(l)
k ] and the corresponding parallelepipeds z̄

(l)
k +A

(l)
k [r

(l)
k ] are shown. Instead of splitting the

box [z
(l)
k ] also the parallelepipeds z̄

(l)
k +A

(l)
k [r

(l)
k ] can be split by splitting of [r

(l)
k ] as described

in Section 4.1.7.

Selection of interval vector

    Evaluation of a splitting criterion
   Splitting of the interval vector

    Calculation of the bounding box and the truncation error

Max. number of 
splittings
 reached?

yes

no

z k

Evaluation of (4.12 ) with:

-Midpoint-rule

-Monotonicity test

-Iterative calculation of infimum and supremum

-implicit integration method (optional)

For each element of 

Z

z k1
pr

z kZ

Z

Figure 5.6: Flow diagram.

At the end of the prediction step the predicted set Zpr
k+1 is obtained:

Zpr
k+1 =

{
[z

(1)
k+1], [z

(2)
k+1], . . . , [z

(Lpr
k+1)

k+1 ]
}

with Lpr
k+1 ≤ Lmax , (5.35)
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Selection of interval vector/ parallelepiped for splitting

    Evaluation of a splitting criterion
   Splitting of the interval vector/parallelepiped

Intersection of the obtained enclosures

Max. number of 
splittings
 reached?

yes

no

z k

Evaluation of (4.12 ) with:

-Midpoint-rule

 -Monotonicity test

-Iterative calculation of infimum and supremum

-implicit integration method (optional)

Coordinate transformation

(here: based on the Lohner method)

For each element of 

Z

z k1
prZ

z kZ

    Calculation of the bounding box and the truncation error

Figure 5.7: Flow diagram with coordinate transformation.

if no coordinate transformation is employed and

Zpr
k+1 =

{
[z

(pr,1)
k+1 ], [z

(pr,2)
k+1 ], . . . , [z

(pr,Lpr
k+1)

k+1 ]
}

∩
{
z̄

(pr,1)
k+1 + A

(pr,1)
k+1 [r

(pr,1)
k+1 ], z̄

(pr,2)
k+1 + A

(pr,2)
k+1 [r

(pr,2)
k+1 ], . . . ,

z̄
(pr,Lpr

k+1)

k+1 + A
(pr,Lpr

k+1)

k+1 [r
(pr,Lpr

k+1)

k+1 ]
}

with Lpr
k+1 ≤ Lmax ,

(5.36)

if additionally a coordination transformation is applied.

5.3.2 Correction Step

The correction step eliminates regions which are inconsistent with the measured data and
the measurement equation. The initial enclosure for the correction step is the predicted set.

First for each [z
(pr,l)
k+1 ] of Zpr

k+1 the expression ȟ(·) in (5.6) is evaluated leading to

[y̌
(l)
k+1] = [ȟ]([z

(pr,l)
k+1 ], [qk+1]) . (5.37)
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Figure 5.8: Enclosure of the extended state vector z by an interval and a parallelepiped.

Now the interval vectors [z
(pr,l)
k+1 ] can be deleted if

[y̌
(l)
k+1] ∩ yk+1 − [δk+1] = ∅ (5.38)

holds.

If
[y̌

(l)
k+1] ⊂ yk+1 − [δk+1] , (5.39)

the predicted set is consistent with the measurement model and the measured values and no
further calculations are done.

For the remaining interval vectors the measurement equation (5.6) is inverted for each interval

[z
(pr,l)
k+1 ] according to

zk+1 = h−1(yk+1, qk+1, δk+1) with zk+1 ∈ [z
(pr,l)
k+1 ], qk+1 ∈ [qk+1], δk+1 ∈ [δk+1] (5.40)

in order to reconstruct the extended state variables. In the case of a nonlinear system or a
nonlinear measurement equation this is done by application of an interval Newton method
to

0 = h(zk+1, qk+1, δk+1)− yk+1 with zk+1 ∈ [z
(pr,l)
k+1 ], qk+1 ∈ [qk+1], δk+1 ∈ [δk+1] (5.41)

for each remaining box [z
(pr,l)
k+1 ]. In this work, the Krawczyk method has been used. The

resulting box [z
(c,l)
k+1] encloses the complete range of zeros of (5.41).

For m < n the inversion of the measurement equation (5.6) is under determined. Thus,
direct inversion with the considered interval Newton method is not possible. One solution
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is to solve the equation only for m state variables and considering the remaining n − m
variables as constant intervals [36]. And repeat this iteratively. If the measurement equation
is for example

yk+1 = h(z1,k+1, z2,k+1, δk+1) (5.42)

withm = 1 and n = 2, then it can be solved for instance for z1,k+1 whereas z2,k+1 is considered
as a constant interval value. Then the equation is solved for z2,k+1 with the new z1,k+1 as
constant interval value.

For illustration, consider the measurement equation

yk+1 = z1,k+1 + z2,k+1 + δk+1 . (5.43)

Let the interval vector [zpr
k+1] = [[zpr

1,k+1], [z
pr
2,k+1]]

T with [zpr
1,k+1] = [0.5; 2.5], and [zpr

2,k+1] =
[−1;−3] be the predicted set, and yk+1 = 1 the measured value, and [δk+1] = [−0.5; 0.5] the
measurement uncertainty. Now, equation (5.42) is first solved for z1,k+1 resulting into

[zc
1,k+1] = yk − [δk+1]− [zpr

2,k+1] = [0.5; 1.5]− [−1;−3] = [1.5; 4.5] . (5.44)

As the example is linear no interval Newton method is required. Now this result has to be
intersected with [zpr

1,k+1] resulting into

[z1,k+1] = [zc
1,k+1] ∩ [zpr

1,k+1] = [1.5; 4.5] ∩ [0.5; 2.5] = [1.5; 2.5] . (5.45)

Next, the (5.42) is solved for z2,k+1 with the new [z1,k+1]:

[zc
2,k+1] = yk − [δk+1]− [z1,k+1] = [0.5; 1.5]− [1.5; 2.5] = [−2; 0] (5.46)

and intersection with [zpr
2,k+1] yields in

[z2,k+1] = [zc
2,k+1] ∩ [zpr

2,k+1] = [−2; 0] ∩ [−3;−1] = [−2;−1] . (5.47)

This is also illustrated in Fig. (5.9).

The second possibility is to obtain the missing equations from former measurements [36].
The right hand sides of the measurement equations are expressed in terms of zk+1. This is
done by backward integration of the system from time-step k + 1 to k −N

yk =h(g−k (zk+1) + e−k+1, qk, δk)

yk−1 =h(g−k−1(g
−
k (zk+1) + e−k+1) + e−k , qk−1, δk−1)

yk−2 =h(g−k−2(g
−
k−1(g

−
k (zk+1) + e−k+1) + e−k ) + e−k−1, qk−2, δk−2)

...

yk−N =h(g−k−N(. . . (g−k−2(g
−
k−1(g

−
k (zk+1) + e−k+1) + e−k )

+ e−k−1) . . .) + e−k−N , qk−N , δk−N) ,

(5.48)

where the − in g− indicates the direction of the integration. Note, that the bounding boxes
[Bk+1] . . . [Bk−N ] do not have to be recomputed, because they are known from the forward
integration steps. For m = 1 and n = 2, one backward integration has to be performed
to obtain the missing second equation. The obtained system of equations can be solved
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Figure 5.9: Example for correction step.

for both state variables. The quality of the correction step depends on the quality of the
prediction as well as on the measurement error and the time span between two consecutive
measurements. If the truncation error is very large, the additional information obtained from
backward integration step may be poor, however, the result is still guaranteed.

Note, that if the measurement equation only depends on ñ < n variables, which is often
the case in practice, it will also only be solved for these variables.Then even if m < n, the
measurement equation can be directly be solved, if m ≥ ñ.

The initial extended state for the interval Newton method is given by the prediction step.
Thereby the intersection is performed already within the inversion. If (5.41) yields no solu-

tion, the corresponding interval [z
(pr,l)
k+1 ] is deleted.

The combination of prediction and correction step yields

[z
(l)
k+1] = [z

(pr,l)
k+1 ] ∩ [z

(c,l)
k+1] . (5.49)

The list of interval vectors and the extended state vector enclosure after the correction step
is given by:

zk+1 ∈ Zk+1 =
{

[z
(1)
k+1], [z

(2)
k+1], . . . , [z

(Lk+1)
k+1 ]

}
with Lk+1 ≤ Lpr

k+1 ≤ Lmax. (5.50)

or

Zk+1 =
{

[z
(1)
k+1], [z

(2)
k+1], . . . , [z

(Lk+1)
k+1 ]

}
∩
{
z̄

(1)
k+1 + A

(1)
k+1[r

(1)
k+1], z̄

(2)
k+1 + A

(2)
k+1[r

(2)
k+1], . . . ,

z̄
(Lk+1)
k+1 + A

(Lk+1)
k+1 [r

(Lk+1)
k+1 ]

}
with Lk+1 ≤ Lmax .

(5.51)
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Figure 5.10: Consistency test.

For further improvement of the correction step consistency tests [26, 31, 32, 36] are applied

for each [z
(pr,l)
k+1 ]. Therefore ȟ(·) in (5.6) is evaluated for subboxes [z̃

(pr,l)
k+1 ] of [z

(pr,l)
k+1 ] , resulting

in
[˜̌yk+1] =

[
ȟ
]
([z̃

(pr,l)
k+1 ], [qk+1]) . (5.52)

The resulting interval vectors [˜̌yk+1] are checked for consistency with the actual measurements
yk+1 and the measurement error.

Three cases have to be distinguished:

• interval vectors for which [˜̌yk+1] ⊆ yk+1 − [δk+1] holds, are consistent and do not have
to be split further.

• interval vectors for which [˜̌yk+1]∩ yk+1 − [δk+1] = ∅ holds, can be deleted because they
are inconsistent with the measurements yk+1 and the measurement error [δk+1].

• Remaining interval vectors are split further and (5.52) is applied. These two steps are
repeated recursively.

The three cases are also illustrated in Fig. 5.10.

The consistency test can be combined with the evaluation of (5.41) by the interval Newton
method. In that case, before the consistency test, first the interval Newton method is
applied. During the consistency test for each remaining interval vector (5.41) can be solved
additionally for further improvement of the enclosures.

After the correction steps a merging routine is applied to reduce the number of interval
vectors. Interval vectors which have been split during the correction step are stored in a
tree structure to simplify the merging (see also Section 4.2). Then, the merging routine
described in Section 4.1.6 is applied for further reduction of the number of interval vectors.
Reapproximation by disjoint interval vectors is performed between a user defined number of
time-steps.
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Illustrative Example: Localization of a parachutist

A parachutist of mass m jumps out of an aircraft and has to be localized by a verified state
estimation. For illustrative purposes, the localization problem is simplified to the localization
in a plane. The equation of motion in y-direction is given by

mÿ(t) = FG − FR = mg − kẏ2 , (5.53)

FG denotes the gravity force and FR the air resistance. The friction constant is given by k
and g = 9.81m/s2 is the gravitation constant. The equation is rewritten according to

ÿ(t) = g − k

m
ẏ2 = g − bẏ2 , (5.54)

where b is the uncertain ballistic coefficient with b ∈ [0.0029; 0.0031]. The equation of motion
in x-direction is given by

ẋ = vx , (5.55)

with vx ∈ [100; 105]m/s. The initial conditions for the position in y and x were y(0) ∈
[4990; 5010]m and x(0) ∈ [545; 550]m. The initial speed in y direction was ẏ = [−10; 10]m/s.
These two equations are rewritten in state-space representation according to

ż1(t) = −z2(t) ,

ż2(t) = g − z4z
2
2 ,

ż3(t) = vx ,

ż4(t) = 0

(5.56)

with z1 = y, z2 = ẏ, z3 = x and z4 = b. For the prediction step, a Taylor series expansion
of order ν = 4 was employed. The parachute is opened after a free fall of t = 70s. It is
assumed that the ballistic coefficient b changes to b ∈ [0.29, 0.31] instantaneously. No interval
splitting was performed in the prediction and correction steps. First two radar stations are
available and two measurement equations are obtained. It is assumed that the distance of
the parachutist from the radar stations

r1,k+1 =
√

(z1,k+1 − l1)2 + (z3,k+1 − h1)2 + δ1,k+1 ,

r2,k+1 =
√

(z1,k+1 − l2)2 + (z3,k+1 − h2)2 + δ2,k+1

(5.57)

is measured, where l1 = 5, 000m, l2 = 50, 000m and h1 = 1, 000m, h2 = 1, 000m define
the positions of the radar stations in the z3 = x and z1 = y direction respectively. The
measurement uncertainties are assumed to be δ1 ∈ [−3; 3]m and δ2 ∈ [−3; 3]m. At time-step
k first a prediction step is calculated. Then the result is used as initial box for the inversion
of the measurement equations by an interval Newton method. The results are depicted in
Fig. 5.11. The integration step-size is T = 0.5 s for t < 80 s and T = 0.01 s for t ≥ 80 s.
It is assumed that measured values are available at every 0.5 s. If only one radar station at
l1 = 5, 000m and h1 = 1, 000m is available for t < 80 s the measurements from the previous
time-step are taken into account and express the state at time-step k − 1 by the state at
time-step k through backward calculation. For t ≥ 80 s the measurement equation is first
solved only for z1 = y and then for z3 = x without considering previous measurements as the
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Figure 5.11: Results for 2 radar stations.

step-size is then reduced to 0.01 s and therefore 50 backward steps would be required. The
result is shown in Fig. 5.12. It can be seen that the measurements are only able to improve
the predictions in two regions. The first region is when the parachutist is directly above the
radar station, the second when radar station and parachutist are approximately on the same
height. In the first case, the box is tightened in z1 direction in the second case it is tightened
in z3-direction. The reason is that only in these two cases two subsequent measurements are
different enough.

5.3.3 Applications

In this Section results of a verified state and parameter estimation for four applications from
Chapter 2 are presented. For all applications iterative calculation of infimum and supremum
in combination with naive interval evaluation, mean-value evaluation, and monotonicity test
was applied in the prediction step (see Sections 4.1.1–4.1.3). However, the monotonicity test
and iterative range computation was limited only up to the order 1 of the Taylor series expan-
sion. In each time-step, the maximum number of splittings during the iterative computation
was 10 for each box of the list Z. The hull limit was δhull,limit = 2.5% for all applications.
The measured values were generated by a verified integration of the corresponding systems
with nominal values for the initial state variables and uncertain parameters and a subsequent
addition of an uniformly distributed noise vector bounded by the interval vector of the mea-
surement uncertainty. The nominal values of the initial states were if not stated otherwise
given by the midpoints of the corresponding interval uncertainty.
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Figure 5.12: Results for 1 radar station.

Non-Isothermal Stirred Tank Reactor

Consider the NISTR from Section 2.1. The initial conditions for the estimation were ca(0) ∈
[0; 1]mol/l, cb(0) ∈ [0; 1]mol/l, v(0) ∈ [100; 110]◦C, vK(0) ∈ [100; 110]◦C. The parameters E1

and E3 were assumed to be uncertain and time-invariant, with E1 ∈ [0.9; 1.1] · 9758.3 K and
E3 ∈ [0.9; 1.1] · 8560 K. The measurement equation is given by [13]

y1,k+1 = cb,k+1 + δ1,k+1 ,

y2,k+1 = vk+1 + δ2,k+1 .
(5.58)

The step size was h = 0.001h and the measurements were available every 0.005h, hence
∆Tm = 0.005h. The measurement errors were given by δ1,k+1 ∈ [δ1] = [−0.05; 0.05]mol/l
and δ2,k+1 ∈ [δ2] = [−0.5; 0.5]◦C. The measured values were generated on the basis of the
midpoints of the corresponding uncertainty. First three estimations with different orders ν
of the Taylor expansion were carried out. The maximum number of interval vectors was
chosen to be 200 and the maximum number of splittings was 100. Splitting and merging
was carried out every 5 time-steps. Reapproximation by 200 disjoint interval vectors was
employed every 200 time-steps. The results for the orders ν = 1, ν = 2, ν = 4 are depicted
in Figs. 5.13 and 5.14; the computation times are listed in Tab. 5.1. Increasing the order
from ν = 1 to ν = 2 leads to improved enclosures especially for ca, E1, and E3. If the order is
further increased to ν = 4 the improvement is negligible since the computation time is much
larger. In Figs. 5.13(b), 5.13(c), and 5.14(a) some time intervals are depicted additionally
in enlarged form. In Fig. 5.13(c) ν = 4 yields the tightest results for the left enlarged time
interval. For the right enlarged time interval, however, the results for ν = 2 are better than
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for ν = 4. The main goal of increasing the order is to reduce the size of the remainder
error. But with increasing order also more expressions have to be evaluated with interval
methods. This may lead to more overestimation especially when the evaluation has to be
done for large intervals. At least it has the effect that in the case of the NISTR an increase
above order ν = 2 is not improving the enclosures. In Figs. 5.15 and 5.16 results for different
numbers of splitting operations and different numbers of maximum allowed interval vectors
Lmax are shown. The order was ν = 1 in all cases. As expected, increasing both numbers
leads to tighter results at cost of more computational effort (see Tab. 5.2). The diameters
of the enclosures decrease drastically when increasing Lmax = 200 to Lmax = 500. However,
the improvement obtained when raising Lmax = 500 to Lmax = 1000 is not so strong.
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Figure 5.13: NISTR: State enclosures of ca, cb, and v for different orders ν of the Taylor series
expansion.
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Figure 5.14: NISTR: State enclosures of vk, E1, and E3 for different orders ν of the Taylor series
expansion.
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Table 5.1: NISTR: Comparison of the computation time for different orders ν.
Order ν of the Taylor sereis expansion Computation time in s

1 1100
2 1781
4 2265

Table 5.2: NISTR: Estimation for different numbers of splittings and interval vectors.
Number of max. splittings Max. number Lmax of interval vectors Computation time in s

100 200 1100
250 500 2863
500 1000 6304

Fig. 5.17 and Fig. 5.18 compare between an estimation with interval splitting and without
coordinate transformation, an estimation with interval splitting and with coordinate trans-
formation (Lohner’s method with QR preconditioning), and an estimation with coordinate
transformation and splitting of the parallelepipeds instead of the interval vectors. The order
of the Taylor expansion in time was ν = 2 for all estimations. The maximum number of
splittings and interval vectors was 100 and 200, respectively. In comparison to the estima-
tion without coordinate transformation, a combination with the coordinate transformation
according to the algorithms described in Section 4.1.5 and 4.1.7 leads to improved enclosure
but the computation time was longer (see Tab.5.3). Except of the first 0.1 h of ca(t) the
enclosures for splitting of the parallelepipeds are in average even tighter. Though an esti-
mation with 250 splittings and 500 interval vectors which is not depicted here showed no
significant difference between the results.
The algorithm for the coordinate transformation is based on the mean-value evaluation and
requires an interval evaluation of the Jacobian. Therefore the interval enclosure obtained
by an iterative range computation of 4.12 is often better than the parallelepiped enclosure
obtained from the coordinate transformation. In this case the intersection of both results
does not improve the enclosure. In future work this fact has to be considered by an improved
evaluation of the Jacobian.

Table 5.3: NISTR: Comparison of the computation time for different orders ν.
Enclosure type and splitting method.

Interval splitting 1781
Interval splitting in combination with coordinate transformation 2325

Parallelepiped splitting 2201
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Figure 5.15: NISTR: State enclosures of ca, cb, and v for different numbers of splittings and
interval vectors.
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Figure 5.16: NISTR: State enclosures of vk, E1, and E3 for different numbers of splittings and
interval vectors.
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Figure 5.18: NISTR: Comparison of the state enclosures of vK , E1, and E3 with and without
coordinate transformation.
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Double Pendulum

Consider the double pendulum, which is described in Section 2.3. According to (2.26) the
measurement equations including the measurement errors are given by

r1,k+1 =
√

(l1sin(θ1,k+1)− x0)2 + (−l1cos(θ1,k+1)− y0)2 + δ1,k+1 ,

r2,k+1 =
√

(l1sin(θ1,k+1) + l2sin(θ2,k+1)− x0)2 + (−l1cos(θ1,k+1)− l2cos(θ2,k+1)− y0)2 + δ2,k+1 .

(5.59)

For the estimation the system parameters were given by l1 = l2 = 1m,m1 = m2 = 1kg, x0 =
3m, y0 = 0.2m. The initial conditions were assumed to be θ1(0) ∈ [π

2
−0.03· π

2
; π

2
+0.03· π

2
]rad,

θ2(0) ∈ [π
2
− 0.03 · π

2
; π

2
+ 0.03 · π

2
]rad, θ̇1(0) ∈ [−0.01; 0.01]rad/s, θ̇2(0) ∈ [−0.01; 0.01]rad/s.

For the prediction step a maximum number of 50 splittings and 100 interval vectors were
allowed, the order was set to ν = 1. The assumed measurement errors were [δ1] = [δ2] =
[−0.01; 0.01]m. The time between two measurements was ∆Tm = 0.005s. The measured
values were generated on the basis of the midpoints of the corresponding uncertainty. In
the correction step only the interval Newton method was applied, since a estimation with
additional 500 splittings in the correction step did not improve the results significantly.
Splitting and merging was carried out every 5 time-steps. Reapproximation by 100 disjoint
interval vectors was employed every 200 time-steps. The results are shown in Fig. 5.19 and
5.20. Estimations with constant step sizes h = 0.001s, h = 0.0025s, and h = 0.005s have
been carried out. With increasing step size the enclosures become wider; especially if the
step size is increased to h = 0.005s. However, the computation time is decreased significantly
(see Tab. 5.4).

Table 5.4: Double pendulum: Comparison of the computation time for different step-size.
Step-size h in s Computation time in s

0.001 3014
0.0025 1215
0.005 661

Biological Waste Water Treatment Plant

The third application is the BWTP, described in Section 2.4. The initial state variables were
given by S(0) ∈ [0.9; 1.1] · 0.616 kg/m3, X(0) ∈ [0.97; 1.03] · 0.1 kg/m3, SO(0) ∈ [0.99; 1.01] ·
SO,sat/2 · 10−4 kg/m3 and XSet(0) ∈ [0.9; 1.1] · 0.001 kg/m3. The maximum specific growth
rate µ̂H was assumed to be uncertain and time-invariant with µ̂H ∈ [0.8; 1.2] · 1/14400 1/s.
For the measurement equation

y1,k+1 =Sk+1 + δ1,k+1 ,

y2,k+1 =SO,k+1 + δ2,k+1

(5.60)

holds, with δ1,k+1 ∈ [−0.01; 0.01] kg/m3 and δ2,k+1 ∈ [−0.01; 0.01] · SO,sat kg/m3. The
measured values were again generated on the basis of the midpoints of the corresponding
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Figure 5.21: BWTP: State enclosures for S(t), X(t) and SO(t) for different [δ1].
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uncertainty. The order of the Taylor series was ν = 1, the maximum number of splittings was
100 and the maximum number of interval vectors was given by Lmax = 200, and the step size
was h = 10s. Measurements were performed every 300 s, hence ∆Tm = 300s. Splitting and
merging was carried out every 5 time-steps. Reapproximation by 200 disjoint interval vectors
was employed every 1000 time-steps. A second estimation with δ1,k+1 ∈ [−0.05; 0.05] kg/m3

was also carried out. The state enclosures are presented in Figs. 5.21 and 5.22.
Figs. 5.23 and 5.24 depict results for ∆Tm = 300s and ∆Tm = 600s with
δ1,k+1 ∈ [−0.01; 0.01] kg/m3 for both values of ∆Tm. The accuracy of the measurements and

Table 5.5: BWTP: Comparison of the computation time for different [δ1].
[δ1] in kg/m3 Computation time in s
[-0.01;0.01] 33546
[-0.05;0.05] 35215

Table 5.6: BWTP: Comparison of the computation time for different ∆Tm.
∆Tm Computation time in s
300 s 33546
600 s 32740

the time between two measurements are crucial to the estimation quality. If in practice the
desired accuracy of the estimation is high, then more accurate sensors have to be employed
and/or measurements have to be taken more frequently. If however more conservative bounds
can be tolerated, less accurate and cheaper sensors can be used.

Mechanical Positioning System

In Section 4.3 simulation results for a mechanical positioning system are presented. In the
following it is assumed that the position x1 can be measured every 50 time-steps. The mass
was given by m = 1. Fs and µ were uncertain with Fs ∈ [0.0125; 0.015], µ ∈ [0.001; 0.0015].
Both uncertain parameters were assumed to be time-invariant. The initial conditions were
given by x1(0) ∈ [0; 0] and x2(0) ∈ [−0.05;−0.02]. The step-size was constant with h = 0.1.
The results for three different values of the measurement uncertainties δ1 ∈ [−0.2; 0.2],
δ1 ∈ [−0.1; 0.1] and δ1 ∈ [−0.01; 0.01] are depicted in Fig. 5.25 and Fig. 5.26 . The maximum
number of interval vectors was 400. The measured values were generated with the values
x1(0) = 0, x2(0) = −0.2, FS = 0.13, and µ = 0.0012. The measurement of the position
improves also the enclosures for x2 and the uncertain parameter Fs, since inconsistent interval
vectors were deleted in the correction step. The enclosure of the uncertain parameter µ could
not be tightened. The best enclosures were obtained for δ1 ∈ [−0.01; 0.01]. The enclosures for
δ1 ∈ [−0.1; 0.1] are slightly wider. However, if the uncertainty is increased to δ1 ∈ [−0.2; 0.2],
the estimation quality decreases significantly.
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Figure 5.23: BWTP: State enclosures for S(t), X(t) and SO(t) for different ∆Tm.
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Figure 5.24: BWTP: State enclosures for XSet(t) and µ̂H(t) for different ∆Tm.
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5.4 Taylor Model Observer

The second VSPE concept is based on Taylor models [37]. At time-step k the extended state
vector is enclosed by a list Tk of Taylor models:

zk ∈Tk =
{
T

(1)
ρ,k (z), T

(2)
ρ,k (z), . . . T

(Lk)
ρ,k (z)

}
with zi = [−1; 1], i = 1, 2, . . . , n and Lk ≤ Lmax .

(5.61)

5.4.1 Prediction Step

The prediction step is illustrated in Fig. 5.27. At time step k the set is described by a list of
Taylor models Tk. First a Taylor model is selected for splitting, next a splitting criterion is
evaluated and the Taylor model is split by splitting the domain interval vector in subboxes.
This is done according to Section 4.4.2. Taylor models are split until a pre-specified number
of Taylor models or number of splittings is reached. Next, for each Taylor model a verified
integration is performed.
The resulting enclosure of the extended state vector at time-step k + 1 after the prediction
step is then given by

T pr
k+1 =

{
T

(pr,1)
ρ,k+1(z), T

(pr,2)
ρ,k+1(z), . . . T

(pr,Lpr
k+1)

ρ,k+1 (z)
}

with zi = [−1; 1], i = 1, 2, . . . , n and Lpr
k+1 ≤ Lmax .

(5.62)

The prediction step is repeated until measured values are available. The result of the pre-
diction step is used as an initial enclosure of the below described correction step.

Selection of Taylor model

    Evaluation of a splitting criterion
   Splitting of the domain interval 

    Verified integration for each Taylor model of

Max. number of 
splittings or Taylor models

 reached?
yes

no

z kT

z k1
pr

z kT
T

Figure 5.27: Flow diagram.



5 Verified State and Parameter Estimators 132

z2

z1

Consistent 
with
measurement
model

Consistent with both 
system and
measurement models 

Result of 
prediction

Figure 5.28: Intersection of the predicted set and the set consistent with the measurement in case
of the interval observer.

5.4.2 Correction Step

In the correction step [37], guaranteed enclosures of the extended state variables are re-
constructed from the measurements. Domains obtained from the prediction step which are
inconsistent with the measurement equation and the measured values are deleted. If a state
can be measured directly, the implementation of the correction step is fairly easy, if an inter-
val observer as described in Section 5.3 is used. Then only, an intersection of the predicted
result with the sum of the measured value and the measurement uncertainty is required.
This is illustrated in Fig. 5.28. However, if a Taylor model observer is considered, even in
this case, the correction step is not trivial (see Fig. 5.29).

Basic Correction Step

The measurement equation (5.6) is again rewritten according to

h (zk+1, [qk+1], [δk+1])− yk+1 = 0 . (5.63)

In order to perform the correction step, each Taylor model T
(pr,l)
ρ,k+1(z) of T (pr)

k+1 is now considered
separately and is substituted for zk+1 in (5.63):

h
(
T

(pr,l)
ρ,k+1(z), [qk+1], [δk+1]

)
− yk+1 = 0 . (5.64)
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Figure 5.29: Intersection of the predicted set and the set consistent with the measurement in case
of the Taylor model observer.

Equation (5.64) is solved for z with an interval Newton method [37], which leads to a tight-
ened domain interval [̃z], hence z ∈ [̃z] (see also Fig. 5.30). Here, the Krawczyk method is
used. For n > m, (5.64) is under determined and cannot be inverted directly. One solution
approach is to solve the (5.64) only for m variables (components of z) and considering the
remaining n −m variables as constant intervals. Another possibility is to consider a suffi-
cient number of previous measurements y(t ≤ tk) and the corresponding Taylor models of
the right hand side of (5.64) to obtain the missing n−m equations.

If no solution in [z] can be found the corresponding Taylor model is inconsistent with the
the measured values and the measurement model and can be deleted.

The components of the vector of the original initial conditions z are replaced by the Taylor
model of the resulting interval [̃z] with zi ∈ [−1; 1] as domain interval. This Taylor model is
given by

[̃z] ∈T̃ (z) = c̃+ D̃ z

with zi ∈ [−1; 1] , i = 1 . . . , n ,
(5.65)

where c̃ is the midpoint of [̃z] and D̃ is a diagonal matrix with d̃i,i = rad([̃zi]). The Taylor

model T
(c,l)
k+1 after the correction step is then given

T
(c,l)
ρ,k+1(z) = T

(pr,l)
ρ,k+1(T̃ (z)) (5.66)

which defines the l-th Taylor model for the next prediction step:

T
(l)
ρ,k+1(z) = T

(c,l)
ρ,k+1(z) . (5.67)
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Figure 5.30: Basic correction step.

And the List of Taylor models at k + 1 is then given by:

zk+1 ∈Tρ,k+1 =
{
T

(1)
ρ,k+1(z), T

(2)
ρ,k+1(z), . . . T

(Lk+1)
ρ,k+1 (z)

}
with zi = [−1; 1], i = 1, 2, . . . , n with Lk+1 ≤ Lpr

k+1 ≤ Lmax .
(5.68)

This approach can also be used for consideration of time-varying interval bounded parameters
with interval bounded variation rates, as described in Section 4.1. The upper and lower
bounds of the parameters can be considered as bounds for a measurement yp(t) ∈ [p; p] for
all t. If these parameter bounds are exceeded during the estimation, i.e. inf(p(t)) < p or
sup(p(t)) > p for any t, they can be limited by the same approach that is implemented for
the correction step of the observer.

Consider the two Taylor models

TA = 1 + z1 (5.69)

and

TB = 1 + 0.5z1 + 0.3z2 . (5.70)

With z1, z2 ∈ [−1; 1] the interval bound of TA is B(TA) = [0; 2], the interval bound of TB is
B(TB) = [0.2; 1.8]. Both Taylor models are now intersected with the interval [y] = [0.9; 1.3].
First the modified interval domain [̃z] for TA is calculated:

[̃z] = ([y]− 1) ∩ [z1] = [−0.1; 0.3], (5.71)

leading to

TA,c = 1 + z1 with z1 ∈ [−0.1; 0.3] (5.72)

or

TA,c = 1 + (0.1 + 0.2z1) with z1 ∈ [−1; 1] (5.73)

and B(TA,c) = [0.9; 1.3].
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Next, the modified interval domain [̃z] for TB is determined:

[̃z] =
[y]− 1− 0.3[z2]

0.5
∩ [z1] = [−0.8; 1]. (5.74)

The width of the interval domain of z2 cannot be decreased in this example. This results in

TB,c = 1 + 0.5z1 + 0.3z2 with z1 ∈ [−0.8; 1], z2 ∈ [−1; 1] (5.75)

or
TB,c = 1 + (0.1 + 0.9z1) + 0.3z2 with z1, z2 ∈ [−1; 1] (5.76)

and B(TB,c) = [0.3; 1.8].

Thus, despite the fact that the bounds of TB are tighter than for TA, the bounds after
the correction step are tighter for TA,c, since TB depends on two independent variables
whose coefficients have similar size. This example illustrates that the efficientcy of the
correction step highly depends on the relation between the coefficients belonging to different
independent variables.

Consistency Tests

To improve the correction step, additionally consistency tests can be performed. The domain
interval vector [z] of a Taylor model T

(c,l)
ρ,k+1(z) after the basic correction step is split into

subboxes [̃z] leading to a modified Taylor models T̃
(c,l)
ρ,k+1(z) and the measurement equation

(5.6) is rewritten according to

ȟ (zk+1, [qk+1]) = yk+1 − [δk+1] . (5.77)

Next, consistency tests are performed by evaluation of (5.77) for all Taylor models T̃
(c,l)
ρ,k+1(z).

Now, three different cases have to be distinguished (see also Fig. 5.4.2):

1. If B
(
ȟ
(
T̃

(c,l)
ρ,k+1(z), [qk+1]

))
⊆
(
yk+1 − [δk+1]

)
holds, then [̃z] is consistent.

2. If B
(
ȟ
(
T̃

(c,l)
ρ,k+1(z), [qk+1]

))
∩
(
yk+1− [δk+1]

)
= ∅ holds, then [̃z] is inconsistent and can

be deleted.

3. All remaining subboxes [̃z] have to be split further.

Note that the bounds B(·) are calculated for z ∈ [̃z]. The consistency test can be combined
with the interval Newton method like in the basic correction step.

The obtained subset of the domain interval vector after the consistency test consists of several
subboxes and for each subbox Taylor models are obtained. In order to avoid an exponential
growth of the number of Taylor models during the estimation process, efficient merging
strategies have to be applied. Subboxes can be merged in case of small overestimation of the
union of the merged subboxes. Another possibility is to replace the result by a single interval
vector which encloses all subboxes. This is a special case of the merging routine described
in Section 4.1.6. In this work a further approach is proposed. The goal is to enclose the
obtained set by a rotated box.
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Figure 5.31: Consistency test.

The algorithm consists of the following steps:

1. Let Ẑ = {ẑ(1), ẑ(2), . . . , ẑ(L)} be a list including all interval vertices and midpoints of
the subboxes remaining after the consistency test.

2. Calculate the balance point c and the covariance matrix C of the distribution of Ẑ
with

c =
1

L

L∑
l=1

ẑ(l) (5.78)

and

C =
1

L

L∑
l=1

(ẑ(l) − c) · (ẑ(l) − c)T . (5.79)

3. Determine the eigenvectors of the covariance matrix C.

4. The initial enclosure is determined by the balance point and the eigenvectors of the
covariance matrix and can be expressed as a Taylor model

c+ V z with zi ∈ [−1; 1] , i = 1 . . . , n , (5.80)

where c corresponds to the balance point. V is a matrix containing the eigenvectors
normalized to length 1.

5. Check whether all subboxes are included in the initial enclosure. This is done by
transforming all subboxes [̃z] to [̃z

′
] by a subtraction of c and multiplication with V −1,

i.e.
[̃z

′
] = V −1([̃z]− c) . (5.81)

If not all [̃z
′
] are contained in the unit interval vector [−1, 1]n, the initial enclosure

does not contain all subboxes and has to be inflated by increasing the length of the
eigenvectors in V until all subboxes are contained.
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6. If all subboxes are contained, i.e.,

V −1([̃z]− c) ⊆ [−1, 1]n for all [̃z] , (5.82)

a contraction is performed by decreasing the the length of the eigenvectors in V until
any further significant improvement cannot be achieved. The new matrix formed by
the resulting eigenvectors is V̂ . A modification of the balance point c leading to a new
point ĉ can result in a further improvement of the enclosure. This modification is done
by shifting c slightly in and/or against the direction of the vectors in V̂ .

7. This enclosure or rotated box can be again expressed as a Taylor model according to

T̂ (z) = ĉ+ V̂ z with zi ∈ [−1; 1] , i = 1 . . . , n . (5.83)

8. The components zi of the vector of the original initial conditions z of T
(c,l)
ρ,k+1(z) are

replaced with the components of T̂ (z) by substituting T̂i(z) for zi which results in a

modified Taylor model T̂
(c,l)
ρ,k+1(z) = T

(c,l)
ρ,k+1(T̂ (z)).

The l-th Taylor model for the next prediction step is then defined by:

T
(l)
ρ,k+1(z) = T̂

(c,l)
ρ,k+1(z) . (5.84)

Fig. 5.32(a) shows the remaining subboxes of the domain interval vector after the consistency
test together with the interval vertices, midpoints, and the balance point. Fig. 5.32(b) depicts
the corresponding initial enclosure and Fig. 5.32(c) the final enclosure, which is used as a new
domain interval vector replacing the original domain interval vector z by the corresponding
Taylor model of the rotated box.

Note, that the corner points of the rotated box are in general outside of the interval hull
around all subboxes. Thus, it is important that the pseudo-volume of the enclosure by the
rotated box is sufficiently smaller than the enclosure by a single interval vector. If the set of
subboxes describing the reference domain after the consistency test is highly non-convex, it
has to be approximated by several rotated boxes. This will be considered in future research.

Remark: If several Taylor models are used, in the prediction step, (5.77) is evaluated for
each Taylor model before the correction step and only Taylor models for which case 3 of
the consistency test holds are further investigated in the correction step. The Taylor model
belonging to case 1 are consistent with the measured values and the measurement model,
the Taylor models to case 2 are deleted since they are inconsistent.

After the correction step the reference domain of some of the remaining Taylor models
are split up to a specified number. And the prediction step is performed until the next
measured values are available. Merging routines in the case of the interval observer concept
enable to reduce the number of interval vectors. There exists however no efficient merging
algorithm which is able to bound two similar Taylor models by a new Taylor model with
little overestimation. If the maximum number of Taylor models is reached, splitting of the
reference domain can only be done, if Taylor models are deleted in the correction step.
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(a) Result of the consistency tests.

(b) Initial enclosure.

(c) Final enclosure.

Figure 5.32: Inclusion by rotated box.
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The Correction Step in Preconditioned Taylor Models

If preconditioning is applied in the prediction step, which is necessary in most nonlinear
systems, the correction step can be either be applied to the composition of the left and right
Taylor model

Ť (z)ρ,k+1 := (P̌l,k+1(z̄) + Ǐl,k+1) ◦ (Pr,k(z) + Ir,k) (5.85)

after the corresponding integration step or only to the left part(P̌l,k+1(z̄) + Ǐl,k+1). In the
first case the initial state vector z is affected leading to modified right Taylor models, here
the correction step is performed before the scaling like in the case of splitting of the domain
interval vector (see Section 4.4.2). In the second case the independent variables z̄ of the left
Taylor model are affected which enclose the range of the right Taylor models.

If the correction step is applied to the left Taylor model leading to modified z̄, then either the
right Taylor models have to be reinitialized by the identity Taylor model, or the components
of the right Taylor model which is related to the modified components of z̄ have to be replaced
with a Taylor model with zero polynomial part an interval remainder given by the interval
[-1;1]. Therefore overestimation is introduced.

However, in some cases, when the correction step applied to the composed Taylor model is
not successful but a significant tightening of the left Taylor model by the correction step
is possible, it can be advantageous to employ the correction step to the left Taylor model.
The tightening of the left Taylor model by the correction step is often easier, since the
polynomials in the left Taylor model are less complex than the polynomials of the composed
Taylor model, because only linear contributions occur. This effect is similar to the example
above, where the correction step was applied to two Taylor models TA and TB.

Illustrative Example: Volterra Equations

Consider again the Volterra equations for a = b = c = d = 1:

ż1 = z1(1− z2) ,

ż2 = z2(z1 − 1) .
(5.86)

Two different estimations have been carried out. One with the basic correction step and
consistency tests, but the remaining subboxes have been enclosed by an interval vector.
In the second estimation the remaining subboxes are enclosed by a parallelepiped in case
the pseudo volume of the parallelepiped was two times smaller than the pseudo volume of
the interval enclosure, in order to ensure that the algorithm described above provided a
significant tight parallelepiped enclosure. The order was ρ = 5 in time and initial state
variables. The maximum number of splitting operations in the consistency test was 200.
No splitting of the domain interval vector was performed in the prediction step. Thus, only
one Taylor model was used for the enclosure of the state vector in each time-step. The
enclosure for z1 is tighter for t = 0 to approximately t = 2.5, after that both algorithms yield
comparable results.
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As seen before, the success of the correction step depends on the coefficients of the Taylor
model obtained when evaluating the measurement equation. If the coefficients belonging to
one initial state variable zi are dominating compared to the others, it is more likely that
the correction step is successful in tightening the domain interval vector of this initial state
variable than when the coefficients of the other initial state variables have comparable size.
Therefore, even if the outer bounds of one Taylor model before the correction step is tighter
than the outer bound of another Taylor model, it cannot be guaranteed that the Taylor
model after the correction step is also tighter

This is what happens for the second state variable at t = 2.5. The enclosure resulting from
the second estimation is tighter before the correction step, whereas after the correction step
the enclosure of the first estimation becomes tighter.

Figure 5.33: Time-dependent enclosures of z1.

Figure 5.34: Time-dependent enclosures of z2.



5 Verified State and Parameter Estimators 141

5.4.3 Applications

In this Section, estimation results for the NISTR, for the double pendulum and for the
BWTP are presented. The measured values for each application were generated on the basis
of the midpoints of the corresponding intervals of the parameters and initial values.

Non-Isothermal Stirred Tank Reactor

First the NISTR is considered. The initial conditions were give by ca(0) ∈ [0.25; 0.75]mol/l,
cb(0) ∈ [0.25; 0.75]mol/l, v(0) ∈ [100; 110]◦C, vK(0) ∈ [100; 110]◦C. The time-invariant
parameter E1 was assumed to be uncertain with E1 ∈ [−1.01;−0.99] · 9758.3K. The mea-
surement equation for the temperature in the reactor is given by

y1,k+1 = cb,k+1 + δ1,k+1 ,

y2,k+1 = νk+1 + δ2,k+1 .
(5.87)

The measurement uncertainties were assumed to be δ1(t) ∈ [−0.05; 0.05]mol/l and δ2(t) ∈
[−0.5; 0.5]◦C for all t and it was further assumed that measurements are available every
0.005h. The estimation was carried out until 0.7h. Only the basic correction step was
employed. The estimation results for three different orders ρ and three different numbers of
Taylor models Lmax are shown. For all three estimations QR preconditioning was chosen.
For a successful execution of the estimation, the algorithm required a smaller step size at
the beginning. The maximum step-size was hmax = 0.001. In Figs. 5.35 (a) – 5.35 (c) and in
Figs. 5.36 (a) and 5.36 (b) the estimation results are compared. The result of a simulation
without inclusion of measurement information is also included for comparison.

All estimations are of similar quality, where the tightest results are obtained for 2 Taylor
models with order ρ = 4. The computation time was also the shortest here.

It can be seen that ca is very sensitive with respect to E1 as it tightens significantly as soon
as a large range of E1 is excluded by the Taylor model observer. The results indicate that

Table 5.7: NISTR: Comparison of the computation time for different ρ and different Lmax.
Order ρ Number of Taylor models Lmax Computation time in s

3 4 192
4 2 166
5 1 178

only increasing the order does not always lead to the tightest enclosures. A combination with
splitting of the domain interval vector is more efficient concerning both estimation quality
and computation time.

Estimation results with two uncertain parameters (E1 and E3) are presented in the following.
The initial conditions, uncertain parameters and measurement equation were assumed to
be the same like in Section 5.3.3, namely: ca(0) ∈ [0; 1]mol/l, cb(0) ∈ [0; 1]mol/l, v(0) ∈
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Figure 5.35: NISTR: Interval enclosures for cyclopentadiene concentration ca and cyclopentenol
concentration cb, and reactor temperature v.
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Figure 5.36: NISTR: Interval enclosures for vk and E1.
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[100; 110]◦C, vK(0) ∈ [100; 110]◦C, E1 ∈ [0.9; 1.1] · 9758.3 K, and E3 ∈ [0.9; 1.1] · 8560K.
For the state and parameter estimation of the NISTR again three estimations were carried
out: the first with 200 Taylor models of order ρ = 4 in time and initial state variables,
the second with 100 Taylor models of order ρ = 5 in time and initial state variables, and
the third 50 Taylor models of order ρ = 6 in time and initial state variables. Additionally
QR-Preconditioning was applied. The computation times are listed in Tab. 5.8. The results
are presented in Figs. 5.37 and 5.38. Differences can be seen mainly at the beginning of
the estimation. The first and second estimations provided similar enclosures with similar
computation time. The results of the third estimation with 50 Taylor models of order ρ = 6
were wider and the computation time was at the same time much longer. Here it becomes
even more clear that increasing only the order does not lead always to better results when
the computation time has to be kept in a similar magnitude. Using more Taylor models with
a slightly lower order is more efficient.

Table 5.8: NISTR: Comparison of the computation time for different ρ and different Lmax.
Order ρ Number of Taylor models Computation time in s

4 200 31318
5 100 34020
6 50 55968
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Figure 5.37: NISTR: Comparison of the interval enclosures for cyclopentadiene concentration ca

and cyclopentenol concentration cb, and reactor temperature v.
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Double Pendulum

In case of the double pendulum estimations with one Taylor model of order ρ = 6 in time
and initial state variables with QR-preconditioning were carried out. Like in Section 5.3.3
the initial conditions were assumed to be θ1(0) ∈ [π

2
− 0.03 · π

2
; π

2
+ 0.03 · π

2
]rad, θ2(0) ∈

[π
2
− 0.03 · π

2
; π

2
+ 0.03 · π

2
]rad, θ̇1(0) ∈ [−0.01; 0.01]rad/s, θ̇2(0) ∈ [−0.01; 0.01]rad/s. The

assumed measurement errors were again [δ1] = [δ2] = [−0.01; 0.01]m for all t. The time
between two measurements was ∆Tm = 0.005s. Three results with constant step sizes
h = 0.001s, h = 0.0025s, and h = 0.005s are depicted in Fig 5.39 and Fig. 5.40. Like for the
interval observer, the results for h = 0.001s and h = 0.0025s are of similar quality. Increasing
the step-size to h = 0.005s leads to a large widening of the bounds. The computation times
are given Tab. 5.9.

Table 5.9: Double pendulum: Comparison of the computation time for different step-sizes.
Step-size h in s Computation time in s

0.001 814
0.0025 450
0.005 321
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Figure 5.38: NISTR: Comparison of the interval enclosures for jacket temperature vk, E1 and E3

.
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Figure 5.39: Double pendulum: Interval enclosures for θ1 and θ2.
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Figure 5.40: Double pendulum: Interval enclosures for θ̇1 and θ̇2.
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Biological Waste Water Treatment Plant

For the BWTP an estimation with 40 Taylor models of ρ = 4 was applied. The intervals
for the initial state variables and for the uncertain parameters were the same like for the
interval observer in Section 5.3.3, namely S(0) ∈ [0.9; 1.1] · 0.616 kg/m3, X(0) ∈ [0.97; 1.03] ·
0.1 kg/m3, SO(0) ∈ [0.99; 1.01] · SO,sat/2 · 10−4 kg/m3, XSet(0) ∈ [0.9; 1.1] · 0.001 kg/m3, and
µ̂H ∈ [0.8; 1.2] ·1/14400 1/s. Here also QR-Preconditioning was employed additionally. How-
ever, the preconditioning with respect to the parameter had to be adapted by modifying the
matrix obtained from the QR-decomposition. Otherwise the estimation failed. The reason
therefore is that the preconditioning lead to a correlation of the time-invariant parameters
with the system state variables leading to an increasing enclosure of the parameters, despite
the fact that the parameter were assumed to be time-invariant. The uncertain parameter µ̂H

is the fifth component in the extended state vector z = [S,X, SO, XSet, µ̂H ]T . In the Matrix
Q used in the preconditioning the fifth row was set to zero in each time-step except for the
fifth component in the fifth row which was set to one. With this modification the correlation
of the time-invariant parameters with the system state variables is avoided.
For the BWTP also a step-size control was employed, since at the beginning of the estimation
process a very small step size was required. The maximum step-size was hmax = 10s.
In Figs. 5.41 and 5.42 results for δ1 = [−0.01; 0.01] kg/m3 and δ2 = [−0.05; 0.05] kg/m3

are depicted, with ∆Tm = 300s. Figs. 5.43 and 5.44 depict results for ∆Tm = 300s and
∆Tm = 600s, with δ1 ∈ [−0.01; 0.01] kg/m3.
In comparison to the interval observer, the influence on the resulting enclosures of the non
measured state variables X, XSet, and for the estimated parameter µ̂H is not so strong,
when increasing the measurement uncertainty [δ1] or increasing the time ∆Tm between two
consecutive measurements.

Table 5.10: BWTP: Comparison of the computation time for different [δ1].
[δ1] in kg/m3 Computation time in s
[-0.01;0.01] 30140
[-0.05;0.05] 30636

Table 5.11: BWTP: Comparison of the computation time for different ∆Tm.
∆Tm Computation time in s
300 s 30140
600 s 29752

5.5 Performance Comparison

In this section both VSPE concepts are compared by means of the estimation results of the
NISTR, the double pendulum, and the BWTP. In addition to the state enclosures, the time
dependent diameters of the state and parameter enclosures are presented.
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Figure 5.41: BWTP: State enclosures for S(t), X(t) and SO(t) for different [δ1].
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Figure 5.42: BWTP: State enclosures for XSet(t) and µ(t) for different [δ1].
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Figure 5.43: BWTP: State enclosures for S(t), X(t) and SO(t) for different ∆Tm.
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Figure 5.44: BWTP: State enclosures for XSet(t) and µ(t) for different ∆Tm.
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5.5.1 Non-Isothermal Stirred Tank Reactor

The initial conditions were ca(0) ∈ [0; 1]mol/l, cb(0) ∈ [0; 1]mol/l, v(0) ∈ [100; 110]◦C,
vK(0) ∈ [100; 110]◦C. The parameters E1 and E3 were assumed to be uncertain and time-
invariant, with E1 ∈ [0.9; 1.1] · (9758.3)K and E3 ∈ [0.9; 1.1] · (8560)K. The measurement
uncertainties were assumed to be δ1 ∈ [−0.05; 0.05]mol/l and δ2 ∈ [−0.5; 0.5]◦C for all t and
it was further assumed that measurements were available every 0.005h.

The estimation parameters for the interval observer were:

• order ν = 2,

• maximum number of boxes was Lmax = 2500,

• maximum number of splittings was also 2500,

• hull limit δhull,limit = 2.5%,

• constant step-size h = 0.001,

• interval splitting and merging every 5 time-steps.

The adjustments for the Taylor model observer were:

• order ρ = 4 in initial state variables and time variable,

• maximum number of Taylor models was Lmax = 200,

• maximum number of splittings was also 200,

• variable step-size with a maximum value hmax = 0.001 (for a successful execution of
the estimation, the algorithm required a smaller step size at the beginning).

The resulting interval enclosures are depicted in Fig. 5.45 and Fig. 5.46, the corresponding
diameters in Fig. 5.47 and Fig. 5.48. The interval observer leads to tighter results at the

Table 5.12: NISTR: Comparison of the computation time.
Enclosure type Computation time in s
Taylor models 31384
Interval vectors 29908

beginning of the estimation: For ca, E1, and E3 up to t ≈ 0.1h, for cb until t ≈ 0.15h, for
v until t ≈ 0.2h, and for vk up to t ≈ 0.3. Then the results for the Taylor model observer
become tighter. The state variables cb and v are measured state variables. In contrast
to the Taylor model observer, the interval observer, allows for a direct intersection of the
predicted set and the measured values plus the corresponding interval of the measurement
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uncertainty. That’s the reason why these enclosures are much tighter at the beginning for the
interval observer. Between t = 0 and t ≈ 0.1 the algorithm for correction step in the Taylor
model observer was only efficient in the first correction step at t = 0.005. Then the outer
bounds of the measured state variables cb and v in this time interval become wider than the
measured value plus the measurement uncertainty. However, after t ≈ 0.1 the width of the
bounds decreases significantly. The computation times are comparable for both estimators
(see Tab. 5.12).
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Figure 5.45: NISTR: Interval enclosures for cyclopentadien concentration ca and cyclopentenol
concentration cb, and reactor temperature v.
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Figure 5.46: NISTR: Interval enclosures for jacket temperature vk, for E1, and E3.
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Figure 5.48: NISTR: Diameters of the outer bounds of vk, for E1, and E3.
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5.5.2 Double Pendulum

The initial conditions were assumed to be
θ1(0) ∈ [π

2
− 0.03 · π

2
; π

2
+ 0.03 · π

2
]rad, θ2(0) ∈ [π

2
− 0.03 · π

2
; π

2
+ 0.03 · π

2
]rad, θ̇1(0) ∈

[−0.01; 0.01]rad/s, and θ̇2(0) ∈ [−0.01; 0.01]rad/s.
The assumed measurement errors were again enclosed by the intervals [δ1] = [δ2] = [−0.01; 0.01]m.
The time between two measurements was ∆Tm = 0.005s. The step-size was h = 0.001s. The
estimation parameters for the interval observer were:

• order ν = 1,

• maximum number of boxes was Lmax = 100,

• maximum number of splittings was also 50,

• hull limit δhull,limit = 2.5%,

• constant step-size h = 0.001s,

• interval splitting and merging every 5 time-steps.

The adjustments for the Taylor model observer were:

• order ρ = 6 in state variables and time variable,

• maximum number of Taylor models was Lmax = 1,

• no splitting of the domain interval was performed,

• constant step-size with h = 0.001s.

The resulting interval enclosures are depicted in Fig. 5.49 and Fig. 5.50, the corresponding
diameters in Fig. 5.51 and Fig. 5.52. The quality of the enclosures of θ1 and θ2 are comparable
for both methods, as in some time intervals the interval observer provides tighter enclosures;
in some time intervals the Taylor model observer performs better. However, the bounds for
θ̇1 and θ̇2 are tighter for the Taylor model observer for the whole considered time horizon.
The computation time was also much shorter (see Tab. 5.13).

Table 5.13: Double Pendulum: Comparison of the computation time.
Enclosure type Computation time in s
Taylor models 841
Interval vectors 2090



5 Verified State and Parameter Estimators 161

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t in s

θ 1
in

ra
d

 

 

Interval observer
Taylor model observer

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

t in s

θ 2
in

ra
d
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5.5.3 Biological Waste Water Treatment Plant

Finally, an estimation comparison for the biological waste water treatment plant is given.
The initial state variables were given by S(0) ∈ [0.9; 1.1] · 0.616 kg/m3, X(0) ∈ [0.97; 1.03] ·
0.1 kg/m3, SO(0) ∈ [0.99; 1.01] · SO,sat/2 · 10−4 kg/m3 and XSet(0) ∈ [0.9; 1.1] · 0.001 kg/m3.
The maximum specific growth rate µ̂ was assumed to be uncertain and time-invariant with
µ̂ ∈ [0.8; 1.2] · 1/14400 1/s. The interval bounds for the measurement errors were given by
δ1 = [−0.01; 0.01] kg/m3 and δ2 = [−0.05; 0.05] kg/m3. Measured values were available every
∆Tm = 300s.

The estimation parameters for the interval observer were:

• order ν = 1,

• maximum number of intervals was Lmax = 200,

• maximum number of splittings was also 100,

• hull limit δhull,limit = 2.5%,

• constant step-size h = 10,

• interval splitting and merging every 5 time-steps.

The adjustments for the Taylor model observer were:

• order ρ = 4 in state variables and and time variable,

• maximum number of Taylor models was Lmax = 40,

• maximum number of splittings was also 40,

• variable step-size with a maximum value hmax = 10s (for a successful execution of the
estimation, the algorithm required a smaller step size at the beginning).

The resulting interval enclosures are shown in Fig. 5.55 and Fig. 5.54. The bounds of the
substrate concentration S, which is measured directly, are tighter for the interval observer
up to t ≈ 4.6 · 104s. The reason for this is that a direct intersection of the predicted set
and measured values plus measurement uncertainty is only possible for the interval observer.
The bounds for the bacteria concentrations X and XSet are tighter up to t ≈ 3 · 104s. Then
the Taylor model observer gives tighter bounds, especially for X. The estimation results for
the oxygen concentration SO and the maximum specific growth rate µ̂H is more precise when
using the Taylor model observer. The computation time was of similar magnitude for both
estimators (see Tab. 5.14).
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Table 5.14: BWTP: Comparison of the computation time.
Enclosure type Computation time in s
Taylor models 30140
Interval vectors 33456
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Figure 5.53: BWTP: Interval enclosures of the concentrations S, X, and SO.
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Figure 5.54: BWTP: Interval enclosures of XSet and µ̂.
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Figure 5.55: BWTP: Diameters of the outer bounds of for the concentrations S, X, and SO.
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5.6 Summary

In the following, the main results of this chapter are summarized. For the interval observer
one of the main insights is that when increasing the order ν of the Taylor series expansion
above order ν = 2 the additional obtained improvement for each further rising of ν is
decreasing very quickly. While estimation results for different orders where only presented
for the NISTR, similar results are also obtained for the other applications. The main goal
of increasing the order is to reduce the size of the remainder error. However, by doing so
not only computation time is increased, but also more expressions have to be evaluated with
interval methods. This may lead – depending on the system – to more overestimation. This
is especially the case, when the diameters of the corresponding interval arguments are large.
If there is no improvement by increasing the order above a given value it is more efficient to
use more subboxes. This is required anyway, if like in most nonlinear systems, the solution
set is complexly shaped. The results have also pointed out that an additional coordinate
transformation can be useful for further reduction of overestimation.

For the Taylor model observer similar things can be observed. Increasing the order is limited
when the uncertainty is large. Here splitting of the domain interval vector is much more
efficient. Preconditioning is a very important tool in the verified integration based on Taylor
models. The choice of the most appropriate preconditioning method is crucial. In the
estimation process of the presented results QR preconditioning has been used, since it has
been shown to be the most efficient for this application. However, in the example of the
BWTP some modifications of the preconditioning method for a successful estimation have
to be conducted.

For the NISTR the Taylor model observer required more computation effort for a successful
estimation than the interval observer. However, if the number of interval boxes is increased
until the computation time is approximately the same for both estimators, the Taylor model
observer provided tighter bounds in average. However, for the directly measured state vari-
ables the enclosures resulting from the estimation by the interval observer are still better at
the beginning of the estimation process.
For the double pendulum the Taylor model observer performed better than the interval ob-
server.
The results in case of the BWTP are similar to the results for the NISTR. In average the
bounds resulting from the Taylor model observer are better. Still, at the beginning and espe-
cially for the measured state variable S the bounds are tighter for the interval observer. The
Taylor model observer required a step size control for the NISTR and the BWTP, employing
smaller step-sizes at the beginning.

Thus, it can be concluded that depending on the nature of the measurement equation and
on the time horizon of interest one or the other of the two estimators performs better.



6 Verified Methods for Guaranteed
Robust Tracking with Flatness Based
Controllers

6.1 Problem Formulation

Verified state and parameter estimation can also be understood as a verified robustness anal-
ysis of a control system, which includes a traditional observer, e.g. a tracking observer [16].
The robustness analysis then determines guaranteed enclosures of the set of the uncertain
system parameters and uncertain initial state variables for which prespecified robustness re-
quirements are fulfilled.
In this thesis a flatness based control system is considered. Flatness based controller de-
sign [14,15,71] is a powerful tool for motion planning and trajectory tracking for linear and
nonlinear systems. Especially, for nonlinear systems there is a wide acceptance of this ap-
proach, which has been applied successfully to numerous problems of industrial relevance.
Roughly speaking, the flatness property of a nonlinear system is characterized by the exis-
tence of a — possibly fictitious — flat output that allows a differential parameterization of
the state variables and inputs. Based on the differential parameterization a tracking con-
troller for a given reference trajectory of the flat output can be designed. In general, not
all system state variables which are necessary to implement the tracking controller can be
measured . In this case a nonlinear tracking observer as proposed in [16] can be used.

Interval methods are used to analyze the dynamic behavior of the control system [3,33,34,60]
which is described by a system of nonlinear differential equations. Applying these techniques
the maximum admissible range of parameter uncertainty in the plant is determined such that
the flow of the uncertain control system evolves within specified tolerances. More detailed,
subboxes of the parameter uncertainty are considered for a verified integration over the
desired time span. A subbox is admissible if the resulting enclosures over the complete
time span lie completely inside the specified tolerances for robustness. If the enclosures are
completely outside the specified tolerances for at least one point of time, the corresponding
subbox is not admissible. Further splitting is required to decide about the admissibility of all
remaining interval vectors. In addition to uncertainty of parameters of the plant also interval
uncertainty of the initial conditions and the available measured data can be considered.

The methodology for robustness analysis is restricted here to single-input systems. However,
with obvious extensions it can also be applied to multi-input systems and a wide class of
controllers and dynamical systems.

171
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6.2 Flatness Based Controller Design

6.2.1 Flatness

Flatness based controller design has been introduced e.g. in [14] (differential algebraic set-
ting) and [15] (differential geometric setting). Various aspects of flatness are illustrated e.g.
in [71]. In this contribution the following relations for nonlinear single input systems are
used, where explicitely the dependence of the relations on the parameters are stated:
For a flat system

ẋ = fx(p, x, u) (6.1)

with x ∈ Rnx , the control variable u ∈ R and the parameter vector p ∈ Rnp the flatness
property implies the existence of a flat output yf ∈ R, such that

yf = hf (p, x) , (6.2)

x = ψx(p, yf , ẏf , . . . , y
(n−1)
f ) , (6.3)

u = ψu(p, yf , ẏf , . . . , y
(n)
f ) (6.4)

holds, with hf , ψx, ψu smooth at least on an open subset of R, Rnx , and R, respectively.
Introducing the new coordinates

ζ = (ζ1, . . . , ζn) = (yf , ẏf , . . . , y
(n−1)
f ) , (6.5)

the flat system (6.1) can be transformed via the well defined diffeomorphism

ζ = Φ(p, x) (6.6)

into controller normal form

ζ̇i = ζi+1, i = 1, 2, . . . n− 1 ,

ζ̇n = α(p, ζ, u) .
(6.7)

Setting v = y
(n)
f yields

u = ψu(ζ, v, p) (6.8)

in view of (6.4) and (6.5). In [20] it has been shown that

α(p, ζ, ψu(p, ζ, v)) = v (6.9)

holds and thus by application of the feedback law (6.8), system (6.1) is diffeomorphic to the
Brunovský normal form

ζ̇i = ζi+1, i = 1, 2, . . . n− 1 ,

ζ̇n = v
(6.10)

with new input v.
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6.2.2 Flatness Based Feedforward Controller

Due to the derived relations in Section 6.2.1 a (sufficiently smooth) reference trajectory
yf,d : [t0, t0 + T ] → R for the flat output yf can be assigned almost arbitrarily (excluding
singularities of the differential parameterization (6.3)–(6.4)). If the reference trajectory yf,d

satisfies the boundary conditions

x(t0) = ψx(pnom, yf,d(t0), ẏf,d(t0), . . . , y
(n−1)
f,d (t0)) , (6.11)

then a corresponding feedforward controller that provides yf (t) = yf,d(t) for t ∈ [t0, t0 + T ]
is given by

ud(t) = ψu(pnom, yf,d(t), ẏf,d(t), . . . , y
(n)
f,d (t)) . (6.12)

For (6.11) and (6.12) it has been assumed that the parameters of the plant (6.1) match a
nominal parameter vector pnom.

6.2.3 Flatness Based Tracking Controller design

To stabilize the tracking of a given reference trajectory yf,d for the flat output, the tracking
error e is introduced as

e = yf − yf,d = ζ1 − ζ1,d . (6.13)

In view of (6.10) it follows that

e(i) = ζi+1 − ζi+1,d, i = 0, 1, . . . , n− 1 . (6.14)

Thus, when setting the new input v in (6.10) to

v = ζ̇n,d −
n−1∑
i=0

λi(ζi+1 − ζi+1,d) = ζ̇n,d −
n−1∑
i=0

λie
(i) , (6.15)

the tracking error obeys the differential equation

0 = e(n) +
n−1∑
i=0

λie
(i) (6.16)

which can be achieved to be stable by suitable choice of the λi. Substituting (6.15) into the
differential parameterization (6.4) of the input yields in view of (6.5) the feedback law

u = ψu(p, yf , ẏf , . . . , y
(n−1)
f , yf,d, ẏf,d, . . . , y

(n)
f,d ) . (6.17)

Using the diffeomorphism (6.6), the feedbacklaw (6.17) can be implemented as

u = ψ′
u(pnom, x, yf,d, ẏf,d, . . . , y

(n)
f,d ) = ψ′′

u(pnom, x, t) , (6.18)

where again the plant parameters p are assumed to be equal to the nominal parameter
vector pnom. As a consequence, for the feedback controller (6.18), the controlled system can
be summarized as

ẋ = fx(p, x, ψ
′′
u(pnom, x, t)) = ffb(p, x, t) , (6.19)
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where p 6= pnom can occur due to not exactly known parameters. To improve the robustness
of the tracking controller an integral error feedback is often introduced, i.e. the error feedback
(6.15) is extended according to

ėI = ζ1 − ζ1,d , (6.20)

v = ζ̇n,d −
n−1∑
i=0

λie
(i) − λ−1eI .

This feedback can clearly be implemented as a state feedback of the kind

ėI = hf (p, x)− yf,d(t) , (6.21)

u = ψ′′
u,I(pnom, x, eI , t) .

6.2.4 Tracking using a Nonlinear Tracking Observer

For the implementation of the feedback (6.18), in general, all state variables have to be
available for measurement. If only the output

y = h(p, x) (6.22)

is available for measurement, a nonlinear tracking observer with time varying observer gain
G(t)

˙̂x = fx(pnom, x̂, u) +G(t)(y − h(pnom, x̂)) (6.23)

= fobs(pnom, x, x̂, u, t)

as proposed in [16] can be applied. The observer (6.23) basically consists of a model of the
plant and a feedback of the difference of the measured output and the estimated output. For
the model of the plant also the nominal parameter values pnom are used. The time varying
observer gain G(t) is designed such that the linearization of the estimation error dynamics
about the reference trajectory yf,d which result to

∆ ˙̂x−∆ẋ = (A(t)−G(t)C(t))(∆x̂−∆x) (6.24)

with

A(t) =
∂fx

∂x

∣∣∣
xd,ud

, C(t) =
∂h

∂x

∣∣∣
xd,ud

(6.25)

are stable. For the stabilization of (6.24), i.e. of the estimation error dynamics in the vicinity
of the reference trajectory yf,d, methods for linear time varying systems as proposed in [18]
can be used. Using the tracking observer (6.23) the feedback (6.18) is estimated using the
observer state vector x̂

û = ψ̂(pnom, x̂, t) . (6.26)

Thus, the controlled system can be summarized as[
ẋ
˙̂x

]
=

[
fx(p, x, ψ̂(pnom, x̂, t), t)

fobs(pnom, x, x̂, ψ̂(pnom, x̂, t), t)

]
= ffbo(p, x, x̂, t) . (6.27)
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Figure 6.1: Blockdiagram of the controlled system.

A block diagram of the controlled system is shown in Fig. 6.1. Here the vector Ŷf contains
the flat output and its derivatives up to order n − 1. It can easily be deduced that when
using an observer together with the controller (6.21) which includes integral error feedback
the following structure resultsėI

ẋ
˙̂x

 =

 hf (p, x, x̂)− yf,d(t)

f(p, x, ψ̂(pnom, x̂, t), t)

fobs(pnom, x, x̂, ψ̂(pnom, x̂, t), t)


= ffbo,I(p, x, x̂, eI , t) . (6.28)

The controlled systems (6.27) and (6.28) have a similar structure as (6.19). This structure
can be analyzed using the methods discussed in Section 6.3.

6.3 Robustness Analysis of the Tracking Controller

Assume that there are constraints for the at most tolerable deviations from the reference
trajectory xd for the controlled system which are specified in the following manner

|xi(t)− xi,d(t)| < di, i = 1, 2, . . . , nx; ∀ t ∈ [0, T ] . (6.29)

In the sequel it will be shown that, using verified integration methods, it is possible to
determine the admissible set Ωin of parameter values p and initial conditions x(0) such that
the tracking controllers can meet the specification (6.29) [3, 33,34].

The goal is to determine parameter values and values for the initial state variables

Ωin =

{[
x(0)
p

]∣∣∣∣ |xi(t)− xi,d(t)| ≤ di∀t ∈ [t0, t0 + T ], i = 1, 2, . . . , nx

}
, (6.30)
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for which it can be guaranteed that the conditions for robustness in (6.29) are fulfilled and
those parameter values

Ωout =

{[
x(0)
p

]∣∣∣∣ |xi(t)− xi,d(t)| > di for any t ∈ [t0, t0 + T ], i = 1, 2, . . . , nx

}
, (6.31)

for which it can be guaranteed that these conditions are not fulfilled. This problem for-
mulation is similar to the problem formulation for the algorithm SIVIA (set inversion via
interval analysis) [27]; but it is used in a new context. Uncertain parameters are bounded
by p ∈ [p, p], the initial state vector is bounded by x(0) ∈ [x(0), x(0)] and di are the allowed
tolerances around the reference trajectories for the state variables xi.

The determination of Ωin and Ωout can be done by splitting [p] and [x(0)] in subboxes.
Here the state vector x, the uncertain parameters p, the estimated state vector x̂ and if
applicable the differential equation for the error eI are combined in an extended state vector
z = [eI , x

T , x̂T , pT ]T . Thus, when the [p] and [x(0)] are split, the interval vector [z(0)] is split
into subboxes

[z̃(l)(0)], l = 1, 2, . . . , L,
L⋃

l=1

[z̃(l)(0)] = [z(0)] . (6.32)

For each subbox a verified integration is performed. Here, the approach based on Taylor
models as described in Section 4.4 is used. The algorithm is illustrated in Fig. 6.2. First
an interval vector [z̃(l)(0)] is selected for the robustness analysis, then a splitting criterion is
evaluated and the selected box is split. For the split subboxes a verified integration of the
system model is performed. Then, three cases have to be distinguished:

1. If for some t ∈ [t0, t0+T ], the resulting enclosure of the trajectory is completely outside
the specified tolerances the corresponding box is inconsistent and can be deleted.

2. If on the other hand the resulting enclosures of the trajectory lies completely inside
the tolerance for all t ∈ [t0, t0 + T ], the corresponding box is admissible.

3. Subboxes which lead to enclosures of the trajectories which are partially (but not not
completely) outside for some t ∈ [t0, t0 + T ] but also not completely inside for all
t ∈ [t0, t0 + T ] have to be split further until a user given maximum number of splitting
operations is reached.

Each subbox [z̃(l)(0)] can again be expressed as a Taylor model with the unit box [−1; 1]n as
domain interval vector according to

[z̃(l)(0)] = c̃
(l)
0 + D̃(l)z with zi ∈ [−1; 1], i = 1, 2, . . . , n ,

l = 1, 2, . . . , L , (6.33)

where c̃
(l)
0 is the midpoint of [z̃(l)(0)] and D̃(l) is a diagonal matrix with

D̃(l) = rad
(
[z̃(l)(0)]

)
.

If L > 1, the most appropriate subbox for the splitting has to be selected at first. This
could be the interval vector [z̃(l)(0)] with the largest pseudo-volume. Another strategy is to

calculate the pseudo volume of the interval enclosure of the Taylor model T̃
(l)
ρ,kmax

(z) resulting
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Figure 6.2: Block diagram of the algorithm for the determination of the admissible parameters.

from each subbox [z̃(l)(0)] in the last integration step of the preceding integration and select
the subbox [z̃(l)(0)] which led to the largest pseudo volume. A third selection strategy is to
consider the interval remainders of the Taylor models in the last integration step, and to select
the subbox which led to the interval remainder with the largest pseudo volume. After the
selection of an interval vector [z̃(l)(0)] a splitting direction has to be determined by checking

the sensitivity of the Taylor model T̃
(l)
ρ,kmax

(z) from the selected interval vector [z̃(l)(0)] at the
last integration step of the previous integration with respect to each component zi, i = 1 . . . n
of the domain interval vector. The component µ of z for which the Taylor model T̃

(l)
ρ,kmax

(z)
is most sensitive is determined by the heuristics described in Section 4.4.2.. As the interval
vectors [z̃(l)(0)] and [z] are related by (6.33), the interval vector [z̃(l)(0)] selected for splitting
is also split in the component µ.
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6.4 Application: Magnetic Levitation system

In this Section simulation results of a magnetic levitation system as described in Section 2.5
are shown. The system equations of the magnetic levitation system are:

ẋ1 = x2 , (6.34)

ẋ2 =
k

m

u2

(c− x1)2
− g .

The system is already given in controller normal form and thus a flat output of (6.34) is
given by

yf = x1 . (6.35)

The relations (6.3)–(6.4) can directly be derived from (6.34)

(x1, x2) = (yf , ẏf ) , (6.36)

u = (c− yf )

√
m

k
(ÿf + g) . (6.37)

For the load of the levitation system a set point change is considered, i.e. a tajectory has to
be planned such that the following boundary conditions are satisfied

(x1(0 s), x2(0 s)) = (−0.4 cm, 0
cm

s
) , (6.38)

(x1(0.1 s), x2(0.1 s)) = (−0.2 cm, 0
cm

s
) .

In view of the differential parameterization (6.36) this yields the following boundary condi-
tions for a corresponding trajectory yf,d for the flat output

yf,d(0 s) = −0.4 cm, ẏf,d(0 s) = 0
cm

s
, (6.39)

yf,d(0.1 s) = −0.2 cm, ẏf,d(0.1 s) = 0
cm

s
,

which can be satisfied by assigning for yf,d a third order polynomial. The resulting reference
trajectory for yf and ẏf together with tolerance bands can be seen in Fig. 6.3.

Based on the results in Section 6.2.1 a tracking controller for system (6.34) is given by

u = (c− x1) ·
√
m

k
(ÿf,d − λ1(x2 − yf,d)− λ0(x1 − yf,d) + g) . (6.40)

It is assumed that the flat output of (6.34) is available for measurement, i.e.

y = h(x) = x1 + ε , (6.41)

where, ε describes an unknown but constant sensor offset. For the given output a nonlinear
tracking observer, as discussed in Section 6.2.4, can be derived. It has the form

˙̂x1 = x̂2 − l1(t)(y + ε− x̂1) , (6.42)

˙̂x2 =
k

m

u2

(c− x̂1)2
− g − l2(t)(y + ε− x̂1) ,
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Figure 6.3: Reference trajectories for the position x1 and the velocity x2 and the bounds for
admissible deviations (grey).

where the unknown sensor offset ε in (6.41) is explicitly included in the model. The feedback
law (6.40) which stabilizes the tracking can then be estimated as

û = (c− x1 + ε) ·
√
m

k
(ÿf,d − λ1(x̂2 − yf,d)− λ0(x1 + ε− yf,d) + g) , (6.43)

where the measured output (6.41) was used to estimate x1 and x2 is estimated using the
observer state x̂2. A tracking controller with integral error feedback as discussed in Section
6.2.1 is given by (using again the observer (6.42) and the measured output (6.41))

ėI = x1 + ε− yf,d ,

û = (c− x1 + ε) ·
√(m

k
(ÿf,d − λ1(x̂2 − yf,d)− λ0(x1 + ε− yf,d)− λ−1eI) + g)

) (6.44)

in view of (6.21). With the parameter vector p = [k,m, c, g, ε]T the controlled systems
(6.34), (6.42)–(6.43) and (6.34), (6.42), (6.44) exhibit the structure as in (6.27) and (6.28)
respectively.

For the simulation the nominal parameters of system (6.34) were assumed to be (see [21])

knom = 58.042
kg cm3

s2 A2
, gnom = 981

cm

s2
, (6.45)

mnom = 0.0844 kg, cnom = 0.11 cm .

The algorithm described in the previous section was applied to the magnetic levitation
system which is controlled using the tracking controllers [(6.42), (6.43)] and [(6.42), (6.44)]
respectively. For simplicity the parameters of the levitation system were assumed to match
then nominal ones in (6.45). Only the parameter k was assumed to be uncertain but bounded

by the interval k ∈ [54.042; 62.042] kg cm3

s2 A2 . The sensor was assumed to have an unknown offset
ε which is assumed to be bounded by ε ∈ [−0.01; 0.01] cm. The order of the Taylor models
was chosen to be 6 in time and initial state variables. Additionally QR-Preconditioning was
applied. The tolerances for the deviations from the reference trajectory (see (6.29)) were:
d1 ∈ [−0.03; 0.03] cm, d2 ∈ [−0.5; 0.5] cm

s
. The deviation of the position d1 was chosen very

small as the final equililibrium position is desired to be approached very exactly.
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To speed up the convergence of the estimation error the observer (6.42) was initialized using
the measured output (6.41), i.e.

x̂1(0) = y(0) . (6.46)

As x2 cannot be measured the observer state x̂2 was initialized with the reference trajectory,
i.e.

x̂2(0) = x2,d(0) = ẏf,d(0) . (6.47)

The simulation results for the controller [(6.42), (6.43)] can be seen in Fig. 6.4. For the
consistent set of parameters the robustness specifications (6.29) are met. For the inconsistent
parameters the specifications are not met. Remaining undecided parameter sets could be
split up further, if necessary. It can be deduced that the controller [(6.42), (6.43)] cannot
meet the specification (6.29) for all values of [k] and [ε] and thus the parameters k and ε
would have to be determined more exactly if the specifications have to be met in any case.

In Fig. 6.5 the resulting consistent parameters are compared for the controllers [(6.42), (6.43)]
and [(6.42), (6.44)]. It can be seen that for the desired specifications the two controllers yield
different subsets of the intervals [k] and [ε]. It can be concluded e.g. that if there is a large
uncertainty in the offset ε of the sensor and the parameter k can be determined very well,
then the controller [(6.42), (6.43)] should be preferred (indicated by the dashed box). If
on the other hand the uncertainty in the sensor offset are small but the uncertainty in the
parameter k is relatively large, then the controller with integral error feedback should be
preferred. Thus the proposed robustness analysis can indeed yield hints on the choice of the
used controller.

inconsistent

consistent

undecided

Figure 6.4: Simulation results for controller without integral error feedback.

It should be mentioned, however, that the resulting parameter sets as shown in Figures 6.4
and 6.5 strongly depend on the specifications (6.29). This can be verified when looking at
Fig. 6.6. Here the resulting trajectories using the controller [(6.42), (6.44)] for k = 56.5 and
ε = 0.004 – a parameter combination which belongs to the set unadmissble parameter values
– are depicted. It can be seen that the robustness specification is violated only by the velocity
and mostly in the first part of the trajectory. As a consequence, if the tolerable deviation
e.g. on the velocity in the first part of the trajectory can be relaxed or a specification which
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Figure 6.5: Consistent subboxes for a controller with and a controller without integral error feed-
back.

allows some kind of a transition time for the state variables – as also depicted in Fig. 6.6 –
a much larger admissible parameter set would result for this controller. With the proposed
approach also such a specification could be investigated.
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Figure 6.6: Robustness specification with transition time for the state variables.



7 Verified State and Parameter
Estimators in Closed Loop Control

7.1 Problem Formulation

In Chapter 5 two different VSPE concepts are presented and compared in detail. The
considered systems are open loop systems and the results of the estimates have not been fed
back in sense of a feedback control. In this Chapter results of a VSPE in closed loop control
are shown. The estimates required for the controller are then provided by the VSPE. Like in
Chapter 6 a flatness based control system is considered. The tracking observer is replaced by
a VSPE which estimates the non measured state variables required for the feedback control.
In addition to the state vector also the uncertain parameters are estimated. The extended
state vector of the estimated state variables and parameters is given by

z̃(t) =
[
x̃T (t) p̃T (t)

]T
(7.1)

and is enclosed either by interval vectors or Taylor models. However, in practice the required
estimates for the controller have to be specific values no sets in form of intervals or Taylor
models. The estimate ẑ for the controller was chosen to be the midpoint of the estimated
interval enclosure of z̃, hence

ẑ = mid([z̃]) (7.2)

which results in the controller output û. This selection criterion is usually only suboptimal,
therefore in future work more sophisticated criteria have to be developed, for example by
the formalization of an optimization problem and and calculation of a value ẑ ∈ [z̃], which
results in an optimum value for û. The system equations and the equations for the VSPE
are then given by [

ż
˙̃z

]
=

[
f(z, ψ̂u(ẑ, t), t)

f(z̃, ψ̂u(ẑ, t), t)

]
with ẑ = mid([z̃]) . (7.3)

Here, z is the state vector of the plant, z̃ are the estimates of z, and ẑ = mid([z̃]) is the value
fed back to the controller. The block diagram of the controlled system containing a VSPE
in case of a flatness based control is depicted in Fig. 7.1.

Here, the VSPE calculates guaranteed bounds for a given control variable û which is obtained
by using ẑ = mid([z̃]) for the feedback control. It does not determine an outer approximation
[û] with respect to the whole interval [z]. However, it would be easy to adapt the algorithm
to this case.

182
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Figure 7.1: Blockdiagram of the controlled system with an verified estimation concept.

The results obtained by applying the VSPE are compared with the result, when a nonlinear
tracking observer with additional estimation of the uncertain parameters is used. In view of
(6.27) the equations for the controlled system with additional estimation of the parameter
are [

ż
˙̂z

]
=

[
f(z, ψ̂u(ẑ, t), t)

fobs(z, ẑ, ψ̂u(ẑ, t), t)

]
. (7.4)

7.2 Application: Magnetic Levitation System

Consider again the Amira-Pendulum from Section 2.5 and Chapter 6. It is assumed that
the parameter k is uncertain with k ∈ [58.042 − 0.6; 58.042 + 0.6]kg cm3

s2 A2 . Again x1 is the
only measured state. The sensor has no constant offset, but the measurements are affected
by bounded measurement noise δ1(t) ∈ [δ1]. Two estimations were carried out, the first
with δ1(t) ∈ [δ1] = [−0.001; 0.001]cm, the second with δ1(t) ∈ [δ1] = [−0.01; 0.01]cm. The
observer has to estimate x2 and the uncertain parameter k. As stated above, for comparison
also an estimation with a tracking observer like in chapter 6 is presented. In contrast to
chapter 6 the uncertain parameter k is estimated additionally. If the parameter k is assumed
to be time-invariant, then the system equation is given by:

ẋ1 = x2 ,

ẋ2 =
k

m

u2

(c− x1)2
− g , (7.5)

k̇ = 0 .

For the measurement equation
y = x1 + δ1 (7.6)
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holds. The measured values are assumed to be available in each integration step. They are
obtained by adding an uniformly distributed noise bounded by [δ1] to the obtained value of
x1. The equations for the tracking observer are:

˙̂x1 = x̂2 − l1(t)(y − x̂1) ,

˙̂x2 =
k̂

m

u2

(c− x̂1)2
− g − l2(t)(y − x̂1) , (7.7)

˙̂
k = −l3(t)(y − x̂1) .

For the equations of the VSPE

˙̃x1 = x̃2 ,

˙̃x2 =
k̃

m

u2

(c− x̃1)2
− g , (7.8)

˙̃k = 0

holds.

The feedback law u (6.40) which stabilizes the tracking can then be estimated as

û = (c− y) ·
√
m

k̂
(ÿf,d − λ1(x̂2 − yf,d)− λ0(y − yf,d) + g) (7.9)

for the tracking observer and

û = (c−mid([x̃1]))

·
√

m

mid([k̃])
(ÿf,d − λ1(mid([x̃2])− yf,d)− λ0(mid([x̃1])− yf,d) + g)

(7.10)

for the VSPE. The estimated feedback law û is substituted for u in (7.5), (7.7) and (7.8).
The initial values of the real systems were x1(0) = 0.39cm, x2(0) = 0cm/s, k = knom + 0.5 =

58.042+0.5 = 58.542kg cm3

s2 A2 . The estimated position x̂1 for the tracking observer is initialized
by the measured value y(0) = x1(0) + δ(0), the velocity x̂2 with the values of the reference
trajectory at t = 0, hence x̂2(0) = x2(0) = 0 cm/s. The initial value for the parameter was the
nominal parameter value k(0) = knom = 58.042. The initial interval enclosures for the VSPE

was assumed to be x̃1(0) = y(0)+ [δ], x̃2(0) = 0cm/s, and [k] = knom + [−0.6; 0.6]kg cm3

s2 A2 . The
VSPE applied was a Taylor model observer with an expansion of order ρ = 6 in time and state
variables. Only a single Taylor model was used. For δ1(t) ∈ [−0.001; 0.001]cm, the results for
the system state variables x1, x2 and the estimated parameter k̂ are depicted in Figs. 7.2(a) –
7.2(c). The dashed lines depict the reference trajectories x1,d and x2,d and the real parameter
value. The bright solid lines are the resulting trajectories with tracking observer, the black
solid lines depict the results with the VSPE. Since the results for both estimators cannot
clearly be distinguished in these pictures, additionally the absolute values of the deviations
from the reference trajectory and the deviation from the estimated parameter to its real
value

d1 = |x1(t)− x1,d(t)|
d2 = |x2(t)− x2,d(t)|
dk = |k̂(t)− k|

(7.11)
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are depicted in Fig. 7.3. Fig. 7.3(a) shows the deviation d1 of the position x1. In Fig. 7.3b)
the deviations of the velocity d2 is depicted. The absolute values of the deviations of the
parameter k are shown in Fig. 7.3(c). The results of the state variables are comparable, the
estimation for the parameter is slightly better for the VSPE.

The results for the state variables x1, x2, and the estimated parameter k̃ for δ1(t) ∈
[−0.01; 0.01] are depicted in Figs. 7.4(a) – 7.4(c). The corresponding deviations are pre-
sented in Figs. 7.5(a)–7.5(c). Here, the estimation quality in sense of the deviations from
the reference trajectories and from the deviation from the estimated parameter to its corre-
sponding real values are much better for the VSPE.

The results point out that the tracking observer is much more sensitive to the measurement
noise. The VSPE is able to reduce the measurement uncertainty during the estimation
process. An additional advantage of the VSPE is, that it provides guaranteed enclosures for
the state variables x1, x2, and for the parameter k.



7 Verified State and Parameter Estimators in Closed Loop Control 186

0 0.02 0.04 0.06 0.08 0.1
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

t in s

x 1 in
 c

m

 

 

result with tracking observer
reference trajectory
result with Taylor model observer

0 0.02 0.04 0.06 0.08 0.1
−1

0

1

2

3

4

t in s

x 2 in
 c

m
/s

0 0.02 0.04 0.06 0.08 0.1
58

58.1

58.2

58.3

58.4

58.5

58.6

58.7

58.8

t in s

k

Figure 7.2: Comparison of the Results for the tracking observer and the verified state and pa-
rameter estimator for [δ1] = [−0.001; 0.001].
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Figure 7.3: Comparison of the deviations from the reference trajectories for
[δ1] = [−0.001; 0.001].
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8 Conclusions and Outlook on Future
Research

In this thesis two different approaches for verified state and parameter estimation have
been compared. In the first approach the extended state vector consisting of system state
variables and uncertain system parameters is enclosed by multiple interval vectors. The
second approach employs Taylor models. Taylor models have the advantage of providing
tight enclosures of non convex regions often with a single Taylor model. Interval vectors are
easy to manipulated e.g., when the intersection of two interval vectors has to be determined.
The manipulation of Taylor model is, however, rather difficult if the set described by a
Taylor models should be intersected with an interval vector. This leads to the fact that the
correction step is more difficult to implement in this approach. Another drawback is the lack
of merging routines which enables efficient merging of two similar Taylor models.
Depending on the nature of the measurement equation and on the time horizon of interest
one or the other of the two estimators is doing better. The comparison of the results for
three applications point out that in average the Taylor model provided tighter enclosures of
the estimated states and parameters. Given these results, a combination of both approaches
is strongly recommended.
Reapproximation during the estimation by an interval observer was carried out at prespecified
points of time – but not adaptively. In further research heuristics for determining points of
time when the reapproximation is carried out have to be developed. The consistency tests
presented in Section 4.2 have not been applied when performing the presented estimations
with the interval observer in Chapter 5. Future research should include these techniques in
the estimation process. Similar to the application of the reapproximation, criteria have to
be developed for determining points of time when the consistency tests should be applied.
Further work relating the Taylor model observer should include a comparison of the different
preconditioning techniques in the prediction step and an optimization of the correction step.
The consistency tests in the correction step have only be applied in the illustrative example.
The method has to be extended to more complex applications. For that purpose criteria
have to be developed when to apply the consistency test.
The development of algorithms which allow not only for tightening of the domain interval
vector in the correction step, but also for a reduction of the width of the interval remainder
would be an important contribution for improving the estimation quality.
In future research other integration methods in the prediction step have to be employed and
compared with the existing methods. For example the Taylor series expansion in time for the
interval observer can be replaced by ValEncIA-IVP [4] and instead of COSY-VI, VSPODE
[42] can be used, which is also based on Taylor models. The enclosures in ValEncIA-IVP
are determined by an approximate solution and a time-depending interval enclosure of the
deviation from the exact solution. It belongs in a wider sense to the so called defect based
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methods. In VSPODE the expansion in time is done as described in Section 4.1. The
dependency on the initial states and parameters are represented by Taylor models. It is
therefore a combination of the approaches from Section 4.1 and 4.4.

The verified observability analysis in Section 5.1 determines a guaranteed enclosure of those
state and parameter values for which the system is observable. To use this method for systems
with higher dimensionality, automatic differentiation methods to calculate the higher Lie-
derivatives have to be applied, since the analytical expressions grow very quickly with each
further differentiation.

In Chapter 6 it has been shown how interval methods can be used successfully to verify
for which parameter values a controlled system with a traditional observer concept leads to
trajectories, which are within specified bounds around the reference trajectory. The methods
can help to chose between different controllers depending on the situation. The algorithm
for the robustness analysis described in Chapter 6 is based on Taylor models. Since Taylor
models perform an expansion in the initial state vector, it is possible to split the domain
interval vector of the initial state vector also for Taylor models at tk > 0 and continue
the integration for the new Taylor models at tk. This will lead to a drastic reduction of
computation time.
The robustness analysis is of course also feasible with verified integration methods based on
interval vectors.

Chapter 7 contains results for a VSPE in closed loop control, where the estimated results are
directly used in the control law. The mid-points of the interval enclosures of the estimated
state variables and parameters are used in the controller. In future work more efficient
criteria for choosing the values for the controller have to be developed.

Also, a comparison with stochastic estimation approaches has to be considered in future re-
search. A comparison of these two completely different estimation approaches is inherently
difficult. It can be expected that depending on how the given uncertainty can be better
modeled the corresponding estimation approach will perform better. However, an investiga-
tion in this direction will give a confirmation of this assumption.
Also a combination of set-based and stochastic estimation approaches should be considered,
since many systems are affected by both set valued and stochastic uncertainty.

Many real world systems are described by differential algebraic equations (DAEs) or partial
differential equations(PDEs). To extent the presented estimation techniques to these kind
of systems a lot of work has to be done, since interval methods for DAEs and PDEs are not
as developed as the algorithms for the treatment of ODEs.
Also more complicated friction models including hysteresis effects have to be taken into
account.

Interval methods are still far from being accepted as standard tools in engineering. The
work presented in this thesis demonstrates that they can be successfully applied to real world
applications. The presented estimation methods have been run in cygwin under Windows.
By the time this work was completed some of the presented algorithms have been run on both
cygwin and Linux. Under Linux also a newer compiler could be used. The computation was
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5 to 10 times faster when using Linux. And for the main part of the algorithms developed
during this work a parallelization can easily be done, enabling real time applications for a
larger class of systems.
This will lead to an increasing acceptance of interval methods in the field of engineering.



A Examples for Taylor Model Based
Verified Integration of ODEs

A.1 Nonlinear Example

The Lotka-Volterra equations are given by:

ż1 = z1(a− bz2) ,

ż2 = z2(cz1 − d) .
(A.1)

For a = b = c = d = 1 the equations become

ż1 = z1(1− z2) ,

ż2 = z2(z1 − 1) .
(A.2)

The initial state variables are z1(0), z2(0) ∈ [45; 55]. The order of the Taylor model is set to
ρ = 3. A constant step-size hk = h = 0.001 is used. The initial state variables are rewritten
according to

z1(0) ∈ 50 + 5z1 ,

z2(0) ∈ 50 + 5z2 ,
(A.3)

with z1, z2 ∈ [−1; 1] and ẑ1 = 0 and ẑ2 = 0. The initial initial Taylor model Tρ,0 is then
defined by

Tρ,1,0(z) = 50 + 5z1 ,

Tρ,2,0(z) = 50 + 5z2 .
(A.4)

The First Time Step

In the first integration step the ODE is integrated for t ∈ [t0; t1] = [0;h]. The results are
displayed up to the 6-th decimal digit.

Calculation of the Polynomial Part.

First the polynomial part is determined. The initial polynomial part P (0) with its components
P

(0)
1 and P

(0)
2 in the first integration step is given by

P
(0)
1 (z, t− t0) = 50 + 5z1 ,

P
(0)
2 (z, t− t0) = 50 + 5z2 .

(A.5)
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With t0 = 0 the first Picard iteration yields

P
(1)
1 (z, t) = P

(0)
1 (z, t) +

∫ t

0

P
(0)
1 (z, t′)(1− P

(0)
2 (z− ẑ, t′))dt′

= 50− 2450t+ 5z1 − 245tz1 − 250tz2 − 25tz1z2 ,

P
(1)
2 (z, t) = P

(0)
2 (z, t) +

∫ t

0

P
(0)
2 (z, t′)(P

(0)
1 (z, t′)− 1)dt′

= 50 + 2450t+ 5z2 + 250tz1 + 25tz1z2 + 245tz2 .

(A.6)

Omitting terms higher than ρ = 1 results in

P
(1)
1 (z, t) = 50 + 5z1 − 2450t ,

P
(1)
2 (z, t) = 50 + 5z2 + 2450t .

(A.7)

The second Picard iteration is then given by

P
(2)
1 (z, t) = P

(0)
1 +

∫ t

0

P
(1)
1 (z, t′)(1− P

(1)
2 (z, t′))dt′ ,

P
(2)
2 (z, t) = P

(0)
2 +

∫ t

0

P
(1)
2 (z, t′)(P

(1)
1 (z, t′)− 1)dt′ .

(A.8)

Omitting terms higher than ρ = 2 leads to

P
(2)
1 (z, t) = 50− 2450t+ 5z1 − 245tz1 − 250tz2 − 1225t2 ,

P
(2)
2 (z, t) = 50 + 2450t+ 5z2 + 250tz1 + 245tz2 − 1225t2 .

(A.9)

After the third Picard iteration (omitting terms higher than order ρ = 3) the polynomial
part becomes

P
(3)
1 (z, t) = 50− 2450t+ 5z1 − 1225t2 − 245tz1 − 250tz2

−25tz1z2 − 12745/2t2z1 + 6125t2z2 + 6123775/3t3 ,

P
(3)
2 (z, t) = 50 + 2450t+ 5z2 − 1225t2 + 250tz1 + 245tz2 + 25tz1z2

+6125t2z1 − 12745/2t2z2 − 6123775/3t3 , (A.10)

and the desired polynomial Pρ(z, t) = P
(3)
1 (z, t) has been determined. Note, that for ẑ 6= 0

powers of (zi − ẑi) would occur, e.g. (z1 − ẑ1)(z2 − ẑ2)
2.

Now an appropriate interval remainder bound Iρ,1 has to be found such that

O(Pρ(z, t) + Iρ,1) ⊂ Pρ(z, t) + Iρ,1 ,

∀z ∈ [z] and ∀t ∈ [t0; t1] = [0;h] .
(A.11)
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Calculation of the Interval Remainder

First an initial error estimate I
(0)
ρ,1 with its components I

(0)
ρ,1,1 and I

(0)
ρ,2,1 has to be determined

according to

Pρ,1(z, t) + I
(0)
ρ,1,1 = z1(0) +

∫ t

0

(Pρ,1(z, t
′) + [0; 0])(1− (Pρ,2(z, t

′) + [0; 0]))︸ ︷︷ ︸
P̂ρ,1+Î

(0)
ρ,1,1

dt′

= Tρ,1,0(z) +

∫ t

0

P̂ρ−1,1(z, t
′)dt′

+
{
B(P̂ρ,1(z, t

′)− P̂ρ−1,1(z, t
′)) + Î

(0)
ρ,1,1

}
· ([t0; t1]− t0)

= Pρ,1(z, t) +
{
B(P̂ρ,1(z, t)− P̂ρ−1,1(z, t)) + Î

(0)
ρ,1,1

}
· ([t0; t1]− t0)︸ ︷︷ ︸

=[0;h]

= 50− 2450t+ 5z1 − 1225t2 − 245tz1 − 250tz2

−25tz1z2 − 12745/2t2z1 + 6125t2z2 + 6123775/3t3 + [−0.002627; 0.002597] ,

Pρ,2(z, t) + I
(1)
ρ,2,1 = z2(0) +

∫ t

0

(Pρ,2(z, t
′) + [0; 0])(Pρ,1(z, t

′) + [0; 0]− 1)︸ ︷︷ ︸
P̂ρ,2+Î

(0)
ρ,2,1

dt′

= Tρ,2,0(z) +

∫ t

0

P̂ρ−1,2(z, t
′)dt′

+
{
B(P̂ρ,2(z, t

′)− P̂ρ−1,2(z, t
′)) + Î

(0)
ρ,2,1

}
· (t1 − t0)

= Pρ,2(z, t) +
{
B(P̂ρ,2(z, t

′)− P̂ρ−1,2(z, t
′)) + Î

(0)
ρ,2,1

}
· (t1 − t0)︸ ︷︷ ︸

=h

= 50 + 2450t+ 5z2 − 1225t2 + 250tz1 + 245tz2 + 25tz1z2

+6125t2z1 − 12745/2t2z2 − 6123775/3t3 + [−0.002596; 0.002628] . (A.12)

Here only one iteration is performed for the calculation of the initial interval remainder. For
h = 0.001 the following error bounds are obtained:

I
(0)
ρ,1 =

(
I

(0)
ρ,1,1

I
(0)
ρ,2,1

)
=

(
[−0.002627; 0.002597]
[−0.002596; 0.002628]

)
. (A.13)

This initial estimation is inflated by the factor 1.1

I
(1)
ρ,1 =

(
I

(1)
ρ,1,1

I
(1)
ρ,2,1

)
=

(
[−0.002889; 0.002857]
[−0.002855; 0.002891]

)
. (A.14)

Now the Picard iteration is repeated for this remainder:

Pρ,1(z, t) + I
∗(1)
ρ,1,1 = O1(Pρ(z, t) + I

(1)
ρ,1) = Pρ,1(z, t) + [−0.002656; 0.002626]

⊆ Pρ,1(z, t) + I
(1)
1,1 = Pρ,1(z, t) + [−0.002889; 0.002857] ,

Pρ,2(z, t) + I
∗(1)
ρ,2,1 = O2(Pρ(z, t) + I

(1)
ρ,1) = Pρ,2(z, t) + [−0.002625; 0.002658]

⊆ Pρ,2(z, t) + I
(1)
2,1 = Pρ,2(z, t) + [−0.002855; 0.002891] .

(A.15)
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Hence, the inclusion requirement is already fulfilled after the first inflation and the corre-
sponding Taylor model provides a enclosure of the flow for 0 ≤ t ≤ 0.001.

Now the refinement procedure is applied, which implies the recursive application of the
Picard iteration. Here, two further iterations are applied. Denoting Ĩ

(0)
ρ,1 = I

(1)
ρ,1 the first

iteration gives

Pρ,1(z, t) + Ĩ
(1)
ρ,1,1 = O1(Pρ(z, t) + Ĩ

(0)
ρ,1) = Pρ,1(z, t) + [−0.00263; 0.0026]

⊆ Pρ,1(z, t) + Ĩ
(0)
ρ,1,1 = Pρ,1(z, t) + [−0.002656; 0.002626] ,

Pρ,2(z, t) + Ĩ
(1)
ρ,2,1 = O2(Pρ(z, t) + Ĩ

(0)
ρ,1) = Pρ,2(z, t) + [−0.0026; 0.002632]

⊆ Pρ,2(z, t) + Ĩ
(0)
ρ,2,1 = Pρ,2(z, t) + [−0.002625; 0.002658] .

(A.16)

After one more iteration the refined Taylor model

Pρ,1(z, t) + Ĩ
(2)
ρ,1,1 = O1(Pρ(z, t) + Ĩ

(1)
ρ,1) = Pρ,1(z, t) + [−0.002627; 0.002597]

⊆ Pρ,1(z, t) + Ĩ
(1)
ρ,1,1 = Pρ,1(z, t) + [−0.00263; 0.0026] ,

Pρ,2(z, t) + Ĩ
(2)
ρ,2,1 = O2(Pρ(z, t) + Ĩ

(1)
ρ,1) = Pρ,2(z, t) + [−0.002597; 0.002628]

⊆ Pρ,2(z, t) + Ĩ
(1)
ρ,2,1 = Pρ,2(z, t) + [−0.002656; 0.002632]

(A.17)

is obtained. With Iρ,1 = Ĩ
(2)
ρ,1 The final Taylor model enclosing the flow for 0 ≤ t ≤ 0.001 is

Tρ,1(z, t) = Pρ(z, t) + Iρ,1 with z ∈ [−1; 1]2 and t ∈ [0; 0.001] . (A.18)

This Taylor model is now evaluated for t = 0.001 and the enclosure of the flow of the ODE
after the first time-step is then represent by the Taylor model

Tρ,1(z) = Pρ,1(z) + Iρ,1 (A.19)

with

Tρ,1,1(z) = Pρ,1,1(z) + Iρ,1,1

= 47.550816 + 4.748627z1 − 0.243875z2 − 0.025z1z2 + [−0.002627; 0.002597] ,

Tρ,2,1(z) = Pρ,2,1(z) + Iρ,2,1

= 52.446734 + 0.256125z1 + 5.238627z2 + 0.025z1z2 + [−0.002597; 0.002628] .

(A.20)

The Second Time Step

In the second integration step the ODE is integrated for [t1; t2] = [t1; t1 +h] = [0.001; 0.002].
The initial polynomial P (0) for the determination of the polynomial part Pρ(z, t− t1) is given
by the polynomial part of the Taylor model Tρ,1 at t = 0.001, hence

P
(0)
1 (z, t− t1) = 47.550816 + 4.748627z1 − 0.243875z2 − 0.025z1z2 ,

P
(0)
2 (z, t− t1) = 52.446734 + 0.256125z1 + 5.238627z2 + 0.025z1z2 .

(A.21)
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Then, the first Picard iteration

P
(1)
1 (z, t− t1) = P

(0)
1 (z) +

∫ t

t1

P
(0)
1 (z, t′ − t1)(1− P

(0)
2 (z, t′ − t1))dt

′ ,

P
(1)
2 (z, t− t1) = P

(0)
2 (z) +

∫ t

t1

P
(0)
2 (z, t′ − t1)(P

(0)
1 (z, t′ − t1)− 1)dt′

(A.22)

is applied. Omitting terms higher than ρ = 1 after the first iteration results in

P
(1)
1 (z, t) = 47.550816− 2446.334183(t− t1) + 4.748627z1 − 0.243875z2 ,

P
(1)
2 (z, t) = 52.446734 + 2441.433826(t− t1) + 0.256125z1 + 5.238627z2 .

(A.23)

The second Picard iteration

P
(2)
1 (z, t− t1) = P

(0)
1 +

∫ t

t1

P
(1)
1 (z, t′ − t1)(1− P

(1)
2 (z, t′ − t1))dt

′ ,

P
(2)
2 (z, t− t1) = P

(0)
2 +

∫ t

t1

P
(1)
2 (z, t′ − t1)(P

(1)
1 (z, t′ − t1)− 1)dt (A.24)

yields (after truncation of terms higher than ρ = 2 )

P
(2)
1 (z, t− t1) = 47.550816 + 4.748627z1 − 0.243875z2 − 2446.333418(t− t1)

−0.025z1z2 − 256.480327(t− t1)z1

−236.553444(t− t1)z2 + 4881.760493(t− t1)
2 ,

P
(2)
2 (z, t− t1) = 52.446734 + 340.256125z1 + 5.238627z2 + 2441.438265(t− t1)

+0.025z1z2 + 260.972829(t− t1)z1

+231.071939(t− t1)z2 − 7325.646718(t− t1)
2 . (A.25)

After the third Picard iteration the desired polynomial P (3) is obtained with

P
(3)
1 (z, t− t1) = 47.550816 + 4.748627z1 − 0.243875z2 − 2446.333418(t− t1)− 0.025z1z2

−256.480327(t− t1)z1 − 236.554441(t− t1)z2 + 4881.760493(t− t1)
2

−1.216242z2
1(t− t1)− 24.71643z1z2(t− t1)

+1.2775z2
2(t− t1)− 5090.6547z1(t− t1)

2

+7296.566668z2(t− t1)
2 + 0.202325 · 107(t− t1)

3 ,

P
(3)
2 (z, t− t1) = 52.446734 + 0.256125z1 + 5.238627z2 + 2441.438265(t− t1) + 0.025z1z2

+260.972829(t− t1)z1

+231.071939(t− t1)z2 − 7325.646718(t− t1)
2 +

+1.216242z2
1(t− t1)− 24.664301z1z2(t− t1)− 1.27757z2

2t

+4831.928178z1(t− t1)
2 − 7530.379858z2(t− t1)

2

−0.201918 · 107(t− t1)
3 . (A.26)

Now again an appropriate interval remainder bound Iρ,2 has to be found such that

O(Pρ(z, t− t1) + Iρ,2) ⊆ Pρ(z, t− t1) + Iρ,2

with Pρ(z, t− t1) = P (3)(z, t− t1)

∀z ∈ [z] and ∀t ∈ [t1; t2] = [h; 2h] = [0.001; 0.002] .

(A.27)
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The application of

Pρ,1(z, t− t1) + I
(0)
ρ,1,2 = O1(Pρ(z, t− t1) + [0; 0])

= Tρ,1,1(z) +

∫ t

t1

(Pρ,1(z, t
′ − t1) + [0; 0])(1− (Pρ,2(z, t

′ − t1) + [0; 0]))dt′

= Pρ,1,1(z) + Iρ,1,1 +

∫ t

t1

(Pρ,1(z, t
′ − t1) + [0; 0])(1− (Pρ,2(z, t

′ − t1) + [0; 0]))dt′ ,

Pρ,2(z, t) + I
(0)
ρ,2,2 = O2(Pρ(z, t− t1) + [0; 0])

= Tρ,2,1(z) +

∫ t

t1

(Pρ,2(z, t
′ − t1) + [0; 0])((Pρ,1(z, t

′ − t1) + [0; 0])− 1)dt′

= Pρ,2,1(z) + Iρ,2,1 +

∫ t

t1

(Pρ,2(z, t
′ − t1) + [0; 0])((Pρ,1(z, t

′ − t1) + [0; 0])− 1)dt′

(A.28)

results in the initial estimate

I
(0)
ρ,2 =

(
I

(0)
ρ,1,2

I
(0)
ρ,2,2

)
=

(
[−0.006213; 0.006205]
[−0.006226; 0.006237]

)
. (A.29)

This initial estimation is inflated by the factor 1.1:

I
(1)
ρ,2 =

(
I

(1)
ρ,1,2

I
(1)
ρ,2,2

)
=

(
[−0.006834; 0.006825]
[−0.006881; 0.006861]

)
. (A.30)

Another Picard iteration yields in

Pρ,1(z, t− t1) + I
∗(1)
ρ,1,2 = O1(Pρ(z, t− t1) + I

(1)
ρ,2)

= Tρ,1,1 +

∫ t

t1

(Pρ,1(z, t
′ − t1) + I

(1)
ρ,1,2)(1− (Pρ,2(z, t

′ − t1) + I
(1)
ρ,2,2))dt

′

= Pρ,1,1(z, t− t1) + Iρ,1,1 +

∫ t

t1

(Pρ,1(z, t
′ − t1) + I

(1)
ρ,1,1)(1− (Pρ,2(z, t

′ − t1) + I
(1)
ρ,2,2))dt

′

= Pρ,1,1(z, t− t1) + [−0.006284; 0.006275] ⊂ Pρ,1,1(z, t− t1) + Iρ,1,1

= Pρ,1,1(z, t− t1) + [−0.006834; 0.006825] ,

Pρ,2(z, t) + I
∗(1)
ρ,2,2 = O2(Pρ(z, t− t1) + I

(1)
ρ,2)

= Tρ,2,1(z) +

∫ t

t1

(Pρ,2(z, t
′ − t1) + I

(1)
ρ,2,2)((Pρ,1(z, t

′ − t1) + I
(1)
ρ,1,2)− 1)dt′

= Pρ,2,1(z, t− t1) + Iρ,2,1 +

∫ t

t1

(Pρ,2(z, t
′ − t1) + I

(1)
ρ,2,2)((Pρ,1(z, t

′ − t1) + I
(1)
ρ,1,2)− 1)dt′

= Pρ,1,1(z, t− t1) + [−0.006296; 0.006308] ⊂ Pρ,1,1(z, t− t1) + Iρ,1,1

= Pρ,1,1(z, t− t1) + [−0.006848; 0.006861] .

(A.31)

Again the inclusion requirement is fulfilled after the first inflation. After two additional
applications of the Picard iteration for the refinement of the remainder bounds, the final
remainder error is given by

Iρ,2 =

(
Iρ,1,2

Iρ,2,2

)
=

(
[−0.006215; 0.006207]
[−0.006227; 0.006239]

)
. (A.32)



A Examples for Taylor Model Based Verified Integration of ODEs 199

The final Taylor model enclosing the flow for t ∈ [t1; t2] = [t1; t1 + h] = [h; 2h] is

Tρ,2(z, t−t1) = Pρ,2(z, t−t1)+Iρ,2 with z ∈ [−1; 1]2 and t ∈ [t1; t2] = [t1; t1+h] = [h; 2h] .
(A.33)

To obtain the Taylor model enclosing the flow at t = t2 = t1 +h = 0.001+0.001 = 0.002 this
Taylor model has to be evaluated for t = t2 = 0.002 or alternatively the expressions t − t1
are replaced by h. This yields the Taylor model after the second integration step:

Tρ,2(z) = Pρ,2(z) + Iρ,2 (A.34)

with

Tρ,1,2(z) = Pρ,1,2(z) + Iρ,1,2

= 45.111387 + 4.487056z1 − 0.473132z2 − 0.001216z2
1 − 0.049716z1z2 + 0.0012775z2

2

+[−0.006215; 0.006207] ,

Tρ,2,2(z) = Pρ,2,2(z) + Iρ,2,2

= 54.878827 + 0.519297z1 + 5.462169z2 + 0.001216z2
1 + 0.049666z1z2 − 0.0012775z2

2

+[−0.006227; 0.006239] . (A.35)

A.2 Nonlinear Example with Preconditioning

Consider again the Lotka-Volterra equations (A.2). In each integration step, the left Taylor
models are constructed via QR factorization of the linear parts of the integrated Taylor
models of the previous integration step. The initial state variables are given by z1(0), z2(0) ∈
[45; 55]. The order is again set to ρ = 3 in time and initial conditions and the step-size to
h = 0.001. All numbers are again displayed rounded to six decimal digits.

In the first integration step the initial set at t = 0 is described by the left Taylor model Tl,0

with

Tl,1,0 = 50 + 5z̄1 ,

Tl,2,0 = 50 + 5z̄2 with z̄1, z̄2 ∈ [−1; 1] .
(A.36)

The right Taylor model Tr,0 a t = 0 is the identity Taylor model

Tr,1,0 = z1 ,

Tr,2,0 = z2 with z1, z2 ∈ [−1; 1] .
(A.37)

The first integration step is performed as in Section A.1 , but as described in Section 4.4.2
the left Taylor model is affected, hence the left Taylor model at t = 0.001 is given by

Ťl,1,1(z̄) = P̌l,1,1(z̄) + Ǐl,1,1

= 47.550816 + 4.748627z̄1 − 0.243875z̄2 − 0.025z̄1z̄2 + [−0.002627; 0.002597] ,

Ťl,2,1(z̄) = P̌l,2,1(z̄) + Ǐl,2,1

= 52.446734 + 0.256125z̄1 + 5.238627z̄2 + 0.025z̄1z̄2 + [−0.002597; 0.002628] .

(A.38)
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The right Taylor model has been unaffected by the integration so far. Now the left Taylor
model is preconditioned before the integration is continued. The linear parts of Ťl,2,1 and
Ťl,1,1 are extracted and the Matrix Č1 is obtained, with

Č1 =

(
4.748627 −0.243875
0.256125 5.238627

)
. (A.39)

Sorting of Č1 yields

˜̌C1 =

(
−0.243875 4.748627
5.238627 0.256125

)
. (A.40)

The QR-decomposition leads to

˜̌C :=

(
−0.243875 4.748627
5.238627 0.256125

)
=

(
−0.046502 0.998918
0.998918 0.046502

)
·
(

5.244300 0.035023
0 4.7553400

)
=: QR .

(A.41)

The left Taylor model in the second integration step is constructed from the constant parts
of Ťl,1,1 and Ťl,2,1 and from Q. This leads to

T̄l,1,1 = 47.550816− 0.046502z̄1 + 0.998918z̄2 ,

T̄l,2,1 = 52.446734 + 0.998918z̄1 + 0.046502z̄2 .
(A.42)

The nonlinear parts and the interval remainders of Ťl,1,1 and Ťl,2,1 are collected in the right
Taylor models. According to (4.174) the right Taylor models become

T̄r,1,1 = 0.03502z1 + 5.244273z2 + 0.00261z1z2 + Īr,1,1 ,

T̄r,2,1 = 4.75537z1 − 0.00238z1z2 + Īr,2,1

(A.43)

with Īr,1,1 = [−0.002714; 0.002748] and Īr,2,1 = [−0.002745; 0.002717]. The composition of
the left Taylor model T̄l and the right Taylor model T̄r

T̄1 = T̄l,1,1(T̄r,1,1, T̄r,2,1) = P̄l,1,1(T̄r,1,1, T̄r,2,1) + Īl,1,1

= 47.550816− 0.046502 · T̄r,1,1 + 0.998918 · T̄r,2,1

= 47.550816 + 4.7486z1 − 0.243875z2 − 0.025z1z2 + Īl,1,1 ,

T̄2 = T̄l,2,1(T̄r,1,1, T̄r,2,1) = P̄l,2,1(T̄r,1,1, T̄r,2,1) + Īl,2,1

= 52.446734 + 0.998918 · T̄r,1,1 + 0.046502 · T̄r,1,2

= 52.446734 + 0.256125z1 + 5.238627z2 + 0.025z1z2 + Īl,2,1 .

(A.44)

gives indeed the same polynomial part like Ťl however the remainder bounds(
Īl,1,1

Īl,2,1

)
= Q ·

[
QT ·

(
Ǐl,1,0

Ǐl,2,0

)]
=

(
[−0.00286; 0.00284]
[−0.00283; 0.002871]

)
(A.45)

are slightly wider:

Ī1,1 = [−0.00286; 0.00284] ⊃ Ǐl,1,1 = [−0.002627; 0.002597] ,

Ī2,1 = [−0.00283; 0.002871] ⊃ Ǐl,2,1 = [−0.002597; 0.002628] .
(A.46)

Still, in most nonlinear systems preconditioned integration is the superior method with
respect to accuracy in the long run. The advantage of preconditioning becomes only apparent
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after several integration steps. Note, that for the integration algorithm the computation of
the composition is not required.
For the right Taylor models in (A.43)

Rg(T̄r,1,1) ⊆ 0.03502 · [−1; 1] + 5.244273 · [−1; 1]

+ 0.00261 · [−1; 1] · [−1; 1] + [−0.002714; 0.002748] = [−5.30543; 5.30544] ,

Rg(T̄r,2,1) ⊆ 4.75537 · [−1; 1]− 0.00238 · [−1; 1] · [−1; 1] + [−0.00274; 0.00272]

= [−4.77918; 4.77919]

(A.47)

holds. To continue the integration of the flow, with only the left hand Taylor model, the
flow of the ODE has to be enclosed by left Taylor model. Therefore either the domain of
the independent variables z̄ of the left Taylor model are modified and the integration be
continued with

T̄l,1,1 = 47.5508− 0.04650z̄1 + 0.998918z̄2 ,

T̄l,2,1 = 52.4467 + 0.99892z̄1 + 0.046502z̄2

with z̄1 ∈ [−5.30543; 5.30544], and z̄2 ∈ [−4.77918; 4.77918]

(A.48)

or the left and right Taylor model can be modified by an additional Transformation using
a Scaling matrix S as described in Section 4.4.2 such that the domain interval vector for z̄

remains [−1; 1]n. To ensure this a linear transformation on the left and right Taylor model
according to

T̄l,1 ◦ T̄r,1 = T̄l,1 ◦ (S ◦ S−1) ◦ T̄r,1 = (T̄l,1 ◦ S) ◦ (S−1 ◦ T̄r,1) (A.49)

has to be applied such that
Rg((S−1 ◦ T̄r,1)) ⊆ [−1; 1]n (A.50)

holds. In this example

S−1 =

(
0.1885 0

0 −0.2092

)
(A.51)

is obtained. Thus for S,

S =

(
5.30544 0

0 −4.77918

)
(A.52)

holds. The new left Taylor model Tl,1 is then given by

Tl,1,1 = 47.5508− 0.24685z̄1 − 4.77678z̄2 ,

Tl,2,1 = 52.4467 + 5.30246z̄1 − 0.22237z̄2

with z̄1, z̄2 ∈ [−1; 1] .

(A.53)

The corresponding right Taylor models are

Tr,1 = S−1◦T̄r,1 =

(
0.1885 0

0 −0.2092

)
·
(

0.03502z1 + 5.244273z2 + 0.00261z1z2 + Īr,1,1

4.75537z1 − 0.00238z1z2 + Īr,2,1

)
.

(A.54)

For the second integration step the initial set defined by Tl,1. The integrated left Taylor
model Ťl,2 becomes

Ťl,1,2 = 45.111387− 0.478998z̄1 − 4.515291z̄2 + 0.001308z̄2
1 − 0.025273z̄1z̄2

−0.001062z̄2
2 + Ǐl,1,1 ,

Ťl,2,2 = 54.878827 + 5.528730z̄1 − 0.488162z̄2 − 0.001388z̄2
1

−0.025273z̄1z̄2 + 0.001062z̄2
2 + Ǐl,2,1 . (A.55)
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with Ǐl,1,1 = [−0.002901; 0.002929] and Ǐl,2,1 = [−0.002950; 0.002926].

The flow at t2 is then given by the composition of the integrated Taylor model Ťl,2 and the
previous Taylor model Tr,1, which results in

Tρ,2 = Ťl,2 ◦ Tr,1 (A.56)

with

Tρ,1,2 = Ťl,1,2(Tr,1,1, Tr,2,1) = 45.111387 + 4.487056z1 − 0.4731328z2 − 0.001216z2
1

−0.049654z1z2 + 0.001275z2
2 − 0.000112z2

1z2

+0.000137z1z
2
2 + [−0.0057772; 0.005769] ,

Tρ,2,2 = Ťl,2,2(Tr,1,1, Tr,2,1) = 54.878827 + 0.521929z1 + 5.462169z2 + 0.001216z2
1

+0.049604z1z2 − 0.001275z2
2 + 0.000112z2

1z2

−0.000137z1z
2
2 + [−0.005777; 0.005769] . (A.57)

As mentioned above, for continuing the integration the calculation of the composition of the
left and right Taylor model is not required.
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