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Abstract

We describe an encoding of major parts of domain theory in the PVS extension of
the simply�typed ��calculus� these encodings consist of�

� Formalizations of basic structures like partial orders and complete partial orders
�domains��

� Various domain constructions�

� Notions related to monotonic functions and continuous functions�

� Knaster�Tarski �xed�point theorems for monotonic and continuous functions�
the proof of this theorem requires Zorn	s lemma which has been derived from
Hilbert	s choice operator�

� Scott	s �xed�point induction for admissible predicates and various variations of
�xed�point induction like Park	s lemma�

Altogether
 these encodings form a conservative extension of the underlying PVS
logic
 since all developments are purely de�nitional�
Most of our proofs are straightforward transcriptions of textbook knowledge� The

purpose of this work
 however
 was not to merely reproduce textbook knowledge� To
the contrary
 our main motivation derived from our work on fully mechanized compiler
correctness proofs
 which requires a full treatment of �xed�point induction in PVS�
these requirements guided our selection of which elements of domain theory were
formalized�
A major problem of embedding mathematical theories like domain theory lies in

the fact that developing and working with those theories usually generates myriads
of applicability and type�correctness conditions� Our approach to exploiting the PVS
device of judgements to establish many applicability conditions behind the scenes leads
to a considerable reduction in the number of the conditions that actually need to be
proved�
Finally
 we exemplify the application of mechanized �xed�point induction in PVS

by a mechanized proof in the context of relating di�erent semantics of imperative
programming constructs�

�This paper appeared as the technical report UIB������ from the Universit�at Ulm� Fakult�at f�ur Infor�
matik	 This research has been funded in part by the Deutsche Forschungsgemeinschaft 
DFG� under
project �Veri�x
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Formalizing Fixed�Point Theory in PVS

�� Introduction

Domain theory is concerned with the existence and uniqueness of solutions of equations as
canonical least �xed�points� It forms the mathematical basis of denotational semantics for
programs and is used in systems like LCF �GMW�	� for reasoning about non�termination
partial functions and in�nite�valued data types such as lazy lists and streams�

In this paper we describe an encoding of major parts of domain theory in the
PVS �ORSvH	�� system a speci�cation and veri�cation tool which bases on Church�s
higher�order logic �simply�typed ��calculus�� More precisely our encodings consist of�

� Formalizations of basic structures like partial orders and complete partial orders
�cpo�s domains��

� Various domain constructions like �at cpo�s discrete cpo�s predicate cpo�s or func�
tion cpo�s�

� Notions related to monotonic functions and continuous functions�

� Knaster�Tarski �xed�point theorems for monotonic and continuous functions� the
proof of the �xed�point theorem for monotonic functions requires Zorn�s lemma
which has been derived from Hilbert�s choice operator�

� Scott�s �xed�point induction principle for admissible predicates and various varia�
tions of �xed�point induction like Park�s lemma�

Altogether these encodings form a conservative extension of the underlying PVS logic
since all developments are purely de�nitional�

Most of these encodings and proofs are straightforward transcriptions of textbook
knowledge from Loeckx and Sieber �LS��� Winskel �Win	�� Schmidt �Sch��� and
Gunter �Gun	��� It was not our intention however to slavishly reproduce textbook knowl�
edge� To the contrary our main motivation came from the speci�c requirements of the
Veri�x project for constructing formal compiler correctness proofs that require the use of
�xed�point induction �see for example �MO	� DvHPR	���� these requirements guided
our selection of what parts of domain theory we formalized� We did not expect to �nd
major bugs in the textbooks developments since domain and �xed�point theory are well�
established mathematical �elds� However in the course of developing formal proofs we
were able to detect slight generalizations of theorems found in textbooks that streamlined
our proofs�

Another motivation for this work is to investigate the suitability of various devices of the
PVS speci�cation language like parameterized theories for encoding mathematical theories
and the use of some distinctive features of PVS like semantic subtypes and judgements�

A major problem of semantically embedding mathematical theories like domain theory
and �xed�point theory lies in the fact that both developing these theories and working
with them usually generates myriads of applicability conditions� i�e� one must prove all
the time that a certain structure is a complete partial order a monotonic or continuous

�



Formalizing Fixed�Point Theory in PVS

function or an admissible predicate� In order to reduce the number of generated applica�
bility conditions we have made heavy use of judgements a feature recently introduced to
PVS that allow additional type information to be passed to the typechecker� Instantia�
tion of a formal parameter requiring a monotonic function with a continuous function f
for example causes the PVS type�checker to generate the veri�cation condition that f is
monotonic� Declaration of the judgement

JUDGEMENT Continuous SUBTYPE OF Monotonic

however causes the type�checker to suppress this veri�cation condition since this fact can
now be deduced behind the scenes�

We think that the main contribution of this work is an extensive formalization of domain�
theoretic concepts to support reasoning about �xed�points that other people can use read�
ily or accommodate and extend it to their own purposes� Moreover other encodings may
bene�t from this work in the way parameterized theories and predicate subtypes are used
to formalize mathematical structures and in the way judgements are used to suppress
immense numbers of veri�cation conditions when working with the theory�

��� Overview

This paper is organized as follows� After comparing our encodings with work that we think
is most closely related with ours we give a brief overview in Section � on the PVS system
and some of its distinctive features that support encoding of mathematical structures
like domain or �xed�point theory� Section � comprises the main part of this paper and
includes descriptions of the PVS formalizations of complete partial orders monotonicity
continuity admissibility various domain constructions �xed�point theorems and �xed�
point induction� This part also contains quite a lot of PVS text which has sometimes been
slightly edited for presentation purposes especially when describing the interaction with
the prover we do not include in our presentation hypotheses and conclusions that are not
needed any more to �nish the proof� In Section � we demonstrate an application of this
mechanized �xed�point theory by proving the while�rule of the Hoare calculus from a state
transformer semantics of the while�statement� Finally Section � contains some concluding
remarks about the suitability of PVS for formalizing mathematical structures and our
encodings of domain and �xed�point theory are listed in the Appendix� the complete PVS
sources and proofs are available from the �rst or the last author upon request�

��� Related Work

The work by Agerholm �Age	� Age	�� and Regensburger �Reg	� Reg	�� is most
closely related to ours� The overall aim of their work is to combine HOL �GM	�� with
LCF �GMW�	 Pau��� in order to take advantage of the LCF �xed�point theory for rea�
soning about arbitrary �continuous� functions and in�nite�valued data types and the
simple type theory of HOL which supports reasoning about �nite�valued data types and
�higher�order� primitive recursion� Since LCF only deals with continuous functions both

�



Formalizing Fixed�Point Theory in PVS

Agerholm and Regensburger only mechanize the �xed�point theorem and �xed�point in�
duction for continuous functions�

Agerholm �Age	� Age	�� describes an embedding of the LCF logic in the HOL �GM	��
theorem proving system� His basic approach is to encode domains as a pair �set�D�� ���
consisting of a carrier set set�D� and and a relation �� and constructions of domains by
means of functions from pairs to pairs� This choice of encoding has the consequence that
a new type discipline on domains has to be introduced� Continuous functions from a
domain set�D� to a domain set�E� for example are encoded by a HOL function f	 D


� E� Since HOL is restricted to total functions function f above must be determined for
elements outside set�D�� Agerholm �Age	� Age	�� deals with these problems by providing
syntactic notations for writing domains continuous functions and admissible predicates�
These are implemented by an interface and a number of syntactic�based proof functions�
Altogether Agorholm�s extension of HOL constitutes an integrated system where the
domain theory constructs look almost primitive to the user and many facts are proved
behind the scenes to support this view�

It seems to be more desirable however to prove domain�theoretic facts once and for

all and to encode these facts as type information of the underlying system� In this way
Regensburger �Reg	� Reg	�� extends the HOL object logic of Isabelle �Pau	�� with
domain�theoretic notions by employing Isabelle�s type class mechanism� This mechanism
permits abstracting developments over mathematical structures like partial orders and
domains� Instead of type classes we use the concept of predicate subtypes to parameterize
with respect to mathematical structures� for the fact that the type system of PVS does
not include Hindley�Milner style polymorphism we employ theory parameterization in
order to parameterize with respect to types� It is well beyond the scope of this paper to
compare type classes with predicate subtype mechanisms� but type classes seem to be
more powerful than the predicate subtype mechanism currently implemented in PVS in
that they include conventient subtype relations like �every complete partial order is a
partial order�� On the other hand their expressiveness is restricted since for example
dependencies between type class parameters can not be expressed�

�� A Brief Description of the PVS Speci�cation Language

The purpose of this section is to provide a brief overview of PVS and to introduce some
de�nitions that are used in the sequel� more details can be found in �ORSvH	���

The PVS system combines an expressive speci�cation language with an interactive proof
checker that has a reasonable amount of theorem proving capabilities� The PVS speci�ca�
tion language builds on classical typed higher�order logic with the usual base types bool
nat among others and the function type constructor �A 
� B�� The type system of PVS
is augmented with dependent types and abstract data types�

Predicates in PVS are simply elements of type bool and pred�D� for an arbitrary type
D is a notational convenience for the function type �D 
� bool�� Since sets can be deter�
mined by a property in the sense that the set has as elements precisely those which satisfy

�
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the property the type set�D� is just a notational variant of pred�D� and it comprises all
sets with elements of type D�

With the notation introduced so far one can easily de�ne the �possibly in�nite� union of
a set of predicates over some type D as stated in � �

����PP� set�pred�D���� pred�D� �

LAMBDA �d� D�� EXISTS � p��PP��� p�d�	

It is not di�cult to see that above de�nition coincides with the least upper bound of
PP now interpreted as the set of sets over type D� In the following we also make use of
computing the image set image�f��A� of function f with respect to a subset A of D and
the image fset image�ff��x� of a set of functions ff at point x��

�set
image�f� �D �� R���A�set�D��� set�R� �

f y� R  EXISTS � x� �A��� y � f�x� g

fset
image�ff� set��D �� R����x� D�� set�R� �

f y� R  EXISTS � f� �ff��� f�x� � y g

Notice that these de�nitions make use of specialized set notation and that the arguments
are curried�

A distinctive feature of the PVS speci�cation language are predicate subtypes fx	A �

P�x�g� These subtypes consist of exactly those elements of type A satisfying predicate P�
Predicate subtypes are used to explicitly constrain the domain and ranges of operations
in a speci�cation and to de�ne partial functions�

In general type�checking with predicate subtypes is undecidable� the type�checker gener�
ates proof obligations so�called type correctness conditions �TCCs� in cases where type
con�icts cannot immediately be resolved� A large number of TCCs are discharged by spe�
cialized proof strategies and a PVS expression is not considered to be fully type�checked
unless all generated TCCs have been proved� If an expression that produces a TCC is used
many times the typechecker repeatedly generates the same TCC� The use of judgements

can prevent this� There are two kinds of judgements�

JUDGEMENT � HAS
TYPE �even� even �� even�

JUDGEMENT Continuous SUPTYPE
OF Monotonic

The �rst form a constant judgement asserts a closure property of  on the subtype of
even natural numbers� The second one a subtype judgement asserts that a given type is
a subtype of another type� The typechecker generates a TCC for each judgement to check
the validity of the assertion but will then use the information provided further on� Thus
many TCCs can be suppressed� For the various function images in �  for example the
following judgements proved to be most useful for our encodings�

�Given a predicate 
or set� p of type pred�D� 
or set�D��� the notation �p� is just an abbreviation for
the predicate subtype f x� D  p�x� g� this notational convenience is used heavily in the sequel	

�



Formalizing Fixed�Point Theory in PVS

�JUDGEMENT set
image HAS
TYPE

��D �� R� �� ��nonempty��D�� �� �nonempty��R����

JUDGEMENT fset
image HAS
TYPE

��nonempty���D �� R��� �� �D �� �nonempty��R����

PVS speci�cations are packaged as theories that can be parametric in types and constants�
A built�in prelude and loadable libraries provide standard speci�cations and proved facts
for a large number of theories�

The theory example in �  for example is parameterized with respect to a non�empty
type D a binary predicate �� on this type and an element bottom of D�

�example�D� TYPE�� le�pred��D� D��� bottom� D�� THEORY

BEGIN

ASSUMING

is
cpo � ASSUMPTION cpo��D��le� bottom�

ENDASSUMING

���

END example

Furthermore the semantic constraint is cpo restricts possible theory instantiations to
complete partial orders� since whenever a parameterized theory is instantiated the PVS
type�checking mechanism generates TCCs according to the given assumptions� Instead
of using the assumption mechanism one could restrict possible instantiations of �� and
bottom by decorating them with corresponding predicate subtypes� It is not possible how�
ever to abstract theories with respect to a single formal parameter that can be instantiated
with complete partial orders�

In the sequel we do not always state exact theory parameterization but only use informal
descriptions such as �given the complete partial order �D� ��� bottom� � � � � for the
example theory in � � Moreover declarations of the context are given as comments where
necessary�

Finally we sketch some characteristics of the PVS prover� Proofs in PVS are presented
in a sequent calculus� The atomic commands of the PVS prover component include in�
duction quanti�er instantiation conditional rewriting simpli�cation using arithmetic and
equality decision procedures and type information and propositional simpli�cation� The
skosimp� command for example repeatedly introduces constants �of the form x�i� for
universal�strength quanti�ers and assert combines rewriting with decision procedures�
PVS has an LCF�like strategy language for combining inference steps into more powerful
proof strategies� The de�ned rule grind for example combines rewriting with quanti�er
reasoning and propositional and arithmetic decision procedures� this strategy is also the
workhorse for proving a large number of our formalization of domain theory�

�The predicate cpo� is de�ned in Section �	�	
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�� Formalizations

This chapter describes formalizations of complete partial orders �domains� continuous
and monotonic functions some basic domain constructions the Knaster�Tarksi �xed�point
theorem for monotonic functions and various �xed�point induction principles� We start
with some preliminary development on partial orders since the theory of complete partial
orders rests on the concept of the least upper bound of a set�

��� Partial Orders

Given a partial order �D� ��� an element x of type D is said to be an upper bound of the
subset A of D if d �� x for all d in A� x is said to be the least upper bound �lub� of A �in
D� if x is the least element of the set of all upper bounds of A in D� The notions of upper
bounds and least upper bounds are respectively formalized by the predicates ub��x� A�

and lub��x� A� in � � In addition the set of upper bounds and least upper bounds of A
are respectively collected in the subsets UB�A� and LUB�A� of D�

�po�D� TYPE�� ����partial
order��D���� THEORY

BEGIN

x� y� VAR D

A � VAR set�D�

ub��x� A� � bool � FORALL �a� �A��� a �� x

UB�A� � set�D� � f x� D  ub��x� A� g	
lub��x� A� � bool � ub��x�A� AND FORALL �y� �UB�A���� x �� y

lub
exists��A�� bool � EXISTS x� lub��x�A�

Lub
Exists � TYPE� � �lub
exists��

LUB�A�� set�D� � fx�D  lub��x�A� g

B� VAR Lub
Exists

lub�B�� �LUB�B�� � choose�LUB�B��

JUDGEMENT lub HAS
TYPE �B� Lub
Exists �� �UB�B���

���

END po

The least upper bound lub�B� of a subset B of D with a non�empty set LUB�B� is obtained
by choosing an arbitrary element from LUB�B� using Hilbert�s choice�operator�

The judgement in � states the obvious fact that every least upper bound is also an
upper bound� This judgement has to be stated explicitly since the currently implemented
judgement mechanism does not allow for judgements with free variables as in � �

�JUDGEMENT LUB�B� SUBTYPE
OF UB�B�

�
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One way to circumvent this arbitrary restriction however is to declare judgements like
the one in � in a separate theory parameterized by B�

Predicate min��x� A� in � tests if x is a minimum of the set A and the minimums of
such a set are collected in Min�A��

�min��x� A�� bool � A�x� AND FORALL � y� �A��� y �� x IMPLIES x � y

Min�A�� set�D� � f x� D  min��x� A� g

Encodings of the corresponding notions of lower bounds lb greatest lower bounds glb and
maximums max� are analogous�

��� Complete Partial Orders

This section formalizes the notions of complete partial orders �domains� and domain con�
structions which are important for the mathematical description of programming lan�
guages�

The concept of a chain is crucial for the de�nition of domains� Given a partial order �D�
��� a nonempty set S with elements of type D is called a chain �in D� if the ordering
relation �� restricted to S is linear�

�S� VAR �nonempty��D��

chain��S�� bool � FORALL �x� y� �S��� �x �� y� OR �y �� x�

Chain � TYPE � �chain��

Now we have collected all the ingredients to represent complete partial orders �cpo��

�d � VAR D

��� VAR �partial
order��D��

precpo����� � bool � FORALL �C� Chain�D������ lub
exists��D�����C�

bottom������d�� bool � FORALL �x� D�� d �� x

cpo����� d� � bool � precpo����� AND bottom������d�

pCPO� TYPE � �precpo��

CPO � TYPE � �cpo��

A partial order �D� ��� is a pre�cpo if for every chain C in D the least upper bound lub�C�

exists� If in addition the type D has a least element bottom then �D� ��� bottom� is
called a cpo �or domain�� Notice that the encodings of these concepts in � are only param�
eterized by the type D and the semantic restrictions for pre�cpo�s and cpo�s are respectively
parameterized by �� and the pair ���� bottom�� This permits de�ning the predicate sub�
type pCPO�D� comprising all partial orders �� over type D that satisfy predicate precpo�

�
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and the predicate subtype CPO�D� for the pairs ���� bottom� for which predicate cpo�

holds�

Given a pre�cpo �D� ��� the following judgement directs the type�checker to suppress
TCCs corresponding to the de�nition of pre�cpo�s�

��� D� TYPE�� ��� pCPO�D�

JUDGEMENT Chain�D� ��� SUBTYPE
OF Lub
Exists�D� ���

Similarly for a cpo �D� ��� bottom� one can for example show that empty sets have
lub�s namely the bottom element�

��� D� TYPE� ��� pCPO�D�� bottom� �bottom������

JUDGEMENT �empty��D�� SUBTYPE
OF Lub
Exists�D� ���

A simple example of a cpo is the type of Booleans equipped with implication �� and the
bottom element FALSE�

��JUDGEMENT IMPLIES HAS
TYPE �partial
order��bool��

JUDGEMENT IMPLIES HAS
TYPE pCPO�bool�

JUDGEMENT FALSE HAS
TYPE �bottom��IMPLIES��

Thus the pair �IMPLIES� FALSE� is of type CPO�bool��

Finally we want to express the fact that CPO is a subtype of pCPO� One possibility is to
specify the projection ordering from cpo�s into precpo�s in �� as an implicit coercion
via the CONVERSION declaration�

��ordering�cpo� CPO�� preCPO � proj
��cpo�

CONVERSION ordering

This declaration causes the PVS type�checker to implicitly coerce objects cpo of type CPO
to ordering�cpo� whenever an object of type preCPO is expected� In this way formal
parameters of type pCPO can be instantiated with actual parameters of type CPO�

��� CPO Constructions

In the previous sections we have introduced a number of concepts of domain theory by
their semantic de�nitions� In this section we introduce four example constructions on
cpo�s namely discrete pre�cpo�s �at cpo�s function space cpo�s and predicate cpo�s�

�
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����� Discrete pre	CPOs

For every nonempty type D the pair �D� �� forms both a partial order and a pre�cpo the
so�called discrete pre�cpo for D� Discrete cpo�s are useful for making arbitrary PVS types
into pre�cpo�s�

��� D� TYPE� This is a Comment�

JUDGEMENT � HAS
TYPE �partial
order��D��

only
trivial
chains � LEMMA

FORALL �C� Chain�D� ���� unique��C�

JUDGEMENT � HAS
TYPE pCPO�D�

All chains in a discrete cpo are trivial since the unique��C� predicate from the PVS
prelude holds if and only if there is at most one element of D in the set C�

����� Lifting

Using the lifting construction one can construct a domain from an arbitrary non�empty
type by adding a bottom element�

��flat�D� TYPE��� DATATYPE

BEGIN

elem�arg� D�� elem�

bot � bot�

END flat

CONVERSION elem

Technically we construct a polymorphic sum type flat in �� as a non�recursive data
type with two constructors elem for injecting elements of type D and a constructor bot for
the added bottom element� The conversion declaration in �� causes the PVS type�checker
to implicitly coerce elements d of type D to elem�d� whenever an element of type flat�D�
is expected� The type flat�D� equipped with the partial order �� as de�ned in �� and
the constant bot forms a cpo�

��� D� TYPE�

���d�� d�� flat�� bool � �d� � d�� OR �d� � bot�

JUDGEMENT �� HAS
TYPE �partial
order��flat��

JUDGEMENT �� HAS
TYPE pCPO

flat
is
cpo� LEMMA cpo����� bot�
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����� Function Domains

Let D be an arbitrary nonempty type and �R� ��� bottom� be a cpo then one can show
that the function type �D 
� R� equipped with the pointwise ordering also forms a cpo�
In order to make these notions precise we �rst de�ne pointwise orderings on functions�

Given a type D a partial order �R� ��� and functions f g of type �D 
�R� f is said
to be pointwisely smaller than g if the result of applying f to some argument is always
smaller �now with respect to the ordering on the codomain R� than the result of applying
g to this very same argument�

��� D� R� TYPE�� le� �partial
order��R��

���f� g� �D �� R�� � bool � �FORALL �x� D�� le�f�x�� g�x��

JUDGEMENT �� HAS
TYPE �partial
order���D �� R���

JUDGEMENT fset
image HAS
TYPE �Chain��D �� R�� ��� �� �D �� Chain�R� le���

JUDGEMENT fset
image HAS
TYPE

�Lub
Exists��D �� R�� ��� �� �D �� Lub
Exists�R� le���

Pointwise ordering on functions �D 
� R� is a partial order if �R� ��� is a partial order�
The last two judgements in �� state that the fset image as de�ned in � preserves both
the chain property and the existence of least�upper bounds�

Now given a non�empty type D and a pre�cpo �R� le� the structure ��D 
� R�� ���

with �� the pointwise ordering on this function space can be shown to form a pre�cpo�

��� D� R� TYPE�� le� pCPO�R�

JUDGEMENT pointwise�D� R� le���� HAS
TYPE pCPO��D �� R��

If in addition the bottom element on the function space �D 
� R� denoted by abort
is taken to be the constant function that always returns the bottom element of the co�
domain cpo over type R then in addition the structure ��D 
� R�� ��� abort� forms
a cpo�

��� D� R� TYPE�� le� pCPO�R�� bottom� �bottom��le��

abort� �D �� R� � LAMBDA �x� D�� bottom

JUDGEMENT abort HAS
TYPE �bottom��D �� R��

����� Predicate CPOs

Predicates on some arbitrary type D are elements of type pred�D� �or set�D���

�
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�����p� q� pred�D��� bool � FORALL �x� D�� p�x� IMPLIES q�x�	

bottom� pred�D� � �LAMBDA �x� D�� FALSE�

top � pred�D� � �LAMBDA �x� D�� TRUE�

���p� q� pred�D��� pred�D� � �LAMBDA �x� D�� p�x� AND q�x��

���p� q� pred�D��� pred�D� � �LAMBDA �x� D�� p�x� OR q�x��

It is straightforward to establish that �pred�D�� ��� bottom� with the partial order ��
and the bottom element as de�ned above form a cpo �actually a complete lattice��

The de�nition of �� in �� and the proof that �pred�D�� ��� forms a pre�cpo however
are super�uous since this proof can be �inherited� using theory import of more basic
constructions�

More precisely the following import de�nes the pointwise ordering �� on pred�D� and
establishes the fact that pred�bool� is a partial order �see �� ��

��IMPORTING pointwise�D� bool� IMPLIES�

The theory import in �� generates the TCC that �bool� IMPLIES� forms a partial order�
this has already been shown in �� � Further theory import of the theory described in ��

provides us with the fact that �pred�D�� ��� forms a pre�cpo� Thus it only remains to
show that the bottom element as de�ned in �� indeed is a bottom element�

��JUDGEMENT bottom HAS
TYPE �bottom��pointwise�D� bool� IMPLIES������

Finally in the case of predicates the least upper bound of a set of predicates PP always
exists and is given by the disjunction of all the predicates in PP �see � ��

��PP� VAR set�pred�sigma��

pred
lub� LEMMA lub�PP� � ���PP�

��� Monotonic Functions

Let poD and poR respectively be the two partial orders �D� ��� and �R� ���� then one
de�nes the subset of monotonic functions �see �� � in the usual way� Moreover constant
functions are monotonic and serve as witnesses for the nonemptyness of the space of mono�
tonic functions� Another remarkable fact is expressed by the judgement for set image

in �� � It states that set image�f� for f monotonic transforms chains over the domain
D into chains over the co�domain R�

�Technically� a theory identi�er like poD is de�ned in PVS by the declaration poD� THEORY � po�D� ���

��
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��� D� TYPE�� ��� �partial
order��D�� R� TYPE� ��� �partial
order��R��

monotonic��f� �D �� R��� bool �

FORALL �s��s�� D�� s� �� s� IMPLIES f�s�� �� f�s��

const
monotonic� LEMMA

FORALL �c� R�� monotonic��LAMBDA �x� D�� c�

Monotonic� TYPE� � �monotonic��

JUDGEMENT monotonic� HAS
TYPE �nonempty���D �� R���

JUDGEMENT set
image HAS
TYPE �Monotonic �� �poD�Chain �� poR�Chain��

lub
of
monotonic
func� LEMMA

FORALL �f� Monotonic� L� poD�Lub
Exists��

lub
exists��set
image�f��L�� IMPLIES

�lub�set
image�f��L�� �� f�lub�L���

The rather technical lemma lub of monotonic func in �� has been included into this
text since it forms a major part of the lemma le pred admissible in ��  which is crucial
in the proof of the �xed�point theorem for monotonic functions�

��� Continuous Functions

The subset of continuous functions in �� comprises all functions intuitively speaking
which are compatible with the construction of least upper bounds� More precisely given
two pre�cpo�s �D� le D� �R� le R� a function f with domain D and codomain R is said
to be continuous if for every chain C in the partial order D the least upper bound of the
image f�C� exists and if f�lub�C�� � lub�f�C���

��continuous��f� �D �� R��� bool �

FORALL �C� poD�Chain��

lub
exists��set
image�f��C�� AND f�lub�C�� � lub�set
image�f��C��

Continuous� TYPE� � �continuous��

JUDGEMENT Continuous SUBTYPE
OF Monotonic

The judgement permits using continuous functions whenever a monotonic function over
the same domain D and codomain R is expected and suppresses the generation of TCCs
in these cases�

Given a type D and a pre�cpo �R� ��� the set of functions from the discrete pre�cpo �D�

�� �see �� � to the pre�cpo �R� ��� are continuous�

��� D� R� TYPE�� ��� pCPO�R�

JUDGEMENT �D �� R� SUBTYPE
OF Continuous�D� �� R� ���

Finally given three pre�cpo�s �A� ��� �B� ��� �C� ��� one can easily prove that func�
tion composition as de�ned polymorphically in the PVS prelude preserves continuity�

��
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��contAB� THEORY � continuous�A� ��� B� ���

���

JUDGEMENT o HAS
TYPE

�contAB�continuous� contBC�continuous �� contAC�continuous�

Here continuous����� denotes an instantiation of the theory where the subset of con�
tinuous functions is de�ned� An analogous judgement about function composition holds
for partial orders A B C and monotonic functions�

��� Admissibility

Fixed�point induction �see ������ requires the concept of admissible predicates as de�ned
in �� � Moreover we use the concept of admissibility and some related facts for proving
the �xed�point theorem for monotonic functions in ������

Let �D� ��� be a pre�cpo and P be a predicate on D� The predicate P is called admissible
�see �� � if for every chain C the least upper bound of C satis�es P whenever all elements
of C do� admissible predicates over D are collected in the predicate subtype Admissible�

��admissible��P� pred�D��� bool �

FORALL �C� Chain�� every�P��C� IMPLIES P�lub�C��

Admissible � TYPE � �admissible��

Some su�cient conditions for admissibility are listed in �� � These kinds of theorems are
used heavily for establishing admissibility of predicates mainly in �xed�point induction
proofs�

��JUDGEMENT �� HAS
TYPE �Admissible� Admissible �� Admissible�

JUDGEMENT �� HAS
TYPE �Admissible� Admissible �� Admissible�

JUDGEMENT �� HAS
TYPE

�f PP� set�pred�D��  every�admissible���PP�g �� Admissible�

Using the �rst two judgements above the type�checker is able to deduce for example
admissibility of P �� �Q �� R� �� Q from the admissibility of P Q and R automatically�
The last judgement in �� states that arbitrary possibly in�nite conjunctions of admissible
predicates are admissible�

The lemma continuous admissible implies that statements about continuity are admis�
sible for the pointwise function cpo� here �D� ��� and �R� ��� are pre�cpo�s�

��
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��� D� TYPE�� ��� pCPO�D�� R � TYPE�� ��� pCPO�R�

continuous
admissible� LEMMA

admissible���D��R�� pointwise�����continuous��

cont
pred
admissible� LEMMA

FORALL �f� Continuous� P� Admissible�R� �����

admissible��D� ����LAMBDA d� P�f�d���

le
pred
admissible� LEMMA

FORALL � f� Continuous� g� Monotonic��

admissible��D� ����LAMBDA d� f�d� �� g�d��

The last two lemmas in �� state su�cient conditions for admissibility predicates involving
continuous functions� Notice that lemma le pred admissible in �� is a slight general�
ization � at least for the case n � � � of Theorem ���� on p� �� in �LS��� since Loeckx
and Sieber require both f and g to be continuous� This generalization is actually needed
in our proof of the �xed�point theorem in ������

Moreover for a type D and a cpo �D� ��� bottom� the monotonic� predicate is admis�
sible�

��� D� TYPE�� ��� �partial
order��D���

� R� TYPE�� ��� pCPO�R�� bottom� �bottom��R������

monotonic
admissible� LEMMA

admissible���D �� R�� pointwise�����monotonic��

Using this result it is not di�cult for example to show that the monotonic functions with
pointwise ordering and the function always returning bottom form a cpo�

��� Formalization of Fixed	Point Theory

��
�� Fixed	Points

Let �D� ��� be a partial order and f of type �D 
� D� be some function� one says x of
type D is the least �xed�point of f if x � f�x� and whenever y � f�y� one has x �� y�
the set predicate least fixpoint��f� in �� formalizes this notion and the type LFP�f�
comprises all least �xed points of f� Whenever the set of least �xed�points for a function
f is nonempty we say that the �xed�point for this function exists�

��
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��� D� TYPE�� ��� �partial
order��D��

x� y� VAR D	

f� VAR �D �� D�

fixpoint��f��x�� bool � �f�x� � x�

least
fixpoint��f��x� � bool �

fixpoint��f��x� AND FORALL y� fixpoint��f��y� IMPLIES x �� y

least
fix
unique� LEMMA unique��least
fixpoint��f��

mu
exists��f�� bool � nonempty��least
fixpoint��f��

LFP�f� � TYPE � �least
fixpoint��f��

Mu
Exists � TYPE � �mu
exists��

lfp
singleton � COROLLARY

FORALL �f� Mu
Exists�� singleton��least
fixpoint��f��

mu�f� Mu
Exists�� LFP�f� � choose�least
fixpoint��f��

Lemma least fix unique in �� states that least �xed�points are unique and the proof
of this lemma uses the fact that �� is antisymmetric �since it is a partial order��

In the case of continuous functions f it is straightforward to characterize the least �xed�
point as the least upper bound of the set obtained by repeatedly applying f to the least
element of its domain� Here however we want to deal with arbitrary functions f for which
the least �xed�point denoted by mu�f� exists� Thus we restrict the domain of mu to the
predicate subtype Mu Exists and the de�nition of mu�f� involves Hilbert�s ��operator to
choose an arbitrary value from the �nonempty� set of least �xed�points for f��

From the de�nitions in �� it is straightforward to prove that every least �xed�point of f
is equal to mu�f� and the well�known �xed�point equality f�mu�f�� � mu�f��

��mu
rew � LEMMA least
fixpoint��f��x� IMPLIES x � mu�f�

mu
is
fixpoint� LEMMA FORALL �f� Mu
Exists�� f�mu�f�� � mu�f�

These lemmas are proved by repeatedly unfolding de�nitions� in addition the proof of
mu rew also requires the lemma lfp singleton from �� �

��
�� Fixed	Point Theorem for Monotonic Functions

The key result for reasoning about �xed�points is the celebrated Knaster�Tarski �xed�point
theorem� The theorem by Knaster �Kna��� applied only to power sets and Tarski �Tar���
generalized it to complete lattices� In this section we describe a mechanized proof of the
Knaster�Tarski theorem for monotonic functions on cpo�s� this presentation closely follows
the proof outline given in �Ber	���

�choose�S� �nonempty��D���� �S� � epsilon�S� is de�ned in the PVS prelude	

��
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If �D� ��� bottom� is a cpo then the Knaster�Tarski �xed�point theorem states that the
least �xed�point exists for monotonic functions which in our terminology reads as follows�

��� D� TYPE�� �� � pCPO�D�� bottom � �bottom������

JUDGEMENT Monotonic SUBTYPE
OF Mu
Exists

This judgement generates a type�correctness condition that is closer to mathematical
practice�

��FORALL �f� Monotonic�� mu
exists��f�

The proof of the Knaster�Tarski �xed�point theorem for monotonic functions is much
harder than the one for continuous functions and involves the use of the following variant
of Zorn�s lemma�

��� D� TYPE�� ��� partial
order��D�

IMPORTING po�D� ���

A� VAR �nonempty��D��

C� VAR Chain

Zorns
lemma� LEMMA

�FORALL C� subset��C� A� IMPLIES nonempty��D��intersection�A� UB�C����

IMPLIES nonempty��D��Max�A��

Informally Lemma zorn in �� states� if every chain restricted to elements of some
nonempty set S with elements in D has an upper bound in S then S possesses a max�
imal element� Zorn�s lemma can be shown to be equivalent to the Axiom of Choice� Our
proof of Zorn�s lemma in the PVS logic however uses Hilbert�s ��operator which is
equivalent to the Axiom of Choice��

Furthermore the main notion in the following proof of the �xed�point theorem is that
of f�closed sets� These sets are required to contain the bottom element they must be
admissible� and whenever y is in such a set then f�y� is also in this set� This leads to the
de�nition of f�closed subsets S of D by the predicate closed��f��S�in �� �

��f� VAR Monotonic	 S� VAR set�D�

step
closed��f��S�� bool � �FORALL �y� �S��� S�f�y���

closed��f��S�� bool �

contains��bottom��S� AND step
closed��f��S� AND admissible��S�

�Our encodings for the proof of Zorn�s lemma are listed in Appendix G� and the complete proof of Zorn�s
lemma from the ��operator can be obtained from the �rst or the last author upon request	

�Here� the argument to admissible� 
see �� � is interpreted as a set over D	
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Now we have collected all the ingredients to describe the proof of the �xed�point the�
orem �� for monotonic functions� This proof de�nes the least �xed�point of f as the
maximum of the smallest f�closed set� Following �Ber	�� the proof is split intro three
parts�

First we de�ne the smallest f�closed set denoted by the de�nition X�f� in �� �

��X�f�� set�D� � ���closed��f��

JUDGEMENT X HAS
TYPE �Monotonic �� �contains��bottom���

JUDGEMENT X HAS
TYPE �f� Monotonic �� �step
closed��f���

JUDGEMENT X HAS
TYPE �Monotonic �� Admissible�

X
is
closed � LEMMA closed��f��X�f��

X
is
least
closed� LEMMA closed��f��S� IMPLIES subset��X�f�� S�

The proofs of the TCCs corresponding to the contains��bottom� and step closed judge�
ments in �� are trivial and admissibility of X�f� is proved by skolemization unfolding
of the de�nition X and use of lemma adm and inf in Appendix E���� These steps result
in the following trivial subgoal�

��������

��	 every
admissible��D� ���
closed�
f����

In addition X is closed in �� follows directly from these judgements and
X is least closed is proved automatically �using grind��

��u�f�� D � choose�Max�X�f���

JUDGEMENT u HAS
TYPE �f� Monotonic �� �Max�D� ����X�f����

JUDGEMENT u HAS
TYPE �f� Monotonic �� �X�f���

The least �xed�point of f is de�ned in �� as an arbitrary maximum element of X�f��
For the semantic constraint on possible arguments to choose u�f� is only well�de�ned
if there is a maximum element in X�f� and consequently the type�checker generates the
proof obligation nonempty��D��Max�X�f���� Application of Zorn�s lemma �see �� � and
introduction of type information for X�f��� �see �� � yields the following subgoal�

���	 admissible��D� ��
X
f����

���� subset�
C��� X
f����

��������

��	 nonempty��D�
intersection
X
f���� UB
C�����

Using the de�nition of admissible �see �� � this subgoal reduces to��

�Lemma adm and inf corresponds to the last judgement in �� 	
�Using the fact that every�P��S� is equivalent to subset��S� P�	

��
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���	 X
f���
lub
C����

���� subset�
C��� X
f����

��������

��� nonempty��D�
intersection
X
f���� UB
C�����

For the �rst assumption lub�C��� is an element of X�f��� and we can reduce the original
goal using some more unfolds on de�nitions to the following simple fact about least upper
bounds�

��������

��	 ub�
lub
C���� C���

This concludes the proof of the applicability condition nonempty��D��Max�X�f��� and
consequently the de�nition of u�f� in �� is well�de�ned� it remains to show that u�f�
indeed is the least �xed�point of f� In the second part of this proof of the �xed�point
theorem it is shown that u�f� is a �xed�point of f and the third part �nishes the proof
by showing that u�f� is the least �xed�point of f�

In order to show that u�f� is a �xed�point one de�nes the set E�f� of f�expanded elements
in ��  and shows that this set is f�closed�

��E�f�� set�D� � f x� D x �� f�x� g

E
is
closed � LEMMA closed��f��E�f��

Obviously bottom is in E�f� and the proof of the second condition for f�closedness involves
monotonicity of f� both conditions are proved automatically with grind� Furthermore
admissibility follows directly from rewriting with le pred admissible �see �� � and a
lemma const continuous expressing the continuity of the function returning a constant
value �see Appendix E���� Notice that the latter fact is needed to establish the applicability
condition of le pred admissible when instantiated with the identity function�

Since X�f� is the smallest f�closed set and E�f� is f�closed the set X�f� is a subset of
E�f�� Thus u�f� is a member of E�f� and consequently u�f� �� f�u�f��� On the other
hand since f�u�f�� is also in X�f� it follows from the maximality property of u�f� that
f�u�f�� is not strictly larger than u�f�� Thus u�f� is a �xed�point of f�

��u
is
fixed
point� LEMMA fixpoint��f��u�f��

Skolemization introduction of type information for u�f��� and X�f��� reduces the lemma
above to proving the following subgoal�

���� X
f���
f��
u
f�����

���� X
f���
u
f����

���� FORALL 
y� 
X
f������ u
f��� � y IMPLIES u
f��� � y

��������

��� 
f��
u
f���� � u
f����

��
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More speci�cally introduction of type information for u�f��� yields for the judge�
ments in ��  the hypotheses �
�� and �
�� and introduction of type information for
X�f��� yields after some trivial manipulations the hypothesis �
��� Now instantiation
of y in hypothesis �
�� with f���u�f���� use of the facts E is closed �see �� � and
X is least closed �see �� � instantiation of the quanti�ers y with f���u�f���� and
propositional reasoning leaves us to prove�

���� subset�
X
f���� E
f����

���� X
f���
u
f����

��������

��� u
f��� � f��
u
f����

From the de�nition of E it is immediate that this goal holds since u�f��� is an element of
X�f��� and X�f��� is a subset of E�f���� PVS discharges this proof obligation without
any further interaction�

In the third part of our proof of the �xed�point theorem it remains to show that u�f� is
the least �xed�point of f� We �rst de�ne the set V�x� of elements smaller or equal to x
and show that this set is f�closed provided x is a �xed�point of f�

��V�x�� set�D� � fy� D  y �� xg

V
is
closed� LEMMA fixpoint��f��x� IMPLIES closed��f��V�x��

u
is
least
fixpoint� LEMMA least
fixpoint��f��u�f��

JUDGEMENT u HAS
TYPE �f� Monotonic �� LFP�f��

KnasterTarski� THEOREM

mu
exists��f�

JUDGEMENT Monotonic SUBTYPE
OF Mu
Exists

The only non�trivial part of the f�closedness proof of V�x� involves admissibility of V�x��
This can be shown using le pred admissible �see �� � instantiated with the identity
function and the constant function since both functions are continuous� Thus rewrit�
ing with these facts establishes the admissibility condition for V�x�� Finally lemma
u is least fixpoint in �� requires u�f��� �� y�� for an arbitrary �xed�point y���
Since V�x� is f�closed �Lemma V is closed in �� � and X�f��� is the smallest f�closed
set �Lemma V is least closed� this reduces to the trivial goal�

���� subset�
X
f���� V
y����

��������

��� u
f��� � y��

This �nishes the proof of u is least fixpoint and consequently of the Knaster�Tarski
�xed�point theorem� Furthermore using lemma mu rew �see �� � one concludes that the
de�nitions for mu�f� in �� and u�f� in �� coincide for monotonic functions f�

��mu
char� LEMMA mu�f� � u�f�

�	
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��
�� Fixed	Point Induction

Let �D� ��� bottom� be a cpo and P be an admissible predicate then �xed�point induc�
tion is stated as follows�

��f� VAR Monotonic	 P� VAR Admissible

fp
induction
mono� THEOREM

�P�bottom� AND �FORALL x� P�x� IMPLIES P�f�x����

IMPLIES P�mu�f��

From the hypotheses it is clear that the set of elements for which P holds is f�closed� i�e�
closed��f��P� holds� Thus using the lemmas X is least closed �see �� � and mu char

�see �� � one is reduced to show�

���	 subset�
X
f���� P���

��������

��� P��
u
f����

This trivially �nishes the proof since u�f��� is a member of X�f��� according to the last
judgement in �� � consequently a call to the strategy grind �nishes the proof�

The �xed�point induction principle can be given a somewhat shorter formulation for a
common special case�

��park� LEMMA f�x� �� x IMPLIES mu�f� �� x

The proof of Park�s Lemma follows from �xed�point induction instantiated with the pred�
icate �LAMBDA y	 y �� x� and the proof of admissibility of this predicate is analogous
to the admissibility proof for establishing lemma V is closed in �� �

The following variant of �xed�point induction has also proved to be useful in many cases�

��P� Var Admissible

fp
induction
mono
le� LEMMA

�P�bottom� AND FORALL x� P�x� AND x �� f�x� IMPLIES P�f�x���

IMPLIES P�mu�f��

It is proved by applying fp induction mono to the predicate P �� E�f� and admissi�
bility of this predicate follows from adm and in ��  le pred admissible in ��  and
identity continuous in Appendix E���

Finally whenever the argument function say g of �xed�point induction is not only mono�
tonic but also continuous one can prove in the usual way the following specialization of
the �xed�point induction principle for monototonic functions�

�
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��� D� TYPE�� ��� pCPO�D�� bottom� �bottom������

g� VAR Continuous

fp
induction
cont� THEOREM

FORALL �P� Admissible��

�P�bottom�

� �FORALL �i� nat�� P�iterate�g� i��bottom��

IMPLIES P�iterate�g� i � ���bottom����

IMPLIES

P�mu�g��

For a full account of �xed�points and �xed�point induction for continuous functions see
the theory fixpoints cont in Appendix H���

�� Example� Fixed	Point Induction in PVS

In the previous section we showed how to embed a considerable fragment of domain and
�xed�point theory� This embedding has been used for example to encode the semantics
of simple imperative programming constructs based on state transitions and to derive the
well�known Hoare calculus rules �PDvHR	��� In this chapter we shall consider a simple
example to illustrate the use of �xed�point induction in the PVS prover� Other mechanized
�xed�point induction proofs in the context of program semantics and compiler correctness
proofs are described in �PDvHR	� DvHPR	���

First we review some notions of the mechanized semantics described in �PDvHR	��� There
the notion of state transformers srel provides the basis for the denotational semantics of
statements for a given state type sigma�

��srel� TYPE � �sigma �� set�sigma��

The partial ordering on srel is obtained by importing the theory pointwise �see �� �� The
partial ordering on the range of srel is set inclusion which is itself de�ned by instantiating
pointwise�

��IMPORTING pointwise�sigma� bool� ���

IMPORTING pointwise�sigma� set�sigma�� pointwise�sigma�bool��������

Notice that the theory imports above generate proof obligations corresponding to the
semantic requirements on actual theory parameters of the theory pointwise� Thus we
have to show that both �bool� ��� and �set�sigma�� pointwise�sigma�bool��������

form partial orders� The �rst conditions follows from �� and the second one from �� and
from �� �

The state transformer mapping every state to the empty set is the least element with
respect to �� and is called abort�

��
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��abort � srel � LAMBDA �s�sigma�� emptyset

JUDGEMENT �� HAS
TYPE pCPO�srel�

JUDGEMENT abort HAS
TYPE �bottom�srel������

Since every type sigma forms a discrete pre�cpo �see �� � and sets together with set
inclusion are a cpo �see �� � functions of type srel can shown to be continuous using the
results in �� � Moreover �srel� ��� abort� is a cpo�

Given these de�nitions one can easily de�ne state transformers for some simple imperative
programming statements� for example� in �� �

��f� g� X� VAR srel

b � VAR set�sigma�

skip � srel � LAMBDA s� singleton�s�	

���f� g� � srel � LAMBDA s� image�g� f�s��	

IF�b� f� g�� srel � LAMBDA s� IF b�s� THEN f�s� ELSE g�s� ENDIF	

PSI�b� f� � �srel �� srel� �

LAMBDA X� IF b THEN f �� X ELSE skip ENDIF	

while�b� f�� srel � mu�PSI�b� f��	

It is straightforward to prove the following monotonicity result about the while�functional
PSI de�ned above �for a proof of a related statement see �PDvHR	����

��JUDGEMENT PSI HAS
TYPE �set�sigma�� srel �� Monotonic�

For purpose of illustration we choose the derivation of Hoare�s while rule from the deno�
tational semantics given in �� � Hoare�triple ���p� f� q� �see �� � hold if the image of
the function f with respect to precondition p is included in the postcondition q�

��p� q� VAR pred�sigma�

f � VAR srel

��p� f� q�� bool � �image�f� p� �� q�

h� VAR srel

while
rule� LEMMA

��p �� b� h� p�

IMPLIES

��p� while�b� h�� p �� NOT�b��

By unfolding the de�nition of the while statement in �� and propositional reasoning the
while rule of the Hoare calculus in �� is restated as the following sequent of the PVS
sequent calculus�	

	Remember that proofs in PVS are presented in a sequent calculus where antecedents and succedents
are respectively numbered by negative and positive numbers	

��
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while�rule �

���� ��
p�� �� b��� h��� p���

��������

��	 ��
p��� mu
PSI
b��� h����� p�� �� NOT
b����

This while rule is proved using �xed�point induction� Thus we use the theorem
fp induction mono from �� and instantiate its formal parameter P with

LAMBDA� 
F� srel�� ��
p��� F� p�� �� NOT
b����

Application of �xed�point induction followed by propositional reasoning and introduction
of Skolem variables yields the � subgoals in �� � Notice that the monotonicity judgement
of PSI in �� causes the prover to suppress a subgoal corresponding to the monotonicity
of the functional PSI�b��� h����

��while
rule���

f��g ��p�� �� b��� h��� p���

�������

f�g ��p��� abort� p�� �� NOT�b����

while
rule���

f��g ��p��� x��� p�� �� NOT�b����

���� ��p�� �� b��� h��� p���

�������

f�g ��p��� �IF b�� THEN h�� �� x�� ELSE skip ENDIF�� p�� �� NOT�b����

while
rule�� �TCC��

�������

f�g admissible��LAMBDA �F� srel�� ��p��� F� p�� �� NOT�b�����

Subgoals while rule�� and while rule�� in �� respectively correspond to the induction
base and induction step of the �xed�point induction rule� these subgoals are proved with
less than �� interactions as easy as unfolding of de�nitions and propositional reasoning�

Furthermore since the conclusion P�mu�f�� of the �xed�point induction rule in �� is
constrained to admissible predicates P by means of predicate subtypes an additional sub�
goal a so�called type correctness condition �TCC� while rule�� is generated� The proof
of admissibility requires two additional lemmas and less than �
 mostly straightforward
user interactions� The critical idea in this proof is to characterize the least upper bound
of chains C�� as follows�

lub
C��� � LAMBDA 
s� sigma�� ��
fset image
C���
s��

This is possible since the chain C�� is a set of set functions and the least upper bound
of the set of function set images is simply the union of these sets�
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� Conclusions

A PVS formalization of central concepts of domain theory including complete partial
orders various domain constructions monotonic and continuous functions the �xed�point
theorem for monotonic functions and various �xed�point induction theorems have been
described in this paper� These encodings make heavy use of parameterized theories to
encode mathematical structures and features of the PVS type system like judgements to
suppress a multitude of veri�cation conditions�

Since it is not possible to encode in PVS mathematical structures like cpo�s directly as
a type we used the mechanism of theory parameterization to parameterize developments
with respect to mathematical structures� Moreover it is possible to represent functor�
like constructions of domains by means of parameterizing theories� Although the lack of
parameterizing with respect to mathematical structures as a single object does not put
any insurmountable constraints in principle in practice parameter lists of theories and
instantiations tend to become unnaturally long and di�cult to survey� this is especially
true when extending parameterized theories with other parameterized theories �see for
example �� �

Another characteristics of our encodings is the consequent use of predicate subtypes and
judgements� this drastically simpli�es proofs since many applicability conditions are de�
duced behind the scenes� On the other hand we also experienced besides some imper�
fections of the current implementation some conceptual shortcomings of the judgement
mechanism in PVS� Most importantly an extension of the current judgement mechanism
that permits for free variables in judgement declarations has the potential to considerably
streamline our domain and �xed�point theory encodings��
 Furthermore declaration of
judgements like ��abort� ��� has type CPO�D�� or even more interestingly �CPO�D� is
a subtype of pCPO�D�� are currently not possible�

In the course of this work it became evident that the modeling of mathematical structures
as a single type leads to more natural and elegant encodings and that the use of behind the
scene inference mechanism lead to simpli�ed mechanized proofs that correspond closely to
the ones found in textbooks� These are exactly the kinds of features that have recently been
added to the Typelab �vHLP�	�� system� The language ofTypelab permits representing
mathematical structures as types and abstracting over these types� Furthermore its behind
the scenes reasoning mechanism bases on the concept of subsumption in terminological
logics �SLW	�� and aims at arranging mathematical entities and components such as
conceptual vocabulary or parameterized speci�cation in a taxonomy�

Although our encodings of �xed�point induction form a conservative extension �in fact a
de�nitional extension� of the underlying PVS theory and consequently do not strengthen
this logic they permit natural formalization of many proofs by mixing �xed�point induc�
tion with inductions already built�in to PVS like structural induction and well�founded
induction� Mixing various induction principles was needed for example in the correctness
proof of the linearization step �DvHPR	�� of a compiler� there the overall strategy to
prove linearization is by means of �xed�point induction and the subgoal corresponding to
the induction step is proved by structural induction on the construction of the abstract

�
According to Owre �Owr��� this extension is going to be included in future versions	
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data type representing basic block graphs� Other uses of this formalization of �xed�point
theory are reported in �PDvHR	� DvHPR	���

So far we have restricted ourselves to only using pre�de�ned PVS strategies for applying
�xed�point induction� It does not seem too di�cult however to further automate �xed�
point induction proofs by developing a specialized strategy that tries to automatically
apply �xed�point induction prove the predicate at hand to be admissible based on the basis
of derived su�cient conditions and to prove the remaining subgoals using a combination
of other high�level proof strategies�

While our main emphasis so far has been on using this embedding on �xed�point theory for
compiler correctness proofs it is evident that this encoding can be accommodated to sup�
port reasoning about non�termination partial functions arbitrary recursive �computable�
functions and in�nite values of recursive domains�
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A� All Theories

all
theories� THEORY

BEGIN

� �� Preliminaries

IMPORTING misc� set
rewrite� function
notation

� �� Partial Orders� CPOs

IMPORTING po
rewrite� po� po
lems� po
restrict

IMPORTING cpo
defs� precpo� cpo� precpo
lems� cpo
lems

� �� Monotonicity� Continuity� Admissibility

IMPORTING monotonic� continuous� admissible

IMPORTING composition
po� composition
precpo

IMPORTING precpo
automorphism� precpo
restrict

� �� Domain Constructions

IMPORTING bool
cpo� flat
cpo� discrete
cpo

IMPORTING pointwise� function
cpo� function
precpo� dcpo
to
precpo

IMPORTING predicate
lems� predicates� predicate
cpo

IMPORTING monotonic
cpo

� �� Zorn�s lemma

IMPORTING initial
segments� zorn� zorn�

� �� Fixedpoints� Existence� Induction

IMPORTING fixpoints� fixpoints
mono� fixpoints
cont

END all
theories

B� Preliminaries

Miscellaneous

misc�D� TYPE��� THEORY

BEGIN

S� S�� S�� VAR set�D�

every
equiv
subset� LEMMA

every�S���S�� � subset��S�� S��

x� VAR D

�	
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singleton��S� � bool � � fehlt in PVS prelude

exists�� x� member�x� S�

contains��x��S�� bool � S�x�

IMPORTING epsilons

select�S� �singleton���� �S� � epsilon�S�

END misc

Properties about Sets

set
rewrite�T� TYPE �� THEORY

BEGIN

� Theory designed for rewriting with set properties

P� Q� R� VAR set�T�

x � VAR T

nonempty
rew� LEMMA P�x� IMPLIES nonempty��P�

union
empty�� LEMMA union�emptyset� P� � P

union
empty�� LEMMA union�P� emptyset� � P

union
empty�� LEMMA empty��Q� IMPLIES union�P� Q� � P

union
empty�� LEMMA empty��P� IMPLIES union�P� Q� � Q

JUDGEMENT union HAS
TYPE

��nonempty��T��� set�T� �� �nonempty��T���

JUDGEMENT union HAS
TYPE

�set�T�� �nonempty��T�� �� �nonempty��T���

distr
union
intersection�� LEMMA

union�intersection�P� Q�� intersection�P� R��

� intersection�P� union�Q� R��

distr
union
intersection�� LEMMA

union�intersection�Q� P�� intersection� P� R��

� intersection�P� union�Q� R��

distr
union
intersection�� LEMMA

union�intersection�P� Q�� intersection�R� P��

� intersection�P� union� Q� R��

distr
union
intersection�� LEMMA

union�intersection�Q� P�� intersection�R� P��

� intersection�P� union�Q� R��

intersection
subset�
l� LEMMA subset��intersection�P� Q�� P�

intersection
subset�
r� LEMMA subset��intersection�P� Q�� Q�

intersection
subset�
l� LEMMA

subset��P� Q� IMPLIES intersection�P� Q� � P

�
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intersection
subset�
r� LEMMA

subset��Q� P� IMPLIES intersection�P� Q� � Q

nonempty
add� LEMMA nonempty��add�x� P��

S � VAR sequence�T�

p � VAR pred�T�

seq
to
set� S� sequence�T��� set�T� �

� x  EXISTS �n� nat�� x � S�n��

JUDGEMENT seq
to
set HAS
TYPE �sequence�T� �� �nonempty��T���

seq
to
set
every� LEMMA

every�p��seq
to
set� S�� � every�p�� S�

� �� Big Union�

PP� VAR set�set�T��

union�PP�� set�T� � LAMBDA x� EXISTS �P� �PP��� P�x�

union
inf
subset� LEMMA

member�P� PP� IMPLIES subset��P� union�PP��

unique
singleton� LEMMA

FORALL �p� �nonempty��T����

unique��p� IMPLIES p � singleton�T��choose�p��

singleton
unique� LEMMA

unique��singleton�x��

JUDGEMENT singleton HAS
TYPE �T �� �unique��T���

strict
subset
of
unique� LEMMA

FORALL �P� �unique��T����

strict
subset��Q� P� IMPLIES empty��Q�

difference
singleton� LEMMA

NOT�P�x�� IMPLIES

difference�add�x� P�� P� � singleton�x�

strict
subset
elem� LEMMA

strict
subset��Q� P� IMPLIES

EXISTS x� �P�x� AND NOT�Q�x���

END set
rewrite

��
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Image of Functions

function
notation�D� R� TYPE��� THEORY

BEGIN

e � VAR R

d � VAR D

f � VAR �D �� R�

K � VAR set�D�

S � VAR set��D �� R��

P � VAR PRED�R�

� �� The image of a function�set at one point�

fset
image�S�� � D �� set�R�� �

�LAMBDA d� � e� R  EXISTS �f� �S��� f�d� � e��

CONVERSION fset
image

fset
image
nonempty� LEMMA

nonempty���D �� R���S� IMPLIES nonempty��R��S�d��

JUDGEMENT fset
image HAS
TYPE

��nonempty���D �� R��� �� �D �� �nonempty��R����

fset
image
elem� LEMMA

S�f� IMPLIES S�d��f�d��

� �� Set Image

set
image�f�� �set� D� �� set� R�� �

�LAMBDA �M� set�D��� � e� R  EXISTS �d� �M��� e � f�d���

CONVERSION set
image

setimage
image� LEMMA

set
image�f��K� � image�f� K�

set
image
nonempty� LEMMA

nonempty��D��K� IMPLIES nonempty��R��f�K��

JUDGEMENT set
image HAS
TYPE

��D �� R� �� ��nonempty��D�� �� �nonempty��R����

set
image
elem� LEMMA K�d� IMPLIES f�K��f�d��	

set
image
forall� LEMMA

�FORALL �e� �set
image�f��K���� P�e��

IFF �FORALL �d� �K��� P�f�d���

END function
notation

��
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C� Partial Orders

Some Rewrites

po
rewrite�D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

x� y� z� VAR D

is
reflexive � LEMMA x �� x

is
antisymmetric� LEMMA x �� y AND y �� x IMPLIES x � y

is
transitive � LEMMA x �� y AND y �� z IMPLIES x �� z

END po
rewrite

Partial Orders

po�D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

IMPORTING po
rewrite� D� ���

x� y� VAR D

A � VAR set�D�

� �� Upper and lower bounds

ub��x� A�� bool � �FORALL �a� �A��� a �� x�	

lb��x� A�� bool � �FORALL �a� �A��� x �� a�	

UB�A�� set�D� � � x� D  ub��x� A� �	

LB�A�� set�D� � � x� D  lb��x� A� �	

lub��x� A�� bool � ub��x�A� AND FORALL �y� �UB�A���� x �� y

glb��x� A�� bool � lb��x�A� AND FORALL �y� �LB�A���� y �� x

lub
exists��A�� bool � EXISTS x� lub��x�A�

glb
exists��A�� bool � EXISTS x� glb��x�A�

singleton
lub � LEMMA lub��x� singleton�x��

singleton
lub
exists� LEMMA lub
exists��singleton�x��

lub
exists
nonempty � LEMMA nonempty��set�D��� lub
exists��

� JUDGEMENT lub
exists� HAS
TYPE �nonempty��set�D���

Lub
Exists � TYPE � �lub
exists��

Glb
Exists � TYPE � �glb
exists��

LUB�A� � set�D� � �x�D  lub��x�A� �

GLB�A� � set�D� � �x�D  glb��x�A� �

lub�B�Lub
Exists� � D � choose�LUB�B��

glb�B�Glb
Exists� � D � choose�GLB�B��

� JUDGEMENT lub HAS
TYPE �B� Lub
Exists �� �LUB�B���

��
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� �� properties of lubs and glbs

lub
unique � LEMMA lub
exists��A� IMPLIES unique��LUB�A��

lub
of
singleton� LEMMA lub�singleton�x�� � x

� �� Maximal and minimal elements

min��x� A�� bool � A�x� AND FORALL � y� �A��� y �� x IMPLIES y � x

max��x� A�� bool � A�x� AND FORALL � y� �A��� x �� y IMPLIES y � x

Min�A�� set�D� � � x� D  min��x� A� �

Max�A�� set�D� � � x� D  max��x� A� �

� �� Chains

chain��A�� bool � nonempty��A� AND

FORALL �x� y� �A��� �x �� y� OR �y �� x�

Chain � TYPE � �chain��

JUDGEMENT Chain SUBTYPE
OF �nonempty��D��

� �� Least Elements

least
element��x� A�� bool � A�x� AND lb��x� A�

least
elem
is
min� LEMMA least
element��x� A� IMPLIES min��x� A�

END po

Lemmas on Partial Orders

po
lems�D� TYPE�� ����partial
order��D���� THEORY

BEGIN

IMPORTING po�D� ���� set
rewrite�D�� function
notation

x� y� z� b � VAR D

A� K � VAR set�D�

L � VAR Lub
Exists

S � VAR Chain

upper
bound
every� LEMMA ub��x� A� � every�LAMBDA y� y �� x��A�

upper
bound
add � LEMMA ub��b� add�x� A�� IMPLIES ub��b� A�

upper
bound
trans� LEMMA ub��x� A� AND x �� y IMPLIES ub��y� A�

lub
def � LEMMA lub��lub�L�� L�

lub
is
least � LEMMA lub�L� �� x IFF ub��x� L�

lub
is
ub � LEMMA FORALL �x� �L��� x �� lub�L�

lub
exists
rew � LEMMA lub��b� A� IMPLIES lub
exists��A�

lub
rew � LEMMA lub��b� A� IMPLIES lub�A� � b

union
bound � LEMMA ub��x� union�A� K�� IMPLIES ub��x� A�

lub
smaller
lub � LEMMA ub��b� add�x� L�� IMPLIES lub�L� �� b

��
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lub
union
bound� LEMMA

ub��lub�L�� A� IMPLIES lub��lub�L�� union�A� L��

lub
union
bound
exists� LEMMA

ub��lub�L�� A� IMPLIES lub
exists��union�A� L��

lub
union
bound
rew� LEMMA

ub��lub�L�� A� IMPLIES lub�union�A� L�� � lub�L�

lub
add� LEMMA x �� lub�L� IMPLIES lub��lub�L�� add�x� L��

lub
add
exists� LEMMA x �� lub�L� IMPLIES lub
exists��add�x� L��

lub
add
rew� LEMMA x �� lub�L� IMPLIES lub�add�x� L�� � lub�L�

singleton
chain� LEMMA chain��singleton�x��

JUDGEMENT singleton HAS
TYPE �D �� Chain�

chain
add� LEMMA ub��x� S� IMPLIES chain��add�x� S��

� a different definition �which can also be found elsewhere��

� chain�� S� sequence�D��� bool � FORALL � n� nat�� S�n���S�n���

� is shown to be stronger�

seq
ascends� LEMMA

FORALL �S� sequence�D���

�FORALL �n� nat�� S�n� �� S�n���� IMPLIES ascends��S� ���

chain
seq� LEMMA

FORALL �S� sequence�D���

ascends��S� ��� IMPLIES chain�� seq
to
set�S��

union
chain
l� LEMMA

FORALL �P� �nonempty��D��� Q� set�D���

chain��union� P� Q�� IMPLIES chain��P�

union
chain
r� LEMMA

FORALL �P� set�D�� Q� �nonempty��D����

chain��union�P� Q�� IMPLIES chain��Q�

union
chain� LEMMA

FORALL �P� Q� �nonempty��D����

chain��union�P� Q�� IMPLIES �chain��P� AND chain��Q��

SS� VAR �nonempty��set�D���

union
chain
inf� LEMMA

�every�chain���SS� AND

FORALL �S�� S�� �SS��� subset��S�� S�� OR subset��S�� S���

IMPLIES

chain��union�SS��

PP� VAR set�set�D��

union
bound�� LEMMA

ub��b� union�PP�� IFF FORALL �P� �PP��� ub��b� P�

��
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lub
bound� LEMMA

every�lub
exists���PP� IMPLIES

�ub��b� set
image�lub��PP�� IFF FORALL �P� �PP��� ub��b� P��

lub
combine� LEMMA

every�lub
exists���PP� IMPLIES

�lub��b� union�PP�� IFF lub��b� set
image�lub��PP���

lub
combine
rewrite� LEMMA

FORALL PP�

�every�lub
exists���PP� AND

�lub
exists��union�PP�� OR lub
exists��set
image�lub��PP����

IMPLIES

lub�union�PP�� � lub�set
image�lub��PP��

lower
set
bound� LEMMA

FORALL �Q� R� Lub
Exists��

�FORALL �x� �Q��� EXISTS �y� �R��� x �� y�

IMPLIES lub�Q� �� lub�R�

least
element
singleton� LEMMA

least
element��x� singleton�x��

END po
lems

Restriction of Partial Orders

po
restrict�

T � TYPE��

le� �partial
order��T���

S� TYPE� FROM T

�� THEORY

BEGIN

�� � �partial
order��S�� �

LAMBDA �s�� s�� S�� le�s�� s��

IMPORTING po
lems�T� le�� po
lems�S� ���

subtype
chain� LEMMA

FORALL �C� Chain�S� ����� chain��T� le��C�

JUDGEMENT extend�T� S� bool� FALSE�

HAS
TYPE �Chain�S� ��� �� Chain�T� le��

subtype
lub� LEMMA

FORALL �M� set�S�� l� S��

lub��T� le��l� M� IMPLIES lub��S� ����l� M�

END po
restrict

��
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D� Complete Partial Orders

Basic De�nitions

cpo
defs�D� TYPE��� THEORY

BEGIN

IMPORTING po

b � VAR D

�� � VAR �partial
order��D��

bottom������b�� bool �

FORALL �x�D�� b �� x

precpo������ bool �

FORALL �C� Chain�D������ lub
exists��D�����C�

pCPO� TYPE � �precpo��

cpo�����b� � bool �

precpo����� AND bottom������b�

CPO� TYPE � �cpo��

END cpo
defs

Judgement�s� for Pre	CPOs

precpo�

D�TYPE�� �IMPORTING cpo
defs�D��

��� pCPO�D�

�� THEORY

BEGIN

IMPORTING po
lems� D� ���

K� VAR Chain

chains
bound� LEMMA lub
exists�� K�

JUDGEMENT Chain SUBTYPE
OF �lub
exists��

END precpo

Judgement�s� for CPOs

cpo�

D � TYPE�� �IMPORTING cpo
defs�D��

le � pCPO�D��

bottom� D

�� THEORY

BEGIN

��
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ASSUMING

bottom
def� ASSUMPTION bottom��le��bottom�

ENDASSUMING

IMPORTING precpo
lems�D� le�

b � VAR D

A � VAR set�D�

is
bottom� LEMMA le�bottom� b�

lub
of
empty
exists� LEMMA

empty��A� IMPLIES lub
exists��A�

JUDGEMENT �empty��D�� SUBTYPE
OF Lub
Exists

END cpo

Lemmas on pre	CPOs

precpo
lems�

D � TYPE�� �IMPORTING cpo
defs�D��

��� pCPO�D�

�� THEORY

BEGIN

IMPORTING precpo�D� ���

chain
union
lub� LEMMA

FORALL �P� Q� �nonempty��D����

chain��union�P� Q�� IMPLIES

�lub�union�P� Q�� � lub�P� OR lub�union�P� Q�� � lub�Q��

END precpo
lems

Lemmas on CPOs

cpo
lems�

D � TYPE�� �IMPORTING cpo
defs�D��

�� � pCPO�D��

bottom� �bottom��D������

�� THEORY

BEGIN

IMPORTING cpo�D� ��� bottom�

chain
union
lub� LEMMA

FORALL �P� Q� set�D���

chain�� union�P� Q�� IMPLIES

�lub�union�P� Q�� � lub�P� OR lub�union�P� Q�� � lub�Q��

END cpo
lems

��
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E� Admissibility� Monotonicity� Continuity

E�� Admissibility

admissible�

D � TYPE�� �IMPORTING cpo
defs�D��

��� pCPO�D�

�� THEORY

BEGIN

IMPORTING precpo
lems�D� ���� predicates�D��

predicate
lems� D�

admissible��P� pred�D��� bool �

FORALL �C� Chain�� every�P��C� IMPLIES P�lub�C��

Admissible� TYPE� � �admissible��

P� Q� VAR Admissible

PP � VAR set�pred�D��

x � VAR D

adm
and � LEMMA admissible��P �� Q�

adm
or � LEMMA admissible��P �� Q�

adm
and
inf� LEMMA

every�admissible���PP� IMPLIES admissible�����PP��

JUDGEMENT �� HAS
TYPE �Admissible� Admissible �� Admissible�

JUDGEMENT �� HAS
TYPE �Admissible� Admissible �� Admissible�

JUDGEMENT �� HAS
TYPE

�� PP� set�pred�D��  every�admissible���PP�� �� Admissible�

END admissible

E�� Monotonic Functions

monotonic�

D � TYPE�� le
D � �partial
order��D���

R � TYPE�� le
R � �partial
order��R��

� � THEORY

BEGIN

poD � THEORY � po�D� le
D�

poR � THEORY � po�R� le
R�

IMPORTING function
notation�D� R�

IMPORTING po
lems�D� le
D�

IMPORTING po
lems�R� le
R�

s�s��s� � VAR D

t � VAR R

�	
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f � VAR �D �� R�

monotonic��f�� bool �

FORALL s��s�� le
D�s��s�� IMPLIES le
R�f�s���f�s���

const
monotonic � LEMMA monotonic��LAMBDA s� t�

monotonic
nonempty� LEMMA nonempty�� monotonic��

Monotonic� TYPE� � �monotonic�monotonic��

� JUDGEMENT monotonic� HAS
TYPE �nonempty���D��R���

image
preserves
chains� LEMMA

FORALL �K� poD�Chain� f� Monotonic��

chain�� set
image�f�� K��

� JUDGEMENT set
image HAS
TYPE

� �Monotonic �� �poD�Chain �� poR�Chain��

lub
of
monotonic
func� LEMMA

FORALL �f� Monotonic� L� poD�Lub
Exists��

lub
exists��set
image�f��L�� IMPLIES

le
R�lub�set
image�f��L��� f�lub�L���

END monotonic

E�� Continuous Functions

continuous ��IMPORTING cpo
defs�

D � TYPE�� le
D � pCPO�D��

R � TYPE�� le
R � pCPO�R�

�� THEORY

BEGIN

IMPORTING function
precpo�D� R� le
R�� monotonic�D� le
D� R� le
R��

precpo
lems�D� le
D�� precpo
lems�R� le
R��

admissible

d � VAR D

e � VAR R

f � VAR �D �� R�

C � VAR poD�Chain

continuous��f� � bool �

FORALL C�

lub
exists��set
image�f��C��

� �f�lub�C�� � lub�set
image�f��C���

� Identity Function as witness

const�e�� �D �� R� � �LAMBDA d� e�

const
continuous� LEMMA continuous��LAMBDA d� e�

continuous
nonempty� LEMMA nonempty��continuous��

�
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Continuous� TYPE� � �continuous��

JUDGEMENT const HAS
TYPE �R �� Continuous�

� �� Every Continuous Function is Monotonic

continuity
monotonicity� LEMMA

FORALL �f� Continuous�� monotonic��f�

JUDGEMENT Continuous SUBTYPE
OF Monotonic

continuous
rew� LEMMA

FORALL �f� Continuous� C��

f�lub�C�� � lub�set
image�f��C��

� �� The continuity predicate is admissible

continuous
admissible� LEMMA

admissible���D �� R�� pointwise�����continuous��

� �� Admissible predicates�

cont
pred
admissible� LEMMA

FORALL �f� Continuous� P� Admissible�R� le
R���

admissible��D� le
D��LAMBDA d� P�f�d���

le
pred
admissible� LEMMA

FORALL �f� Continuous� g� Monotonic��

admissible��D� le
D��LAMBDA d� le
R�f�d�� g�d���

le�f� Continuous� g� Monotonic�� pred�D� �

LAMBDA d� le
R�f�d�� g�d��

JUDGEMENT le HAS
TYPE

�Continuous� Monotonic �� Admissible�D� le
D��

END continuous

E�� Monotonicity
 Continuity
 and Admissibility Properties

Facts about Automorphisms on pre	CPOs

precpo
automorphism� �IMPORTING cpo
defs�

D � TYPE��

�� � pCPO�D�

�� THEORY

BEGIN

IMPORTING continuous�D� ��� D� ���� pointwise�D� D� ���

x � VAR D

M � VAR set�D�

��
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identity
image� LEMMA set
image�lambda x� x��M� � M

identity
continuous� LEMMA

continuous��LAMBDA x� x�

JUDGEMENT id�D� HAS
TYPE Continuous

END precpo
automorphism

Restriction of pre	CPOs

precpo
restrict�

T � TYPE�� �IMPORTING cpo
defs�

le� pCPO�T��

P � �nonempty��T��

�� THEORY

BEGIN

IMPORTING po
restrict�T� le� �P��� admissible�T� le�

sub
precpo� LEMMA

admissible��P� IMPLIES precpo���P���po
restrict����

END precpo
restrict

F� Constructions

F�� Boolesche CPO

bool
cpo� THEORY

BEGIN

IMPORTING cpo
defs�bool�

JUDGEMENT �� HAS
TYPE �partial
order��bool��

JUDGEMENT �� HAS
TYPE pCPO

JUDGEMENT false HAS
TYPE �bottom������

IMPORTING cpo� bool� ��� false�

END bool
cpo

��
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F�� Discrete CPOs

discrete
cpo�D� TYPE�� � THEORY

BEGIN

IMPORTING cpo
defs�D�

x�y � VAR D	

discrete
is
po� LEMMA partial
order��D����

JUDGEMENT � HAS
TYPE �partial
order��D��

IMPORTING po
lems�D� ��

only
trivial
chains � LEMMA

FORALL �C�Chain�D� ���� unique��C�

discrete
is
precpo� LEMMA precpo��D����

JUDGEMENT � HAS
TYPE pCPO�D�

IMPORTING precpo�D� ��

END discrete
cpo

F�� Flat CPOs

flat
cpo�D� TYPE��� THEORY

BEGIN

flat� DATATYPE

BEGIN

elem�arg� D�� elem�

bot� bot�

END flat

CONVERSION elem

IMPORTING cpo
defs�flat�

d� d�� d�� VAR flat

flat
order�d�� d��� bool � �d� � d�� OR bot��d��

flat
is
po � LEMMA partial
order��flat��flat
order�

flat
is
precpo� LEMMA precpo��flat
order�

flat
is
cpo � LEMMA cpo��flat
order� bot�

JUDGEMENT flat
order HAS
TYPE �partial
order��flat��

JUDGEMENT flat
order HAS
TYPE pCPO

IMPORTING cpo�flat
cpo�flat� flat
cpo�flat
order� flat
cpo�bot�

END flat
cpo

��
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F�� Function CPOs

Pointwise Ordering of Functions

pointwise�D� R� TYPE�� le� �partial
order��R���� THEORY

BEGIN

IMPORTING po
lems� R� le�

IMPORTING function
notation� D� R�

d � VAR D

e � VAR R

f�g � VAR �D �� R�

S � VAR set��D��R��

���f� g� � bool � FORALL �x� D�� le�f�x�� g�x��

pointwise
is
po� LEMMA partial
order���D �� R������

JUDGEMENT �� HAS
TYPE �partial
order���D �� R���

IMPORTING po
lems� �D �� R�� ���

chain
pointwise� LEMMA

FORALL �S� Chain��D �� R�� �����

chain��fset
image�S��d��

JUDGEMENT fset
image HAS
TYPE

�Chain��D �� R����� �� �D �� Chain�R� le���

func
lub
lem� LEMMA

FORALL �S� Lub
Exists��D �� R�������

FORALL d� lub��lub�S��d�� fset
image�S��d��

func
lub
lem�� LEMMA

FORALL S� �FORALL d� lub
exists��fset
image�S��d���

IMPLIES lub��LAMBDA d� lub�fset
image�S��d��� S�

func
lubs� LEMMA

lub
exists��S� IFF �FORALL d� lub
exists��fset
image�S��d���

JUDGEMENT fset
image HAS
TYPE

�Lub
Exists��D �� R����� �� �D �� Lub
Exists�R� le���

func
lub
is� LEMMA

FORALL �S� Lub
Exists��D �� R�� �����

�LAMBDA d� lub�fset
image�S��d��� � lub�S�

END pointwise

��
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Construction of Function Space pre	CPOs

function
precpo�

D � TYPE��

R � TYPE�� �IMPORTING cpo
defs�R��

le
R� pCPO

�� THEORY

BEGIN

IMPORTING pointwise�D� R� le
R�� precpo
lems�R� le
R��

cpo
defs��D �� R��

functions
form
precpo� LEMMA precpo��pointwise����

JUDGEMENT pointwise��� HAS
TYPE pCPO��D �� R��

IMPORTING precpo��D �� R�� ���

END function
precpo

Construction of Function Space CPOs

function
cpo�

D � TYPE��

R � TYPE�� �IMPORTING cpo
defs�R��

le
R � pCPO�R��

bottom� R

� � THEORY

BEGIN

ASSUMING

bottom
def� ASSUMPTION bottom��le
R��bottom�

ENDASSUMING

IMPORTING function
precpo�D� R� le
R�

IMPORTING cpo� R� le
R� bottom�

bottom
func� �D �� R� � LAMBDA �s� D�� bottom

bottom
func
is
bottom� LEMMA

bottom��pointwise�����bottom
func�

functions
form
cpo� LEMMA cpo��pointwise���� bottom
func�

IMPORTING cpo��D �� R�� pointwise���� bottom
func�

END function
cpo

��
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Discrete CPOs to pre	CPOs

dcpo
to
precpo�D� R� TYPE�� �IMPORTING precpo� leR � pCPO�R��� THEORY

BEGIN

IMPORTING po� discrete
cpo�D�� continuous�D� �� R� leR�

f�g � VAR �D �� R�

s��s� � VAR D

discrete
func
continuous� LEMMA continuous��f�

JUDGEMENT �D �� R� SUBTYPE
OF Continuous

END dcpo
to
precpo

F�� Monotonic CPOs

monotonic
cpo�

D � TYPE��

leD � �partial
order��D���

R � TYPE�� �IMPORTING cpo
defs�R��

leR � pCPO�R��

bottom� R

�� THEORY

BEGIN

ASSUMING

bottom
def� ASSUMPTION

FORALL �t� R�� leR�bottom� t�

ENDASSUMING

IMPORTING monotonic�D� leD� R� leR�

IMPORTING function
cpo�D� R� leR� bottom�

IMPORTING cpo
defs�Monotonic�

IMPORTING precpo
restrict��D �� R��

pointwise���� monotonic�monotonic��

IMPORTING admissible��D �� R�� ���

monotonic
admissible� LEMMA

admissible���D��R�� ����monotonic��

monotonic
forms
cpo� LEMMA

cpo��Monotonic��po
restrict���� bottom
func�

END monotonic
cpo

��
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F�� Predicate CPOs

Lifting of Boolean Connectives

predicates�D� TYPE��� THEORY

BEGIN

s � VAR D

p�q�b � VAR pred�D�	 S� VAR set�D�

TRUE �pred�D� � LAMBDA s� TRUE	

FALSE �pred�D� � LAMBDA s� FALSE	

NOT�p� �pred�D� � LAMBDA s� NOT�p�s��	

���p� q� �pred�D� � LAMBDA s� p�s� AND q�s�	

���p� q� �pred�D� � LAMBDA s� p�s� OR q�s�	

���p� q� �pred�D� � LAMBDA s� p�s� IMPLIES q�s�	

����p� q��pred�D� � LAMBDA s� p�s� IFF q�s�	

���PP� set�pred�D���� pred�D� � LAMBDA s� FORALL �p� �PP��� p�s�	

���PP� set�pred�D���� pred�D� � LAMBDA s� EXISTS �p� �PP��� p�s�	

IF�b� p� q�� pred�D� � �LAMBDA s� IF b�s� THEN p�s� ELSE q�s� ENDIF�	

select�p��S�� set�D� � � s� �S�  p�s� �

every
select� LEMMA every�p��select�p��S��

END predicates

Facts about Liftings of Boolean Connectives

predicate
lems�D� TYPE��� THEORY

BEGIN

IMPORTING predicates�D�

S � VAR set�D�

P� Q� VAR pred�D�

every
select� LEMMA every�P��select�P��S��

select
every� LEMMA select�P��S� � S IFF every�P��S�

every
and� LEMMA

every�P �� Q��S� IFF �every�P��S� AND every�Q��S��

every
or � LEMMA

every�P �� Q��S� IFF union�select�P��S�� select�Q��S�� � S

END predicate
lems

��
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Construction of Predicate CPOs

predicate
cpo�D� TYPE��� THEORY

BEGIN

� �� Booleans with implication form a cpo�

IMPORTING cpo
defs� predicates�D�� bool
cpo

bottom� pred�D� � FALSE	

top � pred�D� � TRUE

� �� Ordering on predicates�

� �� the next IMPORT defines a partial order �� on predicates as

� �� p �� q ���� FORALL s� p�s� IMPLIES q�s�

IMPORTING pointwise�D� bool� ���

� �� Predicates are functions from a type �i�e� a discrete cpo� D

� �� into a cpo� viz� bool� hence predicates with �� form a cpo�

IMPORTING dcpo
to
precpo�D� bool� ���

bottom
pred� LEMMA

bottom���D �� bool���pointwise�D� bool� ��������bottom�

IMPORTING cpo�pred�D�� ��� bottom�

PP� VAR set�pred�D��

IMPORTING po�pred�D�� ���

pred
lub � LEMMA lub�����PP�� PP�

pred
lub
exists� LEMMA lub
exists��PP�

pred
lub
is � LEMMA lub�PP� � ���PP�

END predicate
cpo

G� Zorn�s Lemma

Basic Facts about Initial Segments

initial
segments�

D � TYPE��

�� � �partial
order��D��

�� THEORY

BEGIN

IMPORTING po
lems� D� ���

C � VAR Chain

��



Formalizing Fixed�Point Theory in PVS

x � VAR D

A � VAR set�D�

AA� VAR set�set�D��

� �� Initial Segments �uncommonly without the empty set�

initial
segment��C��A�� bool �

nonempty��A�

� subset��A� C�

� FORALL �x� �A�� y� �C��� y �� x IMPLIES A�y�

iseg
is
chain� LEMMA

initial
segment��C��A� IMPLIES chain��A�

isegs
subset� LEMMA

FORALL �S�� S�� �initial
segment��C����

subset��S�� S�� OR subset��S�� S��

iseg
of
isegs� LEMMA

FORALL �S�� S�� �initial
segment��C����

initial
segment��S���S�� OR initial
segment��S���S��

least
element
is
iseg� LEMMA

least
element��x� C�

IMPLIES initial
segment�� C�� singleton� x��

iseg
union� LEMMA

nonempty��AA� AND every�initial
segment��C���AA�

IMPLIES initial
segment��C��union�AA��

iseg
expand� LEMMA

FORALL �S� Chain� T� �initial
segment��S��� x� D��

least
element�� x� difference�S� T��

IMPLIES initial
segment��S�� add�x� T��

� �� Proper Initial Segments

proper
initial
segment��C��A�� bool �

initial
segment��C��A� AND C �� A

� JUDGEMENT �proper
initial
segment��C�� SUBTYPE
OF �initial
segment��C��

proper
iseg
add� LEMMA

ub��x� C� AND proper
initial
segment��add�x�C���A�

IMPLIES initial
segment��C��A�

proper
iseg
subset� LEMMA

proper
initial
segment��C��A�

IMPLIES strict
subset��A� C�

proper
iseg
leaves
bound� LEMMA

proper
initial
segment��C��A� IMPLIES

EXISTS �x� �C��� �ub��x� A� AND not�A�x���

END initial
segments

�	
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Zorns Lemma

zorn�D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

ASSUMING

IMPORTING po
lems�D� ���

C � VAR Chain

bound
exists� ASSUMPTION nonempty��D��UB�C��

ENDASSUMING

IMPORTING initial
segments�D� ���

x � VAR D

A � VAR set�D�

AA� VAR set�set�D��

Max�x�� bool � FORALL �y� D�� x �� y IMPLIES x � y

open
chain��A�� bool �

chain��A� AND empty��D��intersection�A� Max��

Open
Chain� TYPE � �open
chain��

proper
iseg
no
max� LEMMA

proper
initial
segment��C��A� IMPLIES open
chain��A�

� For PVS�versions to come�

� JUDGEMENT �proper
initial
segment��C�� SUBTYPE
OF Open
Chain

S� VAR Open
Chain

open
chain
bounded� LEMMA

EXISTS �x� �complement�S���� ub��x� S�

extern
bounds�S�� �nonempty��D�� � difference�UB�S�� S�

phi�S�� �extern
bounds�S�� � choose�extern
bounds�S��

phi
is
ub � LEMMA ub��phi�S�� S�

phi
not
elem � LEMMA NOT S�phi�S��

add
phi
is
chain� LEMMA chain��add�phi�S�� S��

p � D

CC � set�set�D�� �

� C� Chain  least
element�� p� C� AND

FORALL �T� �proper
initial
segment��C����

least
element��phi�T�� difference�C� T���

CC
contains
p� LEMMA CC� singleton�p��

�
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CC
nonempty � LEMMA nonempty��CC�

� JUDGEMENT CC HAS
TYPE �nonempty��set�D���

S�� S�� VAR �CC�

CC
contains
chains� LEMMA chain�� S��

JUDGEMENT �CC� SUBTYPE
OF Chain

R�S�� S��� �nonempty��D�� �

union�intersection�initial
segment��S���

initial
segment��S����

R
is
iseg�� LEMMA initial
segment��S���R�S�� S���

R
is
iseg�� LEMMA initial
segment��S���R�S�� S���

R
equals
one
arg� LEMMA

S� � R�S�� S�� OR S� � R�S�� S��

CC
iseg� LEMMA

FORALL �S�� S�� �CC���

initial
segment��S���S�� OR initial
segment��S���S��

CC
union
is
chain� LEMMA chain��union�CC��

U� Chain � union�CC�

CC
members
U � LEMMA FORALL �S� �CC��� initial
segment��U��S�

CC
contains
U� LEMMA member�U� CC�

zorn
orig� LEMMA nonempty��Max�

END zorn

Variant of Zorns Lemma

zorn��D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

IMPORTING po�D����� zorn� po
restrict

A � VAR �nonempty��D��

C � VAR Chain

Zorns
lemma� LEMMA

�FORALL C� subset��C� A� IMPLIES nonempty��D��intersection�A� UB�C����

IMPLIES nonempty��D��Max�A��

END zorn�

��
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H� Fixed	Points

H�� De�nitions related to Fixed	Points

fixpoints�D� TYPE�� ��� �partial
order��D���� THEORY

BEGIN

IMPORTING po�D� ���� misc�D�

x� y� VAR D

f � VAR �D �� D�

fixpoint��f��x�� bool � �f�x� � x�

least
fixpoint��f��x� � bool �

fixpoint��f��x�

� �FORALL y� fixpoint��f��y� IMPLIES x �� y�

mu
exists��f�� bool � nonempty��least
fixpoint��f��

LFP�f� � TYPE � �least
fixpoint��f��

Mu
Exists� TYPE � �mu
exists��

least
fix
unique� LEMMA unique��least
fixpoint��f��

lfp
singleton � COROLLARY

FORALL �f� Mu
Exists�� singleton��least
fixpoint��f��

mu�f� Mu
Exists�� LFP�f� � choose�least
fixpoint��f��

mu
exists
rew � LEMMA least
fixpoint��f��x� IMPLIES mu
exists��f�

mu
rew � LEMMA least
fixpoint��f��x� IMPLIES x � mu�f�

mu
is
fixpoint� LEMMA FORALL �f� Mu
Exists�� f�mu�f�� � mu�f�

END fixpoints

H�� Fixed	Points over Monotonic Functions

fixpoints
mono�

D � TYPE�� �IMPORTING cpo
defs�D��

�� � pCPO�D��

bottom � �bottom������

�� THEORY

BEGIN

IMPORTING cpo�D� ��� bottom�� precpo
automorphism�D� ����

fixpoints�D� ���� admissible�D� ����

zorn��D� ���� misc�D�

x� y � VAR D

f � VAR Monotonic

S � VAR set�D�

��
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step
closed��f��S�� bool � �FORALL �y� �S��� S�f�y���

closed��f��S�� bool �

contains��bottom��S� AND step
closed��f��S� AND admissible��S�

� �� Part I� definining a fixed point u

X�f�� set�D� � ���closed��f��

JUDGEMENT X HAS
TYPE �Monotonic �� �contains��bottom���

JUDGEMENT X HAS
TYPE �f� Monotonic �� �step
closed��f���

JUDGEMENT X HAS
TYPE �Monotonic �� Admissible�

JUDGEMENT X HAS
TYPE �Monotonic �� �nonempty��D���

X
is
closed � LEMMA closed��f��X�f��

X
is
least
closed� LEMMA closed��f��S� IMPLIES subset��X�f�� S�

X
has
max � LEMMA nonempty��D��Max�X�f���

� Uses Zorn�s Lemma

u�f�� D � choose�D��Max�X�f���

JUDGEMENT u HAS
TYPE �f� Monotonic �� �Max�D� ����X�f����

JUDGEMENT u HAS
TYPE �f� Monotonic �� �X�f���

� �� Part II� u is indeed a fixed point

E�f�� set�D� � �x� D x �� f�x��

E
is
closed � LEMMA closed��f��E�f��

u
is
fixpoint� LEMMA fixpoint��f��u�f��

� �� Part III� u is smallest fixed point

V�x�� set�D� � � y�D  y �� x �

V
is
closed� LEMMA fixpoint��f��x� IMPLIES closed��f��V�x��

u
is
least
fixpoint� LEMMA least
fixpoint��f��u�f��

JUDGEMENT u HAS
TYPE �f� Monotonic �� LFP�f��

KnasterTarski� THEOREM

mu
exists��f�

JUDGEMENT Monotonic SUBTYPE
OF Mu
Exists

� �� Characterisation of Fixed Point

mu
char� LEMMA mu�f� � u�f�

� �� Fixed�Point Induction

P� VAR Admissible

��
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fp
induction
mono� THEOREM

�P�bottom� AND �FORALL x� P�x� IMPLIES P�f�x����

IMPLIES P�mu�f��

� �� Park�s Lemma

park� LEMMA f�x� �� x IMPLIES mu�f� �� x

� �� Another Variant of Fixed�Point Induction

E
is
admissible� LEMMA admissible��E�f��

fp
induction
mono
le� LEMMA

�P�bottom�

� �FORALL x� P�x� AND x �� f�x� IMPLIES P�f�x����

IMPLIES

P�mu�f��

END fixpoints
mono

H�� Fixed	Points over Continuous Functions

fixpoints
cont�

D � TYPE�� �IMPORTING cpo
defs�D��

�� � pCPO�D��

bottom� �bottom������

�� THEORY

BEGIN

IMPORTING cpo� D� ��� bottom�� fixpoints
mono�D� ��� bottom��

po
lems�D� ���

n� VAR nat

d� VAR D

f� VAR Monotonic

g� VAR Continuous

� � x� D  EXISTS �n� nat�� x � iterate�f� n��bottom��

bottom
iterations�f�� Chain�D� ��� �

seq
to
set�LAMBDA n� iterate�f� n��bottom��

image
of
bi� LEMMA

add�bottom� set
image�f��bottom
iterations�f���

� bottom
iterations�f�

lub
of
bi
is
fixpoint� LEMMA

fixpoint��g��lub�bottom
iterations�g���

fixpoint
upper
bound� LEMMA

fixpoint��f��d� IMPLIES ub��d� bottom
iterations�f��

fixpoint
theorem� THEOREM

mu�g� � lub�bottom
iterations�g��

��
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� �� Fixed point induction for continuous functions

IMPORTING admissible�D� ���

fp
induction
cont� THEOREM

FORALL �P� Admissible��

� P�bottom�

� �FORALL �i� nat�� P�iterate�g� i��bottom��

IMPLIES P�iterate�g� i � ���bottom����

IMPLIES P�mu�g��

END fixpoints
cont

��


