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In this paper we present a hierarchy of verified generic theories for
compiling standard imperative language constructs using the speci-
fication and verification system PVS. The hierarchy consists of spec-
ifications for compiling assignments, control structures, and proce-
dures into linearized assembly code. The specifications are generic
in the sense that they abstract from concrete source and target lan-
guages; they specify an abstract compilation pattern which can be
instantiated. Since each of these patterns can be formalized and
verified separately, the verification task is broken into small man-
ageable steps. A further modularization and reduction of complex-
ity is achieved by splitting the compilation of control structures into
three steps: control structures are first translated into a structure of
blocks, then the blocks are linearized by introducing jump instruc-
tions, and finally, the procedures are linearized. Applicability of the
generic theories to specific compilation processes is demonstrated by
means of two simple examples.
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1 Introduction

Verification of compiler correctness is a much-studied area. Many different approaches
have been taken, usually with mechanized support to manage the complexity of specifica-
tions and proofs (e.g., [2-4,6,8-12,18-21,23]). Most of these studies address the verification
of a specific compiler for a particular language; furthermore, specifications and proofs tend
to be monolithic and lacking modular structure. As a consequence, it is difficult, if not im-
possible, to reuse parts of those specifications and proofs in similar verification tasks. On
the other hand, both the compilation of standard constructs of imperative programming
languages and the corresponding correctness proof usually follow a scheme that differs at
most in small details among languages. For instance, the compilation of the assignment
statement @ := e typically involves generating code for the evaluation of the expression e,
followed by generating code for storing the computed value at the location denoted by z.
The correctness of the latter process is independent of the structure and compilation of
expressions, it depends only on the correctness of the code for evaluating and providing
the expression’s value. By separating concerns, abstracting from irrelevant details and
concentrating on the essence of compilation steps, generic compilation patterns can be
identified, formalized and verified. Ideally, if a sufficiently rich set of such generic theories
for the compilation of different language constructs is available, a verified code generator
for specific source and target languages can then be obtained by suitable composition and
instantiation of existing pieces.

In this paper we present steps in the direction of developing such generic compiling the-
ories. Specifically, we develop generic compilation patterns for elementary constructs of
procedural languages, including

e simple statements, i.e. assignments,
e the standard control structures: sequencing, conditionals, loops, and

e (parameterless) procedures.

The theories form a kind of generic hierarchy in that the latter theory builds on the
existence, but not the details, of the former; this actually results in a reduction of the
overall verification effort.

The formal development has been carried out with the assistance of the specification
and verification system PVS [15,16]. PVS is particularly suitable for the task because
it provides the necessary constructs for specifying parameterized theories, including con-
straining assumptions on parameters. The compilation theories presented in this paper
are parameterized by source and target language and, as needed, by the compilation of
constructs lower in the hierarchy; the assumptions on parameters are stated in such a
manner that abstract compilation theorems can be derived. When a parameterized the-
ory is instantiated, the PVS system takes care of generating the verification conditions
required to demonstrate that the assumptions on parameters are satisfied. Then, for a
specific source and target language a complete correctness proof can be established by
combining the abstract compilation theorems.
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The remainder of this paper is organized as follows: the following subsection summarizes
work most closely related to our approach. Then a brief description of the PVS system
is given. Section 2 presents the basic concepts needed in this paper. Section 3 gives
an overview of the complete compilation structure and the hierarchy of PVS theories for
compiling the imperative language constructs. In the following sections these theories are
then described in greater detail. In Section 4 a generic specification of an operational
semantics of linear code based on the single effects of the instruction set is presented.
Section 5 deals with the compilation of simple statements, i.e. assignments. Section 6,
7, and 8 are concerned with the compilation of standard control structures. First, the
translation into a basic block structure is outlined, and then we focus on the linearization
phase and finally, procedures are linearized. To illustrate the application of the generic
theories to specific compilation processes, compilation of a simple imperative language
into code of a stack machine and a one-address machine is presented in section 9. Finally,
Section 10 contains a short summary and an outlook. All theorems, lemmas and proof
obligations have been completely proved. PVS theories and proof scripts may be obtained
from the first author upon request.

Related Work

P. Curzon [6] verifies the compilation of a structured assembly language, Vista, into code
for the VIPER microprocessor using the HOL system. Vista is a low-level language in-
cluding arithmetic operators which correspond directly to those available on the target
architecture. The specifications of the languages are generic only in the sense that they
abstract from the specific word size, and the set of arithmetic and comparison operations
available on the target machine.

P. Windley [22] uses a generic microprocessor specification in the context of microproces-
sor verification; he abstracts from the state and effects of individual instructions and
provides a definition of an interpreter and various correctness predicates relating the dif-
ferent microprocessor levels. His generic interpreter is related to our generic specification
for interpreting linear machine code as described in Section 4.

The modularization aspect of compiler verification has been considered by Miiller-Olm [14],
who deals with verifying the compilation process of an imperative real-time language
into transputer code. Modularization is achieved by a stepwise derivation of increasingly
abstract views of transputer behavior starting from a base model. The different levels then
permit separate treatment of particular aspects. This approach, which can be adapted
to other target architectures, is concerned with different abstraction levels for the target
machine; this is in contrast to the approach presented here, which focuses on separating
the compilation of different language constructs.

In [13], Miiller-Olm considers the translation of control structures of a simple while lan-
guage into linear machine code with relative jumps. Starting from a denotational seman-
tics of while programs and an operational machine semantics, the machine semantics is
characterized denotationally and then the equivalence of source and target semantics is
established. Proofs are carried out without any mechanical support. Our proof of the
linearization step presented in Section 7 is similar to these ideas.
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A Brief Description of PVS

This section provides a brief overview of PVS. For more details consult [15, 16].

The PVS system combines an expressive specification language with an interactive proof
checker that has a reasonable amount of theorem proving capabilities. The PVS speci-
fication language builds on classical typed higher-order logic with the usual base types,
bool, nat, rational, real, among others, and the function type constructor [A -> B].
The type system of PVS is augmented with dependent types and abstract data types. A
distinctive feature of the PVS specification language are predicate subtypes: the subtype
{x:4 | P(x)} consists of exactly those elements of type A satisfying predicate P. Predi-
cate subtypes are used, for instance, for explicitly constraining the domains and ranges of
operations in a specification and to define partial functions.

Predicates in PVS are elements of type bool, and pred[A] is a notational convenience for
the function type [A -> bool]. Sets are identified with their characteristic predicates,
and thus the expressions pred[A] and set[A] are interchangeable. For a predicate P of
type pred[A], the notation (P) is just an abbreviation for the predicate subtype {x:4 |
P(x)}.

In general, type-checking with predicate subtypes is undecidable; the type-checker gener-
ates proof obligations, so-called type correctness conditions (TCCs) in cases where type
conflicts cannot immediately be resolved. A large number of TCCs are discharged by spe-
cialized proof strategies, and a PVS expression is not considered to be fully type-checked
unless all generated TCCs have been proved.

Proofs in PVS are presented in a sequent calculus. The atomic commands of the
PVS prover component include induction, quantifier instantiation, automatic conditional
rewriting, simplification using arithmetic and equality decision procedures and type infor-
mation, and propositional simplification using binary decision diagrams. The SKOSIMP*
command, for example, repeatedly introduces constants of the form x!'i for universal-
strength quantifiers, and ASSERT combines rewriting with decision procedures.

Finally, PVS has an LCF-like strategy language for combining inference steps into more
powerful proof strategies. The strategy GRIND, for example, combines rewriting with
propositional simplification using BDDs and decision procedures. The most comprehensive
strategies manage to generate proofs fully automatically.

2 Basic Concepts

In this section we summarize the basic concepts needed in this paper. The first two
subsections are based on [1,17], where a more comprehensive treatment can be found.

Fixed-Point Theory

Defining the semantics of loops requires fixed-point theory. In [1] we have developed a
comprehensive formalization of domain and fixed-point theory in PVS, including formal-
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izations of complete partial orders, notions related to monotonic and continuous functions,
Knaster-Tarski fixed-point theorems for monotonic functions and Scott’s fixed-point induc-
tion for admissible predicates and monotonic functions. We state the fixed-point induction
theorems used in this paper.

A partial order <= over D is a pre-cpo over D if for every chain in D the least upper bound
exists. If, in addition, the type D has a least element bottom then the pair (<=, bottom)
is called a complete partial order (cpo).

% d: VAR CPO[D] [ 1]

fp_induction_mono: THEOREM
LET (<=, bottom) = d IN
FORALL(f: Monotonic(<=, <=), P: Admissible(<=)):
(P(bottom) AND (FORALL(x: D): P(x) IMPLIES P(f(x))))
IMPLIES P (mu(<=) (f))

fp_induction_mono_le: LEMMA
LET (<=, bottom) = d IN
FORALL(f: Monotonic(<=, <=), P: Admissible(<=)):
(P(bottom) AND (FORALL (x: D): P(x) AND x <= f(x) IMPLIES P(f(x))))
IMPLIES P (mu(<=) (f))

park: LEMMA f(x) <= x IMPLIES mu(f) <= x

A special case of fixed-point induction is Park’s lemma, which is useful for proving that
something contains a least fixed point.

The definition of the least fixed-point operator mu makes use of the predicate subtype
concept of PVS by restricting the operator to only those functions for which the least fixed
point exists. Hence, typechecking an expression containing operator mu, PVS generates a
corresponding TCC.

(£ (x) = x) [ 2 ]

1fp?(<=) (£) (x) : bool = fixpoint?(f) (x)
& (FORALL y: fixpoint?(f) (y) IMPLIES x <= y)

fixpoint?(£) (x): bool

1fp_exists?(<=) (f): bool = nonempty?(lfp?(<=) (£))

LFP (<=, f) : TYPE
LFP_Exists(<=): TYPE

(Lfp? (k=) (£))
(1fp_exists?(<=))

mu(<=) (f: LFP_Exists(<=)): LFP(<=, f) = choose(1fp7(<=) (£))

mu_is_fixpoint: LEMMA FORALL (f: LFP_Exists(<=)):
f(mu(<=) (£)) = mu(<=) ()

mu(d) (f: Monotonic(<=(d), <=(d))): LFP(<=(d), £f) = choose(1fp7(<=(d)) (£))

Monotonic functions mapping into a cpo always have least fixed-points - known as the
Knaster-Tarski theorem.
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KnasterTarski: THEOREM LET <= = <=(d) IN [3 ]
FORALL (f: Monotonic(<=, <=)): 1fp_exists?(<=) (f)

State Transformers

Semantic definitions presented in this paper are expressed as state transformers which are
modeled as relations. A relation R C A x B is represented as a function mapping elements
of type A to a set of elements of type B. Partial functions can be defined as a subtype
of relations by restricting the range to sets with at most one element. The following
definitions are taken from the library of PVS theories for specifying the semantics of
imperative language constructs [17].

% A,B : TYPE [ 4]

Relation : TYPE = [A -> set[B]]
srel : TYPE = Relation

deterministic?(S:set[B]) : bool = empty?(S) OR singleton?(S)

PartialFunction : TYPE = [A -> (deterministic?)]
strans : TYPE = PartialFunction

A cpo over srel can be defined using the cpo function constructor =>, the predicate cpo
Pred[B], and the discrete cpo over type A: the partial ordering is denoted by <=, and the
bottom element is called abort.

srel : CPO[[A -> set[B]]] = (discrete[A] => Pred[B]) IL
<= : preCP0[srell = (<=(srel))
abort : Bottom[srel] (<=) = (bottom(srel))

State transformers for imperative language constructs can be defined easily using these
definitions. In the sequel let sigma denote the type of states on which programs operate.
Sequential composition of two state transformers £ and g, denoted by £ ++ g is defined by
relational composition. Sequencing is monotonic in both arguments, and the composition
of two deterministic state transformers is deterministic.

image(R:srel, S:set[sigmal) : set[sigmal = [ 6 |
{ y:sigma | EXISTS (s:(S)): member(y,R(s)) }

++(f, g) : srel = LAMBDA (s:sigma): image(g,f(s))

The semantics of a conditional is obtained by lifting the boolean IF-expression:!

IF (b:pred[sigmal, f,g:srel) : srel = L7 |
LAMBDA (s:sigma): IF b(s) THEN f(s) ELSE g(s) ENDIF

'Note that IF is overloaded here. In PVS, for expression IF(b,f,g) the convenient notation IF b THEN
f ELSE g ENDIF can be used.
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Source Syntax .
¥ compiler specification Object Syntax
Q O

compare

O O

Source Semantics Object Semantics

Figure 1: Compiler Specification Correctness

The semantics of loops is defined as usual as the least fixed point of a functional describing
one iteration of the while-loop. The identity state transformer skip is modeled as a
function mapping a state s to the singleton set {s}.

while(b:pred[sigmal, f:srel) : srel = L8 |
mu(srel) (LAMBDA (x:srel): IF b THEN f ++ x ELSE skip ENDIF)

In [17] we have proved that state transformers ++, IF and while are deterministic if
applied to deterministic state transformers.

In the correctness proof of the linearization step presented in Section 7, we will make use
of the following transfer lemmas:

F,G : VAR {F1 : [srel -> srel] | monotonic?(<=,<=)(F1)} [ 9 |
x,y : VAR srel

transfer : LEMMA
(FORALL x: (F(x) ++ y) = G(x ++ y))
IMPLIES mu(srel) (F) ++ y = mu(srel) (G)

Notion of Correctness

The correctness of a compiler specification is generally understood as the commutativity
of a kind of diagram as given in Fig. 1. Correctness is established by comparing the
semantics of source programs and their compilations. As noticed, for example, by Chirica
and Martin [5], this is only one aspect of compiler correctness. Another important aspect
is the correctness of compiler implementation with respect to the specification. In this
paper we concentrate on the correctness of compiler specifications.

There are many different possibilities to define the compare relation in Fig. 1. The defin-
ition used in this paper and in the Verifix project preserves partial correctness of source
programs. 1t is claimed to be useful for verifying realistic compilation processes since it
takes into account the finite resource limitations of real hardware. It allows the target ma-
chine program to fail if, for example, a memory or arithmetic overflow occurs. However,
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source_sem(cmd)
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statemap statemap

target_sem(code)
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Figure 2: Compiler Specification Correctness (refined)

whenever the execution of the compiled program produces a regular result, this result
must correspond to the one produced by the source program. A more detailed discussion
concerning this notion of correctness can be found in [7].

More precisely, let Statement denote the type of abstract source syntax (statements),
source_sem its semantics given as a partial function on source states SState. Let further
Code denote the type of target code, and target_sem its semantics given as a partial
function on target states MState. In general, target states are different from source states,
thus, we suppose that a mapping statemap from target states to source states is
provided.

Statement : TYPE, ng_
SState : TYPE,

source_sem : [Statement -> PartialFunction[SState,SState]],

Code : TYPE,

MState : TYPE,

target_sem : [Code -> PartialFunction[MState,MState]l],

statemap : [MState -> SState]

Then a generic notion of correctness in the sense of preservation of partial program cor-
rectness can be defined by predicate pp_correctness in . It is illustrated in Fig. 2
which can be seen as an instance of the general correctness diagram in Fig. 1 since it gives
a concrete definition of the compare relation. Informally, the predicate states that the
target language semantics is contained in the source language semantics with respect to
statemap.

% —--— notion of correctness —-—- L_ll_

pp_correctness (cmd: Statement) (code:Code) : bool =
FORALL (start,final:MState):
target_sem(code) (start) (final)
IMPLIES
gsource_sem(cnd) (statemap (start)) (statemap (final))
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3 Compilation Structure

Figure 3 illustrates the modular generic compilation of standard language constructs for
imperative languages: expressions, simple statements (i.e. assignments), control struc-
tures, and procedures.

Procedures + Procedures + Procedures + Linear Code
Control Structures Basic Blocks Linear Code with Jumps
Simple Statements Linear Code without Jumps
Expressions
Machine Instructions

Figure 3: Generic Compilation Structure for Imperative Languages

On the lowest level in the hierarchy expressions are supposed to be compiled into linear
machine code, i.e. code which does not contain branching instructions. The specification
of the target machine is generic in the sense that it abstracts from the concrete instruction
set and internal structure of the machine state. It is described in more details in the next
section. In this paper we are not developing a generic theory for expression compilation;
this will be considered in a future paper. However, in section 9 compilation of expressions
into code of a stack machine and a one-address machine is described in details.

On the next higher level, compilation of simple statements is considered. Given a compi-
lation function for expressions and assumptions about its correctness, the compilation of
simple statements, i.e. assignments, need not take into account the structure of expres-
sions or their compilation. All that is needed is a function providing access to the result
of expression evaluation and an assumption that the accessed value is the correctly com-
puted result. The theory specifying the compilation of simple statements is parameterized
accordingly. This compilation step is described in more details in Section 5.

Similarly, the compilation of control structures (sequential composition, conditionals and
loops) and procedures builds on compilation functions for expressions and simple state-
ments; its correctness again depends on assumptions about the correctness of those compi-
lation functions. For implementing control structures, branching instructions on the target
architecture are required. It is convenient to split this compilation task into three steps:
First, control structures are compiled into basic blocks. In a basic block graph the nodes
consist of linear code sequences, and the edges represent the flow of control between these
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blocks. A basic block is assigned to each procedure. Basic blocks preserve the semantics of
control structures. In a second step, basic blocks are then linearized by implementing the
edges by the insertion of relative jumps. It has turned out that the introduction of such an
intermediate language drastically simplifies the proof effort, in contrast to a direct trans-
lation of source statements into linear code with jumps. In addition, this step corresponds
to a standard compilation phase in existing compilers. Linear machine code with relative
conditional and unconditional jumps is assigned to each procedure. Finally, the procedure
bodies and the main program are linearly ordered and jump tables are introduced.

4 Generic Interpreter for Linear Code

In this section a generic theory specifying the semantics of linear code (without jumps)
for an “arbitrary” architecture is presented. In Figure 3 this PVS theory appears as the
rightmost lower box.

gimple_interpreter [Instr : TYPE, L_lg_
MState : TYPE+,
(IMPORTING relation[MState,MState])
effect : [Instr -> PartialFunction[MState,MState]]
1 : THEORY

% ——————-- programs are lists of instructions
Code : TYPE = list[Instr]
c,1,k : VAR Code

% ——————- concatenation of code sequences
++(1,k) : Code = append(1,k)

% ———————= basic block interpreter

interprete(c) : RECURSIVE srel =

CASES c OF

null : skip,

cons(i,r) : effect(i) ++ interprete(r)
ENDCASES

MEASURE length(c)

interprete_deterministic : LEMMA
FORALL (s:MState): deterministic?(interprete(c) (g))

END simple_interpreter

Theory simple_interpreter () abstracts from the specific instruction set, and the
internal structure of the machine state (i.e. registers, memory, flags), and defines an
operational semantics of linear code based on the single effects of the machine instruc-
tions given as a theory parameter. A deterministic state transformer effect is used
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for this purpose specifying the semantics of each machine instruction. The semantics
of linear code sequences is then defined by a state transformer interprete. Lemma
interprete deterministic states that interprete is a deterministic state transformer.
It can easily be proved using structural induction on the construction of lists. Note that
the ++ operator, denoting sequential composition of state transformers, is overloaded here
to define concatenation of code sequences.

5 Generic Compilation of Simple Statements

This section describes the generic specification and verification of simple statement com-
pilation. A simple statement is given by an assignment of kind x := e. The generic
compilation pattern consists of generating code for expression e and storing the value into
a location for . Therefore this compilation step can be specified with respect to the
compilation of expressions. For specifying and proving correct this compilation step a set
of parameters is required. They are grouped into parameters used for source and target
language and the compilation process. Their meaning is given by a set of assumptions. In
the following we describe the purpose of these parameters in more details.

Identifiers and expressions in assignments are represented by elements of type Ident and
Expr, respectively. The concrete nature of expressions is irrelevant for this step. The
semantics of expressions is assumed to be given by an evaluation function eval which takes
an expression and an environment, a mapping from identifiers to values, as arguments and
vields the value of the expression.

Y === source ========== 13

Ident : TYPE+,

Expr : TYPE+,
SrcValue : TYPE+,
eval : [Expr -> [[Ident -> SrcValue] -> SrcValuel]

We suppose that simple statements are compiled into linear jump free code. Therefore,
the semantics of target code can be defined using the generic interpreter for linear code;
theory simple_interpreter is imported.

% === target ========== L_lé_
Instr : TYPE+,

MState : TYPE+,

effect : [Instr -> PartialFunction[MState,MState]]

IMPORTING simple_interpreter[Instr,MState,effect]

Additional parameters for the target language are required in order to specify access on
target values and the memory. A parameter output is used abstracting from the specific
value passing mechanism of expression values on the target architecture, i.e. the way how
values on the target machine can be accessed. A stack machine, for example, accesses
the value from the top of the stack, and in a one-address machine the value is accessed

10
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by reading the content of the accumulator, while a register machine reads the content
of a specific register assigned by a register allocator. Another possibility is to store the
expression value in memory and to access a specific memory cell. Here, type parameter T
stands for the type of registers or memory addresses. For stack machines and accumulator
machines this parameter is not required and can be instantiated with, for example, a unit
type, see section 8 for examples. Values can generally be accessed only in those states in
which output gives a defined value, as characterized by the predicate outputdefd?. For
example, accessing a value in a stack machine requires the stack to be nonempty.

% ——- access of target values --- L_lé_
TarValue : TYPE+,

T : TYPE+,

outputdefd? : [T -> pred[MStatel],

output : [£:T -> [ms: (outputdefd?(t)) -> TarValuel]

Parameter Addr abstracts from the type of memory addresses, and the target memory is
given as a mapping from target addresses to target values. In addition, a function STORE
is used for specifying the target code sequence for storing values provided at a specific
location (of type T) at a specific memory address. Its meaning is specified by assumption
interprete_store. Informally this assumption states that if the interpretation of the
store code starting in a state start ends in a state final, then the memory is updated
at the specific address with the value provided by output.

% === memory ============ L_gi_
Addr : TYPE+,

STORE : [T, Addr -> list[Instrl],

Mem : [MState -> [Addr -> TarValuel]

interprete_store : ASSUMPTION
FORALL (rn:T, a:Addr, start, final:MState):
interprete(STORE (rn,a)) (start) (final)
IMPLIES
outputdefd? (rn) (start)
IMPLIES
Mem(final) = Mem(start) WITH [(a) := output(rn) (start)]

Consider now the parameters used for specifying the compilation step. Compilation re-
quires that source values are represented on the target architecture. Since realistic ma-
chines have restricted resources in general not all source language values are representable
on the target architecture. For example, if the domain of source values is the set of
integers, only a subset can be represented on a real target architecture. A predicate
representable? is introduced for this purpose. We assume that a bijective function
valmap is given mapping target values to representable source values.

Source language identifiers have to be mapped onto memory addresses. For this purpose,
a function idmap is introduced. In addition, target states have to be related to source
states (statemap)

11
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% === compilation === L_lZ_

representable? : pred[SrcValue],

valmap : (bijective?[TarValue, (representable?)]),
idmap : [Ident -> Addr],
statemap : [MState -> SState]

The meaning of these parameters is specified by two assumptions:

statemap_and_memory : ASSUMPTION Ll§_
FORALL (ms1,ms2:MState, id,id1l:Ident, vi:TarValue):
Mem(ms2) = Mem(ms1) WITH [(idmap(id)) := v1] & idl /= id
IMPLIES statemap(ms2) (idl) = statemap(msl) (id1)

symtab_and_memory : ASSUMPTION
FORALL (ms:MState, id:Ident):
valmap (Mem(ms) (idmap(id))) = statemap(ms) (id)

e Assumption statemap_and memory expresses the fact that memory updates at vari-
able addresses do not change the values of other variables with respect to statemap.

e Assumption symtab_and memory states the relation between idmap and the state
map: the contents of the memory address associated with an identifier corresponds
to the value of the identifier with respect to valmap.

Finally, we assume that a compilation function compileExpr mapping expressions to code
sequences is given. Additionally, this compilation function must provide the location on
the target machine from which the expression’s value is accessible. This location is fix
for stack machines and accumulator machines, since the value is always accessed from
the stack and accumulator, respectively. However, for other machines the value can be
accessed from a specific register or memory cell.

% —-—-— compiling function for expressions ---

compileExpr : [Expr -> [(deterministic?[list[Instr]]), T1]

All what is assumed for this function is that it is correct in the sense of preservation of
partial program correctness:

expression_compilation_correct : ASSUMPTION L_Ei_
FORALL (e:Expr):
LET (c_set, resnr) = compileExpr(e) IN
FORALL (c: (c_set)), (start,final:MState):
interprete(c) (start) (final) IMPLIES
outputdefd? (resnr) (final) AND
valmap (output (resnr) (final)) = eval(e) (statemap(start)) AND
statemap (final) = statemap(start)

Informally, this states that whenever the target machine stops in a state after interpreting
the code c the value of expression e can be accessed using output with respect to valmap

12
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and statemap. In addition, expression evaluation on the target machine must not have
any effect on the corresponding source states.

Based on these parameters the compilation of assignments can be specified. First, syntax
and semantics of simple statements have to be defined. Syntax and semantics of sim-
ple statements are given by type SimpleStatement and deterministic state transformer
ss_meaning, respectively. Semantics of an assignment is defined as usual: assign(x,e)
updates the current state by assigning the value of e to identifier x.

% —--— syntax of simple statements ngl_
SimpleStatement : DATATYPE
BEGIN
assign(ass_var:ldent, ass_exp:Expr) : assign?
END SimpleStatement

% —-—- semantics of simple statements
ss_meaning(cmd:SimpleStatement) : PartialFunction[SState,SState] =
LAMBDA (ss:SState):
CASES cmd OF
assign(id,e) : singleton(ss WITH [(id) := eval(e) (ss)])
ENDCASES

Partial function compile SimpleStmt then defines the compilation of simple statements.
First, the expression is compiled using compileExpr then the value is stored at an address
provided by idmap.

% —--— compilation of simple statements --- L_%l_

compile_simpleStmt (cmd:SimpleStatement) : (deterministic?[Code]) =
CASES cmd OF
assign(id,e) : LET (c_set, rn) = compileExpr(e) IN
c_set ++ singleton(STORE(rn, idmap(id)))

ENDCASES

For stating the correctness of this step (in the sense of partial program correctness) the
generic notion of correctness presented in Section 2, is instantiated.

% === import generic notion of correctness ===
IMPORTING correct[SimpleStatement, SState, meaning, Code, MState, interprete, statemap]

Thus, one has to prove

simple_statement_comp_correct : THEOREM LJEL_
FORALL (cmd:SimpleStatement, c:Code):
compile_simpleStmt (cmd) (¢) IMPLIES pp_correctness (cmd) (c)

The proof of this theorem is by unfolding definitions, rewriting the assumptions, and
applying propositional simplification.

13
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CONTROL STRUCTURES
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Figure 4: Compilation of Statements into Basic Block Graph

6 Compiling Control Structures into Basic Block Graphs

As stated in Section 3, the compilation of control structures is carried out in three steps:
first, they are translated into a basic block structure, then that structure is linearized, and
finally the procedures are implemented. In the next subsection we first present syntax and
semantics of control structures (statements). Then we focus on basic blocks which have
the same structure as statements but are defined on target language code. Finally, the
compilation of control structures into basic blocks is outlined and proved correct.

Figure 4 illustrates this compilation step.

6.1 Control Structures

Consider the specification of source language control structures including simple state-
ments, sequential composition, conditional, loop and (parameterless) procedures. The
specification is parameterized with respect to the type and semantics of boolean expres-
sions given by BExp and eval respectively, and the type and semantics of simple statements
given by SimpleStatement, the type of procedure identifier PId, and the deterministic
state transformer ss_meaning, respectively.

14
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BExp : TYPE, [23 |

SState : TYPE+,

PId : TYPE+,

eval : [BExp -> [SState -> booll],

SimpleStatement : TYPE,

ss_meaning : [SimpleStatement -> PartialFunction[SState,SStatel

The abstract syntax of control structures can then be defined in the obvious way using an
abstract datatype Statement.

% —--- syntax of control structures --- LJEL_
Statement : DATATYPE
BEGIN
simple stat (get simple stat:SimpleStatement) : simplestat?
seq(first,second:Statement) : seq?
itef(ifcnd: BExp, then_part, else_part: Statement) : itef?
while(whilecnd: BExp, while_body: Statement) : while?
call(p_name:PId) : call?
END Statement

Semantics of control structures is defined inductively in ([25]).

% —--— semantics of control structures —--- Ligi_
meaning(c) (env) : RECURSIVE srel =
CASES ¢ OF
simple_stat(si) : ss_meaning(si),
seq(cl,c2) : meaning(cl) (env) ++ meaning(c2) (env),
itef(b,cl,c2) : IF eval(b) THEN meaning(cl) (env) ELSE meaning(c2) (env) ENDIF,
while(b,cl) : while(eval(b), meaning(c1) (env)),
call(i) : env(i)
ENDCASES

MEASURE ¢ BY <<

Semantics of the conditional and while statement are defined using state transformers IF
and while, respectively (see Section 2, , ) Procedure environments map procedure
identifiers to state transformers. Environments build a cpo which is constructed using the
cpo constructor =>.

%%k procedure environments, cpo, % Ident: TYPE+ Ligi_
environment : TYPE = [Ident -> srel]
env_th: THEORY = FP@exponent[Ident,srell

env_cpo : CPO[[Ident -> srell] = (discrete[Ident] => srel)
; <= : preCPO[environment] = (<=(env_cpo))
bottom:Bottom[environment] (<=) = (bottom(env_cpo))

The semantics of procedure declaration is defined by instantiating a generic PVS theory
decl for procedure declaration. The theory is parameterized with respect to the syntax
and semantics of statements, and the type of identifiers:

15
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%h% parameters of theory decl [ 27 |
statement : TYPE+, % —-—- syntax of statements

Ident: TYPE+, % —-—- procedure identifier

sigma,tau:TYPE+, % —-—- types for state transformers

(IMPORTING env[Ident,sigma,taul) % --- definition of environments

C: [statement -> [environment -> srell] ¥ --- semantics of statements

Since the theory defines the environment for procedure declarations by a least fixed-point
of a monotonic functional, the state transformer for statements is required to be monotonic
with respect to the environment:

%%% assumption for the parameters 28
monotonic_prop : ASSUMPTION envl <= env2 IMPLIES C(stat) (envl) <= C(stat) (env2)

The monotonic functional updating the environment is given by

decl_sem(d:[Ident -> statement]) : [environment -> environment] = ngi_
LAMBDA env: LAMBDA i: C(d(i)) (env)

decl_sem_monotonic: LEMMA monotonic?[environment,environment] (<=,<=) (decl_sem(d))

Finally, the semantics of declarations is defined as the least fixed-point (over the en-
vironment cpo) of functional decl_sem: according to the Knaster-Tarski theorem this
fixed-point exists.

D(d): environment = mu(env_cpo) (decl_sem(d)) Li§l4

We utilize the generic theory to define the semantics of procedure declarations for our
source language. The meaning of a source program consisting of procedure declarations
and a main program is defined by the meaning of the main program in the constructed
procedure environment.

%% semantics of procedure declarations 31
declsource: THEORY = decl[statement, PId, SState, SState, meaning]

source_program : TYPE = [# decls : [PI4d -> statement],
main : statement #]

%h% semantics of source programs
P(p:source_program): srel = meaning(main(p)) (D(decls(p)))

6.2 Basic Blocks

For defining syntax and semantics of basic blocks the parameters in are used where the
first four are used to specify the instruction set and its semantics; the generic interpreter
theory simple_interpreter is imported () In addition, an access function for boolean
values on the target machine is required. Such a boolean value is usually accessed by

16
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testing a specific flag which is set according to the result of the last executed operation.
Here, we suppose that a boolean output function is given. Note, that the output function
does only depend on the current machine state, i.e. the boolean value is accessed from a
constant target location (specific flag, accumulator, top of stack etc.) Again, a predicate
(outputdefd?) is introduced denoting the set of states in which an access is possible.
Additionally, a function read specifies the state transition carried out when accessing a
value using output. For example, in a stack machine a value is accessed by reading the
stack’s top element followed by a pop operation. In a register machine, parameter read
would be instantiated to the identity function on states.

%h% parameterization of basic block graphs [ 32 ]
Instr : TYPE,

MState : TYPE+,

PId : TYPE+,

effect : [Instr -> PartialFunction[MState,MState]],

outputdefd? : pred[MState],

output : [(outputdefd?) -> booll,

read : [(outputdefd?) -> MState]

A basic block graph is defined in using an abstract datatype with five constructors
each representing one specific control structure. A basic block graph is assigned to each
procedure.

% —--- syntax of basic blocks --- Ljii_
bb_graph : DATATYPE
BEGIN
gimple_block(code_seq : Code) : simple_block?
seq_block(fst,scd : bb_graph) : seq_block?
if_block(if_cnd, thn, els : bb_graph) : if_block?
while_block(while_cnd, body : bb_graph) : while_block?
call_block (pid:PId) : call_block?
END bb_graph

In particular,

a simple block consists of a linear code sequence.
e a sequential block consists of two subblocks.

e a conditional block consists of three subblocks, one block representing the condition,
and two blocks denoting the true and false block, respectively.

a while block consists of a condition block and a block denoting the body of the
loop,

a call block consists of the single call statement.
The “nodes” of the graph are given by the different block constructors, whereas the “edges”

are given by the semantics. It is defined by a (deterministic) state transformer bb_ip
defined on machine states.
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%%% semantics of basic blocks %%% Liii_
bb_ip(g) (env): RECURSIVE srel =
CASES g OF
gimple_block (p) : interprete(p),
seq_block(bl,b2) : bb_ip(bl) (env) ++ bb_ip(b2) (env),
if_block(c,t,e) : IF bb_ip(c) (env) THEN bb_ip(t) (env) ELSE bb_ip(e) (env) ENDIF,
while_block(c,bd) : while(bb_ip(c) (env), bb_ip(bd) (env)),
call_block (i) : env(i)
ENDCASES
MEASURE g BY <<

More specifically, the semantics of simple blocks is defined using interprete which defines
the semantics of linear code sequences as given in theory simple_interpreter. Sequential
blocks are interpreted by relational composition (++) of the semantics of the two subblocks.
The semantics of the if-block reflects the semantics of a conditional statement. It is given
by relational composition of the semantics of the condition subblock and a branch state
transformer fork which branches to the first or second subblock depending whether the
output is true or false in a specific state in which a value can be accessed. If the output
is not defined in this state function fork returns the empty set.

% —-—-— state transformer fork --- Ligi_
fork(f,g) : srel =
( LAMBDA ms: IF outputdefd?(ms) THEN

IF output (ms) THEN f(read(ms))

ELSE g(read(ms))

ENDIF

ELSE emptyset[sigmal

ENDIF )

IF(st1,st2,s8t3) : srel = stl ++ fork(st2,st3)

Semantics of the while-block is given by the least fixed point mu of a functional while which
has exactly the same structure as the corresponding source language state transformer.

% —--- state transformer while --- Liﬁi_

while(st1l,st2): srel =
mu(srel) (LAMBDA (h:srel): IF stl THEN st2 ++ h ELSE skip ENDIF)

It has to be proved that state transformer bb_ip is deterministic. This has to be established
for each case in the definition of bb_ip. For the first case this is trivial since we already
have proved that interprete is deterministic. For the second case a lemma from the
library can be utilized which states that deterministic state transformers are closed under
composition. Deterministic state transformers are also closed under IF since they are
closed under compositionality. For proving closure under while fixed-point induction
for monotonic functions is required. The proof follows exactly the one given in [17] for
while_strans_closed.

For defining the semantics of procedure declarations, the generic theory decl is instan-
tiated. A basic block program consists of procedure declarations mapping identifiers to
basic block graphs, and a main basic block graph.
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bb_program: TYPE = [# pd: [PId -> bb_graphl, main_block: bb_graph #] L:il_

decltarget: THEORY = decl[bb_graph, PId, MState, MState, bb_ip]

BS (bp:bb_program) : srel = bb_ip(main_block(bp)) (D(pd(bp)))

The following useful lemma states the characteristic behavior of the while block which
corresponds to the behavior of the while statement.

bb_ip_while_block_unfold : LEMMA Ligi_
bb_ip(while_block(w_cnd, w_body)) (env) =

IF bb_ip(w_cnd) (env)

THEN bb_ip(w_body) (env) ++ bb_ip(while_block (w_cnd, w_body)) (env)

ELSE skip

ENDIF

6.3 Compilation

Compilation of (abstract) source programs into basic block programs can be specified with
respect to expression compilation and simple statement compilation. More specifically, the
PVS theory specifying this compilation step abstracts from

e the syntax and semantics of (boolean) expressions,

e the syntax and semantics of simple statements,

e the instruction set and internal structure of the machine state,

o the value access function output and the corresponding access state transition read,
e the state map (statemap),

e the compilation of both (boolean) expressions compileBExpr and simple statements
given as deterministic state transformers.

The parameters must satisfy the following assumptions:

e Both boolean expression compilation and simple statement compilation must be
correct in the sense of preservation of partial correctness.

e The read function must have no effect on the corresponding source states with respect
to statemap.

Partial function compileStmt, sketched in defines the compilation of control structures
into the block structure. Not surprisingly, each control structure is compiled into the
corresponding basic block. For example, a conditional itef(b,c1,c2) is compiled into
a if block where the boolean expression b is compiled into a simple block consisting of
the code sequence which is the result of applying compileBExpr to b. A call statement is
translated into a call block.
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% -—- compilation of control structures into basic blocks --- Ligi_
compileStmt (cmd:Statement) : RECURSIVE (deterministic?[bb_graphl]) =
CASES cmd OF

itef(b,cl,c2)
LET g1 = compileBExpr(b) IN
IF empty?[Code] (g1) THEN emptyset[bb_graphl
ELSE
LET g2 = compileStmt(cl) IN
IF empty?[bb_graph] (g2) THEN emptyset[bb_graph]
ELSE LET g3 = compileStmt(c2) IN
IF empty?[bb_graph] (g3) THEN emptyset[bb_graph]
ELSE
singleton[bb_graph] (if _block(simple_block(choose(gl)),
choose(g2) ,choose(g3)))
ENDIF
ENDIF
ENDIF,

ENDCASES
MEASURE cmd BY <<

Correctness of this compilation step is stated by

correctness: THEOREM ngl_
compile_defined?(p) AND
BS(compile(p)) (start) (final)
IMPLIES P(p) (statemap(start)) (statemap(final))

Whenever the compilation of a program is defined (predicate compile defined?), and the
meaning of the compiled program is defined in some final state, then also the semantics of
the source program is defined in the corresponding source states (preservation of partial
correctness).

In order to prove this conjecture, an auxiliary property is established stating correctness
of statement compilation:

%h% auxiliary property for correctness proof L4 |
cr1(p) (rho) : bool =
FORALL cmd,g:
FORALL start,final:
compileStmt (cmd) (g) AND
bb_ip(g) (rho) (start) (final)
IMPLIES
meaning (cmd) (D(decls(p))) (statemap(start)) (statemap(final))

%%% auxiliary property for crl, same as crl but constant cmd
cr_aux (p) (rho) (cmd) : bool =
FORALL g:
FORALL start,final:
compileStmt (cmd) (g) AND
bb_ip(g) (rho) (start) (final)
IMPLIES
meaning (cmd) (D(decls(p))) (statemap(start)) (statemap(final))
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Then the main goal to prove is the fact that for all (non-empty) compilations of procedures,
property crl holds in the procedure environment generated for the compiled procedure
declarations.

%%k compilation of each procedure body is defined ngi_
procbodies_defined?(p) : bool = FORALL i: not (empty?(compileStmt (decls(p)(i))))

%h% corresponding total function
compile_decls(p: (procbodies_defined?)) : [PId -> bb_graph] =
LAMBDA i: choose(compileStmt (decls(p) (1)))

%%% main conjecture
cc: THEOREM procbodies_defined?(p) IMPLIES cri(p) (D(compile_decls(p)))

The main conjecture cc is by fixed-point induction over the procedure environment. The
base case for the ‘bottom’ environment is trivial and automatically proved by grind.
Admissibility is by characterizing the least upper bound of a chain C of environments as
the function mapping an identifier and a state to the union of all images of the functions
in the chain C.

The induction step of this fixed-point induction is by structural induction on the structure
of statements. To modularize the proof, for each step, separate compilation theorems have
been introduced.

%%% compilation theorems for statements %%% L;gi_
simple_c : VAR SimpleStatement

cmd,cmdl,cmd2 : VAR Statement

g,81,82 : VAR bb_graph

b : VAR BExp

c : VAR Code

rho : VAR environment[PId, MState, MState]

P : VAR source_program

gimple_correct : THEOREM cr_aux(p) (rho) (simple_stat (simple_c))

sq_correct : THEOREM
cr_aux(p) (rho) (cmdl) & cr_aux(p) (rho) (cmd2)
IMPLIES cr_aux(p) (rho) (seq(cmdl,cmd?2))

if_correct : THEOREM
cr_aux(p) (rho) (cmdl) & cr_aux(p) (rho) (cmd2)
IMPLIES cr_aux(p) (rho) (itef (b,cmdl,cmd2))

wh_correct : THEOREM
cr_aux(p) (rho) (cmd) IMPLIES cr_aux(p) (rho) (while(b,cmd))

call_correct: THEOREM
cr1(p) (rho) AND procbodies_defined? (p)
IMPLIES cr_aux(p) (decl_sem(compile_decls(p)) (rho)) (call(i))

The proof of the first theorem is by expanding definitions and using the assumption about
the correctness of simple statement compilation. The second theorem which states the
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correctness of sequential composition compilation is straightforward. The proof of the
third theorem uses the assumption stating the correctness of expression compilation and
the assumption about read. Here, the most interesting theorem is the compilation theorem
for the while statement. It is proved using park’s lemma for monotonic functions. Finally,
the call lemma requires some characteristic properties about fixed-points.

7 Linearization of Basic Block Graphs

So far, statements have been compiled into basic blocks where the structure is preserved
and a basic block is assigned to each procedure. The next step is to implement the control
structure, i.e. to linearly order the subblocks of a basic block by introducing relative
jumps. In the next subsection the (abstract) linear target code is extended by relative
jump instructions and subroutine calls, and an operational semantics is defined. Then
linearization of blocks is specified and proved correct.

7.1 Linear Target Code with Jumps

A new datatype MInstr () is defined which extends a simple linear instruction sequence
(lin_code(p)) as defined in theory simple_interpreter by unconditional (jmp), condi-
tional jumps (jmc), and call of subroutines, i.e. machine instructions are built from linear
code sequences and jumps.

% —--- code sequences with jumps --- Ii
MInstr : DATATYPE
BEGIN
lin_code(get_ins : Code) : 1lc7
jmp (jp-adr:int) : jmp?
jmc(jcadr:int) : jme?
jsr(jsr_adr:PId) : jsr?
END MInstr

A linear machine program is assigned to each procedure identifier:

linear _code : TYPE+ = list[MInstr]

machine_program: TYPE = [# sdecls:[PId -> linear_code], main:linear_code #]

The semantics of linear code with jumps is based on the semantics of simple linear code
(without jumps). Since jumps and jump subroutines have been introduced the abstract
machine state given as an uninterpreted type MState has to be extended. An additional
abstract stack structure is introduced to model subroutine calls and returns. Each stack
entry consists of a tuple of linear code (denoting the body of the current procedure),
and a (local) program counter which points to the machine instruction within the current
procedure body. The extended machine state is called a configuration.
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%%% machine configurations 45
Conf : TYPE = [MState, Stack[[linear_code, int]]1]

An operational semantics for this machine is based on configuration transformations. First,
a one-step configuration transformation is defined by the deterministic state transformer
eff in specifying the effects of each instruction of type MInstr:

eff (mp) (c1,c2) : bool = ngi_
LET (ms1, sl1) = c1, (ms2, s2) = c2 IN
IF empty?(sl) THEN false
ELSE
LET t = top(sl), code = proj_1(t), n = proj_2(t) IN
IF (n > length(code) OR n < 1) THEN (s2 = pop(sl) AND ms2 = msl)
ELSE
CASES nth(code, n - 1) OF
lin_code(p) : interprete(p) (msl) (ms2) & s2 = push((code, n + 1), pop(sl)),
jmp (1) : ms2 = msl & s2 = push((code, n + i), pop(sl)),
jme (i) : IF outputdefd?(msl) THEN
IF output (msl1) THEN
ns?2 = read(msl) & s2 = push((code, n + 1), pop(sl))
ELSE
ms?2 = read(msl) & s2 = push((code, n + i), pop(sl))
ENDIF
ELSE false
ENDIF,
jsr(i) : ms2 = msl &
82 = push((sdecls(mp) (i), 1), push((code, n+l), pop(sl)))
ENDCASES
ENDIF
ENDIF

Informally, the instructions have the following effects:

e there is no configuration transition if the current stack is empty

e if the program pointer points outside the current procedure body then the current
procedure body is popped from the stack (return)

e lin code(p) changes the current state by interpreting the linear code p using the
function interprete and increments the program counter,

e jmp(i) updates the current program counter

e jmc(i) changes the state using function read and updates the program counter
according to the output value provided that such a value can be accessed

e jsr(i) increments the current program pointer (return address), pushes the body
of the called procedure onto the stack, and sets the pointer to the first instruction

of the body.
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The operational semantics of a linear code program is then given by repeatedly applying
the above transition from a start configuration. This process may end in a final config-
uration where the stack is empty (the program terminates). In PVS, this semantics can
be represented by a relation M in where RTC(eff (mp)) is the reflexive and transitive
closure of eff(mp). Note that typechecking an inductively defined relation such as RTC
generates a corresponding induction principle. In the following, let RTC_induction denote
the induction principle for RTC.

M(mp) (s1:Stack) (msl:MState) (ms2:MState) : bool = L;ﬁl_
RTC(eff (mp)) ((msl, s1), ((ms2, empty)))

Since relation eff is deterministic, it can be proved using RTC_induction, that M is also
deterministic and hence is a partial function.

Based on the closure of eff the semantics of a complete machine program is defined by
a deterministic state transformer Ip on MState (the interpreter). The program mp is
“executed” from start (i.e. main is pushed onto the stack, and the program counter is set
to 1). Note that Ip is a state transformer on MState and does not depend on the program
counter.

%h% interpreter for machine programs 48
Ip(mp) : strans = M(mp) (push((main(mp), 1), empty))

We state some simple consequences (laws) of this semantic definition which are convenient
when proving the correctness of the linearization step.

e The machine behaves like skip when started with an empty stack:

law_identity : COROLLARY M(mp) (empty) = skip [49 ]

o If the current instruction is 1in_code(p) then the total behavior can be described
by relationally composing the interpretation of p using interprete with the com-
putation starting at the instruction directly following p.

law_linear_code : COROLLARY [L50 |
(n >= 1) & (length(u) >= n) & nth(u, n - 1) = lin_code(p)
IMPLIES

M(mp) (push((u, n), a)) = (interprete(p) ++ M(mp) (push((u, n + 1), a)))

law_linear_codel: LEMMA
M(mp) (push((u ++ (: lin_code(p) :) ++ v, 1 + length(u)), a)) =
interprete(p) ++ M(mp) (push((u ++ (: lin_code(p) :) ++ v, 2 + length(w)), a))

e Analogously there are laws for unconditional jumps
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law_jmp : COROLLARY [ 51 ]
(n >= 1) & (length(u) >= n) & nth(u, n - 1) = jup(i)
IMPLIES M(mp) (push((u, n), a)) = M(mp) (push((u, n + i), a))

law_jmpl : COROLLARY
M(mp) (push((u ++ (: jmp(i) :) ++ v, 1 + length(u)), a)) =
M(mp) (push((u ++ (: jmp(i) :) ++ v, 1 + length(u) + i), a))

e conditional jumps using semantic function fork, (see )

law_jmc : COROLLARY [ 52 ]
(n >= 1) & (length(u) >= n) & nth(u, n - 1) = jmc(i)
IMPLIES

M(mp) (push((u, n), a)) =
fork (M(mp) (push((u, n + 1), a)), M(mp) (push((u, n + i), a)))
law_jmcl : COROLLARY
M(mp) (push((u ++ (: jmc(i) :) ++ v, 1 + length(u)), a)) =
fork (M(mp) (push((u ++ (: jmc(i) :) ++ v, 2 + length(uw)), a)),
M(mp) (push((u ++ (: jmc(i) :) ++ v, 1 + length(u) + i), a)))

e jump subroutine, and

law_jsr : COROLLARY [ 53 ]
(n >= 1) & (length(u) >= n) & nth(u, n - 1) = jsr(k)
IMPLIES

M(mp) (push((u, n), a)) = M(mp) (push((sdecls(mp) (k), 1), push((u, n + 1), a)))

law_jsrl: COROLLARY
M(mp) (push((u ++ (: jsr(k) :) ++ v, 1 + length(u)), a)) =
M(mp) (push((sdecls(mp) (k), 1), push((u ++ (: jsr(k) :) ++ v, 2 + length(u)), a)))

e return from a subroutine (note that there is no explicit return instruction)

return_law: COROLLAR (n < 1) OR (n > length(u)) L;Zi_
IMPLIES M(mp) (push((u, n), a)) = M(mp) (a)

7.2 Compilation

Consider now the compilation process from basic block graphs into linear code with jumps
as illustrated by Fig. 5 and specified by function lin in .
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% —--- linearization of basic blocks --- ngl_
lin(g:bb_graph) : RECURSIVE linear_code =
CASES g OF
simple_block (p) : (¢ lin_code(p) :),
seq_block(b1l,b2) : lin(bl) ++ 1lin(b2),
if_block(c,t,e) : LET bb = lin(c), 11 = 1lin(t), 12 = lin(e) IN
(bb ++
(: jmc(length(1l1) + 2) :) ++
11 ++
(: jmp(length(12) + 1) :) ++
12),
while_block(c,b) : LET bb = lin(c), 1 = 1lin(b) IN
(bb ++
(: jmc(length(l) + 2) :) ++
1 ++
(: jmp(-(length(l) + length(bb) + 1)) :)),
call_block (k) : (:ogsr(k) )
ENDCASES
MEASURE g BY <<
%h% compilation of basic block programs
cp(p:bb_program) : machine_program =
(# sdecls := LAMBDA (i:PId): lin(pd(p)(i)), main := lin(main_block(p)) #)

Informally this means: a simple block consisting of code sequence p is translated into
a 1lin code(p) instruction, sequential blocks are linearized by recursively linearizing the
subblocks and composing the resulting code sequences. For the if-block and while-block
there are several possibilities to linearly order the subblocks. For the if-block we have
selected the sequential order if _cnd, thn, els by introducing a conditional jump after
the code for if_cnd block and an unconditional jump to the end of the sequence after
the code for thn. The linearization of the while-block consists of linearizing both the
while_cnd and body subblock together with a conditional jump and an unconditional
jump back to the beginning of the sequence. Finally, a call block is tranlated into a
corresponding jump subroutine instruction.

The correctness of this compilation step is stated by the following theorem and is illustrated
in Fig. 6, an instance of the diagram in Fig. 2. Since both the semantics of basic blocks and
machine programs are defined by state transformers on MState source and target language
states correspond. ID denotes the identity on MState. Here, semantic equivalence is
established: the semantics of a block program g is equal to the semantics of the associated
machine program.

linearization_correct : THEOREM FORALL (p: bb_program): Ip(cp(p)) = BS(p)

We split the proof of linearization correct into two parts: we show

linearization_correctl : THEOREM Ip(cp(p)) <= BS(p)

linearization_correct2 : THEOREM BS(p) <= Ip(cp(p))
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7.2.1 Proof of linearization_correctl

Consider first linearization_correctl. The principle idea of the proof is to derive a
denotational characterization of the (operational) machine semantics as the least fixed-
point of a functional psi and then to apply fixed-point induction. Fig. 7 illustrates the
proof idea.

A Denotational Machine Semantics

Note, that the semantics of machine programs (the interpreter) Ip is defined using relation
M . A denotational characterization N of M is accomplished by showing that M is the
smallest function satisfying the characteristic laws in - .

ind_type : TYPE = [machine_program -> [Stack -> srelll
% h : VAR ind_type

psi(h) (mp) (cf): srel =
IF empty?(cf) THEN skip
ELSE
LET t = top(cf), code = proj_1(t), n = proj_2(t) IN
IF (n < 1 OR n > length(code)) THEN h(mp) (pop(cf)) % return
ELSE
CASES nth(code, n - 1) OF
lin_code(p): interprete(p) ++ h(mp) (push((code, n + 1), pop(cf))),

jmp (i) : h(mp) (push((code, n + i), pop(cf))),
jmc (i) : fork (h(mp) (push((code, n + 1), pop(cf))),
h(mp) (push((code, n + i), pop(cf)))),
jsr(k): h(mp) (push((sdecls (mp) (k), 1), push((code, n + 1), pop(cf))))
ENDCASES
ENDIF

ENDIF

psi_monotonic: LEMMA monotonic?[ind_type, ind_type] (<=,<=) (psi)

To define the least fixed-point of psi, a cpo over ind_type has to be defined. This is done
by repeatedly using the cpo constructor =>:

conf_th: THEORY = FP@exponent[Stack,srell
conf_cpo : CPO[[Stack -> srell]] = (discrete[Stack] => srel)

ind_th: THEORY = FP@exponent [machine_program, [Stack -> srell]
ind_cpo: CPO[[machine_program -> [Stack -> srelll] =
(discrete[machine_program] => conf_cpo)

; <= : preCPO[ind_typel] = (<=(ind_cpo))
bottom:Bottom[ind_type] (<=) = (bottom(ind_cpo))

%%% denotational semantics N
N: ind_type = mu(ind_cpo) (psi)

The existence of the least fixed-point of psi is proved using psi monotonic and
KnasterTarski.
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We have to establish the equivalence of the operational and denotational machine seman-

tics .

‘ sem_equivalence : THEOREM N = M LEELJ

Again, the proof is split into two parts:

N_leq_M: LEMMA N <=M
M_leq_N: LEMMA M <= N

Since psi is the smallest function satisfying the characteristic laws of M, M is a fixed-point

of psi .
‘ M_is_fp: LEMMA psi(M) = M LfﬁLJ

The proof of is by a case analysis and using the laws - .

For the other direction we show that configuration transitions are correctly reflected by
the denotational semantics. First, this is proved for a one-step transition . The proof

is by a case analysis on the type of instruction and unfolding definitions.

eff_den_correct : LEMMA L;ﬁi_
eff (mp) ((msl,s1), (ms2,s2))
IMPLIES N(mp) (1) (me1) = N(mp) (s2) (ms2)

Then, analogously, a n-step transition produces the same effect for N . This is proved
by rule induction using RTC_induction and eff den _correct.

RTC_eff_den_correct : LEMMA [59 |
RTC(eff (mp)) ((msl,s1), (ms2,s2))
IMPLIES N(mp) (s1) (ms1) = N(mp) (s2) (ms2)

We are now able to proceed with the proof of linearization correcti. In order to
establish this proof a stronger property is used. This is necessary because when proving
the induction step for sequential blocks one cannot generally conclude that the program
counter points at the beginning of the second part after the first part is evaluated. The
idea is to introduce a code context u,v around the program of interest .

prop(p:bb_program) (h:ind_type) : bool = ngl_
FORALL g: FORALL a,u,v:
h(cp(p)) (push((u ++ lin(g) ++ v, 1 + length(u)), a))
<= bb_ip(g) (D(pd(p))) ++
h(cp(p)) (push((u ++ lin(g) ++ v, 1 + length(u) + length(lin(g))), a))

%%% auxiliary property
propl(p:bb_program) (h:ind_type) (g) : bool =
FORALL a,u,v:
h(cp(p)) (push((u ++ lin(g) ++ v, 1 + length(u)), a))
<= bb_ip(g) (D(pd(p))) ++
h(cp(p)) (push((u ++ lin(g) ++ v, 1 + length(u) + length(lin(g))), a))
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Informally, this property states that if program u ++ m ++ v (the body of the current
procedure) is executed with the first instruction of m where m is the result of the lineariza-
tion step then the behavior corresponds to the state transformer given by the semantics
of graph g composed with the state transformer given by the machine program semantics
starting the machine program at the first instruction of v. The main challenge is therefore

to show that for all block graphs g theorem holds.

correct: LEMMA FORALL p: prop(p) (N) LJQLJ

From this theorem, the main conjecture linearization_correctl can easily be derived
by instantiating the empty code sequence for the context u and v, the main program for
g, the empty stack for a, and applying law_identity .

Since N is defined as the least fixed-point of functional psi the proof of is established
using fixed-point induction. Here, we use the induction principle fp_induction mono_le,

see .

One has to prove

e the admissibility of our conjecture:

prop_admissible: LEMMA &
admissible?[ind_typel] (PROJ_1(ind_cpo)) (LAMBDA h: FORALL p: prop(p) (h))

As in the admissibility proof sketched in Section 6, the proof idea here is to charac-
terize the least upper bound of chain C of functions of type ind_type as the function
mapping a linear program, an integer, and a state to the union of all images of the
functions in the chain C.

e the induction base, (trivial), and

e the induction step

The induction step is proved by structural induction on the construction of basic block
graphs g. Trying to keep the proof effort manageable separate theorems for each block
constructor have been established in . Using these compilation theorems the proof of
the induction step is accomplished easily.
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%%% compilation theorems %%% =

correct_si_linl : LEMMA
h <= psi(h) IMPLIES propi(p) (psi(h)) (simple_block(c))

correct_seq_linl : LEMMA
propl(p) (psi(h)) (b1) & propl(p) (psi(h)) (b2)
IMPLIES propl(p) (psi(h)) (seq_block(bl,b2))

correct_itef_1linl : LEMMA
propl(p) (psi(h)) (b1) & propl(p) (psi(h)) (b2) & propl(p) (psi(h)) (b3) & h <= psi(h)
IMPLIES propl(p) (psi(h)) (if_block (b1,b2,b3))

correct_while_linl : LEMMA
propl(p) (psi(h)) (b1) & propil(p) (psi(h)) (b2) &
propl(p) (h) (while_block(b1,b2)) & h <= psi(h)
IMPLIES propl(p) (psi(h)) (while_block(b1,b2))

correct_call_linl: LEMMA
propl(p) (h) (pd(p) (1)) & h <= psi(h)
IMPLIES propl(p) (psi(h)) (call_block(i))

The proofs of the compilation theorems are by unfolding of definitions and rewriting using
some monotonicity and associativity properties for sequential composition. The proofs of
the first two lemmas are relatively easy to accomplish, the proofs consist of approximately
10 PVS proof steps. The proofs of the if-block and while-block theorems require more
effort (approx. 50 interactions) since a lot of monotonicity properties have to be exploited.

7.2.2 Proof of linearization_correct?2

For this proof the operational semantics M is used directly. As above, we prove a stronger
property by adding a code context u, v around the code of interest .

prop(p:bb_program) (rho:environment) : bool = szi_
FORALL (g:bb_graph): FORALL (a:Stack), (u,v:linear_code):
bb_ip(g) (rho) ++
M(cp(p)) (push((u ++ lin(g) ++ v, 1 + length(u) + length(1lin(g))), a))
<= M(cp(p)) (push((u ++ lin(g) ++ v, 1 + length(w)), a)))

prop_aux(p) (rho) (g) : bool =
FORALL (a:Stack), (u,v:linear_code):
bb_ip(g) (rho) ++
M(cp(p)) (push((u ++ lin(g) ++ v, 1 + length(u) + length(1lin(g))), a))
<= M(cp(p)) (push((u ++ lin(g) ++ v, 1 + length(w)), a)))

One has to prove

main_obligation2 : THEOREM FORALL p: prop(p) (D(pd(p))) ngiJ

The proof is by fixed-point induction on the procedure environment. Note that the dec-
laration semantics D is defined as a least fixed-point. Again, the induction base is trivial.
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Admissibility of the property is proved as above. The induction step is by structural
induction on g, and compilation theorems have been introduced in :

%%k compilation theorems %%% Ljii_
correct_si_1in2 : LEMMA prop_aux(p) (rho) (simple_block(q))

correct_seq_lin2 : LEMMA
prop_aux(p) (rho) (b1) & prop_aux(p) (rho) (b2)
IMPLIES prop_aux(p) (rho) (seq_block(b1,b2))

correct_itef_1in2 : LEMMA
prop_aux(p) (rho) (b1) & prop_aux(p) (rho) (b2) & prop_aux(p) (rho) (b3)
IMPLIES prop_aux(p) (rho) (if_block(b1,b2,b3))

correct_while_1in2 : LEMMA
prop_aux(p) (rho) (b1) & prop_aux(p) (rho) (b2)
IMPLIES prop_aux(p) (rho) (while_block(b1,b2))

correct_call_1in2: LEMMA
prop(p) (rho) IMPLIES prop_aux(p) (decl_sem(pd(p)) (rho)) (call_block(i))

The proofs of the first three compilation lemmas are relatively easy to accomplish using
the characteristic laws for M and some monotonicity properties for sequential composition
and fork. The while theorem requires the transfer lemma @, and park’s lemma.

Using main_obligation2 , instantiating the empty code sequence for u and v in ,
the main program for g, the empty stack for a, and applying law_identity finishes
the proof of linearization_correct2 and we are done.

8 Implementation of Procedures

Upto now, an (abstract) machine program consists of procedures and a main program
where the procedure bodies and main program consist of linear code (with jumps and
subroutine calls).

PLéCl..oyPn & Cp ; MAIN

The semantics is defined using a stack of tuples consisting of a linear code (denoting
the body of the called subroutine) and local program pointer. In this compilation step,
procedures are linearized and the semantics makes use of jump tables instead of abstract
stacks. The step is carried out in two phases (refinement steps):

e first, an explicit return instruction is introduced, and the (abstract) machine is
refined.

pLécroret,...,p, & c,0ret ; main o ret
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invar? invar?

eff B

StateB StateB

Figure 8: One-Step Simulation

e then, the procedures and main program are linearly ordered, and the (abstract)
machine is again refined.

cporetocgoreto...oc, oreto main o ret

8.1 Introduction of a Return Instruction

A slightly modified abstract machine is specified where an additional return instruction
is introduced. We do not repeat all definitions here since they are exactly the same as
described in section 7.1. We therefore concentrate on the differences.

%%% additional return instruction 67
MInstr : DATATYPE
BEGIN

lin_code(get_ins : Code) : 1lc?
jmp(jp_adr:int) : jmp?

jmc(jc_adr:int) : jmc?

jsr(jsr_adr:PId) : jsr?

ret T ret?
END MInstr

However, the configuration one-step semantics eff is more restricted for the new machine.
In case, the current program pointer points somewhere outside the actual procedure body,
there is no successor state. Hence, the modified abstract machine is a refinement of the
old one.

A mapping is defined from the abstract machine to the modified abstract machine. Each
instruction is compiled one-to-one to its corresponding instruction on the modified ma-
chine. At the end of a procedure body and the main program, a return instruction is
introduced.

To establish correctness of this compilation step, a classical simulation proof for abstract
machines is required. First, the correspondence of a single step is proved (Fig. 8).
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invar? ; effg(compile(mp)) C effa(mp) ; invar?

Then, by rule induction, one can prove that this holds also for the reflexive, transitive clo-
sure. Here, the invariant between abstract and concrete states is given by a correspondence
of the stacks, and equality of the abstract states (of type MState):

%%% invariant between abstract and concrete states
eq_stack (mp) (s1,s2) : RECURSIVE bool =
depth(sl) = depth(s2) AND
(not (empty?(s1)) IMPLIES
proj_2(top(s1l)) = proj_2(top(s2)) AND
proj_1(top(s2)) = compileProc(proj_1(top(sl))) AND
eq_stack (mp) (pop(s1), pop(s2)))
MEASURE depth(s1)

invar? (mp) (¢1:10.Conf, c2:11.Conf): bool =
proj_1(cl) = proj_1(c2) AND eq_stack(mp) (proj_2(cl), proj_2(c2))

The correspondence of the single effects eff is stated by

effect_simul: LEMMA
invar? (mp) (al,bl) AND
eff (compile (mp)) (b1,b2)
IMPLIES EXISTS a2: eff (mp) (al,a2) AND invar?(mp) (a2,b2)

The proof is not difficult but lengthy since there are many cases to consider. Using rule
induction the correspondence for the reflexive, transitive closure can be proved:

tc_simull: LEMMA
RTC(eff (compile(mp))) (b1,b2) AND invar?(mp) (al,bl)
IMPLIES EXISTS a2: RTC(eff (mp)) (al,a2) & invar?(mp) (a2,b2)

tc_simul: LEMMA
RTC(eff (compile(mp))) ((msl, s2), ((ms2, empty))) AND
invar? (mp) ((msl, s1), (msl, s2))
IMPLIES RTC(eff (mp)) ((msl, s1), ((ms2, empty)))

Finally, one can conclude that the modified machine is a refinement of the old one:

‘ machine_simulation: THEOREM Ip(compile (mp)) (ms1) (ms2) IMPLIES Ip(mp) (msl) (ms2)

8.2 Linearization of Procedures and Main Program

The final step is to linearize the procedures and the main program. This is realized, by

e introducing an additional jump table for start and final procedure addresses, and
the start and final address of the main program
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e changing the configurations:

“old” configurations use stacks of tuples of actual procedure and local program
pointer,

— the modified configurations use stacks of triples of start, final and return ad-
dresses of the actual procedure and a global program pointer

%%% machine programs 68
mprg: TYPE =
[# program:linear_code, stab: jumptable, ftab: jumptable, start: nat, final:nat #]

%%% configurations
Conf : TYPE = [MState, Stack[[# startadr: nat, finaladr:nat, retadr:nat #]], int]

The single-step configuration semantics is as follows:

eff(mp) (c1,c2) : bool = LET (msl, sl, pcl) = cl, (ms2, s2, pc2) = c2 IN Lfgl_
IF empty?(sl) THEN false
ELSE

IF (pcl >= finaladr(top(sl)) OR
pcl < startadr(top(s1)) OR pcl >= length(program(mp))) THEN false
ELSE CASES nth(program(mp), pcl) OF

lin_code(p) : interprete(p) (msl) (ms2) & s2 = s1 & pc2 = pcl + 1,
jmp (1) : ms2 =msl & s2 = sl & pc2 = pcl + i,
jme (i) : IF outputdefd?(msl) THEN

IF output (msl1) THEN
ns?2 = read(msl) & s2 = s1 & pc2 = pcl + 1

ELSE
ms?2 = read(msl) & 82 = 81 & pc2 = pcl + i
ENDIF
ELSE false
ENDIF,
jsr(j) :  LET newtop = (# startadr := stab(mp) (j),
finaladr := ftab(mp) (j),
retadr := pcl + 1 #)
IN
ns?2 = megl & 82 = push(newtop, s1) & pc2 = stab(mp) (j),
ret : IF empty?(sl) THEN false
ELSE ms2 = msl & s2 = pop(sl) & pc2 = retadr(top(sl))
ENDIF
ENDCASES
ENDIF
ENDIF

M is defined as the reflexive, transitive closure of eff such that the final stack is empty:

M(mp) (s1) (pcl) (ms1) (ms2) : bool = L;ﬁl_
EXISTS pc2: RTC(eff (mp)) ((msl, s1, pcl), (ms2, empty, pc2))

The semantics of machine programs is then defined by the interpreter Ip:
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starttop(mp) : stackelem = L71 ]
(# startadr := start(mp),
finaladr := final(mp),
0 #)

retadr

Ip(mp) : strans = M(mp) (push(starttop(mp), empty)) (start (mp))

The translation of machine programs is as follows:

instructions are translated one-to-one.

the body codes of the procedures are concatenated, and the main program is ap-
pended at the end

start and final addresses of the procedures are calculated

start and final addresses of the main program are calculated

To establish correctness, one has to deal with the calculation of sublists. For this purpose,
a function for list extraction together with a set of properties has been established:

%h% extraction function 72
%hth extract(x) (i,j) = x.1 ... x.(j-1) for j > i and i < length(x)

extract(1:1ist[T]) (i,j:nat): RECURSIVE 1list[T] =
IF (j <= i OR i >= length(1)) THEN null[T]
ELSE cons(nth(1l, i), extract(1)(i + 1, j))
ENDIF
MEASURE IF j >= i THEN j - i ELSE 0 ENDIF

extract_p5: LEMMA (m <= length(x)) IMPLIES extract(append(x,y)) (n,m) = extract(x)(n,m)

The invariant between abstract and concrete configurations requires that

e abstract states MState are equal

e global and local program pointer refer to the same instruction, and

e abstract and concrete stacks correspond

Correspondence on the stacks is specified by the predicate:
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73]

eq_stack (mp) (s1,s2) : RECURSIVE bool
depth(sl) = depth(s2) AND
(not (empty?(s1)) IMPLIES
not (empty?(s2)) AND LET (mc, pcl) = top(sl) IN
startadr (top(s2)) < length(program(compile (mp))) AND
finaladr (top(s2)) <= length(program(compile(mp))) AND
extract (program(compile (mp))) ((startadr(top(s2)), finaladr(top(s2)))) =
compileC(mc) AND
( not (empty?(pop(s1))) IMPLIES
(not (empty? (pop(s2))) AND
proj_2(top(pop(sl))) + startadr(top(pop(s2))) = retadr(top(s2)) + 1)) AND
eq_stack (mp) (pop(s1), pop(s2)))
MEASURE depth(s1)

The invariant is given by

invar? (mp) (cl:1cl.Conf, c2:1c2.Conf): bool = L;Zi_
proj_1(cl) = proj_1(c2) AND %%k abstract states (MState) are equal
(not (empty?(proj_2(c1))) IMPLIES %%% pc’s correspond

not (empty? (proj_2(c2)))
AND startadr (top(proj_2(c2))) + proj_2(top(proj_2(c1))) = proj_3(c2) + 1) AND
eq_stack(mp) (proj_2(cl), proj_2(c2)) %h% stacks correspond

The proof obligations are the same as presented in the last subsection. First, one-step
correspondence has to be established, then, by rule induction, the correctness of the
closures is proved. The final result is that the modified machine is a refinement of the
“old” one:

%%% main result 75
machine_simulation: LEMMA Ip(compile(mp)) (ms1) (ms2) IMPLIES Ip(mp) (msl) (ms2)

9 Specific Compilation Processes

In order to illustrate the applicability of the generic compilation theories two specific
compilation processes are presented. In particular, we describe the compilation of a simple
imperative language consisting of expressions and statements into code of a

e stack machine, and a

e one-address accumulator machine.

We start with defining syntax and semantics of our simple imperative language. For
defining syntax and semantics of expressions the parameters in are used abstracting
from the concrete type of expression values and from the available set of unary and binary
operators.
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% —--— parameters used for specifying the source language —---— LJZL_
VarId : TYPE,

PId : TYPE+,

Value : TYPE,

Unop : TYPE,

Binop : TYPE,

MUnop : [Unop -> [Value -> Valuel],

MBinop : [Binop -> [Value,Value -> Value]]

Value denotes the type of source values, VarId the type of identifiers, (Unop, Binop) the
available set of unary and binary operators and their semantics (MUnop) resp. (MBinop).
Abstract datatype Expr and an evaluation function eval () then define syntax and
semantics of expressions where the state (SState) is defined as a mapping from identifiers
to values.

% —--- semantics of expressions --- L;ZZ_
eval (e:Expr) (s:5State) : RECURSIVE Value =

CASES e OF

const(val) : val,

varid(name) : s(name),

unopr (op,arg) : MUnop (op) (eval(arg) (s)),

binopr (op,left,right) : MBinop(op) (eval(left) (s), eval(right) (s))

ENDCASES

MEASURE e BY <<

Since boolean expressions are treated in a similar way as expressions, we do not define
them explicitly but instead suppose that an (uninterpreted) type BExp together with an
evaluation function eval bexp : [BExp -> [SState -> bool]] is given.

Syntax and semantics of statements are defined by importing the generic theories for
simple statements and control structures:

% —--- import syntax and semantics of simple statements
IMPORTING simple_statements[VarId, Expr, Value, eval]

% —--- import syntax and semantics of control structures
IMPORTING ctrlstruc[BExp, SState, PId, eval_bexp, SimpleStatement, ss_meaning]

In the following subsection we deal with the compilation of this language into stack ma-
chine code, then in Section 9.2 its compilation into code of a one-address machine is
described. For both machines, compilation of expressions is outlined explicitly while com-
pilation of statements is carried out by instantiating the generic theories.

9.1 A Stack Machine Compilation

We consider a stack machine which is parameterized with respect to the type of memory
addresses, the type of machine values, and the set of available unary and binary ALU
operations and their semantics. It includes instructions for

e loading a literal onto the stack (LIT),
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e loading the contents of a specific memory cell onto the stack (LOAD),
e applying unary and binary operators (UNOP, BINOP),

e and storing the stack’s top element into memory (STORE).

The memory is a mapping from addresses to values, and the machine state consists of the
stack and the memory combined in a record type MachineState.

MachineState : TYPE+ = [# stack: Stack, mem: Mem #]

The effects of each instruction are specified by function onestep in .

litf(v:Value) (s) : (deterministic?) = L78 |
singleton(s WITH [(stack) := push(v,stack(s))])

loadf (a:Addr) (g) : (deterministic?) =
singleton(s WITH [(stack) := push(mem(s) (a),stack(s))])

onestep(i:Instr) : PartialFunction[MachineState,MachineState] =

CASES i OF
LIT(v) : litf(v),
LOAD (a) : loadf(a),

UNOP (op) : uopf (op),
BINOP (op) : bopf (op),
STORE(a) : storef(a)
ENDCASES

For defining the semantics of a code sequence the generic interpreter is imported:

‘ IMPORTING simple_interpreter[Instr,MachineState,onestep] L#Ei#

Compilation

Consider now the compilation of expressions into stack machine code. We suppose given
a predicate representable? denoting the set of source values which are representable on
the target architecture. The compilation function may only compile constants which
have representable values. We further suppose that a bijection valmap from target values
to representable source values is given. In addition, an injective function idmap mapping
identifiers to memory addresses is required.
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compile(e:Expr) : RECURSIVE (deterministic?[Code]) = 80 |
CASES e OF
const (val) :
IF representable?(val)
THEN singleton((: LIT(inverse(valmap) (val)):Instr :))
ELSE emptyset
ENDIF,
varid(name) : singleton((: LOAD(idmap(name)):Instr :)),
unopr (op,arg) : compile(arg) ++ singleton((: UNOP(op):Instr :)),
binopr (op,left,right) : compile(left) ++
compile(right) ++ singleton((: BINOP (op):Instr :))
ENDCASES
MEASURE e BY <<

Correctness of compilation is stated using predicate correct in . An abstraction
function statemap mapping machine states to program states is defined using valmap and
idmap.

statemap (ms:MachineState) : SState = [ 81 ]
LAMBDA (v:VarId): valmap(mem(ms) (idmap(v)))

correct (e:Expr,c:Code) : bool =
FORALL (start,final:MachineState):
interprete(c) (start) (final)
IMPLIES
nonempty? (stack(final)) AND
eval(e) (statemap(start)) = valmap(top(stack(final))) AND
statemap (final) = statemap(start)

To establish correctness of expression compilation, one has to prove:

correctness : THEOREM compile(e) (¢) IMPLIES correct(e,c) Li§£4

The proof is by induction on the structure of e. The base cases for constants and
identifiers as well as the induction step for unary operators can be proved easily. To
prove the induction step for binary operators, one first has to establish an invariant
interprete_invariant which states that when interpreting the compiled code in the
final state the stack contains an additional element. This ensures that executing code for
the second subexpression does not effect the value of the first one, i.e. the value of the
first subexpression is preserved. The proof of the invariant is also by structural induction

on e.
interprete_invariant : LEMMA Ligi_
compile(e) (c) AND interprete(c) (start) (final)
IMPLIES
EXISTS (v:TarValue): stack(final) = push(v, stack(start))

Consider now compilation of statements. In order to utilize the generic compilation theory
for simple statement compilation described in Section 5, specific values must be provided
for the abstract parameters. More specifically,
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e The output function accesses the top element of the stack. Hence, the output is only
defined in states in which the stack contains at least one element. Since the access
location of values is constant for this machine (top of stack), parameter T in the
generic theory is not required and instantiated with a default type (unit) consisting
of exactly one element (one).

% --- access of values ---

outputdefd? (u:unit) (ms:MachineState) : bool = nonempty?(stack(ms))
output (u:unit) (ms: (outputdefd?(u))) : TarValue = top(stack(ms))

e Code for storing values into memory at a specific address is given by the single STORE
instruction:

% --- storing values ---—
STORE_code(u:unit, a:Addr) : Code = (: STORE(a):Instr :)

e To match the signature of the parameter compileExpr we simply extend the com-
pilation function compile as follows:

% —-- compilation of expressions ---
compileExpr(e) : [(deterministic?[Code]), unit] = (compile(e), one)

Using these definitions, and let target memory denote the state record selector mem, the
generic theory can be imported.

% —--- import compilation of simple statements ---
compile_assign [VarId, Expr, Value, eval, Instr, MachineState,
onestep, Addr, TarValue, unit, outputdefd?,
RegFile, STORE_code, target_memory,
representable?, valmap,
idmap, compileExpr, statemap]

Importing this theory, four assumptions are generated, see , , and . Assump-

tion expression _compilation_correct is discharged using theorem correctness above.
Assumption interprete_store is proved easily by unfolding definitions. Assumption
symtab_and memory is trivial, and finally the proof of assumption statemap_and memory
requires injectivity of idmap.

Consider now compilation of control structures. In order to use the generic theory for
compiling control structures into basic blocks, a read function has to be defined. The read
function for stack machine is simply a pop operation on the current stack. In addition,
an output function with range type bool is required.

% —--- access of truth values --- Li%i_

read (msdef: (outputdefd?)) : MachineState = msdef WITH [(stack) := pop(stack(msdef))]
output_bool (msdfd: (outputdefd?)) : bool
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We will not consider compilation of boolean expressions explicitly since it closely follows
the compilation of expressions. We suppose given a compilation function compileBExpr
for boolean expressions satisfying a correctness assumption bexp_comp_correct:

compileBExpr(b:BExp) : (deterministic?[Code])

bexp_comp_correct : AXIOM
(FORALL (b:BExp, c:Code):
compileBExpr(b) (c) IMPLIES
FORALL (start,final: MachineState):
interprete(c) (start) (final) IMPLIES
nonempty? (stack(final)) AND
eval_bexp(b) (statemap(start)) = output_bool(final) AND
statemap (final) = statemap(start))

Importing the generic theory for compiling control structures into basic blocks, three
assumptions have to be proved. It must be proved that (boolean) expression compilation
and simple statement compilation are correct. Using the axiom above and the generic
compilation theorem simple statement_comp_correct , respectively, these obligations
can be discharged easily. The third obligation states that read must have no effects on
corresponding source states. It is proved automatically using GRIND. Finally, the generic
theory for linearization is imported. Since this theory does not contain assumptions no
proof obligations are generated. Finally, the following theorem which states correctness of
basic block compilation and linearization of control structures can be proved easily using
the generic theorems correctness and linearization correct:

% —-—-— compilation of source programs is correct Liii_
stmts_compile_correct: THEOREM FORALL (p:source_program):
FORALL (start,final:MachineState):
compile_defined?(p) AND
Ip(cp(compile(p))) (start) (final)
IMPLIES P(p) (statemap(start)) (statemap(final))

9.2 Compilation into a One-Address Machine

Our simple one-address machine is parameterized in the same way as the stack machine
described in the last subsection. Addr denotes the type of memory addresses, MValue
the type of values, Unop, Binop, munop_sem, mbinop_sem the available set of unary and
binary operators and their semantics. Here, the machine state consists of an accumulator,
the memory (a mapping from addresses to values), and a flag of type bool. The machine
does not contain general registers. There are instructions for

e loading a literal into the accumulator (LIT),
e loading the contents of a specific memory cell into the accumulator (LOADA),
e applying unary and binary operators (UNOP, BINOPA),

e and storing the content of the accumulator into memory (STOREA).
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MState : TYPE+ = [# ac:MValue, mem: [Addr -> MValue], flag:bool #]

The effects of each instruction are specified by function one_step in ; all arithmetic
operations are carried out using the accumulator.

% —-—— effects of instructions --- Ligi_
one_step(i:Instr) : PartialFunction[MachineState,MachineState] =
CASES i OF

SETFLAG(flg) : singleton(ms WITH [(flag) := flgl),

LIT(v) : singleton(ms WITH [(ac) := vl),

LOADA (a) : singleton(ms WITH [(ac) := mem(ms) (a)]),

UNOP (uop) : singleton(ms WITH [(ac) :
BINOPA (bop,a) : singleton(ms WITH
[(ac) := mbinop_sem(bop) (ac(ms), mem(ms) (a))]),
STOREA (a) : singleton(ms WITH [(mem) := mem(ms) WITH [(a) := ac(ms)]])
ENDCASES

munop_sem(uop) (ac(ms))]),

For defining the semantics of a code sequence the generic interpreter is imported:

‘ IMPORTING simple_interpreter[Instr,MachineState,onestep] LiiZJ

Compilation

As for the stack machine compilation, we suppose given a predicate representable?
denoting the set of representable source values, a bijection valmap from target values to
representable source values, and an injective memory mapping idmap from identifiers to
target addresses. Since this machine does not have a stack mechanism, temporary locations
for storing intermediate values have to be allocated. More specifically, compiling a binary
expression bop(el,e2) consists of first generating code for e2, saving this value into a
temporary location, then generating code for el and code for the operator bop which then
accesses the values from the temporary location and the accumulator. The compilation
of expressions thus starts with a set of available temporary locations from which required
temporaries are taken. If there are not enough temporaries the compilation function is
undefined, i.e. returns the empty code set. Type tempset specifies the type of such a set.
It is required that locations onto which identifiers are mapped by idmap are not used as
temporaries. For allocating locations we suppose given a function ralloc which selects a
free location from a (nonempty) set of temporaries.

tempset:TYPE = {M:set[Addr] | FORALL (id:Ident): not (member (idmap(id), M))}

The complete compiling function is given by compile in
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% —-—-— compilation of expressions --- Lfﬁi_
% RT : TYPE = [Code, tempset]

compile (e:Expr) (free:tempset) : RECURSIVE (deterministic?[RT]) =

CASES e OF
const (val) : IF not(representable?(val)) THEN emptyset [RT]
ELSE singleton[RT] (((: LIT(inverse(valmap) (val)) :):Code, free))
ENDIF,
varid(name) : singleton[RT] (((: LOADA(idmap(name)) :):Code, free)),

unopr (unop,el) : LET m = compile(el) (free) IN
IF empty?[RT](m) THEN emptyset[RT]
ELSE LET (code, rest) = select(m) IN
singleton[RT] ((code ++ (: UNOP(unop) :), free)),
ENDIF,
binopr (bop,el,e2)
LET m2 = compile(e2) (free) IN
IF empty?[RT] (m2) THEN emptyset[RT]
ELSE LET (code_e2, free_e2) = select(m2) IN
IF empty?[Addr] (free_e2) THEN emptyset[RT]
ELSE LET temp = ralloc(free_e2) IN
LET ml = compile(el) (remove(temp, free_e2)) IN
IF empty?[RT] (m1) THEN emptyset[RT]
ELSE
LET (code_el, free_el) = select(ml) IN
singleton[RT] ((code_e2 ++
(: STOREA(temp) :):Code ++
code_el ++
(: BINOPA(bop, temp) :):Code, free))
ENDIF
ENDIF
ENDIF
ENDCASES
MEASURE e BY <<

A notion of correctness for this compilation is given by predicate correct_compExpr in
. Informally, this predicate states that if the interpretation of the expression code
is defined, the value of the expression can be accessed by reading the contents of the
accumulator, and the state transition is not vissible on the source state, i.e. locations
which are associated with identifiers do not change.

% === notion of correctness === Ligl_

correct_compExpr(e:Expr) (code:Code) : bool =
FORALL (start,final:MState):
interprete(code) (start) (final) IMPLIES
valmap(ac(final)) = eval(e) (statemap(start)) AND
statemap(final) = statemap(start)

Thus, for proving the correctness of expression compilation in this sense one has to prove:
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% === correctness of expression compilation === Lﬁgl_

expr_compilation_correct : THEOREM
compile(e) (free) (result)
IMPLIES correct_compExpr(e) (proj_1(result))

The proof is by induction on the structure of expressions. The base cases (constants and
identifiers) as well as the induction step for unary operators are proved easily. Here, the
most interesting case is the induction step for binary operators. As for the stack machine
compilation one first has to prove an invariant in order to accomplish the induction step for
binary operators. This invariant states that locations which are not contained in the initial
set of temporary locations do not change when executing the code, i.e. only temporaries
may change. The proof of the invariant is also by induction on e.

Consider now compilation of statements. The specific values provided for the abstract
parameters in the generic theory for simple statement compilation consist of:

e The output function accesses the accumulator. As in the last subsection, the access
location of values is constant, and thus, parameter T of the generic theory is not
required and instantiated with the unit type.

% —--- access of target values —---—

outputdefd? (u:unit) (ms:MachineState) : bool = true
output (u:unit) (ms: (outputdefd?(u))) : MValue = ac(ms)

e Code for storing values into memory at a specific address is given by the single STORE
instruction:

STORE_code(u:unit, a:Addr) : Code = (: STOREA(a):Instr :)

e To match the signature of the parameter compileExpr we have to change the com-
pilation function for expressions (compile) as follows where t_set is a fixed set of
temporary locations.

% —--- compilation function of expressions used for instantiation ---

compileExpr(e:Expr) : [(deterministic?[Code]), unit] =
LET result = compile(e) (t_set) IN
IF empty?[RT] (result) THEN (emptyset[Code], omne)
ELSE LET (code, rest) = choose(result) IN
(singleton[Code] (code), one)
ENDIF

Using these definitions, and let target memory denote the state record selector mem, the
generic theory can be imported.
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% —-—- import compilation of simple statements
compile_assign[Ident, Expr, SrcValue, eval, Instr, MState,
one_step, Addr, MValue, unit, outputdefd?,
RegFile, STORE_code, target_memory,
representable?, valmap,
idmap, compileExpr, statemap]

Importing this theory, four assumptions are generated, see , , and
[19].  Assumption expression_compilation correct is discharged using theorem
expr_compilation correct above. Assumption interprete_store is proved easily by
unfolding definitions. Assumption symtab_and memory is trivial, and finally the proof of
assumption statemap_and memory requires injectivity of idmap.

Next, we deal with the compilation of control structures. As in the last subsection we do
not consider boolean expression compilation explicitly and suppose given a compilation
function compileBExpr satisfying the assumption bexp_comp_correct in . The boolean
output function output_bool tests the flag in the current state.

% === correctness assumption for boolean expression compilation Lizl—

bexp_comp_correct : AXIOM
(FORALL (b:BExp, c:Code):
compileBExpr(b) (c¢) IMPLIES
FORALL (start,final: MState):
interprete(c) (start) (final) IMPLIES
eval_bexp(b) (statemap(start)) = output_bool(final) AND
statemap(final) = statemap(start))

Here, outputdefd? is instantiated with the constant true function, and read is instanti-
ated with the identity on states. The generic theory for compiling control structures into
basic blocks is then imported:

% —-—-- import compilation into basic blocks

IMPORTING c2bb[BExp, SState, PId, eval_bexp, SimpleStatement, ss_meaning,
Instr, MState, one_step, outputdefd?, output_bool,
read, statemap, compileBExpr, compile_simpleStmt]

All generated assumptions are proved in the same way as described in the last subsection.
Finally, the generic theory for linearization is imported which enables to prove the main
correctness conjecture:

% —-—-— compilation of Statements is correct LEZL_

stmts_compile_correct : THEOREM
FORALL (p:source_program): FORALL (start,final:MState):
compile_defined?(p) AND
Ip(cp(compile(p))) (start) (final)
IMPLIES P(p) (statemap(start)) (statemap(final))
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10 Conclusion

In this paper a hierarchy of formal generic theories for the compilation of standard lan-
guage constructs for procedural languages has been presented. It includes specifications
for compiling simple statements, control structures (statements), and parameterless pro-
cedures. All specifications are generic in the sense that they abstract from specific target
architectures and source languages and can therefore be reused by means of instantiations.
The compilation theories are largely independent of each other; they are linked only by
parameters and assumptions about compilation functions for constructs lower in the hi-
erarchy. The compilation of control structures, for example, builds on the compilation
of expressions and simple statements but can be considered independently. Parameters
specify the interface to expression and simple statement compilation for which some cor-
rectness assumptions must hold. A further modularization is achieved by splitting the
compilation task into small manageable parts following the structure of existing com-
pilers: control structures are first translated into blocks preserving their structure but
working on machine states, and then further compiled into linear code by introducing rel-
ative jumps. Procedure bodies and the main program are finally linearized. Applicability
of the generic theories to specific compilation processes has been demonstrated by means
of two examples. All specification and verification tasks have been carried out using the
PVS system.

Future work will extend the hierarchy of specifications by new theories for additional lan-
guage constructs, in particular procedures with parameters, and complex data structures.
We are also in the process of instantiating the theories with concrete compilation tasks
as defined in the Verifix project, for example, the compilation of the imperative language
CINT, a subset of C, into Transputer assembler code. The long term goal of our work is
to develop a library of generic specifications which can be utilized to specify and verify
different compilation processes of standard imperative and functional languages.
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