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Abstract

In this paper a uniform formalization in PVS of various kinds of semantics of imper�

ative programming language constructs is presented� Based on a comprehensive de�

velopment of 	xed point theory� the denotational semantics of elementary constructs

of imperative programming languages are de	ned as state transformers� These state

transformers induce corresponding predicate transformers� providing a means to for�

mally derive both a weakest liberal precondition semantics and an axiomatic semantics

in the style of Hoare� Moreover� algebraic laws as used in re	nement calculus proofs

are validated at the level of predicate transformers� Simple reformulations of the state

transformer semantics yield both a continuation�style semantics and rules similar to

those used in Structural Operational Semantics�

This formalization provides the foundations on which formal speci	cation of program�

ming languages and mechanical veri	cation of compilation steps are carried out within

the Veri�x project�
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Mechanized Semantics of Simple Imperative Programming Constructs

�� Introduction

Formal verication of compiler implementations requires the semantics of the programming
languages involved be modeled adequately in a formal system� Depending on the aspect of a
programming language or its compilation one wants to describe� certain styles of semantics
are more suitable than others� A mathematically precise denition of a language� for
example� would often be accomplished using denotational semantics �SS��� Ten��� Sto����
On the other hand� if one is interested in developing a prototype implementation one might
describe the semantics of the language using an operational style� while an axiomatics
semantics �Flo��� Hoa��� would be most useful if verication of programs is of concern�

In this paper we present a generic modelling in PVS of di�erent kinds of semantics of the
basic imperative programming constructs� Starting from a denotational semantics based
on state transformers we show how to derive the characteristic rules of various semantic
styles including weakest precondition semantics� Hoare logic� continuation�style semantics�
and structural operational semantics� The formalization is modular in the sense that there
are separate PVS specications for each programming construct�

In addition� the components of a programming language such as expressions� statements�
and variable declarations are identied with their semantics� Thus� only the abstract struc�
ture of the language�s components is laid down and the formalization can hence be applied
to every programming language that consists of one or more of the constructs covered in
this paper�

The mathematical theory underlying the work presented here is well understood� This
paper adds nothing new in this respect� in fact� most of the theorems can be found in
standard textbooks� such as �Win��� Sch��� Bes���� However� we think that the main
contribution of our work is a uniform treatment of di�erent styles of semantics in a formal
system� This allows for doing formal reasoning about both programs and their compilation
within the same framework� Moreover� since many interchangeable forms of semantics are
available� the reasoning can be carried out selecting that semantic formalism suiting best�

All theorems presented here have been proved within PVS� Most of the theories are
reprinted in the Appendix� The complete specications and proofs are available from
the authors upon request�

��� Related Work

There have been several reports related to the modelling of semantics of programming lan�
guages in a theorem prover� including �Sok��� Mas��� Cam��� HM���� and there are stan�
dard techniques for formalizing various styles of semantics� For example� our presentation
regarding predicate transformers and algebraic semantics is comparable to a formalization
in the HOL system of a guarded command language with weakest precondition semantics
by Back and v� Wright �BvW����

The work presented here is most closely related to that of Gordon �Gor��� and Nipkow
�Nip���� since in contrast to the papers mentioned above they deal with several forms of
semantics� Gordon uses the HOL system to mechanically derive the rules of Hoare logic of

�
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a simple while�language from their denotational semantics �Gor���� Furthermore� he de�
scribes how to apply HOL tactics to generate verication conditions based on the derived
Hoare rules� Nipkow �Nip��� presents a formalization of the rst chapters of Winskel�s text�
book on programming language semantics �Win��� in the theorem prover Isabelle�HOL�
He denes operational� denotational� and axiomatic semantics of a simple imperative pro�
gramming language and proves their equivalence� Additionally� proofs of soundness and
completeness of a verication condition generator are sketched�

In contrast to Nipkow� we do not dene di�erent forms of semantics for the same language�
but follow Gordon and show how to derive the characteristic rules of the various semantic
formalisms from a denotational semantics� This saves us from having to prove explicitly
the equivalence of the di�erent semantics�

��� Overview

The remainder of the paper is organized as follows� after giving a brief overview of the
specication and verication system PVS in Section �� the remaining sections describe
the various PVS theories developed� The overall structure of these theories is illustrated
in Figure �� Each node in this hierarchy graph represents one PVS theory� and the edges
represent importing relations� Theories towards the bottom are used 	imported
 by those
above them�

In order to be able to dene the denotational semantics of loops and recursive procedures
we have developed a rather comprehensive formalization of the theory of xed points in
PVS� This formalization is only brie�y summarized in Section �� a detailed description can
be found in a companion paper �BDvH����� Consequently� the bottom entry in Figure �
is to be regarded as standing for a whole cluster of theories�

Climbing up the hierarchy� Section ��� describes the concept of state transformers that
are dened in theory srel� Next� the denotational semantics of imperative programming
language constructs based on state transformers is presented in Section ���� The de�
nitions are split into several theories and are combined in theory statements� Predicate
transformers as dened in the theories ptrans and mpt are introduced in Section ���� State
transformers and predicate transformers provide the basis for a uniform treatment of var�
ious styles of semantics such as weakest precondition semantics� Hoare�style semantics�
and algebraic laws� see Section �� The corresponding theories can be found further up in
the theory hierarchy and are comprised by the theory semantics�

The denitions in the theories mentioned so far abstract from the state on which programs
operate� A concrete implementation of such a state is given in Section �� Finally� as an
example� Section � describes how the formalizations can be used to dene the semantics
of a simple while language�

�
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Figure �� Hierarchy of PVS theories formalizing various kinds of semantics of simple con�
structs in imperative programming languages�
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�� A brief description of PVS

This section gives a brief overview of PVS� More details can be found in �ORSvH����

The PVS system combines an expressive specication language with an interactive proof
checker that has a reasonable amount of theorem proving capabilities� It has been used
for reasoning in domains as diverse as microprocessor verication� protocol verication�
and algorithms and architectures concerning fault�tolerance �ORSvH����

The PVS specication language builds on classical typed higher�order logic with the usual
base types� bool� nat� rational� real� among others� and the function type constructor
�A �� B�� The type system of PVS is augmented with dependent types and abstract data

types� A distinctive feature of the PVS specication language are predicate subtypes� the
subtype fx�A � P�x	g consists of exactly those elements of type A satisfying predicate
P� Predicate subtypes are used� for instance� for explicitly constraining the domains and
ranges of operations in a specication and to dene partial functions�

In general� type�checking with predicate subtypes is undecidable� the type�checker gener�
ates proof obligations� so�called type correctness conditions 	TCCs
 in cases where type
con�icts cannot immediately be resolved� A large number of TCCs are discharged by spe�
cialized proof strategies� and a PVS expression is not considered to be fully type�checked
unless all generated TCCs have been proved� If an expression that produces a TCC is used
many times� the typechecker repeatedly generates the same TCC� The use of judgements

can prevent this� There are two kinds of judgements�

JUDGEMENT � HAS�TYPE �even� even �� even�

JUDGEMENT continuous SUPTYPE�OF monotonic

The rst form� a constant judgement� asserts a closure property of 
 on the subtype of
even natural numbers� The second one� a subtype judgement� asserts that a given type is
a subtype of another type� The typechecker generates a TCC for each judgement to check
the validity of the assertion� but will then use the information provided further on� Thus�
many TCCs can be suppressed�

PVS specications are packaged as theories that can be parametric in types and constants�
A built�in prelude and loadable libraries provide standard specications and proved facts
for a large number of theories�

Proofs in PVS are presented in a sequent calculus� The atomic commands of the
PVS prover component include induction� quantier instantiation� automatic conditional
rewriting� simplication using arithmetic and equality decision procedures and type infor�
mation� and propositional simplication using binary decision diagrams� The SKOSIMP�

command� for example� repeatedly introduces constants of the form x�i for universal�
strength quantiers� and ASSERT combines rewriting with decision procedures�

Finally� PVS has an LCF�like strategy language for combining inference steps into more
powerful proof strategies� The strategy GRIND� for example� combines rewriting with propo�
sitional simplication using BDDs and decision procedures� The most comprehensive
strategies manage to generate proofs fully automatically�

�
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�� Mechanizing Domain Theory

In order to be able to dene the denotational semantics of loops and recursive procedures
we have developed a rather comprehensive formalization of the theory of xed points in
PVS� In this section� we only summarize the main concepts needed in this paper� A much
more detailed description can be found in �BDvH�����

The formalization consists of a collection of PVS theories that can be used as a library�
The most important theorems are the well�known schemes of xed�point induction on
monotonic and continuous functions��

�fp�induction�mono 	 THEOREM

FORALL 
P	
admissible��� f	
monotonic���	

P
bottom� AND 
FORALL 
x	D�	 P
x� IMPLIES P
f
x���

IMPLIES P
mu
f��

fp�induction�cont 	 THEOREM

FORALL 
P	
admissible��� g	
continuous���	

P
bottom� AND


FORALL 
i	nat�	 P
iterate
g�i�
bottom��

IMPLIES P
iterate
g�i � �
bottom���

IMPLIES P
mu
g��

Throughout this section we use f and g to denote a monotonic and a continuous function�
respectively� over some complete partial order D� The least element of D with respect to
the ordering relation � is called bottom� We use the term pre�cpo for cpo�s without such
a least element� For convenience� we repeat the denitions concerning cpo�s 	let b be of
type D and � a partial order on D
�

�bottom�
���
b� 	 bool �

FORALL 
x	D�	 b �� x

precpo�
��� 	 bool � FORALL 
C	 Chain�D�����	 lub�exists�
C�

pCPO	 TYPE � 
precpo��

cpo�
���b� 	 bool �

precpo�
��� AND bottom�
���
b�

CPO 	 TYPE � 
cpo��

Sometimes we use a special kind of pre�cpo�s where the ordering relation is simply the
identity� Such pre�cpo�s are referred to as discrete pre�cpo�s� Note that every function from
a discrete pre�cpo into a pre�cpo is continuous�

The denition of the least xed point operator mu makes use of the predicate subtype
concept of PVS by restricting the operator to only those functions for which the least
xed point exists� Thus� when typechecking expressions such as mu�f	� PVS generates a
corresponding type correctness condition�

�PVS notation� For predicates P over some type A	 the expression 
P� is an abbreviation for the predicate
subtype fx	A � P
x�g
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�� f 	 VAR 
monotonic�� � this is a comment�

� g 	 VAR 
continuous��

least�fixpoint�
f� 	 set�D� �

fx	D � fixpoint�
x�f� AND FORALL 
y	D�	 fixpoint�
y�f� IMPLIES x �� yg

LFP
f� 	 TYPE � 
least�fixpoint�
f��

mu�exists�
f� 	 bool � nonempty�
least�fixpoint�
f��

mu
f	
mu�exists��� 	 LFP
f� �

choose
least�fixpoint�
f��

mu�is�fixpoint 	 LEMMA

FORALL 
f	
mu�exists���	 f
mu
f�� � mu
f�

Monotonic functions mapping into a cpo always have least xpoints � this is known as the
Knaster�Tarski Theorem� In the case of continuous functions� the least xed point can
be calculated as the least upper bound of all i th iterations of the function applied to the
bottom element of the cpo�

�Knaster�Tarski 	 THEOREM

mu�exists�
f�

fixpoint�theorem 	 THEOREM

mu
g� � lub
fx � EXISTS 
i	nat�	 x � iterate
g�i�
bottom�g�

�� Denotational Semantics for Statements

��� State Transformers

The notion of state transformers provides the basis for the denotational semantics of
statements� State transformers are dened in theory srel� In order to be able to deal with
nontermination we use relations rather than functions� the latter have to be total in PVS�
A relation R � A � B is modeled as a function mapping elements of type A to a set of
elements of type B � Partial functions can also be described by restricting the range to sets
with at most one element�

Relation 	 TYPE � �A �� set�B��

deterministic�
S	set�B�� 	 bool � empty�
S� OR singleton�
S�

PartialFunction 	 TYPE � �A �� 
deterministic���

Let R be a relation� S a set of elements of type A� and T a set over type B� We dene the
image of S under R and the inverse image of T under R by��

�In PVS sets are identi�ed with their characteristic predicates and thus the expressions pred�sigma� and
set�sigma� are interchangeable
 Hence	 the notation s	
S� also means that s is an element of set S
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�image
R�S� 	 set�B� � fy	B � EXISTS 
s	
S��	 member
y�R
s��g
inverse�image
R�T� 	 set�A� � fx	A � subset�
R
x��T�g

In order to keep the denition of state transformers as general as possible� the state on
which programs operate is left uninterpreted here� Instead� uninterpreted types sigma

and tau� provided as theory parameters� are used for representing the domain and range
types of state transformers� respectively� The parameters are usually instantiated with a
concrete implementation of the program state� such as the one described in Section ��

In the most general case� nondeterministic state transformers are relations between sigma

and tau� We use the type srel for such relations� while deterministic state transformers
have type strans� obviously� a subtype of srel�

�srel 	 TYPE � Relation�sigma�tau�

strans 	 TYPE � PartialFunction�sigma�tau�

A partial ordering � on srel is dened by pointwise lifting set inclusion� As this mecha�
nism is often used� a small theory pointwise� is dened� It is parameterized with two types
D and R� and a partial ordering leq on R� The theory denes a new partial ordering on
the function space �D �� R� by a pointwise extension of leq�

�pointwise�D� R 	 TYPE��

leq 	 
partial�order��R��� 	 THEORY

BEGIN

f�g 	 VAR �D �� R�

��
f�g� 	 bool � FORALL 
x	D�	 leq
f
x�� g
x��

JUDGEMENT �� HAS�TYPE 
partial�order���D �� R���

END pointwise

The partial ordering on srel is obtained by importing the theory pointwise� The parame�
ters are instantiated with the domain and range of srel� The partial ordering on the range
of srel is set inclusion� which is itself dened by instantiating pointwise appropriately�

�IMPORTING pointwise�tau�bool����

IMPORTING pointwise�sigma�set�tau��pointwise�tau�bool��������

The state transformer mapping every state to the empty set is the least element with
respect to � and is called abort� Since every type sigma forms a discrete cpo and sets
together with set inclusion are a cpo� functions of type srel are continuous� Moreover�
srel and � form a cpo with bottom element abort�

�It is even obvious to the typechecker� a corresponding judgement JUDGEMENT strans SUBTYPE OF srel

is rejected as it does not provide any additional information

�The theory pointwise is contained in the library for �xed�point theory


�



Mechanized Semantics of Simple Imperative Programming Constructs

��abort 	 srel �

LAMBDA 
s	sigma�	 emptyset

JUDGEMENT �� HAS�TYPE pCPO�srel�

JUDGEMENT abort HAS�TYPE 
bottom�
����

��� State Transformer Semantics

This section describes the formalization of a denotational semantics based on state trans�
formers for basic statements of imperative programming languages� The denitions are
split into several theories� one for each construct� The theories are parameterized with
respect to some type sigma� which is intended to model the state on which programs
operate�

Since it does not add anything interesting� we do not distinguish di�erent kinds of ex�
pressions� Instead� expressions are identied with their semantics and are modeled as a
valuation function�

��expr�sigma� Value	 TYPE�� 	 THEORY

BEGIN

Expr 	 TYPE � �sigma �� Value� � ��� modeled as semantic function

END expr

In addition� Boolean expressions BExpr are dened as predicates on sigma�

��BExpr 	 TYPE � pred�sigma�

Primitive Statement
 skip

The simplest statement is skip� which does not change the current state and hence is
modeled as the function mapping a state s to the singleton set fsg�

��skip �sigma 	 TYPE�� 	 THEORY

BEGIN

IMPORTING srel�sigma�sigma�

skip 	 srel �

LAMBDA 
s	sigma�	 singleton
s�

JUDGEMENT skip HAS�TYPE strans

END skip

Sequential Composition

Sequential composition of two state transformers f and g� denoted by f 

 g� is dened
by relational composition�

�
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����
f� g� 	 srel �

LAMBDA s	 image
g�f
s��

sequence�strans�closed 	 LEMMA

FORALL 
f�g	strans�	 deterministic�

f �� g�
s��

JUDGEMENT �� HAS�TYPE �strans� strans �� strans�

Sequential composition is monotonic in both arguments�

�sequence�monotonic�left 	 LEMMA

f �� g IMPLIES f �� h �� g �� h

sequence�monotonic�right 	 LEMMA

f �� g IMPLIES h �� f �� h �� g

Assignment

The theory dening the semantics of assignment statements has some additional param�
eters� the type of variables and values� a predicate for deciding whether or not a variable
is declared in the current state� and a function update for assigning a new value to a
previously declared variable�

��assignment �Vars� Value� sigma 	 TYPE��

declared� 	 �sigma �� pred�Vars���

update 	 �s	sigma �� �
declared�
s��� Value �� sigma��

� 	 THEORY

The semantics of assigning the value of an expression e to some variable x� denoted by
x  e� is a new state with x being bound to e� if x is declared� Otherwise� the assignment
statement is undened�

��IMPORTING expr�sigma� Value�

s 	 VAR sigma� x 	 VAR Vars� e 	 VAR Expr

��
x�e� 	 srel � � ��� prefix notation of infix operator ��

LAMBDA s	 IF declared�
s�
x�

THEN singleton
update
s�
x�e
s���

ELSE emptyset

ENDIF

JUDGEMENT �� HAS�TYPE �Vars�Expr �� strans�

Conditional Branching and Loops

The semantic function for the conditional IF�THEN�ELSE is obtained by lifting the boolean
IF�expression�

��IF
b	BExpr� f� g	srel� 	 srel �

LAMBDA s	 IF b
s� THEN f
s� ELSE g
s� ENDIF�

�
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Again� we have monotonicity in both recursive arguments� and IF is deterministic provided
the branches are�

��IF�monotonic�left 	 LEMMA

f �� g IMPLIES

IF b THEN f ELSE h ENDIF �� IF b THEN g ELSE h ENDIF

IF�monotonic�right 	 LEMMA

f �� g IMPLIES

IF b THEN h ELSE f ENDIF �� IF b THEN h ELSE g ENDIF

IF�strans�closed 	 LEMMA

FORALL 
f�g	strans�	 deterministic�

IF b THEN f ELSE g ENDIF�
s��

The semantics of the while loop is dened as usual as the least xed point� of a functional
describing one iteration of the while�loop� As the domain of mu is dened by a predicate
subtype� see � � typechecking the denition of while yields a type correctness condition�
One has to prove that the above functional does have a least xpoint� which is done using
monotonicity of IF and 

� and the Knaster�Tarski theorem 	 � 
�

��while�functional�monotonic 	 LEMMA

monotonic�
LAMBDA 
x	srel�	 IF b THEN f �� x ELSE skip ENDIF�

while
b� f� 	 srel �

mu� 
x	srel�	 IF b THEN f �� x ELSE skip ENDIF

As an example� we step through the proof of the lemma while strans closed� It states
that the while loop is deterministic� provided the body is� It is used for proving the
judgement following right after�

��while�strans�adm 	 LEMMA admissible�
LAMBDA 
y	 srel�	 FORALL 
s	 sigma�	

deterministic�
y
s���

while�strans�closed 	 LEMMA

FORALL 
f	strans�	 FORALL 
s	sigma�	 deterministic�
while
b�f�
s��

JUDGEMENT while HAS�TYPE ��BExpr� strans� �� strans�

For presentation purposes we slightly edit the PVS output� e� g� by deleting unnecessary
formulae�

while�strans�closed 	

��������

�� FORALL 
b	 BExpr�� 
f	 strans�	

FORALL 
s	 sigma�	 deterministic�
while
b� f�
s��

The proposition is proved using xed�point induction� In order to prepare the formula for
the application of the induction theorem� some of the quantiers are eliminated� followed
by unfolding the denition of while�

�The notation mu� 
x	T�	 f
x� is an abbreviation for mu
LAMBDA 
x	T�	 f
x��


��



Mechanized Semantics of Simple Imperative Programming Constructs

Rule� 
THEN 
SKOLEM�� 
EXPAND �while���

while�strans�closed 	

��������

�� FORALL 
s	 sigma�	

deterministic�
mu� 
x	 srel�	

IF b� THEN f� �� x ELSE skip ENDIF
s��

Now the theorem of xed�point induction for monotonic functions 	see � 
 is applied with
the predicate P instantiated appropriately� This proof step yields three subgoals� The rst
one is the induction rule itself� whereas the other ones 	see below
 are type correctness
conditions� These are generated since the xed�point induction theorem is constrained to
admissible predicates P and monotonic functions f�

Rule� 
USE �fp�induction�mono� 	SUBST


�P� �LAMBDA 
y	srel�	 FORALL 
s	sigma�	 deterministic�
y
s�����

while�strans�closed� 	

��� 
FORALL 
s	 sigma�	 deterministic�
abort
s��

AND


FORALL 
x	 srel�	

FORALL 
s	 sigma�	 deterministic�
x
s�� IMPLIES

FORALL 
s	 sigma�	

deterministic�

IF b� THEN f� �� x ELSE skip ENDIF�
s����

IMPLIES

FORALL 
s	 sigma�	

deterministic�
mu
LAMBDA 
x	 srel�	

IF b� THEN f� �� x ELSE skip ENDIF�
s��

��������

�� FORALL 
s	 sigma�	

deterministic�
mu� 
x	 srel�	

IF b� THEN f� �� x ELSE skip ENDIF
s��

Propositional simplication of the rst subgoal yields another two subgoals corresponding
to the induction base and the induction step�

Rule� 
PROP�

while�strans�closed�� 	

��������

�� FORALL 
s	 sigma�	 deterministic�
abort
s��

The induction base is simply proved by unfolding denitions and propositional reasoning�

Rule� 
GRIND�

This completes the proof of while�strans�closed���

while�strans�closed��� 	

��������

�� FORALL 
x	 srel�	

FORALL 
s	 sigma�	 deterministic�
x
s��

��
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IMPLIES FORALL 
s	 sigma�	

deterministic�
IF b� THEN f� �� x ELSE skip ENDIF
s��

The proof of the induction step is accomplished using the corresponding properties of the
dening expressions of while� that is IF and the sequencing constructor 

� Conditionals
are deterministic� given the branches are� However� using the lemma IF strans closed

yields only one subgoal for the THEN branch� This is due to the judgement in �� � the
typechecker already knows that skip is of type strans and therefore suppresses this
subgoal�

Rule� 
THEN 
SKOSIMP�� 
REWRITE �IF�strans�closed���

while�strans�closed��� 	

��� FORALL 
s	 sigma�	 deterministic�
x�
s��

��������

�� FORALL 
s	 sigma�	 deterministic��sigma�

f� �� x��
s��

Next� lemma sequence strans closed is applied� Again� only one subgoal is generated
since by denition f�� is of type strans�

Rule� 
SKOSIMP�� 
REWRITE �sequence�strans�closed��

while�strans�closed��� 	

��� FORALL 
s	 sigma�	 deterministic�
x�
s��

��������

�� FORALL 
s	 sigma�	 deterministic�
x�
s��

Finally� the induction hypothesis is used to complete this part of the proof�

Rule� 
SKOSIMP�� 
INST��

This completes the proof of while�strans�closed����

This completes the proof of while�strans�closed��

while�strans�closed�� 
TCC�	

��������

�� monotonic�
LAMBDA 
x	 srel�	 IF b� THEN f� �� x ELSE skip ENDIF�

We have still to prove that the application of the xed�point induction theorem is valid�
First� monotonicity of the dening functional of while has to be shown� As this is also
required in the denition of while� a seperate lemma has been established 	 �� 
� which is
itself proved using monotonicity of IF and 

� and the Knaster�Tarski theorem�

Rule� 
REWRITE �while�functional�monotonic��

This completes the proof of while�strans�closed���

while�strans�closed�� 
TCC�	

��������

�� admissible�
LAMBDA 
y	 srel�	

FORALL 
s	 sigma�	 deterministic�
y
s���

��
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The proof that the predicate used in the xed�point induction is admissible is rather
technical� At this point� we simply use an appropriate lemma and refer to Appendix D for
a complete proof script�

Rule� 
USE �while�strans�adm��

This completes the proof of while�strans�closed���

Q�E�D�

Finally� two useful lemmata are provided� The rst one� while def� describes the unfolding
of a while loop� the second one states that while is monotonic in its recursive argument�

��while�def 	 LEMMA

while
b�f� � 
IF b THEN f �� while
b�f� ELSE skip ENDIF�

while�montonic 	 LEMMA

f �� g IMPLIES while
b�f� �� while
b�g�

The proofs are by rewriting theorems provided by the xed�point theory� such as the
Knaster�Tarski theorem or Park�s Lemma�

��� Predicate Transformers

This section brie�y describes the formalization of predicate transformers� In PVS� predi�
cates over some type sigma are� as usual� boolean�valued functions on sigma� Some simple
predicates are obtained by lifting the standard boolean connectives� see theory predicates�

��TRUE 	 pred�sigma� � LAMBDA s	 TRUE�

FALSE 	 pred�sigma� � LAMBDA s	 FALSE�

NOT
p� 	 pred�sigma� � LAMBDA s	 NOT
p
s���

��
p�q� 	 pred�sigma� � LAMBDA s	 p
s� AND q
s��

��
p�q� 	 pred�sigma� � LAMBDA s	 p
s� OR q
s��

��
p�q� 	 pred�sigma� � LAMBDA s	 p
s� IMPLIES q
s��

���
p�q� 	 pred�sigma� � LAMBDA s	 p
s� IFF q
s��

Implication on boolean values is extended pointwise to obtain a partial ordering � on
predicates� Since every type sigma is a discrete cpo and the type of boolean expressions
bool together with implication is a cpo� we have 	pred�sigma���
 being a cpo� As pred�
icates and sets are interchangeable� � can also be interpreted as set inclusion�

��� �������� Ordering on predicates	

� the next IMPORT defines a partial ordering �� on predicates as

� p �� q 	��� FORALL s	 p
s� IMPLIES q
s�

IMPORTING pointwise�sigma�bool����

JUDGEMENT �� HAS�TYPE pCPO�pred�sigma��

��
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In theory ptrans� predicate transformers are dened as functions with domain pred�tau�

and range pred�sigma� for some types sigma and tau� Again� we use a lifting mechanism
to dene basic predicate transformers and a partial ordering ��

�ptrans 	 TYPE � �pred�tau� �� pred�sigma��

abort 	 ptrans � LAMBDA q	 FALSE

magic 	 ptrans � LAMBDA q	 TRUE

NOT
F� 	 ptrans � LAMBDA q	 NOT
F
q��

��
F�G� 	 ptrans � LAMBDA q	 F
q� �� G
q�

��
F�G� 	 ptrans � LAMBDA q	 F
q� �� G
q�

��
F�G� 	 ptrans � LAMBDA q	 F
q� �� G
q�

� �������� Ordering

� next IMPORT defines partial ordering �� on predicates transformers

� as F �� G 	��� FORALL q	 F
q� �� G
q�

IMPORTING pointwise�set�tau��set�sigma��pointwise�sigma�bool��������

JUDGEMENT �� HAS�TYPE pCPO�ptrans�

JUDGEMENT abort HAS�TYPE 
bottom�
����

We generalize conjunction and disjunction of predicate transformers and dene operators
for greatest lower bounds and least upper bounds of sets of predicate transformers� that
is� meets and joins�

��M 	 VAR set�ptrans�

��
M�	 ptrans � LAMBDA q	 LAMBDA y	 FORALL F	 M
F� IMPLIES F
q�
y�

��
M�	 ptrans � LAMBDA q	 LAMBDA y	 EXISTS F	 M
F� AND F
q�
y�

The type MPT constrains predicate transformers to monotonic predicate transformers�

��MPT 	 TYPE � fF	ptrans � monotonic�
F�g

JUDGEMENT abort HAS�TYPE MPT

JUDGEMENT magic HAS�TYPE MPT

JUDGEMENT �� HAS�TYPE �MPT�MPT �� MPT�

JUDGEMENT �� HAS�TYPE �MPT�MPT �� MPT�

Next� we relate state transformers and monotonic predicate transformers by dening an
operator mapping every state transformer to a corresponding predicate transformer� cf�
theory mpt� Both state and predicate transformations can be viewed as being applied in
one of two directions� �forward� transformations map initial states and pre�conditions to
nal states and post�conditions� respectively� while �backward� transformations do it the
other way round� Since our goal is to dene a weakest pre�condition semantics we adopt
the view of applying predicate transformers backwards� while thinking of state transformer
as operating forwards�

The operator PT takes a state transformer f of type �sigma �� set�tau�� and yields a
predicate transformer of type �pred�tau� �� pred�sigma��� Given a post�condition T�
the expression PT�f	�T	 denotes the set of all states s of type sigma� such that all states
in f�s	 satisfy T�

��
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��PT
f	srel� 	 ptrans �

LAMBDA 
T	pred�tau��	 inverse�image
f�T�

The operator PT is shown to be universally conjunctive and to map state transformers to
monotonic predicate transformers� Moreover� lemma lifting describes the relationship
between state transformers and predicate transformers�

��JUDGEMENT PT HAS�TYPE �srel �� MPT�

PT�universally�conjunctive 	 LEMMA

FORALL 
M	set�pred�tau���	

PT
f�
��
M�� �

��
fp	pred�sigma� � EXISTS 
m	
M��	 p � PT
f�
m�g�

lifting 	 LEMMA

f �� g IFF PT
g� �� PT
f�

�� Relating Various Styles of Semantics

After having formalized the foundations for denotational semantics of imperative pro�
gramming language constructs� we can now develop other styles of semantics based on the
state transformer and predicate transformer styles� In this section� a weakest 	liberal
 pre�
condition semantics and Hoare�style semantics are developed and shown to be equivalent�
Moreover� we describe how algebraic laws� as utilized e� g� in renement calculus proofs�
are validated� Last� we brie�y sketch the relationship between state transformer semantics
and both structural operational semantics and continuation semantics�

��� Weakest �Liberal� Precondition

The operator PT dened in section ���� see �� � obviously maps a state transformer f to
a predicate transformer F that� applied to some predicate q� yields the weakest �liberal�
precondition of f with respect to q�

��wp
f�q� 	 pred�State� � PT
f�
q�

In order to demonstrate the correctness of this denition� some basic facts about wp are
proved� First� wp�f�q	 is indeed the weakest precondition�

��wp�char 	 LEMMA

wp
f�q� � ��
fp � p �� PT
f�
q�g�

The well�known rules of weakest preconditions of basic imperative programming language
constructs can easily be proved from the denition of wp��

�Function subst is de�ned in theory state	 see Appendix A
�


��
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��wp�skip 	 LEMMA

wp
skip� q� � q

wp�assign 	 LEMMA

wp
x �� e� q� � subst
q� x� e�

wp�if 	 LEMMA

wp
IF b THEN f ELSE g ENDIF� q�

� 
IF b THEN wp
f� q� ELSE wp
g� q� ENDIF�

wp�seq 	 LEMMA

wp
f �� g� q� � wp
f�wp
g�q��

wp�while 	 LEMMA

wp
while
b� h�� q�

� 
IF b THEN wp
h �� while
b� h��q� ELSE q ENDIF�

��� Hoare Calculus

This subsection introduces the denition of Hoare triples and shows how the rules and
axioms of Hoare Logic are derived from the denotational semantics denition� We use the
notation ���p�f�q	 to denote the Hoare�triple fpgf fqg� Its denition is just a translation
of the informal description into PVS syntax� fpgffqg holds� if whenever f is executed in
a state satisfying p� and if the execution terminates� then f yields a state where q holds�
That is� a program segment f must map the set p into q�

����
p� f� q� 	 bool � image
f�p� �� q

The well�known rules for statements are proved easily� In fact� PVS can do most of the
proofs with a single strategy called �GRIND	� that repeatedly rewrites denitions� lifts
IF�expressions and simplies with decision procedures�

��skip�rule 	 LEMMA

��
p� skip� p�

assign�rule 	 LEMMA

��
subst
p� x� e�� 
x �� e�� p�

seq�rule 	 LEMMA

��
p� f� q� AND ��
q� g� r�

IMPLIES

��
p� f �� g� r�

if�rule 	 LEMMA

��
p �� b� f� q� AND ��
p �� NOT
b�� g� q�

IMPLIES

��
p� 
IF b THEN f ELSE g ENDIF�� q�

while�rule 	 LEMMA

��
p �� b� h� p�

IMPLIES

��
p� while
b� h�� p �� NOT
b��

��
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Moreover� useful rules concerning strengthening respectively weakening are proved�

�precondition�strengthening 	 LEMMA

p �� p AND ��
p� f� q�

IMPLIES

��
p� f� q�

postcondition�weakening 	 LEMMA

��
p� f� q� AND q �� q

IMPLIES

��
p� f� q�

rule�of�consequence 	 COROLLARY � ��� combination of the above

p �� p AND ��
p� f� q� AND q �� q

IMPLIES

��
p� f� q�

Equivalence of Hoare logic and weakest precondition semantics can also be proved quite
easily using �GRIND	�

��hoare�logic�equiv�wp 	 THEOREM

��
p� f� q� � 
p �� wp
f� q��

��� Algebraic Laws

Back �Bac��� Bac��� introduced the re�nement calculus as a formalization of the stepwise
renement approach to systematic program construction �Dij��� Wir���� A program state�
ment S � is said to rene S � denoted S � S �� if and only if S � satises every assertion that
S does� Program renements S � S � are often proved using several high�level renement
rules that express certain laws of the programming language� cf� �HHJ����� These laws
are justied using monotonic predicate transformer semantics �Bac����

The formalizations presented so far are su�cient to prove some typical laws� In fact� the
denition of program renement as stated above has already been introduced� cf� lemma
lifting in specication �� and the denition of PT in �� �

��refinement�def 	 LEMMA

f �� g IFF FORALL 
q	pred�sigma��	 wp
g� q� �� wp
f� q�

Some of the laws following next can be proved at the level of state transformers� while
others have to be lifted to the domain of predicate transformers� However� PVS provides a
useful mechanism of overloading together with implicitly applied 	type
 conversions� such
that this di�erence can be hidden in the specications� In order to exploit this feature� we
dene additional predicate transformers encoding sequential and conditional composition�
see theory stmt mpt�

��F�G 	 VAR ptrans

��
F�G� 	 ptrans � F o G � ��� �o� is function composition

IF
b�F�G� 	 ptrans � LAMBDA q	 IF b THEN F
q� ELSE G
q� ENDIF

��
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Using the operator PT as implicit type conversion rule� it is possible to mix state trans�
formers and predicate transformers within the same expression� For example� for a state
transformer f and a predicate transformer p we can write f 

 p instead of PT�f	 

 p�

��CONVERSION PT

Assertion and assumption of some Boolean expression b are dened using the conditional
predicate transformer�

��assert
b� 	 ptrans � IF b THEN skip ELSE abort ENDIF

assume
b� 	 ptrans � IF b THEN skip ELSE magic ENDIF

Some typical laws� as used for example in �HJS��� MO���� are as follows�

��Seq�assoc 	 LEMMA 
f �� g� �� h � f �� 
g �� h�

Seq�unit�left 	 LEMMA skip �� f � f

Seq�unit�right	 LEMMA f �� skip � f

Seq�left�zero�bottom	 LEMMA 
abort �� f� � abort

Seq�left�zero�top 	 LEMMA 
magic �� f� � magic

if�true 	 LEMMA 
IF TRUE THEN f ELSE g ENDIF� � f

if�false	 LEMMA 
IF FALSE THEN f ELSE g ENDIF� � g

if�same 	 LEMMA 
IF b THEN f ELSE f ENDIF� � f

assign�cond�rightw	 LEMMA



x �� e� �� 
IF b THEN f ELSE g ENDIF��

� IF subst
b� x� e� THEN 
x �� e� �� f ELSE 
x �� e� �� g ENDIF

assertion�assumption 	 LEMMA assert
b� �� assume
b� � assert
b�

assumption�assertion 	 LEMMA assume
b� �� assert
b� � assume
b�

assert�skip 	 LEMMA assert
b� �� skip

assume�skip 	 LEMMA skip �� assume
b�

combine�assumption 	 LEMMA assume
p� �� assume
q� � assume
p �� q�

combine�assertion 	 LEMMA assert
p� �� assert
q� � assert
p �� q�

assumption�consequence 	 LEMMA p �� q IMPLIES assume
q� �� assume
p�

assertion�consequence 	 LEMMA p �� q IMPLIES assert
p� �� assert
q�

void�assumption 	 LEMMA assume
TRUE� � skip

void�assertion 	 LEMMA assert
TRUE� � skip

assumption�assign 	 LEMMA


x �� e� �� assume
b� � assume
subst
b� x� e�� �� 
x �� e�

assertion�assign 	 LEMMA


x �� e� �� assert
b� � assert
subst
b� x� e�� �� 
x �� e�

conditions�cond�top 	 LEMMA assume
b� �� F � 
IF b THEN F ELSE magic ENDIF�

conditions�cond�bot 	 LEMMA assert
b� �� F � 
IF b THEN F ELSE abort ENDIF�

These kind of laws have heavily been used in a formal verication of compilation theorems
of Sampaio�s normal form approach �Dol����

��
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��� Structural Operational Semantics

If one slighty changes the presentation of the denotational semantics based on state trans�
formers given in Section ���� one obtains a semantics description resembling structural

operational semantics �Plo��� Kah����

Rename state transformers commands� represented by type Cmd� and let a Configuration
be a pair consisting of a command and the actual program state� Accessor functions for
the components of a conguration with respective names are dened�

��Cmd 	 TYPE � srel

Configuration 	 TYPE � �Cmd� State�

cmd
conf� 	 Cmd � proj�
conf�

state
conf� 	 State � proj��
conf�

The state transition relation �� is now dened as a binary relation between 	actual

congurations conf and 	successor
 states s� A state s is an admissible successor of conf�
written as conf �� s� if the evaluation of the actual command cmd�conf	 in the current
state state�conf	 may end in state s�

����
conf�s� 	 bool � member
s�cmd
conf�
state
conf���

For presentation purposes we redene propositional implication�

���� 	 pred��bool�bool�� � IMPLIES

��
p	bool� 	 bool � p

This notation allows a reformulation of the denitions in Section ��� as SOS�style rules�
For example� the rules for skip and sequential composition now read�

�skip�rule 	 LEMMA

�� 

skip�s� �� s�

seq�rule 	 LEMMA


f�s� �� t AND 
g�t� �� u

��


f �� g� s� �� u

In order to provide similar rules for assignment� conditional and while�loop� further de�
nitions have to be introduced� In particular� overloading of �� is used to denote expression
evaluation�

��
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��BConfiguration 	 TYPE � �BExpr� State�

EConfiguration 	 TYPE � �Expr� State�

bconf 	 VAR BConfiguration

econf 	 VAR EConfiguration

bv 	 VAR bool

v 	 VAR value

bexpr
bconf� 	 BExpr � proj�
bconf�

state
bconf� 	 State � proj��
bconf�

expr
econf� 	 Expr � proj�
econf�

state
econf� 	 State � proj��
econf�

��
bconf�bv� 	 bool � bv � bexpr
bconf�
state
bconf��

��
econf�v� 	 bool � v � expr
econf�
state
econf��

The following lemmas are again only reformulations of the corresponding denotational
semantics denitions� Most of them are simply proved by the strategy �GRIND	�

��assign�rule 	 LEMMA

declared�
s�
x� IMPLIES





e�s� �� v

��


x �� e� s� �� update
s�
x�v�

�

if�true�rule 	 LEMMA


b�s� �� TRUE AND 

f�s� �� t�

��


IF b THEN f ELSE g ENDIF� s� �� t

if�false�rule 	 LEMMA


b�s� �� FALSE AND 

g�s� �� t�

��


IF b THEN f ELSE g ENDIF� s� �� t

The proofs of the rules concerning while use the corresponding if�rules after applying
lemma while def� see �� �

��while�false�rule 	 LEMMA


b�s� �� FALSE

��


while
b�f�� s� �� s

while�true�rule 	 LEMMA


b�s� �� TRUE AND 
f�s� �� t AND 
while
b�f�� t� �� u

��


while
b�f�� s� �� u

��
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��� Continuations

The style of denotational semantics presented in Section ��� is often called direct semantics
and emphasizes the compositional structure of a language� If control is of concern� for
example in imperative languages with unrestricted branching 	�goto�
� a di�erent style of
semantics� namely continuation semantics is more appropriate�

The basic elements of continuation semantics are dened at the level of state transformers�
a continuation simply is a state transformer�

��continuation 	 TYPE � srel

The operator C describes the continuation�style semantics of some state transformer f� It
is obtained by simply composing f and a given continuation c�

�C
f�
c� 	 continuation � LAMBDA s	 image
c� f
s��

JUDGEMENT C HAS�TYPE �strans �� �strans �� strans��

In the case where the continuation is simply the identity� continuation�style semantics
and direct semantics coincide and a transfer lemma is proved providing a way carry over
theorems established for one style to the other�

�cont�singleton 	 LEMMA

C
f�
singleton� � f

transfer	 LEMMA

FORALL 
P	 pred�srel��	

P
C
f�
singleton�� � P
f�

For completeness� the continuation semantics for simple statements are stated below�

�skip�continuation 	 LEMMA

C
skip�
c� � c

assign�continuation 	 LEMMA

C
x �� e�
c�
s� � image
c� 

x �� e�
s���

seq�continuation 	 LEMMA

C
f �� g� � C
f� o C
g�

if�continuation 	 LEMMA

C
IF b THEN f ELSE g ENDIF�
c� � IF b THEN C
f�
c� ELSE C
g�
c� ENDIF

�� Introducing Variable Declarations

So far� we have only considered statements operating on some abstract state� In this section
a concrete implementation of such a program state is described� followed by the denition
of the denotational semantics of variable declarations�

��
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The state on which programs operate consists of two parts� a variable environment rho

and a store sigma� The former is a partial function mapping variable names to abstract
locations� the latter maps locations to the values assigned to variables� Since a store should
only assign values to those locations actually in use� the state is modeled as a dependent
record type�

�State 	 TYPE � �� rho 	 VarEnv� sigma 	 Store
rho� ��

Variable environments are modeled as injective partial functions from the type of variables
Vars to locations�

�pre�env 	 VAR PartialFunction�Vars�Location�

finite�injective�environment�
pre�env� 	 bool �

is�finite
image
pre�env�fullset�Vars��	set�Location�� AND


FORALL 
x�y	Vars� l�l�	Location�	

x �� y AND pre�env
x�
l� AND pre�env
y�
l�� IMPLIES l �� l��

VarEnv 	 TYPE � 
finite�injective�environment��

The Store maps the locations in use to values�

usedlocs
rho� 	 finite�set�Location� � image
rho�fullset�Vars��

UsedLoc
rho� 	 TYPE � 
usedlocs
rho��

Store
rho� 	 TYPE � PartialFunction�UsedLoc
rho��Value�

Locations are modelled as natural numbers� and the function nextloc takes a nite set of
locations and yields a location not already contained in the set�

�Location 	 TYPE� � nat

locs 	 VAR finite�set�Location�

nextloc
locs� 	 Location �

IF empty�
locs� THEN � ELSE max
locs�� ENDIF

nextloc�new 	 LEMMA

NOT member
nextloc
locs��locs�

The empty state� used as the initial state in the semantics denitions of a programming
language� is given by an empty environment and an empty store�

�empty�env 	 VarEnv �

LAMBDA 
v	Vars�	 emptyset

empty�store 	 Store
empty�env� �

LAMBDA 
l	UsedLoc
empty�env��	 emptyset

emptystate 	 �� rho 	 VarEnv� sigma 	 Store
rho� �� �


� rho 	� empty�env� sigma 	� empty�store ��

��
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Based on these denitions� the sets of declared and initialized variables� respectively� can
be characterized� A variable x is declared in some state s if there is an entry for x in the
current environment rho�s	�

�declared�
s�
x� 	 bool � singleton�
rho
s�
x��

DeclaredVar
s� 	 TYPE � 
declared�
s��

newvar�
s�
x� 	 bool � NOT declared�
s�
x�

NewVar
s� 	 TYPE � 
newvar�
s��

Analogously� declared variables for which there is a value in the store are of type
InitializedVar�s	�

�initialized�
s�
x	DeclaredVar
s�� 	 bool �

singleton�
sigma
s�
choose
rho
s�
x����

InitializedVar
s� 	 TYPE � 
initialized�
s��

Next� functions for reading and writing values of variables and for the introduction of new
variables are dened� Note that update and the lookup function � are only dened on
declared and initialized variables� respectively�

��update
s� 	 �DeclaredVar
s��Value �� State� �

LAMBDA 
x	DeclaredVar
s�� v	Value�	


� rho 	� rho
s��

sigma 	� sigma
s� WITH �
choose
rho
s�
x��� 	� v� ���

 	 ��s	State� InitializedVar
s�� �� Value� �

LAMBDA 
p	�s	State�InitializedVar
s���	

LET 
s�x� � p IN

sigma
s�
choose
rho
s�
x���

intro
s�
x	NewVar
s�� 	 State �

LET newloc � nextloc
usedlocs
rho
s��� IN


� rho 	� rho
s� WITH �
x� 	� newloc��

sigma 	� sigma
s� WITH �
newloc� 	� emptyset� ��

The semantics of the declaration of a variable� cf� theory vardecl� is now dened using the
intro function described above� If the variable x is a new variable� declare�x	�s	 yields
a new state with the environment being extended accordingly�

��declare
x� 	 srel �

LAMBDA s	 IF newvar�
s�
x�

THEN singleton
intro
s�
x��

ELSE emptyset

ENDIF

��
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	� Example
 A Simple Programming Language

In this section it is described how the denitions presented so far can be applied in order
to dene the semantics of a simple programming language� We leave variables� values and
the various kinds of expressions uninterpreted� They are modeled as theory parameters�
as are the semantic functions for expression evaluation�

��simple�program �Vars� Value� Expr� BExpr 	 TYPE��


IMPORTING state�Vars�Value��

eval 	 �Expr �� �State �� Value���

evalB 	 �BExpr �� �State �� bool��� 	 THEORY

Variable declarations are simply lists of variables� and the abstract syntax of commands
is dened by an inductive datatype� Programs are then pairs consisting of a declaration
and a command�

��VarDecl 	 TYPE � list�Vars�

SimpleCommand 	 DATATYPE

BEGIN

skip 	 skip�

seq
first�second	SimpleCommand� 	seq�

assign
varid	Vars� exp	Expr� 	 assign�

if�
ifcond	 BExpr� thn� els	 SimpleCommand� 	 if�

while
whilecond	 BExpr� body	 SimpleCommand� 	 while�

END SimpleCommand

SimpleProgram 	 TYPE � �� decl 	 VarDecl� body 	 SimpleCommand ��

By importing the denitions presented in the previous sections� the semantics of the com�
mands are dened inductively using the corresponding semantic functions�

��IMPORTING semantics�Vars�Value�

c 	 VAR SimpleCommand

���� 	 �Expr �� �State �� Value�� � eval

���� 	 �BExpr �� �State �� bool�� � evalB

����
c� 	 RECURSIVE srel � � ��� prefix variant of �� c ��

CASES c OF

skip 	 skip�

seq
f�g� 	 �� f �� �� �� g ���

assign
x�e� 	 x �� �� e ���

if�
b�f�g� 	 IF �� b �� THEN �� f �� ELSE �� g �� ENDIF�

while
b�f� 	 while
�� b ����� f ���

ENDCASES

MEASURE c BY ��

The semantic function for declarations creates a new entry for each of the variables in
sequence�

��



Mechanized Semantics of Simple Imperative Programming Constructs

�����
d	VarDecl� 	 RECURSIVE srel �

IF null�
d� THEN skip ELSE declare
car
d�� �� �� cdr
d� �� ENDIF

MEASURE length
d�

The semantics of a program is then dened straightforward� evaluating the declarations
in the empty state leads to an environment in which the commands are evaluated�

��p 	 VAR SimpleProgram

����
p� 	 set�State� �

�� body
p� ��
�� decl
p� ��
emptystate��

�� Conclusions

We have presented a uniform formalization in PVS of various kinds of semantics of the
basic constructs in imperative programming languages� Based on a comprehensive devel�
opment of xed point theory� the denotational semantics of the constructs were dened as
state transformers� These state transformers induce corresponding predicate transform�
ers� providing a means to formally derive both weakest liberal precondition semantics and
axiomatic semantics in the style of Hoare� Moreover� algebraic laws as used in renement
calculus proofs have been validated at the level of predicate transformers� A simple re�
formulation of the state transformers semantics yields a continuation�style semantics and
rules similar to those used in structural operational semantics�

Since the various semantics are derived rather than dened� many interchangeable forms of
semantics are available� Thus� formal reasoning about both programs and their compilation
can be carried out within the same framework�

The theories comprise semantic denitions for the basic constructs of imperative program�
ming languages� This will be further extended by additional denitions for other constructs
such as 	mutually
 recursive procedures in order to be applicable to a wider range of pro�
gramming languages� Besides the fact that this requires some additional technical work
concerning the modelling of underlying mathematical structures� such as 	simultaneous

xpoints of a set of functions� this should not impose major di�culties�

The formalization presented in this paper provides the foundations on which formal spec�
ication of programming language semantics and mechanized verication of compilation
steps are carried out within the Veri�x project� The theories have been used in the spec�
ication and verication of a generic compilation of imperative programming constructs
�DvHPR����

Future investigations will be concerned with how moving between di�erent styles of seman�
tics can be exploited in verifying compilation steps� For example� very often the semantics
of the source and target language of a compiler are given in a denotational and an oper�
ational style� respectively� One way of proving the correctness of the compiler in such a
case is to derive rst a denotational semantics of the target language from its operational
semantics �NN���� We conjecture that a systematic support of these kinds of derivations
would help to reduce the proof e�ort of such correctness proofs�

��



Mechanized Semantics of Simple Imperative Programming Constructs

References

�Bac��� R� J� R� Back� Correctness Preserving Program Re�nements� Proof Theory

and Applications� volume ��� of Mathematical Centre Tracts� Mathematical
Centre� Amsterdam� �����

�Bac��� R� J� R� Back� On Correct Program Renements� Journal of Computer and

System Sciences� ��	�
������� August �����

�Bac��� R� J� R� Back� Renement Calculus Part I� Sequential Nondeterministic Pro�
grams� In J� W� de Bakker and W��P� de Roever� editors� Stepwise Re�nement

of Distributed Systems� REX�Workshop� volume ��� of LNCS� Springer Ver�
lag� �����

�BDvH���� F� Bartels� A� Dold� F�W� von Henke� H� Pfeifer� and H� Rue�� Formalizing
Fixed�Point Theory in PVS� Ulmer Informatik�Berichte ������ Universit�at
Ulm� December �����

�Bes��� E� Best� Semantik 	 Theorie sequentieller und paralleler Programmierung�
Lehrbuch Informatik� Vieweg�Verlag� �����

�BvW��� R� J� R� Back and J� v� Wright� Renement Concepts Formalised in Higher
Order Logic� Formal Aspects of Computing� ���������� �����

�Cam��� A� J� Camilleri� Mechanizing CSP Trace Theory in Higher Order Logic� IEEE
Transactions of Software Engineering� ��	�
���������� �����

�Dij��� E� W� Dijkstra� Notes on Structured Programming� In E� D� Dahl and
C� Hoare� editors� Structured Programming� Academic Press� �����

�Dol��� Axel Dold� A Formalization of the Normal Form Approach to Compilation�
Veri�x working paper �Verix � Uni Ulm � ����� Universit�at Ulm� July �����

�DvHPR��� A� Dold� F�W� von Henke� H� Pfeifer� and H� Rue�� Generic Specication
of Correct Compilation� Ulmer Informatik�Berichte ������ Universit�at Ulm�
December �����

�Flo��� R� W� Floyd� Assigning Meaning to Programs� In J� T� Schwartz� editor�
Mathematical Aspects of Computer Science� pages ������ American Math
Society� Providence� Rhode Island� �����

�Gor��� M� J� C� Gordon� Mechanizing Programming Logics in Higher Order Logic� In
G� Birtwistle and P� A� Subrahmanyam� editors� Current Trends in Hardware

Veri�cation and Theorem Proving� Springer�Verlag� �����

�HHJ���� C� A� R� Hoare� I� J� Hayes� H� Jifeng� C� C� Morgan� A � W� Roscoe� J� W�
Sanders� I� H� Sorensen� J� M� Spivey� and B� A� Sufrin� Laws of programming�
Communications of the ACM� �	�
��������� August �����

�HJS��� C� A� R� Hoare� H� Jifeng� and A� Sampaio� Normal Form Approach to
Compiler Design� Acta Informatica� ����������� �����

��



Mechanized Semantics of Simple Imperative Programming Constructs

�HM��� P� V� Homeier and D� F� Martin� A Mechanically Veried Verication Con�
dition Generator� The Computer Journal� ��	�
� �����

�Hoa��� C� A� R� Hoare� An Axiomatic Basis for Computer Programming� CACM�
����������� �����

�Kah��� G� Kahn� Natural Semantics� In Proc� STACS �
�� volume ��� of LNCS�
pages ������ berlin� ����� Springer�

�Mas��� I� A� Mason� Hoare�s Logic in the LF� Technical Report ������ Laboratory
for Foundations of Computer Science� University of Edinburgh� �����

�MO��� M� M�uller�Olm� Modular Compiler Veri�cation� PhD thesis� Christian Al�
brechts Universit�at zu Kiel� �����

�Nip��� Tobias Nipkow� Winskel is 	almost
 Right� Towards a Mechanized Semantics
Textbook� In V� Chandru and V� Vinay� editors� Foundations of Software

Technology and Theoretical Computer Science� volume ���� of Lecture Notes

in Computer Science� pages �������� Springer Verlag� �����

�NN��� H� R� Nielson and F� Nielson� Semantics with Applications� A Formal Intro�

duction� Wiley Professional Computing� Wiley� �����

�ORSvH��� S� Owre� J� Rushby� N� Shankar� and F� von Henke� Formal Verication
for Fault�Tolerant Architectures� Prolegomena to the Design of PVS� IEEE
Transactions on Software Engineering� ��	�
��������� February �����

�Plo��� G� Plotkin� A Structural Approach to Operational Semantics� Report DAIMI�
FN���� Computer Science Department� Aarhus University� �����

�Sch��� D� A� Schmidt� Denotational Semantics� Wm� C� Brown Publishers� Dubuque�
Iowa� �����

�Sok��� S� Sokolowski� Soundness of Hoare�s Logic� An Automated Proof Using LCF�
ACM Transactions on Programming Languages and Systems� �	�
���������
�����

�SS��� D� Scott and D� Strachey� Towards a Mathematical Semantics for Computer
Languages� In J� Fox� editor� Computers and Automata� pages ������ J� Wiley�
New York� �����

�Sto��� J� E� Stoy� Denotational Semantics� The Scott�Strachey Approach to Pro�
gramming Language Theory� MIT Press� Cambridge� MA� �����

�Ten��� R� D� Tennent� The Denotational Semantics of Programming Languages�
CACM� ����������� �����

�Win��� G� Winskel� The Formal Semantics of Programming Languages� Foundations
of Computing Series� MIT Press� Cambridge� Massachusetts� �����

�Wir��� N� Wirth� Program Development by Stepwise Renement� Communications

of the ACM� ����������� �����

��



Mechanized Semantics of Simple Imperative Programming Constructs

��



Mechanized Semantics of Simple Imperative Programming Constructs

Appendix� PVS Source Files

��



Mechanized Semantics of Simple Imperative Programming Constructs

��



Mechanized Semantics of Simple Imperative Programming Constructs

A� Denotational Semantics

A�� State transformers

srel �sigma� tau	 TYPE�� 	 THEORY

BEGIN

FP 	 LIBRARY � ���Fixpoints��

� �������� 
Nondeterministic� State transformers

IMPORTING relation�sigma�tau�� FP!predicate�cpo�tau�

srel 	 TYPE � Relation�sigma�tau� � i�e� srel � �sigma �� set�tau��

s 	 VAR sigma

S 	 VAR set�sigma�

T 	 VAR set�tau�

f�g 	 VAR srel

� �������� least state transformers

abort 	 srel � LAMBDA s	 emptyset�

� �������� Ordering on state transformers	

� the next IMPORT defines a partial order �� on state transformers

� as f �� g 	��� FORALL s	 f
s� IMPLIES g
s�

IMPORTING FP!dcpo�to�precpo�sigma�set�tau��pointwise�tau�bool��������

IMPORTING FP!cpo�defs�srel�

JUDGEMENT �� HAS�TYPE pCPO�srel�

JUDGEMENT abort HAS�TYPE 
bottom�
���	pred�srel��

� �������� importing definitions and theorems about fixpoints on srels

IMPORTING FP!fixpoints�cont�srel����abort�

� �������� Deterministic state transformers

strans 	 TYPE � PartialFunction�sigma�tau�

END srel

A�� Program State

Variable environment

var�environment �Vars 	 TYPE�� 	 THEORY

BEGIN

IMPORTING location� relation� finite�sets!finite�sets�def�Location�

��
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locs 	 VAR set�Location�

pre�env 	 VAR PartialFunction�Vars�Location�

finite�injective�environment�
pre�env� 	 bool �

is�finite
image
pre�env�fullset�Vars��	set�Location�� AND


FORALL 
x�y	Vars� l�l�	Location�	

x �� y AND pre�env
x�
l� AND pre�env
y�
l�� IMPLIES l �� l��

VarEnv 	 TYPE � 
finite�injective�environment��

END var�environment

Locations

location 	 THEORY

BEGIN

Location 	 TYPE� � nat

IMPORTING finsets�Location����

locs 	 VAR finite�set�Location�

nextloc
locs� 	 Location �

IF empty�
locs� THEN � ELSE maxrec
locs�� ENDIF

� �������� nextloc yields a new location

nextloc�max 	 LEMMA

FORALL 
l	
locs��	 l � nextloc
locs�

nextloc�new 	 LEMMA

NOT locs
nextloc
locs��

END location

Program State

state �Vars� Value 	 TYPE�� 	 THEORY

BEGIN

IMPORTING var�environment�Vars�� deterministic�Value�

CONVERSION singleton� select�Location�� select�Value�

rho 	 VAR VarEnv

x 	 VAR Vars

v 	 VAR Value

l 	 VAR Location

usedlocs
rho� 	 finite�set�Location� � image
rho�fullset�Vars��

��
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UsedLoc
rho� 	 TYPE � 
usedlocs
rho��

Store
rho� 	 TYPE � PartialFunction�UsedLoc
rho��Value�

empty�env 	 VarEnv �

LAMBDA 
v	Vars�	 emptyset�Location�

empty�store 	 Store
empty�env� �

LAMBDA 
l	UsedLoc
empty�env��	 emptyset

emptystate 	 �� rho 	 VarEnv� sigma 	 Store
rho� �� �


� rho 	� empty�env� sigma 	� empty�store ��

State 	 TYPE � �� rho 	 VarEnv� sigma 	 Store
rho� ��

JUDGEMENT emptystate HAS�TYPE State

s 	 VAR State

� �������� declared variable	 has a location assigned to it

declared�
s�
x� 	 bool � singleton�
rho
s�
x��

DeclaredVar
s� 	 TYPE � 
declared�
s��

newvar�
s�
x� 	 bool � NOT declared�
s�
x�

NewVar
s� 	 TYPE � 
newvar�
s��

� �������� 
declared� variable is initialized� if there�s a value

� assigned to it�

initialized�
s�
x	DeclaredVar
s�� 	 bool �

singleton�
sigma
s�
select
rho
s�
x����

InitializedVar
s� 	 TYPE � 
initialized�
s��

� �������� update value of declared variables

update
s� 	 �DeclaredVar
s��Value �� State� �

LAMBDA 
x	DeclaredVar
s�� v	Value�	


� rho 	� rho
s��

sigma 	� sigma
s� WITH �
select
rho
s�
x��� 	� v� ���

update�initializes 	 LEMMA

FORALL 
s	 State� x	DeclaredVar
s�� v	Value�	

initialized�
update
s�
x�v��
x��

� �������� read value of declared variables

 	 ��s	State� InitializedVar
s�� �� Value� �

LAMBDA 
p	�s	State�InitializedVar
s���	

LET s � proj�
p�� x � proj��
p� IN

sigma
s�
select
rho
s�
x���

� �������� properties

��
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update�access	 LEMMA

FORALL 
s	 State� x	DeclaredVar
s�� v	Value�	

update
s�
x�v� x � v

equal�updates	 LEMMA

FORALL 
s	 State� x	DeclaredVar
s�� v�v�	Value�	

update
update
s�
x�v���
x�v� x � v

nonequal�updates	 LEMMA

FORALL 
s	 State� x	DeclaredVar
s�� x�	DeclaredVar
s�� v�v�	Value�	

x �� x� IMPLIES update
update
s�
x�� v���
x� v� x� � v�

� �������� introduce new variable

extend�varenv 	 LEMMA

FORALL 
s	State�x	NewVar
s��	

LET newloc � nextloc
usedlocs
rho
s��� IN

finite�injective�environment�
rho
s� WITH �
x� 	� newloc��

intro
s�
x	NewVar
s�� 	 State �

LET newloc � nextloc
usedlocs
rho
s��� IN


� rho 	� rho
s� WITH �
x� 	� newloc��

sigma 	� sigma
s� WITH �
newloc� 	� emptyset� ��

� �������� Substitution

subst
p	 pred�State�� x	Vars� sv	 �State �� Value�� 	 pred�State� �

LAMBDA s	 IF declared�
s�
x� THEN p
update
s�
x�sv
s��� ELSE TRUE ENDIF

� �������� Independence

independent�
p	 pred�State�� x	 Vars�	 bool �

FORALL 
s	 State� sv	�State �� Value��	 subst
p�x�sv�
s� � p
s�

END state

A�� State Transformer Semantics

Boolean Expressions

bexpr�sigma	 TYPE��	 THEORY

BEGIN

FP 	 LIBRARY � ���Fixpoints��

IMPORTING FP!predicates�sigma�

BExpr 	 TYPE � pred�sigma�

END bexpr

��
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Expressions

expr�state� value	 TYPE��	 THEORY

BEGIN

Expr 	 TYPE � �state �� value�

IMPORTING bexpr�state�

END expr

Skip

skip �sigma 	 TYPE�� 	 THEORY

BEGIN

IMPORTING srel�sigma�sigma�

s 	 VAR sigma

� �������� Do Nothing

skip 	 srel � LAMBDA s	 singleton
s�

JUDGEMENT skip HAS�TYPE strans

END skip

Assignment

assignment �Vars� Value� sigma	 TYPE��

declared� 	 �sigma �� pred�Vars���

update 	 �s	sigma �� �
declared�
s��� Value �� sigma��

� 	 THEORY

BEGIN

IMPORTING expr�sigma�Value�� srel�sigma�sigma�

s 	 VAR sigma

x 	 VAR Vars

e 	 VAR Expr

� �������� Assignments

��
x�e� 	 srel �

LAMBDA s	 IF declared�
s�
x�

THEN singleton
update
s�
x�e
s���

ELSE emptyset

ENDIF

JUDGEMENT �� HAS�TYPE �Vars�Expr �� strans�

END assignment

��



Mechanized Semantics of Simple Imperative Programming Constructs

Sequential Composition

sequence �sigma 	 TYPE�� 	 THEORY

BEGIN

IMPORTING srel�sigma�sigma�

s 	 VAR sigma

f�g�h 	 VAR srel

f�f��g�g� 	 VAR srel

� �������� Sequencing

��
f� g� 	 srel � LAMBDA s	 image
g�f
s��

sequence�strans�closed 	 LEMMA

FORALL 
f�g	strans�	 deterministic�

f �� g�
s��

JUDGEMENT �� HAS�TYPE �strans� strans �� strans�

sequence�monotonic�left 	 LEMMA

f �� g IMPLIES f �� h �� g �� h

sequence�monotonic�right 	 LEMMA

f �� g IMPLIES h �� f �� h �� g

sequence�monotonic 	 LEMMA

f �� f� AND g �� g� IMPLIES f �� g �� f� �� g�

END sequence

Conditional and While Loop

control�structures �sigma 	 TYPE�� 	 THEORY

BEGIN

IMPORTING sequence�sigma�� skip�sigma�� bexpr�sigma�

b 	 VAR BExpr

f�g�h 	 VAR srel

s 	 VAR sigma

� �������� Conditionals

IF
b� f� g� 	 srel �

LAMBDA s	 IF b
s� THEN f
s� ELSE g
s� ENDIF�

IF�monotonic�left 	 LEMMA

f �� g IMPLIES

IF b THEN f ELSE h ENDIF �� IF b THEN g ELSE h ENDIF

IF�monotonic�right 	 LEMMA

f �� g IMPLIES

IF b THEN h ELSE f ENDIF �� IF b THEN h ELSE g ENDIF

��
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IF�strans�closed 	 LEMMA

FORALL 
f�g	strans�	 deterministic�

IF b THEN f ELSE g ENDIF�
s��

� �������� while loop

while�functional�monotonic 	 LEMMA

monotonic�
LAMBDA 
x	srel�	 IF b THEN f �� x ELSE skip ENDIF�

while
b�f� 	 srel �

mu� 
x	srel�	 IF b THEN f �� x ELSE skip ENDIF

� �������� admissibility needed in proof of judgement

while�strans�adm 	 LEMMA

admissible�
LAMBDA 
y	 srel�	 FORALL 
s	 sigma�	 deterministic�
y
s���

while�strans�closed 	 LEMMA

FORALL 
f	strans�	 FORALL 
s	sigma�	 deterministic�
while
b�f�
s��

JUDGEMENT while HAS�TYPE ��BExpr� strans� �� strans�

while�def 	 LEMMA

while
b�f� � 
IF b THEN f �� while
b�f� ELSE skip ENDIF�

while�montonic 	 LEMMA

f �� g IMPLIES while
b�f� �� while
b�g�

END control�structures

Semantics of Simple Statements

statements �Vars� Value 	 TYPE�� 	 THEORY

BEGIN

IMPORTING state�Vars�Value�

IMPORTING control�structures�State�

IMPORTING sequence�State�

IMPORTING assignment�Vars� Value� State� declared�� update�

END statements

A�� Predicates

predicates �sigma	 TYPE��	 THEORY

BEGIN

� �������� Lifting boolean connectives to predicates over sigma

s 	 VAR sigma

p�q�b 	 VAR pred�sigma�

S 	 VAR set�sigma�

��
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TRUE 	pred�sigma� � LAMBDA s	 TRUE�

FALSE 	pred�sigma� � LAMBDA s	 FALSE�

NOT
p� 	pred�sigma� � LAMBDA s	 NOT
p
s���

��
p� q� 	pred�sigma� � LAMBDA s	 p
s� AND q
s��

��
p� q� 	pred�sigma� � LAMBDA s	 p
s� OR q
s��

��
p� q� 	pred�sigma� � LAMBDA s	 p
s� IMPLIES q
s��

���
p� q�	pred�sigma� � LAMBDA s	 p
s� IFF q
s��

��
PP	 set�pred�sigma���	 pred�sigma� � LAMBDA s	 FORALL 
p	 
PP��	 p
s��

��
PP	 set�pred�sigma���	 pred�sigma� � LAMBDA s	 EXISTS 
p	 
PP��	 p
s��

IF
b�p�q� 	 pred�sigma� � 
LAMBDA s	 IF b
s� THEN p
s� ELSE q
s� ENDIF��

END predicates

Predicate CPOs

predicate�cpo � sigma	 TYPE� �	 THEORY

BEGIN

� �������� booleans with implication form a cpo	

IMPORTING cpo�defs

IMPORTING predicates�sigma�

IMPORTING bool�cpo

bottom	 pred�sigma� � FALSE�

top 	 pred�sigma� � TRUE

� �������� Ordering on predicates	

� the next IMPORT defines a partial order �� on predicates as

� p �� q 	��� FORALL s	 p
s� IMPLIES q
s�

� �������� predicates are functions from a type 
i�e� a discrete cpo� sigma

� into a cpo� viz� bool� hence predicates with �� form a cpo�

IMPORTING dcpo�to�precpo�sigma�bool����

bottom�pred	 LEMMA

bottom��� sigma �� bool��
pointwise�sigma�bool��������
bottom�

IMPORTING cpo� pred�sigma�����bottom�

PP	 VAR set� pred�sigma��

pred�lub	 LEMMA lub�
��
 PP��PP�

pred�lub�exists	 LEMMA lub�exists�
PP�

pred�lub�is	 LEMMA lub
PP� � ��
PP�

END predicate�cpo

��



Mechanized Semantics of Simple Imperative Programming Constructs

A�� Predicate Transformers

ptrans �sigma� tau	 TYPE��	THEORY

BEGIN

FP 	 LIBRARY � ���Fixpoints��

predS 	 THEORY � FP!predicate�cpo�sigma�

predT 	 THEORY � FP!predicate�cpo�tau�

� �������� Ordering

� next IMPORT defines partial order �� on predicates transformers

� as F �� G 	��� FORALL q	 F
q� IMPLIES G
q�

IMPORTING FP!function�cpo�pred�tau��pred�sigma��pointwise����bottom�

IMPORTING FP!monotonic�pred�tau�����pred�sigma�����

� ���������� predicate transformers and monotonic predicate transformers

ptrans 	 TYPE � �pred�tau� �� pred�sigma��

MPT 	 TYPE � �F	ptrans � monotonic�
F��

JUDGEMENT �� HAS�TYPE pCPO�ptrans�

� �������� Basic Predicate Transformers

q 	 VAR pred�tau�� y	 VAR sigma� M	 VAR set�ptrans�

abort 	 ptrans � LAMBDA q	 FALSE�

magic 	 ptrans � LAMBDA q	 TRUE�

NOT
F� 	 ptrans � LAMBDA q	 NOT
F
q���

��
F� G�	 ptrans � LAMBDA q	 F
q� �� G
q�� � demonic choice

��
F� G�	 ptrans � LAMBDA q	 F
q� �� G
q�� � angelic choice

��
F� G�	 ptrans � LAMBDA q	 F
q� �� G
q��

IMPORTING FP!cpo�defs�ptrans�

JUDGEMENT abort HAS�TYPE 
bottom�
���	pred�ptrans��

� �������� Generalized Meet and Join

��
M�	 ptrans � LAMBDA q	 LAMBDA y	 FORALL F	 M
F� IMPLIES F
q�
y��

��
M�	 ptrans � LAMBDA q	 LAMBDA y	 EXISTS F	 M
F� AND F
q�
y��

END ptrans

A�	 Predicate Transformer Semantics

Monotonic Predicate Transformers

mpt �sigma� tau	 TYPE�� 	 THEORY

BEGIN

IMPORTING ptrans�sigma�tau�� bexpr�sigma�

��
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� �������� define monotonic predicate transformer induced by srel	

IMPORTING srel�sigma�tau�

b 	 VAR BExpr� T 	 VAR set�tau�

f�g 	 VAR srel� F�G 	 VAR ptrans

PT
f	 srel� 	 ptrans � LAMBDA T	 inverse�image
f�T�

JUDGEMENT PT HAS�TYPE �srel �� MPT�

CONVERSION PT

� �������� some properties of PT

lifting 	 LEMMA

f �� g IFF PT
g� �� PT
f�

PT�universally�conjunctive 	 LEMMA

FORALL 
M	set�pred�tau���	

PT
f�
��
M�� � ��
�p	pred�sigma� � EXISTS 
m	
M��	 p � PT
f�
m���

� �������� monotonic pred� trans� as used e�g� by Back� Sampaio and others

JUDGEMENT abort HAS�TYPE MPT

JUDGEMENT magic HAS�TYPE MPT

JUDGEMENT �� HAS�TYPE �MPT�MPT �� MPT�

JUDGEMENT �� HAS�TYPE �MPT�MPT �� MPT�

END mpt

Monotonic Predicate Transformers for Statements

stmt�mpt �sigma 	 TYPE�� 	 THEORY

BEGIN

IMPORTING mpt�sigma�sigma�� skip�sigma�

b 	 VAR BExpr

F�G 	 VAR ptrans

q 	 VAR pred�sigma�

� �������� do nothing

skip 	 ptrans � PT
skip��

JUDGEMENT skip HAS�TYPE MPT

��������� sequential composition

��
F�G� 	 ptrans � F o G

JUDGEMENT �� HAS�TYPE �MPT�MPT �� MPT�

��
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� �������� conditional

IF
b�F�G� 	 ptrans � LAMBDA q	 IF b THEN F
q� ELSE G
q� ENDIF

END stmt�mpt

B� Various Styles of Semantics

B�� Weakest Precondition

wp �Vars� Value	 TYPE�� 	 THEORY

BEGIN

IMPORTING statements�Vars� Value�� mpt

f�g�h 	 VAR srel

x 	 VAR Vars

e 	 VAR Expr

b 	 VAR BExpr

p�q�r 	 VAR pred�State�

� �������� Weakest Precondition

wp
f�q� 	 pred�State� � PT
f�
q��

� �������� properties

wp�char 	 LEMMA

wp
f� q� � ��
�p � p �� PT
f�
q���

wp�skip 	 LEMMA

wp
skip� q� � q

wp�assign 	 LEMMA

wp
x �� e� q� � subst
q� x� e�

wp�if 	 LEMMA

wp
IF b THEN f ELSE g ENDIF� q�

� 
IF b THEN wp
f� q� ELSE wp
g� q� ENDIF�

wp�seq 	 LEMMA

wp
f �� g� q� � wp
f�wp
g�q��

wp�while 	 LEMMA

wp
while
b�f�� q�

� 
IF b THEN wp
f �� while
b�f��q� ELSE q ENDIF�

END wp

��
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B�� Hoare Logic

hoare�logic�Vars� Value	 TYPE�� 	 THEORY

BEGIN

IMPORTING statements�Vars� Value�

b 	 VAR BExpr

e 	 VAR Expr

x 	 VAR Vars

p� p� p��

q� q� q��

r 	 VAR pred�State�

f� g� h 	 VAR srel

s 	 VAR State

� �������� Hoare triple

��
p� f� q� 	 bool � image
f�p� �� q

� �������� Characteristic Lemmas

precondition�strengthening 	 LEMMA

p �� p AND ��
p� f� q�

IMPLIES

��
p� f� q�

postcondition�weakening 	 LEMMA

��
p� f� q� AND q �� q

IMPLIES

��
p� f� q�

rule�of�consequence 	 COROLLARY � ��� combination of the above

p �� p AND ��
p� f� q� AND q �� q

IMPLIES

��
p� f� q�

� �������� rules for statements

skip�rule 	 LEMMA

��
p� skip� p�

assign�rule 	 LEMMA

��
subst
p� x� e�� 
x �� e�� p�

seq�rule 	 LEMMA

��
p� f� q� AND ��
q� g� r�

IMPLIES

��
p� f �� g� r�

if�rule 	 LEMMA

��
p �� b� f� q� AND ��
p �� NOT
b�� g� q�

IMPLIES

��
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��
p� 
IF b THEN f ELSE g ENDIF�� q�

� �������� needed in proof of �while�rule�

while�adm 	 LEMMA

admissible�
LAMBDA f	 ��
p� f� p �� NOT
b���

while�rule 	 LEMMA

��
p �� b� h� p�

IMPLIES

��
p� while
b� h�� p �� NOT
b��

END hoare�logic

Equivalence of Hoare Logic and Weakest Precondition Semantics

wp�hoare �Vars� Value	 TYPE�� 	 THEORY

BEGIN

IMPORTING wp�Vars�Value�

IMPORTING hoare�logic�Vars�Value�

f 	 VAR srel

p�q 	 VAR pred�State�

� �������� Equivalence of Hoare Calculus and Weakest Precondition

hoare�logic�equiv�wp 	 THEOREM

��
p� f� q� � 
p �� wp
f� q��

END wp�hoare

B�� Algebraic Laws

laws�vars� value	 TYPE��	 THEORY

BEGIN

IMPORTING statements�vars� value�

IMPORTING assert�assume�State�

b 	 VAR BExpr

x 	 VAR vars

s 	 VAR State

e� e� e�	 VAR Expr

f� g� h 	 VAR srel

p� q� r 	 VAR pred�State�

F�G 	 VAR ptrans

� �������� 
Sequential Composition�	

Seq�assoc 	 LEMMA 
f �� g� �� h � f �� 
g �� h�

Seq�unit�left 	 LEMMA skip �� f � f

��
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Seq�unit�right	 LEMMA f �� skip � f

� �������� 
Chaos� Miracle and Top�

Seq�left�zero�bottom	 LEMMA 
abort �� f� � abort

Seq�left�zero�top 	 LEMMA 
magic �� f� � magic

� �������� 
Conditionals�

if�true 	 LEMMA 
IF TRUE THEN f ELSE g ENDIF� � f

if�false	 LEMMA 
IF FALSE THEN f ELSE g ENDIF� � g

if�same 	 LEMMA 
IF b THEN f ELSE f ENDIF� � f

seq�cond�leftw	 LEMMA


IF b THEN f ELSE g ENDIF� �� h � 
IF b THEN f �� h ELSE g �� h ENDIF�

assign�cond�rightw	 LEMMA � nur deterministische Zuweisung ��



x �� e� �� 
IF b THEN f ELSE g ENDIF��

� IF subst
b� x� e� THEN 
x �� e� �� f ELSE 
x �� e� �� g ENDIF

� �������� 
Loops and Fixpoints�

while�def	 LEMMA

while
b�f� � 
IF b THEN f �� while
b�f� ELSE skip ENDIF�

� �������� 
Assumptions and Assertions�

assertion�assumption 	 LEMMA assert
b� �� assume
b� � assert
b�

assumption�assertion 	 LEMMA assume
b� �� assert
b� � assume
b�

assert�skip 	 LEMMA assert
b� �� skip

assume�skip 	 LEMMA skip �� assume
b�

combine�assumption 	 LEMMA assume
p� �� assume
q� � assume
p �� q�

combine�assertion 	 LEMMA assert
p� �� assert
q� � assert
p �� q�

assumption�consequence 	 LEMMA p �� q IMPLIES assume
q� �� assume
p�

assertion�consequence 	 LEMMA p �� q IMPLIES assert
p� �� assert
q�

void�assumption 	 LEMMA assume
TRUE� � skip

void�assertion 	 LEMMA assert
TRUE� � skip

assumption�assign 	 LEMMA


x �� e� �� assume
b� � assume
subst
b� x� e�� �� 
x �� e�

assertion�assign 	 LEMMA


x �� e� �� assert
b� � assert
subst
b� x� e�� �� 
x �� e�

cond�assertion�then 	 LEMMA

PT
IF b THEN f ELSE g ENDIF� � 
IF b THEN assert
b� �� f ELSE g ENDIF�

cond�assertion�else 	 LEMMA

PT
IF b THEN f ELSE g ENDIF� �

IF b THEN f ELSE assert
NOT
b�� �� g ENDIF

conditions�cond�top 	 LEMMA assume
b� �� F � 
IF b THEN F ELSE magic ENDIF�

conditions�cond�bot 	 LEMMA assert
b� �� F � 
IF b THEN F ELSE abort ENDIF�

END laws

��
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B�� SOS

sos �vars�value 	 TYPE�� 	 THEORY

BEGIN

IMPORTING statements�vars�value�

Cmd 	 TYPE � srel

Configuration 	 TYPE � �Cmd� State�

BConfiguration 	 TYPE � �BExpr�State�

EConfiguration 	 TYPE � �Expr�State�

b 	 VAR BExpr� e 	 VAR Expr� x 	 VAR vars

bv 	 VAR bool� v 	 VAR value

s�t�u 	 VAR State� c�f�g 	 VAR Cmd

conf 	 VAR Configuration

bconf 	 VAR BConfiguration

econf 	 VAR EConfiguration

cmd
conf� 	 Cmd � proj�
conf�

state
conf� 	 State � proj��
conf�

bexpr
bconf� 	 BExpr � proj�
bconf�

state
bconf� 	 State � proj��
bconf�

expr
econf� 	 Expr � proj�
econf�

state
econf� 	 State � proj��
econf��

��
bconf�bv� 	 bool � bv � bexpr
bconf�
state
bconf���

��
econf�v� 	 bool � v � expr
econf�
state
econf���

��
conf�s� 	 bool � member
s�cmd
conf�
state
conf����

�� 	 pred��bool�bool�� � IMPLIES�

��
p	bool� 	 bool � p�

skip�rule 	 LEMMA

�� 

skip�s� �� s�

assign�rule 	 LEMMA

declared�
s�
x� IMPLIES





e�s� �� v

��


x �� e� s� �� update
s�
x�v�

�

seq�rule 	 LEMMA


f�s� �� t AND 
g�t� �� u

��


f �� g� s� �� u

if�true�rule 	 LEMMA


b�s� �� TRUE AND 

f�s� �� t�

��


IF b THEN f ELSE g ENDIF� s� �� t

��
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if�false�rule 	 LEMMA


b�s� �� FALSE AND 

g�s� �� t�

��


IF b THEN f ELSE g ENDIF� s� �� t

while�false�rule 	 LEMMA


b�s� �� FALSE

��


while
b� f�� s� �� s

while�true�rule 	 LEMMA


b�s� �� TRUE AND 
f�s� �� t AND 
while
b�f�� t� �� u

��


while
b�f�� s� �� u

END sos

B�� Continuation

continuation�sigma	 TYPE��	 THEORY

BEGIN

IMPORTING srel�sigma� sigma�

continuation 	 TYPE � srel

s 	 VAR sigma

c 	 VAR continuation

f 	 VAR srel

C
f�
c� 	 continuation � LAMBDA s	 image
c� f
s��

cont�singleton 	 LEMMA

C
f�
singleton� � f

transfer	 LEMMA

FORALL 
P	 pred�srel��	

P
C
f�
singleton�� � P
f�

END continuation

continuation�lems�vars� value	 TYPE��	 THEORY

BEGIN

IMPORTING statements�vars� value�

IMPORTING continuation�State�

x 	 VAR vars� b 	 VAR BExpr� e 	 VAR Expr

s 	 VAR State

c 	 VAR continuation

p�q 	 VAR pred�State�

f�g 	 VAR srel

skip�continuation�eq	 LEMMA

��
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C
skip�
c� � c

assign�continuation�eq	 LEMMA

C
x �� e�
c�
s� � image
c� 

x �� e�
s���

seq�continuation�eq	 LEMMA

C
f �� g� � C
f� o C
g�

if�continuation�eq	 LEMMA

C
IF b THEN f ELSE g ENDIF�
c� � 
IF b THEN C
f�
c� ELSE C
g�
c� ENDIF��

END continuation�lems

B�	 Putting it Together

semantics �Vars� Value	 TYPE�� 	 THEORY

BEGIN

IMPORTING sos�Vars�Value��

continuation�lems�Vars�Value��

wp�hoare�Vars�Value��

laws�Vars�Value�

END semantics

C� A Simple Programming Language

C�� Simple Commands

simple�commands �Vars� Value� Expr� BExpr	 TYPE��


IMPORTING state�Vars�Value��

eval 	 �Expr �� �State �� Value���

evalB 	 �BExpr �� �State �� bool��

� 	 THEORY

BEGIN

� ���������� syntax

SimpleCommand 	 DATATYPE

BEGIN

skip 	 skip�

seq
first�second	SimpleCommand� 	seq�

assign
varid	Vars� exp	Expr� 	 assign�

if�
ifcond	 BExpr� thn� els	 SimpleCommand� 	 if�

while
whilecond	 BExpr� body	 SimpleCommand� 	 while�

END SimpleCommand

� ���������� semantics

IMPORTING semantics�Vars�Value�

���� 	 �Expr �� �State �� Value�� � eval

��
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���� 	 �BExpr �� �State �� bool�� � evalB

����
c	SimpleCommand� 	 RECURSIVE srel �

CASES c OF

skip 	 skip�

seq
f�g� 	 �� f �� �� �� g ���

assign
x�e� 	 x �� �� e ���

if�
b�f�g� 	 IF �� b �� THEN �� f �� ELSE �� g �� ENDIF�

while
b�f� 	 while
�� b ����� f ���

ENDCASES MEASURE c BY ��

END simple�commands

C�� Simple Declarations

simple�declarations �Vars� Value 	 TYPE�� 	 THEORY

BEGIN

� ���������� syntax

VarDecl 	 TYPE � list�Vars�

� ���������� semantics

IMPORTING state�Vars�Value�

IMPORTING vardecl�Vars� Value� State� newvar�� intro�

CONVERSION deterministic�State��select

d 	 VAR VarDecl

s 	 VAR State

����
d	VarDecl� 	 RECURSIVE srel �

IF null�
d� THEN skip ELSE declare
car
d�� �� �� cdr
d� �� ENDIF

MEASURE length
d�

END simple�declarations

C�� The Language

simple�program �Vars� Value� Expr� BExpr	 TYPE��


IMPORTING state�Vars�Value��

eval 	 �Expr �� �State �� Value���

evalB 	 �BExpr �� �State �� bool��� 	 THEORY

BEGIN

� ���������� syntax

IMPORTING simple�commands�Vars�Value�Expr�BExpr�eval�evalB�

IMPORTING simple�declarations�Vars�Value�

CONVERSION deterministic�State��select

SimpleProgram 	 TYPE � �� decl 	 VarDecl� body 	 SimpleCommand ��

��
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� ���������� semantics

p 	 VAR SimpleProgram

����
p� 	 set�State� �

�� body
p� ��
�� decl
p� ��
emptystate��

END simple�program

D� Proof of Lemma while strans adm

In section ���� an example proof by xed�point induction is illustrated� However� we have
omitted the proof that the used predicate is admissible for xed�point induction� For
completeness the proof script of the corresponding lemma is printed below� The main idea
is to characterize the least upper bound of the chain C�� of functions of type srel� As
such functions map states to a set of states� the least upper bound of C�� is the function
mapping a state to the union of all images of the functions in C���


��
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