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Introduction

In this thesis, we introduce a new class of rigid analytic varieties over a complete non-
archimedean field K ; namely those which have a totally degenerated formal model. These are
natural generalizations of the well known Mumford curves to arbitrary dimension. Similar
to the one-dimensional case, we will show that the Picard variety of these varieties is given
by a quotient Gg

m,K/M , where M is a lattice in Gg
m,K , not necessarily of full rank.

To any smooth projective curve X over C (or, equivalently: a compact Riemann sur-
face) of genus g , one can associate its Jacobian variety Jac(X) ; an abelian variety which
parametrizes the equivalence classes of divisors on X of degree 0 . The well-known Torelli
theorem states that X is uniquely determined by its (principal polarized) Jacobian. This
makes the Jacobian a very important object for the study of Riemann surfaces. If X is a
Riemann surface of genus 1 , i.e. an analytic torus C/Λ , the Jacobian Jac(X) is canon-
ically isomorphic to X itself. In general, the Jacobian is analytically isomorphic to a g -
dimensional analytic torus Cg/M , where M is a lattice in Cg of rank g , the so-called
period lattice.

Over a complete non-archimedean valued field K , such as the p -adic numbers Qp , the
above situation does not extend without modification. In general, it is not true that the
Jacobian of a curve is given by an analytic torus Gg

m,K/M . This is related to the fact that
only a certain class of p -adic curves has a complex analog; namely, the so-called Mumford
curves. These curves XK have a formal model X over the valuation ring R such that
every irreducible component of the special fibre X0 is isomorphic to P1 and X0 has only
ordinary double points as singularities. Mumford proved in [28] that these are precisely the
curves which have a Schottky uniformization ΩK/Γ , where Γ ⊂ PGL(2,K) is a Schottky
group, and ΩK ⊂ P1

K is the set of points where Γ acts discontinuously; this is a direct
analog of the classical Schottky uniformization over the complex numbers. In [26], Manin
and Drinfeld proved that, as in the complex case, the Jacobian variety of a Mumford curve
of genus g is again isomorphic to an analytic torus Gg

m,K/M , where M is a multiplicative
lattice in Gg

m,K of rank g .

iii



iv Introduction

If dimX > 1 , the analog of the Jacobian variety Jac(X) is the Picard variety Pic0(X) ,
which represents certain isomorphy classes of line bundles. The existence of the Picard
variety of proper algebraic schemes over a field has been proven in the 1960s. An analogous
result in the category of proper rigid analytic varieties over a complete discretely-valued
field K was established much later, in 2000, by Hartl and Lütkebohmert [21].

In this thesis, we will deal with the question when the Picard variety Pic0(XK) of a proper
rigid-analytic variety XK over K is again an analytic torus Gg

m,K/M . The example of
Mumford curves already shows that one can expect this to be true only in very special
cases. In the work of Hartl and Lütkebohmert [21], it becomes apparent that the special
fibre of a suitable formal model plays a key role in determining the structure of the Picard
variety. This motivates the following generalization of Mumford curves:

We say a proper rigid-analytic variety XK over K has a totally degenerated model X over R
if the special fibre X0 of X consists of smooth rational components with normal crossings;
i.e. locally, X0 looks like the intersection of some coordinate hyperplanes in the affine space
Ar (see Definition 4.1.1 for the precise conditions).

Theorem 4.3.5. Let XK be the generic fibre of a totally degenerated formal scheme which is proper.
On the category of smooth and connected rigid spaces, the Picard functor Pic0

XK/K
is represented by

a quotient TK/M , where TK is a split torus, and M is a lattice in TK such that M ∩ T̄K = {1} .

If XK is algebraizable, it is well-known that Pic0(XK) is always proper; i.e. M has full
rank g . If XK is not algebraizable, however, this need not be true. A standard example is
the Hopf surface, introduced in the rigid analytic framework by Mustafin [29], which also
has a totally degenerate model.

Generalizing the techniques for Mumford curves, we construct a suitable uniformization
XK
∼= ΩK/Γ . As in the case of analytic tori, we show that any line bundle on XK which

corresponds to a point of Pic0(XK) pulls back to the trivial line bundle on ΩK . Hence,
line bundles on XK can be described by Γ -linearizations of constant type of the trivial line
bundle on ΩK . This allows us to describe Pic0(XK) in terms of automorphic functions:

Theorem 4.4.12. Let Ĵ := Hom(Γ̃,Gm,K) ∼= Gg
m,K , where Γ̃ is the free part of the abelianization

Γ/[Γ,Γ] of Γ , and let

M := {c ∈ Ĵ ; c is the factor of automorphy for an invertible function f on ΩK}

Then M is a lattice in Ĵ , and the quotient J := Ĵ/M represents Pic0(XK) .
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In arbitrary dimension, a large class of examples for rigid-analytic varieties with totally de-
generated models is given by the so-called general polytopal domains. A general polytopal
domains carries a rich combinatorial structure; the irreducible components of its special
fibre are toric varieties. In fact, a great number of results from the theory of toric varieties
carries over to the theory of polytopal domains. An affinoid piece of such a general poly-
topal domain is the pre-image of a polytope σ ⊂ Rn under the valuation map

val : Gn
m,K → Rn, (x1, . . . , xn) 7→ (− log |x1|, . . . ,− log |xn|).

The fact that these general polytopal domains have indeed a totally degenerated model is
proved using a combinatorial result of Kempf, Knudson, Mumford and Saint-Donat [24].

In the framework of algebraic geometry, polytopal domains have already been used by
Mumford in [27]; the rigid-analytic version has been introduced by Gubler [19].

For such an affinoid polytopal domain, we prove the following cohomological result:

Theorem 6.0.1. For an affinoid polytopal domain X in Gn
m , one has

H i(X,O×) = 0 for all i > 1.

This implies that any line bundle on an affinoid polytopal domain is trivial; i.e. the Picard
variety is trivial. The proof is done using techniques of van der Put [32], most notably the
Base Change Theorem.

As an application of the theory of general polytopal domains, we then investigate totally
degenerated varieties XK with universal covering ΩK = Gn

m,K ; i.e. XK
∼= Gn

m,K/Γ for a
suitable subgroup Γ ⊂ Aut(Gn

m,K) (for the precise conditions on Γ , see Assumptions 5.6.2
and 5.6.7). A special case occurs when Γ is a lattice in Gn

m,K , i.e. XK is an analytic torus.
This situation is already well-understood.

For general Γ , we can use elementary calculations in order to characterize the Picard va-
riety of XK . A pivotal role in the study of the Picard variety of XK is played by the
translation subgroup Γ1 ⊂ Γ , which is a lattice in Gn

m,K , not necessarily of rank n . In fact,
we prove the following central result:

Theorem 5.6.13. Pic0(XK) is proper if and only if rk Γ1 = n .

If Pic0(XK) is proper, one can ask when XK = Gn
m,K/Γ is algebraizable. Similar to the

complex case, the situation of an analytic torus XK = Gn
m,K/M , with M a lattice, is well
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known. Namely, such a torus is algebraizable if and only if an analog of the classical Rie-
mann period relations holds. Using this result, we prove the following:

Theorem 5.6.6. If rk Γ1 = n , then XK is algebraizable if and only if there exists a group mor-
phism λ : Γ1 → M ′ := Hom(Gn

m,K ,Gm,K) such that the quadratic form 〈λ(m),m〉 is positive
definite on Γ1 ; i.e. |〈λ(m),m〉| < 1 for every m ∈ Γ1 with m 6= 0 .

Theorem 5.6.13 is illustrated by two new examples, which we present in Chapter 5. In §5.4,
motivated by the classical Klein bottle, we construct a Klein surface over K , which turns
out to be algebraizable. In §5.5, we construct a sheared torus. This is the easiest example for
a group Γ with rk Γ1 < n ; and we easily see that Pic0(XK) is not proper.

Outline

In the first chapter, we will recall the basic facts about formal and rigid geometry. In the
second chapter, we will gather the combinatorial facts we need in the following; most no-
tably simplicial complexes and simplicial homology and cohomology. We will also recall
basic facts about toric varieties, which we need later.

In Chapter 3, we present the theory of polytopal domains. Most results are rigid-analytic
versions of similar results in [24] from the algebraic-geometric framework. §3.1 contains
basic results which can mostly be found directly in [19]. In §3.2, we establish the connec-
tion between admissible formal blowing ups and subdivisions of the polytopal complex
associated to a polytopal domain. In §3.3, following Gubler [19], we describe Cartier divi-
sors in terms of polyhedral functions. The results of §3.2 and §3.3 are then used in §3.4 to
establish the existence of a totally degenerated formal model of a polytopal domain, which
is proved using a combinatorial result of Kempf, Knudson, Mumford and Saint-Donat [24].
As an application, we then show how to obtain two desingularizations results in [21] com-
binatorially. In §3.5, we recall that ampleness of a line bundle is equivalent to the strict
convexity of its associated polyhedral function. We then generalize this in §3.6 and give a
similar criterion when a line bundle is ample on the boundary of a certain subvariety.

In Chapter 4, we introduce the notion of a totally degenerated formal scheme and construct
the quotient ΩK/Γ (§4.2). We investigate the Picard variety of the special fibre X0 (§4.3)
and prove that it is a torus. Following [21], we then prove that Pic0 is a quotient of a
torus by a lattice (Theorem 4.3.5). In §4.3, we show how to interpret this result in terms of
Γ -linearizations (Theorem 4.4.12). We then characterize general polytopal domains (§4.5).
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These give a very restrictive subclass; namely, the universal covering ΩK does not contain
a subvariety isomorphic to A1 (Proposition 4.5.25).

In Chapter 5, we discuss examples of rigid analytic varieties with a totally degenerated
formal model. Examples §§5.1 – 5.3 recall the well-known examples of Mumford curves,
analytic tori, and the Hopf surface. We show how our framework reproduces the well-
known results about the Picard varieties of these objects. Examples §5.4 and §5.5 are new;
they give explicit examples of analytic quotients Gg

m,K/Γ , where Γ is not a lattice. The
general case of these quotients is then treated in §5.6.

In Chapter 6, we recall van der Put’s Base Change Theorem and use it to prove that an
affinoid polytopal domain has trivial Picard group (Theorem 6.0.1).





Chapter 1

Formal and Rigid Geometry

In this chapter, we will give a short introduction into formal and rigid geometry. We will
list the most important definitions and results, mostly without proof.

In the following, let K be a field, endowed with a complete non-archimedean absolute
value | · | . Depending on the situation, K will be either algebraically closed, or a discrete
valued field. We denote with R = {z ∈ K : |z| 6 1} the corresponding valuation ring (of
height 1), m its maximal ideal, and k = R/m its residue field.

1.1 Rigid Geometry

The Tate algebra Tn = K〈ζ1, . . . , ζn〉 is the K -algebra of strictly convergent power series

Tn = K〈ζ1, . . . , ζn〉 =

{ ∑
m∈Nn

amζ
m1
1 · . . . · ζmnn ; lim

|m|→∞
|am| = 0

}

It is the completion of the polynomial ring K[ζ1, . . . , ζn] with respect to the Gauss norm∣∣∣∣∣ ∑
m∈Nn

amζ
m1
1 · . . . · ζmnn

∣∣∣∣∣ := max |am|.

An affinoid K -algebra is a quotient Tn/I for some ideal I ⊂ Tn . An affinoid variety is a
pair SpA = (MaxA,A) , where MaxA is the set of maximal ideals of A . For f ∈ A , the
supremum semi-norm is defined via

|f |sup := sup{|f(x)| ; x ∈ MaxA}.

1



2 Chapter 1 Formal and Rigid Geometry

The affinoid algebra A is distinguished if | · |sup agrees with the residue norm

|f̄ |α := inf{|f |sup ; α(f) = f̄}

for a suitable epimorphism α : Tn → A . If K is algebraically closed or discretely valued, A
is distinguished if and only if A is reduced and | · |sup takes values in |K| , see [5, §6.4.3].

The Berkovich spectrum M(A) of A is the set of multiplicative semi-norms

| · |p : A→ R>0

satisfying |λ|p = |λ| for λ ∈ K and |f |p 6 |f |sup . Any point x ∈ MaxA gives rise to such
a semi-norm via |f |x := |f(x)| . Thus, we have an injection SpA ↪→M(A) . The elements
of M(A) are also called analytic points. The Berkovich topology on M(A) is the weakest
topology such that for all f ∈ A , the map p 7→ |f |p is continuous. This makes M(A)
into a compact Hausdorff space such that the topology on M(A) restricts to the canonical
topology on SpA , which lies dense in M(A) . Further details about the Berkovich topology
will be given in Chapter 6.

The residue algebra Ã of A is given by Ã := A◦/A◦◦ , where

A◦ := {f ∈ A ; |f |sup 6 1}, A◦◦ := {f ∈ A ; |f |sup < 1}

We have a functorial reduction map

π : Sp(A)→ Spec(Ã), x 7→ x̃ := Ker(Ã 7→ (A/x)∼)

which is surjective onto the set of closed points of Spec(Ã) . This extends to a map

π :M(A)→ Spec(Ã),

which is surjective by [3, Prop. 2.4.4].

A rational domain in X = Sp(A) is a subset

X(f1/g, . . . , fr/g) := {x ∈ X ; |fj(x)| 6 |g(x)|, j = 1, . . . , r},

where g, f1, . . . , fr ∈ A generate the unit ideal. It is again an affinoid variety with corre-
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sponding affinoid algebra

A〈f1/g, . . . , fr/g〉 := A〈ξ〉/(gξ − f1, . . . , gξ − fr).

If g = 1 , we call X(f1, . . . , fr) a Weierstrass domain.

An affinoid subdomain of X = SpA is a subset U ⊂ X together with an affinoid morphism
ϕ : SpB → SpA mapping SpB into U such that every affinoid morphism ϕ′ : SpB′ →
SpA with ϕ′(SpB′) ⊂ U factors uniquely through ϕ′ . Any rational domain is an affinoid
subdomain. By a theorem of Gerritzen and Grauert [5, 7.3.5.], every affinoid subdomain is
a finite union of rational domains.

An affinoid space X = SpA carries a weak G -topology T , defined as follows: The ad-
missible open sets are the affinoid subdomains, and the admissible coverings are the finite
unions of affinoid subdomains. The strong G -topology is the unique finest topology which
is slightly finer than the weak G -topology; i.e. which satisfies the following conditions:

(i) T′ is finer than T ,

(ii) The T -admissible open sets form a basis for T′ ,

(iii) For each T′ -admissible covering U of a T -admissible open subset U ⊂ X , there
exists a T -admissible covering which refines it.

A subset U of X is called formal open if there exists an open subset V ⊂ Spec Ã with
U = π−1(V ) . The resulting topology on X is called the formal topology.

A rigid-analytic variety over K is a locally G -ringed space (X,OX) with an atlas U = {Ui}
of affinoid varieties Ui = SpAi such that the G -topology on X restricts to the strong
G -topology on Ui .

A formal covering of X is an admissible open covering U = {Ui} of affinoid subdomains
Ui of X such that for every i, j , Ui ∩Uj is a finite union of formal subdomains in Ui . Let
πi : Ui → Ũi denote the reduction map. These reductions can be pasted together, which
yields a scheme X̃ of locally finite type over k and a reduction morphism π : X → X̃

which is surjective onto the set of closed points of X̃ . Moreover, the formal topologies
on Ui are compatible, so we can endow X with a formal topology which restricts to the
formal topology on each Ui . The resulting space XU is called a formal analytic variety. We
call XU distinguished if O(Ui) is distinguished for every i .

The analytification (An
K)an of affine n -space An

K can be constructed by glueing the se-
quence of n -dimensional polydiscs Dn(|ci|) with radii |ci| , where |ci| → ∞ for i → ∞ .
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This yields an analytic variety, which coincides pointwise with the closed points of An
K .

For any affine scheme X = SpecB ⊂ An
K of finite type over K , one glues the correspond-

ing closed subvarieties X ∩ Dn(|ci|) accordingly. Again, we call this analytic variety the
analytification of X , and denote it again by Xan . Finally, for a scheme X over K locally
of finite type, one constructs the analytification by glueing the analytifications of its affine
parts. A rigid-analytic space X over K is algebraizable if it is the analytification of a scheme
locally of finite type over K .

1.2 Admissible Formal Schemes

Let S be any ring, commutative with 1 , and let a be an ideal in S . The a -adic topology
on S is given as follows: A subset U ⊂ S is open, if for each x ∈ U , there exists an n ∈ N
such that x+ an ⊂ U . Endowed with this topology, we call S an adic ring.

For any ring A which is complete and hausdorff with respect to some a -adic topology,
let Spf A denote the set of all open prime ideals p ⊂ A . This set carries the structure of a
locally ringed space X = (Spf A,A) . We call this an affine formal scheme. A formal scheme
is a locally topologically ringed space (X,OX) with an atlas U = {Ui} of affine formal
schemes Ui = Spf Ai .

Now, let R be the valuation ring of K corresponding to a non-archimedean valuation.
As in the previous section, one defines the R -algebra R〈ζ1, . . . , ζn〉 of strictly convergent
power series with coefficients in R . An R -algebra A is topologically of finite presentation if
it is isomorphic to R〈ζ1, . . . , ζn〉/a , where a is a finitely generated ideal in R〈ζ1, . . . , ζn〉 .
A is called admissible if it has no m -torsion, where m is the maximal ideal of R . A formal
R -scheme X is called admissible if it has an atlas of formal schemes Ui = Spf Ai such that
the Ai are admissible.

The special fibre of X is a scheme X̃ of locally finite type over k with the same underlying
topological space as X and structure sheaf OX̃ := OX ⊗R k = OX/mOX . Note that X̃ is
not necessarily reduced.

To any admissible formal scheme X , one can associate a formal analytic variety X f-an as
follows: Locally, X is given by Spf A . Then AK := A ⊗R K is a K -affinoid algebra.
The formal analytic variety X f-an is given locally by SpAK with its formal topology. The
corresponding rigid-analytic variety XK is called the generic fibre of X . In general, the
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special fibre X̃ of X does not agree with the reduction of X f-an ; however, there is a finite
surjective morphism (X f-an)∼ → X̃ , given locally by

A⊗R k → (A⊗R K)∼.

For the converse, if XU is a formal analytic variety given by a formal covering U , we
can associate to XU an admissible formal scheme X f-sch as follows: If Ui = SpAi for an
affinoid K -algebra Ai , then X f-sch is given locally by Spf(A◦i ) .

By a result of Bosch and Lütkebohmert [7, Lemma 1.1], the functors X 7→ X f-an and X 7→
X f-sch give an equivalence between

(i) the category of distinguished formal analytic varieties over K , and

(ii) the category of admissible formal schemes over R with reduced special fibre.

Especially, if X is a distinguished formal analytic variety over K , then its reduction X̃ is
naturally isomorphic to the special fibre (X f-sch)∼ of X f-sch .

For p̃ ∈ X̃ , we call X+(p̃) := π−1(p̃) the formal fibre over p̃ . It is an open analytic subspace
of XK .

Now, let J be an open sheaf of ideals in OX . The admissible formal blowing up of X in J
is given by the morphism

X ′ := lim
→

Proj
⊕
ν>0

(J ν ⊗OX OXn)→ X.

Due to a theorem of Raynaud [30], the functor

rig : X → XK

sending an admissible formal scheme X to its generic fibre XK , induces an equivalence
between

(i) the category of all quasi-compact, quasi-separated admissible formal schemes over
R , localized by admissible formal blowings-up, and

(ii) the category of all quasi-compact, quasi-separated rigid-analytic K -varieties.

Now, we assume that the valuation on K is discrete, and that π is a uniformizing param-
eter. Let X be an admissible formal R -scheme, and let X(1)

0 , . . . , X
(s)
0 be the irreducible
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components of the special fibre X0 of X . For M ⊂ {1, . . . , s} , we define

XM
0 :=

⋂
i∈M

X
(s)
0

as the scheme-theoretic intersection. We call X strictly semi-stable if the following condi-
tions hold:

(i) The generic fibre XK is smooth over K .

(ii) The special fibre X0 is geometrically reduced.

(iii) X
(i)
0 is a Cartier divisor on X for all i = 1, . . . , s .

(iv) XM
0 is smooth over k for all M ⊂ {1, . . . , s} , and dimXM

0 = dimX −#M .

Note that conditions (ii) – (iv) already imply (i). This follows from the following equivalent
characterization:

Lemma 1.2.1. An admissible formal R -scheme is strictly semi-stable if and only if every closed
point x ∈ X0 of the special fibre X0 admits an open neighbourhood which, for some r ∈ N , is
formally smooth over the formal scheme

Spf R〈ζ1, . . . , ζr〉/(ζ1 · . . . · ζr − π),

Proof. See [21, Prop. 1.3].

1.3 Formal Cartier and Weil Divisors

Let X be an admissible formal scheme over R with irreducible generic fibre XK and
reduced special fibre X0 .

On X , let S denote the subsheaf of OX consisting of elements which are not zero divisors.
The sheaf of meromorphic functions on X is given by the localization MX := OX(S−1) . A
Cartier divisor on X is a global section of M×X/O

×
X , where M×X resp. O×X is the sheaf of

invertible elements in MX resp. OX . An invertible meromorphic function is a global section
of M×X .

Let L be an invertible sheaf on X , and let s be an invertible meromorphic section of
L ; i.e. locally, under a trivialization, s corresponds to a section of M×X . This section is
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independent of the trivialization up to O×X . Thus, s induces a well defined Cartier divisor
div(s) on X .

Let XK be the generic fibre of X . A cycle on X is a locally finite formal sum∑
nY YK

where nY ∈ Z and YK ranges over all irreducible analytic subsets of XK . A Weil divisor
is a cycle on XK such that all YK with nY 6= 0 have codimension 1 in XK .

A horizontal cycle on X is a cycle on the generic fibre XK . A vertical cycle on X is a locally
finite formal sum ∑

λW W̃ ,

where λW is in the valuation group of K and W̃ ranges over all irreducible closed subsets
of the special fibre X0 .

A cycle on X is a sum of a horizontal and a vertical cycle on X .

Now, let D be a Cartier divisor on X . We may associate to D a Weil divisor on X . For
the horizontal part, D restricts to a Cartier divisor DK on the generic fibre XK . We may
associate to DK a Weil divisor on XK as follows:

Locally, XK is isomorphic to SpA for a K -affinoid algebra A . We may assume that DK

is given on SpA by a single equation s . Then s can be thought of as a rational function on
the affine scheme SpecA . As SpecA is noetherian, s induces a Weil divisor on SpecA . As
there is a one-to-one correspondence between analytic subsets of SpA and closed subsets
of SpecA , this Weil divisor can be thought of as a Weil divisor on SpA . One can show that
these locally defined Weil divisors agree on overlaps. Thus, they give rise to a horizontal
Weil divisor cych(D) on X .

For the vertical part, let W̃ be an irreducible component of the special fibre X̃ . Let U be a
formal affine open subset of X , which contains the generic point of W̃ . We assume that D
is given on U by s = a/b , where a, b ∈ OX(U) are not zero-divisors. Then UK = SpA and
OX(U) ∼= A◦ for a K -affinoid algebra A , and let π : UK → Ũ = Spec Ã be the reduction
map. Then W̃ ∩ U is an irreducible component of Ũ . Let W̃ ′ be a non-empty open affine
subset of W̃ ∩ U which does not meet any other irreducible component of W̃ ∩ U . For
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a ∈ A , we define

|a(W )| := sup{|a(x)| ; x ∈ XK , π(x) ∈ W̃ ′}.

This equals the supremum semi-norm on the formal open affinoid subspace π−1(W̃ ′) . Mo-
roever, if a is not a zero divisor, |a(W )| > 0 . This allows us to define the order of D in W̃

by

ord(D, W̃ ) := log |b(W̃ ∩ U)| − log |a(W̃ ∩ U)|.

Then we define the vertical part of the Weil divisor associated to D by

cycv(D) :=
∑
W̃

ord(D, W̃ ) · W̃ ,

where W̃ runs through the irreducible components of X0 .



Chapter 2

Convex Geometry and Toric Varieties

In the following, let Γ = 1/m · Z for some m ∈ N denote a discrete subgroup of R . For
instance, Γ may be the valuation group of a discrete valuation ring.

2.1 Preliminaries

Let 〈·, ·〉 denote the standard pairing

〈·, ·〉 : Zn × Rn → R; 〈m,x〉 := m1x1 + · · ·+mnxn.

A polyhedron σ in Rn is the intersection of finitely many closed half-spaces

{x ∈ Rn : 〈mi, x〉+ ci > 0 ; i = 1, . . . , r}.

σ is called Γ -rational if we can choose mi ∈ Zn , ci ∈ Γ . A closed face of σ is the intersection
of σ with a closed half-space H which contains σ . An open face of σ is the relative interior
of a closed face τ , which we will denote by relint(τ) . This is the same as taking τ minus
all its properly contained closed faces. A face of dimension zero is a vertex. A bounded face
of dimension one is an edge; if it is unbounded, it is called a ray. A face of codimension one
is a facet.

A polytope is a bounded polyhedron. It is the convex hull of a finite set of points. An r -
simplex is the convex hull of r + 1 points which do not lie in a common r -dimensional
hyperplane.

9
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For v1, . . . , vr ∈ Rn , the set

σ = {r1v1 + · · ·+ rsvs ; ri > 0}

is called a convex polyhedral cone. The cone σ is called strongly convex if σ does not contain
any nonzero linear subspace.

A polyhedral complex ∆ is a topological space X , plus a family of subsets σ of X which
are homeomorphic to polyhedra as above, such that the following conditions hold:

(i) X =
⋃
σ∈∆ σ

(ii) If σ ∈ ∆ , and τ is a face of σ , then also τ ∈ ∆

(iii) For σ, σ′ ∈ ∆ , σ ∩ σ′ is a face of both σ and σ′

We call |∆| := X its support. If X is a subset of Rn and every σ is Γ -rational, we call ∆
a Γ -rational polyhedral complex in Rn .

If every σ is a polytope (resp. a simplex), we call ∆ a polytopal (resp. simplicial) complex. If
∆ is a Γ -rational polyhedral complex in Rn such that every σ is a Γ -rational cone, then
we call ∆ a fan.

A polytope τ ∈ ∆ which is not contained in a larger polytope σ ∈ ∆ is called a maximal
polytope. A polytopal complex ∆ is of pure dimension d if every maximal polytope σ ∈ ∆
has dimension dimension d .

If ∆ , ∆′ are two polytopal complexes, we define their intersection as follows:

∆ ∩∆′ := {σ ∩ τ ; σ ∈ ∆, τ ∈ ∆′}.

It is again a polytopal complex with |∆ ∩ ∆′| = |∆| ∩ |∆′| . If τ0 is a polytope, we call
∆ ∩ {τ0} the restriction of ∆ to τ0 , or the induced subdivision on τ0 .

A polyhedral decomposition of a set S ⊂ Rn is a polyhedral complex ∆ such that |∆| = S .
A polyhedral subdivision of a polyhedral complex ∆ is a polyhedral complex ∆′ such that
every polyhedron σ ∈ ∆ has a polyhedral decomposition in ∆′ . If τ ∈ ∆ , then star(τ) is
the subcomplex of ∆ defined by

star(τ) = {σ ∈ ∆ : τ ⊂ σ}.
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A function f on a subset of Rn is called affine or affine linear if it can be written as f(x) =
〈m,x〉 + c , with m ∈ Zn , c ∈ R . It is called Γ -rational if c ∈ Γ . If ∆ is a polyhedral
complex in Rn , a polyhedral function on ∆ is a continuous function f : |∆| → Rn which is
affine linear on every σ ∈ ∆ .

A polyhedral function f is called convex if for every σ in ∆ , there exist mσ ∈ Zn , cσ ,
such that

f(x) = 〈mσ, x〉+ cσ for all x ∈ σ,

f(x) 6 〈mσ, x〉+ cσ for all x ∈ |∆|.

We say f is Γ -rational, if we can choose cσ ∈ Γ . This is equivalent to

f(x) = min
σ∈∆
〈mσ, x〉+ cσ. (2.1)

f is called strictly convex if mσ , cσ can be chosen such that

f(x) = 〈mσ, x〉+ cσ for all x ∈ σ,

f(x) < 〈mσ, x〉+ cσ for all x ∈ |∆| \ σ.

This is the case if and only if ∆ is the maximal polytopal complex such that (2.1) holds.

Remark 2.1.1. Note that we have defined the notion of convexity as in [24]; this is exactly
the opposite way as in calculus. Namely, a typical convex function on the real line looks as
follows:
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2.2 Toric Varieties

In this section, we will give a brief overview of the theory of toric varieties. For proofs, see
[15].

In the following, let N ∼= Zn be a lattice, and let M = Hom(N,Z) denote the dual lattice,
with 〈·, ·〉 the canonical pairing on M ×N . Let NR := N ⊗Z R denote the real vector space
with basis the generators of N . Similarly, let MR := M ⊗Z R denote the real vector space
corresponding to M ; it is the dual vector space of NR .

Proposition 2.2.1 (Gordon’s Lemma). Let σ be a rational convex polyhedral cone in NR . Let

σ∨ = {m ∈MR ; 〈m, v〉 > 0 for all v ∈ NR} ⊂MR

denote the dual cone. Then Sσ := σ∨ ∩M is a finitely generated semigroup.

Now, let k be a field, and let k[Sσ] denote the k -algebra generated by the characters

χm := 〈m, ·〉 : Rn → R

with m ∈ Sσ . The multiplicative structure is given by

χmχm
′

:= χm+m′

Generators of Sσ as a semigroup yield generators of k[Sσ] as a k -algebra.

Definition 2.2.2. For a rational convex polyhedral cone σ in NR , we call

Uσ := Spec(k[Sσ])

an affine toric variety.

Lemma 2.2.3. For τ ⊂ σ , the morphism Uτ → Uσ is an open immersion if and only if τ is a face
of σ .

Remark 2.2.4. For τ = {0} , we get the algebraic torus T := Spec(k[M ]) ∼= (k×)n . It is a
dense open subset of Uσ . Moreover, the action of T on itself extends to an action of T on
Uσ . Namely, this action can be given by the algebra morphism

k[Sσ]→ k[Sσ]⊗ k[M ], χm 7→ χm ⊗ χm
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Proposition 2.2.5. An affine toric variety Uσ is nonsingular if and only if σ is generated by part
of a basis for the lattice N . In that case, for r = dimσ , we have

Uσ ∼= kr × (k×)n−r.

In the following, let ∆ be a rational fan in Rn . We can construct a toric variety X∆ by
glueing any two affine toric varieties Uσ , Uσ′ for σ, σ′ ∈ ∆ along the intersection Uσ∩σ′ if
σ ∩ σ′ 6= ∅ . Especially, as every Uσ contains the torus T = U{0} , we have an action of T
on X∆ .

Proposition 2.2.6. There is a one-to-one correspondence between torus orbits of X∆ and cones
τ ∈ ∆ . For any τ ∈ ∆ with k = dim τ , the corresponding orbit Oτ is isomorphic to (k×)n−k .
Its closure V (τ) is a closed subvariety of X∆ .

Note that V (τ) is again a toric variety. The torus orbit Oτ and its closure V (τ) can be
constructed as follows:

Let Nτ denote the sublattice of N generated as a group by τ ∩ N , and let N(τ) denote
the quotient lattice N/Nτ . Its dual lattice is M(τ) := τ⊥ ∩M . Then Oτ is the (n − k) -
dimensional torus corresponding to the lattice N(τ) . For any σ ∈ ∆ with τ ⊂ σ , let σ
denote its image in N(τ)R . The cones σ yield a fan in N(τ) , which we denote by star(τ) .
Then V (τ) is the toric variety given by star(τ) . For any affine toric variety Uσ ⊂ V (τ) , we
have an embedding Uσ ↪→ X(∆) , which is given by the projection morphism

k[σ∨ ∩M ] � k[σ∨ ∩ τ⊥ ∩M ]

χm 7→

χm, m ∈ σ∨ ∩ τ⊥ ∩M

0 otherwise

These embeddings glue to a closed embedding V (τ) ↪→ X∆ .

Definition 2.2.7. Let ϕ : N → N ′ be a homomorphism of lattices, and ∆,∆′ fans in N,N ′

respectively, such that, for each cone σ′ ∈ ∆′ , its image ϕ(σ′) is contained in some σ ∈ ∆ .
The morphism Sσ → Sσ′ determines a morphism Uσ′ → Uσ of affine toric varieties. These
morphisms glue to a morphism ϕ∗ : X∆′ → X∆ of toric varieties.

Proposition 2.2.8. The morphism ϕ∗ : X∆′ → X∆ constructed above is proper if and only if
ϕ−1(|∆|) = |∆′| . As a special case, a toric variety X∆ is proper over k if and only if |∆| = NR .
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2.3 Simplicial Homology and Cohomology

In the following, let ∆ denote a simplicial complex, not necessarily in Rn , with support
X := |∆| . Let Cn denote the free abelian group with basis consisting of the n -dimensional
simplices of ∆ . We define a boundary homomorphism ∂n : Cn → Cn−1 via

∂n[p0, . . . , pn] =
n∑
i=0

(−1)i[p0, . . . , pi−1, pi, . . . , pn]

One has ∂n ◦ ∂n−1 = 0 for n > 0 . This defines a chain complex of abelian groups

· · · → Cn
∂n−→ Cn−1 → · · · → C1

∂1−→ C0 → 0

We call Hn(X) := Ker ∂n/ Im ∂n+1 the n -th simplicial homology group of X ; it depends only
on X and not on the complex ∆ .

Now, let G be an arbitrary abelian group, and let Cn := Hom(Cn, G) . This yields homo-
morphisms δn := ∂∗n+1 : Cn → Cn+1 . Dualizing this way, we get a cochain complex

0→ C0 δ0−→ C1 → · · · → Cn
δn−→ Cn+1 → · · ·

We call Hn(X,G) := Ker δn/ Im δn−1 the n -th cohomology group.

Homology groups and cohomology groups are connected via the following result:

Proposition 2.3.1 (Universal Coefficient Theorem for Cohomology).

Hn(X,G) ∼= Hom(Hn(X), G)⊕ Ext(Hn−1(X), G).

Especially, for n = 1 , as H0(X) is free, we have

H1(X,G) ∼= Hom(H1(X), G).

Definition 2.3.2. An edge-path in ∆ is a finite sequence of vertices p0, p1, . . . , ps of ∆ such
that, for each n = 0, . . . , s−1 , [pn, pn+1] is an edge of ∆ . It is called an edge-loop if ps = p0 .
For each edge-path p0p1 · · · ps , we get an equivalent edge path by the following operations:

(i) If [pi−1, pi, pi+1] is a simplex of ∆ , we can replace pi−1pipi+1 by pi−1pi+1 .

(ii) If pi = pi+1 , we can replace pi−1pipi+1pi+2 by pi−1pi+2 .
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Let π1(∆, p0) denote the group of equivalence classes of edge-loops with starting point p0 ,
where the group operation is just the concatenation of edge-loops. It is called the edge-path
group of ∆ in p0 .

Proposition 2.3.3. Assume that X is connected.

(i) The edge-path group π1(∆, p0) is isomorphic to the topological fundamental group π1(X, p0)
of X in p0 .

(ii) The canonical morphism π1(∆, p0)→ H1(X) , sending every edge-loop to the formal sum of
the occurring edges, is an epimorphism, with kernel the commutator subgroup of π1(∆, p0) .
In other words, H1(X) is isomorphic to the abelianization of π1(∆, p0) .

2.4 Polytopal Complexes with Integral Structure

In this section, we will deal with a generalization of polytopal complexes in Rn . Namely,
we will consider polytopal complexes which have the same nice combinatorial structure as
polytopal complexes in Rn , but can only locally be embedded in Rn .

An integral structure over µ on a polytopal complex ∆ is a set of finitely generated abelian
groups Li of real-valued functions on σi with values in 1/µ · Z for every σi ∈ ∆ , such
that the following holds:

(i) Li ⊃ nZ for some n ∈ N

(ii) If n, f1, . . . , fni are generators of Li , then this yields an embedding

ϕi = (f1, . . . , fni) : σi ↪→ Rni

which gives rise to a homeomorphism of σi to a polytope in Rni which is not con-
tained in a hyperplane.

(iii) If σj is a face of σi , then Li|σj = Lj .

Let Vi := Li ⊗ R . A subdivision ∆′ of ∆ is a rational subdivision, if, for all σi, σj ∈ ∆′

with σi ⊂ σj , we have Vj |σi = V ′i , and any function in Lj takes rational values at the
vertices of ∆′ . In particular, the integral structure of ∆ restricts to a integral structure on
∆′ .

A subdivision ∆′ of ∆ is called projective, if there exists a continuous function f : |∆′| → R
such that f is strictly convex on ∆′∩σ for every σ ∈ ∆ ; i.e. if the following two conditions
hold:
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(i) f |σi = minj=1,...,r lj for certain l1, . . . , lr ∈ Vi

(ii) If σi ∈ ∆ and l ∈ Vi with l > f |σi , then the set

τ := {x ∈ σ ; f(x) = l(x)}

is either empty or a polyhedron of X ′ .

A function f which satisfies the above conditions is called a good function for the subdivi-
sion ∆′ .

Let σi ⊂ ∆ be a polytope of dimension ni , and let c ∈ Z such that c ∈ Li . Then we define
the multiplicity of σi with respect to c as

m(σi, c) := cni · (ni)! · volσi,

where vol denotes the volume of ϕi(σi) in Rni .

For the following result, see [24, Th. 4.1].

Proposition 2.4.1. Let ∆ be a polytopal complex with 1/µ -rational structure. Then there exists
an integer ν and a rational projective subdivision ∆′ of ∆ such that ∆′ is 1/(µν) -rational and
m(σ, µν) = 1 for every σ ∈ ∆′ .



Chapter 3

Polytopal Domains in Gn
m

For simplicity, we will assume in the following that the complete non-archimedean field K

is algebraically closed. All results of this chapter hold for a discrete valued field as well, if
we allow suitable finite field extensions. In the following, let Γ be the value group of the
(additive) valuation v := − log | · | : K× → R on K .

3.1 Definitions and First Properties

Let Gn
m := (K×)n denote the n -dimensional torus over K . The valuation

v := − log | · | : K× → R

induces a continuous mapping

val : Gn
m → Rn, (x1, . . . , xn) 7→ (v(x1), . . . , v(xn)).

As in Chapter 2, let 〈·, ·〉 denote the standard pairing

〈·, ·〉 : Zn × Rn → R; 〈m,x〉 := m1x1 + · · ·+mnxn.

Let χ = aζm with a ∈ K× , m ∈ Zm . Although χ is not necessarily monic, we call χ a
monomial. We can describe the values |χ(u)| for u ∈ Gn

m by an affine linear function fχ as
follows:

We set fχ(x) := 〈m,x〉 + v(a) for x ∈ Rn . For a point u = (u1, . . . , un) ∈ Gn
m with

17
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val(u) = x , we have

− log |χ(u)| = − log |a| −m1 log |u1| − · · · −mn log |un|

= v(a) + 〈m, val(u)〉 = fχ(x).

Let σ ⊂ Rn be a Γ -rational polytope which is given by a finite number of inequalities
〈mi, x〉 + ci > 0 , with mi ∈ Zn , ci ∈ Γ . We set Xσ,K := val−1(σ) ; it is a Weierstrass
domain in Gn

m given by

Xσ,K = {x ∈ Gn
m ; |aiζmi(x)| 6 1 for i = 1, . . . , r},

where ai ∈ K× with v(ai) = ci for i = 1, . . . , r . We define

O(Xσ,K) :=

{ ∑
m∈Zn

amζ
m : lim

|m|→∞
v(am) + 〈m,u〉 =∞ for all u ∈ σ

}
.

It is a subring of the ring of formal Laurent series in ζ1, . . . , ζn . Endowing O(Xσ,K) with
the supremum norm∣∣∣∑ amζ

m
∣∣∣
sup

:= sup
m∈Zn, x∈σ

e−〈m,x〉−v(am) = max
m∈Zn,

u vertex of σ

e−〈m,u〉−v(am) (3.1)

on Xσ,K makes O(Xσ,K) into a K -Banach algebra. As σ is Γ -rational, the supremum
norm takes values in K .

Lemma 3.1.1. Xσ,K is an affinoid subdomain of Gn
m with K -affinoid algebra O(Xσ,K) .

Proof. This has already been proven in [13, 3.1] or [19, Prop. 4.1]. We will however give a
slightly different proof here.

We want to show that O(Xσ,K) is K -affinoid. Let u be a vertex of σ . For simplicity,
we assume u = 0 . Let Cσ,u = R+ · σ denote the cone over σ . By Gordon’s Lemma
(Proposition 2.2.1),

C∨σ,u ∩ Zn := {m ∈ Zn : 〈m,x〉 > 0 for all x ∈ Cσ,u}

is a finitely generated semigroup. Let Sσ,u be a generating set of C∨σ,u ∩ Zn , and let Sσ be
the union of all Sσ,u , where u runs through all the vertices of σ . For m ∈ Sσ,u , let cm :=
−〈m,u〉 . Then cm ∈ Γ , as u has coordinates in Γ . We choose am ∈ K× with v(am) = cm
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and set χm := amζ
m . By construction, |χm|sup = 1 on Xσ,K , and the maximum is assumed

at all points of val−1(u) . Moreover, it is clear that any m ∈ Zn lies in C∨σ,u for at least one
vertex u . From the definition of O(Xσ,K) , one concludes

O(Xσ,K) = K〈χm ; m ∈ Sσ〉.

Thus, O(Xσ,K) is a K -affinoid algebra, and Xσ,K is an affinoid space.

Definition 3.1.2. We call Xσ,K the affinoid polytopal domain associated to σ .

Remark 3.1.3. Obviously, Xσ,K is regular as an affinoid subdomain in Gm,K .

The following lemma is a generalization of [5, Lemma 9.7.1/1].

Lemma 3.1.4. Let g =
∑
amζ

m ∈ O(Xσ,K) . Then g is a unit on Xσ,K if and only if there exists
m0 ∈ Zn such that |am0z

m0 | > |amzm| for all z ∈ Xσ,K ,m 6= m0 .

Proof. See [19, §6].

Theorem 3.1.5. O(Xσ,K) is factorial, hence normal.

Proof. In Chapter 6, we will show that Pic(Xσ,K) = H1(Xσ,K ,O×) is trivial. As Xσ,K is
regular, this proves that O(Xσ,K) is factorial; cf. [14, Prop. 4.7.2.].

In the following, we want to associate a formal model to an affinoid polytopal domain. We
need the following result:

Lemma 3.1.6. Let O(Xσ,K)◦ := {f ∈ O(Xσ,K) ; |f |sup 6 1} . Then O(Xσ,K)◦ is an admissible
R -algebra; i.e. a flat R -algebra of topologically finite type.

Proof. We choose Sσ as in the proof of Lemma 3.1.1. We claim

O(Xσ,K)◦ = R〈χm ; m ∈ Sσ〉.

The ”⊃ ” part is clear, since |χm| 6 1 on Xσ,K for m ∈ Sσ . For the ”⊂ ” part, let χ =
amζ

m with m ∈ Zn , a ∈ K× be a monomial with |χ|sup 6 1 on Xσ,K . Let fχ be the
corresponding affine linear function, and let u be a vertex of σ such that fχ is minimal.
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Then fχ(x) > fχ(u) for all x ∈ σ . Thus m ∈ C∨σ,u , and we can write m = b1m1 + · · ·+brmr

with bi > 0 and mi ∈ Sσ,u . Then

amζ
m = a′m · χb1m1

· · ·χbrmr

for a unique a′m ∈ K . As |χi| = 1 on val−1(u) for every i = 1, . . . , r , we have |χ| = |a′m|
on val−1(u) . But |χ| 6 1 on val−1(u) , so a′m lies in R . Moreover, O(Xσ,K)◦ has no
R -torsion. This proves the claim.

Remark 3.1.7. Note that O(Xσ,K) and O(Xσ) = O(Xσ,K)◦ are integral domains. For g, h ∈
O(Xσ,K) , there exists α ∈ K× with |αg|, |αh| 6 1 on Xσ,K . But then g/h = (αg)/(αh) ;
i.e. O(Xσ) and O(Xσ,K) have the same field of fractions, which we denote by M(Xσ) .
This is the algebra of meromorphic functions on Xσ,K .

Lemma 3.1.8. O(Xσ,K)◦ is normal.

Proof. From Theorem 3.1.5, we see that O(Xσ,K) is normal. Let f ∈ M(Xσ) satisfy an
integral relation

fn + an−1f
n−1 + · · ·+ a0 = 0

with ai ∈ O(Xσ,K)◦ . As O(Xσ,K) is normal, f ∈ O(Xσ,K) . By the ultrametric inequality,
we get

|f |nsup 6 max
i
|ai||f |isup.

Thus, |f |n−isup 6 |ai| 6 1 for a certain i . Hence, |f |sup 6 1 , and f ∈ O(Xσ,K)◦ . This proves
that O(Xσ,K)◦ is normal.

This allows us to associate to Xσ,K a canonical model Xσ = Spf(O(Xσ,K)◦ , which we
will call an (affine) formal polytopal domain. Let X̃σ denote the special fibre of Xσ . This
coincides with the reduction of Xσ,K , as the affinoid algebra O(Xσ,K) is reduced, and
hence distinguished; see Chapter 1. Let π : Xσ,K → X̃σ denote the reduction map.

The affinoid torus T = {x ∈ (Gn
m)K ; |xi| = 1} acts on Xσ,K . Passing to reductions, we

get an action of the algebraic torus T̃ = (k×)n on X̃σ .

Recall that the Berkovich spectrum of an affinoid algebra A is the set of all multiplicative
semi-norms on A which are bounded by the supremum semi-norm, see Chapter 1.
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Definition 3.1.9. The Shilov boundary of an affinoid algebra A is the unique minimal subset
Θ of the Berkovich spectrum such that every f ∈ A assumes its minimum in Θ .

From (3.1), it follows directly that the Shilov boundary of O(Xσ,K) is given by

Θ = {| · |u ; u vertex of σ}.

For the following result, see also [19, Prop. 4.4].

Lemma 3.1.10. Let Xσ,K be an affinoid polytopal domain. For the reduction X̃σ , the following
assertions hold:

(i) The irreducible components of X̃σ are in one-to-one correspondence with the vertices u of
σ . For a vertex u ∈ σ , the corresponding component X̃σ,u is the affine toric variety induced
by the polyhedral cone Cσ,u = R+(σ − u) .

(ii) There is a one-to-one correspondence between torus orbits Z of X̃σ and faces τ of σ , given
by

τ 7→ Oτ := π(val−1(relint(τ))),

where relint(τ) denotes the relative interior of τ .
Moreover, dim(Oτ ) = n− dim(τ) .

(iii) If σ′ ⊂ σ is a Γ -rational polytope, then the canonical morphism Xσ,K → Xσ′,K induces an
open immersion of the reductions if and only if σ′ is a face of σ .

Proof. By [3, Prop. 2.4.4], the Shilov boundary of O(Xσ,K) consists of all analytic points ξỸ
which reduce to the generic points of the irreducible components of X̃σ . Thus, we have a
one-to-one correspondence between irreducible components of X̃σ and vertices u of σ .

Let X̃σ,u be the irreducible component corresponding to u . Then

O(X̃σ,u) = O(X◦σ,K)/{| · |u < 1}.

Let f =
∑

m amζ
m ∈ O(Xσ,K) with |f |sup 6 1 . This implies |f |u 6 1 , so |amζm|u 6 1 for

every m ∈ Zn . As in the proof of Lemma 3.1.6, we can write

amζ
m = a′m · χb1m1

· · ·χbrmr
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where mi ∈ Sσ,u , bi > 0 such that m = b1m1 + · · · + brmr and |cm| 6 1 . Thus, we have
f ∈ R〈χm1 , . . . , χmr〉 , and the reduction f̃ of f modulo {| · |u < 1} is a polynomial in
χ̃m1 , . . . , χ̃mr with coefficients in k . If f̃ = 0 , then |a′m| < 1 for every m ∈ Zn . This
proves

O(X̃σ,u) = k[χ̃mi , mi ∈ Sσ,u].

By change of coordinates, we may assume u = 0 . In this situation, every leading coefficient
of χmi has (multiplicative) valuation 1 ; so we may replace χ̃mi by ζmi . As Sσ,u generates
the subgroup C∨σ,u ∩ Zn , and Cσ,u is the cone over σ , claim (i) follows. Claim (iii) follows
directly from the corresponding result for affine toric varieties, see Lemma 2.2.3.

Now, let τ be a face of σ . For m ∈ Zn , choose am ∈ K× such that χm := amζ
m satisfies

|χm|sup = 1 on Xσ,K . Let cm := v(am) . Then relint(τ) is given by linear equations resp.
inequalities

〈m,x〉+ cm

= 0 if m ∈ I,

> 0 if m ∈ Zn \ I

for some index set I ⊂ Zn . Let Oτ := π(val−1(τ)) . Then x̃ ∈ Oτ if and only if

χ̃m(x̃)

6= 0 for m ∈ I

= 0 for m 6∈ I.

Now, let u be a face of τ , and let X̃σ,u be the corresponding irreducible component of
X̃σ . From the proof of (i), we see that X̃σ,u is the vanishing locus of χ̃m for m ∈ Zn \C∨σ,u .
By definition of I , we have I ⊂ C∨σ,u , so Oτ is contained in X̃σ,u . Moreover, Oτ is given
in X̃σ,u by χ̃m = 0 for m ∈ C∨σ,u \ I and χ̃m 6= 0 for m ∈ I . From the theory of toric
varieties, we see that Oτ is a torus orbit. By definition, τ ⊂ val(π−1(Oτ )) . But X̃σ is a
disjoint union of its torus orbits, and σ is a disjoint union of its open faces. So we have in
fact equality. This sets up a bijective correspondence between open faces and torus orbits
as claimed.

To go from affine formal polytopal domains to global formal polytopal domains, we take
a Γ -rational polytopal complex ∆ in Rn . Let X∆,K =

⋃
σ∈∆Xσ,K . By part (iii) of

Lemma 3.1.10, (Xσ,K)σ∈∆ is a formal analytic atlas of X∆,K . This gives rise to an ad-
missible formal scheme X∆ over R with formal open affine atlas (Xσ)σ∈∆ . We call X∆
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a formal polytopal domain and X∆,K a rigid polytopal domain. Note that, once again, the al-
gebraic torus T̃ = (k×)n acts on the special fibre X̃∆ . From Lemma 3.1.10, we derive the
following global version:

Proposition 3.1.11. Let X∆ be a formal polytopal domain, X∆,K its generic fibre, X̃∆ its special
fibre. Then the following assertions hold:

(i) The irreducible components of X̃∆ are in one-to-one correspondence with the vertices u of
∆ . For a vertex u ∈ ∆ , the corresponding component X̃∆,u is a toric variety. Its fan is
given by the cones Cσ,u = R+(σ − u) for σ ∈ star(u) .

(ii) There is a one-to-one correspondence between torus orbits Z of X̃∆ and polytopes τ ∈ ∆ ,
given as in Lemma 3.1.10.

(iii) Let σ, σ′ ∈ ∆ . Then Xσ is an open subset of Xσ′ if and only if σ′ is a face of σ .

Example 3.1.12. We start with a simple example in dimension 1 :

(i) Take π ∈ K with |π| < 1 ; set c := − log |π| . As polytope, consider the line seg-
ment [0, 2c] ⊂ R1 . The associated affinoid polytopal domain is given by the annulus
{z : |π2| 6 |z| 6 1} with the corresponding affinoid algebra

K〈ζ1, ζ2〉/(ζ1ζ2 − π2) = K〈ζ1, π
2/ζ1〉.

The reduction is k[ζ̃1, ζ̃2]/(ζ̃1ζ̃2) and thus consists of two copies of A1 intersecting in
an ordinary double point. This gives the following picture:

|z| = 1

|z| = |π|

|π| <
|z| <

1

The white circle ◦ denotes the missing points at infinity. The reduction consists of the
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following 3 torus orbits:

{ζ̃1 6= 0} ↔ |z| = 1 ↔ x = 0
{ζ̃2 6= 0} ↔ |z| = |π2| ↔ x = 2c

{ζ̃1 = ζ̃2 = 0} ↔ |π2| < |z| < 1 ↔ x ∈ (0, 2c)

(ii) Now, consider the polytopal complex consisting of the two line segments [0, c] and
[c, 2c] . The affinoid polytopal domain is the union of the two annuli

{z : |π2| 6 |z| 6 |π|} ∪ {z : |π| 6 |z| 6 1} = {z : |π2| 6 |z| 6 1},

which is the same annulus as in (i). Note, however, that each of the two annuli reduces
to two affine lines as in (i); glueing them together gives the following picture:

|z| = |π|

|z| = |π2| |z| = 1

|π 2| < |z| < |π 2|

|π| < |z| < 1

We conclude this section with the following result:

Proposition 3.1.13. Let ∆ be a finite Γ -rational polytopal complex. X∆,K is affinoid if and only
if the support |∆| of ∆ is a polytope.

Proof. Let σ := conv(|∆|) be the convex hull of |∆| ; this is a polytope as ∆ is finite. Let
Uσ,K be the affinoid polytopal domain corresponding to σ . If σ = |∆| , then Uσ,K = X∆,K ,
so X∆,K is obviously affinoid. For the converse assertion, we claim

O(X∆,K) = O(Uσ,K). (3.2)

Obviously, O(Uσ,K) ⊆ O(X∆,K) . Now, let g =
∑
amζ

m ∈ O(X∆,K) ; then g ∈ O(Uτ,K)
for all τ ∈ ∆ . Then

lim
|m|→∞

v(am) + 〈m,u〉 =∞ for all u ∈ |∆|.
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Now, let x ∈ σ , i.e. x = λu1 + (1− λ)u2 for a λ ∈ [0, 1] , u1 , u2 ∈ |∆| . Then

v(am) + 〈m,x〉 = λ(v(am) + 〈m,u1〉) + (1− λ)(v(am) + 〈m,u2〉)→∞ as |m| → ∞.

Hence g ∈ O(Uσ,K) . So we have proven (3.2). Thus, the restriction map

O(Uσ,K)→ O(X∆,K)

is an isomorphism and induces an isomorphism of affinoid spaces

Sp(O(X∆,K)) ∼= Sp(O(Uσ,K)) = Uσ,K .

If X∆,K is affinoid, then Sp(O(X∆,K)) = X∆,K . Thus X∆,K
∼= Uσ,K . But then |∆| = σ ,

and |∆| is convex.

3.2 Subdivisions and Admissible Formal Blowing Ups

Now, let ∆ be a polytopal complex, and let ∆′ be a polytopal complex which subdivides
∆ . Then the atlas (Xσ,K)σ∈∆′ also yields a formal analytic structure on

⋃
σ∈∆′ Xσ,K which

is finer than the one given by ∆ . Let X∆′ be the formal scheme associated to ∆′ , then we
get a canonical morphism X∆′ → X∆ which acts as the identity on the generic fibre.

Proposition 3.2.1. Let Uσ be the affine formal subdomain corresponding to a polytope σ , and let
∆ be a subdivision of σ . Then the morphism X∆ → Uσ is proper.

Proof. This result follows directly from the general result that a morphism of admissible
formal schemes is proper if and only if the induced rigid-analytic map on the generic fibre
is proper; cf. [25]. As the map on the generic fibre is the identity, and hence proper, the as-
sertion is trivial. However, the result can also be verified easily by applying the properness
criterion for maps of toric varieties.

We need to show that the induced morphism X̃∆ → Ũσ on the special fibres is proper. By
[17, Cor. 5.4.5], it is enough to find a family of closed subsets {Ỹu} of Ũσ such that, for any
vertex u of ∆ , the morphism X̃∆ → Ũσ restricts to a proper morphism X̃∆,u → Ỹu .

Fix a vertex u of ∆ , and let X̃∆,u be the corresponding irreducible component. If u is
also a vertex of σ , then u corresponds to an irreducible component Ũσ,u of Ũσ . In that
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case, the morphism X̃∆,u → Ũσ,u is proper by Proposition 2.2.8, as the fans at u have the
same support.

However, if u is not a vertex of σ , we can not apply Proposition 2.2.8 directly. Thus, we
need to find a suitable closed toric subvariety Ỹu in Ũσ such that X̃∆,u is mapped into
Ỹu .

Let τ be the unique face of σ such that u is contained in relint(τ) . Then the image of
X̃∆,u is contained in the orbit closure V (τ) := Oτ , which is closed in Ũσ .

Let u′ be a vertex of τ , then V (τ) is a closed toric subvariety of Ũσ,u′ . Let N denote the
underlying lattice of Ũσ,u′ , and let Nτ denote the sublattice of N which is generated by
τ ∩N as a group, and let N(τ) = N/Nτ denote the quotient lattice. For every τ ′ ∈ star(τ) ,
let Cτ ′,u′ be the cone over τ ′−u′ in N . Let Cτ ′,u′ denote the image of Cτ ′,u′ in N(τ)⊗ZR .
Let

star(τ) := {Cτ ′,u′ ; τ ′ ∈ star(τ)};

this defines a fan of cones in N(τ) . As detailed in Section 2.2, this is the fan that gives the
toric variety V (τ) . Note that this does not depend on the actual choice of the vertex u′ of
τ . Now, let N ′ be the underlying lattice of X̃∆,u . Then there is a natural isomorphism
of lattices N ′ ∼= N , which induces a natural epimorphism ϕ : N ′ � N(τ) . Now, let
τ ′ ∈ star(u) with associated cone Cτ ′,u in N ′ . Let τ ′′ be a face of σ such that τ ′ ⊂ τ ′′ .
Then ϕ maps Cτ ′,u into Cτ ′′,u′ . So ϕ maps the fan defining X̃∆,u into the fan star(τ) .
This is exactly the map of fans defining the morphism X̃∆,u → V (τ) . On the other hand,
if τ ′′ ∈ star(τ) , we see easily that ϕ−1(Cτ ′′,u′) consists of exactly those Cτ ′,u with τ ′ ∈
star(u) ⊂ ∆ such that τ ′ ⊂ τ ′′ . But this is exactly the properness criterion for maps of toric
varieties; cf. Proposition 2.2.8. This proves the claim.

In the following, we will determine under which conditions the above proper morphism
is in fact a blowing up. For any monomial χ = aζm , let fχ(x) := 〈m,x〉 + v(a) be the
associated affine linear function.

Definition 3.2.2. Let X = Xσ be an affine formal polytopal domain with generic fibre XK

and special fibre X̃ . A monomial ideal of O(XK)◦ is an O(XK)◦ -submodule I of O(XK)◦

which is generated by a finite number of monomials χi = aiζ
mi ∈ O(XK)◦ with ai ∈ K ,

mi ∈ Z .

Similarly, a fractional monomial ideal of O(XK)◦ is a O(XK)◦ -submodule I of the field of
fractions M(XK) of O(XK)◦ generated by finitely many monomials χi .
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If X is a formal polytopal domain associated to a polytopal complex ∆ , then a (fractional)
monomial ideal on X is a sheaf of modules I on X whose restriction Iσ := I|Xσ to any
Xσ for σ ∈ ∆ is of the form Iσ = IM

σ for a (fractional) monomial ideal Iσ of O(XK)◦ .

A fractional monomial ideal I of O(XK)◦ is complete, if it is integrally closed in M(XK) ;
i.e. if any f ∈M(XK) satisfying a relation

f r + a1f
r−1 + · · ·+ ar = 0, ai ∈ Ii

satisfies f ∈ I . The completion of I is the integral closure of I in M(XK) .

If f1, . . . , fr are affine linear functions on σ , then we can define a fractional monomial ideal
I of O(XK)◦ by setting

I(f1,...,fr) := (χ1, . . . , χr)O(XK)◦,

where χi := χfi is the monomial corresponding to fi as in Section 3.1. Recall that χi is
only unique up to multiplication by a unit in O(XK)◦ ; however, this does not change the
ideal defined above. By abuse of notation, we call {f1, . . . , fr} a generating set of I .

Note that any fractional monomial ideal I is automatically open. Namely, as σ is compact
and every fi is continuous, there exists a c ∈ Γ , c > 0 such that c > fi on σ . Choosing
t ∈ R with v(t) = c , we have t/χfi ∈ O(XK)◦ , and hence, t ∈ I .

Lemma 3.2.3. Let X = Xσ be an affine formal polytopal domain, and let I be a fractional mono-
mial ideal generated by f1, . . . , fr as above, and let I ′ denote the completion of I . Then

I ′ =
⊕̂

R · χ ⊂M(X),

where the topological sum runs through all χ such that fχ(x) > mini fi(x) for all x ∈ σ

Proof. Let χ be a monomial with fχ(x) > mini fi(x) on σ . Let τ denote the Γ -rational
cone in Rr generated by the elements

(fχ(x)− f1(x), . . . , fχ(x)− fr(x)), x ∈ σ.

This cone contains no vector y 6 0 , y 6= 0 . Hence, the dual cone τ∨ contains a vector
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λ > 0 , λ 6= 0 . We may choose λ ∈ Zn . Thus, the function

g :=
∑
i

λi(fχ − fi)

satisfies g > 0 on σ , which yields a relation

λfχ = g +
∑
i

λifi,

with λ :=
∑

i λi . Defining χg accordingly, we have χg ∈ O(XK)◦ . This in turn yields an
integral relation over I :

χλ = χg ·
∏
i

χλifi

Thus, χ ∈ I ′ .

For the converse, let χ ∈ I ′ . Then χ satisfies some integral relation

χt + g1χ
t−1 + · · ·+ gt = 0, gi ∈ Ii.

For x ∈ XK , we have the inequality

|χ(x)| 6 max
i
|gi(x)|1/i.

Thus, there exists an 1 6 N 6 t such that |χ(x)|N 6 |gN (x)| . We write

gN =
∑

i,m1,...,mr,mj>0
m1+···+mr=N

χi,m · χm1
1 · . . . · χmrr

with χi,m ∈ O(XK)◦ . Hence, there exist m1, . . . ,mr with m1 + · · ·+mr = N , such that

|gN (x)| 6 |χ1(x)|m1 · . . . · |χr(x)|mr .

Setting f := fχ , and u := val(x) ∈ σ , we have

N · f(u) > m1f1(u) + · · ·+mrfr(u) > N ·min
i
fi(u).

Dividing by N yields f(u) > mini fi(u) , which proves the claim.

Example 3.2.4. For a non-complete monomial ideal I , consider the following example: Let
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XK := {|π| 6 |z| 6 1} , and let I := (z3, π3/z3) . Then π2 6∈ I ; but π2 is integral over I ;
namely, we have (π2)2 = π · z3 · (π3/z3) . For any z ∈ XK , we have either |z3| 6 |π2| or
|π3/z3| 6 |π2| . Thus, π2 ∈ I ′ , where I ′ is given as above.

As above, let I be generated by f1, . . . , fr . Consider a polytopal subdivision ∆ of σ , with
maximal polytopes σ1, . . . , σr given as follows:

σi := σ ∩ {x : fj(x) > fi(x) for all j 6= i}.

This is the unique minimal subdivision of σ such that f(x) := mini fi(x) is a strictly convex
polyhedral function on ∆ . Conversely, any such subdivision ∆ of σ , together with a
strictly convex polyhedral function f defines a complete fractional monomial ideal If ; it
is the completion of the ideal If1,...,fr . This yields the following result:

Lemma 3.2.5. Let X = Xσ be an affine formal polytopal domain. There is a one-to-one correspon-
dence between

(i) complete fractional monomial ideals of O(XK)◦ ,

(ii) pairs (∆, f) where ∆ is a polytopal subdivision of σ and f is a strictly convex polyhedral
function on ∆ .

Recall that a polytopal subdivision ∆ of σ is projective if there exists a strictly convex
piecewise linear function f on ∆ . The reason for the term projective will become clear in
the following section; we will see that the reduction X̃∆ for a polytopal complex ∆ can be
embedded into projective space if and only if ∆ is projective in the above sense.

Example 3.2.6. For a polytopal complex ∆ which is not projective, consider the complex
∆ given by the following picture:
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(−3,−3)

(3, 3)(−3, 3)

(1,−1)

σ0

σ1

σ3

σ2 σ4

(3,−3)

(3,−2)

There exists no strictly convex polyhedral function f on ∆ . Namely, assume that f is a
convex polyhedral function on ∆ . We may assume without loss of generality that f = 0
on σ0 . Then there exist constants a1, . . . , a4 > 0 such that

f |σ1 = a1 · (1− x2), f |σ2 = a2 · (x1 + 1),

f |σ3 = a3 · (x2 + 1), f |σ4 = a4 · (1− x1).

The coefficients ai have to be chosen such that these settings agree on overlaps. This yields
the equation

a4 = a1 = a2 = a3 = 2a4,

which has only the trivial solution. Thus, f = 0 on |∆| , so f is not strictly convex.

From Lemma 3.2.5, we derive the following global version:

Proposition 3.2.7. Let ∆ be a polytopal complex, X∆ the corresponding formal polytopal domain.
Then there is a one-to-one correspondence between

(i) complete fractional monomial ideal sheaves on X∆ ,

(ii) pairs (∆′, f) , where ∆′ is a polytopal subdivision of ∆ and f is a polyhedral function on
∆′ which is strictly convex on ∆′ ∩ σ for every σ ∈ ∆ , where ∆′ ∩ σ is the subdivision of
σ induced by ∆′ .

Proof. It is clear from Lemma 3.2.5 that any pair (∆′, f) as in (ii) defines a complete frac-
tional monomial sheaf of ideals Iσ on every σ ∈ ∆ . From Lemma 3.2.3, we see that Iσ
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agrees with Iτ on σ ∩ τ , as f is continuous. Thus, all Iσ can be glued together to a
fractional monomial sheaf of ideals I .

Conversely, let I be a complete fractional monomial sheaf of ideals. Locally on σ ∈ ∆ ,
the ideal I induces a polytopal subdivision ∆′σ of σ ∈ ∆ together with a strictly convex
polyhedral function fσ on ∆′σ . We only have to check that these ∆′σ give rise to a poly-
topal subdivision ∆′ of ∆ . This means that ∆′σ and ∆′τ induce the same subdivision of
σ ∩ τ . But σ ∩ τ is again a polytope in ∆ with a subdivision ∆′σ∩τ , and it is obvious that
this subdivision is the restriction both of ∆′σ and ∆′τ , as σ ∩ τ is a face of both σ and τ .
Again, by Lemma 3.2.3, we see that fσ agrees with fτ on σ ∩ τ , thus there is a polyhedral
function f on ∆′ such that f |σ = fσ .

3.3 Cartier Divisors, Line Bundles and Polyhedral Functions

In the following, we will describe the relationship between Cartier divisors and polyhedral
functions. Let ∆ be a polytopal complex, and let X∆ be the corresponding formal poly-
topal domain. For simplicity, we assume that ∆ is of pure dimension n . For a maximal
polytope σi of ∆ , let Xi := Xσi be the corresponding affine formal polytopal domain.

Now, let f be a polyhedral function on ∆ , then f is associated to a complete fractional
monomial principal ideal on X∆ which we denote by Lf . On the other hand, f defines a
formal Cartier divisor on X by choosing χ−fi as local equation on Xi , where f is given
on σi by the affine linear function fi . Let Df denote this Cartier divisor. By construction,
Lf = O(Df ) .

Lemma 3.3.1. Let D be a Cartier divisor on X given by a polyhedral function f as above. Then
D is trivial on XK , and the vertical part of the Weil divisor associated to D is given by

cycv(D) =
∑
−f(u) · X̃u,

where u runs through the vertices of ∆ and X̃u is the corresponding irreducible component of X̃ .

Proof. It is easy to see that DK = 0 , as every monomial χi is a unit in O(Xσi,K) . For
the vertical cycle, we fix a vertex u . Let X̃u be the corresponding irreducible component,
and let Ou denote the torus orbit corresponding to u . Then Ou is open and affine in X̃u

and does not meet any other irreducible component. Moreover, it is the image of val−1(u)
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under the reduction map π , and D is given on Ou by χ(−fσ) , where σ is any polytope in
star(u) , and fσ = f |σ . Then the order of D in X̃u is given by

ord(D, X̃u) = − log
∣∣∣χ(−fσ)(X̃u ∩Ou)

∣∣∣ = −f(u).

This proves the claim.

Moreover, we will see in the following proposition that all Cartier divisors with trivial
horizontal part and trivialization (Xσ)σ∈∆ arise this way.

Lemma 3.3.2. Let X be a formal polytopal domain corresponding to a polytopal complex ∆ with
generic fibre XK . Then there is a one-to-one correspondence between polyhedral functions f on ∆
and formal Cartier divisors D on X with trivialization (Xσ)σ∈∆ and DK = 0 on XK . If f is
a polyhedral function given by fσ on σ , then Df is given by the equation χ(−fσ) on Xσ .

Proof. We have already seen above that every polyhedral function f induces a Cartier di-
visor Df as claimed. For the converse, let D be a formal Cartier divisor which is given by
a rational function (not necessarily a polynomial) gσ on Xσ . As D is trivial on the generic
fibre, gσ is in fact a unit in O(Xσ,K) . But by Lemma 3.1.1, there is a monomial χσ such
that |gσ(x)| = |χσ(x)| for all x ∈ Xσ,K . We may thus assume that D is given by mono-
mials χσ ; hence O(−D) is a fractional monomial sheaf of ideals generated by χσ on Xσ ,
which gives rise to a polyhedral function fD as claimed. Obviously, f 7→ Df and D 7→ fD

are inverse to each other. This proves the claim.

If I is a fractional monomial sheaf of ideals given by a polytopal subdivision ∆′ and f

where f > 0 , then I is in fact an ordinary sheaf of ideals; by Lemma 3.2.3, its sections over
each Xσ form a submodule of O(Xσ) . In this situation, the polytopal subdivision ∆′ has
an interpretation in terms of admissible formal blowing ups as follows:

Proposition 3.3.3. Let ∆ be a polytopal complex with associated formal polytopal domain X∆ . Let
∆′ be a subdivision of ∆ induced by a monomial sheaf of ideals I . Then the canonical morphism
X∆′ → X∆ is the normalization of the admissible formal blowing up of I on X .

Proof. It suffices to check this locally for X = Xσ , σ ∈ ∆ . Let σ1, . . . , σr be the polytopes
in ∆′ subdividing σ . By [9, Lemma 2.2], the i -th patch of the admissible formal blowing
up is given by Spf(Ai) , where

Ai = O(Xσ) 〈χj/χi, j 6= i〉 /(χi-torsion).
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At first, we claim Ai = Bi , where

Bi := R〈{χm; m ∈ Sσ} ∪ {χj/χi; j 6= i}〉.

The generating system of Bi satisfies relations of the form

aχb11 · · ·χ
br
r = a′χ

br+1

r+1 · · ·χ
bs
s ,

where a = 1 or a′ = 1 , and either χk = χj/χi for a certain i , or χk = χm for a certain
m ∈ Sσ . By multiplying with χNi for N large enough, we get a relation which holds in
O(Xσ) . After dividing out the χi -torsion, we see that the original relation comes from a
relation in Ai . Conversely, every relation in Ai comes from a relation in Bi . Moreover,
as |χj/χi| 6 1 on σi by definition, we see that Ai ⊂ O(Xσi) . By Lemma 3.1.8, O(Xσi) is
normal.

It remains to show that O(Xσi) is in fact the normalization of Ai . Let χ ∈ O(Xσi) be a
monomial, and let f := fχ . For any point x ∈ σ ; we have either f(x) > 0 if x ∈ σi , or
fi(x)−fj(x) > 0 , if x ∈ σj . Thus, as in the proof of Lemma 3.2.3 there exist integers d > 0 ,
λ1, . . . , λr > 0 , such that

g := df +
∑
j

λj(fi − fj) > 0 on σ.

Hence,

χd = χg
∏
j

(χj/χj)λj ∈ Ai

for a suitably chosen χg with |χg| 6 1 on σ , and χ is integral over Ai .

Note that the converse of Proposition 3.3.3 is not necessarily true: Not every polytopal
subdivision of ∆ comes from a blowing up, as not every polytopal complex ∆′ allows a
strictly convex polyhedral function f ; see Example 3.2.6 However, this is true after possibly
refining the subdivision ∆′ .

Proposition 3.3.4. Let ∆ be a polytopal complex with associated formal polytopal domain X∆ .
Let ∆′ be a subdivision of ∆ , and let X∆′ be the corresponding formal polytopal domain. Then
there exists a subdivision ∆′′ of ∆′ such that both morphisms X∆′′ → X∆ and X∆′′ → X∆′ are
normalization of admissible formal blowing ups of monomial ideal sheaves.
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Proof. At first, consider the case where X := X∆ is affine; i.e. ∆ consists only of a polytope
σ plus its faces. Let ∆′ be a decomposition of σ , and let X ′ := X∆′ be the corresponding
formal polytopal domain. Fix a polytope τ ∈ ∆′ , and let U ′ := U ′τ be the corresponding
affine formal subscheme of X ′ ; let U ′K be its generic fibre. In the first step, we want to
construct a projective subdivision ∆′ of ∆ which contains τ .

The polytope τ is given as a subset of σ by linear inequalities fi > 0 , i = 1, . . . , r , where
fi is an affine linear function. Then U ′K is the rational subdomain of XK which is given
by |χfi | 6 1 . We choose an affine linear function f0 such that f0 > 0 on σ and f0 > 0 on
τ . For n > 0 large enough, we will get fi + nf0 > 0 on σ for all i . We set χ0 := χnf0 ,
χi := χfi · χ0 for i = 1, . . . , r . Then χ0, . . . , χr ∈ O(X) , and U ′K is a rational subdomain
of XK given by U ′K = XK(χ1/χ0, . . . , χr/χ0) . Let Iτ ⊂ OX denote the completion of the
monomial ideal generated by χ0, . . . , χr , and let Xτ → X be the corresponding blowing
up of I . By [4, §2.6, Prop. 7], Xτ has an open affine covering Uτ,j := Spf(Aτ,j) , where

Aτ,j := A〈χi/χj , i 6= j〉/(χj − torsion)

and A := O(X) . For j 6= 0 , Uτ,j is an affine formal polytopal domain, corresponding to a
polytope τ ′j which is given as a subset of σ by the inequalities fi(x) > fj(x) , i = 1, . . . , r .
By construction, τ ′0 = τ . Thus, ∆′′τ = {τ ′0 = τ, τ ′1, . . . , τ

′
n} defines a projective subdivision

of ∆ containing τ .

Repeating this for every polytope τ ∈ ∆′ , we can construct complete monomial ideals
Iτ1 , . . . , Iτr with corresponding projective subdivisions ∆′′τ1 , . . . ,∆

′′
τr . The intersection

∆′′ := ∆′′τ1 ∩ · · · ∩∆′′τr = {ρ1 ∩ · · · ∩ ρr ; ρi ∈ ∆′′τi}

is then again a projective subdivision corresponding to blowing up the complete monomial
ideal

J := Iτ1 · . . . · Iτr .

Thus, we have proven the claim in the case that X∆ is affine.

Now, let X = X∆ be a formal polytopal domain associated to an arbitrary polytopal com-
plex ∆ . On every σ ∈ ∆ , we have a complete monomial ideal Jσ determining a blowing
up X ′σ → Xσ and a projective subdivision ∆′′σ of ∆′ ∩ σ . By Lemma 3.3.5, we can enlarge
Jσ to a complete monomial sheaf of ideals J̄σ on X . Then the sheaf of ideals

∏
σ∈∆ J̄σ

induces a subdivision ∆′′ of ∆ and a blow up X∆′′ → X∆ . Obviously, the sheaf of ideals
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∏
J̄σ pulls back to an sheaf of ideals on X∆′ . As ∆′′ subdivides ∆′ by construction, the

pull back induces exactly the subdivision ∆′′ of ∆′ and thus X∆′′ → X∆′ is also a blow
up.

Lemma 3.3.5. Let Iσ be a monomial sheaf of complete ideals on Xσ for σ ∈ ∆ . There exists a
monomial sheaf of complete ideals Ī on X∆ such that Ī|Xσ = Iσ .

Proof. Let Iσ be generated by f1, . . . , fr on Xσ . For τ ∈ ∆ , we take Iτ to be the com-
pletion of the monomial ideal on Xτ generated by all affine linear f with f > 0 such that
f(x) > mini fi(x) for all x ∈ τ ∩ σ . If τ ∩ σ = ∅ , then Iτ = O(Xτ ) . Obviously, these
monomial ideals agree on intersections and thus can be glued together.

3.4 Strictly Semi-Stable Formal Models

In this section, assume that R is a discrete valuation ring with uniformizing parameter π ,
and set v(π) := 1 .

Recall that an n -simplex is the convex hull of n+1 affinely independent vertices u0, . . . , un

with coordinates in Γ . Assume that σ is a 1/e -rational simplex; i.e. ui ∈ 1/e · Zn for all
vertices ui , i = 1, . . . , n . We define the multiplicity of σ (with respect to c ) as

m(σ, e) := enn! vol(σ) = en · | det(u1 − u0, . . . , un − u0)|.

Note that the multiplicity does not depend on the choice of the vertex u0 .

Lemma 3.4.1. Let σ be an n -simplex with vertices in Zn such that m(σ, 1) = 1 . Then

Xσ = Spf R〈ζ0, . . . , ζn〉/(ζ0 · . . . · ζn − π).

Especially, Xσ is strictly semi-stable.

Proof. If m(σ, 1) = 1 , then {ui − u0 ; i = 1, . . . , n} is a basis of Zn . After a change of
coordinates, we may assume u0 = 0 and ui = ei . This simplex is given by the inequalities
xi > 0 for i = 1, . . . , n , x1 + · · ·+ xn 6 1 . Thus, we have

O(Xσ) = R〈ζ1, . . . , ζn, π · (ζ1 · · · ζn)−1〉.

Setting ζn+1 := π · (ζ1 · · · ζn)−1 proves the claim.
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Now, for the converse:

Lemma 3.4.2. Let σ be a polytope such that X = Xσ is strictly semi-stable. Assume that dimσ =
dimXσ . Then σ is a simplex with vertices in Zn and m(σ, 1) = 1 .

Proof. At first, assume that σ is not a simplex. Then we choose two distinct vertices u , v of
σ which are not connected by an edge. Let τ be the unique smallest face containing both u

and v . Then dim τ > 1 . Let X̃u , X̃v be the irreducible components of X̃ corresponding
to u and v respectively. Then X̃u ∩ X̃v has dimension n− dim τ , which is strictly smaller
than n− 1 . This contradicts the strict semi-stability.

Now, let σ be generated by affine independent vectors u0, . . . , un . Without loss of gen-
erality, we may assume u0 = 0 . As X is strictly semi-stable, all irreducible components
X̃i := X̃ui are smooth. We start with X̃0 . Let u′i be the first lattice point in Zn along the
ray generated by ui . As X̃0 is smooth, u′1, . . . , u

′
n is a basis of Zn due to Proposition 2.2.5.

We may therefore perform a change of coordinates such that ui = λiei for some λi ∈ N . It
remains to show that λ1 = · · · = λn = 1 .

Now, let j > 0 . The cone belonging to the lattice point uj is generated over R by

−λjej , λ1e1 − λjej , . . . , λnen − λjej .

As above, X̃uj is smooth, so the first lattice points along the rays generating the cone form
a basis of Zn . These lattice points are given by

−ej , (λ1/d1j)e1 − (λj/d1j)ej , . . . , (λn/dnj)en − (λj/dnj)ej ,

where dij = gcd(λi, λj) . The determinant of the matrix whose columns are given by these
vectors is calculated as

∏
i 6=j λi/dij . This equals 1 if and only if λi = dij for all i, j . But

then λ := λ1 = · · · = λn ∈ N . Thus, σ is given by the inequalities xi > 0 for i = 1, . . . , n ,
and x1 + · · ·+ xn 6 λ . As in the proof of the above Lemma, X is given by

X = Spf R〈ζ0, . . . , ζn〉/(ζ0 · . . . · ζn − πλ).

However, for λ > 1 , the ideal corresponding to the i -th irreducible component X̃i of the
special fibre is generated by the two elements π, ζi , and hence, X̃i is no Cartier divisor.
Thus, we have λ = 1 , which proves the claim.
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Definition 3.4.3. We call

SpK〈ζ0, . . . , ζr〉(ζ0 · . . . · ζr − π)

the affinoid standard r -simplex.

Now, let ∆ be a polytopal complex in Rn . From the above, we see that a formal polytopal
domain X∆ is strictly semi-stable if and only if every maximal polytope σ ∈ ∆ is iso-
morphic to the standard simplex. In general, by Proposition 2.4.1, there exists a projective
subdivision ∆′ of ∆ which is 1/e -rational, such that every simplex τ ∈ ∆′ is a simplex
with multiplicity m(τ, e) = 1 with respect to the lattice 1/e·Zn . Thus, the formal polytopal
domain X ′∆ is defined over R′ := R[ e

√
e] , and strictly-semistable over R′ . This yields the

following result:

Proposition 3.4.4. Let R be a discrete valuation ring, and let X∆ be a formal polytopal domain
over R , where ∆ is a polytopal complex in Rn . Then there exists a finite extension R′ of R and
a subdivision ∆′ of ∆ such that X ′∆ is strictly semi-stable over R′ and X ′∆ → X∆×R R′ is the
normalization of an admissible formal blowing up.

This yields a combinatorial interpretation for the two desingularization results in [21, §1.3].
We will illustrate this in the following:

Proposition 3.4.5. For n > 1 , e > 1 , let

A := R〈ζ1, . . . , ζn+1〉/(ζ1 · . . . · ζn+1 − πe)

Then there exists a strictly semi-stable formal scheme X over R such that X → Spf A is an
admissible formal blowing up.

Proof. The formal scheme Spf A corresponds to the affine formal polytopal domain given
by the simplex σ in Rn with vertices 0 and e · ei , where ei is the i -th unit vector. Let
x1, . . . , xn denote the standard coordinates on Rn . From these, we define cumulative coor-
dinates y0, . . . , yn via

y0 := 0, y1 = x1, . . . yk = x1 + · · ·+ xk, . . . yn = x1 + · · ·+ xn.
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Figure 3.1: The regular subdivision for n = 2 , e = 4

With respect to these coordinates, the simplex σ is given by the inequalities

0 6 y1 6 · · · 6 yn 6 e.

For 0 6 j < i 6 n and 0 6 k 6 e , let H i,j
k denote the hyperplane given by the equa-

tion yi − yj = k . These hyperplanes define a subdivision ∆ of σ , where every maximal
polytope τ ∈ ∆ is isomorphic to the standard simplex. Thus, X∆ is a strictly semi-stable
formal scheme. Note that each hyperplane H i,j

k corresponds to blowing up the ideal

Ii,jk := (ζj+1 · . . . · ζi, πk)

Thus, the morphism X∆ → Spf A corresponds to blowing up the product of all these
Ii,jk .

Remark 3.4.6. The subdivision constructed above is called the regular subdivision of σ . Fig-
ure 3.1 shows the regular subdivision for n = 2 , e = 4 .

Proposition 3.4.7. For r, s > 1 , let

A := R〈ζ0, . . . , ζr〉/(ζ0 · . . . · ζr − π)

B := R〈ξ0, . . . , ξs〉/(ξ0 · . . . · ξs − π),

and let C := A⊗̂RB . Then there is a strictly semi-stable formal scheme X over R such that
X → Spf C is an admissible formal blowing up.
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Proof. Let σr denote the standard r -simplex in Rr , σs denote the standard s -simplex
in Rs . Then consider σ := σr × σs ⊂ Rr × Rs . We construct a suitable subdivision of
σ . Let x1, . . . , xr resp. y1, . . . , ys denote the coordinates on Rr , resp. Rs . Again, define
cumulative coordinates

X1 := x1, . . . Xk := x1 + · · ·+ xk, . . . Xr := x1 + · · ·+ xr

Y1 := y1, . . . Yl := y1 + · · ·+ yl, . . . Ys := y1 + · · ·+ ys

Then σ is given by the inequalities

0 6 X1 6 X2 6 · · · 6 Xr 6 1 (∗)

0 6 Y1 6 Y2 6 · · · 6 Ys 6 1. (∗∗)

For 1 6 k 6 r , 1 6 l 6 s , consider the hyperplane Hk,l given by the equation Xi = Yj .
These hyperplanes define a subdivision ∆ of σ such that every maximal polytope τ in ∆
is isomorphic to the standard r + s -simplex. Namely, any maximal polytope is described
by a total ordering 6 on the variables Xi, Yj , such that the induced ordering on the sets
{Xi} , {Yj} is given by (∗), (∗∗). Any such ordering describes a r + s -simplex. Moreover,
there are exactly

(
r+s
s

)
such orderings. As σ has volume 1/r! · 1/s! , any maximal simplex

τ has volume 1/(r + s)! , and hence, multiplicity 1 . Thus, X∆ is a strictly semi-stable
formal polytopal domain. Note that the hyperplane Hk,l corresponds to blowing up the
ideal

Ik,l := (ζ1 · . . . · ζk, ξ1 · . . . · ξl).

The morphism X∆ → Spf C is the blowing up of the product of all these Ik,l .

3.5 Ampleness

In the following, we assume that ∆ is a subdivision of a polytope σ in Rn . Let X∆ be
the corresponding formal polytopal domain. Recall that a polyhedral function f defines a
formal line bundle on X∆ which is locally generated by χfσi on Xσi for σi ∈ ∆ . It is easy
to check the following result:

Lemma 3.5.1. f is convex if and only if Lf is generated by the global sections χi := χfi , where
f is given by the affine linear function fi on σi , and σi runs through the maximal polytopes of
∆ .
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Proof. If f is convex, then we have fi > fj on σj for all i, j . This is equivalent to |χi| 6
|χj | on Xσj ,K . This means that χi is a section on every Xσj and thus a global section
which generates Lf on Xσi . The converse statement follows in the same way.

Now, let f be convex, and let χ0, . . . , χr be the generators of Lf as in the above lemma.
Let χr+1, . . . , χs be other global sections of Lf . Then the system χ0, . . . , χs induces a
morphism ψ : X∆ → PsR . This morphism restricts to a morphism on the special fibre
ψ̃ : X̃∆ → Psk as follows:

Let σi be a maximal polytope of ∆ . Then |χj/χi| 6 1 on Xσi,K for every j = 0, . . . , s .
Thus, χj/χi reduces to a well-defined function (χj/χi)∼ on X̃σi . Let {Ti} be the ho-
mogeneous coordinates on Psk , and let Vi := {Ti 6= 0} ⊂ Psk . Then ψ̃ is given on X̃σi

by

ψ̃ : X̃σi −→ Vi ⊂ Psk, x 7→ ((χ0/χi)∼(x) : . . . : (χs/χi)∼(x)) .

We recall the standard definitions for ampleness in the algebraic situation over a field:

Definition 3.5.2. Let X be an algebraic scheme of finite type over a field k .

(i) A line bundle L on X is called very ample if there exists a finite set of global sections
s0, . . . , sr generating L such that the corresponding morphism

i : X −→ Prk, x 7→ (s0 : . . . : sr)

is an immersion.

(ii) L is called ample, if there exists n > 0 such that L⊗n is very ample.

As for toric varieties (see [24, Ch. 1, Th. 13]), one can characterize the ampleness of the
canonical reduction L̃f directly as follows:

Lemma 3.5.3. L̃f is ample if and only if f is strictly convex.

Proof. Let f be strictly convex. For a maximal polytope σi , i = 0, . . . , r , let χi be the
corresponding generator of Lf on Xσi as above. Due to the strict convexity, χi generates
Lf exactly on Xσi . On every X̃σi , we choose generators χ̃ij , j = 1, . . . , li of the coor-
dinate ring O(X̃σi) . These correspond to affine linear functions fij which satisfy fij > 0
on σi and fij(u) = 0 for some vertex u of σi . Again due to the strict convexity of f ,
we have fi > fk on σk \ σi and fi = fk on σi ∩ σk . Thus, we find an n > 0 such that
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fij + n(fi − fk) > 0 on σk for every k . We set χ′ij := χij · χni , then |χ′ij | 6 |χnk | for every
i, j, k by construction. Thus, the system

{χni , i = 0, . . . , r} ∪ {χ′ij , i = 0, . . . , r, j = 1, . . . , li}

is a system of global generators of the line bundle Lnf . We have to show that the corre-
sponding morphism is an immersion on the special fibre:

Let Ps be the projective space with homogeneous coordinates {Ti} and {Tij} correspond-
ing to {χni } and {χij} as above. Let Vi = {Ti 6= 0} for i = 0, . . . , r . Then ψ̃−1(Vi) = X̃σi ,
again by the strict convexity. The corresponding map of coordinate rings is given by

Tj/Ti 7→ (χnj /χ
n
i )∼, Tkj/Ti 7→ (χkj · χnk/χni )∼.

Especially, for k = i , Tij/Ti maps to the generator χ̃ij of O(X̃σi) . Thus, the corresponding
map of rings is surjective; and hence, ψ̃ is an immersion. This proves that L̃nf is very
ample.

By Proposition 3.2.7, this has an interpretation in terms of admissible formal blowing ups.

Proposition 3.5.4. Let σ be a polytope, and let Uσ be the affine formal polytopal domain associated
to σ . Let ∆ be a polytopal subdivision of σ , and let L be an invertible monomial sheaf of ideals
on X∆ . Then L̃ is ample on X̃∆ if and only if there exists a monomial ideal I on Uσ such that
the canonical morphism ϕ : X∆ → Uσ is the normalization of the admissible formal blowing up of
I on Uσ and L = ϕ∗I .

Proof. Let L be an ample line bundle given by a strictly convex polyhedral function f on
∆ with f > 0 . Let I be the ideal on Uσ generated by χfσ , where σ is a maximal polytope
of ∆ and f agrees where σ is a maximal polytope of ∆ and f agrees with fσ on σ . By
construction and Proposition 3.3.3, I induces the subdivision ∆ of σ and ϕ : X∆ → Uσ

is the normalization of the blowing up of I . It is clear that L = ϕ∗I .

Now, let I be a monomial sheaf of ideals inducing the subdivision ∆ as in Lemma 3.2.5
and a strictly convex polyhedral function f on ∆ . But then, the monomial sheaf of ideals
ϕ∗I is invertible and given locally by χfσ , where f |σ = fσ . As f is strictly convex, the
claim follows from Lemma 3.2.5.

By Proposition 3.3.4, we also have the following:
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Corollary 3.5.5. In the situation of the previous theorem, there exists a subdivision ∆′ of ∆ and
a formal line bundle L′f of X∆′ which is ample on X̃∆′ .

Combining Lemma 3.5.3 and Proposition 3.5.4, we conclude:

Proposition 3.5.6. Let σ be a polytope. For a polytopal complex ∆ with |∆| = σ , the following
assertions are equivalent:

(i) X̃∆ is quasi-projective.

(ii) There exists a piecewise affine linear function f which is strictly convex on ∆ (i.e. ∆ is
projective).

(iii) There is a monomial ideal I on Uσ such that X∆ → Uσ is the normalization of the admis-
sible formal blowing up of I .

3.6 Ampleness on the Boundary

If f is convex, but not necessarily strictly convex, then the corresponding line bundle Lf is
not necessarily ample on X̃∆ , so it does not necessarily yield an embedding. The question
is: How far is the corresponding morphism from being an embedding? This question can
be answered by the following proposition:

Proposition 3.6.1. Let f be a convex function on ∆ , not necessarily strictly convex. Let ∆f be
the unique polytopal subdivision of σ such that f is strictly convex on ∆f . Then there exists
n > 0 and monomials χi , i = 0, . . . , r generating Lnf on X∆ , such that the morphism

ψ̃ : X̃∆ −→ Prk, x 7→ (χ̃0 : . . . : χ̃r)

factorizes as follows:

X̃∆
//

ψ̃ !!CCCCCCCC
X̃∆f

i

��
Prk

where X̃∆ → X̃∆f
is the natural morphism and i is an immersion.

We can think of the resulting morphism ψ̃ as a blow-down of X̃∆ to X̃∆f
.
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Proof. Let L′f denote the line bundle on X∆f
given by f . Thus, by Lemma 3.5.3, there

is an n > 0 such that L̃′nf is very ample on X̃∆f
. As in the proof of Lemma 3.5.3, we

take generators χi , χ′ij of O(X̃σi) for every maximal polytope σi ∈ ∆f . Let i be the
corresponding immersion. Let {Ti} resp. {Tij} be the homogeneous coordinates on Pl

corresponding to χi resp. χ′ij . Then i maps X̃σi to Vi = {Ti 6= 0} . The corresponding
map of rings is given by

k[{Tj/Ti}, {Tkj/Ti}]� O(X̃σi)

Tj/Ti 7→ (χj/χi)∼, Tkj/Ti 7→ (χkj/χi)∼,

where the reduction is taken in O(X̃σi) . Now, let σ′is ∈ ∆ be a maximal polytope with
σ′is ⊂ σi , σi ∈ ∆f . The natural morphism O(X̃σi) → O(X̃σ′is

) sends each χ̃ ∈ O(X̃σi) to
the corresponding reduction on X̃σ′is

. This gives a chain of morphisms

k[{Tj/Ti}, {Tkj/Ti}]→ O(X̃σi)→ O(X̃σ′is
)

This corresponds to a morphism X̃σ′is
→ Ṽi given by {(χj/χi)∼} and {(χ′kj · χk/χi)∼}

which factors through X̃σi . But then the morphism ψ̃ : X̃∆ → Plk which is given by the
corresponding global sections {χi} and {χ′ij} of Lnf factors through X̃∆f

as claimed.

For the rest of the section, we will fix the following situation:

Notation 3.6.2. let σ0 be a polytope, and ∆0 be a polytopal decomposition of σ0 ; i.e.
|∆0| = σ0 . Let ∆ be a polytopal complex with support |∆| = σ such that σ0 lies in
the relative interior of σ and that ∆ agrees with ∆0 on σ0 . Let Ỹ∆ denote the closed
subscheme of X̃∆ which consists only of those components X̃∆,u of X̃∆ where u ∈ ∆0 .
Then Ỹ∆ is the schematic closure of X̃∆0 in X̃∆ . As every vertex of ∆0 lies in the interior
of σ , the corresponding fan of cones has support Rn . Thus, Ỹ∆ is proper over k by
Proposition 2.2.8; i.e. a k -compactification of X̃∆0 .

In the above situation, we will call ∆ a polyhedral extension of ∆0 . We say, ∆ is minimal
with respect to σ0 , if every maximal polytope τ ∈ ∆ has non-trivial intersection with σ0 .
This means that every component of X̃∆ meets X̃∆0 . Note that Ỹ∆ depends only on the
vertices u of ∆ and the corresponding fans of cones. These fans are determined only by
the maximal polytopes in ∆ which meet σ0 . Therefore, to any extension ∆ of ∆0 , we can
construct a minimal extension ∆′ such that Ỹ∆ = Ỹ∆′ .
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Figure 3.2: A minimal extension of ∆0 by ∆

Namely, if τ ∈ ∆ is a maximal polytope which does not meet σ0 , we find an affine linear
f with f < 0 on τ and f > 0 on σ0 . Replacing σ with σ′ := σ ∩ {f > 0} and ∆ with
its restriction to σ′ does not change Ỹ∆ . Thus, ∆′ is a minimal extension of ∆ .

Figure 3.2 illustrates Notation 3.6.2. The thick lines denote the edges of the complex ∆0 ,
the whole picture denotes the complex ∆ .

In the following, we want to discuss the notion of ampleness on the boundary in the above
situation. This notion has been introduced by Lütkebohmert [25] for Cartier divisors; we
will use the language of line bundles instead for our situation.

Definition 3.6.3. Let X be a proper, separated scheme of finite type over k . Let U be
an open dense subscheme of X . A line bundle L on X is called ample on the boundary of
U in X , if there exists a finite set of global sections s0, . . . , sr generating L such that the
induced morphism p : X → Prk satisfies the following two conditions:

(i) p is finite on X \ U .

(ii) p−1(Ar
k) = U for a suitable Ar

k ⊂ Prk .

Remark 3.6.4. If the above conditions hold, then p|U : U → Ar
k is proper, and the centre

B = {y ∈ Ar
k : dim p−1({y}) > 1}

of p|U is a finite set. Moreover, the Stein factorization of p|U shows that in fact U is the
modification of an affine scheme of finite type. For details, see [25].
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To characterize ampleness on the boundary for our situation, we will need the following
conditions on f :

Definition 3.6.5. Let ∆ , ∆0 as in Notation 3.6.2, and let f be a convex polyhedral func-
tion on ∆ . Then f is called strictly convex on the boundary of ∆0 in ∆ , if the following
conditions hold:

(i) There exists an affine linear function f0 such that f |σ0 = f0 and f < f0 on σ \ σ0 .

(ii) For every maximal polytope τi ∈ ∆ which does not lie in σ0 , there exists an affine
linear function fi such that f |τi = fi and f < fi on σ \ τi .

Definition 3.6.6. Let σ be a polytope, and let ∆ be a polytopal subvidision of σ . We say
∆ is strictly convex, if every proper face of σ is an element of ∆ ; i.e. if ∆ induces the trivial
decomposition on every proper face of σ .

Example 3.6.7. Let σ be the unit square. The following two decompositions of σ are
strictly convex, resp. not strictly convex:

strictly convex not strictly convex

Remark 3.6.8. If ∆0 is strictly convex, and f is strictly convex on the boundary of ∆0 in
∆ , then the polytopal complex ∆f where f is strictly convex is given by

∆f = {τ ∈ ∆ : τ 6⊂ σ0} ∪ {τ ; τ is a face of σ0}.

Note that the strict convexity of ∆0 guarantees that this is indeed a polytopal complex.

On the other hand, we have the following result:

Lemma 3.6.9. If there exists a polyhedral function f which is strictly convex on the boundary of
∆0 in ∆ , then ∆0 is strictly convex.
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Proof. Assume that ∆0 is not strictly convex. Thus, there is a face τ of σ0 which is subdi-
vided into polytopes τ1, . . . , τr with r > 2 . We may assume that τ has codimension 1 in
σ0 . Counting only those τi of maximal dimension, we may assume as well that τ, τ1, . . . , τr

have codimension 1 in σ0 . Let τ ′1, . . . , τ
′
r be the polytopes in ∆ such that τ ′i∩σ0 = τi . Now,

let g be an affine linear function with g = 0 on τ and g > 0 on σ0 . As τ has codimension
1 in σ0 , note that g is unique up to a positive multiplicative constant. As f is continuous
on τ ′i , there exists ci > 0 such that f = ci · g on τ ′i . Without loss of generality, we may
assume that τ ′1 ∩ τ ′2 6= ∅ . From the continuity of f on τ ′1 ∩ τ ′2 , we see that c1 = c2 . But this
contradicts the strict convexity of f .

Proposition 3.6.10. Let f be strictly convex on the boundary of ∆0 in ∆ . Then L̃f is ample on
the boundary of X̃∆0 in X̃∆ .

Proof. Let τ1, . . . , τr be the maximal polytopes in ∆ which do not lie in σ0 . Let f = fi

on τi and f = f0 on σ0 . For i = 0, . . . , r , we choose corresponding monomials χi =
aiζ

mi with fχi = fi . Due to Lemma 3.5.1, the monomials χ0, . . . , χr are global sections
generating Lf . We consider the corresponding morphism

ψ : X∆ −→ PrR, x 7→ (χ0 : . . . : χr).

Now, let ψ̃ be the restriction of ψ to Ỹ∆ . We want to show that ψ̃ satisfies the conditions
for ampleness on the boundary. At first, let V0 := {T0 6= 0} ∼= Ar

k ⊂ Prk . As f0 > f outside
of σ0 , we see directly that ψ̃−1(V0) = X̃∆0 .

Now, fix i ∈ {1, . . . , r} , and let Vi := {Ti 6= 0} . Again, as fi > f outside of τi , we have
ψ̃−1(Vi) = X̃τi ∩ Ỹ∆ =: Ỹτi . As X̃τi is affine, so is Ỹτi . As a k -module, O(Ỹτi) is generated
by the set of monomials

{χ̃m ; m ∈ C∨τi,u, u vertex of τi ∩ σ0}.

The corresponding morphism of rings is given by

Ai := k[T0/Ti, . . . , Tr/Ti] −→ O(Ỹτi), Tj/Ti 7→ (χj/χi)∼.

Thus we have to show that O(Ỹτi) is a finite module over Ai . Fix a common vertex u of
τi and σ0 . Then the set

Iu := {mj −mi ; j = 0 or u vertex of τi ∩ τj}
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generates C∨τi,u as a cone, and thus a sub-semigroup of C∨τi,u ∩ Zn of finite index. Then
there exists a finite set {mj,u} such that {χ̃mj,u} generates k[χ̃m; m ∈ C∨τi,u] as a module
over k[χ̃m; m ∈ Iu] . Taking I :=

⋃
Iu , the set {χ̃m; m ∈ I} generates O(Ỹτi) as a module

over k[{(χi/χk)∼}] . This proves that the restriction of ψ̃ to
⋃
Ỹτi is a finite morphism. As

Ỹ∆ \ X̃∆0 is a closed subset of
⋃
Ỹτi , the claim follows.

For the existence of a polyhedral function f which is strictly convex on the boundary of
∆0 , we need the following result, which is a stronger version of Proposition 3.3.4:

Proposition 3.6.11. Let ∆0 be strictly convex, and let ∆ be a polyhedral extension of ∆0 . Then
there exists

(i) a polytopal subdivision ∆′ of ∆ which coincides with ∆0 on σ0 ,

(ii) a subcomplex ∆′′ of ∆′ which is a minimal extension of ∆0 , and

(iii) a polyhedral function f on ∆′′ which is strictly convex on the boundary of ∆0 in ∆′′ .

Proof. Assume first that ∆ is a minimal extension of ∆0 . We have to show that there exists
a monomial ideal I inducing a subdivision ∆′ of ∆ which does not subdivide σ0 . Let
σ0 be given by f1 > 0, . . . , fr > 0 . We fix a maximal polytope τ ∈ ∆ not contained in
σ0 which is given by g1 > 0, . . . , gs > 0 . By the strict convexity of ∆0 , τ meets σ0 in a
common face τ ′ . Then there exists an affine linear function f0 with f0 = 0 on τ ′ such that
f0 > 0 on σ0 \ τ ′ and f0 < 0 on τ \ τ ′ . For c ∈ N large enough, we have gj + c · f0 > 0
on σ0 for all j , and c · f0 6 fi on τ for all i . Now, define Iτ by

Iτ := (0, f1, . . . , fr, c · f0, g1 + c · f0, . . . , gs + c · f0).

This induces a subdivision ∆τ of σ . One checks that τ, σ0 ∈ ∆τ . Repeating this process
for every maximal polytope τk ∈ ∆ which is not contained in σ0 , we find monomial
ideals I1, . . . , It with corresponding subdivisions ∆1, . . . ,∆t such that τk, σ0 ∈ ∆k for all
k . Taking J as the product of the Ik , the associated subdivision ∆′ is the intersection
of all ∆k . Thus, σ0 ∈ ∆′ , and ∆′ is a subdivision of ∆ . By subdiving further, we may
assume that ∆′ contains a minimal extension ∆′′ of ∆0 . By construction, ∆′′ allows a
polyhedral function which is strictly convex on the boundary of ∆0 in ∆′′ .

Now, if ∆ is not a minimal extension, we may assume after a suitable subdivision that ∆
contains a minimal extension ∆′ as a subcomplex. Applying the above construction to ∆′

and extending the ideal J to an ideal J on ∆ , we get the desired result.
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We conclude this section with a further result on the canonical morphism X̃∆ → Ũσ , where
∆ is a decomposition of σ , and Ũσ is the reduction of the affinoid polytopal domain Uσ,K

corresponding to σ .

Definition 3.6.12. Let X , Y be schemes of finite type over a field k . A morphism f : X →
Y is called a modification, if it satisfies the following conditions:

(i) f is proper

(ii) f∗OX = OY

(iii) The centre B = {y ∈ Y ; dimk(y)X ×Y k(y) > 1} is finite.

Note that the centre B is a closed subset of Y by [18, 13.1.5], and that f is an isomorphism
outside of B .

Proposition 3.6.13. Let ∆ be a decomposition of σ . The canonical morphism ψ̃ : X̃∆ → Ũσ is a
modification if and only if ∆ is strictly convex.

Proof. By [25, Prop. 5.4], X̃∆ is a modification of an affine scheme if and only if there exists
a compactification Ỹ of X̃∆ and a line bundle which is ample on the boundary of X̃∆ in
Ỹ . Due to Proposition 3.6.11, starting from any minimal extension of ∆ , we can construct
a suitable extension. One only has to check that X̃∆ is a modification of Ũσ . We can
however see the above result directly as follows:

Due to Proposition 3.2.1, we see that ψ̃ is proper. For the second condition, it is enough to
check that Γ(X̃∆,OX̃∆

) = Γ(Ũσ,OŨσ) . Note that f ∈ Γ(X∆,OX∆
) if and only if |f | 6 1 on

Xτ,K for every τ ∈ ∆ . But this is equivalent to |f |sup 6 1 on Uσ,K . For such a function f ,
f̃ = 0 in Γ(X̃∆,OX̃∆

) holds if and only if |f | < 1 on Xτ,K for every τ ∈ ∆ . Again, this is
equivalent to |f |sup < 1 on Uσ,K . This proves the second claim.

For the third claim, let τ be a face of σ , and let Oτ denote the corresponding torus orbit
in Ũσ . Then the inverse image of Oτ under ψ̃ is given as follows:

ψ̃−1(Oτ ) =
⋃
Oτ ′ ,

where τ ′ runs through all polytopes in ∆ which satisfy relint(τ ′) ⊂ relint(τ) . As ψ̃ is
torus invariant, a point y ∈ Oτ lies in B if and only if Oτ ⊂ B . But ψ̃−1(y) is finite for
y ∈ Oτ if and only if dim ψ̃−1(Oτ ) = dimOτ . This is true if and only if every proper face
τ of σ is not subdivided by ∆ . But this is exactly the strict convexity of ∆0 , so the claim
follows.



Chapter 4

Totally Degenerated Formal Schemes

In the following, let R be a discrete valuation ring with uniformizing parameter π , let K
be its field of fractions, k its residue field. We assume further that the residue field k is
separably closed. This condition is crucial for the construction of the Picard variety.

4.1 Definitions

Definition 4.1.1. Let X over R be a quasi-compact admissible formal scheme, and let
X

(ν)
0 , ν ∈ N denote the irreducible components of the special fibre X0 of X . We call X

totally degenerated, if the following conditions hold:

(i) The irreducible components of X0 are rational varieties over k with normal crossings;
i.e. every point x ∈ X0 has an open neighbourhood U such that its special fibre U0

is isomorphic to an open subset of

Spec k[ξ̃1, . . . , ξ̃s; ζ̃0, . . . , ζ̃r]/(ζ̃0 · . . . · ζ̃r)

(ii) X
(ν)
0 is a Cartier divisor in X for every ν ∈ N .

Remark 4.1.2. Condition (i) implies that, for every M ⊂ N , the intersection

XM
0 :=

⋂
ν∈M

X
(ν)
0

is strictly rational over k ; i.e. every point x ∈ XM
0 has an open neighbourhood which

is isomorphic to an open subset of AdimX−#M
k . Moreover, X0 is geometrically reduced.

Assertion (ii) then implies directly that any totally degenerated formal scheme is strictly
semi-stable.

49
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Lemma 4.1.3. Let X be a totally degenerated formal scheme, and let U = Spf A be a neighbour-
hood of x ∈ X0 as in condition (i) of Definition 4.1.1. Let ζi denote a lift of ζ̃i . Then there exists a
unit u ∈ A× such that

ζ0 · . . . · ζr · u = π.

Especially, on the generic fibre UK of U , we have

|ζ0(x)| · . . . · |ζr(x)| = |π|

for every x ∈ UK .

Proof. Assume without loss of generality that X = U , and that x is the point given by
ξ̃j(x) = ζ̃k(x) = 0 for all j = 1, . . . , s , k = 0, . . . , r . As X is strictly semi-stable, every ir-
reducible component X(i)

0 of X0 is a Cartier divisor. The corresponding ideal is generated
by ζi , where ζi is a lift of ζ̃i . Hence, we have π ∈ (ζ0) , and we may write π = u0 · ζ0 for
some u0 ∈ A× . Again, we have π ∈ (ζ1) . As (ζ1) is a prime ideal and ζ0 6∈ (ζ1) , we have
π = u1 · ζ0ζ1 . Continuing this way, we get π = u · ζ0 · . . . · ζr with u ∈ A× .

Notation 4.1.4. In the following, we will always assume that X is a totally degenerated
admissible formal scheme which is proper and connected. We fix a covering

U = {U (1), . . . , U (l)}

of X such that, for each i , the special fibre U
(i)
0 is given as in condition (i) of Defini-

tion 4.1.1. Moreover, we will assume that each U
(i)
0 contains the point x

(i)
0 given by

ξ̃j(x
(i)
0 ) = ζ̃k(x

(i)
0 ) = 0 for all j = 1, . . . , s , k = 0, . . . , r . Let U0 = {U (1)

0 , . . . , U
(l)
0 }

denote the corresponding covering of X0 . We will further assume that, for any subset
J ⊂ {1, . . . , l} , the intersection

⋂
j∈J U

(j) is connected.

Remark 4.1.5. The most important examples of totally degenerated formal schemes are
those which have an atlas U , where each U (i) is isomorphic to an open subsets of

Spf R〈ξ1, . . . , ξs; ζ0, . . . , ζr〉/(ζ0 · . . . · ζr − π).

All examples which we will presents in Chapter 5, such as Mumford curves or analytic tori
Gn
m/M , are of this type. However, it is not clear whether the converse holds; i.e. if every

totally degenerated formal scheme locally arises this way.
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Proposition 4.1.6. Let X be a proper totally degenerated formal scheme. Let X
(0)
0 be an ir-

reducible component of its special fibre X0 , which is not the whole of X0 , and let Y (0)
0 be the

intersection of the non-singular locus of X0 with X
(0)
0 . If r is the rank of O×(Y (0)

0 )/k× , then
X

(0)
0 meets at least r + 1 other irreducible components.

Proof. Let X(1)
0 , . . . , X

(s)
0 be the other irreducible components meeting X

(0)
0 . As X

(0)
0 is

not the whole of X0 , we have s > 1 . Let Z(i)
0 := X

(i)
0 ∩X

(0)
0 . Due to the strict semi-stability,

Z
(i)
0 is a Weil divisor on X

(0)
0 . As X(0)

0 is smooth, we have Y (0)
0 = X

(0)
0 \

⋃s
i=0 Z

(i)
0 . Now, let

D denote the group of Weil divisors on X
(0)
0 , and let DZ denote the subgroup generated

by Z
(1)
0 , . . . , Z

(s)
0 . Furthermore, let DH denote the group of principal divisors. Consider

the group morphism

ϕ : O×(Y (0)
0 )/k× → DH , f 7→ div(f).

Its image is contained in DH ∩ DZ , as any meromorphic function which is invertible on
Y

(0)
0 gives rise to a Weil divisor with support in Z

(1)
0 ∪ . . . ∪ Z(s)

0 . As X
(0)
0 is proper,

the only meromorphic functions f with div(f) = 0 are constants, so ϕ is injective. If
r = rkO×(Y (0)

0 )/k× , then rk(DZ ∩DH) > r . Moreover, as n ·Z(1)
0 is not a principal divisor

for any n 6= 0 , Z(1)
0 yields a non-torsion element in DZ/(DZ ∩ DH) , so DZ has at least

rank r + 1 . As DZ is generated by Z
(1)
0 , . . . , Z

(s)
0 , we have s > r + 1 .

Remark 4.1.7. The assertion of Proposition 4.1.6 may also hold if X is not proper. Namely,
consider the formal scheme X constructed by gluing the two affine formal schemes

U1 := Spf R〈ζ1, ζ2, π/(ζ1ζ2)〉, U2 := Spf R〈ζ1, 1/ζ2, πζ2/ζ1〉.

This is the formal scheme associated to the polytopal complex in R2 given by Figure 4.1.
The special fibre X0 consists of four components, one of which, say X

(0)
0 , is isomorphic to

A1
K × P1

K . The intersection with the other components X
(1)
0 , X(2)

0 , and X
(3)
0 is given by

{0} × P1
K , A1

K × {0} and A1
K × {∞} . Hence, X(0)

0 \ (X(1)
0 ∪X(2)

0 ∪X(2)
0 ) = G2

m,K . Hence,

its unit group has rank 2 , X(0)
0 meets 3 components, but X(0)

0 itself is not proper.

Refining the proof of Proposition 4.1.6 yields the following stronger result:

Proposition 4.1.8. Let X(0)
0 , Z(1)

0 , . . . , Z
(s)
0 be as in the proof of Proposition 4.1.6. If the images

of Z(1)
0 , . . . , Z

(s)
0 generate the Picard group PicX(0)

0 = D/DH , then

s > rkO×(Y (0)
0 ) + rk PicX(0)

0 .
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Figure 4.1: Polytopal complex for Remark 4.1.7

Proof. Due to the assumptions, PicX(0)
0 = DZ/(DZ ∩ DH) . But then, as in the proof of

Proposition 4.1.6, we see that

rk PicX(0)
0 = s− rk(DZ ∩DH) 6 s− rkO×(Y (0)

0 ).

This proves the claim.

The following is a useful result for the cohomology of the special fibre X0 of X , which
will allow us to easily compute the cohomology by the combinatorial configuration of the
sets U (i) .

Lemma 4.1.9. Let X be an open subset of Spec k[x1, . . . , xn]/(x1 · . . . · xr) for some r 6 n , and
let G be a constant sheaf on X . Then H i(X,G) = 0 for all i > 0 .

Proof. The case is clear for r = 0 . Namely, in that case X is irreducible, and hence, G is
flasque on X . Now, we perform induction by r and n . If r > 1 , let X1 be an irreducible
component of X , and let U := X \ X1 . Let j : X1 → X and i : U → X be the cor-
responding closed resp. open immersions, and let GX1 := j∗(G|X1) resp. GU := i!(G|U )
denote the extension of G by zero outside of X1 and U respectively. This yields an exact
sequence of sheaves

0→ GU → G→ GX1 → 0.
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This yields the following long exact sequence:

0→ H0(X,GU )→ H0(X,G)→ H0(X,GX1)→

→ H1(X,GU )→ H1(X,G)→ H1(X,GX1)→ · · ·

· · · → H i−1(X,GX1)→ H i(X,GU )→ H i(X,G)→ H i(X,GX1)→ · · ·

Note that we have H i(X,GX1) = H i(X1, G) by [22, Lemma 2.10]. For i = 0 , this yields

H0(X,G) = H0(X1, G) = G,

as X and X1 are both connected. Thus, we get the following long exact sequence:

0→ H1(X,GU )→ H1(X,G)→ H1(X1, G)→ H2(X,GU )→ · · ·

· · · → H i−1(X,GX1)→ H i(X,GU )→ H i(X,G)→ H i(X1, G)→ · · · (4.1)

For i > 1 , we have H i(X1, G) = 0 by the induction hypothesis. Hence, (4.1) yields

H i(X,GU ) ∼= H i(X,G)

for any i > 1 . Thus, it remains to show H i(X,GU ) = 0 for i > 0 . Let Ū denote the
Zariski closure of U in X . We can then identify GU with a sheaf on Ū with the same
cohomology. Let Y := Ū \ U . Then, again, we have an exact sequence of sheaves on Ū as
follows:

o→ GU → G→ GY → 0.

Note that Y satisfies the conditions of the Lemma with n′ := n − 1 , r′ := r − 1 , and
Ū satisfies the conditions of the Lemma with n′ := n , r′ := r − 1 . Thus, the induction
hypothesis yields

H i(Ū , G) = H i(Y,G) = 0.

Using the long exact sequence of cohomology again, this proves H i(X,GU ) = 0 , and the
claim follows.

Using a standard Leray argument, Lemma 4.1.9 yields the following result:

Proposition 4.1.10. Let X be a totally degenerated formal scheme, and let U0 denote the covering
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of X0 as in Notation 4.1.4. Then, for any constant sheaf G on X0 , we have H i(X0, G) =
Ȟ i(U0, G) .

4.2 The Universal Covering

Definition 4.2.1. Let X be a totally degenerated formal scheme, and let U = {U (i)} be an
affine covering of X as in Notation 4.1.4. We associate to X a simplicial complex ∆(X)
as follows: The vertices vi of ∆(X) are the affine sets U (i) . A set of vertices vi0 , . . . , vir

build an r -simplex if the intersection U (i0) ∩ . . . ∩ U (ir) is non-empty. We call ∆(X) the
nerve of the covering {U (i)} .

Remark 4.2.2. In Notation 4.1.4, we assumed that every intersection of the sets U (i) is
connected. Thus, any simplex is uniquely determined by its vertices.

In the following, let XK be the generic fibre of a totally degenerated formal scheme. We
want to construct a rigid analytic variety ΩK , which we will call the universal covering of
XK :

Let u∆ : ∆′ → ∆(X) be the universal covering of ∆(X) in the category of simplicial com-
plexes. For any vertex v of ∆′ , let Ω(v) be the affine formal scheme U (i) corresponding
to the vertex u(v) in ∆(X) . Two affine formal schemes Ω(v1) , Ω(v2) are glued together if
and only if v1 and v2 are connected by an edge of ∆′ . Locally on triangles, the universal
covering map is an isomorphism, so this construction preserves triple intersections. Hence,
this glueing yields an admissible formal scheme Ω , which is locally isomorphic to X , and
hence, also totally degenerated. The corresponding simplicial complex is exactly ∆′ ; we
will also write ∆(Ω) instead. As always, let ΩK denote the generic fibre, Ω0 the special
fibre.

Let Γ denote the group of deck transformations of u∆ : ∆′ → ∆ ; i.e. the set of automor-
phisms γ of ∆′ satisfying u∆ ◦ γ = u∆ . We can interpret Γ as the fundamental group
of ∆(X) ; i.e. each element γ ∈ Γ can be interpreted as a closed edge-path in ∆ . Let
Γ := Γ/[Γ,Γ] be the abelianization of Γ , where [Γ,Γ] is the commutator subgroup of Γ .
By Proposition 2.3.3, Γ is isomorphic to the first simplicial homology group H1(∆(X)) of
∆ .

Any γ ∈ Γ induces an automorphism of ΩK , which we will denote again by γ , and which
satisfies u◦γ = u . We may consider XK as the rigid analytic quotient of ΩK by the group
Γ ; we write XK = ΩK/Γ .
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We want to prove the following result:

Proposition 4.2.3. Any bounded holomorphic function on ΩK is constant.

In order to prove Proposition 4.2.3, we will apply methods similar to those of [6, §3]. As-
sume for the moment that K is algebraically closed.

Definition 4.2.4. Let X be an admissible formal scheme with generic fibre XK and re-
duced special fibre X0 , and let X(i)

0 be an irreducible component of X0 . We choose an
open affine subset Y (i)

0 of X(i)
0 which does not meet any other irreducible component, and

let Y (i)
K := π−1(Y (i)

0 ) denote the affinoid formal open subset of XK corresponding to Y
(i)

0 .
By [5, Prop. 6.2.3./5], the supremum norm ‖ · ‖

Y
(i)
K

is multiplicative. If f is a holomorphic

function on XK , we set |f |i := ‖f‖
Y

(i)
K

and call it the norm of f over the component X(i)
0 .

Note that this is independent of the choice of the open set Y (i)
K . If f 6= 0 , there exists a

constant ci ∈ K× such that |f |i = |ci| . Then the holomorphic function fi := c−1
i f has

norm 1 over X(i)
0 , so it reduces to a rational function f̃i on X

(i)
0 which is regular on Y

(i)
0 .

Now, consider the special case where UK = U
(i)
K is an affine piece of a totally degenerated

formal scheme as in Notation 4.1.4; i.e. the reduction U0 is given by an open subset of

Spec k[ξ̃1, . . . , ξ̃s; ζ̃0, . . . , ζ̃r]/(ζ̃0 · . . . · ζ̃r)

Let π : UK → U0 denote the reduction. Let U (i)
0 denote the irreducible component of U0

given by ζ̃i = 0 , and let Y (i)
0 denote the non-singular locus of U (i)

0 . Then Y
(i)

0 is given in
U0 by ζ̃j 6= 0 for j 6= i . Let Y (i)

K := π−1(Y (i)
0 ) , then Y

(i)
K is the formal open subset of UK

given by |ζj | = 1 for j 6= i . By Lemma 4.1.3, we have

|ζ0(x)| · . . . · |ζr(x)| = |π|

for every x ∈ UK , and hence |ζi| = |π| on Y
(i)
K .

Lemma 4.2.5. Let f be a holomorphic function on UK . Then the following assertions hold:

(i) If |f |j > |f |i , then f̃j vanishes on U
(j)
0 along U

(ij)
0 := U

(i)
0 ∩ U

(j)
0 .

(ii) Let

mji := ord
U

(ij)
0

f̃j

denote the order of f̃j on U
(j)
0 along U

(ij)
0 . Then |f |i > |f |j · |π|mji .
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Proof. Without loss of generality, we may assume i = 1 , j = 0 . As we only need to
consider the behaviour at Y (0)

K and Y
(1)
K , we may replace UK by its formal open subset

given by the equation |ζ2| = . . . = |ζs| = 1 , which we denote again by UK . Thus, the
reduction U0 of UK has only two irreducible components U

(0)
0 and U

(1)
0 . For assertion

(i), we may assume |f |0 = 1 . Then f reduces to a regular function f̃ on U0 which does
not vanish completely on U

(0)
0 and coincides with f̃0 there. On the other hand, f̃ = 0 on

U0 \ U (0)
0 , as |f | < 1 on Y

(1)
K . As the vanishing locus is closed, f̃ vanishes on the closure

of U0 \ U (0)
0 in U0 , which is U (1)

0 . This proves (i).

On U
(0)
0 , the ideal corresponding to U

(01)
0 is generated by ζ̃1 . Thus, we may write f̃0 =

g̃ζ̃m01
1 , where m01 is the order of f̃0 along U

(1)
0 , and g̃ is a regular function on U

(0)
0 which

does not vanish completely on U
(01)
0 . Now, consider the holomorphic function g := ζ−m01

1 f

on UK . As |ζ1| = 1 on Y
(0)
K , we have

|g|0 = |f |0 · |ζ1|−m01
0 = |f |0 = 1,

so g̃0 coincides with g̃ on U
(0)
0 . As g̃ does not vanish along U

(0)
0 ∩U

(1)
0 , assertion (i) yields

|g|0 6 |g|1 . Thus, using |ζ1| = |π| on Y
(1)
K , we get

|f |1 = |ζ1|m01
1 · |g|1 = |π|m01 · |g|1 > |π|m01 · |g|0 = |π|m01 · |f |0.

This proves (ii).

Corollary 4.2.6. In the situation of Lemma 4.2.5, we have mji +mij > 0 , where

mij := ord
U

(ij)
0

f̃i.

Proof. Reversing the roles of i and j yields |f |j > |f |i · |π|mij . Hence 1 > |π|mij+mji , from
which the claim follows immediately.

Proof of Proposition 4.2.3. If f is not a constant, we may assume that f(x1) = 0 for some
x1 ∈ ΩK . Otherwise, consider f ′ = f − f(x1) ; this is again a bounded holomorphic
function on ΩK . Let Ω(1)

0 be a component of Ω0 containing the reduction x̃1 . Then f̃1

vanishes at x̃1 . As Ω(1)
0 is proper, f̃1 necessarily has a pole along some prime divisor of

Ω(1)
0 . But f̃1 is regular over the non-singular locus of Ω(1)

0 , so f̃1 has a pole only along
an intersection with some component Ω(2)

0 . We choose an affinoid formal open subset UK
of ΩK as above, such that its special fibre U0 has non-trivial intersection with Ω(1)

0 ∩Ω(2)
0 .

Then we can apply Lemma 4.2.5 to see that |f |2/|f |1 > |π|m1 > 1/|π| , where m1 < 0 is
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the order of f̃1 along the intersection. But then, by Corollary 4.2.6, f̃2 has a zero along the
intersection with Ω(1)

0 of order at least −m1 . By the same reasoning as above, f̃2 has a
pole somewhere, so we find a component Ω(3)

0 such that |f |3 > 1/|π| · |f |2 > 1/|π|2 · |f |1 .
Continuing this way, we find an infinite sequence of components Ω(1)

0 ,Ω(2)
0 , . . . such that

|f |k > 1/|π|k−1|f |1 for every k > 1 . But then f is unbounded. This proves the claim.

4.3 The Picard Variety

In the following, let XK be a proper smooth rigid-analytic variety over K , together with
a K -rational point xK . Assume that XK has a strictly semi-stable formal model X over
the valuation ring R .

Let CK denote the category of pointed rigid-analytic varieties (VK , vK) , where VK is
smooth and connected over K and vk ∈ VK(K) is a K -rational point. The morphisms in
this category are the rigid morphisms respecting the points.

One defines the Picard functor

Pic0
XK/K

: CK → (sets), (VK , vK) 7→ Pic0
XK/K

(VK , vK),

where

Pic0
XK/K

(VK , vK) :=


LK line bundle on XK ×K VK ,

Isoclass(LK , λ) λ : OVK
∼→ (xK × idVK )∗LK ,

(idXK ×vK)∗LK ∼= OXK


Hartl and Lütkebohmert proved in [21] that this functor is represented by a smooth con-
nected group variety (PK , 1) , which is an extension

1→ TK → PK → QK → 1,

of an abeloid rigid-analytic group QK by an affine torus TK ; i.e. QK is smooth, connected
and proper. This means that there exists a line bundle P on XK×PK and an isomorphism
λP : OPK

∼−→ (xK×idPK )∗P such that for any smooth rigid space VK and any pair (L, λ) ∈
Pic0

XK/K
(VK) , there exists a unique morphism ϕ : VK → PK and a unique isomorphism

(L, λ) ∼−→ (idXK ×ϕ)∗(P, λP).
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The line bundle P is called the Poincaré bundle.

Moreover, the representing space PK is the 1-component of the general Picard functor,
which is given by

PicXK/K : (smooth rigid spaces)→ (sets), VK 7→ PicXK/K(VK),

where

PicXK/K(VK) :=

{
Isoclass(LK , λ) :

LK line bundle on XK ×K VK

λ : OVK
∼−→ (xK × idVK ) ∗ LK

}

In this section, we will assume that XK has a totally degenerated formal model. We will
use the construction of Hartl and Lütkebohmert in order to describe Pic0

XK/K
.

Let π be a uniformizing parameter of R . We set Rn := R/(πn+1) . As XK is proper over
K , we see that Xn := X ×R Rn is a proper flat Rn -scheme with geometrically reduced
special fibre. Due to a theorem of Artin [1, Theorem 7.1], the functor Pic0

Xn/Rn
on the

category of Rn -schemes locally of finite type is representable by an algebraic space P ′n

locally of finite type over Rn . This is a group scheme over Rn due to [2, Theorem 3.5], as
Rn is artinian. Due to [12, I, Exposé IVA , Proposition 2.4], it is of finite type. On every
level Xn ×Rn P ′n , we have a Poincaré bundle P ′n . Note that Xn+1 ×Rn+1 Rn = Xn ; hence
P ′n+1 ×Rn+1 Rn = P ′n . Thus, we have a projection P ′n+1 → P ′n . We can now consider the
direct limit

P ′ := lim
−→

P ′n.

then P ′ is a formal scheme which is topologically of finite type over R . In the same way,
setting P ′ := lim

←−
P ′n yields the Poincaré bundle on X × P ′ .

We will now give an explicit description of the Picard scheme P ′0 of the special fibre X0 of
X .

Let V be an irreducible k -scheme, and let X(1)
0 , . . . , X

(r)
0 denote the irreducible compo-

nents of X0 . Let X ′0 be the disjoint union
∐
X

(i)
0 , and let p : X ′0 → X0 be the projection.

Furthermore, let X ′′0 be the disjoint union
∐
i<j X

(i)
0 ∩X

(j)
0 . Let pi : X ′′0 → X0 for i = 1, 2

be the projection onto the first resp. second coordinate, and let q = p ◦ p1 = p ◦ p2 .

Now, let L be a line bundle on X0×V . The pull-back (p, id)∗L is given by line bundles Li
on X

(i)
0 × V . Moreover, we have isomorphisms ϕij : Li|(X(i)

0 ∩X
(j)
0 )×V

∼−→ Lj |(X(i)
0 ∩X

(j)
0 )×V
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which satisfy the cocycle condition ϕjk◦ϕij = ϕik on triple overlaps (X(i)
0 ∩X

(j)
0 ∩X

(k)
0 )×V .

We call (ϕij) a descent datum.

The morphism X ′0 × V → X0 × V is neither flat, nor does it have a section. However, we
will see in the following that descent in this situation has nice enough properties.

For the following result, see [20, Satz 4.8]:

Lemma 4.3.1. Let A = B[ζ0, . . . , ζs]/(ζ0, . . . , ζs) , where B is a k -algebra. Let Ai := A/(ζi)
and Aij := A/(ζi, ζj) . Then the following sequence is exact:

0 // A
α // A0 × · · · ×As

β //
⊕

i<j Aij

f � // (f̄ , . . . , f̄)

(f̄0, . . . , f̄s)
� // (. . . , f̄i − f̄j , . . .)

Proof. If f ∈ Ker(α) , then f ∈ (ζi) for all i . Thus f = ζ0 · f1 . As ζ0 6∈ (ζ1) , we have
f1 ∈ (ζ1) , hence f = ζ0ζ1 · f2 . Iteratively, we find f = ζ0 · · · ζs · fs+1 , which vanishes in A .
Hence, α is injective.

Let fi =
∑

ν a
(i)
ν ζ such that (f̄i) ∈ Ker(β) . We construct an element f with f̄ = f̄i as

follows: Let

bν :=

a
(i)
ν if νi = 0 for some i

0 otherwise.

This is well-defined, as a(i)
ν = a

(j)
ν if νi = νj = 0 . By construction, f reduces to f̄i modulo

ζi . This proves the claim.

Lemma 4.3.2. The functor L → (Li, ϕij) from line bundles on X0×V to line bundles on X
(i)
0 ×V

together with descent data is fully faithful.

Proof. See also [10, §6, Prop. 1]. Let L , M be line bundles on X0 × V . We want to show
that the following sequence of canonical maps is exact:

0→ HomX0×V (L,M)→ HomX′0×V (p∗L, p∗M)⇒ HomX′′0×V (q∗L, q∗M).

The assertion is local on X0 × V , so we may assume that V is affine, say V = Spec(B) .
Moreover, as X totally degenerated, we may replace X0 by an open affine subset Spec(A′)
of Spec k[ζ1, . . . , ζr]/(ζ1 · · · ζr) . Then X0 × V is isomorphic to an open subset Spec(A′) of
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Spec(A) , with A given as above. Let A′i = A′/(ζi) = Ai ⊗A A′ . Note that A′i is non-zero
if and only if there is an irreducible component X(i)

0 of X0 given by ζi = 0 . Furthermore,
set A′ij = A′/(ζi, ζj) . Due to Lemma 4.3.1, the following sequence is exact:

0→ A→ ⊕iAi ⇒ ⊕ijAij

As A′ is just a localization of A , and hence flat, this sequence stays exact if we replace A

by A′ , Ai by A′i and Aij by A′ij respectively. As L resp. M are coherent, they are given
by invertible modules L resp. M on X0 × V . As L and M are flat, tensoring yields the
following exact sequences

0→ L→ L⊗A′ (⊕iA′i)⇒ L⊗A′ (⊕ijA′ij)

0→M →M ⊗A′ (⊕iA′i)⇒M ⊗A′ (⊕ijA′ij)

From the injectivity of the map L→ L⊗A′ (⊕iA′i) , we conclude that the canonical map

HomX0×V (L,M)→ HomX′0×V (p∗L, p∗M)

is injective. Similarly, every homomorphism L⊗A′ (⊕iA′i)→M ⊗A′ (⊕iA′i) corresponding
to an element of Ker(p∗1, p

∗
2) restricts to an A -homomorphism L → M . Hence, Im p∗ ⊃

Ker(p∗1, p
∗
2) . The opposite inclusion is clear. From this, the claim follows.

In the following, we want to describe Pic0
X0

(V ) by studying the corresponding descent
data. Let L be a line bundle on X0 × V corresponding to an element of Pic0

X0
(V ) . Let

Li be the pull back of L to X
(i)
0 × V . As X

(i)
0 is a rational variety over k , we know that

Pic0

X
(i)
0

is trivial. As the whole problem is local on V , we may assume that V is affine,

say V = Spec(B) and hence, that Li is trivial. Thus, the descent datum (ϕij) is given by
a cocycle (cij) with cij ∈ Γ((X(i)

0 ∩ X
(j)
0 ) × V,O×X0×V ) . However, as X

(i)
0 is proper, so is

X
(i)
0 ∩X

(j)
0 , and we have in fact cij ∈ Γ(X(i)

0 ∩X
(j)
0 ,O×V ) , where we identify O×V with the

constant sheaf Γ(V,O×V ) on X0 .

We associate to X the dual simplicial complex ∆D as follows: The vertices of ∆D are the
irreducible components of X0 . An l -simplex [v0, . . . , vl] corresponds to the intersection of
the corresponding irreducible components. Now, let G be an arbitrary abelian group. The
simplicial cochain complex with coefficients in G is then given by

0→
⊕
i

Γ(X(i)
0 , G) δ0−→

⊕
i<j

Γ(X(i)
0 ∩X

(j)
0 , G) δ1−→

⊕
i<j<k

Γ(X(i)
0 ∩X

(j)
0 ∩X(j)

0 , G)→ · · ·
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Let H1(∆D, G) = Ker δ1/ Im δ0 denote the first cohomology group with coefficients in G .
We write H1(∆D,Gm,k) for the group functor V 7→ H1(∆D,O×V ) .

Lemma 4.3.3. The group functor H1(∆D,Gm,k) is isomorphic to a finite product of copies of Gm,k

and various µm , where µm denotes the group of m -th roots of unity.

Proof. The universal coefficient theorem of cohomology (Proposition 2.3.1) yields

H1(∆D,Gm,k) ∼= Hom(H1(∆D),Gm,k),

and this isomorphism is functorial. As the simplicial complex ∆D is finite, H1(∆D) is a
finitely generated abelian group. After a suitable choice of generators, we may write

H1(∆D) = Zr ⊕ Z/m1Z⊕ · · · ⊕ Z/miZ.

This yields the desired decomposition

H1(∆D,Gm,k) = Gr
m,k ⊕ µm1

⊕ · · · ⊕ µms .

Lemma 4.3.4. Let p = char k . Then

Pic0
X0
∼= Gr

m,k ⊕ µpl1 ⊕ · · · ⊕ µpls .

Proof. At first, we consider the morphism Pic0
X0

(V )→ H1(∆D,Gm,k) , sending a line bun-
dle on X0 × V to its descent datum (cij) . Changing the isomorphism Li

∼−→ O
X

(i)
0 ×V

corresponds to changing the cocycle (cij) by a coboundary. Hence, by Lemma 4.3.2, this
morphism is injective.

On the other hand, let (cij) ∈ H1(∆D,Gm,k) . We want to construct a line bundle L ∈
PicX0(V ) which has exactly this descent datum. We may cover X0 × V with open affine
subsets Y (k) = Spec(A′(k)) such that Y (k) is isomorphic to an open subset of Spec(A) as
above. We assume that Y (k) meets the components X

(1)
0 , . . . , X

(r)
0 , with X

(j)
0 ∩ Y (k) =

V (ζj) . By applying the Chinese Remainder Theorem, we can construct a rational function
lk on Y (k) which is 1 on V (ζ0) and ci0 on V (ζi) for i > 0 . Repeating this for every
Y (k) defines a Cartier divisor (Y (k), lk) on X0 × V which gives rise to a line bundle L′

on X0 × V . By construction, L induces the descent datum (cij) we started with. If (cij)
comes from a line bundle L′ ∈ Pic0

X0
(V ) , we have L′ ∼= L .
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Thus, the canonical inclusion Pic0
X0

↪→ PicX0 factors as follows:

Pic0
X0

� � //
� t

&&NNNNNNNNNNN
H1(∆D,Gm,k)

��
PicX0

Hence, the identity component Pic0
X0

of PicX0 agrees with the identity component of
H1(∆D,Gm,k) . However, if char k = p , the identity component of the group scheme µmi
is given by µpli , where li is maximal such that pli divides mi . Thus, the claim follows
with Lemma 4.3.3.

Now we can continue to construct the rigid analytic Picard variety Pic0
XK/K

. Note, that in
general, the formal scheme P ′ does not need to be flat over R . This is related to the fact
that a line bundle on Xn does not necessarily lift to a line bundle on Xn+1 . By dividing
out the nilpotent structure of P ′ and the π -torsion, we get a closed subscheme

P̄ ′ := P ′/(N : π) ↪→ P ′,

where, for any open subset U ⊂ P ′ , we define

N (U) := {f ∈ OP ′(U) ; f nilpotent},

(N : π)(U) := {f ∈ OP ′(U) ; πnf ∈ N (U) for some n > 0}.

Thus, P̄ ′ is reduced and flat over R and has a group structure which is induced from the
group structure of P ′ . The pointed formal scheme (P̄ ′, 1) represents the functor Pic0

X/R

of trivialized and rigidified line bundles on the category of pointed admissible formal R -
schemes which are reduced and connected.

The generic fibre P̄ ′rig of P̄ ′ is geometrically reduced, and hence smooth. Its 1 -component
P̄K := (P̄ ′rig)0 has finite index in P̄ ′rig . It is quasi-compact and hence has a smooth formal
model P̄ over R . The pointed rigid space (P̄K , 1) represents the functor Pic0

XK/K
on the

category C̄K of pointed rigid space (VK , vK) over K , where VK is smooth and connected
over K and has a smooth formal model V over K . The canonical map P̄ → P̄ ′ → P ′

induces a finite surjective map P̄0 → P ′0 on special fibres. Pulling back the line bundle P ′ ,
we obtain the Poincaré bundle P̄ on X ×R P̄ .

In our case, as P ′0 is affine, P̄0 is also affine, and smooth, as P̄ is smooth. Thus, using
Lemma 4.3.4, P̄0 is a torus T0

∼= Gr
m,k . But then P̄ is a formal torus T̄ ∼= Ḡr

m,R , and its
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generic fibre is given by

T̄K := {(x1, . . . , xr) ; |xi| = 1}

It is in a natural way embedded into the affine torus T̂K := Gr
m,K . The rigidified Poincaré

bundle (P̄, ρ̄) on XK×K T̄K extends to a unique rigidified line bundle (P̂K , ρ̂) on XK×K
T̂K .

Now, let K denote the topological algebraic closure of K . We define

M := {p ∈ T̂K(K) ; (idXk ×p)
×P̂ ∼= OXK}.

Due to [21, Lemma 3.10], M is a K -rational lattice in T̂K(K) . Moreover, M satisfies
M ∩ T̄K = {1} . Dividing out the lattice M yields a rigid group variety TK = T̂K/M . Due
to [21, Theorem 3.14], the pair (TK , 1) represents the functor Pic0

XK
on the category of

pointed rigid spaces (VK , vK) where VK is smooth and connected, and vK is a K -rational
point. Thus, we have shown the following result:

Theorem 4.3.5. Let XK be the generic fibre of a totally degenerated formal scheme which is proper.
On the category of smooth and connected rigid spaces, the Picard functor Pic0

XK/K
is represented by

a quotient TK/M , where TK is a split torus, and M is a lattice in TK such that M ∩ T̄K = {1} .

Remark 4.3.6. The lattice M does not necessarily have full rank; i.e. Pic0
XK/K

is not nec-
essarily proper. A well-known example is the Hopf surface, which is discussed in §4.5.26.
A new example, the sheared torus, will be presentend in §5.5.

4.4 Automorphic Functions

In the last section, we saw that the Picard variety of XK is given by Gr
m,K/M , if XK has

a totally degenerated formal model. The rank r of the torus was given by the rank of
H1(∆D,Gm,k) , where H1(∆D,Gm,k) parametrizes the glueing of trivial line bundles on
each irreducible component of X0 along their intersections. However, in order to find a
more suitable description of line bundles on XK , it is better to see this from a dual point of
view.

Namely, by [20, Proposition 3.8], the torus Gr
m,K can be recovered as follows: We choose

a basis n(1), . . . , n(r) of H1(XK ,Z) , which is canonically isomorphic to H1(X0,Z) . How-
ever, due to Lemma 4.1.9, we have H1(X0,Z) = Ȟ1(U,Z) , where U = {U (i)} denotes the
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covering of X as in Notation 4.1.4. Thus, the cocycles n(k) = (n(k)
ij ) can be chosen with

respect to the formal covering {U (i)
K } of XK . Then, for (t1, . . . , tr) ∈ Gm,K , setting

(tij) := (t
n

(1)
ij

1 · . . . · t
n

(r)
ij
r )

yields an element of Ȟ1(U,Gm,K) which describes a line bundle in Pic0
XK/K

. Any line
bundle in Pic0

XK/K
arises this way. Note, however, that not every element of Ȟ1(U,Gm,K)

describes an element of Pic0
XK/K

, see also Lemma 4.4.6.

We will explain in the following how to interpret the torus in terms of the universal cover-
ing. Let u : ΩK → XK be the universal covering of XK , Γ the group of Deck transforma-
tions.

Definition 4.4.1. A Γ -automorphic form on Ω is a meromorphic function u such that for all
γ ∈ Γ there exists a constant c(γ) ∈ K× with

u(γ(z)) = c(γ) · u(z)

for all z ∈ Ω . The mapping c : Γ → Gm,K , γ 7→ c(γ) is called the factor of automorphy
of f . We denote the group of Γ -automorphic forms by Θ , and the subgroup of invertible
automorphic forms by Θ× .

Remark 4.4.2. The factor of automorphy c is automatically a group homomorphism. Thus,
c factors through the commutator factor group Γ := Γ/[Γ,Γ] .

Definition 4.4.3. Let L = ΩK ×A1 denote the trivial line bundle on ΩK . A Γ -linearization
α of L is a Γ -action on L of the form

αγ : ΩK × A1 −→ ΩK × A1, γ ∈ Γ
(x, a) 7−→ (γ(x), eγ(x) · a),

where eγ ∈ O×ΩK and γ → eγ is a 1 -cocycle for Γ , i.e.

eγ′·γ(x) = eγ′(γ(x)) · eγ(x)

for all x ∈ ΩK . Two Γ -linearizations α , α′ are isomorphic if there exists an invertible
function f ∈ O×ΩK such that

e′γ(x) = eγ(x) · f(γ(x))/f(x).
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We say the linearization α is of constant type if eγ(x) is constant on ΩK . In that case,
γ → eγ is a group homomorphism from Γ to K× .

Lemma 4.4.4. Let L be a line bundle on XK which is given by a cocycle (tij) ∈ Ȟ1(U,Gm,K) ,
where U := {U (i)

K } . Then the pull-back u∗L on ΩK is trivial.

Proof. The cocycle (tij) pulls back to a cocycle on ΩK with respect to the covering

{γ(U (i)
K )}γ∈Γ,i∈I ,

which defines the line bundle u∗L on ΩK . The cocycle (tij) then yields a cocycle on ∆(Ω)
for the simplicial cohomology. However, as ∆(Ω) is the universal covering of ∆(X) and
hence simply connected, this cocycle is trivial on ∆(Ω) . Hence, it is trivial on ΩK , and
u∗L is the trivial line bundle.

We will now show how to explicitly construct a line bundle to any Γ -linearization α of
constant type. Let α be given by a group homomorphism c : Γ → Gm,K . At first, we
will construct a cocycle (tij) ∈ Ȟ1(U,Gm,K) from c . For any U

(i)
K , choose a connected

component Ω(i)
K of u−1(U (i)

K ) . Let ui : Ω(i)
K → U

(i)
K denote the restriction of u to Ω(i)

K .
Then, for every pair i, j such that U (i)

K ∩ U
(j)
K 6= ∅ , there exists γij ∈ Γ with

u−1
j (U (i)

K ∩ U
(j)
K ) = γij(u−1

i (U (i)
K ∩ U

(j)
K )).

If U (i)
K ∩ U

(j)
K ∩ U

(k)
K 6= ∅ , we have γij · γjk = γik .

Now, we can define a cocycle (tij) ∈ Ȟ1(U,Gm,K) via tij := c(γij) . Let L(c) denote the
line bundle on XK given by the cocycle (tij) . Then L(c) is given by patching the trivial
line bundles U (i)

K × A1
K via the cocycle (tij) .

Lemma 4.4.5. The above construction yields a one-to-one correspondence between the following
sets:

(i) Group homomorphisms c : Γ→ Gm,K ,

(ii) Γ -linearizations of the trivial line bundle on ΩK of constant type,

(iii) Cocycles (tij) ∈ Ȟ1(U,Gm,K) with respect to the covering U = {U (i)
K } of XK .

Proof. The correspondence between (i) and (ii) follows from Definition 4.4.3. For the rest, let
L(c) be defined as above. As U (i)

K ×A1
K is isomorphic to Ω(i)

K ×A1
K via ui , the line bundle
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L(c) can also be described by patching Ω(i)
K × A1

K with Ω(j)
K × A1

K via the Γ -linearization

Ω(i)
K × A1

K Ω(j)
K × A1

K

∪ ∪
u−1
i (U (i)

K ∩ U
(j)
K )× A1

K −→ u−1
j (U (i)

K ∩ U
(j)
K )× A1

K

(x, a) 7−→ (γij(x), c(γij) · x)

Thus, L(c) is just the quotient of the trivial line bundle ΩK ×A1
K by the given action of Γ .

For the converse, let L be a line bundle given by a cocycle (tij) . Due to Lemma 4.4.4, its
pull back u∗L to ΩK is trivial; i.e. there is an isomorphism u∗L ∼→ ΩK × A1

K . Moreover,
as seen in the proof, it can be trivialized by a coboundary (ti) with values in Gm,K . Note
that Γ acts canonically on u∗L such that the quotient of u∗L modulo this action is just
the line bundle L . This Γ -action carries over to the trivial line bundle ΩK × A1

K as a Γ -
linearization. As the cocycle (tij) on ΩK can be trivialized in Gm,K , this Γ -linearization
is constant.

As isomorphism classes of line bundles correspond bijectively to isomorphism classes of
Γ -linearizations, the following holds:

Now, let T (Γ) denote the torsion subgroup of Γ , and let Γ̃ = Γ/T (Γ) . Then Γ̃ is a free
abelian group.

Lemma 4.4.6. Let L(c) be a line bundle on XK given by a group homomorphism c : Γ→ Gm,K .
Then L(c) gives rise to a point of Pic0

XK/K
if and only if c factorizes through Γ̃ .

Proof. Let n(1), . . . , n(r) denote a basis of H1(U,Z) . As above, this induces a morphism

Gr
m,K ↪→ Ȟ1(U,Gm,K) ∼= Hom(Γ,Gm,K).

Again, due to the universal coefficient theorem of cohomology (Proposition 2.3.1), we have

Ȟ1(U,Z) = H1(∆(X),Z) ∼= Hom(Γ,Z).

Thus, after a suitable choice of generators for Γ , we can write Γ =
⊕s

i=1 Z/miZ ⊕ Zr ,
where r = rkH1(X(∆),Z) , and hence

Hom(Γ,Gm,K) ∼=
s⊕
i=1

µmi ⊕Gr
m,K ,
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where µmi denotes the group of mi -th roots of unity. As Gr
m,K is connected, it is mapped

into a connected subgroup of Hom(Γ,Gm,K) . Thus, the image is exactly the torus part
Gr
m,K , which corresponds to those c : Γ → Gm,K which are trivial on the torsion part

T (Γ) . Hence, every c coming from an element of Gr
m,K factorizes through Γ̃ , and vice

versa.

Lemma 4.4.7. The line bundle L(c) is isomorphic to the trivial line bundle on XK if and only if
c is the factor of automorphy of an invertible function f on ΩK .

Proof. By Definition 4.4.3, the Γ -linearization of constant type corresponding to c is iso-
morphic to the trivial linearization if and only if there exists an invertible function f ∈ O×ΩK
such that

c(γ) = f(γ(x))/f(x)

for all x ∈ ΩK ; i.e. f is an invertible automorphic function with factor of automorphy
c .

Definition 4.4.8. We define the following groups:

• Ĵ := Hom(Γ̃,Gm,K) ,

• J := Hom(Γ̃,Gm,K)

• M := {c ∈ Ĵ ; c is a factor of automorphy of an invertible function } .

Lemma 4.4.9. For the subgroup M , we have M ∩ J = {1} .

Proof. Let c be the factor of automorphy of an invertible function f , and let |c(γ)| = 1 for
all γ ∈ Γ . Then |f(z)| = |f(γ(z))| for all γ ∈ Γ . For any vertex v of ∆(X) , choose a lift
v′ ∈ ∆(Ω) of v . Let F :=

⋃
v∈∆(X) ΩK(v′) . Then F is a finite union of affinoid subsets.

Hence, |f | is bounded on F . Moreover, as ‖f‖F = ‖f‖γ(F ) for all γ ∈ Γ , we see that |f |
is bounded on the whole of ΩK . But then f is constant, due to Proposition 4.2.3. Thus, c
is trivial, and the claim follows.

In the following, we fix a basis γ1, . . . , γr of Γ̃ . This yields an isomorphism

Ĵ −→ Gr
m,K , c 7−→ (c(γ1), . . . , c(γn)).

We will always identify Ĵ with Gr
m,K via this map.
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Lemma 4.4.10. M is a lattice in Ĵ .

Proof. As above, identify Ĵ with Gr
m,K . On the quotient Ĵ/J , we have a valuation map

val : Ĵ/J → Zr, c 7→ (− log|π| |c1|, . . . ,− log|π| |cr|),

this is an injective group homomorphism. Then M is mapped bijectively to a subgroup of
Zr , hence it is a lattice.

Lemma 4.4.11. Let Θ× denote the group of invertible automorphic forms on ΩK . Identify Ĵ with
Gr
m,K as above. Then

ψ : Θ× −→M, f 7−→ (γ∗1(f)/f, . . . , γ∗r (f)/f)

is a group epimorphism with Kerψ = K× .

Proof. Note that ψ sends every invertible automorphic form f to its factor of automorphy,
so ψ is surjective by the definition of M . If f is an invertible automorphic form with
trivial factor of automorphy, then a similar argument as in the proof of Lemma 4.4.9 shows
that f is constant. This proves the claim.

Combining Lemma 4.4.5 and Lemma 4.4.6, we get the following result:

Theorem 4.4.12. The functorial mapping

Ĵ −→ Pic0
XK/K

, c 7−→ L(c)

is a group epimorphism with kernel M ; i.e. the quotient J := Ĵ/M represents the functor
Pic0

XK/K
on the category of smooth and connected rigid spaces.

Note that, as already mentioned in Theorem 4.3.5, the lattice M does not necessarily have
full rank. In our situation, Lemma 4.4.11 yields the following result.

Theorem 4.4.13. The rigid analytic Picard variety Pic0
XK/K

is proper if and only if

rk Θ×/K× = rk Γ/[Γ,Γ];

i.e. if and only if there are “enough” invertible automorphic forms.
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4.5 General Polytopal Domains

In this section, we will discuss a special class of totally degenerated formal schemes, which
are built from polytopal domains.

Definition 4.5.1. Let UK = Sp(A) be an affinoid variety such that UK is isomorphic to
some affinoid polytopal domain. An affinoid subdomain V ⊂ UK is called a face of UK , if
there exists a function f ∈ A× such that

V = {x ∈ UK ; |f(x)| = max
u∈UK

|f(u)|}

If ϕ : UK → Gn
m exhibits UK as an affinoid polytopal domain in Gn

m , the coordinates
ζ1, . . . , ζn of Gn

m give rise to coordinates on UK . Let σ := val(UK) ⊂ Rn . If V is a face of
UK as above, then f can be written as f = cζa1

1 · . . . · ζann (1 + h) . Then τ := val(V ) is the
subset of σ where u 7→ 〈a, u〉 assumes its maximum. Hence, τ is a face of σ . Hence, the
above definition is just a way to characterize subsets of UK corresponding to faces τ of σ ,
without actually choosing coordinates on UK .

Definition 4.5.2. A general polytopal domain is a separated rigid analytic space XK which
has a covering by affinoid subsets U (i)

K , where U
(i)
K is isomorphic to an affinoid polytopal

domain in Gn
m for some n , and U

(i)
K ∩ U

(j)
K is a collection of faces of U (i)

K resp. U (j)
K .

Remark 4.5.3. Any covering by general polytopal domains U
(i)
K as above is a formal cov-

ering, so it gives rise to an admissible formal scheme X with generic fibre XK . We call
this a general formal polytopal domain.

Example 4.5.4 (The Tate curve). The Tate curve Gm/q
Z , where q ∈ K with 0 < |q| < 1 can

be constructed as follows: Let

U
(1)
K := {z ∈ Gm ; |q| 6 |z| 6 |q|1/2}

U
(2)
K := {z ∈ Gm ; |q|1/2 6 |z| 6 1}

V
(1)
K := {z ∈ Gm ; |z| = |q|} ⊂ U (1)

K

V
(2)
K := {z ∈ Gm ; |z| = 1} ⊂ U (2)

K

We identify V
(2)
K with V

(1)
K via multiplication with q . Glueing along this identification

and canonically along the intersection U
(1)
K ∩ U

(2)
K yields the analytic torus Gm/q

Z .
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Remark 4.5.5. Being a general polytopal domain is a very restrictive condition. In dimen-
sion 1 , the Tate curve constructed above is the only example of a proper general polytopal
domain.

Recall that, on Gn
m , we have the valuation map

val : Gn
m → Rn, (x1, . . . , xn) 7→ (− log |x1|, . . . ,− log |xn|).

Similarly, one can associate to a general polytopal domain XK a valuation space.

Notation 4.5.6. Let O×(1) be the subsheaf of O× on XK defined by

O×(1)(U) := {1 + h ; |h| < 1 on U}.

Let S = O×/O×(1) denote the quotient sheaf.

Lemma 4.5.7. Let UK be an affinoid polytopal domain of dimension n , then

S(UK) ∼= (K ′)× ⊕ Zn,

where (K ′)× = K×/{1 + c ; |c| < 1} .

Proof. As shown in Chapter 6, the sheaf O×(1) has trivial cohomology on UK . Thus, we
have H1(UK ,O×(1)) = 0 , and hence H0(UK , S) = H0(UK ,O×(1))/H0(UK ,O×) . How-
ever, after a choice of coordinates ζ1, . . . , ζn on UK , every element f ∈ O× can be written
in the form f = c ·ζm1

1 · . . . ·ζmnn (1+h) , with |h| < 1 on UK , c ∈ K× , where c is unique up
to multiplication by an element of the form 1+ε , |ε| < 1 . From this, the claim follows.

In the following, let U := {U (i)
K } denote the covering of XK by affinoid polytopal domains.

We assume that the covering is fine, i.e. that the intersection U
(i)
K ∩ U

(j)
K is connected for all

i, j .

Any element ξ ∈ S(U (i)
K ) gives a unique mapping

f : U (i)
K → R, x 7→ − log |ξ(x)|.

Any choice of a basis c, ξ(1), . . . , ξ(n) of S(U (i)
K ) yields a mapping

(f1, . . . , fn) : U (i)
K → Rn, x 7→ (− log |ξ(1)(x)|, . . . ,− log |ξ(n)(x)|).
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The image of U (i)
K is a Γ -rational polytope σ(i) in Rn . A different choice of basis gives

a different polytope, which can be obtained from σ(i) by an affine-linear transformation.
Thus, we can associate to U

(i)
K a topological polytope σ(i) . A face of U

(i)
K is identified

with a face of σ(i) . Thus, the set ∆ := {σ(i)} has the structure of a polytopal complex.
Moreover, any ξ ∈ S(U (i)

K ) induces a real-valued polyhedral function f on σ(i) . Thus, we
get a finitely generated abelian group Li of real-valued functions on every σ(i) . We have
Li ∼= v(K×) ⊕ Zr , where r = dimσ(i) , and v(K×) is the value group of K× . This yields
an integral structure on ∆ . We call ∆ the valuation space of XK .

In contrast to polytopal domains in Gn
m , a general polytopal domain XK is not uniquely

determined by the associated polytopal complex ∆ , as ∆ does not contain all necessary
glueing data:

Example 4.5.8. Consider again the Tate curve. The sets U
(1)
K and U

(2)
K correspond to the

line segments [0, 1/2c] and [1/2c, c] of R1 , where c = v(q) . The polytopal complex is
then given by these two line segments, glued via identifying the point c with the point 0 .
Note that this depends only on c , so if |q1| = |q2| , both give the same polytopal complex,
although the corresponding Tate curves are not isomorphic.

From Proposition 2.4.1 and § 3.4, we get the following:

Proposition 4.5.9. Let X be a general formal polytopal domain over R . Then there exists a finite
extension R′ of R and a general polytopal domain X ′ over R′ such that X ′ is a strictly semi-
stable formal model of XK⊗KK ′ , where K ′ is the field of fractions of R′ . Especially, X ′ is totally
degenerated.

Thus, in the following we will assume that XK has a strictly semi-stable formal model
which is general polytopal. This means that XK has a formal covering U := {U (i)

K } where
every U

(i)
K is isomorphic to the affinoid standard simplex. This allows us to construct the

universal covering u : ΩK → XK . In the situation of general polytopal domains, we can
associate to ΩK a universal valuation map val : ΩK → Rn . We will do so in the following:

Lemma 4.5.10. Let ξ(i) be a unit on Ω(i)
K . Then, for j 6= i with Ω(i)

K ∩ Ω(j)
K 6= ∅ , there is a unit

ξ(j) on Ω(j)
K such that ξ(i)/ξ(j) = 1 + h , where |h| < 1 on Ω(i)

K ∩ Ω(j)
K . The unit ξ(j) is unique

up to multiplication by 1 + h′ , with |h′| < 1 on Ω(j)
K .

Proof. As ξ(i) is a unit on Ω(i)
K ∩ Ω(j)

K , we may write ξ(i) = cζm1
1 · . . . ζmnn (1 + h) , where

ζ1, . . . , ζn denote coordinates on Ω(j)
K . Thus, ξ(j) := cζm1

1 · . . . · ζmnn satisfies the conditions
of the lemma.
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Lemma 4.5.11. Under the conditions of the above lemma, if Ω(i)
K ∩Ω(j)

K ∩Ω(k)
K 6= ∅ , then ξ(j)/ξ(k) =

1 + h holds on Ω(j)
K ∩ Ω(k)

K .

Proof. On Ω(j)
K ∩Ω(k)

K , we can write ξ(j) = cζm1
1 ·. . .·ζmnn (1+h) with |h| < 1 on Ω(k)

K , where
ζ1, . . . , ζn denote the coordinates on Ω(k)

K . On the other hand, we have ξ(i) = ξ(j)(1 +g) on
Ω(i)
K ∩ Ω(j)

K and ξ(i) = ξ(k)(1 + g′) on Ω(i)
K ∩ Ω(k)

K . Without loss of generality, we may write
ξ(k) = c′ζ

m′1
1 · . . . · ζm

′
n

n . Thus, on Ω(i)
K ∩ Ω(j)

K ∩ Ω(k)
K , we have the identity

ξ(j) = cζm1
1 · . . . · ζmnn (1 + h)

= c′ζ
m′1
1 · . . . · ζm′nn (1 + g′)/(1 + g)

Thus, we have c = c′ and m1 = m′1, . . . ,mn = m′n . Hence, ξ(j) = ξ(k)(1+h) on Ω(j)
K ∩Ω(k)

K .
This proves the claim.

Proposition 4.5.12. Let S = O×/O×(1) as in Notation 4.5.6. Then S(ΩK) ∼= K ′ ⊕ Zn , where
K ′ := K×/{1 + c; |c| < 1} , and n = dim ΩK .

Proof. By Lemma 4.5.7, it is enough to show that any element of S(Ω(i)
K ) extends to a unique

element of S(ΩK) . Without loss of generality, we choose i = 0 . Let ξ(0) ∈ S(Ω(0)
K ) . For

any j , we choose an edge-path α := v0, v1, . . . , vj in ∆(Ω) . Due to Lemma 4.5.10, we
can iteratively choose elements ξ(1), . . . , ξ(j) with ξ(k) ∈ S(Ω(k)

K ) such that ξ(k) = ξ(k+1)

in S(Ω(k)
K ∩ Ω(k+1)

K ) . Due to Lemma 4.5.11, the choice of ξ(j) does not depend on the
equivalence class of α . As ∆(ΩK) is simply connected, all such edge-paths are equivalent.
Hence, ξ(j) is well-defined. Repeating this construction for every j , we can glue all ξ(j)

together to a unique ξ ∈ S(ΩK) which extends ξ(i) . On the other hand, every ξ ∈ S(ΩK)
restricts to a unique ξ(i) ∈ S(Ω(i)

K ) . This shows S(Ω(i)
K ) ∼= S(ΩK) for every i , which proves

the claim.

Again, fix coordinates ζ1, . . . , ζn on Ω(i)
K for some fixed i . Let ξ1, . . . , ξn denote the images

of ζ1, . . . , ζn in S(ΩK) . Then

val : ΩK → Rn, x 7→ (− log|π| |ξ1(x)|, . . . ,− log|π| |ξn(x)|)

is a well-defined function on ΩK .
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Lemma 4.5.13. For every j , val(Ω(j)
K ) is an n -simplex in Rn of multiplicity 1 . Its vertices are

given by u
(j)
0 , . . . , u

(j)
n , where

u
(j)
i = (− log |ξ1|i, . . . ,− log |ξn|i),

where | · |i denotes the norm over the i -th irreducible component of Ω(j)
0 , as in Definition 4.2.4.

Proof. Choose a set of coordinates ζ1, . . . , ζn on Ω(j)
K . Set ζ0 := π/ζ1 · . . . · ζn . Then Ω(j)

K is
given in Gn

m,K by |ζi| 6 1 for i = 0, . . . , n . Thus, under the valuation map corresponding

to ζ1, . . . , ζn , Ω(j)
K is mapped to an n -simplex σ(j) with multiplicity 1 in Rn . As ξi =

ϕ(ζi) for a suitable automorphism ϕ of S(Ω(j)
K ) , the image of Ω(j)

K under val is given by
the image of the simplex σ(j) under the corresponding linear transformation, which does
not change the multiplicity. This proves the claim.

Thus, the image of ΩK under val is a polytopal complex in Rn , which we will again
denote by ∆ .

Lemma 4.5.14. There is a bijective correspondence between irreducible components of Ω0 and
vertices of ∆ . Every irreducible component Ω0,u of Ω0 is a proper toric variety. Its fan is given by
the fan generated by σi−u , i = 1, . . . , r , where σ1, . . . , σr are the polytopes in ∆ containing u .

Proof. The bijective correspondence is clear from Lemma 3.1.10. Now, let u be a vertex of
∆ , and let Ω0,u be the corresponding irreducible component. We may assume without loss
of generality that u = 0 . Let σi be a polytope containing u , and let Ω(i)

K denote the corre-
sponding affinoid part of ΩK . Let Ω(i)

0,u := Ω0,u∩Ω(i)
0 . As ξ1, . . . , ξn differ only by elements

of type 1 + h on Ω(i)
0 ∩ Ω(j)

0 , they reduce to well-defined regular functions ξ̃1, . . . , ξ̃n on
Ω0,u . Let TK := val−1(0) , this is a formal open subdomain of ΩK . Its reduction T0 is a
torus, which is given by

T0 = Spec k[ξ̃±1
1 , . . . , ξ̃±1

n ].

Thus, the action of T0 on itself extends to an action on every Ω(i)
0,u . As these actions agree

on Ω(i)
0,u ∩Ω(j)

0,u , we get an action of T0 on Ω0,u . This makes Ω0,u into a toric variety, which
is proper, as it is isomorphic to an irreducible component of X0 . Again, it follows from
Lemma 3.1.10 that the fan of cones is given as claimed.

In the following, we choose a field extension K ′ of K such that |K ′| = R . Then, for any
affinoid part Ω(i)

K of ΩK , the valuation map val : Ω(i)
K ×K K ′ → σ ⊂ Rn is surjective.
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Lemma 4.5.15. The image of ΩK′ := ΩK ×K K ′ under val is open in Rn .

Proof. Let v = val(x) for some x ∈ ΩK ×K ′ . If v is a vertex of ∆ , then v is an interior
point of val(ΩK′) by Lemma 4.5.14, as the corresponding irreducible component is proper,
and the cone at u has support Rn . Now, assume that v is not a vertex of ∆ . Let τ be
the unique face of ∆ such that v lies in the relative interior of τ , and let u be a vertex of
τ . By the same reasoning, the fan of cones at u has support Rn . As τ is contained in this
cone, τ must hence be the intersection of polytopes σ1, . . . , σr of ∆ with dimσi = n . But
then every point of τ is an interior point of val(ΩK′) , which proves the claim.

In the following, we will show that a general polytopal domain as above does not contain a
copy of A1 . In the following, a morphism ϕ : X → Y between rigid analytic varieties will
be called affinoid, if the inverse image of any affinoid subset U ⊂ Y is again affinoid in X .
By [5, Prop. 9.4.4./1], any finite morphism (and hence, any closed immersion) is affinoid.

Proposition 4.5.16. Let X be an analytic variety, and let ϕ : A1 → X be an affinoid morphism.
Then X is not a polytopal domain.

In the following, we will always assume that X is an arbitrary polytopal domain.

Lemma 4.5.17. Let ϕ : D := D1(r) → X be an affinoid morphism. Let Uσ ⊂ X be an affi-
noid polytopal domain, and let D′ be a non-empty connected component of ϕ−1(Uσ) . If D′ is
isomorphic to a disc in D , then already D′ = D .

Proof. For the contrary, we may assume D′ = D1(r′) for some r′ < r . If ϕ−1(Uσ) is
disconnected, let D′1, . . . , D

′
m denote the other connected components. Let ζ denote the

coordinate on D , then ζ has no zeros on D′1, . . . , D
′
m . Set ri := minD′i |ζ| . We have

ri > r′ . By the Maximum Modulus Principle, there exists xi ∈ D′i with |xi| = ri . As D′i
is disjoint from D′ , we see that ri > r′ for all i . Choosing r′′ with r′ < r′′ < mini ri , we
see that D′ is the only connected component of ϕ−1(Uσ) meeting D1(r′′) . After replacing
r with r′′ and restricting ϕ to D1(r′′) , we may assume that ϕ−1(Uσ) = D′ is connected.

Let ζi denote the i -th coordinate on Gn
m ⊃ Uσ . Then fi := ϕ∗ζi is a unit on D′ for

i = 1, . . . , n . We can write fi = ci(1 +hi) with |hi| < 1 on D′ . Set si := |ci| · ‖hi‖D′ < |ci| ,
where ‖ · ‖D′ denotes the supremum norm on D′ . We have ϕ(D′) ⊂ Dn(y, s) , where
Dn(y, s) denotes the closed polydisc with radii s1, . . . , sn and centre y = (y1, . . . , yn) =
ϕ(0) . Note that the open polydisc D̊n(y, c) with radii |c1|, . . . , |cn| is still contained in Uσ .
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Thus, ϕ(D \D′) is contained in X \ D̊n(y, c) , and we have ϕ(D) ⊂ X ′ := (X \ D̊n(y, c)) ∪
Dn(y, s) . Note that X ′ is a disconnected admissible subset of X .

As D 6= D′ , we have ϕ−1(X \ D̊n(y, c)) 6= ∅ , and we can write D as a disconnected
admissible subset

D = ϕ−1(X \ Dn(y, c)) ∪D′,

which is absurd, since D is connected. This proves the claim.

In the following, we will need some results on reductions of standard domains in P1
K :

Definition 4.5.18. A standard domain in P1
K is an affinoid subset C = P1

K \
⋃r
i=0Bi , where

Bi is an open disc in P1
K .

If ∞ 6∈ C , then we may assume ∞ ∈ B0 , so that P1
K \B0 is a closed disc D ⊂ A1

K . Hence,
in that case, we have C = D \

⋃r
i=1Bi ⊂ A1

K .

For the reduction of a standard domain, we cite the following results; cf. [16, III.2 and
V.2].

Lemma 4.5.19. Let C be a standard domain.

(i) The canonical reduction of C consists of finitely many components C̃1, . . . , C̃r , where each
C̃i is isomorphic to a Zariski-open subset of A1

k . Moreover, every intersection of components
is quasi-normal; i.e. the local ring is isomorphic to

k[[T1, . . . , Ts]]/(TiTj)i 6=j .

(ii) C has a unique stable reduction; i.e. every component is isomorphic to a Zariski-open subset
of P1

k , every singularity is an ordinary double point, and every component isomorphic to P1
k

meets the other components in at least three points.

(iii) Every semi-stable reduction of C can be derived from the stable reduction by blowing up
points. The intersection graph of any semi-stable reduction is a tree.

(iv) Let C̃ be any reduction of C , and let C̃ be its compactification. Then C̃ \ C̃ consists of
exactly r + 1 points, each missing point corresponding to one open disc Bi as in Defini-
tion 4.5.18.

For the next step of the proof, we will need a special version of the Maximum Modulus
Principle for units.
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Definition 4.5.20. Let C be a standard domain in A1 . Let π : C → C̃ be the canonical
reduction of C , and let C̃1, . . . , C̃r denote the irreducible components of C̃ . A peripheral
domain of C is a formal open subset P ⊂ C such that

P = π−1

(
C̃ \

⋃
i∈I

C̃i

)

for some index set I ⊂ {1, . . . , r} .

Example 4.5.21. (i) Let C = {|π| 6 |ζ| 6 1} be an annulus with height |π| < 1 . The
reduction C̃ of C consists of two copies of A1

k , intersecting in an ordinary double
point; cf. Example 3.1.12. Thus, C has three peripheral domains: P1 = {|ζ| = |π|} ,
P2 = {|ζ| = 1} , and P3 = C .

(ii) Let C = {|ζ| = 1} , then C̃ ∼= A1
k \ {0} , and the only peripheral domain of C is C

itself.

(iii) Let C = D1 , then C̃ = A1
k , and the only peripheral domain of C is C itself.

Lemma 4.5.22 (Maximum Modulus Principle for units). Let f be a unit on a standard domain
C ⊂ A1 . Then the set P := {x ∈ C ; |f(x)| = |f |sup} is a peripheral set of C . If |f |sup = 1 ,
keeping the situation of Definition 4.5.20, we have P = π−1(C̃ \

⋃
i∈I C̃i) , where I = {i ; f̃ |C̃i =

0} .

In the three cases of Example 4.5.21, this result is immediate. Namely, in cases (i) and (ii),
we can write f = ζn(1 + h) with n ∈ Z , and |h| < 1 , whereas in (iii), we may write
f = c(1 + h) with |h| < 1 , and the claim follows directly from this representation.

Proof of Lemma 4.5.22. We may assume |f |sup = 1 , so f reduces to a non-zero element f̃ on
C̃ . The set where |f | assumes its maximum on C is the formal open subset P = π−1(P̃ ) ,
where P̃ := {x̃ : f̃(x̃) 6= 0} ⊂ C̃ . Let x̃ ∈ C̃ with f̃(x̃) = 0 . It remains to show that x̃ ∈ C̃i
for some i ∈ I , where I is defined as in Definition 4.5.20.

At first, assume that x̃ is a smooth point of C̃ which lies on the component C̃i . The formal
fibre C+(x̃) is isomorphic to the open unit disc D = {|ζ| < 1} ; see [6, Prop. 2.2]. Assume
that x̃ is an isolated zero of f̃ , say of order m . As in the proof of [6, Prop. 3.1], one can
show that f has m zeros on D , which is a contradiction, since f is a unit. This shows
that f̃ vanishes everywhere on C̃i .

Now, let x̃ be a singular point with f̃(x̃) = 0 . For the contrary, assume that for every C̃i

with x̃ ∈ C̃i , there exists a point on C̃i where f̃ does not vanish. By the first part of the
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proof, we see that f̃ has no zeros on Reg(C̃i) , where Reg(C̃i) denotes the non-singular
locus of C̃i . Then the set

Ẽ :=
⋃
x̃∈C̃i

Reg(C̃i) ∪ {x̃}

is open and connected in C̃ . Let E := π−1(Ẽ) . By the above, we have |f | < 1 on C+(x̃)
and |f | = 1 on E \ C+(x̃) . As f is a unit on C , we may consider g := 1/f on E . Let
c := ‖g‖sup . Then (̃g/c)(x̃) 6= 0 and (̃g/c) = 0 on Ẽ \ x̃ . This is a contradiction, as Ẽ \ {x̃}
is not closed in Ẽ .

This allows us to show the following result:

Lemma 4.5.23. Let ϕ : A1 → X be an affinoid morphism. Let Uσ ⊂ X be an affinoid polytopal
domain, and let C be a connected component of ϕ−1(Uσ) . If τ is a face of σ , then ϕ−1(Uτ ) ∩ C
is a peripheral domain of C .

Proof. Let ϕ|C be given by units f1, . . . , fn of O(C) . If τ is a face of σ , there is a linear
function g := m1x1 + · · · + mnxn on σ such that g assumes its minimum exactly on τ .
Thus, the element f = fm1

1 · · · fmnn assumes its maximal value on ϕ−1(Uτ ) ∩ C , if the
latter is not the empty set. As f is a unit, the claim follows from the Maximum Modulus
Principle 4.5.22.

Lemma 4.5.24. Let ϕ : D := D1(r) → X be an affinoid morphism. Then ϕ(D) ⊂ Uσ for some
affinoid polytopal domain Uσ ⊂ X .

Proof. For any maximal polytope σ , let Vσ := ϕ−1(Uσ) . As D is quasi-compact, we may
assume that the covering V = {Vσ} of D is finite. Without loss of generality, we will
assume further that every Vσ is connected; otherwise we split Vσ into connected compo-
nents Vσ,1, . . . Vσ,s . We choose a semi-stable reduction π : D → D̃ such that the formal
structure on D given by D̃ is finer than the one given by the formal covering V ; i.e. every
Vσ is formal open with respect to D̃ .

Due to Lemma 4.5.19, the incidence graph of irreducible components of D̃ is a tree, with
one component D̃0 isomorphic to P1 minus one point, and all other components D̃i , i > 0
isomorphic to P1 . By fixing D̃0 as its root, we can define an orientation on the tree.

Now, assume that the assertion is false. Let Ṽσ0 meet D̃0 for some σ0 . By Lemma 4.5.17,
Vσ0 is not a disc in D . As Vσ0 is connected, it is a standard domain, and hence it is
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isomorphic to a closed disc minus t open discs, where t > 1 . Due to Lemma 4.5.19,
the reduction Ṽσ0 has t + 1 > 2 missing points; one for each open disc in P1

K \ Vσ0 . One
of these missing points, say x̃1 , is contained in D̃ . Let D̃1 be the irreducible component
of D̃ such that x̃1 ∈ D̃1 and D̃1 ∩ Ṽσ0 is open in Ṽσ0 . Choose Ṽσ1 with x̃1 ∈ Ṽσ1 . As
Ṽσ0 ∩ Ṽσ1 = Ṽτ , where τ = σ0 ∩ σ1 is a common face of both σ1 and σ2 , we see from
Lemma 4.5.23 that Ṽσ0 ∩ Ṽσ1 contains the non-singular locus of D̃1 . Hence, x̃1 is a double
point of D̃ lying on an irreducible component of D̃ disjoint from Ṽσ0 .

Again, by Lemma 4.5.17, Vσ1 is not a disc in D . By the same reasoning as above, we see
that Ṽσ1 has at least two points missing. We have to show that one of these is contained
in D̃ and lies downwards from x̃1 . Let T̃ be the open subset of D̃ lying downwards
from x̃1 . For the contrary, we assume that T̃ is contained in Ṽσ1 . Note that T̃ is again a
tree consisting of projective lines and one affine line where x̃1 is the missing point. Hence,
T := π−1(T̃ ) is a disc in D . As Ṽσ0 is connected and contains no points lying downwards
from x̃1 , we see that Ṽσ0 is disjoint from T̃ . Set E := Vσ0 ∪ Vσ1 , then Ẽ is an open
subset of D̃ containing T̃ . In the following, we will only look at Ẽ . We may change Ẽ

by blowing down T̃ . As T is a disc in E , this yields another semi-stable reduction Ẽ′ of
E such that x̃1 is a non-singular point of Ẽ′ . Moreover, Vσ0 and Vσ1 are still formal open
in E with respect to the corresponding formal topology, as T̃ ⊂ Ṽσ1 and T̃ ∩ Ṽσ0 = ∅ .
Applying Lemma 4.5.23 as before to Ṽ ′σ0

and Ṽ ′σ1
, we see that x̃ still has to be a singular

point of Ẽ′ , which is a contradiction. This proves that one of the missing points of Ṽσ1 lies
downwards from x̃1 .

Continuing inductively, we construct an infinite sequence of points (x̃i) with x̃i+1 lying
downwards from x̃i . This is obviously a contradiction, as V is a finite covering. Hence
D = Vσ0 for some σ0 , which proves the claim.

We can now complete the proof of Proposition 4.5.16.

Proof of Proposition 4.5.16. Let ϕ : A1 → X be an affinoid morphism. We choose an admis-
sible covering A1 =

⋃
n∈N D1(rn) with rn → ∞ . The restriction ϕn : D1(rn) → X of ϕ

to D1(rn) is again affinoid. By Lemma 4.5.24, there exists σn such that D1(rn) is mapped
into Uσn . We will always choose the unique minimal σn such that this holds. In that case,
σn ⊂ σn+1 holds for all n ; i.e. σn is a face of σn+1 . Since dimσn is bounded by dimX ,
the sequence σ0 ⊂ σ1 ⊂ . . . is stationary. Hence, there exists σN such that ϕ maps A1 into
UσN . Let ζi denote the i -th coordinate on Gn

m ⊃ UσN , then fi := ϕ∗ζi is a unit on A1 ; es-
pecially on every D1(rn) . Hence, we can write fi = ci(1+hi) with |hi| < 1 everywhere on
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A1 . But then hi is a constant, so ϕ is a constant morphism. In that case, ϕ−1(UσN ) = A1

is not affinoid, which is a contradiction. This proves the claim.

This yields the following result:

Proposition 4.5.25. Let ΩK be the universal covering of a general polytopal domain. Then ΩK

does not contain an analytic subvariety isomorphic to A1 .

Example 4.5.26. Let q ∈ K× with |q| < 1 . Let γ denote the action on A2
K \{0, 0} given by

γ(z1, z2) = (qz1, qz2).

The quotient HK := (A2
K \ {0, 0})/γZ is called the rigid-analytic Hopf Surface. We will show

in § 5.3 that HK has a totally degenerated formal model with universal covering ΩK :=
A2
K \ {0, 0} . As the vanishing locus of ζ1 − 1 in ΩK is isomorphic to A1 , we see that HK

is not a general polytopal domain.





Chapter 5

Examples

In this chapter, we will apply the methods of the previous chapter in order to find the
Picard variety for some rigid-analytic varieties. For the first three examples, this is well
known; we will see that our approach agrees with the classical results. Afterwards, we will
discuss two new examples for rigid-analytical varieties with totally-degenerate models in
dimension two, where we can easily calculate the Picard variety using our methods.

5.1 Mumford Curves

In [28], David Mumford describes the p -adic uniformization of curves of genus g > 2 with
degenerate reduction. These degenerate curves can be described analytically by taking a
copy of P1 minus g pairs of open disks and identifying the boundaries of each pair. This
leads to the study of Schottky groups.

In this section, we will first give a short review of the analytic construction of such a Mum-
ford curve, based on [16]. As Manin and Drinfeld [26] have shown, the identity component
of the Picard variety is an analytic torus Gg

m,K/M of dimension g , where M is a lattice in
Gg
m,K of full rank g . This construction can be made explicit by using automorphic forms,

as described in the previous chapter.

Remark 5.1.1. The group of automorphisms of P1(K) is PGL(2,K) , where a matrix
(
a b
c d

)
operates on P1 via z 7→ az+b

cz+d .

Definition 5.1.2. Let Γ be a subgroup of PGL(2,K) . An element p ∈ P1 is called a limit
point of Γ if there exists q ∈ P1 and an infinite sequence {γn} ⊂ Γ with γn 6= γm for
m 6= n , such that lim γn(q) = p . The group Γ is called discontinuous, if the following two
conditions hold:

81
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(i) The set of limit points does not equal P1 .

(ii) For all p ∈ P1 , the closure of the orbit Γp in P1 is compact.

Remark 5.1.3. Condition (i) implies that Γ is a discrete subgroup of PGL(2,K) . Namely,
if Γ is not discrete, we have a sequence {γn} with lim γn = γ for some γ . But then
γ′n := γnγ

−1 satisfies lim γ′n(p) = p for all p ∈ P1 , so every point p ∈ P1 is a limit point.

Definition 5.1.4. A subgroup Γ of PGL(2,K) is called a Schottky group, if the following
conditions hold:

(i) Γ is finitely generated,

(ii) Γ has no elements of finite order (other than 1 )

(iii) Γ is discontinuous.

Now, take 2g disjoint open disks B1, . . . , Bg , C1, . . . , Cg with radii in |K| such that the
corresponding closed disks, which we will denote by B+

i and C+
i respectively, are still

disjoint. Set FK := P1 \
⋃
Bi \

⋃
Ci . We assume in the following that ∞ ∈ FK .

For every i = 1, . . . , r , there exists γi ∈ PGL(2,K) such that γi(P1 \ Bi) = C+
i and

γi(P1 \B+
i ) = Ci ; i.e. γi maps the boundary of Bi to the boundary of Ci .

Set Γ be the subgroup of PGL(2,K) generated by γ1, . . . , γg , then Γ is a Schottky-group
with γ1, . . . , γg as free generators. Moreover, if we set ΩK :=

⋃
γ∈Γ γF , then

ΩK = P1 \ { limit points of Γ }.

We call the analytic quotient XK := ΩK/Γ a Mumford curve of genus g .

The set FK defined above is a fundamental domain for XK . The analytic structure on the
quotient ΩK/Γ is given as follows: We take a suitable formal covering {U (1)

K , . . . , U
(r)
K } of

FK , such that every U
(j)
K is a formal open subset of an annulus. After a suitable extension

of K , we may assume that each corresponding annulus has height π . The {U (j)
K } are

then glued together by identifying the boundary of Bi with the boundary of Ci via γi .
We may further assume that the covering {U (j)

K } is fine enough so that the intersection
of the sets {U (j)

K } in XK is always connected. Thus, XK is the generic fibre of a totally
degenerated formal scheme, and ΩK is the universal covering of XK with Γ the group of
deck transformations.
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We can now make the theory of automorphic functions on ΩK rather explicit. For a, b ∈ Ω ,
we define

θa,b(z) :=
∏
γ∈Γ

z − γ(a)
z − γ(b)

This defines a meromorphic function on Ω . For γ ∈ Γ , we set uγ(z) := θa,γ(a)(z) . We cite
the following results without proof:

Lemma 5.1.5. (i) θa,b is an automorphic function with constant factor of automorphy.

(ii) The definition of uγ is independent of the choice of a .

(iii) uγ · uγ′ = uγ◦γ′ .

(iv) uγ is an invertible automorphic function.

(v) uγ = uγ′ if and only if γ ≡ γ′ mod [Γ,Γ] , where [Γ,Γ] denotes the commutator subgroup
of Γ .

(vi) uγ is constant if and only if γ ∈ [Γ,Γ] .

This shows the following:

Proposition 5.1.6. Let XK be a Mumford curve of genus g . Then the rigid analytic Picard variety
Pic0

XK/K
is isomorphic to Gg

m,K/M , where M is a lattice of rank g in Gg
m,K .

Proof. Due to (v) and (vi) in the above lemma, we have an embedding Γ̄→ Θ×/K× , where
Γ̄ := Γ/[Γ,Γ] is the commutator factor group of Γ , and Θ× is the group of invertible auto-
morphic forms. Hence, rk Γ = rk Θ×/K× . The claim now follows with Theorem 4.4.13.

5.2 Analytic Tori

Let TK be a split torus of rank g , and let M be a split lattice of full rank in TK . Then
the quotient AK := TK/M is a rigid-analytic group variety. These analytic tori are studied
in detail in [8, §2]. We will desribe these results in brief and show how to interpret the
construction of Pic0(AK) in terms of automorphic functions.

It is well-known that the rigid-analytic Picard variety of AK is just the dual A′K . We will
make this explicit in the following section by applying again the theory of automorphic
forms.
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Let M ′ = Hom(TK ,Gm,K) denote the character group of TK ; it is a split lattice in TK of
rank g . This yields a bilinear pairing

〈·, ·〉 : M ′ × TK → Gm,K , 〈m′, x〉 = m′(x).

After a choice of coordinates ζ1, . . . , ζn , we may identify TK with Gg
m,K , and M ′ with

Zn . Let val : Gg
m,K → Rn denote again the valuation map. Then M is mapped bijectively

to a lattice in Rn , which we will denote again by M . We construct a M -invariant de-
composition of Rn into n -simplices of volume 1 . This decomposition can be guaranteed
by means of Proposition 2.4.1. Over a suitable finite extension of K , this yields a totally
degenerated formal model T for TK , such that the quotient of T by M is a totally degen-
erated formal model for AK . Hence, TK is the universal covering of AK , and M is the
group of deck transformations.

The key ingredient for the construction of the Picard variety is the following:

Lemma 5.2.1. Let c : M → Gm,K be a group morphism. There exists an automorphic function
f with factor of automorphy c if and only if there exists a character m′ ∈ M ′ such that c(m) =
〈m′,m〉 for all m ∈M .

Proof. If m′ ∈M ′ is a character, then we have

m′(mx) = m′(m) ·m′(x) = 〈m′,m〉 ·m′(x)

for all m ∈M , so m′ is an invertible automorphic form with factor of automorphy c(m) :=
〈m′,m〉 . On the other hand, every invertible function on TK is a character up to an element
of K× . As the factor of automorphy ignores scaling by elements of K× , the claim follows.

We may thus identify the lattice M ′ with the group of all automorphy factors coming from
invertible automorphic functions. This yields the following result:

Theorem 5.2.2. Let T ′K := Hom(M,Gm,K) be the split torus with character group M . Then the
Picard variety Pic0

XK/K
of AK = TK/M is represented by the quotient A′K = T ′K/M

′ .

Indeed, we have a description of all line bundles as follows:
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Proposition 5.2.3. There is a one-to-one correspondence between isomorphism classes of line bun-
dles L on Gn

m/M , and M -linearisations α of the trivial line bundle Gn
m × A1 on Gn

m . The
M -linearisations can be desribed by pairs (λ, r) , where λ : M → M ′ is a group homomorphism
and r : M → Gm satisfies

〈λ(m2),m1〉 = r(m1 +m2) · r(m1)−1 · r(m2)−1

for all m1,m2 ∈M . The action α corresponding to (λ, r) is given by

αm : Gn
m × A1 → Gn

m × A1, m ∈M

(x, a) 7→ (x+m, r(m) · 〈λ(m), x〉 · a)

Two pairs (λ1, r1) and (λ2, r2) define isomorphic line bundles on Gn
m/M if and only if λ1 = λ2

and there exists some m ∈M ′ such that r2(m) = 〈m′,m〉 · r1(m) for all m ∈M .

By the above description, there exists an analogue of Riemann’s period relations as fol-
lows:

Theorem 5.2.4. A line bundle L on AK is ample if and only if the corresponding quadrativ form
〈m,λ(m)〉 is positive definite; i.e. |〈λ(m),m〉| < 1 if m 6= 0 . Especially, AK is algebraizable
if and only if there exists a group homomorphism λ : M → M ′ such that 〈λ(m),m〉 is positive
definite.

5.3 The Hopf Surface

The following example has been studied by Mustafin in [29] and gives an example of a
proper smooth rigid-analytic variety whose Picard variety is not proper.

Let q ∈ K× with |q| < 1 . Let γ denote the action on A2
K \ {(0, 0)} given by

γ(z1, z2) = (qz1, qz2).

The quotient HK := (A2
K \ {(0, 0)})/γZ is called the rigid-analytic Hopf Surface.

Lemma 5.3.1. The Hopf surface HK has a totally degenerated formal model.

Proof. This has been constructed explicitly by H. Voskuil in his doctoral thesis; see [34]. We
will explain the construction. Assume that q = πk for some k > 3 ; we can achieve this
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after a suitable finite extension of K if necessary. For i = 1, . . . , k , we choose affinoid
subsets Fi, Gi of A2

K \ {(0, 0)} as follows:

Fi := {(z1, z2) ; |π|i 6 |z1| 6 |π|i−1, |z2| 6 |z1|},

Gi := {(z1, z2) ; |π|i 6 |z2| 6 |π|i−1, |z1| 6 |z2|}.

Then {γr(Fi), γs(Gj) ; i, j = 1, . . . , k; r, s ∈ Z} is a formal covering of A2
K \ {(0, 0)} , which

induces a formal covering of HK by copies of Fi, Gi . We claim that this covering gives a
totally degenerated formal model of A2

K \ {(0, 0)} . Namely, consider F1 = SpA1 , where

A1 = K〈ζ1, π/ζ1, ζ2/ζ1〉 ∼= K〈ζ1, π/ζ1, η〉.

Hence, F1 is isomorphic to a product of a rigid-analytic disc with an annulus of height |π| ;
hence, the canonical model of F1 is totally degenerated. The same holds by analogy for all
Fi, Gi ; hence, the formal model given by this covering is totally degenerated. As HK is
covered by copies of Fi, Gi , the same holds for HK .

Lemma 5.3.2. In the context of the previous chapter, the universal covering of HK is A2\{(0, 0)} ,
and the group of deck transformations is Γ = γZ .

Proof. This should be clear from the construction, but we will check explicitly that our no-
tion of universal covering and deck transformation yields what we expect.

From the proof of the previous lemma, we see that HK is covered by the images of the
sets Fi , Gi under the projection map. We construct the nerve ∆(H) corresponding to this
formal structure on HK . For i = 1, . . . , k , let ai , bi denote the vertices corresponding to
Fi resp. Gi , and set a0 = ak , b0 = bk . Then the nerve ∆(H) consists of the tetrahedra
[ai, bi, ai+1, bi+1] for i = 0, . . . , k , together with all its faces. Now, remove the tetrahedron
[a0, b0, ak, bk] , leaving the edges [a0, b0] and [ak, bk] intact. One checks that the resulting
simplicial complex is simply connected. Therefore, the universal covering of ∆(H) is given
by joining copies of this situation as follows:

For i = 1, . . . , r , l ∈ Z , let a(l)
i , b

(l)
i be copies of ai, bi respectively. Construct the tetrahedra

[a(l)
i , b

(l)
i , a

(l)
i+1, b

(l)
i+1] for i = 1, . . . , k − 1 , and [a(l)

k , b
(l)
k , a

(l+1)
1 , b

(l+1)
1 ] . This yields a simply

connected complex ∆′ . The deck transformation group is generated by the automorphism
γ with γ(a(l)

i ) = a
(l+1)
i and γ(b(l)i = b

(l+1)
i . According to this configuration, we construct

the universal covering of HK by gluing a new copy of F1, G1 to Fk , Gk respectively, and
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continuing from there. This, corresponds to multiplication by q in both coordinates, so we
get the desired covering of A2

K \ {(0, 0)} .

Remark 5.3.3. In Example 4.5.26, we showed that HK is not a general polytopal domain;
i.e. we can not choose a covering U = {U (i)

K } such that every U
(i)
K is isomorphic to an

affinoid polytopal domain.

Proposition 5.3.4. For the rigid analytic Picard variety of the Hopf surface, we have

Pic0
XK/K

∼= Gm,K .

Proof. As discussed above, A2
K \ {(0, 0)} is the universal covering of HK , and Γ is its

group of deck automorphisms. As Γ ∼= Z , Pic0
XK/K

is isomorphic to a quotient of Gm,K

by a lattice M , where the rank of M is given by the rank of invertible Γ -automorphic
functions modulo constants. Let g be an invertible analytic function on A2

K \ {(0, 0)} .
Then g is invertible on G2

m,K ; hence g = cζk1
1 ζk2

2 for some c ∈ K× , k1, k2 ∈ Z . This
is only invertible on A2

K \ {(0, 0)} if k1 = k2 = 0 ; i.e. if g is a constant. This shows
that there are no non-trivial invertible Γ -automorphic functions. Thus, the claim follows
directly from Theorem 4.4.12.

5.4 A Rigid Analytic Klein Surface

In the following, we will construct a new example of a rigid analytic variety with a totally
degenerated formal model. The construction is analogous to the well-known construction
of the Klein bottle.

Let q1, q2 ∈ K× with |q1|, |q2| < 1 . Consider two automorphisms γ1, γ2 of G2
m , given

by

γ1 :(z1, z2) 7→ (q1z1, q2/z2)

γ2 :(z1, z2) 7→ (z1, q2z2)

Let Γ := 〈γ1, γ2〉 .

Proposition 5.4.1. The quotient XK = G2
m/Γ exists as a rigid-analytic variety. We call XK a

rigid-analytic Klein surface.
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Proof. We consider the following Weierstrass domain in Gn
m :

FK := {(z1, z2) ; |q1| 6 |z1| 6 1, |q2| 6 |z2| 6 1}.

Consider the valuation map val : G2
m → R2 . Under val , the domain FK is mapped to the

rectangle with vertices (0, 0) , (0, c2) , (c1, 0) and (c1, c2) , where ci := − log |qi| > 0 . We
may identify γ1, γ2 with the following affine-linear transformations of R2 :

γ1 :(x1, x2) 7→ (x1 + c1, c2 − x2)

γ2 :(x1, x2) 7→ (x1, c2 + x2).

Thus, we see that γ1, γ2 each send one edge of val(FK) to its opposite edge, where γ1

reverses the direction. This is exactly analogous to the construction of the classical Klein
bottle. We may thus view the Klein bottle as the valuation space of XK . From the classical
case, one knows that val(FK) is a fundamental domain of the Γ -action on R2 . Hence,
FK is a fundamental domain for the Γ -action on G2

m , and the quotient is constructed by
identifying the affinoid subsets

{|z1| = 1}, {|z1| = |q1|}, {|z2| = 1}, {|z2| = |q2|}

of FK via γ1 , γ2 . Hence, the quotient exists as a rigid-analytic variety.

Remark 5.4.2. The automorphisms γ1, γ2 satisfy γ1 ◦γ2 = γ−1
2 ◦γ1 . As in the classical case,

the group Γ is not abelian; its commutator subgroup is given by [Γ,Γ] = 〈γ2
2〉 . Hence, the

abelianization Γ = Γ/[Γ,Γ] of Γ is isomorphic to Z × Z/2Z , where γ1 generates the free
part and γ2 generates the torsion part.

From the construction, one sees that XK is a general polytopal domain. Thus, by Proposi-
tion 4.5.9, after a finite extension R′ of R , XK has a totally degenerate model X . More-
over, it is clear that G2

m is the universal covering of XK , and Γ is its group of Deck trans-
formations.

Theorem 5.4.3. For the rigid analytic Picard variety of the Klein surface, we have

Pic0
XK/K

∼= Gm,K/q
Z
1

Proof. Let Γ̃ denote the torsion free part of Γ . Then Γ̃ is isomorphic to Z with generator
γ1 . This shows that Pic0

XK/K
is a quotient of Gm,K by a lattice M . To determine the lattice

M , we have to look for invertible automorphic functions on the universal covering G2
m,K .
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Consider the coordinate ζ1 . Then γ∗1ζ
k
1 = qk1ζ

k
1 , and γ∗2ζ

k
1 = ζk1 , so ζk1 is an automorphic

function with factor of automorphy given by c(γ1) = qk1 and c(γ2) = 1 . The claim follows
now directly with Theorem 4.4.12.

Theorem 5.4.4. The rigid-analytic Klein surface XK is algebraizable.

Proof. Note that γ2
1(z1, z2) = (q2

1z1, z2) . Define Γ1 := 〈γ2
1 , γ2〉 . One can check easily that Γ1

is a normal subgroup of Γ of index 2 with cosets Γ1 and γ1Γ1 . Moreover,

X ′K := G2
m/Γ1 = Gm/q

2Z
1 ×Gm/q

Z
2 .

Hence, X ′K is algebraizable as a product of two elliptic curves. But then XK is algebraiz-
able as the quotient π : X ′K → XK = X ′K/(Γ/Γ1) of X ′K by the finite group Γ/Γ1 .

Remark 5.4.5. Contrary to what one might expect, the non-orientability of the Klein bottle
does not prevent us from defining a corresponding object analytically. Moreover, we have
seen that rigid-analytic varieties with non-orientable valuation space can still be algebraiz-
able!

In the following, we will show how to derive the structure of Pic0
XK

from Pic0
X′K

directly
and to give an interpretation of Theorem 5.4.3. Namely, X ′K is the product of the two
elliptic curves

E
(1)
K = Gm/q

2Z
1 , E

(2)
K = Gm/q

Z
2

Let p : X ′K → E
(1)
K denote the first projection. On the other hand, we have a closed

immersion of E(1)
K into X ′K via

i : E(1)
K → X ′K , z 7→ (z,

√
q2)

This is a section of p . Now, let π : X ′K → XK be the natural projection. As seen above,
XK is the quotient of X ′K by the action of γ1 on X ′K . Note that iE(1)

K is invariant under
γ1 . The quotient of iE(1)

K under γ1 is the elliptic curve E
(1)
K /q̄1 = Gm/q

Z
1 , where q̄1 is the

image of q1 in E
(1)
K . The morphisms i , p then restrict to morphisms p1 : XK → E

(1)
K /q̄1

resp. i1 : E(1)
K /q̄1 → XK . Again, i1 is a section of p1 . Let π1 denote the projection
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morphism E
(1)
K → E

(1)
K /q̄1 . Thus, we have the following commutative diagram:

X ′K
π // XK

E
(1)
K

π1 //

i

OO

E
(1)
K /q̄1

i1

OO

For the Picard varieties, this yields the following commutative diagram:

Pic0
X′K

i∗

��

Pic0
XK

i∗1
��

π∗
oo

Pic0

E
(1)
K

Pic0

E
(1)
K /q̄1π∗1

oo

Note that, as X ′K is the product of two Tate curves, we have

Pic0
X′K

= Gm/q
2Z
1 ×Gm/q

Z
2

Proposition 5.4.6. In the above situation, the following assertions hold:

(i) π∗ : Pic0
XK
→ Pic0

X′K
is an isogeny onto the abelian subvariety Gm/q

2Z
1 × {1} of Pic0

X′K
with Kerπ∗ ∼= Z/2Z .

(ii) The restriction i∗ : π∗ Pic0
XK
→ Pic0

E
(1)
K

is an isomorphism.

(iii) i∗1 : Pic0
XK
→ Pic0

E
(1)
K /q̄1

is an isomorphism.

Proof. For simplicity, we will assume that charK 6= 2 .

In the following, we will always identify Pic0
XK

with certain classes of Weil divisors on
XK . Let C be a Weil divisor such that its class [C] lies in Pic0

XK
. Then π∗C is a γ1 -

invariant Weil divisor on X ′K . As X ′K is the product of E(1)
K and E

(2)
K , the divisor π∗C is

linearly equivalent to a unique divisor

D′ := ((α1)− (1))⊗ ((α2)− (1)) = ((α1)− (1))× E(2)
K − E

(1)
K × ((α2)− (1))

with (α1, α2) ∈ Gm/q
2Z
1 × Gm/q

Z
2 . As γ∗1D = D , necessarily D′ is linearly equivalent to

γ∗1D
′ . Calculating D′ − γ∗1D′ yields

D′ − γ∗1D′ = ((α1)− (q1α1) + (q1)− (1))× E(2)
K + E

(1)
K × ((α2)− (1/α2))
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Using the group laws on E
(1)
K and E

(2)
K , we see that (α1)− (q1α1)+(q1)− (1) is a principal

divisor on E
(1)
K , and (α2) − (1/α2) is linearly equivalent to (α2

2) − (1) on E
(2)
K . Hence,

D′ − γ∗1D′ is linearly equivalent to

E
(1)
K × ((α2

2)− (1))

This divisor is principal if and only if α2
2 = 1 on E

(2)
K ; i.e. α2 is a 2-torsion point of E(2)

K .
As Pic0

XK
is connected, its image in Pic0

X′K
is connected as well. But then π∗ Pic0

XK
is

necessarily contained in Gm/q
2Z
1 × {1} . On the other hand, any divisor class in Gm/q

2Z
1 ×

{1} contains a divisor ((α)+(q1α)−(q1)−(1))×E(2)
K which is γ1 -invariant and hence comes

from a divisor on XK . Thus, π∗ maps onto Gm/q
2Z
1 ×{1} . By the following Lemma 5.4.7,

we have Kerπ∗ ∼= Z/2Z . This proves claim (i).

As Pic0

E
(1)
K

= Gn
m/q

2Z
1 , we see directly that i∗ is an isomorphism on

π∗ Pic0
XK

= Gm/q
2Z
1 × {1}.

This proves assertion (ii). Moreover, Pic0
XK

has dimension at most 1.

It remains to show that i∗1 is injective. Combining (i) and (ii), we see that i∗ ◦ π∗ is an
isogeny of degree 2 . On the other hand, π∗1 is obviously an isogeny of degree 2 . Thus, we
have

2 = deg(i∗ ◦ π∗) = deg π∗1 · deg i∗1 = 2 deg i∗1.

But then i∗1 is an isomorphism. This proves (iii).

Thus, in terms of line bundles on X ′K , one can describe π∗ Pic0
XK

as those line bundles
which are pull-backs from E(1) under p . The line bundles on XK which are trivial on
X ′K are the pull-backs of the trivial line bundle and the line bundle (−1)− (1) on E

(1)
K /q̄1 ,

respectively.

Lemma 5.4.7. Let X be a proper scheme of finite type over a field K which is smooth and integral.
Let p be a prime with charK 6= p , and let G ∼= Z/pZ act on X , such that the quotient X/G
exists. Let π : X → X/G denote the projection, and let π∗ : Pic0(X/G) → Pic0(X) denote the
pull back of line bundles. Then Kerπ∗ is either trivial or isomorphic to Z/pZ .

Proof. Let M(X) denote the field of meromorphic functions on X , M(X/G) the field of
meromorphic functions on X/G , which is the field of G -invariant meromorphic functions
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on X . Note that G is the Galois group of M(X) over M(X/G) . Let C be a Weil divisor
on X/G such that its class [C] lies in Kerπ∗ . Then π∗C = div(f) for some f ∈M(X) . Let
σ be a generator of G , then π∗C is σ -invariant; hence div(f) = div(σ∗f) , and σ∗f = ξf .
As σp = 1 , we have f = ξpf , so ξ is a p -th root of unity. But then σ∗fp = ξpfp = fp ,
so fp is G -invariant; hence fp ∈ M(X/G) , and pC = div(fp) is a principal divisor on
X/G . Assume further that Kerπ∗ is not trivial, so we can choose C such that C is not
a principal divisor. Hence, the class [C] has order p in Pic0(X/G) , and ξ 6= 1 . We can
now apply Hilbert’s Theorem 90 to find an element y ∈ M(X) with σ∗y = ξy . But then
f/y is invariant under σ∗ , so we can write f = yg for some g ∈ M(X/G) . Let C ′ be
another Weil divisor with [C ′] ∈ Kerπ∗ . Again, π∗C ′ = div(f ′) for some f ′ ∈M(X) with
σ∗f ′ = ξ′f ′ , where ξ′ is another p -th root of unity. Write ξ′ = ξk for some k ∈ Z . In that
case, f ′/yk is σ∗ -invariant, so that f ′ = ykg′ for some g′ ∈M(X/G) . But then

π∗(C ′ − kC) = div(ykg′)− div(ykgk) = div(g′/gk).

Note that g′/gk is G -invariant, so C ′ − kC = div(g′/gk) is a principal divisor on X/G ,
and C ′ is linearly equivalent to kC . But then [C] is a generator of Kerπ∗ . Hence, Kerπ∗

is cyclic of order p .

5.5 The Sheared Torus

In the following, we will construct another two-dimensional example whose construction
is very similar to the construction of the two-dimensional torus G2

m,K/M , where M is a
lattice in G2

m,K of rank 2.

Again, let q1, q2 ∈ K× with |q1|, |q2| < 1 . Furthermore, let r ∈ Z . Let Γ := 〈γ1, γ2〉 , where
γ1, γ2 are automorphisms of G2

m , acting via

γ1 :(z1, z2) 7→ (q1z1, z2z
r
1)

γ2 :(z1, z2) 7→ (z1, q2z2)

For r = 0 , the automorphism γ1 is just multiplication by q1 in the first coordinate, so the
quotient G2

m/Γ is an analytic torus which is algebraic as a product of two elliptic curves;
i.e.

G2
m/Γ ∼= Gm/q

Z
1 ×Gm/q

Z
2 .
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This is just a special case of section 5.2. In the following, we will assume r 6= 0 . We will see
that this changes the situation drastically.

Proposition 5.5.1. The quotient XK = G2
m/Γ exists as a rigid-analytic variety. It is a general

polytopal domain, which has a totally degenerated formal model X over a finite extension R′ over
R . We call XK a sheared torus.

Proof. As in the previous example, we translate the action of Γ on G2
m into an action on

R2 = val(G2
m) . Namely, γ1, γ2 act on R2 via

γ1 :(x1, x2) 7→ (c1 + x1, rx1 + x2)

γ2 :(x1, x2) 7→ (x1, x2 + c2),

where ci = − log |qi| . Let

FK = {(z1, z2) ; |q1| 6 |z1| 6 1, |q2| 6 |z2| 6 1}.

Its image val(FK) in R2 is the rectangle with vertices (0, 0) , (c1, 0) , (0, c2) and (c1, c2) .
Now, let γ = γk1

1 γk2
2 , then

γ(0, 0) = (k1c1, k2c2), γ(0, c2) = (k1c1, (k2 + 1)c2)
γ(c1, 0) = ((k1 + 1)c1, rk1c1 + k2c2), γ(c1, c2) = ((k1 + 1)c1, rk1c1 + (k2 + 1)c2)

From this, one can check that val(FK) is a fundamental domain for the action of Γ on R2 .
The covering of R2 by images of val(FK) looks as follows:
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Thus, FK is a fundamental comain for the action of Γ on G2
m , and the quotient G2

m/Γ can
be constructed by identifying the subsets

{|z1| = 1}, {|z1| = |q1|}, {|z2| = 1}, {|z2| = |q2|}

of FK via γ1, γ2 . Hence, the quotient exists as a general polytopal domain. The rest follows
with Proposition 4.5.9.

Remark 5.5.2. As γ1 and γ2 commute, Γ is free abelian of rank 2 .

Theorem 5.5.3. For the rigid analytic Picard variety of the sheared torus, we have

Pic0
XK/K

= Gm,K/q
Z
1 ×Gm,K .

Proof. As Γ ∼= Z2 , the Picard variety Pic0
XK/K

will be a quotient of G2
m,K by a lattice M .

Let f be a unit on G2
m,K , then f = cζk1

1 ζk2
2 . For simplicity, we assume c = 1 . Then

γ∗1f = qk1
1 ζ

k1+rk2
1 ζk2

2

γ∗2f = qk2
2 ζ

k1
1 ζk2

2 .

From this, we see that f is an automorphic form with constant factor of automorphy if and
only if k2 = 0 . In that case, f = ζk1

1 is automorphic with factor of automorphy c(γ1) = qk1
1 ,

c(γ2) = 1 . This proves the claim.

As the Picard variety of an algebraic variety is always proper, this shows the following:

Corollary 5.5.4. The sheared torus is not algebraizable.

5.6 The General Case

In this section, we will generalize the examples of the last two sections. We will assume
that XK = Gn

m/Γ , where Γ is a suitable subgroup of the automorphism group of Gn
m .

The automorphism group of Gn
m is a semi-direct product

Aut(Gn
m) = GL(n,Z) n (K×)n,
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where a tuple τ := τ(A, q) with A = (aij) , q = (qi) acts on Gn
m via

(z1, . . . , zn) 7→ (q1 · za11
1 · . . . · za1n

n , . . . , qi · zai11 · . . . · zainn , . . . , qn · zan1
1 · . . . · zannn )

Example 5.6.1. For the Klein Surface resp. the sheared torus, the corresponding automor-
phisms are represented as follows:

(i) For the Klein Surface:

γ1 = τ(A1, q
(1)) : A1 =

(
1 0
0 −1

)
, q(1) =

(
q1

q2

)

γ2 = τ(A2, q
(2)) : A2 =

(
1 0
0 1

)
, q(2) =

(
1
q2

)

(ii) For the sheared torus:

γ1 = τ(A1, q
(1)), A1 =

(
1 0
r 1

)
, q(1) =

(
q1

1

)

γ2 = τ(A2, q
(2)), A2 =

(
1 0
0 1

)
, q(2) =

(
1
q2

)

As the valuation of K is discrete, we may assume without loss of generality that the valu-
ation group of K× is Z . Let

Aff(n,Z) ∼= GL(n,Z) n Zn

denote the group of affine linear transformations

τ = τ(A, b) : Rn −→ Rn, x 7−→ Ax+ b

with A ∈ GL(n,Z) , b ∈ Zn . Under the valuation map val , the action τ(A, q) on Gn
m,K

pulls back to an affine linear action τ(A, val(q)) on Rn . This yields a surjective group
morphism Aut(Gn

m,K)� Aff(n,Z) .

Now, let Γ be a subgroup of Aut(Gn
m) . We assume that Γ is mapped injectively to a

subgroup of Aff(n,Z) , which we will again denote by Γ . Thus, we can identify the action
on Gn

m with the action on the valuation space Rn .

In the following, we will further assume that the action of Γ on Rn satisfies the following
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conditions:

Assumption 5.6.2. (i) Γ has a fundamental polytope σ of dimension n ; i.e. γσ ∩ σ is
either empty or a proper face of σ for γ 6= 1 , and Rn =

⋃
γ∈Γ γ(σ) .

(ii) For γ 6= 1 , the action of γ on Rn has no fixed points.

(iii) The fundamental polytope σ is a parallelotope. Let σ(0)
1 , σ

(1)
1 , . . . , σ

(0)
n , σ

(1)
n denote

pairs of opposite facets of σ . Then Γ is generated by elements γ1, . . . , γn such that
γi = τ(Ai, bi) induces an isomorphism γi : σ(0)

i
∼−→ σ

(1)
i

(iv) Let H(i) denote the halfspace which contains σ and whose supporting hyperplane
contains σ

(0)
i . Then γi induces an isomorphism γi : H(i) ∼−→ H(i) + bi with bi as in

(iii).

Remark 5.6.3. Due to Assumption 5.6.2, the quotient XK = Gn
m/Γ is a proper general poly-

topal domain. Hence, after a suitable finite extension of K , we find a totally degenerated
formal model of XK . Obviously, the universal covering is ΩK

∼= Gn
m,K .

Let Γ1 be the subgroup of Γ consisting of all translations; i.e. elements τ(In, q) where
In denotes the n × n -unity matrix. We may identify the automorphism τ(In, q) with the
vector q itself. This way, Γ1 yields a lattice in Gn

m . The translation subgroup will be the
key in determining the structure of the Picard variety of Gn

m/Γ .

Example 5.6.4. For the Klein Surface resp. the sheared torus, the translation subgroup Γ1

is given as follows:

(i) For the Klein Surface:

Γ1 := 〈γ2
1 , γ2〉 = 〈(q2

1, 1), (1, q2)〉

(ii) For the sheared torus:

Γ1 := 〈γ2〉 = 〈(1, q2)〉.

Lemma 5.6.5. The quotient group Γ/Γ1 is finite if and only if rk Γ1 = n .

Proof. We can construct a fundamental domain σ1 for the action of Γ1 on Rn by setting

σ1 :=
⋃

[γ]∈Γ/Γ1

γ(σ),
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where we choose a representative γ for each coset [γ] ∈ Γ/Γ1 . Note that σ has a finite non-
zero volume. Due to Assumption 5.6.2 (i), for γ 6= γ′ , the intersection γσ∩γ′σ has volume
0 . Thus, we have volσ1 = |Γ/Γ1| · volσ ; i.e. σ1 has a finite volume if and only if Γ/Γ1 is
finite. On the other hand, the volume of a fundamental domain σ1 of Γ1 is independent
of the choice of σ1 ; it is finite if and only if rk Γ1 = n . This proves the claim.

Theorem 5.6.6. Let Γ ⊂ Aut(Gn
m,K) be a subgroup satisfying Assumption 5.6.2. Assume that the

translation subgroup Γ1 satisfies rk Γ1 = n . Then XK is algebraizable if and only if there exists
a group morphism λ : Γ1 → M ′ := Hom(Gr

m,K ,Gm,K) such that the quadratic form 〈λ(m),m〉
is positive definite on Γ1 ; i.e. |〈λ(m),m〉| < 1 for every m ∈ Γ1 with m 6= 0 .

Proof. The canonical morphism Gn
m/Γ1 → Gn

m/Γ = XK is just the quotient morphism
by the quotient group Γ/Γ1 . If rk Γ1 = n , this quotient group is finite, so Gn

m/Γ1 is
algebraizable if and only if XK is algebraizable. As Γ1 is a lattice of full rank, Gn

m/Γ1 is
an analytic torus. Thus, the claim follows with Theorem 5.2.4.

We will see later that rk Γ1 = n is a necessary condition for XK to be algebraizable.

In the following, we will introduce further assumptions on Γ and Γ1 :

Assumption 5.6.7. Assume the following:

(i) Γ/Γ1 is abelian.

(ii) After renumbering the generators of Γ , we have

Γ1 = 〈γk1
1 , . . . , γkrr 〉

for some ki ∈ N .

(iii) rk Γ1 = r , with r as in (ii); i.e. γk1
1 , . . . , γkrr , considered as elements of Rn , are

linearly independent over R .

(iv) The free part of Γ/Γ1 has rank n− r and is generated by γr+1, . . . , γn .

Remark 5.6.8. One checks easily that these conditions are satisfied for the Klein surface and
the sheared torus. They are also trivially satisfied for the analytic torus Gn

m,K/M , where
M is a lattice.

If Γ/Γ1 is abelian, then [Γ,Γ] ⊂ Γ1 ; i.e. [Γ,Γ] is a free abelian group.

From Theorem 4.4.12, we get the following result for the Picard variety Pic0
XK/K

:
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Proposition 5.6.9. If Assumptions 5.6.2 and 5.6.7 are fulfilled, then Pic0
XK/K

is represented by
an analytic quotient Gg

m,K/M , where g = n− rk[Γ,Γ] .

Proof. It only remains to check the assertion for the dimension. From Theorem 4.4.12, we see
that Pic0

XK/K
has dimension g = rk Γ/[Γ,Γ] . Now, consider the following exact sequence

of finitely generated abelian groups:

0→ Γ1/[Γ,Γ]→ Γ/[Γ,Γ]→ Γ/Γ1 → 0

As Γ/Γ1 has rank n− r , we have

rk Γ/[Γ,Γ] = rk Γ/Γ1 + rk Γ1/[Γ,Γ] = n− rk[Γ,Γ].

Hence, g = rk Γ/[Γ,Γ] = n− rk[Γ,Γ] , and the claim follows.

Definition 5.6.10. Let

N := {aζm ; a ∈ K×,m ∈ Zn} = O(Gn
m,K)×

denote the character group of the universal covering Gn
m,K . Let N [Γ,Γ] denote the sub-

group of characters which are [Γ,Γ] -invariant; i.e.

N [Γ,Γ] = {χ ∈ N ; γ∗χ = χ for all γ ∈ [Γ,Γ]}

Furthermore, let

Θ× = {χ ∈ N ; γ∗χ = c(γ) · χ, c(γ) ∈ K× for all γ ∈ [Γ,Γ]}

denote the subgroup of characters which are Γ -automorphic.

Remark 5.6.11. Every Γ -automorphic character is invariant under [Γ,Γ] ; i.e. Θ× ⊂ N [Γ,Γ] .

Lemma 5.6.12. Pic0
XK/K

is proper if and only if Θ× = N [Γ,Γ] ; i.e. if every [Γ,Γ] -invariant
character is Γ -automorphic.

Proof. At first, note that a character aζm ∈ N is [Γ,Γ] -invariant if and only if 〈m,u〉 = 0
for every u ∈ [Γ,Γ] , considered as a lattice in Rn . This yields rk[Γ,Γ] linearly independent
conditions on m ; hence N [Γ,Γ] has rank n− rk[Γ,Γ] .
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Using Θ× ⊂ N [Γ,Γ] and applying Theorem 4.4.13 yields

rkM = rk Θ× 6 rkN [Γ,Γ] = n− rk[Γ,Γ].

From Proposition 5.6.9, we see that Pic0
XK/K

is proper if and only if equality holds for the
ranks. However, both N [Γ,Γ] and Θ× are saturated in N ; i.e. if χ ∈ N satisfies χr ∈ N [Γ,Γ]

(resp. Θ× ) for some r > 0 , then already χ ∈ N [Γ,Γ] . From this, we see that equality holds
for the ranks if and only if Θ× = N [Γ,Γ] .

Lemma 5.6.12 is the essential tool the prove the central result of this section:

Theorem 5.6.13. Under Assumptions 5.6.2 and 5.6.7, the following holds:

Pic0
XK

is proper if and only if rk Γ1 = n.

Proof. At first, assume rk Γ1 = n . We will show that any unit f := ζm on Gn
m which

is invariant under [Γ,Γ] is already Γ -automorphic. Now, let γ := τ(A, c) ∈ Γ , and let
τb := τ(In, b) ∈ Γ1 . We have

[γ, τb](x) = γ ◦ τb ◦ γ−1 ◦ τ−1
b (x) = x+ (A− I)b = τ(I, (A− I)b)(x)

If ζm is [Γ,Γ] -invariant, we have

mtx = mt[γ, τb](x) = mtx+mt(A− I)b

for all τb ∈ Γ1 ; i.e. mt(A − I)b = 0 . As Γ1 has rank n , this yields mt(A − I) = 0 . From
this, we get

mtγ(x) = mtAx+mtc = mtx+mtc

for all x ∈ Rn . Going back to Gn
m via val , this shows that f is γ -automorphic. Using

Lemma 5.6.12, it follows that Pic0
XK/K

is proper.

For the converse, assume that rk Γ1 < n . If the γ1, . . . , γn are numbered as in Assump-
tion 5.6.7 (ii), then γn has infinite order in Γ/Γ1 . We will show in Proposition 5.6.22 that
there exists a character f := ζm which is invariant under [Γ,Γ] , but not automorphic with
respect to γn . Again, using Lemma 5.6.12, it follows that Pic0

XK/K
is not proper. The proof

involves some explicit computations, which will be done in several lemmata.
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Remark 5.6.14. If XK is algebraizable, then Pic0
XK/K

is proper. Namely, due to the GAGA-
principle [25, 2.8], the rigid-analytic Picard variety if the analytification of the classical al-
gebraic Picard variety, as XK is proper. The properness of Pic0

XK/K
follows then from the

smoothness of XK , using [10, 8.4/3]. Thus, under Assumption 5.6.7, Theorem 5.6.13 im-
plies that rk Γ1 = n is a necessary condition in Theorem 5.6.6 for XK to be algebraizable.

In the following, we will perform a change of coordinates as follows: Assume the unique
common vertex of the facets σ(0)

1 , . . . , σ
(0)
n is the origin 0 := (0, . . . , 0) of Rn . Let u1, . . . , un

denote the vertices of σ which have a common edge with 0 , such that ui ∈ σ
(1)
i . Then

u1, . . . , un are a basis of Rn , and, with respect to this basis, σ is just the unit hypercube.
Note that, with respect to that basis, the matrices Ai are not necessarily integer matrices.
However, only very few entries will be non-integral, as the following lemma shows:

Lemma 5.6.15. With respect to the basis u1, . . . , un , the generators γ1, . . . , γn are given by γi =
τ(Ai, vi) , where

Ai :=

B
(11)
i b

(1)
i B

(12)
i

0 1 0

B
(21)
i b

(2)
i B

(22)
i

 , vi :=

w
(1)
i

1

w
(2)
i

 ,

with the 1 sitting at the entry (i, i) . Define

Bi :=

(
B

(11)
i B

(12)
i

B
(21)
i B

(22)
i

)
, bi :=

(
b
(1)
i

b
(2)
i

)
, wi :=

(
w

(1)
i

w
(2)
i

)
.

Then the following holds: The rows of Bi are given by δ1e
t
τ(1), . . . , δn−1e

t
τ(n−1) , where τ ∈ Sn−1

is a permutation, ej denotes the j -th unit vector, and δj = ±1 . Especially, Bi is orthogonal
and satisfies Bk

i = I for some k > 1 , where I is the (n − 1) × (n − 1) unit matrix. For
wi = (wi,1, . . . , wi,n−1) , the j -th entry is given by

wi,j =

0, if δj = 1,

1, if δj = −1.

Moreover, we have wi ∈ Im(Bi − I) .

Proof. We do the proof for i = n ; the rest follows in complete analogy. Due to Assump-
tion 5.6.2 (iii), γn maps the hyperplane spanned by 0, u1, . . . , un−1 bijectively onto the
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affine hyperplane spanned by un, u1 + un, . . . , un−1 + un . Thus, γn restricts to an isomor-
phism of the linear subspace generated by u1, . . . , un−1 . Hence, the pair (An, vn) is given
by

An :=

(
Bn bn

0 1

)
, vn :=

(
wn

1

)
,

with Bn ∈ GL(n− 1,R) . Let u be a vertex of σ(0)
n with

u = λ1u1 + · · ·+ λn−1un−1, λi ∈ {0, 1}.

Then

γ′n : σ(0)
n → σ(0)

n , λ 7→ Bnλ+ wn

is an automorphism of σ(0)
n which permutes the vertices. Writing Bn = (bij) , the i -th

coordinate of γ′n(u) is given by

λ1bi,1 + · · ·+ λn−1bi,n−1 + wn,i. (5.1)

As γ′n(u) is again a vertex of σ(0)
n , the i -th coordinate of γ′n(u) is either 0 or 1 for every

vertex u of σ(0)
n . For λ = 0 , we see therefore that wn,i ∈ {0, 1} . Looking at the values

of (5.1) for every λ ∈ {0, 1}n−1 , we see that there is exactly one non-zero entry bi,j , which is
either −1 if wn,i = 1 or +1 if wn,i = 0 . Thus, the rows of Bn are, up to sign, unit vectors;
i.e. Bn is, up to sign, a permutation matrix. Hence, Bn is orthogonal. On the other hand,
γ′n acts as a permutation of the vertices; hence it has finite order. So there exists a k > 1
such that, for all y ∈ Rn−1 , we have

y = (γ′n)k(y) = Bk
ny + (Bk−1

n +Bk−2
n + · · ·+ I)wn.

Thus, Bk
n = I , and

wn ∈ Ker(Bk−1
n + · · ·+ I) = Im(Bn − I).

This proves the last claim.

Lemma 5.6.16. Let Bi, bi be as in Lemma 5.6.15. Then bi ∈ Im(Bi − I) if and only if γi has
finite order in Γ/Γ1 .
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Proof. Again, consider only γn . Then γn has finite order in Γ/Γ1 if and only if there exists
k > 1 such that γkn is a translation; i.e. An satisfies Akn = I . We have

Akn =

(
Bn bn

0 1

)k
=

(
Bk
n (Bk−1

n + · · ·+ I)bn
0 1

)

Thus, Akn = I if and only if Bk
n = I and (Bk−1

n + · · · + I)bn = 0 . But for Bk
n = I , the

second condition is equivalent to bn ∈ Im(Bn − I) ; see the proof of Lemma 5.6.15.

Lemma 5.6.17. Let γ1, . . . , γn be numbered according to Assumption 5.6.7; i.e. γ1, . . . , γr have
finite order in Γ/Γ1 ; γr+1, . . . , γn have infinite order. Then Ai and vi have the following form:

Ai =



Ci 0 · · · bi · · · 0

0 1
...

. . .
... 1
...

. . .

0 1


, vi =



wi

0
...
1
...
0


,

where Ci ∈ Rr×r satisfies Cki = I for some k > 1 , and bi ∈ Rr such that bi = 0 for i 6 r ,
bi 6∈ Im(Ci − I) for i > r + 1 . Moreover, Γ1 ⊗Z R is generated as a vector space over R by the
vectors u1, . . . , ur .

Proof. If r = n , there is nothing to show. Thus, assume r < n , so that γn has infinite order
in Γ/Γ1 . For i < r , we write

Ai =

(
Ci di

cti ai

)
, An =

(
Bn bn

0 1

)
,

with Ci ∈ R(n−1)×(n−1) , ci, di ∈ Rn−1 . Let k ∈ N with Bk
n = I . As in Lemma 5.6.16, Akn

is given by

Akn =

(
I b′n

0 1

)
, where b′n := (Bk−1

n + · · ·+ I)bn.

As γn has infinite order in Γ/Γ1 , we have b′n 6= 0 by Lemma 5.6.16. Due to Assump-
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tion 5.6.7 (i), Γ/Γ1 is abelian; i.e. we have AiA
k
n = AknAi . Writing out the products yields(

Ci Cib
′
n

cti ctib
′
n + ai

)
= AiA

k
n = AknAi =

(
Ci + b′nc

t
i di + aib

′
n

cti ai

)

Hence, we have b′nc
t
i = 0 . However, as b′n 6= 0 , we have ci = 0 . Lemma 5.6.15 implies that

ai = ±1 and di = 0 as well; i.e. Ai has the following form:

Ai =

(
Ci 0
0 ai

)
.

We claim that ai = +1 . In order to prove this, we will first show that

Γ1 ⊗Z R = 〈u1, . . . , ur〉R.

Fix i ∈ {1, . . . , r} , and let ki such that γkii ∈ Γ1 ; i.e. Akii = I . Due to Lemma 5.6.15, we
can write vi = (wi, βi)t with βi = 1 if ai = −1 , and βi = 0 if ai = 1 . Considered as a
vector in Rn , we have

γkii = (Aki−1
i + · · ·+ I)vi =

(
(Cki−1

i + · · ·+ I)wi
(aki−1
i + · · ·+ 1)βi

)
.

If ai = 1 , then βi = 0 , so the last coordinate of γkii vanishes. If ai = −1 , then ki is even,
and hence aki−1

i + · · · + 1 = 0 . Again, the last coordinate of (Aki−1
i + · · · + I)vi vanishes.

This shows γkii ∈ 〈u1, . . . , un−1〉R . Repeating this argument for γr+1, . . . , γn−1 instead of
γn , we get γkii ∈ 〈u1, . . . , ur〉R .

By Assumption 5.6.7, the elements γk1
1 , . . . , γkrr are a basis of Γ1 . Hence, over R , they

generate 〈u1, . . . , ur〉R . This proves Γ1 ⊗Z R = 〈u1, . . . , ur〉R .

It still remains to show that ai = 1 for all i = 1, . . . , n . We compute the commutator of γi
and γn , using AiAn = AnAi :

[γi, γn](x) = γi ◦ γn ◦ γ−1
i ◦ γ

−1
n (x) = x+ (Ai − I)vn − (An − I)vi.
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Again, write vi = (wi, βi) , vn = (wn, 1) . We compute

(Ai − I)vn − (An − I)vi

=

(
Ci − I 0

0 ai − 1

)(
wn

1

)
−

(
Bn − I bn

0 0

)(
wi

βi

)

=

(
(Ci − I)wn − (Bn − I)wi − βibn

ai − 1

)

However, as Γ1 ⊗Z R = 〈u1, . . . , ur〉R by the second claim and [Γ,Γ] ⊂ Γ1 , the last coordi-
nate vanishes; hence ai = 1 . Using the last assertion of Lemma 5.6.15, this implies βi = 0 .
Repeating the same argument for γr+1, . . . , γn−1 instead of γn , the first claim follows.

Lemma 5.6.18. In the situation of Lemma 5.6.17, we have bi ∈ Ker(Cj − I) for j 6= i .

Proof. Again, consider only the case j = n . Using AiAn = AnAi , we get
CiCn · · · bi · · · Cibn

0
... I

0

 = AiAn = AnAi =


CnCi · · · Cnbi · · · bn

0
... I

0

 .

Hence, (Cn − I)bi = (Ci − I)bn = 0 . This proves the claim.

Lemma 5.6.19. Let f := 〈m, ·〉 ∈ Hom(Rn,R) for some m = (m1, . . . ,mn) ∈ Zn . Then f is
invariant under [Γ,Γ] if and only if m′ := (m1, . . . ,mr) ∈ Zr annihilates the vector space

V := Im(C1 − I) + · · ·+ Im(Cn − I)

Proof. At first, let τb = τ(I, b) in Γ1 , b = (b′, 0, . . . , 0)t ∈ 〈u1, . . . , ur〉R with b′ ∈ Rr . Then

[γi, τb] := γi ◦ τb ◦ γ−1
i ◦ τ

−1
b (x) = x+ (Ai − I)b = τ(I, (Ai − I)b).

However, using Lemma 5.6.17, we have

(Ai − I)b =


(Ci − I)b′

0
...
0

 .
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As b′ runs through 〈u1, . . . , ur〉R , we see that f annihilates all commutators of type [γi, τb]
if and only if m′ satisfies (m′)t(Ci − I) = 0 ; i.e. m′ annihilates Im(Ci − I) for all i . As
in the proof of Lemma 5.6.17, we see that the commutator [γi, γj ] for i 6= j is given by the
following vector:

(Ai − I)vj − (Aj − I)vi =


(Ci − I)wj − (Cj − I)wi

0
...
0


Again, f is invariant under [γi, γj ] if and only if m′ annihilates (Ci − I)wj − (Cj − I)wi .
Thus, we see that (m′)t(Ci − I) = 0 for all i = 1, . . . , n already implies that f is invariant
under [Γ,Γ] . This proves the claim.

Lemma 5.6.20. Let Ci, bi as in Lemma 5.6.17. Then, for j > r + 1 , we have

bj 6∈ V = Im(C1 − I) + · · ·+ Im(Cn − I).

Proof. Again, consider only the case j = n . The matrices Ci are diagonalizable and satisfy
CiCj = CjCi . Thus, there exists a common basis of eigenvectors z1, . . . , zr such that Cizj =
λ

(i)
j zj with λ

(1)
n , . . . , λ

(s)
n = 1 , λ(s+1)

n , . . . , λ
(r)
n 6= 1 . Write

bn = b(1)
n z1 + · · ·+ b(r)n zr

Due to Lemma 5.6.16, bn is not contained in Im(Cn− I) , so we have b
(k)
n 6= 0 for some k ∈

{1, . . . , s} . Without loss of generality, we may assume b
(1)
n 6= 0 . However, Lemma 5.6.18

yields bn ∈ Ker(Ci− I) for i < n , so we have λ
(1)
i = 1 for all i < n . But then bn 6∈ V .

Definition 5.6.21. In analogy to Definition 4.4.1, we say that a linear function f := 〈m, ·〉 ∈
Hom(Rn,R) is Γ -automorphic, if there exists a group homomorphism c : Γ→ R such that
f(γ(x)) = f(x) + c(γ) for all x ∈ Rn .

Proposition 5.6.22. Let rk Γ1 < n . Then there exists f := 〈m, ·〉 ∈ Hom(Rn,R) such that f is
invariant under [Γ,Γ] , but f is not Γ -automorphic.

Proof. Note that f is Γ -automorphic if and only if mt(Ai − I) = 0 for all i = 1, . . . , n , as

mtγi(x) = mt(Aix+ vi) = mtAix+mtvi.
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Consider the case i = n . Using Lemma 5.6.17, we have

mt(An − I) = mt


Cn − I · · · bn

...
. . .

0 0

 =


(m′)t(Cn − I) · · · (m′)tbn

...
. . .

0 0


with m′ = (m1, . . . ,mr) . Thus, m annihilates An − I if and only if m′ annihilates Cn −
I and bn . However, bn 6∈ V := Im(C1 − I) + · · · + Im(Cn − I) due to Lemma 5.6.20,
so we find some m′ which annihilates V but not bn . This choice of m yields a linear
function f which is invariant under [Γ,Γ] , but which is not Γ -automorphic. This proves
the claim.



Chapter 6

Affinoid Polytopal Domains are Factorial

Again, let σ be a Γ -rational polytope. Let Xσ,K := val−1(σ) ⊂ Gn
m be the corresponding

affinoid polytopal domain. For simplicity, we will write X = Xσ,K in this section; keeping
in mind that X is the affinoid K -space, not its affine formal model (which we will not need
here). The goal of this chapter is to prove the following:

Theorem 6.0.1. If X ⊂ Gn
m is an affinoid polytopal domain, then

H i(X,O×) = 0 for all i > 1.

In [32], van der Put proved a similar result for generalized polyannuli (i.e. affinoid domains
of the form X = D1 × · · · × Dr , where Di ⊂ D1 is a standard domain), and monomial
convex subsets, which are described by a finite number of inequalities |ζm| 6 am , m ∈ Nr .
In the following, we will modify van der Put’s proof for our situation.

From now on, we will no longer assume that K is algebraically closed. Let Γ denote the
value group of the additive valuation v(z) := − log |z| on the algebraic closure K̄ of K .
The notions of Γ -rational polytope and affinoid polytopal domain are defined as in 3.1: If
σ is a Γ -rational polytope in Rn given by inequalities 〈mi, x〉 + ci > 0 with mi ∈ Zn ,
ci ∈ Γ , let Xσ denote the corresponding affinoid polytopal domain val−1(σ) . In order to
prove the above theorem, we will need van der Put’s Base Change Theorem, see [32]. The
following section will gather the theory needed to formulate and apply the Base Change
Theorem.

107
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6.1 Van der Put’s Base Change Theorem

Let X = Sp(A) be an affinoid variety over K . In a certain sense, X does not have
“enough” points; there are sheaves F on X such that Fx = 0 for all x ∈ X , but F 6= 0 .
To remedy this fact, it can be useful to allow a broader definition of point of X . The main
ideas in this section have been established among others by van der Put, Schneider, and
Berkovich; see for instance [32, 33, 3, 31]. For a detailed treatment, we refer to [14, § 7.1].

Definition 6.1.1. A prime filter on X = Sp(A) is a set p of admissible subsets of X , such
that

(i) X ∈ p , ∅ 6∈ p ;

(ii) U1 ∩ U2 ∈ p if U1, U2 ∈ p ;

(iii) V ∈ p if U ∈ V and V ⊃ U ;

(iv) If U1 , U2 are admissible subsets of X such that U1∪U2 ∈ p , then U1 ∈ p or U2 ∈ p .

A maximal filter is a prime filter which is not contained in any larger prime filter. The set of
all prime filters will be denoted by P(X) , the subset of maximal filters by M(X) .

Note that any ordinary point x ∈ X induces a maximal Filter

p(x) := {U ⊂ X admissible : x ∈ U}.

Let U = R(f0, . . . , fn) ⊂ X be a rational domain. A rational domain U ′ ⊂ X is called a
neighbourhood of U , if U ′ ⊃ Rρ := R(ρf0, f1, . . . , fn) for some ρ ∈

√
|K×| , ρ > 1 . We

write U ′ cX U .

If p is a prime filter, we define a maximal Filter r(p) containing p as follows: An admis-
sible subset U ⊂ X is in r(p) if and only if U contains a rational domain R such that
Rρ ∈ p for all ρ ∈

√
|K×| , ρ > 1 . This is the unique maximal filter such that r(p) ⊃ p .

Let F be a sheaf of X . For any prime filter p , we define the stalk of F in p via

Fp := lim
→
{F(U) : U ∈ p}

If p corresponds to an ordinary point, this coincides with the classical definition of a stalk.

Now, let F be a presheaf on X . Define a presheaf F+ on X via

F+(U) := Ȟ0(U,F) = lim
→
Ȟ0(U ,F)



6.1 Van der Put’s Base Change Theorem 109

where U is an admissible subset of X , U an admissible covering of U . For any prime
filter p , we have Fp ∼= F+

p , see [32, 1.2.1]. Applying this construction twice yields a sheaf
F++ . We call F++ the sheafification of F .

The following result shows why it is sometimes helpful to consider prime filters instead of
ordinary points:

Theorem 6.1.2. (i) Let F be a sheaf on X . Then F = 0 holds if and only if Fp = 0 for all
prime filters p .

(ii) A sequence 0 → F → F ′ → F ′′ → 0 of sheaves is exact, if and only if the sequence of
sheaves 0→ Fp → F ′p → F ′′p → 0 is exact at every prime filter p of X .

Any maximal filter can be described equivalently by a seminorm on O(X) . Namely, if p
is a maximal filter, we can define

|f |p := inf{‖f‖U : U ∈ p},

where ‖f‖U := sup{f(x) : x ∈ U} is the supremum seminorm on U ⊂ X . The seminorm
|f |p has the following properties; see [32, Lem. 1.3.1]:

(i) |f |p 6 ‖f‖X .

(ii) |f + g|p 6 max{|f |p, |g|p} .

(iii) |fg|p = |f |p|g|p .

(iv) |λ|p = |λ| for λ ∈ K .

A mapping | · | : O(X) → R>0 which satisfies conditions (i) – (iv) is also called a rank 1
valuation or analytic point on O(X) .

On the other hand, any analytic point |·| as above induces a maximal filter p ; see [32, 1.3.2].
Thus, p 7→ | · |p yields a one-to-one correspondence between maximal filters and analytic
points. We may thus use the notions of analytic points and maximal filters interchangeably.

As with ordinary points, one can define a residue field Kp for an analytic point p . Namely,
let Lp := OX,p/mp , where mp := {f ∈ OX,p : |f |p = 0} . This is is an extension of K with
a non-archimedean valuation | · |p which extends the valuation of K . We can then define
Kp as the completion of Lp with respect to | · |p . If x is an ordinary point, then mx is the
maximal ideal of OX,p corresponding to x , and Kp = Lp = OX,p/mx is a finite extension
of K , namely the usual residue field of x .
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Again, let M(X) denote the set of maximal filters on X . The Berkovich topology on M(X)
is the weakest topology such that p 7→ |f |p is continuous for all f ∈ O(X) . This topology
makes M(X) a compact Hausdorff space.

Let ϕ : X → Y be a morphism of affinoid spaces over K . Then ϕ induces a continuous
morphism M(ϕ) : M(X) → M(V ) by sending a seminorm OX(X) → R>0 to the com-
position OY (Y ) → OX(X) → R>0 . If U ⊂ X is an affinoid subdomain, we can use this
construction to identify M(U) with a subset of M(X) .

Definition 6.1.3. A (pre-)sheaf F on X is called overconvergent, if

F(U) ∼= lim
→
{F(U ′) : U ′ c U}

holds for all rational subdomains U ⊂ X .

Example 6.1.4. Let G be an abelian group. For any non-empty admissible open U ⊂ X ,
we set P (U) := G . This defines a presheaf on X , which is called the constant presheaf. The
sheafification P++ of P is called the constant sheaf on X and will be denoted by GX . It
is overconvergent.

In the following, we will gather some important results for overconvergent (pre-)sheaves;
see [14, Lem. 7.4.1] and [32, 1.4.6 – 1.4.12]:

Lemma 6.1.5. (i) If F is an overconvergent presheaf, then the presheaf F+ is also overconver-
gent. Especially, the sheafification F++ of F is overconvergent.

(ii) If F is an overconvergent sheaf, then the presheaf given by U 7→ H i(U,F) is also overcon-
vergent.

(iii) Let ϕ : X → Y be a morphism between affinoid spaces, and let F be an overconvergent
sheaf on X . Then the direct image sheaves ϕ∗F and Riϕ∗F are also overconvergent.

(iv) Let ϕ : X → Y be a morphism between affinoid spaces, and let F be an overconvergent
sheaf on Y . Then ϕ−1F is also overconvergent.

Overconvergent sheaves have the following central property; see [14, Thm. 7.17]:

Theorem 6.1.6. For an overconvergent sheaf F and any prime filter p ∈ P(X) , we have Fp ∼=
Fr(p) .

Thus, an overconvergent sheaf F is already determined by its stalks in analytic points.
Hence, it suffices to check the conditions of Theorem 6.1.2 for analytic points.
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Definition 6.1.7. Let ϕ : X → Y be a morphism of affinoid spaces, and let p ∈ Y be an
analytic point. We can define the fibre of ϕ over p as follows:

Let Kp denote the residue field of p . Then O(X)⊗̂O(Y )Kp is an affinoid Kp -algebra; see
[32, Lem. 2.1]. We define

X ×Y p := Sp
(
O(X)⊗̂O(Y )Kp

)
.

The morphism O(X)→ O(X ×Y p) induces a homeomorphism

α :M(X ×Y p)
∼−→M(ϕ)−1p ⊂M(X).

If p is not an ordinary point of Y , then Kp/K is not a finite extension, so in general this
does not yield a morphism X ×Y p → X between affinoid spaces. However, one can
interpret α as a general morphism; see [11, 2.6].

Now, let F be an overconvergent sheaf on X . We can identify F with a sheaf on M(X) .
By restriction, this yields a sheaf on M(X×Y p) , which we will denote by α−1F . If U ⊂ X
is a finite union of open affinoid subdomains of X , then

H0(U ×Y p, α−1F) = lim
→
{F(U ∩ ϕ−1V ); U ∈ p}.

The central result of this section is the following Base-Change Theorem; see [32, Th. 2.3].
For a generalized version, see also [11, Th. 2.7.4].

Theorem 6.1.8 (Base-Change Theorem). Let ϕ : X → Y be a morphism of affinoid spaces, and
let F be a sheaf on X .

(i) If F is overconvergent, then (Riϕ∗F)p ∼= H i(X×Y p, α−1F) holds for all i and all analytic
points p of Y .

(ii) If Riϕ∗F = 0 for all i > 1 , then H i(X,F) ∼= H i(Y, ϕ∗F) holds for all i .

(iii) If F is overconvergent and H i(X ×Y p, α−1F) = 0 holds for all i > 1 and all analytic
points p of Y , then H i(X,F) ∼= H i(Y, ϕ∗F) holds for all i .

6.2 The Main Theorem

Again, let X = Xσ,K be an affinoid polytopal domain.



112 Chapter 6 Affinoid Polytopal Domains are Factorial

Remark 6.2.1. If ϕ : X → Gk
m is the projection onto the first k coordinates, then ϕ(X) =

Xτ = val−1(τ) , where τ ⊂ Rk is the projection of σ onto the first k coordinates. If p is an
analytic point of Xτ , then the fibre Xσ ×Xτ p is given over Kp by∣∣∣zβ1

1 · · · z
βn−k
n−k

∣∣∣
p
6 ρ

∣∣∣z−βn−k+1

n−k+1 · · · z−βnn

∣∣∣
p
.

The term on the right side is a constant in Kp , as zn−k+1, . . . , zn ∈ Kp .

Hence, Xσ ×Xτ p = val−1
Kp

(σp) , where σp is the fibre of τ over the point

(− log |zn−k+1|p, . . . ,− log |zn|p) ∈ τ.

Hence, σp is again a Γp -rational polytope, where Γp is the additive valuation group of
Kp .

Notation 6.2.2. On X , consider the sheaf O(r) given by

O(r)(U) := {f : |f(x)| < r for all x ∈ U}.

It is not overconvergent. For 0 < r < s 6∞ , we define O(r, s) as the quotient O(s)/O(r) ;
by [14, Ex. 7.4.2], O(r, s) is overconvergent.

Now, let O×(1) := 1+O(1) . We take again the quotient SX := O×/O×(1) ; it is overconver-
gent by [32, 1.5.2]. It contains the subsheaf AX , which is the constant sheaf associated to the
group A = K×/{1 + h : |h| < 1} . We take the sheaf TX to be the quotient TX := SX/AX .

If dimXσ = 1 , then Theorem 6.0.1 follows already from the following result:

Theorem 6.2.3. Let X ⊂ D1 be a rational subdomain. Then the following holds:

(i) H i(X,BX) = 0 for all i > 1 , all constant sheaves BX .

(ii) H i(X,OX(r)) = H i(X,OX(r, s)) = 0 for all i > 1 , 0 < r < s 6∞ .

(iii) H i(X,O×X) = 0 for all i > 1 .

Proof. See [32, Cor. 3.8].

For the general case, we will proceed by induction on dimXσ .

As a first step, we will show that any constant sheaf on a polytopal domain has trivial
cohomology. This assertion is analogous to [32, Th. 3.10].
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Proposition 6.2.4. Let X ⊂ Gn
m,K be an affinoid polytopal domain. Then H i(X,BX) = 0 holds

for all i > 1 and all constant sheaves BX .

Proof. Let ϕ : X → D be the projection onto the last coordinate. Then the image D ⊂ G1
m

is an annulus given by 0 < r1 6 |zn| 6 r2 . BX is overconvergent, so is ϕ∗BX . Let p
be an analytic point of D , then X ×D p ⊂ Gn−1

m,Kp
is a polytopal domain val−1(τ) for a

polytope τ ⊂ Rn−1 . By induction, we have H i(X ×D p, α−1BX) = 0 for i > 1 , since
α−1BX ∼= BX×Dp . Theorem 6.1.8 now yields H i(X,BX) = H i(D,ϕ∗BX) . Again due to
6.1.8, we have

(ϕ∗BX)p = H0(X ×D p,BX×Dp) = B,

as X ×D p is connected. This proves ϕ∗BX ∼= BD , and hence

H i(X,BX) = H i(D,BD) = 0

by Theorem 6.2.3 (i).

As a next step, we will prove the following:

Proposition 6.2.5. Let X be a polytopal domain; 0 < r < s 6∞ . Then

H i(X,OX(r)) = H i(X,OX(r, s)) = 0 for all i > 1.

For dimX = 1 , this is exactly Theorem 6.2.3 (ii). Now, let ϕ : X → D be the projection of
X onto the last coordinate.

Lemma 6.2.6. For 0 < r < s 6∞ , we have

Riϕ∗(X,OX(r, s)) = 0 for all i > 1.

Proof. OX(r, s) is overconvergent; so is ϕ∗OX(r, s) . Let p be an analytic point of D .
Then X ×D p ⊂ Gn−1

m,Kp
is again a polytopal domain. Due to [32, Lem. 3.16], we have

α−1OX(r, s) ∼= OX×Dp(r, s) . Proceding inductively and using Proposition 6.2.5 yields

H i(X ×D p, α−1OX(r, s)) = H i(X ×D p,OX×Dp(r, s)) = 0 for all i > 1.
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Due to Theorem 6.1.8, this implies

(Riϕ∗OX(r, s))p ∼= H i(X ×D p, α−1OX(r, s)) = 0;

so Riϕ∗O(r, s) = 0 holds as claimed.

Lemma 6.2.7. Let ϕ : X → Y be a morphism of affinoid spaces. If

Riϕ∗O(r,∞) = 0

holds for all i > 1 , then

H i(X,OX(r)) ∼= H i(Y, ϕ∗OX(r)).

Proof. This is proven in [32, 3.17]. We sketch the proof for completeness.

Consider the following exact sequence of sheaves on X :

0→ OX(r)→ OX → OX(r,∞)→ 0.

This induces a long exact sequence on Y :

0→ ϕ∗OX(r)→ ϕ∗OX → ϕ∗OX(r,∞)→ R1ϕ∗OX(r)→ R1ϕ∗OX → · · ·

OX is acyclic on X ; so Riϕ∗OX = 0 for i > 1 . Using Riϕ∗O(r,∞) = 0 on the above
exact sequence yields Riϕ∗OX(r) = 0 for i > 2 .

It remains to prove R1ϕ∗OX(r) = 0 . Note that O(r) and R1ϕ∗OX(r) are not necessarily
overconvergent; so we have to show that the stalks vanish at each prime filter p0 . Let
δ : (ϕ∗OX)p0 → (ϕ∗OX(r,∞))p0 ; we will show that δ is surjective. For the prime filter
p0 , let p := r(p0) denote the unique analytic point with p ⊃ p0 . Consider the following
diagram:

0 // (ϕ∗OX(r))p0
//

γ1

��

(ϕ∗OX)p0

δ //

γ2

��

(ϕ∗OX(r,∞))p0

γ3

��
0 // OX×Y p(r)(X ×Y p) // OX×Y p(X ×Y p) // OX×Y p(r,∞)(X ×Y p) // 0
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ϕ∗OX(r,∞) is overconvergent, so

(ϕ∗OX(r,∞))p0
∼= (ϕ∗OX(r,∞))p = H0(X ×Y p,OX×Y p(r,∞)).

Hence, γ3 is bijective. Due to [32, Lem 3.16.1], γ1 and γ2 have identical kernel and cok-
ernel. By diagram chasing, we find that δ is surjective. So R1ϕ∗OX(r) = 0 , and the claim
follows.

Lemma 6.2.8. Let ρ ∈
√
|K×| , and let D = {z : |z| = ρ} . Let Y be an affinoid space such that

H i(Y,OY (r)) = 0 holds for all i > 1 and all r > 0 . Then

H i(Y ×D,OY×D(r)) = 0 for all i > 1, r > 0.

Proof. See [32, 3.21].

For the next result, see also [32, Lem. 3.25]:

Lemma 6.2.9. Let X = Xσ , and let ρ ∈
√
|K×| . We set X1 := {z ∈ X : |zn| 6 ρ} ,

X2 := {z ∈ X : |zn| > ρ} , X3 := {z ∈ X : |zn| = ρ} . Then the map

O(r)(X1)⊕O(r)(X2)→ O(r)(X3), (f1, f2) 7→ f1 − f2

is surjective.

Proof. We define

σ1 := {x ∈ σ : xn > − log ρ},

σ2 := {x ∈ σ : xn 6 − log ρ},

σ3 := σ1 ∩ σ2 = {x ∈ σ : xn = − log ρ}.

Then Xi := val−1(σi) . Now, let f :=
∑
amz

m ∈ O(r)(X3) . We have to show that every
term amz

m is either in O(r)(X1) or in O(r)(X2) .

By the definition of the supremum norm for a polytopal domain, we have

r > min
u∈σ3

|am|e−〈m,x〉
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for all m ∈ Zn . Equivalently, infx∈σ3〈m,x〉 > − log(r/|am|) . We have to prove

inf
x∈σ3

〈m,x〉 = max( inf
x∈σ1

〈m,x〉, inf
x∈σ2

〈m,x〉).

The ”> ” part is clear, as σ3 = σ1 ∩ σ2 . For the converse, let p1 ∈ σ1 , p2 ∈ σ2 . The line
through p1 and p2 meets σ3 in a point p3 = tp1 + (1− t)p2 ∈ σ3 for a t ∈ [0, 1] . Then

〈m, p3〉 = t〈m, p1〉+ (1− t)〈m, p2〉 6 max(〈m, p1〉, 〈m, p2〉).

This proves infx∈σ3〈m,x〉 6 max(infx∈σ1〈m,x〉, infx∈σ2〈m,x〉) , and thus the claim follows.

We can now conclude the proof of Proposition 6.2.5 similarly to [32, 3.22].

Proof of Proposition 6.2.5. Applying Lemma 6.2.6 and Lemma 6.2.7, we find

H i(X,OX(r)) ∼= H i(D,ϕ∗OX(r)).

As dimD = 1 , all higher cohomology groups vanish; so it is enough to show

H1(D,ϕ∗OX(r)) = 0.

Consider the following exact sequence:

H0(D,ϕ∗OX)
β−→ H0(D,ϕ∗OX(r,∞))→ H1(D,ϕ∗OX(r))→ H1(D,ϕ∗OX) = 0

We have to show that β is surjective. D is an annulus which is given by 0 < R1 6 |zn| 6
R2 . Let f ∈ H0(D,ϕ∗OX(r,∞)) have image ξ ∈ H1(D,ϕ∗OX(r)) .

We claim that there exists a covering of D by annuli Vi such that ξ|Vi = 0 .

Let p be an analytic point of D . As R1ϕ∗OX(r) = 0 , we have

(R1ϕ∗OX(r))p = lim
→
{H1(U,ϕ∗OX(r)) : U ∈ p} = 0;

and so for each p there exists U ∈ p with ξ|U = 0 . So, the presheaf

U 7→ H1(U,ϕ∗OX(r))
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has trivial stalks in all analytic points. Moreover, R1ϕ∗OX(r) = 0 yields the following
exact sequence of sheaves:

0→ ϕ∗OX(r)→ ϕ∗OX → ϕ∗OX(r,∞)→ 0.

As ϕ∗OX(r,∞) is overconvergent, we conclude that the presheaf U 7→ H1(U,ϕ∗OX(r)) is
also overconvergent.

Now, let ρ ∈ [R1, R2] , ρ ∈
√
|K×| . Define Xρ := {x ∈ X : |xn| = ρ} , then Xρ =

X ′ρ × {|zn| = ρ} for a suitable X ′ρ = val−1(σ′) ⊂ Gn−1
m . By induction H i(X ′ρ,O(r)) = 0

holds for all i > 1 and all r > 0 by Proposition 6.2.5. Applying Lemma 6.2.8 yields
H i(Xρ,O(r)) = 0 . Applying Lemma 6.2.7 yields

H1({|z| = ρ}, ϕ∗OX(r)) = H1({|z| = ρ}, ϕ∗OXρ(r)) = H1(Xρ,O(r)) = 0.

Hence, ξ = 0 on {|z| = ρ} . As U 7→ H1(U,ϕ∗OX(r)) is overconvergent, ξ|U ′ = 0 for a
suitable U ′ c U . This U ′ contains an annulus U ′′ := {r1 6 |z| 6 r2} with r1 < ρ < r2

such that ξ vanishes on U ′′ .

Now, for ρ 6∈
√
|K×| , ρ ∈ [R1, R2] , we consider the analytic point p given by the semi-

norm |
∑
anz

n|p := max |an|ρn . Let U ∈ p such that ξ|U = 0 . Then U contains an annulus
U ′ := {z : r1 6 |z| 6 r2} with r1 < ρ < r2 such that ξ vanishes on U ′ .

Continuing as above, we find radii r0 := R1 < r1 < . . . , rs := R2 with ri ∈
√
|K×| such

that ξ|Vi = 0 for the corresponding annuli Vi := {ri 6 |z| 6 ri+1} , i = 0, . . . , s− 1 .

Now, we want to show that f ∈ Im(β) .

We consider the commutative diagram on page 118; Figure 6.1.

The surjectivity of τ follows from Lemma 6.2.9 by induction; the case for general n can be
reduced to the case n = 2 as in the proof of [32, Cor. 3.3]. By diagram chasing, we find
g ∈ H0(D,ϕ∗OX) with β(g) = f . This proves the claim.

In the following, we consider the sheaf SX = O×/O×(1) ; cf. Notation 6.2.2. The following
result can be found already in [32]. We will give the proof for completeness.

Lemma 6.2.10. Let ϕ : X → Y a morphism of affinoid spaces. Then α−1SX ∼= SX×Y p holds for
every analytic point p .
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0��

0��

0��

0��
0

//H
0(D

,ϕ
∗ O

X
(r))

//

��
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0(D

,ϕ
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X
)

β
//

��

H
0(D

,ϕ
∗ O

X
(r,∞

))
//

��

H
1(D

,ϕ
∗ O

X
(r))

��

//0

0
// L

H
0(V

i ,ϕ
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X
(r))

//

τ

��

L
H

0(V
i ,ϕ
∗ O

X
)

//

��

L
H

0(V
i ,ϕ
∗ O

X
(r,∞

))
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��

L
H

1(V
i ,ϕ
∗ O

X
(r))

0
// L

H
0(V

i ∩
V
i+

1 ,ϕ
∗ O

X
(r))

//

��

L
H

0(V
i ∩

V
i+

1 ,ϕ
∗ O

X
)

// L
H

0(V
i ∩

V
i+

1 ,ϕ
∗ O

X
(r,∞

))

0

Figure
6.1:
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Proof. For an admissible open subset A ⊂ X ×Y p , we consider the presheaves

P1(A) := lim
→
{O×(U) : α(A) ⊂ U}, P2(A) := lim

→
{O×(1)(U) : α(A) ⊂ U}.

Denote with Ki(A) resp. Ci(A) the kernel resp. cokernel of the following maps:

P1(A)→ O×X×Y p(A), P2(A)→ O×X×Y p(1)(A).

We will show K1(A) = K2(A) and C1(A) = C2(A) . Due to [32, Lem. 2.6], there exists a
rational domain B ⊂ X with α−1(B) = A , and

OX×Y p(A) ∼= OX(B)⊗̂O(Y )Kp

by [32, Lem. 2.4]; so A = B ×Y p . Thus, it is enough to show the above assertion for
A = X ×Y p . Due to [32, Lem. 2.5], the image of lim

→
{OX(ϕ−1V ) : V ∈ p} lies dense in

O(X ×Y p) .

Now, let f ∈ O×(X ×Y p) . We can approximate f as ḡ(1 + h) with ‖h‖ < 1 , ḡ ∈
O×(X ×Y p) , such that ḡ is the image of g ∈ OX(ϕ−1V ) for a suitable V ∈ p . As in the
proof of [32, Lem. 2.6], we find a V ′ ∈ p , V ′ ⊂ V , such that g is invertible on ϕ−1V ′ .

On the other hand, if 1 + f ∈ O×(1)(X ×Y p) , as in the proof of [32, Lem. 3.16], one finds
a V ∈ p , such that f = ḡ(1 + h) with ‖g‖ϕ−1V < 1 and ‖h‖ < δ for a δ > 0 . Then
1 + f = (1 + g)(1 + h′) , where ‖h′‖ < 1 , if δ is small enough. This proves C1 = C2 .

Now, let f ∈ O×(U) for a U with αA ⊂ U , such that f̄ = 1 ∈ O(X×Y p) ; then f = 1+gh

holds for some g ∈ O(U) , h ∈ O(Y ) with |h|p = 0 . As gh = 0 , [32, Lem. 2.5] shows that
there exists V ∈ p with ‖gh‖ϕ−1V < 1 ; thus f ∈ O×(1)(ϕ−1V ) . This proves K1 = K2 .

Now, consider the sheaf T = S/A ; cf. Notation 6.2.2. We need the following variant of [32,
Lem. 3.27] for polytopal domains.:

Lemma 6.2.11. Let X = val−1(σ) ⊂ Gn
m , and let ϕ : X → Y ⊂ Gn−1

m be the projection onto the
first n− 1 coordinates. Then ϕ∗TX ∼= TY ⊕ ZY .

Proof. Let U ⊂ Y be a connected affinoid subdomain. Define ψ by

ψ : O(U)× × Z→ O(ϕ−1U)×; (f,m) 7→ fzmn
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This induces a morphism of sheaves β : SY ⊕ ZY → ϕ∗SX . As S is overconvergent,
SY ⊕ ZY and ϕ∗SX are overconvergent as well.

We need to show that β is an isomorphism. It is enough to show this for the stalk at each
analytic point. Due to Theorem 6.1.8, we have (ϕ∗SX)p = H0(X ×Y p, α−1SX) . On the
other hand, α−1SX ∼= SX×Y p by Lemma 6.2.10; thus

(ϕ∗SX)p = O×(X ×Y p)/(O(1)×(X ×Y p)).

As D = X ×Y p is an annulus, every element of (ϕ∗SX)p has a unique representation
of the form λzm with m ∈ Z , λ ∈ Kp/{1 + h : |h| < 1} ; cf. [32, 3.26]. On the other
hand, SY,p = O×Y,p/O×(1)Y,p . By definition, Lp = OY,p/{|f |p = 0} lies dense in Kp , so
L×p
∼= O×Y,p . This proves

SY,p = L×p /{1 + h : |h| < 1} ∼= L×p /{1 + h : |h| < 1}.

Hence, βp is surjective, and SY ⊕ ZY ∼= ϕ∗SX . From the exact sequence

1→ AX → SX → TX → 0,

we get the following exact sequence:

1→ ϕ∗AX → ϕ∗SX → ϕ∗TX → R1ϕ∗AX → · · ·

Applying Proposition 6.2.4 yields R1ϕ∗AX = 0 and ϕ∗AX = AY ; thus we have an exact
sequence

1→ AY → SY ⊕ Z→ ϕ∗TX → 0,

which proves the claim.

Theorem 6.2.12. For a polytopal domain X

H i(X,TX) = H i(X,SX) = H i(X,O×) = 0

holds for all i > 1 .

Proof. Using Lemma 6.2.11 yields H i(X,TX) = H i(Y, TY ) ⊕ H i(Y,Z) . Due to Proposi-
tion 6.2.4, H i(Y,Z) = 0 holds for all i > 1 ; so H i(X,TX) = H i(Y, TY ) . The assertion
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for TX follows by induction. As AX has trivial cohomology, the assertion for S follows
from the exact sequence 0 → A → S → T → 0 . Due to Proposition 6.2.5, O(r) has triv-
ial cohomology for all r . An approximation argument then shows that O×(1) has also
trivial cohomology on X . The assertion for O× follows now from the exact sequence
0→ O×(1)→ O× → S → 0 .
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Zusammenfassung

In dieser Arbeit betrachten wir eine neue Klasse eigentlicher rigid-analytischer Varietäten
über einem vollständigen diskret-bewerteten Körper K ; nämlich diejenigen, die über dem
Bewertungsring R ein total degeneriertes formales Modell besitzen. Wir zeigen, dass für eine
solche rigid-analytische Varietät XK die Picard-Varietät Pic0(XK) isomorph ist zu einem
Quotienten Gg

m,K/M , wobei M ein Gitter in Gg
m,K ist.

Die Existenz der Picard-Varietät für eine glatte eigentliche rigid-analytische Varietät XK

wurde erst 2000 von Hartl und Lütkebohmert bewiesen [21], unter der Voraussetzung, dass
XK ein streng semistabiles Modell X besitzt. Dabei spielt die spezielle Faser X0 von X

eine entscheidende Bedeutung für die Struktur der Picard-Varietät von XK . Der in dieser
Arbeit betrachtete total degenerierte Fall ist dabei die einfachste auftretende Konfigurati-
on:

Ein total degeneriertes formales Schema X ist folgendermaßen charakterisiert: Die irre-
duziblen Komponenten der speziellen Faser X0 sind rationale Varietäten, die sich normal
schneiden; d.h. X0 ist lokal isomorph zum Schnitt von Koordinatenhyperebenen im affinen
Raum Ar (für die genauen Bedingungen siehe Definition 4.1.1). Damit stellen die total de-
generierten rigid-analytischen Varietäten eine Verallgemeinerung der bekannten Mumford-
Kurven in höherer Dimension dar. Für Mumford-Kurven vom Geschlecht g haben Drin-
feld und Manin gezeigt [26], dass die Picard-Varietät ein analytischer Torus Gg

m,K/M ist.

In Theorem 4.3.5 verallgemeinern wir das Resultat von Drinfeld und Manin und zeigen,
dass für eine total degenerierte rigid-analytische Varietät XK die Picard-Varietät Pic0(XK)
durch einen Quotienten Gg

m,K/M beschrieben wird, wobei M ein Gitter in Gg
m,K ist.

Falls XK nicht algebraisch ist, hat das Gitter M nicht notwendigerweise vollen Rang;
ein bekanntes Gegenbeispiel ist die Hopf-Fläche, die ebenfalls in die Kategorie der total-
degenerierten Varietäten fällt (siehe §5.3). In §4.4 geben wir eine explizite Beschreibung der
Picard-Varietät mit Hilfe einer universellen Überlagerung ΩK von XK .

Eine große Klasse von Beispielen für total degenerierte Varietäten ist durch verallgemeiner-
te Polytopbereiche gegeben. Ein affinoider Teil eines Polytopbereiches ist das Urbild eines
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130 Zusammenfassung

Polytops σ ⊂ Rn unter der Bewertungsabbildung

val : Gn
m,K → Rn, (x1, . . . , xn) 7→ (− log |x1|, . . . ,− log |xn|)

Dadurch tragen Polytopbereiche eine reiche kombinatorische Struktur; viele Methoden und
Resultate über torische Varietäten lassen sich auf die Situation von Polytopbereichen über-
tragen. Die Existenz eines total degenerierten Modells für Polytopbereiche folgt aus einem
kombinatorischen Resultat von Kempf, Knudson, Mumford und Saint-Donat [24]. In Theo-
rem 6.0.1 zeigen wir mit Methoden von van der Put [32], dass auf einem affinoiden Poly-
topbereich die Picard-Gruppe verschwindet.

In §5.6 behandeln wir den Spezialfall einer total degenerierten Varietät, für die die uni-
verselle Überlagerung ΩK gerade Gg

m,K ist; d.h. XK
∼= Gg

m,K/Γ , wobei Γ eine geeigne-
te Untergruppe von Aut(Gg

m,K) ist (für die genauen Bedingungen an Γ siehe Assump-
tion 5.6.2 und Assumption 5.6.7). Diese Quotienten sind Beispiele für verallgemeinerte
Polytopbereiche. Falls Γ ein Gitter ist, so erhält man einen analytischen Torus Gg

m,K/Γ ;
diese Situation ist bereits gut untersucht.

Für einen solchen Quotienten XK lässt sich anhand der Gruppe Γ die Struktur der Picard-
Varietät explizit bestimmen. Dabei spielt die Translationsuntergruppe Γ1 ⊂ Γ eine zentrale
Gruppe; Γ1 ist ein Gitter in Gg

m,K . In Theorem 5.6.13 zeigen wir, dass die Picard-Varietät
Pic0(XK) genau dann eigentlich ist, wenn rk Γ1 = n ist. Im Fall rk Γ1 = n zeigen wir
weiterhin, dass XK genau dann algebraisch ist, wenn Γ1 ein Analogon der Riemannschen
Periodenrelationen erfüllt. Dieses Resultat ist im Falle von analytischen Tori (d.h. Γ1 = Γ )
bereits bekannt; das allgemeine Restultat lässt sich darauf zurückführen.

Als Anwendung dieser Theorie geben wir zwei neue Beispiele an, bei denen sich die Picard-
Varietät leicht beschreiben lässt. In §5.4 beschreiben wir eine rigid-analytische Kleinsche Flä-
che, deren Konstruktion von der klassichen Konstruktion der Kleinschen Flasche inspiriert
ist; sie ist algebraisch. Als zweites Beispiel beschreiben wir in §5.5 einen gescherten Torus;
dies ist ein weiteres Beispiel für eine rigid-analytische Varietät, deren Picard-Varietät nicht
eigentlich ist.
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