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Chapter 1

Introduction

1.1 Aims and motivation

The present thesis is motivated by a joint research project of the Institute of
Stochastics at Ulm University and Orange Labs in Issy les Moulineaux, Paris,
which deals with the analysis of telecommunication networks. During the last
years the Stochastic Subscriber Line Model (SSLM) has been developed in this
cooperation and it is still extended. The SSLM is a flexible model for telecom-
munication networks, especially designed for access networks in urban areas. It
utilizes tools from Stochastic Geometry in order to represent the different parts of
the network by spatial stochastic models which only depend on a small number of
parameters. Real telecommunication networks are huge systems which are diffi-
cult to analyze due to their size and complexity. However, using spatial stochastic
models it is possible to describe existing and future telecommunication networks
by few parameters. Then the network can be analyzed based on a suitable model
which leads to an alternative approach in comparison to traditional methods for
cost measurement and strategic planning which are based on the direct analysis
of network data.

Spatial stochastic modeling of telecommunication networks is a powerful ap-
proach in order to analyze huge networks globally since the variability and size
of the network is used as an advantage to provide statistical properties of the
whole system. Therefore, the main principles which control the behavior of the
network have to be described by appropriate models from stochastic geometry.
Such models have been shown to be useful e.g. in order to represent the lo-
cations of network components as well as the geometry of the underlying in-
frastructure. Since their first applications the number and diversity of spatial
stochastic network models has been considerably extended using concepts from
stochastic geometry like point processes and random geometric graphs, see e.g.
[4, 39, 106] for recent surveys. Models which have been investigated include ag-
gregated Poisson-Voronoi tessellations ([6, 28, 91]), modulated Poisson-Voronoi
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6 Chapter 1. Introduction

Figure 1.1: Street map in Paris

tessellations ([16, 17, 27]), coverage processes ([3]), spanning trees ([7, 9]), super-
positions of Poisson-Voronoi tessellations ([5]) and point processes on the edges
of random tessellations ([6, 30, 33]). In this thesis we focus on the latter approach
which is described below in more detail.

Traditionally, planar Poisson processes have been applied to model locations of
network components. The main reason for the use of Poisson processes is that the
resulting network models can be analyzed analytically in many cases. However,
such network models cannot take into account the underlying infrastructure of
the network. For instance, in Figure 1.1 the street system of Paris is shown which
can be regarded as the geometrical support of urban telecommunication networks,
i.e., the cable system of such networks is deployed along the street system. From a
macroscopic perspective, the street system exhibits a large variability which seems
to be homogeneous in the plane. The SSLM takes advantage of this variability
and models not only network components, but also the underlying infrastructure
of the network by random processes which leads to a more realistic network model.

In particular, we consider two-level hierarchical models for access networks
which consist of three distinct building blocks: The geometrical support of the
network, the locations of network nodes and the connection topology, see Fig-
ure 1.2. In a first step the geometric support of the cable system is modeled.
For this purpose we use planar random tessellations which are basic models from
stochastic geometry in order to describe random segment systems, see Figure 1.3.
Then, in the second step, network nodes of high and low hierarchy are modeled
as random points on the edges of the tessellation. Suitable models are random
point processes on the edges of random tessellations like Cox processes. In the
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Geometry Model

Infrastructure system (roads),

urban and rural

●Non-iterated tessellations
  (PLT, PVT, PDT)
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Topology of connections (tree,...)
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Stochastic Subscriber Line Model (SSLM)

Figure 1.2: Basic components of the SSLM

final step, rules for the connections between network nodes have to be specified.
We consider different scenarios here. One possibility is that network nodes of low
hierarchy are connected to their nearest neighboring node of high hierarchy on
the shortest path along the edges of the underlying tessellation, see Figure 1.4.
Note that the network quality for single users is often not of interest, but the
network operator is rather interested in the expected network quality averaged
over all users in a large area. A mathematical tool in order to analyze spatial
averages of stochastic processes is Palm calculus. In particular, we are interested
in the average connection length of all network nodes of low hierarchy in a large
telecommunication network. Using the terminology of Palm calculus, this aver-
age connection length can be described by the so–called typical connection length
which is random variable defined via Palm distributions.

The aim of this thesis is to analyze typical connection lengths in various ways.
One part of the thesis focuses on the estimation of their densities and distribution
functions via Monte–Carlo simulation. The developed estimators are all based on
samples of the so–called typical serving zone. Therefore, simulation algorithms
for the typical serving zone are derived for various models. Another part of the
thesis deals with limit theorems for the typical connection length. In particular,
we show that the distribution of the typical connection length converges to well–
known distributions if the parameters of the underlying model tend to extremal
cases. On the one hand, we consider the case that the underlying cable system
gets infinitely dense and, on the other hand, we regard infinitely sparse cable sys-
tems. In both cases the distribution of the typical connection length converges
to simple parametric distributions. Both results, the estimated distributions and
the asymptotic distributions, are used in order to obtain approximative para-
metric densities for the typical connection length. These parametric densities
are finally compared to empirical distributions computed from huge databases
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(a) Voronoi tessellation (b) Nested tessellation

Figure 1.3: Realizations of two different tessellation models

without using any spatial information. It is shown that the obtained parametric
densities fit quite well to real network data. In the final part of the thesis, we
go one step further and analyze required capacities at different locations of the
network. First, the notion of typical capacity is introduced in the SSLM. Then,
for different scenarios, estimators for the density and distribution function are
developed which are again based on samples of the typical serving zone.

The results of this thesis can be directly applied for the analysis and planning
of telecommunication networks. Now parametric distributions for connection
lengths in large telecommunication networks are available, where the parameters
can be determined based on the number of network components and character-
istics of the underlying street system which can be estimated easily. Thus, the
distributions of connection lengths are directly available for the analysis of ur-
ban telecommunication networks and time–consuming network reconstructions
or simulation studies can be avoided. Furthermore, the obtained results can be
applied for network planning. Using the techniques developed in this thesis, vari-
ous scenarios for future (not yet existing) networks can be investigated before the
network is built. In particular, the impact of new network technologies and ar-
chitectures on connection lengths can be explored efficiently which is not possible
with classical methods due to large computation times.

1.2 Outline

This thesis is organized as follows. In Chapter 2 basic concepts of stochastic ge-
ometry are introduced. We start with the definition of point processes and marked
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(a) Voronoi tessellation as street model (b) Nested tessellation as street model

Figure 1.4: Network nodes with shortest path connections

point processes and summarize some basic properties and notions. In particular,
Palm distributions and the typical mark of stationary marked point processes are
discussed and the relationship between spatial averages of ergodic marked point
processes and their typical marks is explained. Furthermore, Neveu’s exchange
formula for the Palm distributions of two jointly stationary marked point pro-
cesses is discussed which is used frequently throughout this thesis. Finally, at the
end of Chapter 2, random closed sets and random measures are introduced.

Subsequently, deterministic and random tessellations are discussed in Chap-
ter 3. Random tessellations are flexible models from stochastic geometry which
serve as a basis for all spatial stochastic models investigated in this thesis. It
is shown that random tessellations can be regarded as random segment systems,
random measures and various types of marked point processes. Finally, we in-
troduce point processes on random segment systems induced by random tessella-
tions, where we focus on two specific models. On the one hand, we consider Cox
processes on the edges of random tessellations and, on the other hand, we regard
thinnings of the vertices of random tessellations. For both considered models, we
discuss some basic properties.

Chapter 4 is dedicated to simulation algorithms for the typical Voronoi cell of
point processes on the edges of random tessellations. First, well–known simula-
tion algorithms for the typical Voronoi cell of Poisson processes and Cox processes
on the edges of Poisson line tessellations are reviewed. Afterwards, new simula-
tion algorithms for the typical Voronoi cell of various point process models are
developed. In particular, Cox processes on Poisson–Voronoi tessellations and
Poisson–Delaunay tessellations as well as thinnings of the vertices of Poisson–
Delaunay tessellations, Poisson line tessellations and Poisson–Voronoi tessella-
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tions are considered. For each model new simulation algorithms for the typical
Voronoi cell are derived and some results obtained from a numerical study are
presented.

In Chapter 5 spatial stochastic models for two-level hierarchical networks are
introduced. As described above, the geometrical support of the network is mod-
eled by the edges of a random tessellation and network components of low and
high hierarchy levels are represented by point processes on this edge set. Based on
this modeling approach, it is possible to define cost functionals for the connection
between components of low and high hierarchy levels. In particular, we consider
the direct Euclidean connection distance and the shortest path length from the
typical low–level component to its associated high–level component which we call
the typical Euclidean distance and the typical shortest path length, respectively.
For both cases it is shown how the distribution can be estimated based on samples
of the typical serving zone and its inner structure. Thus, the developed estima-
tors can be computed based on samples generated with the simulation algorithms
introduced in Chapter 4. Moreover, statistical properties of the considered esti-
mators are investigated and some numerical results are presented.

The subject of Chapter 6 are scaling limits for the typical Euclidean distance
and the typical shortest path length. We consider the network model introduced
in Chapter 5 which is subsequently rescaled and network components are added
and deleted in order to get infinitely sparse and dense networks, respectively.
Then it is possible to prove that the considered cost functionals converge in dis-
tribution to known parametric distributions. First it is shown that the distribu-
tion of the typical shortest path length converges to an exponential distribution
for infinitely sparse networks. Afterwards, we prove for infinitely dense networks
that the distribution of the typical Euclidean distance converges to the distribu-
tion of the distance from the origin to the nearest point of a stationary Poisson
process, which is known to be a Weibull distribution. This result is then used in
order to derive the main theorem of Chapter 6, that is to show that the typical
shortest path length converges in distribution to some constant ξ ≥ 1 multiplied
with the Weibull–distributed random variable mentioned above. Here, the con-
stant ξ depends on the random tessellation which models the infrastructure of
the network. For some cases we can even compute ξ explicitly. In order to make
the proof more transparent, we first state the main theorem in Section 6.3 and
then split the proof into different parts which are provided in Sections 6.4 and
6.5. Then, in Section 6.6 it is shown that the conditions of the main theorem are
fulfilled by many models considered in the literature.

In Chapter 7 the results obtained in Chapters 4 – 6 are applied to real data.
First, we compute empirical densities of the typical shortest path lengths as well
as means and variances for various models using the estimators introduced in
Chapter 5 and the simulation algorithms developed in Chapter 4. In particular,
it is shown that the distribution strongly depends on the considered model type.
Afterwards, we use the limit theorems of Chapter 6 in order to choose parametric
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densities which can be fitted to the estimated ones. In this way, we obtain a
library of parametric distributions for connection lengths, where the parameters
are known and depend on the considered model. These parametric densities are
then compared to real data which reveals a very good fit between distributions for
connection lengths estimated from real data and parametric distributions chosen
from the library.

Finally, in Chapter 8 we define the notion of capacities in the framework of the
SSLM. In particular, we are interested in the capacity required at given locations
of the network which are modeled by various point processes. We show that the
capacity at the typical point of these point processes depends only on the length
of some subtree of the network. Thus, we analyze this subtree length and show
for different scenarios how its distribution can be estimated based on samples of
the typical serving zone. Again, some statistical properties of this estimator are
discussed.

In the final Chapter 9 the results of the thesis are summarized. Further-
more, interesting questions and possible extensions for future research are given.
At the end of the thesis an appendix summarizes some results which are used
in the proofs of the thesis. In particular, different modes of convergence of ran-
dom variables, measurable functions and measures are reviewed and relationships
between them are discussed. Furthermore, Kingman’s ergodic theorem for subad-
ditive processes and some basic concepts from geometric measure theory like the
generalized Blaschke-Petkantschin formula for Hausdorff measures are reviewed
which are used e.g. in the proofs of Chapter 6.

1.3 The Geostoch library
The software which was developed during this thesis is embedded in the Geostoch
library of the Institute of Stochastics at Ulm University. This library is JAVA-
based and comprises methods from spatial statistics, stochastic geometry and
image analysis ([59, 61]).

The main idea of the Geostoch library is to provide basic methods in order
to analyze spatial data and to simulate stochastic models for various research
projects. In particular, methods in order to analyze and simulate random tessel-
lations and point processes are implemented. These implementations were used
as a basis for the implementations of the simulation algorithms and estimators
developed during this thesis. The Geostoch library is continuously extended, for
further information, see http://www.geostoch.de.
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Chapter 2

Preliminaries from stochastic
geometry

This chapter introduces the basic notation and mathematical background used
in this thesis. In particular, we briefly summarize basic notions and principles
from stochastic geometry like random (marked) point processes, random closed
sets and random measures. For more details and further information about these
topics and stochastic geometry in general, see for example [10, 21, 44, 48, 56, 70,
79, 86, 87, 90].

In the following, we only regard the planar case, although most of the results
presented in this thesis can be generalized easily to Rd for d ≥ 2. First, in
Section 2.1, some basic notation is summarized. Subsequently, simple and marked
point processes are introduced in Sections 2.2 and 2.3, respectively, and notions
like stationarity and ergodicity are defined. In particular, basic concepts of Palm
calculus for stationary (marked) point processes are reviewed and the notion of
the typical mark is introduced. Finally, random closed sets and random measures
are discussed in Sections 2.4 and 2.5.

2.1 Basic notation and definitions

In the following, let R and N0 denote the set of real numbers and non–negative
integers, respectively. We use the notation B̊, ∂B, and Bc for the interior, the
boundary, and the complement of a set B ⊂ R2, respectively. Here, R2 denotes
the 2–dimensional Euclidean plane and we use the notation 〈 · , · 〉 for the Eu-
clidean scalar product on R2. Below, | . | : R2 → [0,∞) denotes the Euclidean
norm defined by

|x| =
√
x2

1 + x2
2 =

√
〈x, x〉 (2.1)

for each x = (x1, x2) ∈ R2. Furthermore, we denote by B(x, r) and B 6=(x, r) the
2–dimensional closed and open ball centered at x ∈ R2 with radius r > 0, i.e.,

13



14 Chapter 2. Preliminaries from stochastic geometry

B(x, r) = {y ∈ R2 : |x− y| ≤ r} and B 6=r (x) = {y ∈ R2 : |x− y| < r}.
On R2 we define the group tx : y 7→ y + x of translations by a vector x ∈ R2

and the group ϑR : y 7→ Ry of rotations around the origin o, where R denotes
a 2 × 2–matrix which is orthogonal with detR = 1. Note that translations and
rotations can also be defined for a set B ⊂ R2 by txB = {y + x : y ∈ B} for
x ∈ R2 and ϑRB = {ϑRx : x ∈ B} for rotations ϑR around the origin.

Let B(R2) denote the family of Borel sets of R2 and let B0(R2) denote the fam-
ily of those Borel sets in R2 which are in addition bounded. An important measure
acting on the measurable space (R2,B(R2)) is the (2–dimensional) Lebesgue mea-
sure ν2 : B(R2) → [0,∞]. For any Borel set B ∈ B(R2) we can interpret ν2(B)
as the area of B. Note that each locally finite and translation-invariant measure
µ on B(R2) is a multiple of the Lebesgue measure ν2, i.e., µ(B) = λν2(B) for all
B ∈ B(R2) and some λ ≥ 0 if µ(B) <∞ for all B ∈ B0(R2) and µ(txB) = µ(B)
for all B ∈ B(R2), x ∈ R2, see e.g. [11], Theorem 1.8.1. Thus, up to a normalizing
constant, ν2 is the only translation-invariant measure on B(R2).

Furthermore, we use the notation ν1 for the 1–dimensional Hausdorff measure
on B(R2). For B ⊂ R2 it is defined via

ν1(B) = sup
ε>0

inf
{∑
j∈N

D(Aj) : B ⊂ ∪j∈NAj, D(Aj) ≤ ε
}
,

where D(Aj) = sup{‖ x − y ‖: x, y ∈ Aj} is the diameter of Aj. Note that
for any Borel set B we can interpret ν1(B) as the length of B. In particular, if
0 < ν1(B) <∞ for B ∈ B0(R2), we say that B has dimension 1.

2.2 Point processes
In this section we introduce the notion of random point processes in R2. Some
realizations of different point process models in R2 are displayed in Figure 2.1.
Point processes are models from stochastic geometry which can describe random
point configurations, i.e., sets of points which are randomly scattered in the
Euclidean plane. In the following, we mainly focus on so–called simple point
processes, i.e., multiple points at the same location cannot be observed. Spatial
point processes are important stochastic models which are applied in many fields
of science like biology, medicine and telecommunication ([23, 31, 57]).

2.2.1 Point processes as random counting measures

A single point x ∈ R2 can be identified with the Dirac measures δx : B(R2)→ N0

on B(R2) defined by
δx(B) = 1IB(x) ,

where 1IB denotes the indicator function of the set B. Similarly, a finite or (count-
ably) infinite set of points {x1, . . . , xk}, k ∈ N0, or {x1, x2, . . .} can be identified
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(a) Poisson process (b) Cluster process (c) Hardcore process

Figure 2.1: Realizations of different point process models

with a counting measure. Let ϕ : B(R2) → N0 denote a counting measure on
B(R2), then ϕ can be expressed by a (countable) sum of Dirac measures, i.e.,

ϕ =
k∑

n=1

δxn ,

where k ∈ N0 ∪ {∞}. In the context of counting measures we call x ∈ R2 an
atom of ϕ if ϕ({x}) > 0. The support of ϕ is defined as the set supp(ϕ) = {x ∈
R2 : ϕ({x}) > 0}. We say that ϕ is simple if ϕ({x}) ∈ {0, 1} for all x ∈ R2 and
locally finite if ϕ(B) < ∞ for any set B ∈ B0(R2). Note that supp(ϕ) is locally
finite if ϕ is locally finite. In the following only simple and locally finite counting
measures are considered. If a counting measure ϕ is simple, then we can identify
ϕ with its support, i.e., the set of its atoms, and we also write ϕ = supp(ϕ). Let
N = N(R2) denote the family of simple and locally finite counting measures on
B(R2). Then we define the σ–algebra N = N (R2) on N as the smallest σ–algebra
containing all sets of the form {ϕ ∈ N : ϕ(B) = j} with j ∈ N0 and B ∈ B0(R2).

Now we introduce shifts and rotations of counting measures which are impor-
tant operations on N. In the following, tx : N → N denotes the shift operator
defined by txϕ(B) = ϕ(B+x) for all x ∈ R2 and ϑR : N→ N denotes the rotation
operator defined by ϑRϕ(B) = ϕ(ϑ−1

R B) = ϕ(ϑR−1B) for all rotations R around
the origin o. Thus, tx translates all atoms of ϕ by −x for x ∈ R2 and ϑR rotates
all atoms by ϑR for any rotation ϑR.

A measurable mapping X : Ω → N from some probability space (Ω,A,P)
into the measurable space (N,N ) is called a random point process in R2. There
are different ways to look at point processes. One possibility is to regard them
as random counting measures

∑
x∈supp(X) δx. Then X(B) can be interpreted as

the (random) number of atoms of X in B ∈ B(R2). Another possibility is to
identify a point process X with its atoms X = {Xn} = {Xn, n = 1, . . . , k}, where
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k : Ω → N0 ∪ {∞} is the random (total) number of atoms. From this point
of view, X can be regarded as a sequence of (2–dimensional) random vectors
Xn : Ω→ R2.

In the following, we use the notation X = {Xn} and it will be clear from the
context if X is regarded as a random counting measure or a random sequence of
points in R2.

2.2.2 Fundamental properties

Now we regard some important properties of random point processes.

Stationarity, isotropy and the intensity measure

Let X be any point process in R2. The probability measure PX defined on N by
PX(A) = P(X ∈ A) for A ∈ N is called the distribution of X. A point process
X is called

• stationary if its distribution is translation invariant, i.e. if PX = PtxX for
any x ∈ R2,

• isotropic if its distribution is rotation invariant, i.e. if PX = PϑRX for all
rotations ϑR around the origin, and

• motion-invariant if X is both stationary and isotropic.

IfX is a stationary point process, then we always assume that P(X(R2)=∞) = 1
and P(X(R2) = 0) = 0. We define the intensity measure µ : B(R2)→ [0,∞] of a
point process X by

µ(B) = EX(B) , B ∈ B(R2) . (2.2)

That means µ(B) is the expected number of points of X in the Borel set B. In
the following, we always assume that µ is locally finite and not equal to the zero
measure, i.e., µ(B) < ∞ for all B ∈ B0(R2) and µ(R2) > 0. Furthermore, we
always assume that µ is diffuse. If X is stationary with intensity measure µ, then

µ(B) = EX(B) = EX(B + x) = µ(B + x)

for any x ∈ R2 and B ∈ B(R2). Since every translation-invariant and locally
finite measure on B(R2) is proportional to the Lebesgue measure we get that
µ(B) = λν2(B) for some constant λ > 0. We call λ the intensity of the stationary
point process X. It can be regarded as the mean number of points per unit area
since λ = EX(B) for each B ∈ B(R2) with ν2(B) = 1.

An important result in the theory of point processes is Campbell’s theorem
which is stated below. It can be seen as a version of Fubini’s theorem for point pro-
cesses. There are various modifications of Campbell’s theorem, e.g. for marked
point processes and random measures which will be discussed later on. For a
proof see e.g. [87].
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Theorem 2.1 (Campbell’s theorem) Let X = {Xn} be a point process and
let f : R2 → [0,∞) be a measurable function. Then

∑
Xn∈X f(Xn) : Ω → [0,∞]

is measurable and

E
∑
Xn∈X

f(Xn) = E
∫

R2

f(x)X(dx) =

∫
R2

f(x)µ(dx) .

If X is stationary with intensity λ, then

E
∑
Xn∈X

f(Xn) = λ

∫
R2

f(x) ν2(dx) .

Finite-dimensional distributions

The family of finite–dimensional distributions

{PB1,...,Bn(k1, . . . , kn) : n ≥ 1, k1, . . . , kn ≥ 0, B1, . . . , Bn ∈ B0(R2)}

of a point process X is defined by

PB1,...,Bn(k1, . . . , kn) = P(X(B1) = k1, . . . , X(Bn) = kn) . (2.3)

Note that a point process X can be regarded as a stochastic process {X(B), B ∈
B(R2)} indexed by the Borel sets of R2. Thus, the theory of stochastic processes
can be applied which yields that the finite–dimensional distributions characterize
the distribution of a point process, see e.g. [21], Corollary 9.2.IV.

Theorem 2.2 Let X be an arbitrary point process. Then the distribution of X
is uniquely determined by its finite–dimensional distributions.

Furthermore, Kolmogorov’s existence theorem can be formulated for point pro-
cesses in the following way, see [21], Theorem 9.2.X.

Theorem 2.3 Let {PB1,...,Bn(k1, . . . , kn) :n≥1, k1, . . . , kn≥0, B1, . . . , Bn∈B0(R2)}
be a family of probabilities with

PB1,...,Bn(k1, . . . , kn) = PBπ(1),...,Bπ(n)
(kπ(1), . . . , kπ(n))

and
∞∑
i=1

PB1,...,Bn,Bn+1(k1, . . . , kn, i) = PB1,...,Bn(k1, . . . , kn)

for any permutation π of {1, . . . , n}, for any k1, . . . , kn ∈ N0 and for any bounded
Borel sets B1, . . . , Bn+1. Moreover, assume that∑

kj+···+kn=k,kj ,...,kn≥0

PB1,...,Bn(k1, . . . , kn) = PB1,...,Bj−1,∪ni=jBi(k1, . . . , kj−1, k)
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for any j, n ∈ N with j ≤ n, k1, . . . , kj−1, k ∈ N0 and pairwise disjoint sets
B1, . . . , Bn ∈ B0(R2) and assume that

lim
n→∞

P[x1− 1
n
,x1)×[x2− 1

n
,x2)(0) = 1

for any x = (x1, x2) ∈ R2. Then there exists a probability space (Ω,A,P) and a
point process X defined on (Ω,A,P) such that the finite–dimensional distributions
of X are equal to {PB1,...,Bn(k1, . . . , kn) :n≥1, k1, . . . , kn≥0, B1, . . . , Bn∈B0(R2)}.

Note that it is even possible to consider the finite–dimensional distributions only
for bounded, half open rectangles. Then the theorems above remain valid.

2.2.3 Ergodicity and mixing

Another important property of point processes is ergodicity. Let I denote the
σ-algebra of shift invariant sets of N , i.e.,

I = {A ∈ N : A = txA for all x ∈ R2} , (2.4)

where txA = {txϕ : ϕ ∈ A}. Then a stationary point process X is said to be
ergodic if P(X ∈ A) ∈ {0, 1} for all A ∈ I. Moreover, a stationary point process
X is called mixing if

lim
|x|→∞

P(X ∈ A,X ∈ txB) = P(X ∈ A)P(X ∈ B) (2.5)

for all A,B ∈ N . The following result connects the notions of mixing and ergodic
point processes.

Theorem 2.4 Let X be an arbitrary stationary point process. If X is mixing,
then X is ergodic.

Proof Let A ∈ I, then A = txA for each x ∈ R2 and

P(X ∈ A) = lim
|x|→∞

P(X ∈ A,X ∈ txA)

= P(X ∈ A)P(X ∈ A) = P(X ∈ A)2 ,

provided that X is mixing. Thus P(X ∈ A) ∈ {0, 1}. 2

Note that there are point processes which are ergodic, but do not fulfill the
mixing condition (2.5). If a point process X is ergodic, then, loosely speaking,
statistical averages can be expressed as spatial averages over single realizations of
X. Mathematically, this statement can be formulated in the following way using
sequences of unboundedly increasing sampling windows. A sequence {Wn} ⊂
B0(R2) of sampling windows is said to be a convex averaging sequence if
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• Wn is convex for all n ∈ N,

• Wn ⊂ Wn+1 for all n ∈ N, and

• ρ(Wn) → ∞ for n → ∞, where ρ(Wn) is the radius of the largest ball
contained inWn, i.e., ρ(Wn) = sup{r > 0 : B(x, r) ⊂ Wn for some x ∈ R2}.

Using this definition we can state the so–called individual and statistical ergodic
theorem for point processes, see e.g. [78] and [21], Theorem 12.2.IV.

Theorem 2.5 Let X be a stationary and ergodic point process with intensity λ
and let {Wn} be a convex averaging sequence. Then

lim
n→∞

X(Wn)

ν2(Wn)
= λ (2.6)

almost surely and in L1.

2.2.4 Palm distribution

Often it is convenient to regard the distribution of a stationary point process X
conditioned to the event that there is one point of the process located at the origin
o ∈ R2. Since P(o ∈ X) = 0, this conditional distribution cannot be calculated
in the usual sense. An alternative approach leading to probability measures on
N which can be interpreted as the conditional distributions of stationary point
processes X conditioned on the event {o ∈ X} are Palm distributions.

The Palm distribution P ∗X of a stationary point process X is defined by

P ∗X(A) =
1

λν2(B)
E#{n ∈ N : Xn ∈ B, tXnX ∈ A} , A ∈ N , (2.7)

where B ∈ B0(R2) with 0 < ν2(B) <∞ and λ > 0 is the intensity of X. It is easy
to see that P ∗X does not depend on the specific choice of B, thus we can choose
B = [0, 1)2. The Palm distribution P ∗X can be interpreted as the conditional
distribution of the point process under the condition that one point is located at
the origin o. Note that o ∈ X∗ almost surely if X∗ is distributed according to P ∗X .
In the following, we frequently use the notation X∗ for a point process distributed
according to P ∗X and also speak of the Palm version X∗ of the stationary point
process X. If X is ergodic, then we get for A ∈ N that

P ∗X(A) = lim
m→∞

#{n ∈ N : Xn ∈ [−m,m]2, tXnX ∈ A}
X([−m,m]2)

(2.8)

with probability 1. This is a consequence of Theorem 2.5 since the point process
XA = {Xn : tXnX ∈ A} is ergodic for any A ∈ N if X is ergodic. Thus, the Palm
distribution can be regarded as the distribution of the point process X seen from
a point of X which is chosen at random. Therefore, we also speak of the typical
point of X in the following meaning the point at the origin o of the Palm version
X∗ of X.
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2.2.5 Poisson point processes

In this section we introduce the notion of Poisson (point) processes which is the
most frequently studied point process model. There are several reasons for that.
First, the Poisson process is analytically tractable, i.e., many theoretical results
can be derived for Poisson processes. In addition, many point process models
are constructed based on Poisson processes like Poisson cluster processes, specific
hardcore processes and Cox processes. Furthermore, it is a model for complete
spatial randomness, i.e., there is no interaction between the points. This is the
reason why the Poisson process is often used as a reference model in order to
analyze clustering or repulsion effects between points. In Figure 2.1 a realization
of a Poisson process is shown together with realizations of point processes that
possess clustering and hardcore effects, respectively.

Let µ : B(R2) → [0,∞] be a diffuse and locally finite measure om B(R2).
Then a point process X is called Poisson point process with intensity measure
µ if

• the random variables X(B1), . . . , X(Bn) are independent for any pairwise
disjoint sets B1, . . . , Bn ∈ B0(R2), and if

• it holds that X(B) ∼ Poi(µ(B)) for any B ∈ B0(R2), i.e.,

P(X(B) = k) = e−µ(B) µ(B)k

k!
, B ∈ B0(R2) , k ∈ N0 . (2.9)

If µ(B) = λν2(B) for B ∈ B(R2), then the Poisson process X is stationary and
isotropic. Furthermore, the Palm distribution of a stationary Poisson process X
can be obtained by just adding the origin to the original Poisson process X. This
result is called Slivnyak’s theorem ([88]).

Theorem 2.6 (Slivnyak’s theorem) Let X be a stationary Poisson process
with Palm distribution P ∗X . Then

P ∗X(A) = P(X ∪ {o} ∈ A), A ∈ N . (2.10)

2.3 Marked point processes
Point processes can be generalized by adding a (random) mark from some mark
space M to each point. Such generalizations are called marked point processes.

2.3.1 Definitions and basic properties

In the following, the mark space M is assumed to be a Polish space which is
equipped with the Borel–σ–algebra B(M) on M. Let NM = N(R2 ×M) denote
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the set of all counting measures ψ : B(R2)⊗ B(M)→ N0 ∪ {∞} that are simple
and additionally locally finite in the first component, i.e., ψ(B ×M) <∞ for all
B ∈ B0(R2) and ψ({x} ×M) ∈ {0, 1} for all x ∈ R2. The support of ψ is then
defined as the (countable) set supp(ψ) = {(x,m) ∈ R2 ×M : ψ({(x,m)}) > 0}
and each ψ ∈ NM can be written as

ψ(B ×G) =
∑

(x,m)∈supp(ψ)

δ(x,m)(B ×G) , B ∈ B(R2), G ∈ B(M) . (2.11)

Thus, we can identify each ψ ∈ NM with its support and therefore also write
ψ = {(xn,mn)} if supp(ψ) = {(xn,mn)} = {(xn,mn)}. Now let NM be the σ–
algebra generated by the subsets of NM of the form {ψ ∈ NM : ψ(B × G) = j}
for B ∈ B0(R2), G ∈ B(M) and j ∈ N0. We then call a measurable mapping
XM : Ω → NM from some probability space (Ω,A,P) into the measurable space
(NM,NM) random marked point process in R2 with mark space (M,B(M)). Again,
often alternative representations of XM are convenient. For instance, XM can be
represented as a sequence of random marked points written as XM = {(Xn,Mn)}.
Here both Xn : Ω→ R2 andMn : Ω→M are measurable mappings. The marked
point processXM is called independently marked if the points {Xn} and the marks
{Mn} are independent and furthermore the marks {Mn} are independent and
identically distributed random variables. In the following, we use the notation
XM = {(Xn,Mn)} and, depending on the context, we regard XM as a random
sequence of marked points or a random element of NM. Note that we obtain
a simple point process {Xn} by regarding the projection of the marked point
process XM = {(Xn,Mn)} on N. This point process is called the unmarked point
process of XM in the following.

Like for point processes we define the distribution PXM of XM by PXM (A) =
P(XM ∈ A) for A ∈ NM. Stationarity and isotropy are now defined with respect
to the first component of XM . Let ψ = {(xn,mn)} ∈ NM, then we define the
shift operator tx : NM → NM by txψ = {(xn − x,mn)} and the rotation operator
ϑR : NM → NM by ϑRψ = {(ϑRxn,mn)}. A marked point process XM is called

• stationary if the distribution of XM is translation invariant in the first
component, i.e. if XM

d
= txXM for all x ∈ R2,

• isotropic if its distribution is rotation invariant in the first component, i.e.
if XM

d
= ϑRXM for all rotations ϑR around the origin, and

• motion-invariant if XM is both stationary and isotropic.

2.3.2 Intensity measure and Palm distribution

For a marked point processXM its intensity measure µM : B(R2)⊗B(M)→ [0,∞]
is defined by

µM(B ×G) = EXM(B ×G) , B ∈ B(R2) , G ∈ B(M) . (2.12)
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Here µM(B × G) is the expected number of points of the marked point process
XM in B with mark in G. For a stationary marked point processes XM with
0 < λ = EXM([0, 1)2 ×M) < ∞, the intensity measure µM can be written in a
similar way as for stationary non–marked point processes. In particular,

µM(B ×G) = λ ν2(B)P o
XM

(G) , B ∈ B(R2), G ∈ B(M) , (2.13)

see [87], Theorem 3.5.1. The constant λ is again called the intensity of XM and
the probability measure P o

XM
: B(M)→ [0, 1] is called the Palm mark distribution

of XM which is defined by

P o
XM

(G) =
1

λν2(B)
E#{n ∈ N : Xn ∈ B , Dn ∈ G} (2.14)

for G ∈ B(M), where B ∈ B0(R2) with 0 < ν2(B) < ∞ is arbitrary and can be
chosen e.g. as [0, 1)2. A random variable M∗ : Ω → M distributed according to
P o
XM

is called the typical mark of XM . It can be interpreted as the mark at the
origin o given that there is a point of XM located at the origin. Therefore, we
sometimes also say that the typical mark is the mark at a typical point of the
unmarked point process {Xn} of XM .

Moreover, for stationary marked point processes the Palm distribution P ∗XM
is defined on NM ⊗ B(M) by

P ∗XM (A×G) =
1

λν2(B)
E#{n ∈ N : Xn ∈ B,Mn ∈ G, tXnXM ∈ A} (2.15)

for A ∈ NM and G ∈ B(M), where B ∈ B(R2) with 0 < ν2(B) < ∞. Again,
the definition is independent of B which can be chosen as [0, 1)2. The Palm
distribution P ∗XM can be interpreted as the conditional distribution of XM under
the condition that there is a point located at o.

For stationary marked point processes we can modify Campbell’s theorem in
the following way, see e.g. Theorem 3.5.3 in [87].

Theorem 2.7 (Refined Campbell theorem) Let XM be a stationary marked
point process in R2 with mark space M and intensity λ > 0. Furthermore, let
f : R2 × M × NM → [0,∞) be measurable. Then

∑
(x,m)∈XM f(x,m, txXM) is

measurable and

E
∑

(x,m)∈XM

f(x,m, txXM) = λ

∫
R2

∫
NM×M

f(x,m, ψ)P ∗XM (d(ψ,m)) ν2(dx) . (2.16)

It is easy to see that the preceding theorem reduces to Campbell’s theorem for
unmarked point processes if we only consider functions f : R2×M×NM → [0,∞)
with f(x,m, ψ) = g(x) for all x ∈ R2,m ∈ M, ψ ∈ NM and some function
g : R2 → [0,∞).
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2.3.3 Ergodic theorem

Ergodic and mixing marked point processes can be defined in a similar way as
ergodic and mixing unmarked point processes. We define a shift txA of a set
A ∈ NM by txA = {txψ : ψ ∈ A} for all x ∈ R2. Let I denote the σ-algebra of
shift invariant sets of NM, i.e.,

I = {A ∈ NM : A = txA for all x ∈ R2} . (2.17)

Then a stationary marked point process XM is called ergodic if P(XM ∈ A) ∈
{0, 1} for all A ∈ I. Furthermore, a stationary marked point process XM is said
to be mixing if for all A,B ∈ NM it holds that

lim
|x|→∞

P(XM ∈ A,XM ∈ txB) = P(XM ∈ A)P(XM ∈ B) . (2.18)

In the same way as for unmarked point processes it can be shown that a marked
point process is ergodic if it is mixing.

We now state a theorem which is a version of the individual and statistical
ergodic theorem applied to ergodic marked point processes, see Theorem 12.2.IV
and Corollary 12.2.V in [21]. This theorem connects spatial averages of the marks
of a marked point process with statistical averages of the typical mark.

Theorem 2.8 Let {Wn} be a convex averaging sequence and let XM be a sta-
tionary and ergodic marked point process with intensity λ and mark space M.
Moreover, let h : M→ [0,∞) be a measurable function and M∗ the typical mark
of XM . Then

Eh(M∗) = lim
n→∞

1

λν2(Wn)

∞∑
i=1

1IWn(Xi)h(Mi) (2.19)

almost surely and in L1. Furthermore,

Eh(M∗) = lim
n→∞

1

#{i : Xi ∈ Wn}

∞∑
i=1

1IWn(Xi)h(Mi) (2.20)

with probability 1.

The preceding theorem is the reason why we are especially interested in the
typical mark of ergodic marked point processes in this thesis. In particular, we
get for h = 1IG that

P o
XM

(G) = lim
n→∞

#{n ∈ N0 : Xn ∈ [−n, n]2,Mn ∈ G}
XM([−n, n]2 ×M)

(2.21)

with probability 1. So the typical mark can be regarded as the mark at a point
chosen at random among all points, i.e., at a typical point of the unmarked point
process {Xn} of XM .
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2.3.4 Jointly stationary point processes and Neveu’s ex-
change formula

In the proofs of this thesis we frequently utilize a version of Neveu’s exchange
formula (see e.g. [76]) for two jointly stationary marked point processes X(1) =

{(X(1)
n ,M

(1)
n )} and X(2) = {(X(2)

n ,M
(2)
n )} with mark spaces M1 and M2, respec-

tively. This formula allows to represent the distribution of functionals of X(1)

and X(2) distributed according to the Palm distribution P ∗
X(1) by functionals dis-

tributed according to P ∗
X(2) . Thus, we can switch from the joint distribution of

X(1) and X(2) conditioned on o ∈ {X(1)
n } to the joint distribution of X(1) and

X(2) conditioned on o ∈ {X(2)
n }. In order to make this precise we first have to

define X(1) and X(2) as a random element of a common probability space.
Let NMi

denote the family of all counting measures in B(R2) ⊗ B(Mi) which
are simple and locally finite in the first component, equipped with the usual σ–
algebra NMi

for i = 1, 2. We then define Y = (X(1), X(2)) which can be regarded
as a random element of the product space NM1,M2 = NM1 × NM2 . Let λ1 and λ2

denote the intensities of X(1) and X(2), respectively, and define the shift operator
tx by txY = (txX

(1), txX
(2)) for x ∈ R2. Thus, txY is obtained if the points of

both X(1) and X(2) are shifted by −x ∈ R2. Now assume that Y and txY have
the same distribution for all x ∈ R2. Then the Palm distributions P (i)

Y , i = 1, 2
on NM1 ⊗NM2 ⊗ B(Mi) with respect to the i-th component of Y are defined by

P
(i)
Y (A×G) =

1

λi
E#{n : X(i)

n ∈ [0, 1)2,M (i)
n ∈ G, tX(i)

n
Y ∈ A} (2.22)

for any A ∈ NM1 ⊗NM2 , G ∈ B(Mi). Note that for A ∈ NMi
, G ∈ B(Mi) we get

P
(1)
Y (A× NM2 ×G) = P ∗X(1)(A×G)

for i = 1 and
P

(2)
Y (NM1 × A×G) = P ∗X(2)(A×G) ,

for i = 2, where P ∗
X(1) and P ∗X(2) are the ordinary Palm distributions of the marked

point processes X(1) and X(2), respectively. In the following we also write P ∗
X(i)

for the Palm distribution P
(i)
Y of the vector (X(1), X(2)) in order to emphasize

the dependence on X(i) for i = 1, 2. Using the notation introduced above, and
ψ = (ψ(1), ψ(2)) for the elements of NM1,M2 , Neveu’s exchange formula can be
stated in the following way, see e.g. [53, 54].
Theorem 2.9 (Neveu’s exchange formula) For any measurable mapping f :
R2 ×M1 ×M2 × NM1,M2 → [0,∞), it holds that

λ1

∫
NM1,M2

×M1

∫
R2×M2

f(x,m(1),m(2), txψ) ψ(2)(d(x,m(2)))P
(1)
Y (d(ψ,m(1)))

= λ2

∫
NM1,M2

×M2

∫
R2×M1

f(−x,m(1),m(2), ψ) ψ(1)(d(x,m(1)))P
(2)
Y (d(ψ,m(2))) .

(2.23)
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LetX(1) andX(2) be two jointly stationary point processes which are independent.
Furthermore, assume that Y = (X(1)∗, X̃(2)) is distributed according to the Palm
distribution P

(1)
Y with respect to X(1). Then, using the definition of the Palm

distribution P (1)
Y , we get for all A ∈ NM1 and B ∈ NM2 that

P(X(1)∗ ∈ A, X̃(2) ∈ B) = E1IA(X(1)∗)1IB(X̃(2))

=
1

λ1

E
∑

X
(1)
n ∈[0,1)2

1IA(t
X

(1)
n
X(1))1IB(t

X
(1)
n
X(2))

=
1

λ1

E
∑

X
(1)
n ∈[0,1)2

1IA(t
X

(1)
n
X(1))E[1IB(t

X
(1)
n
X(2)) | X(1)]

= P(X(1)∗ ∈ A)P(X(2) ∈ B) ,

where we used in the last equality thatX(2) is stationary and independent ofX(1).
Thus, we have shown that X(1)∗ is independent of X̃(2) and X̃(2) d

= X(2). This
observation is used later on in the proofs of this thesis.

2.4 Random closed sets

In this section we define the notion of a random closed set. Examples of random
closed sets are random point patterns, unions of balls with random centers and
radii or unions of line segments.

2.4.1 Definitions and basic properties

A random closed set is a random element of the family of closed subsets of R2

which we denote with F . Let C and K denote the families of compact sets and
convex bodies (compact and convex sets), respectively, and define

FB = {F ∈ F : F ∩B 6= ∅} and FB = {F ∈ F : F ∩B = ∅}

for B ⊂ R2 as well as

FBB1,...,Bn
= FB ∩ FB1 · · · ∩ FBn

for B,B1, . . . , Bn ⊂ R2. We define the σ–algebra B(F) on F as the σ-algebra
generated by the family {FC : C ∈ C}. Note that the family {FG : G ⊂ R2 open}
also generates B(F) and it can be shown that C ∈ B(F) and K ∈ B(F). A
measurable mapping Ξ : Ω → F from some probability space (Ω,A,P) into the
measurable space (F ,B(F)) is called a random closed set. If P(Ξ ∈ C) = 1 and
P(Ξ ∈ K) = 1, then we call Ξ a random compact set or a random convex body,
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respectively. The distribution PΞ of Ξ is the probability measure on B(F) defined
by

PΞ(B) = P(Ξ ∈ B) for B ∈ B(F) .

We call a random closed set Ξ

• stationary if Ξ
d
= txΞ for all x ∈ R2, i.e., PΞ = PtxΞ for all x ∈ R2,

• isotropic if Ξ
d
= ϑRΞ, i.e., PΞ = PϑRΞ, for all rotations ϑR around the origin

o, and

• motion-invariant if Ξ is both stationary and isotropic.

An important characteristic of a stationary random closed set Ξ is its area fraction
p which is defined by p = Eν2(Ξ ∩ [0, 1)2). Thus, p is the expected area of Ξ per
unit area. The capacity functional TΞ : C → [0, 1] of a random closed set Ξ is
defined by

TΞ(C) = PΞ(FC) = P(Ξ ∩ C 6= ∅) for C ∈ C .

Note that the capacity functional can be regarded as the analogon of the dis-
tribution function of a random variable in R. In particular, it determines the
distribution of Ξ uniquely since the family {FC : C ∈ C} generates B(F) and
FC1 ∩ FC2 = FC1∪C2 .

Theorem 2.10 Let Ξ and Ξ′ be two random closed sets with TΞ = TΞ′, then
Ξ

d
= Ξ′.

Note that given a so–called alternating Choquet capacity T of infinite order it is
also possible to prove that there exists a random closed set Ξ with TΞ = T , see
e.g. [70], Theorem 1.13.

2.4.2 Examples

In this section some examples of random closed sets are briefly introduced.

Point processes

A point process X = {Xn} can be regarded as a random set of points {Xn}
which is locally finite almost surely. Thus, a point process can be interpreted as
a random closed set. The capacity functional of Ξ = {Xn} is given by TΞ(C) =
P(X(C) > 0) = 1 − P(X(C) = 0) for C ∈ C. Since the capacity functional
determines the distribution of X, we immediately get that the distribution of
a point process is already determined by its void probabilities P(X(C) = 0) for
C ∈ C which is a much smaller class of probabilities than the finite–dimensional
probabilities considered in Section 2.2.2.
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Boolean model

Another example of a random closed set is the Boolean model. Let Ξ1,Ξ2, . . . be
a sequence of independent copies of a random compact set Ξ0 which are called
grains and let X = {Xn} be an independent and stationary Poisson process with
intensity λ. We assume that ER(Ξ0)2 < ∞, where R(Ξ0) denotes the radius of
the smallest ball which contains Ξ0. Then the Boolean model Ξ is defined via
Ξ = ∪∞n=1(Ξn+Xn). Here, Ξ0 can be e.g. a ball B(o,R) with random radius R or
a line segment with random length and orientation, see Figure 2.2. The condition
ER(Ξ0)2 <∞ ensures that the resulting random set is closed with probability 1.

It is easy to see that Ξ is stationary since X is stationary. If Ξ is a Boolean
model, then it is known that its area fraction p is given by p = 1−exp(−λEν2(Ξ0)),
see [90], p. 67.

Fiber processes

Later on, we are especially interested in random closed sets Ξ which are locally
finite segment systems with probability 1. For instance, Ξ can be a Boolean
model with random line segments as grains, see Figure 2.2. Such random closed
sets can be generalized to so–called fiber processes. A fiber process is a random
closed set Ξ such that for any B ∈ B0(R2) the intersection Ξ∩B is almost surely
a union of piecewise smooth curves, see e.g. [63] and [90], Chapter 9. If Ξ is
a stationary fiber process, then Eν1(Ξ ∩ B) = γν2(B) for all B ∈ B0(R2) and
some constant γ > 0, where ν1 denotes the 1–dimensional Hausdorff measure.
We call γ the (length) intensity of Ξ which can be interpreted as the mean length
of Ξ per unit area. In this thesis, we are especially interested in fiber processes
obtained from the edges of random tessellations which are locally finite unions of
line segments, see Chapter 3 for details.

2.4.3 Ergodicity and mixing

An important property apart from stationarity and isotropy is ergodicity which
can be defined in the same way as for (marked) point processes. For any x ∈ R2,
we define the shift txA of a set A ∈ B(F) by txA = {txF : F ∈ A}. Let I denote
the σ-algebra of shift invariant sets of B(F), i.e.,

I = {F ∈ B(F) : F = txF for all x ∈ R2} . (2.24)

Then a stationary random closed set Ξ is called ergodic, if P(Ξ ∈ A) ∈ {0, 1}
for all A ∈ I. There is also an (individual and statistical) ergodic theorem for
random closed sets which expresses statistical averages by spatial averages, see
[90], Theorem 6.2.

Theorem 2.11 Let Ξ be a stationary ergodic random closed set and {Wn} be a
convex averaging sequence. Moreover, let h : B(R2) → [0,∞) be a translation
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(a) Boolean model with random balls (b) Boolean model with random line segments

Figure 2.2: Realizations of the Boolean model with different types of grains

invariant function with h(B1 ∪ B2) = h(B1) + h(B2) for all disjoint B1, B2 ∈
B(R2). If there exists a non–negative random variable Z such that h(Ξ∩B) ≤ Z
for all B ∈ B([0, 1)2) and EZ <∞, then

lim
n→∞

h(Ξ ∩Wn)

ν2(Wn)
= Eh(Ξ ∩ [0, 1)2)

almost surely and in L1.

Now suppose that Ξ is a stationary and ergodic fiber process of length intensity
γ ∈ (0,∞), then we can consider the translation invariant function h(B) = ν1(B)
for B ∈ B(R2). Note that ν1(Ξ ∩ B) ≤ ν1(Ξ ∩ [0, 1)2) for all B ∈ B([0, 1)2) and
Eν1(Ξ ∩ [0, 1)2) = γ <∞. Thus, Theorem 2.11 yields

lim
n→∞

ν1(Ξ ∩Wn)

ν2(Wn)
= γ (2.25)

almost surely and in L1.
A stationary random closed set Ξ is called mixing if for all A,B ∈ B(F) it

holds that
lim
|x|→∞

P(Ξ ∈ A,Ξ ∈ txB) = P(Ξ ∈ A) P(Ξ ∈ B) . (2.26)

Note that a mixing random closed set is ergodic which can be shown in the same
way as for (marked) point processes, see Theorem 2.4. It is often convenient to
use the capacity functional in order to characterize mixing random closed sets.
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Theorem 2.12 A stationary random closed set Ξ is mixing if and only if for all
C1, C2 ∈ C it holds that

lim
|x|→∞

(1− TΞ(C1 ∪ txC2)) = (1− TΞ(C1))(1− TΞ(C2)) ,

or, equivalently,

lim
|x|→∞

P(Ξ ∩ (C1 ∪ txC2) = ∅) = P(Ξ ∩ C1 = ∅)P(Ξ ∩ C2 = ∅) .

A proof of Theorem 2.12 can be found in [40] and in [87], p. 408.

2.5 Random measures
Point processes in R2 can be regarded as random counting measures on B(R2).
The concept of random counting measures can be generalized in a straightforward
way to random measures on B(R2) since locally finite counting measures are a
special case of locally finite measures on B(R2).

2.5.1 Definitions and basic properties

Let M = M(R2) denote the set of all locally finite measures on B(R2). If we
equip M with the smallest σ–algebra M such that the mappings η 7−→ η(B)
are (M,B(R2))–measurable for all η ∈ M and B ∈ B0(R2), then we obtain the
measurable space (M,M). The shift operator tx : M → M on M can be defined
in the same way as for counting measures, i.e. txη(B) = η(B + x) for all x ∈ R2.
Similarly, we define the rotation operator ϑR : M→ M by ϑRη(B) = η(ϑ−1

R B) =
η(ϑR−1B) for all rotations ϑR around the origin.

A measurable mapping Λ : Ω → M from some probability space (Ω,A,P)
into the measurable space (M,M) is called a random measure on B(R2). As for
(marked) point processes we define the distribution PΛ of Λ by PΛ(A) = P(Λ ∈ A)
for A ∈M. A random measure Λ with distribution PΛ is then called

• stationary if Λ
d
= txΛ for all x ∈ R2,

• isotropic if Λ
d
= ϑRΛ for all rotations ϑR around the origin, and

• motion-invariant if Λ is stationary and isotropic.

We say that a stationary random measure Λ is ergodic if P(Λ ∈ A) ∈ {0, 1} for
all A ∈ I = {A ∈ M : A = txA for all x ∈ R2}, where txA = {txη : η ∈ A}.
Moreover, a stationary random measure is called mixing if

lim
|x|→∞

P(Λ ∈ A,Λ ∈ txB) = P(Λ ∈ A)P(Λ ∈ B)

for all A,B ∈M. Again, it can be shown that Λ is ergodic if it is mixing.
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2.5.2 Intensity measure and Palm distribution

The intensity measure µ : B(R2)→ [0,∞] of a random measure Λ is defined by

µ(B) = EΛ(B) forB ∈ B(R2) ,

where we always assume that the measure µ is locally finite with µ(R2) > 0.
Let Λ be a stationary random measure, then EΛ(B) = λν2(B) for B ∈ B(R2),
where λ ∈ (0,∞) is some constant which we call the intensity of Λ. Note that
λ = EΛ([0, 1]2). The probability measure P ∗Λ :M→ [0, 1] defined by

P ∗Λ(A) =
1

λ
E

 ∫
[0,1]2

1IA(txΛ) Λ(dx)

 , A ∈M (2.27)

is called the Palm distribution of the stationary random measure Λ. Again, there
is a Campbell–type theorem for stationary random measures Λ which generalizes
Campbell’s theorem for point processes, see [62] and Theorem 7.1 in [90].

Theorem 2.13 (Campbell’s theorem) Let Λ be a stationary random measure
in R2 with intensity λ. Furthermore, let f : R2×M→ [0,∞) be measurable. Then∫

R2 f(x, txΛ) Λ(dx) is measurable and

E
(∫

R2

f(x, txΛ)Λ(dx)

)
= λ

∫
R2

∫
M

f(x, η)P ∗Λ(dη)ν2(dx) (2.28)

2.5.3 Random measures associated with random closed sets

Every point process X can be regarded as a random counting measure and
thus a random measure Λ. Furthermore, let {λ(x), x ∈ R2} be a (measur-
able) random field such that almost surely λ(x) ≥ 0,

∫
R2 λ(x) ν2(dx) > 0 and∫

B
λ(x) ν2(dx) < ∞ for each B ∈ B0(R2). Then Λ defined by

Λ(B) =

∫
B

λ(x) ν2(dx) , B ∈ B(R2) (2.29)

is a random measure. For instance, assume that Ξ is a stationary random closed
set with volume fraction p = Eν2(Ξ∩[0, 1)2) > 0 and define the stationary random
field {λ(x), x ∈ R2} by

λ(x) =

 λ1 if x ∈ Ξ ,

λ2 if x 6∈ Ξ .

Then the random measure Λ defined in (2.29) is given by

Λ(B) =

∫
B

λ(x) ν2(dx) = λ1ν2(B ∩ Ξ) + λ2ν2(Bc ∩ Ξ) for B ∈ B(R2) .
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Since Ξ is stationary and

tyΛ(B) =

∫
B+y

λ(x) ν2(dx) =

∫
B

λ(x− y) ν2(dx) for B ∈ B(R2)

we immediately get that Λ is stationary. Furthermore, the intensity λ of Λ is
given by

λ = E
∫

[0,1)2

λ(x) ν2(dx)

= λ1Eν2(Ξ ∩ [0, 1)2) + λ1Eν2(Ξc ∩ [0, 1)2) = λ1p+ λ2(1− p) .

In a similar way we can define random measures based on fiber processes. Assume
that Ξ is a stationary fiber process, i.e., Ξ∩B is almost surely a union of piecewise
smooth curves for any B ∈ B0(R2). Then we can consider the 1-dimensional
Hausdorff measure on Ξ and define the random measure Λ by Λ(B) = λ`ν1(B∩Ξ)
for B ∈ B(R2) and some constant λ` > 0. Similarly as above, we get that Λ is
stationary and its intensity can be calculated as λ = λ`Eν1(Ξ ∩ [0, 1)2) = λ`γ,
where γ is the length intensity of Ξ. Random measures of this kind are frequently
utilized in this thesis. In particular, we consider random Hausdorff measures on
the edge sets of random tessellations, see Chapter 3.
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Chapter 3

Random tessellations and point
processes on their edges

In this chapter we define the notion of random tessellations in the Euclidean plane
R2. Roughly speaking, a tessellation is a subdivision of R2 into convex polygons.
Thus, a tessellation can be regarded as a sequence of convex polygons. However,
a tessellation can also be identified with the segment system consisting of the
boundaries of these polygons. Because of these different viewpoints, random
tessellations are flexible models which are used in different fields of science. For
instance, (random) tessellations are applied in astrophysics ([41, 95]), biology
([14, 25]), telecommunication ([3, 6, 32, 34]), material sciences ([51, 92, 93]) and
even linguistics ([83]). Furthermore, all spatial stochastic models investigated
later on in this thesis are based on random tessellations. On the one hand, we use
random tessellations in order to model the street system underlying the considered
telecommunication network, but we also use so–called Voronoi tessellations in
order to represent serving zones of network components. This chapter introduces
random tessellations and summarizes some of their basic properties. Furthermore,
two classes of point processes on the edges of random tessellations are introduced
which serve as a basis for the stochastic models investigated e.g. in Chapter 5.

The present chapter is organized as follows. First deterministic tessellations
are introduced in Section 3.1. In addition, some basic principles in order to con-
struct deterministic tessellations based on point and line systems are discussed.
These concepts are used afterwards to introduce random tessellations. In partic-
ular, random tessellations are defined in Section 3.2 and it is shown that there
are various ways to represent random tessellations. For instance, they can be
regarded as marked point processes with appropriate mark spaces, but also as
random closed sets and random measures. This leads to different characteris-
tics of stationary random tessellations which are briefly analyzed in Section 3.3.
Subsequently, in Section 3.4, some particular models of random tessellations
like Poisson–Delaunay tessellations (PDT), Poisson line tessellations (PLT) and
Poisson–Voronoi tessellations (PVT) are introduced. Finally, point processes on

33
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the edges of random tessellations are considered in Section 3.5 which are used
to model the locations of network components later on. In particular, we define
Cox processes on the edges and thinnings of the vertices of random tessellations.
Further details on (random) tessellations can be found e.g. in [72, 79, 87, 90].

3.1 Deterministic tessellations

We start with the definition of deterministic planar tessellations. A tessellation
τ in R2 is a countable family {ξn}n≥1 of convex bodies ξn fulfilling the conditions

• ξ̊n 6= ∅ for all n, i.e., the convex bodies have non-empty interior,

• ξ̊n∩ ξ̊m = ∅ for all n 6= m, i.e., two convex bodies can only intersect at their
boundaries,

•
⋃
n≥1 ξn = R2, i.e., the union of the convex bodies covers the whole R2, and

•
∑

n≥1 1I{ξn∩C 6=∅} <∞ for any C ∈ C, i.e., τ is locally finite.

The sets ξn are called the cells of the tessellation τ and are polygons in R2. We
use the notation T for the family of all tessellations in R2. Note that we can
identify a tessellation τ with the segment system τ (1) = ∪∞n=1∂ξn constructed
from the boundaries of the cells of τ . Thus, a tessellation can be identified with a
closed subset of R2 and hence we can regard T as a subset of F . This connection
can be used in order to define the σ–algebra T on T as the trace–σ–algebra of
B(F) in T.

We can associate with each cell ξn of τ a “marker point” in the following way.
Consider a mapping α : C\{∅} → R2 which satisfies

• α(ξ) ∈ ξ and

• α(ξ + x) = α(ξ) + x

for all ξ ∈ C, ξ 6= ∅ and x ∈ R2. Then the point α(ξ) ∈ R2 is called the nucleus
of ξ and it can be chosen e.g. as the lexicographically smallest point of ξ or its
center of gravity. This approach is important later on when we consider random
tessellations. Note that the condition α(ξ) ∈ ξ is not really necessary. Sometimes
we relax this assumption and allow that α(ξ) 6∈ ξ. However, if we speak of the
nucleus, then it is natural to assume that α(ξ) ∈ ξ.

There are various ways to construct tessellations e.g. based on sets of points
and lines. Particular models are Voronoi tessellations and Delaunay tessellations
as well as line tessellations which are introduced in the following.
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Voronoi tessellation

Let x = {x1, x2, . . .} ⊂ R2 be a locally finite set of points such that conv(x) = R2,
where conv(x) denotes the convex hull of x. Then the Voronoi tessellation τ
induced by x is defined by the nearest–neighbor principle, i.e., the cells of τ are
defined by the sets

ξn = {x ∈ R2 : |x− xn| ≤ |x− xm| for all m 6= n} .

Note that ξn can be written as the intersection of the halfplanes H(xn, xm) =
{x ∈ R2 : |x− xn| ≤ |x− xm|} for all m 6= n, i.e.,

ξn =
⋂
m 6=n

H(xn, xm) .

The halfplanes H(xn, xm) are also called bisectors. Since x is locally finite it
is immediately clear that the cells of τ have non–empty interior and are locally
finite. Furthermore, they cover the whole Euclidean plane and two different cells
can only intersect at their boundaries. Using that conv(x) = R2, it can be
shown that the cells are convex polygons which are bounded. Thus, τ = {ξn}
constructed in this way is indeed a tessellation. A Voronoi tessellation together
with the generating point set is displayed in Figure 3.1(a).

Delaunay tessellation

Let x = {x1, x2, . . .} ⊂ R2 be again a locally finite set of points with conv(x) =
R2. Furthermore, we assume that four cocircular points do not exist, i.e., there
are no pairwise different points xi, xj, xk, xl ∈ x which are located on a circle.
Then the Delaunay tessellation τ ′ induced by x can be defined uniquely as the
dual tessellation of the Voronoi tessellation τ induced by x. The cells of τ ′ are
all triangles which are generated in the following way. Three points xi, xj, xk ∈
x form a triangle of τ ′ if the Voronoi cells ξi, ξj and ξk induced by x have a
common intersection point. This construction rule is equivalent to the empty
circle criterion: three points of x are the vertices of a triangle of τ ′ if and only if
the circumcircle of these three points does not contain other points of x. Then it
can be shown that the resulting sequence of triangles forms a tessellation in R2.
In Figure 3.1(b) a Delaunay tessellation is shown together with its generating
points and the dual Voronoi tessellation.

Tessellations induced by line systems

Let ` = {`1, `2, . . .} be a set of lines in R2 and let pi ∈ R2 denote the orthogonal
projection of o onto `i, where we assume that conv({p1, p2, . . .}) = R2. Further-
more, we assume that #{i : `i∩B 6= ∅} <∞ for all B ∈ C. Then we can construct
a tessellation with respect to ` in a natural way. Recall that we can identify a
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(a) PVT with nuclei (b) PDT (red) together with PVT (black)

Figure 3.1: Realizations of different tessellation models

tessellation τ with the segment system τ (1) = ∪∞n=1∂ξn formed by the union of
the cell boundaries. Thus, we define the line tessellation τ induced by ` as the
tessellation which corresponds to the segment system τ (1) = ∪∞i=1`i formed by the
union of the lines `1, `2, . . . . If ` fulfills the assumptions mentioned above, then
it is ensured that the resulting cells form a tessellation in R2. A line tessellation
is displayed e.g. in Figure 3.3(c).

3.2 Random tessellations

Now we are able to define random tessellations. A random tessellation T =
{Ξn} in R2 is defined as a sequence of random convex bodies Ξn such that
P({Ξn} ∈ T) = 1. It is called stationary and isotropic if txT = {txΞn}

d
= T

for all x ∈ R2 and ϑRT = {ϑRΞn}
d
= T for all rotations ϑR around the origin,

respectively. Note that there are various ways to look at random tessellations. In
particular, they can be regarded as marked point processes, random closed sets
and random measures. Each different point of view leads to different character-
istics which can be associated with random tessellations.

3.2.1 Random tessellations as marked point processes

In many applications it is convenient to represent a random tessellation T = {Ξn}
as a marked point process. Note that we can associate various point processes
with T , e.g. the point processes of vertices, edge midpoints and cell nuclei. If we
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mark these point processes with suitable marks, then we can represent T by the
resulting marked point processes.

Cell nuclei marked with cells

Let the mapping α : C\{∅} → R2 define the nuclei of the cells of the random
tessellation T and let Po denote the family of all convex and compact polygons ξ
with their nucleus α(ξ) at the origin. Then Po ⊂ F is an element of B(F) and we
define the σ-algebra B(Po) = B(F)∩Po on Po. With the definitions of α and Po
above we can then identify the random tessellation T = {Ξn} with the marked
point process {(α(Ξn),Ξo

n)} with mark space Po, where Ξo
n = Ξn − α(Ξn) is the

n-th cell shifted to the origin. If T is stationary, then the marked point process
{(α(Ξn),Ξo

n)} is stationary and we denote its intensity by λ(2). In the following,
we always assume that 0 < λ(2) <∞.

Now suppose that {(α(Ξn),Ξo
n)} is stationary. Then the typical mark Ξ∗ :

Ω→ Po of {(α(Ξn),Ξo
n)} is a random polygon which is distributed according to

the Palm mark distribution of {(α(Ξn),Ξo
n)} as defined in (2.14) for stationary

marked point processes with arbitrary mark space. The random polygon Ξ∗ is
called the typical cell of the tessellation T .

Vertices marked with edge stars

Another possibility to construct a marked point process which can be identified
with T is the following. First consider the point process of vertices V = {Vn}
of T . For each vertex Vn we define the edge star En as the union of all edges of
T emanating from Vn. Thus, Eo

n = En − Vn is an element of the family of finite
segment systems containing the origin which is denoted by Lo. Since Lo ∈ B(F)
we define the σ–algebra B(Lo) = B(F) ∩ Lo on Lo. Hence, we can identify the
random tessellation T with the marked point process {(Vn, Eo

n)} with mark space
Lo. If T is stationary, then {(Vn, Eo

n)} is stationary and we denote its intensity
by λ(0), where we always assume that 0 < λ(0) <∞.

For stationary {(Vn, Eo
n)}, the typical edge star E∗ : Ω → Lo of T is defined

as a random segment system which is distributed according to the Palm mark
distribution of {(Vn, Eo

n)}. In the following, we also use the notation T (0) = {Vn}
for the point process V of the vertices of a random tessellation T in order to
emphasize the dependence on T .

Edge midpoints marked with segments

Let {Yn} denote the point process of edge midpoints of the random tessellation
T , where an edge is defined as a segment of T (1) which does not contain a vertex
in its relative interior. Then each point Yn can be marked with the corresponding
centered edge Son = Sn−Yn which yields another marked point process. Note that
Son ∈ Lo, thus we define the marked point process {(Yn, Son)} with mark space Lo.
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If T is stationary, then it is easy to see that {(Yn, Son)} is stationary and we use
the notation λ(1) for its intensity. Again, the intensity λ(1) is always assumed to
be positive and finite.

The typical edge S∗ : Ω→ Lo is defined for stationary T as the typical mark
of the stationary marked point process {(Yn, Son)}.

3.2.2 Random tessellations as random closed sets and ran-
dom measures

In the preceding section random tessellations have been represented as marked
point processes with different mark spaces. Alternatively, a random tessellation
T can be regarded as a random closed set. Recall that a deterministic tessellation
can be identified with its edge set. Thus, in the random setting, we can identify a
random tessellation T = {Ξn} with the random closed set of its edges defined by
T (1) = ∪∞n=1∂Ξn. If T is stationary, then the random closed set T (1) is stationary
and we say that T is ergodic and mixing if T (1) is ergodic and mixing, respectively.
Note that T (1) is almost surely a locally finite system of line segments. Thus, we
can regard the 1–dimensional Hausdorff measure ν1 on T (1). If T is a stationary
random tessellation, then we get that Eν1(B∩T (1)) = γν2(B) for any B ∈ B(R2)
and some constant γ which we call the length intensity of T (1), compare also
Section 2.4.2. Like for the intensities λ(0), λ(1) and λ(2) defined above, we always
assume that 0 < γ <∞.

This point of view also leads to a random measure Λ associated with the
random tessellation T . In particular, we regard the random Hausdorff measure
Λ on T (1), i.e., Λ is defined by

Λ(B) = ν1(B ∩ T (1)) for B ∈ B(R2) .

Hence, another alternative representation of a random tessellation T is the ran-
dom Hausdorff measure Λ on its edges. If T is stationary, then the random
measure Λ is stationary and its intensity is given by γ. Moreover, we can regard
the Palm version Λ∗ of Λ, i.e., a random measure Λ∗ distributed according to
the Palm distribution P ∗Λ of Λ. For brevity, we also write P ∗

T (1) for the Palm
distribution P ∗Λ to emphasize the dependence on T (1). It is not difficult to see
that Λ∗ can be regarded as the Hausdorff measure ν1 on the edges of a random
tessellation T̃ with o ∈ T̃ (1) almost surely, see also Lemma 3.4. Note that T̃ can
be regarded as the conditional variant of the random tessellation T under the
condition that o ∈ T (1). Thus, under P ∗

T (1) there is an edge S̃ of T̃ through o

with probability 1. However, notice that S̃ and the typical edge S∗ do not have
the same distribution. Let h : Lo → [0,∞) be a translation-invariant measurable
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function and let S(x) denote the segment of T (1) through x ∈ T (1), then

Eh(S̃) =
1

γ
E
∫
T (1)∩[0,1)2

h(S(x)− x) ν1(dx)

=
1

γ
E

∑
(Yi,Soi )∈T

h(Soi )

∫
Si

1I[0,1)2(x) ν1(dx)

=
λ(1)

γ
Eh(S∗)

∫
R2

∫
S∗

1I[0,1)2−y(x) ν1(dx) ν2(dy) =
1

Eν1(S∗)
E ν1(S∗)h(S∗) ,

where the last line is a consequence of the refined Campbell theorem (see The-
orem 2.7) and the mean value formulae given in Theorem 3.1 below. Thus, the
distribution of S̃ can be regarded as the length–weighted distribution of the typ-
ical edge S∗. Similar weighted distributions appear frequently in this thesis.

3.3 Mean value formulae

In the preceding section we have demonstrated that random tessellations can
be regarded as several marked point processes, random closed sets and random
measures. Each of these representations leads to new characteristics which can
be associated with a stationary random tessellation. In particular, we define

• the intensities of vertices λ(0), edge midpoints λ(1) and cell nuclei λ(2),

• the length intensity γ = Eν1(T (1) ∩ [0, 1)2),

• the expected area Eν2(Ξ∗), perimeter Eν1(∂Ξ∗) and number of vertices
Eν0(Ξ∗) of the typical cell Ξ∗,

• the expected length of the typical edge Eν1(S∗),

• the expected length Eν1(E∗) and number of edges Eν0(E∗) of the typical
edge star E∗.

However, all these characteristics can be expressed e.g. by the three parameters
λ(0), λ(2) and γ. Note that ν0(Ξ∗) is only defined as the number of vertices of
the polygon Ξ∗ if T is face-to-face ([87]). If T is not face-to-face, then we define
ν0(Ξ∗) as the number of cells touching the typical cell Ξ∗.
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Theorem 3.1 It holds that

λ(1) = λ(0) + λ(2),

γ = λ(1)Eν1(S∗) =
λ(2)

2
Eν1(∂Ξ∗) ,

Eν0(E∗) = 2 + 2
λ(2)

λ(0)
,

Eν1(E∗) = 2
λ(1)

λ(0)
Eν1(S∗) ,

Eν0(Ξ∗) = 2 + 2
λ(0)

λ(2)
,

Eν2(Ξ∗) =
1

λ(2)
,

Eν1(∂Ξ∗) = 2
λ(1)

λ(2)
Eν1(S∗) .

Furthermore, 3 ≤ Eν0(Ξ∗),Eν0(E∗) ≤ 6.

For a proof of Theorem 3.1, see e.g. [20, 64].
Thus, local characteristics of random tessellations like the typical cell and

edge star provide information about spatial averages of the whole tessellation.
However, note that the typical cell does not determine the distribution of a ran-
dom tessellation. It is possible to define various tessellation models which are not
identically distributed, but have the same typical cell, see e.g. [67, 68].

3.4 Random tessellation models
In this section we introduce some random tessellation models which are frequently
considered in this thesis. They are all based on Poisson processes.

3.4.1 Poisson–Voronoi tessellation

In Section 3.1 the notion of a deterministic Voronoi tessellation has been defined
for locally finite point sets. Since the realizations of a stationary point process
X = {Xn} with P(X(R2) = 0) = 0 are almost surely locally finite point sets with
conv(X) = R2, we can define random Voronoi tessellations {Ξn} with respect to
such point processes. Then, the cells Ξn are given by the random closed sets

Ξn = {x ∈ R2 : |x−Xn| ≤ |x−Xm| for all m 6= n}.

We call T = {Ξn} the Voronoi tessellation induced by X. Note that we can use
the atom Xn of X as nucleus of the cell Ξn.

If the underlying point processX is a Poisson process, then we call the induced
Voronoi tessellation a Poisson–Voronoi tessellation (PVT). Realizations of a PVT
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(a) Realization of a PVT (b) Typical cell of PVT

Figure 3.2: Realization of a PVT and its typical cell

are shown in Figures 3.2(a) and 3.3(a). If the Poisson process X is stationary
with intensity λ, then the induced PVT is stationary and isotropic. Furthermore,
it can be shown that

λ(0) = 2λ, λ(1) = 3λ, λ(2) = λ, γ = 2
√
λ ,

see e.g. [87], Chapter 10. Note that for a random Voronoi tessellation T induced
by a stationary point process X, the distribution of the typical cell coincides
with the distribution of the Voronoi cell at o with respect to the Palm version
X∗ of X. Since the point process of nuclei of a PVT is a Poisson process, we get
that the Palm distribution of a stationary PVT with respect to its cell nuclei is
obtained by generating the Voronoi tessellation induced by X∗ = X ∪ {o}, see
Theorem 2.6. The cell centered at o can then be regarded as the typical cell of
the PVT, see Figure 3.2(b).

3.4.2 Poisson–Delaunay tessellation

In the preceding section we introduced Voronoi tessellations induced by random
point processes. In the same way as for deterministic Voronoi tessellations, we can
construct the dual Delaunay tessellation induced by random point processes and
in particular by Poisson processes. Let X = {Xn} be a stationary Poisson process
with intensity λ > 0. Then, almost surely, X is locally finite, conv(X) = R2 and
four points of X are not cocircular. Thus, we can construct almost surely the
Delaunay tessellation T = {Ξn} of X which is the dual tessellation of the PVT
induced by X, see Section 3.1. The resulting random tessellation T is then called
Poisson–Delaunay tessellation (PDT). In Figure 3.3(b) a realization of a PDT is
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displayed. Since X is stationary, we get that T is also stationary. Furthermore,
it can be shown that

λ(0) = λ, λ(1) = 3λ, λ(2) = 2λ, γ =
32

3π

√
λ ,

see e.g. [87], Chapter 10. If T = {Ξn} is a PDT induced by X, then the point
process of vertices is given by X. Thus, using Theorem 2.6, the Palm version
T ∗ of T with respect to the point process of vertices can be constructed as the
Delaunay tessellation with respect to X∗ = X∪{o}. Note that the union of edges
of T ∗ emanating from o can then be regarded as the typical edge star E∗ of T .

3.4.3 Poisson line tessellation

Now we construct a tessellation based on Poisson line processes. A Poisson
line process can be defined in the following way. Consider a stationary Poisson
process {Rn} on R of intensity γ, where each point Rn is independently marked
with a random angle Φn ∼ U [0, π). Then we can identify each pair (Rn,Φn)
with a line `(Rn,Φn) = {(x, y) ∈ R2 : x cos Φn + y sin Φn = Rn} defined by the
Hessian normal form. The stationary random closed set

⋃
n≥1 `(Rn,Φn) is called

Poisson line process. It can be regarded as the edge set of a random tessellation
T which we call Poisson line tessellation (PLT). Thus, T (1) =

⋃
n≥1 `(Rn,Φn) and

T is stationary with length intensity γ. Furthermore, it holds that

λ(0) =
1

π
γ2, λ(1) =

2

π
γ2, λ(2) =

1

π
γ2 ,

see [87], Chapter 10. A realization of T is displayed in Figure 3.3(c). Using
Slivnyak’s theorem (see Theorem 2.6), it can be shown that the Palm distribution
of T with respect to the Hausdorff measure on T (1) is obtained by the tessellation
induced by the edge set T (1) ∪ `(0,Φ), where Φ ∼ U [0, π) is independent of T .

3.4.4 Iterated tessellations

From the three basic tessellation models introduced above more complex models
can be generated like iterated tessellations ([55]). Two major principles can be
used in order to construct these flexible tessellation models. On the one hand, we
can superpose (basic) random tessellations and, on the other hand, we can nest
them, see Figure 3.4. In particular, nested random tessellations are used in order
to model telecommunication networks since the construction principle is similar
to the evolution of street (and hence cable) systems. More precisely, the edges
of a so–called initial tessellation are used to model main roads, whereas each cell
of the initial tessellation is subdivided by a component tessellation whose edges
represent side streets between main roads, see e.g. [32, 53].



3.5 Point processes on the edges of random tessellations 43

(a) PVT (b) PDT (c) PLT

Figure 3.3: Realizations of different tessellation models

Recall that a random tessellation T can be identified with its edge set T (1) =⋃∞
n=1 ∂Ξn. We now regard some initial tessellation T0 and in addition a sequence

T1, T2, . . . of so–called component tessellations, which are independent of T0. For
each n ≥ 1, we consider the n-th cell Ξ0n of T0 and divide it by the cells of the
random tessellation Tn. Thus, we consider Ξ0n and Ξ0n∩T (1)

n which is the part of
the segment system T

(1)
n inside Ξ0n. Then the edge set of the iterated tessellation

T , and hence the tessellation itself, is defined by T (1) =
⋃∞
n=1(∂Ξ0n ∪ (Ξ0n ∩

T
(1)
n )). The construction of an iterated tessellation which has been explained

so far is very general, but we focus on two distinct cases. On the one hand,
we consider the case that T1, T2, . . . is a sequence of independent copies of a
random tessellation T1 which are independent of T0. In this case, we call T a
T0/T1 nesting, see Figure 3.4(a). On the other hand, we regard the case that
T1 = T2 = . . . , i.e., T1, T2, . . . are all identical with probability 1. Then we call
T a T0/T1 superposition, see Figure 3.4(b).

Now let T be either a nesting or a superposition. If T0 as well as T1, T2, . . .
are stationary with length intensities γ0 and γ1, respectively, then T is stationary
as well and its length intensity γ is given by γ = γ0 + γ1. Furthermore, if T0

and T1 are stationary, it is possible to express further intensities of T like the
intensity of nuclei, vertices and edge midpoints by the intensities of T0 and T1,
see e.g. [53, 55].

3.5 Point processes on the edges of random tes-
sellations

Later on, we study spatial stochastic models which are based on a random
tessellation T and point processes X on the edges of T , i.e., we assume that
P(Xn ∈ T (1) for all n ∈ N) = 1. In this section we introduce two specific types
of point processes concentrated on the edges of random tessellations. More pre-
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(a) Nested tessellations

(b) Superposed tessellations

Figure 3.4: Iterated tessellations

cisely, we define Cox processes on the edge set T (1) and independent thinnings of
the vertex set T (0) of T .

First, in Section 3.5.1, we start with the definition of Cox processes in the
Euclidean plane R2 and discuss some basic properties. Afterwards, Cox processes
on the edges of random tessellations are introduced in Section 3.5.2, whereas in
Section 3.5.3 thinnings of the vertex set T (0) of T are considered. Finally, in
Section 3.5.4, Voronoi tessellations induced by point processes on the edges of
random tessellations are briefly discussed which are the fundamental components
of the hierarchical network models considered in Chapters 5 to 8.

3.5.1 Cox processes

Definition and basic properties

Cox processes are generalizations of Poisson processes. The difference is that
we now use a random intensity measure Λ instead of the deterministic intensity
measure µ used for Poisson processes. Then, conditioned on Λ = η, the Cox
processX is a Poisson process with intensity measure η, i.e., the finite-dimensional
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distributions of X for pairwise disjoint sets B1, . . . , Bn ∈ B0(R2) are given by

P(X(B1) = k1, . . . , X(Bn) = kn) = E

(
n∏
i=1

Λ(Bi)
kie−Λ(Bi)

ki!

)
(3.1)

for k1, . . . , kn ∈ N0. Thus, the distribution of a Cox process can be regarded as
a mixture of the distributions of (in general non-stationary) Poisson processes.
This is the reason why Cox processes are sometimes called doubly–stochastic
Poisson processes. The definition of a Cox process directly leads to a simulation
method based on a two–step procedure. First, a realization η is sampled from
the random intensity measure Λ. Then, in the second step, a Poisson process
with intensity measure η is simulated. We now summarize some basic properties
of Cox processes.

Lemma 3.2 Let X be a Cox process with random intensity measure Λ. Then
the intensity measure µ of X is given by

µ(B) = EΛ(B), B ∈ B(R2) . (3.2)

Furthermore, X is stationary, isotropic and ergodic if and only if Λ is stationary,
isotropic and ergodic, respectively. If X is stationary, then its intensity is the
intensity λ of its stationary intensity measure Λ.

Proof Equation (3.2) easily follows from E(X(B) | Λ) = Λ(B) for B ∈ B0(R2).
From (3.1) we immediately get that X is stationary and isotropic if and only if Λ
is stationary and isotropic, respectively, and for a proof that X is ergodic if and
only if Λ is ergodic, we refer to [21], p. 212. 2

Of course, Poisson processes are Cox processes, but there are many other point
process models which are Cox processes. Examples are Neyman-Scott processes
([77]) and modulated Poisson processes ([26]). Recall that the Palm version X∗ of
a stationary Poisson process X is obtained due to Slivnyak’s theorem by adding
the origin o to the original Poisson process X, see Theorem 2.6. Similarly, the
Palm distribution P ∗X of a stationary Cox processX with random driving measure
Λ can be characterized as follows, see e.g. [90], p. 156, and Theorem 5.3.3 in [48].

Theorem 3.3 (Slivnyak’s theorem for Cox processes) Let X be a station-
ary Cox process with random intensity measure Λ. Then

P ∗X(A) = P(X̃ ∪ {o} ∈ A), A ∈ N , (3.3)

where X̃ is a Cox process with random intensity measure Λ∗ distributed according
to the Palm distribution P ∗Λ of Λ.

So if we want to simulate the Palm version X∗ of X, we can again use a two–step
procedure. But this time we first have to generate a realization η∗ of Λ∗ and
then, in the second step, we have to place a point at the origin o and simulate a
Poisson process X̃ with intensity measure η∗. In this way, we get a realization of
the Palm version X∗ = X̃ ∪ {o} of the Cox process X.
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(a) PDT (b) PVT

Figure 3.5: Realizations of Cox processes on PDT and PVT.

3.5.2 Cox processes on the edges of random tessellations

In this thesis, we frequently consider point processes X which are located along
segment systems in the Euclidean plane. These segment systems are represented
by the edge sets of random tessellations, i.e., the points of X are located with
probability 1 on the random closed set T (1) of some random tessellation T . For
given T , define the random measure Λ : B(R2)→ [0,∞] by

Λ(B) = λ`ν1(B ∩ T (1)) (3.4)

for each B ∈ B(R2) and some λ` > 0. Then we call a Cox process X with random
intensity measure Λ a Cox process on (the edges T (1) of) T with linear intensity
λ`. If T is stationary and its length intensity is given by γ, then Λ is stationary
and its intensity can be calculated as λ = λ`Eν1([0, 1)2 ∩ T (1)) = λ`γ. Thus,
X is stationary with intensity λ. Furthermore, if T is isotropic resp. ergodic,
then it is not difficult to see that Λ is isotropic resp. ergodic as well and a direct
application of Lemma 3.2 yields that X is isotropic resp. ergodic.

A realization of X can be constructed in the following way. For a given
realization of T (1), linear Poisson processes with (linear) intensity λ` > 0 are
placed on each segment of T (1). In Figure 3.5 realizations of Cox processes on
T are shown for PDT and PVT as underlying tessellation T . Recall that in
Theorem 3.3 the Palm distribution of stationary Cox processes is characterized
and it is shown that it is uniquely determined by the Palm distribution of the
random intensity measure. For Cox processes on random tessellations this can
be specified in the following way.
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Lemma 3.4 Let T be a stationary tessellation and let Λ be the stationary random
measure given by λ`ν1(B ∩ T (1)) for B ∈ B(R2) for some λ` > 0. Then

Λ∗(B) = λ`ν1(B ∩ T̃ (1)), B ∈ B(R2) ,

where the tessellation T̃ is distributed according to the Palm distribution P ∗
T (1)

with respect to the 1-dimensional Hausdorff measure on T (1).

Proof Let τ denote a deterministic tessellation, then we can identify the measure
given by η( · ) = λ`ν1( · ∩ τ (1)) with τ and also write η(τ). It holds that η(txτ) =
txη(τ) for all x ∈ R2. We can use the definition of the Palm distribution P ∗Λ of
stationary random measures given in (2.27) in order to get for each A ∈M that

P ∗Λ(A) =
1

λ

∫
M

∫
[0,1]2

1IA(txη) η(dx)PΛ(dη)

=
1

γ

∫
T

∫
[0,1]2∩τ (1)

1IA(txη(τ)) ν1(dx)PT (dτ)

= P ∗T (1)({τ ∈ T : η(τ) ∈ A}) ,

where the last equality is a direct consequence of the definition of the Palm
distribution P ∗

T (1) bearing in mind that γ = Eν1(T (1) ∩ [0, 1)2). Thus we get that
η(T̃ )( · ) = λ`ν1( · ∩ T̃ (1)) and Λ∗ have the same distribution. 2

Note that a scaling invariance can be observed for Cox processes on the edges
of random tessellations. Let T be a stationary random tessellation with length
intensity 1 and define the scaled tessellation Tγ as the random tessellation with
the scaled edge set T (1)

γ = 1
γ
T (1). Then the length intensity of Tγ is given by γ

since Eν1(T
(1)
γ ∩ [0, 1)2) = Eν1(T (1)∩ [0, γ)2)/γ = γ due to the homogeneity of the

Hausdorff measure ν1. Now let X be a Cox process on Tγ with linear intensity λ`
and let X ′ be a Cox process on Tγ′ with linear intensity λ′`. Furthermore, assume
that the intensity quotients κ = γ/λ` and κ′ = γ′/λ′` are equal, i.e., κ = κ′. Then,
for any C ∈ C, it holds that

P(X(C) = 0) = E exp
(
λ`ν1(C ∩ T (1)

γ )
)

= E exp
(λ`γ′
γ
ν1

( γ
γ′
C ∩ T (1)

γ′

))
= P

(
X ′
( γ
γ′
C
)

= 0
)

= P
((γ′
γ
X ′
)
(C) = 0

)
,

where the scaled point process γ′

γ
X ′ is defined by γ′

γ
X ′ = {γ′

γ
X ′n} for X ′ = {X ′n}.

Since the distribution of a point process X is uniquely determined by its void
probabilities P(X(C) = 0), C ∈ C, we get that X d

= γ′

γ
X ′. Thus, for a given

tessellation model T , the intensity quotient κ defines the Cox process X on Tγ



48 Chapter 3. Random tessellations and point processes on their edges

(a) PLT (b) PVT

Figure 3.6: Realizations of p-thinnings on PLT and PVT.

with linear intensity λ` uniquely up to a scaling and we therefore call κ the scaling
factor of X. For the numerical results considered later on, we only focus on single
parameter pairs γ and λ` for each value of κ. The corresponding results for other
parameters with the same scaling factor κ can then be obtained by an appropriate
scaling.

3.5.3 Thinnings of the vertices

In the preceding section a specific class of Cox processes on the edges of random
tessellations has been defined. If X is such a Cox process on the random tes-
sellation T , then almost surely no point of X is located at a vertex of T since
its random intensity measure is diffuse. However, for some applications it is of
interest that points are also located at vertices T (0) of T . One possibility to con-
struct point processes with this property are independent thinnings of the point
process T (0).

Let T be a random tessellation. Like in Section 3.2.1, we also use the notation
V = {Vn} for the point process T (0) of the vertices of T . Furthermore, consider
the independently marked point process {(Vn, Un)}, where U1, U2, . . . are U [0, 1)-
distributed. For some constant p ∈ (0, 1), we then construct the point process X
as the subset of those points Vi in {Vn} with Ui ≤ p. The point process X is then
called a (independent) p-thinning of V , where we call p the survival probability
and also write X = Vp. Realizations of p-thinnings of the vertices of PLT and
PVT are shown in Figure 3.6.

If {Vn} is stationary with intensity λ(0) and isotropic, then it is easy to see
that X is stationary with intensity λ(0)

p = pλ(0) and isotropic, respectively. Fur-
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thermore, for stationary V the Palm version X∗ of X can be obtained from the
Palm version V ∗ of V = {Vn} by an independent thinning of all points in R2\{o}
with survival probability p since for each A ∈ N we have

P(X∗ ∈ A) =
1

pλ(0)
E

∑
Xn∈[0,1)2

1IA(tXnX)

=
1

pλ(0)
E

∑
Vn∈[0,1)2

1I[0,p](Un)1IA(tVnVp)

=
1

p
E1I[0,p](U1)1IA(V ∗p ) = P(V ∗p ∪ {o} ∈ A) .

Similarly as for Cox processes on T , a scaling invariance can be observed for p-
thinnings of V . Let T be a stationary random tessellation with length intensity
1 and let λ(0) denote the intensity of its vertex set. Furthermore, let Tγ = T/γ

be the scaled version of T such that Eν1(T
(1)
γ ∩ [0, 1)2) = γ. Then the intensity

of the vertices T (0)
γ of Tγ is given by λ(0)γ2. If X and X ′ are p-thinnings of T (0)

γ

and T (0)
γ′ , respectively, it is easy to see that X d

= γ′

γ
X ′ since Tγ = 1

γ
T = γ′

γ
Tγ′ .

Note that for Cox processes X the linear intensity λ` is given by λ/γ, where λ
is the spatial intensity of X, and the scaling factor κ is defined by κ = γ/λ` . For
p-thinnings X of T (0)

γ , we define λ` and κ in the same way, i.e., λ` = pλ(0)γ2/γ =
pλ(0)γ is defined as the spatial intensity of X divided by the length intensity of T
and κ is defined by κ = γ/λ`. Let X and X ′ be two thinnings of T (0) with survival
probabilities p and p′, respectively. Then κ = 1/(λ(0)p) and κ′ = 1/(λ(0)p′) are
equal if and only if p = p′. Thus, we can consider the same scaling factor κ both
for p-thinnings of T (0) and Cox processes on T .

3.5.4 Voronoi tessellations of point processes on random
tessellations

Assume that X = {Xn} is a stationary point process on the edges of a station-
ary random tessellation T such that P(X(R2) = ∞) = 1. Then the Voronoi
tessellation TX = {ΞXn} induced by X can be considered. Note that TX is a
stationary random tessellation which can be identified with the marked point
process {(Xn,Ξ

o
Xn

)}, where Ξo
X,n = ΞXn −Xn denotes the centered Voronoi cell

at Xn with respect to X. If the point process X models locations of network
components in telecommunication networks, then ΞX,n can be regarded as the
influence zone of the network component at Xn. In this context, we call ΞX,n also
the serving zone of Xn, see Chapter 5 for a more detailed discussion. The typical
cell of TX is denoted by Ξ∗X which is an important characteristic in the analysis
of telecommunication networks.

In the context of telecommunication networks, we assume that network com-
ponents of two hierarchy levels are located along the infrastructure of the network,
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(a) PVT (b) PLT

Figure 3.7: Realizations of XS and TX for Cox processes on PVT and PLT.

e.g. street systems, which are modeled by the edge set T (1) of T . Therefore, it is
also of interest to consider the edge set SX,n = T (1)∩ΞX,n inside ΞX,n for each cell
ΞX,n. In this way, we can construct the marked point process XS = {(Xn, S

o
X,n)},

where SoX,n = SX,n − Xn is the centered segment system associated with Xn.
Note that XS is a stationary marked point point process with mark space Lo.
The typical mark S∗X of XS is called the typical segment system. A realization of
TX and XS is displayed in Figure 3.7 for Cox processes X on PVT and PLT.

Note that both S∗X and Ξ∗X are important characteristics in order to analyze
hierarchical network models. For instance, in Chapter 5 it is shown that the
distributions of connection lengths can be estimated based on samples of S∗X and
Ξ∗X which can be obtained from Monte–Carlo simulation. We therefore derive
simulation algorithms for Ξ∗X and S∗X for various network models in Chapter 4.



Chapter 4

Simulation algorithms for the
typical cell of random tessellations

Many important characteristics of random tessellation models can be obtained
as functionals of their typical cell, see e.g. the mean value formulae given in
Theorem 3.1. Thus, the typical cell of a random tessellation is an important ob-
ject in order to investigate distributional properties of random tessellation models.
However, even for the typical cell of PVT it is hard to obtain closed analytical ex-
pressions for the distribution of cell characteristics like the perimeter or the area.
On the other hand, it is often possible to construct simulation algorithms for the
typical cell. Then, based on Monte-Carlo simulation, distributional properties of
the considered random tessellation can be investigated. Another application of
simulation algorithms for the typical Voronoi cell of random tessellations is the
analysis of hierarchical network models. For instance, in Chapter 5 it is shown
how the distribution of different cost functionals like direct Euclidean and short-
est path connection lengths in two-level hierarchical models can be estimated
based on samples of the typical cell of random tessellations. These observations
motivate the investigations in this chapter.

In particular, we derive simulation algorithms for the typical Voronoi cell
of point processes which are concentrated on the edges of random tessellations,
where we focus on two different types of point processes. On the one hand, we
consider Cox processes on the edges of random tessellations and, on the other
hand, we regard thinnings of the set of vertices of random tessellations. Then, if
the underlying tessellation is e.g. a PDT, PLT and PVT, respectively, we derive
simulation algorithms for the typical Voronoi cell of the respective point process.
The results which are presented here are partly based on material elaborated in
[27, 96, 97, 100].

Note that in the ergodic case, the distribution of the typical cell can be in-
terpreted as the empirical distribution of the cells of the tessellation in a large
sampling window, see Theorem 2.8. Thus, we can either simulate the random
tessellation in a large sampling windowW and regard the cells whose nucleus lies
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insideW or we can locally simulate i.i.d. samples of the typical cell in order to es-
timate spatial averages by sample means. However, there are several advantages
for the simulation of the typical cell. If we simulate the tessellation in a large
sampling window, then the cells are all correlated. Furthermore, there are edge
effects which might be significant if W is too small. On the other hand, runtime
and memory problems occur if W is too large. All these problems can be avoided
if the typical Voronoi cell is simulated locally and the same characteristics can
be estimated. However, the challenge is then to develop efficient simulation al-
gorithms. Recall that the typical Voronoi cell Ξ∗X of a point process X can be
constructed as Ξ∗X = ∩n∈NH(o,X∗n), where X∗ = {X∗n} is the Palm version of X.
Thus, we have to develop simulation algorithms for X∗ if X is e.g. a Cox process
or thinning of the vertices of PDT, PLT and PVT.

The present chapter is organized in the following way. At the beginning, we
give a brief summary of existing simulation algorithms for the typical Voronoi cell
of Poisson processes and Cox processes on PLT, see Section 4.1. In particular,
we explain a radial simulation algorithm for stationary Poisson processes and we
show how this algorithm can be used in order to efficiently simulate the typical
cell of PVT. The concept of radial simulation is essential for all algorithms which
are developed later on.

Afterwards, in Section 4.2, two new simulation algorithms for the typical
Voronoi cell of Cox processes on PVT are introduced. On the one hand, we show
how the typical cell can be simulated directly and, on the other hand, we derive
an indirect simulation algorithm that allows to simulate random cells from which
the distribution of the typical cell can be obtained by a weighting procedure. One
advantage of the latter algorithm is that it can also be used to simulate the typical
cell of Cox process on further tessellation models, whereas the direct algorithm
is specifically designed to simulate the typical cell of Cox processes on PVT. In
Section 4.3 we then introduce a new algorithm for the simulation of the typical
Voronoi cell of Cox processes on PDT. Similarly as for PVT, an indirect algorithm
is constructed which can be used in order to simulate random cells from which
the distribution of the typical cell can be obtained by an appropriate weighting.
Section 4.4 summarizes a new simulation algorithm for the typical Voronoi cell
of Cox processes on nested tessellations. This algorithm is applicable if nested
tessellations T = T0/T1 with initial tessellation T0 and component tessellation T1

are considered whose stationary and Palm versions Ti and T̃i, respectively, can
be simulated for i = 0, 1.

In Section 4.5 we explain how the typical Voronoi cell can be simulated if the
underlying point process is obtained by independent thinnings of the vertices of
PDT, PLT and PVT, respectively. In all three cases it is possible to derive direct
simulation algorithms for the typical Voronoi cell.

Finally, in Section 4.6, some numerical results obtained from a simulation
study are presented. In particular, the efficiencies of the direct and indirect
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algorithm for Cox processes on PVT are investigated in order to decide which
algorithm is preferable. Furthermore, we compare distributional properties of the
typical cells of the different considered models.

4.1 Typical Voronoi cells of Poisson processes and
Cox processes on PLT

In this section, we briefly review existing simulation algorithms for the typical cell
of certain Voronoi tessellations. To begin with, we discuss how stationary Poisson
processes in R2 can be simulated radially. The radial simulation algorithm for
stationary Poisson processes is the basis of all simulation algorithms developed
later on. We use this result in order to explain how the typical cell of PVT can
be simulated. Moreover, we briefly summarize a simulation algorithm for the
typical Voronoi cell of Cox processes on PLT developed in [31]. This algorithm
will be used in order to compute e.g. the distribution of shortest path lengths,
see Chapters 5 and 7.

4.1.1 Radial simulation of stationary Poisson processes

In our applications it is useful to simulate the points of a Poisson process with
increasing distance to the origin. This approach is also called radial simulation of
point processes. Note that for a stationary Poisson process X = {Xn} in [0,∞)
with intensity λ it is well–known that the atoms Xn are given by Xn =

∑n
i=1 Yi

for n ≥ 1, where Y1, Y2, . . . is a sequence of independent random variables which
are Exp(λ)–distributed, i.e., the density of Y1 is given by fY1(x) = λe−λx1I[0,∞)(x).
We can use this construction principle directly in order to simulate the points
of X with increasing distance to the origin. This method can be generalized to
Poisson processes in Rd for any d ≥ 1. In the following, we will focus on the case
that X is a stationary Poisson processes in R2, for further details see [80].

Note that a point x = (x1, x2) ∈ R2 can be represented by its polar coor-
dinates, i.e. x = (r cosφ, r sinφ) for some r ∈ [0,∞) and φ ∈ [0, 2π). Let X
denote a stationary Poisson process in R2 with intensity λ > 0 and consider a
sequence Φ1,Φ2, . . . of independent and identically distributed random variables
with Φ1 ∼ U [0, 2π) and another sequence D1, D2, . . . of independent and identi-
cally distributed random variables with D1 ∼ Exp(1). Now define the sequence
R1, R2, . . . by

Ri =

√√√√ i∑
k=1

Dk

πλ
,

then X = {Xn} with Xn = {(Rn cos Φn, Rn sin Φn)} is a stationary Poisson pro-
cess in R2 of intensity λ, see [47], p. 20 for a proof. Based on this statement it is
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easy to simulate a Poisson process radially based on the simulation of U [0, 2π)-
and Exp(1)-distributed random variables which are independent. For details on
the simulation of random variables, see e.g. [2, 29, 81].

4.1.2 Simulation of the typical Voronoi cell of PVT

Due to Slivnyak’s theorem, see Theorem 2.6, the typical Voronoi cell of a PVT
induced by a stationary Poisson processX = {Xn} can be regarded as the Voronoi
cell at the origin o with respect to X∗ = X ∪ {o}. Thus, we can place a point at
the origin, simulate further points Xn according to a stationary Poisson process
and construct the typical cell Ξ∗X = ∩n∈NH(o,Xn) as the intersection of the
bisectors H(o,Xn), n ∈ N. Clearly, the radial simulation procedure introduced
in the preceding section has many advantages here compared to other simulation
algorithms for stationary Poisson processes. For instance, a stationary Poisson
process X of intensity λ can be simulated in a sampling window W as follows.
First, a random variable N ∼ Poi(λν2(W )) is simulated and then, given N =
n, the n points X1, . . . , Xn of X inside W are simulated as independent and
uniformly distributed points in W . Although this procedure seems to be easy, it
is not appropriate in order to simulate the typical cell of the induced PVT. On the
one hand, it is not known in advance how large the sampling windowW has to be
chosen in order to construct the typical cell. On the other hand, this procedure is
computationally inefficient since often too many points are simulated. However,
if we simulate X radially, we can simulate the points X1, X2, . . . with increasing
distance to the origin. In particular, we can simulate points radially until a
bounded Voronoi cell at o can be constructed based on the already simulated
points. This cell is called the initial cell. Afterwards we can check for each
newly simulated point if the initial cell cannot be influenced by points anymore
which are farer away to o than the last generated point. If this is the case, we
stop the algorithm and otherwise we simulate further points. The main steps of
this simulation algorithm are sketched below. Here, the points X1, X2, . . . are
constructed from Φ1,Φ2, . . . and D1, D2, . . . as explained in Section 4.1.1.

1. Generate X∗ = {o}.

2. Simulate independent random variables Φ1,Φ2, . . . and D1, D2, . . . with
Ui ∼ U [0, 2π), Di ∼ Exp(1) for i = 1, 2, . . . .

3. Add X1, . . . , Xn to X∗ until a compact initial cell Ξ∗X = ∩ni=1H(o,Xi) at o
can be constructed from the already simulated points of X∗.

4. If Rn ≥ rmax = 2 max{|vi|}, were {vi} denotes the set of vertices of Ξ∗X ,
then stop. Else add further points Xj, j = n + 1, n + 2, . . . to X∗ and put
Ξ∗X = ∩ji=1H(o,Xi) until Rj ≥ rmax.
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Some technical details have to be considered. First we have to construct an initial
cell. If for n ≥ 3 the points X1, . . . , Xn are already generated, then a cone crite-
rion can be used in order to check if a bounded Voronoi cell can be constructed
around o, see e.g. [24]. Once the initial cell Ξ∗X has been generated, points out-
side the ball B(o, rmax) cannot influence the typical Voronoi cell anymore since
the bisectors between o and points x ∈ B(o, rmax)

c cannot intersect Ξ∗X . Thus we
can stop the simulation if Rn ≥ rmax. The resulting cell Ξ∗X of this simulation
procedure is then the typical Cell of a stationary PVT with intensity λ.

In Figure 4.1 the main steps of the algorithm are visualized. Note that in the
simulation algorithms developed later on, we always try to follow this way, i.e.,
we simulate the points of the underlying point process (approximately) radially
and construct an initial cell in order to decide when to stop the simulation.
However, if we are considering e.g. Cox processes X on PDT, PLT and PVT,
then we cannot simulate the points of X radially, but we can simulate the Poisson
process radially which induces the underlying tessellation.

4.1.3 Simulation of the typical Voronoi cell of Cox pro-
cesses on PLT

We now describe a simulation algorithm for the typical cell of Voronoi tessellations
induced by Cox processes X with linear intensity λ` on a stationary PLT of
length intensity γ. Note that due to Theorem 3.3 we have that X∗ = X̃ ∪ {o},
where X̃ is a Cox process on the Palm version T̃ of the random tessellation
T regarded as the random Hausdorff measure ν1( · ∩ T (1)) on T (1). Thus, first
the PLT has to be simulated according to its Palm distribution with respect to
ν1( · ∩ T (1)), i.e., under the condition that o ∈ T (1). Due to Slivnyak’s theorem,
the conditional PLT can be constructed by adding an isotropic line `0 through o to
an independent and stationary PLT of length intensity γ. Note that a stationary
PLT can be simulated radially which is a direct consequence of its definition. Let
Φ1,Φ2, . . . and D1, D2, . . . be independent random variables, where Φi ∼ U [0, 2π)
and Di ∼ Exp(2γ) for i = 1, 2, . . . . Furthermore, we define the random variables
Rn =

∑n
i=1 Di, n = 1, 2, . . . . Then {`n} with `n = `(Rn,Φn) is a Poisson line

process, where `(Rn,Φn) = {(x, y) ∈ R2 : −x sin Φn + y cos Φn = Rn}, see also
Section 3.4.3. Now the typical Voronoi cell of a Cox process X on a PLT can
be simulated using similar ideas as for the simulation of the typical cell of PVT.
However, we cannot simulate the conditional Cox process X∗ radially, but we can
simulate the underlying random tessellation radially. The main steps are briefly
summarized below. Note that the points of X∗\{o} on a single line `n can be
regarded as a stationary Poisson process in R with intensity λ`. Thus, we can
choose one point on `n as the origin and then simulate the points of X∗ using
independent and exponentially distributed waiting times, see Section 4.1.1. This
observation can be used in order to simulate points X1, X2, X3 and X4 of X∗ first
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(a) Origin o (black) and radially simulated
points X1, X2, X3 (gray). Compact initial
cell cannot be constructed yet.

(b) Initial cell Ξ∗ around o is constructed
using the simulated points X1, . . . , X7.

(c) Point X8 is simulated radially and Ξ∗ is
cut by bisector.

(d) Point X9 is simulated radially and Ξ∗ is
cut by bisector.

(e) Further pointsXn are simulated radially
until |Xn| ≥ rmax.

(f) Realization of the typical cell Ξ∗ of PVT.

Figure 4.1: Simulation of the typical cell of a stationary PVT
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which generate a compact initial cell around o. In particular, we place X1 and
X2 on `0 as the two nearest points to the origin of a stationary Poisson process
on `0. Afterwards, we place X3 and X4 on `1 as the two nearest points to `0 ∩ `1

of a stationary Poisson process on `1. Then ∩4
i=1H(o,Xi) is a compact polygon

with probability 1.

1. Generate the line `0 with direction Φ0 ∼ U [0, 2π) through o which is iden-
tified with the unit vector U0 = (cos Φ0, sin Φ0).

2. Set X∗ = {o} and add the two points X1 = Y1U0, X2 = −Y2U0 on `0 to X∗,
where Y1 and Y2 are independent and Exp(λ`)–distributed.

3. Generate another line `1 with direction Φ1 ∼ U [0, 2π), unit vector U1 =
(cos Φ1, sin Φ1) and distance R1 = D1 ∼ Exp(γ) to o.

4. Add the two points X3 = Z + Y3U1, X4 = Z − Y4U1 on `1 to X∗, where Y3

and Y4 are independent and Exp(λ`)–distributed and Z = `0 ∩ `1.

5. Construct initial cell Ξ∗X at o with respect toX∗ and put rmax = 2 max{|vi|},
where {vi} are the vertices of Ξ∗X .

6. Simulate further points Xn on `0 and `1 as the atoms of stationary (linear)
Poisson process on `0 ∩ B(o, rmax)\{x ∈ R2 : −Y2 ≤ 〈x, U0〉 ≤ Y1} and
`1 ∩B(o, rmax)\{x ∈ R2 : −Y4 ≤ 〈x− Z,U1〉 ≤ Y3}.

7. Simulate further lines `n = `(Rn,Φn) with Φn ∼ U [0, 2π) and Rn =∑n
i=1 Di, place points as linear Poisson processes on `n ∩ B(o, rmax), up-

date both Ξ∗X and rmax until Rn ≥ rmax.

The resulting cell Ξ∗X is then the typical Voronoi cell and S∗X = Ξ∗X∩
(
∪n`n

)
is the

typical segment system inside Ξ∗X . A more detailed description of the algorithm
can be found in [31] and [82]. In the following, we develop new simulation algo-
rithms if the underlying tessellation is a PVT and PDT, respectively. The basic
idea of simulating the Palm version T̃ of the underlying tessellation T radially is
also used there, although it is not directly possible as in the case of PLT.

4.2 Typical Voronoi cell of Cox processes on PVT
In this section, two algorithms are derived which can be used in order to estimate
distributional properties of the typical Voronoi cell of Cox processes X on PVT.
The first simulation algorithm is designed to simulate the typical Voronoi cell
directly, whereas with the second algorithm it is possible to simulate random
polygons from which all distributional properties of the typical Voronoi cell can
be obtained by an appropriate weighting. However, the second algorithm can
be applied to any Cox process on a stationary random tessellation T if T can be
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Figure 4.2: Line segment through the origin with its generating points

simulated starting from its typical cell, whereas the direct algorithm is specifically
developed for Cox processes on PVT.

4.2.1 Direct simulation algorithm

In the following, let T denote a PVT induced by a stationary Poisson process of
intensity λ. The direct simulation algorithm uses a result which has been recently
derived in [13]. As in the preceding section, we have to simulate the Palm version
T̃ of T with respect to the Palm distribution P ∗Λ, where Λ( · ) = ν1( · ∩ T (1)).
Then the points of the Palm version X∗ in R2\{o} can be simulated as linear
Poisson processes on T̃ (1) with linear intensity λ`.

If T is a PVT, then it can be shown that the random tessellation T̃ is a Voronoi
tessellation with respect to some point process X ′ = {X ′n}. Note that under P ∗Λ
one line segment of the Voronoi tessellation T̃ contains the origin almost surely.
Thus, it is obvious that there are two points X ′1 and X ′2 of the point process
X ′ generating this Voronoi tessellation which are located on a circle around the
origin. The locations of those two points can be described using random variables
R,R1 and Φ, where Φ is the angle of the line segment through the origin, R = |X ′1|
is the distance of the two points X ′1 and X ′2 to the origin and finally R1 =
|X ′1 −X ′2|/2 is half of the distance between the points, see Figure 4.2. Note that
X ′(B(o, |X ′1|)) = 0 almost surely.

Now we state the result which is used for the direct simulation algorithm. It
is a special case of Theorem 1.1 in [13].

Lemma 4.1 Under P ∗Λ the following holds.

(i) The random variables ({X ′n : |X ′n| > R}, R), R2
1/R

2 and Φ are independent.

(ii) R2 is Γ-distributed with shape parameter 1.5 and scale parameter 1/(λπ).
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(iii) The conditional distribution of {X ′n : |X ′n| > R} given R = r is the distri-
bution of a stationary Poisson process in R2\B(o, r) with intensity λ.

(iv) R2
1/R

2 is beta distributed with parameters 1 and 1/2.

(v) Φ is uniformly distributed on [0, 2π).

Lemmas 3.4 and 4.1 can be used in order to obtain the following algorithm for the
simulation of the typical Voronoi cell Ξ∗X of a Cox process X with linear intensity
λ` on T . In the following, let T̃ denote the Voronoi tessellation induced by X ′.
First, we give an overview of the simulation algorithm and some technical details
are explained later on.

1. Simulate two independent random variables given by R2 ∼ Γ(1.5, 1/(λπ))

and R̃2 ∼ B(1, 1/2).

2. Compute R1 = RR̃ and construct the two points X ′1 = (
√
R2 −R2

1, R1)

and X ′2 = (
√
R2 −R2

1,−R1).

3. Given R, simulate a Poisson process {X ′n, n ≥ 3} radially outside the ball
B(o,R) and add the points X ′1 and X ′2 to obtain X ′ = {X ′n, n ≥ 1}.

4. Construct the cells of the Voronoi tessellation T̃ induced by X ′.

5. Set X∗ = {o}, simulate points X1, X2, . . . on T̃ (1) according to linear Pois-
son processes and add them to X∗.

6. Construct the Voronoi cell Ξ∗X around o with respect to X∗.

7. Construct S∗X = Ξ∗X ∩ T̃ (1).

In order to obtain a realization of the typical Voronoi cell Ξ∗X and the typical
segment system S∗X we have to apply in addition an isotropic rotation. However,
all characteristics which are considered in this thesis are rotation invariant. Thus
we can omit this final rotation step for our purposes. The different steps of the
simulation algorithm are sketched in Figure 4.3.

Naturally, some further technical details have to be considered. The simula-
tion of points of X ′ and the construction of Voronoi cells of T̃ on the one hand
and the simulation of points of X∗ on the other hand have to be performed in
an alternating fashion. At the beginning, X ′1 and X ′2 have to be constructed
and, given R = |X ′1|, the points of X ′ outside B(o,R) are simulated radially
conditioned to B(o,R) ∩ X ′ = ∅ until the first Voronoi cell Ξ1 around X ′1 with
respect to the point process X ′ = {X ′n} can be generated. Then the first points
of X∗ are simulated on ∂Ξ1 as (linear) Poisson processes and o is added to X∗.
This is done in the usual way by first simulating the total number of points N ∼
Poi(λ`ν1(∂Ξ1)) on the boundary ∂Ξ1 and then, under the condition N = n, by
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(a) Start: X ′1, X ′2 (gray) generating the line
segment through o (gray with black bound-
ary). The cell around X ′1 is already con-
structed.

(b) Initial cell: The initial cell around o is
constructed using the previously simulated
points (gray) of X∗.

(c) Further points of X∗ are simulated
(gray) and the initial cell is intersected by
the bisectors.

(d) A realization of the typical Voronoi cell
is constructed and the algorithm stops.

Figure 4.3: Direct simulation of the typical Voronoi cell of Cox processes on PVT
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placing n independent points uniformly distributed on ∂Ξ1. In the next step,
new points of X ′ are simulated and further cells Ξn of T̃ are constructed. On
the new line segments additional points of X∗ are placed again as linear Pois-
son processes. If it is already possible, an initial cell is built around o using the
points of X∗ which have been simulated so far. In order to check if an initial
cell can be constructed, we can use a cone criterion, see [26], [80] and [103]. If
this is not yet possible, further cells of T̃ are simulated and further points of X∗
are positioned on the new edges until an initial cell can be constructed. The
initial cell can only be influenced by points of X∗ in the ball B(o, rmax) with ra-
dius rmax = 2 maxi=1,...,m |vi|, where {vi, i = 1 . . . ,m} denotes the set of vertices
of the initial cell. If all edges of T̃ which can intersect the ball B(o, rmax) are
constructed, the simulation algorithm can be stopped since all points of X∗ are
located on the edge set T̃ (1). Therefore we use the following criterion to stop
the simulation algorithm. All vertices of T̃ located on the boundary of only one
already constructed cell are connected in clockwise order. If the resulting (not
necessarily convex) polygon contains B(o, rmax), then all edges necessary for the
simulation are constructed and the algorithm is stopped. This is a consequence
of the property of PVT that almost surely three edges are emanating from each
vertex and the convexity of the cells. Of course, if we intersect the initial cell with
the bisector H(o,Xn) of o and a newly generated point Xn, then the maximal
radius rmax is updated in order to reduce runtime. In Figure 4.4 the stopping
criterion is illustrated together with a simulated realization of the typical cell
Ξ∗X . If we are interested in the typical segment system S∗X inside Ξ∗X , we have to
intersect Ξ∗X with T̃ (1), i.e., we put S∗X = Ξ∗X ∩ T̃ (1).

Then, except of the missing rotation around the origin, the constructed cell
Ξ∗X at the origin is the typical cell of a Voronoi tessellation induced by a Cox
process X on PVT and S∗X = Ξ∗X ∩ T̃ (1) is the typical segment system inside Ξ∗X .

4.2.2 An indirect simulation algorithm

Now we derive an alternative simulation algorithm. This new algorithm allows us
to simulate random cells which are not realizations of the typical cell. However,
the simulated cells can be used in order to obtain distributional properties of the
typical Voronoi cell of a Cox process X which is concentrated on the edge set of
a stationary random tessellation T with length intensity γ. It is simply required
that the random tessellation T ∗ distributed according to the Palm distribution P ∗T
with respect to the cell nuclei can be simulated. If the random tessellation T is a
PVT, then this simulation can be easily achieved. We only have to generate the
Voronoi tessellation induced by a stationary Poisson process with an additional
point located at the origin, see Section 4.1.2. But this technique can also be used
to simulate the typical Voronoi cell of Cox processes X on random tessellations T
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(a) Stopping criterion: If the circle (gray) is
contained in the polygon of the outer vertices
(dashed segments) the algorithm stops.

(b) A realization of the typical cell.

Figure 4.4: Stopping criterion and simulated cell for the direct algorithm

different from PVT. Possible models for T are Voronoi tessellations based on Cox
processes on PLT ([31] and Section 4.1.3), Poisson-Laguerre tessellations ([42, 50,
52]) or Voronoi tessellations induced by so–called modulated Cox processes ([26])
whose random intensity measures are based on Boolean models ([69]). Note that
in [54] related techniques are used in order to estimate distributional properties
of characteristics of the typical cell of stationary iterated tessellations. Similarly,
the typical cell is not simulated directly there, but a sequence of cells is simulated
from which the distribution of the typical cell can be obtained.

We now focus on a Cox process X on some stationary random tessellation
T with linear intensity λ`. Furthermore, we use the notion TX for the Voronoi
tessellation induced by X. The indirect simulation algorithm is then based on a
formula stated in Theorem 4.3 below. But first we derive an auxiliary result in
order to prove the theorem.

Note that the Voronoi tessellation TX induced by the Cox process X together
with the random tessellation T can be viewed as a random element Y = (TX , T )

of N2
Po . In the following, we use the notation TX = {(X(1)

n ,Ξ
(1)
n )} and T =

{(X(2)
n ,Ξ

(2)
n )}, respectively, and denote the joint distribution of the vector Y by

PY . Furthermore, let λ1 and λ2 be the cell intensities of TX and T , respectively,
seen as the marked point processes of cell nuclei marked with the centered cells.

We are then interested in the distributions of the whole vector Y and in
particular of TX with respect to P

(2)
Y . Here P (2)

Y is the Palm distribution of
Y with respect to the second component T = {(X(2)

n ,Ξ
(2)
n )}, see Section 2.3.4.

In the following, (TX̃ , T
∗) denotes a vector of two random tessellations whose
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joint distributed is given by P
(2)
Y . Note that TX̃ is then a Voronoi tessellation

induced by some point process X̃ on the edges of T ∗. Thus, X̃ denotes the point
process of the nuclei of the Voronoi tessellation TX̃ on the edges of T ∗ under the
distribution P (2)

Y .

Lemma 4.2 The point process X̃ defined above is a (non-stationary) Cox process
in R2 whose random intensity measure is given by ΛX̃(B) = λ`ν1(B ∩ T ∗(1)) for
B ∈ B(R2), where T ∗(1) is the edge set of T ∗.

Proof For arbitrary bounded sets B1, . . . , Bn ∈ B(R2) which are pairwise
disjoint and for any n ≥ 1, k1, . . . , kn ∈ N regard the set A given by

A = {ψ ∈ NPo : ψ(B1 × Po) = k1, . . . , ψ(Bn × Po) = kn} .

In order to show that X̃ is the desired Cox process, it is sufficient to show that

P
(2)
Y (A× NPo × Po) = E

( n∏
i=1

(λ`ν1(Bi ∩ T ∗(1)))ki

ki!
e−λ`ν1(Bi∩T ∗(1))

)
, (4.1)

since the finite–dimensional distributions determine the distribution of a point
process uniquely. Recall that

P
(2)
Y (A× NPo × Po) =

1

λ2

E#{n : X(2)
n ∈ [0, 1)2, t

X
(2)
n
Y ∈ A× NPo} . (4.2)

Notice that we can identify the Cox process X with its Voronoi tessellation TX ,
thus we can use the definition of Cox processes in order to decompose the expec-
tation in (4.2), i.e. the integral with respect to the distribution PY of Y , into an
outer integration with respect to the distribution PT of T and, given T = τ , an
inner integral with respect to the the conditional distribution PX|T=τ of a non-
stationary Poisson process with intensity measure λ`ν1( · ∩ τ (1)). Then, using the
notation A′ = {ϕ ∈ N : ϕ(B1) = k1, . . . , ϕ(Bn) = kn}, we have

P
(2)
Y (A× NPo × Po)

=
1

λ2

∫
NPo

∫
N

∫
[0,1)2×Po

1IA′(txϕ) τ(d(x, ξ))PX|T=τ (dϕ)PT (dτ)

=
1

λ2

∫
NPo

∫
[0,1)2×Po

∫
N

1IA′(txϕ)PX|T=τ (dϕ) τ(d(x, ξ))PT (dτ)

=
1

λ2

∫
NPo

∫
[0,1)2×Po

∫
N

1IA′(ϕ)PX|T=txτ (dϕ) τ(d(x, ξ))PT (dτ)

=
1

λ2

∫
NPo

∫
[0,1)2×Po

n∏
i=1

(λ`ν1(Bi ∩ (txτ)(1)))ki

ki! eλ`ν1(Bi∩(txτ)(1))
τ(d(x, ξ))PT (dτ) .
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Finally, we can apply the refined Campbell theorem, see Theorem 2.7, and obtain

P
(2)
Y (A × NPo × Po) =

∫
[0,1)2

∫
NPo×Po

n∏
i=1

(λ`ν1(Bi ∩ τ (1)))ki

ki! eλ`ν1(Bi∩τ (1))
P ∗T (d(τ, ξ)) dx

= E
( n∏
i=1

(λ`ν1(Bi ∩ T ∗(1)))ki

ki!
e−λ`ν1(Bi∩T ∗(1))

)
,

which proves equation (4.1). 2

Now we can use Lemma 4.2 and Neveu’s exchange formula (Theorem 2.9) in
order to derive the following representation formula for the typical Voronoi cell
of a Cox process X on the random tessellation T . This result is the basis of the
indirect simulation algorithm introduced later.

Theorem 4.3 Let h : Po → [0,∞) be measurable. Then,

Eh(Ξ∗X) =
1

E ν1(∂Ξ∗T )
E
(
ν1(∂Ξ∗T ) E

(
h(Ξo

X̃∪{Z}(Z)) | T ∗
))
, (4.3)

where Ξ∗X denotes the typical cell of TX and Ξ∗T denotes the (typical) cell of T ∗
located at o. Moreover, Ξo

X̃∪{Z}(Z) denotes the centered Voronoi cell around an

additional point Z ∈ ∂Ξ∗T with respect to X̃ ∪ {Z}. This point Z is conditionally
uniformly distributed on ∂Ξ∗T and conditionally independent of X̃ given T ∗.

Proof First consider the function f : R2 ×Po ×Po × N2
Po → [0,∞) defined by

f(x, ξ, ξT , ψ) =

{
h(ξ) if o ∈ ∂ξT + x,
0 otherwise,

(4.4)

i.e., we have f(x, ξ, ξT , ψ) = h(ξ) if the origin is on the boundary of the shifted
cell ξT + x centered at x. Then, applying Lemma 2.9, we have that

Eh(Ξ∗X) =

∫
N2
Po×Po

h(ξ)P
(1)
Y (d(ψ, ξ))

=
1

2

∫
N2
Po×Po

∫
R2×Po

f(x, ξ, ξT , txψ)ψ(2)(d(x, ξ))P
(1)
Y (d(ψ, ξ))

=
λ2

2λ1

∫
N2
Po×Po

∫
R2×Po

f(−x, ξ, ξT , ψ)ψ(1)(d(x, ξ))P
(2)
Y (d(ψ, ξT )) .

Notice that the factor 1/2 appears here since each point Xn of X is located on
one (and only one) segment of T . Thus, there are precisely two cells of T which
have Xn on their boundary. Moreover, we decompose the outer integral in the
latter expression into an integral with respect to P ∗T and an inner integral with
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respect to PT
X̃
|T ∗ . Thus, we can use the definition of the function f which is

given in (4.4), and get

Eh(Ξ∗X) =
λ2

2λ1

E
(
E
(∫

∂Ξ∗T×Po
h(ξ)TX̃(d(x, ξ)) | T ∗

))
. (4.5)

We can now apply Lemma 4.2 which yields that the conditional expectation given
T ∗ can be regarded as the expectation with respect to a non-stationary PVT
which is induced by a Poisson process concentrated on the edges of T ∗ with linear
intensity λ`. In particular, this means that for given T ∗ the number N of points
of X̃ on the boundary ∂Ξ∗T of the zero cell Ξ∗T of T ∗ has a Poisson distribution
with mean η = λ`ν1(∂Ξ∗T ). For given T ∗ and N = n, it is well known that the
locations of the n points are distributed according to a n-dimensional random
vector (Z1, . . . , Zn) whose components are independent and uniformly distributed
on ∂Ξ∗T . Furthermore, the vector (Z1, . . . , Zn) is conditionally independent of
those points of X̃ that are not located on ∂Ξ∗T .

Now let Ξo
1, . . . ,Ξ

o
n denote the centered Voronoi cells of the (conditional) PVT

whose nuclei are given by the points Z1, . . . , Zn. Notice that the cells Ξ1, . . . ,Ξn

are then identically distributed, but not independent. This gives

E
(∫

∂Ξ∗T×Po
h(ξ)TX̃(d(x, ξ)) | T ∗

)
=

∞∑
n=1

P(N = n | T ∗) E
( n∑
i=1

h(Ξo
i ) | N = n, T ∗

)
=

∞∑
n=1

P(N = n | T ∗)nE
(
h(Ξo

1) | N = n, T ∗
)

= η
∞∑
n=1

P(N = n− 1 | T ∗) E
(
h(Ξo

1) | N = n, T ∗
)

= η

∞∑
n=0

P(N = n | T ∗) E
(
h(Ξo

1) | S = n+ 1, T ∗
)
.

It holds that E
(
h(Ξo

1) | N = n + 1, T ∗
)

= E
(
h(Ξo

X̃∪{Z}(Z)) | S = n, T ∗
)
, where

Ξo
X̃∪{Z}(Z) denotes the centered Voronoi cell around a random point Z ∈ ∂Ξ∗T

with respect to the point process X̃ ∪ {Z}. This additional random point Z is
conditionally independent of X̃ and conditionally uniformly distributed on ∂Ξ∗T
given N = n and T ∗. Hence, using (4.5), we finally get that

Eh(Ξ∗X) =
λ`λ2

2λ1

E
(
ν1(∂Ξ∗T ) E

(
h(Ξo

X̃∪{Z}(Z)) | T ∗
))
.

Moreover, we have λ1 = λ`γ and Eν1(∂Ξ∗T ) = 2γ/λ2, see Theorem 3.1. Thus, the
proof is completed. 2

A representation formula similar to equation (4.3) can be derived for the typical
segment system S∗X . In the following theorem we use the same notation as in
Theorem 4.3.
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Theorem 4.4 Let h : Lo → [0,∞) be measurable. Then,

Eh(S∗X) =
1

E ν1(∂Ξ∗T )
E
(
ν1(∂Ξ∗T ) E

(
h(Ξo

X̃∪{Z}(Z) ∩ (T ∗(1) − Z)) | T ∗
))
, (4.6)

where T ∗(1) is the edge set of the random tessellation T ∗.

Proof The statement can be proven in the same way as Theorem 4.3 using the
function f : R2 × Lo × Po × NLo,Po → [0,∞) defined by

f(x, ζ, ξT , ψ) =

{
h(ζ) if o ∈ ∂ξT + x,
0 otherwise.

(4.7)

2

Now we are able to construct the following indirect simulation algorithm for the
typical Voronoi cell of Cox processes on PVT which is justified by Theorem 4.3.
From now on we assume that the tessellation T is a PVT induced by a stationary
Poisson process X ′ = {X ′n} with intensity λ, Ξ∗T is the typical cell of T and h :
Po → [0,∞) is some measurable function. Notice that we then have Eν1(∂Ξ∗T ) =
4/
√
λ, see Theorem 3.1.

1. Simulate a Poisson process X ′ = {X ′i} radially with intensity λ and add
the origin o to the points of X ′ which gives X ′∗ = X ′ ∪ {o}.

2. Construct the Voronoi cell Ξ∗T induced by X ′∗ around o.

3. Simulate a random variable N ∼ Poi(λ`ν1(∂Ξ∗T )). Given N = n, place
independent points X1, . . . , Xn uniformly distributed on the boundary of
Ξ∗T and set X̃ = {X1, . . . , Xn}. Place one additional point Z uniformly
distributed on ∂Ξ∗T independently of the other points.

4. Construct further edges of the Voronoi tessellation T ∗ induced by X ′∗ and
place points Xi on the edges according to linear Poisson processes which
are added to X̃.

5. Construct the centered Voronoi cell Ξo
X̃∪{Z} at Z with respect to X̃ ∪ {Z}.

6. Weight h(Ξo
X̃∪{Z}) by ν1(∂Ξ∗T )

√
λ/4.

Finally, it is possible to obtain the distribution of h(Ξ∗X) using the weighted
value

√
λ/4 ν1(∂Ξ∗T )h(Ξo

X̃∪{Z}). In Figure 4.5 the different steps of the simulation
algorithm are shown. Altogether, the direct and indirect simulation algorithms
are similar, but now we have to construct a cell around the additional point Z.
Thus we have to adjust the stopping criterion which has been used for the direct
simulation algorithm. In particular, we have to choose the maximal radius as
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(a) Start: The cell around the origin is con-
structed, points (gray) of X̃ are placed on
the boundary and one further point Z (gray
with black boundary) is added.

(b) Initial cell: The initial cell around Z is
constructed using the previously simulated
points (gray) of X̃ ∪ {Z}.

(c) Further points of X̃ are simulated (gray)
and the initial cell is intersected by the bi-
sectors.

(d) The cell around Z is completed and the
algorithm stops.

Figure 4.5: Indirect simulation of the typical cell of Cox processes on PVT
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(a) Stopping criterion: If the circle (gray)
is contained in the polygon of the outer ver-
tices (dashed segments) the algorithm stops.

(b) Simulated cell (black) with typical cell
(gray) of the PVT used for the weighting

Figure 4.6: Stopping criterion and simulated cell for the indirect algorithm

rmax = maxi=1,...,m(|vi|+ |vi−Z|), where {vi, i = 1, . . . ,m} denotes again the set
of vertices of the initial cell, see also Figure 4.6. The final result of the indirect
simulation algorithm is then a cell Ξo

X̃∪{Z} which can be used in order to estimate
distributional properties of the typical Voronoi cell Ξ∗X of the Cox process X on
the PVT T . Suppose that we regard independent copies Y1, . . . , Yn of the random
variable ν1(∂Ξ∗T )h(Ξo

X̃∪{Z}), then we define the estimator ĥ(Ξ∗X) by

ĥ(Ξ∗X) =

√
λ

4

1

n

n∑
i=1

Yi (4.8)

Using Theorem 4.3, it is easy to see that ĥ(Ξ∗X) is unbiased and strongly consistent
for Eh(Ξ∗X).

If we are interested in the typical segment system S∗X inside the typical serv-
ing zone, then we can regard Ξo

X̃∪{Z} ∩ (T ∗(1) − Z) and the weighting factor
√
λν1(∂Ξ∗T )/4. Let h : Lo → [0,∞) be a measurable function and assume that

Y1, . . . , Yn is an i.i.d. sample of ν1(∂Ξ∗T )h(Ξo
X̃∪{Z} ∩ (T ∗(1) − Z)). Then, using

Theorem 4.4, we get that

ĥ(S∗X) =

√
λ

4

1

n

n∑
i=1

Yi (4.9)

is an unbiased and strongly consistent estimator for the expectation Eh(S∗X).
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4.3 Typical Voronoi cell of Cox processes on PDT
In this section we introduce a simulation algorithm for the typical Voronoi cell of
Cox processes on PDT. More precisely, we derive an indirect simulation algorithm
for the typical Voronoi cell of Cox processes on random tessellations which is
applicable if the underlying tessellation can be simulated starting from the typical
vertex. This algorithm is similar to the indirect simulation algorithm introduced
in the preceding section which can be used if the underlying tessellation can be
simulated starting from the typical cell. In particular, we derive an algorithm
for the simulation of random cells from which all distributional properties of the
typical Voronoi cell Ξ∗X of Cox processes on PDT together with its typical segment
system S∗X can be computed by a subsequent weighting.

Assume that T is an arbitrary stationary tessellation with length intensity γ
and X a Cox process on T with linear intensity λ`. Recall that T can be identified
with the stationary marked point processes {(Vn, Eo

n)} with mark space Lo, where
{Vn} denotes the (unmarked) point process of vertices of T and Eo

n denotes the
centered edge star corresponding to Vn. Thus, En = Eo

n + Vn denotes the system
of edges emanating from the vertex Vn, see Section 3.2.1. Furthermore, we can
identify the Voronoi tessellation TX induced by X with the marked point process
{(Xn,Ξ

o
n)} with mark space Po, where Ξo

n denotes the centered cell at Xn. In the
same way as in the preceding section, we define the vector Y = (TX , T ) which
can be regarded as a random element of NPo,Lo and we can consider the Palm
distributions P (i)

Y of Y with respect to the i-th component, see Section 2.3.4.
Let (TX̃ , T

∗) denote the vector of marked point processes distributed according
to the Palm distribution P (2)

Y with respect to {(Vn, E0
n)}. Thus, TX̃ is a Voronoi

tessellation induced by a point process X̃ on the edges of the Palm version T ∗

of T with respect to {(Vn, Eo
n)}. It can be shown that X̃ is a Cox process on T ∗

with linear intensity λ`.

Lemma 4.5 The point process X̃ is a (non-stationary) Cox process in R2 whose
random intensity measure is given by ΛX̃(B) = λ`ν1(B ∩ T ∗(1)) for B ∈ B(R2),
where T ∗(1) is the edge set of T ∗.

Proof The lemma can be proven in the same way as Lemma 4.2. 2

Now let E∗ denote the typical edge star of T ∗, i.e., the union of edges of T ∗
emanating from the origin. Using the notation introduced above, we can state
the following theorem.

Theorem 4.6 Let h : Po → [0,∞) be a measurable function. Then

Eh(Ξ∗X) =
1

E ν1(E∗)
E
(
ν1(E∗)h(Ξo

X̃∪{Z}(Z))
)
, (4.10)

where X̃ denotes the Cox process concentrated on the edge set T ∗(1) of T ∗ with
linear intensity λ` and Ξo

X̃∪{Z}(Z) denotes the centered Voronoi cell around an
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additional point Z ∈ E∗ with respect to X̃ ∪ {Z}. This point Z is conditionally
uniformly distributed on E∗ and conditionally independent of X̃ given T ∗.

Proof We define the function f : R2 × Po × Lo × NPo,Lo → [0,∞) by

f(x, ξ, ζ, ψ) =

{
h(ξ) if o ∈ ∂ζ + x,
0 otherwise,

(4.11)

In the same way as in the proof of Theorem 4.3 we get

Eh(Ξ∗X) =
1

2

∫
NPo,Lo×P

∫
R2×Lo

f(x, ξ, ζ, txψ)ψ(2)(d(x, ζ))P
(1)
Y (d(ψ, ξ)) ,

since there are exactly two edge stars which contain the origin. Now we can apply
Lemma 2.9 and use the same arguments as in the proof of Theorem 4.3 above in
order to obtain

Eh(Ξ∗X) =
λ`λ

(0)

2λ
E
(
ν1(E∗)

(
h(Ξo

X̃∪{Z}(Z))
)
, (4.12)

where λ(0) denotes the intensity of the point process {Vn} and λ is the spatial
intensity of X. Moreover, it holds that λ = λ`γ and Eν1(E∗) = 2γ/λ(0), see
Theorem 3.1, which completes the proof. 2

Notice that a formula which is similar to (4.10) is valid for the typical segment
system S∗X .

Theorem 4.7 For each measurable function h : Lo → [0,∞) we have

Eh(S∗X) =
1

E ν1(E∗)
E
(
ν1(E∗)h(Ξo

X̃∪{Z}(Z) ∩ (T ∗(1) − Z))
)
. (4.13)

Proof The arguments of the proof of Theorem 4.6 can be used in the same way
as above if we mark each point of X = {Xn} with the centered segment system
Son = (Ξn ∩ T (1)) −Xn inside its Voronoi cell. Then we can regard Y = (TX , T )
as a random element of NLo,Lo and define f : R2 ×Lo ×Lo × NLo,Lo → [0,∞) by

f(x, ξ, ζ, ψ) =

{
h(ξ) if o ∈ ∂ζ + x,
0 otherwise.

(4.14)

Now exactly the same arguments as above can be used in order to complete the
proof. 2

Theorem 4.6 and Slivnyak’s theorem can be used in order to obtain the following
indirect simulation algorithm for the typical Voronoi cell of a Cox process X with
linear intensity λ` on a PDT T . In the following, we regard T = {(Vn, Eo

n)} as the
point process of vertices marked with the edge stars. Furthermore, we use the
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notation V for the stationary Poisson process of intensity λ which induces T and
denote the Palm versions of T and V by T ∗ and V ∗, respectively. Now assume
that h : Po → [0,∞) is some measurable function, then the following simulation
algorithm can be constructed.

1. Simulate a Poisson process V = {Vn} radially with intensity λ, add the
origin o to V , i.e., V ∗ = V ∪ {o}.

2. Construct the edge star E∗ of the tessellation T ∗ induced by V ∗ at o.

3. Simulate a random variable N ∼ Poi(λ`ν1(E∗). Given N = n, place in-
dependent points X1, . . . , Xn uniformly distributed on E∗ and set X̃ =
{X1, . . . , Xn}. Place one additional point Z independent of X̃ uniformly
distributed on ∂Ξ∗T .

4. Construct further edges of T ∗ based on points of V ∗ and place points Xi

on the edges according to linear Poisson processes. Add Xi to X̃.

5. Construct the Voronoi cell Ξo
X̃∪{Z} around Z with respect to X̃.

6. Weight h(Ξo
X̃∪{Z}) by ν1(E∗)3π

√
λ/64.

Then we can estimate the distribution of h(Ξ∗X) using the weighted quantity
ν1(E∗)3π

√
λ/64h(Ξo

X̃∪{Z}). The weighting factor which appears here is due to

the fact that Eν1(E∗) = 64/(3π
√
λ) if E∗ is the typical edge star of a PDT

induced by a Poisson process with intensity λ, see Section 3.4.
An overview of the different steps is shown in Figure 4.7. Naturally some

details have to be considered which are briefly summarized below. Note that
the algorithm is similar to the indirect algorithm explained in Section 4.2.2. We
generate the Delaunay triangles of T ∗ and place points Xn on the new edges
in an alternating fashion, where the points of V ∗ are simulated radially. At
the beginning, the points of V ∗ are simulated until the edge star E∗ at o with
respect to V ∗ can be constructed. Now points Xn are placed on the edges of
E∗ including one additional point Z. Then further points of V ∗ are simulated,
the corresponding Delaunay cells are constructed and points of X̃ are placed on
the new edges until an initial cell around Z can be generated from the already
simulated points of X̃. If the initial cell is constructed, we can use the stopping
criterion already used in Section 4.2.2. Since the typical cell is contained in
the initial cell, only points Xn of X̃ inside the ball B(o, rmax) can influence the
typical cell, where rmax = maxi=1,...,m(|vi| + |vi − Z|). Here {vi, i = 1, . . . ,m}
is again the set of vertices of the initial cell. If the ball B(o, rmax) is contained
in the polygon of the already simulated Delaunay cells, then we can stop the
simulation, see also Figure 4.7 (d). Like for Cox processes on PVT, we can use
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(a) Typical edge star E∗ is generated and
points are placed on its edges including an
additional point Z (gray).

(b) The initial Voronoi cell around Z is
constructed using those points of X̃ which
were simulated until this step.

(c) Further points of X̃ are simulated and
the initial cell is intersected by their bisec-
tors.

(d) The Voronoi cell around Z is completed
and the algorithm stops if the circle with
radius rmax (gray circle) is contained in the
polygon of outer vertices (thick segments).

Figure 4.7: Indirect simulation of the typical cell of Cox processes on PDT

i.i.d. samples Y1, . . . , Yn of ν1(E∗)h(Ξo
X̃∪{Z}) in order compute the unbiased and

consistent estimator ĥ(Ξ∗X) = 3π
√
λ/64

∑n
i=1 Yi for Eh(Ξ∗X).

Now assume that we are interested in the simulation of the typical segment
system S∗X . Then we can consider Ξo

X̃∪{Z}∩(T ∗(1)−Z) together with the weighting
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Figure 4.8: Cox process (black points) on an iterated tessellation with PVT
(black) and PLT (gray) as T0 and T1

factor ν1(E∗)3π
√
λ/64. For every measurable function h : Lo → [0,∞) we can use

i.i.d. samples of ν1(E∗)3π
√
λ/64h(ΞX̃∪{Z} ∩ T ∗(1)) in order to estimate Eh(S∗X)

without bias by the sample mean, see Theorem 4.7 .

4.4 Typical Voronoi cell of Cox processes on
nested tessellations

In this section we assume that X = {Xn} is a Cox process with linear intensity
λ` on a stationary iterated random tessellation T . More precisely, we assume
that T is given by a nesting with initial tessellation T0 and i.i.d. component
tessellations T1, T2, . . . which are independent of T0. Recall that the edge set
of T is then defined by T (1) =

⋃∞
n=1 ∂Ξ0n ∪ (Ξ0n ∩ T (1)

n ), where Ξ01,Ξ02, . . . are
the cells of T0. In particular, Ξ01 denotes the so–called zero cell of the initial
tessellation T0, i.e., the cell of T0 which contains the origin. Furthermore, we
assume that the inner structure of Ξ01 is given by Ξ01 ∩ T1. For brevity, we use
the notation T = τ(T0 | T1, T2, . . .) for a nested tessellation induced by the initial
tessellation T0 and the independent component tessellations T1, T2, . . .. Note that
T = τ(T0 | T1, T2, . . .) is stationary with length intensity γ = γ0 + γ1 if T0 is
stationary with length intensity γ0 and T1 is stationary with length intensity γ1.

A realization of a Cox process together with the underlying iterated tessella-
tion is displayed in Fig. 4.8.
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4.4.1 Representation formula for the Palm version T̃ of T

Recall that the typical Voronoi cell Ξ∗X of X can be regarded as the Voronoi cell
at the origin induced by X∗ = X̃ ∪ {o}, where X̃ is a Cox process with linear
intensity λ` on the Palm version T̃ of T seen as the random measure ν1( · ∩T (1)).
Thus, in order to simulate Ξ∗X we have to simulate first T̃ . In the following, we
derive a representation formula for T̃ which is suitable to construct simulation
algorithms for T̃ . This formula is based on the stationary random tessellations T0

and T1 as well as their Palm versions T̃0 and T̃1. In particular, it is shown that the
distribution of T̃ can be expressed by the distributions of the iterated tessellations
τ(T̃0 | T1, T2, . . .) and τ(T0 | T̃1, T2, T3, . . .). In the latter case, the zero-cell Ξ01 of
the initial tessellation T0 is subdivided by the component tessellation T̃1 whereas
the other cells of T0 are subdivided by T2, T3, . . . , respectively. This representation
formula is suitable to derive simulation algorithms for T̃ if T is a nestings of PDT,
PLT and PVT, respectively, since in all cases simulation algorithms for T̃0 and
T̃1 have been developed above.

Theorem 4.8 For any measurable function h : T→ [0,∞), it holds that

Eh(T̃ ) =
γ0

γ
Eh(τ(T̃0 | T1, T2, . . .)) +

γ1

γ
Eh(τ(T0 | T̃1, T2, T3, . . .)) . (4.15)

Proof We can use the definition of the Palm distribution of the random measure
ν1( · ∩ T (1)) in order to write Eh(T̃ ) as

Eh(T̃ ) =
1

γ
E
[ ∫

T (1)∩[0,1]2
h(T − x) ν1(dx)

]
=
γ0

γ

[
1

γ0

E
∫
T

(1)
0 ∩[0,1]2

h(T−x) ν1(dx)

]
+
γ1

γ

[
1

γ1

E
∞∑
i=1

∫
T

(1)
i ∩Ξ0i∩[0,1]2

h(T−x) ν1(dx)

]
,

Furthermore, we can use that T0, T1, T2, . . . are stationary and independent to
get that

1

γ0

E
[ ∫

T
(1)
0 ∩[0,1]2

h(T − x) ν1(dx)
]

=
1

γ0

E
[ ∫

T
(1)
0 ∩[0,1]2

h(τ(T0 − x | T1 − x, T2 − x, . . .)) ν1(dx)
]

=
1

γ0

E
[ ∫

T
(1)
0 ∩[0,1]2

h(τ(T0 − x | T1, T2, . . .)) ν1(dx)
]

= Eh(τ(T̃0 | T1, T2, . . .)) ,

where the last equality is a consequence from the definition of the Palm distribu-
tion of ν1( · ∩ T (1)

0 ). Thus, it remains to show that

Eh(τ(T0 | T̃1, T2, T3, . . .)) =
1

γ1

E
[ ∞∑
i=1

∫
T

(1)
i ∩Ξ0i∩[0,1]2

h(T − x) ν1(dx)
]
. (4.16)
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In the following we use the notation ETi , ET0,Ti and E{Tj} if expectation is taken
with respect to one single tessellation Ti, two tessellations T0 and Ti, or the infinite
sequence of tessellations {Tj}, respectively. Since the tessellations T0, T1, T2, . . .
are independent and stationary, we get that

E
[ ∞∑
i=1

∫
T

(1)
i ∩Ξ0i∩[0,1]2

h(T − x) ν1(dx)
]

=
∞∑
i=1

ET0,Ti

[ ∫
T

(1)
i ∩[0,1]2

E{Tj}j 6=i
[
1IΞ0i

(x)h(τ(T0 − x | T1 − x, T2 − x, . . . ))
]
ν1(dx)

]
=

∞∑
i=1

E
[ ∫

T
(1)
1 ∩[0,1]2

1IΞ0i−x(o)h(τ(T0 − x | T1 − x, T2, T3, . . . )) ν1(dx)

]
,

where T1 − x is the component tessellation which subdivides the zero cell of the
shifted tessellation T0 − x for each x ∈ Ξ0i. Moreover, we have

∞∑
i=1

E
[ ∫

T
(1)
1 ∩[0,1]2

1IΞ0i−x(o)h(τ(T0 − x | T1 − x, T2, T3, . . . )) ν1(dx)

]
= E

[ ∫
T

(1)
1 ∩[0,1]2

∞∑
i=1

1IΞ0i
(x)h(τ(T0 − x | T1 − x, T2, T3, . . . )) ν1(dx)

]
= E

[ ∫
T

(1)
1 ∩[0,1]2

h(τ(T0 − x | T1 − x, T2, T3, . . . )) ν1(dx)

]
,

where we used that
∑∞

i=1 1IΞ0i
(x) = 1. Finally,

E
[ ∫

T
(1)
1 ∩[0,1]2

h(τ(T0 − x | T1 − x, T2, T3, . . . )) ν1(dx)

]
= E{Tj}j≥1

[ ∫
T

(1)
1 ∩[0,1]2

ET0

[
h(τ(T0 − x | T1 − x, T2, T3, . . . ))

]
ν1(dx)

]
= E{Tj}j≥1

[ ∫
T

(1)
1 ∩[0,1]2

ET0

[
h(τ(T0 | T1 − x, T2, T3, . . . ))

]
ν1(dx)

]
= ET0,{Tj}j≥2

ET1

[ ∫
T

(1)
1 ∩[0,1]2

h(τ(T0 | T1 − x, T2, T3, . . . ))ν1(dx)

]
= γ1E

[
h(τ(T0 | T̃1, T2, T3, . . . ))

]
,

where the last equality is a consequence of Theorem 2.13. Thus, the proof is
completed. 2

We can interpret equation (4.15) in the following way. A point of X is located
on T

(1)
0 with probability γ0/γ and on one of the edge sets of the tessellations

T1, T2, T3, . . . with the complementary probability γ1/γ since the ratio of edge
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lengths of the initial and component tessellations is γ0/γ1. Thus, the random
tessellations τ(T̃0 | T1, T2, . . .) and τ(T0 | T̃1, T2, T3, . . .) which are considered in
(4.15) can be regarded as conditional versions of T̃ under the condition that the
origin is located on an edge of the initial tessellation and a component tessellation,
respectively. These events occur with probabilities γ0/γ and γ1/γ, respectively.
Using this interpretation, we can directly construct a simulation algorithm for T̃
and hence X∗ if T0, T1, T̃0 and T̃1 can be simulated.

4.4.2 The simulation algorithm

The representation formula for T̃ given in Theorem 4.8 leads to a simulation
algorithm of T̃ and hence X∗ if simulation algorithms for both T0 and T1 as well
as their Palm versions T̃0 and T̃1 are available. This is the case if Tj, j = 0, 1 is
a PVT, PLT or PDT, respectively, see the preceding sections. In particular, the
remark after Theorem 4.8 directly yields the following simulation algorithm for
the Palm version X∗ of the stationary Cox process X on T . The main steps are
summarized below.

1. Simulate a random variable U ∼ U [0, 1]. If U < γ0/γ, go to step 2, else go
to step 3.

2. Simulate T̃0 = {Ξ̃0n} and T1, T2, . . . independent from each other and sub-
divide the cells Ξ̃01, Ξ̃02, . . . by T1, T2, . . ., respectively, which yields T̃ .

3. Simulate T0 = {Ξ0n} and T̃1, T2, T3, . . . independent from each other, sub-
divide the zero cell Ξ01 of T0 by T̃1 and subdivide the cells Ξ02,Ξ03, . . . of
T0 by T2, T3, . . ., which yields T̃ .

4. Construct X∗ = {o} and place further points of X∗ onto each edge of T̃ as
linear Poisson processes with linear intensity λ`.

5. Construct the Voronoi cell Ξ∗X around o induced by X∗.

6. Construct S∗X = Ξ∗X ∩ T̃ (1).

Then Ξ∗X and S∗X are the typical Voronoi cell and its typical segment system for
a Cox process X on T .

In order to implement the algorithm above we have to consider some technical
details. The random tessellation T0 and T̃0, respectively, are simulated radially,
i.e., their cells are constructed with increasing distance to the origin. If T0 is e.g.
a PVT, then the simulation algorithms in Section 4.1.1 and 4.2 can be applied
in order to generate the underlying point process of the Voronoi tessellations
T0 and T̃0, respectively. Each generated cell is then independently subdivided
and points of X∗ are placed on each new generated edge according to linear
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(a) Origin on initial tessellation (b) Origin on component tessellation

Figure 4.9: Simulated typical cell for PVT/PLT–nesting together with B(o, rmax)

Poisson processes. If an initial cell Ξ∗X is constructed, the following stopping
criterion can be used. Let rmax = 2 maxi=1,...,m |vi|, where {vi, i = 1 . . . ,m} is
the set of vertices of the initial cell. Then we stop the simulation if all cells
of T0 and T̃0, respectively, which intersect B(o, rmax) are already generated and
subdivided since only points of X∗ on these segments can influence the typical
cell. If the stopping criterion is not fulfilled, then we simulate further points
of X∗, intersect Ξ∗X with the corresponding bisectors and update rmax until we
can stop the algorithm. Realizations of the simulation algorithm are shown in
Figure 4.9 for a Cox process on a PVT/PLT–nesting. The resulting cell Ξ∗X is
then the typical Voronoi cell of X and S∗X = Ξ∗X ∩ T̃ (1) is the typical segment
system.

Note that Theorem 4.6 has to be used in order to generate T̃0 and T̃1 if T0

and T1 is a PDT, respectively.

4.5 Typical Voronoi cell for thinned vertex sets

We now consider another type of point processes X on the edges of random
tessellations. In particular, we regard the point process which consists of the
independently thinned set of vertices V = {Vn} of the tessellation T . Thus,
each point Vn of V survives with probability p ∈ (0, 1) independently of all other
points. In the following, we concentrate on the case that T is a PDT, PLT and
PVT, respectively. Then we can again construct simulation algorithms for the
typical cell Ξ∗X and the segment system S∗X within it. In this section, T ∗ is always
distributed according to the Palm distribution with respect to V , i.e., we identify
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T with {(Vn, Eo
n)} and regard the Palm version T ∗ of {(Vn, Eo

n)}. Recall that the
Palm version of a p-thinning of V is obtained by a p-thinning of the vertices of the
Palm version T ∗, where all vertices of T ∗ are independently thinned according to
the survival probability p, but the origin survives almost surely, see Section 3.5.3.

We briefly summarize the algorithms below and omit some technical details
which are similar as in the case of Cox processes.

4.5.1 Vertices of PDT

Let T be a PDT induced be the stationary Poisson process V with intensity λ.
Thus, the vertices of T are given by V . Then, due to Slivnyak’s theorem, we get
that T ∗ is the Delaunay tessellation with respect to the point process V ∗ = V ∪{o}
and hence Ξ∗X and S∗X can be simulated in the following way.

1. Simulate a stationary Poisson process V = {Vn} radially, set V ∗ = V ∪ {o}
and construct the Delaunay tessellation T ∗ with respect to V ∗.

2. Define X∗ = {o} and add each point Vi to X∗ if Ui < p, where U1, U2, . . .
are i.i.d. with Ui ∼ U [0, 1).

3. Generate the Voronoi cell Ξ∗X at o with respect to X∗.

4. Construct S∗X = T ∗(1) ∩ Ξ∗X .

Again, we first have to generate an initial cell. If the initial cell is constructed, we
simulate further points of X∗ and intersect the initial cell with the corresponding
bisectors until |Vn| > rmax = 2 maxi=1,...,n |vi|, where {vi, i = 1, . . . ,m} are the
vertices of the initial cell. However, if we are interested in S∗X , then it may happen
that further points of V ∗ have to be simulated until all segments which intersect
Ξ∗X are constructed. Note that a p-thinning of a stationary Poisson process with
intensity λ is a Poisson process whose intensity is given by pλ. Thus, the resulting
cell Ξ∗X of this simulation algorithm is the typical cell of a PVT induced by a
stationary Poisson of intensity pλ.

4.5.2 Vertices of PLT

Now assume that T is a PLT. We have to simulate the tessellation T ∗ distributed
according to the Palm distribution with respect to the vertices V of T , i.e., under
the condition that there are two lines through the origin. It is well–known that
the angle Φ between the two lines `1 and `2 at the typical point of V is distributed
according to the density fΦ(x) = sin(x)/2 for x ∈ [0, π), see e.g. [65]. Moreover,
the lines `1 and `2 are isotropic since T is isotropic. Using these considerations,
we can simulate Ξ∗X and S∗X as follows.
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1. Simulate two angles Φ1 ∼ U [0, π) and Φ ∼ fΦ independently from each
other and generate the lines `1 and `2 through o with angles Φ1 and Φ2 =
Φ1 + Φ, respectively.

2. Simulate a stationary and isotropic Poisson line process {`3, `4, . . .} radially
which is independent of `1 and `2. Then define T ∗ as the tessellation induced
by {`1, `2, `3, . . .}.

3. Construct V ∗ as the union of all intersection points `j ∩ `k in R2\{o} of line
pairs `j, `k ∈ {`1, `2, `3, . . .} with j 6= k.

4. Define X∗ = {o} and add the i-th point of V ∗ to X∗ if Ui < p, where
U1, U2, . . . are i.i.d. with Ui ∼ U [0, 1).

5. Construct the Voronoi cell Ξ∗X at o induced by X∗.

6. Construct S∗X = T ∗(1) ∩ Ξ∗X .

As always, we generate points of V ∗ until an initial cell can be constructed. Then
we generate further points and intersect the initial cell with the corresponding bi-
sectors. The simulation stops if the distance to the origin from the last simulated
line is larger than rmax = 2 maxi=1,...,n |vi|, where vi, i = 1, . . . ,m are the vertices
of the initial cell. The resulting cell Ξ∗X and the segment system S∗X are then the
typical Voronoi cell and typical segment system, respectively, of a p-thinning of
the vertices of T .

4.5.3 Vertices of PVT

Finally, if T is a PVT, we can proceed in the following way. Since PVT and PDT
are dual tessellations we get that the dual tessellation of T ∗ is a PDT with respect
to the Palm distribution of its nuclei. This means that we can simulate a PDT
starting from its typical cell and then generate the dual tessellation in order to
obtain T ∗. Note that the distribution of the typical cell Ξ∗D of a PDT is explicitly
known, see [71] and [87], Theorem 10.4.4. Let Y1 = RZ1, Y2 = RZ2 and Y3 = RZ3

denote the three vertices of Ξ∗D, where the random variables Zi, i = 1, 2, 3 are
unit vectors which we identify with their polar angles. Then random radius R is
distributed according to the density fR given by fR(r) = 2λ2π2r3 exp(−λπr2) for
r ≥ 0 and the joint density of (Z1, Z2, Z3) is given by ν2(conv{z1, z2, z3})/(12π2)
for z1, z2, z3 ∈ [0, 2π)3. These results yield the following simulation algorithm for
Ξ∗X and S∗X .

1. Simulate the three points Y1 = RZ1, Y2 = RZ2 and Y3 = RZ3. Given
R, simulate an independent and stationary Poisson process {Y4, Y5, . . .} of
intensity λ radially in R2\B(o,R).

2. Generate T ∗ as the Voronoi tessellation with respect to {Yn}.
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3. Define X∗ = {o} and add each vertex Vi 6= o of T ∗ to X∗ if Ui < p, where
U1, U2, . . . are i.i.d. with Ui ∼ U [0, 1).

4. Construct the Voronoi cell Ξ∗X at o with respect to X∗.

5. Construct S∗X = T ∗(1) ∩ Ξ∗X .

Note that we can use here the same stopping criterion as in the simulation algo-
rithm for the typical cell of Cox process on the edges of PVT. The resulting cell
Ξ∗X and the segment system S∗X are then distributed as the typical cell and the
typical segment system of a p-thinning of the vertices of a PVT, respectively..

4.6 Numerical results obtained by Monte Carlo
simulation

In this section we present some results which were obtained from Monte–Carlo
simulation using the algorithms introduced above. To begin with, we compare
the results of the direct and indirect algorithm for the typical Voronoi cell of
Cox processes on PVT. The numerical results for the typical Voronoi cell of Cox
processes on PVT were obtained in cooperation with P. Saffert and are partially
documented in his diploma thesis ([84]).

4.6.1 Scaling invariance for Cox processes and thinnings

Let T be a random tessellation with length intensity 1 and consider the Cox
processes X and X ′ on Tγ = T/γ and Tγ′ = T/γ′, respectively, where λ` and
λ′` denote the linear intensities of X and X ′. In Section 3.5.2 it was shown
that X d

= γ′

γ
X ′ if κ = γ/λ` and κ′ = γ′/λ′` are equal. Moreover, a similar

scaling invariance holds if X and X ′ are thinnings of the vertices of Tγ and Tγ′ ,
respectively. Then again X

d
= γ′

γ
X ′ if κ = γ/λ` is equal to κ′ = γ′/λ′`, see

Section 3.5.3, where λ` is defined by λ` = pλ(0)γ for p-thinnings of T (0)
γ . Thus,

in both considered cases, it holds that Ξ∗X
d
= γ′

γ
Ξ∗X′ if κ = κ′, where Ξ∗X and Ξ∗X′

are the typical Voronoi cells of X and X ′, respectively. From this observation we
directly get that e.g. Eν1(∂Ξ∗X) = γ′

γ
Eν1(∂Ξ∗X′) and

√
Eν2(Ξ∗X) = γ′

γ

√
Eν2(Ξ∗X′).

Therefore, we focus in the following only on single values of the parameter γ,
but different values of κ. Then numerical results for γ′ 6= γ with κ′ = κ can be
obtained from the corresponding results for γ by an appropriate scaling.
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4.6.2 Comparison of direct and indirect simulation algo-
rithms

The sample means of different cell characteristics obtained from the cells gen-
erated with the direct simulation algorithm and the sample means of the cor-
responding weighted characteristics for the cells generated with the indirect al-
gorithm have to be equal. However, the variances may differ since we generate
different random variables with the same mean. Thus, we computed the sample
variances of different characteristics like the (weighted) number of vertices (ν0),
perimeter (ν1) and area (ν2) for samples simulated with both algorithms. In Ta-
ble 4.1 the results are summarized for different values of the scaling factor κ. The
variance of the output is always smaller for the direct algorithm compared with
the variance of the indirect algorithm. Since both algorithms have a similar run-
time, the variance of the (random) output is the main criterion in order to decide
which algorithm is preferable for the computation of distributional properties. In
the following, we therefore concentrate only on results obtained from the directly
simulated cells, although the indirect algorithm yields similar results.

In particular, for the computation of cost functionals like Euclidean distances
and shortest path lengths, see Chapter 5, it is important that the simulation
algorithm has low variance of the output. Due to time-consuming calculations
only a relatively small sample size can be considered there. Thus, especially for
this purpose, the direct algorithm is preferable.

4.6.3 Comparison of the typical cell of PVT and Cox pro-
cesses on PDT, PLT and PVT

For different values of κ samples of the typical Voronoi cell Ξ∗X induced by a
Cox process X on T were simulated, where T is either a PDT, PLT or PVT.
Based on each sample, the probability densities of cell characteristics like the
area and perimeter were estimated. Note that for κ = γ/λ` → ∞ with λ = λ`γ
fixed, the distribution of these cell characteristics converge to the distribution of
the corresponding characteristic of the typical cell of a PVT with cell intensity
λ. This is a consequence of Lemma 6.1 in Chapter 6. Thus, it is interesting to
compare the distributions of cell characteristics of the typical Voronoi cell based
on Cox processes and Poisson processes.

In Figure 4.10 histograms for the area and perimeter of Ξ∗X are displayed
which were estimated based on samples of size 1 000 000. For both the area and
perimeter of the typical Voronoi cell of a Cox process on PVT, the estimated
probability densities converge fast to the corresponding densities for the typical
cell of a PVT. It is even hard to distinguish between the histograms for Cox
processes on PVT and PVT itself if κ = 50. However, the convergence is not that
fast if we consider Cox processes on PDT and PLT. For both models a difference
to the PVT–case can be observed even for κ = 50, although this difference is
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Figure 4.10: Histograms for area and perimeter of the typical Voronoi cell for
Cox processes on T

less for PDT. Actually, this is the behavior one would expect because the edges
of PVT are shorter and more evenly spread in the plane compared to the edges
of PDT. Moreover, the most irregular cells with the longest segments among the
three basic models are observed for PLT. Thus, from this point of view, it is
plausible that the dependencies between the points of X are decreasing faster
if the underlying tessellation T is a PVT rather than a PDT and PLT. Thus,
the convergence to the PVT–case is faster for Cox processes concentrated on
PVT than for PDT which is in turn faster than for PLT. The same behavior
can also be observed in Table 4.2, where the coefficients of variation (cv, cvX :=
100 ·

√
VarX/EX) of the number of vertices ν0(Ξ∗X) and the area ν2(Ξ∗X) are

shown for different values of κ.
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Direct Algorithm Indirect Algorithm
κ Eν1 Eν2 Eν0 Eν1 Eν2 Eν0

10 652.75 124680.35 1.87 1497.86 175659.46 4.36
20 1266.92 479859.33 1.82 2812.88 653731.80 4.26
30 1874.68 1065937.19 1.81 4086.39 1426403.79 4.22
40 2484.18 1881871.79 1.81 5354.02 2492851.63 4.17
50 3098.75 2931215.45 1.80 6624.04 3855095.79 4.17
60 3689.98 4194702.08 1.79 7882.49 5510771.23 4.15
90 5511.02 9384330.87 1.79 11644.29 12187366.14 4.11
120 7336.33 16670645.20 1.79 15406.61 21481790.15 4.10

Table 4.1: Sample variances for different characteristics of Ξ∗X obtained for the
direct (left) and indirect (right) simulation algorithm, respectively, where γ =
0.125 was fixed.

cv ν0 cv ν2

κ Cox-PVTCox-PDTCox-PLT PVT Cox-PVTCox-PDTCox-PLT PVT
10 22.784 23.694 24.091 22.240 55.174 59.145 69.538 52.947
20 22.496 22.857 23.454 22.240 54.085 56.373 64.819 52.947
30 22.431 22.823 23.200 22.240 53.733 55.399 62.638 52.947
40 22.386 22.638 23.056 22.240 53.564 54.860 61.340 52.947
50 22.378 22.629 22.929 22.240 53.544 54.546 60.516 52.947
60 22.324 22.548 22.870 22.240 53.342 54.217 59.792 52.947
90 22.292 22.459 22.752 22.240 53.203 53.940 58.595 52.947
120 22.303 22.457 22.669 22.240 53.173 53.713 57.836 52.947

Table 4.2: Estimates for the cv of the number of vertices (ν0) and area (ν2) of
the typical Voronoi cell Ξ∗X of Cox processes on PVT, PLT and PDT as well as
the typical cell of PVT for different values of κ, using the direct algorithm
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Cox-PVT Cox-PDT Cox-PLT PVT
κ Eν1 Eν1 Eν1 Eν1cvν1 cvν1 cvν1 cvν1

(exact)
10 40.010 25.242 40.094 27.019 39.726 31.469 40.0 24.315
20 40.005 24.869 40.067 25.699 39.766 29.580 40.0 24.315
30 40.008 24.698 40.033 25.412 39.791 28.684 40.0 24.315
40 40.010 24.621 40.021 25.146 39.810 28.130 40.0 24.315
50 39.982 24.613 40.011 25.087 39.812 27.776 40.0 24.315
60 39.997 24.508 40.010 24.916 39.834 27.474 40.0 24.315
90 39.992 24.458 40.007 24.777 39.849 26.944 40.0 24.315
120 39.994 24.438 39.995 24.716 39.884 26.590 40.0 24.315

Table 4.3: Estimates for expectation and cv of the boundary length ν1(∂Ξ∗X) of
the typical Voronoi cell of Cox processes on PVT, PLT and PDT as well as PVT
for different values of κ (where Eν2(Ξ∗X) = 100 was fixed)

4.6.4 Comparison of the typical cell of Cox processes on
PVT/PVT and PVT/PLT nestings

In this section we present some numerical results for the typical Voronoi cell
of a Cox process X on the edges of a PVT/PLT nesting and compare them
to results for Cox processes on PVT and PLT, respectively. Notice that other
nested tessellations based on PVT, PDT and PLT, respectively, can be analyzed
similarly.

Scaling invariance for nestings

Let T be a T0/T1 nesting and let γ0 and γ1 denote the length intensities of T0

and T1, respectively. If T is scaled by a constant c > 0, then we have cT d
= T ′,

where T ′ is a nesting of initial tessellation T ′0 and component tessellation T ′1 with
T ′0

d
= cT0 and T ′1

d
= cT1. Thus, the length intensities γ′0 and γ′1 of T ′0 and T ′1 are

given by γ′0 = γ0/c and γ′1 = γ1/c, respectively.
Now assume that X and X ′ are Cox processes on the random tessellations T

and T ′ with linear intensities λ` and λ′` = λ`/c, respectively, then cX
d
= X ′. That

means, if γ0/γ1 = γ′0/γ
′
1 and if in addition the scaling factors κ = (γ0 + γ1)/λ`

and κ′ = (γ′0 + γ′1)/λ′` are equal, then the two Cox processes X and γ0/γ
′
0 · X ′

have the same distributions, see also Section 3.5.2. Thus, we only have to do
numerical computations for one parameter vector (γ0, γ1, λ`) with given ratio
γ0/γ1 and scaling factor κ. Numerical results for all other parameter vectors
(γ′0, γ

′
1, λ
′
`) with ratio γ0/γ1 = γ′0/γ

′
1 and scaling factor κ = (γ′0 + γ′1)/λ′` can then

be computed from the corresponding results for the parameter vector (γ0, γ1, λ`)
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by an appropriate scaling. We therefore fix γ = 1 below and only vary γ0 ∈ [0, 1]
and λ` > 0, where γ1 is put to 1− γ0.

Area and perimeter of the typical Voronoi cell

We now assume that T is a T0/T1 nesting with a PVT as initial tessellation and a
PLT as component tessellation. For different values of κ, γ0 and γ1 with γ0 +γ1 =
1 we simulated the typical Voronoi cell of a Cox process X on T as explained in
Section 4.4. Based on the generated samples of the typical cell, we estimated the
distribution of cell characteristics like perimeter and area. Some results are shown
in Fig. 4.11 together with the corresponding results for Cox processes on PVT
and PLT. The difference between the different considered models decreases for
increasing κ as expected. However, for κ = 10 there is a clear difference between
the densities of the different considered cases. Note that the distributions for
Cox processes on PVT and PLT seem to appear as extremal cases as γ0 tends
to 0 and 1, respectively, and for Cox processes on PVT/PLT–nestings we can
interpolate between these extremal distributions. Thus, using Cox processes on
T0/T1-nestings we get more flexible models and we can in a way shift between the
distributions of the typical Voronoi cell of Cox processes on the initial tessellation
T0 and the component tessellation T1, respectively, as γ0 tends from 1 to 0.

4.6.5 Numerical results for thinnings

In this section some results are presented which are obtained from a simulation
study using the simulation algorithms for the typical Voronoi cell of thinnings of
the vertices of PDT, PLT and PVT. Recall that the vertices of a PDT form a
stationary Poisson process, thus a p-thinning of the vertices of a PDT is again
a stationary Poisson process. Hence, the typical cell of a PVT and the typical
Voronoi cell of a thinning of the vertices of a PDT have the same distribution.

Histograms of the area and perimeter of the typical Voronoi cell were esti-
mated for thinnings of the vertices of PDT, PLT and PVT. Some results are
displayed in Figure 4.12. Because of the scaling invariance for thinnings of the
vertex sets, we focus again on the case that the length intensity γ of T is equal
to 1 and we consider different values for the scaling factor κ. Results for γ 6= 1
can then be obtained from the results for γ = 1 by a suitable scaling. The results
are quite similar as for Cox processes on T , therefore they are only discussed
briefly. Again, we expect that for large κ the distribution of cell characteristics
of the typical cell like the perimeter and area converge to the distribution of the
corresponding characteristics for the typical cell of a stationary PVT. This can
also be shown theoretically using the same methods as for Cox processes. If the
underlying tessellation is a PVT, then the convergence of the distributions of
the considered cell characteristics to the corresponding distribution of the typical
cell of PVT is very fast. Even for small values of κ one can hardly distinguish
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Figure 4.11: Histograms for area and perimeter of the typical Voronoi cell of Cox
processes on PVT/PLT nestings.
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Figure 4.12: Histograms for area and perimeter of the typical cell for thinnings
of the vertices of T

the distributions between the area and perimeter of the typical Voronoi cell for
thinned nodes and the typical cell of PVT. However, if T is a PLT, then there is
a large deviation from the PVT case between the distributions of these cell char-
acteristics. This is the expected behavior since for PLT there are e.g. infinitely
many point located on each single line yielding a point process which is quite
different from a Poisson process.

4.6.6 Implementation tests

It is always important to test the implementations of the developed algorithms.
Methods for software tests with random output are suitable for this purpose,
see e.g. [24, 31, 60]. Note that these tests are based on statistical significance
tests. For the algorithms introduced here we used samples of simulated cells
in order to test the correctness of the implementation of the algorithms. More
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precisely, we generated for different parameters large i.i.d. samples Z1, . . . , Zn
of cell characteristics like the area and number of vertices. Let Z denote the
considered cell characteristic. Then the mean EZ is known in the cases regarded
above. For instance, the mean area of the typical Voronoi cell is equal to 1/λ if λ
is the intensity of the cell nuclei and the mean number of vertices of the typical
Voronoi cell is 6 for all considered point process models. This information can
be used to perform e.g. asymptotic Gaussian two sample test for equal means
([19]). If the implementation is incorrect, then it is likely that random cells are
generated and cell characteristics Z̃1, . . . , Z̃n are computed which do not have
the correct mean value, i.e., EZ 6= EZ̃1. Consequently, if the sample size n is
large enough these tests are rejected. However, all the tests showed the expected
behavior, so we assume that our implementations are correct. More detailed test
results for the implementation of the simulation algorithm for the typical Voronoi
cell Ξ∗X of a Cox process X on PVT can be found in [84].



Chapter 5

Euclidean and shortest path
connection distances in hierarchical
network models

In this chapter, we investigate cost functionals (or performance characteristics)
which can be associated with hierarchical telecommunication networks, where we
focus especially on networks with two hierarchy levels. Thus, there are network
components of low and high hierarchy. Each low–level component (LLC) is linked
to a unique high–level component (HLC) and the physical connection has to be
established either via the cable system of the network or wireless by radio trans-
missions. Then cost functionals like connection lengths can be associated with
the network. Clearly, the geometry of the network and its components influences
connection lengths and hence the overall performance of the network. Thus, it is
an important task to investigate connection lengths of the network and their de-
pendence on e.g. different network geometries and connection rules. A promising
approach in order to achieve this goal is the analysis of cost functionals based on
spatial stochastic models which can represent existing or future networks. This
is the topic of the present chapter which is organized in the following way.

First, in Section 5.1, we introduce the Stochastic Subscriber Line Model
(SSLM), a spatial stochastic model for hierarchical telecommunication networks.
In particular, we explain how the underlying infrastructure of the network as
well as LLC and HLC are modeled. Furthermore, it is specified how connections
between LLC and HLC are established. In order to specify the connection rules,
we use the concept of so–called serving zones, i.e., we associate to each HLC a do-
main called serving zone and all LLC inside this serving zone are connected to the
corresponding HLC. Subsequently, we define cost functionals based on this model
using Palm calculus. More precisely, we are interested in the distributions of cost
functionals associated with the connection from the typical LLC to its associated
HLC and investigate in detail the distributions of direct Euclidean connection
lengths in Section 5.2 and shortest path connection lengths in Section 5.4. These

89
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are important performance characteristics of telecommunication networks since
they provide information about the connection length of the typical user. For in-
stance, for some network technologies it is important that the connection length
is shorter than a given threshold in order to assure that a connection can be
established.

For both considered cost functionals we derive formulae for the distribution
function and probability density which are based on expectations of certain func-
tionals of the typical serving zone and its inner structure. These formulae lead
directly to estimators for the distribution function and density, respectively, which
can be calculated based on samples of the typical serving zone. Such samples can
be generated using the simulation algorithms developed in Chapter 4. Afterwards
statistical properties of the considered estimators are investigated and it is shown
that they are e.g. uniformly strong consistent.

The content of this chapter is partly based on results which were obtained in
[96] and [97].

5.1 Spatial stochastic models for two-level hierar-
chical networks

In this section, we introduce the SSLM as a spatial stochastic model for hier-
archical telecommunication networks which takes the underlying infrastructure
of the network like street systems into account. Since detailed network data is
often unavailable, we do not model the cable system directly, but we model the
street system along which the cables of the network are deployed. The edge sets
of random tessellations are used for this purpose. In a second step, we model
both HLC and LLC by planar point processes whose points are either scattered
freely in the plane or along the edges of the underlying random tessellation rep-
resenting the support of the cable system. Finally, we introduce the concept of
serving zones in order to specify to which HLC a LLC is connected. Based on this
modeling approach, we can define cost functionals associated with the connection
from the typical LLC to its associated HLC like shortest path connection lengths
and direct Euclidean connection distances which are studied in more detail in
Sections 5.2 and 5.4

5.1.1 Components of low and high hierarchy levels on ran-
dom tessellations

We represent the underlying infrastructure of the telecommunication network by
the edge set T (1) of a random tessellation T in R2. In the following, we assume
that T is stationary with length intensity γ, i.e., the mean length of T (1) per unit
area is γ = Eν1(T (1) ∩ [0, 1]2). For a given stationary tessellation T , we model
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the locations of both HLC and LLC by stationary point processes H = {Hn} and
L = {Ln}, respectively.

In particular, we assume that the point process H is concentrated on the edge
set T (1) almost surely, i.e., P(Hn ∈ T (1) for all n ∈ N) = 1. Possible models for
H have been introduced in Section 3.5. For instance, H can be a Cox processes
on T or a thinning of the set of vertices of T . Now assume that H is stationary
with (planar) intensity λ > 0, then we define the quotient λ` = λ/γ as the planar
intensity of H divided by the length intensity of T . If H is a Cox process, then
the intensity quotient λ` is just the linear intensity of the Poisson processes on
the edge set T (1). However, we can define λ` for any point process whose points
are concentrated on the edges of T .

For the point process L representing LLC we distinguish two different scenar-
ios. On the one hand, we consider the case that L is a stationary Poisson process
with intensity λ′ which is independent of H and T . On the other hand, we as-
sume that L is a Cox process on T with linear intensity λ′` which is independent
of H given T . Thus, in the latter case, L is stationary since the tessellation T is
stationary and its planar intensity λ′ can be calculated as λ′ = λ′`γ. So we have
defined the basic components of the SSLM. Below, we specify the connection
rules between LLC and HLC.

5.1.2 Service zones and their inner structure

Now we define to which HLC a LLC is connected. This is done by the definition
of so–called serving zones. A serving zone is a domain which is associated to each
HLC such that the serving zones of distinct HLC do not overlap, but their union
covers the whole Euclidean plane. Thus, the serving zones form a tessellation in
R2. A LLC is then linked to the HLC in whose serving zone it is located. In our
stochastic framework we define serving zones using random tessellations.

In the following, TH = {ΞH,n} denotes a random tessellation, where we assume
that the nuclei {α(ΞH,n)} of TH are given by the locations of the point process
H = {Hn}. There are various possible models for TH . For instance, TH can
be constructed as the Voronoi tessellation induced by H which will be done in
order to obtain the numerical results presented later on. However, there are more
complex models for TH which can be considered like random Laguerre tessellations
([50, 52]) or aggregated Voronoi tessellations ([91]). Now assume that TH is
specified, then a point Lj of L is linked to the point Hn of H if and only if
Lj ∈ ΞH,n, i.e., all LLC inside ΞH,n are linked to Hn. In this context, the cell
ΞH,n of TH is also called the serving zone of the point Hn and the typical cell Ξ∗H
of TH is called the typical serving zone.

Furthermore, we define the stationary marked point processHS ={(Hn, S
o
H,n)}

whose marks are given by SoH,n = (T (1) ∩ ΞH,n) − Hn. Thus, each point of H
is marked with the segment system inside its serving zone and hence HS is a
stationary marked point process with intensity λ whose mark space is given by
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the family of finite segment systems Lo which contain the origin. If L is a Cox
process on T , then a point Ln of L is linked to Hj if and only if Ln ∈ SoH,j +Hj.
Note that the typical mark S∗H : Ω→ Lo of HS is a random segment system which
contains the origin. We call S∗H the typical segment system, see also Section 3.5.4.
Note that Campbell’s theorem for stationary marked point processes yields

γ = E
∑
Hi∈H

ν1(SoH,i +Hi ∩ [0, 1)2)

= λ

∫
R2

Eν1(S∗H ∩ ([0, 1)2 − x)) ν2(dx)

= λE
[ ∫

S∗H

∫
R2

1I[0,1)2−x(y) ν2(dy) ν1(dx)

]
= λEν1(S∗H) .

Thus, it holds that Eν1(S∗H) = γ/λ = 1/λ`. This observation is used later on.

5.1.3 Cost functionals for two-level hierarchical models

So far, we introduced four modeling components, namely T , HS, L and TH . They
can be used in order to construct the marked point process LM = {(Ln,Mn)},
where each point Ln is marked with a random variable Mn which represents the
associated cost of the connection from Ln to Hj provided that Ln ∈ ΞH,j. In the
following, we assume that Mn is either the direct Euclidean connection length,
i.e., Mn = |Ln−Hj| provided that Ln ∈ ΞH,j, or Mn is the length of the shortest
path from Ln to Hj along T (1) provided that Ln ∈ SH,j = SoH,j + Hj. Note that
in the latter case, we only consider Cox processes L on T as models for LLC.
However, further cost functionals could be considered like the length of least
nodes paths or the number of passed nodes on the shortest path between LLC
and HLC, see [104]. Realizations of the model for Voronoi tessellations as serving
zones and Cox processes H and L on PVT and PLT are displayed in Figure 5.1(a)
and (b), where LLC are connected to HLC on the shortest path as well as the
direct Euclidean distance. It is easy to see that the marked point process LM is
stationary if the random tessellation T is stationary. In the following, the main
research goal is to investigate the Palm mark distribution P o

LM
of LM . Thus, we

are interested in the distribution of the typical mark M∗ of LM .
An important fact is that realizations of the marked point process LM can

be constructed from realizations of L and HS if L is a Cox process and from
realizations of L and TH if L is a Poisson process. Hence, instead of LM , we
can regard the vectors Y = (L,HS) and Y = (L, TH), respectively, together
with the Palm distribution P ∗L of Y with respect to the first component L, see
Section 2.3.4 for details on Palm distributions of jointly stationary marked point
processes. Now assume that (L∗, H̃S) and (L∗, TH̃), respectively, are distributed



5.2 The typical Euclidean distance D∗ 93

(a) PLT (b) PVT

Figure 5.1: HLC with their serving zones (black) and LLC (blue) with Euclidean
distances and shortest paths along the edge set

according to the Palm distribution P ∗L, where the notation H̃S = {(H̃n, S̃
o
H,n)} is

used and
T̃ (1) =

⋃
n≥1

(
S̃oH,n + H̃n

)
(5.1)

denotes the edge set corresponding to H̃S. Then M∗ can be regarded as the
associated cost for the connection from the origin o to the point H̃n of H̃ in
whose serving zone o is located. Note that L∗\{o} is a stationary Poisson process
and a Cox process on T̃ if L is a stationary Poisson process and Cox process on
T , respectively, see Theorems 2.6 and 3.3.

Similarly, we regard the vectors (L̃,H∗S) and (L̃, T ∗H) which are distributed
according to the Palm distributions P ∗HS and P ∗TH , respectively, where T

∗(1) de-
notes the edge set of H∗S. On the one hand, if L is a Cox process on T , then
L̃ is a (non-stationary) Cox process on T ∗(1) with linear intensity λ′` which is
independent of H∗ given T ∗(1). This can be proven basically in the same way as
Lemma 4.2. On the other hand, if L is a stationary Poisson process independent
of H, then L̃ d

= L and L̃ is independent of H∗, see Section 2.3.4.

5.2 The typical Euclidean distance D∗

We consider in this section as a basis the hierarchical model defined in Section 5.1
and we assume that the cost functional is given by the direct Euclidean connection
length. Thus, we consider the marked point process LD = {(Ln, Dn)}, where
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Dn = |Ln − Hj| provided that Ln ∈ ΞH,j. That means, the cost functional
associated with the connection of Ln to Hj is the Euclidean distance between Ln
and Hj. Moreover, we always assume that L is either a Cox process on the edges
of T conditionally independent of H given T or a stationary Poisson process in R2

which is independent of T and H. Realizations for different considered models are
displayed in Figure 5.2, where the underlying tessellation T is a PDT, PLT and
PVT, respectively, and the serving zones are modeled by the Voronoi tessellation
induced by a Cox process H on T .

We are then interested in the distribution of the typical mark D∗ of LD which
we call the typical Euclidean distance.

5.2.1 Distributional properties

In this section we derive representation formulae which represent the distribution
function and the probability density of the typical Euclidean connection distance
D∗ as expectations of functionals of the typical serving zone and the segment
system within it. These formulae lead to estimators for the distribution of these
characteristics which can be computed based on samples of the typical serving
zone and its segment system, respectively.

Representation by the typical serving zone

Applying Neveu’s exchange formula (see Lemma 2.9) we can represent the dis-
tribution function of D∗ in terms of the typical cell Ξ∗H of TH and in terms of the
typical segment system S∗H within Ξ∗H if L is a Poisson process and Cox process,
respectively. An important fact is that this representation does not depend on
parameters or points of L anymore. Thus, the distribution of D∗ is uniquely
determined by TH and HS, respectively.

Theorem 5.1 If L is a Poisson process that is independent of H, then the dis-
tribution function FD∗ : [0,∞)→ [0, 1] of D∗ is given by

FD∗(x) = λ` γ E ν2(Ξ∗H ∩B(o, x)) , x ≥ 0 , (5.2)

where ν2(Ξ∗H ∩B(o, x)) denotes the area of Ξ∗H intersected with the ball B(o, x) ⊂
R2 centered at o with radius x. If L is a Cox processes on T which is conditionally
independent of H given T , then the distribution function of D∗ is given by

FD∗(x) = λ` E ν1(S∗H ∩B(o, x)) , x ≥ 0 . (5.3)

Proof We use Lemma 2.9 in order to prove Theorem 5.1. First let L be a
Poisson process of intensity λ′, then we can regard the vector Y = (LD, TH) as a
random element of N[0,∞),Po and we use the notations (L∗D, TH̃) and (L̃D, T

∗
H) for

the Palm versions of Y distributed according to P ∗LD and P ∗TH , respectively. For
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Figure 5.2: H on PDT (top), PLT (middle), PVT (bottom) with serving zones
(black) and connection distances (dashed) for L Poisson (left) and Cox (right)
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some measurable h : [0,∞) → [0,∞) we define the function f : R2 × [0,∞) ×
Po × N[0,∞),Po → [0,∞) by

f(x,m, ξ, ψ) =

{
h(m) if o ∈ ξ + x,
0 otherwise.

(5.4)

Now we can apply Lemma 2.9 and get

Eh(D∗) =

∫
N[0,∞),Po

∫
R2×Po

f(x, ξ,m, ψ)ψ(2)(d(x, ξ))P ∗LD(d(ψ,m))

=
λ

λ′

∫
N[0,∞),Po

∫
R2×[0,∞)

f(−x, ξ,m, txψ)ψ(1)(d(x,m))P ∗TH (d(ψ, ξ))

=
λ

λ′

∫
N[0,∞),Po

∫
R2×[0,∞)

h(|x|)1Iξ(x)ψ(1)(d(x,m))P ∗TH (d(ψ, ξ))

=
λ

λ′
E

(
E
( ∑
L̃n∈Ξ∗H

h(|L̃n|)
∣∣∣∣Ξ∗H)

)
.

Since L and H are independent we get that T ∗H and L̃ are also independent and
in addition that L̃ d

= L, see Section 2.3.4. Thus, given Ξ∗H , we have that L̃ is a
stationary Poisson process of intensity λ′. Using Campbell’s theorem, we get

E
( ∑
L̃n∈Ξ∗H

h(|L̃n|)
∣∣∣∣Ξ∗H) = λ′

∫
Ξ∗H

h(|u|) ν2(du)

which yields for h(|u|) = 1I[0,x](|u|) that

FD∗(x) = E 1I[0,x](D
∗) = λE ν2(Ξ∗H ∩B(o, x)) .

On the other hand, if L is a Cox process concentrated on T (1), then we can regard
the vector Y = (LD, HS) as a random element of N[0,∞),Lo . Recall that we use the
notation (L∗D, H̃S) and (L̃D, H

∗
S) for the Palm versions of Y with respect to P ∗LD

and P ∗XS , respectively. In the same way as above we can apply Neveu’s exchange
formula and get

Eh(D∗) =
λ

λ′
E

(
E
( ∑
L̃n∈S∗H

h(|L̃n|)
∣∣∣∣S∗H)

)
.

Again, L̃ is independent of H∗S under P ∗HS given S∗H . Moreover, λ′ = λ′`γ and
L̃∩S∗H is a Cox process whose random intensity measure is given by λ′`ν1(B∩S∗H)
for B ∈ B(R2). Thus, given S∗H , we can apply Campbell’s theorem which yields

E
( ∑
L̃n∈S∗H

h(|L̃n|)
∣∣∣∣S∗H) = λ′`

∫
S∗H

h(|u|) ν1(du) .
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(a) Ξ∗H ∩B(o, x) (blue) (b) S∗H ∩B(o, x) (black)

Figure 5.3: The typical cell and the typical segment system intersected by B(o, x).

Hence, choosing h(|u|) = 1I[0,x](|u|) we obtain

FD∗(x) = E 1I[0,x](D
∗) = λ` E ν1(S∗H ∩B(o, x)) ,

which completes the proof. 2

The quantities which are considered in equations (5.2) and (5.3) are illustrated in
Figure 5.3. Using Theorem 5.1 it is possible to derive also representation formulae
for the probability density of D∗.

Theorem 5.2 If L is a Poisson process, which is independent of H, then the
probability density fD∗ : [0,∞)→ [0,∞) of D∗ is given by

fD∗(x) = λ` γ E ν1(Ξ∗H ∩ ∂B(o, x)) , x ≥ 0 , (5.5)

where ν1(Ξ∗H ∩ ∂B(o, x)) denotes the curve length of the circle ∂B(o, x) centered
at o with radius x inside Ξ∗H . If L is a Cox processes on T which is conditionally
independent of H given T , then the probability density of D∗ is given by

fD∗(x) = λ` E
( N∗x∑

i=1

1

sinα∗i

)
, x ≥ 0 , (5.6)

where N∗x = |S∗H ∩ ∂B(o, x)| is the number of intersection points of the segment
system S∗H with ∂B(o, x) and α∗1, . . . , α∗N∗x are the angles at the corresponding in-
tersection points between their tangents to ∂B(o, x) and the intersecting segments.
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Proof If L is a Poisson process, then we can use the polar decomposition of the
2-dimensional Lebesgue measure in order to get from (5.2) that

FD∗(x) = λ`γ E
∫

R2

1IΞ∗H∩B(o,x)(y) ν2(dy)

= λ`γ E
∫ ∞

0

∫ 2π

0

r1IΞ∗H∩B(o,x)((r cos t, r sin t) dt dr

= λ`γ E
∫ x

0

∫ 2π

0

r1IΞ∗H
((r cos t, r sin t))) dt dr

=

∫ x

0

λ`γEν1(Ξ∗H ∩ ∂B(o, r)) dr ,

If L is a Cox process, then we can use a decomposition of the Hausdorff measure
ν1 which is given in Lemma A.14 in the appendix. Similar as above, we get that

FD∗(x) = λ` E ν1(S∗H ∩B(o, x))

= λ` E
∫ ∞

0

N∗y∑
i=1

1

sinα∗i
1I[0,x](y) dy

=

∫ x

0

λ` E
( N∗y∑
i=1

1

sinα∗i

)
dy ,

which proves Theorem 5.2. 2

The quantities considered in equations (5.5) and (5.6) are shown Figure 5.4 for
a PVT as underlying tessellation. Note that the results of this section can be
generalized in the following way. In the proof of Theorem 5.1 we never used that
L is a Poisson process and a Cox process on T , respectively. On the one hand, for
a Poisson process L, we only used that L is a stationary point process of intensity
λ′ independent of T . On the other hand, for a Cox process L on T , we only used
that given T its conditional intensity measure is given by λ′`ν1( · ∩T (1)) and that
L is independent of H given T . Thus, the result of Theorem 5.1 remains valid
if L is a stationary point process independent of T and a point process whose
conditional intensity measure is given by λ′`ν1( · ∩ T (1)) conditioned on T which
is in addition independent of H given T .

For n ≥ 1, assume that Ξ∗H denotes the n-th nearest-neighbor Voronoi cell
([79]). Then FD∗ given in (5.2) and (5.3) is the distribution function of the
distance from a typical point of L to its n-th nearest neighbor ofH. Moreover, if L
is a Cox process, then FD∗ is the distribution function of the typical n-th nearest-
neighbor distance between points of H. These distributions have applications
e.g. in the analysis of interference in wireless networks ([38]).

Finally, it is worth mentioning that the distribution of D∗ does not depend on
the choice of the point process L if H is not a Cox process, but a stationary Pois-
son process in R2 which is independent of L. Then, the typical Euclidean distance
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(a) Ξ∗H ∩ ∂B(o, x) (blue)

α∗

(b) S∗H ∩ ∂B(o, x) (blue) and an angle α∗

Figure 5.4: The typical cell and the typical segment system intersected by
∂B(o, x).

D∗ has the same distribution as the distance from o to the nearest point of H,
which is a Weibull distribution with parameters λπ and 2, see e.g. [38, 89]. Thus,
in this case the density of D∗ is given by fD∗(x) = λπx exp(−λπx2)1I[0,∞)(x).

5.2.2 Example: Cox processes on PLT

In the specific case that H is a Cox process on a PLT with serving zones TH
modeled by the Voronoi tessellation induced by H, it is possible to derive ana-
lytical formulae for the distribution functions FD∗ considered in (5.2) and (5.3),
respectively.

Theorem 5.3 Let T be a PLT, H a Cox process on T and TH the Voronoi
tessellation induced by H. Then, for x > 0, the distribution function considered
in (5.2) is given by

FD∗(x) = 1− exp
(
−λ` γ x2

∫ 2

0

e−λ` xs
√

4− s2 ds
)
, (5.7)

and the distribution function considered in (5.3) is given by

FD∗(x) = 1− e−2λ` x exp
(
−λ` γ x2

∫ 2

0

e−λ` xs
√

4− s2 ds
)
. (5.8)

Proof Let H be a Cox process which is concentrated on the PLT T and let
L be a Poisson process independent of H. Then, using the independence of the
processes L and H, we get for each x ≥ 0 that FD∗(x) = 1− P(H(B(o, x)) = 0)
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and

P(H(B(o, x)) = 0) = E exp(−λ`ν1(B(o, x) ∩ T ))

= E exp
(
−λ`xν1(B(o, 1) ∩ 1

x
T
))
.

The latter expectation can be calculated in the following way. Suppose that K
denotes the random number of lines of T which intersect B(o, x). Then K is
Poisson distributed with mean 2γx and, given K = k, these k lines `1, . . . , `k are
independent and isotropic uniform random (IUR) lines ([66]). Thus we get

E exp
(
−λ`xν1(B(o, 1)∩1

x
T )
)

=
∞∑
k=0

P(K = k) E
(

exp
(
−λ`xν1(B(o, 1) ∩ 1

x
T )
)
| K = k

)
=

∞∑
k=0

P(K = k) E
( k∏
i=1

exp
(
−λ`xν1(B(o, 1) ∩ `i)

)
| K = k

)
=

∞∑
k=0

P(K = k)
(
E exp

(
−λ`xZ

))k
= exp(−2γx)

∞∑
k=0

(2γxE exp(−λ`xZ))k

k!

= exp
(
−2γx

(
1− E exp(−λ`xZ)

))
,

where Z denotes the intersection length of an IUR line hitting B(o, 1). The
distribution function of Z can be computed as FZ(s) = 1 −

√
1− s2/4 for s ∈

[0, 2]. By partial integration we finally get that

E exp(−λ`xZ) = 1− λ`x

2

∫ 2

0

e−λ`xs
√

4− s2 ds ,

which proves (5.7). If L is a Cox process, then we can do in principle the same
calculations. However, due to Slivnyak’s theorem, there is almost surely one
additional line through the origin which yields the additional factor exp(−2λ`x)
appearing in (5.8). 2

Notice that we can also derive analytical formulae for the probability densities of
D∗ if T is a PLT, by simply computing the derivatives of the functions given in
(5.7) and (5.8), respectively. But, if the random tessellation T is different from a
PLT, H is not a Cox process or TH is not a Voronoi tessellation, then analytical
solutions seem to be impossible.
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5.3 Statistical estimators
Formulae (5.2) – (5.5) can be used in order to define estimators for the density
and distribution function of the typical Euclidean distance D∗ which are based
on samples of the typical serving zone Ξ∗H and its line segment system S∗H , re-
spectively. Such samples can be obtained from simulations for various models,
see Chapter 4.

5.3.1 Estimators for distribution function and density of D∗

The representation formulae (5.2) – (5.5) directly lead to estimators for the dis-
tribution function and probability density of D∗ which can be calculated based
on Monte-Carlo simulations of Ξ∗H and S∗H . Note that we do not have to simulate
points of L.

Assume that Ξ∗H,1, . . . ,Ξ
∗
H,n and S∗H,1, . . . , S∗H,n are n independent copies of Ξ∗H

and S∗H , respectively. If L is a Poisson process, then estimators F̂D∗(x;n) and
f̂D∗(x;n) for the distribution function FD∗(x) and the density fD∗(x), respectively,
can be defined by

F̂D∗(x;n) =
λ` γ

n

n∑
i=1

ν2(Ξ∗H,i ∩B(o, x)) (5.9)

and by

f̂D∗(x;n) =
λ` γ

n

n∑
i=1

ν1(Ξ∗H,i ∩ ∂B(o, x)) . (5.10)

If L is a Cox process, we define an estimator F̂D∗(x;n) for the distribution function
FD∗(x) by

F̂D∗(x;n) =
λ`
n

n∑
i=1

ν1(S∗H,i ∩B(o, x)) . (5.11)

It is easy to see that the estimators in (5.9) – (5.11) are unbiased and in addi-
tion strongly consistent for fixed x ≥ 0. However, if L is a Cox process, then
it is not recommended to use equation (5.6) in order to define an analogous
estimator f̂D∗(x;n) for fD∗(x) by just omitting the expectation in (5.6). Com-
puter experiments have shown that this estimator is numerically unstable due to
the measurements of small angles. In the latter case, a better way to estimate
the density seems to be the computation of the estimated distribution function
F̂D∗(x;n) by formula (5.11) and then to consider difference quotients obtained
from this estimated distribution function as estimators f̂D∗(x;n) for the values
of the density fD∗(x). Note that all estimators introduced in this section have
advantages compared to estimators which are based on simulations of the whole
model in a large sampling window. These methods are computationally more
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intensive and they only approximate the distribution of D∗. In addition, they
demand to simulate also the points of L and thus lead to a larger variability,
see also Section 5.5.3. Moreover, using the estimators for FD∗ and fD∗ given in
equations (5.9) – (5.11), it is possible to unbiasedly estimate even functionals of
D∗, like moments of any order.

5.3.2 Almost sure convergence of the maximal error

Note that the estimators f̂D∗(x;n) and F̂D∗(x;n) defined in (5.10) and (5.11),
respectively, are strongly consistent for each x ∈ R. But we can even show that
they are uniformly consistent. For instance, we can prove that the maximal
deviation between the estimator f̂D∗(x;n) introduced in equation (5.10) and the
true density fD∗ converges almost surely to zero if L is a Poisson process.

Theorem 5.4 Let L be a Poisson process, then

P
(

lim
n→∞

sup
x∈R
|f̂D∗(x;n, ω)− fD∗(x)| = 0

)
= 1 .

Proof Let ε > 0, then we have to show that for almost all ω ∈ Ω there exists
N(ε, ω) with

|f̂D∗(x;n, ω)− fD∗(x)| ≤ ε

for all n ≥ N(ε, ω) and x ∈ [0,∞). Suppose that 0 = q0 < q1 < · · · < qm <
qm+1 = ∞ with |qi+1 − qi| ≤ δ for i = 1, . . . ,m − 1, where δ,m and qm depend
on ε. Then x ∈ [qi, qi+1) for some i = 0, . . . ,m and we get

|f̂D∗(x;n, ω)−fD∗(x)| ≤ |f̂D∗(x;n, ω)− f̂D∗(qi;n, ω)| (5.12)
+ |f̂D∗(qi;n, ω)− fD∗(qi)|+ |fD∗(qi)−fD∗(x)| .

Now the law of large numbers yields

|f̂D∗(qi;n, ω)− fD∗(qi)|
a.s.→ 0

for n → ∞. Thus, |f̂D∗(qi;n, ω) −fD∗(qi)| < ε/3 for all n > Ni(ε, ω) almost
surely. Since fD∗ is continuous and limx→∞ fD∗(x) = 0, we can choose δ and qm
such that |fD∗(qi)− fD∗(x)| < ε/3. For the remaining term we get

|f̂D∗(x;n, ω) − f̂D∗(qi;n, ω)|

≤ λ`γ

n

n∑
j=1

|ν1

(
Ξ∗H,j ∩ ∂B(o, x)

)
− ν1

(
Ξ∗H,j ∩ ∂B(o, qi)

)
| .

On the one hand, it holds that

ν1

(
Ξ∗H,j ∩ ∂B(o, x)

)
− ν1

(
Ξ∗H,j ∩ ∂B(o, qi)

)
≤ ν1

(
Ξ∗H,j ∩ ∂B(o, qi)

)(qi+1

qi
− 1
)

≤ 2π(qi+1 − qi) .
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On the other hand, we have

ν1

(
Ξ∗H,j ∩ ∂B(o, qi)

)
− ν1

(
Ξ∗H,j ∩ ∂B(o, x)

)
≤ ν1(Ξ∗H,j ∩ ∂B(o, qi))− ν1

(( qi
qi+1

Ξ∗H,j

)
∩ ∂B(o, qi)

)
= ν1

(
Ξ∗H,j\

( qi
qi+1

Ξ∗H,j

)
∩ ∂B(o, qi)

)
.

These considerations yield

|f̂D∗(x;n, ω) − f̂D∗(qi;n, ω)|

≤ 2πλ`γ(qi+1 − qi) +
λ`γ

n

n∑
j=1

ν1

(
Ξ∗H,j\

( qi
qi+1

Ξ∗H,j

)
∩ ∂B(o, qi)

)
.

Note that the function g(q, q′) = λ`γEν1(Ξ∗H\(
q
q′

Ξ∗H)∩ ∂B(o, q)) is continuous on
[0,∞) × [0,∞) if we put g(q, 0) = 0 for all q ∈ [0,∞). Furthermore, we have
g(q, q) = 0 for all q ∈ [0,∞) and g(q, q′) ≤ λ`γEν1(Ξ∗H ∩ ∂B(o, q)) = h(q) with
h(q)→ 0 for q →∞. Thus, we can choose δ,m and qm with g(qi, qi+1) < ε/6 for
all i = 0, . . . ,m. Since the law of large numbers yields almost surely

lim
n→∞

λ`γ

n

n∑
j=1

ν1

(
Ξ∗H,j\

( qi
qi+1

Ξ∗H,j

)
∩ ∂B(o, qi)

)
= g(qi, qi+1) <

ε

6
,

we can choose Ni(ε, ω) such that

2λ`γπ(qi+1 − qi) +
λ`γ

n

n∑
j=1

ν1

(
Ξ∗H,j\

( qi
qi+1

Ξ∗H,j

)
∩ ∂B(o, qi)

)
≤ ε

3

for all n > Ni(ε, ω). Thus, we have almost surely that

|f̂D∗(x;n, ω)− fD∗(x)| ≤ ε

for all x ∈ [0,∞) and n ≥ max{N(ε, ω), N1(ε, ω), . . . , Nm−1(ε, ω)}. 2

Furthermore, it can be shown that the maximal deviation between F̂D∗(x;n) and
the true distribution function FD∗(x) converges almost surely to 0 if L is a Cox
process.

Theorem 5.5 Let L be a Cox process. Then

P
(

lim
n→∞

sup
x∈R
|F̂D∗(x;n, ω)− FD∗(x)| = 0

)
= 1 .
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Proof The proof is similar as the proof above. Let ε > 0 and suppose that
0 = q0 < q1 < · · · < qm < qm+1 = ∞ with qi+1 − qi < δ for i = 0, . . . ,m − 1,
where δ,m and qm depend on ε. For each x ∈ [0,∞), we have x ∈ [qi, qi+1) for
some i = 0, . . . ,m and the law of large numbers yields

|F̂D∗(x;n, ω)− FD∗(x)| ≤ |F̂D∗(qi;n, ω)− FD∗(qi)|
+ FD∗(qi+1)− FD∗(qi) + F̂D∗(qi+1;n, ω)− F̂D∗(qi;n, ω)
a.s.→ 2(FD∗(qi+1)− FD∗(qi))

for n→∞, where we put F̂D∗(qm+1;n, ω) = FD∗(qm+1) = 1. Since 2(FD∗(qi+1)−
FD∗(qi)) < ε for i = 0, . . . ,m if δ is small enough, we can choose N(ε, ω) such
that almost surely

|F̂D∗(x;n, ω)− FD∗(x)| ≤ ε for all x ∈ R, n ≥ N(ε, ω) .

2

5.3.3 Numerical results from Monte-Carlo simulation

In order to estimate the distribution of D∗, we simulated the typical cell Ξ∗H
together with its typical segment system S∗H for the case that TH is the Voronoi
tessellation induced by the Cox process H on PDT and PVT, respectively. Thus,
we assumed that a point of L is connected to the nearest point of H. Because
of the scaling invariance of Cox processes on random tessellations, the length
intensity γ of T was set to 1 and only different values of the scaling factor κ = γ/λ`
were considered. Results corresponding to other parameter pairs (γ′, λ′`) with
κ = γ′/λ′` can then be obtained from the results for γ = 1 be an appropriate
scaling, compare Section 4.6.

From the simulated data the density and distribution ofD∗ was then estimated
using the estimators introduced in Section 5.3.1 for a Cox process and Poisson
process L, respectively. Note that for Cox processes L the estimated distribution
function F̂D∗(x;n) was used in order to estimate the density fD∗(x) by difference
quotients. Furthermore, for a Cox process H on PLT, the density of D∗ was cal-
culated by means of (5.7) and (5.8), respectively. The obtained results are shown
in Figures 5.5 and 5.6 together with the density of a Wei(λ`γπ, 2)-distribution.
Some estimated distribution functions are displayed in Figure 5.7. Note that the
Wei(λ`γπ, 2)-distribution is the distribution of the random distance from the typ-
ical point of L to the nearest point of an independent stationary Poisson process
H of intensity λ = λ`γ. Thus, it is interesting to compare the distribution of D∗
with the Wei(λ`γπ, 2)-distribution. In Chapter 6 it is even shown that D∗ con-
verges in distribution to the Wei(λπ, 2)-distribution for κ = γ/λ` →∞ provided
that γλ` = λ if the underlying tessellation T is ergodic. This observation can be
explained intuitively by the fact that, for large κ, we have only few points per
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Figure 5.5: Estimated density of D∗ if L is a Poisson process

segment of T . Thus, the dependence between the points decreases for increasing
κ yielding a point process H which is similar to a stationary Poisson process.

On the one hand, if L is a Poisson process and H a Cox process on PVT,
the histogram of D∗ can hardly be distinguished from the one corresponding to a
Wei(γλ`π, 2)-distribution, even for small values of κ. For PDT and, in particular,
for PLT this is not the case. On the other hand, if L is a Cox process, then the
distribution of D∗ is considerably different from the Wei(γλ`π, 2)-distribution,
even if H is a Cox process on PVT. Then, also for larger values of κ, a clear
difference between the Weibull-distribution and the distribution of the typical
Euclidean distanceD∗ can be observed. A fact which may cause this discrepancy
is that for a Poisson process L the typical connection distance D∗ solely depends
on the shape of the typical cell Ξ∗H . However, for a Cox process L, the distribution
of D∗ depends in addition on the structure of the typical segment system S∗H
within Ξ∗H .

Furthermore, we considered the case that TH is modeled by a the Voronoi
tessellation of a Cox process on a PVT/PLT-nesting, i.e., we considered the case
that T is a T0/T1-nesting with a PVT T0 of length intensity γ0 and a PLT T1 of
length intensity γ1, where we again assumed that γ = γ0 + γ1 = 1. We used the
simulation algorithm developed for the typical Voronoi cell Ξ∗H and the typical
segment system S∗H of Cox processes on PVT/PLT-nestings in order to generate
samples of Ξ∗H and S∗H which were used to estimate the density of D∗ for Poisson
processes and Cox processes L as explained above. Some densities estimated
from these samples are displayed in Figure 5.8, where γ0 = 0.25, 0.5 and 0.75.
The behavior of the densities is similar as for Cox processes H on PDT, PLT
and PVT. For increasing κ the difference between the densities decreases, but
for small values of κ a clear difference between the densities is observable for the
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Figure 5.6: Estimated density of D∗ if L is a Cox process
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Figure 5.7: Estimated distribution function of D∗ if L is a Poisson process
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Figure 5.8: Density of D∗ if L is a Poisson process and Cox process
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considered models. Note that the distributions of D∗ for PVT and PLT occur
as extremal cases and we can interpolate from PVT to PLT if γ0 goes from 1 to
0. Thus, if we consider iterated tessellations as street model, we arrive at more
flexible classes of distance distributions which include the distance distributions
for the simple tessellation models.

5.4 Shortest path connection lengths

In this section we consider basically the same model as in the preceding section,
but we assume that points of L are connected to their associated point of H
on the shortest path along the edges of the underlying tessellation and we are
interested in the length of this path.

5.4.1 Typical shortest path length C∗

In principle, we consider the stochastic model introduced in Section 5.1, where
we always assume that L is a Cox process on T (1) with linear intensity λ′` which
is conditionally independent of H given T . We then link each point Ln of L to
the point Hj of H if and only if Ln ∈ SH,j = SoH,j + Hn. However, this time
we mark Ln with the shortest path length Cn from Ln to Hj along T (1). A
realization of the model is shown in Figure 5.9 for a Cox process H on T , where
the serving zones TH are constructed as the Voronoi tessellation induced by H.
In this way we obtain the stationary marked point process LC = {(Ln, Cn)}. The
cost functional considered here is the typical shortest path length C∗, i.e., we are
interested in the Palm mark distribution P o

LC
of LC .

5.4.2 Representation formula

In this section we investigate the distribution of the typical shortest path length
C∗. To start with, we derive a representation formula for the density fC∗ of C∗
which expresses the distribution of C∗ as the expectation of functionals of the
typical segment system S∗H by the help of Neveu’s exchange formula given in
Lemma 2.9. This representation formula can be used in order to construct esti-
mators for fC∗ which are based on i.i.d. samples of the typical segment system
S∗H . Recall that such samples can be obtained from Monte Carlo simulation of
S∗H which is e.g. possible for Voronoi tessellations TH if T is a PLT, PVT and
PDT, respectively, and H is a Cox process on T (1) or a thinning of the vertices
T (0) of T , see Chapter 4.

However, first we show that the quantity Eh(C∗) for non-negative measurable
functions h can be represented in terms of the Palm distribution of HS.
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(a) PLT (b) PVT

Figure 5.9: HLC with their serving zones (black) and LLC (blue) with shortest
paths along the edge set (red) for different street models

Lemma 5.6 Let h : R→ [0,∞) be a measurable function which is non-negative.
Then,

Eh(C∗) = λ` E
∫
S∗H

h(c(y)) ν1(dy) , (5.13)

where c(y) is the shortest path length from y to o along the edges of H∗S, H∗S
is distributed according to the Palm distribution P ∗HS of HS and S∗H denotes the
typical segment system centered at o of H∗S.

Proof The proof is similar to the proof of Theorem 5.1. We can apply Neveu’s
exchange formula to the vector Y = {(LC , HS)} of marked point processes. Let
(L̃C , H

∗
S) be distributed according to P ∗HS and let T ∗(1) be the edge set of H∗S.

Furthermore, we use the notation L̃C = {(L̃n, C̃n)}. Using the function f :
R2 × [0,∞)× Lo × N[0,∞),Lo → [0,∞) defined by

f(x, c, ζ, ψ) =

{
h(c) if x ∈ ζ ,
0 otherwise ,

(5.14)

we get with Neveu’s exchange formula that

Eh(C∗) =
λ

γλ′`
E
(∫

S∗H

h(c(x))L̃(dx)

)
=

λ`
λ′`

E
(

E
(∫

S∗H

h(c(x))L̃(dx)
∣∣∣T ∗(1)

))
. (5.15)
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Now the point process L̃ is a Poisson process given T ∗(1) with intensity measure
λ′`ν1( · ∩ T ∗(1)) concentrated on T ∗(1). Thus we can apply Campbell’s Theorem
which yields

E
(∫

S∗H

h(c(x))L̃(dx)
∣∣∣T ∗(1)

)
= λ′`

∫
S∗H

h(c(y))ν1(dy) .

2

Recall that Eν1(S∗H) = 1/λ`, thus we can rewrite the representation formula
of Eh(C∗) given in (5.13) as

Eh(C∗) =
1

Eν1(S∗H)
E
∫
S∗H

h(c(y)) ν1(dy) . (5.16)

It is important that the expectation Eh(C∗) does not depend on the linear inten-
sity λ′` of the process L anymore. Furthermore, we can rewrite equation (5.13)
as

Eh(C∗) = λ` E
N∑
i=1

∫ c(Bi)

c(Ai)

h(u) du , (5.17)

where the segment system S∗H is subdivided into line segments S1, . . . , SN , where
A1, B1, . . . , AN , BN denote the endpoints of these segments which are defined
such that

• S∗H =
⋃N
i=1 Si,

• ν1(Si ∩ Sj) = 0 for i 6= j and

• c(Ai) < c(Bi) = c(Ai) + ν1(Si),

see also Figure 5.10. Some segments of S∗H are divided in this way at so–called
distance peaks. We call a point z on S∗H distance peak if there are two different
shortest paths from z to o. Notice that N is the random number of line segments
of S∗H after the division and it is not difficult to show that

EN ≤ aEν0(E∗) <∞ ,

where a > 0 is some constant and ν0(E∗) denotes the number of segments em-
anating from the typical vertex of T . Using the notation introduced above and
Lemma 5.6, we can prove a representation formula for the probability density fC∗
of the typical shortest path length C∗ which can be applied in order to estimate
this density.

Theorem 5.7 The typical shortest path length C∗ is an absolutely continuous
random variable and the density is given by

fC∗(x) =


λ` E

N∑
i=1

1I[c(Ai),c(Bi))(x) if x ≥ 0 ,

0 otherwise.

(5.18)
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Figure 5.10: S∗H divided into segments S1, . . . , SN

Proof Note that the distribution of C∗ is given by PC∗(B) = E1IB(C∗) for all
B ∈ B(R), thus we can use equation (5.17) with h(x) = 1IB(x) and get

PC∗(B) = λ`E
N∑
i=1

∫ c(Bi)

c(Ai)

1IB(u)1 du

= λ`E
N∑
i=1

∫
B

1I[c(Ai),c(Bi))(u) du

=

∫
B

λ`E
N∑
i=1

1I[c(Ai),c(Bi))(u) du ,

hence the proof is completed. 2

We now use Theorem 5.7 to show that fC∗ belongs to the space of cadlag functions
on [0,∞), i.e., fC∗ is right-continuous and the left-hand limits exist.

Lemma 5.8 The density fC∗ defined in (5.18) is a cadlag function on [0,∞).
Moreover, fC∗ is bounded and if H has no points in the set of vertices T (0) of T
with probability 1, then fC∗(0) = 2λ`. If H is a thinning of T (0), then fC∗(0) =
λ`Eν0(E∗).

Proof Let x0 ∈ R, then we get almost surely

lim
x↘x0

N∑
i=1

1I[c(Ai),c(Bi))(x) =
N∑
i=1

1I[c(Ai),c(Bi))(x0) ,
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thus the dominated convergence theorem yields that fC∗ is right-continuous since
EN <∞. Moreover, it is not difficult to see that

gC∗(x) := λ`E
N∑
i=1

1I(c(Ai),c(Bi)](x)

is a version of the density fC∗ that is left-continuous with fC∗(x) = gC∗(x) for
every continuity point of fC∗ . Thus the left-hand limits of fC∗ exist. In addition,
fC∗(x) ≤ λ`EN <∞ for all x ∈ R and hence fC∗ is bounded.

On the one hand, if H has almost surely no points in T (0), then the origin
is located in the relative interior of a line segment of S∗H with probability 1.
Thus there are almost surely 2 segments emanating from o which means that
fC∗(0) = 2λ`. On the other hand, if H is a thinning of T (0), then the mean
number of segments emanating from o under P ∗HS is Eν0(E∗) which completes
the proof. 2

Using equation (5.18) it is possible to derive estimators f̂C∗(x) for fC∗(x) which
can be calculated from data obtained by simulations of typical serving zones.
This is explained in more detail in the next section. However, equation (5.18)
can also be used in order to estimate fC∗ from information in a large sampling
window, where the lower–level components do not have to be regarded. Note that
due to Theorem 5.7 and the definition of the Palm mark distribution it holds that

fC∗(x) =
1

γν2(W )
E
∑
Hj∈W

Nj∑
i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) , (5.19)

where W ∈ B0(R2) with ν2(W ) > 0, Nj is the number of segments of SoH,j and
c(A

(j)
i ), c(B

(j)
i ) are the shortest path lengths along T (1) from the endpoints of the

i-th segment of SoH,j +Hj to Hj.

5.5 Statistical estimators

5.5.1 Estimators for the density of C∗

In this section we construct estimators for the density of the typical shortest
path length which are based on equation (5.18) in Theorem 5.7. Our aim is
to construct estimators which are based on independent samples of the typical
segment system S∗H . Recall that such samples can be obtained from Monte-Carlo
simulation for various models, see Chapter 4. However, notice that some shortest
paths may lie partly outside Ξ∗H which means that the line segment system has
to be simulated also outside the typical serving zone Ξ∗H for a certain distance.
Now assume that an i.i.d. sample S∗H,1, . . . , S∗H,n of S∗H is given. Then, for each
j = 1, . . . , n, the shortest path length for all nodes of S∗H,j can be calculated using



5.5 Statistical estimators 113

(a) f̂C∗( · ;n) before adding a segment

c(A) c(B)

(b) Segment with endpoints A and B is
added

Figure 5.11: Construction of f̂( · ;n)

e.g. Dijkstra’s algorithm ([22]). If there are line segments with a distance peak
in their relative interior, then they are split into two segments as mentioned in
Section 5.4.2. In this way we obtain the segments S(j)

1 , . . . , S
(j)
Nj

and the shortest
path lengths c(A(j)

1 ), c(B
(j)
1 ), . . . , c(A

(j)
Nj

), c(B
(j)
Nj

) from their endpoints to o. On
the basis of this data, we can construct two slightly different estimators. The
first one is defined by

f̂C∗(x;n) = λ`
1

n

n∑
j=1

Nj∑
i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) . (5.20)

Another estimator can be constructed if we also estimate the expected length
of the line segment system in the typical cell from the simulated data. This
procedure yields

f̃C∗(x;n) =
1

n∑
j=1

ν1(S∗H,j)

n∑
j=1

Nj∑
i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) . (5.21)

Notice that both functions f̂C∗(x;n) and f̃C∗(x;n), respectively, are step func-
tions. For each line segment S(j)

i with shortest path lengths c(A(j)
i ) and c(B(j)

i )

from its endpoints, we add λ`/n to f̂C∗(x;n) if x ∈ [c(A
(j)
i ), c(B

(j)
i )). Thus, we

obtain a step function and for for each simulation run we add further steps with
each generated segment, see Figure 5.11. We now summarize some statistical
properties of f̂C∗(x;n) and f̃C∗(x;n).
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Theorem 5.9 Let f̂C∗(x;n) and f̃C∗(x;n) be the estimators defined in (5.20) and
(5.21), respectively. Then, for x ∈ R,

P
(

lim
n→∞

f̂C∗(x;n) = fC∗(x)
)

= P
(

lim
n→∞

f̃C∗(x;n) = fC∗(x)
)

= 1 (5.22)

and
Ef̂C∗(x;n) = fC∗(x). (5.23)

Let h : R→ [0,∞) be a measurable function, then

E
[∫

R
h(x)f̂C∗(x;n) dx

]
= Eh(C∗) (5.24)

and

P

(
lim
n→∞

∫
R
h(x)f̂C∗(x;n) dx = lim

n→∞

∫
R
h(x)f̃C∗(x;n) dx = Eh(C∗)

)
= 1 . (5.25)

Proof We get from Theorem 5.7 that the estimator f̂C∗(x;n) is unbiased.
Moreover, the law of large numbers implies that limn→∞ f̂C∗(x;n) = f(x) with
probability 1 for every x ∈ R. Note that Eν1(S∗H) = 1/λ`, thus we have almost
surely limn→∞ 1/n

∑n
j=1 ν1(S∗H,j) = 1/λ` which yields limn→∞ f̃C∗(x;n) = f(x)

almost surely. Furthermore, using Fubini’s theorem we get that

E
∫

R
h(x)f̂C∗(x;n) dx = Eh(C∗) ,

where we have used the unbiasedness of the estimator f̂C∗(x;n). The law of large
numbers yields the final result since∫

R
h(x)f̂C∗(x;n) dx =

λ`
n

n∑
j=1

∫
R

Nj∑
i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x)h(x) dx .

2

Note that the estimator f̃C∗(x;n) has an advantage compared to f̂C∗(x;n), al-
though it is not unbiased. For instance, we always get∫

R
f̃C∗(x;n) dx = 1

for any n = 1, 2, . . . , whereas the integral over f̂C∗(x;n) is not equal to 1 in
general and hence f̂C∗(x;n) is in this case not a probability density. Theorem 5.9
states that we can estimate the density fC∗ at every x ∈ R unbiasedly and
consistently. Furthermore, the expectation of h(C∗) can be estimated consistently
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for every non–negative measurable function based on the estimated density. If
the estimator f̂C∗(x;n) is used, then we can even estimate the expectation of
h(C∗) unbiasedly. This is not possible if the density fC∗ is e.g. estimated by
kernel methods.

Remark: Note that we can also define estimators based on the data in large
sampling windows by

f̂W (x;n) =
λ`

#{j : Hj ∈ nW}
∑

Hj∈nW

Nj∑
i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) . (5.26)

Then the consistency results of Theorem 5.9 remain valid for this estimator if e.g.
B(o, r) ⊂ W for some r > 0 due to the ergodic theorem, see Theorem 2.8. Nev-
ertheless, we concentrate on estimators based on samples of the typical segment
system S∗H since these estimators are computationally less intensive. Further-
more, some problems appear if large sampling windows are used for the estima-
tion. For instance, we do not know how large the window W has to be chosen in
order to have a good approximation of the true distribution. Moreover, neighbor-
ing serving zones are highly correlated and there are always edge effects at the
boundary. All these problems can be avoided if we regard i.i.d. samples of S∗H .

5.5.2 Almost sure convergence of the maximal error

In the preceding section we have seen that for every fixed x ∈ R the empir-
ical density f̂C∗(x;n) is an unbiased estimator for the true density fC∗(x) of
the typical shortest path length C∗. Furthermore, Theorem 5.9 states that
f̂C∗(x;n)

a.s.→ fC∗(x) for n → ∞. It is possible to show that f̂C∗(x;n, ω) con-
verges even uniformly to fC∗ with probability 1, i.e., we can show that

lim
n→∞

sup
x∈R
|f̂C∗(x;n, ω)− fC∗(x)| = 0

almost surely as it is also the case for the estimators for the density of the typ-
ical Euclidean distance D∗. In the proof of this statement we use the following
notation. We define Zj(A) :=

∑Nj
i=1(1IA(c(A

(j)
i )) + 1IA(c(B

(j)
i ))) for A ∈ B(R)

and j = 1, . . . , n. Then Z1, . . . , Zn are i.i.d. (non-simple) point processes on the
non-negative axis [0,∞) with finite intensity measure since EZj(R) ≤ 2EN <∞.
Now the following theorem can be proven.

Theorem 5.10 It holds that

P
(

lim
n→∞

sup
x∈R
|f̂C∗(x;n, ω)− fC∗(x)| = 0

)
= 1 .
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Proof It suffices to show that for almost all ω ∈ Ω and ε > 0 there is some
N(ε, ω) ∈ N such that for all n > N(ε, ω) we have

|f̂C∗(x;n, ω)− fC∗(x)| ≤ ε

for all x ∈ R. Now let q ∈ Q, then we immediately get

|f̂C∗(x;n, ω)− fC∗(x)| (5.27)
≤ |f̂C∗(x;n, ω)−f̂C∗(q;n, ω)|+ |f̂C∗(q;n, ω)−fC∗(q)|+ |fC∗(q)−fC∗(x)| .

Let ε > 0, q, q′ ∈ Q with q < q′ and x ∈ [q, q′), then we have

|f̂C∗(x;n, ω)− f̂C∗(q;n, ω)| ≤ λ`
n

n∑
j=1

Zj(ω)((q, q′)) (5.28)

and, since the point processes Z1, . . . , Zn are i.i.d., it holds that

1

n

n∑
j=1

Zj(ω)((q, q′))
a.s.→ EZ1((q, q′)) .

Recall that the intensity measure of Z1 is finite, i.e., EZ1([0,∞)) <∞. Further-
more, limx→∞ fC∗(x) = 0 and fC∗ is a cadlag function on [0,∞). Thus, we can
choose q0, . . . , qm ∈ Q with q0 = 0 < q1 < · · · < qm < qm+1 =∞ such that for all
i = 0, . . . ,m and x ∈ [qi, qi+1) we have

λ`EZ1((qi, qi+1)) <
ε

3
, |fC∗(x)− fC∗(qi)| <

ε

3
. (5.29)

Additionally, we get almost surely that

lim
n→∞

λ`
n

n∑
j=1

Zj(ω)((qi, qi+1)) = λ`EZ1((qi, qi+1)) <
ε

3
,

lim
n→∞

f̂C∗(qi;n, ω) = fC∗(qi)

for all i = 0, . . . ,m. Thus we can choose N(ε, ω) ∈ N such that

λ`
n

n∑
j=1

Zj(ω)((qi, qi+1)) <
ε

3
, (5.30)

|f̂C∗(qi;n, ω)− fC∗(qi)| <
ε

3
(5.31)

for all i = 0, . . . ,m and n > N(ε, ω). Finally, we can combine the inequalities
given in (5.27) – (5.31) which yields that for all ε > 0 and almost all ω ∈ Ω there
exists N(ε, ω) such that

|f̂C∗(x;n, ω)− fC∗(x)| < ε
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for all x ∈ R and n ≥ N(ε, ω). Hence, the proof is completed. 2

Remark: The result of Theorem 5.10 is also true for the estimator defined in
(5.26) for an averaging sequence of unboundedly increasing sampling windows,
i.e.,

P
(

lim
n→∞

sup
x∈R
|f̂W (x;n, ω)− fC∗(x)| = 0

)
= 1 .

5.5.3 Rates of convergence and variances

In the approach to estimate fC∗ which has been introduced in this chapter we
avoid the simulation of LLC in the estimation procedure of the distribution of
C∗. This has some advantages on the performance of the considered estimators
compared to classical estimation procedures based e.g. on observations of LLC
and their shortest path lengths themselves.

A common measure which is used to quantify the deviation of a density esti-
mator f̂ from the true density f is the mean integrated squared error of f̂ which
we denote by MISE (f̂). It is given by

MISE (f̂) = E
∫

R
(f̂(x)− f(x))2 dx . (5.32)

If we consider the estimator f̂C∗(x;n) defined in equation (5.20), then we get

MISE (f̂C∗) = E
∫

R
(f̂C∗(x;n)− fC∗(x))2 dx

=
λ2
`

n

∫
R

Var
( N∑
i=1

1I[c(Ai),c(Bi))(x)
)
dx

≤ λ2
`

n

∫
R

E
( N∑
i,j=1

1I[c(Ai),c(Bi))(x))1I[c(Aj),c(Bj))(x)
)
dx

=
λ2
`

n
E

N∑
i,j=1

ν1([c(Ai), c(Bi)) ∩ [c(Aj), c(Bj))) ≤
λ2
`

n
E(Nν1(S∗H)) .

Thus we get that the rate of convergence of MISE (f̂(x;n)) is of order 1/n pro-
vided that E(Nν1(S∗H)) < ∞. Now assume that we simulate the points of L̃ on
S∗H , compute the shortest path lengths C̃i of each point L̃i ∈ S∗H and finally con-
struct a kernel estimator for fC∗ . Then, on the one hand, the rate of convergence
of the mean integrated squared error of kernel estimators is of order n−4/5 or
even slower, see [101]. On the other hand, the computational effort in order to
obtain the kernel estimator and f̂C∗ is similar since for every point L̃i we have
to compute the shortest path lengths to the endpoints of the segment Sj with



118 Chapter 5. Euclidean and shortest path connection distances

L̃i ∈ Sj. Thus, from this point of view, the estimator f̂C∗ defined in this section
is superior to kernel estimators.

Now we regard the estimator F̂C∗(x) for the distribution function FC∗ of C∗
which is defined by

F̂C∗(x;n) =
λ`
n

n∑
i=1

ν1(S∗H,i(x)) , (5.33)

where S∗H,i(x) = {y ∈ S∗H,i : c(y) ≤ x} for all x ∈ R. Then

F̂C∗(x;n) =

∫ x

0

f̂C∗(t;n) dt

and Theorem 5.9 implies that this estimator is unbiased and strongly consistent
for FC∗(x). On the other hand, assume that we simulate the points L̃(i)

j of L̃(i)

on S∗H,i and additionally compute the shortest path lengths C̃(i)
j . Then a natural

estimator for FC∗(x) is given by

F̃C∗(x;n) =
λ`
λ′`

1

n

n∑
i=1

#{L̃(i)
j ∈ S∗H,i : C̃

(i)
j ≤ x} . (5.34)

Note that F̃C∗(x;n) is an unbiased estimator for FC∗(x), see equation (5.15) in
the proof of Lemma 5.6. We get that

E(F̃C∗(x;n) | S∗H,i, i = 1, . . . , n) =
λ`
λ′`

1

n

n∑
i=1

E(#{L̃(i)
j ∈ S∗H,i : C̃

(i)
j ≤ x} | S∗H,i) .

Now L̃(i) is a Poisson process with intensity measure λ′`ν1( · ∩ S∗H,i) given S∗H,i,
thus we can apply Campbell’s theorem which yields

E(#{L̃(i)
j ∈ S∗H,i : C̃

(i)
j ≤ x} | S∗H,i) = λ′`ν1(S∗H,i(x)) .

Hence we get

F̂C∗(x;n) = E(F̃C∗(x;n) | S∗H,i, i = 1, . . . , n) ,

and thus Var F̂C∗(x;n) ≤ Var F̃C∗(x;n). This means that our estimator is again
superior to the natural estimator which is based on measurements of real shortest
path lengths for L̃.

5.5.4 Numerical results

In this section we present some numerical results obtained with the estimator
f̂C∗(x;n) based on samples of S∗H generated with the simulation algorithms in-
troduced in Chapter 4 for different models. In particular, we regard a random
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tessellation T which is in the following a PDT, PLT and PVT, respectively, whose
length intensity is given by γ. Moreover, two different models for H are consid-
ered. We assume that H is either a Cox process on T (1) or a thinning of the
vertices T (0) of T . Finally, we assume that the serving zones are given by the
Voronoi tessellation TH induced by H, i.e., each point of L is connected to the
nearest point of H.

To start with, we first recall that all considered models are scaling invariant.
This means that for all λ`, γ > 0 with fixed quotient κ = γ/λ` we obtain the same
model, but only on a different scale. Using this scaling invariance, it is sufficient
to compute the density for a single value of κ. The density for other values of κ
can then be obtained by a suitable scaling.

Scaling invariance

Suppose that γ = aγ̃ and λ` = aλ̃`, where γ̃ > 0, λ̃` > 0 and a > 0 are fixed.
Recall that a scaling of the parameter pair by some a > 0 corresponds to a
scaling of the whole model corresponding to the parameters γ̃, λ̃` by the factor
1/a, see Sections 3.5.2, 3.5.3 and 4.6.1. For instance, we have that S∗H(γ, λ`)

d
=

1/a S∗H(γ̃, λ̃`), where S∗H(γ, λ`) is the typical segment system with parameters γ
and λ`. We can use this scaling invariance in order to calculate the probabil-
ity density fC∗(x; γ, λ`) from the knowledge of the density fC∗(x; γ̃, λ̃`) by an
appropriate scaling.

Theorem 5.11 For any pair (γ, λ`) of parameters γ, λ` > 0, regard the density
fC∗(x; γ, λ`) in (5.18). Then we have that

fC∗(x; γ, λ`) = afC∗(ax; γ̃, λ̃`) (5.35)

if γ/λ` = γ̃/λ̃` and a > 0 with λ` = aλ̃`.

Proof Let x > 0 and recall that S∗H(γ, λ`)
d
= 1/a S∗H(γ̃, λ̃`). This yields

fC∗(x; γ, λ`) = λ` E
N∑
i=1

1I[c(Ai),c(Bi))(x)

= aλ̃` E
N∑
i=1

1I[c(Ãi),c(B̃i))
(a x) = afC∗(ax; γ̃, λ̃`) ,

where we used that the shortest path does not change if the model is scaled, but
its length grows linearly as a 1-dimensional quantity. 2

Note that the same scaling invariance is true for the density fD∗ of the typical
Euclidean distance D∗ which can be shown in the same way. In the following, we
concentrate our study on the case that γ = 1 and different values of κ.
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Figure 5.12: fC∗ for Cox process H with λ`γ = 1 and different values of κ
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Figure 5.13: fC∗ for a p-thinning H with pλ(0) = 1 and different values of κ

Empirical densities

We simulated 50 000 cells for different values of κ and used the generated segment
systems in order to estimated the density f̂C∗(x;n) as explained in Section 5.5.1.
In Figures 5.12 and 5.13 some densities which are obtained in this manner are
shown. There are clear differences between the shapes of the densities for all
values of κ and the different considered models. However, for Cox processes
H on T it seems that the density fC∗ is close to the density of an exponential
distribution whereas for larger values of κ the shape of fC∗ changes to the shape of
a Weibull distribution. This observation motivates the study of so–called scaling
limits in the next chapter. In particular, we prove that the distribution of C∗
converges to known distributions for κ → 0 and κ → ∞, respectively, if C∗ is
appropriately scaled. If H is a thinning of T (0), then the densities look similar
to the densities of Cox processes for larger values of κ, but note that there is
a clear difference for small values of κ. A more comprehensive analysis of
the estimated densities of C∗ can be found in Chapter 7, where moments of C∗
are compared for different considered models. Furthermore, parametric densities
are fitted to the estimated ones in order to obtain analytical formulae for the
distributions of C∗ for different parameters γ and λ` and tessellation models



5.5 Statistical estimators 121

T . These parametric distributions are compared to distributions of connection
lengths estimated from real network data. This comparison reveals an excellent
fit between the parametric densities obtained via Monte–Carlo methods and the
densities observed in real data.
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Chapter 6

Scaling limits for the typical
Euclidean distance and the typical
shortest path lengths

In the present chapter we investigate the behavior of the typical Euclidean dis-
tance and the typical shortest path length as the parameters of the model con-
sidered in Chapter 5 tend to extremal cases. We focus here on the case that the
HLC are modeled by Cox processes H on the edges of a stationary tessellation T .
Recall that the distributions of both the typical shortest path length and the typ-
ical Euclidean distance depend on two parameters, namely the length intensity
γ of the underlying tessellation and the linear intensity λ` of H. Moreover, the
quotient κ = γ/λ` of both parameters defines the structure of the model, i.e., for
fixed κ the same model is obtained up to a scaling. Note that only few segments
of the underlying tessellation intersect each serving zone if κ is small, whereas
large values of κ yield a dense segment system in each serving zone. Thus, we
can consider the two limiting cases that κ tends to zero and infinity if the model
is simultaneously scaled in an appropriate way. In particular, we investigate the
case that κ = γ/λ` → 0 with λ` fixed and γ → 0 and the case κ = γ/λ` → ∞
with λ` → 0 and γ → ∞ such that γλ` = λ for some fixed value of λ > 0. The
main result of this chapter states that the distribution of the typical shortest path
length converges to an exponential distribution with parameter 2λ` for κ→ 0 and
to a Weibull distribution with parameters λπ/ξ2 and 2 for κ→∞, respectively,
where ξ ≥ 1 is some constant depending on the underlying tessellation model.

The chapter is organized as follows. In Section 6.1 we briefly discuss the
model we are considering. Afterwards, in Section 6.2, it is shown that the typical
shortest path length converges in distribution to an exponential distribution for
κ→ 0. This result is valid if the underlying tessellation is stationary. In this case,
the limiting distribution does not depend on the specific model of the underlying
tessellation. If the LLC are modeled by a Cox process, then the typical Euclidean
distance converges to the same distribution.

123
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Subsequently, in Section 6.3 we state that the typical Euclidean distance con-
verges to a Weibull distribution with parameters λπ and 2 for κ → ∞. This
result is obtained using classical results on weak convergence of rescaled thin-
nings of point processes, where the limiting point process is a stationary Poisson
process. Afterwards it is shown that there exists a constant ξ ≥ 1 such that the
difference between the typical Euclidean distance and shortest path length con-
verges in probability to zero which implies that the typical shortest path lengths
converges to a Weibull distribution with parameters λπ and 2 scaled by ξ, see
Theorem 6.2 in Section 6.3. The main steps of the proof of Theorem 6.2 are given
in Section 6.4. However, in order to keep the proof more transparent, we use a
Lemma whose proof is postponed to Section 6.5.

Afterwards, in Section 6.6 we show that for various models the conditions of
Theorem 6.2 are fulfilled and hence the typical shortest path length converges to
a Weibull distribution with parameters λπ/ξ2 and 2. Therefore, we have to show
that the considered tessellation models are mixing and that some integrability
condition is fulfilled which is indeed the case for the basic tessellation models
PDT, PLT and PVT, iterated tessellations based on these basic tessellations of
Poisson type and STIT tessellations. Furthermore, we can even show that the
constant ξ is equal to 1 if the underlying tessellation is a PLT or an iterated
tessellation with a PLT as initial tessellation.

The material presented in this chapter is partly based on results elaborated
in [99].

6.1 Scaled typical Euclidean distances and short-
est path lengths

In this chapter we consider basically the same model as defined in Chapter 5,
although we concentrate on the case that both LLC and HLC are modeled by
Cox processes on the edges of a stationary random tessellation.

In the following, we assume that T is a stationary random tessellation with
length intensity 1 and we use the notation Tγ = T/γ for the random tessellation
obtained from T by a scaling with the factor γ. Note that Eν1(T

(1)
γ ∩ [0, 1)2) =

Eν1(T (1) ∩ [0, γ)2)/γ = γ, thus the length intensity of Tγ is equal to γ for all
γ > 0. Using this construction, we define the structure (or model) of Tγ by T
and then scale T by 1/γ in order to obtain the length intensity we are interested
in. Then, given Tγ, both LLC and HLC are modeled by Cox processes L and H
with linear intensities λ′` and λ`, respectively, on the edges of Tγ and each point
of L is linked to the nearest point of H. Thus, the serving zones TH of H are
modeled by the Voronoi tessellation induced by H and the connection is obtained
either on the direct Euclidean distance or on the shortest path. In this way we
can construct the marked point processes LD = {(Ln, Dn)} and LC = {(Ln, Cn)},
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where Dn and Cn denotes the Euclidean distance and shortest path connection
length, respectively, from Ln to the nearest point of H, see also Sections 5.2 and
5.4. We are then interested in the typical Euclidean distance D∗ = D∗(λ`, γ) and
the typical shortest path length C∗ = C∗(λ`, γ), respectively, which only depend
on the parameters λ` > 0 and γ > 0, see Theorems 5.1 and 5.7. Recall that
D∗(λ`, γ)

d
= aD∗(aλ`, aγ)and C∗(λ`, γ)

d
= aC∗(aλ`, aγ) for all a > 0. Thus, if

κ = γ/λ` and κ′ = γ′/λ′` are equal, then we obtain the same distributions up to
a scaling.

Let T̃γ and H̃ denote the Palm versions of Tγ and H distributed according to
the Palm distribution P ∗L with respect to L. Note that D∗ and C∗ can then be
regarded as the Euclidean distance |H̃0| and the shortest path length c(H̃0) from
o to H̃0 along T̃ (1)

γ , respectively, where H̃0 denotes the closest point of H̃ to o. In
the following, we assume that the joint distribution of D∗, C∗, H̃ and T̃γ is given
by P ∗L. For further details on the model see Chapter 5.

Now we investigate the limiting behavior of D∗ and C∗ if κ→ 0 and κ→∞,
where D∗ and C∗ are appropriately scaled. In Figure 6.1 realizations of the model
for small and large values of κ are shown. Recall that for κ→ 0 and κ→∞ the
edge set of Tγ inside each serving zones becomes infinitely sparse and infinitely
dense, respectively. Thus, for small values of κ only one edge of T (1)

γ intersects
most of the serving zones whereas for large κ the serving zones are intersected by
a dense segment system.

6.2 Asymptotic exponential distribution for κ→ 0

To start with, we regard the case that κ = γ/λ` → 0, where λ` fixed and γ → 0.
Thus, the mean number of points per edge length of T (1)

γ is constant, but the
length intensity of Tγ tends to zero.

Theorem 6.1 Let T be an arbitrary stationary tessellation. Then, for any fixed
λ` > 0, it holds that

C∗(γ, λ`)
d→ Z as γ → 0 , (6.1)

where d→ denotes convergence in distribution and Z ∼ Exp(2λ`), i.e., the random
variable Z is exponentially distributed with expectation 1/(2λ`).

Proof Define Rγ = max{r > 0 : B(o, r) ∩ S̃oγ = B(o, r) ∩ T̃ (1)
γ }, where S̃oγ

denotes the segment containing the origin of the random edge set T̃ (1)
γ defined in

(5.1). It is easy to see that

lim
γ→0

Rγ =∞ a.s. (6.2)
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(a) κ = 1 (b) κ = 1000

Figure 6.1: Realizations of extreme values of κ

Now recall that C∗ is shortest path length from o to the closest point H̃0 of the
point process H̃ = {H̃n} of HLC under the Palm distribution P ∗L with respect to
L. Furthermore, note that the distribution function FC∗(x) of C∗ can be written
for all x ≥ 0 as

FC∗(x) = P(H̃0 ∈ B(o,Rγ)) P(C∗ ≤ x | H̃0 ∈ B(o,Rγ))

+ P(H̃0 6∈ B(o,Rγ)) P(C∗ ≤ x | H̃0 6∈ B(o,Rγ)) .

Since H̃ is a Cox process on S∗H with linear intensity λ`, we get that

P(C∗ ≤ x | H̃0 ∈ B(o,Rγ)) =
P(min{Z1, Z2} ≤ x,min{Z1, Z2} ≤ Rγ)

P(H̃0 ∈ B(o,Rγ))

for each x > 0. Here, Z1 and Z2 are independent, exponentially distributed
random variables with parameter λ` which are independent of Rγ. This yields

P(H̃0 6∈ B(o,Rγ)) = P(min{Z1, Z2} > Rγ) = E exp(−2λ`Rγ) ,

since min{Z1, Z2} is exponentially distributed with parameter 2λ` and indepen-
dent of Rγ. Now equation (6.2) implies that

lim
γ→0

P(H̃0 6∈ B(o,Rγ)) = 0 and lim
γ→0

P(H̃0 ∈ B(o,Rγ)) = 1

and as a consequence

lim
γ→0

FC∗(x) = P(min{Z1, Z2} ≤ x) = 1− exp(−2λ`x)
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for each x ≥ 0. Thus, the proof is completed. 2

Note that the case κ = γ/λ` → 0 with γ fixed and λ` → ∞ can also be treated
using Theorem 6.1. Due to the scaling invariance of the shortest path lengths we
get that

λ` C
∗(γ, λ`)

d
= C∗(γ/λ`, 1)

for any γ, λ` > 0. Thus, we can apply Theorem 6.1 which yields that

λ` C
∗(γ, λ`)

d→ Z as λ` →∞ ,

where Z ∼ Exp(2).
Furthermore, if L is a Cox process on Tγ, then it is easy to see that the typical

Euclidean distance D∗(γ, λ`) converges also in distribution to an exponential
distribution with parameter 2λ` for γ → 0 and fixed λ`, since the shortest path
connection length is obtained in the limit by the direct Euclidean distance, see
the proof of Theorem 6.1. However, if L is a planar Poisson process, then the
distribution of D∗(γ, λ`) does not converge for γ → 0, but D∗(γ, λ`) converges in
distribution to the spherical contact distribution of Tγ if γ is fixed and λ` →∞.

6.3 Asymptotic Weibull distribution for κ→∞
We now study the asymptotic behavior of the distributions of D∗ = D∗(γ, λ`)
and C∗ = C∗(γ, λ`) if the scaling factor κ tends to ∞, where we assume that
γ → ∞ and λ` → 0 such that λ`γ = λ is fixed. This means that the spatial
intensity λ of H is constant, but the edge set of Tγ gets denser as κ → ∞. In
particular, we show that D∗ converges in distribution to the (random) Euclidean
distance Z from the origin to the nearest point of a stationary Poisson process of
intensity λ and C∗ converges in distribution to ξZ, where ξ ≥ 1 is some constant
depending on T which is multiplied by Z. Then, it is not difficult to see that Z
as well as ξZ have Weibull distributions, see also [38, 105].

Theorem 6.2 Let T be ergodic and Z ∼Wei(λπ, 2) for some λ > 0, then

D∗(γ, λ`)
d→ Z as κ→∞ (6.3)

if γ →∞ and λ` → 0 such that λ = γλ`. Furthermore, let T be isotropic, mixing
and

E ν2
1(∂Ξ∗) <∞ , (6.4)

where we denote with ν1(∂Ξ∗) the circumference of the typical cell Ξ∗ of T . Then
there exists a constant ξ ≥ 1 such that

C∗(γ, λ`)
d→ ξZ as κ→∞ (6.5)

provided that γ →∞ and λ` → 0 with λ`γ = λ, where ξZ ∼Wei(λπ/ξ2, 2).
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We split the proof of Theorem 6.2 into several steps. First we show that,
under the Palm probability measure P ∗L, the typical Euclidean distance |H̃0| from
the origin to the nearest point H̃0 of H̃ = {H̃n} converges in distribution to
the corresponding characteristic of a stationary Poisson process with intensity
λ, see Lemma 6.2. Moreover, in Lemma 6.4 we then show that there exists a
constant ξ ≥ 1 such that the difference between ξ|H̃0| and the shortest path
length C∗ = C∗(γ, λ`) from the origin to H̃0 along the edge set T̃ (1)

γ converges
to zero in probability. Finally, combining the results of Lemmas 6.2 and 6.4, the
statement of Theorem 6.2 follows.

6.4 Proof of Theorem 6.2

6.4.1 Some auxiliary results

In order to prove Lemmas 6.1 and 6.2 we use two classical results regarding the
weak convergence of point processes that will be given below, see e.g. [21, 44, 58].
Note that a sequence of point processes X(1), X(2), . . . in R2 converges weakly or
in distribution to a point process X in R2 if and only if

lim
m→∞

P(X(m)(B1) = i1, . . . , X
(m)(Bk) = ik) = P(X(B1) = i1, . . . , X(Bk) = ik)

for all k ≥ 1, i1, . . . , ik ≥ 0 and for all finite sequences of bounded continuity
sets B1, . . . , Bk ∈ B(R2) of X, see also Theorem A.9. Note that a set B ∈ B(R2)
is called (stochastic) continuity set of X if P(X(∂B) > 0) = 0. If the sequence
X(1), X(2), . . . converges weakly, then we shortly write X(m) =⇒ X.

Now assume that X = {Xn} is an arbitrary ergodic point process in R2 which
fulfills the condition P(X(R2) = 0) = 0 and let λ ∈ (0,∞) denote its intensity.
Then the following limit theorem for independently thinned and appropriately re-
scaled versions of X can be proven. For each p ∈ (0, 1), let X(p) be a point process
which is obtained from X by independent thinning, where each point Xn of X
survives with probability p and is removed with probability 1− p independently
of the other points of X. Moreover, let Y (p) be a re-scaled version of the thinned
process X(p), i.e., we define Y (p) by Y (p)(B) = X(p)(B/

√
p) for each B ∈ B(R2).

Thus, for each p ∈ (0, 1), the point processes Y (p) and X are both stationary with
the same intensity λ and it can be shown that

Y (p) =⇒ Y if p→ 0, (6.6)

where Y is a stationary Poisson process in R2 whose intensity is equal to λ, see
e.g. Section 11.3 of [21] or Theorem 7.3.1 in [58]. Intuitively, this result can
be explained in the following way. The dependence between points of the point
process in domains A and B decreases with increasing distance between A and
B. Thus, if the point process is thinned independently only points far away of
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each other survive with high probability yielding a point process with complete
spatial randomness, i.e., a Poisson process.

Moreover, the following continuity property of Palm distributions is true. Let
X(1), X(2), . . . be a sequence of stationary point processes in R2 with intensities
λ1, λ2, . . ., and let X be another stationary point process in R2 with P(X(R2) =
0) = 0 whose intensity is given by λ. If λm = λ for all m ≥ 1 and in addition
X(m) =⇒ X as m→∞, then the Palm versions X(1)∗, X(2)∗, . . . of X(1), X(2), . . .
converge weakly to the Palm version X∗ of X, i.e.,

X(m)∗ =⇒ X∗ as m→∞, (6.7)

see e.g. Proposition 10.3.6 in [58].

6.4.2 Typical Euclidean distance

In the whole section we assume that the underlying tessellation T is an ergodic
tessellation. We first show that the Cox process H on T converges weakly to a
stationary Poisson process of intensity λ if κ→∞ under the condition that λ`γ =
λ is constant. This result is then used in order to prove that the typical Euclidean
distance D∗ = |H̃0| from the typical LLC to its nearest HLC is asymptotically
Weibull distributed.

Lemma 6.1 If κ = γ/λ` → ∞ provided that λ`γ = λ for some constant λ ∈
(0,∞), then H =⇒ Y , where Y is a stationary Poisson process with intensity λ.

Proof For all γ > 1, letH = H(γ) be the Cox process of HLC with parameters γ
and λ`, where λ` = λ/γ for some constant λ ∈ (0,∞). Then the Cox processH(γ)
can be constructed from H(1) by independent thinning with survival probability
p = 1/γ followed by a re-scaling with the scaling factor

√
1/γ, i.e.,

H(γ)
d
= H(1)(p) .

Moreover, the Cox process H(1) is ergodic since the underlying tessellation T
and hence the random intensity measure of H(1) is ergodic. Thus we can use
(6.6) which yields

H(γ) =⇒ Y as γ →∞.

2

Using Lemma 6.1 we can now show that |H̃0| converges in distribution to a
Weibull distribution.

Lemma 6.2 Let Z ∼Wei(λπ, 2) for some λ > 0. Then |H̃0|
d→ Z as κ→∞

provided that γ →∞ and λ` → 0 such that λ`γ = λ.
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Proof Let H∗ = H∗(γ) be the Palm version of the stationary point process
H = H(γ). Moreover, let Y be a stationary Poisson process with intensity λ.
Then the distribution of Y ∪ {o} is equal to the Palm distribution of Y due to
Slivnyak’s theorem, see Theorem 2.6. Thus, Lemma 6.1 and (6.7) yield that

H∗(γ) =⇒ Y ∪ {o} (6.8)

if γ → ∞ and λ` → 0 with λ`γ = λ. Since both L and H are Cox processes on
Tγ that are conditionally independent given Tγ, we have that H̃ ∪ {o} and the
Palm version H∗ of H have the same distributions. This follows from Slivnyak’
theorem for stationary Cox processes, see Theorem 3.3. Thus, for each r > 0 we
get

lim
γ→∞

P(|H̃0| > r) = lim
γ→∞

P(H̃(B(o, r)) = 0)

= lim
γ→∞

P((H̃ ∪ {o})(B(o, r)) = 1)

= lim
γ→∞

P(H∗(B(o, r)) = 1)

= P((Y ∪ {o})(B(o, r)) = 1)

= P(Y (B(o, r)) = 0) ,

where in the last but one equality formula (6.8) was used. Hence, for each r > 0,
we have

lim
γ→∞

P(|H̃0| > r) = P(Y (B(o, r)) = 0) = exp(−λπr2) ,

which proves that |H̃0|
d→ Z ∼Wei(λπ, 2). 2

6.4.3 Shortest path length vs. scaled Euclidean distance

In this section we investigate the difference between the typical shortest path
length and the typical Euclidean distance. Intuitively, one might expect that
the shortest path oscillates around the direct Euclidean connection for large κ.
Realizations of L and H together with their shortest paths and Euclidean connec-
tions are shown in Figure 6.2 for large κ. It seems that the shortest path lengths
deviate from the direct Euclidean distances by a constant factor for κ → ∞. In
the following we prove that under reasonable assumptions on T this is indeed the
case.

Throughout this section we assume that T is a stationary and isotropic ran-
dom tessellation which is also mixing. Moreover, we assume that the typical cell
Ξ∗ of T satisfies the integrability condition (6.4). Then it can be shown that for
some constant ξ ≥ 1 the difference between the scaled Euclidean distance ξ|H̃0|
and the shortest path length C∗ = C∗(γ, λ`) from the origin to H̃0 along the
edges of T̃γ converges in probability to zero. In the proof of this statement we
make use of the following auxiliary result.
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(a) PVT (b) PLT

Figure 6.2: Euclidean distances and shortest path for large κ.

Lemma 6.3 Let T̃ (1)
γ,ε =

{
u ∈ T̃

(1)
γ :

∣∣c(u) − ξ|u|
∣∣ < ε

}
, where ξ ≥ 1 is some

constant and c(u) denotes the length of the shortest path from u to the origin
along the edges of T̃ (1)

γ . If γ →∞ and λ` → 0, where λ`γ = λ is fixed, then there
exists ξ ≥ 1 such that for each ε > 0 and r > 0

lim
γ→∞

E exp
(
− λ

γ
ν1

(
T̃ (1)
γ \T̃ (1)

γ,ε ∩B(o, r)
))

= 1 . (6.9)

The proof of this lemma is shifted to Section 6.5 in order to make the proof
of Theorem 6.2 more transparent. Now we can use Lemma 6.3 in order to prove
the following lemma which completes the proof of Theorem 6.2.

Lemma 6.4 If γ → ∞ and λ` → 0 such that λ`γ = λ, then there is a constant
ξ ≥ 1 with C∗(γ, λ`)− ξ|H̃0|

P→ 0, where P→ denotes convergence in probability.

Proof We have to show that there exists some constant ξ ≥ 1 such that for any
ε > 0 and δ > 0 we can choose γ0 > 0 with

P
(∣∣C∗ − ξ|H̃0|

∣∣ > ε
)
≤ δ

for all γ > γ0. Note that we can rewrite P
(∣∣C∗ − ξ|H̃0|

∣∣ > ε
)
as

P
(∣∣C∗ − ξ|H̃0|

∣∣ > ε
)

= P
(∣∣C∗− ξ|H̃0|

∣∣ > ε, |H̃0| ≤ r
)

+ P
(∣∣C∗− ξ|H̃0|

∣∣ > ε, |H̃0| > r
)
,

where r > 0 is an arbitrary fixed number. Lemma 6.2 yields

P
(
|H̃0| > r

)
→ e−λπr

2

as γ →∞ ,
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thus we can choose r > 0 with P
(
|H̃0| > r

)
< δ/2 for all γ > 0 sufficiently large.

Hence, it suffices to show that there exists γ0 > 0 such that

P
(∣∣C∗− ξ|H̃0|

∣∣ > ε, |H̃0| ≤ r
)
≤ δ/2

for all γ > γ0. Now let Ñ = H̃(B(o, r)) denote the random number of atoms
of H̃ in the ball B(o, r). Since H̃ is a Poisson process with intensity measure
λ`ν1( · ∩ T̃ (1)

γ ) given T̃γ, we get

P
(∣∣C∗− ξ|H̃0|

∣∣ > ε, |H̃0| ≤ r
)

≤ E

(
∞∑
k=1

P(Ñ = k | T̃γ) P
(

max
i=1,...,k

(∣∣c(Yi)− ξ|Yi|∣∣) > ε
∣∣∣ T̃γ, Ñ = k

))

= E

(
∞∑
k=1

P(Ñ = k | T̃γ)
(

1− P
(∣∣c(Y1)− ξ|Y1|

∣∣ ≤ ε
∣∣ T̃γ)k)) ,

where the points Y1, . . . , Yk are conditionally independent and identically dis-
tributed according to the probability measure ν1

(
· ∩ T̃ (1)

γ ∩ B(o, r)
)
/ν1

(
T̃

(1)
γ ∩

B(o, r)
)
given T̃γ and Ñ = k. In particular, for the conditional probability in the

latter expression, we have

P
(∣∣c(Y1)− ξ|Y1|

∣∣ ≤ ε | T̃γ
)

=

∫
T̃

(1)
γ ∩B(o,r)

1I[−ε,ε](c(u)− ξ|u|) ν1(du)

ν1(T̃
(1)
γ ∩B(o, r))

=
ν1

(
T̃

(1)
γ,ε ∩B(o, r)

)
ν1

(
T̃

(1)
γ ∩B(o, r)

) .
Given T̃γ we can use that Ñ ∼ Poi(λ̃) with λ̃ = λ`ν1

(
T̃

(1)
γ ∩B(o, r)

)
which yields

∞∑
k=1

P(Ñ = k | T̃γ)
(

1− P
(∣∣c(Y1)− ξ|Y1|

∣∣ ≤ ε
∣∣ T̃γ)k)

= 1−
∞∑
k=0

e−λ̃
λ̃k

k!

(λ`ν1

(
T̃

(1)
γ,ε ∩B(o, r)

)
λ̃

)k
= 1−

∞∑
k=0

e−λ̃
1

k!

(
λ`ν1

(
T̃ (1)
γ,ε ∩B(o, r)

))k
= 1− exp(−λ`

(
ν1(T̃ (1)

γ \ν1(T̃ (1)
γ,ε ∩B(o, r))

)
.

Thus we have

lim
γ→∞

P
(∣∣C∗−|H̃0|

∣∣ > ε, |H̃0| ≤ r
)
≤ 1− lim

γ→∞
E exp

(
−λ
γ
ν1

(
T̃ (1)
γ \T̃ (1)

γ,ε ∩B(o, r)
))
.
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Now, using Lemma 6.3, we get that

lim
γ→∞

P
(∣∣C∗ − ξ|H̃0|

∣∣ > ε, |H̃0| ≤ r
)

= 0 ,

which completes the proof. 2

6.5 Proof of Lemma 6.3

This section is devoted to the proof of Lemma 6.3. In order to prove Lemma 6.3
we make use of some well-known results from measure theory, the theory of
subadditive processes, and geometric measure theory which are summarized in
the appendix. In particular, applying Theorems A.7, A.10 and A.12 it is possible
to prove Lemma 6.3. It is obvious that

lim sup
γ→∞

E exp
(
− λ

γ
ν1

(
T̃ (1)
γ \ T̃ (1)

γ,ε ∩B(o, r)
))
≤ 1.

Thus it suffices to show that

lim inf
γ→∞

E exp
(
− λ

γ
ν1

(
T̃ (1)
γ \ T̃ (1)

γ,ε ∩B(o, r)
))
≥ 1 . (6.10)

Proof of (6.10)

Note that the random intensity measure of the Cox process L is given by the
stationary random measure Λ(B) = λ′`ν1(B ∩ T (1)

γ ) for B ∈ B(R2). Due to
Slivnyak’s theorem for Cox processes (Theorem 3.3) we can identify the edge set
T̃

(1)
γ with the Palm version Λ∗

T
(1)
γ

of the stationary random measure Λ
T

(1)
γ

given

by Λ
T

(1)
γ

(B) = ν1(B ∩ T (1)
γ ) for B ∈ B(R2), see e.g. Lemma 3.4. We now use the

the abbreviation

h(τ (1)) = exp
(
−λ
γ
ν1(τ (1) \ τ (1)

ε ∩B(o, r))
)
,

where τ (1)
ε =

{
u ∈ τ (1) :

∣∣c(u)− ξ|u|
∣∣ < ε

}
and c(u) is the length of the shortest

path from u to the origin along the edges τ (1) of a tessellation τ which fulfills the
condition o ∈ τ (1). Then the Campbell theorem for stationary random measures
(Theorem 2.13) yields that

Eh(T̃ (1)
γ ) =

1

γν2(B(o, 1/γ))
E
(∫

T
(1)
γ ∩B(o,1/γ)

h(T (1)
γ − x)ν1(dx)

)
=

1

π
E
(∫

T (1)∩B(o,1)

h
(
T (1)
γ −

z

γ

)
ν1(dz)

)
,
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where in the last expression we used the substitution z = γx keeping in mind that
(1/γ)T (1) = T

(1)
γ . Moreover, we define T (1)

γ,ε,z = {y ∈ T (1)
γ : |c(y, z/γ)−ξ|y−z/γ|| <

ε}, where we denote by c(y, z/γ) the length of the shortest path from y to z/γ
along the edges of the considered graph. Using this notation, we get for each
γ ≥ 1 that

Eh
(
T̃ (1)
γ

)
=

1

π
E
(∫

T (1)∩B(o,1)

exp
(
− λ

γ
ν1

(
T (1)
γ \T (1)

γ,ε,z ∩B(z/γ, r)
))
ν1(dz)

)
≥ 1

π
E
(
ν1

(
T (1)∩B(o, 1)

)
inf

z∈T (1)∩B(o,1)
exp

(
− λ

γ
ν1

(
T (1)
γ \T (1)

γ,ε,z∩B(z/γ, r)
)))

=
1

π
E
(
ν1

(
T (1)∩B(o, 1)

)
exp

(
− sup
z∈T (1)∩B(o,1)

λ

γ
ν1

(
T (1)
γ \T (1)

γ,ε,z∩B(z/γ, r)
)))

≥ 1

π
E
(
ν1

(
T (1)∩B(o, 1)

)
exp

(
− sup
z∈T (1)∩B(o,1)

λ

γ
ν1

(
T (1)
γ \T (1)

γ,ε,z∩B(o, r + 1)
)))

.

Thus, in order to prove (6.10), it suffices to show that

Xγ = sup
z∈T (1)∩B(o,1)

1

γ
ν1

(
T (1)
γ \T (1)

γ,ε,z ∩B(o, r + 1)
)

L1

→ 0 for γ →∞. (6.11)

This can be seen in the following way. First (6.11) implies that Xγ converges in
probability to 0 which means that the random variable Yγ = exp(−λXγ)ν1(T (1)∩
B(o, 1)) converges in probability to ν1

(
T (1)∩B(o, 1)

)
. Furthermore, it holds that

Yγ ≤ ν1(T (1) ∩B(o, 1)) for all γ ≥ 1 and Eν1(T (1) ∩B(o, 1)) = π <∞. Thus, the
family {Yγ, γ ≥ 1} is uniformly integrable and we get with Theorem A.7 that Yγ
converges in L1 to ν1

(
T (1) ∩ B(o, 1)

)
. In particular, we have limγ→∞ 1/πEYγ =

1/πEν1

(
T (1)∩B(o, 1)

)
= 1 if (6.11) holds. Thus, (6.10) is a consequence of (6.11)

and it is hence sufficient to show (6.11).

Proof of (6.11)

Note that Xγ ≥ 0, thus it is sufficient to show that EXγ → 0. Moreover, the
segment system T

(1)
γ ∩B(o, r+ 1) satisfy the conditions of Theorem A.12 almost

surely since no segment of T (1)
γ ∩B(o, r+1) „points” to the origin with probability

1. Let `+
Φ denote the half line starting at o with direction Φ, then we can apply
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Theorem A.12 in order to get that

EXγ = E
(

sup
z∈T (1)∩B(o,1)

1

γ

∫
T

(1)
γ ∩B(o,r+1)

1I[ε,∞)

(∣∣c(y, z
γ

)− ξ|y − z

γ
|
∣∣) ν1(dy)

)
= E

(1

γ
sup

z∈T (1)∩B(o,1)

∫ 2π

0

∑
Xi∈T

(1)
γ ∩`+Φ :

|Xi|≤r+1

|Xi|
sinαi

1I[ε,∞)

(∣∣c(Xi,
z

γ
)− ξ|Xi −

z

γ
|
∣∣) dΦ

)

≤r + 1

γ
E
(∫ 2π

0

sup
z∈T (1)∩B(o,1)

∑
Xi∈T

(1)
γ ∩`+Φ :

|Xi|≤r+1

1

sinαi
1I[ε,∞)

(∣∣c(Xi,
z

γ
)− ξ|Xi −

z

γ
|
∣∣) dΦ

)

=
2π(r + 1)

γ
E
(

sup
z∈T (1)∩B(o,1)

∑
Xi∈T

(1)
γ ∩`+:

|Xi|≤r+1

1

sinαi
1I[ε,∞)

(∣∣c(Xi,
z

γ
)− ξ|Xi −

z

γ
|
∣∣))

= 2π(r + 1)Egγ
(
T (1)

)
,

where the last but one line is a consequence of Fubini’s theorem and the isotropy
of T (1)

γ . Here, we denote by `+ = `+
0 the half line with direction Φ = 0, and in

the last expression we used the notation

gγ
(
T (1)

)
=

1

γ
sup

z∈T (1)∩B(o,1)

∑
Xi∈T

(1)
γ ∩`+:

|Xi|≤r+1

1

sinαi
1I[ε,∞)

(∣∣c(Xi,
z

γ
)− ξ|Xi−

z

γ
|
∣∣) . (6.12)

Note that the point process T (1)∩R is stationary with intensity 2/π ([87], Theorem
4.5.3), where we identify R with the x-axis. Thus the inversion formula for
Palm distributions of stationary point processes on R can be applied, see e.g.
Proposition 11.3 (iii) in [45]. Now, if T (1)∗ denotes the Palm version of T (1) with
respect to the point process T (1) ∩ R, it follows that

Egγ
(
T (1)

)
=

2

π
E
(∫ ∞

0

1I[0,X∗1 ](x) gγ
(
T (1)∗ − x

)
dx
)
,

where we number the points of {X∗i } = T (1)∗ ∩ R in ascending order such that
. . . < X∗−1 < X∗0 = 0 < X∗1 < X∗2 < . . .. Thus, we have shown that, in order to
prove (6.11), it is sufficient to prove that

lim
γ→∞

E
(∫ ∞

0

1I[0,X∗1 ](x) gγ
(
T (1)∗ − x

)
dx
)

= 0 , (6.13)

where the function gγ : F → [0,∞) is defined in (6.12). We split the proof of
(6.13) into two main steps. In the first step, we show that

lim
γ→∞

g̃γ
(
x, T (1)∗) = 0 (6.14)
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almost everywhere with respect to the product measure ν1 ⊗ P ∗, where P ∗

denotes the distribution of T (1)∗ and we use the abbreviation g̃γ(x, T
(1)∗) =

1I[0,X∗1 ](x) gγ(T
(1)∗ − x). Then, in the second step, we show that the family

{g̃γ, γ > 0} is uniformly (ν1 ⊗ P ∗)-integrable. Thus the assumptions of The-
orem A.7 are then fulfilled which implies that (6.13) holds.

Proof of (6.14)

Notice that we get for each x ∈ [0, X∗1 ] that

gγ
(
T (1)∗ − x

)
≤ 1

γ
sup

z∈(T (1)∗−x)∩B(o,1)

∑
Xi∈(T

(1)∗
γ − x

γ
)∩`+:

|Xi|≤r+1

1

sinαi
1I[ε,∞)

(∣∣c(Xi,
z

γ
)− ξ|Xi −

z

γ
|
∣∣)

=
1

γ
sup

z∈T (1)∗∩B(x,1)

∑
X∗i ∈T (1)∗∩(`++x):
X∗i ∈B(x,(r+1)γ)

1

sinαi
1I[ε,∞)

(1

γ

∣∣c(X∗i , z)− ξ|X∗i − z|∣∣)

≤ 1

γ

∑
X∗i ∈T (1)∗∩(`++x):
X∗i ∈B(x,(r+1)γ)

1

sinαi
sup

z∈T (1)∗∩B(x,1)

1I[ε,∞)

(1

γ

∣∣c(X∗i , z)− ξ|X∗i − z|∣∣) .
Thus,

gγ
(
T (1)∗ − x

)
≤ 1

γ

∑
X∗i ∈T (1)∗∩`+:
|X∗i |≤(r+a)γ

1

sinαi
sup

z∈T (1)∗∩B(o,a)

1I[ε,∞)

(1

γ

∣∣c(X∗i , z)− ξ|X∗i − z|∣∣)

=
1

γ

∑
X∗i ∈T (1)∗∩`+:
|X∗i |≤(r+a)γ

1

sinαi
1I[ε,∞)

(1

γ
sup

z∈T (1)∗∩B(o,a)

∣∣c(X∗i , z)− ξ|X∗i − z|∣∣) ,
where we put a = 1 +X∗1 . Moreover, we have

1

γ
sup

z∈T (1)∗∩B(o,a)

∣∣c(X∗i , z)− ξ|X∗i − z|∣∣ ≤ 1

γ

(
c(X∗0 , X

∗
i )− ξ|X∗i |

)
+

1

γ

(
sup

z∈T (1)∗∩B(o,a)

c(z,X∗0 ) + ξa

)
,

which is due to the fact that c(X∗0 , X∗i )−c(X∗0 , z)≤c(X∗i , z)≤c(X∗0 , X∗i )+c(X∗0 , z)
and ξ|X∗i | − ξa ≤ ξ|X∗i − z| ≤ ξ|X∗i | + ξa for all i ≥ 1 and z ∈ T (1)∗ ∩ B(o, a).
Obviously, the second term of this upper bound tends to zero P ∗-almost surely
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as γ →∞. Now, in order to show that (6.14) holds, it is sufficient to show that
P ∗-almost surely there is i0 ∈ N with

1

γ

(
c(X∗0 , X

∗
i )− ξX∗i

)
∈
(
− ε

2
,
ε

2

)
(6.15)

for all i ≥ i0, γ ≥ 1 with X∗i ≤ (r + a)γ.

Proof of (6.15)

It is easy to see that X = {|X∗i − X∗j |, i, j ≥ 1, i < j} is an additive process
since |X∗i − X∗k | = |X∗i − X∗j | + |X∗j − X∗k | for i < j < k. Moreover, T (1)∗ ∩ R
is cycle-stationary (see e.g. [94]) which yields that {|X∗i − X∗j |}

d
= {|X∗i+1 −

X∗j+1|}, where 0 < EX∗1 < ∞. Thus, using Theorem A.10 it follows that the
finite limit limi→∞X

∗
i /i = ζX exists P ∗-almost surely. Now consider the family

Y = {Yij, i, j ≥ 1, i < j} of non-negative random variables which is given by
Yij = c(X∗i , X

∗
j ), where c(X∗i , X∗j ) denotes the shortest path length from X∗i to

X∗j on T (1)∗. Then, it is not difficult to see that Yik ≤ Yij +Yjk for i < j < k. Due

to the cycle-stationarity of T (1)∗ ∩ R, we get that {Yij}
d
= {Yi+1,j+1} and EY01 =

Ec(X∗0 , X∗1 ) < ∞ is a consequence of condition (6.4), see the next paragraph
below. Thus we get that Y is a subadditive process and hence Theorem A.10 can
be applied in order to get that the finite limit limj→∞ c(X

∗
0 , X

∗
j )/j = ζY exists

P ∗-almost surely. Since both X and Y are ergodic, see the paragraphs below, the
limits ζX and ζY are constant. Bearing in mind that 0 < EX∗1 = ζX ≤ ζY <∞,
this gives that

lim
j→∞

c(X∗0 , X
∗
j )

X∗j
= lim

j→∞

j

X∗j

c(X∗0 , X
∗
j )

j
= ξ , (6.16)

where ξ = ζY/ζX ∈ [1,∞). Now assume that ε̃ > 0 with ε̃(r + a) < ε/2. Then,
using (6.16), it follows that with probability 1

c(X∗0 , X
∗
i )

X∗i
− ξ ∈ (−ε̃, ε̃)

for all i which are sufficiently large and, as a consequence,

1

γ

(
c(X∗0 , X

∗
i )− ξX∗i

)
∈
(
− ε

2
,
ε

2

)
if i is sufficiently large, γ ≥ 1 and X∗i /γ ≤ r + a.

Proof of Ec(X∗0 , X∗1 )<∞

We consider the stationary marked point process {(Xn,Ξ
+
n )}, where {Xn} =

T (1) ∩R denotes the point process of intersection points of the edge set T (1) with
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the x-axis R, and each point is marked with the cell Ξ+
n of T on the right of Xn.

Let λ+ be the intensity of the stationary marked point process {(Xn,Ξ
+
n )}, and

let Ξ+∗ denote its typical mark. Then we can use the definition of the Palm mark
distribution in order to get that

E c(X∗0 , X∗1 ) ≤ E ν1(∂Ξ+∗) =
1

λ+
E

∑
Xi∈T (1)∩[0,1)

ν1(∂Ξ+
i )

=
1

λ+
E
∑
Ξi∈T

1I{∂+Ξi∩[0,1) 6=∅}ν1(∂Ξi) ,

where ∂+Ξ denotes that part of the boundary of Ξ with outer unit normal vector
in [π/2, 3π/2). Now we can apply Campbell’s theorem to the latter expression,
which gives

Ec(X∗0 , X∗1 ) ≤ λT
λ+

Eν1(∂Ξ∗)

∫
R2

1I{∂+Ξ∗+x∩[0,1) 6=∅}ν2(dx)

=
λT
λ+

Eν1(∂Ξ∗)ν2([0, 1)⊕ ∂+Ξ∗) ,

where λT = 1/E ν2(Ξ∗). It is easy to see that ν2([0, 1) ⊕ ∂+Ξ∗) ≤ a ν1(∂Ξ∗)
for some constant a < ∞ which implies that E c(X∗0 , X∗1 ) ≤ (aλT/λ

+) Eν2
1(∂Ξ∗).

Thus, the assertion is shown since it is assumed that Eν2
1(∂Ξ∗) <∞.

Ergodicity

We only show that the subadditive process X is ergodic. The ergodicity of Y can
be shown exactly in the same way. Let IS ⊂ B(S) denote the σ-algebra of those
subsets of the space S of double-indexed sequences, which are invariant under the
shift defined by {|X∗i − X∗j |} 7−→ {|X∗i+1 − X∗j+1|}, see Chapter A.2. Moreover,
note that we can write X = h(T

(1)∗
γ ) for some measurable function h : F → S.

It holds that for any deterministic tessellation τ in R2 and all A ∈ IS , we have
h(τ (1)) ∈ A if and only if h(τ (1) − x) ∈ A for all x ∈ [0,∞). Thus, the definition
of the Palm distribution of the stationary point process {Xi} = T (1) ∩ R with
intensity 2/π yields for any A ∈ IS that

P(X ∈ A) = P(h(T (1)∗) ∈ A)

=
π

2
E

∑
Xi∈T (1)∩B(o,1)∩`+

1IA(h(T (1) −Xi))

=
π

2
E
(
1IA(h(T (1))) #{Xi ∈ T (1) ∩B(o, 1) ∩ `+}

)
=

π

2
E
(
1Ih−1(A)(T

(1)) #{Xi ∈ T (1) ∩B(o, 1) ∩ `+}
)
.
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However, since the random tessellation T is mixing and h−1(A) = h−1(A) +x for
any A ∈ IS and x ∈ `+, we get that

P
(
T (1) ∈ h−1(A)

)
= lim

|x|→∞,x∈`+
P
(
T (1) ∈ h−1(A), T (1) − x ∈ h−1(A)

)
= P

(
T (1) ∈ h−1(A)

)2
,

which means that P
(
T (1)∈ h−1(A)

)
= 0 or P

(
T (1)∈ h−1(A)

)
= 1. Thus, altogether

we have

P(X ∈ A) = P
(
T (1) ∈ h−1(A)

) π
2

E #{Xi ∈ T (1) ∩B(o, 1) ∩ `+}

= P
(
T (1) ∈ h−1(A)

)
which yields P(X ∈ A) = 0 or P(X ∈ A) = 1 for any A ∈ IS . This implies that
X is ergodic.

Uniform integrability

It only remains to show that the family {g̃γ, γ > 0} considered in (6.14) is
uniformly (ν1 ⊗ P ∗)-integrable. Note that we can apply the ergodic theorem for
stationary marked point processes, see Theorem 2.8, in order to get that

lim
γ→∞

1

γ

∑
Xi∈T (1)∩`+:
|Xi|≤(r+1)γ

1

sinαi
= (r + 1) lim

γ→∞

1

(r + 1)γ

∑
Xi∈T (1)∩`+:
|Xi|≤(r+1)γ

1

sinαi

= (r + 1) E
1

sinα∗

almost surely and in L1 using the fact that the point process T (1) ∩ R marked
with the intersection angles is ergodic, which can be shown in the same manner
as the ergodicity of X. Here we denote by α∗ the typical intersection angle which
is distributed according to the density fα∗(α) = sin(α)/2 for 0 ≤ α < π, see e.g.
[90], p. 288, which yields E(sinα∗)−1 = π/2 <∞. Thus

0 = lim
γ→∞

E
∣∣∣∣ 1

γ

∑
Xi∈T (1)∩`+:
|Xi|≤(r+1)γ

1

sinαi
− (r + 1) E

1

sinα∗

∣∣∣∣
= lim

γ→∞

2

π
E
∫

R
1I[0,X∗1 ](x)

∣∣∣∣ 1

γ

∑
Xi∈(T (1)∗−x)∩`+:
|Xi|≤(r+1)γ

1

sinαi
− (r + 1) E

1

sinα∗

∣∣∣∣ dx ,
where in the last equality we applied the inversion formula for Palm distributions
of stationary marked point processes on R, see Proposition 11.3 (iii) in [45].
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That means we have shown that

1I[0,X∗1 ](x)
1

γ

∑
Xi∈(T (1)∗−x)∩`+:
|Xi|≤(r+1)γ

1

sinαi
→ (r + 1)1I[0,X∗1 ](x) E

1

sinα∗

in L1(ν1⊗P∗) as γ →∞. Thus, Theorem A.7 implies that the family {hγ, γ > 0}
with

hγ(x, T
(1)∗) = 1I[0,X∗1 ](x)

1

γ

∑
Xi∈(T (1)∗−x)∩`+:
|Xi|≤(r+1)γ

1

sinαi

is uniformly (ν1 ⊗ P ∗)-integrable. Moreover, we have that

1I[0,X∗1 ](x)gγ(T
(1)∗ − x) ≤ 1I[0,X∗1 ](x)

1

γ

∑
Xi∈(T (1)∗−x)∩`+:
|Xi|≤(r+1)γ

1

sinαi
.

As a consequence, Lemma A.8 implies that the family {g̃γ, γ > 0} considered in
(6.14) is uniformly (ν1 ⊗ P ∗)-integrable.

6.6 Examples
Note that we assumed in Theorem 6.2 that the underlying tessellation T is sta-
tionary and isotropic. All examples of tessellations which are considered in this
section obviously have these properties. Moreover, it was assumed in Theorem 6.2
that T is in addition mixing and fulfills the integrability condition (6.4). To begin
with, we show that the mixing condition is satisfied for a wide class of stationary
tessellations. Furthermore, we also show that the integrability condition (6.4) is
fulfilled.

The tessellation models which are considered in the literature concentrate
mainly on PDT, PLT and PVT, iterated tessellations constructed from these
basic tessellation models of Poisson type and STIT tessellations, see e.g. [1, 5,
6, 8, 34, 75]. In this chapter, wee assume that an iterated tessellation is either
a TI/TII-nesting or a TI/TII-superposition of the random tessellations TI and
TII as defined in Section 3.4.4, see also [5, 55, 102]. Recall that the edge set of a
TI/TII-superposition is given by the union T (1)

I ∪T
(1)
II of the edge sets of TI and TII

which are assumed to be independent. Moreover, a TI/TII-nesting is constructed
by a subdivision of each cell of TI based on independent copies of TII . Note that
a STIT tessellation can be regarded as the weak limit of nested tessellations,
where the cells of TI are subdivided infinitely often followed by an appropriate
rescaling, see [74]. In the following, we show that for these important models the
assumptions of Theorem 6.2 are fulfilled. Moreover, if the underlying tessellation
T is a PLT or a TI/TII-superposition/nesting based on a PLT TI , then we can
even calculate the constant ξ explicitly which appears in Theorem 6.2. On the
other hand, if T is a PDT, then we can obtain an upper bound for ξ.
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6.6.1 Mixing tessellations

Suppose that the underlying tessellation T is isotropic and stationary. In order to
apply Theorem 6.2 we have to show additionally that T is a mixing tessellation.
A useful criterion to decide if a random closed set is mixing can be found in the
following theorem which is a slight modification of Theorem 2.12.

Lemma 6.5 A stationary random closed set Ξ in R2 is mixing if and only if

lim
|x|→∞

P(Ξ ∩ C1 = ∅, Ξ ∩ (C2 + x) = ∅) = P(Ξ ∩ C1 = ∅) P(Ξ ∩ C2 = ∅) (6.17)

for all C1, C2 ∈ R, where R is the family of all subsets of R2 which are finite
unions of closed balls with rational radii and centers with rational coordinates.

Proof The statement of Lemma 6.5 is essentially Theorem 2.12, see also
Lemma 4 in [40] and Theorem 9.3.2 in [87]. There, the slightly stronger con-
dition is considered that equation (6.17) holds for all compact sets C1, C2 ⊂ R2.
However, it is not difficult to see that it is sufficient to assume that (6.17) only
holds for the separating class R, see also Section 1.4 of [70] for similar statements.
In order to prove the assertion, we only have to show that the system E defined
by E = {FC0

C1,...,Ck
: C0, . . . , Ck ∈ R′, k ≥ 0} is a semi-algebra that generates the

σ–algebra B(F), where R′ = R∪ {∅} and FC0
C1,...,Ck

is given by

FC0
C1,...,Ck

= {F ∈ F : F ∩ C0 = ∅, F ∩ C1 6= ∅, . . . , F ∩ Ck 6= ∅} .

Notice that the family R′ is union-stable. Hence Lemma 2.2.2 in [87] can be
applied which yields that E is a semi-algebra. Furthermore, let G ⊂ R2 be an
open set, then G =

⋃∞
i=1Ci for a sequence C1, C2, . . . ∈ R′ and FG = {F ∈

F : F ∩ G 6= ∅} =
⋃∞
n=1F⋃ni=1 Ci

, thus we have FG ∈ σ(E). Since the family
{FG : G ⊂ R2 open} generates B(F), we get that σ(E) = B(F). The assertion of
Lemma 6.5 can now be proven using exactly the same arguments as in the proof
of Lemma 4 in [40]. 2

Note that it is well known that the basic tessellations of Poisson type, i.e., PDT,
PVT and PLT, are mixing, see e.g. Chapter 10.5 in [87]. Very recently, it
was shown in [49] that STIT tessellations are mixing. Moreover, we can use
Lemma 6.5 in order to show that T is mixing if T is an iterated tessellation
which is constructed based on these basic tessellations models.

Lemma 6.6 The tessellation T is mixing if T is a TI/TII-superposition of two
mixing tessellations TI and TII , or a TI/TII-nesting of a mixing initial tessellation
TI and any stationary component tessellation TII .
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Proof We use Lemma 6.5 in order to proof the lemma. First assume that the
tessellation T is a TI/TII-superposition. Then we get for any C1, C2 ∈ R that

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅)
= P(T

(1)
I ∩ C1 = ∅, T (1)

I ∩ (C2 + x) = ∅, T (1)
II ∩ C1 = ∅, T (1)

II ∩ (C2 + x) = ∅)
= P(T

(1)
I ∩ C1 = ∅, T (1)

I ∩ (C2 + x) = ∅) P(T
(1)
II ∩ C1 = ∅, T (1)

II ∩ (C2 + x) = ∅) ,

since TI and TII are independent. Thus Lemma 6.5 yields that T is mixing if both
TI and TII are mixing. Now let T be a TI/TII-nesting of a mixing initial tessella-
tion TI and a stationary component tessellation TII . Furthermore, assume that
C1 = ∪nj=1Bj, C2 = ∪n+m

j=n+1Bj for a finite family of closed balls B1, . . . , Bn+m ⊂ R2

with rational radii and centers with rational coordinates and let Ξ1,Ξ2, . . . de-
note the cells of the initial tessellation TI = {Ξn}. We use the notation D for
the family of all decompositions of the index set {1, . . . , n + m} into non-empty
subsets, and for J = {J1, . . . , Jk} ∈ D we consider the set

AJ(x) = {∪j∈Ji(Bj + x1I{j>n}) ⊂ Ξ̊ji , i = 1, . . . , k, Ξji 6= Ξjl for ji 6= jl} , (6.18)

i.e., each of the sets ∪j∈Ji(Bj + x1I{j>n}) is contained in a different cell of the
initial tessellation TI . Then, using this notation, we have

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅)

=
∑
J∈D

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ(x)) .

Notice that the cells Ξ1,Ξ2, . . . of TI are bounded with probability 1, thus we get

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ(x)) = 0

if there are i ≤ n and j > n such that i, j ∈ Jl for some l ∈ {1, . . . , k}. On the
other hand, if we assume that J = {J1, . . . , Jk} is a decomposition of {1 . . . , n+m}
with Ji ⊂ {1, . . . , n} for i = 1, . . . , l and Ji ⊂ {n+1, . . . , n+m} for i = l+1, . . . , k,
then we get that

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ(x))

= P(AJ(x), BJi ∩ T
(1)
II,i = ∅, i = 1, . . . , l, BJi+ x ∩ T (1)

II,i = ∅, i = l + 1, . . . , k),

where BJi = ∪j∈JiBj and TII,1, . . . , TII,k are independent copies of the component
tessellation TII that are independent of TI . Using this independence and the
definition of AJ(x), we get that

P(AJ(x), BJi ∩ T
(1)
II,i = ∅, i = 1, . . . , l, BJi + x ∩ T (1)

II,i = ∅, i = l + 1, . . . , k)

= P(AJ(x)) P(BJi ∩ T
(1)
II,i = ∅, i = 1, . . . , l) P(BJi ∩ T

(1)
II,i = ∅, i = l + 1, . . . , k).
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Furthermore, since TI is mixing, we directly get from the definition of mixing
random closed sets that

lim
|x|→∞

P(AJ(x)) = P(AJ ′(o)) P(AJ ′′(o)) ,

where J ′ = {J1, . . . , Jl} and J ′′ = {Jl+1, . . . , Jk} are the decompositions of
{1, . . . , n} and {n + 1, . . . , n + m}, respectively, which are induced by J . Fur-
thermore, AJ ′(o) and AJ ′′(o) are defined analogously to (6.18). Summarizing all
considerations from above, we get that

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ(x))

= P(AJ ′(o), BJi ∩ T
(1)
II,i = ∅, i = 1, . . . , l)

× P(AJ ′′(o), BJi ∩ T
(1)
II,i = ∅, i = l + 1, . . . , k)

= P(T (1) ∩ C1 = ∅, AJ ′(o)) P(T (1) ∩ C2 = ∅, AJ ′′(o)) ,

which yields

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅)

=
∑
J∈D

lim
|x|→∞

P(T (1) ∩ C1 = ∅, T (1) ∩ (C2 + x) = ∅, AJ(x))

=
∑
J ′∈D′

∑
J ′′∈D′′

P(T (1) ∩ C1 = ∅, AJ ′(o)) P(T (1) ∩ C2 = ∅, AJ ′′(o))

= P(T (1) ∩ C1 = ∅) P(T (1) ∩ C2 = ∅) ,

where D′ and D′′ denote the families of all decompositions of {1, . . . , n} and
{n+1, . . . , n+m}, respectively. Thus we can apply Lemma 6.5 which yields that
the nested tessellation T is mixing. 2

6.6.2 Second moment of perimeter of the typical cell

Recall that, in order to apply Theorem 6.2, the random tessellation T has to
fulfill the integrability condition (6.4). In this section we show that the second
moment of the circumference of the typical cell is finite for the above considered
tessellations. In the following, we use the notation R(Ξ) for the radius of the
minimal ball which can be circumscribed to the random convex polygon Ξ.

Lemma 6.7 If T is a PVT, PDT, PLT and STIT tessellation, respectively, then
ER2(Ξ∗) <∞ and, consequently,

Eν2
1(∂Ξ∗) <∞ . (6.19)
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Moreover, (6.19) holds if T is a TI/TII-superposition/nesting such that

max{ER2(Ξ∗I),ER2(Ξ∗II)} <∞ , (6.20)

where Ξ∗I and Ξ∗II is the typical cell of TI and TII , respectively.

Proof Since the boundary length is a monotonic increasing functional on the
space of convex bodies in R2, we get that

Eν2
1(∂Ξ∗) ≤ 4π2ER2(Ξ∗) (6.21)

holds for the typical cell Ξ∗ of any stationary tessellation T . If T is a PDT,
then the distribution of R(Ξ∗) is known, see e.g. [66], Theorem 7.5 in [71] and
Theorem 10.4.4 in [87], and it can be easily shown that ER2(Ξ∗) <∞. Moreover,
it is well known that ER2(Ξ∗) <∞ if T is either a PVT or PLT, see e.g. [18]. Since
the interior of the typical cell of a STIT tessellation has the same distribution as
the interior of the typical cell of a PLT, see [74], we directly get that ER2(Ξ∗) <∞
for STIT tessellations.

If T = TI/TII is an iterated tessellation with cell intensity λT , then Propo-
sition 3.1 in [54] can be applied together with Campbell’s theorem in order to
get

Eν2
1(∂Ξ∗) =

λI
λT

E
( ∑

Ξi∈TII

ν2
1(∂(Ξi ∩ Ξ∗I)) 1I{Ξi∩Ξ∗I 6=∅}

)
=

λIλII
λT

E
∫

R2

ν2
1(∂(Ξ∗II + x ∩ Ξ∗I)) 1I{Ξ∗II+x∩Ξ∗I 6=∅} ν2(dx) .

Here we denote with λI , λII and Ξ∗I ,Ξ
∗
II the cell intensities and the typical cells

of TI and TII , respectively. Note that we can assume that the typical cells
Ξ∗I and Ξ∗II are independent. Furthermore, we have ν2

1(∂(Ξ∗II + x ∩ Ξ∗I)) ≤
min{ν2

1(∂Ξ∗I), ν
2
1(∂Ξ∗II)}, thus, we get

Eν2
1(∂Ξ∗) ≤ λIλII

λT
E
(

min{ν2
1(∂Ξ∗I), ν

2
1(∂Ξ∗II)}ν2(Ξ̌∗II ⊕ Ξ∗I)

)
≤ 4π λIλII

λT
E
(

min{ν2
1(∂Ξ∗I), ν

2
1(∂Ξ∗II)} max{R2(Ξ∗I), R

2(Ξ∗II)}
)
,

where we used in the latter inequality that

ν2(Ξ̌∗II ⊕ Ξ∗I) ≤ πR2(Ξ̌∗I ⊕ Ξ∗II) ≤ 4πmax{R2(Ξ∗I), R
2(Ξ∗II)} .

Finally, using (6.21) and the independence of the cells Ξ∗I and Ξ∗II , we get

Eν2
1(∂Ξ∗) ≤ 4π3 λIλII

λT
E
(

min{R2(Ξ∗I), R
2(Ξ∗II)} max{R2(Ξ∗I), R

2(Ξ∗II)}
)

=
4π3 λIλII

λT
ER2(Ξ∗I) ER2(Ξ∗II) < ∞ ,

if condition (6.20) is fulfilled. 2
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6.6.3 Asymptotic Weibull distribution of the typical short-
est path lengths

We have shown in Sections 6.6.1 and 6.6.2 that the assumptions of Theorem 6.2
are fulfilled for a large class of random tessellations T and hence Theorem 6.2 can
be applied. The results are summarized in the following corollary. Furthermore,
we show that in same cases the constant ξ can be calculated explicitly.

Corollary 6.8 Let Z ∼ Wei(λπ, 2) and let T be a PDT, PVT, PLT, STIT
tessellation or an iterated tessellation T = TI/TII such that condition (6.20) is
fulfilled, where T is either

1. a superposition of two mixing tessellations TI and TII , or

2. a nesting of a mixing initial tessellation TI and any stationary component
tessellation TII .

Then C∗ d→ ξZ for some constant ξ ≥ 1 provided that γ → ∞ and λ` → 0 such
that λ`γ = λ. Furthermore, if T is a PLT or a TI/TII-superposition/nesting,
where TI is a PLT, then ξ = 1. If T is a PDT, then ξ ≤ 4/π ≈ 1.27.

Proof In order to prove the first part of the assertion, we can apply Theorem 6.2
bearing in mind the results of Lemmas 6.6 and 6.7 as well as the comments
immediately before Lemma 6.6.

Now we regard the cases that T is a PLT, a TI/TII-superposition/nesting
with a PLT TI , or a PDT. First assume that T is a PLT with intensity 1. The
edge set T̃ (1)

γ of the tessellation T̃γ is then induced by a random sequence of lines
`0, `1, . . . . Due to Slivnyak’s theorem we have that `1, `2, . . . form the edge set
T

(1)
γ of the (stationary and isotropic) PLT Tγ and `0 is an additional line through

the origin o which is isotropic and independent of Tγ. This yields

1

γ
ν1(T̃ (1)

γ \T̃ (1)
γ,ε ∩B(o, r)) ≤ 1

γ
ν1(T (1)

γ ∩B(o, r)) +
2r

γ
.

Note that due to formula (2.25)

ν1(T (1)
γ ∩B(o, r))/γ = πr2ν1(T (1) ∩B(o, rγ))/ν2(B(o, rγ))

converges to r2π in L1 since T is a PLT which is mixing and, therefore, ergodic.
Thus, using Theorem A.7, together with Lemma A.8, we have that the family of
random variables {Xγ, γ > 0} with Xγ = ν1(T̃

(1)
γ \T̃ (1)

γ,ε ∩ B(o, r))/γ is uniformly
integrable. Moreover, we have shown in Lemma 6.3 that the Laplace transform
of Xγ converges to 1. This implies that Xγ

P→ 0, see e.g. [45], Theorem 5.3. Thus
we can apply Theorem A.7 again which yields

lim
γ→∞

EXγ = 0 . (6.22)
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However, if T (1)
γ gets denser, there are lines which intersect the line through o close

to o. Thus, all points on these lines have approximately the direct connections
as shortest paths which can be used in order to show that ξ = 1. Assume that
ξ > 1 and let r > 2 > ε > 0 with ξ > 1 + ε and define the segment S0,ε

by S0,ε = `0 ∩ B(o, ε/2). Then, if the line `i intersects S0,ε, we get for each
y ∈ `i that 0 ≤ c(y) − |y| ≤ ε since the length of the path from y to o via the
intersection point `i ∩ S0,ε cannot be longer than |y|+ ε. Thus, if |y| > 2 we get
that (ξ − 1)|y| ≥ ε and hence∣∣c(y)− ξ|y|

∣∣ =
∣∣c(y)− |y| − (ξ − 1)|y|

∣∣ ≥ ε(|y| − 1) ≥ ε ,

which implies that y ∈ T̃
(1)
γ \T̃ (1)

γ,ε . Moreover, if `i ∩ S0,ε 6= ∅, then it is easy to
see that ν1(`i ∩ B(o, r)\B(o, 2)) ≥ a for some constant a > 0. With these two
observations we get

Xγ =
1

γ
ν1(T̃ (1)

γ \T̃ (1)
γ,ε ∩B(o, r)) ≥ 1

γ
ν1

( ⋃
i:`i∩S0,ε 6=∅

{`i ∩B(o, r)\B(o, 2)}
)

≥ a

γ
#{`i : `i ∩ S0,ε 6= ∅} .

Furthermore, since T is a PLT, we have #{`i : `i∩S0,ε 6= ∅} ∼ Poi(2 εγ/π) which
yields

lim inf
γ→∞

EXγ ≥ lim
γ→∞

a

γ
E#{`i : `i ∩ S0,ε 6= ∅} =

2 εa

π
> 0 .

But this is a contradiction to (6.22) and hence ξ = 1.
Now assume that the tessellation T = TI/TII is a superposition/nesting such

that TI is a PLT. Then we have

1

γ
ν1(T̃ (1)

γ \T̃ (1)
γ,ε ∩B(o, r)) ≥ 1I{o∈T̃ (1)

I,γ}
1

γ
ν1(T̃

(1)
I,γ \T̃

(1)
I,γ,ε ∩B(o, r)) ,

where T̃ (1)
I,γ is that part of T̃ (1)

γ which corresponds to the initial tessellation TI .
However, TI is assumed to be a PLT, thus the same arguments as above can be
applied in order to show that ξ = 1.

Finally, assume that T is a PDT and let N(y) denote that vertex of T which
is closest to y ∈ R2. In [8] it was shown that for any t > 0 and y ∈ ∂B(o, 1),
there is a path P (ty) along T (1) from N(o) to N(ty) of length c(P (ty)) such that
almost surely

lim
t→∞

c(P (ty))

t
=

4

π
. (6.23)

Now let ` = {sy : s ∈ R} denote a line of direction y and consider the stationary
point process T (1) ∩ ` of intersection points {Xi} which are ordered such that
· · · < X−1 < X0 ≤ 0 < X1 < · · · . Moreover, let c(Xi, Xj) denote the shortest
path length between Xi and Xj on T (1). We then consider the stationary marked



6.7 Numerical results and possible extensions 147

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

PDT,    = 2.5
PDT,    = 1.0
PDT,    = 0.1
Exp(2)

κ
κ
κ

(a) κ→ 0 (where λ` = 1)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

PDT,   = 2000
PDT,   = 1500
PDT,   = 1000
Wei(    /1.065²,2)πλ
Wei(    ,2)πλ

κ
κ
κ

(b) κ→∞ (where γλ` = 1)

Figure 6.3: Density fC∗ for PDT together with corresponding limit distributions

point process {(Xi, c(Xi, N(Xi))} and we denote its typical mark by c∗N . Then
we get for each i > 0 that

c(X0, Xi)

|Xi −X0|
≤ c(N(o), N(Xi))

|Xi −X0|
+
c(X0, N(o))

|Xi −X0|
+
c(Xi, N(Xi))

|Xi −X0|

≤ c(P (Xi))

|Xi|
+
c(X0, N(o))

|Xi|
+
c(Xi, N(Xi))

|Xi|
.

It is easy to see that the second summand of the latter expression tends to 0 as
i→∞. The same is true for the third summand since the marked point process
{(Xi, c(Xi, N(Xi))} is ergodic and furthermore E c∗N < ∞. Thus, we can use
(6.23) and get that

lim sup
i→∞

c(X0, Xi)

|Xi −X0|
≤ 4

π
. (6.24)

On the other hand, it holds that P(limi→∞ c(X0, Xi)/|Xi − X0| = ξ) = 1 if and
only if P(limi→∞ c(X

∗
0 , X

∗
i )/|X∗i − X∗0 | = ξ) = 1, where {X∗i } denotes the Palm

version of {Xi}. Thus (6.24) and (6.16) yield that ξ ≤ 4/π. 2

6.7 Numerical results and possible extensions

In this section some results obtained from Monte-Carlo simulation are shown.
Furthermore, we discuss some possible generalizations of Theorem 6.2 which can
be obtained using the basically the same proof technique.
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Figure 6.4: Density fC∗ for PLT together with corresponding limit distributions

6.7.1 Numerical results

For small and large κ we simulated the typical segment system S∗H for PDT,
PLT and PVT, respectively, and estimated the density of C∗ with the estima-
tor introduced in (5.20). In Figures 6.3–6.5 the estimated densities are shown
shown for different values of κ together with the density of the exponential and
Weibull distribution, respectively. The densities are already very close to an
exponential distribution for κ = 1 and for κ = 0.1 one can hardly distinguish
the density of C∗ from the density of the exponential distribution for all consid-
ered models. In Figure 6.4(b) the estimated density for κ = 1000, 2000, 10000
and γλ` = 1 is displayed for PLT together with the density of the Wei(λπ, 2)-
distribution. For κ = 1000, 2000 the densities still differ considerably from the
density of the Wei(λπ, 2)-distribution, but for κ = 10000 the fit is already good.
However, for PDT and PVT the convergence for κ → ∞ seems to be faster. In
Figures 6.3(b) and 6.5(b) estimated densities for large κ are shown for PDT and
PVT, respectively, together with the densities of the Wei(λπ, 2)-distribution and
Wei(λπ/ξ2, 2)-distribution, where ξ was chosen by hand for both models. Al-
ready for κ = 1000 it seems like the density of C∗ does not change considerably
anymore for increasing κ. But note that a clear difference between the densities
of C∗ and the density of the Wei(λπ, 2)-distribution can be observed which is
larger for PVT than for PDT. As can be seen in Figure 6.5 (b), the density of
the Wei(λπ/1.1452, 2)-distribution approximates the density of C∗ very well for
T being a PVT and κ ≥ 1000. This suggests that in this case the constant ξ
appearing in Theorem 6.2 and Corollary 6.8, respectively, is approximately 1.145.
For PDT the density of the Wei(λπ/1.0652, 2)-distribution is already very close
to the density of C∗ for κ ≥ 1000, see Figure 6.5 (b). Thus, for PDT the constant
ξ seems to be approximately 1.065.
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Figure 6.5: Density fC∗ for PVT together with corresponding limit distributions

6.7.2 Possible extensions

It is possible to generalize the setting of Theorem 6.2 in different ways. For
instance, the statement of Theorem 6.2 is still valid if we consider instead of C∗
the typical subscriber line length which is defined as the shortest path length
from the origin to the nearest point H0 of H, where we consider the sum of the
Euclidean distance from the origin to the closest point of the edge set T (1) and
the shortest path length on the edge set T (1) from the closest point to H0, see
also [24, 34]. Then the auxiliary results corresponding to Lemmas 6.3 and 6.4
can be proved basically by the same arguments and hence Theorem 6.2 is valid.

Moreover, it is not necessary to assume that the random segment system T
is the edge set of a random tessellation in order to proof Theorem 6.2. But it
is possible to regard an arbitrary stationary and isotropic segment process in R2

which is mixing and fulfills the additional condition that there is only one single
cluster with probability 1. In particular, Theorem 6.2 can be extended to random
geometric graphs.

Furthermore, we can relax the assumption that Ln is connected to its closest
point of H, i.e., that the serving zones TH are modeled by the Voronoi tessel-
lation induced by H. For example, we can also connect Ln to its k-th nearest
neighbor of H for any k ≥ 1. This corresponds to the case that TH is modeled
by the k-th nearest neighbor Voronoi tessellation. Then Theorem 6.2 remains
valid if we exchange the random variable Z by the random Euclidean distance
from the origin to the k-th nearest point of a Poisson process which is known
to be distributed according to a generalized Gamma distribution ([38, 105]).
Further possible extensions include the cases that TH is modeled by a certain
Cox-Laguerre tessellation ([52]) or an aggregated Voronoi tessellation ([5, 91]).
Again, Theorem 6.2 is still true, except that Z has to be replaced by another
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random variable whose distribution can be calculated.
In the next chapter we use the limiting distributions derived in the present

chapter in order to choose parametric densities which can be fitted to estimated
density of C∗ for a large range of κ. Parametric families which include both
exponential distributions and Weibull distributions turn out to be good choices
in order to obtain a good fit to the estimated densities for a large range of values
of κ and all considered models, see Chapter 7.



Chapter 7

Empirical and parametric densities
for shortest path length

This chapter is devoted to the application of the results which have been derive
in Chapters 5 and 6. It is partly based on results in [36]. In particular, we
derive parametric densities for the typical shortest path length C∗, where the
parameters depend only on the underlying street model T and the scaling factor κ.
The obtained parametric densities are compared to densities estimated from real
connection lengths in the access network of Paris. This comparison reveals an
excellent fit between connection lengths obtained from the SSLM and real data,
respectively. Thus, if the optimal street model is known, realistic distributions
for connection lengths, which only depend on κ, are directly available using the
results of this chapter. Since κ can be estimated easily and efficient methods exist
in order to obtain the optimal street model for given street data ([32, 85]), we
thus demonstrate that the methodology developed in this thesis provides efficient
tools in order to analyze existing telecommunication networks. In particular, we
can avoid time–consuming network reconstructions and extensive Monte–Carlo
simulation. Furthermore, for a given street model, we can investigate different
network scenarios for future networks which are based on new technologies like
optical fiber networks. Depending on κ, the distribution of connection lengths is
directly available and hence various scenarios can be studied, whereas classical
methods can only investigate few scenarios which may not be representative due
to large computation times.

The present chapter is organized in the following way. We use the estimator

f̂C∗(x;n) = λ`
1

n

n∑
j=1

Nj∑
i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) . (7.1)

which has been introduced in Section 5.5 in order to estimate the density of the
typical shortest path length for different models. Below, the stationary random
tessellation T is either a PDT, PLT or PVT. Furthermore, we focus on the case

151
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that H is a Cox process on the random tessellation T or a thinning of the ver-
tices T (0) of T . Then the simulation algorithms for S∗H introduced in Chapter 4
can be used to generate samples of S∗H in order to compute f̂C∗(x;n). To begin
with, we analyze the distributions of C∗ for the different considered models in
Section 7.1. In particular, we compare first and second order moments of C∗ for
Cox processes and thinnings. Afterwards, in Section 7.2, we use the estimated
densities in order to obtain parametric densities for the Cox process case, where
the parameters depend only on the model type of T and the scaling factor κ.

The goal of the present chapter is to provide parametric densities which can be
used to analyze real telecommunication networks. Thus, we have to check that the
fitted parametric distributions are realistic distributions for connection distances.
In a first step, we show that the fitted parametric densities are good approxima-
tions of the densities estimated by Monte–Carlo simulation. More precisely, we
compare means and variance in Section 7.3. The comparison shows a quite good
fit for a wide range of κ and all considered models. In the final Section 7.4,
we compare the obtained parametric densities to densities estimated from real
connection lengths of the access network in Paris which are stored in databases.
Again, we observe a very good fit which demonstrates that our methods can be
applied easily and efficiently in practice. Thus, the developed techniques provide
efficient tools for the analysis and planning of telecommunication networks.

7.1 Distributional properties of C∗ for Cox pro-
cesses and thinnings

In order to estimate the density of shortest path lengths we simulated n = 50 000
typical segment systems S∗H within the typical Voronoi cell for different values
of κ, where H is either a Cox process on T or a thinnings of T (0) and T is
PDT, PLT and PVT, respectively. Thus, we assume that TH is the Voronoi
tessellation induced by H. Based on the generated samples, we estimated the
density f̂C∗(x;n) as explained in Section 5.5.1. The estimated densities were
then used to compute means and variances. Below, the numerical results are
discussed in more detail.

7.1.1 Densities estimated from Monte–Carlo simulation

Some estimated densities are displayed in Figures 7.1 – 7.4 for Cox processes and
thinnings. At first sight, a clear difference between the shapes of the densities
for small and large κ as well as for the different considered model types can
be observed.

For Cox processes H, the differences between the densities corresponding to
the different tessellation types appear to decrease for κ→ 0 and κ→∞, respec-
tively, although they are still noticeable, see Figure 7.1. On the one hand, recall
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Figure 7.1: Density for γ = 1, κ = 10, 250, 750 and Cox processes on PVT (gray),
PDT (black), PLT (broken)
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Figure 7.2: Density for γ = 1, κ = 20, 50, 250 and thinned vertices of PVT (gray),
PDT (black), PLT (broken)

that for Cox processes H the typical shortest path lengths C∗ converges in dis-
tribution to ξZ for κ→∞ with λ = γλ` fixed, where Z ∼Wei(λπ, 2) and ξ ≥ 1
is some constant which depends on the underlying tessellation T . For instance,
ξ = 1 for PLT and ξ > 1 for PDT and PVT. Thus, there will always remain
differences between the densities of C∗ for PDT, PLT and PVT, respectively, if
H is a Cox process and κ is increasing. On the other hand, for decreasing κ the
differences between the densities vanish, see Figure 7.1 (a). This is the expected
behavior since for PDT, PLT as well as PVT the distribution of C∗ converges to
an exponential distribution with the same parameter, see Theorem 6.1.

If H is a thinning of the vertices of T , then the behavior of the densities for
increasing κ is quite similar as for Cox processes H, see Figure 7.2. We expect for
thinnings H the same limit behavior for κ→∞ as for Cox processes, thus there
will always remain a difference between the densities of C∗ for PDT, PLT and
PVT. In contrary to the Cox process case, the densities of C∗ differ strongly from
each other for small κ, see Figure 7.2. Note that the limit for κ → 0 cannot be
considered here since κ > 1/λ(0), where λ(0) is the intensity of the point process
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Figure 7.3: Density for γ = 1, κ = 20 for thinned vertices (black) and Cox process
(gray)
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Figure 7.4: Density for γ = 1, κ = 120 for thinned vertices (black) and Cox
process (gray)

T (0) of vertices of T , see Section 3.5.3. Furthermore, fC∗(0) = λ`Eν0(E∗), where
Eν0(E∗) = 3, 4 and 6 if T is a PVT, PLT and PDT, respectively, see Lemma 5.8.
Thus, there is a large difference between the densities corresponding to PVT,
PLT and PDT near to 0 which is more pronounced for small κ.

In Figures 7.3 and 7.4 estimated densities are displayed for different values of
κ and PDT, PLT and PVT, where H is a Cox process on T and a thinning of
T (0), respectively. There is a large deviation between the densities corresponding
to Cox processes and thinnings which decreases as κ increases. But, except for
PVT, this deviation is still noticeable even for larger values of κ. The deviation
is the largest for PDT, where e.g. at 0 the value of the density for thinnings is
three times the value of the density for Cox processes. However, one may expect
that the difference between the densities of C∗ for thinnings and Cox processes
on the same tessellation type T disappears as κ→∞.
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7.1.2 Means and variances

Based on the estimated densities we calculated the expectations and the coeffi-
cients of variation (cv) for the typical shortest path length. In Figure 7.5(a) the
means are shown for a Cox process H on T . First it is interesting that for small
values of κ (κ < 50) the mean typical shortest path length EC∗ is the smallest
for PVT and the largest for PDT. However, for increasing κ things change. For
instance, EC∗ is smaller for PLT than for PVT if κ = 50, but EC∗ is still the
largest for PDT. Finally, if κ is large enough (κ ≥ 500), EC∗ is the smallest for
PLT and the largest for PVT. This is the behavior which is intuitively expected
since, compared to PDT and PLT, the edges of PVT are shorter and there are
more nodes where the shortest path has to change its direction yielding longer
shortest path along PVT than along PLT and PDT. Furthermore, for PLT the
direct Euclidean distance is obtained in the limit for κ → ∞, see Corollary 6.8.
Thus, EC∗ has to be the shortest for PLT if κ is large enough.

In Figure 7.5(b) the means of C∗ are shown if H is a thinning of T (0). Here,
EC∗ is the smallest for PDT and the largest for PLT if κ is small (κ < 20). Then,
for increasing κ, things change again and EC∗ is the smallest for PDT and the
largest PVT (20 ≤ κ ≤ 250). Finally, if κ > 250, EC∗ is the smallest for PLT and
the largest for PVT as it is the case for Cox processes with large κ. Compared
to Cox processes, the means are smaller for thinnings. This difference is the
largest for PDT which can be explained by the fact that there are in the mean
6 segments emanating from the typical point of H, whereas for Cox processes,
there are only 2 segments emanating from the typical point of H. Hence, all LLC
on these segments have the optimal Euclidean distance as their shortest path
length which could be a reason that EC∗ is smaller for thinnings. Although this
difference is less for PVT and PLT, since only 3 and 4 segments are emanating
from the typical point of H for thinnings, it is still observable.

The coefficients of variation are displayed in Figure 7.6(a) for Cox processes on
PVT, PDT and PLT, respectively. Here we can see that for all three models cvC∗
approaches cvZ=52.27 for large κ, were Z ∼Wei(λπ, 2), as it is expected due to
Theorem 6.2. On the other hand, the behavior for small κ is quite different for the
three considered models. Recall that C∗ converges to an Exp(2λ`)-distribution
for κ → 0 if λ` is fixed, see Theorem 6.1 and Figure 7.1(a). Thus, one could
expect that cvC∗ converges to 100 for κ→ 0. However, this is only for PVT the
case for the values of κ which are considered in our study. The reason might be
that the convergence is much slower for PDT and PLT. For instance, if T is a
PLT, then it is likely that even for small κ there is one line not containing the
origin which intersects the typical serving zone, see also Figure 6.1. Then points
on this additional intersecting line have very long shortest path lengths. With
regard to equation (5.18) it is therefore likely that C∗ has heavier tails for PLT
than for PVT which yields a higher cv. However, note that the weak convergence
of C∗ to the Exp(2λ`)–distribution does not necessarily imply that EC∗ and cvC∗
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Figure 7.5: EC∗ for Voronoi tessellation TH based on different models of H.
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Figure 7.6: cvC∗ for Voronoi tessellation TH and different models of H. The
horizontal lines are at 52.27=cvZ, Z ∼Wei(λπ, 2).
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converge to EZ and cvZ for Z ∼ Exp(2λ`).
For the case that H is constructed by thinnings of T (0) the cv is shown in

Figure 7.6(b). Here, the behavior is quite similar as for Cox processes. However,
recall that the limit for κ→ 0 cannot be considered here since κ is bounded from
below by κ ≥ 1/λ(0). Compared to the results for Cox processes, the cv is larger
for thinnings which may be caused by the fact that the densities for thinnings
seem to have heavier tails, see e.g. Figures 7.3 and 7.4.

7.2 Parametric densities for the typical shortest
path length

The goal of this section is to fit parametric densities to the empirical densities
which were estimated based on Monte–Carlo simulation. Here, we focus on the
case that the serving zones are modeled by Voronoi tessellations induced by Cox
processes H on T , where T is a PDT, PLT and PVT, respectively. Our aim is to
obtain a whole library of distributions for PDT, PLT and PVT as street models
and κ > 0. Especially for large values of κ the estimation procedure for the
densities fC∗ is time-consuming since we have to perform simulation experiments
with long runtimes. Furthermore, means, variances and quantiles have to be
calculated numerically. Thus, it would be of great benefit for applications if the
densities were given as parametric functions, where the parameters only depend
on κ and the type of the underlying street model T . Then, for real data, first an
optimal tessellation model could be fitted to given data, see [32, 85] for details,
and afterwards the appropriate density could be chosen from the library avoiding
further simulations. Note that the fitting procedure for random tessellations
introduced in [32, 85] is very fast and κ can be estimated easily. Thus, the
distribution of shortest path lengths for given data would be directly available.

However, first it is important to choose an appropriate family of densities
{f(x; θ), θ = (θ1, . . . , θk) ∈ Rk}. Recall that the densities of C∗ for different
values of γ, but equal κ, are identical up to a scaling. Thus, we always regard
γ = 1 in the following. From the results obtained so far we get that the family
{f(x; θ), θ = (θ1, . . . , θk) ∈ Rk} should fulfill at least the following conditions:

1. f(x; θ) is a probability density, i.e.,
∫

R f(x; θ) dx = 1,

2. the number k of parameters θ1, . . . , θk of f(x; θ) is small,

3. f(0; θ) = 2λ` = 2
κ
due to Lemma 5.8,

4. the densities of Wei(α, 2), α > 0 and Exp(η), η > 0 are contained in the
family {f(x; θ), θ ∈ Θ} as limiting cases due to Theorems 6.1 and 6.2, and

5. f(x; θ) fits well for PDT, PLT as well as PVT for a large range of κ, espe-
cially with regard to expectation and variance.
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Figure 7.7: Truncated Weibull and mixed exponential-and Weibull distributions
for different parameters

It is not an easy task to choose a density which fulfills all conditions at once.
Possible families are truncated Weibull distributions or a mixtures of exponential
and Weibull distributions.

7.2.1 The truncated Weibull distribution

Note that the limit distributions Wei(λπ/ξ2, 2) and Exp(2λ`) in Theorems 6.1
and 6.2 are both specific cases of the Wei(α, β)-distribution. However, condition
3 cannot be fulfilled in general by Wei(α, β)-distributions, thus we shift their
densities to the left and truncate them at 0 such that condition 3 is fulfilled. In
this manner we obtain as one possible family of candidates the truncated Weibull
distribution, where the density is given by

f(x;α, β) = C

(
x+

(2λ`
αβ

) 1
β−1

)β−1

e−α
(
x+
(

2λ`
αβ

) 1
β−1
)β

(7.2)

for x ≥ 0 and C = αβ exp((α−1(2λ`/β)β)1/(β−1)). Notice that this density has
only two parameters, but it is flexible enough to approximate the shapes of fC∗
for different values of κ, see Figure 7.7(a) and the results shown in Section 7.3.
Suppose that α and β are known for a specific value of κ and γ = 1 and as-
sume that we want to choose parameters α′ and β′ for the same κ = γ′/λ′` but
γ′ 6= 1. Then we can use the scaling invariance of fC∗ in order to obtain the new
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parameters, i.e.,

f(x;α′, β′) =
1

γ′
f(x/γ′;α, β)

= C ′

(
x+

(
2(γ′)βλ′`
αβ

) 1
β−1

)β−1

exp

− α

(γ′)β

(
x+

(
2λ′`(γ

′)β

αβ

) 1
β−1

)β
 , (7.3)

where C ′ = α/(γ′)ββ exp(((2λ′`/β)β(γ′)β/α)1/(β−1)). Since β is the shape param-
eter it is clear that it is constant. Furthermore, the scale parameter α′ changes
to α′ = α/(γ′)β and we have to correct the shift, i.e., λ` changes to λ′` = λ`/γ

′.
If β = 2, α′ = α/(γ′)2 is constant and κ→∞ with λ′` → 0, then we obtain from
(7.3) the density of the Wei(α′, 2)–distribution in the limit. On the other hand, if
β ↘ 1 and γ′ → 0 such that 2λ′` = α/(γ′)β is constant, then we get from (7.3) the
density of the Exp(2λ`)–distribution in the limit. Thus, the family of truncated
Weibull distributions considered here incorporates both limit distributions and
fulfills conditions 1–4.

7.2.2 Mixtures of exponential and Weibull distributions

Another family of candidates which fulfill conditions 1–4 above are mixture
p f1(x) + (1 − p)f2(x), p ∈ (0, 1) of the densities f1 of an Exp(η)–distribution
and f2 of a Wei(α, β)–distribution with β > 1. Again, condition 3 should be
fulfilled as well, thus we get

f(x;α, β, η) = 2λ` e
−ηx +

(
1− 2

λ`
η

)
αβxβ−1e−αx

β

(7.4)

for 2λ` ≤ η. Note that this family has three parameters, thus one more than the
family of truncated Weibull distributions. The densities of mixtures between ex-
ponential and Weibull distributions are also flexible and can imitate the behavior
of the densities of C∗ quite well, see Figure 7.7(b). Assume that α, β and η are
known for some κ and γ = 1. Then we can choose the parameters α′, β′ and η′
for the same κ but γ′ 6= 1 using the scaling invariance of our model. We obtain
the density corresponding to γ′ and λ′` by

f(x;α′, β′, η′) =
1

γ′
f(x/γ′;α, β, η)

= 2λ′` e
−η/γ′x +

(
1− 2λ′`γ

′

η

)
α

(γ′)β
βxβ−1e−α/(γ

′)βxβ , (7.5)

and hence the new parameters are given by α′ = α/(γ′)β, β′ = β and η′ = η/γ′.
Note that we can put α′ = 0 and η′ = 2λ′` in (7.5) in order to get the density of the
exponential distribution with parameter 2λ′`. Moreover, we can put η′ = 0 and
β′ = 2, then we get the density of the Wei(α, 2)-distribution. Thus, both limiting
distributions are included in this family of parametric densities and conditions
1–4 are satisfied.
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EC∗
κ PVT trunc. mix
5 1.397 1.391 1.387
10 2.054 2.055 2.059
50 4.552 4.511 4.540
120 6.861 6.828 6.863
250 9.641 9.654 9.680
500 13.46 13.49 13.51
1000 18.89 18.86 18.87
1500 22.97 22.91 22.92
2000 26.34 26.34 26.36

VarC∗
PVT trunc. mix
1.053 1.051 1.350
1.699 1.694 2.735
5.603 5.713 9.979
12.12 12.25 19.32
24.16 23.97 34.15
46.95 46.67 61.22
91.32 91.59 111.8
135.0 135.4 160.0
180.7 180.0 208.0

cvC∗
PVT trunc. mix
73.5 73.7 83.7
63.5 63.3 80.3
52.0 52.9 69.6
50.7 51.2 64.1
51.0 50.7 60.4
50.9 50.6 61.2
50.7 50.7 56.0
50.6 50.8 55.2
51.0 50.9 54.7

Table 7.1: Mean, variance and cv of C∗ for PVT together with these values for
fitted truncated Weibull and mixed exponential-Weibull distribution

EC∗
κ PLT trunc. mix
5 1.510 1.450 1.511
10 2.181 2.111 2.175
50 4.505 4.469 4.450
120 6.664 6.646 6.682
250 9.275 9.252 9.265
500 12.69 12.71 12.72
1000 17.68 17.60 17.61
1500 21.22 21.28 21.29
2000 24.24 24.30 24.31

VarC∗
PLT trunc. mix
2.073 1.846 3.330
3.354 2.710 5.081
7.344 7.125 10.16
13.46 13.33 18.83
23.66 23.71 30.70
43.11 42.71 53.51
79.15 80.05 96.05
118.1 116.8 136.2
153.3 151.7 174.2

cvC∗
PLT trunc. mix
95.4 93.8 120.8
83.9 78.0 103.6
60.2 59.7 70.8
55.1 54.9 64.9
52.4 52.6 59.8
51.8 51.4 57.5
51.2 50.8 55.7
51.2 50.8 54.8
51.1 50.7 54.3

Table 7.2: Mean, variance and cv of C∗ for PLT together with these values for
fitted truncated Weibull and mixed exponential-Weibull distribution

EC∗
κ PDT trunc. mix
5 1.744 1.723 1.712
10 2.367 2.378 2.373
50 4.780 4.757 4.768
120 6.966 6.927 6.949
250 9.665 9.565 9.589
500 13.05 13.06 13.08
1000 17.89 17.95 17.97
1500 21.79 21.75 21.77
2000 24.72 24.64 24.85

VarC∗
PDT trunc. mix
2.604 2.504 1.898
3.288 3.279 3.413
6.691 6.756 10.84
12.03 12.21 19.96
21.60 22.23 33.41
41.31 41.15 56.91
79.81 78.68 99.55
116.5 116.5 141.3
155.3 157.0 180.4

cvC∗
PDT trunc. mix
92.5 91.8 80.5
76.6 76.1 77.9
54.1 54.6 69.0
49.8 50.4 64.3
48.1 49.3 60.3
49.3 49.1 57.7
49.9 49.4 55.5
49.5 49.6 54.6
50.4 50.8 54.0

Table 7.3: Mean, variance and cv of C∗ for PDT together with these values for
fitted truncated Weibull and mixed exponential-Weibull distribution
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7.3 Fitting of parametric densities
Matlab was used in order to perform a weighted least squares fit, where the
parametric families introduced above were fitted to data (f̂C∗(x1), . . . , f̂C∗(xn))
which was obtained for a vector (x1, . . . , xn) with n equidistant components from
the densities estimated by Monte–Carlo simulation. As weights we chose the
reciprocals 1/f̂C∗(x1), . . . , 1/f̂C∗(xn) in order to obtain a better fit at the tails of
the densities. Note that then the optical fit of the obtained parametric densities
is worse than without weighting. However, means and variances fit much better.

Both regarded types of parametric densities fit optically quite well for all
considered models and a wide range of κ, see Figures 7.8 and 7.9, where some
estimated densities are shown together with the fitted ones. If we compare ex-
pectations and variances of the fitted truncated Weibull distributions and the
empirical distributions obtained from Monte–Carlo simulation, we see that they
match almost perfectly for all models and a wide range of κ, see Tables 7.1–7.3.
Moreover, the expectations fit quite well for the mixture of the exponential and
Weibull distributions. However, the variances differ clearly from the variances
which were obtained from the empirical densities. The reason seems be that the
exponential term in the mixture dominates the tail behavior of these distributions
which yields a too large variance. Thus, the truncated Weibull distribution was
chosen to built the library of densities.

We calculated the parameters α and β of the truncated Weibull distribu-
tion for all three considered models and a wide range of κ. Moreover, functions
α(κ, T ), β(κ, T ) depending on κ and the random tessellation T were fitted to the
estimated parameters for γ = 1. Thus, for all three model types, the distribution
of C∗ is now immediately available up to a scaling via

f(x;κ, T ) = f(x;α(κ, T ), β(κ, T )) . (7.6)

Recall that for Wm = [−m,m]2 and measurable h : [0,∞)→ [0,∞) it holds that

Eh(C∗) = lim
m→∞

1

#{n : Ln ∈ Wm}
∑

Ln∈Wm

h(Cn) (7.7)

with probability 1, where {Ln, Cn} is the point process of LLC marked with the
corresponding shortest path connection distances. Thus, using stochastic geom-
etry and Monte-Carlo simulation, we are able to provide analytical formulae for
distance distributions which are formally equivalent to empirical distributions ob-
tained from spatial averages of huge networks. However, we do not have to handle
huge data sets in our approach, but we only have to know the optimal tessellation
model of the underlying street system of the network. This simplicity is a great
advantage of the approach used here. In the following section, we compare the
obtained parametric distributions to distance distributions computed from real
network data in order to show that they are realistic distributions for connection
distances.
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Figure 7.8: Density for γ = 1, κ = 250, 750, 2000 and: (a) PLT, (b) PVT, (c)
PDT with fitted truncated Weibull distributions
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Figure 7.9: Estimated densities for γ = 1, κ = 250, 750, 2000 and: (a) PLT, (b)
PVT, (c) PDT with fitted mixtures of exponential and Weibull distributions

7.4 Application to real network data

It was shown in [35] that real street systems can be substituted by the optimal
tessellation models as support for network nodes. In particular, histograms of
shortest path connection distances have been compared for two distinct scenar-
ios. For real serving zones, network nodes were randomly located on the real
street system and on realizations of the best fitted model. The results showed
that the histograms of the connection lengths for both settings are quite similar.
Thus, it was shown that street systems can be represented by random tessella-
tions in order to analyze connection lengths. Now we go one step further and
compare the parametric distributions of the optimal model which were computed
in the preceding section to real distance distributions obtained from databases. In
particular, we show that real distance distributions of the access network in Paris
can be approximated quite well by the parametric densities corresponding to the
optimal street model and the appropriate value of κ which have been determined
above.



7.4 Application to real network data 163
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Figure 7.10: Typical serving zone of the larger scale subnetwork (a) with para-
metric density of C∗ for the optimal street model compared to density of connec-
tion lengths estimated from real data (b), showing that the assumption of direct
physical connections is incorrect.

We omit some technical details here, but note that real telecommunication
networks have more than two hierarchy levels. However, real hierarchical net-
works can be subdivided into distinct subnetworks with two hierarchy levels.
In particular, the access network in Paris was decomposed into three different
subnetworks with two hierarchy levels, i.e., into a low–scale, middle–scale and
large–scale subnetwork, where a HLC of the subnetwork at the lower scales can
be a LLC of the subnetworks at the larger scales. Then histograms of connection
distances were computed for these three subnetworks based on real connection
lengths stored in databases.

The optimal tessellation model for the street system in Paris was determined
to be a PVT using the fitting techniques in [32]. In the next step, the scaling
factor κ was calculated for all three subnetworks as approximately 4, 35 and 1000,
respectively, based on the number of HLC at the respective scale. Finally, the
appropriately rescaled parameters corresponding to κ and PVT as street model,
which were determined in Section 7.2, were chosen for the truncated Weibull
distribution. The resulting densities for the different subnetworks are displayed
in Figures 7.10–7.12 together with the densities estimated from real connection
lengths. In particular, at the large scale (κ = 1000) the fit is extremely good.
Note that the parametric density is not fitted directly to the connection lengths
from the database, but is obtained from the optimal street model and the number
of HLC in the network. Thus, only the street system and the number of HLC are
used in order to obtain the parametric density. Nevertheless, the fit between the
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Figure 7.11: Typical serving zone of the middle-scale subnetwork (a) and
(rescaled) parametric density of C∗ for optimal street model density compared to
density of connection lengths estimated from real data (b).

densities estimated from the SSLM and the real connection lengths is excellent.
At the smaller scales, the parametric densities also approximate the real den-

sities quite well. However, for κ ≈ 4 and κ ≈ 35 the densities were corrected in
two different ways. If κ ≈ 4, then only few streets cross each serving zone, see Fig-
ure 7.12(a). At this scale, the cable lengths e.g. from the street to the customers
located in buildings along the street becomes therefore significant. Thus, the den-
sity was corrected by a shift for κ ≈ 4, i.e., f(x;κ, T ) → f(x − l;κ, T ) for some
l > 0. Similarly, for κ ≈ 35, the density was corrected by a scaling in order to cor-
rect for curvatures of the cables in the network, i.e., f(x;κ, T ) → f(x/c;κ, T )/c
for some c > 0.

Note that Figure 7.10 shows that it is important to take the underlying street
system into account. There, the distribution of the direct (Euclidean) connection
lengths (dashed graph) is included in the plot. One can see that it does not fit to
the histogram estimated from real data. In particular, it clearly underestimates
the real connection lengths. This is the reason why classical studies usually
introduce a correction factor for the direct connection lengths. But with the
approach developed here, this correction factor can be directly related to the
structure of the underlying street system.

Thus, we have shown that the SSLM is a realistic model in order to ana-
lyze connection lengths of telecommunication networks. Since an optimal street
model can be determined easily for given street data, the methods developed in
Chapters 4 – 7 can be used to efficiently analyze and plan telecommunication net-
works. In particular, time–consuming network reconstructions and simulations
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(a) Typical serving zone for κ'4
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Figure 7.12: Typical serving zone of the lower-scale subnetwork (a) and (shifted)
parametric density of C∗ for optimal street model compared to density of con-
nection lengths estimated from real data (b).

can be avoided. Furthermore, for a given street model, various scenarios can be
investigated since the parameters of the distance distributions are known and
only depend on the scaling factor κ. This enables us to analyze possible settings
for future networks based on new technologies like optical fiber networks, see
also [36]. Using classical methods like network reconstructions, this is impossible
since, due to large computation times, only few scenarios can be explored.
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Chapter 8

Capacity distributions

In this chapter we investigate required capacities in hierarchical telecommunica-
tion networks at given locations on the cable system. Throughout this chapter we
assume that all LLC are connected to their associated HLC on the shortest path
along the cable system. We then define the required capacity at a given point
x on the cable system as the sum of the capacities which are requested by all
LLC whose shortest path connections cross x. This is an important performance
characteristic of telecommunication networks. After the initial construction of
the network all cables are already installed and, if the demand is higher than the
capacity at a given location, the demand of some LLC cannot be served. So for
strategic planning of telecommunication networks the capacity needed a certain
locations is an important quantity.

This chapter is organized as follows. First, in Section 8.1, we extend the model
considered in the previous chapters in order to introduce the notion of capacity
in the SSLM. More precisely, we consider a random tessellation which models
the street system and place LLC and HLC as point processes on the edges of the
random tessellation. Each LLC is then connected to its associated HLC on the
shortest path. Furthermore, we consider a third point process on the edges of
the underlying tessellation that models the locations at which we are interested
in the required capacity. In particular, we investigate the typical capacity, i.e.,
the capacity required at the typical point of this additional point process. It is
shown that the distribution of the typical capacity is uniquely determined by the
so–called typical subtree length which is defined in Section 8.1.

Subsequently, in Sections 8.2 and 8.3, we consider then specific cases of the
model and show how the distribution of the typical subtree length can be esti-
mated based on samples of the typical serving zone. In particular, we introduce
estimators for the distribution of the typical subtree length for locations with a
fixed shortest path length to the associated HLC and for locations formed by
Cox processes on the underlying random tessellation. Furthermore, some statis-
tical properties of these estimators are investigated. Finally, in Section 8.4, some
numerical results obtained from Monte Carlo simulations are discussed.

167
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The content of the present chapter is partly based on results obtained in [98].

8.1 Modeling of capacities

The topic of this chapter is the modeling and analysis of capacities which are
required at various locations in telecommunication networks. These capacities
are important performance characteristics which have to be investigated before
the networks are built physically since it has to be guaranteed that the capacity
provided at a given location is higher than the demand requested at this location.
Otherwise, some LLC cannot be served. Thus, e.g. for strategic planning of
telecommunication networks, the analysis of required capacities at given locations
of the network is an important task.

We consider the SSLM as introduced in Chapter 5, i.e., T is a stationary
random tessellation with length intensity γ, H is a stationary point process whose
points are concentrated on T (1) almost surely and L is a Cox process on T (1) with
linear intensity λ′` conditionally independent of H given T . Furthermore, we
consider a random tessellation TH = {(Hn,Ξ

o
H,n)} and a marked point process

HS = {(Hn, S
o
H,n)} representing the serving zones and the segment system inside

the serving zones, respectively. A point Ln of L is then connected on the shortest
path along T (1) to Hj if and only if Ln ∈ SoH,j + Hj. Recall that C∗ denotes the
shortest path length from the typical point of L to its associated point of H and
that the density fC∗ of C∗ does not depend on λ′`, see Theorem 5.7.

The capacity that is required at a given point x on the edge set T (1) is defined
as the sum of all demands requested by those LLC which are located in the same
serving zone as x and whose shortest paths cross x. More formally, we consider a
sequence of independent and identically distributed random variables K1, K2, . . .
which represent the demands of the LLC at the locations L1, L2, . . ., respectively.
Let X = {Xn} be another stationary point process of random locations Xn on
the edge set T (1) conditionally independent of L given T (1). The points of X are
used in order to model the locations where we would like to analyze the required
capacities. In the following, the (planar) intensity of the stationary point process
{Xn} is denoted by λ. Then, for each n ≥ 1, we define the capacity K(Xn) that
is required at Xn as follows. If Xn ∈ SH,j = SoH,j + Hj for some j ≥ 1, then we
define

K(Xn) =
∞∑
i=1

1ITsub(Xn)(Li)Ki , (8.1)

where we denote with Tsub(Xn) = {y ∈ SH,j : Xn ∈ p(y,Hj)} the subset of
those points y on SH,j whose shortest path p(y,Hj) from the location y to the
associated HLC Hj along T (1) crosses Xn, see also Figure 8.1. Note that we then
call Tsub(Xn) the subtree rooted at Xn. Since {Xn} is conditionally independent
of L given the edge set T (1), formula (8.1) yields that K(Xn)

d
=
∑Jn

i=1 Ki, where
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Figure 8.1: Tsub(x) (black) at given location x (gray) with LLC (blue) on subtree.

Jn ∼ Poi(λ′`ν1(Tsub(Xn))) given ν1(Tsub(Xn)). Hence, the distribution of K(Xn)
is fully specified by the distribution ofK1, λ′` and the subtree length ν1(Tsub(Xn)).
Furthermore, it can be shown that a similar representation formula is valid for
the typical capacity K∗ (at the typical point of {Xn}), where we assume that the
nonnegative random variable K∗ is the typical mark of the stationary marked
point process {(Xn, K(Xn))}, i.e., it is distributed according to the Palm mark
distribution of {(Xn, K(Xn))}.

Theorem 8.1 With the assumptions above, it holds that

K∗ =
J∗∑
i=1

Ki , (8.2)

where J∗ ∼ Poi(λ′`ν1(T ∗sub)) given ν1(T ∗sub) and the random variable ν1(T ∗sub) is dis-
tributed according to the Palm mark distribution of Xsub = {(Xn, ν1(Tsub(Xn)))}.

Proof Using equation (8.1) and the definition of the Palm mark distribution of
{(Xn, K(Xn))}, we get that for each h : R→ [0,∞)

Eh(K∗) =
1

λ
E
( ∑
Xi∈[0,1]2

h
( ∑
Lj∈Tsub(Xi)

Kj

))
=

1

λ
E
[
E
( ∑
Xi∈[0,1]2

h
( ∑
Lj∈Tsub(Xi)

Kj

)
| T (1), H

)]
,
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where

E
( ∞∑
i=1

h
( Ji∑
j=1

Kj

)
| T (1), H

)
= E

[
E
( ∞∑
i=1

h
( Ji∑
j=1

Kj

)
| X
)
| T (1), H

]
= E

[ ∞∑
i=1

E
(
h
( Ji∑
j=1

Kj

)
| X
)
| T (1), H

]
.

Furthermore, we have

E
(
h
( Ki∑
j=1

Kj

)
| X
)

= E
(
h
( Ki∑
j=1

Kj

)
| ν1(Tsub(Xi)

)
with Ji ∼ Poi(λ′`ν1(Tsub(Xi))) given ν1(Tsub(Xi)). Hence, the statement of the
theorem is a consequence of the definition of the typical mark of the stationary
marked point process Xsub = {(Xn, ν1(Tsub(Xn)))}. 2

If λ′` and the distribution of K1 are known, then, due to formula (8.2), it is
sufficient to investigate only the distribution of the typical subtree length ν1(T ∗sub).
Similar as for the typical Euclidean distance and the typical shortest path length
it is possible to express the distribution of ν1(T ∗sub) as the expectation of some
functional of the typical segment system S∗H . The proof is again based on Neveu’s
exchange formula. Let λH denote the (planar) intensity of H and let X̃sub be the
Palm version of Xsub which is obtained under the Palm distribution with respect
to {(Hn, S

o
H,n)}, see Section 2.3.4 for details. Then, the following statement is

true.

Theorem 8.2 For any measurable h : [0,∞)→ [0,∞),

Eh(ν1(T ∗sub)) =
λH
λ

E
∫
S∗H×[0,∞)

h(y) X̃sub(d(x, y)) . (8.3)

Proof We consider the two jointly stationary marked point processes HS =
{(Hn, S

o
H,n)} and Xsub. Then we can regard (Xsub, HS) as a random element of

the space N[0,∞),Lo of locally finite point sets with marks either in [0,∞) or in Lo.
Using the function f : R2 × [0,∞)× Lo × N[0,∞),Lo → [0,∞) defined by

f(x, y, ζ, ψ) =

{
h(y) if x ∈ ζ ,
0 otherwise ,

(8.4)

we can apply Neveu’s exchange formula for stationary marked point processes,
see Theorem 2.9, which yields equation (8.3). 2
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Figure 8.2: Points with fixed shortest path length to their associated HLC

In the rest of this chapter we concentrate on two special cases for the point
process {Xn} of locations at which we are interested in the required capacities.
On the one hand, we consider the point process of locations on T (1) with a
fixed shortest path length to the corresponding HLC and, on the other hand, we
consider another Cox process on T (1). In both cases, we can construct estimators
for the distribution function and density, respectively, see Sections 8.2 and 8.3.

8.2 Capacities at locations with fixed distance to
HLC

8.2.1 Representation formula

Let s > 0 be fixed and let X = {Xn} denote the point process which consists of
all points of the locally finite set {x ∈ T (1) : c(x) = s}, where we denote with
c(x) the shortest path length from x to Hn provided that x ∈ SH,n. Thus, X is
the point process of those points on the edge set T (1), whose shortest path lengths
to their associated HLC is equal to s. This point process can be regarded as a
cluster process, where the parents are the points of H and for each parent Hn the
children are the points on SH,n with shortest path length s to Hn, see Figure 8.2.
We can then specify the statement of Theorem 8.2 as follows.
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Theorem 8.3 For any measurable h : [0,∞)→ [0,∞),

Eh(ν1(T ∗sub)) =
λ`

fC∗(s)
E

J̃∑
i=1

h(ν1(Tsub(X̃i))) , (8.5)

where (X̃1, Tsub(X̃1)), . . . , (X̃J̃ , Tsub(X̃J̃)) denote the marked points of X̃sub on S∗H
and J̃ is the random number of these points. In particular, the distribution func-
tion F : R→ [0, 1] of ν1(T ∗sub) is given by

F (x) =
λ`

fC∗(s)
E

J̃∑
i=1

1I[0,x](ν1(Tsub(X̃i))) , x ≥ 0 , (8.6)

where fC∗ denotes the density of the typical shortest path length.

Proof Using formula (8.3) it is sufficient to show that

λH
λ

=
λ`

fC∗(s)
.

Recall that λH = γλ` with Eν1(S∗H) = 1/λ`, thus we only have to show that
λ = γfC∗(s). It holds that

λ = E#{n : Xn ∈ [0, 1)2}

= E
∞∑
i=1

#{n : Xn ∈ SH,i ∩ [0, 1)2}

= λH

∫
R2

E#{n : X̃n ∈ S∗H ∩ ([0, 1)2 − x)} dx ,

where the latter equality is a consequence of the refined Campbell theorem for
stationary marked point processes, see Theorem 2.7. Recall that S∗H can be
divided into segments S1, . . . , SN with endpoints Ai and Bi for i = 1, . . . , N
such that c(Bi) = c(Ai) + ν1(Si), see Section 5.4.2. This means that each point
X̃i, i = 1, . . . , J̃ is located almost surely in exactly one segment of S∗H and each
of the segments contains 0 or 1 points of X̃sub, thus J̃ ≤ N . Therefore we can
assume without loss of generality that X̃i ∈ Si for i = 1, . . . , J̃ and that there is
no point with shortest path length s on all segments Si with i = J̃ + 1, . . . , N .
This yields

λ = λH

∫
R2

E#{n : X̃n ∈ S∗H ∩ ([0, 1)2 − x)} dx

= γλ`E
N∑
j=1

1I[c(Aj),c(Bj))(s)

∫
R2

1I[0,1)2−X̃j(x) dx

= γλ`E
J̃∑
j=1

1I[c(Aj),c(Bj))(s) = γfC∗(s) ,
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where the latter equality is a consequence from Theorem 5.7. Thus, the proof is
completed. 2

Note that fC∗(s) is not known analytically. However, fC∗(s) can be estimated
unbiasedly and consistently as described in Section 5.5.

8.2.2 Estimation of the distribution function

As mentioned above, fC∗(s) is not known analytically, but it can be estimated
consistently and without bias e.g. by the estimator f̂C∗(s;n) given in (5.20).
Thus, Theorem 8.3 directly leads to the natural estimator for F (x) given by

F̂ (x;n) =
λ`

f̂C∗(s;n)

1

n

n∑
j=1

J̃(j)∑
i=1

1I[0,x](ν1(T
(j)
sub(X̃

(j)
i ))) , (8.7)

where J̃ (j) and ν1(Tsub(X̃
(j)
1 )), . . . , ν1(Tsub(X̃

(j)

J̃(j)
)), j = 1, . . . , n are independent

copies of J̃ and ν1(Tsub(X̃1)), . . . , ν1(Tsub(X̃J̃)), respectively. It is easy to see that
the estimator F̂ (x;n) is ratio–unbiased, i.e., it is the quotient of two unbiased
estimators, and it is in addition strongly consistent for F (x). Moreover, it is
possible to prove the following result of Gliwenko-Cantelli type.

Theorem 8.4 It holds that

P
(

lim
n→∞

sup
x∈R
|F̂ (x;n)− F (x)| = 0

)
= 1 . (8.8)

Proof Let ε > 0, then there exist q0 = 0 < q1 < · · · < qm < qm+1 =∞ with

|F (qi+1)− F (qi)| <
ε

3

for all i = 0, . . . ,m, where F (qm+1) = F̂ (qm+1;n, ω) = 1. Now let x ∈ [0,∞),
then x ∈ [qi, qi+1) for some i = 0, . . . ,m. Using the monotonicity of F and F̂ ( · ;n)
we get

|F̂ (x;n, ω )− F (x)|
≤ |F̂ (x;n, ω)−F̂ (qi;n, ω)|+ |F̂ (qi;n, ω)−F (qi)|+ |F (qi)−F (x)|
≤ |F̂ (qi+1;n, ω)−F̂ (qi;n, ω)|+ |F̂ (qi;n, ω)−F (qi)|+ |F (qi+1)−F (qi)| .

Note that the latter term is smaller than ε/3 and

|F̂ (qi;n, ω)−F (qi)| → 0
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almost surely for n→∞ due to the law of large numbers. Furthermore, we have

|F̂ (qi+1;n, ω)−F̂ (qi;n, ω)| =
λ`

fC∗(s)

1

n

n∑
j=1

J̃(j)∑
k=1

1I(qi,qi+1](ν1(Tsub(X̃
(j)
i )))

→ F (qi+1)− F (qi) <
ε

3

for n→∞ almost surely. Thus, there exists N(ε, ω) with

|F̂ (qi+1;n, ω)−F̂ (qi;n, ω)|+ |F̂ (qi;n, ω)−F (qi)|+ |F (qi+1)−F (qi)| ≤ ε

almost surely for n > N(ε, ω) and i = 0, . . . ,m which completes the proof. 2

8.3 Capacities at points of Cox processes

8.3.1 Representation formula

In this section we assume that the point process X = {Xn} is a Cox process on
T with linear intensity λ′′` = λ/γ which is conditionally independent of H and L
given T (1). Recall that we can divide S∗H into the segments Si, i = 1, . . . , N with
endpoints Ai, Bi such that c(Ai) < c(Bi) = c(Ai) + ν1(Si). Using this notation,
the following representation formula for the density f : R→ [0,∞) of the typical
subtree length ν1(T ∗sub) can be derived, which is similar to the representation
formula for the density fC∗ of C∗ stated in Theorem 5.7.

Theorem 8.5 It holds that

f(x) =

 λ` E
[
N∑
i=1

1I[l(Bi),l(Ai))(x)

]
if x ≥ 0 ,

0 otherwise,

where l(Bi) denotes the subtree length at Bi and l(Ai) = ν1(Si) + l(Bi).

Notice that Theorem 8.5 can be derived directly using Theorem 8.2 and the
assumption that {Xn} is a Cox process on T . Then similar arguments as in the
proof of Theorem 5.7 can be used in order to prove the assertion. However, there
is an alternative proof which makes use of the following relationship between the
distribution of the typical subtree length ν1(T ∗sub) at the points of the Cox process
{Xn} and the typical subtree length at the locations of the point process {Xs,n}
with fixed shortest path length s considered Section 8.2.

Lemma 8.6 Let s ∈ [0,∞), then it holds that

P(ν1(T ∗sub) ≤ x | C∗X = s) = Fs(x) , (8.9)

where C∗X denotes the shortest path length at the typical point of X and Fs de-
notes the distribution function introduced in equation (8.6) for fixed shortest path
length s.



8.3 Capacities at points of Cox processes 175

Proof Let J̃s and X̃s,1, . . . , X̃s,J̃s
denote the random variables which have been

defined in Theorem 8.3 for fixed s ∈ [0,∞), i.e., c(X̃s,i) = s for i = 1, . . . , J̃s,
where J̃s is the random number of points on S∗H with shortest path length s to
the origin. Furthermore, let (X̃,H∗S) with X̃ = {X̃n} be distributed according
to the Palm distribution P ∗HS with respect to HS. Note that the density fC∗(s)
does not depend on the linear intensity λ′` of the Cox process {Ln} of LLC, see
e.g. Theorem 5.7. Thus, the equality fC∗(s) = fC∗X (s) holds almost everywhere
and we have

P(ν1(T ∗sub) ≤ x | C∗X = s) = lim
ε↘0

P(ν1(T ∗sub) ≤ x | C∗X ∈ [s, s+ ε))

= lim
ε↘0

E
(

1I[0,x](ν1(T ∗sub))
1I[s,s+ε)(C

∗
X)∫ s+ε

s
fC∗X (u) du

)
= lim

ε↘0

λ`
λ′′`

E
∑

X̃n∈S∗H

1I[0,x](ν1(Tsub(X̃n)))
1I[s,s+ε)(c(X̃n))∫ s+ε
s

fC∗(u) du

= λ` lim
ε↘0

E
∫
S∗H

1I[0,x](ν1(Tsub(y)))
1I[s,s+ε)(c(y))∫ s+ε
s

fC∗(u) du
ν1(dy) ,

where the last but one equality can be proven by a slight modification of Theo-
rem 8.2 and the last equality is a consequence of the fact that the points {X̃n}
form a Cox process on S∗H whose linear intensity is given by λ′′` , see also Chap-
ter 5. We can decompose S∗H into the segments S1, . . . , SN as above and then
get

P(ν1(T ∗sub) ≤ x | C∗X = s) = λ` lim
ε↘0

E
N∑
i=1

∫
Si

1I[0,x](ν1(Tsub(y)))
1I[s,s+ε)(c(y))∫ s+ε
s

fC∗(u) du
ν1(dy).

Moreover, fC∗ is right-continuous, thus we get almost surely

lim
ε↘0

N∑
i=1

∫
Si

1I[0,x](ν1(Tsub(y)))
1I[s,s+ε)(c(y))∫ s+ε
s

fC∗(u) du
ν1(dy)

=
1

fC∗(s)

J̃s∑
i=1

1I[0,x](ν1(Tsub(X̃s,i))) .

Now∫
Si

1I[0,x](ν1(Tsub(y)))
1I[s,s+ε)(c(y))∫ s+ε
s

fC∗(u) du
ν1(dy) ≤

∫
Si

1I[s,s+ε)(c(y))

ε min
x∈[s,s+1)

fC∗(x)
ν1(dy)

≤ 1

min
x∈[s,s+1)

fC∗(x)
<∞ ,
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hence we can apply the dominated convergence theorem in order to get

P(ν1(T ∗sub) ≤ x | C∗X = s) =
λ`

fC∗(s)
E

J̃s∑
i=1

1I[0,x](Tsub(X̃s,i)) = Fs(x) .

Thus, the proof is completed. 2

Notice that Lemma 8.6 states that we can regard the distribution function Fs
as the conditional distribution function of ν1(T ∗sub) given that C∗X = s. This
relationship is now used in order to prove Theorem 8.5.
Proof of Theorem 8.5 Let x ≥ 0, then Lemma 8.6 yields

F (x) = E (P(ν1(T ∗sub) ≤ x | C∗X))

=

∫ ∞
0

P(ν1(T ∗sub) ≤ x | C∗X = s)fC∗X (s) ds

=

∫ ∞
0

Fs(x)fC∗X (s) ds

=

∫ ∞
0

λ`
fC∗(s)

E
J̃s∑
i=1

1I[0,x](Tsub(X̃s,i)) fC∗X (s) ds ,

where the last equality follows from formula (8.6) and J̃s, X̃s,1, . . . , X̃s,J̃s
are the

random variables which have been introduced in the proof of Lemma 8.6. Since
we have fC∗(s) = fC∗X (s) for almost all s ∈ [0,∞), we get

F (x) = λ`E
∫ ∞

0

J̃s∑
i=1

1I[0,x](Tsub(X̃s,i)) ds

= λ`E
N∑
i=1

∫ l(Ai)

l(Bi)

1I[0,x](s) ds

=

∫ x

0

λ`E
N∑
i=1

1I[l(Bi),l(Ai))(s) ds ,

which completes the proof. 2

8.3.2 Estimation of the density

For each x ≥ 0, Theorem 8.5 can be used in order to construct the natural
estimator

f̂(x;n) = λ`
1

n

n∑
j=1

Nj∑
i=1

1I
[l(B

(j)
i ),l(A

(j)
i ))

(x) (8.10)

for f(x) based on n independent and identically distributed copies of S∗H . We
now summarize some distributional results of the estimator f̂(x;n).
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Theorem 8.7 Let f̂(x;n) denote the estimator defined in (8.10). Then, for
x ∈ R,

P
(

lim
n→∞

f̂(x;n) = f(x)
)

= 1 (8.11)

and
Ef̂(x;n) = f(x). (8.12)

Let h : R→ [0,∞) be a measurable function, then

E
[∫

R
h(x)f̂(x;n) dx

]
= Eh(ν1(T ∗sub)) (8.13)

and

P
(

lim
n→∞

∫
R
h(x)f̂(x;n) dx = Eh(ν1(T ∗sub))

)
= 1 . (8.14)

Proof All statements easily follow from Theorem 8.5, see also the proof of
Theorem 5.9. 2

We can again show that the maximal error of the estimator f̂( · ;n) converges to
zero with probability 1.

Theorem 8.8 It holds that

P
(

lim
n→∞

sup
x∈R
|f̂(x;n, ω)− f(x)| = 0

)
= 1 .

Proof The statement can be proven in a similar way as Theorem 5.10. Let
q ∈ Q, then

|f̂(x;n, ω) − f(x)| (8.15)
≤ |f̂(x;n, ω)−f̂(q;n, ω)|+ |f̂(q;n, ω)−f(q)|+ |f(q)−f(x)| .

Now all three terms can be approximated as in Theorem 5.10 bearing in mind
that f is bounded. 2

8.4 Numerical results and possible extensions

In this section some numerical results are presented which were obtained using the
estimators introduced above. Furthermore, we discuss some possible extensions
and additional questions.
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Figure 8.3: Density f of ν1(T ∗sub) for Cox processes {Xn}

8.4.1 Numerical results

For the numerical results we focus on the cases that H is a Cox process on T , T is
a PLT or PVT, respectively, and the serving zones are given by the Voronoi tessel-
lation with respect to H. Then, the distribution function F of the typical subtree
length ν1(T ∗sub) which is considered in (8.6) for network locations with fixed dis-
tance to their associated HLC, has a density. In order to see this, assume that
the segment system S∗H , the marked points (X̃1, Tsub(X̃1)), . . . , (X̃J̃ , Tsub(X̃J̃))
and the random tessellation T ∗ with respect to the Palm distribution of H are
given. If we only condition on T ∗, then the distribution of

∑J̃
i=1 1IB(ν1(Tsub(X̃i)))

is not changed if we replace each HLC by a new HLC which is uniformly dis-
tributed on the same segment. Under this transformation all points with short-
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Figure 8.4: Density f of ν1(T ∗sub) for fixed distance s to HLC

est path length s on T ∗ keep unchanged, but some new points may lie on the
segments of S∗H and some other points may not lie on S∗H anymore. However,
the subtree lengths Tsub(X̃i), i = 1, 2, . . . are transformed almost surely in a con-
tinuous and non-constant way if HLC are shifted along the segments. Hence∑K̃

i=1 1IB(ν1(Tsub(X̃i))) = 0 almost surely for each set B ∈ B(R) with ν1(B) = 0
which yields that the distribution of ν1(T ∗sub) is absolutely continuous.

Furthermore, we can observe the same scaling invariance as e.g. for shortest
path length if κ = γ/λ` is fixed. For different values of κ we used the estimators
introduced in the preceding sections in order to determine the density f(x) of the
typical subtree length ν1(T ∗sub) based on i.i.d. samples of S∗H .

For each realization of the typical segment system S∗H we first compute the
shortest path from o to all nodes of S∗H using Dijkstra’s algorithm ([22]). Then,
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in a second step, all segments with distance peak are divided and thus S∗H is
transformed into a tree structure, the shortest path tree. Notice that the distance
peaks are then the leaves of the tree. The shortest path tree is then used in order
to compute the subtree length l(Bi) and l(Ai) at the endpointsAi, Bi, i = 1, . . . , N

of the segments. Based on these results the estimator f̂(x;n) defined in equation
(8.10) can then be computed directly. For the computation of the estimator
F̂s(x;n) defined in equation (8.7) we first choose the segments Si, i = 1, . . . , K̃

with c(Ai) ≤ s < c(Bi), i.e., the segments which contain the points X̃1, . . . , X̃J̃ ,
and finally we compute ν1(Tsub(X̃i)) = l(Bi) + c(Bi)− s.

Some numerical results are shown in Figure 8.3 for a Cox processes {Xn} on
a PLT and PVT, respectively, for different values of κ. Here, the estimator intro-
duced in (8.10) was used. Moreover, in Figure 8.4 the results are displayed which
were obtained for network locations with a fixed distance s to their associated
HLC. We computed for different values of s and κ the density of the typical sub-
tree length ν1(T ∗sub) as difference quotients of the empirical distribution function
F̂ (x;n) defined in (8.7).

The shapes of all the densities shown in Figures 8.3 and 8.4 are quite similar
to each other. Moreover, Figure 8.4 shows that the shape of the density f(x)
of the typical subtree length ν1(T ∗sub) does not depend too much on the specific
choice of the (fixed) distance s to the associated HLC. On the other hand, the
density f(x) changes considerably if the random tessellation T (PLT vs. PVT)
or the scaling factor κ is modified, see Figures 8.3 and 8.4.

Finally, we remark that if we know the density f(x) of the typical subtree
length ν1(T ∗sub), then we can use the representation formula (8.2) for the typi-
cal capacity K∗ in order to compute e.g. the expectation Eh(K∗) for various
functionals h : [0,∞)→ [0,∞) of K∗ by

Eh(K∗) = Eh(
J∗∑
i=1

Ki)

=
∞∑
k=0

1

k!
Eh(

k∑
i=1

Ki)

∫ ∞
0

e−λ
′
` x(λ′` x)k f(x) dx ,

which follows from Theorem 8.1.
The numerical results presented here were obtained in cooperation with S.

Müthing. Further numerical results can be found in his diploma thesis ([73]).

8.4.2 Possible extensions

The notion of required capacity in the SSLM has been introduced in this chapter.
In particular, it has been shown that the distribution of the capacity is uniquely
determined by the distribution of the so–called typical subtree length. Moreover,
we have demonstrated how the distribution of the typical subtree length, and
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Figure 8.5: Joint density of (C∗, ν1(T ∗sub))

hence the typical capacity itself, can be computed for two specific models of
network locations. These results can be extended in different ways, e.g. to typical
capacities for further types of network locations like the thinned nodes of the
underlying tessellation or subfamilies of these nodes obtained from conditioning
on the number of nodes passed on the shortest path to HLC. Another subject
for future research could be the investigation of scaling limits for the distribution
of the typical capacity as the scaling factor κ tends to infinity. Recall that in
Chapter 6 it has been shown that the distribution of the typical shortest path
length C∗ converges to known distributions for κ→∞. Such limit theorems are
of great practical interest, see for instance Chapter 7. Moreover, it is possible
to compute the joint density of C∗ and ν1(T ∗sub) for Cox processes on T , see
Figure 8.5. From this two-dimensional density we can then e.g. compute the
density of ν1(T ∗sub) conditioned on C∗ = s.

In summary, the ideas and techniques that have been developed in this chapter
can be combined with the fitting techniques for optimal network models intro-
duced in [32, 85] which provides an efficient tool in order to analyze the required
capacities in real (planned or existing) telecommunication networks.
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Chapter 9

Conclusion and outlook

The results elaborated in this thesis show that tools and methods from stochastic
geometry can be used in order to efficiently analyze fixed telecommunication
networks in urban areas. In the considered approach, parametric distributions of
important cost functionals of telecommunication networks like connection lengths
have been obtained using spatial stochastic models and a combination of Monte–
Carlo and asymptotic methods. The parameters of the distributions computed
in this manner can be linked to few characteristics which can be easily estimated
from real data. It has been shown that these parametric distributions are excellent
approximations of real distributions of connection lengths in the access network of
Paris. Thus, the developed techniques provide powerful tools in order to analyze
existing networks and to plan future networks based on new technologies.

In a first step, efficient simulation algorithms for the typical cell of various
random tessellation models have been developed. These algorithms are of interest
on their own since many important characteristics of random tessellations can be
estimated based on the typical cell. Then, in a second step, it has been shown
that samples generated with these algorithms can be used in order to estimate the
distributions of important cost functionals like the typical Euclidean and shortest
path connection lengths. In particular, estimators for the density and distribu-
tion function of these characteristics have been constructed which are based on
samples of the typical cell and its inner structure. Moreover, scaling limits for
both the typical Euclidean and shortest path length have been derived, i.e., it
has been proven that the distributions of Euclidean and shortest path connection
lengths converge to known parametric distributions if the underlying tessellation
gets infinitely sparse and dense, respectively. Both results have been combined
in order to obtain parametric distributions for connection lengths, where the
parameters can be estimated easily and fast from real data. For real network
data, it has been demonstrated that these parametric densities are extremely
good approximations of the distributions of real connection lengths. In this way,
the elaborated results have been validated for real data. Thus, the developed
methods can be used in order to efficiently analyze telecommunication networks

183
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Figure 9.1: Serving zones generated as an aggregated Voronoi tessellation

in urban areas in the future.
There are different possibilities to continue the investigations of this thesis.

So far, parametric densities have been only fitted to densities estimated for Cox
processes on PDT, PLT or PVT. Using the simulation algorithms for the typical
Voronoi cell of Cox processes on iterated tessellations, parametric densities for
these more flexible models could be obtained. Furthermore, it is possible to model
the serving zones with random tessellations different from Voronoi tessellations.
For instance, Laguerre tessellations or aggregated Voronoi tessellations based on
Cox processes could be considered. In Figure 9.1 a realization of a Cox process
on PVT is shown together with (non-convex) serving zones generated by an
aggregated Voronoi tessellation. Note that aggregated Voronoi tessellations arise
naturally as serving zones if hierarchical networks with more than two hierarchy
levels are considered. For these models, simulation algorithms for the typical cell
could be developed and used to estimate the densities of shortest path connection
lengths. In addition, as mentioned in Chapter 6, scaling limits for the typical
shortest path length can also be derived for these models. Thus, this approach
would lead to more flexible classes of parametric distance distributions. However,
the models considered so far depend on one single parameter only, but all possible
generalizations lead to many new models with more than one parameter. Thus,
extensive simulation studies are necessary in order to determine new parametric
families of distance distributions.

Finally, required capacities have been defined and it has been demonstrated
how the distributions of such capacities can be estimated based on Monte-Carlo
methods. These results are of interest for the analysis and strategic planning
of telecommunication networks and can be generalized in different ways. For
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instance, further point process models like thinned vertices can be considered in
order to describe the locations, where required capacities are analyzed. Moreover,
connection rules different from shortest path connections can be regarded like
least nodes path. Another interesting question which arises here are scaling
limits for required capacities. The results derived for shortest path lengths have
been proven to be very useful e.g. in order to obtain parametric densities for
distance distributions. Maybe the same approach is possible in order to construct
parametric families of capacity distributions.
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Appendix A

Mathematical background

The appendix provides a short overview of some definitions and results from mea-
sure theory, the theory of subadditive processes and geometric measure theory.
In particular, convergence concepts and limit theorems from measure theory, the
subadditive ergodic theorem and the generalized Blaschke-Petkantschin formula
are reviewed.

A.1 Convergence concepts
This section provides some convergence concepts and limit theorems which are
used in the thesis. It is assumed that the reader is familiar with fundamental
notions of measure theory and probability theory; for details we refer to [11, 12,
37, 45].

A.1.1 Modes of convergence of measurable functions

Let {fn} be a sequence of real–valued measurable functions defined on a measure
space (Ω,A, µ) and let f : Ω→ R be another measurable function. Then we say
that

• fn converges µ-almost everywhere to f if

µ({ω ∈ Ω : lim
n→∞

fn(ω) 6= f(ω)}) = 0 ,

which is abbreviated by fn
a.e.→ f .

• fn converges in µ-measure to f if for any A ∈ A with µ(A) <∞ and ε > 0
it holds that

lim
n→∞

µ({ω ∈ Ω : |fn(ω)− f(ω)| > ε} ∩ A) = 0 ,

which is abbreviated by fn
µ→ f .

187
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• fn converges in Lp, p ≥ 1 or p-th mean to f if f, f1, f2, . . . are µ–integrable
in the p-th power and

lim
n→∞

(∫
Ω

|fn(ω)− f(ω)|p µ(dω)

) 1
p

= 0 ,

which is abbreviated by fn
Lp→ f .

If µ is a probability measure and fn converges to f in µ-measure resp. µ-almost
everywhere, then we also say that fn converges to f in probability resp. almost
surely. Note that it is well-known that a sequence converges in µ-measure to f if
it converges in Lp or µ-almost everywhere.

Theorem A.1 If fn
a.e.→ f or fn

Lp→ f , then fn
µ→ f .

A proof of Theorem A.1 can be found e.g. in [11]. Now assume thatX,X1, X2, . . .
are real–valued random variables with distribution functions FX , FX1 , FX2 , . . . .
We say that

• Xn converges in distribution to X if limn→∞ FXn(x) = F (x) for all conti-
nuity points x ∈ R of F and we then write Xn

d→ X.

The connections to the other modes of convergence are summarized in the fol-
lowing theorem.

Theorem A.2 Let X,X1, X2, . . . be real–valued random variables defined on the
same probability space (Ω,A,P). Then Xn

d→ X if Xn
a.s.→ X, Xn

Lp→ X or
Xn

P→ X.

For a proof of Theorem A.2, see e.g. [11]. Let PX , PX1 , PX2 , . . . denote the distri-
butions of X,X1, X2, . . . , then convergence in distribution can be characterized
in the following way, see e.g. Chapter 1 in [15].

Theorem A.3 Let X,X1, X2, . . . be real–valued random variables. Then Xn
d→

X if and only if

lim
n→∞

∫
R
f(x)PXn(dx) =

∫
R
f(x)PX(dx)

for every bounded and continuous function f : R→ R.

Now we consider two sequences X1, X2, . . . and Y1, Y2, . . . of real–valued random
variables. Then the following result is true, see e.g. Theorem 3.1 of [15].

Theorem A.4 Let X1, X2, . . . and Y1, Y2, . . . be two sequences of real–valued
random variables defined on the same probability space (Ω,A,P). If Xn

d→ X for
some random variable X and Xn − Yn

P→ 0, then Yn
d→ X.
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A.1.2 Convergence theorems

In the preceding section we have summarized relationships between different
modes of convergence. In particular, convergence almost everywhere as well as
convergence in the p-th mean implies convergence in µ-measure, which in turn
implies convergence in distribution if µ is a probability measure. However, the re-
lationship between convergence in p-th mean and convergence almost everywhere
is more complicated. We discuss this relationship in the present section.

To begin with, we summarize two classical limit theorems. The first one is
the monotone convergence theorem of B. Levi ([11], Theorem 2.3.4).

Theorem A.5 (Monotone Convergence Theorem) Let (Ω,A, µ) be a mea-
sure space and let {fn} be a non–decreasing sequence of measurable functions
fn : Ω→ [0,∞], i.e.,

0 ≤ fn(ω) ≤ fn+1(ω)

for all n ∈ N and ω ∈ Ω. Then f : Ω → [0,∞] defined by f(ω) = limn→∞ fn(ω)
is measurable and

lim
n→∞

∫
Ω

fn(ω)µ(dω) =

∫
Ω

f(ω)µ(dω) .

Another important limit theorem is the famous dominated convergence theorem
of H. Lebesgue ([11], Theorem 2.7.4).

Theorem A.6 (Dominated Convergence Theorem) Let {fn} be a sequence
of real–valued measurable functions on a measure space (Ω,A, µ) which converges
µ-almost everywhere. Suppose that there is an integrable function g : Ω→ R with

|fn(ω)| ≤ g(ω)

for all ω ∈ Ω and n ∈ N. Then there is an integrable function f : Ω → R such
that fn converges µ-almost everywhere and in L1 to f .

Note that a sequence {fn} converges in µ-measure if it converges µ-almost every-
where, but the converse statement is not true in general. However, the dominated
convergence theorem can be refined for sequences which converge in µ-measure
using the notion of uniform integrability. Let {fn} be a family of real–valued
measurable functions defined on a measure space (Ω,A, µ). If for every ε > 0
there is a µ-integrable function g : Ω→ [0,∞] such that∫

{ω∈Ω:|fn(ω)|≥g(ω)}
|fn(ω)|µ(dω) ≤ ε for all n ∈ N , (A.1)

then {fn} is said to be uniformly µ-integrable. With this definition, convergence
in L1 can be characterized as follows, see e.g. Theorem 2.12.4 in [11].
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Theorem A.7 Let µ be a σ-finite measure on a measurable space (Ω,A). Then a
sequence of µ-integrable functions {fn} on (Ω,A) converges in L1 to a µ-integrable
function f : Ω→ R if and only if

(i) fn converges in µ-measure to f and

(ii) {fn} is uniformly µ-integrable.

An elementary but useful result in order to check a sequence for uniform integra-
bility is given in the following lemma. It is a direct consequence of the definition
of uniform integrability.

Lemma A.8 Let {fn} and {gn} be two families of measurable functions on
(Ω,A, µ) which satisfy that |fn| ≤ |gn| for all n ≥ 1. Then {fn} is uniformly
µ-integrable if {gn} is uniformly µ-integrable.

A.1.3 Weak convergence of probability measures

In this thesis an additional convergence concept is considered. This is the con-
cept of weak convergence of probability measures. Recall that a sequence of
real–valued random variables X1, X2, . . . converges in distribution to the random
variable X if and only if

lim
n→∞

∫
R
f(x)PXn(dx) =

∫
R
f(x)PX(dx)

for every bounded and continuous function f : R → R, see Theorem A.3. Thus,
convergence in distribution of Xn to X can be regarded as convergence of the
probability measures PXn on B(R) to the probability measure PX on B(R). This
concept can be extended to sequences of probability measures Pn on more general
measurable spaces (Ω,A).

Let Ω be a metric space and let B(Ω) denote its Borel-σ-algebra. Then a
sequence of probability measures {µn} on B(Ω) is said to converge weakly to the
probability measure µ if

lim
n→∞

∫
Ω

f(ω)µn(dω) =

∫
Ω

f(ω)µ(dω)

for all continuous and bounded functions f : Ω → R. Note that a sequence
{Xn} of random variables converges in distribution to the random variable X if
and only if their distributions {PXn} converge weakly to the distribution PX of
X. Therefore, we sometimes also say that a sequence of probability measures on
B(Ω) converges in distribution if it converges weakly.

Now suppose that X(1), X(2), . . . is a sequence of point processes and X an-
other point process. We then say that X(n) converges weakly to X if the dis-
tribution PX(n) of X(n) converges weakly to the distribution PX of X. Weak
convergence of point processes can be characterized in the following way, see [21],
Theorem 11.1.VII.
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Theorem A.9 The sequence {X(n)} converges weakly to X if and only if

lim
n→∞

P(X(n)(A1) = k1, . . . , X
(n)(Am) = km) = P(X(A1) = k1, . . . , X(Am) = km)

for any family A1, . . . , Am of bounded continuity sets of X and any k1, . . . , kn ∈ N,
where a set A ∈ B(R2) is called continuity set of X if P(X(∂A) > 0) = 0.

Theorem A.9 states that a sequence of point processes {X(n)} converges weakly to
some point process X if the finite–dimensional distributions of X(n) converge to
those of X. Thus, here we regard a point process as a stochastic process indexed
by the Borel sets B(R2). Note that in general a sequence of stochastic processes
does not converge weakly if the finite–dimensional distributions converge. The
sequence has to fulfill in addition a so–called tightness condition, see e.g. [15].
However, for point processes (and random measures) this tightness condition is
always fulfilled. Hence it is sufficient that the finite-dimensional distributions
converge.

A.2 Kingman’s subadditive ergodic theorem
Another tool used in this thesis is the notion of subadditivity. Let Y = {Yij, i, j ≥
1, i < j} denote a family of real-valued random variables which are defined on
some probability space (Ω,A,P). Note that we can regard the family Y as a
random element of the measurable space (S,B(S)), where S denotes the family
of double–indexed sequences in R and B(S) is its Borel-σ-algebra. The family Y
is called a subadditive process if

1. Yik ≤ Yij + Yjk for all i < j < k,

2. Y = {Yij}
d
= Y′ = {Yi+1,j+1},

3. EY +
01 <∞, where Y +

01 = max{0, Y01}.

If a family of random variables is subadditive, then, under mild conditions, it
can be shown that Y0j/j converges almost surely and in L1 to some constant
ξ, see the following subadditive ergodic theorem which is due to Kingman ([46],
Theorem 1). A slightly more general version of the subadditive ergodic theorem
can be found in [45], Theorem 10.22.

Theorem A.10 Let Y be a subadditive process. Then the limit

ζ = lim
j→∞

1

j
Y0j (A.2)

exists and is finite with probability 1, where Eζ = infj∈N EY0j/j. If Eζ > −∞,
then the convergence in (A.2) also holds in the L1-norm. Moreover, let IS ⊂ B(S)
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be the σ-algebra of subsets of S which are invariant under the shift Y 7→ Y′,
where Y ′ij = Yi+1,j+1, and let I = Y−1IS ⊂ A be the corresponding sub-σ-algebra
of events. Then,

ζ = lim
j→∞

1

j
E
(
Y0j | I

)
. (A.3)

In the same way as for (marked) point processes we define ergodic subadditive
processes. A subadditive process Y is said to be ergodic if the σ–algebra IS is
trivial, i.e., for each A ∈ IS it holds that P(Y ∈ A) = 0 or P(Y ∈ A) = 1. Thus,
if Y is ergodic, the limit ζ considered in (A.2) is almost surely constant due to
equation (A.3).

A.3 The Hausdorff measure and the generalized
Blaschke–Petkantschin formula

In this thesis it is essential to measure lengths of segments and curves. This
can be done using the 1-dimensional Hausdorff measure ν1 which is defined for
B ⊂ R2 by

ν1(B) = sup
ε>0

inf
{∑
j∈N

D(Aj) : B ⊂ ∪j∈NAj, D(Aj) ≤ ε
}
,

where D(Aj) = sup{‖ x− y ‖: x, y ∈ Aj} is the diameter of the set Aj, see [43].
Note that for a differentiable curve C, the Hausdorff measure allows to integrate
some function f : C → [0,∞] along C with respect to the length measure ν1 on
C. However, ν1 is not σ-finite and thus Fubini’s Theorem ([11], Theorem 3.2.6)
cannot be applied for integrals involving ν1. This is one reason why it is often
convenient to transform such integrals in order to obtain expressions which do
not contain ν1 anymore.

There are different possibilities to transform integrals with respect to the 1–
dimensional Hausdorff measure in R2. A very general transform is the coarea
formula which can be used to obtain the specific transformations used in this
thesis. The following version of the coarea formula is a special case of Theorem 2.1
in [43] which is sufficient for our purposes. In order to formulate this result we use
the notation Tan[C, x] for the tangent line of a differentiable curve C at x ∈ C.

Theorem A.11 (Coarea formula) Let D ⊂ R2 be an open set, C ⊂ D be a
differentiable curve and f : D → R be a differentiable mapping. Then, there is a
function Jf( · ;C) : C → [0,∞) which is called the Jacobian such that∫

C

g(x) Jf(x;C) ν1(dx) =

∫ ∞
0

∑
xi∈C∩f−1(y)

g(xi) dy , (A.4)
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where g : C → [0,∞) is a measurable function. Moreover, let Df(x) be defined by

Df(x) =
( ∂f
∂x1

(x),
∂f

∂x2

(x)
)
,

and let kerDf(x) = {y ∈ R2 : 〈y,Df(x)〉 = 0} be the kernel of the vector Df(x),
where 〈 · , · 〉 denotes the Euclidean scalar product on R2. Then Jf(x;C) > 0, if
and only if the dimension of the subspace

Tan[C, x] ∩ (kerDf(x) ∩ Tan[C, x])⊥

is equal to 1 and then
Jf(x;C) = |〈u,Df(x)〉| ,

where u is a unit vector with {tu : t ∈ R} = Tan[C, x]∩ (kerDf(x)∩Tan[C, x])⊥.

In the proofs of this thesis, the following decompositions of the Hausdorff measure
ν1 are used. First, we state a special case of the generalized Blaschke-Petkantschin
formula ([43], Proposition 5.4).

Theorem A.12 (Generalized Blaschke–Petkantschin formula)Let C⊂R2

be a differentiable curve and assume that

ν1({x ∈ C : Tan[C, x] = span{x}}) = 0 , (A.5)

where span{x} = {cx : c ∈ R} is the line which goes through the origin o ∈ R2

and the point x ∈ C. Then, for any measurable g : C → [0,∞), it holds that∫
C

g(x) ν1(dx) =

∫ 2π

0

∑
xi∈C∩`+Φ

|xi|
sinαi

g(xi) dΦ , (A.6)

where `+
Φ is the half line of direction Φ ∈ [0, 2π) emanating from the origin o and

αi is the angle between Tan[C, xi] and span{xi}.

Furthermore, the Hausdorff measure ν1 can be decomposed in the following way.

Lemma A.13 Let C be a differentiable curve and let

ν1({x ∈ C : dim(Tan[C, x] ∩ (span{x}⊥ ∩ Tan[C, x])⊥) = 0}) = 0 .

Then we get for any measurable g : C → [0,∞) that∫
C

g(x) sin(α(x)) ν1(dx) =

∫ ∞
0

∑
xi∈C∩∂B(o,r)

g(xi) dr , (A.7)

where α(x) is the angle between x and Tan[C, x] ∩ (span{x}⊥ ∩ Tan[C, x])⊥.
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Proof This decomposition of the Hausdorff measure ν1 is an application of
Theorem A.11. First we assume that o 6∈ C and define f : R2\{o} → (0,∞) by
f(x) = |x|. Then f−1(r) = ∂B(o, r) and Df(x) = x/|x|, so we get kerDf(x) =
span{x}⊥. Now if the dimension of the subspace

Tan[C, x] ∩ (span{x}⊥ ∩ Tan[C, x])⊥

is equal to 1 and a basis is given by {u}, then the Jacobian Jf(x;C) is given by

Jf(x;C) = |〈u, 1

|x|
x〉| = sin(α(x)) .

Thus, we can apply Theorem A.11 and obtain equation (A.7). If o ∈ C, then we
can divide the integral into integrals over C\{o} and {o}. For the first integral
we can apply Theorem A.11 in the same way as before and the integral over {o}
is zero since ν1({o}) = 0. This completes the proof. 2

Lemma A.14 With the notation and assumptions of Lemma A.13 it holds that

ν1(C) =

∫ ∞
0

∑
xi∈C∩∂B(o,r)

1

sin(α(xi))
dr , (A.8)

Proof This is an direct application of Lemma A.13 for g(x) = 1/ sin(α(x)). 2
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Zusammenfassung

Die vorliegende Arbeit entstand im Rahmen eines gemeinsamen Forschungspro-
jekts des Instituts für Stochastik der Universität Ulm und Orange Labs in Issy les
Moulineaux, Paris. In diesem Forschungsprojekt wurde das Stochastic Subscriber
Line Model (SSLM) entwickelt, um Telekommunikationsnetzwerke zu modellie-
ren und zu analysieren. Das SSLM ist ein zufälliges räumliches Netzwerkmodel,
welches auf Methoden der stochastischen Geometrie beruht, und insbesondere
für die Analyse von innerstädtischen Zugangsnetzwerken ausgelegt ist. In letzter
Zeit haben sich Analysemethoden für große Telekommunikationsnetzwerke, die
auf solchen stochastischen Netzwerkmodellen basieren, als Alternative zu tradi-
tionellen Ansätzen etabliert. Da sehr große und komplexe Datensätze nötig sind,
um reale Telekommunikationsnetzwerke zu beschreiben, ist ihre direkte Analy-
se extrem schwierig oder gar unmöglich, falls z. B. nicht alle Daten zugänglich
sind. Oftmals ist man jedoch nicht an lokalen Details des Netzwerks interessiert,
sondern versucht vielmehr Aussagen über das globale Verhalten des Netzwerks
treffen zu können. Vorteile bieten in diesem Zusammenhang stochastische Mo-
delle, da sie die Variabilität und Größe der Netzwerke nützen, um das globale
Verhalten des gesamten Netzwerks mit wenigen Parametern zu beschreiben. Da-
durch können auch sehr große Netzwerke anhand des zugehörigen stochastischen
Modells analysiert werden. So lassen sich beispielsweise durchschnittliche Ver-
bindungslängen zwischen Netzwerkkomponenten und andere Kostenfunktionale
anhand des SSLM berechnen.

Das SSLM ist speziell entwickelt worden, um zweistufige hierarchische Te-
lekommunikationsnetzwerke in städtischen Ballungsgebieten abzubilden. Häufig
sind geografische Daten zu den Kabelstränge des Netzwerkes nicht vorhanden.
Daher wird im ersten Schritt nicht das Kabelsystem selbst, sondern die zugrun-
deliegende Infrastruktur des Netzwerks, d. h. das innerstädtische Straßennetz,
modelliert. Hierfür werden die Kantensysteme von zufälligen Mosaiken verwen-
det. Im zweiten Schritt werden die Netzwerkkomponenten als zufällige räumliche
Punktprozesse in der Ebene oder entlang des Straßensystems platziert. Als Model-
le dienen dafür beispielsweise Cox–Prozesse entlang des Kantensystems. Schließ-
lich müssen die Verbindungen zwischen den Netzwerkkomponenten im letzten
Schritt beschrieben werden. Im SSLM wird zu diesem Zweck das Konzept der
Einflusszonen verwendet. Jeder Netzwerkkomponente hoher Hierarchie wird ein
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Bereich als Einflusszone zugeordnet, so dass die Einflusszonen der verschiedenen
Komponenten die gesamte Ebene aufteilen. Eine Komponente niederer Hierarchie
wird dann mit der Komponente hoher Hierarchie verbunden, in deren Einflusszone
sie liegt. In dieser Arbeit werden zwei mögliche Verbindungswege unterschieden.
Zum einen wird die direkte Verbindungslänge und andererseits die kürzeste Ver-
bindung entlang des zugrundeliegenden Kantensystems betrachtet. Insbesonde-
re interessiert uns die Verteilung der durchschnittlichen Verbindungslänge aller
Netzwerkkomponenten im Netzwerk. Mathematisch lässt sich diese Verteilung
durch die Palmsche Markenverteilung eines geeigneten markierte Punktprozesses
definieren und wird als typische Verbindungslänge bezeichnet. Dies führt zum Be-
griff der typischen (direkten) Euklidischen Distanz bzw. der typischen kürzesten
Weglänge. Das Ziel der vorliegenden Arbeit ist es, basierend auf dem SSLM, die
Verteilungen von typischen Verbindungslängen zu analysieren. Hierfür werden
sowohl Monte-Carlo Methoden als auch asymptotische Methoden betrachtet.

Die vorliegende Arbeit ist folgendermaßen gegliedert. Nach einer kurzen Ein-
führung in Kapitel 1 werden in Kapitel 2 einige grundlegenden Begriffe und
Ergebnisse der stochastischen Geometrie präsentiert. Da die betrachteten Netz-
werkmodelle auf zufällige Mosaiken basieren, werden diese gesondert in Kapitel 3
eingeführt und Charakteristiken wie die typische Zelle von stationären zufälligen
Mosaiken definiert.

Im ersten Teil der Arbeit werden Schätzer für die Verteilung der typischen
Euklidischen Distanz und der typischen kürzesten Weglänge hergeleitet und ana-
lysiert. In Kapitel 5 wird insbesondere das SSLM als zufälliges hierarchisches
Netzwerkmodell basierend auf zufälligen Mosaiken und markierten Punktpro-
zessen eingeführt. Dabei wird das innerstädtische Straßensystem mit dem Kan-
tensystems eines zugrundeliegenden zufälligen Mosaiks modelliert. Ferner werden
sowohl Netzwerkkomponenten hoher Hierarchie als auch niederer Hierarchie mit
zufälligen Punktprozessen beschrieben und die Einflusszonen der Komponenten
hoher Hierarchie mit den Zellen von zufälligen Mosaiken dargestellt. Auf der Ba-
sis des so definierten Models lassen sich die typische Euklidische Distanz und die
typische kürzeste Weglänge einführen. Für die Verteilungen der beiden typischen
Verbindungslängen werden Darstellungsformeln hergeleitet, die nur von Funktio-
nalen der typischen Einflusszone (oder Zelle) und des zugrundeliegenden Kan-
tensystems abhängen, jedoch nicht von Komponenten niederer Hierarchie beein-
flusst werden. Basierend auf diesen Darstellungsformeln lassen sich Schätzer für
die Verteilung der typischen Euklidischen Distanz bzw. der typischen kürzesten
Weglänge konstruieren, die anhand von Stichproben der typischen Einflusszone
berechnet werden können. Es wird gezeigt, dass die entwickelten Schätzer sowohl
erwartungstreu als auch gleichmäßig stark konsistent sind.

Um die entwickelten Schätzer berechnen zu können, werden effiziente Simu-
lationsalgorithmen für die typische Voronoi Zelle von einer Vielzahl von Punkt-
prozessmodellen entwickelt, die in Kapitel 4 beschrieben werden. In diesem Zu-
sammenhang werden insbesondere Cox–Prozesse auf dem Kantensystem und un-
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abhängige Ausdünnungen der Knoten von zufälligen Mosaikmodellen betrachtet.
Mit diesen Ergebnissen lassen sich dann sowohl die Verteilung der typischen Eu-
klidischen Distanz als auch die Verteilung der typischen kürzesten Weglänge für
viele unterschiedliche Szenarien berechnen.

Der zweite Teil der Arbeit ist theoretischer Natur und beschäftigt sich mit so-
genannten Skalierungsgrenzwertsätzen. In Kapitel 6 wird der Fall betrachtet, dass
die Netzwerkkomponenten hoher Hierarchie mit Cox–Prozessen auf dem Kanten-
system des zugrundeliegenden zufälligen Mosaiks modelliert werden und die In-
tensität dieses Kantensystem einerseits gegen 0 und andererseits gegen unendlich
strebt. Um sicher zu stellen, dass die Grenzverteilung existiert, muss das Netz-
werk passend skaliert und die Zahl der Netzwerkkomponenten geeignet erhöht
bzw. ausgedünnt werden. In beiden Fällen wird in dieser Arbeit gezeigt, dass die
Verteilung der typischen kürzesten Weglänge gegen eine bekannte parametrische
Verteilung konvergiert.

Im ersten Ansatz wird der Fall betrachtet, dass die Intensität des Kantensy-
stems immer mehr abnimmt. Für diesen Fall wird gezeigt, dass die typische kür-
zeste Weglänge in Verteilung gegen eine Exponentialverteilung konvergiert und
die Grenzverteilung nicht vom Mosaikmodell für das Straßensystem abhängt.

Danach wird der Fall betrachtet, dass das Kantensystem unendlich dicht wird
und die Netzwerkkomponenten geeignet ausgedünnt werden. Hier zeigt sich, dass
die typische kürzeste Weglänge in Verteilung gegen ξZ konvergiert, wobei Z eine
Weibull–verteilte Zufallsvariable und ξ ≥ 1 eine Konstante ist. Der Faktor ξ hängt
dabei wesentlich vom Modell für das Straßensystem ab und kann für Spezialfälle
sogar explizit berechnet werden. Diese Aussage kann mit Hilfe von Methoden der
schwachen Konvergenz von Punktprozessen, der geometrischen Maßtheorie sowie
des subadditiven Ergodensatzes von Kingman bewiesen werden.

In Kapitel 7 werden dann die zuvor erzielten Resultate kombiniert, um para-
metrische Dichten für die typische kürzeste Weglänge zu bestimmen. Die Pa-
rameter dieser Dichten lassen sich für echte Daten leicht schätzen und es zeigt
sich, dass die so bestimmten parametrischen Verteilungen sehr gut die realen
Verteilungen von Verbindungslängen im Zugangsnetzwerk von Paris approximie-
ren. Zusammenfassend wird dadurch gezeigt, dass die in dieser Arbeit entwickelte
Techniken mächtige Werkzeuge für die Analyse und Planung von existierenden
bzw. zukünftigen Netzwerken liefern.

Schließlich werden in Kapitel 8 die zuvor entwickelten Ansätze verallgemei-
nert, um sogenannte Kapazitäten im SSLM zu schätzen. Insbesondere wird ge-
zeigt, wie sich die Verteilung der benötigten Kapazität mit Monte-Carlo Me-
thoden schätzen lässt. Dies verdeutlicht, dass sich die entwickelte Methodik zur
Analyse von Verbindungslängen auch leicht für die Analyse von komplexeren
Kenngrößen anpassen lässt.
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