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Introduction

ONe of Shannon’s most important ideas was the geometric interpretation of
communications systems in general and messages, code words, and the en-
coding and decoding procedures in particular. Shannon exploited the geo-

metric representation to derive the celebrated capacity formula for the AWGN (ad-
ditive white Gaussian noise) channel. He used the observation that the noise turns
the coded signal point into a cloud sphere of an essentially fixed radius, adhering
basically to what is currently known as sphere hardening.

When moving from AWGN to fading channels and systems with, in general, more
than one antenna, the analysis reveals that the problem of information transmission
can be interpreted as a constrained packing problem in Riemannian manifolds. For
example, in the case of unknown block Rayleigh fading channels, there is an insight
generated by the concept of coordinate change which arises from the observation that
the fading channel matrix does not change the subspace in which the transmitted sig-
nal resides, but it merely rotates and scales the bases of this subspace. However,
the combined effect of noise and fading results in the perturbation of the signal sub-
space in a specific manner. Based on this geometric insight, it was shown that, at
high SNR, the information carrying object is a linear subspace. For M transmit an-
tennas and coherence time T, we can say that the relevant coding space is the set
of M-dimensional linear subspaces of the, in general, complex T-dimensional space.
This set can be given a structure of a manifold and is known as the Grassmann mani-
fold GC

T,M. The differential structure of the Grassmann manifold yields non-coherent
space-time codes based on sets in the tangent bundle of the manifold with connection
given by the exponential map. Therefore, a treatment of the geometry and the struc-
ture of certain Riemannian manifolds is needed in order to formulate the problems
and eventually construct codes for communication.

When moving from point-to-point systems to wireless networks, the situation be-
comes more difficult. One example are the ad hoc networks which are mobile peer-
to-peer networks that operate without the assistance of preexisting infrastructure. Ad
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INTRODUCTION

hoc networks are the most general class of wireless networks and, at the same time,
the most challenging to both quantify and design. Immediate applications of ad hoc
networks include emergency networks, metropolitan mesh networks for broadband
Internet access, and sensor networks. Besides in communications, ad hoc networks
(and networks in general), play an important role in other fields, including biology,
economics, and transportation. Information theory has been successful in describing
the point-to point communication links and centralized networks. However, it has
not been successfully applied to decentralized wireless networks. One of the reasons
is the lack of a theory which describes the fundamental performance limits of mobile
ad hoc networks. In contrary to the point-to-point communication links, where the
capacity has been characterized in most of the practically relevant cases, the capac-
ity characterization of wireless networks, and particularly mobile ad hoc networks,
faces serious difficulties. This, on the other hand, has impeded the development and
commercialization of many types of wireless networks.

The development of a general capacity theory for wireless networks is certainly a
difficult task. However, a contribution to the problem solution might come from some
underemployed techniques in capacity characterization. One possible approach is
based on the geometric interpretation of the capacity, rather than the deployment of
the typical algebraic tools. One of the advantages of the geometric approach is that,
when put in a geometric context, the performance limits of communication systems
have a more intuitive explanation. Second, sometimes is the formulation in geometric
terms simpler.

These examples encourage the deployment of general geometric techniques for the
description of wireless networks. Besides the development of the geometric frame-
work, the construction of codes can also benefit from the geometric approach. This is
motivated from some observations from point-to-point systems. Let us take for exam-
ple the famous Alamouti code, initially developed for a quasi-static Rayleigh fading
channel and communication system where the transmitter has two transmit antennas.
The Alamouti code is a special case of a so-called orthogonal space-time block code.
Orthogonal space-time block codes are known for having good diversity properties
and allow for simple, symbol-per-symbol decoding. As far as the existence of orthog-
onal space-time block codes is concerned, for systems with more then two antennas it
has been proved that these codes exist only in certain cases (number of antennas) and
only for certain transmission rates (in terms of number of symbols per channel use).
From algebraic point of view, it is not trivial to show why this is the case. However,
another insight may be gained through the special representation of these codes via
linear dispersion matrices. It can be shown that there is a connection between the
linear dispersion matrices used to describe the space-time codes and special pack-
ings of subspaces in the Grassmann manifold. Moreover, there is an embedding of
the Grassmann manifold with the chordal distance as metric, in a higher dimensional
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Euclidean space where the chordal distance equals the Euclidean distance. After the
embedding, the set of subspaces (or equivalently the set of dispersion matrices) rep-
resents the set of the vertices of an orthoplex in this higher-dimensional space. From
geometry we know that the number of vertices of an orthoplex in certain dimension
is fixed, which fixes the number of linear dispersion matrices which represent an or-
thogonal space-time code and thus explains the existence of these codes. We see that
the geometric interpretation not only explains certain phenomena, but also can serve
as a mean for code construction. Further, it provides bounds on what is achievable in
a certain setup.

The described examples show that the geometric approach brings more intuition
in the understanding of the fundamental limits of both point-to-point systems and
wireless networks. Moreover, the geometric tools offer the possibility to construct
high-dimensional codes which in certain cases mimic the optimal input distributions.

With the above mentioned, the focus in this thesis is mainly on the deployment
of the geometric framework for the construction of codes for non-coherent commu-
nication over flat fading MIMO channels, both in the case of point-to-point systems
as well as wireless networks with relays. The thesis is organized as follows. After
the introduction, in the first chapter we present the theoretical preliminaries. We first
describe the properties of Rayleigh fading channels and give examples of flat fading
channels. The focus is on the block fading channel which is used as our system model
throughout the thesis. We also give an introduction to space-time coding and analyze
the effect of diversity offered by the deployment of multiple antennas. In Chapter 2
we provide the basics for non-coherent space-time coding. We summarize the capac-
ity results and the performance analysis and design criteria for non-coherent space-
time codes. Since the problem of non-coherent space-time coding can be interpreted
as a constrained packing problem in Grassmann manifolds, we present the neces-
sary preliminaries for the geometry of Grassmann manifolds. A more detailed intro-
duction is given in the Appendix. The main contribution of the thesis is presented
in Chapter 3, 4 and 5. In Chapter 3 we construct novel codes for the non-coherent
point-to-point channels based on geometric methods in Grassmann manifolds and
analyze their performance. The constructions exploit the differentiable structure of
Grassmann manifolds. In Chapter 4 and Chapter 5 we focus on wireless networks
with relays and address both the cases of one-way (uni-directional) and two-way (bi-
directional) relaying. We present novel code constructions for both cases. For the case
of two-way relaying we additionally derive rate bounds and prove the optimality of
the amplify-and-forward scheme in the high SNR regime. We conclude the thesis in
the last chapter.

The main novelty presented in this thesis is contained in Chapter 3, Chapter 4 and
Chapter 5. Parts of this thesis were published in [53], [56], [55], [54], [52], [51], [49],
[64], [57], [58], [59], [50].
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Chapter 1
Basics

IN this chapter we present some basic principles of wireless communications. We
first introduce the Rayleigh fading channel, which is widely used to model mo-
bile communication channels. Compared to the AWGN channel, the communi-

cation over Rayleigh fading channels is more challenging. We discuss fast and slow
fading channels and their characteristics. We also present the block fading model
which is the fading model of interest in this thesis and can be seen as a special case
of a slow fading channel. The adverse effects of the Rayleigh fading can be miti-
gated by the introduction of multiple antenna systems, which we briefly describe.
Further, we present the basics of space-time coding, which can be seen as technique
that joints error-control coding, modulation, and transmit diversity for the multiple
antenna systems.

1.1 Rayleigh Fading Channels

The wireless characteristic of the channel places fundamental limitations on the per-
formance of wireless communication systems. Wireless channels are random and are
not easily analyzed due to the diverse environments, the motion of the transmitter,
the receiver, and the surrounding objects. In this section, characteristics of wireless
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channels are discussed and the Rayleigh flat-fading channel model is explained in
detail.

In a mobile wireless environment, the surrounding objects act as reflectors of elec-
tromagnetic waves. Due to these refections, electromagnetic waves travel along dif-
ferent paths of varying lengths and therefore have various amplitudes and phases.
The linear superposition of these waves causes multiple fading at the receiver loca-
tion, and the strength of the waves decreases as the distance between the transmitter
and the receiver increases.

Traditionally, propagation modeling focuses on two aspects. Propagation mod-
els that predict the mean signal strength for an arbitrary transmitter-receiver separa-
tion distance are called large-scale propagation models since they characterize signal
strength over large transmitter-receiver distances [40]. Propagation models that char-
acterize the rapid fluctuations of the received signal strength over very short travel
distances or short time durations are called small scale or fading models [40]. In this
thesis, the focus is on fading models, which are more suitable for indoor and urban
areas.

Small-scale fading is affected by many factors, such as multiple-path propagation,
velocity of the transmitter and receiver, velocity of surrounding objects, and the trans-
mission bandwidth of the signal. In this work, narrowband systems are considered,
in which the bandwidth of the transmitted signal is smaller than the channel’s co-
herence bandwidth, which is defined as the frequency range over which the channel
fading process is correlated [40]. This type of fading is referred to as flat fading or
frequency non-selective fading.

The Rayleigh distribution is commonly used to describe the statistical time-varying
nature of the received envelope of a flat-fading signal. It is also used to model fad-
ing channels in this thesis. For a typical mobile wireless channel in indoor or urban
areas, we may assume that the direct line-of-sight wave is obstructed and the re-
ceiver obtains only reflected waves from the surrounding objects. When the number
of reflected waves is large, according to the central limit theorem, two quadrature
components of the received signal are uncorrelated Gaussian random processes with
mean zero and variance 1

2 . As a result, the envelope of the received signal at any time
instant has a Rayleigh distribution and its phase is uniform between −π and π. It is
important to note that this model is applicable for narrowband signals, since then the
signals traveling different paths can not be resolved in time at the receiver and they
add together. This is the case when the signal bandwidth is sufficiently small, given
the delays of the reflected signals.

We can say that there are two sources of noise at work: multiplicative noise that
is associated with the Rayleigh fading, and the usual additive receiver noise. This
makes the Rayleigh fading channel essentially different from the Additive White
Gaussian Noise (AWGN) channel.
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1.2 Fading Models of Interest

1.2 Fading Models of Interest

Rayleigh fading significantly deteriorates the performance of the communication sys-
tem. It can be easily shown that under Rayleigh fading, the error probability of an
uncoded modulation scheme decays only inversely proportional with the received
signal-to-noise-ratio (SNR) [48]. Compared to the AWGN channel, where the error
probability decays exponentially, this means that substantially more power should
be added in order to obtain the same decrease in the error probability.

The underlying fading model is very important for the design of the communi-
cation system, since different fading models require different transmit and receive
strategies. If the fading model is such that each transmitted symbol is affected in-
dependently, this effect can be averaged out by using long channel codes. This is
the case of fast fading. The performance of this channel will then approach the per-
formance of the AWGN channel. However, very often is the case that the channel
is constant for a longer period of time which spans a lot of transit symbols. In this
case, when a bad channel realization (small amplitude) takes place, a long seqzunce
of transmit symbols will be affected and most certainly the whole sequence will be
in error. The extreme example is the so called slow fading or quasi-static fading model
where we basically assume that the channel is constant for the total duration of the
transmission. In this case, channel coding can not average out the effects of the fad-
ing, since when the channel is bad, it remains bad for the duration of channel coding
blocks of practical relevance. Strictly speaking, in this case the ergodic capacity of
this channel is zero. Under this scenario, it makes sense to speak about the so-called
outage capacity.

Let us look at the single-antenna example first. According to the slow fading model
the channel gain is random but remains constant for all time, i. e. , h[m] = h for all m.
This models the slow fading situation where the delay requirement is short compared
to the channel coherence time. The equivalent low-pass representation for a single-
antenna communication system can thus be written as

y =
√

psh + w (1.1)

where h is the Rayleigh flat-fading channel coefficient, p is the transmit power and
w is the noise at the receiver, which is Gaussian with zero-mean and unit-variance.
s satisfies the power constraint E[|s|2] = 1. With this the average received signal-to-
noise ratio (SNR) is p.

Conditional on a realization of the channel h, this is an AWGN channel with in-
stantaneous received signal-to-noise ratio p|h|2. Since |h| is Rayleigh distributed, |h|2
is exponentially distributed with probability density function

p(x) = exp(−x), x > 0. (1.2)
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Thus, the probability that the receive SNR is less than a level σ is,

Prob
[

p|h|2 ≤ σ
]

= 1− exp(−σ/p). (1.3)

We will mostly be interested in the high SNR regime. When the average SNR is high,
(p À 1), we have

Prob
[

p|h|2 ≤ σ
]
≈ σ

p
. (1.4)

We can see that the probability that the received SNR is below a certain threshold
decays only linearly with the SNR. This is also the typical error event, i. e . approxi-
mately the error probability of the transmission scheme.

With channel knowledge at the receiver, the maximum rate of reliable communica-
tion supported by this channel is [48]

R = log2(1 + p|h|2) bits/s/Hz. (1.5)

This quantity is a function of the random channel gain h and is therefore random.
Now suppose the transmitter encodes data at a rate R bits/s/Hz. If the channel real-
ization h is such that log2

(
1 + p|h|2) ≤ R, then whatever the code used by the trans-

mitter, the decoding error probability cannot be made arbitrarily small. The system
is said to be in outage, and the outage probability is [48]

Po(R) = Prob
[
log2

(
1 + p|h|2

)
≤ R

]
. (1.6)

We can say that there is a conceptual difference between the AWGN channel and the
slow fading channel. In the former, one can send data at a positive rate (any rate
less than the capacity C) while making the error probability as small as desired. This,
however is not possible for the slow fading channel as long as the probability that the
channel is in deep fade is non-zero. Thus, the capacity of the slow fading channel in
the strict sense is zero. An alternative performance measure is the ε-outage capacity
Cε. This is the largest rate of transmission R such that the outage probability Po(R) is
less than ε.

With the above said, the outage probability is given

Po(R) = 1− exp
(

2R − 1
p

)
. (1.7)

At high SNR,

Po(R) ≈ 2R − 1
p

, (1.8)

which is a result of the Taylor expansion. We observe that the outage probability
decays as 1/p, which is the same as the uncoded transmission. Thus, we see that
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coding cannot significantly improve the error probability in a slow fading scenario.
The reason is that while coding can average out the Gaussian white noise, it cannot
average out the channel fade, which affects all the coded symbols. Thus, deep fade,
which is the typical error event in the uncoded case, is also the typical error event in
the coded case. Solving Po(R) = ε yields

Cε = log2(1 + F−1(1− ε)p) bits/s/Hz, (1.9)

where F is the complementary cumulative distribution function of |h|2, i.e., F(x) =
Prob

[|h|2 > x
]
. For small ε we have,

Cε ≈ log2(1 + εp). (1.10)

If we compare with the capacity of the AWGN channel we get

Cε ≈ CAWGN − log2

(
1
ε

)
. (1.11)

We can see that in the high SNR regime, we have a constant difference between the
AWGN channel capacity and Cε.

It is important to mention that the concept of outage and outage capacity is strictly
speaking result of the definition of the slow fading channel, where we assume that
the channel is constant for the whole duration of the transmission. In reality this may
be realistic when the delay requirement is such that it is not possible to code over
more then one block.

1.3 MIMO Transmission Systems

Multiple-input-multiple-output (MIMO) transmission systems have attracted atten-
tion in wireless communications, since they offer significant increases in data through-
put and link range without additional bandwidth or transmit power. The technology
figures prominently on the list of recent technical advances with a a chance of resolv-
ing the bottleneck of traffic capacity in future wireless networks.

MIMO systems can be defined simply. Given an arbitrary wireless communication
system, we consider a link for which the transmitting end as well as the receiving end
is equipped with multiple antenna elements, as illustrated in Fig. 1.1.

For a multiple antenna system with M transmit and N receive antennas, with the
same transmit power, the system model equation is

y =
√

psH + w, (1.12)

where E[s∗s] = 1. With this, the instantaneous received SNR is p
M ∑M

i=1 ∑N
j=1 |hij|2.

9



1 Basics

Figure 1.1: Diagram of a MIMO wireless transmission system. The transmitter and
receiver are equipped with multiple antenna elements.

The above definition of MIMO transmission systems is quite general and indepen-
dent of the channel model assumed. However, when it comes to the capacity and
error performance of a certain MIMO system, the channel model plays a crucial role.
We will thus focus on the effect of multiple antennas in our fading models of inter-
est. We will start with the slow fading model, which we take as illustration for the
extreme effects of the Rayleigh fading on the performance of the system. After this
we will concentrate on the model of interest in this thesis which is the block fading
model introduced by Marzetta and Hochwald [31].

1.3.1 Multiplexing

As already discussed, the capacity of different MIMO channels depends heavily on
the channel model assumed and the degree of channel knowledge at the transmitter
and/or at the receiver. In this sense MIMO channels with fast fading assumption dif-
fer substantially from MIMO channels with slow fading or block fading assumption.
What is common for all models is that these systems offer certain spatial multiplex-
ing gains. Roughly speaking, we can say that the multiplexing gain is the number
of parallel streams that can be sent over the different antennas. More precisely, it is
the factor in front of the log2 SNR in the capacity expression. For example, for a fast
fading Rayleigh MIMO channel, the capacity scales like min(M, N) log2 SNR, where
min(M, N), i. e. the factor in front of the logarithmic term, is the maximal multiplex-
ing gain provided by the system. Another term to denote this factor is the degree of
freedom of the system.

10



1.3 MIMO Transmission Systems

For slow fading and block fading channels, the multiplexing gain has a different
value. In that context it also makes sense to look at the multiplexing gain and the
diversity gain from a common perspective. We will come back to this question at the
end of this chapter where we introduce the diversity-multiplexing-tradeoff.

1.3.2 Diversity

We have seen that under the slow fading assumption, both the capacity and the per-
formance of the system in terms of error probability are significantly deteriorated.
Hence, other techniques are needed in order to mitigate these effects. Diversity is
one technique which can improve the performance of the system under these circum-
stances.

Diversity–Classical Definition

The basic idea of diversity is that, if two or more independent signals are sent and
then fade in an uncorrelated manner, the probability that all the signals are simul-
taneously below a given level is much lower than the probability of any one signal
being below that level. Thus, properly combining various signals reduces the severity
of fading and improves reliability of transmission.

According to the domain where diversity is introduced, it can be classified into
time diversity, frequency diversity and antenna diversity (space diversity). Time di-
versity can be achieved by transmitting identical messages in different time slots,
which results in uncorrelated fading signals at the receiver. Frequency diversity can
be achieved by using different frequencies to transmit the same message. The issue
we are interested in is space or antenna diversity, which is typically implemented us-
ing multiple antennas at the transmitter or the receiver or both. The multiple anten-
nas should be separated physically by a proper distance to obtain independent fad-
ing. Typically a separation of a few wavelengths is enough. Depending on whether
multiple antennas are used for transmission or reception, space diversity can be clas-
sified into two categories: receive diversity and transmit diversity. To achieve receive
diversity, multiple antennas are used at the receiver to obtain independent copies of
the transmitted signals. The replicas are properly combined to increase the overall
receive SNR and mitigate fading. There are many combining methods, for exam-
ple, selection combining, switching combining, maximum ratio combining, and equal
gain combining [37]. Transmit diversity is more difficult to implement than receive
diversity due to the need for more signal processing at both the transmitter and the
receiver. In addition, it is generally not easy for the transmitter to obtain information
about the channel, which results in more complexity in the system design.

11
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As already discussed, in the single antenna case the error probability is only in-
versely proportional to the SNR. In the following we evaluate shortly the effect of
multiple transmit and receive antennas on the error probability. The outage probabil-
ity is the probability that the SNR at the receiver is less than the level σ and is given
by

Pr

[
p
M

M

∑
i=1

N

∑
j=1
|hij|2 ≤ σ

]
=

(
1− exp

(
−σM

p

))MN
≈

(
σM

p

)MN
, (1.13)

when the transmit power is high. The outage probability is thus inversely propor-
tional to MN. Therefore, multiple-antenna systems have much lower error probabil-
ity than single-antenna systems at high transmit power.

In this light, a key measure of the performance capability of a slow fading channel
is the maximum diversity gain that can be extracted from it. For example, a slow
i. i. d. Rayleigh faded MIMO channel with M transmit and N receive antennas has a
maximum diversity gain of MN i. e. , for a fixed target rate R, the outage probability
Po(R) decays like 1/SNRMN at high SNR. This is the classical definition for diversity
which appears in the first papers addressing the topic, e. g. [19], [46]. We will revisit
the concept of diversity when we speak about the diversity-multiplexing-tradeoff at
the end of this chapter.

1.4 Space-Time Coding

It is important to develop algorithms that take advantage of the spatial diversity pro-
vided by multiple antennas. Many algorithms with reasonable complexity and per-
formance have been proposed, for example, the diversity techniques and diversity
combining methods (see,[63],[45],[40],[37]). Among them, the most successful one is
space-time coding, in which time (the natural dimension of digital communication
data) is complemented with the spatial dimension inherent in the use of multiple
spatially distributed antennas. By doing this, both the data rate and the performance
are improved by many orders of magnitude with no extra cost of spectrum. We can
say that space-time coding is a joint design of error-control coding, modulation, and
transmit diversity. In this thesis we focus on space-time coding schemes for the block
fading channel model. Therefore, in the following we first present this model in de-
tail.

1.4.1 The Block Fading Channel

In the previous sections we have discussed two different channel models. The first
one assumed that the channel changes between each transmitted symbol in an inde-
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pendent realization. The other model was the quasi static or the slow fading model
where the channel coherence time is larger than the delay requirement for the sys-
tem and thus the channel is constant for the whole duration of the transmission. In
reality, it is very often the case that the channel is constant for a finite period of time
T and then changes to a different, independent realization. The propagation coeffi-
cients are assumed to be constant for T symbol periods, after which they change to
new independent random values which they maintain for another T symbol periods,
and so on. This is the block fading model introduced by Marzetta and Hochwald
in [31]. This piecewise-constant fading process approximates, in a tractable man-
ner, the behavior of a continuously fading process such as Jakes [22]. Furthermore,
it is a very accurate representation of many time-division multiple access (TDMA),
frequency-hopping, or block-interleaved systems [31]. The random propagation co-
efficients are modeled as independent, identically distributed, zero-mean, circularly
symmetric complex Gaussian random variables of variance 1.

On the transmitter side, the information bits are encoded into T × M transmit ma-
trix S = [s1, s2, ..., sM], where sm = [sm,1, sm,2, . . . , sm,T]T is signal at the m-th antenna
respectively. The transmit matrix is normalized to tr(SHS) = M. The antennas then
send the signals simultaneously to the receiver. Every receive antenna at the receiver
obtains a signal that is a superposition of the signals from every transmit antenna
through the fading coefficient. The received signal is also corrupted by noise. If we
denote the noise at the n-th receive antenna by wn, which is i.i.d complex Gaussian
CN(0, 1), then the received signal at the n-th receive antenna is

yn =
√

ρT
M

M

∑
m=1

smhmn + wn,

where ρ is the SNR at each receive antenna.
Let us denote the matrix of the received signal as Y = [y1, y2, ..., yN ]; the matrix of

additive noise as W = [w1, w2, ..., wN ]; and the channel matrix as

H =




h11 h12 . . . h1N
h21 h22 . . . h2N

...
... . . . ...

hM1 hM2 . . . hMN


 .

Then the system model can be written as

Y =
√

ρT
M

SH + W. (1.14)

There has been much research on the topic of space-time coding and the design of
space-time block codes. Most of the research concentrated on the case of the known

13



1 Basics

channel, and most of the well-known code constructions were designed for this chan-
nel. Examples include the orthogonal space-time codes [46] including the famous
Alamouti code [2], unitary space-time codes [19] and later the codes obtained by al-
gebraic methods (algebraic number theory) [5], [30], just to name few of them.

1.4.2 Space-Time Coding and Diversity-Multiplexing-Tradeoff

We have already argued that the key performance benefit of a fast fading MIMO chan-
nel is the spatial multiplexing capability it provides through the additional degrees
of freedom. For example, the capacity of an i. i. d. Rayleigh fast fading channel scales
like min(M, N) log2 SNR, where min(M, N) is the number of spatial degrees of free-
dom in the channel. This fast fading (ergodic) capacity is achieved by averaging over
the variation of the channel over time. In the slow fading scenario, no such averaging
is possible and one cannot communicate at this rate reliably. Instead, the information
rate allowed through the channel is a random variable fluctuating around the fast
fading capacity. Nevertheless, one would still expect to be able to benefit from the
increased degrees of freedom even in the slow fading scenario. Yet the maximum di-
versity gain provides no such indication; for example, both an M×N channel and an
MN × 1 channel have the same maximum diversity gain and yet one would expect
the former to allow better spatial multiplexing than the latter. One needs something
more than the maximum diversity gain to capture the spatial multiplexing benefit.

In [66] Zheng and Tse make the important observation that in order to achieve the
maximum diversity gain, one needs to communicate at a fixed rate R, which becomes
vanishingly small compared to the fast fading capacity at high SNR (which grows like
min(M, N) log2 SNR). Thus, one is actually sacrificing all the spatial multiplexing
benefit of the MIMO channel to maximize the reliability. To reclaim some of that
benefit, one would instead want to communicate at a rate R = r log2 SNR, which is
a fraction of the fast fading capacity. In this spirit Zheng and Tse in [66] formulated
the following diversity-multiplexing tradeoff (DMT) for a slow fading channel. A
diversity gain d∗(r) is achieved at multiplexing gain r if the rate is R = r log2 SNR
and the outage probability decays as Po(R) ≈ SNR−d∗(r). More precisely, the curve

d∗(r) = − lim
SNR→∞

log2 Po(r log2 SNR)
log2 SNR

, (1.15)

gives the diversity-multiplexing tradeoff in slow fading channels.
We observe that this definition of diversity gain differs from the standard definition

in the space-time coding literature presented in 1.3.2. In the standard formulation,
diversity gain is an asymptotic performance metric of one fixed code. To be specific,
the input of the fading channel is fixed to be a particular code, while SNR increases.
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The speed that the error probability (of a maximum-likelihood (ML) detector) decays
as SNR increases is called the diversity gain. In the formulation by Zheng and Tse,
we notice that the channel capacity increases linearly with the SNR. Hence, in order
to achieve a nontrivial fraction of the capacity at high SNR, the input data rate must
also increase with the SNR, which requires a sequence of codebooks with increasing
size. The diversity gain here is used as a performance metric of such a sequence of
codes, which is formulated as a scheme. Under this formulation, any fixed code has 0
spatial multiplexing gain. Allowing both the data rate and the error probability scale
with the SNR is the crucial element of this formulation and allows to talk about their
tradeoff in a meaningful way.

Similarly, a diversity-multiplexing tradeoff for any space-time coding scheme can
be formulated, with outage probabilities replaced by error probabilities. A space-time
coding scheme is a family of codes, indexed by the SNR. It attains a multiplexing
gain r and a diversity gain d if the data rate scales as R = r log2 SNR and the error
probability scales as Pe ≈ SNR−d i. e .,

lim
SNR→∞

Pe

log2 SNR
= −d, (1.16)

The diversity-multiplexing tradeoff is fundamental property of space-time coding
schemes. It is also probably the most important criterion when comparing two dif-
ferent space-time coding schemes (families of codes). For the code constructions pre-
sented in this thesis, the diversity-multiplexing tradeoff is out of scope. This is par-
tially due to the fact that the constructions presented here rely mostly on a geometric
approach, involving non-linear mapping, which makes the full characterization of the
code properties difficult. Nevertheless, the diversity-multiplexing tradeoff analysis
sheds light on the understanding of the problem of space-time coding and therefore
we decided not to omit it from this introduction.

1.5 Chapter Summary

Fading Models

• Propagation models that characterize the rapid fluctuations of the received sig-
nal strength over very short travel distances or short time durations are called
small scale or fading models.

• In narrowband systems, the bandwidth of the transmitted signal is smaller than
the channel’s coherence bandwidth. This type of fading is referred to as flat
fading or frequency nonselective fading. The Rayleigh distribution is used to
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describe the statistical timevarying nature of the received envelope of a flat-
fading signal.

• If the fading model is such that each transmitted symbol is affected indepen-
dently, this effect can be averaged out by using long channel codes. This is the
case of fast fading.

• In the case of slow fading or quasi-static fading there is a maximum delay require-
ment, which practically means that the channel is constant for the total duration
of the transmission.

• In slow fading, for a certain rate R, whatever the code used by the transmitter,
the decoding error probability cannot be made arbitrarily small. The system is
said to be in outage, and the outage probability is

Po(R) = 1− exp
(

2R − 1
p

)
.

MIMO Transmission Systems

• For a multiple antenna system with M transmit and N receive antennas, with
the same transmit power, the system equation is

y =
√

psH + w,

where E[s∗s] = 1. The received SNR is p
M ∑M

i=1 ∑N
j=1 |hij|2

Multiplexing

• MIMO systems offer a certain spatial multiplexing gains since parallel streams
can be sent over the different antennas.

• For a fast fading Rayleigh MIMO channel, the capacity scales like min(M, N) log2 SNR,
where min(M, N) is the number of spatial degrees of freedom in the channel.

Diversity-Classical Definition

• If two or more independent samples of a signal are sent and then fade in an
uncorrelated manner, the probability that all the samples are simultaneously
below a given level is much lower than the probability of any one sample being
below that level. Thus, properly combining various samples reduces the sever-
ity of fading and improves reliability of transmission. We say that in this case
the system offers a certain degree of diversity.
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• For a multiple antenna system with M transmit and N receive antennas, the
maximal diversity gain is MN. This corresponds to the degree at which the
error probability of a ML detector decays at high SNR.

Space-Time Coding

• Transmit diversity in multiple-antenna systems can be exploited by a coding
scheme called space-time coding, which is a joint design of error-control coding,
modulation, and transmit diversity.

Block Fading Model

• The block fading model assumes that the channel coefficients remain constant
for T symbol periods before changing to a new independent realization.

• For a system with M transmit antennas and M receive antennas, the system
model is given by

Y =
√

ρT
M

SH + W,

where S is the matrix of transmitted signals, H is the matrix of fading coef-
ficients, W is the matrix of the additive noise and Y is the matrix of received
signals. With this identification, ρ is the SNR at each receive antenna.

Space-Time Coding and DMT

• In order to achieve the maximum diversity gain under the slow fading assump-
tion, one needs to communicate at a fixed rate R, which becomes vanishingly
small compared to the fast fading capacity at high SNR. Thus, one is actually
sacrificing all the spatial multiplexing benefit of the MIMO channel to maxi-
mize the reliability.

• In order to reclaim some of that benefit, one should instead communicate at a
rate R = r log2 SNR, which is a fraction of the fast fading capacity.

• A diversity gain d∗(r) is achieved at multiplexing gain r if R = r log2 SNR and
Po(R) ≈ SNR−d∗(r). More precisely, the curve

d∗(r) = − lim
SNR→∞

log2 Po(r log2 SNR)
log2 SNR

,

gives the diversity-multiplexing tradeoff in slow fading channels.
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• A space-time coding scheme attains a multiplexing gain r and diversity gain d
if for the error probability it holds

lim
SNR→∞

Pe

log2 SNR
= −d.
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Chapter 2
Non-Coherent Space-Time Coding

IN this chapter we summarize some of the main results in the field of non-coherent
space-time coding and present the basics concepts of non-coherent transmission
over block Rayleigh fading channels. Since the accent in this thesis is on the ge-

ometric interpretation of the communication problem, we also present the geometric
preliminaries necessary to understand the properties of Grassmann manifolds and
the code constructions that follow in the next chapters.

2.1 Introduction

If the time between signal fades is sufficiently long, then the transmitter can send
training signals that allow the receiver to estimate the propagation coefficients accu-
rately. With a mobile receiver, however, the time between fades may be too short
to permit reliable estimation of the coefficients. A 100 km/h mobile operating at 1.9
GHz has a fading interval of about 3 ms, which for a symbol rate of 30 ksymb/sec
corresponds to only about 100 symbol periods [31].

Besides the fact that the fading interval might be too short, the number of coeffi-
cients itself might be large and thus difficult to estimate. For example, for a 4 × 4
channel this means 16 impulse responses. Beside the overhead of preambles or test
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2 Non-Coherent Space-Time Coding

sequences for measuring and tracking, there also might be unavoidable inaccuracies,
which decrease the potential gain of the MIMO channel. Therefore it is straightfor-
ward to look for the alternative where no channel knowledge is available at all.

The main principles of non-coherent communication over block fading channels
were presented by Marzetta and Hochwald in [31]. The main result in [31] states
that for a MIMO communication system with M transmit antennas and N receive an-
tennas operating non-coherently over the block-fading channel with block length T,
the generic form of the input signals that enable communication at rates approach-
ing the non-coherent ergodic capacity can be expressed as the product of an isotrop-
ically distributed T × M random unitary matrix and a diagonal M × M matrix D
with real nonnegative entries. In [65] Zheng and Tse developed a geometric frame-
work and derived the capacity of the non-coherent block fading MIMO channel for
different number of transmit and receive antennas. They interpreted the problem
of non-coherent space-time coding as sphere packing problem in Grassmann man-
ifolds. These reults triggered further research relating the geometric properties of
Grassmann manifolds with the problem of space-time code construction for the non-
coherent channel. In this spirit sphere packing bounds were presented in [4]. Henkel
further found tighter bounds in [16]. It is interesting to note that, besides for the
problem of non-coherent space-time coding, Grassmann were addressed in the lit-
erature in other context, for example for solving optimization problems [10], where
detailed introduction to the geometry of Grassmann manifolds is presented. Ad-
ditionally, Grassmann manifolds find application in the problem of communication
over channels with feedback, where the channel information fed back to the transmit-
ter is quantized and represented by a set of elements of the Grassmann manifold [29].
The elements are chosen according to a criterion which maximizes a certain metric in
the Grassmann manifold.

In the following we summarize the main results in this topic and set the principles
for the construction of codes based on the geometric methods.

2.2 System Model

The channel model is the block fading model initiated by Marzetta and Hochwald
[31], presented in 1.2. The channel coefficients are i.i.d. and remain constant for T
symbol periods before changing to a new independent realization. The number of
transmit antennas is M and the number of receive antennas is N. The model is given
by

Y =
√

ρT
M

ΦH + W, (2.1)
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where Φ is a T × M matrix of transmitted signals, H is a M × N matrix of fading
coefficients, i.i.d complex Gaussian, CN(0, 1) and W is a T× N matrix of the additive
noise, also i.i.d complex Gaussian, CN(0, 1). Y is a T × M matrix of received signals.
With this identification, ρ is the SNR at each receive antenna.

An insight generated by the concept of coordinate change arises from the observa-
tion that the fading channel matrix does not change the subspace in which the trans-
mitted signal resides but it merely rotates and scales the bases of this subspace [65].
However, the combined effect of noise and fading results in the perturbation of the
signal subspace in a specific manner. Based on this geometric insight, it was shown
in [65] that, at high SNR, the information carrying object is a linear subspace. That is,
information about the transmitted data is contained in the subspace of the received
signal and the particular orientation of the received signal vector within the subspace
is ”informationless”. These observations suggest that, for the non-coherent channel,
spectrally efficient signalling at high SNR requires the design of the bases of a set
of linear signal subspaces rather than the design of the actual signal values. For M
transmit antennas and coherence time T, we can say that the relevant coding space is
the set of M-dimensional linear subspaces of the, in general, complex T-dimensional
space. This set can be given a structure of a manifold and is known as the Grass-
mann manifold GC

T,M. The differential structure of the Grassmann manifold yields
non-coherent space-time codes based on sets in the tangent bundle of the manifold ,
with connection given by the exponential map.

An example of how the channel acts on the transmit signal is given in Fig. 2.1. Let
s1, s2 be two basis vectors of the two-dimensional subspace ΩS of R3. We can see
that the channel rotates and scales the basis veciors of the two-dimensional subspace.
However, the resulting vectors still span the same subspace.

2.3 Capacity Analysis and Geometric Interpretation

A detailed analysis of the capacity of non-coherent block fading channels is given in
[65]. Here, without going into the full details of the capacity derivation, we will point
out that the derivation is based on the change of the coordinate system, where the
differential entropies involved in the capacity computation are calculated. Namely,
the transmit matrix Φ can be represented by the subspace spanned by its column
vectors, ΩΦ and an M× M matrix CΦ which specifies the column vectors of Φ with
respect to a canonical basis in ΩΦ. The motivation is the following. The channel H
acts on the transmit matrix Φ by scaling and linearly combining its columns. With
this, the M-dimensional subspace of the complex space CT spanned by the columns
of Φ does not change after the multiplication by the channel matrix. In other words,
we can send information over the unknown channel by simply sending information
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y1
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R
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Figure 2.1: Rotation and scaling within the same linear subspace

about a subspace of the complex space CT spanned by the columns of Φ. This nat-
urally defines our space of transmit signals, or our coding space, to be the set of all
M-dimensional linear subspaces of CT. This set has a structure of a manifold and is
known as the Grassmann manifold GC

T,M.
We have already argued that the transmit matrix Φ can be represented by the sub-

space spanned by its column vectors, ΩΦ and an M× M matrix CΦ. This motivates
the transformation

Φ → (CΦ, ΩΦ) (2.2)

which is a change of coordinate system CT×M → CM×M × GC
T,M. With this, the sub-

spaces spanned by Φ and ΦH, ΩΦ and ΩΦH are identical.
The high SNR capacity (b/s/Hz) of this channel is [65]

CM,M = M
(

1− M
T

)
log2 ρ + c(M, M) + o(1) (2.3)

where

c(M, M) =
1
T

log2 |GC
T,M|+ M

(
1− M

T

)
log2

T
Mπe

+
(

1− M
T

)
E

[
log2 det(HHH)

]
,

(2.4)
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is the term which does not depend on the SNR and o(1) is a term which tends to 0,
when ρ → ∞. |GC

T,M| is the volume of the Grassmann manifold GC
T,M and appears in

the capacity expression due to the coordinate transformation. Additionally, we have

E
[
log2 det(HHH)

]
=

M

∑
i=1

E log2 χ2
2i, (2.5)

where χ2
2i is a Chi-square randmom variable of degree 2i. The pre-log factor M

(
1− M

T
)

is the number of the degrees of freedom and plays a key role in the capacity at high
SNR.

For the non-coherent channel where the fading coefficients are unknown, we can
interpret the capacity by sphere packing in the Grassmann manifold. Since the sub-
space ΩΦ is the object that we use to convey information, we view the transmitted
signal in each coherence interval as a point in the Grassmann manifold GC

T,M. The
channel matrix H scales the volume to be det(THHT−M)|GC

T,M|. With codewords of
length l, the received signal lies in the product space of l scaled Grassmann man-
ifolds, with complex dimension M(T − M)l. The noise perturbs the signal in the
sphere SM(T−M)l(

√
M(T − M)lσ2). If we denote as Hi the fading coefficient matrix

in coherence interval i, in the high SNR region we can write the ratio of the two vol-
umes

q =
∏l

i=1 det(THiHH
i )T−M|GC

T,M|
Vol(SM(T−M)l(

√
M(T − M)lσ2))

. (2.6)

Using the formula for sphere volume and Stirling approximation [65], for the normal-
ized high SNR capacity we have

CM,M =
1
T

l
log2 q

→ E
[
log2 det(THHH)

]
+ log2 |GC

T,M| − M
(

1− M
T

)
log2 πeσ2

= M(1− M
T

) log2 ρ + cM,M, (2.7)

which is exactly the high SNR capacity (without the o(1) which vanishes at high SNR
in (2.3).

We see that, similarly to the case of the AWGN channel, the geometric interpreta-
tion delivers the capacity of the non-coherent channel in the high SNR regime.

2.4 Differential Geometry Preliminaries

Here we basically review the properties of the Grassmann manifolds and present
a basic introduction to the geometry of Grasmann manifolds. The approach and
the definitions mainly follow [10], [16] and [6], where more detailed introduction to
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Grassmann manifolds is presented. Here we mainly summarize some properties nec-
essary to understand the problem of code construction in Grassmann manifolds and
present the preliminaries necessary to understand the following chapters. A more
detailed introduction to the topic is givven in the appendix.

2.4.1 Grassmann Manifolds

We can think of a manifold as a topological space which is second countable (has a
countable topological basis) and is locally Euclidean, i.e. every point on the manifold
has a neighborhood which is topologically equivalent (homeomorphic) to an open
ball in Rn [6]. In this case the manifold is said to have a dimension n. In this con-
text, the collection (set) of all M-dimensional linear subspaces of CT can be given a
structure of a manifold, which is known as the (complex) Grassmann manifold GC

T,M.
The Grassmann manifold stands in close connection to the Stiefel manifold. The

(complex) Stiefel manifold VC
M,T is the set of M orthonormal vectors in CT

VC
M,T := {Φ ∈ CT×M|ΦHΦ = IM}. (2.8)

The (complex) Grassmann manifold is formally defined as

GC
T,M := {〈Φ〉|ΦHΦ = IM}, (2.9)

where 〈Φ〉 denotes the subspace spanned by the columns of Φ and IM is the M ×
M identity matrix. We can think of the elements of the Grassmann manifold as an
equivalent class of elements of the Stiefel manifold. In other words, each element
of the Grassmann manifold corresponds to a set of elements of the Stiefel manifold
whose columns spane the same subspace. There is a transitive action by the unitary
group U(T) (group of unitary matrices) on GC

T,M [6], [10], with isotropy group

H =
(

U(M) 0
0 U(T − M)

)
. (2.10)

This justifies the quotient space representation [10]

GC
T,M � U(T)/

(
U(M) 0

0 U(T − M)

)
. (2.11)

Intuitively, a quotient space is obtained from a topological space G when we define
an equivalence relation on the space G. In the case of the Grassmann manifold, the
equivalence relation is given by the requirement that points from G are equivalent if
they span the same subspace. In other words, each element of the Grassmann man-
ifold can be considered as an equivalent class of the unitary group U(T) consisting
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2.4 Differential Geometry Preliminaries

of unitary matrices whose columns span the same subspace. This leads to straight-
forward calculation of the (real) dimension of the Grassmann manifold as

dimRGC
M,T = T2 − M2 − (T − M)2 = 2M(T − M), (2.12)

since the dimension of the unitary group of n× n unitary matrices is dimRU(n) = n2.
Let 〈Φ〉, 〈Ψ〉 ∈ GC

T,M be two subspaces of CT and let ΨHΦ = UΣVH, U, Σ, V ∈
CM×M be the singular value decomposition of ΨHΦ, with Σ being a diagonal matrix
of the singular values σ1, . . . , σM. Then, M principle angles θ1, . . . , θM between 〈Φ〉
and 〈Ψ〉 can be defined as

θi = acos σi. (2.13)

A metric called geodesic distance can be defined by the set of principle angles be-
tween two subspaces [10]. The metric represents the length of the geodesic connecting
two points of the Grassmann manifold. For 〈Φ〉, 〈Ψ〉 ∈ GC

T,M, the geodesic distance is
given by

dg(〈Φ〉, 〈Ψ〉) =
√

∑M
i=1 θ2

i . (2.14)

There is an embedding of the Grassmann manifold GC
T,M in Euclidean space which

is a result of associating elements of the Grassmann manifold with their projection
matrices [7], [44] . For 〈Φ〉 ∈ GC

M,T, there is an associate orthogonal projection map

PΦ := ΦΦH, CT → 〈Φ〉. (2.15)

PΦ is idempotent and hermitian and tr(PΦ) = M. Thus PΦ lies in a space of real
dimension T2 − 1. Additionally,

∥∥∥∥PΦ − T
M

IT

∥∥∥∥
F

=
√

M(T − M)/T, (2.16)

which justifies the embedding

GC
T,M → ST2−2

( √
M(T − M)/T

)
⊂ RT2−1 ,

〈Φ〉 → PΦ − T
M

IT. (2.17)

This justifies the definition of a topological ”chordal” metric on the Grassmann man-
ifold

dc(〈Φ〉, 〈Ψ〉) =
1√

2
‖PΦ − PΨ‖F =

√
∑M

i=1 sin2 θi. (2.18)

In order to distinguish between an element of the Grassmann manifold and the
particular matrix representation, the notation 〈Φ〉 was used to denote the element
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2 Non-Coherent Space-Time Coding

(subspace) of the Grassmann manifold spanned by the columns of Φ. In order to
simplify the notation, from now on we will omit the bracket and will identify the
subspace with its matrix representative. However, we will have on mind that this
representation is not unique.

2.4.2 Parametrization of the Grassmann Manifold

The unitary group U(T) is a Lie group, i.e a group which is also a differentiable man-
ifold. Due to the differential structure, a tangent space can be constructed at every
element of a Lie group [10], [6]. The tangent space at the identity element of a Lie
group has the structure of a Lie algebra. The corresponding Lie algebra u(T) of the
unitary group U(T) is the tangent space at the identity element IT (T × T identity
matrix), and is given by the set of skew-hermittian matrices [10]

u(T) := {X̃ ∈ CT×T|X̃ = −X̃H}. (2.19)

Thus, the elements of the Lie algebra u(T) have the form

X̃ =
(

A −BH

B C

)
, (2.20)

where A = −AH, C = −CH and B ∈ C(T−M)×M.
We have already represented the Grassmann manifold as a quotient space of the

unitary group (2.11). Since the isotropy group H (2.10) is a subgroup of the unitary
group H ⊂ U(T) (and thus a Lie group itself), the Lie algebra h ⊂ u(T) consists of
matrices of the form

X‖ =
(

A 0
0 C

)
, (2.21)

where A ∈ u(M), C ∈ u(T − M). Thus, u(T) can be decomposed as u(T) = h ∪ h⊥,
where the elements of h⊥ have the form

X =
(

0 −BH

B 0

)
. (2.22)

Due to the quotient space representation (2.11), tangents of GC
T,M at the identity el-

ement IT,M =
(

IM
0

)
are provided by the space h⊥. Obviously, the tangent space

is a vector space of dimension D = 2M(T − M), which was to be expected, since its
dimension should match the dimension of the Grassmann manifold GC

T,M, as in (2.12).
The Lie algebra determines the local structure of a Lie group via the exponential

map. In the case of the unitary group U(T), the exponential map maps the Lie algebra
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2.4 Differential Geometry Preliminaries

u(T) to U(T). For a matrix Lie group, the exponential map coincides with the matrix
exponential and is given by the ordinary series expansion: exp(X) = ∑∞

k=0
Xk

k! .
Thus, a point in the Grassmann manifold Φ is obtained from a point X in the tan-

gent space as

Φ = exp(X)IT,M. (2.23)

This relation provides a mapping from the tangent space to the manifold, and serves
for construction of Grassmann codes from sets in the tangent space.

The exponential map itself is computationally inefficient. Fortunately, the repre-
sentation of the tangents in the form (2.22), provides efficient computation of the
exponential map. Given the tangent (2.22), the singular value decomposition of B ∈
C(T−M)×M, reads [16], [10]

B = VΣWH , (2.24)

where V ∈ C(T−M)×M and has orthonormal columns, Σ is the matrix of singular
values of B in decreasing order, and W ∈ U(M). If we denote Φ = exp(X)IT,M, it can
be shown that [16], [10]

Φ =
(

WCWH

VSWH

)
, (2.25)

where C = cos(Σ) and S = sin(Σ) are diagonal matrices (sin and cos operate only on
the diagonal of Σ).

2.4.3 Performance Analysis and Design Criteria

For our purpose, we need to analyze the cases of both the unknown as well the known
channel. This is due the fact that in some of the constructions methods, we will use
codes designed for the coherent channel as basis for the construction of codes for the
non-coherent channel. Therefore, it is important to summarize the design criteria for
both cases.

We will use the Chernoff bound on the pairwise error probability as a starting point
in the performance analysis. We will use a compact notation and represent equations
which hold for both cases. Let Φ, Ψ are two elements of the Stiefel manifold VC

M,T, re-
spectively the Grassmann manifold GC

M,T. The Chernoff bound on the PEP (Pairwise
Error Probability) of mistaking Φ for Ψ can be derived from [19] and gives

P(Φ, Ψ) ≤ 1
2

[
M

∏
i=1

(
1 + $σ2

i

)]−N

, (2.26)
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2 Non-Coherent Space-Time Coding

where for the known channel we use the following notation

∆ = ∆ $ Φ−Ψ (2.27)

$ = $̄ $
(ρ T

M )2

4
(2.28)

σi = σi $ σi(∆), (2.29)

and for the unknown channel

∆ = ∆ $ ΨHΦ (2.30)

$ = $ $
(ρ T

M )2

4(1 + ρ T
M )

(2.31)

σi =
√

1− σ2
i $

√
1− σ2

i (∆). (2.32)

As a performance criterion we usually take the (pairwise) diversity defined as

Div(Φ, Ψ) :=
M

∏
i=1

(
1 + $σ2

i

)
, (2.33)

which can be written in the form

Div =
M

∑
i=1

si$
i. (2.34)

The first and the last term of the expression are respectively called diversity sum and
diversity product. The diversity sum is d = ∑M

i=1 σ2
i , which for the known channel

gives

d = ‖∆∆
H‖, (2.35)

and for the unknown channel

d =
√

tr(1− ∆∆H) =
√

∑M
i=1(1− σ2

i ) = ∑M
i=1 sin2 θi, (2.36)

which follows from (2.13). In the case of the known channel, the diversity sum coin-
cides with the metric induced by the ML receiver, i.e. the Frobenius norm (Euclidean
distance) between Φ and Ψ. In the case of the unknown channel, the diversity sum
also coincides with the ML receiver metrics, i.e equals the chordal distance between
the subspaces 〈Φ〉 and 〈Ψ〉. The diversity product is p = σ1σ2 · · · σM, which for the
known channel gives

p = det(∆∆
H), (2.37)
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2.5 Decoding of Non-Coherent Space-Time Codes

and for the unknown

p = det(1− ∆∆H) =
√

∏M
i=1(1− σ2

i ) =
√

∏M
i=1 sin2 θi. (2.38)

The diversity product has also an interpretation. In the case of the known channel it
is the well-known determinant criterion [19]. In the literature addressing the topic of
space-time block coding, there are two criteria which are used when designing space-
time codes for the known channel. These are the rank and the determinant criterion,
shortly summarized as:

The Rank Criterion: The minimum rank r of ∆ = Φ−Ψ taken over all distinct pairs
Φ and Ψ is the diversity gain and should be maximized.

The Determinant Criterion: The minimum of the product (∏M
i=1 σ2

i )
1
M over all Φ, Ψ

should be maximized. This is the coding gain.
In the case of the unknown channel the diversity product measures the non-negativity

of the principle angles between 〈Φ〉 and 〈Ψ〉 [16]. If we concentrate on the diver-
sity sum and the diversity product, the design of codes for the non-coherent MIMO
channel would involve searching for good packings in the Grassmann manifold with
respect to the chordal distance, while trying to keep each principle angle as large as
possible [16].

In the next chapter we will present code constructions for the non-coherent channel
based on packings in Grassmann manifolds. We will mainly concentrate on the di-
versity sum (chordal distance) and the diversity product as the most relevant design
criteria.

2.5 Decoding of Non-Coherent Space-Time Codes

According to the system model (2.1), the received matrix is zero-mean isotropically
distributed Gaussian random matrix. Hence, for the conditional pdf P (Y|Φ) we have
[31]

P (Y|Φ) =
exp

(
−Tr

(
YH

(
M
ρT IT + ΦΦH

)−1
Y

))

πTN detN
(

M
ρT IT + ΦΦH

) ,

=
exp

(
− ρT

M Tr
(

YH
(

IT − 1
1+M/ρT XXH

)
Y

))

(πM/ρT) (1 + ρT/M)MN (2.39)

A maximum likelihood detector tests the entire codebook, C, in search for the code-
word Φ that maximizes P(Y|Φ)

Φ̂ = arg max
Φ∈C

Tr
(

YHΦΦHY
)

= arg min
Φ∈C

‖YHΦ‖2
F. (2.40)
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2 Non-Coherent Space-Time Coding

We can see that the ML-decoding rule involves projection of the received matrix Y on
all possible transmit subspaces.

The main drawback associated with the ML detector is the computational cost of
having to examine all possible codewords in the codebook. In order to increase the
computational efficiency, much work has concentrated on exploiting the suboptimal
decoding at the receiver end. In this work we mostly concentrate on proving the po-
tential of the geometric insight for construction of codes for the non-coherent channel.
Less attention is devoted to the search for efficient decoding techniques. However,
there are general techniques in the literature which enable decoding of Grassmann
codes with reduced complexity, such as the method of Gohary and Davidson de-
scribed in [13], [12]. Other techniques which shift the decision in the tangents space
instead in the manifold can be used as well. One example is given in [1]. For Grass-
mann codes obtained from spherical codes, the decision may be further shifted to the
sphere where the spherical code resides and perform the decoding on the sphere. For
codes obtained from lattices, decoding might be performed in the lattice performing
efficient decoding techniques developed for lattices. However, it is important to note
that these techniques are usually suboptimal, since they require a mapping inverse
to the exponential map. We remember that the exponential map and its inverse are
non-linear, which affects the code structure. This effect can be partly mitigated by
choosing a list of nearest neighbors in the tangent space, respectively on the sphere,
which will be additionally tested in the manifold.

These techniques are quite general and can be used for decoding of different Grass-
mann codes. However, some of the codes proposed in this work have additional
structure which can be exploited to further simplify the decoding. We will make a
notice on this when we present constructions in the next chapters.

2.6 Chapter Summary

The Concept of Coordinate Change

• The system model for the non-coherent block MIMO channel is given as

Y =
√

ρT
M

ΦH + W.

• The fading channel matrix H does not change the subspace in which the trans-
mitted signal resides. Thus, at high SNR, the information carrying object is a
linear subspace.

• For M transmit antennas and coherence time T, the relevant coding space is the
Grassmann manifold GC

T,M.
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• The differential structure of the Grassmann manifold yields non-coherent space-
time codes based on sets in the tangent bundle of the manifold , with connection
given by the exponential map.

Capacity Analysis and Geometric Interpretation

• The way the channel acts on the transmit matrix Φ motivates the transformation

Φ → (CΦ, ΩΦ),

which is a change of coordinate system CT×M → CM×M × GC
T,M.

• The high SNR capacity (b/s/Hz) of this channel is

CM,M = M
(

1− M
T

)
log2 ρ + c(M, M) + o(1),

where M
(
1− M

T
)

are the degrees of freedom and cM,M is a term which depends
on M and T but not on the SNR ρ.

The Grassmann Manifold GC
T,M

• The Grassmann Manifold GC
T,M is a differentiable manifold and tangent space

can be constructed at each element of the manifold.

• Tangents at the identity element have the form

X =
(

0 −BH

B 0

)
, B ∈ C(T−M)×M.

• Elements of the Grassmann manifold can be represented by the matrices

Φ =
(

WCWH

VSWH

)
,

where C = cos(Σ) and S = sin(Σ)

Performance Analysis and Design Criteria

• As a performance criterion we take the (pairwise) diversity defined as

Div(Φ, Ψ) :=
M

∏
i=1

(
1 + $σ2

i

)
,
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2 Non-Coherent Space-Time Coding

which can be written in the form

Div =
M

∑
i=1

si$
i.

• The diversity sum is the first term in the expression and is given as

d =
√

∑M
i=1(sin2 θi).

where θi are the principle angles between the subspaces Φ and Ψ.

• The diversity product is the last term in the expression and is the most impor-
tant criterion at high SNR

p = det(1− ∆∆H) =
√

∏M
i=1 sin2 θi.

Decoding

• The ML decoding rule is given as

Φ̂ = arg max
Φ∈C

Tr
(

YHΦΦHY
)

= arg min
Φ∈C

‖YHΦ‖2
F.
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Chapter 3
Code Constructions for the Non-Coherent
Point-to-Point MIMO Channel

IN this chapter we present novel code constructions for the point-to-point block
fading MIMO channel without channel knowledge assumption. The code con-
structions are based on the geometric interpretation of the non-coherent space-

time coding problem. The constructions exploit the geometry of the Grassmann man-
ifold and its differentiable structure. Parts of this chapter were published in [53], [56],
[55], [54] and [49].

3.1 Introduction

As discussed in Chapter 2, for a MIMO communication system with M transmit an-
tennas and N receive antennas operating non-coherently over the block-fading chan-
nel with block length T, the generic form of the capacity achieving input signals are
in a form of an isotropically distributed T×M random unitary matrix and a diagonal
M× M matrix D with real nonnegative entries [31], [65]. While this structure of the
input signals is capacity achieving irrespective of the values of the received SNR and
the channel coherence time T, the distribution of the entries of the diagonal matrix D
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3 Code Constructions for the Non-Coherent Point-to-Point MIMO Channel

depends on these two factors. For example, it can be shown that at low SNR only one
entry of D is non-zero when the transmitter is active.

In contrast to this, achieving capacity for high SNR scenarios requires the input
signals to be in the form of isotropically distributed unitary matrices, provided that
T satisfies T ≥ min(M, N) + N. In this case, setting D equal to the identity matrix
achieves the high SNR ergodic capacity of the non-coherent channel. By comparing
the degrees of freedom supported by the unitary component to those supported by
the diagonal matrix D, it can be concluded that even at moderate SNRs most of the
information will be carried by the unitary component.

By assuming that the communication system operates in the moderate-to-high SNR
region, one can gain insight into the manner in which the coherence time T, affects
the achievable data rate. It was shown in [65] and [31] that for given M and N, the
capacity of the non-coherent channel approaches that of the coherent one as T grows.
From this one can conclude that if T is sufficiently long, the amount of time needed
for the receiver to acquire a sufficiently accurate channel model becomes insignifi-
cant in comparison with the overall signalling interval. However, compared to the
coherent communication model where the training preamble spans over hundreds or
thousands of symbols, for non-coherent communication a coherence time of typically
several time symbols is assumed.

The moderate-to-high SNR assumption also provides some insight into how the
number of transmit antennas should be chosen for a given block length. In particular,
given T and N for a system that satisfies T ≥ min(M, N) + N, the number of transmit
antennas M, required to attain the maximum number of communication degrees of
freedom is M = min(T/2, N) [65]. Under these assumptions, at moderate-to-high
SNRs, unitary signalling is not only optimum from a capacity perspective, but it also
possesses desirable performance characteristics.

In addition to unitary signalling, a few alternative approaches to non-coherent
space-time coding for MIMO channels are available. Differential schemes which as-
sume that the channel variation within two consecutive blocks is negligible were pro-
posed in [20]. However, this assumption is not sufficiently accurate under the current
block fading model, in which there is an independent channel realization for each
block. In order to suit operation over independent block fading channels, signalling
techniques that allow a portion of the coherence time to be used for training have
been developed in [31]. These schemes comprise two phases: a training phase and a
coherent communication phase. During the training phase the transmitter sends pilot
symbols which are used by the receiver to estimate the channel. In order for the re-
ceiver to acquire a reasonably accurate model of the channel, the training phase must
occupy a number of channel uses that is at least as large as the number of transmit
antennas. Assuming that the channel estimate obtained during the training phase
is sufficiently accurate; the receiver then switches to a coherent mode of operation
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in which the remaining channel coherence time is used to detect the transmitted in-
formation coherently. Although training-based schemes were shown to achieve the
maximum number of degrees of freedom available for communication at high SNR
[65], they are still short of attaining the full channel capacity which involves an SNR
independent term. This term can be particularly significant when a large number of
transmit antennas is employed.

Guided by the results in [31] and [65], we will consider communication over the
non-coherent channel through the design of signal constellations that directly mimic
the high SNR capacity achieving isotropic distribution. For the construction, we will
use the geometric insight developed in [65].

3.2 Geometric Construction of Grassmann Codes

For M transmit antennas and coherence time T, we already argued that the relevant
coding space is the set of M-dimensional linear subspaces of the, in general, com-
plex T-dimensional space, i.e. the Grassmann manifold GC

T,M. The Grassmann man-
ifold is a quotient space of the unitary group and thus inherits its geometry [6]. The
Grassmann manifold is thus a differentiable manifold and a tangent space can be
constructed at each element (point) of the manifold. The differentiable structure of
the Grassmann manifold yields non-coherent space-time codes based on sets in the
tangent bundle of the manifold, with connection given by the exponential map. This
was first noticed by Henkel in [15] and Kammoun et. al. in [26]. In the following
we further exploit the geometric insight and present novel code constructions for the
non-coherent MIMO channel which rely on the geometric interpretation.

3.2.1 Mapping from the Tangent Space

The differentiable structure of the Grassmann manifolds provides parameterization
of the manifold with the tangent space at the identity IT,M. As already discussed,
tangents of GC

T,M at IT,M have the form

X =
(

0 −BH

B 0

)
, B ∈ C(T−M)×M.

We observe that the element X in the tangent space is uniquely described by the
matrix B. Hence, sometimes we will equivalently refer to B as element from the
tangent space.

If we choose a code in the tangent space, X = X1, X2, . . . , Xn of elements of the form
(2.22), a Grassmann code, C ⊂ GC

M,T is constructed as

C = exp(X )IT,M. (3.1)
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Figure 3.1: Representation of a tangent space of the manifold

As discussed, the exponential map can be performed in an efficient way. According
to (2.25), given the SVD of B

B = VΣWH ,

where V ∈ C(T−M)×M and has orthonormal columns, Σ is the matrix of singular
values of B in decreasing order, and W ∈ U(M), a codeword Φ ∈ C, is given as

Φ =
(

WCWH

VSWH

)
, (3.2)

where C = cos(Σ) and S = sin(Σ).
This parametrization is the starting point for the construction of Grassmann codes.

Grassmann codes can be obtained from any subset of the tangent space at the iden-
tity. However, one has to take into account the effect of the exponential map when
analyzing the codes obtained by this method. In this sense, the Grassmann codes
constructed in this way have to be investigated in terms of the known design criteria
for codes for the non-coherent channel.

3.2.2 Code Properties after the Mapping

Here we will analyze the properties of Grassmann codes obtained by mapping con-
stellations from the tangent space.

Let B1, B2 ∈ B be two points (elements) in the tangent space and let ∆ = B1 − B2.
Note that we keep the same notation for ∆ as in the case of the performance analysis
of the coherent channel. Actually, as we will see, for the construction of Grassmann
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codes for the non-coherent channel, we will usually use codes for the coherent chan-
nel which reside in the tangent space of the Grassmann manifold, which justifies the
notation.

Now, let Φ1, Φ2 ∈ C be the corresponding non-coherent codewords obtained by
the exponential map of B1 and B2. Then Φ1 =

(
W1C1WH

1
V1S1WH

1

)
and Φ2 =

(
W2C2WH

2
V2S2WH

2

)
. If

we denote ∆ = ΦH
2 Φ1, then according to (3.9) follows

∆ = W2C2WH
2 W1C1WH

1 + W2S2VH
2 V1S1WH

1 . (3.3)

According to (2.33), the (pairwise) diversity is given as

Div(Φ1, Φ2) =
M

∏
i=1

(
1 + $

(
1− σ2

i (∆)
))

(3.4)

On the other hand, for the codewords of the code B the (pairwise) diversity is given
as

Div(B1, B2) =
M

∏
i=1

(
1 + $̄σ2

i (∆̄)
)

(3.5)

where $ and $ are given by (2.32) and 2.29 respectively. In general, it is difficult to
give the exact link between the singular values of ∆ and ∆. An intuitive conclusion
can be drawn when, for example, Φ2 = IT,M (or, equivalently, B2 = 0). Then (B1 −
B2)H(B1 − B2) = BH

1 B1 and from (2.13) follows

arccos
[
σi(IH

T,MΦ1)
]

= σi(B1), i = 1, . . . , M (3.6)

or, equivalently, the singular values of B1 are equal to the principle angles between
the subspace 〈Φ1〉 and the referent subspace 〈IT,M〉. Therefore, in this case, when
(3.5) is maximized, so is (3.4). Although this does not exactly hold ∀Bi, Bj ⊂ B, for
codes with higher rates (and thus smaller principle angles), we may assume that a
coherent code for which (3.5) is maximized, leads to a non-coherent code for which
(3.4) is ”fairly” maximized. This is basicaly the main motivation in [26] for construc-
tion of non-coherent codes from coherent codes residing on the tangent space of the
Grassmann manifold.

3.3 Grassmann Codes from a High-Dimensional
Spherical Code

The Grassmann manifold is a normal-homogeneous space [6]. Homogenity is a natu-
ral generalization of spherical symmetry [16]. In [15] Henkel proposed a construction
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dl
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Figure 3.2: a) Construction of the spherical code. b) Decoding regions of the spherical
code

based on wrapped spherical codes originaly introduced for vector quantization by
Hamkins and Zeger [14]. Here we follow the same procedure described by Henkel,
with the difference in the construction of the sperical code.

3.3.1 Construction of the Spherical Code

The underlying spherical code is a modified version of the spherical code introduced
in [61], [60]. The codewords are points from the unit sphere SD ∈ RD+1. As shown
in Fig. 3.3.1, the points of the codebook are ”uniformly” distributed on equidistant
layers obtained as a result of the intersection of the sphere with parallel planes. The
number of points on each layer is proportional to the layer’s D− 1 dimensional con-
tent (surface area). The choice of the layers is done in a way such that the obtained
spherical code is antipodal. The procedure is recursive since the layers obtained in
this way are also spheres, now of smaller dimension (one less) from the sphere they
originate from. The same is done at every instance (dimension). With an appropriate
choice of the distance dL between the layers, a fairly uniform distribution of points on
the surface of the sphere may be obtained. For a code with given dimension and rate,
an appropriate value of the parameter dL is found in an iterative procedure, starting
with an initial value dLo which is obtained by approximating the surface area of the
k-dimensional unit radius sphere with the area covered by N D-dimensional curved
hypercubes with sidelength equal to dLo .

The set of layers at some instance k of the recursive procedure may equivalently be
described by the set of angles α

(k)
i ∈ [0, π] , i = 1, 2, . . . , n and α

(k)
i+1 − αk

i = ∆αk.
Another way to describe the process of point distribution is by a tree with nodes
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3.3 Grassmann Codes from a High-Dimensional Spherical Code

denoting the layers of the code structure, where each codeword is represented as a
path through the tree. According to this convention, the path (ordered sequence)
jD, jD−1, · · · , j1 corresponds to a point from the codebook which belongs to the layer
L(D)

j at stage D, L(D−1)
j at stage D− 1, etc.

Decoding of the Spherical Code

This structure may be efficiently exploited by the receiver where the decision is based
on successive ”hard” decisions about affiliation to particular layers at each stage (di-
mension) of this procedure.

Let yS be an input point at the spherical decoder and let ΘD , ΘD−1, . . . : Θ1 be
the equivalent representation with generalized spherical coordinates. Then, the an-
gle representation of the layers can be used for efficient decoding. Namely, at each
stage (dimension D, D − 1, . . .), we can decide about the affiliation of the point yS
to a particular layer by a simple scalar quantization (comparison with the angles of
the layers) of the corresponding angle (in spherical coordinate representation). The
decoding procedure can thus be represented by D successive scalar quantizations.

Obviously, the decoding procedure is suboptimal. However, it allows for efficient
decoding of spherical codes of high dimension and various rate. Furthermore, the
codewords do not need to be stored at the receiver, which is anyway not feasible for
large codebooks. The decoder only has to perform the same indexing procedure as
the encoder, following the same rules (using the same parameter of the sphere point
distribution dL). Obviously, very large constellations may be decoded.

3.3.2 Construction of the Space-Time Code

The U(T)-homogeneous structure of the Grassmann manifold provides relation to
spherical codes. Any code on a half sphere SD ∈ RD+1 can be transformed into a
code on the Grassmann manifold [15] where

D = dimRGC
M,T = 2M(T − M) (3.7)

In this particular case, the spherical code is restricted to the northern hemisphere.
The encoding procedure is the same one described in [15], shortly summarized in the
following.

First, we fix the north pole n of the D dimensional half-sphere; then we project the
spherical code CS on the tangent space TN(SD) at the north pole (orthogonal projec-
tion) and scale to length equal to the geodesics emanating from n to the considered
point of the spherical code CS; in the next step, tangential code points from TnSD are
mapped to the tangent space of the manifold TIT,M(GC

T,M) by choosing orthonormal
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bases in both spaces (this is allowed, since both tangent spaces are of same dimen-
sion); in the last step, we apply exponential map from TIT,M(GC

T,M) to the Grassmann
manifold to obtain the space time code (having on mind the quotient space repre-
sentation). The exponential map is conducted in a computationally efficient way, as
given by (2.25).

Grassmannian constellations with structure

The exponential map (and its inverse) preserve geodesics emanating from the point
at which the tangent space is constructed (the north pole n in the case of the (half)
sphere and the identity point IT,M in the case of the Grassmann manifold.

With this, the circular (layer) structure of the spherical code will be transfered to
the tangent space of the (half) sphere and thus to the tangent space of the Grassmann
manifold. Finally, this structure will apply to the Grassmann manifold itself, meaning
that points from the spherical code that belong to the same layer (sphere of dimen-
sion D− 1) with particular latitude, will be equally distant (geodesic distance) from
IT,M. The mapping, in general, distorts the chordal and geodesic distances between
the points from the spherical code. However, since it preserves the geodesic distances
to the fixed point where the tangent space is constructed, it also preserves the rela-
tive position of the points in the codewords, meaning that the structure is preserved.
This imposes a certain ”layer” structure to the Grassmannian constellation obtained
with the mapping procedure, which is similar to the structure of the spherical code it
originates from.

3.3.3 Decoding

The decoding procedure is the inverse encoding procedure. However, there are some
specifics worth to be mentioned. Let Ψ be the received T × N matrix, as given by
(2.1). The M-dimensional subspace detection can be done by performing QR decom-
position of Ψ. Let Φ̂ ∈ CT×M be the result of the decomposition (after deletion of
the last T − M columns). In the absence of noise, Φ̂ spans the same subspace as the
transmitted matrix Φ. The result of the channel (after the decomposition) can be seen
as a right multiplication by a unitary matrix Uch ∈ U(M). With this and (2.25), Φ̂

becomes

Φ̂ =
(

W(C)WHUch
V1(S)WHUch

)
(3.8)

This helps us to perform the inverse mapping to the tangent space. If we remem-
ber, the corresponding tangent X is determined by the matrix B, where B = V1ΣWH.
Thus, B can be read off from Φ̂. Additionally, Uch can be found and Φ̂U−1

ch gives
Φ. The same applies with the noise with the remark that the noise will change the
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3.3 Grassmann Codes from a High-Dimensional Spherical Code

M-dimensional subspace. It should be noted that loss of performance is expected be-
cause of the properties of the inverse mapping, since only specific geodesic distances
are preserved. However, the aim was to do the final decoding on the surface of the
D-dimensional sphere, and not on the Grassmann manifold, in order to exploit the
efficient decoding mechanism.

It is interesting to point out that, for smaller constellations that can be stored, it
is possible to perform the decoding with the decoding algorithm for Grassmannian
lattices, presented in [13], [12]. In this context, our method can be seen a practical
way of obtaining Grassmannian codes with certain structure (codewords distributed
on layers). Once again, this is feasible for smaller size constellations and consequently
there is a limit in the spectral efficiency in terms of sent bits per channel use.

3.3.4 Examples and Simulation Results

It may be expected that ”good” spherical codes would lead to ”good” space time
codes. The original spherical code has also been tested in another scenario (source
coding of high-dimensional Gaussian sources) and the results show that it compares
well to some of the best spherical codes designed for that purpose ([61], table 1) such
as the wrapped spherical codes introduced by Hamkins and Zeger, [14]. With this
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Figure 3.3: Performance comparison of non-coherent space time codes: M = 2, N =
2, T = 4, η = 2 bits/c.u.
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on mind, the next step was to test the performance in the multiple transmit antenna
channel. Because of the specific construction and no storage requirements, codes of
larger blocks (coherence time T) can be designed. Additionally, higher code rates can
be achieved, leading to spectral efficient space time codes. The simulation results are
given in Fig. 3.3 and Fig. 3.4.
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Figure 3.4: Performance comparison of non-coherent space time codes: M = 2, N =
2, T = 6, η = 4 bits/c.u.

3.4 Grassmann Codes from Stiefel Codes

The non-linearity of the exponential map is the main obstacle in the exact derivation
of the diversity properties of the Grassmann codes obtained by the exponential map.
In the following we analyze a construction from constellations in the tangent space
which allows for closed form analysis of the performance of the Grassmann codes.

3.4.1 Code Construction

Let us observe the special class of Grassmann codes obtained by (2.23), where BHB =
Ik, i.e. B is a code in the Stiefel manifold, B ⊂ VC

k,n−k, (n ≥ 2k). This corresponds
to codes constructed from matrices with orthogonal columns. Then, B = V1IkVH

2 .
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If we take X in the form (2.22) and a scaling factor α then, according to (2.25), the
exponential map gives

Φ = exp(αX)In,k =
(

V2(aIk)VH
2

V1(bIk)VH
2

)
=

(
aIk
bB

)
, (3.9)

where a = cos α and b = sin α.
We note that similar constructions are presented in [19]. The difference here is the

scaling factor α, which gives additional degree of freedom. In [34] a similar con-
struction is presented, where orthogonal space-time codes are brought in relation to
packings on Grassmann manifolds. It can be shown [34] that (3.9) corresponds to
packings in the Grassmann manifold with pairwise equal principle angles between
subspaces. It is interesting to see that the codes here are obtained based on the geo-
metric approach and on first sight are independent from the constructions in [19] and
[34].

3.4.2 Code Properties

Let B1, B2 be two codewords from the code B. The corresponding Grassmann code-
words obtained after the exponential map will be then

Φ1 =
(

aIk
bB1

)
, Φ2 =

(
aIk
bB2

)
, (3.10)

where a2 + b2 = 1 and Φ1, Φ2 ∈ GC
k,n. In this case ∆ becomes

∆ = ΦH
1 Φ2 = a2Ik + b2BH

1 B2 (3.11)

We recall for the (pairwise) non-coherent diversity we have

Div(Φ1, Φ2) =
M

∏
i=1

[
1 + $

(
1− σ2

i (∆)
)]

=
M

∏
i=1

[
1 + $

(
1− λi(∆∆H)

)]
,

where λi(∆∆H) are the eigenvalues of ∆∆H. (3.10) yields

∆∆H = (a4 + b4)Ik + a2b2
(

BH
1 B2 + BH

2 B1

)

= Ik − 2a2b2

(
Ik −

BH
1 B2 + BH

2 B1

2

)
. (3.12)
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Since BH
1 B2 + BH

2 B2 is Hermitian, for λi(∆∆H) it holds

λi(∆∆H) = 1− 2a2b2

[
1− λi

(
BH

1 B2 + BH
2 B1

2

)]
. (3.13)

The diversity then becomes

Div(Φ1, Φ2) =
M

∏
i=1

{
1 + $2a2b2

[
1− λi

(
BH

1 B2 + BH
2 B1

2

)]}
. (3.14)

Since

1− λi

(
BH

1 B2 + BH
2 B1

2

)
=

1
2

σ2
i (∆) $

1
2

σ̄2
i (3.15)

we have

Div(Φ1, Φ2) =
k

∏
i=1

(
1 + a2b2 $σ̄2

i

)
. (3.16)

This provides a relation between Div(Φ1, Φ2) and Div(B1, B2), having on mind that

Div(B1, B2) :=
k

∏
i=1

(
1 + $̄σ̄2

i

)
, (3.17)

where

$ $
(ρ n

k )2

4(1 + ρ n
k )

and

$̄ $
ρ(n− k)

4k
If we concentrate only the last term of the expression in the non-coherent case, i.e.
on the diversity product, we see that it differs from the ”determinant” criterion [46],
[30] for construction of coherent codes only in the scaling factor. The ”determinant”
criterion is related to the coding gain of a coherent space-time code. This means that
the properties of the non-coherent code C in terms of the diversity product depend on
the properties of the coherent code B in terms of the determinant criterion. In other
words, Grassmann codes constructed from coherent Stiefel codes with maximized
coding gain, will have the diversity product maximized.

These codes will be used in the further text as basis for the construction of other
Grassmann codes, for both the point-to-point as well as for the wireless networks
with relays. Therefore, we will addres the performance and decoding of these codes
in the context of the codes where they appear as building blocks.
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3.5 Grassmann Codes based on Recursive Construction

The capacity analysis of non-coherent space-time codes shows that block lengths T ≥
2M allow for maximum use of the available degrees of freedom [65]. Additionally,
the coherence length of the channel, although considered small for channels where
non-coherent codes are of interest, is still relatively large with respect to the number
of transmit antennas, Tc >> M. Although this is a motivation for employment of
codes with large block lengths, the constructions in the literature are usually limited
to T = 2M.

A strong argument for increasing the block length is given by Henkel in [16], where
it is proven that a non-coherent space time code C ∈ GC

M,T with rate R = (log2 |C|)/T
exists, such that for the minimum distance it holds

dmin ∼
√

T
M
·
(

1
2

) TR+1
2M(T−M)

. (3.18)

Thus, for a fixed rate R (spectral efficiency), SNR ρ ≥ 1 and T ≥ 2M [16], the per-

formance is expected to grow at least proportionally to
√

T
M . This motivates the con-

struction of higher-dimensional non-coherent codes with T >> M, unlike the usual
design with T = 2M.

In [26], [1], non-coherent codes are constructed from coherent codes residing in the
tangent space of the identity point. There, under some assumptions, the problem of
non-coherent code construction is identified with the problem of construction of a
fully-diverse coherent code [26], [30].

On the other hand, in [17], a construction of higher-dimensional coherent codes
from non-coherent codes is proposed. The coherent code is obtained as a product of
a non-coherent code and a low-dimensional unitary code. This leads to a decrease of
the dimensionality of the code construction problem, since the coherent code resides
in the Stiefel manifold VC

M,T which has a higher dimension compared to the Grass-
mann manifold GC

M,T.
A natural remark arising from these two works is that, under some conditions,

high-dimensional non-coherent codes can be constructed from coherent or non-coherent
codes of lower dimension, in a recursive procedure. This is also noted by Henkel in
[16], as a remark following the analysis of the coherent codes constructed from non-
coherent ones.

In this spirit we propose a recursive code construction of high-dimensional Grass-
mann codes. A low-dimensional coherent or non-coherent code is chosen as a starting
point.
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3.5.1 Code Construction

Let us construct a non-coherent code for M transmit antennas and coherent time T >
2M. We start with a code in the tangent space (code for the coherent channel) B0 ⊂
CM×M. According to (2.22), a code X0 can be constructed in the tangent space of
GC

M,T0
, (T0 = 2M) as

X0 =
(

0 −BH
0

B0 0

)
. (3.19)

Then, a non-coherent code C0 ⊂ GC
M,T0

is constructed as

C0 = exp(α0X0)IT0,M, (3.20)

where α0 is a scaling factor which is parameter of the construction. The non-coherent
code C0 yields a coherent code B1, by multiplication (set product) with an M × M
unitary code U0. As examples we can take the Alamouti [2] code or an Sp(M/2) code
[23]. The Sp(2) code was proposed by Hassibi in [23]. The code B1 is given as

B1 = C0 ×U0. (3.21)

With this, B1 is a subset of the Stiefel manifold, B1 ⊂ VC
M,T0

. Further, B1 yields a
non-coherent code C1 ⊂ GC

M,T1

C1 = exp(α1X1)IT1,M, T1 = 3M. (3.22)

The procedure can continue in the same way, increasing the dimensionality of the
non-coherent code with each cycle. Given B0 and unitary codes U0,U1, . . . ,Uk−1, we
have

Ci = exp(αiXi)ITi,M ,

Xi =
(

0 −BH
i

Bi 0

)
,

and Bi = Ci−1 ×Ui−1 , i = 1, 2, . . . , k. (3.23)

The recursive code construction is summarized as follows

B0
exp(α0)−→ C0

×U0−→ B1
exp(α1)−→ · · · exp(αk)−→ Ck, (3.24)

where Bi ⊂ C(i+1)M×M and Ci ⊂ C(i+2)M×M. The block length increases for M in
each cycle, Ti = (i + 2)M, i ≥ 0. We observe that for the special case when BH

0 is an
unitary code, i. e. BH

0 B0 = IM, a code for M transmit antennas and coherence time
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Tk, Ck ⊂ GC
M,Tk

, has the form

Ck =




ak · IM
bk · ak−1 · Uk−1

...
bk · · · b2 · a1 · U1 × · · · × Uk−1

bk · · · b1 · a0 · U0 ×U1 × · · · × Uk−1
bk · · · b1 · b0 · B0 ×U0 ×U1 × · · · × Uk−1




. (3.25)

This can be easily shown by using (3.9). The scalars a0, a1, . . . , ak and b0, b1, . . . , bk are
parameters of the exponential map, satisfying ai = cos αi and bi = sin αi.

3.5.2 Properties of the Recursive Codes

We have seen that the recursive construction involves two basic steps. The first one
is the construction of a coherent code from a non-coherent one, performed by right
multiplication with unitary matrices. The code obtained in this way is a subset from
the Stiefel manifold, as described before. The second step is the construction of a non-
coherent code from a coherent code by performing the exponential map. Therefore,
in order to evaluate the properties of the recursive code, we will separate the anal-
ysis into two steps. First, we will analyze the properties of coherent codes obtained
from non-coherent codes. Then, we will analyze the properties of non-coherent codes
obtained from coherent codes.

Properties of the coherent codes obtained from non-coherent codes

Let B1 = Φ1U1 and B2 = Φ2U2 be two codewords of the coherent code B obtained
from a non-coherent code C, by multiplication with unitary matrices, i.e. codewords
from a coherent unitary code. Since BH

1 B1 = I and BH
2 B2 = I, B1 and B2 are elements

from the Stiefel manifold, B1, B2 ∈ VC
M,T. According to (2.33), the (pairwise) diversity

is given by

Div(B1, B2) :=
M

∏
i=1

(
1 + $̄σ̄2

i

)
=

M

∏
i=1

[
1 + $̄λi

(
∆̄H∆̄

)]
(3.26)

=
M

∏
i=1

[
1 + 2$̄

(
1− λi

(
∆ + ∆H

2

))]

where ∆ = UH
2 ΦH

2 Φ1U1. For the eigenvalues of ∆+∆H

2 it holds [36]

λi

(
∆ + ∆H

2

)
≤ σi(∆). (3.27)
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So, the following inequality holds

Div(B1, B2) :=
M

∏
i=1

(
1 + $̄σ̄2

i

)
≥

M

∏
i=1
{1 + 2$̄ [1− σi(∆)]} (3.28)

≥
M

∏
i=1

{
1 + $̄

[
1− σ2

i (∆)
]}

(3.29)

=
M

∏
i=1

(
1 + $̄σ2

i

)
(3.30)

≥
M

∏
i=1

(
1 + $σ2

i

)
= Div(Φ1, Φ2) (3.31)

In other words, when non-coherent codes are used as coherent, the diversity does not
decrease.

Properties of the non-coherent codes obtained from coherent codes

Let B1, B2 ∈ VC
T,T−M be two codewords of a Stiefel code constructed for the known

channel. According to (3.4), for the non-coherent diversity we have

Div(Φ1, Φ2) =
M

∏
i=1

(
1 + a2b2 $σ̄2

i

)
.

This provides a relation between Div(Φ1, Φ2) and Div(B1, B2), having on mind that

Div(B1, B2) :=
M

∏
i=1

(
1 + $̄σ̄2

i

)

and $ and $ are given by (2.32) and (2.29) respectively. Finally, at high SNR ρ we have

Div(Φ1, Φ2) ≈
M

∏
i=1

(
1 + a2b2 T

T − M
$σ̄2

i

)
. (3.32)

We can see that the terms for the non-coherent and the coherent channel differ in the
scaling factor a2b2 T

T−M . If we ignore the scaling factor for a moment, we observe that
the properties of the non-coherent code depend on the eigenvalues of ∆, i.e. on the
properties of the coherent code B.

3.5.3 Decoding

We perform ML-decoding by using exhaustive search over the codebook in order to
demonstarte the potential of the recursive construction. The simplified decoding of
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the codes of the form (3.25) has to be further investigated. It seems that the block
structure offers potential for simplified decoding. The general algorithms suggested
in [13], [12] can also be used. Additionally, decoding can be performed in the tangent
space, as described in [1].

3.5.4 Examples and Simulation Results

Here we present simulation results for several worked-out examples. The simula-
tions show that the code performance fits the theoretical prediction given by (3.18),
which is result of the good distance properties of the codes obtained in this way. As
expected, the increase of the block length could lead to a significant improvement of
the performance of Grassmann codes for the non-coherent MIMO system.

Recursive construction in GC
2,6, η = 2 bits/c.u.

Here, two different codes are taken as starting point for the recursive construction.
The first one is the 2× 2 coherent code C(0)

c of rate 4, constructed in [30], also used in
[26], [1], with codewords

B =
1√

2

(
s1 + θs2 φ(s3 + θs4)

φ(s3 − θs4) s1 − θs2

)
, (3.33)

where φ2 = θ = eiπ/4 and si, i = 1, 2, 3, 4 are the 4 information QPSK symbols. This
is a version of the Golden code introduced in [5]. The code used for multiplication is
the rate 2 unitary (Alamouti) code U [2], with codewords

U =
1√

2

(
s1 −s∗2
s2 s∗1

)
, (3.34)

where s1, s2 are taken from the 4-QPSK symbols. The scaling factors used in the ex-
ponential map are α0 = 0.566 and α1 = 1.

The final code of block length T = 6 is constructed as follows

C(0)
c

exp−→ C(0)
n

×U−→ C(1)
c ,

exp−→ C(1)
n , C(1)

n ⊂ GC
2,6. (3.35)

The rate (spectral efficiency) of the obtained code C(1)
n is

η = log2
(|C(0)

c | · |U |)
T

= 2 bits/channel use.

The simulation results are shown in Fig. 3.5. As expected, the performance increases
with increase of the block length. For T = 6, compared to T = 4, the gain is approxi-
mately 2 dB. The results fit well the theoretical prediction given by (3.18).
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The second code is a rate 2 non-coherent code of block length T = 4, constructed
from the spherical code described in 3.3. The construction is flexible and allows for
design of non-coherent codes of different rates. The scaling factor of the exponential
map is here also, α = 1. The same effect of performance increase can be observed
with the increase of the block length T.

Recursive construction in GC
2,8, η = 2 bits/channel use

Here the construction procedure is the same as in the case of GC
2,6, only adding one

additional cycle to obtain codes of block length T = 8. The scaling factor for the
additional exponential map is chosen α2 = 1. The starting codes are the same as in
the previous examples.

C(1)
n

×U−→ C(2)
c

exp−→ C(2)
n , C(2)

n ⊂ GC
2,8. (3.36)

As shown in Fig. 3.5, for T = 8, compared to T = 4, the gain is approximately 3 dB,
which fits the prediction given by (3.18).

Recursive construction in GC
2,10, η = 1.6 bits/channel use

Here the starting code is the 2× 2 Alamouti code of rate 2. The same code is used for
multiplication in each step. With the recursive procedure, a code with block length
T = 10 and rate (spectral efficiency) 1.6 is constructed. The scaling factor α is the
same, α = 1, every time when exponential map takes place. This construction is
particularly interesting, since it depends on only one parameter, i.e. the same code is
used in all steps of the procedure. The performance is shown in Fig. 3.5.

3.6 Grassmann Space-Time Codes from Lattices

The parametrization of the Grassmann manifold GC
T,M with the set of T × T skew-

hermitian matrices of the form (2.22), gives rise to non-coherent codes constructed
from a set of elements (points) of the tangent space. Since the tangent space can be
identified with the set of matrices B =

{
B, B ∈ CM×(T−M)

}
, canonical embedding

of the tangent space in the real space R2M(T−M) is justified. Hence, non-coherent
space-time codes can be constructed from sets in R2M(T−M). One way to do this is to
choose a set which arises from a (sphere) packing in R2M(T−M). In this sense, a lattice
packing is favored, due to the simple construction and the potential for decoding.
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Figure 3.5: Performance comparison of non-coherent space time codes obtained from
a recursive construction, with block lengths T = 4, T = 6 and T = 8,
M = 2, N = 2, η = 2 bits per channel use.

3.6.1 Code Construction

As lattice Λ in Rn we will understand a discrete subgroup of Rn which spans the real
vector space Rn. Some of the densest sphere packings in certain dimensions (e.g. 2, 8
and 24) are shown to be lattice packings.

Let Λ be a lattice in RD, where D = 2M(T − M). Let X1, X2, . . . , XD be a basis for
the D-dimensional tangent space with elements matrices of the form

X =
(

0 −BH

B 0

)
, B ∈ C(T−M)×M. (3.37)

A lattice point x = (x1, x2, . . . , xD) ∈ Λ becomes a point from the tangent space under
the transformation

X =
D

∑
i=1

xiXi. (3.38)

Let us denote by CΛ a subset of the lattice CΛ ⊂ Λ. Let X be the image of CΛ after the
basis transformation. X is then of the form

X =
(

0 −BH

B 0

)
, B ⊂ C(T−M)×M, (3.39)
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and is uniquely identified by the set B. The Grassmann code C is obtained after
mappingX (or equivalently B), on the Grassmann manifold via the exponential map.
For X ∈ X , a codeword Φ ∈ C is obtained as

Φ = exp (αX) IT,M, (3.40)

where α is a scaling factor which ensures that the Grassmannian constellation is not
folded up with the exponential mapping [26]. This implies a constraint on the singu-
lar values of the elements of B, i.e.

max
k

σk(αBi) ≤ π

2
, ∀Bi ∈ B. (3.41)

The important question is what happens with the lattice structure after the mapping
on the manifold. More precisely, the performance of the resulting code has to be
evaluated in terms of the already established criteria for construction of non-coherent
codes for multiple antenna channels.

The representation of the geodesic distance in the space of tangents at the identity
gives us a hint about the structure of the code obtained by the mapping. For Φ =
exp(X)IT,M, for the geodesic distance between Φ and IT,M we have

dg(Φ, IT,M) = ‖B‖F =
1√

2
‖X‖F. (3.42)

This is easily shown by using the definition of principle angles and the representation
of Φ in the form (2.25). According to this, for the principle angles between Φ and IT,M
we have

cos θi = σi(IH
T,MΦ) = cos σi(B), (3.43)

which for the geodesic distance gives

dg(Φ, IT,M) =
√

∑M
i=1 σ2

i (B) =
√

tr(BHB) = ‖B‖F. (3.44)

Similarly, we can calculate the geodesic distance between arbitrary subspaces Φ, Ψ ∈
GC

T,M. Let Ψ̃ =
[
ΨΨ⊥]

be the unitary extension of Ψ, where Ψ⊥ is the orthogonal
complement of Ψ. Then the geodesic distance is given by dg(Φ, Ψ)=dg(Ψ̃−1Φ, IT,M),
because a left multiplication by an unitary matrix is an isometric transformation.

Now, let us define a sphere of radius r in Rn,

S(r) := {b ∈ Rn | ‖b‖ = r} . (3.45)

Due to the embedding of the tangent space in RD where D = 2M(T−M), the sphere
can equivalently be represented with the set of matrices

S(r) :=
{

B ∈ CM×(T−M)| ‖B‖F = r
}

. (3.46)
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According to (2.22), after the exponential map, the sphere S(r) will be mapped to a
subset of the Grassmann Manifold

SG(r) :=
{

Φ | dg(Φ, IT,M) = r
}

. (3.47)

We will call this set a geodesic sphere, using the analogy with spheres in Euclidean
space. We will have on mind that the dimension of the set is D − 1, since it is ob-
tained by mapping a D − 1-dimensional sphere from the tangent space. The former
observation leads to the conclusion that it is possible to impose a certain structure on
the Grassmann code.

In an equivalent representation, a lattice can be partitioned into spherical codes,
by grouping all vectors with the same norm. Let us by Λ(m) denote the subset of
the lattice corresponding to the m-th sphere. Then the spherical codes Λ(m) form an
exhaustive partitioning of Λ when m ranges over the positive integers

Λ =
∞⋃

m=1

Λ(m). (3.48)

Let us by ΛG denote the image of the lattice Λ on the Grassmann manifold under
the exponential map. According to (2.22), the exponential map maps Λ(m) to a subset
ΛG(m) of the Grassmann manifold

Λ(m) → ΛG(m) ⊂ GC
M,T,

x → Φ , dg(Φ, IM,T) = r(m), (3.49)

where ΛG(m), m = 1, 2, . . . partition ΛG

ΛG =
∞⋃

m=1

ΛG(m). (3.50)

Obviously, the structure of the lattice Λ is transferred to the Grassmann manifold in
the sense that ΛG can be partitioned into so-called geodesic spheres. A code on the
lattice CΛ can be constructed by choosing subsets of the lattice spherical codes.

Let CΛ(m) ⊂ Λ(m) be a code on the m-th sphere (spherical code) with radius r(m).
Then CΛ is given as

CΛ =
⋃

m∈M
CΛ(m), (3.51)

whereM⊂ N∪ {0}. According to (3.49), a code on the Grassmann manifold (Grass-
mann code) CG is obtained after the exponential map

CG =
⋃

m∈M
CG(m), (3.52)

where CG(m) is the image of CΛ(m). According to the previous discussion, the struc-
ture of the lattice code is transferred to the code on the Grassmann manifold.
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Lattice rotation

While describing the construction of Grassmann codes from lattices, we have mainly
commented on the geodesic distance between the subspaces (codewords). Neverthe-
less, the chordal and the geodesic distance are locally equivalent [16]. This is intu-
itively supported by the fact that the Grassmann manifold (as any manifold) locally
looks like Euclidean space. The former discussion about the geodesic distance does
not hold for the chordal distance in general, but gives us an insight about the chordal
distance distribution among the subspaces.

The diversity product, on the other hand, can be controlled by choosing an appro-
priate rotation of the lattice, which will affect the distribution of the principle angles
after the mapping on the manifold. One way to perform such rotation is described
in [18]. As the axis of rotation the diagonal e =

(
1 1 . . . 1

)T ∈ RD is chosen.
Rotation around e is performed by the matrix R given by

R = WT
e R1We (3.53)

where We is a unitary matrix with its first row e/
√

D and its j-th row

(
1(j−1) −(j− 1) 0(D−j)

)
/

√
j(j− 1), (3.54)

where 0(D−j) is a vector of all zeros of length D− j. The matrix R1 performs a rotation
around the axis e1 =

(
1 0 . . . 0

)T ∈ RD of angle φ. The matrix R1 is

R1 =
(

1 0
0T exp(φU)

)
, (3.55)

where U being the (D − 1)× (D − 1) antisymmetric matrix with ones in the upper
triangular part

U =




0 1 · · · 1

−1 0
. . .

...
...

. . . . . . 1
−1 · · · −1 0


 . (3.56)

3.6.2 Some Special Lattices

The E8 (Gosset) lattice

For the system with M = 2, N = 2 and T = 4, the E8 lattice can serve for the
construction since the dimension of the Grassmann manifold GC

T,M is 2T(T−M) = 8.
The E8 lattice is the densest lattice packing in R8. It can be given explicitly by the set
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3.6 Grassmann Space-Time Codes from Lattices

of points E8 ∈ R8 such that all the coordinates are integers or all the coordinates are
half-integers, and the sum of the eight coordinates is an even integer. In symbols,

E8 =

{
(xi) ∈ Z8 : ∑

i
xi ≡ 0 (mod 2)

}

∪
{

(xi) ∈ (Z + 1
2)8 : ∑

i
xi ≡ 0 (mod 2)

}
. (3.57)

The E8 lattice is closely related to the Hamming (8, 4) code and can actually be con-
structed from it. The E8 lattice can be partitioned into spheres, E8 =

⋃∞
m=1 E8(m),

where E8(m) is a spherical code with vectors having norm
√

2m. If we denote by
CE8(m) a code on the m-th sphere, then a code on the lattice can be defined as CE8 =⋃

m∈M CE8(m), where M⊂ N. After the mapping (3.49), the Grassmann code will be
CG =

⋃
m∈M CG(m).

The Barnes-Wall lattice, Λ16

The Barnes-Wall lattice Λ16 can serve for construction of codes for the non-coherent
channel with M = 2 and coherence time T = 6. It can be constructed from the Reed-
Mueller code CRM(16, 5, 8). Every vector of the lattice is congruent (modulo 2) to a
codeword of the CRM(16, 5, 8) code and the sum of all the coordinates of is a multiple
of four

Λ16 =
{

x ∈ Z16 | ∃c ∈ CRM, x ≡ c (mod 2)
}

(3.58)

∩
{

x | ∑
i

xi ≡ 0 (mod 4)

}
(3.59)

The Λ16 lattice can be partitioned into spheres, Λ16 =
⋃∞

m=1 Λ16(m), where Λ16(m) is
a spherical code with vectors having norm 2

√
2m. If we denote by CΛ16(m) a code on

the m-th sphere, then a code on the lattice is defined as CΛ16 =
⋃

m∈M CΛ16(m), where
M⊂ N. After the mapping (3.49), the Grassmann code will be CG =

⋃
m∈M CG(m).

The Leech Lattice, Λ24

The Leech lattice can be explicitly constructed as the set of vectors of the form
2−3/2(x1, x2, ..., x24) where the xi are integers such that x1 + x2 + · · · + x24 ≡ 4x1 ≡
4x2 ≡ · · · ≡ 4x24 (mod 8) and for each fixed residue class modulo 4, the 24 bit word,
whose 1’s correspond to the coordinates i such that xi belongs to this residue class,
is a word in the extended (24, 12) binary Golay code. Similarly as in the case of the
E8 lattice, we can partition the Leech lattice into spherical codes. The radius of the
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m-th sphere is r(m) =
√

2(m + 1). The spherical codes Λ24(m) form an exhaustive
partitioning of Λ24, Λ24 =

⋃∞
m=1 Λ24(m).

If we denote by CΛ24(m) a code on the m-th sphere, then a code on the lattice can
be defined as CΛ24 =

⋃
m∈M CΛ24(m), where M ⊂ N. After the mapping (3.49), the

Grassmann code will be CG =
⋃

m∈M CG(m).

3.6.3 Decoding

The ML-decoding rule for non-coherent codes is given by (2.40) and is based on the
chordal distance measure. The decoding here was performed by exhaustive search,
in order to demonstrate the potential benefit of the introduced codes. Suboptimal
decoding as described in [1] can be applied in this case as well. There the decision
is shifted to the tangent space, instead to be performed in the manifold. Additional
improvement is obtained by using a list of candidates in the tangent space which is
mapped back in the manifold and compared based on the ML-decoding rule. With
the decision taken to the tangent space, the decoding simplifies to decoding on lat-
tices, for which efficient techniques are found in the literature, specifically for the
lattices of interest here, E8, Λ16 and Λ24. This simplified decoding performs near the
ML decoding in the middle-SNR region [1]. For large blocks T the performance in
this region is satisfactory, due to the trend of performance increase with the block
length T. Additionally, the lattice codewords do not need to be stored, which enables
employment of codes of large cardinality (rate).

Another method for simplified decoding would be the technique introduced in
[13], [12]which could benefit from the structure imposed on the Grassmann code after
mapping the lattice from the tangent space to the Grassmann manifold.

3.6.4 Examples and Simulation Results

M=2, N=2, T=4

A non-coherent code is constructed from the first three spheres of the E8 lattice after
rotating and mapping the lattice code on the Grassmann manifold GC

T,M. The scaling
factors are α1 = 0.5, α2 = 0.575 and α3 = 0.525 for the three spheres respectively. The
rotation angle is φ = π/4. The number of points on the spheres is 240, 2160 and 6720
respectively, which in total gives a code of cardinality 9120 and rate η = 3.2887 bits
per channel use. The results are compared with the Grassmann code obtained from
the Golden code [26],[1] with 8QAM (star QAM) with 4096 codewords in total and
rate η = 3 bits per channel use. From Fig. 3.6 we can see that the performance is simi-
lar, which favors the code from the E8 lattice, due to the higher rate. The performance
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3.6 Grassmann Space-Time Codes from Lattices

is further improved if we modify the mapping as in Section 3.7 and use a code from
the first sphere of the E8 lattice, as shown in Fig. 3.6.

M=2, N=2, T=6

A non-coherent code is constructed from the first sphere of the Barnes-Wall lattice
Λ16. The scaling factor is α = 1. The rotation angle is φ = 0.725. The number of
points on the sphere is 4320, which gives a rate of η = 2.013 bits per channel use. In
order to support the prediction that the performance grows with the increase of the
block length, the performance is compared to codes for the channel with coherence
time T = 4. The codes used for comparison are the Grassmann code based on the
Golden code from 4PSK.
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NSTC from the Barnes−Wall lattice, M=2, T=6, rate=2.013
NSTC from the Leech lattice, M=2, T=8, rate=2.198

Figure 3.6: Performance comparison for non-coherent space-time codes for M = 2
transmit antennas and coherence time T = 4, 6 and 8.

M=2, N=2, T=8

A non-coherent code is constructed from the first sphere of the Leech lattice Λ16. The
scaling factor is α = 0.5. The rotation angle is φ = 0.7. The number of points on
the sphere is 196560, which gives a rate of η = 2.198 bits per channel use. In order
to support the prediction that the performance grows with the increase of the block
length, the performance is compared to codes for the channel with coherence time
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T = 4 and T = 6. The codes used for comparison are the Grassmann code based
on the Golden code from 4PSK and rate η = 2 bits per channel use and the code
constructed from the first sphere of the Barnes-Wall λ16 lattice. The results are shown
in Fig. 3.6. The code is superior to the other codes, probably mainly due to the very
special properties of the Leech lattice.

3.7 Modified Mapping from the Tangent Space

We have already argued that the exponential map is non-linear, making the properties
of the Grassmann code difficult to control. However, for points in the vicinity of the
point where the tangent space is constructed (e.g. the identity), the mapping is almost
linear. This property can be used in order to modify the construction. The idea is to
construct tangent spaces at several points of the Grassmann manifold (instead of one)
and use a small scaling factor α in order to keep the exponential map almost linear.
The resulting code would represent a union of ”smaller” codes centered at different
points of the Grassmann manifold.

3.7.1 Code Construction

In this context we propose the following construction. First, a code Ct ⊂ GC
M,T ”cen-

tered” at IT,M is constructed. The code Ct can be any Grassmann code, for example
one obtained from a lattice by the exponential map, with a suitable choice of the scal-
ing factor α. Then, another code Cu = {Q1, . . . , QNu} ⊂ GC

M,T is chosen and for each
Q ∈ Cu, the code Ct is translated along the geodesic connecting IT,M and Q.

The translation of Ct from IT,M to Q is performed by left multiplication by unitary
matrix Q̃ = [Q Q⊥]. In terms of mapping, this can be interpreted as a modification of
the ”classical” exponential map performed at IT,M. Finally, the Grassmann code C is
represented as the union of the codes ”centered” at Q1, . . . , QNu ,

C = (Q̃1Ct) ∪ (Q̃2Ct) ∪ · · · ∪ (Q̃NuCt). (3.60)

The size of C is |C| = |Ct| · |Cu| and the rate is η = (log2 |C|)/T.
Left multiplication of an element of Ct by unitary matrix Q̃ ∈ U(T), transforms it

into another element of the Grassmann manifold. With this, the identity IT,M is trans-
formed into Q = Q̃IT,M. Additionally, for Φ1, Φ2 ∈ Ct, the transformation leaves
the principle angles between Φ1 and Φ2 unchanged (and thus the chordal distance),
since (Q̃Φ2)H(Q̃Φ1) = ΦH

2 Φ1. The choice of Cu should correspond to a ”uniform”
distribution (packing) on the manifold, with respect to the chordal distance. Since the
number of elements of Cu is typically small, they can be chosen by linear program-
ming methods, for example the one used by Conway and Sloane [7], or the alternate
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projection method introduced in [47]. The maximum number of equidistant points in
GC

M,T is T2 [7]. This is a result of the canonical embedding (2.17) of GC
M,T with chordal

distance into a sphere SD−1 ∈ RD, where D = T2 − 1, and the simplex bound. With
a proper choice od Cu, the code performance is dominated by the properties of Ct
(chordal distance and diversity).

3.7.2 Examples and Simulation Results

We present results for M = 2, N = 2 and T = 4. We take a code Cu of cardinality
16. This means that we take 16 ”equidistant” points and construct tangents space at
each point. For the second code we take two examples. The first one is the spherical
code presented in Section 3.3. The second one is the code constructed from the E8
lattice. For the choice of the parameter, α = 0.35 ”overlap” between the Nu regions is
avoided and the performance is optimized.

Comparison was made with other codes from the literature such as the TAST-code
[30] and the codes from the authors of [1], for η = 3 b.c.u. The performance is shown
in Fig. 3.7 and Fig. 3.8.
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Figure 3.7: Performance comparison of non-coherent space-time codes for M = 2
transmit antennas and coherence time T = 4.
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Code 2, Kammoun et. al, exp. map
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Modified exp. map, constr. from Code 2

Figure 3.8: Performance comparison of non-coherent space-time codes for M = 2
transmit antennas and coherence time T = 4.

3.8 Grassmann Codes and Lie Groups: Discussion

The Grassmann codes constructed from constellations in the tangent space at the
identity fully exploit the degrees of freedom (dimension) of the tangent space, since
no constraint is imposed on the matrix B. This enables construction of spectral effi-
cient Grassmann constellations. However, in the general case, we can not guarantee
nor full diversity neither optimal distribution with respect to the chordal distance
since, due to the nonlinearity of the exponential map, only few things may be said
for the Grassmann codes obtained in this way. Rotation may improve the diversity
product distribution between the different Grassmann codewords, as in the case of
the construction from lattices, but the rotation angle is obtained heuristically, and
does not guarantee optimization of the diversity product between the codewords.
However, for a special class of codes, some relations can be established.

The key to the construction of Grassmann codes was the coset representation of
the Grasmmann manifold, i.e. the representation of GC

T,M as a quotient space of the
unitary group U(T). Instead of using the unitary group U(T), we can constrain our-
selves to a subgroup of the unitary group, aiming at obtaining Grassmann codes with
special properties. This, of course, limits the number of degrees of freedom (dimen-
sion) available for the construction of Grassmann codes.

60



3.9 Chapter Summary

Let us take for example the symplectic group Sp(n), i.e. the quaternionic unitary
group U(n, H). This group is a Lie group and can be equivalently be represented as
the group of 2n× 2n matrices S which satisfy the unitary condition SSH = SHS =

I2n and the symplectic condition STJ2nS = J2n, where J2n =
(

0 In
−In 0

)
. The Lie

algebra sp(n) contains n × n quaternionic matrices of the type X = −XT. An n × n
matrix with entries from the quaternions can be equivalently represented by an 2n×
2n matrix with complex entries by using the matrix representation of quaternions

a + bi + cj + dk ≡
(

a + bi c + di
−c + di a− bi

)
. (3.61)

Let us by GS denote the subset of GC
k,n, GS ⊂ GC

k,n which is isomorphic to the quotient
space of the symplectic group

GS � Sp(n)/
(

U(k) 0
0 U(2n− k)

)
. (3.62)

Tangents of this subset are provided by sp(n) ∩ h⊥, where h has the form (2.22). Hav-
ing the tangents, Grassmann codes can be constructed by using the exponential map,
or the modified mapping as in 3.7. We leave this construction for future work with
the comment that there is an obvious trade-off between the full exploitation of the
available degrees of freedom (dimension) and the potential for simplified decoding.

3.9 Chapter Summary

Geometric Methods for Construction of Non-Coherent Codes

• Achieving capacity for high SNR scenarios requires the input signals to be in
the form of isotropically distributed unitary matrices, provided that T satisfies
T ≥ min(M, N) + N.

• If we choose a code in the tangent space, X = X1, X2, . . . , Xn, a Grassmann code,
C ⊂ GC

M,T, is constructed as

C = exp(αX )IT,M.

Grassmann Codes from Spherical Codes

• The Grassmann manifold is a normal-homogeneous space. Homogeneity is a
natural generalization of spherical symmetry.

61



3 Code Constructions for the Non-Coherent Point-to-Point MIMO Channel

• Grassmann codes can be constructed from spherical codes.

• A construction from a high-dimensional spherical code designed for vector quan-
tization is presented. The points on the sphere are distributed on ”equidistant”
layers by a recursive procedure.

Grassmann Codes from Stiefel Codes

• Class of Grassmann codes obtained by the exponential map, where BHB = Ik

Φ = exp(αX)In,k =
(

V2(aIk)VH
2

V1(bIk)VH
2

)
=

(
aIk
bB

)
,

where a = cos α and b = sin α.

Grassmann Codes based on Recursive Construction

• For a fixed rate R (spectral efficiency), SNR ρ ≥ 1 and T ≥ 2M [16], the perfor-

mance of a Grassmann code is expected to grow at least proportionally to
√

T
M .

This motivates the construction of higher-dimensional non-coherent codes with
T >> M, unlike the usual design with T = 2M.

• The recursive code construction is summarized as follows

B0
exp(α0)−→ C0

×U0−→ B1
exp(α1)−→ · · · exp(αk)−→ Ck,

• For the special case when B0 is an unitary code, a code for M transmit antennas
and coherence time Tk, Ck ⊂ GC

M,Tk
, has the form

Ck =




ak · IM
bk · ak−1 · Uk−1

...
bk · · · b2 · a1 · U1 × · · · × Uk−1

bk · · · b1 · a0 · U0 ×U1 × · · · × Uk−1
bk · · · b1 · b0 · B0 ×U0 ×U1 × · · · × Uk−1




.

The scalars a0, a1, . . . , ak and b0, b1, . . . , bk are parameters of the exponential map,
satisfying ai = cos αi and bi = sin αi.
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Grassmann Space-Time Codes from Lattices

• The tangent space at the identity IT,M can be can be identified with the set of
matrices B =

{
B, B ∈ CM×(T−M)

}
. Hence, canonical embedding of the tangent

space in the real space R2M(T−M) is justified.

• Non-coherent space-time codes can be constructed from sets in R2M(T−M).

• Construction from a lattice Λ ⊂ R2M(T−M)

• The construction is followed by lattice rotation for improving the diversity prod-
uct.

• Examples: constructions from the Gosset lattice E8, Barnes-Wall lattice, λ16 and
the Leech lattice, Λ24.

Modified Mapping from the Tangent Space

• The exponential map is non-linear.

• However, in the vicinity of the identity, the exponential map is almost linear.

• Code construction by translation of a smaller code along geodesics in GC
T,M.

• The code C is constructed as the union of the codes ”centered” at predefined
points, Q1, . . . , QNu ,

C = (Q̃1Ct) ∪ (Q̃2Ct) ∪ · · · ∪ (Q̃NuCt).

Grassmann Codes and Lie Groups

• The key to the construction of Grassmann codes was the coset representation of
the Grasmmann manifold, i.e. the representation of GC

T,M as a quotient space of
the unitary group U(T).

• Instead of using the unitary group U(T), we can constrain ourselves to a sub-
group of the unitary group, aiming at obtaining Grassmann codes with special
properties. There is trade-off between spectral efficiency and complexity.

• Example: The symplectic group Sp(n), i.e. the quaternionic unitary group
U(n, H). This group is a Lie group andthe Lie algebra sp(n) contains n × n
quaternionic matrices of the type X = −XT.
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• Code constructions from the subset GS ⊂ GC
k,n which is isomorphic to the quo-

tient space of the symplectic group

GS � Sp(n)/
(

U(k) 0
0 U(2n− k)

)
.
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Chapter 4
Wireless Relay Networks: One-Way
Relaying and Distributed Space-Time
Coding

IN this chapter we present novel constructions of distributed space-time codes for
non-coherent transmission in wireless relay networks. Distributed space-time
coding is a cooperative strategy which exploits the spatial diversity provided by

the relays in order to help the transmission. We focus on the one-way (uni-directional)
relaying protocol with terminals operating in half-duplex regime. We show that codes
based on packings in Grassmann manifolds can be used as distributed space-time
codes. Parts of this chapter have been published in [52], [51].

4.1 Introduction

The use of multiple antennas can increase the capacity and the reliability of point-
to-point wireless communication links using space-time coding. With the increased
interest in ad-hoc networks, several cooperation based methods which exploit spatial
diversity provided by antennas of different users have been developed, e.g. [41],[42],
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[28], [32], [11], [3]. The improvement is called cooperative diversity and is achieved
by having different users in the network cooperate in some way.

Among the first cooperative strategies are amplify-and-forward [28] and decode-
and-forward, [3]. An enhanced cooperative strategy, based on coherent distributed
space-time coding was introduced in [24]. The scheme requires neither decoding nor
channel information at the relays, however, requires full knowledge at the receiver of
the channel from the transmitter to the relays and from the relays to the receiver.

Here we focus on non-coherent operation, assuming no channel knowledge at nei-
ther the terminals nor at the relays. We will address a one-way relaying protocol for
information exchange in wireless relay networks, where the information exchange
requires 4 time blocks. In this chapter we generalize the concept of distributed space-
time coding to the non-coherent case. The approach here differs to the approach in
[25], where distributed differential space-time coding is introduced, since we concen-
trate on genuine or ”pure” non-coherent communication.

Without channel knowledge, the problem of distributed space-time coding becomes
more specific. The intuition that the information should be carried by subspaces still
holds here and hence we will use some of the results obtained for the non-coherent
point-to-point MIMO channel. However, as we will see, we will have to modify the
techniques in order to suit to the specifics of the relaying networks.

We recall that in the case of point-to-point MIMO, the problem of non-coherent
space-time coding can be interpreted as a constrained packing problem in Grassmann
manifolds [65]. This means that the codewords of the non-coherent code should carry
information about linear subspaces of a higher-dimensional (complex) space. When
generalizing this concept to wireless relay networks, the distributed space-time code
obtained at the relays should carry the same structure, i.e. the relays should perform
operations such that the distributed code is a subset of a Grassmann manifold.

Although the performance analysis of the distributed non-coherent codes for wire-
less relay networks is similar to the one of simple point-to-point non-coherent MIMO
communication, the fact that the code should be build in a distributive way at the
relays, makes this problem specific and different from the coherent distributed space-
time coding and non-coherent space-time coding for point-to-point MIMO. In the
following we address the specifics of non-coherent distributed space time-coding and
propose code constructions based on the geometric approach introduced in Chapter
3.

4.2 System Model

The system model approach mainly follows [24], [33]. We consider a wireless net-
work with K + 2 nodes, where K nodes act as relays (in parallel). The relays have low
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power and limited computational resources, so that they do not perform decoding.
The other two nodes can be distinguished as being capable to encode and decode the
data as well as, in general, to send and receive with multiple antennas. The trans-
mitter and the receiver have M respectively N antennas. We assume that the relays
have single antennas. Actually, since the relays do not perform decoding, we can as-
sume that this covers the general model where each relay has Ki antennas, used for
both transmission and reception. Indeed, since the transmit and received signals at
different antennas of the same relay can be processed and designed independently,
the network can be transformed to a network with K = ∑ Ki single-antenna relays
by designing the transmit signal at every antenna of every relay according to the
received signal at that antenna only. The equivalent system model holds also for the
case when the transmitter and the receiver do not have multiple antennas, but several
nodes cooperate in order to transmit (encode) and receive (decode) the information
and effectively act as one transmitter and one receiver with multiple antennas. This
is a realistic scenario for networks with nodes having power (energy) limitations and
particularly for sensor networks where the sensors send common data. Thus, we can
consider the above scenario to be quite general for wireless networks.

We recall that the capacity analysis of point-to-point non-coherent MIMO channels
reveals that there is no gain from capacity perspective if there are more transmit then
receive antennas. In the case of distributed space-time coding for wireless relay net-
works the relays effectively help the transmitter and create a virtual point-to-point
channel with M′ transmit antennas, where M′ depends on M and K, as we will see
in the worked-out examples later in this chapter. Therefore, we will assume that the
number of receive antennas is N = M′, unless otherwise stated.

The communication scheme is half-duplex, meaning that the network nodes do not
transmit and receive simultaneously. The transmission is done in two steps. In the
first step the information is encoded into T1 × M transmit matrix S, normalized as
E{tr(SHS)} = M. The channel between the transmitter and the relays is assumed
constant for T1 time instants. If we denote by P1 the average transmit power for one
transmission, then the transmit signal is

√
P1T1/MS. With this, the average power

used at the transmitter for the T1 transmissions is P1T1.
Let us denote the signal transmitted by the m-th antenna as sm, and the channel

coefficient between the m-th transmit antenna and the i-th relay as fmi. Further, let
us denote the received signal at the i-th relay at time instant τ as riτ and the additive
noise as viτ. The channel coefficients and the noise are complex Gaussian with zero
mean and unit-variance. The received signal at the relays is then written as

ri =
√

P1T1/M
M

∑
m=1

fmism + vn, (4.1)

where ri = (ri1 ri2 · · · riT1)
T and vi = (vi1 vi2 · · · viT1)

T. In the second step, from
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time instant T1 to time instant T1 + T2, the relay i sends ti1, . . . , tiT2 . The received
signal at the n-th antenna at time instant T1 + τ is yτn and the additive noise is wτn
respectively. The channel coefficient from the i-th relay to the n-th receive antenna is
gin. The received signal at antenna n is then

yn =
R

∑
m=1

ginti + zn, (4.2)

where yn = (y1n y2n · · · yT2n)T, zn = (w1n w2n · · · wT2n)T and the transmit signal at
relay i is

ti =

√
P2T2

(P1 + 1)T1

(
Airi + A′

ir
∗
i
)

, i = 1, 2, . . . , K. (4.3)

Here for the relay matrices we assume Ai = 0 or A′
i = 0. The more general ap-

proach would assume that the matrix
( <(Ai + A′

i) −=(Ai −A′
i)

=(Ai + A′
i) <(Ai −A′

i)

)
is a 2T2 × 2T1 orthogo-

nal matrix. Here we assume the simplified case. For details referee to [24]. Ai and
A′

i are T2 × T1 matrices with orthonormal columns. This ensures an average transmit
power at relay i of P2T2, i.e. an average power per transmission instant of P2. It also
makes the protocol equitable between different users and different time instants. The
choice of different T1 and T2 adds more flexibility to the problem of non-coherent dis-
tributed space-time coding, compared to the standard approaches in the literature,
e.g. [24][33], where T1 = T2 is assumed.

Let us now denote fi = ( f1i f2i · · · fMi)T and gi = (gi1 gi2 · · · giN)T. The equiv-
alent channel model between the transmitter and the receiver can now be written
as

Y =

√
P1P2T2

(P1 + 1)M
ΦH + W, (4.4)

where

Y =
(

y1 y2 · · · yN
)

, (4.5)

Φ =
(

Â1Ŝ Â2Ŝ · · · ÂKŜ
)

, (4.6)

H =
(

f̂1gT
1 f̂2gT

2 · · · f̂KgT
K

)T , (4.7)

W =




√
P2T2

(P1+1)T1
∑K

i=1 gi1Âiv̂i + z1
...√

P2T2
(P1+1)T1

∑K
i=1 giNÂiv̂i + zN




T

, (4.8)

and the relay matrices are given as

Âi = Ai, f̂i = fi, v̂i = vi, Ŝ = S if A′
i = 0 , (4.9)

Âi = A′
i, f̂i = f∗i , v̂i = v∗i , Ŝ = S∗ if Ai = 0. (4.10)

68



4.3 Pairwise Error Probability

We can say that the problem of non-coherent distributed space-time coding is a prob-
lem of choice of the relay matrices Âi as well as a suitable code Ŝ = {Ŝ | Ŝ ∈ CT1×M}
for the first part of the transmission, such that the codewords Φ of the distributed
non-coherent space-time code describe elements of a Grassmann manifold. Practi-
cally, non-coherent communication where the information is carried by subspaces is
possible whenever the network parameters (M and K) and the relay matrices are such
that it is possible to construct a distributed Grassmann code.

4.3 Pairwise Error Probability

The equivalent system model of the relay network can be considered as a non-coherent
system model with M′ = MK transmit antennas, N receive antennas and coherence
time T2. In the special case of interest here, (4.4) can be rewritten as

Y =

√
P1P2KT2

(P1 + 1)M′ΦH + W, (4.11)

where the noise is of the form (4.10). Then the PEP Chernoff bound will have the
form

P(Φ1, Φ2) ≤ Egji

{
1
2

N

∏
i=1

det−1
[
IM′ + $

i
(IM′ − ∆H∆

]}
, (4.12)

where

$
i
=

(ρi
T2
M′ )2

4(1 + ρi
T2
M′ )

, (4.13)

and

ρi =
P1P2KT2

P1+1

T2 + T1 · P2T2
(1+P1)T1

∑K
j=1 |gji|2

=
P1P2K

1 + P1 + P2 ∑K
j=1 |gji|2

. (4.14)

The problem is simplified if we assume that ∑K
j=1 |gji|2 ≈ K. This approximation is

valid for large K. Then (4.12) becomes

P(Φ1, Φ2) ≤ 1
2

det
[
IM′ + $(IM′ − ∆H∆)

]−N
, (4.15)

where

$ =
(ρ T2

M′ )2

4(1 + ρ T2
M′ )

and ρ =
P1P2K

1 + P1 + P2K
. (4.16)
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For the code constructions presented here, we will assume a finite number of relays.
Therefore, we will have in mind that the above analysis is only approximately true.
Nevertheless, the same analogy would hold as in the case of coherent distributed
space-time coding, see for example [24] for further details.

4.4 Optimum Power Allocation

We denote the power of the transmitter when it transmits as P1, and the power of each
relay when it transmits as P2. Then the total average power used in the network for
the T1 + T2 symbol periods is P1T1 + KP2T2 or, equivalently the average power used
for one symbol period (also including the time when the device is not active) is

P =
P1T1

T1 + T2
+ K

P2T2

T1 + T2
. (4.17)

One natural question is how to allocate power between the transmitter and the relays
if P is fixed. In this section, we find the optimum power allocation such that the PEP is
minimized. The pairwise error probability (4.12) is minimized when $ is maximized.
It can be shown that (see appendix A.3), for a given average system power P, $ is
maximized when

P1 = P2K ·
√

T2

T1
. (4.18)

From (4.17) and (4.18), we get

P1 =
T1 + T2

T1 +
√

T1T2
P, P2 =

T1 + T2

(T2 +
√

T1T2)K
(4.19)

4.5 Code Construction

As already described, the problem of non-coherent distributed space-time coding is
the problem of choosing suitable codes Ŝ for the first part of the transmission as well
as relay matrices Âi to make the distributed space-time code to be a Grassmann code.
Basically, every code which can be constructed in a distributed way at the relays,
can be used. It is necessary that the columns of the transmit codeword matrix can
be obtained from the transmitted signal by linear transformation, or alternatively, by
linear transformation of its’ complex conjugate. Here, we present the construction of
non-coherent distributed space-time codes (NDSTCs) based on Alamouti and Sp(2)
codes, as discussed in Chapter 3.

The constructions proposed here are based on the geometric constructions pre-
sented in Sec. 3.4 and 3.5. We recall that when according to the geometric method,
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Grassmann codes are designed from a code B in the tangent space at the identity
element of the Grassmann manifold. We recall that according to Sec. 3.4, when the
codewords of B fulfill BHB = I, the Grassmann codes obtained after the exponential
map have the form

Φ =
(

a · I
b · B

)
. (4.20)

where a = cos α and b = sin α.
In the following we present constructions where B comes for from Alamouti and

Sp(2) codes. For these codes this prerequisite can be fulfilled and the Grassmann
codes will have the above form. The codes in this form can be used as distributed
codes with the appropriate choice of the relay matrices.

4.5.1 Construction from Alamouti Code

As an example, we consider the case with a transmitter equipped with a single trans-
mit antenna and two relays which assist the transmission, each equipped with single
antenna. In this case, a non-coherent code derived from the Alamouti code [2] can be
used.

According to Sec. 3.4, the non-coherent code obtained by exponential map of an
Alamouti code can be written in the form of

Φ =




cos α 0
0 cos α

sin α · s1 − sin α · s∗2
sin α · s2 sin α · s∗1


 . (4.21)

We note that if the signal sent from the transmitter is in the form

S =




cos α

0
sin α · s1
sin α · s2


 , (4.22)

and the relay matrices are chosen as follows

A1 = I4, A′
1 = 0, A2 = 0, A′

2 =




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , (4.23)
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then, at the relays, the codewords of the distributed code are given as

Φ = ( A1S A′
2S∗ ). (4.24)

We notice that, in the first part of the transmission, the zeros can be omitted. This
corresponds to T1 , T2. It is important to have this on mind in the normalization
of the transmitted signals and for the calculation of the power allocation. At the
transmitter, we send

S =




cos α

sin α · s1
sin α · s2


 . (4.25)

Now, the relay matrices should be chosen as

A1 =




1 0 0
0 0 0
0 0 −1
0 1 0


 , A′

1 = 0, A2 = 0, A′
2 =




0 0 0
1 0 0
0 0 −1
0 1 0


 . (4.26)

4.5.2 Construction from Sp(2) Code

Another code of the form (3.9) can be constructed from Sp(2) codes [23] which arise
from the symplectic Lie group Sp(2). This code can be seen as a generalization of
Alamouti code to dimension four. Its symbol rate is one. However, we note that this
code is not a orthogonal code. The code has the following structure

B =
{

1√
2

[
V1V2 V1VH

2
−VH

1 V2 (V1V2)H

]}
, (4.27)

where, for i=1,2,

Vi =
1√|εi|2 + |κi|2

[
εi −κ∗i
κi ε∗i

]
. (4.28)

and εi ∈ Fi, κi ∈ Gi are information symbols from the finite sets Fi and Gi. The choice
of Fi and Gi are arbitrary. Sufficient and necessary condition for full diversity of Sp(2)
code with PSK signals was provided in [23]. If we define

u1 =
ε1ε2 − κ1κ∗2√

2 ∏2
i=1

√|εi|2 + |κi|2
,

u2 = − ε∗1κ∗2 + κ∗1ε2√
2 ∏2

i=1

√|εi|2 + |κi|2
,

u3 = − ε∗1ε2 − κ∗1κ∗2√
2 ∏2

i=1

√|εi|2 + |κi|2
,
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and

u4 =
ε1κ∗2 + κ1ε2√

2 ∏2
i=1

√|εi|2 + |κi|2
, (4.29)

from (4.28), the codewords of B (4.27) can be written as

B =




u1 −u∗2 −u∗3 u4
u2 u∗1 −u∗4 −u3
u3 −u∗4 u∗1 −u2
u4 u∗3 u∗2 u1


 . (4.30)

Therefore, the Sp(2) code is actually a special kind of a quasi-orthogonal space-time
block code [21]. By special choices of the information symbols ui, the Sp(2) code can
be unitary [23]. So, the non-coherent code obtained from Sp(2) using exponential map
(2.23), can be written in the form (3.9).

This code can be used in a network where we have 1 transmit antenna and 4 relay
nodes, or in a network where we have 2 transmit antennas and 2 relay nodes, each
equipped with 2 antennas. In the following, we present code constructions for these
network configurations.

M=1, K=4

For the case of M = 1 and K = 4, in the first part of the transmission we send

S =
(

a bu1 bu2 bu3 bu4
)T . (4.31)

where u1, u2, u3 and u4 are built from the information symbols ε1, ε2, κ1 and κ2 accord-
ing to (4.29).

We define the relay matrices as follows:

A1 =




1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




, A′
1 = 0, A′

2 =




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 −1
0 0 0 1 0




, A2 = 0,
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A′
3 =




0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1
0 1 0 0 0
0 0 1 0 0




, A3 = 0, A4 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 −1 0
0 0 −1 0 0
0 1 0 0 0




, A′
4 = 0.

(4.32)

The distributed code built at the relays is given as

Φ = ( A1S A′
2S∗ A′

3S∗ A4S ). (4.33)

M=2, K=2

Here we address the case when the transmitter has two antennas and there are two
relays in the network, each equipped with two antennas. We note that this is neces-
sary in order that the relays are able to receive the signal from the transmitter. In the
first part of the transmission we send

S =
(

a 0 bu1 bu2 bu3 bu4
0 a −bu∗2 bu∗1 −bu∗4 bu∗3

)T

. (4.34)

We define the relay matrices as follows:

A1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, A′
1 = 0, A′

2 =




0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0




, A2 = 0.

The distributed code is built at the relays as:

Φ = ( A1S A′
2S∗ ) (4.35)

It is easy to show that this is a Grassmann code.
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4.5.3 Construction from Recursive Grassmann Codes

A subclass of the codes of the form (3.25) obtained by the recursive procedure intro-
duced in (3.5), are also applicable as distributed space-time codes. Indeed, if B0 and
the codes used for multiplication U0,U1, . . . ,Uk−1 are Alamouti or Sp(2) code, then
the codewords Φ of the distributed code can always be written in the form

Φ = ( Â1Ŝ Â2Ŝ . . . ÂKŜ ). (4.36)

We note that the distributed codes constructed in this chapter can all be represented in
this form. They correspond to recursive codes where only one recursion is performed.

4.6 Decoding

According to the system model (4.4), the code at the relays is a non-coherent code.
The ML-decoding rule is then

Φ̂ = arg max
Φ∈C

‖YHΦ‖2
F = arg max

Φ∈C

[
tr(ΦHYYHΦ)

]
, (4.37)

where Y is the received signal at receiver. Let us take the Grassmann codes in GC
T,M

which can be written in the form

Φ =
(

aIM
bB

)
, (4.38)

where a = cos(α), b = sin(α) and B ∈ C(T−M)×M. We decompose the received signal
as

Y =
(

Y1
Y2

)
, (4.39)

where Y1 is a M × M matrix and Y2 is a (T − M) × M matrix. For the special case
when BHB = IM, we have

Φ̂ = arg max
Φ
{tr[(aY1 + bBHY2)(aYH

1 + bYH
2 B)]}

= arg max
Φ
{2ab ·R[tr(BHY2YH

1 )]}. (4.40)

If B comes from an Alamouti code, the decoding procedure can be further simplified.

75



4 Wireless Relay Networks: One-Way Relaying and Distributed Space-Time Coding

4.6.1 Decoding of NDSTCs based on Alamouti Codes

If B comes from an Alamouti code, the decoding procedure can be further simplified.
When B resembles a codeword from an Alamouti code, it has the form

B =
(

s1 −s∗2
s2 s∗1

)
.

We denote the received signal as

Y =
(

Y1
Y2

)
=




y11 y12
y21 y22
y31 y32
y41 y42


 .

Then, the decoding rule (4.40) becomes

Φ̂ = arg max
Φ∈C

{R[tr(BHY2YH
1 )]}

= arg max
Φ∈C

{
R

(
tr

[(
s1 −s∗2
s2 s∗1

)H

·
(

y31 y32
y41 y42

)
·
(

y11 y12
y21 y22

)H
])}

= arg max
Φ∈C

{
R

[
tr

(
ε1s∗1 + ε2s∗2 , ε3s∗1 + ε4s∗2
ε2s1 − ε1s2, ε4s1 − ε3s2

)]}

= arg max
Φ∈C

{R (ε1s∗1 + ε2s∗2 + ε4s1 + ε3s2)} , (4.41)

where

ε1 = y11y31 + y21y32,
ε2 = y11y41 + y21y42,
ε3 = y12y31 + y22y32,
ε4 = y12y41 + y22y42.

From the above equation, we can see that the information symbols can be decoded
independently.

4.7 Examples and Simulation Results

Several distributed codes of the form (3.25) have been constructed. The performance
is compared with distributed differential codes, which are proposed in [25]. For larger
block lengths the non-coherent DSTCs slightly outperform the differential DSTCs.
For lower block lengths, the differential codes perform better. This is in part due to
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the hidden correlation between the elements of the matrix H in (4.8). Namely, the
elements of H are not exactly independently distributed, since they arise from the
product of the channel coefficients from the transmitter to the relays and the channel
coefficients from the relays to the receiver. The differential codes, in a way, estimate
the channel and compensate for this effect.

M=1, K=2 and N=2

Here we use the code designed in 4.5.1, and a recursive construction. In the first part
of transmission, we do not send the unnecessary zeros. That means we transmit the
signal as defined in (4.25) at the transmitter. The starting code B0 is an Alamouti code,
with s1, s2 ∈ QPSK. The other parameters are summarized in Tab. 4.1

α T1 T2 U η[b.p.c.u]
α0 = 0.9 3 4 - 0.5714
α0 = 0.9, 5 6 U0 −Alamouti 0.5455
α1 = 1.0 u1, u2 ∈ BPSK
α0 = 0.9, U0,U1 −Alamouti
α1 = 1.0 7 8 u1, u2 ∈ BPSK 0.5383
α2 = 1.1
α0 = 0.9,
α1 = 1.0 11 12 U0,U1,U2,U3 −Alamouti 0.5217

α2, α3 = 1.1 u1, u2 ∈ BPSK
α4 = 1.2

Table 4.1: Parameters of the distributed code based on the Alamouti code.

The simulation results are given in Fig. 4.1. We can see that for T1 = 11 and T2 = 12,
the performance of non-coherent DSTCs outperform the differential DSTCs, and at a
slightly higher transmission rate (0.522 bits/c.u. compared to 0.5 bits/c.u.).

M=1, K=4 and N=4

For this case, we use the code designed in 4.5.2, and the recursive procedure in-
troduced in 3.5. The starting code B0 is an Sp(2) code, with ε1, bκ1 ∈ QPSK and
ε2, κ2 ∈ 3PSK. The other parameters are summarized in Tab. 4.2

The simulation results are given in Fig. 4.2. Since finding a good bit-to-symbol
mapping in this case is not trivial, we compared the performance on block error
basis. For block lengths T1 = 9 and T2 = 12, the non-coherent codes outperform
the differential codes, at a slightly higher data rate (0.6829 bits/c.u. versus 0.6462
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DDSTC, M=1,R=2,N=2,T=2, rate=0.5 b.c.u
NDSTC, M=1,R=N=2,T1=3,T2=4, η=0.5714 b.c.u
NDSTC, M=1,R=N=2,T1=5,T2=6, η=0.5455 b.c.u
NDSTC, M=1,R=N=2,T1=7,T2=8, η=0.5383 b.c.u
NDSTC, M=1,R=N=2,T1=9,T2=10, η=0.5263 b.c.u

Figure 4.1: Comparison of non-coherent and differential distributed space-time
codes, M=1, K=2 and N=2.

α T1 T2 U η[b.p.c.u]
α0 = 0.8, U0 = Sp(2)
α1 = 1.0 9 12 ε1, κ1 ∈ QPSK 0.6829

ε2, κ2 ∈ 3PSK

Table 4.2: Parameters of distributed code based on the Sp(2) code.

bits/c.u.). With an appropriate bit-to-symbol mapping, the difference would be more
significant, since the non-coherent DSTCs have larger block lengths compared to the
differential DSTCs, and thus less bits on average will be in error.

M=2, K=2 and N=4

For this case, we use the code designed in 4.5.2, and the recursive procedure intro-
duced. The starting code B0 is an Sp(2) code with ε1, κ1 ∈ QPSK and ε2, κ2 ∈ 3PSK.
The other parameters are summarized in Tab. 4.3 The simulation results are given in
Fig. 4.2. For block lengths T1 = 10 and T2 = 12, the non-coherent codes outperform
the differential codes, at a higher data rate (0.6518 b.c.u versus 0.6462 b.c.u). Again,
the comparison is made on a block basis.
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4.8 Chapter Summary

α T1 T2 U η[b.p.c.u]
α0 = 0.8, U0 = Sp(2)
α1 = 1.0 10 12 ε1, κ1 ∈ QPSK 0.6518

ε2, κ2 ∈ 3PSK

Table 4.3: Parameters of the distributed code based on the Sp(2) code.

10 12 14 16 18 20 22
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Total System Power [dB]

B
lo

ck
 E

rr
or

 R
at

e

 

 

DDSTC, M=1,R=4,N=4,T=4, η=0.6462 b.c.u
NDSTC, M=1,R=4,N=4,T=12, η=0.6829 b.c.u
NDSTC, M=2,R=2,N=4,T=12, η=0.6518 b.c.u
NDSTC, M=2,R=2,N=4,T=4, η=0.6462 b.c.u

Figure 4.2: Comparison of non-coherent DSTCs and differential DSTCs, M=2, K=2,
N=4.

4.8 Chapter Summary

• We introduce non-coherent communication in one-way wireless relay networks,
where the relays and the receiver do not require channel information.

• The focus is on generalizing the concept of distributed space-time coding to the
non-coherent case.
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Distributed Non-Coherent Space-Time Coding in One-Way Relaying Networks

• The equivalent channel model between the transmitter and the receiver can be
written as

Y =

√
P1P2T2

(P1 + 1)M
ΦH + W,

• The distributed code constructed at the relays is given as

Φ =
(

Â1Φ̂ Â2Φ̂ · · · ÂKΦ̂
)

.

• The optimum power allocation for a given average system power P is

P1 = P2K ·
√

T2

T1
.

Codes Design

• The problem of non-coherent distributed space-time coding is the problem of
choosing suitable codes Φ̂ for the first part of the transmission as well as relay
matrices Âi to make the distributed space-time code to be a Grassmann code.

Φ =
(

cos α · IM
sin α · B

)
=

(
a · IM
b · B

)
.

where a = cos α and b = sin α.

• Construction where B comes from codes such as Alamouti, Sp(2) or recursive
Grassmann code.

4.8.1 Decoding

For the special case when B is a unitary matrix, we have

Φ̂ = arg max
Φ
{tr[(aY1 + bBHY2)(aYH

1 + bYH
2 B)]}

= arg max
Φ
{2ab ·R[tr(BHY2YH

1 )]}

If B is an Alamouti code, the decoding procedure can be made on symbol-by-symbol
basis.
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Chapter 5
Wireless Relay Networks: Non-Coherent
Two Way Relaying

IN this chapter we analyze the non-coherent two-way relay channel. We first derive
bounds on the achievable two-way rate in the high SNR regime. Additionally,
we derive the degree of freedom of this network and show that amplify-and-

forward is optimal in the high SNR regime. Besides the derivation of the bounds for
the achievable rate, we present two schemes which are appropriate for communica-
tion over the two-way relaying channel. The first scheme is a genuine non-coherent
scheme where the information is carried by subspaces. The second one is a differen-
tial scheme, where the information is carried by the difference between the transmit
matrices. Parts of this chapter were published in [64], [57], [58], [59], [50]

5.1 Introduction

The one-way relaying protocols suffer from a loss in spectral efficiency due to the
half-duplex constraint of the terminals. In order to increase the spectral efficiency of
such a relay network, a bi-directional (two-way) communication between two termi-
nals where the relay assists in the two-way communication was introduced in [39].
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5 Wireless Relay Networks: Non-Coherent Two Way Relaying

The connection between two-way relaying and network coding was established in
[35], where protocols for two-way (bi-directional) relaying based on network coding
on symbol level were introduced. The main idea is that the relays combine the infor-
mation from the terminals and broadcast it in the next stage. Each terminal then sub-
tracts its own contribution and decides about the signal transmitted from the other
terminal. The two-way relaying schemes promise throughput gain compared to one-
way relaying, by saving time slots in the broadcast stage.

The two-way channel was first studied by Shannon[43], where he found inner and
outer bounds on the capacity. In [39], the authors investigate the achievable two-way
rate for different relaying techniques in two-way wireless relay channels.

The schemes described in [39],[35] require channel knowledge at the terminals
and/or the relays. Here, we focus on two-way relaying without channel knowledge
requirements at the terminals and the relays. Note that an analysis where the relays
do not require channel knowledge is performed in [62]. However, the authors there
assume channel knowledge at the receivers.

First, we will derive bounds on the achievable two-way rate in the relay network.
The analysis is related to the capacity results for the point-to-point MIMO block
Rayleigh fading channel without channel knowledge assumption at the receiver (nei-
ther at the transmitter), derived in [65].

Second, we will present two schemes which are appropriate for communication
over the two-way relaying channel. The first one is a genuine non-coherent scheme,
where the information is carried by subspaces. The scheme is motivated by the con-
structions for the point-to-point channel. The second scheme is differential scheme,
where the information is carried by the difference between the transmit matrices.

5.2 System Model

We consider a wireless network with two terminals and K relay nodes (in parallel),
each equipped with M antennas, as shown in Fig. 5.1. It is important to make the
remark that in the two-way relaying setup we usually assume that the terminals have
the same number of antennas. This is due to the fact that both terminals exchange
information simultaneously and are symmetric in any aspect regarding transmission,
reception, decoding etc. We know that for a point-to-point channel, under the non-
coherent assumption, having different number of transmit and receive antennas does
not bring advantage in the high SNR regime. Additionally, it is also not useful to
built a distributed space-time code at the relays. We recall that in the distributed
space-time coding setup the relays effectively act as transmit antennas which support
the transmission and bring advantage from a diversity perspective. However, in that
case a receiver with N = MK receive antennas is required, which is not the case here.
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5.2 System Model

A more precise explanation will be given in the further text where we derive an upper
bound on the achievable two-way rate.

Figure 5.1: Two-way relay network

The terminals and the relays operate in a half-duplex mode, i.e. they do not trans-
mit and receive simultaneously. We assume block Rayleigh model where the channel
is constant in a certain time block. We denote by P1 and P2 the average transmit
power for one transmission of Terminal 1 and Terminal 2, respectively. With this, the
signal transmitted from Terminal 1 is

√
P1Φ and the signal transmitted from Terminal

2 is
√

P2Ψ. The matrix Φ is a T × M matrix normalized such that E[tr(ΦHΦ)] = T.
Accordingly, Ψ is a T × M matrix, normalized such that E[tr(ΨHΨ)] = T. The code-
books of Terminal 1 and Terminal 2 are denoted as C1 and C2, respectively. Further, we
denote the average power for one transmission for the relay k as γk and a power con-
straint for the total power of the K relays as ∑K

k=1 γk = PR. Additionally, we have the
constraint on the total network power, P1 + P2 + PR = Ptot. The total power constraint
serves for fair comparison in the case when the number of relays takes different val-
ues. It is important to note that under this assumption, the sum power of the relays,
PR, as well as the power of the terminals, P1 and P2, are always a fraction of the total
power Ptot.

Further, the channel matrix between Terminal 1 and the k-th relay (multicast stage)
is denoted as Hk and the channel between the relays and Terminal 1 in the broadcast
stage as H(r)

k . The channel matrix between Terminal 2 and the k-th relay is denoted

as Gk and the channel in the broadcast stage as G(r)
k . The channel matrices are as-

sumed to have entries which are i.i.d CN(0, 1). We make a notice that the notation
here slightly differs from the notation in the one-way relaying setup. In the one-way
relaying setup we use distributed space-time coding and therefore we adapted the
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5 Wireless Relay Networks: Non-Coherent Two Way Relaying

notation to the specifics of that scheme. Additionally, in the distributed space-time
coding setup we assumed that each relay has a single antenna. We showed that we
can do this without loss of generality. In the two-way relaying setup we do not as-
sume a distributed scheme and we also assume that the relays have multiple antennas
in general. However, when possible we will try to keep the same notation.

We will assume an AF (Amplify-and-Forward) scenario. It has not been proved that
the AF scheme is optimal in the non-coherent two-way relaying setup, however we
conjecture that the AF scheme exploits the degrees of freedom offered by the network.
We are going to show this later when we present the bounds on the achievable two-
way rate. In the AF scenario the relay k receives

Rk =
√

P1ΦHk +
√

P2ΨGk + Vk, (5.1)

where Vk is the noise contribution at the relay with entries which are i.i.d CN(0, σ2).
In the second step (broadcast stage) the relay k sends

√
γkTk =

√
γk

P1+P2+σ2 Rk, (5.2)

where a normalization is performed such that E[tr(TH
k Tk)] = T. The received signal

of Terminal 2 is given as
Y = ΦH′ + ΨG′ + W, (5.3)

where

H′ =
K

∑
k=1

√
P1γk

P1+P2+σ2 HkG(r)
k

G′ =
K

∑
k=1

√
P2γk

P1+P2+σ2 GkG(r)
k

W =
K

∑
k=1

√
γk

P1+P2+σ2 VkG(r)
k + Z, (5.4)

and noise matrix Z has i.i.d. CN(0, σ2) entries. To be consistent, throughout this
chapter we will use that the high SNR assumption is fulfilled when σ2 → 0.

For the received signal at Terminal 1 we have

U = ΦF′ + ΨE′ + N, (5.5)

where F′, E′ and N have the same form as in (5.4). In the following we will only
address the decoding at Terminal 2. Due to symmetry, the same conclusions will
hold for Terminal 1.
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5.3 Bounds on the achievable Two-Way Rate

5.3 Bounds on the achievable Two-Way Rate

Here we will derive bounds on the achievable two-way rate in the relay network. The
analysis is related to the capacity results for the point-to-point MIMO block Rayleigh
fading channel without channel knowledge assumption at the receiver (neither at
the transmitter), derived by Zheng and Tse in [65]. The non-coherent point-to-point
MIMO channel is the building block in the derivation of the capacity bounds of the
non-coherent two-way relaying channel. The high SNR capacity of this channel has
been derived in [65] and presented in Chapter 3.

5.3.1 Upper bound on the achievable two-way rate

Here we derive the upper bound on the achievable rates of our non-coherent two-way
channel. The upper bound can be obtained from the multiple access cut-set bound,
which in the case of the two-way relaying network gives

R12 ≤ 1
2

I(T1, . . . TK; Y), (5.6)

where I(Y; X) denotes the mutual information between X and Y. Similarly

R21 ≤ 1
2

I(T1, . . . TK; U). (5.7)

The factor 1
2 is due to the half-duplex constraint, i.e. the fact that the terminals trans-

mit one half of the time. The derivation of the upper bound is as follows. Let us recall
that the received signal Y is given as

Y =
K

∑
k=1

√
γkTkG(r)

k + Z, (5.8)

which can be rewritten as

Y = (
√

γ1T1
√

γ2T2 · · · √γKTK)




G(r)
1

G(r)
2
...

G(r)
K




+ Z, (5.9)

or equivalently
Y =

√
PRTG(r) + Z, (5.10)

where

T =

√
1

PR
(
√

γ1T1
√

γ2T2 · · · √γKTK) , (5.11)
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and

G(r) =




G(r)
1

G(r)
2
...

G(r)
K




. (5.12)

The power constraint is E[tr(THT)] = T and the elements of G(r) are i.i.d CN(0, 1).
The form in which the equation is written is the same as the system model for the

point-to-point MIMO block Rayleigh fading channel (2.1) with MK transmit and M
receive antennas and coherence time (block length) T. The high SNR capacity of this
channel has also been derived in [65]. Further, it has been shown that having more
transmit then receive antennas does not increase capacity in the case without channel
knowledge. Hence, as limit for the high SNR capacity of this channel we have the
case with M transmit and M receive antennas, which is given as

C = M
(

1− M
T

)
log2

PR

σ2 + c + o(1), (5.13)

where c is given by (2.4) and the term PR
σ2 plays the role of SNR. Hence, for the achiev-

able rate R12 we have

R12 ≤ M
2

(
1− M

T

)
log2

PR

σ2 +
1
2

c + o(1). (5.14)

Equivalently, for the rate R21 we have

R21 ≤ M
2

(
1− M

T

)
log2

PR

σ2 +
1
2

c + o(1). (5.15)

5.3.2 Lower Bound on the achievable Two-Way Rate

The derivation of the lower bound is more complicated, at least in the general case. In
the derivation we will assume that K → ∞. This assumption, as we will see facilitates
the derivation and is often used in the distributed space-time coding setup. Later we
will argue on how critical this assumption is in the derivation of the rate bounds and
the degrees of freedom.

We will take a gradual approach and discuss two different cases. In the first case
we assume that H(r)

k = HH
k and G(r)

k = GH
k , i.e. the channels in the broadcast and the

multicast stage are reciprocal. When the channels are reciprocal we will show that the
self-interference from the users can be ideally subtracted. The system model then is
equivalent to the point-to-point MIMO channel (2.1). In the second case we assume
independent channels in the multicast and the broadcast stage.
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Reciprocal channels

We remember that according to (5.3) the received signal at terminal 2 can be written
as

Y = ΦH′ + ΨG′ + W, (5.16)

where H′, G′ and W are given in (5.4).
We observe that when K → ∞, the entries of H′ and W are i.i.d Gaussian, h′i,j ∼

CN (0,P1) , ni,j ∼ CN
(
0, ν2), where P1 = P1PR

P1+P2+σ2 and ν2 = PRσ2

P1+P2+σ2 + σ2. We recall
that the matrix G′ is given as

G′ =
K

∑
k=1

√
P2γk

P1+P2+σ2 GkGH
k . (5.17)

Hence, from the law of large numbers we have

G′ → P2I, (5.18)

where P2 = P2PR
(P1+P2+σ2) . The system model can be rewritten as

Y =
√
P1ΦH +

√
P2ΨI + W, (5.19)

where for the elements of H and W we have hi,j ∼ CN (0, 1) , gi,j ∼ CN (0, 1) and
ni,j ∼ CN

(
0, ν2) In other words, when the channels are reciprocal (although un-

known), the self-interference is constant in the limit and can be subtracted from the
received signal. The signal after the subtraction of the self-interference is

Y′ =
√
P1ΦH + W. (5.20)

The high SNR capacity (b/s/Hz) of this channel is [65]

C = M
(

1− M
T

)
log2

P1

ν2 + c + o(1), (5.21)

where c is given by (2.4).
If we want to represent the capacity as a function of PR

σ2 , and thus directly compare
to the upper bound, we should have on mind the normalization

P1

ν2 =
PR

σ2
P1

P1 + P2 + PR + σ2 . (5.22)

With this for the achievable rate when AF is used as relaying strategy, we have

RAF
12 =

M
2

(
1− M

T

)
log2

PR

σ2 +
1
2

r12 + o(1), (5.23)
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where r12 = c + M
2

(
1− M

T
)

log2
P1

P1+P2+PR+σ2 . Equivalently

RAF
21 =

M
2

(
1− M

T

)
log2

PR

σ2 +
1
2

r21 + o(1), (5.24)

where r21 = c + M
2

(
1− M

T
)

log2
P2

P1+P2+PR+σ2 . The terms P1
P1+P2+PR+σ2 and P2

P1+P2+PR+σ2

are constant under the high SNR assumption σ2 → 0, and depend only on the power
distribution between the terminals and the relays. In general we have P1 = αPtot, P2 =
βPtot and PR = (1− α − β)Ptot, where Ptot = P1 + P2 + PR is the total power in the
network. It is easy to show that under the total power constraint, the sum rate is
maximized when P1 = P2 = PR

2 = P
4

Non-reciprocal channels

When the channels are non-reciprocal, the self interference can not be subtracted and
has to be taken into account in the derivation. We remember that the signal received
at Terminal 2 is

Y =
√
P1ΦH +

√
P2ΨG + W, (5.25)

where the distributions of the elements of H, G and W are i.i.d Gaussian with hi,j ∼
CN (0, 1) , gi,j ∼ CN (0, 1) and ni,j ∼ CN

(
0, ν2) Since terminal 2 knows Ψ, the mutual

information is
I(Y; Φ|Ψ) = h(Y|Ψ)− h(Y|Φ, Ψ). (5.26)

We observe that given Φ and Ψ, the column vectors yj, j = 1, . . . , M of Y are inde-
pendent Gaussian vectors with identical covariance matrix

R =P1ΦΦH + P2ΨΨH + ν2I. (5.27)

This follows directly from the fact that

yj =
M

∑
i=1

√
P1xihij +

M

∑
i=1

√
P2uigij + nj. (5.28)

The covariance matrix R can be rewritten as

R = P1ΦΦH + P2ΨΨH + ν2IT

= ΘΛΘH + ν2IT, (5.29)

where ΘΛΘH is a decomposition of P1ΦΦH + P2ΨΨH which includes the non-zero
eigenvalues, whose number is at most M. Here, we will assume that there are exactly
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M eigenvalues which are not zero. This, of course depends on the choice of the code-
books C1 and C2, but we will consider that the codebooks are chosen such that this is
fulfilled. Thus, Θ ∈ CT×M. The conditional entropy h(Y|Φ, Ψ) is given by

h(Y|Φ, Ψ) = ME
[
log2(πe)TdetR

]

= MT log2 πe + ME
[
log2 det(ΘΛΘH + ν2IT)

]
. (5.30)

From det(IT + AB) = det(IM + BA), where A ∈ CT×M, B ∈ CM×T, we have

det(ΘΛΘH + ν2IT) = ν2Tdet
(

1
ν2 ΘHΛΘ + IM

)

= ν2(T−M)
M

∏
i=1

(
λi + ν2

)
. (5.31)

After some rewriting, for the differential entropy we have

h(Y|Φ, Ψ) = ME

[
log2

M

∏
i=1

(λi + ν2)

]
+ M2 log2 πe

+ M(T − M) log2 πeν2, (5.32)

We recall that we have the following power constraint

E [tr (Λ)] ≤ (P1 + P2)T.

Hence, it holds

E

[
M

∏
i=1

(
λi + ν2

)]
≤

(
(P1 + P2)T + ν2

M

)M

, (5.33)

where the equality is achieved when all eigenvalues are equal. Thus, for the differen-
tial entropy we have

h(Y|Φ, Ψ) ≤ M2 log2

[
(P1 + P2)T + ν2

]
+ M2 log2

πe
M

+ M(T − M) log2 πeν2, (5.34)

The calculation of h(Y|Ψ) is more complicated. A bound can be obtained by condi-
tioning on G, since conditioning does not increase the entropy [8]

h(Y|Ψ) ≥ h(Y|Ψ, G) = h(Y′), (5.35)

89



5 Wireless Relay Networks: Non-Coherent Two Way Relaying

where
Y′ =

√
P1ΦH + W. (5.36)

Since we are interested in the high SNR region, we approximate h(Y′) ≈ h(
√P1ΦH).

The approximation is valid and was also performed in [65] in the high SNR capac-
ity derivation. We introduce Φ′ =

√P1Φ for the further derivation. We follow the
approach in [65] and introduce the coordinate change

Φ′H → (CΦ′H, ΩΦ′H), (5.37)

where CΦ′H ∈ C(M×M) and ΩΦ′H is the subspace that the columns of Φ′H span. Note
that Φ′H, ΦH and Φ span the same subspace ΩΦ. We observe that Φ′H is a random
matrix which is isotropically distributed (i.d.) in the subspace ΩΦ. From [65] we
know that for the i.d. random matrix Φ′H ∈ CT×M the differential entropy can be
calculated as

h(Φ′H) = h(CΦ′H) + log2 |G(T, M)|
+ (T − M)E

[
log2 det(Φ′HH

Φ′H)
]

. (5.38)

Additionally, the distribution of CΦ′H is the same as the distribution of QAH where
Q is a M× M unitary matrix and A = diag‖x′i‖, i = 1, 2, . . . , M is a M× M diagonal
matrix. With this, for the differential entropy h(Φ′H) we have

h(Φ′H) = h(CΦ′H) + log2 |GC
T,M|

+ (T − M)E
[
log2 det(HHΦ′HΦ′H)

]

= h(QAH) + log2 |GC
T,M|

+ (T − M)E
[
log2 det(A2)

]

+ (T − M)E
[
log2 det(HHH)

]
. (5.39)

We observe that
h(QAH) ≤ M2 log2 P1πeT, (5.40)

with equality achieved for Gaussian entries. Similarly,

E
[
log2 det(A2)

] ≤ log2

(P1T
M

)M

= M log2 P1 + M log2
T
M

, (5.41)
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with equality achieved when the diagonal entries of A are all equal. Finally, for the
differential entropy h(Φ′H) we obtain

h(Φ′H) ≤ log2 |GC
T,M|+ M2 log2 πeT

+ M(T − M) log2 P1 + M(T − M) log2
T
M

+ (T − M)E
[
log2 det(HHH)

]
. (5.42)

Hence, for the mutual information we have

I(Y, Φ|Ψ) ≈ h(Φ′H)− h(Y|Φ, Ψ)

≤ log2 |GC
T,M|+ M(T − M) log2

P1

ν2

+ M(T − M) log2
T

Mπe
+ (T − M)E

[
log2 det(HHH)

]

+ M2 log2 P1 − M2 log2(P1 + P2). (5.43)

With normalization over the blocklength T and having on mind the half-duplex con-
straints, for the achievable rate RAF

12 (in bits/channel use) we have

RAF
12 =

M
2

(
1− M

T

)
log2

P1

ν2 +
1
T

log2 |GC
T,M|

+
M
2

(
1− M

T

)
log2

T
Mπe

+
1
2

(
1− M

T

)
E

[
log2 det(HHH)

]

+
M2

2
log2 P1 − M2 log2(P1 + P2). (5.44)

We can rewrite the term as

RAF
12 =

M
2

(
1− M

T

)
log2

(
PR

σ2

)
+

1
2

r12 + o(1), (5.45)
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where

r12 =
M
2

(
1− M

T

)
log2

(
P1

P1 + P2 + PR + σ2

)

+
1
T

log2 |GC
T,M|+ M

(
1− M

T

)
log2

T
Mπe

+
(

1− M
T

)
E

[
log2 det(HHH)

]

+
M2

T
log2

( P1

P1 + P2

)
. (5.46)

Similarly,

RAF
21 =

M
2

(
1− M

T

)
log2

(
PR

σ2

)
+

1
2

r21 + o(1). (5.47)

Again, it is easy to show that under the total power constraint P1 + P2 + PR = Ptot,
the sum rate is maximized when P1 = P2 = PR

2 = Ptot
4 .

We see that at high SNR the lower and the upper bound in both cases (reciprocal
and non-reciprocal channels) differ only up to a constant. Further, the lower bound
was computed under the AF assumption. However, no AF assumption was made
for the calculation of the upper bound, which was only done based on the multiple
access cut-set bound. Hence, we can make two conclusions. First, the non-coherent
two-way relay channel achieves M(1 − M

T ) degrees of freedom in total (two-way),
although there is no channel knowledge at neither the relays nor at the transceivers.
Second, these degrees of freedom are achieved by an AF scheme.

5.3.3 Finite K

In this part we will discuss the role of the assumption K → ∞ in the derivation of
the bounds of the achievable rate. The assumption was used twice in the derivation.
First, it was critical in the Gaussian assumption for the equivalent noise term

W =
K

∑
k=1

√
γk

P1+P2+σ2 VkGH
k + Z, (5.48)

For finite K, this assumption is not true. Hence, the elements of the received matrix
Y|Φ, Ψ are not Gaussian. Nevertheless, the conditional entropy h(Y|Φ, Ψ) is upper
bounded by the entropy of a matrix with Gaussian entries (the Gaussian distribution
has the maximal differential entropy among the distributions with same first and
second moment). For the mutual information it means that

I(Y, Φ|Ψ) = h(Y|Ψ)− h(Y|Φ, Ψ)
≥ h(Y|Ψ)− h(YG|Φ, Ψ), (5.49)
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where h(YG|Φ, Ψ) is the entropy with Gaussian assumption for the effective noise at
the receiver. What remains is to address the influence of the finite K assumption on
the first term in the mutual information, h(Y|Ψ). We remember that we obtained a
lower bound on this term by taking the conditional entropy

h(Y|Ψ) ≥ h(Y|Ψ, G) = h(Y′), (5.50)

where
Y′ = ΦH′ + W. (5.51)

In the calculation of h(Y)′ ≈ h(ΦH′) we used the Gaussian assumption for the equiv-
alent channel

H′ =
K

∑
k=1

√
P1γk

P1+P2+σ2 HkG(r)
k .

Under this assumption, ΦH′ is isotropically distributed (i.d.) in the subspace ΩΦ and
this was used in the exact calculation of the achievable rate. Without the Gaussian
assumption, the derivation becomes intractable since it includes the distribution of
product of random matrices with Gaussian entries. In a simplified form we can see
this system as a system where the channel induces a certain correlation. Under these
circumstances the input distribution which maximizes the mutual information does
not have the form 5.41. Nevertheless, the achievable rate in this case will still differ
from the one with the Gaussian assumption within a constant. This is due to the fact
that the degrees of freedom available are still M(1− M

T ). The reason for this is that
the information- carrying object is still a random subspace ΩΦ, which is a random
point in the Grassmann manifold. Thus, the number of degrees of freedom is the
dimension of the set of all column spaces of T× M matrices, i.e. the dimension of the
Grassmann manifold GC

T,M which is exactly M(1− M
T ).

5.4 Codes for Genuine Non-Coherent Two-Way Relaying

A hint of how we can transmit information in the non-coherent setup comes from the
code constructions for the point-to-point MIMO non-coherent block fading channels.

We recall that the signal received at Terminal 2 can be written as

Y = Φ′H + Ψ′G + W. (5.52)

Before discussing the transmission strategy, let us see what the system model tells us
about the possible decoding of the signal Φ′ (or equivalently) Φ at Terminal 2. We
can see that apart from the desired signal, we have the term Ψ′G which is basically
the self-interference. However, due to the unknown channel matrix G we can not
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subtract this term from the received signal. The problem looks somewhat similar to
the known two-user interference channel. Nevertheless, there is a subtle difference:
Although we do not know the channel matrix G, we can use the knowledge of Ψ′ in
the decoding process.

5.4.1 Code Construction

We propose a code construction which is appropriate in the two-way relaying setup.
Note that the system model (5.5) can be written as

Y = P (
Φ′ Ψ′ ) (

H
G

)
+ W. (5.53)

Now, we can think of
(

Φ′ Ψ′ )
as an equivalent tranmit matrix and of

(
H
G

)
as an

equivalent channel. This is similar to the system model for the non-coherent MIMO
point-to-point block fading channel with 2M transmit, M receive antennas and co-
herence time T. We should note that T ≥ 4M is required in this context[65]. Let us
denote by ΩQ the 2M-dimensional subspace spanned by the columns of

(
Φ′ Ψ′ )

,
where the columns of Q represent an orthonormal basis for ΩQ, i.e. QHQ = I2M.
We denote by Q the codebook obtained by the above concatenation. The cardinality
of the codebook is |Q| = |C1||C2|. A 2M-dimensional subspace ΩQ collapses into a
M-dimensional subspace after the channel action. However, we can still perform the
decoding by looking for the most likely transmitted subspace, having the received
matrix Y, as in [31]

Q = arg max
Qi∈Q

‖YHQi‖2
F. (5.54)

Having ΩQ, we get the pair (Φ, Ψ). When looking for the most likely subspace ΩQ we
can use the fact that we know Ψ in advance, which limits the number of the subspaces
we have to search. If we compare (5.54) and (5.70) we can see that this is not the
ML decoding. However, we will show with the simulations that the difference is
negligible, when we compare the two decoding methods.

We can see that the performance of the code depends on the properties of the code-
bookQ, in the context of the well established criteria for construction of codes for the
non-coherent channel [31], such as chordal distance and diversity product. However,
the subtle difference (which makes the problem more difficult) is the fact that the
codewords of the codebook Q are obtained by concatenation of the transmit matrices
Φ and Ψ. The question is up to which degree the properties of a code obtained in this
way can be controlled.

In the following we propose a construction which in a way takes care of the specifics
of the coding problem. The codebooks C1 and C2 are not chosen independently, but
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rather as two “well separated” subsets of a larger codebook. This construction origi-
nates in [31] and [55] and represents an example of a code design for the non-coherent
channel with a certain structure. The codewords are given as

Φ =
(

cos(α1)AΦ
sin(α1)BΦ

)
(5.55)

Ψ =
(

cos(α2)AΨ
sin(α2)BΨ

)
, (5.56)

where AΦ = I T
2 ,M, AΨ = I⊥T

2 ,M
and BΦ, BΨ are codewords which belong to space-

time codes constructed for the known channel. In the following we give worked-out
examples of codes which are appropriate for the cases with one, respectively two
antennas

One Antenna case (M = 1)

The signal transmitted from Terminal 1 is a T × 1 vector φ. Similarly, Terminal 2
transmits a T × 1 vector ψ. For the case T = 4, codes for both terminals are

φ =




cos(α1)
0

sin(α1)φ1
sin(α1)φ2


 , ψ =




0
cos(α2)

sin(α2)ψ1
sin(α2)ψ2


 , (5.57)

with symbols from Terminal 1 φ1, φ2 ∈ QPSK, symbols from Terminal 2 ψ1, ψ2 ∈
QPSK. This construction is motivated from the non-coherent codes constructed in ??.

Two Antennas case (M = 2)

The signal transmitted from Terminal 1 is a T × 2 matrix Φ. Similarly, Terminal 2
transmits a T × 2 matrix Ψ. For case that T = 8, as in (5.55) and (5.56), AΦ = I4,2,
AΨ = I⊥4,2, BΦ, BΨ are

BΦ =




φ1 φ2
−φ∗2 φ∗1
−φ∗3 −φ∗4
φ4 −φ3


 BΨ =




ψ3 ψ4
−ψ∗4 ψ∗3
ψ∗1 ψ∗2
−ψ2 ψ1




with symbols from Terminal 1 φ1, φ2, φ3, φ4 ∈QPSK, symbols from Terminal 2 ψ1, ψ2, ψ3, ψ4 ∈
QPSK.
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The acquisition of the construction of BΦ and BΨ comes from the quasi-orthogonal
space-time block code introduced in [21]:

C =




c1 c2 c3 c4
−c∗2 c∗1 −c∗4 c∗3
−c∗3 −c∗4 c∗1 c∗2
c4 −c3 −c2 c1


 .

With different combinations of columns of C, variants of BΦ and BΨ can be ob-
tained. Let’s denote the above-mentioned BΦ and BΨ as BΦ(1,2) and BΨ(3,4). There are
also

BΦ(1,4) =




φ1 φ4
−φ∗2 φ∗3
−φ∗3 φ∗2
φ4 φ1


 BΨ(2,3) =




ψ2 ψ3
ψ∗1 −ψ∗4
−ψ∗4 ψ∗1
−ψ3 −ψ2




BΦ(1,3) =




φ1 φ3
−φ∗2 −φ∗4
−φ∗3 φ∗1
φ4 −φ2


 BΨ(2,4) =




ψ2 ψ4
ψ∗1 ψ∗3
−ψ∗4 ψ∗2
−ψ3 ψ1




5.4.2 Derivation of the ML-Decoding Rule

Here we derive the ML-decoding rule in the case of non-coherent two-way relaying.
The derivation is performed under the assumption K → ∞.

We observe that given Φ′ and Ψ′, the column vectors yj, j = 1, . . . , M of Y are
independent Gaussian vectors with identical covariance matrix

RΦ,Ψ =Φ′Φ′H + Ψ′Ψ′H + ν2IT. (5.58)

This follows directly from the fact that

yj =
M

∑
i=1

√
P1φihij +

M

∑
i=1

√
P2ψigij + nj. (5.59)

The pdf of each column vector is thus given as

pyj|Φ,Ψ(s) =
1

(2π)T/2
√

det RΦ,Ψ
exp

(
− 1

2
sHR−1

Φ,Ψs
)

, (5.60)
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where j = 1, . . . M. Regarding the ML-decoding, the joint pdf of the received matrix
Y is

pY|Φ,Ψ(S) =
M

∏
j=1

pyj|Φ,Ψ(s). (5.61)

We see that the pdf involves the inverse of the covariance matrix R−1
Φ,Ψ. We will

assume that the terminals use same power, P1 = P2 = P. Additionally, we will
assume that the terminals and the relays share the power, i.e. P = PR/2. It can be
shown that this is optimal in the non-coherent setup [59]. We introduce P = P1 = P2.
Thus the covariance matrix from (5.58) can be written as

RΦ,Ψ = P
(

ΦΦH + ΨΨH
)

+ ν2IT. (5.62)

We perform the following decomposition

ΦΦH + ΨΨH = ΘΛΘH, (5.63)

where Λ is a diagonal matrix containing the non-zero eigenvalues of ΦΦH + ΨΨH,
denoted as λj and the columns of Θ are the corresponding eigenvectors. The number
of non-zero eigenvalues depends on the codebooks C1 and C2 and is at most T. Thus,
the covariance matrix RΦ,Ψ can now be written as

RΦ,Ψ = ν2IT + PΘΛΘH. (5.64)

According to the matrix inversion lemma

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1. (5.65)

We denote A = ν2IT, B = Θ, D = ΘH and C = PΛ. Thus

R−1
Φ,Ψ =

IT

ν2 −
IT

ν2 Θ(
Λ−1

P + ΘH IT

ν2 Θ)−1ΘH IT

ν2

=
IT

ν2 −
1
ν2 Θ(

ν2Λ−1

P + ΘHΘ)−1ΘH (5.66)

Note that ΘHΘ = I. Then R−1
Φ,Ψ can be finally written as

R−1
Φ,Ψ =

IT

ν2 −ΘDΘH, (5.67)

where D is a diagonal matrix with elements djj = Pλj
ν2(ν2+Pλj)

on its diagonal.

Note that Ψ is constant in the decoding, since this is the self-interference. In order to
simplify the expressions, in the following text we will use the notation Rk to denote
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the covariance matrix associated with the codeword Φk ∈ C1. Hence, for the ML
decoding rule we have

Φ̂ = arg max pY|Φk,Ψ(S). (5.68)

By inserting (5.60) into the decoding rule, we get

Φ̂ = arg max
Φk∈χ

{
M

∏
j=1

pyj|Φk,Ψ

}

= arg max
Φk∈χ

{(
1√

(2π)T det(Rk)

)M M

∏
j=1

exp
(
−

yH
j R−1

k yj

2

)}

= arg min
Φk∈χ

{
M ln (det (Rk)) +

M

∑
j=1

yH
j R−1

k yj
}

= arg min
Φk∈χ

{
M ln (det (Rk)) + tr

(
YHR−1

k Y
)}

. (5.69)

Now we insert R−1
k into the decoding rule in (5.69), and we get

Φ̂ = arg min
Φk∈χ

{
M ln (det (Rk)) + tr

(
YH

(
IT

ν2 −ΘkDkΘH
k

)
Y

) }

= arg min
Φk∈χ

{
M ln (det (Rk))− tr

(
YHΘkDkΘH

k Y
)}

= arg min
Φk∈χ

{
M ln (det (Rk))− ‖YHΘkD

1
2
k ‖2

F

}
(5.70)

5.4.3 Examples and Simulation Results

Here we present the simulation results for the cases with M = 1 and M = 2 antennas.
For both cases we assume that the terminals and the relays share the power, P1 =
P2 = PR/2, under the total power constraint P = P1 + P2 + PR. The first aim is to
investigate the effect of the subspace decoding compared with the ML-decoding. The
second aim is to compare the performance of two-way and one-way relaying under
the non-coherent assumption. However, one has to be carefull when comparing non-
coherent one-way and two-way relaying schemes. As discussed in Chapter 4, the
distributed space-time coding schemes for one-way relaying assume that the receiver
has N = MK antennas. In the case of two-way relaying we already argued that,
due to the symmetry we can not assume that the terminals use different number
of antennas. However, for a fair comparison, we have to fix the number of receive
antennas in the one-way relaying protocol to M.
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M = 1, T = 4

First, we present a comparison of the performances of the ML decoding rule given by
(5.70) and the proposed decoding achieved by searching for the most likely subspace
as in (5.54). It is shown in Fig. 5.2 that the ML decoding rule and the decoding based
on subspaces yield nearly identical performance. Additionally, we observe the influ-
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Figure 5.2: Performance comparison for 2 decoding methods of one antennas case
(M = 1)

ence of the number of relays in the network on the performance. When the number
of relays K grows, the noise W is more white. Moreover, the channel matrices H and
G are also becoming more Gaussian, since the correlation induced by the channel
multiplication is reduced. We fix the total power throughout the simulations. And
in the representation of the results we use the power of the terminals P1 = P2 = PR

2 .
As expected, Fig. 5.2 shows the performance is better with an increase of number of
relays. For number of relays K > 4, the advantage of more relays is not apparent any
more. For example, there is only a slight difference between the performance when
K = 4 and K = 8.

In order to support the statement that the two-way relaying is spectral efficient, we
compare the performances of the non-coherent two-way relaying scheme proposed
in this paper and a non-coherent one-way relaying scheme, normalized to have the
same effective rate. For our simulations, we choose the symbols in the signal trans-
mitted by Terminal 1 φ, φ1, φ2 from a QPSK constellation. The same holds for the
signal ψ transmitted by Terminal 2, ψ1, ψ2 ∈ QPSK. Since the coherence time is T = 4,
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the effective rate is 0.5 bit/c.u. for each user, which gives η = 1 bits/c.u. in total for
the two users. For the free parameters α1 and α2 in the code construction which serve
to separate the codebooks C1 and C2 such that the new codebook Q has well distin-
guishable codewords, we use α1 = α2 = π

4 , which provides the best performance
according to the simulations. In the case of one-way relaying scheme, we take the
code construction as in (3.9)

C =




akIM
bkak−1Sk

...
bk · · · b2a1S2 × · · · × Sk

bk · · · b1a0S1 × S2 × · · · × Sk
bk · · · b1b0S0 × S1 × S2 × · · · × Sk




,

where scalars a0, a1, . . . , ak and b0, b1, . . . , bk satisfy ai = cos αi and bi = sin αi, S0, S1, . . . , Sk
are M× M unitary matrices. This ensures that the effective rate is the same as in the
case of the two-way relaying scheme. Additionally, the coherence time T is also kept
the same for a fair comparison. Hence, for M = 1, the transmit signal φ of each
terminal is

φ =




a2
b2a1s2

b2b1a0s1s2
b2b1b0s0s1s2




with s0 ∈ 16PSK, s1, s2 ∈ QPSK, a0 = a1 = a2 = cos(π
4 ) and b0 = b1 = b2 = sin(π

4 ).
Fig. 5.3 shows that the non-coherent two-way relaying outperforms the non-coherent
one-way relaying, when the effective rate in the network is kept constant.

M = 2, T = 8

For the simulations of two antennas case, the same analysis has been performed. The
results in terms of BER curve are given in Fig. 5.4 and Fig. 5.5. Same conclusions as
those of the one antenna case can be drawn.

In the case of two-way relaying, for the signal transmitted by Terminal 1 Φ, we
choose the symbols φ1, φ2, φ3, φ4 from a QPSK constellation. The same holds for the
signal Ψ, transmitted by Terminal 2, ψ1, ψ2, ψ3, ψ4 ∈QPSK. Since the coherence time is
T = 8, the sum rate is η = 1 bit/c.u. for the two users. We choose α1 = α2 = π

4 . In the
simulation of the one-way relaying scheme, we use the code construction introduced
in (3.9), with the same effective rate η = 1 bits/c.u. and the same coherent time,
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Figure 5.3: Performance comparison for non-coherent two-way relaying scheme and
non-coherent one-way relaying scheme (M = 1)

T = 8. The code construction is as follows

C =




a2I2
b2a1S2

b2b1a0S1S2
b2b1b0S0S1S2




where S0, S1, S2 are taken from a 2 × 2 Alamouti code [2]. The symbols in S0 are
from a 16PSK constellation, the symbols in S1 and S2 from a QPSK constellation. The
scaling factors are chosen such that a0 = a1 = a2 = cos(π

4 ) and b0 = b1 = b2 =
sin(π

4 ).

5.5 Differential Scheme for Two-Way Relaying

In the following we present a differential scheme for the two-way relaying setup.
The differential transmission does not require channel knowledge at the terminals
and at the relays. However, one has to be carefull when speaking about differential
and non-coherent transmission. We should have in mind that the system model for
the differential scheme differs from the block fading model we use. To be correct,
the differential scheme assumes that the channel is constant in any two consecutive
time blocks, which obviously means that the channel should be constant for the du-
ration of the entire transmission process. However, if the channel is constant for a
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Figure 5.4: Performance comparison for 2 decoding methods of two antennas case
(M = 2)

fixed block of duration T (coherence time), then the differential scheme should be
reinitialized. Another way around this assumption is the introduction of the slowly
changing channel, as given in [20]. Here, we will perform the simulations under this
assumption.

A differential scheme for the one-way relaying channel was developed by Jing and
Hassibi in [25] and also employed in [27]. Although here we follow a similar frame-
work, the fact that the signals from the terminals are added at the relays makes the
problem of differential coding for two way-relaying specific. Namely, without having
the knowledge of the channel coefficients, it is difficult (if at all possible) for each ter-
minal to completely subtract its own contribution from the signal broadcasted from
the relays. In this sense, the differential scheme will differ from the usual differential
scheme for distributed space time coding in one-way (uni-directional) relaying. Thus,
we have to handle the problem in a way which allows for recursive representation of
the system equations, necessary for differential transmission to take place.

The exchange protocol we consider has two stages. The first stage is a multicast
stage when the terminals send their signals to the relays. In the second stage the re-
lays broadcast, after performing some processing. The two terminals, knowing what
they sent, can decide on the received data from the other terminal by subtracting
their own contribution from the signal broadcasted by the relays. The multicast and
the broadcast stage save time slots compared to the case where the information ex-
change between the terminals requires four stages, two for each direction. This leads
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Figure 5.5: Performance comparison for non-coherent two-way relaying scheme and
non-coherent one-way relaying scheme (M = 2)

to increased throughput in the wireless network. If instead of throughput we like to
gain reliability, we can fix the throughput to be the same in both protocols. In the
two-stage protocol this will allow for using alphabets of lower cardinality at the ter-
minals compared to the four-stage protocol. Here we propose an idea of applying
the distributed differential scheme to two-way relaying. The aim is to represent the
transmission in a way which allows for differential encoding and decoding of the
information. For that, we first start with a four-stage initialization phase. After the
initialization of the protocol, begins the data transmission phase where the informa-
tion exchange is performed in two stages.

5.5.1 System Model

We use the same system model (5.3) as in Section 5.2, with the difference that we have
time dependence due to the differential assumption. Therefore, for all signals we
have additional notation which denotes the time block when the transmission takes
place. We denote the signal transmitted by T1 in time block n as S(n) and the signal
transmitted by T2 as D(n). We normalize the transmitted signals as E[tr(S(n)HS(n))] =
T and E[tr(D(n)HD(n))] = T. Further, we denote the channel between T1 and the k-th
relay as H(n)

k and the channel between T2 and the k-th relay as G(n)
k . Additionally,

we denote the reverse channels as H(n,r)
k and G(n,r)

k respectively. Additionally, when
we address the received signals at the relays and at the terminals, we will make a
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distinction between the parts of the signal which arise from T1 and T2, by using the
scripts s and d respectively.

5.5.2 Initialization of the Protocol

In the analysis performed here, without loss of generality, we will observe the signal
that T2 receives. For the received signal of T1 holds the same analysis, due to the
symmetry of the network.

The initialization of the protocol requires four stages. In the first stage T1 transmits
an initialization matrix S(0) = IM, which gives the following relay receive vectors

R(0)
s,k =

√
P1TS(0)H(0)

k +
√

P2TV(0)
s,k k = 1, 2, . . . , K. (5.71)

In the second stage, the relays broadcast to both terminals. The k-th relay broadcasts
the vector

T(0)
s,k =

√
P3

P1+1 AkR(0)
s,k , k = 1, 2, . . . , L, (5.72)

and

T(0)
s,k =

√
P3

P1+1 AkR∗(0)
s,k , k = L + 1, . . . , K. (5.73)

Hence, T2’s received signal which results from T1’s transmitted signal is

Y(0)
s =

√
P1P3T
P1+1 Φ(0)H(0) + W(0)

s (5.74)

where

Φ(0) =
(

A1S(0) . . . ALS(0) AL+1S∗(0) . . . ARS∗(0)
)

H(0) =
K

∑
k=1

H(0)
k G(0,r)

k

W(0)
s =

√
P3

P1+1

L

∑
k=1

AkV(0)
s,k G(0,r)

k +
R

∑
k=L+1

AkV∗(0)
s,k G(0,r)

k + Z(0)
s . (5.75)

The same initialization is performed by T2. In the third stage, T2 sends its initialization
vector to the relays. In the fourth stage the relays broadcast to both terminals. The
received signal at T2 which results from T2’s transmitted signal is given as

Y(0)
d =

√
P2P3T
P2+1 Ψ(0)G(0) + W(0)

d , (5.76)

104



5.5 Differential Scheme for Two-Way Relaying

where

Ψ(0) =
(

A1D(0) . . . ALD(0) AL+1D∗(0) . . . ARD∗(0)
)

G(0) =
K

∑
k=1

G(0)
k G(0,r)

k

W(0)
d =

√
P3

P1+1

L

∑
k=1

AkV(0)
d,k G(0,r)

k +
R

∑
k=L+1

AkV∗(0)
d,k G(0,r)

k + Z(0)
d . (5.77)

At the end of the initialization phase, T1 has received the signals Y(0)
s,T1

and Y(0)
d,T1

and

T2 the signals Y(0)
s,T2

and Y(0)
d,T2

respectively. These signals implicitly contain channel
information which is needed for the differential transmission in the data transmission
stage.

5.5.3 Data Transmission Phase

After the initialization stage, a two-stage exchange model is applied. In the multicast
stage both terminals transmit simultaneously to the relays. The relays perform linear
processing of the received sum of both signals, and broadcast in the second stage.
The relays received vectors in the first multicast stage are given by

R(1)
k =

√
P1TS(1)H(1)

k + D(1)G(1)
k + V(1)

k . (5.78)

In the broadcast stage the relays transmit vectors which are linear combinations of
the received signals

T(1)
k =

√
P3

P1+P2+1 AkR(1)
k , k = 1, 2, . . . , L (5.79)

or

T(1)
k =

√
P3

P1+P2+1 AkR∗(1)
k , k = L + 1, . . . , R. (5.80)

The signal received by T2 is

Y1 =
√

P1P3T
P1+P2+1 Φ(1)H(1) +

√
P2P3T

P1+P2+1 Ψ(1)G(1) + W(1), (5.81)

105



5 Wireless Relay Networks: Non-Coherent Two Way Relaying

where

Φ(1) =
(

A1S(1) . . . ALS(1) AL+1S∗(1) . . . ARS∗(1)
)

H(1) =
K

∑
k=1

H(1)
k G(1,r)

k

Ψ(1) =
(

A1D(1) . . . ALD(1) AL+1D∗(1) . . . ARD∗(1)
)

G(1) =
K

∑
k=1

G(1)
k G(1,r)

k

W(1) =
√

P3
P1+P2+1

(
L

∑
k=1

AkV(1)
d,1 G(1,r)

k +
R

∑
k=L+1

AkV∗(1)
d,k G(1,r)

k

)
+ Z(1)

d . (5.82)

We assume that the channel is slow changing, so we can write H(1) = H(0), H(1,r) =
H(0,r), G(1) = G(0)and G(1,r) = G(0,r). Also, we assume that in general we encode the
data of both terminals into scaled unitary matrices, as proposed in [27]. The transmit
vectors are given as

S(1) = 1
a(0) U(1)S(0) and D(1) = 1

b(0) V(1)D(0). (5.83)

One of the requirements for differential distributed space-time codes is that the relay
matrices commute with the matrices of the sets U and V[25]

AkUi = UiAk, ∀Ui ∈ U , k = 1, . . . , L
AkU∗

i = UiAk, ∀Ui ∈ U , k = L + 1, . . . , K, (5.84)

and

AiVk = VkAi, ∀Vk ∈ V , i = 1, . . . , L
AiV∗

k = VkAi, ∀Vk ∈ V , i = L + 1, . . . , K. (5.85)

The received signal at T2 is then

Y1 =
√

P1P3T
P1+P2+1

1
a(0) U(1)Φ(0)H(0) +

√
P2P3T

P1+P2+1
1

b(0) V(1)Ψ(0)G(0) + W(1)

=
√

P1+1
P1+P2+1

1
a(0) U(1)(Y(0)

s −W(0)
s ) +

√
P2+1

P1+P2+1
1

b(0) V(1)(Y(0)
d −W(0)

d ) + W(1)

=
√

P1+1
P1+P2+1

1
a(0) U(1)Y(0)

s +
√

P1+1
P1+P2+1

1
b(0) V(1)Y(0)

d + W̃(1), (5.86)

where

W̃(1) = −
( √

P1+1
P1+P2+1

1
a(0) U(1)W(0)

s +
√

P2+1
P1+P2+1

1
b(0) V(1)W(0)

d

)
+ W(1).
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We observe that T2 already knows V(1). Hence, it can decide for U(1) based on

Û(1) = arg min
U(1)∈U

∥∥∥∥Y1 −
√

P1+1
P1+P2+1

1
a(0) U(1)Y0

s −
√

P2+1
P1+P2+1

1
b(0) V(1)Y(0)

d

∥∥∥∥
2

F
. (5.87)

After obtaining Û(1), T2 can obtain an estimate of the noise W̃(1) as

ˆ̃W(1) = Y1 −
√

P1+1
P1+P2+1

(
1

a(0) Û(1)Y0
s − 1

b(0) V(1)Y(0)
d

)
. (5.88)

In order to be able to proceed with the differential transmission, we need a repre-
sentation of the received information signal (contribution from T1) as a function of the
previous information signal. Additionally, we want that T2 subtracts its own contri-
bution to the received signal. The difficulty arises from the fact that both signals are
added at the relays in the multicast stage and without channel knowledge it seems
difficult (if at all possible) for T2 to completely subtract its contribution to the received
signal.

We propose a possible solution in the following way. First, we divide the expression
5.86 in two parts containing the contributions from each terminal

Y1 = Y(1)
s + Y(1)

d . (5.89)

Please note that this representation is virtual, since we can not separate the contribu-
tions from the two terminals due to the fact that the signals are added at the relays-
However, we can substitute the contributions Y(1)

s and Y(1)
d with their estimates Ŷ(1)

s

and Ŷ(1)
d respectively

Y1 = Ŷ(1)
s + ŷ(1)

d , (5.90)

where the estimates are given by

Ŷ(1)
s =

√
P1+1

P1+P2+1
1

a(0) Û(1)Y(0)
s +

ˆ̃W(1)

2

Ŷ(1)
d =

√
P1+1

P1+P2+1
1

b(0) V(1)Y(0)
d +

ˆ̃W(1)

2
, (5.91)

Therefore, the estimated noise is shared among the two vectors Ŷ(1)
s and Ŷ(1)

d . These
two vectors will be used during the second time block for differential decoding.

We can continue in the same way we described above. At time block n the signal
recived at T2 is given by

Y(n) =
√

P1P3T
P1+P2+1 Φ(n)H(n) +

√
P2P3T

P1+P2+1 Ψ(n)G(n) + W(n), (5.92)
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where Φ(n), H(n), Ψ(n) and G(n) are given as in (5.82). The general recursive system
equation for the received signal at T2 is given by

Yn =
√

P1+1
P1+P2+1

1
a(n−1) U(n)Ŷ(n−1)

s +
√

P2+1
P1+P2+1

1
b(n−1) V(n)Ŷ(n−1)

d + W̃(n), (5.93)

where

Ŷ(n−1)
s =

√
P1+1

P1+P2+1
1

â(n−2) Û(n−1)Ŷ(n−2)
s +

ˆ̃W(n−1)

2

Ŷ(n−1)
d =

√
P2+1

P1+P2+1
1

b̂(n−2) V(n−1)Ŷ(n−2)
d +

ˆ̃W(n−1)

2
. (5.94)

and

W̃(n) = −
( √

P1+1
P1+P2+1

1
a(n−1) U(n)W(n−1)

s +
√

P2+1
P1+P2+1

1
b(n−1)

V(n)W(n−1)
d

)
+ W(n).

(5.95)
The decoding rule is then

Û(n) = arg min
U(n)∈U

∥∥∥∥Yn −
√

P1+1
P1+P2+1

1
a(n−1) U(n)Ŷ(n−1)

s −
√

P2+1
P1+P2+1

1
b(n−1) V(n)Ŷ(n−1)

d

∥∥∥∥
2

F
.

(5.96)

5.5.4 Power Allocation

The representation of the received signal at T2 in the form (5.93 makes the problem
of optimal power allocation similar to the one in distributed differential space-time
coding for one-way relaying [24], with the difference that we have the two-way relay
channel. According to the analysis in [9], [24], if we can assume that we can separate
the signals originating from the two terminals, after subtracting its own contribution,
each terminal sees a one-way relay channel. Thus, following the analogy in [25], [9],
[24], the optimal power allocation gives P1 = P2 = P3R/2, i.e. the terminals and
the relays share the available power in the network. Please note that if we represent
the two-way relay channel as two one-way relay channels, the relays are active in
both phases of the transmission and the terminals only in one, which explains the
factor of 1/2. The simulations we performed with power allocations different from
the one discussed here support this observation and are in favor of the equal power
allocation.

5.5.5 Codes for Differential Two-Way Relaying

As differential DSTCs which are applicable for two-way relaying we can use the usual
codes for differential distributed space time coding. They should have the following
characteristics
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• All codewords are scaled unitary matrices respecting the transmit power con-
straint.

• There exist R unitary matrices A1, A2, . . . , AK of size T × T such that the first L
of them satisfy AkC = CAk, k = 1, . . . , L, ∀C ∈ C and the remaining K − L of
them satisfy AkC∗ = CAk, k = L + 1, . . . , R, ∀C ∈ C.

• There exists an initial matrix S(0) such that the matrix

Φ(0) = (A1S(0) A2S(0) . . . ALS(0) AL+1S(0)∗ AKS(0)∗) (5.97)

is unitary.

Codes which satisfy this conditions have been studied in the literature. We will di-
vide them in two major groups, unitary and scaled unitary codes. In the first group
we find the Alamouti code [2], Sp(2) codes [23], the circulant codes introduced in [25],
etc. The scaled unitary codes were introduced in [27]. The choice of appropriate codes
is not the main topic here, but we will summarize some of the codes appropriate as
distributed differential codes for two-way relaying and used in our simulations.
Unitary codes - When the distributed differential STCs codes are unitary, we set the
scaling factors a(n), b(n) = 1. In this group we find the Alamouti code [2], Sp(2)
codes, the circulant codes introduced in [25], etc.
Scaled unitary codes - Distributed differential space-time codes with low decoding
complexity (group decodable), based on scaled unitary codes are introduced in [27].
The codes are based on DSTCs from extended Clifford algebras developed in [38]
for coherent collocated MIMO communication. The design for 4 transmit antennas is
given as

C =




u1 u2 −u∗3 −u∗4
u2 u1 −u∗4 −u∗3
u3 u4 u∗1 u∗2
u4 u3 u∗2 u∗1


 . (5.98)

and the design for larger number of transmit antennas can also be easily constructed.
The signal set is chosen as in [38].

5.5.6 Examples and Simulation Results

In this section, we simulate the performance of the proposed distributed differential
scheme and compare it with the performance of a 4-time slots (one-way relaying)
distributed differential scheme. As a horizontal reference in the shown figures, we
use the total power used in one time slot for a one-way transmission. The noises are
assumed to be independent complex Gaussian random variables with mean zero and
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variance one. As for the channel, we used a GSM channel model with a symbol sam-
pling period of Ts = 3.693µs and a maximum Doppler shift of 75 Hz. This ensures a
slowly changing channel and allows the assumption of a constant channel over two
consecutive time blocks. Fig. 5.6depicts the performance of the differential scheme
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Figure 5.6: Performance of the distributed differential scheme in a network with two
relays

using 4 and 2 time slots protocols in a network with two relays. For that, we fixed the
transmission rates by choosing our information symbols from a 16-PSK constellation
for the 4 time slots protocol, and from a 4-PSK constellation for the 2 time slots pro-
tocol. This insures a fixed one-way transmission rate of 1 bit/cu, and allows for a fair
reliability comparison. Furthermore, we used the Alamouti space-time code as a uni-
tary matrix in which we embedded the information symbols. As shown in the figure,
the 2 time slots protocol outperforms the 4 time slots one by approximately 4dB. In
Fig. 5.7, the same simulations have been extended to a network with four relays. The
Sp(2) space-time code was used as a unitary matrix to carry the information symbols.
Also, we fixed the one-way bitrate to 2.56 bit/cu in order to fairly compare the per-
formance of the schemes. For that, we chose P = 5 and Q = 7 for the 4 time slots
protocol, and P = 2 and Q = 3 for the 2 time slots protocol. In the middle SNR re-
gion, the 2 time slots protocol outperforms the 4 time slots protocol by approximately
2dB. However, as we can see, in the high SNR region, there is an effect of error floor.
We suspect that the reason behind this is the way in which we separate the signals
at the receiver in order to write the differential system equation and be able to detect
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Figure 5.7: Performance of the distributed differential scheme in a network with four
relays

the signals in a differential way. As we mentioned before, the main difficulty arises
from the fact that without channel knowledge it is difficult to completely avoid the
self interference. Another reason might be that the effective channel matrices H and
G are products of two channel matrices, and thus not Gaussian matrices any more.
Additionally, the entries in the matrices H and G are not statistically independent,
which we think attributes to the performance.

5.6 Chapter Summary

Two-Way Relaying

• The two-way relaying schemes promise throughput gain compared to one-way
relaying, by saving time slots in the multicast and the broadcast stage.

Bounds on the achievable two-way rate in the relay network

Upper bound on the achievable rates in the non-coherent MIMO two-way channel

R12 ≤ M
2

(
1− M

T

)
log2

PR

σ2 +
1
2

c + o(1).
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R21 ≤ M
2

(
1− M

T

)
log2

PR

σ2 +
1
2

c + o(1).

Lower bound on the achievable rates

RAF
12 =

M
2

(
1− M

T

)
log2

(
PR

σ2

)
+

1
2

r12 + o(1).

RAF
21 =

M
2

(
1− M

T

)
log2

(
PR

σ2

)
+

1
2

r21 + o(1).

• At high SNR the lower and the upper bound in both cases (reciprocal and non-
reciprocal channels) differ only up to a constant.

• The non-coherent two-way relay channel achieves M(1− M
T ) degrees of free-

dom, although there is no channel knowledge at neither the relays nor at the
transceivers. Second, these degrees of freedom are achieved by an AF scheme.

Codes for genuine non-coherent two-way relaying

• The received signal is given as

Y = Φ′H + Ψ′G + W

Derivation of the ML-Decoding Rule

Φ̂ = arg min
Φk∈χ

{
M ln (det (Rk))− ‖YHΘkD

1
2
k ‖2

F

}
.

Code Construction

• The codebooks C1 and C2 are not chosen independently, but rather as two “well
separated” subsets of a larger codebook. The codewords are given as

Φ =
(

cos(α1)AΦ
sin(α1)BΦ

)

Ψ =
(

cos(α2)AΨ
sin(α2)BΨ

)
.

• We perform the decoding by looking for the most likely transmitted subspace,
having the received matrix Y, as in [31]

Q = arg max
Qi∈Q

‖YHQi‖2
F
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Differential scheme

• The general recursive system equation for the received signal at T2 is given by

Y(n) =
√

P1+1
P1+P2+1

1
a(n−1) U(n)Ŷ(n−1)

s +
√

P2+1
P1+P2+1

1
b(n−1) V(n)Ŷ(n−1)

d + w̃(n),

where

Ŷ(n−1)
s =

√
P1+1

P1+P2+1
1

â(n−2) Û(n−1)Ŷ(n−2)
s + ˆ̃w(n−1)

2

Ŷ(n−1)
d =

√
P2+1

P1+P2+1
1

b̂(n−2) V(n−1)Ŷ(n−2)
d + ˆ̃w(n−1)

2 .
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Conclusions and Future Work

IN this thesis we addressed the problem of non-coherent transmission in block
Rayleigh fading channels. We focused on two communication systems. The first
system is the point-to-point MIMO channel without channel knowledge assump-

tion at the transmitter and the receiver. The second system is the wireless network
with relays and no direct links between the terminals.

The problem of non-coherent space-time coding can be given a geometric inter-
pretation as constrained packing problem in Grassmann manifolds. The geometric
interpretation shads new light on the code construction problem and brings intuition
to the problem of understanding the fundamental limits of the communication sys-
tems.

In this work we concentrated mostly on presenting novel code constructions for
the two systems we mentioned. Additionally, for the two-way relaying channel we
presented fundamental bounds on the achievable two-way rates.

In Chapter 1 we presented the necessary preliminaries for understanding the prob-
lem of space-time coding in general. We introduced the Rayleigh fading and dis-
cussed the specifics of slowly fading channels. The concept of diversity was further
discussed. We also presented the block fading model which is used throughout the
thesis and gave introduction to multiple antenna channels and space-time coding.

In Chapter 2 we introduced the problem of non-coherent communication over
block fading channels. We introduced the concept of coordinate change and ex-
plained the geometric interpretation of the coding problem in detail. We also gave
the necessary introduction to the geometry of Grassmann manifolds. We focused on
the differentiable structure of the Grassmann manifold which provided the basis for
the code constructions presented in the next chapters.

In Chapter 3 we presented novel constructions of codes for the non-coherent chan-
nel based on the geometric interpretation. The constructions are based on mapping
from the tangent space to the manifold based on the exponential map. The first con-
struction relies on mapping unitary codes for the coherent channel from the tangent
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space to the manifold. This yields codes of special block structure which can be used
in the decoding. Additionally, we showed that the codes obtained in this way pre-
serve some of the properties of the coherent codes such as the diversity product. The
second construction is based on the observation that non-coherent codes can be ob-
tained from coherent codes and vice versa. This leads to a recursive construction
with block length increasing in each step of the construction. The codes obtained in
this way benefit from the large block length and have good properties in terms of
diversity and coding gain. The third code construction relies on lattice constructions
in the tangent space. It can be shown that some special lattices such as the Gosset,
Barnes-Wall and Leech lattice provide Grassmann codes for systems of practical rele-
vance. The dense packing properties of these lattices yield superior performance and
allow for simplified decoding. In order to improve the diversity product of the codes,
additionally a lattice rotation is performed. The last construction is based on the ob-
servation that the Grassmann manifold is a U(T) homogeneous space, which is a
generalization of spherical symmetry. We propose a construction from a special high-
dimensional code originally developed for vector quantization of multi-dimensional
Gaussian sources.

In Chapter 4 and Chapter 5 we addressed the problem of non-coherent transmis-
sion in wireless relay networks. We focused on one-way and two-way relaying proto-
cols with half-duplex constraints on the terminals. For the one-way relaying network
we presented novel distributed space-time codes based on Grassmann codes for the
non-coherent point-to-point MIMO channel. The codes are based on codes designed
for the coherent channel, such as the Alamouti, Sp(2) and quasi-orthogonal codes.
For the two-way relaying channel we first introduced the concept of non-coherent
communication, showing that non-coherent communication is possible, although no
channel knowledge is present at neither the terminals nor at the relays. Further, we
presented bounds on the achievable two-way rate in the non-coherent setup. We
showed that the upper and the lower bound meet in the high SNR regime and dif-
fer from the capacity within a constant. As a byproduct we derived the degrees of
freedom of the two-way network and showed that amplify-and-forward is optimal
strategy in the non-coherent setup. Motivated from the results, we presented two
communication schemes. The first one was a differential scheme which extends over
the known differential schemes for one-way relaying and adapts to the specifics of
the two-way channel. The second scheme we introduced is a genuine non-coherent
scheme, designed for the block channel model. Again, the scheme is based on the
constructions designed for the non-coherent point-to-point MIMO channel. As im-
portant conclusion, we showed that the codebooks of the terminals should be chosen
jointly and in a way which allows for eliminating of the self interference and success-
ful decoding of the received signal.

The geometric approach looks promising for construction of codes for non-coherent
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communication over block fading point-to-point channels and wireless relay net-
works. In this work we touched some of the topics where the geometric approach
offers possible solutions. When it comes to the most general problem of derivation
of the fundamental limits of wireless networks, the geometric approach can also offer
additional advantage. In principle, there is a more general approach which arises
from the geometrical interpretation of some fundamental concepts in information
theory. As example we have the Fisher information which is a way of measuring
the amount of information that an observable random variable X carries about an
unknown parameter θ. In the case of N unknown parameters, the Fisher information
takes a form of an N × N matrix. The Fisher information matrix is a N × N positive
semidefinite symmetric matrix, defining a Riemannian metric on the N-dimensional
parameter space, thus connecting Fisher information to differential geometry. In that
context, this metric is known as the Fisher information metric (or Fisher-Rao metric),
and the topic is called information geometry. Information geometry can be viewed
as an equivalent description of information theory, where the algebraic concepts are
given a geometric flavor.

When it comes to the derivation of the fundamental limits of wireless networks,
some results from statistical physics can also be used in the development of the ge-
ometric framework and the capacity characterization. Wireless networks are funda-
mentally physical systems, governed by the laws of physics. If a communication sys-
tem with many degrees of freedom (in time, space, and/or frequency) is modeled as
a thermodynamic system, the Shannon capacity is a statistical phase transition point,
beyond which arbitrarily low error probability is impossible. Statistical physics of-
fers a number of modeling tools for dealing with non-equilibrium systems and large
quantities of random variables. In all of the different disciplines where phase transi-
tions play a role, models are characterized by certain sets of parameters. The space
of such parameters can be endowed with a metric and geometrical structure. Actu-
ally, the geometric connection is given through the Fisher information. For such a
metric a scalar curvature can be calculated. The scalar curvature plays a central role
in any attempt to look at phase transitions from a geometrical perspective. For all
the models that have been considered so far, the curvature diverges at (and only at)
a phase transition point for physical ranges of the parameter values. This gives an
indirect connection between the capacity characterization of wireless networks and
differential geometry. The connection arises, on one side, due to the interpretation of
the capacity as statistical phase transition point, and on other side, from the study of
phase transitions in the context of parameter statistics.

Besides the full capacity characterization, capacity approximations may be the key
to understanding the performance limits of wireless networks. Promising recent ven-
ture in this direction include the degrees of freedom approach. Interference alignment
is one technique which is based on the degrees of freedom approach and is used for
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the famous K user interference channel. It refers to the idea of constructing signals
in such a way that they cast overlapping shadows over one half of the signal space
observed by each receiver where they constitute interference, leaving the other half
of the signal space free of interference for the desired signal. However, closed form
solutions have only been found in certain cases. It is shown that by using long symbol
extension the degrees of freedom achieved per dimension approach arbitrarily close
to the theoretical outerbound, thereby establishing the degrees of freedom of time-
varying interference and X networks. However, the extent to which interference can
be aligned over a limited number of dimensions remains an open problem. As a con-
sequence, the maximum number of degrees of freedom that can be achieved through
alignment of interference signal vectors is not known in general, i.e. the feasibility
of interference alignment over a limited number of signalling dimensions is an open
problem. We conjecture that the problem of feasibility of interference alignment has
a geometric counterpart as a packing problem with certain metric. The geometric
frameworks is expected to give a better insight in the feasibility of interference align-
ment in some particular cases.

As already mentioned, all results which come from the geometric approach can also
be obtained by algebraic means. However, the geometric approach brings additional
intuition to the problem and very often offers a more natural interpretation of the
results. Therefore, we believe that the geometric approach can be a powerful mean
for the understanding and the description of complex wireless networks.
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Appendix A
Mathematical Derivations

A.1 Geometry and Algebra Preliminaries

Here we present the preliminaries necessary to understand the structure of Grass-
mann manifolds. The definitions mainly follow [6] and [10].

A.1.1 Manifolds, Differentiable Manifolds

The formal definition of a manifold requires introduction of the term topological space
and topological basis. Formally, a topological space is a set X together with a collection
of open subsets T that satisfies the conditions:

• The empty set ∅ is in T ,

• X is in T ,

• the intersection of a finite number of sets in T is also in T ,

• the union of an arbitrary number of sets in T is also in T .

A topological basis is a subset B of a set T in which all other open sets can be written
as unions or finite intersections of B.
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A manifold is then a topological space which is second countable (has a countable
topological basis) and is locally Euclidean, i.e. every point on the manifold has a
neighborhood which is topologically equivalent (homeomorphic) to an open ball in
Rn. In this case the manifold is said to have a dimension n.

Metric can be defined on sets and hence on manifolds. Metric is a nonnegative
function g(x, y) describing the ”distance” between neighboring points for a given set.
A metric satisfies the triangle inequality

g(x, y) + g(y, z) > g(x, z) (A.1)

and is symmetric, so g(x, y) = g(y, x). A metric also satisfies g(x, x) = 0, as well as
the condition that g(x, y) = 0 implies x = y;

A coordinate chart is a way of expressing the points of a small neighborhood of a
manifold M as coordinates in Euclidean space. Technically, it is a map φ : U → V
where U is an open set in M, V is an open set in Rn, where n is the dimension of the
manifold. The map φ must be one-to-one, and in fact must be a homeomorphism. If
there are two neighborhoods U1 and U2 with coordinate charts φ1 and φ2, the transi-
tion function φ◦2 φ−1

1 is well defined since coordinate charts are one-to-one.
An atlas is a collection of consistent coordinate charts on a manifold, where ”consis-

tent” most commonly means that the transition functions of the charts are smooth. As
the name suggests, an atlas corresponds to a collection of maps, each of which shows
a piece of a manifold and looks like flat Euclidean space. To use an atlas, one needs
to know how the maps overlap. To be useful, the maps must not be too different on
these overlapping areas. The overlapping maps from one chart to another are called
transition functions. They represent the transition from one chart’s point of view to
that of another. Let the open unit ball in Rn be denoted B1. Then if φ : U → B1
and ψ : V → B1 are two coordinate charts, the composition φ ◦ ψ( − 1) is a func-
tion defined on ψ(U ∩ V). That is, it is a function from an open subset of B1 to B1,
and given such a function from Rn to Rn, there are conditions for it to be smooth or
have k smooth derivatives (i.e., it is a C-k function). A smooth atlas has transition
functions that are C-infty smooth (i.e., infinitely differentiable). The consequence is
that a smooth function on one chart is smooth in any other chart (by the chain rule for
higher derivatives). Similarly, one could have an atlas in class Ck, where the transition
functions are in class C-k.

A manifold can be given a differentiable structure locally by using the homeo-
morphisms in its atlas, combined with the standard differentiable structure on the
Euclidean space. In other words, the homeomorphism can be used to give a local
coordinate system. To induce a global differentiable structure, the compositions of
the homeomorphisms on overlaps between charts in the atlas must be differentiable
functions on Euclidean space. In other words, where the domains of charts overlap,
the coordinates defined by each chart are required to be differentiable with respect to
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the coordinates defined by every other chart. These maps that relate the coordinates
defined by the various charts to each other in areas of intersection are called transition
maps.

A differentiable manifold is formally a manifold with a globally defined differen-
tiable structure. The manifolds of interest here are differentiable and the notion of
differentiability will be exploited later in the construction and analysis of codes in
the manifolds. Every differentiable (smooth) manifold M has a tangent bundle TM,
which consists of the tangent space TPM at all points P in M. Since a tangent space
TPM is the set of all tangent vectors to M at P, the tangent bundle is the collection of
all tangent vectors, along with the information of the point to which they are tangent

TM = (P, v) : P ∈ M, v ∈ TPM. (A.2)

In Riemannian geometry, a Riemannian manifold (M, g) (with Riemannian metric
g) is a differentiable manifold M in which each tangent space is equipped with an
inner product g in a manner which varies smoothly from point to point. This allows
one to define various notions such as angles, lengths of curves, areas (or volumes),
curvature, gradients of functions and divergence of vector fields. In other words, a
Riemannian manifold is a differentiable manifold in which the tangent space at each
point is a finite-dimensional Hilbert space.

A.1.2 Groups, Lie Groups

A group G is a finite or infinite set of elements together with a binary operation *
(called the group operation) that together satisfy the properties of closure, associativ-
ity, the identity property, and the inverse property, defined as:

• Closure: If A and B are two elements in G, then A ∗ B is also in G.

• Associativity: ∀ A, B, C ∈ G, (A ∗ B) ∗ C = A ∗ (B ∗ C).

• Identity: There is an identity element such that I ∗ A = A ∗ I = A, ∀A ∈ G.

• Inverse: There is an inverse of each element, i.e. ∀A ∈ G, ∃B = A−1 ∈ G such
that A ∗ A−1 = A−1 ∗ A = I.

A subgroup is a subset H of group elements of a group G that satisfies the group
requirements.

Lie group is a group which is also a differentiable manifold, i.e. satisfies the condi-
tion that the group operation(s) is(are) differentiable. Due to the differential structure,
a tangent space can be constructed at every element of the Lie group. Intuitively, the
tangent space at a point is the plane tangent to the submanifold at that point. For
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d-dimensional manifolds, this plane is a d-dimensional vector space with origin at
the point of tangency. The normal space is the orthogonal complement. The tangent
space at the identity of a Lie group has the structure of a Lie algebra. More formally, a
Lie algebra is a nonasociative algebra, i.e a vector space g over a field F with a binary
operation. The binary operation is the Lie bracket which satisfies:

• Bilinearity: [ax + by, z] = a[x, z] + b[y, z], [z, ax + by] = a[z, x] + b[z, y] for all
scalars a, b in F and all elements x, y, z in g.

• Anticommutativity, or skew-symmetry: [x, y] = −[y, x] for all elements x, y in g.
When F is a field of characteristic two, one has to impose the stronger condition
[x, x] = 0 for all x in g.

• The Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z in g.

A.1.3 Exponential Map

The Lie algebra determines the local structure of the Lie group via the exponential map.
The exponential map is a map from the Lie algebra g to the Lie group G

exp : g→ G (A.3)

given by exp(X) = γ(1) where γ : R → G is the unique one-parameter subgroup
of G whose tangent vector at the identity is equal to X. It follows easily from the
chain rule that exp(tX) = γ(t). The map γ may be constructed as the integral curve
of either the right- or left-invariant vector field associated with X. That the integral
curve exists for all real parameters follows by right- or left-translating the solution
near zero.

The exponential map exp : g → G is a smooth map. Its derivative at the identity,
exp∗ : g → g, is the identity map (with the usual identifications). The exponential
map, therefore, restricts to a diffeomorphism from some neighborhood of 0 in g to a
neighborhood of 1 in G.

In Riemannian geometry, the exponential map is a map from a subset of the tangent
space at a point P of a Riemannian manifold M, TPM, to M itself. For a vector v ∈
TPM, there is a unique geodesic γv satisfying γv(0) = P such that the tangent vector
γ′v(0) = v. Then the corresponding exponential map is defined by expP(v) = γv(1).
In general, the exponential map really is only locally defined, that is, it only takes a
small neighborhood of the origin at TPM, to a neighborhood of P in the manifold (this
is simply due to the fact that it relies on the theorem on existence and uniqueness of
ODEs which is local in nature).
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If G is a matrix Lie group, then the exponential map coincides with the matrix
exponential and is given by the ordinary series expansion:

exp X =
∞

∑
k=0

Xk

k!
= I + X +

1
2

X2 +
1
6

X3 + · · · . (A.4)

A.2 Introduction to the Geometry of Stiefel and
Grassmann Manifolds

A.2.1 The Unitary Group U(T)

The unitary group U(T) is the group of unitary matrices

U(T) := {Q ∈ CT×T|QHQ = IT}, (A.5)

where IT is the T × T identity matrix. The unitary group U(T) is a compact (closed
and bounded) Lie group and thus a differentiable manifold of dimension T2.

An equation defining tangents to the unitary group at a point Q is easily obtained
by differentiating QHQ = IT, yielding

QH∆ + ∆HQ = 0, (A.6)

i.e., QH∆ is skew-hermitian. This condition imposes T + T(T− 1) = T2 constraints on
the matrix, or equivalently, the vector space of all tangent vectors at Q has dimension
(real) 2T2 − T2 = T2. This is expected, since the dimension of the tangent space has
to coincide with the dimension of the unitary group U(T).

Since the Lie algebra of the unitary group, u(T), represents the tangent space at the
identity element Q = IT, it consists of skew-hermittian matrices

u(T) := {∆ ∈ CT×T|∆ = −∆H}. (A.7)

A.2.2 Stiefel Manifolds

The (complex) Stiefel manifold VC
M,T is the set of M orthonormal vectors in CT

VC
M,T := {Φ ∈ CT×M|ΦHΦ = IM}. (A.8)

The unitary group U(T) acts transitively on VC
M,T, i.e. transforms elements of VC

M,T
into each other. The isotropy group (subgroup of U(T) which fixes elements of VC

M,T)
consists of matrices of the form

H =
(

IM 0
0 U(M)

)
. (A.9)
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Transitive group action implies that there is only one group orbit, so VC
M,T is isomor-

phic to the quotient space U(T)/H, which justifies the coset representation

VC
M,T � U(T)/

(
IM 0
0 U(T− M)

)
. (A.10)

With this, the Stiefel manifold VC
M,T carries the structure of a U(T)-homogeneous

space. Each element of the Stiefel manifold VC
M,T is thus an equivalent class of the

unitary group U(T), i.e. a subset of unitary matrices whose first M columns are the
same.

Let h ⊂ u(T) be the Lie algebra of H ⊂ U(T). Then h consists of matrices of the
form

X′ =
(

0 0
0 C

)
, C ∈ u(T − M) (A.11)

u(T) can thus be decomposed into a ”vertical” and ”horizontal” tangent space, u(T) =
h ∪ h⊥. Tangents of VC

M,T at IT,M are provided by the horizontal space, h⊥ and have
the form

X =
(

A −BH

B 0

)
, A ∈ u(M), B ∈ C(T−M)×M. (A.12)

With this identification, VC
M,T is U(T)-normal homogeneous.

A canonical distance measure/metric rV can be defined on VC
M,T by using the space

of tangents at the identity. For Ω = exp(X) · IT,M, rV(Ω, IT,M) = 1√
2
‖X‖F. For

Φ, Ψ ∈ VC
M,T, rV(Φ, Ψ)=rV(Ψ̃−1Φ, IT,M), because a left multiplication by an unitary

matrix is an isometric transformation.
A topological (”chordal”) metric on the Stiefel manifold VC

M,T can be defined from
the canonical embedding of VC

M,T in the vector space (CT×M, 〈·, ·〉)

dV(Φ, Ψ) = ‖Φ−Ψ‖F. (A.13)

A.2.3 Grassmann Manifolds

The (complex) Grassmann manifold GC
nT ,T is the set of all nT-dimensional linear sub-

spaces of CT. Having introduced the Stiefel manifold, the (complex) Grassmann man-
ifold is formally defined as

GC
M,T := {〈Φ〉|Φ ∈ VC

M,T}. (A.14)

In order to distinguish between an element of the Grassmann manifold and the par-
ticular matrix representation, the notation 〈Φ〉 should be used to denote the element
(subspace) of the Grassmann manifold spanned by the columns of Φ.
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The unitary group U(T) acts transitively on GC
M,T with isotropy group

H =
(

U(M) 0
0 U(T− M)

)
. (A.15)

Each element of the Grassmann manifold can be considered as an equivalent class of
the Unitary group U(T), i.e. the subset of unitary matrices whose columns span the
same subspace. This is equivalent to the coset representation

GC
M,T � U(T)/

(
U(M) 0

0 U(T − M)

)
. (A.16)

The Lie algebra h of the isotropy group H ⊂ U(T) consists of matrices of the form

X′ =
(

A 0
0 C

)
, A ∈ u(M), C ∈ u(T − M) (A.17)

u(T) can thus be decomposed into a vertical and horizontal tangent space, u(T) =
h∪ h⊥. Tangents of GC

M,T at IT,M are provided by the ”horizontal” space, h⊥ and have
the form

X =
(

0 −BH

B 0

)
, A ∈ u(nT), B ∈ C(T−M)×M. (A.18)

With this identification, GC
M,T is U(T)-normal homogeneous.

A canonical distance measure/metric rG can be defined on GC
M,T by using the space

of tangents at the identity. For 〈Ω〉 = 〈exp(X) · IT,M〉,

rG(Ω〉, 〈IT,M >) =
1√

2
‖X‖F. (A.19)

For 〈Φ〉, 〈Ψ〉 ∈ GC
M,T, rG(〈Φ〉, 〈Ψ〉)=rG(〈Ψ̃−1Φ, 〈IT,M〉), because a left multiplica-

tion by an unitary matrix is an isometric transformation (GC
M,T is U(T)-normal homo-

geneous).
There is an embedding of the Grassmann manifold GC

M,T in Euclidean space which
is a result of associating elements of the Grassmann manifold with their projection
matrices. For 〈Phi〉 ∈ GC

M,T, there is an associate orthogonal projection map from CT

to 〈Φ〉.
PΦ := ΦΦH, : CT → 〈Φ〉. (A.20)

PΦ is idempotent and hermittian and tr(PΦ) = M. Thus PΦ lies in a space of real
dimension T2 − 1. Additionally, ‖PΦ − T

M IT‖F =
√

M(T − M)/T which justifies the
embedding

GC
M,T → ST2−2(

√
M(T − M)/T) ⊂ RT2−1 , 〈Φ〉 → PΦ − T

M
IT. (A.21)
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This justifies the definition of a topological ”chordal” metric on the Grassmann man-
ifold

dG(〈Φ〉, 〈Ψ〉) =
1√

2
‖PΦ − PΨ‖F (A.22)

A.2.4 Parametrization of Stiefel and Grassmann Manifolds

The exponential map provides connection between the tangent space at the identity
IT,nT and the Grassmann manifold, [6]. Elements of the Grassmann manifold are
obtained as [10]

Φ = exp(X) · IT,M ∈ GC
M,T. (A.23)

The exponential map is, however, computationally inefficient. Fortunately, the rep-
resentation of the tangents in the form (equation tangents), provides efficient compu-
tation of the exponential map. Given the tangent (equation tangents), the thin singu-
lar value decomposition of B, B ∈ C(T−M)×M, reads [16], [10]

B = VΣWH , (A.24)

where V ∈ C(T−M)×M and has orthonormal columns, Σ is the matrix of singular
values of B in decreasing order, and W ∈ U(M). If we denote Φ = exp(X)IM,T, it can
be shown that [16], [10]

Φ =
(

WCWH

VSWH

)
, (A.25)

where C = cos(Σ) and S = sin(Σ).

A.3 Proof of Optimum Power Allocation

According to (4.15), the PEP is up-bounded (when R is large) by:

P(Φ, Ψ) ≤ 1
2

det
[
IM′ + $(IM′ − ∆H∆)

]−N
,

which is minimized when

$ =
(ρ T2

M′ )2

4(1 + ρ T2
M′ )

, (A.26)

is maximized.

According to the system model

X =

√
P1P2T2

(P1 + 1)M
ΦH + W,
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where

W =




√
P2T2

(P1+1)T1
∑R

i=1 gi1Âiv̂i + w1
...√

P2T2
(P1+1)T1

∑R
i=1 giNÂiv̂i + wN




T

,

The average signal to noise ratio at each antenna is calculated as

ρ =
P1P2T2
P1+1 · R

P2T2
(P1+1)T1

· T1R + T2

=
P1P2R

P2R + P1 + 1
.

Therefore $ becomes

$ =
(ρ T2

M′ )2

4(1 + ρ T2
M′ )

=
(ρ T2

MR )2

4(1 + ρ T2
MR )

=
ρ2T2

2
4M2R2 + 4ρT2MR

=
T2

2
4MR

· ρ2

MR + ρT2

=
T2

2
4MR

·
P2

1 P2
2 R2

(P2R+P1+1)2

MR + P1P2R
P2R+P1+1 · T2

=
T2

2
4MR

· P2
1 P2

2 R
[P2R + P1 + 1][(P2R + P1 + 1)M + P1P2T2]

. (A.27)

Assume P2 = αP1, according to the power condition

P =
P1T1

T1 + T2
+ R

P2T2

T1 + T2
.

we get

P1 =
T1 + T2

T1 + αR · T2
P, P2 =

α(T1 + T2)
T1 + αR · T2

P. (A.28)

(A.27) becomes

$ =
T2

2 · P
4MR

·
(

T1+T2
T1+αRT2

)4 · α2R
[

αR(T1+T2)
T1+αRT2

+ T1+T2
T1+αRT2

+ 1
P

] [(
αR(T1+T2)
T1+αRT2

+ T1+T2
T1+αRT2

+ 1
P

)
· M

P + (T1+T2)2

(T1+αRT2)2 · αT2

] .
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When P is large, the equation can be simplified

$ =
T2

2 · P
4MR

·
(

T1+T2
T1+αRT2

)4 · α2R
[

αR(T1+T2)
T1+αRT2

+ T1+T2
T1+αRT2

]
· (T1+T2)2

(T1+αRT2)2 · αT2

=
T2 · P
4M

· α(T1 + T2)
(αR + 1)(T1 + αRT2)

.

When $′ = 0, and $′′ < 0, $ is maximized

$′ =
∂$

∂α
=

T2P(T1 + T2)
4M(αR + 1)2(T1 + αRT2)2 · (T1 − α2R2T2) = 0

⇒ α =

√
T1

T2
· 1

R
(A.29)

Under this condition, we get

$′′ =
∂2$

∂α2 = − T2P(T1 + T2)
2M · (αR + 1)3(T1 + αRT2)3 ·

(
2RT1T2

√
T1

T2
+ RT1(T1 + T2)

)
< 0

According to A.28 and A.29 we get:

P1 =
T1 + T2

T1 +
√

T1T2
P, P2 =

T1 + T2

(T2 +
√

T1T2)R
P (A.30)

A.4 Product of Two Alamouti Codes

Let B1 and B2 be two Alamouti codes,

B1 =
(

s1 −s∗2
s2 s∗1

)
,B2 =

(
u1 −u∗2
u2 u∗1

)
.

The Product of the two codes can be written as:

B = B1 ×B2 =
(

s1 −s∗2
s2 s∗1

)
·
(

u1 −u∗2
u2 u∗1

)

=
(

s1u1 − s∗2u2 −s1u∗2 − s∗2u∗1
s∗1u2 + s2u1 s∗1u∗1 − s2u∗2

)
. (A.31)

If we denote ω1 = s1u1 − s∗2u2, and ω2 = s∗1u2 + s2u1, (A.31) can be written as:

B = B1 ×B2 =
(

ω1 −ω∗
2

ω2 ω∗
1

)
.

So, the product of the two Alamouti codes is still an Alamouti code.
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A.5 Product of Two Sp(2) Codes

Let B1 and B2 be two Sp(2) codes,

B1 =




s1 −s∗2 −s∗3 s4
s2 s∗1 −s∗4 −s3
s3 −s∗4 s∗1 −s2
s4 s∗3 s∗2 s1


 ,

B2 =




u1 −u∗2 −u∗3 u4
u2 u∗1 −u∗4 −u3
u3 −u∗4 u∗1 −u2
u4 u∗3 u∗2 u1


 ,

where si, ui (i = 1, 2, 3, 4) are in the form of (4.29).
The product of the two code can be written as:

B = B1 ×B2 =




s1 −s∗2 −s∗3 s4
s2 s∗1 −s∗4 −s3
s3 −s∗4 s∗1 −s2
s4 s∗3 s∗2 s1


 ·




u1 −u∗2 −u∗3 u4
u2 u∗1 −u∗4 −u3
u3 −u∗4 u∗1 −u2
u4 u∗3 u∗2 u1




=




ω1 −ω∗
2 −ω∗

3 ω4
ω2 ω∗

1 −ω∗
4 −ω3

ω3 −ω∗
4 ω∗

1 −ω2
ω4 ω∗

3 ω∗
2 ω1


 ,

where

ω1 = s1u1 − s∗2u2 − s∗3u4 + s4u4,
ω2 = s2u1 + s∗1u2 − s∗4u4 + s3u4,
ω3 = s3u1 − s∗4u2 + s∗1u4 + s2u4,
ω4 = s4u1 + s∗3u2 + s∗2u4 + s1u4.

So, the product of two Sp(2) codes is still an Sp(2) code.
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Appendix B
Notation and Abbreviations

Notation
i Imaginary unit,

√
j = −1.

(·)∗ Complex conjugate.
(·)H Complex conjugate transposition.
(·)T Transposition.
arg{·} Argument of a function.
arg max

x
f (x) Denotes value of x that maximizes f (x).

E [·] Expected value.
=(·) Imaginary part of a complex value.
max{·, ·} Maximum of two values.
min{·, ·} Minimum of two values.
p(·) Probability density function.
<(·) Real part of a complex value.
R Set of real numbers.

List of Abbreviations
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B Notation and Abbreviations

AF Amplify-and-Forward
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BLER Block Error Rate
BPSK Binary Phase Shift Keying
CN(m, σ2) Complex Gaussian distribution with m mean and σ2 variance
DF Decode-and-Forward
DPSK Differential Phase-Shift Keying
DSTC Distributed Space-Time Coding
LD Linear Dispersion
MAC Medium Access Control
MIMO Multiple Input Multiple Output
ML Maximum-Likelihood
ML Maximum Likelihood
OFDM Orthogonal Frequency Division Multiplexing
PAM Pulse Amplitude Modulation
PEP Pairwise Error Probability
PSK Phase-Shift Keying
SNR Signal-to-Noise Ratio
STBC Space-Time Block Code
STBCs Space-Time Block Codes
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
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