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Abstract

Quantum gravity is an attempt to unify general relativity with quantum mechanics which
are the two highly successful fundamental theories of theoretical physics. The main diffi-
culty in this unification arises from the fact that, while general relativity describes gravity
as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena.
As a further complication, not only do both theories describe different scales but also their
philosophical ramifications and the mathematics used to describe them differ in a dramatic
way. Consequently, one possible starting point of an attempt at a unification is quantum
mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been
chosen by particle physicists which led to string theory. On the other hand, loop quantum
gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity
seriously and quantizes geometry.

The first part of this thesis deals with a generalization of loop quantum cosmology
(LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein’s
field equations using tools from LQG. First the general concepts of closed topologies is
introduced with special emphasis on Thurston’s theorem and its consequences. It will be
shown that new degrees of freedom called Teichmüller parameters come into play and their
dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal
universe will be presented and discussed. Following the guidlines of LQG this dynamics will
be rewritten using the Ashtekar variables and numerical solutions will be shown. However,
in order to find a suitable Hilbert space a canonical transformation must be performed.
On the other hand this transformation makes the quantization of geometrical quantities
less tractable such that two different ways will be presented. It will be shown that in both
cases the spectrum of such geometrical operators depends on the initial value problem.
Furthermore, we will succeed in solving the quantum Gauss constraint.

In the second part of the thesis we will introduce some aspects of phenomenological
quantum gravity and their possible detectable signatures. The goal of phenomenological
quantum gravity is to derive conclusions and make predictions from expected characteristics
of a full theory of quantum gravity. One possibility is an energy-dependent speed of light
arising from a quantized space such that the propagation time of two photons differs.
However, the amount of these corrections is very small such that only cosmological distances
can be considered. Gamma-ray bursts (GRB) are ideal candidates as they are short but
very luminous bursts of gamma-rays taking place at distances billions of light-years away.
We shall study GRBs detected by the European satellite INTEGRAL and develop a new
method to analyze unbinned data. A χ2-test will provide a lower bound for quantum gravity
corrections, which will be nevertheless well below the Planck mass. Then we shall study the
sensibility of NASA’s new satellite Fermi Gamma-ray Space Telescope and conclude that
it is well suited to detect corrections. This prediction has just been confirmed when Fermi
detected a very energetic photon emanating from GRB 090510 which highly constrains
models with linear corrections to the speed of light. However, as will be shown at the end
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of this thesis, more bursts are needed in order to definitely falsify such models.
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Zusammenfassung

Der Schwerpunkt der vorliegenden Arbeit liegt im Bereich der Quantengravitation. Das Ziel
der Quantengravitation ist, die beiden grossen physikalischen Theorien des 20. Jahrhun-
derts, nämlich die Quantentheorie und die allgemeine Relativitätstheorie, zu vereinigen.
Während die allgemeine Relativitätstheorie die Gravitation und somit die makroskopische
Welt beschreibt, kümmert sich die Quantentheorie um Vorgänge im atomaren und sub-
atomaren Bereich. Da sich beide Theorien sowohl mathematisch als auch physikalisch und
philosophisch stark unterscheiden, ist es trotz der Vielfalt der Ansätze bis jetzt noch nicht
gelungen, eine vollständige Quantengravitationstheorie zu finden. Zum Beispiel startet die
String-Theorie mit der Annahme, dass die Quantenmechanik bzw. Teilchenphysik funda-
mentaler ist, und versucht, die Gravitationskraft in diesem Rahmen zu behandeln. Auf
der anderen Seite liegt die Schleifenquantengravitation (loop quantum gravity), welche die
Deutung der Gravitation als gekrümmte Geometrie ernst nimmt und diese zu quantisieren
versucht.

Im ersten Teil dieser Arbeit wird die Schleifenquantenkosmologie auf toroidale Topolo-
gien erweitert. Die Schleifenquantenkosmologie ist eine Quantisierung homogener Lösung-
en der Einsteinschen Feldgleichungen mit den Methoden der Schleifenquantengravitation.
Als Erstes wird das Konzept der geschlossenen Topologien allgemein behandelt, wobei
speziell Gewicht auf das Theorem von Thurston und dessen Folgerungen gelegt wird. Dabei
entstehen neue Freiheitsgrade, die sogenannten Teichmüller-Parameter, deren zeitliche Ent-
wicklung mit Hilfe der Hamiltonschen Dynamik beschrieben wird. Numerische Resultate
im Falle eines toroidalen Universums werden vorgelegt und besprochen. Diese Dynamik
wird dann mit Hilfe der Ashtekar-Variablen neu formuliert und auch numerisch untersucht.
Um den Torus à la Schleifenquantengravitation quantisieren und einen Hilbertraum finden
zu können, wird eine kanonische Transformation der Ashtekar-Variablen durchgeführt.
Dies erschwert allerdings die Quantisierung der geometrischen Operatoren, wobei zwei
Quantisierungsmöglichkeiten beschrieben werden. Wie es sich herausstellen wird, ist das
Spektrum dieser Operatoren vom Anfangswertproblem abhängig. Da die allgemeine Rel-
ativitätstheorie ein vollständig eingeschränktes System ist, müssen die Constraints gelöst
bzw. der Kern der Constraint-Operatoren gefunden werden. Dies ist im Falle des Gauss-
Constraint sowohl klassisch wie auch quantenmechanisch gelungen, allerdings konnte der
Kern des Hamiltonschen Operators nicht gefunden werden.

Der zweite Teil der Arbeit beschäftigt sich mit der phänomenologischen Quantengravi-
tation und deren möglichen experimentellen Beobachtungen. Die phänomenologische Quan-
tengravitation vertritt die Ansicht, dass mögliche Folgerungen von erwarteten Eigenschaften
des Raums untersucht werden können, obwohl noch keine vollständige Quantengravitation
verfügbar ist. Zum Beispiel könnte eine quantisierte Raumzeit eine energieabhängige Licht-
geschwindigkeit verursachen, so dass Korrekturen zur Flugzeit von Photonen eingerechnet
werden müssten. Da diese Korrekturen aber sehr klein sind, werden nur kosmo-logische Dis-
tanzen in Betracht gezogen. Dank der kosmologischen Entfernung der Gamma-ray Bursts
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(GRB) sind diese die besten Kandidaten, um Abweichungen in den Flugzeiten zu messen.
Ein GRB ist ein kurzzeitiger, aber gewaltiger Energieausbruch im Universum, der eine
grosse Menge an Gammastrahlen produziert. Als Erstes werden Bursts untersucht, die vom
europäischen Satelliten INTEGRAL aufgespürt wurden, und eine neue Methode eingeführt,
um ungebinnte Daten zu analysieren. Mit Hilfe eines χ2-Tests konnte eine untere Grenze
für diese Korrekturen gegeben werden, die allerdings weit unterhalb der Planck-Energie
liegt. Dann wird die Sensibilität des neuen NASA Satelliten Fermi Gamma-ray Space Tele-
scope untersucht und festgestellt, dass dieser in der Lage ist, eindeutige Aussagen über
lineare Korrekturen zur Lichtgeschwindigkeit zu machen. Dies wurde auch vor Kurzem
bestätigt, als allein schon ein sehr energiereiches Photon genügte, um solche Modelle in
Schwierigkeiten zu bringen. Wie aber aus dieser Doktorarbeit ersichtlich wird, müssen
allerdings mehrere Bursts aufgespürt werden, um diese Modelle definitiv zu falsifizieren.
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Introduction

Two major advances in theoretical physics have revolutionized our understanding of Na-
ture. On the one hand the devolpment of quantum mechanics began over a century ago
by Max Planck and was put on a solid mathematical foundation in 1931 by John von Neu-
mann. This theory is extraordinarily successful in describing all microscopic phenomena
such as atomic spectra. On the other hand the theory of general relativity was published
by Albert Einstein in 1915 as a unification of Newton’s law of universal gravitation and
Einstein’s special relativity theory. The predictions of this theory range from the perihelion
advance of Mercury to the existence of black holes and have been tested and confirmed to
an incredible precision. But general relativity is more than just a theory of gravity or, as
particle physicists would say, a spin-2 interaction theory as it revolutionized the concept of
space-time and devoided the meaning of coordinates. The underlying principle (or symme-
try) is general covariance which states that the form of physical laws should be invariant
under arbitrary differentiable coordinate transformations.

In sum we have two theories which are very successful in their respective domains. This
shouldn’t be much of a problem as their domains do not overlap, even in the most powerful
particle accelerators. However, when considering domains where both quantum mechanics
and gravity play an important role such as black holes or the big bang, both theories loose
their predictability and hence their validity. As such they have to be replaced by a more
fundamental theory which reduces to quantum mechanics in the limit of weak gravity and
to general relativity in the limit of large actions. This theory is called quantum gravity and
is the ’holy grain’ of modern theoretical physics. One of the main difficulties in finding it is
the fundamental and conceptual difference of quantum mechanics and Einstein’s gravitation
theory. While in quantum mechanics space-time is a fixed entity on top of which particles
live and interact, general relativity is a theory of space-time itself as described by Einstein’s
field equations.

The very fact that a unification of two very different theories is sought has led to two
approaches to quantizing gravity. On the one hand the viewpoint of string theory is that
we should build up on the highly successful unification process that has led to the Standard
Model of particle physics and try to incorporate gravity as a spin-2 particle living on a fixed
background. On the other hand loop quantum gravity (LQG) takes the concepts of general
relativity seriously and quantizes gravity in a background independent way. However,
since both approaches are still incomplete a third possibility has been developed, called
phenomenological quantum gravity, which consists in deriving consequences of expected
features of quantum gravity.

One of the jewels of LQG is loop quantum cosmology (LQC) which is a quantization
of homogeneous solutions of Einstein’s field equations using tools from LQG. As such, it
is not the cosmological sector of the full theory but only an application of it. One of the
most striking results of LQC is the resolution of gravitational singularities. For example
the big bang singularity is replaced by a ’big bounce’ which explains the formation of our
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universe as a result of a previously collapsing universe. Moreover LQC provides naturally
a possible mechanism for cosmic inflation or resolves the Schwarzschild singularities.

This thesis is divided into two parts. The first one generalizes the standard open and
flat topology usually used in loop quantum gravity to a toroidal topology. We shall first
introduce the general tools such as Hamiltonian general relativity and mathematical meth-
ods of differential geometry and topology. We shall also explain the differences arising
from a closed topology by explaining the main constructions of LQC on a Euclidean space.
However, we would like to stress that we won’t give a self-contained introduction to the
mathematics behind this construction or to LQC but rather refer to the available literature
for further details. The second part deals with empirical signatures of one subtopic of
phenomenological quantum gravity which is an energy-dependent speed of light. We shall
study a possible Lorentz violation by using bright flashes at cosmological distances known
as gamma-ray bursts.
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Part I

Loop Quantum Cosmology
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Chapter 1

Introducing General Relativity

Since there are many good books and reviews on both general relativity [97, 108] and
loop quantum gravity [12, 91, 104] we will only give a short introduction. Furthermore
mathematical tools used in this chapter such as differential geometry and fiber bundle
theory can be found in [74, 75].

1.1 Canonical General Relativity

Let us consider a four-dimensional, Lorentzian manifold (M, gµν), where the metric tensor
field gµν has the Lorentzian signature (−,+,+,+) and µ, ν = 0, . . . , 4. The propagation of
the metric is described by the Einstein-Hilbert action given by (c ≡ 1)

SE−H[g] =
1

2κ

�

M

∗R[g], (1.1)

where R is the Ricci scalar (see e.g. [97]), κ = 8πG the gravitational constant and ∗ :
Λp(M)→ Λ4−p(M) the Hodge star operator defined by

∗(dxµ1 ∧ . . . ∧ dxµp) �→

�
|g|

(4− p)!
�µ1...µp

νp+1...ν4dxνp+1 ∧ . . . ∧ dxν4,

where Λp(M) is the space of p-forms (see e.g. [74, 97] for details) and �µ1...µ4 the totally
anti-symmetric tensor. In order to derive a canonical form of the action (1.1) we make the
assumption that M has the topology M ∼= R×Σ, where Σ is a three-dimensional manifold
of arbitrary topology with metric hab, a, b = 1, . . . , 3. Thus, M admits a foliation into
hypersurfaces Σt, for all t ∈ R (see Fig. 1.1). The standard parametrization of a vector
field T µ is given by

T µ(x, t) = N(x, t)nµ(x, t) +Nµ(x, t),

where x are local coordinates on Σ, nµ is a unit vector normal to Σt, N the lapse and Nµ

the shift vector. The metric can then be recast into the form

ds2 = (−N2 + habN
aN b)dt2 + 2habN

bdtdxa + habdxadxb.

In terms of Hamiltonian mechanics the metric hab represents the configuration variables.
The conjugate momenta are given by the extrinsic curvature Kab which represents the
changes in the spatial slice and is given by

Kab =
1

2N
(ḣab − (L �Nh)ab), (1.2)
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N dt

dx + N dt
a

Σ t

t+dtΣ
a

Figure 1.1: Foliation of the manifold M into spacelike hypersurface. Na is the shift vector and
N the lapse.

where the dot is the time derivative and L �N the Lie derivative along �N [74]:

(L �Nh)ab = N c∂chab + (∂aN
c)hcb + (∂bN

c)hac.

A Legendre transform of the Einstein-Hilbert action w.r.t these canonical variables yields
the ADM action [7]. However, due to the lack of mathematical understanding of the space
of metrics or equivalently of the space of extrinsic curvature tensors alternative variables
had to be found. This was done by Ashtekar [8, 9] using a triad formulation.

1.1.1 Non-coordinate Bases

In the coordinate basis the tangent space TpΣ of Σ at the point p ∈ Σ is spanned by ∂a
and the cotangent space T ∗

pΣ by dxa. However it is possible to find an alternative choice
by considering linear conbinations such that

ei := eai ∂a, {eai } ∈ GL(3,R) and det eai > 0.

The coefficients eai are called triads or dreibeins where a = 1, · · · , 3 are space tangent
indices and i = 1, · · · , 3 ’internal’ indices in R3. We further require that the basis {ei} be
orthonormal w.r.t. h, i.e.

habe
a
i e
b
j = δij .

All the spatial information is contained in these triads and the inverse metric is given by

hab = δijeai e
b
j .

It is clear from the last equation that the triads can be rotated without changing the metric,

eai → e
�a
i = Oji e

a
j , (O)ij ∈ SO(3)

leaves the metric invariant. Moreover it is invariant under a reflection, i.e. a change of the
orientation of the triad. Classically this does not pose a problem because both sectors are
separated by a degenerate configuration where the metric is singular. Since the classical
evolution breaks down at such points these sectors cannot be connected.

In the sequel we shall use the group SU(2) instead of SO(3). The reason is that
the adjoint representation of SU(2) spanned by (Ti)kl = �ijk, where �ijk is the structure
constants of SU(2), corresponds to the fundamental representation of SO(3). In other
words there is an isomorphism R3 → su(2); vi → viτi, where τi are the generators of
SU(2)1. We can thus view eia as an su(2)-valued one-form via e = eiaτidxa.

1We use the convention that the generators of the Lie algebra su(2) are given by τj = 1
2i

σj , where σj are the
Pauli matrices such that τiτj =

1
2
�ijkτk −

1
4
δij .
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1.2 Ashtekar Variables

In this section we write general relativity in terms of Ashtekar variables. We first need this
definition:

Definition 1. Let (M, g) be a Riemann manifold and Tp(M)rs the set of tensors of rank
(r, s) defined on the tangential space Tp(M) of M at the point p ∈ M . An element

(
�
| det(g)|)wt ∈ Tp(M)rs is called a tensor field of density weight w ∈ R.

The Ashtekar representation uses a triad with density weight +1 which takes values in
the dual of the Lie algebra su(2):

Eai =
eai

| det ebj |

related to the spatial metric by

ηijEai E
b
j = hab det h, (1.3)

where ηij is the three-dimensional Minkowski metric. The densitized triad has the same
properties concerning gauge rotations and its orientation as the triad eai . It is canonically
conjugated to the extrinsic curvature coefficients

Ki
a := Kabe

b
i ,

where Kab is given by Eq. (1.2), such that2

{Ki
a(x), E

b
j (y)} = κδbaδ

i
jδ(x, y).

The Ashtekar connection A = Aiaτidxa is a one-form, which takes values in su(2), given by

Aia = Γia + γKi
a, (1.4)

where γ > 0 is the Barbero-Immirzi parameter [50, 54] and the spin connection defined by
[104]

Γia = −�ijkebj(∂[ae
k
b] +

1

2
ecke

l
a∂[ce

l
b]), (1.5)

where the square brackets stand for ∂[aeb] :=
1
2
(∂aeb − ∂bea). As explicitly shown in, e.g.,

[104], the derivation of the above expression starts with the metric compatibility condition
Dahbc = 0, such that

DaE
a
j = ∂aE

a
j + �jklΓ

k
aE

a
l = 0.

The Ashtekar connection can be seen as (the pull-back to Σ by local sections of) a con-
nection on an SU(2) fiber bundle. If Σ = R3 or Σ = T3 the bundle P is even trivial
such that P = Σ × SU(2) globally. As such it transforms under a local gauge transfor-
mation g : Σ → SU(2) (i.e. transformations between two sections of the principal bundle
P (M, SU(2)) in the following way:

A �→ A� = g−1Ag + g−1dg, (1.6)

2Loosely speaking, we can define the Poisson brackets as

{f(x), g(y)} = κ

3X

k,c=1

Z

M

„
δf(x)

δKk
c (z)

δg(y)

δEc
k(z)

−
δg(y)

δKk
c (z)

δf(x)

δEc
k(z)

«

d
3
z.

For a mathematically rigorous formulation see [104].
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where d : Λp(M)→ Λp+1(M) is the exterior derivative whose action on a p-form is defined
by

dω = d

�
1

p!
ωµ1...µpdxµ1 ∧ . . . ∧ dxµp

�

=
1

p!
(∂νωµ1...µp)dxν ∧ dxµ1 ∧ . . . ∧ dxµp

with the property d2 = 0. On the other hand the densitized triad transforms according to

E �→ E � = g−1Eg. (1.7)

The new phase space is spanned by the mutually conjugated variables Aia and Eai such that

{Aia(x), E
b
j (y)} = κγδbaδ

i
jδ(x, y),

which is similar to that of a Yang-Mills theory with SU(2) as structure group3. The
Ashtekar representation can be used to perform the Legendre transformation of the Einstein-
Hilbert action. This lengthy calculation can be found in [104] and the result is a fully
constrained system given by

S =
1

2κ

�

R

dt

�

Σ

d3x
�
2ȦiaE

a
i − [ΛjGj +NaHa +NH]

�
, (1.8)

where Gj is the Gauss constraint, Ha the diffeomorphism (or vector) constraint, H the
Hamiltonian and Λj , Na, N are Lagrange multipliers. The Gauss constraint is given by
the covariant derivative of Eai w.r.t. the connection Aia, i.e.

Gi = DaE
a
i = ∂aE

a
i + �ijkA

j
aE

a
k (1.9)

stems from the fact that gravity has to be invariant under SO(3)-rotations of the triad
Eai → OjiE

a
j , where Oji ∈ SO(3). The diffeomorphism constraint (modulo Gauss constraint)

originates from the requirement of independence from any spatial coordinate system or
background and is given by

Ha = F iabE
b
i , (1.10)

the curvature two-form F := dA+ A ∧ A of the connection A is given by

F iab = ∂aA
i
b − ∂bA

i
a + �ijkA

j
aA
k
b . (1.11)

Finally the Hamiltonian constraint tells us that gravity must be invariant under a reparam-
etrization of the coordinate time and is given by

H = e−1
�
�ijkF

i
abE

ajEbk − 2(1 + γ2)Ki
[aK

j
b]E

a
i E

b
j

�
, (1.12)

where e = sgn(detE)
�
|detE|. The components of the extrinsic curvature in Eq. (1.12)

are functions of the Ashtekar connection Aia and the densitized triad Eai because of the
dependence of the spin connection Γia on the triad eai (see Eq. (1.5)).

3One of the main difference is the dynamics. For a Yang-Mills theory there is a true dynamics determined by
Eq. (2.1) whereas in the case of general relativity the system is fully constrained with no dynamics.
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1.2.1 Hamiltonian Constraint for Flat Topologies

In the case where the three-dimensional spatial manifold is flat the spin connection Γia
vanishes such that Ki

a = γ−1Aia. Moreover the curvature (1.11) of the Ashtekar connection
simplifies to

F iab = �ijkA
j
aA
k
b .

The first term in Eq. (1.12) can be rewritten as

�ijkF
i
abE

ajEbk = �ijk�ilmAlaA
m
b EajEbk = (δjlδkm − δjmδlk)A

l
aA
m
b EajEbk = 2Aj[aA

k
b]E

a
jE

b
k.

In the flat case the second term in Eq. (1.12) is given by

−2(1 + γ2)Ki
[aK

j
b]E

a
i E

b
j = −2(1 + γ−2)Ai[aA

j
b]E

a
i E

b
j

such that

H = −γ−2�ijkF
i
ab

EajEbk

e
. (1.13)

In the next few chapters we shall extensively use this last expression as we will consider
only topologies with a flat geometry.
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Chapter 2

Toroidal Cosmology in Ashtekar

Variables

The Einstein field equations are local equations in the sense that they only describe the
local geometry of the spacetime. For example the Robertson-Walker metric explicitly con-
tains the parameter k which gives an account of the intrinsic spatial curvature. Using the
Friedmann equations this parameter can be determined experimentally since it is directly
related to the density parameter Ωtot and the Hubble parameter h. Recent measurements
of the energy density of the universe tend to slightly favor a positively curved universe
[61], yet a flat curvature lies within the 1-σ range. The simplest assumption is that the
spatial topology of the universe is just R3 which is the assumption of the ΛCDM model.
Nevertheless in the mathematical literature it is well known that a flat space does not
mean that its topology is necessarily R3, in fact there are 18 possible topologies with a flat
space. Since the Einstein field equations are not sensitive to topology every possibility has
to be considered as a possible candidate for the global geometry of our universe until it is
ruled out by experiment. In order to do so we first note that the spectrum of the Laplace
operator sensitively depends on the topology. For example, the eigenvalue problem for �
on T3 is given by (�+E�n)Ψ�n = 0, �n ∈ Z3, and on S3 by �Ψβ,l,m = (β2 − 1)Ψβ,l,m, where
β ∈ N, 0 ≤ l ≤ β − 1 and |m| ≤ l. The implication of a solution of the form Ψ�n is the
existence of a wave function Ψ�n with a maximal length corresponding to, e.g., the length of
the edges of the torus. Since the departure from a continuous solution is biggest for large
wavelengths we have to look for large-scale structures of the universe in order to distinguish
between cosmic topologies. The best way to do so is to measure the inhomogeneities of the
cosmic microwave background (CMB), expand these in multipole moments and compare
the low multipoles with the predictions from theory. It can be shown that in certain closed
topologies a suppression in the power spectrum of the low multipoles is expected because
of the existence of a largest wavelength. Since such a suppression is present in the CMB
several studies compared the theoretical predictions for various topologies with the data.
While most analyzed topologies can already be ruled out, three of them describe the data
even better than the infinite ΛCDM model, namely the torus [16, 17, 20], the dodecahedron
[19, 35] and the binary octahedron [18] (see also references therein). While the last two
topologies are spherical the torus is the simplest model of a closed flat topology.

However, we know that standard cosmology cannot be the final answer as its pre-
dictability breaks down at the big bang. A quantization of the Friedmann equations à la
Wheeler-DeWitt does not improve this behavior either. This situation has changed thanks
to a new model called loop quantum cosmology (LQC) developed over the last few years
which removes the initial singularity. LQC [11, 13, 14, 25, 26, 27, 28, 29, 30] is the approach
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motivated by loop quantum gravity (LQG) [12, 91, 104] to the quantization of symmetric
cosmological models. The usual procedure is to reduce the classical phase space of the full
theory to a phase space with a finite number of degrees of freedom. The quantization of
these reduced models uses the tools of the LQG and is therefore called LQC but it does
not correspond to the cosmological sector of LQG. The results of LQC not only provide
new insights into the quantum structure of spacetime near the big bang singularity but
also remove this singularity by extending the time evolution to negative times.

In summary, on the one hand we have hints from observation that our universe may
have a closed topology, on the other hand we have a very successful loop quantization of
various cosmologies. Thus, starting from these two motivations, we would like to study
LQC with a torus topology. But contrary to the works on the CMB we don’t want to
restrict the analysis to a cubical torus. To do so we construct a torus using Thurston’s
theorem and find that the most general torus has six degrees of freedom which consist of
e.g. three lengths and three angles. We will study its dynamics by numerically solving the
Hamiltonian coupled to a scalar field. After rewriting this Hamiltonian in terms of Ashtekar
variables we will see that the quantization of such a torus leads to a product between the
standard Hilbert spaces of LQC and the Hilbert spaces over the circle. Moreover, we will
find two ways to quantize the components of the triad and show that both (generalized)
eigenfunctions are not normalizable in this Hilbert space.

As a side remark we would like to point out that the consequences of putting a non-
abelian gauge theory into a box with periodic boundary conditions have been studied in
e.g. [99]. The motivation behind this idea is an attempt to explain the quark confinement
in QCD without explicitly breaking gauge invariance. To simplify the analysis the su(N)-
valued gauge field is chosen to be pure gauge, i.e. A = U−1dU with U ∈ SU(N), such that
the holonomy around a closed curve C only depends on the topological property of C. Since
general relativity written in terms of Ashtekar variables is also a (constrained) Yang-Mills
theory it may be tentalizing to use the methods developed for QCD in a box to LQC of a
torus universe. However, we will derive an Ashtekar connection for the homogeneous torus
which is not pure gauge so that the holonomies along C also depend on the length of C.
This may not be surprising in view of the fact that the Hilbert space of LQC on R3 is
spanned by almost periodic functions with an arbitrary length parameter µ.

2.1 The Role of Topology

As an illustrative example let us consider electrodynamics on the Minkowski space R3+1

with metric η = diag(−1, 1, 1, 1), the details of this section can be found in [21, 74]. The
corresponding principal bundle is given by P (R3+1, U(1)), where U(1) is the gauge group
of electromagnetism. Since the base space is contractible to a point the bundle P is trivial,
i.e. P has a section. We are thus able to find a global connection

A = Aµdxµ ∈ Λ1(R3+1)⊗ u(1),

usually called the gauge potential, which differs from the usual vector potential A by the
Lie algebra factor i, i.e. Aµ = iAµ. The exterior derivative of this one-form defines a
two-form F := dA = 1

2
Fµνdxµ∧dxν called the field strength satisfying the Bianchi identity

dF = 0. This is ensured by Poincaré’s lemma because the four-dimensional Minkowski
spacetime is contractible to a point, meaning that we are able to find a vector potential A
such that F = dA is exact, which also implies that dF = d2A = 0 because d2 = 0. The
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Maxwell action is then given by

SM [A] = −
1

4

�

R3+1

F ∧ ∗F . (2.1)

A variation of this action w.r.t A yields the vacuum Maxwell equations

dF = 0 and d ∗ F = 0.

We can identify the components of Fµν with the electric field E and the magnetic field B
as

Ei = −iFi0, and Bi = −
i

2
�ijkFjk.

We could now ask ourself what happens if we remove a single point from R3, i.e. we
would like to know to what extent the theory of electromagnetism changes on R3 − {0}.
We could argue naively that the only thing that changes would be that the field strength F
is only defined on R3 − {0} (assuming for simplicity that everything is time independent).
From calculus we know the integral of a function over an interval does not change if we
remove single points. The implication would be that the Maxwell action SM [A] would not
change, leading to the same Maxwell equations. However this consideration is erroneous
because removing a point from the base manifold changes the topology. In short, there is
no scalar potential and no vector potential on R3 − {0}. How is this possible? After all,
only a single point was removed.

The construction derived at the beginning of this subsection relied heavily on the con-
tractibility of the base manifold R3+1. This is not the case anymore when the origin has
been removed since R3−{0} is of the same homotopy type as the two-sphere S2 [74]. The
relevant bundle is now P (S2, U(1)) which is not trivial because S2 is not contractible. Two
charts are needed to cover S2:

UN := {(θ, φ)|0 < θ <
1

2
π + �} and US := {(θ, φ)|

1

2
− � < θ < π},

leading to two local gauge potentials AN and AS. On UN ∩ US they are equal up to a
gauge, i.e.

AN = AS + idϕ,

where ϕ : S1 → R is a gauge transformation. The technical reason is that the transition
functions on UN ∩US define a map from S1 to U(1) which is classified by the fundamental
group π1(U(1)) = Z. Using Stoke’s theorem the total magnetic flux Φ is given by

Φ =

�

UN

dAN +

�

US

dAS =

�

S1

AN −

�

S1

AS = 4πg,

where g is the strength of the monopole. Technically the integer 2g is the homotopy class
of the bundle P . Further details on the Dirac monopole can be found in [21, 74, 75].

The conclusion we reach is that gauge theories are very sensible to the topology of the
base manifold. Passing from R3 to R3 − {0} changes electrodynamics in a dramatic way.
Since gravity in Ashtekar variables is closely related to an SU(2) Yang-Mills theory we
have to be careful when deriving the equations of loop quantum cosmology in a torus.
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2.2 Compact Homogeneous Spaces

The purpose of this chapter is to introduce the concepts of compact three-dimensional
topologies which heavily relies on Thurston’s geometrization conjecture (or theorem) which
was proposed in 1982 by William Thurston [105]. He was only able to give a partial proof
for a subclass of manifolds, a sketch of the proof of the full conjecture came in 2003 from
Grigori Perelman using the Ricci flow [82, 83, 84]. Despite the fact that there exist eight
Thurston geometries we shall primarily concentrate on the Euclidean geometry, further
details can be found in [106].

2.2.1 Mathematical Preliminaries

Let Σ̃ be a simply connected smooth manifold and S a Lie group acting on Σ̃ by means of
a map σ : Σ̃ × S → Σ̃. Furthermore this action is transitive if ∀ x, y ∈ Σ̃ ∃ g ∈ S such
that σ(x, g) = y and free if σ(p, g) = p for some p ∈ Σ̃, then g must be the unit element e
of S. The simplest example is the action of the translation group T 3 which acts freely and
transitively on R3.

The isotropy group of x ∈ Σ̃ is a subgroup of S defined by

Sx = {g ∈ S|σ(x, g) = x},

sometimes also called the stabilizer. By definition, whenever σ acts freely the isotropy
group contains only the identity.

Definition 2. A geometry is a pair (Σ̃, S) where Σ̃ is a simply connected manifold and S
a Lie group acting transitively on Σ̃ with compact isotropy subgroup. A geometry (Σ̃, S �) is
a subgeometry of (Σ̃, S) if S � is a subgroup of S. A geometry (Σ̃, S) is called maximal if it
is not a subgeometry of any geometry and minimal if it does not have any subgeometry.

Thurston further requires that there should exist at least one compact manifold modeled
on (Σ̃, S) [106]. A metric on a manifold Σ̃ is homogeneous if the isometry group acts
transitively on Σ̃ and locally homogeneous if ∀p, q ∈ Σ̃ there exist neighborhoods U, V
and an isometry (U, p)→ (V, q).

2.2.2 Relation between a compact manifold and its covering

In this subsection we would like to elucidate the construction of homogeneous manifolds.
Let (Σ̃, g̃) be a homogeneous Riemann manifold, (Σ, g) a compact homogeneous Riemann
manifold, Isom+Σ̃ the orientation preserving isometry group of Σ̃ and Γ a subgroup of
Isom+Σ̃. We would like to know how to construct a homogeneous covering from Σ and a
compact homogeneous manifold from Σ̃. In order to do that we will need a map

π : Σ̃→ Σ (2.2)

called the covering map.
We are now ready to quote the theorem of Thurston:

Theorem 1. Any maximal, simply connected three-dimensional geometry (Σ̃, S) which
admits a compact quotient Σ is equivalent to the geometry (X, IsomX) where X is one of

E3, H3, S3, S2 ×R, H2 ×R, �SL(2,R) Nil or Sol.
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Σ̃ homogeneous Riemann manifold Σ compact homogeneous Riemann manifold



�





�

Σ arcwise connected

Σ := Σ̃/Γ locally homogeneous Σ has unique covering Σ̃ (up to diffeos)



�

Γ discrete subgroup of Isom+Σ̃





�

π : Σ̃→ Σ

Σ Hausdorff g̃ := π∗g locally homogeneous



�

Γ acts freely on Σ̃





�

Thm. of Singer[96]

(Σ, g) compact homogeneous Riemann manifold (Σ̃, g̃) homogeneous Riemann manifold

E3 is the three-dimensional flat Riemannian manifold, S2 resp. S3 the unit two-
dimensional resp. three-dimensional sphere and H2 resp. H3 the two-dimensional resp.
three-dimensional hyperbolic manifold. Nil is the group of matrices of the form




1 x z
0 1 y
0 0 1



 ,

Sol the three-dimensional group with the following multiplication rule:



a
b
c








x
y
z



 =




a+ e−cx
b+ ecy
c+ z





and �SL(2,R) the universal covering group of SL(2,R).
The meaning of Thm. 1 is that there are only eight homogeneous geometries which

can be supported by closed 3-manifolds. Thus, if we assume that our universe is locally
homogeneous and closed we automatically know which classes of topology and geometry
it can have. The drawback of this theorem applies only to maximal geometry (Σ̃, S).
However, given a nonmaximal geometry (Σ̃, S �) we know that S � ⊂ S. If this geometry
admits a compact quotient there is a discrete freely acting subgroup Γ� of S � such that
Σ̃/Γ� is compact. If follows that Γ� is also a subgroup of S such that the maximal geometry
(Σ̃, S) also admits a compact quotient. Thm. 1 ensures that (Σ̃, S) is equivalent to one of
the eight Thurston geometries, proving that (Σ̃, S �) is a subgeometry of one of the eight
Thurston geometries.

Let I(Sx) be the component of the isotropy group Sx containing the identity and (X, S)
be a maximal geometry. Then I(Sx) must be either SO(3), SO(2) or the trivial group [93].
If I(Sx) = SO(3) then the space X has constant curvature and the geometry is equivalent
to either S3, E3 or H3.

The case of E3

E3 is the three-dimensional flat Riemann manifold with metric

ds2 = dx2 + dy2 + dz2.

An isometry of E3 is given by the action of the group IO(3,R):

g(x) = Rx+ a
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where R is an orthogonal matrix and a is a constant vector. In order to preserve the orien-
tation we require the matrices R to be rotations, i.e. we only consider transformations in
Isom+E3 = ISO(3,R). The Killing vectors of E3 are given by the generators of ISO(3,R):

Pi = ∂i (3 generators of translations)

Ki = �ijkxj∂k (3 generators of rotations)

Table 2.1: List of Thurston geometries

Type X Isom+X ds2

T1 E3 ISO(3) dx2 + dy2 + dz2

T2 S3 SO(4) dα2 + dβ2 + dγ2 + 2cos βdαdγ
(0 ≤ α < 4π, 0 ≤ β < 2π, 0 ≤ γ < π)

T3 H3 PSL(2,C) 1
z2
(dx2 + dy2 + dz2)

T4 S2 ×R SO(3)×R dΩ2
S2 + dz2

T5 H2 ×R Isom+H2 ×R 1
y2
(dx2 + dy2) + dz2

T6 �SL(2,R) Isom+�SL(2,R) 1
y2
(dx2 + dy2 + (dx2 + ydz)2)

T7 Nil Isom+Nil dx2 + dy2 + (dz − xdy)2

T8 Sol Isom+Sol e2zdx2 + e−2zdy2 + dz2

2.2.3 Bianchi Classification

The so-called Bianchi classification gives a classification of all simply connected three-
dimensional Lie groups up to isomorphisms. The relation with the eight Thurston ge-
ometries was pointed out in [44, 45]. Shortly, any minimal (in the sense of Def. 2), simply
connected three-dimensional geometry is equivalent to (X, S) where X = R3, S =one of the
Bianchi I-VIII groups; X = S3, S =Bianchi IX group; or X = S2×R, S = SO(3)×R (KS).
Such minimal geometries are called Bianchi-Kantowski-Sachs (BKS) minimal geometries.

Construction of an Invariant Metric

Given a symmetry group S we shall generate an invariant metric. We need the following
definition:

Definition 3. A diffeomorphism φ : Σ → Σ is an isometry if it preserves the metric, i.e.
φ∗gφ(p) = gp. An infinitesimal isometry ξ is called a Killing vector field.

The Killing vector fields satisfy Lξg = 0 and generate a Lie algebra in the sense that
given ξ1, ξ2 the commutator [ξ1, ξ2] is also a Killing field:

[ξI , ξJ ] = −CKIJξK ,

where the CIJK are called the structure constants of the symmetry group S. These con-
stants can be written as

CIJK = �JKLm
L
I + δIKaJ − δIJaK

and are used to classify the symmetry groups depending on the matrix m = (mIJ) and
the vector aI . If aI = 0 we have a class A type and if aI �= 0 a class B type. Both classes

16



are then divided into several subgroups called Bianchi types depending on the value of
the matrix m. For example a Bianchi type I (class A) satisfies m = 0, i.e. all structure
constants vanish. This type describes the manifold R3 with the translation group R3 as
symmetry group. Further information can be found in [92].

To construct an invariant metric we have to find invariant vector fields XI satisfying

LξIXJ = [ξI , XJ ] = 0

with structure constants DIJK . This equation defines a set of first order differential sub-
section with solution DIJK = −CIJK such that

[XI , XJ ] = CIJKXK .

Let us define the left-invariant 1-form ωI on S which is dual to XI such that ωI(XJ) = δIJ .
The Maurer-Cartan form on S is given by θMC = ωITI where TI are the generators of the
Lie algebra L(S) and satisfy the Maurer-Cartan equation

dωI = −
1

2
CIJKωJ ∧ ωK .

The invariant metric is now given by

gµν = ηIJω
I
µω
J
ν .

Specializing once again to the Bianchi type I model the left-invariant 1-forms are given by

ω1 = dx1 ≡ dx, ω2 = dx2 ≡ dy, ω3 = dx3 ≡ dz.

The left-invariant vector fields XI dual to ωI are given by

X1 = ∂1, X2 = ∂2, X3 = ∂3

satisfying ωI(XJ) ≡ dxI(∂J) = δIJ . The invariant metric is then given by

ds2 = ηIJdxIdxJ = dx2 + dy2 + dz2.

This is the well known metric of the three-dimensional Euclidean space which is invariant
under the translation group ISO(3). The metrics for all Bianchi groups are listed in
Table 2.2.

Relation with Thurston Geometries

While Thuston’s theorem only applies to maximal geometries admitting a compact quo-
tient the Bianchi geometries are minimal and do not require a compact quotient. It is thus
not surprising that not every Bianchi geometry admits a compact quotient. Bianchi types
IV and VI for A �= 0, 1 do not admit spatially closed cosmologies. On the other hand, since
Thurston geometries (X, S) are maximal they can have different minimal subgeometries,
e.g. there may exist two groups S1, S2 ⊂ S defining two different Bianchi minimal geome-
tries. For instance the Thurston geometry T1 = (E3, ISO(3)) admits two Bianchi minimal
geometries: BI and BVII for A = 0. The reason is that the 3-dimensional groups B1 and
BVII(0) are different transitive subgroups of the 6-dimensional group ISO(3). The other
correspondences between Thurston and BKS types are listed in Table 2.3.

17



Table 2.2: List of Kantowski-Sachs and Bianchi metrics

BKS type ds2 class

BI dx2 + dy2 + dz2 A
BII (dx− zdy)2 + dy2 + dz2 A
BIII dx2 + e−2xdy2 + dz2 B
BIV dx2 + e2xdy2 + e2x(dz + xdy)2 B
BV dx2 + e2x(dy2 + dz2) B

BVI dx2 + e2(A−1)xdy2 + e(A+1)xdz2, 0 ≤ A ≤ 1 A,B
BVII dx2 + e2Ax(dy2 + dz2), 0 ≤ A ≤ 1 A,B
BVIII cosh2 ydx2 + dy2 + (dz + sinh ydx)2 A
BIX cos2 ydx2 + dy2 + (dz − sin ydx)2 A
BKS dx2 + dy2 + sin2 ydz2 -

Table 2.3: Correspondence between Thurston and BKS types

Thurston type BKS type

T1 BI, BVIII(0)
T2 BIX
T3 BV, BVII(A > 0)
T4 KS
T5 BVI(1)
T6 BVIII
T7 BII
T8 BVI(0)

2.2.4 Teichmüller Space

The construction of a compact quotient M from the covering Σ̃ is not unique as we are
allowed to take a priori any discrete isometry group Γ. On the other hand we are only
interested in transformations of Γ which leave the covering Σ̃ globally conformally invariant.
A diffeomorphism φ : Σ̃→ Σ̃ is a global conformal isometry if φ∗g̃ = const · g̃. Let us now
define Rep(M) as the space of all discrete and faithful representations ρ : π(M)→ Isom+Σ̃.
This space is too big since it contains transformations which are connected to the identity.
We thus define a relation ∼ in Rep(M) such that two representations ρ, ρ� : π1(M) →
Isom+Σ̃ are equivalent, i.e. ρ ∼ ρ�, if there exists a global conformal isometry φ of Σ̃
connected to the identity such that ρ�(a) = φ ◦ ρ(a) ◦ φ−1, for all a ∈ π1(M).

Definition 4. The Teichmüller space is defined as Teich(M) =Rep(M)/ ∼ and is a man-
ifold. The numbers used to parametrize the Teichmüller space are called the Teichmüller
parameters.

In other words, smooth and nonisometric deformations of the metric gab are called
Teichmüller deformations if they leave the universal cover (Σ̃, g̃ab) gloabally conformally
invariant.
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Figure 2.1: Left panel: 3-dimensional torus T3 = S1 × S1 × S1 where the generators a, b and c
are translations. Right panel: The manifold is T3/Z2. The generators a and b are translations
and c is a screw motion with rotation angle π.

Teichmüller Space of the Torus

In [60] all compact quotients and their Teichmüller spaces were constructed and discussed.
Since we are only interested in spaces with vanishing curvature we will only consider the
Euclidean space E3 as Thurston geometry. There are six compact orientable quotients
modeled on E3 [112]: the torus T3, T3/Z2, T

3/Z3, T
3/Z4, T

3/Z6 and a space where all
generators are screw motions with a rotation angle π/2. In all six cases the fundamental
group π1(Σ), where Σ is one of the six possible compact quotients, is generated by three
elements we shall call a, b and c. Depending on the case they have different meaning, e.g.,
they can generate translations or screw motions. We introduce the following notation

[a, b] := aba−1b−1,

where ab denotes a turn of curve b followed by a turn of curve a. The meaning of a and
b being related by [a, b] is that they ’commute’, i.e. they are translations in two different
directions.

• T3: The fundamental group is genenared by three translations a, b and c such that

π1(T
3) = �a, b, c; [a, b], [a, c], [b, c]�.

• T3/Z2: The fundamental group is generated by two translations a and b and a screw
motion with a rotation angle π. The fundamental group is given by

π1(T
3/Z2) = �a, b, c; [a, b], cac−1a, cbc−1b�.

• T3/Z3: The fundamental group is generated by two translations a and b and a screw
motion with a rotation angle 2π/3. The fundamental group is given by

π1(T
3/Z3) = �a, b, c; [a, b], cac−1b−1, cbc−1ba�.

• T3/Z4: The fundamental group is generated by two translations a and b and a screw
motion with a rotation angle π/2. The fundamental group is given by

π1(T
3/Z4) = �a, b, c; [a, b], cac−1b−1, cbc−1a�.
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• T3/Z6: The fundamental group is generated by two translations a and b and a screw
motion with a rotation angle π/3. The fundamental group is given by

π1(T
3/Z6) = �a, b, c; [a, b], cac−1b−1, cbc−1b−1a�.

• All generators are screw motions with a rotation angle π/2 such that the fundamental
group is given by

π1(Σ) = �a, b, c; cab−1, ab2a−1b2, ba2b−1a2�.

We would like to derive the Teichmüller space of the three-torus T3. To do so we
first note that the Teichmüller space is defined as the space of all smooth deformations
which leave the covering globally conformally isometric. Since a rotation is a conformal
transformation we can choose to rotate the torus so that the generator a is aligned with the
Killing vector ξ1 parallel to the x-axis and the generator b lies in the xy-plane generated
by the Killing vectors ξ1 and ξ2. We thus have six Teichmüller parameters in the following
three generators (see Figure 2.2):

a1 =




a1

1

0
0



 , a2 =




a2

1

a2
2

0



 , a3 =




a3

1

a3
2

a3
3



 . (2.3)

2

a

ξ
3

a
3

ξ

1

2a 1
ξ

Figure 2.2: The vectors a1, a2 and a3 span the torus with six Teichmüller parameters. The global
conformal invariance was used in order to align a1 with ξ1 and a2 with span{ξ1, ξ2}.

2.2.5 Metric of the Torus

We define the configuration space C of the torus as the space spanned by the six Teichmüller
parameters, i.e. C ⊂ R6. The metric can be constructed from the three vectors (2.3) as
follows:

ds2 = habdxadxb, hab =
3�

c=1

aa
cab

c. (2.4)

For example, h21 = a2
1a1

1 + a2
2a1

2 + a2
3a1

3 = a1
1a2

1. All components can be cast into
the following matrix:

(hab) =




(a1

1)2 a1
1a2

1 a1
1a3

1

a1
1a2

1 (a2
1)2 + (a2

2)2 a2
1a3

1 + a2
2a3

2

a1
1a3

1 a2
1a3

1 + a2
2a3

2 (a3
1)2 + (a3

2)2 + (a3
3)2



 . (2.5)

This metric is flat because the parameters ai
j are independent of the spatial coordinates.
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2.3 Dynamics of the Torus

In order to derive the dynamics of the torus we first introduce a smooth four-dimensional
Lorentzian manifold (M̃, g̃), where the metric g̃ has the signature (−,+,+,+). Since
we want to study only problems with a well-defined inital value problem we choose the
topology M̃ = R× Σ̃ [51]. Furthermore we require Σ̃ to admit a compact quotient Σ such
that M := R × Σ is a smooth Lorentzian manifold with universal cover M̃ . We call such
manifolds M compact homogeneous universes.

In the previous section we constructed compact spatial manifolds Σ by identifying points
on the three-dimensional universal cover Σ̃ according to the covering group Γ. Extending
this construction to the four-dimensional Lorentzian case is subtle for we have to ensure
that the covering group preserves the extrinsic curvature and the spatial metric as well.
We thus define

Definition 5. Let (Σ̃, h̃ab) be a spatial section of (M̃, g̃µν). An extendible isometry is

defined by the restriction of an isometry of (M̃, g̃ab) on Σ̃ which preserves Σ̃ and forms a
subgroup Esom(Σ̃) of S.

Thus, in order to get a compact homogeneous manifold from M̃ the covering group Γ
must be a subgroup of Esom(Σ̃), i.e.

Γ ⊂ Esom(Σ̃).

As shown in [100], the covering group Γ must be implemented in Esom(Σ̃) in order to get
a compact homogeneous universe out of a given four-dimensional universal cover.

We saw in Section 2.2.2 that for a fixed topology of M the manifold M̃ is uniquely de-
termined. Consider the case in which the homogeneous spatial section (Σ̃, h̃ab) corresponds
to a Bianchi minimal geometry. To construct a metric on M̃ we can follow the prescription
given in Section 2.2.3. The most general metric of M̃ with a compact homogeneous section
and a nontrivial group Esom(Σ̃) is given by

ds2 = −N2(t)dt2 + h̃IJ
�
N I(t)dt+ ωI

� �
NJ(t)dt+ ωJ

�
,

where ωI are the invariant one-forms (see Section 2.2.3), N the lapse and N I the shift

vector. The spatial metric h̃IJω
IωJ is homogeneous on each spatial section t =const. In

the sequel we will study metrics of the form

ds2 = −dt2 + hIJω
IωJ . (2.6)

Since we are interested in a torus universe we know that Σ̃ has to be flat, i.e. we choose
a Bianchi type I spatial section corresponding to the first Thurston geometry according
to Table 2.3. At the end of Section 2.2.3 we saw that the metric corresponding to this
geometry is given by ds2 = dx2 + dy2 + dz2 such that the metric of M̃ is given by

ds2 = −dt2 + a21(t)dx2 + a22(t)dy2 + a23(t)dz2,

where aI(t) is the time-dependent scale factor of the direction I. If one further requires
isotropy, i.e. an isotropy group SO(3), this metric can be reduced to

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2).

By the same token the metric of the compact homogeneous universe M can be found
by inserting the metric hab of the compact space Σ. The spatial metric of a torus is given
by Eq. (2.5) such that inserting this metric into Eq. (2.6) leads to the metric of a torus
universe.
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2.3.1 Geometrical Hamiltonian

In the previous section we derived the metric of a toroidal universe which enables us to
compute the components of the affine connection ∇, the Riemann tensor, the Ricci scalar
and finally the Einstein-Hilbert action given by

SE−H[g] =
1

2κ

�

R×T3

∗R[g] =

�

R

dt

�

T3

d3xL, κ = 8πG (2.7)

where ∗ is the Hodge star operator. Because of the complexity of the metric we used a
computer program to compute the expressions for these quantities and it turned out that
they are very complicated and long. We thus only write the result of the Lagrange density
given by

L =
1

4κ

1

a1 1a2 2a3 3
×

�
�
(a3

2)2 + (a3
3)2
� �

a2
1ȧ1

1 − a1
1ȧ2

1
�2
+ (a1

1)2(a3
2)2(ȧ2

2)2

+2a2
2
�
ȧ1

1a2
1a3

2
�
a1

1ȧ3
1 − ȧ1

1a3
1
�

+a1
1
�
ȧ1

1ȧ2
1a3

1a3
2 − a1

1a3
2ȧ2

1ȧ3
1

+ȧ2
2

�

−a1
1a3

2ȧ3
2 + 2a3

3 d

dt
(a1

1a3
3)

�

+2a1
1(a3

3)2ä2
2
��

+(a2
2)2
�
(ȧ1

1)2(a3
1)2 − 2a1

1ȧ1
1a3

1ȧ3
1

+a1
1
�
4a3

3 d

dt
(ȧ1

1a3
3) + a1

1
�
(ȧ3

1)2 + (ȧ3
2)2 + 4a3

3ä3
3
���
�

The second order time derivatives äi
i can be eliminated with a partial integration1 such

that

L =
1

4κ

1

a1 1a2 2a3 3
×

�
�
(a3

2)2 + (a3
3)2
� �

a2
1ȧ1

1 − a1
1ȧ2

1
�2
+ (a1

1)2(a3
2)2(ȧ2

2)2

+ (a2
2)2
�
(a3

1)2(ȧ1
1)2 − 2a1

1a3
1ȧ1

1ȧ3
1

+a1
1
�
a1

1
�
(ȧ3

1)2 + (ȧ3
2)2
�
− 4a3

3ȧ1
1ȧ3

3
��

− 2a2
2
�

a2
1a3

2ȧ1
1
�
a3

1ȧ1
1 − a1

1ȧ3
1
�

+a1
1
�
a1

1a3
2ȧ2

1ȧ3
1 − a3

1a3
2ȧ1

1ȧ2
1

+ȧ2
2
�
a1

1a3
2ȧ3

2 + 2a3
3(a3

3ȧ1
1 + a1

1ȧ3
3)
���
�

1The boundary term arising from the partial integration annihilates the boundary term in the Einstein-Hilbert
action given by

1

κ

Z

R3

d
3
x
√

hK,

where K is the trace of the second fundamental form.
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This Lagrangian can also be written as L = 1
2κ

GAB q̇Aq̇B, where q = 1 . . . , 6,
q̇A = (a1

1, a2
1, a2

2, a3
1, a3

2, a3
3) and

(GAB) =












(a2
2

a3
1
−a2

1
a3

2)2+(a2
1)2(a3

3)2

2a1
1

a2
2

a3
3

a2
2

a3
1

a3
2
−a2

1((a3
2)2+(a3

3)2)

2a2
2

a3
3 −a3

3
−

a2
2

a3
1+a2

1
a3

2

2a3
3 0 −a2

2

a2
2

a3
1

a3
2
−a2

1((a3
2)2+(a3

3)2)

2a2
2

a3
3

a1
1((a3

2)2+(a3
3)2)

2a2
2

a3
3 0 −

a1
1

a3
2

2a3
3 0 0

−a3
3 0

a1
1(a3

2)2

2a2
2

a3
3 0 −

a1
1

a3
2

2a3
3 −a1

1

−a2
2

a3
1+a2

1
a3

2

2a3
3 −

a1
1

a3
2

2a3
3 0

a1
1

a2
2

2a3
3 0 0

0 0 −
a1

1
a3

2

2a3
3 0

a1
1

a2
2

2a3
3 0

−a2
2 0 −a1

1 0 0 0













We introduce the momenta

pa b :=
∂L

∂ȧa b
(2.8)

conjugate to the configuration variables aa
b such that the phase space P = T ∗C ⊂ R12 is

the cotangent bundle over C with

{aa
b, pc d} = δcaδ

b
d, {aa

b, ac
d} = 0, {pa b, p

c
d} = 0. (2.9)

Inserting ȧa
b = ȧa

b(pc d) into the Legendre transform of Eq. (2.7) we get the Hamiltonian

Hg =
κ

4

1

a1 1a2 2a3 3
×

�

(a1
1p1 1)

2 + (a2
2p2 2)

2 + (a3
3p3 3)

2 + (a2
1p2 1)

2 + 4(a2
2p2 1)

2

+ (a3
1p3 1)

2 + 4(a3
2p3 1)

2 + 4(a3
3p3 1)

2 + (a3
2p3 2)

2

+ 4(a3
3p3 2)

2 − 2a3
2a3

3p3 2p
3
3

+ 2a1
1p1 1

�
a2

1p2 1 − a2
2p2 2 + a3

1p3 1 − a3
2p3 2 − a3

3p3 3
�

(2.10)

− 2a3
1p3 1

�
a3

2p3 2 + a3
3p3 3
�

− 2a2
1p2 1

�
a2

2p2 2 − a3
1p3 1 + a3

2p3 2 + a3
3p3 3
�

+ 2a2
2
�
a3

2
�
4p2 1p

3
1 + p2 2p

3
2

�
− p2 2

�
a3

1p3 1 + a3
3p3 3
��
�

This Hamiltonian can also be written as Hg =
1
2
GABpApB, where GAB is the inverse matrix

of GAB. The equations of motion for the phase space variables can be found with

ȧi
j = {ai

j,H}, ṗi
j = {pi

j ,H}

and are rather complicated functions. The Hamiltonian constraint2 Hg ≈ 0 reduces the
dynamical degrees of freedom from dim P = 12 to dim P = 10, which agrees with [15].
To compare this Hamiltonian with the usual Bianchi type I models we set all offdiagonal
elements to zero and ai

i = ai, pi i = pi (no summation) we get

Hg =
κ

4

�
a1(p

1)2

a2a3
+

a2(p
2)2

a1a3
+

a3(p
3)2

a1a2
− 2

p1p2

a3
− 2

p2p3

a1
− 2

p1p3

a2

�

, (2.11)

2We use the convention C ≈ 0 when the constraint C is required to vanish.
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which corresponds to the result given in [36] up to a factor 2 in the definition of the action.
To get the isotropic case we further set ai = a, pi = p/3 and find that the Hamiltonian
constraint (2.10) reduces to the usual first Friedmann equation

Hg = −
κp2

12a

and the Hamiltonian equation ṗi j = −∂Hg/∂ai
j to the usual second Friedmann equation

ṗ = −
∂Hg
∂a

=
κp2

12a2
.

The second Hamiltonian equation is given by

ȧ = ∂Hg/∂p = −κp/(6a)

and allows us to recast the first Friedmann equation into the usual form

Hg = −3aȧ2/κ.

Furthermore, notice that all ai
j and pi j , i �= j have to vanish in order for the torus to

remain aligned with the Killing fields ξa. However we know that the universe is not perfectly
homogeneous from e.g. the temperature fluctuations of the CMB. Therefore we are led to
the conclusion that the evolution of the universe is also influenced by off-diagonal terms,
which means that a torus universe does not simply mean that it has a cubic form.

2.3.2 Matter Hamiltonian

Before we compute the evolution of a torus universe we have to add matter for reasons
given in Appendix B. The simplest form of matter is a scalar field φ which is homogeneous
in space3 and has mass m such that the action is given by

Iφ = −

� �
1

2
dφ ∧ ∗dφ+ ∗

�
1

2
m2
φφ

2 − V (φ)

��

,

where V (φ) is the potential of the scalar field. A Legendre transform of the action yields
the Hamiltonian

Hφ =
1

2
√

h
π2 +

√
h

2
m2
φφ

2 +
√

hV (φ),

where π is the momentum field conjugate to the scalar field and h = (a1
1)2(a2

2)2(a3
3)2

the determinant of the spacial metric (2.5). The total Hamiltonian is then given by

H = Hg +Hφ = Hg +
1

2
√

h
π2 +

√
h

2
m2
φφ

2 +
√

hV (φ), (2.12)

where Hg is given by Eq. (2.10). From this equation the Friedmann equations can be
computed according to (2.8) andH ≈ 0. In the sequel we only consider a scalar field without
potential, i.e.V (φ) ≡ 0. We present two numerical solutions: the first one is a massless
scalar field (see Figure 2.3) and the second one a massive scalar field (see Figure 2.4).

3Since scalar fields live by definition in the trivial representation of the rotation group SO(3) it is not possible
to construct a scalar field which is homogeneous but not isotropic
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Figure 2.3: Left panel: Solutions of (2.12) with the conditions ai
i(1) = 1, pi i(1) = −1 (no

summation), ai
j(1) = 0 (i �= j), p3 1(1) = p3 2(1) = 0, p2 1(1) = 0.2, φ(1) = 10−3, π(1) = 1.2.

The diagonal momenta pi i are chosen to be negative such that all sides of the torus expand. The
solid black line is a1

1, the dashed one a2
2, the dotted one a3

3 and the gray one the off-diagonal
a2

1. The time t parametrizes the coordinate time in natural units (c = κ = � = 1). Right panel:
Solution of (2.12) at two different times. The initial condition is a cubic universe with ai

i ≡ a0,
pi i ≡ p0, ai

j = 0 (i �= j), pi j �= 0 (i �= j). In both cases the mass and the potential of the scalar
field have been set to zero.
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Figure 2.4: Left panel: Comparison between the scale factor of the isotropic case (gray line) and
the general case with the initial conditions as in Figure 2.3. Right panel: As Figure 2.3 but for a
scalar field with mass mφ = 0.002. Starting from t ∼ 100 the mass of the scalar field induces an
inflationary expansion of the universe.

2.4 Ashtekar Variables for the Torus Universe

In Section 1.2 we introduced the Ashtekar variables Aia(x) and Eai (x), where Aia is an su(2)-
valued connection and Eai a densitized triad, and described general relativity in terms of
these fields. Thanks to spatial homogeneity gravity reduces from an infinite dimensional
field theory to a finite dimensional theory. Let S̃ be the spatial isometry group acting
transitively on Σ̃. A pair of Ashtekar variables (Aia, E

a
i ) is said to be symmetric if for all

s ∈ S̃ there exists a local gauge transformation g : Σ̃→ SU(2) such that

(s∗A, s∗E) = (g−1Ag + g−1dg, g−1Eg), (2.13)
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where s∗ is the pullback. In Appendix A we reduce the degrees of freedom of the Ashtekar
connection for the general torus (see Figure 2.2). For the sake of simplicity we would like
to consider a torus with one degree of freedom less, namely one generated by the vectors
a1 = (a1

1, 0, 0)T , a2 = (0, a2
2, a2

3)T and a3 = (0, a3
2, a3

3)T (see Figure 2.5) such that the
metric is given by

hab =
�

c

aa
cab

c =




(a1

1)2 0 0
0 (a2

2)2 + (a2
3)2 a2

2a3
2 + a2

3a3
3

0 a2
2a3

2 + a2
3a3

3 (a3
2)2 + (a3

3)2



 . (2.14)

ξ

ξ

a

a

2

2

3

3

a1

ξ 1

Figure 2.5: The vectors a1, a2 and a3 span the torus with five Teichmüller parameters. The
vectors a2 and a3 lie in the ξ2ξ3-plane while a1 is aligned with ξ1

In terms of cotriads we have
hab = ηIJω

I
aω
J
b

with

(ωIa) =




a1

1 0 0
0 a2

2 a3
2

0 a2
3 a3

3



 .

These one-forms ωI = ωIadxa are dual to the vector fields XI = Xa
I ∂a, i.e. ωI(XJ) = δIJ ,

where XI is given by

X1 =





1
a1 1

0
0



 , X2 =
1

h




0

a3
3

−a2
3



 , X3 =
1

h




0

−a3
2

a2
2



 ,

where we defined h = a2
2a3

3 − a2
3a3

2. The Ashtekar connection is given by Aia = φ̄I
iωIa

(see Appendix A) with

(φ̄I
i) =




φ̄1

1 0 0
0 φ̄2

2 φ̄3
2

0 φ̄2
3 φ̄3

3



 (2.15)

such that

(Aia) =




a1

1φ̄1
1 0 0

0 a2
2φ̄2

2 + a2
3φ̄3

2 a3
2φ̄2

2 + a3
3φ̄3

2

0 a2
2φ̄2

3 + a2
3φ̄3

3 a3
2φ̄2

3 + a3
3φ̄3

3



 .
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We saw in Section 1.2 that the variable dual to the Ashtekar connection Aia is the densitized
triad Eai . A symmetry reduction of this triad leads to

(Eai ) =
√

hp̄I iX
a
I =

√
h






p̄1 1

a1 1 0 0

0 a3 3p̄2 2−a3 2p̄3 2

h

a3 3p̄2 3−a3 2p̄3 3

h

0 a2 2p̄3 2−a2 3p̄2 2

h

a2 2p̄3 3−a2 3p̄2 3

h




 , (2.16)

where we inserted Eq. (2.4) and defined

(p̄I i) =




p̄1 1 0 0
0 p̄2 2 p̄2 3
0 p̄3 2 p̄3 3



 ,

where h = (a1
1)2(a2

3a3
2 − a2

2a3
3)2 is the determinant of the spatial metric (2.14). The

symplectic structure in terms of the reduced variables can be derived from

1

κγ

�

T3

ȦiaE
a
i d

3x =
1

κγ

�

T3

√
h ˙̄φI

ip̄J iω
I
aX

a
Jd

3x =
V0
κγ

˙̄φI
ip̄I

i,

where we defined the volume V0 =
�
T3 d3x

√
h of T3 as measured by the metric h, to obtain

{φ̄I
i, p̄J j} =

κγ

V0
δJI δ

i
j . (2.17)

We would like to get rid of the dependence of these brackets on the volume. We thus define
new variables

φI
i = LI φ̄I

i, pI i =
V0
LI

p̄I i, (2.18)

such that

{φI
i, pJ j} = κγδJI δ

i
j , (2.19)

where L1 = a1
1, L2 =

�
(a2 2)2 + (a2 3)2 and L3 =

�
(a3 2)2 + (a3 3)2. Therefore we con-

clude that

Proposition 1. The classical configuration space AS = R5 is spanned by the five config-
uration variables φI

i. The phase space P = R10 is spanned by φI
i and the five momenta

pJ j satisfying the Poisson bracket (2.19).

Furthermore, note that the determinant of the densitized triad is given by

detEai = k p1 1(p
2
3p

3
2 − p2 2p

3
3), k :=

L1L2L3

V0
. (2.20)

The relation between the new variables (φI
i, pJ j) and the ’scale factors’ aa

b and their
respective momenta pa b can be found by using Eq. (1.3) and the Poisson brackets (2.9)
and (2.19). A closed form could only be found for p1 1 and is given by

|p1 1| = |a2
2a3

3 − a2
3a3

2|.
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2.5 Constraints in Ashtekar Variables for the Torus

We saw in Section 1.2 that the Hamiltonian formulation of GR is a fully constrained system.
Thanks to homogeneity the complicated expressions of these constraints simplify dramat-
ically. For example homogeneity requires that N �= N(x). Since we consider topologies
with flat spatial curvature the Hamiltonian is given by Eq. (1.13). Inserting Eqs. (2.15)
and (2.16) into Eq. (1.13) we get

Cgrav :=
1

2κ
NH = −

1

κγ2
1

�
|p1 1(p2 2p3 3 − p2 3p3 2)|

×

�
φ1

1p1 1
�
(φ2

2 − φ2
3)(p2 2 − p2 3) + (φ3

2 − φ3
3)(p3 2 − p3 3)

�

+(φ2
3φ3

2 − φ2
2φ3

3)(p2 3p
3
2 − p2 2p

3
3)
�
, (2.21)

where we defined N =
�

L1L2L3/V0 =const in order to simplify the Hamiltonian. Using
this expression we can compute the time evolution of the basic variables φi

j and pi j (see
Figure 2.6). Setting all off-diagonal terms to zero we see that Eq. (2.21) matches with
Eq. (3.20) in [36]. If we further set φ(i)

i = c and p(i) i = p we get

Cgrav = −
3

κγ2
c2
�
|p|, (2.22)

which is exactly the same result as the homogeneous and isotropic case [29].
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Figure 2.6: Solutions corresponding to the Hamiltonian (2.21) coupled to a massless scalar field
with vanishing potential. Left panel: the black thick solid line shows the evolution of φ1

1, φ2
2

corresponds to the black dashed line, φ3
3 the dotted line, φ2

3 the gray dashdotted one and φ3
2

the solid gray one. Right panel: the black thick solid shows the evolution of p1 1, p
2
2 is the black

dashed line, p3 3 the dotted line, p2 3 the gray dashdotted one and p3 2 the solid gray one. In both
cases the initial conditions are φ1

1 = 1.0, φ2
2 = 0.2, φ3

3 = 0.4, φ2
3 = 0.6, φ3

2 = 0.7, p1 1 = 1.0,
p2 2 = 0.3, p3 3 = 0.5, p2 30.5, p3 2 = 1.4, φ = 0.01 and pφ = 8.1. The time t parametrizes the
coordinate time in natural units (c = κ = � = 1).

The Gauss constraint for a homogeneous model is given by

Gi = �ijkφI
ipI k. (2.23)

With our choice of variables two Gauss constraints are automatically satisfied, namely
G2 = G3 ≡ 0. However, we can still perform a global SU(2) transformation along τ1 which
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is implemented by the nonvanishing Gauss constraint

G1 = φ2
2p2 3 + φ3

2p3 3 − φ2
3p2 2 − φ3

3p3 2 ≈ 0 (2.24)

generating simultaneous rotations of the pairs (φ2
2, φ2

3), (p2 2, p
2
3) resp. (φ3

2, φ3
3),

(p3 2, p
3
3). Thus the norms of these vectors and the scalar products between them are

gauge invariant. The Gauss constraint allows us to get rid of e.g. the pair (φ3
2, p3 2) by

fixing the gauge in the following way: we rotate the connection components such that
φ3

2 = 0. Because the length �φ3� =
�
(φ3

2)2 + (φ3
3)2 is preserved we know that φ3

3 �= 0.
The Gauss constraint then implies that p3 2 = (φ2

2p2 3 − φ2
3p2 2)/φ3

3. This gauge fixing
reduces the degrees of freedom by two.

The diffeomorphism constraint is given by Eq. (1.10) and since F iab = �i jkA
j
aA
k
b (∂aA

i
b =

0 thanks to homogeneity) we find that

Ha = �i jkA
j
aA
k
bE

b
i ∝ AiaGi. (2.25)

The gauge fixing we just performed ensures that the diffeomorphism constraint also van-
ishes.

2.6 Canonical Transformation

In this subsection we introduce a set of new variables which will greatly simplify the analysis
of the kinematical Hilbert space. We first perform a canonical transformation on the
unreduced phase space:

Q1 = φ1
1, P 1 = p1 1,

Q2 =
�
(φ2

2)2 + (φ2
3)2, P 2 =

p2 2φ2
2 + p2 3φ2

3

�
(φ2

2)2 + (φ2
3)2

Q3 =
�
(φ3

2)2 + (φ3
3)2, P 3 =

p3 2φ3
2 + p3 3φ3

3

�
(φ3

2)2 + (φ3
3)2

(2.26)

θ1 = arckcos

�
φ2

2

�
(φ2

2)2 + (φ2
3)2

�

, Pθ1 = p2 3φ2
2 − p2 2φ2

3

θ2 = arckcos

�
φ3

3

�
(φ3

2)2 + (φ3
3)2

�

, Pθ2 = −p3 3φ3
2 + p3 2φ3

3,

where k ∈ Z (k = 0 denotes the principal value), such that the variables are mutually
conjugate:

{QI , P
J} = κγδJI , {θα, Pθβ} = κγδα,β. (2.27)

We choose the convention that the diagonal limit can be recovered by setting θ1 = θ2 = 0.
The inverse of this canonical transformation will be important in the sequel and is given
by:

φ2
2 = Q2 cos(θ1), φ2

3 = Q2 sin(θ1),

p2 2 = P 2 cos(θ1)−
Pθ1 sin(θ1)

Q2
, p2 3 =

Pθ1 cos(θ1)

Q2
+ P 2 sin(θ1), (2.28)

φ3
2 = Q3 sin(θ2), φ3

3 = Q3 cos(θ2),

p3 2 = P 3 sin(θ2) +
Pθ2 cos(θ2)

Q3
, p3 3 = −

Pθ2 sin(θ2)

Q3
+ P 3 cos(θ2).
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It is important to note that Q2, Q3 ∈ R+ and θ1, θ2 ∈ [kπ, (k + 1)π] where we restrict the
values of k to be either k = 0 if sgn(φ2

3) > 0 or k = 1 if sgn(φ2
3) < 0. If sgn(φ2

3) = 0 then
we have the case k = 0 if sgn(φ2

2) > 0 or k = 1 if sgn(φ2
2) < 0. The function arc1cos(x)

is related to the principal value via arc1cos(x) = 2π−arccos(x). With this convention we
can recover Eq. (2.26) unambiguously from Eq. (2.28).

The Hamiltonian constraint (2.21) is given in terms of the new variables by

Cgrav =
(2κγ2)−1

��
�
�
�
P 1[cos(θ1+θ2)(Pθ1

Pθ2
−P 2P 3Q2Q3)+(P 2Pθ2

Q2+P 3Pθ1
Q3) sin(θ1+θ2)]

Q2Q3

�
�
�
�

×

×

�

2P 1Q1

�
cos(2θ2)Pθ2 + P 2Q2(sin(2θ1)− 1) + P 3Q3(sin(2θ2)− 1)

�

+ P 2Q2

�
Pθ2 sin(2(θ1 + θ2))− 2 cos2(θ1 + θ2)P

3Q3

�
(2.29)

+ Pθ1

�
2 cos2(θ1 + θ2)Pθ2 + 2 cos(2θ1)P

1Q1 + P 3Pθ3 sin(2(θ1 + θ2))
��

Using this Hamiltonian we can compute the time evolution of the basic variables Qi, θα,
P i and Pθα (see Figure 2.7). We choose the initial conditions so that they correspond
to the values of the old variables (see caption of Figure 2.6). Comparing the solutions
to Eq. (2.21) with the solutions to Eq. (2.29) allowed us to ensure that the canonical
transformation (2.26) was performed correctly as both solutions matched up to numerical
accuracy.
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Figure 2.7: Solutions corresponding to the Hamiltonian (2.29) coupled to a massless scalar field
with vanishing potential. Left panel: the black thick solid shows the evolution of Q1, Q2 is the
black dashed line, Q3 the dotted line, θ1 the gray dashdotted one and θ2 the solid gray one.
Right panel: the black thick solid shows the evolution of P 1, P 2 is the black dashed line, P 3 the
dotted line, Pθ1 the gray dashdotted one and Pθ2 the solid gray one. In both cases the initial
conditions are Q1 = 1, Q2 = 0.63, Q3 = 0.81, θ1 = 1.25, θ2 = 1.05, P 1 = 1, P 2 = 0.57, P 3 = 1.46,
Pθ1 = −0.08, Pθ2 = 0.21, φ = 0.01 and pφ = 8.1.

The only nontrivial Gauss constraint (2.24) is then given by

G1 = Pθ1 − Pθ2 , (2.30)

which vanishes only when Pθ2 = Pθ1. We are free to fix the gauge by setting θ2 = 0. The
same result can be obtained from the gauge fixing performed in Section 2.5 so that

Q3 = φ3
3, P 3 = p3 3, θ2 = 0 and Pθ2 = Pθ1 .
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The symplectic structure of the reduced 8-dimensional phase space is given by

Ω =
V0
κγ

(dQ1 ∧ dP 1 + dQ2 ∧ dP 2 + dQ3 ∧ dP 3 + dθ1 ∧ dPθ1).
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Chapter 3

Toroidal Loop Quantum Cosmology

In this chapter we shall quantize the torus universe derived in the former chapter. Since
we have to deal with a constrained system we first give an example of a quantization of
constrained systems. We shall then give the guidelines of the canonical quantization with
constraints and apply them to our torus universe.

3.1 Electromagnetism as an Example of a Quantization with

Constraints

Let us briefly explain the quantization of systems with constraints with the theory of
electromagnetism, further details can be found in [98, 114]. In Section 2.1 we introduced
the Maxwell action and its resulting equations of motion for the 4-potential Aµ. Since
a quantization usually requires a Hamiltonian we have to perform a Legendre transform
of the Maxwell action (2.1). This action can explicitly written in terms of electric and
magnetic fields:

SM [ �E, �B; �A, φ] =

�

dt

�

d3x

�

−
1

2

�
�E2 − �B2

�
+ �A ·

�
∂ �E

∂t
− �∇∧ �B

�

+ φ�∇ · �E

�

.

The stationarity of the action leads to the four Maxwell equations

δSM

δ �A
=

∂ �E

∂t
− �∇ ∧ �B = 0,

δSM
δφ

= −�∇ · �E = 0, (3.1)

δSM

δ �E
= −�E −

∂ �A

∂t
− �∇φ = 0,

δSM

δ �B
= �B − �∇∧ �A = 0. (3.2)

The canonical momenta π0, πa of the configuration variables φ, �A are tensor densities of
weight +1 and are defined by

πφ :=
δS

δφ̇
= 0, (3.3)

�π :=
δS

δ �̇A
= �̇A− �∇φ = �E. (3.4)

The first equation is a primary constraint because the momentum conjugated to φ vanishes.
The Hamiltonian density is

H =
1

2
( �E2 + �B2) + φ�∇ · �E + πφ

∂φ

∂t
. (3.5)
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The equations of motion are then given by taking the Poisson brackets with the Hamilto-
nian. For example the time evolution of π0 is given by

π̇0 = −
δH

δA0

= ∂aE
a = 0

which guarantees that the primary constraint π0 = 0 is preserved in time. This equation
defines the Gauss constraint which is automatically conserved. The last term in Eq. (3.5)
can be taken to vanish if we impose the constraint (3.3), that is, we can get rid of this term
by fixing a gauge (e.g. φ = 0). However we would like to include the pair (φ, πφ) in the
phase space such that

{Ai(�x, t), Ej(�y, t)} = −δijδ
3(�x− �y), {φ(�x, t), πφ(�y, t)} = δ3(�x− �y).

The reason is that in a relativistic notation Aµ = (φ, �A), πµ = (πφ, �E) we have

{Aµ(�x, t), πν(�y, t)} = δνµδ
3(�x− �y).

The Maxwell equations can be recovered with Φ̇ = {Φ, H} for any Φ ∈ ( �A, �E, φ, πφ).
The Maxwell equations are invariant under a gauge transformation

A� = A+ dΛ

provided the gauge parameter Λ vanishes sufficiently fast at spatial infinity. The generator
of the gauge transformation is given by

G[Λ] = −

�

d3xπµ∂µΛ

such that
δΦ = {Φ, G[Λ]}.

In order for δ �E and δπφ to vanish the two constraints

�∇ · �E = 0, πφ = 0

have to be fulfilled. This in turn implies that G[Λ] = 0.
On the other hand, we can use the gauge invariance to fix e.g. φ = 0. The implication is

that the term φ�∇· �E vanishes from the action such that the reduced phase space is spanned
by {Ai(�x, t), Ej(�y, t)} = −δijδ

3(�x − �y). The degrees of freedom of the phase space have
thus been reduced by one component (at every point). The Hamiltonian is then given by

Hred =
1

2

�
�E2 + �B2

�
.

Since the constraint �∇ · �E = 0 has disappeared from the Hamiltonian it has to be imposed
separately. This constraint requires the longitudinal electric field to vanish, implying that
the dimensionality of the physical phase space is again reduced by one unit at every point.
Physically it means that both the longitudinal and the scalar polarizations have disappeared
from the physical phase space, leaving only two transversal components.

Given a momentum �k choose three vectors

�e3 =
�p

|�p|
, �e1, �e2
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which form a right-handed orthonormal system. Consider the classical plane wave in a box
of volume V :

Aµ(�x, t) =
1
√

V

�

k

3�

s=0

�
a−
k,se

i(k·x−ωt) + a+
k,se

−i(k·x−ωt)
�
eµs (k)

where the component eµ0 is the scalar polarization. The Fourier transform of the constraint
�∇ · �A = 0 implies the relation

�k · �ek = 0,

i.e. the longitudinal component of the photon vanishes. Because of the gauge fixing φ = 0
the photon has only two transversal components �e1 and �e2.

3.1.1 Quantization of the Electromagnetic Field

The gauge condition ∂µA
µ = 0 implies

a−�k,0 = a−�k,3.

The quantization of the field Aµ is obtained by using creation operators â+�k,s and annihilation

operators â−�k,s defined on a Fock space F(H). Let |
�k, eµ� be a basis of the one photon vector

space1 X. If we equip this space with a sesquilinear form

��k, eµ|�k
�, eν� = ηµν

1

2|�k|
δ(�k − �k�)

we see that the norm is negative for scalar polarizations and zero for longitudinal polar-
izations. On the other hand we know that these polarizations are unphysical. However,
imposing the gauge condition at the operator level contradicts the relations for the creation
and annihilation operators since [â−�k,3, â

+
�k,3
] = Id but [â−�k,0, â

+
�k,0
] = −Id, thus requiring us

to weaken this condition. Following Gupta and Bleuler we construct the physical Hilbert
space Hphys which consists of all states Ψ ∈ X with the property

â−�k,0Ψ = 0, â−�k,3Ψ = 0

with the property �Ψ|Ψ� > 0 (Ψ �= 0). For further details see e.g. [98, 114].
The construction sketched above is typical when a system with constraints has to be

quantized. In LQG the SU(2)-Gauss constraint is solved by taking only gauge invariant
variables. The diffeomorphism constraint is more difficult to solve because it fails to be
weakly continuous, thus requiring to find a (distributional) space through group averaging.
We shall see that in the case of loop quantum cosmology on a torus the Gauss constraint
is not trivially solved.

3.2 Canonical Quantization with Constraints

The example just given of the quantization of electromagnetism can be generalized to Yang-
Mills fields. The underlying principle of every known interaction is a gauge theory, i.e. a
field theory with constraints. In this section we give the relevant points of a canonical

1Since the 4-momentum is null kµ is uniquely determined by �k.
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quantization with constraints. The general case as well as further details can be found in
[104].

Let (M,Ω) be a constrained symplectic manifold with a symplectic structure Ω and
constraints CI(N

I) satisfying {CI , CJ} = fKIJCK for some smooth functions fKIJ . The index
I takes values in some finite index set and N I is a Lagrange multiplier corresponding to
the constraint CI .

1. Polarization: Since there are many ways to coordinatize the phase space a judicious
choice can be found by requiring that either the equations of motion or the constraints
be as simple as possible. The variables on this phase space have to be split by a
polarization of the symplectic manifold into configuration variables and momentum
variables. In the previous chapter we already introduced two sets of canonical variables
given in Eqs. (2.19) and (2.27).

2. Quantum Configuration Space: In general the classical configuration space C has to
be extended to a more general quantum configuration space C̄. In a field theory, while
the classical configuration space is typically some space of smooth fields the quantum
configuration space is a distributional space. For instance the classical configuration
space of a free scalar field is given by e.g. the space of smooth functions with compact
support C∞

0 (R3). When passing to quantum theory this space has to be enlarged to
the space of distributions, e.g. S �.

3. Kinematical Hilbert Space: The quantum configuration space C̄ has to be equipped
with a structure of a Hilbert space Hkin := L2(C̄, dµ) which must carry an irreducible
representation of the canonical commutation relations, i.e. we impose the relations

[Q̂, P̂ ] = i� �{Q, P}. Furthermore the Hilbert must implement the classical complex
conjugation relations among the elementary variables as adjointness relations on the
corresponding operators.

4. Constraint Operators: Represent the constraints CI as self-adjoint operators ĈI on
Hkin. These operators have to be densely defined inHkin, i.e. their domain of definition
D(ĈI) is dense in the Hilbert space.

5. Imposing the Constraints: Solve the constraints in the quantum theory by imposing2

ĈIψ = 0 for ψ ∈ Hphys.

3.3 Holonomies

In this chapter we would like to introduce the concept of holonomies as they play a central
role in both LQG and LQC. We shall first give a geometrical definition along the lines of
[21, 74].

Let P (M, SU(2)) be a principal fiber bundle over the base manifold M with projection
π : P → M . For simplicity we assume the fiber bundle is trivial such that P ∼= M×SU(2).
Let A = Aiaτidxa ∈ Λ1(M) ⊗ su(2) be a connection. We would like to define a parallel
transport along a smooth path γ : [0, 1]→M with γ(0) = p and γ(1) = q, that is, given a
group element u(t) in the fiber Pγ(t) over γ we define the parallel transport of u(t) along γ

2Normally one has to choose a triplet D ⊂ H ⊂ D∗ and a Ψ ∈ D∗ such that Ψ(ĈIψ) = 0, ∀ψ ∈ D. But since we
will only solve the Gauss constraint we can restrict the analysis to ĈIψ = 0.
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as3

Dγ̇(t)u(t) =
d

dt
u(t)− u(t)A(γ̇(t)) =

d

dt
u(t)− u(t)Aµγ̇

µ = 0, (3.6)

where Dγ̇ is the covariant derivative along γ and γ̇(t) ≡ d
dt

γ(t) defines a vector tangential
to γ at time t. The second equality was obtained by expanding γ̇(t) in the basis ∂ν of the
tangential space TM and noting that dxµ is an element of the cotangent space T ∗M such
that

A(γ̇(t)) = Aµdxµ(γ̇(t)) = Aµdxµ(γ̇ν∂ν) = Aµγ̇
νdxµ(∂ν) = Aµγ̇

µ.

The solution to Eq. (3.6) is given by

u(t) = u(0)P exp

�� t

0

A(γ̇(s))ds

�

,

where u(0) = π−1(p) and P is the path ordering operator.

Definition 6. Let us denote u(0)hγ[A] the result of parallel transporting u(0) ∈ Pp to
u(1) ∈ Pq along γ, where Pp,q is the fiber over the point p, q ∈M . The map

hγ[A] : Pp → Pq

is called the holonomy along the path γ.

To obtain the transformation rule of holonomies consider a gauge transformation g of
u(t) such that

w(t) = u(t)g(γ(t)).

The time derivative of w(t) is given by

d

dt
w(t) =u(t)Aµgγ̇µ(t) + u(t)(∂µg)γ̇

µ

=w(t)g−1Aµgγ̇µ + w(t)g−1(∂µg)γ̇
µ,

where we inserted Eq. (3.6). Furthermore we have

d

dt
w(t) = w(t)A�

µγ̇
µ,

where the transformation rule (1.6) has been used. Thus w(t) also satisfies the parallel
transport equation

D�
γ̇(t)w(t) = 0.

Recall from Definition 6 that the holonomy hγ[A] is a map from u(0) to u(1). Similarly
hγ [A

�] sends w(0) = u(0)g(γ(0)) to w(1) = w(1)g(γ(1)) such that

hγ[A
�] = g−1(γ(0))hγ[A]g(γ(1)).

Suppose γ : [0, 1] → M is a loop, i.e. γ(0) = γ(1). A consequence of the above transfor-
mation rule is that the so-called Wilson loop

W (γ, A) = tr(hγ [A]) = tr

�

P exp

�

γ

A

�

is gauge invariant.

3Most books define the covariant derivative as Dγ̇(t)u(t) =
d
dt

u(t) + A(γ̇(t))u(t) = 0 with solution

u(t) = P exp

„

−

Z t

0

A(γ̇(s))ds

«

u(0).

Nevertheless we will follow the convention in LQG and LQC.
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3.4 Foundation of Loop Quantum Cosmology on R3

In Sec. 1.2 we saw that GR can be written in terms of Ashtekar variables Aia such that
it becomes a constrained Yang-Mills theory. According to the second step in Section 3.2
we have to find the quantum configuration space. One of the fundamental assumptions of
LQG is that holonomies of the su(2)-valued connection of general relativity in the Ashtekar
formulation become densely defined operators. As shown in Appendix C there exists no
operator analog corresponding to the connection A. Thus, if we want to quantize cosmology
along the lines of LQG we are only allowed to use holonomies as our basic variables.

Let us consider the case of isotropic cosmology where the isotropy group is the Eu-
clidean group. Using Eq. (2.13) the pair (A, E) can be written as [11] A = c̃ 0ωiτi, E =

p̃
�

0q 0eiτ
i, where the constants c̃ and p̃ carry the only non-trivial information of (A, E),

0q is the determinant of the fiducial flat metric 0qab =
0ωia

0ωib and τi are the traceless
generators of SU(2) proportional to the Pauli matrices (see footnote on page 6). Since R3

is noncompact and the fields are spatially homogeneous the integrals in Eq. (1.8) diverge.
We thus restrict a cell V adapted to 0qab with volume V0. Defining the variables

c = V
1
3
0 c̃ and p = V

2
3
0 p̃

the symplectic structure is given by

Ω =
3

γκ
dc ∧ dp. (3.7)

Thanks to homogeneity we only need holonomies along straight lines to recover the
connection A. The reason is that the holonomy along the straight edges γk(t) = γk(0) +

(µV
1/3
0

0ek)t, t ∈ [0, 1], with length µV
1/3
0 is given by

h
(µ)
k =P exp

�

γk

A = exp

�

γk

c

V
1/3
0

0ωiτi = exp

� 1

0

c

V
1/3
0

µV
1/3
0

0ωia(
0eak)τidt

=exp(µcτk) = cos
µc

2
1+ 2 sin

µc

2
τk (3.8)

where 1 is the identity 2× 2 matrix such that

−2 lim
µ→0

tr

�
h
(µ)
k τk
µ

�

= −2 lim
µ→0

tr

�
2 sin µc

2
(τk)

2

µ

�

= 2 lim
µ→0

sin µc
2

µ
= c.

Thus the elementary variables can be chosen to be exp(iµc/2) =: Nµ(c). These functions
span the algebra of almost periodic functions as explained in Appendix D and form an
orthonormal basis in the Hilbert space HB = L2(R̄B, dµB) with scalar product

�Nµ(c),Nµ�(c)� := µB(Nµ(c)Nµ�(c)) = lim
T→∞

1

2T

� T

−T

Nµ(c)Nµ�(c)dc = δµ,µ� .

Note that the basis spanned by Nµ(c) is uncountable such that the Hilbert space
L2(R̄B, dµB) is non-separable. Let π : C̄ → L(HB) be a representation of the C∗-algebra of
almost periodic functions defined by (see Appendix C)

(π(exp(iλc/2))Nµ)(c) = Nµ+λ(c).
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This representation fails to be weakly continuous since

lim
δ→0
�Nµ(c), (π(exp(iδc/2))Nµ�)(c)� = lim

δ→0
�Nµ(c),Nµ�+δ(c)� = 0

such that we have a representation inequivalent to the Schrödinger representation of quan-
tum cosmology. Furthermore, according to Theorem 7 there is no well defined operator ĉ
on HB.

In isotropic LQC the momentum conjugated to the Ashtekar connection component c
is the densitized triad component p (see Eq. (3.7)). The operator p̂ acts by derivation with
eigenfunctions

p̂|µ� =
8πγl2Pl
6

µ|µ� ≡ pµ|µ�, (3.9)

where Nµ(c) = �c|µ� and lPl =
√

G� is the Planck length. Moreover we have

p̂ tr(h
(µ)
k ) = 2p̂ cos

µc

2
= i

8πγl2Pl
3

µ sin
µc

2
. (3.10)

The commutator between these two operators is

[exp(iµc/2), p̂] = i
γl2Pl
2

.

Moreover the operator V̂ representing the volume of the cell V is given by V̂ = |p̂|3/2 such
that

V̂ |µ� =

�
8πγ

6
|µ|

� 3
2

l3Pl|µ�.

To fulfill points 4 and 5 of the quantization program we first note that both the diffeo-
morphism and Gauss constraints are satisfied by the choice of variables. The gravitational
quantum Hamiltonian constraint coupled to a scalar field has been rigorously solved in
[13, 14].

3.5 Foundation of LQC for a Toroidal Topology

In this section we shall follow the guidelines given in Section 3.2 for a toroidal topology.
The situation will be more complicated because of additional degrees of freedom. Moreover
the Gauss constraint (2.24) does not vanish and has also to be solved at the quantum level.

Let us compute the holonomies along the path

γI : [0, 1]→ T3, t �→ γI(t) (3.11)

with length λI such that the velocity vector γ̇I(t) is parallel to XI defined in Eq. (2.4). The
holonomy is then given by

h
(λI )
I [A] =P exp

��

γI

A

�

= exp

�� 1

0

Aiaτi|γ̇
a
I |dt

�

=exp
�
λ(I)φJ

iτiω
J
a (X

a
I )
�
= exp(λ(I)φI

iτi). (3.12)

This expression can be written as

h
(λI )
I = cos

�
λ(I)��φI�/2

�
+ 2

φI
iτi

��φI�
sin
�
λ(I)��φI�/2

�
(no summation over I),

39



where

��φα� :=

�
�

i

(φα i)2.

As we shall see the problem is that this expression cannot be used in this form. Using the
canonical transformation (2.26) we can re-express the holonomies such that

h
(λ1)
1 = cos(λ1Q1/2)1+ 2τ1 sin(λ1Q1/2),

h
(λ2)
2 = cos(λ2Q2/2)1+ 2(τ2 cos θ1 + τ3 sin θ1) sin(λ2Q2/2), (3.13)

h
(λ3)
3 = cos(λ3Q3/2)1+ 2(τ2 sin θ2 + τ3 cos θ2) sin(λ3Q3/2).

Thus, matrix elements of the exponentials of Q1, Q2 and Q3 are trigonometric functions.
The situation is similar to Eq. (3.8) such that we can choose the elementary variables to
be exp(iλIQI/2), I = 1, 2, 3. These variables are periodic functions with period 2π/λI ,
λI ∈ R, and form a C∗-algebra of almost periodic functions (see Appendix D). On the
other hand the variables θ1,2 are periodic angles such that only strictly periodic functions
exp(ikαθα) ∈ U(1) with kα ∈ Z are allowed. Thus, any function generated by this set can
be written as

g(Q1, Q2, Q3, θ1, θ2) =
�

λ1,λ2,λ3,k1,k2

ξλ1,λ2,λ3,k1,k2 ×

× exp

�
1

2
iλ1Q1 +

1

2
iλ2Q2 +

1

2
iλ3Q3 + ik1θ1 + ik2θ2

�

(3.14)

where ξλ1,λ2,λ3,k1,k2 ∈ C, generating a C∗-algebra calledAS. Note that this function is almost
periodic in Q1,Q2 and Q3 and strictly periodic in θ1 and θ2. As explained in Appendix D
the spectrum of the algebra of the almost periodic functions is the Bohr compactification
R̄B := Δ(CylS) of the real line and can be seen as the space of generalized connections
[11, 107]. Thus the functions (3.14) provide us a complete set of continuous functions on
R̄B × R̄B × R̄B × S1 × S1.

A Cauchy completion leads to a Hilbert space HS defined by the tensor product HS =
H⊗3
B ⊗H⊗2

S1 with the Hilbert spaces HB = L2(R̄B, dµ(c)) and HS1 = L2(S1, dφ) of square
integrable functions on R̄B and the circle respectively, where dφ is the Haar measure for
S1. The scalar product on e.g. H⊗3

B ⊗H
⊗2
S1 is given by (see Appendix D):

�fλ, fλ�� = lim
T→∞

1

2T

� T

−T

dξ

� 2π

0

dθ

2π
f̄λfλ�. (3.15)

An orthonormal basis forHB is given by the almost periodic functions �QI |µI� = exp(iµIQI/2)
(no summation) with µI ∈ R with �µI |µ

�
I� = δµI ,µ

�

I
. Analogously a basis for HS1 is given

by the strictly periodic functions �θα|kα� = exp(ikαθα) with �kα|k
�
α� = δkα,k�α.

We choose a representation where the configuration variables, now promoted to opera-
tors, act by multiplication via:

(ĝf)( �Q, �θ) = g( �Q, �θ)f( �Q, �θ).

The momentum operators act by derivation in the following way:

P̂ I = −iγl2Pl
∂

∂QI
, P̂θα = −iγl2Pl

∂

∂θα
, (3.16)
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where the Planck length is defined by l2Pl = G�. The eigenstates of all momentum operators
are given by

|�λ,�k� := |λ1, λ2, λ3, k1, k2�

:= |λ1� ⊗ |λ2� ⊗ |λ3� ⊗ |k1� ⊗ |k2�

with

P̂ I |�λ,�k� = γl2PlλI |
�λ,�k�, P̂θα|�λ,�k� =

γl2Pl
2

kα|�λ,�k�. (3.17)

The simple form of the momentum operators (3.16) may suggest that the Hilbert space
of LQC on a torus is simply expanded from L2(R̄3

B) to L2(R̄3
B) × L2(U(1)2). However

the situation is far more complicated because the important variables for the Gauss and
Hamiltonian constraints are not the new momenta P I and Pθα but the components pI i
of the triad. In terms of the new canonical variables they are complicated functions of
both the configuration and momentum variables, as can be seen from Eq. (2.28). These
expressions cannot be quantized directly because the Weyl operators corresponding to the
variables Q2,3 fail to be weakly continuous so that, by Theorem 7, no well defined operators

Q̂2,3 exist. The solution is to consider the momentum operators of the full theory given by
a sum of left and right invariant vector fields (see [104] for further details). In [26] the same
strategy was used to show that the triad components pI i act by derivation. In our case the
situation is more complicated since the triad components contain both configuration and
momentum variables. The triad operators act on functions in HS and are given by

p̂I i = −i
8πγl2Pl
2

�
X

(R)
i (hI) +X

(L)
i (hI)

�
, (3.18)

where X
(R)
i (hI) and X

(L)
i (hI) are the right and left invariant vector fields acting on the

copy of SU(2) associated with the edge eI of length 1 and are given by

X
(R)
i (hI) = tr

�

(τihI)
T ∂

∂hI

�

, X
(L)
i (hI) = tr

�

(hIτi)
T ∂

∂hI

�

.

So for example we have

X
(R)
2 (h2)tr(h2) = (τ2h2)

A
B

∂

∂(h)AB
((h2)

1
1 + (h2)

2
2)

= (τ2h2)
1
1 + (τ2h2)

2
2 = − cos θ1 sin

λ2Q2

2
.

Similarly, applying the operators p̂2 2 and p̂2 3 on the function tr(h2) we get

p̂2 2tr(h2) = 2p̂2 2 cos(λ2Q2/2) = 8πiγl2Plλ2 sin(λ2Q2/2) cos(θ1),

p̂2 3tr(h2) = 2p̂2 3 cos(λ2Q2/2) = 8πiγl2Plλ2 sin(λ2Q2/2) sin(θ1). (3.19)

On page 23 we showed how to reduce the symplectic structure for a homogeneous and
isotropic universe. In order to show that Eq. (3.19) reduces to Eq. (3.10) all diagonal
components must be equal and all offdiagonal components must be set to zero. Analogously,
θ1,2 = 0, Q1 = Q2 = Q3 ≡ c and λ1 = λ2 = λ3 ≡ µ. The second equation in Eq. (3.19)
reduces to p̂2 3tr(h2) = 0 as expected. The first equation in Eq. (3.19) reduces to

p̂2 2tr(h2) = 8πiγl2Pl sin
µc

2
,
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which differs from Eq. (3.10) by a factor of 3 caused by the factor 1/3 in the definition of
p̂ (see Eq. (3.9)). Applying these operators once again we get the expressions:

(p̂2 2)
2tr(h2) =

1

2
(8πγ)2l4Plλ

2
2 cos(λ2Q2/2) = (p̂2 3)

2tr(h2),

which means that cos(λ2Q2/2) is an eigenfunction of both (p̂
2
2)
2 and (p̂2 3)

2 with eigenvalue
(8πγ)2l4Pl/2λ

2
2. On the other hand we have

p̂2 2p̂
2
3tr(h2) = p̂2 3p̂

2
2tr(h2) = 0.

3.6 Quantization of the Triad Components

This section is devoted to the quantization of the components pI i of the densitized triad
Eai . As previously mentioned we cannot directly quantize the expressions (2.28) because

Q̂I does not exist as multiplication operator on H
S. In a loop quantization only holonomies

of the connections are represented as well-defined operators on HS. We shall see that there
are two ways of quantizing the components (2.28).

3.6.1 Quantization: 1st Possibility

In this subsection we follow the usual way in LQC by replacing every configuration variable
QI in Eq. (2.28) by sin(δIQI/2)/δI [31], where δI ∈ R\{0} plays the role of a regulator,
and compare it with the results just obtained in terms of left and right invariant vector
fields. For later purpose we order the operators in a symmetrical way to get the following
operators acting on functions of HS:

φ̂2
2 =

sin(δ2Q2)

δ2
cos θ1, p̂2 2 = cos θ1P̂

2 −
δ2
√
sin θ1

sin(δ2Q2)
P̂θ1
�
sin θ1,

φ̂2
3 =

sin(δ2Q2)

δ2
sin θ1, p̂2 3 = sin θ1P̂

2 +
δ2
√
cos θ1

sin(δ2Q2)
P̂θ1
�
cos θ1,

φ̂3
2 =

sin(δ3Q3)

δ3
sin θ2, p̂3 2 = sin θ2P̂

3 +
δ3
√
cos θ2

sin(δ3Q3)
P̂θ2
�
cos θ2, (3.20)

φ̂3
3 =

sin(δ3Q3)

δ3
cos θ2, p̂3 3 = cos θ2P̂

3 −
δ3
√
sin θ2

sin(δ3Q3)
P̂θ2
�
sin θ2.

Applying e.g. the operator p̂2 2 on cos(λ2Q2/2) with the definitions (3.17) we see that we
obtain the same result as Eq. (3.19) for δ = 1. This is not surprising in view of the fact
that we defined the operator p̂I i in Eq. (3.18) with holonomies along edges eI of length 1.

This substitution is problematic since the configuration variables Q2,3 are by definition
positive (see Eq. (2.26)). Therefore, for Q2,3 → sin(δ2,3Q2,3)/δ2,3 to be valid we restrict the
analysis to the domain 0 < Q2,3 < π. In the diagonal case the situation is less problematic
because the configuration variable c is arbitrary such that sin(δc) is also allowed to be
negative.

Classically, since the change of variables (2.28) is a canonical transformation the sym-
plectic structure is conserved, i.e. the Poisson bracket between p2 2 and p2 3 vanishes:

�
p2 2, p

2
3

�
Q,P

= 0
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A quantization of the above expression is obtained with the substitution {, } → −i[, ]� such
that the commutator between p̂2 2 and p̂2 3 should also vanish. However, the consequence
of the substitution of 1/QI by δI/ sin(δIQI) is that the commutator between these two
variables doesn’t vanish anymore:

�
p̂2 2, p̂

2
3

�
f(Q2, θ1) = −γ2l4Pl

(δ2)
2

1 + cos(δ2Q2)

∂f

∂θ1
(3.21)

Formally we can recover the classical limit by taking the limit

lim
δ2→0

[p̂2 2, p̂
2
3]f(Q2, θ1) = 0,

which however fails to exist on HS.
The operators p̂I i are partial differential operators with periodic coefficients in both

θ and Q. In spherically symmetric quantum geometry a similar situation arises when
considering the quantization of a nondiagonal triad component [31, 70, 71, 72]. However
the expression of this component reduces to a Hamiltonian whose eigenvalues are discrete,
resulting in an avoidance of the Schwarzschild singularity r → 0 inside of black holes. As
shown in the next section the situation is more complicated for a torus universe.

Quantization of p2 2

In order to find eigenfunctions of the triad operators let us consider an operator of the form

Âδ := −i cos θ
∂

∂Q
+ i

δ sin θ

sin(δQ)

∂

∂θ
+

iδ

2

cos θ

sinQ
, θ ∈ (0, 2π).

A substitution ξ = δQ shows that Âδ = δÂ1 ≡ δÂ so that it is sufficient to determine the
spectrum for δ = 1, i.e.

Â := −i cos θ
∂

∂ξ
+ i

sin θ

sin ξ

∂

∂θ
+

i

2

cos θ

sin ξ

This operator is symmetric on HA := L2(R̄B, dµB)⊗ L2(U(1)):

�f, Âg� = �Âf, g�, ∀f, g ∈ D(Â),

where D(Â) ⊂ HA is the domain of Â. The eigenfunctions of Â are obtained by solving

Âfλ(ξ, θ) = λfλ(ξ, θ), i.e.

−i cos θ
∂fλ(ξ, θ)

∂ξ
+ i

sin θ

sin ξ

∂fλ(ξ, θ)

∂θ
+

i

2

cos θ

sin ξ
fλ(ξ, θ) = λfλ(ξ, θ). (3.22)

We look for a solution of the form w = w(ξ, θ) [58] satisfying

−i cos θ
∂w

∂ξ
+ i

sin θ

sin ξ

∂w

∂θ
=

�

λ−
i

2

cos θ

sin ξ

�

fλ
∂w

∂fλ
(3.23)

such that the characteristic functions are given by

ξ̇ = −i cos θ(t), θ̇ = i
sin θ(t)

sin ξ(t)
and ḟλ =

�

λ−
i

2

cos θ(t)

sin ξ(t)

�

fλ(t), (3.24)
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where the dot is the time derivative. Combining the first two equations gives after integra-
tion

sin θ tan
ξ

2
= C1, (3.25)

i.e. every C1-function Ω1 ≡ Ω1(sin θ tan(ξ/2)) solves the left-hand side of Eq. (3.23). In
order to solve Eq. (3.22) we first note that

cos θ(t) = ±
�
1− C2

1 cot
2(ξ/2) ≡ iξ̇, (3.26)

where the upper sign is for θ ∈ [−π/2, π/2] and the lower one for θ ∈ (π/2, 3π/2). An
integration of this equation gives the result

t = ∓i

√
2b log(

√
2a cos(ξ/2) + b)

a
�
1− C2

1 cot
2(ξ/2)| sin(ξ/2)|

, (3.27)

where

a =
�
1 + C2

1 and b =
�
−1 + C2

1 + cos ξ(1 + C2
1 ).

The last characteristic equation in (3.24) can be written as

ḟλ =
∂fλ
∂ξ

ξ̇ =

�

λ−
i

2

cos θ

sin ξ

�

fλ

such that
∂fλ
∂ξ

=

�

i
λ

cos θ
+

1

2 sin ξ

�

fλ.

Eq. (3.26) can be inserted into the last equation such that after an integration we get the
result

log fλ = λt + log
��

tan(ξ/2)
�
+ C,

where t is given by Eq. (3.27) and C is an integration constant. The final solution to the
PDE (3.22) is thus given by

fλ(ξ, θ) = N1

�
�
tan(ξ/2)

�√
2 cos(ξ/2)α1 +

√
2i cos θ sin(ξ/2)

� 2λ
α1

�

Ω1(sin θ tan(ξ/2)),

(3.28)
where

α1(ξ, θ) =
�
1 + sin2 θ tan2(ξ/2).

The ± disappeared when we inserted Eq. (3.25) into b. In summary, the function (3.28)
is a product of two independent parts: the term in the square brackets solves Eq. (3.22)
and the C1-function Ω1(sin θ tan(ξ/2)) is annihilated by the left hand side of Eq. (3.23)
(see Appendix E). Though an arbitrary choice for Ω1 still solves Eq. (3.22), boundary
conditions determine this function unambiguously.

In the next two subsections we will study the spectrum of the operator Â on the two
Hilbert spaces HA = L2(R̄B, dµB) ⊗ L2(U(1), dθ) and L2(S2, dµH). This will be a neat
example to show the importance of the quantization procedure and the resulting Hilbert
space.
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Spectrum of Â on HA

In the previous section we constructed a symmetric operator Â with respect to the scalar
product (3.15) on HA, i.e. Â = Â+ with domain D(Â) ⊂ D(Â+). However, whether
the functions fλ are normalizable on HA depends on the initial value problem, i.e. on
the function Ω1(sin θ tan(ξ/2)). The simplest case Ω1(sin θ tan(ξ/2)) ≡ 1 results in a non-
normalizable function fλ as the integral of tan(ξ/2) over one period is not finite. The

conclusion is that the the spectrum of Â does not have a discrete part. On the other hand
if we choose Ω1 = exp(γ sin2 θ tan2(ξ/2)), γ > 0, the eigenfunctions fλ become normalizable.
In this subsection we study the more difficult case Ω1 ≡ 1 and give a possible domain for
Â to check if there exists a self-adjoint extension of Â. However, we do not intend to give
a rigorous proof but just a sketch of a possible construction.

Since every almost periodic function f(x) is bounded a necessary condition for the
inverse (f(x))−1 to be almost periodic is that minx |f(x)| �= 0. It follows that (sin ξ)−1 is
not an almost periodic function. We thus define the domain

D(Â) := {ϕ ∈ L2(R̄B)⊗ L2(U(1))|Âϕ ∈ L2(R̄B)⊗ L2(U(1))} ⊂ H1(R̄B)⊗H1(U(1)).
(3.29)

The reason why D(Â) is a subset of H1(R̄B) ⊗ H1(U(1)) is that any ϕ ∈ D(Â) has to
remove the pole caused by (sin ξ)−1. On the other hand, thanks to sin θ in front of the
differential operator i∂/∂θ, the boundary term of an integration by part is automatically
annihilated so that no boundary conditions on θ have to be imposed.

A criterion to check for possible self-adjoint extentions of an operator is to check

�g, Âf + if� = 0 =⇒ g = 0, ∀f ∈ D(Â). (3.30)

If we assume that the weak derivative of g exists we have

�g, Âf� = lim
T→∞

1

2T

� T

−T

dξ

� 2π

0

dθf

�

ḡ + cos θ(∂ξ ḡ)−
cos θ

2 sin ξ
ḡ −

sin θ

sin ξ
(∂θḡ)

�

,

i.e.

ḡ + cos θ(∂ξ ḡ)−
cos θ

2 sin ξ
ḡ −

sin θ

sin ξ
(∂θḡ) = 0.

The solution to this nonlinear partial differential equation also contains the function�
tan(ξ/2) such that g /∈ L2(R̄B)⊗L2(U(1)). Thus, the only solution to the criterium (3.30)

is g = 0. However, we would like to point out that we had to assume that the weak derivative
of g exists. If this assumption is correct then the operator Â should be self-adjoint with
real continuous spectrum.

Spectrum of Â on L2(S2)

Although the LQC-operator Â acts on functions in HA this subsection is devoted to in-
terpreting this operator on L2(S2, dµH) which are the square integrable functions on the
two-dimensional sphere S2 with Haar measure dµH = sin ξdξdθ for ξ ∈ [0, π] and θ ∈ [0, 2π].
Thus, this Hilbert space has the following scalar product:

�f, g�S2 =

� 2π

0

� π

0

sin ξf̄(ξ, θ)g(ξ, θ)dξdθ.

Surprisingly the functions fλ are normalizable such that the spectrum of Â is discrete. This
is in stark contrast with the Bohr compactification where they were not normalizable, thus
showing beautifully the fact that LQC chooses a unitarily inequivalent representation.
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Quantization of p2 3

The eigenfunctions of p̂2 3 can be obtained by applying the same procedure on the sym-
metrized operator

B̂ := −i sin θ
∂

∂ξ
− i

cos θ

sin ξ

∂

∂θ
+

i

2

sin θ

sin ξ

The eigenfunctions gλ(ξ, θ) are given by

gλ(ξ, θ) =

√
2N2

�
tan(ξ/2)

(cos(ξ/2)α2 + i cos(ξ/2) tan θ)
2λ√

cos2 θ tan2(ξ/2)−1 Ω2(cos θ tan(ξ/2)),

(3.31)
where

α2 =

�

1−
cot2(ξ/2)

cos2 θ

and Ω2 is any C1-function that can be determined by boundary conditions. Both the
exponent and the base can be complex such that gλ is not uniquely determined. We can
write gλ as

gλ(ξ, θ) =
k2

�
tan(ξ/2)

eF1(ξ,θ) lnF2(ξ,θ)

with the logarithm defined by lnF2 = LnF2 + 2πin, where n ∈ Z and Ln is the principal
value of the logarithm. Inserting this solution into the eigenvalue problem B̂gλ = λgλ it
can be shown that there is only a solution for n = 0. For the case Ω2 ≡ 1 the eigenfunctions
gλ are not normalizable since the integral of 1/| tan(ξ/2)| over one period is not finite. In

such a case we are led to the conclusion that the spectrum of B̂ does not contain a discrete
part. We can construct a dense subspace D(B̂) along the lines described in Section 3.6.1,
the only difference being that gλ has poles at ξ = 2kπ and θ = (2k+1)π/2 whereas fλ has
poles at ξ = (2k + 1)π, k ∈ Z.
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Figure 3.1: Absolute value of the eigenfunctions fλ(ξ, θ) (left panel) and gλ(ξ, θ) (right panel).
The black thick line is the eigenfunction for λ = 1, θ = 1 and the black dashed line for λ = 2,
θ = 1.

3.6.2 Quantization: 2nd Possibility

In the last section we replaced the configuration variables QI with sin(δIQI)/δI , where δI
played the role of a regulator. The question we may ask is to what extend this substitution
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Figure 3.2: Absolute value of the eigenfunctions fλ(ξ, θ) (left panel) and gλ(ξ, θ) (right panel).
The black thick line is the eigenfunction for λ = 1, ξ = 2 and the black dashed line for λ = 2,
ξ = 2.

changes the eigenfunctions. Let us define the symmetrized operator Â2 quantized without
the substition of QI as

Â2 = −i cos θ
∂

∂ξ
+ i

sin θ

ξ

∂

∂θ
+

i

2

cos θ

ξ
.

The solution to the eigenvalue problem Â2fλ(ξ, θ) = λfλ(ξ, θ) is given by

fλ(ξ, θ) = exp (iλξ cos θ)
�

ξΓ(log(ξ sin θ)),

These eigenfunctions are not almost periodic in ξ because of the term
√

ξ. However we can
choose the function Γ such that

√
ξ disappears, i.e. we set

Γ = N1 exp

�

−
1

2
log(ξ sin θ)

�

,

where N1 is a constant, such that the eigenfunctions to Â2 are given by

fλ(ξ, θ) = N1
exp(iλξ cos θ)
√
sin θ

. (3.32)

The above eigenfunction is almost periodic in ξ but fails to be normalizable on L2(R̄B)⊗

L2(U(1)). As in the preceding section the spectrum of Â2 is thus continuous. Note that
the eigenfunction is constant in the non-diagonal limit θ → π/2.

Similarly the eigenfunctions of the symmetrized operator

B̂2 = −i sin θ
∂

∂ξ
− i

cos θ

ξ

∂

∂θ
+

i

2

sin θ

ξ

are given by

gλ(ξ, θ) = N2
exp (−iλξ sin θ)

√
cos θ

. (3.33)

The diagonal limit θ → 0 of gλ is just a constant function such that p̂2 3, i.e. the expectation
value �p̂2 2� measures the ’diagonality’ of the torus and �p̂

2
3� its departure. Once again,
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the eigenfunctions gλ fail to be normalizable on the Hilbert space such that the spectrum
of B̂2 is continuous. Also note that contrary to the first method the commutator between
both operators vanishes

[Â2, B̂2] = 0. (3.34)

such that both Â2 and B̂2 can be diagonalized simultaneously which will be important in
Section 3.6.3.

3.6.3 Volume Operator

The classical expression for the volume of V is given by

V(V ) =

�

V

��
�
�
�
1

6
�abc�ijkEaiEbjEck

�
�
�
�d

3x.

Inserting the definition of the homogeneous densitized triad (2.16) we get:

V(V ) =
�

k |p1 1(p2 2p3 3 − p2 3p3 2)| (3.35)

The factor k depends on the specific form of the torus. If the torus is cubic we have k = 1
such that Eq. (3.6.3) reduces to Eq. (4.5) in [36]. Using the classical solution of the Gauss
constraint we get the following expression for the physical volume of the torus:

V(V ) =

�

k

�
�
�
�p

1
1

�

p2 2p3 3 − p2 3
φ2

2p2 3 − φ2
3p2 2

φ3
3

��
�
�
�

or in terms of the new variables

V(V ) =

�

k

�
�
�
�

P 1

Q2Q3

�
�
�
�×
�
�
�
�
(PΘ)

2 − P 2P 3Q2Q3

�
cosΘ +

+PΘ(P
2Q2 + P 3Q3) sinΘ

�
�
�
1/2

. (3.36)

Quantization of the Volume Operator according to 1st Method

To perform a quantization of the volume operator we insert the definitions (3.20) into

V̂(V ). Despite the fact that we know the eigenfunctions of the operators p̂I i it is not

straightforward to give the eigenfunctions of the volume operator V̂ because, as explained
in Section 3.6, the p̂I i do not necessarily commute. Thus the difficult task is to determine
the spectrum of the operator

V̂ := p̂2 2p̂
3
3 − p̂3 2p̂

2
3 =

cosΘ

sinQ2 sinQ3

∂2

∂Θ2
− cosΘ

∂2

∂Q2∂Q3

+
sinΘ

sinQ3

∂2

∂Θ∂Q2
+

sinΘ

sinQ2

∂2

∂Θ∂Q3
. (3.37)

However, this operator is not symmetric on HS. Let us define the symmetric operator

V̂S :=
1

2

�
V̂+ + V̂

�
.
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A calculation shows that V̂S is given by

V̂S = V̂+
1

2

�

−
cosΘ

sinQ2 sinQ3

− 2
sinΘ

sinQ2 sinQ3

∂

∂Θ
+

cosΘ

sinQ3

∂

∂Q2

+
cosΘ

sinQ2

∂

∂Q3

�

This operator is rather complicated and no analytic solutions to the eigenvalue problem
could be found.

Quantization of the Volume Operator according to 2nd Method

In this subsection we consider the quantization of V as described in Section 3.6.2 where the
commutator between p̂I i and p̂J j vanishes. This fact simplifies dramatically the analysis
because the (generalized) eigenvalue problem can now be written in terms of products and
sums of the eigenfunctions of the p̂I i. Let us define

Tλ1,λ22,λ23,γ33,γ32 := Nλ1 ⊗ (fλ22gλ23)⊗ (f �γ33g
�
γ32
),

where fγ(Q2, θ1), gγ(Q2, θ1), f �γ(Q3, θ2) and g�γ(Q3, θ2) are the (generalized) eigenfunctions

of p̂2 2, p̂2 3, p̂3 3 and p̂3 2, respectively, given in Section 3.6.2. Furthermore we denoted the
eigenfunctions of p̂1 1 by Nλ1 := �Q1|λ1�. Since we have

(fλ22gλ23)(f
�
γ33

g�γ32) ∝
exp (iQ2(λ22 cos θ1 − λ23 sin θ1))√

sin θ1 cos θ1

exp (iQ3(γ33 cos θ2 − γ32 sin θ2))√
sin θ2 cos θ2

we see that Tλ1,λ22,λ23,γ33,γ32 is not normalizable in H
S. The generalized eigenvalue problem

is thus given by

V̂Tλ1,λ22,λ23,γ33,γ32 [ϕ] = Tλ1,λ22,λ23,γ33,γ32 [V̂ϕ]

= γ3/2l3Pl
�

k|λ1(λ22γ33 − λ23γ32)|Tλ1,λ22,λ23,γ33,γ32 [ϕ] (3.38)

for ϕ ∈ D(V̂).

3.6.4 Quantum Gauss Constraint

In Section 2.4 we computed the classical Gauss constraint for a Bianchi type I model. In
the open case, i.e. the topology is R3, the elementary variables can always be diagonalized
such that both the diffeomorphism and Gauss constraints are automatically satisfied. In
the closed model or in models with a rotational symmetry [10, 70, 71, 72] this is not the
case anymore so that a quantization of the constraints is mandatory. Since in Bianchi type
I models the diffeomorphism constraint is proportional to the Gauss constraint we only
need to quantize and solve the latter. However, contrary to the diffeomorphism constraint
the Gauss constraint can be quantized infinitesimally. The construction is analogous to
electromagnetism (see Section 3.1): starting with a kinematic Hilbert space a new Hilbert
space is constructed which does not incorporate the unphysical degrees of freedom (in the
case of photons we saw that the longitudinal and scalar polarization were unphysical).

A gauge transformation of an su(2)-connection is given by

A �→ A� = λ−1Aλ+ λ−1dλ

where λ : Σ �→ SU(2). Infinitesimally we can write this equation as

Aia �→ A
�i
a = Aia + ∂a�

i + �i jk�
jAka +O(�

2).
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The classical Gauss constraint ensuring SU(2)-invariance is given by

G(Λ) = −

�

T3

d3xEajDaΛ
j

where DaΛ
j = ∂aΛ

j + �j klA
k
aΛ
l is the covariant derivative of the smearing field Λj. The

infinitesimal quantization of this expression yields an operator containing a sum of right
and left invariant vector fields over the edges of the torus. This operator is essentially self-
adjoint and can, by Stone’s theorem, be exponentiated to a unitary operator Uφ defining a
strongly continuous one-parameter group in φ. Usually, in order to find the kernel of the
Gauss constraint operator one restricts the scalar product on Hkin to the gauge-invariant
scalar product on HGinv. This Hilbert space is a true subspace of Hkin since zero is in the
discrete part of the spectrum of the Gauss constraint operator.

We saw in Section 2.6 that thanks to the symmetry reduction two of the Gauss con-
straints are automatically satisfied. While the nonvanishing Gauss constraint (2.24) is
still a complicated function in φI

i and pJ j it simplifies to Eq. (2.30) after the canonical
transformation. A quantization of this expression is then given by

Ĝ1 = P̂θ1 − P̂θ2 .

Since the eigenstates of the momentum operators P̂θα are the strict periodic functions

satisfying Eq. (3.17) the action of the Gauss constraint on |�µ,�k� is given by

Ĝ1|�µ,�k� =
γl2Pl
2
(k1 − k2)|�µ,�k�

which vanishes if

k1 = k2.

We can thus introduce a new variable Θ := θ1 + θ2 such that the algebra AS given by
Eq. (3.14) reduces to the invariant algebra Ainv

S generated by the functions

g(Q1, Q2, Q3,Θ) =
�

λ1,λ2,λ3,k

ξλ1,λ2,λ3,k ×

× exp

�
1

2
iλ1Q1 +

1

2
iλ2Q2 +

1

2
iλ3Q3 + ikΘ

�

. (3.39)

A Cauchy completion leads to the invariant Hilbert space HSinv = H
⊗3
B ×HS1 . A compar-

ison with HS shows that we ’lost’ one Hilbert space HS1 by solving the quantum Gauss
constraint. Furthermore, instead of two momentum operators conjugated to θ1 and θ2 we
have just one momentum operator conjugated to Θ defined by

P̂Θ = −iγl2Pl
∂

∂Θ
.

The eigenstates of all momentum operators are given by

|�µ, k� := |µ1, µ2, µ3, k�,

where k ∈ Z defines the representation of U(1).
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3.7 Quantum Dynamics

In this section we are interested in the quantum dynamics of loop quantum cosmology.
We shall first introduce the novel way of quantizing the Hamilton constraint and apply
it to isotropic LQC. As a next step we shall derive this constraint in the case of toroidal
topology.

3.7.1 The Hamiltonian Constraint in Isotropic LQC

Thanks to spatial flatness the Hamiltonian constraint (1.12) simplifies to Eq. (1.13). In-
serting the homogeneous and isotropic variables we get the Hamiltonian (2.22). However,
we saw in Sec. 3.4 that there is no well defined operator ĉ on the Hilbert space L2(R̄B, dµB).
The solution was to write all expressions in terms of holonomies. The same strategy has
to be followed for the quantization of the Hamiltonian constraint. But the situation is
far more complicated since Eq. (1.13) incorporates the components of the curvature two-
form and a non-polynomial dependence on the densitized triad. We will only give a short
review of the quantization of the Hamiltonian constraint, further details can be found in
[11, 101, 103, 102, 104].

In order to quantize the curvature two-form we use well known results from lattice
quantum field theory and compute holomomies around a square �ij in the i − j plane

spanned by two of the triad vectors 0eai with length µ0V
1/3
0 w.r.t. 0qab (see Sec. 3.4). The

curvature is then given by

F iabτi =
0ωia

0ωjb

�
h
(µ0)
�ij

µ2
0V

2/3
0

+O(c3µ0)

�

,

where the holomony h
(µ0)
�ij

is given by

h
(µ0)
�ij

= h
(µ0)
i h

(µ0)
j (h

(µ0)
i )−1(h

(µ0)
j )−1

and h
(µ0)
i by Eq. (3.8).

Turning our attention to the quantization of the inverse of the triad we see that in the
isotropic case e only vanishes when the triad itself vanishes, implying that the expression
�ijke

−1EajEbk is not singular. However, such a procedure is not available in the full theory
and one has to use Thiemann’s trick [101] to reexpress this singular term in terms of Poisson
brackets (no summation over k):

�ijkτ
ie−1EajEbk = −

(sgnp)

2πGγµ0V
1/3
0

�abc 0ωkch
(µ0)
k {h

(µ0)−1
k , V }.

Inserting the last three equations into the Hamiltonian constraint Eq. (1.13) yields

Cgrav ≡
1

2κ
NH

= −
4(sgnp)

8πGγ3µ3
0

�

ijk

�ijktr
�
h
(µ0)
i h

(µ0)
j (h

(µ0)
i )−1(h

(µ0)
j )−1h

(µ0)
k {h

(µ0)−1
k , V }

�
+O(c3µ0).

The leading term is finite and, following the canonical quantization program (see Sec. 3.2),
can be faithfully promoted to an operator by replacing the Poisson bracket by a commutator
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and promoting the holonomies and the volume to operators. The resulting constraint is
then given by [11]

Ĉ(µ0)
grav =

4i(sgnp)

8πγ3µ3
0l
2
Pl

�

ijk

�ijktr
�
ĥ
(µ0)
i ĥ

(µ0)
j (ĥ

(µ0)
i )−1(ĥ

(µ0)
j )−1ĥ

(µ0)
k [ĥ

(µ0)−1
k , V̂ ]

�

=
24i(sgnp)

8πγ3µ3
0l
2
Pl

sin2
µ0c

2
cos2

µ0c

2
(3.40)

×
�
sin

µ0c

2
V̂ cos

µ0c

2
− cos

µ0c

2
V̂ sin

µ0c

2

�
.

Its action on eigenstates of p̂ is given by

C(µ0)
grav |µ� =

3

8πγ3µ3
0l
2
Pl

(Vµ+µ0 − Vµ−µ0)(|µ+ 4µ0� − 2|µ�+ |µ− 4µ0�). (3.41)

When coupled to a scalar field the quantum constraint has the form

Ĉ(µ0)
grav + Ĉφ = 0, (3.42)

where Ĉφ = κ(�1/p3/2)(p̂2φ). In such a case the program described in Sec. 3.2 could be carried
out for the first time [13, 14], that is, compute physical observables, the physical Hilbert
space and a physical Hamiltonian. The main result is that the big bang is replaced by a big
bounce and the quantum evolution is deterministic across the Planck regime. For further
details we refer the reader to these beautiful works.
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3.7.2 The Hamiltonian Constraint in Toroidal LQC

Here we are interested in deriving the gravitational Hamiltonian for the case of toroidal
topology. Inserting Eq. (3.13) into the first line of (3.40) we get

Ĉgrav =
4i(sgnp)

γ3µ3
0l
2
Pl

×

�

4 cos

�

θ1 + θ2 −
0µ1Q1

2

�

sin
0µ1Q1

2
sin( 0µ3Q3) sin

0µ2Q2

2
V̂ cos

0µ2Q2

2

− 4 cos2 θ2 sin θ1 sin(
0µ1Q1) sin

2
0µ3Q3

2
sin

0µ2Q2

2
V̂ cos

0µ2Q2

2

− 2 cos θ2 sin(
0µ1Q1) sin(

0µ3Q3) cos
0µ2Q2

2
V̂ sin

0µ2Q2

2

− 4 sin θ1 sin
2 θ2 sin(

0µ1Q1) sin
2

0µ3Q3

2
sin

0µ2Q2

2
V̂ sin

0µ2Q2

2

− 4 sin θ2 sin
2

0µ1Q1

2
sin( 0µ3Q3) cos

0µ2Q2

2
V̂ sin

0µ2Q2

2
(3.43)

+ 4 cos

�

θ1 + θ2 +
0µ1Q1

2

�

sin
0µ1Q1

2
sin( 0µ2Q2) sin

0µ3Q3

2
V̂ cos

0µ3Q3

2

− 4 cos

�

θ1 +
0µ1Q1

2

�

sin
0µ1Q1

2
sin( 0µ2Q2) cos

0µ3Q3

2
V̂ sin

0µ3Q3

2

− 4 sin θ2 sin(
0µ1Q1) sin

2
0µ2Q2

2
sin

0µ3Q3

2
V̂ sin

0µ3Q3

2

+ 8 cos(θ1 + θ2) sin
0µ2Q2

2
sin

0µ3Q3

2

×

�

sin(θ1 + θ2) sin
0µ2Q2

2
sin

0µ3Q3

2
− cos

0µ2Q2

2
cos

0µ3Q3

2

�

×

�

cos
0µ1Q1

2
V̂ sin

0µ1Q1

2
− sin

0µ1Q1

2
V̂ cos

0µ1Q1

2

��

As a cross-check, setting θ1 = θ2 = 0, 0µ1 =
0µ2 =

0µ3 ≡
0µ and Q1 = Q2 = Q3 ≡ Q we

see that Eq. (3.43) reduces to Eq. (3.40). However, with this complicated an expression
it seems hopeless to even write a difference equation such as Eq. (3.41) since even the

(generalized) eigenfunctions of V̂ are either unknown as in the 1st quantization method
or very complicated as in the 2nd method (see Sec. 3.6.3). Moreover this Hamiltonian
constraint must be symmetrized which can be done by defining

ĈSgrav =
1

2

�
Ĉgrav + Ĉ†

grav

�
,

where Ĉgrav is the adjoint of Ĉgrav on L2(R̄3
B)⊗L2(U(1)2). In principle numerical solutions

could be found by e.g. coupling ĈSgrav with a massless scalar field to obtain an equation
similar to Eq. (3.42). In spite of the fact that it would be very interesting to know the
behavior of such an LQC torus, the numerical endeavor is well beyond the scope of this
thesis.
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Chapter 4

Conclusion

In this part we studied how a torus universe affects the results of LQC. To do so we followed
known mathematical results by first introducing the most general tori using Thurston’s
theorem. Six Teichmüller parameters are needed to parametrize such general tori. We con-
struted a metric describing a flat space but respecting the periodicity of the covering group
used to construct the torus and used it to derive a gravitational Hamiltonian. We studied
the dynamics of a torus universe driven by a homogeneous scalar field by numerically solv-
ing the full Hamiltonian and saw that its form only remains cubic if all off-diagonal terms
vanish. The Ashtekar connection and the densitized triad for a torus were then derived
for both the most general and a slighty simplified torus. The reason for this simplification
was that a simple solution to the Gauss constraint could be given. We also derived the
Hamiltonian constraint in these new variables and showed that it reduces to the standard
constraint of isotropic LQC in case of a cubical torus.

The passage to the quantum theory required a canonical transformation so as to be
able to write the holonomies as a product of strictly and almost periodic functions. A
Cauchy completion then led to a Hilbert space given by square integrable functions over
both R̄B and U(1). However the drawback of the canonical transformation is a much
more complicated expression for the components of the densitized triad containing both
the momentum and the configuration variables. Following the standard procedure of LQC
we substituted these configuration variables with the sine thereof and were able to solve the
eigenvalue problem analytically. Surprisingly it turned out that the spectrum of the triad
operators can be either discrete or continuous, depending on the initial value problem. On
the other hand we were also able to find almost periodic solutions to the eigenvalue problem
of the triad operators without performing the substitution just described, but once again
the spectrum depends can be either continuous or discrete. The reason why both ways
can lead to a continuous spectrum is the non-cubical form of the torus, for if we set the
angles θ1,2 = 0 in Eq. (2.26) the triads correspond to the ones obtained in isotropic models.
Furthermore we were able to find the spectrum of the volume operator for the second case
because, contrary to the first case, it is a product of commutating triad operators.

We then considered the quantization of the Hamiltonian constraint. We first reviewed
the isotropic case where quantum dynamics is governed by a difference equation which
resolves the big bang singularity. For a torus universe it was not possible to find a difference
equation because the (generalized) eigenfunctions of the volume are not known (1st method)
or very complicated (2nd method). It is thus not possible to address the question whether
LQC with toroidal topology resolves the big bang singularity. As a first step it would be
useful to know the property of the spectrum of the Hamiltonian constraint, e.g. if it is
continuous or discrete. But even this task seems to be very difficult to solve as a short
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glance at Eq. (3.43).
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Part II

Gamma-ray Bursts and Lorentz

Violation
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Chapter 5

Lorentz violation

5.1 Introduction

The chapter deals with something we could call phenomenological quantum gravity and
its experimental implications. Since there is not yet a full quantum theory of gravity we
are reduced to studying possible experimental signatures of e.g. a minimal length on the
propagation of photons without a rigorous proof. In what follows we shall study the effect of
such a minimal length on high energy photons emanating from so-called gamma-ray bursts.
First we introduce deformed special relativity in Sec. 5.3 before explaining the important
characteristics of gamma-ray bursts in Sec. 5.4 and studying the light propagation in an
expanding universe in Sec. 5.5. The first main part of this chapter, based on the work [65],
is devoted to giving a bound on a possible Lorentz invariance violating term using gamma-
ray bursts detected by the satellite INTEGRAL. The second main part is based on [64]
and made predictions whether the Fermi Gamma-ray Space Telescope (formally GLAST)
could measure a Lorentz violation by means of Monte Carlo simulations of bursts.

5.2 Recent Developments

On May 10 2009 at 00:22:59.97 the Fermi Gamma-ray Space Telescope detected a very
short gamma-ray burst (GRB 090510) lasting for less than two seconds [1] (see Figure 5.1).
Subsequent ground-based observations measured the distance of this burst to be around
a redshift of z = 0.903 ± 0.003. A single 31-GeV photon was detected at 0.829 s after
the trigger time, where the directional and temporal coincidence of this photon with GRB
090510 is considered to be with a significance of > 5σ. No evidence for the violation
of Lorentz invariance could be found and, assuming a linear correction to the speed of
light, only a lower limit for the quantum gravity scale of 1.2mPl could be given [1]. Under
less conservative assumptions this lower limit shifts to even 100mPl. On the other hand
quadratic corrections could not be constrained.

5.3 Deformed Special Relativity

Every theory of Quantum Gravity (QG) contains a combination of gravity (8πG), the
quantum (�) and relativity c, which can for example define the so-called Planck energy

EP =
�

�c5/G ≈ 1.2×1019 GeV. It is assumed that this energy marks the threshold beyond
which the classical description of spacetime breaks down, resulting in new phenomena. It
is well known that Special Relativity (SR) is the flat spacetime limit of General Relativity
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Figure 5.1: GRB 090510 as provided by the Fermi Science Support Center [49]. For the full light
curve see [1].

(GR). On the other hand, the question of the flat space, semiclassical limit of QG is still
open, as there does not exist a full theory of QG yet. But the Planck energy gives rise
to a paradox: despite the fact that it is known from SR that the energies are observer
dependent, the Planck energy does not seem to depend on the reference frame. How can
this discrepency be solved without having a full QG theory at our disposal? There are at
least two proposals, called Doubly or Deformed Special Relativity 1 (DSR1) [4, 5, 63, 62]
and DSR2 [68, 67], which try to resolve this paradox. In this section we shall present the
first possible construction of DSR.

5.3.1 Postulates of DSR

DSR is based on the following postulates:

• The relativity of inertial frames: when gravitational effects can be neglected all ob-
servers in free, inertial motion are equivalent. In other words, the describtion of a
phenomenon can only depend on the relative motion between the observers.

• There exist two observer-independent scales: the speed of light c and the Planck
energy EP .

• The correspondence principle: at energies much lower than EP , SR and GR are valid.

5.3.2 Modification of the Poincaré group

Representations of the Lorentz and Poincaré groups

The group of isometries of the Minkowski spacetime which leave the origin fixed is called
Lorentz group. The mathematical definition of the proper Lorentz group is given by the
Lie group

SO(3, 1) = {M ∈ GL(4,R)|MTηM = η, det(M) = 1},

where η = diag(−1, 1, 1, 1). This group is generated by its Lie algebra so(3, 1) containing
the elements LIJ , I, J = 0, . . . , 3. These elements can be separated into three generators
of rotations Ml = �jk lLjk and three generators of boosts Nj = Lj0, where j, k, l = 1, 2, 3
run over the three spatial coordinates. The commutation relations are then defined by

[Mj , Mk] = i�ljkMl, [Mj , Nk] = i�ljkNl, [Nj , Nk] = −i�jklMl. (5.1)
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The Poincaré group is defined by the group of all isometries of the Minkowski spacetime,
thus also allowing for translations. The Lorentz group is a subgroup of the Poincaré group,
whose Lie algebra has therefore the same commutation relations (5.1) for the boosts and
rotations, extended by the generators of translations PI with commutation relations

[Mj , Pk] = i�ljkPl, [Mj , P0] = 0, [Nj , Pk] = −iδjkP0, [Nj , P0] = iPj , [Pj , Pk] = 0.
(5.2)

5.3.3 Bicrossproduct

As its name suggests DSR is a deformation of SR with a mass scale κ, usually identified
with the Planck mass. In the so-called bicrossproduct basis the Lorentz subalgebra of
the Poincaré algebra is not deformed and follows the commutation relations (5.1). The
deformation is only present in the way the boosts Nj act on the momenta Pk

[Nj , Pk] = iδjk

�
1

2
(1− e−2P0/κ) +

P2

2κ

�

−
i

κ
PjPk

such that the standard commutation relations (5.2) can be recovered in the limit κ →∞.
This algebra leads to a non-linear Casimir operator

C = κ2cosh
P0

κ
−
P2

2
eP0/κ −M2.

An expansion of this equation to the leading order in 1/κ yields the standard dispersion
relation with an additional term

E2 = p2 +m2 +
E3

κ
. (5.3)

Henceforth we shall define EQG := κ in order to eliminate possible confusions with the
gravitation constant κ.

5.4 Gamma-ray Bursts

Gamma-ray bursts (GRBs) are the most luminous electromagnetic events occurring in the
universe since the Big Bang, with a duration from a few milliseconds to several minutes
(see Fig. 5.2). They are flashes of gamma rays emanating from random places in deep space
and the initial burst is followed by an afterglow emitting at longer wavelengths.
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Figure 5.2: Example of a GRB detected by INTEGRAL on December 3, 2003.
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The GRBs can be classified in two groups, namely the long and short bursts. The long
bursts have a duration time that typically ranges from 1 s to 100s, while the short bursts
last for much less than a second. This classification is possible due to the different physical
origin of the bursts. The long GRBs are caused by the collapse of the core of a rapidly
rotating, high-mass star into a black hole. On the other hand, the collision of two neutron
stars seem to be at the origin of the short bursts.

It was pointed out that one way to probe Eq. (5.3) may be provided by GRBs [3, 6, 85].
Several studies have been conducted using measurements of GRBs [40, 41, 42, 43]. Since
GRBs are located at cosmological distances, we must know how light propagates in the
expanding universe, which is the topic of the next section.

5.5 Light Propagation in an Expanding Universe

5.5.1 Cosmological Model

Let the isometry group S be the Euclidean group so that the 3-dimensional group T of
translations acts simply and transitively on the 3-manifold M , which implies that M is
flat. We will assume that M is topologically R3 with a flat 3-metric 0qab := ηij

0ωia
0ωjb

constructed from the left invariant co-triads 0ωia satisfying
0ωia(

0eaj ) = δij . The line element
of the four-dimensional manifoldM may then be given by

ds2 =gµν dxµ ⊗ dxν = −dt⊗ dt+ a(t)2( 0qab dxa ⊗ dxb)

=− dt⊗ dt+ a(t)2 (dx⊗ dx + dy ⊗ dy + dz ⊗ dz) ,

where a(t) is an arbitrary scale factor which can only depend on time. Solving the Hilbert-
Einstein action (2.7) with a matter term given by an ideal fluid, we get a differential relation
between time and redshift (c = 1)

dt = −H−1
0

dz

(1 + z)h(z)
,

where H0 = 71 km s−1 Mpc−1 is the Hubble parameter and

h(z) =
�
ΩΛ + ΩM (1 + z)3

with a cosmological constant ΩΛ = 0.73 and matter energy density ΩM = 0.27 [113].

5.5.2 Photon Propagation with Lorentz Invariance Violation Corrections

We consider a model in which there is a breakdown of Lorentz symmetry at an energy scale
EQG := EP/α where α ∈ R and EP ≈ 1.2 × 1019 GeV is the Planck energy. Assuming a
Lorentz Invariance Violation (LIV) correction of order n we can approximate the dispersion
relation for a photon with

E2 − p2c2 ≈ p2c2
�

E

EQG

�n
, (5.4)

where c is the speed of light of low-energy photons, E the photon energy and p its momen-
tum. Most of the time we will only consider the linear corrections n = 1. For such a case,
the non-standard dispersion relation (5.4) leads to an energy-dependent velocity of light,
v = v(E) defined by the group velocity

v(E) :=
dE

dp
= c

�

1 +
E

EQG

�

.
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Two photons emitted simultaneously with different propagation speed will arrive at different
times. Due to the fact that GRBs are at a cosmological distance the expansion of the
universe has to be taken into account, as the physical distances traveled by the particles
will differ. The difference in the arrival times of two photons with energies differing by ΔE
is given by [55]

Δt = ±H−1
0

ΔE

EQG

� z

0

1 + z�
�
ΩΛ + ΩM(1 + z�)3

dz�. (5.5)
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Chapter 6

Study of Lorentz Violation in

INTEGRAL gamma-ray Bursts

6.1 INTEGRAL Satellite

INTEGRAL [111] is a mission of the European Space Agency (ESA) devoted to gamma
ray astronomy. It features a coded mask instrument ISGRI [66]. This instrument enables
us to measure for each photon in the energy range 15 keV to 1 MeV the arrival time with
a precision of 6 · 10−5 s as well as the energy with a precision of 10 %.

The detector has a dead time of about 25 %. This dead time is a function of the incoming
rate and can vary during a GRB. The dead time is measured internally by the instrument
and is given as a mean dead time over 8 seconds independently for 6 parts of the detector.
It can be corrected statistically in weighing each incoming photon by 1/(1 − dead time)
with the corresponding time slice and detector part dead time. If the rate exceeds telemetry
capabilities a data gap is created in wich the dead time is 100 %. In this case it cannot
be statistically corrected and we have a hole in the data versus time. This unfortunately
happens frequently during very intense GRBs.

The instrument also registers an important rate from the background due to diffuse
photons from the sky, internal radioactivity of the instrument and flux from sources present
in the field of view. This background rate varies with time but not perceptibly during the
typical time scale of a GRB. We have two ways of predicting this background. Before and
after the GRB the background can be measured as the full rate registered by the instrument.
During the GRB, the pixels that are in the shadow of the mask for the direction of the
GRB register only the background photons of the GRB. The illuminated pixels register this
background as well as the flux from the GRBs. Statistically the rate from the GRB can
be computed by properly weighed subtraction. As, most of the time, the GRBs are in the
partially coded field of view, the number of pixels available for background measurement
is bigger than the number of pixels seeing the source.

The fraction of a pixel that is illuminated by the GRB (so called PIF value) can be
calculated with the knowledge of the coordinate of the GRB and the knowledge of the
attitude of the instrument. We are not able to determine individually if a photon comes
from the GRB or the background, but the PIF can be used to properly weigh its probability
to come from the GRB. For example, a light curve can be built by using only pixels that are
fully illuminated by the source and removing the constant rate measured by the completely
opaque pixels.
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6.2 Description of the Analysis Method

The majority of the GRBs seems to follow a pattern called Fast Raise and Exponential De-
cay (FRED). In order to model a GRB light curve, we parameterize it with five parameters
and call the resulting probability distribution f = f(ti, Ei;P, B, R, D, κ, h) (see Fig. 6.1 for
the meaning of these parameters). We suppose that a set of measured parameters ti and Ei
came from the probability density function f . We use the method of maximum likelihood,
which consists of finding the set of values P̂ , B̂, R̂, D̂, κ̂ and ĥ, which maximizes the joint
probability distribution for all data, given by

F(P, B, R, D, κ, h) =
�

i

f(ti, Ei;P, B, R, D, κ, h) (6.1)

together with the constraint
� t1

t0

dt� f(t�, Ei;P, B, R, D, κ, h) = 1, (6.2)

where F is the likelihood function and the integral runs between t0 and t1 as shown in
Fig. 6.1. In fact, the condition (6.2) that the integral over time be equal to one reduces
the degrees of freedom for f and F by one. For example, B can be chosen to be fixed by
this condition, so we can think of f and F as not depending on B. However, for clarity we
write the B-term dependence for both functions.

It is easier to search for the parameters that maximize lnF , as the products on the right
hand side of Eq. (6.1) is now a sum. To find these parameters, we use a multidimensional
unconstrained nonlinear minimization where we minimize the function − lnF .

t t

D

h

time

R

B

0 maxt    (E) 1

photons / s
number of

Figure 6.1: Sketch of a typical light curve of a GRB for a given energy interval. The curve is
parameterized by five parameters: B is the background level, R the duration of the rise, h the
height above the background, D the decay time for exp(−t/D) and κ describes the magnitude
of the dependence on the energy of the distribution f , tmax = P + κ · E, where P is the time
when the intensity reaches a maximum and E is the photon energy. The area under the curve
must be one, so that one parameter, e.g. B , is fixed by this condition. The dashed line shows
a distribution for another energy interval that is shifted by an amount of Δt = κ ·ΔE sketching
the shift in time due to quantum gravitational effects. This shift is usually much smaller than the
other parameters.

Fig. 6.1 shows a typical light curve of a GRB. We always choose time intervals so that
such a sketch can be found. However, in order to avoid wrong results, we also take account
for other possibilities when for example R > tmax(E)− t0 or t1 < tmax(E).
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6.3 Monte Carlo Simulations

The maximum shift in time due to quantum gravity is expected to be of the order of
2 · 10−5 s, which is smaller by a factor of three than the time resolution of INTEGRAL.
Therefore, it is at first highly questionable whether such time differences can be measured,
not to speak of the results gotten from unbinned data. In order to get a better feeling of
the behavior of the likelihood, we performed Monte Carlo simulations with a total number
of photons ranging from 500 to unrealistic 300000. First, we created N events i with energy
Ei distributed according to a typical GRB event. That is, a typical energy distribution for
the photons of GRBs follows the pattern of the so-called Band function [22] given by the
following equation:

NE(E) = A

�
E

100 keV

�α
exp

�

−
E

E0

�

,

(α− β)E0 ≥ E,

= A

�
(α− β)E0

100 keV

�α−β �
E

100 keV

�β
exp(β − α),

(α− β)E0 ≤ E, (6.3)

where we choose typical values for the parameters, i.e. α = −1, β = −2.5 and E0 = 200 keV
(see left panel of Fig. 6.2).
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Figure 6.2: Left panel: example of a photon distribution as a function of the energy. The energy
ranges from 20 keV to 300 keV according to the Band function (6.3), the total photon number
is 5000. Right panel: Example of a simulated GRB for κ = −10−5 s/keV, P = 1 s, R = 0.3 s,
h = 50 s−1 and D = 0.5 s with a total photon number of 5000. In order to be able to compare the
fit with the GRB, we require that the areas under both curves be equal, so that the parameter
B is recovered. The overlaid curve is the FRED function with fitted parameters for a photon of
energy 0. As the parameter κ is very close to 0 this curve represents well the family of FRED
curves of the problem.

With this energy distribution, we created arrival times for each photon according to the
FRED distribution f . In addition, because the time resolution of INTEGRAL is 6.1·10−5 s,
we perturbed the arrival time of each photon with a Gaussian distribution with a deviation
of 6.1 · 10−5 s. The Monte Carlo simulations were done with κ = −10−5 s/keV, P = 1 s,
R = 0.3 s, h = 50 s−1 and D = 0.5 s. Remember that Δt = κ ·ΔE, so that a value for κ
of 10−5 s/keV represents a maximum time delay of ∼ 3 · 10−3 s, which is well longer than
the expected time delay due to quantum gravitational effects.

Fig. 6.2 (right panel) gives an example of a simulated GRB for parameters as described
above. The histogram shows a typical simulation of a GRB using a FRED distribution,
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while the black line shows the solution of the minimization of Eq. (6.1). This curve is

defined by P̂ = 0.983, κ̂ = −4.95 · 10−5 s/keV, R̂ = 0.276 s, ĥ = 48 s−1 and D̂ = 0.485
s. Except the value κ which is five times too big, the other values are easily recovered by
the minimization of Eq. (6.1). However, the Monte Carlo simulations have a tendency to
underestimate the parameters. As can be seen in Table 6.1, except the mean value of D
for N = 500, all values are too low for small N . Note that, apart from κ, R is not well
estimated and has therefore a big deviation.

N P [s] κ [s/keV] R [s] h [s−1] D [s]

µ̄ 0.95 −4.7 · 10−5 0.17 4.57 0.65
500

σ 0.10 4.0 · 10−4 0.21 1.4 0.31

µ̄ 0.97 −6.5 · 10−7 0.19 4.8 0.59
1000

σ 0.08 2.7 · 10−4 0.21 1.11 0.24

µ̄ 0.99 −2.3 · 10−5 0.19 5.1 0.51
2000

σ 0.03 1.6 · 10−4 0.23 0.52 0.09

µ̄ 0.99 −3.3 · 10−6 0.17 5.0 0.50
5000

σ 0.02 8.6 · 10−5 0.25 0.28 0.03

µ̄ 1.0 −2.0 · 10−5 0.17 5.0 0.50
10000

σ 0.01 6.8 · 10−5 0.25 0.2 0.02

µ̄ 1.00 −1.0 · 10−5 0.30 5.00 0.50
3 · 105

σ 0.002 1.2 · 10−5 0.002 0.04 0.004

Table 6.1: Results of 200 Monte Carlo simulations for each value of N

From Table 6.1 it should be clear that even with 3 · 105 photons it is not possible to
get a trustful result for that small a value κ. Recall that κ = 10−5 s/keV is about a factor
100 larger than the expected time lags caused by quantum gravitational effects. A crude
way of evaluating the statistics necessary for a convincing measurement is to make the
assumption that the FRED distribution may be approximated by a Gaussian distribution.
This distribution is obtained by minimizing the error of N independent measurements,
where the single parameters are µ̄ and σ. The error of a single measurement is given by
σ/
√

N , so that if we want to reach a precision of Δt = 10−5 s with a burst lasting one
second, we need 1010 photons.

A more careful analysis shows that the standard deviation for a FRED distribution does
not behave like const/

√
N . Fig. 6.3 shows the standard deviation σκ as a function of the

photon number N as given in Table 6.1. A fit to the data points between N = 500 and
N = 10000 shows that the standard deviation of a FRED distribution is given by

σκ = 0.0182 ·N−0.617, (6.4)

where the exponent is smaller than the usual 1/
√

N for a Gaussian. With this equation we
are also able to assess the error for κ when using data from GRBs measured by INTEGRAL.
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Figure 6.3: Standard deviation σκ for κ as a function of the number of photons N . The data
points are shown in Table 6.1 in the column κ. The solid line shows the fit and is given by
Eq. (6.4).

6.4 Results from GRBs Detected by INTEGRAL

6.4.1 Determination of the Parameter κ

The data provided by INTEGRAL contains for each single registered photon four pieces of
information: the arrival time, the energy, the dead time and the PIF value (see Sec. 6.1).
In our analysis we take only photons that have a PIF value larger than 0.9, i.e. we exclude
pixels that are not completely open to the GRB flux. After correcting the arrival time by
weighing it with 1/(1−dead time), we determine from the light curve which time intervals
have the shape of a FRED distribution. Recall from Eq. (6.4) that the more photons we
take the more we are able to constrain κ.

In [32] the average energy difference Δ�E� = Δ�E�3 − Δ�E�1 was computed for each
GRB using the energy bands of SWIFT, where Δ�E�3 is the average energy of the photons
with energies between 110 and 300 keV and Δ�E�1 between 20 and 55 keV (see Table 6.2).
In our variables the time difference would then be approximately given by Δt = κ ·Δ�E�.

However, from our analysis we obtain the parameter κ directly so we do not average
over energies in order to get a time difference. Considering only a linear approximation to
quantum gravitational effects as proposed by Ellis et al. [41, 42], we have the relation

κ = aI(z) + b(1 + z), (6.5)

where a and b are coefficients to be fitted. The constant b parameterizes time lags in the
rest frame of the source caused by unknown internal processes of the GRBs. Comparing
Eq. (6.5) with Eq. (5.5) we find that I(z) is given by

I(z) =

� z

0

dz�
�
ΩΛ + Ωm(1 + z�)3

(6.6)

and the QG parameter a by

a = ±
H−1

0

Mc2
, (6.7)

where EQG = Mc2. Fitting all GRBs with known redshift detected by INTEGRAL, we
find (units s/keV are used)

κ = (9.5± 3.0) · 10−4 · I(z)− (2.8± 1.1) · 10−4 · (1 + z) (6.8)
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GRB z I(z) K(z) κ [s/keV] σκ [s/keV]

030227 1.39 [109] 1.0 0.42 7.8 · 10−4 4.0 · 10−5

031203 0.11 [110] 0.10 0.09 −1.7 · 10−4 0.1 · 10−4

2.7 · 10−4 3.7 · 10−4
040106 0.9 [73] 0.73 0.38

4.2 · 10−4 1.5 · 10−4

040223 0.1 [69] 0.1 0.09 2.5 · 10−3 0.4 · 10−3

−1.4 · 10−3 0.1 · 10−3
040812 0.5 [38] 0.45 0.3

2.6 · 10−4 0.8 · 10−4

040827 0.9 [39] 0.73 0.38 −1.9 · 10−4 5.9 · 10−4

−1.2 · 10−3 0.1 · 10−3
041218 0.8 [47] 0.66 0.37

1.7 · 10−3 0.2 · 10−3

−2.2 · 10−3 0.4 · 10−3
050502 3.8 [86] 1.69 0.35

8.2 · 10−4 1.9 · 10−4

050714 0.26 [87] 0.25 0.19 −8.9 · 10−4 3.2 · 10−4

−1.4 · 10−3 0.2 · 10−3
050922 2.17 [57] 1.3 0.41

7.3 · 10−4 0.2 · 10−4

2.6 · 10−4 6.3 · 10−4
060204 3.1 [81] 1.55 0.38

2.3 · 10−4 0.1 · 10−4

Table 6.2: Results for the GRBs with known redshifts. Note that in spite of the fact that a couple
of redshifts have error bars, we choose to take the mean value of the redshifts without errors. The
reason is that then we don’t have to introduce arbitrary error bars in order for exact redshifts not
to be weighed infinitely strongly. I(z) is given by Eq. (6.6), K(z) by Eq. (6.9), κ is the time lag
per energy given by the maximization of Eq. (6.1) with σκ its error.
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as shown in the left panel of Fig. 6.4. Because redshifts are measured without using a
specific cosmological model, this fit was obtained using data that are model-independent.
Moreover, a rather questionable energy binning as explained above is not needed due to
the fact that our analysis method yields directly values for κ.

As can be seen from Fig. 6.4 (left panel), a single GRB with two bursts can lead to
very different time lags. For example, GRB040812 with average redshift z = 0.5 has two
peaks that even differ in the sign: the first one has a negative value κ = −1.4 · 10−3 and
the second one a positive value κ = 2.6 · 10−4. This could be explained by the fact that
different internal processes are at the origin of the two bursts, which implies that it may
not be sufficient to describe internal time lags with a constant b as in Eq. (6.5). However,
the physics involved in GRB is still not well understood, thus limiting the possibility to
model intrinsic effects in other ways than through Eq. (6.5).
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Figure 6.4: Left panel: plot of κ as a function of the redshift z for several GRBs detected by
INTEGRAL. The nonlinear fit is given by Eq. (6.8), the maximum lies at zmax � 2.34 with value
κmax � 3.6 · 10−4 s/keV. Right panel: evolution of the χ2 function as a function of M . Note that
χ2 has a strong minimum around 4 · 1011 GeV.

In [42] and [32] a linear fit was obtained by using not z as the independent variable but
instead a function K(z). Dividing Eq. (6.5) by (1 + z), K(z) is given by the non-linear
function

K(z) ≡
1

1 + z
I(z). (6.9)

However, we think that considering κ/(1+z) as a linear function of K is delusive because
the new function K(z) is not injective. This function maps certain different redshifts z to
the same value and has a maximum of Kmax � 0.42 at z = 1.64. For example, a redshift of
z = 4 has the same value K as a redshift of z = 0.7. Thus the two points for GRB050502
at z = 3.793 are mapped to K = 0.353, which is between GRB040812 and GRB040106.
Our opinion is that this method is misleading and does not give reliable results and should
therefore not be used.

6.4.2 Likelihood test

Following [42], we introduce a likelihood function

LLH(M) = N exp

�

−
χ2(M)

2

�

, (6.10)

where M is the mass scale, N the normalization and χ2(M) is given by

χ2(M) =
�

allGRBs

(κi − b(1 + zi)− a(M)Ii)
2

(σi)2 + σ2
b

. (6.11)
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The parameter b reflects the instrinsic time lags and a quantum gravitational effects. Thus,
b was removed from the linear fit, as can be seen from Eq. (6.11). Note that we used the
raw model that doesn’t need an energy binning.

The value at the minimum of χ2/d.o.f. is 303/15, which is well above unity. In such
a case, we may expect a high degree of uncertainty for any fitted parameters. If the
error bars are underestimated it will lead to underestimated statistical errors for the fitted
parameters. In such cases, the Particle Data Group [113] suggests to rescale the error bars
so that χ2 ≈ d.o.f. by a factor S = [χ2/d.o.f.]1/2. Such a rescaling has also been proposed
in [32, 41, 42].

Fig. 6.4 (right panel) presents the dependence of the rescaled χ2/d.o.f as a function
of M . The minimum of this function is found at M � 3.8 × 1011 GeV. This value also
minimizes the likelihood function given by Eq. (6.1).

Following Ellis et al. [41] we establish a 95 % confidence-level lower limit on the scale
M of quantum gravity by solving the equation

�MP

M
LLH(ξ)dξ

�MP

0
LLH(ξ)dξ

= 0.95, (6.12)

where the Planck mass MP = 1019 GeV is the reference point fixing the normalization.
The function LLH is given by Eq. (6.10). Solving this equation for M gives the lower limit
of quantum gravity at a 95 % level of confidence at

M � 3.2 · 1011GeV. (6.13)
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Chapter 7

Fermi Gamma-ray Space Telescope

The Gamma Ray Large Area Space Telescope (Fermi) is a space-based gamma-ray telescope
designed to explore the high-energy universe. It includes two instruments: the Large Array
Telescope (LAT), which is an imaging gamma-ray detector which detects photons with
energy from about 30 MeV to 300 GeV, and the Gamma-ray Burst Monitor (GBM) that
consists of 14 scintillation detectors which detect photons with an energy between 8 keV
and 30 MeV. The LAT has a very large field of view that allows it to see about 20 % of
the sky at any time. Despite the fact that it will cover the entire sky every three hours
we shall assume that the instrument response changes on timescales longer than a typical
burst duration. On the other hand, Fermi can be pointed as needed when a bright GRB
is detected by either LAT or GBM so that it will detect around 200 GRBs each year. The
energy resolution ranges from 20% at 30 MeV to about 7% at 1 GeV, as can be seen in
Fig. 7.1 [52]. The time resolution of an event should be around 10 µs with a dead time
shorter than 100 µs. In summary, LAT will have superior area, angular resolution, field of
view, time resolution and deadtime. This will at least provide an advance of a factor 30 in
sensitivity compared to previous missions.

The Fermi Science Support Center (GSSC) provides analysis tools freely available to
the scientific community on their homepage [53]. As we are interested in simulating the
detection of GRBs by Fermi we mainly used the tool called gtobssim which is a software that
generates photon events from astrophysical sources with the instrument response functions
of Fermi. Because we will only study the measurement of possible Lorentz violation we
assumed that LAT pointed in the same direction as the burst. Further information on the
effects of QG on LAT GRBs can be found in e.g. [23, 76].

7.1 Creation of a photon list

7.1.1 Analysis method

We shall use the same method we used to study INTEGRAL GRBs by modeling bursts
with a Fast Raise and Exponential Decay (FRED) distribution [65]. We parameterize this
distribution with four parameters: f = f(ti, Ei;P, R, D, κ, h) as shown in Fig. 7.2. We
suppose that a photon i came from the probability density function f at time ti with
energy Ei. We use the method of maximum likelihood which consists in finding the set of
values P̂ , R̂, D̂, κ̂ and ĥ that maximizes the joint probability distribution of all data, given
by

F(P, R, D, κ, h) =
�

i

f(ti, Ei;P, R, D, κ, h) (7.1)
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Figure 7.1: Energy resolution as a function of the energy for the LAT [52]. The energy uncertainty
at 30 MeV is about 17% before going down to a couple of percent in the GeV range. Most of the
photons LAT detects have an energy around ∼ 100 MeV with an uncertainty of about 10%.

together with the constraint

� t1

t0

dt� f(t�, Ei;P, R, D, κ, h) = 1, (7.2)

where F is the likelihood function and the integral runs between t0 and t1 as shown in
Fig. 7.2. The specifics of this distribution does not play a significant role in our study as
we are only interested in seeking possible violations of the Lorentz symmetry. In order
to further improve our model we also simulated an isotropic background with a spectrum
following an exponential decay with exponent 2.1. However, this background does not play
a significant role because of the following two reasons. The first one is that LAT shall only
be able to detect photons with energies above ∼ 30 MeV, where such events are rare. The
second one is the fact that we are only interested in GRBs, e.g. events of short duration.

t0

photons / s
number of

D
R

h

t    (E)
max t 1 time

Figure 7.2: Sketch of a typical light curve of a GRB for a given energy interval. The curve is
parameterized by four parameters: R the duration of the rise, h the height above the background,
D the decay time for exp(−t/D) and κ describes the magnitude of the dependence on the energy
of the distribution f , tmax = P +κ ·E, where P is the time when the intensity reaches a maximum
and E is the photon energy. The dashed line shows a distribution for another energy interval that
is shifted by an amount of Δt = κ ·ΔE sketching the shift in time due to quantum gravitational
effects.
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Figure 7.3: Left panel: Example of a simulated LAT GRB with gtobssim with a total photon
number of 74. The burst starts at t0 = 5 s and has a decay time of the order of 10 seconds. Right

panel: Spectrum of the same GRB as simulated by gtobssim for LAT. The first detected photons
have an energy of roughly 30 MeV. We choose the high energy exponent β = 2 (see Eq. (7.3))
and a background with exponent γ = 2.1

7.1.2 Spectrum of the GRBs

As described in the previous section we also need to simulate the energy of the photons.
Normally a typical energy distribution of GRBs follows the pattern of the so-called Band
function [22] given by the following equation:

NE(E) = A

�
E

100 keV

�α
exp

�

−
E

E0

�

,

(α− β)E0 ≥ E,

= A

�
(α− β)E0

100 keV

�α−β �
E

100 keV

�β
exp(β − α),

(α− β)E0 ≤ E, (7.3)

where α is the low-energy exponent, β the high-energy one and E0 the break energy. As
LAT starts measuring at 30 MeV and the break energy is around 500 keV we shall only
be interested in the high-energy behavior of the Band function. However, LAT will open a
new window on the spectrum where little is known, therefore there is no certainty whether
the Band function is still valid throughout the energy range of LAT.

In order to make the simulations as realistic as possible we used gtobssim. As described
in the previous section we simulated a GRB with photons following a FRED distribution
together with an isotropic background. Since we are only interested in the detection of a
possible Lorentz violation we used the same FRED distribution for all GRBs, i.e. with a
raise time of the order of a second and a decay time around 10 seconds (see Fig. 7.3). In
order to get a feeling of the uncertainty we varied the flux of the burst and only selected
the bursts which got about the same number of hits in the detector. We then introduced
a Lorentz violating term with the following relation (see Fig. 7.5):

Δt = κ×Eγ , (7.4)

where Eγ is the energy of the detected photon in MeV and Δt is the time delay in seconds
caused by quantum gravity given by the relation t1 = t0 +Δt. The parameter κ describes
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the effect of a Lorentz violation and is given by the following relation:

κ =
H−1

0

MQGc2

� z

0

1 + z�
�
ΩΛ + Ωm(1 + z�)3

dz� =:
H−1

0

MQGc2
I(z),

where MQG is the mass scale where the Lorentz symmerty breaks down. Henceforth we
shall take the most conservative scale and set MQG = MP ≈ 1.2× 1019 GeV.

As can be seen in Fig. 7.4 typical values for κ lie between 10−5 and 10−4 s/MeV. In the
Monte Carlo simulations we used a value of κ = 4 × 10−5 corresponding to a redshift of
z = 1.
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Figure 7.4: The Lorentz violation parameter κ as a function of the redshift. As we shall see
below, a value of κ = 10−4 s/MeV could even be measured without requiring a bright burst (see
Table 7.1).

We studied two models: one simple one with only the time delays caused by quantum
gravity and a more realistic one where we perturbed the energy and the arrival time ac-
cording to the scheme shown in Fig. 7.5 in order to take into account the energy and time
resolution of the LAT. For a given event at time t0 with energy E0 obtained with gtobssim
we read the energy uncertainty σE0/E0 from Fig. 7.1 and perturbed this energy with a
Gaussian with maximum at E0 and standard deviation σE0 . The next step is to take the
corrected time t1 and perturb it with a Gaussian with maximum at t = 0 and standard
deviation σt = 10 µs so that we get the perturbed arrival time t2.

7.1.3 Results

In the previous section we explained how we constructed a burst with photons and per-
turbed their energies and arrival times to account for Lorentz violation and finite energy
and time resolution of LAT. The question is now whether it is possible to get back the
value of κ parameterizing the Lorentz violating term despite the perturbation of both the
energy and arrival time. In [65] we found an exponential dependence between the standard
deviation σκ and the number of detected photons N with an exponent of -0.617. However,
we only perturbed the arrival time and not the energy.

The final step is to search for κ̄ which minimizes the likelihood Eq. (7.1). For a single
burst we scanned through a large range of κ in order to find the global (and not just a
local) minimum of the likelihood. We performed 100 Monte Carlo simulations for different
luminosities of the burst, i.e. different numbers of total events N (see Table 7.1).
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1

FIT

Figure 7.5: Setup of the simulation process. The software gtobssim gives as output the arrival
time t0 and the energy E0 of a photon. The arrival time is then corrected by means of the
relation (7.4) from t0 to t1 (box QG). The simpler case with only QG effects is shown by the
arrow number 1. In the second case, the energy of the photon was perturbed from E0 to E1 with
a Gaussian distribution with standard deviation according to Fig. 7.1 (box ER). Furthermore,
the arrival time was perturbed a second time from t1 to t2 with a Gaussian distribution with
standard deviation of 10 µs corresponding to the time resolution of LAT (box TR). The photon
with arrival time t2 and energy E1 is then given to the fitter (box FIT) to get a value for the QG
corresponding to κ.

unperturbed (1.) perturbed (2.)

N flux [s−1m−2] κ̄ [s/MeV] σκ [s/MeV] κ̄ [s/MeV] σκ [s/MeV]

20 10 1.2× 10−4 2.0 × 10−3 3.9× 10−4 1.7× 10−3

50 28 9.5× 10−5 9.5 × 10−4 6.4× 10−5 7.8× 10−4

75 46 8.5× 10−5 5.3 × 10−4 1.4× 10−4 2.4× 10−4

100 60 6.5× 10−5 4.3 × 10−4 8.4× 10−5 3.7× 10−4

150 96 4.2× 10−5 2.2 × 10−4 4.6× 10−5 3.3× 10−4

200 128 5.3× 10−6 2.1 × 10−4 3.7× 10−5 2.4× 10−4

500 330 2.9× 10−5 6.6 × 10−5 1.4× 10−5 6.6× 10−5

1000 660 2.3× 10−5 5.1 × 10−5 2.9× 10−5 4.3× 10−5

Table 7.1: Results of 100 Monte Carlo simulations. The first column shows the number of photons
detected by LAT, the second one the approximate flux in m−2s−1. The third column shows the
mean value of κ̄ for the unperturbed system (1.) and the fourth one its standard deviation. The
last two columns are the same as the third and fourth ones, except for the fact that the arrival
times and energies were perturbed with a Gaussian distribution (see Sec. 7.1.2).

Fig. 7.6 shows a comparison between the standard deviation of the perturbed and un-
perturbed system. The fit of the unperturbed system is given by

σκ = (2.5× 10−2) ·N−0.93

and the fit of the perturbed system by

σκ = (6.0× 10−2) ·N−1.07. (7.5)

The results described above allows us to simulate a full set of GRBs with different
redshifts z and time shifts κ. Fig. 7.7 shows a set of 100 GRBs with redshifts between 0
and 10, where we used the results from [80] and [79] in order to get a rough estimate of
the expected number of GRBs detected by Fermi as a function of the number of detected
photons and the redshift. Each value for κ has been perturbed with a Gaussian with a
standard deviation given by Eq. (7.5). Considering a linear approximation to quantum
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Figure 7.6: Comparison between the standard deviations σκ of the unperturbed and perturbed
system. The vertical crosses show the values for the unperturbed system together with the solid
line as its fit. The inclined crosses show the values for the system with perturbed arrival times
and energies.

gravitational effects we have the relation [41, 42]:

κ = aI(z) + b(1 + z), (7.6)

where a and b are fitted coefficients. The constant b parameterizes time lags in the frame
of the source caused by unknown internal processes of the GRBs, a describes the expected
Lorentz violating effects through

ath =
H−1

0

MP c2
≈ 2.56× 10−5 s/MeV. (7.7)
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Figure 7.7: Simulation of 100 GRBs where κ has been perturbed with a Gaussian according to
the relation Eq. (7.5). The error bars show the 1σ deviation given by Eq. (7.5). The distribution
of the GRBs and the luminosity has been computed using results from [80, 79] where a histogram
of the number of GRBs as a function of either the redshift or the luminosity is given. The solid
line shows the fit given by Eq. (7.8). Note that no systematic errors have been incorporated.

A fit of the 100 GRBs shown in Fig. 7.7 gives

κ = (2.6± 3.1)× 10−5 · I(z)− (1.9± 2.5)× 10−5 · (1 + z). (7.8)
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We see that the Lorentz violating term is well compatible with the theoretical value ath while
the second term is less than one σ off the input values bth = 0 (see Table 7.2). Considering
the fact that LAT should see around 500 GRBs each year it might be tantalizing to conclude
that only after a couple of months the question whether the Lorentz symmetry is broken
might be answered. However, we would like to stress the fact that we did not consider
systematic errors caused by the lack of knowledge of the internal processes leading to photon
emissions. As these systematic errors were the main problem past works [41, 42, 43, 65]
had to deal with, this oversimplified analysis must be taken with precaution. Moreover, a
known redshift of the bursts is also needed, thus reducing the number of usable bursts.

N a [s/MeV] b [s/MeV]

10 (1.7± 5.6) × 10−5 (−1.8± 3.3) × 10−5

20 (2.6± 3.6) × 10−5 (−1.8± 2.8) × 10−5

50 (2.6± 3.2) × 10−5 (−1.9± 2.6) × 10−5

100 (2.6± 3.1) × 10−5 (−1.9± 2.5) × 10−5

Table 7.2: Results of the fit Eq. (7.6) for a variable number of bursts. The first column shows
the number of bursts considered for the fit, the second one shows the value of a describing the
Lorentz violating effects and the third one the value of b parameterizing the time lags caused by
unknown internal processes. The theoretical value of a is given by Eq. (7.7). The error on a and
b only reduces considerably between N = 10 and N = 20.

7.1.4 Quadradic corrections

In this subsection we are concerned with quadratic corrections, i.e. (ΔE)2, given by [55]

Δt = ±
3

2
H−1

0

�
ΔE

EQG

�2 � z

0

(1 + z�)2
�
ΩΛ + ΩM (1 + z�)3

dz�. (7.9)

Such corrections may be interesting in view of the fact that previous works have already
put stringent constraints on linear corrections to the speed of light [2, 43, 46, 56]. To get
a rough estimate of the sensitivity of Fermi to quadratic corrections we must first get a
bound on the time difference that should be detectable by Fermi. With Eq. (7.4) we see
that for σκ ∼ 5× 10−4 s/MeV (see Table 7.1) and ΔE ∼ 103 MeV we get a bound on the
time difference of σΔt ∼ 5× 10−1 s. Solving Eq. (7.9) for the mass scale and inserting these
results we get a mass scale of

Mquadratic � 2× 109 GeV.

for z = 1 up to which Fermi should be sensitive for a single burst. This bound may
probably be raised by a couple of orders of magnitude with better statistics. However, we
do not think that Fermi will be able to detect a quadratic correction if the QG scale is at
the Planck scale.

The above estimate may seem very crude. We therefore checked it with results obtained
in the literature and found a good agreement between this estimate and a more rigorous
statistical analysis. For example, taking ML > 7 × 1015 GeV obtained in Eq. (36) in [41]
together with ΔE ∼ 100 keV and σΔt ∼ 5 × 10−3 s for BATSE we get a bound on the
quadratic correction of MQ � 0.8× 106 GeV, which corresponds more or less to the result
MQ > 3× 106 GeV obtained in [41] with a rigorous analysis.
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7.1.5 Other distributions

Until now we only considered FRED distributions for GRBs. However, despite the fact
that these distributions may describe a large number of GRBs, we also have to consider
other burst shapes in order to get an estimate for the validity of our likelihood method
with non-FRED distributions. We studied two other shapes, a linearly raising and falling
distribution and a double-peak distribution (see Fig. 7.8). We then applied the likelihood
method to these peaks with 200 photons and compared the results with Table 7.1 for
N = 200. For the linear peak (see left panel in Fig. 7.8) we found a value κ̄ = 1.7 × 10−6

s/MeV and a standard deviation of σκ = 1.6 × 10−4 s/MeV. Comparing this value with
the perturbed system for N = 200 (see Table 7.1) we see that the likelihood method gives
a slightly better results for the linear peak. We also studied the double peak (see fight
panel in Fig. 7.8) and found a value of κ̄ = 2.0× 10−6 s/MeV with a standard deviation of
σκ = 1.6 × 10−4. Thus the results of both cases lead to the conclusion that our likelihood
method is also able to deal with non-FRED distributions.

We fixed the duration time of the simulated GRBs to about 20 seconds, which seems
quite arbitrary. However, we expect the likelihood to get better as the duration of the burst
gets shorter (as long as the total number of photons remains constant). The reason is that,
while κ is independent of the duration, the ratios κ/R and κ/D (see Fig. 7.2) are inverse
proportional to t1 − t0. We checked this claim for bursts with a duration time of about
6 seconds, 200 photons and FRED-distributed. We found a value κ = 2.6 × 10−5 s/MeV
with a standard deviation of σκ = 3.7× 10−5 s/MeV. Comparing this value with Table 7.1
we see that the likelihood is able to recover the Lorentz violating term with a precision of
about one order of magnitude better. On the other hand, the convergence of the likelihood
decreases with the duration time of the bursts, thus narrowing the study of short bursts to
the brighter ones.
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Figure 7.8: Left panel : Example of a simulated LAT GRB with a linear raise and linear decay.
Right panel : Example of a simulated LAT GRB with a double-peak shape.
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Chapter 8

Conclusion

We first described a method that is able to analyze unbinned data of GRBs detected by
INTEGRAL. We introduced a maximum likelihood function following a Fast Raise and
Exponential Decay behavior with a parameter describing time lags of photons for different
energies. In order to know which minimum time lags are measurable with INTEGRAL, we
performed Monte Carlo simulations and varied the total photon number.

We had 11 GRBs with known redshift at our disposal and were able to get 17 measure-
ments of time lags. We used these measurements to fit a nonlinear relation depending on
the redshift. This relation has a term that describes possible quantum gravitational effects
and one that accounts for intrinsic time lags of the GRB. By using a likelihood function we
made a χ2 analysis of the data and showed that there is a strong minimum of χ2 around
4 × 1011 GeV, which apparently would disfavor a quantum gravitational scale around the
Planck mass. However, as shown by our Monte Carlo simulations in Section 6.3 it is obvious
that it is impossible to obtain the required sensitivity with the presently available statistics
of GRB data, especially when only 11 GRBs are at disposal. Correcting for intrisinc time
lags [48, 78, 77] dramatically increases this lower bound to 1.5 · 1014 GeV, but this method
stands on shaky ground.

Then we studied possible Lorentz violations with special focus on the Large Array
Telescope (LAT) of Fermi, where we concentrated on models with linear corrections to
the speed of light. We simulated bursts and introduced a Lorentz violating term in the
arrival times of the photons. We further perturbed these arrival times and energies with
a Gaussian distribution corresponding to the time resp. energy resolution of Fermi. We
then varied the photon flux in order to derive a relation between the photon number and
the standard deviation of the Lorentz violating term. We concluded with the fact that
our maximum likelihood method is able to make a statement whether Nature breaks the
Lorentz symmetry if the number of bursts with known redshifts is of the order of 100.
However, the systematic errors caused by unknown mechanisms for photon emission were
not considered despite the fact that these errors should be the main obstacle to detecting
Lorentz violations.

Yet we had to make a couple of assumptions. The most important one was that we had
to assume that the BAND function is still valid at LAT energies, implying that photons
with energies above 10 GeV are extremely rare. But Fermi detected a photon from GRB
090510 with an energy of about 30 GeV with no sign of any Lorentz violation. Of course,
one GRB is not sufficient to exclude an (linear) energy-dependent speed of light as internal
emission processes are still not well understood. A couple of bursts emitting such energetic
photons may be sufficient to definitively settle the question whether Einstein was right.
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Appendix A

Symmetry Reduction of Connections

In this section we shall repeat the complete analysis introduced in [59, 30, 25] in order to
see the impact of a compact topology on a connection. Our strategy is to find an invariant
connection on the covering space M̃ and then restrict it to the compact space M by means
of the covering map (2.2). In the following section, when referring to the covering space,
we shall use a tilde. The results of this appendix are used in Section 2.4.

A.1 Invariant Connections

Let P̃ (M̃, SU(2), π) be a principal fiber bundle over M̃ with structure group SU(2) and
projection π : P̃ → M̃ . We require that there be a symmetry group S̃ ⊂ Aut(P̃ ) of bundle
automorphisms which acts transitively on M̃ . Furthermore, for Bianchi I models S̃ does
not have a non-trivial isotropy subgroup F̃ so that the base manifold is isomorphic to the
symmetry group S̃, i.e. M̃/S̃ = {x0} is represented by a single point that can be chosen
arbitrarily in M̃ . Since the isotropy group F̃ is trivial the coset space S̃/F̃ ∼= S̃ is reductive
with a decomposition of the Lie algebra of S̃ according to LS̃ = LF̃ ⊕LF̃⊥ = LF̃⊥ together
with the trivial condition AdF̃LF̃⊥ ⊂ LF̃⊥. Here, LS is the orthogonal complement of
LS with respect to the Cartan-Killing metric on LS. This allows us to use the general
framework described in [30, 25, 59].

Since the isotropy group plays an important role in classifying symmetric bundles and
invariant connections we describe the general case of a general isotropy group F̃ . Fixing a
point x ∈ M̃ , the action of F̃ yields a map F̃ : π−1(x) → π−1(x) of the fiber over x. To
each point p ∈ π−1(x) in the fiber we assign a group homomorphism λp : F̃ → G = SU(2)

defined by f(p) =: p · λp(f), ∀f ∈ F̃ . As this homomorphism transforms by conjugation
λp·g = Adg−1 ◦λp only the conjugacy class [λ] of a given homomorphism matters. In fact, it

can be shown [59] that an S̃-symmetric principal bundle P (M̃, G, π) with isotropy subgroup
F̃ ⊆ S̃ is uniquely characterized by a conjugacy class [λ] of homomorphisms λ : F̃ → G
together with a reduced bundle Q(M̃/S̃, ZG(λ(F̃ )), πQ), where ZG(λ(F̃ )) is the centralizer

of λ(F̃ ) in G. In our case, since F̃ = {1} all homomorphisms λ : F̃ → G = SU(2) are given
by 1 �→ 1G.

After having classified the S̃-symmetric fiber bundle P̃ we seek a [λ]-invariant connection
on P̃ . We use the following general result [34]:

Theorem 2 (Generalized Wang theorem). Let P̃ be an S̃-symmetric principal bundle clas-
sified by ([λ], Q) and let ω̃ be a connection in P̃ which is invariant under the action of S̃.
Then ω̃ is classified by a connection ω̃Q in Q and a scalar field (usually called the Higgs
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field) φ : Q×LF̃⊥ → LG obeying the condition

φ(Adf (X)) = Adλ(f)φ(X), ∀f ∈ F̃ , X ∈ LF̃⊥. (A.1)

The connection ω̃ can be reconstructed from its classsifying structure as follows. Accord-
ing to the decomposition M̃ ∼= M̃/S̃× S̃/F̃ we have ω̃ = ω̃Q+ ω̃S̃/F̃ with ω̃S̃/F̃ = φ ◦ ι∗θ̃MC,

where ι : S̃/F̃ �→ S̃ is a local embedding and θ̃MC is the Maurer-Cartan form on S̃. The
structure group G acts on φ by conjugation, whereas the solution space of Eq. (A.1) is only
invariant with respect to the reduced structure group ZG(λ(F̃ )). This fact leads to a par-
tial gauge fixing since the connection form ω̃S̃/F̃ is a ZG(λ(F̃ ))-connection which explicitly

depends on λ. We then break down the structure group from G to ZG(λ(F̃ )) by fixing a
λ ∈ [λ].

In our case, the embedding ι : S̃ → S̃ is the identity and the base manifold M̃/S̃ = {x0}
of the orbit bundle is represented by a single point so that the invariant connection is given
by

Ã = φ ◦ θ̃MC.

The three generators of LS̃ are given by TI , 1 ≤ I ≤ 3, with the relation [TI , TJ ] = 0 for

Bianchi I models. The Maurer-Cartan form is given by θ̃MC = ω̃ITI where ω̃I are the left
invariant one-forms on S̃. The condition (A.1) is empty so that the Higgs field is given by
φ : LS̃ → LG, TI �→ φ(TI) =: φI

iτi, where the matrices τj = −iσj/2, 1 ≤ j ≤ 3, generate
LG, where σj are the standard Pauli matrices. In summary the invariant connection is
given by

Ã = φI
iτidω̃I. (A.2)

In order to restrict this invariant connection we define the invariant connection A on
T3 with the pullback given by the covering map (2.2). The generators of the Teichmüller
space (see Eq. (2.3)) allow us to write A as:

Aia := φ̄I
iωIa, (φ̄I

i) =






φ̄1
1 φ̄2

1 φ̄3
1

0 φ̄2
2 φ̄3

2

0 0 φ̄3
3




 . (A.3)
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Appendix B

Kasner Solutions

In Section 2.3.2 we introduce a scalar field in order to allow for an isotropic expansion of
the universe. In this appendix we will explain the reason for this choice by considering a
homogeneous vacuum solution of Einstein’s equations known as the Kasner solution and
show that it doesn’t admit an isotropic expansion. We shall only give a short overview on
this topic and refer the reader to [108] for further details.

Definition 7. A Lorentzian manifold is a vacuum solution to the Einstein’s field equations
if its corresponding Einstein tensor Gµν = Rµν −

1
2
Rgµν vanishes, or equivalently, the Ricci

tensor Rµν vanishes.

We would like to find all spatially flat and homogeneous vacuum solutions with G = R3

as Lie group acting transitively on the spatial manifold, i.e. we seek vacuum solutions for
a Bianchi type I model (see Section 2.2.3). It can be shown that these are given by the
following metric

ds2 = −dt2 + t2p1(ω1)2 + t2p2(ω2)2 + t2p3(ω3)2, (B.1)

where ωi are the left-invariant one-forms and the constants pi the so-called Kasner ex-
ponents. This metric describes a spacetime whose spatial slices are flat but expanding
or contracting at different rates in different regions. Moreover, it is an exact solution to
Einstein’s equation if and only if the Kasner exponents satisfy the Kasner conditions

p1 + p2 + p3 = 1 = (p1)
2 + (p2)

2 + (p3)
3.

The first condition defines a plane and the second one a sphere. In a isotropically expanding
universe all Kasner exponents would be equal, i.e. pi = 1/3 but the second Kasner condition
would not be satisfied since (p1)

2+(p2)
2+(p3)

3 = 1/3 �= 1. We thus conclude that isotropic
expansion or contraction is not allowed. Moreover at least one Kasner exponent is always
negative (except when one single exponent is equal to one and the two others 0). Since the
volume of the spatial slice is given by

�
|g| = tp1+p2+p3 = t,

it increases (decreases) like t despite the fact that at least one direction is contracting
(expanding).

What about the (isotropic) Friedmann-Robertson metric? The important point is that
only in presence of matter can space expand or contract isotropically. This is the reason why
we added matter to gravity to compute the evolution of a torus given in (see Section 2.3.2).
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Appendix C

Representation Theory and Weyl

Algebra

In this section we are interested in a few general considerations which are important to
understand the difference between loop quantum cosmology and ’standard’ quantization of
cosmology à la Wheeler-DeWitt. We will introduce the Stone-von Neumann theorem and
explain why there is a difference between these two quantum cosmologies. Further details
can be found in e.g. [24, 33, 88].

C.1 General Considerations

We would like to introduce the general concepts leading to a general construction of a
Hilbert space. The starting point is the following definition:

Definition 8.

1. An algebra A is a vector space together with a multiplication map A×A → A;
(a, a�) �→ aa� which is associative and distributive.

2. An algebra A is Abelian if all elements commute with each other and unital if it has
a unit element.

3. An involution on A is a map ∗ : A → A; a �→ a∗ satisfying

• (za + z�b)∗ = z̄a∗ + z̄�b∗,

• (ab)∗ = b∗a∗ and

• (a∗)∗ = a

for all a, b ∈ A, z, z� ∈ C.

4. An algebra with an involution is called a ∗−algebra.

5. A normed algebra A is equipped with a norm �.� : A → R+ satisfying �ab� ≤ �a��b�,
for all a, b ∈ A. If A has an involution we require that �a∗� = �a� and if it is unital
we demand that �1� = 1.

6. A norm induces a metric d(a, b) = �a− b� and an algebra A is called Banach if every
Cauchy sequence converges.

7. A C∗−algebra A is a Banach algebra with involution and �a∗a� = �a�2.
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Note that for example C is a unital, Abelian C∗-algebra in the usual metric topology of
R2.

Definition 9.

1. The spectrum Δ(A) of a C∗−algebra is defined as the set of all non-zero *-homomor-
phisms ρ : A → C satisfying ρ(ab) = ρ(a)ρ(b) and ρ(a)−1 = ρ(a−1).

2. The Gel’fand transform is defined by

�
: A → Δ(A)�

a �→ ǎ(ρ) := ρ(a),

where Δ(A)� is the space of continuous linear functionals on Δ(A).

This allows us to use the following theorem

Theorem 3. Every unital abelean C∗-algebra A is isometric isomorph to the space of
continous functions C(Δ(A)). Moreover the spectrum of the algebra is a compact Hausdorff
space.

The spectrum is compact w.r.t. the weak *-topology on Δ(A), i.e. every net (ρα(a)) in
Δ(A) converges to ρ(a), for all a ∈ A. Furthermore, a topological space is Hausdorff if any
two distinct points possess disjoint neighborhoods.

Every compact Hausdorff space is also locally compact. This fact allows us to use the
following theorem

Theorem 4 (Riesz-Markov). Let X be a locally compact Hausdorff space. For any positive
linear functional Λ : C0(X)→ C there is a unique regular measure µ on X such that

Λ(f) =

�

X

f(x)dµ(x),

for all f ∈ C0(X).

Here a positive linear functional ω is a linear map ω : A → C which satisfies ω(a∗a) ≥ 0
for every a ∈ A and is unital if ω(e) = 1, where e is the unit element of A. Such a functional
is called a state and can be used to define a sesquilinear form

�a, b� := ω(a∗b),

for all a, b ∈ A. In general this sesquilinear form is not necessarily positive definite. How-
ever, as we are interested in LQC we will assume that �·, ·� is positive definite.

Definition 10. A representation of A is a pair (H, π) consisting of a Hilbert space H and
a *-homomorphism π : A → L(H) into the algebra of linear operators on H satisfying
π(za + z�b) = zπ(a) + z�π(b), π(ab) = π(a)π(b) and π(a∗) = [π(a)]† where † denotes the
adjoint in H. The representation is faithful if Ker(π) = {0}, non-degenerate if π(a)ψ = 0
implies ψ = 0, for all a ∈ A, and cyclic if there exists a normed vector Ω ∈ H such that
π(a)Ω is dense in H.

Now, the key result is a construction named after Gel’fand, Naimark and Segal (GNS):
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Theorem 5 (GNS construction). Let ω be a state on a unital *-algebra A. Then there are
GNS data (Hω, πω,Ωω) consisting of a Hilbert space Hω, a cyclic representation πω of A
and a normed, cyclic vector Ωω ∈ Hω such that

ω(a) = �Ωω, πω(a)Ωω�Hω . (C.1)

Moreover the GNS data are uniquely determined by Eq. (C.1) up to unitary equivalence,
i.e. if (H�

ω, π
�
ω,Ω

�
ω) are another GNS data then the operator U : Hω → H�

ω defined by
Uπω(a)Ωω = π�ω(a)Ω

�
ω is unitary.

C.2 Weyl Algebra

The general considerations of the last section are a powerful tool to build a cyclic repre-
sentation from a state on a *-algebra. On the other hand there are (in general) infinitely
many states such that additional physical assumptions have to be made. For example let
us consider the Weyl algebra of quantum mechanics generated by (a, b ∈ R):

U(a) := exp(iaq/�) and V (b) = exp(−ibp/�) (C.2)

satisfying

U(a)U(a�) = U(a + a�), V (b)V (b�) = V (b+ b�), V (b)U(a) = eiab/�U(a)V (b),

U(a)∗ = U(a†) and V (b)∗ = V (b†).

We need the following definition

Definition 11. Let xn be a sequence in a topological vector space X. Then xn converges
weakly to x or xn

w
−→ x if

φ(xn)
(n→∞)
−−−−→ φ(x)

for all φ ∈ X∗.

In order to study the uniqueness of representations of the Weyl algebra we need the
following theorem

Theorem 6 (Stone-von Neumann). The only irreducible and weakly continuous representa-
tion of the Weyl algebra (C.2) is the Schrödinger representation on H := L2(R, dx) defined
by

[π(U(a))ψ](x) = exp(iaq/�)ψ(x) and [π(V (b))ψ](x) = ψ(x+ b).

Irreducible means that every vector ψ is cyclic.

In this specific case weak continuity means that lima→0�ψ, π(U(a))ψ�� = �ψ, ψ�� for all
ψ, ψ� ∈ H. The last theorem states for instance that the Schrödinger representation is
unitarily equivalent to the Heisenberg representation.

Given a finite number of degrees of freedom, is it possible to construct an inequivalent
representation? The answer is affirmative if we drop the assumption of weak continuity.
Define a non-separable Hilbert space HNS with the uncountable basis Tx, x ∈ R, and set
π(U(a))Tx = Tx+a and π(V (b))Tx = exp(ibx)Tx. The representation π(U(a)) fails to be
weakly continuous because lima→0�Tx, π(U(a))Tx� = lima→0 δx,x+a = 0 �= �Tx, Tx� = 1.

Definition 12. U(t) is a weakly continuous, one-parameter group of unitary operators if
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• For each t ∈ R U(t) is a unitary,

• U(s)U(t) = U(s+ t), for all s, t ∈ R,

• limt→0�ψ, U(t)ψ�� = �ψ, ψ��, for all ψ, ψ� ∈ H.

Theorem 7 (Stone). Let U(t) be a weakly continuous, one-parameter group of unitary

operators. Then there exists a self-adjoint operator Â such that U(t) = exp(itÂ) called the
infinitesimal generator of the group.
Conversely, let Â be a self-adjoint operator. Then U(t) = exp(itÂ), t ∈ R, is a strongly
continuous one-parameter family of unitary operators.

The implication of this theorem is that no such self-adjoint operator exists if the one-
parameter group is not weakly continuous. In the example given above where the repre-
sentation π(U(a)) failed to be weakly continuous there is no well defined operator x̂ on
HNS.

The construction given in this appendix is very important for the rest of this thesis
because one representation of the Weyl operators in LQC also fails to be weakly continuous
such that a unitarity inequivalent representation is found. The physical reason behind this
is that space in LQG is quantized so there is no infinitesimal generator of translations. Such
representations are also called polymer representations to stress the discrete character of
space. A neat example of a polymer quantization of simple systems such as the free particle
or the oscillator can be found in [37]. In such a case dynamics is governed by a difference
operator rather than a differential operator.

90



Appendix D

Almost Periodic Functions and the

Bohr Compactification

Definition 13.

1. Let n ∈ Z. A trigonometric polynomial of degree N ∈ N is defined as

T (x) =

N�

n=−N

ane
inx; x ∈ R.

Let Trig(R) be the *-algebra of trigonometric polynomials.

2. Let k ∈ R and define the periodic functions of period 2π/k by

Tk : R→ C; x �→ exp(ikx).

The algebra C of almost periodic functions is the finite complex linear space of the
functions Tk:

f =

N�

I=1

zITkI
, kI ∈ R and zI ∈ C.

They form a ∗−algebra since TkTk� = Tk+k� and Tk = T−k.

3. Let C̄ be the closure of C in the supremum norm, which is an Abelian C∗−algebra.

Since Q is dense in R for every � > 0 and f =
�N
I=1 zITkI

as defined in Definition 13
there is a qI = mI/nI , 0 �= nI , mI ∈ Z such that |kI − qI | < � and such that f behaves as
if it were periodic with period 2πn1 . . . nN for sufficiently small range of x. It is only truly
periodic if the kI are rationally dependend, i.e.

�N
I=1 qIkI = 0 implies q1 = . . . = qN = 0

for qI ∈ Q. Figure D.1 shows the almost periodic function f = exp(i
√
2x) + exp(2ix) for

� = 0.1 (left panel) and � = 0.05 (right panel). This function is clearly not periodic because
it has the value 2 only for x = 0.

Thus, the functions Nµ(c), µ ∈ R, form an Abelian, unital C∗-algebra (upon completion
in the supremum norm). This allows us to use the powerfull tools described in Appendix C.
Thus, applied to the almost periodic functions we have

Definition 14. The Bohr compactification R̄B of the real line R is defined as the spectrum
of the abelean unital C∗-algebra C̄, i.e. R̄B := Δ(C̄).
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Figure D.1: Comparison between an almost periodic function given by f = exp(i
√
2x)+ exp(2ix)

(solid line) and its periodic approximation (dashed line). Notice that contrary to the periodic
approximations f only reaches the value 2 once at x = 0. Left panel: The required precision is
� = 0.1 such that q = 3/2 or |

√
2 − 3/2| = 0.086 < �. The period of the approximation is 4π.

Right panel: The required precision is � = 0.05 such that q = 7/5, the period is 10π.

As such, the space R̄B can be seen as the quantum configuration space (point 2 in
Section 3.2) with the homomorphisms ρ : C̄ → C; Tk �→ ρ(Tk) as elements. In order to see
that this space is much larger than the classical configuration space R let us rewrite ρ as
X(k) = ρ(Tk). Since ρ is an homomorphism X fulfills the conditions

X(k)X(k�) = X(k + k�), X(k) = X(−k) (D.1)

and |X(k)|2 = 1. Thus X is an homomorphism from R to the group U(1), i.e. X ∈
Hom(R, U(1)) which doesn’t need to be continuous. However, if X is once differentiable
a differentiation of the first condition in Eq. (D.1) with k� = 0 leads to the differential
equation X �(k) = X �(0)X(k) with solution X(k) = exp(ikx) for some x ∈ R. Thus if we
write X(k) = gk(x) we see that R ⊂ R̄B.

A general element X(k) ∈ Hom(R, U(1)) is given by X(k) = exp(if(x)) where (modulo
2π)

f(k + k�) = f(k) + f(k�) and f(−k) = −f(k).

However this requirement lacks the scalar multiplication f(λk) = λf(k) in order for f(k)
to be a linear function. This is the reason why it allows for the construction of functions
f(k) which are discontinuous on a dense subset of R (see [104] for an explicit example).
We conclude that R̄B is much larger than R with typical elements consisting of everywhere
discontinuous homomorphisms R→ U(1). On the other hand the image ofR in R̄B consists
only of smooth homomorphisms.

From Theorem 3 we conclude that the space R̄B is a compact Hausdorff space and every
elements Ťk is continuous. Furthermore Theorem 4 ensures that, given a positive linear
functional Λ ∈ C(R̄B), there exists a regular measure µ0 such that

Λ(Ťk) = δµ,0, (D.2)

where δ is the Kronecker delta. This functional defines a scalar product via:

�Ťk, Ťk�� := Λ(ŤkŤk�) = Λ(Ťk�−k) = δk�−k,0 = δk,k� (D.3)

and a norm
�f�L2 :=

�
�f, f�.
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A Cauchy completion with this norm leads to the Hilbert space L2(R̄B, dµ0) where the
measure is defined by Eq. (D.2). The meaning of Eq. (D.3) is that the elements Ťk form
an orthonormal basis in L2(R̄B, dµ0). Furthermore it can be proven that the measure µ0

can also be considered as a Haar measure on R via

µB(f) := lim
T→∞

1

2T

� T

−T

f(x)dx,

where f is an element of the ∗−algebra C (see [104] for further details).

Theorem 8. An almost periodic function is bounded i.e., there exists a constant C = C(f)
such that

|f(x)| ≤ C for x ∈ R.

As a consequence of this theorem, if f(x) is almost periodic, so is (f(x))2 and if |f(x)| >
0 for all x ∈ R, then 1/f(x) is also almost periodic. Furthermore, as C is an algebra, a
product and a sum of almost periodic functions is almost periodic.

D.1 Differential Operators in Spaces of Almost Periodic Func-

tions

In this section we give a brief review of the main results given in [94, 95]. We need the
following definintion:

Definition 15. The Sobolev space H1(R̄B) is given by the completion of the space of
trigonometric polynomials Trig(R) (see Definition 13) in the Sobolev norm

�f�2H1 = �f�2L2(R̄B)
+ �f ��2L2(R̄B)

.

In other words, H1(R̄B) consists of all almost periodic functions f ∈ C such that f � ∈ C.

Theorem 9. Let the differential operator p̂ := −i d
dξ
on L2(R̄B) have the domain of def-

inition Trig(R). Then its closure has the domain H1(R̄B). The adjoint operator to p̂ on
L2(R̄B) has also the domain H1(R̄B) and coincides with p̂+ on it. Since p̂ = p̂+, p̂ is
essentially self-adjoint on Trig(R) [94, 95].

A proof can be found in [95].
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Appendix E

Solutions of Eq. (3.22)

In this Appendix we show that the functions fλ (see Eq. (3.28)) solve the partial differential
equation (3.22).

We first note that the function Ω1(sin θ tan(ξ/2)) is annihilated by Â because

−i cos θ
∂Ω1

∂ξ
+ i

sin θ

sin ξ

∂Ω1

∂θ
≡ 0

for any Ω1 ∈ C1. Furthermore,
�
tan(ξ/2) is also annihilated by Â because

−i cos θ
∂
�
tan(ξ/2)

∂ξ
+

i

2

cos θ

sin ξ

�
tan(ξ/2) ≡ 0.

The problem is therefore reduced to showing that

−i cos θ
∂F (ξ, θ)

∂ξ
+ i

sin θ

sin ξ

∂F (ξ, θ)

∂θ
= λF (ξ, θ), (E.1)

where
F (ξ, θ) =

√
2 (i cos θ sin(ξ/2) + cos(ξ/2)α)

2λ
α ,

where α =
�
1 + sin2 θ tan2(ξ/2). The derivation of F along ξ is given by

∂ξF = 2λF

�

−
log(
√
2i cos θ sin(ξ/2) +

√
2 cos(ξ/2)α)∂ξα

α2

+

i cos θ cos(ξ/2)
√
2

− sin(ξ/2)α
√
2

+
√
2 cos(ξ/2)∂ξα

√
2α(i cos θ sin(ξ/2) + cos(ξ/2)α)

�

and along θ by

∂θF = 2λF

�

−
log(
√
2i cos θ sin(ξ/2) +

√
2 cos(ξ/2)α)∂θα

α2

+
−i sin θ sin(ξ/2) + cos(ξ/2)∂θα

α(i cos θ sin(ξ/2) + cos(ξ/2)α)

�

Upon insertion of the last two equations into Eq. (E.1) we see that the first term in the
square brackets of ∂ξF cancels the first term of ∂θF because ∂ξα = tan θ

sin ξ
∂θα. Thus the
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left-hand side of Eq. (E.1) simplifies to

λF
cos2 θ cos(ξ/2) + sin2 θ

cos(ξ/2)
+ i cos θ sin(ξ/2)α

α(i cos θ sin(ξ/2) + cos(ξ/2)α)
,

which, upon insertion of the definition of α, reduces to

λF (ξ, θ).

We have thus shown that F (ξ, θ) solves Eq. (E.1) and that

Âfλ = λfλ

as
fλ =

�
tan(ξ/2)F (ξ, θ)Ω1(sin θ tan(ξ/2)).

�
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Class. Quantum Grav., 22:2061, 2005.

[20] Aurich R, Lustig S, and Steiner F. Hot pixel contamination in the CMB correlation
function. 2009, arXiv:0903.3133.

[21] Baez J and Muniain J P. Gauge fields, knots and gravity. Singapore: World Scientific,
1994.

[22] Band D L et al. BATSE observations of gamma-ray burst spectra. i - spectral diversity.
ApJ, 413:281, 1993.

[23] Band D L et al. Analysis of burst observations by GLAST’s LAT detector. American
Institute of Physics Conference Series, 727:692, 2004.

[24] Blackadar B. Operator Algebras. Berlin: Springer-Verlag, 2006.

[25] Bojowald M. Loop quantum cosmology i: Kinematics. Class. Quantum Grav.,
17:1489, 2000.

[26] Bojowald M. Loop quantum cosmology ii: Volume operator. Class. Quantum Grav.,
17:1509, 2000.

[27] Bojowald M. Isotropic loop quantum cosmology. Class. Quantum Grav., 19:2717,
2002.

[28] Bojowald M. Homogeneous loop quantum cosmology. Class. Quantum Grav., 20:2595,
2003.

[29] Bojowald M. Loop quantum cosmology. Living Re. Relativity, 11:4, 2008.

[30] Bojowald M and Kastrup H A. Symmetry reduction for quantized diffeomorphism-
invariant theories of connections. Class. Quantum Grav., 17:3009, 2000.

[31] Bojowald M and Swiderski R. The volume operator in spherically symmetric quantum
geometry. Class. Quantum Grav., 21:4881, 2004.

[32] Bolmont J, Jacholkowska A, Atteia J, Piron F, and Pizzichini G. Study of time
lags in HETE-2 gamma-ray bursts with redshift: search for astrophysical effects and
quantum gravity signature. ApJ, 676:523, 2008.

[33] Bratelli O and Robinson DW. Operator Algebras and Quantum Statistical Mechanics.
New York: Springer, 1979.

98



[34] Brodbeck O. On symmetric gauge fields for arbitrary gauge and symmetry groups.
Helv. Phys. Acta, 69:321, 1996.

[35] Caillerie S et al. A new analysis of the Poincaré dodecahedral space model. A & A,
476:691C, 2007.

[36] Chiou D-W. Loop quantum cosmology in bianchi type i models: Analytical investi-
gation. Phys.Rev. D, 75:024029, 2007.

[37] Corichi A, Vukasinac T, and Zapata J A. Polymer quantum mechanics and its con-
tinuum limit. Phys.Rev. D, 76:044016, 2007.

[38] D’Avanzo P et al. Discovery of the optical afterglow of XRF 040812: VLT and
Chandra observations. Nuovo Cimento B, 121:1467, 2006.

[39] de Luca A et al. XMM-Newton and VLT observations of the afterglow of GRB
040827. A & A, 440:85, 2005.

[40] Ellis J, Farakos K, Mavromatos N E, Mitsou V A, and Nanopoulos D V. Astrophysical
probes of the constancy of the velocity of light. ApJ, 535:139, 2000.

[41] Ellis J, Mavromatos N E, Nanopoulos D V, and Sakharov A S. Quantum-gravity
analysis of gamma-ray bursts using wavelets. A & A, 402:409, 2003.

[42] Ellis J, Mavromatos N E, Nanopoulos D V, Sakharov A S, and Sarkisyan E K G.
Robust limits on Lorentz violation from gamma-ray bursts. Astropart. Phys., 25:402,
2006.

[43] Ellis J, Mavromatos N E, Nanopoulos D V, Sakharov A S, and Sarkisyan E K G.
Erratum (astro-ph/0510172): Robust limits on Lorentz violation from gamma-ray
bursts. 2007, arXiv:astro-ph/0712.2781.

[44] Fagundes H V. Relativistic cosmologies with closed, locally homogeneous spatial
sections. Phys. Rev. Lett., 54:1200, 1985.

[45] Fagundes H V. Closed spaces in cosmology. Gen. Rel. Grav., 24:199, 1992.

[46] Fan Y-Z, Wei D-M, and Xu D. Gamma-ray burst UV / optical afterglow polarimetry
as a probe of quantum gravity. Mon. Not. Roy. Astron. Soc., 376:1857, 2007.

[47] Fatkhullin T A, Sokolov V V, Castro-Tirado A J, Komarova V N, and Lebedev V
S. Early-time spectroscopy of the GRB 041218 optical transient with 6-m telescope.
www.ioffe.ru/astro/NS2005/ABSTRACTS/fatkhullin.ps, 2005.

[48] Fenimore E E, in’t Zand J J M, Norris J P, Bonnell J T, and Nemiroff R J. Gamma-
ray burst peak duration as a function of energy. ApJL, 448:L101, 1995.

[49] Fermi Science Support Center. http://fermi.gsfc.nasa.gov/ssc/data/access/.

[50] Barbero G. Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev.
D, 51:5507, 1995.

[51] Geroch R. The domain of dependence. Journ. Math. Phys., 11:437, 1970.

[52] GLAST LAT Performance. http://www-glast.slac.stanford.edu/software/IS/glast lat
performance.htm.

99



[53] GLAST Science Support Center. http://glast.gsfc.nasa.gov/gssc.

[54] Immirzi G. Real and complex connections for canonical gravity. Class. Quantum
Grav., 14:L177, 1987.

[55] Jacob U and Piran T. Lorentz-violation-induced arrival delays of cosmological parti-
cles. J. Cosmol. Astropart. Phys., 2008.

[56] Jacobson T, Liberati S, and Mattingly D. A strong astrophysical constraint on the
violation of special relativity by quantum gravity. Nature, 424:1019, 2003.

[57] Jakobsson P et al. GRB coordinates network. GRB Coordinates Network, 4015, 2005.

[58] Kamke E. Diffenrentialgleichungen, Lösungsmethoden und Lösungen, volume 2.
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