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Uncertainty Analysis for the Classification of
Multispectral Satellite Images Using

SVMs and SOMs
Ferdinando Giacco, Christian Thiel, Luca Pugliese, Silvia Scarpetta, and Maria Marinaro

Abstract—Classification of multispectral remotely sensed data
with textural features is investigated with a special focus on uncer-
tainty analysis in the produced land-cover maps. Much effort has
already been directed into the research of satisfactory accuracy-
assessment techniques in image classification, but a common ap-
proach is not yet universally adopted. We look at the relationship
between hard accuracy and the uncertainty on the produced an-
swers, introducing two measures based on maximum probability
and α quadratic entropy. Their impact differs depending on the
type of classifier. In this paper, we deal with two different classi-
fication strategies, based on support vector machines (SVMs) and
Kohonen’s self-organizing maps (SOMs), both suitably modified to
give soft answers. Once the multiclass probability answer vector is
available for each pixel in the image, we studied the behavior of
the overall classification accuracy as a function of the uncertainty
associated with each vector, given a hard-labeled test set. The ex-
perimental results show that the SVM with one-versus-one archi-
tecture and linear kernel clearly outperforms the other supervised
approaches in terms of overall accuracy. On the other hand, our
analysis reveals that the proposed SOM-based classifier, despite its
unsupervised learning procedure, is able to provide soft answers
which are the best candidates for a fusion with supervised results.

Index Terms—Land-cover maps, remotely sensed images, self-
organizing maps (SOMs), soft classification, support vector ma-
chines (SVMs), uncertainty.

I. INTRODUCTION

THE dimensionality, the amount, and the heterogeneity of
remotely sensed data available today require advanced

and innovative techniques to extract information and the-
matic maps useful for environmental monitoring. In the last
years, new methods based on optimization and neural network
algorithms have been proposed [1], and among them, support
vector machines (SVMs) and self-organizing maps (SOMs) are
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very promising [2]–[4]. They are particularly useful for high-
dimensional and multisource data analysis, which is generally
difficult to accomplish with classical statistical methods. The
freedom from assumptions about the form and distribution of
input data makes neural networks a suitable tool to treat both
spectral and spatial (texture and context) features, which is a
key point in classification of medium–high-resolution images.
Spatial information was found to considerably improve the clas-
sification ability in many problems, when the spatial scale of
the texture is properly chosen [5]. This study focuses on multi-
class land-cover classification of multispectral and multisource
remotely sensed images with different spatial resolutions:
A high-resolution image registered by the IKONOS sensor
(4 m/pixel) and a low–medium-resolution image registered by
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) sensor (15 m/pixel) have been used. To
exploit the high-resolution images, we extracted some textural
features using the gray-level co-occurrence matrix (GLCM) [6],
[7] and merged them with spectral information taken from the
medium-resolution images. We compared the aforementioned
classification methods, trained on hard-labeled data, and stud-
ied their performances in terms of overall accuracy on hard-
labeled data. However, in many situations, and particularly in
image classification, classes are often overlapping, mixed, or
fuzzy and much uncertainty is associated with the meaning and
interpretation of the final land-cover map. Therefore, the wish
is to have a soft classifier that is able to provide, for a given
pattern vector, an estimation of the membership degrees to the
different investigated classes. Therefore, we set the SVMs and
SOMs to give soft answers.

Early works using SVMs showed encouraging results [3],
[8], and comparative studies stated that classification by an
SVM can be more accurate than popular contemporary tech-
niques such as multilayer neural networks or decision trees,
as well as conventional probabilistic classifiers such as the
maximum likelihood classifier [4], [9], [10]. Although these
experiments point out the generalization capability of SVMs,
until now, they are mainly used as hard classifiers and their
performances were not satisfactorily investigated in terms of
uncertainty analysis. With the SVM being a binary classifier, we
considered its extension to multiclass architectures following
[11] and [12], where the authors deal with producing soft
answers. In this paper, two multiclass SVM architectures are
considered: the one-versus-one (1vs1), where l(l − 1)/2 binary
classifiers are combined (one for each pair of classes, where l is
the number of classes), and One versus All (1vsALL), where l
binary classifiers are applied on each class versus the others. In
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particular, we focus on the 1vs1 case where no ready procedure
exists, using the technique of pairwise coupling, based on the
statistical Bradley–Terry model [13].

SOMs also proved to be very useful in many remote sensing
applications [2], [14]–[16]. The basic idea in using an unsu-
pervised strategy, such as the SOM, to achieve classification
tasks is to reduce the underlying dependence on the given input
and output provided by the labeled training data set. This is
a fundamental issue in remote sensing applications, where the
failure to exhaustively define classes can result in substantial
errors which may also pass undetected in the assessment of
classification accuracy [17], [18]. After the unsupervised SOM
training, a further step is necessary in which the output SOM
clustering is allowed to learn class labels. The preformed clus-
ters in the SOM may aid in accurate and detailed classification,
by helping to prevent the learning of inconsistent class labels.
Many experiments have been conducted on the application of
the SOM for hard classification [1], [2], [19]–[21]. We propose
two strategies to use SOM as a soft classifier, taking into
account the weighted distance information between pixels and
prototypes to get soft outputs. This method gives promising
results and reduces, at the minimum, the user’s (supervised) in-
fluence to extract class information from the unsupervised map.
The comparison among the experimental results is then carried
out by introducing uncertainty measures on the soft answers
produced by SVMs and SOMs. Interestingly, in this scenario,
we found that the output of a single classifier can be exploited
at its best if one looks at the distribution of the uncertainties.
Moreover, the uncertainty analysis allows us to draw up a fusion
scheme for the answers obtained from the different classifiers,
whose result will exhibit a further improvement in the overall
accuracy computed on the hard-labeled test set.

The remainder of this paper is organized as follows.
Section II describes multispectral data available and the
techniques to extract spatial information from spectral data.
Section III presents the SVMs in a multiclass setting.
Section IV describes the SOM-based classification strategy
with special attention to the fuzzification method used to obtain
soft-output answers. The uncertainty analysis is discussed in
Section V, where the differences between the proposed classi-
fiers are analyzed in detail through uncertainty measures. Then,
in order to fully exploit the experimental results, a simple fusion
scheme is described in Section VI, while Section VII gives a
brief summary along with some conclusions.

II. DATA SETS AND SPATIAL-FEATURE EXTRACTION

Our study focuses on multispectral ASTER images of two
different regions in the province of Salerno (southern Italy).
The spectral data of both regions are described in the following
two sections (Sections II-A and B), while only for the first
case study, we used an IKONOS image in order to add spatial
features to the spectral ones (Section II-C).

A. Data Set I Description

The first area of interest is a coastal plain in the southern part
of the province of Salerno. Land use is primarily agricultural,
but during the last 60 years, an urbanization phenomenon
occurred, giving rise to a very indented and complex landscape.

Consequently, the principal types of land covers are agricultural
fields (both fallow fields and crop-covered ones), rural fabrics
(greenhouses), sea water, a coniferous wood strip along the
coastline, and small urban areas made up of discontinuous fab-
ric mixed with vegetation. Two types of multispectral satellite
data [21] have been considered in this paper.

1) Images captured by the ASTER on the National Aeronau-
tics and Space Administration’s Terra satellite [22]. The
ASTER sensor collects data in 14 bands, going from vis-
ible to thermal regions of the electromagnetic spectrum.

2) Data recorded by IKONOS 2, a commercial Earth-
observation satellite, which offers high-resolution images
[23]. The data are collected in four multispectral bands
(from visible to near-infrared regions), plus a panchro-
matic band, namely, a black-and-white image sensitive to
all visible radiations.

In this paper, we used the first nine ASTER bands (from
visible to short infrared wavelengths) as spectral information
and three IKONOS bands to extract spatial features. A first
preprocessing stage on both ASTER and IKONOS images has
been performed “in-house.” In particular, the ASTER data are
a Level A product [24], providing band-to-band registration
(within and between the sensors) and projection to a common
map system, UTM/WGS84. The IKONOS data are a Geo
product, which is geometrically corrected (Earth curvature and
Earth rotation effect) and also projected to the map system
UTM/WGS84 [25]. The choice of the in-house preprocessing
levels has been made considering the favorable orography struc-
ture of the area of interest and the scope of our investigation.

A second preprocessing stage has been performed with the
geographical-information-system software IDRISI Andes, pro-
duced by Clark Labs of Clark University. Through the software
IDRISI, we first verified the coregistration and georeferencing
of both ASTER and IKONOS images. Then, we used the
module EXPAND in order to work with image pixels of the
same size. The EXPAND module, indeed, simply resizes a
pixel, without changing its original value. Namely, six ASTER
bands (from four to nine) were resized from 30 to 15 m/pixel,
and the IKONOS bands were resized from 4 to 1 m/pixel.
The expansion of the IKONOS bands, as described in the
next paragraph, will allow us to associate spatial information
computed on a window of 15 × 15 pixels (at 1 m of resolution)
directly to one ASTER pixel (at 15 m of resolution).

A further step toward the experimental setup has been to
provide a labeled data set. Out of the 236 985 image pixels,
expert photointerpreters labeled two spatially separated sets of
pixels with their correct land-cover class. Due to their a priori
information on the territorial variability, they focused on seven
land-cover classes: vegetated land (class 1), built-up area (2),
pine wood (3), urban green (4), greenhouses (5), not-vegetated
land (6), and water (7). We asked the photointerpreter to find
pixels mainly occupied by only one class in order to have a
hard-labeled data set. Once a land cover was identified inside
the image, a certain number of pixels were labeled with the
corresponding class. Then, for each class, the selected pixels
were divided into a training and a test set according to the
general rule that neighboring pixels should be included in the
same labeled subset. The numerical composition of the labeled
set is shown in Table I, while Fig. 1 shows a so-called ASTER
false-color image where the natural red–green–blue colors are



GIACCO et al.: UNCERTAINTY ANALYSIS FOR CLASSIFICATION OF MULTISPECTRAL SATELLITE IMAGES 3771

TABLE I
DATA SET I: NUMBER OF LABELED SAMPLES. THE INVESTIGATED LAND

COVER CLASSES ARE AS FOLLOWS: (1) VEGETATED LAND, (2) BUILT-UP

AREA, (3) PINE WOOD, (4) URBAN GREEN, (5) GREENHOUSE,
(6) NOT-VEGETATED LAND, AND (7) WATER

Fig. 1. ASTER false-color composition of the first area of interest (Data Set I).
The colored points in the photograph indicate the pixels selected for the training
set. The legend is as follows: (Brown) “Vegetated land” (class 1), (black) “built-
up area” (class 2), (orange) “pine wood” (class 3), (red) “urban green” (class 4),
(blue) “greenhouses” (class 5), (green) “not-vegetated land” (class 6), and
(yellow) “water” (class 7).

represented by bands 2 (wavelength of 0.63–0.69 μm), 1 (wave-
length of 0.52–0.60 μm), and 1 (wavelength 0.52–0.60 μm),
respectively. Fig. 1 also shows differently colored points indi-
cating the training-set pixels.

B. Data Set II Description

The second data set is an ASTER acquisition of the internal
(far-from-the-sea) region in the neighborhood of the small city
of Battipaglia (Province of Salerno). The landscape complexity
is almost the same as that of the previous image. We focused
on the detection of four land-cover classes: vegetated land
(class 1), not-vegetated land (class 2), greenhouses (class 3),
and built-up area (class 4). In this case, the classification task
is facilitated, on the one hand, because the number of classes is
reduced, but is complicated, on the other hand, because we are
not using any kind of spatial features. The image is made up
of 150 801 pixels, while the labeled data set (provided with the
same techniques previously described) is reported in Table II.
Dealing with ASTER data, the whole preprocessing stage is
unchanged, i.e., each image pixel is associated with a 9-D
vector representing an area on the ground of 15 m2.

C. Spatial Preprocessing

Textural features extracted from IKONOS images were in-
troduced. This was done in order to add intrapixel spatial
information to the ASTER spectral data of Data Set I. The

TABLE II
DATA SET II: NUMBER OF LABELED SAMPLES. THE INVESTIGATED

LAND-COVER CLASSES ARE AS FOLLOWS: (1) VEGETATED LAND,
(2) NOT-VEGETATED LAND, (3) GREENHOUSE, AND (4) BUILT-UP AREA

textural features were computed on two different IKONOS data
sets: the panchromatic band and the band ratio between near-
infrared and red (4-m/pixel resolution resized to 1 m/pixel),
which, in remote sensing literature, is considered as a way to
emphasize vegetation [1]. The spatial features were obtained
from the well-known GLCM, which is widely used in land-
cover mapping [5], [26], [27]. A moving window of 15 × 15
IKONOS pixels (1-m/pixel resolution) is used in the computa-
tion of the GLCM, since a window of such dimensions covers
the same spatial area as one ASTER pixel. In the computation
of the GLCM, data are typically scaled to some fairly modest
range of integers (for example, 0–7 in this work, such that
the GLCM is a 8 × 8 matrix). After the GLCM is generated
for each direction (horizontal, vertical, left diagonal, and right
diagonal), the statistical measures are extracted, and then, the
four directions are averaged to remove directional effects; this
last choice is due to the absence of preferred directions in
the geometry of the investigated land-cover classes. Among
the several statistical measures which can be extracted from the
GLCM to describe specific textural characteristics of the image
[28], we chose the following two: the correlation function
computed on the IKONOS panchromatic band and the energy
function computed on the IKONOS band ratio. The explicit
form of the aforementioned functions is

COR =
NG∑
i

NG∑
j

Cov(i, j)
Stdev(i)Stdev(j)

(1)

ENE =
NG∑
i

NG∑
j

|p(i, j)|2 (2)

where i and j are the row and column indexes, NG is the total
number of gray levels, and p(i, j) is the element of the normal-
ized GLCM, while Cov and Stdev are the covariance and the
standard deviation, respectively. Our previous analysis showed
that these particular choices of statistical measures provide
the best classification performances on this data set. Summing
up, our data vectors are made up of 11 components, the first
nine standing for the spectral information (taken from ASTER
bands) and the last two representing textural measures extracted
from IKONOS images. The scheme of the preprocessing stage
for Data Set I is also shown in Fig. 2.

III. MULTICLASS SVMS WITH SOFT ANSWERS

SVMs were originally developed for the discrimination of
two-class problems [29]. They have recently become a popular
method in pattern classification for their ability to cope with
small training sets and high-dimensional data [30], [33]. A
fundamental advantage of the SVM approach is that it facili-
tates the separation of the class samples, by mapping the input
space into a higher dimensional dot-product Hilbert space,
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Fig. 2. Scheme of the preprocessing stage used in the classification of Data
Set I. The two sets of images, ASTER and IKONOS, are separately pre-
processed and coregistered in a common reference system. Then, two textural
measures are extracted from the GLCM computed on two different IKONOS
bands in order to add spatial features to the nine ASTER spectral bands.

using so-called Mercer kernels. The beauty here is that the
transformation does not need to be calculated explicitly and
expensively, as distances in the Hilbert space can be computed
solely using the kernel.

Regarding the possibilities to extend the originally binary
SVMs to multiclass settings, there has been quite some research
recently [31], and architectures like 1vs1 and 1vsALL are
widely used nowadays (see [32]–[34] for comparisons). The
1vs1 and 1vsALL SVM architectures are widely used in remote
sensing applications [35]–[37]. Here, we pay special attention
to the possibility of extending them to multiclass soft answers
[38]. In a recent work [12], the authors dealt with the issue
of accepting, and more importantly producing, soft labels in
multiclass SVMs. In the following, we will briefly present the
solutions we decided to explore in the current application and
elaborate a bit on the 1vs1 case where no ready procedure
existed.

In the current case, we have samples from L = 7 different
classes for Data Set I and L = 4 for Data Set II. The 1vsALL
approach builds L different SVMs, each of which is able to
separate one specific class from all the others. Presented with a
new sample x, each SVMi will answer with the distance di(x),
i = 1, . . . , L, that this sample has to the separating hyperplane.
To transform these distances to soft-output answers oi, we used
a sigmoid function (proposed by Platt [38])

oi (di(x))=1/(1+exp (−Aidi(x)+Bi)) , i=1, . . . , L.
(3)

The parameters Ai, Bi ∈ R are estimated for each SVMi to
minimize the mean square error on the training data between
the original label and the sigmoid output, using a batch gradient
descent technique (see also [12]). Given that the convergence
of this method is problem dependent, we refer to the work of
Lin et al. [39] for details about the implementation of more
robust algorithms.

The solution is not so straightforward in the 1vs1 approach.
Here, an SVMi is built for every pair of classifiers (resulting in
L(L − 1)/2 machines). To get the desired L-dimensional soft
output, the technique employed in most cases today, for exam-

ple, in [40], is as follows: Using an indicator function, transform
each of the answers di into a vote for one of the two classes
distinguished by the current machine i. Then, sum those votes
per class and normalize the resulting soft label. This method
does not have a bad performance, but has some limitations as it
does not deliberately take into account the distance information
provided by the values di. To heal this issue, one can proceed
similarly to the 1vsALL case and use a sigmoid, with the same
parameters for all pairs, to transfer the distances to soft answers,
which can then be summed up and normalized. However,
even then, the class-pair information provided by the SVMi

is not used. In literature, the problem of multiclass probability
estimates starting from class-pair information is addressed by
different techniques. In our work, we used the method of Hastie
and Tibshirani [13], based on the statistical Bradley–Terry
model. It uses initial estimations for the pairwise probabilities
and, in an iterative process, produces soft labels that take into
account the coupled distance information. An introduction to
the existing techniques and many interesting theoretical con-
clusions on pairwise coupling can be found in [41].

Our experimental results were evaluated, for different SVM
architectures, in terms of the overall accuracy computed on
the test set. In the first case study (Data Set I), the best 1vs1
performance is 95.4%, obtained with a linear kernel, while the
maximum for the 1vsALL architecture is 91.8%, with a radial
basis function (RBF) kernel. More generally, polynomial and
RBF kernels reached at least the same accuracy level as that
of the linear one, but are more expensive to calculate. The
optimal value for the SVM slack parameter C was chosen out
of the range of [10−4, . . . , 104]. For Data Set II, the best result
is 90.7% for the 1vs1 SVM and 91.2% for the 1vsALL, both
with a linear kernel. It must be stressed that the performance of
SVMs is highly dependent on selecting the appropriate kernel
and its parameters for each data set.

IV. SOM-BASED CLASSIFICATION STRATEGY

As is well known, the SOM is an unsupervised algorithm
which achieves two goals: 1) a clustering of the input data
into nodes and 2) a local spatial ordering of the map in the
sense that the prototypes are ordered on the lattice such that
similar inputs belong to topographically close nodes. Such an
ordering of the data makes the SOM a powerful clustering algo-
rithm and facilitates the understanding of data structures. Since
SOMs have properties of both vector quantization and vector
projection, they have been used both for unsupervised applica-
tions and as classifiers. When used as a classifier, a two-step
strategy is needed, which makes use of unlabeled data to
train the SOM and uses a limited number of hard-labeled data
(training set) to associate the nodes with class memberships.

The quality of labeled training data can be a source of prob-
lems in remote sensing applications, because of the presence of
mixed pixels, correlations among training patterns taken from
the same area, and so on. Moreover, an exhaustive definition of
the classes cannot be easily faced in a supervised net, which is
built using only hard labels.

On this basis, the SOM algorithm has some advantages over
supervised strategies because the results are created based on
the clustering structure, which depends on the entire unlabeled
data set used to train the map.
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Although many experiments have been conducted on the
application of the SOM for hard classification [19]–[21], few
works have addressed the issue of SOM for soft classifica-
tion [42].

Usually, a majority vote technique is used to associate a
label with a SOM node: Each labeled pixel associated with
a node provides a vote for one of the classes, and the class
having the majority of the votes is associated with that node.
Moreover, each vote is weighted by a frequency factor 1/Nl,
where Nl is the total number of samples of class l in the
training set. In spite of its not bad performance, this method
does not take into account the distance information between
the labeled pixels and the prototype, providing the same label
to all the pixels associated with one node. Soft answers are
not available in this way. Li and Eastmann [42] get through
this problem by associating each SOM output node with a soft
answer according to the number of training pixels belonging to
the node. Namely, a node k is associated with a soft output,
such that its membership to class l is given by

P l
k =

∑
j∈S(l,k) wl

j∑L
l=1

∑
j∈S(l,k) wl

j

(4)

where S(l, k) is the set of indexes of pixels with label l in node
k and

wl
j = 1/Nl (5)

is the inverse of the total number of pixels of class l in the
training set. This provides a measure which is a sort of posterior
probability of the node to belong to a given class l. The soft
classification of the pixels is then achieved by assigning the
membership values of the node to all pixels which fall into it.
This method, hereafter called Fuzzy SOM M1, still has some
limitations because it gives the same soft answer to all the pixels
associated with one node and it does not take into account
the distance information between the labeled pixels and the
prototype of each node.

Hence, we propose a different technique, Fuzzy SOM M2,
which considers the distance between the pixels associated with
a node and all the labeled pixels associated to that node. In this
way, we get, for each pixel, a soft label which depends on the
position of the pixel inside the node it belongs to. The strategy
is as follows: The soft label to be associated with a test pixel y,
which falls into node k, is a weighted mean of the labels of all
labeled pixels associated with that node k, where the weights
depends on the distances, i.e.,

P l
k(y) =

∑
j∈S(l,k) wl

j(y)∑L
l=1

∑
j∈S(l,k) wl

j(y)
. (6)

S(l, k) again is the set of pixel indexes with label l in node k,
and the weights wl

j(y), now depending on the sample y, are

wl
j(y) =

1
Nl

exp

(
−
∥∥xl

j − y
∥∥2

2σk

)
, j ∈ S(l, k) (7)

where xl
j is the jth training pixel of class l and the spread

σk was set for each node as the mean-square displacement
between the prototype k and labeled pixels associated with that

prototype. The difference with respect to (4) (see [42]) is that,
here, the weights take into account not only the total number of
pixels of class l in the training set but also the distances between
the pixel y and the labeled pixels of the training set associated
with the node into which the test pixel falls. This method, based
on weighted voting instead of simple voting, is, in some sense,
analogous to the strategy we used in the multiclass soft SVMs
in the previous section, i.e., it is a weighted average of answers,
where the weights depend on some distance information. As
usual, when the SOM is used as a classifier, it may happen that
some nodes are unlabeled, in the sense that there are no training
pixels falling into them. In our procedure, if the test pixel falls
in a node without training pixels, then it will be considered
unclassified. The presence of unclassified nodes means that the
L classes are not exhaustive and that there is information on the
ground that is not contained in the labeled set.

The two SOM-based classification approaches previously
described were first used for a hard classification task. The
resulting overall accuracy on Data Set I, computed on the hard-
labeled test set of Table I, is 93.3% for the first fuzzification
method (Fuzzy SOM M1) and 92.7% for the second one (Fuzzy
SOM M2). On the second data set, both methods provided an
accuracy of 89.2%. A better understanding of the differences
between these two methods will be made possible in the next
section, where uncertainty distribution analysis will show that
the soft answers provided by the weighted method have to be
preferred.

V. UNCERTAINTY ANALYSIS

Understanding and recognizing the uncertainty in image
classification and the desire to fully exploit the information
content of the produced land-cover maps were the driving
forces in the development of soft classification of remotely
sensed data [18], [43]. In this paper, we compare the proposed
classification methods, described in Sections II and III, by
looking at their soft answers on the test set, as well as on the
remaining (not labeled) data set.

The pixel’s multi-answer output o ∈ [0, 1]L (for L classes),
yielded by classification, reflects the differences in uncertainty
in the resulting classification. It may be considered indicative
of dubious classifications, of mixed pixels, of heterogeneous
classes, or of fuzzy boundaries between classes [44].

Various measures of uncertainty exist in the literature. In
this paper, we consider two of them: The first is based on the
maximum probability appearing in the output probability vector
associated with each image pixel. This value is an expression of
the strength of the class assignment and of possible confusion
with other classes.

The second approach is the α quadratic entropy, which was
first used in theoretical physics by Fermi and widely applied in
risk evaluation of the nearest neighbor classification rule [45].
This measure is based on the concept of the multiplicative class
introduced by Pal and Bezdek [46] and is explicitly given by

Hα(o) =
1

L2−2α

L∑
d=1

oα
d (1 − od)α (8)

where o is a vector representing the soft answers associated with
a given pixel, L is the number of the investigated classes, and α
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is an exponent which determines the behavior of the uncertainty
measure. Indeed, if α is close to zero, the measure is not very
sensitive to small changes in the components od, while for α
close to one, the uncertainty is higher for od close to 0.5.

In order to analyze how the uncertainty is distributed among
the land-cover classes under consideration for the proposed
classifiers, we considered the following strategy: We get, from
the soft outputs, an estimation of the measure of uncertainty
for a given pixel, and we reject the “hard” allocation when this
measure is larger than a given threshold. Hence, in a rejection
setting, a classifier is allowed to reject a test sample presented
to him, i.e., to refuse to take a decision about the class of the
sample. An answer which the classifier says it is not sure about,
according to one of the aforementioned uncertainty measures,
is rejected. In classical machine learning settings, this is done to
increase the classification accuracy on the not-rejected samples,
but here, this procedure is used to compare the performances of
the different soft classifiers.

Formally, we analyzed the uncertainty of the classifiers on
a test set T consisting of M testing samples z in the feature
space RN (N = 11 for Data Set I, and N = 9 for Data Set II),
with associated labels l that detail to which of the L classes the
sample belongs

T = {(zμ, lμ) |μ = 1, . . . ,M, lμ ∈ {1, . . . , L}} . (9)

The answer of the classifier is a soft answer o ∈ [0, 1]L,∑L
d=1 od = 1, that reflects to what degree the classifier thinks

the sample belongs to each class.
The rejection method we decided to use is rather basic

reject if (F (o) > threshold) (10)

where F is the uncertainty measure for the testing sample o.
The F measure is then given by

FMP(o) = 1 − max
d

od for the Maximum Probability (11)

or

FαQ(o) = Hα(o) for the αQuadratic Entropy (12)

where Hα(o) is given by (8). The performance on the not-
rejected part of the test set, i.e., the number of not-rejected test
pixels correctly classified over the total number of not-rejected
pixels, is studied as a function of a decreasing uncertainty
threshold.

A. Data Set I

In Fig. 3, the overall accuracies for several classifiers are
reported as a function of the rejection rate, with rejection based
on the maximum probability measure FMP. As the rejection
rate is not a direct parameter of the algorithm, we simply
decreased the rejection threshold from 1 to 0 in steps of 0.01 and
noted the respective rates. The figure shows that the 1vs1 Linear
SVM steadily provides the highest accuracy on the test set.
The 1vsALL SVM approach, even if it starts from lower initial
accuracy, has a similar increasing behavior. Concerning the
SOM performances, although their initial accuracies (at zero
rejection rate) are undoubtedly good, the increasing rejection

Fig. 3. Data Set I: Overall accuracy, computed on the not-rejected pixels of
the test set, as a function of rejection rate when FMP is used. The curves
show the results obtained for two SVM- and SOM-based strategies described in
the text.

Fig. 4. Data Set I: The 1vs1 Linear SVM overall accuracy as a function of
the rejection rate. The curves show the fraction of correctly classified test set
pixels, with the rejection based on different uncertainty measures: maximum
probability and α quadratic entropy.

does not produce large improvements in the accuracy on the test
set. Moreover, it is straightforward to notice that the weighted
criterion (Fuzzy SOM M2) to assign the soft labels in the SOM-
based strategy has to be preferred with respect to the one which
does not take into account the distances (Fuzzy SOM M1). The
same analysis has been performed using the second uncertainty
measure FαQ, where the rejection is based on the α quadratic
entropy. The curves obtained show a similar behavior as the
ones based on the maximum probability. The only classifier
presenting a major difference is the 1vs1 Linear SVM, whose
accuracy as a function of the rejection rate is shown in Fig. 4,
where different choices for the parameter α are proposed. Quite
differently, Fig. 5 shows that the Fuzzy SOM M2 answers, as
well as the SVM 1vsALL ones (not reported in this paper), are
not sensitive to the choice of the uncertainty measure.

Another investigation is undertaken to evaluate the uncer-
tainty in the produced land-cover maps. To this end, Fig. 6
shows the fraction of retained pixels (class by class) of the
whole image with decreasing rejection threshold FMP for three
different classifiers: 1vs1 Linear SVM and 1vsALL RBF SVM-
and SOM-based classifiers. These curves give an indication
of how the uncertainty is distributed among the investigated
classes for the two best supervised classifiers and the best
Fuzzy-SOM strategy, on the basis of the analysis of Fig. 3.
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Fig. 5. Data Set I: Comparison among different rejection criteria, for the
SOM-based classification experiment (Fuzzy SOM Method 2). In this case,
differing from the 1vs1 SVM, the overall accuracy is not influenced by the
choice of the uncertainty measure. The accuracies in 1vsALL SVM experi-
ments behave similarly to the SOM ones.

Fig. 6. Data Set I: The curves report the fraction of retained pixels, class
by class, as a function of an increasing rejection threshold based on the
measure FMP. They refer to the following algorithms: (a) 1vs1 Linear SVM,
(b) 1vsALL RBF SVM, and (c) SOM Fuzzy Method 2.

For instance, looking at the curves, we can conclude that the
SOM-based classifier assigns a degree of membership of more
than 0.99 to the pixels of water, meaning there is practically
no uncertainty about this class. From the 1vs1 SVM curves,
we can observe that the most easily rejected pixels belong
to the class “urban green,” and this result fits good to the
fact that those pixels are a mix between vegetation and urban
structures. On the other hand, the most rejected classes in the

Fig. 7. Data Set II: Overall classification accuracy as a function of rejection
rate when FMP is used.

1vsALL SVM and SOM approaches are “not-vegetated land”
and “greenhouse,” respectively. This result can be attributed,
for the most, to difficulties in correctly classifying those two
classes. The uncertainty is allocated in a different way for
the SOM classification. Fig. 6, indeed, shows that 30% of
pixels classified as “urban green” are not rejected even at the
maximum threshold, even though it is an informative class
difficult to characterize. This is due to some nodes on the SOM
output grid which are devoted to mixed pixels and particularly
to mixtures of vegetation and urban structures. The SVM
rejection curves exhibit a nicely smooth behavior. The 1vs1
SVM answers are much more uncertain (reflected in the early
rejection) than the 1vsALL ones, owing to the smoothing effect
of the Bradley–Terry coupling procedure that produces the
output.

In Section V, we will see how the differences in the proposed
approaches can be fully exploited, in order to achieve the best
classification accuracy on our test set.

B. Data Set II

The analysis of the second data set gives almost the same
results obtained on the first case study. Having reduced the
number of input features, the overall accuracies of the classi-
fiers are slightly lower with respect to the previous ones, partic-
ularly because of the lack of spatial information. However, the
differences in the experimental results between the proposed
approaches are essentially the same. In Fig. 7, we show the
accuracy of three classifiers as a function of the rejection rate,
namely, 1vs1 and 1vsALL SVMs with linear kernel, along with
Fuzzy SOM Method 2. Even if the initial accuracy (at zero
rejection) of the 1vsALL SVM is higher than those of the
other classifiers, the best result at increasing rejection rate is
still obtained with the 1vs1 SVM. Fig. 7 refers to a rejection
produced by the measure FMP, while Fig. 8 shows the impact
of the α quadratic measure FαQ on the 1vs1 SVM answers.
In this case, as in Data Set I, there is still a dependence on the
parameter α even though lower than that in Fig. 4, while the un-
certainty measure does not affect at all the performances of the
1vsALL and SOM-based classifiers (such as in Fig. 5). Last, we
propose in Fig. 9 the fraction of retained pixels with decreasing
rejection threshold based on the FMP measure. The similarity
between those curves and the ones in Fig. 6 (Data Set I)
is rather plain. Focusing on the curves related to the SOM
classification, we found again a different behavior with respect
to the SVMs. As Fig. 9 shows, pixels of classes 2 and 4 can be
divided in several subgroups, each of which could be associated
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Fig. 8. Data Set II: The 1vs1 Linear SVM overall accuracy as a function of
the rejection rate for different uncertainty measures.

Fig. 9. Data Set II: Fraction of retained pixels, class by class, as a function of
an increasing rejection threshold based on the measure FMP. The curves refer
to classification performed by (a) 1vs1 Linear SVM, (b) 1vsALL Linear SVM,
and (c) SOM Fuzzy Method 2.

to a drop in the fraction of retained pixels at different thresholds.
This is due, as well as for the classification of Data Set I, to the
nature of the SOM output map, where a single class can be
associated with several contiguous nodes.

VI. FUSION SCHEME FOR OPTIMAL CLASSIFICATION

In this section, we propose a decision fusion scheme to
aggregate the soft outputs of the proposed classifiers, which
will emphasize how the uncertainty measure can be useful to

TABLE III
DATA SET I: CONFUSION MATRIX FOR THE 1 VERSUS 1 SVM CLASSIFIER

WITH LINEAR KERNEL (OVERALL ACCURACY OF 95.4%). CLASS NAMES

ARE AS FOLLOWS: (1) VEGETATED LAND, (2) BUILT-UP AREA,
(3) PINE WOOD, (4) URBAN GREEN, (5) GREENHOUSE,

(6) NOT-VEGETATED LAND, AND (7) WATER

Fig. 10. Fusion scheme used to aggregate the answers of different classifiers.
The variables Oi and Cj (j = 1, 2, 3) refer to the uncertainty measure and the
class label of a given new sample, respectively. Once checked, the reliability
of the best classifier (1vs1 SVM in this case) on class C1, the fusion scheme
provides an answer which could be C1 or Ci, where the class Ci is associated
with the answer having the minimum uncertainty.

improve the classification results. Given that the best classifica-
tion performance on Data Set I is achieved by the 1vs1 Linear
SVM, we looked at the curves in Fig. 3 and combined the best
result with one or both of the other two approaches: the 1vsALL
RBF SVM and the best SOM (namely, Fuzzy M2). Moreover,
by looking at the confusion matrix of the 1vs1 Linear SVM
(see Tables I and III for the class names), we also chose to
apply the fusion scheme only to classes 2, 4, and 6, where the
performances on the test set are different from 100%.

The rather intuitive combination rule, also shown in Fig. 10,
is as follows: If the class assigned by the 1vs1 SVM is a class
where no error occurs (reliability, i.e., accuracy per class, is
100%), the final answer is the one provided by the 1vs1 SVM.
Otherwise, the sample is also passed to the other classifiers
in the architecture, and the class assignment will be fixed by
the classifier that provides the least uncertainty in its answer.
Considering that the 1vs1 Linear SVM overall accuracy is
95.4%, we report the fusion results obtained with the 1vsALL
RBF SVM, Fuzzy SOM M2, and both in Table IV. Evidently,
only the fusion of 1vs1 SVM and SOM gives an improvement
over the baseline. For comparison, Table V shows the confusion
matrix for the aforementioned best combination result, which
sports a final accuracy of 96.7%. Another important point, not
explicitly reported here, is that if the measure FαQ is used in
the fusion scheme, the combination results always have a worse
performance than the ones obtained with measure FMP.

An interesting result is also found concerning Data Set II.
Being a simpler classification task, with only four classes and
nine input features, the fusion strategy gives less evident results.

By the way, the validity of the uncertainty analysis is still
confirmed in this experiment because we found that the fusion
of the 1vs1 SVM with the SOM answers provides a final
accuracy, 91.6% (see Tables VI and VII), which is higher than
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TABLE IV
DATA SET I: FUSION RESULTS OBTAINED BY COMBINING 1 VERSUS 1

LINEAR SVM, 1 VERSUS ALL RBF SVM, AND FUZZY-SOM CLASSIFIERS

TABLE V
DATA SET I: CONFUSION MATRIX CORRESPONDING TO THE BEST FUSION

RESULT: 1 VERSUS 1 LINEAR SVM AND FUZZY SOM M2 (OVERALL

ACCURACY OF 96.7%). CLASS NAMES ARE GIVEN IN TABLE III

TABLE VI
DATA SET II: CONFUSION MATRIX CORRESPONDING TO THE 1 VERSUS 1

LINEAR SVM CLASSIFICATION. THE OVERALL ACCURACY IS 90.7%.
CLASS NAMES ARE AS FOLLOWS: (1) VEGETATED LAND,

(2) NOT-VEGETATED LAND, (3) GREENHOUSE,
AND (4) BUILT-UP AREA

TABLE VII
DATA SET II: CONFUSION MATRIX CORRESPONDING TO THE BEST FUSION

RESULT. THE COMBINATION OF 1 VERSUS 1 LINEAR SVM AND FUZZY

SOM M2 ANSWERS PRODUCES A FINAL ACCURACY OF 91.6%

the performance of each individual classifier (90.7% for the
1vs1 SVM and 89.2% for the SOM) and slightly higher than
one obtained with the 1vsALL classifier (91.2%). On the other
hand, the fusion of the 1vsALL soft answers with each of
the other classifiers does not generate any improvement. This
means that, even though, for this data set, the 1vsALL result is
the best classifier from a “hard allocation” point of view, the
uncertainty is still best assigned by the 1vs1 SVM. The last
outcome is not only evident from the rejection-accuracy plot
in Fig. 7 but is also confirmed by the fusion results. By looking
at Tables III, V, VI, and VII, we have to remark that, except for
class 5 of Data Set I, the fusion scheme always provides a small
improvement of the individual class accuracies with respect to
the performance of the best single classifier, for both data sets.
This improvement, even if small, is not to be taken for granted
in a fusion scheme, since the decision rule could also worsen
the final accuracy.

VII. CONCLUSION

In this paper, we dealt with the classification of remotely
sensed multispectral data in thematic land-cover maps. We im-

plemented several classification strategies based on supervised
SVMs, with different architectures, and Kohonen’s SOM. We
modified the algorithms to obtain soft outputs, and in particular,
we focus on the 1vs1 SVM, using the technique of pairwise
coupling, based on the Bradley–Terry model, and introduced
a new method to get soft outputs from the unsupervised SOM
clustering, based on the distances between pixels falling into
the same SOM node. In this way, a study of the uncertainty
of the hard allocations produced for the land-cover maps is
available for all the classifiers considered here. The study of
the uncertainty assignment is carried out in a rejection scenario.
The results show that the best performance is provided by the
1vs1 SVM with linear kernel. Concerning the choice of the
measures used to estimate the uncertainty, we found that, at
least for our data set, when applied to the selection of the
correct answers, the simple maximum probability yields the
best results.

Last, we have shown how the uncertainty measure can be
useful in the fusion of several classifiers, showing that, by
exploiting the uncertainty information, the decision fusion is
able get an improvement over the performance of individual
classifiers. The fusion results also show that the SOM algo-
rithm, owing to its unsupervised nature, can be a successful
complementary contributor to the quality and accuracy assess-
ment of the final output land-cover map and in the imple-
mentation of multiple-classifier systems. Indeed, we found that
the best fusion result is not obtained combining the two best
classifiers but aggregating the answers of the SOM with one of
the supervised SVM.
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