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Abstract

The human visual system segments 3D scenes in surfaces and objects which can appear
at different depths with respect to the observer. The projection from 3D to 2D leads par-
tially to occlusions of objects depending on their position in depth. There is experimental
evidence that surface-based features such as occluding contours or junctions are used as
cues for the robust segmentation of surfaces. These features are characterized by their
robustness against variations of illumination and small changes in viewpoint. We demon-
strate that this feature representation can be used to extract a sketch-like representation
of salient features that captures and emphasizes perceptually relevant regions on objects
and surfaces. Furthermore, this representation is also suitable for learning more complex
form patterns such as faces and bodies in different pose.

In this thesis, we present a biologically inspired, recurrent model which extracts and
interprets surface-based features from a 2D grayscale intensity input image. Based on
the neurophysiology of the primate brain, the model is based on few basic processing
mechanisms which are reused at several model stages with different parameterization.
Furthermore, the architecture is characterized by feedforward and feedback connections
which lead to temporal dynamics of model activities. The model simulates the two main
processing streams of the primate visual system, namely the form (ventral) and the motion
(dorsal) pathway. In the model ventral pathway prototypical views of head and body
poses (snapshots) as well as their temporal appearances were learned unsupervised in a
two-layer network. In the dorsal pathway prototypical velocity patterns are generated
by local motion detectors. These learned patterns are combined into typical motion
patterns appearing from head and body movements during establishment of visual contact.
Activity from both pathways is finally integrated to extract a combined signal from motion
and form features. Based on these initial feature representation we demonstrate a multi-
layered learning scheme that is capable of learning form and motion features utilized for
the detection of specific behaviorally relevant motion patterns (e.g. turn away and turn
towards actions of the body). We show that the combined representation of form and
motion features is superior compared to single pathway based model approaches.
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Chapter 1

Introduction

1.1 Motivation

The ability to see is one of the most fundamental skills of our species to interact with
our environment. The perception and correct interpretation of an ordinary scene which
consists, for instance, of some people and some objects requires robust processing mecha-
nisms that must be able to handle image variations caused by different illumination, partly
occlusion, size, and different viewpoint. Moreover, our visual system must be able to also
recognize very subtle details such as recognizing different faces or correctly interpreting
different face expressions. Thus, in many situation when environmental conditions are
not clearly predefined human vision still outperforms most of the computational visions
system of today.

Over the last 50 years, neuroscientists have tried to unravel what are the underlying
basic mechanisms that make the primate brain such a powerful information processing sys-
tem. With the advent of computers, Computational Neuroscience, a new interdisciplinary
research field has emerged that links neuroscience, cognitive science and psychology with
electrical engineering, computer science, mathematics and physics. Computational models
are developed to simulate detailed circuits of the cortex organized across several cortical
areas (e.g. of the visual system). These computational models can 1) help to sum-
marize and organize existing data, 2) help planning, coordinating and interpreting new
experiments, and 3) help to get inspirations from biology on how to build robust image
processing algorithms for technical applications, for example, driver-assistance systems,
video surveillance, or face/smile detection in digital cameras.

Apart from that, engineers and computer scientists have developed application-based
algorithms for image processing tasks that are not related to a biological background. In
this research field, referred to as machine vision most algorithms are tuned to be highly
efficient for a specific task (e.g., face recognition) and processing time is often fast enough
to reach real time performance. However, a major drawback of these approaches is that
they often do not generalize to work in different domains. By contrast the human visual
system is highly adaptive (i.e. invariant against illumination, contrast polarity, object size
and rotation, and robust against image noise). Hence, there are many examples where
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Biological background

humans vision outperforms machine vision.

1.2 Biological background

In this section, we present a brief description of the individual processing stages in the
primate visual cortex.

The cortex can be divided into different functional regions, denoted as cortical areas.
Each area contains layers of neurons building a neural network of feedforward and feedback
and lateral connections [Fellemann and van Essen, 1991]. In early visual areas (e.g., V1
through V5) the neurons have a retinotopic organization in the sense that they form a 2D
representation of the visual image formed on the retina in such a way that neighboring
regions of the image are represented by neighboring regions of the visual area. However,
the retinotopic representation in cortical areas is distorted. For instance, the foveal area is
represented by a larger number of neurons in V1 than the peripheral areas. An overview
of the hierarchical structure in the ventral pathway, the signal flow between cortical areas,
and corresponding receptive filed sizes is given in Fig. 1.1.

From retina to primary visual cortex

Visual processing starts at the retina, where light passes across different layers to hit the
photoreceptors. This elicits chemical transformation mediating a propagation of signal
to the bipolar and horizontal cells. The signal is then propagated to the amacrine and
ganglion cells. These neurons may ultimately produce action potentials on their axons.
The signals are further relayed through the optic nerve, the chiasm, and the LGN (lateral
genicualte nucleus) to the first cortical stage of visual processing, the primary visual cortex
(V1) (e.g., [Nolte, 2002]).

Two visual pathways

Processing of visual information in primates is believed to occur in at least two separate
cortical pathways, commonly labeled the "form" and "motion" pathways [Mishkin et al.,
1983; Fellemann and van Essen, 1991]. This division lies in marked contrast to our
everyday visual experience, in which we have a unified percept of both the form and
motion of objects.

In the motion pathway, local motion information is represented by pools of cells that
are tuned to different speeds and directions, thus describing spatiotemporal patterns of
local image structures [Movshon et al., 1985; Smith and Snowden, 1994]. In the medial
temporal cortex (MT) retinotopically arranged cells receive projections from V1 and also
project back to this area [Albright, 1984]. Importantly, this indicates that processing in
the visual cortex is not purely feedforward. The existence of massive cortical feedback
projections leads to a bidirectional signal flow between cortical areas [Sillito et al., 2006].
One possible advantage of such an architecture is that feedback from higher motion areas
can influence the transfer of ascending input when, or even before, the input arrives.
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The medial superior temporal cortex (MST) includes cells that are responsive for mo-
tion patterns such as global rotation or translation [Duffy and Wurtz, 1991; Graziano
et al., 1994] and opponent motion [Saito, 1993]. Cells in area MST show substantial
position and scale invariance.

In the form pathway, processing starts with the extraction of local oriented contrasts
by simple and complex cells in area V1 [Hubel and Wiesel, 1968]. These cells are linked
to neurons in areas V2 and V4 which are selective for more complex features similar
to elongated contours, corners, and junctions [Hedgé and van Essen, 2000; Anzai et al.,
2007; Peterhans, 1997; Pasupathy and Conner, 1999]. For instance in V2, like-oriented
contrasts that lie along smooth contours are grouped by long-range lateral connections.
Interestingly, these cells also respond to illusory contours bridging the gap between like-
oriented contour fragments [von der Heydt et al., 1984].

The inferotemporal cortex (IT) receives input from invariant feature detectors of
the previous hierarchy level (V2 and V4). They show substantial position- and scale-
invariance and are selective for complex shapes [Tanaka, 1996] and can become tuned to
complex shapes through learning [Logothetis et al., 1995]. These authors have found that
monkey IT neurons represent a series of two-dimensional views of objects and faces which
is important for the recognition of a three-dimensional object from different viewpoints.

Integration of visual pathways

In our visual perception there is no ambiguity about which objects in a scene are moving
and which are static. This is surprising given neurophysiological evidence, from both
monkeys and humans, suggesting that visual processing is performed by different func-
tional pathways [Mishkin et al., 1983]. This implies that both pathways, the form and the
motion pathway, are integrated at a certain cortical processing stage. However, it is still
an open question how and where in the visual cortex information from both pathways is
combined. To address this question, neurophysiologists have searched for cortical areas
that show selectivity for both types of features. In fact, studies in macaque monkeys have
shown that neural populations in the anterior part of the superior temporal sulcus (STSa)
are sensitive to both, form and motion [Oram and Perrett, 1996]. The STS has been iden-
tified as the primary area involved in the perception of biological motion. In particular,
neurons in the STSa respond selectively to full-body [Oram and Perrett, 1994b; Perrett
et al., 1985a]or hand movements [Perrett et al., 1989]. On the other hand, there is evi-
dence that populations of cells in STSa are tuned to multiple views of the same animate
object [Perrett et al., 1985b]. Such response selectivity is most likely obtained through
pooling of outputs of cells coding for separate views of distinct stimuli. In summary, these
findings suggest that STS cells integrate information about form and motion of animate
objects.

3
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Figure 1.1: Hierarchical structure of the ventral pathway (adapted from [Oram and Perrett,
1994a]). The pathway has a layered structure (from retina to STPa) with layer to layer connec-
tions (gray upward arrows). Forward connections are usually mirrored by feedback connections
(gray downward arrows). Neurons in different layers respond to features of increasing complex-
ity from bottom to top (sample stimuli to the right). Receptive field sizes and with it the shift
invariance also increase from bottom to top (triangles in the center, tip indicating a neuron and
base indicating its receptive field size). Response latencies of neurons in individual stages are
shown on the left.
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Figure 1.2: Outline of cortical processing pathways that are modeled in this thesis. Visual
input enters the eye and is absorbed by the retina. Visual information then travels through
the lateral geniculate nucleus (LGN) to the primary visual cortex (V1) which forms the basis
of two different processing streams. The form pathways starts in area V1 with the extraction
of local oriented contrast and is continued in area V2 with the representation of invariant form
features such as contour fragments and junctions. Additional visual areas such as V4 are also
involved in form processing but are not considered in detail in this thesis. In the inferotemproal
cortex (IT) cells respond selectively to different views of objects and faces. The dorsal stream
primarily deals with processing of motion information. Local motion features are extracted in
V1 and are further integrated by cells in medial temporal cortex (MT). In the medial superior
temporal cortex (MST) cells specifically respond to optic flow patterns. There is physiological
evidence that the superior temporal sulcus (STS) receives projections from both form and motion
pathways to analyze motion patterns that are relevant in social interaction.
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1.3 Neural modelling

Modeling and simulation of interactions between pools of neurons and the neurons them-
selves provides a powerful tool to analyze how information is represented and processed
in the human brain and central nervous system. In the field of neuroscience, neurons are
often identified as groups of neurons that perform a specific physiological function.

A single neuron may be connected to many other neurons. The connections, called
synapses, are usually formed from axons and dendrites. Modeling can be performed at the
individual level of neurons, for instance, modeling the spike1 response curves of neurons
to a stimulus (single compartment model) or at the a more detailed level of several parts
(compartments) of a neuron (multi compartment model). A simple model that describes
the membrane potential of a single neuron is the integrate-and-fire model [Abbott, 1999].
This model basically assumes that action potentials are simply spikes occurring when
the membrane potential reaches a threshold. After firing membrane potential is reset.
This simplifies the modeling dramatically as we only deal with sub-threshold membrane
potential dynamics. More detailed and complex models of single spiking neurons with
non-linear dynamics are the Izhikevich model [Izhikevich, 2003] or Hodgkin-Huxley Model
[Hudgkin and Huxley, 1952].

Moreover, we can differentiate between two different types of models:

• Spiking models are based on spiking neurons which are utilized to encode information
by means of the frequency [Rieke et al., 1996], temporal order [Thorpe, 1990] or
synchronicity [Singer, 1999] of generated spikes. These models operate on a fine
temporal resolution.

• Firing-rate models on the other hand are more abstract and do not encode individual
spikes of neurons. Instead for each neuron only the mean spike rate or the spike
frequency is represented. In general, this type of model requires less resources for
computational simulations while yielding a realistic computational behavior on the
level of networks and computational maps [Koch, 1999].

In this thesis we use a firing-rate model as we model thousands of neurons in our simu-
lations. The model structure connects the model neuron to other neurons (feedforward,
lateral, and feedback connections are modeled) and the model dynamics is defined by
differential equations that describe the temporal change of neural activity or by steady
state solutions of these equations.

1An action potential or a spike is a short-lasting electrical potential that is generated if a neuron
is excited sufficiently to reach a threshold. The action potential then travels along the axon through
synapses to other neurons.
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1.4 Learning and Plasticity

1.4.1 Biological relevance

Activity-dependent synaptic plasticity provides the basis for most models of learning,
memory and development in neural circuits. The functional and behavioral role of synaptic
plasticity can be investigated by studying how experience and training changes synaptic
strength, and how these modifications change neural firing patterns to affect behavior (see
[Dayan and Abbott, 2001] for a comprehensive overview).

Experimental investigations have revealed mechanisms of how neural activity can af-
fect synaptic strength. Furthermore, empirically inspired synaptic plasticity rules have
been employed in several fields including auto- and heteroassociative memory, pattern
recognition, function approximation, and recall of temporal sequences.

One of the most influential synaptic plasticity rules was introduced by Donald Hebb
[Hebb, 1949]. It is called Hebb’s rule and states that if input from neuron A frequently
contributes to the firing of neuron B, then the synapse between A and B should be
strengthened. The theory is often summarized as “cells that fire together wire together ”.

Experimental work in a number of brain regions have revealed activity-dependent
processes that can produce changes in the efficacies of synapses that persist for varying
amounts of time.

Changes that persist for tens of minutes or longer are generally called long-term poten-
tiation (LTP) and long-term depression (LTD). In Fig. 1.3 experimental results with a hip-
pocampal slice of the rat illustrated that demonstrate the long-lasting effect of persistent
high-frequency stimulation induced potentiation and low-frequency induced depression.

Bienenstock, Cooper and Munro [Bienenstock et al., 1982] suggested one such mech-
anism. In the BCM model, correlated pre- and postsynaptic activity evokes LTP when
the postsynaptic firing rate is higher than a threshold value and LTD when it is lower.
To stabilize the model, the threshold shifts or slides as a function of the average post-
synaptic firing rate. For example, the threshold increases if the postsynaptic neuron is
highly active, making LTP more difficult and LTD easier to induce. Although this idea
is attractive as a computational model, experimental evidence for the sliding threshold is
largely indirect [Abraham, 1997].

More recently several studies (e.g., [Markram et al., 1997]) have revealed that the
change in synaptic strength also depends on the precise timing of action potentials in
connected neurons, referred to as spike-timing dependent synaptic plasticity (STDP). In
particular, the change in synaptic efficacy is different if A) the presynaptic spike precedes
the postsynaptic spike or B) the postsynaptic spike precedes the presynaptic spike. In
general, the first case (A) produces LTP and the latter case (B) leads to LTD. Thus, input
that contributes to the firing of a cell strengthens the connection of a synapse while input
that follows a spike weakens the synaptic connection.
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Figure 1.3: LTP and LTD observed in an experiment on a rat hippocampal slice (CA1). The
points show the amplitudes of field potentials evoked by constant amplitude stimulation. Stim-
ulation at 100 Hz for 1 s caused significant increase in the response amplitude. Next stimulation
at 2 Hz was applied for 10 min. This reduced the amplitude of the response. After a transient
dip, the response amplitude remained at a reduced level approximately between the original and
post-LTP values, indicating LTD (data of J. Fitzpatrick and J. Lisman published in [Dayan and
Abbott, 2001]).

1.4.2 Supervised learning

The main characteristic of supervised learning is that an external teacher signal is involved
in the process of learning. During training, an explicit teacher-signal is imposed to the
network including a set of input-output relationships. Supervised learning methods are not
biologically plausible as the desired output of the network has to be provided in advance.
Therefore, these learning mechanisms are predominantly employed in artificial neural
networks in the field of machine learning. The most frequently used supervised learning
methods are radial basis function networks (RBFs) [Moody and Darken, 1989], multi-layer
perceptrons (MLPs) [Cybenko, 1989], support vector machines (SVMs) [Cristianini and
Shawe-Taylor, 2000].

1.4.3 Unsupervised learning

In unsupervised learning, a network learns to respond to a series of inputs without a given
teacher signal. Here, the targets are the same as the inputs. In other words, unsupervised
learning usually performs the same task as an autoassociative network, compressing the
information form the inputs.

Hebbian learning is the most common variety of unsupervised learning [Hertz et al.,
1991]. Hebbian learning minimizes the same error function as an auto-associative network
with a linear hidden layer, trained by least squares, and is therefore a form of dimension-
ality reduction.

Another form of unsupervised learning is cluster analysis which is the assignment of a
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set of observations into subsets (called clusters) so that observations in the same cluster
are similar in some sense.

Among neural network models, the self-organizing map (SOM) [Kohonen, 2001] and
adaptive resonance theory (ART) [Carpenter and Grossberg, 1988]are commonly used
unsupervised learning algorithms. The SOM is a topographic organization in which nearby
locations in the map represent inputs with similar properties. The ART model allows the
number of clusters to vary with problem size and lets the user control the degree of
similarity between members of the same clusters by means of a user-defined constant
called the vigilance parameter.

1.5 Initial form feature extraction and models for ob-
ject recognition

1.5.1 Form feature extraction

In this section we introduce same basic form feature extraction methods commonly used
for (pre-)processing in image analysis.

Structure Tensor

The structure tensor is an efficient mathematical tool for the extraction of local patterns
when compared with the directional derivative through its coherence measure. It is typ-
ically used to represent and detect gradients, edges, or corners in an image [Harris and
Stephens, 1988]. The structure tensor matrix is formed as

S =
∑
u

∑
v

w(u, v)

[
I2x IxIy
IxIy I2y

]
(1.1)

where Ix ≡ I(u, v)x and Iy ≡ I(u, v)y denote the derivatives of the image intensity
function I in x and y directions at the spatial positions u,v weighted by a (Gaussian)
kernel function w that integrates over a spatial neighborhood. The derivatives of a discrete
intensity function can be approximated with a Sobel operator [Jähne et al., 1999]. Eigen-
decomposition is then applied to the structure tensor matrix S to get the eigenvalues
(λ1, λ2) and eigenvectors (~e1, ~e2). These values have the following properties:

1. ~e1gives an approximation of the direction of the local gray scale gradient. The local
direction of image structure is given by ~e2. Furthermore, ~e1and ~e2 are orthogonal
to each other.

2. The eigenvalues λ1 and λ2represent a confidence measure for the approximation of
~e1and ~e2.

3. Undirected structure leads to a low difference of the eigenvalues while directed struc-
ture lead to a high difference of the eigenvalues
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4. A measure for the cornerness of a local 2D structure is given by [Förstner, 1986]

C =
λ1λ2
λ1 + λ2

→ max (1.2)

In chapter three, we compare a biologically motivated model approach for the extraction
of junctions and corners with the structure tensor as a machine vision method.

Gabor Filter

The Gabor filter is a spatial frequency and orientation selective linear band pass filter
which is used to acquire information about periodic properties of image patterns [Daug-
man, 1988]. A 2D Gabor filter consists of a Gaussian kernel function modulated by a
sinusoidal plane wave. Gabor filers are self-similar which means that all filters can be
generated from one mother wavelet by scaling and rotation.

g(x, y) = exp

(
x′2 + γy′2

2σ2

)
cos(2π

x′

λ
+ ψ) (1.3)

given

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

Here, l represents the wavelength of the cosine factor, θ represents the orientation
of the normal to the parallel stripes of a Gabor function, y is the phase offset, sv is the
spatial width of the Gaussian envelope and g is the spatial aspect ratio, and specifies the
anisotropy of the elliptical Gabor function.

Several Gabor filters can be combined in a filter bank to represent all orientations of
a specific scale. In this thesis, Gabor filters are used to model the properties of simple
cells arranged in hypercolumns in primary visual cortex [Hubel and Wiesel, 1968].

1.5.2 Models for object recognition

Here, we present a brief overview of different approaches for object recognition.

Scale-Invariant Feature Transform (SIFT)

[Lowe, 2004] presents a method for extracting distinctive invariant features from images
that can be used to perform reliable matching between different views of an object or
scene. An image is transformed into a large collection of local feature vectors, each of
which is invariant to image translation, scale, and rotation, and are shown to provide
robust matching across a substantial range of affine distortion, change in 3D viewpoint,
addition of noise, and change in illumination. The scale-invariant features are efficiently
identified by using a staged filtering approach. The first stage identifies key locations in
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scale space by looking for locations that are maxima or minima of a difference-of-Gaussian
function. Each point is used to generate a feature vector that describes the local image
region sampled relative to its scale-space coordinate frame. The features achieve partial
invariance to local variations, such as affine or 3D projections, by blurring image gradient
locations. The resulting feature vectors are called SIFT keys. The SIFT keys derived from
an image are used in a nearest-neighbor approach to indexing and to identify candidate
object models. Collections of keys that agree on a potential model pose are first identified
through a Hough transform hash table, and then through a least-squares fit to a final
estimate of model parameters. When at least 3 keys agree on the model parameters with
low residual, there is strong evidence for the presence of the object. It is possible to have
substantial levels of occlusion since there may be dozens of SIFT keys in the image of a
typical object.

Geon-Model

According to Marr [Marr, 1982] human object recognition can be best understood by
algorithms that hierarchically decompose objects into their parts and relations in order
to access an object-centered 3D model. Based on the concept of non-accidental proper-
ties, Biederman proposed in his recognition by components (RBC) theory [Biederman,
1987], that the human visual system derives a line-drawing-like representation from the
visual input, which is parsed into basic geometric primitives (geons) that are orientation
invariant. Object recognition would be achieved by matching the geons and their spatial
relations to a geon structural description in memory. This theory has been implemented
in a connectionist network that is capable of reliably recognizing line drawings of objects
made of two geons [Hummel and Biederman, 1992].

HMAX-Model

The model proposed by [Riesenhuber and Poggio, 1999] combines and extends several
recent models (e.g., [Poggio and Edelman, 1990; Perrett and Oram, 1993; Fukushima,
1980]) and effectively summarizes many experimental findings. The view-based module
shown in the inset of Fig. 1.4 is a hierarchical extension of Hubel and Wiesel’s classical
paradigm of building complex cells from simple cells. The circuitry consists of a hierarchy
of layers leading to greater specificity and greater invariance by using two different types
of mechanisms (a MAX pooling mechanism (dashed lines), to increase invariance, and a
template match operation (solid lines), to increase feature specificity, see text).

The output of the view-based module is represented by view-tuned model units Vn that
exhibit tight tuning to rotation in depth (and illumination, and other object-dependent
transformations such as facial expression, etc.) but are tolerant to scaling and translation
of their preferred object view. Invariance to rotation in depth (or other object-specific
transformations) is obtained by combining in a learning module several view-tuned units
Vn tuned to different views (or differently transformed versions) of the same object [Poggio
and Edelman, 1990], creating view-invariant (object-tuned) units On. These, as well as
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Figure 1.4: Model of the ventral pathway proposed by [Riesenhuber and Poggio, 2002]. The
model consists of a view-based module where local features are processed in hierarchical layers
of alternating SUM (solid lines) and MAX (dashed lines) operations. This corresponds roughly
to simple (Sn) and complex (Cn) cells which is related to findings of Hubel and Wiesel. Outputs
of the view-tuned module units (Vn) can be used to learn identification/discrimination tasks or
object categorization. Invariance to rotation in depth (or other object-specific transformations)
is obtained by combining several view-tuned units of the same object, creating view-invariant
(object-tuned) units On. Object- and view-tuned units then serve as input to task modules that
learn to perform different visual tasks such as identification/discrimination or object categoriza-
tion.
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the view-tuned units, can then serve as input to task modules that learn to perform
different visual tasks such as identification/discrimination or object categorization. They
consist of the same generic learning circuitry but are trained with appropriate sets of
examples to perform specific tasks. The stages up to the object-centered units probably
encompass V1 to anterior IT (AIT). The last stage of task dependent modules may be
localized in AIT or prefrontal cortex (PFC) (see Fig. 1.4).

1.6 Outline of the thesis

Throughout this thesis we describe neurobiologically inspired models that simulate pro-
cessing between cortical areas of the human visual system. Each chapter can be read
independently from the rest of the thesis as they all contain the necessary information
including an introduction, the particular model mechanisms, the results as wells as the
corresponding discussion.

In chapter 2 we introduce a biologically motivated recurrent model for the extraction
of visual features relevant for the perception of 3D shape information from images of mir-
rored objects. We analyze qualitatively and quantitatively the results of computational
model simulations and show that bidirectional recurrent information processing leads to
better results then pure feedforward processing. Furthermore we utilize the model output
to create a rough non-photorealistic sketch representation of a mirrored object, which
emphasizes image features that are mandatory for 3D shape perception (e.g. occluding
contour, regions of high curvature). Moreover, this sketch illustrates that the model gen-
erates a representation of object features independent of the surrounding scene reflected
in the mirrored object.

In chapter 3 we propose an extension of the neural model that suggests how surface-
related cues for occlusion can be extracted from a 2D luminance image. The model em-
ploys feedforward and feedback mechanisms to combine contextually relevant features in
order to generate consistent boundary groupings of surfaces. Moreover, contour junctions
are localized and read out from the distributed representation of boundary groupings.
Then, surface-related junctions are made explicit such that they are evaluated to interact
as to generate surface-segmentations in static images. In addition, we compare our ex-
tracted junction signals with a standard computer vision approach for junction detection
to demonstrate that our approach outperforms simple feedforward computation-based
approaches.

In chapter 4 we present a neural architecture that simulates hierarchical processing of
human action patterns in the context of social interaction. The model simulates several
cortical stages of the human form and motion pathways. Low-level feature processing is
performed using mechanisms of recurrent interactions between early visual areas (V1-V2
in the form pathway and V1-MT in the motion pathway). Synaptic plasticity between
mid- and higher-level visual areas (MT-MST and V2-IT) is simulated by incorporating
Hebbian learning mechanisms. Finally, a mechanism is proposed of how form and motion
signals could interact in order to produce more robust and reliable recognition of motion
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patterns than single-pathway based models.
In chapter 5 we summarize the main findinds of this thesis and present a list with the

most relevant publications that originate from this thesis.
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Chapter 2

Depicting the 3D Shape of Objects and
Surfaces

2.1 Introduction

Computer vision systems for recovering 3D shape from single static images typically im-
pose stringent restrictions on the lighting conditions or reflectance properties of the object
under scrutiny. For example, it is common for shape-from-shading algorithms to require
orthographic projection, a single, infinitely distant point light source, or Lambertian re-
flectance (e.g. Bruckstein [1988]; Horn and Brooks [1985]; Samaras and Metaxas [1999];
Zheng and Chellapa [1991]) ; for a review see [Horn and Brooks, 1989; Zhang et al., 1999].
By contrast, the human visual system is extremely flexible. Although the appearance of
a surface can change dramatically depending on its material composition, we rarely expe-
rience any difficulty in recovering a detailed and accurate estimate of an object’s shape,
irrespective of its reflectance properties.

One of the most striking examples of this is our ability to recover the shape of a
perfectly specular (i.e. mirrored) surface, such as a chrome bumper or polished kettle.
Perfectly specular surfaces are particularly problematic for the visual system because
the images that they project onto the retina consist of nothing more than a distorted
reflection of the surrounding scene. Consequently, as a mirrored surface is moved from
scene to scene, the image changes dramatically. Indeed, depending on the context in
which it is placed, a mirrored object can be made to take on any arbitrary appearance.
For example, by carefully modifying the reflected scene, it is possible to make a surface
appear to contain bumps or dents. The visual system would have no way of knowing
that it was the environment and not the object’s geometry that was responsible, and thus
the problem of recovering the 3D shape of a mirrored surface is fundamentally ill-posed
[Hadamard, 1902].

Given the inherent ambiguity of the problem, it is not possible to completely recover
3D shape without imposing additional assumptions or constraints. One solution is to
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assume that the positions of features in the surrounding environment are known in ad-
vance [Savarese and Perona, 2001, 2002], so that their reflection in the surface can be
identified and interpreted. However, as a model of human shape perception this is not
very satisfying, as it seems quite unlikely that the visual system constructs a complete
representation of the environment surrounding the object prior to recovering its shape.

Here, we take an alternative approach. Rather than attempting to fully reconstruct
3D shape, we develop a biologically motivated image processing model that is designed to
extract a restricted but highly informative class of shape measurements from the image.
Importantly, the model requires only weak assumptions about the statistical properties of
the reflected scene, and thus operates across a wide range of real and artificial illumination
conditions.

2.1.1 Goals

We apply the image-processing architecture to achieve two distinct goals. The first goal
is to provide a model of the front-end of a 3D shape estimation system, inspired by the
physiology of the early visual system. We aim to provide a plausible model of how the
human visual system could use simple image measurements to achieve shape constancy
across variations in the illumination. Additionally, by applying further constraints to the
output of the model, the image processing architecture we present here could also form the
basis of a computer vision system for fully recovering 3D shape under complex, unknown
illumination.

The second goal is a concrete application of the model to computer graphics and vi-
sualization, specifically, facilitating the visualization of 3D surface geometry. The image
of a mirrored surface under natural illumination is riddled with complex, high contrast
patterns, which can be distracting if the aim of the user is to quickly visualize the most
important properties of a shape (see Fig. 2.1). The image processing system presented
here produces as output a modified ‘sketch-like’ representation of the input image, in
which salient shape features that are invariant across illuminations are emphasized, while
distracting, illumination-specific image features are suppressed. This non-photorealistic
sketch could be used to enhance shape apprehension in industrial or graphic design, some-
what like a technical illustration. On the other hand, it could also be useful for aesthetic
applications, to create, bold, charcoal-like renditions of objects. Finally, the model could
also be used to guide the design of novel shape visualization systems, as it provides
a principled explanation of which shape properties should be emphasized to confer an
illumination-invariant impression of shape.
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Figure 2.1: (a) Perfectly specular object illuminated by a forest scene (left) and different versions
of sketch drawings created by a skilled artist (right). Note that the artist seems to emphasize
those features that seem to be important for the perception of 3d shape.

2.1.2 Previous work

Human Perception

It is well established that specular reflections facilitate human shape perception. Psy-
chophysical studies have shown that specular reflections contribute to shape estimation
in the presence of other cues, such as shading, binocular stereopsis and texture [Blake and
Bülthoff, 1990, 1991; Norman et al., 2004; Todd and Mingolla, 1983; Todd et al., 1997].

[Savarese et al., 2004] showed subjects patches that were cropped out of photographs
of mirrored surfaces reflecting a standard checkerboard pattern. The subjects’ task was
to identify which of three categorically different shapes the patch belonged to (sphere,
cylinder or hyperbolic paraboloid). They found that subjects performed barely above
chance levels. By contrast, using the popular ‘gauge figure’ task, [Fleming et al., 2004]
found that humans are good at estimating 3D shapes from mirrored surfaces, even when
the objects are shown in isolation (i.e. so that there is no information about the surround-
ing scene). The inconsistency between these findings likely results from differences in the
stimuli. Fleming et al. used complex, irregular object shapes; the entire object was visible
simultaneously; and the patterns reflected in the surface were richly structured real-world
scenes. Under these conditions, humans seem to be excellent at inferring 3D shape from
specular reflections.

Computational work

Compared to the immense body of work on shape from shading, specular reflections have
received relatively little attention. A number of authors have used active light techniques
to overcome the inherent ambiguity of specular reflections. For example, [Ikeuchi, 1981]
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analyzed photometric stereo for the special case of specular surfaces. [Sanderson et al.,
1988] developed SHINY, a structured light system to recover surface depth and orientation
for industrial applications, using both single and multiple cameras. More recently, [Zheng
and Murata, 2000] developed a system in which a rotating specular object was illuminated
by extended circular light sources. The shape for each rotation plane was computed from
motion stereo, or by tracing the specularities’ motion across the surface.

Other authors have used multiple views or camera motion. [Koenderink and van
Doorn, 1980] described the qualitative behavior of specular highlights as they move across
curved surfaces in response to viewer motion. Blake and colleagues [Blake, 1985; Blake
and Brelstaff, 1988; Blake and Bülthoff, 1990, 1991] analyzed the problem of specular
stereo, showing how the position in depth of a specular highlight is related to the cur-
vature of the surface. [Zisserman et al., 1989] provided a quantitative analysis of the
information available to a camera undergoing known motion. One key result was that
the convex/concave ambiguity can be resolved under unknown illumination. [Oren and
Nayar, 1996] developed an algorithm for discriminating between real and virtual features
based on their motion across the surface. The authors use their analysis to uniquely
recover 3D surface profiles by tracking a single virtual feature across the surface.

In elegant computational work [Savarese and Perona, 2001, 2002] were the first to pro-
vide a general solution for recovering shape from mirror reflections in single static images.
However, the solution requires that a calibrated scene be reflected in the surface. Where
three intersecting lines are visible in the reflected pattern, first order local information
can be recovered.

Several authors have observed that the shapes of specular highlights are influenced by
surface geometry [Beck and Prazdny, 1981; Hartung and Kersten, 2003; Longuet-Higgins,
1960; Todd et al., 2004], noting that this could be important in discriminating highlights
from other effects such as texture markings. Extending this observation, [Fleming et al.,
2004] showed how populations of simple filters tuned to different orientations could be
used to extract information related to 3D surface curvatures directly from single static
images of mirrored surfaces under unknown illumination. Surface curvature distorts the
reflected environment into complex patterns of image orientation that vary continuously
across the surface. Fleming et al. showed how these ’orientation fields’ are systematically
related to the underlying geometry.

The current work builds on this observation to create a complete neurally-inspired
architecture for extracting clean, reliable orientation fields from noisy images. The most
important contribution is the addition of an iterative grouping circuit, that refines the local
orientation estimates depending on the neighborhood. This substantially improves the
accuracy with which shape properties can be estimated. Furthermore, it is this feedback
circuit that enables the model to produce the non-photorealistic sketch representation for
emphasizing the illumination-invariant features of the image.
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Non-photorealistic rendering and shape visualization

The technical illustrator’s art is to depict the essential structural and functional compo-
nents of a device without overpopulating the image with confusing or distracting details.
It is widely believed that simplified illustrations of objects actually improve perception
(and/or comprehension), although the empirical evidence for this (e.g., [Biederman, 1987;
Dwyer, 1967; Fraisse and Elkin, 1963; Ryan and Schwartz, 1956]) is rather mixed, and
likely depends on the task to be performed (e.g. recognition of familiar objects vs. assem-
bling a complex object from instructive illustrations). However, there are certainly cases
in which exaggerated or caricatured stimuli are preferred to their realistic counterparts in
a biological context [Tinbergen and Perdeck, 1950; Tinbergen, 1951] or yield superior task
performance in humans [Benson and Perrett, 1991; Rhodes et al., 1987], suggesting that
non-photorealism might be exploited to facilitate perception. Here we attempt to create
sketch-like representations of the input image (see Fig. 2.1) to aid shape apprehension,
and for aesthetic applications.

There is a large body of previous research on image-based non-photorealistic rendering
(NPR), in which arbitrary images or videos are fully or semi-automatically modified to
create the impression of a particular medium or artistic style, including paint [Curtis et al.,
1997; Hays and Essa, 2004; Hertzmann, 1998; Shiraishi and Yamaguchi, 2000], pencil [Jin
et al., 2002; Yamamoto et al., 2004], stipple drawings [Deussen and Strothotte, 2000],
mosaics [Hausner, 2001], cubism [Collomosse and Hall, 2003], impressionism [Litwinowicz,
1997], or simply stylized [DeCarlo and Santella, 2002].

A number of researchers have involved some degree of user interaction, to improve
the quality of results. For example, [Durand et al., 2001] developed a system for creat-
ing artistic renditions of photographs, in which the user determines stroke density and
important structural features to interactively create the drawing. Recently, [Kang et al.,
2005] developed an interactive technique for generating cartoon-like sketches from pho-
tographs. The system uses wavelet frames to allow multi-resolution control of B-splines,
which represent the depictive strokes. Other NPR sketch systems are designed more to
give an overall ‘gist’ of the depicted person or object [Chen et al., 2004; Gooch et al.,
2004] rather than faithfully showing 3D shape properties of arbitrary objects.

There has also been considerable amount of work on the optimal rendering parameters
for visualizing 3D shape from geometric models. [Gooch et al., 1998] developed a shad-
ing technique for automatically generating technical illustrations from 3D models. The
resulting sketches combine edges for depicting boundaries and a highly stylized ‘cool-to-
warm’ shading to produce the impression of curvature in 3D, although no psychophysical
motivation or validation was offered. Interrante and colleagues [Interrante and Kim, 2001;
Interrante et al., 2002; Kim et al., 2003] have systematically explored the influences of
texture on 3D shape visualization, and developed methods for depicting transparent sur-
faces so that two superimposed surface shapes can be visualized simultaneously. Recently,
[Bair et al., 2005] used a combination of psychophysics and machine learning techniques
to find perceptually optimal textures for visualizing two superimposed surfaces.

By contrast to most previous NPR research, our sketch algorithm is intended to take
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Figure 2.2: 3D model and corresponding curvature information. Minimal curvature orientations
are color coded. The anisotropy of curvature is displayed as the intensity of the color. We use
the LIC method described in [Cabral and Leedom, 1993; Stalling and Hege, 1995] in addition
to the color coding to illustrate local orientations. Note that there are distinct lines of isotropic
curvature (dark) which belong to inflection points of the surface. Here one curvature component
changes the sign, resulting in an abrupt change of the orientation by 90 degrees.

a single grayscale image as input and to automatically produce a modified version of the
image as output. In the resulting ’sketch’, image regions containing reliable illumination-
invariant shape features are emphasized, while regions containing spurious orientations
that are due to reflections of the environment are suppressed.

2.2 Methods

In this section, we explain how a particular class of curvature-related information can be
extracted directly from a 3D model of an object. This information (the ’ground-truth’)
will be used later to assess the accuracy with which our model estimates these values from
a rendered image of the object. Then we continue to give an overview of our proposed
model for the extraction of curvature information followed by a detailed description of
the model and its different components.

2.2.1 Extracting ground-truth curvature information from the 3d
model

The intrinsic properties of surface geometry can be described by means of differential
geometry. For example, a regular surface in R3 is locally defined by its orientation and
curvature properties depicted by mutually orthogonal tangent vectors and mutually or-
thogonal normal sections that define the curves of minimal and maximal normal curva-
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tures. The product of the normal curvatures defines the Gaussian curvature of the surface
at a selected point on the surface. In perception, we are concerned with the extraction
of surface properties from images of illuminated surfaces taken from a certain viewpoint.
Due to the projection of the visible surface part of an object its shape can be described by
its height, that is, as a function z = f(x, y) (known as Monge patch, [do Carmo, 1976])1.
In this coordinate system (see Fig. 2.3), the first derivatives of f (i.e. the gradient of
f) describe the slant of the surface which is the angle between the viewer’s line of sight
and the surface normal. The second derivatives of the surface (i.e. the Hessian matrix)
describe the rate at which the surface normal changes with respect to the viewer. This
can be described as the view-centered curvature of the surface.2 Note that this has to
be distinguished from the intrinsic curvature, which is defined in local coordinates. For
example, the intrinsic curvature is constant in all directions at all locations on a sphere,
while the view-centered curvature is equal in all directions only in the middle of the pro-
jected sphere; close to the boundary, the second derivatives are increasingly large in the
direction perpendicular to the circumference, and zero parallel to the circumference.

Each point on the surface has a minimum and a maximum curvature direction which
are always perpendicular to each other. In the case of view-centered curvature, they are
always perpendicular to one another in the image plane. If the maximal and the minimal
curvatures have the same magnitude then we speak of an isotropic surface. When minimal
and maximal curvatures are different magnitudes, then the surface is anisotropic. Here,
the ratio between maximal and minimal curvature magnitudes describes the strength of
the anisotropy of curvature. In other words the anisotropy of curvature describes how
spherical or cylindrical a surface patch is at any point. The anisotropy is very important
because we’ll see later that distortions in the mirrored scene are directly related to this
parameter. To extract the discussed parameters, we need to compute the Hessian matrix
(Eq. 2.1).:

H =

(
fxx fxy
fyx fyy

)
(2.1)

where f is the surface function as mentioned above. The eigenvalues (λ1, λ2) and the
eigenvectors (v1, v2) of H have the following meaning:

1. the first eigenvector v1, v2 of the Hessian matrix describe the orientation of maximal
curvature and minimal curvature, respectively

2. the ratio of the eigenvalues describes the anisotropy of curvature where the term
1We are neglecting influences of perspective projection in image acquisition by assuming that the object

size is small in comparison to viewing distance such that the mapping can be approximated through an
orthographic projection.

2For convenience, from here on we refer to the Hessian matrix and related concepts loosely as ’cur-
vature’. The reader should be careful to keep in mind that when we use the term ’curvature’ we mean
the second derivatives, and when we speak of ’principal curvature directions’ and ’principal curvatures’,
we mean the eigenvectors and corresponding eigenvalues of the Hessian matrix. For Monge patches the
Gaussian curvature can be calculated from the Hessian by taking its determinant scaled by a measure of
the slant [do Carmo, 1976]).
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Figure 2.3: View-centered coordinate system. The visible surface part of an object is described
by its height, i.e., as a function z = f(x, y) where z represents the depth and (x, y) are the
coordinates in the image plane.
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Figure 2.4: Image of a mirrored object. We can see that on areas with high curvature anisotropy
such as the curvature ridge marked in green, the surrounding scene is compressed into thin long
streaks aligned along the direction of the ridge (which is the direction of minimal curvature).
Note that these areas turn out to be the locations where the local image statistics are invariant
when changing the surrounding scene. On other areas where the surface curvature is nearly
isotropic (marked red) the reflected scene shows much weaker compressions resulting in a flat
mirror like reflection. Here, the local image statistics are very dependent of the surrounding
scene.

1− λ2
λ1

yields values between zero (isotropic) and one (anisotropic).

The directions of minimal curvature and the anisotropy computed from the 3D model
represent the ground-truth information which is illustrated in Fig. 2.2. To understand
the ground truth images there are a few things worth mentioning: first, we can see that
there are distinct lines of low curvature anisotropy which belong to inflection points of
curvature. Here, the surface curvature is equal in all directions, leading to no distortions
of the reflected world on the surface. Note that as we cross these lines, the orientation of
minimal surface curvature changes abruptly by 90 degrees. The reason for this effect is
that the surface changes from a concave or convex condition to a saddle condition where
one principal curvature component changes sign. Second, we can see singular points of low
curvature anisotropy which belong to locally spherical patches (concave or convex), facing
the viewer. These points are usually surrounded by a radial field of minimal curvature
orientations. For more information about the surface geometry see [do Carmo, 1976].
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2.2.2 Evidence for curvature orientation in image space

When a scene is reflected in a curved mirror, the reflection is distorted in a way that
depends systematically on the 3D surface geometry [Beck and Prazdny, 1981; Fleming
et al., 2003, 2004; Hartung and Kersten, 2003; Longuet-Higgins, 1960]. Intuitively, highly
curved surfaces ’see’ a large angle of the surrounding scenery, and thus compress many
features into a small proportion of the image. By contrast, for slightly curved surfaces the
compression is weaker (see Fig. 2.4). When the surface has different curvatures in different
directions, the reflections will be differentially compressed in the two directions, leading to
a locally affine distortion of the reflection. The strength of the distortion depends on the
ratio between minimal and maximal curvatures, which we call the surface anisotropy. For
example, a spherical surface patch is curved equally in all directions (i.e. isotropic), and
thus the surrounding scene is simply miniaturized in the reflection, it is not subjected to
any anisotropic distortion. By contrast, a cylindrical surface patch is somewhat curved in
one direction, but completely flat (i.e. curvature equals zero) in perpendicular direction.
This leads to a strong distortion of the surrounding scene caused by a high anisotropy of
curvature. In this case, the reflections tend to be distorted into parallel streaks that are
aligned with the direction of minimum curvature3 (see also Fig. 2.2). We can summarize
that:

1. the orientation of structures in the mirrored scene tends to be aligned with the
minimal surface curvature

2. the strength of the distortions in the mirrored scene indicates the ratio of minimum
to maximum curvature (anisotropy of curvature)

2.2.3 A biological model for the extraction of curvature informa-
tion

Our model receives as input a grayscale image of a specular object. The model is able to
estimate the minimal curvature orientations and the anisotropy of curvature from the 2D
input image. To measure the success of this estimation, we can compare the results to
the ground truth information derived from the 3D model of the object. The model also
produces a sketch-like representation of the input image. Our proposed model consists
of three main components: (i) extraction of oriented contrasts, (ii) orientation selective
grouping and (iii) a recurrent feedback cycle. An overview of the model architecture is
given in Fig. 2.5.

3Note that the orientation of maximal curvature is always perpendicular to the orientation of minimal
curvature as long as we consider the view-centered curvature depending on the second derivatives of the
surface (Hessian matrix). As a consequence of this, it is sufficient to recover the direction of minimal
curvature.
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Figure 2.5: Overview of the raw model architecture. The input image is filtered by differently
oriented Gabor filters resulting in different feature maps. Following, each feature map is processed
by a grouping stage, that groupes together like-oriented contrasts. The resulting feature maps
are then use as a feedback signal for the inital filter stage. The feedback cycle is iterated several
times until the signals have reached a stable state. From this representation, information about
surface curvature can be read out. Also, a rough sketch of the object can be extracted that
emphasizes perceptually relevant surface regions.
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Basic assumptions of the model

Our model assumes that any anisotropy measured in the image is due solely to distor-
tions of the reflected scene caused by the geometry of the mirrored surface. This tacitly
assumes that the texture of the environmental scene is isotropic (i.e., contains a uni-
form distribution of orientations) [Fleming et al., 2004]. For many artificial and natural
scenes this is approximately true globally, although it is clearly infringed locally when the
scene contains extended oriented structures such as trees or buildings. Despite this, the
distortions introduced by surface anisotropy can be very powerful, and—unlike naturally-
occurring oriented structures—affect all spatial scales equally. Indeed, even environments
with unnaturally anisotropic scene statistics can nevertheless yield orientation fields that
are predominantly biased in the correct directions, although this depends on the shape
properties of the reflecting object. The effects of this ’isotropy assumption’ are discussed
in greater detail in section Section 2.4.

Extracting oriented contrasts using a population of linear Gabor filters

The initial stage of our model applies a family of orientation selective Gabor filters [Daug-
man, 1988] resembling the response properties of cortical simple cells [Hubel and Wiesel,
1968]. The result is interpreted as a population code describing local contrast informa-
tion. In our simulations we employ 18 filters rotated from 0 to 170 degrees to extract
local contrast information (Eq. 2.2).

Rφ = I ∗Gφ (2.2)

where I is the input image of the mirrored object, Gφ is the oriented Gabor filter
rotated by angle φ (see Fig. 2.6), and ∗ is the convolution operator. In order to get a proper
scaling of the computed responses we apply a normalization to the Gabor filter output
(Eq. 2.3). Parameter µ affects the strength of the normalization curve. To compensate
for global contrast effects µ is multiplied with the average contrast over all responses for
a given orientation where x and y are the dimensions of the image (see Eq. 2.4).

Sφ =
Rφ

µkφ +Rφ

(2.3)

where
kφ =

∑
Rφ

x · y
(2.4)

In Fig. 2.6, the population responses for two different locations in the input image are
shown. The first population response is extracted from a location in the image where the
texture is strongly distorted in one direction leading to strong responses in one preferred
orientation. The other population response is extracted from a location in the image
where the texture is only weakly distorted. Here the population responses are nearly
equally distributed over all orientations. Fig. 2.6 illustrates how the direction is extracted
from the orientation of the Gabor filter producing the maximum response at one specific
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Figure 2.6: Initial filter stage of the model (C). A family of orientation selective Gabor filters
is applied to the input image followed by a normalization step in order to get a proper scaling
of the responses. The distribution of the filter responses is shown for an anisotropic texture
condition (A) and a nearly isotropic texture condition (B). Note that the filter which yields
maximal response determines the prevailing orientation of texture distortion. Note also that the
more the distribution differs from an equal distribution the stronger the anisotropy of the texture
is.
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Figure 2.7: Grouping stage of the model consisting of the actual grouping step and an additional
normalization that is necessary to achieve bounded output and to get a proper scaling of the
filter responses (C). The grouping filter consists of two elongated Gaussian kernels which are
combined by a multiplicative connection (A). (B) shows a comparison between filter responses
in case of an additive (dotted) and a multiplicative (solid) connection when the input is a short
line segment. Note that an additive connection would lead to smearing effect at line ends.

location (Eq. 2.5).4

φmax = argmax(Sφ) (2.5)

We employ the ratio between minimal and maximal filter response to compute the
anisotropy of the distortion, specifically we use the term in Eq. 2.6.

A = 1− min(Sφ)

max(Sφ)
(2.6)

which yields values between zero (isotropic) and one (anisotropic). Note that this data
interpretation has been adopted from [Fleming et al., 2004].

4Note that in this case the texture distortion is always unimodal in the direction of minimal surface
curvature. Moreover, our filters are relatively small (just a few pixels per diameter) so that it is very
unlikely that the distribution of orientation responses has more than one peak. Thus, we assume that
the argmax operation always yields a unique result.
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Orientation selective grouping

The second component of our model consists of orientation selective grouping filters. The
grouping filter is constructed of two displaced elongated Gaussian functions G←σ1,σ2 , G

→
σ1,σ2

(elongation ratio σ1 : σ2) that are combined in a multiplicative manner (Fig. 2.7). These
filters are applied to locally enhance coherent filter responses and to enforce the initial
estimated anisotropy signal. Note that the grouping filters are rotated in the appropriate
direction $\phi$ when they are applied for each orientation layer.

F←φ = Sφ ∗G←σ1,σ2,φ
F→φ = Sφ ∗G→σ1,σ2,φ
Lφ = F←φ · F→φ (2.7)

In particular, this kind of filter has the effect that collinear Gabor responses (from the
initial stage) are enforced, while potentially erroneous responses typically occur without
context and thus are weakened by this operation. The multiplicative connection in Eq. 2.7
ensures that input from both sides of the center is needed to generate activation. Using
an additive connection would lead to smearing effects at line ends (see Fig. 2.7). In other
words, this stage produces strong responses if the underlying input signals a continuous
orientation pattern. This is consistent with physiological findings about non-linearities in
the response of V2 contrast cells.

Finally the grouping filter responses are passed through a second normalization step
(Eq. 2.8) similar to the operation in Eq 2.3). This operation is necessary to keep the filter
responses bounded while strong filter responses are enforced and weak filter responses are
diminished.

Mφ =
Lφ

1 + Lφ
(2.8)

Full recurrent model

So far we have described feedforward connections of the model. Now we use the locally
grouped information (Eq. 2.8) to iteratively refine the initial estimates (Eq. 2.3). This
operation can be realized by using the grouped filter responses as a recurrent feedback
signal. Physiological evidence supports the view that top-down projections serve primarily
as a modulation mechanism to control the responsiveness of cells in the primary visual
cortex [Bullier et al., 1988]. Accordingly, we use the grouped Gabor responses (Mφ) as
a feedback signal. Here, the feedback signal acts as a prediction of an error-free input
pattern. The feedback modulation is realized by the following equation:

Snewφ = Sinitφ · (1 + αMφ) (2.9)

where α is a parameter to adjust the influence of the feedback signal Mφ and Sinitφ
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Figure 2.8: The full recurrent model in detail. The model receives a grayscale image of a specular
object as input (1). First, a family of orientation selective Gabor filters is applied to the image (a)
followed by a normalization step (b) to get a proper scaling. Second, a grouping filter is applied
for each orientation to enhance collinear features (c), followed by another normalization step (d).
Then the signal is fed back to iteratively refine the initial Gabor responses. Model outputs are
the orientation of minimal curvature and the anisotropy of curvature (2). Furthermore, a sketch
representation of the input image is extracted in (3).
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is the initial signal from Eq. 2.3. Note that Eq. 2.3 has to be replaced by Eq. 2.9 for
the full recurrent model (see also Fig. 2.8). The logic of the feedback modulation can be
interpreted as follows:

The input signal is enhanced at locations where the initial signal matches the feedback
signal. Thus, the feedback signal can be regarded as an expectation signal biasing local
input activations. In cases where feedback is zero, the ’one’ in Eq. 2.9 ensures that the
initial signal remains unchanged. Iterative feedback processing thus strengthens collinear
features over time and helps to reduce the influence of noise and the presence of errors.

Output Signals. There are three output signals of the model. The first and second
output signal of the model yield the estimated minimal surface curvature orientation5

(from Eq. 2.5) and the anisotropy signal (Eq. 2.6), respectively. Both output signals are
illustrated in one single output image where the orientations are color coded and the
anisotropy is coded as the intensity of the colors (see Fig. 2.8, Part 2). The third output
signal (Fig. 2.8, Part 3) is an image of a non-photorealistic sketch of the input image.
The sketch output is computed by the difference between maximal and minimal activity
of the filter responses (Eq. 2.10). Note that the sketch signal is similar to the anisotropy
signal (Eq. 2.6). However, it is extracted after the grouping stage of the model and with
a slightly different computation rule.

Asketch = max(Sφ)−min(Sφ) (2.10)

2.3 Simulations

In this section, we show the competencies of our proposed model for three different spec-
ular objects depicted in Fig. 2.9. In particular, we show the estimated minimal curvature
directions in combination with the anisotropy of curvature and a sketch representation of
the object for a variety of model parameters.

2.3.1 Model input

As input, we use grayscale images of synthetically generated specular objects. All ob-
jects have a smoothly curved surface containing concavities, convexities as well as self-
occlusions. To give the objects a specular surface we used reflection maps from [Debevec
et al., 2000]. In Fig. 2.9, the objects are depicted in a mesh style (to give a clear im-
pression of the shape) and with a perfectly specular surface (used as model input). For
computational simulations we utilize input images with a resolution of 600x600 pixels.
Fig. 2.9 also shows a reflection map from [Debevec et al., 2000], where the world around
the mirrored objects is compressed into a 2D image6.

5Recall that features on the mirrored surface are aligned with the direction of minimal surface curva-
ture. Thus the filter direction with maximal response determines the minimal estimated curvature.

6Each pixel in the reflection map belongs to a specific direction in space. The spherical surrounding
can be divided into degrees of latitude and longitude where each pixel in the reflection map belongs to
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Figure 2.9: Three synthetically created specular input objects (d)-(f) and their corresponding
3D-Models (a)-(c). The objects are mirrored with the ’Eucalyptus Grove’ reflection map from
[Debevec et al., 2000] (g). Object (a) was inspired by [Todd, 2004] and shows a plane perturbed
by a circular wave function. Object (b) shows a sphere which was also squeezed and stretched to
achieve a smoothly varying curved surface. Object (c) was created by bending and squeezing an
ellipsoid which leads to a surface shape where nearly all possible curvature conditions are visible.

32



Depicting the 3D Shape of Objects and Surfaces

Figure 2.10: The figure illustrates orientation error as a function of surface anisotropy. Left plot
shows individual observations, where each dot represents the measurement from a single pixel
(several objects and environmental scenes were used). Right plot shows box plots computed from
(a), where we divided the anisotropy axis into 11 bins (box represents lower quartile, median and
upper quartile). For low curvature anisotropies the distribution of orientation errors is spread
from 0-90 degrees while for high curvature anisotropies the distribution is only spread between
0 and 25 degrees. Mean orientation error drops from 30 degrees (isotropic condition) to about
10 degrees (anisotropic condition). Note that in both plots we use a logarithmic scale for the
x-axis. Note also that as we employ only 18 different filter orientation in steps of 10 degrees the
resulting mean orientation error cannot be lower than 10 degrees.

Figure 2.11: The graph in (a) shows the orientation error computed from one object/scene
configuration over subsequent time steps of the feedback cycle. We can see that the error is
decreasing with each time step and nearly converging after 10 time steps to a value of 5.6
degrees. The graph in (b) shows the median orientation error across different Gabor sizes of the
initial filter stage. We can find a minimum error of 6.9 degrees for a Gabor filter size of σ = 0.9.
Increasing the size of the Gabor filters leads to a monotonic increase of the orientation error. We
can also observe that too small Gabor filters have a negative effect by producing slightly higher
error measures.
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Figure 2.12: The figure shows measures of the minimal curvature orientations and the anisotropy
of curvature. Curvature orientations are coded in color whereas the anisotropy is displayed as
the intensity of the color (dark means isotropic curvature). The ground truth information (c) is
compared to the initial detected curvature (a) (no grouping/feedback) and to the refined model
output (b) after 10 cycles of grouping and feedback. We can see that especially in areas where
the ground truth image shows isotropic curvatures the feedback helps to reduce orientation errors
and to stress the anisotropy signal.

2.3.2 Evaluation of principal curvature orientations and anisotropy

In Fig. 2.10 we show the orientation error depending on the actual level of curvature
anisotropy. The results demonstrate that for isotropic curvature conditions the orientation
error is significantly higher than for the anisotropic curvature conditions. We further
illustrate the initial estimates of curvature directions and surface anisotropy (without
feedback and grouping) for different Gabor sizes in Fig. 2.13. It is clearly visible that
small Gabor filters, tuned to high frequency components lead to better results than Gabor
filters of larger scale. We also demonstrate qualitatively (Fig. 2.13) and quantitatively
(Fig. 2.11b) that the orientation error increases as we enlarge the size of the Gabor filters.
As a consequence of this, we use small sized Gabor filters (σ = 0.9) for all subsequent
simulations.

In Fig. 2.12, we show the curvature directions / anisotropy of curvature initially de-
tected by the model and after 10 time steps of grouping and feedback. The initial output
qualitatively matches the ground truth except for some noise in areas where the surface
curvature is isotropic. Fig. 2.12 shows that the process of directional grouping and re-
current feedback removes noise in these areas and enhances the anisotropy signal. To
corroborate this, in Fig. 2.11a we show quantitatively that the orientation error decreases
significantly over several steps of iterative feedback and converges after 10 iterations.

In Fig. 2.14, we show the extracted sketch from the input image for different grouping
filter ratios. As the elongation ratio of the Gabor filters (grouping stage) increases, more
and more collinear features are enhanced and grouped together. By subsequently applying
these grouping filters within the recurrent feedback cycle, smoothly connected object

a specific coordinate in latitude/longitude space. In other words, the reflection map is simply used as a
lookup table in the rendering process.
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Figure 2.13: Initial detected minimal curvature orientation and anisotropy of curvature for dif-
ferent sizes of the initial Gabor filter stage. In (a) we employed small Gabor filters (4 pixels
/cycle), (b) shows results for medium sized Gabor filters (8 pixels/cycle), and (c) shows results
for large sized Gabor filters (16 pixels/cycle). We can see clearly, that as the size of the Gabor
filter increases we loose more and more detail information. For an explanation of the color code
see Fig. 2.12.

structures, such as curvature ridge lines and self-occlusions, are enhanced and completed
over time (principle of good continuation).

Fig. 2.15 shows that the quality of the sketch depends on the combination of the
two parameters α and µ. The strength of the initial normalization step is controlled by
parameter µ and the strength of the feedback signal is controlled by parameter α. In
Fig. 2.16 and Fig. 2.17 we employed two different objects rendered under four different
surrounding scenes as input for the model. Model simulations show that the extracted
sketch images produced from a given shape under different environmental scenes exhibit
only marginal differences. Fig. 2.16 therefore gives a very powerful impression that the
produced sketch is independent of the surrounding scene. Additional results are also
shown in Fig. 2.18.

To demonstrate the performance of the model with images of real world objects, we
have also produced sketches from photographs of a kettle and a tap (see Fig, 2.19).

2.4 Discussion

We have shown that by making some simple measurements on the image of a mirrored
object it is possible to estimate surface curvature properties accurately and reliably. We
have shown that these measurements can be performed by extracting and interpreting
population codes using simple orientation-selective linear filters. We improved these ini-
tial measurements by collinear grouping of perceptually relevant features, which mainly
occurs at locations where the surface anisotropy is high. We have shown that recurrent
combination of contextual features substantially enhances the quality of the estimates.
In addition, it is possible to extract a sketch-like representation from the input image,
which is nearly invariant to the surrounding scene. The iterative grouping stage has the
effect that isolated errors and noise are reduced in the curvature estimates and that the
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Figure 2.14: Sketch output of the model for different grouping filter elongation ratios. We used
elongated Gabor filters with a ratio σ1 : σ2 = 2,4 and 6 (filter shapes are illustrated scaled
uniformly by a factor 3). We show the initial model output (without feedback) (first row) and
the output after 10 iterations (second row) for each filter configuration. A low elongation ratio
(resulting in a short-range grouping filter) produces a rather noisy initial output whereas a
medium or high filter ratio produces more clear and smooth results. Note that even for short-
range grouping filters the feedback helps to improve the signal by closing discontinuities between
collinear features.
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Figure 2.15: This figure shows sketch results after 10 iterations of feedback for different param-
eterizations of α and µ where α adjusts the influence of the feedback signal and µ adjusts the
strength of the initial normalization step. The figure illustrates that both parameters have to
be chosen carefully in order to receive good looking sketch results. In cases where α is very low
the feedback signal has less influence, thus the resulting sketch shows insufficient detail. In cases
where α (feedback contribution) is high in combination with a low µ (normalization) this leads
to an overemphasized sketch result. If not mentioned otherwise we used α = 100 and µ = 100
for model simulations.
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Figure 2.16: Input images rendered with 4 different environmental scenes (first row). The spec-
ular objects are rendered with the ‘Eucalyptus Grove’ scene (a) the ‘St Peters Basilica’ (b) the
‘Galileo’s Tomb’ (c) and the ‘Overcast Breezeway’ (d). The reflection maps are taken from [De-
bevec et al., 2000]. For each different scene we show the sketch output of the model after 10
cycles of feedback (second row). We can see that although the input images look quite different,
the sketch output looks very similar in all four cases.

Figure 2.17: We show another mirrored object rendered under four different environmental
scenes: (a) ‘Eucalyptus Grove’, (b) ‘St Peters Basilica’ (c) ‘Galileo’s Tomb’, and (d) ‘Overcast
Breezeway’. Model parameters are the same as used in Fig. 2.16. The figure illustrates that the
resulting sketches look very similar even though environmental scenes do not perfectly obey the
assumption of isotropic scene statistics.
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Figure 2.18: Model output for two different objects (rendered with the ’Eucalyptus Grove’ scene
and parameters (α = 10, µ = 10)). We show the estimated minimal curvature orientations in
combination with the anisotropy of curvature after 10 iterations of feedback (c)+(d) in compar-
ison to the ground-truth image images (a)+(b). We also show the sketch computed from each
object (e)+(f).
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Figure 2.19: The figure shows sketch results from images of real world scenes containing shiny
surfaces. Here we demonstrate that the model also performs well on images taken from real
world scenes. Note that overall the mirrored kettle has relatively isotropic curvature properties,
and thus the model tends to produce patterns that depend on the environmental scene.
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extracted sketch becomes more distinct.
The model dynamics were developed in the context of contour perception by [Neumann

and Sepp, 1999]. We bring together and further extend previous proposals on perceptual
grouping of surface features [Grossberg and Mingolla, 1985] with recent proposals of hu-
man shape perception of specular surfaces [Fleming et al., 2004]. Our model employs
simple biologically motivated mechanisms as it is well known that primary visual cortex
contains cells that are tuned to different image orientations [Hubel and Wiesel, 1968].

It is important to note that our model output can only provide constraints on 3D shape,
rather than a complete estimate of the shape model. Orientation fields are inherently
ambiguous. For example, convex and concave surface patches cannot be distinguished
locally. However, human vision almost certainly applies additional constraints to resolve
these ambiguities, e.g. by enforcing boundary conditions based on occluding contours
[Koenderink, 1984], or by enforcing global constraints, such as smoothness.

Our model naturally extracts object structures such as smooth occlusion contours
and curvature ridge lines. These features have been described by [Todd, 2004] as typical
features of line drawing showing 3D objects. Indeed, the fact that image orientations
tend to align with these shape features may provide an explanation of why artists choose
to depict these features in particular. Our simulations also demonstrate that the model
sketch can be used as an abstract representation of the 3D object, invariant to the reflected
scene (Fig. 2.16). The sketch tends to emphasize regions of high curvature. Previous work
on the perception of 2D shape, has suggested that high curvature regions are the most
informative locations on a 2D curve [Attneave, 1954; Feldman and Singh, 2005].

Previous work on 3D shape visualization has suggested the utility of aligning texture
with the intrinsic principal directions of the surface [Interrante and Kim, 2001; Interrante
et al., 2002; Kim et al., 2003]. Here, we suggest that the principal directions defined in
view-centered coordinates may also be useful for conveying surface shape. Note that areas
of high curvature tend to bear patterns of high spatial frequency, because this is where
the reflection is most compressed. By emphasizing fine structures the extracted sketch
also looks subjectively like a charcoal drawing.

2.4.1 Limitations of the model

Although our model behaves well for most objects and surrounding scenes there are of
course some special cases where the model fails to provide accurate estimates. As men-
tioned earlier, our model implicitly assumes the surrounding scene is isotropic. If we
infringe this assumption which we tacitly do when we use real-world scenes, this leads
to errors in our curvature measures and also in the sketch generation (see Fig. 2.20). It
has been shown by Fleming, Torralba & Adelson, [Fleming et al., 2009] that this is no
problem as long as the surface anisotropy is strong enough to overcome the anisotropies
in the surrounding scene. However, when the surface is locally isotropic, such as in the
central region of a sphere, the orientation measurements are dominated by the contours
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Figure 2.20: (a) and (b) show an object mirrored with an artificial scene that consists of vertical
stripes (a) and horizontal stripes (b). This artificial environment represents a very unnatural
scene with purely anisotropic scene statistics (which strongly infringes the assumption of an
isotropic scene). Hence, the resulting sketches in (c) and (d) look very different from one another.
Despite this, it is observable that on highly curved areas on the surface (curvature ridges) both
sketches show similar striped patterns. (e) and (f) show a sphere illuminated with the ‘Eucalyptus
Grove’ scene (e) and the ‘Galileo’s Tomb’ scene (f) from [Debevec et al., 2000]. Apart from the
outer rim, a sphere has roughly isotropic curvature properties. Thus, the sketches in (g) and (h)
show rather different orientation patterns, which are not invariant to the surrounding scene.

of the objects in the surrounding scene. Nevertheless, even weak curvature anisotropy
biases the texture distortion towards the direction of minimal surface curvature. Further-
more, on complex smoothly curved surfaces, these isotropic conditions appear relatively
rarely, generally only at singular points (in the center of humps or dimples) or along lines
of inflection points of curvature (where one curvature component changes its sign). As-
suming ordinary real world scenes, the reflections on such areas are not characterized by
smoothly curved streaks but rather by a noisy orientation field. Consequently we designed
our model to weaken such areas by introducing the grouping component in combination
with the recurrent feedback signal.

2.4.2 Generalization of the model

Most objects in our environment do not have a perfectly specular surface. Indeed, this
type of surface reflectance property where incoming light is only reflecting in one single
direction is quite unusual. Most materials scatter light in many directions, leading to a
continuous shading pattern on the surface. However, [Fleming et al., 2004] showed that
orientation fields also remain somewhat stable across changes in material. In future work,
we intend to extend our model to deal also with rough or diffuse materials like brushed
aluminum or chalk. Our model could also be extended to interpret specular highlights
which they have the same characteristics as perfectly specular reflections except that they
appear only at isolated locations.
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In summary, we have shown a novel architecture of shape processing from specular
objects that combines orientation selective filtering [Fleming et al., 2004] with recent
proposals on perceptual grouping and feedback processing [Neumann and Sepp, 1999].
Our model can be used to reliably extract the principal curvature directions of smoothly
curved specular surface and to generate a non-photorealistic sketch which is invariant to
the surrounding scene.
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Chapter 3

Extraction of Surface-related Features

3.1 Introduction

Our visual system structures the visual world into surfaces that, if required, we recognize
as familiar objects. A fundamental task of vision therefore is to find the boundary contours
separating the regions corresponding to surfaces or objects. As our retina captures only
a 2D projection of the 3D world, mutual occlusions are a natural consequence which can
be interpreted by the visual system as a cue to relative depth. A vivid demonstration of
surface-based depth perception is given by a painting of a professional artist who tries to
depict a scene where the visual system generates surface segmentations in the presence of
multiple occlusions (Fig. 3.1). However, it remains unclear what particular features are
used by the visual system to detect occlusions and whether this information is derived
locally or from more global criteria. Some recent evidence [Rubin, 2001b; Nakayama
et al., 1995; McDermott and Adelson, 2004] suggests that the human visual system might
use surface-related features that are specific contour junctions that have a surface-based
relevance in scene interpretation.

In this chapter, we propose a neural model that suggests how surface-related features
can be extracted from a 2D luminance image. The approach is based on contour grouping
mechanisms found in visual cortical areas V1 and V2. Our computational model com-
prises the extraction of oriented contrasts which are subsequently integrated by short-
and long-range grouping mechanisms to generate disambiguated and stabilized boundary
representations. We argue that the mutual interactions realized by lateral interactions
and recurrent feedback between the cortical areas considered stabilize the representation
of fragments of outlines and group them together. Moreover, we demonstrate that the
model is able to signal and complete illusory contours over a few time-steps. Illusory
contours are a form of visual illusion where contours are perceived without a luminance
or color change across the contour. Such illusory contours can be induced by partially
occluded surfaces where the contour of the occluded object is perceptually completed
(amodal completion) or where the occluding object has the same luminance than parts
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Figure 3.1: (A) Painting of a professional artist [Marrara, M., 2002, reproduction with permission
from the artist] that leads to the perception of different depths induced by occlusion and color
cues. Notice how hidden surface parts are perceptually completed by the human visual system
in order to segregate surfaces apart from each other. Surfaces can also be associated with (parts
of) objects in scenes depicted by trees and clouds in (B). A human observer could use local cues
such as T-junctions (red) formed by the boundary contour of surface parts to detect surface
occlusions and hence to infer depth from monocular scenes.

of the occluded background (modal completion). Illusory contours play a significant role
in the perceptual interpretation of junction features. For instance, it was suggested by
Rubin [Rubin, 2001b] that the perception of occlusion-based junctions (T-junctions) can
be induced by L-junctions in combination with the presence of illusory contours.

Consistently, in our model junction signals are read out from completed boundary
groupings which are interpreted as intermediate-level representations that allow for the
correct perceptual interpretation of junctions, namely L-junctions features can be percep-
tually interpreted as T-junctions. This is unlike previous approaches which are based on
purely feature-based junction detection schemes [Harris and Stephens, 1988; Smith and
Brady, 1997].

Taken together, our proposed model suggests how surface-based features could be
extracted and perceptually interpreted by the visual system. At the same time, this
leads to improved robustness and clearness of surface-based feature representations and
hence to an improved performance of extracted junction signals compared to standard
computer vision corner detection schemes. Based on these perceptual representations,
surface-related junctions are made explicit such that they could be interpreted to interact
as to generate surface-segmentations in static or temporally varying images.

3.2 Model

In this section we give a short overview of the proposed model and its components. Our
model focuses on the early processing stages of form processing in primate visual cortex,
namely cortical areas V1 and V2, and incorporates hierarchical feedforward processing
as well as top-down feedback connections to consider the signal flow along the reverse
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hierarchy processing [Ahissar and Hochstein, 2002]. An overview of the model architecture
is depicted in Fig. 3.2.

3.2.1 Overview of the model architecture

The model has been structured into three main components. The first component com-
prises initial feedforward processing. The monochromatic input image is processed by a
cascade of different pools of model cells in V1, specifically simple, complex, end-stop, and
bipole cells. Each cell population consists of cells that are tuned to different orientation
selectivity. This is consistent with the representation of orientation selective cells found
in V1 which are arranged in hypercolumns [Hubel and Wiesel, 1968]. Our model cell
types are responsive for specific local image structures, i.e., simple and complex cells are
sensitive to oriented contrast represented by edges or bar elements, end-stop cells respond
best to contour terminations that occur, e.g., at line ends or corners, and bipole cells are
sensitive for collinear arrangements of contour fragments with similar orientation. Model
area V2 receives forward projections from V1 bipole cells and V1 end-stop cells. These
signals are then integrated by long-range V2 bipole cells which have a larger extent than
bipole cells in model V1. Bipole cells in V2 respond to luminance contrasts as well as to
illusory contours, thus resembling functional properties of contour neurons in V2. This
finding suggests that orientation selective mechanisms for contour integration in area V2
do not simply represent a scaled version of V1 mechanisms for lateral contrast integration.
Their capability to integrate activities to bridge gaps and generate illusory contours makes
an important step towards surface boundary segregation while V1 contrast integration is
selective to stimulus feature processing.

The second model component comprises recurrent feedback processing between model
areas V1 and V2. Neurons in V1 are also responsive to more global arrangements of
the scene [Lamme and Rolfsemma, 2000]. These response properties possibly arise from
recurrent processing and lateral connections from pyramidal neurons [Hupé et al., 1998].
Whereas feedforward connections have mainly driving character, feedback connections
are predominantly modulatory in their effects [Hupé et al., 2001]. There is evidence that
feedback originating in higher level visual areas such as V2, V4, IT or MT, from cells with
bigger receptive fields and more complex response properties can manipulate and shape
V1 responses, accounting for contextual or extra-classical receptive field effects [Hirsch
and Gibert, 1991; Salin and Bullier, 1995; Sillito et al., 2006].

We account for these findings by incorporating a recurrent interaction mechanism
between model areas V1 and V2. In our model, activity in V2 serves as top-down feedback
signal to iteratively improve initial feedforward activity in V1. The feedback signals that
are delivered by descending cortical pathways multiplicatively enhance initial activities at
earlier processing stages. Importantly, this type of feedback is not capable of generating
new activity at positions with zero initial activity which could lead to an uncontrolled
behavior of the overall system’s functionality. Feedback can only modulate activity that is
already present at V1 [Hupé et al., 1998]. We shall demonstrate in our results that multiple
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Figure 3.2: Overview of the core model architecture. The model consists of several stages that
were designed to resemble properties of cells found in the early primate visual cortex. Visual input
is processed by the hierarchy of different stages from visual area V1 to V2 and vice versa, that is
feedforward and feedback. To enhance and complete initial contour signals, recurrent interactions
between those two areas are performed iteratively until activities at all stages converge to a stable
state. The converged activities can then be read-out from distributed representations to obtain
specific maps that signal perceptually important image structures such as completed contours
and different types of junction configurations. Such mid-level features provide important cues
for occlusion detection or detection of transparencies. In addition, these mid-level features can
also play a role in tasks such as border-ownership assignment which perhaps take place in higher
visual areas such as V4 or IT.

48



Extraction of Surface-related Features

iterations of feedforward-feedback processing between model areas V1 and V2 lead to
clearly more consistent and stable results compared to purely feedforward processing
schemes.

The third component of the model comprises the extraction or read-out of scene rel-
evant information that is provided by different pools of cells within the two model areas
V1 and V2. Fig. 3.2 presents an overview of the different types of mid-level features that
can be extracted from the distributed representation of cell responses. This includes the
extraction of several maps that signal contours, illusory contours, and key points char-
acterized by different junction configurations. It has been stressed by several authors
that specific junction configurations like T- or X-junctions provide important cues for
the discovery of occlusions or transparency [Rubin, 2001b] in the context of surface seg-
mentation. Therefore, we suggest that the visual system uses specialized mechanisms to
read out separate maps for such configurations. It is important to note that our model is
not only a simple key point detector. In fact, our model additionally provides structural
information about key points represented by activities of model cell pools located at the
key point.

3.2.2 Detailed description of model components

In this section, we explain the individual model parts in more detail. For a precise
mathematical description of the model and its different processing stages the reader is
referred to appendix S1. The detailed model architecture is illustrated in Fig. 3.3.

Model area V1

The initial feedforward stage represents early visual mechanisms in area V1 and V2 of
the primate visual cortex. We do not simulate processing at earlier stages of the visual
pathway such as LGN or the retina since this would not considerably influence our results.

In our model, a first step is to simulate pools of cells that encode at each position of
the input image oriented luminance contrasts which are represented by V1 simple cells
in the primary visual cortex [Hubel and Wiesel, 1968]. Each model cell represents the
average responses (or firing-rate) of groups of neurons with similar response properties.
We simulate two different types of simple cells with even and odd symmetrical recep-
tive field (RF) properties. These orientation selective cells respond best to oriented line
segments or edges, respectively. Simple cells are also selective to contrast polarity, such
that they signal light and dark bars as well as light-dark and dark-light transitions. We
do not, however, keep this information separate but combine this information to yield a
representation of the local contrast energy, which is invariant against the sign of contrast.
This is motivated by the fact that the model tries to explain computational stages to form
unsigned boundaries, and thus should be invariant to contrast polarity [Grossberg and
Mingolla, 1985]. In addition, such a convergence of activity coheres with current mod-
els of hierarchical feedforward processing of binocular input of disparity sensitive cells in
primary visual cortex [Ponce and Born, 2008].
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Figure 3.3: Detailed model architecture. Our model simulates cells of two areas in the visual
cortex, visual areas V1 and V2. Each model (sub-) area is designed with respect to a basic
building block scheme (right). The scheme consists of three subsequent steps, namely filtering,
modulation and center-surround inhibition. This scheme is applied three times in our model
architecture (left), corresponding to upper and lower area V1 and area V2. In this model,
modulatory input (provided by feedback from area V2) is only used in lower area V1. Otherwise
the default modulatory input is set to 1 (which leaves the signal unchanged). The lower part of
area V1 is model led by simple and complex cells for initial contrast extraction. Note, that each
cell pool consists of 12 oriented filters equally distributed between 0° and 180°. The upper part
of V1 is model led by end-stop and bipole cells which both receive input from lower V1. The
additively combined signals are further passed to area V2 where long-range lateral connections
are model led by V2 bipole cells. Note, that “•” stands for a multiplicative connection of filter
sub-fields as employed in V2 whereas “o” stands for an additive connection as employed in V1.
Finally output of area V2 is used as feedback signal which closes the recurrent loop between
areas V1 and V2.
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V1 complex cells pool activity of two equally oriented V1 simple cells of opposite
polarity. Thus, complex cell activity is invariant to contrast polarity which resembles
response properties of real complex cells. The output signals of model complex cells
subsequently undergo a center-surround inhibition that is realized by a lateral divisive
inhibition mechanism. In the literature, this divisive type of lateral inhibition is also
termed shunting inhibition [Sperling, 1970]. This mechanism leads to a competition of cell
activities within a neighborhood that is defined over the spatial and orientation domain.
High activity of multiple orientations leads to a suppression of overall cell activity whereas
activity in a single orientation channel leaves cell activity relatively unchanged. As a
consequence, responses in areas with undirected structure such as textured or noisy areas
are weakened by this operation. On the other hand, responses in areas with directed
structures, such as edges and lines are strengthened by this operation. Such a stage
of divisive inhibition has been previously proposed to account for non-linear effects in
contrast and motion responses of V1 cells [Heeger, 1992; Caradini and Heeger, 1994;
Tolhurst and Heeger, 1997].

In the next step of the hierarchical processing scheme two different populations of cells
receive forward projections from V1 complex cells. The first population of model cells
resembles long-range lateral connections found in V1 [Gilbert and Wiesel, 1989; Schmidt
et al., 1997]. These long-range connections are modeled by V1 bipole cells which consist
of two additively connected elongated Gaussian sub-fields. The spatial layout of the filter
is similar to the bipole filter as first proposed by [Grossberg and Mingolla, 1985]. The
spatial weighting function is narrowly tuned to the preferred orientation, reflecting the
highly significant anisotropies of long-range fibers in visual cortex [Bosking et al., 1997].
Here, we parameterize the length of a V1 bipole cell about 2 times the size of the RF of
a complex cell.

The second population receiving input from complex cells are V1 end-stop cells. End-
stop cells respond to edges or lines that terminate within their RF. This includes also
corners or junctions where more than one contour ends at the same place. However, at
positions along contours or at X-junction configurations, end-stop cells do not respond.
Such types of cells have been first observed in cat striate cortex [Hubel and Wiesel, 1965].
More recently, evidence for end-stop cell properties of V1 neurons was found in several
physiological studies [DeAngelis et al., 1994; Jones et al., 2001; Sceniak et al., 2001].

In our model, end-stop cells are modeled by an elongated excitatory sub field and
an inhibitory isotropic counterpart [Thielscher and Neumann, 2008]. Our model end-stop
cells are direction sensitive and are therefore modeled for a set of directions between 0 and
360 degrees. Activities of end-stop cells corresponding to opposite directions are additively
combined in order to achieve direction invariance. Finally, at the output of model area
V1 activities from V1 bipole and V1 end-stop cells are merged and normalized by a
center-surround inhibition stage before they are forwarded to model area V2.
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Model area V2

Visual area V2 is the next stage in the hierarchy of processing stages along the ventral
stream. Several physiological studies on macaque monkeys have shown that cells in V2
respond to luminance contrasts as well as to illusory contours [Heitger et al., 1998; von der
Heydt et al., 1984]. In contrast to complex cells in V1 they respond much stronger if the
luminance contrast is continuous, and less if gaps are between inducers, thus resembling
functional properties of contour neurons in V2. Moreover, they respond to moderately
complex patterns such as angle stimuli [Ito and Komatsu, 2004]. However, the precise
functional role of area V2 remains unclear.

In our model, we employ V2 bipole cells with elongated sub-fields which are collinearly
arranged and centered at the reference position. The sub-fields sample the input activa-
tions generated by V1 bipole cells and V1 end-stop cells. Responses of the individual
sub-fields are multiplicatively combined [Neumann and Sepp, 1999] such that the net ef-
fect of the contrast feature integration leads to an AND-gate of the individual sub-field
activations. Thus, activity from both sub-fields of an integration cell is necessary to gen-
erate cell activity. This non-linear connection has the effect that activity can emerge
between two or more like-oriented contour-fragments or line ends at positions where no
initial luminance contrast is present which is indicative for the presence of an illusory
contour.

At the same time, activity of a V2 bipole cell at an isolated contour termination would
be zero as one sub-field does not receive any input. V2 bipole cells are additively combined
with perpendicular oriented V1 end-stop cells. This has the effect that V2 bipole cells
can integrate activity of end-stop cells along line terminations that are linearly arranged,
which leads to the impression of an illusory contour. Such a mechanism of ortho-grouping
has been proposed earlier by Heitger and colleagues [Heitger et al., 1998].

Recurrent V1-V2 feedforward-feedback interaction

In our model, lower area V1 and area V2 interact in two directions, that is feedforward
and feedback. Feedforward interaction is realized by feeding bottom-up input activation
from model V1 to V2 and was described in detail in the last sub-section. On the other
hand, feedback interaction is realized by top-down modulatory feedback connections that
deliver signals from model V2 to V1. The recurrent loop is closed at the feedback re-entry
point in V1 where initial feedforward complex cell responses and V2 bipole cell responses
are multiplicatively combined (Fig. 3.3).

In order to allow feeding input signals to be propagated, even in the case that no
feedback signals exist, the feedback signal is biased by a constant unit value. This bias
introduces an asymmetry for the roles of forward signals and feedback processing. Feed-
forward signals act as drivers of the hierarchical processing scheme, whereas feedback
signals generate an enhancing gain factor which cannot on its own generate any activity
at positions where no initial feeding input responses are present. This realizes a variant of
the no-strong loop hypothesis [Crick and C., 1998] to avoid uncontrolled behavior of the
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overall model dynamics and to limit the amount of inhibition necessary to achieve a stable
network performance. Several physiological studies support the view that, e.g., feedback
from higher visual areas is not capable of driving cells in lower areas, but modulates their
activity [Hupé et al., 1998; Salin and Bullier, 1995].

It is important to mention that modulatory feedback in a recurrent loop only works
correctly in combination with a suitable inhibition mechanism. Otherwise, the feedback
signal would lead to uncontrolled growth of model cell activities. Thus, both mecha-
nisms, the modulatory V2→V1 feedback interaction and the subsequent shunting lateral
inhibition work in combination in order to enhance distributed contour and junction rep-
resentations in model V1 and V2 which mutually support each other considering a larger
spatial context. At the same time, mainly through the action of the divisive inhibition
mechanism, the overall activity in a pool of cells is kept within a maximum bound which
stabilizes the network behavior and prevents the energy from getting too excited. In ad-
dition, those feeding activities that receive no amplification via feedback signals will be
less energetic in the subsequent competition stage. Consequently, their activities will be
finally reduced, which realizes the function of biased competition which has been proposed
in the context of modulation in attention effects [Desimone and J., 1995].

3.2.3 Read-out and interpretation of model activities

From the distributed representation of cell responses in both model areas V1 and V2
several retinotopic maps can be extracted that signal perceptually relevant contour con-
figurations. If not mentioned otherwise, these maps are extracted by computing at each
position the mean activity of all orientation responses. An alternative method for reading
out salience values was suggested by Li [Li, 1999], who choose to extract at each position
the maximum activity over all orientations. In the following, we describe in detail how
saliency maps for specific image structures, namely corners and junctions can be extracted
by combining activities from different model cells pools.

In this paper, we define saliency maps as 2d maps that encode at each position the
likelihood that a specific structure is present. A more broad discussion on the concept of
salience and salience maps can be found in [Zhou et al., 2000]. In Fig. 3.4 the structural
configurations are sketched to present an overview of the output as signaled by the different
orientation sensitive mechanisms of the proposed model. This summary indicates how the
different visual structures of surface shape outlines and their ordinal depth structure might
be selectively encoded neurally through the concert of responses generated by different
(model) cell types.

The conclusions are two-fold. First, it is indicated that the presence of, e.g., a T-
junction (which most often coheres with an opaque surface occlusion[Rubin, 2001b]) is
uniquely indicated by the response pattern of V1 and V2 cells at one spatial location.
The T-junction is represented by an end-stop cell response at the end of the T-stem, V1
bipole cell responses in the orientations of both the T-stem (signaled by one active sub-
field) and the roof, and finally a V2 bipole cell response in the orientation of the roof of
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Figure 3.4: Response properties of different model cell populations for different structural config-
urations together with their most likely interpretation (cue type). Numbers denote the modality
of the response distribution across cell pools located at the position marked with a red dot for
each structure. A bar means that the cell population is not responsive for this structure. Note,
that each structure has a specific neural response profile across different model cell populations
which can be used to extract separate saliency maps. For a better understanding, we sketched
the configuration of filters together with the underlying structure. Remember, that V2 bipole
sub-fields are connected multiplicatively (signaled by a “•”), leading to zero activity of the whole
bipole cell if input from one sub-field is missing (symbolized by red crosses). On the other hand,
V1 bipole sub-fields are additively connected (signal led by a “o”) which has the effect that input
from one sub-field is sufficient to create activity.
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A B

Figure 3.5: Stimuli used in our experiments that show illusory contours effects. In both, the
Kanizsa shape and the five-line Varin shape, observers have the impression of seeing a white
square which is partly formed by illusory contours. There is strong evidence that illusory contours
are induced by horizontally and vertically arrange line-endings (A) or by collinearly arranged
luminance contrasts (B).

the T (representing the occluding boundary). Second, we argue in favor that no explicit
detectors are needed to represent those local 2D structures. Fig. 3.4 indicates that the
explicit representation of different junction types necessitates a rich catalog of cells with
rather specific wiring patterns. Below we propose specific read-out mechanisms in order
to visualize the information we suggest is important for surface-related analysis of the
input structure.

Contours / Illusory contours

Contours are basic image structures which are important for the segmentation of surfaces
by generating a likelihood representation of the locations and orientations of the shape
outline boundaries. Furthermore, contours mark the border between two adjacent surfaces
and play a major role in the process of figure-ground segregation and border-ownership
[Zhou et al., 2000; Zhaoping, 2005; Rubin, 2001a]. In our model, contour saliency is
encoded in the response of V1 bipole cells. The contour saliency map can be extracted
by summing activity of orientation selective bipole cells pools in V1. Illusory contours
are a form of visual illusion where contours are perceived without a luminance change
across the contour. Classical examples are the Kanizsa figure [Kanizsa, 1955] where an
illusory square is induced by four flanking pac-man symbols or the Varin figure [Varin,
1971] where linearly arranged line-ends mark the borders of the illusory square (Fig. 3.5).
There is evidence that illusory contours are represented by V2 neurons [von der Heydt
et al., 1984]. In our model, illusory contours are signaled by activity of V2 bipole cells.

T-junctions

A T-junction is formed when a contour terminates at a differently oriented continuous
contour. T-junctions most often provide local evidence for occlusions as they frequently
occur when a surface contour is occluded by another opaque surface in front. At the
point where the bounding contour of the occluded surface intersects with the bounding
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Figure 3.6: Extraction of junction signals. The figure depicts how local activity from model
cells is combined to obtain specific junction maps. To extract a T-junction signal orientation
specific V2 bipole cell activities are combined pair wise with orientation specific V1 end-stop
cell activities. Pairs of cells that correspond to same orientations are not considered (diagonal
marked with “X”). The combination of cell activities is done multiplicatively such that both cells
have to be active in order to produce a response. This can be represented in a map where each
entry corresponds to a specific T-junction configuration. X-, and L-junction maps are extracted
similarly except that pair wise combination is based on V2 bipole cells (X-junctions) and V1
end-stop cells (L junctions). To summarize, the maps represent information about local image
structure with respect to different junction types. Note, that end-stop cells are only indicated for
one direction in the figure. However, end-stop cell responses of both directions that correspond
to one orientation are additively combined for the extraction of junction maps.

contour of the occluding surface a T-junctions is formed in the image which is dependent
on the position of the viewpoint. It has been suggested by Rubin [Rubin, 2001b] that
T-junctions play a central role in monocular depth perception, surface completion, and
contour matching.

To read-out T-junction signals we multiplicatively combine activities of V2 bipole
cells with V1 end-stop cells. More precisely, we use a pair wise combination of orientation
specific V2 bipole cell activities and orientation specific V1 end-stop cell activities. Pairs of
cells that correspond to same orientations are not considered. The multiplicative operation
realizes an AND-gate, implying that both cell populations have to be active in order to
signal the presence of T-junctions. A saliency map that signals the presence of T-junctions
is then extracted by summing over the orientation domain. In general, this map represents
the priority of the gathered evidence in favor of the particular scene feature.

L-Junctions

L-junctions, also termed V-junctions or corners, are formed by two contour segments which
terminate in the same projected location. We extract corner signals in a similar way than
T-junctions signals. Instead of combining V1 end-stop activities with V2 bipole activities
we multiplicatively combine activities of differently oriented V1 end-stop cells among each
other (Fig. 3.6). A combined orientation invariant corner saliency signal is then extracted
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by integrating over all combinations. Corners are important cues for shape perception
as they mark key points of the boundary contour. Importantly, an L-junction can also
result from two occluding surfaces, assuming that one of the surfaces is partly formed
by illusory contours [Rubin, 2001b]. Under such circumstances, an L-junction feature
would as well suggest for occlusions. We shall show that our model initially detects an
L-junction in this case, but over time when groupings could be established, then these
types turn into perceptual T-junctions (irrespectively whether the boundaries are formed
by physical luminance contrasts or by illusory contours). The perceptual representation
of T-junctions in turn signals the presence of an occluding surface which is consistent
with the impression that human observers report when they are confronted with illusory
figures, such as Kanizsa squares [Kanizsa, 1955].

X-junctions

X-junctions configurations appear at positions where two contours intersect. In scenes
with overlapping surfaces, this pattern is created when an occluding surface has transpar-
ent material properties leading to a visibility of the occluded surface region through the
surface at the occluded surface contour. Therefore, in the transparent occlusion situation,
a T-junction turns into an X-junction. In our model, X-junctions are read-out by multi-
plicatively combining activities of pairs of differently oriented V2 bipole cells (Fig. 3.6).
The saliency map is obtained by summing over the orientation domain. Again, the multi-
plicative connection acts like an AND-gate which extracts only those V2 bipole responses
that have a bimodal activity distribution in the orientation.

Y- and W-junctions

Y- and W-junctions are strong cues for 3D-corners induced by surface intersections of
3D objects which cut in a single location. For instance, a cube produces a Y-junction at
the position where the corners of three visible surfaces meet. The same corner observed
from another viewpoint turns into a W-junction. Notably, in rare cases, such junctions
can be also produced by occluding 2D surfaces when a contour of an occluded surface
meets a shape-based L-junction of an occluding surface. However, this can be seen as
an ‘accidental’ and rather unstable configuration since even small changes in viewpoint
would lead to vanishing of such occlusion-based junctions. Since the perception of 3D
objects is not our primary focus in this thesis, we do not take Y- and W-junctions into
further consideration.

Competition between junction signals

In order to suppress ambiguous activations for more than one junction type at the same
place, junction signals compete with each other through lateral inhibition (Fig. 3.7). If
one junction type is activated the other junction signals in a local neighborhood are weak-
ened. Finally, all junction activities are passed through a non-linear saturation function in
order to have the same range for all activity signals. Note, that although we use a similar
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Figure 3.7: Competition between junction signals. Junction signals can locally compete with
each other to avoid ambiguous signals. In addition, center-surround inhibition helps to suppress
multiple junctions in a small neighborhood which could be induced by fine texture or noise.

inhibition scheme than for the model activities we do not claim that this kind of com-
petition has a biological counterpart. This is just a necessary operation to disambiguate
feature signals and has no biological relevance.

3.3 Results

In this section we present results of the model simulations in order to demonstrate the
computational capabilities of the proposed model. We begin by presenting model re-
sults from the various neural cell pools that are simulated in the model. We also show
how recurrent feedforward-feedback interaction helps to enhance and stabilize the initial
responses of cells. Then we show that various feature maps can be extracted from the dis-
tributed cell activities suggesting that this representation is capable of providing cues that
are perceptually relevant for fundamental visual processes such as occlusion detection.

3.3.1 Robustness to noise

In a first simulation an artificially created image of a noisy square is employed to demon-
strate the robustness of the model against noise perturbations. The image was created
such that the standard deviation of the additive Gaussian noise equals the luminance dif-
ference of the square against the background (so-called 100% noise). Fig. 3.8 shows
that initial complex cell responses are strongly disrupted resulting from the additive
noise pattern. However, recurrent feedforward-feedback iterations lead to a significant
reduction of noise responses and at the same time to a strengthening of contour and
contour-termination signals corresponding to V1 bipole and V1 end-stop cell activities,
respectively. Note that the long-range interaction stage does not lead to activities beyond
contour terminations at the corners of the square which would mistakenly lead to turn

58



Extraction of Surface-related Features

L-junctions into X-junction.

Stimulus (A) V1 bipole cells (C)

V1 complex cells (B) V1 end-stop cells (D)

It 1 It 2 It 4

It 1 It 2 It 4

Figure 3.8: Robustness to noise. A square stimulus that has been corrupted with high ampli-
tude Gaussian noise was used as model input (A). Initial complex cells responses are strongly
influenced by the noise pattern (B). Recurrent feedforward-feedback processing significantly re-
duce activity of noise-induced responses of V1 bipole cells (C) and end-stop cells (D) (illustrated
are responses after 1, 2, and 4 iterations). At the same time, surface contours and corners are
enhanced over time.

3.3.2 Extraction of junction configurations

In a second simulation, we used a noise-free image of four occluding transparent and
opaque squares as input for the model (Fig. 3.9a). The stimulus includes all three types
of junction configurations and is therefore a good example to demonstrate the capabilities
of the model at a glance. Initial feedforward responses from simple and complex cells
shown in Fig. 3.9b and Fig. 3.9c demonstrate that these responses are not invariant to
luminance contrast. Furthermore, they are not robust against noise (Fig. 3.8).

The results described in the following correspond to model activities after four recur-
rent feedforward-feedback cycles where model activities tended to converge to a stable
state. The upper sub-area of model V1 is represented by bipole cells and end-stop cells.
End-stop cells respond at positions where contours meet (e.g. T-, and L-junctions) or at
positions where a contour ends (Fig. 3.4). However, they do not respond at X-junction
configurations as can be observed in Fig 3.9e. Model V1 bipole cells are responsive for
contours. They connect short like-oriented fragments and equalize contrast changes along
the contour. At contour endings their activity is reduced (not shown) since they have
additively connected sub-field (one sub-field is still activated, see Fig. 3.4). The additive
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combination of V1 bipole and perpendicular oriented end-stop cells compensates for the
reduction effect at corners or T-junctions. Fig. 3.9d show that contour activity is not
reduced at corners or T-junctions. The combined bipole end end-stop activities from
model area V1 are further processed by V2 bipole cells which are as well responsive for
contours. However, as a result of their multiplicatively connected sub-field these cells
do not respond at contour endings. Consequently, V2 cell responses are zero at T- and
L-junctions, but not at X-junctions (see Fig. 3.9d and Fig. 3.4).

In Fig. 3.10, T-,L-, and X-junction maps were extracted and visualized based on
converged model activities. In each map, the presence of the specific feature is signaled
by patches of high activity. In order to prevent multiple features to be active at the
same position, all signals undergo a competition stage where multiple signals in a local
neighborhood compete with each other. The output of this stage is presented in Fig. 3.10c
which is a combined map that represents different features, signaled by color. Finally,
from this map, position and type of junctions are extracted by local maximum selection
(Fig. 3.10e).

V1 complex cells (C) V2 bipole cells (E)

End-stop activity (F)V1 bipole + end-stop cells (D)

Stimulus (A)

V1 simple cells (B)

Figure 3.9: Model responses based on artificial input stimulus of overlapping squares. The stimu-
lus (A) includes two different occlusion conditions: two overlapping opaque surfaces that produce
T-junctions and two overlapping transparent surfaces which generate X-junctions. Furthermore,
several L-junctions are visible at the corners of the squares. Model activities are summed over
the orientation domain for all stages of our model. We show initial V1 simple and complex cell
responses (B, C), combined V1 bipole/end-stop cell responses (D), end-stop activity (E), and V2
bipole cell activity (F) after 4 recurrent feedforward-feedback cycles. For clarification, the labels
(A)-(F) correspond also to labels (A)-(F) in Fig. 3.3. Note that end-stop cells do not respond to
X-junction configurations and that V2 bipole cells do not respond at L-junctions (cp. Table 1).
Note also, that responses in (D)-(F) are invariant against image contrast.
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T - junction map (A) L - junction map (C)

X – junction map (D)Likelihood feature map (B) Detected corners (F)

Figure 3.10: Saliency maps for different junction types. The junction maps (A), (B), and (D)
were extracted from model activities presented in Fig. 3.9. Bright regions indicate positions where
the ensemble of model activities suggests for the presence of the respective junction type (L-,
T-, X-junction). A combined feature likelihood map(C) incorporates all features, color coded.
Blue signals the presence of X-junctions, red signals T-junctions and green signals the presence
of L-junctions. Moreover, position and type of detected features is visualized in (E) (based on
maximum likelihood selection).

3.3.3 Processing of illusory contours

In a third simulation, we show the capabilities of the model to uncover illusory con-
tours in scenes. As input we used two different versions of the Kanizsa square [Kanizsa,
1955](Fig. 3.5). The first image leads to the impression of an illusory square where the
corners occlude black circles. The second image gives the impression of a white square in
front of concentric circles. In both cases, only parts of the square are formed by luminance
contrast. However, human observers mentally see the square as a coherent object. Our
model results demonstrate that the invisible contour parts are uncovered by V2 bipole cell
responses. Moreover, we show that subsequent recurrent feedforward-feedback cycles help
to close large gaps between like-oriented contour elements or along linearly arrange con-
tour endings (Fig. 3.11, Fig. 3.12). Importantly, this has a strong influence on the junction
type that is signaled by the model responses. In Fig. 3.11, initial model responses suggest
for L-junctions, which is in accordance with the physical luminance contrasts. But, after
some recurrent iterations, V2 bipole cells close the gaps between contour elements which
leads to a different, more global interpretation: the L-junctions along the illusory contour
turn into T-junctions. The emergence of T-junctions in turn supports the perceptual in-
terpretation of occlusions. A similar effect can be observed in Fig. 3.12 where line endings
initially produce no junction signals. After a few feedforward-feedback cycles, however,
the emerging illusory contour responses of V2 bipole cells lead to T-junction signals along
the contour.
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Figure 3.11: Recurrent processing of illusory contours. A Kanizsa figure is used as input for the
model. V2 bipole cell activities and T-/L-junction signals are illustrated initially (no recurrent
processing), after one recurrent cycle and after 3 recurrent cycles. The combined feature map
show individual likelihoods co lour coded. Local maxima of the feature map are used to detect
junction positions. Illusory contours are signal led by V2 bipole cell activities and are completed
over time. Note, that as a result of the completion process of illusory contours, L-junctions
signals turn into T-junction signals over time.
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T-junction map

V2 bipole activity

It. 1 It. 2 It. 4

It. 1 It. 2 It. 4

Likelihood feature map

Detected features 

Figure 3.12: Recurrent processing of illusory contours formed by line ends. An alternative version
of the Kanizsa figure is used where line ends lead to the impression of an illusory white square.
Model responses are visualized according to Fig. 3.8. Note, that illusory contours signal led by
V2 bipole responses develop over time. Note also, that over time this leads to the development
of T-junction signals (red) which suggest for the presence of an occluding surface.

3.3.4 Processing of real-world data

In order to examine how the model performs for real-world camera images we used an
image taken from a desk scene where several papers and a transparent foil are arranged
such that they partly occlude each other (Fig. 3.13). Model activities and the extracted
feature map demonstrate that the model is also capable of dealing with real-world images.
Note, that one of the papers has a very low contrast ratio with respect to the background.
Nevertheless, the model performs excellent in finding the contour and the respective junc-
tions. This also underlines that the model is invariant to contrast changes and thus also
stable against changes of illumination conditions.

3.3.5 Quantitative evaluation and comparison

In this section, we evaluate our model by comparing our recurrent junction detection
scheme with results obtained by simply switching the recurrent feedback cycle off, which
reduces the model to an ordinary feedforward model. Moreover, we compare our results to
a standard computer vision corner detection scheme based on the Harris corner detector
[Harris and Stephens, 1988]. In a comparative study of different corner detection schemes,
the Harris corner detector provides the best results among five corner detectors [Schmid
et al., 2000]. As input for our comparison, we use corner test image adapted from Smith
and Brady [Smith and Brady, 1997] that poses several challenges such as, e.g., low contrast
regions, smooth luminance gradients, or obtuse and acute angles. Moreover, all types
of junctions (L, T and X) considered are represented in the test image together with
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V1 bipole + end-stop cells V2 bipole cells

Likelihood feature map
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Figure 3.13: Processing of real-world input image. Model activities of V1 and V2 cell pool (right,
first row) resulting from a real-world scene image that includes occluding opaque and transparent
surfaces (left). A feature map was extracted from model activities, revealing position and type
(color coded) of detected junction configurations (right, second row).

information about their exact position (ground truth information). Since the Harris corner
detector is not able to discriminate between different junction types, our comparison is
only based on the detection performance, irrespective of the junction category. To measure
the performance of the different schemes we use receiver operator characteristic (ROC)
curves. This method is frequently used to evaluate true positive rate or hit rate and the
false positive rate of a binary classifier system as its discrimination threshold is varied.
Here, we use the junction feature map as input for the ROC analysis. Fig. 3.14 shows the
resulting ROC curves extracted from junction feature map given the test image as input.
It is clearly visible that the ROC curve computed from the recurrent model responses lies
well above the Harris corner detector curve and the initial feedforward model curve. This
suggest for a significantly better detection performance of our recurrent model compared
to feedforward processing-based junction detection schemes.

3.3.6 Simulations with dynamic input stimuli

We particularly designed this experiment to demonstrate a model prediction, namely,
that feedback leads to a brief persistence of object and material appearance. This is
usually unnoticed when the scene does not change at all. If, however, appearances of
surface material change during recurrent interaction (while keeping the shape registered)
the apparent surface property should stay more prolonged depending on whether it is
transparent and changes into opaque or whether it is opaque and smoothly changes into
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Figure 3.14: Evaluation of extracted junction signals on synthetic test image. A synthetic
test image (A) reproduced from Smith and Brady (1997) was used to evaluate and compare
extracted junction signals against a computational scheme (structure tensor) for corner detection
proposed by Harris and Stephens (1988). The extracted junction saliency is visualized in a feature
likelihood map (B) and detected junction positions/types are superimposed on input image (C).
ROC curves are computed from structure tensor results (dashed), initial model responses (dotted)
and from converged model responses after 4 recurrent cycles (solid) (D). Abscissa denotes the
false alarm rate, and the ordinate denotes the hit rate. Note, that for better visibility the abscissa
has been scaled to [0, 0.1].
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transparent. Due to the action of modulatory feedback activation the registered boundary
and junction activations continue to enhance the configuration signaled from previous
input features for a short period of time. This appearance history (or memory in the
processing architecture) is known as hysteresis effect. Here, we used temporal sequences
of two occluding squares where the opacity of the topmost square was linearly altered
between 100% opacity and 90% opacity, thus making the occluded region increasingly
more visible (invisible). The input sequence consists of 10 frames static input (opaque)
followed by 10 frames linear change from 100 % to 90% opacity followed by 10 frames
static input (transparent, 90% opacity). The sequence was presented as described above
(opaque-transparent) and in reverse temporal order (transparent-opaque). To investigate
the hysteresis effect of feedback we presented both sequences to the full model (with
feedback connection enabled) and to a restricted version of the model with feedback
connections disabled. In the full model, feedback processing time is equal to stimulus
presentation time, i.e., one feedback cycle is performed per stimulus time frame. In the
restricted model, we switch all feedback connection off which constrains the model to
perform only feedforward processing.

Throughout the simulation, model activities indicating T- and X- junctions are ex-
tracted at positions where occluding contours of both squares intersect each other (Fig. 3.15).
The results generated by the full model show that feedback leads to a sequence direc-
tional hysteresis effect by temporally locking the prediction of a junction type (T- or
X-junction). Moreover, initial ambiguities induced by predictions for different junction
types are resolved by top-down feedback during the first few iterations. In contrast, when
the model is restricted to feedforward processing no hysteresis effect can be observed,
i.e., the model activities are equal for both input sequences, namely opaque-transparent
and transparent-opaque transitions. Furthermore, no disambiguation between different
junction type predictions takes place.

3.4 Discussion

In this section we begin by summarizing our main findings. Then, we compare our model
with other proposed models that are related to our work. Moreover, we show that all core
mechanisms employed in our model are biological plausible. We also discuss how junction
signals that are extracted from our neural representation could be used by other cortical
areas to solve visual tasks such as depth ordering, figure-ground segregation or motion
correspondence finding. Finally, we briefly discuss some examples where our model fails
to produce accurate results.

3.4.1 Summary of findings

We presented a recurrent model of V1-V2 contour processing utilizing long-range inter-
actions in combination with short-range lateral inhibition which as been adapted from
[Neumann and Sepp, 1999]. We have shown quantitatively and qualitatively that recur-
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Figure 3.15: Hysteresis effect induced by feedback. The figure illustrates T- and X-junction
activities extracted from the model based on temporal input sequences of two occluding squares
where the topmost square changes material appearance from opaque (100% opacity) to trans-
parent (90% opacity) (blue lines) over time. Furthermore the sequence was presented in reverse
temporal order leading to a change of material appearance back from transparent to opaque
(red lines). Activities were extracted at positions indicated by the red dot on the stimulus. Il-
lustrated are results based on model simulations with feedback (top row) and without feedback
connections (bottom row). Gray shaded areas indicate periods where stimulus properties linearly
change. The results demonstrate that feedback leads to a hysteresis effect by temporary locking
the prediction for a junction type (T- or X-junction). Without feedback the hysteresis effect
disappears and both input sequences produce exactly the same results (only red curve is visi-
ble). Furthermore, the results demonstrate that feedback helps to disambiguate initial junction
signals by amplifying the most likely prediction and suppressing weak predictions over the first
few iterations.
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rent combination of contextual features substantially enhances the initial estimates of
local contrast. We have also shown that the model V2 cells are capable of generating
illusory contour groupings which strongly influence the interpretation of different junc-
tion type estimates of local contrast. In addition, we demonstrated that cell activities
represented in both model areas can be combined and extracted to robustly signal three
different sorts of junctions (L-,T-, and X-junctions). These junctions provide important
cues for fundamental visual processes such as surface completion and figure-ground seg-
regation [Rubin, 2001b,a; Koffka, 1935]. Furthermore, our model predicts a hysteresis
effect between opaque-transparent and transparent-opaque transitions which could be ex-
perimentally validated in a psychophysical experiment. Finally, we have demonstrated in
a quantitative analysis that our model responses outperform a state-of-the-art computer
vision corner detection scheme.

3.4.2 Related work

A number of different models have been proposed for contour integration. A comprehen-
sive review can be found in [Shipley and Kellman, 1990]. Our contour integration model
which utilizes interaction of feedforward and feedback, in particular modulatory feedback,
has been applied successfully to a number of different tasks of visual processing such as
optical flow estimation [Bayerl and Neumann, 2004], texture processing [Thielscher and
Neumann, 2005], selective attention [Hamker, 2005], cortico-thalamic enhancement [Gove
et al., 1995], and linking synchronization [Eckhorn et al., 1990].

One of the first computational models in the context of contour grouping that incorpo-
rate principles of long-range interactions and interlaminar recurrent processing has been
proposed by Grossberg and colleagues [Grossberg and Mingolla, 1985] by introducing the
Boundary Contour System (BCS). A more recent version of the BCS focuses more on the
intercortical processing between areas V1 and V2 [Ross, 2000]. Grossberg and coworkers
propose that V2 is mainly a slightly modified version of V1 operating at a coarser scale.
Thus, they suggest that both areas, V1 and V2 share the same functional properties.
Unlike them, we argue that V1 and V2 have different functional roles, e.g., corner selec-
tive cells occur in V1, bipole cells responding to illusory contours occur in V2. A more
fundamental difference in the model of Grossberg and colleagues is that they use additive
feedback connections with the effect that new activity can be generated in model area V1
at positions where initial bottom-up signals are zero. To compensate for this, they have
to incorporate thresholds which lead to more complex balancing processes.

However, we use modulatory feedback connections, which implies that initial bottom-
up activity is required to generate activity. Thus, in our model, illusory contours char-
acterized by zero luminance contrast can only be signaled in V2, but not in V1. This is
consistent with electrophysical studies of Peterhans and von der Heydt [Peterhans and
Heydt, 1989] who concluded that illusory contour cells are virtually absent in V1. Con-
currently, there is strong evidence for illusory contour selective cells in V2 [von der Heydt
et al., 1984]. A recurrent model of V1-V2 interactions based on modulatory feedback was
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first proposed by Neumann and Sepp [Neumann and Sepp, 1999]. Mundhenk and Itti
[Mundhenk and Itti, 2003] presented a multi-scale model for contour integration that is
motivated by mechanisms in early visual cortex (V1). Similar to our model, the authors
try to extract saliency values from contour representations. Individual contour saliency
maps from different scales are combined by weighted averaging. Differences to our model
are that they do no incorporate feedback mechanisms and that they do not consider
illusory contour extraction as they do not model V2 neurons.

Interestingly, only few computational models of contour grouping address the compu-
tation and representation of corners and junctions. The model proposed by Heitger et al.
[Heitger et al., 1998] is closely related to our model because they use several elements that
we incorporated into our model (e.g. complex cells, end-stop and bipole operators). A
key element of their model is the concept of ortho- and para-grouping to generate illusory
contour representations. Ortho grouping applies to terminations of the background, which
tend to be orthogonal to the occluding contour. Para grouping applies to discontinuities
of the foreground and is used to interpolate the contour in the direction of termination.
However, a major shortcoming of their model is that it relies on a purely feedforward
scheme which would presumably produce erroneous results when given a degraded input
image (e.g. by noisy or low contrast). This also contrasts with the findings of several
authors [Rubin, 2001b; Hupé et al., 1998; Sillito et al., 1995; Zhou et al., 2000; Baylis and
Driver, 2001] that feedback and recurrent interactions play an important role in visual
processing for figure-ground segregation.

The model of Hansen and Neumann [Hansen and Neumann, 2004] is also closely related
to our model since it is based on the same biological principles such as modulatory feedback
and long-range interactions for the extraction of corners and junctions. However, the
model is restricted to interlaminar interactions in V1 to explain contrast detection and
subsequent enhancement effects. Our model, on the other hand, incorporates several
extensions. First, our model takes illusory contours into account by additionally modeling
area V2. Second, we show that our neuronal representation is further processed to extract
different junction types such as L, T- and X-junctions which are perceptually important
features that provide basic cues for global scene interpretations.

Recently, a recurrent model for surface-based depth processing was proposed by Thielscher
and Neumann [Thielscher and Neumann, 2008]. In their proposed model, depth infor-
mation derived from monocular cues is propagated along surface contours using local re-
current interactions to obtain a globally consistent depth sorting of overlapping surfaces.
The model differs in several aspects from our model. In contrast to our model, they
use additional recurrent interactions in V2 to propagate border-ownership information
derived from detected T-junctions along contours. This propagated information enables
them to obtain a globally consistent interpretation of depth relations between surfaces.
Unlike this approach to monocular depth segregation, we focused on the extraction and
perceptual interpretation of junction configurations.

In summary, variations of mechanisms employed in our model can be found in several
other models of visual processing. But only few of them have concerned for combined
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boundary extraction and junction extraction as well as their distinction. Unlike previous
proposals which treat localized junction configurations as 2D image features [Harris and
Stephens, 1988; Smith and Brady, 1997], we link them to mechanisms of apparent surface
segregation. As a consequence, we demonstrate how junctions can change their perceptual
representation depending on the scene context and the spatial configuration of boundary
fragments.

3.4.3 Biological plausibility of model components

Our model architecture is inspired by biological mechanisms and is based on neural rep-
resentations of early visual cortex. We now put individual model components into a
physiological or psychophysical context and discuss for their plausibility.

In the initial stages of our model we simulate V1 simple and complex cells [Hubel and
Wiesel, 1968]. Model V1 bipole cells are inspired by horizontal long-range connections that
link patches of neurons of similar orientation preference [Gilbert and Wiesel, 1989; Bosking
et al., 1997]. Consistently, model V1 bipole cells pool activities of appropriately aligned
complex cells from the lower part of model area V1 (Fig. 3.3) which resembles intracortical
layer 4 of area V1. Evidence for non-local integration also comes from psychophysical
experiments for contrast detection [Kapadia et al., 1995] and contour integration [Field
et al., 1993]. Additionally, we model end-stop cells that selectively respond to contour
terminations. The existence of V1 neurons reacting to end-stop configurations has been
confirmed by several electrophysiological studies [Hubel and Wiesel, 1965; Maffai and
Fiorentini, 1976; Peterhans, 1997]. As a consequence, end-stop cells were also modeled
by several authors in the context of contour integration [Thielscher and Neumann, 2008;
Peterhans and Heydt, 1989; Lesher and Mingolla, 1993].

In model area V2, we employ modified bipole cells with nonlinear response properties.
As V2 neurons have larger receptive fields than V1 neurons, our bipole filters employed
in model area V2 have a larger extent that those used in the upper part of model area
V1 (Fig. 3.3). Evidence for contour selective cells in V2 comes from von der Heydt
[von der Heydt et al., 1984] where the authors probed V2 neurons with illusory-bar stimuli.
They selectively respond to coherent arrangements having both fragments of an illusory
bar intact. If one fragment is missing, the cell response drops to spontaneous activity
[Peterhans and Heydt, 1989]. To be consistent with these findings we modeled V2 bipole
cells with multiplicatively connected sub-fields which leads to similar effects than those
reported by von der Heydt.

3.4.4 Evidence for representation of junctions and corners in vi-
sual cortex

Although it seems obvious that junctions play a crucial role in several perceptual processes
[Rubin, 2001b] only little evidence was found that specific cells in the visual cortex are
particularly responsive to junction features. Several studies suggest the presence of a
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neural organization in V1 that may represent a mechanism for detecting local orientation
discontinuity [Kapadia et al., 1999; Knierim and van Essen, 1992; Sillito et al., 1995]. Their
results indicate a facilitatory interaction between elements of V1 circuitry representing
markedly different orientations in contradiction to the common believe that functional
connectivity is only seen between cells of like orientation [Ts’o et al., 1986]. However, it is
still unclear to what extent this selectivity is used for junction processing. In a study by
Kobatake and Tanaka [Kobatake and Tanaka, 1994] critical features for the activation of
cells reaching from V2, V4 up to posterior inferotemporal cortex (IT) were determined.
V2 cells were found to react to stimuli such as concentric rings or tapered bars. Cells
that respond selectively to junction-like features like crosses were only found in V4 and
posterior IT.

More recently, two studies [Ito and Komatsu, 2004; Anzai et al., 2007] report on cells
in monkey visual area V2 that seem to explicitly encode combinations of orientations
as represented by junctions or corners. Thus, such V2 neurons may provide important
underpinnings for the analysis of surfaces [Nakayama et al., 1995]. In a straightforward
model approach it was shown that these V2 neurons may simply sum the responses from
orientation selective V1 neurons [Boynton and Hedgé, 2004]. However, the fact that only
little evidence exists for junction selective cells in V2 could also motivate the hypothesis
that junctions are not explicitly encoded by specific cells in V2 but higher visual areas
such as V4 or IT link responses from cell types selective for lower-level features, such
as complex, end-stop, and bipole cells. Thus, the extraction of junction signals from
combinations of model cell responses, described as read-out process in our model, follows
the idea mentioned above, that, e.g., V4 cells could pool signals from several cortical
areas, particularly from V1 and V2. Notably, we do not claim that junction signals are
encoded by V4 or IT neurons, but we demonstrate that our model performs well assuming
that junctions are processed from distributed activities of neurons at early cortical stages.

Model predictions for psychophysical experiments

Our model incorporates recurrent feedback processing from higher to lower stages. This
leads to temporal model dynamics depending on bottom-up feedforward signal and top-
down feedback signal. Without a change of the input signal (e.g., static input) model
activities tend to converge after a few iterations. However, when the input signal tem-
porally changes this leads to a conflict between bottom-up and top-down signals. Thus,
the system acts like a short-term memory maintaining the actual state for a few time
steps. Consistently, if the material appearance changes from opaque to transparent over
time one would expect that the perception of the apparent stimulus is more prolonged
in time. From this it follows that our model simulations predict a perceptual hysteresis
effect for discrimination between opaque-transparent and transparent-opaque transitions
induced by a top-down feedback mechanism. Such a hysteresis effects has been already
observed psychophysically for motion direction disambiguation (leftward motion vs. right-
ward motion) [Williams and Phillips, 1987]. Since both motion and form processing are
based on the same neural principles we expect that the predicted hysteresis effect can
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also be measured psychophysically. Therefore, we are currently planning to investigate
experimentally whether our model predictions are validated or not.

3.4.5 The role of junctions in visual perception

Our core model integrates like-oriented contrasts to simulate the process of contour per-
ception in the visual system. When contours of different orientation meet at the same place
non-collinear orientation combinations, namely junctions, are formed. The formation of
junctions provides important cues, e.g., for the occurrence of occlusions and transparen-
cies. Occlusions occur in almost every real word scene, and thus, surface completion is a
fundamental visual process. In the following, we discuss the individual role of some basic
junction types that can be extracted by our model.

Transparency

It has been suggested that the perception of transparency is triggered by X-junctions
formed by junctions of contours of the transparent and opaque regions at the overlapping
area [Kersten, 1991]. However, the presence of X-junctions is necessary but not sufficient
to elicit a strong transparency effect. In addition, the luminance contrast around the
X-junction must follow the two rules: (1) the direction of luminance contrast across an
opaque border cannot change in the transparent region; (2) the luminance difference across
an opaque border must be reduced in the transparent region [Metelli, 1974; Anderson,
1997]. A violation of these rules strongly diminishes the perception of transparency.

Wolfe and collaborators [Wolfe et al., 2005] explored in a series of visual search exper-
iments which cues are relevant to guide attention in a search for opaque targets among
transparent detractors or vice versa. One of the experiments showed that performance
is impaired when X-junctions are removed from transparent items. Another experiment
showed that efficient search is still possible if X-junctions are merely occluded (i.e. an
occluding bar is used that disrupts the X configurations). In summary, these findings
show that indeed X-junctions play an important role in the perception of transparencies,
but there seem to be many other factors that play an additional role for transparency per-
ception. Nevertheless, our proposed architecture facilitates the perceptual interpretation
of X-junction as proposed by Wolfe and colleagues.

Occlusion

When an opaque surface occludes another surface of different luminance a T-junction is
formed at the position where the boundary contours intersect each other. If the surface
in front has the same luminance than the background the T-junctions collapses to an
L-junction. We have shown that our model initially detects such configurations as L-
junctions. After a short period of time, when contours are completed over gaps, such
L-junctions are recognized by the model as T-junctions. This is consistent with the more
context driven interpretation, as observed by Rubin [Rubin, 2001b]. Rubin investigated in
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psychophysical experiments how local occlusion cues, such as T-junctions and more global
occlusion cues, specifically relatability and surface similarity, play a role in the emergence
of amodal surface completion and illusory contour perception. Two contour fragments are
relatable when they can be connected with a smooth contour without inflection points
[Wolfe et al., 2005]. Rubin proposes that local T-junction cues can initiate completion
processes and that relatability plays a part at later stages.

Interestingly, in rare cases, T-junctions can also support the perception of X-junctions
[Watanabe and Cavanagh, 1993]. In their psychophysical experiments, the T-junctions
were perceived as having an additional illusory contour leading to the perception of an
X-junction (termed “implicit X-junction”). This special case shows that T-junctions do
not always lead to the perception of occluding opaque surfaces but can itself be altered
in the more global context when prototypical surface patches are formed which may lead
to a reinterpretation of local features.

Figure 3.16: Dynamic stimulus where two occluding bars move in opposite direction. Tracking of
L-junctions (green) leads to correct motion estimates of the two bars while tracking of T-junctions
leads to erroneous motion estimates. Thus, the visual system might use form information,
e.g., surface-based occlusion cues to selectively discount local motion estimates for moving T-
junctions.

Figure-ground segregation

Separating figure from background is one of the most important tasks in vision. Figure
and ground information in an image can be represented by assigning ownership of the
border between two surfaces. The figure which occludes parts of the background leads to
specific boundary configurations, in particular T-junction configurations which can help
in the assignment of figure and background. In more detail, the stem of the “T” is formed
by the boundary contour of the background surface while the top of the “T” corresponds to
the boundary contour of the figure. Motivated by physiological evidence for cells that are
selective for border-ownership information [Zhou et al., 2000] some models were proposed
where cues signaled by T-junctions are used to generate consistent representations of
layered surfaces [Thielscher and Neumann, 2008; Zhaoping, 2005]. This underlines the
importance of T-junction cues for the visual system.
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Motion perception

Junctions do not only play a role in static scenes, they are also important in the context
of motion perception. An object’s motion cannot be determined from a single local
measurement on its contour which is commonly known as the aperture problem [Wallach,
1935]. However, at positions where multiple oriented contrasts (i.e. two-dimensional
features, such as corners and junctions) are present the ambiguity can be resolved and
further be propagated along object contours to get a more global motion percept [Pack
and Born, 2001]. Thus, tracking of two-dimensional features over time is a fundamental
task in the analysis of motion signals.

In a study by Pack et al. [Pack et al., 2003] it is suggested that end-stopped V1
neurons could provide local measures of two-dimensional feature correspondences in mo-
tion by responding preferentially to moving line endings. However, the results of Guo
et al. [Guo et al., 2006] contrast with the suggestion that end-stop neurons can deter-
mine global motion directions. They propose that lateral and feedback connections play
a critical role in V1 motion information integration. But still, it remains unclear whether
cortical neurons represent object motion by selectively responding to two-dimensional
features such as junctions and corners. On the other hand, motion of specific junction
configurations, in particular T- and X-junctions generates erroneous motion trajectories.
An example is shown in Fig. 3.16, where T-junctions generated by two occluding bars
that move in opposite directions lead to incorrect local motion estimates [Lorenceau and
Shiffrar, 1992]. Thus, static form cues could be selectively discounted in the process of
motion interpretation [Nowlan and Sejnowski, 1995].

Limitations of the model

Although we have shown that our model is able to produce results that are in line with
several empirical findings, there are also some shortcomings of the model. For instance,
consider a Kanizsa figure such as illustrated in Fig. 3.17 where the gaps between contour
elements are so large that the V2 bipole filter cannot bridge the gap. In this case the model
would fail to produce an illusory contour signal in V2. Nevertheless, human observes still
have a weak impression of seeing an illusory triangle. We suggest that higher visual areas
such as V4 also play a role in illusory contour processing. Evidence comes, e.g., from
Pasupathy [Pasupathy and Conner, 1999] who found responses to contour features in
macaque area V4.

Another restriction of the model is that it does not account for different image scales.
Consequently, the model focuses on fine details and suppresses coarse structures. However,
the model could be provided with a pyramid of differently scaled version of the same
input image. This would correspond to simply replicating the model at multiple scales.
An alternative approach would be to employ scaled versions of Gabor wavelet filters
in the input stage. Finally, our model does not explain how occlusion-based junctions
can be distinguished from texture-based junctions. In this model, we only used stimuli
that have homogeneous surface reflectance properties. Thus, contours are interpreted as
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BA

Figure 3.17: Stimuli where the model fails to produce illusory contour activations. Distances
between the starting points of the contours are too large to be bridged by a V2 bipole cell.

surface borders by the model. In natural scenes, surfaces are often textured due to surface
material properties which would also lead to junctions signals and thus to ambiguities in
the interpretation. However, such ambiguities could be solved in higher visual area such
as V4 [Fellemann and van Essen, 1991] which are not in the scope of this paper. In
addition, stereo information can also help to correctly identify occlusion-based junctions.
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Chapter 4

Learning of form and motion patterns
in social interaction

4.1 Introduction

Understanding the behavior of other individuals is an essential ability that is crucial for
survival of many species. For instance, the natural behavior is often used by higher
primates to socially interact with conspecifics. In particular, humans have developed
excellent skills in recognizing and interpreting the actions and intentions of others. It has
been target of considerable research to investigate the neural mechanisms underlying our
ability to understand others intentions from the mere observation of their motor actions.

Neurophysiological and neuroimaging studies have revealed that neurons in the su-
perior temporal sulcus (STS) region of the cerebral cortex selectively respond to social
actions that are characterized by movements of the eyes, face, hands and body [Allison
et al., 2000; Jellema and Perrett, 2007; Peelen and Downing, 2008]. Interestingly, in
some situations even a single static image provides enough information to read someone’s
intentions or to recognize an action being performed (motion from form).

The painting in Fig. 4.1 demonstrates impressively that we can recognize several ac-
tions and intentions taking place without having explicit motion information. Thus, it
seems obvious that mid- and high-level form information may as well play a crucial role
in the perception and interpretation of social body actions.

By combining findings from physiology and brain imaging it can be demonstrated that
the primate brain converts information about spatiotemporal sequences into meaningful
actions through interactions between early and higher visual areas processing form and
motion [Kourtzi et al., 2008]. However, the precise interplay between form and motion
signals in higher cortical regions of the primate brain still remains unclear.
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Figure 4.1: Social interaction: The painting from Georges de La Tour ’The Fortune-Teller’, (1630)
give a quite strong impression what a single image can tell us about intentions and actions of
other people. The man in the middle attends to the old woman while two other women attempt
to rob him. Note that eye gaze, head pose and body posture seem to play a fundamental role
for the correct interpretation of the scene. Figure adapted from [Allison et al., 2000].

Goals & Model approach

In recent years a considerable quantity of empirical evidence has been gathered in this par-
ticular research field, but only little effort has been made to develop computational models
for validating existing data, and for testing the consistency of possible explanations.

In this chapter, we present a computational framework to simulate neural mechanisms
at several cortical stages of the form and motion pathway that are supposed to be involved
in the visual processing of socially relevant body actions. Moreover, we link information
from form and motion pathways in a separate processing area by lateral interactions of
from- and motion-driven sequence neurons. This contrasts with a trivial superposition
(i.e., linear combination) of both signals. In our proposed model, we interpret artificially
generated sequences of a character performing articulated body and head turns towards
or away from an observer. Such articulated body actions in which at least one body part
(e.g. the head) moves with respect to the remainder of the body typically communicate
social signals, such as attentiveness or disinterest.

In the model form pathway static representations of the body, so called snapshots, are
extracted while in the model motion pathway typical velocity patterns appearing from
goal-directed head and body movements are captured. In both pathways, we employ a
Hebbian learning principle to establish prototypical representations of form and motion
appearances from sequences of body actions so that they capture different features of such
body actions. Furthermore, in the next model stage we propose a neural mechanism how
a combined signal is generated from model cells that are tuned to temporal sequences of
form and motion activity patterns.

Our goal is to demonstrate that our proposed model performs significantly better in
discriminating two socially relevant body actions when signals from both pathways are
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integrated compared to the condition when input from one pathway is omitted. In this
case, we expect to find a drop in discrimination performance. Also, the open question
which pathway, form or motion, provides more information in this specific scenario is
addressed in our model simulations.

4.2 Model

In this section, we describe in detail the individual stages of a biologically inspired model
for the recognition of specific body actions that are important in the context of social
interaction.

4.2.1 Biological motivation and model overview

Our proposed model for the processing of body actions is inspired by the cortical archi-
tecture of the primate brain where visual stimuli are processed hierarchically along two
mainly dissociated pathways, namely the dorsal and the ventral pathway. Traditionally,
a separate organization of the two pathways is proposed [Ungerleider and Mishkin, 1982;
Desimone and Ungerleider, 1989; Goodale and Milner, 1992]. The dorsal ’where’ stream
primarily deals with the analysis of spatial locations while the ventral ’what ’ stream
mainly deals with the shape and identity of objects. However, the strict ’where-what’
dichotomy is questioned by several authors, e.g. [Goodale and Milner, 1992; Milner and
Goodale, 1995], among others. In their view, the occipito-temporal ventral stream sub-
serves the purpose of perceptual tasks (corresponding to form processing) while the dorsal
occipito-parietal stream subserves the visual guidance of action (corresponding to motion
processing).

Nevertheless, the extent of functional interaction between dorsal and ventral stream
is still unknown. Though, there is evidence that interaction between both processing
streams takes place specifically in higher cortical areas such as the superior temporal
sulcus (STS) , in order to recognize the behavior of others in terms of key postures and
animations [Oram and Perrett, 1996; Tanaka et al., 1999].

In our proposed model both pathways are modeled at several cortical stages. In the
ventral pathway we model the visual areas V1, V2, and inferotemporal cortex (IT). The
dorsal pathway is represented by model areas V1, medial temporal cortex (MT/V5) and
medial superior temporal cortex (MST). Finally, signals from both pathways interact in
model area STS via lateral interactions. Signal flow between cortical areas is realized
via feedforward and feedback connections between early visual areas (V1-V2 and V1-MT)
and exclusively by feedforward between mid- and high-level cortical areas (V2-IT-STS and
MT-MST-STS). We are aware that there is physiological evidence for feedback connections
to also exist between higher cortical areas. However, for simplicity we restrict our model
architecture to be purely feedforward at mid- and higher cortical levels. In model area STS
we implement plastic connections between sequence neurons that are realized by Hebbian
synapses. Given training sequences of a person performing an action these synapses can
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Figure 4.2: Overview of the proposed model architecture. Visual input is processed by two
dissociated pathways. The form pathway is represented by model areas V1, V2, and IT while
the motion pathway is represented by areas V1, MT, and MST. Both pathways project into
model area STS where signals from both streams interact to generate a final output signal.
Feedforward (black arrows) and feedback (orange arrows) are used to illustrate the signal flow
direction. Furthermore, Hebbian synapses between cortical areas are indicated by a balloon
symbol.

adapt to the stimulus such that sequence neurons become selective for specific form and
motion patterns depicting certain actions.

4.2.2 Processing in the form pathway

Extraction of local form features

The initial stage of feature processing starts in model area V1 where oriented local con-
trasts such as small bars or edges are extracted. These local features are represented as
activities for each position and feature type, i.e. contrast orientation, in the image. Fur-
ther processing is performed in model area V2 where features are grouped into smoothly
connected contours. These contours represent the outlines of objects as well as junctions
that occur a positions where objects are partly occluded. Recurrent interactions (feed-
forward and feedback in turn) between model area V1 and V2 lead to an enhancement
of features that lie along smooth contours of scene elements. It has been shown that this
processing mechanisms leads to robust feature representations that are stabilized against
varying illumination conditions or degradations by image noise [Weidenbacher and Neu-
mann, 2009]. For a more thorough description of the proposed V1-V2 model architecture
the reader is referred to chapter 3.

Learning of static views

The goal at this model stage is to learn prototypical representations of activity distribu-
tions that encode static views of persons that appear while performing a body action.
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Figure 4.3: Overview of the model form pathway. Model area V1 starts with initial extraction of
local oriented contrasts. In model area V2, like-oriented contrasts that are located for instance at
object boundaries are grouped into contours. Feedforward (black arrows) and Feedback (orange
arrow) processing between V1 and V2 helps to iteratively complete contours and to become
invariant against variations in illumination. From this representation, IT neurons are trained
by Hebbian learning to become selective for different body configurations that correspond to
different snapshots of a person while performing an action.

Evidence for such view-tuned representations was found by Logothetis and colleagues
[Logothetis et al., 1995] in IT of monkeys.

Here, model V2 activities are forwarded and serve as input for learning synaptic con-
nections between model V2 and IT neurons. For a given input sequence of body actions,
activities AV 2

x,y,ϕ from model area V2 are represented by local features ϕ at each spatial
image position (x, y). Here, ϕi is described by 8 different feature orientations equally
distributed between 0 and 180 degrees. Note, that activity of model V2 neurons also de-
pends on time as the input to the model is a temporal image sequence. However, at this
stage, no temporal interactions are performed. Thus, we omit the index t in the notation
of activities for more clarity.

Pose specific representations are modeled by snapshot neurons that are fully connected
to each feature neuron in model area V2. The activity of a snapshot neuron AITj is
computed by a weighted sum over all positions and features:

AITj =
∑
x,y,ϕ

w(x,y,ϕ)j · AV 2
x,y,ϕ

where w(x,y,ϕ)j are the weights between model V2 neurons given space-feature selec-
tivity (x,y,ϕ) and IT neuron j. Importantly, at this model stage, temporal correlations
between frames of the sequence are not considered. However, we simulate lateral inhibition
by applying a MAX-operation over all snapshot neurons 1, such that

1The MAX-operation can be implemented in various biologically plausible ways, e.g., by a feedforward
network with shunting inhibition or by a recurrent feedback network. An analysis of biological plausible
implementation of the MAX-operations can be found in [Yu et al., 2002].
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AITj =

{
AITj if j = argmax

(
AITj

)
0 otherwise

(4.1)

There is neurophysiological evidence for MAX-like mechanisms in area V1 [Lampl
et al., 2004] and area IT [Sato, 1989]. Furthermore, it is postulated to be a fundamental
operation involved at many stages of the primate visual processing system [Riesenhuber
and Poggio, 1999].

In order to learn the synaptic connections represented by the weights wj we employ a
Hebbian learning rule with a quadratic normalization term [Oja, 1982].

∆w(x,y,ϕ)j = η ·
(
AV 2
x,y,ϕ · AITj −

(
AITj

)2 · w(x,y,ϕ)j

)
(4.2)

where η is a small constant that represents the learning rate. It has been shown for
this learning rule that the length of the weight vector is bounded and converges to a unit
length of one [Oja, 1982].

Initially, the weights wj are set to equally distributed random values in range [0, 1].
Input activities AV 2

x,y,ϕ are normalized, such that
∑
x,y,ϕ

(
AV 2
x,y,ϕ

)2
= 1. Hereby, we force each

input activity distribution to have the same amount of energy and hence to have initially
the same chance to win the competition in the MAX-operation (Eq. 4.3).

4.2.3 Processing in the motion pathway

Extraction of local motion features

The model architecture for motion processing is based on the organization of the dorsal
stream, where areas V1, MT, MST are organized in a hierarchical way (see Fig. 4.2).
The areas V1 and MT are connected bidrectionally such that signal flow is bidirectional,
bottom-up and top-down. Connections between model areas MT and MST are modeled
unidirectionally. Furthermore, these connections are modeled by plastic Hebb synapses
such that selectivity of MST cells for short-term optic flow patterns can be learned.

Local motion feature extraction is performed by a model of V1-MT interaction that
has been first proposed by [Bayerl and Neumann, 2004]. Here, initial motion detection is
performed by spatiotemporal correlation of Gabor filter responses [Daugman, 1988] im-
plemented by extended Reichhardt detectors [Reichardt, 1987]. These initial local motion
estimates in model area V1 are proposed to generate local velocity space representations.
Model areas MT and V1 are connected via feedforward (FF) and feedback (FB) con-
nections. Recurrent FF and FB processing between model areas V1 and MT leads to
enhanced motion features by solving, e.g., the aperture problem [Wallach, 1935; Pack
and Born, 2001]. This is achieved by modulatory top-down feedback signals that deliver
contextual motion information represented at model area MT. Activity in V1 that is con-
sistent with the MT feedback signal is strengthened while inconsistent V1 activities are
weakened by this process.
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Figure 4.4: Overview of the model motion pathway. Model area V1 starts with the extraction of
local motion features. In model MT, local optic flow is estimated by integrating activities that
are forwarded from model V1. Recurrent feedforward-feedback processing between model areas
V1 an MT helps to solve the aperture problem. In model area MST, neurons are trained via
Hebbian plasticity to become selective for specific optic flow patterns induced by head and body
movements.

Processing in both model stages (V1 and MT) is based on a three-level cascade of
basic operations. In a nutshell, the cascade consists of a filter stage where activities
are integrated, a modulatory coupling stage where feedback connections can modulate
driving FF input activations, and a normalization stage where center-surround shunting
inhibition is performed. Importantly, this generic scheme is also employed for form feature
extraction in model areas V1 and V2 of the ventral pathway (see 3.2.1). For a more
detailed description of the proposed generic processing mechanisms the reader is referred
to section 3.2.1 of chapter 2.

The output of the V1-MT model is given by a distributed representation of neural
activities represented by a pool of neurons that are tuned to different directions and
speeds for each spatial location of the input image. We sample the discrete space of 7
speeds and 16 directions in a 2d velocity space corresponding to 112 neural activities.
These local activities generated at the stage of model area MT are integrated by model
MST cells to receive a mean velocity vector. This is implemented by computing at each
MT location the sum over all discrete feature vectors weighted by their corresponding
activity.

Learning of optic flow patterns

In the next processing stage, model MT responses are pooled by model MST cells. The
receptive field of model MST neurons covers the whole input image. We use plastic
synapses between model MT and MST neurons that are learned by the same Hebbian
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learning rule [Oja, 1982] that was used in the form pathway between V2 and IT neurons.
Hebbian learning is used to achieve selectivity of model MST neurons for specific optical
flow patterns that are represented by activities of model MT cells.

Neurons tuned to specific flow field pattern have been found in several areas of the
dorsal processing stream, specifically in area MSTd [Tanaka et al., 1986; Duffy and Wurtz,
1991; Saito, 1993; Graziano et al., 1994]. As input for the learning stage, we present
mean velocities from model area MT to train neurons in model area MST such that they
selectively respond to a specific part of a body action.

The activity of model MST neurons AMST
j is further computed by a weighted sum

over all positions and features:

AMST
j =

∑
x,v

w(x,v)j · vMT
x

where the input flow field vector vMT
x is multiplied by the weight vector w(x,v)j at the

position x.
Like in the ventral pathway, lateral inhibition is simulated by applying a MAX-

operation over all MST neurons

AMST
j =

{
AMST
j if j = argmax

(
AMST
j

)
0 otherwise

(4.3)

In order to learn the synaptic connections represented by the weights wj we employ a
Hebbian learning rule with a quadratic normalization term [Oja, 1982].

∆w(x,v)j = η ·
(
vMT
x · AMST

j −
(
vMT
x

)2 · w(x,v)j

)
(4.4)

where η represents the learning rate. Remember that for this learning rule the length of
the weight vector is bounded and converges to a unit length of one [Oja, 1982]. Again, this
is consistent to the corresponding learning step in the proposed model ventral pathway
such that they are structurally homologue.

4.2.4 Combination of motion and form signals

In the last subsections we described how selectivity for motion and form patterns can be
learned and represented by neurons in model area IT and MST. A specific view or optic
flow pattern captures only a short temporal interval of the whole body action.

In the next model stage we extend the temporal context to learn selectivity for tem-
poral activity patterns of IT and MST neurons. Importantly, at this model stage both,
form and motion information are integrated to learn sequence selectivity.

We suggest model STS sequence neurons that each receive forward projections from
a corresponding IT or MST neuron. In addition, these sequence neurons are laterally
interconnected by plastic connections. A Hebbian learning mechanism is then used to
strengthen connections between sequence neurons that respond successively for a given
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Figure 4.5: Detailed model description. Local motion and form features are extracted from
an artificially created input sequence of a character performing a body action. In the motion
pathway, MT neurons that encode local optic flow features are fully connected to a population of
MST neurons via Hebbian synapses (red) to learn selectivity for short-term optic flow patterns.
Likewise, in the form pathway, V2 neurons that encode local form features such as contours
and junctions are fully connected via Hebbian synapses to a population of IT neurons to learn
selectivity for static views (snapshots). At this stage, lateral inhibition within populations of
MST and IT neurons is simulated by a MAX-pooling operation. In a next step, both processing
streams are combined in area STS, where sequence neurons receive signals from the form and
the motion pathway. Selectivity for temporal response patterns of both, IT and MST neurons, is
realized by plastic lateral connections that are adapted by a Hebbian learning rule. The learned
asymmetric lateral connections lead to an overall increased mean activity of sequence neurons
for the preferred input motion pattern. On top of the model, activity from sequence neurons is
integrated by motion pattern neurons.
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input sequence of a specific body action (see Fig. 4.5 for a detailed model description).
For instance, an active sequence neuron that encodes a specific body posture or optic

flow field pattern can pre-excite sequence neurons that encode the predicted body posture
for subsequent time steps. At the same time, sequence neurons that encode unpredicted
views are inhibited. The prediction of future events can be simultaneously learned by
a Hebbian mechanism, i.e., by strengthening lateral connections between neurons that
respond successively and weakening connections to all other neurons. In summary, this
mechanism leads to an overall increased activity of sequence neurons for the preferred
snapshot sequence. These activities are pooled by motion pattern neurons (see Fig 4.2
and Fig. 4.5) in the next hierarchical processing stage to extract signals for different types
of body actions.

Mathematical description of sequence learning

More formally, we define a population of sequence neurons as Aseq. Each sequence neuron
receives feedforward input Ainp from an afferent neuron of a lower model area, i.e., area
MT for the motion pathway or area IT for the form pathway. Moreover, all sequence
neurons are laterally connected with each other via Hebbian synapses. Recurrent lateral
interaction between these sequence neurons leads to increased activity of sequence neurons
for specific input sequences from IT and MST neurons.

To model the recurrent interactions between sequence neurons the signal Ainp is used as
input for a recurrent neural network that has been originally proposed by Amari [Amari,
1972] in the context of pattern sequence learning in self-organizing networks. The tempo-
ral course of activation is described in the following ordinary differential equation (ODE)

τseq
d

dt
Aseqj = −Aseqj + αAinpj + β

N∑
i=1

w+
ijf(Aseqj )− h (4.5)

where wij describes the lateral coupling strength between sequence neuron i and j,
τseq = 0.03 describes the time constant that characterizes the rise time of the cell’s mem-
brane potential, f is a sigmoidal nonlinear activation function, and parameter h = 1 is
a constant that simulates tonic inhibition which leads to a negative resting potential of
the cell. The constants α, β = 5 are constant parameters that have been experimentally
determined. Eq. 4.5 can be extended to incorporate a mechanism of shunting inhibition
[Grossberg, 1988] by replacing the constant h with a negative kernel function

h =
(
γ + ψf(Aseqj )

) N∑
i=1

w−ijA
inp
j (4.6)

However, in our simulations we use constant global inhibition which corresponds to
w− = w−∞ and ψ = 0.

The quadratic matrix W+ which includes the lateral coupling strength between se-
quence neurons is initially set to small random values equally distributed between 0 and
0.1. The matrixW is adapted according to the Hebbian principle in the following equation
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τw
d

dt
w+
ij = f(Aseqj )

(
Ainpi − f(Aseqj )w+

ij

)
(4.7)

which implements Oja’s rule [Oja, 1982]. Importantly, here we use the same learning
rule as in the learning of static views in section 4.2.2 and learning of flow patterns in
section 4.2.3. The learning rule constrains the lateral weights wij to be bounded. The
learning rate τw in the Eq. 4.7 has to be chosen sufficiently larger than the time constants
of the equations describing the network dynamics. Note that the weights cannot become
negative which means that only excitatory lateral connections are learned. However, all
sequence neurons receive a tonic inhibition signal represented by constant h in Eq. 4.5
which leads to a relaxation of neural activity.

Finally, activity from sequence neurons (Amp) is accumulated to encode specific motion
patterns by a simple leaky integrator described in Eq. 4.8

τmp
∂

∂t
Amp = −Amp +

N∑
j=1

f(Aseqj ) (4.8)

4.3 Results

In this section we present results from model simulations at different stages of the form and
the motion pathway. Then, we demonstrate that a combination of information from both
pathways leads to an improved recognition performance compared to using information
of a single pathways.

4.3.1 Model input

As model input we use artificially generated sequences of a virtual character performing
head and body turns towards and away from the camera. To generate the video sequences
we use the animation software Poser 6. We create four different sequences of a male
virtual character performing turns towards and away from the camera. Turns towards
the camera start at half-left or half-right profile view while turns away start in frontal
view. The movement of the artificial actor is generated such that every action begins with
a rotation of the head and is smoothly followed by a rotation of the body. Such stimuli of
articulated body actions were also used in neurophysiological experiments with monkey
[Jellema and Perrett, 2003a].

Fig. 4.6a illustrates an input sequence showing a turn away and a turn towards the
camera from/to half-left profile. Moreover, the plot in Fig. 4.6b illustrates the sigmoidal
course of the function that is used to model the relative temporal evolution of head and
body movements. One can observe that the body rotation is temporally delayed with
respect to the head rotation. Each sequence consists of 90 image frames that have a size
of 256 x 256 pixels.
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Figure 4.6: We use 4 different artificially generated input sequences of a virtual character who
performs head and body turns towards and away from the camera from/to both sides (A). In
each sequence, the action starts with a head turn and is smoothly followed by a body turn. The
precise progress of head (blue, stars) and body (red, x) poses across image frames for a turn
towards the camera is illustrated in (B).

4.3.2 Motion pathway

Initial motion feature extraction

In the motion pathway, the first processing step comprises the extraction of optic flow
field information from the input sequence. Here, we use a model of V1-MT interactions
to robustly extract local motion features [Bayerl and Neumann, 2004]. Fig. 4.7 depicts an
optic flow field that has been extracted at model area MT. At each location 112 motion
features are represented in a polar grid of 16 different directions and 7 speeds. Illustrated
in Fig. 4.7 is the mean velocity vector that results from a superposition of all feature
vectors weighted by their activity.

In the next step of the processing hierarchy receptive field (RF) properties of model
MST neurons are learned unsupervised via Hebbian synapses from input of model MT
neurons. Here, the RF size of a MST neuron is equal to the input dimensions, which
means that the MST cell covers the whole upper body including the head, upper arms,
and chest. We use a predefined number of 4 MST neurons to learn prototypical velocity
patterns of head and body movements. The model is provided with sequences of body
actions that are randomly selected from one of the 4 different input sequences:

a) turn towards from right half-profile view to frontal view (towards/right)

b) turn towards from left half-profile view to frontal view (towards/left)

c) turn away from frontal view to right half-profile view (away/right)

d) turn away from frontal view to left half-profile view (away/left)
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Figure 4.7: Optic flow field extracted at model area MT. Local velocities are color coded (see
colormap). The hue channel indicates the direction component while the saturation indicates
the speed of the estimated velocity vector. Overlaid is a sub-sampled vector field of arrows to
get a more vivid impression of the underlying optic flow field.

Results of learned optic flow patterns

Learning of optic flow prototypes is performed by repeatedly presenting velocity patterns
from model MT neurons in correct temporal order until the weights converge to a stable
state. The result of the Hebbian learning stage is demonstrated in Fig. 4.8. One can
observe that MST neuron M2 and M6 are tuned mainly to rotations of the head while
another MST neuron M1 and M3-M5 are tuned mainly to rotations of the body. This
result reflects the asynchrony between head and body rotation that was specified for the
motion of the virtual character.

A close view on the results in Fig. 4.8 reveals that the first part of the response patterns
is dominated by responses of neurons M6 (rightward head turn) and M2 (leftward head
turn), however independent from the turn away or turn towards class. This means
that discrimination performance between the two classes turn away and turn towards
is supposed to be weak for the first part of the sequence. In the second part of the
sequence the other four neurons M1, M3, M4, and M5 selectively respond for each of the
four inputs (A-D) suggesting for a better discrimination between the two classes in the
second part of the sequence which is mainly dominated by upper body rotation.

However, in the second part of the sequence, the upper body rotation, captured by
the remaining four prototypes seems to have more discriminative power. This is visible
in the response properties of M1 and M3-M5 where each prototype selectively responds
for a specific body action category.

In summary, the result of pattern selective processing in the motion pathway suggest
that motion information of the head alone would not suffice to discriminate between turn
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Figure 4.8: Receptive field properties of MST neurons M1-M6 learned via Hebbian learning given
a set of 4 different input sequences of a persons that performs head and body turns towards and
away from the observer from both sides (left and right). The hue component corresponds to
the most selective direction (see color wheel) and the saturation component corresponds to the
strength of the weights. The responses of the MST neurons M1-M6 are illustrated for all four
types of input sequences (A)-(D). The corresponding prototype is indicated by the colored frames
in. If we compare the responses of (A) with the responses of (B) and the responses of (C) with
the responses of (D) we can observe that they are mirror images of each other but with different
neurons and selectivity. Note, that neurons M6 and M2 encode mainly a head rotation while the
other neurons M1, M3, M4 and M5 are mainly selective to body rotations. Note also, that both
sequence types, turn away and turn towards, begin with the same head rotation direction, thus
making a discrimination task rather difficult based on the responses of M2 and M6.
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input V1 V2

Figure 4.9: Example of initial form processing. A frame of the input video stream (left) is
processed by orientation selective Gabor filters in model area V1. We illustrate the mean activity
of V1 and V2 cells (over all orientations) after 5 iterations of FF-FB processing between model
areas V1 and V2 (middle and left). Notice that salient contours are extracted and enhanced.
The strength of the responses is relatively invariant against local variations in image contrast
and brightness.

towards and turn away action. On the other hand, motion information extracted from
body rotation seems to include enough information to discriminate between turn towards
and turn away motion, at least in this example. Finally, the selectivity in all cases is
rather poor since at least three MST neurons are coactive (have values greater than 0.5)
for large parts of the sequence. In this case, robust classification performance based solely
on signals from the motion pathway cannot be expected.

4.3.3 Form pathway

Initial form feature extraction

In the form pathway processing starts with the extraction of local image features. Initially,
contrast information is extracted by computing the energy from 8 differently oriented Ga-
bor filters which simulates V1 cells in primary visual cortex. Next, like-oriented oriented
features are grouped along smooth contours in model area V2. Furthermore, recurrent
feedforward-feedback processing between model areas V1 and V2 in combination with
local normalization enhances smoothly curved contours and provides invariance against
variations in illumination (see chapter 3 for a more comprehensive explanation of the V1-
V2 interaction). Model V1 and V2 activities after 5 iterations of FF-FB processing are
illustrated in Fig. 4.9 for one frame of the input sequence. It is clearly visible that salient
contours are extracted from the input image that serve as primary features for further
processing stages. Notice, that V1 responses are more detailed than V2 responses as V1
cells have smaller receptive fields (RF). V2 cells have larger elongated RF’s that consist
of two sub-fields to group local features that have similar orientation.
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Results of learned static views (snapshots)

Each frame of the input sequence is processed by the recurrent V1-V2 model stage. We
reduce the distributed representation of 8 orientation-specific responses at each image
location to a Cartesian vector representation that consists of a horizontal and a vertical
component 2. The reduced V2 activities are now forwarded to model IT neurons. Impor-
tantly, here we use plastic connections between model areas IT and V2. In this model,
we manually define a population of 9 IT neurons. The activity of IT neurons is computed
by a weighted sum over all activities from afferent V2 neurons. The adjustable weights
simulate synaptic plasticity and are adapted by a Hebbian learning rule [Oja, 1982]. Im-
portantly, in one learning step, only weights from afferents to the IT neuron with maximal
activity are adapted (winner-take-all strategy). In every trial, a randomly selected input
sequence3 of 88 frames is presented to the model. This is repeated for 100 trials until all
weights have converged to a stable state. The resulting weight matrices are illustrated in
Fig. 4.10. It can be observed that each IT neuron has developed a preference for a specific
body and head pose. In Fig. 4.10, we also illustrate the activities of IT neurons for all
input sequences. Indeed, the unimodal distribution of the IT responses demonstrates that
each IT neurons selectively responds to a specific body pose. Consequently, we call these
neurons ’snapshot ’ neurons, as they capture specific body configurations that appear for
a short time interval.

4.3.4 Combination of form and motion information

In our proposed model, body movements are characterized by specific temporal sequences
of key body postures, indicated by model IT neurons of the form pathway. Furthermore,
short-term optic flow information is represented by model MST neurons in the motion
pathway.

The goal of this model stage is to integrate and learn feedforward activities from the
form and motion pathway by adapting recurrent lateral connections between form-driven
and motion-driven sequence neurons.

As input to model stage STS we select in each discrete time step the IT neuron and
the MST neuron with the strongest response, all other activities are inhibited by explicitly
setting them to zero (MAX-rule). This is a simple way to simulate strong lateral inhibition
within a pool of neurons and is also employed in other biologically motivated models (e.g.
[Riesenhuber and Poggio, 1999]). The resulting input to the next model stage is illustrated
in Fig 4.11 for different input sequences.

2The reduction is computed by summing up the 8 corresponding vectors, weighted by their actual
activity.

3A sequence from one of the four possible input sequences, namely turn away left/right and turn
towards left/right
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Figure 4.10: Prototypical form representations of body postures (’snapshots’) encoded by IT
neurons (F1-F9) learned via Hebbian plasticity (A) from feedforward input of V2 activities. The
labels F1-F9 were assigned manually after the learning stage such that the numbers correspond
to the order of responses. At the bottom responses of IT neurons are illustrated for a turn
away (B) and a turn towards (C) input sequence. Colors correspond to the IT neurons F1-F9
indicated in (A). Notice, that each neuron selectively responds to a specific body configuration
independent of the movement direction. As a consequence the resulting graphs depicted in (B)
and (C), respectively, look almost identically. Furthermore, the population of IT neurons covers
the whole space of body poses.
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Figure 4.11: Incoming feedforward activities for different input sequences from form and motion
pathway after a MAX operation in both channels. IT neurons of the form pathway are denoted
with F1-F9, MST neurons from the motion pathway are denoted with M1-M6. The level of
activity of individual model neurons is coded in grayscale intensities (see bar). Note that the
labels of IT neurons (F1-F9) are assigned such that they are consistent with the order of responses.
The labels of MST neurons (M1-M6) are not reordered, such that the numbering does not have
any specific meaning and individual selectivity has evolved randomly by the unsupervised learning
process.
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Figure 4.12: Learned lateral connection matrices of sequence neurons for two classes of body ac-
tion, turn away and turn towards. Note that connections between form-driven sequence neurons
(F1’-F9’) can be found in the upper left part of the matrix. Connections between motion-driven
sequence neurons can be found in the lower right part of the matrix. Connections between form-
and motion-driven sequence neurons can be found in the lower left and the upper right part of
the weight matrix. Note that specifically these interconnections between form and motion may
help to better discriminate two classes.

Results of sequence learning

To learn the temporal sequence pattern of form and motion responses, we employ a family
of sequence neurons that are fully interconnected via dynamic excitatory lateral connec-
tions. Each sequence neuron receives input from a corresponding IT or MST neuron. The
lateral weights are initialized with small random values4. We start training the lateral
weights for a specific class of body motion by presenting input from the target class. This
can be either turn towards (left/right) or turn away (left/right). The adaptation of lateral
connections follows a Hebbian learning principle that has the following characteristics: If
output activity of a sequence neuron Si and input activity that is forwarded from the
previous stage to sequence neuron Sj (i 6= j) are both at high level, then the lateral
connection between these two sequence neurons Si and Sj are strengthened. In Fig. 4.12
we show the resulting weight matrices for the two different classes of body action after
500 presentations, respectively. The lateral connections between subsequently responding
sequence neurons (F1’-F9’,M1’-M6’) are strengthened.

The effect of the trained lateral connections on the activity of sequence neurons is
illustrated in Fig. 4.13. At the beginning of the preferred input sequence, the first sequence
neuron is excited by feedforward input. At the same time, the neurons that are predicted
to follow up for the preferred input sequence are pre-excited due to the learned lateral
feedback connections. Furthermore, pre-excited sequence neurons can reach significantly

4We use random values from a uniform distribution in the interval [0,0.01]

95



Results

−1

−0.5

0

0.5

1F1’

F2’

F3’

F4’

F5’

F6’

F7’

F8’

F9’

M1’

M2’

M3’

M4’

M5’

M6’

F1’

F2’

F3’

F4’

F5’

F6’

F7’

F8’

F9’

M1’

M2’

M3’

M4’

M5’

M6’

time [s]

turn away turn towards

0 1 2 3 4 0 1 2 3 4

time [s]

Figure 4.13: Activity pattern of sequence selective neurons (F1’-F9’ and M1’-M6’) that receive
feedforward input from IT and MST neurons (F1-F9 and M1-M6), repectively (see also Fig. 4.5).
The learned lateral couplings between sequence neurons in combination with input activity for-
warded from IT neurons of the form pathway (F1-F9) and MST neurons of the motion pathway
(M1-M5) induce high activations for the preferred turn away sequence (left). The same pool of
sequence neurons provided with a non-preferred input of a turn towards sequence shows only
weak activations as the actual input pattern does not match to the predicted input encoded by
the learned lateral connections. The dashed white line indicates the point in time when the artifi-
cial actor has finished his body movement. Afterward, the model input is set to a homogeneously
gray image.

higher activations when they also receive feedforward input. In summary, this leads to
considerably higher activations for the whole pool of sequence neurons for a preferred
input sequence.

In contrast, when a different input sequence is presented the overall activation should
be considerably lower as the lateral feedback signal does not match to the predicted
feedforward input. In Fig. 4.13 we show the activities of two pools of sequence selective
neurons. The first pool of neurons was trained with motion- and form-based signals
from a turn away input sequence while the second pool was trained with turn towards
sequences. It can be observed that the pool of neurons that receives the correct input
reaches much higher activations as the other pool of neurons that was trained on a turn
towards sequence.

Multi vs. single pathway model

Activations from each pool of sequence neurons are further accumulated by motion pattern
neurons. In our simulations, we use two motion pattern neurons that integrate activities
from two pools of sequence neurons that are trained for turn towards and turn away motion
patterns, respectively. We show activity signals based on input from four artificial motion
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sequences (turn towards from left/right and turn away to left/right) of two different
classes of body action. In order to demonstrate that both form and motion information
is important to discriminate between two different motion patterns, we run a simulation
under three different model configurations. In the first configuration, sequence neurons
are provided with motion and form signals. In the second and third configuration, we
simulate the absence of either form or motion signals by simply setting the motion or
form input activity to zero.

The temporal progress of neural activity for both motion pattern neurons is illustrated
in Fig. 4.14. The figure clearly demonstrates for motion pattern neurons that the ratio
of activation between the preferred and non-preferred input pattern is maximal when
the sequence neurons are provided with signals from both, form and motion pathway. If
the model is only provided with form information the activation of the preferred neuron
drops down to a level of about 60 percent. However, the signal for the non-preferred
input pattern remains at the same level, indicating that the discrimination performance
is poorer when the model is solely provided with form information.

Finally, we simulated the inverse case where signals from the form pathway are sup-
pressed. This means that only motion information is used for the processing of sequence
selectivity. In this case the ratio of motion pattern signals is significantly lower than in
the other two cases suggesting that motion information alone would not be sufficient to
robustly discriminated between turn away and turn towards body actions. This result is
not surprising as we have already noticed from responses of MST neurons that flow field
information of a head turn in one direction is suggestive for both, either a turn towards
the profile view or a turn away from the profile view. Thus, motion information in this
specific discrimination task only gives additional cues but does not suffice to robustly
discriminate between both classes of body action.

A comparison between maximal signal ratios is illustrated in Fig. 4.15. In the case of
form and motion input, the maximal motion pattern signal for the preferred input is about
12 times higher than the signal for the non-preferred input. When only form information
is processed (realized by suppression of input from the motion pathway) the signal ratio
drops to about 5 and when only motion information is provided (realized by suppression
of input from the form pathway) the signal ratio is even lower at a value of approximately
2. In summary, this indicates that form and motion information appropriately combined
leads to a significantly better performance compared to single pathway based approaches.

Implied motion effects

In a next simulation, we have investigated the effect of presenting a static body pose
prior to the animated body action. Here, the hypothesis was that the presented static
body pose should induce slightly increased activity for form- and motion-based sequence
neurons that are predicted to follow up next. Thus, when the animated sequence starts
activity of neurons that encode future events should emerge more quickly compared to
the scenario when the action sequence starts immediately after a blank screen.

In fact, the results in Fig. 4.16 confirm that the motion pattern neuron trained for
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Figure 4.14: Activities of motion pattern neurons selective for turns towards (top row) and turns
away (bottom row) for different model configurations. The first row shows temporal response
curves from the motion pattern neuron selective for turns towards while the second row shows
responses for the motion pattern neuron selective for turns away. If both, form and motion
information is processed by sequence neurons, the mean activation level and the ratio between
the signals for the preferred and the non-preferred stimulus is high. If feedforward signals from
one processing stream are suppressed, the mean activation level for the preferred stimulus and
the signal ratio are both reduced significantly. In this specific scenario, form information seems
to be more meaningful than motion information as indicated by the increased response level.

turns towards the observer more reaches its peak activation when the static averted pose is
presented at the beginning of the sequence. At the same time, the peak activation is higher
compared to the peak activation in the simulations without static input. Interestingly
it can be also observed that the same motion pattern neuron initially shows increased
activity for a static frontal pose. However, when the static frontal pose is followed by a
turn away sequence (which is in contrast to the prediction encoded in sequence neurons),
the activity quickly drops down to activations close to zero.

This interesting effect can be explained by mechanisms in model area STS. Sequence
neurons that are provided with input from IT cells of the form pathway are activated by
the static input. Other sequence neurons that encode predicted form and motion appear-
ances are also pre-excited through lateral connections (previously adapted via Hebbian
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Figure 4.15: Discrimination performance for different model configurations indicated by the
maximal signal ratio between activities of two motion pattern neurons that have been adapted
to be responsive to turn away and turn towards sequences. A larger signal ratio indicates
more robustness against perturbations of the input signals. The figure shows clearly that the
highest signal ratios are generated when input from motion and form pathway is forwarded
to the integration stage. However, when the model is modified such that signals from one
pathway are suppressed a significant drop of signal ratios can be observed. Also, an important
observation is that form information seems to be more informative than motion information for
this specific scenario. Finally, the results indicate that the combined signal originates from a
non-linear combination of form and motion signals (since the combined signal is obviously not
just generated by the sum of form-based and motion-based signal ratios).
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Figure 4.16: Results of model simulations that are based on a slightly modified input sequence.
Prior to the beginning of the animated body action we show a static body pose that corresponds
to the first frame of the input sequence. After the character has reached his final pose, we show
a blank screen until the activities have converged to zero. Here we show results for a family of
sequence neurons that have been adapted to body turns towards the observer. The activities of
sequence neurons are based on a turn towards (B) and a turn away (C) input sequence. Activities
for the corresponding motion pattern neuron are illustrated for a turn towards sequence (solid
red) and a turn away sequence (solid blue). For comparison, we also show the corresponding
activities based on input sequences used in previous simulations (Fig. 4.14) where the static
input at the beginning was replaced with a blank screen (dashed).

learning). Thus, when the actual motion sequence starts these pre-excited sequence neu-
rons receive additional feedforward input which leads to a faster response characteristic.

4.4 Discussion

In this section we summarize our main findings. We compare our model with other
proposed models that are related to our work. Furthermore, we demonstrate that all core
mechanisms employed in our model are biological plausible. We also discuss alternative
model architectures to combine motion and form information. Finally, we briefly discuss
some limitations of our model.

4.4.1 Summary of findings

We have presented a biologically motivated model that simulates processing of body action
sequences in two parallel cortical pathways of the human visual system. Several cortical
areas were simulated, that is V1, V2, IT in the form pathway and V1, MT and MST in
the motion pathway.

For the robust extraction of initial form and motion features we have employed a
generic model building block, consisting of feedforward and feedback processing in com-
bination with lateral shunting inhibition between model areas V1 and V2 in the form
pathway [Weidenbacher et al., 2006; Weidenbacher and Neumann, 2009] and between
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model areas V1 and MT in the motion pathway [Bayerl and Neumann, 2004; Raudis and
Neumann, 2010].

We have shown that intermediate neural representations can be learned in both path-
ways by a Hebbian learning mechanism. Here, different key body postures that occur
during a body action were extracted and represented in the form pathway. Likewise, in
the motion pathway different short-term optic flow patterns were learned using the same
mechanisms.

Furthermore, we have proposed a mechanism to combine information from both path-
ways in a higher model area that is sensitive to the sequence of incoming responses from
mid-level feature neurons from both model pathways. To learn the temporal sequence from
incoming feedforward responses of form and motion pathways we used time-dependent
Hebbian plasticity in combination with recurrent lateral interactions between sequence
neurons.

We have shown that lateral connections within a pool of motion- and form-driven
sequence neurons were adapted by Hebbian plasticity such that significant activity can
only emerge, when the temporal sequence of incoming motion and form signals fits to
the prediction that was learned based on the perceptual history. This is in line with
physiological experiments of [Jellema and Perrett, 2003a] where they show responsive
cells in the anterior part of the superior temporal sulcus (STSa) of the macaque monkey
code for specific articulated body actions and the consequent articulated static view.

Our experiments have also demonstrated that the combination of motion and form
signals leads to significantly enhanced signal ratios between activities of motion pattern
cells which encode different body actions compared to simulations where only signals
from one pathway are forwarded (see Fig. 4.15). This suggests for a better discrimination
performance between different body actions if signals from both pathways are processed
in model area STS.

Moreover, our results indicate that for this specific task of action recognition, a solely
form-based model that represent series of key body postures performs better in discrim-
inating different body action than a solely motion-based model that is based on pro-
totypical optic flow patterns. A plausible explanation for this effect is that optic flow
information in this scenario is less informative as it encodes mainly the direction of rota-
tion of individual body parts (head/body). However, the task of discriminating between
turn towards and turn away actions is under-determined given only the direction of ro-
tation. Here, the incorporation of form information helps constraining the problem by
additionally providing information about the current body pose (see Fig. 4.17).

Finally, we have shown that a combination of static and dynamic input leads to in-
teresting model behavior. Our model results suggest that a body action is implied from
a single static body posture that is presented prior to the actual motion sequence. This
is indicated by a steeper pre-activation profile in the response of motion pattern neurons
when they have ’seen’ the static pose before the motion sequence starts.
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Figure 4.17: Motion information represented as optic flow pattern is not sufficient to robustly
discriminate between articulated body actions such as turns towards and turns away from an
observer. Knowledge about the current body pose is required to constrain the problem. It is
therefore plausible that a combination of both information sources should lead to better discrim-
ination results.
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4.4.2 Related Work

Several neural network models have been proposed for the recognition of action sequences
[Goddard, 1992; Rosenblum et al., 1996; Little and Boyd, 1998]. Most of them are solely
based on motion feature processing but only few models exist where form and motion
information are both incorporated. For instance, [Schindler and van Gool, 2008] present a
biologically inspired system for action recognition from very short sequences (“snippets”)
of 1–10 frames. They systematically evaluated their model on standard data sets of
biological motion sequences. It turned out that even local shape and optic flow for a single
frame are enough to achieve ≈90% correct recognitions, and snippets of 5-7 frames (0.3-
0.5 seconds of video) are enough to achieve a performance similar to the one obtainable
with the entire video sequence. However, they use a simple concatenation technique
of form and motion feature vectors which are passed as input to a supervised support
vector machine (SVM) classifier. In contrast, in our model all implemented processing
mechanisms, including unsupervised learning, have a biological relevance.

Another biologically motivated system for the recognition of actions from real video
sequences is proposed by [Jhuang et al., 2007]. Their model approach is based on a hier-
archical feedforward architecture inspired by [Riesenhuber and Poggio, 1999] where they
use motion feature detectors of increasing complexity. Performance was systematically
tested on standard data sets. Again, the classification stage is realized by a multi-class
SVM. The model only accounts for the motion pathway.

[Niebles and Fei-Fei, 2007] present a model for human action categorization where
video sequences are processed by extracting static and dynamic interest points. A hierar-
chical model is proposed that can be characterized as a constellation of bags-of-features
and that is able to combine both spatial and spatial-temporal features. Their model simu-
lations show that using both dynamic and static features provides a richer representation
of human actions when compared to the use of a single feature type, which is consistent
with our findings.

[Giese and Poggio, 2004] review psychophysical, neurophysiological and imaging stud-
ies of movement recognition. Furthermore, a computational model is proposed that is
consistent with experimental data. The model addresses the question of what are the
roles of form and motion pathways for the recognition of biological movements. Inspired
by the model architecture of Giese & Poggio, we realized the idea of a neural architecture
that incorporates several cortical stages of both form and motion pathways. Moreover,
we have extended the model to address the outstanding question of how form and motion
pathways could be combined in a biologically plausible way.

[Lange and Lappe, 2006] propose a computational model to explain the possible con-
tributions of form and motion signals to biological motion perception. The form-based
model consists of two stages: a first stage for the analysis of the body posture (form)
and a second stage for the analysis of the temporal order of stimulus postures (motion).
The approach resembles form processing in model areas IT and STS of our model. In
contrast to our model they used computer generated stick-figure sequences of a walking
human as input stimulus. Moreover, their model treats the body as global figure without
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taking into account local stimulus features. Also, the templates that are used as proto-
typical representations of different body postures are predetermined. Instead, we have
employed unsupervised learning mechanisms to automatically extract such prototypical
representation from the input data.

4.4.3 Biological Plausibility

In this subsection we put individual model components into a physiological context and
discuss for their plausibility.

Low- and mid-level features representations in form and motion pathways

Our proposed model simulates biological mechanisms of form and motion processing at
several stages of the ventral and dorsal pathway of the visual cortex.

The primary visual cortex (V1) is the basis of two different pathways, namely the
dorsal and the ventral pathway [Ungerleider and Mishkin, 1982; Mishkin et al., 1983]. In
area V1, local form features such as oriented contrasts are extracted and represented in
hypercolumns [Hubel and Wiesel, 1962, 1968]. Cells in V1 also encode local motion fea-
tures such as direction and speed selectivity [Mikami et al., 1986; Pack et al., 2003]. Thus,
our representations in model area V1 are consistent with these physiological findings.

The form pathway is continued in area V2 [Fellemann and van Essen, 1991], where
long-range lateral interactions have the effect grouping local oriented contrast into smooth
contours [Peterhans and Heydt, 1989; von der Heydt et al., 1984]. In the motion pathway,
V1 projects to the medial temporal cortex (MT/V5) where neural activities are pooled
from a broad spatial context [Movshon et al., 1985; Pack and Born, 2001].

Recurrent feedback processing mechanisms between early visual areas V1 / V2 in
the form pathway and V1 / MT in the motion pathway are incorporated in our model to
improve the robustness of initial form representations [Weidenbacher and Neumann, 2009]
and to disambiguate initial motion estimates [Bayerl and Neumann, 2004]. Physiological
evidence for such modulatory feedback mechanisms was found in monkey visual cortex
[Bullier et al., 1988; Hupé et al., 2001]. More comprehensive discussions on the role of
feedback can be found in [Bullier, 2001; Sillito et al., 2006].

The next level in the motion pathway of our model corresponds to medial superior
temporal cortex (MST) where neurons are tuned to optic flow field patterns learned
through Hebbian synaptic plasticity [Krikwood and Bear, 1994]. Neurons selective to
such complex motion stimuli were identified in several physiological studies, e.g. [Duffy
and Wurtz, 1991; Graziano et al., 1994; Geesaman and Andersen, 1996].

Likewise, in the form pathway model neurons simulate view-tuned neurons found in
monkey inferotemporal cortex (area IT) [Tanaka, 1996; Kobatake and Tanaka, 1994],
which become tuned to complex shapes through learning [Logothetis et al., 1995].
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High-level visual representations of observed actions

A brain area that is known to receive projections from area MST of the dorsal stream and
area IT of the ventral stream is situated in the superior temporal sulcus (STS). Several
studies have investigated the responsiveness of cells in monkey STS to particular body
actions and body postures in the context of social cognition (for a review see [Jellema and
Perrett, 2007] or [Peelen and Downing, 2008]).

One of the first studies that reports on cells in the STS of macaque monkey which
showed sensitivity to articulation and rotation of the body and head was conducted by
[Perrett et al., 1985a]. Similarly, [Oram and Perrett, 1996] found cells in the anterior part
of superior temporal sulcus (STSa) that are both sensitive to form (head and bodies) and
motion direction. Some of these cells are selective for both motion and form of a single
object, not simply the juxtaposition. The majority of responses were characterized as
showing nonlinear dependencies between form and motion inputs. Indeed, model simu-
lations confirm these observation by showing that the combination of form and motion
signals must be of non-linear fashion (see Fig. 4.15)

More recently, [Jellema and Perrett, 2003b] showed that the response of cells in the
temporal lobe of the macaque to the sight of static head and body postures is controlled by
the sight of immediately preceding actions. Moreover, their results support the view that
cells in the temporal cortex could support the formation of expectations about impending
behavior of others.

In another paper [Jellema and Perrett, 2003a], cells in STS were tested with articulated
(two or more body parts move independently from each other) and non-articulated (the
body moves as a rigid object) actions of the upper body and head. The cells studied did
not respond to non-articulated static posture but vigorously to the articulated posture
that form the end-point of the action.

Together, these findings suggest that cell populations in the banks of the STS are
sensitive to the perceptual history which might enable the prediction of future actions.
Also, there is converging evidence that interaction between form and motion signals in
area STS plays a crucial role in the recognition of socially relevant body actions. Thus,
although the role of STS in biological motion recognition is undisputed, the contribution
of signals feeding into the STS and their combination is unclear.

We have addressed these physiological findings by simulations of a model STS. A key
element of this model area are the lateral connections between form- and motion-driven
sequence neurons that are adapted using Hebbian plasticity. Our simulations demonstrate
that a preceding static view of a person can lead to earlier responses of motion pattern
STS cell when the following action sequence constitutes the expected continuation of the
static view. Finally, we have shown that a purely motion- or form-driven model performs
significantly worse compared to the full model that integrates both, motion and form
signals.
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4.4.4 Limitation of the model

There are several limitation in our model that are worth mentioning.
First, training in our model is based on a single virtual character performing action in

front of a homogeneous background. This means that the model cannot cope with back-
ground clutter or occlusions at the current state. Second, we assume that the character is
placed approximately in the center of the image at a predefined distance to the camera.
Thus, our model is not invariant against translation or scale. Third, the model is only
tuned to a specific speed of the body action.

In general, most of these invariance could be achieved by replicating the model at
different locations or spatial and temporal scales in combination with a MAX-pooling
mechanism.

Importantly, the goal of this contribution is not to compete with other models in terms
of high recognition rates or invariance performance. Here, we present a biological plausible
architecture to address the open question of how form and motion signals could interact
and what the roles of form and motion information are in the processing of social actions.
In order to demonstrate the corresponding basic functionality, we have implemented in
detail the main cortical processing stages including low-, mid- and high level processing
of form and motion information.

4.4.5 Open questions

Our model architecture leaves several questions open. For example, in our model archi-
tecture we employ a fixed number of snapshot neurons and optic-flow patterns neurons.
Unsupervised learning methods could be incorporated that dynamically acquire a suitable
number of neurons depending on the complexity of the data.

We have proposed one possible mechanism to combine form and motion signals at the
level of sequence neurons in model area STS. Alternative architectures could be tested
where form and motion pathways (additionally) interact at a higher level. For instance,
this could be interaction between form-driven and motion-driven motion pattern neurons.
Likewise, it would be interesting to examine form-motion interactions one level below
between IT and MST neurons.

Finally, our model architecture includes feedforward, feedback and recurrent lateral
connections. However, mid- and high level processing is mainly based on feedforward
processing. Future model versions could also incorporate feedback connection between
mid- and higher model areas to investigate top-down effects for both form and motion
delivered by a reverse signal flow from representations at STS.
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Chapter 5

Summary

5.1 A survey of major results

Throughout this thesis we have presented a neural model of form processing that makes
the following major contributions:

• We have demonstrated that the model successfully extracts a robust representation
of low level features, invariant against illumination an small changes in viewpoint
[Weidenbacher et al., 2005c].

• A sketch-representation was extracted from model activities that visualizes percep-
tually relevant surface features from perfectly mirrored objects which remain largely
invariant under different environmental scenes [Weidenbacher et al., 2006a].

• We have shown that the model is able to identify and recognize salient image struc-
tures such as smooth contours and different junction configuration which play an
important role for the detection of occlusions between scene elements. A comparison
based on input of benchmark images has shown that our our model results outper-
form state-of-the-art machine vision approaches for corner detection [Weidenbacher
and Neumann, 2009a]

• We have recorded a comprehensive head pose and gaze database that consists of
over 2000 images of faces from 20 subjects. A large amount of different combina-
tions between eye gaze and head pose (horizontally and vertically) was recorded.
[Weidenbacher et al., 2007]

• An extended version of the model was presented that incorporates learning of proto-
typical representations ’snapshots’ of faces and body configurations. Here, we pro-
posed a novel approach to combine form-based representation with motion-based
representation to detect typical body actions in human social interaction. We have
shown that a combined signal based on interactions between both pathways leads to
significantly better results compared to model simulations where only one pathway
was deactivated [Weidenbacher and Neumann, 2009b].
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Zusammenfassung

In dieser Arbeit wird ein neuronales Modell für die visuelle Wahrnehmung von Flächen,
Objekten und Personen vorgestellt. Weiter werden Ergebnisse des vorgestellten neu-
ronalen Modells verglichen mit Bildverarbeitungsverfahren des maschinellen Sehens.

Das visuelle System des Menschen segmentiert 3D Szenen in Flächen und Objekte,
welche in verschiedenen Abständen vom Beobachter vorkommen können. Da bei der Auf-
nahme ein Ausschnitt der 3D Welt auf die Bildebene projiziert wird, entstehen in vielen
Fällen Verdeckungen von Flächen und Objekten. Es gibt experimentelle Hinweise darauf,
dass flächenbasierte Merkmale (Begrenzungskonturen, Kreuzungspunkte) als Indikatoren
für die robuste Segmentierung von Flächen verwendet werden. Diese Flächenmerkmale
zeichnen sich durch ihre Robustheit gegenüber der Umgebungsbeleuchtung aus und sind
deshalb auch für das Lernen von komplexeren Formen wie Gesichtern und deren unter-
schiedliche Ansichten geeignet.

Es wird ein biologisch inspiriertes, rekurrentes Modell vorgestellt, welches flächen-
basierte Merkmale aus einem 2D Grauwertbild extrahiert und geeignet zur Repräsen-
tation von Flächen interpretiert. In Anlehnung an die Neurophysiologie des Gehirns
von Primaten basiert das Modell auf wenigen Basismechanismen, welche in jeder Schicht
unterschiedlich parametrisiert zur Anwendung kommen. Die Architektur zeichnet sich
außerdem auch durch Feedback-Verbindungen aus, welche zu einer zeitlichen Dynamik
der internen Aktivitäten führen. Unter Verwendung dieser Vorverarbeitungsschritte wird
ein mehrschichtiges Lernverfahren zur formbasierten Wahrnehmung der Kopfbewegung
vorgestellt, welches typische Kopfbewegungsmuster bei der visuellen Kommunikation (z.B.
Zuwendung / Abwendung) repräsentieren und detektieren kann.
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