
Universität Ulm | 89069 Ulm | Deutschland
Fakultät für Ingenieurwissenschaften und Informatik
Institut für Neuroinformatik
Direktor: Prof. Dr. Günther Palm

Semi-Supervised Learning with Committees:
Exploiting Unlabeled Data Using Ensemble
Learning Algorithms

Dissertation zur Erlangung des Doktorgrades
Doktor der Naturwissenschaften (Dr. rer. nat.)
der Fakultät für Ingenieurwissenschaften und Informatik
der Universität Ulm

vorgelegt von
Mohamed Farouk Abdel Hady
aus Kairo, Ägypten

Ulm, Deutschland
2010

Amtierender Dekan der Fakultät für Ingenieurwissenschaften und Informatik:
Prof. Dr. Klaus Dietmayer

Vorsitzender des Promotionsausschusses: Prof. Dr. Uwe Schöning

Mitglieder des Promotionsausschusses:
Prof. Dr. Michael Weber
Prof. Dr. Heiko Neumann

Die Gutachter der Dissertation:
Prof. Dr. Günther Palm
Prof. Dr. Wolfgang Minker
Prof. Dr. Barbara Hammer

Tag der Promotion: 8. Februar 2011

University of Ulm | 89069 Ulm | Germany
Faculty of Engineering and Computer Science
Institute of Neural Information Processing
Director: Prof. Dr. Günther Palm

Semi-Supervised Learning with Committees:
Exploiting Unlabeled Data Using Ensemble
Learning Algorithms

A thesis submitted to
Faculty of Engineering and Computer Science
at University of Ulm
in fulfillment of the requirements for the degree of
Doctor of Philosophy in Science (Dr. rer. nat.)

by
Mohamed Farouk Abdel Hady
from Cairo, Egypt

Ulm, Germany
2010

Dean of the Faculty of Engineering and Computer Science:
Prof. Dr. Klaus Dietmayer

Chairman of the doctoral committee: Prof. Dr. Uwe Schöning

Members of the doctoral committee:
Prof. Dr. Michael Weber
Prof. Dr. Heiko Neumann

Reviewers of the dissertation:
Prof. Dr. Günther Palm
Prof. Dr. Wolfgang Minker
Prof. Dr. Barbara Hammer

Day of Conferral of Doctorate: February 8, 2011

Zusammenfassung

Überwachtes maschinelles Lernen ist ein Teilgebiet der Künstlichen Intelligenz,
das sich mit dem automatischen Lernen von Vorhersagemodellen aus gelabelten
Daten befasst. Solche Lernansätze sind nützlich für viele interessante reale An-
wendungen, insbesondere für Aufgaben bei der automatischen Klassifikation, dem
Information-Retrieval oder dem Data Mining aus großen Datensammlungen von
Texten, Bildern und Videos.

Im traditionellen überwachten Lernen, benutzt man gelabelte Daten um das
Vorhersagemodell zu bestimmen. Allerdings ist die Annotation der Trainingsda-
ten mit Lehrersignalen für reale Anwendungen oft schwierig, kosten- und auch zei-
tintensiv, da ein menschlicher Experte mit Erfahrung und der notwendigen Aus-
bildung in der Anwendungsdomäne gebraucht wird. Dies gilt vor allem für Anwen-
dungen mit einer großen Klassenzahl, besonders dann wenn starke Ähnlichkeiten
zwischen den Klassen vorhanden sind.

Semi-überwachtes Lernen (SSL) löst diesen inhärenten Engpass, durch die In-
tegration von ungelabelten Daten in den überwachten Lernprozess. Das Ziel ist
es, die Klassifikationsleistung des Modells durch diese bisher nicht annotierten
Datenpunkte zu steigern, bei gleichzeitiger Reduzierung des Labeling-Aufwandes
durch menschliche Experten. Die Forschungen im Bereich des semi-überwachten
Lernens lassen sich in vier Hauptrichtungen unterteilen: SSL mit Graphen, SSL
mit generativen Modellen, Semi-überwachte Support-Vektor-Maschinen und SSL
mit Ensembles. Semi-überwachtes Lernen und Ensemble-Lernen sind zwei wich-
tige Paradigmen des maschinellen Lernens, die sich fast parallel, aber mit unter-
schiedlichen Philosophien entwickelt haben. Semi-überwachtes Lernen versucht
die Klassifikationsleistung durch die Nutzung ungelabelter Daten zu steigern, da-
gegen wird im Ensemble-Lernen versucht, das gleiche Ziel durch die Verwendung
mehrerer Prädiktoren zu erreichen.

In dieser Dissertation fokussiere ich auf SSL mit Ensembles (SSL durch Disa-
greement) und vor allem auf ”Co-Training” Algorithmen. ”Co-Training” ist ein
oft angewendeter SSL-Algorithmus der von Blum und Mitchell im Jahr 1998 in die

i

Literatur eingeführt wurde. Er setzt voraus, dass jede Instanz durch zwei oder
mehrere Merkmalsmengen repräsentiert ist, die auch ”Views” genannt werden.
Jeder ”View” muss hinreichend zum Lernen des Modells sein und alle ”views”
sollen unabhängig sein. In diesem Zusammenhang habe ich einige zentrale Pro-
blemstellungen bei der Kombination von Ensemble-Lernen und semi-überwachten
Lernen identifiziert, die ich in der vorliegenden Dissertation bearbeitet habe. Hier-
bei diskutiert ich insbesondere Aufgabenstellungen mit großer Anzahl von Klassen
und mit vielen Instanzen, die multimodal repräsentiert sind. Kann ”Co-Training”
angewendt werden, wenn keine natürliche Merkmalsaufspaltung vorliegt? Wie
kann man mehrere Klassifikatoren für das ”Co-Training” effektiv konstruktie-
ren? Wie berechnet man einen Konfidenzwert zur Klassifikation bzw. Vorhersa-
ge? Für den Fall, das es Beziehungen und Ähnlichkeiten zwischen den Klassen
gibt, können diese Beziehungen im SSL gelernt oder ausgenutzt werden? Wie
kann die Dempster-Shafer-Kombinationsmethode zur Konfidenz-Bestimmung ein-
gesetzt werden? Können hierarchische neuronale Netze als Klassifikatoren unge-
labelter Daten verwendet werden? Kann durch aktives Lernen die Performanz
semi-überwachter Lernverfahren verbessert werden? Kann SSL mit Ensembles
auf Regressionsaufgaben übertragen werden?

Ich habe ferner Fragen im Bereich des Ensemble-Lernens diskutiert, die in
einem engen Zusammenhang mit den von mir studierten SSL Verfahren stehen.
Führen trainierbare Kombinierer gegenüber festen Kombinationsabbildungen in
hierarchischen Ensembles yu verbesserten Klassifikationsraten? Lässt sich die Per-
formanz hierarchischer Klassifikatoren durch Ensembles steigern? Lassen sich in-
formationstheoretische Betrachtungen nutzen um die Größe eines Ensembles zu
reduzieren? Die Diskussion dieser Fragestellungen zeigt unmittelbar den Nutzen
der semi-überwachten Lernverfahren in komplexen realen maschinellen Lernver-
fahren.

Abstract

Supervised machine learning is a branch of artificial intelligence concerned with
learning computer programs to automatically improve with experience through
knowledge extraction from examples. It builds predictive models from labeled
data. Such learning approaches are useful for many interesting real-world appli-
cations, but are particularly useful for tasks involving the automatic categoriza-
tion, retrieval and extraction of knowledge from large collections of data such as
text, images and videos.

In traditional supervised learning, one uses ”labeled” data to build a model.
However, labeling the training data for real-world applications is difficult, expen-
sive, or time consuming, as it requires the effort of human annotators sometimes
with specific domain experience and training. There are implicit costs associated
with obtaining these labels from domain experts, such as limited time and finan-
cial resources. This is especially true for applications that involve learning with
large number of class labels and sometimes with similarities among them.

Semi-supervised learning (SSL) addresses this inherent bottleneck by allowing
the model to integrate part or all of the available unlabeled data in its supervised
learning. The goal is to maximize the learning performance of the model through
such newly-labeled examples while minimizing the work required of human anno-
tators. Exploiting unlabeled data to help improve the learning performance has
become a hot topic during the last decade and it is divided into four main di-
rections: SSL with graphs, SSL with generative models, semi-supervised support
vector machines and SSL by disagreement (SSL with committees). It is interest-
ing to see that semi-supervised learning and ensemble learning are two important
paradigms that were developed almost in parallel and with different philosophies.
Semi-supervised learning tries to improve generalization performance by exploit-
ing unlabeled data, while ensemble learning tries to achieve the same objective
by using multiple predictors.

In this thesis, I concentrate on SSL by disagreement and especially on Co-
Training style algorithms. Co-Training is a popular SSL algorithm introduced by

iii

Blum and Mitchell in 1998. It requires that each instance is represented by two
or more sets of features that are called views. Each view must be sufficient for
learning and all views must be independent. I explore several important ques-
tions regarding how to exploit different ensemble learning algorithms in SSL for
tasks involving large number of classes and instances that has either single or
multiple representations. How can Co-Training algorithm be applied if there is
not a natural feature splitting? How to construct multiple classifiers to be co-
trained effectively? How to measure confidence in class label prediction? If there
is relationships and similarities among classes, can these relationships be learned
and exploited during SSL? How can the Dempster-Shafer evidence-theoretic com-
biner be appropriate for confidence measure? How can hierarchical neural network
classifiers exploit unlabeled data to improve the accuracy of image classification?
How can active learning improve the performance of semi-supervised learning with
committees? How can SSL with committees be extended to regression tasks? I
investigate other questions that are indirectly related to SSL. How can a train-
able combiner be designed for hierarchical ensembles? Can an ensemble of class
hierarchies outperform a single class hierarchy? How can information theory be
used to prune ensembles? The answers to the questions illustrate the utility and
promise of semi-supervised learning algorithms in complex real-world machine
learning systems.

Acknowledgments

First of all, I would like to express my thanks to my advisor Prof. Dr. Günther
Palm, the director of the Institute of Neural Information Processing, for accepting
me as a doctoral student at his institute, for giving me the right advice at the
right time and for carefully reviewing this thesis.

Especially, my deepest gratitude goes to my mentor Dr. Friedhelm Schwenker
for supporting me with his valuable suggestions, fruitful discussions and construc-
tive criticisms and for carefully reading this thesis. Despite his workload and tight
schedule, he has cooperated with me in writing many papers.

Many thanks to the German Academic Exchange Service (DAAD) whose
doctoral scholarship financed my thesis. I would like to thank all the DAAD
co-workers both in Cairo and in Bonn for the excellent organization of the schol-
arship. They have done a lot of effort to prepare me, through German courses,
seminars and consultation. After the arrival and during my residence in Germany,
they support me in all aspects. Especially I would like to express my gratitude to
Frau Margret Leopold as she is always reachable and solves any faced problem.

Also, I would like to express my thanks to the German Science Foundation
(DFG) for supporting the publication of my papers and conferences attendance
through the funding of both the project “Learning with Fuzzy Teacher Signals in
Neural Multiple Classifier Systems” (under grant SCHW623/4-3) and the Tran-
sregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology
for Cognitive Technical Systems”.

Last, but not least, I am grateful to my family for all their patience, support
and loving. My mother for her unlimited support and guidance throughout my
life. She has never stopped believing in me and encouraging me to finish my
studies. My son Ahmed and my daughter Heba who make the nights shorter but
my days much brighter. My marvelous wife Marwa for her encouragement and
never-ending love. To them is all my love and prayers.

Ulm, February 2011 Mohamed F. Abdel Hady

v

Contents

Acknowledgments v

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 3
1.1 Semi-Supervised Learning . 3
1.2 Thesis Statement . 5
1.3 Outline of the Thesis . 9

I Basics 13

2 Base Learning Algorithms 15
2.1 Radial Basis Function Neural Networks 15

2.1.1 One-Phase Learning Scheme 18
2.1.2 Two-Phase Learning Scheme 18
2.1.3 Three-Phase Learning Scheme 19
2.1.4 Determine RBF Centers 20

2.1.4.1 k-means Clustering 20
2.1.4.2 Learning Vector Quantization (LVQ) 21
2.1.4.3 Initialization with Decision Trees 24

2.1.5 Determine RBF Widths 25
2.1.6 Calculate the Output Layer Weights 27

2.1.6.1 Error Back Propagation 27
2.1.6.2 Pseudo-Inverse Solution 28

2.2 k-Nearest Neighbors Algorithms 28

vii

2.2.1 k-Nearest Neighbors Classifier 28
2.2.2 Fuzzy k-Nearest Neighbors Classifier 29
2.2.3 Nearest Prototype Classifier 29

2.3 Decision Trees . 30
2.3.1 Evaluation Criteria . 31
2.3.2 Pruning . 33
2.3.3 Classification Phase . 33

2.4 Support Vector Machines . 34
2.4.1 Hard-Margin Support Vector Machines 34
2.4.2 Soft-Margin Support Vector Machines 38
2.4.3 Nonlinear Mapping to a High-Dimensional Space 40

2.4.3.1 Kernel Trick . 40
2.4.3.2 Kernels . 42

3 Ensemble Learning 45
3.1 Introduction . 45
3.2 Diversity . 47

3.2.1 How to Measure Diversity? 47
3.2.1.1 For Regression 47
3.2.1.2 For Classification 48

3.2.2 How to Create Diversity? 50
3.3 Taxonomies of Combination Methods 51

3.3.1 Selection and Fusion . 51
3.3.2 Hard, Ranking and Soft Combiners 51
3.3.3 Class-Conscious and Class-Indifferent Combiners 53
3.3.4 Trainable and Nontrainable Combiners 54

3.4 Ensemble Learning Algorithms . 54
3.4.1 Manipulation of Training Set 54

3.4.1.1 Bagging . 54
3.4.1.2 Boosting . 55

3.4.2 Manipulation of Feature Set 56
3.4.2.1 Random Subspace Method (RSM) 56
3.4.2.2 Random Forest 57

3.4.3 Manipulation of the Output Targets 57

4 Multi-Class Learning 59
4.1 Introduction . 59
4.2 One-Against-Others Approach . 60

4.2.1 Training Phase . 60
4.2.2 Classification Phase . 60

4.3 One-Against-One (Pairwise) Approach 61
4.3.1 Training Phase . 61
4.3.2 Classification Phase . 62

4.4 Error-Correcting Output Codes (ECOC) 63
4.4.1 Training Phase . 63
4.4.2 Classification Phase . 63

4.5 Decision Directed Acyclic Graphs (DDAG) 64
4.5.1 Training Phase . 64
4.5.2 Classification Phase . 65

4.6 Tree-Structured (Hierarchical) Approach 65
4.6.1 Training Phase . 66

4.6.1.1 Generate Class Hierarchy 66
4.6.1.2 Train Binary Classifiers 68

4.6.2 Classification Phase . 69
4.6.2.1 Classical Decision Tree-Like (Hard) Combiner . . 70
4.6.2.2 Product of the Unique Path Combiner 70
4.6.2.3 Dempster-Shafer evidence theory 70
4.6.2.4 Evidence-theoretic Soft Combiner 72

4.6.3 Related Work . 73
4.7 Conclusion . 74

5 Semi-Supervised Learning 75
5.1 Introduction . 75
5.2 What is Semi-Supervised Learning? 78
5.3 Self-Training . 78
5.4 SSL with Generative Models . 79
5.5 Semi-Supervised SVMs (S3VMs) 81
5.6 Semi-Supervised Learning with Graphs 81
5.7 Semi-Supervised Learning with Committees 82

5.7.1 Multi-View Learning . 83
5.7.1.1 Multi-View Co-Training 83
5.7.1.2 Co-EM . 85

5.7.2 Co-Training with Natural Views 86
5.7.3 Co-Training with Random Views 86
5.7.4 Co-Training with Artificial Views 86
5.7.5 Co-Training with Single View 87

5.7.5.1 Statistical Co-learning 87
5.7.5.2 Democratic Co-learning 88
5.7.5.3 Tri-Training . 88
5.7.5.4 Co-Forest . 88

5.7.6 Other Committee-Based SSL Algorithms 89
5.7.6.1 SSMBoost . 89
5.7.6.2 ASSEMBLE . 89
5.7.6.3 DECORATE . 90

5.8 Conclusion . 90

6 Active Learning 93
6.1 What is Active Learning? . 93
6.2 Stream-Based Selective Sampling 94
6.3 Pool-Based Active Learning . 95
6.4 Active Learning Algorithms . 95

6.4.1 Uncertainty Sampling . 95
6.4.2 Query by Committee (QBC) 96
6.4.3 Co-Testing . 98
6.4.4 Active Learning for Regression 99
6.4.5 Active Learning with Structured Instances 100

6.4.5.1 Multi-Instance Active Learning 100
6.4.5.2 Active Learning for Sequence Labeling 100

6.5 Conclusion . 100

7 Applications and Evaluation Method 103
7.1 Applications for Visual Object Recognition 103

7.1.1 Fruits Image Recognition 103
7.1.1.1 Color Histogram 104
7.1.1.2 Orientation Histogram 105

7.1.2 StatLog Handwritten Digits 107
7.1.2.1 Principal Component Analysis (PCA) 107
7.1.2.2 Orientation Histogram 108

7.1.3 UCI Handwritten Digits 108
7.1.4 Columbia Object Image Library (COIL) 108

7.1.4.1 Color Histogram 110
7.1.4.2 Orientation Histogram 110

7.1.5 Emotion Recognition from Facial Expressions 110
7.1.5.1 Data Annotation 110
7.1.5.2 Feature Extraction 111

7.1.6 Benchmark Data Sets . 113
7.1.6.1 Letters Image Recognition 113
7.1.6.2 Texture . 113

7.2 Performance Evaluation . 113
7.2.1 Cross-Validation . 114
7.2.2 Significance Test . 115
7.2.3 Paired t-Test . 116

II Contributions 119

8 Co-Training with Class Hierarchies 121
8.1 Introduction . 121
8.2 Co-Training of Tree-Structured Ensembles 122

8.2.1 Confidence Measure . 123
8.2.1.1 Estimating Class Probabilities 123

8.3 Tree-Structured Co-Training . 124
8.3.1 Confidence Measure . 126

8.4 Application to Visual Object Recognition 127
8.4.1 Fruits Dataset . 127
8.4.2 Handwritten Digits Dataset 127
8.4.3 COIL-20 Dataset . 127

8.5 Experimental Evaluation . 128
8.5.1 Methodology . 128
8.5.2 Results and Discussion . 128

8.6 Related Work . 130
8.6.1 Tree-Structured Approach and Margin Trees 130
8.6.2 Multi-Class Decomposition and SSL 130
8.6.3 Tree-Structured Approach and Boosting 135
8.6.4 Tree-Structured Approach and Neural Combiners 135

8.7 Conclusions . 135
8.8 Future Work . 136

9 Co-Training by Committee for Semi-supervised Classification 141
9.1 Introduction . 141
9.2 Co-Training by Committee (CoBC) 142

9.2.1 Complexity of CoBC . 144
9.2.2 Confidence Measure . 144

9.2.2.1 Estimating Class Probabilities 144
9.2.2.2 Estimating Local Competence 145

9.2.3 Random Subspace Method (RSM) 147
9.2.4 RSM with kNN . 147

9.3 Application to Visual Object Recognition 148
9.3.1 UCI Handwritten Digits Recognition 148
9.3.2 Fruits Recognition . 148
9.3.3 COIL-20 Objects Recognition 149

9.4 Experimental Evaluation . 149
9.4.1 Methodology . 149
9.4.2 Results . 150

9.4.2.1 RSM ensemble against single classifiers 150
9.4.2.2 CoBC against Self-Training 151
9.4.2.3 CPE against Local Competence 152
9.4.2.4 CoBC against Co-Forest 153

9.5 Related Work . 153
9.5.1 Improving Decision Trees Class Probability Estimation . . 153
9.5.2 Single-View Co-Training 156

9.6 Conclusions and Future Work . 156

10 Combining Committee-based SSL and Active Learning 161
10.1 Introduction . 161
10.2 Architecture I: QBC then CoBC 162
10.3 Architecture II: QBC with CoBC 163
10.4 Related Work . 164

10.4.1 SSL with graphs . 164
10.4.2 SSL with generative models 165
10.4.3 SSL with Committees . 166

10.5 Experimental Evaluation . 167
10.5.1 Methodology . 167
10.5.2 Results . 167

10.5.2.1 RSM ensemble against single classifiers 167
10.5.2.2 CoBC against Self-Training 176
10.5.2.3 QBC against Uncertainty Sampling 176
10.5.2.4 QBC-then-CoBC and QBC-with-CoBC 178
10.5.2.5 Other AL and SSL combinations 179

10.6 Conclusions and Future Work . 179

11 Co-Training by Committee for Semi-supervised Regression 181
11.1 Introduction . 181
11.2 CoBCReg Algorithm . 181

11.2.1 Diversity Creation . 182
11.2.2 Confidence Measure . 184
11.2.3 Two-Phase Learning for RBF Networks 185

11.3 Experimental Evaluation . 186
11.3.1 Methodology . 186
11.3.2 Results . 187
11.3.3 Influence of Output Noise 187

11.4 Conclusions and Future Work . 189

12 One-against-One Co-Training with Tri-Class SVMs 193
12.1 Introduction . 193
12.2 One-against-One Co-Training . 194

12.2.1 Motivation . 194
12.2.2 Co-Training with Tri-Class SVMs 195
12.2.3 Confidence Measure . 197

12.3 Support Vector Machines (SVM) 197
12.3.1 Binary-Class SVMs . 198
12.3.2 One-against-One Tri-Class SVMs 199

12.3.2.1 Primal problem 201
12.3.2.2 Dual problem . 202

12.3.3 SMO for Tri-Class SVM 204
12.3.3.1 Computing the Thresholds 205

12.3.3.2 Solving for Two Lagrange Multipliers (takeStep) 207
12.3.4 Probabilistic Output for Tri-Class SVM 210
12.3.5 Decision Fusion for Ensemble of Probabilistic Tri-Class SVMs211

12.4 Facial Expressions Recognition . 212
12.4.1 Feature Extraction . 212
12.4.2 GMM Supervectors . 212

12.4.2.1 Gaussian Mixture Models 214
12.5 Experimental Evaluation . 215

12.5.1 Methodology . 215
12.5.2 Results and Discussion . 216

12.6 Conclusion and Future Work . 217

13 Hierarchical Decision Templates based RBF Network Combiner221
13.1 Introduction . 221
13.2 Proposed Tree Combination Method 222

13.2.1 Hierarchical Decision Profile 222
13.2.2 Standard Decision Templates Combiner 223
13.2.3 RBF Network Combiner using Decision Templates 224

13.3 Experimental Results . 225
13.3.1 Methodology . 225
13.3.2 Results . 226
13.3.3 Influence of the Training Set Size 226
13.3.4 Influence of Number of Decision Templates per Class . . . 228

13.4 Related Work . 228
13.5 Conclusion and Future Directions 229

14 Multi-View Forest 231
14.1 Introduction . 231
14.2 Multi-View Forest . 232

14.2.1 Multi-View Learning . 232
14.2.2 Tree-Structured Multi-class Decomposition 233

14.2.2.1 Generate Class Hierarchy 234
14.2.2.2 Train Binary Classifiers 237

14.3 Forest Classification Phase . 237
14.3.1 Evidence-theoretic Soft Combiner 237

14.3.1.1 Evidence from an individual node classifier 237
14.3.1.2 Evidence from all K-1 node classifiers within tree 238
14.3.1.3 Evidence from all trees within a forest 238

14.4 Application to Visual Object Recognition 239
14.4.1 Results on the Fruits Data Set 239
14.4.2 Results on the Handwritten Digits 242

14.5 Conclusions . 242

15 An Information Theoretic Perspective on Classifier Selection 245
15.1 Introduction . 245
15.2 Entropy and Mutual Information 246
15.3 Information Theoretic Classifier Selection 247

15.3.1 Interaction Information . 248
15.3.2 Mutual Information Decomposition 248

15.4 Classifier Selection Criteria . 249
15.4.1 Maximal relevance (MR) 250
15.4.2 Mutual Information Feature Selection (MIFS) 251
15.4.3 Minimal Redundancy Maximal Relevance (mRMR) 251
15.4.4 Joint Mutual Information (JMI) 252
15.4.5 Conditional Infomax Feature Extraction (CIFE) 252
15.4.6 Conditional Mutual Information Maximization (CMIM) . . 252

15.5 Related Work . 253
15.6 Experimental Evaluation . 254

15.6.1 Methodology . 254
15.6.2 Results . 255

15.7 Conclusion and Future Work . 257

16 Conclusion 259
16.1 Main Contributions . 259
16.2 Future Directions . 263
16.3 Last Words . 265

Bibliography 267

Index 285

List of Figures

1.1 Graphical illustration of the organization of the thesis 10

2.1 An illustration of a radial basis function neural network 18
2.2 An illustration of Voronoi regions in a two-dimensional feature space 20
2.3 An illustration of an LVQ network 22
2.4 A binary decision tree of depth 4 constructed with two features . 24
2.5 The regions in the feature space defined through the leaves of the

decision tree . 25
2.6 A binary decision tree for the iris data set 31
2.7 Information-theoretic feature selection 32
2.8 The optimal separating hyperplane (solid line) and four non-optimal

separating hyperplanes (dashed lines) 34
2.9 The separating hyperplane written in terms of orthogonal weight

w and bias b . 35
2.10 The optimal separating hyperplane 36
2.11 The optimal separating hyperplane for a nonlinearly separable data

set in a two-dimensional space . 38

3.1 Two layer architecture of an ensemble 46
3.2 An ensemble of three linear classifiers 46
3.3 Four approaches to create an ensemble of diverse classifiers 51

4.1 The structure of the Decision Directed Acyclic Graph for a 4-class
problem . 65

4.2 Class hierarchy constructed using Top-Down approach for the hand-
written digits . 68

4.3 Distance between class ωi and class ωk according to Centroid-based
distance calculation method . 69

5.1 Graphical illustration of traditional supervised learning 75

xv

5.2 Computer-aided detection (CAD) mammogram 76
5.3 Remote-sensing image classification 77
5.4 Graphical illustration of semi-supervised learning 77
5.5 Graphical illustration of Self-Training 79
5.6 When Self-Training with 1-Nearest-Neighbor classifier works . . . 80
5.7 When Self-Training with 1-Nearest-Neighbor classifier and a single

outlier does not work . 80
5.8 Graphical illustration of S3VMs 82
5.9 Graphical illustration of label propagation. 82
5.10 Graphical illustration of Co-Training 83
5.11 When Co-Training with two linear classifiers works 84

6.1 Graphical illustration of active supervised learning 94

7.1 MirrorBot test setup. 104
7.2 A sample of the images in the fruits data set 104
7.3 Nine orientation histograms for an image 106
7.4 A sample of the handwritten digits data set 107
7.5 Sample of the handwritten digits 108
7.6 Examples of the COIL data set 108
7.7 Example images used to test and train the recognition system . . 111
7.8 The Sobel edge detection filter applied to an image from the Cohn-

Kanade database . 112
7.9 A sample of the letters Image Recognition Data 113
7.10 Student’s t-distribution . 115

8.1 Architecture I: cotrain-of-trees . 125
8.2 Architecture II: tree-of-cotrains 125
8.3 Class hierarchy for the fruits . 129
8.4 Test error for fruits data set . 132
8.5 Test error rate for handwritten digits data set 133
8.6 Test error rate for COIL data set 134

9.1 Graphical Illustration of CoBC 142
9.2 Average of test error rates using 1-nearest neighbor classifier for

digits data sets . 155
9.3 Average of test error rates using 1-nearest neighbor classifier . . . 156
9.4 Average of test error rates using C4.5 decision tree for digits data

sets . 157
9.5 Average of test error rates using C4.5 decision tree 158

10.1 Graphical illustration of combining SSL and active learning 161
10.2 Graphical illustration of QBC-then-CoBC 163
10.3 Graphical illustration of QBC-with-CoBC 164

10.4 Average of test error rates using 1-nearest neighbor classifier . . . 172
10.5 Average of test error rates using 1-nearest neighbor classifier for

handwritten digits datasets . 173
10.6 Average of test error rates using C4.5 pruned decision tree for hand-

written digits datasets . 174
10.7 Average of test error rates using C4.5 decision tree 175
10.8 Learning curves using 1-nearest neighbor classifier 176
10.9 Learning curves using C4.5 pruned decision tree 177

11.1 The unit circle using Minkowski distance with different distance
orders . 182

11.2 The average of test RMSE at different iterations using noise-free
functions . 188

11.3 Box plots of the test RMSE before and after CoBCReg 189
11.4 The average of test RMSE at different iterations using noisy functions190

12.1 Graphical illustration of SVM . 194
12.2 Tri-Class Co-Training . 195
12.3 An illustration of the hyperplane that discriminates between ωk

and ωh . 198
12.4 An illustration of the two hyperplanes that discriminate between

ωk and ωh . 200
12.5 1-v-1 Tri-class SVMs . 200
12.6 An illustration of SMO constraints 210
12.7 Calculation of GMM Super Vectors 213
12.8 Average test accuracy percentage of Tri-Class SVMs and multi-

view ensembles (mvEns) before and after Co-Training 218

13.1 Class hierarchy constructed for the handwritten digits data set . . 222
13.2 Decision profile using tree-structured ensemble members 223
13.3 An illustrative example for data transformation 224

14.1 An illustration of a Multi-View Forest 233
14.2 Dendrograms constructed for digits data set 234
14.3 Multi-View Tree constructed using Bottom-Up approach for fruits 234
14.4 Single-View Tree constructed using Top-Down approach for digits 235
14.5 An illustration of evidence-theoretic decision profile 239

15.1 Graphical illustration of entropy, conditional entropy, mutual in-
formation and conditional mutual information 247

15.2 The space of first-order classifier selection criteria 251
15.3 Comparison of the normalized test accuracy of Bagging 257
15.4 Comparison of the normalized test accuracy of Random Forest . . 258

List of Tables

3.1 Taxonomy of Combination Methods 53

4.1 Decomposition of a 5-class problem using the One-Against-Others
Approach . 61

4.2 Decomposition of a 5-class problem using the One-Against-One
Approach . 62

4.3 Decomposition of a 5-class problem using the Error-Correcting Ap-
proach . 64

4.4 Decomposition of the 10-class handwritten digits problem into 9
binary classification problems using the Tree-Structured Approach 69

6.1 Taxonomy of SSL and AL algorithms 101

7.1 Description of the data sets . 109
7.2 Confusion matrix of the majority vote 112

8.1 Mean and standard deviation of the test error for the three recog-
nition tasks . 131

9.1 Mean and standard deviations of test error rates where Ensem-
bleLearn = RSM and BaseLearn = 1-nearest neighbor applied to
handwritten digits . 150

9.2 Mean and standard deviations of test error rates where Ensemble-
Learn = RSM and BaseLearn = 1-nearest neighbor 151

9.3 Mean and standard deviations of test error rates where Ensemble-
Learn = RSM and BaseLearn = C4.5 pruned decision tree applied
to handwritten digits datasets . 152

9.4 Mean and standard deviations of test error rates where Ensemble-
Learn = RSM and BaseLearn = C4.5 pruned decision tree 154

10.1 Pairwise Comparison . 167

xix

10.2 Mean and standard deviations of test error rates where Ensem-
bleLearn = RSM and BaseLearn = 1-nearest neighbor applied to
handwritten digits . 168

10.3 Mean and standard deviations of test error rates where Ensemble-
Learn = RSM and BaseLearn = 1-nearest neighbor 169

10.4 Mean and standard deviations of test error rates where Ensemble-
Learn = RSM and BaseLearn = C4.5 pruned decision tree applied
to handwritten digits datasets . 170

10.5 Mean and standard deviations of test error rates where Ensemble-
Learn = RSM and BaseLearn = C4.5 pruned decision tree 171

11.1 Description of the simulated data sets 186

11.2 Mean and standard deviation of the test RMSE using noise-free
functions . 187

11.3 Mean and standard deviation of the test RMSE using noisy func-
tions. 189

12.1 Code matrix . 199

12.2 One-against-One Decision Profile of example x 211

12.3 The performance of single Tri-Class SVMs, multi-view ensembles
(mvEns) and one-against-one ensembles (1v1Ens) on the facial
expression recognitions task . 216

13.1 RBF Network against the other tree combiners, using 100% of the
data . 226

13.2 RBF Network against the other tree combiners, using 40% of the
data . 227

13.3 RBF Network against the other tree combiners, using 60% of the
data . 227

13.4 RBF Network against the other tree combiners, using 80% of the
data . 227

13.5 Average test accuracy for RBF Network combiner with different
number of clustered decision templates per class (c), using 100%
of data . 228

14.1 Mean accuracy and standard deviation of the tree classifiers . . . 240

14.2 Mean and Standard Deviation of CV Test Set Accuracy of Multi-
View Forest consisting of the five Single-View Trees (in bold in
Table 14.1) . 240

14.3 Mean and Standard Deviation of the Multi-View Forests 241

14.4 Results of the five Single-View Tree Classifiers for the handwritten
digits . 242

14.5 Results of the three Multi-View Forests for the digits 243

15.1 Description of the 11 data sets used in this study 254
15.2 Test accuracy for single C4.5 decision tree, ensemble constructed

using Bagging before pruning and after pruning by the 6 selection
criteria under 80% pruning percentage 255

15.3 Test accuracy for single Random Tree (RT), ensemble constructed
using Random Forest (RF) before pruning and after pruning by
the 6 selection criteria under 80% pruning percentage 256

15.4 Corresponding rank for different selection criteria using Bagging
under 80% pruning percentage . 256

15.5 Corresponding rank for different selection criteria using Random
Forest under 80% pruning percentage 256

List of Algorithms

1 Bagging Algorithm . 55
2 AdaBoost Algorithm . 56
3 RandomSubspaceMethod . 57
4 Tree Ensemble Learning Algorithm 66
5 BuildNode - (Bottom-Up Approach) 67
6 BuildNode - (Top-Down Approach) 68
7 Pseudo code of Standard Co-Training 85
8 The pseudo code of Query by Committee 97
9 Co-Training of Tree-Structured Ensembles 122
10 Tree-Structured Ensemble of Co-Training 126
11 Online Tree Ensemble Learning Algorithm 137
12 Binary RBF Network Learning 138
13 Online Binary RBF Network Learning 139
14 Pseudo code of CoBC for classification 143
15 Pseudo Code of the SelectCompetentExamples method 146
16 The pseudo code of QBC-with-CoBC 165
17 Pseudo Code of CoBC for Regression 183
18 Pseudo Code of of the SelectRelevantExamples method 184
19 One-against-One Co-Training . 195
20 Tri-Class Co-Training . 196
21 The pseudo code of SMO for Tri-Class SVM (TriClassSMO) . . 207
22 examineExample(i2) . 208
23 checkOptimality(i2) . 209
24 takeStep(iu, io) . 210
25 BuildNode - (Bottom-Up Approach) 235
26 BuildNode - (Top-Down Approach) 236
27 Pseudo Code of Classifier Selection 250

1

Chapter 1

Introduction

Machine learning is the study of how to learn computer programs to automati-
cally improve with experience through knowledge extraction from examples. They
improve by becoming better at making decisions, explaining observations, or pre-
dicting outcomes. For instance, computers have been learned to interpret human
speech by learning from vocal recordings that have been annotated for words and
sentences [37, 154]. They have been learned to diagnose diseases by analyzing
profiles of healthy and unhealthy patients [119]. They have been learned to inter-
pret handwritten digits and characters [136] and to analyze the contents of videos
and images [212]. They have been learned to recognize hand gestures and facial
expressions [190, 64, 169]. They have been learned to filter spam emails through
analyzing thousands of legal and spam emails [96]. Generally, the learning algo-
rithms [58] used for these tasks fall into two groups:

• Unsupervised learning: The learning algorithm is given a collection of un-
labeled data. The goal is to organize aspects of the collection in some way.
For instance, clustering data points, called examples, into natural groups
based on a set of observable features.

• Supervised learning: The learning algorithm is given a collection of labeled
instances, each denoted by the pair (x, y). The goal is to construct a model
that can predict the output y for any new example x, based on a set of
features that describe it. When y belongs a set of discrete values, the task
is called classification, when it is a real number, the task is called regression.

This thesis is concerned with applications that can be approached as supervised
learning problems.

1.1 Semi-Supervised Learning

Supervised learning algorithms require a large amount of labeled training data
in order to construct models with high prediction performance, see Figure 5.1.

3

4 Chapter 1. Introduction

In many practical data mining applications such as computer-aided medical di-
agnosis [119], remote sensing image classification [175], speech recognition [95],
email classification [96], or automated classification of text documents [139, 140],
there is often an extremely inexpensive large pool of unlabeled data available.
However, the data labeling process is often difficult, tedious, expensive, or time
consuming, as it requires the efforts of human experts or special devices. Due to
the difficulties in incorporating unlabeled data directly into conventional super-
vised learning algorithms such as support vector machines and neural networks
and the lack of a clear understanding of the value of unlabeled data in the learn-
ing process, the study of semi-supervised learning attracted attention only after
the middle of 1990s. As the demand for automatic exploitation of unlabeled data
increases, semi-supervised learning has become a hot topic.

In the machine learning literature, there are mainly three paradigms for ad-
dressing the problem of combining labeled and unlabeled data to boost the per-
formance: semi-supervised learning, transductive learning and active learning.
Semi-supervised learning (SSL) refers to methods that attempt to take advantage
of unlabeled data for supervised learning, see Figure 5.4, or to incorporate prior
information such as class labels, pairwise constraints or cluster membership in the
context of unsupervised learning. Transductive learning refers to methods which
also attempt to exploit unlabeled examples but assuming that the unlabeled ex-
amples are exactly the test examples. Active learning [173] refers to methods
which assume that the given learning algorithm has control on the selection of
the input training data such that it can select the most important examples from
a pool of unlabeled examples, then an oracle such as a human expert is asked for
labeling these examples, where the aim is to minimize data utilization.

The recent research of the machine learning community on semi-supervised
learning (SSL) concentrates into four directions: semi-supervised classification
[30, 140, 96, 210, 215, 119], semi-supervised regression [214], semi-supervised
clustering such as constrained and seeded k-means clustering [195, 181, 19] and
semi-supervised dimensionality reduction [20, 218]. Interested readers in recent
advances of SSL are directed to the literature survey of Zhu [219]. Many semi-
supervised classification algorithms have been developed. They can be divided
into five categories according to Zhu [219]: (1) Self-Training [139], (2) semi-
supervised learning with generative models [131, 140, 175], (3) S3VMs (Semi-
Supervised Support Vector Machines) [88, 39, 73, 115], (4) semi-supervised learn-
ing with graphs [23, 212, 220], and (5) semi-supervised learning with committees
(semi-supervised by disagreement) [30, 140, 96, 210, 215, 119, 213].

The goal of this thesis is to demonstrate that supervised classification with
committees using a small amount of labeled data and a large number of unlabeled
examples create more accurate classifier ensembles. In general, unlabeled exam-
ples are much less expensive and easier to collect than labeled examples. This is
particularly true for image, audio and video classification tasks involving online
data sources, such as remote-sensing images [175], speech signals [95] and medical

1.2. Thesis Statement 5

diagnosis [119], where huge amounts of unlabeled content are readily available.
Collecting this content can frequently be done automatically, so it is feasible to
quickly gather a large set of unlabeled examples. If unlabeled data can be inte-
grated into supervised learning then building pattern recognition systems will be
significantly faster and less expensive than before.

1.2 Thesis Statement

This thesis asks and answers several research questions. This section summarizes
and formulates these questions. The second part of the thesis will answer these
questions where the answers are evaluated through several statistical experiments.

Q1: How can Co-Training be applied if there is not a natural feature
splitting? Co-Training is a popular semi-supervised learning algorithm that
requires each example to be represented by multiple sets of features (views) where
these views are sufficient for learning and independent given the class. However,
these requirements are hard to be satisfied in many real-world domains because
there are not multiple representations available or it is computationally inefficient
to extract more than one feature set for each example. Co-Training does not
perform so well without an appropriate feature splitting [139]. I investigate single-
view Co-Training style algorithms that do not require redundant and independent
views (see Chapter 9).

Q2: How to construct multiple classifiers to be co-trained effectively?
This question is a more general form of question Q1. Wang and Zhou [197]
provided a theoretical analysis that emphasizes that the important factor for
the success of disagreement-based single-view Co-Training style algorithms is the
creation of a large diversity (disagreement) among the co-trained classifiers, re-
gardless of the method used to create diversity, for instance through: sufficiently
redundant and independent views as in standard Co-Training [30, 139], artificial
feature splits in [62, 162], different supervised learning algorithms as in [71, 210],
training set manipulation as in [24, 215] or feature set manipulation as in [119] or
different parameters of the same supervised learning algorithm as in [214]. Note
that Brown et al. presented in [36] an extensive survey of the various techniques
used for creating diverse ensembles, and categorized them, forming a preliminary
taxonomy of diversity creation methods. One can see that multi-view Co-Training
is a special case of semi-supervised learning with committees. Therefore, the data
mining community is interested in a more general Co-Training style framework
that can exploit the diversity among the members of an ensemble for correctly
predicting the unlabeled data in order to boost the generalization ability of the
ensemble. I investigate how to create good classifiers for Co-Training such as

6 Chapter 1. Introduction

applying the random subspace method or Bagging (see Chapter 8, Chapter 9,
Chapter 11 and Chapter 12).

Q3: How to measure confidence in label prediction? An important factor
that affects the performance of any Co-Training style algorithm is how to mea-
sure the confidence in predicting the class label of an unlabeled example which
determines its probability of being selected. An inaccurate confidence measure
can lead to selecting and adding mislabeled examples to the labeled training
set which leads to performance degradation during the SSL process. Often the
Co-Training style algorithm depends on class probability estimates in order to
measure confidence. I will study how to improve the class probability estimates
of the co-trained classifiers such as hierarchical neural networks, decision trees,
k-nearest neighbor classifiers, RBF neural network regressors and support vector
machines (see Sections 8.2.1, 8.3.1, 9.2.2, 11.2.2 and 12.2.3, respectively).

Q4: How can the Dempster-Shafer evidence-theoretic combiner be
used for confidence measure? This question is special case of question Q3
when hierarchical multi-class decomposition is used. There are many reasons for
selecting this theory in the context of hierarchical multiple classifiers combination.
It can discriminate between ignorance and uncertainty. Since it is able to assign
evidence not only to atomic but also to subsets and intervals of hypotheses, it eas-
ily represents evidences at different levels of abstraction. It can combine evidences
provided by different sources and can measure the conflict among them. I investi-
gate to measure the prediction confidence of hierarchical ensembles based on the
class probability estimates provided by the Dempster-Shafer evidence-theoretic
combination method (see Section 8.2).

Q5: How can hierarchical neural network classifiers explpot unlabeled
data to improve the classification accuracy? The hierarchical neural net-
work classifiers as any supervised learning algorithm perform well when there is
a sufficient amount of labeled data. Most of the Co-Training related work used
just two classifiers with a natural feature splitting. I investigate semi-supervised
learning algorithms to exploit the abundant unlabeled data to improve the gen-
eralization ability when the available labeled data is scarce. I demonstrate that
Co-Training is a helpful and valid approach to use unlabeled data for image clas-
sification (see Chapter 8).

Q6: How can active learning improve the performance of semi-supervised
learning with committees? Both semi-supervised learning and active learn-
ing tackle the same problem but from different directions. That is, they aim to
improve the generalization error and at the same time minimize the cost of data
annotation through exploiting the abundant unlabeled data. Semi-supervised

1.2. Thesis Statement 7

learning exploits the unlabeled examples where the underlying classifiers are most
confident in the prediction of their class labels. They depend on a given confi-
dence measure for sample selection. On the other hand, active learning exploits
the most informative unlabeled examples where the underlying classifiers disagree
on the prediction of their labels (contention points). I study how to combine the
advantages of committee-based semi-supervised learning and active learning (see
Chapter 10).

Q7: How can semi-supervised learning with committees be extended to
regression tasks? Although the success of semi-supervised learning for classi-
fication, there is not much work on SSL for regression. For classification, it is a
straightforward task because many classifiers can estimate class posterior prob-
abilities such as Naive Bayes classifier or return real-valued outputs that can be
transformed to class probability estimates such as neural networks and decision
trees. Assuming that a classifier estimates the probability that an instance x1

belongs to classes ω1 and ω2 is 0.9 and 0.1, respectively, while that for an in-
stance x2 is 0.6 and 0.4, respectively, then the classifier is more confident that x1

belongs to classes ω1 than x2. Therefore, a labeling confidence can be assigned to
each unlabeled example using its class probability distribution. For regression,
the mechanism for estimating the confidence is a challenge because the number of
possible predictions in regression is unknown. Krogh and Vedelsby [103] proposed
to use variance as an effective selection criterion for active learning because a high
variance between the estimates of the ensemble members leads to a high average
error. Unfortunately, a low variance does not necessarily imply a low average
error. That is, it can not be used as a selection criterion for SSL because agree-
ment of committee members does not imply that the estimated output is close
to the target output. I investigate how to extend the ideas of semi-supervised
learning with committees to regression tasks (see Chapter 11).

Q8: How to design a trainable combiner that outperforms non-trainable
ones for hierarchical ensembles? A key factor for the design of an effective
ensemble is how to combine its member outputs to give the final decision. Al-
though there are various methods to build the class hierarchy (first stage) and
to solve the underlying binary-class problems (second stage), there is not much
work to develop new combination methods that can best combine the intermedi-
ate results of the binary classifiers within the hierarchy (third stage). The sim-
ple aggregation rules used for flat multiple classifier systems such as minimum,
maximum, average, product and majority vote can not be applied to hierarchi-
cal decision profiles. I introduce a novel fusion method for hierarchical neural
network classifiers (see Chapter 13).

8 Chapter 1. Introduction

Q9: Can an ensemble of class hierarchies outperform a single class hier-
archy? An ensemble can outperform its individual classifiers if these classifiers
are diverse and accurate. Dietterich [55] suggested statistical, computational and
representational reasons why it is possible to construct an ensemble of classifiers
that is often more accurate than a single classifier. These three fundamental
reasons represent the most important shortcomings of existing base learning al-
gorithms. Hence, the aim of an ensemble method is to alleviate or eliminate these
shortcomings. The use of multiple classifiers allows to exploit the complementary
discriminating information that these classifiers may provide. Therefore, the ob-
jective of combining such a group of classifiers is approximate the best classifier
by producing a more accurate classifier decision than a single classifier. I investi-
gate the generation of a set of class hierarchies based on a set of representations.
In order to construct diverse individual classifiers, I assume that the object to be
classified is described by multiple feature sets (views). The aim is to construct
different class hierarchies using different combinations of views to improve the
accuracy of the multi-class learning. In addition, I arise the question: “can soft
combination methods outperform majority vote when evidence-theoretic frame-
work is used to retrieve the decision of each class hierarchy?” (see Chapter 14).

Q10: How can information theory be used to prune ensembles? Typi-
cally, ensemble learning methods comprise two phases: the construction of mul-
tiple individual classifiers and their combination. Recent work has considered
an additional intermediate phase that deals with the reduction of the ensemble
size prior to combination. This phase has several names in the literature such as
ensemble pruning, selective ensemble, ensemble thinning and classifier selection,
the last one of which is used within this chapter. Classifier selection is important
for two reasons. The first reason is classification accuracy. An ensemble may
consist not only of accurate classifiers, but also of classifiers with lower predictive
accuracy. Pruning the poor-performing classifiers while maintaining a good di-
versity of the ensemble is typically considered as the main factor for an effective
ensemble. The minimization of classification time complexity is crucial in certain
applications, such as stream mining. Thus the second reason is equally impor-
tant, efficiency. Having a very large number of classifiers in an ensemble adds a lot
of computational overhead. For instance, decision trees may have large memory
requirements and lazy learning methods have a considerable computational cost
during classification phase. Recently an information-theoretic view was presented
for feature selection [35]. It derives a space of possible selection criteria and show
that several feature selection criteria in the literature are points within this con-
tinuous space. I investigate to export this information-theoretic view to solve
the open issue of classifier selection. The objective is to improve the efficiency of
semi-supervised learning with committees through select the most accurate and
diverse classifiers that can further undergo Co-Training (see Chapter 15).

1.3. Outline of the Thesis 9

1.3 Outline of the Thesis

This thesis is organized into two parts. The first part describes the basics and
the theoretical foundations of the new methods proposed in this thesis. This part
is organized as follows:

• Chapter 2 presents the central building blocks of the learning paradigms
proposed in the second part chapters of this thesis. It contains introduc-
tory sections for radial basis function neural networks, k-nearest neighbor
classifiers, decision trees and support vector machines.

• Chapter 3 provides an overview of ensemble learning in general, as well
as the particular ensemble methods using in the contributions part of this
thesis.

• Chapter 4 explores the different techniques in the literature to decompose
a multi-class problem into a set of binary problems. In particular, it details
the hierarchical tree-structured approach that will be used later in this
thesis.

• Chapter 5 presents an overview of semi-supervised learning. It provides a
taxonomy of the existing semi-supervised learning paradigms in general and
in particular a survey on the recently developed semi-supervised algorithms
that are based on ensemble learning.

• Chapter 6 provides an overview of active learning and especially the committee-
based active learning algorithm. It presents the existing informativeness
measures used by different active learners.

• Chapter 7 presents the real-world object recognition tasks used in this the-
sis. It describes the used feature extraction procedures such as principle
component analysis, color histogram and orientation histogram. In addi-
tion, the cross validation technique and significance tests especially t-test
are presented as they are used for performance evaluation.

The second part describes the main contributions of this thesis. It is organized
as follows:

• Chapter 8 proposes two novel frameworks for multiple-view semi-supervised
learning. These settings can reduce the annotation effort required for tasks
such as image classification when each image is represented by multiple sets
of features that provide different information.

• Chapter 9 introduces a new single-view semi-supervised framework that
requires an ensemble of diverse classifiers instead of redundant and inde-
pendent views required by the traditional Co-Training algorithm. These

10 Chapter 1. Introduction

Ch2. Base Learning Algorithms

Ch3. Ensemble Learning

Ch4. Multi-Class Learning

Ch5. Semi-Supervised Learning

Ch6. Active Learning

Ch8. Co-Training with Class

Hierarchies

Ch13. Hierarchical Neural

Combiner

Ch11. Co-Training by Committee

for Regression

Ch10. Combining Committee–based

Semi-supervised and Active Learning

Ch14. Multi-View Forest

Ch12. One-against-one Co-Training

with Tri-Class SVMs

Ch15. Information-Theoretic

Ensemble Pruning

Ch9. Co-Training by Committee for

Classification

Ch7. Applications and

Evaluation Method

Figure 1.1: Graphical illustration of the organization of the thesis

settings can reduce the annotation cost required for tasks where each pat-
tern is represented by only a single set of features.

• Chapter 10 proposes two possible combinations of committee-based active
learning and the committee-based semi-supervised learning framework in-
troduced in Chapter 9.

• Chapter 11 extends the idea of semi-supervised learning with committees
from classification to regression tasks.

• Chapter 12 introduces a multi-view semi-supervised learning framework
that is based a newly developed version of support vector machine (SVM).
It includes an extended version of Sequential Minimal Optimization that
is used for fast learning of SVM. In addition, it presents a probabilistic
interpretation of SVM outputs.

The last three chapters of the second part describe some of my additional
research in ensemble learning that are not directly related to semi-supervised
learning, as follows:

• Chapter 13 introduces a new trainable fusion method for a tree-structured
ensemble that integrates statistical information about its individual out-
puts, in the form of decision templates, into the training of an Radial Basis

1.3. Outline of the Thesis 11

Function (RBF) network. In addition, it presents a new similarity measure
based on multivariate Gaussian function to match a decision profile with
decision templates.

• Chapter 14 proposes a new ensemble method that constructs an ensemble
of tree-structured classifiers using multi-view learning. The results indi-
cate that the proposed forest can efficiently integrates multi-view data and
outperforms the individual tree-structured classifiers.

• Chapter 15 provides an information-theoretic perspective on the issue of
ensemble pruning and classifier selection.

Figure 1.1 illustrates the relationship between part I and part II. Finally, Chapter
16 summarizes the key contributions of this thesis, discusses open problems and
future directions in semi-supervised learning, and offers some concluding remarks.

Part I

Basics

13

Chapter 2

Base Learning Algorithms

2.1 Radial Basis Function Neural Networks

The radial basis function (RBF) networks are artificial neural networks that use
radial basis functions as activation functions. They were introduced into the neu-
ral network literature by Broomhead and Lowe in [34]. They are used in function
approximation, classification, time series prediction, and control. The theoretical
basis of the RBF approach lies in the field of interpolation of multivariate func-
tions. The goal of interpolating a set of tuples {(xµ, yµ) : xµ ∈ RD, yµ ∈ R, µ =
1, . . . ,M} is to find a function f : RD → R with f(xµ) = yµ for all µ = 1, . . . ,M .
The function f is a linear combination of M radial basis functions, each associ-
ated with a data point xµ and weighted by an appropriate real-valued coefficient
wj:

f(x) =
M∑
µ=1

wµφ(‖x− xµ‖p) (2.1)

and

‖x− xµ‖p =

(
D∑
i=1

|xi − xµi|p
)1/p

, for x, xµ ∈ RD (2.2)

where ‖.‖p denotes the Minkowski distance between two D-dimensional feature
vectors x and xµ, as defined in Eq. (2.2) where p ∈ [1,∞) is the distance order.
In general, the smaller the order, the more robust the resulting distance metric
to data variations. Then the interpolation problem is equivalent to the following
system of linear equations

Φw = y (2.3)

where w = (w1, . . . , wM)T , y = (y1, . . . , yM)T and Φ is a square matrix of order
M defined by

Φ = [φ(‖xµ − xj‖p)]
M
µ,j=1 (2.4)

15

16 Chapter 2. Base Learning Algorithms

If matrix Φ is invertible, the solution w of the interpolation problem can be
explicitly calculated and has the form:

w = Φ−1y (2.5)

Examples of radial basis functions φ often used in applications are:

1. Gaussian function

φ(r) = e
−r2
2σ2 for some σ > 0, and r ≥ 0 (2.6)

2. Inverse Multiquadric

φ(r) =
1

(r2 + σ2)1/2
for some σ > 0, and r ≥ 0 (2.7)

3. Thin plate spline
φ(r) = r2ln(r) for some r ≥ 0 (2.8)

The most popular and widely used RBF is the Gaussian function, defined in Eq.
(2.6), using the L2-norm which is known as Euclidean distance and given as.

φj(x) = φ(‖x− cj‖2) = exp(
−‖x− cj‖2

2

2σ2
j

), for j = 1, . . . ,M (2.9)

where cj ∈ RD is called the center or prototype of the jth RBF and σj ∈ R is
called the width or the scaling parameter determines how steeply φj(x) decreases
with growing the distance between x and the center cj.

The target solution of the interpolation problem is typically a function passes
through every data point (xµ, yµ). But in the presence of noise, the solution of the
problem is a function oscillating between the given data points. An additional
problem with the RBF approach for interpolation is that the number of basis
functions is equal to the number of data points. As a result, calculating the
inverse of the M ×M matrix Φ becomes computationally expensive.

Broomhead and Lowe [34] proposed to reduce the number of basis functions
J << M and to place the basis functions at centers cj instead of the training
examples xµ in order to reduce the computational complexity. Thus the decision
function can be written as,

f(x) =
J∑
j=1

wjφ(‖x− cj‖p). (2.10)

This technique produces a solution by approximating the data points instead of
interpolating them.

2.1. Radial Basis Function Neural Networks 17

In addition, in [34] an interpretation of the RBF approach as an artificial
neural network is given. An RBF network typically has three layers as shown
in Figure 2.1: an input layer contains D input neurons to feed an input feature
vector into the network; a hidden layer of J non-linear RBF neurons as activation
functions; and a layer of K output neurons, calculating a linear combination
of the basis functions. Under some conditions on the basis function φ, RBF
networks are universal approximators. This means that an RBF network with
enough hidden neurons can approximate any continuous function with arbitrary
accuracy [142]. This implies that RBF networks with adjustable prototypes can
also be used for classification tasks [149]. For classification, the RBF network has
to perform a mapping from a continuous input space RD into a finite set of classes
Ω = {ω1, . . . , ωK}, where K is the number of classes. In the training phase, the
parameters of the network are determined from a finite labeled training set

L = {(xµ, yµ) : xµ ∈ RD, yµ ∈ Ω, µ = 1, . . . ,M} (2.11)

where each feature vector xµ is associated with a single class label yµ. In the
classification phase, the network is applied to an unlabeled example to predicted
its class label. The output layer of an RBF network has an output unit for each
class in Ω, and using the 1-of-K encoding scheme, the class label of each training
example yµ ∈ Ω is encoded into a K-dimensional binary vector tµ ∈ {0, 1}K
through the relation tµk = 1 iff yµ = ωk. Note that, other encoding schemes can
be used but they are not common in pattern recognition applications. An RBF
network with J basis functions is performing a mapping f : RD → RK . That is,

fk(x) =
J∑
j=1

wjkφj(x) + w0k, for k = 1, . . . , K (2.12)

where the w0k denotes the bias term, which may be absorbed into the summation
by including an extra basis function whose activation is set equal to 1 on the
whole feature space (φ0(x) = 1). Typically, in pattern recognition the individual
network outputs fk(x) are interpreted as class membership estimates. Therefore,
an example x is assigned the class label ωk∗ whose output unit has the maximum
activation:

k∗ = arg max
1≤k≤K

fk(x) (2.13)

Typically, an RBF neural network differs from the RBF approach for interpola-
tion in some ways:

1. The number of basis functions J is much less than the number of train-
ing examples M (J << M), and the basis function centers cj ∈ RD are
representative examples that are not necessary belonging to the training
set.

18 Chapter 2. Base Learning Algorithms

f1

Σ

ϕ1

Σ

fk

Σ

ϕj

Σ

fK

Σ

ϕJ

Σ

f1(x) fk(x) fK(x)

x1 xi xD

w01
wjk

Input neurons

RBF neurons

Output neurons

W

+1

wJKw0k

Figure 2.1: An illustration of a radial basis function neural network with
D input neurons, J RBF neurons in the hidden layer and K output neurons

2. Instead of a global scaling parameter σj ∈ R for all basis functions, each
basis function has its own scaling parameter that is given through scalars,
vectors, or matrices σj ∈ R, ∈ RD, or ∈ RD×D.

For a multilayer perceptron (MLP) network, all parameters are usually adapted
simultaneously by an optimization procedure. This training procedure is su-
pervised, since it minimizes an error function measuring the difference between
the network output and the correct output values. In contrast, there are three
schemes have been developed to adjust the RBF centers and scaling parameters
and the output layer weights.

2.1.1 One-Phase Learning Scheme

Here, the centers cj are randomly sampled from the set of training examples L (or
all training examples are used as centers). Typically, all the scaling parameters
σj are set to a predefined real number σ. Thus, only the output layer weights wjk
are adjusted through some kind of supervised optimization in order to minimize
a given error function (see Subsection 2.1.6).

2.1.2 Two-Phase Learning Scheme

Here, the two layers of the RBF network are trained separately, as follows: the
RBF centers cj and scaling parameters σj are determined, then subsequently the
output layer is adjusted.

2.1. Radial Basis Function Neural Networks 19

1. First, determine the RBF centers cj ∈ RD and the scaling parameters σj
through a supervised or an unsupervised clustering algorithms such as k-
means clustering, learning vector quantization (LVQ) or classification trees
(see Subsection 2.1.4 and Subsection 2.1.5).

2. Then, adjust the output layer weights wjk ∈ R for j = 1, . . . , J and
k = 1, . . . , K, using gradient descent error optimization or pseudo-inverse
solution (see Subsection 2.1.6).

2.1.3 Three-Phase Learning Scheme

After the initialization of the RBF network using the two-phase learning scheme,
a third training phase for RBF networks [166] is performed in the style of error
back propagation learning in MLPs, where all types of parameters are adapted
simultaneously. This learning scheme utilizes non-linear optimization and is com-
putationally expensive but yields improved classification results compared to the
two-stage learning scheme. If the error function of the network is a differentiable
function as the sum-of-squares error,

E =
1

2

M∑
µ=1

K∑
k=1

(tµk − fk(xµ))2, (2.14)

which is the difference between target output tµk and the network output fk(xµ).
For a network with differentiable activation functions, a necessary condition for a
minimal error is that its derivatives with respect to the kernel location cj, kernel
width Σj, and output weights wjk vanish. In case of Gaussian function where Σj

is a diagonal matrix defined by a vector σj ∈ RD, the learning rules are,

wjk = wjk − η
M∑
µ=1

φj(xµ)(tµk − fk(xµ)), (2.15)

cji = cji − η
M∑
µ=1

φj(xµ)
xµi − cji
σ2
ji

K∑
k=1

wjk(tµk − fk(xµ)), (2.16)

σji = σji − η
M∑
µ=1

φj(xµ)
(xµi − cji)2

σ3
ji

K∑
k=1

wjk(tµk − fk(xµ)) (2.17)

for i = 1, . . . , D and j = 1, . . . , J . Choosing the right learning rate η is a critical
issue in neural network training. If its value is too low, convergence to a minimum
is slow. On the other hand, if it is selected too high, successive steps in parameter
space overshoot the minimum of the error surface. This problem can be avoided
by a proper stepwise tuning.

20 Chapter 2. Base Learning Algorithms

2.1.4 Determine RBF Centers

Clustering and vector quantization techniques are typically used when the data
points have to be divided into natural groups and no class labels are available.
Here, the aim is to determine a small but representative set of centers or proto-
types from a larger data set in order to minimize some quantization error. For
classification tasks where the class labels of the training examples are known,
supervised vector quantization algorithms, such as Kohonen’s learning vector
quantization (LVQ) algorithm, can also be used to determine the prototypes.

2.1.4.1 k-means Clustering

The k-means clustering [123, 20] is an unsupervised competitive learning algo-
rithm that partitions a given feature space into k disjoint regions <1, . . . ,<k where
each region j is defined as,

<j = {x ∈ RD : j = arg min
1≤i≤k

‖x− ci‖2} (2.18)

Such a partition of the input space is called a Voronoi tessellation, see Figure 2.2,

Figure 2.2: An illustration of Voronoi regions in a two-dimensional feature
space

where prototype vector cj is the representative for region <j. The loss function
defined by

E(c1, . . . , ck) =
k∑
j=1

∑
xµ∈Cj

‖xµ − cj‖2
2 (2.19)

is minimal, if each prototype cj is the center of gravity of data group or cluster
Cj = <j ∩ {x1, . . . , xM}.

Given an initial set of prototypes cj, j = 1, . . . , k, most often by randomly
selecting k examples from the training data set L. For each training example
xµ ∈ L, first the Euclidean distance between xµ and all the existing prototypes is

2.1. Radial Basis Function Neural Networks 21

calculated, dj = ‖xµ − cj‖. Competition is realized by searching for the nearest
prototype for xµ, dj∗ = min1≤j≤k dj. If the incremental k-means clustering is
adopted, the winning prototype cj∗ is then directly updated using the learning
rule

cj∗ = cj∗ +
1

|Cj∗|+ 1
(xµ − cj∗) (2.20)

which moves the prototype cj∗ in the direction of the example xµ. If the batch
mode k-means clustering is used, add xµ into Cj∗ and after the presentation of all
training examples, all the prototypes cj are adapted through the learning rule

cj =
1

|Cj|
∑
xµ∈Cj

xµ (2.21)

This iterative process can be stopped if the sets of data points within each cluster
Cj in two consecutive epochs are not changed.

Supervised k-means clustering. Since the training examples are labeled,
for each class ωk ∈ Ω, the above procedure is repeated on the training examples
Lk belonging to this class, Lk = {xµ : (xµ, yµ) ∈ L, yµ = ωk}. As a result,
nk clusters are formed for class ωk where nk is proportional to the number of
examples in Lk, that is,

nk = α× |Lk|, where α ∈ (0, 1) (2.22)

After performing k-means clustering for K times, the prototypes c1, . . . , cJ can
be used as the initial RBF centers where J =

∑K
k=1 nk denotes the total number

of prototypes in the hidden layer of the RBF network.

2.1.4.2 Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) [99] is a supervised competitive neural net-
work learning algorithm. The LVQ method can be thought of as a supervised
version of the original Self Organizing Maps (SOM) [98]. LVQ network, as shown
in Figure 2.3, consists of two layers: an input layer that feeds the examples
into the network and a hidden layer with J neurons that are called prototypes
or code vectors. The prototype vectors c1, . . . , cJ divide the input space into
J disjoint regions called Voronoi cells. In the training phase, a training set
L = {(xµ, yµ) : µ = 1, 2, ...,M} is iteratively presented to the network. A set
of J randomly selected examples from L is used as an initialization of the proto-
types cj, j = 1, . . . , J . At each iteration, the location of prototype cj is updated
according to its distances to the presented training examples xµ where a proto-
type cj moves in the direction of xµ if they belong to the same class and moves
in the opposite direction otherwise. There are several learning schemes which
differ in terms of the definition of the learning rate and the number of prototypes

22 Chapter 2. Base Learning Algorithms

adapted at each learning epoch. Some of the learning strategies are described
below.

In the classification phase, a given example x is assigned to the class label of
its nearest prototype cj∗ where the nearest prototype is defined as,

j∗ = arg min
1≤j≤J

‖x− cj‖ . (2.23)

Note that this is the decision rule adopted by the 1-nearest neighbor classifier (see
Section 2.2). Some of the variants of the LVQ learning algorithm are described
below while both the initialization and the classification phases are the same for
all variants.

|| . ||

Σ

|| . ||

Σ

|| . ||

Σ

|| . ||

Σ

x1 xi xD

Input neurons

LVQ neurons

Figure 2.3: An illustration of an LVQ network

LVQ1: This learning algorithm is the basic version of the LVQ algorithm. It
is also called winner-takes-all scheme, because only the nearest prototype, called
winning neuron, to the presented training example is adapted while the other
prototypes remain unchanged. At each iteration t and for each example xµ, first
the distance between xµ and all prototypes cj are calculated

dj = ‖xµ − cj‖ . (2.24)

Then the index of the winning prototype cj∗ is defined as

j∗ = arg min
1≤j≤J

dj. (2.25)

Only the winning prototype cj∗ is updated as defined in the learning rule,

cj(t + 1) =

cj(t) + η(t)(xµ − cj(t)) if class(cj) = class(xµ), j = j∗

cj(t)− η(t)(xµ − cj(t)) if class(cj) 6= class(xµ), j = j∗

cj(t) j 6= j∗
(2.26)

2.1. Radial Basis Function Neural Networks 23

If the winning prototype and the training example xµ belong to the same class,
the winner neuron is shifted towards xµ, otherwise it is pushed away. The global
learning rate η(t), 0 ≤ η(t) ≤ 1, can either be constant or decrease with time t.

Optimized learning rate LVQ1(OLVQ1): It is a modified version of LVQ1
where each prototype cj(t) has its own learning rate ηj(t) in the learning rule
instead of the global η(t). This modification accelerates the convergence. This
local learning rate is defined as

ηj(t) = min(
ηj(t− 1)

s(t)ηj(t− 1) + 1
, ηmax) (2.27)

where ηj(0) is considered as the initial learning rate [98] and s(t) = 1 if cj and x
belong to the same class and s(t) = −1 otherwise. Since ηj(t) can also increase,
for each ηj(t) an upper bound ηmax ∈ (0, 1) is defined.

LVQ2.1: This variant of LVQ takes into consideration the two nearest pro-
totypes cj∗ and cj∗∗ to the presented training example in contrast to LVQ1 and
OLVQ1 where the location of only the nearest prototype is adapted, where cj∗ is
defined as in Eq.(2.25) and cj∗∗ is defined as follows.

j∗∗ = arg min
1≤j≤k,j 6=j∗

dj (2.28)

The following three requirements must be fulfilled:

1. The two nearest prototypes cj∗ and cj∗∗ belong to different classes.

2. The presented example xµ belongs to the same class of cj∗ or cj∗∗ .

3. xµ falls into a window of relative width w. The window is a zone of values
defined around the midplane of dj∗ and dj∗∗ . The presented example xµ
falls into this window if

min(
dj∗

dj∗∗
,
dj∗∗

dj∗
) >

1− w
1 + w

(2.29)

For class(cj∗) = class(x) and class(cj∗∗) 6= class(xµ), the learning rules are

cj∗(t+ 1) = cj∗(t) + η(t)(xµ − cj∗(t)) (2.30)

cj∗∗(t+ 1) = cj∗∗(t)− η(t)(xµ − cj∗∗(t)) (2.31)

LVQ3: It is a modified version of LVQ2.1 where the locations of the two
nearest prototypes cj∗ and cj∗∗ are adapted. If both prototypes belong to the
same class as the presented example xµ, class(cj∗) = class(cj∗∗) = class(xµ),
then the learning rule is defined as follows

cj∗(t+ 1) = cj∗(t) + εη(t)(x− cj∗(t)) (2.32)

cj∗∗(t+ 1) = cj∗∗(t) + εη(t)(x− cj∗∗(t)) (2.33)

24 Chapter 2. Base Learning Algorithms

where ε ∈ [0, 1) is a scaling factor depending on the width of the window w. Note
that if class(cj∗) 6= class(cj∗∗), LVQ3 algorithm is equivalent to LVQ2.1. After
LVQ training phase, the resulting prototypes c1, . . . , ck can be used as the initial
RBF centers [167]. Further details about the LVQ learning algorithms can be
found in [98, 99].

2.1.4.3 Initialization with Decision Trees

Decision trees (or classification trees) [152] partition the input space RD into
disjoint axes-parallel hyper-rectangular regions <j, see Section 2.3 for more de-
tails on classification trees. Two methods to determine the RBF centers based
on k-means clustering and learning vector quantization (LVQ) are discussed in
Section 2.1.4.1 and Section 2.1.4.2. In contrast to these methods, classification
tree algorithm not only determine the RBF centers but also can adjust the RBF
widths.

x1

b

d

a

e

ω3

ω4

ω1

ω2

x2

c

ω2

ω1

(a) feature space

x1

<= b > b

<= d > d

<= a > a

<= e > e

ω2

ω4

ω1

ω3

x2

<= c > c

ω2ω1

x2

x1

x2

(b) binary decision tree

Figure 2.4: A binary decision tree of depth 4 constructed with two fea-
tures, denoted by x1 and x2, is given (right panel). The data points belong
to four different classes (denoted by ω1, ω2, ω3 and ω4) in a two dimen-
sional feature space. The corresponding partitioning into hyper-rectangles
parallel to the axes of the feature space is shown (left panel).

Kubat [104] was the first who suggested to initialize an RBF network with a
decision tree then Schwenker and Dietrich addressed this topic in [165]. The set
of J disjoint hyper-rectangular regions <j ⊂ RD produced by a decision tree can
be transformed into a set of centers cj and scaling parameters σj to initialize an
RBF network. Hence, the number of leafs in the decision tree is the number of
hidden RBF neurons in the network (this is an advantage because determining

2.1. Radial Basis Function Neural Networks 25

x1

b

d

a

e

ω3

ω4

ω1

ω2

x2

c

ω2

ω1

Figure 2.5: The regions in the feature space defined through the leaves
of the decision tree. Centers of the RBFs are located in the middle of each
hyper-rectangle and the contour of the RBFs are hyper-ellipsoids

the number of hidden nodes is a well-known problem in RBF networks design).
In Figure 2.4, a decision tree and the set of regions defined through its leaves are
shown. Each leaf of the decision tree defines a rectangular region in the feature
space RD, here D = 2. For binary trees, each node is determined by a splitting
condition consisting of a single feature xi, i ∈ {1, . . . , D} and a boundary value
bi ∈ R. Note that the data points of a single class are located in different regions
of the input space, and thus one class can be represented by more than one leaf
of the decision tree. For instance, class ω1 is represented by two leaves. Each
region <j, represented by a leaf, is completely defined by a path through the tree
starting at the root and terminating in a leaf.

For each region <j, represented by a leaf of the decision tree, with

<j = [aj1, bj1]× · · · × [ajD, bjD] (2.34)

Therefore, an RBF center cj = (cj1, . . . , cjD) can be defined through

cji = (aji + bji)/2, for all i = 1, . . . , D (2.35)

2.1.5 Determine RBF Widths

The setting of the radial basis function widths is an important factor that influ-
ences the classification (or approximation) performance of an RBF network [25].
It has a direct influence on the degree of smoothness of the function approximated
by the network. If the kernel width σ ∈ R is too large, the estimated probability

26 Chapter 2. Base Learning Algorithms

density is over-smoothed and the nature of the underlying true density may be
lost. On the other hand, if σ is too small there may be an over-training of the
given training data set. The smaller the widths are the less smoother are the
realized functions. In general the Gaussian basis function φj is defined as

φj(x) = e−
1
2

(x−cj)TΣ−1
j (x−cj), for all j = 1, . . . , J (2.36)

where each Σj is a positive definite D ×D matrix. Depending on the structure
of the matrices Σj, four types of hyper-ellipsoids appear.

1. Σj are positive definite matrices. This implies that the axes of the hyper-
ellipsoids are not necessary parallel to the axes of the feature space. (matrix-
valued)

2. Σj are diagonal matrices: Here, the contour of a basis function φj is not
radially symmetric. That is, the axes of the hyper-ellipsoids are parallel
to the axes of the input space, but with different length, see Figure 2.5.
In this case Σj is completely defined by a D-dimensional vector σj ∈ RD.
(vector-valued)

3. Σj = σ2
j Id where σ2

j > 0: Here the basis functions are radially symmetric,
but are scaled with different widths. (real-valued)

4. Σj = σ2Id where σ2 > 0: In this case all basis functions φj have a radial
symmetric contour all with constant width. This is the setting of RBF in
the context of interpolation. (real-valued)

where Id is the identity matrix. The following is a list of different schemes used for
the setting of the real-valued and vector-valued RBF widths in an RBF network.
In all cases, a parameter α > 0 has to be set heuristically.

1. All σj are set to the same value σ, which is proportional to the average of
the p minimal distances between all pairs of prototypes.

2. The average of the distances between cj and the p nearest prototypes of cj
is used to set the kernel width σj.

3. The kernel width σj is set proportional to the distance between cj and the
nearest prototype with a different class label.

σj = αmin{‖cj − ci‖ : class(cj) 6= class(ci), i = 1, . . . , J} (2.37)

4. The width σj ∈ RD is set to the standard deviation of each feature calcu-
lated using the training examples belonging to cluster Cj:

σji = α

√
1

|Cj|
∑
xµ∈Cj

(xµi − cji)2 (2.38)

2.1. Radial Basis Function Neural Networks 27

5. In the case of using decision tree, the jth RBF width is a diagonal matrix
Σj, which is determined by a vector σj ∈ RD as follows

Σj = diag(σ2
j1, . . . , σ

2
jd) (2.39)

σji =
α

2
(bji − aji), for all i = 1, . . . , D (2.40)

In general, the centers cj and the scaling matrices Σj representing the location
and the shape of radial basis functions can be determined using other techniques
such as genetic algorithms (GAs) [200, 79], or expectation-maximization (EM)
[156].

2.1.6 Calculate the Output Layer Weights

After that the RBF centers cj and the scaling parameters, given by the matrices
Σj, have been determined, the weights of the output layer can consequently be
calculated. It is assumed that the hidden layer of the RBF network has k basis
functions. Let L = {(xµ, yµ) : xµ ∈ RD, yµ ∈ Ω, µ = 1, . . . ,M} be the training
set, Φµj = φj(xµ) the output of the jth RBF with the µth feature vector as input
and using the 1-of-K encoding scheme, the class label of each training example
yµ ∈ Ω is encoded into an K-dimensional binary vector tµ ∈ {0, 1}K through the
relation tµk = 1 iff yµ = ωk. Given the two matrices Φ = (Φµj) and T = (tµk),
the matrix of the output layer weights W is the result minimizing of the error
function:

E(W) = ‖ΦW − T‖2. (2.41)

2.1.6.1 Error Back Propagation

The solution can be found by gradient descent optimization of the error function
defined in Eq. (2.41). Each training example in the training set is presented to
the input layer of the network and the predicted outputs are calculated. The
difference between each predicted output and the corresponding target output
is calculated. This error is then propagated back through the network and the
weights on the arcs of the networks are adjusted so that if the training example
is presented to the network again, then the error would be less. The learning
algorithm typically iterates through the training set L many times where each
iteration is called an epoch in the neural network literature. This leads to the
delta learning rule for the output layer weights

wjk = wjk − η
M∑
µ=1

φj(xµ)(tµk − fk(xµ)), (2.42)

or its incremental version

wjk = wjk − ηφj(xµ)(tµk − fk(xµ)), (2.43)

28 Chapter 2. Base Learning Algorithms

where η > 0 is the learning rate. After this step of calculating the output layer
weights, all parameters of the RBF network have been determined. This learning
scheme is efficient and provides good classification results. The main shortcoming
of gradient descent error back propagation algorithm is that it is slow.

2.1.6.2 Pseudo-Inverse Solution

A least squares solution can be found directly to the system of linear equations
W = Φ+T where Φ+ is the pseudo-inverse of the activation matrix Φ which can
be defined as

Φ+ = lim
α→0

(ΦTΦ + αId)−1ΦT (2.44)

where Id is the identity matrix. If the pseudo inverse of (ΦTΦ) is already known,
then simply Φ+ = (ΦTΦ)−1ΦT . This direct computation is faster than the gradi-
ent descent optimization and yields good classification results.

2.2 k-Nearest Neighbors Algorithms

The nearest neighbor algorithm has been widely used for decades to construct
an effective classification model [68, 48]. It is based on a distance function that
measures the difference or similarity between instances in the feature space. It
is called lazy learning algorithm because it requires neither extensive training
nor the adjustment of parameters. The classifier is trained by storing all the M
training examples into memory. Let Ω = {ω1, . . . , ωC} be the set of classes.

2.2.1 k-Nearest Neighbors Classifier

The calculation of nearest neighbors involves two steps: calculating and sorting
the distances. Given an unseen example x, the distances between x and the stored
training examples xµ, µ = 1, . . . ,M , are calculated

dµ = ‖x− xµ‖p =

(
D∑
i=1

|xi − xµi|p
)1/p

(2.45)

where ‖.‖p denotes the Minkowski distance between two D-dimensional feature
vectors x and xµ, as defined in Eq. (2.45) where p ∈ [1,∞) is the distance order.
Then the distances are sorted in ascending order dv(1) ≤ · · · ≤ dv(M). Finally, the
set of the k closest neighbors, Nk(x), is defined as

Nk(x) = {xv(1), . . . , xv(k)} (2.46)

The nearest neighbors that belong to class ωc is defined as

N c
k(x) = {xµ ∈ Nk(x)|yµ = ωc}, for c = 1, . . . , C (2.47)

2.2. k-Nearest Neighbors Algorithms 29

Majority voting is conducted to assign the most frequent class ŷ to x.

ŷ = argmax
ωc∈Ω
|N c

k(x)| (2.48)

2.2.2 Fuzzy k-Nearest Neighbors Classifier

The k-nearest neighbors classifier can be considered as a fuzzy classifier. It can
provide an estimate for the degree of membership of an example x to each class
in Ω where the distances between x and its k closest neighbors are incorporated
in the class memberships calculation [194]. The fuzzy class membership degree f
is represented by a mapping f : RD → [0, 1]C as

fc(x) =

∑
xj∈Nc

k(x) φj(x)∑C
c′=1

∑
xj∈Nc′

k (x) φj(x)
(2.49)

and φj(x) can take one of the following forms:

• The inverse of the distance

φj(x) =
1

‖x− xj‖p + ε
(2.50)

where ε > 0 is a constant added to avoid zero denominator.

• The decreasing exponential function

φj(x) = exp(−
‖x− xj‖p

2σ2
) (2.51)

when p = 2 then it is the Gaussian function widely used in RBF networks
and σ > 0 is the width parameter

An unseen example x is assigned to the class ŷ with the highest membership

ŷ = arg max
1≤c≤C

fc(x) (2.52)

2.2.3 Nearest Prototype Classifier

The nearest-neighbor algorithm has large storage requirements because it requires
that all the training examples be loaded in the memory in the classification phase.
In addition, the classification time is computationally expensive because it re-
quires calculating and sorting the distances between the example to be classified
and all the training examples. In order to significantly reduce the computational
load, a clustering algorithm such as k-means clustering defined in Section 2.1.4.1
or LVQ defined in Section 2.1.4.2 can be applied in the training phase of the

30 Chapter 2. Base Learning Algorithms

nearest-neighbor classifier to determine a smaller set of J << M prototypes from
the M training examples. Reducing the complexity is important for handling
the large datasets that are available in many real-world applications in medicine,
biology, finance, etc. Finding a smaller set of prototypes can also get grid of
noisy training examples and therefore can improve the classification accuracy.
For the Nearest Prototype Classifier [68, 178, 108], only the small set J << M
prototypes is stored in the memory at the classification phase and the distances
are calculated only between the example to be classified and the J prototypes.
Many authors also consider the distances between x and the k nearest prototype
vectors to calculate the class membership estimates.

2.3 Decision Trees

A decision tree is a tree structure classifier that consists of internal nodes, leaf
nodes, and arcs. Decision trees (or classification trees) [151, 152] partition the
input space RD into disjoint axes-parallel hyper-rectangular regions <j. The bi-
nary decision tree is the most popular type where each node has either zero or
two children. Each node in a decision tree represents a certain region < of RD.
If the node is a terminal node, called a leaf, all data points within this region <
are assigned to the same class. If a node has two children then the two regions
represented by the children nodes, denoted by <left and <right form a partitioning
of <, i.e. <left ∪<right = < and <left ∩<right = ∅ (see Figure 2.6). Decision trees
are popular especially in ensemble learning because of their computationally inex-
pensive training time (compared to neural network classifiers) and classification
time (compared to k-nearest neighbors classifiers).

C4.5 [152] is an improvement of the ID3 [151] algorithm that takes into account
missing values, continuous features, and tree pruning. It builds decision trees in a
top-down fashion and prunes them. At each node, all the features are evaluated
based on the current training data and using some evaluation function. The
feature with the highest score is selected, and the training set is split into two
partitions based on a certain value of the selected feature. The process is repeated
recursively for each data partition. The splitting procedure stops when one of the
following conditions is fulfilled: (1) all the training examples within the current
node belong to the same class, (2) the number of the training examples is less
than a user defined threshold, or (3) the evaluation criterion indicates that there
is no splitting can lead to further improvement.

Another type of decision trees, called oblique decision trees, use hyperplanes
that are not necessary parallel to any axis of the feature space. A generalization is
to use hyperplanes in a transformed space, where each new feature is an arbitrary
function of a selected subset of the original features. The speed of execution
depends on the transformation function and the complexity of the hyperplanes.

2.3. Decision Trees 31

(a) reduced feature space

Petal-Width

Petal-Width

Petal-Width

Petal-Length

Iris-Setosa

Iris-Virginica

Iris-Versicolor

Iris-Virginica Iris-Versicolor

<= 0.6 > 0.6

<= 1.7 > 1.7

<= 4.9 > 4.9

<= 1.5 > 1.5

R1

R2

R4

R5

R3

(b) binary decision tree

Figure 2.6: A binary decision tree of depth 4 constructed for the iris
data set with only two features of the four given features, denoted by petal-
length and petal-width (right panel). The data points belong to three differ-
ent classes (denoted by iris-setosa, iris-virginica, and iris-versicolor). Each
node is labeled with the selected feature and a boundary value. The corre-
sponding hyper-rectangles parallel to the axes is shown (left panel), where
boundary values and class labels are shown. The minimum and maximum
values of each feature within the training set are additional boundary val-
ues. Hence, all regions are bounded.

2.3.1 Evaluation Criteria

Most of the evaluation functions used for feature selection, depend on minimizing
the impurity of the data. That is, it selects features that construct regions in the
feature space where the examples from one class is significantly greater than the
examples belonging to other classes, optimally having all the examples from the
same class. CART [33] uses the Gini index,

Gini index(Y) = 1−
∑
ωk∈Ω

p(Y = ωk)
2 = 1−

∑
ωk∈Ω

(
nk
n

)2 (2.53)

while ID3, C4.5 and C5 depend on the entropy of data (information gain and
gain ratio) in feature selection. Suppose that Ω = {ω1, . . . , ωK} is the set of
classes in a given data set L of n examples. The entropy of a random variable Y ,
denoted by H(Y), that represents the amount of information needed to classify
L is defined as,

H(Y) = −
∑
ωk∈Ω

p(Y = ωk) log2 p(Y = ωk) = −
∑
ωk∈Ω

nk
n

log2

nk
n

(2.54)

32 Chapter 2. Base Learning Algorithms

H(Y) H(Fi)

H(Y|Fi) I(Y;Fi) H(Fi|Y)

H(Y,Fi)

Figure 2.7: Individual (H(Y), H(Fi)), joint (H(Y, Fi)), and conditional
entropies for the random variables that represent the class label Y and the
input feature Fi with mutual information I(Y ;Fi).

where nk is the number of examples belonging to class ωk and the base of the
logarithm has a common value 2 since the information is encoded in bits. Suppose
that the examples in L are represented by D features. The aim of the induction
algorithm is to select the most relevant feature of the D features to partition
L. Let Fi be the ith feature that has m possible values {a1, . . . , am}. Then the
conditional entropy of Y given Fi, denoted by H(Y |Fi), defines the amount of
information remaining in Y if the value Fi is known and is given as,

H(Y |Fi) = −
m∑
j=1

p(Fi = aj)
∑
ωk∈Ω

p(Y = ωk|Fi = aj) log2 p(Y = ωk|Fi = aj)

= −
m∑
j=1

sj
n

∑
ωk∈Ω

p(Y = ωk, Fi = aj)

p(Fi = aj)
log2

p(Y = ωk, Fi = aj)

p(Fi = aj)

= −
m∑
j=1

sj
n

∑
ωk∈Ω

skj
sj

log2

skj
sj

(2.55)

where sj is the number of examples having the value aj for feature Fi and skj is
the number of examples belonging to class ωk and having the value aj for feature
Fi. The mutual information between Y and Fi, that measures the difference in the
impurity before the splitting and after the splitting using feature Fi, see Figure
2.7, is defined as

Gain(Fi) = I(Y ;Fi) = H(Y)−H(Y |Fi) (2.56)

One shortcoming of Gain is that it gives higher preference to the features with
larger number of values. Quinlan proposed to use Gain Ratio instead of Gain in
order to compensate this shortage.

GainRatio(Fi) =
Gain(Fi)

splitInfo(Fi)
=
I(Y ;Fi)

H(Fi)
(2.57)

2.3. Decision Trees 33

where H(Fi) is the entropy of Fi and represents the amount of information pro-
vided by feature Fi. The splitting information of some features may be small
and lead to unstable gain ratio. To avoid this, the most relevant feature, Fi∗ , is
selected as follows

i∗ = arg max
1≤i≤D

GainRatio(Fi) (2.58)

subject to the constraint that

Gain(Fi∗) > avgGain and avgGain =
1

D

D∑
i=1

Gain(Fi). (2.59)

Then the training data L is split based on this feature.

2.3.2 Pruning

After the tree is constructed, a pruning step is performed in order to avoid over-
fitting. There are three common approaches for pruning classification trees. The
first approach is based on a separate validation set where the tree is pruned to
minimize the validation error. Both reduced error pruning (REP) used in C4.5
and cost-complexity pruning (CCP) used in CART depend on this approach. The
second approach is based on information-theoretic functions to seek the tree with
minimal complexity, such as the minimum description length (MDL) criterion
[157]. The third approach depend on a probabilistic estimate of the error that
is based on the frequency of examples in each node, such as pessimistic error
pruning (PEP) [152] used in C4.5. Unlike REP, in PEP the same data set is used
for both growing and pruning the tree.

2.3.3 Classification Phase

To classify an unseen example, the decision tree will evaluate the test specified by
the root node and follow the branch corresponding to the evaluation result. For
instance, an example with petal-width ≤ 0.6 will follow the left branch in the tree
from Figure 2.6 while it follows the right branch otherwise. Then it will follow
the left branch if petal-width ≤ 1.7. Unless the example reaches a leaf node, it will
traverse the tree through the branches according to the evaluation output of each
node. When it reaches a leaf node, the example will be assigned the class label
that has the maximum number of training examples associated with this leaf.
For instance, any example reaches region R1 will be assigned to class iris-setosa
because this region is occupied by 50 training examples from class iris-setosa and
0 training examples from the other classes.

34 Chapter 2. Base Learning Algorithms

 +

- +

 +

 +

 +

 +

 +

 +
 +

-

-

-

-

-
-

-

-

-

 +

Figure 2.8: The optimal separating hyperplane (solid line) and four non-
optimal separating hyperplanes (dashed lines)

2.4 Support Vector Machines

Support Vector Machines (SVM) are learning algorithms based on the statistical
learning theory [193]. They were originally used for classifying linearly separable
data. The simplest binary SVM constructs an optimal hyperplane that defines a
decision boundary to separate a set of positive examples from a set of negative
examples, which can work well for unseen examples. There are many possible
separating hyperplanes but there is only one which maximizes the margin [193,
13]. The margin is the minimal distance between the separating hyperplane and
the nearest training example to both classes, see Figure 2.8.

2.4.1 Hard-Margin Support Vector Machines

Let L = {(xµ, yµ) : xµ ∈ RD, yµ ∈ {−1, 1}, µ = 1, . . . ,M} be the set of training
examples belonging to class ωh or class ωk where the associated label is yµ = −1
for ωh and yµ = 1 for ωk. If the training data are linearly separable, the decision
function can be written as:

f(x) = 〈w, x〉 − b, (2.60)

where w is a D-dimensional vector orthogonal to the hyperplane, b ∈ R is a bias
term, and the following constraints hold for µ = 1, . . . ,M , (see Figure 2.9),

f(xµ)

{
> 0 for yµ = 1,

< 0 for yµ = −1
(2.61)

Thus, to control separability the following constraints are used instead of
Eq.(2.61).

f(xµ)

{
≥ 1 for yµ = 1,

≤ −1 for yµ = −1
(2.62)

2.4. Support Vector Machines 35

 +

- +

 +

 +

 +

 +

 +

 +
 +

-

-

-

-

-
-

-

-

-

 +

{x|‹w, x›-b > 0}

{x|‹w, x›-b < 0}

{x|‹w, x›-b = 0}

w

y = -1 y = +1

Figure 2.9: The separating hyperplane written in terms of orthogonal
weight w and bias b

Note that 1 and -1 can be any constant a(> 0) and -a, respectively. But by
dividing both sides of the inequalities by a, Eq. (2.62) is obtained which is
equivalent to

yµ(〈w, xµ〉 − b) ≥ 1, for µ = 1 . . . ,M (2.63)

The hyperplane
f(x) = 〈w, x〉 − b = c for − 1 ≤ c ≤ 1 (2.64)

forms a separating hyperplane that separates the training examples in L. The
separating hyperplane f(x) = 0 lies in the middle between the two hyperplanes
f(x) = −1 and f(x) = 1. The distance between the hyperplane and the near-
est training example is called the margin. Figure 2.8 demonstrates five decision
functions that satisfy the constraints in Eq. (2.63). There are an infinite number
of decision functions that satisfy Eq. (2.63). The generalization ability of the
separating hyperplane depends on its location, and the hyperplane with the max-
imum margin is called the optimal separating hyperplane (see Figure 2.10). The
Euclidean distance from any training example xµ to the separating hyperplane
f(x) = 0 must satisfy

yµ(〈w, xµ〉 − b)
‖w‖

≥ 1

‖w‖
(2.65)

Therefore, in order to maximize the margin, the norm of w must be minimized.
That is, the optimal separating hyperplane can be obtained by solving the fol-
lowing problem:

min
w,b

ΨP (w, b) =
1

2
‖w‖2 , (2.66)

with respect to w and b subject to the constraints:

yµ(〈w, xµ〉 − b) ≥ 1, for µ = 1 . . . ,M (2.67)

36 Chapter 2. Base Learning Algorithms

 +

- +

 +

 +

 +

 +

 +

 +
 +

-

-

-

-

-
-

-

-

-

 +

{x|‹w, x›-b = 0}

w

y = -1 y = +1

{x|‹w, x›-b = -1}

{x|‹w, x›-b = +1}

Maximum

margin

Figure 2.10: The optimal separating hyperplane for a linearly separable
data set. The larger the margin, the better is the generalization ability of
the classifier

This quadratic problem is a convex optimization problem [13] and is called the
primal formulation. The training examples that satisfy the equalities in Eq.
(2.67) are called support vectors. Since the unknown variables of the convex
optimization problem are w and b, the number of variables to be obtained is the
number of input features plus one, D + 1. When the number of input features
is small, we can solve Eq. (2.66) and Eq. (2.67) by the quadratic programming
techniques. But, as will be discussed later, because we map the input space into
a high-dimensional feature space, in some cases, with infinite dimensions, the
problem defined in Eq. (2.66) and Eq. (2.67) is converted into its equivalent dual
problem, using standard Lagrangian techniques, whose number of variables is the
number of training examples.

First, the constrained problem defined in Eq. (2.66) and Eq. (2.67) is con-
verted into the unconstrained problem

LP (w, b) =
1

2
‖w‖2 −

M∑
µ=1

αµ[yµ(〈w, xµ〉 − b)− 1] (2.68)

where α = (α1, . . . , αM)T and αµ are the nonnegative Lagrange multipliers. The

2.4. Support Vector Machines 37

optimal solution satisfies the following Karush-Kuhn-Tucker (KKT) conditions

∂LP
∂w

= 0⇒ w =
M∑
µ=1

αµyµxµ; (2.69)

∂LP
∂b

= 0⇒
M∑
µ=1

αµyµ = 0; (2.70)

αµ[yµ(〈w, xµ〉 − b)− 1] = 0 for µ = 1, . . .M, (2.71)

αµ ≥ 0 for µ = 1, . . .M. (2.72)

The relations between the inequality constraints and their associated Lagrange
multipliers given by Eq. (2.71) are called KKT complementarity conditions. Sub-
stituting Eq. (2.69) and Eq. (2.70) into Eq. (2.68), we obtain the dual formula-
tion of the problem:

max
α

ΨD(α) =
M∑
µ=1

αµ −
1

2

M∑
µ,j=1

αµαjyµyj〈xµ, xj〉 (2.73)

subject to the constraints

M∑
µ=1

αµyµ = 0 and αµ ≥ 0 for µ = 1, . . .M. (2.74)

If the classification problem is linearly separable, the global optimal solution
αµ(µ = 1, . . . ,M) exists [13]. This is one of the advantages of support vector
machines over neural networks, which have numerous local minimal solutions. For
quadratic programming, the values of the primal and dual objective functions,
ΨP and ΨD, coincide at the optimal solutions if they exist, which is called the
zero duality gap. Then from Eq. (2.69) the decision function is defined as

f(x) =
∑
µ∈S

αµyµ〈xµ, x〉 − b (2.75)

where S is the set of support vector indices, and from the KKT complementarity
conditions defined in Eq. (2.71), if αj 6= 0, then

b = 〈w, xj〉 − yj (2.76)

For more precise calculation, take the average over all support vectors (xj, yj) as
follows:

b =
1

|S|
∑
j∈S

[〈w, xj〉 − yj]. (2.77)

38 Chapter 2. Base Learning Algorithms

Therefore, an unknown example x is classified into:{
Class 1 (assigned to ωh) if f(x) > 0,

Class 2 (assigned to ωk) if f(x) < 0.
(2.78)

If f(x) = 0, x is on the boundary and thus is unclassifiable. When training
examples are linearly separable, the region {x|−1 < f(x) < 1} is a generalization
region.

2.4.2 Soft-Margin Support Vector Machines

In hard-margin SVMs, it is assumed that the training examples are linearly sepa-
rable. When the data are not linearly separable, there is no feasible solution, and
the hard-margin SVM is unsolvable [13]. Cortes and Vapnik [44] extend SVMs to
the case of inseparability, the nonnegative slack variables εµ(≥ 0) are introduced
into the inequality constraint:

yµ(〈w, xµ〉 − b) ≥ 1− εµ, for µ = 1 . . . ,M (2.79)

 +

- +

 +

 +

 +

 +

 +

 +
 +

-

-

-

-

-
-

-

-

-

 +

{x|‹w, x›-b = 0}

w

y = -1 y = +1

{x|‹w, x›-b = -1}

{x|‹w, x›-b = +1}

Maximum

margin

 +

 +

-

-

є1

є4

є2

є3

 +
-

Figure 2.11: The optimal separating hyperplane for a nonlinearly sepa-
rable data set in a two-dimensional space

By the slack variables εµ, feasible solutions always exist. For the training
examples xµ, if 0 < εµ < 1 (such as ε1 and ε2 in Figure 2.11), the examples do not
have the maximum margin but are still correctly classified. But if εµ ≥ 1 (such as
ε3 and ε4 in Figure 2.11) the examples are misclassified by the optimal hyperplane.
To obtain the optimal hyperplane that minimize the number of training example
that do not have the maximum margin, we solve the following problem:

min
w,b

ΨP (w, b) =
1

2
‖w‖2 + C

M∑
µ=1

εµ, (2.80)

2.4. Support Vector Machines 39

with respect to w and b subject to the constraints:

yµ(〈w, xµ〉 − b) ≥ 1− εµ, εµ ≥ 0 for µ = 1 . . . ,M (2.81)

where ε = (ε1, . . . , εM)T and C is a regularization term that controls the trade-off
between maximizing the margin and training error minimization.

Similar to the linearly separable case, using standard Lagrangian techniques,
the following unconstrained problem is obtained

LP (w, b) =
1

2
‖w‖2 +C

M∑
µ=1

εµ−
M∑
µ=1

αµ[yµ(〈w, xµ〉− b)− 1 + εµ]−
M∑
µ=1

βµεµ (2.82)

where α = (α1, . . . , αM)T and β = (β1, . . . , βM)T represent the nonnegative
Lagrange multipliers. The optimal solution satisfies the following KKT conditions

∂LP
∂w

= 0⇒ w =
M∑
µ=1

αµyµxµ; (2.83)

∂LP
∂b

= 0⇒
M∑
µ=1

αµyµ = 0; (2.84)

∂LP
∂εµ

= 0⇒ αµ + βµ = C for µ = 1, . . .M (2.85)

αµ[yµ(〈w, xµ〉 − b)− 1 + εµ] = 0 for µ = 1, . . .M, (2.86)

βµεµ = 0 for µ = 1, . . .M, (2.87)

αµ ≥ 0, βµ ≥ 0, εµ ≥ 0 for µ = 1, . . .M. (2.88)

Thus substituting Eq. (2.83) to Eq. (2.87) into Eq. (2.82), we obtain the following
dual problem.

max
α

ΨD(α) =
M∑
µ=1

αµ −
1

2

M∑
µ,j=1

αµαjyµyj〈xµ, xj〉 (2.89)

subject to the constraints

M∑
µ=1

αµyµ = 0 and C ≥ αµ ≥ 0 for µ = 1, . . .M. (2.90)

The only difference between soft-margin SVMs and hard-margin SVMs is that αµ
cannot exceed C.

From Eq. (2.85) and the KKT complementarity conditions defined in Eq.
(2.86) and Eq. (2.87), there are three cases for αµ:

40 Chapter 2. Base Learning Algorithms

• If αµ = 0, then εµ = 0 and yµ(〈w, xµ〉 − b) ≥ 1 . Thus xµ is correctly
classified and it is not a support vector.

• If 0 < αµ < C, then εµ = 0 and yµ(〈w, xµ〉 − b) = 1. Thus, xµ is a support
vector. The support vectors with 0 < αµ < C are called unbounded support
vectors.

• If αµ = C, then yµ(〈w, xµ〉 − b) − 1 + εµ = 0 and εµ ≥ 0. Thus xµ is
a support vector. The support vectors with αµ = C are called bounded
support vectors. If 0 ≤ εµ < 1, xµ is correctly classified, and if εµ ≥ 1, xµ is
misclassified.

The decision function is the same as that of the hard-margin SVM and is
given by

f(x) =
∑
µ∈S

αµyµ〈xµ, x〉 − b (2.91)

where S is the set of support vector indices. For 0 < αj < C,

b = 〈w, xj〉 − yj (2.92)

For more precise calculation, take the average over all unbounded support vectors

b =
1

|U |
∑
j∈U

[〈w, xµ〉 − yj]. (2.93)

where U is the set of unbounded support vector indices. Therefore, an unknown
example x is classified into:{

Class 1 (assigned to ωh) if f(x) > 0,

Class 2 (assigned to ωk) if f(x) < 0.
(2.94)

If f(x) = 0, x is on the boundary and thus is unclassifiable. When there are
no bounded support vectors, the region {x| − 1 < f(x) < 1} is a generalization
region.

2.4.3 Nonlinear Mapping to a High-Dimensional Space

2.4.3.1 Kernel Trick

The objective of finding the optimal hyperplane is to maximize the generalization
ability of the SVM classifier. But if the training examples are not linearly separa-
ble, the obtained classifier may not have high generalization ability although the
hyperplanes are determined optimally. Thus to enhance linear separability, the
original input space is mapped into a high-dimensional dot-product space, that is
called the feature space in order to distinguish it from the input space [40], where

2.4. Support Vector Machines 41

it is possible to construct an optimal separating hyperplane with better general-
ization ability. This transformation is justified by Cover’s Theorem in [164]. It
is a nonlinear function φ(x) = (φ1(x), . . . , φL(x))T that maps the D-dimensional
input vector x into the L-dimensional feature space. Thus, the linear decision
function in the feature space is given by

f(x) = 〈w, φ(x)〉 − b, (2.95)

where w is the L-dimensional weight vector and b is the bias term. The formula-
tion of the new optimization problem can be done by replacing all occurrences of
x with φ(x). This leads to the following dual problem.

max
α

ΨD(α) =
M∑
µ=1

αµ −
1

2

M∑
µ,j=1

αµαjyµyj〈φ(xµ), φ(xj)〉 (2.96)

To solve this optimization problem, there is a need to explicitly map the training
examples into the higher-dimensional space and then to compute the dot products
〈φ(xµ), φ(xj)〉, this is computationally expensive.

According to the Hilbert-Schmidt theory, if a symmetric function K(xi, xj)
satisfies

M∑
i,j=1

hihjK(xi, xj) ≥ 0 (2.97)

for any M ∈ N, xi ∈ RD, hi ∈ R, there exists a mapping function φ that maps x
into the dot-product feature space that satisfies

K(xi, xj) = 〈φ(xi), φ(xj)〉. (2.98)

Substituting Eq. (2.98) into Eq. (2.97),(
M∑
i=1

hiφ(xi)

)(
M∑
j=1

hjφ(xj)

)
≥ 0 (2.99)

The condition in Eq. (2.97) or Eq. (2.99) is called Mercer condition, and the
function that satisfies it is called the positive semidefinite kernel or the Mercer
kernel.

The advantage of using kernels is that we need not treat the high-dimensional
feature space explicitly. This technique is called kernel trick. That is, we use
kernel function K(xi, xj) in training and classification instead of φ(xi) and φ(xj).

The dual problem in the feature space is defined as follows:

max
α

ΨD(α) =
M∑
µ=1

αµ −
1

2

M∑
µ,j=1

αµαjyµyjK(xµ, xj) (2.100)

42 Chapter 2. Base Learning Algorithms

subject to the constraints

M∑
µ=1

αµyµ = 0 and C ≥ αµ ≥ 0 for µ = 1, . . .M. (2.101)

The KKT complementarity conditions are given by

αµ

(
yµ

(
M∑
j=1

yµαµK(xµ, xj)− b

)
− 1 + εµ

)
= 0 for µ = 1, . . .M, (2.102)

(C − αµ)εµ = 0 for µ = 1, . . .M, (2.103)

αµ ≥ 0, εµ ≥ 0 for µ = 1, . . .M. (2.104)

The decision function is the same as that of the hard-margin SVM and is
given by

f(x) =
∑
µ∈S

αµyµK(xµ, x)− b (2.105)

where b is defined as by an unbounded support vector xj

b =
∑
µ∈S

αµyµK(xµ, xj)− yj (2.106)

For more stable calculation, take the average over the unbounded support vectors

b =
1

|U |
∑
j∈U

[
∑
µ∈S

αµyµK(xµ, xj)− yj]. (2.107)

where U is the set of unbounded support vector indices. Therefore, an unknown
example x is classified into:{

Class 1 (assigned to ωh) if f(x) > 0,

Class 2 (assigned to ωk) if f(x) < 0.
(2.108)

If f(x) = 0, x is on the boundary and thus is unclassifiable.

2.4.3.2 Kernels

• Linear Kernels: If the training examples are linearly separable in the input
space, there is no need to map the input space to a higher-dimensional
space. In this case, linear kernel is used

K(xµ, xj) = 〈xµ, xj〉 (2.109)

2.4. Support Vector Machines 43

• Polynomial Kernels: A polynomial kernel with degree d ∈ N is

K(xµ, xj) = (〈xµ, xj〉+ 1)d (2.110)

When d = 1, the kernel is the linear kernel plus 1. If d = 2 and D = 2, the
polynomial kernel becomes,

K(xµ, xj) = x2
µ1x

2
j1 + x2

µ2x
2
j2 + 2xµ1xj1xµ2xj2 + 2xµ1xj1 + 2xµ2xj2 + 1

= 〈g(xµ), g(xj)〉
(2.111)

where g(xµ) = (x2
µ1, x

2
µ2,
√

2xµ1xµ2,
√

2xµ1,
√

2xµ2, 1). In general, polyno-
mial kernels satisfy Mercers condition.

• Radial Basis Function Kernels: The radial basis function (RBF) kernel is
given by

K(xµ, xj) = exp(−γ ‖xµ − xj‖2), (2.112)

where γ is a positive parameter that controls the kernel width.

Chapter 3

Ensemble Learning

3.1 Introduction

Ensemble learning is an effective machine learning paradigm that is used suc-
cessfully in almost all kinds of applications such as text categorization, optical
character recognition, face recognition, computer-aided medical diagnosis. An
ensemble consists of a set of individual predictors (such as neural networks or
decision trees) whose predictions are combined when classifying a given example
(see Figure 3.1). Multiple classifiers combination to achieve higher accuracy is an
important research area in a number of communities such as machine learning,
pattern recognition, and artificial neural networks, and appears under different
notions in the literature, e.g. multiple classifier systems (MCS), ensemble learn-
ing, classifier fusion, classifier ensembles, divide-and-conquer classifiers, mixture
of experts [107]. The series of annual International Workshops on Multiple Clas-
sifier Systems (MCS), held since 2000, plays a vital role in organizing the de-
velopment in the field of ensemble learning. Dietterich [55] suggested statistical,
computational and representational reasons why it is possible to construct an
ensemble of classifiers that is often more accurate than a single classifier. These
three fundamental reasons represent the most important shortcomings of existing
base learning algorithms (see Chapter 2). Hence, the aim of an ensemble method
is to alleviate or eliminate these shortcomings.

• The statistical problem: A base learning algorithm BaseLearner can be con-
sidered as searching the hypothesis space F, space of all possible classifiers,
to identify the best single classifier f . When the available amount of training
data is too small compared to the size of the classifier space, BaseLearner
can not identify f . Although the data is insufficient, BaseLearner can still
find many different classifiers in F that give good accuracy on the training
data. By constructing an ensemble H of these accurate classifiers, one can
find a good approximation of f .

45

46 Chapter 3. Ensemble Learning

h1

ghi

hN

Classifier Layer Combination Layer

x

h1(x)

hi(x)

hN(x)

g(x)

Figure 3.1: Two layer architecture of an ensemble where the aggregation
of the decisions of the individual classifiers at the first layer is achieved by
an additional combination layer.

• The computational problem: Many learning algorithm perform local search
to optimize the classifier parameters and therefore get stuck in local op-
tima. For instance, MLP neural network [25] depends on gradient descent
to minimize an error function over training data. Although the statistical
problem doe not exist (that is, the training data is enough), it may still be
computationally not easy to find the best single classifier. By constructing
ensemble of classifiers, where each classifier performs local search starting
from different starting points, may provide a better approximation of f than
any of the individual classifiers.

• The representational problem: In many machine learning applications, the
best classifier f is not exist in the search space F. By combining a set of
classifiers drawn of F, it may be possible to expand the space.

 +

 +

 + +
 + +

 +

 +
 +

 +

 +

 +

 +

 + +

 +

 +

 + + +

 +

 +

 +
 +

 +

 +

 +

 +

 +
 +

-

-

-

-

--

- -

-

-

--

--

-

-

--

--

-
-

--

-

- -

-
-

-

-

-

-

-

-

-

A

- +

-

B

+

+

C

-

 +

-

-

-

Figure 3.2: An ensemble of three linear classifiers

Figure 3.2 illustrates graphically the representational problem through three linear
classifiers where the objective is to discriminate between positive (+) and neg-
ative examples (-). It is clear that the training data are not linearly separable.

3.2. Diversity 47

Thus, none of the three straight lines can alone completely separate the positive
and negative examples. For instance, classifier B can not correctly classify all
the negative examples in the bottom half of the figure. However, the ensemble
of three lines, where each line provides one vote, correctly classifies all the exam-
ples because for each example, at least two of the three linear classifiers correctly
classify it, so the majority is always correct. This is the result of constructing an
ensemble of three very different linear classifiers, this effective ensemble is a piece-
wise linear classifier (the bold line in Figure 3.2). This example clearly motivates
the need to have ensemble members whose errors are not highly correlated.

3.2 Diversity

A necessary and sufficient condition for an ensemble of classifiers to outperform
the accuracy of its individual members is to constitute accurate and diverse clas-
sifiers [78]. A classifier is accurate if it has error rate better than random guessing
on unseen data. Diversity among classifiers means that they have independent
(uncorrelated) errors, that is, they have different misclassified examples (for in-
stance, the linear classifiers in Figure 3.2). As the errors of ensemble members
increase, they become more identical. That is, there is a trade-off between average
error and diversity of ensemble members.

3.2.1 How to Measure Diversity?

3.2.1.1 For Regression

The error-ambiguity decomposition [103] and bias-variance-covariance decompo-
sition [191] qualitatively define the regression error diversity for linearly weighted
ensembles by connecting it back to the mean squared error. The ambiguity de-
composition [103] holds for convex combination functions and it breaks down the
ensemble error E into two terms. The first term Ē is the weighted average error
of the individuals,

∑
iwi(hi(x)− y)2. The second term Ā is the ambiguity term,∑

iwi(hi(x)−H(x))2, indicates the variability in the ensemble member outputs
for a given example x. That is, E = Ē − Ā. Since this term is subtractive from
the first term and positive, it is guaranteed that ensemble error is less than or
equal to the average individual errors. The larger the ambiguity term, the larger
the ensemble error reduction provided that the first term is kept fixed. But, as
the variability among the individuals increases, so does the value of the average
individual errors. This shows that increasing the diversity alone is not enough,
there should be a balance between diversity (the ambiguity term) and individ-
ual accuracy (the average error term), in order to minimize the ensemble error
E. The importance of the error-ambiguity decomposition is that it shows that
given any set of predictors, the error of the convex-combined ensemble will be
less than or equal to the average error of the individuals. If Ā = 0 for a given set

48 Chapter 3. Ensemble Learning

of examples, then E = Ē and this means that there is no performance gain from
combining identical predictors.

The bias-variance-covariance decomposition [191] for an ensemble is examined
to understand the regression error diversity. It holds for convex combination
functions and it breaks down the ensemble generalization error in the form of
mean squared error (MSE) into three terms: bias, variance and covariance.

Err(H) = E{(H − y)2} = bias
2

+
1

N
var + (1− 1

N
)covar (3.1)

where H is the ensemble output for a given example x and is defined as the
average of the N classifier outputs,

H(x) =
1

N

N∑
i=1

hi(x), (3.2)

the average bias of the ensemble members is

bias =
1

N

∑
i

(E{hi} − y), (3.3)

the average variance of the ensemble members is

var =
1

N

∑
i

E{(E{hi} − hi)2} (3.4)

and the average covariance of the ensemble members is

covar =
1

N(N − 1)

∑
i

∑
j 6=i

E{(hi − E{hi})(hj − E{hj})} (3.5)

Note that there should be a balance between bias and variance because attempts
to reduce the bias component will cause an increase in variance, and vice versa.
Also the covariance term indicates that the mean square error of an ensemble esti-
mator depends on the amount of error correlation between individual estimators.
We would ideally like to decrease the covariance, without causing any increase
in the bias or variance terms. Unlike the ambiguity decomposition that depends
on a given training set, the Bias-Variance-Covariance decomposition takes into
account the distribution over possible training sets. This is an advantage because
what we are interested in, is the expected error on unseen data points given these
distributions.

3.2.1.2 For Classification

It is not easy to provide a solid quantification of classification error diversity al-
though there is a much clearer framework for explaining the role of regression error

3.2. Diversity 49

diversity because classification ensemble methods usually depend on non-linear
combination methods like majority voting. We would like to have an expression
that similarly decomposes the classification error rate into the error rates of the
individuals and a term that quantifies their ‘diversity’. Although this is beyond
the present state of the art, a number of empirical studies have tried to derive
heuristic expressions that may approximate this unknown error diversity term.

Margineantu and Dietterich [124] proposed to use the kappa-statistic κ as a
pairwise agreement measure. It is defined as follows: Given two classifiers h1

and h2, K classes and m examples, we can define a coincidence matrix C where
element Cij represents the number of examples that are assigned by the first
classifier to class ωi and by the second classifier to class ωj. Then, the agreement
measure κ is defined as follows:

κ =
θ1 − θ2

1− θ2

(3.6)

where

θ1 =

∑K
i=1Cii
m

and θ2 =
K∑
i=1

(
K∑
j=1

Cij
m

K∑
j=1

Cji
m

)
(3.7)

If h1 and h2 are identical, only the main diagonal of C will contain non-zero
elements (θ1=1) and κ = 1. If h1 and h2 are totally different, their agreement
(θ1) will be the same as the agreement by chance (θ2) and κ = 0. If h1 and h2 are
negatively dependent, then κ < 0 and when one classifier is wrong, the other has
more than random chance of being correct. The Kappa-Error diagram is intro-
duced in [124] as a way for visualizing the relationship between a given ensemble
diversity and accuracy. The x-axis of the Kappa-error diagram represents the κi,j
between two ensemble members hi and hj while the y-axis represents the average

error Ei,j =
Ei+Ej

2
. Therefore, an ensemble of N members has a cloud of N(N−1)

2

points in the diagram. The Kappa-Error diagram can be calculated using the
training set or a separate validation set. Since small values of κ indicate better
diversity and small values of Ei,j indicate better accuracy, the most desirable
cloud will lie in the bottom left corner. This is useful for visual evaluation of the
relative positions of clouds for different ensembles. Comparing clouds of points
for AdaBoost versus Bagging, they verified that AdaBoost produces more diverse
ensembles of classifiers than Bagging.

Kuncheva and Whitaker[110] divided the diversity measures into two types:
pairwise and non-pairwise. Pairwise measures calculate the average of a particu-
lar similarity metric between all possible pairs of classifiers in the ensemble. The
difference between a diversity measure and another is the underlying similarity
metric. On the other hand, the non-pairwise diversity measures either use the
idea of entropy or calculate a correlation of each ensemble member with the av-
eraged output. They studied ten statistics that can be used to measure diversity
among binary classifiers: four averaged pairwise measures (the Q statistic, the

50 Chapter 3. Ensemble Learning

correlation, the disagreement and the double fault) and six non-pairwise measures
(the entropy of the votes, the difficulty index, the Kohavi-Wolpert variance, the
interrater agreement, the generalized diversity and the coincident failure diver-
sity). They found that most of these measures are highly correlated. However, to
the best of our knowledge, there is not a conclusive study showing which measure
of diversity is the best to use for constructing and evaluating ensembles.

Brown [35] had investigated the issue of ensemble diversity from an informa-
tion theoretic perspective. The main finding was an expansion of the ensemble
mutual information into accuracy term, several diversity and conditional diversity
terms.

I(X1:n;Y) =
n∑
i=1

I(Xi;Y)−
∑
X⊆S
|X|=2..n

I({X}) +
∑
X⊆S
|X|=2..n

I({X}|Y) (3.8)

where X1:n, Xi, Y are random variables represent the ensemble output, the ith

classifier output and the target output, respectively. In addition, I({X}) and
I({X}|Y) represent the multi-variate mutual information and class-conditional
mutual information among |X| classifiers, respectively. He stated that this expan-
sion reflects the true complexity of the accuracy-diversity issue. Error diversity is
not simply a pairwise measure between classifiers, such as the Q-statistics or the
Double-Fault measures. In fact, diversity exists on several levels of interaction
between the classifiers, having high and low order terms.

3.2.2 How to Create Diversity?

Kuncheva [106] provided a graphical illustration of four different approaches to
build ensembles of diverse classifiers as shown in Figure 3.3. What differentiates
between ensemble methods is the way used to promote the diversity between
the member classifiers of an ensemble. Approach (a), which is based on training
set manipulation, refers to ensemble methods that combine classifiers trained
on different training sets, i.e. bagging [31] and boosting [65]. Approach (b),
which is based on feature set manipulation, includes techniques that combine
classifiers trained on different feature subsets, such as Random Forests [32] and
Random Subspace method [82]. Approach (c) includes heterogeneous ensemble
methods that combine classifiers trained using different learning algorithms such
as decision tree, neural network and k-nearest neighbor classifiers [203]. On the
other hand, homogeneous methods that combine classifiers trained using the same
learning algorithm. Approach (d) assumes that the diverse classifiers are given
and the task is to select the best combination method for the given learning
task. Many ensemble methods have been developed that use other heuristics to
promote diversity: manipulation of the output labels such as Error Correcting
Output Coding (ECOC) [57] (see Chapter 4) and randomness injection such as
training a set of neural networks with different random initializations of weights,

3.3. Taxonomies of Combination Methods 51

Classifier 1

combiner

Classifier i Classifier N

Classifier 1

combiner

Classifier i Classifier N

Classifier 1

combiner

Classifier i Classifier N

(a) Different training sets (b) Different feature sets

Classifier 1

combiner

Classifier i Classifier N

(c) Different learning algorithms (d) Different combination methods

Figure 3.3: Four approaches to create an ensemble of diverse classifiers

or different architectures [100] or training a set of C4.5 decision trees through
introducing some randomness into the feature selection for splitting tree nodes
[56].

3.3 Taxonomies of Combination Methods

3.3.1 Selection and Fusion

There are two general combination paradigms: classifier selection (complemen-
tary ensemble) and classifier fusion (competitive ensemble). The former methods
assume that each classifier is an expert in some local region of the input space.
For a given example x ∈ RD, there is exactly one classifier responsible for the
region of x and it is given the highest priority to label x [203]. The latter assumes
that all classifiers are trained over the whole input space, and they are taking
into consideration to classify x. Selection and fusion can be merged together such
as in[87, 15], instead of selecting one expert, the decisions of more than one local
expert are considered where each classifier is weighted by the level of expertise it
has on x.

3.3.2 Hard, Ranking and Soft Combiners

Let H = {h1, . . . , hN} be a set of classifiers and Ω = {ω1, . . . , ωK} be a set of class
labels. Combining classifiers means to predict a class label to a given example x

52 Chapter 3. Ensemble Learning

based on the N classifier outputs h1(x), . . . , hN(x). Base classifiers can be divided
into three types according to their outputs:

• Crisp(Hard) classifier. Each classifier hi gets a feature vector x ∈ RDi as
input and assigns it to a crisp class label from Ω.

hi : RDi → Ω or hi : RDi × Ω→ {0, 1} (3.9)

where
∑K

k=1 hi(x, ωk) = 1.

• Ranking classifier. Each classifier hi is given by

hi : RDi → 2Ω (3.10)

where the classifier returns a subset of Ω sorted in ascending order according
to a rank function r such that: for each ωa ∈ hi(x) and ωb /∈ hi(x), r(ωa) <
r(ωb). Sometimes, it is called multi-label classifier because it assign a set
of class labels to a given example x instead of a single label. This type is
beyond the scope of this thesis.

• Soft classifier. Each classifier hi gives as output a soft class label, that is

hi : RDi → [0, 1]K or hi : RDi × Ω→ [0, 1] (3.11)

where the classifier output hi(x, ωk) can be viewed as the belief, evidence,
certainty, probability or possibility of the hypothesis that x belongs to class
ωk and thus can be divided into:

– Possibilistic classifier. if
∑K

k=1 hi(x, ωk) > 0

– Probabilistic or Fuzzy classifier. if
∑K

k=1 hi(x, ωk) = 1, then hi(x, ωk)
is a class posterior probability estimate, that is hi(x, ωk) = P (ωk|x)

Note that the crisp classifier is as a special case of the soft classifier, because
the class label ŷ assigned to a given example x is the class with the maximum
membership degree

ŷ = arg max
1≤k≤K

hi(x, ωk) (3.12)

An ensemble H is constructed by combining the outputs of the N classifiers as

H(x) = g(h1(x), . . . , hN(x)) or H(x, ωk) = g(h1(x, ωk), . . . , hN(x, ωk)) (3.13)

where g is the combination function that is called hard combiner if it uses the
crisp class labels provided by the crisp classifiers of the ensemble. It is called
soft combiner if it combines the soft class label of the individual soft classifiers.
To facilitate the combination of the N classifier outputs, they can be stored in a
N ×K matrix, that is called decision profile and defined as follows,

3.3. Taxonomies of Combination Methods 53

DP(x)=

),(),(),(

),(),(),(

),(),(),(

1

1

1111

KNkNN

Kikii

Kk

xhxhxh

xhxhxh

xhxhxh

Degrees of support given by

h1, ..., hN to class ωk

Output of classifier hi

(3.14)

3.3.3 Class-Conscious and Class-Indifferent Combiners

Based on the way of using the decision profile to find the overall support for
each class ωk, the combination methods are divided by Kuncheva [107] into class-
conscious and class-indifferent, see Table 6.1. The class-conscious methods use
only the kth column of DP (x) such as average, minimum, maximum and product
rules. These type of methods use the context of the profile but lose part of the
information because they use only column per class. The class-indifferent methods
ignore the context of the decision profile and use all of DP (x) as features in a
new feature space, which is called the intermediate feature space. Any classifier
can be used with the intermediate features as inputs and the class label as the
output.

Table 3.1: Taxonomy of Combination Methods

combiner Static (nontrainable) Dynamic (trainable)

crisp
Majority Vote [112] Behaviour knowledge space [85]

Weighted Majority Vote [65] Naive Bayes [204]
Wernecke Method[199]

ranking Borda count [80] Generalized borda count [143]

soft

Class Conscious Class Conscious
Average Weighted Average

Minimum Fuzzy Integral [41]
Maximum Probabilistic Product
Product Pseudoinverse matrix

Ordered weighted averaging [111] Class Indifferent
Neural Networks [84],[3]

Stacked Generalization [202]
Dempster-Shafer method [158],[60]

Decision Templates [109]

54 Chapter 3. Ensemble Learning

3.3.4 Trainable and Nontrainable Combiners

The combination methods can be divided into static (nontrainable) and dynamic
(trainable) [59], see Table 6.1. The former refers to the combination rules that do
not need training after the individual classifiers have been trained. For instance,
Majority Voting, average or minimum. The latter are fusion functions that re-
quire additional training after the training of the individual classifiers whether
it depends on an additional training set or uses the same training set. For in-
stance, Behavior-Knowledge Space, Decision Templates [109], Naive-Bayes and
Neural combiners. Experimental studies [109] show that adaptive fusion methods
especially Decision Templates outperform fixed combination rules. A third class
of combiners where the combiner are trained during the classifiers training, for
instance, the weighted majority vote used in AdaBoost [65].

3.4 Ensemble Learning Algorithms

In the following sections, we present the ensemble methods that are used in this
thesis. For an excellent survey on ensemble methods see [36].

3.4.1 Manipulation of Training Set

3.4.1.1 Bagging

Given a training set L of size m, standard Bagging [31] creates N base classifiers
hi : i = 1, . . . , N (See Algorithm 1). Each classifier is constructed using the
base learning algorithm BaseLearn on a bootstrap sample of size m created by
random resampling with replacement from the original training set. Breiman
[31] mentioned that each bootstrap sample contains approximately 63% of the
original training set, where each example can appear multiple times. He also
indicated that, given N training examples, the probability that the ith training
example is selected zero or more times is approximately Poisson distributed with
λ = 1. In the prediction phase, the class label assigned to given example x is the
class with the maximum probability P (ωk|x). In case of soft classifiers, P (ωk|x)
is the average of the N class probability distributions produced by the ensemble
members Pi(x). In case of crisp classifiers, P (ωk|x) is the number of votes given
to class ωk divided by N (majority vote).

This technique works well for unstable base learning algorithms, where a small
change in the input training set can lead to a major change in the output hypothe-
sis. The learning algorithms of decision trees and neural networks are well-known
as unstable algorithms but the linear classifiers, k-nearest neighbor (kNN) and
Naive-Bayes learning algorithms are generally stable especially when the training
set size is large. Breiman [31] and Davidson [49] showed that Bagging does not
work well when applied to stable learners. The reason can be that the aim of

3.4. Ensemble Learning Algorithms 55

Algorithm 1 Bagging Algorithm

Require: Original training set L, Base learning algorithm (BaseLearn), number
of bagging iterations (N)
Training Phase

1: for i = 1 to N do
2: Si = BootstrapSample(L)
3: hi = BaseLearn(Si)
4: end for
5: return ensemble {h1, . . . , hN}

Prediction Phase
6: return H(x) = argmax1≤k≤K P (ωk|x)

for hard classifiers, P (ωk|x) = 1
N

∑
hi(x)=ωk

1, for k = 1, . . . , K

for soft classifiers, P (ωk|x) = 1
N

∑N
i=1 Pi(ωk|x), for k = 1, . . . , K

Bagging is to reduce the variance of the underlying base learner and the variance
of stable learners is already low so it is hard to decrease it more. Zhou et al.
[217] adapted Bagging to k-nearest neighbor classifiers through injecting random-
ness to distance metrics. That is, to construct the ensemble members, both the
training set and the distance metric employed for determining the neighbors are
perturbed. The empirical study reported in this paper shows that the proposed
algorithm, BagInRand, can construct ensembles that effectively improve the ac-
curacy over a single kNN classifier. Oza and Tumer [141] and Skalak [178] showed
that an ensemble of kNN classifiers where each member trained using a small
set of prototypes selected from the whole training set outperforms a single kNN
classifier using all the training examples.

3.4.1.2 Boosting

Boosting is a family of ensemble learning algorithms that are very effective in
improving performance compared to the ensemble members. AdaBoost.M1 de-
scribed in [65] is the most popular algorithm (See Algorithm 2). It introduces the
diversity through generating a sequence of base classifiers hi using weighted train-
ing sets (weighted by D1, . . . , DN) such that the weights of training examples
misclassified by classifier hi−1 are increased and the weights of correctly classified
examples are decreased in order to enforce the next classifier hi to focus on the
hard-to-classify examples at the expense of the correctly classified examples (bias
correction). That is, for each iteration i, the aim of AdaBoost is to construct
a classifier hi that improve the training error of classifier hi−1. Consequently,
AdaBoost stops if the training error of the classifier is zero or worse than random
guessing. In the prediction phase, the class label assigned to given example x
is the class with the maximum probability P (ωk|x). In case of soft classifiers,
P (ωk|x) is the weighted average of the N class probability distributions produced

56 Chapter 3. Ensemble Learning

Algorithm 2 AdaBoost Algorithm

Require: Original training set (L = {(xj, yj)}mj=1), Base learning algorithm
(BaseLearn), number of boosting iterations (N)
Training Phase

1: Initialize D1(j) = 1/m ∀j ∈ {1, . . . ,m}
2: for i = 1 to N do
3: hi = BaseLearn(L, Di)
4: Calculate the training error of hi: εi =

∑m
j=1Di(j)× I(hi(xj) 6= yj)

5: if εi = 0 or εi ≥ 1/2 then
6: Set N = i− 1 and abort loop
7: end if
8: Set the weight of hi: wi = log(βi) where βi = 1−εi

εi
9: Update weights of training examples:

Di+1(j) = Di(j) ×

{
βi if hi(xj) 6= yj;

1 otherwise.

10: Normalize, Di+1(j) = Di+1(j)/Zi where Zi =
∑m

j′=1Di+1(j′)
11: end for
12: return ensemble {h1, . . . , hN}

Prediction Phase
13: return H(x) = argmax1≤k≤K P (ωk|x)

for hard classifiers, P (ωk|x) = 1∑N
i=1 wi

∑
hi(x)=ωk

wi, for k = 1, . . . , K

for soft classifiers, P (ωk|x) = 1∑N
i=1 wi

∑N
i=1wiPi(ωk|x), for k = 1, . . . , K

by the ensemble members Pi(x). In case of soft classifiers, P (ωk|x) is the weighted
votes given to class ωk divided by N (weighted majority vote). Note that each
member is assigned a weight wi based on its training error.

Applying AdaBoost to decision trees is successful and is considered one of the
best off-the-shelf classification methods. Despite its popularity, AdaBoost has two
drawbacks [56]: it performs poorly given a small training set and also when there
is a lot of training examples with incorrect class label (mislabeling noise).

3.4.2 Manipulation of Feature Set

3.4.2.1 Random Subspace Method (RSM)

Random Subspace Method (RSM) is an ensemble learning algorithm proposed
by Ho [82]. The diversity is promoted through feature set manipulation instead
of training set manipulation. That is, if the given data set is represented by
D features, then d features are randomly selected resulting in a d-dimensional

3.4. Ensemble Learning Algorithms 57

random subspace of the original D-dimensional feature space. Then for each
random subspace a classifier is constructed. The prediction of the committee for
a given sample x is the average of the N class probability distributions provided
by the ensemble members Pi(x) then the most likely class of x is the class with
the maximum probability. (in our study, d = D

2
)

Algorithm 3 RandomSubspaceMethod

Require: L= {(xj, yj)}mj=1 where xj = (xj1, . . . xjD) - Original training set
BaseLearn - Base learning algorithm
N - number of iterations
d - number of randomly selected features (d < D)

1: for i = 1 to N do
2: Si = RandomFeatureSelection(L, d)
3: hi = BaseLearn(Si)
4: end for
5: The final hypothesis (simple averaging):
6: H(x) = argmax1≤k≤K P (x) where P (x) = 1

N

∑N
i=1 Pi(x)

7: return ensemble H

3.4.2.2 Random Forest

Breiman [32] introduced an extended version of Bagging, that is called Random
Forest. It combines Bagging with random feature selection for decision trees. In
this method, each member of the ensemble is trained on a bootstrap sample from
the original training set as in Bagging. Decision trees are then grown by selecting
the feature to split on at each node from randomly selected feature subset F
instead of the full feature set. Breiman [32] set the size of F to blog2(D + 1)c,
where D is the total number of features. In order to maintain diversity the
output random trees are not pruned. Random Forest has better diversity than
Bagging because it depends on two sources of diversity: training set manipulation
and feature set manipulation. Dietterich [54] recommends Random Forest as the
method of choice for decision trees, as it compares favorably to AdaBoost and
works well even with noise in the training set. The main shortcoming of Random
Forest is that it can only be applied to decision trees.

3.4.3 Manipulation of the Output Targets

Unlike all the previous ensemble learning algorithms that learn ensemble mem-
bers to discriminate among the same set of classes Ω. This family of ensemble
learning algorithms creates the diversity through constructing the different en-
semble members using different target classes. Chapter 4 discusses this family in
more details.

Chapter 4

Multi-Class Learning

4.1 Introduction

Many real-world pattern recognition problems involve a large number of classes
where the learning task is to assign single class label from a set of K labels to each
input example. This learning paradigm usually called Multi-Class Learning and
is divided into two directions. The first direction is to directly apply existing base
learning algorithms (see Chapter 2) provided that they can be easily generalized
to handle these multiple classes such as the neural networks and decision trees.
The second direction is to decompose the multi-class problem into a set of binary-
class problems and then to apply binary class learning algorithms to solve each
problem separately. The importance of the second direction appears more when
the underlying base learning algorithm can not handle multiple classes such as
the perceptron algorithm [160] and support vector machine algorithm [193]. The
experiments conducted by Dietterich [57] had shown that an ensemble of binary-
class decision trees outperforms a single multi-class decision tree and the same
conclusion for neural networks. The family of approaches that adopts the second
direction is referred to as output space decomposition or multi-class decomposi-
tion techniques and it includes: one-against-others, one-against-one (pairwise)
[101, 105], error-correcting output coding [57] and tree-structured (hierarchical)
approaches [60]. In the following sections each of these approaches is briefly ex-
plained except for the tree-structured approach that is explained in more details
because it will be used in the experiments. To facilitate the explanation, we
assume that L = {(xµ, yµ)|xµ ∈ RD, yµ ∈ Ω, µ = 1, . . . ,m} is the given set of
training examples and Ω = {ω1, . . . , ωK} is the predefined set of class labels.

59

60 Chapter 4. Multi-Class Learning

4.2 One-Against-Others Approach

4.2.1 Training Phase

The single multi-class data set is decomposed into a set of K binary-class data
sets (Lk), for each k = 1, . . . , K, that is one binary problem for each class ωk. For
each class ωk, a binary classifier is trained to discriminate between it and the other
classes using the examples of L that belong to ωk as positive examples (labeled 1)
and all the examples of the other classes as negative examples (labeled −1), see
Table 4.1(a). The rows represent classes and columns represent classifiers. For
instance, for the digits recognition task, 10 binary classifiers are constructed.

Tumer and Ghosh [188] reduce the correlation among classifiers in an ensemble
by training them with different feature subsets. They train K classifiers, one
corresponding to each class in a K-class problem. For each class ωk, a subset of
features that have a low correlation to that class is eliminated. The degree of
correlation among classifiers is controlled by the amount of eliminated features.
This method, called input decimation, has been further explored by Tumer and
Oza [141]. Experimental results on three data sets showed the advantage of input
decimation over using combiners based on dimensionality reductions relying on
Principle Component Analysis (PCA).

The main drawback of this decomposition approach is that it leads to imbal-
anced training sets [164] because the number of negative examples is K−1 times
greater the the number of positive examples if the number of examples is equal
for all K classes. Classifiers generally perform poorly on imbalanced datasets.
For instance, if a support vector machine is used as binary classifier, the decision
boundary will be biased to the negative examples. Another drawback is the False
Positives. In the classification phase, it is expected that exactly one of the K
classifiers replies with positive answer but for large K often more than one clas-
sifier reply positively which is a tie that must be broken by additional criteria.

4.2.2 Classification Phase

For each class ωk, if hk is a hard classifier hk : RD → {0, 1},that is,

hk(x) =

{
1 if x is assigned to ωk ,

0 if x is not assigned to ωk.
(4.1)

Then a given example x is assigned a crisp class label ωi if hi respond positively,
that is hi(x) = 1. The main drawback of this combination rule is that sometimes
more than one binary classifier can give a positive answer. In this case, tie
can be broken arbitrary. This problem can be avoided if hk is a soft classifier,
hk : RD × {ωk,¬ωk} → [0, 1], then the final soft class label assigned to x is the

4.3. One-Against-One (Pairwise) Approach 61

Table 4.1: Decomposition of a 5-class problem into 5 binary classification problems
using the One-Against-Others Approach.

(a) Training Phase
- h1 h2 h3 h4 h5

ω1 1 -1 -1 -1 -1
ω2 -1 1 -1 -1 -1
ω3 -1 -1 1 -1 -1
ω4 -1 -1 -1 1 -1
ω5 -1 -1 -1 -1 1

(b) Classification Phase
ω1 ω2 ω3 ω4 ω5

ω1 h1(x, ω1) h2(x,¬ω2) h3(x,¬ω3) h4(x,¬ω4) h5(x,¬ω5)
ω2 h1(x,¬ω1) h2(x, ω2) h3(x,¬ω3) h4(x,¬ω4) h5(x,¬ω5)
ω3 h1(x,¬ω1) h2(x,¬ω2) h3(x, ω3) h4(x,¬ω4) h5(x,¬ω5)
ω4 h1(x,¬ω1) h2(x,¬ω2) h3(x,¬ω3) h4(x, ω4) h5(x,¬ω5)
ω5 h1(x,¬ω1) h2(x,¬ω2) h3(x,¬ω3) h4(x,¬ω4) h5(x, ω5)

average of the K classifier outputs, see Table 4.1(b), as follows:

H(x, ωi) =
1

K

(
hi(x, ωi) +

K∑
k=1,k 6=i

hk(x,¬ωk)

)
(4.2)

Thus, the predicted class label ŷ for a given example x is,

ŷ = arg max
1≤k≤K

H(x, ωk) (4.3)

Both training and classification time complexity are linear with respect to the
number of classes.

4.3 One-Against-One (Pairwise) Approach

4.3.1 Training Phase

This multi-class decomposition schema transforms the multi-class data set into
K(K − 1)/2 binary-class data sets (Li,j), one for each pair of classes (ωi, ωj), for
each i, j = 1, . . . , K. A binary classifier hi,j is trained to discriminate between the
two classes using the examples in L that belong to class ωi as positive examples
(labeled 1), those belonging to ωj as negative examples (labeled −1) and the
other examples are not used (labeled 0), see Table 4.2(a). The rows represent
classes and columns represent classifiers. For instance, the digits recognition task
is solved by constructing 45 binary classifiers.

62 Chapter 4. Multi-Class Learning

Table 4.2: Decomposition of a 5-class problem into 10 binary classification problems
using the One-Against-One Approach

(a) Training Phase
h1,2 h1,3 h1,4 h1,5 h2,3 h2,4 h2,5 h3,4 h3,5 h4,5

ω1 1 1 1 1 0 0 0 0 0 0
ω2 -1 0 0 0 1 1 1 0 0 0
ω3 0 -1 0 0 -1 0 0 1 1 0
ω4 0 0 -1 0 0 -1 0 -1 0 1
ω5 0 0 0 -1 0 0 -1 0 -1 -1

(b) Classification Phase
ω1 ω2 ω3 ω4 ω5

ω1 - h1,2(x, ω1) h1,3(x, ω1) h1,4(x, ω1) h1,5(x, ω1)
ω2 h1,2(x, ω2) - h2,3(x, ω2) h2,4(x, ω2) h2,5(x, ω2)
ω3 h1,3(x, ω3) h2,3(x, ω3) - h3,4(x, ω3) h3,5(x, ω3)
ω4 h1,4(x, ω4) h2,4(x, ω4) h3,4(x, ω4) - h4,5(x, ω4)
ω5 h1,5(x, ω5) h2,5(x, ω5) h3,5(x, ω5) h4,5(x, ω5) -

4.3.2 Classification Phase

For each pair (ωi, ωj) such that i < j, if hi,j is a hard classifier, hi,j : RD → {0, 1},
that is,

hi,j(x) =

{
1 if x is assigned to ωi,

0 if x is assigned to ωj.
(4.4)

Then a hard combiner such as majority vote is used to predict the class label of
a given example x where all binary classifiers are applied. The support given for
each class ωi is the number of votes for this class, that is,

H(x, ωi) =
1

K − 1

 i−1∑
k=1,

hk,i(x)=1

1 +
K∑

k=i+1,
hi,k(x)=1

1

 (4.5)

If hi,j is a soft classifier (see Section 3.3.2), hi,j : RD × {ωi, ωj} → [0, 1], then
the final soft class label assigned to x is the average of the K(K − 1)/2 classifier
outputs, see Table 4.2(b), as follows:

H(x, ωi) =
1

K − 1

(
i−1∑
k=1

hk,i(x, ωi) +
K∑

k=i+1

hi,k(x, ωi)

)
(4.6)

Thus, the predicted class label ŷ for a given example x is,

ŷ = arg max
1≤k≤K

H(x, ωk) (4.7)

The main drawback is that both training and classification time complexity are
quadratic with respect to the number of classes. Which is computationally ex-
pensive especially when K is large.

4.4. Error-Correcting Output Codes (ECOC) 63

4.4 Error-Correcting Output Codes (ECOC)

4.4.1 Training Phase

This multi-class decomposition schema was introduced by Dietterich and Bakiri
[57]. In this technique a K-class data set is broken down into a set of N binary-
class data sets. The basic idea is to create a codeword for each class and to
arrange these K codewords as rows of a matrix M , that is called code matrix,
where M ∈ {−1, 1}K×N and N is the code length. This is a special case of
the code matrix proposed in [14] where M ∈ {−1, 0, 1}K×N . In this general case,
some entries Mij in the matrix can be zero indicating that the corresponding class
ωi is not taken into account by the corresponding binary classifier hj. A binary
classifier hi is trained to discriminate between the set of positive classes (labeled 1)
and the set of negative classes (labeled−1) that omits the training examples of the
other classes (labeled 0), see Table 4.3. From the perspective of machine learning,
the matrix M represent a set of N binary classification tasks, one for each column.
The way used to create this code matrix is called the encoding strategies. The One-
Against-Others and One-Against-One are the most popular encoding strategies.
Other heuristics are sparse random codes [57] and dense random codes [14]. In
the dense random codes, each entry in the code matrix is selected uniformly at
random from the set {−1, 1}. Allwein et al. proposed to set the code length
N = 10 log2(K). The dense matrix is created by choosing the matrix that has
the largest minimum Hamming decoding distance among each pair of codewords
in the matrix - the matrix with trivial and complementary codes is discarded. The
second random approach - sparse random codes - takes its values from the pool
{−1, 0, 1}. Each entry of the code matrix is 0 with probability 1/2 and -1 or 1 with
probability 1/4. The length of the sparse codeword is set to 15 log2(K). Again,
the matrix with the largest minimum Hamming decoding distance is selected
considering that no trivial or complementary codes are present. All these encoding
strategies are defined independently of the data set and satisfy two conditions:

• Row separation. Each codeword should be well-separated in terms of
Hamming distance from each of the other codewords.

• Column separation. Each column hi should be uncorrelated with all the
other columns hj, j 6= i. This condition is fulfilled if the Hamming distance
between a column and the rest is maximized. This condition is necessary
to avoid adding identical classifiers into the ensemble.

4.4.2 Classification Phase

The codeword is formed by applying the N binary classifiers hi to a given example
x and concatenating the results into a vector h(x) = (h1(x), . . . , hN(x)). The

64 Chapter 4. Multi-Class Learning

Table 4.3: Decomposition of a 5-class problem into 7 binary classification problems
using the Error-Correcting Approach

h1 h2 h3 h4 h5 h6 h7

ω1 1 0 1 1 0 1 1
ω2 0 1 0 0 1 0 1
ω3 0 0 1 1 1 1 0
ω4 1 1 0 0 1 0 1
ω5 0 1 1 0 0 0 0

way of combining the N classifier outputs to assign one of the K labels to x is
called the decoding strategy. The simplest decoding strategy is to measure the
closeness between the N codewords and the prediction vector. The closeness is
measured by finding the Hamming distance between the codewords and the vector
h(x). Hamming distance dH is the number of positions where the two compared
codewords differ. The class with the nearest codeword to h(x) is assigned to x,

ŷ = arg min
1≤k≤K

dH(M(ωk), h(x)) (4.8)

This approach of predicting the class label is known as the Hamming Decoding.
The main drawback of ECOC schema is that the encoding strategies used to
design the code matrix do not take into account the dependencies among classes.
This might lead to binary problems that are unnatural and hard to solve especially
if the number of classes is large. Another drawback is the number of binary
classifiers N is a parameters of the algorithm. It is not easy to find the minimum
number of classifiers to achieve high classification performance. For instance,
ECOC constructs a large number of classifiers for the random encoding strategies,
dense and sparse, in order to achieve good accuracy.

4.5 Decision Directed Acyclic Graphs (DDAG)

This multi-class decomposition technique was introduced by Platt et al. [148].
DAG is a graph whose edges have direction and no cycles. For a K class problem,
DAG include K(K − 1)/2 internal nodes where each node contains a binary
classifier to discriminate between a pair of classes. The nodes within the graph
start with a root node at the top and spanned into two nodes at the second layer,
3 nodes at the third layer and so on until the final layer is reached that consists
of K leaves representing the class labels, see Figure 4.1. The total depth of the
graph is K-1.

4.5.1 Training Phase

The training phase is the same as that of the One-against-One technique (see
Section 4.3).

4.6. Tree-Structured (Hierarchical) Approach 65

ω1 vs ω4

ω2 vs ω4ω1 vs ω3

ω2 vs ω3ω1 vs ω2
ω3 vs ω4

ω2 ω4ω3ω1

¬ ω4 ¬ ω1

¬ ω3 ¬ ω1 ¬ ω2
¬ ω4

ω1

ω2

ω3

ω4

ω1

ω2

ω3

ω2

ω3

ω4

ω3

ω4

ω1

ω2
ω2

ω3

Figure 4.1: The structure of the Decision Directed Acyclic Graph for a
4-class problem

4.5.2 Classification Phase

The objective of DDAG is to reduce the classification time compared to One-
against-One technique. To predict the class label of a given example x, starting
at the root node then moves to the left or right node based on the binary decision
of the classifier at this node. This process keeps on traversing the graph until
it reaches a leaf, which the predicted class label. Thus, it requires only K-
1 decision nodes to be evaluated in order to predict the unknown class. This
classification approach is more efficient than the pairwise technique which requires
the evaluation of all the K(K − 1)/2 classifiers. The main drawback of DDAG
is that it depends on the order of binary classes within the graph. This leads to
difference in accuracy between different sequences. Ussivakul and Kijsirikul [192]
proposed the Adaptive Directed Acyclic Graph (ADAG) method which is the
modification of the DDAG. This method reduces the dependency of the sequence
of nodes on the structure. In addition, the number of tests required to predict the
correct class is reduced to log2(K) times or less, considerably less than the number
of tests required by DDAG which is linear with K. Their approach yields higher
accuracy and reliability of classification, especially when the number of classes is
relatively large.

4.6 Tree-Structured (Hierarchical) Approach

The aim of the tree-structured approach is to provide an encoding strategy for the
design of the ECOC matrix that takes into account the relationships and similar-
ities among classes and to achieve high classification accuracy using the minimum

66 Chapter 4. Multi-Class Learning

number of classifiers. The task of the tree-structured approach is to decompose a
given K-class problem into a set of simpler tree-structured K-1 binary problems
and to train classifiers to solve the binary problems at the internal nodes within
the tree through a base learning algorithm (BaseLearn). In the classification
phase, the approach uses a given combination method (TreeCombiner) to com-
bine the intermediate results of the internal node classifiers in order to produce
the final decision of the ensemble for a given unseen instance x. The approach
works as follows: First, the set of K classes (Ω) is split into two disjoint subsets,
known as meta-classes or super-classes. Then these meta-classes are again split
recursively until each meta-class contains one of the original classes. The resultant
binary tree has K leaf nodes, one for each original class and K-1 internal nodes,
each associated with two meta-classes and a binary classifier. (See Algorithm 4)

Algorithm 4 Tree Ensemble Learning Algorithm

Require: L - set of m labeled training examples
Ω = {ω1, . . . , ωK}- set of classes
BaseLearn - base learning algorithm
TreeCombiner - hierarchical combination method
Training Phase

1: Ω1 ← Ω
2: Generate Class Hierarchy as follows:

1. C ← {(ck, ωk)}Kk=1 ← GetClassCentroids(L)

2. hierarchy ← BuildNode(Ω1, C)

3: for each internal node j at hierarchy do
4: Filter and relabel the training set L as follows:

Lj = {(x, t)|(x, y) ∈ L and t = 0 if y ∈ Ω2j and t = 1 if y ∈ Ω2j+1}
5: Train binary classifier, hj ← BaseLearn(Lj)
6: end for

Prediction Phase
7: return TreeCombiner(x, hierarchy) for a given instance x

4.6.1 Training Phase

4.6.1.1 Generate Class Hierarchy

There are various ways to build the tree structure, e.g. user-defined and class-
similarity based approaches. In the handwritten digits recognition problem for
instance, the user might construct two meta-classes by separating the digits
{0, 1, 2, 3, 4} in one meta-class and the rest in the other meta-class. If the class

4.6. Tree-Structured (Hierarchical) Approach 67

hierarchy is based on the relationships among classes, it provides important do-
main knowledge that might lead to improve the classification accuracy [105, 132].
That is, the class hierarchy should satisfy the well-known cluster assumption: sim-
ilar classes should belong to the same meta-class while dissimilar classes should
belong to different meta-classes. There are two approaches to exploit the sim-
ilarity among classes: the bottom-up approach defined in Algorithm 5 and the
top-down approach defined in Algorithm 6. The resultant binary tree has K leaf
nodes, one for each original class and K-1 internal nodes, each associated with
two (meta-)classes and a binary classifier. There is a number of various ways
to measure the distance between two classes such as Nearest Neighbor (Single
linkage), Farthest Neighbor, Average Distance and Centroid. In this study, the
Euclidean distance between the centroid of the training examples that belong to
ωi and that of the examples belonging to class ωk is used to measure the similar-
ity between them (see Figure 4.3). In the bottom-up approach, the multi-view
hierarchical clustering algorithm was proposed by Gupta and Dasgupta [74].

Algorithm 5 BuildNode - (Bottom-Up Approach)

Require: Ωj - set of classes assigned to tree node j
Cj - set of centroids of classes in metaclass Ωj

1: if |Ωj| = 1 then
2: Add a leaf node j to hierarchy that represents class Ωj

3: else
4: Add an internal node j to hierarchy that represents meta-class Ωj

5: Initially, put each class in Ωj in a separate cluster
6: repeat
7: Get the two most close clusters in Ωj

8: Merge these two clusters into a new cluster
9: until the number of remaining clusters is two

10: Denote the remaining clusters, Ω2j and Ω2j+1

11: C2j ← set of centroids of classes in Ω2j

12: BuildNode(Ω2j, C2j)
13: C2j+1 ← set of centroids of classes in Ω2j+1

14: BuildNode(Ω2j+1, C2j+1)
15: end if
16: return hierarchy

In the top-down approach, the tree structure is generated by recursively applying
k-means clustering algorithm at each node j to split its associated set of classes
Ωj into two disjoint subsets Ω2j and Ω2j+1, until every subset contains exactly
one class. Starting from the root node recursively for each internal node j, its
set of classes Ωj is divided into two disjoint (dissimilar) subsets Ω2j and Ω2j+1.
For instance, at the root node with index 1 (see Figure 4.2), the most distant
subsets Ω2 and Ω3 of Ω1 are determined by performing 2-means clustering using

68 Chapter 4. Multi-Class Learning

Algorithm 6 BuildNode - (Top-Down Approach)

Require: Ωj - set of classes assigned to tree node j
Cj - set of centroids of classes in metaclass Ωj

1: if |Ωj| = 1 then
2: create a leaf node j that represents the class Ωj

3: Add nodej to hierarchy
4: else
5: create an internal node j that represents the metaclass Ωj

6: Add nodej to hierarchy
7: Get the most distant classes in Ωj: (cj1, ωj1), (cj2, ωj2)
8: {Ω2j,Ω2j+1} = seeded-k-means(Cj, cj1, cj2)
9: C2j ← set of centroids of classes in Ω2j

10: BuildNode(Ω2j, C2j)
11: C2j+1 ← set of centroids of classes in Ω2j+1

12: BuildNode(Ω2j+1, C2j+1)
13: end if
14: return hierarchy

node1

node2 node3

Ω1 = {0,1,2,3,4,5,6,7,8,9}

node4 node5 node6 node7

Ω2 = {0,1,4,7} Ω3 = {2,3,5,6,8,9}

Ω4 = {0,1} Ω5 = {4, 7} Ω6 = {2,3,9} Ω7 = {5,6,8}

node13 node15

Ω8 = {0}

Ω9 = {1} Ω10 = {4} Ω11 = {7} Ω12 = {2}

Ω26 = {3} Ω27 = {9} Ω30 = {5} Ω31 = {6}

Ω14 = {8}

Ω15 = {5,6}Ω13 = {3,9}

Figure 4.2: Class hierarchy constructed using Top-Down approach for the
handwritten digits

the centroids of the most distant classes in Ω1 as initial prototypes for clusters.
The meta-classes Ω2 and Ω3 will contain the set of classes lies at the first and
second cluster, respectively.

4.6.1.2 Train Binary Classifiers

After constructing the tree, a binary classifier hj is assigned to each internal node
j to discriminate between two meta-classes Ω2j and Ω2j+1. It is trained using
the training examples in L that belong to meta-class Ω2j+1 as positive examples

4.6. Tree-Structured (Hierarchical) Approach 69

Figure 4.3: Distance between class ωi and class ωk according to Centroid-
based distance calculation method

(labeled 1), these examples belonging to Ω2j as negative examples (labeled −1)
and the other examples are not taken into consideration (labeled 0), see Table
4.4. For instance, the digits recognition task is solved by construction of 9 binary
classifiers.

Jun and Ghosh [91] proposed a novel multi-class boosting algorithm, called
AdaBoost.BHC. First the tree-structured approach is used to decompose the
multi-class problem into a set of binary problems. Then instead of a single binary
classifier, an ensemble of binary classifiers is constructed, by the popular Ad-
aBoost ensemble method, to solve each binary problem. Empirical comparisons
of AdaBoost.BHC and other existing variants of multi-class AdaBoost algorithm
are carried out using seven multi-class datasets from the UCI machine learning
repository. Not only AdaBoost.BHC is faster than other AdaBoost variants but
also it achieves lower error rates.

Table 4.4: Decomposition of the 10-class handwritten digits problem into 9 binary
classification problems using the Tree-Structured Approach

h1 h2 h3 h4 h5 h6 h7 h8 h9

digit0 -1 -1 0 -1 0 0 0 0 0
digit1 -1 -1 0 1 0 0 0 0 0
digit2 1 0 -1 0 0 -1 0 0 0
digit3 1 0 -1 0 0 1 0 -1 0
digit4 -1 1 0 0 -1 0 0 0 0
digit5 1 0 1 0 0 0 1 0 -1
digit6 1 0 1 0 0 0 1 0 1
digit7 -1 1 0 0 1 0 0 0 0
digit8 1 0 1 0 0 0 -1 0 0
digit9 1 0 -1 0 0 1 0 1 0

4.6.2 Classification Phase

In the literature, there are various methods developed to combine the intermediate
decisions of the binary classifiers. In the following subsections, a hard and two
soft combiners will be discussed. In the second part of this thesis [3], a new soft

70 Chapter 4. Multi-Class Learning

trainable combiner based on decision templates and RBF neural networks will be
introduced.

4.6.2.1 Classical Decision Tree-Like (Hard) Combiner

A simple and fast method to get the final decision of the tree is the decision
tree approach where the tree is traversed following the individual node classifiers
hj starting from the root node to a leaf node which is then representing the
classification result. Each classifier decides which of its child node has to be
evaluated next, until a leaf node is reached. This combination method is very
fast. Drawbacks of this approach are: (1) misclassification of high-level classifiers
can not be corrected; (2) it does not benefit from the discriminating information,
provided by the classifiers, outside the path; (3) the output is only the predicted
class label, that is hj : RD → {Ω2j,Ω2j+1}, and therefore voting is the only way
to combine the ensemble of tree classifiers.

4.6.2.2 Product of the Unique Path Combiner

This tree combination method was proposed by Kumar et al. and applied for
land cover classification using remote sensing hyperspectral data in [105, 132]. It
is based on the assumption that the internal classifier hj can estimate meta-class
membership probabilities (soft classifier). Then, for given instance x, the mem-
bership probability for each class k is the product of the posterior probabilities
of all the internal classifiers along the unique path from the root node to the leaf
node containing class k.

4.6.2.3 Dempster-Shafer evidence theory

It is a generalization to traditional probability theory for the mathematical repre-
sentation of uncertainty, which was introduced by Dempster [50] and Shafer [174].
There are many reasons for selecting this theory in the context of multiple classi-
fiers combination. It can discriminate between ignorance and uncertainty. Since
it is able to assign evidence not only to atomic but also to subsets and intervals
of hypotheses, it easily represents evidences at different levels of abstraction. It
can combine evidences provided by different sources and can measure the conflict
among them.

Let Θ be a finite set of K mutually exclusive atomic hypotheses θ1, . . . , θK ,
called the frame of discernment and let 2Θ denote the set of all subsets of Θ.
Then a basic belief assignment (BBA) or mass function is defined over Θ as a
function m : 2Θ → [0, 1] that satisfies the following conditions:

m(∅) = 0 and
∑
A⊆Θ

m(A) = 1 (4.9)

4.6. Tree-Structured (Hierarchical) Approach 71

The quantity m(A) can be interpreted as the belief in a hypothesis A. Differently
from probability, m(A) is not the sum of masses given to the elements of A. It
represents the mass given to A itself and not to any of its subsets. A situation of
total ignorance means that nothing is known but the fact that the true value is in
the universal set and is represented by m(Θ) = 1. Intuitively, a part of belief in
a hypothesis A must also be committed to any hypothesis it implies. To measure
the total belief in A, one must add to m(A) the masses m(B) for all subsets B
of A. This function is called a belief function or credibility of A:

Bel(A) =
∑

B:B⊆A

m(B) (4.10)

It is clear that Bel(A) = m(A) if A is an atomic hypothesis. The subsets A of
Θ where m(A) > 0 are called the focal elements of the belief function, and their
union is called its core. One can verify that the belief in some hypothesis A and
the belief in its negation Ā do not necessarily sum to 1, which is a major dif-
ference with probability theory and leads to discriminate between ignorance and
uncertainty. Consequently, Bel(A) does not expose to what extent one believes
in Ā, that is to what extent one doubts in A, which is described by Bel(Ā). The
quantity Pl(A) = 1−Bel(Ā), called the plausibility of A, defines to what extent
one fails to doubt in A, that is to what extent one finds A plausible. It is defined
as follows:

Pl(A) =
∑

B:B∩A 6=∅

m(B) (4.11)

As demonstrated by Shafer [174], any one of the three functions m, Bel and Pl
is sufficient to recover the other two.

m(A) =
∑

B:B⊆A

(−1)|A|−|B|Bel(B). (4.12)

Dempster’s unnormalised rule of combination [171] is a convenient method to
combine the BBAs provided by n independent sources of information m1, . . . ,mn

into a single BBA using the orthogonal sum defined below where m(Θ) indicates
the degree of conflict among sources.

m(A) =
∑

Ai:∩Ai=A

∏
1≤i≤n

mi(Ai) (4.13)

An approach similar to decision templates is used in [158] to apply the DS
theory for multiple classifier fusion. The distances between the classifier outputs
for the example to be classified and the mean of classifier outputs calculated on
the training examples are transformed into basic belief assignments that are then
combined using the orthogonal sum.

72 Chapter 4. Multi-Class Learning

4.6.2.4 Evidence-theoretic Soft Combiner

In [61, 60], a combiner based on DS evidence theory was proposed for decision
fusion of internal nodes classifiers where it was applied successfully for visual
object recognition tasks. Using the vocabulary of DS theory, Ω can be called
the frame of discernment of the task where hypothesis θk means that “the given
instance xu belongs to class ωk“. In addition, each internal node classifier hj is
considered as a source of evidence providing that it is soft classifier (hj : RD ×
{Ω2j,Ω2j+1} → [0, 1]). The final decision is a combination of knowledge extracted
from different sources: (i) binary classifier and (ii) tree ensemble of K-1 binary
classifiers.

• Evidence from an individual node classifier

Consider an internal node j within a tree, let us define a local frame of
discernment Θj:

Θj = {Θ2j,Θ2j+1} (4.14)

where hypothesis Θ2j means that “the given instance xu belongs to meta-
class Ω2j and Θ2j+1 means that “it belongs to meta-class Ω2j+1“.

Since hj is a source of evidence, it can be represented by a BBA mj. Usu-
ally, not all classifiers produce outputs that satisfy the conditions of BBA
in Eq.4.9. In this case, the outputs of classifier hj are transformed into
BBA as follows: (1) all negative values are set to zero, (2) if the sum of
a classifier outputs is greater than one, it is normalized to sum up to one.
if hj(xu,Ω2j) (hj(xu,Ω2j+1)) is high, a high belief is assigned to hypothesis
Θ2j (Θ2j+1).
Discounting Technique is used to propagate the outputs of high-level
classifiers to the classifiers at the lower levels. That is, the output of each
internal node classifier hj is multiplied by the BBA of its parent node clas-
sifier mpar(j) where the root node classifier output is not discounted. The
motivation for discounting is the fact that a number of classifiers will be
enforced to classify to examples that actually belong to classes that are
unknown to them. For instance, a classifier hj that discriminates between
Ω2j = {ω1, ω5} and Ω2j+1 = {ω2, ω6} has to classify an example xu belong-
ing to class ω3. In this case, it is desirable that hj(xu,Ω2j) and hj(xu,Ω2j+1)
tends to zero but at the real situation, either of them may tend to one. If
at least one classifier within a certain path gives a low response to instance
xu, this leads to weaken any undesirable high responses. Therefore, BBA
mj is defined as follows:

mj(Θ2j) = mpar(j)(A).hj(xu,Ω2j) (4.15)

mj(Θ2j+1) = mpar(j)(A).hj(xu,Ω2j+1) (4.16)

mj(Θ) = 1−mj(Θ2j)−mj(Θ2j+1) (4.17)

mj(B) = 0 ∀B ∈ 2Θ − {Θ,Θ2j,Θ2j+1} (4.18)

4.6. Tree-Structured (Hierarchical) Approach 73

where A = Θ2.par(j) if j = 2.par(j) (node j lies at the left subtree of its
parent node) and similarly A = Θ2.par(j)+1) if j = 2.par(j) + 1. Note that
mj(Θ) represents the doubt in hj.

• Evidence from all K-1 node classifiers within tree Following Demp-
ster’s unnormalized rule of combination, the BBAs from the K-1 internal
node classifiers within a class hierarchy t are conjunctively combined in or-
der to calculate the evidence about a hypothesis θk (degree of belief provided
by TCt that an example xu belongs to ωk).

µ
(t)
k (xu) = m(t)(θk) =

∑
∩Aj=θk

∏
1≤j≤K−1

mj(Aj) where Aj = Θ2j, Θ2j+1, or Θ

(4.19)
and

m(t)(Θ) =
∏

1≤j≤K−1

mj(Θ) (4.20)

wherem(t)(Θ) represent the conflict among the internal classifiers h1, . . . , hK−1.

4.6.3 Related Work

A similar tree-structured decomposition approach is that in [105]. They pro-
posed a hierarchical multiple classifier architecture, called BHC, for the analysis
of hyperspectral data in multi-class problems but they do not consider semi-
supervised learning. An algorithm using the generalized associative modular
learning (GAML) paradigm was developed to divide a set of classes recursively
into two meta-classes and simultaneously finding the best one dimensional pro-
jected feature space that discriminates the two meta-classes using an extension
of Fisher’s discriminant. The soft combiner in Section 4.6.2.2 is adopted. An ex-
perimental evaluation in [153] has shown that tree-structured approach performs
comparably to ECOC using fewer number of binary classifiers.

In [92], the tree-structured approach was compared with four multi-class de-
composition techniques: One-against-Others (Section 4.2), One-against-One (Sec-
tion 4.3), DDAG (Section 4.5) and ECOC (Section 4.4). Support Vector Machines
were used as binary classifiers and the performance was evaluated on a number
of visual object recognition learning tasks. The results have shown that the tree-
structured approach performs comparable to the other techniques.

In the margin tree algorithm [182], a class hierarchy is constructed by hier-
archical agglomerative clustering (HAC) where margins between pairs of classes
are used as distance measures for clustering of (meta-)classes. There are three
different ways to define the margin: greedy, complete-linkage and single-linkage.
Then a total of K - 1 internal nodes will be created with K leaf nodes, same as in

74 Chapter 4. Multi-Class Learning

BHC. As opposite to BHC, in the margin tree algorithm, it is assumed that the
dimensionality is always greater than the number of samples, so that the samples
are always linearly separable by a maximum-margin hyperplane. If the samples
are not linearly separable, using non-linear kernels such as radial basis function to
make the samples separable in a higher dimensional space leads to more difficult
interpretation of margins, and makes the class hierarchy more sensitive to the
kernel parameters.

In [90], they try to solve the problem of small sample size that occurs during
the class hierarchy generation of BHC. It is worth mentioning that the lower
the position of a node at the tree, the less sample size it will have for training.
They proposed a hybrid approach that combine the merits of BHC framework
and margin trees. That is, at each node they check the available sample size. If
number of instances is less than the number of features, the margin tree algorithm
is employed instead of BHC. While BHC algorithm is applied if the samples are
not guaranteed to be linearly separable.

Note that in the above mentioned work, unlabeled data was not considered
to boost the classification performance when the amount of the labeled data is
limited. In the second part of this thesis [9], two new architectures, called cotrain-
of-trees and tree-of-cotrains, are introduced in order to deal with the problem of
small sample size. In addition, a novel ensemble method, denoted as Multi-View
Forest is proposed [6, 1, 11], in the second part of this thesis, that exploits the
error difference among individual tree-structured classifiers trained using different
feature types to construct a more accurate forest classifier.

4.7 Conclusion

Multi-class decomposition techniques are ensemble methods that construct a set
of binary classifiers to solve a multi-class classification task. Each technique con-
sists of three stages: (1) decomposition of the multi-class problem into a set of
simpler two-class problems, (2) solving these two-class problems and (3) combi-
nation of the intermediate solutions to yield the final decision. Ensemble methods
can be divided into: Flat and Hierarchical. Flat architectures are the most pop-
ular ones where the members work independently disregarding the hierarchical
structure of the classes. Tree-Structured ensembles improves the classification
performance by taking into account prior knowledge encoded into the class hier-
archy.

Chapter 5

Semi-Supervised Learning

5.1 Introduction

Supervised learning algorithms require a large amount of labeled training data
in order to construct models with high prediction performance, see Figure 5.1.
In many practical data mining applications such as computer-aided medical di-
agnosis [119], remote sensing image classification [175], speech recognition [95],
email classification [96], or automated classification of text documents [139, 140],
there is often an extremely inexpensive large pool of unlabeled data available.
However, the data labeling process is often difficult, tedious, expensive, or time
consuming, as it requires the efforts of human experts or special devices. Due to

Figure 5.1: Graphical illustration of traditional supervised learning

the difficulties in incorporating unlabeled data directly into traditional supervised
learning algorithms such as support vector machines and RBF neural networks

75

76 Chapter 5. Semi-Supervised Learning

and the lack of a clear understanding of the value of unlabeled data in the learn-
ing process, the study of semi-supervised learning attracted attention only after
the middle of 1990s. As the demand for automatic exploitation of unlabeled data
increases, semi-supervised learning has become a hot topic.

In computer-aided diagnosis (CAD), mammography is a specific type of imag-
ing that uses a low-dose x-ray system to examine breasts and it is used to aid in
the early detection and diagnosis of breast diseases in women. There is a large
number of mammographic images that can be obtained from routine examination
but it is difficult to ask a physician or radiologist to search all images and high-
light the abnormal areas of calcification that may indicate the presence of cancer.
If we use supervised learning techniques to build a computer software to highlight
these areas on the images, based on limited amount of diagnosed training images,
it may be difficult to get an accurate diagnosis software. Then a question arises:
can we exploit the abundant undiagnosed images [119] with the few diagnosed
images to construct a more accurate software (see Figure 5.2).

Figure 5.2: Computer-aided detection (CAD) mammogram

For remote sensing applications, the remote sensing sensors can produce data
in large number of spectral bands. The objective of using such high resolution
sensors is to discriminate among more ground cover classes and hence obtain a
better understanding about the nature of the materials that cover the surface
of the Earth. This large number of classes and large number of spectral bands
require a large number of labeled training examples (pixels) from all the classes
of interest. The class labels of such training examples are usually very expensive
and time consuming to acquire [175]. The reason is that identifying the ground
truth of the data must be gathered by visual inspection of the scene near the
same time that the data is being taken, by using an experienced analyst based on
their spectral responses, or by other means. In any case, usually only a limited
number of training examples can be obtained. These training examples are often
used for deciding which features are useful for the discrimination among classes,
and for designing classifiers based on these derived features (see Figure 5.3). The

5.1. Introduction 77

purpose of SSL is to study how to reduce the small sample size problems by using
unlabeled data that may be available in large number and with no extra cost.

Figure 5.3: Remote-sensing image classification

Another important application for SSL is speech recognition. Speech recogni-
tion systems require large amount of transcribed data for parameter estimation.
However, the manual transcription is tedious and expensive. Kemp and Waibel
[95] trained an initial speech recognizer with only 30 minutes of transcriptions
then an initial transcripts are generated with this recognizer for a large portion
of 50 hours of untranscribed data. The experiments have shown that the word
error rate on a broadcast news speech recognition task is reduced from 32% to
21.4% as a result of using the newly-transcripted materials.

Figure 5.4: Graphical illustration of semi-supervised learning

78 Chapter 5. Semi-Supervised Learning

5.2 What is Semi-Supervised Learning?

In the machine learning literature, there are mainly three paradigms for ad-
dressing the problem of combining labeled and unlabeled data to boost the per-
formance: semi-supervised learning, transductive learning and active learning.
Semi-supervised learning (SSL) refers to methods that attempt to take advantage
of unlabeled data for supervised learning, see Figure 5.4, or to incorporate prior
information such as class labels, pairwise constraints or cluster membership in the
context of unsupervised learning. Transductive learning refers to methods which
also attempt to exploit unlabeled examples but assuming that the unlabeled ex-
amples are exactly the test examples. Active learning [173] refers to methods
which assume that the given learning algorithm has control on the selection of
the input training data such that it can select the most important examples from
a pool of unlabeled examples, then an oracle such as a human expert is asked for
labeling these examples, where the aim is to minimize data utilization. Active
learning will be discussed in more detail in the next section. The recent research of
the machine learning community on semi-supervised learning (SSL) concentrates
into four directions: semi-supervised classification [30, 140, 96, 210, 215, 119],
semi-supervised regression [214], semi-supervised clustering such as constrained
and seeded k-means clustering [195, 181, 19] and semi-supervised dimensionality
reduction [20, 218]. Interested readers in recent advances of SSL are directed
to the literature survey of Zhu [219]. Many semi-supervised classification algo-
rithms have been developed. They can be divided into five categories according
to [219]: (1) Self-Training [139], (2) semi-supervised learning with generative
models [131, 140, 175], (3) S3VMs (Semi-Supervised Support Vector Machines)
[88, 39, 73, 115], (4) semi-supervised learning with graphs [23, 209, 220], and
(5) semi-supervised learning with committees (semi-supervised by disagreement)
[30, 140, 96, 210, 215, 119, 213]. The remainder of this chapter provides an
overview of these five categories.

5.3 Self-Training

Self-Training [139] is an incremental algorithm that initially builds a single clas-
sifier using a small amount of labeled data, see Figure 5.5. Then it iteratively
predicts the labels of the unlabeled examples, rank the examples by confidence
in their prediction and permenantly adds the most confident examples into the
labeled training set. It retrains the underlying classifier with the augmented
training set and the process is repeated for a given number of iterations or until
some heuristic convergence criterion is satisfied. The classification accuracy can
be improved over iterations only if the initial and subsequent classifiers correctly
label most of the unlabeled examples. Unfortunately, adding mislabeling noise
is not avoidable. In practical applications, more accurate confidence measures

5.4. SSL with Generative Models 79

and predefined confidence thresholds are used in order to limit the number of
mislabeled examples.

Measure

Confidence

Select the most confident

examples {(xu, h(xu))}

train

apply

refill

h

U

L

U'

add

Figure 5.5: Graphical illustration of Self-Training

Self-Training is a wrapper algorithm that is applied on any learning algorithm.
It has been appeared in the literature with several names: self-learning [170, 136],
self-corrective recognition [136], naive labelling [86], and decision-directed [207].
One drawback when Self-Training is applied on linear classifiers such as support
vector machines is the most confident examples often lie away from the target
decision boundary (non informative examples). Therefore, in many cases this
process does not create representative training sets as it selects non informative
examples. Another drawback is that Self-Training is sensitive to outliers. For
instance, compare between Figure 5.6 and Figure 5.7 when Self-Training is applied
on 1-Nearest-Neighbor classifier.

5.4 SSL with Generative Models

In generative approaches, it is assumed that both labeled and unlabeled examples
come from the same parametric model where the number of components, prior
p(y), and conditional p(x|y) are all known and correct. Once the model parame-
ters are learned, unlabeled examples are classified using the mixture components
associated to each class. Methods in this category such as in [140, 138] usually
treat the class labels of the unlabeled data as missing values and employ the EM
(Expectation-Maximization) algorithm [51] to conduct maximum likelihood esti-
mation (MLE) of the model parameters θ. It begins with an initial model trained
on the labeled examples. It then iteratively uses the current model to temporarily
estimate the class labels of all the unlabeled examples and then maximizes the
likelihood of the parameters (trains a new model) on all labeled examples (the
original and the newly labeled) until it converges.

The methods differ from each other by the generative models used to fit the
data, for example, mixture of Gaussian distributions (GMM) is used for image

80 Chapter 5. Semi-Supervised Learning

.

.

. .

-

+

-
- -

.

..

.
.

..
.

.

...

.
..

.

+

+
+

.

.

.
.

.

.. .

.

(a)

-

- -

-

+

-
- -

-

.-

.
.

..
.

-

-
--

+
+

+

-

+

+
+

+

-
.

.
-

+

+
- +

.

(b)

-
-

+

-
- -

-

.-

.
.

..
+

-

+
+

+

-

+

+
+

+

-
.

.
-

+

+

- -

- +

.

(c)

-
-

+

-
- -

-

+
-

+
+

+
+

+

-

+
+

+

-

+

+
+

+

-
+

+

-

+

+

- -

- +

+

(d)

Figure 5.6: When Self-Training with 1-Nearest-Neighbor classifier works

--

-.

.

. .

-

+

-
- -

.

..

.
.

..
.

.

...

.
..

.

+

+
+

.

.

.
.

.

.. .

.
.
outlier

(a)

-

+

-
- -

-

.-

.
.

..
.

-

+
+

+

-

+

+
+

+

-
.

.
-

+

+

- -

- +

-
-
outlier

(c)

-

+

-
- -

-

--

-
-

--
-

-

+
+

+

-

+

+
+

+

-
-

-
-

+

+

- -

- +

-
-
outlier

(d)

- -

-

+

-
- -

-

.-

.
.

..
.

-

-
--

+
+

+

-

+

+
+

+

-
.

.
-

+

+
- +

.
-
outlier

(b)

Figure 5.7: When Self-Training with 1-Nearest-Neighbor classifier and a
single outlier does not work

5.5. Semi-Supervised SVMs (S3VMs) 81

classification [175], mixture of multinomial distributions (Naive Bayes) [140, 138]
is used for text categorization and Hidden Markov Models (HMM) [86] is used for
speech recognition. Although the generative models are simple and easy to imple-
ment and may be more accurate than discriminative models when the number of
labeled examples is a very small, the methods in this category suffer from a seri-
ous problem. That is, when the model assumption is incorrect, fitting the model
using a large number of unlabeled data will result in performance degradation
[45]. Thus, in order to alleviate the danger in real-world applications [219], one
needs to carefully construct the generative model, for instance to construct more
than one Gaussian per class. Also, one can down weight the unlabeled examples
in the maximum likelihood estimation.

5.5 Semi-Supervised SVMs (S3VMs)

The aim of S3VM, sometimes called Transductive SVM, is to exploit the unlabeled
data to adjust the decision boundary initially constructed from a small amount
of labeled data, such that it goes through the low density regions while keeping
the labeled examples correctly classified [88, 39], see Figure 5.8. It is an extension
of the standard support vector machines. In the standard SVM, only the labeled
data is used while in S3VMs the unlabeled data is also used. It firstly constructs
an initial SVM classifier using labeled examples and predict the labels of the
unlabeled examples. Then, it iteratively maximizes the margin over both labeled
and the (newly labeled) unlabeled examples. The optimal decision boundary
is the one that has the minimum generalization error on the unlabeled data.
S3VM assumes that unlabeled data from different classes are separated with large
margin. In addition, it assumes there is a low density region through which the
linear separating hyperplane passes. Thus, it does not work for some domains in
which this assumption is not fulfilled and a generative approach would be more
suited.

5.6 Semi-Supervised Learning with Graphs

Blum and Chawla [28] proposed the first graph-based semi-supervised learning
method. They constructed a graph whose nodes represent both labeled and unla-
beled training examples and the edges between nodes weighted according to the
similarity between the corresponding examples. Based on the graph, the aim is to
find the minimum cut of the graph such that nodes in each connected component
have the same label. Later, Blum et al. [29] added random noise to the edge
weights and the labels of the unlabeled examples are predicted using majority
voting. The procedure is similar to bagging and produces a soft minimum cut.
Note that in both [28] and [29] a discrete predictive function is used that assigns

82 Chapter 5. Semi-Supervised Learning

+

+

+

+

-

-

-
-

Figure 5.8: Graphical illustration of S3VMs: The unlabeled examples
help to put the decision boundary in low density regions. Using labeled
data only, the maximum margin separating hyperplane is plotted with the
versicle dashed lines. Using both labeled and unlabeled data (dots), the
maximum margin separating hyperplane is plotted with the oblique solid
lines.

one of the possible labels to each unlabeled example. Zhu et al. [220] introduced a
continuous prediction function. They modeled the distribution of the prediction
function over the graph with Gaussian random fields and analytically showed
that the prediction function with the lowest energy should have the harmonic
property. They designed a label propagation strategy over the graph using such
a harmonic property where the labels propagate from the labeled nodes to the
unlabeled ones, see Figure 5.9. It is worth noting that all graph-based methods
assume that examples connected by heavy edges tend to have the same class label
and vice versa [219].

(a) Before SSL (b) After SSL

Figure 5.9: Graphical illustration of label propagation.

5.7 Semi-Supervised Learning with Committees

This section details some of the state-of-the-art algorithms that belong to the
family of semi-supervised learning with committees or sometimes called semi-
supervised learning by disagreement [213].

5.7. Semi-Supervised Learning with Committees 83

5.7.1 Multi-View Learning

Multi-view learning is based on the assumption that the instance input space
X = X1×X2, where X1 ⊂ RD1 and X2 ⊂ RD2 represent two different descriptions
of an instance, called views. These views are obtained through different physical
sources and sensors or are derived by different feature extraction procedures and
are giving different types of discriminating information about the instance. For
instance, a web page can be represented by different views, e.g. the distribution
of words used in the web page itself, the distribution of words that appear in the
hyperlinks that point to this page, and any other statistical information, such as
size, number of accesses, etc.

refill

Measure

Confidence

h2

Select the most confident

examples {(xu
(1), xu

(2), h1(xu
(1)))}

Measure

Confidence

Select the most confident

examples {(xu
(1), xu

(2), h2(xu
(2)))}

train train

applyapply

refill

h1

U1

L1

L2

U2

U2'

U1'

add add

Figure 5.10: Graphical illustration of Co-Training

5.7.1.1 Multi-View Co-Training

Multi-view learning was first introduced for semi-supervised learning by Blum
and Mitchell in the context of Co-Training [30]. Blum and Mitchell state two
strong requirements for successful Co-Training: the two sets of features should
be conditionally independent given the class and each of which is sufficient for
learning. The pseudo-code is shown in Algorithm 7 (see Figure 5.10) and an
illustrative example is shown in Figure 5.11 where each view is a single feature.
At the initial iteration, two classifiers are trained using a small amount of labeled
training data. Then at each further iteration, each classifier predicts the class
label of the unlabeled examples, estimates the confidence in its prediction, ranks
the examples by confidence, adds the examples about which it is most confident
into the labeled training set. The aim is that the most confident examples with
respect to one classifier can be informative with respect to the other. An example
is informative with respect to a classifier if it carries a new discriminating infor-
mation. That is, it lies close to the decision boundary and thus adding it to the
training set can improve the classification performance of this classifier. Nigam
and Ghani [139] showed that Co-Training is sensitive to the view independence
requirement.

84 Chapter 5. Semi-Supervised Learning

View 2

View1

+-

+
-

Confident (V2)

Informative (V1)

.

.

Confident (V1)

Informative (V2)
D2

C1

.

.

Confident (V1)

Informative (V2)

Confident (V2)

Informative (V1)

C2

B1 D1A1

A2

B2

C

A

B

D

(a) Find the most confident examples for each
view: Examples A and D for view 1 and Exam-
ples B and C for view 2

View 2

View1

+-

+

-

D2

C1

C2

B1 D1A1

A2

B2

+

+
+

+-

-

-

-

.

.

.

.

C

A

B

D

Confident (V2)

Informative (V1)

Confident (V1)

Informative (V2)
Confident (V1)

Informative (V2)

Confident (V2)

Informative (V1)

(b) Label and add the most confident examples
into the training set

View 2

View1

+-

+

-

D2

C1

C2

B1 D1A1

A2

B2

+

+
+

+-

-

-

-

(c) The decision boundaries shift with newly la-
beled data because example A is informative for
view 2 and example C is informative for view 1

Figure 5.11: When Co-Training with two linear classifiers works

5.7. Semi-Supervised Learning with Committees 85

Algorithm 7 Pseudo code of Standard Co-Training

Require: set of labeled training examples (L), set of unlabeled training ex-
amples (U), maximum number of iterations (T),base learning algorithm
(BaseLearn), two feature sets (views) representing an example (V1,V2), sam-
ple size (n), number of unlabeled examples in the pool (u) and number of
classes (C)
Training Phase

1: Get the class prior probabilities, {Prc}Cc=1

2: Set the class growth rate, nc = n× Prc where c = 1, . . . , C
3: Train initial classifiers h

(0)
1 and h

(0)
2 on the initial L

h
(0)
1 = BaseLearn(V1(L)) and h

(0)
2 = BaseLearn(V2(L))

4: for t ∈ {1, . . . , T} do
5: if U is empty then
6: T ← t-1 and abort loop
7: end if
8: for v ∈ {1, 2} do

9: Apply h
(t−1)
v on U .

10: Select a subset Sv as follows: for each class ωc, select the nc most confident
examples assigned to class ωc

11: Move Sv from U to L
12: end for
13: Re-train classifiers h

(t)
1 and h

(t)
2 on the new L

h
(t)
1 = BaseLearn(V1(L)) and h

(t)
2 = BaseLearn(V2(L))

14: end for
Prediction Phase

15: return combination of the predictions of h
(T)
1 and h

(T)
2

5.7.1.2 Co-EM

Nigam and Ghani [139] proposed another multi-view semi-supervised algorithm,
called Co-EM. It uses the model learned in one view to probabilistically label the
unlabeled examples in the other model. Intuitively, Co-EM runs EM (Section 5.4)
in each view and before each new EM iteration, inter-changes the probabilistic
labels predicted in each view. Co-EM is considered as a probabilistic variant of
Co-Training. Both algorithms are based on the same idea: they use the knowledge
acquired in one view, in the form of soft class labels for the unlabeled examples,
to train the other view. The major difference between the two algorithms is that
Co-EM does not commit to the labels predicted in the previous iteration because
it uses probabilistic labels that may change from one iteration to the other. On
the other hand, Co-Training commits to the most confident predictions that are
once added into the training set are never revisited. Thus, it may add to the
training set a large number of mislabeled examples.

86 Chapter 5. Semi-Supervised Learning

5.7.2 Co-Training with Natural Views

The standard Co-Training was applied in domains with truly independent feature
splits satisfying its conditions. In [96], Kiritchenko et al. applied Co-Training for
email classification where the bags of words that represent email messages were
split into two sets: the words from headers (V1) and the words from bodies (V2).
Abdel Hady et al. [7] have combined Co-Training with tree-structured classifiers
for multi-class decomposition. A combination method based on Dempster-Schafer
evidence theory provides class probability estimates that were used to measure
confidence on prediction. The approach was applied for visual object recognition
where one tree classifier is based on color histograms (V1) while the second one
used orientation histograms (V2) extracted from 2D images. Levin et al. [116]
have used Co-Training to improve visual detector for cars in traffic surveillance
video where one classifier detects cars in the original gray level images (V1). The
second one uses images where the background has been removed (V2).

Although there are some cases in which there are two or more independent
and redundant views, there exist many real-world applications in which multiple
views are not available or it is computationally inefficient to extract more than
one feature set for each example. There are three directions to apply Co-Training
without natural feature splits, as shown in the following subsections.

5.7.3 Co-Training with Random Views

In some work, Co-Training was applied in domains without natural feature splits
through splitting the available feature set into two views V1 and V2. Nigam and
Ghani [139] investigated the influence of the views independence. They found
that Co-Training works better on truly independent views than on random views.
Also, Co-Training was found to outperform EM (see Section 5.4) when the views
are truly independent. It was also shown that if there is sufficient redundancy in
data, the performance of Co-Training with random splits is comparable to Co-
Training with a natural split. There is no guarantee that random splitting will
produce independent views.

5.7.4 Co-Training with Artificial Views

In a real-world application of Co-Training, the traditional feature subset selection
algorithms based on mutual information and correlation cannot be used because
they take into account the class information which is not available for the unla-
beled examples. Feger and Koprinska [62] introduced a method, called maxInd,
for splitting the feature set into two views. The aim is to minimize the dependence
between the two feature subsets (inter-dependence), measured by conditional mu-
tual information CondMI. The result is represented as an undirected graph, with
features as nodes and the CondMI between each pair of features as weight on the

5.7. Semi-Supervised Learning with Committees 87

edge between them. In the second step the graph is cut into two disjoint parts of
the same size. This split is performed in such a way that minimizes the sum of
the cut edges in order to minimize the dependence between the two parts of the
graph. They had found that maxInd does not outperform the random splits. A
possible explanation from their perspective is that Co-Training is sensitive to the
dependence of the features within each view (intra-dependence). The random split
leads to intra-dependence lower than that of maxInd and the truly independent
split. Their study states that there is a trade-off between the intra-dependence
of each view, and the inter-dependence between the views. That is minimizing
the inter-dependence leads to maximizing the intra-dependence of each view. In
addition, the measurement of CondMI is not accurate enough because it is based
on only a small number of labeled examples.

Salaheldin and El Gayar [162] introduced three new criteria for splitting fea-
tures in Co-Training and compare them to existing artificial splits and natural
split. The first feature split criterion is based on maximizing the confidence of
the views. The second criterion maximizes both confidence and independence of
the views. The independence of a view is measured by conditional mutual infor-
mation as in [62]. For each view, a classifier is trained using the labeled data;
it is then used to predict the class of the unlabeled data. The entropy of the
classifier output for each input example is calculated and the average of entropies
indicates the confidence of the view. They showed that splitting the features with
a mixed criterion is better than using each criterion alone. Finally, they proposed
a third criterion based on maximizing the views diversity. A genetic algorithm is
used to optimize the fitness functions based on the three proposed criteria. The
experimental results on two data sets show that the proposed splits are promising
alternatives to random splitting.

5.7.5 Co-Training with Single View

In a number of recent studies [71, 210, 215, 119], the applicability of Co-Training
using a single view without feature splitting has been investigated. The interested
reader for a more extensive overview might refer to Roli’s invited talk in MCS
2005 [159] and Zhou’s invited talk in MCS 2009 [211].

5.7.5.1 Statistical Co-learning

Goldman and Zhou [71] first presented a single-view SSL method, called Statis-
tical Co-learning. It used two different supervised learning algorithms with the
assumption that each of them produce a hypothesis that partition the input space
into a set of equivalence classes. For example, a decision tree partitions the input
space with one equivalence class per leaf. They used 10-fold cross validation:(1)
to select the most confident examples to label at each iteration and (2) to com-
bine the two hypotheses producing the final decision. Its drawbacks are: first

88 Chapter 5. Semi-Supervised Learning

the assumptions concering the used algorithms limits its applicability. Second
the amount of available labeled data was insufficient for applying cross validation
which is time-consuming.

5.7.5.2 Democratic Co-learning

Zhou and Goldman [210] then presented another single view method, called
Democratic Co-learning which is applied to three or more supervised learning
algorithms and reduce the need for statistical tests. Therefore, it resolves the
drawbacks of Statistical Co-learning but it still uses the time-consuming cross-
validation technique to measure confidence intervals. These confidence intervals
are used to select the most confident unlabeled examples and to combine the
hypotheses decisions.

5.7.5.3 Tri-Training

Zhou and Li [215] present a new Co-Training style SSL method, called Tri-
Training, where three classifiers are initially trained on bootstrap subsamples
generated from the original labeled training set. These classifiers are then refined
during the Tri-Training process, and the final hypothesis is produced via majority
voting. The construction of the initial classifiers looks like training an ensemble
from the labeled data with Bagging [31]. At each Tri-Training iteration, an
unlabeled example is added to the training set of a classifier if the other two
classifiers agree on their prediction under certain conditions. Tri-Training is more
applicable than previous Co-Training-Style algorithms because it neither requires
multiple views as in [30, 139] nor does it depend on different supervised learning
algorithms as in [71, 210]. There are two limitations: the ensemble size is limited
to three classifiers and Bagging is used only at the initial iteration. Although the
results have shown that using bagged ensemble of three classifiers can improve the
generalization ability, better performance is expected when larger-size ensembles
and other ensemble learners are used.

5.7.5.4 Co-Forest

Li and Zhou [119] proposed an extension to Tri-Training, called Co-Forest, in
which an initial ensemble of random trees is trained on bootstrap subsamples
generated from the given labeled data set L. To select new training examples
from a given unlabeled data set U for each ensemble member hi (i = 1, . . . ,N), a
new ensemble Hi, called the concomitant ensemble of hi, is defined that contains
all the classifiers except hi. At each iteration t and for each ensemble member hi,
first the error rate of Hi, ε̂i,t, is estimated. If ε̂i,t is less than ε̂i,t−1 (1th condition),
Hi predicts the class label of the unlabeled examples in U ′i,t (random subsample

of U of size
ε̂i,t−1Wi,t−1

ε̂i,t
). A set L′i,t is defined that contains the unlabeled examples

5.7. Semi-Supervised Learning with Committees 89

in U ′i,t where the confidence of Hi about their prediction exceeds a predefined
threshold (θ) and Wi,t is the sum of the confidences of the examples in L′i,t. If
Wi,t is greater than Wi,t−1 (2nd condition) and ε̂i,tWi,t is less than ε̂i,t−1Wi,t−1 (3rd

condition), the ith random tree will be re-trained using the original labeled data
set L and L′i,t. Note that the bootstrap sample used to train the ith random
tree at iteration 0 is discarded and L′i,t is not added permenantly into L. The
algorithm will stop if there is no classifier hi satisfying the three conditions.

I have the following comments on Co-Forest: First, the error rate ε̂i,t is esti-
mated accurately only at the first iteration based on the out-of-bag error estima-
tion, afterward the estimation tends to be an under-estimate as it depends on the
training set. Therefore, Co-Forest will stop when the training error of a classifier
reaches zero, for instance this is always true for the 1-nearest neighbor classifier.

Second, setting the value of θ is not straightforward especially for multi-class
problems where the confidence of the concomitant ensemble Hi is distributed
among many classes. If θ is high, the 2nd condition will not be fulfilled and the
algorithm will stop. If θ is low, the size of L′i,t might be large and even equal to
U ′i,t which increases the risk that hi will receive a lot of mislabeled examples.

Third, Co-Forest works in batch mode in opposite to other Co-Training style
algorithms that work in incremental mode. That is, it evaluated the set of ex-
amples L′i,t as a whole, if 2nd condition is fulfilled, the set L′i,t is used for train-
ing, otherwise, it is discarded although some examples in L′i,t may be beneficial.
Fourth, Co-Forest does not take into account the class probabilities estimated by
ensemble members although they can help in estimating labeling confidence.

5.7.6 Other Committee-Based SSL Algorithms

5.7.6.1 SSMBoost

d’Alché et al. [47] generalized MarginBoost to semi-supervised classification.
MarginBoost is a variant of AdaBoost (Section 3.4.1.2) based on the minimiza-
tion of an explicit cost function. Such function is defined for any scalar decreasing
function of the margin. As the usual definition of margin cannot be used for unla-
beled data, the authors extend the margin notion to unlabeled data. In practice,
the margin is estimated using the MarginBoost classification output. Then, they
reformulate the cost function of MarginBoost to include both the labeled and
unlabeled data. A generative model is used as a base classifier and the unlabeled
data is used by EM algorithms 5.4. The results have shown that SSMBoost out-
performs the classical AdaBoost when a few amount of labeled data is available
(only 5% of the training data is labeled).

5.7.6.2 ASSEMBLE

Bennet et al. [24] proposed another committee-based SSL method, called AS-
SEMBLE, which iteratively constructs ensemble classifiers using both labeled

90 Chapter 5. Semi-Supervised Learning

and unlabeled data. The aim of ASSEMBLE is to overcome some limitations of
SSMBoost. For example, while SSMBoost requires the base classifier to be a gen-
erative mixture model in order to apply EM for semi-supervision, ASSEMBLE
is more general that can be used with any cost-sensitive base learning algorithm.
At each iteration of ASSEMBLE, the unlabeled examples are assigning pseudo-
classes using the current ensemble before constructing the next base classifier
using both the labeled and newly-labeled examples. The experiments show that
ASSEMBLE works well and it won the NIPS 2001 unlabeled data competition
using decision trees as base classifiers.

5.7.6.3 DECORATE

Melville and Mooney [127] introduced an ensemble method, called DECORATE,
which was designed to artificially generate new examples and add them to the
training data in order to increase the diversity among the members of the created
ensembles. An ensemble is constructed iteratively as follows: the ensemble is
initialized with a single classifier trained on the original training data. At each
further iteration, a new classifier is trained on the union of the original training
data and the diversity data. The diversity data represents a specified number
of artificial training examples generated based on a simple model of the data
distribution. Actually it is inspired by the stream-based approach used for sample
selection, see Section 6.2. The next step is to label these artificial generated
examples. The class labels of these examples are chosen so as to differ maximally
from the prediction of the current committee. Note that the new classifier is
added to the current ensemble only if adding it will not increase the ensemble
training error, otherwise it is discarded.

5.8 Conclusion

The work in [30, 18] has theoretically studied Co-Training with two views, but
could not explain why the single-view variants can work. Wang and Zhou [197]
provided a theoretical analysis that emphasizes that the important factor for
the success of disagreement-based single-view Co-Training style algorithms is the
creation of a large diversity (disagreement) among the co-trained classifiers, re-
gardless of the method used to create diversity, for instance through: sufficiently
redundant and independent views as in standard Co-Training [30, 139], artificial
feature splits in [62, 162], different supervised learning algorithms as in [71, 210],
training set manipulation as in [24, 215], different parameters of the same super-
vised learning algorithms [214] or feature set manipulation as in [119] and the
proposed framework in the second part of this thesis [5, 4].

Note that Brown et al. presented in [36] an extensive survey of the various
techniques used for creating diverse ensembles, and categorized them, forming

5.8. Conclusion 91

a preliminary taxonomy of diversity creation methods. One can see that multi-
view Co-Training (Section 5.7.1.1) is a special case of semi-supervised learning
with committees. Therefore, the data mining community is interested in a more
general Co-Training style framework that can exploit the diversity among the
members of an ensemble for correctly predicting the unlabeled data in order to
boost the generalization ability of the ensemble.

There is no SSL algorithm that is the best for all real-world data sets. Each
SSL algorithm has its strong assumptions because labeled data is scarce and
there is no guarantee that unlabeled data will always help. One should use
the method whose assumptions match the given problem. Inspired by [219],
we have the following checklist: If the classes produce well clustered data, then
EM with generative mixture models may be a good choice; If the features are
naturally divided into two or more redundant and independent sets of features,
then standard Co-Training may be appropriate; If SVM is already used, then
Transductive SVM is a natural extension; In all cases, Self-Training is a practical
wrapper method.

Chapter 6

Active Learning

This chapter provides a general review of the literature on active learning.

6.1 What is Active Learning?

Most of the researchers in machine learning and data mining has been so far con-
centrating on analyzing already labeled data and building predictive models from
them, rather than on how to collect labeled data. The data labeling process is
often difficult, tedious, expensive, or time consuming, as it requires the efforts of
human experts or special devices. Active learning is another way for integrating
unlabeled data into supervised learning in order to boost the generalization and
to reduce the cost of data annotation. It concentrates on closing the gap between
data annotation and model building. It appears with several names in the liter-
ature such as, query learning, sample selection, selective sampling and sometimes
experimental design in the statistics literature.

The key hypothesis of Active learning is that a learning algorithm can achieve
better classification performance with a fewer number of labeled examples in case
it is allowed to choose the examples from which it learns a classifier, compare be-
tween Figure 6.1 and Figure 5.4. An active learner is allowed to ask queries in the
form of unlabeled examples to be labeled by an oracle such as a human annotator.
Note that a passive learner does not have the luxury of selecting the important
examples and to ask an oracle for their labels. Active learning is an iterative
process well-motivated in many machine learning applications where data may
be abundant but labels are time consuming or expensive to obtain. Interested
readers in recent advances of active learning are directed to the literature survey
of Settles [173].

One of the popular active learning applications is remote sensing image classi-
fication [187, 146]. The remote sensing sensors can produce data in large number
of spectral bands. The objective of using such high resolution sensors is to discrim-
inate among more ground cover classes and hence obtain a better understanding

93

94 Chapter 6. Active Learning

Figure 6.1: Graphical illustration of active supervised learning

about the nature of the materials that cover the surface of the Earth. This large
number of classes and large number of spectral bands require a large number of
labeled training examples (pixels) from all the classes of interest. The class labels
of such training examples are usually very expensive and time consuming to ac-
quire [175]. The reason is that identifying the ground truth of the data must be
gathered by visual inspection of the scene at the same time that the data is being
collected, by using an experienced analyst based on their spectral responses, or by
other means. In any case, usually only a limited number of training examples can
be obtained. These training examples are often used for deciding which features
are useful for the discrimination among classes, and for designing classifiers based
on these derived features (see Figure 5.3). The purpose of active learning is to
study how to reduce the cost of data annotation by selecting the most informative
training examples from a large amount of unlabeled data. Active learning algo-
rithms can be divided into two categories: (i) stream-based selective sampling,
and (ii) pool-based active learning.

6.2 Stream-Based Selective Sampling

An unlabeled example is randomly sampled from the actual distribution or from
an approximation of the training-data distribution. Then the underlying classifier
decides whether this example is informative or not. This approach is sometimes
called stream-based or sequential active learning. The stream-based approach
has been studied in several real-world applications, including part-of-speech tag-
ging [46], sensor scheduling [102], and learning ranking functions for information
retrieval [208]. Fujii et al. [67] applied active learning for word sense disam-

6.3. Pool-Based Active Learning 95

biguation, e.g., determining if the word bank means land alongside a river or a
financial institution in a given context (they had studied only Japanese words).
The approach not only reduces annotation effort, but also limits the size of the
training set used in learning nearest-neighbor classifier, which in turn reduces the
classification time. Drawbacks of the stream-based approach [125] are that it only
sparsely samples the full distribution of possible examples labeling requests, and
that the decision to label is made on each example individually, regardless of the
other alternative examples.

6.3 Pool-Based Active Learning

For many real-world applications, large amount of unlabeled data can be col-
lected at once. This motivates pool-based active learning [118], which assumes
that there is a small set of labeled data L and a large pool of unlabeled data
U available. Typically, unlabeled examples are queried in a greedy fashion, ac-
cording to a utility or informativeness measure used to evaluate all examples
in the pool or a subsample of the pool if U is very large. The pool-based ap-
proach has been studied for many real-world machine learning applications, such
as cancer diagnosis [122], text categorization [118, 184], image classification and
retrieval [183] and speech recognition [189]. Although it solves some drawbacks
of the stream-based approach, it has its own drawback [125] that it may select
examples that have high utility value but are in unimportant, sparsely populated
regions (outliers). The labeling of these outliers will not improve classification
accuracy of typical examples. An important factor for the success of any active
learner is how to measure the utility or informativeness of an unlabeled example
xu before asking for its label. The more efficient active learner is the one that
can achieve a target accuracy with the minimum number of queries.

6.4 Active Learning Algorithms

6.4.1 Uncertainty Sampling

It is the simplest and most commonly used active learning algorithm [118]. An
initial classifier is created with a few labeled examples. Then for a predefined
number of iterations, the current classifier predicts the class labels of the unlabeled
examples and ranks them according to its confidence in its prediction. It queries
the examples about which it is least confident. The classifier is retrained with
the original labeled training set and the newly-labeled examples. For instance,
when using a probabilistic binary classifier, the Uncertainty Sampling selects the
example whose probability of being positive is near 0.5. For a probabilistic multi-
class classifier, the utility of an example xu is the Shannon entropy of the class

96 Chapter 6. Active Learning

probability distribution P = {pk = P (ωk|xu) : k = 1, . . . , K} assigned to xu:

H(P) = −
K∑
k=1

pk log pk (6.1)

The example with the maximum entropy is the least confident example. Tong
and Koller [184] applied uncertainty sampling to support vector machines such
that the examples closest to the linear decision boundary are the most informative
examples. Figure 5.8 illustrates the influence of the unlabeled data on the decision
boundary. Lewis and Catlett [117] applied uncertainty sampling on decision tree
classifier after modifying it to have probabilistic output. Similarly, Fujii et al. [67]
applied active learning to a probabilistic version of the nearest-neighbor classifier.
The posterior membership probability of a given example to a class is defined as
the proportion of the number of neighbor votes given to this class to the total
number of neighbors. Uncertainty Sampling has limited applicability because
it requires a probabilistic model that accurately estimates the confidence in its
prediction. For instance, decision tree classifier is known to be inaccurate class
probability estimator.

6.4.2 Query by Committee (QBC)

The QBC framework [66] involves maintaining an ensemble (committee) H of
diverse classifiers (hypotheses) hi which are all trained on the current labeled set
L, see Chapter 3 for an overview of ensemble learning. Each committee mem-
ber is then allowed to predict the class labels of unlabeled examples. The most
informative unlabeled example to be queried is considered to be the example on
which the disagreement on its prediction among the committee members is the
greatest. The key idea of QBC is to reduce the hypotheses space F, which is (as
mentioned in Section 3.1) the set of all possible classifiers that are consistent with
the current labeled training set L. Any base learning algorithm can be consid-
ered as searching for the best model within the hypotheses space, then the aim
of active learning is to reduce the size of this space as much as possible (so that
the search can be more precise) with as few labeled examples as possible. This is
exactly what QBC does, by querying in controversial regions of the hypotheses
space [173]. The QBC framework as shown in Algorithm 8 consists of two main
steps: (1) construct a committee of classifiers that approximate different regions
of the hypotheses space and (2) measure the disagreement among the committee
member on predicting the class label of an unlabeled example xu, denoted as
the utility or the informativeness of xu. Freund et al. [66] showed that under
certain assumptions, Query by Committee can achieve an exponential decrease
in the number of examples required to achieve a particular level of accuracy, as
compared to random sampling. However, these theoretical results assume that
the Gibbs algorithm is used to generate the committee of hypotheses used for

6.4. Active Learning Algorithms 97

Algorithm 8 The pseudo code of Query by Committee

Require: set of labeled training examples (L), set of unlabeled training ex-
amples (U), maximum number of iterations (T), ensemble learning algo-
rithm (EnsembleLearn), base learning algorithm (BaseLearn), committee
size (N), sample size (n)
Training Phase

1: Construct a committee of N classifiers,
H = EnsembleLearn(L,BaseLearn,N)

2: for t ∈ {1, . . . , T} do
3: for each xu ∈ U do
4: calculate the utility of xu based on the current committee, Utility(xu, H)
5: end for
6: Rank the examples in U based on their utility
7: Select a subset S of n examples from U with the maximum utility
8: Ask an oracle to label examples in S
9: U ← U \ S , and L← L ∪ S

10: Retrain or update the committee, H = EnsembleLearn(L,BaseLearn,N)
11: end for

Prediction Phase
12: return H(x) =

∑N
i=1wihi(x) for a given sample x

sample selection. The Gibbs algorithm for most interesting problems is computa-
tionally expensive. In order to tackle this problem, Abe and Mamitsuka [12] have
introduced Query by Boosting (QBoost) and Query by Bagging (QBag), which
employ the well-known ensemble learning methods boosting FS97 and bagging
Br96 to construct committees. In their approach, the utility of candidate exam-
ples is based on the margin of an example; where the margin is defined as the
difference between the number of votes in the current committee for the most
popular class label, and that for the second most popular label. Examples with
smaller margins are considered to have higher utility.

Melville and Mooney [128] have proposed another variant of Query by Com-
mittee, called ACTIVE-DECORATE where DECORATE is used to construct
the committee members. DECORATE [127] is an ensemble learning algorithm
proposed previously by the same authors, see Section 5.7.6.3. To measure the
expected utility of unlabeled examples, they used a generalized definition of mar-
gins, different from Abe and Mamitsuka [12], that take into account the proba-
bilistic outputs of committee members instead of just crisp classifiers. Given the
class membership probabilities predicted by the committee, then the margin is
defined as the difference between the highest and the second highest member-
ship probabilities. Again the most informative example is the example with the
minimum margin. In order to compare the efficiency of different active learners,
data utilization is used. The data utilization is the number of training exam-

98 Chapter 6. Active Learning

ples required to achieve a target error rate. The more efficient active learner
is the one that requires a smaller data utilization rate. ACTIVE-DECORATE
outperforms DECORATE, QBoost and QBag in terms of data utilization. Da-
gan and Engelson [46] measured the informativeness of an unlabeled example xu
based on vote entropy, which is the entropy of the class probability distribution
P = {pk = P (ωk|xu) : k = 1, . . . , K} assigned to xu based on the majority votes
of the committee members.

H(P) = −
K∑
k=1

pk log pk, where pk =
1

N

∑
i:hi(xu)=ωk

1 (6.2)

McCallum and Nigam [125] proposed to use an information-theoretic utility mea-
sure that is Jensen-Shannon (JS) divergence if probabilistic classifiers are used
to build the committee. Let Pi be the class probability distribution given to xu
by the ith committee member, then JS divergence of a committee of size N is,

JS(P1, . . . , PN) = H(
N∑
i=1

wiPi)−
N∑
i=1

wiH(Pi) (6.3)

where wi is the weight of the ith committee member and H(P) is the Shannon
entropy defined in Eq. (6.1). A high value of JS(P1, . . . , PN) indicates a high
variance in the predicted class probability distributions Pi. It is zero if the dis-
tributions are identical.

6.4.3 Co-Testing

Co-Testing, which is the first approach to multi-view active learning, was pro-
posed by Muslea et al. in [134]. It is inspired by the popular multi-view semi-
supervised learning method, Co-Training [30]. That is, it requires two or more
redundant and independent views of the data. Co-Testing algorithms work as
follows: first, a set of classifiers h1, . . . , hN is trained by applying the base learn-
ing algorithm to the projection of the examples in L onto each view Vi. Then
h1, . . . , hN are applied to all unlabeled examples in U and create the set of con-
tention points U ′, which consists of all unlabeled examples for which at least
two of these hypotheses disagree about its prediction. That is, U ′ = {xu =

(x
(1)
u , . . . , x

(N)
u) ∈ U where ∃i, j : hi(x

(i)
u) 6= hj(x

(j)
u)}. Finally, they select to label

one of the contention points and then repeat the whole process for a number
of iterations. In [134], three types of utility measures are proposed for sample
selection:

1. naive: randomly select one of the contention points. This measure is rele-
vant for base classifiers that can not provide an accurate class probability
estimates Pi because it leads to inaccurate confidence in their predictions
where Confidence(hi(xu)) = max1≤k≤K Pi(ωk|xu).

6.4. Active Learning Algorithms 99

2. aggressive: select as query the contention point xj∗ ∈ U ′ on which the least
confident of the classifiers h1, . . . , hN makes the most confident prediction;

j∗ = arg max
xu∈U ′

min
1≤i≤N

Confidence(hi(xu)) (6.4)

3. conservative: select the contention point xj∗ ∈ U ′ on which the confidence
in the predictions made by h1, . . . , hN is as close as possible (ideally, they
would be equally confident in predicting different class labels); that is,

j∗ = arg max
xu∈U ′

(
max

1≤i≤N
Confidence(hi(xu))− min

1≤i≤N
Confidence(hi(xu))

)
(6.5)

The shortcoming of this active learner is its multi-view requirement because most
of the real-world applications do not have multiple views.

6.4.4 Active Learning for Regression

Krogh and Vedelsby Krogh95 considered committees of neural networks for learn-
ing real-valued functions (regression). The committee consists of N networks and
the output of network i on example x is hi(x). The final output of the en-
semble is the weighted average of the outputs of its member networks, H(x) =∑N

i=1 wihi(x). They defined the ensemble ambiguity on the given example x as
the variance in the predictions of the committee members:

ā(x) =
N∑
i=1

wi(hi(x)−H(x))2. (6.6)

It measures the disagreement among the ensemble members on x. They decom-
posed the ensemble generalization error into two terms, that is

E = Ē − Ā (6.7)

where Ē is the weighted average of the generalization errors of the ensemble
members (Ē =

∑
iwiEi) and Ā is the weighted average of the ambiguities (Ā =∑

iwiAi) which is called the ensemble ambiguity. Note that Ai and Ei are the
averages over the input distribution. In this work, a generalization of Query-by-
Committee (QBC), that was developed for classification, was proposed. At each
iteration of QBC, the unlabeled example for which the ambiguity is maximal,
where the committee’s variance is highest, is selected for labeling. If an example
yields a high ambiguity, then it will have a high average error. Since the ensemble
generalization error is not negative, Ā is the lower bound of Ē (Ē ≥ Ā). Thus
the aim of QBC is to select for labeling the unlabeled examples that minimize the
variance in order to minimize the average error Ē. The experiments have shown
that active selection of training data led to improved performance compared to
random selection.

100 Chapter 6. Active Learning

6.4.5 Active Learning with Structured Instances

Settles [172] argued that many interesting real-world applications of machine
learning involve learning from structured instances such as sequence labeling and
multiple-instance learning.

6.4.5.1 Multi-Instance Active Learning

In MI learning problems, instances are naturally organized into bags and it is
the bags, instead of individual instances, that are labeled for training. Active
learning in MI settings is considered as a way to reduce the labeling burden in
problem domains where labels can be acquired at both bag-level and instance-
level granularities. This approach is well motivated in learning settings where it is
inexpensive to acquire labels for bags and possible (but expensive) to acquire more
fine-grained instance labels. Settles [172] proposed and explored four different
active learning scenarios for MI problems, and presented a training algorithm that
learns from labels at these mixed levels of granularity. He also introduced and
evaluated several active query selection strategies motivated by the MI setting.
Experiments have shown that active learning with instance labels can significantly
improve the performance of an MI learning algorithm.

6.4.5.2 Active Learning for Sequence Labeling

The areas of natural language processing and bioinformatics, involve labeling
and segmenting sequences. For instance, one can extract important organization
names from a sentence (which is a sequence of words) or identify genes in DNA
(which is a sequence of nucleic acids). Although there has been much work on
active learning for classification, active learning for sequence labeling has received
less attention. Settles [172] has presented two major advances in active learning
research for sequence labeling tasks. First, he motivated and introduced a number
of new query strategies for probabilistic sequence models. Second, he conducted
an empirical analysis of previously proposed active learning methods along with
his algorithms to compare their performance on multiple benchmark data sets.

6.5 Conclusion

Self-Training is an iterative semi-supervised learning algorithm corresponding to
Uncertainty Sampling (Section 6.4.1) in which the most confident examples are
selected to be automatically classified before they are included into the training
set. Co-Training (CT) is a multi-view semi-supervised learning algorithm is cor-
responding to Co-Testing (Section 6.4.3) in which an ensemble of classifiers are
trained using multiple redundant and independent sets of features (views). Each
classifier classifies the unlabeled examples, adds the examples about which it is

6.5. Conclusion 101

most confident into the training set. The aim is that the most confident examples
with respect to one classifier can be informative with respect to the other. In the
contribution part of this thesis, a new committee-based single-view framework,
denoted Co-Training by Committee will be introduced. It is inspired by Query
by Committee (Section 6.4.2) active learning algorithm, in which an ensemble of
diverse classifiers is constructed. Then the ensemble members are applied to un-
labeled examples. The ones which the ensemble members are mostly confident in
their predictions, are selected and added to the labeled training set. Now one can
see that semi-supervised learning and active learning tackle the same problem but
from different directions. That is both attempt to exploit the unlabeled data to
improve the recognition rate of supervised learning algorithms and to minimize
the cost of data labeling (see Table 6.1). Semi-supervised learning exploits the
unlabeled data in which the committee members are most confident through their
automatic annotation. Active learning exploits the unlabeled data in which the
individual classifiers are least confident as they convey new discrimination infor-
mation to the classifiers and manually label them. The main difference between

Table 6.1: Taxonomy of SSL and AL algorithms

Description SSL algorithm AL algorithm
Single-view, Single-learner Self-Training [139] Uncertainty Sampling [118]

Single-classifier EM [51]
Multi-view, Single-learner Co-Training [30] Co-Testing [134]

Multiple classifiers Co-EM [139]
Single-view, Multi-learner Statistical Co-Learning [71]

Multiple classifiers Democratic Co-Learning [210]
Single-view, Single-learner Tri-Training [215], Co-Forest [119] Query by Committee [66]

Multiple classifiers Co-Training by Committee

stream-based and pool-based active learning is that the former scans through
the data sequentially and makes query decisions individually, whereas the latter
evaluates and ranks the entire collection before selecting the best query. While
the pool-based approach appears to be much more common, one can imagine
situations where the stream-based approach is more relevant. For instance, when
memory or processing power may be limited, as with mobile and embedded de-
vices. Another situation where data is being generated continuously in a changing
environment and thus storing data for pool-based approach is impractical.

Chapter 7

Applications and Evaluation Method

7.1 Applications for Visual Object Recognition

The recognition of 2D and 3D visual objects from 2D camera images is one
of the most important goals in computer vision. All the real-world data sets
used for visual object recognition in this thesis are described in Table 7.1. I
intentionally select data sets with variance in number of features (D), number
of classes (K) and number of data points (M). In the following sections, I will
discuss in more details the feature extraction algorithms used to extract features
from the images of each data set such as color histogram, orientation histogram,
principle component analysis and optimal flow.

7.1.1 Fruits Image Recognition

In the context of the EU project on biomimetic multimodal learning in a mirror
neuron-based robot MirrorBot [198], a scenario has been defined where the robot
is situated infront of a table and different objects are lying on this table. The
robot has to respond to spoken commands such as grasping or pointing to a
certain object. The setup is shown in Figure 7.1. The commands are formulated
in a simple language with a restricted vocabulary and an elementary grammar.
For instance, ”Bot show red apple”.

The images of fruits placed on a white table were taken from the robot’s
point of view under different challenging conditions such as occlusion, changing
lighting conditions, varying object views and positions. In a preprocessing step,
the objects are localized and the regions of interest containing the objects are
detected such that each image contains only one object. At the end, there are
840 colored images (resolution 384x288 pixels), exactly 120 images per each of the
seven classes: green apple, red apple, tangerine, orange, yellow plum, red plum
and lemon (see Figure 7.2).

In the feature extraction step, Fay [60] has extracted different feature types

103

104 Chapter 7. Applications and Evaluation Method

Figure 7.1: MirrorBot test setup.

from the images and used them for object recognition. The experimental results
have shown that orientation and color histograms are the most suitable feature
types for object recognition under the challenging conditions of real-world robotic
applications. It was shown that the results improve if several histograms are
calculated from different parts of an image, instead of only one histogram per
image. Each image is therefore divided into m×m potentially overlapping sub-
images of equal size. If the parts overlap the result improves further as this
compensates for non-optimally detected regions of interest. Note that a 20%
overlapping percentage between the sub-images was shown to work well. For
each sub-image, a separate histogram of b bins is calculated. Then the m × m
histograms are concatenated to form the final b × m × m-dimensional feature
vector that represents the whole image.

7.1.1.1 Color Histogram

Color histograms are calculated on the original RGB color space. A color his-
togram is calculated for each of the three color channels separately. The parameter
b specifies the number of bins of the histogram where b color ranges [ai, bi] are

Figure 7.2: A sample of the images in the fruits data set

7.1. Applications for Visual Object Recognition 105

defined as ai = i256
b

and bi = (i+1)256
b

for i = 0, 1, . . . , b−1. Then, each bin ci will
represent the number of pixels whose color values belonging to its range. For a
colored image, the color histograms are represented by 3×b×m×m-dimensional
feature vector. For a gray scale image, gray value histograms are calculated and
the dimension of the feature vector is b×m×m.

7.1.1.2 Orientation Histogram

The orientation histogram of an image [64, 43] provides information about the
directions of the edges and their intensity. When graphically visualizing orienta-
tion histograms the x-axis specifies the different orientations and the y-axis gives
the frequency of occurrence of these orientations.

To calculate the orientation histograms the gradient in x and y direction of the
gray value image I(x, y) is calculated using an edge detector such as the Sobel or
the Canny edge detector (Figure 7.3). The gradient angles are discretized through
dividing them into b ranges. The discrete gradient directions are weighted with
the absolute gradient value and summed to form the orientation histogram.

• Orientation histogram based on Sobel edge detection. The edges are rep-
resented by areas with strong intensity contrasts, i.e. a strong ascent or
descent of the intensity over a short distance. Thus the one-dimensional
shape of an edge is a ramp. The presence of an edge can be indicated by
consequently locating the maxima and minima of the first derivative of an
image. The Sobel operator [72] convolves the gray-value image I(x, y) with
the two 3× 3 convolution masks Sx and Sy respectively.

Sx =
1

8

 −1 0 1
−2 0 2
−1 0 1

 and Sy =
1

8

 1 2 1
0 0 0
−1 −2 −1

 (7.1)

The resulting images Ix(x, y) and Iy(x, y) give the orientations in the x-
direction (columns) and in the y-direction (rows) respectively:

Ix(x, y) = I(x, y) ∗ Sx (7.2)

Iy(x, y) = I(x, y) ∗ Sy (7.3)

Thus the gradient 5I(x, y) is given by

5I(x, y) =

(
Ix(x, y)
Iy(x, y)

)
, (7.4)

the gradient direction (orientation) θ(x, y) is calculated as

θ(x, y) = arctan
Iy(x, y)

Ix(x, y)
(7.5)

106 Chapter 7. Applications and Evaluation Method

and the gradient strength (magnitude) m(x, y) is defined as

m(x, y) = | 5 I(x, y)| =
√
Ix(x, y)2 + Iy(x, y)2 (7.6)

To calculate the orientation histogram the gradient directions θ(x, y) are

Figure 7.3: The image was divided into 3 × 3 sub-images. For each
sub-image an orientation histogram with 8 bins is calculated. For sake of
simplicity non-overlapping sub-images are depicted. (taken from [60])

discretized as follows: The parameter b specifies the number of discrete
orientations di (number of bins) where the b orientation ranges [ai, bi] are
defined as ai = i360o

b
and bi = (i + 1)360o

b
where i = 0, 1, . . . , b − 1. The

corresponding discrete orientations is di = (i+ 1
2
)360o

b
where i = 0, 1, . . . , b−

1. The gradient direction θ(x, y) is then assigned the discrete direction di
if ai ≤ θ(x, y) ≤ bi. Then, for each discrete direction di, the gradient
magnitude m of the pixels having this gradient direction is summed up.

• Orientation histogram based on Canny edge detection. Another more sophis-
ticated way of calculating edges within an image is the Canny edge detector
[38]. It adds some processing steps to the Sobel procedure, to obtain more
concise edges. First, the noise is reduced by convolving the image with a
Gaussian mask filter. The result is a less noisy image although it is blurred.
In the second step, the gradient strength and direction are calculated from
the intensity gradient of the smoothed image using the Sobel procedure
described above. In the third step, local maxima in the direction of the
gradient are found while suppress all others ensuring only one response to a
single edge. Pixels with high intensity gradients are more likely to belong to
an edge. In the final hysteresis step, a thresholding is performed to discard
pixels with low gradient strength. Finally, the orientation histogram is then
calculated analog to the orientation histogram described above.

7.1. Applications for Visual Object Recognition 107

• Orientation Histogram Based on Opponent Colors. Neither Sobel edge de-
tection nor Canny edge detection mentioned above take into account color
information. Another complex feature type are orientation histograms cal-
culated on opponent color channels. They take into consideration the color
information as well as the form information. The initial RGB trichromatic
color space is transformed into an achromatic (A: black/white) and two
opponent chromatic channels (P: red/green and Q: yellow/blue). The fol-
lowing transformation is used to convert an image from the RGB color space
to the APQ color space. A

P
Q

 =

 0.887 0.461 0.0009
−0.46 0.88 0.01
0.004 −0.01 0.99

 R
G
B

 (7.7)

An orientation histogram is calculated on each of these three channels ana-
log to the Sobel procedure on the gray-value images described above. This
results in three different types of feature vectors that combines both color
and form information.

7.1.2 StatLog Handwritten Digits

This StatLog data set [130] consists of 18000 images representing the 10 hand-
written digits gathered from German postcodes (1800 images per class). They
were read by one of the automatic address readers built by a German company.
The handwritten digits were digitized onto images with 16×16 pixels where each
pixel represented in 8-bit gray levels. They are scaled in width and height. Figure
7.4 shows some examples of the digits within this data set.

Figure 7.4: A sample of the handwritten digits data set

7.1.2.1 Principal Component Analysis (PCA)

In PCA [89], the data is transformed into other orthogonal dimensions. These
new dimensions are identified by the eigenvectors of the covariance matrix of the
input data. This technique can be used for dimensionality reduction because the
dimensions with the highest variance in the data are the eigenvectors associated
with the highest eigenvalues, called principle components. Each 16 × 16 image
matrix is reshaped into 256-dimensional vector. Then PCA is performed and the
256-dimensional vectors are projected onto the top 40 principal components.

108 Chapter 7. Applications and Evaluation Method

7.1.2.2 Orientation Histogram

Each image was divided into m × m overlapping sub-images (for m = 2, 3).
Then, an orientation histogram with b bins was extracted from each sub-image as
described in Section 7.1.1.2. The histograms were concatenated to form a single
feature vector.

7.1.3 UCI Handwritten Digits

The Handwritten Digits that are described by four sets of features and are publicly
available at UCI Repository [27]. The digits were extracted from a collection of
Dutch utility maps. A total of 2000 patterns (200 patterns per class) have been
digitized in binary images (see Figure 7.5). See Table 7.1 for more details about
the extracted feature types.

Figure 7.5: Sample of the handwritten digits

Figure 7.6: Examples of the COIL data set

7.1.4 Columbia Object Image Library (COIL)

The Columbia Object Image Library [137] has a data set that consists of 1440
size-normalized gray-scale images of 20 different three-dimensional objects infront
of a black background. The objects represent cups, toys, drugs and cosmetics.
The images are of size 128 × 128 pixels. For each object, there are 72 images
that are taken from different views at pose intervals of 5 degree covering a total

7.1. Applications for Visual Object Recognition 109

Table 7.1: Description of the data sets

Data set K M Feature set D Description Chapter
ionosphere 2 351 - 34 see UCI Repository [27] 9, 10

digits I 10 20000

image-vector 256 A 256-dim vector results from reshap-
ing the image 16x16 pixels matrix

13,14

pca-40 40 A feature vector results from project-
ing the image-vector onto the first 40
principal components of PCA

8,13,14

orienthist2x2 32 An image was divided into 2x2 over-
lapped sub-images. An orientation his-
togram with 8 bins is calculated from
each sub-image as described in Sec-
tion 7.1.1.2. The four histograms were
concatenated to form a 32-dimensional
feature vector

8

orienthist3x3 144 An image was divided into 3x3 over-
lapped sub-images. An orientation his-
togram with 16 bins is calculated from
each sub-image as described in Section
7.1.1.2. The nine histograms were con-
catenated to form a 144-dimensional
feature vector

14

rows-sum 160 A 160-dim vectors representing the
sums over the rows of the original im-
age and images results from rotating it
9 times

14

cols-sum 160 A 160-dim vectors representing the
columns over the rows of the original
image and images results from rotat-
ing it 9 times

14

digits II 10 2000

mfeat-pix 240 240 pixel averages in 2 x 3 windows 9,10
mfeat-kar 64 64 Karhunen-Love coefficients 9,10
mfeat-fac 216 216 profile correlations 9,10
mfeat-fou 76 76 Fourier coefficients of the character

shapes
9,10

fruits 7 840

colorhist3x3 216 nine color histograms 8,9,10,13,14
sobel4x4 128 16 orientation histograms based on So-

bel detector
9,10,13,14

canny3x3 128 9 orientation histograms based on
Canny detector

8,14

APQ-BW2x2 128 4 orientation histograms based on op-
ponent colors

14

APQ-RG4x4 128 16 orientation histograms based on op-
ponent colors

14

COIL20 20 1440

colorhist1x1 24 a color histogram with 24 bins 9,10,13
colorhist2x2 96 four color histograms with 24 bins 8
orienthist2x2 32 four orientation histograms based on

Sobel Detector
8,9,10,13

Cohn-Kanade 4 358
mouth-orienthist2x2 48

see Section 7.1.5 12face-optical-flow 48
mouth-optical-flow 48

texture 11 1100 - 40 modified moments in four orientations 9,10,13
letters 26 2000 - 16 see UCI Repository [27] 13

satimage 6 1286 - 36 see UCI Repository [27] 13

of 360 degrees. Figure 7.6 shows frontal views of the twenty different objects. In
her dissertation, Fay [60] has extracted different feature types from the images
and used them for object recognition. The experimental results have shown that
orientation and color histograms are the most relevant feature types. Each image

110 Chapter 7. Applications and Evaluation Method

was divided into m×m overlapping sub-images (for m = 1, 2).

7.1.4.1 Color Histogram

A color histogram with 24 bins was extracted from each sub-image as described
in Section 7.1.1.1. The histograms were concatenated to form the feature vector
used for classification.

7.1.4.2 Orientation Histogram

An orientation histogram with 8 bins was extracted from each sub-image based
on Sobel edge detection described in Section 7.1.1.2. Then the histograms were
concatenated to form the input feature vector.

7.1.5 Emotion Recognition from Facial Expressions

The Cohn-Kanade dataset is a collection of image sequences with emotional con-
tent [93], which is available for research purposes. It contains image sequences,
which were recorded with a Panasonic WV3230 camera and digitized to have a
resolution of 640×480 (sometimes 490) pixels with a temporal resolution of 33
frames per second. Every sequence is played by an amateur actor who is recorded
from a frontal view. In his Masters thesis, Schels [163] has studied to recognize
emotions from facial expressions based on different areas of the face and using
different feature types. The data set contained 488 sequences from 97 individuals.
He omitted 53 complex sequences that do not correspond to any observable emo-
tion and used the other 432 sequences in his experiments. The sequences always
start with a neutral facial expression and end with the full blown emotion which
is one of the six categories “happiness”, “anger”,“surprise”, “disgust”, “sadness”
or “fear”. Figure 7.7 shows four of the studied facial expressions.

7.1.5.1 Data Annotation

To acquire a suitable label the sequences were presented to 15 human test persons
(13 male and two female). The sequences were presented as a video. After the
play-back of a video the last image remained on the screen and the test person
was asked to select a label. Thus, a label for every sequence was created as the
majority vote of the 15 different opinions. The result of the labeling process is
given in Table 7.2, showing the confusion matrix between the majority of deci-
sions and individual decisions. It is revealed that the human data annotation is
difficult which is one of the motivations of semi-supervised learning. For instance,
the consensus between the majority the 15 persons and the individuals that the
sequences are labeled as “disgust” is only 67%. Due to their sparse appearance,
the classes “fear” (25 videos) and “anger” (49 videos) were excluded from my

7.1. Applications for Visual Object Recognition 111

(a) happiness (b) surprise

(c) disgust (d) sadness

Figure 7.7: Example images used to test and train the recognition system

experiments. More details on the preprocessing procedure and the annotation
process can be found in [163].

7.1.5.2 Feature Extraction

The main problem to design an automatic facial expression recognition systems
is how to categorize the emotions and how to find the most relevant features: one
way is to model emotions through a finite set of emotional classes such as anger,
joy, sadness, etc, another way is to model emotions by a continuous scales, such as
valence (the pleasantness of the emotion) and arousal (the level of activity) of an
expression [113]. In this experiment, a discrete representation in six emotions is
used. Using his segmentation tool, Schels [163] have identified for each image in a
sequence four prominent regions: the full facial region, the left eye, the right eye
and the mouth. For these regions orientation histograms, principal components
and optical flow features have been computed.

• Orientation histograms. They were successfully applied for the recogni-
tion of hand gestures [64] and faces [169] from single images. Each of the
segmented regions is divided into four overlapping sub-images and an ori-
entation histogram with 12 bins was calculated from each sub-image using
Sobel edge detection (Figure 7.8) as described in Section 7.1.1.2. Thus, each
facial area is represented by a 48-dimensional feature vector.

112 Chapter 7. Applications and Evaluation Method

Table 7.2: Confusion matrix of the majority vote (rows) against the individual test
persons decisions (columns), given as average. The last column shows the total num-
ber of sequences per emotion as determined by the majority of the test persons. For
instance, 25 sequences have been annotated as “fear” by the majority but 27% of them
were mislabeled by the individuals.

maj. \indiv. happ. ang. surp. disg. sad. fear no. samples

happiness 0.99 0 0 0 0 0.01 105
anger 0 0.8 0 0.12 0.07 0.01 49
surprise 0.01 0 0.78 0 0.01 0.19 91
disgust 0.01 0.15 0.01 0.67 0.01 0.15 81
sadness 0 0.08 0.02 0.02 0.88 0.01 81
fear 0.01 0.01 0.14 0.27 0.01 0.56 25

Figure 7.8: The Sobel edge detection filter applied to an image from the
Cohn-Kanade database

• Optical flow. The motivation to extract this type of features is to analyze
the motion field of a sequence, that is to project the motion onto a 2D im-
age plan. In order to extract the facial motion in these regions, optical flow
features from each pair of consecutive images have been computed, as sug-
gested in [161]. The optical flow measures shifts in gray values and can serve
as an estimation for the motion field. A biologically inspired optical flow
estimator is used, which was developed in the Vision and Perception Science
Lab of the Institute of Neural Processing at the University of Ulm [22].

• Principal Component Analysis. The images representing the four facial re-
gions are transformed into standard dimensions as follows: 40x40 pixels for
the full facial image, 10x20 for the mouth and 20x20 for the eyes. Then PCA
is performed as described in Section 7.1.2.1. Then the image data is pro-
jected onto the top 150 principle components resulting in a 150-dimensional
feature vector for each area.

7.2. Performance Evaluation 113

Experiments have been conducted by Schels [163] used the three feature types
extracted from four facial regions. The results have shown that out of the 12 used
feature types, Optical flows and orientation histograms from the mouth region
and Optical flows from the full facial region are the most suitable feature types.
Thus, I restrict my experiment in Chapter 12 on these three types.

7.1.6 Benchmark Data Sets

7.1.6.1 Letters Image Recognition

The Letter Image Recognition data set [27] consists of 20000 images of the 26
capital letters in the English alphabet. From black and white images, 16 primitive
integer-valued features were derived representing simple statistical characteristics
of the pixel distribution. They are linearly scaled to a range from 0 to 15. To
generate the images 20 different fonts were used and randomly distorted resulting
in 20,000 unique samples. Figure 7.9 shows examples of the letters.

Figure 7.9: A sample of the letters Image Recognition Data

7.1.6.2 Texture

The aim is to distinguish between 11 different textures in the Brodatz album
(Grass lawn, Pressed calf leather, Cotton canvas, Beach sand, ...), each pixel
(data point) being characterized by 40 attributes built by the estimation of fourth
order modified moments in four orientations: 0, 45, 90 and 135 degrees [17]. The
data set contains 500 instances for each class but for simplicity we used only a
random subsample of 100 instances per class.

7.2 Performance Evaluation

For comparison of different learning algorithms, it is necessary to evaluate their
performance. The result of a single run of the algorithm is neither reliable

114 Chapter 7. Applications and Evaluation Method

nor meaningful because the performance of algorithms shows a certain variance.
Moreover it is not sufficient to evaluate the learning algorithm only on the train-
ing data because the result is too optimistic. Thus it is necessary to use an unseen
test data set different from the training data set for more realistic estimation of
its generalization ability. A method accounting for this is the cross-validation
approach. This approach estimates the classification accuracy of the evaluated
learning algorithm. The estimated classification accuracies of two learning al-
gorithms can than be compared by means of statistical significance tests which
determine whether the difference between the performance of the two algorithms
is only by chance or a considerable difference.

7.2.1 Cross-Validation

Cross-validation is a common technique for evaluating the performance of learning
algorithms when only a limited number of examples is available. The idea behind
it is not to use the complete data set for training but to use only a part of the
data set for training and the rest for testing the performance of the algorithm.

To conduct one run of cross-validation, randomly permute the data and divide
it into k parts of equal size where it might not always be possible to split the
data into parts of exactly the same size. These k parts are called folds. The
number of folds is naturally limited to 2 ≤ k ≤ M where M is the total number
of examples in the data set. Then k experiments are performed in each of which
one of the k parts is respectively used as test set and the remaining k-1 parts are
used as training set. If the permutation and splitting of the data is repeated more
than one time this is referred to as repeated cross-validation where each iteration
is called a run. Thus for r-times k-fold cross-validation, r × k experiments are
conducted where aij is the accuracy of the evaluated algorithm in the jth fold of
the ith run such that i = 1, . . . , r and j = 1, . . . , k. Remember that the examples
in the jth part of the ith run is used for testing. Thus the r× k accuracies aij can

then be used to calculate a mean accuracy a = 1
rk

∑r
i=1

∑k
j=1 aij.

There are different variants of cross-validation, depending on the choice for k.
The holdout method is the simplest form of cross-validation with k = 2. It means
that the data set is split into two parts, the training and the test set. The most
costly form of cross-validation is leave-one-out cross-validation with k = M , i.e.
the number of folds is equal to the number of examples in the data set. With
2 < k < M the variant is called k-fold cross-validation.

A special version called stratified cross-validation accounts for potential im-
balanced data set where there are differences in the class frequencies. It considers
the relative class frequencies when splitting the data set into folds such that the
relative class frequencies in each fold are the same as in the complete data set.

7.2. Performance Evaluation 115

7.2.2 Significance Test

In order to compare two learning algorithms A and B, r-times k-fold cross-
validation is conducted for each algorithm. That is, r × k experiments are con-
ducted with both algorithms using exactly the same training and test data sets
and the respective test accuracies ai and bi are recorded. Thus the n = r×k accu-
racies are paired and the differences of the accuracies di = ai−bi with i = 1, . . . , n
can be used as input for paired statistical significance tests.

Significance tests are used to statistically detect differences on the basis of
observed values. It examines previously formulated hypotheses where the null
hypothesis H0 assumes that ”there is no significant difference between A and B”
and the alternative hypothesis H1 assumes that ”there is a significant difference
between A and B”. Significance tests can determine whether the difference is
only by chance or a considerable difference with a low probability of error. This
probability of error is defined by the significance level α that limits the error
probability to reject the null hypothesis although the null hypothesis is correct.

The quality of a statistical test is typically evaluated on the basis of type I
and type II errors. A type I error is the erroneous rejection of the null hypothesis,
i.e. detecting a difference when actually there is no difference. The probability of
committing a type I error is specified by the significance level α. A type II error
corresponds to the erroneous acceptance of the null hypothesis, i.e. indicating
that there is no difference when actually there is difference. The probability of
the occurrence of a type II error is denoted by β. There exists an interdependency
between the two types of errors. The reduction of the probability of making one
error increases the probability of the occurrence of the other error. The size of a
statistical test is the probability of a type I error. The power of a statistical test
is defined by the probability of correctly rejecting a false null hypothesis. The
power is defined as 1− β.

t

p
(t

)

Figure 7.10: Student’s t-distribution

Significance tests usually provide a test statistic t that is used to evaluate
the statistical significance. The distribution of the test statistic (see Figure 7.10)

116 Chapter 7. Applications and Evaluation Method

specifies the probability that the test statistic takes a certain value depending on
the number of observations and the utilized test procedure. The corresponding
probability is the so-called p-value. This value is used to decide whether the
observed difference is statistically significant or not. The observation is regarded
as statistically significant if the p-value is smaller than the previously defined
significance level α, in this thesis α = 0.05. The null hypothesis H0 can than be
rejected in favor of the alternative hypothesis H1. Statistical significance test can
be divided into parametric and non-parametric tests. Parametric tests, such as
the t-test, require the observed values to follow a particular distribution and thus
rely on the estimation of parameters specifying this distribution. Non-parametric
or distribution-free test, such as the maximum test, the sign test or the signed
rank test, make no requirements concerning the distribution the data follows.

7.2.3 Paired t-Test

It is a commonly used significance test and it requires require the observed values
to follow the Students t-distribution. The mean m and variance σ2 are calculated
on di as follows:

m =
1

n

n∑
i=1

di (7.8)

and

σ̂2 =
1

n− 1

n∑
i=1

(di −m)2. (7.9)

Then the test statistic t is given by

t =
m√
1
rk
σ̂2

(7.10)

and follows a t-distribution with df = kr − 1 degrees of freedom. This test
statistic t is then compared against the Students t-distribution to determine the
corresponding p-value. This value is then used to determine whether the observed
difference is statistically significant or not.

Although for one cross-validation run there is no overlap of the k different
test data sets, the data sets used for training overlap considerably as each two
training sets always consist of k - 2 identical folds. Considering different runs,
there is also overlap for the training data as well as for the test data. This violates
the independence assumption most significance tests require. Thus the variance
is underestimated and the standard t-test is not applicable to these experiments.

Nadeau and Bengio [135] proposed to compensate the highly violated inde-
pendence assumption by correcting the variance, resulting in the corrected test
statistic t̃ as follows:

t̃ =
m√

(1
rk

+ n2

n1
)σ̂2

(7.11)

7.2. Performance Evaluation 117

where n1 is the number of training examples and n2 is the number of test examples.
The test statistic t̃ is then used to determine the corresponding p-value based on
a Students t-distribution with df = kr − 1 degrees of freedom.

Part II

Contributions

119

Chapter 8

Co-Training with Class Hierarchies

8.1 Introduction

In this chapter, the problem of how to exploit unlabeled data to boost the clas-
sification performance is addressed in the application domains characterized by:
(1) multiple sufficient and redundant views, (2) a large number of classes, (3)
a small amount of labeled examples, and (4) a large amount of unlabeled data.
Despite the practical benefits of combining semi-supervised learning (Chapter 5)
and multi-class decomposition schemes (Chapter 4), there is not much related
work in the machine learning literature, see [69].

The main contribution of this chapter is the combination of the tree-structured
approach (Section 4.6) with the Co-Training semi-supervised learning algorithm
(Section 5.7.1.1) through two different architectures. In the first architecture, a
tree-structured ensemble of binary RBF networks is trained on each given view.
Then, using Co-Training the most confident unlabeled examples labeled by each
tree ensemble classifier are added to the training set of the other tree classifier; we
call this scheme cotrain-of-trees (see Figure 8.1). In the second architecture, first
the given K-class problem is decomposed into K-1 simpler binary problems using
the tree-structured approach. Then using Co-Training a binary RBF network is
trained on each given view to solve each binary problem; we call this last scheme
tree-of-cotrains (see Figure 8.2). In order to combine the intermediate results of
the internal nodes within each tree, a combination method based on Dempster-
Shafer evidence theory is used [61]. Then cotrain-of-trees and tree-of-cotrains were
evaluated on three real-world 2D and 3D visual object recognition tasks. Let L =
{(Xµ, yµ)|Xµ = (x

(1)
µ , x

(2)
µ), yµ ∈ Ω, µ = 1, . . . ,m} be the set of labeled training

examples where Xµ is an example described by two Di-dimensional feature vectors

x
(i)
µ ∈ RDi , yµ denotes the class label of Xµ and Ω = {ω1, . . . , ωK} is the set of

target classes (ground truth). Also let U = {Xu = (x
(1)
u , x

(2)
u)|u = 1, . . . , n} be

the set of unlabeled data. The work in this chapter has been previously published
([7, 9]).

121

122 Chapter 8. Co-Training with Class Hierarchies

8.2 Co-Training of Tree-Structured Ensembles

The formal description of the first architecture, cotrain-of-trees, is provided in
Algorithm 9 with an illustration in Figure 8.1.

Algorithm 9 Co-Training of Tree-Structured Ensembles

Require: set of m labeled training examples (L), set of unlabeled examples
(U), two example representations (V1,V2), maximum number of co-training
iterations (T), tree ensemble learning algorithm (TreeLearn), incremen-
tal tree learning algorithm (OnlineTreeLearn), base learning algorithm
(BaseLearn), incremental base learning algorithm (OnlineBaseLearn),
number of classes (K), number of unlabeled examples in the pool (u), prior
probability of classes {Prk}Kk=1

Training Phase
1: Construct two tree ensembles using initial L,
H

(0)
1 = TreeLearn(V1(L), BaseLearn) and

H
(0)
2 = TreeLearn(V2(L), BaseLearn)

2: for t = 1 to T do
3: if U is empty then
4: Set T = t-1 and abort loop
5: end if
6: for i = 1 to 2 do
7: Create a pool U ′ of u examples from U
8: Apply the tree ensemble H

(t−1)
i on U ′.

9: Select a subset πi,t as follows: for each class ωk, select the nk ∝ Prk most
confident examples assigned to class ωk

10: Set U ′ = U ′ \ πi,t , L2−i+1 = L2−i+1 ∪ πi,t and U = U ∪ U ′
11: end for
12: Update the tree ensembles,

H
(t)
1 = OnlineTreeLearn(V1(L1), H

(t−1)
1 , OnlineBaseLearn) and

H
(t)
2 = OnlineTreeLearn(V2(L2), H

(t−1)
2 , OnlineBaseLearn)

13: end for
Prediction Phase

14: return
H

(T)
1 (x)+H

(T)
2 (x)

2
for a given example x

Given a set L of labeled examples, and a set U of unlabeled examples, the
algorithm begins by constructing two Single-View Trees H

(0)
1 and H

(0)
2 using the

tree ensemble learning algorithm TreeLearn (Section 4.6) where V1(L) and V2(L)
are used as input feature set, respectively. The following steps are repeated for
T times or until U becomes empty. For each iteration t and for each view i, a set
U ′ is created of u examples randomly drawn from U without replacement. It is
computationally more efficient to use a pool U ′ instead of using the whole set U .
Then, H

(t−1)
i is applied to each example Xu = (x

(1)
u , x

(2)
u) ∈ U ′ in order to predict

8.2. Co-Training of Tree-Structured Ensembles 123

the class label of x
(i)
u . Afterward, the unlabeled examples are ranked by the

confidence in the class prediction. A set πi,t is created that contains the nk most
confident examples assigned to class ωk. Then πi,t is removed from U ′ and inserted

into the training set of the other tree ensemble. Then, H
(t)
1 and H

(t)
2 are refined

using an online version of the tree ensemble learning algorithm OnlineTreeLearn
(See Appendix 1) on their augmented training sets. Like Standard Co-Training
the objective is that the confident examples with respect to the tree ensemble
H

(t−1)
i can be informative with respect to the other tree ensemble H

(t−1)
2−i+1. In the

classification phase, the final output for a given example is the average of the
outputs of the two tree classifiers created at the final Co-Training iteration, H

(T)
1

and H
(T)
2 . It is expected that the proposed committee-based confidence measure

(that is based on an ensemble of K-1 binary classifiers) is more accurate than
a single classifier based one. However, mislabeling of unlabeled examples is not
avoidable so that Hi receives noisy examples from time to time. Fortunately,
Goldman and Zhou [71] shows that the negative effect caused by adding such
mislabeling noise could be compensated by augmenting the training set with
sufficient amount of newly labeled examples.

8.2.1 Confidence Measure

An important factor that affects the performance of any Co-Training style algo-
rithm is how to measure the confidence in predicting the class label of an unlabeled
example which determines its probability of being selected. An inaccurate con-
fidence measure leads to adding mislabeled examples to the labeled training set
which leads to performance degradation during the SSL process. The confidence
is measured based on the ensemble of binary classifiers Hi.

8.2.1.1 Estimating Class Probabilities

The confidence in predicting the class label of an unlabeled example can be mea-
sured as the highest predicted class probability.

Confidence(Xu, H
(t−1)
i) = max

1≤k≤K
H

(t−1)
i (Xu, ωk) (8.1)

Unfortunately, the classical decision tree-like approach to combine the K-1
binary classifiers within a class hierarchy, discussed in Section 4.6.2.1, does not
provide a class probability distribution. Thus, the evidence-theoretic combiner
discussed in Section 4.6.2.4 will be adopted where the confidence is defined as

Confidence(Xu, H
(t−1)
i) = max

1≤k≤K
m(i)(θk) (8.2)

and the predicted class label is

ŷ = arg max
1≤k≤K

m(i)(θk) (8.3)

124 Chapter 8. Co-Training with Class Hierarchies

where m(i)(θk) is the belief in the hypothesis θk that an example Xu belongs to
class ωk provided by tree ensemble Hi trained at iteration t− 1.

8.3 Tree-Structured Co-Training

The second architecture, tree-of-cotrains, is formally defined in Algorithm 10 and
illustrated in Figure 8.2. Given a classification task with K classes, a set L of
labeled examples and a set U of unlabeled examples where each example is de-
scribed by two sets of features (V1 and V2). The algorithm begins by decomposing
the K-class problem into K-1 binary problems using the tree ensemble learning
algorithm TreeLearn (See Section 4.6) where the concatenation of the feature
vectors of the two views is used as an input feature set to construct the multi-view
tree. Then for each binary problem j, Co-Training (see Section 5.7.1.1) is applied
using Lj ⊆ L and Uj ⊆ U as input data where Lj is the set of training examples
that are members of (meta-)class Ωj,

Lj = {(X, t)|(X, y) ∈ L, t = 1 if y ∈ Ω2j and t = 2 if y ∈ Ω2j+1} (8.4)

and Uj is the set of unlabeled examples that are assigned to (meta-)class Ωj by
the predecessor node classifiers,

Uj = {Xu|Xu ∈ U,Ωj = Hpar(j)(Xu)}. (8.5)

That is, for each node j, two binary classifiers h
(0)
j1 and h

(0)
j2 are trained using

BaseLearn (Appendix 2) and Lj = (Lj1, Lj2). Then for T times or until Uj
becomes empty, for each view i, h

(t−1)
ji is used to predict the class labels of the

unlabeled examples in U ′. The most confident examples assigned to (meta-)class
Ω2j and (meta-)class Ω2j+1 are removed from U ′ and added with their predicted

class label to Lj,2−i+1. Then, h
(t)
j1 and h

(t)
j2 are updated with the augmented train-

ing set using an online version of the base learning algorithm OnlineBaseLearn
such as RBF network online learning algorithm defined in Appendix 3.

In classification phase, the decision of each node j is the average of the pre-
dictions of the two binary classifiers created at the final Co-Training iteration,
h

(T)
j1 and h

(T)
j2 . Then, the final decision of the whole class hierarchy is the combi-

nation of the intermediate decisions of the K-1 nodes using either hard combiner
or evidence-theoretic soft combiner (see Section 4.6.2.4). It is worth mentioning
that there are two sources of knowledge transfer in tree-of-cotrains: (1) Through
the co-training between the pair of binary classifiers hj1 and hj2 at each node j.
(2) Through the selection of Uj as defined in Eq. (8.5) where each parent node
transfers knowledge to its child nodes.

8.3. Tree-Structured Co-Training 125

L1 L2

Measure

Confidence

node1

node2 node3

ω1 ω2 ω3 ω4

H1

node1

node2 node3

ω3 ω2 ω1 ω4

H2

U1'

U2'

U2

U1

Select the most confident

examples {(xu
(1),xu

(2), H1(xu
(1)))}

Measure

Confidence
Select the most confident

examples {(xu
(1),xu

(2), H2(xu
(2)))}

train train

applyapply

refillrefill

Figure 8.1: Architecture I: cotrain-of-trees

refill

nodej

node2j node2j+1

ω1 ω2 ω3 ω4

Ωj

Ω2j Ω2j+1

Measure

Confidence

hj2

Select the most confident

examples {(xu
(1),xu

(2), hj1(xu
(1)))}

Measure

Confidence

Select the most confident

examples {(xu
(1),xu

(2), hj2(xu
(2)))}

train train

applyapply

refill

hj1

Uj1

Lj1

Lj2

Uj2

Uj2'

Uj1'

Figure 8.2: Architecture II: tree-of-cotrains

126 Chapter 8. Co-Training with Class Hierarchies

Algorithm 10 Tree-Structured Ensemble of Co-Training

Require: set of m labeled training examples (L), set of unlabeled examples (U),
two example representations (V1,V2), base learning algorithm (BaseLearn),
maximum number of Co-Training iterations (T), number of unlabeled exam-
ples in the pool (u), hierarchical combination method (TreeCombiner)
Training Phase

1: Ω1 = Ω
2: Generate Class Hierarchy as follows:

1. C = {(ck, ωk)}Kk=1 = GetClassCentroids(L)

2. hierarchy = BuildNode(Ω1, C)

3: for each internal node j at hierarchy do
4: Filter the training examples L,

Lj = {(x, t)|(x, y) ∈ L and t = 1 if y ∈ Ω2j and t = 2 if y ∈ Ω2j+1}
5: Filter the unlabeled data U ,

Uj = {x|x ∈ U that is assigned by the higher level nodes to Ωj}
6: Train binary classifier,

Hj= Co-Training(Lj, Uj, BaseLearn, T, u)
7: end for

Prediction Phase
8: return TreeCombiner(x, hierarchy) for a given x

8.3.1 Confidence Measure

Unlike the first architecture, the unlabeled examples are labeled and the label-
ing confidence is measured at each node j based on a single binary classifier,
that is either hj1 or hj2. Many classifiers can provide class probability esti-
mates (CPE) such as Naive Bayes classifier or return real-valued outputs that
can be transformed to CPEs such as neural networks and decision trees. That
is, hji : Vi × {Ω2j,Ω2j+1} → [0, 1]. Therefore, the confidence in the class label
prediction of an unlabeled example Xu can be measured as the highest predicted
class probability.

Confidence(Xu, h
(t−1)
ji) = max{h(t−1)

ji (x(i)
u ,Ω2j), h

(t−1)
ji (x(i)

u ,Ω2j+1)} (8.6)

and the predicted class label is

ŷ = argmax{h(t−1)
ji (x(i)

u ,Ω2j), h
(t−1)
ji (x(i)

u ,Ω2j+1)} (8.7)

where h
(t−1)
ji (x

(i)
u ,Ω2j) is the probability given by the classifier hji that an example

Xu belongs to meta-class Ω2j at iteration t.

8.4. Application to Visual Object Recognition 127

8.4 Application to Visual Object Recognition

The recognition of visual objects from 2-D camera images is one of the most
important goals in computer vision. The proposed architectures have been ap-
plied to two 3-D object and one 2-D object recognition tasks. Each image was
represented by two redundant and independent sets of features (views).

8.4.1 Fruits Dataset

The fruits data set was defined in Section 7.1.1 (see Figure 7.2). Each image was
divided into 3×3 overlapping sub-images. Firstly, a color histogram was extracted
from each sub-image (see Section 7.1.1.1) and then the nine histograms were
concatenated to form the first input feature set (V1). The orientation histogram
of an image Freeman,Coppola provides information about the directions of the
edges and their intensity. Thus, an orientation histogram based on Canny edge
detection was extracted from each sub-image. Then the nine histograms were
concatenated to form another set of features (V2).

8.4.2 Handwritten Digits Dataset

The StatLog handwritten digits data set was defined in Section 7.1.2 (see Figure
7.4). In our study I used only 200 images per class. Each image is represented by
two views: a 40-dimensional vector that results from performing Principal Com-
ponent Analysis (PCA) (see Section 7.1.2.1) and projecting the 256-dimensional
vector onto the top 40 principal components (V1). Each image in the dataset was
divided into 2 × 2 overlapping sub-images. Then, an orientation histogram was
extracted from each sub-image (see Section 7.1.1.1). The four histograms were
concatenated to form the second view (V2).

8.4.3 COIL-20 Dataset

This Columbia Object Image Library benchmark dataset was defined in Section
7.1.4 (see Figure 7.6). Each image was divided into 2× 2 overlapping sub-images
[60]. Firstly, a color histogram was extracted from each sub-image (see Section
7.1.1.1) and then the four histograms were concatenated to form the first input
feature set (view) for classification (V1). Then, an orientation histogram based
on Sobel edge detection was extracted from each sub-image (see Section 7.1.1.2)
and the four histograms were concatenated to form the second feature set (V2).

128 Chapter 8. Co-Training with Class Hierarchies

8.5 Experimental Evaluation

8.5.1 Methodology

An experimental study was conducted in order to evaluate the two architectures
using Co-Training, cotrain-of-trees and tree-of-cotrains, on the three real-world
recognition tasks described in Section 8.4. All experiments were carried out using
WEKA library WEKA and using the RBF Network algorithm (see Appendix 2) as
the base learning algorithm. For each experiment, 5 runs of 4-fold cross-validation
have been performed to evaluate the classification accuracy of the underlying
learning algorithm. The training examples are randomly divided into the labeled
and unlabeled sets L and U where 20% are selected as L (18, 30 and 11 for
fruits, digits and COIL-20, respectively) and the remaining training examples
are used as unlabeled set U . For comparison purpose, the performance of two
alternative architectures based on Self-Training (Section 5.3) is evaluated, which
is denoted by selftrain-of-trees and tree-of-selftrains. For selftrain-of-trees and
tree-of-selftrains, at each SSL iteration t, the base classifier at each view i selects
the most confident examples πi,t and adds them to its own labeled training set
Li (no knowledge exchange between classifiers). Both tree-of-cotrains and tree-of-
selftrains are based on a single class hierarchy (Tree(V1&V2)) that is generated by
concatenating the two feature sets (V1 and V2) into a single feature vector. Unlike
tree-of-cotrains, tree-of-selftrains applies Self-Training at each node instead of Co-
Training using an RBF Network trained on the concatenation of the two views
(V1&V2). On the other hand, both cotrain-of-trees and selftrain-of-trees based on
two class hierarchies generated on each view independently.

8.5.2 Results and Discussion

The average test errors and standard deviations are shown in Table 12.3. Table
8.1(a) presents the performance in case of supervised learning when trained on
the full training set (L ∪ U) (1stBaseline) and Table 8.1(b) presents the per-
formance when trained on only 20% of the training set without performing SSL
(2ndBaseline). Table 8.1(c) and Table 8.1(d) present the test errors after the final
SSL iteration of exploiting the unlabeled data for selftrain-of-trees and cotrain-
of-trees, respectively. Table 8.1(e) and Table 8.1(f) present the test errors for
tree-of-selftrains and Table 8.1(g) and Table 8.1(h) for tree-of-cotrains after 5,
10, 15, 20, 25, 30 and 35 SSL iterations, respectively. The results where SSL
leads to significant improvements are marked with (*) using corrected paired t-
test PairedTTest at 0.05 significance level.

Figures 8.4(a), 8.5(a) and 8.6(a) present a box and whisker plot for the test
errors after a given iteration. The boxes have lines at the lower quartile, median,
and upper quartile values. The whiskers are lines extending from each end of
the boxes to show the extent of the rest of the data. Outliers are data with

8.5. Experimental Evaluation 129

(a) using color histogram (V1) (b) using orientation histogram (V2)

Figure 8.3: Class hierarchy for the fruits

values beyond the ends of the whiskers. Figures 8.3(a) and 8.3(b) show the class
hierarchy for the fruits data sets at one of the runs based on color histograms
(V1) and orientation histograms (V2), respectively.

From Figures 8.4(b), 8.5(b) and 8.6(b), one can conclude the following obser-
vations on cotrain-of-trees:

1. For all three data sets, after the final SSL iteration the test error of Single-
View Tree classifier is significantly improved: 61.7%, 45.2% and 40.6% for
Tree(V1) and 51.6%, 21.9% and 55.6% for Tree(V2).

2. For all data sets, after the final SSL iteration the test error of Multi-View
Forest classifier is significantly improved: 43.6%, 29.9% and 9.8% .

3. For all data sets, before and after SSL the Multi-View Forest performs better
than its individual Single-View Tree classifiers due to the diversity between
the tree classifiers caused by training them using different views.

4. For all data sets, the improvement achieved by cotrain-of-trees is more than
the improvement gained by selftrain-of-trees due to the knowledge exchange
between pairs of cotrained tree-structured ensembles.

In addition, one can observe the following findings on tree-of-cotrains:

1. The tree-of-cotrains can exploit unlabeled data to improve the test error on
fruits and digits while on COIL data set the performance is degenerated.

130 Chapter 8. Co-Training with Class Hierarchies

2. The error improvement achieved by tree-of-cotrains is less than the im-
provement achieved by cotrain-of-trees. This is attributed to the fact that
tree-of-cotrains uses a single class hierarchy which reduce the benefits of
multi-view learning and knowledge exchange between cotrained classifiers.
In contrast to cotrain-of-trees that uses a different class hierarchy for each
view (for example, see Figures 8.3(a) and 8.3(b)).

3. The tree-of-cotrains performs comparable to tree-of-selftrains. That is at-
tributed to the fact that both architectures use a single class hierarchy. Like
tree-of-selftrains, the confidence in tree-of-cotrains is measured by a single
classifier while it is measured by a committee of classifiers in cotrain-of-trees.

8.6 Related Work

8.6.1 Tree-Structured Approach and Margin Trees

In the margin tree algorithm [182], a class hierarchy is constructed by hierarchical
agglomerative clustering (HAC) where margins between pairs of classes are used
as distance measures for clustering of (meta-)classes. There are three different
ways to define the margin: greedy, complete-linkage and single-linkage. Then
a total of K - 1 internal nodes will be created with K leaf nodes, same as in
BHC. As opposite to BHC, in the margin tree algorithm, it is assumed that the
dimensionality is always greater than the number of samples, so that the samples
are always linearly separable by a maximum-margin hyperplane. If the samples
are not linearly separable, using non-linear kernels such as radial basis function to
make the samples separable in a higher dimensional space leads to more difficult
interpretation of margins, and makes the class hierarchy more sensitive to the
kernel parameters.

In [90], Jun and Ghosh tried to solve the problem of small sample size that
occurs during the class hierarchy generation of BHC. It is worth mentioning
that the lower the position of a node at the tree, the less sample size it will
have for training. They proposed a hybrid approach that combine the merits of
BHC framework and margin trees. That is, at each node they check the available
sample size. If number of instances is less than the number of features, the margin
tree algorithm is employed instead of BHC. While BHC algorithm is applied if
the samples are not guaranteed to be linearly separable. Both cotrain-of-trees and
tree-of-cotrains also deal with the problem of small sample size but they exploit
the unlabeled data to increase the sample size.

8.6.2 Multi-Class Decomposition and SSL

Ghani [69] investigated the combination of ECOC and Co-Training in order to
decompose the multi-class text classification tasks using ECOC then to apply

8.6. Related Work 131

Table 8.1: Mean and standard deviation of the test error for the three recognition
tasks

(a) for supervised learning (100% Labeled)
classifier Tree(V1) Tree(V2) Forest Tree(V1&V2)
Fruits 4.83% ± 1.55 9.52% ± 1.98 2.64% ± 1.22 1.89% ± 1.05
Digits 11.72% ± 1.46 17.09% ± 1.40 8.89% ± 1.19 8.81% ± 1.38
COIL-20 4.79% ± 1.39 4.58% ± 1.06 1.67% ± 0.69 0.66% ± 0.40

(b) for supervised learning (20% Labeled)
classifier Tree(V1) Tree(V2) Forest Tree(V1&V2)
Fruits 10.93% ± 3.45 15.26% ± 2.52 6.72% ± 2.69 5.53% ± 2.55
Digits 18.41% ± 2.38 20.86% ± 1.47 12.44% ± 1.29 12.17% ± 1.40
COIL-20 9.93% ± 2.49 14.26% ± 2.53 6.22% ± 1.70 6.52% ± 1.90

(c) for selftrain-of-trees (20% Labeled + Unlabeled Data)
classifier Tree(V1) Tree(V2) Forest
Fruits 10.81% ± 2.42 13.05% ± 3.37 5.79% ± 1.97
Digits 11.74% ± 1.87 * 18.84% ± 1.73 * 9.29% ± 1.14 *
COIL-20 9.29% ± 2.02 12.69% ± 2.69 6.07% ± 1.62

(d) for cotrain-of-trees (20% Labeled + Unlabeled Data)
classifier Tree(V1) Tree(V2) Forest
Fruits 4.19% ± 2.19 * 7.38% ± 2.17 * 3.79% ± 1.64 *
Digits 10.09% ± 1.46 * 16.29% ± 1.48 * 8.72% ± 1.15 *
COIL-20 5.90% ± 2.02 * 6.32% ± 2.01 * 5.61% ± 1.98

(e) for tree-of-selftrains (20% Labeled + Unlabeled Data)
classifier Tree(V1&V2)-5 Tree(V1&V2)-10 Tree(V1&V2)-15 Tree(V1&V2)-20
Fruits 5.60% ± 2.74 5.48% ± 2.82 5.82% ± 3.01 5.79% ± 2.87
Digits 11.62% ± 1.71 11.40% ± 1.53 11.33% ± 1.50 10.85% ± 1.67 *
COIL-20 6.84% ± 2.01 7.45% ± 2.01 7.78% ± 1.83 8.31% ± 1.88

(f) for tree-of-selftrains (20% Labeled + Unlabeled Data)
classifier Tree(V1&V2)-25 Tree(V1&V2)-30 Tree(V1&V2)-35
Fruits 5.67% ± 2.66 5.27% ± 2.90 5.36% ± 3.48
Digits 11.01% ± 1.34 10.77% ± 1.22 * 10.83% ± 1.58
COIL-20 8.42% ± 2.17 – –

(g) for tree-of-cotrains (20% Labeled + Unlabeled Data)
classifier Tree(V1&V2)-5 Tree(V1&V2)-10 Tree(V1&V2)-15 Tree(V1&V2)-20
Fruits 5.77% ± 2.93 5.29% ± 2.68 4.77% ± 2.40 4.60% ± 2.22
Digits 11.40% ± 1.42 10.99% ± 1.70 10.43% ± 1.43 * 10.26% ± 1.18 *
COIL-20 7.10% ± 2.14 7.03% ± 1.63 7.88% ± 2.51 7.75% ± 2.51

(h) for tree-of-cotrains (20% Labeled + Unlabeled Data)
classifier Tree(V1&V2)-25 Tree(V1&V2)-30 Tree(V1&V2)-35
Fruits 4.70% ± 2.54 4.34% ± 2.07 5.10% ± 3.01
Digits 10.12% ± 1.60 * 10.12% ± 1.43 * 10.04% ± 1.34 *
COIL-20 8.09% ± 2.46 – –

132 Chapter 8. Co-Training with Class Hierarchies

(a) box plot

Fruits

4.83

10.93

10.81

4.19

9.52

15.26

13.05

7.38

2.64

6.72

5.79

3.79

1.89

5.53

5.36

5.1

0 2 4 6 8 10 12 14 16

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+tree-of-selftrains

20%+tree-of-cotrains

T
re

e
(V

1
)

T
re

e
(V

2
)

F
o

re
s
t

T
re

e
(V

1
+

V
2
)

(b) bar graph

Figure 8.4: Test error for fruits data set

8.6. Related Work 133

(a) box plot

Digits

11.72

18.41

11.74

10.09

17.09

20.86

18.84

16.29

8.89

12.44

9.29

8.72

8.81

12.17

10.83

10.04

0 5 10 15 20 25

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+tree-of-selftrains

20%+tree-of-cotrains

T
re

e
(V

1
)

T
re

e
(V

2
)

F
o

re
s
t

T
re

e
(V

1
+

V
2
)

(b) bar graph

Figure 8.5: Test error rate for handwritten digits data set

134 Chapter 8. Co-Training with Class Hierarchies

(a) box plot

COIL20

4.79

9.93

9.29

5.9

4.58

14.26

12.69

6.32

1.67

6.22

6.07

5.61

0.66

6.52

8.42

8.09

0 2 4 6 8 10 12 14 16

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+selftrain-of-trees

20%+cotrain-of-trees

100%

20%

20%+tree-of-selftrains

20%+tree-of-cotrains

T
re

e
(V

1
)

T
re

e
(V

2
)

F
o

re
s
t

T
re

e
(V

1
+

V
2
)

(b) bar graph

Figure 8.6: Test error rate for COIL data set

8.7. Conclusions 135

Co-Training for each binary problem to exploit the unlabeled text documents to
improve the classification performance. The results have shown that this hybrid
approach outperforms both standalone ECOC and Co-Training using Naive Bayes
as binary text classifier.

8.6.3 Tree-Structured Approach and Boosting

In [91], a novel multi-class boosting algorithm, AdaBoost.BHC, is proposed. First
the tree-structured approach is used to decompose the multi-class problem into
a set of binary problems then an ensemble of binary classifiers is constructed,
by the popular AdaBoost ensemble method (Section [65]), to solve each binary
problem instead of depending on a single binary classifier. Empirical comparisons
of AdaBoost.BHC and other existing variants of multi-class AdaBoost algorithm
are carried out using seven multi-class datasets from the UCI machine learning
repository. Not only AdaBoost.BHC is faster than other AdaBoost variants but
also it achieves lower error rates. Like AdaBoost.BHC, tree-of-cotrains constructs
an ensemble of binary classifiers but the objective is to exploit the unlabeled
examples to improve the classification performance.

8.6.4 Tree-Structured Approach and Neural Combiners

In [3], Abdel Hady and Schwenker introduced a trainable fusion method that
integrates statistical information about the individual classifier outputs (clustered
decision templates) into a Radial Basis Function (RBF) network. The neural
combination model was compared with the decision templates combiner and the
existing non-trainable tree ensemble fusion methods: classical decision tree-like
approach (see Section 4.6.2.1), product of the unique path and Dempster-Shafer
evidence theory based method (see Section 14.3.1). The experiments have shown
that the RBF Network tree combiner significantly outperforms the three existing
nontrainable tree combiners and the decision templates combiner proposed by
Kuncheva. This neural combiner is shown to be robust to changes in the training
set size and the number of decision templates per class.

8.7 Conclusions

The main objective of this chapter is to show that there is an improvement from
using unlabeled data when training tree-structured (hierarchical) ensembles. I
proposed two learning architectures to combine the benefits of Co-Training al-
gorithm and the tree-structured multi-class decomposition approach, which are
denoted by (cotrain-of-trees and tree-of-cotrains). To study the influence of multi-
view learning, I replaced Co-Training with Self-Training in the two architectures
(selftrain-of-trees and tree-of-selftrains). I have the following conclusions:

136 Chapter 8. Co-Training with Class Hierarchies

• It was shown that cotrain-of-trees achieves performance improvement more
than selftrain-of-trees and tree-of-cotrains performs comparable to tree-of-
selftrains. That is, Co-Training using two class hierarchies generated based
on different views (cotrain-of-trees) benefits from multi-view learning more
than Co-Training using a single class hierarchy generated based on the
concatenation of both views into a single feature set (tree-of-cotrains).

• These results emphasize the conclusion of Gupta and Dasgupta in [74] that
using the individual views independently each based on its distance measure
works better than combining the two distance measures or concatenating
the feature vectors of the different views into a single input vector. This
preserves the classes separation in each individual view.

• An important factor that influence the performance of any Co-Training style
algorithm is how to measure the confidence on predicting the label of an
unlabeled example which determine its probability of being selected. The
results shows that the evidence-theoretic tree combination method can pro-
vide effective estimates of class probabilities that are used by Co-Training
to measure confidence.

8.8 Future Work

The following are directions for further investigation:

• Although RBF networks are used as binary classifiers within the tree en-
semble, both architectures are applicable to any other type of classifiers
such as support vector machines.

• Motivated by the empirical results provided in [3] that trainable neural
combiner outperforms the fixed evidence-theoretic combiner, I have the fol-
lowing open questions. First, can cotrain-of-trees and tree-of-cotrains us-
ing the neural combiner outperform their current implementation based on
evidence-theoretic combiner? Second, can semi-supervised learning exploit
the unlabeled data to improve the trainable neural combiner performance
as it improves the hierarchical classifiers?

• Active learning (selective sampling) algorithms are used to select the most
informative examples from a given unlabeled data set as labeled training
examples. Co-Testing [134] is a multi-view active learning framework that
is inspired by Co-Training. The application of Co-Testing instead of the
current random sampling, is an open issue that deserve investigation. That
is, Co-Testing can be used with a smaller randomly-selected labeled training
set L′ (e.g., 5% of training examples) to train initial classifiers. Then it can

8.8. Future Work 137

iteratively select the most informative examples with respect to these clas-
sifiers (e.g., 15%). These selected examples are labeled by human experts
and added to the labeled training set. Finally this augmented data set will
be the starting point for cotrain-of-trees and tree-of-cotrains.

Appendix 1: Online Tree Ensemble Learning

The proposed online version of tree learning algorithm (OnlineTreeLearn) takes
as input an existing tree ensemble and a set of new training examples R. The
algorithm returns an updated tree ensemble that reflect the new examples (See
Algorithm 11). Such algorithms have advantages over typical batch algorithms in
situations where data arrive continuously which is the case for Co-Training. They
need only one pass through each training example unlike the batch algorithms that
require multiple passes which would require a prohibitively large training time.
At each iteration, I keep the initially generated class hierarchy and just update
the internal node classifiers with the newly-labeled training examples using an
incremental base learning algorithm (see Algorithm 13). If one uses the batch
version (See Section 4.6), the current tree will be discarded and a class hierarchy
will be generated from scratch with the augmented training set.

Algorithm 11 Online Tree Ensemble Learning Algorithm

Require: set of n newly-labeled training examples (R), online base learning algo-
rithm (OnlineBaseLearn), the class hierarchy generated before (hierarchy)

1: for each binary classifier hi at nodej, (i ∈ {1, . . . , K − 1}) in hierarchy do
2: Filter the new training set R as follows:

Rj ← {(x, t)|(x, y) ∈ R and t = 1 if y ∈ Ω2j and t = 2 if y ∈ Ω2j+1}
3: Update binary classifier,

hi = OnlineBaseLearn(hi, Rj) (See Algorithm 13)
4: end for

Appendix 2: Binary RBF Network Learning

The two-phase learning algorithm discussed in Section 2.1.2 is used for training
RBF networks at the internal nodes (see Algorithm 12). The multivariate Gaus-
sian radial basis function φj is used as an activation function at each hidden node
of the network. At the first phase, the RBF centers are determined by applying
class-specific c-means clustering algorithm MacQueen67. It is assumed that all
the Gaussians are radially symmetric, therefore the Euclidean distance between a
prototype cj and the nearest prototype multiplied by α is used as the width of the

138 Chapter 8. Co-Training with Class Hierarchies

jth RBF neuron (σj) where α controls the extent of overlap between a Gaussian
function and its nearest neighbor (in this experiments, α=1.0 and c=10). At the
second phase, the output layer weights W are computed by minimizing the MSE
at the network output (over the m training instances) by a matrix pseudo-inverse
technique using singular value decomposition.

Algorithm 12 Binary RBF Network Learning

Require: set of m labeled training examples (L = {(xi, yi)|xi ∈ RD, yi ∈
{1, 2}, i = 1, . . . ,m}), number of RBF neurons per class (c), a parameter
controls the width of an RBF (α)
Training Phase
{Calculate the RBF centers}

1: Set C = ∅
2: for each class k ∈ {1, 2} do
3: Xk = set of examples belonging to class k
4: Ck = {(µj, k)}cj=1 = c-means(Xk, c)
5: C = C ∪ Ck, add the new clusters
6: end for
{Calculate the RBF widths}

7: for each prototype (µj, kj) ∈ C do
8: σj = αmin

{
‖µj − µi‖2 : (µi, ki) ∈ C, i 6= j, ki 6= kj

}
9: end for

10: Define the Gaussian radial basis activation function:
φj(x;µj, σj) = exp(−‖x−µj‖

2
2

2σ2
j

)

{Calculate the output layer weights}
11: for each training example (xi, yi) ∈ L do
12: Get activation vector Φji = φj(xi;µj, σj)
13: Get target output vector Tik = I(k = yi)
14: end for
15: Calculate Φ+, the pseudo-inverse of Φ
16: Set W = Φ+T where T is the target matrix and Φ is the activation matrix.

Prediction Phase
17: for each class k ∈ {1, 2} do
18: ŷk =

∑2×c
j=1wjkφj(x;µj, σj)

19: if ŷk < 0 then ŷk ← 0 end if
20: end for
21: if ŷ1 + ŷ2 > 1 then

ŷk = ŷk/(ŷ1 + ŷ2) for each class k ∈ {1, 2}
end if

22: return the class probability distribution {ŷ1, ŷ2} for a given instance x

8.8. Future Work 139

Appendix 3: Online RBF Network Learning

Co-Training is an incremental learning algorithm, because at each iteration new
examples are added to the labeled training set of the underlying RBF Network.
Since the c-means clustering algorithm is sensitive to the selection of initial proto-
types and to ensure a stable behaviour for the learning curve during Co-Training,
the underlying RBF Networks should be trained using an incremental learning al-
gorithm. Motivated by this argument, an online version of RBF network learning
algorithm (see Algorithm 13) is presented. The seeded c-means clustering algo-
rithm [19] is used. Thus, instead of randomly initializing prototypes, the mean
of the jth cluster is initialized with the mean of the existing jth RBF neuron.

Algorithm 13 Online Binary RBF Network Learning

Require: set of n newly labeled examples (R = {(xi, yi)|xi ∈ RD, yi ∈ {1, 2}, i =
1, . . . , n})

1: for each example (xi, yi) ∈ R do
2: updated = true
3: X = X ∪ {(xi, yi)}, add the new instance
4: d = min{‖cj − xi‖2 : cj ∈ C}
5: if d > σj then
6: update← false
7: C = C ∪ {(xi, yi)}, add a new cluster

{Update the RBF centers}
8: Cyi = set of clusters belonging to class yi
9: C = C − Cyi ,

10: Xyi = set of examples belonging to class yi
11: Cyi = seeded-c-means(Xyi , Cyi)
12: C = C ∪ Cyi , add the new clusters
13: Calculate the RBF widths (see Algorithm 12)
14: Calculate the output weights (see Algorithm 12)
15: end if
16: end for
17: if update = true then
18: Calculate the RBF centers (see Algorithm 12)
19: Calculate the RBF widths (see Algorithm 12)
20: Calculate the output weights (see Algorithm 12)
21: end if

Chapter 9

Co-Training by Committee for
Semi-supervised Classification

9.1 Introduction

Many data mining applications such as content-based image retrieval [212], computer-
aided medical diagnosis [119], object detection and tracking [116], web page cat-
egorization [140], or e-mail classification [96], there is often an extremely large
amount of data but labeling data is usually difficult, expensive, or time con-
suming, as it requires human experts for annotation. Semi-supervised learning
(Chapter 5) addresses this problem by using unlabeled data together with la-
beled data in the training process. Co-Training (Section 5.7.1.1) is a popular
semi-supervised learning algorithm that requires each example to be represented
by multiple sets of features (views) where these views are sufficient for learning
and independent given the class. However, these requirements are hard to be sat-
isfied in many real-world domains because there are not multiple representations
available or it is computationally inefficient to extract more than one feature set
for each example.

In this chapter, a single-view variant of Co-Training, called Co-Training by
Committee (CoBC), is proposed, in which an ensemble of diverse classifiers is used
instead of redundant and independent views required by the conventional Co-
Training algorithm. The aim of CoBC is to exploit the unlabeled data to improve
the recognition rate of the underlying supervised ensemble learning algorithm and
to minimize the cost of data labeling. The method used to measure the confidence
in predicting the class label of an unlabeled example is an important factor for
the success of any Co-Training style algorithm. Although the confidence method
depends on class probability estimates, many classifier types can not provide
an accurate class probability estimates. Thus, a new method is introduced to
measure the confidence that is based on estimating the local accuracy of the
committee members on the neighborhood of a given unlabeled example. The
work in this chapter has been previously published ([5, 4]).

141

142 Chapter 9. Co-Training by Committee for Semi-supervised Classification

9.2 Co-Training by Committee (CoBC)

The pseudo-code of the CoBC framework is given in Algorithm 14 and illustrated
in Figure 9.1. Let L = {(xµ, yµ)|xµ ∈ RD, yµ ∈ Ω, µ = 1, . . . ,m} be the set of
labeled training examples where each example is described by a D-dimensional
feature vector xµ ∈ RD, yµ denotes the class label of xµ and Ω = {ω1, . . . , ωK} is
the set of target classes (ground truth). Also let U = {xu|u = 1, . . . , n} be the
set of unlabeled data. CoBC works as follows: firstly the class prior probabilities
are determined then an initial committee of N diverse accurate classifiers H(0) is
trained on L using the given ensemble learning algorithm EnsembleLearn and
base learning algorithm BaseLearn. Then the following steps are repeated until
the maximum number of iterations T is reached or U becomes empty. For each
iteration t and for each classifier i, a set U ′i,t of u examples drawn randomly from
U without replacement. It is computationally more efficient to use U ′i,t instead of
using the whole set U .

The method SelectCompetentExamples (see Algorithm 15) is applied to es-
timate the competence of each unlabeled example in U ′i,t given the companion

committee H
(t−1)
i . Note that H

(t−1)
i is the ensemble of all base classifiers trained

in the previous iteration except h
(t−1)
i . A set πi,t is created that contains the nc

most competent examples assigned to each class ωc. Then πi,t is removed from
U ′i,t and inserted into the set L′t that contains all the examples labeled at iteration
t. The remaining examples in U ′i,t are returned to U . We have two options: (1) if

H7
H1

h1

h2

h3

h4

h5

h6

h7

Figure 9.1: Graphical Illustration of CoBC

the underlying ensemble learner depends on training set perturbation to promote
diversity, then insert πi,t only into Li. Otherwise, h

(t)
i and h

(t)
j (i 6= j) will be

identical because they are refined with the same newly labeled examples. This
will degrade the ensemble diversity and therefore degrades the relative improve-
ment expected due to exploiting the unlabeled data. One can observe that if the

9.2. Co-Training by Committee (CoBC) 143

Algorithm 14 Pseudo code of CoBC for classification

Require: set of labeled training examples (L), set of unlabeled training exam-
ples (U), maximum number of iterations (T), ensemble learning algorithm
(EnsembleLearn), base learning algorithm (BaseLearn), ensemble size (N),
number of unlabeled examples in the pool (u), number of nearest neighbors
(k), sample size (n), number of classes (C) and an initial committee (H(0))
Training Phase

1: Get the class prior probabilities, {Prc}Cc=1

2: Set the class growth rate, nc = n× Prc where c = 1, . . . , C
3: if H(0) is not given then
4: Construct an initial committee of N classifiers,

H(0) = EnsembleLearn(L,BaseLearn,N)
5: end if
6: for t ∈ {1, . . . , T} do
7: L′t ← ∅
8: if U is empty then T = t-1 and abort loop end if

{Get most confident examples (πi,t) using companion committee H
(t−1)
i }

9: for i ∈ {1, . . . , N} do
10: U ′i,t ← RandomSubsample(U, u)

11: πi,t ← SelectCompetentExamples(i, U ′i,t, H
(t−1)
i , k, {nc}Cc=1, C)

12: L′t ← L′t ∪ πi,t , U ′i,t ← U ′i,t \ πi,t and U ← U ∪ U ′i,t
13: end for
14: if L′t is empty then T = t-1 and abort loop end if

{Re-train the N classifiers using their augmented training sets }
15: for i ∈ {1, . . . , N} do
16: Li = Li ∪ L′t
17: h

(t)
i = BaseLearn(Li)

(for incremental learning, h
(t)
i = BaseLearn(h

(t−1)
i , L′t))

18: end for
19: end for

Prediction Phase
20: return H(T)(x) = 1

N

∑N
i=1 h

(T)
i (x) for a given example x

ensemble members are identical, CoBC will degenerate to Self-Training. (2) If
ensemble learner employs another source of diversity, then it is not a problem
to insert πi,t into the training sets of all classifiers as shown in step 16. Then,
CoBC does not recall EnsembleLearn but only the N committee members are
retrained using their updated training sets Li. It is worth noting that: (1) CoBC
can improve the recognition rate only if the most confident examples with respect
to the companion committee Hi are informative examples with respect to hi. (2)
Although CoBC selects the most confident examples, adding mislabeled examples

144 Chapter 9. Co-Training by Committee for Semi-supervised Classification

to the training set (noise) is unavoidable but the negative impact of this noise
could be compensated by augmenting the training set with sufficient amount of
newly labeled examples.

9.2.1 Complexity of CoBC

The time complexity of the CoBC algorithm is O(TNg(BaseLearn)) where the
term g(BaseLearn) represents the complexity of the underlying base learning
algorithm (BaseLearn) which depends on the number of training examples in
Li. On way to improve the complexity of CoBC is to reduce the ensemble size
N through selecting the most accurate and diverse classifiers such as information-
theoretic approach defined in Chapter 15. Another way is to reduce g(BaseLearn)
through using an incremental version of BaseLearn. In each CoBC iteration, each
ensemble member hi is updated with the newly-labeled examples πi,t instead of
retrain it with the whole training set Li. For instance, a method to improve the
complexity of RSM with kNN is introduced in Section 9.2.4.

9.2.2 Confidence Measure

An important factor that affects the performance of any Co-Training style al-
gorithm is how to measure the confidence about the labeling of an unlabeled
example which determines its probability of being selected. An inaccurate con-
fidence measure leads to adding mislabeled examples to the labeled training set
which leads to performance degradation during the SSL process. For CoBC, it is
assumed that the underlying ensemble employs soft combiner (Section 3.3.2) in
order to provide a class probability distribution, that is H(t−1) : RD ×Ω→ [0, 1].

9.2.2.1 Estimating Class Probabilities

Many classifiers can provide class probability estimates (CPE) such as Naive
Bayes classifier or return real-valued outputs that can be transformed to CPEs
such as neural networks and decision trees. If a classifier estimates the probability
that an example x1 belongs to classes ω1 and ω2 is 0.9 and 0.1, respectively,
while that for an example x2 is 0.6 and 0.4, respectively, then the classifier is
more confident that x1 belongs to class ω1 than x2. Therefore, the confidence in
predicting the class label of an unlabeled example xu by H

(t−1)
i is,

Confidence(xu, H
(t−1)
i) = max

1≤c≤C
H

(t−1)
i (xu, ωc) (9.1)

Unfortunately, many classifiers do not provide an accurate CPE. For instance,
traditional decision tree partitions the input space into regions and provides piece-
wise constant probability estimates. That is, all unlabeled examples xu which lie
into a particular leaf node (region), will have the same CPEs because the CPE

9.2. Co-Training by Committee (CoBC) 145

depends on class frequencies and not on the exact value of xu. This suffers from
high bias and high variance. The bias is high because tree learner tries to make
leaves homogeneous (pure), therefore, the class probabilities are shifted toward
zero or one. The variance is high because when the number of examples per leaf
is small, the class probabilities are unreliable. Therefore, this leads to unreliable
CPE by the companion committee.

The following example illustrates the potential problem with probability esti-
mation provided by decision trees. Assume that a decision tree defines two regions
R1 and R2. If R1 comprises a subset of 100 training examples, 90 of which are
one class (let it be the positive class), then during classification, any unlabeled
example x1

u that falls into R1 is assigned the positive class with a probability of
0.9 (90/100). If R2 contains only 3 training examples, all of which belongs to the
positive class and an example x2

u lies into R2, then the probability estimator gives
an estimate of 1.0 (3/3) that x2

u will be positive. Probably the evidence based
on 3 examples for such a strong statement is not strong enough compared to the
evidence based on 90 examples. That is, the region R2 will be more confident
than R1. Smoothing of probability estimates is a partial solution to this problem.
For instance, the Laplace estimate calculates the estimated probability as nk+1

n+C

while the frequency estimate yields nk
n

. Therefore, for a two-class problem the
Laplace estimate yields a probability of 3+1

3+2
= 0.8 for x2

u and 90+1
100+2

= 0.89 for
x1
u. That is, the region R1 will be more confident than R2. Laplace correction

solves part of the problem but still the tie between the examples within the same
region can not be broken. Note that a lot of work such as [179, 150, 120] has
addressed the problem of improving the probability-based ranking provided by
decision trees.

9.2.2.2 Estimating Local Competence

We introduce a new confidence measure as shown in Algorithm 15. Our mo-
tivation is to compensate the inaccurate probability-based ranking provided by
traditional decision trees. This measure depends on estimating the companion
committee accuracy on labeling the neighborhood of an unlabeled example xu.
This local accuracy represents the probability that the companion committee
correctly predicts the class label of xu. The local competence of an unlabeled
example xu given a companion committee H

(t−1)
i can be defined as follows:

Comp(xu, H
(t−1)
i) =

∑
(xn,yn)∈Nk(xu)

yn=ŷu

Wn.H
(t−1)
i (xn, ŷu) (9.2)

where

Wn =
1

||xn − xu||2 + ε
, (9.3)

ŷu = arg max
1≤c≤C

H
(t−1)
i (xu, ωc), (9.4)

146 Chapter 9. Co-Training by Committee for Semi-supervised Classification

H
(t−1)
i (xn, ŷu) is the probability given by H

(t−1)
i that neighbor xn belongs to the

same class assigned to xu (ŷu), Wn is the reciprocal of the Euclidean distance
between xu and its neighbor xn and ε is a constant added to avoid zero denom-
inator. The neighborhood could also be determined using a separate validation

Algorithm 15 Pseudo Code of the SelectCompetentExamples method

Require: pool of unlabeled examples (U ′i,t), the companion committee of classi-

fier h
(t−1)
i (H

(t−1)
i), number of nearest neighbors k, growth rate ({nc}Cc=1) and

number of classes (C)
1: πi,t ← ∅
2: for each class ωc ∈ {ω1, . . . , ωC} do
3: countc ← 0
4: end for
5: for each xu ∈ U ′i,t do

6: H
(t−1)
i (xu) = 1

N−1

∑
j=1,...,N,j 6=i h

(t−1)
j (xu)

7: Apply the companion committee H
(t−1)
i to xu,

ŷu ← argmax1≤c≤C H
(t−1)
i (xu, ωc)

8: Find the k nearest neighbors of xu,
Nk(xu) = {(xn, yn)|(xn, yn) ∈ Neighbors(xu, k, L) }

9: Calculate Comp(xu, H
(t−1)
i) as defined in Eq. (9.2) and Eq. (9.3)

10: end for
11: Rank the examples in U ′i,t based on competence (in descending order)
{Select the nc examples with the maximum competence for class ωc}

12: for each xu ∈ U ′i,t do

13: if Comp(xu, H
(t−1)
i) > 0 and countŷu < nŷu then

14: πi,t = πi,t ∪ {(xu, ŷu)} and countŷu = countŷu + 1
15: end if
16: end for
17: return πi,t

set (a set of labeled examples that is not used for training the classifiers), but it
may be impractical to spend a part from the small-sized labeled data for valida-
tion. To avoid the inaccurate estimation of local accuracy that may result due
to overfitting, the newly-labeled training examples πi,t will not be involved in the
estimation. That is, only the initially (manually) labeled training examples are
taken into account. Then, the set Nk(xu) is defined as the set of k nearest labeled
examples to xu.

The local competence assumes that the actual data distribution satisfies the
well-known cluster assumption: examples with similar inputs should belong to
the same class. Therefore, the local competence of xu is zero if there is not any
neighbor belongs to the predicted class label ŷu which contradicts the cluster

9.2. Co-Training by Committee (CoBC) 147

assumption. Therefore, one can observe that ŷu is incorrect class label of xu
(ŷu 6= yu). In addition, the local competence increases as the number of neighbors
that belong to ŷu increases and as the distances between these neighbors and xu
decreases.

9.2.3 Random Subspace Method (RSM)

Many classification problems involve a high dimensional input space and a lim-
ited amount of training data available which leads to the problem known as curse
of dimensionality. Therefore, it is necessary to increase the quantity of labeled
training data or to reduce the size of the input space. For the first solution,
semi-supervised and active learning (see Chapter 10) is used and for the second
solution, the random subspace method is adopted. In [82, 81], the experiments
have shown that both multiple decision trees [82] and nearest-neighbor classifiers
[81] constructed in randomly selected subspaces can be combined to achieve ac-
curacy better than the classifier constructed in the original feature space. In
contrast to the methods that suffer due to the curse of dimensionality, RSM
effectively takes advantages of high dimensionality by constructing a set of classi-
fiers that are mutually independent to a certain extent. Since random subsets of
the original feature set are used, RSM works only for problems with a relatively
large number of features such as image and speech recognition. For problems
with smaller number of features, the number of features can be increased with
certain simple functions of the original features (e.g. pairwise sums, differences,
or products). In addition, the features must be redundant otherwise the output
classifiers will be very weak as they are trained with small random subsets of the
features.

9.2.4 RSM with kNN

The calculation of nearest neighbors involves two steps: calculating and sorting
the distances. The random subspace method seems to be computationally expen-
sive, since the nearest neighbors calculation is done several times. However, the
Euclidean distance between two D-dimensional feature vectors x1 and x2 can be
organized in a way that the per-feature differences and their squares be computed
only once, δj = (x1j − x2j)

2, j = 1, . . . , D. Then for each random subspace i,
i = 1, . . . , N , with a randomly selected subspace FSi, only the summation of
per-feature squared differences of the r used features and the sorting of the sums
that are performed,

di(x1, x2) =

√√√√ D∑
j=1,j∈FSi

δj (9.5)

Given a labeled training set L, D-dimensional original feature space and N r-
dimensional random subspaces, the run time complexity for N times nearest

148 Chapter 9. Co-Training by Committee for Semi-supervised Classification

neighbors calculation of an unlabeled example is O(|L| × D + N × (|L| × r +
|L| × log |L|)), and that for single calculation in the original feature space is
O(|L|×D+ |L|× log |L|). For classification, the probability assigned by classifier
hi that xu belongs to class ωk is calculated as follows,

hi(xu, ωk) =

∑
xn∈Ni(xu),xn∈ωkWn + 1/|L|∑C

c=1

∑
xn∈Ni(xu),xn∈ωcWn + C/|L|

(9.6)

where Wn is defined as in Eq. (9.3) and Laplace correction is applied for
smoothing the class probability distribution. The final probability assigned by
the ensemble H that xu belongs to class ωk is,

H(xu, ωk) =

∑N
i=1 hi(xu, ωk)∑C

c=1

∑N
i=1 hi(xu, ωc)

(9.7)

Since CoBC is an incremental iterative method, it will avoid complete re-
calculating and re-sorting of all the distances by utilizing geometrical constraints
such as the triangular inequality. First, for each unlabeled example xu ∈ U and
for each random subspace i, define the neighborhood of xu given the initial L,
Ni(xu). Afterward at each iteration t, only calculating and sorting the distances
between xu and the newly-labeled examples in L′t. Then in the light of this, the
triangular inequality is used to update the neighborhood Ni(xu) where the run
time complexity is O(|L′t| ×D +N × (|L′t| × r + |L′t| × log |L′t|+ k)).

9.3 Application to Visual Object Recognition

The experiments in this chapter are conducted on ten data sets representing
five real-world image classification tasks. They are described in Chapter 7 (see
Table 7.1). We intentionally select data sets with variance in number of features,
number of classes and number of examples. It is worth mentioning that there are
no missing values of any feature in all data sets.

9.3.1 UCI Handwritten Digits Recognition

The UCI handwritten digits data set was defined in Section 7.1.3 (see Figure 7.5).
Each digit is described by four feature types: mfeat-pix, mfeat-kar, mfeat-fac and
mfeat-fou.

9.3.2 Fruits Recognition

The fruits data set was defined in Section 7.1.1 (see Figure 7.2). Each image is de-
scribed by two feature types: First, each image was divided into 3×3 overlapping
sub-images. A color histogram was extracted from each sub-image (see Section

9.4. Experimental Evaluation 149

7.1.1.1) and then the nine histograms were concatenated to form the first input
feature set for classification (colorhist3x3). In addition, each image was divided
into 4×4 overlapping sub-images. Then, an orientation histogram based on Sobel
edge detection was extracted from each sub-image (see Section 7.1.1.2). The 16
histograms were concatenated to form the second set of features (sobel4x4).

9.3.3 COIL-20 Objects Recognition

This Columbia Object Image Library benchmark dataset was defined in Section
7.1.4 (see Figure 7.6). First, a gray values histogram (see Section 7.1.1.1) was
extracted from each image (grayhist1x1). In addition, each image was divided
into 2 × 2 overlapping sub-images and an orientation histogram based on Sobel
edge detection was extracted from each sub-image (see Section 7.1.1.2). Then,
the four histograms were concatenated to form another set of features (sobel2x2).

9.4 Experimental Evaluation

9.4.1 Methodology

The effectiveness of the proposed framework is evaluated twice: using the C4.5
pruned decision tree (Section 2.3) with Laplace Correction (to improve the class
probability estimates) and the 1-nearest neighbor classifier (Section 2.2) as the
base learning algorithms. The RSM (Section 9.2.3) is used to construct ensembles
of size ten (N = 10) and each classifier uses only half of the available features
that were randomly selected. For classification, normalized sum of the CPEs of
the ensemble members is the final decision of an ensemble (except for Co-Forest
where majority vote is applied). All algorithms are implemented using WEKA
library [201]. All features are normalized to have zero mean and unit variance.
For each experiment, the results are average of 4 runs of stratified ten-fold cross-
validation procedure. That is, for each data set, 10% are used as test set, while
the remaining 90% are used as training examples. For significance test, paired
t-test, see Section 7.2.3, with 0.05 significance level is used (significance is marked
with bullet(•)).

In order to simulate the environment of SSL, 20% (10% for digits data sets) of
the training examples are randomly selected as the initial labeled training set L
while the remaining 80% (90% for digits data sets) are used as unlabeled data set
U . The number of iterations T is chosen such that the SSL process stops when
the number of labeled examples in L reaches 70% (60% for digits data sets) of the
full training set size. The aim of the early stopping is to minimize the number
of the potential mislabeled examples. The experiments show that the number
of noisy examples increases as the number of iterations increases. The reason is
that the classifiers select the easiest examples at the early iterations and keeping

150 Chapter 9. Co-Training by Committee for Semi-supervised Classification

the harder examples into the pool. The pool size u is set to 300 in the case of
1-nearest neighbor and u = 100 for decision trees. The sample size n is one and
the 10 nearest neighbors (k=10) are used to estimate the local competence.

9.4.2 Results

Tables 9.1, 9.2, 9.3 and 9.4 present the means and standard deviations of the
test set error rate of the different learning algorithms. Figures 9.2 and 9.3 (for
1-nearest neighbor classifier) and Figures 9.4 and 9.5 (for C4.5 decision tree)
summarize and graphically compare the average test error rates of different algo-
rithms.

9.4.2.1 RSM ensemble against single classifiers

For the 1-nearest neighbor classifier, the RSM ensemble outperforms the single
1-NN classifier for all datasets using 5%, 10% and 100% of training data set but
the difference is not significant. For the C4.5 decision tree, the RSM ensemble
outperforms the single decision trees for all datasets using 5%, 10% and 100%
of training data set and the difference is statistically significant for most of the
cases. These results are considered as a baseline and a prerequiste to perform the
following experiments (see Tables 9.1(a), 9.2(a), 9.3(a) and 9.4(a)). The superior
performance of the ensembles compared to the individual classifiers proves that
the ensemble members are diverse. Thus, these ensembles satisfy the requirement
needed to run CoBC.

Table 9.1: Mean and standard deviations of test error rates where EnsembleLearn =
RSM and BaseLearn = 1-nearest neighbor applied to handwritten digits

(a) Passive Supervised Learning (random sampling)
Data set |L| mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.
1-NN 5% 11.43(2.08) 18.60(3.01) 11.24(2.31) 35.92(2.99) 19.30
RSM(1-NN) 5% 10.98(2.10) 18.43(2.32) 11.20(2.48) 35.84(3.22) 19.11
1-NN 10% 7.01(1.43) 13.18(2.40) 8.03(1.80) 30.46(2.37) 14.67
RSM(1-NN) 10% 6.79(1.50) 12.20(2.38) 7.85(2.07) 29.61(2.62) 14.11
1-NN 100% 2.74(0.98) 4.49(1.43) 3.68(1.54) 20.84(2.63) 7.93
RSM(1-NN) 100% 2.55(0.89) 4.03(1.18) 3.49(1.44) 19.46(2.81) 7.38

(b) Passive SSL using CPE (Starting with 10% random sampling)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

ST
initial 7.01(1.43) 13.18(2.40) 8.03(1.80) 30.46(2.37) 14.67
final 5.66(1.65) 9.13(2.30) • 6.00(1.68) • 32.25(4.61) 13.26

improv 19.26 30.73 25.28 -5.88 9.61

Co-Forest
initial 6.80(1.56) 12.86(2.51) 7.91(1.75) 30.05(3.22) 14.41
final 4.05(1.53) • 8.23(2.19) • 6.15(1.73) • 26.56(3.24) • 11.25

improv 40.44 36.00 22.25 11.61 21.93

CoBC
initial 6.79(1.50) 12.20(2.38) 7.85(2.07) 29.61(2.62) 14.11
final 4.47(1.51) • 8.00(2.10) • 5.59(1.55) • 26.25(3.20) • 11.08

improv 34.17 34.43 28.79 11.35 21.47

9.4. Experimental Evaluation 151

Table 9.2: Mean and standard deviations of test error rates where EnsembleLearn =
RSM and BaseLearn = 1-nearest neighbor

(a) Passive Supervised Learning (random sampling)

Data set
|L|

ionosphere
fruits COIL20

texture ave.
colorhist3x3 sobel4x4 grayhist1x1 sobel2x2

1-NN 10% 20.57(6.84) 14.38(4.60) 30.48(4.81 21.78(3.00) 17.92(3.87) 13.80(2.37) 19.82
RSM(1-NN) 10% 20.28(7.27) 13.75(4.75) 28.40(4.98) 21.72(2.76) 16.98(3.50) 13.80(2.69) 19.16
1-NN 20% 18.65(6.49) 8.31(2.93) 24.41(5.10) 16.58(2.97) 8.44(2.19) 11.62(2.83) 14.67
RSM(1-NN) 20% 16.45(6.23) 8.04(2.92) 20.75(4.27) 14.90(2.78) 8.27(2.72) 10.03(2.46) 13.07
1-NN 100% 13.10(5.13) 2.33(1.73) 7.18(2.67) 5.21(1.49) 0.26(0.44) 3.18(1.62) 5.21
RSM(1-NN) 100% 9.04(4.45) * 1.73(1.40) 6.05(2.21) 4.90(1.31) 0.21(0.39) 3.28(1.55) 4.20

(b) Passive SSL using CPE (Starting with 20% random sampling, until 70% SSL)

Data set ionosphere
fruits COIL20

texture ave.
colorhist3x3 sobel4x4 grayhist1x1 sobel2x2

ST
initial 18.65(6.49) 8.31(2.93) 24.41(5.10) 16.58(2.97) 8.44(2.19) 11.62(2.83) 14.67
final 17.10(8.63) 7.80(3.37) 21.02(4.64) • 15.09(2.44) 4.45(1.46) • 9.87(2.67) 12.55

improv 9.38 6.14 13.89 8.99 47.27 15.06 14.68

Co-Forest
initial 17.94(6.89) 7.89(2.55) 21.88(4.02) 15.63(2.65) 9.15(2.76) 10.03(2.91) 13.75
final 18.80(7.04) 6.44(2.71) 19.47(4.23) • 14.14(2.44) • 5.02(1.74) • 7.82(2.10) 11.95

improv -4.79 18.38 11.01 9.53 45.14 22.03 13.09

CoBC
initial 16.45(6.23) 8.04(2.92) 20.75(4.27) 14.90(2.78) 8.27(2.72) 10.03(2.46) 13.07
final 13.31(6.38) 6.17(2.61) 16.91(4.28) • 12.07(2.46) • 3.46(1.38) • 8.03(2.43) • 9.99

improv 19.09 23.26 18.51 18.99 58.16 19.94 23.57

9.4.2.2 CoBC against Self-Training

The performance of CoBC is compared with the single classifier semi-supervised
learning algorithm, i.e., Self-Training (Section 5.3). For fair comparison, both
algorithms are given as input the same L and U and allowed to label the same
amount of unlabeled data. Tables 9.1(b), 9.2(b), 9.3(b) and 9.4(b) (for CPE
based confidence measure) and Tables 9.3(c) and 9.4(c) (for local competence
based confidence measure) present the average test error at iteration 0 (initial)
trained only on the initially available labeled data L, after the final SSL itera-
tion of exploiting the unlabeled data set U (final) and the relative improvement
percentage (improv = initial−final

initial
× 100).

For the 1-nearest neighbor classifier, significance test indicates that the final
test error after CoBC is significantly better than its initial error on all the data sets
except for ionosphere and colorhist3x3 where the improvement is not significant.
In addition, the final test error after CoBC is better than the final error after
Self-Training on all the data sets.

For the C4.5 decision tree and CPE, the final test error after Self-Training
is insignificantly better than the initial error before Self-Training for 5 data sets
while there is no improvement for the other five datasets. For CoBC, there is
statistically insignificant improvement after SSL for only 3 datasets while the
performance gets worse for the other seven datasets.

For the C4.5 decision tree and local competence, significance test indicates
that the final test error after CoBC is significantly better than its initial error

152 Chapter 9. Co-Training by Committee for Semi-supervised Classification

on 3 data sets (mfear-pix, mfear-kar and mfear-fou) while the improvement is
not significant for 4 data sets (mfear-fac, sobel4x4, grayhist1x1 and sobel2x2).
For the other 3 data sets (colorhist3x3, ionosphere and texture), CoBC does not
work. In addition, the significance test indicates that the final error after CoBC is
significantly better than the final error after Self-Training for all data sets except
three where the improvement is not significant.

Table 9.3: Mean and standard deviations of test error rates where EnsembleLearn =
RSM and BaseLearn = C4.5 pruned decision tree applied to handwritten digits datasets

(a) Passive Supervised Learning (random sampling)
Data set |L| mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.
J48 5% 30.99(4.60) 42.04(3.62) 32.63(4.80) 41.74(4.74) 36.85
RSM 5% 22.78(4.17)• 31.53(4.41)• 23.23(4.82)• 35.10(3.95)• 28.16
J48 10% 25.48(3.45) 34.51(4.01) 25.03(2.79) 36.80(4.82) 30.45
RSM 10% 16.69(2.82)• 21.30(2.96)• 15.71(2.52)• 29.29(3.50)• 20.75
J48 100% 11.23(1.96) 17.54(2.10) 11.66(2.53) 23.71(2.63) 16.03
RSM 100% 5.10(1.61)• 7.90(1.52)• 5.33(1.71)• 17.69(2.42)• 9.00

(b) Passive SSL using CPE (Starting with 10% random sampling)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

ST
initial 25.48(3.45) 34.51(4.01) 25.03(2.79) 36.80(4.82) 30.45
final 25.01(3.50) 34.40(3.76) 25.14(3.52) 37.54(4.73) 30.52

improv 1.84 0.32 -0.44 -2.01 -0.23

Co-Forest
initial 14.51(3.05) 21.83(3.39) 14.11(2.59)• 29.35(3.18) 19.95
final 16.01(3.59) 21.83(3.39) 17.18(3.01) 29.24(3.42) 21.06

improv -10.33 0.0 -21.75 0.37 -5.56

CoBC
initial 16.69(2.82) 21.30(2.96) 15.71(2.52) 29.29(3.50) 20.75
final 19.24(3.02) 21.13(3.63) 19.00(3.91) 29.31(3.80) 22.17

improv -15.28 0.80 -20.94 -0.07 -6.84

(c) Passive SSL using Competence (Starting with 10% random sampling)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

ST
initial 25.48(3.45) 34.51(4.01) 25.03(2.79) 36.80(4.82) 30.45
final 22.50(2.81)• 29.20(4.16)• 21.50(3.30)• 34.15(3.76)• 26.84

improv 11.70 15.39 14.10 7.20 11.86

CoBC
initial 16.69(2.82) 21.30(2.96) 15.71(2.52) 29.29(3.50) 20.75
final 13.18(3.58)• 15.10(2.20)• 14.24(3.33) 25.65(3.03)• 17.04

improv 21.03 29.11 9.36 12.43 17.88

9.4.2.3 CPE against Local Competence

The performance of the proposed local competence confidence measure is com-
pared with CPE one. For the 1-nearest neighbor classifier, the results of using
local competence as confidence measure are not reported. There is no real bene-
fit from estimating the local competence over CPE because both of them depend
on the neighborhood of an unlabeled example to estimate the confidence in the
prediction of its label.

For the C4.5 decision tree and for a fair comparison, the same parameter
setting is employed. Table 9.3(b) and Table 9.4(b) show the test errors using

9.5. Related Work 153

CPE provided by RSM ensemble as confidence estimate. By averaging on all the
data sets, the average test error after random-then-ST and random-then-CoBC
using CPE increases by 1.5% and 6.42% (for digits data sets, 0.23% and 6.84%)
respectively, while it decreases by 4.37% and 1.25% (for digits data sets, 11.86%
and 17.88%) using local competence estimates. This confirms the claim that
inaccurate confidence measure leads to degradation of the performace.

9.4.2.4 CoBC against Co-Forest

The performance of CoBC is compared with the single classifier semi-supervised
learning algorithm, i.e., Co-Forest (Section 5.7.5.4). For a fair comparison, Co-
Forest is applied using the random subspace method (Section 9.2.3) as ensemble
learner and either C4.5 decision tree or 1-nearest neighbor classifier as in CoBC.
However, the initial test error before Co-Forest is different from the initial error
before CoBC because the Co-Forest’s initial classifiers are not only trained using
different random feature subsets but also trained using different bootstrap samples
from L and majority voting is employed to produce the final decision.

For the 1-nearest neighbor classifier and from Table 9.1(b) and Table 9.2(b),
the final test error after Co-Forest is significantly better than its initial error
on 7 out of ten data sets. The improvement is not significant for 2 data sets
colorhist3x3 and texture. Although CoBC achieves a relative improvement 19.09%
for ionosphere, Co-Forest does not work for this data set. By averaging on all the
data sets, the average test error after CoBC decreases by 23.57% (for digits four
data sets, 21.47%) and after Co-Forest it decreases by 13.09% (for digits data
sets, 21.93%). Note that Co-Forest stops if the training error reaches zero and it
ignores the CPEs provided by single classifiers.

For the C4.5 decision tree and from Table 9.3(b) and Table 9.4(b), Co-Forest
failed to improve the classification accuracy using unlabeled data. One can at-
tribute the poor performance of Co-Forest to the irrelevant setting of θ for multi-
class problems (similar results for θ = 0.75 and θ = 0.6). For mfeat-fac dataset,
the initial ensemble before Co-Forest significantly outperforms the final ensemble
after Co-Forest. The shortcomings of Co-Forest from my point of views are given
in Section 5.7.5.4.

9.5 Related Work

9.5.1 Improving Decision Trees Class Probability Estima-
tion

It has been observed that decision trees provide poor probability estimates. Thus,
designing decision trees with accurate probability estimation, called Probability
Estimation Trees (PETs), has attracted attention. Provost and Domingos [150]

154 Chapter 9. Co-Training by Committee for Semi-supervised Classification

Table 9.4: Mean and standard deviations of test error rates where EnsembleLearn =
RSM and BaseLearn = C4.5 pruned decision tree

(a) Passive Supervised Learning (random sampling)
Data set |L|

ionosphere
fruits COIL20

texture ave.
colorhist3x3 sobel4x4 grayhist1x1 sobel2x2

RSM(J48) 10% 16.96(7.27) 23.31(5.05) 28.19(6.21) 28.27(3.92) 26.06(4.62) 25.19(4.36) 24.66
J48 20% 13.98(6.86) 19.71(4.51) 31.02(5.96) 21.97(3.64) 30.02(3.69) 23.23(4.01) 23.32
RSM(J48) 20% 11.69(5.28) 14.47(4.37)• 19.17(5.03)• 20.44(3.45)• 16.69(3.20)• 18.55(3.76)• 16.83
J48 100% 10.83(4.75) 10.42(2.69) 15.63(4.00) 10.23(2.48 9.86(2.58) 12.87(2.81) 11.64
RSM(J48) 100% 7.19(4.28)• 4.35(2.34)• 7.12(2.81)• 9.59(2.34) 2.90(1.54)• 8.55(2.42)• 6.62

(b) Passive SSL using CPE (Starting with 20% random sampling, until 70% SSL)

Data set ionosphere
fruits COIL20

texture ave.
colorhist3x3 sobel4x4 grayhist1x1 sobel2x2

ST
initial 13.98(6.86) 19.71(4.51) 31.02(5.96) 21.97(3.64) 30.02(3.69) 23.23(4.01) 23.32
final 15.88(6.69) 19.23(4.25) 30.96(5.58) 22.30(3.42) 30.46(4.21) 23.21(4.27) 23.67

improv -13.59 2.44 0.19 -1.50 -1.47 0.09 -1.50

Co-Forest
initial 10.48(5.80) 13.46(4.21) 17.65(4.01) 17.38(2.93) 15.16(3.43) 15.62(3.55) 14.96
final 10.54(5.15) 13.64(4.34) 19.17(4.04) 19.24(2.92) 15.04(2.82) 17.89(4.86) 15.92

improv -0.57 -1.34 -8.61 -10.70 0.79 -14.53 -6.42

CoBC
initial 11.69(5.28) 14.47(4.37) 19.17(5.03) 20.44(3.45) 16.69(3.20) 18.55(3.76) 16.83
final 11.33(5.31) 17.15(4.16) 21.73(4.84) 20.09(3.60) 18.72(3.30) 20.46(4.74) 18.25

improv 3.08 -18.52 -13.35 1.71 -12.16 -10.30 -8.44

(c) Passive SSL using Competence (Starting with 20% random sampling, until 70% SSL)

Data set ionosphere
fruits COIL20

texture ave.
colorhist3x3 sobel4x4 grayhist1x1 sobel2x2

ST
initial 13.98(6.86) 19.71(4.51) 31.02(5.96) 21.97(3.64) 30.02(3.69) 23.23(4.01) 23.32
final 16.46(7.00) 18.63(4.69) 31.20(5.74) 20.87(3.84) 25.04(3.92) • 21.60(4.75) 22.30

improv -17.74 5.48 -0.58 5.01 16.59 7.02 4.37

CoBC
initial 11.69(5.28) 14.47(4.37) 19.17(5.03) 20.44(3.45) 16.69(3.20) 18.55(3.76) 16.83
final 14.03(6.96) 16.02(3.61) 17.15(4.28) 18.84(2.98) 15.11(3.21) 18.60(4.21) 16.62

improv -20.02 -10.71 10.54 7.83 9.47 -0.27 1.25

have proposed to improve C4.5 for better ranking by applying two techniques
on it: turning off pruning and collapsing to keep some branches that contribute
much to the quality of ranking, and using Laplace correction at leaves to smooth
the generated probabilities towards the prior distribution. The new model is
called C4.4. Although experiments have shown that C4.4 greatly scales up the
ranking quality of decision trees, there still exist two contradictions. (i) Without
pruning, C4.4 is relatively much larger than traditional decision trees, which
may over-fit sample sets in the training time and the resulting probabilities are
definitely inaccurate. (ii) The number of leaves will increase so that the number
of examples at each leaf will become relatively small. The probabilities produced
from such a small sample set are unreliable. Also, probability values could easily
repeat, thus many unlabeled examples will share the same probability and will be
ranked randomly. This results in a negative effect on the performance of ranking-
based applications such as semi-supervised learning. Kohavi [97] proposed a Naive
Bayes Tree NBTree that is a hybrid of decision tree and naive Bayes, where a naive
Bayes classifier is deployed at each leaf to produce classification and probability

9.5. Related Work 155

2.74

7.01

11.43

2.55

6.79

10.98

5.66

4.47

4.05

4.49

13.18

18.6

4.03

12.2

18.43

9.13

8

8.23

3.68

8.03

11.24

3.49

7.85

11.2

6

5.59

6.15

20.84

30.46

35.92

19.46

29.61

35.84

32.25

26.25

26.56

0 5 10 15 20 25 30 35 40

100%

10%

5%

100%

10%

5%

1NN(10%) + ST

RSM(10%) + CoBC

RSM(10%) + CoForest

1
N

N
R

S
M

(1
0
 1

N
N

s
)

S
S

L
 +

 C
P

E

fou

fac

kar

pix

Figure 9.2: Average of test error rates using 1-nearest neighbor classifier
for digits data sets

estimation. The experiments showed that NBTree outperforms both naive Bayes
and decision tree for large data sets. In semi-supervised learning settings where
the number of examples at each leaf is small, the main drawback is that naive
Bayes classifier suffers from high bias and high variance. Therefore, this leads to
unreliable CPE.

Liang et al. [120] proposed to resolve this problem from two approaches. The
first approach, Lazy Distance-based Tree LDTree, trains a k-nearest neighbor
classifier at each leaf to explicitly distinguish the different contributions of leaf
examples when estimating the probabilities for an unlabeled example. The second
approach, Eager Distance-based Tree EDTree, improves LDTree by changing it
into an eager algorithm. In both approaches, each unlabeled example is assigned a
set of unique probabilities of class membership instead of a set of uniformed ones,
which gives finer resolution to distinguish examples and leads to the improvement
of ranking but avoids the high variance by weighting each leaf example based on
the similarity between it and the unlabeled example. Experiments on 34 UCI
data sets [27] have shown that LDTree and EDTree outperform C4.5, C4.4 and
other standard smoothing methods designed for improve ranking.

156 Chapter 9. Co-Training by Committee for Semi-supervised Classification

13.1

18.65

20.57

9.04

16.45

20.28

17.1

13.31

18.8

2.33

8.31

14.38

1.73

8.04

13.75

7.8

6.17

6.44

7.18

24.41

30.48

6.05

20.75

28.4

21.02

16.91

19.47

5.21

16.58

21.78

4.9

14.9

21.72

15.09

12.07

14.14

0.26

8.44

17.92

0.21

8.27

16.98

4.45

3.46

5.02

3.18

11.62

13.8

3.28

10.03

13.8

9.87

8.03

7.82

0 5 10 15 20 25 30 35

100%

20%

10%

100%

20%

10%

1NN(20%) + ST

RSM(20%) + CoBC

RSM(20%) + CoForest

1
N

N
R

S
M

(1
0
 1

N
N

s
)

S
S

L
 +

 C
P

E

ionosphere

colorhist3x3

sobel4x4

colorhist1x1

sobel2x2

texture

Figure 9.3: Average of test error rates using 1-nearest neighbor classifier

9.5.2 Single-View Co-Training

A number of recent studies [71, 210, 215, 119] has investigated the applicability
of the main idea of Co-Training using a single view where multiple redundant
and independent views are not required. A brief overview of these approaches are
given in Section 5.7.5.

9.6 Conclusions and Future Work

In real-world data mining application, selecting and labeling the training examples
is tedious, expensive and time consuming. To minimize the cost, supervised
learning algorithm can select the most informative examples for training and
exploit the unlabeled data to boost its performance.

In this study, I introduced a new committee-based single-view Co-Training

9.6. Conclusions and Future Work 157

11.23

25.48

30.99

5.1

16.69

22.78

25.01

19.24

16.01

22.5

13.18

17.54

34.51

42.04

7.9

21.3

31.53

34.4

21.13

21.83

29.2

15.1

11.66

25.03

32.63

5.33

15.71

23.23

25.14

19

17.18

21.5

14.24

23.71

36.8

41.74

17.69

29.29

35.1

37.54

29.31

29.24

34.15

25.65

0 5 10 15 20 25 30 35 40 45

100%

10%

5%

100%

10%

5%

DT(10%) + ST

RSM(10%) + CoBC

RSM(10%) + CoForest

DT(10%) + ST

RSM(10%) + CoBC

D
T

R
S

M
(1

0
 D

T
s
)

S
S

L
 +

 C
P

E
S

S
L
 +

 C
o
m

p
.

fou

fac

kar

pix

Figure 9.4: Average of test error rates using C4.5 decision tree for digits
data sets

style algorithm for semi-supervised learning, CoBC, for application domains in
which the available data is not described by multiple redundant and independent
views. Experiments were conducted on ten image recognition tasks in which
the random subspace method is used to construct diverse ensembles of 1-nearest
neighbor classifiers and C4.5 decision trees. The results verify the effectiveness of
CoBC to exploit the unlabeled data given a small amount of labeled examples.
We have the following conclusions:

1. CoBC can relax the strong requirements of standard Co-Training algorithm
through using a committee of diverse classifiers instead of using redundant
and independent views.

2. For the C4.5 decision tree, the local competence based confidence measure
compensates its inaccurate class probability estimates. This improvement
can be attributed to the dependence on the neighborhood of an unlabeled
example to measure confidence about its predicted class label. On the

158 Chapter 9. Co-Training by Committee for Semi-supervised Classification

10.83

13.98

7.19

11.69

16.96

15.88

11.33

10.54

16.46

14.03

10.42

19.71

4.35

14.47

23.31

19.23

17.15

13.64

18.63

16.02

15.63

31.02

7.12

19.17

28.19

30.96

21.73

19.17

31.2

17.15

10.23

21.97

9.59

20.44

28.27

22.3

20.09

19.24

20.87

18.84

9.86

30.02

2.9

16.69

26.06

30.46

18.72

15.04

25.04

15.11

12.87

23.23

8.55

18.55

25.19

23.21

20.46

17.89

21.6

18.6

0 5 10 15 20 25 30 35

100%

20%

100%

20%

10%

DT(20%) + ST

RSM(20%) + CoBC

RSM(20%) + CoForest

DT(10%) + ST

RSM(10%) + CoBC

D
T

R
S

M
(1

0
 1

D
T

s
)

S
S

L
 +

 C
P

E
S

S
L
 +

 C
o
m

p
.

ionosphere

colorhist3x3

sobel4x4

colorhist1x1

sobel2x2

texture

Figure 9.5: Average of test error rates using C4.5 decision tree

other hand, class probability estimates provided by decision tree takes into
account neither the distance (or similarity) between the unlabeled exam-
ple and the labeled training examples nor the distance between it and the
decision boundaries.

3. CoBC can improve the recognition rate if the most confident examples with
respect to the companion committee Hi are informative examples with re-
spect to hi (lie close to its decision boundary).

4. Although CoBC selects the most confident examples, adding mislabeled
examples to the training set is unavoidable but the negative impact of this
noise could be alleviated by adding a sufficient amount of newly labeled
examples.

9.6. Conclusions and Future Work 159

5. There is no SSL algorithm that is the best for all real-world data sets. Each
SSL algorithm has its strong assumptions because labeled data is scarce
and there is no guarantee that unlabeled data will always help. One should
use the method whose assumptions match the given problem. Inspired by
[219], we have the following checklist: If the classes produce well clustered
data, then EM with generative mixture models may be a good choice; If the
features are naturally divided into two or more redundant and independent
sets of features, then standard Co-Training may be appropriate; If SVM is
already used, then Transductive SVM is a natural extension; In all cases,
CoBC is a practical wrapper method.

There are many interesting directions for future work.

1. As CoBC is general framework, we plan to evaluate it using other ensemble
learners such as Bagging and AdaBoost and other base learners such as
MLP, Naive Bayes and RBF Networks.

2. We are planing to study the influence of changing the values of some param-
eters on the performance of CoBC such as the number and the dimension-
ality of random subspaces used by RSM, number of nearest neighbors used
for both local competence estimation and k-nearest neighbors classifier.

3. To investigate different ways to improve the class probabilities estimated
by C4.5 decision trees and study the influence of this improvement on the
performance of CoBC framework.

Chapter 10

Combining Committee-based SSL and
Active Learning

10.1 Introduction

Both semi-supervised learning (Chapter 5) and active learning (Chapter 6) tackle
the same problem but from different directions. That is, they aim to improve the
generalization error and at the same time minimize the cost of data annotation
through exploiting the abundant unlabeled data. Semi-supervised learning ex-
ploits the unlabeled examples where the underlying classifiers are most confident
in the prediction of their class labels. They depend on a given confidence mea-
sure for sample selection. On the other hand, active learning exploits the most
informative unlabeled examples where the underlying classifiers disagree on the
prediction of their labels (contention points). The work in this chapter has been
previously published ([5, 4]). They depend on what is called in the literature

Figure 10.1: Graphical illustration of combining SSL and active learning

161

162 Chapter 10. Combining Committee-based SSL and Active Learning

utility or informativeness measure for sample selection. Figure 10.2 illustrates
the idea of combining both paradigms, compare between it and Figure 6.1 and
Figure 5.4. Ensemble learning (Chapter 3) aims to improve the generalization
error through constructing a set of different classifiers instead of a single clas-
sifier. They depend on reducing or alleviating the statistical, computational or
representational problems that face any base learning algorithm (chapter 2). If
one can design a multiple classifier system (ensemble) that learns from both the
most confident examples and most informative examples, this will lead to better
prediction results. One can see that the three paradigms complete each other.
Although there are some approaches that combine semi-supervised and active
learning to integrate their benefits, such as [125, 133, 212], there is no work done
to investigate the combination of committee-based semi-supervised learning with
committee-based active learning.

In the previous chapter, a single-view variant of Co-Training, called Co-
Training by Committee (CoBC) is proposed, in which an ensemble of diverse
classifiers is used for semi-supervised learning instead of multiple redundant and
independent views. In this chapter, I aim to investigate the combination of the
proposed framework CoBC with the state-of-the-art active learning algorithms. I
introduce two new learning frameworks, denoted as QBC-then-CoBC and QBC-
with-CoBC, which combine the merits of committee-based semi-supervised learn-
ing and active learning. The random subspace method is applied on both C4.5
decision trees and 1-nearest neighbor classifiers to construct the diverse ensem-
bles used for semi-supervised learning and active learning. Experiments were
conducted on the ten image recognition tasks used in the previous chapter. The
results have shown that QBC-then-CoBC and QBC-with-CoBC can enhance the
performance of CoBC and outperform other non committee-based combinations
of semi-supervised and active learning algorithms. The work in this chapter has
been previously published ([5, 4]).

10.2 Architecture I: QBC then CoBC

The most straightforward method of combining QBC and CoBC is to run CoBC
after QBC, which is called in this thesis as QBC-then-CoBC. The objective is
that active learning can help CoBC through providing it with a better starting
point instead of randomly selecting examples to label for the starting point. The
CoBC framework is outlined in Algorithm 14 in Chapter 9 and QBC framework
is described in Algorithm 8 in Chapter 6. QBC selects the training examples that
CoBC cannot reliably label on its own. Hence, we expect that QBC-then-CoBC
will outperform both stand-alone QBC and stand-alone CoBC. In addition, one
can expect that QBC-then-CoBC will outperform other possible combinations
of non committee-based active learning and semi-supervised learning algorithms.
The motivation of this hypothesis is the fact that an ensemble of diverse and

10.3. Architecture II: QBC with CoBC 163

accurate classifiers outperforms its individual members [78]. In this study, QBC
depends on the class probability estimate provided by the ensemble H in order
to measure the utility (informativeness) of an unlabeled example xu. Thus, the
most informative example is the least confident one, where

Confidence(xu, H
(t−1)) = max

1≤c≤C
H(t−1)(xu, ωc). (10.1)

Other utility measures can be utilized such as vote entropy, margin or Jensen-
Shannon (JS) divergence that are described in Chapter 6. On the other hand,
CoBC depends on the local competence estimate introduced in the previous chap-
ter to select the most confident examples.

QBC CoBC

Most informative

examples

Random examples

Most confident

examples

Unlabeled examples

Figure 10.2: Graphical illustration of QBC-then-CoBC

10.3 Architecture II: QBC with CoBC

A more interesting approach is to interleave CoBC with QBC, so that CoBC not
only runs on the results of active learning, but CoBC also helps QBC in the sample
selection process as it augments the labeled training set with newly automatically
labeled examples. Thus, mutual benefit can be achieved, which is called in this
thesis as QBC-with-CoBC. It is given in Algorithm 16 and illustrated graphically
in Figure 10.3. Let L = {(xµ, yµ)|xµ ∈ RD, yµ ∈ Ω, µ = 1, . . . ,m} be the set of
labeled training examples where each example is described by a D-dimensional
feature vector xµ ∈ RD, yµ denotes the class label of xµ and Ω = {ω1, . . . , ωK}
is the set of target classes (ground truth). Also let U = {xu|u = 1, . . . , n} be
the set of unlabeled data. At each QBC round, we run CoBC for a predefined
number of iterations (TCoBC) (Algorithm 14). The objective is to improve the
performance of the committee members through updating them with the most
competent examples selected by CoBC. With more accurate committee members,

164 Chapter 10. Combining Committee-based SSL and Active Learning

QBC should select more informative examples to label. Hence, we expect that
QBC-with-CoBC will outperform both stand-alone QBC and CoBC. In addition,
we expect that QBC-with-CoBC will outperform QBC-then-CoBC since both
QBC and CoBC are benefiting from each other.

QBC CoBC

Most informative

examples

Most confident

examples

Unlabeled examples

Random examples

Figure 10.3: Graphical illustration of QBC-with-CoBC

10.4 Related Work

10.4.1 SSL with graphs

Zhu et al. [221] combine semi-supervised learning and active learning under a
Gaussian random field model. Labeled and unlabeled data are represented as
nodes in a weighted graph, with edge weights encoding the similarity between
examples. Then the semi-supervised learning problem is formulated, in another
work by the same authors [220], in terms of a Gaussian random field on this
graph, the mean of which is characterized in terms of harmonic functions. Ac-
tive learning was performed on top of the semi-supervised learning scheme by
greedily selecting queries from the unlabeled data to minimize the estimated
expected classification error (risk); in the case of Gaussian fields the risk is effi-
ciently computed using matrix methods. They present experimental results on
synthetic data, handwritten digit recognition, and text classification tasks. The
active learning scheme requires a much smaller number of queries to achieve high
accuracy compared with random query selection. Hoi et al. [83] proposed a
novel framework that combine support vector machines and semi-supervised ac-
tive learning for image retrieval. It is based on the Gaussian fields and harmonic
functions semi-supervised approach proposed by Zhu et al. [220].

10.4. Related Work 165

Algorithm 16 The pseudo code of QBC-with-CoBC

Require: set of labeled training examples (L), set of unlabeled training examples
(U), maximum number of iterations (TQBC and TCoBC), ensemble learning
algorithm (EnsembleLearn), base learning algorithm (BaseLearn), commit-
tee size (N), number of unlabeled examples in the pool (u), number of nearst
neighbors (k), sample size (n) and number of classes (C)
Training Phase

1: Get the class prior probabilities, {Prc}Cc=1

2: Set the class growth rate, nc = n× Prc where c = 1, . . . , C
3: Construct a committee of N classifiers,
H(0) = EnsembleLearn(L,BaseLearn,N)

4: for t ∈ {1, . . . , TQBC} do
5: L′t = ∅
6: if U is empty then T = t-1 and abort loop end if

{Get the most informative examples for each class}
7: U ′t ← RandomSubsample(U, u)
8: ∀xu ∈ U ′t , calculate Confidence(xu, H

(t−1))
9: Rank the examples in U ′t based on confidence (in ascending order)

10: Select the nc least confident examples assigned for each class ωc (insert
them into subset L′t) and ask an oracle to label L′t

11: U ′t = U ′t \ L′t and U = U ∪ U ′t
12: if L′t is empty then T ← t-1 and abort loop end if

{Re-train the N classifiers using their augmented training sets}
13: for i ∈ {1, . . . , N} do

14: Li = Li ∪ L′t and h
(t)
i = BaseLearn(Li)

15: end for
16: if TCoBC > 0 then
17: H(t) = CoBC (L,U, TCoBC , EnsembleLearn,BaseLearn,N, u, k, n, C,H

(t))
18: end if
19: end for

Prediction Phase
20: return H(T)(x) = 1

N

∑N
i=1 h

(T)
i (x) for a given sample x

10.4.2 SSL with generative models

McCallum and Nigam [125] presents a Bayesian probabilistic framework for text
classification that reduces the need for labeled training documents by taking ad-
vantage of a large pool of unlabeled documents. First they modified the Query-by-
Committee method of active learning (QBC) (Section 6.4.2) to use the unlabeled
pool for explicitly estimating document density when selecting examples for la-
beling. Then modified QBC is combined with Expectation-Maximization (EM)
(Section 5.4) in order to predict the class labels of those documents that re-

166 Chapter 10. Combining Committee-based SSL and Active Learning

main unlabeled. They proposed two approaches to combine QBC and EM, called
QBC-then-EM and QBC-with-EM. QBC-then-EM runs EM to convergence after
actively selecting all the training examples that will be labeled. This means to use
QBC to select a better starting point for EM hill climbing, instead of randomly
selecting documents to label for the starting point. QBC-with-EM is a more in-
teresting approach to interleave EM with QBC so that EM not only builds on the
results of QBC, but EM also informs QBC. To do this, EM runs to convergence
on each committee member before performing the disagreement calculations. The
aim is (1) to avoid requesting labels for examples whose label can be reliably pre-
dicted by EM, and (2) to encourage the selection of examples that will help EM
find a local maximum likelihood with higher classification accuracy. This directs
QBC to pick more informative documents to label because it has more accurate
committee members. Experimental results show that that using the combination
of QBC and EM performs better than using either individually and requires only
slightly half the number of labeled training examples required by either QBC or
EM alone to achieve the same accuracy.

10.4.3 SSL with Committees

Muslea et al. [133] combined Co-Testing (Section 6.4.3) and Co-EM (Section
5.7.1.2) in order to produce an active multi-view semi-supervised algorithm, called
Co-EMT. The experimental results on web page classification show that Co-EMT
outperforms other non-active multi-view algorithms (Co-Training and Co-EM)
without using more labeled data and that it is more robust to the violation of
the requirements of two independent and redundant views. Zhou et al. [212]
proposed an approach, called SSAIR (Semi-Supervised Active Image Retrieval),
that attempts to exploit unlabeled data to improve the performance of content-
based image retrieval (CBIR). In detail, in each iteration of relevance feedback,
two simple classifiers are trained from the labeled data, i.e. images result from
user query and user feedback. Each classifier then predicts the class labels of the
unlabeled images in the database and passes the most relevant/irrelevant images
to the other classifier. After re-training with the additional labeled data, the
classifiers classify the images in the database again and then their classifications
are combined. Images judged to be relevant with high confidence are returned
as the retrieval result, while these judged with low confidence are put into the
pool which is used in the next iteration of relevance feedback. Experiments show
that semi-supervised learning and active learning mechanisms are both beneficial
to CBIR. It is worth mentioning that SSAIR depends on single-view versions of
Co-Testing (Section 6.4.3) and Co-Training that require neither two independent
and redundant views nor two different supervised learning algorithm. In order to
create the diversity, the two classifiers used for Co-Testing and Co-Training are
trained using the Minkowsky distance metric with different distance order.

10.5. Experimental Evaluation 167

10.5 Experimental Evaluation

10.5.1 Methodology

The experiments in this chapter were conducted on the same ten real-world im-
age classification tasks defined in Section 9.3. The methodology is the same as
defined in Section 9.4.1. For QBC-with-CoBC, the number of CoBC iterations
performed at each QBC is set to one (TCoBC=1). For both QBC and Uncertainty
Sampling algorithms, only 10% (5% for digits data sets) of the training examples
are randomly selected as L and it selects the most informative examples from the
remaining examples where the algorithms stop when an additional 10% (5% for
digits data sets) have been selected and added to L. For significance test, paired
t-test, see Section 7.2.3, with 0.05 significance level is used (significance is marked
with bullet(•)). Table 10.1 illustrates the results of the significance tests. Each
entry w/t/l in Table 10.1 indicates that the model in the corresponding row wins
w data sets, ties in t data sets, and loses l data sets, in contrast with the model
in the corresponding column based on significance test.

10.5.2 Results

Tables 11.2, 11.3, 10.4 and 10.5 present the means and standard deviations of
the test set error rates of the different learning algorithms. Figures 10.8 and 10.9
show the learning curves of the RSM ensembles at the different learning iterations.
Figures 10.4 and 10.5 (for 1-nearest neighbor classifier) and Figures 10.6 and 10.7
(for C4.5 decision tree) summarize and graphically compare the average test error
rates of different algorithms.

10.5.2.1 RSM ensemble against single classifiers

As shown in section 9.4.2.1, the superior performance of the ensembles compared
to the individual classifiers proves that the ensemble members are diverse and
accurate. Thus, these ensembles satisfy the requirement needed to run CoBC.

Table 10.1: Pairwise Comparison

1-nearest neighbor
Models QBC CoBC QBC-then-CoBC QBC-with-CoBC
QBC-then-CoBC 8/2/0 5/5/0 - 3/7/0
QBC-with-CoBC 5/5/0 1/9/0 0/7/3 -

C4.5 pruned decision tree
Models QBC CoBC QBC-then-CoBC QBC-with-CoBC
QBC-then-CoBC 3/7/0 3/7/0 - 1/8/1
QBC-with-CoBC 3/5/2 2/8/0 1/8/1 -

168 Chapter 10. Combining Committee-based SSL and Active Learning

Table 10.2: Mean and standard deviations of test error rates where EnsembleLearn
= RSM and BaseLearn = 1-nearest neighbor applied to handwritten digits

(a) Passive SSL using CPE (Starting with 10% random sampling)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

ST
initial 7.01(1.43) 13.18(2.40) 8.03(1.80) 30.46(2.37) 14.67
final 5.66(1.65) 9.13(2.30) • 6.00(1.68) • 32.25(4.61) 13.26

improv 19.26 30.73 25.28 -5.88 9.61

CoBC
initial 6.79(1.50) 12.20(2.38) 7.85(2.07) 29.61(2.62) 14.11
final 4.47(1.51) • 8.00(2.10) • 5.59(1.55) • 26.25(3.20) • 11.08

improv 34.17 34.43 28.79 11.35 21.47

(b) Active Learning (Starting with 5% random sampling, until 10% selective sampling)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

UncertaintySamping
initial 11.43(2.08) 18.60(3.01) 11.24(2.31) 35.92(2.99) 19.30
final 6.76(1.77) • 13.83(2.49) • 8.19(2.12) • 32.56(3.08) • 15.33

improv 40.86 25.65 27.14 9.35 20.57

QBC
initial 10.98(2.10) 18.43(2.32) 11.20(2.48) 35.84(3.22) 19.11
final 5.24(1.30) • 11.89(2.28) • 6.86(1.94) • 28.90(2.87) • 13.22

improv 52.28 35.49 38.75 19.36 30.82

(c) Active SSL (Starting with 5% random sampling, until 10% selective sampling then until
60% SSL)

Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

US-then-ST
initial 6.76(1.77) 13.83(2.49) 8.19(2.12) 32.56(3.08) 15.33
final 5.05(1.89) • 10.11(2.29) • 5.46(1.71) • 34.73(4.72) 13.84

improv 25.30 26.90 33.33 -6.66 9.72

US-then-CoBC
initial 6.76(1.77) 13.83(2.49) 8.19(2.12) 32.56(3.08) 15.33
final 3.88(1.41) • 7.50(1.84) • 5.25(1.74) • 26.73(3.14) • 10.84

improv 42.60 45.77 35.90 17.91 29.29

QBC-then-ST
initial 5.24(1.30) 11.89(2.28) 6.86(1.94) 28.90(2.87)• 13.22
final 5.75(1.72) 13.33(3.55) 5.73(1.61) 34.66(4.78) 14.86

improv -9.73 -12.11 16.47 -19.93 -6.33

QBC-then-CoBC
initial 5.24(1.30) 11.89(2.28) 6.86(1.94) 28.90(2.87) 13.22
final 3.38(1.16) • 7.20(2.00) • 4.88(1.48) • 25.05(2.77) • 10.13

improv 35.50 39.44 28.86 13.32 23.37

(d) Interleaving Active and SSL (Starting with 5% random sampling and until 60%)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

QBC-with-CoBC
initial 10.98(2.10) 18.43(2.32) 11.20(2.48) 35.84(3.22) 19.30
final 3.40(1.17) • 6.69(1.56) • 4.78(1.31) • 25.48(2.92) 10.08

improv 69.03 63.70 57.32 28.91 47.25

10.5. Experimental Evaluation 169

Table 10.3: Mean and standard deviations of test error rates where EnsembleLearn
= RSM and BaseLearn = 1-nearest neighbor

(a) CoBC (Starting with 20% random sampling, until 70%
SSL)

Data set initial final improv
ionosphere 16.45(6.23) 13.31(6.38) 19.09

fruits
colorhist3x3 8.04(2.92) 6.17(2.61) 23.26

sobel4x4 20.75(4.27) 16.91(4.28) • 18.51

COIL20
colorhist3x3 14.90(2.78) 12.07(2.46) • 18.99

sobel4x4 8.27(2.72) 3.46(1.38) • 58.16
texture 10.03(2.46 8.03(2.43) • 19.94

ave. 13.07 9.99 23.57

(b) QBC (Starting with 10% random sampling, until 20%
selective sampling)

Data set initial final improv
ionosphere 20.28 (7.27) 19.30 (5.97) 4.83

fruits
colorhist3x3 13.75 (4.75) 4.26 (2.43) 69.02

sobel4x4 28.40 (4.98) 16.79 (3.93) 40.88

COIL20
colorhist3x3 21.72 (2.76) 11.83 (2.03) 45.53

sobel4x4 16.98 (3.50) 3.60 (1.32) 78.80
texture 13.80 (2.69) 7.92 (2.42) 42.61

ave. 19.16 10.62 46.95

(c) QBC-then-CoBC (Starting with 10% random sampling,
until 20% selective sampling then until 70% SSL)

Data set initial final improv
ionosphere 19.30 (5.97) 14.45(6.96)• 25.13

fruits
colorhist3x3 4.26(2.43) 3.76(2.33) 11.74

sobel4x4 16.79(3.93) 14.68(3.89) 12.57

COIL20
colorhist3x3 11.83(2.03) 9.83(2.07) • 16.91

sobel4x4 3.60(1.32) 1.53(1.03) • 57.50
texture 7.92(2.42) 6.26(2.14) • 20.96

ave. 10.62 8.42 24.14

(d) QBC-with-CoBC (Starting with 10% random sampling
and Until 70%)

Data set initial final improv
ionosphere 20.28(7.27) 14.31(6.77) • 29.44

fruits
colorhist3x3 13.75(4.75) 5.28(2.51) • 61.60

sobel4x4 28.40(4.98) 16.94(4.14) • 40.35

COIL20
colorhist3x3 21.72(2.76) 11.55(2.26) • 46.82

sobel4x4 16.98(3.50) 2.85(1.47) • 83.22
texture 13.80(2.69 6.87(2.01) • 50.22

ave. 19.16 9.63 51.94

170 Chapter 10. Combining Committee-based SSL and Active Learning

Table 10.4: Mean and standard deviations of test error rates where EnsembleLearn =
RSM and BaseLearn = C4.5 pruned decision tree applied to handwritten digits datasets

(a) Passive SSL using Competence (Starting with 10% random sampling)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

ST
initial 25.48(3.45) 34.51(4.01) 25.03(2.79) 36.80(4.82) 30.45
final 22.50(2.81)• 29.20(4.16)• 21.50(3.30)• 34.15(3.76)• 26.84

improv 11.70 15.39 14.10 7.20 11.86

CoBC
initial 16.69(2.82) 21.30(2.96) 15.71(2.52) 29.29(3.50) 20.75
final 13.18(3.58)• 15.10(2.20)• 14.24(3.33) 25.65(3.03)• 17.04

improv 21.03 29.11 9.36 12.43 17.88

(b) Active Learning (Starting with 5% random sampling and Until 10%)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

UncertaintySamping
initial 30.99(4.60) 42.04(3.62) 32.63(4.80) 41.74(4.74) 36.85
final 25.08(3.73)• 34.53(4.36)• 24.53(4.06)• 36.10(4.22)• 30.06

improv 19.07 17.86 24.82 13.51 18.43

QBC
initial 22.78(4.17) 31.53(4.41) 23.23(4.82) 35.10(3.95) 28.16
final 13.48(2.61)• 19.13(2.77)• 12.26(3.41)• 28.30(2.59)• 18.29

improv 40.83 39.33 47.22 19.37 35.05

(c) Active SSL (Starting with 5% random sampling plus 5% selective sampling)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

US-then-ST
initial 30.99(4.60) 42.04(3.62) 32.63(4.80) 41.74(4.74) 36.85
final 20.86(4.31)• 28.04(3.56)• 19.41(3.76)• 33.42(4.09) 25.43

improv 32.69 33.30 40.51 19.93 30.99

US-then-CoBC
initial 30.99(4.60) 42.04(3.62) 32.63(4.80) 41.74(4.74) 36.85
final 12.21(3.00) 14.49(2.76) 12.88(2.95) 25.99(3.42) 16.39

improv 60.60 65.53 60.53 37.73 55.52

QBC-then-ST
initial 22.78(4.17) 31.53(4.41) 23.23(4.82) 35.10(3.95) 28.16
final 19.84(3.38) 28.55(3.63) 18.66(3.48) 32.29(2.97) 24.83

improv 12.91 9.45 19.67 8.01 11.83

QBC-then-CoBC
initial 22.78(4.17) 31.53(4.41) 23.23(4.82) 35.10(3.95) 28.16
final 11.04(2.11)• 14.71(2.26)• 11.95(2.65) 25.10(2.69)• 15.70

improv 51.54 53.35 48.56 28.49 44.25

(d) Interleaving AL and SSL (Starting with 5% random sampling and until 60%)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

QBC-with-CoBC
initial 22.78(4.17) 31.53(4.41) 23.23(4.82) 35.10(3.95) 28.16
final 9.11(1.93)• 13.45(2.47)• 10.11(2.45)• 24.38(2.46)• 14.26

improv 60.01 57.34 56.48 30.54 49.36

10.5. Experimental Evaluation 171

Table 10.5: Mean and standard deviations of test error rates where EnsembleLearn
= RSM and BaseLearn = C4.5 pruned decision tree

(a) CoBC (Starting with 20% random sampling, until 70%
SSL)

Data set initial final improv
ionosphere 11.69(5.28) 14.03(6.96) -20.02

fruits
colorhist3x3 14.47(4.37) 16.02(3.61) -10.71

sobel4x4 19.17(5.03) 17.15(4.28) 10.54

COIL20
colorhist3x3 20.44(3.45) 18.84(2.98) 7.83

sobel4x4 16.69(3.20) 15.11(3.21) 9.47
texture 18.55(3.76) 18.60(4.21) -0.27

ave. 16.83 16.62 1.25

(b) QBC (Starting with 10% random sampling, until 20%
selective sampling)

Data set initial final improv
ionosphere 16.96(7.27) 8.69(4.69) • 48.76

fruits
colorhist3x3 23.31(5.05) 10.39(3.79) • 55.43

sobel4x4 28.19(6.21) 16.49(4.07) • 41.50

COIL20
colorhist3x3 28.27(3.92 17.37(3.55) • 38.56

sobel4x4 26.06(4.62) 11.10(3.19) • 57.41
texture 25.19(4.36) 15.96(3.74) • 36.64

ave. 24.66 13.33 45.94

(c) QBC-then-CoBC (Starting with 10% random sampling,
until 20% selective sampling then until 70% SSL)

Data set initial final improv
ionosphere 8.69(4.69) 11.75(6.78) -35.21

fruits
colorhist3x3 10.39(3.79) 12.09(3.54) -16.36

sobel4x4 16.49(4.07) 13.99(4.44) 15.16

COIL20
colorhist3x3 17.37(3.55) 16.50(3.32) 5.01

sobel4x4 11.10(3.19) 10.32(3.23) 7.03
texture 15.96(3.74) 15.48(4.06) 3.01

ave. 13.33 13.36 -0.23

(d) QBC-with-CoBC (Starting with 10% random sampling
and until 70%)

Data set initial final improv
ionosphere 16.96(7.27) 16.25(7.62) 4.19

fruits
colorhist3x3 23.31(5.05) 15.57(4.62) • 33.20

sobel4x4 28.19(6.21) 17.53(4.92) • 37.81

COIL20
colorhist3x3 28.27(3.92) 19.76(3.25) • 30.10

sobel4x4 26.06(4.62) 12.89(3.31) • 50.54
texture 25.19(4.36) 17.64(3.69) • 29.97

ave. 24.46 16.61 32.67

172 Chapter 10. Combining Committee-based SSL and Active Learning

2.74

7.01

11.43

2.55

6.79

10.98

5.66

4.47

4.05

6.76

5.24

5.05

3.88

5.75

3.38

3.4

4.49

13.18

18.6

4.03

12.2

18.43

9.13

8

8.23

13.83

11.89

10.11

7.5

13.33

7.2

6.69

3.68

8.03

11.24

3.49

7.85

11.2

6

5.59

6.15

8.19

6.86

5.46

5.25

5.73

4.88

4.78

20.84

30.46

35.92

19.46

29.61

35.84

32.25

26.25

26.56

32.56

28.9

34.73

26.73

34.66

25.05

25.48

0 5 10 15 20 25 30 35 40

100%

10%

5%

100%

10%

5%

1NN(10%) + ST

RSM(10%) + CoBC

RSM(10%) + CoForest

1NN(5%) + uncertainty

sampling

RSM(5%) + QBC

5% + US-then-ST

5% + US-then-CoBC

5% + QBC-then-ST

5% + QBC-then-CoBC

5% + QBC-with-CoBC

1
N

N
R

S
M

(1
0
 1

N
N

s
)

S
S

L
 +

 C
P

E
A

L
A

L
-t

h
e
n
-S

S
L

A
L
-w

it
h
-

S
S

L

fou

fac

kar

pix

Figure 10.4: Average of test error rates using 1-nearest neighbor classifier

10.5. Experimental Evaluation 173

13.1

18.65

20.57

9.04

16.45

20.28

17.1

13.31

18.8

19.3

14.45

14.31

2.33

8.31

14.38

1.73

8.04

13.75

7.8

6.17

6.44

4.26

3.76

5.28

7.18

24.41

30.48

6.05

20.75

28.4

21.02

16.91

19.47

16.79

14.68

16.94

5.21

16.58

21.78

4.9

14.9

21.72

15.09

12.07

14.14

11.83

9.83

11.55

0.26

8.44

17.92

0.21

8.27

16.98

4.45

3.46

5.02

3.6

1.53

2.85

3.18

11.62

13.8

3.28

10.03

13.8

9.87

8.03

7.82

7.92

6.26

6.87

0 5 10 15 20 25 30 35

100%

20%

10%

100%

20%

10%

1NN(20%) + ST

RSM(20%) + CoBC

RSM(20%) + CoForest

RSM(10%) + QBC

10% + QBC-then-CoBC

10% + QBC-w ith-CoBC

1
N

N
R

S
M

(1
0
 1

N
N

s
)

S
S

L
 +

 C
P

E
A

L
A

L
-t

h
e
n
-S

S
L

A
L
-w

ith
-S

S
L

texture

sobel2x2

colorhist1x1

sobel4x4

colorhist3x3

ionosphere

Figure 10.5: Average of test error rates using 1-nearest neighbor classifier
for handwritten digits datasets

174 Chapter 10. Combining Committee-based SSL and Active Learning

11.23

25.48

30.99

5.1

16.69

22.78

25.01

19.24

16.01

22.5

13.18

25.08

13.48

20.86

12.21

19.84

11.04

9.11

17.54

34.51

42.04

7.9

21.3

31.53

34.4

21.13

21.83

29.2

15.1

34.53

19.13

28.04

14.49

28.55

14.71

13.45

11.66

25.03

32.63

5.33

15.71

23.23

25.14

19

17.18

21.5

14.24

24.53

12.26

19.41

12.88

18.66

11.95

10.11

23.71

36.8

41.74

17.69

29.29

35.1

37.54

29.31

29.24

34.15

25.65

30.1

28.3

33.42

25.99

32.29

25.1

24.38

0 5 10 15 20 25 30 35 40 45

100%

10%

5%

100%

10%

5%

DT(10%) + ST

RSM(10%) + CoBC

RSM(10%) + CoForest

DT(10%) + ST

RSM(10%) + CoBC

DT(5%) + uncertainty sampling

RSM(5%) + QBC

5% + US-then-ST

5% + US-then-CoBC

5% + QBC-then-ST

5% + QBC-then-CoBC

5% + QBC-with-CoBC

D
T

R
S

M
(1

0
 D

T
s
)

S
S

L
 +

 C
P

E
S

S
L
 +

 C
o
m

p
.

A
L

A
L
-t

h
e
n
-S

S
L

A
L
-

w
it
h
-

S
S

L

pix

kar

fac

fou

Figure 10.6: Average of test error rates using C4.5 pruned decision tree
for handwritten digits datasets

10.5. Experimental Evaluation 175

10.83

13.98

7.19

11.69

16.96

15.88

11.33

10.54

16.46

14.03

8.69

11.75

16.25

10.42

19.71

4.35

14.47

23.31

19.23

17.15

13.64

18.63

16.02

10.39

12.09

15.57

15.63

31.02

7.12

19.17

28.19

30.96

21.73

19.17

31.2

17.15

16.49

13.99

17.53

10.23

21.97

9.59

20.44

28.27

22.3

20.09

19.24

20.87

18.84

17.37

16.5

19.76

9.86

30.02

2.9

16.69

26.06

30.46

18.72

15.04

25.04

15.11

11.1

10.32

12.89

12.87

23.23

8.55

18.55

25.19

23.21

20.46

17.89

21.6

18.6

15.96

15.48

17.64

0 5 10 15 20 25 30 35

100%

20%

100%

20%

10%

DT(20%) + ST

RSM(20%) + CoBC

RSM(20%) +

CoForest

DT(10%) + ST

RSM(10%) + CoBC

RSM(10%) + QBC

10% + QBC-then-

CoBC

10% + QBC-with-

CoBC

D
T

R
S

M
(1

0
 1

D
T

s
)

S
S

L
 +

 C
P

E
S

S
L
 +

 C
o
m

p
.

A
L

A
L
-t

h
e
n
-

S
S

L

A
L
-w

it
h
-

S
S

L

ionosphere

colorhist3x3

sobel4x4

colorhist1x1

sobel2x2

texture

Figure 10.7: Average of test error rates using C4.5 decision tree

176 Chapter 10. Combining Committee-based SSL and Active Learning

Figure 10.8: Learning curves using 1-nearest neighbor classifier

10.5.2.2 CoBC against Self-Training

The results of comparing the performance of CoBC with Self-Training are shown
in section 9.4.2.2. Using 1-nearest neighbor classifier, the final ensemble after
CoBC outperforms the final single classifier after Self-Training on all the data
sets. Using C4.5 decision tree and local competence as confidence measure, the
final ensemble after CoBC is significantly better than the final single classifier after
Self-Training for all data sets except three where the difference is not statistically
significant.

10.5.2.3 QBC against Uncertainty Sampling

The performance of QBC (Section 6.4.2) is compared with the single classifier
active learning algorithm, i.e., Uncertainty Sampling (Section 6.4.1). For a fair
comparison, both algorithms are given the same L and U and allowed to label
the same amount of unlabeled data. That is, both are initialized with 10% of the
training data (for digits data sets, 5% of the training data) that are randomly
selected and work until the size of L becomes 20% of the training data (for

10.5. Experimental Evaluation 177

Figure 10.9: Learning curves using C4.5 pruned decision tree

digits data sets, 10%). Table 10.2(b) and Table 10.4(b) present the average test
error rates on the initial iteration (initial), after selecting the most informative
examples (final) and the relative improvement percentage (improv = initial−final

initial
×

100).
Using 1-nearest neighbor classifier, the final test error rates after QBC (on av-

erage, 13.22%) are significantly better than the initial error rates on the four digits
data sets (on average, 19.11%). The same observation for Uncertainty Sampling
where the final test error rates (on average, 15.33%) are significantly better than
its initial error rates on the four digits data sets (on average, 19.30%). But the
final error rates after QBC are better than the final error rates after Uncertainty
Sampling on the four data sets. The average percentage of relative improvement
is 30.82% for QBC compared to only 20.57% for Uncertainty Sampling.

Using C4.5 decision tree, the final test error after QBC (on average, 18.29%)
is significantly better than its initial error rates on the four digits data sets (on
average, 28.16%). The same observation for Uncertainty Sampling, the final test
error rates (on average, 30.06%) are significantly better than its initial error rates

178 Chapter 10. Combining Committee-based SSL and Active Learning

on the digits data sets (on average, 36.85%). But the final test error rates after
QBC are better than the final error rates after Uncertainty Sampling on all the
data sets. The average percentage of relative improvement is 35.05% for QBC
compared to only 18.43% for Uncertainty Sampling.

10.5.2.4 QBC-then-CoBC and QBC-with-CoBC

Tables 10.2(c), 10.2(d), 10.3(c) and 10.3(d) present the results using 1-nearest
neighbor base classifier. One can observe the following:

• QBC-then-CoBC outperforms QBC on all the ten data sets but the im-
provement is statistically significant on eight data sets.

• QBC-then-CoBC outperforms CoBC on nine data sets. The improvement
is statistically significant on only five data sets.

• QBC-with-CoBC outperforms QBC on 8 out of the ten data sets. The
improvement is statistically significant on five data sets.

• QBC-with-CoBC outperforms CoBC on 8 out of the ten data sets but the
improvement is statistically significant on only one data set.

• QBC-then-CoBC performs better than QBC-with-CoBC on seven data sets
but the improvement is significant for only three data set (fruits sobel4x4,
COIL20 colorhist1x1 and COIL20 sobel2x2).

Using C4.5 decision tree as base classifier, Tables 10.4(c), 10.4(d), 10.5(c) and
10.5(d) present the results. The following can be observed:

• QBC-then-CoBC outperforms QBC on 8 out of ten data sets. The improve-
ment is statistically significant on only three data sets.

• QBC-then-CoBC performs better than CoBC on all the ten data sets but
the improvement is statistically significant on only three data sets.

• QBC-with-CoBC outperforms QBC on only the 4 digits data sets. The
improvement is statistically significant on only three data sets.

• QBC-with-CoBC outperforms CoBC on 7 out of the ten data sets but the
improvement is statistically significant on only two data sets.

• QBC-with-CoBC performs better than QBC-then-CoBC on only the four
digits data sets where the improvement is significant on only a single data
set (mfeat-pix). For the other six data sets, QBC-then-CoBC outperforms
QBC-with-CoBC but improvement is statistically significant on a single data
set (COIL20 colorhist1x1).

10.6. Conclusions and Future Work 179

10.5.2.5 Other AL and SSL combinations

To verify the advantages of ensemble learning, we implemented three alternative
combinations of active and semi-supervised learning algorithms: US-then-ST, US-
then-CoBC and QBC-then-ST.

• US-then-ST trains a single classifier and runs Uncertainty Sampling. Then
the output informative examples and the original labeled examples are used
together to run Self-Training.

• US-then-CoBC trains a single classifier and runs Uncertainty Sampling.
Then it trains an RSM ensemble with both the informative examples re-
sulting from Uncertainty Sampling and the original labeled data followed
by performing CoBC.

• QBC-then-ST trains an RSM ensemble and runs QBC. Then it trains a
single classifier using the informative examples resulting from QBC and the
original labeled data followed by performing Self-Training.

We sort all the learning algorithms based on the average test error rates for the
four digits data sets. For the 1-nearest neighbor classifier, we get (1) QBC-with-
CoBC (10.08%), (2) QBC-then-CoBC (10.13%), (3) US-then-CoBC (10.84%), (4)
CoBC (11.08%), (5) Co-Forest (11.25%), (6) QBC (13.22%), (7) ST (13.26%), (8)
US-then-ST (13.84%), (9) QBC-then-ST (14.86%) and (10) US (15.33%).

For C4.5 decision tree, we get (1) QBC-with-CoBC (14.26%), (2) QBC-then-
CoBC (15.70%), (3) US-then-CoBC (16.39%), (4) CoBC (17.04%), (5) QBC
(18.29%), (6) Co-Forest (21.06%), (7) QBC-then-ST (24.83%), (8) US-then-ST
(25.43%), (9) ST (26.84%) and (10) US (30.06%). This confirm that combining
committe-based active learning with committee-based SSL algorithm is superior
to combining it with single-classifier SSL algorithm.

10.6 Conclusions and Future Work

In this chapter, the combination of committee-based semi-supervised learning
and the state-of-the-art active learning algorithms is investigated. I introduced
two new approaches, QBC-then-CoBC and QBC-with-CoBC, that combine the
merits of committee-based active learning and committee-based semi-supervised
learning. The first approach is the most straightforward way of combining CoBC
and active learning where CoBC is run after active learning completes (denoted by
QBC-then-CoBC). The second approach is to run CoBC on each QBC iteration
(denoted by QBC-with-CoBC). Experiments were conducted on the ten image
recognition tasks used in the previous chapter. The results have shown that:

1. QBC-then-CoBC and QBC-with-CoBC can enhance the performance of
CoBC and also outperform other non committee-based combinations of

180 Chapter 10. Combining Committee-based SSL and Active Learning

semi-supervised and active learning algorithms such that US-then-ST, US-
then-CoBC and QBC-then-ST.

2. QBC-then-CoBC outperforms random-then-CoBC because QBC provides
a better starting point for CoBC by selecting informative samples which
improve the local competence estimation.

3. Whether QBC-with-CoBC outperforms QBC-then-CoBC or not depends on
the accuracy of the initial ensemble members. It is clear that CoBC step
starts in QBC-with-CoBC approach at earlier iteration than in QBC-then-
CoBC approach. That is it depends on the number of mislabeled examples
added at the early iterations.

In this study, the least confident example is concerned to be the most infor-
mative example. Further work should investigate the influence of using other
informativeness measures such as vote entropy, margin or Jensen-Shanon diver-
gence (Chapter 6) on the performance of the proposed frameworks. In addition,
pool-based sampling is currently used, which assumes that a large amount of un-
labeled data can be collected at once before active learning. Future investigations
should study combining stream-based sampling with the pool-based one. That
is, the training-data distribution can be approximated based on the given labeled
training data and the examples newly-labeled by semi-supervised learning. Then
an unlabeled example is randomly sampled from the approximated distribution.
Then the underlying classifiers decide whether this example is informative or not.
This hybrid approach can overcome the drawbacks of both pool-based (Section
6.3) and stream-based sampling (Section 6.2).

Chapter 11

Co-Training by Committee for
Semi-supervised Regression

11.1 Introduction

Although the success of semi-supervised learning for classification, there is not
much work on SSL for regression. Zhou et al. [214] proposed a Co-Training
style semi-supervised regression algorithm called CoReg. This algorithm employs
two diverse k-Nearest Neighbor (kNN) regressors that were instantiated using
two different values of the Minkowski distance order. The labeling confidence is
estimated such that the most confidently labeled example is the one which keeps
the regressor most consistent with the existing labeled training set.

This chapter presents two major contributions: (1) A new single-view committee-
based semi-supervised regression algorithm, called CoBCReg that extends the
standard Co-Training algorithm. It is based on an ensemble of RBF network
regressors constructed by Bagging [31]. (2) A new Gaussian basis function that is
based on Minkowski distance instead of Euclidean distance, see Figure 11.1. For
the effectiveness of CoBCReg, there must be some diversity among the committee
members and CoBCReg should maintain this diversity during the SSL process.
This is achieved not only by training regressors using different training subsets
but also through using different distance measures and different random initializa-
tion of the regressors parameters. The applicability of the proposed algorithm is
broader than standard Co-Training algorithm because it does not require multiple
redundant and independent views. The work in this chapter has been previously
published ([8]).

11.2 CoBCReg Algorithm

There are two potential problems that can prevent any Co-Training style algo-
rithm from exploiting the unlabeled data to improve the performance and these

181

182 Chapter 11. Co-Training by Committee for Semi-supervised Regression

Figure 11.1: The unit circle using Minkowski distance with different dis-
tance orders

problems are the motivations for CoBCReg. Firstly the outputs of unlabeled ex-
amples may be incorrectly estimated by a regressor. This leads to adding noisy
examples to the training set of the other regressor and therefore SSL will de-
grade the performance. Secondly there is no guarantee that the newly-predicted
examples selected by a regressor as most confident examples will be informative
examples for the other regressor. In order to mitigate the former problem, a
committee of predictors is used in CoBCReg to predict the unlabeled examples
instead of a single predictor. For the latter problem, each regressor selects the
most informative examples for itself.

Let L = {(xµ, yµ)}mµ=1 and U = {xµ}nµ=1 represent the labeled and unlabeled
training set respectively, which are drawn randomly from the same distribution
where yi is the target real-valued output for each instance xi in L while the real-
valued outputs of instances in U are unknown. The pseudo-code of CoBCReg is
shown in Algorithm 17. CoBCReg works as follow: initially an ensemble consists
of N regressors, which is denoted by H, is constructed from L using Bagging.
Then the following steps will be repeated until the maximum number of iterations
T is reached or U becomes empty. For each iteration t and for each ensemble
member hi, a set U ′ of u examples is drawn randomly from U without replacement.
It is computationally more efficient to use a pool U ′ instead of using the whole set
U . The SelectRelevantExamples method (Algorithm 18) is applied to estimate
the relevance of each unlabeled example in U ′ given the companion committee
Hi. Hi is the ensemble consisting of all member regressors except hi. A set πj is
created that contains the gr most relevant examples. Then πj is removed from
U ′ and inserted into the training set of hi (Li) such that hi is refined using the
augmented training set Li. In the prediction phase, the regression estimate for a
given example is the weighted average of the outputs of the N regressors created
at the final CoBCReg iteration.

11.2.1 Diversity Creation

The combination of an ensemble of regressors is only effective if they are diverse.
Clearly, if they are identical, then for each regressor, the outputs estimated by
the other regressors will be the same as these estimated by the regressor for
itself. That is, there is no more knoweldge to be transfered among regressors. In

11.2. CoBCReg Algorithm 183

Algorithm 17 Pseudo Code of CoBC for Regression

Require: set of m labeled training examples (L), set of n unlabeled examples
(U), maximum number of Co-Training iterations (T), ensemble size (N),
pool size (u), growth rate (gr), number of RBF hidden nodes (k), RBF width
parameter (α), distance order of the ith regressor (pi)
Training Phase

1: for i = 1 to N do
2: {Li, Vi} ← BootstrapSample(L) {Li is bag and Vi is out-of-bag}
3: hi = RBFNN(Li, k, α, pi)
4: end for
5: for t ∈ {1 . . . T} do
6: if U is empty then T = t-1 and abort loop end if
7: for i ∈ {1 . . . N} do
8: Create a pool U ′ of u examples by random sampling from U
9: πi = SelectRelevantExamples(i, U ′, Vi, gr)

10: U ′ = U ′ \ πi and U = U ∪ U ′
11: end for
12: for i ∈ {1 . . . N} do
13: if πi is not empty then
14: Li = Li ∪ πi
15: hi= RBFNN(Li, k, α, pi)
16: end if
17: end for
18: end for

Prediction Phase
19: return H(x) =

∑N
i=1wihi(x) for a given sample x

regression, ensemble diversity (variance) on an instance x can be quantified by

Ā(x) =
N∑
i=1

wi(hi(x)−H(x))2. (11.1)

Brown et al. presented in [36] an exhaustive survey of the various techniques used
for creating diverse ensembles. Krogh and Vedelsby [103] introduced the error-
ambiguity decomposition concept in which the ensemble error (E) is decomposed
into two terms, the weighted average error of the ensemble members (Ē) and the
diversity among their outputs for a given instance (Ā). That is, E = Ē− Ā. The
importance of this decomposition is that it shows us that the average error of the
ensemble members should be low while the diversity among them should be high,
in order to achieve high ensemble error reduction.

In CoBCReg, there are three sources for diversity creation, the RBF network
regressors are trained using: (1) different bootstrap samples, (2) different random

184 Chapter 11. Co-Training by Committee for Semi-supervised Regression

Algorithm 18 Pseudo Code of of the SelectRelevantExamples method

Require: the index of the regressor excluded from the committee (j), pool of u
unlabeled examples (U ′), validation set (Vj), growth rate (gr)

1: Calculate validation error of hj using Vj, εj
2: for each xu ∈ U ′ do
3: Hj(xu) = 1

N−1

∑N
i=1,i 6=j hi(xu)

4: h′j= RBFNN(Lj ∪ {(xu, Hj(xu))}, k, α, pj)
5: Calculate validation error ε′j of h′j using Vj, then ∆xu = (εj − ε′j)/εj
6: end for
7: πj ← ∅
8: for gr times do
9: if there exists xu ∈ U ′ \ πj with ∆xu > 0 then

10: x̃j = argmaxxu∈U ′\πj ∆xu

11: πj = πj ∪ {(x̃j, Hj(x̃j))}
12: end if
13: end for
14: return πj

initialization of RBF centers and (3) different distance measures. The Minkowski
distance between two D-dimensional feature vectors x1 and x2, as defined in Eq.
(11.2), is used with different distance order p to train different RBF network re-
gressors. In general, the smaller the order, the more robust the resulting distance
metric to data variations. Another benefit of this setting, is that, since it is dif-
ficult to find in advance the best p value for a given task, then regressors based
on different p values might show complementary behavior.

‖x1 − x2‖p =

(
D∑
i=1

|x1i − x2i|p
)1/p

(11.2)

Unlike Co-Forest [119], CoBCReg does not hurt the diversity among regressors
because the examples selected by a regressor are removed from U . Thus, they can
not be selected further by other regressors which keeps the training sets of regres-
sors not similar. Even if the training sets become similar, the regressors could
still be diverse because they are instantiated with different distance measures, for
some data sets this acts like using different feature spaces.

11.2.2 Confidence Measure

One of the most important factors that affects the performance of any Co-Training
style algorithm is how to measure the confidence of a given unlabeled example.
The inaccurate confidence estimation can lead to selecting and adding mislabeled
examples to the labeled training set and therefore might negatively affect the

11.2. CoBCReg Algorithm 185

performance of the SSL algorithm. For classification, it is a straightforward task
because many classifiers can estimate class posterior probabilities such as Naive
Bayes classifier or return real-valued outputs that can be transformed to class
probability estimates such as neural networks and decision trees. Assuming that
a classifier estimates the probability that an instance x1 belongs to classes ω1

and ω2 is 0.9 and 0.1, respectively, while that for an instance x2 is 0.6 and 0.4,
respectively, then the classifier is more confident that x1 belongs to classes ω1 than
x2. Therefore, a labeling confidence can be assigned to each unlabeled example
using its class probability distribution.

The main challenge for CoBCReg is the mechanism for estimating the confi-
dence because the number of possible predictions in regression is unknown. For
regression, in [103], variance is used as an effective selection criterion for active
learning because a high variance between the estimates of the ensemble members
leads to a high average error. Unfortunately, a low variance does not necessarily
imply a low average error. That is, it can not be used as a selection criterion
for SSL because agreement of committee members does not imply that the es-
timated output is close to the target output. In fact, we will not measure the
labeling confidence but we will provide another confidence measure called selec-
tion confidence (See Algorithm 18). The most relevantly selected example should
be the one which minimizes the regressor error on the validation set. Thus, for
each regressor hj, create a pool U ′ of u unlabeled examples. Then, the root mean
squared error (RMSE) of hj is evaluated first (εj). Then for each example xu in
U ′, hj is refined with (xu, Hj(xu)) creating new regressor h′j. So the RMSE of h′j
can be evaluated (ε′j), where Hj(xu) is the real-valued output estimated by the
companion committee of hj (Hj denotes all other ensemble members in H except
hj). Finally, the unlabeled example x̃j which maximizes the relative improvement
of the RMSE (∆xu) is selected as the most relevant example labeled by companion
committee Hj.

It is worth mentioning that the RMSEs εj and ε′j should be estimated ac-
curately. If the training data of hj is used, this will under-estimate the RMSE.
Fortunately, since the bootstrap sampling [31] is used to construct the committee,
the out-of-bootstrap examples are considered for a more accurate estimate of ε′j.

11.2.3 Two-Phase Learning for RBF Networks

The RBF network two-phase learning algorithm discussed in Section 2.1.2 is used
for training a regressor hi with multivariate Gaussian radial basis function (g)
as activation function. At the first phase, the RBF centers are determined by
performing k-means clustering using the Minkowski distance. The set of Gaussian
centers are initialized with training examples randomly selected from Li. The
width of the jth RBF neuron (σj) is set to the average Minkowski distance between
the center cj and the two nearest Gaussian centers multiplied by α to control the
extent of overlap between them. Then, the radial basis function φj is defined as

186 Chapter 11. Co-Training by Committee for Semi-supervised Regression

follows

φj(‖x− cj‖p) = exp(−
‖x− cj‖2

p

2σ2
j

). (11.3)

At the second phase, the output layer weights W are determined directly by
calculating the pseudo-inverse of Φ which provides a least squares solution to the
system of linear equations, T = ΦW , where T is the target outputs of the m
training examples and Φ = (φµj) is the activation matrix where

φµj = φj(‖xµ − cj‖p) (11.4)

The gradient-descent error backpropagation learning method is not used, other-
wise the computational load will be high. On the other hand, direct computation
of W is easier and provides instantaneous training of the network. Therefore, the
refinement of regressors with newly-labeled examples can be more efficient.

11.3 Experimental Evaluation

11.3.1 Methodology

An experimental study is conducted to evaluate CoBCReg framework on six data
sets described in Table 15.1. Friedman #1, #2, and #3 have been used by
Breiman [31] for evaluating the performance of Bagging. Gabor and Multi have
been used by Hansen [77] for comparing several ensemble methods. Plane has
been used by Ridgeway et al. [155] for investigating the performance of boosted
naive Bayesian regressors. All algorithms are implemented using WEKA library
[201]. The input features and the real-valued outputs are scaled to [0, 1]. For
each experiment, 5 runs of 4-fold cross-validation have been performed. That is,
for each data set, 25% are used as test set, while the remaining 75% are used
as training examples where 10% of the training examples are randomly selected
as the initial labeled data set L while the remaining 90% of the 75% of data are

Table 11.1: Description of the simulated data sets

Data set Size Function Features
Friedman#1 3,000 y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 x1, x2, x3, x4, x5 ∼ U [0, 1]

Friedman#2 5,000 y =
√
x2
1 + (x2x3 − (1

x2x4
))2

x1 ∼ U [0, 100]
x2 ∼ U [40π, 560π]

x3 ∼ U [0, 1]
x4 ∼ U [1, 11]

Friedman#3 3,000 y = tan−1
x2x3−(1

x2x4
)

x1

x1 ∼ U [0, 100]
x2 ∼ U [40π, 560π]

x3 ∼ U [0, 1]
x4 ∼ U [1, 11]

Gabor 3,000 y = π
2
exp[−2(x2

1 + x2
2)]cos[2π(x1 + x2)] x1, x2 ∼ U [0, 1]

Multi 4,000 y = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5 x1, x2, x3, x4, x5 ∼ U [0, 1]
Plane 1,000 y = 0.6x1 + 0.3x2 x1, x2 ∼ U [0, 1]

11.3. Experimental Evaluation 187

Table 11.2: Mean and standard deviation of the test RMSE using noise-free functions

RBFNNs CoBCReg
Data set initial final improv initial final improv
Friedman#1 0.0817 ± 0.0042 0.0670 ± 0.0032 17.99% 0.0687 ± 0.0035 0.0590 ± 0.0027 14.12%
Friedman#2 0.0417 ± 0.0033 0.0332 ± 0.0024 20.38% 0.0354 ± 0.0028 0.0294 ± 0.0028 16.95%
Friedman#3 0.1019 ± 0.0037 0.0939 ± 0.0038 7.85% 0.0921 ± 0.0049 0.0865 ± 0.0047 6.08%
Gabor 0.0575 ± 0.0108 0.0330 ± 0.0081 42.60% 0.0375 ± 0.0106 0.0202 ± 0.0062 46.13%
Multi 0.0449 ± 0.0037 0.0345 ± 0.0024 23.16 % 0.0373 ± 0.0038 0.0303 ± 0.0025 18.76%
Plane 0.0180 ± 0.0045 0.0093 ± 0.0032 48.33% 0.0136 ± 0.0045 0.0077 ± 0.0032 43.38%
ave. 0.0576 0.0452 26.72% 0.0474 0.0389 24.24%

used as unlabeled data set U . In the experiments, an initial ensemble of four
RBF network regressors, N = 4, is constructed by Bagging where the distance
order pi used by the ith regressor is set to i+1 (i = 1, 2, 3, 4). The weights of
regressors were uniform, wi = 1/N . We set the pool size u is 50, the growth rate
gr is one, the maximum number of iterations T is 30, and for each RBF network
the number of RBFs k is set to 20 and α is set to 2.0.

11.3.2 Results

Table 11.2 shows the average of the RMSEs of the four RBF Network regres-
sors used in CoBCReg and the RMSE of CoBCReg on the test set at iteration
0 (initial) trained only on the 10% available labeled data L, after the 30th SSL
iteration of exploiting the unlabeled data set U (final) and the relative improve-
ment percentage on RMSE (improv = initial−final

initial
). Figure 11.2 shows the RMSE

of CoBCReg (CoBCReg), and the average of the RMSEs of the four regressors
used in CoBCReg (RBFNNs) at the different SSL iterations. The dash and solid
horizontal lines show the average of the RMSEs of the four regressors and the
RMSE of the ensemble trained using only the 10% labeled data, respectively, as
a basline for the comparison. The dash-dot horizontal line represents the RMSE
of the committee trained using all the training data 100% labeled as another
baseline. Paired t-test with 0.05 significance level indicates that the final regres-
sion estimates of CoBCReg are significantly better than its initial estimates on
all the data sets. In addition, for all data sets both the initial and final RMSE of
CoBCReg (E) (on average, 0.0474 and 0.0389) is less than that of the average of
RMSEs of its members (Ē). Therefore, CoBCReg can exploit the unlabeled ex-
amples to improve the generalization error of the committee and it does not hurt
the diversity among the committee members during the SSL process (Ā > 0).

11.3.3 Influence of Output Noise

In order to study the robustness of CoBCReg to noise, we added Gaussian noise
to the target functions of Friedman #1, #2, #3, Gabor, Multi and Plane that
is distributed as N(0, 1.02), N(0, 1252), N(0, 0.12), N(0, 0.152), N(0, 0.352), and

188 Chapter 11. Co-Training by Committee for Semi-supervised Regression

Figure 11.2: The average of test RMSE at different iterations using noise-
free functions

N(0, 0.052), respectively, where standard deviation is selected to give 3:1 signal-
to-noise ratio (i.e., the ratio of the standard deviations). Thus, the variance of
the function itself (without noise) accounts for 90% of the total variance. Table
11.3 present the initial and final average of the RMSEs of the four regressors
used in CoBCReg (Ē) and the RMSE of CoBCReg (E) for the noisy functions.
Figure 11.4 shows the performance at the different SSL iterations. Again the final
regression estimates of CoBCReg significantly outperform its initial estimates on
all the data sets except on Plane where the improvement is not significant. In
addition, both the initial and final E (on average, 0.0682 and 0.0646) is less than
that Ē. Although highly noise problems are used, CoBCReg can still exploit the
unlabeled examples to improve the regression estimates on all data sets. It is
worth noting that CoReg, proposed in [214], was applied on the same data sets
and both the absolute RMSE and the relative improvement achieved by CoBCReg
are better than that of CoReg on all data sets. Box-plots of the test committee
RMSE for both the noisy and noise-free functions are given in Figure 11.3.

11.4. Conclusions and Future Work 189

Figure 11.3: Box plots of the test RMSE before and after CoBCReg using
noise-free functions and noisy functions. Notches indicates robust estimates
of median.

Table 11.3: Mean and standard deviation of the test RMSE using noisy functions.

RBFNNs CoBCReg
Data set initial final improv initial final improv
Friedman#1 0.0860 ± 0.0037 0.0745 ± 0.0026 13.37% 0.0748 ± 0.0035 0.0677 ± 0.0025 9.49%
Friedman#2 0.0669 ± 0.0022 0.0635 ± 0.0013 5.08% 0.0624 ± 0.0016 0.0607 ± 0.0013 2.72%
Friedman#3 0.0962 ± 0.0031 0.0904 ± 0.0029 6.03% 0.0887 ± 0.0036 0.0852 ± 0.0036 3.95%
Gabor 0.0739 ± 0.0073 0.0615 ± 0.0041 16.78% 0.0602 ± 0.0059 0.0541 ± 0.0025 10.13%
Multi 0.0690 ± 0.0029 0.0646 ± 0.0024 6.37% 0.0632 ± 0.0030 0.0607 ± 0.0024 3.96%
Plane 0.0685 ± 0.0055 0.0621 ± 0.0051 9.34% 0.0599 ± 0.0040 0.0592 ± 0.0049 1.34%
ave. 0.0905 0.0770 14.92% 0.0682 0.0646 5.28%

11.4 Conclusions and Future Work

For regression tasks, labeling the examples for training is a time consuming,
tedious and expensive process. Such burden could be alleviated if the regression
learning algorithm can exploit the unlabeled data during learning. In this chapter,
a Co-Training style framework called CoBCReg is proposed. CoBCReg relax the
hard requirements of standard Co-Training algorithm through using an ensemble
of N diverse regressors instead of a set of redundant and independent views.
At each iteration and for each regressor, the companion committee labels the
unlabeled examples then the regressor select the most informative newly-labeled
examples for itself, where the selection confidence is based on estimating the
validation error. The final prediction is the average of the estimates of the N
regressors.

CoBCReg is more applicable than the standard Co-Training because it does
not require sufficient and independent views to construct diverse regressors. How-
ever, it depends on three mechanisms to create the diversity, initial regressors are

190 Chapter 11. Co-Training by Committee for Semi-supervised Regression

Figure 11.4: The average of test RMSE at different iterations using noisy
functions

trained using different bootstrap samples with different random initialization of
RBF centers and are using different Minkowski distance orders. Experimental
results show that CoBCReg can effectively exploit the unlabeled examples to im-
prove the generalization error and it is robust to output noise. There are many
interesting directions for future work.

• Apply CoBCReg using other types of regressors such as decision tree and
support vector machines.

• Investigate other diversity creation methods such as using AdaBoost.RT
[177] ensemble method, an AdaBoost variant for regression, that will extend
the idea of CoBCReg.

• Explore other confidence measures that are more efficient and effective.

• The theoretical analysis of CoBCReg is necessary because it will show when
and why the algorithm works.

11.4. Conclusions and Future Work 191

• The combination of committee-based active learning and semi-supervised
learning works effectively for classification [4]. The current implementation
of CoBCReg framework depends on a labeled training set that is a random
sample of the unlabeled data. Further work should investigate the influence
of providing CoBCReg with a better starting point through combining it
with Query by Committee [103].

Chapter 12

One-against-One Co-Training with
Tri-Class SVMs

12.1 Introduction

Multi-class decomposition (Chapter 4) is a supervised learning task that requires
an appropriate amount of labeled data in order to achieve high classification
accuracy. However, the data labeling process is often difficult, expensive, or time
consuming, as it requires the efforts of human experts. In chapter 8, two learning
frameworks are proposed to integrate the unlabeled data into the tree-structured
approach where RBF networks are used as binary classifiers. In this chapter, a
learning framework is introduced to exploit the unlabeled examples into the one-
against-one approach (Section 4.3). This chapter and chapter 8 have the same
objective which is to benefit from the unlabeled data in multi-class learning.
First, multi-class problem is decomposed into a set of binary problems and then
Co-Training is used to exploit unlabeled data in solving each binary problem. An
important factor for an effective Co-Training algorithm is how to measure class
prediction confidence. Thus, a new probabilistic interpretation of the outputs of
Tri-Class Support Vector Machine (SVM) is introduced where the confidence is
derived from the predicted class probabilities. The main advantage of Tri-Class
SVM is that it can discriminate between uncertainty and ignorance so it can
reject the examples that do not belong to its target classes. In addition, a variant
of the Sequential Minimal Optimization (SMO) algorithm is introduced for faster
learning of the Tri-Class SVMs since Co-Training is an iterative method.

The effectiveness of the proposed framework is evaluated on facial expressions
recognition from image sequences. A task that involves a large number of classes
and a small amount of labeled data because human annotation of facial expres-
sions is difficult. The results have shown that Co-Training with an ensemble of
three multi-view Tri-Class SVMs can automatically improve the recognition rate
using a small amount of human-labeled videos which minimize the cost of data
labeling. The Gaussian Mixture Model (GMM) approach is used to extract the

193

194 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

features, called super vectors, from facial expression videos. These GMM super
vectors are the input of Tri-Class SVMs. The work in this chapter has been
previously published ([2]).

12.2 One-against-One Co-Training

12.2.1 Motivation

Support Vector Machines are discriminative classifiers that model the decision
boundary between classes. They use the notion of classification margin and at-
tempt to maximize the margin of all (or most) training examples. The most
confident unlabeled examples with respect to a single machine can not be in-
formative because these examples have a large margin and therefore have little
impact on its decision boundary. For discriminative classifiers one must find
unlabeled examples which have a small margin because these examples are the
informative ones that can change the separating hyperplane (Figure 12.1).

+

+

+

+

-

-

-
-

Figure 12.1: Graphical illustration of SVM: The unlabeled examples help
to put the decision boundary in low density regions. Using labeled data
only, the maximum margin separating hyperplane is plotted with the ver-
sicle dashed lines. Using both labeled and unlabeled data (dots), the max-
imum margin separating hyperplane is plotted with the oblique solid lines.

To address this problem, Co-Training (Section 5.7.1.1) is used that requires
an ensemble of two or more diverse classifiers instead of a single classifier. Since
the margins assigned by the co-trained classifiers are not directly related, there
may exist a set of examples with high average margin with respect to the ensem-
ble that have a small or negative margin with respect to an individual machine.
That is some examples which would be confidently labeled by the ensemble that
would be misclassified by one of the classifiers. Thus individual classifiers can ex-
change knowledge among each other in the form of additional informative labeled
examples.

12.2. One-against-One Co-Training 195

12.2.2 Co-Training with Tri-Class SVMs

The framework is formally defined in Algorithm 19. A given multi-class data set
is decomposed into K(K − 1)/2 binary-class data sets (Lkh), one for each pair of
classes (ωk, ωh), for each k, h = 1, . . . , K. An ensemble of support vector machines
are co-trained to discriminate between the two classes using the examples in Lkh
that belong to class ωk labeled with y = 3, those belonging to ωh labeled with
y = 1 and the other examples labeled with y = 2, see Table 12.1. The pseudo-code
of Tri-Class Co-Training is shown in Algorithm 20 and Figure 12.2 illustrates the
data flow of the algorithm.

ωk-v-ωh

...

...

Measure

Confidence

Select the most confident examples

{(xu
(1), xu

(2), xu
(3), Hkh(Xu))}

train

apply

refill

U

Lkh

U'

add

h2h1 h3

Hkh(xu)

xu
(1) xu

(3)xu
(2)

Hkh

Xu

ω1-v-ωKω1-v-ω2

...

......

...

ωK-1-v-ωK

Figure 12.2: Tri-Class Co-Training

Algorithm 19 One-against-One Co-Training

Require: set of m labeled training examples (L), set of unlabeled examples (U),
maximum number of Co-Training iterations (T), number of unlabeled exam-
ples in the pool (u), set of classes (Ω = {ω1, . . . , ωK}),combination method
(Combiner)
Training Phase

1: for k = 1 to K − 1 do
2: for h = k + 1 to K do
3: Relabel the training examples L, Lkh = {(X, y)|(X, t) ∈ L and y = 1 if

t = ωh, y = 2 if t ∈ Ω− {ωk, ωh} and y = 3 if t = ωk}
4: Train binary classifier,

Hkh= Co-Training(Lkh, U, T, u) (see Algorithm 20)
5: end for
6: end for

Prediction Phase
7: return Combiner(x, {Hkh}Kk=1,h=k+1) for a given x (see Eq. (12.58))

196 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

Given a labeled data set Lkh = {(Xµ, yµ)|Xµ = (x
(1)
µ , x

(2)
µ , x

(3)
µ)|x(i)

µ ∈ RDi , yµ ∈
{1, 2, 3}, µ = 1, . . . ,m} and U = {Xu = (x

(1)
u , x

(2)
u , x

(3)
u)|x(i)

u ∈ RDi , u = 1, . . . , n}
the set of unlabeled data where each example is represented by threeDi-dimensional
feature vectors. For each view i, an initial Tri-Class SVM h

(0)
i is trained (Algo-

rithm 21) using the available labeled data Vi(L). Then the following steps are
repeated for a given number of iterations T or until the U becomes empty. For
each iteration t, a pool U ′ is created of u examples randomly drawn from U with-
out replacement. It is computationally more efficient to use a pool U ′ instead of
using the whole set U .

Algorithm 20 Tri-Class Co-Training

Require: set of m labeled training examples (Lkh), set of unlabeled examples
(U), three sets of features (V1,V2,V3), maximum number of co-training itera-
tions (T), number of unlabeled examples in the pool (u), prior probability of
each class ωk ({Prk}Kk=1)
Training Phase

1: Construct initial classifiers, h
(0)
1 = TriClassSMO(V1(Lkh)),

h
(0)
2 = TriClassSMO(V2(Lkh)) and h

(0)
3 = TriClassSMO(V3(Lkh)) (see Al-

gorithm 21)
2: for t = 1 to T do
3: if U is empty then T = t-1 and abort loop end if
4: Create a pool U ′ of u examples from U
5: for each xu ∈ U ′ do
6: Estimate the ensemble class probabilities as defined in Eq.(12.1)
7: Measure the prediction confidence as defined in Eq. (12.2)
8: end for
9: Rank the examples in U ′ by confidence

10: Create a subset πt that contains the ny ∝ Pry most confident examples
assigned to each class y ∈ {1, 2, 3}

11: U ′ = U ′ \ πt % remove πt from U ′

12: Lkh = Lkh ∪ πt % add πt to Lkh
13: U = U ∪ U ′ % return the rest to U
14: Re-train the machines, h

(t)
1 = TriClassSMO(V1(Lkh)),

h
(t)
2 = TriClassSMO(V2(Lkh)) and h

(t)
3 = TriClassSMO(V3(Lkh))

15: end for
Prediction Phase

16: return P (T)(y|x) as defined in Eq. (12.1), for a given example x

For each example Xu = (x
(1)
u , x

(2)
u , x

(3)
u) ∈ U ′, each Tri-Class SVM h

(t−1)
i is

applied in order to predict the class membership probability P
(t−1)
i of x

(i)
u as

defined in Eq. (12.55) to Eq. (12.57). Afterward the final output of the ensemble

Hkh, denoted as P
(t−1)
kh , is the average of the probabilities estimated by the three

12.3. Support Vector Machines (SVM) 197

Tri-Class SVMs. That is, for each class y ∈ {1, 2, 3},

P
(t−1)
kh (y|xu) =

1

3

3∑
i=1

P
(t−1)
i (y|xu). (12.1)

12.2.3 Confidence Measure

Thus, the confidence of the ensemble constructed at the (t − 1)th iteration in
predicting the class label of Xu is the maximum average class probability.

Confidence(Xu, H
(t−1)
kh) = max

1≤y≤3
P

(t−1)
kh (y|Xu) (12.2)

Afterward, the unlabeled examples are ranked by the confidence in the class
prediction. A set πt is created that contains the ny most confident examples
assigned to each class y by ensemble of machines. Then πt is moved from the
pool U ′ to the training set Lkh. Then the three classifiers are retrained using the
augmented training set. The aim is that the confident examples with respect to
the ensemble can be informative examples with respect to any of the individual
classifiers (it has a small margin). In the classification phase, the final output for
a given example is the average of the probabilistic outputs of the three classifiers
created at the final Co-Training iteration, h

(T)
1 , h

(T)
2 and h

(T)
3 .

Unfortunately, Binary-Class SVM for pair (ωk, ωh) can not discriminate the
unlabeled examples in U ′ that belong neither to ωk nor to ωh and these examples
may have a margin larger that those belong to ωk nor to ωh (see Figure 12.3).
Thus πt may contain newly labeled examples that belong neither to ωk nor to
ωh that have no impact on the decision boundary. To avoid this problem, I used
Tri-Class SVM (Section 12.3.2) instead of Binary-Class SVM because Tri-Class
SVM can reject the undesired examples.

12.3 Support Vector Machines (SVM)

Given a labeled training set L = {(xi, yi)|xi ∈ Rd, yi ∈ Ω, i = 1, . . . ,m} where
Ω = {ω1, . . . , ωK} is a predefined set of classes. Let Lk = {(xi, yi) ∈ L|yi = ωk}
be the set of nk = |Lk| d-dimensional training examples belonging to class ωk.
Usually multi-class decomposition schemes such as one-against-one, one-against-
others and ECOC have been applied. A multi-class decomposition scheme consists
of three stages: (1) the multi-class problem is divided into a set of simpler binary-
class problems, (2) an ensemble of binary classifiers such as SVMs is constructed
where each machine takes only two classes in consideration. (3) the outputs of
individual SVMs are combined to yield the final decision of the ensemble. In
this study, the one-against-one scheme (Section 4.3) is considered where K(K−1)

2

binary classifiers are trained to generate hyperplanes fkh that separate between

198 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

Lk and Lh. If fkh is the optimal hyperplane, then sign(fkh(xi))=1, for xi ∈ Lk
and sign(fkh(xi))= -1, for xi ∈ Lh. Note that the remaining training examples
L − {Lk ∪ Lh} are not considered in the optimization problem. If a hyperplane
fkh must classify an example x that belongs neither to ωk nor to ωh, the correct
decision is fkh(x) =0 which means that the fkh rejects the example x. In order
to add this reject option, fkh must be enforced to produce output fkh(x) =0 for
all the training examples x belonging to different classes from ωk and ωh.

12.3.1 Binary-Class SVMs

Let Lk ∪Lh be the set of training examples (xi, yi) that belong to Class ωk or ωh
and the associated labels be si = 1 for yi=ωk and -1 for yi=ωh, see Figure 12.3.
In a support vector machine (Section 2.4), the optimal hyperplane is required to
minimize the generalization error. But the classifier may not have high general-
ization ability if the training data are not linearly separable. In order to improve
linear separability, the training data are mapped from the original d-dimensional
input space using nonlinear function φ into a higher D-dimensional space called
the dot product feature space. Thus the decision function in the D-dimensional
feature space would be

fkh(x) = 〈w, φ(x)〉 − b, where margin =
2

‖w‖2
(12.3)

where w ∈ RD is a vector orthogonal to the hyperplane; b ∈ R is a bias term.

2

||w ||
2

b b +1 b -1

large margin

small margin large margin

small margin

ωh

ωk

y=1 y=3

fkh(x) = <w, ϕ (x)>

Figure 12.3: An illustration of the hyperplane that discriminates between
ωk and ωh

The optimal separating hyperplane (w∗, b∗) with maximum margin can be
obtained by minimizing

1

2
‖w‖2 + C

nk+nh∑
i=1

εi (12.4)

subject to the constraints

yi(〈w, φ(xi)〉 − b) ≥ 1− εi, εi ≥ 0, for i = 1, . . . , nk + nh (12.5)

12.3. Support Vector Machines (SVM) 199

where εi are slack variables that permit margin failure and C is a regularization
parameter which trades off between margin maximization and margin errors min-
imization. The training examples that satisfy the equalities are called the support
vectors. Then the output of an SVM is explicitly computed from the Lagrange
multipliers αi that are obtained by solving the above optimization problem:

fkh(x) =
∑
i∈S

αiyiK(x, xi)− b, (12.6)

where S is the set of support vector indices and K is a kernel function that
measures the similarity between the input vector x and the training vector xj.
The advantage of using kernels is that there is no need to deal with the high
dimensional feature space explicitly. This technique is called the kernel trick as
K(x, xi) = 〈φ(x), φ(xi)〉 (Section 2.4).

12.3.2 One-against-One Tri-Class SVMs

Shashua and Levin [176] have recently developed an approach to deal with ordi-
nal regression problems using SVMs. This approach considers all the classes at
once and trains parallel hyperplanes that separate consecutive classes. The main
drawback is that, all the hyperplanes considered must be parallel, hence the expla-
nation power of the machine is reduced, and the use of the machine is restricted
to ordinal regression. Angulo et al. [16] introduced the One-against-One Tri-
class SVMs approach that extends the idea of the ordinal regression approach
in [176]. At each step, it considers a pair of classes ωk and ωh and trains two
parallel hyperplanes that separate Lh, L− {Lk ∪ Lh} and Lk, respectively where
the training set L is divided into three groups, labeled 1, 2, 3 (see Figure 12.4 and
Table 12.1). Figure 12.5 illustrates the ensemble of 1-v-1 Tri-class SVMs applied
to a linearly separable dataset with 45 examples [16]. This approach improves the
explanation power of the machines because it does not enforce the hyperplanes
to be parallel. The size of the optimization problem associated to the Tri-Class
SVM has been drastically reduced. Hence, if each class has the same number of
examples, (i.e. m

K
examples for classes ωk and ωh and m(K−2)

K
examples for the

remaining classes labeled 2), the optimization problem has to fulfill a number of
O(m) constraints. When all the necessary One-against-One Tri-Class machines

are considered, K(K−1)
2

, then the total number of constraints is O(K2m).

Table 12.1: Code matrix

f12 f13 f14 f23 f24 f34
ω1 3 3 3 2 2 2
ω2 1 2 2 3 3 2
ω3 2 1 2 1 2 3
ω4 2 2 1 2 1 1

200 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

2

||w ||
2

2

||w ||
2

b1 b1 +1 b1-1 b2 b2 +1 b2-1

large margin

small margin large margin

small margin

ωh

ωk

y=1 y=2 y=3

ϵi
*3

ϵi
2

fkh(x) = <w, ϕ (x)>

 ϵi
1

 ϵi
*2

Figure 12.4: An illustration of the two hyperplanes that discriminate
between ωk and ωh

+
-

 x

-

- -

-

-

-

-

-

-
-

-

-

-

-

 x

 x

 x

 x

 x

 x x

 x

 x

 x

 x x x

 x

+

+

+

+

+

+

+

+

+

+ +

+

++

ω1

ω2

ω3

(a) input space

+
-

 x

-

- -

-

-

-

-

-

-
-

-

-

-

-

 x

 x

 x

 x

 x

 x x

 x

 x

 x

 x x x

 x

+

+

+

+

+

+

+

+

+

+ +

+

++

ω1

ω2

ω3

(b) Class ω1 against ω2

+
-

 x

-

- -

-

-

-

-

-

-
-

-

-

-

-

 x

 x

 x

 x

 x

 x x

 x

 x

 x

 x x x

 x

+

+

+

+

+

+

+

+

+

+ +

+

++

ω1

ω2

ω3

(c) Class ω1 against ω3

+
-

 x

-

- -

-

-

-

-

-

-
-

-

-

-

-

 x

 x

 x

 x

 x

 x x

 x

 x

 x

 x x x

 x

+

+

+

+

+

+

+

+

+

+ +

+

++

ω1

ω2

ω3

(d) Class ω2 against ω3

Figure 12.5: 1-v-1 Tri-class SVMs applied to a linearly separable dataset
with 45 examples [16]. The solid lines represent the first hyperplane and
the dashed lines represent the second hyperplane in the input space.

12.3. Support Vector Machines (SVM) 201

12.3.2.1 Primal problem

The objective of Tri-Class SVM is to find the direction w and the positions b1 and
b2 of the first and second hyperplanes such that the margins between classes y = 1
and y = 2 and between classes y = 2 and y = 3 are maximized. Let w, b1 and
b2 be scaled such that the distance of boundary examples from the hyperplanes
is 1. Thus the margin between classes y = 1 and y = 2 and between classes
y = 2 and y = 3 are 2

‖w‖2 (see Figure 12.4). Like conventional SVM (Section

2.4), in order to improve linear separability, the training data are mapped from
the original d-dimensional input space using nonlinear function φ into a higher
D-dimensional feature space. The primal formulation for the Tri-Class SVM is
written as follows:

min
w,b1,b2,ε,ε∗

ΨP =
1

2
‖w‖2 + C(

n1∑
i=1

ε1i +

n2∑
i=1

ε∗2i +

n2∑
i=1

ε2i +

n3∑
i=1

ε∗3i) (12.7)

subject to

〈w, φ(x1
i)〉 − b1 ≤ −1 + ε1i , ε1i ≥ 0 for i = 1, . . . , n1;

〈w, φ(x2
i)〉 − b1 ≥ 1− ε∗2i , ε∗2i ≥ 0 for i = 1, . . . , n2;

〈w, φ(x2
i)〉 − b2 ≤ −1 + ε2i , ε2i ≥ 0 for i = 1, . . . , n2;

〈w, φ(x3
i)〉 − b2 ≥ 1− ε∗3i , ε∗3i ≥ 0 for i = 1, . . . , n3; b1 ≤ b2

(12.8)

where x1
i ,x

2
i ,x

3
i represent the training examples that belong to Lh, L − Lh ∪ Lk

and Lk, respectively such that n1 = |Lh|, n2 = |L−{Lh∪Lk}| and n3 = |Lk|. The
inequality constraint b1 ≤ b2 is added explicitly to make sure that the hyperplanes
are correctly ordered. The primal problem can be solved by standard Lagrangian
techniques where α1

i , α
∗2
i , α2

i , α
∗3
i , γ1

i , γ
∗2
i , γ2

i , γ
∗3
i and η are all non-negative

Lagrangian multipliers.

LP (w, b1, b2, ε, ε
∗) =

1

2
‖w‖2 + C(

n1∑
i=1

ε1i +

n2∑
i=1

ε∗2i +

n2∑
i=1

ε2i +

n3∑
i=1

ε∗3i)

−
n1∑
i=1

α1
i [−1 + ε1i − 〈w, φ(x1

i)〉+ b1]−
n2∑
i=1

α∗2i [〈w, φ(x2
i)〉 − b1 − 1 + ε∗2i]

−
n2∑
i=1

α2
i [−1 + ε2i − 〈w, φ(x2

i)〉+ b2]−
n3∑
i=1

α∗3i [〈w, φ(x3
i)〉 − b2 − 1 + ε∗3i]

−
n1∑
i=1

γ1
i ε

1
i −

n1∑
i=1

γ∗2i ε
∗2
i −

n1∑
i=1

γ2
i ε

2
i −

n1∑
i=1

γ∗3i ε
∗3
i − η(b2 − b1) (12.9)

202 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

The Karush-Kuhn-Tucker (KKT) optimality conditions for the primal problem
are

∂LP
∂w

= 0⇒ w = −
n1∑
i=1

α1
iφ(x1

i) +

n2∑
i=1

α∗2i φ(x2
i)−

n2∑
i=1

α2
iφ(x2

i) +

n3∑
i=1

α∗3i φ(x3
i);

(12.10)

∂LP
∂b1

= 0⇒
n1∑
i=1

α1
i =

n2∑
i=1

α∗2i + η; (12.11)

∂LP
∂b2

= 0⇒
n2∑
i=1

α2
i + η =

n3∑
i=1

α∗3i ; (12.12)

∂LP
∂ε1i

= 0⇒ C − α1
i = γ1

i ⇒ α1
i ≤ C for i = 1, . . . , n1; (12.13)

∂LP
∂ε∗2i

= 0⇒ C − α∗2i = γ∗2i ⇒ α∗2i ≤ C for i = 1, . . . , n2; (12.14)

∂LP
∂ε2i

= 0⇒ C − α2
i = γ2

i ⇒ α2
i ≤ C for i = 1, . . . , n2; (12.15)

∂LP
∂ε∗3i

= 0⇒ C − α∗3i = γ∗3i ⇒ α∗3i ≤ C for i = 1, . . . , n3 (12.16)

12.3.2.2 Dual problem

The unknwon variables of the convex optimization problem given by Eq. (12.7)
and Eq. (12.8) are w, b1 and b2. Thus the number of variables is the number of
input variables plus 2: D+2. When the number of input variables is small, one
can solve Eq. (12.7) and Eq. (12.8) by the quadratic programming technique.
But as one maps the input space into a high-dimensional feature space, in some
cases, with infinite dimensions, one converts Eq. (12.7) and Eq. (12.8) into the
equivalent dual problem whose number of variables depends on the number of
training examples. In order to represent the dual problem in a compact form,
some notations are introduced first. Let Xj be the d× nj matrix whose columns
are the training examples that belong to class j (xji), where i = 1, . . . , nj and
j = 1, 2, 3:

Xj = [xj1, . . . , x
j
nj

]d×nj

Let µ = (α1, α∗2, α2, α∗3)T be the vector holding all the Lagrange multipliers
where α1 = (α1

1, . . . , α
1
n1

)T , α∗2 = (α∗21 , . . . , α
∗2
n2

)T , α2 = (α2
1, . . . , α

2
n2

)T , α∗3 =
(α∗31 , . . . , α

∗3
n3

)T . Let Q be the training data matrix:

Q = [X1, X2, X2, X3]d×N , (12.17)

and s be the N -dimensional vector defined as follows:

si =

{
−1 if 1 ≤ i ≤ n1 or n1 + n2 + 1 ≤ i ≤ n1 + 2.n2 ,

1 if n1 + 1 ≤ i ≤ n1 + n2 or n1 + 2.n2 + 1 ≤ i ≤ N .
(12.18)

12.3. Support Vector Machines (SVM) 203

Then the kernel matrix H = [sisjK(xi, xj)]N×N results from applying the ker-
nel function on Q directly in the input space rather than the inner-products in
the higher dimensional feature space (K(xi, xj) = 〈φ(xi), φ(xj)〉 known as kernel
trick), where N = n1 + 2.n2 + n3. In case of linear kernel, H = [sisj〈xi, xj〉]N×N .
Using the new notation, Eq. (12.10) becomes w = Qµ. Let us now apply Wolfe
duality theory to the primal problem. By substituting with the new expression
of w and the other KKT conditions in Eq. (12.11) to Eq. (12.16) into the La-
grangian in Eq. (12.9), one obtains the dual objective function ΨD that should
be maximized with respect to the Lagrange multipliers α,α∗ and η alone while
all the remaining multipliers γ and γ∗ have been dropped out:

max
α,α∗,η

ΨD = max
α,α∗,η

N∑
i=1

µi −
1

2
µTHµ (12.19)

Subject to the constraints

n1∑
i=1

α1
i =

n2∑
i=1

α∗2i + η;

n2∑
i=1

α2
i + η =

n3∑
i=1

α∗3i ;

0 ≤ α1
i ≤ C for i = 1, . . . , n1;

0 ≤ α∗2i ≤ C for i = 1, . . . , n2;

0 ≤ α2
i ≤ C for i = 1, . . . , n2;

0 ≤ α∗3i ≤ C for i = 1, . . . , n3; η ≥ 0

(12.20)

Note that the size of the optimization problem (number of unknown variables) is
N . The parallel hyperplanes direction vector w can be obtained from Eq. (12.10)
once the optimal values of α and α∗ are obtained from solving Eq. (12.19) and
Eq. (12.20). The calculation of the hyperplanes positions b1 and b2 is addressed
in the following section. Then the decision function for a given example x is

fkh(x) = −
n1∑
i=1

α1
iK(x1

i , x) +

n2∑
i=1

(α∗2i − α2
i)K(x2

i , x) +

n3∑
i=1

α∗3i K(x3
i , x) (12.21)

Therefore, an unknown example x is classified as follows (see Figure 12.4):
Class 1 (assigned to ωh) if fkh(x) ≤ b1,

Class 2 (unclassified and rejected) if b1 < fkh(x) ≤ b2.

Class 3 (assigned to ωk) otherwise.

(12.22)

204 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

12.3.3 SMO for Tri-Class SVM

Angulo et al. [16] have solved the optimization problem using the exact quadratic
program-solver provided by Matlab Optimization Toolbox. Unfortunately, tra-
ditional quadratic programming algorithms are not suitable to solve this large
size problem because they require the large kernel matrix H be computed and
stored in memory. Platt [147] introduced a fast learning algorithm for SVM clas-
sifiers design, called Sequential Minimal Optimization (SMO). Keerthi et al. [94]
proposed an improved version of Platt’s SMO algorithm then Chu and Keerthi
[42] extended this improvement to ordinal regression. In this section, Chu and
Keerthi’s SMO algorithm is extended for the design of Tri-Class SVM classifiers,
that is, to solve the dual problem defined in Eq. (12.19) and Eq. (12.20). The main
idea of SMO is to jointly optimize only a pair of selected Lagrange multipliers at
each step while keeping the other multipliers fixed. The main advantage of SMO
that the numerical QP optimization is avoided entirely because two Lagrange
multipliers can be solved analytically.

It is important to write down the Lagrangian of the dual problem where
β1 ∈ R, β2 ∈ R, δ1

i ≥ 0, δ∗2i ≥ 0, δ2
i ≥ 0, δ∗3i ≥ 0, µ1

i ≥ 0, µ∗2i ≥ 0, µ2
i ≥ 0, µ∗3i ≥ 0

and λ ≥ 0 are the Lagrangian multipliers.

LD(α, α∗, µ) = ΨD + β1(

n1∑
i=1

α1
i −

n2∑
i=1

α∗2i − η) + β2(

n2∑
i=1

α2
i + η −

n3∑
i=1

α∗3i)

−
n1∑
i=1

δ1
i α

1
i −

n2∑
i=1

δ∗2i α
∗2
i −

n2∑
i=1

δ2
i α

2
i −

n3∑
i=1

δ∗3i α
∗3
i −

n1∑
i=1

µ1
i (C − α1

i)

−
n2∑
i=1

µ∗2i (C − α∗2i)−
n2∑
i=1

µ2
i (C − α2

i)−
n3∑
i=1

µ∗3i (C − α∗3i)− λη (12.23)

For the optimal solution, the following KKT conditions are satisfied for the dual
problem.

∂LD
∂α1

i

= 0⇒ −fkh(x1
i)− 1− δ1

i + µ1
i + β1 = 0 for i = 1, . . . , n1; (12.24)

∂LD
∂α∗2i

= 0⇒ fkh(x
2
i)− 1− δ∗2i + µ∗2i − β1 = 0 for i = 1, . . . , n2; (12.25)

∂LD
∂α2

i

= 0⇒ −fkh(x2
i)− 1− δ2

i + µ2
i + β2 = 0 for i = 1, . . . , n2; (12.26)

∂LD
∂α∗3i

= 0⇒ fkh(x
3
i)− 1− δ∗3i + µ∗3i − β2 = 0 for i = 1, . . . , n3; (12.27)

∂LD
∂η

= 0⇒ β2 − β1 = λ⇒ β1 ≤ β2; (12.28)

12.3. Support Vector Machines (SVM) 205

in addition to the following KKT complementarity conditions.

δ1
i α

1
i = 0, µ1

i (C − α1
i) = 0, δ1

i ≥ 0, µ1
i ≥ 0 for i = 1, . . . , n1; (12.29)

δ∗2i α
∗2
i = 0, µ∗2i (C − α∗2i) = 0, δ∗2i ≥ 0, µ∗2i ≥ 0 for i = 1, . . . , n2; (12.30)

δ2
i α

2
i = 0, µ2

i (C − α2
i) = 0, δ2

i ≥ 0, µ2
i ≥ 0 for i = 1, . . . , n2; (12.31)

δ∗3i α
∗3
i = 0, µ∗3i (C − α∗3i) = 0, δ∗3i ≥ 0, µ∗3i ≥ 0 for i = 1, . . . , n3; (12.32)

λη = 0 (12.33)

These conditions can be simplified by considering the following 6 cases for j=1,2.
case 1: αji = 0

µji = 0, δji ≥ 0⇒ fkh(x
j
i) + 1 ≤ βj (12.34)

case 2: 0 < αji < C

µji = 0, δji = 0⇒ fkh(x
j
i) + 1 = βj (12.35)

case 3: αji = C
µji ≥ 0, δji = 0⇒ fkh(x

j
i) + 1 ≥ βj (12.36)

case 4: α∗j+1
i = 0

µ∗j+1
i = 0, δ∗j+1

i ≥ 0⇒ fkh(x
j+1
i)− 1 ≥ βj (12.37)

case 5: 0 < α∗j+1
i < C

µ∗j+1
i = 0, δ∗j+1

i = 0⇒ fkh(x
j+1
i)− 1 = βj (12.38)

case 6: α∗j+1
i = C

µ∗j+1
i ≥ 0, δ∗j+1

i = 0⇒ fkh(x
j+1
i)− 1 ≤ βj (12.39)

According to the cases in Eq. (12.34) to Eq. (12.39), we define the following index
sets for j=1,2:

Ij0a = {i ∈ {1, . . . , nj} : 0 < αji < C};
Ij0b = {i ∈ {1, . . . , nj+1} : 0 < α∗j+1

i < C}; Ij0 = Ij0a ∪ I
j
0b;

Ij1 = {i ∈ {1, . . . , nj+1} : α∗j+1
i = 0}; Ij2 = {i ∈ {1, . . . , nj} : α1

i = C};
Ij3 = {i ∈ {1, . . . , nj+1} : α∗j+1

i = C}; Ij4 = {i ∈ {1, . . . , nj} : αji = 0}

12.3.3.1 Computing the Thresholds

Let us define Fi as

Fi =

{
fkh(x

j
i) + 1 if i ∈ Ij0a ∪ I

j
2 ∪ I

j
4 ,

fkh(x
j+1
i)− 1 if i ∈ Ij0b ∪ I

j
1 ∪ I

j
3 .

206 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

The necessary conditions in Eq. (12.34) to Eq. (12.39) can be summarized as

βj ≤ Fi ∀i ∈ Ij0 ∪ I
j
1 ∪ I

j
2 ; (12.40)

βj ≥ Fi ∀i ∈ Ij0 ∪ I
j
3 ∪ I

j
4 ; (12.41)

which can be written as:

bjlow ≤ bjup for j = 1, 2 (12.42)

where

bjlow = max{Fi : i ∈ Ij0 ∪ I
j
3 ∪ I

j
4}; bjup = min{Fi : i ∈ Ij0 ∪ I

j
1 ∪ I

j
2};

ijlow = argmax{Fi : i ∈ Ij0 ∪ I
j
3 ∪ I

j
4} and ijup = argmin{Fi : i ∈ Ij0 ∪ I

j
1 ∪ I

j
2}

(12.43)

In order to merge conditions in Eq. (12.28) and Eq. (12.42), we define

B1
up = min{b1

up, b
2
up} and B1

low =

{
max{b1

low, b
2
low} if β1 = β2,

b1
low otherwise.

B2
up =

{
min{b1

up, b
2
up} if β1 = β2,

b2
up otherwise.

and B2
low = max{b1

low, b
2
low} (12.44)

It is usually not possible to achieve exact optimality, approximate optimality
conditions are defined.

B1
low ≤ B1

up + τ and B2
low ≤ B2

up + τ (12.45)

where τ is a positive tolerance parameter. Note that at the optimal solution, βj
and bj are identical. Thus bj can be placed at the middle between Bj

low and Bj
up.

The following points will help to easy understand the SMO algorithm presented
in Algorithm 21:

1. First check optimality for each training example i as in Algorithm 22 and
Algorithm 23. Note that if yi < 3, we check the ythi threshold (its upper
threshold) and if yi > 1, we check the (yi− 1)th threshold (its lower thresh-
old). That is if i ∈ IJ1 ∪ IJ2 and Fi < BJ

low − τ then there is a violation, and
in this case SMO’s takeStep method in Algorithm 24 is applied to the pair
(i, iJlow). Similarly, if i ∈ IJ3 ∪ IJ4 and Fi > BJ

up + τ then there is a violation,
and takeStep is applied to the pair (iJup, i) where J= yi − 1 or yi.

2. After checking for optimality of all indices, get the index of the most vio-
lating threshold that is J = argmin{τ, B1

up − B1
low, B

2
up − B2

low}. If J = 0,
that means that both 1st and 2nd thresholds satisfy optimality condition
in Eq. (12.45). Otherwise, takeStep is applied to the most violating pair
(iJup, i

J
low). This step is repeated until J =0.

12.3. Support Vector Machines (SVM) 207

3. An additional loop is applied to check optimality on all training examples
(examineAll = TRUE). Since (ijlow, bjlow) and (ijup, b

j
up) have been par-

tially computed in takeStep using only Ij0 , at this loop, these quantities are
modified by each example i even if there is no violation if i ∈ IJ1 ∪ IJ2 and
Fi < bJup or if i ∈ IJ3 ∪ IJ4 and Fi > bJlow as shown in Algorithm 22.

4. After checking for optimality of all indices, if there is a violation for any
index i(that is, numChanged > 0), go to Step 2. Otherwise, we conclude
that all Lagrange multipliers α and α∗ satisfy optimality and that the correct
values of bjup and bjlow have been computed.

Algorithm 21 The pseudo code of SMO for Tri-Class SVM (TriClassSMO)

Require: L = {(xi, yi) : xi ∈ Rd and yi ∈ {1, 2, 3}} set of training examples
1: initialize alpha array to zero
2: for each training example xi ∈ L do
3: calculate fkh(xi) (as defined in Eq. (12.21)) and set f cache[i] = fkh(xi)
4: if yi < 3 then
5: add i into I

yi
4

6: end if
7: if yi > 1 then
8: add i into I

yi−1
1

9: end if
10: end for
11: set (ijlow, Bjlow) and (ijup, Bjup) for j = 1, 2 as defined in Eq. (12.43) and Eq. (12.44)
12: set examineAll = TRUE and numChanged = 0
13: while numChanged > 0 or examineAll do
14: if examineAll then
15: numChanged = 0
16: for each training example xi ∈ L do
17: numChanged += examineExample(i)
18: end for
19: else
20: while J = activeThreshold() > 0 and numChanged > 0 do
21: if takeStep(iJup, i

J
low) then

22: numChanged += 1
23: end if
24: end while
25: numChanged = 0 ;
26: end if
27: if examineAll = TRUE then
28: examineAll = FALSE
29: else if numChanged =0 then
30: examineAll = TRUE
31: end if
32: end while

33: return α,α∗, b1 and b2

12.3.3.2 Solving for Two Lagrange Multipliers (takeStep)

In order to jointly optimize the two Lagrange multipliers αu and αo, SMO first
computes the bound constraints and the linear equality constraint on these mul-

208 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

Algorithm 22 examineExample(i2)

1: if i2 ∈ I10 ∪ I20 then
2: set f2 = f cache[i2]
3: else
4: calculate fkh(x2) (as defined in Eq. (12.21)) and set f cache[i2] = f2 = fkh(x2) {Update ijlow, ijup,

bjlow and bjup for j = 1, 2}
5: if yi < 3 then
6: if i2 ∈ Iyi

0a ∪ I
yi
2 and f2 + 1 < b

yi
up then

7: set b
yi
up = f2 + 1 and i

yi
up = i2

8: end if
9: if i2 ∈ Iyi

0a ∪ I
yi
4 and f2 + 1 > b

yi
low then

10: set b
yi
low = f2 + 1 and i

yi
low = i2

11: end if
12: end if
13: if yi > 1 then
14: if i2 ∈ Iyi−1

0b ∪ Iyi−1
1 and f2 − 1 < b

yi−1
up then

15: set b
yi−1
up = f2 − 1 and i

yi−1
up = i2

16: end if
17: if i2 ∈ Iyi−1

0b ∪ Iyi−1
3 and f2 − 1 > b

yi−1
low then

18: set b
yi−1
up = f2 − 1 and i

yi−1
low = i2

19: end if
20: end if
21: end if
22: update B1

low, B1
up, B2

low, and B2
up

23: [optimal, iu, io] = checkOptimality(B1
low, B1

up, B2
low, B2

up)

24: if !optimal and takestep(iu, io) then return 1 else return 0 end

tipliers as follows:

0 ≤ αu ≤ C and 0 ≤ αo ≤ C; (12.46)

αu + sosuαo = αnewu + sosuα
new
o = ρ (12.47)

where

su =

{
−1 if iu ∈ I th0a ∪ I th2 ,

+1 if iu ∈ I th0b ∪ I th1
; (12.48)

so =

{
−1 if io ∈ I th0a ∪ I th4 ,

+1 if io ∈ I th0b ∪ I th3
(12.49)

Then the sub-optimization problem is solved for αu and αo. For simplicity, all
quantities that refer to the first multiplier will have a subscript u, while all quan-
tities that refer to the second multiplier will have a subscript o. Because there are
only two multipliers, the constraints can be displayed in two dimensions (see Fig-
ure 12.6). The bound inequality constraints in Eq. (12.46) enforce the Lagrange
multipliers to lie within a box, while the linear equality constraint in Eq. (12.47)
enforces them to lie on a diagonal line. Thus, the constrained minimum of the
objective function must lie on a diagonal line segment (as shown in Figure 12.6).
This constraint explains why two is the minimum number of Lagrange multipli-
ers that can be optimized at every step: if SMO optimized only one multiplier,

12.3. Support Vector Machines (SVM) 209

Algorithm 23 checkOptimality(i2)

1: optimal = TRUE
2: if yi < 3 then
3: if i2 ∈ Iyi

0a ∪ I
yi
2 and f2 + 1 < B

yi
low − τ then

4: set optimal = FALSE, iu = i2 and io = i
yi
low

5: end if
6: if i2 ∈ Iyi

0a ∪ I
yi
4 and f2 + 1 > B

yi
up + τ then

7: set optimal = FALSE, iu = i
yi
up and io = i2

8: end if
9: if optimal= FALSE and i2 ∈ Iyi

0a then
10: if B

yi
low − (f2 + 1) > (f2 + 1)−Byi

up then
11: set iu = i2 and io = i

yi
low

12: else
13: set iu = i

yi
up and io = i2

14: end if
15: end if
16: end if
17: if optimal and yi > 1 then
18: if i2 ∈ Iyi−1

0b ∪ Iyi−1
1 and f2 − 1 < B

yi−1
low − τ then

19: set optimal = FALSE, iu = i2 and io = i
yi−1
low

20: end if
21: if i2 ∈ Iyi−1

0b ∪ Iyi−1
3 and f2 − 1 > B

yi−1
up + τ then

22: set optimal = FALSE, iu = i
yi−1
up and io = i2

23: end if
24: if optimal = FALSE and i2 ∈ Iyi

0b then

25: if B
yi−1
low − (f2 − 1) > (f2 − 1)−Byi−1

up then

26: set iu = i2 and io = i
yi−1
low

27: else
28: set iu = i

yi−1
up and io = i2

29: end if
30: end if
31: end if

32: return optimal, iu, io

it could not fulfill the linear equality constraint. The ends of the diagonal line
segment can be expressed quite simply. Without loss of generality, the algorithm
first computes the second Lagrange multiplier αo and computes the ends of the
diagonal line segment in terms of αo. If su does not equal so, then the following
bounds apply to αo:

L = max(0, αo − αu), H = min(C,C + αo − αu). (12.50)

If su equals so, then the following bounds apply to αo:

L = max(0, αo + αu − C), H = min(C, αo + αu) (12.51)

Due to the linear constraint between αo and αu, the unbounded solution to the
restricted problem can be exactly determined as

αnewo = αo + so∆η (12.52)

where∆η =
(fkh(xu)− su − fkh(xo) + so)

K(xu, xu) + K(xo, xo)− 2K(xu, xo)
(12.53)

210 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

Algorithm 24 takeStep(iu, io)

1: if iu = io then return 0 end
2: compute L and H using Eq. (12.50) and Eq. (12.51)
3: if L = H then return 0 end
4: set k11 = K(xu, xu), k22 = K(xo, xo) and k12 = K(xu, xo)
5: set γ = k11 + k22 − 2k12 ;
6: if γ < 0 then
7: return 0
8: else
9: set ∆η = (f cache[iu]− su − f cache[io] + so)/γ

10: set αnewo = αo + so∆η
11: if αnewo < L then αnewo = L

else if αnewo > H then αnewo = H end
12: if |αnewo − αo| < eps(αnewo + αo + eps) then return 0 end
13: set αnewu = αu + suso(αo − αnewo)
14: set η = η −∆η
15: update f cache[i] for i ∈ I10 ∪ I20 using αnewo and αnewu
16: update the index sets using αnewo and αnewu
17: update f cache of iu and io

f cache[iu]+ = su(αnewu − αu)k11 + so(αnewo − αo)k12;
f cache[io]+ = su(αnewu − αu)k12 + so(αnewo − αo)k22

18: partially update (ijlow, bjlow) and (ijup, bjup) for j = 1, 2 as defined in Eq. (12.43) and using only iu, io
and indices in I10 ∪ I20

19: return 1

20: end if

αo= 0

αu= 0 αu= C

αo= C αo= C

αo= 0

αu= 0 αu= C

(a) suso<0

(b) suso>0

Figure 12.6: An illustration of the bound inequality constraints and linear
equality constraints for αu and αo

As a next step, we check whether αnewo satisfies the box constraint and if not, we
clip it to the ends of the line segment as shown in Algorithm 24. Using the final
value of αnewo , αu can be updated.

αnewu = αu + suso(αo − αnewo) (12.54)

12.3.4 Probabilistic Output for Tri-Class SVM

In classification phase, Tri-Class SVM produces for an input example x an un-
calibrated output fkh(x) that is not a probability as shown in Eq. (12.21). This
output represents the distance (unbiased margin) in the kernel space between
φ(x) and the separating hyperplane. Although a crisp class label can be directly
predicted from the SVM output as done in Eq. (12.22), a probabilistic outputs

12.3. Support Vector Machines (SVM) 211

Table 12.2: One-against-One Decision Profile of example x

ω1 ω2 ω3 ω4

ω1 - P12(y = 3|x) P13(y = 3|x) P14(y = 3|x)
ω2 P12(y = 1|x) - P23(y = 3|x) P24(y = 3|x)
ω3 P13(y = 1|x) P23(y = 1|x) - P34(y = 3|x)
ω4 P14(y = 1|x) P24(y = 1|x) P34(y = 1|x) -

are required in many cases. For example, if this machine is a member of an en-
semble and the individual outputs must be combined to provide the final decision
of the ensemble. Another important utilization is the confidence-based semi-
supervised, preference and active learning algorithms that depend on the class
probability estimates (CPE) to measure confidence such as Co-Training. We
derive a probabilistic interpretation for the Tri-Class SVM output fkh inspired
by the method in [196] that fits a sigmoid function on the SVM output where
Eq. (12.56) represents the doubt that input example x belongs to ωk or ωh.

Pkh(y = 1|x) =

(
1− 1

1 + exp(−(fkh(x)− b1))

)
; (12.55)

Pkh(y = 2|x) =

(
1

1 + exp(−(fkh(x)− b1))

)(
1− 1

1 + exp(−(fkh(x)− b2))

)
;

(12.56)

Pkh(y = 3|x) =

(
1

1 + exp(−(fkh(x)− b1))

)(
1

1 + exp(−(fkh(x)− b2))

)
(12.57)

12.3.5 Decision Fusion for Ensemble of Probabilistic Tri-
Class SVMs

Crisp Tri-Class SVMs are combined by a majority voting scheme to produce the
final multi-class decision for a given example x where only positive outputs are
considered in the voting scheme, so ties between classes are considered as errors.
Decision Profile of example x in Table 12.2 stores the probabilistic outputs of
K(K−1)

2
Tri-Class SVMs, derived in Eq. (12.55) to Eq. (12.57). Thus the final

probabilistic output of One-against-One ensemble of Tri-Class SVMs is defined
as follows, for each k = 1, . . . , K:

P (y = ωk|x) =

∑k−1
h=1 Phk(y = 1|x) +

∑K
h=k+1 Pkh(y = 3|x)∑K

k′=1

∑k′−1
h=1 Phk′(y = 1|x) +

∑K
h=k′+1 Pk′h(y = 3|x)

(12.58)

Note that in case of using Co-Training as shown in Section 12.2, Phk is not the
output of a single Tri-Class SVM but it represents the output of an ensemble of
SVMs as defined in Eq. (12.1).

212 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

12.4 Facial Expressions Recognition

The Cohn-Kanade dataset is a collection of image sequences with emotional con-
tent [93], which is available for research purposes. It was described in Section
7.1.5 (see Figure 7.7).

12.4.1 Feature Extraction

In all automatic facial expression recognition systems first some relevant features
are extracted from the facial image and these feature vectors then utilized to
train some type of classifier to recognize the facial expression. The details of the
feature extraction step are given in Section 7.1.5.

12.4.2 GMM Supervectors

The feature vectors extracted from a video (image sequence) should be passed to
classifiers in order to recognize the different emotions. Usually different videos
have different durations leading to feature vectors of different lengths. Since
almost all classifiers require fixed-length feature vectors as input, the stream of
feature vectors must be transformed into a fixed-length input vector. This is the
idea of GMM supervectors [37] (see Figure 12.7) which are calculated as follows:

1. Collect a general large sequence database for the universal background
model (UBM). In this study the available data is divided into training and
testing sets according to 8-fold cross validation test and the database was
built by gathering all the sequences from the current training data set.

2. Calculate the UBM. This UBM is a GMM calculated using the general
database [154]. The UBM acts as a basic model that is independent of any
emotion or individual. It is used in order to guarantee uniform representa-
tion for all possible samples. Basically, this data base should be a large set
of samples covering different person, in the state of different emotions.

3. For each image sequence, the pre-trained UBM is adapted in order to rep-
resent the information carried by the current sequence. Adaptation is per-
formed through the maximum-a-posteriori (MAP) algorithm.

4. Construct the supervector by concatenating the means of the Gaussian
mixture components of the adapted model according:

µ = [µT
1 . . .µ

T
M]. (12.59)

These vectors µ - the GMM supervectors - are then the input vectors to
the Tri-Class SVM classifiers.

12.4. Facial Expressions Recognition 213

Orientation Histogram or

Optical Flow Feature

extraction Algorithm

Video i

 Video i

 Video i

Training Videos
GMM UBM

Initial Step :

MAP Adaptation:

GMM UBM

MAP Adaptation

Orientation Histogram or

Optical Flow Feature

extraction Algorithm

Video

Input Video

μ = [μ1 , ..., μM]
T

GMM Super Vector

SMO for Tri - Class SVM

EM Algorithm

Figure 12.7: Calculation of GMM Super Vectors that is performed for
each feature type

MAP adaptation is a popular technique for adapting the UBM [154]. The basic
steps of MAP are as follows:

1. Calculate the posterior probability of each component of the model given the
current sequence. This corresponds to the probability that this component
has contributed to generating the sequence:

nm =
T∑
t=1

P (m|xt). (12.60)

Where m is a Gaussian component and xt is an image of the sequence, that
is currently used to adapt the UBM, assuming that the sequence is divided
into T images. The factor P (m|xt) is calculated through

P (m|xt) =
P (m)p(xt|m)∑M
k=1 P (k)p(xt|k)

. (12.61)

here p(xt|m) is the value of the Gaussian function representing component
m at point xt defined in Eq. (12.70).

2. Calculate the new estimate of the mean and covariance parameters, accord-

214 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

ing to the equations

Em (x) =
1

nm

T∑
t=1

P (m|xt)xt (12.62)

Em (xxT) =
1

nm

T∑
t=1

P (m|xt)xtxTt . (12.63)

3. Adapt the UBM parameters to represent the features of the current sequence
using the equations

P̂ (m) = [αmnm/T + (1− αm)P (m)]γ (12.64)

µ̂m = αmEm(x) + (1− αm)µm (12.65)

Σ̂m = αmEm(x2) + (1− αm)(Σm + µ2
m)− µ2

m (12.66)

Where P̂ (m), µ̂m and Σ̂m are the adapted weight, mean and covariance
matrix of component m, respectively.

The factor γ in Eq. (12.64) ensures that the weights sum up to one, so that
the constraints in Eq. (12.69) are satisfied. The adaptation coefficient αm is a
factor balancing the adapted values between old estimates (from the UBM) and
calculated parameters (by using MAP adaptation). The adaptation coefficient is
calculated by the following equation using a relevance factor r

αm =
nm

nm + r
. (12.67)

Note that GMM supervectors calculation is an approach to provide more
abstraction in data by clustering the images of the video around certain means,
but of course GMM supervectors do not keep temporal information.

12.4.2.1 Gaussian Mixture Models

A GMM is a semi-parametric estimation technique used to estimate a probability
density function (PDF) from a set of data points drawn from this function. The
PDF is regarded as a linear combination of M Gaussian functions (components
of the model). The value of the PDF at a point xi in the d-dimensional space is
given by

p(xi) =
M∑
m=1

P (m) · p(xi|m) (12.68)

12.5. Experimental Evaluation 215

under the constraints:

0 ≤ P (m) ≤ 1
M∑
m=1

P (m) = 1

∫
Rd
p(x|m)dx = 1 (12.69)

P (m) is the weight (prior probability) of component m and p(xi|m) is the value
of the Gaussian function described by component m. Thus, p(xi|m) can be cal-
culated as follows

p(xi|m) =
1

(2π)d/2
· |Σm|−1/2 · e−

1
2
·(xi−µm)T ·Σ−1

m ·(xi−µm) (12.70)

A GMM is completely defined by the means of its components, their covariance
matrices and their weights. In order to estimate these parameters, the well known
EM-algorithm is used [26].

12.5 Experimental Evaluation

12.5.1 Methodology

To evaluate the performance, the set of videos has been divided into training
set and test set according to 8-fold cross validation that has been conducted
5 times; consequently, each test set has 44 videos (13, 11, 10 and 10 per class,
respectively) while each training set consists of 314 videos. I selected three feature
vectors (views) to be used for Co-Training: the orientation histogram from the
mouth region (V1) and the optical flow features extracted from the full facial
region (V2) and from the mouth region (V3). For each fold, a UBM was created
using the training videos. For each view and for each video, the pre-trained
UBM is adapted in order to reflect the individual information of this video and
the mean vectors of GMM components are concatenated to form the supervector
that represent this video. The supervectors are normalized to have zero mean
and unit variance, in order to avoid problems with outliers. The one-against-one
decomposition scheme and Tri-Class support vector machines (with the Gaussian
kernel function in Eq. (12.71)) are trained from the collected supervectors where
the regularization term C = 32, the width of the kernel κ = 0.3 and tolerance
parameter of approximate optimality condition τ = 0.001.

K(x, xj) = exp(−κ
2

d∑
i=1

(xi − xji)2) (12.71)

For the GMM, various tests have been conducted to select the number of Gaus-
sian components and the type of covariance matrix to be used by the GMM kernel
function. As a result, I set the number of GMM components to two and diagonal

216 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

covariance matrix has been selected since it is a compromise between the full co-
variance matrix and the spherical model with a single scalar width parameter. In
addition, it is computationally efficient and leads to more robust GMM estimates
than full covariance matrix especially for small-sample size problems. Then, the
training set of supervectors is split randomly into two sets L and U : 10% of the
training examples of each class are used in L (9, 8, 7 and 7, respectively), while
the remaining are in U . For each pair of classes, Co-Training has been performed
until 3/4 the maximum number of iterations is reached.

12.5.2 Results and Discussion

Table 12.3 shows the average recognition rates on test sets that are summarize
graphically in Figure 12.8. The baseline results with Tri-Class SVM and one-
against-one approach using 20% labeled and no unlabeled data are given, as
well as those when the whole training set is 100% labeled, to provide an upper
bound to evaluate our framework. Not that mvEns represents the average of the
probabilistic outputs of the three Tri-Class SVMs trained on the different views
for each pair of classes as defined in Eq. (12.1).

Table 12.3: The performance of single Tri-Class SVMs, multi-view ensembles
(mvEns) and one-against-one ensembles (1v1Ens) on the facial expression recogni-
tions task

1-v-2 1-v-3 1-v-4 2-v-3 2-v-4 3-v-4 1v1Ens

20% Labeled

SVM(V1) 77.37% 58.05% 70.97% 61.20% 75.19% 64.16%
SVM(V2) 78.14% 67.06% 64.55% 70.49% 67.89% 58.42%
SVM(V3) 74.18% 65.86% 66.15% 70.03% 70.38% 59.24%
mvEns 86.56% 73.26% 79.47% 77.33% 82.76% 70.34%

20%+ Unlabeled

SVM(V1) 81.08% 61.35% 78.77% 63.25% 81.79% 65.14%
SVM(V2) 81.25% 68.91% 70.05% 73.54% 73.17% 61.10%
SVM(V3) 81.72% 70.79% 73.29% 72.34% 75.86% 62.04%
mvEns 89.53% 73.99% 83.40% 78.07% 85.77% 71.66% 86.95%

improvement

SVM(V1) 4.79% 5.69% 10.99% 3.35% 8.77% 1.52%
SVM(V2) 3.98% 2.77% 8.52% 4.32% 7.78% 4.58%
SVM(V3) 10.17% 7.49% 10.80% 3.29% 7.79% 4.71%
mvEns 3.43% 0.99% 4.95% 0.96% 3.64% 1.87%

100% Labeled

SVM(V1) 86.21% 73.71% 84.99% 75.13% 87.15% 75.25%
SVM(V2) 84.14% 77.56% 75.17% 81.36% 78.76% 70.74%
SVM(V3) 83.31% 75.67% 78.49% 76.19% 81.76% 69.62%
mvEns 93.15% 84.31% 89.52% 87.22% 91.37% 81.57% 91.45%

For all pairs of classes using 20% or 100% labeling rate, the ensemble mvEns
outperforms its member machines. For instance, the ensemble responsible to
discriminate between the first and the second class achieves 86.56% recognition
rate although its best member machine, SVM(V2), has only 78.14% accuracy.
It means that the multi-view machines are not correlated (diverse). This means
that these views are suitable to perform Co-Training since they satisfy the inde-
pendence assumption of Co-Training.

The results have shown that the performance of the individual machines are

12.6. Conclusion and Future Work 217

improved after using the unlabeled image sequences and the improvement ranges
between 10.99% and 1.52%. For instance, the accuracy of SVM(V1) responsible
to discriminate between the first and the second class increases from 77.37% to
81.08% which is 4.79% relative improvement.

Not only the base machines (SVM(V1), SVM(V2) and SVM(V3)) but also
their ensembles mvEns are improved after Co-Training where the improvement
ranges between 4.95% and 0.96%. For instance, the ensemble responsible to dis-
criminate between the first and the second class is relatively improved by 3.43%.
The ensemble resulting from combining the one-against-one multi-view ensembles
(1v1Ens) achieves an accuracy 86.95% after using the unlabeled image sequences
compared to 91.45% using the full training set. Hence, further investigation is
required to minimize this gap.

There are two different architectures to combine the one-against-one scheme
and Co-Training. The first architecture, proposed in this chapter, is to decom-
pose the given multi-class problem into a set of binary problems using the one-
against-one scheme then learning each of these binary problems through using
Co-Training. The second architecture is to train a one-against-one ensemble on
each view (feature sets) separately and to combine them using Co-Training. It
would be beneficial to study the second architecture in future work.

12.6 Conclusion and Future Work

The main objective of this chapter is to show that there is an improvement from
using unlabeled data when training one-against-one ensembles. Thus a learn-
ing framework is introduced that integrates multi-view Co-Training in the one-
against-one output-space decomposition process where Tri-Class support vector
machines are used as binary classifiers. The experiments have shown that Co-
Training improves facial expression recognition system using unlabeled videos
where the visual recognizers are initially trained with a small quantity of labeled
videos. Since Tri-Class support vector machines are retrained several times dur-
ing Co-Training iterations in order to benefit from the newly-labeled videos, a
modified version of SMO algorithm is introduced for fast learning of Tri-Class
SVMs because it is computationally expensive to use traditional quadratic pro-
gramming algorithms to solve Tri-Class SVM optimization problems. In this
experiment, GMM supervectors approach was applied to extract features from
image sequences that are used further as input for Tri-Class SVMs. The GMM
supervectors approach provides a flexible processing scheme for the classification
of any type of sequential data.

An important factor that influence the performance of any Co-Training style
algorithm is how to measure the confidence on predicting the label of an unlabeled
example which determine its probability of being selected. The results shows that
the proposed probabilistic Tri-Class SVM can provide effective estimates of class

218 Chapter 12. One-against-One Co-Training with Tri-Class SVMs

86.21

84.14

83.31

93.15

73.71

77.56

75.67

84.31

84.99

75.17

78.49

89.52

75.13

81.36

76.19

87.22

87.15

78.76

81.76

91.37

75.25

70.74

69.62

81.57

77.37

78.14

74.18

86.56

58.05

67.06

65.86

73.26

70.97

64.55

66.15

79.47

61.2

70.49

70.03

77.33

75.19

67.89

70.38

82.76

64.16

58.42

59.24

70.34

81.08

81.25

81.72

89.53

61.35

68.91

70.79

73.99

78.77

70.05

73.29

83.4

78.77

73.54

72.34

78.07

81.79

73.17

75.86

85.77

65.14

61.1

62.04

71.66

55 60 65 70 75 80 85 90 95

SVM(V1)

SVM(V2)

SVM(V3)

mvEns

SVM(V1)

SVM(V2)

SVM(V3)

mvEns

SVM(V1)

SVM(V2)

SVM(V3)

mvEns

SVM(V1)

SVM(V2)

SVM(V3)

mvEns

SVM(V1)

SVM(V2)

SVM(V3)

mvEns

SVM(V1)

SVM(V2)

SVM(V3)

mvEns
ω
1
-v
-ω

2
ω
1
-v
-ω

3
ω
1
-v
-ω

4
ω
2
-v
-ω

3
ω
2
-v
-ω

4
ω
3
-v
-ω

4

test accuracy (%)

20% and Co-Training

20% only

100%

Figure 12.8: Average test accuracy percentage of Tri-Class SVMs and
multi-view ensembles (mvEns) before and after Co-Training

probabilities that are used by Co-Training to measure confidence. There are
many interesting directions for future work.

1. The reported experimental results are preliminary, the proposed framework
will be evaluated on many real-world applications where there exist redun-
dant and independent views.

12.6. Conclusion and Future Work 219

2. Co-Training is sensitive to the initial videos that are provided as initially
labeled examples. Co-Testing [134] is a multi-view active learning method
that is inspired by Co-Training. Combining our framework with this method
to select the initial videos should provide a better starting point for Co-
Training than the random sampling currently used. This is an open issue
that deserve investigation.

3. The tree-structured approach for multi-class decomposition performs com-
parable to the one-against-one approach with less number of classifiers.
Schwenker et al. [168] applied successfully the tree-structured approach
to binary-class SVMs. Future work should study the construction of tree-
structured Tri-Class SVMs ensembles and compare them with the current
one-against-one Tri-Class SVMs implementation. The evidence-theoretic
hierarchical combination method should benefit from the fact that Tri-Class
SVM, unlike conventional SVM, can discriminate between uncertainty and
ignorance.

Chapter 13

Hierarchical Decision Templates based
RBF Network Combiner

13.1 Introduction

Any multi-class decomposition approach consists of three stages: (1) decompo-
sition of the multi-class problem into a set of simpler two-class problems, (2)
solving these two-class problems and (3) combination of the intermediate solu-
tions to yield the final decision. Ensemble methods can be divided into: Flat and
Hierarchical. Flat architectures are the most popular ones where the members
work independently disregarding the hierarchical structure of the classes. The
tree-structured approaches construct an ensemble of K-1 binary classifiers where
the objective is to improve the classification performance by taking into account
the relationship and similarity among classes encoded into the class hierarchy.

The main motivation of this study are the following: (1) A key factor for
the design of an effective ensemble is how to combine its member outputs to
give the final decision. Although there are various methods to build the class
hierarchy (first stage) and to solve the underlying binary-class problems (second
stage), there is not much work to develop new combination methods that can best
combine the intermediate results of the binary classifiers within the hierarchy
(third stage). (2) The simple aggregation rules used for flat multiple classifier
systems such as minimum, maximum, average, product and majority vote can
not be applied to hierarchical decision profiles.

This chapter presents three main contributions: (1) A new trainable fusion
method for a tree ensemble that integrates statistical information about its indi-
vidual outputs, in the form of decision templates, into the training of an Radial
Basis Function (RBF) network (Section 2.1). It is based on the assumption that
the combined classifiers have real-valued outputs (soft classifiers) and is inspired
by Stacked Generalization technique for combining multiple classifiers to improve
generalization accuracy introduced by Wolpert [202]. (2) A new similarity mea-
sure based on multivariate Gaussian function to match a decision profile with

221

222Chapter 13. Hierarchical Decision Templates based RBF Network Combiner

h1

h2 h5

Ω = {0,1,2,3,4,5,6,7,8,9}

h3 h4 h6 h8

Ω1
left = {0,1,4,7} Ω1

right = {2,3,5,6,8,9}

Ω2
left = {0,1} Ω2

right = {4, 7} Ω5
left = {2,3,9} Ω5

right = {5,6,8}

h7 h9

Ω3
left = {0}

Ω3
right = {1}

Ω4
left = {4}

Ω4
right = {7}

Ω6
left = {2}

Ω7
left = {3} Ω7

right = {9} Ω9
left = {5} Ω9

right = {6}

Ω8
left = {8}

Ω8
right = {5,6}Ω6

right = {3,9}

Figure 13.1: Class hierarchy constructed for the handwritten digits data
set

decision templates. (3) The application of the decision templates combiner pro-
posed by Kuncheva [109] for hierarchical ensembles. The work in this chapter has
been previously published ([3]).

The tree-structured ensemble learning algorithm that is used in this chap-
ter as well as the existing non-trainable decision fusion method for hierarchical
ensembles, classical decision tree-like approach, product of the unique path and
Dempster-Shafer evidence theory based method, are explained in Section 4.6. The
remainder of this chapter is organized as follows: hierarchical decision profiles,
the standard decision templates combiner and the proposed neural combiner is
presented in Section 13.2. Section 15.6 contains the results of performance evalu-
ation on nine multi-class visual object recognition tasks. Finally, the conclusion
of the chapter is in Section 13.5.

13.2 Proposed Tree Combination Method

13.2.1 Hierarchical Decision Profile

For a given class hierachy as illustrated in Figure 13.1, the binary outputs of
the K-1 internal node classifiers for each training example x can be stored in
a decision profile DP (x) as the matrix in Figure 13.2. Based on the way of
using DP (x) to find the overall support for each class k, the fusion methods are
divided by Kuncheva [107] into class-conscious and class-indifferent. The
class-conscious methods use only the kth column of DP (x) such as minimum,
maximum, average and product rules. This type of methods uses the context of
the profile but loses part of the information because it does not take into account
the columns of the other classes. On the other hand, the class-indifferent

13.2. Proposed Tree Combination Method 223

DP(x)=

Support given by h1, ..., hK-1 that x belongs to the

right (meta-)class of its corresponding node

Output of classifier hi

),(),(

),(),(

),(),(

1

1

1

1

1

1

1

1

K

right

K

leftK

righti

i

lefti

rightleft

xhxh

xhxh

xhxh

i

Figure 13.2: Decision profile for example x using tree-structured ensemble
members

methods ignore the context of the profile and use all of DP (x) as features in a
new feature space, which is called the intermediate feature space and depicted
in Figure 13.3. From Figure 13.2, one can observe that the class-conscious
fusion methods can not be used with the hierarchical decision profile because
the meta-classes are not the same at different rows. Hence, a class-indifferent
fusion method is required where the final decision of the tree ensemble is made
by another classifier that takes the intermediate feature space as input.

13.2.2 Standard Decision Templates Combiner

This trainable combiner was proposed by Kuncheva [109]. At the training phase,
a decision template (DTk) is calculated for each class k as the mean of the decision
profiles of the training examples belonging to class k.

DTk =
1

Nk

∑
yi=k

DP (xi) (13.1)

At the classification phase, the decision profile for an instance x is matched to
the K decision templates using a similarity measure. The class label with the
closest decision template will be assigned to x. In [109], Kuncheva discussed 11
different similarity measures and compared them with 14 other techniques. The
most popular similarity measures are S1 measure,

µk(x) = S1(DP (x), DTk) =

∑K−1
i=1

∑2
j=1min(dp(i, j), dtk(i, j))∑K−1

i=1

∑2
j=1max(dp(i, j), dtk(i, j))

(13.2)

and the normalized Euclidean distance,

µk(x) = N(DP (x), DTk) = 1− 1

(K − 1)× 2

K−1∑
i=1

2∑
j=1

(dp(i, j)− dtk(i, j))2 (13.3)

This combination rule is equivalent to applying the nearest mean classifier (Sec-
tion 2.2.3) in the profile space.

224Chapter 13. Hierarchical Decision Templates based RBF Network Combiner

 +

- +

 +

 + +

 +

 +
 +

-

-

-

-

-
-

-

-

 +

 +

 +

-

-

 +
-

(a) D-dimensional input space

x

x

x

x

x

x

x

x

DP(-)

DP(+)

DP(-)

DP(-)

DP(-)

DP(-)

DP(-)

DP(-)

DP(-)

DP(-)

DP(-)

DP(-)DP(-)

DP(+)

DP(+)

DP(+)
DP(+)

DP(+)

DP(+)

DP(+)

DP(+)

DP(+)
DP(+)

DP(+)

DT1

DT2

DT3

DT4

DT5

DT6

DT7

DT8

(b) 2×(K-1)-dimensional intermediate fea-
ture space (Profile Space)

Figure 13.3: An illustrative example for data transformation

13.2.3 RBF Network Combiner using Decision Templates

An RBF network classifier (Section 2.1) is applied in the intermediate feature
space instead of the nearest mean classifier applied by the above Decision Tem-
plates combiner. Multivariate Gaussian function φj is used as an RBF at hidden
nodes. Since the hidden layer applies a nonlinear transformation to the input
data, class separation should be much easier in the profile space (see Figure 13.3).
The output vector f for a given instance x is produced at the final output layer
from the weighted summation of the activations of the Gaussian kernels φj’s.

fk(x) =
K×c∑
j=1

wjkφj(‖DP (x)−DTj‖) where k = 1, . . . , K (13.4)

The two-phase learning procedure discussed in Section 2.1.2 is used for training
RBF network combiner using the same training set that is used to construct
the ensemble members. In the first phase, for each class k, c decision templates
are calculated by applying c-means clustering algorithm (Section 2.1.4.1) on the
decision profiles of all training examples that belong to class k. After clustering,
the K × c clustered decision templates are used as the RBF centers. Then the
width of the jth RBF (σj) is set to the distance between the decision template
DTj and the nearest template of different class multiplied by α as in Eq. (13.5)
where α should control the degree of overlap between adjacent Gaussian nodes
(in our experiments, α=1).

σj = α min
i=1,...,K×c

{
‖DTj −DTi‖2 : i 6= j, class(DTi) 6= class(DTj)

}
(13.5)

13.3. Experimental Results 225

Then, the radial basis function φj is defined as follows,

φj(‖DP (x)−DTj‖) = exp(−
‖DP (x)−DTj‖2

2

2σ2
j

) (13.6)

Then, in the second learning phase the output layer weights W are determined by
minimizing the MSE at the network output by a matrix pseudo-inverse technique
using singular value decomposition, W = Φ+T , where T is the matrix of target
outputs of the m training examples where the 1-out-of-K coding scheme is used
and Φ is the activation matrix,

Φij = φj(‖DP (xi)−DTj‖)i=1,...,m
j=1,...,K×c (13.7)

Therefore, calculating the pseudo-inverse of Φ provides a least squares solution to
the system of linear equations T = ΦW . This direct computation is faster than
the gradient descent optimization and yields good classification results. After
this step, all parameters of the RBF network have been determined and it can be
used as a combination method for the tree-structured ensemble.

13.3 Experimental Results

13.3.1 Methodology

An experimental study is conducted to compare the proposed tree combiner
(RBFN) with classical decision tree-like approach (Hard), product of the unique
path combiner (Product), Dempster-Shafer evidence theory based combiner (DS)
and standard Decision Templates combiner using S1 measure (DT:S1) and nor-
malized Euclidean distance (DT:NM). The two-phase learning algorithm used to
train the RBFN tree combiner is used also to learn the binary RBF network clas-
sifier at each node. Except that meta-class specific c-means clustering algorithm
(with c = 10) is applied independently to the training examples that belong to
each meta-class. The nine real-world data sets used in this study are described
in Table 7.1 in Chapter 7. For simplicity, Fruits1 denotes the colorhist3x3 feature
type and Fruits2 denotes the sobel4x4 feature type for the fruits recognition task.
For the COIL20 recognition task, COIL1 denotes the colorhist1x1 feature type
and COIL2 represents the orienthist2x2 feature type. For the digits recognition
task, Digits1 refers to the pca-40 feature type and Digits2 denotes the image-
vector feature type. I intentionally select data sets with variance in number of
features, number of classes and number of examples. All implementation was
carried out using the WEKA library [201].

For each data set and tree combiner, 5 runs of 10-fold cross-validation have
been performed. The (Win/Tie/Loss) record presents three values, the number
of data sets for which algorithm A is significantly better, equal, or worse than

226Chapter 13. Hierarchical Decision Templates based RBF Network Combiner

algorithm B with respect to classification accuracy, using corrected paired t-test,
see Section 7.2.3, implemented in WEKA at 0.05 significance level. The accuracy
in our experiments is less than the results on the same data sets reported elsewhere
because we use a random subset of the available data to save computation time.
Our main concern is the relative accuracy between different combiners.

13.3.2 Results

Table 13.1 shows the average test accuracies and standard deviations. For each
data set, the highest accuracy achieved is bold faced. The result with bullet(•)/open
circle(◦) mark indicates that the RBFN combiner is significantly better/worse
than the respective combiner for the respective data set. We conclude that the
RBFN combiner significantly outperforms Hard, Product and DS combiners in
seven of the nine domains and its behavior is statistically indistinguishable in the
remaining two domains. In addition, the RBFN combiner is significantly superior
to the DT:S1 and DT:NM in eight and seven of the nine domains, respectively.

Table 13.1: RBF Network against the other tree combiners, using 100% of the data

Dataset RBFN(c=3) Hard Product DS DT:S1 DT:NM
Fruits1 97.05 ± 1.82 95.95 ± 2.15 96.26 ± 1.94• 96.21 ± 1.99 95.76 ± 2.48 96.52 ± 1.95
Fruits2 94.90 ± 2.44 92.21 ± 3.68• 92.79 ± 3.25• 92.86 ± 3.35• 92.64 ± 3.06• 93.67 ± 2.76•

COIL1 93.89 ± 2.07 89.08 ± 2.14• 90.81 ± 1.74• 90.54 ± 2.13• 88.60 ± 2.32• 91.33 ± 2.10•

COIL2 98.75 ± 0.86 95.94 ± 1.82• 97.72 ± 1.24• 97.21 ± 1.25• 94.15 ± 1.70• 96.54 ± 1.32•

Digits1 93.58 ± 1.84 84.19 ± 2.72• 88.88 ± 2.37• 87.68 ± 2.56• 91.82 ± 2.06• 92.13 ± 2.16•

Digits2 94.46 ± 1.61 92.11 ± 2.03• 92.61 ± 1.50• 92.90 ± 1.64• 92.38 ± 1.80• 93.24 ± 1.53•

Letters 80.37 ± 2.74 68.74 ± 4.34• 73.29 ± 3.93• 72.11 ± 4.07• 71.15 ± 3.22• 73.24 ± 3.12•

Texture 96.27 ± 1.74 94.45 ± 1.92• 95.73 ± 1.88 95.05 ± 1.87• 93.65 ± 2.07• 94.45 ± 1.68•

Satimage 87.92 ± 2.53 87.49 ± 2.39 87.68 ± 2.61 87.67 ± 2.56 86.17 ± 2.96• 86.59 ± 2.83
ave. 93.02 88.91 90.64 90.25 89.59 90.86

(Win/Tie/Loss) (0/2/7) (0/2/7) (0/2/7) (0/1/8) (0/2/7)

13.3.3 Influence of the Training Set Size

One might expect that the performance of RBFN combiner would be very poor
with small training sets because it is a trainable combiner. To study the influence
of the training set size, we evaluate the different tree combiners using only 40%
of the available training set (see Table 13.2). The significance is again indicated
with bullets and open circles. From the results, we conclude that sample size has
no apparent influence on the benefits of RBFN combiner because it still works
very well with small samples. That is, RBFN combiner significantly outperforms
Hard, Product, DS, DT:S1 and DT:NM combiners in eight, six, seven, nine and
seven of the nine domains, respectively.

In addition, we observe the behavior of the different tree combiners when the
labeled training set size is increased to 60% and 80% of the available data (see
Table 13.3 and Table 13.4). For the case of 60%, one can conclude that RBFN

13.3. Experimental Results 227

Table 13.2: RBF Network against the other tree combiners, using 40% of the data

Dataset RBFN(c=3) Hard Product DS DT:S1 DT:NM
Fruits1 96.10 ± 1.88 94.74 ± 2.26• 94.95 ± 2.33 95.21 ± 2.31 94.31 ± 2.03• 95.24 ± 2.11
Fruits2 92.83 ± 3.11 90.62 ± 3.09• 89.86 ± 3.79• 90.31 ± 3.69• 90.05 ± 3.56• 90.69 ± 3.55•

COIL1 93.15 ± 2.27 86.83 ± 2.53• 88.68 ± 2.42• 88.54 ± 2.27• 86.96 ± 2.67• 89.35 ± 2.76•

COIL2 97.94 ± 1.14 93.93 ± 2.00• 95.82 ± 1.58• 95.46 ± 1.74• 91.88 ± 2.09• 94.61 ± 1.83•

Digits1 92.01 ± 1.81 82.09 ± 2.97• 86.58 ± 2.72• 85.10 ± 2.74• 89.95 ± 1.99• 90.30 ± 1.85•

Digits2 93.78 ± 1.64 91.27 ± 2.03• 91.68 ± 2.05• 91.90 ± 1.87• 91.49 ± 1.97• 92.72 ± 1.73•

Letters 78.21 ± 3.05 65.06 ± 4.06• 69.70 ± 3.43• 68.66 ± 3.66• 68.66 ± 3.49• 70.66 ± 3.79•

Texture 95.33 ± 1.89 93.53 ± 1.94• 94.33 ± 2.18 94.02 ± 2.01• 92.51 ± 2.41• 93.38 ± 2.15•

Satimage 87.32 ± 3.12 86.19 ± 2.93 86.58 ± 2.95 86.44 ± 2.98 85.70 ± 3.13• 86.06 ± 3.40
ave. 91.85 87.14 88.69 88.40 87.94 89.22

(Win/Tie/Loss) (0/1/8) (0/3/6) (0/2/7) (0/0/9) (0/2/7)

combiner significantly outperforms Hard, Product, DS and DT:S1 combiners in
seven, six, seven and nine of the nine domains, respectively. For the case of 80%,
one concludes that RBFN combiner significantly outperforms Hard, Product, DS
and DT:S1 combiners in eight, six, seven and eight data sets, respectively.

Table 13.3: RBF Network against the other tree combiners, using 60% of the data

Dataset RBF Network Hard Product DS DT:S1
Fruits1 96.57(2.13) 95.57(2.14) 95.88(1.90) 95.83(2.04) 95.31(2.02)•

Fruits2 93.88(2.19) 91.24(3.48)• 91.14(3.19)• 91.33(3.32)• 91.40(2.70)•

COIL1 93.38(2.31) 87.72(3.03)• 89.43(2.23)• 89.21(2.52)• 87.74(2.33)•

COIL2 98.21(1.10) 94.85(2.11)• 96.69(1.51)• 96.19(1.58)• 92.69(2.30)•

Digits1 92.88(1.88) 82.98(2.56)• 87.75(2.62)• 86.39(2.64)• 91.09(2.10)•

Digits2 94.36(1.49) 91.74(1.78)• 92.07(1.41)• 92.44(1.67)• 92.02(1.92)•

Letters 79.34(2.99) 66.54(3.76)• 71.17(3.35)• 69.71(3.48)• 70.01(3.28)•

Texture 95.69(1.65) 93.62(2.14)• 94.78(1.99) 94.27(2.10)• 92.40(2.41)•

Satimage 87.53(2.90) 86.56(3.02) 86.86(2.93) 86.58(3.10) 85.70(3.48)•

ave. 92.43 87.87 89.53 89.11 88.71
(Win/Tie/Loss) (0/2/7) (0/3/6) (0/2/7) (0/0/9)

Table 13.4: RBF Network against the other tree combiners, using 80% of the data

Dataset RBF Network Hard Product DS DT:S1
Fruits1 97.31(1.80) 96.02(2.11)• 96.26(2.33) 96.14(2.08) 95.86(2.31)•

Fruits2 94.90(2.84) 92.43(3.35)• 92.26(3.12)• 92.45(3.35)• 92.31(2.63)•

COIL1 93.90(2.13) 88.11(2.27)• 90.31(2.20)• 89.67(2.07)• 88.31(2.59)•

COIL2 98.49(1.20) 95.38(2.08)• 97.35(1.45)• 96.86(1.57)• 93.44(1.86)•

Digits1 93.27(2.03) 83.69(2.72)• 88.43(2.54)• 87.13(2.57)• 91.31(2.12)•

Digits2 94.23(1.73) 91.77(1.73)• 92.42(1.65)• 92.57(1.57)• 92.22(1.84)•

Letters 80.01(3.07) 67.96(4.35)• 72.49(3.67)• 71.46(3.97)• 70.84(3.11)•

Texture 95.91(1.88) 94.24(2.06)• 95.29(2.15) 94.78(1.95)• 93.35(2.11)•

Satimage 87.48(3.02) 87.20(2.73) 87.26(2.80) 87.17(2.88) 86.23(2.94)
ave. 92.83 88.53 90.23 89.80 89.32

(Win/Tie/Loss) (0/1/8) (0/3/6) (0/2/7) (0/1/8)

228Chapter 13. Hierarchical Decision Templates based RBF Network Combiner

13.3.4 Influence of Number of Decision Templates per
Class

In all the previous experiments, RBFN combiner was trained with 3 clustered
decision templates per class (c=3). To study the influence of the number of de-
cision templates per class, we measured test accuracies of the RBFN combiner
using one, 7, 10, 15 and 20 decision templates per class (see Table 13.5). The sig-
nificance is again indicated with bullets and open circles. From the results, we can
conclude that RBFN combiner with c >3 significantly outperforms RBFN with
c=3 in only three data sets and the improvement is insignificant in the remaining
domains. In addition, RBFN combiner with c =3 significantly outperforms RBFN
with c=1 in seven of the nine tasks. Although the RBFN combiner with c=1 and
both Decision Templates combiners are trained with one decision template per
class, RBFN combiner outperforms both Decision Templates combiners (DT:S1

and DT:NM) due to its trainable output layer and nonlinear behavior.

Table 13.5: Average test accuracy for RBF Network combiner with different number
of clustered decision templates per class (c), using 100% of data

Dataset RBFN(c=3) RBFN(c=1) RBFN(c=7) RBFN(c=10) RBFN(c=15) RBFN(c=20)
Fruits1 97.05 ± 1.82 96.83 ± 1.87 97.31 ± 1.78 97.38 ± 1.61 97.52 ± 1.81 97.36 ± 1.76
Fruits2 94.90 ± 2.44 93.67 ± 2.81• 95.14 ± 2.42 95.24 ± 2.49 95.26 ± 2.58 95.55 ± 2.41
COIL1 93.89 ± 2.07 92.25 ± 2.17• 95.33 ± 1.90◦ 96.15 ± 1.83◦ 96.68 ± 1.71◦ 96.74 ± 1.61◦

COIL2 98.75 ± 0.86 97.12 ± 1.32• 99.57 ± 0.52◦ 99.76 ± 0.41◦ 99.88 ± 0.30◦ 99.92 ± 0.27◦

Digits1 93.58 ± 1.84 92.67 ± 1.98• 94.10 ± 1.71 94.20 ± 1.72 94.13 ± 1.66 94.26 ± 1.74
Digits2 94.46 ± 1.61 93.76 ± 1.67• 94.70 ± 1.50 94.78 ± 1.64 94.86 ± 1.63 94.96 ± 1.51
Letters 80.37 ± 2.74 75.14 ± 3.42• 83.93 ± 2.65◦ 85.06 ± 2.93◦ 86.36 ± 2.42◦ 87.27 ± 2.75◦

Texture 96.27 ± 1.74 95.13 ± 1.91• 96.93 ± 1.62 97.05 ± 1.50 97.25 ± 1.37 97.27 ± 1.54
Satimage 87.92 ± 2.53 87.59 ± 2.69 88.27 ± 2.35 88.20 ± 2.35 88.13 ± 2.26 87.92 ± 2.35
ave. 93.02 91.57 93.92 94.20 94.45 94.58

(Win/Tie/Loss) (0/2/7) (3/6/0) (3/6/0) (3/6/0) (3/6/0)

13.4 Related Work

In [53], Dietrich et al. introduced the concept of multiple decision templates per
class in the context of time series classification. They described two types of
decision template: temporal decision templates and clustered decision templates.
For each time series, a temporal decision template for its associated class is com-
puted through the average of the decision profiles defined over all time windows.
Thus, the number of decision templates per class is the number of training time
series belonging to this class. For each class, the clustered decision templates
are determined by clustering the decision profiles for each time series through a
clustering algorithm such as k-means, fuzzy k-means or Kohonens self organised
feature map.

13.5. Conclusion and Future Directions 229

13.5 Conclusion and Future Directions

In this chapter, a new soft trainable fusion method for tree-structured multi-
ple classifier systems, used in multi-class problems, is introduced. The proposed
model integrates statistical information about the individual binary classifier out-
puts (in the form of clustered decision templates) into an RBF network combiner.
Multivariate Gaussian function was used as similarity measure to match a hierar-
chical decision profile with decision templates. Not only RBF network was used
as combiner but also it was used to construct the ensemble classifiers. The ex-
periments were conducted on nine real-world multi-class object recognition tasks
including digits, letters, fruits, 3d objects and textures. The experiments have
shown that the RBF Network tree combiner significantly outperforms the three
existing non-trainable tree combiners and the decision templates based combiner
proposed by Kuncheva. The results also demonstrate that this neural combiner
is robust to changes in the training set size and the number of decision templates
per class. As a future work, further study should investigates the exploitation of
the available abundant unlabeled data to improve the performance of the neural
combiner. To the best of my knowledge, although there is a lot of work that
study the benefits of unlabeled data on base classifiers, there is no work devoted
to study incorporating unlabeled data in the training of combination rules.

Dietrich et al. [53] suggest that the second training set R, on which the
combiner should be trained, may be partly overlapping with the first training set
used for the individual classifiers L. In this current work, the same the training set
is used to train the neural combiner and the individual classifiers (R = L). Further
work should study the influence of training the neural combiner using a different
training set. In addition, it should investigate the influence of overlapping both
R and L with different degrees on the performance of the neural combiner.

Chapter 14

Multi-View Forest

This chapter proposes a new ensemble method that constructs an ensemble of
tree-structured classifiers using multi-view learning. An ensemble can outperform
its individual classifiers if these classifiers are diverse and accurate. In order to
construct diverse individual classifiers, in this chapter it is assumed that the
object to be classified is described by multiple feature sets (views). The aim is to
construct different tree classifiers using different combinations of views to improve
the accuracy of the multi-class learning (Chapter 4). For the decision fusion of
the binary classifiers within each tree classifier, Dempster’s unnormalized rule of
combination is applied and an evidence-theoretic decision profile is proposed to
combine the decisions of different trees. Experiments have been performed on two
real-world data sets: a data set of handwritten digits, and another data set of 3D
visual objects. The results indicate that the proposed forest efficiently integrates
multi-view data and outperforms the individual tree classifiers. The work in this
chapter has been previously published ([6, 1, 11]).

14.1 Introduction

The growing interest in combining classifiers is due to the fact that finding the
best individual classifier for a classification task is difficult from a statistical,
computational and representational perspective (Chapter 3). The use of multiple
classifiers allows the exploitation of complementary discriminating information
that the group of classifiers may provide. Therefore, the objective of combining
such a group of classifiers is to produce a more accurate classifier decision than a
single classifier. The main motivation for proposing the new ensemble method is
the fact that error diversity is an essential requirement to build an effective clas-
sifier ensemble. Diversity among classifiers means that they have independent
(uncorrelated) errors. Many approaches for constructing ensembles of diverse
individual classifiers have been developed. One approach is based on combin-
ing classifiers trained on different training sets, i.e. bagging [31] and boosting

231

232 Chapter 14. Multi-View Forest

[65]. Another approach to promote the diversity is based on combining classifiers
trained on different feature subsets, such as Random Subspace Method [82] and
Random Forests [32]. In general, feature subset selection is time-consuming and
sometimes deleting some of the features degrades the performance of the indi-
vidual classifiers due to the potential loss of information. Hence this approach is
efficient only if the features are redundant.

In this chapter, a new ensemble method, denoted as Multi-view Forest, is
proposed, a set of tree-structured ensembles (Chapter 4.6) are chosen as the base
classifiers. Tree classifiers are used to decompose multi-class recognition problems
into less complex binary classification subtasks. At the classification phase, a soft
combination rule based on Dempster-Shafer evidence theory is applied to fuse the
intermediate results of the node classifiers and to provide the final class probability
estimates (CPE) of each tree t. After that the CPEs provided by different trees
Ht are combined to provide the final decision of the forest. Due to the diversity
among trees, we expect that the forest will outperform its member trees.

14.2 Multi-View Forest

A multi-view forest is an ensemble of tree-structured classifiers, and a tree classifier
can be seen as a hierarchical ensemble of binary classifiers which solves a multi-
class classification task using a single feature set (called Single-View Tree) or even
a group of feature sets, then it is called Multi-View Tree. Let L = {(Xµ, yµ)|Xµ =

(x
(1)
µ , . . . , x

(n)
µ), yµ ∈ Ω, µ = 1, . . . ,m} be the training data set where Xµ is an

example described by n Di-dimensional feature vectors x
(i)
µ ∈ RDi , yµ denotes

the class label of Xµ and Ω = {ω1, . . . , ωK} is the set of classes. Let H1, . . . , HN

denote the N tree classifiers that constitutes a multi-view forest (see Figure 14.1).
The proposed method as any multi-view learning algorithm is applied only in real-
world domains where each example is represented by two or more sufficient and
independent sets of features.

14.2.1 Multi-View Learning

Multi-view learning is based on the assumption that each pattern is represented
by multiple types of features obtained through different physical sources and
sensors or derived by different feature extraction procedures. For example, a web
page can be represented by different views, e.g. a distribution of words used
in the web page, hyperlinks that point to this page, and any other statistical
information. Multi-view learning was introduced for semi-supervised learning by
Blum and Mitchell in the context of Co-training [30], where they proved that
having multiple representations of a particular object can improve the classifier
performance using unlabeled data.

14.2. Multi-View Forest 233

hN1

hN2

hN3
ω1

ω2

ω3 ω4

Ω2 Ω3

Ω5

ω4

h11

h12 h13

ω1 ω2 ω3

Ω2 Ω3

H1 HN

FCM

ht1

ht2

ht3

ω1

ω2

ω3 ω4

Ω2 Ω3

Ω4

Ht

Xµ = (xµ
(1), xµ

(2), ..., xµ
(n))

H1(Xµ, ωk) HN(Xµ, ωk)

Ht(Xµ, ωk)

H(Xµ, ωk)

xµ
(v(1))

xµ
(v(2)) xµ

(v(3))
xµ

(v(2))

xµ
(v(1))

xµ
(v(3))

xµ
(v(1))

xµ
(v(2))

xµ
(v(3))

Figure 14.1: An illustration of a Multi-View Forest

Multi-view learning has been applied in clustering as well, for instance Gupta
and Dasgupta [75] proposed a multi-view hierarchical clustering algorithm (see
Algorithm 25 and Figure 14.2). It depends on the assumption that different
views may have different distance measures leading to different clusterings. This
method seems to work better than taking a linear combination of the distance
measures, or appending the different feature sets together into a single feature
vector. A tree structure is constructed through a bottom-up approach where the
best feature set (view) is selected for each node in the tree. To select the best
feature set, agglomerative clustering is applied at each feature space to produce a
pair of clusters. Intuitively, the required best feature set is the one that provides
the most well-separated clusters. The SD validity index [76] is used to measure
the quality of each pair of clusters. Its definition is based on the concepts of total
separation between clusters (inter-cluster distance) and average compactness of
clusters (intra-cluster distance).

14.2.2 Tree-Structured Multi-class Decomposition

The task of the tree-structured approach as shown in Algorithm 4 is to decom-
pose a given K-class problem into a set of simpler K-1 binary problems and to
train classifiers to solve the binary problems at the internal nodes within the tree

234 Chapter 14. Multi-View Forest

Figure 14.2: Dendrograms constructed for digits data represented by:
image-vector (fs1), and orientation histograms (fs2).

through a base learning algorithm (BaseLearn). In the classification phase, for
a given instance x, the intermediate results of the internal classifiers are com-
bined through a given combination method (TreeCombiner) to produce the final
decision of the ensemble.

Figure 14.3: Multi-View Tree constructed using Bottom-Up approach for
Fruits data represented by: Color histograms (x1), orientation histograms
utilizing canny edge detector (x2) and orientation histograms using oppo-
nent colors red and green (x5).

14.2.2.1 Generate Class Hierarchy

There are various ways to build the tree structure, e.g. user-defined and class-
similarity based approaches. In the handwritten digits recognition problem for
instance, the user might construct two meta-classes by separating the digits
{0, 1, 2, 3, 4} in one meta-class and the rest in the other meta-class. If the class
hierarchy takes into account the relationships among classes, it provides impor-
tant domain knowledge that might lead to improve the classification accuracy

14.2. Multi-View Forest 235

Algorithm 25 BuildNode - (Bottom-Up Approach)

Require: set of classes assigned to tree node j (Ωj), set of centroids of classes in
meta-class Ωj (Cj)

1: if |Ωj| = 1 then
2: Add a leaf node j to hierarchy that represents class Ωj

3: else
4: Add an internal node j to hierarchy that represents meta-class Ωj

5: for i = 1 to n do
6: Initially, put each class in Ωj in a separate cluster
7: repeat
8: Get the two most close clusters in Ωj

9: Merge these two clusters into a new cluster
10: until the number of remaining clusters is two
11: Denote the remaining clusters, Ω

(i)
2j and Ω

(i)
2j+1

12: Calculate the SD validity index,

SDi =
distance between clusters Ω

(i)
2j and Ω

(i)
2j+1

average compactness of clusters Ω
(i)
2j and Ω

(i)
2j+1

13: end for
14: Get the best view split, i∗ = arg max1≤i≤n SDi

15: C2j ← set of centroids of classes in Ω
(i∗)
2j

16: BuildNode(Ω
(i∗)
2j , C2j)

17: C2j+1 ← set of centroids of classes in Ω
(i∗)
2j+1

18: BuildNode(Ω
(i∗)
2j+1, C2j+1)

19: end if
20: return hierarchy

Figure 14.4: Single-View Tree constructed using Top-Down approach for
digits

236 Chapter 14. Multi-View Forest

Algorithm 26 BuildNode - (Top-Down Approach)

Require: set of classes assigned to tree node j (Ωj), set of centroids of classes in
meta-class Ωj (Cj)

1: if |Ωj| = 1 then
2: Add a leaf node j to hierarchy that represents class Ωj

3: else
4: create an internal node j that represents meta-class Ωj

5: Add nodej to hierarchy
6: for i = 1 to n do
7: Get the two most distant classes in Ωj: (cj1, ωj1), (cj2, ωj2)

8: {Ω(i)
2j ,Ω

(i)
2j+1} = seeded-k-means(Cj, cj1, cj2)

9: Calculate the SD validity index,

SDi =
distance between clusters Ω

(i)
2j and Ω

(i)
2j+1

average compactness of clusters Ω
(i)
2j and Ω

(i)
2j+1

10: end for
11: Get the winner view, i∗ = arg max1≤i≤n SDi

12: C2j ← set of centroids of classes in Ω
(i∗)
2j

13: BuildNode(Ω
(i∗)
2j , C2j)

14: C2j+1 ← set of centroids of classes in Ω
(i∗)
2j+1

15: BuildNode(Ω
(i∗)
2j+1, C2j+1)

16: end if
17: return hierarchy

[105]. That is, the class hierarchy should satisfy the well-known cluster assump-
tion: similar classes should belong to the same meta-class while dissimilar classes
should be apart. Therefore, in this study we adapted two approaches that ex-
ploit the similarity among classes: the bottom-up approach defined in Algorithm
25 and the top-down approach defined in Algorithm 26. The resultant binary
tree has K leaf nodes, one for each original class and K-1 internal nodes, each
associated with two (meta-)classes and a binary classifier.

In the bottom-up approach, the multi-view hierarchical clustering algorithm
proposed by Gupta and Dasgupta [75] is followed. In the top-down approach, the
tree structure is generated by recursively applying k-means clustering algorithm
[123] at each node j to split its associated set of classes Ωj into two disjoint
subsets Ω2j and Ω2j+1, until every subset contains exactly one class. In this
study, the distance between classes ωi and ωk is the Euclidean distance between
the centroid of the training examples that belong to class ωi and that of the
examples belonging to class ωk. To find the best view to split the set of classes,
different splits are evaluated using an evaluation measure such as the SD validity
index or impurity measures such as the Entropy or Gini index.

14.3. Forest Classification Phase 237

14.2.2.2 Train Binary Classifiers

In the second step, a binary classifier hj is trained for each internal node j using
the corresponding training instances Lj such as a support vector machine or a
radial basis functions network.

14.3 Forest Classification Phase

Two different strategies to combine the decisions of tree-structured binary clas-
sifiers, defined in Section 4.6.2, have been used throughout this study : decision-
tree-like combination and a combination scheme which is derived from the Demp-
ster’s rule of combination. These schemes are rather different in terms of com-
plexity and output type (crisp vs. soft).

14.3.1 Evidence-theoretic Soft Combiner

Let xu be a given example to be classified by a multi-view forest. Classifying xu
means assigning on of the classes in Ω to it. Using the vocabulary of D-S theory,
Ω can be called the frame of discernment of the task where hypothesis θk means
that “the given instance xu belongs to class ωk“. In addition, each internal node
classifier hj is considered as a source of evidence providing that it is soft classifier
(hj : Rd×{Ω2j,Ω2j+1} → [0, 1]). The final decision is a combination of knowledge
extracted from different sources: (i) binary classifier, (ii) tree ensemble of K-1
binary classifiers and (iii) the forest ensemble of trees.

14.3.1.1 Evidence from an individual node classifier

Consider an internal node j within a tree, let us define a local frame of discernment
Θj:

Θj = {Θ2j,Θ2j+1} (14.1)

where hypothesis Θ2j means that “the given instance xu belongs to meta-class
Ω2j and Θ2j+1 means that “it belongs to meta-class Ω2j+1“.

Since hj is a source of evidence, it can be represented by a BBA mj. Usually,
not all classifiers produce outputs that satisfy the conditions of BBA:

mj(∅) = 0 and
∑
A⊆Θ

mj(A) = 1. (14.2)

In this case, the outputs of classifier hj are transformed into BBA as follows: (1)
all negative values are set to zero, (2) if the sum of a classifier outputs is greater
than one, it is normalized to sum up to one. if hj(xu,Ω2j) (hj(xu,Ω2j+1)) is high,
a high belief is assigned to hypothesis Θ2j (Θ2j+1).

238 Chapter 14. Multi-View Forest

Discounting Technique is used to propagate the outputs of high-level classi-
fiers to the classifiers at the lower levels. That is, the output of each internal node
classifier hj is multiplied by the BBA of its parent node classifier mpar(j) where
the root node classifier output is not discounted. The motivation for discounting
is the fact that a number of classifiers will be enforced to classify examples that
actually belong to classes that are unknown to them. For instance, a classifier hj
that discriminates between Ω2j = {ω1, ω5} and Ω2j+1 = {ω2, ω6} has to classify an
example xu belonging to class ω3. In this case, it is desirable that hj(xu,Ω2j) and
hj(xu,Ω2j+1) tends to zero but at the real situation, for instance if hj is a support
vector machine (Section 2.4), either of them may tend to one. If at least one
classifier within a certain path gives a low response to instance xu, this leads to
weaken any undesirable high responses. Therefore, BBA mj is defined as follows:

mj(Θ2j) = mpar(j)(A).hj(xu,Ω2j) (14.3)

mj(Θ2j+1) = mpar(j)(A).hj(xu,Ω2j+1) (14.4)

mj(Θ) = 1−mj(Θ2j)−mj(Θ2j+1) (14.5)

mj(B) = 0 ∀B ∈ 2Θ − {Θ,Θ2j,Θ2j+1} (14.6)

where A = Θ2.par(j) if j = 2.par(j) (node j lies at the left subtree of its par-
ent node) and similarly A = Θ2.par(j)+1) if j = 2.par(j) + 1. Note that mj(Θ)
represents the doubt in hj.

14.3.1.2 Evidence from all K-1 node classifiers within tree

Following Dempster’s unnormalized rule of combination, the BBAs from the K-1
internal node classifiers within a class hierarchy t are conjunctively combined in
order to calculate the evidence about a hypothesis θk (degree of belief provided
by Ht that an example xu belongs to ωk).

µ
(t)
k (xu) = m(t)(θk) =

∑
∩Aj=θk

∏
1≤j≤K−1

mj(Aj) where Aj = Θ2j, Θ2j+1, or Θ

(14.7)
and

m(t)(Θ) =
∏

1≤j≤K−1

mj(Θ) (14.8)

where m(t)(Θ) represent the conflict among the internal classifiers h1, . . . , hK−1.

14.3.1.3 Evidence from all trees within a forest

Each single-view tree or multi-view tree Ht provides a mass distribution m(t)

describing the beliefs in the membership of an example xu to the K classes. These

14.4. Application to Visual Object Recognition 239

DP(x)=

Beliefs given by H1, ..., HN in the

hypotheses that x belongs to the class ωk

Beliefs in the hypotheses

given by class hierarchy Ht

)()()()(

)()()()(

)()()()(

)()()(

1

)(

)()()(

1

)(

)1()1()1(

1

)1(

N

K

N

k

NN

t

K

t

k

tt

Kk

mmmm

mmmm

mmmm

Figure 14.5: An illustration of evidence-theoretic decision profile

beliefs are stored in a matrix DP (x) that is called evidence-theoretic decision
profile (see Figure 14.5). Based on this profile, the overall support for each class
ωk can be obtained using either class-conscious or class-indifferent combination
methods [107]. The class-conscious methods use only the kth column of DP (x)
such as average, minimum, maximum and product rules. The class-indifferent
methods ignore the context of DP (x) and use all of DP (x) as features in a new
feature space, which is called the intermediate feature space. In the experiments,
the class-conscious methods are used while the class-indifferent methods will be
investigated in a future work.

14.4 Application to Visual Object Recognition

14.4.1 Results on the Fruits Data Set

The fruits data set defined in Section 7.1.1 (see Figure 7.2) was used for per-
formance evaluation. Five different feature sets (views) were extracted: color
histograms (fs1), orientation histograms utilizing canny edge detection (fs2),
utilizing sobel edge detection (fs3), utilizing opponent colors black and white
(fs4) and utilizing opponent colors red and green (fs5) (see [60] for more de-
tails). The results are the average of 10 runs of 10-fold cross-validation (CV).
First,we construct a tree classifier for each possible combination of views, lead-
ing to 31 classifiers for 5 feature sets. For the representation of feature sets, the
binary string representation is chosen where each view is represented by N bits
(N : number of features in the full set). Each bit represents the presence (1) or
absence (0) of that feature set in the view set. For instance, if N=4, then string
1001 means that only fs1, fs4 are used to select best view at each node of the
tree. The Bottom-Up approach defined in Algorithm 25 is used to build the class
hierarchies. The radial basis function (RBF) networks with 16 RBF neurons were
used as binary classifiers (see Algorithm 12 in Chapter 8).

Table 14.1 shows the results of using all the possible combinations of views

240 Chapter 14. Multi-View Forest

Table 14.1: Mean accuracy and standard deviation of the tree classifiers

Rank View DT DS Rank View DT DS
1 [1 1 0 0 1] 96.86 ± 1.66 97.21 ± 1.55 17 [0 0 1 1 1] 96.14 ± 2.31 96.27 ± 2.32
2 [1 1 1 0 1] 96.56 ± 1.82 96.96 ± 1.72 18 [1 0 0 0 1] 96.04 ± 1.94 96.40 ± 1.80
3 [1 1 0 0 0] 96.50 ± 1.92 96.90 ± 1.71 19 [0 1 0 1 1] 95.36 ± 2.61 95.27 ± 2.66
4 [1 0 1 0 1] 96.46 ± 1.82 96.89 ± 1.77 20 [0 0 1 0 1] 95.26 ± 2.36 95.67 ± 2.31
5 [1 0 0 1 0] 96.46 ± 1.96 96.48 ± 2.02 21 [0 0 0 1 1] 95.24 ± 2.67 95.13 ± 2.69
6 [1 0 1 1 0] 96.46 ± 1.96 96.48 ± 2.02 22 [0 1 0 0 1] 94.60 ± 2.23 95.19 ± 2.20
7 [1 1 0 1 1] 96.45 ± 1.99 96.40 ± 2.08 23 [0 1 1 0 1] 94.35 ± 2.55 94.76 ± 2.48
8 [1 1 1 1 1] 96.45 ± 1.99 96.40 ± 2.08 24 [0 1 0 1 0] 94.23 ± 2.52 95.25 ± 2.51
9 [1 0 0 1 1] 96.45 ± 1.98 96.40 ± 2.07 25 [0 1 1 1 0] 94.19 ± 2.57 95.20 ± 2.55
10 [1 0 1 1 1] 96.45 ± 1.98 96.40 ± 2.07 26 [0 1 1 0 0] 92.21 ± 2.99 92.83 ± 3.05
11 [1 0 0 0 0] 96.44 ± 2.03 96.69 ± 1.86 27 [0 1 0 0 0] 91.65 ± 2.70 92.21 ± 2.74
12 [1 1 0 1 0] 96.44 ± 1.97 96.46 ± 2.03 28 [0 0 1 1 0] 90.2 ± 3.26 90.77 ± 3.00
13 [1 1 1 1 0] 96.44 ± 1.97 96.46 ± 2.03 29 [0 0 1 0 0] 89.75 ± 4.08 90.39 ± 4.12
14 [1 1 1 0 0] 96.25 ± 2.04 96.71 ± 1.82 30 [0 0 0 0 1] 89.70 ± 3.24 89.82 ± 3.28
15 [1 0 1 0 0] 96.18 ± 1.99 96.64 ± 1.80 31 [0 0 0 1 0] 88.55 ± 3.38 88.87 ± 3.29
16 [0 1 1 1 1] 96.15 ± 2.29 96.29 ± 2.30

Table 14.2: Mean and Standard Deviation of CV Test Set Accuracy of Multi-View
Forest consisting of the five Single-View Trees (in bold in Table 14.1)

TCM FCM MV Fsingle
DT MV 98.6±1.35

DS

MV 98.8 ±1.29
Min 98.6 ± 1.46
Max 99.1 ± 0.98
Mean 99.2 ± 0.89
Prod 99.1 ± 1.15

Best Tree 96.6± 1.86
Gain 2.58%

in building tree classifiers. The first column shows the rank of the tree classi-
fier of the sorted list. The second column contains the views used by the tree
classifier, represented as a binary string indicating whether a view is in use or
not. The third and the fourth column list the CV test set accuracy of each tree
classifier for decision-tree-like (DT) and Dempster-Shafer-based (DS) combina-
tion, respectively. Table 14.2 illustrates the classification results of the ensembles
constructed by combining the five single-view tree classifiers (MV Fsingle). The
ensembles combine the outputs of tree classifiers using Majority Voting (MV),
minimum (Min), maximum (Max), mean (Mean) and product (Prod) rules as
forest combination methods (FCM), respectively. Table 14.3 illustrates the clas-
sification results of the ensemble constructed using the first, the middle and the
last 10 tree classifiers in the sorted list, respectively (MV F1, MV F2, MV F3).

First, the accuracies of the five Single-View Trees and an ensemble of them are
compared. From Table 14.1, it can be seen that the tree classifier based only on
fs1 lies at rank 11, tree classifier based only on fs2 lies at rank 27, tree classifier
based only on fs3 lies at rank 29, tree classifier based only on fs5 lies at rank 30

14.4. Application to Visual Object Recognition 241

Table 14.3: Mean and Standard Deviation of the Multi-View Forests

TCM FCM MV F1 MV F2 MV F3

DT MV 96.46 ±1.98 97.27±1.66 97.93± 1.59

DS

MV 96.60± 1.94 97.38± 1.62 98.05± 1.55
Min 97.89± 1.39 98.88± 1.19 97.93± 1.70
Max 97.81± 1.45 98.96 ± 1.02 98.15± 1.39
Mean 97.74± 1.45 98.75± 1.10 98.77 ± 1.25
Prod 97.83± 1.45 98.89± 1.00 98.73± 1.31

Best Tree 97.21± 1.55 96.69± 1.86 95.24± 2.67
Gain 0.68% 2.27% 3.53%

and finally comes tree classifier based only on fs4 lies at rank 31. This means that
the tree classifier based on fs1 outperforms all other single-feature-set classifiers
by about 4.5%. From Table 14.2, the best ensemble has an accuracy of 99.2%
± 0.89. Therefore, the ensemble of the Single-View Trees outperforms the best
single individual classifier. The reason of this performance is the large diversity
between the classifiers as each of them use different feature set. Second, the
results of the Single-View Trees and the Multi-View Trees are compared. From
Table 14.1, we can observe that the best Single-View tree classifier, based only
on feature (fs1), is at rank 11, thus 10 Multi-View Tree classifiers outperform the
best single-view classifier. The tree classifier based on feature fs1, fs2 and fs5,
is at first rank, and achieves an accuracy of 96.8% ± 1.66 (DT) and 97.2% ±
1.55 (DS). So it outperforms the corresponding single view tree classifiers.

Third, we compare between Multi-View Trees and Ensemble of Multi-View
Trees. From Table 14.3, we can see that the best ensemble, based on the 10 most
accurate tree classifiers, achieves an accuracy of 97.8% ± 1.39 (DS + Min) while
the best of the 10 trees has a rate 97.2% ± 1.55(DS). Therefore, there is a gain
in accuracy only 0.68%. For the second ensemble, based on the second 10 tree
classifiers in the list, the best result is 98.9% ± 1.02 (DS + Max). This means
that the gain in accuracy is 2.2%. For the last ensemble, based on the following
10 tree classifiers in the list (weaker classifiers), the best rate is 98.7% ± 1.25
(DS + Mean) with a gain about 3.5%.

Finally, we compare among the three constructed ensembles. From Table 14.1,
we can find that the ten classifiers of ensemble MV F1 use fs1 as best feature set
in about 4 of their 6 binary classifiers while only 6 trees of the ten of MV F2 use
fs1. Therefore, ensemble MV F2 is more diverse than MV F1 as it contains weaker
and less identical tree classifiers. For this reason, ensemble MV F2 has more gain
than MV F1 and ensemble MV F3 gains more than MV F2. The weaker and the
diverse the combined individual classifiers are, the higher will be the gain in the
ensemble accuracy. Although the ensemble MV F3 is consisting of less accurate
individual classifiers than that of MV F1 and MV F2, the observed gain of MV F3

242 Chapter 14. Multi-View Forest

is higher than that of MV F1 and MV F2 and in many cases it outperforms MV F1

and MV F2.

14.4.2 Results on the Handwritten Digits

The performance was evaluated using the StatLog handwritten digits data set
was defined in Section 7.1.2 (see Figure 7.4). Each example is represented by
five feature types (views) described in Table 7.1: image-vector, orienthisto, pca-
40, rows-sum and cols-sum. The Top-Down Approach defined in Algorithm 26
is used to build the class hierarchies. RBF networks have been used as binary
classifiers such that the hidden layer consists of 20 RBFs per class (c=20) and the
number of the input layer nodes equals to the dimension of the feature vector (
see Algorithm 12 in Chapter 8). The results are the average of one run of 10-fold
cross-validation (CV).

First, we construct a tree classifier for each possible combination of views.
Table 14.4 illustrates the performance of the 5 single-view tree classifiers.

Table 14.4: Results of the five Single-View Tree Classifiers for the handwritten digits

TCM image-vector orienthisto pca-40 rows-sum cols-sum
DT 95.89±0.47 96.05±0.59 94.96±0.81 94.07±0.65 93.75±0.95
DS 96.23±0.55 96.51±0.54 95.66±0.61 94.52±0.57 94.08±0.97

Then, we construct three ensembles: MV Fsingle consists of the five Single-
View tree classifiers (3rd column in Table 14.5), MV F (31) based on the 31 con-
structed classifiers (4th column in Table 14.5) and MV F (5) is constructed by
removing similar classifiers from the forest MV F (31) and keeping only the 5
most diverse classifiers using kappa agreement measure [124]. Note that if there
are two identical tree classifiers, we select the tree that uses less number of views.
The results show that MV Fsingle outperforms the best Single-View tree classifier
and shows better performance than MV F (31). In addition, we found that the top
five diverse classifiers in MV F (5) are the single-view ones. That is, for the dig-
its data set the constructed multi-view trees are similar to the single-view ones.
This results confirm our hypothesis that an ensemble of diverse tree classifiers
outperform its individual members.

14.5 Conclusions

In this study, a new ensemble method, called Multi-View Forest, is proposed. It
requires that the instances are represented by two or more sufficient and inde-
pendent views. It constructs ensembles of multi-view tree-structured classifiers
using different combination methods. As demonstrated by experiments, multi-
view learning can improve the accuracy in complex pattern recognition problems

14.5. Conclusions 243

Table 14.5: Results of the three Multi-View Forests for the digits

TCM FCM MV Fsingle MV F (31) MV F (5)
DT MV 96.80±0.44 94.08±0.64 96.80±0.44

DS

MV 97.14±0.45 94.59±0.61 97.14±0.45
Min 97.43±0.53 97.41±0.52 97.43±0.53
Max 97.63±0.54 97.62±0.51 97.63±0.54
Mean 97.64±0.57 95.69±0.63 97.64±0.57
Prod 97.71±0.47 96.51±0.50 97.71±0.47

Best Tree 96.51±0.54 96.62±0.57 96.51±0.54

with a large number of classes. In addition, the trees generated by each individual
feature set seem to complement each other by showing part of the discriminating
information. This motivates the use of multiple feature sets to generate one con-
solidated tree, through multi-view hierarchical clustering or k-means clustering.
Also the results show that the bottom-up approach constructs unbalanced trees
compared to the top-down approach that results in more balanced trees. In order
to construct forest ensembles not only by majority voting hard combiner but also
by soft combiners such as minimum, maximum, mean, and product, evidence-
theoretic combination method is adapted for combining the intermediate outputs
of binary classifiers within each class hierarchy. The motivation of adapting this
evidence-theoretic combiner is that it provides not only a crisp class label but also
a class probabilities estimate of the given examples. Experiments show that the
soft combination rules together with the evidence-theoretic approach outperform
the majority voting.

Chapter 15

An Information Theoretic Perspective
on Classifier Selection

15.1 Introduction

Ensemble learning has become a hot research topic during the last decade. Typ-
ically, ensemble methods comprise two phases: the construction of multiple in-
dividual classifiers and their combination. Recent work has considered an addi-
tional intermediate phase that deals with the reduction of the ensemble size prior
to combination. This phase has several names in the literature such as ensemble
pruning, selective ensemble, ensemble thinning and classifier selection, the last
one of which is used within this chapter. Classifier selection is important for
two reasons: classification accuracy and efficiency. An ensemble may consist not
only of accurate classifiers, but also of classifiers with lower predictive accuracy.
Pruning the poor-performing classifiers while maintaining a good diversity of the
ensemble is typically considered as the main factor for an effective ensemble. The
second reason is equally important, efficiency. Having a very large number of
classifiers in an ensemble adds a lot of computational overhead. For example,
decision tree classifiers may have large memory requirements and lazy learning
methods have a considerable computational cost during classification phase. The
minimization of classification time complexity is crucial in certain applications,
such as stream mining.

Recently an information-theoretic view was presented for feature selection.
It derives a space of possible selection criteria and show that several feature
selection criteria in the literature are points within this continuous space. The
contribution of this paper is to export this information-theoretic view to solve
an open issue in ensemble learning which is classifier selection. I investigated a
couple of information-theoretic selection criteria that are used to rank individual
classifiers. The work in this chapter has been previously published ([10]).

245

246 Chapter 15. An Information Theoretic Perspective on Classifier Selection

15.2 Entropy and Mutual Information

The building block of information theory is the entropy of a random variable. The
entropy of a random variable X, denoted as H(X), is a measure of the uncertainty
on X and represents the amount of information provided by X. It is written as

H(X) = −
∑
xj∈X

p(xj) log p(xj) (15.1)

where a discrete random variable X has possible values {x1, ..., xm}, the base of
the logarithm has a common value 2 (in this case, the unit of entropy is bit) and
p indicates the probability mass function of X. That is, p(X = xj) gives the
probability that X is exactly equal to some value xj, the number of examples
taking on value xj divided by the total number of examples M . Like probability
theory, entropy can be conditional on other random variable Y , this denotes the
amount of information or uncertainty still remaining in X if the value of Y is
known. The conditional entropy of X given Y is defined as,

H(X|Y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y) (15.2)

Shannon Mutual Information between X1 and X2 measures the amount of in-
formation shared between the two random variables and is defined as follows.

I(X1;X2) = H(X1)−H(X1|X2) = H(X2)−H(X2|X1)

=
∑
x1∈X1

∑
x2∈X2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
(15.3)

The Mutual Information can also be conditioned on other random variable Y ,
the conditional mutual information is,

I(X1;X2|Y) = H(X1|Y)−H(X1|X2Y)

=
∑
y∈Y

p(y)
∑
x1∈X1

∑
x2∈X2

p(x1, x2|y) log
p(x1, x2|y)

p(x1|y)p(x2|y)
(15.4)

which can be simplified as follows,

I(X1;X2|Y) =
∑
y∈Y

∑
x1∈X1

∑
x2∈X2

p(x1, x2, y) log
p(y)p(x1, x2, y)

p(x1, y)p(x2, y)
(15.5)

This measures the amount of information shared between X1 and X2 when Y is
known. The relation between all these quantities can be seen in Figure 15.1.

15.3. Information Theoretic Classifier Selection 247

R1

R4

R2

R5

R3

R6 H(X1)

H(Y)

H(X2)

R1:I(X1; Y|X2) = I(Y; X1)-[I(X1; X2)- I(X1;X2|Y)]

R1245:H(X1) R14:H(X1|Y) R25:I(X1; X2)

R12:I(X1; Y) R23:I(Y; X2) R5:I(X1; X2|Y)

R2:I(X1; X2)- I(X1; X2|Y)

Figure 15.1: Graphical illustration of entropy, conditional entropy, mutual
information and conditional mutual information

15.3 Information Theoretic Classifier Selection

If a message Y was sent through a communication channel, and a value X is
received, then a decoding operation, Ŷ = g(X), is performed to decode X and
recover the correct Y . In ensemble learning (Chapter 3) terms: Y is the original
(unknown) class label distribution, X1:N is the joint variable of all the classifiers
trained to solve a classification task, and g is an ensemble combination function.
The set of trained classifiers may or may not be sufficient to perfectly recover
Y ; that is, there may be a classification error. Information theory can provide a
bound on p(Ŷ 6= Y), for any combiner g. The error of predicting target variable
Y from input X1:N is bounded by two inequalities [35] as follows,

H(Y)− I(X1:N ;Y)− 1

log(|Y |)
≤ p(Ŷ 6= Y) ≤ 1

2
H(Y |X1:N). (15.6)

Note that Fano’s inequality provides the lower bound on the Bayes error and
Hellman-Raviv provides its upper bound. The bound should be minimized in
order to minimize the probability that the combiner g can not predict Y which
is equivalent to maximizing the joint mutual information I(X1:N ;Y) defined in
Eq. (15.3). Unfortunately, I(X1:N ;Y) involves high dimensional joint probability
mass functions p(x1, . . . , xN) and p(x1, . . . , xN , y) that are hard to be estimated
as explained in [145]. For instance, suppose that each classifier discriminates
among ten classes using m training examples. The N ensemble classifiers could
have a maximum min(10N ;m) joint states. When the number of joint states
increases very quickly and gets comparable to the number of examples, m, the
joint probability of these classifiers, as well as the mutual information, cannot be
estimated correctly. Another drawback of directly calculating I(X1:N ;Y) is the
slow computational speed. In the following subsections, we show how it can be
decomposed into simpler terms.

248 Chapter 15. An Information Theoretic Perspective on Classifier Selection

15.3.1 Interaction Information

Shannon’s Mutual Information I(X1;X2) is a function of two variables. It is not
able to measure properties of multiple (N) variables. McGill [126] presented what
is called Interaction Information as a multi-variate generalization for Shannon’s
Mutual Information. For instance, the Interaction Information between three
random variables is

I({X1, X2, X3}) = I(X1;X2|X3)− I(X1;X2) (15.7)

That is, the difference of the conditional mutual information, defined in Eq. (15.5)
and the simple Shannon mutual information, defined in Eq. (15.3). The general
form for X where |X| ≥ 2 is defined recursively.

I(X ∪ {Y }) = I(X|Y)− I(X) (15.8)

For a full treatment of this topic, the reader is directed to [35].

15.3.2 Mutual Information Decomposition

15.3.1. Theorem. Given a set of classifiers S = {X1, . . . , XN} and a target
class label Y , the Shannon mutual information between X1:N and Y can be de-
composed into a sum of Interaction Information terms,

I(X1:N ;Y) =
∑

X⊆S,|X|≥1

I(X ∪ {Y }). (15.9)

Proof See [35]

For a set of classifiers S = {X1, X2, X3}, the mutual information between the
joint variable X1:3 and a target Y can be decomposed as

I(X1:3;Y) = I(X1;Y) + I(X2;Y) + I(X3;Y)

+ I({X1, X2, Y }) + I({X1, X3, Y }) + I({X1, X3, Y })
+ I({X1, X2, X3, Y })

(15.10)

Each term can then be decomposed into class unconditional I(X) and conditional
I(X|Y) according to Eq. (15.7).

I(X1:3;Y) =
3∑
i=1

I(Xi;Y)−
∑
X⊆S
|X|=2

I(X) +
∑
X⊆S
|X|=2

I(X|Y)

− I({X1, X2, X3}) + I({X1, X2, X3}|Y)

(15.11)

15.4. Classifier Selection Criteria 249

For an ensemble S of size N and according to Eq. (15.8),

I(X1:N ;Y) =
N∑
i=1

I(Xi;Y)−
∑
X⊆S
|X|=2..N

I(X) +
∑
X⊆S
|X|=2..N

I(X|Y) (15.12)

Ensemble mutual information I(X1:N ;Y) is decomposed into three terms. The
first term,

∑N
i=1 I(Xi;Y) is the sum of mutual information between each indi-

vidual classifier and the target where I(Xi;Y) is called the relevance of the ith

classifier output to the target class label. The second contains terms of the form
I(X) and is independent of the class label Y , and so is analogous to the concept
of diversity. It measures the interaction information among all possible subsets
of classifiers, drawn from the ensemble. This is called the ensemble redundancy.
Note that this term is subtractive from the overall mutual information. A large
value of I(X) indicates strong correlations among the classifiers, and reduces
the value of I(X1:N ;Y), and hence the overall achievable accuracy. The third
contains terms of the form I(X|Y) and is a function of the class label Y . It is
called conditional redundancy. Note that this term is additive to the ensemble
mutual information. This term indicates that an effective ensemble requires high
class-conditional correlations while it has low correlations among its individual
members. The decomposition equation in Eq. (15.12) shows that diversity exists
at multiple levels of correlation within an ensemble. If the classifiers are statis-
tically independent, then redundancy and conditional redundancy would be zero
and I(X1:N ;Y) =

∑N
i=1 I(Xi;Y). If the classifiers have only pairwise interactions,

then the second-order and higher redundancy and conditional redundancy terms
should be omitted from the decomposition equation. This assumption of pairwise
interactions gives us,

I(X1:N ;Y) '
N∑
i=1

I(Xi;Y)−
N−1∑
i=1

N∑
j=i+1

I(Xi;Xj) +
N−1∑
i=1

N∑
j=i+1

I(Xi;Xj|Y) (15.13)

15.4 Classifier Selection Criteria

The objective of an information-theoretic classifier selection method, see Algo-
rithm 27, is to select a subset of K classifiers (S) from a pool of N classifiers
(Ω) that carries as much information as possible about the target class Y using
a predefined selection criterion,

J(Xu(j)) = I(X1:k+1;Y)− I(X1:k;Y)

= I(Xu(j);Y)−
k∑
i=1

I(Xu(j);Xv(i)) +
k∑
i=1

I(Xu(j);Xv(i)|Y)
(15.14)

250 Chapter 15. An Information Theoretic Perspective on Classifier Selection

Algorithm 27 Pseudo Code of Classifier Selection

Require: set of classifiers (Ω = {X1, . . . , XN}), target class labels Y , number
of required classifiers (K < N), redundancy parameter (β), class-conditional
redundancy parameter (γ)

1: Select the most relevant classifier, v(1) = argmax1≤j≤N I(Xj;Y)
2: S = {Xv(1)}
3: for k = 1 : K − 1 do
4: for j = 1 : |Ω \ S| do
5: Calculate J(Xu(j)) as defined in Eq. (15.15)
6: end for
7: v(k + 1) = argmax1≤j≤|Ω\S| J(Xu(j))
8: S = S ∪ {Xv(k+1)}
9: end for

That is the difference in information, after and before the addition of Xu(j) into S.
This tells us that the best classifier is a trade-off between these components: the
relevance of the classifier, the unconditional correlations, and the class-conditional
correlations. In order to balance between these components, Brown [35] has
parameterized Eq. (15.14) and defined the root criterion,

J(Xu(j)) = I(Xu(j);Y)− β
k∑
i=1

I(Xu(j);Xv(i)) + γ
k∑
i=1

I(Xu(j);Xv(i)|Y). (15.15)

Brown [35] presented a unifying viewpoint on the existing information theoretic
feature ranking literature. He showed how several published heuristics [21, 145,
205, 121, 63] can all be rearranged into a common functional form, such that
they can be reproduced by parameterizations of the root criterion in Eq. (15.15).
Consequently, they all fit neatly into a unit square, illustrated in Figure 15.2.
The remaining of this section shows the criteria that will be exported from the
context of feature selection and applied for classifier selection in the experimental
part of this chapter.

15.4.1 Maximal relevance (MR)

As a heuristic, we could assume the prediction of each classifier Xi is independent
of all other classifiers and rank the classifiers in descending order based on the
criterion

J(Xu(j)) = I(Xu(j);Y). (15.16)

However this is known to be suboptimal since the classifier predictions are often
interdependent (see R12 in Figure 15.1).

15.4. Classifier Selection Criteria 251

Figure 15.2: The full space of first-order classifier selection criteria, de-
rived from Eq. (15.15) after omitting the second-order and higher redun-
dancy and conditional redundancy terms.

15.4.2 Mutual Information Feature Selection (MIFS)

Battiti [21] proposed the Mutual Information Feature Selection criterion,

J(Xu(j)) = I(Xu(j);Y)−
k∑
i=1

I(Xu(j);Xv(i)). (15.17)

The MIFS scheme shows a clear link to Eq. (15.14) as it includes relevance and
unconditional redundancy terms but omits the conditional term.

15.4.3 Minimal Redundancy Maximal Relevance (mRMR)

Peng et al. [145] introduced the Minimal Redundancy Maximal Relevance crite-
rion,

J(Xu(j)) = I(Xu(j);Y)− 1

|S|

k∑
i=1

I(Xu(j);Xv(i)). (15.18)

They proved theoretically that the combination of maximizing relevance and min-
imizing unconditional redundancy criteria is equivalent to maximizing the joint
mutual information I(X1:N ;Y) if one feature is selected (added) at one time. It
is clear that mRMR is equivalent to MIFS with β = 1

|S| . That is, it takes the

252 Chapter 15. An Information Theoretic Perspective on Classifier Selection

average of the unconditional redundancy terms, but again omits the conditional
term.

15.4.4 Joint Mutual Information (JMI)

Yang and Moody [205] proposed using Joint Mutual Information,

J(Xu(j)) =
k∑
i=1

I(Xu(j)Xv(i);Y). (15.19)

This is the information between the target class Y and a joint random variable,
defined by pairing the candidate classifier Xu(j) with each classifier Xv(i) already
picked in S. This can be re-written as,

J(Xu(j)) = I(Xu(j);Y)− 1

|S|

k∑
i=1

[
I(Xu(j);Xv(i))− I(Xu(j);Xv(i)|Y)

]
. (15.20)

Intermediate steps for this re-writing are given in [35]. JMI captures the condi-
tional redundancy, but takes the mean value. It is clear that the JMI criterion is
the MRMR criterion plus the conditional redundancy term.

15.4.5 Conditional Infomax Feature Extraction (CIFE)

Lin and Tang [121] introduced a criterion, called Conditional Infomax Feature
Extraction, which maximizes the joint class-relevant information by explicitly
reducing the class-relevant redundancies among classifiers.

J(Xu(j)) = I(Xu(j);Y)−
k∑
i=1

[
I(Xu(j);Xv(i))− I(Xu(j);Xv(i)|Y)

]
. (15.21)

15.4.6 Conditional Mutual Information Maximization (CMIM)

Fleuret [63] proposed the criterion based on Conditional Mutual Information Max-
imization,

J(Xu(j)) = min
1≤i≤k

I(Xu(j);Y |Xv(i)). (15.22)

which can be re-written as,

J(Xu(j)) = I(Xu(j);Y)− max
1≤i≤k

[I(Xu(j);Xv(i))− I(Xu(j);Xv(i)|Y)] (15.23)

The proof is again available in [35] (see R1 in Figure 15.1). CMIM examines the
information between a candidate classifier Xu(j) and the target class Y , condi-
tioned on each classifier Xv(i) already in S. This means that Xu(j) is good only if

15.5. Related Work 253

it provides information about Y , and this information has not been provided by
any of the classifiers {Xv(i)}ki=1 already picked. That is, the score J(Xu(j), S) is
low if at least one of the classifiers already picked is similar to Xu(j) (or if Xu(j)

does not provide information about Y).

15.5 Related Work

Tsoumakas et al. [186] categorize the state-of-the-art classifier selection methods
into a taxonomy. They propose to organize them into the four categories: a)
Search-based, b) Clustering-based, c) Ranking-based and d) Other. They further
divide the first category into two subcategories, based on the search paradigm:
a) greedy search, and b) stochastic search. The greedy search based methods
attempt to find the globally best subset of classifiers and use different directions
for searching the space of all possible classifier subsets such as forward selection
and backward elimination.

Gasen-b [216] performs stochastic search in the space of model subsets using a
standard genetic algorithm. The ensemble is represented as a bit string, using one
bit for each model. A classifier is included or excluded from the ensemble based
on the value of its corresponding bit. The generalization error of the ensemble is
used as a function for evaluating the fitness of individuals in the population. The
authors experimented with bagged ensembles and avoided using datasets with less
than 1000 examples. They conclude that pruning not only reduce the complexity
of the ensemble but also improve its generalization ability.

Margineantu and Dietterich [124] introduce heuristics to calculate the benefit
of adding a classifier to an ensemble, using forward selection in a number of them.
These heuristics depend on the diversity and the accuracy of the classifiers. The
authors experiment with boosting ensembles and conclude that pruning help to
reduce the ensemble complexity but it may sacrifice its generalization ability.

Meynet and Thiran [129] suggest a heuristic cost function, designed to com-
promise between ensemble accuracy and diversity. The selection criterion consists
of two information theoretic terms. The first is simply the average mutual in-
formation between each ensemble member and the class label, which they call
the Information Theoretic Accuracy, ITA = 1

N

∑N
i=1 I(Xi;Y). The second is the

inverse of the average pairwise mutual information between ensemble members,
which they call the Information Theoretic Diversity,

ITD =

(
2

M(M − 1)

N−1∑
i=1

N∑
j=i

I(Xi;Xj)

)−1

. (15.24)

The aim is to simultaneously maximize ITA and ITD although there is a trade-
off between them. The authors represent the trade-off between the terms by a

254 Chapter 15. An Information Theoretic Perspective on Classifier Selection

second-order polynomial: the Information Theoretic Score is defined

ITS = (1 + ITA)3.(1 + ITD) (15.25)

Comparing this heuristic to Brown’s work in [35] that is used in this chapter,
it is clear that ITS ignores the class-conditional redundancy term I(Xi;Xj|Y)
and all the higher-order terms. The main difference between this heuristic and
Brown’s work is that the former was hand-designed, while the latter has shown a
natural derivation of diversity at multiple levels of correlation within an ensemble
as defined in Eq. (15.12).

15.6 Experimental Evaluation

15.6.1 Methodology

The effectiveness of the six selection criteria on classifier selection is evaluated
on 11 data sets from the UCI machine learning repository [27] (see Table 15.1).
Each experiment is conducted twice: one using Bagging [31] (Section 3.4.1.1) to
construct an ensemble of N=50 C4.5 decision trees (Section 2.3) and another time
using Random Forest [32] (Section 3.4.2.2) to construct an ensemble of N=50
random trees. Each selection criterion is evaluated with the target number of
classifiers K=40, 30, 20 and 10. This corresponds to 20%, 40%, 60% and 80%
pruning percentage. Each test accuracy percentage reported is the average of
performing 5 runs of 10-fold cross-validation. The training sets of the decision
trees used to constitute the ensembles are bootstrap samples from the training
set of each fold. As well the validation set used by each selection criterion for
mutual information measurement is a bootstrap sample from the training set of
each fold. For any selection criterion, the normalized test accuracy is defined to

Table 15.1: Description of the 11 data sets used in this study

id name Classes Examples
Features

Discrete Continuous
d1 anneal 6 898 32 6
d2 autos 7 205 10 16
d3 wisconsin-breast 2 699 0 9
d4 bupa liver disorders 2 345 0 6
d5 german-credit 2 1000 13 7
d6 pima-diabetes 2 768 0 8
d7 glass 7 214 0 9
d8 cleveland-heart 2 303 7 6
d9 hepatitis 2 155 13 6
d10 ionosphere 2 351 0 34
d11 vehicle 4 846 0 18

be the difference between the accuracy of ensemble pruned by this criterion and
single tree divided by the difference between the unpruned ensemble and single
tree (normalized test acc = pruned ens acc−single tree acc

unpruned ens acc−single tree acc). Note that in all of the

15.6. Experimental Evaluation 255

11 data sets, unpruned ens acc > single tree acc. Hence, a normalized test
accuracy of 1.0 indicates that the pruned ensemble construed by a given selection
criterion obtains the same performance as the unpruned ensemble. A normalized
test accuracy of zero indicates that the performance of the pruned ensemble is
the same as a single tree classifier.

15.6.2 Results

Table 15.2 and Table 15.3 show the test accuracy under 80% pruning percentage
for Bagging and Random Forest, respectively (the tables for other pruning per-
centages are dropped as they show the same behaviour). The statistical test for
the comparison between different algorithms is the corrected paired t-test at 0.05
significance level. The mark (•) means that the corresponding pruned ensemble
is significantly better than the single tree, while the mark (�) means that it is
significantly worse than the unpruned ensemble. Although as many as 80% of the
classifiers is pruned, the pruned ensemble still gives accuracy comparable to the
unpruned one in all datasets, except for german-credit where the ensemble pruned
by MR, JMI and CMIM is significantly worse than the unpruned one in case of
Bagging and the one pruned by MIFS and CIFE significantly underperform the
unpruned one in case of Random Forest.

Table 15.2: Test accuracy for single C4.5 decision tree, ensemble constructed using
Bagging before pruning and after pruning by the 6 selection criteria under 80% pruning
percentage

id C4.5 Bagging MR MIFS mRMR JMI CIFE CMIM
d1 98.5 98.7 99.0 98.8 99.2 99.2 98.7 99.0
d2 82.3 84.5 84.3 83.3 85.1 85.7 82.5 84.5
d3 95.0 96.1• 96.0• 96.1 96.2 96.1 96.1 96.0
d4 66.4 73.1• 70.7 70.7 69.8 70.7 70.4 70.3
d5 71.3 74.7• 72.2� 73.6 73.2 72.6� 73.9• 72.5�

d6 74.9 75.8 75.2 75.3 75.2 75.3 75.8 75.3
d7 69.0 73.3 73.0 73.2 73.1 71.7 71.8 72.6
d8 77.0 79.9 78.9 81.0 78.8 79.2 81.0 79.8
d9 79.7 81.4 80.7 80.3 81.3 81.7 80.8 81.3
d10 89.6 92.3 92.5 92.4 92.8 92.7 92.3 92.7
d11 71.9 75.0• 75.2 74.7 75.3• 75.1 74.3 74.5

An appropriate way [52] to compare two or more algorithms on multiple
datasets depends on their average rank across all datasets. For each dataset,
the algorithm with the highest accuracy gets rank 1.0, the one with the second
highest accuracy gets rank 2.0 and so on. In case two or more algorithms tie, they
all receive the average of the ranks that correspond to them. Table 15.4 and Table
15.5 show the rank of each criterion on each dataset and the average ranks under
80% pruning percentage for Bagging and Random Forest, respectively. The tables
for other pruning percentages are dropped as they show the same behaviour. On
average and using Bagging, the best criterion is JMI (2.77), followed by mRMR
(2.82), MIFS (3.50), CMIM (3.68),CIFE (3.95) and MR (4.27). On average and

256 Chapter 15. An Information Theoretic Perspective on Classifier Selection

Table 15.3: Test accuracy for single Random Tree (RT), ensemble constructed using
Random Forest (RF) before pruning and after pruning by the 6 selection criteria under
80% pruning percentage

id RT RF MR MIFS mRMR JMI CIFE CMIM
d1 98.1 99.6• 99.6• 99.3• 99.6• 99.5• 99.4• 99.4•

d2 75.9 84.4• 83.7• 82.2 82.7• 83.4• 82.3• 83.6•

d3 94.1 96.5• 96.1• 96.0• 96.1• 96.0• 96.1• 95.9•

d4 65.2 71.7• 69.0 68.8 69.4 68.5 68.7 68.4
d5 66.6 75.8• 73.7• 72.8•� 74.0• 74.8• 73.0•� 73.9
d6 70.3 76.3• 74.6• 74.0• 74.5• 74.4• 74.3• 74.6•

d7 69.7 78.3• 76.2 76.1 76.4 76.3 75.8 76.7•

d8 76.0 81.8• 81.1 80.6 80.3 79.8 80.5 80.3
d9 78.0 83.6 82.2 82.2 83.0 82.1 81.9 82.5
d10 88.4 93.5• 92.8• 92.4 93.5• 93.3• 92.8• 93.2•

d11 70.6 75.8• 75.4• 74.9• 75.1• 75.2• 74.9• 76.5•

using Random Forest, the best criterion is mRMR (2.23), followed by MR (2.41),
CMIM (3.23), JMI (3.64), CIFE (4.59) and MIFS (4.91).

Table 15.4: Corresponding rank for different selection criteria using Bagging under
80% pruning percentage

id MR MIFS mRMR JMI CIFE CMIM
d1 4.00 5.00 1.00 2.00 6.00 3.00
d2 4.00 5.00 2.00 1.00 6.00 3.00
d3 5.50 4.00 1.00 2.50 2.50 5.50
d4 3.00 2.00 6.00 1.00 4.00 5.00
d5 6.00 2.00 3.00 4.00 1.00 5.00
d6 5.50 3.50 5.50 3.50 1.00 2.00
d7 3.00 1.00 2.00 6.00 5.00 4.00
d8 5.00 1.00 6.00 4.00 2.00 3.00
d9 5.00 6.00 2.50 1.00 4.00 2.50
d10 4.00 5.00 1.00 2.50 6.00 2.50
d11 2.00 4.00 1.00 3.00 6.00 5.00
Av. Rank 4.27 3.50 2.82 2.77 3.95 3.68

Table 15.5: Corresponding rank for different selection criteria using Random Forest
under 80% pruning percentage

id MR MIFS mRMR JMI CIFE CMIM
d1 1.50 6.00 1.50 3.00 4.00 5.00
d2 1.00 6.00 4.00 3.00 5.00 2.00
d3 2.50 4.00 1.00 5.00 2.50 6.00
d4 2.00 3.00 1.00 5.00 4.00 6.00
d5 4.00 6.00 2.00 1.00 5.00 3.00
d6 1.50 6.00 3.00 4.00 5.00 1.50
d7 4.00 5.00 2.00 3.00 6.00 1.00
d8 1.00 2.00 4.00 6.00 3.00 5.00
d9 3.00 4.00 1.00 5.00 6.00 2.00
d10 4.00 6.00 1.00 2.00 5.00 3.00
d11 2.00 6.00 4.00 3.00 5.00 1.00
Av. Rank 2.41 4.91 2.23 3.64 4.59 3.23

Figure 15.3 and Figure 15.4 show the normalized test accuracy of each selection
criterion for each dataset and the average over the 11 datasets under different

15.7. Conclusion and Future Work 257

pruning percentages. A normalized test accuracy greater than 1.0 indicates that
the pruned ensemble outperform its corresponding unpruned ensemble.

Figure 15.3: Comparison of the normalized test accuracy of the ensem-
ble of C4.5 decision trees constructed by Bagging and pruned using: MR,
MIFS, mRMR, JMI, CIFE and CMIM on 11 classification tasks (x-axis =
percentage of pruning, y-axis = normalized test accuracy)

15.7 Conclusion and Future Work

This chapter examined the issue of classifier selection from an information the-
oretic viewpoint. The main advantage of information theoretic criteria is that
they capture higher order statistics of the data. The ensemble mutual informa-
tion is decomposed into accuracy and diversity components. Although diversity
was represented by low and high order terms, we keep only the first-order terms
in this chapter. There are many interesting directions for future work.

1. In further study, we will study the influence of including the higher-order
terms on pruning performance.

258 Chapter 15. An Information Theoretic Perspective on Classifier Selection

Figure 15.4: Comparison of the normalized test accuracy of the ensemble
of random trees constructed by Random Forest and pruned using: MR,
MIFS, mRMR, JMI, CIFE and CMIM on 11 classification tasks (x-axis =
percentage of pruning, y-axis = normalized test accuracy)

2. Although Brown [35] derives a space of possible selection criteria, we select
some points within this continuous space, that represent well-known feature
selection criteria in the literature, such as mRMR, CIFE, JMI and CMIM,
and use them for classifier selection. In a future work, we will explore other
points in this space that may lead to more effective pruning.

3. In chapter 9, a single view version of Co-Training, called CoBC, is intro-
duced. This algorithm comprises two phases executed iteratively: training
an ensemble of individual classifiers and the prediction of the class labels of
unlabeled data. It is clear that the computational complexity of CoBC is
linear with respect to the number of ensemble members. Future work should
consider an additional intermediate “classifier selection” phase that deals
with the reduction of the ensemble size in order to reduce the complexity
of CoBC.

Chapter 16

Conclusion

In todays information-rich digital world, supervised machine learning algorithms
are used successfully to solve real-world challenges in extracting knowledge from
large data sources. However, they require a large amount of labeled training data
which is often tedious, difficult, time-consuming, or expensive to obtain. This
thesis has focused on effective semi-supervised learning approaches for such prob-
lem domains. The methods introduced in this thesis aim to reduce the overall
cost of acquiring labeled data by allowing the underlying predictors to effectively
select and label the instances on which they are trained. In this chapter, I sum-
marize the specific contributions of this work, and discuss several open research
directions aimed at better exploiting the available data and labeling resources for
machine learning problems through semi-supervised learning.

16.1 Main Contributions

This thesis has made several contributions to the state of the art in semi-supervised
learning. These contributions answer the research questions mentioned in Chap-
ter 1. Specific contributions include:

• Semi-supervised learning with class hierarchies. One contribution of this
thesis is two novel approaches in Chapter 8 for semi-supervised learning in
multiple view learning domains. The approaches take in account the simi-
larities among classes that are represented as class hierarchies. In the first
approach, a tree-structured ensemble of binary RBF networks is trained on
each given view. Then, using Co-Training the most confident unlabeled
examples labeled by each tree ensemble classifier are added to the training
set of the other tree classifier; we call this scheme cotrain-of-trees. This ap-
proach provide a positive answer to the question: “Can the Dempster-Shafer
evidence-theoretic combiner be appropriate for confidence measure?”. In
the second approach, first the given K-class problem is decomposed into

259

260 Chapter 16. Conclusion

K-1 simpler binary problems using the tree-structured approach. Then
using Co-Training a binary RBF network is trained on each given view to
solve each binary problem; we call this last scheme tree-of-cotrains. In order
to combine the intermediate results of the internal nodes within each tree,
a combination method based on Dempster-Shafer evidence theory is used.
Both cotrain-of-trees and tree-of-cotrains were evaluated on three real-world
2D and 3D visual object recognition tasks. The work in this chapter has
been previously published in [7, 9].

• A new framework for single-view committee-based semi-supervised learning.
The study presented in Chapter 9 answers an important question: “What
if there is not a natural feature splitting?”. In this chapter, a single-view
variant of Co-Training, called Co-Training by Committee (CoBC), is pro-
posed, in which an ensemble of diverse classifiers is used instead of a set
of redundant and independent views required by the original Co-Training
algorithm. CoBC relax these requirements as they are hard to be satisfied
in many real-world domains because there are not multiple representations
available or it is computationally expensive to extract more than one fea-
ture set for each example. The aim of CoBC is to exploit the unlabeled
data to improve the recognition rate of the underlying ensemble and to
minimize the cost of data labeling. This chapter provide an answer to the
question: “How to construct multiple classifiers to be co-trained?”. As the
random subspace method is used to construct the ensemble members based
on different random feature subsets. This method can be used only if the
features are abundant and redundant. This chapter answers the question:
“How to measure prediction confidence?”. A new method is introduced to
measure the confidence that is based on estimating the local accuracy of
the committee members on the neighborhood of a given unlabeled example.
The work in this chapter has been previously published in [5, 4].

• Two new frameworks for combining committee-base semi-supervised learn-
ing and active learning. The study presented in Chapter 10 answers an
important question: “Can active learning improve the performance of semi-
supervised learning with committees?” I introduce two new learning frame-
works, denoted as QBC-then-CoBC and QBC-with-CoBC, which combine
the merits of committee-based semi-supervised learning and active learning.
In QBC-then-CoBC approach, CoBC is to run after QBC. The objective is
that active learning can help CoBC through providing it with a better start-
ing point instead of randomly selecting examples to label for the starting
point. In QBC-with-CoBC approach, CoBC is interleaved with QBC, so
that CoBC not only runs on the results of active learning, but CoBC also
helps QBC in the sample selection process as it augments the labeled train-
ing set with newly automatically labeled examples. Thus, mutual benefit

16.1. Main Contributions 261

can be achieved. It is clear semi-supervised learning starts in QBC-with-
CoBC at an earlier iterations compared to QBC-then-CoBC. Thus, QBC-
with-CoBC can outperform QBC-then-CoBC only if the initial classifiers
are accurate enough to automatically label the unlabeled examples. The
work in this chapter has been previously published in [5, 4].

• An extension of committee-based semi-supervised learning for regression. I
have proposed in Chapter 11 an extension of CoBC framework for regres-
sion, CoBCReg. I provided an answer to the question: “How to construct
multiple classifiers to be co-trained?”. The novel framework is based on
an ensemble of RBF network regressors constructed by Bagging. This is
achieved not only by training regressors using different training subsets but
also through using different Minkowski distance orders and different ran-
dom initialization of the regressors parameters. The applicability of the
proposed algorithm is broader than standard Co-Training algorithm be-
cause it does not require multiple redundant and independent views. This
chapter answers the question: “How to measure prediction confidence?”.
The main challenge for CoBCReg is the mechanism for estimating the con-
fidence because the number of possible predictions in regression is unknown.
In fact, I did not measure the labeling confidence but I provided another
confidence measure called selection confidence. The most relevantly selected
example is the one which minimizes the regressor error on the validation
set. Fortunately, since the bootstrap sampling Br96 is used to construct the
committee, the out-of-bootstrap examples are considered for a more accu-
rate estimate of validation error. Experimental results show that CoBCReg
can effectively exploit the unlabeled examples to improve the generalization
error and it is robust to output noise. The work in this chapter has been
previously published in [8].

• A novel multi-view framework for semi-supervised learning with tri-class
SVMs. In Chapter 12, I developed a new framework for multi-class semi-
supervised learning. First, multi-class problem is decomposed into a set of
binary problems and then Co-Training is used to exploit unlabeled data in
solving each binary problem. This chapter provide an answer to the ques-
tion: “How to construct multiple classifiers to be co-trained effectively?”
through the multi-view assumption. That is, for each binary problem, a
classifier is trained based on each view. In order to answer the question:
“How to measure prediction confidence?”. In this chapter, a new proba-
bilistic interpretation of the outputs of Tri-Class Support Vector Machine
(SVM) is introduced where the confidence is derived from the predicted
class probabilities. The main advantage of Tri-Class SVM is that it can
discriminate between uncertainty and ignorance so it can reject the ex-
amples that do not belong to its target classes. In addition, a modified

262 Chapter 16. Conclusion

version of the Sequential Minimal Optimization (SMO) algorithm is intro-
duced for faster learning of the Tri-Class SVMs since Co-Training is an
iterative method. The effectiveness of the proposed framework is evaluated
on facial expressions recognition from image sequences. A task that involves
a large number of classes and a small amount of labeled data. The results
have shown that Co-Training with an ensemble of three multi-view Tri-
Class SVMs can automatically improve the recognition rate using a small
amount of human-labeled videos which minimize the cost of data labeling.
The Gaussian Mixture Model (GMM) approach is used to extract the fea-
tures, called super vectors, from facial expression videos. These GMM super
vectors are the input of Tri-Class SVMs. The work in this chapter has been
previously published in [2].

• A new combination method for hierarchical ensembles. Chapter 13 answers
to the question: “Can a trainable combiner outperform non-trainable ones
for hierarchical ensembles?” I developed a new trainable fusion method
that integrates statistical information about the individual binary classifier
outputs (in the form of clustered decision templates) into an RBF network
combiner. Multivariate Gaussian function was used as similarity measure to
match a hierarchical decision profile with decision templates. Not only RBF
network was used as combiner but also it was used to construct the ensemble
classifiers. The experiments were conducted on nine real-world multi-class
object recognition tasks including digits, letters, fruits, 3d objects and tex-
tures. The experiments have shown that the RBF Network tree combiner
significantly outperforms the three existing non-trainable tree combiners
and the decision templates based combiner proposed by Kuncheva. The re-
sults also demonstrate that this neural combiner is robust to changes in the
training set size and the number of decision templates per class.The work
in this chapter has been previously published in [3].

• A novel ensemble method based on evidence theory. In Chapter 14, I pre-
sented a new ensemble method, denoted as Multi-view Forest. The aim is
to answer the question “Can an ensemble of class hierarchies outperform a
single class hierarchy?” Error diversity is an essential requirement to build
an effective classifier ensemble. Diversity among classifiers means that they
have independent (uncorrelated) errors. In order to construct diverse indi-
vidual class hierarchies, it is assumed that the examples to be classified are
described by multiple feature sets (views). The aim is to construct different
tree classifiers using different combinations of views to improve the accu-
racy of the multi-class learning. Thus the output ensemble (forest) consists
of both multi-view and single-view trees. For the decision fusion of the bi-
nary classifiers within each class hierarchy, Dempster’s unnormalized rule
of combination is applied and an evidence-theoretic decision profile is pro-

16.2. Future Directions 263

posed to combine the decisions of different trees. Experiments have been
performed on two real-world data sets: a data set of handwritten digits,
and another data set of 3D visual objects. The results indicate that the
proposed forest efficiently integrates multi-view data and outperforms the
individual tree classifiers. The work in this chapter has been previously
published in [6, 1, 11].

• An information-theoretic perspective for ensemble pruning. I presented
in Chapter 15 an information-theoretic perspective for classifier selection.
Typically, ensemble methods comprise two phases: the construction of mul-
tiple individual classifiers and their combination. Recent work has consid-
ered an additional intermediate phase that deals with the reduction of the
ensemble size prior to combination. Classifier selection is important for two
reasons: classification accuracy and efficiency. An ensemble may consist
not only of accurate classifiers, but also of classifiers with lower predictive
accuracy. Pruning the poor-performing classifiers while maintaining a good
diversity of the ensemble is typically considered as the main factor for an ef-
fective ensemble. The second reason is equally important, efficiency. Having
a very large number of classifiers in an ensemble adds a lot of computational
overhead. For example, decision tree classifiers may have large memory re-
quirements and lazy learning methods have a considerable computational
cost during classification phase. The minimization of classification time
complexity is crucial in certain applications, such as stream mining. The
aim of this paper is to answer the question “Can information theory be
used to prune ensemble?” through using several selection criteria based on
entropy and mutual information that take in account accuracy and diversity
of the individual classifiers.

16.2 Future Directions

Through my research on semi-supervised learning, I have encountered many prac-
tical challenges and interesting empirical results, which have inspired several ideas
for novel ways of looking at semi-supervised learning. This section introduces
some of these ideas and problem settings, which I feel are fruitful directions for
future work.

• Semi-supervised learning via reinforcement learning. Reinforcement Learn-
ing (RL) addresses the problem of how an agent can learn a behavior
through trial-and-error interactions with a dynamic environment [180]. The
agent, at each time step, interacts with the environment via actions, and
tries to find an optimal policy of behavior with respect to “rewards” it re-
ceives from the environment. The objective of the agent is to maximize
the cumulative reward received over time. For instance, consider a machine

264 Chapter 16. Conclusion

that is learning how to play chess. In a supervised setting, one might pro-
vide the agent with board configurations from a database of chess games
along with labels indicating which moves resulted in a win or loss. In a
reinforcement setting, each board configuration (state) allows for certain
moves (actions), which result in rewards that are positive (e.g., capturing
the opponents queen) or negative (e.g., having its own queen taken). The
agent aims to improve as it plays more games. The relationship with semi-
supervised learning is that, in order to perform well, the learner must be
proactive. In order to improve, a reinforcement learner must take risks
and try out actions for which it is uncertain about the outcome, just as
a semi-supervised classifier predicts class labels to unlabeled examples it
is uncertain how to label. This is often called the exploration-exploitation
trade-off in the reinforcement learning literature. Note that the issue of
classifier selection was reformulated successfully as a reinforcement learning
problem in [144].

• Genetic algorithms based semi-supervised learning. A genetic algorithm is
a search heuristic that belong to the larger class of evolutionary algorithms
(EA), It can generate solutions to optimization and search problems using
techniques inspired by natural evolution [70], such as inheritance, mutation,
selection, and crossover. Semi-supervised learning can be formulated as an
optimization problem where the objective is to search for the unlabeled
examples that when automatically labeled and added to the training set
can improve the classification performance of the underlying classifier. Note
that genetic algorithms are applied successfully for feature selection [206]
and classifier selection [216].

• Multi-instance semi-supervised learning. The vast majority of semi-supervised
learning research has assumed that each example corresponds to a single
instance. In multi-instance learning problems, instances are naturally or-
ganized into bags and it is the bags, instead of individual instances, that
are labeled for training. Many real-world learning problems can be re-
formalized under this framework. For instance, in text categorization, each
document usually consists of several sections or paragraphs where each can
be considered as an instance. In speech recognition, each speech generally
encodes a number of segments each can be expressed as an instance. In
video classification, a video generally contains several images each can be
represented as an instance. Future research will investigate semi-supervised
learning in multi-instance settings as a way to reduce the labeling burden.

• Multi-label semi-supervised learning. The vast majority of semi-supervised
learning research has assumed that each example is associated to a single
class label. In multi-label learning problems [185], an example is naturally
assigned to a set of labels, instead of individual instances, that are labeled

16.3. Last Words 265

for training. Many real-world learning problems belong to this framework.
For instance, in text categorization, each document may be assigned to a
set of predefined topics, such as ”football”, ”South Africa”, ”World Cup”
and ”opening ceremony”. In bioinformatics, each gene may be associated
with several functional classes, such as metabolism, transcription and pro-
tein synthesis. In scene classification, an image can be related to multiple
semantic classes simultaneously, such as sunset, sea and trees. Future re-
search will consider semi-supervised learning in multi-label settings in order
to further reduce the labeling cost.

• Semi-supervised adversarial learning. Many classification tasks, such as
spam filtering, Fraud detection, Malware detection, intrusion detection in
computers, and terrorism detection, are complicated by an adversary who
wishes to avoid detection [114]. For instance, in spam filtering, classifiers
often require a large training set of labeled emails to attain a good dis-
criminant capability between spam and legitimate emails. In addition, they
must be frequently updated to keep the filter effectiveness high and to deal
with the changes introduced by spammers to their emails to avoid spam
filters. Many spam filters allow the user to give a feedback on personal
emails automatically labeled during filter operation, and some filters in-
clude a Self-Training technique to exploit the large number of unlabeled
emails collected during filter operation. However, users are not willing to
label many emails, and the benefits of Self-Training technique are limited.
To address this issue active learning and semi-supervised learning methods
can be used.

16.3 Last Words

In this thesis, I have explored semi-supervised learning in a variety of real-world
problem domains characterized by single view or multiple view examples represen-
tation. This work has helped to answer research questions about semi-supervised
learning in some of these applications, e.g., “How to construct multiple classifiers
to be co-trained effectively?”, “How to measure prediction confidence?” and “Can
hierarchical neural network classifiers use unlabeled data to improve the accuracy
of image classification?” At the same time, this work has also introduced answers
for some questions about ensemble learning, e.g., “Can a trainable combiner out-
perform non-trainable ones for hierarchical ensembles?” and “Can an ensemble
of class hierarchies outperform a single class hierarchy?” It is my hope that the
research findings I have presented here will serve as a foundation for future work
in semi-supervised learning applied to real-world learning problems.

Bibliography

[1] M.F. Abdel Hady, G. Palm, and F. Schwenker. Multi-view forests of radial
basis function networks based on Dempster-Shafer evidence theory. In Proc.
of the 16th European Symposium on Artificial Neural Networks (ESANN
2008), pages 307–312. d-side publications, 2008.

[2] M.F. Abdel Hady, M. Schels, F. Schwenker, and G. Palm. Semi-supervised
facial expressions annotation using Co-Training with fast probabilistic tri-
class SVMs. In Proc. of the 20th International Conference on Artificial Neu-
ral Networks (ICANN 2010), volume 6353 of LNCS, pages 70–75. Springer-
Verlag, 2010.

[3] M.F. Abdel Hady and F. Schwenker. Decision templates based RBF network
for tree-structured multiple classifier fusion. In Proc. of the 18th Interna-
tional Workshop on Multiple Classifier Systems (MCS 2009), volume 5519
of LNCS, pages 92–101. Springer-Verlag, 2009.

[4] M.F. Abdel Hady and F. Schwenker. Combining committee-based semi-
supervised learning and active learning. Journal of Computer Science and
Technology (JCST): Special Issue on Advances in Machine Learning and
Applications, 25(4):681–698, 2010.

[5] M.F. Abdel Hady and F. Schwenker. On combining committee-based semi-
supervised and active learning and its application to handwritten digits
recognition. In Proc. of the 9th International Workshop on Multiple Classi-
fier Systems (MCS 2010), volume 5997 of LNCS, pages 225–234. Springer-
Verlag, 2010.

[6] M.F. Abdel Hady, F. Schwenker, and G. Palm. Multi-view forests based
on Dempster-Shafer evidence theory: A new classifier ensemble method. In
Proc. of the 5th IASTED Conference on Signal Processing, Pattern Recog-
nition and Applications (SPPRA 2008), pages 18–23. ACTA Press, 2008.

267

268 BIBLIOGRAPHY

[7] M.F. Abdel Hady, F. Schwenker, and G. Palm. Semi-supervised learning of
tree-structured RBF networks using Co-Training. In Proc. of the 18th Inter-
national Conference on Artificial Neural Networks (ICANN 2008), volume
5163 of LNCS, pages 79–88. Springer-Verlag, 2008.

[8] M.F. Abdel Hady, F. Schwenker, and G. Palm. Semi-supervised learning
for regression with Co-Training by committee. In Proc. of the 19th Inter-
national Conference on Artificial Neural Networks (ICANN 2009), volume
5768 of LNCS, pages 121–130. Springer-Verlag, 2009.

[9] M.F. Abdel Hady, F. Schwenker, and G. Palm. Semi-supervised learning
for tree-structured ensembles of RBF networks with Co-Training. Neural
Networks, 23(4):497–509, 2010.

[10] M.F. Abdel Hady, F. Schwenker, and G. Palm. When classifier selection
meets information theory: A unifying view. In Proc. of the International
Conference on Soft Computing and PAttern Recognition (SoCPaR 2010),
pages 314–319. IEEE Computer Society, 2010.

[11] M.F. Abdel Hady, F. Schwenker, and G. Palm. Multi-View Forest: A new
ensemble method based on Dempster-Shafer evidence theory. International
Journal of Applied Mathematics and Statistics (IJAMAS): Special Issue on
Soft Computing and Approximate Reasoning, 22(S11):2–19, 2011.

[12] N. Abe and H. Mamitsuka. Query learning strategies using boosting and
bagging. In Proc. of the 15th the International Conference on Machine
Learning (ICML’98), pages 1–9, 1998.

[13] S. Abe. Support vector machines for pattern classification. Springer, 2005.

[14] E.L. Allwein, R.E. Shapire, and Y. Singer. Reducing multiclass to binary:
A unifying approach for margin classifiers. Journal of Machine Learning
Research, 1:113–141, 2000.

[15] E. Alpaydin and M.I. Jordan. Local linear perceptrons for classification.
IEEE Transactions on Neural Networks, 7(3):788–792, 1996.

[16] C. Angulo, F. J. Ruiz, L. González, and J. A. Ortega. Multi-Classification
by using Tri-Class SVM. Neural Processing Letters, 23(1):89–101, 2006.

[17] C. Aviles-Cruz, A. Gurin-Dugu, J.L. Voz, and D. Van Cappel. Databases,
Enhanced Learning for Evolutive Neural Architecture. Tech. Rep. R3-B1-P,
INPG, UCL, TSA (1995) 47, http://www.dice.ucl.ac.be/neural-nets/
Research/Projects/ELENA/elena.htm.

http://www.dice.ucl.ac.be/neural-nets/Research/Projects/ELENA/elena.htm
http://www.dice.ucl.ac.be/neural-nets/Research/Projects/ELENA/elena.htm

BIBLIOGRAPHY 269

[18] M.-F. Balcan, A. Blum, and K. Yang. Co-Training and expansion: Towards
bridging theory and practice. In Advances in Neural Information Processing
Systems 17, pages 89–96, 2005.

[19] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seed-
ing. In Proc. of the 19th International Conference on Machine Learning
(ICML’02), pages 19–26, 2002.

[20] S. Basu, M. Bilenko, and R. Mooney. A probabilistic framework for semi-
supervised clustering. In Proc. of the 10th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD04), pages 59–68, 2004.

[21] R. Battiti. Using mutual information for selecting features in supervised
neural net learning. IEEE Transactions on Neural Networks, 5(4):537–550,
1994.

[22] P. Bayerl and H. Neumann. Disambiguating visual motion through contex-
tual feedback modulation. Neural Computation, 16(10):2041–2066, 2004.

[23] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geomet-
ric framework for learning from labeled and unlabeled examples. Journal
of Machine Learning Research, 7:23992434, 2006.

[24] K. Bennet, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensem-
ble methods. In Proc. of the 8th ACM SIGKDD International Conference
On Knowledge Discovery and Data Mining, pages 289–296, 2002.

[25] C. M. Bishop. Neural networks for pattern recognition. Oxford: Clarendon
Press, 1995.

[26] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[27] C. Blake and C.J. Merz. UCI repository of machine learning databases. Uni-
versity of California, Irvine, School of Information and Computer Sciences,
1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.

[28] A. Blum and S. Chawla. Learning from labeled and unlabeled data using
graph mincuts. In Proc. of the 18th International Conference on Machine
Learning (ICML’01), pages 19–26, 2001.

[29] A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learn-
ing using randomized mincuts. In Proc. of the 21st International Conference
on Machine Learning (ICML’04), pages 13–20, 2004.

[30] A. Blum and T. Mitchell. Combining labeled and unlabeled data with
Co-Training. In Proc. of the 11th Annual Conference on Computational
Learning Theory (COLT 1998):, pages 92–100. Morgan Kaufmann, 1998.

http://www.ics.uci.edu/~mlearn/MLRepository.html

270 BIBLIOGRAPHY

[31] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[32] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[33] L. Breiman, J.H. Friedman, and R.A. Olshen. Classification and Regression
Trees. Taylor and Francis, Inc, 1984.

[34] D. Broomhead and D. Lowe. Multivariable functional interpolation and
adaptive networks. Complex Systems, 2:321–355, 1988.

[35] G. Brown. A new perspective for information theoretic feature selection.
In Proc. of the 12th International Conference on Artificial Intelligence and
Statistics (AI-STATS 2009), 2009.

[36] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: a
survey and categorisation. Information Fusion, 6(1):5–20, 2005.

[37] W. M. Campbell, D. E. Sturim, and D. A. Reynolds. Support vector ma-
chines using GMM supervectors for speaker verification. IEEE Signal Pro-
cessing Letters, 13(5):308–311, 2006.

[38] J. Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8(6):679698, 1986.

[39] O. Chapelle and A. Zien. Semi-supervised learning by low density separa-
tion. In Proc. of the 10th International Workshop on Artificial Intelligence
and Statistics, pages 57–64, 2005.

[40] V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory and
Methods. John Wiley and Sons, Inc. New York, 1998.

[41] S.-B. Cho and J.H. Kim. Combining multiple neural networks by fuzzy
integral and robust classification. IEEE Transactions on Systems, Man,
and Cybernetics, 25:380–384, 1995.

[42] W. Chu and S. S. Keerthi. New approaches to support vector ordinal regres-
sion. In Proc. of the 22nd International Conference on Machine Learning,
pages 145–152, 2005.

[43] D.M. Coppola, H.R. Purves, A.N. McCoy, and D. Purves. The distribution
of oriented contours in the real world. Proceedings of the National Academy
of Sciences of the United States of America, 95(7):40024006, 1998.

[44] C. Cortes and V. Vapnik. Support vector networks. Journal of Machine
Learning, 20(3):273–297, 1995.

BIBLIOGRAPHY 271

[45] F. G. Cozman and I. Cohen. Unlabeled data can degrade classification per-
formance of generative classifiers. In Proc. of the 15th International Confer-
ence of the Florida Artificial Intelligence Research Society (FLAIRS), page
327331, 2002.

[46] I. Dagan and S. Engelson. Committee-based sampling for training proba-
bilistic classifiers. In Proc. of the 12th International Conference on Machine
Learning (ICML’95), pages 150–157, 1995.

[47] F. d’Alché Buc, Y. Grandvalet, and C. Ambroise. Semi-supervised Margin-
Boost. In Neural Information Processing Systems Foundation, NIPS 2002,
2002.

[48] B.V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society Press, Los Alamitos, California, 1990.

[49] I. Davidson. An ensemble technique for stable learners with performance
bounds. In Proc. of the 19th National Conference on Artificial Intelligence
(AAAI- 2004), page 330335, 2004.

[50] A. P. Dempster. A generalization of bayesian inference. Journal of the
Royal Statistical Society, pages 205–247, 1968.

[51] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38, 1977.

[52] J. Demsar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[53] C. Dietrich, G. Palm, and F. Schwenker. Decision templates for the classi-
fication of bioacoustic time series. Information Fusion, 4:101–109, 2003.

[54] T. Dietterich. The Handbook of Brain Theory and Neural Networks, chapter
Ensemble Learning, page 405408. MIT Press, 2002.

[55] T.G. Dietterich. Ensemble methods in machine learning. In Proc. of the
First International Workshop on Multiple Classifier Systems (MCS’2000),
Cagliari, Italy, volume 1857 of LNCS. Springer-Verlag, 2000.

[56] T.G. Dietterich. An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomiza-
tion. Machine Learning, pages 139–157, 2000.

[57] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research,
2:263–286, 1995.

272 BIBLIOGRAPHY

[58] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley
and Sons, New York, 2nd edition, 2001.

[59] R. P. W. Duin. The combining classifier: to train or not to train? In 16th
International Conference on Pattern Recognition (ICPR02), page 765770,
2002.

[60] R. Fay. Feature selection and information fusion in hierarchical neural net-
works for iterative 3D-object recognition. PhD thesis, Ulm University, 2007.

[61] R. Fay, F. Schwenker, C. Thiel, and G. Palm. Hierarchical neural net-
works utilising dempster-shafer evidence theory. In Proceedings of the 2nd
IAPR TC3 Workshop on Artificial neural Networks in Pattern Recognition
(ANNPR 2006), volume 4087 of LNAI, pages 198–209, 2006.

[62] F. Feger and I. Koprinska. Co-Training using RBF nets and different feature
splits. In Proc. of the International Joint Conference on Neural Networks
(IJCNN’06), pages 1878–1885, 2006.

[63] F. Fleuret. Fast binary feature selection with conditional mutual informa-
tion. Journal of Machine Learning Research, 5:1531–1555, 2004.

[64] W.T. Freeman and M. Roth. Orientation histograms for hand gesture recog-
nition. In IEEE International Workshop on Automatic Face and Gesture-
Recognition, page 296301, 1995.

[65] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119139, 1997.

[66] Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using
the query by committee algorithm. Machine Learning, 28:133–168, 1997.

[67] A. Fujii, T. Tokunaga, K. Inui, and H. Tanaka. Selective sampling for
example-based word sense disambiguation. Computational Linguistics,
24(4):573–597, 1998.

[68] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic
Press, Inc., Orlando, FL, 1972.

[69] R. Ghani. Combining labeled and unlabeled data for text classification with
a large number of categories. In Proc. of the First IEEE Conference on Data
Mining (ICDM 2001), pages 597–598. IEEE Computer Society, 2001.

[70] D.E. Goldberg. Genetic Algorithms in Search Optimization and Machine
Learning. Addison Wesley, 1989.

BIBLIOGRAPHY 273

[71] S. Goldman and Y. Zhou. Enhancing supervised learning with unlabeled
data. In Proc. of the 17th International Conference on Machine Learning
(ICML’00), pages 327–334, 2000.

[72] R.C. Gonzales and R.E. Woods. Digital Image Processing. Addison-Wesley,
1992.

[73] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy mini-
mization. Advances in Neural Information Processing Systems, 17:529–536,
2005.

[74] A. Gupta and S. Dasgupta. Hybrid hierarchical clustering: Forming a tree
from multiple views. In Workshop on Learning with Multiple Views, 22nd
ICML, pages 35–42, 2005.

[75] A. Gupta and S. Dasgupta. Hybrid hierarchical clustering: Forming a tree
from multiple views. In Proc. of the 22nd ICML Workshop on Learning
with Multiple Views, pages 35–42, 2005.

[76] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering validity checking
methods: part ii. ACM SIGMOD Record, 31(3):19–27, 2002.

[77] J.V. Hansen. Combining predictors: meta machine learning methods and
bias/variance and ambiguity. PhD thesis, University of Aarhus, Denmark,
2000.

[78] L. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12:993–1001, 1990.

[79] H.A. Hefny, A.H. Abdel Wahab, A.A. Bahnasawi, and S.I. Shaheen. A
novel framework for hybrid intelligent systems. In Proc. of the 12th Inter-
national Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems (IAE/AIE), volume 1611 of LNCS, pages
761–770, 1999.

[80] T. K. Ho. Data complexity analysis for classifier combination. In Multiple
Classifier Systems, pages 53–63. Springer, 2001.

[81] T.K. Ho. Nearest neighbors in random subspaces. In Lecture Notes in Com-
puter Science: Advances in Pattern Recognition, pages 640–648. Springer,
1998.

[82] T.K. Ho. The random subspace method for constructing decision forests.
IEEE Transactions Pattern Analysis and Machine Intelligence, 20(8):832–
844, 1998.

274 BIBLIOGRAPHY

[83] S.C.H. Hoi and Michael R. Lyu. A semi-supervised active learning frame-
work for image retrieval. In Proc. of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 302–309, 2005.

[84] Y.S. Huang and C.Y. Suen. A method of combining multiple classifiers -
a neural network approach. In 12th International Conference on Pattern
Recognition (ICPR94), pages 473–475, 1994.

[85] Y.S. Huang and C.Y. Suen. A method of combining multiple experts for
the recognition of unconstrained handwritten numerals. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 17:90–93, 1995.

[86] M. Inoue and N. Ueda. Exploitation of unlabeled sequences in hidden
markov models. IEEE Transactions On Pattern Analysis and Machine
Intelligence, 25(12):1570–1581, 2003.

[87] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3:79–87, 1991.

[88] T. Joachims. Transductive inference for text classification using support
vector machines. In Proc. of the 16th International Conference on Machine
Learning, pages 200–209, 1999.

[89] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[90] G. Jun and J. Ghosh. Hybrid hierarchical classifiers for hyperspectral data
analysis. In 8th International Workshop on Multiple Classifier Systems
(MCS 2009), volume 5519 of LNCS, pages 42–51. Springer-Verlag, 2009.

[91] G. Jun and J. Ghosh. Multi-class boosting with class hierarchies. In 8th In-
ternational Workshop on Multiple Classifier Systems (MCS 2009), volume
5519 of LNCS, pages 32–41. Springer-Verlag, 2009.

[92] L. Kahsay, F. Schwenker, and G. Palm. Comparison of multiclass SVM de-
composition schemes for visual object recognition. In Proceedings of DAGM
2005, Munich, Germany, volume 3663 of LNCS, pages 334–341. Springer-
Verlag, 2005.

[93] T. Kanade, J. Cohn, and Y.-L. Tian. Comprehensive database for facial
expression analysis. In Proc. of the 4th IEEE International Conference on
Automatic Face and Gesture Recognition (FG’00), pages 46–53, 2000.

[94] S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Im-
provements to Platt’s SMO algorithm for SVM classifier design. Neural
Computation, 13:637–649, 2001.

BIBLIOGRAPHY 275

[95] T. Kemp and A. Waibel. Unsupervised training of a speech recognizer:
Recent experiments. In Proc. EUROSPEECH, pages 2725–2728, 1999.

[96] S. Kiritchenko and S. Matwin. Email classification with Co-Training. In
Proc. of the 2001 Conference of the Centre for Advanced Studies on Col-
laborative research (CASCON’01), pages 8–19. IBM Press, 2001.

[97] R. Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-
tree hybrid. In Proc. of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), pages 202–207. AAAI Press, 1996.

[98] T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1995.

[99] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and K. Torkkola. Lvq
pak: The learning vector quantization program package. Technical report,
Helsinki University of Technology, 1996.

[100] J.F. Kolen and J.B. Pollack. Back propagation is sensitive to initial con-
ditions. Advances in Neural Information Processing Systems, 3:860–867,
1991.

[101] U. Kressel. Pairwise classification and support vector machines. Advances
in kernel methods: Support Vector Learning, pages 255–268, 1999.

[102] V. Krishnamurthy. Algorithms for optimal scheduling and management of
hidden Markov model sensors. IEEE Transactions on Signal Processing,
50(6):1382–1397, 2002.

[103] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation,
and active learning. Advances in Neural Information Processing Systems,
7:231–238, 1995.

[104] M. Kubat. Decision trees can initialize radial-basis-function networks. IEEE
Transactions on Neural Networks, 9:813–821, 1998.

[105] S. Kumar. Modular Learning through Output Space Decomposition. PhD
thesis, The University of Texas at Austin, Austin, TX, 2000.

[106] L. Kuncheva. Pattern Recognition: From Classical to Modern Approaches,
chapter 15, page 427451. World Scientific, 2001.

[107] L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
Wiley, 2004.

[108] L. Kuncheva and J. Bezdek. An integrated framework for generalized near-
est prototype classifier design. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-based Systems, 6(5):437–457, 1998.

276 BIBLIOGRAPHY

[109] L. Kuncheva, J. Bezdek, and R. Duin. Decision templates for multi-
ple classifier fusion: An experimental comparison. Pattern Recognition,
34(2):299314, 2001.

[110] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensem-
bles and their relationship with the ensemble accuracy. Machine Learning,
51(2):181–207, 2003.

[111] L.I. Kuncheva. An application of owa operators to the aggregation of mul-
tiple classification decisions. The Ordered Weighted Averaging operators.
Theory and Applications, pages 330–343, 1997.

[112] L. Lam and C.Y. Suen. Application of majority voting to pattern recogni-
tion: An analysis of its behavior and performance. IEEE Transactions on
Systems, Man, and Cybernetics, 27(5):553–568, 1997.

[113] P. J. Lang. The emotion probe: Studies of motivation and attention. Amer-
ican psychologist, 50(5):372–385, 1995.

[114] P. Laskov and R. Lippmann. Machine learning in adversarial environments.
Machine learning, 81(2):115–119, 2010.

[115] N.D. Lawrence and M.I. Jordan. Semi-supervised learning via gaussian
processes. Advances in Neural Information Processing Systems, 17:753760,
2005.

[116] A. Levin, P. Viola, and Y. Freund. Unsupervised improvement of visual
detectors using Co-Training. In Proc. of the International Conference on
Computer Vision, pages 626–633, 2003.

[117] D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised
learning. In Proc. of the 11th International Conference on Machine Learning
(ICML’94), pages 148–156, 1994.

[118] D. Lewis and W. Gale. A sequential algorithm for training text classifiers.
In Proc. of the ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 3–12, 1994.

[119] M. Li and Z.-H. Zhou. Improve computer-aided diagnosis with machine
learning techniques using undiagnosed samples. IEEE Transactions on
Systems, Man and Cybernetics- Part A: Systems and Humans, 37(6):1088–
1098, 2007.

[120] H. Liang and Y. Yan. Improve decision trees for probability-based ranking
by lazy learners. In Proc. of the 18th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’06), pages 427–435. IEEE Com-
puter Society, 2006.

BIBLIOGRAPHY 277

[121] D. Lin and X. Tang. Conditional infomax learning: An integrated frame-
work for feature extraction and fusion. In European Conference on Com-
puter Vision, 2006.

[122] Y. Liu. Active learning with support vector machine applied to gene ex-
pression data for cancer classification. Journal of Chemical Information
and Computer Sciences, 44:1936–1941, 2004.

[123] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proc. of 5th Berkeley Symposium on Mathematical Statis-
tics and Probability, pages 281–297, 1967.

[124] D.D. Margineantu and T.G. Dietterich. Pruning adaptive boosting. In Proc.
of the 14th International Conference on Machine Learning (ICML’97),
pages 211–218. Morgan Kaufmann, 1997.

[125] A. K. McCallum and K. Nigam. Employing EM and pool-based active
learning for text classification. In Proc. of the 15th International Conference
on Machine Learning (ICML’98), pages 350–358. Morgan Kaufmann, 1998.

[126] W. McGill. Multivariate information transmission. IEEE Transactions on
Information Theory, 4(4):93–111, 1954.

[127] P. Melville and R.J. Mooney. Creating diversity in ensembles using artificial
data. Journal of Information Fusion: Special Issue on Diversity in Multi
Classifier Systems, 6(1):99–111, 2004.

[128] P. Melville and R.J. Mooney. Diverse ensembles for active learning. In Proc.
of the 21st International Conference on Machine Learning (ICML’04),
pages 584–591, 2004.

[129] J. Meynet and J. Thiran. Information theoretic combination of classifiers
with application to adaboost. In Proc. of the 7th International Workshop
on Multiple Classifier Systems (MCS 2007), volume 4472 of LNCS, pages
171–179, 2007.

[130] D. Michie, D.J. Spiegelhalter, and C.C. Taylor. Machine Learning, Neural
and Statistical Classification. Ellis Horwood, 1994.

[131] D. J. Miller and H. S. Uyar. A mixture of experts classifier with learning
based on both labelled and unlabelled data. Advances in Neural Information
Processing Systems, 9:571577, 1997.

[132] J. T. Morgan. Adaptive Hierarchical Classification with Limited Training
Data. PhD thesis, The University of Texas at Austin, Austin, TX, 2002.

278 BIBLIOGRAPHY

[133] I. Muslea, S. Minton, and C. A. Knoblock. Active + semi-supervised learn-
ing = robust multi-view learning. In Proc. of the 19th International Con-
ference on Machine Learning (ICML’02), pages 435–442, 2002.

[134] I. Muslea, S. Minton, and C. A. Knoblock. Active learning with multiple
views. Journal of Artificial Intelligence Research (JAIR), 27:203–233, 2006.

[135] C. Nadeau and Y. Bengio. Inference for the generalization error. Machine
Learning, 62:239–281, 2003.

[136] G. Nagy and G.L. Shelton. Self-corrective character recognition systems.
IEEE Transactions On Information Theory, pages 215–222, 1966.

[137] S. Nene, S. Nayar, and H. Murase. Columbia object image library: COIL.
http://citeseer.ist.psu.edu/article/nene96columbia.html, 1996.

[138] K. Nigam. Using Unlabeled Data to Improve Text Classification. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, USA,
2001.

[139] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of
Co-Training. In Proc. of the 9th International Conference on Information
and Knowledge Management, pages 86–93, New York, NY, USA, 2000.

[140] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification
from labeled and unlabeled documents using EM. Machine Learning, 39(2-
3):103–134, 2000.

[141] N. Oza and K. Tumer. Input decimation ensembles: decorrelation through
dimensionality reduction. In Proc. of the International Workshop on Multi-
ple Classifier Systems (MCS 2001), volume 2096 of LNCS, pages 238–247,
2001.

[142] J. Park and I.W. Sandberg. Approximation and radial basis function net-
works. Neural Computation, 5:305–316, 1993.

[143] J. R. Parker. Rank and response combination from confusion matrix data.
Information Fusion, 2(2):113–120, 2001.

[144] I. Partalas, G. Tsoumakas, I. Katakis, and I. Vlahavas. Ensemble pruning
using reinforcement learning. In Proc. of the 4th Hellenic Conference on
Artificial Intelligence (SETN 2006), pages 301–310, 2006.

[145] H. Peng, F. Long, and C. Ding. Feature selection based on mu-
tual information: Criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(8):1226–1238, 2005.

http://citeseer.ist.psu.edu/article/nene96columbia.html

BIBLIOGRAPHY 279

[146] C. Persello and L. Bruzzone. Active learning for classification of remote
sensing images. In Proc. of the IEEE International Conference on Geo-
science and Remote Sensing Symposium (IGARSS 2009), pages 693–696,
2009.

[147] J. C. Platt. Advances in Kernel Methods: Support Vector Learning. MIT
Press, Cambridge, MA, 1998.

[148] J.C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for
multiclass classification. Advances in Neural Information Processing Sys-
tems, 12:547–553, 2000.

[149] T. Poggio and F. Girosi. Networks for approximation and learning. Pro-
ceedings of the IEEE, 78(9):1481–1497, 1990.

[150] F. J. Provost and P. Domingos. Tree induction for probability-based rank-
ing. Machine Learning, 52(30), 2003.

[151] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1), 1986.

[152] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Francisco, CA, 1993.

[153] S. Rajan and J. Ghosh. An empirical comparison of hierarchical vs. two-level
approaches to multiclass problems. In 5th Workshop on Multiple Classifier
Systems (MCS 2004), volume 3077 of LNCS, page 283292. Springer-Verlag,
2004.

[154] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. Speaker verification using
adapted gaussian mixture models. In Digital Signal Processing, 2000.

[155] G. Ridgeway, D. Madigan, and T. Richardson. Boosting methodology for
regression problems. In Proc. of Second International Conference on Ar-
tificial Intelligence and Statistics (AISTATS-99), pages 152–161. Morgan
Kaufmann, 1999.

[156] B. Ripley. Pattern recognition and neural networks. Cambridge University
Press, 1996.

[157] J. Rissanen. Universal coding, information, prediction, and estimation.
IEEE Transactions on Information Theory, 30(4):629–636, 1984.

[158] G. Rogova. Combining the results of several neural network classifiers.
Neural Networks, 7:777–781, 1994.

[159] F. Roli. Semi-supervised multiple classifier systems: Background and re-
search directions. In Proc. of the 6th International Workshop on Multiple
Classifier Systems (MCS 2005), page 111, 2005.

280 BIBLIOGRAPHY

[160] F. Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological Review, 65(6):386–408,
1958.

[161] M. Rosenblum, Y. Yacoob, and L. Davis. Human expression recognition
from motion using a radial basis function network architecture. IEEE Trans-
actions on Neural Networks, 7(5):1121–1138, 1996.

[162] A. Salaheldin and N. El Gayar. New feature splitting criteria for Co-
Training using genetic algorithm optimization. In Proc. of the Interna-
tional Workshop on Multiple Classifier Systems (MCS 2010), volume 5997
of LNCS, pages 22–32. Springer-Verlag, 2010.

[163] M. Schels. Lernen mit unsicheren lehrersignalen zu erkennung von gesicht-
sausdrücken in bildsequenzen. Master’s thesis, University of Ulm, Ulm,
Germany, 2008.

[164] B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization and Beyond. MIT Press, Cambridge,
MA, 2002.

[165] F. Schwenker and C. Dietrich. Initialization of radial basis function networks
using classification trees. Neural Network World, 10:473482, 2000.

[166] F. Schwenker, H.A. Kestler, and G. Palm. Three learning phases for radial
basis function networks. Neural Networks, 14:439–458, 2001.

[167] F. Schwenker, H.A. Kestler, G. Palm, and M. Höher. Similarities of LVQ
and RBF learning. In Proc. IEEE International Conference SMC, pages
646–51, 1994.

[168] F. Schwenker and G. Palm. Tree structured support vector machines for
multi-class pattern recognition. In Proc. of the Second International Work-
shop on Multiple Classifier Systems (MCS 2001), volume 2096 of LNCS,
pages 409–417. Springer-Verlag, 2001.

[169] F. Schwenker, A. Sachs, G. Palm, and H. A. Kestler. Orientation his-
tograms for face recognition. In International Workshop on Artificial Neural
Networks in Pattern Recognition (ANNPR), volume 4087 of LNCS, pages
253–259. Springer, 2006.

[170] M. Seeger. Learning with labeled and unlabeled data. Technical report,
University of Edinburgh, Institute for Adaptive and Neural Computation,
2002.

[171] K. Sentz. Combination of Evidence in Dempster-Shafer Theory. PhD thesis,
Binghamton University, Binghamton, NY, 2002.

BIBLIOGRAPHY 281

[172] B. Settles. Curious Machines: Active Learning with Structured Instances.
PhD thesis, Department of Computer Sciences, University of Wisconsin-
Madison, Madison, WI, 2008.

[173] B. Settles. Active learning literature survey. Technical report, Depart-
ment of Computer Sciences, University of Wisconsin-Madison, Madison,
WI, 2009.

[174] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
Princeton, New Jersey, 1976.

[175] B. Shahshahani and D. Landgrebe. The effect of unlabeled samples in reduc-
ing the small sample size problem and mitigating the hughes phenomenon.
IEEE Transactions on Geoscience and Remote Sensing, 32(5):1087–1095,
1994.

[176] A. Shashua and A. Levin. Taxonomy of large margin principle algorithms
for ordinal regression problems. Advances in Neural Information Processing
Systems, 15, 2002.

[177] D.L. Shrestha and D.P. Solomatine. Experiments with adaboost.rt, an
improved boosting scheme for regression. Neural Computation, 18(7):1678–
1710, 2006.

[178] D. Skalak. Prototype Selection for Composite Nearest Neighbor Classifiers.
PhD thesis, Department of Computer Science, University of Massachusetts,
1996.

[179] P. Smyth, A. Gray, E. Gray, and U.M. Fayyad. Retrofitting decision tree
classifiers using kernel density estimation. pages 506–514. Morgan Kauf-
mann, 1995.

[180] R. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[181] W. Tang and S. Zhong. Pairwise constraints-guided dimensinality reduc-
tion. In Proc. of the SDM06 Workshop on Feature Selection for Data Min-
ing, 2006.

[182] R. Tibshirani and T. Hastie. Margin trees for high-dimensional classifica-
tion. Journal of Machine Learning Research, 8:637–652, 2007.

[183] S. Tong and E. Chang. Support vector machine active learning for image
retrieval. In Proc. of the ACM International Conference on Multimedia,
pages 107–118. ACM Press, 2001.

282 BIBLIOGRAPHY

[184] S. Tong and D. Koller. Support vector machine active learning with appli-
cations to text classification. In Proc. of the 17th International Conference
on Machine Learning (ICML’00), pages 999–1006, 2000.

[185] G. Tsoumakas and I. Katakis. Multi-label classification: An overview. In-
ternational Journal of Data Warehousing and Mining, 3:1–13, 2007.

[186] G. Tsoumakas, I. Partalas, and I. Vlahavas. A taxonomy and short re-
view of ensemble selection. In ECAI 2008 Workshop on Supervised and
Unsupervised Ensemble Methods and Their Applications (SUEMA), 2008.

[187] D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery. Active
learning methods for remote sensing image classification. IEEE Transac-
tions on Geoscience and Remote Sensing, 47(7):2218–2232, 2009.

[188] K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble
classifiers. Connection Science, 8(3–4):385–403, 1996.

[189] G. Tur, D. Hakkani-Tür, and R.E. Schapire. Combining active and semi-
supervised learning for spoken language understanding. Speech Communi-
cation, 45(2):171–186, 2005.

[190] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3(1):71–86, 1991.

[191] N. Ueda and R. Nakano. Generalization error of ensemble estimators. In
International Conference on Neural Networks, pages 90–95, 1996.

[192] N. Ussivakul and B. Kijsirikul. Multiclass support vector machines using
adaptive directed acyclic graph. In IEEE/INNS International Joint Con-
ference on Neural Networks (IJCNN-2002), 2002.

[193] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

[194] P. Verlinde and G. Chollet. Combining vocal and visual cues in an iden-
tity verification system using k-nn based classifiers. In Proc. of the IEEE
Workshop on Multi-Media Signal Processing, 1998.

[195] K. Wagstaff, C. Cardie, and S. Schroedl. Constrained k-means clustering
with background knowledge. In Proc. of the 18th International Conference
on Machine Learning (ICML01), pages 577–584, 2001.

[196] G. Wahba. Multivariate function and operator estimation, based on smooth-
ing splines and reproducing kernels. Proc. Nonlinear Modeling and Fore-
casting, SFI Studies in the Sciences of Complexity, XII:95–112, 1992.

BIBLIOGRAPHY 283

[197] W. Wang and Z.-H. Zhou. Analyzing Co-Training style algorithms. In Proc.
of the 18th European Conference on Machine Learning (ECML 2007), page
454465, 2007.

[198] S. Wermter, G. Palm, and M. Elshaw. Biomimetic Neural Learning for
Intelligent Robots. Springer-Verlag, 2005.

[199] K.-D. Wernecke. A coupling procedure for discrimination of mixed data.
Biometrics, 48:497–506, 1992.

[200] B. A. Whitehead and T. D. Choate. Cooperative-competitive genetic evo-
lution of radial basis function centers and widths for time series prediction.
IEEE Transactions on Neural Networks, 7(4):869–880, 1996.

[201] I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[202] D.H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–260, 1992.

[203] K. Woods, W.P. Kegelmeyer, and K. Bowyer. Combination of multiple
classifiers using local accuracy estimates. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19:405–410, 1997.

[204] L. Xu, A. Krzyzak, and C.Y. Suen. Methods of combining multiple classi-
fiers and their application to handwriting recognition. IEEE Transactions
on Systems, Man, and Cybernetics, 22:418–435, 1992.

[205] H. Yang and J. Moody. Data visualization and feature selection: New al-
gorithms for nongaussian data. Advances in Neural Information Processing
Systems, 12, 1999.

[206] J. Yang and V. Honavar. Feature Extraction, Construction and Selection
A Data Mining Perspective. Kluwer, 1998.

[207] T.Y. Young and A. Farjo. On decision directed estimation and stochastic
approximation. IEEE Transactions On Information Theory, pages 671–673,
1972.

[208] H. Yu. SVM selective sampling for ranking with application to data re-
trieval. In Proc. of the International Conference on Knowledge Discovery
and Data Mining (KDD), pages 354–363, 2005.

[209] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning
with local and global consistency. Advances in Neural Information Process-
ing Systems, 16:753760, 2004.

284 BIBLIOGRAPHY

[210] Y. Zhou and S. Goldman. Democratic co-learning. In Proc. of the 16th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’04),
pages 594–202, Washington, DC, USA, 2004. IEEE Computer Society.

[211] Z.-H. Zhou. When semi-supervised learning meets ensemble learning. In
Proc. of the 8th International Workshop on Multiple Classifier Systems
(MCS 2009), volume 5519 of LNCS, pages 529–538, 2009.

[212] Z.-H. Zhou, K.-J. Chen, and Y. Jiang. Exploiting unlabeled data in content-
based image retrieval. In Proc. of the 15th European Conference on Machine
Learning (ECML’04), pages 525–536. Springer, 2004.

[213] Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowl-
edge and Information Systems. in press.

[214] Z.-H. Zhou. and M. Li. Semi-supervised regression with Co-Training. In
Proc. of the 19th International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 908–913, 2005.

[215] Z.-H. Zhou. and M. Li. Tri-training: Exploiting unlabeled data using
three classifiers. IEEE Transactions on Knowledge and Data Engineering,
17(11):1529–1541, 2005.

[216] Z.-H. Zhou, W. Tang, Zhi hua Zhou, and Wei Tang. Selective ensemble of
decision trees. In Lecture Notes in Artificial Intelligence, pages 476–483.
Springer, 2003.

[217] Z.-H. Zhou and Y. Yu. Adapt bagging to nearest neighbor classifiers. Jour-
nal of Computer Science and Technology, 20(1):48–54, 2005.

[218] Z.-H. Zhou, D. Zhang, and S. Chen. Semi-supervised dimensionality reduc-
tion. In Proc. of the 7th SIAM International Conference on Data Mining
(SDM’07), pages 629–634, 2007.

[219] X. Zhu. Semi-supervised learning literature survey. Technical Report 1530,
2008.

[220] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Proc. of the 20th International
Conference on Machine Learning (ICML’03), page 912919, 2003.

[221] X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and
semi-supervised learning using gaussian fields and harmonic functions. In
Proc. of the ICML’03 Workshop on The Continuum from Labeled to Unla-
beled Data, 2003.

Index

S1 measure, 221

active learning, 91, 159
for regression, 97
with structured instances, 98

AdaBoost, 54, 87
ASSEMBLE, 87

Bagging, 52, 55, 86, 180
basic belief assignment, 68
Boosting, 53

classifier selection, 243
Co-EM, 83
Co-EMT, 164
Co-Forest, 86
Co-Testing, 96
Co-Training, 81
Co-Training by Committee, 139, 159,

179
Cohn-Kanade dataset, 108
color histogram, 102
combination methods, 49
confidence measure, 121, 124, 142, 182

Decision Directed Acyclic Graphs, 62
decision profile, 209, 220, 236
decision templates, 221
decision trees, 24, 30, 143, 151
DECORATE, 88
Democratic Co-learning, 86

Dempster-Shafer evidence theory, 68
diversity creation, 48, 180

ensemble pruning, 243
error backpropagation, 27
error-ambiguity decomposition, 45
Error-Correcting Output Codes, 61
evidence-theoretic combiner, 69, 235
expectation-maximization (EM), 77

facial expressions recognition, 108, 210
Fano’s inequality, 245
fruits recognition, 101, 125, 146, 237
fuzzy k-Nearest Neighbor, 29

GMM Supervectors, 210

handwritten digits recognition, 105, 106,
125, 146, 240

hierarchical neural networks, 63, 119,
229

informativeness measure, 94, 96

k-fold cross-validation, 112
k-means clustering, 20
k-Nearest Neighbor, 28, 145
kappa-error diagram, 47
kappa-statistic, 47
Karush-Kuhn-Tucker optimality condi-

tions, 36, 200
kernel trick, 40

285

286 INDEX

learning vector quantization , 21
letters image recognition, 111

Minkowski distance, 15, 180
multi-class learning, 57
multi-instance active learning, 98
Multi-View Forest, 229
multi-view learning, 81, 229
Mutual Information, 244

nearest prototype classifier, 29

one-against-one, 59
one-against-others, 58
Optical flow, 110
orientation histogram, 103

using Canny edge detection, 104
using Opponent Colors, 105
using Sobel edge detection, 103

paired t-Test, 114
Principal Component Analysis, 105
pseudo-inverse solution, 28

Query by Committee (QBC), 94

radial-basis-function neural networks, 15,
135, 183, 222

Random Forest, 55
Random Subspace Method, 54, 145

self-training, 76
semi-supervised learning, 73, 159

for regression, 179
with committees, 80, 164
with generative models, 77, 163
with graphs, 79, 162
with support vector machines, 79

Shannon entropy, 244
SMO Algorithm, 202
soft classifier, 50
soft combiner, 49
SSMBoost, 87
Statistical Co-learning, 85
support vector machines, 33, 79, 195

trainable combiner, 52
Tri-Class support vector machines, 197
Tri-Training, 86

uncertainty sampling, 93

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Semi-Supervised Learning
	Thesis Statement
	Outline of the Thesis

	I Basics
	Base Learning Algorithms
	Radial Basis Function Neural Networks
	One-Phase Learning Scheme
	Two-Phase Learning Scheme
	Three-Phase Learning Scheme
	Determine RBF Centers
	k-means Clustering
	Learning Vector Quantization (LVQ)
	Initialization with Decision Trees

	Determine RBF Widths
	Calculate the Output Layer Weights
	Error Back Propagation
	Pseudo-Inverse Solution

	k-Nearest Neighbors Algorithms
	k-Nearest Neighbors Classifier
	Fuzzy k-Nearest Neighbors Classifier
	Nearest Prototype Classifier

	Decision Trees
	Evaluation Criteria
	Pruning
	Classification Phase

	Support Vector Machines
	Hard-Margin Support Vector Machines
	Soft-Margin Support Vector Machines
	Nonlinear Mapping to a High-Dimensional Space
	Kernel Trick
	Kernels

	Ensemble Learning
	Introduction
	Diversity
	How to Measure Diversity?
	For Regression
	For Classification

	How to Create Diversity?

	Taxonomies of Combination Methods
	Selection and Fusion
	Hard, Ranking and Soft Combiners
	Class-Conscious and Class-Indifferent Combiners
	Trainable and Nontrainable Combiners

	Ensemble Learning Algorithms
	Manipulation of Training Set
	Bagging
	Boosting

	Manipulation of Feature Set
	Random Subspace Method (RSM)
	Random Forest

	Manipulation of the Output Targets

	Multi-Class Learning
	Introduction
	One-Against-Others Approach
	Training Phase
	Classification Phase

	One-Against-One (Pairwise) Approach
	Training Phase
	Classification Phase

	Error-Correcting Output Codes (ECOC)
	Training Phase
	Classification Phase

	Decision Directed Acyclic Graphs (DDAG)
	Training Phase
	Classification Phase

	Tree-Structured (Hierarchical) Approach
	Training Phase
	Generate Class Hierarchy
	Train Binary Classifiers

	Classification Phase
	Classical Decision Tree-Like (Hard) Combiner
	Product of the Unique Path Combiner
	Dempster-Shafer evidence theory
	Evidence-theoretic Soft Combiner

	Related Work

	Conclusion

	Semi-Supervised Learning
	Introduction
	What is Semi-Supervised Learning?
	Self-Training
	SSL with Generative Models
	Semi-Supervised SVMs (S3VMs)
	Semi-Supervised Learning with Graphs
	Semi-Supervised Learning with Committees
	Multi-View Learning
	Multi-View Co-Training
	Co-EM

	Co-Training with Natural Views
	Co-Training with Random Views
	Co-Training with Artificial Views
	Co-Training with Single View
	Statistical Co-learning
	Democratic Co-learning
	Tri-Training
	Co-Forest

	Other Committee-Based SSL Algorithms
	SSMBoost
	ASSEMBLE
	DECORATE

	Conclusion

	Active Learning
	What is Active Learning?
	Stream-Based Selective Sampling
	Pool-Based Active Learning
	Active Learning Algorithms
	Uncertainty Sampling
	Query by Committee (QBC)
	Co-Testing
	Active Learning for Regression
	Active Learning with Structured Instances
	Multi-Instance Active Learning
	Active Learning for Sequence Labeling

	Conclusion

	Applications and Evaluation Method
	Applications for Visual Object Recognition
	Fruits Image Recognition
	Color Histogram
	Orientation Histogram

	StatLog Handwritten Digits
	Principal Component Analysis (PCA)
	Orientation Histogram

	UCI Handwritten Digits
	Columbia Object Image Library (COIL)
	Color Histogram
	Orientation Histogram

	Emotion Recognition from Facial Expressions
	Data Annotation
	Feature Extraction

	Benchmark Data Sets
	Letters Image Recognition
	Texture

	Performance Evaluation
	Cross-Validation
	Significance Test
	Paired t-Test

	II Contributions
	Co-Training with Class Hierarchies
	Introduction
	Co-Training of Tree-Structured Ensembles
	Confidence Measure
	Estimating Class Probabilities

	Tree-Structured Co-Training
	Confidence Measure

	Application to Visual Object Recognition
	Fruits Dataset
	Handwritten Digits Dataset
	COIL-20 Dataset

	Experimental Evaluation
	Methodology
	Results and Discussion

	Related Work
	Tree-Structured Approach and Margin Trees
	Multi-Class Decomposition and SSL
	Tree-Structured Approach and Boosting
	Tree-Structured Approach and Neural Combiners

	Conclusions
	Future Work

	Co-Training by Committee for Semi-supervised Classification
	Introduction
	Co-Training by Committee (CoBC)
	Complexity of CoBC
	Confidence Measure
	Estimating Class Probabilities
	Estimating Local Competence

	Random Subspace Method (RSM)
	RSM with kNN

	Application to Visual Object Recognition
	UCI Handwritten Digits Recognition
	Fruits Recognition
	COIL-20 Objects Recognition

	Experimental Evaluation
	Methodology
	Results
	RSM ensemble against single classifiers
	CoBC against Self-Training
	CPE against Local Competence
	CoBC against Co-Forest

	Related Work
	Improving Decision Trees Class Probability Estimation
	Single-View Co-Training

	Conclusions and Future Work

	Combining Committee-based SSL and Active Learning
	Introduction
	Architecture I: QBC then CoBC
	Architecture II: QBC with CoBC
	Related Work
	SSL with graphs
	SSL with generative models
	SSL with Committees

	Experimental Evaluation
	Methodology
	Results
	RSM ensemble against single classifiers
	CoBC against Self-Training
	QBC against Uncertainty Sampling
	QBC-then-CoBC and QBC-with-CoBC
	Other AL and SSL combinations

	Conclusions and Future Work

	Co-Training by Committee for Semi-supervised Regression
	Introduction
	CoBCReg Algorithm
	Diversity Creation
	Confidence Measure
	Two-Phase Learning for RBF Networks

	Experimental Evaluation
	Methodology
	Results
	Influence of Output Noise

	Conclusions and Future Work

	One-against-One Co-Training with Tri-Class SVMs
	Introduction
	One-against-One Co-Training
	Motivation
	Co-Training with Tri-Class SVMs
	Confidence Measure

	Support Vector Machines (SVM)
	Binary-Class SVMs
	One-against-One Tri-Class SVMs
	Primal problem
	Dual problem

	SMO for Tri-Class SVM
	Computing the Thresholds
	Solving for Two Lagrange Multipliers (takeStep)

	Probabilistic Output for Tri-Class SVM
	Decision Fusion for Ensemble of Probabilistic Tri-Class SVMs

	Facial Expressions Recognition
	Feature Extraction
	GMM Supervectors
	Gaussian Mixture Models

	Experimental Evaluation
	Methodology
	Results and Discussion

	Conclusion and Future Work

	Hierarchical Decision Templates based RBF Network Combiner
	Introduction
	Proposed Tree Combination Method
	Hierarchical Decision Profile
	Standard Decision Templates Combiner
	RBF Network Combiner using Decision Templates

	Experimental Results
	Methodology
	Results
	Influence of the Training Set Size
	Influence of Number of Decision Templates per Class

	Related Work
	Conclusion and Future Directions

	Multi-View Forest
	Introduction
	Multi-View Forest
	Multi-View Learning
	Tree-Structured Multi-class Decomposition
	Generate Class Hierarchy
	Train Binary Classifiers

	Forest Classification Phase
	Evidence-theoretic Soft Combiner
	Evidence from an individual node classifier
	Evidence from all K-1 node classifiers within tree
	Evidence from all trees within a forest

	Application to Visual Object Recognition
	Results on the Fruits Data Set
	Results on the Handwritten Digits

	Conclusions

	An Information Theoretic Perspective on Classifier Selection
	Introduction
	Entropy and Mutual Information
	Information Theoretic Classifier Selection
	Interaction Information
	Mutual Information Decomposition

	Classifier Selection Criteria
	Maximal relevance (MR)
	Mutual Information Feature Selection (MIFS)
	Minimal Redundancy Maximal Relevance (mRMR)
	Joint Mutual Information (JMI)
	Conditional Infomax Feature Extraction (CIFE)
	Conditional Mutual Information Maximization (CMIM)

	Related Work
	Experimental Evaluation
	Methodology
	Results

	Conclusion and Future Work

	Conclusion
	Main Contributions
	Future Directions
	Last Words

	Bibliography
	Index

