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Abstract

The generation of photorealistic images is one of the major topics in computer gra-
phics. By using the principles of physical light propagation, images that are indistin-
guishable from real photographs can be generated. This computation, however, is a
very time-consuming task. When simulating the real behavior of light, individual images
can take hours to be of sufficient quality. For this reason movie production has relied
on artist driven methods to generate life-like images. Only recently there has been a
convergence of techniques from physically based simulation and movie production that
allowed the use of these techniques in a production environment. In this thesis we advo-
cate this convergence and develop novel algorithms to solve the problems of computing
high quality photo-realistic images for complex scenes. We investigate and extend the
algorithms that are used to generate such images on a computer and we contribute
novel techniques that allow to perform the necessary ray-tracing based computations
faster. We consider the whole image generation pipeline starting with the low level
fundamentals of fast ray tracing on modern computer architectures up to algorithmic
improvements on the highest level of full photo-realistic image generation systems.

In particular, we develop a novel multi-branching acceleration structure for high per-
formance ray tracing and extend the underlying data structures by software caching to
further accelerate the result. We also provide a detailed analysis on the factors that
influence ray tracing speed and derive strategies for significant improvements. These
create the foundations for the development of a production quality global illumination
rendering system. We present the system and develop several techniques that make
it usable for realistic applications. The key aspect in this system is a path space par-
titioning method to allow for efficient handling of highly complex illumination situations
as well as the handling of complex material properties. We further develop methods
to improve the illumination computation from environment maps and provide a filtering
technique for preview applications.
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1
Introduction

One of the strongest driving forces in computer graphics has been the strive to repro-
duce reality. Starting with the beginning of graphical computer displays, scientists and
artists alike pushed the boundaries of what is possible. Over the years, computer gen-
erated images were able to approximate the appearance and phenomena of the real
world better and better. While in the beginning only primitive shapes, a limited color
space, and simple algorithms could be used to approximate reality, the huge advance-
ments in computing power over the last 20 years as well as significant improvements
in the fundamental algorithms allow us to now generate images and movies entirely in
the computer. The results are almost impossible to distinguish from real photographs
or live footage.

Even though high quality computer generated images are now a reality there is a
large area of unsolved problems and a lot of room for improvement. The simulation of
the phenomena from nature is a highly complex and compute-intensive task. Especially
for the production of movies, where thousands of individual images are needed, speed
as well as quality is of paramount importance. The goal of increased realism is tightly
coupled with increasing complexity. While in the beginning of computer graphics the
realistic rendering of a single object was an enormous task, nowadays whole cities and
forests are modeled in a computer and rendered into realistic images.

1



1 Introduction

1.1 Physically Based Rendering and Visual Effects

Physically based rendering is a sub-class of graphics algorithms that use real physical
quantities and models to not only produce visually pleasing but also quantitatively cor-
rect images. The correctness of the image is of course only valid within the constraints
of the physical model that is used but nevertheless allows to produce results that can be
measured in the real world. This approach is in stark contrast to artist driven methods
that are used for real time computer graphics as well as for movie production. While the
visual effects in movies look strikingly realistic since over a decade now, their rendering
methods do not rely on realistic physical simulations but on handcrafted models and
artist tweaked parameters to achieve the desired results. Only recently this has begun
to change and the visual effects industry as well as the real time graphics community
have realized the advantage realistic models can provide over manual crafting. Even
though one can always argue that artistic freedom is important for visual effects and
real time graphics, the advantages of being able to simulate light and surfaces as they
behave in the real world cannot be neglected. In this thesis we advocate this conver-
gence and present novel algorithms that improve the robustness as well as the speed
of physical light transport simulation.

1.2 Thesis Overview

One very general way to simulate the distribution of light is by tracing individual light rays
through the scene and modeling their behavior like reflection or refraction using physical
models. This basic operation is realized by an algorithm called ray tracing and is one
of the fundamental building blocks that we use in this thesis. Based on this foundation,
we will develop novel acceleration methods for fast incoherent ray tracing and several
new techniques and improvements for physically based rendering algorithms. Our ray
tracing algorithm acceleration methods directly benefit all simulation algorithms devel-
oped in this thesis and we show their effectiveness in a complete rendering system that
uses all our results. Some of the algorithms and results presented in this thesis have
already been published at conferences and in different journals [Damm 06, Damm 08a,
Damm 08b, Bend 08, Damm 09a, Damm 09b, Damm 10a, Damm 10b]. We present
this research in a unified framework and give additional results and discussions. We
will also extend the work at several points and present new techniques and insights.

The remainder of this thesis is organized as follows. In Chapter 2 we will review
the fundamentals of image generation and discuss the basic framework of a rendering
system. We also discuss some fundamentals of processor architectures that are re-
quired for high performance rendering applications. Chapter 3 develops our novel data
structure for accelerated ray tracing specifically optimized for physically based render-
ing problems and Chapter 4 further improves this data structure by considering the
representation of the 3d scenes and the hierarchy construction algorithm. In Chapter 5
we will consider software caching for improving the ray tracing performance in light
transport simulations.

2



1.2 Thesis Overview

Chapter 6 then introduces a full-featured, general global illumination system for pro-
duction quality image generation. This system is built on top of the data structures and
acceleration techniques developed in the previous chapters and addresses many of
the problems encountered in image generation for visual effects with physically based
rendering systems. In this chapter we will contribute several techniques for global illumi-
nation computation like an environment map sampling technique and an image-space
filter for interactive preview. Finally, in Chapter 7 we will summarize the developed
techniques and discuss their relationships.

1.2.1 Summary of Contributions

To summarize, the main contributions in this thesis are

• a novel bounding volume hierarchy for acceleration of incoherent rays. This ac-
celeration structure is targeted towards modern hardware architectures, performs
significantly faster than previously used structures, and requires less memory than
previous methods.

• an efficient triangle splitting heuristic that improves the quality of ray tracing ac-
celeration structures in many situations.

• an iterative ray-triangle intersection algorithm that guarantees that no intersec-
tions are missed. This is often needed in physical simulations where accuracy is
paramount.

• a discussion of software caching for ray tracing acceleration with a branch-free
parallel triangle intersection algorithm and a novel shadow cache that can greatly
improve the efficiency of visibility queries.

• a global iterative stopping criterion for Monte Carlo light transport simulation based
on integro-approximation.

• a path space partitioning method that, contrary to previous algorithms, solves the
full light transport equation by several distinct algorithms. With this method we
develop a production quality global illumination renderer that has less restrictions
than previous methods (for example allowing for non-physical BRDFs).

• an environment map sampling technique that allows to start light paths with cor-
rect Monte Carlo weights.

• an image-space filtering technique for noisy Monte Carlo images that allows for
fully interactive real-time preview of illumination and material changes.

• a discussion of on-demand spectral rendering with application examples in fluo-
rescent concentrator simulation and a spectral camera lens simulation.

3
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2
Image Generation Fundamentals

In this Chapter we will provide the fundamentals of the image generation pipeline and
basic architecture considerations that are needed to understand the rest of this thesis.

2.1 Image Generation by Camera Simulation

It is our goal to create an efficient computer program to generate synthetic images that
are indistinguishable from real images. One point of view to explain this process is
by considering how real images are acquired into a computer processable format by
a camera. The computer program now tries to replicate this process as closely as
possible to generate a final image.

Raster Images

A computer generated image is stored as an array of color values. Each color value
represents usually a square in the image region called a pixel (short for picture ele-
ment) but the square layout is not necessary [Damm 09c]. Most computer generated
images are displayed on computer monitors that have three color components per pixel
called RGB. They correspond to the red, green and blue channel, each of which has a

5



2 Image Generation Fundamentals

resolution of an 8 bit integer (values between 0 and 255). There exist other standards
and, especially for print, other representations but in this thesis we will use the 8 bit per
channel RGB representation with square pixels as final output. Figure 2.1 illustrates the
data layout and representation.

Figure 2.1: Illustration of a pixel raster and an image stored in the raster. The left figure
shows a pixel raster of the size 10 × 7. The right figure shows the same
image on a pixel raster with the resolution 320 × 224 pixels. As an overlay
the raster of the left image is shown.

Dynamic Range vs. Tone Mapping

In nature, brightness differences have a very high dynamic range. Most commonly used
display technologies cannot reproduce this. They provide usually only 8 bits per chan-
nel for the final output. Nevertheless, internal representations during image synthesis
need a higher resolution and range. Throughout this thesis we will use the RGB for-
mat, but with 32 bit floating point numbers per channel if not otherwise noted. A short
overview of floating point numbers can be found in Section 2.4. This allows to perform
all computations directly inside the image buffer without losing too much accuracy. This
is necessary for high quality photo-realistic image synthesis. The representation using
floating point numbers is sometimes called high dynamic range representation (HDR)
as it allows for huge value differences using the exponent of the float representation.
Even though there exist approaches to directly display images with a higher dynamic
range [Seet 04], for most display devices the dynamic range of the image has to be
mapped to a smaller displayable range. This is performed with tone mapping opera-
tions. In Chapter 22 of [Shir 02] an overview of tone reproduction for computer graphics
can be found. A commonly used tone-mapping operator is described by Reinhard in
[Rein 02]. A comparison of five recent operators can be found in [Ashi 06].

The simplest operator to use is by normalizing the luminance of the color value:

Lnew =
L

L+ 1

6



2.1 Image Generation by Camera Simulation

The luminance is computed by transforming the RGB value into a color-space with a
luminance channel like HSV.

For combining computer generated images with real world images in movie produc-
tion a high dynamic range in the stored output image is also very important. To achieve
realistic results the response curve of the film has to be modeled and used to adjust the
computer generated image. The closer the simulation is to real world parameters the
easier it becomes to adjust the computer generated images.

Ray Tracing

Ray tracing is a fundamental technique to create computer generated images. It was
first developed in 1968 by Appel in [Appe 68] as a method to add shadows to a computer
generated image. Since then a lot of research started on using ray tracing for computer
graphics and image generation.

In its basic form ray tracing computes computer generated images by computing a
color value for each pixel independently of all the other pixels. To generate an image
several components are needed. First is a camera that defines the viewer (or eye) posi-
tion in the scene and also the viewing direction. Coupled with the camera is the image
plane that contains the pixel elements. A ray tracer now provides a function trace(x, d)

Figure 2.2: This figure illustrates how ray tracing is used to generated an image from a
3d scene. Rays are generated from the camera position through each pixel
of the image plane and intersected with the 3d scene. This is shown in the
left figure. Rays that intersect the object give the pixel the according color.
The final output image is shown on the right.

with a 3d position x as origin and a direction d and returns the closest intersection of this
ray with the scene. To generate a simple image with this function for each pixel a ray is
generated that originates at the camera origin (eye position) and has a direction through
each pixel. The pixel is then shaded with the object color at the intersection point. This
process is illustrated in Figure 2.2. These rays that compute the nearest intersection
point seen through each pixel are called primary rays or eye rays. Of course computing

7



2 Image Generation Fundamentals

such a simple image with ray tracing is very inefficient as much faster methods exist to
compute primary intersections. The most prominent algorithm is rasterization [Fole 94].
The power of ray tracing lies in its generality. The trace function is defined for arbitrary
x and d and thus allows for complex computations using only this simple operation. The
application to general light transport simulation is discussed in Section 2.2 and we will
use it in Chapter 6 as a fundamental building block in our rendering system.

A 3d scene is modeled by using geometric primitives. For a generic ray tracer one
can use any primitive that allows to compute the intersection of a ray segment with this
object. Primitives that have a simple implicit representation are the ones that result in
the most simple intersection algorithms. A common example is a sphere where the
intersection computation can be performed by inserting the ray equation r(t) = o + td
into the implicit sphere equation S : |(x − p)| = r and solving for t. The closest of the
two possible solutions is the result of the trace function. Other simple primitives are for
example an infinite plane or an infinite cylinder. More complex objects may need more
complex intersection algorithms. In [Shir 00] many ray object intersection algorithms
can be found. In Section 2.3.3 we will discuss the most common object representation
used for high performance ray tracing.

2.2 Light Transport Simulation by Path Tracing

The basic idea of light transport simulation with the ray tracing algorithm is to identify
light transport paths that connect a light source with the image sensor. The contribution
of each path is summed up in each pixel element of the sensor. In [Whit 80], Whitted
introduced a simple ray tracing based image synthesis algorithm that is able to gen-
erate complex effects using a very simple recursive algorithm. It is one of the most
intuitive variants of ray tracing based light transport simulation. Figure 2.3 illustrates the
algorithm and shows a typical example image. Instead of computing the final pixel color

Primary Ray

Primary Ray

Reflection

Reflection

Refratcion

RefratcionShadow Ray

Shadow Ray
Image Plane

Light Source

Figure 2.3: Whitted style or recursive ray tracing. The left image schematically shows
the recursive extension of camera rays to simulate various effects. The right
image shows a ray traced image with a reflective floor and a glass sphere.
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2.3 Rendering Software Architecture Design

only with the information of the hit point from the primary ray as in Figure 2.2, recursive
ray tracing generates a path through the scene by recursively extending the ray at each
hit point until a termination criterion is met. This allows to use for example the laws
of reflection and refraction from optics to compute the appearance of a perfect glass
sphere or mirror. Additionally, one can compute hard shadows from point light sources
by connecting each hit point with a point light source and using the trace function to
compute the visibility. The intersection point is now only illuminated when it can receive
light from the source.

Later in Section 6.1 we will more closely investigate the algorithms that are used for
ray tracing based physical light transport simulation.

2.3 Rendering Software Architecture Design

From a software point of view implementing a renderer requires several important sup-
porting components and algorithms to enable the generation of images from realistic
scenes. Several choices can be made on the overall system structure and some are
tightly related to the scene representation. The common surface representation is de-
scribed in Section 2.3.3. In [Phar 04], the authors describe a full physically based ren-
dering system in detail and develop a very flexible and extensible rendering system.
This allows the authors to integrate many of the research results on physically based
rendering systems. While this system is very flexible it sacrifices speed. In this the-
sis we instead follow a different approach. Instead of supporting all different kinds of
geometry and possible algorithm combinations we identify the minimum needed func-
tionality and implement it in a way that tightly couples with the fundamental ray tracing
developed in Chapter 3. This allows to fully exploit the enhancements made to the ray
tracer in all aspects of the rendering system and reduces the amount of glue code and
additional data structures. In this section we shortly highlight some of the key design
decisions. Many more details can be found in the later sections that implement our
novel algorithms.

2.3.1 Enabling Physically Based Global Illumination in Movie Production

The use of computer generated images in movie production has a long history. It is
used both for fully computer generated movies and for the combination with life action
footage. A whole industry has built around the required techniques often summarized
under the acronym CG VFX (computer graphics visual effects). This industry is highly
artist driven and for a long time used a phenomenological approach to image gener-
ation. Widely used commercial products are Pixar’s Renderman [Pixa 05] and mental
images’ mental ray [Drie 05]. Both of these products are in their fundamental design ori-
ented towards artist driven workflow and have only limited support for physically based
light transport. Surface appearance is described by huge programs called shaders that
compute the final color locally without or with limited access to global information. Il-
lumination is approximated by placing many invisible, colored light sources manually

9



2 Image Generation Fundamentals

in the scene. To handle the complexity of images that need to be combined with real
live footage the final image is not produced in a single rendering pass but computed in
individual layers. This layered approach is difficult to handle with realistic global illumi-
nation algorithms as the information from one layer can’t influence the other layers in a
straight forward way. Another problem with full global illumination algorithms is the use
of manually crafted shader networks for surface behavior description. Since they are
crafted by artists using a purely visual approach they do not adhere to any mathemati-
cal theory or have physically plausible properties. This inhibits their use in a physically
based rendering system. In Section 2.3.4 we will present in more detail the material
model we use in this thesis and in Section 6.3 we will address the problem of complex
shaders by developing a global illumination renderer that still converges to a unique and
reasonable solution even if physically non-plausible shaders are used. Using a physi-
cally based renderer has the advantage of simplifying the lighting design done by artists
as the behavior is like in the real world. Still it is usually necessary to provide at least
a fall back to old shaders since the production pipeline of a full movie is rather complex
and a complete change is difficult. Our system allows for a smoother transition in such
a production environment.

2.3.2 Scene Description

The first design decision is how the scene data is transferred from a modeling ap-
plication into the renderer. This description is tightly coupled with the abilities of the
rendering system. An industry standard for general rendering (not physically based)
is the RenderMan Interface [Pixa 05]. This document describes a postscript inspired
language to describe 3d scenes and the parameters to produce movie quality images
from them. It is an artist driven format that allows to tune and specify every parameter.
In contrast to this a physically based system can use a simpler format since most of the
complexity is in the rendering algorithms.

In our system a scene for the renderer consists of at most 4 files.

scene.ra2 the raw triangle data describing the surfaces in 3d

scene.[ran|ruv] additional information per triangle that stores vertex normals and uv
coordinates. These files are optional and only created when needed.

scene.srs a text file containing all additional information needed to create an image.
This are the materials, the cameras and additional environment information.

An important design decision in our system is that we support only one primitive
to represent surfaces. Many rendering systems allow for different input primitives like
spheres, subdivision surfaces, Bézier patches and arbitrary polygons that are either
converted in the rendering system or directly used for rendering. This significantly in-
creases the implementation complexity and inhibits many low level optimizations impor-
tant for high performance. The primitive we use is the triangle. It is stored as a raw
binary float file (with the extensions .ra2) where 9 floats represent a single triangle. This
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2.3 Rendering Software Architecture Design

file format is also used in Chapter 3. It has the advantage of being loadable with a single
line of code and it contains the data already in the format needed for the optimized ray
tracer. We argue that all other surfaces that need to be supported in the rendering sys-
tem can be converted already in the scene export process instead of in the rendering
system. Our system supports for example subdivision surfaces but the code to handle
them is in the exporter framework instead of the renderer. This, of course, increases
the scene representation data on disk but this is not a real problem as the interchange
format should not be the renderer representation but the original file format from the
modeling application. Another restriction of this method is that now the exporter has to
be executed again when parameters of the scene export, like subdivision level, change.
All additional information needed for rendering are stored in separate files. Optional
information that is often needed per vertex are texture coordinates and vertex normals.
Both are stored in separate files in the same raw floating point data layout.

The scene.srs file contains all additional information to fully describe the scene to
generate a final image. It is a complete specification of the global illumination problem.
It is stored as a plain text file containing the following information:

Environment describes the background color or an optional HDR image for distant
illumination. It can also contain the parameters to use an analytical sky model
instead. We use the model described in [Pree 99].

Geometry is just the file-names of the .ra2 .ran and .ruv files.

Cameras contains a list of cameras with the parameters like lens setup, size, and also
image output resolution.

Materials is a list of named materials with the necessary parameters and texture file
names. A material may also emit. In this case it produces light sources. The
material model that is used is described in detail in Section 2.3.4.

Material Associations is a simple list where material names are assigned to ranges
of triangles.

Parameters for the renderer like algorithms to use and other global settings are as-
signed via command line parameters.

2.3.3 Boundary Representation

While an implementation of the trace function could support many different object prim-
itives that lend themselves nicely to object oriented design this comes at the cost of
speed and a more complex scene description language. To achieve high speed in ray
tracing only one primitive should be chosen. This allows one to develop highly optimized
algorithms. In recent years it turned out that the triangle representation is a very good
choice for a general ray tracer. Triangles need only 3 points in space to be described
completely. They are always guaranteed to be flat (in contrast to arbitrary polygons)
and can be used to approximate any surface. Many efficient ray intersection algorithms
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Figure 2.4: Illustration of the approximation of objects using triangles. The quality of the
approximation depends on the number of triangles. From left to right the
number of triangles in the approximating mesh increases.

exist for triangles and they have a simple to use surface parametrization. When an
object is approximated with triangles the resulting object is often called a mesh. This
approximation is shown for different numbers of triangles in Figure 2.4. Storing a full
triangle mesh can be done in many different formats. Depending on application several
additional information can be stored with the triangle information as is for example in
the winged edge data structure the case [Fole 94]. In a full rendering system it must
also be considered that many different algorithms may need to access the triangle data
in different ways and storing multiple copies might not be an option for highly detailed
scenes because of memory consumption. This is mostly important in real time applica-
tions where also physics simulation and sound simulation needs to access the scene
data. For offline rendering applications there are usually less constraints.

Ray Triangle Intersection

The goal of ray triangle intersection computation is to first determine if a ray intersects
the triangle and if this is true to compute the intersection point. Two basic approaches
for ray triangle intersection tests exist. The first uses a direct 3d test using for exam-
ple Plücker coordinates (see for example [Kin 97]) and computes ratios of volumes.
In [Lofs 05] an automatic optimization is performed for these kind of intersection tests.
The other method is to compute the intersection point of the ray with the plane the trian-
gle lies in and then uses a test to determine if this point is inside the triangle or outside.
[Lofs 05] also provides a comparison of various intersection tests. We use a variant of
the triangle intersection test described by Möller et. al in [Moll 97]. This test falls into
the second category. Our implementation that extends this test to intersect 4 triangles
at once is described in Section 5.2.

Geometry Data Attributes and Texture Mapping

Besides the raw triangle information, additional data is required to compute a high qual-
ity computer generated image. Some of this data can be stored per object but often it is
required to define varying data over a surface. This data can be stored in the vertices
of the mesh and is then interpolated across the triangle using barycentric coordinates.
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Examples for such information are vertex normal data to better approximate the smooth
appearance of objects during shading computations or vertex colors to change the color
of triangles. This data is often called vertex attributes.

Figure 2.5: Illustration of interpolating information across the surface. The leftmost im-
age shows the mesh of the object. Next a flat shaded version is shown.
The third image is computed by using the same geometry but normals are
stored per vertex and interpolated across each triangle. Finally the object
is also colored by interpolating uv coordinates and accessing the texture
map shown in the rightmost image. The model that is shown is from the Yo
Frankie! project (c) copyright Blender Foundation.

Storing information per vertex allows only to generate smooth data variation across
a single triangle. Texture mapping is a method of storing information on the surface
each (discretized) surface point of an object. Usually a texture is a rectangular image
array. The texture is mapped onto a surface using a surface parametrization. This
parametrization maps parts of the texture onto the surface allowing to query the infor-
mation at each surface point. An overview of texture mapping can be found in [Shir 02].
For texture mapping on a triangle mesh additional information per vertex is stored. This
additional data is often called uv coordinates. The coordinates are a 2d point defining
a position on the texture map. To get a uv coordinate of an arbitrary point x inside
the triangle the barycentric coordinates of x are used to interpolate the uv coordinates
from the three triangle vertices. Texture mapping and smooth normal interpolation is
illustrated in Figure 2.5. As said before texture mapping is used to store arbitrary (but
discrete) data on surfaces of objects. This data can be used to define color, reflectivity
and any other information that might be needed by the rendering algorithm. It usually is
used a a simple way of enhancing the detail of otherwise flat (triangle-) geometry.

Clip Mapping

Clip Mapping is a well known technique to efficiently increase detail on models without
a huge increase in geometry and memory. It uses textures to define holes on a surface.
In the simplest case the clip map texture just contains a 1 where the surface should be
used and 0 where no surface should be. Figure 2.6 illustrates the use of a clip map on
a trash can.
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Figure 2.6: Clip Mapping on a trash can. The trash can was modeled from a cone and
a clip map was used to create the mesh structure. The clip-map is shown
on the right. Note that the torn out corner of the paper on the floor was also
modeled with a clip map.

These kind of textures are special because they can be interpreted to not modify
the shader but instead to modify the underlying geometry. They could, of course, be
implemented as a shader. This but then the shader is responsible for creating a new
ray when the surface is clipped away. Considering high performance ray tracing this
is inefficient since a lot of overhead is involved in creating a new ray and starting a
new traversal at the root node. Instead it is much more efficient to integrate clip maps
directly into the ray tracing core. This has to be considered when designing a ray tracer
for a full rendering system. To enable a ray tracing core to directly use clip mapping the
information has to be accessible during the triangle intersection computation. This adds
an additional conditional in the triangle intersection computation to check if a clip map
is attached to the triangle and then check if the intersection is clipped away. This direct
integration is not as trivial as it may seem as, depending on the ray tracing system,
the texture coordinate computation and access can be quite complicated. This leads
to a design choice on how tightly coupled the ray tracer should be with the rendering
system. For our ray tracing system developed in this thesis that was used for example
to create the image in Figure 2.6 we added support for simple 1-bit clip maps directly to
the ray tracing core and gave the ray tracer access to the uv-coordinate array.
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2.3.4 Material Representation

When talking about materials for rendering systems there are two concepts that need to
be distinguished. The first is the bi-directional reflectance distribution function (BRDF )
which is usually a mathematical model for describing the reflection behavior of a sur-
face. An alternative to a mathematical model is to use measured data ([Matu 03]). The
other concept is usually called a shader. A shader can be a complex program where
the behavior is fully programmable by the artist. While in a general artistic rendering
system this freedom poses no major problem for the rendering algorithms it has to be
more restricted in the context of physically based rendering. Here we use the notion
of a shader as a group of BRDF with the parameters for this models included. The
BRDF are fixed in our context but the parameters (for example the diffuse color) may
be programed or read from a texture. An important fact is that the material model used
in a rendering system has a significant impact on the correctness and on the rendering
speed. There have been a lot of BRDF models proposed that fulfill the requirements
of a Monte Carlo rendering system. For correct results the BRDF has to be energy
conserving and needs a representation that allows for efficient evaluation as well as for
the ability to importance sample it effectively. This is in contrast to a generic shader
that is used in a more general rendering application. Usually a BRDF model is part of
such a shader but does not need to obey the energy conservation. In our system we
can use any of the physically based BRDF models that were developed like the one by
Schlick [Schl 94] or Ward [Ward 92a].

A physically based BRDF model is defined as a function

f(x, ωi, ωo) :=
dLr(x, ωo)

dEi(x, ωi)

that depends on the quotient of the reflected radiance Lr at a given surface-point x and
the outgoing direction ωo and the incident irradiance Ei at the same surface point from
incoming direction ωi. It is used in the integral of the rendering equation 6.1.

In Section 2.3.4 we develop a small extension to the reflection model described
in [Blin 77] that is designed to provide all the needed functionality for a flexible material
system and is perfectly suited for the rendering algorithm we describe.

Each BRDF model can have many different parameters to tune it’s appearance.
These parameters can be set for each object but more commonly they are set using
texture maps on objects. To support different parameters like diffuse color, different
kinds of exponents, specular color etc. the system has to provide the ability to use mul-
tiple texture maps per object. This is easy to implement but has to be considered in the
data format as it is often needed to provide different parametrizations (called uv sets)
for each texture.

A Simplified Practical Layered Material Model

Here we will describe shortly the material model we use in our rendering system. It is
especially developed for the use in the path space partitioning method in Section 6.3

15



2 Image Generation Fundamentals

but is general and we use it for all of our algorithms.
While general production renderers for the movie industry can use arbitrary and

complex programs to define surface color and reflection behavior [Drie 05, Kess 08],
physically-based systems are more restricted in their choice of reflection functions [Phar 04].
Many practical algorithms exploit the fact that BRDFs are not only energy-conserving,
but also provide an efficient sampling function.

A wealth of surface reflection models have been developed in computer graphics that
provide most of the required functionality [Blin 77, Ward 92a, Ashi 00]. These reflection
models allow one to describe a wide variety of basic surface types. For more complex
surface behavior usually several reflection models are combined to a single layered
material [Phar 04]. Physically based rendering systems require the BRDF model to
satisfy the Helmholtz reciprocity condition in order to obtain consistent results. The
renderer we develop in Section 6.3 partitions path space and uses only one technique
on each partition, therefore this condition no longer needs to be fulfilled, allowing us to
use more convenient approaches like e.g. the halfway vector disc model [Edwa 06] or
even arbitrary programs for surface shading.

In order to determine the partition of the path space, we need to decide when a
reflection is almost diffuse. In principle our system can use any physically-based layered
BRDF model for which a parameter κ can be assigned to each layer expressing how
diffuse it is. This parameter is assumed to be normalized such that for κ = 0 the layer is
perfect Lambertian and for κ = 1 the surface is a perfect mirror. During rendering each
sample evaluates only one material layer that is selected by random sampling. We use
the threshold of κ = 0.2 for classifying a material layer as diffuse or specular.

For example, in all renderings we use the Blinn-Phong model [Blin 77] with Phong-
exponent k = 1024κ + 1. Layered materials such as simple metal or glass (one re-
flecting, one transmitting layer) and more complex materials like coated plastic can be
constructed easily using the Fresnel term or one of the approximations [Schl 94] for
weighted sampling of material layers. For transmissive materials the direction is se-
lected according to Snell’s law but the width of the lobes is controlled as before, as this
allows for diffuse and imperfect glass.

The common approach in a physically based rendering system is to support multiple
different material models that are all combined using a standardized sampling interface.
This approach allows the artist using the rendering system to freely choose appearance
and also allows for plug-in materials. While this increases the flexibility of the rendering
system it comes at the cost of more complex scene construction and has a high impact
on the rendering speed. Additionally supporting plug-in materials is problematic in the
context of physically based rendering because it requires the plug-in author to imple-
ment a mathematically correct BRDF model. The speed impact results mostly from the
need for a general interface inhibiting pre-computation of parameters and making SIMD
processing of the material model difficult.

In contrast to the common method of supporting multiple different material models we
propose a simple physically correct material model with layering. Multi layered materials
are a natural choice for progressive rendering. In a progressive renderer not all layers
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need to be evaluated at once but can be sampled according to their weight. For example
the Ashikmin-Shirley BRDF model ([Ashi 00]) is an implicit multi-layered material model
with two layers, a diffuse and a specular. The obvious advantages of a single material
model are that each surface behaves the same (at least within the parameters of the
shading model) and a single optimized code path can be used. It also simplifies SIMD
optimization of the code.

In our model we use multiple layers of the energy corrected Blinn-Phong model that
was presented in [Blin 77]. Each layer is a weighted instance of this basic model. Dur-
ing sampling a random variable is used to choose between these layers and potential
absorption. This variable is also used to sample whether the transmissive part of the
material should be sampled (using the Fresnel term of this layer). Each layer has two
color channels (called C0 and C90) that are interpolated based on the Fresnel term.
This is an artistic extension to the classical wavelength independent Fresnel term that
always approaches a value of 1 at gracing angles. This behavior is a special case of our
method by setting each channel in C90 equal to 1. The effect of this parameter is illus-
trated in Figure 2.7. With the use of the color interpolation reciprocity is of course lost
for this BRDF model, but with our path space partitioning described in Section 6.3 this
is not a problem. To control the specular behavior each layer has a parameter called
hardness (κ) that varies from 0.0 (Lambertian) to 1.0 for a perfect mirroring layer.

Figure 2.7: Visualization of using the Fresnel term to interpolate between two colors.
The left image shows the interpolated results. The middle image has C0 = 0
and the right image has C90 = 0. Note the difference in the highlights from
the sun and the slightly different position.

In the following we describe the material model used for each layer in our system. As
already mentioned above we use the Blinn micro-facet distribution with the additional
normalization needed for physically based rendering.

fr(x, ωi, ωo) =
〈n, h〉k · k+2

2

4π〈n, ωo〉〈h, ωo〉
(2.1)

The exponent k is computed from the hardness value κ specified for each material
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Figure 2.8: The directions and vectors used for the BRDF computation of a single layer.

layer. A practical value to map the interval of κ ∈ (0, 1) to the exponent k is given by
k = 1024κ + 1. There are two special cases of this BRDF for κ = 0 and κ = 1. In
the case of κ = 0 a Lambertian layer is constructed and for κ = 1 a perfect mirror is
assumed. Note that equation 2.1 does not produce itself a Lambertian BRDF for κ→ 0.
Figure 2.9 illustrates the effects of this parameter for a single layer material model.

Figure 2.9: Varying the hardness from 0.0 to 1.0 for a single layer material.

To edit these materials we implemented an easy to use material editor that integrated
the full renderer to preview the parameters. Figure 2.10 shows two screenshots of this
editor. Since the material model is very simple the functionality depicted in these two
screenshots is already enough to create a wide variety of realist materials that work
with our rendering system. Two materials are illustrated in Figure 2.11.

2.3.5 Sampling Light Sources

For almost all global illumination algorithms, the rendering system has to be able to
generate correctly weighted sample points on light sources. As we consider only phys-
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Figure 2.10: The Material Editor developed for the layered BRDF described above
shows the simplicity of the model. The two screen-shots already describe
the full functionality needed.

Figure 2.11: Two example renderings illustrating realistic materials created with our ma-
terial model. The left shows a glass material and the right a multilayer car
paint material.

ically plausible scenes in our rendering system, light sources (with the exception of
environment maps) are part of the scene and modeled as triangles. These triangles
are marked as emitters and have the light source information like spectral properties
and emittance behavior. The usual way to generate sample points on light sources is to
build a cumulative density function (CDF) using the emittance power of each triangle.
Now three random or quasi-random numbers are needed to select a triangle and a point
on this triangle. This approach works well if all light sources in the scene contribute to
the final image. Since the CDF is build based on the power, bright light sources are
sampled more often than dark light sources. The problem with this approach is a dra-
matic decrease in efficiency when larger scenes are rendered. For example a complete
modeled house has many light sources but the camera is only in a single room. An ap-
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proach in unbiased rendering algorithms is to build the CDF based on the light source
contribution to the final image [Sego 06].

This can work well but needs many light samples until a good CDF is acquired. This
many light samples are not available when directly using only point light sources. An-
other problem with this method is, that it can’t be used when the scene is illuminated by
a sky model ([Pree 99]) or when image based lighting ([Debe 98]) is used.

We develop an approach completely based on the usage of point light sources that
works also well when image based lighting and other environment illumination is used
by discarding unimportant light sources stochastically. This approach is described in
Section 6.3.2. A full rendering system also needs to support image based lighting using
environment maps. In Section 6.4 we will present a physically correct solution on how
to integrate infinitely far away illumination with a point light based rendering system.

2.4 Processor Architecture

In light transport simulation there are a few core algorithms that will be executed a
million times or more and will amount to over 90% of the computation time. For this
reason even small optimizations to these core algorithms are beneficial for the final
rendering speed. So after considering all algorithmic optimizations it is important to
directly optimize for the target processor architecture. Additionally, the shift in processor
architecture has to be also recognized by algorithm design. Simply using classical
algorithms on modern architectures does not give the performance the new hardware
promises.

This shift in processor architecture consists mainly of two trends. The first one is an
increase in the number of processing elements and the number of instructions that can
be executed in parallel. Multi-core and many-core are almost ubiquitous and addition-
ally the increasing availability of chip area allows to pack multiple computation pipelines
and execution units into the CPU. This results in different parallelizations that are avail-
able to the programmer that have to be recognized when designing algorithms. At one
end are multiple full processor cores that are able to execute independent streams of
instructions. On a lower level there are SIMD (single instruction multiple data) units
that allow to execute a single instruction on several data elements. SIMD is explained
in more detail below. The most common size for SIMD units is currently 4 but in the
future much wider SIMD-width are to be expected [Seil 08]. Further forms of parallel
execution can be found in multiple execution units that allow for example to execute a
memory fetch and a computational instruction in parallel at the same time. Usually on
this low level a programmer expects the compiler to know the underlying architecture
and optimize for it. But a knowledge of this behavior aids algorithm design. Knowing for
example that a computation between memory fetches is virtually free may change the
design significantly. The second trend in processor architecture can be explained by the
divergence of computation speed and memory access time. This leads to either deeper
and large caches or different memory models that require coherent memory access.
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For maximum performance each new architecture and the trade-offs have to be re-
considered. Thus partitioning the ray tracing algorithm into several distinct parts makes
it easier to understand the problems and to find fitting solutions for the chosen hardware
platform.

It is likely that the upcoming computer architecture for commodity hardware become
even more heterogeneous than it is today. Several different computational engines
will be found in the usual desktop computer. Aside the graphics processing unit with it’s
ever increasing power there exist affordable acceleration cards for Physics Simulation or
more general acceleration cards like an additional CELL processor on an PCI-Express
card. Even inside a single architecture like the CELL-Processor a heterogeneous col-
lection of two different computational engines can be found.

This heterogeneous hardware allows one to spread the computation over different
processors and a first approach to use it would be to use the computational engine that
is best suited for the given task. Another goal could be to use all different available
computational engines to solve a given task as quickly as possible. In that case it may
be an enormous task for the application developer to efficiently use all different engines
at the same time without stalls.

In the following we shortly review some important architectural topics that later in this
thesis guided the design decisions and may be required to understand some of the op-
timizations. More details are given when needed in the specific sections. In this thesis
we are mainly concerned with accelerating ray tracing on general purpose processors
that can be found in any desktop computer or notebook. In the last few years an in-
creasing amount of research has been done to bring ray tracing to graphics processing
units (GPUs) and their unique architecture. While these are quite successful and pro-
vide sometimes much higher speed there are still some limitations that restrict the use
of these ray tracers in a fast full global illumination renderer. One problem is for exam-
ple the limited amount of memory these graphics cards have in many cases. Another
problem is that complex shading operations are solved mostly in a hybrid approach and
can not fully utilize the advantages of GPUs. There is still a lot of ongoing research to
create systems that efficiently use the graphics cards. Most of the results we present
in the next section can be employed to any ray tracer regardless on which hardware it
runs on. But some design considerations especially for the novel acceleration structure
we present in Section 3.2 is specifically targeted towards CPU architectures. We want
to note here again that we are mostly concerned with accelerating incoherent rays that
occur in global illumination computations. These are very troublesome for all GPU ray
tracers that usually slow down to speeds comparable to CPU ray tracers. Only recently
some hardware modifications to allow GPUs to trace faster incoherent rays have been
presented in [Aila 10] but these are still only theoretical.

Parallel Processing

There exist a lot of different parallel architectures and several programming models that
can be used to parallelize a given problem. A very good introduction to parallel pro-
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gramming can be found in [Quin 03]. On the usual multi-core (CPU) machines a ray
tracing based image generation algorithm is rather easy to parallelize once the acceler-
ation structure has been build. The parallel construction of acceleration structures is an
interesting problem and has for example been investigated for kd-trees in [Ize 06] or for
bounding volume hierarchies in [Laut 09]. Each core may have it’s own caches but they
all access the same main memory. Since each ray is at first independent of each other
ray they can be traced in parallel and only the final combination in the frame buffer has
to be synchronized. On NUMA (Non-Uniform Memory Architecture) machines building
a scalable solution is more difficult. A possible solution strategy for the visualization of
larger models is described in [Step 06].

Intrinsics. To really utilize a given hardware architecture the written code needs low
level access to all available functions. Many complex operations are often available as
a single CPU instruction but it may not be possible to express this directly in a high
level language. Still, for developing high performance algorithms it is not necessary
to directly program in the assembly language of the processor. High level language
compilers like many C and C++ compilers provide a mechanism called intrinsics that
allow to access specific instructions directly from within high level code. These intrin-
sics are implemented by many compilers as extensions to the language standard. For
example the usage of intrinsics for the Intel compiler is described in [Scho 03] and the
GCC is compatible to the intrinsic usage for Intel platforms. Intrinsics not only allow
to perform specialized instructions on registers and memory regions but also can ac-
cess for example hardware counters or control the cache access and pre-fetching. But
they are of course specific to a given hardware. This has the disadvantage of reduced
portability. Each different hardware platform from another vendor has its own set of in-
trinsics. Hardware from a single vendor is usually backwards compatible but introduces
new functions with each release. Still the benefit of using intrinsics is too large to be
ignored, especially for SIMD processing described in the next Section. To support mul-
tiple platforms we will develop and use a simple abstraction layer described also in the
next Section.

SIMD Processing. SIMD is an acronym that stands for Single Instruction Multiple
Data. It is a form of parallelism where multiple streams of data are processed by a
single stream of instructions. A processing width of 4 then means that 4 data elements
are processed by a single instruction in parallel. This is illustrated in Figure 2.12 for two
simple operations.

Often the number of data elements is not directly fixed but the width of a single pro-
cessing element. A common size are 128-bit registers and all SIMD instructions operate
on this width. In a 128-bit register fit for example four 32 bit floating point numbers or
integers or 16 8-bit chars.

Almost all modern hardware architectures provide hardware support for SIMD pro-
cessing each with its unique marketing brand name. The companies Intel and AMD
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Figure 2.12: Illustrating the principle of SIMD computation. The first instruction is a sim-
ple add. Adding two SIMD registers results in a component wise addition.
The second instruction is a compare for less or equal. This is again done
component wise. The result of a comparison is 0 when it is false. When
the comparison results in true each of the bits in the component are set to
1. This is the binary integer representation of −1. The reason for setting
all bits to 1 is that the result can now be easily used in masking operations
by using bit-wise and and or operations.

now support the SSE instruction set (where various different versions exist). The In-
tel SSE instruction set is described in detail for example in [Inte 09]. The older SIMD
instructions sets that are still supported are Intel MMX and AMD 3dnow. Sun has the
MAJC architecture, IBM has Altivec for the PowerPC and CELL SPE [Cell 09] architec-
ture, ARM names it NEON [Cort 09], and for the SPARC architecture it is called VIS.

All these processing units are vendor-specific and provide different functionality with
no unified or standardized way to program them. The usual way to develop for them in
a high level language is to use intrinsics but they are also platform dependent. Luckily
even though the used instructions may differ in details, many of the standard opera-
tions have equivalents on most other architectures. So, for example, a SIMD width of
4 (currently the standard on almost all CPUs) and the basic operations like addition,
multiplication and bit wise operations are available everywhere. This allows one to use
a simple and basic abstraction layer building a wrapper around the intrinsics. For the
use in this thesis we developed a simple collection of C pre-processor macros that has
a back-end for PowerPC Altivec, Intel SSE and a software implementation for comput-
ers without SIMD instruction set and for debugging purposes. Instead of pre-processor
macros inline functions could also be used. This abstraction can easily extended to
support other SIMD vector units of the same size. It is important to note that the ab-
straction should be as close as possible to the underlying hardware as else many of the
low level optimizations could not be implemented.

In the following we present the basic ideas by presenting the implementation of some
selected functions. This also serves as an introduction to SIMD programming. The first
step is to define a type for the basic most commonly used data types. In the case of a
ray tracing based image generation software the most basic types are a 32-bit integer
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# i f d e f USE_ALTIVEC
typedef vec to r f l o a t SIMD_float ;
typedef vec to r i n t SIMD_int ;

# e l i f def inded (USE_SSE)
typedef __m128 SIMD_float ;
typedef __m128i SIMD_int ;

#else
typedef union ALIGN16 SIMD_float {

f l o a t ALIGN16 f [ 4 ] ;
unsigned i n t ALIGN16 i [ 4 ] ;

} ALIGN16 SIMD_float ;
#endif

Listing 2.1: Data structure definition for the SIMD abstraction code.

and 32-bit floating point numbers. For the software implementation a union is used
because of the ability of all vector units to interpret the contents of a register without
conversion. On PowerPC there exist a language extensions for vector units that uses
overloaded operations. So for example for an addition no direct intrinsic is needed and
the add operator + can be used.

Now implementing the basic arithmetic and logic functions is straightforward. List-
ing 2.2 shows as an example the implementation of two arithmetic instructions for the
SIMD abstraction layer. The Altivec version can use the overloaded operator, the SSE
version uses intrinsics and the non vectorized version modifies each component indi-
vidually. Note that the compiler automatically unrolls the for loops in this case.

The last example shown in Listing 2.3 is more complex and illustrates the possibility
to support instructions that are not equal over different architectures efficiently. Here
we chose the SSE shuffle instruction that is needed for example for the SIMD sorting
used in Section 3.3.3. Luckily the permutation function of Altivec units is able to perform
the operations of an SSE shuffle instruction. The shuffle instruction is best understood
by looking at the software implementation in Listing 2.3. The goal is to reorder the 4
elements in an SIMD register by providing its new positions a, b, c, d. For the SSE
version there exist a macro in the SSE API _MM_SHUFFLE(...) that constructs the re-
quired bit mask for the _mm_shuffle_ps instruction. The Altivec vec_perm instruction is
more powerful than required but with a simple look-up table the workings of the shuffle
instruction can be mapped. This is of course non-optimal considering the Altivec archi-
tecture as more instructions are needed but in our application the shuffle instruction is
only a small part of the algorithm and it does not hurt the performance much compared
to the fact that the same code can be used on all platforms. Some of the modern com-
pilers have the ability for auto-vectorization. This can, in theory, automatically generate
SIMD code from the program code but works only in very few cases. So manual written
code is still far superior to compiler generated SIMD code for complex algorithms.
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# i f d e f USE_ALTIVEC
# def ine SIMD_ADD( a , b ) ( ( a )+ ( b ) )
# de f ine SIMD_CLE( a , b ) ( ( vec to r f l o a t ) vec_cmple ( a , b ) )

# e l i f def inded (USE_SSE)
# de f ine SIMD_ADD( a , b ) (_mm_add_ps( a , b ) )
# de f ine SIMD_CLE( a , b ) ( _mm_cmple_ps ( a , b ) )

#else
s t a t i c i n l i n e SIMD_float SIMD_ADD( SIMD_float a , SIMD_float b ) {

SIMD_float r ;
for ( i n t i = 0 ; i < 4 ; i ++) {

r . f [ i ] = ( a . f [ i ] + b . f [ i ] ) ;
}
return r ;

}
s t a t i c i n l i n e SIMD_float SIMD_CLE( SIMD_float a , SIMD_float b ) {

SIMD_float r ;
for ( i n t i = 0 ; i < 4 ; i ++) {

r . i [ i ] = ( a . f [ i ] <= b . f [ i ] ) ? −1 : 0 ;
}
return r ;

}
#endif

Listing 2.2: Basic arithmetic instruction macros for the SIMD abstraction layer. The in-
structions are an addition (ADD) and a comparison for less or equal and are
explained in Figure 2.12.

Memory

Increasing the number of cores not only poses new problems for the algorithm design
but also increases the well known problem of the divergence of memory access speed
versus compute power. While in the last years the compute power has almost increased
exponentially according to Moore’s law1 the memory access speed has grown only
linearly. This gap is well known and one of the common solutions to alleviate this is
by the introduction of cache hierarchies. The basic idea here is to introduce additional
memory blocks that are smaller but are located closer to the CPU and thus can be
accessed faster. A very good and complete treatment of the memory subsystem and
caches in modern commodity hardware can be found in the technical report by Drepper
[Drep 07]. In the following we just review the aspects that are directly important to the
optimization considerations developed in this thesis.

At first, a programmer has to be aware of the existence of caches or their absence.
For example on the CELL architecture or on GPUs there may be no hardware caching
for some of the memory accesses but local memory that is programmer controlled. In
these cases a software managed cache is often a viable alternative. Directly consid-

1Actually Moore’s low only states that the number of transistors roughly doubles every two years, but due
to ever improving hardware designs and on-chip parallel processing like SIMD this directly relates to
the raw compute power of a CPU.
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# i f d e f USE_ALTIVEC
s t a t i c const unsigned i n t _av_shufmask [ ] = {0 x00010203 , 0x04050607 ,

0x08090A0B , 0x0C0D0E0F ,
0x10111213 , 0x14151617 ,
0x18191A1B , 0x1C1D1E1F } ;

/ / Shu f f l e Semantic : c , d , e , f i n [ 0 , 3 ] (SSE−Sty le )
/ / e , f are lower ; e , f s e l e c t from a
/ / c , d are upper ; c , d s e l e c t from b

#define SIMD_SHUFFLE( a , b , c , d , e , f ) (
vec_perm ( a , b , ( vec to r unsigned i n t ) { _av_shufmask [ f ] , _av_shufmask [ e ] ,

_av_shufmask [ d +4] , _av_shufmask [ c + 4 ] } )
)

# e l i f def inded (USE_SSE)
#define SIMD_SHUFFLE( a , b , c , d , e , f ) (

_mm_shuffle_ps ( a , b , _MM_SHUFFLE( c , d , e , f ) )
)

#else
s t a t i c i n l i n e SIMD_float SIMD_SHUFFLE( SIMD_float f1 , SIMD_float f2 , i n t a ,

i n t b , i n t c , i n t d ) {
SIMD_float r ;
r . f [ 0 ] = f1 . f [ d ] ; r . f [ 1 ] = f1 . f [ c ] ; r . f [ 2 ] = f2 . f [ b ] ; r . f [ 3 ] = f2 . f [ a ] ;
return r ;

}
#endif

Listing 2.3: Implementation of the SIMD shuffle instruction for the abstraction layer.
Shuffle reorders the 4 elements of an SIMD register. The Altivec vec_perm

instruction is more powerful than the SSE counterpart as it allows re-
ordering and replication of individual bytes. This explains the lookup-table
_av_shufmask.

ering a cache hierarchy in an implementation means to fit the data types and memory
accesses to the cache line width and the access structure of the main memory. The
next thing to consider is the latency of a memory access. This latency of course varies
greatly on where the requested data is currently stored in the cache hierarchy. Knowing
this latency may allow an algorithm to run faster by reordering for example the instruc-
tions in a way that after a memory request other independent computations can be
performed. Usually a modern compiler tries to optimize given code in a way fitting to
the hardware but it can only use information locally available. A programmer has ap-
plication domain knowledge and information about the actual execution behavior of an
algorithm that allows even better optimization2.

A rather old technique to hide some of the memory access latency is called simulta-
neous multi-threading [Tull 95]. Intel implemented the technique [Marr 02] in hardware
and called it hyper threading. This technique basically allows to switch executing an-

2Modern compilers support profile guided optimization that allows to run an instrumented version of a
program to automatically gather run-time information that is used in a second compilation step for
further optimization
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i n t value ;
i n t ∗ p = &value ;
p = p | 2 ; / / s to re some in fo rma t i on i n the l a s t two b i t s
. . .
i f ( p & 3 == 2) { . . . / / do s th . w i th the in fo rma t i on s tored
. . .
i n t number = ∗ ( p & 0xFFFFFFF7 ) ; / / access the o r i g i n a l value

Listing 2.4: Bit Operations to use the two unused bits in a memory address to store and
retrieve information. This is for example useful when storing child pointer in
acceleration structures.

other stream of instructions when a high latency memory access occurs. Simultaneous
multi-threading can also be implemented in software and is a common approach to hide
DMA latency for example on CELL architectures [Cell 09].

Instead of manually optimizing algorithms to a specific memory hierarchy and caching
structure there exists another approach called cache oblivious algorithms. An overview
can be found in chapter 38 of the “Handbook Of Data Structures and Applications”
[Meht 04]. While not achieving peek performance they can make some algorithms more
portable across multiple platforms and still provide high performance. But of course they
can not adapt to situations like the CELL architecture where no caches are available at
all. Nevertheless these methods can be directly applied to computer graphics related
problems like mesh layout [Yoon 05] and for bounding volume hierarchies [Yoon 06].

Low Level Operations

Programming close to the underlying hardware is important in getting the last bit of
performance out of a given algorithm. Additionally knowing the exact size and bit layout
of data types allows to efficiently use all available bits. In this section we review the
important data types and standard approaches that are used during optimization. A
very good and helpful book about optimizing computations using the benefits of the
binary number representation in a computer is [Warr 02].

Bit Operations. When optimizing algorithms it is often beneficial to use every last bit
in a memory region. Especially when memory access is optimized collecting all infor-
mation in a small space reduces the number of memory accesses and cache thrashing.
For example the standard size of an integer or floating point number is currently 4 bytes.
For alignment reasons a memory location for such a number is divisible by 4. So when
a pointer to this memory address is stored that last two bits are always 0. Knowing
this, it is easy to store up to 4 different additional states by using a bit-wise or. Using
this method it is necessary to mask these two bits before using the variable for memory
access. The small code section in Listing 2.4 shows an example usage on 32bit archi-
tectures. This is a common approach to compactly store the nodes in an acceleration
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PSfrag

1 8 23

sign exponent mantissa

Figure 2.13: Bit layout of an IEEE 32-bit floating point number.

structure for ray tracing where for example the split axis of a kd-tree node (3 possible
choices in 3d) can be stored in a memory pointer. The last state can be used to indicate
a leaf node.

Floating Point Representation. The IEEE 754 standard [IEEE 85] for floating point
numbers (floats) is widely adopted now by processor manufacturers. Nevertheless
many vendors only implement a subset of the full standard for performance and die
area reasons. For example it is common to omit the support for denormalized numbers
or only provide a subset of the standardized rounding modes. Sometimes the accuracy
may also vary but the general representation of a floating point number is still the same
across a wide range of platforms. An introduction to the use of floating point numbers in
scientific applications is given by Goldberg in [Gold 91]. The general layout of a 32-bit
floating point number is illustrated in Figure 2.13. As 32-bit floats provide in many cases
enough accuracy for graphics application and they are the only ones considered here.
Looking at the bit representation of a floating point number we can use some of the bits
for other purposes when we know something about the stored number. For example
when we know that the number is always positive we can use the first bit in the floating
point number. When we know that an absolute value of a number is always smaller
or equal to 1, a single bit in the exponent is free (This is for example the case when
storing normal vectors or RGB-float colors). When not the full accuracy of the 23-bit
mantissa is needed an elegant way to gain some additional bits is to use some of the
least significant bits of the mantissa. This has also the advantage that depending on
the computation no masking has to be performed. These tricks are necessary to allow
for compact storage of acceleration structure for ray tracing but still be able to access
the data without a complex unpacking operation. Masking single bits in a register is
very fast and is usually a lot faster than an additional memory access to request further
information. In later sections when we use additional bits we will discuss it in detail how
the masking and access is handled in each case.

There exist of course other ways to compress data but these are always either slower
due to decompression or reduce the precision. The above techniques are actually no
compression but just try to use the available space as efficiently as possible.

Hardware Dependent Differences. When talking about low level operations it is im-
portant to recall the most significant differences in hardware architectures a program-
mer should always be aware of to avoid incompatibilities. When non-portable code is
written these differences can be ignored but when it is likely that some of the code
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i f ( _ _b u i l t i n _ ex p ec t ( ( b ) , TRUE) ) {
. . .
} else {
. . .
}

Listing 2.5: Branch Hints can be given to the compiler using intrinsics.

should be executable on different architectures it is helpful to keep them in mind. The
first important difference is the natural size of data types and pointer sizes. For example
the switch from 32-bit architectures to 64-bit architecture changed the natural size of a
pointer. So arrays of pointers suddenly needed twice as much memory and a pointer
did not fit anymore inside an integer. The memory alignment requirements also differ.
For example many SIMD units require 16-byte alignment of the memory address and
either fail completely when it is not met or suffer a severe performance penalty. Another
difference may be the native width of integer computations. For example many current
GPUs only have a 24-bit integer unit and slow down significantly when 32-bit integer
arithmetic is used. Little endian architectures and big endian architectures also may
cause trouble when binary data is loaded from disk or bit operations are performed.
Other performance related differences are for example the cache line size or the num-
ber of bytes that should be accessed together for optimal performance of the memory
subsystem.

Keeping these differences in mind it is possible to write portable code even when
low level operations are used but the programmer may have to write more code and
be more careful about choosing the implementation strategy. Finally we want to stress
that the techniques sketched in this section should be only used where they are really
needed. Properly used the may provide the additional performance needed to allow the
computation to finish in the required time but should only be used in the most critical
code sections.

Branch Hints. To achieve high clock rates, current processors have deep execution
pipelines and perform aggressive out of order execution of instructions. A branch (or
conditional jump) in the code can thus significantly impact the execution performance
when the execution has to be changed and the pipeline needs to be filled from the
beginning. The performance impact of branches is a well known problem and one
solution strategy is to use branch prediction [Smit 81]. Modern processors have very
sophisticated branch prediction mechanisms.

A compiler usually has knowledge about the processors branch predictor and can use
static analysis to provide the necessary hints during execution [Ball 93] and can deliver
an accuracy of up to 70%. Dynamic profiling analysis uses a special benchmarking build
to collect information about the execution behavior and later use this information in a
recompilation to reorder the given branches. Nevertheless the programmer can use
domain specific knowledge to gain additional performance. The use of branch hints
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is build into many compilers and can give performance benefits when the execution
behavior is known. For example when the programmer expects that a branch based on
a Boolean expression b is likely to be taken this can be hinted to the compiler by the
intrinsic shown in Listing 2.5.
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3
Efficient Tracing of Incoherent Rays

In this chapter we will introduce a novel acceleration data structure for ray tracing. Parts
of this have been published in [Damm 08a]. The basic task of a ray tracing algorithm
is to provide an efficient method to intersect a given ray quickly with a given scene
database. As already discussed in Section 2.3.2 our scene representation is based
on triangles. The necessary ray triangle intersection was mentioned in Section 2.3.3.
The task of an acceleration data structure is now to allow for an efficient ray traversal
(traversing the data structure until a leaf or node with triangles is found) and to quickly
prune triangles that are not in the path of the ray. Section 3.1 will give an overview of
the commonly used acceleration data structures. In Section 3.2 we will introduce our
novel acceleration data structure and in Section 3.3 we will more closely investigate the
ray traversal. Section 3.4 provides an introduction to on demand hierarchy construction
and the results are presented and discussed in Section 3.5

When performing light transport simulation in realistic scenes we already noted in the
previous chapter that ray tracing is often the only choice to robustly simulate all possible
light paths. The core ray traversal algorithm is then the major bottleneck consuming
about 80% to 90% of the total computation time. While there exist many acceleration
strategies exploiting coherence (see Section 3.5.3 for a short overview) this coherence
is almost never available in full global illumination algorithms.

The basic idea is instead of searching coherence in the rays, coherence is created di-
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rectly in the acceleration structure and used implicitly. In the following Chapter 4 we will
investigate how this acceleration structure can be constructed efficiently and in Chap-
ter 5 we will improve the performance even further by introducing software caching.
Bounding volume hierarchies (BVH) belong to the simplest and most efficient acceler-
ation schemes for ray tracing. They are usually constructed as a binary tree of bound-
ing volumes but in this chapter we will introduce and investigate higher arity bounding
volume hierarchies. Memory requirements [Wach 07] and memory latency [Wald 07a]
have been recognized as bottlenecks and fast hierarchy construction has been inves-
tigated [Wach 06, Wald 06a, Shev 07]. Section 2.4 introduced SIMD instructions that
are used extensively in this Chapter to describe our optimized acceleration structure.

As already mentioned, algorithms that perform physically correct simulations of light
transport tend to shoot rays as wide-spread as possible in order to increase efficiency,
e.g. by employing quasi-Monte Carlo methods. As a result, most rays that account for
global illumination effects are incoherent. Because of that, major parts of the simulation
cannot benefit from tracing packets of rays. This has been recognized in professional
rendering products [Chri 06, Sec. 6.4], too. They use SIMD instructions by intersecting
multiple objects at a time. Compared to tracing packets this has the major disadvan-
tages that hierarchy traversal is not accelerated and that memory bandwidth is not
reduced.

We address the bandwidth problem in Section 3.2 by reducing the memory footprint
of the acceleration data structure. In contrast to reduced-precision methods [Maho 05,
Hubo 06], which work best when the overhead of transforming the packed data to world
space is amortized over a bundle of rays, we increase the arity of the acceleration hi-
erarchy, which saves memory for nodes and pointers. This is similar to a lightweight
BVH [Clin 06], but in the context of efficient SIMD processing and without the draw-
backs of limited precision and median split hierarchy construction. The resulting trees
are flat compared to standard BVHs. Smits [Smit 98] naturally recognizes the possi-
bility of BVHs with higher arity (without regard to parallel processing), but does not
indicate how to construct the acceleration structure in this case while still minimizing a
construction cost metric like the surface area heuristic (SAH). We will investigate this in
Chapter 4. Also, the suggested data structure does not support sorted traversal, which
we found to be crucial for good performance on current CPU architectures, especially
for intersection rays. Sorted traversal is presented in Section 3.3. He also points out
the opportunity of speeding up shadow rays using a cache. As this cache only stores
one single primitive with the previously found intersection and is not hashed per light
source, he states that the method only works well with large triangles and very coherent
rays. We investigate the use of software caching in Chapter 5 and show that our method
works very well with many small triangles and highly incoherent rays. Recently there
has been further investigation of the advantages of multi-branching bounding volume
hierarchies in [Erns 08, Tsak 09].
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3.1 Overview of Acceleration Data Structures

In this section we will give an overview of the commonly used data structures used
to accelerate general ray tracing. Realistic triangle scenes contain at least millions of
triangles to approximate the geometry. These scenes can not be rendered in a reason-
able amount of time by intersecting a given ray with all primitives. Such an algorithm
is O(nm) with n being the number of triangles and m the number of rays. Note that
also several million rays are needed for the computation of an image. Tracing only the
primary rays with one ray per pixel of a normal full HD image (resolution 1920×1080) re-
quires 2 million rays without any secondary effects. So already early in the history of ray
tracing spatial and hierarchical acceleration structures have been developed to speed
up the scene intersection process by reducing the number of search steps per ray for
example to O(log(n)). A summary of acceleration structures can be found in [Glas 89].
A thorough comparison of many acceleration structures can be found in [Havr 01]. Us-
ing acceleration structures significantly speed up the rendering process by reducing the
number of ray triangle tests needed but they still guarantee the correct result. Building
acceleration structures of course costs computation time but for static scenes it has
to be done only once and can then be reused for all rays amortizing the build time
quickly. In the following sections we will describe and discuss shortly the three major
acceleration structure types for triangle scenes.

3.1.1 Bounding Volume Hierarchies

Bounding volume hierarchies (BVH) are an object partitioning method. (in contrast to
space partitioning described in Section 3.1.2). They have a long tradition in the context
of ray tracing and many variants exist [Gold 87, Wach 06, Geim 06, Wald 07b]. The
basic idea is to divide recursively the array of all objects into disjoint subsets. For
each subset a bounding volume is computed that fully encloses all contained objects.
Starting with the list of all objects this process is repeated until a termination criterion
is met. The simplest criterion is to stop when only a single object is left in the list. The
number of subsets n (with n > 1) is arbitrary but the common choice in ray tracing is
to build binary hierarchies. The choice of bounding volume is also arbitrary but has a
significant impact on speed and construction complexity. The chosen bounding volume
should be easy to compute from a list of objects and should be fast to intersect with a
given ray. Additionally it should enclose the list of objects as tightly as possible.

Basic traversal of a BVH is straightforward. A given ray is intersected with the hier-
archy starting at the root node and traversing only children that are intersected by the
ray. It is important to note that in a basic implementation all nodes that are intersected
by the ray need to be checked since the bounding volumes can overlap. So no early
termination during traversal can be done as in a kd-tree (Section 3.1.2) or a grid (Sec-
tion 3.1.3). Several optimizations can be introduced for the traversal that significantly
can increase the performance. One is to use ray coherence that will be discussed in
Section 3.5.3, the others are described in more detail in Section 3.3 in the context of
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our new acceleration structure.
For the construction of bounding volume hierarchies the choice of where to split the

list of objects and how to efficiently sort them is the most important. This choice is
usually achieved by employing a heuristic. Simple center-, and median-split heuristics
are easy to implement but are much slower in the ray tracing performance. Currently
the best known method in the general case for hierarchy construction is to use the sur-
face area heuristic (SAH). In [Wald 07a] an efficient construction based on the SAH
for bounding volume hierarchies is described. We give an overview of these construc-
tion heuristics in Section 4.1 and analyze the impact of these algorithms for our novel
acceleration structure in Section 4.2.

3.1.2 kd-Trees

The kd-tree is a space partitioning method. In contrast to object partitioning like a
BVH described in Section 3.1.1 the space is subdivided into disjoint volumes. There
exist several methods that fall into the category of space partitioning. Octrees (see for
example [Same 89]) are one popular choice but they can be seen as a special case
of a general kd-tree. Grids are a non-hierarchical space partitioning method and are
described in Section 3.1.3. In [Szir 02] an average case analysis for space partitioning
methods with simulation results can be found.

A kd-tree is a binary hierarchy and each node contains only an axis-aligned split
plane and references to the children. It is one of the most popular acceleration struc-
tures for ray tracing [Havr 02, Shev 07]. The k stands for the dimension of the hierarchy
and k = 3 for typical 3d scenes. The split plane divides the space into a positive
and a negative half-space sometimes also called left and right. The children then re-
cursively subdivide the space further. The construction of such a kd-tree significantly
influences the performance and also the memory requirements. A very good overview
and analysis of different construction and traversal methods can be found in [Havr 01].
In [Wald 06a] the construction of kd-trees is analyzed and a method to build them in
O(n log(n)).

One important advantage of a kd-tree over a BVH is that the ray automatically tra-
verses the hierarchy in order of increasing distance and distinct nodes never overlap.
This allows for an efficient termination of the ray after the first intersection which is
called “early out”. On the other hand kd-trees have a significant disadvantage that is
inherent to all space subdivision methods. Individual objects may be in more than one
node at the same time as it is almost always impossible to find a split plane that does
not intersect some objects. This leads to a duplication of references onto these ob-
jects that increases the memory consumption and may result in multiple intersections
with the same object during traversal. The multiple intersection problem can be solved
with mailboxing [Kirk 91] but the memory consumption is in the average case always
higher than BVH memory consumption. Nevertheless kd-trees are among the fastest
ray tracing acceleration structures.

The generalization of a kd-tree is called binary space partitioning (BSP) tree and
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allows for arbitrary planes to be chosen [Ize 08]. This comes at the cost of a significant
higher memory consumption because now arbitrary planes need to be stored instead
of only 3 different axes and also the construction is much more complicated and needs
more computation. In [Kamm 07] the authors analyze a hybrid called restricted BSP
trees, where a fixed number n > 3 of different plane orientations is allowed that can still
be stored compactly. In [Budg 08] the efficient construction and traversal of restricted
BSP trees is discussed.

3.1.3 Grids

Grids are in their basic implementation a non-hierarchical acceleration structure. The
axis aligned bounding box of the scene is subdivided uniformly into non-overlapping
equally sized volume elements that are also axis aligned. An illustration of such a uni-
form grid can be found in the Figure on the right. The construction of a grid is very
easy and fast. Each volume element of the grid has an assigned list. Each primi-
tive of the scene is inserted in all the lists of the volume elements that it intersects.
This is basically an O(n) operation because each
of the n primitives has to be touched only once.
For that reason it is often used for interactive
scenes where the acceleration structure has to be
updated each frame [Rein 00]. In [Laga 08b] the
authors describe two efficient methods for build-
ing grids and in [Kalo 09] a parallel construction
is presented. The traversal with a ray is done
using a modified DDA algorithm that is similar to
line rendering (see for example [Aman 87] and
also [Laga 08b]). The traversal has to guarantee
that all voxels the ray intersects are visited. An ad-
vantage of grids is, similar to a kd-tree, that the in-
tersection computation can be terminated as soon
as the first hit is found (early out) as the grid is also
traversed in ray direction with monotonic increas-
ing distance. An important disadvantage of grids comes from the uniform subdivision.
Due to this, grids are bad for adapting to locally fine detail with large empty space. For
efficient ray tracing of fine detail (i.e. many small triangles) a small grid size needs to
be chosen but then large empty space has to be traversed in many small steps signifi-
cantly slowing down the ray tracing process. A solution to this problem is using adaptive
grids [Klim 97] or multi-level grids [Park 99]. Another interesting approach to improve
the adaptivity of grids is given in [Laga 08a]. There, the authors use constrained tetra-
hedralizations as an adaptive grid to ray trace triangle scenes.
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3.2 n-ary Bounding Volume Hierarchies

In this section we will present a novel acceleration structures for accelerated ray tracing
of incoherent rays. Bandwidth problems are an important issue [Wald 07a] for efficient
streaming processing. We achieve a small memory consumption, reducing the overall
bandwidth, by flattening the hierarchy and favoring larger leaves which also allow for
efficient streaming intersection of the primitives. We use axis-aligned bounding boxes,
stored as a minimum and a maximum corner point, for bounding volumes. A detailed
description of the node memory layout is given in Listing 3.1.

As the SIMD width is n = 4 in most current processors, the discussed implementation
focuses on this kind of architecture. Each node of the hierarchy has four children and
the triangle intersection always intersects four triangles at once. Thus our new BVH
implementation is called QBVH (Quad-BVH) throughout this thesis, although most of
the concepts are not limited to n = 4.

Construction by Hierarchy Compaction

While the construction of binary hierarchies has got a lot of attention in current research,
higher arity hierarchies have seldom been used for ray tracing. Here the splitting choice
seems to be considerably more complex because instead of a simple bisection a quadri-
section is needed. In this section we show that, even though it may seem more complex,
the same principles as for the binary hierarchy construction can be used. Our described
construction directly extends also to higher arity hierarchies.

Figure 3.1 illustrates the new construction of a 4-ary QBVH. The same split plane
proposals as for the binary case are used but instead of creating nodes after each split
the object sets are split again resulting in four disjoint object sets. Now each node does
not contain a single bounding volume. Each node directly contains the four bounding
volumes of its children.

The n = 2k-ary BVH construction can be seen as collapsing a classical binary hier-
archy as seen in Figure 3.1 for the case of n = 4. Each k-th level of the hierarchy is
kept and the rest discarded. This results in 2k bounding volumes per node. Figure 3.2
illustrates how a QBVH is constructed, for k = 2, approximately halving the memory
requirements. This view allows to use the same construction principles used for binary
hierarchies to construct 2k-ary hierarchies.

While using four boxes per node would already be sufficient to enable SIMD process-
ing of the above data structure in the manner of [Chri 06], it is important to store along
which planes (perpendicular to the canonical axes x, y, or z) the objects were parti-
tioned. The plane indices of the binary hierarchy are stored as three integers axis0,
axis1, and axis2, respectively. This allows exploiting the spatial order of the boxes for a
more efficient pruning using the sign of the ray direction during hierarchy traversal. This
is described in detail in Section 3.3. Of course, as already mentioned previously storing
three full integers for only three split plane positions is very inefficient memory wise.
This can be easily packed into smaller data types like a single byte each or even using
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Figure 3.1: Construction of a binary BVH (left), compared to the construction of a 4-ary
BVH (QBVH, right). Four children are created for each node. The top row
indicates the split plane candidates common to both approaches.
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Figure 3.2: Collapsing a binary hierarchy to a QBVH. Classical build methods are used
to create a binary hierarchy, which is then collapsed by leaving out interme-
diate levels.
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bit operations and store only 2 bit per plane. But this comes a the cost of an additional
unpacking operation. Depending on application this might still be a good choice but for
the sake of simplicity we use here the basic layout with 3 full 32 bit integers.

Leaf Criterion

When building acceleration structure hierarchies for ray tracing the recursive process
is stopped with a so called termination criterion. While the termination criterion for
kd-trees is complex and usually involves several user parameters a bounding volume
hierarchy can use the number of primitives as a simple termination criterion. For a kd-
tree this does not work as there are situations where the number of primitives can not
be reduced anymore and other criteria like the size of the volume needs to be used.

As mentioned at the beginning, bounding volume hierarchies were usually built down
to a single triangle per leaf. Due to the availability of efficient SIMD processing this not
only increases the memory of the hierarchy unnecessarily but also reduces the final
performance. The decision to create a leaf instead of further constructing a hierarchy
is based on several criteria. The simplest criterion is to use a fixed threshold number of
primitives. When the number of primitives in the list during construction drops below this
value, a leaf is created. We show that this is a very good choice for the QBVH. It is quick
to evaluate, allowing for fast hierarchy construction and shows high performance. Using
more than a single primitive per leaf has another very important benefit. It reduces the
number of empty leaves significantly. Empty leaves are created when there are not
enough primitives to perform a split into 4 children (or n in the general case). These
empty nodes were considered a huge problem for previous attempts of n-ary BVHs in
ray tracing.

3.3 Investigation of n-ary Hierarchy Traversal

The hierarchy traversal is the most performance critical code part in any ray tracing
algorithm because it is the most executed path. It can be split into several parts: the
leaf intersection, the intersection of a ray with the bounding primitive and the handling of
the order of traversal in combination with the stack management needed for a recursive
traversal. In this section we investigate the choices for the data structures of a ray and a
hierarchy node and how to efficiently intersect a bounding primitive and traverse a given
hierarchy. We will then present and discuss several different choices for sorted traversal
of a n−ary bounding volume hierarchy. For the discussion we will use extensively the
concept of SIMD processing that was described in Section 2.4. The intersection with
the triangles contained in a leaf is discussed in Section 5.1.

3.3.1 Data Structures for Traversal

The data structure of a single node in a QBVH is illustrated in Listing 3.1. Contrary
to the common notion of bounding volume hierarchies, where a node contains a single
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struct ALIGN16 SIMD_BVH_Node {
f l o a t bbox [ 2∗4∗3 ] ;
i n t c h i l d [ 4 ] ;
i n t axis0 , axis1 , ax is2 ;
i n t f i l l ;

} ;

Listing 3.1: The full data structure of a QBVH node. It contains 4 axis aligned bounding
boxes, 4 child pointer and additional information that may be changed de-
pending on implementation or optimizations. The size of a node is exactly
128 bytes.

volume bounding all children, we directly store each child bounding volume in the parent
node. In the case of 4-ary hierarchies this results in four bounding boxes and four child
pointers. So already the top level BVH node consists of four bounding boxes. The
minimum and maximum of the four bounding volumes are in a layout suitable for direct
loading and processing in a SIMD register. The nodes are stored as a single array
and the child[4] arrays contain the indices into this array. Additionally the split plane
axis used during construction are stored. They are needed for a sorted traversal along
the ray direction and are explained in Section 3.3. The integer fill is used to store
additional data for optimizations later on. The data layout of these 4 integers is not fixed
and may be changed for example to store the bits needed for the 3 axis in a single char
but the total size of a single node should not be changed. The result is a large BVH
node with a size of 128 bytes which perfectly matches the caches of modern computer
hardware. The 4 bounding boxes are stored in structure-of-arrays (SoA) layout for direct
processing in SIMD registers. This access is achieved in C code by a simple cast. The
layout and size of a SIMD_BVH_Node guarantees that no memory alignment problems
occur during an SIMD access when the total array of nodes is allocated with proper
alignment. The node data is kept in a linear array of memory locations, so the child
pointer can be stored as integer indices instead of using platform-dependent pointers.
It is important to note that for a leaf no additional SIMD_BVH_Node is created. The leaf
bounding box is already stored in the parent and the leaf data can be encoded directly
into the corresponding child integer.

We use the sign of the child index to encode whether a node is a leaf or an inner
node. There exist various other encoding possibilities and it depends on the processor
architecture and compiler which one is the most efficient. The most memory efficient is
to directly encode the leaf information into the remaining 31 bits. Generally we chose 4
bits for the number of triangles in the leaf and the remaining 27 bits as the start index in
the triangle array. Since the triangle intersection is done using SIMD, the number is a
multiple of 4. So up to 64 triangles per leaf can be stored and up to 227 triangles can be
indexed. Empty leaves are encoded in a special value (INT_MIN) so the 4 bits can be
used for the full 16× 4 triangles. Note that when using bounding volume hierarchies the
number of triangles per leaf is easily bounded because forcing another split guarantees
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typedef struct SIMD_Ray {
SIMD4_Vec3 o4 ; / / o r i g i n
SIMD4_Vec3 id4 ; / / i nverse d i r e c t i o n
SIMD4_Vec3 d4 ; / / d i r e c t i o n
SIMD_float t4 ; / / t−f a r value
i n t d i rS ign [ 3 ] ; / / the s ign o f the d i r e c t i o n components (0 or 1)

}

Listing 3.2: The ray data structure that is used for the SIMD traversal of a QBVH. It
contains a single ray replicated 4 times across SIMD registers to allow for
simultaneous intersection of 4 bounding boxes and 4 triangles.

a reduction in the number of triangles.
If the upper bound of 227 is not acceptable for certain applications, a slightly less

memory efficient version is created. The full 31 bits are used to index an additional data
structure containing the leaf information. Another memory efficient encoding strategy is
to store only the start value of the triangle reference array and to mark the last triangle
with a negative index in this array.

Traversal Framework

The first important step for optimizing the traversal is to avoid explicit recursive function
calls and instead using a locally managed stack. This stack consists only of indices
into the array of hierarchy nodes (in our case SIMD_BVH_Node). During the traversal loop
the yet to be visited nodes are pushed onto this stack. The data structure for a ray
used in an efficient SIMD traversal is defined in Listing 3.2. The ray is prepared into
a SIMD_Ray prior to traversal by replicating the values for the maximum ray distance
(t-far), the origin, and reciprocal of the direction across SIMD registers. Additionally
the signs of the components of the ray direction are stored as integers to allow easy
indexing of the near and far bounding box sides. The basic structure of the traversal
is now shown in Listing 3.3. Given a ray, the stack-based traversal algorithm starts by
simultaneously intersecting the ray with the four bounding boxes contained in the root
SIMD_BVH_Node using SIMD instructions. The pointers of the children with a non-empty
bounding box intersection are sorted and then pushed on the stack. The routine is
repeated by popping the next element as long as there is one.

For the bounding box intersection we use a branch-free implementation of the slab
test [Will 05]. The 4 boxes are intersected simultaneously with the replicated ray so that
in the end four distinct intersection results are computed. The computation using our
SIMD abstraction layer is shown in Listing 3.4. The return value of the bounding box
intersection function is a SIMD mask containing all ones when the respective box was
intersected and zeros otherwise. This allows one to use the result in the traversal below
as increment for the stack pointer as shown in the next section.
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SIMD_Ray ray = prepare_SIMD_Ray ( . . . ) ;
top = 0; s tack [ top ] = root_node ;
while ( top >= 0) {

i f ( s tack [ top ] < 0) {
i n t e r s e c t L e a f ( s tack [ top ] , ray ) ;

} else {
i f ( ray i n t e r s e c t s a t l e a s t one box )

/ / push the i n t e r s e c t e d c h i l d r e n
/ / onto the stack

}
}
top−−;

}

Listing 3.3: Basic structure of a QBVH traversal. Given a ray the nodes of the hierarchy
are intersected recursively. If a leaf is found (encoded by a node pointer that
is < 0) the triangles stored in that leaf are intersected.

SIMD_int IntersectSIMD_Ray_4Box ( ray , node ) {
SIMD_float t0 , t1 , min , max ;
min = SIMD_SET1(0 .0 f ) ;
max = ray−>t4 ;
for ( i n t i = 0 ; i < 3 ; i ++) {

t0 = SIMD_SUB( node−>bbox [ ray−>d i rS ign [ i ] ] , ray−>o4 [ i ] ) ;
t0 = SIMD_MUL( t0 , ray−>id4 [ i ] ) ;
t1 = SIMD_SUB( node−>bbox[3− ray−>d i rS ign [ i ] ] , ray−>o4 [ i ] ) ;
t1 = SIMD_MUL( t1 , ray−>id4 [ i ] ) ;
min = SIMD_MAX( min , t0 ) ;
max = SIMD_MIN(max , t1 ) ;

}
return SIMD_CLE( min , max ) ;

}

Listing 3.4: SIMD intersection of an AABB with a replicated ray. This code is an adjust-
ment of the traditional slab test and returns 4 masks each encoding whether
the replicated ray intersected the associated box.

3.3.2 Unsorted Traversal

After determining which child boxes should be intersected the associated indices are
pushed onto the stack. Listing 3.5 shows the basic traversal of a QBVH using the
operations explained so far. It uses an unordered stack push, i.e. the order of the inter-
sected bounding boxes is determined by the hierarchy construction and stays always
the same. This is not optimal for tracing nearest intersection rays as the performance
is now largely view dependent but this simple and elegant traversal routine is easiest to
understand. Later, unordered traversal is again useful when we discuss optimizations
concerning occlusion rays. The only part that is left to explain in Listing 3.5 it the stack
pushing. The variable top is the index to the top of the stack and at the beginning the
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while ( top >= 0) {
i n t index = stack [ top ] ;
i f ( index < 0) {

i n t e r s e c t L e a f ( index , ray ) ;
} else {

SIMD_int boxResult = IntersectSIMD_Ray_4Box ( ray , nodes [ index ] ) ;
s tack [ top ] = pNodes [ index ] . c h i l d [ 0 ] ; top −= boxResult [ 0 ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ 1 ] ; top −= boxResult [ 1 ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ 2 ] ; top −= boxResult [ 2 ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ 3 ] ; top −= boxResult [ 3 ] ;

}
top−−;

}

Listing 3.5: This code extends the traversal framework from Listing 3.3 by an unordered
stack push. The result from the SIMD bounding box intersection that was
shown in Listing 3.4 is interpreted as an integer to increase the stack pointer
either by 1 or by 0.

top element is popped from the stack. After intersecting the associated four bounding
boxes this element is no longer needed and can directly be replaced. The direct way for
handling the stack push would be the use of a conditional to decide for each of the four
components returned in an SIMD register by the bounding box intersection weather to
store at stack[top] and increase the top variable. Instead we always write the child
index to the stack at the top position and use the respective component inside the inter-
section result to increase top. This has to be written as a decrement because when an
intersection with a bounding box is found the SIMD component is set to all ones which
represents a −1 in twos complement. The result of these 4 operations is now a stack
where only the intersected bounding boxes are pushed.

3.3.3 Sorted Traversal

As written above, the unordered traversal is not optimal for nearest intersection rays
because some rays may traverse the hierarchy virtually from back to front. Especially
in scenes with a high overdraw, i.e. many potential triangles can be hit by the ray, this
may lead to a lot of unneeded leaf intersections and traversal steps. So to enable an
early pruning of the traversal in a QBVH, the nodes are pushed on the stack according
to the order determined by the ray direction.

t-far Sorted Traversal

The first possible approach for this sorting is to use the t-parameter of the bounding
box intersections. The intersected children are pushed onto the stack in an order that
the closest sub-part of the hierarchy is traversed first. Since this sorting is executed in
the inner loop the tricky part is to efficiently implement it using SIMD instructions while
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#define COMP( a , b ) { SIMD_float t0 , t1 ;
t0 = SIMD_MIN( a , b ) ;
t1 = SIMD_MAX( a , b ) ;
a = t0 ; b = t1 ; }

Listing 3.6: The SIMD comparison function that is used used for sorting a single reg-
ister. It selects the minimum and maximum from the two given registers in
place.

correctly handling all special cases. The first part of the algorithm uses branch free
SIMD sorting. In [Furt 07] the authors describe a practical way for an implementation
using masking and swizzling operations to perform SIMD parallel sorting of arrays. For
a QBVH we only need to sort a single SIMD register but their approach directly ap-
plies. In the sorting algorithm a COMP function is heavily used that is defined as shown
in Listing 3.6. Retrieving the t-far parameters from the bounding box intersection is no
problem as these values are already computed by the intersection routine. But sim-
ply sorting the returned t-far SIMD register is not sufficient for a correct result. The
first problem is that not the sorting of the t-parameters is needed but the sorting of the
child indices according to the t-parameters. So after sorting the t-register the same
reordering has to be done for the mask register and the 4 child pointers. This is not
straightforward to do in a branch-free implementation but would be simple when condi-
tionals were used. The second problem that needs to be considered is that there may
be several t parameters that are the same. When using axis aligned bounding boxes in
an acceleration hierarchy it is not uncommon that several planes coincide. So it often
happens that the ray intersection point is the same not only mathematically but also
numerically.

The following branch-free algorithm in Listing 3.7 solves both these problems by using
knowledge about the floating point representation of numbers. What is shown there is
only the inner part of the traversal algorithm. As before it is tried so present the basics
of the algorithm as clearly as possible so there is still some room left for optimization
by for example more efficient access to single components of an SIMD register. In
the first three lines bit masks are defined as constants. The first mask (amask) has
zeros in the last two significant bits and is used for clearing the last two bits in a given
number by using a logical “and”. The second mask contains the numbers 0 to 3 each
in one component of an SIMD register. They have to be in the correct order so that the
memory access in the last four lines of the algorithm fetches the correct components.
The last mask is the inverse of the first one (i.e. the two least significant bits set). The
intersection of the ray with the bounding boxes is now done as before but the distance of
a potential intersection along the ray is also returned in the register x0. If one of the four
bounding boxes was not hit, the t-parameter that would be returned is 0. The next line is
an important trick to avoid denormalized numbers in the following computations when
0 was returned. On floating point hardware that support the use of denormals they
usually mean a huge performance penalty when they are actually used. In our case
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CONST_INT32_PS( amask , 0xFFFFFFFC , 0xFFFFFFFC , 0xFFFFFFFC , 0xFFFFFFFC ) ;
CONST_INT32_PS( omask , 0x3 , 0x2 , 0x1 , 0x0 ) ;
CONST_INT32_PS( emask , 0x3 , 0x3 , 0x3 , 0x3 ) ;

SIMD_float x0 , x1 , x2 , x3 ; / / s to res the t−f a r values and are used f o r s o r t i n g
SIMD_int boxResult = IntersectSIMD_Ray_4Box_GetT (&x0 , ray , nodes [ index ] ) ;
x0 = SIMD_ADD( x0 , SIMD_SET(1 .0 f ) ) ; / / avoid denormals

x0 = SIMD_OR(SIMD_AND( x0 , amask ) , omask ) ; / / encode index

x1 = SIMD_MOVE_LH( x1 , x0 ) ;
COMP( x0 , x1 ) ;
x0 = SIMD_MOVE_HL( x0 , x1 ) ;
x1 = SIMD_SHUFFLE( x1 , x0 , 0x88 ) ;
COMP( x0 , x1 ) ;
x2 = SIMD_MOVE_HL( x2 , x1 ) ;
x3 = x0 ;
COMP( x2 , x3 ) ;
x0 = SIMD_SHUFFLE( x0 , x2 , 0x13 ) ;
x1 = SIMD_MOVE_LH( x1 , x3 ) ;
x1 = SIMD_SHUFFLE( x1 , x0 , 0x2d ) ; / / x1 i s now sor ted

SIMD_int s idx = SIMD_AND( x1 , emask ) ; / / e x t r a c t the s tored ind i ces

stack [ top ] = pNodes [ index ] . c h i l d [ s idx [ 0 ] ] ; top−=boxResult [ s idx [ 0 ] ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ s idx [ 1 ] ] ; top−=boxResult [ s idx [ 1 ] ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ s idx [ 2 ] ] ; top−=boxResult [ s idx [ 2 ] ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ s idx [ 3 ] ] ; top−=boxResult [ s idx [ 3 ] ] ;

Listing 3.7: The branch-free implementation of the t-far sorted QBVH traversal using
floating point bit operations. The trick is to efficiently retrieve the bounding
box indices from the sorted t-far values.

here we only want to compare four floating point numbers so adding 1 does not change
the order. The next line encoded the four numbers 0 to 3 into the least significant bits
of the mantissa of the four floating point numbers. Here it becomes clear why we need
the addition above. This encoding is the solution to both problems mentioned before.
First it ensures the uniqueness of the four numbers even if the same t-far values are
returned from the bounding box intersection and second it contains the information of
the original position without changing the order in a relevant way. The next code block
performs the sorting of an SIMD register that is based on the description in [Furt 07].
Afterward we have the sorted result in the register x1.

Finally the indices are extracted by using the mask with ones in the two least signifi-
cant bits. The SIMD register sidx now contains in each component a number between
0 and 3 and is used below in the correct order to access the child indices and use the
intersection result for the stack increment as before. The result is that we push the
bounding boxes in the order of decreasing t-far values onto the stack. The increment of
the top pointer is the same as in the unsorted traversal using the fact that −1 is the bit
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mask of a successful intersection. This guarantees that in the next iteration of the loop
the bounding box closest to the ray origin with respect to the t-far value is intersected.

Split-Plane Sorted Traversal

An alternative to sorting along the ray bounding box intersections is to use the original
split planes from the hierarchy construction. To generate the 4 children of a QBVH node
3 split planes are created and used during the construction. These same three split
planes can then be used with a given ray to estimate in what order the children should
be traversed. Figure 3.3 illustrated the ordering in 2d for a single node. To define the
correct order it is sufficient to know only the split plane axis. The actual position of
the plane is not needed. Having one of the axis (x, y, z) the respective sign of the ray
direction determines the order. This is similar to the order a kd-tree would define using
the same split plane proposals. This has the advantage of traversing the hierarchy the
same way as it was originally build and the disadvantage that additional information is
needed. But to store the axis only 2 bits are needed. The standard QBVH node from
Listing 3.1 has already more than enough free space for this additional information due
to of cache line alignment.

4

3

2

1

A B

C D

Figure 3.3: Split-Plane sorted QBVH traversal. The dimension of the split plane propos-
als are kept to sort the child nodes using the ray direction.

The branch free version of this ordering can be implemented in the following way.
First the four child pointers are loaded into a SIMD register. Second, a SIMD mask is
constructed for each of the three axes stored in the QBVH node based on the sign of
the ray direction of that component. Third this mask is used to select either the original
value or a shuffled value resulting in a correctly ordered SIMD register. Finally the
contents of the SIMD child register are pushed onto the stack in a scalar way as before.
The child pointer are copied at the top of the stack and then decrementing the stack top
pointer by the corresponding entry of the reordered result mask from the bounding box
intersection. For this purpose, this mask has to be ordered again in the same way as
the child pointers to push the correct children onto the stack.

A bit surprisingly, an implementation using cascaded branches based on the ray di-
rection signs and split axes is equally fast on an Intel R©CoreTM2 processor in the gen-
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i f ( ray . d i rS ign [ pNodes [ index ] . ax is0 ] ) {
i f ( ray . d i rS ign [ pNodes [ index ] . ax is1 ] ) {

i f ( boxResult [ 0 ] ) s tack [ top ++] = pNodes [ index ] . c h i l d [ 0 ] ;
i f ( boxResult [ 1 ] ) s tack [ top ++] = pNodes [ index ] . c h i l d [ 1 ] ;

} else {
i f ( boxResult [ 1 ] ) s tack [ top ++] = pNodes [ index ] . c h i l d [ 1 ] ;
i f ( boxResult [ 0 ] ) s tack [ top ++] = pNodes [ index ] . c h i l d [ 0 ] ;

}
i f ( ray . d i rS ign [ pNodes [ index ] . ax is2 ] ) {

i f ( boxResult [ 2 ] ) s tack [ top ++] = pNodes [ index ] . c h i l d [ 2 ] ;
i f ( boxResult [ 3 ] ) s tack [ top ++] = pNodes [ index ] . c h i l d [ 3 ] ;

} else {
i f ( boxResult [ 3 ] ) s tack [ top ++] = pNodes [ index ] . c h i l d [ 3 ] ;
i f ( boxResult [ 2 ] ) s tack [ top ++] = pNodes [ index ] . c h i l d [ 2 ] ;

}
} else {

/ / Same as above but ax is1 and
/ / ax is2 cases i n inverse order

}

Listing 3.8: Split-Plane sorted QBVH traversal

eral case and even slightly faster when only primary rays are traced. This may be due to
the sophisticated branch prediction of this particular processor. As the implementation
is also much simpler than the SIMD sorting we show this algorithm here in Listing 3.8.
The first decision based on axis0 chooses which two of the four children should be in-
tersected first. In Figure 3.3, this corresponds to the decision whether to visit (A,C) or
(B,D) first. The second and third decision sort each of the child pairs again, resulting
in (A,C) or (C,A) and (B,D) or (D,B).

An alternative to the branching implementation is to use a lookup table indexed by
the sign bits. While this is more elegant, the shown implementation benefits from the
learning capabilities of a branch predictor (at least on Intel CPUs) and the lookup-table
implementation was always slightly slower in our experiments.

Comparison

We now compare the unsorted traversal with the split-plane and the t-far sorted traver-
sal. We selected three representative scenes and count the number of bounding box
intersections and the number of leaf intersections needed for the final image. As the
actual performance of a sorting implementation is largely architecture dependent we do
not provide actual timing results. The number of bounding box intersections is directly
related to the number of traversal steps and thus a good general performance indicator.
The rendering algorithm used for this evaluation is a simple path tracer. This is a good
rendering algorithm to measure the sorting as every ray in this kind of algorithm needs
to find the closest intersection. It also produces largely incoherent rays after several
bounces that shows the problem of unsorted traversal.
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Scene no sorting t-sorting split-plane
Sponza 18.5M (3.10M) 16.2M (2.18M) 16.0M (2.18M)
Conference 13.8M (3.39M) 13.3M (3.32M) 12.9M (3.17M)
Interior 28.8M (4.48M) 21.7M (3.55M) 21.2M (3.25M)

Table 3.1: Comparing the three described traversal algorithms. Shown are the average
number of million bounding box intersections needed per rendering pass at
a resolution of 640 × 480. In brackets the average number of million leaf
intersections is shown. For the statistics and the images 512 passes were
rendered. no sorting pushes the intersected children in an arbitrary order
onto the stack, t-sorting uses the algorithm that uses the distance of the
bounding box intersections to determine the order and the last one uses the
construction split-planes for the sorting.

Figure 3.4 shows the three test scenes and camera perspectives used for the eval-
uation. As expected from this simple illumination algorithm the resulting images are
very noisy. Table 3.1 shows the results of the three traversal methods as the average
number of bounding box intersections per pass at a resolution of 640× 480.

Figure 3.4: The three test scenes used for the comparison of different traversal algo-
rithms. As a simple path tracer is used the resulting images are very noisy.

It is important to note that the number of bounding box intersections for the unsorted
version depends on the order of the stack pushing. Even though the path tracing algo-
rithm produces more or less incoherent rays after the first bounce, the primary rays all
originate from the camera position. Additionally the secondary rays are not truly random
as for example in the Sponza scene a lot more rays go upward instead of downward.
It is also interesting that the t-far sorting is in all three cases slightly inferior to the split
plane based sorting. The reason is that the split-plane based sorting uses the same
order as originally intended by the SAH during construction. The sorting by distance
can swap the order in which the ray would naturally pass through the geometry and,
thus, intersections are potentially found later.
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3.3.4 t-Far Stack for Early Out

The reason why the two sorting methods described previously are beneficial is that on
the average traversing the closer sub-hierarchy first results in a close intersection. Since
we have a BVH we cannot terminate the ray at the first intersection as in a kd-tree but
the t-far value of the ray is still used in the bounding box intersection. So a shorter ray is
less likely to intersect the farther away boxes and performance improves. When looking
at this behavior more closely there is an inherent disadvantage of storing all children
directly inside the node. During traversal the decision to traverse a child (i.e. the ray -
child bounding box intersection) is done before the closer sub-hierarchy is intersected.
This results in a late early-out (the pruning of a sub-hierarchy is delayed and done one
traversal step deeper) and more bounding boxes are read from memory and intersected
then needed. This problem increases even more with higher arity hierarchies.

A solution to this problem is to introduce a second stack for the t-far values of the
bounding box intersections. Depending on the architecture it is better to extend the
previous stack to hold two values instead of using a second separate stack. Now,
instead of storing only the child pointer of the intersected boxes the t-far value of the
bounding box intersection is stored too. Before fetching the memory of a full QBVH node
and intersecting the four bounding boxes the current t-far value of the ray is compared
to the value on the stack. Only if it is greater or equal, the sub-hierarchy needs to be
traversed. This completely avoids unnecessary intersection tests similar to a classic
binary BVH.

Scene no t-stack (tsort) t-stack (tsort) no t-stack (ssort) t-stack (ssort)
Sponza 16.2M (2.18M) 15.1M (1.90M) 16.0M (2.18M) 15.1M (1.94M)
Conference 13.3M (3.32M) 12.9M (3.17M) 12.9M (3.17M) 12.6M (3.04M)
Interior 21.7M (3.55M) 20.0M (3.33M) 21.2M (3.25M) 19.8M (3.09M)

Table 3.2: Comparing the average number of million bounding box intersections per
pass for the t-far sorted traversal without and with additional t stack. In brack-
ets are the average number of million leaf intersections. The test setting is
the same as in the previous section shown in Figure 3.4.

As can be seen in Table 3.2 this additionally reduces the number of bounding box
intersections but on current architectures this does not result in a rendering speed up.
Even though the number of bounding box intersections is reduced the final rendering
speed is in all cases almost equal on Intel and PowerPC processors (variance smaller
than 1%) than just using the simple sorting. The reason is that the additional mem-
ory access inside the most executed loop and the additional branch out-weight the
decreased number of bounding box intersections.

The implementation of the t-far stack is a nice example of the importance of con-
sidering the order of branches with respect to branch prediction. In a straight forward
implementation without a given branch hint the first pass of ray tracing the images in Fig-
ure 3.4 is about 25% slower then the subsequent passes. Using a branch hint removes
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this problem completely and additionally results in a slightly faster overall execution
time.

To summarize, on current Intel processors and the Cell processor the traversal is
faster without this “optimization". But it may pay off for wider SIMD operations as for
example for the Larrabee processor [Seil 08]. The wider the SIMD width the more child
nodes are pushed onto the stack and thus have to be accessed when no early out can
be performed. Additionally the SIMD width also defines the amount of memory that has
to be accessed for each node.

3.4 On Demand Construction

On demand hierarchy construction is a simple way of delaying the construction until a
ray actually passes through the respective node [Wach 06]. When the actual ray tracing
only touches a small part of the scene this method can reduce the amount of memory
needed during rendering. There is almost no benefit of on demand construction in
the context of a full global illumination algorithm when using the QBVH because in the
usual scenes there is the possibility of light paths to touch all parts of the scene. Thus
in the course of rendering a final image almost the full hierarchy gets built anyway.
Additionally, for this method to work fast, the geometry should be fully loaded into the
RAM. As the size of a full QBVH is only a fraction of the actual geometry data there is
no real benefit of having only a partly build hierarchy.

Nevertheless, depending on application, it might be useful when only a quick preview
of the scene using primary rays is needed or very large scenes that do not fit into the
main memory should be rendered.

On demand construction can be added to all traversal methods by simply using an
additional bit in the child pointer. If the child pointer is negative and the 30-th bit is
set the remaining 29 bits point to a SIMD_QBVH_Node structure that is not yet built but
contains the necessary information for building it. This information just consists of the
start and end index pointing to the not yet used part of the triangle index array. This
adds an additional conditional to the hierarchy traversal but only inside the check for
a leaf intersection. The performance cost of adding on demand construction to the
traversal can be neglected and the previously used hierarchy construction methods can
be used without change.

3.5 Results and Discussion

In this chapter we have introduced n-ary bounding volume hierarchies and discussed
their efficient memory layout and investigated how to perform efficient ray traversal. We
will now present an analysis and comparison of the ray tracing performance using this
data structure. These performance results show a clear advantage over previously used
acceleration data structures, especially for physically based rendering applications. The
actual construction of these hierarchies will be presented in the next chapter along with
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a detailed analysis of factors that influence the hierarchy quality. For completeness of
the comparison we will also incorporate some results of the improvements we will de-
velop in Chapter 5. The ray tracing performance is shown in 3.5.1. In Section 3.5.2 we
will analyze the behavior of our acceleration structure under tight memory constraints
and Section 3.5.3 will discuss the relation to coherent ray tracing.

For the performance analysis we integrated our new QBVH into a full featured render-
ing system. This system also contains highly optimized state of the art implementations
of a bounding interval hierarchy (BIH) [Wach 06] and a memory-bounded kd-tree. A BIH
is a variant of abounding volume hierarchy that has a very small memory consumption
and can be build quickly. The rendering system uses different unbiased rendering al-
gorithms which allows for a direct comparison of rendering performance on the same
hardware and using the same rendering algorithm. All measurements were performed
using a single thread on an Intel R©CoreTM2 CPU at 2.33GHz. Note that all measure-
ments were done in a full rendering system where sampling, shading, and texture look-
up are a significant part of the rendering time and are not sped up by faster ray tracing.
The system only supports the 36 byte triangle layout. Two versions of the QBVH are
compared. The first one does not employ the SIMD triangle caching from Section 5.1
and is called ncQBVH. It uses leaves of 8 triangles. The second version uses a SIMD
cache size of 128 entries with a leaf size of 16 triangles. In Section 5.1 we evaluate the
speed impact of using vertex-index based triangle representation instead of the basic
36 byte per triangle data layout.

3.5.1 Rendering Performance

To estimate the performance in a usual rendering setup we used three scenes of dif-
ferent complexity and left all parameters at their default settings. Figure 3.5 shows the
scenes used. The conference room consists of 1M triangles, the interior scene is a
complete house with 900K triangles and the power plant model has 12M triangles.

Table 3.3 shows the measured rendering performance from invocation of the ren-
derer to the final image (total time to image: TTI) for each acceleration structure (ACC).
Additionally the time for constructing the acceleration structure (ACT), the memory con-
sumed by the acceleration structure (MEM), and the time spent in the ray tracing kernel
(RTT) is given. The QBVH uses very little memory while even outperforming the con-
struction times of the BIH. Also note that the ray tracing kernels were all included in the
same rendering system for a precise comparison. This made some optimizations in the
hierarchy construction impossible—optimizations which would allow building the QBVH
for the plant in around 14 seconds. For detailed statistics about the hierarchy quality
and ray tracing behavior of the different kernels, see Table 3.4.

Table 3.5 gives an idea of how effective the use of SIMD instructions is, by comparing
packet traversal to the QBVH in the setting for which it has not been designed: casting
coherent primary rays only.
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Figure 3.5: The three scenes (Conference, Interior, Power Plant) used for comparison
of the QBVH against BIH and a kd-tree. The conference room and interior
were rendered with a bi-directional path tracer using 8 bi-directional samples
per pixel. The power plant was rendered with a path tracer and 32 paths per
pixel.

3.5.2 Memory Bound Performance

Memory consumption is an important part of any rendering system. All three accelera-
tion structures allow to a-priori bound the memory that is used. This was discussed for
example in [Wach 07]. It allows to specify a fixed amount of memory that should not be
exceeded. While the basic idea originates from the need to find good termination crite-
ria for kd-tree construction it is also well suited for BVH constructions when the available
memory is limited. For bounding volume hierarchies exists an inherent memory limit as
never more than 2n − 1 nodes can be created. Table 3.6 shows the performance of
each acceleration structure with bounded memory. The same scenes and rendering
settings as in the previous section are used. The kd-tree has serious problems with
tight memory bounds (note that a build of the conference room with 5 MB was impos-
sible to render in acceptable time) while especially the QBVH reacts robustly to limiting
the memory.

3.5.3 Explicit Coherence in Ray Tracing

In this chapter we presented a novel acceleration structure for the acceleration of in-
coherent rays. Starting with work by Wald et. al. [Wald 01, Wald 04a] a lot of ray
tracing research has focused on increasing the ray tracing performance by exploiting
coherence. Recent results can also be found in [Bent 06]. They introduced the use of
SIMD ray packets that trace 4 rays at the same time through a given acceleration struc-
ture. For this to work efficiently, rays need to have a similar origin and direction. If this
is given, the traversal amortizes the additional cost as many of the memory accesses
need to be done only once per packet. Depending on the amount of coherence even
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Scene MEM ACC ACT TTI RTT
Conf. 32 MB kd 2.1s 113.7s 80.5s
(1M) 23 MB BIH 1.4s 139.3s 104.7s

24 MB ncQBVH 1.5s 95.7s 63.6s
16 MB QBVH 1.2s 85.0s 53.8s

Interior 27 MB kd 1.8s 107.3s 77.7s
(0.9M) 21 MB BIH 1.4s 131.1s 101.4s

22 MB ncQBVH 1.5s 85.5s 56.3s
14 MB QBVH 1.1s 81.1s 52.0s

Plant 392 MB kd 30.0s 118.5s 97.3s
(12M) 206 MB BIH 21.5s 143.6s 112.4s

310 MB ncQBVH 23.9s 104.1s 78.0s
185 MB QBVH 19.1s 94.7s 56.1s

Table 3.3: Performance comparison of BIH, kd-tree, non-cached QBVH (ncQBVH) and
cached QBVH. The cached QBVH is explained in Chapter 5. The scenes are
shown in Figure 3.5. The number in brackets are the number of triangles in
millions. MEM is the memory needed by the acceleration structure, ACC the
type of acceleration structure used. ACT is the hierarchy construction time,
TTI the total time to image and RTT the pure ray tracing time.

larger packets can be beneficial. For the ray traversal and intersection to give the correct
results a modification to the standard traversal is needed and additional masks might
be needed to mark rays that intersected already. In [Wald 06b] the authors develop an
efficient coherent ray traversal algorithm for grids. For bounding volume hierarchies,
large ray packets are explored for example in [Wald 07b] and for the use in kd-trees
[Resh 05, Resh 07] presents nice algorithms. A good overview of the common con-
struction and traversal algorithms up to 2007 can be found in the state of the art report
on animated ray tracing [Wald 07c].

For these algorithms to give a speedup, coherent rays need to be found. This is sim-
ple for primary rays and a pinhole camera model as they have all the same origin, and
neighboring pixels in the camera give roughly the same direction. Exploiting this coher-
ence gives a speedup of about 2x to 3x depending on scene and implementation. But it
is important to note that primary rays are not very important for ray tracing applications
as the interesting effects come from secondary rays and the result of primary rays can
be executed much faster by using a rasterization algorithm. For shadow rays there can
be coherence when the rays are traced towards point light sources or compact area
light sources. In [Over 08] the authors construct coherent rays for a Whitted-style ray
tracer. For the kind of image synthesis algorithms we are interested in this thesis this
coherence is very hard to find. The primary rays are only a small fraction of the com-
putation needed for the final image and since we consider physically realistic scenes
we have no simple point light sources but arbitrary modeled light sources. Addition-
ally the Monte Carlo and Quasi-Monte Carlo algorithms we use are explicitly designed
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Scene ACC inner nodes leaves tris/leaf tris/ray inner/ray leaves/ray
Conf. kd 371018 384349 13.2 16.2 40.7 6.36
(1M) BIH 1066634 557709 1.8 7.2 71.2 3.78

QBVH 44704 133323 7.4 20.4 11.8 2.29
Interior kd 429294 450133 9.0 20.6 50.0 4.89
(0.9M) BIH 931393 510266 1.8 8.4 101.1 4.58

QBVH 41569 123144 7.4 21.7 18.1 2.48
Plant kd 4379594 4801842 14.9 29.0 59.1 4.28

(12M) BIH 10923900 6717548 1.9 10.5 141.4 5.01
QBVH 548908 1603848 7.9 32.6 24.5 2.93

Table 3.4: Detailed statistics for different acceleration kernels (ACC). This table shows,
for the respective kernel and scene, in this order: the total number of inner
nodes, the total number of non-empty leaf nodes, the average number of tri-
angles per leaf node, the average number of intersected triangles per ray, the
average number of traversed inner nodes per ray, and the average number
of intersected leaf nodes per ray. The measurements have been made under
the same conditions as in Table 3.3.

to increase the incoherence because this leads to faster image convergence. For this
reason we follow a different approach for accelerating ray tracing and increase the per-
formance by designing an algorithm designed from ground up to handle incoherent rays
instead of searching for coherence. Other researchers also recognized the need to de-
velop algorithms for incoherent rays. For example in [Wald 08] the authors build a SIMD
data structure for the incoherent rays that arise in a path tracer.
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Kernel Sponza Interior 1 Interior 2 Plant
2x2 BIH 16.3 16.6 10.9 3.6

BIH 6.4 6.6 4.1 1.4
QBVH 14.1 11.9 9.03 2.4

Table 3.5: Comparing packet tracing in a BIH with mono ray tracing in a QBVH. The
table shows frames per second for 2 × 2 SSE packets in a BIH vs mono ray
BIH vs. mono ray QBVH on an Intel Core 2 Duo (480 × 320). In the packet
version, flat shading and ray creation is also done using SIMD. Most of the
performance benefit of the packets is due to coherent memory access, which
is already lost for scene Interior 2, where QBVH and packet traversal perform
about the same.
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Conference

MEM 16 MB 5 MB

ACC kd B
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nc
Q
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V
H

ACT 1.3s 1.2s 1.2s 1.2s — 0.7s 0.7s 0.7s
TTI 119s 138s 99s 85s — 220s 224s 120s

RTT 89s 106s 86s 54s — 189s 190s 91s

Interior

MEM 16 MB 8 MB
ACT 1.3s 1.2s 1.1s 1.1s 0.8s 0.9s 0.9s 0.9s
TTI 113s 130s 91s 81s 250s 139s 118s 88s

RTT 84s 101s 63s 56s 219s 110s 90s 59s

Power Plant

MEM 185 MB 100 MB
ACT 21s 18s 19s 19s 14s 15s 16s 16s
TTI 129s 139s 105s 95s 369s 145s 117s 95s

RTT 85s 98s 78s 56s 330s 107s 90s 68s

Table 3.6: The performance of the different acceleration structures when the available
memory is a-priori bounded (MEM). ACC is the type of acceleration structure
used. The timings are given for the acceleration structure construction time
(ACT), the total time to image (TTI), and the time spend in the ray tracing
core (RTT).
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4
Efficiency of Hierarchies

In Chapter 3 we introduced a novel acceleration structure for incoherent rays. This ac-
celeration structure used a given scene database without modifications. In this Chapter
we will consider the quality and ray tracing performance of the acceleration data struc-
ture. The traversal of the hierarchy is independent of the construction but the way a
hierarchy is build can have a major impact on the final rendering performance. Building
acceleration hierarchies is a complex problem [Havr 01] and the usual approach is us-
ing a greedy algorithm with a splitting heuristic. Section 4.1 will provide an overview of
the commonly used heuristics to build a bounding volume hierarchy and in Section 4.2
we will discuss the behavior of our QBVH for the split choices. A general problem with
bounding volume hierarchy construction is node overlap, especially when large trian-
gles are in the scene. Section 4.3 investigates this problem and provides a memory
efficient solution to improve the quality of the build hierarchies by splitting large trian-
gles that would result in inefficient bounding volumes. By identifying and splitting the
inefficient triangles in a numerical robust way this method can dramatically improve the
ray tracing performance. The splitting is performed without actually modifying the trian-
gle database and thus integrates well into a full rendering system. In Section 4.4 the
triangle intersection is considered again but this time not for speed improvements but
to extend the algorithm to guarantee no holes during intersection computation. While
this slows down the computation it is necessary for some physical simulations where
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4 Efficiency of Hierarchies

under no circumstances cracks should occur. Finally, in Section 4.5 we will investigate
BVH construction for animated scenes. There, the BVH is used as a simple clustering
algorithm to reduce the overlap when rigid objects are animated.

4.1 Overview of Hierarchy Construction Heuristics

The quality of the hierarchy built for the scene has a major impact on the final ray tracing
speed. When the acceleration structure is built, it defines for each ray the number of
traversal steps and primitive intersections needed to obtain the final hitpoint. Several
methods have been studied in detail by Havran in [Havr 01] and an overview of different
acceleration structures was given in Section 3.1. Experience has shown that a good
construction algorithm is connected to the kind of acceleration structure used. So in
this section some of the approaches for binary hierarchy construction are discussed
and later their influence on the QBVH is analyzed.

Since in almost all applications the rays that should be traversed through the scene
are mostly unknown the construction of the acceleration structure needs to use some
form of heuristic. Additionally, the speed of constructing the acceleration structure is
important. Sophisticated heuristics that allow for backtracking during the build have
such a high algorithmic complexity that it is infeasible to apply them to realistic scenes
with millions of primitives.

Binary hierarchies are constructed by recursively finding a bisection of the primitives.
This bisection process for a binary BVH is illustrated in Figure 4.1. All, in practice

A

B

C

A

BC

Figure 4.1: Illustration of the principles of a bounding volume hierarchy. The left figure
shows a 2d scene consisting of 6 different objects. The list of these objects
is recursively subdivided into sub-lists and a new bounding volume of each
list is computed. As bounding volumes axis aligned boxes are used. Note
that for illustration purposes the bounding volumes are not drawn as tightly
as they should be in a real implementation. The figure on the right shows
the resulting hierarchy. Each node contains the associated bounding box.
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usable, construction heuristics are greedy. They find a bisection of the primitives at the
current construction level and never change it again. For the following discussion we
assume that the bounding volumes used are 3d intervals (axis aligned boxes) but the
described split heuristics usually have an obvious equivalent when different bounding
volumes are used.

Bounding volume hierarchies allow for an arbitrary bisection of the primitives and still
produce the correct result. But for high performance the resulting bisection should be
able to tightly bound close primitives and have as little overlap as possible. The first of
three different split heuristics we want to discuss, is the median split.

4.1.1 Median Split

Median split is a simple approach for building that results in a well balanced hierarchy.
The primitives are sorted along one axis using for example their center points and then
the list is split at the median. The axis is chosen in the direction where the enclosing
bounding volume has the largest extent.

4.1.2 Center Split

A more flexible approach than median splitting is to choose a plane intersecting the
current node and use it to partition the primitives. Each primitive is classified as lying
on the positive or the negative side of the plane (sometimes also called the left and
the right side of the plane). For bounding volume hierarchies, primitives intersecting
the plane need to be moved uniquely to one side. Heuristics to do this are using the
center of the primitive for classification or the amount of overlap (measured as the dis-
tance of the farthest point on the primitive to the plane). Bounding volume hierarchies
are originally defined so that the leaves contain only a single primitive. In contrast to
space partitioning acceleration structures it is always possible to construct such hier-
archies. But later we show that this is an inefficient choice (considering performance
and memory) for the triangle based scenes used for rendering. But for the discussion
of the splitting plane selection we can assume a single primitive per leaf. Using this
assumption the algorithm to choose the splitting plane completely defines the resulting
hierarchy for a given scene. The most used selection algorithms are based on selecting
an axis aligned plane and classifying the triangles based on their center.

It is important to note that choosing a splitting plane and a left-right criterion for a
primitive does not guarantee to result in a bisection of the primitives. For example using
the center of triangles it can happen that all triangles are classified as lying on the left
side. This happens especially in the deeper levels of the hierarchy where there are
less primitives to partition. An implementation of a construction algorithm has to detect
these cases and provide an appropriate solution. When the hierarchy should be built
down to one primitive per leaf the list can be split arbitrarily into two halves. An improved
solution is to try other splitting planes (for example trying the other 2 axis when using
axis aligned split planes) or to create a leaf containing all the remaining primitives.

59



4 Efficiency of Hierarchies

4.1.3 Surface Area Heuristic (SAH)

Using the surface area heuristic (SAH) to guide the construction of kd-trees as well as
for BVH is commonly accepted to be the best choice when final ray tracing performance
is the most important goal. The construction is more expensive than other methods but
for most scenes the resulting hierarchies perform (from a traversal efficiency view point)
better than any other known construction method. Even though a kd-tree and a BVH
have a completely different notion of what splitting means during construction almost the
same heuristic can be used to guide the choice. Using a heuristic instead of searching
the optimal split is preferable as in [Szir 98, Berg 92] it is shown that the construction of
optimal hierarchies takes in the worst case O(n4+ε) processing time and memory when
a logarithmic search is desired.

While the original SAH was developed for bottom up construction [Gold 87] it has
been common practice to use it for the faster top down construction also. During con-
struction the SAH minimizes greedily (i.e. for a single decision) a cost metric of a
partition P = L,R described as:

C(P ) = CT + CI
(A(L)|L|+A(R)|R|)

A(P )

CT is a constant to estimate the cost of traversing the node and CI the cost of intersect-
ing the objects. A(·) is the surface area of the object list. During kd-tree construction
in each split step a plane has to be chosen. When a plane is chosen the partitions L
and R can be created by sorting the primitives into one or the other list depending on
which side of the plane they are. Objects that overlap the split plane are inserted into
both partitions. In [Havr 01] it is shown that there exist only 6n plane positions for n
primitives that need to be considered and in [Wald 06a] it is shown how these can be
efficiently tested.

To find the minimum of this function during a BVH build an implementation would
have to consider all 2n − 2 partitions (the two partitions where either |L| = 0 of |R| = 0
should be ignored). This is impractical even for small scenes. The usual solution to this
problem is using a single axis aligned plane and partitioning the list of triangles based
on their centroids as it is done during kd-tree SAH build. Now there are only n − 1
possible partitions along one axis (choosing the split plane through each centroid).
Checking 3(n − 1) is now feasible but still slow especially at the higher levels of the
hierarchy construction. To evaluate the cost function for a given split plane L and R still
has to be computed by scanning over all primitives in P and deciding in what partition
it falls. These are 3(n− 1) ∗ n operations. Computing the area of the bounding volume
requires another iteration over all contained triangles which is still quite slow. Thus many
research has been done to improve the construction performance but still creating at
least approximately the same quality hierarchies. In [Hunt 06] the authors develop an
approximation of the SAH function that requires only few split plane samples. Parallel
construction is discussed for example in [Shev 07]. They also introduce the min-max
binning approximation to quickly evaluate the SAH cost function. In the next section
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we will describe our implementation of the SAH cost metric optimized for our novel
acceleration structure in more detail.

4.2 Split Heuristics for the QBVH

In the previous section we discussed the common split heuristics for bounding volume
hierarchies. We also showed that the construction of a QBVH can use any heuristic that
was used to construct binary hierarchies. In this section we will analyze the behavior
of the QBVH when a center-split is used and compare it to an SAH split. As can be
expected, the behavior is similar to classical bounding volume hierarchies performance
wise. In Section 4.2.1 we will provide a visual comparison of these two split heuristics
and in Section 4.2.2 we will provide some experimental investigation into the quality of
the SAH for physically based rendering.

Center-Split QBVH

Building a hierarchy using the center-split heuristic is one of the simplest and fastest
construction method but the resulting hierarchies only work for some scenes well. To
perform the center-split heuristic in a BVH construction, first the axis aligned bounding
box for all objects is computed. The dimension in which the bounding box is largest is
chosen as split axis for the current list of objects. The split plane is chosen then in the
middle of this bounding box. For overlapping primitives there exist various possibilities
to handle them all with slightly different performance results. We chose to put each
primitive on the side where the overlap is larger thus minimizing the total overlap of the
bounding boxes. For the center-split heuristic this choice is arbitrary and no consistent
performance improvement could be found by choosing other decisions. Later in this
section we will compare visually the results of this simple heuristic with our SAH build
described below. This gives a better understanding of how the SAH construct hierar-
chies for such scenes. The performance of the center-split constructed hierarchies with
a direct comparison the SAH built hierarchies can be found in Section 4.3.4.

SAH-Split QBVH

The fundamentals of the surface area heuristic (SAH) were already described in Sec-
tion 4.1. Here we discuss the specifics on how we create the SAH hierarchies for a
QBVH. The performance results and the comparison to other recent high performance
data structures can be found in Section 3.5. The comparison to the center-split is found
below.

In our implementation we used recent results [Shev 07, Wald 07a] to construct good
quality hierarchies with fast construction times. We use min-max binning to approxi-
mate the SAH. This implementation is vectorized by the compiler and efficiently uses
SIMD instructions. As proposed in [Shev 07], only a fraction of the primitives is used for
the SAH approximation in higher levels of the hierarchy. Further speedup is achieved
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by pre-computing the bounding boxes of the triangles in a SIMD layout, overwriting
the triangle data. This way, the implementation can benefit from SIMD operations dur-
ing construction without using additional memory. After construction, the triangle data is
reloaded from disk. The construction is additionally sped up by allowing more primitives
per leaf, resulting in flatter hierarchies. In all measurements, when not otherwise noted,
we create a leaf whenever the primitive count drops below 17. Using this implementa-
tion, it is possible to get very fast construction times that are even comparable to the
BIH [Wach 06]. The performance results of this construction were already presented
in 3.5.

4.2.1 Visual Comparison of Center-Split and SAH-Split

We now provide a visual comparison of the quality of center-split QBVH vs. SAH-split
QBVH. The results can be seen in Figure 4.2. The images show the normalized num-
ber of bounding box that can be seen per pixel. For a better spatial understanding of
the hierarchy it is shown as a projection from the three major axes. A dark color means
that there are many bounding boxes that get potentially intersected when a ray is tra-
versed. What can be directly observed, when the projection of the center-split heuristic
is compared to the SAH-split, is that the images are much brighter meaning there is less
overlap in an SAH build hierarchy. This means the SAH creates a more balanced hier-
archy with respect to spatial distribution of bounding boxes. This is especially notable
in the Sponza scene.

4.2.2 Validity of the SAH for Physically Based Rendering

The SAH is a simple greedy heuristic and it is impossible for complex scenes to verify
how close to the optimum the resulting hierarchy is since searching an optimal hierarchy
for millions of triangles is impossible. Nevertheless the results are quite good when
compared to other heuristics. But there is still a lot of argument if it is the right choice.
In this section we justify the SAH from an experimental viewpoint for physically based
rendering. The SAH is based on evaluating and greedily minimizing the surface area
metric in each step. We will thus experimentally analyze the assumptions of the SAH
by computing the surface area metric (SAM) for the whole hierarchy and relate it to the
final rendering performance. The SAM as we use it is simply

SAM =
∑
Ti

A(Ti) + cT
∑
Tl

A(Tl)|Tl|

Where Ti are the interior nodes, cT the cost of intersecting a triangle relative to inter-
secting a inner node, Tl the leaf nodes and |Tl| the number of triangles in this leaf node.
Now we take the hierarchy generated by the SAH as baseline and use random move-
ments of the split plane to create hierarchies of larger SAM. We vary the plane position
by movements from 0% to 100% where 100% is a completely random split plane. This
leads to hierarchies that result usually in worse rendering performance. The assumption
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is now that the change in the SAM should also reflect an equivalent change in the ren-
dering performance. Figure 4.3 shows the graphs of the results for three test scenes.
The test scenes that were used are Sponza, Conference, and Interior which can be
seen in Figure 3.4. To create the statistics a path tracer with 8 paths at a resolution of
800× 450 pixels was used for each hierarchy. The graphs show the relative degradation
of the SAM and compares it to the relative increase of the number of bounding box
intersections. Without any randomness both, the relative SAM and the relative number
of bounding box intersections are 100%. Two interesting observations can be made
in these graphs. The first is that the SAM indeed is a good quality index for the ex-
pected final rendering performance. In almost all cases, an increased SAM results in
a similarly increased number of bounding box intersections. It can also be seen that
the factor depends on the scene that is tested. While in the Sponza scene the relative
SAM is almost always greater than the relative number of bounding box intersections
the situation is opposite in the Interior scene. The next observation is related to the
heuristic nature of the hierarchy construction. The choice of random movements can
result in better hierarchies but still, none of the degraded hierarchies resulted in better
performance than using the full SAH.

These results show experimentally that the SAM is a good choice for incoherent rays
as the behavior is similar in all three test cases. But the variation in the performance
when random perturbations are introduced let us assume that there might be even bet-
ter heuristics. It remains an open question if there are better greedy heuristics that
avoid backtracking during hierarchy construction and consistently create better hierar-
chies than the SAM.

63



4 Efficiency of Hierarchies

Hierarchy XY -Plane XZ-Plane Y Z-Plane
Conference

MID

Conference

SAH

Interior

MID

Interior

SAH

Sponza

MID

Sponza

SAHPSfrag

√

0
√

0.2
√

0.4
√

0.6
√

0.8
√

1

Figure 4.2: Visual comparison of the hierarchy quality for three different scenes when
using the center-split (MID) or the SAH split heuristic.
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Figure 4.3: These three graphs show the relative increase in number of bounding box
intersections compared to the relative increase of the surface area metric
(SAM) when random split plane perturbations are used. On the x-axis the
random movement of each split plane increases from 0 (normal SAH) to 1
which is a completely random split plane choice. The three test scenes are
the same as shown in Figure 3.4.
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4.3 More Efficient Hierarchies by Triangle Subdivision

An important advantage of a BVH as a ray tracing acceleration structure is the small
memory footprint compared to a standard kd-tree, because each object is only refer-
enced once. Even though a BVH can be as fast as a kd-tree, there are scenes where the
resulting performance is far worse. This is a direct consequence of the principle that ev-
ery object should only be referenced once: Bounding boxes that contain large amounts
of empty space increase the number of ray object intersections. This problem becomes
especially apparent for axis-aligned boxes enclosing non-axis-aligned geometry as it
results from e.g. rotation: A triangle with a normal along one of the canonical axes
has a zero volume axis-aligned bounding box, while any other orientation increases the
volume and causes the triangle to be tested against more rays although the probability
of hitting the triangle remains the same. This problem is illustrated in Figure 4.4.

x

y

Figure 4.4: 2d illustration of the coordinate system dependence of axis aligned bound-
ing boxes around triangles. On the left side the AABB of the triangle is
almost flat and of the seven rays shot, only three intersect the box. On the
right side the scene and the rays are rotated in a way that the same image
would be computed. But here all seven rays intersect the box and thus are
tested for intersection with the triangle.

In Section 4.3.1 we introduce the Edge Volume Heuristic (EVH) that provides a mem-
ory efficient way of improving the quality (and thus ray tracing performance) of a BVH
by modifying the scene database. In Section 4.3.2 we develop an additional subdivi-
sion heuristic that is based on an area measure similar to what was done in [Erns 07].
The main difference is that we still use spatial subdivision instead of triangle splitting.
This heuristic is not designed especially towards a hierarchy construction algorithm and
needs in many cases significantly more memory then the EVH. But it results in trian-
gles of roughly the same size. Section 4.3.3 introduces leaf compaction that improves
the performance of hierarchies constructed with these triangle subdivision methods.
In Section 4.3.4 we use the triangle subdivision methods to compare the influence of
different hierarchy construction algorithms when the average size of triangles changes.
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4.3 More Efficient Hierarchies by Triangle Subdivision

4.3.1 Edge Volume Heuristic

In the context of ray tracing with bounding volume hierarchies the overlap problem has
been investigated in [Erns 07] and the presented approach was called “early split clip-
ping”. The authors present a triangle splitting method based on the surface area of the
triangle bounding volume and use an axis-aligned plane to split a triangle into three
triangles (resulting from one triangle and one quadrangle). The approach of early split
clipping reduces empty space contained in bounding volumes, which in addition re-
duces overlap and thus improves overall performance. However, considering surface
area also causes triangles to be split that are already tightly packed in a bounding vol-
ume (e.g. larger triangles with normals parallel to the canonical axes). In addition the
splitting threshold is based on user experimentation per scene and triangles are split
even when no speedup can be achieved. While one might argue that the same bene-
fits can be obtained using a kd-tree [Wald 04a], especially when bounding the memory
of the kd-tree construction [Wach 07], both approaches have to clip triangles against
planes, which is a numerically tricky and costly operation.

Figure 4.5: The top row of this image shows the problem of adjacent triangles and the
overlap of the inefficient bounding boxes. In the bottom row each triangle
was subdivided into two along the middle of the longest side.

In the following we address some of these disadvantages by introducing a new, nu-
merically robust triangle subdivision (in contrast to splitting) algorithm that only subdi-
vides triangles where required thus keeping the biggest advantage of bounding vol-
ume hierarchies: The small memory footprint. Some of this research is published
in [Damm 08b]. This subdivision algorithm is based on a volume measure. The heuris-
tic is based on the observation that not all large triangles affect the performance of a
SAH [Gold 87] based BVH significantly but only the one that cannot fit tightly into a
bounding box. That subdivision of triangles reduces the overlap of adjacent bounding
boxes is illustrated in Figure 4.5. In addition we provide a simple heuristic to auto-
matically choose the level of subdivision. While designing the algorithm we tried to
achieve the following goals: First was to subdivide as few triangles as possible to keep
the memory footprint low. This includes also the need to avoid subdividing triangles
where no speedup can be achieved. Second was the need for an acceptable automatic
way to determine the number of subdivision. This is especially important when anima-
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tions are rendered and the scene configuration changes over time. Finally it should be
guaranteed that the resulting mesh is still watertight and no numerical problems are
introduced.

The new heuristic is called Edge Volume Heuristic (EVH) and measures the tightness
of the bounding box of each triangle edge and subdivides the triangle until a certain
threshold εv (see below) is met.

Figure 4.6: Recursive subdivision of a triangle along the longest edges. Although only
edges are considered unaware of topology, the tessellation remains water-
tight if edge subdivision is symmetric.

For each edge of a triangle the subdivision algorithm determines its axis-aligned
bounding box. The volume of the largest of the three boxes is compared to a volume
threshold εv. If the volume is larger than the threshold the triangle is subdivided in the
middle of this edge, which is easily implemented in a numerically robust manner. The
procedure is repeated for the two new triangles until it terminates (see the illustration in
Figure 4.6).

The heuristic guarantees that without any knowledge of topology, identical operations
will be performed on shared edges. Consequently the resulting bounding boxes fit
without gaps, which overcomes precision issues of clipping and watertight meshes will
remain watertight after subdivision. This is true for any symmetric subdivision of edges
[More 01].

Note that using a heuristic not based on edges, like e.g. bounding box surface area,
cannot guarantee watertight subdivision: Cracks can occur, because shared edges
are not necessarily subdivided in an identical way. In addition a surface area criterion
would divide large triangles regardless of the tightness of the bounding box, which is not
memory efficient. In fact the edge volume heuristic is economical as it only subdivides
triangles with very inefficient bounding boxes.

Determining the Edge Volume Threshold

The edge volume threshold

εv(t) :=
V

2t

is determined as a fraction of the volume V of the scene bounding box and thus controls
the amount of triangles generated by subdivision.

Over a broad range of scenes it turned out that choosing the threshold parameter
t = 14 as a default value yields good results with respect to increased triangle refer-

68



4.3 More Efficient Hierarchies by Triangle Subdivision

ences and performance. With this threshold value many scenes that already exhibit
high ray tracing performance are not subdivided at all or the increase of triangle refer-
ences is less than 1%. Thus it is safe to rely on a fixed parameter t. But as with any
heuristic, specially constructed scenes may break the assumption of course (for exam-
ple a single thin diagonal triangle). For this kind of scenes the user may have to choose
the parameter t by hand. In the results section below the impact of varying t is quan-
tified for different bounding volume hierarchy unfriendly scenes. This simple threshold
selection is of course not limited to the edge volume heuristic but can be used (with a
different scale) for example for the early split clipping approach.

Implementation

The procedure can be applied either as a pre-process before ray tracing or for on-
demand subdivision at the beginning of the hierarchy construction. The first variant is
especially useful as it can be used to upgrade any existing ray tracing module with-
out modifying the internals. The pre-process should be implemented directly into the
geometry exporter of the modeling application and allows to test the benefit of the sub-
division without any changes of the underlying ray tracing system. A drawback of this
method is an enormous memory increase for highly detailed scene as not only the trian-
gle numbers increase but also all associated data like texture coordinates and shader
information.

The second variant is transparent for the user and just produces a different hierar-
chy during construction. As written previously pre-computing the bounding boxes of the
triangles prior to hierarchy construction already benefits the construction speed. This
can now be used to efficiently implement the triangle subdivision. For each triangle the
algorithm performs the recursive subdivision procedure. As the bounding volume hier-
archy construction only uses the bounding boxes, it is memory-efficient to output the
bounding boxes with the original triangle reference instead and in place of the subdi-
vided triangles. As a result the algorithm produces an array of the bounding boxes and
two index arrays. The first index array is the same as if each bounding box would con-
tain a distinct triangle and the second array contains the indices to the original triangles.
During construction the first array is used as usual to index the bounding boxes and sort
along the splitting planes but the second array is reordered in the same way. Finally in
the leaves of the hierarchy the indices of the second array are stored. This way it is
guaranteed that only the original triangle data is needed when a leaf is intersected. The
scan over the triangles is so efficient, that it even pays off, to have a pass that only
counts the number of generated triangles, to allocate memory accordingly, and to scan
the data again to generate the bounding boxes.

The remaining problematic cases are overlapping bounding boxes that cannot be
separated. This problem is ameliorated by the fact that efficient bounding volume hi-
erarchies usually reference more than one triangle per leaf thus grouping some of the
overlapping geometry in one box, which reduces the overall overlap.
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Threshold εv(12) Threshold εv(14) Threshold εv(16)

Figure 4.7: Visualization of the effect of different threshold parameters t, where the sub-
divided triangles are highlighted in red. Note how the long thin triangles with
huge axis-aligned bounding boxes become subdivided, while others that
would not hurt bounding volume hierarchy performance remain untouched
(for the space ship this is observed best at the center of the images).

Results

We apply the subdivision heuristic to a set of quite different scenes in order to verify
its versatility (see Figure 4.8). The benchmarks were performed using the QBVH from
Chapter 3 and using single thread primary rays on a Intel R©CoreTM2 2.4GHz processor.

We first consider four static scenes:

1. The Dragon, Buddha, and Bunny scenes are just included to verify that for many
small triangles of roughly the same size the heuristic does not add any new tri-
angles in the used parameter range. This kind of scenes do not benefit from
subdivision.

2. The space ship scene represents a kind of worst case scenario for classic bound-
ing volume hierarchies: It consists of long thin triangles for the outer hull and
many small triangles for details. Additionally this object is rotated by 45 degrees
in space. The effect of different threshold parameters t is visualized in Figure 4.7.

3. The kitchen scene is one frame from the BART animation repository [Lext 00],
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Dragon / Buddha / Bunny Space Ship Kitchen Sponza Atrium

Figure 4.8: Images of the test scenes used for inspecting EVH subdivision. The space
ship consists of 1554416 triangles. The kitchen has 110561 triangles and the
Sponza Atrium 66454.

where instead of moving the camera the triangles are transformed.

4. The Sponza atrium scene is a typical architectural model, where many triangles
are parallel to the canonical planes. While classic heuristics like the surface area
heuristic can build efficient bounding volume hierarchies for such scenes, perfor-
mance drops dramatically, if geometry is rotated and bounding boxes increase in
volume.

A higher threshold parameter t improves performance, but also increases the memory
footprint. Both numbers are related in Figure 4.9, where we show the relative increase
in the number of triangles and corresponding rendering time for a range of thresholds
parameters t. A clearly consistent improvement over the test scenes can be observed
and it is especially interesting that major performance improvements are obtained at
already a moderate increase of the number of triangles.

The second test consists of rotating the well known Sponza atrium scene to illustrate
the adaptivity of the edge volume heuristic. The scene is first rotated by 90 ◦, 20 ◦, and
30 ◦ around the x-, y-, and z-axis in 32 steps. Second it is rotated another 32 steps to it’s
final position−180 ◦, 0 ◦, and 90 ◦ where all large triangles are again axis aligned. Figure
4.10 shows the performance figures and the number of generated triangle references
over the animation for several threshold parameters t. Again the heuristic proves to
be reliable: In simple cases no triangles are added. When bounding boxes become
inefficient a moderate increase in the number of triangle references avoids the dramatic
performance drop.

Subdividing an edge in the middle results in two new bounding boxes that each have 1
8

of the original volume, because the subdivided edges remain diagonals of their bound-
ing boxes. Since our construction is based on the SAH it is interesting to look at the re-
duction of the triangle’s bounding box surface area upon subdivision and corresponding
statistics are collected in Table 4.1. Even though the factor of the worst area reduction
is quite large the average area reduction shows the effectiveness of the heuristic.

The EVH is an economic heuristic to subdivide triangles such that the amount of
empty space in bounding boxes is efficiently reduced. The algorithm is simple, numeri-
cally robust, and can be used as a topology unaware pre-process to any renderer. Big
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Space Ship Kitchen Sponza Atrium (Frame 16)

Figure 4.9: Relative performance for three example scenes. As expected render time
improves until it asymptotically reaches saturation and the number of trian-
gles increases with an asymptotically exponential behavior. The consistent
behavior over quite different scenes clearly shows dramatic performance
improvements at already very moderate increase in the number of triangles.

Scene best average worst
Space Ship 0.25 0.435 1.0
Kitchen 0.25 0.463 0.992
Sponza (Frame 16) 0.25 0.457 0.99

Table 4.1: Factors of best, average, and worst surface area reduction resulting from
applying the edge volume heuristic for triangle subdivision. The theoretical
maximum of 0.25 is achieved in some cases.

performance improvements already result from very moderate additional memory re-
quirements. While the technique certainly has also applications in collision detection
and occlusion culling, too, there are two more points of future interest: There are situ-
ations, where a global volume threshold εv may be not sufficient and a local threshold
may perform better. Furthermore there are situations where neither our new heuristic
nor the surface area heuristic can reduce overlap. Finding a criteria to identify these
situations could be an interesting problem.

4.3.2 Bounding Box Area Heuristic (BBAH)

The EVH was optimized to be used with an SAH based hierarchy construction and
considered only few triangles for subdivision in the most scenes. A more uniform subdi-
vision is achieved by changing the threshold heuristic. The one presented now uses the
area of a triangle bounding box to determine the subdivision threshold. The threshold
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Figure 4.10: The Sponza atrium under rotation. The top row shows 3 example frames
out of the total 64 frames, where subdivided triangles are highlighted in red.
The more the architectural model becomes rotated, the more bounding
boxes of previously axis-aligned geometry become inefficient, which is reli-
ably avoided by the subdivision heuristic (threshold parameter t = 14). The
graphs in the bottom row show how the frame time is improved and how
many triangles are added by the subdivision heuristic for the un-subdivided
geometry (Base) and three subdivision thresholds over the 64 frames of
the animation.

is computed as:

εA(t) :=
A

2t

The surface area is computed from a bounding box {(xmin, ymin, zmin), (xmax, ymax, zmax)}
as

A = 2((xmax−xmin)(ymax−ymin)+(xmax−xmin)(zmax−zmin)+(ymax−ymin)(zmax−zmin))
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Rotated Sponza 2.747fps to 2.97fps Worst Case 2.326fps to 3.277fps

Figure 4.11: The two test scenes used to illustrate the benefit of leaf compaction. Both
scenes were tested single core at a resolution of 512×512. The results are
given as frames per second. Both scenes used the Edge Volume Heuristic
subdivision with εv(14). In the rotated Sponza scene from 87233 generated
triangles 4793 duplicates were removed. In the worst case scene were
from 423394 generated triangles 288502 duplicates removed.

We use again a power of 2 in the threshold computation to have a more intuitive param-
eter t. The rest of the implementation is exactly the same as in Section 4.3.1. Please
note that this heuristic does not guarantee that the resulting mesh is watertight as con-
nected triangles may have a different area of their bounding boxes. The results of this
subdivision and the comparison to the EVH can be found in Section 4.3.4.

4.3.3 Leaf Compaction

Section 4.3.1 described how to efficiently implement the subdivision as a pre-process
using only bounding boxes instead of actual triangles. The final leaves in the acceler-
ation structure contain then only references to these original triangles. In Section 3.2
it was described that using fat leaves (i.e. referencing many triangles per leaf) is also
beneficial for the memory consumption and the rendering speed. Considering these
optimizations together leads to the conclusion that in many cases the leaves of a hier-
archy that was constructed after triangle subdivision has to reference the same triangle.
An additional optimization is now to remove these duplicates. While there exist efficient
methods to remove duplicates in an array in our case a simple brute force implementa-
tion is in most cases fast enough because the arrays are very short.

The benefit of using leaf compaction is illustrated in the performance measurements
for the two scenes shown in Figure 4.11. Of course leaf compaction only results in a
notable speed up when many triangles are subdivided. For this case the Worst Case
scene was constructed. It contains many long diagonal triangles that result in bounding
boxes as large as the whole scene when not subdivided.
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4.3.4 Triangle Subdivision and the SAH

As described in Section 4.2 the surface area heuristic (SAH) is used to construct a high
quality QBVH. The main reason for using the more complex SAH hierarchy construction
over, for example, the very simple mid split heuristic was a significant performance
improvement. This improvement showed especially when the scene had many triangles
of different size and a more irregular structure. Even though the SAH improved the
performance in these scenes it was shown previously in this section that it can be
additionally helpful to subdivide triangles.

The Edge Volume Heuristic (EVH) has been developed to be used with the SAH hier-
archy construction as it tries to subdivide only worst case triangles. The other subdivi-
sion heuristic based on the area of bounding boxes (BBAH) more uniformly subdivides
all larger triangles. What is now interesting is to analyze how this subdivision of triangles
affects the rendering speed when the simpler center-split construction is used. Previ-
ous experiments showed that for scenes with an equal distribution of triangles of almost
equal size (i.e. the Stanford Scanning Repository Models) the difference between SAH
and the mid split construction is not significant. In this section we further investigate this
observation and assumption by an experimental analysis of 4 different scenes. These
scenes are used in their original form and additionally are “optimized” by the two trian-
gle subdivision algorithms described so far. This analysis also gives insights into the
performance impact of triangles of different size and non-uniform distribution.

To compare and understand the influence of the scene structure on rendering speed,
we compare the rendering speed of primary rays for different scenes at a different subdi-
vision threshold using the SAH hierarchy construction and the center-split construction.
For the evaluation the Edge Volume Heuristic (EVH) and the bounding box area based
subdivision algorithm (BBAH) is used. Note that the two subdivision algorithms should
not directly be compared because the EVA is based on a volume threshold while the
BBA uses area measure.

The four tables 4.2, 4.3, 4.4, and 4.5 show the 4 scenes used for the comparison
and the results obtained. The scenes are named Interior, Space Ship, Rotated Sponza,
and Worst Case. They are ordered such that the first has the highest irregularity in the
triangle distribution and the last is the most compact.

The images in the tables 4.2 and 4.3 show the density of the triangle bounding boxes
in space. The density is computed by projecting all axis aligned bounding boxes from
the triangles to the three axis aligned planes XY , XZ, and Y Z. Then the resulting
rectangle is rasterized into a fixed resolution floating point image and accumulated.
The final image is generated by normalizing the accumulated image so that each pixel
value is in the interval [0, 1] and using the square root of this value to interpolate the
color gradient. The square root is used to give more details in areas where there are
few triangles. We use the bounding boxes of the triangles here because this is what the
hierarchy construction algorithms use when the acceleration structure is build. Each
of the two tables 4.2 and 4.3 shows the scenes in three different versions. The first
line contains the original scenes as it was modeled. The next line shows the resulting
triangle distribution when the Edge Volume Heuristic is used with a threshold of εv(14).
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The third line contains the results when the Bounding Box Area Heuristic is used. When
studying and comparing the images it is important to keep the actual number of triangles
in mind because they show only the relative distribution. It can be observed that both
subdivision heuristics reduce the overlap of the bounding volumes. The BBA heuristics
produces significantly more triangles than the EVH and thus has much less overlap.
The two tables (4.4 and 4.5) show the performance results when comparing the two
different hierarchy construction methods with the different subdivision methods. Here
especially the ratio of rendering time using the center-split construction and the SAH
construction gives insights into the difference of the chosen test scenes. It can be
observed that the EVH in combination with the SAH construction gives very good results
with only a very small increase in the number of triangles. It can also be observed that
forcing all triangles to roughly the same size with the BBA significantly increases the
quality of center-split constructed trees. Still, SAH constructed trees always perform
significantly better.

The results using the four test scenes give very interesting insights into the structure
of the rendering performance of different scenes. The first two scenes (the interior
scene and the space ship) have a highly irregular distribution of triangles. Especially
the interior has, due to the arrangement of furniture and wide empty space, a more non-
uniform distribution. Additionally, the density pictures show almost no green or higher
colors because the most triangles are used by small objects standing in the shelves.
The triangle subdivision then mostly generates triangles in the roof framework where
the largest triangles are used for modeling. This highly irregular triangle distribution
also explains the large speed difference between the center-split construction and the
SAH hierarchy construction that can be seen in Table 4.4.

A similar situation, but not as pronounced as in the interior scene, can be seen in
the space ship scene. Here the most triangles are used at the outer hull and for the
engines.

The other two scenes have a more uniform triangle distribution and the difference
between SAH and center-split construction is much smaller. The difference almost
vanishes when the scenes are subdivided even more. To illustrate this up to the limit,
the graph in Figure 4.12 shows the performance of center-split vs. SAH of the rotated
Sponza scene subdivided up to εv(19), εA(19) using both subdivision methods. The
minimum in rendering time for the BBA subdivision is reached at a threshold of about
εv(14), εA(14) for both the center-split and the SAH hierarchy construction. For higher
ε there are too many triangles generated. The EVH algorithm has not reached a true
minimum up to this εv but it subdivides much less triangles and the resulting hierarchies
are very similar. Experiments up to εv(24) showed only a variance of < 0.1% in the
rendering time.

To summarize the result of this section, one could say that for compact scenes (i.e.
more or less uniform distribution of triangles) the SAH clearly looses the advantage and
converges (performance-wise) to the center-split solution. When sufficient knowledge
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Scene XY -Plane XZ-Plane Y Z-Plane

Interior
(original)

909441
Triangles

Interior
EVH Subdiv.
εv(14)

918142
Triangles

Interior
BBA Subdiv.
εA(14)
2095607
Triangles

Ship (original)
1574657
Triangles

Ship
EVH Subdiv.
εv(14)
1582217
Triangles

Ship
BBA Subdiv.
εA(14)
2485195
Triangles

PSfrag

√

0
√

0.2
√

0.4
√

0.6
√

0.8
√

1

Table 4.2: Projected relative triangle density for the two irregular scenes Interior and
Space ship. The images show color coded the relative triangle density of
the scenes without subdivision, EVH subdivision, and Bounding Box Area
Heuristic (BBA) subdivision.
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Scene XY -Plane XZ-Plane Y Z-Plane

Rotated Sponza
(original)

77051 Triangles

Rotated Sponza
EVH Subdiv.
εv(14)

87233 Triangles

Rotated Sponza
BBA Subdiv.
εA(14)

645503
Triangles

Worst Case
(original)

6732 Triangles

Worst Case
EVH Subdiv.
εv(14)

423394
Triangles

Worst Case
BBA Subdiv.
εA(13)
4988912
Triangles

PSfrag

√

0
√

0.2
√

0.4
√

0.6
√

0.8
√

1

Table 4.3: Projected relative triangle density for the two compact scenes Rotated
Sponza and the Worst Case scenario. The images show color coded the
relative triangle density of the scenes without subdivision, EVH subdivision,
and Bounding Box Area Heuristic (BBA) subdivision.

78



4.3 More Efficient Hierarchies by Triangle Subdivision

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

R
en

de
r T

im
e

Threshold

BBA MID Performance
BBA SAH Performance
EVH MID Performance
EVH SAH Performance

Figure 4.12: Comparison of SAH and center-split performance for the rotated Sponza
scene with even higher triangle subdivision levels. Note that the BBA al-
gorithm produces 15 Million triangles for εA(19). The render time is again
the milliseconds for rendering four frames at a resolution of 512× 512.

about the scenes that should be rendered is available it is a viable alternative to use
simple construction algorithms. But for complex scenes it pays off to use a more sophis-
ticated hierarchy construction method. What this section also has shown is the utility
of the EVH subdivision when using the SAH hierarchy construction. The tables 4.4
and 4.5 show a clear advantage when comparing the number of generated triangles
and the resulting rendering performance to the BBA subdivision.
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Interior - Edge Volume Heuristic Ship - Edge Volume Heuristic
εv(t) #Tris MID-T SAH-T M/S

εv(0) 909441 6006 799 7.5168
εv(6) 909639 7549 784 9.6288
εv(7) 909767 8549 894 9.5626
εv(8) 909873 7896 924 8.5454
εv(9) 910501 8364 816 10.2500
εv(10) 911095 11531 775 14.8787
εv(11) 911685 13311 807 16.4940
εv(12) 913729 11734 847 13.8536
εv(13) 915647 12692 811 15.6498
εv(14) 918142 11762 793 14.8322

εv(t) #Tris MID-T SAH-T M/S

εv(0) 1574657 19915 4656 4.2772
εv(6) 1574761 16931 3351 5.0525
εv(7) 1574829 17880 2905 6.1549
εv(8) 1575059 18713 2851 6.5636
εv(9) 1575417 15694 2684 5.8472
εv(10) 1575667 19461 2395 8.1256
εv(11) 1576347 16858 2476 6.8085
εv(12) 1577955 16944 2310 7.3350
εv(13) 1579375 14696 2058 7.1409
εv(14) 1582217 16131 2236 7.2142

Interior - BBA Subdiv. Heuristic Ship - BBA Subdiv. Heuristic
εA(t) #Tris MID-T SAH-T M/S

εA(0) 909441 5940 812 7.3152
εA(6) 914079 7198 697 10.3271
εA(7) 918445 5763 691 8.3400
εA(8) 932357 4457 650 6.8569
εA(9) 948845 5268 661 7.9697
εA(10) 998031 6126 660 9.2818
εA(11) 1061021 7437 643 11.5660
εA(12) 1235635 6622 656 10.094
εA(13) 1470019 4598 613 7.5008
εA(14) 2095607 2505 623 4.0208

εA(t) #Tris MID-T SAH-T M/S

εA(0) 1574657 19515 4641 4.2049
εA(6) 1576723 15196 2560 5.9359
εA(7) 1579653 13334 2329 5.7252
εA(8) 1585429 10395 1950 5.3308
εA(9) 1598057 8209 1716 4.7837
εA(10) 1621891 5664 1580 3.5848
εA(11) 1676503 4502 1407 3.1997
εA(12) 1783367 3513 1253 2.8037
εA(13) 2023323 2782 1137 2.4468
εA(14) 2485195 2442 1055 2.3147

Table 4.4: Performance measurements for different subdivision thresholds. The two hi-
erarchy construction algorithms SAH and center-split are compared. T is the
subdivision threshold as described above. A threshold of 0 results in the orig-
inal scene. #Tris is the number of resulting triangles. MID-T and SAH-T are
the rendering times for the shown camera position when using the center-
split construction or the SAH hierarchy construction. The time is given in
milliseconds and are the time needed to render 4 frames at a resolution of
512x512. M/S is the ration of center-split rendering time to SAH rendering
time.
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Rotated Sponza - Edge Volume
Heuristic

Worst Case - Edge Volume Heuristic

t, εv(t) #Tris MID-T SAH-T M/S

εv(0) 77051 9203 3289 2.7981
εv(6) 77085 9668 2718 3.5570
εv(7) 77101 8974 2974 3.0174
εv(8) 77157 6554 2659 2.4648
εv(9) 77337 5847 2711 2.1567
εv(10) 78503 3398 1636 2.0770
εv(11) 78814 3027 1666 1.8169
εv(12) 80173 2690 1592 1.6896
εv(13) 84775 2329 1422 1.6378
εv(14) 87233 2019 1327 1.5214

t, εv(t) #Tris MID-T SAH-T M/S

εv(0) 6732 34496 22313 1.5460
εv(6) 47052 5909 4497 1.3141
εv(7) 47052 5977 4499 1.3285
εv(8) 47052 5920 4492 1.3179
εv(9) 141134 3702 1873 1.9760
εv(10) 141134 3692 1841 2.0054
εv(11) 141136 3688 1841 2.0032
εv(12) 422820 2406 1221 1.9705
εv(13) 423384 2412 1200 2.0100
εv(14) 423394 2383 1218 1.9565

Rotated Sponza - BBA Subdiv.
Heuristic

Worst Case - BBA Subdiv. Heuristic

t, εA(t) #Tris MID-T SAH-T M/S

εA(0) 77051 9183 3299 2.7835
εA(6) 78905 2593 1581 1.6401
εA(7) 79803 2313 1529 1.5127
εA(8) 86009 1886 1328 1.4202
εA(9) 91625 1642 1235 1.3295
εA(10) 115275 1430 1163 1.2296
εA(11) 140785 1368 1143 1.1968
εA(12) 225771 1313 1111 1.1818
εA(13) 336047 1241 1042 1.1909
εA(14) 645503 1195 1053 1.1348

t, εA(t) #Tris MID-T SAH-T M/S

εA(0) 6732 34467 22393 1.5392
εA(6) 141812 2997 1688 1.7754
εA(7) 182690 1693 1367 1.2384
εA(8) 424732 1443 1110 1.3000
εA(9) 549618 1077 957 1.1254
εA(10) 1271630 1035 907 1.1411
εA(11) 1654964 884 822 1.0754
εA(12) 3816586 932 838 1.1122
εA(13) 4988912 872 809 1.0779
εA(14) — — — —

Table 4.5: Performance measurements for different subdivision thresholds. The two hi-
erarchy construction algorithms SAH and center-split are compared. T is the
subdivision threshold as described above. A threshold of 0 results in the orig-
inal scene. #Tris is the number of resulting triangles. MID-T and SAH-T are
the rendering times for the shown camera position when using the center-
split construction or the SAH hierarchy construction. The time is given in
milliseconds and are the time needed to render 4 frames at a resolution of
512x512. M/S is the ration of center-split rendering time to SAH rendering
time.
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4 Efficiency of Hierarchies

4.4 Crack-Free Triangle Intersection

So far the presented methods improved the acceleration hierarchies and accelerated
the general ray tracing computation for incoherent rays in different situations. While this
acceleration enables to simulate complex lighting situations within a reasonable time
limit another important aspect of numerical simulations was ignored so far. Sometimes
numerical robustness is more important than pure rendering speed. Especially for finely
tessellated triangular models using the usual triangle tests as described in Section 2.3.3
may lead to problems at edges or vertices in the form of missed intersections. These
problems occur even when the mesh is modeled correctly. Figure 4.13 illustrates this
problem. While for simple image generation these infrequent inaccuracies are not a
real problem because the are not visible in a final image they pose a serious problem
for accurate numerical simulations. For example when simulating energy distributions
with highly energetic sources a single missed intersection may destroy the final result.
In [Damm 06], a method to accurately ray trace free form surfaces was presented. A

Figure 4.13: The problem of missed intersections when using analytical triangle tests
with floating point operations. This happens even when the given scene is
modeled water-tight.

given ray is intersected with a Bézier patch by recursively subdividing the patch until
the floating point limit is reached. The patch is represented as its axis aligned bounding
box and the final intersection is returned as the last and smallest axis aligned bounding
box resulting from the subdivision. This same intersection method can be applied to
triangles. Instead of analytically computing the intersection a recursive subdivision is
started. A triangle is split into four smaller triangles by subdividing each edge exactly
in the middle. The middle is used because division by two is a numerically robust oper-
ation. This subdivision is performed recursively when a ray intersects a bounding box.
In the same way as the edges are subdivided, the barycentric coordinates are subdi-
vided. So for a final intersection box there is also the correct barycentric coordinates
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4.5 SAH Clustering for Ray Tracing of Dynamic Scenes

for this intersection without further computation. This method results of course in a sig-
nificant slow down when compared to the classical triangle intersections. For example
the scene shown in Figure 4.13 can be ray-traced with 3.64 fps on a 2 GHz Pentium 4
processor with the standard triangle intersection and with 0.74 fps using the subdivision
method. This is a factor of 5 slower. But the advantage is that no missed intersections
can occur anymore.

A way to speed this up significantly without sacrificing the benefit of accurate inter-
sections is to use a hybrid method. The triangle intersection is split into two parts. In
a first step the ray is intersected with the triangle using the standard triangle test. Now
only when this test reports a missed intersection the subdivision test is performed. This
also removes any missed intersections and increases the performance to 2.24 fps for
the Buddha test scene. This is 3 times faster than the original method. Still this method
is too slow to be considered a replacement for the standard triangle tests and should
only be used when the guarantee of watertight meshes is needed.

4.5 SAH Clustering for Ray Tracing of Dynamic Scenes

There has been a lot of research on the topic of ray tracing non-static (or dynamic)
scenes. An overview is given in [Wald 07c]. The fundamental problem of ray tracing
dynamic scenes is that rebuilding the acceleration structure for millions of triangles is
usually the bottleneck. In this section we will consider a special case of dynamic scenes
that only contain rigid body transformations. All benchmarking in this section is done
using single rays. Rigid body transformations allow to use affine transformations like
rotation and translation to be performed on single objects but individual triangles are not
transformed. Additionally the number of triangles and objects stays the same over the
whole animation. This kind of scenes are practically relevant for product visualization.
For example when a car is ray traced tires should rotate or a door opened. Another
realistic setting is the ray tracing of an interior scene where individual furniture should
be movable.

The approach presented here is very simple to implement and can be considered an
extension to the high performance ray tracing core for single rays developed in Chap-
ter 3. The obvious approach to ray trace geometry animated by rigid body transforma-
tions is to compute the acceleration data structure for the rigid components in advance,
to apply the rigid body transformations, and then to combine the resulting transformed
objects in a bounding volume hierarchy. As most of the hierarchies are cached, build-
ing the top-level per frame hierarchy is relatively cheap. This is similar to scene graph
based approaches where all objects are managed by a top level hierarchy. However,
this approach fails, when large parts of the geometry overlap, because all overlapping
parts have to be checked, which results in a notable slowdown. This problem is related
to the overlap-problem of Section 4.3 where the triangle bounding boxes intersected.
This overlap can happen e.g. for rotating tires at cars, or the joints of a door, where
a convex part of geometry is enclosed by a non-convex one. The solution we present
here is rather simple. Instead of caching the hierarchies for the rigid components, the
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hierarchies are cached for small parts of the components. Building the top-level bound-
ing volume hierarchy is slower now, however, this is amortized, because the overlap
can be dramatically reduced resulting in a higher performance of the hierarchy.

Implementation

In the following we detail the steps we took for an efficient implementation of the con-
cept described above. A scene with n individually movable parts is stored in a way that
each object can be accessed on its own and has its own set of transformations (posi-
tion, rotation). There may also be a scene-graph used for the scenes. This does not
change the underlying implementation as it only assumes that for any given object the
transformation to world coordinates can be computed. For each loaded object a QBVH
is constructed as described in Section 3.2. But this hierarchy is constructed in the local
coordinates of the object and not in world coordinates. After this construction there are
n single acceleration structures. The standard way of ray tracing these objects would
now be to simply build a top-level hierarchy around the bounding boxes of each object
but as described above this would result in a performance loss due to high overlap.
This fact is illustrated on the left side of Figure 4.15. Here a car test scenes with n = 61
parts was loaded (see Figure 4.16) and only the object bounding boxes are shown. In
the region of the engine or the interior this high overlap can be seen.

The next step is to define a cut through each of the individual QBVHs such that each
element of this cut is of the same size (or at least as close as possible). The basic idea
of a the hierarchy cut is illustrated in Figure 4.14.

Figure 4.14: Illustration of a cut for a binary hierarchy. The cut is a list of nodes such
that each sub-hierarchy of these nodes taken together contains all leaves
exactly once.

We call an element of a cut an entry point in this context. An entry point consists of
two axis aligned bounding boxes, a pointer to the hierarchy (or object) it originated from
and an index of its position in this hierarchy. The first axis aligned bounding box is the
one in object coordinates and is a direct result from the object QBVH. The second axis

84



4.5 SAH Clustering for Ray Tracing of Dynamic Scenes

aligned bounding box is used for the rigid body transformations as described below.
To get entry points of roughly the same size we use a scene-dependent threshold and
size measure that is similar to the one described in Section 4.3.1 for the Edge Volume
Heuristic. As a size measure size(bbox) we use the maximum extent of a bounding box:

size(bbox) = ||bbox.max− bbox.min||∞

To define a global scene-dependent threshold εe we use the size measure of the full
scene bounding box divided by a user parameter t:

εe(t) =
size(sceneBBox)

t

The cut is constructed by recursively traversing the hierarchy until the measure of the
visited node bounding box size(nodeBBox) < εe(t) or the visited node is a leaf. This
node is then added to the list of entry points for this hierarchy. The result of this process
is a list of entry points for the whole scene. The bounding boxes of such a list are
illustrated on the right side of Figure 4.16 for the threshold εe(64). Up to now all steps
are a pre-process that need to be performed only once per scene. All the following
steps are repeated per frame.

The first per frame step is to transform the entry points according to the corresponding
object transformation M. This can be done efficiently by transforming the object space
bounding box that is stored with the affine transformation and recomputing the world
space bounding box. The re-computation is needed because a rotation or shear may
distort the original bounding box. Listing 4.1 shows a simple implementation of this
computation.

Vec3 origBBox [ 2 ] ; / / min and max of the o r i g i n a l bounding box
Vec3 resBBox [ 2 ] ; / / the r e s u l t bounding box

for ( i n t i = 0 ; i < 8 ; i ++) { / / i t e r a t e over a l l e i gh t corners
Vec3 q = qr tVec to r3 ( origBBox [ i / 4 ] . x , origBBox [ ( i / 2 )%2] . y , origBBox [ i %2]. z ) ;
/ / M u l t i p l y t rans fo rma t i on Mat r i x ( has to inc lude t r a n s l a t i o n )
Vec3 p = q ∗ M;
i f ( i == 0) { resBBox [ 0 ] = resBBox [ 1 ] = p ; }
else {

resBBox [ 0 ] . Se t I fLess ( p ) ;
resBBox [ 1 ] . Se t I fG rea te r ( p ) ;

}
}

Listing 4.1: This code illustrates how to recompute a world space axis aligned bound-
ing box from a rotated AABB by transforming each of the 8 corners and
performing the min/max operation.

After transforming all entry points the top level BVH needs to be constructed. Here
it is important to note that the top level hierarchy needs to be constructed down to a
single entry point per leaf because else some of the benefit of deep entry points would
be lost. So instead of using a QBVH for the top level a simple BVH is more efficient
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here. For the construction all different split plane heuristics could be used. Below we
compare again the binned SAH construction against the center-split. The performance
critical decision is to balance the reconstruction time of the top level hierarchy and the
transformation of the entry points to the benefit of smaller top level leaves and reduced
overlap. Finally, the ray tracing starts with a traversal of the top-level hierarchy for each
ray. When a top-level leaf is reached the ray is transformed with M−1, the inverse of
the entry points object transformation. Now the ray is in object coordinates and can be
intersected with the object hierarchy starting from the index of the entry point

Even though for the standard ray tracing the object hierarchy levels above the entry
points could be discarded to save memory it is not advisable to do this. First it is only a
fraction of the actual memory that is needed for the object hierarchies and second these
levels are needed to allow for the shadow-caching optimization from Section 5.3. Using
the described form of the implementation this allows to use all previously developed
optimizations in combination with the new handling of dynamic rigid body scenes.

Another interesting view on this technique is to understand it as a scene-adaptive
clustering algorithm that also considers object relations. The resulting entry points are
nothing else than a collection of primitives that are close together and got clustered by
the SAH hierarchy construction.

Figure 4.15: These two images illustrate the bounding boxes of the entry points for the
car scene for two different thresholds. On the left, only the top level nodes
of the object hierarchies are used resulting in 61 entry points. On the right
a threshold of εe64 was used, resulting in 39526 entry points.

Results

To test the dynamic qualities of the implementation discussed above we used two test
scenes. The first scene was a car with 61 movable parts and a total of 1398768 triangles.
It is shown with the performance results in Figure 4.16. The second test scene was the
interior scene that is shown in Figure 4.17. It consists of 123 individually movable ob-
jects and 909441 triangles. The performance measurements were done on a single 2.0
GHz Intel R©CoreTM2 using only a single thread and single ray tracing. The resolution
was 960 × 600 and the timings give the seconds per frame. The graph in the middle
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of the figures shows the ray tracing time and the top-level hierarchy re-construction
time. In all cases the center-split construction is worse compared to the SAH hierarchy
construction. The table in the bottom shows the detailed performance.

The results illustrate that using the proposed clustering method improves the ray
tracing speed considerably. Already a few number of additional entry points can give a
benefit. Since this method is very simple to implement and maintain it can be integrated
into any rendering system that needs rigid but movable objects in a scene.
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εe(0) 61 0.768 0.00000 0.768 0.656 0.00025 0.656
εe(1) 244 0.615 0.00013 0.615 0.528 0.00156 0.527
εe(2) 247 0.619 0.00006 0.619 0.529 0.00144 0.528
εe(4) 406 0.538 0.00006 0.538 0.481 0.00250 0.478
εe(8) 802 0.487 0.00038 0.486 0.454 0.00531 0.449
εe(16) 2614 0.480 0.00106 0.479 0.471 0.01988 0.451
εe(32) 11272 0.489 0.00506 0.483 0.550 0.09588 0.454
εe(64) 39526 0.520 0.01912 0.501 0.828 0.37188 0.456

Figure 4.16: The car test scene with 61 movable parts with a total of 1398768 triangles.
On the top right side the individually movable parts are shown. The timings
give the seconds per frame at 960×600. In the table, the fist column shows
the number of entry points. T-T is the total time to render a primary ray
image. RC-T is the time needed to reconstruct the top level hierarchy and
RT-T is the pure ray tracing time.
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ε(0) 123 1.701 0.00006 1.701 1.51087 0.00069 1.51019
ε(1) 492 1.872 0.00006 1.872 1.21806 0.00325 1.21481
ε(2) 501 1.881 0.00031 1.881 1.05262 0.00325 1.04937
ε(4) 645 1.560 0.00019 1.560 1.23562 0.00425 1.23137
ε(8) 1206 1.848 0.00031 1.848 1.09225 0.00844 1.08381
ε(16) 4947 1.996 0.00213 1.993 1.14106 0.03844 1.10263
ε(32) 9690 2.432 0.00438 2.428 1.25656 0.07994 1.17663
ε(64) 16911 2.389 0.00769 2.381 1.29106 0.14688 1.14419

Figure 4.17: Two views of the interior scene with 123 movable objects that was used for
benchmarking. The scene consists of a total of 909441 triangles. The graph
in the middle shows the ray tracing time and the top-level hierarchy re-
construction time. The timings give the seconds per frame at 960× 600. In
the table, the fist column shows the number of entry points. T-T is the total
time to render a primary ray image. RC-T is the time needed to reconstruct
the top level hierarchy and RT-T is the pure ray tracing time.
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4.6 Discussion

In this chapter we investigated the factors that influence the ray tracing efficiency of
acceleration hierarchies. We started with an overview of commonly used construction
heuristics and then applied them successfully to our novel n-ary acceleration structure.
The visual comparison of the center-split heuristic and the surface area heuristic gave
insights into their performance difference and we showed with experimental results that
the SAH is indeed a very good heuristic when incoherent rays are traced. We showed
this by investigating the correlation of the surface area metric with actual performance
measurements. These comparisons also gave the insights needed to develop our tri-
angle subdivision methods. Especially the edge volume heuristic as a memory efficient
and numerically robust triangle subdivision method allowed one to modify the scene
database in a way that hierarchies are constructed that perform significantly faster. This
was achieved by efficiently identifying and subdividing triangles that reduce the quality
of the hierarchy. The investigation of the SAH as a construction algorithm also led to the
use of hierarchy construction as a simple clustering algorithm. We showed that with this
method, animations of rigid scene objects can be ray traced faster without introducing
complex pre-processes or novel data structures.
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5
Software Caching for Ray Tracing

So far we considered algorithmic and architecture specific optimizations to reduce the
number of intersection steps and increase the computational performance of each step.
In this chapter we will investigate software caching as an additional method for accel-
erating ray tracing. Caching is a common acceleration technique for algorithms that
require a lot of memory accesses. Here we do not mean the hardware caches that are
available in all modern CPU architectures. These are considered architecture specific
optimizations. But instead we will consider manually implemented caching strategies
that make explicit use of the algorithmic knowledge to reduce the amount of work. We
call them software caches and discuss several such manually implemented caching
strategies. In Section 5.1 and 5.2 we will investigate the triangle intersection and
present a cached method for parallel triangle intersection. In Section 5.3 we will in-
troduce a novel software cache that uses the acceleration structure of Chapter 3 to
great advantage.

It is an interesting observation that the use of coherence in ray tracing (see Sec-
tion 3.5.3) can also be seen as a form of software caching. For example during bundle
traversal a hierarchy node is accessed once and intersected with multiple rays basically
caching the node for the multiple ray accesses. All caching mechanisms use some form
of coherence as they only work when the assumption that multiple independent compu-
tations (in the previous example these are multiple independent rays) need to access
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the same data. So first we want to distinguish between explicit and implicit coherence.
Explicit coherence is what is done in bundle tracing or when space filling curves are
used for tracing primary rays. The coherence is explicitly constructed into the algo-
rithm. If it is violated for example by random secondary rays that result is usually slower
than using no caching at all. We already discussed that the use of explicit coherence
in full global illumination algorithms does generally not work very well. In contrast to
this we will consider implicit coherence. Here only assumptions about the behavior
of an algorithm are made without explicitly constructing it to exhibit coherence. With
knowledge about the underlying operations a caching scheme can be developed that
accelerates the algorithm when the assumptions are met but does not slow down the
algorithm if they are violated. An example of implicit coherence is the on demand con-
struction (see Section 3.4) of the acceleration structure. Only actually needed nodes
are created and stored in memory but no assumptions about which nodes are needed
are made beforehand.

In Section 5.1, the paradigm of streaming processing and low memory consumption
is applied to leaf intersection. This is achieved using a small cache transforming the
triangles into a SIMD-friendly form without the need to explicitly store all triangles in
a different format as was done for example in OpenRT [Wald 02a]. This also allows
to use more memory efficient, but slower, representations of the triangle data without
a major speed impact. We also compare the vertex-index representation of triangles
to the direct 9 floats representation often used in real-time ray tracing. Even though
other methods for memory reduction exist [Laut 07], they are not as easily integrated
into an existing rendering system. Cache-friendly padding of the node structure pro-
vides us with some additional memory which can be used to improve performance.
In Section 5.3 we will introduce a strategy for shadow rays that directly benefits from
the QBVH data structure but could also be integrated (but with a higher overhead) into
other acceleration structures like a kd-tree. This uses backtracking in a way related
to [Havr 07] but without additional memory requirements and with entry points at every
node. Our algorithm is also much simpler.

5.1 Triangle Intersection and SIMD Caching

In this section we will investigate how the storage and access patterns of the scene
data can be modified to improve the performance. As described in Section 2.3.3 the
whole scene is approximated and stored in the triangle representation. When com-
puting an image, the triangles need to be accessed and intersected for every ray and
efficient data structures and access patterns are highly important. In real-time render-
ing systems, the triangle data is often sorted directly during hierarchy construction for
more efficient memory access in the leaf intersection. However, this is not an option
in production rendering systems, as other parts of the rendering system may depend
on the original order like for example the material representations. For this reason, an
additional index array is used instead. It is important to use an index array using rela-
tive offsets instead of absolute pointers because the size of memory addresses varies
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between architectures. This is needed because the data structure chosen for a QBVH
node is size optimized to be aligned with the cache size and so, changing its size would
break the optimization.

Triangle Storage

To store a single triangle one needs to save only the three vertices p0, p1, p2 ∈ R3 but it
has to be considered that the order of the three vertices is important. Many algorithms
rely on a definition on which side of a triangle is processed. The side of a triangle
is defined by constructing a plane from the three vertices and using the sign of the
distance to this plane to distinguish the positive and the negative side. By defining the
orientation of the vertices as either clockwise or counterclockwise, this definition allows
a unique decision, which side of a triangle is seen. To compute the plane normal the
cross product of the two edge vectors e0 = p1 − p0 and e1 = p2 − p0 defines the plane
normal n = e0 × e1 and the positive and negative side. In this thesis we use a counter
clockwise definition. This means that when looking on a triangle on screen the positive
side is seen when the 3 vertices are in counter clockwise order. The simplest but
also most memory consuming mesh data structure is to save each triangle completely
independent of the others by storing the three vertices as 9 floating point numbers (three
for each vertex). A more compact but still simple data structure is to store only distinct
vertices of the mesh and use 3 indices for each triangle. But accessing a triangle in
this format needs one additional indirection. In Section 5.1 we will analyze the impact
of this representation in the ray tracer we develop here.

The data layout and intersection code for the primitives of the scene have a major im-
pact on the final rendering speed as well as on the total memory consumption. Here we
present the results of directly developing data representations for the QBVH described
in the Section 3.2. In fact the choice of the primitive intersection is closely related to the
acceleration structure and its construction. Similar to [Resh 07] we can even get away
with much flatter hierarchies at the cost of leaves that contain more triangles. This
further improves traversal speed and also enables the efficient use of streaming SIMD
instructions to process multiple objects at once [Chri 06]. Compared to [Resh 07], we
use single rays and avoid performance losses caused by masking.

If memory were of no concern, the triangle data in the leaves could be precomputed
and stored in a SIMD-friendly layout. For high performance ray tracing, Wald [Wald 04a]
uses 48 bytes per triangle, Wächter [Wach 06] 36 bytes. The more compact vertex-
index layout stores all vertices in an array and only three indices per triangle referencing
these vertices. This is a widely used layout in 3d modeling applications but usually this
introduces performance penalties due to an indirection in memory access. We discuss
this layout for the QBVH below. Most of the time it is not practical to use a specialized
triangle layout, because it would mean that the triangle data has to be duplicated in
a rendering system since other parts like shading or an animation subsystem need
access to the scene data. This was already discussed in Section 2.3.3. So for practical
reasons one constraint for a general ray tracing system is that the original triangle data
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is left untouched. Our implementation does not assume a specific triangle layout and for
benchmarks we implemented the 36 bytes layout as well as the vertex-index form. We
efficiently intersect four primitives at once using a branch-free SIMD version. The details
of the intersection computation can be found in Section 5.2. For this test, the triangle
data has to be collected and swizzled to an SoA SIMD layout. This already works
surprisingly fast, but to maximize performance, we use a small direct-mapped cache for
each rendering thread to store the precomputed layout. This caching mechanism also
allows for the use of vertex-index representation for the triangle data without significant
performance loss (see Table 5.2).

Data Layout Cache

Efficient data layout is not only needed for fast computation but may also reduce the
total memory consumption of an algorithm implementation. As described in Section 3.2
we favor large leaves to reduce the total amount of memory needed for the acceleration
structure. This is done under the assumption that leaves with several triangles can be
efficiently intersected using streaming and SIMD instructions. For the computation it
is required that the triangle data is loaded in structure of array (SoA) layout inside the
SIMD registers. Additionally the number of triangles should be a multiple of four or the
rest of the register has to be filled with data in a way that the final result is still correct.
As described above the original triangle data should be left untouched when the ray
tracer has to work inside a full image generation system. The solution to this problem is
to add a software-managed cache to the triangle intersection code. The development of
this cache has to take into account the frequency of the cache access and the cost for
a cache miss. A QBVH leaf stores the number of triangles and the starting-index into
the triangle index array. Using the starting-index stored in a leaf modulo the number of
cache lines as tag is a good choice because the number of triangles per leaf is locally
uncorrelated. As cache-index the starting-index is used because it is unique. A cache
line then consists of the cache-index and enough space for a maximum number of n
swizzled triangle vertices. For performance reasons it is a good idea to use a fixed n for
all cache lines. When using a BVH acceleration structure this is no problem because
during construction it is easy to build a hierarchy with a maximum number n of triangles
per leaf. Section 3.2 described already an upper limit for the number of triangles per
leaf when the optimized QBVH node of Listing 3.1 is used so this limit is the natural
choice for the cache line size. Each cache line holds a multiple of 4 triangles in a SoA
layout. The basic data swizzling for a group of 4 triangles is shown in Figure 5.1. When
the number of triangles in the given leaf is not a multiple of 4 the cache can not be
filled correctly. A branch-free solution to this problem is to use the next values in the
triangle index array. This does not change the correctness of the algorithm and avoids
a branching instruction. While the benefit of avoiding a branch largely depends on the
access time of a triangle vertex it is a elegant solution for the CELL architecture where
the access to external data is done via DMA transfers. For this method to work in all
cases the original triangle index array has to be extended by 3 replications of the last
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index. This assures correctness also for the leaf containing the last triangles.
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Figure 5.1: Conversion of the vertex data of four triangles into SoA SIMD layout. The
original data of the triangles can be in any format as long as for a given
triangle index the 3d vertex coordinates can be computed.

For multi-threaded applications an efficient solution to the problem of multiple threads
writing to the same cache line is to give every thread its own cache. This not only avoids
conflicting behavior but increases the performance on NUMA architectures and is the
only fast possibility for threads running on CELL SPEs.

The described triangle cache can of course be used with other acceleration structures
than a BVH. When a space subdivision like a kd-tree or a grid is used it is not possible
to restrict the maximum number of triangles allowed per leaf but only few leaves have a
large number of triangle indices. So for an efficient cache it is still beneficial to restrict
the maximum number of cache entries per line. When a cache line is accessed and a
cache miss occurs it is filled to this maximum number and the leaf intersection function
checks whether the number of triangles in this leaf exceeds the maximum number. For
the overlap the un-cached (potentially scalar) triangle intersection function is used. As
this usually happens in few leaves it is not a major performance problem.

Table 5.1 shows the behavior of the triangle caching algorithm for three different al-
gorithms. The number of cache entries is varied from 256 to 16. The algorithms that are
used are a full path tracer, an instant radiosity based global illumination renderer and
a simple primary ray casting algorithm. As can be seen from the numbers the implicit
caching works very well for the highly incoherent path tracing algorithm even with only
16 entries. One of the reasons that it works well is the larger number of triangles in a
QBVH leaf. This of course increases the chance of reusing the node with a different
ray. Another important aspect to mention is in the nature of the path tracing algorithm.
Here a new ray needs to start from the end point of the previous ray. Since the near-
est intersection point is searched the acceleration structure traversal needs always to
intersect the node the previous ray terminated in. When using a sorted traversal it is
also almost always guaranteed that this node is visited first. So it is guaranteed that the
cache already contains this node.
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Figure 5.2: The conference scene rendered with three different ray tracing algorithms
used to benchmark the triangle cache behavior. From left to right: path
tracing without next event estimation, the renderer from Chapter 6 and the
last one just primary rays. The numerical results can be found in Table 5.1.

# cache lines cache misses PT cache misses IR cache misses PR
256 11.5% 6.52% 2.4%
128 13.9% 8.87% 3.4%

64 17.5% 13.62% 4.6%
32 24.2% 23.75% 9.8%
16 32.5% 35.02% 14.0%

Table 5.1: The triangle cache misses for different rendering algorithms. PT is a simple
path tracer without next event estimation. IR is the renderer described in
Chapter 6. PR is just tracing the primary rays in scan line order. The three
renderings for this measurement are show in Figure 5.2.

Vertex-Index Triangle Representation

Here we shortly compare the flat 36 byte triangle representation and a more memory
efficient index-based representation. The indexed representation is more time consum-
ing for ray tracing because an additional indirection has to be performed prior to triangle
intersection. This overhead is reduced when the leaf caching based QBVH implemen-
tation is used. The indexing works by storing the vertices of a mesh in a separate array
and triangles are stored only as integer values indexing three vertices. This allows one
to efficiently reuse shared vertices in the mesh but needs to access two distinct memory
locations per triangle access.

The same scenes as in the previous sections are used for this comparison (see Fig-
ure 3.5). Each rendering was performed at a resolution of 800 × 600 pixels with 16
passes. Table 5.2 shows the rendering times and the memory used by the triangle data
of the scenes. The resulting QBVHs are the same as in Section 3.5.1. The cached
versions both use a cache with 64 entries.
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Scene 36 TTI 36 TTI NC 36 MEM VI TTI VI TTI NC VI MEM
Interior 107s 127s 32 MB 108s 166s 16 MB

Plant 191s 226s 438 MB 197s 317s 213 MB
Conference 62s 72s 43 MB 66s 99s 18 MB

Table 5.2: This table compares the impact of using the flat triangle layout with 36 bytes
per triangle (36) to a vertex-index (VI) based representation. TTI is the total
time to image and MEM is the memory consumption of the triangle data. NC
is the time using no cache.

5.2 Parallel Triangle Intersection

As we want to exploit the parallelism in all stages of the ray tracing process we inter-
sect 4 triangles with a single ray. The basic intersection code of [Moll 97] is easy to
apply to four triangles in parallel when the triangles are stored in the layout described
in Section 5.1. The problem is that only a single ray is intersected with all triangles
and so only a single intersection should be returned as a result. In theory it is easy
because the required result is just the minimum of the four intersections computed by
the parallel code. Additionally the correct index of the triangle is needed for later shad-
ing. In practice performing these two operations can quickly be the bottleneck of the
whole computation resulting in a slower intersection than the simple scalar code when
branches are used. The solution to this problem is to use branch free code to replicate
the correct result over the SIMD registers inside the QRay_t data structure at the end of
the computation.

The code shown in Listing 5.1 below is a parallel implementation of the triangle inter-
section described in [Moll 97]. The interesting parts are the generation of the result

mask. This checks if the barycentric coordinates that were computed at the beginning
of the intersection are inside the triangle and thus indicating a hit. Additionally the t-far
value of the ray is compared to the distance of the intersection. The final result of this
computation is a bit-mask indicating which of the 4 triangles is actually intersected by
the given ray. If this mask contains only 0, none of the four triangles was hit. Otherwise
the mask is used to select the newly intersected triangles and a register called min is
filled with the previous intersections and the newly found one. This is necessary, be-
cause finding the minimum inside a register requires all entries set to a proper value.
The minimum is then found by two SIMD_MIN operations used on swizzled input data.
The result is that the minimum value is contained in all four slots of the min register.
Finally it is required to get the index of the correct triangle. Here one has to consider
also that the result should be correct even if the same intersection was found multiple
times. This can occur for example when the original triangle data set contained twice
the same triangle and always happens in the last 4-block of the last QBVH leaf when the
triangle cache is used (see Section 5.1) and the number of triangles is not a multiple of
4. The SIMD_MOVEMASK operation collects the first bit of each of the four slots in an SIMD
register. Applying it to a comparison of the min register and the original t register gives
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a 4-bit representation of the positions where these two registers are equal. The possible
16 different values are then translated by the mask_to_idx array to an index. This index
can then for example be used to select and store the correct barycentric coordinates of
the intersection that is needed later by the shading computations. The code for this is
also shown below. Note that this code can directly be extended to support wider SIMD
instructions.

5.3 Accelerating Shadow Rays

Visibility rays (or: shadow rays) are an essential part in many rendering algorithms with
deterministic connections of points, e.g. in bi-directional path tracing or instant radios-
ity. They are merely used to determine the mutual visibility of two given points. Any
intersection of an interval on a ray with an object is sufficient to determine occlusion.
Therefore, three optimizations are to quit the traversal on the first intersection found, to
omit the sorting of the nodes pushed on the stack, and not to compute intersection dis-
tances, which can simplify object intersection routines [Smit 98]. All these optimizations
are easily implemented into the QBVH traversal. Note that not only the traversal can
be optimized but also the triangle intersection code. Since a visibility ray only needs to
provide a Boolean result the return values can be simplified by omitting the barycen-
tric coordinates. Also the t parameter of a potential intersection does not need to be
returned.

We present here an additional optimization that takes advantage of the shallow QB-
VHs with the large node structure to further accelerate the shadow rays. This optimiza-
tion makes use of implicit coherence. It can be easily implemented for other acceleration
structures also but when using small nodes it has a much higher overhead than for the
QBVH.

Caching Occluders with Backtracking

When tracing a visibility ray the search for an occluding object can be stopped as soon
as the first intersection is found. We use this fact to accelerate visibility computations
by starting the search deeper in the hierarchy instead of at the root node. The idea is
now to use implicit coherence of consecutive visibility rays to start the search from the
leaf of a previously found occluder.

Related to this idea is [Resh 05]. They use an entry point search for large bundles
of rays in kd-trees . In our approach we use a backtracking method that allows every
node of the hierarchy to be used as an entry point and will give correct results. For
the backtracking, we store the parent with each node. As the SIMD_BVH_Node (see
Listing 3.1) still provides some room to store additional information, it is possible to
keep the index of the parent node without additional memory requirements. This means
that the optimization described in this section can be implemented in a QBVH without
any overhead. Accessing the parent pointer during construction introduces also no
overhead.
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i n t i n te rsec t4Tr iang lesSIMD ( QRay_t∗ ray , const SIMD_Triangle_t∗ t r i ,
f l o a t ∗ pu , f l o a t ∗ pv ) {

SIMD4_Vec3 e1 , e2 , tvec , pvec , qvec ;
SIMD_float invDet , t , u , v ;
const SIMD_float ZERO = SIMD_SET1(0 .0 f ) ;
const SIMD_float ONE = SIMD_SET1(1 .0 f ) ;
const i n t mask_to_idx [ ] = { −1 ,3 ,2 ,2 ,1 ,1 ,1 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} ;

SIMD4_VEC3_SUB( e1 , t r i −>p1 , t r i −>p0 ) ;
SIMD4_VEC3_SUB( e2 , t r i −>p2 , t r i −>p0 ) ;
SIMD4_VEC3_CROSS( pvec , ray−>d4 , e2 )

invDet = SIMD_DIV (ONE, SIMD4_VEC3_DOT( e1 , pvec ) ) ;
SIMD4_VEC3_SUB( tvec , ray−>o4 , t r i −>p0 ) ;
u = SIMD4_VEC3_DOT( tvec , pvec ) ;
u = SIMD_MUL( u , invDet ) ;

SIMD4_VEC3_CROSS( qvec , tvec , e1 ) ;
v = SIMD4_VEC3_DOT( ray−>d4 , qvec ) ;
v = SIMD_MUL( v , invDet ) ;

t = SIMD4_VEC3_DOT( e2 , qvec ) ;
t = SIMD_MUL( t , invDet ) ;

/ / computing the r e s u l t mask by checking b a r y c e n t r i c coord ina tes and t
SIMD_float r e s u l t = SIMD_CGE( u , ZERO) ;
r e s u l t = SIMD_AND( r e s u l t , SIMD_CGE( v , ZERO) ) ;
r e s u l t = SIMD_AND( r e s u l t , SIMD_CLE(SIMD_ADD( u , v ) , ONE) ) ;
r e s u l t = SIMD_AND( r e s u l t , SIMD_CGT( t , ZERO) ) ;
r e s u l t = SIMD_AND( r e s u l t , SIMD_CLT( t , ray−>t4 ) ) ;

i f ( ! SIMD_ISNOTALLZERO( r e s u l t ) ) return −1; / / no t r i a n g l e was h i t

/ / computing the minimum over a l l i n t e r s e c t i o n s
t = SIMD_AND( r e s u l t , t ) ;
SIMD_float min = SIMD_OR( t , SIMD_ANDNOT( r e s u l t , ray−>t4 ) ) ;
min = SIMD_MIN( min , SIMD_SHUFFLE( min , min , 0 , 1 , 2 , 3 ) ) ;
min = SIMD_MIN( min , SIMD_SHUFFLE( min , min , 1 , 0 , 3 , 2 ) ) ;
i n t i dx = SIMD_MOVEMASK(SIMD_CEQ( min , t ) ) ;
i n t h i t = mask_to_idx [ i dx ] ;
ray−>t4 = min ;
∗pu = ( ( f l o a t ∗)&u)[3− h i t ] ;
∗pv = ( ( f l o a t ∗)&v)[3− h i t ] ;
return h i t ;

}

Listing 5.1: The SIMD Triangle intersection computing the nearest intersection of a sin-
gle ray with 4 triangles. The returned result is the index of the triangle that
got intersected or −1 if none of the 4 triangles was intersected. For further
processing the t-far value in the SIMD ray is also correctly replicated.
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Figure 5.3: Implicit spatial coherence of occluders when using point light based global
illumination. The entry point cache is able to quickly find occlusions, since
the visibility rays to the same point light source (depicted with a star) ex-
hibit some coherence. The big leaves of the QBVH make a hit even in the
same leaf more likely. The performance gain is achieved in a way which is
completely transparent to the underlying renderer, no additional complexity
is introduced to existing systems (as would be the case for ray packets).

Figure 5.3 shows the idea in the setting of a point light source based global illumina-
tion renderer. Consecutive visibility queries result in occlusion by different but spatially
nearby triangles. This fact can be exploited by using the node of the last occlusion as
the entry point for the next shadow ray. The hierarchy is then searched for intersecting
geometry using a backtracking algorithm: the regular traversal stack is initialized with
the children of the entry point node and intersected the usual way. If no occlusion has
been found so far, the entry point node is the root node, so there is no special code for
this case. Next, if the stack is empty, all children of the parent of the entry point node are
pushed to the stack, except the one that has just been processed. For the next iteration,
the entry point node is set to its parent. The algorithm terminates when the parent of
the root node is about to be processed. So the regular traversal is only extended by
one variable and one additional loop. If a leaf node is found as an occluder, its parent
node is cached for this point light source. This algorithm is illustrated in Listing 5.2.
The inner while loop is exactly the same as the unsorted traversal code described in
Section 3.3.2. What remains is finding a suitable entry point for an occlusion query.
The described algorithm above is correct for any entry point, but an acceleration can
only be expected when the hit is close to a previous occlusion. The rendering system
uses occlusion queries given by two points, where the first one is the path’s hit point
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. . / / the usual SIMD ray setup

i n t v i s i t e d = 0;
i n t hashpos = getEntryHash_idx ( p1 ) ;
en t ry = hash_ec [ hashpos ] ;

do {
i n t top = −1;
SIMD_int br = IntersectSIMD_Ray_4Box ( ray , nodes [ index ] ) ;

i f ( br [ 0 ] && pNodes [ en t ry ] . c h i l d [ 0 ] && ( v i s i t e d != pNodes [ en t ry ] . c h i l d [ 0 ] ) )
qStack [++ top ] = pNodes [ en t ry ] . c h i l d [ 0 ] ;

i f ( br [ 1 ] && pNodes [ en t ry ] . c h i l d [ 1 ] && ( v i s i t e d != pNodes [ en t ry ] . c h i l d [ 1 ] ) )
qStack [++ top ] = pNodes [ en t ry ] . c h i l d [ 1 ] ; }

i f ( br [ 2 ] && pNodes [ en t ry ] . c h i l d [ 2 ] && ( v i s i t e d != pNodes [ en t ry ] . c h i l d [ 2 ] ) )
qStack [++ top ] = pNodes [ en t ry ] . c h i l d [ 2 ] ; }

i f ( br [ 3 ] && pNodes [ en t ry ] . c h i l d [ 3 ] && ( v i s i t e d != pNodes [ en t ry ] . c h i l d [ 3 ] ) )
qStack [++ top ] = pNodes [ en t ry ] . c h i l d [ 3 ] ; }

while ( top >= 0) {
i n t index = qStack [ top ] ;
i f ( index < 0) {

i n t e r s e c t L e a f ( index , ray ) ;
} else {

SIMD_int boxResult = IntersectSIMD_Ray_4Box ( ray , nodes [ index ] ) ;
s tack [ top ] = pNodes [ index ] . c h i l d [ 0 ] ; top −= boxResult [ 0 ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ 1 ] ; top −= boxResult [ 1 ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ 2 ] ; top −= boxResult [ 2 ] ;
s tack [ top ] = pNodes [ index ] . c h i l d [ 3 ] ; top −= boxResult [ 3 ] ;

}
top−−;

}

v i s i t e d = en t ry ;
en t ry = pNodes [ en t ry ] . parent ; / / now , go up one step

} while ( en t ry >= 0 ) ;

Listing 5.2: Visibility ray traversal code with the entry point caching optimization. The
outer loop performs the backtracking and the inner loop is the standard
unsorted QBVH traversal. The hash is explained in Listing 5.3. The variable
p1 is one of the 3d points from the visibility query.
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#define HASH_SIZE 4096
i n t hash_ec [ HASH_SIZE ] ;

i n t getEntryHash_idx ( const f l o a t ∗ p ) {
s t a t i c const f l o a t s = 16.0 f ;
i n t i 0 = p [ 0 ] ∗ s ;
i n t i 1 = p [ 1 ] ∗ s ;
i n t i 2 = p [ 2 ] ∗ s ;

return ( ( ( i 0 ∗73856093) ^ ( i 1 ∗19349663) ^ ( i 2 ∗83492791)) & (HASH_SIZE−1) ) ;
}

Listing 5.3: Simple hash function for a point in 3d space that is given as 3 float values.
This hash function is used in Listing 5.2

and the second one the light source position. In our implementation we use a simple
unbounded (i.e. hashed) voxel grid and the light position as hash. For each position the
last found occlusion entry point is recorded. If no occlusion occurred, the root node is
used. In the statistics we used a very simple hash table with 4096 entries and divided
the scene into (6.25cm)3 voxels (assuming that 1.0 is 1m).

Listing 5.3 shows the implementation of the hash function as we used it. Any other
good hashing strategy can be used here. The speed of the hashing function is also
not very important as it has to be called only once per visibility ray. This optimization
can be transparently incorporated into any existing rendering system which spawns
shadow rays with two points to be checked for visibility. Of course the order of the
points is important in this implementation as only the first of the two visibility points is
used for caching.

Results

All benchmarks were done using a single thread on an Intel R©CoreTM2 processor. The
resolution for the benchmarks are 800×600 pixels and for the point light based approach
16 rendering passes were used with an average of 22 point light sources per pass.
Primary rays were created per scan-line, additional speedup can be expected when
using Hilbert curves. We compare the normal implementation of the QBVH (using only
the standard shadow optimizations) with the one using the entry point caching. The
statistics contain the total number of bounding box intersections performed for the final
image. The speedup is of course larger in scenes with a larger amount of occlusion.
This explains why the interior scene only shows a marginal speed up. The results are
shown in Table 5.3.

The caching method could also be used for other acceleration structures. But com-
pared to acceleration structures like the kd-tree, the BIH or binary BVHs which use
many, very densely packed, small nodes, this method works especially well for the
QBVH. The additional memory requirement of one more parent index per node would
result in 50% more memory for standard 8 bytes kd-tree nodes as each node needs to
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Scene N#BBox NTTI C#BBox CTTI
Conference 16.8 73s 11.7 62s
Conference 2 20.7 92s 9.9 60s
Interior 17.3 109s 15.4 107s
Plant 44.8 297s 25.0 191s

Table 5.3: Comparison of the number of box intersections and total time to image im-
age between the normal QBVH version (N#BBox, NTTI) and the entry point
cache version (C#BBox, CTTI). The images in Figure 3.5 show the test
scenes used. For the measurement they were rendered only at a resolution
of 800 × 600 pixels with 16 passes and an average of 22 point light sources
per pass. Conference 2 is the same conference scene but with the camera
placed partly under the table.

be extended by a 4 byte parent pointer.
The approach can also be used for non-shadow rays. Then the procedure cannot

benefit from the early-out of shadow rays, i.e. processing must always continue up to
the root node. Still it can be beneficial, if the rays expose some kind of coherence, for
example primary rays from the eye or coherent reflections. This allows the ray tracing
core to transparently exploit implicit coherence by caching previous intersection entry
points without changing the interface and without performance loss when incoherent
rays are used. This of course is only a theoretical benefit as traversal rays use an
ordered traversal as described in Section 3.3 for intersection rays and thus no speedup
is achieved in our case.
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5.4 Discussion

In this chapter we investigated the use of software caching for further acceleration of the
core ray tracing algorithm. The presented methods are complementary to the previously
presented methods and can be integrated into any ray tracing algorithm.

The use of a thread-local triangle cache allows to store triangles in a memory effi-
cient way and still be able to employ a high performance parallel intersection without
noticeable overhead from data transformations. As an example we compared the often
used vertex-index representation to the plain triangle storage. We also presented a
branch-free implementation of a parallel triangle intersection that intersects a single ray
with 4 different triangles. The concepts in this intersection are scalable and could be
used for wider SIMD architectures. Of course the decision of using a manually man-
aged cache in a full ray tracing system has to be done with care. As already mentioned,
each thread needs to use its own version of the cache or some other memory protection
mechanisms need to be implemented. The overhead of these can easily remove the
benefit of the software cache and an implementation needs to be evaluated on each
target architecture.

We also presented an acceleration method for visibility rays. These rays are needed
for example for shadow computations. Using a small occluder cache we are able to
exploit implicit coherence in the ray tracing algorithm to significantly speed up the com-
putations of visibility rays. By employing a back-tracking procedure in the acceleration
hierarchy we are able to quickly find neighboring occluders. This method works espe-
cially well for visibility rays as the first intersection can terminate the traversal directly.
One can consider using this method also for normal (nearest) intersection rays. This
would exploit implicit coherence in the same way as it does for occluders. But due to the
use of ordered traversal from Section 3.3.3 there is no additional benefit to be gained.
In our experiments the number of total bounding box intersections is roughly the same
when comparing the use of back tracing with caching to ordered traversal. But the over-
head of the ordered traversal is lower and thus the overall rendering time is faster when
no entry point caching is used for normal intersection rays.
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6
Practical Physically-Based Image

Synthesis

In this chapter we will develop and describe a novel and full featured Monte Carlo global
illumination system that uses several distinct algorithms to solve the rendering equation
(see below) in an efficient way. This system allows to create production quality global
illumination images that are smooth and can be computed fast.

After we discussed the fundamental rendering techniques in Section 6.1 we will in-
troduce a novel stopping criterion for Monte Carlo integration in Section 6.2. We will
then introduce the core concepts of our novel rendering system in Section 6.3. The
system splits the rendering equation in several parts and solves each part individually
by reusing information where appropriate. The resulting algorithm can handle all light
paths and produces much smoother images than previous physically based rendering
systems. Since the rendering system is based on ray tracing for all parts it uses all the
fundamental acceleration strategies developed in Chapters 3, 4 and 5.

In Section 6.4 we will solve the problem of sampling environment in the context of
physically correct light tracing. In Section 6.5 we address the problem of interactive
preview and present a novel image space filtering method for Monte Carlo ray traced
images. It is based on the À-Trous wavelet transform and can filter the noisy input
images of path traced images very well. Finally, in Section 6.6 we present the integration
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and results of on demand spectral rendering with our ray tracing acceleration methods
presented in previous chapters.

6.1 Principles of Light Transport Simulation

The primary task of computer graphics is the computation of an image. Usually this
image is represented on a rectangular lattice (see Section 2.1) where each element
is a pixel on the screen but during image computation other representations may be
chosen to allow for filtering and sample weighting for an improved perceived image
quality. An overview of image filtering in the context of image synthesis can be found
in [Glas 94]. The principal goal of physically based image synthesis is to solve the
rendering equation for a correctly modeled scene and a predefined camera setup.

The rendering equation was first formulated by [Kaji 86] and describes the steady-
state distribution of the light energy in each surface point of the sceneboundary B. It
can be written as an integral over all incoming directions (S2)

L(x, ωo) = Le(x, ωo) +

∫
S2

fr(x, ωi, ωo)Li(x, ωi)〈nx, ωi〉dωi (6.1)

where L(x, ωo) is the outgoing or exitant radiance at a point x ∈ B in the direction ωo. It
consists of two parts. The first is the radiance Le that is emitted at this point. Surfaces
where each point emits are often simply called light sources in the context of renderer
development. The second part is the energy reflected at the point x in direction ωo. This
is computed by summing (integrating) all incoming light Li at the point x and weighting it
with the incoming cosine 〈nx, ωi〉 and the BRDF fR that describes the reflection behavior
of x.

In this section we describe in some detail the fundamental rendering methods used
in physically based rendering based on ray tracing. It is an overview of the related
fundamentals that we later need to develop our own full rendering system in Section 6.3
and are used also in the subsequent sections. Some of these algorithms were used in
Chapter 3 for a realistic performance analysis of the QBVH ray tracing acceleration
structure.

Light Path Classification

In [Heck 90] Heckbert introduced a simple notation to describe different types of light
paths in a scene. It is based on regular expressions and uses only 4 different symbols.
Each symbol stands for a specific kind of surface interaction.

L is a point on a light source.

E is a point on the camera (eye) or image plane.

D is a diffuse surface.

S is a specular surface.
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A light path can only start or end on L or E. Surface interactions happen at D and
S points. S usually also encompasses transmissive surfaces like glass objects. The
reason for the distinction of S andD is that usually these kinds of surfaces need different
handling. We will use this notation in Section 6.3 to describe the capabilities of different
algorithms. The order in which a light path is defined (either from the eye or from the
light source) depends on the algorithm that is described. As an example all possible
light paths that connect the eye to the light source are written as E(D|S)∗L. All light
paths that have a single diffuse bounce (also called direct lighting) are written as EDL.
Note that it is in principle not important whether the path is started from the eye position
E or the light position L. For example EDL could also be written as LDE. But the usual
convention is to make the notation dependent on the workings of the algorithm that is
described. Some light transport algorithms start to generate a path from a light source,
others from the eye or camera position. To reflect this, the order is chosen accordingly.

6.1.1 Path Tracing

Path Tracing (PT) is the simplest algorithm to solve the light transport equation and can
generate all possible transport paths (E(S|D)∗L) without special algorithmic handling.
It uses the Monte Carlo method to sample light paths and compute the pixel integral in
a straight forward manner. Given the scene description (with materials, camera, and
light sources) and an efficient ray tracer this algorithm can be implemented in a few
lines of code. The algorithm starts at the eye/camera by choosing a sampling direction
(usually in pixel order) and intersecting this ray with the scene. Next the surface point is
checked for emittance properties. If it is a light source the illumination into the incoming
direction is evaluated and weights with the current path weight. This weight starts with
the camera initialized weight and adjusted upon each bounce. Next the BRDF at this
position is evaluated to generate a new sampling direction and this process is repeated
recursively until the path is either terminated via Russian roulette or by leaving the
scene. The contribution of each path is added to the image using an accumulation
buffer. A more formal description of the algorithm can be found for example in [Dutr 06].

This method is the simplest Monte Carlo sampler for the light transport integral (Equa-
tion 6.1) but it is also quite inefficient as it is based on randomly hitting light sources.
This can work well when the light sources are large relative to the scene but fails for
small light sources or heavy occlusion. A simple extension is to use next event estima-
tion at each intersection point. Now instead of waiting until a light source is randomly
hit, each intersection is connected deterministically with a randomly chosen sample
point on the light source. When this connection is not occluded, which is tested with a
shadow ray (see Section 5.3), the contribution is computed and accumulated. This sig-
nificantly reduces the variance in most scenes but comes at the cost of a slightly more
complex renderer implementation and also can not compute caustics (L(S|D)∗SDE
paths) anymore without further code changes. This can be explained by the fact that
a deterministic connection of two points through a light refracting or reflecting surface
is not possible since the direction of the ray is changed at the surface interaction point.
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Figure 6.1: Equal time comparison (30s. single core) of path tracing and path tracing
with next event estimation. The left shows a simple path tracer and the right
the image when at each vertex a deterministic connection to a light source
sample is made.

Figure 6.1 shows an equal time comparison of these two algorithms. Even though the
light source in this scene was quite large the deterministic computation gives much bet-
ter results in this case. Since the algorithm basically samples the direct lighting at each
vertex of an eye path it is also called PTDL (Path Tracing with Direct Lighting).

6.1.2 Light Tracing

Light tracing can be seen as the same algorithm as path tracing (Section 6.1.1) but in-
stead of starting at the camera, the paths are started at the light sources. This requires
that samples can be generated on light sources but the random walk through the scene
is the same as before. Since often a simple pin-hole camera model is used, randomly
hitting the camera is not possible. Thus a direct connection is made at each vertex
of the random walk instead that is very similar to the next event estimation in the path
tracing algorithm. It is important to note that with this connection it is not possible to
capture for example mirrors or transparent objects using a pure light tracing algorithm
(L(S|D)∗SE paths are missing).

6.1.3 Photon Mapping

Photon Mapping is a technique that is able to approximately solve all light paths in a
realistically modeled scene. It can generate images with for example caustics, diffuse
inter-reflections, and subsurface scattering. It was published in [Jens 96a, Jens 96b]
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and subsequently many improvements and extensions were developed. An in-depth
discussion of the photon mapping technique and it’s applications can be found in [Jens 09]
and in [Jaro 08]. Since some of the fundamental ideas of photon mapping are later used
in Section 6.3 to develop a new caustic rendering method we discuss the photon map-
ping algorithm here in more detail. Additionally, the technique described in Section 6.4
is an example of a technique that could directly be used in a photon mapping based
renderer and allows one to correctly generate the required maps from environment
maps.

Photon mapping is a two pass rendering algorithm that generates in a first pass a
camera independent representation of incident illumination on all surfaces. This repre-
sentation is stored in a data structure that is called the photon map and that is based
on a point kd-tree [Bent 75]. This data structure allows for an efficient query of near-
est neighbors and is then used in a second rendering pass from a specified camera to
generate the final image via density estimation.

Photon Tracing

In the first step the photon mapping algorithm distributes photons in the scene. Ran-
dom walks are started from the light sources and are terminated via Russian roulette.
This is the same procedure that is used in the light tracing algorithm (see Section 6.1.2)
or in the distribution of point light sources in the instant radiosity algorithm (see Sec-
tion 6.1.4). Each photon that hits a diffuse surface is stored in the photon map data
structure described below. Depending on the application there may by multiple photon
maps each storing a different subset of the photons. For practical applications there are
usually at least two different photon maps. One storing the diffuse direct and indirect
illumination paths (LDE, L(S|D)∗DDE) and one storing caustic paths (L(S|D)∗SDE).
Multiple photon maps account for the fact that different light paths may need different
parameters and numbers of photons for a visually smooth appearance. In the case of
participating media and sub-surface scattering a third photon map containing photons
in the volume is used.

Photon Storage

For high quality image rendering a huge number of photons needs to be stored in
the photon map (at least several million photons but quality depends on scene and
target resolution). So the photon map needs a memory efficient storage and also a
high speed data structure to quickly access nearest neighbors for the density estimate
in the rendering pass. In the original implementation a balanced kd-tree is used as
described in [Bent 75]. Using a balanced kd-tree has the advantage of minimal storage
requirements since only the original photons with the position data and two additional
bits for the split planes are needed. Of course the photons can be stored in any spatial
data structure that allows for efficient range queries. In [Wald 04b] the authors explicitly
unbalance the kd-tree to achieve faster look-up speeds. Inspired by the surface area
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heuristic (SAH) used to construct ray tracing acceleration structures (see Section 4.1.3)
they derive a heuristic called Voxel Volume Heuristic to build these trees.

Rendering with the Photon Map

To compute an image with the previously generated photon map the rendering equa-
tion 6.1 is rewritten using the correspondence that the incident radiance Li at a surface
point is

Li(x, ωi) =
d2Φi(x, ωi)

〈nx, ωi〉dωidAi

where Φi is the incoming flux. This information can be approximated using the photon
map. Equation 6.1 can now be rewritten as

L(x, ωo) = Le(x, ωo) +

∫
Ωx

fr(x, ωi, ωo)
d2Φi(x, ωi)

dAi

The incoming flux Φi is now approximated with the photon map using a density esti-
mation. The estimate locates a predefined number n of the nearest photons to x and
estimates the flux. Each photon p has the discrete associated power ∆Φp(x) and so
the estimate can be written as a sum:

L(x, ωo) ≈ Le(x, ωo) +

n∑
p=1

fr(x, ωi, ωo)
∆Φp(x)

∆A

With the fixed n a circular area is assumed that has the radius r that is the distance of
the farthest photon in the estimate. So the area is ∆A = πr2 and the full equation is

L(x, ωo) ≈ Le(x, ωo) +
1

πr2

n∑
p=1

fr(x, ωi, ωo)∆Φp(x)

This estimate has a practical problem that needs to be considered when using a
photon map for global illumination computations. Since the photon map stores only
points on surfaces it has no notion of the geometry that lies in between. Consider for
example to adjacent rooms with a thin wall. Estimating the flux close to this wall will
also consider stored photons from the neighboring room resulting in light leaks. These
result in visible light seems, especially if one of the rooms is not illuminated at all. A
non-illuminated room shows also a second problem. In a non-illuminated room are
no photons and the basic algorithm tries to expand the search radius until n photons
are found. So light leaks might not only be visible at corners but also far away from
any illumination. Since the search radius in these cases is quite large, the resulting
flux is quite small, but when using HDR rendering and automatic tone mapping this
illumination still becomes visible in a final image.
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Algorithmic Details

Here we discuss some of the basic implementation details of a photon map. These
principles are used later in Section 6.3.3 in a similar way to store the eye points of the
histogram method.

The most memory efficient way to store the kd-tree of photons is a balanced kd-tree.
It removes the need to store explicit child pointer as the tree root is element 1 and for
each element i the two children are stored at 2i and 2i+1. This storage type is similar to
a heap data-structure [Sedg 92]. The construction of a balanced (point) kd-tree works
the following way: First a splitting dimension is selected (usually based on the largest
extent of the axis aligned bounding box of the active point set). Next the median of the
points in this axis direction is found and the array split into the points left to it and the
points right to it. The median is the new node and the two partial arrays are used to
recursively continue the construction.

During rendering this kd-tree is then used to locate the n nearest photons to a given
3d query location point. This is best done using a max heap with n entries. The generic
search begins at the root node and adds elements to the heap during traversal. As
soon as the heap is full the largest distance can be used to cull the traversal. Upon
traversal completion the heap is guaranteed to contain the n nearest photons to the
given query location. An important optimization for this strategy is to start already with
a bound on the maximum distance to allow for early culling and only when not enough
photons were found to restart the search unbounded.

Final Gathering

Final gathering is an additional indirection step [Chri 02] when rendering with the photon
map to address the low frequency artifacts that are usually visible. Instead of directly
evaluating the photon map at a primary hit point the incident illumination is computed
with a hemispherical integral. For this a Monte Carlo method is used and the hemi-
spherical integral approximated with several samples. The photon map is used at the
intersection points of these samples only. This can be seen as an additional smoothing
step as another integral is involved. It also solves the light leaking problem but is a very
expensive operation as many additional rays are needed for a noise free result. An
improvement to final gathering was presented in [Havr 05].

One problem with final gathering occurs in regions of concave surfaces like corners.
There, the final gathering rays are highly local and cannot gather a good approximation
from the photon map. This problem is solved for example in the Mantra Renderer 1

by using the photon map approximation for the final gather rays only when they are far
enough away. If it would be gathered from a too close surface point, simple path tracing
is performed. This problem was already observed and discussed in [Atki 00] where the
radiosity equation has a singularity in corners. The basic idea is also called near-field
and far-field separation and is used in [Arik 05] in the context of final gathering. This

1Houdini Mantra Renderer (PBR module), http://www.sidefx.com
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is also similar to the robust global illumination approach [Koll 04] where the geometric
term is clamped and the missing illumination gathered by additional ray tracing.

6.1.4 Instant Radiosity

The Instant Radiosity algorithm was presented in [Kell 97]. It is one of the fundamental
algorithms we use in Section 6.3 to develop efficient and fully featured progressive
global illumination. We will also discuss some of its extensions and enhancements that
were developed by other authors over the years since its release.

The basic algorithm generates an approximation to the diffuse radiance in a 3d scene
using an accumulation buffer [Haeb 90]. Since it is a radiosity method it assumes that
all surfaces have perfect Lambertian reflection behavior. The image generation process
starts by tracing particles from the light sources through the 3d scene. At each interac-
tion point on the surface a virtual point light source (VPLS) is created. This point light
source illuminates the scene visible from the intersection point. In the original work this
illumination was computed using graphics hardware as it allowed for very fast shadow
computation using shadow maps. The result of this illumination computation is then
added to the accumulation buffer and the process is repeated until a predefined num-
ber of point lights is generated. Due to the progressive nature of this algorithm (the
random walk can be performed continuously) this method describes the full global il-
lumination solution for a diffuse scene. Included in [Kell 97] is also a short discussion
on extending this method to specular reflections. For this special light sources that
illuminate only parts of the scene are created.

One problem though is the geometric term that occurs in the computation of the
contribution of one point light. It grows rapidly when the distance of the VPLS and the
point that needs to be illuminated get close together and has a singularity (i.e. a division
by zero) when the two points coincide. This is mathematically correct but has two
practical problems. The first one is an increased variance that is especially noticeable
in corners of a scene. The second problem are numerical issues. The accuracy of
floating point arithmetic is limited and the distance between two floating point numbers
increases with their value. This can result in computing a wrong image when using an
accumulation buffer. While it is mathematically correct to compute these large values
accumulating them leads to the problem that previously accumulated (small) values
might be completely eliminated. The second, related, problem is that once these large
values are in the accumulation buffer they will only slowly be reduced with increasing
number of passes. Thus additional (small) values computed in subsequent passes
might not end up in the accumulation buffer.

6.2 Hierarchical Monte Carlo Integro-Approximation

Progressive image synthesis, in contrast to final frame rendering, produces an image
incrementally. When starting the rendering process a first image is shown very quickly.

112



6.2 Hierarchical Monte Carlo Integro-Approximation

This image is then refined progressively. With a good progressive rendering algorithm
(it has unconditional convergence) this form of image generation has many advantages
over final frame rendering. First, the user gets very quickly a rough preview of how the
final image would look like. Second, a progressive algorithm is automatically adaptive
to complex illumination situations. For a final frame renderer the user has to set many
parameters correctly before the image computation starts. In a progressive algorithm
the user just has to wait until the features are shown correctly in the final image. Algo-
rithms that are based on single-pass Monte Carlo integration (see below) are usually
progressive since it is natural to just add more samples to the final image. Multi-pass al-
gorithms like photon mapping (see Section 6.1.3) are in their basic implementation not
progressive. Note that any progressive algorithm can be made a final frame algorithm
by letting the user specify a fixed amount of time. This comes with the disadvantage
of not having a guaranteed quality. In Section 6.2.2 we therefore propose a stopping
algorithm which robustly separates the remaining noise in the rendered image from the
variation due to the scene content, which is easy to implement, requires very little ad-
ditional memory and we also show how to use it to adaptively sample from the light
sources.

6.2.1 Monte Carlo Integration and Monte Carlo Integro-Approximation

The Monte Carlo method (see for example [Kalo 86] for an introduction) can be used as
a numerical tool to solve integrals using random numbers. To compute an approxima-
tion to the integral of a known function f(x) in the s-dimensional interval Is := [0, 1]s the
Monte Carlo method uses a set of n independent uniformly distributed random numbers
xi ∈ Is and computes ∫

Is
f(x)dx ≈ 1

n

n−1∑
i=0

f(xi)

For this kind of integration a probabilistic error bound can be stated [Nied 92]. The
error is less than 3σ(f)√

n
with a probability of:

P

({∣∣∣∣∣
∫
Is
f(x)dx− 1

n

n−1∑
i=0

f(xi)

∣∣∣∣∣ < 3σ(f)√
n

})
≈ 0.997.

A simple but very important observation can be made in this equation. Due to the
square-root of the number n of samples a reduction of the integration error by a factor
of 2, 4 times as many samples are needed. In the context of Monte Carlo methods for
rendering a good introduction can be found in [Veac 97a] and in [Dutr 06].

As described in Section 2.1, an image is stored as a two dimensional plane of pix-
els. With Monte Carlo integration the color of a pixel in a final image is determined by
projection of the image function f(x) onto each pixel

I(k, l) :=
1

|Pk,l|

∫
Pk,l

f(x)dx.
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where I(k, l) is then the average radiant flux through the pixel (k, l) and the integral is
over the pixel area. This allows to formulate the problem as an integro-approximation
problem because the image can be considered as functional:

I(k, l) :=

∫
Is
f(x, k, l)dx ≈ 1

n

n−1∑
i=0

f(xi, k, l).

Now we have a parametric integral for the image function I(k, l) that computes the
average radiant flux for each pixel simultaneously [Kell 01]. In the next section we
will use this notion to derive an iterative termination criterion for Monte Carlo image
synthesis.

To use the Monte Carlo method in a computer program, a fast source of random
numbers is needed. Since the creation of real random numbers using a computer pro-
gram is impossible pseudo-random number generators are used instead. In [Knut 81]
a very thorough introduction into the topic of computer generated random numbers
and the testing of their quality is given. In this thesis we use the Mersenne Twister
algorithm [Mats 98] as the source for all random numbers that are needed. Where
appropriate we also use the SIMD optimized version [Sait 08].

6.2.2 Iterative Block Partitioning and Termination

Figure 6.2: An example sequence of blocks. Initially large blocks (shown in saturated
colors) are recursively refined and terminated individually as the image con-
verges. Note that complex areas in the image, where indirect illumination
dominates the appearance (e.g. the ceiling), are detected and refined by
the algorithm.

In this section we introduce a hierarchical image-space method to robustly terminate
computations in Monte Carlo image synthesis, independent of image resolution. Parts
of this are published in [Damm 09b]. The technique consists of a robust convergence
measure on blocks which are either recursively subdivided or terminated independently,
using a criterion which separates signal and noise based on integral estimates from two
separate sample sets. The criterion takes into account that the human visual system
is less susceptible to small color differences with high luminance. The technique can
be easily implemented, as the evaluation of the error measure only requires a second
framebuffer and a list of non-terminated blocks. Based on the stopping criterion, one
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can furthermore sample both the image plane as well as the light sources adaptively.
Adaptive sampling reduces the number of samples required to gain the same root mean
square error to one quarter in some of our test cases.

Following the idea of Dippé and Wold [Dipp 85], we estimate the rate of change
as the difference between images generated with two different sample sets. A lot of
work has been done to quantify the perceived differences by the human visual sys-
tem [Mysz 98, Boli 98, Rama 99, Yee 01, Sund 04, Farr 04, Sund 07, Daly 93, Mant 05],
error measures based on confidence intervals, contrast, variance, saliency and entropy
have been investigated. For simplicity and fast evaluation, we base our stopping crite-
rion on the remaining color noise in relation to the logarithmic luminance of the sample,
but any other error measure could be used as well. Rigau et al. [Riga 03] presented
a similar method based on entropy, but they only consider the image as a whole and
sub-pixel refinements, not blocks of pixels. Hachisuka et al. [Hach 08a] also subdivide a
hierarchy of samples very similar to the MISER algorithm [Pres 92], but our error mea-
sure is based on two integral estimates, which is able to separate signal from noise.
Also, additional reconstruction is not necessary because sampling is dense enough (at
least one sample per pixel), and the samples do not have to be stored explicitly in our
case.

In [Over 09] the authors describe an adaptive wavelet rendering that is similar to our
approach but their scaling functions are more restrictive than our blocks and additionally
we also adaptively sample the light source and are not restricted to 2d.

For a reliable error estimate, it is not sufficient to look at the variation inside a single
pixel, due to the limited number of samples [Mitc 87]. To overcome this, we evaluate
the error measure on a hierarchy of blocks, which are recursively refined only as the
remaining error drops below a certain resolution-independent threshold (see Figure 1
for an illustration of the refinement process). This makes sure the algorithm adapts to
the true signal, not a noisy estimate. Assuming that the samples available so far have
not completely missed any major light contribution (i.e. one “firefly”-path is enough),
our scheme operates conservatively. Painter and Sloan [Pain 89] also used a hierarchy,
an image-space kd-tree, but explicitly stored all samples and all levels of the hierar-
chy. We, on the other hand, simply store the integral estimates of the two sampling
sets per pixel in two framebuffers. Furthermore, we only keep track of the leaf blocks,
which significantly simplifies bookkeeping. Based on our convergence estimate, adap-
tive sampling can be performed by simply supersampling only those blocks which are
not yet terminated. Note that this is different to most existing adaptive sampling ap-
proaches, since it is not based on placing samples in regions considered interesting
at an early stage but splits and terminates rather conservatively. This is why the com-
mon problem of missed features such as small objects is not a problem. Furthermore,
as the technique is framebuffer-based, it is completely independent of the underlying
rendering algorithm.
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Figure 6.3: A caustic rendered with way too low sampling density. It is not sufficient
to make decisions based on only a few samples, i.e. on small blocks or
even pixel-wise. The magnified block for example appears to be converged
already, but it still misses important features (evident through adjacent bright
pixels) and thus needs more samples.

Algorithm

To make sure the algorithm does not stop computations before all important features
have been detected, a lot of samples should be drawn before making a decision (see
Figure 6.3 for an illustration, and Figure 6.4 for a comparison to a pure per-pixel ap-
proach). Since it is not desirable to shoot a lot of possibly unnecessary rays per pixel,
we initially base the evaluation of the error on the image as a whole.

As the variance in the image will be distributed unevenly, depending on the problem
and the type of path space sampler used, the stopping decision should be done locally.
This is reflected by splitting the blocks when the algorithm has enough confidence not
to have missed any important features, i.e. the per-block error measure drops below a
certain threshold εs. A block only consists of an axis-aligned bounding box covering an
area of the image. The blocks are managed in a linear list. That is, if a block is split,
it is simply removed and the two resulting child blocks, disjointly covering the same
area of the image, are added to the list again. This way, no explicit hierarchy has to
be maintained. The algorithm continues by drawing new samples (one for each pixel
in each remaining block in our implementation). If stratification in image space can be
guaranteed, e.g. by using a simple backward path tracer, only non-terminated blocks
have to be sampled further. If certain sampling methods cannot be restricted in this
way, such as for example light tracing methods, their contribution can still be used, as
the stopping condition is not directly coupled to adaptive sampling. In fact, it is also
possible to sample adaptively from the lights (see Section 6.2.3).

The image is converged when the error of all blocks is smaller than a threshold εt <
εs. For an overview of the algorithm see Figure 6.5. An example sequence of blocks is
depicted in Figure 6.2. Note how the algorithm automatically adapts the block size to
the image and is thus independent of the resolution.
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Figure 6.4: This shows the problem of using a per pixel termination criterion. Due to
the nature of Monte Carlo sampling some pixels terminate too early which
is clearly visible in the left image. The right image shows our proposed
termination criterion with equal sample count.

Error Metric

We use an error metric based on the pixels in the final image, but to get a robust criterion
we always evaluate a block of pixels. We compare two independently computed images
with the same number of samples similar to [Dipp 85, Dmit 04].

In the implementation, the evaluation of the error metric can be simplified by intro-
ducing just a single additional accumulation buffer and keeping the normal accumula-
tion buffer used to compute the final image. In the second buffer we accumulate only
samples every second rendering pass. This is based on the simple observation that
computing a single image I with an even sample count can be split into two images A
and B with I = A/2 + B/2 ⇒ B/2 − A/2 = I − A. Thus, using an RGB buffer we
estimate the per pixel error as

ep =
|Irp −Arp|+ |I

g
p −Agp|+ |Ibp −Abp|√

Irp + Igp + Ibp

.

The square root in the denominator is motivated by the logarithmic response of the
human visual system to luminance. The term here behaves similarly, is easier to eval-
uate and was found to yield slightly better results. The error per block is computed by
summing over all pixels:

eb =
r

N

∑
p

ep
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Figure 6.5: This flowgraph illustrates the integration of our stopping algorithm into a
rendering system.

where N is the number of pixels contained in this block and r is a scaling factor com-
puted as

√
Ab/Ai. Ai is the area of the image, Ab the area of the block under consider-

ation.

Block Splitting and Block Termination

The user specifies a single error value v that is used in all further decisions. From this
user-specified value we compute two error thresholds εs (splitting) and εt (termination).
For simplicity we use εt = v but it is of course possible to rescale v to a more intuitive
parameter range. In all our tests we used v = 0.0002. Given εt, we compute εs = 256·εt.
This is an empirical choice that worked well in all our tested scenes. The splitting is
performed axis-aligned by choosing the axis where the block has the largest extent.
The split position is chosen such that the error measure is as similar as possible on
both sides.

6.2.3 Adaptive Light Tracing

We now show how to extend our criterion to also be able to adaptively sample in a light
tracing setting (see Section 6.1.2). A light tracer starts paths only from the light sources
and connects hit points to the camera. This is very well suited to compute caustics but
it is not possible to directly refine samples on the image plane as it is unknown where
exactly a light sample will connect. For our termination criterion this is not a problem as
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it works equally well independent of the used rendering algorithm. Adaptive sampling
of the image plane is not straightforward for light tracing, so all samples need to be
distributed uniformly.

To facilitate adaptive sampling also from the light sources, we back-project the im-
age error metric to an importance map around each light source. Such an importance
map consists in a quantized hemisphere around each emitting triangle, thus repre-
senting only outgoing directions, ignoring the starting point on the triangle and higher-
dimensional bounces. This works well under the assumption that triangles are small
with respect to the illuminated area. This can always be achieved by subdividing the
emitting triangles which does not change the final image. We chose this approach over
explicitly storing the starting point as well to reduce the dimensionality and thus the size
of the map. This also simplifies the integration into an existing rendering system. The
algorithm proceeds by calculating an initial image calculating a few samples. After that,
each new light sample accumulates the remaining image error back into its importance
map bin at the light source side. This way, the image error metric is back-projected with
a delay of one iteration. The importance map can now be used in the next iteration to
importance sample light directions (similar to [Clar 08]).

As test scene we chose a distorted glass object casting a large caustic (see Fig-
ure 6.6). The top row of Figure 6.7 shows three importance maps at three different
iterations. The bottom row shows the associated image space error blocks. While the
top row is heat-map colored by the importance, the colors in the bottom row are solely
to distinguish the different blocks. It can be clearly seen how large areas of the hemi-
sphere do not contribute at all to the final image and also how the termination of regions
in image space is reflected in the hemispherical importance map. Figure 6.8 shows the
RMS error graph using no adaptivity at all and using the described back-projected im-
portance map. In this case the number of samples required to get an RMS error below
0.01 is reduced from 570M light paths to 160M light paths (28%).

6.2.4 Results and Discussion

We now analyze our proposed stopping criterion for different scenes and additionally
examine how well the proposed error metric can be used as an adaptive sampling
criterion.

Figure 6.10 on the left shows a simple test scene of a diffuse sphere illuminated by an
area light source casting a large smooth shadow. The right image shows the distribution
of the number of samples in the final image as a heat map. White is the maximum
number of samples and black the minimum. As each block is sampled uniformly the
block structure is still apparent in this image. The graph shows the number of samples
required by the normal rendering algorithm and by our technique to achieve an RMS
error below 0.01. In this simple scene the sample count was reduced from 700M to
400M (57%). This indicates that our error metric is meaningful also with respect to the
RMS error. The evaluation of the error metric costs about 10% of the rendering time in
our implementation.
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Figure 6.6: The light tracing test scene. The glass object is black because a pure light
tracer cannot deterministically connect singular materials to the camera.

As another example we show a living room scene in Figure 6.11. Again on the left
the final image can be seen and on the right the sample count distribution. This is
a more realistic scene as it is closed and strong indirect illumination is present. The
complexity is distributed almost equally over the whole image. This explains why in this
scene sampling adaptively does not present a huge benefit. This is also visible in the
RMS error graph. Still our termination criterion works robustly and also isolates the two
small areas in the image where the illumination is more complex due to glossy objects
and a small caustic cast by the monkey head on the table (see Figure 6.9).

In summary we introduced in this section a stopping condition for Monte Carlo image
synthesis which automatically adjusts itself to image resolution, robustly adapts to local
variance, and is very simple to implement on top of any rendering system. Due to this
simplicity it can be easily integrated in GPU based ray tracing systems. The criterion
can also be used to facilitate adaptive sampling. Additionally, we have shown how back-
projection of the image error metric onto hemispheres around the light sources can be
used to profit from adaptive sampling also when starting paths at the light sources.

In the future, it should be possible to extend the system to complete bi-directional
light transport. That is, combine adaptive image space sampling and starting the light
paths in important directions based on the back-projected image space error at the
time and also consider all deterministic connections. It would also be interesting to
extend the method to higher dimensionality, similar to Hachisuka et al. [Hach 08a], i.e.
to remove the dependency on the framebuffer. Furthermore, a mathematical analysis
of the variance in path space should be done to gain some knowledge about the worst
case integration error at a given sampling density. This way, the initial sampling rate
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Figure 6.7: Hemispherical importance map at the light source (top row) and respective
image error blocks for the caustic scene (Figure 6.6).

required to assure no features are missed when first evaluating the error measure could
be determined.

The adaptivity of the method could also be improved upon, if one does not only wish
to use it as a termination condition, but also increase efficiency. In analogy to building
fast spatial acceleration hierarchies for ray tracing, the image space block splits could
be optimized to cut off empty space, i.e. always separate blocks which are likely to
terminate in the next iteration.
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Figure 6.8: RMS error graph for the light tracing experiment comparing no adaptivity
and our proposed back-projection. The curves terminate when the RMS
error drops below 0.01.

Figure 6.9: Four images taken from the sequence of active blocks when rendering
the living room scene seen in Figure 6.11. The difficult spots are isolated
quickly.
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Figure 6.10: A simple sphere scene rendered with the proposed stopping condition
(left) and the respective heat map (right) representing the number of sam-
ples required for a converged block. Most effort has to be spent in the
penumbra regions. The graph shows the RMS error, with increasing num-
ber of samples, for normal and adaptive sampling.
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Figure 6.11: Final image (left) and sample density heat map (right) for the living room
scene. The algorithm robustly finds the two spots with significantly higher
variance than the rest of the image. The graph shows the RMS errors of
normal and adaptive sampling with increasing number of samples.
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6.3 Path Space Partitioning

In this section we present a full featured physically-based progressive global illumination
system (parts of this are published in [Damm 10a]) that is capable of simulating complex
lighting situations robustly by efficiently using both light and eye paths. Specifically, we
combine three distinct algorithms: point-light-based illumination which produces low-
noise approximations for diffuse inter-reflections, specular gathering for glossy and
singular effects, and a caustic histogram method for the remaining light paths. The
combined system efficiently renders low-noise production quality images with indirect
illumination from arbitrary light sources including inter-reflections from caustics and al-
lows for simulating depth of field and dispersion effects.

Figure 6.12: Our progressive rendering system is able to handle a wide range of com-
plex light paths efficiently by combining three approaches. The shown
scene contains diffuse and specular objects that are illuminated only by
two lamps enclosed in glass. Our system not only handles the bright ar-
eas well but allows for smooth indirect illumination from this kind of light
sources without the need for parameter tuning.

The problem of noise with full global illumination for production rendering was also
addressed recently [Kriv 10] in the Arnold rendering system. They solve the problem
of noisy caustics with two different methods. First, artists can manually disable certain
light paths. Second, the specular exponent for secondary bounces is reduced auto-
matically. The reduction of the specular exponent for higher order bounces, which is
a broadening of the lobe, can be interpreted as a kind of low pass filter. It smooths
out the high frequencies in the light transport that originate from very focused reflection
lobes. Arnold also limits the 1

r2
geometric term in the illumination computation near

light sources. This clamping was already used in [Kell 97] but reduces the energy and
produces the wrong integral. A solution was presented in [Koll 04] where the missing
energy is gathered correctly by additional ray tracing.

Figure 6.12 illustrates a scene with complex illumination problems. Our system com-
putes progressive approximations by continuously refining the solution using a constant
memory footprint without the need of pre-computations or optimizing parameters be-
forehand. The path space partitioning we use has the advantage of allowing the use
of almost arbitrary BRDFs, which is important in production rendering in movies for
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example. Our rendering system progressively converges to a unique solution even if
the BRDFs are not physically plausible, e.g. because they do not fulfill reciprocity. So
complex shader networks could be used without change.

VPL CH

SG

Image

Figure 6.13: Overview of the connection of our three algorithms we combine to generate
a full global illumination renderer. VPL is a point light based component
that is generated first. The information that is provided by VPL is then
used to generate the caustic paths in CH, the caustic histogram algorithm.
Finally both outputs are used in a specular gathering algorithm to create
the still missing light transport paths. Everything together generates the
output image.

Each technique contributes a distinct part to the final image and together they are
able to simulate for example caustics, specular surfaces, and depth of field effects. The
benefit of the combination is that the techniques can take advantage of each other by
reusing information where appropriate and that the advantages of each technique are
retained:

• Virtual point light sources (VPL): smooth indirect illumination.
• Caustic histograms (CH): crisp, efficient caustics.
• Specular gathering (SG): robust handling of glossy and singular materials.

The caustic histogram method collects photons in bins that are created for each of
the progressively sampled eye paths. Although we include approximating techniques
and thus accept a certain small bias in the solution, the progressive rendering algo-
rithm consistently converges to a unique solution, especially in complex illumination
situations. We argue that a fully progressive system allows for much easier handling of
the renderer by artists because the choice of parameters such as number of samples
and photons does not change the final image quality (they may affect only rendering
time). In addition, the proposed system decouples memory consumption and image
quality (i.e. higher quality renderings do not require more memory at run-time). Com-
pared to many previous approaches our system renders low-noise production quality
images with indirect illumination from arbitrary light sources including inter-reflections
from caustics and allows for simulating depth of field and dispersion effects.

Related Work

Physically-based rendering is a sub-problem of image synthesis, which aims to simu-
late light transport on a computer in a physically correct way. The problem has been
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studied in great detail [Phar 04, Dutr 06] and as it stands, ray tracing is the only method
that allows to solve complex illumination problems consistently. Even though ray trac-
ing performance has been improved greatly in the recent years [Shir 06], only few
of the achievements directly help Monte Carlo based global illumination algorithms
[Boul 08, Wald 08]. For that reason we developed the acceleration techniques pre-
sented in Chapter 3 to 5. Several hundreds of million paths need to be ray traced for
a final image and thus Monte Carlo and quasi-Monte Carlo rendering algorithms have
a very high computational demand and long rendering times. Unbiased Monte Carlo-
based rendering systems are progressive by nature and thus have the advantage of
robustly handling even complex situations with the only limitation being the rendering
time. The disadvantage is that even in simple situations unbiased Monte Carlo algo-
rithms have a high variance perceivable as noise in the image. In [Tabe 04] the au-
thors describe a full global illumination system for feature films. They stress the need
for full artist control of the global illumination solution and thus ignore physical correct
rendering. Their system is designed for movie production and thus allow only for a
fixed time frame for each computed image. To meet this speed requirement they per-
form ray tracing only on proxy geometry and consider only single bounce diffuse inter-
reflection. Kajiya [Kaji 86] introduced Monte Carlo path tracing algorithms to computer
graphics. Since then, a lot of research headed to improve the efficiency of the basic
algorithm. The family of bidirectional path tracing algorithms using multiple importance
sampling [Lafo 93, Veac 94] and the Metropolis light transport algorithm [Veac 97b] be-
long to the most powerful algorithms to date. While these algorithms are unbiased and
can deal with complex lighting situations, they suffer from variance, which becomes vis-
ible as noise in images. Our system approaches the global illumination from both light
and eye paths using a Monte Carlo technique, however, it reduces variance through the
use of correlated point light sources for diffuse inter-reflections. The basic approach
of splitting the final solution to be computed by different algorithms was also described
in [Chen 91].

The Instant Radiosity algorithm (see Section 6.1.4) uses point light sources and
graphics hardware to quickly compute a global illumination solution for diffuse scenes.
Since then, point-light-based global illumination has proven to be a useful and efficient
way to approximate diffuse inter-reflection in real time systems [Bent 03] and preview
systems [Havs 07]. In [Sego 07] an extension to the Instant Radiosity algorithm is pre-
sented that uses Metropolis sampling to increase efficiency. The use of VPLs is at the
core of our rendering system, however, we extend it to simulate non-diffuse light paths
as well.

Photon mapping (see Section 6.1.3) has been introduced as a solution to the problem
that there exist paths that cannot be efficiently sampled by any unbiased technique.
With the recent improvements [Hach 08b], many shortcomings of the original method
have been removed. In our approach we remove the remaining memory bound on the
number of eye path vertices that need to be stored, which for example allows one to
simulate anti-aliased depth of field with any sampling rate required. These problems
were also recently addressed in [Hach 09]. Other recent research focuses on GPU
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based methods to accelerate the illumination computation [Wang 09].
The Lightcuts rendering framework [Walt 05, Walt 06] is a powerful approach to the

many-lights problem, which is entirely based on point-light sources. Due to the ability
to deal with an enormous number of point light sources, glossy effects can be handled,
however, the system cannot simulate caustics and is not progressive. As our approach
is progressive there is no limitation on the number of light sources and even the simu-
lation of caustics is integrated.

Partitioning of Light Contributions

Our physically-based rendering system is designed to produce production quality im-
ages of 3d scenes with global illumination in complex situations without the need for
extensive parameter tweaking. We therefore assume physically plausible input: for ex-
ample light sources are modeled as geometry that is part of the scene, glass objects
always have a thickness, and surface shaders need to be energy conserving. Progres-
siveness enables the user to continue image computation until a satisfactory result is
achieved. There is neither the need to restart computations nor to discard intermediate
results that allow for previews of an illumination situation after a short amount of time.

The goal of our system is to provide a fast and smoother global illumination solution
as compared to approaches using multiple importance sampling [Veac 95, Veac 97a,
Veac 97b] without sacrificing too much quality and flexibility. We achieve this goal by
combining three techniques, each of which simulates a disjoint subset of path space
in such a way that the techniques benefit from each other. For ease of reading, we
apply Heckbert’s notation (see Section 6.1) to identify path subspaces: E is the eye or
camera, D denotes a diffuse bounce (in Section 2.3.4 we defined what diffuse means
for our rendering system), S is a non-diffuse (specular) bounce, and L represents the
light sources. Figure 6.14 illustrates the light transport paths we are able to simulate.
The techniques and the simulated light paths in our system are:

(A) EDL and EDD(S|D)∗L are handled by the point-light-based algorithm (covered
in Section 6.3.2). These paths are directly visible diffuse surfaces that are directly
or indirectly illuminated by another diffuse surface.

(B) EDS(S|D)∗L is created by the caustic histogram method (covered in Section 6.3.3).
This is the classic caustic situation where a diffuse surface is illuminated indirectly
from a specular surface.

(C) ES+D+(S|D)∗L is handled by specular gathering (covered in Section 6.3.1) and
uses the results of the previous two methods. These are light paths of directly or
indirectly lit surfaces seen through a specular reflection or refraction.

(D) ES∗L is directly evaluated as in the path tracing algorithm that was described in
Section 6.1.1.

Looking at the path notation it can be seen that all these contributions are disjoint and
two methods can never generate a contribution for the same path. All four techniques
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A B CD
Figure 6.14: Illustration of selected light paths that we are able to simulate robustly: ’A’

is a classic caustic path (EDSSL), ’B’ shows the mirror image of a diffuse
object behind a glass object (ESSDSL), ’C’ is diffuse indirect illumination
from the green wall to the sofa (EDDL), and ’D’ shows a complex shaped
light source (lava lamp) behind glass illuminating the scene (EDSL). Also
note the caustic generated by the monkey head in the mirror (ESDSSL).
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together can generate every possible path E(D|S)∗L. The final solution is simply ob-
tained by summation.

Proof of completeness: To show the completeness of the above partitioning we start
with with the complete set of possible paths

E(S|D)∗L (6.2)

and factor out individual parts:

E(S|D)∗L = ED(S|D)∗L+ ES(S|D)∗L+ EL

= EDL+ ED(S|D)+L+ ES(S|D)∗L+ EL (6.3)

Taking the second term of Equation 6.3.

ED(S|D)+L = EDD(S|D)∗L+ EDS(S|D)∗L (6.4)

This gives us already the first two techniques (A) and (B). What remains is the third and
fourth term of Equation 6.3

ES(S|D)∗L+ EL = ES+(S|D)∗L+ EL

= ES+D(S|D)∗L+ ES∗L (6.5)

which gives us (C) and (D).
Figure 6.15 shows the steps our rendering system performs in each rendering pass.

A rendering pass is one iteration of computation that is finally added to the accumulation
buffer containing the progressively refined result image. In the following sections each
of the steps is explained in detail.

6.3.1 Eye Path Generation and Glossy Effects

The first step of our rendering system is the generation of eye path vertices. This is
illustrated in Figure 6.16 (a). The eye paths are created by a random walk starting
from the camera and are terminated via Russian roulette or when they hit a diffuse
surface. The vertices are stored only on diffuse surfaces. These points are similar to
the gather points in the Lightcuts [Walt 06] algorithm (but we store only the end points
of a path) or the hit-points stored in the progressive photon map algorithm [Hach 08b].
The main difference is that we create a new set of eye path vertices each rendering
pass instead of keeping them for the whole image generation process. This allows
for progressive refinement of spatial anti-aliasing and complex specular effects. In the
standard setting one eye path is started per pixel for each rendering pass. When such
a path hits a light source (either directly or via an arbitrary number of specular bounces:
ES∗L) the contribution is directly added into the accumulation buffer but the path is
not necessarily terminated as the surface of the light source might also reflect light.
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Store Eye Path Vertices on Diffuse Surfaces and
compute Ray Differentials

Select Visibility Representants from Eye Path
Vertices (VPLs rejection)

Generate Light Source Samples (primary VPLs)

Generate Caustic -
Projection Maps VPLs Random Walk

Caustic Photon Tracing
of Eye Path Vertices

Diffuse Illumination
of Eye Path Vertices

Filtered Accumulation Buffer

Figure 6.15: This figure describes the order of the basic operations our rendering sys-
tem performs each rendering pass.

(a) (b) (c) (d)

Figure 6.16: (a) Generation of the eye path vertices by performing a random walk into
the scene starting from the eye. (b) Generation of the VPLs by a random
walk starting from light sources. (c) Evaluation of the VPLs to compute
an approximation of the diffuse illumination at the eye path vertices. (d)
Accumulation of caustic photons into eye path vertices.

Using the generated eye path vertices we will gather diffuse illumination (Section 6.3.2),
specular contributions, and caustics (Section 6.3.3).

Glossy and singular effects need to be simulated when the BRDF is not sufficiently
diffuse (see Section 2.3.4). The idea of specular gathering is to sample the BRDF
according to its probability density function by extending the eye path. This extension
of the eye path is repeated until either it is terminated by Russian roulette or the path
hits a diffuse surface. At this point the illumination is computed by using the point light
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sources and the caustic histogram (see Section 6.3.3). So, per rendering pass we
gather the illumination for specular eye paths by using the current global illumination
approximation given by the two other techniques. As this approximation is recomputed
in each pass, the specular part becomes progressively refined, too.

6.3.2 Point-Light-Based Diffuse Illumination

We approximate the diffuse illumination by virtual point light sources (VPL) similar to
the Instant Radiosity algorithm [Kell 97]. In order to be consistent with existing literature
we use the term VPL (Virtual Point Light-source) for a light path vertex even though
we prefer the term DIAL (Diffuse Illumination-Approximating Light) in the context of our
rendering system. Note that the notion of diffuse illumination not only includes perfectly
Lambertian surfaces, but also slightly glossy surfaces as specified in Section 2.3.4.

The first step in the Instant Radiosity algorithm generates samples on the light sources.
As our scenes contain arbitrarily shaped light sources modeled as triangles, we first
compute a PDF (probability density function) according to the area and intensity of
each emitting triangle. This PDF is created once and can be reused for all subsequent
rendering passes. Using three random numbers, a position on the light sources (stored
as primary VPL) is sampled. Then a random walk terminated by Russian roulette is per-
formed in the manner of a particle tracer, where on each diffuse surface another VPL is
stored. Unlike eye paths, the light paths are not terminated on the first diffuse hit. This
is illustrated in Figure 6.16 (b). These VPLs represent a point-wise approximation of
the diffuse inter-reflection. In contrast to [Kell 97], the contribution of each VPL is then
accumulated by sampling the direct visibility of the VPLs to each pixel via the stored
eye path vertices, i.e. possibly incorporating even multiple specular bounces (see next
section). Figure 6.16 (c) illustrates this. This accumulation is inherently progressive
as each series of VPLs, generated by one random walk, is independent of the other
random walks and the final image is independent of the number of VPLs created per
rendering pass.

Stochastic Culling of VPLs. As we want to be able to efficiently handle complex
scenes, we use an additional optimization to discard VPLs that are likely to have no
contribution. For this purpose we choose a stratified subset of 256 of the eye path ver-
tices and check the visibility from these locations prior to VPL storage. This can be
either done based on an acceptance probability to not introduce an additional bias, or
fully deterministic. To guarantee a good coverage and a changing subset for each ren-
dering pass we use the Halton sequence over the image plane for the selection [Kell 00].
The culling is recreated each frame with a new set of samples to guarantee that even
unlikely paths that might contribute significantly are not missed during the progressive
rendering.
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Figure 6.17: Illustration of the visual importance of caustic paths when reflecting or
transmitting objects are in the scene. The invisible desk lamp is the only
light in the scene.

6.3.3 Caustic Histogram Method

The final technique of our rendering system is the histogram method that provides the
caustic paths (LS+D). Figure 6.17 illustrates these paths in a scene where they are
only enabled in the right hand image.

The technique can be understood from different perspectives. We describe it here
from the viewpoint of histogram methods. The basic histogram method is an easy way
of estimating the illumination in a scene and is related to finite element methods. In a
pre-processing step, the scene is subdivided into surface patches that are called sample
bins. In a second pass a light tracer generates random walks from the light sources and
the number of photons hitting each bin is counted. This method can already be seen as
a progressive method because each light paths improves the estimation. In its original
form it is also a view independent solution, because the whole scene is subdivided into
bins. While this method is very easy to implement, it suffers from the same problems as
other finite element methods. First the quality of the solution depends on the granularity
of the sample bins and artifacts are likely to be visible at the borders. Additionally, this
method requires an enormous amount of memory when finely tessellated bins are used
and, as other finite element methods, does not scale well to highly detailed scenes with
millions of polygons. For our application of caustic paths we need high local detail to
capture the fine details, however, only at very few places in the scene.

Our method is a two step method that is performed for each rendering pass. The two
steps are illustrated in in Figure 6.16 (a) and Figure 6.16 (d). In the first step, the eye
path vertices are created. Each eye path vertex has an associated bin size. To estimate
the bin size we trace ray differentials [Igeh 99, Suyk 01] starting with half the pixel size
using the same rationale as [Chri 03] used for geometry tessellation. This provides a
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good estimate of projected pixel footprint even after specular bounces.
This step produces the bins that are filled with photons in the second step. The

bins are stored in a kd-tree the same way as the photons in a photon map (see Sec-
tion 6.1.3). Now for each primary VPL (which are just samples on the light source) we
trace photon random walks into the scene. If they do not hit a specular material they
are discarded, otherwise they are continued until a diffuse material is found (or they are
terminated by Russian roulette). The contribution to the image is computed by adding
the value to the accumulation buffer using the associated pixel from each bin. Each
photon is only accumulated into a single bin each bounce by choosing the closest. This
way bins do never overlap and due to the euclidean distance calculation the bins are
sphere shaped.

This procedure is illustrated in Figure 6.16 (d) for a glass sphere. In our implemen-
tation we trace photons until we have accumulated a given number for each rendering
pass (in our case the parameter was set to 100000 for all images). Using the previously
computed VPL as emitting light sources has the advantage of not requiring a new set
of light source samples. The number 100000 provides a good balance between the
caustics and the other parts of the illumination solution. Changing this number does
not change the converged result, it can only change the convergence speed of caustics
vs. the rest of the global illumination solution.

This method is conceptually similar to the algorithms described in [Dutr 93, Suyk 00,
Hach 08b]. However, first, we only use the caustic histogram for the EDS(S|D)∗L
paths, and second, constant radius per eye path vertex is used for the bins based on the
projected pixel size, which speeds up the photon collection. Furthermore, we recreate
the bins in each rendering pass and thus in addition are able to support progressive
per pixel anti-aliasing, glossy surfaces, depth of field, and motion blur. The fixed radius
selection may of course introduce the usual photon mapping artifacts and introduces a
bias, but as the (projected) bin size is not larger than half the pixel size the error is not
larger than the error introduced by image space filters [Suyk 00]. The recreation has
also been recently developed in [Hach 09].

Projection Maps

As explained above the caustic histogram gathers photons from reflected from specular
surfaces. Hitting diffuse surfaces just absorbs the generated photons and it is wasted
computation time. To avoid these paths we present an optimization based on projecting
specular surfaces onto a hemisphere. Even for arbitrarily complex light sources only
relatively few VPLs are generated per rendering pass. As we emit caustic photons from
these VPLs to accumulate them in the histogram method we can make efficient use of
a projection map per VPL as opposed to previous approaches of using projection maps
with photon emission [Jens 09].

Projection maps are a pre-computation to direct caustic photons only in areas of
glossy/specular objects. This increases the efficiency in simple scenes (with few glossy
objects) significantly without slowing down complex scenes.
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Figure 6.18: Illustration of four of the projection maps of the scene shown in Figure 6.27.
The third map is from a VPL inside the lava lamp.

A discretized version of the hemisphere around each point light source is generated.
A basic θ, φ discretization is used. In our experiments we used a resolution of 256× 128
for each map with a single bit per entry. This projection map is generated conservatively.
An entry of 0 means that in all directions contained in the discretization rectangle of
(θ, φ) no specular object can be hit. An entry of 1 indicates a specular object in some
of the covered directions.

The conservative projection map is generated by projecting each corner of the bound-
ing box of a specular triangle onto the hemisphere. Triangles that lie completely behind
the hemisphere are ignored. The result of this projection are eight pairs (θi, φi). From
these angle pairs a new bounding box in spherical coordinates is computed. Care has
to be taken when θ wraps around. Now each element of the projection map that touches
the bounding box or is covered by it is set to 1. During construction the occupation of
a projection map is computed by counting the number of elements that are set to 1.
This number is then used to reject point light sources completely for caustic generation
when they do not cover any specular objects. Figure 6.18 shows some projection maps
created in the Box scene.

Such a projection map is generated for each point light source. A simple and practical
way to use the projection map during light path generation is via rejection sampling. A
random direction (θr, φr) on the hemisphere is generated using two random numbers
ξ1, ξ2:

θr = arccos

(√
(1− ξ1)

2

π

)
φr = ξ2

If the projection map contains 1 for the direction the light path is traced. Otherwise
another pair of random numbers is generated. To assure correct energy for each gen-
erated photon it is important to count also the rejected photons.

During rendering the generation of projection maps was between 2% and 5% of the
total time spent on the caustic histogram method. The speed-up achieved is linear to
the coverage of the hemisphere, saving 85.2% of the photon rays in the Box scene,
corresponding to 65.3% of the time required to compute the caustics and 4.6% of the
total render time.
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The utility and performance of this method depends of course on the scene setup.
When all objects in the scene are specular and the scene is closed (i.e. from each
point light source geometry is visible) this method does not provide any speedup. But
practical experiments show that the expected slowdown is very small even for these
cases. For the very few number of 40000 started photons the projection map generation
of 8 projection maps is always below 2% of the total time needed to generated the
caustic map. So this is a feature that can be always turned on and no user control is
needed. Figure 6.19 shows the benefit of projection maps in a simple scene with three
small caustic generators.

Figure 6.19: Advantage of using projection maps when there are only small caustic gen-
erators. Both images were computed with the equal computation time of
14 minutes on a single core. The right image is already much better con-
verged in the caustic regions since much more photons actually contribute
to the caustic histogram method when they are traced using a projection
map. This scene also illustrates that our projection map implementation
can easily handle arbitrary light sources.

6.3.4 Subsurface Scattering

We showed how a combination of three distinct techniques based on point light sources
allows us to compute a global illumination solution including caustics, specular surfaces,
depth of field, and dispersion effects in a single unified rendering system. Each of the
techniques - VPLs, specular gathering, and the novel caustic histograms - efficiently
works with the other two in combination. The progressive nature of our system allows
the artist to start a rendering and be sure that it will converge to a unique solution
independent of the parameter choice. At least in theory our system would produce the

136



6.3 Path Space Partitioning

same image even if just a single VPL path or a single photon path would be generated
per rendering pass. Additionally, our system uses only a constant amount of memory
during rendering independent of the final image quality.

Subsurface scattering can be integrated in our system by allowing eye path vertices
inside solid objects and tracing the photons also through these objects. An example
of a simple integration can be found in figure 6.20 where the eye path vertices were
created below the surface of a candle object. Additionally, participating media using the

Figure 6.20: A simple subsurface scattering implementation using the caustic histogram
method described in 6.3.3. An isotropic scattering material was used.

VPLs can be integrated [Raab 06]. Adding motion blur requires to sample just another
dimension in our progressive renderer [Chri 06].

6.3.5 Results

In this section we discuss the global results of our rendering system. All images in this
section were computed using the same default parameter settings of 16 VPL paths, 1
eye path per pixel, and 100000 caustic paths per rendering pass. All measurements
were done on a Intel R©CoreTM2 Quad Q9550 @ 2.83GHz.

Figure 6.26 shows the statistics for the different scenes used to present different as-
pects of our system. Figure 6.27 shows the image generation process with the inverse
difference image scaled by 8 compared to a converged image with 11456 render passes.
In Figure 6.21 you can find the associated graph showing the mean square error.

Diffuse Illumination. The diffuse illumination (direct and indirect) is approximated by
the use of VPLs and thus very robust. This method was already discussed in many
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Figure 6.21: This graph shows the errors of the images (computed at 1024×1024) shown
in Figure 6.27 from 16 to 2048 rendering passes in steps of 16 compared
to a converged image with 11456 rendering passes. The steep descent at
the beginning is because the indirect illumination is quickly approximated
by the point light sources.

publications and is known to produce good results with a sufficient number of point
light sources. As our system is progressive, the only limiting factor for the number of
point light sources is rendering time. Figure 6.22 shows an equal time comparison
of a bidirectional path tracer (BDPT) and point light based global illumination. The
difference is most noticeable in the darker areas, where the detail is still obstructed by
noise in the BDPT, while the VPLs approximation already shows each feature clearly.
This robustness of indirect illumination in darker areas can also be seen in Figure 6.12
where the far left and right sides are only illuminated by indirect light. Note that the
use of point lights for diffuse illumination also allows for efficient handling of diffuse
transparent objects like curtains by creating VPLs also on the exit points (two sided)
during the random walk.

Glossy Effects. Figure 6.23 shows a simple single layered material where κ is varied
from 0 to 0.9. The first three spheres in the last row have a κ ∈ {0, 0.1, 0.199} and are
thus illuminated by VPLs directly (the specular threshold is κ ≥ 0.2). The remaining
spheres are illuminated by specular gathering, i.e. by extending the eye paths. Note,
how these two techniques generate a consistent transition.

The top right image in Figure 6.26 shows a scene with many glossy objects and
high variance situations where glossy objects are reflected in other glossy objects. In
addition, the scene features depth of field. The illumination comes from a sky model
only through the two small windows.
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Figure 6.22: Equal time comparison (512 × 512, 3 minutes) of a BDPT (left) and the
point light based renderer (right) in a simple diffuse scene. The noise in
the BDPT solution is especially noticeable in the dark areas where none
of the details are yet visible while in the other image the door and ceiling is
clearly visible on the left side.

Caustics and other SDS paths. Caustics and SDS paths are efficiently treated by
the caustic histogram method using projection maps (Figure 6.12 and Figure 6.14).
The SDS paths are especially difficult in BDPT-based renderers and take a long time
to converge even with Metropolis sampling. Without them the ground below the feet of
the glass dinosaur in Figure 6.12 would be black. Section 6.3.3 further demonstrates
how spectral effects can be integrated in our rendering system. The effect of spectral
rendering is most noticeable in caustic areas, however, the presented method integrates
well with the other proposed parts of the rendering system.

Depth of Field. Since we create a new set of eye path vertices in each rendering
pass we can easily simulate e.g. a thin lens camera that renders depth of field effects.
As our system is progressive we do not need to adjust any of the parameters for the
illumination computation and, in many cases, the number of rendering passes needed
for the illumination to converge is sufficient to robustly estimate depth of field effects
(Figure 6.26).

Comparison to Progressive Photon Mapping and Metropolis Light Transport. Fig-
ures 6.24 and 6.25 show a direct equal-time comparison of our proposed rendering
method to progressive photon mapping and to Metropolis light transport. For the first
image we used a render time of 8 minutes. For the second image, 15 minutes were
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Figure 6.23: This image shows the smoothness of changing from VPLs based illumi-
nation for diffuse illumination (κ < 2, Section 6.3.2) to specular surfaces
(κ ≥ 2, Section 6.3.1). Due to the progressive rendering both methods
converge to a final solution where no difference is noticeable without the
need to set the correct number of samples or number of point light sources.

used. All images were created at a resolution of 512 × 512. Figure 6.24 is a simple
box setting with diffuse colored walls. As it can be seen in the images our method
produces much smoother results while still retaining a high quality caustic. Figure 6.25
shows more complex light paths through a glass object. The object is placed on a
large diffuse plane. Here as well, our method produces much smoother results without
sacrificing image detail. The progressive photon mapping algorithm still exhibits some
low-frequency noise because it cannot gather enough photons within the given render
time. In contrast, the Metropolis algorithm still has considerable high-frequency noise.
Note that also progressive per pixel anti-aliasing is not possible in the progressive pho-
ton map algorithm since the gather-points are fixed for the whole image generation
process. For the Metropolis comparison we used the open source luxrender v0.6rc5 as
it contains a well optimized implementation. This explains also the slight difference in
image appearance as this rendering system handles light sources and especially mate-
rials a little differently from our system. The last row shows the difference image to the
path traced solution. It can be observed that each method has unique areas where the
difference is still quite high after the 15 minutes of computation time. The progressive
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Figure 6.24: Equal time comparison (512 × 512, 8 minutes) between our proposed al-
gorithm (first), progressive photon-mapping (second), and Metropolis light
transport (third). The fourth image column shows a path traced image with
300000 samples per pixel.

photon map shows especially at the geometry silhouettes the lack of anti-aliasing but
also quite high differences in the area, where few photons are transmitted and thus the
gathering radius is still large. This is the same area where the Metropolis also has some
higher noise. In contrast to this our algorithm spreads the error more evenly and shows
an almost noise free error image.

6.3.6 Discussion

Indirect caustics (EDS+D+L) are created from non-primary VPLs. This works well
when diffuse surfaces are brightly lit, but in many scenes this increases the variance
too drastically for the final visible effect. So we chose to make them artist-controllable
instead of enabling them by default. Furthermore, the depth of indirect caustics can be
selected prior to rendering. Generally, a desirable feature for the whole rendering sys-
tem would be to automatically balance the three parameters (number of VPLs, number
of specular gathering rays, and the number of photons for the histogram) for optimal
convergence speed with respect to a given scene.

The bias of bounding the geometric term in the Instant Radiosity method can be
removed by the method proposed in [Koll 04]. The clamped contribution of point lights is
compensated by gathering the missed illumination through additional rays. This comes
at the cost of increasing the variance, especially in corners for an effect that is only seen
in few scenes. We again made this an artist-controllable option.

Using a material model that cannot be split easily into a diffuse and a specular part
(for example when using measured BRDFs like in [Matu 03]) might increase the vari-
ance and thus the time to a high quality image. One could use a simple heuristic to
classify a BRDF as more diffuse or more specular but a wrong choice results in longer
computation times. Note that this does not change the result image, only the time re-
quired to compute it. While our proposed rendering system is progressive by design, it
is not yet adaptive in any way (except that in highly glossy scenes automatically fewer
VPLs are stored). Especially in diffuse areas the resulting image quickly converges to
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Figure 6.25: Equal time comparison (512 × 512, 15 minutes) between our proposed al-
gorithm (first column), progressive photon-mapping (second column), and
Metropolis light transport (third column). The fourth image shows a path
traced image with 300000 samples per pixel. The last row shows the dif-
ference to the path traced image.

an acceptable solution while in areas of SDS paths there is still noticeable variance. By
intuition one would like to sample only in areas of high variance. But this would remove
some of the advantage of a real progressive renderer as it cannot be guaranteed that
the under-sampled region is no area of higher variance (for example light through a
key hole) that was not yet sampled. Of course knowledge about a given scene allows
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an artist to increase convergence speed by tuning the number of point light sources or
caustic photons per rendering pass accordingly.
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Knives (960× 600 1.7 hours): thin lens depth of field simulation

Interior (960× 600 2.8 hours): many glossy materials and depth of field

Scene Res. Polygons Avg. VPL % Diffuse % Eye % Caustic per Pass
Box 1024× 1024 49344 35.7 76.5% 5.7% 13.4% 4.8s

Museum 1200× 520 331843 7.9 35.6% 21.7% 37.6.8% 1.2s
Interior 960× 600 909441 3.8 43.4% 35.3% 9.3% 0.9s
Knives 960× 600 95472 22.1 52.0% 6.2% 39.2% 3.1s

Figure 6.26: The statistics show the relative time spent on the three techniques. The
remaining time to 100% is due to management overhead. The projection
map generation was between 2% and 5% of the total caustic time. % Eye
is the relative time spent generating the eye paths. The last column shows
the average time per rendering pass (resolution dependent). It can be
seen that in scenes with many glossy or singular materials the number
of average VPL per pass drops while the time spent for the eye paths
automatically increases.
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Figure 6.27: Evolution of the error with increasing number of rendering passes com-
pared to a converged image with 11456 rendering passes (resolution:
1024 × 1024). The top row shows the results after 16, 128, 512, and 2048
rendering passes. The bottom row shows the inverse difference image
scaled by 8. Figure 6.21 shows the graph of the errors for the full image
series.
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6.4 High Dynamic Range Environment Map Lighting

In this section we present a novel method to start light paths on an emitting environment
map in the context of Monte Carlo global illumination with image-based lighting or phys-
ical sky models. While there have been previous methods to use environment maps in
a physically based renderer, none of these methods could start correctly weighted light
paths. We solve this problem by generating projected planes that have a known area
and can be sampled easily. These planes basically represent parallel light sources
that have the correct lighting energy taken from the environment map. Parts of this
technique are published in [Damm 09a]. This method was developed to efficiently gen-
erate the VPLs needed for the rendering system described in Section 6.3. But with
this technique we can also efficiently render unbiased caustics from environment maps
using bi-directional path tracing with multiple importance sampling, photon mapping,
and the classic instant radiosity algorithm. When simulating light transport using Monte
Carlo methods, all kinds of paths connecting light sources and the sensor must be
generated. Even though all paths will eventually be found by a simple path tracer
(see Section 6.1.1), some effects are best captured with some specialized sampling
technique. A light tracer for example, starting the random walk at the light sources
and deterministically connecting to the sensor, is well suited to render caustics. Other
global illumination methods, such as photon mapping (see Section 6.1.3), bi-directional
path tracing [Veac 94], or point light source-based methods as instant radiosity (see
Section 6.1.4) rely on paths started from the light sources. While starting paths on geo-
metric light sources is common practice (see Section 2.3.5), it is not as easy to start a
path from an emitting environment map with a correct sampling density.

6.4.1 Domains of Integration

Analytic sky models like [Pree 99] or environment maps in the form of captured im-
ages [Debe 98] approximate distant illumination by an infinitely large sphere around
the scene. Thus the radiance L(ω) emitted from the environment only depends on the
direction ω for any point in the scene.

In a classic path tracing setting, the direct illumination is evaluated by sampling a di-
rection at a point x and evaluating the visibility of the environment map (see Figure 6.29,
left). In a Monte Carlo renderer this direction is picked according to a carefully chosen
probability density function in order to minimize variance.

In a bi-directional algorithm this is not as straight forward as we need to start a path
from outside the scene with a correct and known probability density function. For ex-
ample in an instant radiosity-based renderer the indirect illumination is approximated
by distributing point lights via a random walk from the light sources. When using envi-
ronment maps the direct illumination can be evaluated as described above. For indirect
illumination, sample points to start the light paths have to be generated with a correct
probability distribution. This is illustrated on the right hand side of Figure 6.29 where
the desired sampling point is marked as y. The problem is similar to the sampling of
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parallel light sources with a correct sampling density that was described in [Phar 04].

y
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Figure 6.28: Sampling densities for area light sources: path tracing as in Equation 6.6
(left), and light tracing as in Equation 6.7 (right).

Monte Carlo methods for light transport estimate integrals using the expected value
of some constructed random variable, e.g. to evaluate how much light emitted from a
surface patch Ay is received by a surface patch Ax (see for example [Dutr 06]):

F =

∫
Ax

∫
Ay

L(y ↔ x)
cosx cosy
||x− y||2︸ ︷︷ ︸

=:G

V (x↔ y)dydx

=

∫
Ax

∫
S2
−

L(x← ω) cosx dωdx (6.6)

=

∫
Ay

∫
S2

L(y → ω)V (x↔ y) cosy dωdy, (6.7)

which can be evaluated by corresponding Monte Carlo estimators, each sampling a
combination of x, y, and ω for the respective integrals. The first line would sample two
points and directly evaluate the geometric term G. Equation 6.6 describes a backward
path tracer, sampling an outgoing direction from x (see Figure 6.28). Equation 6.7
describes a light tracer, starting with a point y on the light source. This last variant
is especially useful to render caustics and the starting point for many algorithms (e.g.
photon mapping). The corresponding estimator using Equation 6.7 is

F = E

(
1

N

N∑
k=1

L(yk → ωk)V cosyk
p(yk)p(ωk)

)
= E

(
1

N

N∑
k=1

π|Ay|L(yk → ωk)V

)

with p(yk) = 1/|Ay| a uniform distribution on the surface of the light source and p(ωk) =
cosyk /π following a cosine distribution.

For image-based lighting [Debe 98], it is not as straightforward to find these probabil-
ity densities. While p(ω) can easily be modeled (e.g. by using p(ω) = 1/(4π) uniformly
on the sphere), the question remains where to put y.
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Figure 6.29: Two ways to sample distant illumination: on the left, ω is obtained by
prolonging an eye path ending in x. On the right, a point y outside the
scene is needed to trace a direction ω towards x.

6.4.2 Plane Sampling for Starting Light Paths from Environment Maps

ω

y

minu

maxu

Figure 6.30: Illustration of the sampled plane in 2d (left), and visualization of six sam-
pled planes for a 3d scene.

To allow for light tracing from an environment map, we start by reformulating a similar
expression as in Section 6.4.1, in order to evaluate how much light emitted from an
environment map is received by a surface patch Ax:
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Fenv =

∫
Ax

∫
S2
−

L(x← ω) cosx dωdx (6.8)
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−
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dω
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L(y → ω)V (x↔ y)dydω (6.9)

= E

(
1

N

N∑
k=1

L(yk → ωk)V

p(yk)p(ωk)

)
.

Equation 6.9 in fact describes a light tracing algorithm. The newly introduced variable
y = f(x) + C with |Jf | = cosx can be found geometrically on a plane perpendicular to
ω (see Figure 6.29). The vector C is used to shift the plane out of the bounding box, so
the visibility term V will be equivalent to the one evaluated for the environment map.

This principle is easily extended from one surface patch Ax to the whole scene. The
random variable y remains the same, even for different surface normals resulting in
different cosx, as the substitution explicitly removes this term. The visibility term V (x↔
y) takes care of occlusion and even allows for a too large integration domain Ay, i.e.
which covers more than just Ax after the transformation.

To start paths on the environment map, the densities for y and ω are separated, as
for geometry light source sampling. Assuming for the moment that p(ω) = 1

4π uniformly
on the sphere will be sufficient. So at this stage we have a directional light source with
direction ω and need to pick a starting point y. As such a light source has infinite extent
or is infinitely far away, the first idea is to sample the end point x for the light ray. It is
very hard for complex scenes to find the correct density for such an end point. We thus
use virtual planes of finite extent just outside the bounding box of the scene to represent
all of the directional light which is of interest for the scene (see Figure 6.28, right).

Environment maps can be interpreted as an infinite collection of parallel light sources
(one for each direction). To start a particle path from the environment we divide the
problem into first sampling a direction ω and then sampling an appropriate starting
point y outside the scene for the directional light source associated with ω.

Algorithmically, we sample the direction ω on the environment map, according to a
probability density p(ω), for example p(ω) = 1/(4π). Then we create an orthonormal
basis (u, v, ω) around ω, and project the eight corners of the bounding box of the scene
onto the plane through the origin spanned by (u, v), as illustrated in Figure 6.30. From
these projections, we only keep a 2-dimensional bounding box in the coordinate system
of the plane (minu, maxu, minv, maxv). This quad is pushed outside the bounding box
of the scene. The exact distance does not matter, as the quad is used as a parallel light
source. In practice, we project one vertex of the scene bounding box (or the center)
onto −ω and shift this point in the direction −ω by the sum of the three bounding box
widths. Pseudo-code for the plane generation can be found in Listing 6.1. Such a quad
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is easy to sample. The starting point y can be chosen uniformly on this quad, which
results in the simple probability density p(y) = 1/|Ay|, with |Ay| being the area of the
quad. See Listing 6.2 for pseudo-code of this operation.

omega = envmap_sample ( ) ;
inv_p = 1/ p (omega ) ; / / account f o r p (omega)
L = envmap_radiance (omega ) ;
( u , v ) = get_onb (omega ) ; / / c reate or thonormal bas is ( u , v , omega)
for ( i n t c =0;c <8; c++) / / p r o j e c t scene bounding box
{

dotu = dotproduct ( aabb . corner [ c ] , u ) ;
dotv = dotproduct ( aabb . corner [ c ] , v ) ;
minu = min ( minu , dotu ) ; maxu = max(maxu , dotu ) ;
minv = min ( minv , dotv ) ; maxv = max(maxv , dotv ) ;

}
f l o a t d i s t = dotproduct ( aabb . center , −omega)

+ aabb . width [ 0 ] + aabb . width [ 1 ] + aabb . width [ 2 ] ;

Listing 6.1: Pseudo-code for the generation of the quad from a sampled environment
direction. This computation can be reused for several samples.

y = − d i s t ∗ omega + u∗ ( minu + (maxu−minu )∗ rand1 )
+ v ∗ ( minv + (maxv−minv )∗ rand2 ) ;

inv_p ∗= (maxu−minu ) ∗ ( maxv−minv ) ; / / compensate f o r p ( y ) = 1 /A
p a r t i c l e . energy = L∗ inv_p ;
p a r t i c l e . y = y ;
p a r t i c l e . omega = omega ;

Listing 6.2: Random sampling of the particle starting point on the precomputed quad

The estimator remains unbiased as long as the quad is large enough to cover all of
the scene. In order to maximize the number of rays actually intersecting the scene,
the quad should be as small as possible. Apart from enabling the use of algorithms
relying on light paths (instant radiosity, photon maps, etc.), the advantage of the new
technique becomes apparent when the environment map has a high dynamic range
and importance sampling is used, i.e. p(ω) ∼ L(ω). We use sample warping [Clar 05]
to sample ω according to the luminance of the environment map.

6.4.3 Results and Discussion

With the new technique it is now possible to create caustic paths from the environment
efficiently. Other unbiased techniques generate these paths as well, but at a much lower
convergence rate. For an illustration of this significant difference, see Figure 6.31. The
environment map contains a sun with pixels 1000 times brighter as in the rest of the
image. All three path samplers use the same importance sampling [Clar 05] to evaluate
direct light, thus the same sharp shadow appears in all images. However, using this kind
of importance sampling for direct light only fails to capture caustics. Metropolis sampling
helps, but will waste a lot of samples in the sun, as the probability is proportional to the
radiance contributed to the image. Of course Metropolis sampling will perform better
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Figure 6.31: Comparison of plain backward path tracing from the eye (left), the same
path tracer with Metropolis sampling (middle), and bi-directional path trac-
ing with a light tracing pass using plane sampling (right). Each exam-
ple on the top row has equal computation time (about 5 minutes on an
AMD Opteron). The path tracing achieves 342 samples in that time, the
Metropolis version can only evaluate 105, the bi-directional method has
231 samples per pixel. The bottom row shows a comparison of equal
sample count (500 samples per pixel).

when a bi-directional path sampler is used and when the sun is not directly visible,
especially in difficult areas of the image such as caustics from multiple inner reflections
seen through a mirror.

The plane sampling technique is a specialized solution to efficiently capture promi-
nent effects, such as caustics, when image-based lighting is used. It is also most use-
ful when bi-directional algorithms are used, which rely on paths started from the light
sources, such as instant radiosity or photon mapping. A bi-directional path tracer could
work around this by employing path tracing for these effects, but efficiency will be much
lower if the environment is non-diffuse.

However, there are cases in which other techniques are better. For example a mostly
diffuse environment such as a cloudy sky is best sampled by a path tracer, as impor-
tance sampling by surface reflection can be done. If only direct lighting is of interest,
combined sampling of incoming radiance and surface reflection [Clar 08] is the way to
go.

The simple method described above to sample a quad, which is the 2d-bounding box
of a projected 3d-bounding box, can easily be extended to choose (u, v) to minimize
the size of the quad, or be replaced by sampling for example a disc (the projected
bounding sphere) as was done in [Phar 04]. We chose quads because most render
systems have the axis-aligned bounding box of the scene readily available, and it is
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then straightforward to extend the technique to projection maps (see Section 6.3.3) to
be used with photon mapping or instant radiosity. Since the parametrization of each
plane is implicitly given only a discretization resolution has to be chosen and the rest of
the projection map algorithm is the same.
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6.5 Interactive Preview for Design and Editing

This section presents a fast and simple screen space filtering method designed for ray
traced Monte Carlo global illumination images which achieves real-time rates. Parts of
this are published in [Damm 10b]. The rendering system described in Section 6.3 was
designed for offline high quality rendering and generated noise free images by sep-
arating the light contributions. For interactive or preview applications it is only partly
suitable since the error is not distributed uniformly over the screen when instant ra-
diosity is used. For preview applications a simple path tracer is better suited, but even
on modern hardware only few samples can be traced for interactive applications, re-
sulting in very noisy outputs. Taking advantage of the fact that Monte Carlo computes
hemispherical integrals that may be very similar for neighboring pixels, we derive a fast
edge-avoiding filtering method in screen space using the À-Trous wavelet transform that
operates on the full, noisy image and produces a result that is close to a solution with
many more samples per pixel. In contrast to other real-time preview systems like light-
speed [Raga 07], we do not store any precomputed data and use the same algorithm
for preview as is used for final-frame rendering. This avoids the complexity of relighting
approaches, where different rendering algorithms are used for preview and for the final
rendering as was for example done in [Pell 05].

As discussed in Section 6.1, Monte Carlo-based global illumination ray tracing is one
of the most flexible and robust light transport simulation algorithms. Although there
exist many different approaches, they all use random path sampling to solve the inte-
gral in the rendering equation. Usually hundreds of paths per pixel are necessary to
achieve a smooth image. But even modern computers and algorithms can only pro-
vide a few paths per pixel in the time-frame needed for interactive applications or a
fast preview. Limiting the number of randomly sampled paths results in an image that
still contains highly visible noise. Even in conceptually simple illumination situations
like a diffuse uni-colored wall, the noise is visible. But in this case the correct solution
varies smoothly from pixel to pixel and the result can be improved by combining several
neighboring samples into one integral estimate. Edge-avoiding wavelets provide an effi-
cient approach for filtering such samples, provided that a good edge-stopping functions
is available. However, as we show in Section 6.5.3, the standard decimated wavelet
bases are poorly suited for the Monte Carlo noise and show visible artifacts. On the
other hand the bilateral filter avoids these artifacts but can be quite slow for large filter
sizes.

Therefore we extend the fast, un-decimated À-Trous wavelet transform to incorporate
multiple edge-stopping functions and show that it can robustly filter highly noisy Monte
Carlo global illumination images and produce visually pleasing results at interactive
rates. We use a hybrid technique that supplements the output of a CPU based ray
tracer with information from additionally rasterized images. Our GPU shader applies
the Edge-Avoiding À-Trous filter combining the different buffers to produce the output
image.
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Edge-Avoiding Wavelets and the Bilateral Filter

Naive computation of the discrete wavelet-transform requires convolutions with increas-
ing filter sizes per level. The Mallat algorithm [Mall 89] alleviates this problem by intro-
ducing decimation (i.e. down-sampling) and illustrates the relationship to multiresolution
analysis. Efficient computation of the un-decimated transform has been proposed by
[Hols 89, Mall 98] adapting Fast Filter Transforms [Burt 81] for the use with wavelets.
These filters contain a constant number of coefficients on each level of the analysis, by
spreading the initial filter by a factor of 2level and filling in zeroes. In the wavelet context
this is known as the algorithme À-Trous ("with holes"). A formal analysis of the rela-
tionship between the Mallat algorithm and the À-Trous algorithm is given in [Hols 89].

The bilateral filter is a non-linear filter, proposed by [Toma 98] (among others), to
smooth images. Since it is computationally expensive, methods for its acceleration have
been developed (e.g. [Dura 02, Pari 09]). [Fatt 07] uses the À-Trous algorithm to com-
pute a fast multiscale bilateral decomposition. Edge-avoiding wavelets [Fatt 09] adopt
this for the decimated case by extending second-generation wavelets [Swel 97] and in-
troducing an edge-crossing function. Edge-avoiding wavelets (computed via the Mallat-
algorithm) are the decimated counterpart of the fast bilateral decomposition (computed
via the À-Trous algorithm). In contrast to the many specialized and selective wavelet
bases, the shape of each edge-avoiding wavelet itself changes data dependently similar
to a data dependent windowing in the short time Fourier-transform.

The bilateral filter has been extended for different applications to use more infor-
mation in the edge-stopping function. The trilateral filter [Chou 05] uses an adap-
tive neighborhood function and the image gradient. The joint and cross bilateral filter
[Pets 04, Eise 04] use the color information from multiple images taken under differ-
ent lighting conditions to combine their frequency components. [Sloa 07] uses bilateral
up-sampling from a low resolution low frequency light buffer for real-time soft global illu-
mination. But a low resolution buffer lacks the positional precision necessary to decide
on which side of an edge a sample lies thus removing the possibility of retaining high
resolution details like sharp shadows. For this reason our edge-avoiding À-Trous filter
operates on a full resolution buffer. It combines edge-stopping functions from multiple
input images (noisy ray tracing image, normal buffer, position buffer) and is efficiently
computed on the GPU.

Fast and Smooth Global Illumination

Real time display of smooth global illumination solutions can be achieved using pre-
computation. The most prominent algorithms are methods based on Precomputed Ra-
diance Transfer [Sloa 02] and Meshless Radiosity [Leht 08]. Based on interactive ray
tracing on distributed systems and interleaved sampling in [Wald 02b] an approach for
interactive global illumination was presented that uses the discontinuity buffer [Kell 98]
to avoid filtering across edges.

Another approach builds on the Instant Radiosity algorithm (see Section 6.1.4) that
approximates the global illumination with many point lights and extends it to interac-
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tive display [Dach 05, Dach 06, Lain 07, Nich 09]. [Rits 08] also approximate the vis-
ibility of the point light sources. These methods, like most GPU methods, have re-
strictions like the shape of the light sources and lack the generality of a full ray trac-
ing solution. Finally the advancement in GPU computing power allows to implement
previous offline algorithms like photon mapping [Jens 96a] or final gathering in real-
time [Fabi 09, McGu 09, Rits 09, Wang 09].

There exist a vast mount of general (offline) techniques for Monte Carlo global illu-
mination (see Section 6.1). Since Monte Carlo integration always comes with noise,
several filtering techniques have been developed that exploit piecewise continuity in
surface irradiance. Irradiance caching [Ward 88] for example is an early method that
interpolated samples stored in a word space octree. This technique has been im-
proved [Ward 92b] and was also adapted for use in movie production [Tabe 04]. A
simple screen space filtering method is presented in [Kont 06] and recently the use of
wavelets in the context of adaptive sampling has proved to be useful [Over 09].

6.5.1 Edge-Avoiding À-Trous Irradiance Filtering

Our method takes a noisy Monte Carlo path traced full resolution image and produces
a smooth output image by taking into account the input image itself as well as a normal
and a position buffer. Using the ray traced image as input allows to retain high frequency
detail like sharp shadows that are not available in the other buffers. The resulting image
shows sharp edges around geometry borders and successfully smoothes the illumina-
tion where needed. Using a general path tracing algorithm allows for various different
light transport effects like glossy materials and different light source types and shapes
(e.g. simple point lights, arbitrary (deformed) area lights, image based lighting), without
special handling.

In the following we describe the stages of our algorithm and give the necessary theo-
retical background. Section 6.5.2 discusses our implementation with optimizations and
in Section 6.5.3 we present the performance and discuss the results.

Figure 6.32 illustrates the basic steps of our algorithm. The input is the path-traced
(noisy) image (rt buffer), containing in the simplest case both direct and indirect illumi-
nation. Additionally, the edge-stopping function of the À-Trous filter takes into account
the normal and the position buffer. The number of applications of the À-Trous filter is
determined by the total desired filter size (in our case 5 iterations).

In the absence of edges (e.g. all buffers uni-colored) it applies an even smoothing with
increasing filter size per iteration. In the presence of edges the influence of neighboring
samples is diminished by the edge-stopping function. This is closely related to the
bilateral filter and was used with the À-Trous algorithm in [Fatt 07] and with decimated
wavelet bases in [Fatt 09].
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Figure 6.32: rt), n) and x) are the input buffers (ray tracing, normal, world space posi-
tion). 1) and 2) show two steps of the repeated application of our edge-
avoiding À-Trous filter. f) is the final output image after tone mapping. d)
shows the optional diffuse buffer

Monte Carlo Light Transport

The Monte Carlo Method for light transport solves the integral of the rendering equation
(see Section 6.2.1) by constructing random paths that connect the camera with the light
sources in the scene. This is the most general known solution for the full rendering
equation and is well studied in literature. One problem with Monte Carlo image syn-
thesis though, is the high variance that is visible even in simple scenes. To reduce this
variance quadratically more samples are needed for a linear improvement.

To evaluate the À-Trous filtering algorithm we use a path tracer (PT) with next event
estimation as our basic image formation algorithm (see Section 6.1.1). This path tracer
starts by tracing rays from the camera into the scene as a random walk. At each inter-
action point a connection to a randomly chosen position on a light source is made. If it
is not occluded the contribution of this path is added to the image accumulation buffer.
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Figure 6.33: Illustration of the usual decimation step when using decimated wavelets.
Each iteration the input signal is reduced. In contrast to this see Fig-
ure 6.34 where each iteration produces a signal with the same number
of elements.

Figure 6.34: Three levels of the À-Trous wavelet transform. Arrows indicate pixels that
correspond to non-zero entries in the filter hi and are used to compute
the center pixel at the next level. Gray dots are positions that the full un-
decimated wavelet transform would take into account but that are skipped
by the À-Trous algorithm.

Algorithme À-Trous

We will describe a smoothing process to reduce the variance of the final ray traced
image. This is motivated by the following observation: The incident irradiance at a single
point on a surface is described by the integral over the hemisphere. Under interactive or
real-time constraints a path tracer can only trace a single path per pixel thus estimating
the integral with a single sample only. But if neighboring hemispheres are similar one
would expect similar integrals. Therefore the smoothing tries to average samples with
a similar hemisphere.

We will now first describe the (unweighted) À-Trous wavelet transform and then ex-
tend it afterwards to incorporate our edge-stopping function. [Burt 81] shows that wide
Gaussian filters can be well approximated by repeated convolution with generating ker-
nels. [Hols 89] uses this construction to compute the discrete wavelet transform, known
as the algorithme À-Trous :

1. At level i = 0 we start with the input signal c0(p)

2. ci+1(p) = ci(p)∗hi, where ∗ is the discrete convolution. The distance between the
entries in the filter hi is 2i.
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3. di(p) = ci+1(p)− ci(p),
where di are the detail or wavelet coefficients of level i.

4. if i < N (number of levels to compute):
increment i, go to step 2

5. {d0, d1, ..., dN−1, cN} is the wavelet transform of c.

The reconstruction is given by

c = cN +

0∑
i=N−1

di (6.10)

Filter h is based on a B3 spline interpolation ( 1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16) [Murt 97]. At each level

i > 0 the filter doubles its extent by filling in 2i−1 zeros between the initial entries. Thus
the number of non-zero entries remains constant (see Figure 6.34).

Data-Dependent Weights to Preserve Edges

Edge-avoiding filtering is achieved by introducing a data-dependent weighting function.
We extend the intensity-based edge-stopping function of the bilateral filter to combine
multiple edge-stopping functions. The discrete convolution in step 2 becomes

ci+1(p) =
1

k

∑
q∈Ω

hi(q) · w(p, q) · ci(p) (6.11)

with weight function w, pixel positions p, q, and Ω as the positions of non-zero coeffi-
cients in hi. k is the normalization factor

k =
∑
q∈Ω

hi(q) · w(p, q) (6.12)

and w are the combined edge-stopping functions from the ray-traced input image (rt),
normal buffer (n) and position buffer (x)

w(p, q) = wrt · wn · wx (6.13)

wrt(p, q) = e
− ||Ip−Iq ||

σ2rt (6.14)

where Ip and Iq are the color values of the rt buffer at positions p and q. wn and wx are
computed in the same way with their own σn and σx respectively.

We implement this filter in GLSL (see Listing 6.3) passing the step-width (i.e. number
of zeroes between filter entries), filter h, parameters σrt, σn, σx as uniforms and images
rt, n, x as textures.
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Since it is hard to make assumptions about the noise contained in the ray-traced im-
age, we choose our initial σrt to include variations of the scale of the maximum intensity
of the ray-traced image. Note that the intensities can be bigger than 1 in our full-HDR
environment. Thus the edge-stopping function depends at the first level on wn and wx
only. At each pass we set σirt to 2−iσrt thus allowing for smaller illumination variations
to be smoothed.

Edges that are preserved by our edge-stopping function are still present at coarser
levels of the transformation. Therefore we discard the finer levels of the wavelet trans-
form, rendering step 3 of the À-Trous algorithm unnecessary, and directly use level N
as output image.

Figure 6.35: À-Trous filter with increasing number of edge weights: unfiltered rt buffer
(input), no additional weights: (“pure” À-Trous ), rt buffer only: σrt (bilateral
approx.), two buffers: σrt, σn and all three buffers: σrt, σn, σx (our result).

6.5.2 Implementation

We implemented the edge-avoiding À-Trous filter in GLSL which can be seen in List-
ing 6.3. After computing the input buffers (rt, normal, position) the filter is applied mul-
tiple times to the rt buffer. Each pass uses the previously smoothed result as input. All
our buffer textures use a 16 bit floating point format.
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The normal and position buffers are rasterized with OpenGL using frame buffer ob-
jects and passed to the smoothing shader via textures. Even though these buffers could
easily be computed using the ray tracer we conserve bandwidth by computing them di-
rectly on the GPU. We directly display the final smoothed rt output buffer, or in the case
of deferred shading, multiply the result with an OpenGL generated diffuse color buffer.
As ray tracer we use a rather slow but very flexible CPU implementation. As Table 6.1
shows this is the bottleneck of our system and could be improved by using a more spe-
cialized ray tracer. Nevertheless we achieve interactive frame rates with our system. If
not otherwise noted, performance measurements and comparisons were computed in
this section on an Intel R©CoreTM2 CPU (E6850) @ 3.00GHz with an NVIDIA GeForce
GT 9500 GPU.

Deferred Shading

Deferred shading [Hagr 04] postpones the illumination computation at each pixel until
a final rendering pass per light source. This pass takes a position, normal and diffuse
buffer as input. We can apply this to our approach by using the ray tracer to compute
the incident illumination at each visible pixel without the final material evaluation. This
light buffer can then be smoothed using our À-Trous filter and be applied by multiplying
it with the diffuse buffer. This allows to retain high detail in textures that would otherwise
be blurred but can only be applied to diffuse surfaces.

Optimizations

We now discuss some possibilities to speed up a full rendering system that uses our
filter by specializing the rendering algorithm.

While it would be possible to use a dense low resolution ray tracing buffer, one of the
main advantages of our À-Trous filtering would be lost. Namely that in the full resolution
edge buffer each sample location knows on which side of the edge it lies. We can
however reduce the number of rays by sampling only every n-th pixel. Now the first
steps of the filtering are related to an in-painting problem. This of course increases the
variance of the final image even more and some features like hard shadows may be
lost. Since in our system the major bottleneck is the ray tracer we get an almost linear
speedup with the reduction of traced rays. Figure 6.36 shows results for sub-sampling.
Note that for correct in-painting, the rt buffer should not be used as edge weight for the
first iterations but only when the image is fully in-painted. For 2× 2 sub-sampling this is
after one iteration, for 4× 4 after two.

Depending on bandwidth usage one can avoid tracing primary rays by downloading
the depth or position buffer from the GPU. This might give a speedup when the path
depth is low and the bandwidth is not a problem. In our case the resulting render times
were slower by about 15%. This of course changes when a GPU ray tracer is used. In
that case all data would already be available on the GPU.
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uni form sampler2D colorMap , normalMap , posMap ;
uni form f l o a t c_phi , n_phi , p_phi , s tepwid th ;
uni form f l o a t kerne l [ 2 5 ] ;
uni form vec2 o f f s e t [ 2 5 ] ;

void main ( void ) {
vec4 sum = vec4 ( 0 . 0 ) ;
vec2 step = vec2 ( 1 . / 5 1 2 . , 1 . / 5 1 2 . ) ; / / r e s o l u t i o n
vec4 cva l = texture2D ( colorMap , gl_TexCoord [ 0 ] . s t ) ;
vec4 nval = texture2D ( normalMap , gl_TexCoord [ 0 ] . s t ) ;
vec4 pval = texture2D (posMap , gl_TexCoord [ 0 ] . s t ) ;

f l o a t cum_w = 0 . 0 ;
for ( i n t i = 0 ; i < 25; i ++) {

vec2 uv = gl_TexCoord [ 0 ] . s t + o f f s e t [ i ]∗ step∗ s tepwid th ;

vec4 ctmp = texture2D ( colorMap , uv ) ;
vec4 t = cva l − ctmp ;
f l o a t d i s t 2 = dot ( t , t ) ;
f l o a t c_w = min ( exp(−( d i s t 2 ) / c_phi ) , 1 . 0 ) ;

vec4 ntmp = texture2D ( normalMap , uv ) ;
t = nva l − ntmp ;
d i s t 2 = max( dot ( t , t ) / ( s tepwid th ∗ s tepwid th ) , 0 . 0 ) ;
f l o a t n_w = min ( exp(−( d i s t 2 ) / n_phi ) , 1 . 0 ) ;

vec4 ptmp = texture2D (posMap , uv ) ;
t = pva l − ptmp ;
d i s t 2 = dot ( t , t ) ;
f l o a t p_w = min ( exp(−( d i s t 2 ) / p_phi ) , 1 . 0 ) ;

f l o a t weight = c_w ∗ n_w ∗ p_w ;
sum += ctmp ∗ weight ∗ kerne l [ i ] ;
cum_w += weight∗ kerne l [ i ] ;

}
gl_FragData [ 0 ] = sum/cum_w;

}

Listing 6.3: This code shows the full implementation of our À-Trous filter in GLSL. Each
step uses 5 × 5 texture look-ups. The uniform parameters are initialized
by the main program to the parameters described previously. The first four
lines are the declaration of the uniform variables. These are set by the
calling program to contain the required values like the texture buffers (rt,
normal and position) that are sampled or the kernel weight for each sample.
The main function contains the actual filtering operation. This function is
called for each output pixel and computes the resulting pixel value that is
written in gl_FragData[0]. The code is for the 5 × 5 filter version and thus
iterates over 25 samples. Inside the loop the buffers are sampled and the
weight computed according to Section 6.5.1.
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Figure 6.36: Sub-sampling the rt buffer. The top row shows the input using one sample
per pixel (1.1 fps), one sample every 2× 2 pixels (3.8 fps) and one sample
every 4× 4 pixels (11.0 fps). The bottom row shows the result after filtering
where the loss of detail is clearly visible.

When the flexibility of arbitrary shaped light sources is not needed, the direct light
computation can also be performed on the GPU using e.g. shadow maps or shadow
volumes. This optimization is related to the previous one, but now the first shadow ray
can also be omitted. In our case the speed-up was almost a factor of 2 when using a
single point light source in the Sponza scene with one indirect bounce.

6.5.3 Results

Table 6.1 shows the performance of each individual part of our system for all scenes
depicted in Figure 6.43. This measurement was done at a resolution of 512×512 with a
single path per pixel and one indirect bounce. For each path, 4 rays are traced (primary
and secondary plus two shadow rays). The measurements were averaged over 16
iterations for the shown camera perspective. The À-Trous filter was applied five times.
As expected the À-Trous filter performance is independent of the input data and very
fast. The filter can be adapted to different kinds of applications by specifically extending
it to evaluate more input weight buffers. This is illustrated in Figure 6.35 for zero to three
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weights. The impact on the performance is shown in Table 6.2. This table also shows
the performance of the À-Trous GPU filter when changing the resolution. Figure 6.37
shows a sharp shadow of a pole being preserved correctly while smoothing the other
parts.

Figure 6.37: From left to right: Close up of the rt-input of a pole shadow in the Sponza
scene. Result with our presented weighting approach. Result without rt
buffer: the shadow is blurred.

The time spent on the OpenGL rendering varies extensively with scene complexity
and number of textures. Depending on application and input data it might be more
efficient to produce the required normal, position and diffuse buffer with the ray tracer
and upload them to the GPU.

Since we use a general ray tracer it is easy to change for example the glossiness of
materials or the size and shape of light sources. The effects of this are illustrated in the
Figures 6.39 and 6.40.

Scene RT (ms) GL (ms) Upload (ms) À-Trous (ms) FPS
Box 307.6 2.9 5.8 78.5 (5.6) 3.2

Sponza 835.2 35.5 4.4 78.6 (5.6) 1.13
Sibenik 510.2 8.5 5.2 78.6 (5.6) 1.9
Outdoor 316.4 2.6 6.3 78.6 (5.6) 3.0

Table 6.1: Individual timings for the test scenes shown in Figure 6.43 at a resolution of
512 × 512. RT is the total time to produce the input ray tracing buffer, GL
the time to generate the position, normal and diffuse buffer using OpenGL.
Upload is the time it takes to copy the ray tracing buffer from main memory
to the GPU. À-Trous gives the time of five repeated applications of our filter
on a GT 9500. The number in brackets is the time on an NVIDIA GTX 285.
FPS are the final frames per second achieved by our testing system.
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Res. 512× 512 1024× 1024 1920× 1080

# Iter 1 5 10 1 5 10 1 5 10

# W
0 0.3 1.5 2.9 1.0 5.0 11.3 1.9 9.6 22.4
1 0.5 2.4 4.7 1.8 8.7 17.2 3.5 16.9 33.6
2 0.8 3.5 6.9 2.7 12.9 26.6 5.0 25.1 52.1
3 1.2 5.6 11.0 4.2 20.9 41.6 8.2 42.6 86.0

Table 6.2: Time in ms to compute the À-Trous filter on a NVIDIA GTX 285 at different
resolutions (Res.). 5 · 2#Iter corresponds to the total filter-size and # W is
the number of weights. The original À-Trous algorithm does not use weights.
Our implementation uses 3 weights. See Figure 6.35 for results with fewer
weights.

Increasing Bounces and Samples per Pixel

The number of bounces can easily be increased. While slowing down the ray tracing
it allows for a more correct global illumination solution. The first three images in Fig-
ure 6.38 show results with more bounces. To reduce the variance in the input buffer,
more than one path per pixel can be traced. This is illustrated in the last two image
columns in Figure 6.38 with 4 and 16 paths per pixel.

Figure 6.38: The top row shows the input, the bottom row the output. The first three
columns show increasing number of bounces from 0 (direct light) to 1 and
5. The last two columns show the improvement when tracing more than
one path per pixel (4 and 16 paths).
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Figure 6.39: Varying the glossiness of the sphere and the size of the light source. The
three images on the left show increasing glossiness on the sphere. The
three images on the right show an increasing light source. Note the change
in the shadow of the cube.

Figure 6.40: Arbitrarily shaped light sources. The images show the rt input buffer and
the filtered output with two bounces. This shows the advantage of using a
general ray tracer and performing image space filtering.

Comparison to Other Wavelet Bases

As compared to standard de-noising techniques our method allows one to discard the
detail coefficients instead of shrinking them. In a high variance ray traced image a
single bright pixel in a dark region may indicate a large smooth patch with the same
mean irradiance. Such a pixel would result in a detail coefficient of very large magnitude
which would not be sufficiently smoothed by wavelet shrinkage.

Figure 6.41 shows the comparison of our edge-avoiding À-Trous filter to other bases.
As can be seen in the standard decimated wavelet transform (using CDF(2,2) and Red-
Black wavelets [Uytt 98]) filtering out detail coefficients of large magnitude leads to vis-
ible artifacts resulting from the decimation. The edge avoiding versions suffer from the
same artifacts. See for example the EAW CDF(2,2) image where it fails to preserve the
two edges between the light source and the wall.

Adaptive wavelet rendering [Over 09] takes advantage of the hierarchical nature of
decimated wavelet bases. They adaptively refine the wavelet representation and sam-
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PT Input À-Trous CDF(2,2) RedBlack Bilateral

PT Reference Ours EAW CDF(2,2) EAW RedBlack Multilateral

Figure 6.41: Comparison to other wavelet bases for filtering noisy Monte Carlo images.
The first row shows the result of filtering with the standard wavelet trans-
form. The second row shows the edge avoiding versions (using our edge-
stopping function). We also include the results of the bilateral and multi-
lateral filter, where the multilateral version is the extension of the standard
bilateral filter with our multiple edge-stopping function.

Figure 6.42: Failure case for our algorithm: A nature scene with 20 Million triangles.
Due to many complex shadow casting objects the illumination variance is
very high and a single sample per pixel is insufficient. Additionally there is
severe aliasing in the normal buffer.

ple the support of the wavelets. While it would be interesting to carry over this ap-
proach to un-decimated bases, this is not straight forward because there is no implicit
hierarchy anymore. It would also be interesting to apply our filtering technique to other
global illumination algorithms like micro-rendering [Rits 09] or image space photon map-
ping [McGu 09].
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PT Reference Input Output Indirect Only Direct Only

MSE 2726.9 MSE 52.9

MSE 3132.2 MSE 238.8

MSE 4174.9 MSE 1309.0

MSE 2787.9 MSE 20.9

Figure 6.43: Test scenes for our filtering algorithm. Each image was computed at a
resolution of 512 × 512 with one path per pixel and one indirect bounce.
The reference image was computed with 4096 paths per pixel. MSE shows
the mean square error to the reference solution. The last row shows an
outdoor scene illuminated with a diffuse skylight.

6.5.4 Discussion

In this section we presented a novel filtering technique for highly noisy Monte Carlo
global illumination images that can be used in interactive applications. By extending
the À-Trous wavelet transform to incorporate an edge stopping function taking multiple
buffers into account, we can successfully eliminate the noise while preserving sharp
details. This filtering assumes that the filtered incident radiance is reflected smoothly
but we also showed that it can be successfully applied for scenes with slightly glossy
surfaces. This is the same distinction that we made in Section 6.3 with our path space
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partitioning method and in Section 2.3.4 for our material model. For higher quality
output the same partitioning could be used here and would allow to add for example
correct reflections or refractions to this method.

However, highly complex scenes are problematic for our smoothing algorithm since
one sample per pixel (rt buffer as well as position and normal buffer) no longer suffice
to capture the necessary information. This results in the loss of details and smoothing
for example over shadows or object boundaries. Both problems are illustrated in Fig-
ure 6.42. Another problem is that due to the edge-stopping function the À-Trous wavelet
transform is no longer energy conserving. While this is acceptable in some situations it
has to be considered for high quality offline rendering.

Since our approach is very general in future work we plan to apply it to more ad-
vanced Monte Carlo global illumination algorithms like bi-directional path tracing and to
investigate how a more sophisticated edge-stopping function could improve the results
even further. Another interesting extension would be to incorporate adaptive sampling
to avoid sampling in areas where the À-Trous filtering already gives a good result. A
possibility to fix the energy conservation would be to use an additional channel in the
wavelet transform and post-normalize [Fatt 09] the output buffer. Using a ray tracer
that operates fully on the GPU is likely to provide a significant speedup for a rendering
system using our filter.
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Figure 6.44: (745 × 380 0.8 hours) On demand spectral rendering allows to integrate
dispersion into an RGB based render. The renderer itself performs all
computations in RGB but a path may have an assigned wavelength that is
used to create the correct dispersion effects.

6.6 On Demand Spectral Rendering

For efficiency reasons our system is based on RGB rendering. Yet it is possible to
consistently integrate an approximation for spectral effects into our rendering system by
on demand (or lazy) spectral rendering. In this chapter we first show a simple method
to integrate wave-length dependent effects into our rendering system and then briefly
present two applications that use spectral rendering and that benefit greatly from the ac-
celeration of incoherent rays presented in this chapter. The first application is presented
in Section 6.6.1. It is a complete simulation of realistic camera lenses. This requires a
full global illumination renderer as presented in Chapter 6 and thus traces highly inco-
herent rays. The second application presented in Section 6.6.2 is a physically based
simulation of fluorescent concentrators where physical processes are simulated by a
Monte Carlo method that requires ray tracing. The ability to trace millions of incoherent
rays per processor core greatly benefits the simulation times here as the ray tracing is
the bottleneck.

Any rendering algorithm based on RGB can be augmented by a simple method to
allow for basic spectral effects. This works by using the normal RGB transport until a
ray hits for example a dispersive surface (e.g. glass). At this point the ray is assigned
a randomly sampled wavelength from the original RGB color. In addition, we further
assign a novel RGB color corresponding to the sampled wavelength. This RGB color
is used as weight for all further color computations. It is important that, once a ray
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has an assigned wavelength, it will keep it until the ray terminates. The wavelength
assignment is done for all rays generated in the system: eye-paths, photon-paths, and
the random walks to generate the VPLs. This allows for the usual color caustics (photon
paths), the chromatic aberration seen through refractive objects (eye-paths) and correct
indirect illumination from colored caustics (VPLs). Figure 6.44 shows a rendering with
a dispersive glass object.

6.6.1 Lens Simulation

Spectral effects have several applications in realistic rendering. Here we present some
of the results of our camera lens simulation model. Parts of this have been published
in [Stei 09]. It is a spectral example application that highlights the need for fast in-
coherent ray tracing. The approach incorporates insights from geometric diffraction
theory, from optical engineering, and from glass science. It efficiently simulates all five
monochromatic aberrations, spherical and coma aberration, astigmatism, field curva-
ture, and distortion. Chromatic aberration, lateral color, and aperture diffraction are
also considered. In this section we only shortly discuss the aberrations and flare effects
to illustrate how incoherent rays are naturally generated by simulating lenses.

The camera model used in photo-realistic image synthesis plays an important role.
The commonly used pinhole camera model creates unrealistically sharp and distortion
free images that have infinite depth of field. So often, the approach to graphics is to
simulate isolated effects separately. For example depth of field simulation [Cook 84]
and fast approximations of depth of field [Kass 06] have been studied. The thick lens
model [Kolb 95] provides a linear approximation with regard to the lens thickness, caus-
ing significant visual influence by optical path length manipulation [Pedr 06]. It origi-
nates from optical design analysis [Smit 07]. The linear transformation based on parax-
ial optics allows oneto express the imaging process of a whole system of lenses in a
single transformation matrix. We used the thin lens model, a special case of the thick
lens model to generate all the images shown in that chapter. Models like the thin and
thick lens model are not able to simulate sophisticated optical effects like lens aberra-
tions of higher order, or flare effects inside the system. Our approach based on Monte
Carlo path generation methods extends this by certain important methods: wavelength
dependent events, the use of real glass data and consideration of dielectric Fresnel
interaction at every glass surface. The correct simulation of light interacting with glass
surfaces is important for realistic results. [Devl 02] provides an overview over all neces-
sary formulas. Based on this, we use Sellmaier definitions of typical optical glass types
that can be found in the Schott glass catalog [Opti 09].

Aberrations

In the lens the varying thickness and incident angle due to the spherical surface causes
a changing optical path length with varying ray height h (see Figure 6.45), i.e. distance
of the ray to the optical axis. Consequently, the image suffers from so-called Seidel
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Figure 6.45: Comparison of Gaussian refraction (dashed) and Snell’s refraction (solid)
of marginal region rays.

aberrations [Ray 02, Smit 07]. Tracing rays through an optical system means applying
Snell’s law [Devl 02] repeatedly:

η(λ) sin θ = η′(λ) sin θ′ (6.15)

The Taylor expansion of sin θ reveals that the incident angle appears in different orders.

sin θ =
∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!
= θ − θ3

3!
+
θ5

5!
± · · · (6.16)

Discarding all terms of higher order than the first yields the paraxial approximation

sin θ ≈ θ, (6.17)

which is valid for small angles θ. This linear approximation of Equation 6.16 is the cen-
tral basis of all linear lens models like the thin or thick lens description. By truncating the
higher order terms, aberrations for a larger ray height with increasing θ can not be sim-
ulated anymore. In contrast, we use Snell’s law (Equation 6.15) for our computations
and therefore the ray height is not limited. Figure 6.45 depicts the difference between
linear Gaussian optics and reality for marginal rays with large height h. Seidel [Seid 57]
classified five different forms of monochromatic aberrations introduced with the 3rd or-
der. The effect that paraxial rays with large height are focused closer to the lens is
called spherical aberration. For oblique rays, coma aberration causes comet-like tails
to points. Astigmatism is caused by the fact that the ray height can vary in two direc-
tions, resulting in different image planes. Field curvature is the obvious consequence
of using spherical surfaces. The image is not formed on a real plane, but on a curved
surface. Distortion arises with marginal rays, becoming more or less magnified, and
thus introducing either inward pincushion distortion or outward barrel distortion. Chro-
matic aberrations are caused by dispersion during transmission. Shorter wavelengths
are focused closer to the lens because of stronger refraction compared to longer wave-
lengths.
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Lens Design

Optical instruments usually consist of one or more spherically curved, axially symmetric
glass surfaces. Using lenses in tandem, either cemented or with a gap in between,
offers possibilities for aberration correction, imaging distance or effective focal length
manipulation. A typical description of a lens design is outlined in Figure 6.46.

radius[mm] thickness[mm] material radius[mm]
42.970 9.8 LAK9 19.2
-115.33 2.1 LLF7 19.2
306.840 4.16 air 19.2
aperture 4.0 air 15.0
-59.060 1.870 SF7 17.3
40.930 10.640 air 17.3
183.920 7.050 LAK9 16.5
-48.910 79.831 air 16.5

Figure 6.46: Tessar Design by Brendel (USP 2854889)[Smit 05], f /2.8, 100mm effec-
tive focal length (EFL).

Each row describes one spherical surface inside the device. The curvature follows a
fundamental rule: A positive radius stands for a surface with center of curvature on the
right side, and negative sign means that the center is on the left side. The thickness
applies to the transmission distance along the optical axis. The material name is a code
referencing an entry in the Schott glass catalog [Opti 09]. The last column represents
the semi-diameter of the element. The aperture stop position and radius are defined in
row 4. It is important to note that all values are scaled with the same factor when using
the same lens design for a different focal length.

Flare Effects

Light in a lens housing is not only refracted towards the sensor. Internal reflection
cannot be completely eliminated and become clearly visible in certain situations. A
typical flare effect is oblique incoming light, that gets reflected at a surface and then
reaches the image plane as can be seen in Figure 6.47.

In order to model the typical color variations of lens flares, absorption characteristics
of material coatings have to be simulated. We approximate thin-film interference by
including a look-up step right after Fresnel computation.

For the specific phenomenon of lens flares, we only need to consider direct light from
the scene to obtain the light paths for reflection artifacts. Lens flares are best found
by starting samples at light sources and deterministically connecting them to the lens.
The resulting image delivers an independently viewable solution of the lens flare as
shown in Figure 6.49 (left). The results are only correct for the predetermined setting
of direct light. Mirror interactions are not accounted for in the light tracing pass but
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Figure 6.47: Secondary reflections inside the lens barrel can arise due to extreme an-
gles of incidence, which cause internal reflections inside the elements, as
seen on the left. The right schematic shows, that stray light occurs when
the barrel has a certain reflectance.
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Figure 6.48: Lens tracing plot for an aperture-less Momiyama wide-angle [Smit 05] at
36mm with fix f /2.8, simulating lens flare either directly at the first surface
or later. The image of the light source itself is not in the field of view.
The reflected rays reaching the sensor create the flare effects. This image
illustrates that simulating a lens creates highly incoherent rays.

could be easily included by extending the light paths and filtering out appropriately in
the backward stage. Neglecting direct light in the backwards path tracing stage allows
both results to be summed up to the final image in Figure 6.49 (right). The lens tracing
plot in Figure 6.48 clearly shows regions on the sensor, where reflected light arrives.
This plot also illustrates how incoherent the resulting rays are from the simulation.
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Figure 6.49: In the left images, a 33mm wide-angle lens by Mori [Smit 05] at f/2.8 was
used. A lens surface was equipped with a modified reflection spectrum
resembling a thin layer V-coating [Smit 07] (lower left). The right images
show the lens flare result of Kimura wide-angle with f/5.6 clearly repro-
ducing aperture ghosts. The combined image gives an impression of the
resulting impact.
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Figure 6.50: The left image shows a photograph of fluorescent concentrator samples
used for the measurements. The right figure illustrates the concept of a
fluorescent concentrator: the absorbed light is re-emitted at a different
wavelength in the dye and then guided to the solar cell, with a very low
probability of re-absorption. One can improve this by using a concentrator
stack, as shown in the figure.

6.6.2 Fluorescent Concentrator Simulation

Spectral light transport has of course also applications for directly simulating physical
processes without the need to produce images. One such application is the simulation
of fluorescence. In this section we investigate fluorescence in the context of fluorescent
concentrators. Fluorescent concentrators (see Figure 6.50 for a photograph) are devel-
oped in solar energy research in order to improve the efficiency and applicability of solar
cells. This is achieved by concentrating even diffuse light on cloudy days on small solar
cells, using a fluorescent dye enclosed in low-cost acrylic glass. One advantage is their
ability to use also the diffuse light on cloudy days for solar cells and the reduction of the
costs for photovoltaic systems. We developed a Monte Carlo simulation model for fluo-
rescent concentrators that makes it possible to test and improve different setups and to
gain further insight into the physical processes. This work was published in [Bend 08].

A fluorescent concentrator is made from PMMA (acrylic glass) and contains a dye.
Figure 6.50 illustrates the basic setup for one application of a fluorescent concentrator:
If light enters the concentrator and hits a dye molecule it will be absorbed and re-emitted
at a different wavelength according to the photo-luminescence spectrum (PL-spectrum).
Since the PL-spectrum is shifted to longer wavelengths as compared to the absorption
spectrum, light is unlikely to be re-absorbed and therefore travels through the medium
mostly undisturbed. By designing the fluorescent concentrator in a certain shape, light
is trapped inside and can be guided to the solar cell due to total internal reflection.

Through Monte Carlo simulation, it is possible to check the existing physical models
of fluorescent concentrators and to thoroughly test new ideas. Thus enhanced concepts
can be invented and proved before their realization. The data and techniques acquired
during our investigations can also be applied to Monte Carlo ray tracing applications to
simulate fluorescence in the context of computer graphics.

Our work is based on the dissertation of Zastrow [Zast 81] and the publications of
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Figure 6.51: Processes in a fluorescent concentrator.

Peters, Goldschmidt et al. [Gold 06, Pete 07] about fluorescent concentrators. It fo-
cuses on the physically correct simulation of fluorescent concentrators in order to gain
deeper knowledge about the physical processes involved and to optimize the concen-
trator. Heidler [Heid 82] developed a Monte Carlo model for fluorescent concentrators
in 1982. His model was made for an efficiency analysis for the concentrator. Carras-
cosa et al. [Carr 83] were first to describe ray tracing of fluorescent concentrators. In
the last few years Burgers et al. [Burg 05, Burg 06] and Schüler et al. [Schu 07] used
Monte Carlo ray tracing for simulations of fluorescent concentrators and quantum dot
solar concentrators, respectively. We conduct additional experiments, as e.g. the an-
gular experiment and use the fast incoherent ray tracing developed in Chapter 3 which
make a quick simulation possible and even allow for interactive previews for dynamically
changing material parameters.

Simulation

Parts of the processes in a fluorescent concentrator are well known and can be de-
scribed by analytical models. But for example the behavior of the dye is still not fully
understood and difficult to measure in an experimental setup. In order to build a sim-
ulation we have to rely on existing models and experimental data. The required input
parameters are reconstructed from the measured absorption and photo-luminescence
spectrum.

We used a range from 300 to 800 nanometers of the AM 1.5 spectrum [Amer] for the
input wavelengths. The dye in the concentrator we used to test our model was BA241.
This data can easily be replaced to simulate different conditions, for instance a different
dye.

We decided to simulate single particles (photons) with one wavelength instead of
weighted paths. These particles are traced on their way through the fluorescent con-
centrator. Each of the interactions is modeled as independent event. This approach
requires more rays to be shot than other methods, which transport differential energy
per path, but on the other hand it is less error prone in the implementation and numeri-
cally more robust.

The use of the our ray tracing method not only allowed to quickly simulate physical
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measurements but to use the described method also for image generation of com-
plex models build from the described material. For example, without fluorescence, the

Figure 6.52: A dragon with fluorescent dye (left) and the same dragon rendered without
fluorescence (right).

dragon model would look like the right image in Figure 6.52. Employing just an or-
dinary yellow dye would change the color of the caustics under the dragon. Fast ray
tracing allows for interactive feedback when changing parameters like lighting condi-
tions and material properties of the fluorescent concentrator. For simple shapes, as
the original sample, even interactive changes to the geometry would be possible. The
visualization system only draws one sample per pixel when parameters are changed
(see Figure 6.53), but quickly accumulates more samples to a converging image if the
parameters are left unchanged.

Figure 6.53: Interactive previews of a fluorescent dragon and the sample.

177



6 Practical Physically-Based Image Synthesis

178



7
Conclusion

In this thesis we investigated high performance ray tracing and its application to phys-
ically based light transport simulation. One of the primary goals was to enable high
quality production rendering using global illumination and physically based algorithms.
With the architecture that was presented here, we achieved this goal. We provided
solutions for offline high quality final frame rendering as well as fast interactive preview
that achieves high quality within real-time constraints. This full rendering system was
presented in Chapter 6, where we developed all the individual building blocks needed
for a full production system. With our path space partitioning method, scenes with non-
physical materials can be robustly rendered and the images are guaranteed to converge
to a solution. We also showed that when using physically correct materials our system
produces the correct result and we provided examples that it can be used directly for
quantitative physical simulations.

To achieve the required performance for our light transport algorithms we developed
a ray tracing acceleration structure in Chapter 3 that is not only faster than all previously
available triangle based methods, but also uses a lot less memory. This data structure
was specifically optimized for incoherent rays that occur in global illumination simulation.
We also considered the scene representation in Chapter 4 and developed, among other
strategies, a triangle splitting pre-process that further accelerates ray tracing. This
pre-process is again fully transparent to the rendering system and is part of the tree
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construction. All the algorithms we developed also make use of the hardware features of
modern processors and we show that a few low level optimizations can greatly improve
the ray tracing performance. With our investigation of software caching in Chapter 5
we further sped up incoherent rays and the visibility computations without the need
to explicitly construct coherent data access. All these methods combined provide the
necessary foundation for our high quality production rendering system and the high
performance preview system.

7.1 Future Work

Computer architecture is a moving target. In recent years we have seen some major
architectural shifts in commodity hardware, for example, with the introduction of freely
programmable GPUs. CPU architecture is also evolving at a quick rate. This means
that many of the more hardware related details of implemented algorithms might need
to be adjusted for future hardware generations. Especially the actual impact of SIMD
units wider than 4 will be an interesting future research topic as soon as this hardware
is actually available.

Another interesting aspect is the choice of scene representation. We chose the tri-
angle representation because it allows for high performance and relatively complex
scenes. But the strive for more complexity quickly reaches the limits of what can be
stored in core. Out of core techniques and streaming were developed to cope with the
needed complexity but are limited by bandwidth. In the future it will be interesting to
see if the triangle representation remains the best choice. Procedural methods that are
tightly coupled with the ray tracing method might allow for much higher complexity. But
these techniques are not yet ready for a full production environment and a lot of re-
search will be needed to develop the necessary data structures, algorithms, and editing
tools.

The speed of the actual rendering is also an important research area. Even though
we presented many improvements, photo realistic image generation is still a slow pro-
cess, even on the fastest hardware available. One potential improvement is to find
clever approximations that do not compromise the final quality of an image. However,
defining image quality is a subjective problem. Thus the correct solution, in the sense
of Monte Carlo integration of the full light transport equation, should always be of prime
importance in the development of new algorithms. The improvement of ray tracing itself
is not only important to accelerate existing techniques but, as shown in this thesis with
the simulation for fluorescent concentrators, it can enable new applications that were
previously impossible to achieve in a reasonable amount of time. Providing physically
correct simulations at nearly interactive speeds will change the way physicists perform
virtual experiments. These techniques are also not limited to light transport simulation
and possible applications range from chemistry to medical applications.
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