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1 Introduction

In many areas (including e.g. medicine, biology, ecology and econometrics), data are measured

that have naturally a functional context. One example for measurements in time in the medical

area are regular visits of patients where indicators for the medical condition, so-called biomark-

ers, are measured. Examples in space also occur very often, for example in image analysis and

ecology. The functional context of the data shall be directly addressed by using functional data

analysis. But what does functional data analysis mean?

To express it in terms of probability theory, let T be an index set and (Ω,F , P ) a probability

space. The function Y : T ×Ω→ R is a functional variable, if Y (t, ·) : Ω→ R is a scalar random

variable for each t ∈ T and if T is infinite. If T was finite, we would be in the multivariate

case. Hence a functional dataset consists of observations of I functional variables Y1, . . . , YI

identically distributed as Y . This thesis deals with the cases where T is a real interval (e.g.

time) or a rectangle in R2 (e.g. space) and were the paths Y (·, ω) are continuous for all ω ∈ Ω.

In practice, one never observes the functions themselves, but measurements that are taken only

at discrete measurement points. Furthermore, measurements can be error-prone and taken at

irregular measurement points throughout the observations (e.g. in case of patient visits, the

visit days usually vary from patient to patient). Hence suitable methods have to be applied to

the measured data in order to obtain smooth observations or e.g. smooth moment estimators.

One could pose the question why this kind of data is treated as functional and not as multivariate

data. The reason is, except for the treatment of the mentioned irregularities, that we want to

include information of the environment, which can be done if some kind of continuity is assumed.

Essentially two main directions exist in the area of functional data analysis. In the first approach

a set of basis functions over T is defined and the measurements are represented through this

functional basis. Evaluations are based on the coefficients of this representation. Ramsay and

Silverman [2006] is a comprehensive application-oriented reference book of this approach with

further applications in Ramsay and Silverman [2002]. For a summarized overview see Levitin

et al. [2007].

In contrast, there exists an approach that works without this kind of parametrization. Instead,

smoothing techniques (mainly nonparametric) are applied in order to derive smooth functions.

An introduction to this topic is given by Ferraty and Vieu [2003] and a more comprehensive

treatment of techniques in this field in Ferraty and Vieu [2006].

As functional processes have (at least in theory) an infinite number of dimensions, it is crucial

to concentrate on the important information in order to get an overview of the structure of the

process. A method to do so is principal component analysis (PCA), which allows to extract

the major modes of variations and to represent the infinite dimensional process with great

accuracy through a small, finite basis. Principal components are an efficient way to represent

the data through an orthonormal system, because the principal components system is optimal

amongst all possible orthonormal systems in the sense that it retains most of the variability of
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1 Introduction

the original process.

Principal component analysis is a popular method in multivariate analysis as it reduces the

number of dimensions of a high dimensional data set to a few relevant ones. The first principle

components, which are linear combinations of the original variables, are optimal in the way that

they can explain the most variation in the data set of all possible orthogonal linear combinations.

For an extensive overview of PCA in the multivariate analysis see Jolliffe [2004]. PCA is

conceptually easy to extend to the functional case and, compared to multivariate PCA, it

is even of greater use, because multivariate PCA often suffers from a lack of interpretation.

The variables in a multivariate data set can explain features with totally different ranges and

meanings. Hence a linear combination of them has often no clear meaning. Through the

continuous index set in functional analysis, the principal components are also curves and can

be seen directly as the major modes of variation.

Early work on functional PCA (FPCA) was done for example by Obhukov [1960], Dauxois et al.

[1982], Castro et al. [1986], Besse and Ramsay [1986] and Bouhaddou [1987], but the method

became more popular with the progress in computing speed.

FPCA in the context of the basis representation of functional data is treated in detail in Ramsay

and Silverman [2006]. The FPC calculation is in this case accomplished through transforming

the original problem to an analysis on the coefficients of the basis representation. Ocana

et al. [2007] explain the equivalence of FPCA on curves and the multivariate PCA in the basis

approach. Johnstone and Yu Lu [2009] discusses the method with emphasis on sparseness.

Nonparametric smooth estimators for mean, covariance and principal components are derived

by Rice and Silverman [1991]. Silverman [1996] includes smoothing by choosing the norm

appropriately. Boente and Fraiman [2000] treat kernel-based estimation methods for FPCA.

Yao et al. [2003] and Yao et al. [2005] examine FPCA intensively, including analysis on regular

grids as well as highly irregular and sparse data. Briefly summarized, their method is based on

a nonparametric smoothing of the mean and covariance function of the process and principal

components are estimated based on a discretized version of the covariance function.

Lots of other approaches and variants of FPCA exist which are adopted to various data sit-

uations. To name a few, in Yao and Lee [2006], the authors use penalized spline methods to

estimate the mean function and Yao [2007] includes joint modeling of longitudinal and survival

data in their FPCA framework. A Bayesian approach to FPCA is given by van der Linde

[2008]. Benko et al. [2009] adapts FPCA to a two-sample problem and Cardot [2006] includes

a covariate in their analysis. Müller et al. [2006] include a variance process instead of a non-

random variance function in their modeling of a functional process and estimate additionally a

variance function for each observation. In Müller and Stadtmüller [2005], the authors perform

generalized linear modeling with random functions as predictors.

The major topic of this thesis is the extension of a temporal FPCA method to spatial func-

tional data. The possibility of extension is mentioned by some authors, including Jolliffe [2004,

Section 12.3], Ramsay and Silverman [2006, Section 8.5.3] and Yao et al. [2005]. An early refer-

ence (Preisendorfer and Mobley [1988, Section 2d]) carries out two approaches to FPCA in the

spatial case: In the first approach the actual problem is replaced by a discrete dual problem,

which is easier to solve. The second approach uses spatial basis functions and is essentially

a spatial variant of the approach of Ramsay and Silverman [2006]. Braud et al. [1993] apply

2



the FPCA method of Bouhaddou [1987], which also uses the dual approach. Actual execu-

tions of the extension in the nonparametric case including smoothing, convergence results and

implementations are lacking up to our knowledge.

Therefore we extend the estimation method of Yao et al. [2003] and Yao et al. [2005] to

spatial data and show the consistency of the estimators under certain conditions. In order to

have a sound basis for this demonstration, we present the one-dimensional case at first and

afterwards extend the theoretic framework and the nonparametric estimation of mean and co-

variance function as well as principal components to the spatial case. Estimation is performed

through local regression smoothing techniques. For the two-dimensional approach, we further

define an approach where only observations and principal components, but not the estimated

mean and covariance functions, are smoothed, because this is favorable in computing time and

also applicable in situations with non-sparse data. In both cases, one- and two-dimensional,

we demonstrate and evaluate the estimation on simulations of a Wiener process. During eval-

uation of the two-dimensional Wiener process, we can show how to handle multi-dimensional

eigenspaces. Both, the one- and two-dimensional process are applied in multiple data situations

and finally we can successfully derive consistency rates, which are already available by Yao et al.

[2005] for a slightly different data situation in the one-dimensional case, for the two-dimensional

data situation. Furthermore, the one- and two-dimensional methods are implemented in an R

package. This is done by using S4-classes, the current R standard of object-oriented program-

ming, as described in Chapter 9 of Chambers [2009].

Before describing the structure of the thesis, we want to introduce the main application area:

In laboratory diagnostics, assays on patient samples are conducted in order to support the

physician in diagnosing diseases. These assays determine the concentration of one or more

analytes (substances in a sample) which are indicators for the disease under examination.

Presently a new generation of analysis systems is under development. These systems allow

measuring multiple analyte concentrations with only one sample. Particularly in examining

complex diseases with lots of analytes to be determined, this is a major facilitation.

The multi-parameter system (see Figure 1.1) is a system which realizes antigen-antibody re-

actions for different analytes on one unit and measures the level of specific bindings through

fluorescent markers for each analyte. The core of this system is a chip with a matrix of spots

on its even surface. In the practice variant one spot line (i.e. one column of spots) only contains

spots for one type of analyte, but in the development phase, chips with a homogeneous coating

on the whole surface are used as well, so that structures on the chip surface can be analyzed.

Figure 1.2 shows examples for both types.

Measurements of a chip are taken on a grid, but even if the measurements are taken at discrete

points, they can be seen as chosen point measurements of a whole outcome function. The

measurement procedure and the data are described in more detail in Chapter 4.

Various questions arise in this context, for example how to evaluate the spatial measured signal

structure or how to compare measurements of two platforms or of different units on the same

platform. Further the performance shall be monitored over time and outlier measurements

detected. These questions we want to address with the method of spatial FPCA.
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1 Introduction

But not only spatial examinations are of interest. When evaluating real samples, the values of

the vertical lines (columns) in Figure 1.2(a) are averaged in a robust way. That is why we also

analyze averaged column data using one-dimensional FPCA as well as other methods.

Figure 1.1: Multi parameter analyzer system

(a) Picture of a spotted chip surface (b) Picture of a full field chip surface

Figure 1.2: Camera pictures

The thesis is organized as follows:

Chapter 2 first provides a brief introduction into multivariate PCA, before presenting the theory

of the one-dimensional functional principal component analysis. Afterwards the nonparametric

estimation of the principal components is presented and basics concerning kernels, smoothing

and the choice of bandwidth are included. The method is applied to a Wiener process, because

the FPCs of this process can be determined theoretically, such that the method can be validated

using this process. Finally a section treats clustering of the FPCA outcomes, which is one typical

way the FPCA results are used.

In Chapter 3 we extend the FPCA method from one- to two-dimensional domains. Prior to

the estimation of the spatial FPCA, the theoretic framework for spatial FPCA is given. Like in

the one-dimensional case, also in the two-dimensional case a Wiener process with theoretically

computable principal components exists and we estimate the FPCs of the Wiener process also
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in the spatial case.

Afterwards, the real data applications follow: Chapter 4 includes one-dimensional and Chapter

5 spatial applications. In the first application in Chapter 4 one-dimensional summaries of the

measurement chips are clustered by different methods including a clustering method based on

FPCA results. The second application is the single application in this thesis which is not settled

in the area of the analysis system. In this application longitudinal measurements of clinical

parameters are analyzed using FPCA. We use this example to compare the above-mentioned

parametric FPCA approach by Ramsay and Silverman [2006] with our nonparametric method.

In the two-dimensional application Chapter 5 two different examples of spatial FPCA in the

context of the analysis system are presented. In the first application chips of two different

instruments are compared according to their variance structure. The second example includes

repeated series of measurements of the analysis system. The aim of that section is to apply

spatial FPCA in order to analyze the variance structure respectively the change of the variance

structure over time.

In Chapter 6, consistency results for the one- as well as the two-dimensional estimation are

calculated. The one-dimensional case is close to the work of Yao et al. [2005], though we

consider a slightly different framework and modified the proof at appropriate points.

The results of this chapter are already summarized in Chapters 2 and 3. Therefore only readers

interested in the technical details need to read Chapter 6.

Chapter 7 explains the implementation of the one-and the two-dimensional FPCA method in

the statistical programming language R and finally Chapter 8 provides a summary of the thesis

and the discussion of some main points.
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2 Functional Principal Component Analysis

Functional principal component analysis (in the following abbreviated by FPCA) is an extremely

useful tool in functional data analysis, because it allows seeing variance structures which are

not obvious when simply displaying the data. Furthermore, it provides an evaluation of the

complexity of a data set through regarding how many components are needed to represent

the data set in satisfying accuracy in the FPC basis. The FPC scores (i.e. the coefficients

of representing the data through a principal component basis) contain information about the

location of each observed curve in the FPC space and can be used for example to identify

outliers or build clusters of curves with similar structure.

2.1 Theory

Before introducing PCA in the functional case, we want to discuss PCA in the well-known

multivariate framework first. The multivariate PCA can be interpreted as an axis rotation. If

one represents a data set in the new system of coordinates, the coefficients belonging to the first

K rotated axes (for each K = 1, 2, . . .) explain as much variation as possible with this number

of components. Therefore one can reduce the new system by leaving out the last axes without

losing much variation.

Assume an N -dimensional random vector Y = (Y1, . . . , YN )T with expected value vector

µ = (µ1, . . . , µN )T and covariance matrix Σ =


Σ11 . . . Σ1N

...
. . .

...

ΣN1 . . . ΣNN

 .

Then the principal components can be defined as follows (Jolliffe [2004]):

Definition 1. A vector ρ1 = (ρ11, . . . , ρ1N )T with ||ρ1|| = ρT1 ρ1 = 1 is called first principal

component of Y , if the variance Var(Y T ρ1) is maximal within the linear combinations with

standardized coefficient vectors:

Var(Y T ρ1) = ρT1 Σρ1 = max
{ρ∈RN | ||ρ||=1}

ρTΣρ (2.1)

For k = 2, . . . , N a vector ρk = (ρk1, . . . , ρkN )T with ||ρk|| = ρTk ρk is called the kth principal

component of Y if ρk⊥ρl, i.e. ρTk ρl = 0 for l < k, ||ρk|| = 1 and

Var(Y T ρk) = ρTk Σρk = max
{ρ∈RN | ||ρ||=1,ρ⊥ρl for l<k}

ρTΣρ. (2.2)

This definition is directly based on the variance maximization property. Alternatively principal
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2 Functional Principal Component Analysis

components can be defined as the eigenfunctions of the covariance matrix. We want to state

this equivalent proposition as a theorem:

Theorem 1. The kth principal component is an eigenvector of the kth largest eigenvalue of

the covariance matrix Σ. Hence the principal components can be calculated by finding all pairs

(λk, ρk) with λk ∈ R and ρk ∈ RN , ρk 6= 0 which solve the eigenequation

Σρ = λρ under the condition ρk ⊥ ρl for k 6= l.

Proof. This is a consequence of Lagrange’s rule (Heuser [2002, Section 174]) because the rule

states that for a solution ρ1 in (2.1) there exists λ1 such that (with grad being the gradient of

a function)

gradρ1
(
Var(Y T ρ1)− λ1(1− ρT1 ρ1)

)
= 0

⇔ 2Σρ1 − 2λ1ρ1 = 0

and for a solution ρk (k ≥ 2) there exist λk and ν1, . . . , νk−1 such that

gradρk

(
Var(Y T ρk)− λk(1− ρTk ρk)−

k−1∑
l=1

νlρ
T
l ρk

)
= 0

⇔ 2Σρk − 2λkρk − 2

k−1∑
l=1

νlρl = 0

Multiplying the formula with ρl the first two terms vanish and we can deduce νl = 0 for

l = 1, . . . , k − 1 and therewith

Σρk − λkρk = 0

Furthermore, each solution of the eigenequation leads to a principal component. Observe that

Definition 1 leads to N principal components due to the N dimensions of the space RN and the

condition that the principal components must be orthogonal. Therefore Lagrange’s rule leads

to N orthogonal eigenvectors of the covariance matrix. Moreover, we know from linear algebra

that a positive semi-definite N × N matrix has exactly N orthogonal eigenvectors. Hence we

can deduce that each eigenvector is also a principal component.

In order to see the analogy to the functional case later on, we want to remark that for each

element x ∈ RN , scores in the principal component space can be defined such that

x = µ+

N∑
k=1

ξk(x)ρk with ξk(x) = (x− µ)T ρk.

Naturally we could define the scores also without subtracting the mean but as x is later regarded

as an observation of the process Y it is consistent to use this representation.

8



2.1 Theory

Further the process Y itself can be represented through its principal components by

Y = µ+

N∑
k=1

ξk(Y )ρk with ξk(Y ) = (Y − µ)T ρk.

The scores ξk(Y ) are uncorrelated random variables with mean 0 and variance λk:

E(ξk(Y )) = E((Y − µ)T ρk) = E(Y − µ)T︸ ︷︷ ︸
=0N

ρk = 0

Cov(ξk(Y ), ξl(Y )) = Cov((Y − µ)T ρk, (Y − µ)T ρl) = ρTk Σρl =

0 k 6= l

λk k = l

In the multivariate case, the observations are vectors x = (x1, . . . , xN ) ∈ RN with the dot

product 〈x1, x2〉 = xT1 x2 as inner product for x1, x2 ∈ RN . In the functional case, the vectors

are replaced by functions f : T −→ R (T is a bounded interval in R). The appropriate inner

product in this case is the integral 〈f1, f2〉 =
∫
T
f1(t)f2(t) dt . In order to have a well-defined

setting, we specify the following framework (compare e.g. Chiou and Li [2007]):

We consider functions in the space of square (Lebesque-)integrable functions as observations,

i.e. functions in

L2(T ) =

{
f : T −→ R

∣∣∣∣ ∣∣∣∣∫
T

f(t)2dt

∣∣∣∣ <∞}
for a bounded interval T in R with inner product < f, g >=

∫
T
f(t)g(t)dt and the corresponding

norm ||f || =
√
< f, f >. L2(T ) is a Hilbert space with the defined metric if we identify the

functions which are almost everywhere identical (in other words which differ only on a null set)

(see Heuser [2006, Chapter 4]).

Furthermore, let (Ω,A, P ) be a probability space. Then we consider a stochastic process Y :

T × Ω → R such that |
∫
T
E(Y 2(t, ω)) dt| < ∞ and hence almost all paths t → Y (t, ω) are

in L2(T ). The mean function of the process is given by µ(t) = E(Y (t)). We furthermore

assume that the second moment E(Y 2(t)) exists everywhere, such that the covariance function

G(s, t) = Cov(Y (s), Y (t)) exists.

Then we can define the covariance operator A : L2(T ) −→ L2(T ) with

(Af)(t) =

∫
T

f(s)G(s, t) ds (2.3)

for f ∈ L2(T ) and t ∈ T . In order to show that A is well-defined observe that for a function

f ∈ L2(T ) we deduce

∫
T

(∫
T

f(s)G(s, t) ds

)2

dt ≤
(∫

f(s)2 ds

)
︸ ︷︷ ︸

=||f ||2<∞

∫ ∫
Cov(Y (s), Y (t))2 ds dt

≤||f ||2
∫
T

∫
T

[E(Y (s)Y (t))− E(Y (s))E(Y (t))]
2
ds dt

9



2 Functional Principal Component Analysis

≤||f ||22

∫
T

E(Y (s))2 ds

∫
T

E(Y (t))2 dt <∞

because f ∈ L2(T ) and Y is square integrable.

The covariance operator is a linear compact symmetric operator such that the general spectral

theory for this kind of operators in Hilbert spaces can be applied (see e.g. Heuser [2006, Chapter

5]).

The principal components of the process Y are the eigenfunctions of the operator A. This time

we provide the eigenfunction definition first and deliver the variance maximization criterion

later on.

Definition 2 (Eigenfunctions and eigenvalues). If a function ρ ∈ L2(T ), ρ 6= 0 and a constant

λ ∈ C fulfill

Aρ = λρ ⇔ < G(·, t), ρ > = λρ(t) for all t ∈ T ,

λ is called eigenvalue with eigenfunction ρ of A respectively G.

The main difference to the multivariate case is that the number of principal components is in

general infinite. Despite the infiniteness, many of the properties of multivariate PCA are valid

as well (see Heuser [2006, Chapter 5]). We have to keep in mind that the properties apply up

to a null set.

Properties 2.

1. The set of eigenvalues is countable and as A is symmetric and positive semi-definite,

the eigenvalues are real, non-negative values, such that we can assume in the following

that the eigenvalues are ordered as λ1 > λ2 > . . . ≥ 0 with corresponding eigenfunctions

ρ1, ρ2, . . ..

2.
∑∞
k=1 λk <∞, in particular λk → 0

3. If for one k ∈ N, λk = 0, the process is finite dimensional.

Often, in the functional case, only eigenvalues > 0 are considered because they are sufficient to

describe the underlying process. If the sequence of positive eigenvalues interrupts, there is an

infinite (countable) set of eigenvalues equal zero in Definition 2. We will see later on, that this

is not of practical relevance, but in this section it is important to notice the difference.

4. The eigenspace of each eigenvalue > 0, i.e. for an eigenvalue λ the space

{
f ∈ L2(T ) |Af = λf

}
is finite dimensional and the eigenspaces for different eigenvalues are orthogonal.

5. If the eigenvalues are all > 0, the eigenfunctions define an maximal orthonormal system

in the Hilbert space L2(T ) and thereby also a orthonormal basis, provided the norm of

the eigenfunctions is standardized. Due to the remark following 3., this is also true if the

eigenvalues are zero starting at some index. The corresponding eigenfunctions than span

the nullspace of A.

10



2.1 Theory

6. The covariance operator A and the covariance function G can be expressed through eigen-

values and eigenfunctions as

Af =

∞∑
k=1

λk〈f, ρk〉ρk

G(s, t) =

∞∑
k=1

λkρk(s)ρk(t)

in L2(T ) for f ∈ L2(T ) and s, t ∈ T .

An important finding is that the stochastic process can be represented as a linear combination

of eigenfunctions and random coefficients (see e. g. Bosq [2000, Section 1.2]):

Theorem 3 (Karhunen-Loève expansion). If Y is a square integrable process with continuous

covariance function G, the process has a Karhunen-Loève expansion

Y (t) = µ(t) +

∞∑
k=1

ξk(Y )ρk(t).

The coefficients ξk(Y ) are given via ξk(Y ) =< Y −µ, ρk > and are called scores in this context.

The scores ξk for k ∈ N are uncorrelated random values with zero mean and variance λk. The

Karhunen-Loève series converges in L2(T ) and uniformly.

Like in the multivariate case we have an equivalence of Definition 2 with the variance maximiza-

tion criterion (Heuser [2006]). The maximization criterion reads as follows in the functional

case:

Theorem 4 (Variance maximization criterion). ρ1 is the function ρ that maximizes |〈Aρ, ρ〉|
with the constraint ||ρ|| = 1. Accordingly for k > 1, ρk is the function ρ that maximizes |〈Aρ, ρ〉|
with the constraint ||ρ|| = 1 and 〈ρ, ρl〉 = 0 for l ≤ k − 1.

In the following, the properties of the FPCA as stated in Properties 2, Theorem 3 and Theorem

4 shall be proven.

Proof of Properties 2, Theorem 3 and Theorem 4. In order to see the equivalence, first note

that sup{f | ||f ||=1} |〈Af, f〉| = ||A|| ([Heuser, 2006, Chapter V]). Therefore a sequence fl with

||fl|| = 1 exists such that 〈Afl, fl〉 −→ ||A|| =: λ. Furthermore

0 ≤ ||Afl − λfl||2 = ||Afl||2 − 2λ〈Afl, fl〉+ λ2||fl||2

≤ ||A||2 − 2λ〈Afl, fl〉+ ||A||2 −→l→∞ 0,

such that also

Afl − λfl −→l→∞ 0 (2.4)

follows. As A is a compact operator, (Afl) has a convergent subsequence (Aflm) and due

to (2.4) also flm converges to a limit function. Let the limit function be ρ. ρ has norm 1

11



2 Functional Principal Component Analysis

and fulfills Aρ − λρ = 0. Hence ρ is eigenfunction of eigenvalue λ. Further observe that

|〈Aρ, ρ〉| = sup{f | ||f ||=1} |〈Af, f〉|, because

|〈Aρ, ρ〉| = |〈λρ, ρ〉| = |λ| ||ρ|| = ||A|| = sup
{f | ||f ||=1}

|〈Af, f〉|.

Furthermore each function ρ that fulfills |〈Aρ, ρ〉| = sup{f | ||f ||=1} |〈Af, f〉| is an eigenfunction

of eigenvalue ||A|| (choose fl = ρ). Now define λ1 := λ, ρ1 := ρ and E1 := [ρ1]⊥ (the orthogonal

space of the span of ρ1) and A1 as the restriction of A on E1. A1 is likewise a symmetric compact

operator on E1 (see Heuser [2006, Chapter 5]) and if A1 6= 0 we can conclude like above, that

an eigenvalue λ2 exists with 0 ≤ |λ2| = ||A1|| ≤ ||A|| = |λ1| and an eigenfunction ρ2 with norm

1. Proceeding likewise with E2 etc. one obtains a sequence λ1 ≥ λ2 ≥ . . . > 0 and associated

eigenfunctions ρ1, ρ2, . . .. If we only progress as long as the eigenvalues are positive, the series

is truncated if A vanishes on Ek := [ρ1, . . . , ρk]⊥. We can rewrite L2(T ) = [ρ1, . . . , ρk] ⊗ Ek
and therefore write each f ∈ L2(T ) as

f =

k∑
l=1

〈f, ρl〉ρl + g with g ∈ Ek

and

Af =

k∑
l=1

λl〈f, ρl〉ρl.

If the series (λk)k does not break off, λk −→k→∞ 0. Otherwise
(
ρk
λk

)
k

would be bounded

and therefore the sequence (A ρk
λk

)k = (ρk)k would have a convergent subsequence. This is not

possible because ||ρk−ρl|| =
√

2 for l 6= k due to the orthogonality which yields a contradiction.

Furthermore, note that gk := f −
∑k
l=1〈f, ρl〉ρl ∈ Ek. Hence

||Agk|| = ||Akgk|| ≤ ||Ak|| ||gk|| = |λk+1| ||gk||

and

||gk||2 = ||f ||2 − 2

k∑
l=1

〈f, ρl〉〈f, ρl〉+ ||
k∑
l=1

〈f, ρl〉ρk||2

= ||f ||2 −
k∑
l=1

〈f, ρl〉2 ≤ ||f ||2.

Therewith also

||Agk|| ≤ |λk+1|||gk|| ≤ |λk+1|︸ ︷︷ ︸
→0

||f ||︸︷︷︸
const.

follows. We can deduce that Agk −→l→∞ 0 and Af =
∑∞
l=1 λk〈f, ρl〉ρl in L2(T ). Therewith

most of the properties are proved. Now we can proceed to prove the Karhunen-Loève represen-

tation. Without loss of generality we assume µ(t) = 0 in this proof and abbreviate ξk := ξk(Y ).

12



2.1 Theory

It is

E
(∫

T

|Y (t)ρk(t)| dt
)2

≤ E
(∫

T

Y 2(t) dt

∫
T

ρ2
k(t) dt

)

≤
∫
T

G(t, t) dt

∫
ρ2
k(t) dt <∞,

hence
∫
T
|Y (t)ρk(t)| dt <∞ and

ξk = 〈Y, ρk〉 =

∫
T

Y (t)ρk(t) dt

is well-defined. Further E(ξ2
k) <∞, E(ξk) = 0 and

E(ξk, ξl) =

∫
T

∫
T

ρk(s)G(s, t)ρl(t) ds dt = λkδk,l. (2.5)

Hence it follows that

E(Y (t)ξk) = E
(
Y (t)

∫
T

Y (s)ρk(s) ds

)
=

∫
T

G(s, t)ρk(s) ds = λkρk(t). (2.6)

Using (2.5) and (2.6) we obtain

E

(
Y (t)−

k∑
l=1

ξlρl(t)

)2

= E(Y 2(t))− 2

k∑
l=1

E(Y (t)ξl)︸ ︷︷ ︸
λlρl(t)

ρl(t) + E

(
k∑
l=1

ξlρl(t)

)2

︸ ︷︷ ︸∑k
l=1 ξ

2
l ρ

2
l (t)︸ ︷︷ ︸∑k

l=1 λlρ
2
l (t)

= G(t, t)−
k∑
l=1

λlρ
2
l (t)

for each t ∈ T and k ∈ N. According to Properties 2.6 it follows that

sup
t∈T

E

(
Y (t)−

k∑
l=0

ξlρl(t)

)2

−→k→∞ 0.

In practice, one uses a finite approximation of the Karhunen-Loève equation. The expansion is

truncated at a value M <∞ and µ and G are estimated from the data. Based on the estimated

G, the eigenvalues and -functions can be estimated and ultimately the scores as well. Due to the

Karhunen-Loève representation, observations can be reconstructed through the scores. Hence

the scores can be used in order to compare observations. Often the first two scores are already

sufficient in order to describe the observations in an adequate way. In the following, we explain

how the parameters can be estimated.
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2 Functional Principal Component Analysis

2.2 Estimation

We observe realizations of a process Y as discretized functions. In order to estimate mean and

covariance function and afterwards the principal components, eigenvalues and scores, it is nec-

essary to use smoothing methods to deal with the discreteness. Further possible measurement

errors of the observations and irregular data can be handled. This is why we first introduce

kernel functions, which are the basis for local smoothing techniques. Afterwards we turn to

the here applied smoothing technique. The next two subsections treat the one- as well as the

multi-dimensional cases such that they can be applied also in the chapter about spatial FPCA.

2.2.1 Kernel functions

Kernel functions are used to apply weights to each two measurement points and they assign

(in the most common cases) greater weight to small and lesser weight to greater distances of

measurement points. Therefore they can be used to weight smoothing techniques appropriately.

We want to define kernel functions and mention some characteristics that are important later

on.

In the one-dimensional case the kernels considered here are compactly supported functions

K : R→ R, mostly with a support [−1, 1]. K is called a kernel of order (ν, l) with ν, l ∈ N if

∫
K(t)tk dt =


(−1)νν! k = ν

0 0 ≤ k < l, k 6= ν

6= 0 k = l

(see e.g. Müller [1988, Chapter 4]). The first value ν refers to the derivative to be estimated.

The most frequent case is ν = 0 where the original function that created the observations is

estimated. In Chapter 6, we will also use kernels for estimating first and second derivatives,

i.e. with ν = 1 or ν = 2. l refers to the degree of smoothness the kernel implies. Müller

[1988] carries out that higher values of l lead to better convergence rates, but also have stronger

boundary effects.

A common kernel function which we apply in the following is the Epanechnikov quadratic kernel

(see Hastie et al. [2001]):

K(t) =

 3
4 (1− t2) if |t| ≤ 1

0 otherwise
,

which is of order (0, 2). The black line in Figure 2.1 shows the kernel function.

Derivative kernels can directly be constructed out of kernels of order (0, 2). If K is a one-

dimensional kernel function of order (0, 2), the derivative kernel is defined as Kt(t) = −tK(t)
σ2
K

with a scaling factor σ2
K :=

∫
K(t)t2 dt. One can easily recalculate that it has the order (1, 3).
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2.2 Estimation

Figure 2.1: The Epanechnikov kernel function (black line) and its derivative kernel (gray dotted
line).

The first derivative kernel for the Epanechnikov kernel is for example

K(t) =


(−t) 3

4 (1−t2)
1
5

0
=

3.75(t3 − t) if |t| ≤ 1

0 otherwise

and is plotted in Figure 2.1 as dotted gray line.

The kernel definition can also be extended to the multivariate case. A compactly supported

function K : Rq → R is a kernel of order (ν, l) with ν ∈ Nq and l ∈ N if

∫
K(t)tk dt =


(−1)νν! k = ν

0 0 ≤ |k| < l, k 6= ν

6= 0 for at least one k with |k| = l

,

using multi index notation |k| = k1 + . . .+ kq and k! = k1! · · · kq!.

Multivariate kernels can be composed as product kernels of one-dimensional kernels. In this

case one can calculate the order of the multivariate kernel knowing the orders of the one-

dimensional kernels. For example in the case where Kj is a one-dimensional kernel of order
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2 Functional Principal Component Analysis

(0, 2) for j = 1, . . . , q and K(t) = K1(t1) · · · KN (tq), one can derive that

∫
K(t)tk dt =

∫
K1(t1)tk1 dt1 . . .

∫
Kq(tq)tkq dtq =



1 k = 0q

0 0 ≤ |k| < 2, k 6= 0q

6= 0 for at least one k with |k| = |2|

(i.e. k1 = 2, kj = 0 for j 6= 1)

(2.7)

and therefore K is of order (0q, 2).

Multivariate derivative kernels are constructed following the same principle as in the univari-

ate case by forming the kernels component-by-component. For example regarding the two-

dimensional product kernel K(t1, t2) = K1(t1)K2(t2) with K1 and K2 both of order (0, 2), K is

of order ((0, 0), 2). The derivative kernel for the derivative in t1-direction is

Kt1(t1, t2) = (−t1)
K1(t1)

σ2
t1

K2(t2)

and is of order ((1, 0), 3).

2.2.2 Smoothing methods

Normally, data are not observed directly as functional data, but as measurements at discrete

points in time or space and often are error-prone. In order to obtain functional observations

which can be evaluated at each point in time, one needs to fit a function g : T −→ R (T ⊂ R or

T ⊂ R2 in the spatial case) to the observations. If g belongs to a class of functions which varies

in a finite number of parameters, we have a parametric regression model. If g is just assumed

to be k times continuously differentiable, the regression model is a non-parametric one.

Later on, our aim is to apply smoothing techniques in order to derive estimates for mean and

covariance function based on the raw values (see Section 2.2.3). In the following, our smoothing

technique of choice is local polynomial regression. If a function value f(t) shall be estimated

based on data (tl, yl) for l = 1 . . . , L, the points in the neighborhood of t are used to fit a

polynomial regression function in order to obtain an estimate f̂(t). Assume the relationship

f(tl) = yl + εl with independent errors εl having mean 0 and variance σ2. The neighborhood

is defined by using a kernel function K (as defined in section 2.2.1). This kernel function is

applied to the distance of t and tl, adjusted with a bandwidth h ∈ R>0 which defines the extent

of the neighborhood that is taken into account. Points near t are assigned a greater weight in

the regression than distant points.

In order to explain the general concept, let g(t;β) : R×Rd+1 −→ R (with β = (β0, . . . , βd) and

d ∈ N) be a polynomial of small degree, i.e. g(s) =
∑d
j=0 βjs

j . Then the local least squares

estimate of f based on the data (tl, yl) for l = 1 . . . , L is given by f̂(t) = g(0; β̂t) = β̂t0 with

β̂t ∈ arg min
β∈Rd+1

L∑
l=1

K
(
t− tl
h

)
[yl − g(t− tl;β)]2 (2.8)

for any fixed t ∈ R and a smoothing bandwidth h. Further one obtains an estimation for the
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2.2 Estimation

derivative of f via f̂ ′(t) = βt1.

The most common case is d = 0, where g(t;β) = β0 is constant. In this case the local estimator

is simply a weighted mean of the original data. This estimator is also called Nadaraya-Watson

estimator. For d = 1, g(t, β) = β0 + β1t is a linear function and for d = 2 a parable. Higher

orders of d are only scarcely used. The choice of d mainly influences boundary effects, which

are always critical in the estimation of functions.

If the data are in Rq (i.e. the data can be written as (tl1 , . . . , tlq , yl)), one can proceed analogously

with a kernel function K : Rq −→ R≥0 and a multidimensional polynomial of order d: g(s;β) :

Rq × RD(d,q) −→ R. The actual number of parameters D(d) is a function of d and q. For

example in the linear case D(d, q) = q+ 1 and g(s;β) = β0 +β1s1 + . . .+βqsq. The calculation

can be expressed through

β̂t ∈ arg min
β∈Rd

L∑
l=1

K
(
t1 − tl1
h1

, · · · ,
tq − tlq
hq

)
[yl − g(t1 − tl1 , ..., tq − tlq ;β)]2 (2.9)

with bandwidths h1, . . . , hq ∈ R>0. The estimator is again given by f̂(t) = g(0; β̂t) = β̂t0.

The regression smoothing technique with d ≥ 1 compared to the standard Nadaraya-Watson

kernel-weighted average reduces bias at the boundaries. Using a polynomial of order two instead

of one increases variance a lot and is mainly of use if curvature in the interior shall be estimated

with only a small bias (see Hastie et al. [2001]).

In the context of functional data analysis the data points (tl, yl) could be the discrete measure-

ments of one subject. In this case the result is a smoothed version of the observation. Otherwise

the (tl, yl) could be the pooled data of several subjects or pooled raw covariances values of each

two subjects. Then the mean respectively covariance function over all observations is estimated.

The precise explanation of these cases is given in the next section.

Under some regularity conditions, one can show the uniform convergence of this kind of esti-

mators. In our situation this is carried out in Chapter 6. For the general case please refer to

Fan and Gijbels [1996].

2.2.3 Estimation of moments

For estimating the FPCs, we first need an estimation of mean and covariance function. Before

the estimators are introduced, the general stochastic framework shall be defined. Our main

assumption is that we have independent observations of a process over time (or another con-

tinuous one-dimensional variable). Further we allow additional measurement errors to occur as

long as they show no correlations.

Let X be a stochastic process in L2(T ) and the trajectory Xi of the ith subject an independent

identical copy of X. To incorporate measurement errors (see Yao et al. [2005]), let Y i be a noisy

observation made of Xi, such that the nth observation of Y i made at time tin (for n = 1, . . . , Ni)

can be written as

Y in = Xi(tin) + εin,

wherein E(εin) = 0 and Var(εin) = σ2. The errors εin are assumed to be iid for all points in time

and all subjects.
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2 Functional Principal Component Analysis

We assume that the mean and covariance function

µ(t) = E(X(t)) and G(t1, t2) = Cov(X(t1), X(t2))

exist.

According to the theory of section 2.1, the covariance function G has an orthogonal expansion

G(t1, t2) =

∞∑
k=0

λkρk(t1)ρk(t2), t1, t2 ∈ T

with eigenfunctions ρk and non-increasing eigenvalues λk (
∑
k λk <∞, λ1 ≥ λ2 ≥ ... ≥ 0) and

the Xi can be represented as

Xi(t) = µ(t) +

∞∑
k=0

ξikρk(t), t ∈ T,

with uncorrelated random variables ξik with mean 0 and variance λk.

For the calculation of principal components based on a data set we follow the nonparametric

approach of Yao et al. [2005]. They use local linear regression for estimating the mean function

and two-dimensional local polynomial fitting for the covariance function. The eigenfunctions

and PCA scores are estimated via discrete approximations.

The eigenfunctions shall be evaluated at equally spaced points in time tn′(n
′ = 1, . . . , N ′), not

necessarily the same as the measurement points tin, which are potentially irregular.

Estimation of the mean function In order to estimate the mean function, all single measure-

ment values are pooled. A polynomial of degree one is used for smoothing via local regression.

Therefore (2.8) leads to minimizing

I∑
i=1

Ni∑
n=1

K1

(
tin − t
h1

)[
Y in − β0 − β1(t− tin)

]2
(2.10)

with respect to β0 and β1 in order to obtain β̂t0 and β̂t1 for t ∈ T . K1 is a kernel function from

R to R and h1 ∈ R>0 its bandwidth. The estimated mean function is then given by µ̂(t) = β̂t0.

β̂t1 is further an estimation for the first derivative of µ.

Estimation of the covariance function For estimating the covariance function we first calcu-

late the raw covariances

Gi(t
i
n1
, tin2

) = (Y in1
− µ̂(tin1

))(Y in2
− µ̂(tin2

)) (2.11)

and afterwards minimize according to (2.9)

I∑
i=1

∑
1≤n1 6=n2≤Ni

K2

(
tin1
− t1
h2

,
tin2
− t2
h2

)[
Gi(t

i
n1
, tin2

)− β0 − β11(t1 − tin1
)− β12(t2 − tin2

)
]2
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with respect to β0, β11 and β12 to obtain β̂t1,t20 , β̂t1,t211 and β̂t1,t212 for (t1, t2) ∈ T 2. K2 is a

kernel function from R2 to R and h2 ∈ R>0 its bandwidth. This provides the estimation for

the non-diagonal values via Ĝ(t1, t2) = β̂t1,t20 . Further β̂t1,t211 is an estimator for Gt1(t1, t2),

i.e. for the derivative of G according to t1, and β̂t1,t212 an estimator for Gt2(t1, t2). Diagonal

elements are excluded in the estimation, because the raw observations have larger errors than

the non-diagonal elements:1

Gi(t
i
n1
, tin2

) = (Xi(tin1
) + εin1

− µ̂(tin1
))(Xi(tin2

) + εin2
− µ̂(tin2

))

≈ Cov(X(tin1
), X(tin2

)) + σ2δn1n2

In order to obtain estimations for the diagonal elements, we fit a local quadratic component

orthogonal to the diagonal because the covariance is maximal on the diagonal (see also Yao

et al. [2005]). To achieve this, first rotate the values by 45 degrees via(
ti∗n1

ti∗n2

)
=

1

2

( √
2
√

2

−
√

2
√

2

)(
tin1

tin2

)

and afterwards minimize

I∑
i=1

∑
1≤n1 6=n2≤Ni

K2

(
ti∗n1
− t1
h2

,
ti∗n2
− t2
h2

)[
Gi(t

i∗
n1
, ti∗n2

)− γ0 − γ1(t1 − ti∗n1
)− γ2(t2 − ti∗n2

)2
]2

with respect to γ0, γ1 and γ2. Then set

G̃(t1, t2) := γ0(t1, t2)

and

Ĝ(t1, t1) = G̃(0,
√

2 t1).

which finally is the estimation for the diagonal elements.

2.2.4 Estimation of functional principal components

Given the estimate Ĝ for the covariance function as derived in the section before, the estimates

of the eigenfunctions and eigenvalues are given by the solutions ρ̂k and λ̂k of the eigenequations∫
T

Ĝ(s, t)ρk(s) ds = λkρk(t). (2.12)

This is still a functional operator-eigenvalue problem. Hence we reduce the problem to a

multivariate matrix-eigenvalue problem. Approximated eigenfunctions ρ̂k and eigenvalues λ̂k

are obtained by calculating the multivariate eigenvalues and eigenvectors of the discretized

covariance function. As the evaluation points tn′ as defined on p. 18 are equally spaced, let

1δ(a, b) =

{
1 a = b

0 a 6= b

19
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∆t = t2 − t1 be their distance. The discretized covariance is then given by G̃(tn′1 , tn′2) :=

Ĝ(tn′1 , tn′2)∆t for n′1, n
′
2 = 1, . . . , N ′ and the (multivariate) eigenvectors of G̃ can be calculated

solving the equation

G̃ρ̃k = λ̂kρ̃k

for ρ̃k ∈ RN ′ , ρ̃k 6= 0N ′ and λ̂k ∈ R. The norm of ρ̃k in L2 is approximated via√√√√ N ′∑
n′=1

ρ̃2
k(tn′)∆t.

Therefore the discretized standardized eigenfunctions are given by

ρ̂k(tn′) = ρ̃k(tn′)


√√√√ N ′∑
n′=1

ρ̃2
k(tn′)∆t

−1

to have norm one.

In order to control the (arbitrary) direction of the eigenfunctions we further demand the ma-

jority of signs of the discrete eigenvector to be positive.

Apart from the eigenvalues one is often interested in the share of variance explained by each

principal component. Therefore we often regard the variance components defined as

VC(λk) :=
λk∑∞
l=1 λl

,

often expressed in %. This value is estimated by

V̂C(λ̂k) =
λ̂k∑M
l=1 λ̂l

.

In practice M is being chosen such that λ̂M is (almost) zero and usually higher than the number

K of eigenfunctions used for representations.

Now that the basis system existing of the functional principal components is estimated, we can

proceed identifying each observation in the new basis system which means estimating the FPC

scores. The FPC scores are classically estimated by numerical integration of

ξ̂ik =

∫
T

(Y i(t)− µ̂(t))ρ̂k(t) dt ≈
N ′∑
n′=1

(Y in′ − µ̂(tn′))ρ̂k(tn′)∆t. (2.13)

If the measurements have additional errors (remember that we assumed Y in = Xi(tin) + εin),

the FPC scores are generally estimated too high. Therefore Yao et al. [2003] propose to use

so-called shrinkage estimates instead:

ξ̃ik =
λ̂k

λ̂k + |T |σ̂2

N ′

ξ̂ik, (2.14)

in which |T | is the length of the interval T . In order to build the shrinkage estimates it is
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necessary to estimate the error variance σ̂2. This is done by comparing the error-free estimation

Ĝ(t, t) for t ∈ T with an estimation V̂ (t) for V (t) = G(t, t)+σ2 which one obtains by using local

polynomial smoothing like in (2.10) based on diagonal estimation with Gi(t
i
n, t

i
n) (see (2.11)) as

input. In order to get a stable estimate, only the interval T1 = [min(T )+ |T |/4,max(T )−|T |/4]

is taken as input. The estimation is as follows:

σ̂2 =
2

|T |

∫
T1

(
V̂ (t)− Ĝ(t, t)

)
dt

if σ̂2 > 0 and σ̂2 = 0 otherwise (see Yao et al. [2005]). The last case could occur if the

measurements are not error-prone.

Furthermore Yao et al. [2005] extend the theory to sparse estimations and propose conditional

estimates for the principal components as the best way to estimate them in this context under

normal assumptions. This method is necessary if the number of measurements per subject is

too small in order to obtain a good approximation of the integral in (2.13).

As the data mainly in our focus are not sparse, we implemented the estimation of FPCs by

numeric integration and give the shrinkage estimation method as an additional option. Like

in the sparse case, our algorithms are also suitable to incorporate missing data or data not

measured on a regular grid.

With the estimated eigenfunctions ρ̂k for k = 1, . . . ,K and the scores ξ̂ik, observation i can

now be represented through

Ŷi(t) = µ̂(t) +

K∑
k=1

ξ̂ikρ̂k(t) (2.15)

which is the finite version of the Karhunen-Loève representation (see Theorem 3).

One can judge the accuracy of this representation for example by evaluating the following error

measure via numerical integration:

||Ŷi − Yi||2 =

√∫
|Ŷi(t)− Yi(t)|2 dt

A first application of this estimation is given in Section 2.3, but before we want to say a word

regarding choice of parameters.

2.2.5 Choice of bandwidth and number of eigenfunctions

Studies revealed that the crucial parameter in kernel regression is the choice of the bandwidth

h (see e.g. Hastie et al. [2001]). A small bandwidth leads to high variance, a large bandwidth

to high bias, so that it is not trivial to find the right trade-off. In order to find the suitable

bandwidth, many data-driven methods were developed. Above all, cross validation is very

popular.

The idea behind cross validation is to use a training data set in order to fit a method and to use

an independent test data set to verify the method respectively to calculate a prediction error.

If the method is dependent on more than one parameter, as in our case, the bandwidths h1

for the mean and h2 for the covariance estimation, the prediction error can be calculated
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2 Functional Principal Component Analysis

for multiple values of h1 and h2. The combination with the smallest prediction error is the

combination of choice.

For the general cross validation method (Hastie et al. [2001]) define an indexing function

κ : {1, . . . , I} ⇒ {1, . . . , G}

which partitions the observations in G approximately equally sized parts. For each observation

i ∈ 1, . . . , I the FPCA is calculated leaving out all data belonging to part κ(i). Let the resulting

mean function be µ̂−κ(i) and the eigenfunctions ρ̂
−κ(i)
k . The scores of observation i are calculated

based on (2.13):

ξ̂
−κ(i)
ik =

∫
T

(Y i(t)− µ̂−κ(i)(t))ρ̂
−κ(i)
k (t) dt

With Ŷ
−κ(i)
i calculated like in (2.15) based on the reduced data set, we can now calculate the

prediction error:

CV (h1, h2) =
1

I

I∑
i=1

||Yi − Ŷ −κ(i)
i ||2 (2.16)

This is typically done for several combinations of h1 and h2 and both are chosen to minimize

(2.16).

The method with G = I is called leave-one-out cross validation. Other typical values for G,

dependent on the available amount of data, are G = 2 (one training and test data set), G = 5

or G = 10.

The optimal number of eigenfunctions can also be determined through cross validation. In

both cases cross validation helps to avoid overfitting, e.g. fitting noise characteristics of the

data which cannot be found again in another data set, if the data are independent.

According to Ramsay and Silverman [2006] for most practical problems it is sufficient to evaluate

the bandwidth graphically. As this method of FPCA estimation is relatively time-consuming

depending on the number of measurements, it is sometimes no possibility to use cross validation.

In Chapter 6, the consistency rate for general kernel regression estimators are calculated de-

pending on the bandwidth. The choice of the kernel function itself has only a small influence

on the results.

In the case of the number of eigenfunctions, we say that we require the eigenfunctions to explain

a certain amount of variation in the data and skip all eigenfunctions which only have a minor

influence.

2.2.6 Overview of consistency results

As we are interested in the quality of our estimation, we show in Chapter 6 under certain

assumptions the uniform consistency of the estimators and calculate convergence rates. At

this point we give a short overview and refer the reader to Chapter 6 for technical details.

For those not familiar to the Landau symbolism we use to notate the rates, please consider

the short introduction in Section 6.1. The calculations are based on the assumption that the

measurement points are equally spaced and that the bandwidths h1 and h2 are appropriately
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2.3 Example: Wiener process

chosen dependent on the number of observations I and the number of points in time N . Exactly

we require for the bandwidth for mean smoothing h1 that

h1 → 0, Ih2
1 →∞, Ih6

1 = O(1),
1

N
= O(h5

1) for I →∞

and accordingly for the bandwidth for covariance smoothing h2:

h2 → 0, Ih4
2 →∞, Ih8

2 = O(1),
1

N
= O(h7

2) for I →∞.

For the mean and covariance function we obtain the following uniform consistency rates in

Theorems 9 and 10:

sup
t∈T
|µ̂(t)− µ(t)| = OP

(
1√
Ih1

)

sup
t1,t2∈T

|Ĝ(t1, t2)−G(t1, t2)| = OP

(
1√
Ih2

2

)

For the proof of these rates, the estimators for mean and covariance are written explicitly and

each of them is split into a Nadaraya-Watson estimator corrected with derivative estimators. A

lemma tells how to evaluate the single components such that a final rate can be deduced from

the single rates for each component.

Directly from the rate for the covariance estimation the rates for eigenvalue and eigenfunction

estimation can be derived for a fixed k ∈ N. The rates for the eigenfunctions are only achievable,

if λk has the multiplicity 1 (Theorem 12):

|λ̂k − λk| = OP

(
1√
Ih2

2

)

||ρ̂k − ρk|| = OP

(
1√
Ih2

2

)

sup
t∈T
|ρ̂k(t)− ρk(t)| = OP

(
1√
Ih2

2

)
.

That means that we have a convergence in the L2 sense as well as a uniform convergence rate

for the eigenfunctions. For the derivation of the rate for the eigenvalues Weyl’s criterion is used

and in the case of eigenfunctions a general eigenanalysis theory for Hilbert-Schmidt operators.

The detailed proofs are carried out in Section 6.2.

2.3 Example: Wiener process

In order to give a first example of the FPCA calculation and at the same time evaluate our

approach we construct a stochastic process with a simple structure such that its eigenvalues

and eigenfunctions can be calculated theoretically.

This property is fulfilled by a Wiener process which is a stochastic process with independent
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2 Functional Principal Component Analysis

normally distributed increments (see e.g. Csörgö and Révész [1981]). A disadvantage of this

process is that its sum representation converges slowly due to the independent increment con-

dition. Thereby many principal components are needed to represent the process accurately

through a finite sum of principal components. For this process we compare the approximated

eigenfunctions calculated accordingly to Section 2.2 with the theoretic ones.

Definition 3 (Wiener process). A stochastic process {W (t)| 0 ≤ t <∞} in R is called Wiener

process if

1. W (t)−W (s) ∼ N (0, t− s) for 0 ≤ s < t <∞ and W (0) = 0

2. W (t) is a process with independent increments, i.e.

W (t2)−W (t1),W (t4)−W (t3), . . . ,W (t2i)−W (t2i−1)

are independent for all 0 ≤ t1 < t2 ≤ t3 < t4 ≤ . . . ≤ t2i−1 < t2i <∞ and all i ∈ N.

3. The path t→W (t, ω) is continuous in t with probability one.

Directly from the definition one can derive the following properties:

µ(t) := E(W (t)) = 0 for all 0 ≤ t <∞

G(s, t) := Cov(W (s),W (t)) = min(s, t)

With some calculational effort one can obtain a representation of W (t) as an infinite sum of

random variables (see Csörgö and Révész [1981] for details):

W (t) = X0t+
√

2

∞∑
l=1

Xl
sin lπt

lπ
(2.17)

wherein Xl are independently N (0, 1) distributed random variables for l ∈ N.

Like the eigenfunction expansion this is an orthogonal expansion, but it does not have the

optimality property of the eigenfunction expansion in the amount of variance explained by a

certain number of components (compare Definition 1).

Next, we will calculate the eigenvalues and eigenfunctions of the Wiener process on the interval

[0, 1]. According to Theorem 1, it is necessary to find all pairs of scalars λk ∈ R and nonzero

functions ρk : [0, 1] −→ R for k ∈ N which solve the equation

〈G(·, s), ρ〉 = λρ

under the conditions ρk(0) = 0,
∫ 1

0
ρ2(t) dt = 1 and

∫ 1

0
ρ2
k(t)ρ2

l (t) dt = 0 for k 6= l. A short

calculation shows that this leads to a differential equation:
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2.3 Example: Wiener process

〈G(·, s), ρ〉 = λρ(s)

⇔
∫ 1

0

min(s, t)ρ(t) dt = λρ(s)

⇔
∫ s

0

tρ(t) dt+

∫ 1

s

sρ(t) dt = λρ(s) (2.18)

⇒ ∂

∂s

∫ s

0

tρ(t) dt+
∂

∂s
s

∫ 1

s

ρ(t) dt = λ
∂

∂s
ρ(s)

⇒ sρ(s) +

∫ 1

s

ρ(t) dt− sρ(s) = λ
∂

∂s
ρ(s)

⇒ ∂

∂s

∫ 1

s

ρ(t) dt = λ
∂2

∂2s
ρ(s)

⇒ λ
∂2

∂2s
ρ(s) = −ρ(s)

This differential equation has the solution

ρ(s) = c sin

(
s√
λ

)
with a constant c ∈ R. The constant can be determined through the scaling condition:∫ 1

0

ρ2(t) dt = 1

⇔
∫ 1

0

sin2

(
t√
λ

)
dt =

1

c2

⇔ c =
√

2 or x = −
√

2

In order to determine λ we substitute the solution into the equation (2.18) and obtain∫ 1

s

sc sin

(
t√
λ

)
dt+

∫ s

0

tc sin

(
t√
λ

)
dt = λc sin

(
t√
λ

)
.

Solving this equation for λ leads to the set of possible solutions
{

4
π2(2k−1)2

∣∣∣ k ∈ N
}

for λ. Hence

the pairs of eigenvalues and eigenfunctions of the Wiener process are

λk =
4

π2(2k − 1)2
and ρk(s) =

√
2 sin

((
k − 1

2

)
πs

)
for k ∈ N. (2.19)

Next we want to test the algorithm described in Section 2.2 by applying it to realizations of a

Wiener process. One can either use the sum representation (2.17) to simulate outcomes of the

Wiener process or else successively according to Definition 3, which we do in the following:
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2 Functional Principal Component Analysis

Figure 2.2: Wiener processes with the step widths 1
N indicated above the plots. Each graph

shows five realizations.

Method 1 (Step by step simulation of a Wiener process). The step by step simulation needs

the step width 1
N as the only parameter.

Here x1, . . . , xN are N normally distributed random numbers with mean 0 and variance 1
N .

The Wiener process is simulated via

w(0) = 0

w

(
1

N

)
= x1

...

w
( n
N

)
=

n∑
i=1

xi = w

(
n− 1

N

)
+ xn for n = 1, . . . , N.

(
w(0), w

(
1
N

)
, . . . , w(1)

)
is an approximated realization of a Wiener process at 0, 1

N ,
2
N , ..., 1.

Empirical findings of the estimation of eigenfunctions depend on the bandwidth h used for

smoothing mean and covariance function (here the same bandwidth is used for both), on the

number of steps N and on the number of simulated observations I.

As the sign of the eigenfunctions is arbitrary, we standardize it by requesting the greater part

of the function being positive. In practice it is done by demanding more positive than negative

signs in the discretized eigenfunctions.

Figure 2.2 shows simulated realizations of the Wiener process for different step widths 1
N ,

Figure 2.3 an example for an estimated covariance function and Figure 2.4 an example for

estimated versus true eigenfunctions. We observe that the factor combination presented here

seems to estimate the eigenfunctions quite accurate. In order to analyze the influence of the

three parameters, we performed a small simulation study. Each parameter was varied on three

levels and the results were judged by calculating the mean absolute deviation between true and

estimated eigenfunction.
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2.3 Example: Wiener process

Figure 2.3: Estimated covariance function of a simulated Wiener processes with step width 0.02,
bandwidth 0.2 and 50 realizations.

Figure 2.4: Estimated (lines with dots) and true (lines) eigenfunctions of a simulated Wiener
processes with the same parameters as Figure 2.3.

27



2 Functional Principal Component Analysis

Figure 2.5: Influence of bandwidth, step width and number of realizations on the mean absolute
deviation between true and estimated eigenfunctions.

Figure 2.5 shows the results of three repeated simulations for each factor combination. One can

see that the estimation generally gets worse for eigenfunctions of larger order. Furthermore the

estimation accuracy is higher when increasing the bandwidth or the number of realizations in

the tested ranges. The step width has no clear influence. This is consistent with the results of

Section 6.2, where the order of convergence of the estimation is evaluated theoretically.
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2.4 Clustering based on functional principal components

2.4 Clustering based on functional principal components

In multivariate analysis it is common to group observations into clusters by using methods like

K-means clustering or hierarchical clustering (the methods are explained in the application in

Section 4.2). If many variables are observed, it is sometimes necessary to conduct a dimension

reduction before the clustering procedure. If principal component analysis is used, the clustering

is done on the resulting scores. In functional data analysis it is not trivial to use cluster analysis

directly on the observations as they are not necessarily made at equally spaced points in time

and also not at the same points in time for each observation. Therefore it is very convenient to

carry out cluster analysis based on the FPC scores. We will demonstrate this clustering in the

applications later on.

Chiou and Li [2007] have pushed this concept further and developed a method, the K-centers

functional clustering method, which promises to be an enhancement of FPCA and shall lead to

a better description of the single clusters. This method shall be shortly described in the next

subsection.

2.4.1 K-centers functional clustering

KCFC (K-centers functional clustering) is a method which calculates principal components for

each cluster and re-sorts each element to that cluster where it can be best approximated via

the first principal components.

Assumptions for this method are that

• the process Y is a mixed process of subprocesses Y (c) in L2(T ).

• Each subprocess is associated with one cluster.

• A random variable C on {1, . . . , C} describes the cluster membership.

Above the common mean one considers here the marginal mean and covariance functions of the

subprocesses which are denoted as follows:

µ(c)(t) = E(Y (t) |C = c) and G(c)(s, t) = Cov(Y (s), Y (t) |C = c).

It is further assumed that each subprocess has a Karhunen-Loève expansion

Y (c)(t) = µ(c)(t) +

∞∑
k=1

ξ
(c)
k (Y )ρ

(c)
k (t) (2.20)

with < G(c)(·, t), ρ(c)
k >= λ

(c)
k ρ

(c)
k (t) and ξ

(c)
k (Y ) =< Y − µ(c), ρ

(c)
k >.

For applications it is necessary to truncate the infinite sum in (2.20) after Kc summands. This

leads to the finite presentation

Ỹ (c)(t) = µ(c)(t) +

Kc∑
k=1

ξ
(c)
k (Y )ρ

(c)
k (t).

29



2 Functional Principal Component Analysis

In order to prevent additional distribution assumptions, the cluster membership for a observa-

tion y is determined through

c∗(y) = arg min
c∈{1,...,C}

||y − ỹ(c)||,

in which ỹ(c) is the finite Karhunen-Loève expansion of y in cluster c. Hence, one determines

in which cluster the observation can be represented with the smallest error.

Based on the aforementioned assumptions the clustering procedure works as follows:

As before, let I be the number of observations and Ni the number of measurements for ob-

servation i. Further tin is the time point of measurement n in observation i and yi(t) the ith

observed curve at time t.

For clustering one needs at first estimations of the moments, the eigenfunctions, eigenvalues

and the FPC scores. They are achieved by the methods explained in Section 2.2.

The KCFC algorithm is based on an initial cluster assignment on the FPC scores

(ξ̂i1, . . . , ξ̂iK), which can for example be reached through a standard clustering procedure like

K-means clustering with K being the number of principal components taken into account.

After the initial clustering is finished, the algorithm works as follows:

Let g
(l)
i ∈ {1, . . . , C} be the cluster membership of the ith observation in the lth iteration and

G(l) = {g(l)
i |i = 1, . . . , I} the set of cluster memberships.

1. Choose i ∈ {1, . . . , I} and calculate µ̂
(c)
(−i) and ρ̂

(c)
(−i) based on all observations with g

(l)
j = c

and j 6= i.

2. Calculate the ith predicted observation for each cluster c via

ŷ
(c)
(i) (t) = µ̂

(c)
(−i)(t) +

Kc∑
k=1

ξ̂
(c)
ik ρ̂

(c)
k(−i)(t)

with ξ
(c)
ik =

∫
T

[yi(t)− µ̂(c)
(−i)(t)]ρ̂

(c)
k(−i) dt.

3. Assign observation i to cluster

g
(l+1)
i = arg min

c=1,...,C
||yi − ŷ(c)

(i) ||.

Set G(l+1) = {g(l+1)
i |i = 1, . . . , I}.

4. Repeat steps 1-3 until no reclassification occurs anymore.

The value Kc in step 2 is determined for each cluster individually and is recalculated in each

iteration. For details please refer to Chiou and Li [2007].

An advantage of this method in comparison to simple K-means clustering based on the FPC

scores is that it takes different distributions of the single clusters into account. But the price

for the greater precision is that much data are needed for executing multiple FPC analyses in

single clusters, which makes it unfeasible in many practical applications.
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Analysis

Up to now we treated the one-dimensional functional principal component analysis method

(FPCA). The theoretic part was explained, estimators were derived and their application to a

Wiener process was conducted. In this chapter we want to generalize the previous results to

the case of data measured on two-dimensional domains.

Many sources treating one-dimensional FPCA mention the possibility to extend the method

to spatial data (for example Yao et al. [2005] or Ramsay and Silverman [2006]), but do not

carry out the exact way it is done. Furthermore, software implementations are only written for

the one-dimensional case up to our knowledge. In this section, we will explain the framework

of spatial FPCA and carry out all details concerning the nonparametric estimation of spatial

functional principal components. Moreover, convergence rates for the estimators are deduced

and an implementation for this method is accomplished, described in detail in Section 7.2.

The reader is advised to consider Chapter 2 before and focus on the changes that occur while

extending the theory. Topics that are very similar to the one-dimensional case will not be

treated again as thorough as in Chapter 2.

3.1 Theory

In the one-dimensional case we considered a Hilbert space of square integrable functions over

a bounded interval in R and looked at eigenvalues and eigenfunctions in that Hilbert space. In

this chapter we want to extend our theory to a spatial setting in order to analyze data measured

on a two-dimensional interval, i.e. a rectangle, in R2. Therefore we consider the Hilbert space

of square integrable functions over a bounded rectangle T × T ⊂ R2:

L2(T × T ) =

{
f : T × T −→ R

∣∣∣∣ ∣∣∣∣∫
T

∫
T
f(t, τ)2dt dτ

∣∣∣∣ <∞}
This space is a Hilbert space with the inner product < f, g >=

∫
T

∫
T f(t, τ)g(t, τ)dt dτ and the

norm || · || =
√
< ·, · > analogous to the one-dimensional case. Again, to be precise, only the

space of equivalence classes of functions in L2(T×T ) which are identical up to a null set forms a

Hilbert space with the defined norm. This issue will be neglected in the following presentation.

In the spatial case we consider a stochastic process {Y (t, τ); t ∈ T , τ ∈ T }. The mean and

covariance function are here given by

µ(t, τ) = E(Y (t, τ)) respectively G(t1, t2, τ1, τ2) = Cov(Y (t1, τ1), Y (t2, τ2))
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for t, t1, t2 ∈ T and τ, τ1, τ2 ∈ T . It is assumed that µ and G exist, i.e. that∣∣∣∣∫
T

∫
T
E(Y 2(t, τ, ω)) dt dτ

∣∣∣∣ <∞
The covariance operator A (compare to (2.3)) is in the two-dimensional case an operator from

L2(T × T ) −→ R with

(Af)(t1, τ1) =

∫
T

∫
T
f(t2, τ2)G(t1, t2, τ1, τ2) dt2 dτ2

for f ∈ L2(T × T ) and (t1, τ1) ∈ T × T .

As the situation is principally the same as in the multivariate or one-dimensional functional

case, the eigenfunctions and eigenvalues are defined in an equivalent way:

Definition 4 (Eigenfunctions and eigenvalues). If a function ρ ∈ L2(T × T ), ρ 6= 0 and a

constant λ ∈ C fulfill

Aρ = λρ ⇔ < G(·, t2, ·, τ2), ρ >= λρ(t2, τ2) for all t2 ∈ T, τ2 ∈ T ,

λ is called eigenvalue with eigenfunction ρ of G.

The properties of eigenvalues and eigenfunctions mentioned and proved in Properties 2 corre-

spond absolutely analogously in the spatial case, such that we do not repeat them here one-by-

one. We again obtain a countable set of real, non-negative eigenvalues that can be ordered as

λ1 > λ2 > ... ≥ 0 with corresponding eigenfunctions ρ1, ρ2, . . .. This is due to the symmetry of

the positive-semidefinite covariance function G. In the spatial case the eigenspaces are likewise

finite-dimensional. Furthermore, the process can be represented with its eigenfunctions as

Af =

∞∑
k=1

λk〈f, ρk〉ρk

in L2(T × T ) for f ∈ L2(T × T ).

The Karhunen-Loève theorem (Theorem 3) can also be transferred:

Theorem 5 (Spatial Karhunen-Loève expansion). If Y is a square integrable process in space

with continuous covariance function G, the process has a Karhunen-Loève expansion

Y (t, τ) = µ(t, τ) +

∞∑
k=1

ξk(Y )ρk(t, τ).

The coefficients ξk(Y ) are given via ξk(Y ) =< Y − µ, ρk > and are called scores. The scores

ξk for k ∈ N are uncorrelated random values with zero mean and variance λk.

Hence the theoretic framework is analogous to the one-dimensional case. The proofs of Section

2.1 mainly use properties of the norm which are directly applicable here as are the other steps.

Though the theory is similar, nevertheless the estimation of the spatial functional principal com-

ponents is more complex due to the high dimensionality, especially of the covariance function.

This is treated in the next section.
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3.2 Estimation

The estimation of the spatial functional principal components is performed equivalently to

the one-dimensional case. Mean and covariance functions are estimated again through local

polynomial regression, only in higher dimensions. For estimation of the eigenfunctions the

covariance function is discretized and re-sorted into a two-dimensional structure such that the

eigenfunctions can be calculated like in the one-dimensional case. Afterwards the now one-

dimensional eigenfunctions are restructured again to spatial functions. The exact procedure is

carried out in the following.

For the explanation of kernel functions and the smoothing method please refer to Sections 2.2.1

and 2.2.2. As for the covariance estimation in the one-dimensional case already two-dimensional

kernels were necessary, multi-dimensional kernels were already treated there.

3.2.1 Estimation of moments

Before the estimators for mean and covariance function can be stated, the general framework

has to be explained.

Let X be a stochastic process in L2(T × T ) and the trajectory Xi an independent identical

copy of X. We assume having observed error-prone realizations Yi for i = 1, . . . , I for this

process. The measurements can generally be made irregularly at different points in space for

the subjects i, so we name the space points with (tin, τ
i
n) with i = 1, . . . , I and n = 1, . . . , Ni

being the number of measurements per subject.

Like in the one-dimensional case we incorporate measurement errors εin which are iid for all

subjects i and all points in space (tin, τ
i
n). The measurement error has an expected value

E(εin) = 0 and variance E(εin) = σ2. The observations can be written as

Y in = Xi(tin, τ
i
n) + εin

for i = 1, . . . , I, n = 1, . . . , Ni.

For the covariance function G(t1, t2, τ1, τ2) = Cov(X(t1), X(t2), X(τ1), X(τ2)) we assume that

it has the orthogonal expansion

G(t1, t2, τ1, τ2) =

∞∑
k=1

λkρk(t1, τ1)ρk(t2, τ2)

for t1, t2 ∈ T, τ1, τ2 ∈ T with eigenfunctions ρk and non-increasing eigenvalues λk.

We further require that the Xi can be represented as

Xi(t, τ) = µ(t, τ) +

∞∑
k=1

ξikρk(t, τ) for t ∈ T, τ ∈ T ,

with uncorrelated random variables ξik with mean 0 and variance E(ξ2
ik) = λk.

The observations can be made at different and irregular points in space for the different subjects

and also missing values are allowed, as the following estimation procedures are designed to

incorporate irregularity. The estimated functions are calculated for points in space (tn′ , τm′) on

a regular equidistant grid with n′ = 1, . . . , N ′ and m′ = 1, . . . ,M ′. The distances are denoted
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by ∆t′ respectively ∆τ ′.

Estimation of the mean function The mean function is again estimated by minimizing

I∑
i=1

Ni∑
n=1

K2

(
tin − t
h2t

,
τ in − τ
h2τ

)[
Y in − β0 − β11(t− tin)− β12(τ − τ in)

]2
(3.1)

with respect to β0, β11 and β12 to obtain β̂t,τ0 , β̂t,τ11 and β̂t,τ12 for (t, τ) ∈ T × T . K2 is a kernel

function from R2 to R with the bandwidths h2t , h2τ ∈ R>0. The estimated mean function is

then given by µ̂(t, τ) = β̂t,τ0 . Furthermore β̂t,τ11 is an estimation for µt(t, τ), i.e. the derivative

of µ in t-direction and β̂t,τ12 for µτ (t, τ).

Estimation of the covariance function For the estimation of the four-dimensional covariance

function, we consider again the raw covariances of each subject, that are given by

Gi(t
i
n1
, tin2

, τ in1
, τ in2

) = (Y in1
− µ̂(tin1

, τ in1
))(Y in2

− µ̂(tin2
, τ in2

))

for i = 1, . . . , I and n1, n2 = 1, . . . , Ni.

Afterwards the smoothed function can be obtained by minimizing

I∑
i=1

∑
n1,n2
n1 6=n2

K4

(
tin1
− t1
h4t

,
tin2
− t2
h4t

,
τ in1
− τ1
h4τ

,
τ in2
− τ2
h4τ

)
(3.2)

×
[
Gi(t

i
n1
, tin2

, τ in1
, τ in2

)− β0 − β11(t1 − tin1
)− β12(t2 − tin2

)− β21(τ1 − τ in1
)− β22(τ2 − τ in2

)
]2

with respect to β0, β11, β12, β21 and β22 in order to obtain β̂t1,t2,τ1,τ20 etc. for

(t1, t2, τ1, τ2) ∈ T 2 × T 2. The diagonal line is excluded again due to the measurement error

(see explanation for one-dimensional covariance estimation in Section 2.2.3). K4 is a kernel

function from R4 to R and h4t , h4τ ∈ R>0 the estimation bandwidths.

As the method is already computationally very intense, we do not estimate the diagonal line in

a different way as was done in the one-dimensional case.

3.2.2 Estimation of functional principal components

Like in equation (2.12) we have to find solutions λ̂k ∈ R and ρ̂k : T × T → R to the equation∫
T

∫
T
Ĝ(t1, t2, τ1, τ2)ρ(t1, τ1) dt1 dτ1 = λ̂ρ(t2, τ2)

Now consider the discretized version (expressed on the regular grid as defined in the foregoing

section):

N ′∑
n′1=1

M ′∑
m′1=1

Ĝ(tn′1 , tn′2 , τm′1 , τm′2)ρk(tn′1 , τm′1)∆t′∆τ ′ = λkρk(tn′2 , τm′2)
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3.2 Estimation

We solve this equation via re-sorting G̃ := Ĝ∆t∆τ according to

G∗ =



G̃1111 G̃2111 · · · G̃N111 G̃1121 · · · G̃N121 · · · G̃N1M1

G̃1211 G̃2211

...
. . .

G̃1N11 G̃NN11

G̃1112 G̃1122

...
...

. . .

G̃1N12 G̃NN22

...
. . .

G̃1N1M · · · G̃NNMM


with G̃n1n2m1m2

:= G̃(tn′1 , tn′2 , τm′1 , τm′2).

Then the eigenfunctions can be estimated like in the one-dimensional case by solving

G∗ρ∗ = λρ∗

with

ρ∗ =



ρ11

ρ21

...

ρN1

ρ12

...

ρN2

...

ρNM


for ρ∗ ∈ RNM and λ ∈ R. The resulting estimated eigenvalues λ̂k ∈ R are also estimations of

eigenvalues for the initial problem and the discretized eigenfunction estimations ρ∗k ∈ RNM can

be reshaped back to their two-dimensional form (called here ρ̃k) according to the scheme

ρ̃ =


ρ11 . . . ρ1M

...
...

ρN1 . . . ρNM

 .

The estimations still need to be standardized according to the right norm. This is done by

ρ̂k(tn′ , τm′) := ρ̃k


√√√√ N ′∑
n′=1

M ′∑
m′=1

ρ̃2
k(tn′ , τm′)∆t′∆τ ′

−1
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3 Spatial Functional Principal Component Analysis

Finally the scores are estimated via

ξ̂ik =

∫
T

∫
T

(Y i(t, τ)− µ̂(t, τ))ρ̂k(t, τ) dt dτ

≈
N ′∑
n′=1

M ′∑
m′=1

(Y in′,m′ − µ̂(tn′ , τm′))ρ̂k(tn′ , τm′)∆t
′∆τ ′.

For this calculation the observations Y i need to be available at the evaluation points (tn′ , τm′),

which is not generally the case. If the measurement points do not comprise the evaluation

points, the evaluation is done by linear interpolation.

The calculation of shrinkage estimates as in (2.14) could be conducted likewise in the two-

dimensional case by estimating the error variance σ̂ accordingly and adjust the scaling param-

eters to the two-dimensional case.

The considerations about bandwidth and number of eigenfunctions of Section 2.2.5 apply also

in the two-dimensional case, hence we do not repeat them here.

The computational effort of equation (3.2) is growing fast with the number of data points per

observation. This method is in the two-dimensional case only feasible if the number of data

points is not too high. For other cases we further implemented a method that omits the mean

and covariance smoothing and instead smoothes the single observations. Smoothing of single

observations is essentially done like the estimation of the mean function in (3.1), only for each

function individually. The advantage is that the whole FPCA estimation can be performed

on the discretized observations and therefore like in the multivariate case, only the discretized

observations have to be re-sorted from matrices into vectors and the calculated vectorized eigen-

functions have to be re-sorted back into matrices and standardized appropriately. If necessary,

they can also be smoothed.

Regarding computational cost, this approach is preferable and if the measurements per obser-

vation are sufficiently dense, it is regarding our experience no problem to do so. But if the

measured data are too sparse or if many measurements are missing, such that the single ob-

servations cannot be estimated satisfyingly for themselves, we have to use the computationally

more intense approach presented here. All theoretic results in this thesis are based on the

method with the smoothed covariance.

3.2.3 Overview of consistency results

Like in the one-dimensional case we calculated consistency results under certain assumptions

which can be found in detail in Section 6.3. h1 denotes here the bandwidth for mean estimation

and h2 the bandwidth for covariance estimation (we assume for the proofs equal bandwidths

in both, the t and τ direction), whereas I as always denotes the number of observations. The

number of points in space N and M are here assumed to be identical for all observations I and

fulfill M ≥ N . Additionally the measurements are taken at regular distances in both directions.

According to Section 6.3, the parameters have to fulfill the following relationships:

h1 → 0, Ih4
1 →∞, Ih8

1 = O(1),
1

N
= O(h7

1),M ≥ N for I →∞
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3.3 Example: Spatial Wiener process

for h1 and

h2 → 0, Ih6
2 →∞, Ih12

2 = O(1),
1

N
= O(h9

2),M ≥ N for I →∞

for h2.

For the mean and covariance function we obtain in the spatial case these consistency rates (see

Theorems 15 and 16:)1:

sup
t∈T
τ∈T

|µ̂(t, τ)− µ(t, τ)| = OP

(
1√
Ih2

1

)

sup
~t∈T2

~τ∈T 2

|Ĝ(~t, ~τ)−G(~t, ~τ)| = OP

(
1√
Ih4

2

)

Directly from these rates the rates for eigenvalue and eigenfunction estimation can be derived

for a fixed k ∈ N (Theorem 12):

|λ̂k − λk| = OP

(
1√
Ih4

2

)
(3.3)

||ρ̂k − ρk|| = OP

(
1√
Ih4

2

)
(3.4)

sup
t∈T
τ∈T

|ρ̂k(t, τ)− ρk(t, τ)| = OP

(
1√
Ih4

2

)
(3.5)

We obtain a result for the convergence in the L2 sense as well as a uniform convergence rate

for the eigenfunctions. Like in the one-dimensional case we need the assumption that he

eigenspaces are one-dimensional for deriving a consistency rate for the eigenfunctions. Oth-

erwise, for eigenspaces of greater dimensions, only rates for projections on the eigenspace can

be given. The reason is that in this case the eigenfunctions themselves are not unambiguously

defined. A demonstration of this problem is given in Section 3.3.

In comparison of these results and the one-dimensional results in Section 2.2.6 one can see that

the number of dimensions directly influence the h-powers in the denominator.

3.3 Example: Spatial Wiener process

Like in the one-dimensional case we want to use a Wiener process in order to verify the FPC cal-

culation. The two-dimensional Wiener process is like its one-dimensional equivalent a stochastic

process with independent increments only that in this case the increments occur in two direc-

tions, which leads apart from the additional dimension to a crucial difference as we will see

later on. The process is defined as follows (see Csörgö and Révész [1981]).

Definition 5 (Wiener process). Let {W (t, τ)| (t, τ) ∈ R2
>0} be a two-dimensional stochastic

1 In the following, we will from time to time use the abbreviations ~t = (t1, t2) and ~τ = (τ1, τ2).
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3 Spatial Functional Principal Component Analysis

process. For a rectangle R = [t1, t2)×[τ1, τ2) ⊂ R2
>0 with 0 ≤ t1 < t2 <∞ and 0 ≤ τ1 < τ2 <∞

we define

W (R) := W (t2, τ2)−W (t1, τ2)−W (t2, τ1) +W (t1, τ1)

Then {W (t, τ)| (t, τ) ∈ R2
>0} is called a two-dimensional Wiener process if

1. W (R) ∼ N (0, A(R)) for all R = [t1, t2)× [τ1, τ2) with A(R) := (t2 − t1)(τ2 − τ1).

2. W ((0, τ)) = W ((t, 0)) = 0 for all t, τ ∈ R≥0

3. W (t, τ) has independent increments, e.g. W (R1),W (R2), . . . ,W (Rn) are independent for

disjoint rectangles R1, . . . , Rn.

4. The path (t, τ)→W ((t, τ), ω) is continuous in (t, τ) with probability one.

Analogous to the one-dimensional case the covariance function has again a simple structure.

We can derive that

G(~t, ~τ) := Cov(W (t1, τ1),W (t2, τ2)) = min(t1, t2) min(τ1, τ2)

for ~t = (t1, t2) and ~τ = (τ1, τ2).

In order to calculate the eigenvalues and eigenfunctions of the spatial Wiener process we have

to find all pairs of scalars λ and nonzero functions ρ which solve the eigenequation

〈G(·, t2; ·, τ2), ρ〉 = λρ(t2, τ2) (3.6)

⇔
∫ ∫

G(~t;~τ)ρ(t1, τ1) dt1dτ1 = λρ(t2, τ2)

⇔
∫ ∫

min(t1, t2) min(τ1, τ2)ρ(t1, τ1) dt1dτ1 = λρ(t2, τ2)

As the covariance functions can be split into separate multiplicands for each dimension and

those are the same as in the one-dimensional case (see calculation (2.18)), one can assume that

ρ can also be separated into multiplicands for each dimension:

ρ(t, τ) = ρ1(t)ρ2(τ)

Therefore we obtain solutions for (3.6) by solving the following equations:∫
min(t1, t2)ρ1(t1) dt1 = λ1ρ1(t2)

∫
min(τ1, τ2)ρ2(τ1) dτ1 = λ2ρ2(τ2)

with λ1λ2 = λ.
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3.3 Example: Spatial Wiener process

As the reduced equations correspond to the one-dimensional case, the solutions are (see (2.19)):

λ1,j =
4

π2(2j − 1)2
and ρ1,j(t) =

√
2 sin

((
j − 1

2

)
πt

)
for j ∈ N,

λ2,l =
4

π2(2l − 1)2
and ρ2,l(τ) =

√
2 sin

((
l − 1

2

)
πτ

)
for l ∈ N,

so that we obtain as solutions for the initial equation:

λj,l =
16

π4(2j − 1)2(2l − 1)2

and ρj,l(t, τ) = 2 sin

((
j − 1

2

)
πt

)
sin

((
l − 1

2

)
πτ

)
for j, l ∈ N.

Hence the eigenvalues and eigenfunctions are simply all possible compositions of the one-dimen-

sional eigenvalues and eigenfunctions. As there is a kind of symmetry, for example λj,l = λl,j ,

the eigenspaces are not all one-dimensional, but eigenspaces of dimension two and more occur

which is the crucial difference we spoke of in the beginning of this section.

For example the first five sorted eigenvalues, which we index here with k∗, of the spatial Wiener

process are shown in table 3.1.

unique eigenvalue dimension of M j l
no. (k∗) eigenspace

1 1 1 1 1
2 2 9 1 2

2 1
3 2 25 1 3

3 1
4 2 49 1 4

4 1
5 3 81 1 5

5 1
2 2

Table 3.1: The first five eigenvalues of the spatial Wiener process with the dimensions of the
eigenspaces. It is λk∗ = 16

π4M using the abbreviation M = (2j − 1)2(2l − 1)2.

This table shows that the first eigenvalue has a one-dimensional eigenspace, but eigenvalues

number 2 to 4 have two-dimensional spaces, eigenvalue 5 even a three-dimensional space.

Like in the one-dimensional analysis we want to simulate outcomes of a Wiener process in order

to compare theoretic and estimated principal components. The step by step simulation method

described in method 1 is easy to transfer to two dimensions. The Wiener process shall be

simulated at the points in space
(
n
N ,

m
N

)
for n,m ∈ {0, . . . , N}.

Method 2 (Step by step simulation of a spatial Wiener process). Let xnm with n,m ∈
{1, . . . , N} be N2 normally distributed random numbers with mean 0 and variance 1

N2 and

w
( n
N
, 0
)

= 0 for n ∈ {0, . . . , N}
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3 Spatial Functional Principal Component Analysis

w
(

0,
m

N

)
= 0 for m ∈ {1, . . . , N}

w
( n
N
,
m

N

)
=

n∑
n′=1

m∑
m′=1

xn′m′ = w

(
n− 1

N
,
m

N

)
+ w

(
n

N
,
m− 1

N

)
− w

(
n− 1

N
,
m− 1

N

)
+ xnm

for n,m ∈ {1, . . . , N}.

Figure 3.1: Realizations of a spatial Wiener process with a step width of 0.02.

In order to test the two-dimensional FPCA estimation, we simulated 200 realizations of the

two-dimensional Wiener process with a step width of 0.02. Figure 3.1 shows examples for

realizations. As the simulated data set is large and the estimation method with smoothed mean

and covariance smoothing is not feasible in this case, we used here the alternative described at

the end of subsection 3.2.2 with smoothing of observations and eigenfunctions. Therefore, the

Epanechnikov kernel with a bandwidth of 0.2 was used.

The comparison of theoretic and estimated eigenfunctions gets more complicated than in the

one-dimensional case. For the first eigenfunction, we can still compare the estimated and

theoretic eigenfunction as before. The result is plotted in Figure 3.2.

According to Table 3.1 the second (theoretic) eigenvalue has a two-dimensional eigenspace. This

causes the problem that the eigenfunctions cannot be unambiguously defined. In general in a

multi-dimensional eigenspace, if ρ1 and ρ2 are orthogonal eigenfunctions of the same eigenvalue
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3.3 Example: Spatial Wiener process

Figure 3.2: Estimated and true eigenfunctions for the first eigenvalue.

λ, each standardized linear combination rρ1 + (1 − r)ρ2 (r ∈ [0, 1]) is also an eigenfunction.

Therefore we most likely do not obtain two estimated eigenfunctions corresponding to the sec-

ond theoretic eigenvalue λ2∗ , but in the best case a linear combination of them. Hence we

cannot compare eigenfunction and eigenfunction, but have to make a detour via projections.

Furthermore, the probability is zero that we obtain two identical eigenvalues in the estimated

case and therefore we do not have multi-dimensional eigenspaces in that case, exactly spoken.

Nonetheless we can identify the estimated eigenfunctions ρ̂2 and ρ̂3 with the theoretic eigen-

functions ρ1,2 and ρ2,1 respectively ρ̂4 and ρ̂5 with ρ1,3 and ρ3,1 and speak in this context about

the estimated and true second and third eigenspaces.

What we did in regard of the comparison is to represent the estimated eigenfunctions in the

basis of the theoretic eigenfunctions and vice versa the theoretic eigenfunctions in the basis of

the estimated ones. Tables 3.2 and 3.3 show the resulting scores.

For Table 3.2 we calculated the scores according to

ξj,l(ρ̂k) = 〈ρ̂k, ρj,l〉. (3.7)

The mean function of the Wiener process is zero, hence it is not subtracted here.

Regarding Table 3.2 we can see that ρ̂1 is almost completely represented by ρ1,1 and that ρ̂2

and ρ̂3 are linear combinations (respectively rotated versions) of ρ1,2 and ρ2,1. In the ideal case

the sum of the scores ξ1,2(ρ̂2) and ξ2,1(ρ̂2) would be one. In the same way ρ̂4 and ρ̂5 can be

compared with ρ1,3 and ρ3,1.

To push this comparison further, we plotted in Figure 3.3 the estimated eigenfunctions ρ̂2 and

ρ̂3 together with their representations ˜̂ρ2 and ˜̂ρ3 in the second theoretic eigenspace, e.g.

˜̂ρ2 = ξ1,2(ρ̂2)ρ1,2 + ξ2,1(ρ̂2)ρ2,1 and

˜̂ρ3 = ξ1,2(ρ̂3)ρ1,2 + ξ2,1(ρ̂3)ρ2,1

as well as the same for the third and fourth estimated eigenfunctions in Figure 3.5. The figures

support the results of Table 3.2 that the representation works very well.
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3 Spatial Functional Principal Component Analysis

Scores (est. by theor.) j l Est. PC 1 Est. PC 2 Est. PC 3 Est. PC 4 Est. PC 5
Theor. PC 1 1 1 1.01 -0.02 -0.01 0.06 0.05
Theor. PC 2 1 2 -0.03 0.90 -0.32 -0.01 0.00

2 1 -0.03 0.32 0.89 0.08 0.03
Theor. PC 3 1 3 0.03 -0.09 -0.04 0.84 -0.14

3 1 0.02 -0.04 -0.11 0.13 0.83

Table 3.2: Scores of representing the estimated eigenfunctions in the associated theoretic
eigenspace. The scores are calculated as described in (3.7).

Scores (theor. by est.) j l Est. PC 1 Est. PC 2 Est. PC 3 Est. PC 4 Est. PC 5
Theor. PC 1 1 1 1.05 -0.03 -0.02 0.06 0.07
Theor. PC 2 1 2 0.01 0.89 -0.34 -0.01 0.01

2 1 0.01 0.31 0.88 0.08 0.04
Theor. PC 3 1 3 0.07 -0.09 -0.05 0.84 -0.12

3 1 0.06 -0.05 -0.12 0.13 0.84

Table 3.3: Scores of representing the estimated eigenfunctions in the associated theoretic
eigenspace. The scores are calculated as described in (3.8).

For the other direction (representing the theoretic eigenfunctions through the estimated eigen-

functions), the results are given in Table 3.3 and in Figures 3.4 and 3.4. Here the scores are

calculated as

ξ̂k(ρj,l) = 〈ρj,l − µ̂, ρ̂k〉. (3.8)

The estimated mean function is not exactly zero, hence we have to consider it in the calculations

for this direction. Hence, the representations ρ̃1,2 and ρ̃2,1 in the estimated eigenspace for the

theoretic eigenfunctions ρ1,2 and ρ1,2 are calculated according to

ρ̃1,2 = µ̂+ ξ̂2(ρ1,2)ρ̂2 + ξ̂3(ρ1,2)ρ̂3 and

ρ̃2,1 = µ̂+ ξ̂2(ρ2,1)ρ̂2 + ξ̂3(ρ2,1)ρ̂3.

Again the analog calculations are performed for ρ̃1,3 and ρ̃3,1 using the estimated eigenfunctions

ρ̂4 and ρ̂5.

The results confirm the good correspondence of theoretic and estimated eigenspace.

The estimation was also tested using down to 20 realizations and a step width of 0.5. This is

a more realistic framework for actual applications. In this case, still the general form of the

eigenfunctions to the first and second eigenvalues are recognizable. Furthermore, we success-

fully performed the full smoothing method on the smaller data set and therefore also have a

verification of this method.

To summarize, we verified in this section the estimation of spatial principal components and

showed how the case of multi-dimensional eigenspaces can be handled for comparisons through

concentrating on the projections on that eigenspace. The calculation method of the theoretic

principal components done in this section is generally applicable for processes with a symmetry

of dimensions. Hence all these processes have multi-dimensional eigenspaces.

Naturally, in real data applications as in Chapter 5 multi-dimensional eigenspaces are no issue,
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3.3 Example: Spatial Wiener process

Figure 3.3: Estimated eigenfunctions for the second eigenvalue (left hand side) and their repre-
sentations in the theoretic second eigenspace (right hand side).

because as already mentioned before, the possibility of having multi-dimensional eigenspaces in

estimation is zero.
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3 Spatial Functional Principal Component Analysis

Figure 3.4: True eigenfunctions for the second eigenvalue (left hand side) and their representa-
tions in the estimated second eigenspace (right hand side).

Figure 3.5: Estimated eigenfunctions for the third eigenvalue (left hand side) and their repre-
sentations in the theoretic third eigenspace (right hand side).
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3.3 Example: Spatial Wiener process

Figure 3.6: True eigenfunctions for the third eigenvalue (left hand side) and their representations
in the estimated third eigenspace (right hand side).
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4 Application to Diagnostic Data:

One-dimensional Analysis

4.1 Introducing the system

The data we analyze are obtained by measurements carried out on a laboratory analysis system.

This system can detect several analytes in a blood sample simultaneously. The measurements

take place on chips with plane coated surfaces of about 1.3 cm2 in size (see Figure 4.1). The

coating consists of several specific binding points which are arranged in an array of up to 21

columns and 11 rows on the chip. After multiple steps of filling the chip with sample or buffer

fluids, incubating, washing and drying it, the amount of specific binding reactions is determined

by a camera sensitive to fluorescent light (see Figure 4.2 for a schema of the process). Figure 1.2a

shows the image taken of the camera. In applications each column of spots binds specifically

one analyte and the measured signal is used to estimate analyte concentrations.

In order to optimize several aspects concerning the performance of this system a special type

of chips is used. Instead of coating the surface with binding points for several substances,

these chips are coated homogeneously so that one ideally obtains a constant signal on the

whole surface. In the introduction we already showed with Figure 1.2b an example for this

kind of chips. Due to complex influence effects (e.g. from washing and mixing processes) the

ideal situation of a constant signal can hardly be reached. Therefore differences in the basic

signal level have to be accounted for in later applications. This is why we will analyze the

occurring structures in the following. In order to have an overview as complete as possible the

measurement system delivers measurements at a grid of 21× 11 points per chip.

(a) A measurement chip with a Lego brick
for size comparison

(b) A measurement chip with marked detection area

Figure 4.1: The measurement chip
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Figure 4.2: The measurement process
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4.2 Application 1: Clustering the incubator units

4.2 Application 1: Clustering the incubator units

In this section one performance aspect shall be analyzed in detail (Winzenborg et al. [2009]):

The system consists of several parallel incubator units to increase the throughput. An incubator

unit is an area where a chip stays for about 30 seconds at an ideal temperature so that binding

reactions take place. Additionally, each incubator unit has an air jet for sample mixing during

the incubation. Due to small differences in the air jets resulting from the fabrication process, the

mixing is not equal at each incubator unit. This leads to visible differences in signal patterns of

chips incubated at different units. For further evaluations which should not depend on incubator

units, it is necessary to select incubator units which are comparable in signal height and course.

This task shall be accomplished by a clustering algorithm which groups air jets and thereby

incubator units that behave similarly.

A specialty in this clustering task is the fact that the incubator units are clustered indirectly

via the signals of the chips they process. It is therefore necessary to deal with multiple mea-

surements per unit in the clustering algorithms.

Instead of executing the cluster algorithms over the two dimensional chip space, column medians

(i.e. medians of each 11 signal values per column) are calculated. This procedure for reducing

the number of variables is chosen because in laboratory practice also a robust estimation of the

column’s mean value is evaluated. A robust estimator is necessary due to edge effects which

are caused by insufficient washing and mixing power near the edges (the pictures in Figure 1.2

show this effect). The data set we analyze in the following consists of 30 incubator units and

three chips measured per unit. Each of the 90 chips is described by a median signal course

consisting of 21 values. Because of the mentioned edge effects only the middle 17 medians are

analyzed in the following. Figure 4.3 shows the column medians per chip and incubator unit.

We want to perform the clustering via the FPC algorithm presented in Chapter 2 and compare

it with standard multivariate procedures like K-means and hierarchical clustering as well as

with a parametric method. In the following we present the methods and show results of the

data application.

Methods

Treatment of multiple measurements. Since the task is to cluster the incubator units and

not the chips it is necessary to find a way to treat multiple measurements on one unit. Two

approaches are considered here. In the first approach we average the signals of the same unit

and use only the mean functions for clustering. The second approach is to cluster all chip

signals and to assign each incubator unit to the cluster where most of the chips processed by

this unit belong to. If the incubator unit belongs to two or more clusters with equal weight it

is randomly assigned (see Leisch [2007]).

Multivariate cluster analysis comprises essentially two methods that we also consider here:

hierarchical clustering and K-means. In the following yi ∈ RN denotes the ith column median

vector (i = 1, . . . , I) and {Sc}c=1,...,C a cluster partition of {1, . . . , I}.

Agglomerative hierarchical clustering. Hierarchical clustering creates a hierarchy of cluster

partitions with increasing fineness. The agglomerative variant starts with each element repre-

49
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Figure 4.3: Medians per column for each chip (different gray scales) and unit.

senting its own cluster. In each of I − 1 iterations the closest two clusters are joined into a

single cluster so that after I − 1 iterations only one cluster is left. The resulting hierarchical

tree is cut at a specified level so that the desired number of clusters remains.

For determining the two closest clusters we take the complete linkage method, i.e. the maximum

distance between elements of each cluster, because we look for compact clusters.

K-means clustering. The aim of K-means clustering is to partition the data in a way that min-

imizes the within-groups sum of squares
∑C
c=1

∑
i∈Sc ||yi − µ̂

(c)||22 and maximizes the between-

groups variance
∑C
c=1 ||µ̂(c) − µ̂||22 in which µ̂(c) with µ̂(c)(j) = 1

|Sc|
∑
i∈Sc yi(j) for j = 1, . . . , J

is the estimated mean of cluster c and µ̂ the overall mean.

The method starts with a given number of clusters C and an initial (random) distribution of

elements to clusters. Then the following steps are carried out:

1. The cluster means µ(c) for c = 1, . . . , C are calculated.

2. Each element is assigned to the cluster with the nearest centroid, so that one obtains a

new partition {Sc}c=1,...,C .

3. Steps 1 and 2 are repeated until no element is reassigned anymore.
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K-means hierarch. param. FPCA
K-means 1.00 0.83 0.59 0.93
hierarch. 0.83 1.00 0.69 0.83
param. 0.59 0.69 1.00 0.52
FPCA 0.93 0.83 0.52 1.00

Table 4.1: cRate indexes between each pair of cluster partitions.

As distance measure between elements the Euclidean distance || · ||2 is applied in all algorithms.

We use the standard R functions kmeans and hclust to perform the clustering.

Parametric clustering Figure 4.3 leads to the assumption that the column medians can be

well approximated by polynomials of fourth order. Therefore a sensible way of clustering is to

fit polynomials to the column median data of each incubator unit and use a multivariate cluster

algorithm (for example K-means) to cluster the coefficients afterwards. This method can cope

with multiple measurements naturally by using the data of all multiples to fit the polynomial.

We used least squares fitting to fit the curves. Parameters are standardized before clustering

in order to have equal influence in K-means clustering.

cRate index: Agreement of cluster results The cRate (correct classification rate) index can

be applied to measure the agreement of two cluster results or, as in Chiou and Li [2007], to

compare the results of a cluster algorithm with the correct cluster partition. It expresses the

proportion of maximal correspondence between two cluster partitions to the total number of

objects. Let GC be the group of permutation functions on {1, . . . , C} and {Sc}c=1,...,C and

{S′c′}c′=1,...,C two cluster partitions1.

Then the cRate index is defined by

cRate({Sc}, {S′c′}) = max
g∈GC

#{k | ∃ c ∈ {1, . . . , C} : k ∈ Sc ∧ k ∈ S′g(c)}
I

.

K-means, hierarchical, parametric and FPCA clustering are applied to the data shown in Figure

4.3. As the signal of unit 5 clearly differs from the rest of the data (see Figure 4.3), all

algorithms always form a single cluster out of unit 5 if three clusters are demanded. Hence

the results presented here are obtained by forming two clusters of the remaining 29 incubator

units. We do not increase the number of clusters, because the cluster sizes otherwise get too

small for using only one of the clusters in later analysis. In FPCA we include the first principal

components which describe 95 % of variation and use bandwidth 2 for estimating mean and

covariance functions. For treatment of multiple measurements only the method of averaging

before clustering is presented here because both methods lead to approximately the same results.

Agreement of the cluster partitions of the four algorithms are compared by the cRate index.

Results are shown in table 4.1.

The multivariate methods (Figures 4.4a, b) yield two clusters which clearly differ in their

location. K-means and hierarchical lead here to similar, but not entirely equal results.

Before regarding the parametric results we evaluated the fit. Residual plots demonstrate that

not much information is left in the residuals (not shown here). The autocorrelation of the resid-

1{Sc}c=1,...,C and {S′
c′}c′=1,...,C are of equal length. If necessary, they are filled with empty subsets.
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4 Application to Diagnostic Data: One-dimensional Analysis

(a) K-means (b) hierarchical

(c) parametric (d) FPCA

Figure 4.4: Partition of incubator units into clusters for each algorithm. The lines represent
mean curves per unit.

uals reveals a normal extent of correlation between joining column medians. The parametric

clustering results (Figure 4.4c) are hard to interpret because curves belonging to one cluster

show no obvious agreement in location or form.

As the FPCs are calculated based on mean and covariance function of the process, those are

shown in Figure 4.5. Especially noticeable is that the covariance function has a high, almost

constant level between the inner columns. The first four principal components of the data

are shown in Figure 4.6. The first principal component explains already 71 % of variation

and describes especially variations of the locations of the inner column medians. The second

principal component describes mainly deviations at the right side and has with 20 % still a

great influence. The third component with an influence of 8.2 % describes deviations at the

left side. Compared to the first three principal components which already describe over 95 %

of variation, the rest of the components have a neglectable influence. Here the fourth PC is

also presented and it can be observed that this component with an influence of only 1.5 % is

difficult to estimate at the boundaries. We decided that 95 % of explained variation, e.g. the

first three scores suffice for clustering. The FPCA clustering results (Figure 4.4d) are similar

to the K-means results.
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4.2 Application 1: Clustering the incubator units

(a) Estimated mean function (b) Estimated covariance function

Figure 4.5: Estimated moments of the process

Figure 4.6: Estimated functional principal components of the column medians
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4 Application to Diagnostic Data: One-dimensional Analysis

Figure 4.7: Simulation results of robustness analysis. The mean cRate index between cluster
results of original and disturbed data is presented.

Robustness analysis

In order to analyze the sensitivity of the algorithms to random signal fluctuations we add a

small amount of variation to each data point:

ỹi(n) = yi(n) + εin with εi = (εi1, . . . , εiN ) ∼ N (0N , b Ω̂)

and Ω̂(n, n′) =
1

I − 1

I∑
i=1

(yi(n)− µ̂(n))(yi(n
′)− µ̂(n′))

for n, n′ = 1 . . . , N and i = 1, . . . , I. In this case N = 17 denotes the number of spot lines

and 0N the zero vector with N items. N is the multivariate normal distribution with the

given mean vector and covariance matrix parameters. The parameter b controls the extent of

disturbance and is varied in irregular distances from 0.3 to 10. For each parameter 25 data sets

are constructed. The disturbed data are clustered like the original data. Afterwards the mean

cRate indexes between cluster results from original and disturbed data are calculated.

The cRate indexes of K-means, parametric and FPCA clustering show a nearly equal decrease

over the disturbance parameter (see Figure 4.7) so that they are similarly robust, whereas

the cRate index of hierarchical clustering decays rapidly and stays constant over the rest of

the analyzed parameter domain. This observation indicates that hierarchical clustering is less

stable in this situation.

Discussion

The intention of this analysis is to examine and compare the K-means, hierarchical, parametric

and FPCA clustering algorithms in their behavior in a special data situation.

K-means, hierarchical and FPCA clustering yield to well interpretable results which are mainly

separated by location.
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4.3 Application 2: Longitudinal patient data

The initially astonishing effect that K-means and FPCA lead to similar results, can be explained

by the fact that the (most influential) first principal component score mainly describes the

location of each curve and location is also the most important criterion in K-means clustering.

Due to the low performance of hierarchical clustering within the chosen settings we also tested

other settings of metric and linkage, e.g. the ward linkage with the correlation coefficient as met-

ric or single linkage with different metrics, but no setting leads to performance improvements.

Single linkage settings even decrease the performance.

The advantage of FPCA compared to the multivariate methods is the consideration of the

alignment of the columns. The cost is that it is slower than the multivariate algorithms due to

the additional calculation of functional principal components.

For the parametric clustering one has to consider that the parameters are standardized before

clustering. If not doing so, data are mainly clustered by their intercept, because this location

parameter has the biggest variance. To obtain sensible results between the two extremes one

could try to assign weights to the parameters.

We also tried to use the KCFC algorithm presented in Section 2.4.1, but as already mentioned

there, this algorithm does not work for small datasets and this dataset was too small to deliver

any sensible results with this method.

In summary, regarding the interpretation of cluster results and the robustness, the algorithms

K-means and FPCA are most advisable in the analyzed data situation.

4.3 Application 2: Longitudinal patient data

The main application subject in this thesis is the analysis system described in the foregoing

section. But as FPCA has a wide spectrum of possible applications, we want to show the appli-

cation in one further area: The analysis of longitudinal measurements of clinical parameters. In

this study a continuous illness score is measured over time in two groups of patients, a placebo

and a treatment group. Here the placebo group receives a standard medication and the treat-

ment group the standard medication plus a new treatment. Measurements are taken regularly

over a period of time. One aim of the analysis is to see whether the courses are differentiable

between the treatment and the placebo group. Furthermore, biomarkers were measured for

each patient at the beginning of the treatment. A biomarker is a protein whose concentration

(for example in blood) allows conclusions about the disease state of a patient. Previous analyses

have shown that a combination of two biomarkers is able to stratify the patients to a certain

extent into a group where the treatment is going to help the patients getting better (biomarker

positive group) and into a group where the treatment doesn’t work (biomarker negative group).

This rule was developed through discriminant analysis based on the disease score at the be-

ginning of the treatment and the disease score at one fixed further point in time. We will use

FPCA to see if we can detect differences in both groups.

Furthermore, we use this application to compare our FPCA method (from now on called non-

parametric FPCA in this section) with a method described by Ramsay and Silverman (Ramsay

and Silverman [2006] and Ramsay et al. [2009]). Their approach uses a functional basis in which

the data set is represented before the FPCA is performed. Hence we will refer to this method
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4 Application to Diagnostic Data: One-dimensional Analysis

(a) Patients with treatment (b) Patients with placebo

Figure 4.8: Exemplary patient score courses of randomly chosen placebo and treatment patients.
In the treatment group patients are labeled according to their biomarker status.

as basis FPCA in the remainder of this section.

Data

385 patients were included in the analysis, each measured at eight points in time from one to

336 days. 69 of the patients belong to the placebo group, 316 to the treatment group. Of the

treatment group 142 patients were biomarker negative, 174 were biomarker positive according

to a biomarker rule.

The outcome of the measurements is a score that allows judging the severity of the disease. A

patient with a higher score is more ill than a patient with a lower score.

Methods

The nonparametric FPCA is performed like presented in Section 2.2. We use a smoothing

parameter of 100 days for both mean and covariance estimation and calculate the results for

each 10 days between 0 and 330 days.

The basis FPCA (Ramsay and Silverman [2006]) has another approach: In this method a system

of independent functions {φl, l = 0, . . . , L} with L ∈ N is defined as a basis and in a first step,

each observation is represented in the basis system:

yi ≈
L∑
l=0

ĉilφl

The coefficients ĉil ∈ R need to be chosen appropriately for each observation yi. This is done
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4.3 Application 2: Longitudinal patient data

by minimizing the squared distance of yi and a linear combination of the basis functions:

ĉi ∈ arg min
ci∈RL+1

[
N∑
n=1

(
yi(tn)−

L∑
l=0

cilφl(tn)

)]2

In this application, we approximate each observation through a polynomial, e.g. we use the

monomial basis

φl(t) = (t− ω)l, l = 0, . . . , L.

ω is a shift parameter, usually the middle of the observation interval, in this case ω = 165.

For calculating the FPCA first remember that we have to solve the eigenequation∫
G(s, t)ρ(t) dt = λρ(s). (4.1)

The Ramsay and Silverman method uses the assumption that the observations can be exactly

represented through the basis functions, e.g.

yi(t) =

L∑
l=1

cilφl(t) for all t ∈ R

or in matrix notation:

Y = CΦ with Y =


y1

...

yI

 , C =


c11 . . . c1L
...

. . .
...

cI1 . . . cIL

 ,Φ =


φ1

...

φL

 ,

The covariance function is in this case given by:

G(s, t) = I−1Φ(s)TCTCΦ(t)

assuming that the mean function is subtracted.

It is further assumed that the eigenfunctions can also be represented through the basis functions,

e.g. for an eigenfunction ρ:

ρ(t) =

L∑
l=1

blφl(t) respectively ρ(t) = Φ(t)T b (4.2)

with coefficients bl ∈ R and b = (b1, . . . , bL)T .

If we define W =
∫

ΦΦT componentwise, the left side of equation (4.1) can be rewritten as∫
G(s, t)ρ(t) dt =

∫
I−1Φ(s)TCTCΦ(t)Φ(t)T b dt = Φ(s)T I−1CTCWb

and the whole eigenequation as

φ(s)T I−1CTCWb = λφ(s)T b.
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4 Application to Diagnostic Data: One-dimensional Analysis

As this equation must hold for every s ∈ R, this leads to

I−1CTCWb = λb.

For u := W
1
2 b we now obtain an eigenequation in matrix form:

I−1W
1
2CTCW

1
2u = λu

From the condition ||ρ|| = 1 and ρ1⊥ρ2 for ρ1 6= ρ2 we also have the conditions uTu = bTWb = 1

and uT1 u2 = bT1 Wb2 = 0 for u1 6= u2. Finally the coefficients b for the original problem are

given by b = W
1
2u, such that with equation (4.2) we obtain the functional principal components

according to Ramsay and Silverman [2006].

(a) Mean functions (b) Covariance function of nonparametric method

Figure 4.9: The left graphic shows the mean functions of both approaches in comparison. The
right graphic shows the covariance function of the nonparametric approach.

Results

Figure 4.9 shows the mean functions over all patients for both methods as well as the covariance

function for the nonparametric method. One can see that the mean score decreases over all

patients and that the mean functions calculated by both methods are relatively similar and

differ only for the last measurements. The covariance function shows that the measurements

taken at later days are more strongly correlated than the first measurements.

The first three eigenfunctions calculated by both methods are shown in Figure 4.10. As those

eigenfunctions already explain nearly 100 % of the variability in the nonparametric case (actu-

ally the Figure headings indicate exactly 100 %, but this is due to the rounding of the variance

proportion) and nearly 98 % in the basis method case, we do not show further eigenfunctions.

One can see that the shape of the eigenfunctions calculated by both methods is similar. The

nonparametric eigenfunctions are more variable, but therefore explain the data at hand a bit
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4.3 Application 2: Longitudinal patient data

(a) Nonparametric method (b) Basis method

Figure 4.10: The first three estimated eigenfunctions of the process.

(a) Nonparametric method (b) Basis method

Figure 4.11: The scores belonging to the first and to the second eigenfunction are plotted for
each patient and for both methods separately. They are colored according to the
treatment method.

better.

For both methods, the first eigenfunction explains mainly the location of the measurements,

i.e. a positive score for the first eigenfunction means that the patients score is located higher

than in the average patient. The second score describes the increase or decrease over time. A

patient with a negative second score therefore has a higher decrease than the average patient.

The third score alters the form of the observation, but it is with an influence of barely 2 % for

the nonparametric and 4 % for the basis method case only of minor interest.
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4 Application to Diagnostic Data: One-dimensional Analysis

For this reason, we will concentrate our further analysis on the scores belonging to the first two

eigenfunctions. Figure 4.11 shows the scores for both methods colored by treatment. One can

see that the distributions look relatively similar and differ only a bit from method to method.

As for both methods no clusters of patients are visible and therefore no natural division exists,

we will look at the quadrants in which the first two scores lie. Therefore Figure 4.12 shows

the patient courses for each quadrant, again colored by treatment and Table 4.2 shows the

percentages of patients belonging to each quadrant for the treatment and for the placebo group.

The patients who benefit the most from the treatment are those in quadrant 4, because they

have a high score at the beginning and a steep decrease afterwards.

Both methods sort more than half of the placebo patients into the first two quadrants (which

are the quadrants with substandard decrease), but also 30 respectively 36 % of the patients

into quadrant four, which means that these patients have a strong medical effect also without

additional treatment. The distribution in the treatment group is even less clear, which leads

to the judgment that not all patients profit by the treatment. We could stratify the patients

according to the scores into a group where the treatment works and into a group where the

treatment does not work. But as it would be helpful to know before starting the treatment

which patients are going to benefit from it, the biomarkers were measured additionally and a

rule for stratifying the patients was deduced. We calculated the FPCA again, but this time only

on the treatment patients. The eigenfunctions and scores are not shown, because the results

are similar to the FPCA results on all patients, as they are mainly influenced by the greater

group of treatment patients.

Figure 4.13 show the results, this time colored according to the biomarker status. Table 4.3

shows the percentages of the patients in each quadrant by biomarker status. 142 of the treatment

patients are biomarker negative and 174 are biomarker positive. The nonparametric FPCA

methods sorts 70 % of the biomarker negative patients in quadrants 1 and 2 where the decrease

is slower than average and about 54 % of the biomarker positive patients into quadrants 3 and

4. In the basis method case about 65% of the biomarker negative patients are in quadrants 1

and 2 and about 57% of the biomarker positive patients are in quadrants 3 and 4.

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4
Nonparametric Placebo 33.33 24.64 11.59 30.43

Treatment 20.89 35.44 20.89 22.78
Basis Placebo 34.78 17.39 11.59 36.23

Treatment 25.95 25.95 29.11 18.99

Table 4.2: The distribution of the placebo and the treatment group on the four quadrants (in
percent) for both FPCA methods.

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4
Nonparametric BM- 35.92 34.51 14.79 14.79

BM+ 18.39 27.59 29.89 24.14
Basis BM- 37.32 28.17 19.72 14.79

BM+ 20.11 22.99 29.31 27.59

Table 4.3: The distribution of biomarker positive and biomarker negative patients on the four
quadrants (in percent) for both FPCA methods.
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4.3 Application 2: Longitudinal patient data

Discussion

To summarize, one can conclude that the nonparametric and the basis FPCA lead to similar

eigenfunctions. The eigenfunctions of the nonparametric FPCA are more variable and explain

the data at hand a bit better which is due to the fact that the method has more degrees of

freedom than the basis method. The basis method depends very strongly on the chosen basis

system such that one difficulty in applying this method is to choose an appropriate basis. Here

the system works well for the first and third eigenfunction, but non data-driven side effects occur

for the second eigenfunction. We haven’t tried alternative basis systems that would perhaps

better describe the data at hand.

All in all, the FPCA method helps first to obtain a better visualization of the data set. In

Figure 4.8 it is hard to see any structure, as the patients have totally different courses, whereas

in Figure 4.13 it is possible to see the general groups of courses. One can further to a certain

extent verify the results of the biomarker classification through the grouping of the scores. As

the biomarker rule was developed by taking only two points in time into consideration and

therefore does not include the behavior apart from these two points in time, one could imagine

to perform the biomarker classification directly on the FPCA results in order to include the

temporal courses into the analysis and hence to perform the classification on a more accurate

representation of the actual course of disease of a patient.
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4 Application to Diagnostic Data: One-dimensional Analysis

(a) Nonparametric method (b) Basis method

Figure 4.12: The patient courses in the quadrant where the corresponding first two scores belong
to colored by placebo or treatment.

(a) Nonparametric method (b) Basis method

Figure 4.13: The patient courses in the quadrant where the corresponding first two scores belong
to colored by biomarker classification.
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5 Application to Diagnostic Data: Spatial

Analysis

5.1 Application 1: Comparison of one- and two-dimensional

methods

In the following, an example which shows the advantages of complementing standard one-

dimensional evaluation methods with the newly developed spatial functional principal compo-

nents analysis, will be presented.

Data were measured on the multi-parameter analysis system introduced in Chapter 4. In

this case, so called TSH chips (chips which are designed to bind the thyroid activity marker

thyroid-stimulating hormone or thyrotropin) are used. These chips consist of 10 spot lines with

12 spots each. In order to judge the reproducibility over time, measurements were conducted

at two points in time 14 days apart with 21 chips measured at the first and 10 chips measured

at the second point in time. The measurement settings were identical except for the batch of

one ingredient. Spot line 3 was removed from further analysis because the chips are corrupted

at this line.

A standard method for evaluating the data is to look only at the spot line means and standard

deviations, as presented in Chapter 4. This approach is presented in Figure 5.1, where the spot

line means and standard deviations per chip are plotted against the spot line for the first and

second run separately. The dots are colored by the measurement chip they belong to.

This graphic allows seeing that there are major differences between measurements taken at the

two points in time. Both, mean signals and standard deviations, are higher and more variable

Figure 5.1: A standard approach to look at chip data: Mean and standard deviation of the
signal values of each spot line as a dot colored by the chip they belong to. The
additional lines connect the spot line means respectively show the overall mean of
both runs separately. (Figure produced with SAS JMP 7.0.)
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(a) First run - 3D graphics (b) First run - flat graphics

(c) Second run - 3D graphics (d) Second run - flat graphics

Figure 5.2: Smoothed surfaces of measurement values of four measurement chips belonging to
two different runs. The left graphics ((a) and (c)) show the values as 3D plots and
the right graphics as flat color plots. The coloring schema is the same in all plots.
In the following only the flat color plots are shown.

at the first point in time than at the second one. Though we obtain this information, a great

disadvantage of this kind of summary is that the spatial information is almost lost and it is

impossible to extract where on the chip surface the differences occur.

Therefore the approach of spatial functional principal component analysis and its various means

of looking at the data are presented in the following for this data example.

To introduce the kind of data dealt with, Figures 5.2(a) and (c) plot smoothed versions of

the signal values as surfaces against spot and spot line values and thereby allow to see the

structures occurring on the whole chip. Especially one can see that not only in the direction of

the spot lines, but also in the spots’ direction structures are visible. An alternative illustration

of the same data give Figures 5.2(b) and (d), where the surface is only presented by color.

The second illustration method is perhaps less intuitive, but has the crucial advantage that no

information is lost when printed in two dimensions. Therefore the following graphics only use

the flat illustration.

To summarize the information of the whole dataset while retaining the spatial view, the method

of spatial functional principal component analysis was developed (see Chapter 3). First we

compare the method applied to both runs separately, second a common FPCA expansion is

calculated for both runs so that a further analysis of the FPC scores can be conducted.

Figure 5.3 shows the smoothed mean and the results of the spatial FPCA calculated separately

on both runs. In this case we used the approach with smoothed estimation of mean and

covariance function as described in Section 3.2 with a bandwidth of 3 for both directions and

both, mean and covariance function.
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5.1 Application 1: Comparison of one- and two-dimensional methods

(a) First run

(b) Second run

Figure 5.3: Mean chip surface and first four principal components of both runs analyzed sep-
arately (PC n = nth principal component, var. prop.= variance proportion of the
nth principal component in percent).
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Figure 5.4: Scores of the FPCA calculation. Each dot represents the score of one measurement
chip of the indicated principal component and run.

In the first run, the mean signal lies higher and shows more variation over space. The first

run also has an influential first principal component with 63 % which is relatively flat. This

shows the strong location variability in the first run. In the second run, it is noticeable that the

first and the second principal component have a high absolute value in the upper right corner

which indicates that most of the variation occurs there. This is a spatial effect that cannot be

detected in Figure 5.1.

In Figure 5.4 the scores of each measurement chip (i.e. the coefficients in the linear combination

of principal components which approximate the chip signal) are plotted for both runs. One can

see that the scores of the first run are more variable for all four principal components. This

observation corresponds to the higher standard deviation of the first run in Figure 5.1.

Further the common principal component expansion of both runs is analyzed (see Figure 5.5(a)).

Having the same principal components in both runs allows analyzing the scores in more detail.

Figures 5.5(b)+(c) plot the first against the second PC score. The numbers in 5.5(b) indicate

the run the scores belong to. One can see that the scores of both runs can be separated

clearly which underlines the observation that both runs are crucially different. A k-means

clustering was performed on the scores and it leads to a nearly perfect separation. As it was

seen before that the incubator position of the measurement system could have an influence on

the measurement, the plot was reprinted in Figure 5.5(c) with the numbers representing the

incubator positions. In this example no strong effect of the incubator position is visible.

The example shows that the spatial examination of the data through mean signal and the first

principal components allows seeing structures on the chip surface and chip-to-chip variability

in more detail than in the standard spot line summaries.
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5.1 Application 1: Comparison of one- and two-dimensional methods

(a)

(b) (c)

Figure 5.5: (a) Mean chip surface and first four principal components of both runs combined.
The lower graphics show the results of k-means clustering of the scores belonging
to the first four principal components presented in the plane of the first two scores.
The colors indicate the cluster membership, the number in (c) the run respectively
in (d) the incubator position.
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Figure 5.6: 30 measurement chips of one instrument check.

5.2 Application 2: Analysis of system performance over time

In this section we discuss a second example of spatial FPCA applied to the data of the mea-

surement system. This time a series of so-called instrument checks are conducted at regular

intervals (every 2 weeks). The aim of these tests is to see if the performance of the system stays

constant over time. The standard analysis procedure for these instrument checks is like in the

example before through calculating spot line means and coefficients of variation. This example

shall show what can be seen using FPCA instead.

We will analyze seven consecutive instrument checks. An instrument check consists of the

measurement of 30 chips, each measured at one of 30 incubator positions. The chips are coated

homogeneously and are evaluated at 21 times 11 points.

The aim is to analyze the general structure of the process, detect a change of the structure over

time and compare measurements taken at different positions.

Figure 5.6 shows an example for one instrument check with 30 chips.

The FPCA can be calculated for each instrument check such that the principal components can

be compared over time or the FPCA can be determined over all chips and the single processes

can be compared by the scores. We decided this time to use the method with smoothing

of observations and eigenfunctions and not to perform the smoothed mean and covariance

estimation, because for 210 chips it is very computing time-consuming. The smoothing was

done with bandwidth 2 in all directions.
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Figure 5.7: Single FPCA analyses of four runs.
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5 Application to Diagnostic Data: Spatial Analysis

Figure 5.8: Result of the FPCA calculation. The left graphic shows the mean function, whereas
the four graphics on the right show the first four principal components.

Figure 5.7 shows the FPCA calculated for four of the seven runs. These graphics allow com-

paring the general covariance structure between the runs. The first observation is that the

mean function seems to change over time concerning the peaks in the middle of the chips and

the general height, which above all decreases in run number 7. Further one can see that the

first principal component is mainly flat, so that it describes the general location. The second

principal component always describes differences between the upper right and the lower left

part of the chips. Then we have a component describing differences in the height of the peak

in the middle of the chip. For the first run it is the fourth component, for the other three runs

it is the third component. The remaining component describes again differences between sides

of the chip with varying priorities between the runs. In runs 1 and 3 the first component has

a much higher influence as in runs 4 and 7 which can be interpreted that in runs 1 and 3 the

chips differ more in location than in structure.

In order to be able to compare the runs through regarding the scores, Figure 5.8 shows the

common FPCA over all chips. One can see that the mean function has three maxima in space.

Further the first principal component is again mostly flat, whereas the second describes differ-

ences in height between the upper right and lower left side of the chip. The third component

models like in the single FPCAs differences in the magnitude of the inner maximum and the

fourth component describes differences in signal height between the upper left and the lower

right side. The first four components describe together over 90 % of variability. We can deduce

that the common FPCA is somewhat a summary of the single FPCAs of Figure 5.7.

The scores of the first two principal components of the common FPCA are shown in Figures

5.9 and 5.10. Figure 5.9 is colored and named by the instrument check such that one can see

how the structure varies over time. In this case the values for score 1 decrease over time, while

the distribution of the values of score 2 stays approximately the same. Additionally one can

see the reason why the first principal component has such a strong influence in runs 1 and 3:

The one outlying chip in runs 1,2 and 3 on the right sight in 5.9 leads to this phenomenon.

Another point of interest was to detect differences between incubator units. Therefore in a

second representation the graph is colored again by the instrument check, but named by the

incubator unit. Figure 5.10 shows two versions with different incubator positions highlighted.

It can be seen that the first score (the position) varies within one unit, but the second score

(the shape) stays almost constant. This is an interesting observation because it means that
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5.2 Application 2: Analysis of system performance over time

the shape of the measured signal is influenced mainly by the unit, whereas the position is

influenced by other factors, for example the deterioration of ingredients. Here we see that the

three outliers were all measured at the first incubator position. The explanation is that after

three runs the engineers detected the bad performance of this incubator position and exchanged

the unit. Hence in the rest of the runs this position is no outlier anymore.

Another effect which can be seen by analyzing the graphs closer is that the variance in the

scores of one incubator unit seems to increase in the last units. This can be explained by the

approach of the engineers to put the incubator units with bad performances to the last positions

of the system as they are not used as often as the first units.

We see that this analysis already tells a lot about the spatial structure of the measurement. One

can monitor changes in performance over time as well as the performance of single incubator

positions. Additionally one can detect outlying incubator positions. In summary the FPCA

method is a suitable tool to monitor the instrument checks.
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5 Application to Diagnostic Data: Spatial Analysis

(a) Instrument check 2 highlighted (b) Instrument check 7 highlighted

Figure 5.9: The scores of the first two principal components named and colored by instrument
check number.

(a) Incubator unit 10 highlighted (b) Incubator unit 30 highlighted

Figure 5.10: The scores of the first two principal components named by incubator unit and
colored by instrument check number.
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6 Consistency Results

This chapter shows how accurate the estimation of principal components on data sets works.

Therefore consistency is shown in the case of one- as well as two-dimensional functional data

sets and convergence rates are calculated. We concentrate on the situations most common in

our applications and demand in addition to Sections 2.2 and 3.2 that data are measured at

regular points in time and on a regular grid respectively.

As guidelines for the consistency calculations serve the papers Yao et al. [2005] and Yao and Lee

[2006]. In Yao et al. [2005] the one-dimensional case with random points in time is presented

and proved. Yao and Lee [2006] treats the case of one-dimensional data taken at regular points

in time without carrying out the proofs.

Before turning to the consistency results, a short overview about the Landau symbolism to

notate convergence rates shall be given.

6.1 Landau symbols

The Landau symbolism allows to notate the orders of convergence in a simple way and makes

calculations with them more clearly.

In numerics it is common to notate the speed of convergence of sequences with the (determin-

istic) Landau symbols O and o:

Definition 6. Let (xn)n∈N and (an)n∈N > 0 be real sequences, then:

xn = O(an)

:⇔ ∀ n ∃M > 0: |xn| ≤Man

xn = o(an)

:⇔ ∀ ε > 0 ∃ n0 : |xn| ≤ ε an for n > n0

There exists a corresponding notation with (stochastic) Landau symbols OP and oP for se-

quences of random vectors (Pollard [1984]):

Definition 7. Let (Xn)n∈N be a sequence of random values and (an)n∈N > 0 a real sequence,
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6 Consistency Results

then:

Xn = Op(an)

:⇔ ∀ ε > 0 ∃M > 0 ∃ n0 > 0 : P (|Xn| ≥Man) ≤ ε ∀ n > n0

Xn = op(an)

:⇔ ∀ ε > 0 : P (|Xn| ≥ ε an)
n→∞−→ 0

Especially this means:

Xn = op(1)⇔ Xn → 0 in probability

Xn = Op(1)⇔ Xn is stochastically bounded

Properties 6. If Xn = a+OP (an), Yn = b+OP (bn), a, b ∈ R, an, bn → 0, an = O(bn), we can

derive that:

Xn + Yn = a+ b+OP (bn)

XnYn = ab+OP (bn)

Xn

Yn
=
a

b
+OP (bn) (provided b 6= 0)

These properties will be used in the following proofs.

6.2 Consistency for FPCA

In order to derive consistency results for the FPCA estimation, we assume in this chapter i.i.d.

processes Y it with t ∈ T for i = 1, . . . , I having a density function g(y; t). Further g2(y1, y2; t1, t2)

shall be the joint density of Y it1 and Y it2 . The points in time tin where the measurements take

place are assumed to be fixed, equal for all observations and of the same distance. For notational

convenience we further assume T = [0, 1] and therewith tin = tn = n
N and Y in := Y in

N
.

In the proofs of the consistency results for mean and covariance estimators, we will use the

fact that the estimators can be composed of more simple kernel estimators. Thats why at first

general consistency results for kernel estimators of functions defined on T respectively T 2 are

shown in Lemmas 7 and 8.

6.2.1 Lemmata

Lemma 7 (Lemma for mean estimation, see also Yao et al. [2005]). Assume that

(a) K is an absolutely integrable kernel, i.e.
∫
|K(t)| dt < ∞, and has an absolutely integrable

Fourier transform.

(b) K is compactly supported of order (ν, l) with l > ν and
∫
K2(t) dt <∞.
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6.2 Consistency for FPCA

(c) The bandwidth h and the data points per observation N depend on the sample size I and

fulfill h→ 0, Ihν+1 →∞, Ih2l+2 = O(1), 1
N = O(hl+2) for I →∞.

(d) dl

dtl
g(y; t) exists and is continuous on T × R.

Let further ψ : R2 → R be a real function with:

(e) ψ is uniformly continuous on T × R.

(f) supt∈T
∫
ψ2(t, y)g(y; t) dy <∞

Now define a weighted average and its limit expected value via

ΨI(t) =
1

Ihν+1N

I∑
i=1

N∑
n=1

ψ
( n
N
, Y in

)
K
( n
N − t
h

)
,

µ(t) =
dν

dtν

∫
ψ(t, y)g(y; t) dy

and assume that

(g) dl

dtl
µ(t) exists and is continuous on T

(h) µ∗(t) :=
∫
ψ(t, y)g(y; t) dy is Lipschitz continuous on T.

Under these assumptions ΨI(t) is a consistent estimator for µ(t) and one can obtain the fol-

lowing uniform consistency rate:

τI := sup
t∈T
|ΨI(t)− µ(t)| = OP

(
1√
Ihν+1

)
.

Remark. If ψ is a function only in t (i.e. ΨI has no random part), the rate is

τI = O
(
hl−ν

)
.

Proof (see also Yao et al. [2005]). First observe that the term τI can be splitted into a variance

and a bias term:

E|τI | ≤ E sup
t∈T
|ΨI(t)− E(ΨI(t))|︸ ︷︷ ︸

=:A

+ sup
t∈T
|E(ΨI(t))− µ(t)|︸ ︷︷ ︸

=:B

. (6.1)

In the following parts A and B are evaluated separately.

Part A: First the kernel is represented in the Fourier space in order to find an expression

which can be evaluated easily. Assumption (b) guarantees that the Fourier inversion formula

can be applied. Hence we insert the expression

K
( n
N − t
h

)
=

1

2π

∫
eiv

n
N
−t
h

[∫
e−iuvK(u) du

]
︸ ︷︷ ︸

=:ρ(v)

dv
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6 Consistency Results

into ΨI(t) and perform a substitution v = uh afterwards:

ΨI(t) =
1

Ihν+1N

I∑
i=1

N∑
n=1

ψ
( n
N
, Y in

) 1

2π

∫
eiv

n
N
−t
h ρ(v) dv

=
1

2πIhνN

I∑
i=1

N∑
n=1

ψ
( n
N
, Y in

)∫
eiu( nN−t)ρ(uh) du

=
1

2πhν

∫
e−iutρ(uh)

[
1

IN

I∑
i=1

N∑
n=1

eiu
n
N ψ

( n
N
, Y in

)]
︸ ︷︷ ︸

=:ϕI(u)

du

=
1

2πhν

∫
e−iutρ(uh)ϕI(u) du

Therefore we get for the expected value of ΨI(t):

E(ΨI(t)) =
1

2πhν

∫
e−iutρ(uh)E(ϕI(u)) du

and for the whole part A:

E
(

sup
t∈T
|ΨI(t)− E(ΨI(t))|

)
≤ 1

2πhν

∫
|ρ(uh)|E|ϕI(u)− E(ϕI(u))| du.

For the evaluation of the term E|ϕI(u)− E(ϕI(u))| we observe that

E|ϕI(u)− E(ϕI(u))| ≤
√
E(ϕI(u)− E(ϕI(u)))2 =

√
Var(ϕI(u)).

A bound for the variance term Var(ϕI(u)) can be calculated exploiting that Y in are i.i.d. random

variables (in i) and that the variance is smaller than the expected squared value:

Var(ϕI(u)) = Var

[
1

IN

I∑
i=1

N∑
n=1

eiu
n
N ψ

( n
N
, Y in

)]

=
1

IN2
Var

[
N∑
n=1

eiu
n
N ψ

( n
N
, Yn

)]

≤ 1

IN2
E

[
N∑
n=1

eiu
n
N ψ

( n
N
, Yn

)]2

≤ 1

IN2
E

[(
N∑
n=1

∣∣e2iu nN
∣∣)

︸ ︷︷ ︸
=N

(
N∑
n=1

ψ2
( n
N
, Yn

))]

≤ 1

IN

N∑
n=1

E
(
ψ2
( n
N
, Yn

))
(using Cauchy-Schwarz inequality)
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6.2 Consistency for FPCA

≤ 1

I
max

n=1,...,N
E
(
ψ2
( n
N
, Yn

))
All in all one obtains for expression A:

E
(

sup
t∈T
|ΨI(t)− E(ΨI(t))|

)
≤ 1

2πhν

√
1

I
max

n=1,...,N
E
(
ψ2
( n
N
, Yn

))∫
|ρ(uh)| du︸ ︷︷ ︸

=
∫

1
h |ρ(v)| dv

=
1

hν+1
√
I

1

2π

√
max

n=1,...,N
E
(
ψ2
( n
N
, Yn

))∫
|ρ(v)| dv︸ ︷︷ ︸

bounded by assumption (f)

= O

(
1

hν+1
√
I

)

Part B: For evaluating B we show that E(ΨI(t)) = µ(t) + O(hl−ν) + O
(

1
hν+2N

)
uniformly

for t ∈ T . In order to obtain this consistency rate the sum expression is approximated by an

integral with an error term of order O
(

1
hν+2N

)
(for calculation see (6.2) below). Afterwards

the integral is evaluated by a substitution τ = t+ vh such that it can be examined via a Taylor

expansion afterwards. For notational convenience set µ∗(t) :=
∫
ψ (t, y) g (y; t) dt.

E(ΨI(t)) =
1

hν+1N
E

(
N∑
n=1

ψ
( n
N
, Yn

)
K
( n
N − t
h

))

=
1

hν+1N

N∑
n=1

∫
ψ
( n
N
, y
)
g
(
y;
n

N

)
K
( n
N − t
h

)
dy

=
1

hν+1N

N∑
n=1

µ∗
( n
N

)
K
( n
N − t
h

)

=
1

hν+1

∫
µ∗(τ)K

(
τ − t
h

)
dτ +O

(
1

hν+2N

)
(sum replaced by integral)

=
1

hν

∫
µ∗ (t+ vh)K(v) dv +O

(
1

hν+2N

)

=
1

hν

∫  l−1∑
j=0

µ∗(j)(t)
(vh)j

j!
+ µ∗(l)(ξv)

(vh)l

l!

×K(v) dv +O

(
1

hν+2N

)

for ξv ∈ [t, t+ vh]

=
hν

ν!hν
µ∗(ν)(t)

∫
K(v)vν dv︸ ︷︷ ︸
=(−1)νν!

+
hl

l!hν
µ∗(l)(ξv)︸ ︷︷ ︸
bounded

∫
K(v)vl dv +O

(
1

hν+2N

)
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= µ(t) +O(hl−ν) +O

(
1

hν+2N

)
︸ ︷︷ ︸

independent of t∈T

The error of discretization, e.g. the error that occurs when substituting a sum expression by an

integral as in the last calculation, is evaluated in the following. Therefore the integral is first

inserted artificially in the sum expression and afterwards the term is divided in two parts E1

and E2, where conditions of the kernel function and of µ∗ can be used.

1

hν+1N

N∑
n=1

µ∗
( n
N

)
K
( n
N − t
h

)
(6.2)

=
1

hν+1

∫
µ∗ (v)K

(
v − t
h

)
dv

+
1

hν+1

N∑
n=1

∫ n
N

n−1
N

µ∗
( n
N

)
K
( n
N − t
h

)
dv − 1

hν+1

N∑
n=1

∫ n
N

n−1
N

µ∗ (v)K
(
v − t
h

)
dv

=
1

hν+1

∫
µ∗ (v)K

(
v − t
h

)
dv

+
1

hν+1

N∑
n=1

∫ n
N

n−1
N

[
µ∗
( n
N

)
− µ∗ (v)

]
K
( n
N − t
h

)
dv︸ ︷︷ ︸

=:E1

+
1

hν+1

N∑
n=1

∫ n
N

n−1
N

[
K
( n
N − t
h

)
−K

(
v − t
h

)]
µ∗ (v) dv︸ ︷︷ ︸

=:E2

E1 is evaluated based on the condition that µ∗ is Lipschitz continuous:

E1 =
1

hν+1

N∑
n=1

∫ n
N

n−1
N

[
µ∗
( n
N

)
− µ∗(v)

]
︸ ︷︷ ︸

|µ∗( nN )−µ∗(v)|≤c| nN−v|≤ c
N

K
( n
N − t
h

)
dv = O

(
1

hν+1N

)

For the evaluation of E2 the mean value theorem is used:

E2 ≤
1

hν+1

N∑
n=1

∫ n
N

n−1
N

∣∣∣∣[K( n
N − t
h

)
−K

(
v − t
h

)]
µ∗(v)

∣∣∣∣ dv
=

1

hν+1

N∑
n=1

∫ n
N

n−1
N

∣∣∣∣K′(ξn)

( n
N − v
h

)
µ∗(v)

∣∣∣∣ dv
for ξn ∈

[
min

{ n
N − t
h

,
v − t
h

}
,max

{ n
N − t
h

,
v − t
h

}]
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6.2 Consistency for FPCA

≤ 1

hν+1

N∑
n=1

max
n=1,...,N

|K′(ξn)| 1

hN

∫ n
N

n−1
N

|µ∗(v)| dv

= O

(
1

hν+2N

)
Now it is shown that:

Part A: E (supt∈T |ΨI(t)− E(ΨI(t))|) = O
(

1√
Ihν+1

)
Part B: E(ΨI(t)) = µ(t) +O(hl−ν) +O

(
1

hν+2N

)
For the combined expression (6.1) we therefore obtain the inequality:

E|τI | = O

(
1√
Ihν+1

)
+O(hl−ν) +O

(
1

hν+2N

)
= O

(
1√
Ihν+1

)
,

because hl−ν = hl+1

hν+1 =
√
Ih2l+2︸ ︷︷ ︸

bounded

1√
Ihν+1

= O
(

1√
Ihν+1

)
and 1

N = O(hl+2) (see assumption (c)).

Using Markov’s inequality one obtains the result:

E|τI | = O

(
1√
Ihν+1

)
⇒ τI = OP

(
1√
Ihν+1

)
Observe that in case of a non-random function ΨI(t) Part A vanishes such that the final rate

is only the better rate of Part B.

Before applying the proven lemma, we first want to derive a second lemma, which is the two-

dimensional variant of Lemma 7. This lemma is necessary in order to derive rates for covariance

estimation which leads us to Remark 6.2.1.

Lemma 8 (Lemma for covariance estimation, see also Yao et al. [2005]). Now let t = (t1, t2)

be an element of T 2. Assume that

(a) K is an absolutely integrable kernel, i.e.
∫ ∫
|K(t1, t2)| dt1 dt2 < ∞, and has an absolutely

integrable Fourier transform.

(b) K is compactly supported of order ((ν1, ν2), l) and
∫ ∫
K2(t1, t2) dt1 dt2 <∞.

(c) The bandwidth h and the data points per observation N depend on the sample size I and

fulfill h→ 0, Ih|ν|+2 →∞, Ih2l+4 = O(1), 1
N = O(hl+3) for I →∞.

(d) All derivatives of g2 in t up to the lth degree exist and are uniformly continuous.

Let further θ : R4 → R be a real function with:

(e) θ is uniformly continuous on T 2 × R2.

(f) supt∈T 2

∫ ∫
θ2(t1, t2, y1, y2)g2(y1, y2; t1, t2) dy1 dy2 <∞
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Now define a weighted average and its limit expected value via

ΘI(t) =
1

Ih|ν|+2N(N − 1)

I∑
i=1

∑
n1 6=n2

θ
(n1

N
,
n2

N
,Y in1

, Y in2
,
)
K
(
t1 − n1

N

h
,
t2 − n2

N

h

)
,

γ(t) =
d|ν|

dtν11 dt
ν2
2

∫ ∫
θ(t1, t2, y1, y2)g2(y1, y2; t1, t2) dy1 dy2

and assume that

(g) all derivatives of γ(t) up to 2nd degree exist and are uniformly continuous on T 2

(h) γ∗(t) :=
∫ ∫

θ(t1, t2, y1, y2)g2(y1, y2; t1, t2) dy1 dy2 is Lipschitz continuous on T 2.

Then ΘI(t) is a consistent estimator for γ(t) and

τI := sup
t∈T 2

|ΘI(t)− γ(t)| = OP

(
1√

Ih|ν|+2

)
.

Remark. If θ is a function only in t (i.e. ΘI has no random part), the error is

τI = O
(
hl−|ν|

)
.

Proof. Most parts of the this proof are conceptually equal to the proof of Lemma 7. Again

observe at first that

E|τI | ≤ E sup
t∈T
|ΘI(t)− E(ΘI(t))|︸ ︷︷ ︸

=:A

+ sup
t∈T
|E(ΘI(t))− γ(t)|︸ ︷︷ ︸

=:B

. (6.3)

Parts A and B are evaluated separately.

Part A: First the kernel is represented in the Fourier space in order to find an expression

which can be evaluated easily. Assumption (b) guarantees that the Fourier inversion formula

can be applied in both dimensions. Hence we insert the expression

K
( n1

N − t1
h

,
n2

N − t2
h

)

=
1

(2π)2

∫ ∫
e
i

(
v
n1
N
−t1
h +w

n2
N
−t2
h

) [∫ ∫
e−i(uv+u′w)K(u, u′) du du′

]
︸ ︷︷ ︸

=:ρ(v,w)

dv dw

into ΘI(t1, t2) and perform a substitution v = uh,w = u′h afterwards:

ΘI(t1, t2)

=
1

Ih|ν|+2N(N − 1)

I∑
i=1

∑
n1 6=n2

θ
(n1

N
,
n2

N
,Y in1

, Y in2

) 1

(2π)2

∫ ∫
e
i

(
v
n1
N
−t1
h +w

n2
N
−t2
h

)
ρ(v, w) dv dw
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=
1

(2π)2h|ν|IN(N − 1)

I∑
i=1

∑
n1 6=n2

θ
(n1

N
,
n2

N
,Y in1

, Y in2

)∫ ∫
eiu(

n1
N −t1)+iu′(

n2
N −t2)ρ(uh, u′h) du du′

=
1

(2π)2h|ν|

∫ ∫
e−i(ut1+u′t2)ρ(uh, u′h)

∗

 1

IN(N − 1)

I∑
i=1

∑
n1 6=n2

ei(u
n1
N +u′

n2
N )θ

(n1

N
,
n2

N
,Y in1

, Y in2

)
︸ ︷︷ ︸

=:ϕI(u,u′)

du du′

=
1

(2π)2h|ν|

∫ ∫
e−i(ut1+u′t2)ρ(uh, u′h)ϕI(u, u

′) du du′

Therefore like in Lemma 7 we obtain:

E(ΘI(t1, t2)) =
1

(2π)2h|ν|

∫ ∫
e−i(ut1+u′t2)ρ(uh, u′h)E(ϕI(u, u

′)) du du′

and

E
(

sup
t∈T
|ΘI(t1, t2)− E(ΘI(t1, t2))|

)

quad ≤ 1

(2π)2h|ν|

∫
|ρ(uh, u′h)|E|ϕI(u, u′)− E(ϕI(u, u

′))| du du′.

For the evaluation of the term E|ϕI(u, u′)− E(ϕI(u, u
′))| we observe that

E|ϕI(u, u′)− E(ϕI(u, u
′))| ≤

√
E(ϕI(u, u′)− E(ϕI(u, u′)))2 =

√
Var(ϕI(u, u′)).

The variance is again evaluated by using the condition of i.i.d. observations and the Cauchy-

Schwarz inequality:

Var(ϕI(u, u
′)) = Var

 1

IN(N − 1)

I∑
i=1

∑
n1 6=n2

ei(u
n1
N +u′

n2
N )θ

(n1

N
,
n2

N
,Y in1

, Y in2

)

=
1

IN2(N − 1)2
Var

 ∑
n1 6=n2

ei(u
n1
N +u′

n2
N )θ

(n1

N
,
n2

N
,Yn1 , Yn2

)

≤ 1

IN2(N − 1)2
E

 ∑
n1 6=n2

ei(u
n1
N +u′

n2
N )θ

(n1

N
,
n2

N
,Yn1

, Yn2

)2

≤ 1

IN2(N − 1)2
E

[ ∑
n1 6=n2

∣∣∣e2i(u
n1
N +u′

n2
N )
∣∣∣


︸ ︷︷ ︸
=N(N−1)

 ∑
n1 6=n2

θ2
(n1

N
,
n2

N
,Yn1

, Yn2

)]
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≤ 1

IN(N − 1)

∑
n1 6=n2

E
(
θ2
(n1

N
,
n2

N
,Yn1

, Yn2

))

≤ 1

I
max
n1 6=n2

E
(
θ2
(n1

N
,
n2

N
,Yn1

, Yn2

))
All in all one obtains for part A:

E
(

sup
t∈T
|ΘI(t1, t2)− E(ΘI(t1, t2))|

)

≤ 1

(2π)2h|ν|

√
1

I
max
n1 6=n2

E
(
θ2
(n1

N
,
n2

N
,Yn1 , Yn2

))∫ ∫
|ρ(uh, u′h)| du du′︸ ︷︷ ︸

=
∫ ∫

1
h2
|ρ(v,w)| dv dw

=
1

h|ν|+2
√
I

1

(2π)2

√
max
n1 6=n2

E
(
θ2
(n1

N
,
n2

N
,Yn1

, Yn2

))∫ ∫
|ρ(v, w)| dv dw︸ ︷︷ ︸

bounded by assumption (f)

=O

(
1

h|ν|+2
√
I

)

Part B: For evaluating B we show that E(ΘI(t1, t2)) = γ(t1, t2) + O(hl−|ν|) + O
(

1
h|ν|+3N

)
uniformly for t1, t2 ∈ T . Like in the previous proof the sum expression is approximated by

an integral with an error term of order O
(

1
h|ν|+3N

)
(for calculation see (6.4) below). After

a substitution in both dimensions the integral is examined via a multi-dimensional Taylor

expansion (see e.g. Heuser [2002]). Set γ∗(t1, t2) :=
∫
θ (t1, t2, y1, y2) g2 (y1, y2; t1, t2) dy in order

to simplify the notation.

E(ΘI(t1, t2))

=
1

h|ν|+2N(N − 1)
E

 ∑
n1 6=n2

θ
(n1

N
,
n2

N
, y1, y2

)
K
( n1

N − t1
h

,
n2

N − t2
h

)
=

1

h|ν|+2N(N − 1)

∑
n1 6=n2

∫
θ
(n1

N
,
n2

N
, y1, y2

)
g2

(
y1, y2;

n1

N
,
n2

N

)
K
( n1

N − t1
h

,
n2

N − t2
h

)
dy

=
1

h|ν|+2N(N − 1)

∑
n1 6=n2

γ∗
(n1

N
,
n2

N
, y1, y2

)
K
( n1

N − t1
h

,
n2

N − t2
h

)

=
1

h|ν|+2

∫ ∫
γ∗ (t′1, t

′
2)K

(
t′1 − t1
h

,
t′2 − t2
h

)
dt′1 dt

′
2 +O

(
1

h|ν|+3N

)

(sum replaced by integral)

=
1

h|ν|

∫ ∫
γ∗ (t1 + vh, t2 + wh)K(v, w) dv dw +O

(
1

h|ν|+3N

)
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=
1

h|ν|

∫ ∫  l−1∑
j=0

∑
j1,j2

j1+j2=j

∂j1

∂j1t1

∂j2

∂j2t2
γ∗(t1, t2)

hjvj1wj2

j1!j2!
+

∑
j1,j2

j1+j2=l

∂j1

∂j1t1

∂j2

∂j2t2
γ∗(ξ1, ξ2)

hlvj1wj2

j1!j2!


×K(v, w) dv dw +O

(
1

h|ν|+3N

)

=
1

h|ν|

 ∂ν1

∂ν1t1

∂ν2

∂ν2t2
γ∗(t1, t2)

h|ν|

|ν|!

∫ ∫
vν1wν2K(v, w) dv dw︸ ︷︷ ︸

(−1)|ν||ν|!

+
∑
j1,j2

j1+j2=l

∂j1

∂j1t1

∂j2

∂j2t2
γ∗(ξ1, ξ2)︸ ︷︷ ︸

bounded

hl

j1!j2!

∫ ∫
vj1wj2K(v, w) dv dw︸ ︷︷ ︸
at least one 6= 0

+O

(
1

h|ν|+3N

)

=γ(t1, t2) +O(hl−|ν|) +O

(
1

h|ν|+3N

)
︸ ︷︷ ︸

independent of t∈T 2

The error of discretization is evaluated like in the Lemma before, e.g. the integral is first inserted

into the sum expression and afterwards the term is divided into two parts E1 and E2, that are

evaluated using the properties of the kernel function and of γ∗:

1

h|ν|+2N(N − 1)

∑
n1 6=n2

γ∗
(n1

N
,
n2

N

)
K
( n1

N − t1
h

,
n2

N − t2
h

)
(6.4)

=
1

h|ν|+2

∫ ∫
γ∗ (t′1, t

′
2)K

(
t′1 − t1
h

,
t′2 − t2
h

)
dt′2 dt

′
1

+
1

h|ν|+2

∑
n1 6=n2

∫ n1
N

n1−1
N

∫ n2
N

n2−1
N

γ∗
(n1

N
,
n2

N

)
K
( n1

N − t1
h

,
n2

N − t2
h

)
dt′2 dt

′
1

− 1

h|ν|+2

∑
n1 6=n2

∫ n1
N

n1−1
N

∫ n2
N

n2−1
N

γ∗ (t′1, t
′
2)K

(
t′1 − t1
h

,
t′2 − t2
h

)
dt′2 dt

′
1

=
1

h|ν|+2

∫ ∫
γ∗ (t′1, t

′
2)K

(
t′1 − t1
h

,
t′2 − t2
h

)
dt′2 dt

′
1

+
1

h|ν|+2

∑
n1 6=n2

∫ n1
N

n1−1
N

∫ n2
N

n2−1
N

[
γ∗
(n1

N
,
n2

N

)
− γ∗ (t′1, t2)

]
K
( n1

N − t1
h

,
n2

N − t2
h

)
dt′2 dt

′
1︸ ︷︷ ︸

=:E1

+
1

h|ν|+2

∑
n1 6=n2

∫ n1
N

n1−1
N

∫ n2
N

n2−1
N

[
K
( n1

N − t1
h

,
n2

N − t2
h

)
−K

(
t′1 − t1
h

,
t′2 − t2
h

)]
γ∗ (t′1, t

′
2) dt′2 dt

′
1︸ ︷︷ ︸

=:E2
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(6.5)

E1 is evaluated based on the condition that γ∗ is Lipschitz continuous and therefore∣∣∣γ∗ (n1

N
,
n2

N

)
− γ∗(t′1, t′2)

∣∣∣ ≤ c||(n1

N
,
n2

N
)− (t′1, t

′
2)|| ≤ c

N
(assumption (c)) :

E1 =
1

h|ν|+2

∑
n1 6=n2

∫ n1
N

n1−1
N

∫ n2
N

n2−1
N

[
γ∗
(n1

N
,
n2

N

)
− γ∗(t′1, t′2)

]
K
( n1

N − t1
h

,
n2

N − t2
h

)
dt′2 dt

′
1

= O

(
1

h|ν|+2N

)
For the evaluation of E2 the mean value theorem in several variables is used (with ∇K being

the gradient of K):

E2

≤ 1

h|ν|+2

∑
n1 6=n2

∫ n1
N

n1−1
N

∫ n2
N

n2−1
N

∣∣∣∣[K( n1

N − t1
h

,
n2

N − t2
h

)
−K

(
t′1 − t1
h

,
t′2 − t2
h

)]
γ∗(t′1, t

′
2)

∣∣∣∣ dt′2 dt′1
≤ 1

h|ν|+2

∑
n1 6=n2

∫ n1
N

n1−1
N

∫ n2
N

n2−1
N

∣∣∣∣∣∇K(ξnm)

( n1

N − t
′
1

h
,
n2

N − t
′
2

h

)T
γ∗(t′1, t

′
2)

∣∣∣∣∣ dt′2 dt′1
for ξnm ∈

{( n1

N − t1
h

,
n2

N − t2
h

)
+ η

( n1

N − t
′
1

h
,
n2

N − t
′
2

h

)
, η ∈ [0, 1]

}

≤ 1

h|ν|+2

∑
n1 6=n2

max
n1 6=n2

||∇K(ξmn)| | 2

hN

∫ n1
N

n1−1
N

∫ n2
N

n2−1
N

|γ∗(t′1, t′2)| dt′2 dt′1

= O

(
1

h|ν|+3N

)
Now it is shown that:

Part A: E (supt∈T |ΘI(t1, t2)− E(ΘI(t1, t2))|) = O
(

1
h|ν|+2

√
I

)
Part B: E(ΘI(t1, t2)) = γ(t1, t2) +O(hl−|ν|) +O( 1

h|ν|+3N
)

For (6.3) we therefore obtain the inequality:

E|τI | = O

(
1

h|ν|+2
√
I

)
+O(hl−|ν|) +O

(
1

h|ν|+3N

)
= O

(
1

h|ν|+2
√
I

)
,

because hl−|ν| =
√
Ih2l+4︸ ︷︷ ︸

bounded

1
h|ν|+2

√
I

= O
(

1
h|ν|+2

√
I

)
and 1

N = O(hl+3) (assumption (c)).

Using Markov’s inequality one obtains:

E|τI | = O

(
1

h|ν|+2
√
I

)
⇒ τI = OP

(
1

h|ν|+2
√
I

)
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Again, in case of a non-random function ΘI(t) Part A vanishes such that the final rate is only

the better rate of Part B.

Based on Lemmas 7 and 8 consistency results for mean and covariance functions can be ob-

tained:

6.2.2 Mean, covariance and principal components

Theorem 9 (Theorem for mean estimation, see also Yao et al. [2005]). Under assumptions

(a),(b) and (d) of Lemma 7 with a kernel of order (ν, l) = (0, 2) and

(c) h→ 0, Ih2 →∞, Ih6 = O(1), 1
N = O(h5) for I →∞,

the estimator for the mean function as defined in Section 2.2 fulfills the following uniform

convergence rate:

sup
t∈T
|µ̂(t)− µ(t)| = OP

(
1√
Ih

)
(6.6)

Proof (see also Yao et al. [2005]). The local linear estimator µ̂(t) can explicitly be written as

(with wn = K
(
t− n

N

h

)
)

µ̂(t) = β̂0(t) =
1
I

∑I
i=1

1
N

∑N
n=1 wnY

i
n

1
I

∑I
i=1

1
N

∑N
n=1 wn

−
1
I

∑I
i=1

1
N

∑N
n=1 wn( nN − t)

1
I

∑I
i=1

1
N

∑N
n=1 wn

β̂1(t),

where

β̂1(t) =

1
I

∑I
i=1

1
N

∑N
n=1 wn( nN − t)Y

i
n −

( 1
I

∑I
i=1

1
N

∑N
n=1 wn( nN−t))(

1
I

∑I
i=1

1
N

∑N
n=1 wnY

i
n)

1
I

∑I
i=1

1
N

∑N
n=1 wn

1
I

∑I
i=1

1
N

∑N
n=1 wn( nN − t)2 − ( 1

I

∑I
i=1

1
N

∑N
n=1 wn( nN−t))

2

1
I

∑I
i=1

1
N

∑N
n=1 wn

.

We use Lemma 7 to evaluate the terms in β̂0(t) and β̂1(t). Therefore we define the derivative

kernels Kt(t) = −tK(t)
σ2
t

with order (1, 3) and Kt2(t) = t2K(t)
σ2
t

with order (0, 2). σt is a scaling

factor.

Using Lemma 7 one can now calculate convergence rates for the single terms. In order to

demonstrate the calculations, the lemma is applied for two terms step-by-step:

Set ψ1(t, y) = 1 and use K of order (0, 2) as kernel function, then

µ1(t) =

∫
1 g(y; t) dy = 1 and Ψ1I(t) =

1

IhN

I∑
i=1

N∑
n=1

1wn

and therefore, as this term has no random parts,

sup
t∈T

∣∣∣∣∣ 1

Ih

I∑
i=1

1

N

N∑
n=1

wn − 1

∣∣∣∣∣ = O(h2).
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As another example set ψ2(t, y) = y and use the kernel Kt of order (1, 3). Then

µ2(t) =

∫
yg(y; t) dy = µ′(t) and

Ψ2I(t) =
1

Ih2N

I∑
i=1

N∑
n=1

Y in

( n
N − t
hσ2

t

)
wn =

1

Ih3σ2
t

I∑
i=1

1

N

N∑
n=1

wn(
n

N
− t)Y in.

In this case the lemma says that

sup
t∈T

∣∣∣∣∣ 1

Ih3σ2
t

I∑
i=1

1

N

N∑
n=1

wn(
n

N
− t)Y in − µ′(t)

∣∣∣∣∣ = OP

(
1√
Ih2

)
.

In summary we obtain the following convergence rates for the single terms:

sup
t∈T

∣∣∣∣∣ 1

Ih

I∑
i=1

1

N

N∑
n=1

wn − 1

∣∣∣∣∣ = O(h2) (using kernel K)

sup
t∈T

∣∣∣∣∣ 1

Ih3σ2
t

I∑
i=1

1

N

N∑
n=1

wn(
n

N
− t)− 0

∣∣∣∣∣ = O(h2) (using kernel Kt)

sup
t∈T

∣∣∣∣∣ 1

Ih3σ2
t

I∑
i=1

1

N

N∑
n=1

wn(
n

N
− t)2 − 1

∣∣∣∣∣ = O(h2) (using kernel Kt2)

sup
t∈T

∣∣∣∣∣ 1

Ih

I∑
i=1

1

N

N∑
n=1

wnY
i
n − µ(t)

∣∣∣∣∣ = OP

(
1√
Ih

)
(using kernel K)

sup
t∈T

∣∣∣∣∣ 1

Ih3σ2
t

I∑
i=1

1

N

N∑
n=1

wn(
n

N
− t)Y in − µ′(t)

∣∣∣∣∣ = OP

(
1√
Ih2

)
(using kernel Kt)

Now β̂1(t) can be rewritten in order to directly apply the single term rates. We obtain

β̂1(t) =

1
Ih3σ2

t

∑I
i=1

1
N

∑N
n=1 wn( nN − t)Y

i
n −

(
1

Ih3σ2t

∑I
i=1

1
N

∑N
n=1 wn( nN−t)

)
( 1
Ih

∑I
i=1

1
N

∑N
n=1 wnY

i
n)

1
Ih

∑I
i=1

1
N

∑N
n=1 wn

1
Ih3σ2

t

∑I
i=1

1
N

∑N
n=1 wn( nN − t)2 −

h2σ2
t

(
1

Ih3σ2t

∑I
i=1

1
N

∑N
n=1 wn( nN−t)

)2

1
Ih

∑I
i=1

1
N

∑N
n=1 wn

=

[
µ′(t) +OP

(
1√
Ih2

)]
−

[0+O(h2)]
[
µ(t)+OP

(
1√
Ih

)]
[1+O(h2)]

[1 +O(h2)]− h2σ2
t [0+O(h2)]2

[1+O(h2)]

= µ′(t) +OP

(
1√
Ih2

)
+O(h2) = µ′(t) +OP

(
1√
Ih2

)
by assumption (c)
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uniformly in t, i.e.

sup
t∈T
|β̂1(t)− µ′(t)| = OP

(
1√
Ih2

)

Now β̂0(t) can be evaluated in the same manner:

β̂0(t) =
1
Ih

∑I
i=1

1
N

∑N
n=1 wnY

i
n

1
Ih

∑I
i=1

1
N

∑N
n=1 wn

− h2σ2
t

1
Ih3σ2

t

∑I
i=1

1
N

∑N
n=1 wn( nN − t)

1
Ih

∑I
i=1

1
N

∑N
n=1 wn

β̂1(t)

=

[
µ(t) +OP

(
1√
Ih

)]
[1 +O(h2)]

− h2σ2
t

[
0 +O(h2)

]
[1 +O(h2)]

[
µ′(t) +OP

(
1√
Ih2

)]

= µ(t) +OP

(
1√
Ih

)
+ h4OP

(
1√
Ih2

)
uniformly in t and therefore we obtain the final result

sup
t∈T
|µ̂(t)− µ(t)| = OP

(
1√
Ih

)
.

Theorem 10 (Theorem for covariance estimation, see also Yao et al. [2005]). Assume that

(a),(b) and (d) of Lemma 8 are valid here as well and that

(c) h→ 0, Ih4 →∞, Ih8 = O(1), 1
N = O(h7) for I →∞.

Further K is assumed to be a two-dimensional product kernel of a kernel K∗ of order (0, 2), e.g.

K(t1, t2) = K∗(t1)K∗(t2) for t1, t2 ∈ T . K is therefore of order ((0, 0), 2) (see calculation (2.7)).

The estimator for the covariance function as defined in Section 2.2 fulfills the following uniform

convergence rate:

sup
t1,t2∈T

|Ĝ(t1, t2)−G(t1, t2)| = OP

(
1√
Ih2

)
(6.7)

Proof. As the estimation of the covariance function is based on the raw covariances with es-

timated mean function Gi(
n1

N ,
n2

N ) = (Y in1
− µ̂(n1

N ))(Y in2
− µ̂(n2

N )) instead of G̃i(
n1

N ,
n2

N ) =

(Y in1
− µ(n1

N ))(Y in2
− µ(n2

N )), we will first show that Gi(
n1

N ,
n2

N ) is asymptotically equivalent

to G̃i(
n1

N ,
n2

N ) and work with G̃i(
n1

N ,
n2

N ) in the further proof.

This can be seen observing that (for t1, t2 ∈ T ):

Gi (t1, t2) = G̃i (t1, t2) +
(
Y it1 − µ (t1)

)
(µ (t2)− µ̂ (t2))

+
(
Y it2 − µ (t2)

)
(µ (t1)− µ̂ (t1))

+ (µ (t1)− µ̂ (t1)) (µ (t2)− µ̂ (t2))
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As Var(Yt) is finite for all t ∈ T ,
(
Y it1 − µ (t1)

)
and

(
Y it2 − µ (t2)

)
are stochastically bounded.

Further supt∈T |µ(t)− µ̂(t)| = OP

(
1√
Ih

)
such that

sup
t1,t2∈T

∣∣∣Gi (t1, t2)− G̃i (t1, t2)
∣∣∣ = OP

(
1√
Ih

)

which shows the asymptotic equivalence of Gi and G̃i.

The local linear estimator Ĝ(t1, t2) can explicitly be written as

Ĝ(t1, t2) = β̂0(t1, t2) =

1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2G̃
(
n1

N ,
n2

N

)
1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2

−
1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2
(n1

N − t1)

1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2

β̂11(t1, t2)

−
1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2(n2

N − t2)

1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2

β̂12(t1, t2)

where wn1n2 = K
(
t1−n1

N

h ,
t2−n2

N

h

)
and

β̂11(t1, t2) = D1 + E1β̂12(t1, t2)

β̂12(t1, t2) = D2 + E2β̂11(t1, t2)

with

D1 =
1

1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2
(n1

N − t1)2 − ( 1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2
(
n1
N −t1))

2

1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2

∗

1

I

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2
(
n1

N
− t1)G̃

(n1

N
,
n2

N

)

−

(
1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2(n1

N − t1)
)(

1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2G̃
(
n1

N ,
n2

N

))
1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2


E1 =

1

1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2
(n1

N − t1)2 − ( 1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2 (
n1
N −t))

2

1
I

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2

∗

1

I

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2(
n1

N
− t1)

1

I

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2(
n2

N
− t2)



− 1

I

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2(
n1

N
− t1)(

n2

N
− t2)

 .
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D2 and E2 are composed analogously exchanging t1 with t2 and n1 with n2.

We can rewrite:

β̂11(t1, t2) =
D1 + E1D2

1− E1E2

β̂12(t1, t2) =
D2 + E2D1

1− E1E2

Hence we first evaluate the terms D1, D2, E1 and E2 and afterwards conclude the convergence

rates of β̂11(t1, t2) and β̂12(t1, t2).

In order to evaluate the terms we define the derivative kernels Kt1(t1, t2) = −t1K(t1,t2)
σ2
t1

of order

((1, 0), 3), Kt12(t1, t2) =
t21K(t1,t2)

σ2
t1

of order ((0, 0), 2) (as well as the analogue kernels for t2) and

Kt1,t2(t1, t2) = t1t2K(t1,t2)
σ2
t1,t2

of order ((1, 1), 4).

Using Lemma 8 we can obtain the convergence rates for the single terms. For example let

θ1(t1, t2, y1, y2) := 1, then using the kernel K of order ((0, 0), 2),

θ1(t) =

∫ ∫
1 g2(y1, y2; t1, t2) dy1 dy2 = 1 and Θ1I(t) =

1

Ih2N(N − 1)

∑
i

∑
n1 6=n2

1wn1n2
.

According to the remark of Lemma 8 we therefore obtain: ´

sup
t1,t2∈T

| 1

Ih2

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2
− 1| = O(h2)

The following overview shows only terms in t1 and mixed terms (the analogue terms in t2 have

the same convergence rates). The kernels used are K, Kt1 , Kt1,t2 , Kt21 , K and Kt1 :

sup
t1,t2∈T

∣∣∣∣∣∣ 1

Ih2

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2 − 1

∣∣∣∣∣∣ = O(h2)

sup
t1,t2∈T

∣∣∣∣∣∣ 1

Ih4σ2
t

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2
(
n1

N
− t1)− 0

∣∣∣∣∣∣ = O(h2)

sup
t1,t2∈T

∣∣∣∣∣∣ 1

Ih6σt1,t2

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2
(
n1

N
− t1)(

n2

N
− t2)− 0

∣∣∣∣∣∣ = O(h2)

sup
t1,t2∈T

∣∣∣∣∣∣ 1

Ih4σ2
t1

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2(
n1

N
− t1)2 − 1

∣∣∣∣∣∣ = O(h2)

sup
t1,t2∈T

∣∣∣∣∣∣ 1

Ih2

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2G̃
(n1

N
,
n2

N

)
− µ(t1, t2)

∣∣∣∣∣∣ = OP

(
1√
Ih2

)
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sup
t1,t2∈T

∣∣∣∣∣∣ 1

Ih4σ2
t1

∑
i

1

N(N − 1)

∑
n1 6=n2

wn1n2
(
n1

N
− t1)G̃

(n1

N
,
n2

N

)
− µt(t1, t2)

∣∣∣∣∣∣ = OP

(
1√
Ih3

)

D1 therefore has the following rate:

D1 =

[
Gt1(t1, t2) +OP

(
1√
Ih3

)]
−

[0+O(h2)]
[
G(t1,t2)+OP

(
1√
Ih2

)]
[1+O(h2)]

[1 +O(h2)]− h2σ2
t [0+O(h2)]2

[1+O(h2)]

= Gt1(t1, t2) +OP

(
1√
Ih3

)
uniformly in t1, t2, i.e.

sup
t1,t2∈T

|D1 −Gt1(t1, t2)| = OP

(
1√
Ih3

)
and analogously

sup
t1,t2∈T

|D2 −Gt2(t1, t2)| = OP

(
1√
Ih3

)
.

For E1 we obtain:

E1 =
h4σ2

t2

[
0 +O(h2)

] [
0 +O(h2)

]
− h2 σ

2
t1t2

σ2
t1

[
0 +O(h2)

]
[1 +O(h2)]− h2σ2

t1
[0+O(h2)]2

[1+O(h2)]

= O(h4)

uniformly in t1, t2, i.e.

sup
t1,t2∈T

|E1| = O(h4) and analogously sup
t1,t2∈T

|E2| = O(h4).

With this information, β̂11(t1, t2) and β̂12(t1, t2) can be evaluated as follows (uniformly in t1, t2):

β̂11(t1, t2) =

[
Gt1(t1, t2) +OP

(
1√
Ih3

)]
+
[
0 +O(h4)

] [
Gt2(t1, t2) +OP

(
1√
Ih3

)]
1− [0 +O(h4)] [0 +O(h4)]

= Gt1(t1, t2) +OP

(
1√
Ih3

)
+O(h4) = Gt1(t1, t2) +OP

(
1√
Ih3

)

β̂12(t1, t2) = Gt2(t1, t2) +OP

(
1√
Ih3

)

For β̂0(t1, t2) we now obtain:
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β̂0(t1, t2) =

1
Ih2

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2
G̃
(
n1

N ,
n2

N

)
1
Ih2

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2

−
h2σ2

t
1

Ih4σ2
t

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2
(n1

N − t1)

1
Ih2

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2

β̂11(t1, t2)

−
h2σ2

t2
1

Ih4σ2
t2

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2(n2

N − t2)

1
Ih2

∑
i

1
N(N−1)

∑
n1 6=n2

wn1n2

β̂12(t1, t2)

=

[
G(t1, t2) +OP

(
1√
Ih2

)]
[1 +O(h2)]

−
h2
[
0 +O(h2)

]
[1 +O(h2)]

[
Gt1(t1, t2) +OP

(
1√
Ih3

)]

−
h2
[
0 +O(h2)

]
[1 +O(h2)]

[
Gt2(t1, t2) +OP

(
1√
Ih3

)]

=G(t1, t2) +OP

(
1√
Ih2

)
+O(h4) + h4OP

(
1√
Ih3

)
uniformly in t1, t2, such that we obtain the final uniform convergence rate

sup
t1,t2∈T

|Ĝ(t1, t2)−G(t1, t2)| = OP

(
1√
Ih2

)
.

For proving the rates for eigenvalues and eigenfunctions, we introduce Weyl’s lemma first (com-

pare Heuser [2006, Chapter 5]):

Lemma 11 (Weyl’s eigenvalue inequality). Let X1, X2 and Z be symmetric, compact operators

with Z = X1 + X2 and let λX1

k , λX2

k and λZk be positive, monotonically decreasing eigenvalues

of X1, X2 and Z. Then the following inequality holds:

λZk+l−1 ≤ λ
X1

k + λX2

l (6.8)

Proof. Weyl’s eigenvalue inequality is a consequence of Courant’s minimax principle (Heuser

[2006, Chapter 5]), which states under the same conditions as Lemma 11 that

λZk = min
S

sup
06=x∈S⊥

〈Zx, x〉
〈x, x〉

(6.9)

for all (k−1) dimensional subspaces S of L2(T ). The minimum is reached for S := [ρ1, . . . , ρk−1].

Let ρX1

k and ρX2

k be the eigenfunctions of X1 and X2 and furthermore, define the spans of eigen-

functions S1 = [ρX1
1 , . . . , ρX1

k−1], S2 = [ρX2
1 , . . . , ρX2

l−1] and S12 = [ρX1
1 , . . . , ρX1

k−1, ρ
X2
1 , . . . , ρX2

l−1].
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6 Consistency Results

Then inequality (6.8) follows with

λZk+l−1 ≤ sup
x∈S⊥12

〈Zx, x〉 ≤ sup
x∈S⊥12

〈X1x, x〉+ sup
x∈S⊥12

〈X2x, x〉

≤ sup
x∈S⊥1

〈X1x, x〉+ sup
x∈S⊥2

〈X2x, x〉 = λX1

k + λX2

l .

The first inequality follows due to Courants’ principle (6.9), the second simply because Z =

X1 + X2. For the third inequality note that S1 ⊂ S12 and therefore S⊥12 ⊂ S⊥1 (and the same

argumentation for S2). The last equality follows again due to Courants’ principle or the variance

maximization criterion Theorem 4.

Now we proceed with the Theorem with the rates for the eigenanalysis estimation:

Theorem 12 (Theorem for eigenanalysis estimation, see also Yao et al. [2005]). Under the

assumptions of Theorems 9 and 10 we obtain the following consistency rate for eigenvalues

(k ∈ N):

|λ̂k − λk| = OP

(
1√
Ih2

)
. (6.10)

If λk has multiplicity 1, the appropriately standardized estimator for the eigenfunction ρ̂k has

the following convergence rate in the L2 sense

||ρ̂k − ρk||L2
= OP

(
1√
Ih2

)
(6.11)

and fulfills furthermore the uniform consistency rate

sup
t∈T
|ρ̂k(t)− ρk(t)| = OP

(
1√
Ih2

)
. (6.12)

Proof. We consider the Hilbert space H = {f : T → R|
∫
|f(t)|2 dt <∞} with the inner product

〈f, g〉 =
∫
|f(t)g(t)| dt and norm ||f ||L2 =

√∫
|f(t)|2 dt.

We further define the space σ2(H) of Hilbert-Schmidt operators on H.

An operator T : H → H is called Hilbert-Schmidt operator on H, if for an orthonormal system

{ei} of H, the Hilbert-Schmidt norm is finite, e.g.
∑
i ||Tei||2 < ∞. The inner product on

F := σ2(H) for T1, T2 ∈ σ2(H) is given by 〈T1, T2〉F =
∑
j〈T1ej , T2ej〉H . We further consider

the operator f ⊗ g : H → H with (f ⊗ g)(h) = 〈f, h〉Hg.

One can show that the real and estimated covariance operators

G(f) =

∫
G(t1, t2)f(t1) dt1

Ĝ(f) =

∫
Ĝ(t1, t2)f(t1) dt1

have a finite Hilbert-Schmidt norm and therefore are Hilbert-Schmidt operators (see Heuser

[2006, Chapter 12]).
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6.2 Consistency for FPCA

Further we have the following relationship between the supremum norm (for which we know the

order of convergence from Theorem 10) and the Hilbert-Schmidt norm (for the first equality

see Heuser [2006, Chapter 12]):

||Ĝ−G||F = ||Ĝ−G||L2
=

√∫ ∫ ∣∣∣Ĝ(t1, t2)−G(t1, t2)
∣∣∣2 dt1 dt2

≤ sup
t1,t2∈T

∣∣∣Ĝ(t1, t2)−G(t1, t2)
∣∣∣√∫ ∫ 1 dt1 dt2︸ ︷︷ ︸

|T |

= OP

(
1√
Ih2

)

In order to derive the rate for the eigenvalue estimation (6.10), we apply Weyl’s eigenvalue

inequality (Lemma 11). We chose this approach varying to Yao et al. [2005], because the proof

of Yao et al. [2005] already needs for the eigenvalue rate the assumption that the eigenvalues

have multiplicity one, which is not necessary.

To apply the lemma, observe that G has eigenvalues λk ≥ 0 and Ĝ eigenvalues λ̂k ≥ 0. Now

define R1 := Ĝ − G and R2 := G − Ĝ, such that Ĝ = G + R1 and G = Ĝ + R2. Further let

λ1
1 be the greatest (positive) eigenvalue of R1 and λ2

1 the greatest (positive) eigenvalue of R2.

Hence Lemma 11 tells us that

λ̂k ≤ λk + λ1
1

λk ≤ λ̂k + λ2
1.

Equation (6.10) follows with

|λk − λ̂k| ≤ max(λ1
1, λ

2
1) ≤ ||Ĝ−G||L2

= OP

(
1√
Ih2

)
.

Now define Ik as the set of indices with the same eigenvalue (Ik := {j : λj = λk}) and I ′ as the

set of indices of eigenvalues with multiplicity 1 (I ′ = {k : |Ik| = 1}) .

Pk and P̂k are the theoretic respectively estimated projections of operators on the space spanned

by {ρj |j ∈ Ik}:

Pk =
∑
j∈Ik

ρj ⊗ ρj (6.13)

P̂k =
∑
j∈Ik

ρ̂j ⊗ ρ̂j

In order to calculate the order of convergence of the eigenvalues and eigenfunctions we de-

fine circles around the eigenvalues in the space of complex numbers which contain no other

eigenvalues. For a constant 0 < ς < min{|λj − λk| : j 6∈ Ik} let ∆ς,k := {z ∈ C : |z − λk| = ς}.

Now we regard the resolvents of G and Ĝ: R(z) = (G− zI)−1 and R̂(z) = (Ĝ− zI)−1.

They have the relationship R̂(z) = R(z)[I + (Ĝ − G)R(z)]−1 as can be seen by the following
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calculation:

R(z) = R̂(z)[(Ĝ− zI)︸ ︷︷ ︸
R̂(z)−1

R(z)] = R̂(z)[(G− zI + Ĝ−G)R(z)]

= R̂(z)[(R(z)−1 + Ĝ−G)R(z)] = R̂(z)[R(z)−1R(z) + (Ĝ−G)R(z)]

= R̂(z)[I + (Ĝ−G)R(z)]

⇒ R̂(z) = R(z)[I − (G− Ĝ)R(z)]−1 = R(z)

∞∑
l=0

[(G− Ĝ)R(z)]l

⇒ R̂(z)−R(z) = R(z)

∞∑
l=1

(
(Ĝ−G)R(z)

)l
We can use the sum formula for the geometric sequence, because ||(G − Ĝ)R(z)||F < 1 for

sufficient large I. Therefore we can deduce (again using the sum formula):

||R̂(z)−R(z)||F ≤ ||R(z)||F
∞∑
l=1

||(Ĝ−G)||lF ||R(z)||lF

= ||R(z)||F
∞∑
l=0

||(Ĝ−G)||lF ||R(z)||lF − ||R(z)||F

=
||R(z)||F

1− ||(Ĝ−G)||F ||R(z)||F
− ||R(z)||F

=
||Ĝ−G||F ||R(z)||2F

1− ||(Ĝ−G)||F ||R(z)||F

This result can be applied by using the following relationship between projections and resolvents

(see Heuser [2002]):

Pk =
1

2πi

∫
∆ς,k

R(z) dz (6.14)

P̂k =
1

2πi

∫
∆ς,k

R̂(z) dz.

Further define Mςk := supz∈∆ς,k
||R(z)||. It is Mςk < ∞ because of the definition of ∆ς,k and

because k ∈ I ′. Therewith:

||P̂k − Pk||F ≤
1

2π

∫
∆ς,k

||R̂(z)−R(z)||F dz = ||R̂(z)−R(z)||F
1

2π

∫
∆ς,k

1 dz︸ ︷︷ ︸
ς
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≤ ς ||Ĝ−G||Mςk

1− ||Ĝ−G||Mςk

= OP

(
1√
Ih2

)

which shows consistency in the L2 sense. This step is how far we get if an eigenspace is

multi-dimensional, e.g. we can provide rates for the eigenvalue and the projection to the multi-

dimensional eigenspace.

For finally showing equation (6.12) consider ρk for k ∈ I ′, choose ρ̂k such that 〈ρk, ρ̂k〉H > 0

(standardization).

Then

||ρ̂k − ρk||2H =

∫
(ρ̂k(s)− ρk(s))2 ds

=

∫
ρ̂2
k(s) ds+

∫
ρ2
k(s) ds− 2

∫
ρ̂k(s)ρk(s) ds

= 2(1− 〈ρ̂k, ρk〉H) ≤ 2(1− 〈ρ̂k, ρk〉2H)

= 2

1−
∑
j

〈ρ̂k, ρj〉H〈ρk, ρj〉H〈ρ̂k, ρk〉H

 (6.15)

= 2

1−
∑
j

〈〈ρ̂k, ρj〉H ρ̂k, 〈ρk, ρj〉Hρk〉H



= 2

1−
∑
j

〈(ρ̂k ⊗ ρ̂k)(ρj), (ρk ⊗ ρk)(ρj)〉H


= 2 (1− 〈ρ̂k ⊗ ρ̂k, ρk ⊗ ρk〉F )

= ||P̂k − Pk||2F

and therefore equation (6.11) follows.

In order to prove equation (6.12), we first observe using the Cauchy-Schwarz inequality, theorem

10 and equation (6.11) that:

|λ̂kρ̂k(t2)− λkρk(t2)| =
∣∣∣∣∫ Ĝ(t1, t2)ρ̂k(t1) dt1 −

∫
G(t1, t2)ρk(t1) dt1

∣∣∣∣ (6.16)

≤
∫
|Ĝ(t1, t2)−G(t1, t2)||ρ̂k(t1)| dt1 +

∫
|G(t1, t2)||ρ̂k(t1)− ρk(t1)| dt1

≤

√∫
(Ĝ(t1, t2)−G(t1, t2))2 dt1 +

√∫
G2(t1, t2) dt1||ρ̂k − ρk||H

= OP

(
1√
Ih2

)
.
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In (6.16), it follows that

sup
t∈T
| λ̂kρ̂k(t)

λk
− ρk(t)| = OP

(
1√
Ih2

)
and using (6.10), we also obtain

sup
t∈T
|ρ̂k(t)− ρk(t)| = OP

(
1√
Ih2

)
.

Please note that we didn’t carry out the discretization error occuring in the eigenfunction

estimation in Section 2.2.4. To be absolutely correct, we had to perform similar calculations as

done for example in (6.2).

6.3 Consistency for spatial FPCA

Like in the one-dimensional case, we want to show consistency results also for the spatial case.

Many steps of the one-dimensional proofs can be transferred to the two-dimensional case as

well, but in some situations the generalization must be done carefully.

As in the one-dimensional case, we also will assume here that the measurements per observations

are conducted on a regular grid. The measurement points are assumed to be fixed, equal

for all observations and of the same distance. For notational convenience we further assume

T ×T = [0, 1]2. Therefore we do not use the notation introduced in section 3.2, but the points

in space are named as ( nN ,
m
M ) (n = 1, . . . , N and m = 1, . . . ,M) with observations Y inm for

i = 1, . . . , I.

Again the proofs are structured that first lemmata are provided that afterwards allow to cal-

culate rates for mean and covariance estimation.

6.3.1 Lemmata

The following Lemma is a spatial generalization of the one-dimensional Lemma 7 and will later

allow to obtain a consistency result for the estimation of the mean function.

Lemma 13 (Lemma for mean estimation). Assume that

(a) K : R2 → R is an absolutely integrable two-dimensional kernel, i.e.
∫ ∫
|K(t, τ)| dt dτ <∞,

and has an absolutely integrable Fourier transform.

(b) K is compactly supported of order ((ν1, ν2), l).

(c) The bandwidth h and the data points per observation N ×M depend on the sample size I

and fulfill M ≥ N,h→ 0, Ih|ν|+2 →∞, Ih2l+4 = O(1), 1
N = O

(
hl+3

)
for I →∞.

Let further ψ : R3 → R be a real function with:

(d) ψ is uniformly continuous on T × T × R.

(e) supt∈T ,τ∈T
∫
ψ2(t, τ, y)g(y; t, τ) dy <∞
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Now define a weighted average and its limit expected value via

ΨI(t, τ) =
1

Ih|ν|+2NM

I∑
i=1

N∑
n=1

M∑
m=1

ψ
( n
N
,
m

M
,Y inm

)
K
(
t− n

N

h
,
τ − m

M

h

)
,

µ(t, τ) =
∂ν1

∂ν1t

∂ν2

∂ν2τ

∫
ψ(t, τ, y)g(y; t, τ) dy

and assume that

(f) all derivatives of µ(t, τ) up to 2nd degree exist and are uniformly continuous on T × T

(g) µ∗(t, τ) :=
∫
ψ(t, τ, y)g(y; t, τ) dy is Lipschitz continuous.

Then one can obtain the following error estimation:

τI := sup
t∈T ,τ∈T

|ΨI(t, τ)− µ(t, τ)| = OP

(
1√

Ih|ν|+2

)
.

Remark. If ψ is a function only in t and τ (i.e. ΨI has no random part), the error is

τI = O
(
hl−|ν|

)
.

Proof. First observe that

E|τI | ≤ E
(

sup
t∈T ,τ∈T

|ΨI(t, τ)− E(ΨI(t, τ))|
)

︸ ︷︷ ︸
=:A

+ sup
t∈T ,τ∈T

|E(ΨI(t, τ))− µ(t, τ)|︸ ︷︷ ︸
=:B

. (6.17)

Now parts A and B are evaluated separately.

Part A: First the kernel is represented in the Fourier space in order to find an expression

which can be evaluated easily. Assumption (b) guarantees that the Fourier inversion formula

can be applied. Hence we insert the expression

K
( n
N − t
h

,
m
M − τ
h

)
=

1

(2π)2

∫ ∫
e
i

(
v
n
N
−t
h +w

m
M
−τ
h

) [∫ ∫
e−i(uv+u′w)K(u, u′) du du′

]
︸ ︷︷ ︸

=:ρ(v,w)

dv dw

into ΨI(t, τ) and perform a substitution v = uh,w = u′h afterwards:

ΨI(t, τ)

=
1

Ih|ν|+2NM

I∑
i=1

N∑
n=1

M∑
m=1

ψ
( n
N
,
m

M
,Y inm

) 1

(2π)2

∫ ∫
e
i

(
v
n
N
−t
h +w

m
M
−τ
h

)
ρ(v, w) dv dw

=
1

(2π)2h|ν|INM

I∑
i=1

N∑
n=1

M∑
m=1

ψ
( n
N
,
m

M
,Y inm

)∫ ∫
eiu( nN−t)+iu

′(mM−τ)ρ(uh, u′h) du du′
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=
1

(2π)2h|ν|

∫ ∫
e−i(ut+u

′τ)ρ(uh, u′h)

[
1

INM

I∑
i=1

N∑
n=1

M∑
m=1

ei(u
n
N +u′ mM )ψ

( n
N
,
m

M
,Y inm

)]
︸ ︷︷ ︸

=:ϕI(u,u′)

du du′

=
1

(2π)2h|ν|

∫ ∫
e−i(ut+u

′τ)ρ(uh, u′h)ϕI(u, u
′) du du′

Therefore we obtain for the expected value of ΨI(t, τ)

E(ΨI(t, τ)) =
1

(2π)2h|ν|

∫ ∫
e−i(ut+u

′τ)ρ(uh, u′h)E(ϕI(u, u
′)) du du′

and for the whole part A:

E
(

sup
t∈T ,τ∈T

|ΨI(t, τ)− E(ΨI(t, τ))|
)

≤ 1

(2π)2h|ν|

∫
|ρ(uh, u′h)|E|ϕI(u, u′)− E(ϕI(u, u

′))| du du′.

For the evaluation of the term E|ϕI(u, u′)− E(ϕI(u, u
′))| we observe that

E|ϕI(u, u′)− E(ϕI(u, u
′))| ≤

√
E(ϕI(u, u′)− E(ϕI(u, u′)))2 =

√
Var(ϕI(u, u′)).

Using the assumption that the random variables Y inm are i.i.d. (in i), we can further evaluate

Var(ϕI(u, u
′)):

Var(ϕI(u, u
′)) = Var

[
1

INM

I∑
i=1

N∑
n=1

M∑
m=1

ei(u
n
N +u′ mM )ψ

( n
N
,
m

M
,Y inm

)]

=
1

IN2M2
Var

[
N∑
n=1

M∑
m=1

ei(u
n
N +u′ mM )ψ

( n
N
,
m

M
,Ynm

)]

≤ 1

IN2M2
E

[
N∑
n=1

M∑
m=1

ei(u
n
N +u′ mM )ψ

( n
N
,
m

M
,Ynm

)]2

≤ 1

IN2M2
E

[(
N∑
n=1

M∑
m=1

∣∣∣e2i(u nN +u′ mM )
∣∣∣)︸ ︷︷ ︸

=NM

(
N∑
n=1

M∑
m=1

ψ2
( n
N
,
m

M
,Ynm

))]

≤ 1

INM

N∑
n=1

M∑
m=1

E
(
ψ2
( n
N
,
m

M
,Ynm

))

≤ 1

I
max

n=1,...,N
m=1,...,M

E
(
ψ2
( n
N
,
m

M
,Ynm

))
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using the Cauchy-Schwarz inequality. All in all one obtains

E
(

sup
t∈T ,τ∈T

|ΨI(t, τ)− E(ΨI(t, τ))|
)

≤ 1

(2π)2h|ν|

√
1

I
max

n=1,...,N
m=1,...,M

E
(
ψ2
( n
N
,
m

M
,Ynm

))∫ ∫
|ρ(uh, u′h)| du du′︸ ︷︷ ︸

=
∫ ∫

1
h2
|ρ(v,w)| dv dw

=
1

h|ν|+2
√
I

1

(2π)2

√
max

n=1,...,N
m=1,...,M

E
(
ψ2
( n
N
,
m

M
,Ynm

))∫ ∫
|ρ(v, w)| dv dw

︸ ︷︷ ︸
bounded by assumption (e)

= O

(
1

h|ν|+2
√
I

)
for the first part.

Part B: For evaluating B we show that E(ΨI(t, τ)) = µ(t, τ) + O(hl−|ν|) + O
(

1
h|ν|+3N

)
uni-

formly for t ∈ T and τ ∈ T . In order to obtain this error estimation the sum expression

is approximated by an integral with an error term of order O
(

1
h|ν|+3N

)
(for calculation see

(6.18) below). After a substitution we can use the Taylor expansion to evaluate the term. Set

µ∗(t, τ) :=
∫
ψ (t, τ, y) g (y; t, τ) dy for notational convenience.

E(ΨI(t, τ))

=
1

h|ν|+2NM
E

(
N∑
n=1

M∑
m=1

ψ
( n
N
,
m

M
,Ynm

)
K
( n
N − t
h

,
m
M − τ
h

))

=
1

h|ν|+2NM

N∑
n=1

M∑
m=1

∫
ψ
( n
N
,
m

M
, y1, y2

)
g
(
y1, y2;

n

N
,
m

M

)
K
( n
N − t
h

,
m
M − τ
h

)
dy

=
1

h|ν|+2NM

N∑
n=1

M∑
m=1

µ∗
( n
N
,
m

M
, y1, y2

)
K
( n
N − t
h

,
m
M − τ
h

)

=
1

h|ν|+2

∫ ∫
µ∗ (t′, τ ′)K

(
t′ − t
h

,
τ ′ − τ
h

)
dt′ dτ ′ +O

(
1

h|ν|+3N

)

=
1

h|ν|

∫ ∫
µ∗ (t+ vh, τ + wh)K(v, w) dv dw +O

(
1

h|ν|+3N

)

=
1

h|ν|

∫ ∫  l−1∑
j=0

∑
j1,j2

j1+j2=j

∂j1

∂j1t

∂j2

∂j2τ
µ∗(t, τ)

hjvj1wj2

j1!j2!
+

∑
j1,j2

j1+j2=l

∂j1

∂j1t

∂j2

∂j2τ
µ∗(ξ1, ξ2)

hlvj1wj2

j1!j2!


×K(v, w) dv dw +O

(
1

h|ν|+3N

)
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=
1

h|ν|

 ∂ν1∂ν1t

∂ν2

∂ν2τ
µ∗(t, τ)

h|ν|

|ν|!

∫ ∫
vν1wν2K(v, w) dv dw︸ ︷︷ ︸

(−1)|ν||ν|!

+
∑
j1,j2

j1+j2=l

∂j1

∂j1t

∂j2

∂j2τ
µ∗(ξ1, ξ2)︸ ︷︷ ︸

bounded

hl

j1!j2!

∫ ∫
vj1wj2K(v, w) dv dw︸ ︷︷ ︸
at least one 6= 0

+O

(
1

h|ν|+3N

)

= µ(t, τ) +O(hl−|ν|) +O

(
1

h|ν|+3N

)
︸ ︷︷ ︸

independent of t∈T,τ∈T

The error of discretization, e.g. the error that occurs when substituting a sum expression by an

integral as in the last calculation, is evaluated in the following. Therefore the integral is first

inserted artificially in the sum expression and afterwards the term is divided in two parts E1

and E2, where conditions of the kernel function and of µ∗ can be used.

1

h|ν|+2NM

N∑
n=1

M∑
m=1

µ∗
( n
N
,
m

M

)
K
( n
N − t
h

,
m
M − τ
h

)
(6.18)

=
1

h|ν|+2

∫ ∫
µ∗ (t′, τ ′)K

(
t′ − t
h

,
τ ′ − τ
h

)
dτ ′ dt′

+
1

h|ν|+2

N∑
n=1

M∑
m=1

∫ n
N

n−1
N

∫ m
M

m−1
M

µ∗
( n
N
,
m

M

)
K
( n
N − t
h

,
m
M − τ
h

)
dτ ′ dt′

− 1

h|ν|+2

N∑
n=1

M∑
m=1

∫ n
N

n−1
N

∫ m
M

m−1
M

µ∗ (t′, τ ′)K
(
t′ − t
h

,
τ ′ − τ
h

)
dτ ′ dt′

=
1

h|ν|+2

∫ ∫
µ∗ (t′, τ ′)K

(
t′ − t
h

,
τ ′ − τ
h

)
dτ ′ dt′

+
1

h|ν|+2

N∑
n=1

M∑
m=1

∫ n
N

n−1
N

∫ m
M

m−1
M

[
µ∗
( n
N
,
m

M

)
− µ∗ (t′, τ)

]
K
( n
N − t
h

,
m
M − τ
h

)
dτ ′ dt′︸ ︷︷ ︸

=:E1

+
1

h|ν|+2

N∑
n=1

M∑
m=1

∫ n
N

n−1
N

∫ m
M

m−1
M

[
K
( n
N − t
h

,
m
M − τ
h

)
−K

(
t′ − t
h

,
τ ′ − τ
h

)]
µ∗ (t′, τ ′) dτ ′ dt′︸ ︷︷ ︸

=:E2

(6.19)
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Evaluation of E1 (based on the condition that µ∗ is Lipschitz continuous):

E1 =
1

h|ν|+2

N∑
n=1

M∑
m=1

∫ n
N

n−1
N

∫ m
M

m−1
M

[
µ∗
( n
N
,
m

M

)
− µ∗(t′, τ ′)

]
K
( n
N − t
h

,
m
M − τ
h

)
dτ ′ dt

= O

(
1

h|ν|+2N

)
because

∣∣µ∗ ( nN , mM )− µ∗(t′, τ ′)∣∣ ≤ c||( nN , mM )− (t′, τ ′)|| ≤ c
N (assumption (c)).

For evaluation of E2 a multi-dimensional version of the mean value theorem is used (see e.g.

Heuser [2002]) with ∇K being the gradient of K:

E2 ≤
1

h|ν|+2

N∑
n=1

M∑
m=1

∫ n
N

n−1
N

∫ m
M

m−1
M

∣∣∣∣[K( n
N − t
h

,
m
M − τ
h

)
−K

(
t′ − t
h

,
τ ′ − τ
h

)]
µ∗(t′, τ ′)

∣∣∣∣ dτ ′ dt′

≤ 1

h|ν|+2

N∑
n=1

M∑
m=1

∫ n
N

n−1
N

∫ m
M

m−1
M

∣∣∣∣∣∇K(ξnm)

( n
N − t

′

h
,
m
M − τ

′

h

)T
µ∗(t′, τ ′)

∣∣∣∣∣ dτ ′ dt′
for ξnm ∈

{( n
N − t
h

,
m
M − τ
h

)
+ η

( n
N − t

′

h
,
m
M − τ

′

h

)
, η ∈ [0, 1]

}

≤ 1

h|ν|+2

N∑
n=1

M∑
m=1

max
n=1,...,N
m=1,...,M

||K′(ξmn)| | 2

hN

∫ n
N

n−1
N

∫ m
M

m−1
M

|µ∗(t′, τ ′)| dτ ′ dt′

= O

(
1

h|ν|+3N

)
Now it is shown that:

Part A: E
(
supt∈T ,τ∈T |ΨI(t, τ)− E(ΨI(t, τ))|

)
= O

(
1

h|ν|+2
√
I

)
Part B: E(ΨI(t, τ)) = µ(t, τ) +O(hl−|ν|) +O( 1

h|ν|+3N
)

For (6.17) we therefore obtain the inequality:

E|τI | = O

(
1

h|ν|+2
√
I

)
+O(hl−|ν|) +O

(
1

h|ν|+3N

)
= O

(
1

h|ν|+2
√
I

)
,

because hl−|ν| =
√
Ih2l+4︸ ︷︷ ︸

bounded

1
h|ν|+2

√
I

= O
(

1
h|ν|+2

√
I

)
and 1

N = O(hl+3) (assumption (c)).

Using Markov’s inequality one obtains:

E|τI | = O

(
1

h|ν|+2
√
I

)
⇒ τI = OP

(
1

h|ν|+2
√
I

)
As before, if ΨI(t, τ) is a non-random function, Part A vanishes such that the final rate is only

the better rate of Part B.

The previous lemma also needs to be adapted to the situation of the estimation of the covariance

function in the spatial case:
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Lemma 14 (Lemma for covariance estimation). Now let ~t = (t1, t2) be an element of T 2 and

~τ = (τ1, τ2) be an element of T 2. Assume that

(a) K is an absolutely integrable kernel, i.e.
∫ ∫
|K(~t, ~τ)| d~t d~τ < ∞, and has an absolutely

integrable Fourier transform.

(b) K is compactly supported of order (ν, l) with ν ∈ N4 and
∫ ∫
K2(~t, ~τ) d~t d~τ <∞.

(c) The bandwidth h and the data points per observation N,M depend on the sample size I

and fulfill M ≥ N , h→ 0, Ih|ν|+4 →∞, Ih2l+8 = O(1), 1
N = O(hl+5) for I →∞.

Let further θ : R6 → R be a real function with:

(d) θ is uniformly continuous on T 2 × T 2 × R2.

(e) sup ~t∈T2

~τ∈T 2

∫
θ2(~t, ~τ , y)g(y;~t, ~τ) dy <∞

Now define a weighted average and its limit expected value via

ΘI(~t, ~τ)

=
1

Ih|ν|+4N(N − 1)M(M − 1)

I∑
i=1

∑
n1 6=n2

∑
m1 6=m2

θ

(
~n

N
,
~m

M
,Y i1 , Y

i
2

)
K

(
~t− ~n

N

h
,
~τ − ~m

M

h

)
,

γ(~t, ~τ) =
d|ν|

d(~t, ~τ)ν

∫ ∫
θ(~t, ~τ , y1, y2)g(y1, y2;~t, ~τ) dy1 dy2

and assume that

(f) all derivatives of γ(~t, ~τ) up to 2nd degree exist and are uniformly continuous on T 2 × T 2

(g) γ(~t, ~τ) :=
∫ ∫

θ(~t, ~τ , y1, y2)g(y1, y2;~t, ~τ) dy1 dy2 is Lipschitz continuous.

Then one can obtain the following error estimation:

τI := sup
~t∈T2

~τ∈T 2

|ΘI(~t, ~τ)− γ(~t, ~τ)| = OP

(
1√

Ih|ν|+4

)
.

Remark. If θ is a function only in t and τ (i.e. ΘI has no random part), the error is

τI = O
(
hl−|ν|

)
.

Proof. First observe that

E|τI | ≤ E sup
~t∈T2

~τ∈T 2

|ΘI(~t, ~τ)− E(ΘI(~t, ~τ))|

︸ ︷︷ ︸
=:A

+ sup
~t∈T2

~τ∈T 2

|E(ΘI(~t, ~τ))− γ(~t, ~τ)|

︸ ︷︷ ︸
=:B

. (6.20)

Now parts A and B are evaluated separately.
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Part A: First the kernel is represented in the Fourier space in order to find an expression

which can be evaluated easily. Assumption (b) guarantees that the Fourier inversion formula

can be applied. Hence we insert the expression

K

(
~t− ~n

N

h
,
~τ − ~m

M

h

)

=
1

(2π)4

∫ ∫
e
i

(
~vT

~n
N
−~t
h +~wT

~m
M
−~τ
h

) [∫ ∫
e−i(~u

T~v+~u′T ~w)K(~uT , ~u′T ) d~u d~u′
]

︸ ︷︷ ︸
=:ρ(~v,~w)

d~v d~w

into ΘI(~t, ~τ) and perform a substitution ~v = ~uh, ~w = ~u′h afterwards. Let R:=N(N-1)M(M-1)

and Yl := Ynl,ml for l = 1, 2.

ΘI(~t, ~τ)

=
1

Ih|ν|+2R

I∑
i=1

∑
n1 6=n2

∑
m1 6=m2

θ

(
~n

N
,
~m

M
,Y i1 , Y

i
2

)
1

(2π)2

∫ ∫
e
i

(
~vT

~n
N
−~t
h +~wT

~m
M
−~τ
h

)
ρ(~v, ~w) d~v d~w

=
1

(2π)4h|ν|IR

I∑
i=1

∑
n1 6=n2

∑
m1 6=m2

θ

(
~n

N
,
~m

M
,Y i1 , Y

i
2

)∫ ∫
ei~u

T ( ~nN−~t)+i~u
′T ( ~mM−~τ)ρ(~uh, ~u′h) d~u d~u′

=
1

(2π)4h|ν|

∫ ∫
e−i(~u

T~t+~u′T ~τ)ρ(~uh, ~u′h)

×

 1

IR

I∑
i=1

∑
n1 6=n2

∑
m1 6=m2

ei(~u
T ~n
N +~u′T ~m

M )θ

(
~n

N
,
~m

M
,Y i1 , Y

i
2

)
︸ ︷︷ ︸

=:ϕI(~u,~u′)

d~u d~u′

=
1

(2π)4h|ν|

∫ ∫
e−i(~u

T~t+~u′T ~τ)ρ(~uh, ~u′h)ϕI(~u, ~u
′) d~u d~u′

Therewith

E(ΘI(~t, ~τ)) =
1

(2π)4h|ν|

∫ ∫
e−i(~u

T~t+~u′~τ)ρ(~uh, ~u′h)E(ϕI(~u, ~u
′)) d~u d~u′

and

E

 sup
~t∈T2

~τ∈T 2

|ΘI(~t, ~τ)− E(ΘI(~t, ~τ))|

 ≤ 1

(2π)4h|ν|

∫
|ρ(~uh, ~u′h)|E|ϕI(~u, ~u′)− E(ϕI(~u, ~u

′))| d~u d~u′.

For the evaluation of the term E|ϕI(~u, ~u′)− E(ϕI(~u, ~u
′))| we observe that

E|ϕI(~u, ~u′)− E(ϕI(~u, ~u
′))| ≤

√
E(ϕI(~u, ~u′)− E(ϕI(~u, ~u′)))2 =

√
Var(ϕI(~u, ~u′)).
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The variance is again evaluated by using the condition of i.i.d. observations and the Cauchy-

Schwarz inequality:

Var(ϕI(~u, ~u
′))

=Var

 1

IR

I∑
i=1

∑
n1 6=n2

∑
m1 6=m2

ei(~u
T ~n
N +~u′T ~m

M )θ

(
~n

N
,
~m

M
,Y i1 , Y

i
2

)

=
1

IR2
Var

 ∑
n1 6=n2

∑
m1 6=m2

ei(~u
T ~n
N +~u′T ~m

M )θ

(
~n

N
,
~m

M
,Y1, Y2

)

≤ 1

IR2
E

 ∑
n1 6=n2

∑
m1 6=m2

ei(~u
T ~n
N +~u′T ~m

M )θ

(
~n

N
,
~m

M
,Y1, Y2

)2

≤ 1

IR2
E

[ ∑
n1 6=n2

∑
m1 6=m2

∣∣∣e2i(~uT ~n
N +~u′T ~m

M )
∣∣∣


︸ ︷︷ ︸
=R

 ∑
n1 6=n2

∑
m1 6=m2

θ2

(
~n

N
,
~m

M
,Y1, Y2

)]

≤ 1

IR

∑
n1 6=n2

∑
m1 6=m2

E
(
θ2

(
~n

N
,
~m

M
,Y1, Y2

))

≤1

I
max
n1 6=n2
m1 6=m2

E
(
θ2

(
~n

N
,
~m

M
,Y1, Y2

))

using the Cauchy-Schwarz inequality. All in all one obtains

E

 sup
~t∈T2

~τ∈T 2

|ΘI(~t, ~τ)− E(ΘI(~t, ~τ))|



≤ 1

(2π)4h|ν|

√√√√1

I
max
n1 6=n2
m1 6=m2

E
(
θ2

(
~n

N
,
~m

M
,Y1, Y2

))∫ ∫
|ρ(~uh, ~u′h)| d~u d~u′︸ ︷︷ ︸

=
∫ ∫

1
h4
|ρ(~v,~w)| d~v d~w

=
1

h|ν|+4
√
I

1

(2π)4

√√√√ max
n1 6=n2
m1 6=m2

E
(
θ2

(
~n

N
,
~m

M
,Y1, Y2

))∫ ∫
|ρ(~v, ~w)| d~v d~w

︸ ︷︷ ︸
bounded by assumption (e)

= O

(
1

h|ν|+4
√
I

)
for the first part.

Part B: For evaluating B we show that E(ΘI(~t, ~τ)) = γ(~t, ~τ)+O(hl−|ν|)+O
(

1
h|ν|+5N

)
uniformly

for (~t, ~τ) ∈ T 2 × T 2. In order to obtain this error estimation the sum expression is substituted
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by an integral with an error term of order O
(

1
h|ν|+4N

)
(for calculation see (6.21) below) and

is examined via a Taylor expansion after a substitution in each dimension. Set γ∗(~t, ~τ) :=∫ ∫
θ
(
~t, ~τ , y1, y2

)
g
(
y1, y2;~t, ~τ

)
dy1 dy2 for notational convenience.

E(ΘI(~t, ~τ)) =
1

h|ν|+4R
E

 ∑
n1 6=n2

∑
m1 6=m2

θ

(
~n

N
,
~m

M
,Y1, Y2

)
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)

=
1

h|ν|+4R

∑
n1 6=n2

∑
m1 6=m2

∫
θ

(
~n

N
,
~m

M
, y

)
g

(
y;
~n

N
,
~m

M

)
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)
dy

=
1

h|ν|+4R

∑
n1 6=n2

∑
m1 6=m2

γ∗
(
~n

N
,
~m

M

)
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)

=
1

h|ν|+4

∫ ∫
γ∗
(
~t′, ~τ ′

)
K
(
~t′ − ~t
h

,
~τ ′ − ~τ
h

)
dt′ dτ ′ +O

(
1

h|ν|+4N

)

=
1

h|ν|

∫ ∫
γ∗
(
~t+ ~vh, ~τ + ~wh

)
K(~v, ~w) d~v d~w +O

(
1

h|ν|+4N

)

=
1

h|ν|

∫ ∫  l−1∑
j=0

∑
~j1,
~j2

| ~j1|+| ~j2|=j

∂
~j1

∂ ~j1~t

∂
~j2

∂ ~j2~τ
γ∗(~t, ~τ)

hj~v
~j1 ~w

~j2

~j1!~j2!

+
∑
~j1,
~j2

| ~j1|+| ~j2|=l

∂
~j1

∂ ~j1~t

∂
~j2

∂ ~j2~τ
γ∗(ξ1, ξ2)

hl~v
~j1 ~w

~j2

~j1!~j2!

×K(~v, ~w) d~v d~w +O

(
1

h|ν|+4N

)

= γ(~t, ~τ) +O(hl−|ν|) +O

(
1

h|ν|+4N

)
︸ ︷︷ ︸

independent of ~t∈T 2,~τ∈T 2

The error of discretization is evaluated like in the lemma before, e.g. the integral is first inserted

into the sum expression and afterwards the term is divided into two parts E1 and E2, that are

evaluated using the properties of the kernel function and of γ∗:

1

h|ν|+4R

∑
n1 6=n2

∑
m1 6=m2

γ∗
(
~n

N
,
~m

M

)
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)
(6.21)

=
1

h|ν|+4

∫ ∫
γ∗
(
~t′, ~τ ′

)
K
(
~t′ − ~t
h

,
~τ ′ − ~τ
h

)
d~τ ′ d~t′

+
1

h|ν|+4

∑
n1 6=n2

∑
m1 6=m2

∫ ~n
N

~n−1
N

∫ ~m
M

~m−1
M

γ∗
(
~n

N
,
~m

M

)
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)
d~τ ′ d~t′
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− 1

h|ν|+4

∑
n1 6=n2

∑
m1 6=m2

∫ ~n
N

~n−1
N

∫ ~m
M

~m−1
M

γ∗
(
~t′, ~τ ′

)
K
(
~t′ − ~t
h

,
~τ ′ − ~τ
h

)
d~τ ′ d~t′

=
1

h|ν|+4

∫ ∫
γ∗
(
~t′, ~τ ′

)
K
(
~t′ − ~t
h

,
~τ ′ − ~τ
h

)
d~τ ′ d~t′

+
1

h|ν|+4

∑
n1 6=n2

∑
m1 6=m2

∫ ~n
N

~n−1
N

∫ ~m
M

~m−1
M

[
γ∗
(
~n

N
,
~m

M

)
− γ∗

(
~t′, ~τ

)]
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)
d~τ ′ d~t′︸ ︷︷ ︸

=:E1

+
1

h|ν|+4

∑
n1 6=n2

∑
m1 6=m2

∫ ~n
N

~n−1
N

∫ ~m
M

~m−1
M

[
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)
−K

(
~t′ − ~t
h

,
~τ ′ − ~τ
h

)]
γ∗
(
~t′, ~τ ′

)
d~τ ′ d~t′︸ ︷︷ ︸

=:E2

E1 is evaluated based on the condition that γ∗ :

E1 =
1

h|ν|+4

∑
n1 6=n2

∑
m1 6=m2

∫ ~n
N

~n−1
N

∫ ~m
M

~m−1
M

[
γ∗
(
~n

N
,
~m

M

)
− γ∗(~t′, ~τ ′)

]
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)
d~τ ′ d~t′

= O

(
1

h|ν|+4N

)
because

∣∣γ∗ ( ~nN , ~mM )− γ∗(~t′, ~τ ′)∣∣ ≤ c||( ~nN , ~mM )− (~t′, ~τ ′)|| ≤ c
N (assumption (c)).

For the evaluation of E2 the mean value theorem in several variables is used (with ∇K being

the gradient of K:

E2

≤ 1

h|ν|+4

∑
n1 6=n2

∑
m1 6=m2

∫ ~n
N

~n−1
N

∫ ~m
M

~m−1
M

∣∣∣∣∣
[
K

(
~n
N − ~t
h

,
~m
M − ~τ
h

)
−K

(
~t′ − ~t
h

,
~τ ′ − ~τ
h

)]
γ∗(~t′, ~τ ′)

∣∣∣∣∣ d~τ ′ d~t′

≤ 1

h|ν|+4

∑
n1 6=n2

∑
m1 6=m2

∫ ~n
N

~n−1
N

∫ ~m
M

~m−1
M

∣∣∣∣∣∣K′(ξnm)

(
~n
N − ~t

′

h
,
~m
M − ~τ

′

h

)T
γ∗(~t′, ~τ ′)

∣∣∣∣∣∣ d~τ ′ d~t′

for ξnm ∈

{(
~n
N − ~t
h

,
~m
M − ~τ
h

)
+ η

(
~n
N − ~t

′

h
,
~m
M − ~τ

′

h

)
, η ∈ [0, 1]

}

≤ 1

h|ν|+4

∑
n1 6=n2

∑
m1 6=m2

max
n1 6=n2
m1 6=m2

||∇K(ξmn)| | 4

hN

∫ ~n
N

~n−1
N

∫ ~m
M

~m−1
M

∣∣γ∗(~t′, ~τ ′)∣∣ d~τ ′ d~t′
=O

(
1

h|ν|+5N

)

Now it is shown that:
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Part A: E
(

sup ~t∈T2

~τ∈T 2

|ΘI(~t, ~τ)− E(ΘI(~t, ~τ))|
)

= O
(

1
h|ν|+4

√
I

)
Part B: E(ΘI(~t, ~τ)) = γ(~t, ~τ) +O(hl−|ν|) +O( 1

h|ν|+5N
)

For (6.20) we therefore obtain the inequality:

E|τI | = O

(
1

h|ν|+4
√
I

)
+O(hl−|ν|) +O

(
1

h|ν|+5N

)
= O

(
1

h|ν|+4
√
I

)
,

because hl−|ν| = O
(

1
h|ν|+4

√
I

)
and 1

N = O(hl+5) (assumption (c)).

Using Markov’s inequality one obtains:

E|τI | = O

(
1

h|ν|+4
√
I

)
⇒ τI = OP

(
1

h|ν|+4
√
I

)
As before, if ΘI(~t, ~τ) is a non-random function, Part A vanishes such that the final rate is only

the better rate of Part B.

6.3.2 Mean, covariance and principal components

Using the results of Lemmas 13 and 14 we can now provide consistency results for mean and

covariance functions.

Theorem 15 (Theorem for mean estimation). Assume that (a), (b) and (d) of Lemma 13 are

valid here as well and that

(c) h→ 0, Ih4 →∞, Ih8 = O(1), 1
N = O(h7),M ≥ N for I →∞.

Further K is assumed to be a two-dimensional product kernel of a kernel K∗ of order (0, 2), e.g.

K(t, τ) = K∗(t)K∗(τ) for t ∈ T, τ ∈ T . K is therefore of order ((0, 0), 2) (see calculation (2.7)).

The mean function fulfills the following uniform convergence rate:

sup
t∈T
τ∈T

|µ̂(t, τ)− µ(t, τ)| = OP

(
1√
Ih2

)

Proof. The local linear estimator µ̂(t, τ) can explicitly be written as

µ̂(t, τ) = β̂0(t, τ) =
1
I

∑
i

1
NM

∑
n

∑
m wnmY

i
nm

1
I

∑
i

1
NM

∑
n

∑
m wnm

−
1
I

∑
i

1
NM

∑
n

∑
m wnm( nN − t)

1
I

∑
i

1
NM

∑
n

∑
m wnm

β̂11(t, τ)

−
1
I

∑
i

1
NM

∑
n

∑
m wnm(mM − τ)

1
I

∑
i

1
NM

∑
n

∑
m wnm

β̂12(t, τ),
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6 Consistency Results

where wnm = K
(
t− n

N

h ,
τ−m

M

h

)
, and

β̂11(t, τ) = D1 + E1β̂12(t, τ)

β̂12(t, τ) = D2 + E2β̂11(t, τ)

with

D1 =

[
1

I

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)Y inm

−
(

1
I

∑
i

1
NM

∑
n

∑
m wnm( nN − t)

) (
1
I

∑
i

1
NM

∑
n

∑
m wnmY

i
nm

)
1
I

∑
i

1
NM

∑
n

∑
m wnm

]

×

[
1

I

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)2 −

(
1
I

∑
i

1
NM

∑
n

∑
m wnm( nN − t)

)2
1
I

∑
i

1
NM

∑
n

∑
m wnm

]−1

E1 =

[(
1

I

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)

)(
1

I

∑
i

1

NM

∑
n

∑
m

wnm(
m

M
− τ)

)

− 1

I

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)(m

M
− τ)

]

×

[
1

I

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)2 −

(
1
I

∑
i

1
NM

∑
n

∑
m wnm( nN − t)

)2
1
I

∑
i

1
NM

∑
n

∑
m wnm

]−1

and D2 and E2 analogous exchanging t with τ and n with m.

We can rewrite

β̂11(t, τ) =
D1 + E1D2

1− E1E2

β̂12(t, τ) =
D2 + E2D1

1− E1E2

so that we first evaluate the terms D1, D2, E1 and E2 and afterwards conclude the convergence

rates of β̂11(t, τ) and β̂12(t, τ).

In order to evaluate the terms we define the derivative kernels Kt(t, τ) = −tK(t,τ)
σ2
t

with order

((1, 0), 3), Kt2(t, τ) = t2K(t,τ)
σ2
t

with order ((0, 0), 2) (as well as the analogue kernels for τ) and

Kt,τ (t, τ) = tτK(t,τ)
σ2
t,τ

with order ((1, 1), 4).

Using Lemma 13 we can obtain the convergence rates for the single terms. For example let

ψ1(t, τ, y) := 1, then using the kernel K of order ((0, 0), 2),

ψ1(t) =

∫
1 g(y; t, τ) dy = 1 and Ψ1I(t, τ) =

1

Ih2NM

∑
i

∑
n

∑
m

1wnm.
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According to the remark of Lemma 13 we therefore obtain: ´

sup
t∈T
τ∈T

| 1

Ih2

∑
i

1

NM

∑
n

∑
m

wnm − 1| = O(h2)

The following overview shows only terms in t and mixed terms (the analogue terms in τ have

the same convergence rates):

sup
t∈T
τ∈T

∣∣∣∣∣ 1

Ih2

∑
i

1

NM

∑
n

∑
m

wnm − 1

∣∣∣∣∣ = O(h2) (using kernel K)

sup
t∈T
τ∈T

∣∣∣∣∣ 1

Ih4σ2
t

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)− 0

∣∣∣∣∣ = O(h2) (using kernel Kt)

sup
t∈T
τ∈T

∣∣∣∣∣ 1

Ih6σt,τ

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)(m

M
− τ)− 0

∣∣∣∣∣ = O(h2) (using kernel Kt,τ )

sup
t∈T
τ∈T

∣∣∣∣∣ 1

Ih4σ2
t

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)2 − 1

∣∣∣∣∣ = O(h2) (using kernel Kt2)

sup
t∈T
τ∈T

∣∣∣∣∣ 1

Ih2

∑
i

1

NM

∑
n

∑
m

wnmY
i
nm − µ(t, τ)

∣∣∣∣∣ = OP

(
1√
Ih2

)
(using kernel K)

sup
t∈T
τ∈T

∣∣∣∣∣ 1

Ih4σ2
t

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)Y inm − µt(t, τ)

∣∣∣∣∣ = OP

(
1√
Ih3

)
(using kernel Kt)

D1 therewith has the following rate:

D1 =

[
1

Ih4σ2
t

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)Y inm

−

(
1

Ih4σ2
t

∑
i

1
NM

∑
n

∑
m wnm( nN − t)

) (
1
Ih2

∑
i

1
NM

∑
n

∑
m wnmY

i
nm

)
1
Ih2

∑
i

1
NM

∑
n

∑
m wnm



×

[
1

Ih4σ2
t

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)2

−
h2σ2

t

(
1

Ih4σ2
t

∑
i

1
NM

∑
n

∑
m wnm( nN − t)

)2

1
Ih2

∑
i

1
NM

∑
n

∑
m wnm


−1

=

[
µt(t, τ) +OP

(
1√
Ih3

)]
−

[0+O(h2)]
[
µ(t,τ)+OP

(
1√
Ih2

)]
[1+O(h2)]

[1 +O(h2)]− h2σ2
t [0+O(h2)]2

[1+O(h2)]
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= µt(t, τ) +OP

(
1√
Ih3

)
uniformly in t, τ , i.e.

sup
t∈T
τ∈T

|D1 − µt(t, τ)| = OP

(
1√
Ih3

)

and analogously

sup
t∈T
τ∈T

|D2 − µτ (t, τ)| = OP

(
1√
Ih3

)
.

For E1 we obtain:

E1 =

[
h4σ2

τ

(
1

Ih4σ2
t

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)

)(
1

Ih4σ2
τ

∑
i

1

NM

∑
n

∑
m

wnm(
m

M
− τ)

)

−h2σ
2
tτ

σ2
t

1

Ih6σ2
tτ

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)(m

M
− τ)

]

∗

[
1

Ih4σ2
t

∑
i

1

NM

∑
n

∑
m

wnm(
n

N
− t)2

−
h2σ2

t

(
1

Ih4σ2
t

∑
i

1
NM

∑
n

∑
m wnm( nN − t)

)2

1
Ih2

∑
i

1
NM

∑
n

∑
m wnm


−1

=
h4σ2

τ

[
0 +O(h2)

] [
0 +O(h2)

]
− h2 σ

2
tτ

σ2
t

[
0 +O(h2)

]
[1 +O(h2)]− h2σ2

t [0+O(h2)]2

[1+O(h2)]

= O(h4)

uniformly in t, τ , i.e.

sup
t∈T
τ∈T

|E1| = O(h4) and analogously sup
t∈T
τ∈T

|E2| = O(h4).

With this information, β̂11(t, τ) and β̂12(t, τ) can be evaluated as follows (uniformly in t, τ):

β̂11(t, τ) =

[
µt(t, τ) +OP

(
1√
Ih3

)]
+
[
0 +O(h2)

] [
µτ (t, τ) +OP

(
1√
Ih3

)]
1− [0 +O(h2)] [0 +O(h2)]

= µt(t, τ) +OP

(
1√
Ih3

)

β̂12(t, τ) = µτ (t, τ) +OP

(
1√
Ih3

)

For β̂0(t, τ) we now obtain:
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β̂0(t, τ) =
1
Ih2

∑
i

1
NM

∑
n

∑
m wnmY

i
nm

1
Ih2

∑
i

1
NM

∑
n

∑
m wnm

−
h2σ2

t
1

Ih4σ2
t

∑
i

1
NM

∑
n

∑
m wnm( nN − t)

1
Ih2

∑
i

1
NM

∑
n

∑
m wnm

β̂11(t, τ)

−
h2σ2

τ
1

Ih4σ2
τ

∑
i

1
NM

∑
n

∑
m wnm(mM − τ)

1
Ih2

∑
i

1
NM

∑
n

∑
m wnm

β̂12(t, τ)

=

[
µ(t, τ) +OP

(
1√
Ih2

)]
[1 +O(h2)]

−
h2
[
0 +O(h2)

]
[1 +O(h2)]

[
µt(t, τ) +OP

(
1√
Ih3

)]

−
h2
[
0 +O(h2)

]
[1 +O(h2)]

[
µτ (t, τ) +OP

(
1√
Ih3

)]

=µ(t, τ) +OP

(
1√
Ih2

)
+ h4OP

(
1√
Ih3

)
uniformly in t, τ , such that we obtain the final uniform convergence rate

sup
t∈T
τ∈T

|µ̂(t, τ)− µ(t, τ)| = OP

(
1√
Ih2

)
.

Theorem 16 (Theorem for covariance estimation). Assume that (a),(b) and (d) of Lemma 14

are valid here as well and that

(c) h→ 0, Ih6 →∞, Ih12 = O(1), 1
N = O(h9),M ≥ N for I →∞.

Further K is assumed to be a four-dimensional product kernel of a kernel K∗ of order (0, 2), e.g.

K(~t, ~τ) = K∗(t1)K∗(t2)K∗(τ1)K∗(τ2) for ~t ∈ T 2, ~τ ∈ T 2. K is therefore of order ((0,0,0,0),2)

(see calculation (2.7)).

The estimator for the covariance function as defined in Section 2.2 satisfies the following uni-

form convergence rate:

sup
~t∈T2

~τ∈T 2

|Ĝ(~t, ~τ)−G(~t, ~τ)| = OP

(
1√
Ih4

)
(6.22)

Proof. As the estimation of the covariance function is based on the raw covariances with

estimated mean function Gi(
~n
N ,

~m
M ) = (Y in1,m1

− µ̂(n1

N ,
m1

M ))(Y in2,m2
− µ̂(n2

N ,
m2

M )) instead of

G̃i(
~n
N ,

~m
M ) = (Y in1,m1

− µ(n1

N ,
m1

M ))(Y in2,m2
− µ(n2

N ,
m2

M )), we will first show that Gi(
~n
N ,

~m
M ) is

asymptotically equivalent to G̃i(
~n
N ,

~m
M ) and work with G̃i(

~n
N ,

~m
M ) in the further proof.

This can be seen observing that (for ~t ∈ T 2 and ~τ ∈ T 2)

Gi
(
~t, ~τ
)

= G̃i
(
~t, ~τ
)

+
(
Y it1,τ1 − µ (t1, τ1)

)
(µ (t2, τ2)− µ̂ (t2, τ2))

+
(
Y it2,τ2 − µ (t2, τ2)

)
(µ (t1, τ1)− µ̂ (t1, τ1))

+ (µ (t1, τ1)− µ̂ (t1, τ1)) (µ (t2, τ2)− µ̂ (t2, τ2))
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As Var(Yt,τ ) is finite for all t ∈ T , τ ∈ T ,
(
Y it1,τ1 − µ (t1, τ1)

)
and

(
Y it2,τ2 − µ (t2, τ2)

)
are stochas-

tically bounded. Further sup t∈T
τ∈T
|µ(t, τ)− µ̂(t, τ)| = OP

(
1√
Ih2

)
such that

sup
~t∈T2

~τ∈T 2

∣∣∣Gi (~t, ~τ)− G̃i (~t, ~τ)∣∣∣ = OP

(
1√
Ih2

)

which shows the asymptotic equivalence of Gi and G̃i with respect to (6.22).

In the following we use the abbreviations

R := IN(N − 1)M(M − 1)h4

∑
:=
∑
i

∑
n

∑
m

W := K
(
t1 − n1

N

h
,
t2 − n2

N

h
,
τ1 − m1

M

h
,
τ2 − m2

M

h

)

Gi := Gi

(n1

N
,
n2

N
,
m1

M
,
m2

M

)
, G := G(~t, ~τ)

To obtain the covariance estimation, the following term is to be minimized:

F =
∑

W
[
Gi − β0 − β11(t1 −

n1

N
)− β12(t2 −

n2

N
)− β21(τ1 −

m1

M
)− β22(τ2 −

m2

M
)
]2

Hence we evaluate the gradient

∇F =


2
∑
W
(
Gi − β0 − β11(t1 − n1

N )− β12(t2 − n2

N )− β21(τ1 − m1

M )− β22(τ2 − m2

M )
)

2
∑
W
(
Gi − β0 − β11(t1 − n1

N )− β12(t2 − n2

N )− β21(τ1 − m1

M )− β22(τ2 − m2

M )
)

(t1 − n1

N )

2
∑
W
(
Gi − β0 − β11(t1 − n1

N )− β12(t2 − n2

N )− β21(τ1 − m1

M )− β22(τ2 − m2

M )
)

(t2 − n2

N )

2
∑
W
(
Gi − β0 − β11(t1 − n1

N )− β12(t2 − n2

N )− β21(τ1 − m1

M )− β22(τ2 − m2

M )
)

(τ1 − m1

M )

2
∑
W
(
Gi − β0 − β11(t1 − n1

N )− β12(t2 − n2

N )− β21(τ1 − m1

M )− β22(τ2 − m2

M )
)

(τ2 − m2

M )


with respect to β and solve the equation ∇F = 0:

∇F = 0

⇔ 1

R



∑
WGi∑

WGi(t1 − n1

N )∑
WGi(t2 − n2

N )∑
WGi(τ1 − m1

M )∑
WGi(τ2 − m2

M )


︸ ︷︷ ︸

stochastic terms

(6.23)
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=
1

R



∑
W

∑
W (t1 − n1

N ) . . .
∑
W (τ2 − m2

M )∑
W (t1 − n1

N )
∑
W (t1 − n1

N )2 . . .
∑
W (t1 − n1

N )(τ2 − m2

M )∑
W (t2 − n2

N )
∑
W (t1 − n1

N )(t2 − n2

N ) . . .
∑
W (t2 − n2

N )(τ2 − m2

M )∑
W (τ1 − m1

M )
∑
W (t1 − n1

N )(τ1 − m1

M ) . . .
∑
W (τ1 − m1

M )(τ2 − m2

M )∑
W (τ2 − m2

M )
∑
W (t1 − n1

N )(τ2 − m2

M ) . . .
∑
W (τ2 − m2

M )2


︸ ︷︷ ︸

deterministic terms


β0

β11

β12

β21

β22



The single terms can be evaluated using Lemma 14. As before, we want to show one example

how Lemma 14 is used. Let θ1(t1, t2, y1, y2) := 1, then using the kernel K of order ((0, 0, 0, 0), 2),

θ1(t) =

∫ ∫
1 g2(y1, y2;~t, ~τ) dy1 dy2 = 1 and Θ1I(t) =

1

R

∑
1W.

According to the remark of Lemma 14 we therefore obtain: ´

sup
t1,t2∈T

| 1
R

∑
W − 1| = O(h4)

Only terms in t1 and mixed terms of t1 and t2 are presented, as the other occurring terms of

the same scheme also have the same convergence rates:

sup
~t∈T2

~τ∈T 2

∣∣∣∣ 1

R

∑
W − 1

∣∣∣∣ = O(h2) (using kernel K)

sup
~t∈T2

~τ∈T 2

∣∣∣∣ 1

Rh2σ2
t1

∑
W (t1 −

n1

N
)− 0

∣∣∣∣ = O(h2) (using kernel Kt1)

sup
~t∈T2

~τ∈T 2

∣∣∣∣ 1

Rh2σ2
t1

∑
W (t1 −

n1

N
)2 − 1

∣∣∣∣ = O(h2) (using kernel Kt21)

sup
~t∈T2

~τ∈T 2

∣∣∣∣ 1

Rh4σ2
t1t2

∑
W (t1 −

n1

N
)(t2 −

n2

N
)− 0

∣∣∣∣ = O(h2) (using kernel Kt1t2)

sup
~t∈T2

~τ∈T 2

∣∣∣∣ 1

R

∑
WGi −G

∣∣∣∣ = OP

(
1√
Ih4

)
(using kernel K)

sup
~t∈T2

~τ∈T 2

∣∣∣∣ 1

Rh2σ2
t1

∑
WGi(t1 −

n1

N
)−Gt1

∣∣∣∣ = OP

(
1√
Ih5

)
(using kernel Kt1)
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Now equation (6.23) can be evaluated using the uniform convergence rates of the single terms:

G+OP

(
1√
Ih4

)
h2
(
Gt1 +OP

(
1√
Ih5

))
h2
(
Gt2 +OP

(
1√
Ih5

))
h2
(
Gτ1 +OP

(
1√
Ih5

))
h2
(
Gτ2 +OP

(
1√
Ih5

))



=


1 +O(h2) h2(0 +O(h2)) h2(0 +O(h2)) h2(0 +O(h2)) h2(0 +O(h2))

h2(0 +O(h2)) 1 +O(h2) h4(0 +O(h2)) h4(0 +O(h2)) h4(0 +O(h2))

h2(0 +O(h2)) h4(0 +O(h2)) 1 +O(h2) h4(0 +O(h2)) h4(0 +O(h2))

h2(0 +O(h2)) h4(0 +O(h2)) h4(0 +O(h2)) 1 +O(h2) h4(0 +O(h2))

h2(0 +O(h2)) h4(0 +O(h2)) h4(0 +O(h2)) h4(0 +O(h2)) 1 +O(h2)


︸ ︷︷ ︸

=:(first column|A′)=:A


β̂0

β̂11

β̂12

β̂21

β̂22



According to Cramer’s rule (e.g. Fischer [2002]) we now obtain the following convergence rate

for the interesting estimator β̂0:

β̂0 =

det



G+OP

(
1√
Ih4

)
|

h2
(
Gt1 +OP

(
1√
Ih5

))
|

h2
(
Gt2 +OP

(
1√
Ih5

))
| A′

h2
(
Gτ1 +OP

(
1√
Ih5

))
|

h2
(
Gτ2 +OP

(
1√
Ih5

))
|


det(A)

=

(
G+OP

(
1√
Ih4

)) (
1 +O(h2)

)4
+
(
G+OP

(
1√
Ih4

))
O(h10) + h2OP

(
1√
Ih5

)
O(h4)

(1 +O(h2))
9

+ (1 +O(h2))O(h10) +O(h26)

= G+OP

(
1√
Ih4

)
uniformly in (~t, ~τ) and therewith

sup
~t∈T2

~τ∈T 2

∣∣∣G(~t, ~τ)− Ĝ(~t, ~τ)
∣∣∣ = OP

(
1√
Ih4

)

Finally convergence rates for eigenvalues and eigenfunctions can be derived. Weyl’s eigenvalue

inequality of Lemma 11 can be applied in the two-dimensional case as well.

Theorem 17 (Theorem for eigenanalysis estimation). Under the assumptions of Theorems 15
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and 16, we obtain the following consistency rate for an eigenvalue k for any fixed k ∈ N:

|λ̂k − λk| = OP

(
1√
Ih4

)
. (6.24)

If λk has multiplicity 1, the appropriately standardized estimator for the eigenfunction ρ̂k has

the following convergence rate in the L2 sense

||ρ̂k − ρk||L2
= OP

(
1√
Ih4

)
(6.25)

and fulfills furthermore the uniform consistency rate

sup
t∈T
τ∈T

|ρ̂k(t, τ)− ρk(t, τ)| = OP

(
1√
Ih4

)
. (6.26)

Proof. The framework is the same as in the one-dimensional case. We consider the Hilbert

space H = {f : T × T → R|
∫
|f(t)|2 dt < ∞}, this time with the inner product 〈f, g〉 =∫ ∫

|f(t, τ)g(t, τ)| dt dτ and norm ||f ||L2 =
√∫ ∫

|f(t, τ)|2 dt dτ .

An operator T : H → H is called Hilbert-Schmidt operator on H, if for an orthonormal

system {ei} of H, the Hilbert-Schmidt norm is finite, e.g.
∑
i ||Tei||2 <∞. All Hilbert-Schmidt

operators on H form the space σ2(H) .

The inner product on F := σ2(H) for T1, T2 ∈ σ2(H) is given by 〈T1, T2〉F =
∑
j〈T1ej , T2ej〉H .

One can show that the real and estimated covariance operators

G(f) =

∫ ∫
G(~t, ~τ)f(t1, τ1) dt1 dτ1

Ĝ(f) =

∫ ∫
Ĝ(~t, ~τ)f(t1, τ1) dt1 dτ1

have a finite Hilbert-Schmidt norm and therefore are Hilbert-Schmidt operators (see Heuser

[2006, Chapter 12]).

Like in the proof of Theorem 12, we obtain the following relationship between the supremum

norm (for which we know the order of convergence from Theorem 16) and the Hilbert-Schmidt

norm:

||Ĝ−G||F = ||Ĝ−G||L2
=

√∫ ∫ ∣∣∣Ĝ(~t, ~τ)−G(~t, ~τ)
∣∣∣2 d~t d~τ

≤ sup
~t∈T2

~τ∈T 2

∣∣∣Ĝ(~t, ~τ)−G(~t, ~τ)
∣∣∣√∫ ∫ 1 d~t d~τ︸ ︷︷ ︸

|T ||T |

= OP

(
1√
Ih4

)

Applying Weyl’s inequality as in Theorem 12, the rate for the eigenvalues (6.24) follows:

|λ̂k − λk| = OP

(
1√
Ih4

)
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Further we can deduce exactly as in the one-dimensional case, that in the case of uni- and

multi-dimensional eigenspaces, we get for the projections

Pk =
∑
j∈Ik

ρj ⊗ ρj

P̂k =
∑
j∈Ik

ρ̂j ⊗ ρ̂j

with Ik := {j : λj = λk}:

||P̂k − Pk||F = OP

(
1√
Ih4

)
and for the case of a one-dimensional eigenspace k:

||ρ̂k − ρk||2H ≤ ||P̂k − Pk||2F

Hence equation (6.25) follows.

In order to prove (6.26) we first observe using the Cauchy-Schwarz inequality, Theorem 16 and

(6.25) that:

|λ̂kρ̂k(t2, τ2)− λkρk(t2, τ2)| =
∣∣∣∣∫ ∫ Ĝ(~t, ~τ)ρ̂k(t1, τ1) dt1 dτ1 −

∫ ∫
G(~t, ~τ)ρk(t1, τ1) dt1 dτ1

∣∣∣∣
(6.27)

≤
∫ ∫

|Ĝ(~t, ~τ)−G(~t, ~τ)||ρ̂k(t1, τ1)| dt1 dτ1

+

∫ ∫
|G(~t, ~τ)||ρ̂k(t1, τ1)− ρk(t1, τ1)| dt1 dτ1

≤

√∫ ∫
(Ĝ(~t, ~τ)−G(~t, ~τ))2 dt1 dτ1 +

√∫ ∫
G2(~t, ~τ) dt1 dτ1||ρ̂k − ρk||H

= OP

(
1√
Ih4

)
.

sup t∈T
τ∈T
| λ̂kρ̂k(t,τ)

λk
− ρk(t, τ)| = OP

(
1√
Ih4

)
follows in (6.27) and using (6.24), we also obtain

sup t∈T
τ∈T
|ρ̂k(t, τ)− ρk(t, τ)| = OP

(
1√
Ih4

)
.
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In order to execute the one- and two-dimensional nonparametric FPCA we implemented the

methods as described in Chapters 2 and 3 in the statistical computing software R. We chose an

object-oriented approach based on the so-called S4 classes as described in Chambers [2009] in

order to make the functions easily applicable. The implementation resulted in a package called

FPCA. In the following the main functions and their usage are presented. For a more detailed

description of all functions please refer to the manual of the package (Winzenborg [2011]).

Before using the functions, the package has to be installed and loaded with the command

library(FPCA).

7.1 One-dimensional implementation

As mentioned above the package is organized object-oriented. This means for the one-dimensional

case that we defined a class for functional data objects (called fpcadat) that combines all infor-

mation necessary to understand the data and a second class that includes the results and inputs

of the FPCA calculation (the class is called fpcaobj). fpcaobj further inherits all information

from fpcadat and is therefore a child class of fpcadat.

Hence, at first one has to create an object of the class fpcadat which is created in order to define

the structure of the data such that the later FPCA analysis knows which variable defines the

time, which variable the outcome and which the subject. Furthermore, a title can be specified

that is used in some plots as part of the default title.

The class syntax of fpcadat is the following:

• dt: Object of class "data.frame": data frame containing (at least) the columns xvar,

yvar and subvar

• xvar: Object of class "character": name of x column (e.g. time)

• yvar: Object of class "character": name of y column (outcome)

• subvar: Object of class "character": name of subject column

• title: Object of class "character": title which is used in plots

The usage of the package is shown with the example of the Wiener process that was analyzed in

Section 2.3. The package also includes the functions to simulate the one- and two-dimensional

Wiener process. For the one-dimensional process we need to specify the number of processes N

and the number of steps s for the simulation. In order to simulate 50 realizations of a Wiener

process with a step width of 1
20 , we write:
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N = 50; s = 20

wienermat = wiener(N,s)

The result is a matrix with a row for each observation. As the FPCA method expects a data

frame, we transform the matrix into a data frame with columns for time, outcome and subject:

wienerdat = data.frame(t = wienermat$t,

wiener = as.vector(t(wienermat$wienermat)),

obs = rep(1:N,each = length(wienermat$t)))

Afterwards we are able to construct the FPCA data object by calling:

wiener_fpca_dat = new("fpcadat", dt = wienerdat, xvar = "t", yvar = "wiener",

subvar = "obs", title = paste("Wiener, step width:", 1/s))

The structure of wiener_fpca_dat can be displayed via

str(wiener_fpca_dat)

and the result is the following:

Formal class ’fpcadat’ [package "FPCA"] with 5 slots

..@ dt :’data.frame’: 1050 obs. of 3 variables:

.. ..$ t : num [1:1050] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ...

.. ..$ wiener: num [1:1050] 0 0.157 0.63 0.588 0.739 ...

.. ..$ obs : int [1:1050] 1 1 1 1 1 1 1 1 1 1 ...

..@ xvar : chr "t"

..@ yvar : chr "wiener"

..@ subvar: chr "obs"

..@ title : chr "Wiener, step width: 0.05"

This object contains the basis information which is necessary to call the FPCA analysis. Only

the bandwidths have to be specified additionally:

wiener_fpca_out = fpca(wiener_fpca_dat, bwmean = 0.2, bwcov = 0.2,

bwerrvar = 0.2)

The calculation takes a few seconds.

In this case the eigenfunctions are calculated for the time points where the original observations

were measured (or in this case simulated). In order to evaluate the eigenfunctions at other time

points, we can specify the evaluation points xeval accordingly:

wiener_fpca_out2 = fpca(wiener_fpca_dat, bwmean = 0.2, bwcov = 0.2,

bwerrvar = 0.2, xeval = seq(0,1,1/40))

Naturally the calculation takes longer for larger xeval vectors.

The function fpca automatically creates an object of class fpcaobj which summarizes the data

and all information of the FPCA analysis and has the following structure:
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• bwmean: Object of class "numeric": bandwidth for mean smoothing

• bwcov: Object of class "numeric": bandwidth for covariance smoothing

• bwerrvar: Object of class "numeric": bandwidth for error variance smoothing

• npc: Object of class "integer": number of principal components to be calculated

• xeval: Object of class "numeric": time points where discretized functions are evaluated

• xuni: Object of class "numeric": all time points that occur in the observations

• meanfct: Object of class "numeric": smoothed and discretized mean function

• covfct: Object of class "matrix": smoothed and discretized covariance function

• rawcov: Object of class "matrix": data table with raw covariance values for each subject

• errvar: Object of class "numeric": estimated error variance

• eigvalues: Object of class "numeric": eigenvalues in the same order as the eigenfunc-

tions

• eigfcts: Object of class "matrix": discretized eigenfunctions, each column defines one

eigenfunction

• eigscores: Object of class "matrix": each row contains the scores of one subject ordered

as in dt

• eigscores_shrinked: Object of class "matrix": each row contains the shrinked scores

of one subject ordered as in dt

• eigpercvar: Object of class "numeric": vector with percentages of variability explained

by each eigenfunction

• dt: Object of class "data.frame": data frame containing (at least) columns xvar, yvar

and subvar

• xvar: Object of class "character": name of x column (e.g. time)

• yvar: Object of class "character": name of y column (outcome)

• subvar: Object of class "character": name of subject column

• title: Object of class "character": title which is used in plots

Several functions are available to plot the results. The standard plot command calls plotpcs

if used on an fpcaobj object. Therefore

plot(wiener_fpca_out)

plot(wiener_fpca_out2)
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lead to plots where all calculated eigenfunctions are plotted in one graph. In order to obtain

plots as in Figures 2.4, the additional option trellis = T has to be specified. This is helpful

for black-and-white figures as in this case. Four is the default number of eigenfunctions that

is calculated and plotted, but other numbers of eigenfunctions can be specified for calculation

and for plotting.

Furthermore, mean and covariance functions as well as the scores of the observations can be

plotted by calling:

plotmean(list(wiener_fpca_out))

plotcov(wiener_fpca_out)

plotscores(wiener_fpca_out)

The plotmean function expects a list of fpcaobj objects. This has the advantage that one is

able to plot several mean functions in one graph as was for example done in Figure 4.9(a).

Standard options are used for all plot functions if no further specifications are made. If no

specifications of titles and/or axes labels are made, the package derives reasonable default

values. Alternatively it is possible to specify these and other options using the standard R plot

syntax. For details please consider the package help (Winzenborg [2011]).

Additionally, the package gives the possibility to cluster the resulting scores. We did not perform

clustering procedures on Wiener scores as this is of limited use, but for a demonstration how

to use the package, we show the function calls.

kmeans_out = kmeans_scores(wiener_fpca_out, numclust = 3, nscores = 3)

kmeans_out is a list with two entries - the first entry is the input fpca_obj object with an

additional column clusters in the original data set @dt which reflects the cluster member-

ship of each subject. The second entry of the return list is simply an integer vector with the

cluster indices for each subject. If we now call again the plotscores function with the ad-

ditional parameter index = "clusters", the resulting graph is colored according to cluster

memberships:

plotscores(kmeans_out[[1]], index = "clusters")

By the way, index may be any other variable name of the data set by which the scores shall

be colored.

Another interesting graph is provided by

plotclust(kmeans_out[[1]])

and was used for example to produce Figure 4.4. It displays the original observation curves

according to their cluster memberships.

Additionally to K-means clustering we provide hierarchical clustering via the function

hierarch_scores(wiener_fpca_out)

with the same in- and outputs. It is designed to use standard inputs for the hierarchical

clustering procedures hclust and cutree. Alternative clustering procedures can easily be
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applied and the plotting functions can also be used if the additional column to the object

corresponding to wiener_fpca_out is likewise added.

If one decides that it is not reasonable to form clusters as we did regarding Figure 4.11, one

can use another plot function in order to still divide the subjects for plotting. The function is

called via:

plotquad(wiener_fpca_out)

Again, further specifications are possible, for example the coloring according to a specified

variable as was used in Figure 4.11.

These were essentially the functions available for one-dimensional FPCA with their main calls.

For a more detailed treatment of all functions with all options available, please consider the

package reference.

7.2 Two-dimensional implementation

The implementation and call of functions is essentially the same as in the one-dimensional case,

but one should consider that the calculations are computationally more intense than before,

mainly due to the four-dimensional covariance function estimation.

First of all, we again defined a class, this time called fpcadat2d, containing the functional data

and a child class fpcaobj2d which additionally includes the FPCA results.

The class fpcadat2d has the same slots as its one-dimensional analogue apart from the xvar

slot. The former xvar slot is this time separated into two slots for both space directions. Hence

the structure looks as follows:

• dt: Object of class "data.frame": data frame containing (at least) columns x1var, x2var,

yvar and subvar

• x1var: Object of class "character": name of x1 column (e.g. spatial dimension 1)

• x2var: Object of class "character": name of x2 column (e.g. spatial dimension 2)

• yvar: Object of class "character": name of y column (outcome)

• subvar: Object of class "character": name of subject column

• title: Object of class "character": title which is used in plots

The procedure is again illustrated by using a Wiener process to construct some test data and

show the function calls. Realizations of Wiener processes are simulated via

N = 50; s = 20

wienerdat = wiener2d(N, s)

for 50 realizations with a step width of 1
20 in both dimensions. wienerdat contains the infor-

mation about the evaluation points in both dimensions as well as the realizations in a three-

dimensional array. We transform the data into a data frame and create the fpcadat2d object

afterwards:
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dat = data.frame(subj = rep(1:N, each = length(wienerdat$t)^2),

x1 = rep(wienerdat$t, each = length(wienerdat$t)),

x2 = wienerdat$t, y = as.vector(wienerdat$wienermat))

wiener2d_fpca_dat = new("fpcadat2d", dt = dat, x1var = "x1", x2var = "x2",

yvar = "y", subvar = "subj", title = "Wiener2D")

In difference to the one-dimensional case, we provide more options in the estimation of the func-

tional principal components in the two-dimensional case. This is because we allow performing

the estimation with different degrees of smoothing.

The call for the full smoothing procedure is analogous to the one-dimensional call and calculates

a default number of four principal components:

wiener2d_fpca_out_fullsmo =

fpca2d(wiener2d_fpca_dat, bwmean = 0.2, bwcov = 0.2, smoothest = T)

smoothest is not necessary to specify in this case, as smoothest = T is the standard parameter

setting. The output is an object of class fpcaobj2d, which is similar to fpcaobj with some

adjustments to the two-dimensional case:

• bwmean: Object of class "numeric": bandwidth for mean smoothing

• bwcov: Object of class "numeric": bandwidth for covariance smoothing

• bwerrvar: Object of class "numeric": bandwidth for error variance smoothing

• npc: Object of class "integer": number of principal components to be calculated

• xeval: Object of class "matrix": spatial points where discretized functions are evaluated

• xuni: Object of class "matrix": all spatial points that occur in the observations

• meanfct: Object of class "numeric": smoothed and discretized mean function

• covfct: Object of class "data.frame": smoothed and discretized covariance function

• errvar: Object of class "numeric": estimated error variance (not calculated)

• eigvalues: Object of class "numeric": eigenvalues in the same order as the eigenfunc-

tions

• eigfcts: Object of class "array": discretized eigenfunctions, each matrix indexed by

first dimension defines one eigenfunction

• eigscores: Object of class "matrix": each row contains the scores of one subject ordered

as in dt

• eigpercvar: Object of class "numeric": vector with percentages of variability explained

by each eigenfunction

• dt: Object of class "data.frame": data frame containing (at least) columns x1var, x2var,

yvar and subvar
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• x1var: Object of class "character": name of x1 column (e.g. spatial dimension 1)

• x2var: Object of class "character": name of x2 column (e.g. spatial dimension 2)

• yvar: Object of class "character": name of y column (outcome)

• subvar: Object of class "character": name of subject column

• title: Object of class "character": title which is used in plots

The first alternative to the full smoothing solution, which already allows a lot faster calculation

and which was used in the calculations of Section 3.3, is to smooth observations and eigenfunc-

tions, but else perform the FPCA calculation on the discretized data like in the multivariate

case:

wiener2d_fpca_out_simpsmo = fpca2d(wiener2d_fpca_dat, bwmean = 0.2, bwcov = 0.2,

smoothest = F, smoothobs = T, smootheigfcts = T)

As can be seen regarding the specified options, it is also possible to either smooth the observa-

tions or the eigenfunctions instead of both. The fastest computation is reached if no smoothing

is performed as in the following call:

wiener2d_fpca_out_nosmo = fpca2d(wiener2d_fpca_dat, bwmean = 0, bwcov = 0,

smoothest = F)

The bandwidths are ignored in this call, but as the code needs values in order to create the

fpcaobj2d object, we specify them here as zero. This last way can only be used if the observa-

tions are available on a regular grid without any missing data, because here no chance is given

to compensate for missing values.

After performing the FPCA calculation, similar plotting methods like in the one-dimensional

case are available. In order to provide the spatial plots, we use the graphic functions wireframe,

levelplot and contourplot of the lattice package and allow specifying which type should be

used. Additionally, the opportunity is given to choose between a colored and a black-and-white

color scheme.

Plotting methods exist for mean function, principal components and the FPC scores. The mean

function is plotted calling

plotmean2d(wiener2d_fpca_out_simpsmo, type = "wireframe")

The default is to produce a colored wireframe plot. Other plot types can be specified by using

for example plottype = contourplot.

In order to plot the principal components, we need again only to call the plot function with

an appropriate object:

plot(wiener2d_fpca_out_simpsmo)

If plot is called without specifying the number of principal components to plot, all calculated

eigenfunctions are plotted in trellis graphs. Else the eigenfunction(s) to be plotted can be

specified as a vector (option npc).

The scores are plotted via
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7 Implementation in R

plotscores2d(wiener2d_fpca_out_simpsmo)

and this plot can be modified using the same options as in the one-dimensional variant.

Specific cluster functions for the two-dimensional case do not exist, but the functions presented

for the one-dimensional case work here as well.

For details and further options we again refer to Winzenborg [2011].
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8 Summary and Discussion

This thesis deals with the extension of nonparametric functional principal component analysis

to spatial data. We have seen that the theoretic FPCA can be derived in the one- as well as

the spatial case from the general Hilbert space spectral theory.

For estimating the principal components we used a nonparametric approach, which means in

our case to estimate at first the mean and covariance function using local smoothing methods

and afterwards calculate the eigenfunctions, eigenvalues and scores through discrete approxi-

mations. As this method is computationally very intense, above all in the spatial case if many

observations were made or the evaluation time points are relatively dense, we considered al-

ternatively the method of smoothing the single observations and afterwards calculating the

mean and covariance function without smoothing. This method is usable if the observations

are sufficiently regular and dense.

The aforementioned computational complexity is certainly a disadvantage of this kind of non-

parametric approach. In comparison with the parametric approach in Chapter 4.3, where the

observations are represented in a system of basis function and the PCA is performed multivari-

ately on the coefficients of the basis representation, it was much slower, but we decided to use

this approach anyway as it has the advantage of not being dependent on the choice of the basis.

The approach of Ramsay and Silverman could easily be adapted to the two-dimensional case

as it is only necessary to represent the observations in a two-dimensional functional basis. The

rest of the calculation would be identical to the one-dimensional case.

We showed in various applications in the one- as well as the two-dimensional case that FPCA

is very useful to understand and describe the variability structure of a data set. Further one

obtains the possibility to compare observations based on few scores instead of the whole curves.

This is useful for example in order to find groups of similar curves using cluster analysis or to

detect outliers. In application 5.2 the spatial observations had further a time dimension and we

showed how the scores can be used to evaluate structure changes over time. In this situation

one could derive a more sophisticated framework to include the time dimension directly into

the FPC analysis, but for this data application the way we performed the spatial FPCA and

analyzed the scores described the data sufficiently.

One could ask whether it is even reasonable to estimate covariance functions in an infinite-

dimensional setting as we know from multivariate questions, that one has to consider the curse

of dimensionality, which denotes the sparseness of data in high-dimensional spaces. This means

that one in general needs a high number of observations if the number of variables grows in

order to evaluate a data set (see for example Hastie et al. [2001, Section 2.5] for a demonstrative

description of this matter). In functional data analysis we have the contrary situation: Many

(theoretically infinite many) variables and often a small number of observations in comparison.

But the crucial difference to multivariate analysis is the smoothness and therefore high correla-

tion of neighboring points in time or space. Hence it is even favorable to have the measurements
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8 Summary and Discussion

as dense as possible (see also Ferraty and Vieu [2006] or Hall and Hosseini-Nasab [2006] for a

discussion of this matter).

The nonparametric approach we performed is also secured through consistency calculations.

For the one-dimensional case Yao et al. already made consistency calculations which we carried

out in greater detail. Further we could extend the calculations to the two-dimensional case,

if the parameters I (number of observations), h1, h2 (smoothing bandwidths for mean and

covariance) and N,M (number of measurement points of each observation in both dimensions)

have certain relationships. We assumed for the calculations that the measurements occur on a

fixed regular grid as is the case in our analysis, but we see no conceptual problem in calculating

the results also in the case of irregularly distributed measurements if N and M are the expected

numbers of measurements per observation as Yao et al. did in the one-dimensional case (Yao

et al. [2005]).

Further one-dimensional consistency results for somewhat different data or estimation situations

are for example derived by Hall and Hosseini-Nasab [2006] and Kneip and Utikal [2001]. In

Hall et al. [2006], the authors made simulations in order to obtain confidence bands for the

eigenfunctions.

Rates can only be calculated for eigenfunctions with one-dimensional eigenspaces, because in

the case of multi-dimensional eigenspaces the eigenfunctions cannot be unambiguously defined.

This makes it impossible to compare directly compare theoretic and estimated eigenfunctions

in multi-dimensional eigenspaces.

Furthermore, as in the estimation process we always obtain pairs of eigenvalues and eigenfunc-

tions, it is likely that we have multi-dimensional eigenspaces in the theoretic process, but not

in the estimated process.

This problem occurs in the case of the two-dimensional Wiener process in Section 3.3 and its

cause is the symmetry in both dimensions. We showed in this section, how one can alternatively

compare projections on eigenspaces. In general, if we deal with a process that is symmetric in

both dimensions, all non-symmetric eigenfunctions must belong to an at least two-dimensional

eigenspace, because the structure of the process is the same in both dimensions. Hence the

condition of one-dimensional eigenspaces is more critical in the two- as in the one-dimensional

case.

Otherwise, in practice one seldom deals with processes that are assumed to be symmetric in

both dimensions. In our applications in Section 5 for example the axes of both dimensions

are already different such that the underlying process cannot be symmetric. In non-symmetric

settings however the risk of having multi-dimensional eigenspaces should not be much higher

than in one-dimensional problems.

The FPCA framework and estimation technique is theoretically expendable to more than two

dimensions, but this expansion would mainly be of theoretic interest, because application areas

are missing. Furthermore, the estimation of the covariance function, which also is complicated

in the two-dimensional case, would become even more critical.
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9 German Introduction

In vielen Bereichen (z.B. Medizin, Biologie, Ökologie und Ökonometrie) werden Daten gemessen,

die von Natur aus einen funktionalen Zusammenhang haben. Ein Beispiel für Messungen

über die Zeit im medizinischen Bereich stellen regelmäßige Arztbesuche von Patienten dar, bei

denen Indikatoren für den medizinischen Zustand, sogenannte Biomarker, gemessen werden.

Räumliche Beispiele sind ebenso häufig anzutreffen, zum Beispiel im Bereich der Bildanalyse

und der Ökologie. Der funktionale Zusammenhang der Daten soll adressiert werden, indem

Methoden der funktionalen Datenanalyse verwendet werden. Doch was bedeutet funktionale

Datenanalyse?

Um dies mittels Wahrscheinlichkeitstheorie auszudrücken, sei T eine Indexmenge und (Ω,F , P )

ein Wahrscheinlichkeitsraum. Die Funktion Y : T × Ω → R ist eine funktionale Variable, falls

Y (t, ·) : Ω → R eine univariate Zufallsvariable für jedes t ∈ T und T unendlich ist. Falls

T endlich wäre, würde es sich wiederum um den multivariaten Fall handeln. Daher besteht

ein funktionaler Datensatz aus Beobachtungen von I funktionalen, gleichverteilten Variablen

Y1, . . . , YI . Diese Arbeit behandelt den Fall, in dem T entweder ein reelles Intervall (z.B. in der

Zeit) oder ein Rechteck in R2, also wir räumliche Messungen vorliegen haben, und in dem die

Pfade Y (·, ω) stetig für alle ω ∈ Ω sind.

In praktischen Anwendungen beobachtet man nicht die Funktionen an sich, sondern stattdessen

werden Beobachtungen an diskreten Messpunkten gemacht. Weiterhin können Messungen

fehlerbehaftet sein und an unterschiedlichen Messpunkten pro Individuum auftreten (z.B. im

Fall von Arztbesuchen werden diese häufig nicht exakt an den gleichen Tagen von allen Patienten

vorgenommen). Daher müssen geeignete Methoden angewandt werden, um glatte Beobachtun-

gen oder z.B. Momentenschätzer zu erhalten.

Es könnte an dieser Stelle die Frage auftreten, warum diese Art von Daten funktional und nicht

multivariat behandelt wird. Der Grund dafür ist, neben der Behandlung von den soeben ange-

sprochenen Irregularitäten in den Daten, das Einbeziehen von Informationen aus der Umgebung,

was gemacht werden kann, sobald ein gewisser Grad von Stetigkeit angenommen wird.

Es existieren im Wesentlichen zwei hauptsächliche Richtungen im Bereich der funktionalen Da-

tenanalyse. Im ersten Ansatz wird ein Satz von Basisfunktionen über T definiert und die Mes-

sungen werden durch diese Basisfunktionen repräsentiert. Auswertungen werden dann basierend

auf den Koeffizienten dieser Darstellung vorgenommen. Ramsay and Silverman [2006] ist ein

anwendungsorientiertes Referenzbuch für diese Richtung mit weiteren Anwendungen in Ramsay

and Silverman [2002]. Für eine gute Zusammenfassung siehe Levitin et al. [2007].

Im Gegensatz dazu existiert ein Ansatz, der ohne diese Art der Parametrisierung auskommt.

Anstatt dessen werden Glättungsverfahren (hauptsächlich nichtparametrische) angewendet um

glatte Beobachtungen zu erhalten. Eine Einführung für diesen Bereich wird in Ferraty and Vieu

[2003] gegeben sowie eine ausführlichere Darstellung in Ferraty and Vieu [2006].

Da funktionale Prozesse (zumindest theoretisch) eine unendliche Anzahl von Dimensionen be-
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9 German Introduction

sitzen, ist es äußerst wichtig sich auf die bedeutenden Informationen zu konzentrieren um einen

Überblick der Struktur des Prozesses zu erhalten. Eine Methode um dies zu erreichen ist

die Hauptkomponentenanalyse, die es erlaubt, die hauptsächlichen Variationsrichtungen zu ex-

trahieren und somit den unendlich-dimensionalen Prozess mit großer Genauigkeit durch eine

kleine, endliche Basis auszudrücken. Hauptkomponentenanalyse ist ein effizienter Weg, um die

Daten durch ein orthonormales System auszudrücken, denn das Hauptkomponentensystem ist

optimal unter allen möglichen orthonormalen Systemen in dem Sinne, dass es den Großteil der

Variabilität des originalen Prozesses erhält.

Hauptkomponentenanalyse ist eine sehr populäre Methode in der multivariaten Datenanal-

yse, da sie die Anzahl der Dimensionen eines hoch-dimensionalen Datensatzes auf ein paar

wenige relevante reduziert. Die ersten Hauptkomponenten, die lineare Kombinationen der ur-

sprünglichen Variablen sind, sind optimal im Sinne, dass sie die meiste Variation des Daten-

satzes unter allen möglichen orthogonalen Linearkombinationen erklären. Einen ausgiebigen

Überblick zur multivariaten Datenanalyse liefert Jolliffe [2004]. Die Hauptkomponentenanalyse

ist konzeptionell einfach auf den funktionalen Fall zu übertragen und ist dort sogar von noch

größerem Wert, da multivariate Hauptkomponentenanalyse häufig das Problem hat, dass Vari-

ablen in einem multivariaten Datensatz verschiedenste Eigenschaften mit sehr unterschiedlichen

Wertebereichen und Bedeutungen enthalten können. Durch die stetige Indexmenge im funk-

tionalen Fall sind die Hauptkomponenten wie die Beobachtungen ebenfalls Kurven und können

direkt als die hauptsächlichen Varianzrichtungen interpretiert werden.

Das Hauptthema dieser Arbeit ist die Erweiterung der funktionalen Hauptkomponentenanal-

yse (FPCA) über die Zeit auf räumliche Daten. The Möglichkeit dieser Erweiterung wurde von

einigen Autoren erwähnt, z.B. von Jolliffe [2004, Section 12.3], Ramsay and Silverman [2006,

Section 8.5.3] und Yao et al. [2005]. Eine frühe Arbeit (Preisendorfer and Mobley [1988, Section

2d]) führt zwei räumliche FPCA-Ansätze aus: Im ersten Ansatz wird die Fragestellung durch

ein diskretes duales Problem ausgedrückt, das einfacher zu lösen ist. Im zweiten Ansatz wer-

den räumliche Basisfunktionen verwendet. Dieser Ansatz ist im Wesentlichen eine räumliche

Variante des Ansatzes von Ramsay and Silverman [2006]. Braud et al. [1993] wenden die Meth-

ode von Bouhaddou [1987] an, die ebenfalls einen dualen Ansatz benutzt. Erweiterungen des

nichtparametrischen Ansatzes inklusive Glätten, Konvergenzresultaten und Implementierungen

fehlen unseres Wissens nach.

Daher erweitern wir die Schätzmethode von Yao et al. [2003] und Yao et al. [2005] auf räumliche

Daten und zeigen Konsistenz der Schätzer unter gewissen Voraussetzungen. Um eine solide

Grundlage für diese Erweiterung zu haben, präsentieren wir zunächst den ein-dimensionalen Fall

und erweitern anschließend den theoretischen Rahmen sowie die nichtparametrische Schätzung

von Mittelwert- und Kovarianzfunktion sowie der Hauptkomponenten. Für die Schätzung der

Hauptkomponenten und der zugrunde liegenden Mittelwert- und Kovarianzfunktion verwenden

wir lokale Regressionsschätzmethoden, aber geben im zweidimensionalen Fall gleichzeitig eine

Alternative, bei der nur Beobachtungen und Hauptkomponenten, nicht aber Mittelwert- und

Kovarianzfunktion geglättet werden. Diese Alternative ist ebenso gut anwendbar im Fall von

nicht-spärlichen Daten und hat den Vorteil, viel Rechenzeit zu sparen. Für den ein- sowie

den zweidimensionalen Fall demonstrieren wir die Methode anhand von Simulationen eines

Wiener-Prozesses. Bei der Behandlung des zweidimensionalen Wiener-Prozesses gibt sich dabei
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auch noch die Gelegenheit, zu zeigen, wie man mit multi-dimensionalen Eigenräumen umgehen

kann. Anschließend werden sowohl im ein- als auch im zweidimensionalen Fall Anwendungen

in unterschiedlichen Datensituationen gezeigt und schließlich leiten wir Konvergenzraten für

die zweidimensionale Schätzung her. Im eindimensionalen Fall sind in leicht anderer Daten-

situation bereits Konvergenzraten von Yao et al. [2005] vorhanden. Außerdem haben wir die

ein- und zweidimensionalen Methoden in einem R-Paket implementiert unter Verwendung von

S4-Klassen, dem aktuellen R-Standard objektorientierter Programmierung (siehe Chambers

[2009]).
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