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ABSTRACT

Artificial Intelligence planning is a key problem solving technology currently being used in a
variety of applications including military campaigns, robot navigation, airplane scheduling, and
human computer interaction. The generation of plans - courses of actions to achieve desired goals
or perform specific tasks - is a costly process, however. Developing methods to systematically re-
duce the search effort and increase (the) performance of planning systems is thus a central concern.

In recent years, a number of approaches have been proposed to run a preliminary analysis of the ar-
tificial intelligence planning domain. They aim to extract and exploit knowledge from the domain
model and problem description in order to reduce the planning effort. In general, pre-processing
approaches can be done either ”off-line” - analyzing the domain model before having access to a
problem- or ”on-line” - analyzing the domain model and planning problem description together.
We have developed a novel pre-processing technique to extract knowledge from a hierarchically
structured planning domain and a current planning problem description which is used to signifi-
cantly improve planning performance. This pre-processing technique enables pruning all branches
which can be proven to never lead to a solution by identifying tasks that are not achievable from a
certain initial situation.
The efficiency of planning systems depends on the kind of planning search strategy which the
planner uses. We developed novel domain independent strategies relying on the knowledge that is
generated by pre-processing in order to guide the hierarchical planning processes more effectively
towards a solution of a given planning problem.
The complexity in real-world applications has led artificial intelligence planning researchers to de-
velop algorithms and systems that more closely match realistic planning environments, in which
planning activity is often distributed, and plan generation can happen concurrently with plan ex-
ecution. Finally, our pre-processing technique in the context of hierarchical planning approach is
integrated with a multi-agent based planning approach to decompose the original planning prob-
lem into a set of sub-problems each of which can then be solved separately. Our integration ap-
proach presents two different techniques to split the planning problem into a set of sub-problems:
Dependent which constructs a set of dependent sub-problems and Independent which pro-
duces a set of independent sub-problems.

Our empirical evaluation shows that the pre-processing technique improves performance because
the dead ends can be detected much earlier than without pruning and that our search strategies
outperform many other possible strategies. In addition, the integration between the pre-processing
technique and a multi-agent based planning approach dramatically reduce computation effort. In
general, our empirical evaluation proves that our approach improves the efficiency of planning
systems on the tested domains.
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Chapter 1

Introduction

1.1 Motivation and Outline

Efficiency of planning systems strongly depends on the size of the search space. We have various

classes of AI planners: state space planners and plan space planners. The search space in state

space planners consists of a set of nodes and a set of arcs. Each node represents a state of the

world, each arc represents a state transition (action), and a plan is obtained by searching in the

space of states for action sequences that induce a state transformation that leads to the goal state.

The search space in plan space planners includes a set of nodes, each node is a partial plan (i.e. a

partial plan consists of a set of partially-instantiated actions and a set of constraints).

In recent years, the exploitation of knowledge gained by pre-processing planning domain and/or

problem description has proven to be an effective means of reducing planning effort. A lot of pre-

processing procedures, like effect relaxation [1], abstractions [2], and landmarks [3], have been

proposed for classical state-based planners (i.e. state space planners), where they serve to com-

pute strong search heuristics.

As opposed to this, developing methods to systematically reduce the search effort and increase the

1



2 Chapter 1 Introduction

performance of hierarchical planning (i.e. plan space planners) by pre-processing the underlying

hierarchical structured planning domain and a current problem description in order to increase the

performance of a hierarchical planner has not been considered so far.

Furthermore, the process of improving the efficiency of planning by applying a search strategy has

been addressed in a number of times in literature [4–9]. However, most of this literature concerns

classical state-based planning. Few studies have been performed to analyze the efficiency of search

strategies for hierarchical planning.

Therefore, we have motivation to focus on the different aspects of exploiting available pre-processing

information during the process of plan generation. We introduce a number of new domain-independent

search strategies that base their decisions on pre-processing information and thereby guide the hi-

erarchical planning processes more efficiently towards a solution of a planning problem.

Due to the complexity of real-world domain in recent years, increasing interest has been de-

voted to the study of the multi-agent based planning approach. In general, the multi-agent planning

approach deals with multiple agents having their own goals, and it is often impractical or unde-

sirable to create a plan for all the agents centrally. These agents may be people or companies

who simply demand to plan their actions themselves, or refuse to make all necessary information

available to someone else. Consequently, such agents want to be able to independently make their

own plans without taking the plans of the other agents into consideration. This is not a compelling

reason to differentiate between planning and multi-agent planning, yet in many cases dependencies

between the tasks of the agents make independent planning impossible. More specifically, if the

agents do not take all the dependencies between their plans into account, they might come into

conflict when they try to execute their plans. To resolve their dependencies, agents must coordi-

nate their efforts. Therefore, the last contribution in this dissertation will present novel techniques

to split the planning problem into a set of sub-problems, and then introduce a new architecture

to integrate the pre-processing technique in the context of hierarchical planning approach with a
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multi-agent based planning approach.

1.2 Organization

A brief review of the state of the art in Artificial Intelligence Planning shows that these motivations

have not been considered so far. In order to achieve the above motivation, this dissertation is broken

down into six chapters (See Figure 1.1 which describes the dependency between these chapters):

Landmarks in 
Hierarchical Planning

Landmark Planning
Strategies

Hybrid Multi-agent 
Planning 

Background
Formal 

Framework
Conclusion

Figure 1.1 Dependencies among the chapters.

• Background.

Through out this chapter we will give an overview of the work which has been done in the

area of artificial intelligence planning. We will describe what are the roots of classical arti-

ficial intelligence planning, as well as discussing a brief overview of the common planning

mechanisms that evolved from these roots.

• Formal Framework.

This chapter presents the underlying formal framework that covers our hierarchical planner.

We will focus on the syntax and semantics of planning data structures. We also describe

how to formalize the planning problem, the set of solution criteria and how to transform the
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planning problem to a solution plan. At the end of this chapter we will present a general

algorithm for solving hierarchical planning problems.

• Landmarks in Hierarchical Planning:

Before introducing the concept of landmarks and their extraction in hierarchical planning

domains, we will briefly review the concept of landmarks in classical state-based planning.

A hierarchical landmark is a new technique aiming at an increase in performance of a hier-

archical planner.

In hierarchical planning, landmarks are mandatory abstract or primitive tasks, i.e. tasks that

have to be performed by any solution plan. For an initial task network that states a current

planning problem, a pre-processing procedure computes the corresponding landmarks. It

does so by systematically inspecting the methods that are eligible to decompose the relevant

abstract tasks. Beginning with the (landmark) tasks of the initial network, the procedure

follows the way down the decomposition hierarchy until no further abstract tasks qualify as

landmarks. As for primitive landmarks, a reachability test is accomplished; a failure indi-

cates that the method which introduced the primitive landmark is no longer eligible. This

information is propagated back, up the decomposition hierarchy and serves to identify all

methods that will never lead to a solution of the current planning problem. Being able to

prune useless regions of the search space this way, a hierarchical planner performs signifi-

cantly better than it does without exploiting the landmark information.

• Landmark Planning Strategies

The information about landmarks can be exploited in two ways: The first way is the reduction

of domain models or, more precisely, the transformation of a universal domain model into

one that includes problem-specific pruning information. The second is to deduce heuristic

guidance from the knowledge about which tasks have to be decomposed on refinement paths

that lead towards a solution (Search Strategy). In this chapter, we will focus on latter by
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presenting novel domain-independent strategies that exploit landmark information to speed

up the planning process. In our approach, the search strategy is divided into two component.

The first one is called modification selection strategy which examines the set of modification

options for the given plan. The second one is called Plan selection strategy which navigates

the search space of modification plans that are under examination in order to choses the route

through the refinement space.

• Hybrid Multi-agent Planning

In this chapter we will introduce a new approach, the so-called Hybrid Multi-agent Planning

(HMAP). It integrates a pre-processing technique in the context of hierarchical planning ap-

proach (Hierarchical landmark technique) with a multi-agent based planning approach. This

integration will be done by constructing a set of non-cooperative agents which are executed

concurrently. Each one of them performs hierarchical planning with considering landmark-

domain model reduction in order to generate its own individual plan. By means of the HMAP

approach we introduce two different techniques namely, Dependent and Independent

to break up the planning problem into a set of sub-problems.

At the end of each chapter we will present experimental results from a set of benchmark

problems of the UM-Translog and Satellite domains, which give evidence for the consider-

able performance increase gained through our approach.

• Conclusion

Finally, we conclude with general possible extensions of our approach for future develop-

ments.
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Chapter 2

Background

Planning is considered a central active field of research since the beginning of Artificial Intelligence

(AI), not only because of its connection between fundamental issues in AI knowledge represen-

tation and computation, but also because of its practical importance. The output of plans in AI

is usually viewed as a sequence of actions that are able to change the environment (current state)

from one state to desired state (goal state). The process of generating a plan is called planning

process. In general, a planning problem is represented by an initial world state, goal state de-

scriptions as well as a domain model. The latter typically is a knowledge base containing action

specifications. In order to find a solution plan for a planning problem, we need a planning system,

a so-called Planner (see Figure 2.1). A planning system searches in the space of states for action

sequences that induce a state transformation that reaches the goal state. This is a hard problem

because the possible sequences in the search space can be very large and sometimes infinite. If the

search space has been exhausted or the allowed maximum CPU time has been reached, no solution

is found.

A large variety of approaches have been developed in the past to study the problem of constructing

plans. This chapter surveys an overview of different planning approaches in order to provide the

context within which the contribution of this dissertation can be evaluated.

7
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Planning 

Problem Planner

Initial 
World 
State

Goal 
State

Domain 
Model

Plan
(Sequence of actions)

Figure 2.1 Planning process

2.1 AI Planning

The planning contributions of this dissertation are in the area of hierarchical planning. In principle,

the approaches of AI planning are divided into the following main categories:

1. Classical state-based planning

2. Partial order planning

3. Hierarchical planning

4. Hybrid planning

We will focus on these categories in the following sections.

2.1.1 Classical State-based Planning

The STRIPS system1 [10] is the first approach that has been used to study the problem of construct-

ing plans in the classical paradigm. The STRIPS system is a well-known planning framework and
1STRIPS =⇒ STanford Research Institute Problem Solver
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the formal representative language that was used for STRIPS is common to most classical state-

based planning frameworks. The STRIPS planning uses first order predicate logic language in

order to encode the world state. The STRIPS planning framework has been formalized and ana-

lyzed by Bernhard Nebel [11].

In the STRIPS paradigm, a domain model formalism contains general information such as types,

predicates and operators (actions) (See Table 2.2). A predicate is a statement or a relation between

different objects in the application domain. It may take on the values true or false depending on

its parameters. A state s in STRIPS paradigm is represented by a collection of binary variables so

-called facts. Facts are obtained from the predicates by instantiating their parameters with constant

symbols. Note that the true facts are represented explicitly in the state, while the false facts are

unspecified in the state according to the so-called Closed World Assumption [12].

An operator is the system’s representation of actions that may be executed in the application do-

main. Each operator o is represented by four arguments: (i) the operator name, (ii) a set of parame-

ters, (iii) the pre-condition (pre(o)), and (iv) the post-condition or effect (eff(o)). The pre-condition

(pre(o)) is a conjunction of predicates. They must be true in the world state for the action to be

applicable. The effect (eff(o)) consists of two terms: a conjunction of the positive effects (Add(o)),

and a conjunction of the deleted effects (Del(o)). However, effects (either Add(o) or Del(o)) rep-

resent the changes in the world state as a direct result of the operator execution. It is interesting to

note that Del(o) ∩ Add(o) = ∅.

The action is applied to the current state by using the transition function Result:

Result : S × A −→ S

Where, S is the set of states, and A is the set of instantiated actions.

An instantiated action is obtained from the operator by instantiating all its parameters with constant

symbols. If all pre-conditions pre(a) of action a are true in the state, then action a is applicable to

state s, and theResult(s, a) is defined. The result of applying an action a in the state swill remove
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the literals which exist in the negative effect (Del(a)) from the current state as well as adding the

literals in the positive effect (Add(a)) to generated a new state.

Definition 1 (Applicable Action). The result of applying a STRIPS action a to the state s is defined

as the following:

Result(s, a) =





(s ∪ (Add(a)))/Del(a) if pre(a) ⊂ s

s Otherwise

As depicted graphically in figure 2.2, the result of applying a sequence of more than one action

〈a1, a2, · · · , an〉 to the state s recursively defined as the following:

Result(s, 〈a1, a2, · · · , an〉) = Result(Result(s, 〈a1, a2, · · · , an−1〉), an).

The planning problem in classical state-based is represented by describing the known part of

the world state, the so-called initial state2, as well as the desired state, the so-called goal state. The

planner aims to find out the sequence of actions in order to generate the goal state by performing

these actions in the initial state. Therefore, in STRIPS formalism the plan is a solution to a given

planning problem if the goals of the problem match a subset of the world state immediately after

the last action in the plan is executed.

Initial 
State

O1 O2 Ox Oy
Goal 
State

Oi

1 ≤ i ≤ y

Pre-condition literals Post-condition literals
(Positive and Negative)

Figure 2.2 Plan in classical state-based planning

2An initial state is a set of ground positive atoms which identify what conditions are true initially.
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In order to illustrate how the classical planner works, let us consider a simple planning problem

as presented in table 2.1 and a simple domain model3 which we call SimpleTransportation as shown

in table 2.2. Suppose, we would like to transport a package P1 from a location L1 in the initial

state to a location L2 by using truck T1 which is initially located at location L1. Suppose there are

three actions in the SimpleTransportation domain that can change the world state.

Table 2.1 A problem instance for SimpleTransportation domain.

(define (problem PackageTransportation)

(:domain SimpleTransport)

(:Objects

P1 - Package L1, L2 - Location T1 - Vehicle

)

(:init

(At package P1 L1)

(At vehicle T1 L1)

)

(:goal

(At package P1 L2)

)

)

(i) As depicted graphically in figure 2.3, truck T1 can move from one location L1 to another

location L2 by applying the action Move(T1, L1, L2). The moving action requires that truck T1

3In all running examples in this dissertation, variable symbols are written with a preceding question mark to

distinguish them from constant symbols.
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Initial 
State

Load(P1, T1, L1)
Goal 
State

At-vehicle (T1, L1)

Move(T1, L1, L2)

In (P1, T1)

At-vehicle (T1, L1)

Unload(P1, T1, L2)

At-vehicle (T1, L2)

At-package (P1, L1)

At-package (P1, L2)

¬ At-package (P1, L1)

Figure 2.3 Transport package example: Red arrows represent pre-conditions, while Green
arrows represent post-conditions

is located at location L1, and ensures that, in the resulting state, truck T1 is located at location L2

and not at location L1. (ii) The desired package P1 is loaded into truck T1 by applying the action

Load(P1, L1, T1). The loading action requires that the truck T1 as well as package P1 are located at

location L1, and ensures that in the resulting state package P1 is in the truck T1 and not at location

L1. (iii) The package P1 can be removed from the truck by applying the action Unload(P1, L2, T1).

The unloading action requires that truck T1 being at the location L2 as well as package P1 being in

truck T1. Hence, it ensures that the new state holds package P1 at location L2 and not in the truck

T1.

STRIPS planners proceed in one of two ways: The backward (regression) search strategy or

the forward (progression) search strategy. The backward search strategy starts from a goal state

specification, by choosing the suitable action that satisfies the current sub-goal. Applying the se-

lected action will generate new sub-goals, and then the algorithm is called recursively with these

new sub-goals. The backward search technique terminates successfully when it reaches an action

that is performed directly in the initial state. The forward search strategy updates the initial state by

applying the suitable actions and producing a new state each time until the goal state is established.

In general, the STRIPS algorithm assumes that the sub-goals in the intermediate states are inde-

pendent from each other and can be performed in any order. Therefore, the STRIPS algorithm

produces a totally ordered (linear) plan. A lot of approaches have been introduced to solve the

dependency between sub-goals such as INTERPLAN [13] which tries to analyze the sub-goals in
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Table 2.2 A simple domain model in STRIPS.

(define (domain SimpleTransportation)

(:types Package Location Vehicle)

(:predicates

(At Package ?P - Package ?L - Location)

(At Vehicle ?T - Vehicle ?L - Location)

(In ?P - Package ?T - Vehicle)

)

(:action Move

:parameters (?t - Vehicle ?loc - Location ?L - Location)

:pre-condition (and (At vehicle ?t ?loc))

:effect (and (not (At vehicle ?t ?loc)) (At vehicle ?t ?L))

)

(:action Load

:parameters (?P - Package ?L - Location ?t - Vehicle)

:pre-condition (and (At package ?P ?L) (At vehicle ?t ?L))

:effect (and (In ?P ?t) (not (At package ?P ?L)))

)

(:action Unload

:parameters (?P - Package ?L - Location ?t - Vehicle)

:pre-condition (and (In ?P ?t) (At vehicle ?t ?L))

:effect (and (not(In ?P ?t)) (At package ?P ?L))

)

)
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the intermediate states and then find out a sequence of sub-goals which solve the interaction be-

tween them. Afterwards, a new direction formulates the planning process as a search in the space

or constructs partial plans [14–17].

2.1.2 Partial Order Plan

The STRIPS planner preserves a total order list of all actions in its plan a so-called total-order-

planner or linear planner. As opposed to this, a partial order planner (non-linear planner) pre-

serves temporal constraints between pairs of actions. These temporal constraints means that an

action aj comes after an action ai, but not necessarily immediately after it [18]. Partial order

planners are often referred to as Least Commitment Planners4. They involve deferring decisions

about the temporal orderings and variable bindings until they are required to resolve the conflicts

in the partial plan. It allows the planner to be flexible about parts of its plan until it has enough

information to work out the best possible course of action.

A partial order plan can be represented as a directed acyclic graph Ppop = 〈γ, ζ〉. The set of ver-

tices γ represents plan steps (an instance of one of the action) in the plan and arcs ζ represent a

set of temporal constraints between plan steps. It is furthermore important to mention that, there

are two special plan steps in the partial plan: the initial plan step that does not have pre-conditions

and considers the initial state as post-conditions, and the goal plan step that has goal literals as

pre-conditions and does not have post-conditions.

Corkill [19] inspired a new data structure, the so-called Procedural net that formulates a plan as a

partial ordering of actions. He introduced a new search technique in his NOAH system5, the search

in plan space instead of the search in state space as in STRIPS planner.

As depicted in Figure 2.4 (b), the search space of a plan space planner is a set of partial plans and

4The principle of least commitment has been used in a lot of fields of AI, including computer vision, planning and

theorem proving.
5NOAH =⇒ Nets Of Action Hierarchies
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the plan itself is handled by adding new plan steps or constraints in order to generate new plans in

the search space. As opposed to this, a state space planner (See figure 2.4 (a)) searches through the

space of possible states of the world. This means, state space planners search for a path that solves

the problem by using forward search or backward search techniques.

new state

(a): State space Search
new state

Initial 
state S0

S1

S2

Start
Facts in 

initial state
Finish

Goals to be 
achieved

Start
Facts in 

initial state
FinishPlan Step

Start Finish
Plan Step_1

Plan Step_2
Start FinishPlan Step_1

(b): Plan space Search

Figure 2.4 State space search versus plan space search

Afterwards, Socerdoti [20] proposed new constraints between plan steps in partial order plan-

ing, the causal link constraints. A causal link constraint has the form 〈si, ϕ, sj〉. It specifies a

pair of plan steps si and sj as well as a literal ϕ, where the literal ϕ is a pre-condition of the

second plan step sj (consumer plan step) and at the same time it is a post-condition of the first

plan step si (producer plan step). Generally, causal link constraints are formulated to preserve

the literals that are accomplished so far. A planner can benefit from causal link constraints in two

different ways: First, it can introduce an Establishment that handles an unsolved pre-condition

(open pre-condition) pj of plan step sj . This can be done by building a new causal link cj from a

suitable plan step si to produce the required pre-condition pj for plan step sj (cj : 〈si, pj, sj〉), or

by inserting a new plan step that carries the required pre-condition in its post-condition. Second,

clobbering(Threat Removal) that removes the causal link threat. The causal link cj : 〈si, pj, sj〉
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is threatened by another plan step sk when it deletes the protected literal pj of the causal link cj ,

and the plan step sk is ordered between the two plan steps of the causal link. The threat is solved

by propagating the order constraint between the threat task (i.e., plan step sk) and the causal link

components, that means, the order constraint between the consumer plan step and the threat task

(sj ≺ sk) or between the threat task and the producer plan step (sk ≺ si) is propagated.

One of the earliest planners that lifted STRIPS “total order planners” and maintains a partial order

on plan steps was the NONLIN planner [18]. It derived from NOAH planner in order to complete

the step towards plan space planning. It introduced the partial plan data structure which includes

plan steps, ordering constraints on the plan steps, and parameter bindings constraints. In addition, it

applied a general backtracking schema over the plan generation process to re-construct alternative

ways in case a particular choice lead to a dead end. After that, Chapman [15] demonstrates in his

planner TWEAK an alternative way, the so-called model-truth-criterion, for determining whether

a partial plan can achieve a given pre-condition at a given step. However, it uses the model-

truth-criterion in order to generate a plan by incrementally adding new plan steps and adding or

modifying constraints. The produced plan will continue to achieve the next subgoals and so on.

When all goals of the plan are achieved, the given planning problem is solved. TWEAK depends

on the result of the model truth criterion in order to choose the appropriate plan step sj . The result

of model truth criterion is true if and only if: (1) the pre-condition pj of the current plan step sj

has been achieved by another plan step si, (2) the plan step si is performed before the plan step

sj (si ≺ sj), and (3) there is no other plan step sk preceding the plan step sj that might remove

pre-condition pj .

The most popular partial order causal link planners 6 are SNLP 7 [21] and UCPOP 8 [17].

SNLP is considered a further development of Tate’s planner (NONLIN) [18,20]. The technical dif-

6All planners that apply causal link paradigm called Partial Order Causal Link (POCL)
7SNLP =⇒ Systematic Non-Linear Planner
8UCPOP =⇒ Universal Conditional Partial Order Planner
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ference between them lies in its threat formulation. NONLIN considers the plan step sk a threat to

a causal link 〈si, ϕ, sj〉 only if sk deletes the protected literal ϕ. SNLP, however, is more restricted.

It considers sk to be a threat when it deletes or adds the protected literal ϕ. This restriction provides

a more systematic algorithm, because it does not allow to duplicate a plan in the plan space.

The UCPOP planner discusses the foundations of partial order planning. It is the first non-linear

planner for which soundness and completeness were implemented. In addition, UCPOP’s domain

model is formulated in ADL [22]. The theoretical foundation of total order planning with ADL9

was inspired by the works of Pednault [23, 24]. Afterwards this foundation was developed by

Pednault [22], in order to handle the partial order plans. The UCPOP planner makes ample use

of some of the characteristics of ADL, such as representing actions with conditional effects and

universal quantification.

Utilizing universal quantification within actions helps preserving the truth value of specific literals

after performing the corresponding action. For example, when moving a truck from the current

location to a new one, the literals that describe the contents of this truck will be preserved without

change.

The conditional effects provide more effects for a particular action in case the given condition is

achieved. A lot of planners have been established to extend UCPOP. Most of them focused on im-

plementing efficient planning strategies such as the VHPOP10 system [25]. It extends the capabili-

ties of POCL planners by also considering durative actions (i.e., temporally extended actions) [26].

In addition, it competed well with other heuristic state space planners at the 3rd International

Planning Competition (IPC3). For a detailed discussion on search strategies, we refer the reader

to chapter 5 of landmark planning strategies.

The GRAPHPLAN planner is considered a new generation of the classical planning algorithm

[27]. The GRAPHPLAN planner is a general purpose planner for STRIPS-style domains. GRAPH-

9ADL =⇒ Action Description Language
10VHPOP =⇒ Versatile Heuristic Partial Order Planner
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PLAN planner is considered one of the most important developments in AI planning because it is

simple and uses a relaxed representation of action sequences and reachable world states. In a lot

of cases GRAPHPLAN generates plans faster than previous planners such as SNLP and UCPOP.

GRAPHPLAN consists of two different phases: (1) Constructing a planning graph and (2) extract-

ing a solution plan.

At_Vehicle (T1,L1) At_Package (P1,L1)

No op Load (P1, T1,L1)

In (P1,T1)

No op
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Figure 2.5 Planning graph for a simple transport package problem: Blue lines represent
no-operation. Green lines represent adding effects while red lines represent deletion of
effects.

In the first phase a planning graph is constructed by adding different types of nodes and edges

to the graph. The levels of a planning graph consist of interleaving layers of facts that represent

possible future states (fact nodes) and actions which contain possible choices for actions (action

nodes). For example, the action nodes in action level i are connected by fact nodes in fact level i

(which represent the pre-conditions of the intended action) and by a set of facts in the fact nodes at
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level i+ 1 (which represent the intended action post-condition).

In general, the GRAPHPLAN algorithm depends on the Forward chaining function in order to

construct a planning graph. It starts by considering all facts in the initial state which represent first

fact level Lf0 and then applies those actions for which all pre-conditions exist in the fact level Lf0

to construct the first action level Af0 . Afterwards, the next fact level Lf1 is generated by adding all

the literals which exist in the post-condition of the applied actions. This is done until a fact level

has been reached that contains all facts of the goal state. As depicted graphically in figure 2.5, each

planning graph iteration extends the graph by one unit of time or two levels.

(a) : Inconsistent effect (b) : Interference (c) : Competing Needs (d) : Inconsistent support

Figure 2.6 Mutual exclusion (mutex): Circles represent facts, boxes represent actions and
gray arrows represent mutexes.

Actually, a planning graph also includes a number of conflicts between nodes at the same level,

the so-called mutual exclusion (mutexes). Two actions are mutex if one of three conditions hold:

(1) The post-condition of one action is deleted by another action’s post-condition as depicted in

figure 2.6(a), (2) Figure 2.6(b) shows another type of mutex between actions so-called (Interfer-

ence), where the post-condition of one action deletes the pre-condition of another action, (3)The

mutex which called Competing needs represents actions that have mutex pre-conditions at the pre-

vious fact level(see Figure 2.6(c)). Two facts are mutex if all the actions that could produce these

facts are mutex i.e. actions in the previous level which achieve these facts are mutex and so-called

inconsistent support (see Figure 2.6(d)).
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Once the planning graph has been constructed, the solution plan extraction (second phase) is per-

formed. The solution plan extraction phase depends on the regression technique in order to find a

solution. It starts with a set of facts at the last level Lfn of the planning graph (goal facts), and then

attempts to find a set of actions at level LAn−1 that have these goals as add effects. After that, at

level Lfn−1 , the pre-conditions of the specified actions are considered as new goals and a new set

of actions has to be found and so forth until the first fact level Lf0 has been reached. Otherwise,

GRAPHPLAN tries to find a different set of actions until it succeeds or proves that the given prob-

lem is not solvable.

The common problems for all planning algorithms that have been discussed are the complexity of

the planning problems and they do not have high flexibility to express more actions and states.

2.1.3 Hierarchical Planning

The common approach to improve the efficiency of planning is to use Hierarchical planning. In

general, hierarchical planning is categorized into two approaches, based on the kind of abstraction:

state abstraction and action abstraction.

In hierarchical planning, the state abstraction is a powerful method for reducing the planning search

space from exponential to linear time under specific conditions such as a hierarchy that satisfies

DRP11. The DRP condition guarantees that no backtracking occurs between abstraction levels.

DRP is formalized in ABSTRIPS12-style hierarchies [28].

The ABSTRIPS planner is the earliest system that deals with state abstraction. It is built on top

of the STRIPS planning system. The abstraction hierarchy for the problem space in ABSTRIPS

is constructed by assigning a number of so-called criticality values to the pre-conditions of each

operator. Through these critical values, ABSTRIPS generates a plan by starting with the highest

11DRP =⇒ Downward Refinement Property
12ABSTRIPS =⇒ Abstraction-Based STRIPS
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critical value. Afterwards, this abstract plan is refined by considering now the pre-conditions that

have the next critical value and so forth until the lowest level of criticality is reached.

One of the most important hierarchical planners that generates abstraction for solving hierarchical

problems automatically and has better abstraction than ABSTRIPS is ALPIN [29]. It relies on

the ordered monotonicity property which ensures that the structure of the abstract plan will be

preserved while the plan is refined i.e. all the refinement plans of the abstract plan leave the

literals that have already been achieved in the abstract space without any change.

Although those planners that provide hierarchical planning by state space abstraction reduce the

search space successfully, they lack in semantics because they are defined as a search algorithm

and not modeled as a planning domain model.

As opposed to this, the second category of hierarchical planning depends on the hierarchies of the

abstraction of actions, it is also known as Hierarchical Task Networks (HTN)13. In general, action

abstraction systems organize the description of the actions in a hierarchical form. Specifically, the

more abstract or complex action is placed on the top of hierarchy (high or abstract level), and the

more specific one is placed on the lower level in the hierarchy and so forth, until the lowest level is

reached, which is called the primitive level. Therefore, there are two types of tasks: primitive tasks

that can be performed directly like operators in the STRIPS paradigm, and abstract tasks that must

be decomposed into smaller sub-tasks (either abstract or primitive) during the planning process.

As depicted in figure 2.7 the Flying, Driving and Sailing tasks are organized as the sub-tasks of

the abstract task Traveling, and the Buying-ticket task is arranged as a part of a higher abstract

task Traveling or sub-task of the Flying task. Now, a more general task subsumes more specific

tasks. It is interesting to note that the tasks on the primitive level should be executed in a specific

order to achieve the purpose of an abstract task. For example, the Flying task has Buying-ticket,

Go-to-the-security-office and Boarding tasks in its decomposition. Then, the Buying-ticket task

13HTN is common the approach of “planning by action abstraction”
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should be preceded by Go-to-security-office as well as performing the Boarding task after the Go-

to-security-office task.

All information about the task hierarchy and how to implement these tasks in the plan are organized

in the domain model. Besides the set of tasks in the hierarchical planning domain model, it also

includes a data structure so-called methods. Each abstract task may have more than one applicable

method, so the relevant pre-conditions and effects are not always known in advance. Each method

specifies a pre-defined abstract solution or implementation of the corresponding abstract task. It is

important to notice that, the conflicts which are introduced during the decomposition process are

resolved as they are in Least Commitment Planning by adding temporal or variable constraints.

Travelling

Flying Driving Sailing

Buy ticket
Go to security 

office
Boarding

Figure 2.7 Action hierarchy

Opposite to the STRIPS planning system which defines a planning problem as an initial state,

a goal state and a set of actions that achieve a given goal state, HTN planning defines a planning

problem as an initial state and an initial plan. The initial plan is a non-empty plan containing a

set of tasks (abstract or primitive tasks) that need to be performed. The solution plan is found

by incrementally decomposing the abstract tasks in the initial plan until a primitive plan that has

only primitive tasks has been reached, that is executable in the initial state, and that has consistent

constraint sets. The decomposition process is called refinement or expansion process. The de-
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composition process works by replacing the abstract task by a set of less abstract tasks. Attention

should be paid to the fact that, each task may have a set of alternative expansions (see Figure 2.8).

Initial plan Go_Work

Get_taxi Ride(x,y) Pay_Driver Get_in Buy_ticket Get_out Prepare_my_car Drive

M_1: By Taxi M_2: By Bus M_3: By Own Car

Can be decomposed   using ….

Figure 2.8 Planning by action abstraction: Alternative expansions of abstract task

One of the most commonly known HTN planners is O-plan [30]. O-plan is a domain in-

dependent general planning framework. It follows NONLIN [16] in using a tightly constrained

method to generate plans that compose the search space. Therefore, O-plan represents abstract

actions by introducing condition types in the abstract expansion schemata instead of propagating

pre-conditions and post-conditions in the abstract task [31]. These condition types are similar to

causal link constraints. They describe the relationships between different actions in the plan. These

conditions cause difficulties for the design of O-plan domain models because the domain designer

has to satisfy the all conditions on actions.

Wilkins et al. [32] introduced an HTN-system called SIPE 14. This system places a restriction on

the possible ways to order actions i.e. for a given two sub-plans that are unordered with respect to

each other, SIPE orders them by putting one sub-plan before or after the other.

Afterwards, SIPE was further developed into a practical HTN planning system, called SIPE-2

[33]. To achieve the given goals in diverse problem domains, SIPE-2 provides a domain inde-

pendent formalism for describing actions, and utilizes knowledge encoded in these actions. This

14SIPE =⇒ System for Interactive Planning and Execution
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is combined with a heuristic search that handles the combinatorics of the problem. In addition,

SIPE-2 can reason about resources. It can post and use constraints as well as employ a deductive

causal theory to represent and reason about different world states. SIPE-2 has been applied to a lot

of domains such as military operation [34] and manufacturing environment [35].

Erol was the first to present a formal syntax and semantics for HTN planning [36]. He introduced

a hierarchical planner, the UMCP planner 15 which depends on the task decomposition [37]. The

UMCP planner represents world state and primitive tasks in a similar way as the STRIPS for-

malism, whereas the goal is represented by the complex tasks. The set of tasks in the plan are

connected by a task network which is used to represent plans and sub-plans. The task network is a

tuple 〈A, T,B〉 where A is a set of tasks, either primitive or complex, T is a set of temporal con-

straints on the members of A, and B denotes a set of variable binding constraints. UMCP works

by recursively expanding each complex task by non-deterministically choosing a method until a

primitive plan is produced i.e. all tasks in the plan are primitive tasks. Afterwards, it starts to solve

conflicts between tasks and extract a solution plan.

Nau et al. introduced not only one of the most important HTN system, but also proved that it is

sound and complete [38]. Their planner is called SHOP 16. SHOP reduces the complexity of rea-

soning by generating a plan for tasks in the same order in which they will be performed. It enables

to build a complete world state at each iteration of the planning process. This is done by applying

a forward-chaining search algorithm that starts by selecting the first abstract task according to the

step ordering. Then it chooses the suitable method that decomposes the selected task. Note that in

the SHOP system, each method has a pre-condition that has to hold in the current state before ap-

plying the corresponding method, while primitive tasks do not have pre-conditions. SHOP follows

the if-then-else paradigm to select a method. Consequently, the appropriate method is checked and

the first method for which the respective if-statement evaluates to “true” is selected for expanding

15UMCP =⇒ Univerasal Method Composition Planner
16SHOP =⇒ Simple Hierarchical Ordered Planner
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the task.

The process of creating a domain model in SHOP requires a greater effort than what is required for

classical state-based planners, because the domain model of SHOP propagates total order among

sub-tasks in the decomposable method. Of course this renders it impossible to interleave sub-tasks

of methods. For this reason, SHOP has been improved to allow each method to decompose into

partially ordered sub-tasks i.e. in a produced plan it is allowed to interleave sub-tasks from differ-

ent methods(SHOP-2 [39])

The crucial difference between classical state-based planning and HTN planning is the solution

criterion. Whereas the goal in classical state-based planning is to achieve a desired property, no

matter which actions have to be used to accomplish this, the goal in HTN planning is to find a plan

that is a valid decomposition for the initial abstract task, such that the resulting plan only contains

primitive tasks.

2.1.4 Hybrid planning

The difficulty of solving problems in complex real-world application domains, such as emergency

evacuation, crisis management [40, 41], and transportation/logistics problems [42] led to the ap-

pearance of a new planning paradigm, so-called hybrid planning.

In general, hybrid planning is a combination of hierarchical task network with classical state-based

planning approaches, each having been studied separately. This means that the produced system

has advantages of both approaches i.e. it has good modeling and efficient search techniques.

There are a very few works that discuss hybrid systems, one of them is DPOCL 17 [43]. DPOCL

built on top of the SNLP [21] algorithm to handle partial action decompositions. DPOCL repre-

sents each action by two parts: First, an action schema is a tuple 〈A, V, P,E,B〉, where A is an

17DPOCL =⇒ Decomposable Partial Order Causal Link
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action type (primitive or composite18), V is a set of variables, P andE represent the pre-conditions

and effects of the current action respectively, and B is the set of variable bindings for the variables

in V . Second, each action has a set of decomposition schemata which represent alternative ways

to decompose the complex action into more primitive actions. Intuitively, the set of decomposition

schemata of primitive tasks are empty, because they are performed directly without any decompo-

sition. The process of generating a plan in DPOCL includes deciding what action should be used

to achieve a sub-goal as well as solving interactions between plan steps(tasks).

Kambhampati et al. [44] introduced another hybrid system integrating hierarchical task network

planning and refinement planning. To this end, the refinement planning framework for classical

state-based planning is extended to include complex actions and the decomposition schemata of

these actions as part of the domain specification [45]. In the process of plan generation, the plan

is refined by selecting an open pre-condition from the current plan and then closing it by selecting

an appropriate task that generates this pre-condition. If the selected task does not close the cur-

rent condition explicitly then this condition is handled again via a phantom establishment process

which converts this open pre-condition into a constraint that solved later during plan development.

Recently, Schattenberg et al. [40, 46] introduced a new hybrid planning system, the so-called

PANDA system19. As mentioned before, POCL planning is a technique used to solve partial or-

der planning problems. The objective is to achieve the goal state by applying actions in a correct

order starting in a given initial state. In addition, the POCL technique explicitly shows causal de-

pendencies between actions. The key feature of HTN planning is action abstraction which allows

representing abstract tasks as well as pre-defined abstract solutions for these tasks. So, HTN plan-

ning reflects and employs abstraction hierarchies that are inherited in many domains. Therefore,

the PANDA environment combines the key features of POCL and HTN planning techniques. In

contrast to the previously discussed techniques, PANDA requires pre- and post-conditions for ab-

18Composite action is a complex or abstract task
19PANDA =⇒ Planning and Acting in a Network Decomposition Architecture
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stract tasks. It utilizes a mapping between abstract tasks and the alternative ways of implementing

these abstract tasks by way of so-called Decomposition methods. PANDA defines a planning prob-

lem through a domain model as well as an initial partial order plan, and a tuple of initial state and

goal state. The initial plan contains the set of the most abstract tasks that are required as well as

two artificial tasks tinit and tgoal that represent the initial and the goal states respectively. The task

tinit considers the initial state as post-condition and the task tgoal considers the goal state as pre-

condition. The initial partial plan is stepwise refined by adding new tasks and constraints - causal

links, ordering and variable constraints. As depicted in figure 2.9, the abstract task (Task-A) is re-

fined by replacing it through an appropriate partial plan as specified in the selected decomposition

method [7]. One of the most important features of the PANDA system is that it is implemented in

separate modules. So that the implemented system can be employed as a platform to implement

and evaluate various planning methods such as purely HTN planning as well as evaluating a lot of

different search strategies [8].

In contrast to other systems, which implicitly define their control search strategy by their search

procedure, the PANDA planning environment explicitly defines the search strategy. A search strat-

egy in the PANDA planning environment is a combination of the used modification and plan se-

lection functions20. Let us take a look at a simple example strategy for clarification: To perform a

depth first strategy, the plan selection strategy has to be the identity (i.e., fPlanSel(P ) = P for any

plan sequence P ), whereas the modification selection strategy fModSel can be arbitrarily chosen

(but decides, which branches to visit first). Thus, the plan selection strategy is used to prioritize

the plans; several strategies can be concatenated for tie-braking. The plan selection strategy uses

its input sequence for tie-braking as well: If two plans are still invariant after applying the plan

selection function, the order given in the input is used. A number of different plan and modifica-

tion selection strategies have been described and evaluated in the work of Schattenberg [7, 8, 46].

20For more details refer to chapter 5
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Figure 2.9 Expand abstract task in PANDA

Therefore, due to the great properties of the PANDA planning environment, our planning frame-

work will be an adaptation of the hybrid formalization of PANDA21.

21For more detail refer to chapter 3
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Formal Framework

This chapter presents our underlying formal framework. Hierarchical Task Network (HTN) plan-

ning is based on the concepts of tasks and methods [37]. Rather than planning to achieve a set

of goals such as classical state-based planning, hierarchical planning performs a set of tasks. In

hierarchical planning tasks subsume actions and goals. In general, there are two types of tasks

in HTN planning: abstract tasks which represent compound activities such as making a business

trip or transporting certain goods to a specific location and primitive tasks which correspond to

classical state-based planning operators, which can be executed directly (i.e., they do not need

any decomposition). Hierarchical domain models hold a number of methods for each abstract task.

Each method provides a task network, also called partial plan, that implements the abstract task and

thus specifies a pre-defined (abstract) solution of the corresponding abstract task. Consequently,

an HTN planning problem is a (initial) task network.

3.1 Basic HTN Planning Algorithm

An HTN planning problem is solved by repeatedly substituting the abstract tasks in the initial task

network with their implementations until the network contains only primitive tasks and is consis-

29
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tent w.r.t. their ordering and causal structure.

Algorithm 1: The Basic HTN Planning Algorithm
Input : P = 〈D,N〉: Planning Problem

Output: Solution Plan P or Failure.

begin1

if (All tasks in P are primitive tasks) then2

Resolve the conflicts between the primitive tasks in P3

return Solution Plan4

if (conflicts unresolvable) then5

return Failure6

else7

Select an abstract task t in P .8

Select an expansion for task t.9

Replace t with the expansion sub-tasks.10

Detect conflicts between tasks in P .11

Suggest the possible ways to resolve the detected conflicts.12

Apply on of the above suggestions (in line 12) on P .13

return BasicHTN(P)14

end15

Algorithm 1 introduces the basic HTN planning procedure which is considered to be a core of

all HTN planning systems. The input of the basic HTN planning algorithm is a planning problem

P = 〈D,N〉, where D is a domain model and N is a task network. It returns a solution plan

if the plan P is a primitive plan and consistent (i.e., all tasks in the plan are primitive, and all

the conflicts between them are resolved) (lines 2 to 4). If the primitive plan P is inconsistent
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(i.e., the conflicts between tasks can not be resolved), then a failure is returned (lines 5 and 6).

Otherwise, in lines 8 to 9, an abstract task t in P and the suitable decomposition method that

matches the task t are selected. After that, the selected decomposition method is applied to the

current plan P by replacing the specified abstract task with the set of sub-tasks in the selected

method(line 10). Worth mentioning is that adding new tasks in the plan P may produce conflicts

between tasks. These conflicts are addressed in line 11. All the possible ways to handle these

conflicts are computed in line 12. In general, there is more than one way to decompose an abstract

task and more than one way to resolve conflicts (e.g., task interactions) in a plan. Then, in line 13,

we select one of the suggested ways (in the previous line) in order to solve the conflicts in the plan

P . Finally, in line 14, the basic HTN algorithm is called recursively with the refined plan (i.e., plan

after expansion) in order to make a new expansion.

Our approach relies on a hybrid planning formalization [40], which combines HTN planning

with concepts of partial-order-causal-link (POCL) planning. The resulting systems integrate task

decomposition with explicit causal reasoning. Therefore, they are not only able to use pre-defined

standard solutions as it is the case in pure HTN planning, but also to develop (parts of) a plan from

scratch or to modify a default solution in cases where the initial state deviates from the presumed

standard. It is this flexibility that makes hybrid planning particularly well suited for real-world

applications [41, 47]. Note that in our hybrid planning framework one can specify a goal state as

well as an initial plan containing one or more abstract tasks that need to be performed. Since our

contribution in this thesis relies on pure hierarchical planning, the goal state is omitted.

In this chapter we will cover the underlying logical language of our framework, tasks, domain

model entities, plans, planning problems and solutions as well as illustrate how to refine the current

plan in order to generate the final solution plan.
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3.2 Logical language

Our framework is adapted from the formalization of PANDA hybrid planning [40]. It relies on

an sorted first-order logic [48]. The syntax of our framework is given by the logical language

L = 〈Z,≺, R, Const, V,O, T,E, L〉.

In sorted logics, all variables and constants are of some sort z ∈ Z. As an example some sorts

of the UM-Translog domain are shown in table 3.1. In addition, order-sorted logics impose a

hierarchy on sorts which allows for more adequate and concise formalizations. This hierarchy on

the sort symbols in Z is represented by defining the relation ≺. Sorts in Z are super or sub-sorts

for each other. Figure 3.1 shows part of the sort hierarchy of UM-Translog domain model, where

e.g. the sort Mail is a super sort for the sub-sorts Mail Vehicle and Mail Package.

Mail

Mail_Vehicle Mail_Package

Mail_Truck Mail_Traincar

Regular_Vehicle

Airplane

Figure 3.1 Part of the sort hierarchy of our UM-Translog domain model

The relation symbols R are used to represent properties of objects in the real world. The

relation R is a Z∗−indexed family of finite disjoint sets of relation symbols. Each relation R can

be either rigid or flexible. In general, the term rigid is applied to those literals or relations that

cannot be modified or added during the planning process. While flexible terms are those literals

that can be added or modified during the planning process. Const is Z-indexed family of finite

disjoint sets of constant symbols which represent objects in the real world. For example, suppose

we want to express in our model that a specific transport package is associated with a specific

source and destination location, we would use a constant pck1 of sort package to represent the
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Table 3.1 A subset of sort elements of the logical language L, which are used to model
the functionality of transportation package.

Sorts Z

Name Description

Package Includes a subset of the sorts of package

types such as Liquid and Valuable package.

Route Includes different kinds of routes such as

Air Route and Rail Route.

Customer Location A type of location

Vehicle A super sort of different kinds of vehicles

like car and Hopper truck.

Armored Vehicle A type of vehicle

Chemicals A type of package
...

...

Relations R

Name Signature Description

Connects Route× Location× Location A rigid relation, true iff there is a route be-

tween the associated locations.

PV Compatible Package× V ehicle A rigid relation, true iff the associated

package is compatible with the attached ve-

hicle.

RV Compatible Route× V ehicle A rigid relation, true iff the associated route

and vehicle are compatible.

At Vehicle V ehicle× Location A flexible relation, true iff the associated

vehicle is located at the specified location.
...

...
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Constants Const

Name Signature Description

Money Valuable The value of the Valuable package which

will be transported is named Money.

Ulm City Name of the city.

Loc1, Loc2,. . . Location Locations in a specific city.
...

...
...

transported package and constants loc1 and loc2 to represent its source and destination location

respectively. The expression At package(pck1, loc1) means that the package pck1 is at location

loc1. V is a Z-indexed family of infinite disjoint sets of Variable symbols. The O and T represent

finite disjoint sets of operator and task symbols respectively. The symbol E denotes a Z∗−indexed

family, the so-called elementary operation symbols. They provide for each flexible symbol R a

so-called add operation (+R) and a delete operation (−R). Finally, L is an infinite set of labels

used for identifying different occurrences of identical tasks.

3.3 Tasks

In artificial intelligence planning, changes in the real world are represented by actions or tasks. In

our framework, a task schema t(τ̄) is specified by a tuple 〈type, prec(t(τ̄)), eff(t(τ̄))〉.

Definition 2 (Task). For a given logical language L, a task schema is defined by a structure

t(τ̄) = 〈type, rec(t(τ̄)), eff(t(τ̄))〉

where

• t is a task symbol,

• type is a kind of task: abstract task or primitive task.
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Table 3.2 Primitive task

Task Arguments Task

Task Name Deliver

Parameters ?pck : Package

Type Primitive

Pre-condition {Fees collected(?pck), Have Permit(?pck)}

effects: eff− {¬Fees collected(?pck), ¬Have Permit(?pck),

effects: eff+ delivered(?pck)}

• τ̄ = τ1, τ2, · · · , τn are the list of variables which belong to the set of variables V . They are

called task parameters.

• prec(t(τ̄)) specifies the pre-conditions of the task t(τ̄).

• eff(t(τ̄)) specifies the post-conditions of the task t(τ̄). It consists of two parts: eff+(t(τ̄))

which adds new relations or properties to the current world state, the so-called positive ef-

fects, and eff−(t(τ̄)) which removes existing relations or properties from the current world

state, the so-called negative effects. Attention should be paid to the fact that the set of pre-

and post- conditions are sets of literals over the relation R in the logical language L.

In our approach, both primitive and abstract tasks show pre-conditions and effects. For example,

as shown in table 3.2, a primitive task Deliver states that delivering a package requires collecting

the fees as well as taking the permissions that are needed to deliver the specified package. As a

result, the specified package is delivered.

As documented in table 3.3, an abstract task Load states that the process of loading a package

from specific location to a vehicle requires the package and the vehicle to be at the same location

and that the identified vehicle should be compatible with the specified package. As a result, the
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Table 3.3 Complex or abstract task

Task Arguments Task

Task Name Load

Parameters ?pck : Package, ?v : Vehicle, ?l : Location

Type Abstract

Pre-condition {At package(?pck, ?l), At vehicle(?v, ?l),

PV compatible(?pck, ?v)}

effects: eff− {¬At package(?pck, ?l),

effects: eff+ At package(?pck, ?v)}

specified package is loaded into the vehicle.

A state s is a finite set of ground atoms1 in L. A state tells us which ground atoms are currently

true: if α is a ground atom, then α is true in the state s if and only if α ∈ s. Therefore, a task t(τ̄)

is called applicable in a state s, if the literals2 of its pre-conditions prec(t(τ̄)) are present in the

state s. If a task t(τ̄) is applicable in a state s, its application leads to the new state s′ .

s
′
= (s ∪ eff+(t(τ̄))/eff−(t(τ̄)))

It is important to note that an instance of the task schema is a copy of the schema where all

task parameters are substituted by new variables through a well sorted variable replacement. The

semantics of abstract tasks are based on a sequence of tasks which are provided by the available

primitive task schemata. As depicted in figure 3.2(a) and (b), a primitive task is performed directly,

while an abstract task requires further decomposition to be executed.

1An atom is a predicate symbol followed by a list of terms.
2A literal is either an atom (in which case we say the literal is positive), or the negation of an atom (in which case

we say the literal is negative)
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Figure 3.2 Implementations of tasks (primitive and abstract)

3.4 Domain Model

As has been previously described, the term domain model refers to all the knowledge regarding

the real world application area. This knowledge is necessary for generating a solution plan for the

given planning problem.

Definition 3 (Domain Model). For a given logical language L, a domain model is defined as a

tuple D = 〈Q,M,T〉.

Q represents the set of all objects and relations which exist in the application domain, M is

a model structure that represents decomposition methods and T represents a set of abstract and

primitive task schemata. As we said, abstract tasks do not correspond to a single primitive task in

the real world and are thereby not directly executable by human users. Instead, abstract tasks can

be seen as constraints for the plans that require and achieve pre-conditions and post-conditions of

these abstract tasks and can thus be regarded as pre-defined standard solutions.

A decomposition method m = 〈t(τ̄), LV C, p〉 ∈ M relates an abstract task t(τ̄) to a partial plan

p that implements an abstract solution for a task t(τ̄). Additionally, each method includes a set of

local variable constraints LV C to map variables in the abstract task t(τ̄) to variables in the task

network i.e. set of tasks in a partial plan p. The set of decomposition methods covers all possible
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state-refinements of the corresponding abstract task. Therefore, each abstract task has a number of

different methods that can be used for its implementation.

For example, table 3.4 shows three different methods from UM-Translog domain used to refine the

abstract task load (See Table 3.3).

Finally, a domain modelD constitutes the terminology, concepts, and the relationships between

objects for the corresponding course of actions. Now we are ready to introduce the notion of a plan

in the next section.

3.5 Plans

In classical state-based planning, a plan is a sequence of actions with completely ordered plan

steps. The plan in our approach, however, is a partial order plan. A partial order plan is a plan with

partially ordered plan steps.

Definition 4 (Plan). For a given logical language L, a domain modelD, a partial plan P is defined

by the tuple P = 〈TE,C〉

where,

• TE: is a finite set of plan steps or task expressions te = ` : t(τ̄), where t is a partially

grounded abstract or primitive task. ` ∈ L is a unique label in order to distinguish different

occurrences of the same task within the same plan. Intuitively, the list of parameter variables

τ̄ = τ1, τ2, · · · , τn are assumed to be unique in TE.

• C: is a set of constraints, the so-called Constraint set of P . These constraints involve three

tuples C = 〈≺, V C,CL〉: where,

1. ≺: is a finite set of explicit ordering constraints on the plan steps TE. They take the

form tei ≺ tej with task expressions tei, tej ∈ TE. The ordering constraints specify
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Table 3.4 Decomposition methods for abstract task Load

Reference Task Load(?pck : Package, ?v : V ehicle, ?` : Location)

Decomposition Methods

m1: Load-Regular-Vehicle m2: Load-Tanker-Vehicle m3: Load-Airplane

Signature

Load Reg V eh(?Rp, ?Rv, ?R`) Load Tan V eh(?Tp, ?Tv, ?T`) Load Airplane(?Ap, ?Av, ?A`)

Local Variable Constraints (LVC)

?Rp : package, ?Rv: Vehicle, ?Tp : package, ?Tv: Vehicle, ?Ap : package, ?Av: Vehicle,

?R`: Location ?T`: Location ?A`: Location

Task Network

(`1 : open door(?`1.v)) (`1 : conn. hose(?`1.t, ?`1.p)) (`1 : att. conv. ramp(?`1.pv, ?`1.p, ?`1.l))

(`2 : load pack.(?`2.p, ?`2.v, ?`2.l)) (`2 : open valve(?`2.t)) (`2 : open door(?`2.rv))

(`3 : close door(?`3.v)) (`3 : fill tank(?`3.p, ?`3.t, ?`3.l)) (`3 : load package(?`3.p, ?`3.v, ?`3.l))

(`4 : close valve(?`4.t)) (`4 : close door(?`4.rv))

(`5 : disconn. hose(?`5.t, ?`5.p)) (`5 : det. conv. ramp(?`5.v, ?`5.r, ?`5.l))

Method Constraints

Ordering Constraints

(`1 ≺ `2), (`2 ≺ `3) (`1 ≺ `2), (`2 ≺ `3), (`1 ≺ `2), (`2 ≺ `3)

(`3 ≺ `4), (`4 ≺ `5) (`3 ≺ `4), (`4 ≺ `5)

Variable Constraints

?`1.v =?Rv, ?`1.p =?Rp, · · · , ?`1.t =?Tv, ?`1.p =?Tp, · · · ?`1.v =?Av, ?`1.l =?Al, `2.v =?Rv

?`2.v =?Rv, · · · , ?`3.v =?Rv , · · · · · · , ?`5.p =?Tp ?`3.p =?AP , · · · , `5.l =?A`

Causal Link

〈`1, Door Open(?`1.v), `3〉 〈`1, Hose Conn.(?`1.t, ?`1.p), `3〉, 〈`1, Ramp Conn.(?`1.r, ?`1.pv), `5〉,

〈`2, V alve Open(?`2.t), `3〉, 〈`2, Door Open(?`2.v) `4〉

〈`1, Hose Conn.(?`1.t, ?`1.p), `5〉,

〈`2, V alve Open(?`2.t), `4〉
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that the task tei must finish before the beginning of the task tej . Note that the set of

ordering constraints in≺ are produced as a result of the planning process or pre-defined

by the domain model.

2. V C: is a finite set of variable constraints. They are a set of co-designations or non-

co-designations used for grounding tasks and to force equality or inequality between

variables. More formally, for two tasks t and t̄, τi(t) = τj(t̄) constraints τi(t) and τj(t̄)

to be identical and, for co-designating variables with constants, τi(t) = c constraints

the variable τi(t) to be equal the constant c ∈ Cz, where z ∈ Z is the sort of c. Non-

co-designations are defined similarly.

3. CL: is a finite set of causal link constraints. They have the form tei
ϕ→ tej or

〈tei, ϕ, tej〉, indicating that the task expression tei = `i : ti(τ̄i) establishes a pre-

condition ϕ of a task expression tej = `j : tj(τ̄j), where ϕ ∈ eff(tei) ∧ prec(tej).

As an example, figure 3.3 shows the plan pload for loading a package pck into the vehicle car. The

following tasks tasks are used:

teinit( ) = 〈{ }, {At package(pck, loc), At vehicle(car, loc), PV compatible(pck, car)}〉

Open door(?v1) = 〈{¬Door open(?v1)} , {Door open(?v1)}〉

Close door(?v2) = 〈{Door open(?v2)} , {¬Door open(?v2)}〉

Load package(?p, ?v3, ?`) = 〈{At package(?p, ?`), At vehicle(?v3, ?`), PV compatible(?p, ?v3)},

{At package(?p, ?v3),¬At package(?p, ?`)}〉

tegoal( ) = 〈{At package(pck, car),¬Door open(car)}, { }〉.

pload = 〈TEload, Cload〉 is a plan where:

TEload = {`1 : teinit(), `2 : open door(?`2.v1), `3 : close door(?`3.v2),

`4 : Load package(?`4.p, ?`4.v3, ?`4.`), `5 : tegoal()}

Cload = 〈≺load, V Cload, CLload〉, where:

≺load= {`1 ≺ `2, `2 ≺ `4, `4 ≺ `3, `3 ≺ `5}
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V Cload = {?`2.v1 =?`3.v2, ?`2.v1 = `4.?v3, ?`2.v1 = car, ?`4.p = pck, ?`4.` = loc}

CLload = {〈`1,¬Door open(car), `2〉 , 〈`1, At package(pck, loc), `4〉 ,

〈`1, At vehicle(car, loc), `4〉 , 〈`1, PV compatible(pck, car), `4〉 ,

〈`2, Door open(?`2.v1), `3〉 , 〈`4, At package(?`4.p, ?`4.v3), `5〉 ,

〈`3,¬Door open(?`3.v2), `5〉}

Although causal link constraints impose a partial order between plan steps, our plan identifies

explicit ordering constraints between plan steps if causal threats need to be resolved (by promotion

or demotion) or if they are already present in a predefined plan of the domain model.

This plan describes which actions need to be taken in order to load a package pck into the vehicle

car. The first and last tasks are artificial tasks. The Open door task corresponds to the action of

opening the door of car which is used to load the package pck into it. For this being possible,

the vehicle has to be in the state that actually allows to load the package. The Load package task

has the pre-conditions At package(pck,loc), At vehicle(car,loc) and PV compatible(pck,car). After

that, the Close door task which corresponds to the action of closing the door of the vehicle car

will be executed. Adding a task that produces the pre-condition literals At package(pck,car) and ¬

Door open(car) for the final task tegoal completes the plan.

3.6 Planning Problems and Solutions

A planning problem in HTN planning is formulated over a domain model D and consists of the

initial world state description sinit which is a set of positive atoms that represent what conditions

are true initially, and the initial plan pinit. Formally we define:

Definition 5 (Planning Problem). For a given logical language L and domain model D, a plan-

ning problem Π is defined by the tuple Π = 〈D, sinit, pinit〉, where, sinit is an initial state descrip-

tion and pinit is an initial partial plan.
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Figure 3.3 The Plan pLoad describes how the package pck can be loaded into the vehicle
car. Red lines represent causal link constraints between tasks and black lines represent
ordering constraints between tasks.

The initial plan pinit = 〈TEinit, Cinit〉 is a consistent partial plan.

Where, The task network TEinit contains two artificial tasks teinit and tegoal which are used to

provide the initial and goal state, respectively. The facts in sinit are used as effects of the task

teinit while task tegoal has the desired goal state as a pre-condition. All other tasks get ordered in

between.

Cinit represents a set of initial plan constraints Cinit = 〈≺init, V Cinit, CLinit〉. It is important to

notice that our planner assumes any atom which is not in the initial state sinit to be false.
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For example, in the UM-Translog domain, the definition of the planning problem Πload can be

given as follows: Πload = 〈D, sinit, pinit〉, where

sinit = {At package(pck, loc), At vehicle(car, loc), PV compatible(pck, car)}

and the initial partial plan pinit = 〈TEinit, Cinit〉 in the planning problem ΠLoad is formalized as

follows :

TEinit = {`1 : teinit(), `2 : Load(?`2.p, ?`2.v, ?`2.`), `5 : tegoal()},

and the set of initial constraints Cinit are:

≺init= {(`1 ≺ `5), (`1 ≺ `2), (`2 ≺ `5)},

V Cinit = {?`2.p = pck, ?`2.v = car, ?`2.` = loc},

CLinit = ∅

As mentioned before, the tasks teinit and tegoal in TEinit are artificial tasks used to provide the

beginning and end of a plan, respectively. They occur only once in each plan and all other tasks

such as `2 : Load(?`2.p, ?`2.v, ?`2.`) are always ordered in between. The facts in initial state sinit

provide the effects of teinit task. The pre-conditions of the task tegoal correspond to the desired

goal state. In our running example, any valid decomposition of the initial plan pinit solves the given

planning problem without the need to explicitly satisfy a goal state.

A plan psol = 〈TEsol, Csol〉 is a solution to the planning problem Π = 〈D, sinit, pinit〉 if the

following solution criteria are met:

1. A plan pSol is a refinement of pinit. Informally, we call a plan p is a refinement of pinit if

the plan p results from applying plan modifications to the plan pinit. A plan modification is

the insertion of a plan element, i.e., an element from the set of task expressions, temporal

orderings, variable constraints and causal links. The only modification that is not a pure

insertion is the application of a method: it replaces an abstract task by implementing a task

network and adapts the variable constraints and causal links. The formal description of the

modification is discussed in details in section 3.7.2.
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2. All plan steps in the task networks of a plan psol are primitive tasks.

3. All pre-conditions of every plan step in the task network of a plan psol are supported by a

causal link, i.e., for each pre-condition ϕ of a plan step tej ∈ TEsol there exists a causal link

〈tei, ϕ, tej〉 ∈ CLsol with tei ∈ TEsol.

4. none of the causal links in CLsol is threatened, i.e., for each causal link 〈tei, ϕ, tej〉 ∈ CLsol

the ordering constraints in ≺sol ensure that no plan step tek with an effect that implies ¬ϕ

can be consistently placed between plan steps tei and tej .

5. The ordering and variable constraints in a plan psol are consistent, i.e., there is no plan step

te ∈ TEsol, such that te ∈∗CL te (≺ does not induce cycles on plan steps TE) and no v ∈ V

for z ∈ Z, such that V C |= v 6= v.

6. All tasks in a plan psol are grounded. That is, all variables are co-designated to some constant.

In our approach, any solution must be a decomposition of the initial plan pinit. Since abstract

tasks are regarded as non-executable, criterion 2 ensures that only executable tasks, i.e., primitive

tasks, are part of a solution plan. Criterion 3 ensures the applicability of tasks in a plan: in order

for a task to be applicable in a state s, all its literals of its pre-condition must hold in s. This can

be ensured by establishing appropriate causal links. Criterion 4 guarantees that every plan step in

all linearizations of a plan is applicable in the sense of criterion 3: causal threats can cause a literal

of the pre-condition of a plan step to be false in some linearizations although it is supported by a

causal link. Since we require every linearization of a plan to be a valid solution, causal threats have

to be eliminated. Criterion 5 is obviously necessary for constituting meaningful plans since a task

can neither be ordered before itself nor can a constant be different from itself. Criterion 6 maps

the variables used by tasks onto the objects available in the modeled world. In the next section we

will discuss how to generate a solution plan psol from the initial plan pinit.
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3.7 Plan Generation

The process of generating a plan is adapted from the work of Schattenberg [46]. Plan generation

means a stepwise refinement of the initial plan pinit into a partial plan p until the solution plan psol

is reached. Before presenting our refinement algorithm in more detail, we will illustrate the main

requirements of our refinement algorithm: flaws and plan modifications.

3.7.1 Flaws

A flaw is a data structure that refers to all plan elements which violate the solution criteria.

Definition 6 (Flaw). For a given planning problem specification Π and a partial plan P =

〈TE,C〉 that is not a solution to Π, a flaw f = {f1, f2, · · · , fn} consists of a set of critical

plan components fi of P . It represents a defect in which these components are involved.

Let F be the set of all flaws. Its subsets Fx represent classes3 of flaws for a partial plan P .

Then, a flaw class is the set of all possible flaws of a specific type in the current plan such as flaw

class of abstract tasks fAbstractTask which refers to the abstract tasks in the current plan like Load

task in Πload and fOpenPreCondition which points to those tasks that are not fully supported i.e., tasks

that still have pre-condition not achieved by another task. The set of all flaw classes is computed

through a detection module fdetx . A detection module fdetx is a function that, given a partial plan

P , a domain model D, and a planning problem specification Π, returns all flaws of type x that are

present in the current plan.

3.7.2 Plan Modification

Each refinement in our approach focuses on a single plan defect (flaw) and generates a new plan

for each way of resolving that flaw. However, refinement steps include the decomposition of
3The complete definitions of various flaw classes can be found in [7].
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abstract tasks by selecting the appropriate methods, the insertion of causal links to support open

pre-conditions of plan steps as well as the insertion of ordering and variable constraints. We call

such a refinement step a plan modification.

Definition 7 (Plan Modifications). For a given partial plan P = 〈TE,C〉 and a domain model

D a plan modification is defined as the structure ω = (E⊕, E	), where E⊕ and E	 are disjoint

sets of elementary additions and deletions of plan elements, respectively, over the partial plan P

and domain model D.

All elements in E	 are elements in plan P (E	 ⊆ P ) such as plan steps in TE, or constraints

elements in constraints set C which includes constraints≺, V C and CL, while E⊕ consists of new

elements such as new plan steps or new constraints (E⊕ ∩ P = ∅). This generic definition makes

all changes a modification imposes on a plan explicit. Applying a modification ω = (E⊕, E	) to

a current plan P returns a new plan P ′ that is obtained from P by adding all elements in E⊕ and

removing those of E	.

The set of all modifications is denoted by Ω. Its subsets Ωy represent modification classes. The

set of all modification classes is computed through a modification module fModGen. Each plan

modification class Ωy can be used to handle a specific flaw class Fx. Therefore, the plan modi-

fication class Ωy ∈ Ω is suitable to solve the flaw class Fx ∈ F iff there exists a partial plan p

which contains a flaw f ∈ Fx and a plan modification ω ∈ Ωy, such that the new plan P ′ , which

is produced by applying a plan modification ω on a plan P , does not contain flaws f anymore. A

plan modification might introduce new flaws.

Therefore, in order to separate the computation of flaws from the computation of modifications,

a modification triggering function α is introduced to relate each flaw class to those modifica-

tion classes that are suitable for generating refinements that solve the respective flaw such as

α(FAbstractTask) = ΩExpandTask (See Table 3.5). Note that the inconsistent ordering flaw can not

be resolved by adding constraints. Therefore, it does not have a modification function to solve it.
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Table 3.5 This table lists the different kinds of flaw classes and the corresponding ways
to solve those flaws

Flaw Class Fx Modification class Ωy

FAbstractTask ΩExpandTask

FOpenPrecondition ΩAddCausalLink, ΩExpandTask, ΩInsertTask

FCausalThreat ΩExpandTask, ΩAddOrdering, ΩBindV ariable

FInconsistentOrdering –

FUnboundedV ariable ΩBindV ariable

For example, assume the abstract task flaw FAbstractTask for a task te = ` : t(τ̄) ∈ TE, ` ∈ L

can be resolved by applying the plan modification ΩExpandTask for the appropriate method m.

m = 〈t, 〈TEm, Cm〉〉 ∈M where Cm = 〈≺m, V Cm, CLm〉.

(ExpandTask, {	te} ∪ {⊕tem|tem ∈ TEm}∪ {⊕(tem1 ≺ tem2)|(tem1 ≺ tem2) ∈≺m}∪

{⊕(tem1
ϕ→ tem2)|(tem1

ϕ→ tem2) ∈ CLm}∪ {⊕(υ = τ)|(υ = τ) ∈ V Cm}∪

{⊕(υ 6= τ)|(υ 6= τ) ∈ V Cm}∪ {	(t́e ≺ te),⊕(t́e ≺ tem)|(t́e ≺ te), tem ∈ TEm}∪

{	(T ≺ t́e),⊕(tem ≺ t́e)|(te ≺ t́e), tem ∈ TEm}∪

{	(te
ϕ→ t́e),⊕(tem

ϕ→ t́e)|(T ϕ→ t́e) ∈ CL, tem ∈ TEm, ϕ ∈ eff(tem)}∪

{	(T́
ϕ→ te),⊕(t́e

ϕ→ tem)|(t́e ϕ→ te) ∈ CL, tem ∈ TEm, ϕ ∈ prec(tem)})

Note that during an expansion process the abstract task te is replaced by the decomposition

network TEm with all its sub-tasks being ordered between the predecessors and successors of the

abstract task and all other constraints are modified according to the new sub-tasks (See Figure 3.4).
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Figure 3.4 How to refine an abstract task

3.7.3 Search Strategy

As we mentioned before, the detection module is used to detect the set of flaws in the current plan,

while the refinement or modification module is used to generate refinement alternatives. Then a

search strategy4 used to decide which paths in the refinement space to pursue. In general, our

refinement planning divides the search strategy into two processes: the process of selecting the

refinement options, the so-called modification selection strategy and the process of selecting the

path that is to be followed in the Induced search space (Definition 9) which is generated by refine-

ment options, the so-called plan selection strategy. The modification and plan selection strategies

impose a partial order on the respective input refinement options and these strategies are therefore

suited for a sequenced arrangement.

A basic form of a modification selection strategy is either to prefer specific classes of plan mod-

ifications, e.g., we prefer the expansion of tasks or we try to delay an assignment of variables to

4For more details about search strategies refer to chapter 5
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constants as long as possible.

In the framework used here, Schattenberg [8] encoded the preference of a modification class as fol-

lows: Let ΩP be the modification class that is to be prefered by the modification-selection module

fModSel
Pref−ΩP

. Then the corresponding function is defined as in definition 85.

Definition 8 (Modification Selection Preference). For a partial plan p, sets of flaws f1, f2, · · · , fm ∈

F , and sets of plan modifications ω1, ω2, · · · , ωn ∈ Ω, a modification selection preference is

〈ωi, ωj〉 ∈ fModSel
Pref−ΩP

(p, {f1, f2, · · · , fm}, {ω1, ω2, · · · , ωn}) if ωi ∈ ΩP and ωj /∈ ΩP .

A modification selection strategy can be specified as the combination of more than one base

class such as ΩP = ΩPa + ΩPb
. In this case the modification function ΩPa is called the first

(Primary) strategy, while ΩPb
is the secondary strategy. If the primary strategy does not prefer one

option over another option, the secondary strategy is followed and so forth until finally a random

preference is assumed.

3.7.4 Refinement Algorithm

Before we present our refinement planning algorithm in more detail, we define the search space

induced by the HTN planning problem Π.

Definition 9 (Induced Search Space). Let PΠ = 〈V , E〉 be the directed acyclic graph which

represents the (possibly infinite) search space induced by a planning problem Π. Then, the set of

vertices V is the set of plans in the search space and the set of edges E corresponds to the set of

used plan modifications. By abuse of notation, we write P ∈ PΠ to state P ∈ V . The root of PΠ is

the initial plan of Π. The direct successors of a plan P ∈ PΠ are all plans P ′, such that P ′ resulted

from P by applying a plan modification ω to P . Then, ω ∈ E .

5Note that plan selection strategy is built accordingly.
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With the defined flaw and modification detection modules as well as a search strategy, we can

now illustrate our refinement planning algorithm (Algorithm 2) which takes the initial plan pinit of

the planning problem Π as an input and refines it stepwise until a solution plan psol is found. Our

algorithm performs an informed search, guided by search strategies in the search space induced by

the HTN planning problem Π.

Algorithm 2: Refinement Planning Algorithm
Input : The sequence Fringe = 〈pinit〉.

Output: Solution Plan (psol) or fail.

while Fringe = 〈p1 . . . pn〉 6= ε do1

F ←− fFlawDet(p1)2

if F = ∅ then return p13

〈ω1 . . . ω
′
n〉 ←− fModOrd(

⋃
f∈F

fModGen(f))
4

succ←− 〈apply(ω1, p1) . . . apply(ω′n, p1)〉5

Fringe←− fPlanOrd(succ ◦ 〈p2 . . . pn〉)6

return fail7

The fringe in the algorithm is a sequence of plans 〈p1 . . . pn〉 ordered by the deployed search

strategy. It contains all unexplored plans that are direct successors of visited non-solution plans

in P . According to the used search strategy, a plan pi leads more quickly to a solution than

plans pj for j > i. The current plan under consideration is always the first plan of the fringe.

The planning algorithm loops as long as no solution is found and there are still plans to refine

(line 1). Hence, the flaw detection function fFlawDet in line 2 calculates all flaws of the current

plan. A flaw is a plan component that is involved in the violation of a solution criterion. In

HTN planning, the presence of an abstract task raises a flaw that includes that task, a causal threat
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consists of the causal link and the threatening plan step, and so on. If no flaws can be found,

the plan is a solution and returned (line 3). In line 4, all plan modifications are calculated by the

modification generating function fModGen, which addresses all published flaws. Afterwards, the

modification ordering function fModOrd orders these modifications according to a given strategy.

The fringe is finally updated in two steps: First, the plans resulting from applying the modifications

are calculated (line 5) and are put in front of the fringe in line 6. Second, the plan ordering function

fPlanOrd orders the updated fringe according to its strategy. This step can also be used in order to

discard plans (i.e., to delete plans permanently from the fringe). This is useful for plans that contain

unresolvable flaws like an inconsistent ordering of tasks. If the fringe becomes empty, no solution

exists and fail is returned.
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Chapter 4

Landmarks in Hierarchical Planning

In recent years, the exploitation of knowledge gained by pre-processing planning domains and / or

problem descriptions has proven to be an effective means to improve planning efficiency. In this

chapter, we would like to give an overview over a hot pre-processing technique which plays an

important role in the field of AI planning, as well as introduce our novel landmark pre-processing

technique in the context of hierarchical planning approaches.

4.1 Pre-processing Planning Techniques

A pre-processing process is an automatic method used to analyze the planning domain and to

extract knowledge about the domain and problem description. The outcome of a pre-processing

technique is always a logical consequence of the domain and problem description, so it is different

from machine learning in that nothing is learned. In general, the pre-processing technique can

be done either “off-line”– only once for each domain, or “on-line”– for every problem instance.

There are a lot of pre-processing techniques described in literature, most of which are integrated

into a specific planning system and are not available as separate modules because the outcome of

the pre-processing technique does not directly produce control knowledge. It needs some sort of

53
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control search technique to be effective.

Fox et al. [49,50] introduced a pre-processing technique to detect and eliminate symmetries from

planning problems. A planning problem has a high degree of symmetry if there are a lot of func-

tionally identical objects that can not be usefully distinguished. Symmetries are automorphisms

on the structures that characterize a planning problem i.e. symmetries represent redundancy in the

structure of the problem definition. Fox’s technique can discover different kinds of symmetry such

as: Plan permutation which means two plan fragments can generate the same facts from the same

state. As depicted graphically in figure 4.1(a), a plan which uses truck T1 to transport package P1

from location L1 to L3 contains the same actions of the plan that uses truck T2 to transport the same

package P1 from location L1 to L3. Figure 4.1(b) shows another kind of symmetry, the so-called

Structure symmetry, which means several objects have identical structure, such as the set of trucks

T1, T2, T3, and T4 which are not functionally equivalent because they are connected to a location

L1 by different roads, but each one of them can generate a plan that achieves the original goal.

(b) Structure Symmetry

L3

L2

L1

P1  P2

T1

T2

(a) Plan Permutation
L3

L1

P1 T3

T2

T1

T4

Figure 4.1 Different kinds of symmetry.

STAN planner1 is a domain independent planner and depends on these kinds of symmetries

[51]. It is built on the graph construction and search technique of GRAPHPLAN planner as well

as performing pre-processing analysis on the domain model before planning. Although GRAPH-
1STAN =⇒ STate ANalysis
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PLAN is the most efficient planner in classical state-based planning, it may possibly lead to prob-

lems if the planning task description includes irrelevant information. Therefore, Nebel et al. [52]

introduced another pre-processing technique depending on removing irrelevant facts and operators

from planning problems. After that, Haslum et al. [53] introduced a new technique to change

the shape of the search space by changing the representation of facts. They focused on the idea

of removing redundant operators in order to reduce the branching factor and speed up the search

process. To this end, they defined the notion of redundant operator sets. The operator o is redun-

dant with respect to the sequence of operators if it does not add any new effects to the sequence of

operators. Thus, the set of operators can be reduced by enumerating the redundant operators and

removing them. The results of reducing the set of operators are not unique and each have a differ-

ent size. It depends on the order of enumeration. For example, suppose we have the following set

of operators O:

O = {o1 : ({p}, {q}, {p}),

o2 : ({q}, {p}, {q}),

o3 : ({p}, {r}, {p}),

o4 : ({r}, {p}, {r}),

o5 : ({q}, {r}, {q}),

o6 : ({r}, {q}, {r}), }

The set of operators O can be reduced in a number of different ways. One reduction yields the set

of operators {o1, o2, o3, o4} because the sequence of operators o2 and o3 implements operator o5,

while the sequence of operators o4 and o1 implements operator o6. Another reduction given as the

set of operators {o1, o4, o5} because the sequence of operators o5 and o4 implements operator o2,

while the sequence of operators o1 and o5 implements operator o3 and the sequence of operators o1

and o4 implements operator o6 · · · etc. Of course, the efficiency of planning performance will be

increased when such redundancies are discovered.
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Additionally, a number of research efforts have been made to discuss the problem of interactions

among the goals of a planning problem. Some of them perform a structure analysis for the planning

task before starting the planning process in order to propose new constraints concerning the best

order in which to achieve the goals.

Koehler et al. [54,55] introduced the notion of reasonable and forced orders between the goals in

the planning problem. The goal G1 is ordered reasonably prior to goal G2 (i.e., G1 ≺r G2), if the

goal G2 has been achieved and there is no action that can achieve goal G1 without violating goal

G2. The Forced goal (G1 ≺f G2) is defined to avoid deadlock, where goal G1 is ordered forcedly

prior to G2 when there is no plan anymore that can achieve G1 in case of achieving goal G2 first.

The set of orders between goals in the given planning problem is collected in a set, the so-called

goal agenda. Any planning system can use the goal agenda in order to generate the solution plan.

Recently, another hot approach, the so-called Landmark has been invented to propagate orders

between planning goals not only over top goals as it is the case using the goal-agenda technique,

but also over subgoals that will appear during the planning process.

4.2 Landmarks in Classical State-based Planning

The concept of landmarks in classical state-based planning has received widespread attention and it

has been widely discussed how to extract and exploit landmark literals during the planning process.

In this section we will briefly illustrate the common landmark approaches (see Figure 4.2).

Initially, the landmark technique for classical state-based planning was inspired by the work of

Porteous et al. [3] and studied again in more detail in the work of Hoffmann et al. [56]. They

define landmarks as a set of literals that have to hold in some intermediate state for every solution

plan that solves the given planning problem (see Figure 4.3).

The landmark extraction algorithm proceeds in three phases. (1) Build a Relaxed Planning
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Landmark concept
(Porteous et al. 2001)

Combining landmarks with
symmetry reduction technique

(Gregory et al. 2004)

Ordering landmarks
(Hoffmann et al. 2004)

Use landmarks to decompose
planning problem

(Sebastia et al. 2006)

Disjunctive Landmark 
(Porteous et al. 2002; Lin zhu et al. 2003)

Heuristic landmarks
(Richter et al. 2008; Helmert et al. 2009; 

Bonet et al. 2010; Richter et al. 2010)

New landmark concept for hierarchical planning
(Elkawkagy et al. 2010a; Elkawkagy et al. 2010b;     

Elkawkagy et al. 2011)

Figure 4.2 A chronology of landmark concept

Graph (RPG). According to the FF Planner 2 [57], the relaxation is achieved by simply ignoring

the delete lists of all operators. After that, the RPG is built by a forward-chaining technique

beginning at the initial world state until all goals are solved or a fixed point is reached. The latter

indicates that the relaxed planning problem is unsolved. (2) A regression technique is applied on

RPG to extract landmark literals. For each goal in the RPG level, the shared pre-conditions of the

actions that achieve the current goal are identified (i.e., shared pre-conditions are those literals

or propositions that are a pre-condition for each of the actions). The literals in the set of shared

pre-conditions are considered landmark literals and added to the so-called goal list for further

consideration in the next level. In addition, further landmark literals are found by combining the

2FF =⇒ Fast Forward
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A

B C

D

E

O

t P

Figure 4.3 Landmark literals: consider a transportation task where the goal is to have
packageO at locationE by airplane P . PackageO and truck t are initially located at loca-
tion B. Then the landmark literals are: literals in the initial state, literals in the goal state
as well as the intermediate subgoals such as Load(O, t), Drive(t, C), Unload(O,C),
Fly(P,C), Load(O,P ), Fly(P,E).

other literals except those in the shared pre-conditions set into a new set, the so-called union set.

After that, the set of shared pre-conditions of actions which achieve these literals in the union

set are computed and considered new landmark literals. Hence, the next lower level in the RPG

is considered in order to extract the remaining landmark literals and so on until the initial level

is reached. (3) Finally, a filtering procedure is used to evaluate the landmark literals which are

produced in the second phase and remove those literals which fail in the test.

For the purpose of exploiting landmark literals during the planning process, Hoffmann et al. [56]

introduced some ordering relations between landmark literals. As depicted in figure 4.4, they used

landmark literals in order to produce a graph, the so-called Landmark Generation Tree (LGT),

where Nodes represent the landmark literals and Edges represent the order between them.

There are three types of order between landmark literals. The order between landmark literals

l and l̄ is called natural order (l ≺ l̄) if and only if l is achieved by a sequence of operators at time

i before achieving literal l̄ at time j where (i ≺ j). On the other hand, the order between them
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Figure 4.4 Landmark generation tree (LGT): Red box represents landmark literals which
are extracted, while green box represents trivial landmark literals (initial and goal).

is the so-called necessary order (l ≺n l̄) if and only if the literal l is immediately pre-requested

in the preceding state which achieves landmark literals l̄. Finally, a reasonable order between

landmarks l and l̄ (l ≺r l̄) is categorized into two different types. The first type is composed of

the top goal g and the landmark literals which are ordered naturally. For example, suppose l and l̄

are landmarks, and there is a natural order between them (l ≺ l̄), where l and the top level goal g

are inconsistent, then the landmark literal l̄ is ordered reasonably with goal g (l̄ ≺r g). The second

type is based on the interactions between landmark literals which have natural order and the side

effects of the literal in the reasonable ordering. For example, suppose l and l̄ are landmark literals

and there is a natural order between l and the top level goal g (l ≺ g), suppose also there is a

reasonable order between l̄ and g (l̄ ≺r g). Therefore, a reasonable order between l̄ and l (l̄ ≺r l)

is propagated in case there is an inconsistency between l and a side effect of l̄ i.e., if the landmark

literal l is achieved before the landmark literal l̄ it would have to be destroyed and reestablished

again in order to achieve the literal g.

After that, Hoffmann et al. introduced a simple recursive algorithm to exploit landmark literals

during the planning process. The Hoffmann algorithm loops in two phases; First, submitting the

leaf nodes Lnn in the LGT (see Figure 4.4) to any planner in order to achieve literals in these

nodes. Once these literals in leaf nodes are achieved and a new state LGTs1 is produced the second
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phase is started by removing leaf nodes Lnn from LGT . After that, the algorithm is called again

with new leaf nodes Lnn−1 in the LGT and a new state LGTs1 . The algorithm terminates success-

fully when LGT becomes empty.

Unfortunately, the work of Porteous et al. [3] has overlooked some potentially useful literals such

as disjunctive landmarks because there is an arbitrary choice of an object involved in an action.

For example, consider the following problem from the UM-Translog domain, assume a package

Pck1 is at airport A1 in the initial state and we would like to transport it to airport A2 using a plane

P1 or P2, which is initially located at airport A1. Porteous’s extraction algorithm couldn’t extract

literal in(pck1, P1) or in(pck1, P2) in its set of landmark literals because pck1 may be transported

by either plane. Therefore, in later work, the landmark concept was extended to extract disjunctive

landmarks [58]. A disjunctive landmark is a set of literals any of which has to be satisfied in the

course of a valid plan.

A new propagation algorithm to compute the set of landmark literals is proposed by Zhu et al. [59].

This propagation algorithm eliminates the need for heuristic candidate generation which is used

in the work of Porteous et al. [3]. It computes landmark literals by propagating labels (action or

literal label), where every action node in the initial graph level is labeled with itself and each literal

node in the graph is labeled with the intersection of the labels on its predecessor action nodes. In

later levels, an action node in the graph is labeled with the union of the labels on its predecessor

literal node. At the end, all labels in the final level (goal literals) are landmarks for any solution

plans achieving the given goal in the planning problem.

Gregory et al. [60] combine symmetry breaking techniques [49] with landmark analysis to extract

disjunctive landmarks. They reduce the planning problem by using symmetry breaking techniques

and then perform the landmark procedure on a reduced problem. Afterwards, Sebastia et al. [61]

proposed a pre-processing technique that arranges landmark literals into consistent groups with

minimum interaction between them. These groups are called Intermediate Goals (IGs). Then, a set
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of sub-problems is created. Each sub-problem pi = 〈A, ISi−1, IGi〉 consists of three tuples; a set

of actions A, the intermediate state ISi−1 which generated from solving the previous sub-problem

pi−1, as well as the specified goals in the current intermediate goal IGi. These sub-problems are

solved sequentially by any planner and their solution can be easily combined to constitute a solu-

tion plan for the original planning problem. In the same work, the method of solving sub-problems

is developed to solve these sub-problems concurrently by approximating the intermediate state ISi

that would result after solving each intermediate goal IGi.

Recently, Richter et al. [62] proposed an alternative algorithm to identify landmarks for a multi-

valued state variable representation of planning tasks (SAS+ planning formalism [63, 64]). They

combined landmark literals with a heuristic search framework in order to improve the planning

performance. In their work, landmark information can be used during the planning process in two

ways: The goal distance of a current state S is computed by an estimation function which returns

the number of landmarks that still need to be achieved from the current state S. Or landmarks are

combined with other heuristic techniques such as the preferred operators technique [65]. Preferred

operators are operators that are believed to be useful for improving the heuristic value of the given

state. In the case of landmarks, an operator is preferred in a state if it achieves landmark literals in

the next state.

Furthermore, a new planner is constructed by Richter, the so-called LAMA [66]. LAMA is a

propositional planning system built on the Fast Downward system [65]. The LAMA’s search en-

gine is tailored to use a number of heuristic estimators such as the FF heuristic [57, 67] and the

landmark heuristic [62]. Hence, LAMA generates a new state by evaluating the heuristic values

for all alternative states and then chooses the state that has a higher priority than other states.

A generalization of landmarks resulted in the notion of so-called action landmarks [62, 68, 69].

They represent landmark facts by actions that are appropriate to achieve them.

Most recent approaches use landmark information to compute heuristic functions for a forward
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searching planner [62,68] and investigate their relations to critical-path-, relaxation-, and abstraction-

heuristics [70].

In summary, the use of landmark information significantly improves the performance of classical

state-based planners. All the above pre-processing techniques have been proposed for classical

state-based planning, where they serve to compute strong search heuristics. As opposed to this,

pruning the search space of the hierarchical planner by pre-processing the underlying HTN-based

domain description has not been considered so far. Therefore, in the next sections we will in-

troduce a novel landmark extraction procedure for hierarchical planning and show how landmark

information can be exploited during the hierarchical planning process.

4.3 Landmarks in Hierarchical Planning

For a given hierarchical planning problem Π = 〈D, sinit, pinit〉, landmarks are the tasks that occur

in every sequence of decompositions leading from the initial task network pinit to a solution plan.

We will define landmark tasks more formally in the next subsections. Our landmark extraction

algorithm operates on the so-called Task Decomposition Tree (TDT) of a planning problem Π.

4.3.1 Task Decomposition Tree

Figure 4.5 depicts such a tree schematically. The TDT of Π is an AND/OR tree that represents

all possible ways to decompose the abstract tasks of the initial partial plan pinit by methods in

the domain model D until a primitive level is reached or a task is encountered that is already

included somewhere in the TDT. Each level of a TDT consists of two parts: a task and a method

level. Method nodes are AND nodes, because their children are the set of tasks that occur in the

partial plan of the respective method, all of which have to be performed in order to apply the

corresponding method. Task nodes, on the other side, are OR nodes, because their children are the
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methods that can be used to decompose the respective task. A TDT is built by forward chaining

from the (grounded) abstract tasks in the initial task network until all nodes of the fringe are leaf

nodes. The root node on level 0 is an artificial method node that represents the initial partial plan

pinit.

and

 and and and

 Method level1

Task level1                                                                                   

Task level2

 Artificial level  Root

 t2t1

  method 11   method 12   method 13   method 21   method 22

  t111    t112   t113   t121   t131    t132   t211   t212   t221

Figure 4.5 A schematic task decomposition tree.

To avoid loops or Recursive task decompositions in the TDT, each abstract task is decom-

posed only once in the TDT; hence, abstract tasks that are already decomposed in the upper level

in the TDT become leaf nodes. Other leaf nodes are primitive tasks. This is obvious, because each

primitive task will be executed directly without any decomposition. Note that a task (t(τ̄)) has a

recursive decomposition if it can be decomposed or expanded into a history of tasks containing the

same task (t(τ̄)), because the same methods that can be applied to the ancestor can be applied to

the descendant.

4.3.2 Landmark Extraction Algorithm

The formal definition of landmarks in hierarchical planning (Definition 11) depends on the proper

description of the paths in the search space and in particular on those refinement paths that lead

from a problem specification to its solution.
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Definition 10 (Plan and Solution Sequences). For a planning problem Π and a given plan P ∈ PΠ ,

let Seqπ(P ) be the set of all sequences of plans that correspond to paths in the search space that

are rooted in plan P. That means, given PΠ = 〈V , E〉 let 〈P1 . . . Pn〉 ∈ Seqπ(P ) if and only if

(Pi, Pi+1) ∈ E for all 1 ≤ i < n, P = P1, and there is no P ′such that (Pn, P
′) ∈ E .

The set of all solution sequences rooted in P is then characterized by SolSeq
Π
(P) = {〈P1 . . . Pn〉 ∈

Seqπ(P )|Pn solution of Π, n ≥ 1} ⊆ Seqπ(P ).

Definition 11 (Landmark). A landmark is a grounded(i.e., fully instantiated) task that occurs in

every sequence of decompositions leading from the problem’s initial task network to a solution.

That is, the task t(τ ) is called a landmark of a planning problem Π = 〈D, sinit, pinit〉, if for every

sequence of plans 〈P1 . . . Pn〉 ∈ SolSeqΠ
(pinit) there is an 1 ≤ i ≤ n, such that t(τ ) ∈ Tasks(Pi).

While a landmark has to occur in every decomposition sequence of a solution (which is rooted

in the initial plan), a local landmark only has to occur in each solution sequence rooted in a plan

containing a specific task t(τ ).

Definition 12 (Local Landmark of an Abstract Task). For a given grounded abstract task t(τ ) ,

let PΠ(t(τ̄)) be the set of all plans in PΠ containing t(τ ), i.e., PΠ(t(τ̄)) = {P ∈ PΠ |t(τ ) ∈

Tasks(P)}

We call the grounded task t′(τ ′) a local landmark of t(τ ), if for all P ∈ PΠ(t(τ )) it holds, that

for all sequences 〈P1 . . . Pn〉 ∈ SolSeqΠ
(P) there is a Pj with j > 1 such that t′(τ ′) ∈ Pj .

We use the next definition to calculate all tasks that occur in all available methods for the same

abstract task t(τ ).

Definition 13 (Mandatory Task Set Operator ∩̂). Let t(τ ) be an abstract task in the TDT andmi =

〈t(τ ), 〈TEi, Ci〉〉 with Ci = 〈≺i, V Ci, CLi〉 and mj = 〈t(τ ), 〈TEj, Cj〉〉 with 〈≺j, V Cj, CLj〉

two of its methods in the TDT. That is, both t(τ ) and its methods are fully grounded. Then the
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Mandatory Task Set Operator ∩̂ of mi and mj is defined as

mi ∩̂mj = Tasks(TEi) ∩ Tasks(TEj)

Using this definition, we can calculate the mandatory set of an abstract task t(τ ), M(t(τ )), by

intersecting all available methods. Obviously, the tasks contained in M(t(τ )) are local landmarks,

because these tasks are contained in all solution sequences that are rooted in a plan containing t(τ ).

It should also be noted, that all tasks inM(t(τ )) are local landmarks of t(τ ) if t(τ ) is not contained

in any solution sequence3 (i.e., if for all 〈P1 . . . Pn〉 ∈ SolSeqΠ
(pinit) there is no Pi, 1 ≤ i ≤ n

such that t(τ ) ∈ Tasks(Pj)).

However, not all local landmarks of an abstract task can be detected that way because not all

local landmarks have to be in such a mandatory set.

Based on the definition of the mandatory task set operator, we will now define the Optional

task set operator which calculates the set of tasks in which two (grounded) methods differ.

Definition 14 (Optional Task Set Operator ∪̂). Let t(τ ) be an abstract task in the TDT and mi =

〈t(τ ), 〈TEi, Ci〉〉 with Ci = 〈≺i, V Ci, CLi〉 and mj = 〈t(τ ), 〈TEj, Cj〉〉 with 〈≺j, V Cj, CLj〉

two of its methods in the TDT. Then, the Optional Task Set Operator ∪̂ of mi and mj is defined as

mi ∪̂mj = {Tasks(TEi) \ (mi ∩̂mj),Tasks(TEj) \ (mi ∩̂mj)}

Analogously to the mandatory set M(t(τ )) of an abstract task t(τ ), we can define its op-

tional tasks O(t(τ )), by applying the optional task set operator to all methods of t(τ ) in the

TDT. M(t(τ )) and O(t(τ )) can be regarded as a partition of the methods of t(τ ) in the TDT, i.e.,

{M(t(τ )) ∪ r|r ∈ O(t(τ )), if O(t(τ )) 6= ∅ or r = ∅, else} = {Tasks(P )|there is a method m =

〈t(τ ), P 〉 in the TDT} holds.

The landmark extraction algorithm (Algorithm 3) calculates for each abstract task that occurs

in the TDT these two sets and stores it into a so-called landmark table. Table 4.1 shows such a
3In fact, all grounded tasks t′ are local landmarks of t(τ ) if t(τ ) is not contained in any solution sequence.
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Table 4.1 A schematic landmark table, showing a ground instance of an abstract task in
each line, the mandatory set of its decompositions and the optional task sets.

abstract Tasks Mandatory Optional

t1(τ̄) M(t1(τ̄)) O(t1(τ̄))

t2(τ̄) M(t2(τ̄)) O(t2(τ̄))

...
...

...

tn(τ̄) M(tn(τ̄)) O(tn(τ̄))

landmark table schematically. The algorithm takes a TDT, which is computed before the algorithm

is called, as input and returns a landmark table after its termination [71].

Intuitively, the algorithm simply tests all primitive tasks for the relaxed reachability (Algo-

rithm 5), starting with the initial plan (the root of the TDT) and proceeds level by level through the

TDT. If a task can be proven to be unreachable, the method introducing this task is pruned from

the TDT and all its sub-nodes (and so forth). After all infeasible methods of an abstract task t(τ )

have been pruned from the TDT, this task, which is mandatory, and the optional tasks are stored in

the landmark table.
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Algorithm 3: Landmarks Extraction Algorithm
Input : A task decomposition tree TDT.

Output: The filled landmark table LT.

LT← ∅, infeasible← ∅1

for i← 1 to TDT.maxDepth() do2

foreach abstract task t(τ ) in level i of TDT do3

if LT contains an entry for t(τ ) then continue4

repeat5

Let M be the methods of t(τ ) in the TDT.6

M(t(τ ))← ∩̂
m∈M

m7

O(t(τ ))← ( ∪̂
m∈M

m) \ {∅}8

foreach primitive task t′(τ ′) ∈M(t(τ )) do9

if t′(τ ′) can be proven infeasible then10

remove all m ∈M from the TDT, including all sub-nodes.11

break12

foreach optional task set r ∈ O(t(τ )) do13

foreach primitive task t′(τ ′) ∈ r do14

if t′(τ ′) can be proven infeasible then15

remove the method m = 〈t(τ ), P 〉, with Tasks(P ) = M(t(τ )) ∪ r from the TDT,16

including all sub-nodes.

continue17

until no method was removed from TDT18

LT← LT ∪ {(t(τ ),M(t(τ )), O(t(τ )))}19

if M(t(τ )) = O(t(τ )) = ∅ then20

infeasible← infeasible ∪ {t(τ )}21

return propagate(LT,TDT,infeasible)22
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Now we will have a look at how this is achieved by our algorithm: First, the landmark table

and a set for backward propagation get initialized (line 1). Afterwards, each abstract task, which

is not yet stored into the landmark table is considered level by level of the TDT (line 2 to 4).

For the current abstract task at hand, line 6 to 8 calculate the mandatory and the optional tasks

in the yet unpruned TDT according to Definition 13 and 14. In line 8, we subtract the empty

set from O(t(τ )), because we are only interested in those tasks that are actually optional. If there

are no optional tasks, O(t(τ )) should be empty, instead of containing an empty set. After the

tasks introduced by decomposition of t(τ ) have been partitioned into M(t(τ )) and O(t(τ )), these

sets are analyzed for infeasibility. This test is performed by a relaxed reachability analysis4. First

we study the primitive tasks of M(t(τ )) (line 9). If such a task can be proven to be infeasible,

all methods of t(τ ) become obsolete and can hence be pruned from the TDT (line 10 and 12).

After this test, each optional task set is tested for reachability. If an infeasible task can be found,

only this specific method gets pruned from the TDT (line 13 to 17). If anything was pruned, the

loop (line 5 to 18) enters another cycle, because the set M(t(τ )) might have grown. If no more

pruning is possible, the mandatory and optional task sets for t(τ ) are stored into the landmark

table in line 19. When storing an entry in line 20, it is checked whether the stored abstract task is

feasible or not (an abstract task is infeasible if it does not have any methods left, i.e., if M(t(τ ))

and O(t(τ )) are empty). If some abstract task could actually be proven infeasible, it is stored

for backward propagation, because again all methods containing this abstract task can be pruned

from the TDT and from the landmark table. Finally, if all abstract tasks are checked, the backward

propagation procedure is called with the current landmark table and TDT in line 22.

propagate procedure (Procedure 4) takes as input the already filled landmark table, the possi-

bly pruned TDT, and a set infeasible of abstract tasks which have been proven to be infeasible

4We will come back to the relaxed reachability analysis in the next section
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due to the fact that no methods remain in the TDT. It works tail-recursively and returns the final

landmark table as soon as no propagation is possible (line 1). To this end, it first takes and removes

some arbitrary task t′(τ ′) from the set infeasible. Because this abstract task was proven in-

feasible, all methods that contain it have to be removed from the TDT. As a consequence of this

pruning, the mandatory and optional task sets have to be updated; additionally, further propagation

is now possible. To calculate the methods that can possibly be pruned, all parent tasks of t′(τ ′)

are identified (line 3). Then, for all these parents (line 4), the respective methods are removed

in line 5. Because methods were removed, the mandatory and the optional task sets could have

changed again. Hence, they are recalculated in line 6 to 8. Next, the the old landmark table entry

of the current parent t(τ ) is removed and replaced by the new one (line 9). In line 10, the new

landmark table entry is tested again whether it corresponds to an infeasible abstract task. If it does,

it is put into the set infeasible for later testing. The procedure is then called with the modified

parameters in line 1. Without a formal proof, we want to mention that algorithm 3 (i.e., the land-

mark table calculation as well as the backward propagation) always terminates. For the first part

of the algorithm, this is easy to see because both loop conditions (line 2 and 3) cannot be modified

within the loops. For the second part, i.e., the propagate procedure, we have to show that the set

infeasible eventually becomes empty. This is the case because each task gets inserted at most

once and will be removed at some point. After the algorithm terminates, the TDT does not have to

be considered anymore. All necessary information is encoded in the landmark table.
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Procedure propagate(LT,TDT,infeasible)
Input : A landmark table LT, a task decomposition tree TDT, possibly pruned, and a set of abstract

tasks infeasible, which have been proved infeasible.

Output: the updated landmark table LT, in which methods are pruned that contain infeasible abstract

tasks.

if infeasible = ∅ then return LT1

infeasible← infeasible \ {t′(τ ′)}, where t′ ∈ infeasible.2

parents← {t(τ )|(t(τ ),M(t(τ )), O(t(τ ))) ∈ LT, t′(τ ′) ∈M(t(τ )) ∪
⋃

r∈O(t(τ ))

r}
3

foreach t(τ ) ∈ parents do4

Remove all methods from the TDT, that contain t′(τ ′) in its plan, i.e., all m = 〈t(τ ), P 〉 with5

t′(τ ′) ∈ Tasks(P ).

Let M be the methods of t(τ ) in the TDT.6

M(t(τ ))← ∩̂
m∈M

m7

O(t(τ ))← ( ∪̂
m∈M

m) \ {∅}8

LT← (LT\{(t(τ ),M ′(t(τ )), O′(t(τ ))) ∈ LT}) ∪ {(t(τ ),M(t(τ )), O(t(τ )))}9

if M(t(τ )) = O(t(τ )) = ∅ then10

infeasible← infeasible ∪ {t(τ )}11

return propagate(LT,TDT,infeasible)12

4.3.3 Relaxed Reachability Analysis

A great challenge in our algorithm is the difficulty of deciding the reachability of a primitive task.

We addressed a way to solve this problem. However, the pre-conditions of any primitive task are a

set of literals. These literals may be rigid or flexible. In order to decide the reachability value, the

literals in the pre-conditions of the primitive task must be examined.
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Algorithm 5: Relaxed reachability analysis Algorithm
Input : T: Primitive Task, sinit: Initial State, LT: LandmarkTable

Output: Boolean value(True or False)

Flag←− false1

while (pre-condition of T contains rigid literals `) do2

if (predicate symbol(`) /∈ sinit) then3

return false4

else5

Let comp is a result of comparison between the argument type in ` and argument type in the6

corresponding ground atom in sinit.

if (comp==true) then7

Flag←− true8

continue9

else10

return false11

while (pre-condition of T contains flexible literals `) do12

if (pre-condition of T has a negative form) then13

return true14

else if (T ∈ consumer-causallink) then15

Find its producer task Tp.16

if (Tp ∈ LT) then17

return true18

else19

return false20

else21

return true22

if (flag==true) then23

return true24
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Rigid Literals

Rigid literals are those literals whose truth value can’t be changed by any primitive task. Therefore,

this kind of literals must be achieved in the initial state. If at least one rigid literal of a pre-condition

of a primitive task is not achieved in the initial state, this primitive task cannot appear in any

solution plan. As we see in algorithm 5, we can’t rely on the predicate symbol of the literal alone

when checking whether the pre-condition in question actually holds. Instead we have to check for

type and variable constraints in addition in order to find out whether a ground atom of the initial

state is compatible with the required pre-condition (lines 2 to 11).

For example, in our representation, a fact is described by the formula R(arg1:sort1, · · · , argn:

sortn) where R is a predicate symbol and arg1, arg2, · · · , argn represent the parameter values and

sort1, sort2, · · · , sortn denote the types of the respective arguments. Tasks are defined through

task schemata t(τ̃) = (prec(t(τ̃)), add(t(τ̃)), del(t(τ̃))) where the task t belongs to the set of tasks

T and τ̃ = τ1, τ2, · · · , τn is a parameter list, each τi being a constant or variable for 1 ≤ i ≤ n and

n being the number of arguments of the task t. The prec(t(τ̃)) represents the pre-conditions of task

t which must be true before t can be executed, add(t(τ̃)) and del(t(τ̃)) represent the effects the

execution of t will have. Suppose, the fact In City(L1 : Customer Location, C1 : City) holds

in an initial state and we have the following primitive task: go through two tcenters(var1 :

Tcenter, var2 : Tcenter, var3 : City, var4 : City) with pre-conditions In City(var1, var3) and

In City(var2, var4). If the predicate symbol In City of the literal in the pre-condition of the

primitive task is only compared to the ground atom in the initial state then this literal is accepted.

This would be wrong, however, because argument L1 is of the sort a Customer Location and not

Tcenter as required in the pre-condition of the primitive task. In contrast, if we also compare the

argument types then this task will be rejected, because the sort of L1 is Customer Location and not

Tcenter. But if we have the ground atom In City(A1 : Airport, C1 : City) in the initial state,

the previous literal In City(var1, var3) will be accepted, because the predicate symbol In City
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exists in the initial state and if we compare its sort we find Airport is a Tcenter and C1 is a City

and therefore this literal is accepted.

Flexible Literals

Flexible literals are those literals whose truth values of which can be changed by basic actions,

i.e. by primitive tasks. Algorithm 5 shows how to check feasibility of a primitive task which has

flexible literals in its pre-condition. It implements a heuristic estimation of reachability rather than

a decision procedure in order to keep the pre-processing effort of our approach manageable. The

reachability analysis algorithm handles flexible literals as follows: If a pre-condition literal of the

task has a negative form, feasibility is assumed (lines 13 and 14). This is motivated by the fact that

we adopt the closed world assumption, i.e. every literal that does not appear in the initial state is

considered false. At this point we could not decide exactly whether the truth value of this literal

will be changed by the plan or not. Otherwise, if a primitive task appears as a consumer task in a

causal link of the pre-condition literal, we will search for its producer in the LT . If the producer

task appeared previously in the LT , feasibility is assumed (lines 15 to 20). For example, suppose

the method helper move traincar contains two tasks in its subtasks: the first task is the abstract

task move and the other is the primitive task attach traincar. Furthermore, there is a causal link

stating that the move task produces a literal at vehicle(var1 : V ehicle, var2 : Location) for the

primitive consumer task attach Traincar. Therefore, if the move task has previously been added

to LT , we conclude that the primitive task attach Traincar is feasible. In contrast, if the current

primitive task does not appear as a consumer task in any causal links then the pre-condition literal

may depend on some other task in some other method. In this case, this primitive task may be

achieved during the planning process and it is considered feasible (line 22). For example, in the

method carry between tcenters carry direct there are two sub-tasks: the abstract task carry direct

and the primitive task go through two tcenters, where the primitive task has a flexible literal in its
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pre-conditions and does not appear as a consumer task in a causal link.

4.3.4 Example

In order to illustrate our landmark extraction technique, let us consider a simple example in the

UM-Translog domain [42]. Assume a package P1 is at location L1 in the initial state and we would

like to transport it to a customer location L3 in the same city. Figure 4.6 shows a part of the task

decomposition tree for this example.

 and

 and

 Method level3

 and and

 Method level2

 Method level1

 Task level1

Artificial level   Root

  transport(P1 ,  L1 ,  L3)

  Pi_ca_de 

 pickup(P1)   carry(P1,  L1, L3)  deliver(P1)

  Pickup_valuable

Task level2

Task level3  collect_fees(P1)  collect_fees(P1)  collect_insurance(P1)

  Pickup_normal

collect_fees(P1)

  Pickup_hazardous

 have_permit(P1)

  Carry_via_hub Carry_normal

 carry_direct(T1, P1, L1, L3)  carry_via_hub(........)  go_through_tcenters(......)

Figure 4.6 Part of the TDT for the transportation task

The landmark extraction algorithm detects that the first level in the TDT contains only one

abstract task t = transport(P1,L1,L3) and that there is only one method, Pi ca de, that can decom-

pose the task into a partial plan and which contains the subtasks pickup(P1), carry(P1, L1, L3), and

deliver(P1). M(t) becomes {pickup(P1),carry(P1, L1, L3),deliver(P1)} and O(t) = ∅. The current

abstract task and the sets M(t) and O(t) are entered into the first row of the landmark table as

shown in table 4.2.

The landmark extraction algorithm then takes the (unchanged) TDT to investigate the next tree

level. The abstract tasks to be inspected on this level are pickup(P1) and carry(P1, L1, L3). The

primitive task deliver(P1) is tested and considered executable. Suppose, the task t = pickup(P1) is

chosen first in line 3 of algorithm 3. As shown in figure 4.6, the TDT accounts for three methods
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Table 4.2 Example landmark table: It contains the first three entries for the transportation
task illustrated in figure 4.6. The sets in the right most column are indexed by the method’s
name that contains its tasks.

abstract Task Mandatory Optional

transport(P1, L1, L3) {pickup(P1),carry(P1, L1, L3),deliver(P1)} ∅

pickup(P1) {collect fees(P1)} {{have permit(P1)}Pickup hazardous}

carry(P1, L1, L3) {{carry direct(T1, P1, L1, L3)}} ∅

to decompose this task: Pickup hazardous, Pickup normal, and Pickup valuable. By computing

the mandatory task set and the optional task sets we get M(t) = {collect fees(P1)}, and O(t) =

{{have permit(P1)}, {collect insurance(P1)}}. At this point, the relaxed reachability analysis is

performed. First, collect fees(P1) is being tested, because it is contained in the mandatory set

M(t). Suppose, this task can not be proven to be infeasible. Then each primitive task in each

set r ∈ O(t) has to be checked. Assume the primitive task have permit(P1) is feasible, whereas

collect insurance(P1) is not. The method Pickup valuable is therefore deleted from the TDT.

After an additional iteration in which M(t) and O(t) get recalculated, the current abstract task t

= pickup(P1), the set M(t), and the modified set O(t) are added to the landmark table as depicted

in the second line of table 4.2. From the fact that O(t) contains only one set r we can conclude

that there is another method with no remaining tasks (if there were no such method, the tasks of

r ∈ O(t) would be contained in M(t).

In the second iteration (line 3) the abstract task t = carry(P1, L1, L3) is considered. The meth-

ods Carry normal and Carry via hub are available to decompose this task. We obtain M(t) =

∅ and O(t) = {{carry direct(T1, P1, L1, L3)}, {carry via hub(. . . ), go through tcenters(. . . )}}.

Suppose the primitive task go through tcenters(. . . ) is infeasible. The sub tree with root carry via hub(. . . )
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has then to be removed from the TDT. Because the TDT was changed, the iteration (line 5 to 18)

enters another cycle. Because there is now only one method left, M(t) now contains all tasks of

this remaining method. Hence, the current abstract task t = carry(P1, L1, L3) together with the

modified M(t) and O(t) are added to the landmark table as shown in the last line of table 4.2.

4.4 Landmark Exploitation

The information about landmarks can be exploited in two ways: The first is to deduce heuristic

guidance from the knowledge about which tasks have to be decomposed on refinement paths that

lead towards a solution. But before we further investigate this matter, we will present a second way

of landmark exploitation, namely the reduction of domain models or, more precisely, the transfor-

mation of a universal domain model into one that includes problem-specific pruning information.

4.4.1 Domain Model Reduction

During the construction of the landmark table, the feasibility check and the consecutive propaga-

tion of its result into the abstract task level lead to pruning of the task decomposition tree. The

result of this analysis implies that if a method has been removed from the TDT during the opera-

tion of our landmark extraction algorithm, it can be safely ignored as a refinement option during

plan generation.

We consequently supply our refinement generating module with the landmark table for the

current planning problem and verify for every incoming abstract task flaw which of the methods

specified in the domain model are reasonably applicable. However, the landmark table is built

from grounded tasks, while the plan generation procedure operates on lifted instances for which

the final grounding is yet to be computed. We therefore calculate all groundings of the abstract

task at hand that are consistent with the current variable constraints and match these grounded
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tasks t(τ̄) with the entries in the landmark table. The union of the (lifted) method schemata that

constitute the (grounded) instances in the Optional Task SetsO(t(τ̄)) is the set of method schemata

that we consider for application to the currently flawed abstract task. Obviously, the earlier a task

is addressed in the planning process, the less variable constraints are typically introduced in the

partial plan, and the more task groundings are implied by the lifted instance, and, consequently,

the less likely it is that one of its methods is pruned by this technique. To this end, our approach is

fully implemented using the adopted framework in chapter 3.

Based on flaw detection, modification module and search strategies fModSel and fPlanSel defini-

tions, algorithm 215 sketches a generic hybrid planning algorithm. The procedure is initially called

with the partial plan Pinit of a planning problem Π as a unary list of plans and with the problem

itself. This list of plans represents the current plan development options in the fringe of the search

space. An empty fringe (n = 0) means, that no more plan refinements are available. Lines 5-8

call the detection functions to collect the flaws in the current plan Pcurrent. If Pcurrent is found to

be flawless, it constitutes a solution to Π and is returned. If not, lines 9-16 organize the flaws

class-wise and pass them to the α-assigned modification generation functions, which produce plan

modifications that will eliminate the flaws. Any flaw that is found unsolvable will persist and

Pcurrent is hence discarded [46]. The plan selection strategy fplanSel is responsible for choosing a

plan from the fringe with which to continue planning.

If appropriate refinements have been found for all flaws, the modification selection function

fmodSel is called in line 17. Based on the current plan and its flaws, it selects and prioritizes those

plan modifications that are to be used for generating the refinements of the current plan. The cho-

sen modifications are applied to Pcurrent and the produced successor plans are inserted into the

search space fringe. The algorithm is finally called recursively on an updated fringe in which the

5It requires the sets of flaw detection and modification generation modules Det and Mod, the strategies fmodSel

and fplanSel
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strategy function fplanSel determines the next focal plan.

Note that the algorithm allows for a broad variety of planning strategies [7, 8], because the plan-

ning procedure is completely independent from the flaw detection and the modification generating

function.

Since our approach is based on a declarative model of task abstraction, the exploitation of

knowledge about hierarchical landmarks can be done transparently during generation of task ex-

pansion modifications: First, the respective modification generation function fmody is deployed with

a reference to the landmark table of the planning problem, which has been constructed off-line in

a pre-processing phase. During planning, each time an abstract task flaw indicates an abstract plan

step t(τ̄) the function fmody does not need to consider all methods provided in the domain model for

the abstract task t(τ̄). Instead it operates on a reduced set of applicable methods according to the

respective options O(t(τ̄)) in the landmark table.

It is important to see that the overall plan generation procedure is not affected by this domain

model reduction, neither in terms of functionality (flaw and modification modules do not interfere)

nor in terms of search control (strategies are defined independently and completeness of search

is preserved). In principle, non-declarative hierarchical planners, like the SHOP family [72] can

also profit from our landmark technique. The benefit will however be reduced due to the typ-

ically extensive usage of method application conditions, which cannot be analyzed during task

reachability analysis, in particular if the modeller relies on side effects of the method processing.
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Algorithm 6: Refinement(P1 . . . Pn,Π)

Input : P1 . . . Pn: Sequence of Plans, Π = 〈D,S0, pinit〉: Planning Problem

Output: Plan or failure

begin1

if n = 0 then2

return failure3

Pcurrent ← P1; Fringe← P2 . . . Pn; F ← ∅4

forall fdetx ∈ Det do5

F ← F ∪ fdetx (Pcurrent,Π)6

if F = ∅ then7

return Pcurrent8

M ← ∅9

forall Fx = F ∩ Fx with Fx 6= ∅ do10

forall f ∈ Fx do11

forall fmody ∈Mod with My ⊆ α(Fx) do12

M ←M ∪ fmody (Pcurrent, f, D)13

if f was un-addressed then14

Pnext ← fplanSel(Fringe)15

return Refinement(Pnext ◦ (Fringe− Pnext),Π)16

forall m ∈ fmodSel(Pcurrent, F,M) do17

Fringe← apply(m, Pcurrent) ◦ Fringe18

Pnext ← fplanSel(Fringe)19

return Refinement(Pnext ◦ (Fringe− Pnext),Π)20

end21
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4.5 Experimental and Empirical Analysis

This section presents experiments that evaluate the mechanism of our landmark pre-processing

technique in context of hierarchical planning approaches. The objective of our evaluation is to

measure the increase in planning efficiency gained through our technique. To this end, we measure

the efficiency factor. The efficiency is defined as a ratio of obtained solution quality to the required

efforts. The common efficiency metrics are:

• Search Space Size (SSS) – is the total number of plans visited for obtaining the first solution.

• Planning Time (CPU-Time) – is the total running time of the planning system in seconds.

All experiments were run on a machine with 3 GHz CPU and 256 MB Heap memory for the Java

VM. Before analyzing our results in sections 4.5.4 and 4.5.5, we will illustrate the hierarchical

planning domains and problem instances which are used in our experiment.

4.5.1 Experimental Domains

As sophistication and capabilities of planning systems increase, planning domains with match-

ing complexity need to be devised to assist in the analysis and evaluation of planning systems

and techniques. Therefore, we use two different domains in our experiments: UM-Translog and

Satellite.

UM-Translog Domain

UM-Translog domain was introduced by Andrews et al. [42]. It is used to evaluate hierarchical

task network planning systems [73–76].

The UM-Translog domain has also been adapted for hybrid planning by Schattenberg [46] in

order to evaluate his PANDA planner [7].
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In general, the UM-Translog domain illustrates different scenarios of the transportation and lo-

gistics process. Actually, it describes the ways in which different kinds of transportation goods

are delivered to specific locations by different types of vehicles (trucks, train,· · · ,etc.), through

appropriate infrastructure (roads, railroad lines, transport centers,· · · , etc). In this domain we can

examine a considerable number of different tasks such as loading goods, finding a path through the

infrastructure, and finally delivering specific goods such as hazardous and valuable packages.

Entities and Relations The UM-Translog domain provides a lot of entities or sorts (Location,

Package, Rout and vehicle) and relations (or predicates) as well as tasks and methods which can be

used to specify rather complex planning problems with a variety of plan interactions. Each entity

is organized as a sort hierarchy as follows:

• Location Sorts

As shown graphically in figure 4.7, location sorts are organized in a sort hierarchy. For ex-

ample, city location is the super sort of sub-sorts transport center (TCenter) and not a trans-

port center (Not TCenter). The sort location TCenter includes sub-sorts (Airport), (Hub)

and (Train Station). In general, a transportation center TCenter can be used for indirect

air/rail transportation. In contrast, Not TCenter is a super sort for sub-sorts (Post Office)

and (Customer Location).

The relations between different locations are expressed by predicates. For example, the

In Region relation is a rigid predicate. It determines the relation between city and region

(i.e., which city is located in a specific region). Note that a region can contain one or more

cities, while a city can include one or more city locations which are specified by rigid rela-

tion In city. The rigid predicate hub is used to connect a transport center with an airport or

train station whenever this transport center serves specific cities via the Serves relation.
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Figure 4.7 UM-Translog domain: Location sort hierarchy – ellipse shape nodes represent
abstract sorts, while box shape nodes represent concrete sorts (sorts for which constants
can be provided).

• Route Sorts

Figure 4.8 shows the relationships between different routes. In general, all locations are

assumed to be connected by routes. For example, the sub-sorts of route are Rail Route,

Road Route and Air Route, while the Local Road Route is a sub-sort of Road Route.

The rigid predicate Connect provides a link between two routes as the source and destination

route respectively. In order for a specific route to be usable, it should be available by the

flexible predicate Available.

• Vehicle Sorts

Figure 4.9 shows the different kinds of vehicles. For example, the Truck vehicle sort has

four sub-sorts Regular Truck, Auto Truck, Armored Regular Truck and Mail Truck.

Compatibility between routes and the kind of vehicle is determined via the rigid relation

RV Compatible, while the flexible relation At Vehicle determines the location of vehicle.

• Package Sorts

The UM-Translog domain has a number of package types such as Liquid, Valuable, Haz-
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Figure 4.8 UM-Translog domain: Route sort hierarchy – ellipse shape nodes represent
abstract sorts, while box shape nodes represent concrete sorts.

ardous, · · · , etc. For example the sub-sorts of a Perishable package are Food and Chemi-

cals (see Figure 4.10). The flexible relation At Package determines the location of package,

while the rigid relation PV Compatible determines the compatibility between package and

vehicle types.

In general, the sort hierarchy in our UM-Translog domain model is too large to display here.

It includes about 96 sorts. Therefore, our figures 4.7, 4.8, 4.9 and 4.10 only represent parts

of the UM-Translog sort hierarchy.

Tasks and Methods The UM-Translog domain has a deep expansion hierarchy in 51 methods

for decomposing 21 abstract tasks into 51 primitive tasks. We will illustrate some parts of this

hierarchy in more detail. The most abstract task in this domain is

Transport(?p : Package, ?s : Location, ?d : Location) =

〈{At Package(?p, ?s)}, {¬At Package(?p, ?s), At Package(?p, ?d)}}〉

The semantic of transport task is that the package ?p is to be transported from one location ?s to an-

other location ?d. Of course the transport task is an abstract task and can not be performed directly.

We will introduce only one refinement through transport method, the so-called transport pi ca de.

m : transport pi ci de = 〈transport(?p, ?s, ?d), 〈{`1 : Pickup(?`1.p),
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Figure 4.9 UM-Translog domain: Vehicle sort hierarchy – ellipse shape nodes represent
abstract sorts, while box shape nodes represent concrete sorts.

`2 : Carry(?`2.p, ?`2.s, ?`2.d), `3 : Deliver(?`3.p)},

{`1 ≺ `2, `2 ≺ `3},

{?p =?`1.p, ?p =?`2.p, ?p =?`3.p, ?s =?`2.s, ?d =?`2.d, ?s 6=?d}

{〈`1, Fees Collected(?`1.p), `3〉}〉〉

The transport task is decomposed into a task network with three sub-tasks: the Pick up task with

which to pick up the package from the source location. After that the package should be moved

(Carrying task) to the destination location and finally be delivered to its destination by Deliver

task. The corresponding constraints which exist in the current plan are modified according to the

variable, Ordering and causal link constraints in the method. The Pick up, Carry and Deliver tasks

are defined as follows:

Pick up(?p : Package) = 〈{¬Fees Collected(?p)}, {Fees Collected(?p)}〉
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Figure 4.10 UM-Translog domain: Package sort hierarchy – ellipse shape nodes represent
abstract sorts, while box shape nodes represent concrete sorts.

Carry(?p, ?s, ?d) = 〈{At Package(?p, ?s)}, {¬At Package(?p, ?s), At Package(?p, ?d)}〉

Deliver(?p : Package) = 〈{Fees Collected(?p)}, {Delivered(?p)}〉

The methods that refine the Pick up and Deliver tasks are categorized into the context for normal,

hazardous and valuable transport goods. That means, the fees should be collected in the normal

decomposition, while in the hazardous and valuable decompositions, a transit permission has to be

obtained or an insurance has to be covered. The corresponding delivery task requires these facts as

their pre-conditions and thereby ensure that the package is registered or insured during the entire

transportation process. The decomposition of the abstract task Carry involves choosing a suitable

path i.e., a sequence of routes from source to destination, and moving the package along that path

by applying a series of tasks. The remaining part of Tasks and Methods in the UM-Translog do-

main covers the different alternatives to refine new abstract tasks which are added from previous

refinements.
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Satellite Domain

The satellite domain was introduced in IPC6-3 by Long et al. [77]. It was motivated by a NASA

space application. The Satellite domain is an established benchmark in the field of non-hierarchical

planning. Its sorts and decomposition structure were adapted to hybrid planning [46]. It handles

the problem of managing scientific stellar observation carried out earth orbiting instrument plat-

forms. The equipment that is used to make observations consists of observation instruments each

with different characteristics in terms of data production, the so-called modes e.g. x-ray mode, and

appropriate calibration targets. Satellites can be pointed at different targets by moving them into

different directions.

The hierarchical Satellite domain consists of 6 sorts, 8 relations, 3 abstract tasks, 5 primitive tasks,

and 8 method declarations. We will list some of these components below.

Entities and Relations The Satellite domain comprises a set of sorts such as satellites, direc-

tions, instruments, and modes. The flexible relation Pointing is used for expressing the satellite

direction, while the rigid relation On Board determines which instruments the satellite is carry-

ing. The type of sensors an instrument provides is determined by the rigid relation Supports. The

Power Avail and Power On are two flexible relations reflecting that the energy is a limited re-

source on observation platforms. An instrument has to be switched off before another instrument

can be activated. Finally, the relation Have Image is supposed to hold in a state in which an image

of a specified phenomenon is taken.

Tasks and Methods The main task in the Satellite domain is the process of taking an image.

With specifications for sensor mode and phenomenon, this task has to cover the follows objectives:

1. Choosing a suitable instrument which indirectly determines the satellite that performs the

6IPC =⇒ International Planning Competition
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Table 4.3 Satellite domain: Abstract tasks.

Task Arguments Task

Task Name do observation(?d, ?m)

Parameters ?d : image direction, ?m: mode

Pre-condition true

effects have image(?d, ?m)

Task Name activate instrument(?s, ?i)

Parameters ?s : satellite, ?i: instrument

Pre-condition on board(?i, ?s)

effects power on(?i)

Task Name auto calibrate(?s, ?i)

Parameters ?s : satellite, ?i: instrument

Pre-condition on board(?i, ?s), power on(?i)

effects calibrated(?i)

main task.

2. The instrument has to be routed towards the desired direction and then calibrated.

3. The satellite has to be turned towards the direction of the target phenomenon and has to catch

an image.

In order to perform the above points, some of the tasks in tables 4.3 and 4.4 are applied. The

most abstract task in the Satellite domain is do observation with arguments for the required phe-

nomenon to observe and the mode to support. Therefore, the instrument has to prepared by acti-

vating the suitable instrument, then the satellite has to be turned in the desired direction and finally
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the image has to be taken. Figure 4.11 shows all the possible ways to solve the main abstract task

in the satellite domain which called do observation.

m : do observation ai tt ti = 〈do observation(?d, ?m), 〈{`1 : activate instrument(?`1.s, ?`1.i),

`2 : turn to(?`2.s, ?`2.to, ?`2.from),

`3 : take image(?`3.s, ?`3.dir, ?`3.i, ?`3.m)},

{`1 ≺ `2, `2 ≺ `3},

{?d =?`1.to, ?d =?`3.dir, ?m =?`3.m, ?`1.s =?`2.s, ?`1.s =?`3.s,

?`1.i =?`2.s, ?`1.i =?`3.s, ?`2.to 6=?`2.from, ?`2.to ∈ image direction},

{〈`1, power on(?`1.i), `3〉 , 〈`2, pointing(?`2.s, ?`2.to), `3〉}〉〉

If, however, the instrument is already achieved and it still is calibrated, the satellite just has to move

in the desired direction and take the image. If the satellite is already pointing at the desired direc-

tion, then the do observation task needs to prepare the instrument and then take the image. The

process of preparing the instrument is performed by two different methods m:activate instrument soff son ac

and m:activate instrument son ac. Through these methods the satellite can encapsulate the differ-

ent ways of getting system energy (see Figure 4.11).

4.5.2 Planning Problems

In this section, we briefly discuss the structure and solution properties of each planning problem in

the UM-Translog domain as well as in the Satellite domain.

Planning Problems in the UM-Translog Domain

UM-Translog problems differ in terms of the decomposition structure, because specific transporta-

tion goods are treated differently, e.g., toxic liquids in trains require completely different methods

than the transportation of regular packages in trucks. Therefore, we conducted our experiments

on qualitatively different problems by specifying various transportation means and goods without
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Table 4.4 Satellite domain: Primitive tasks.

Task Arguments Task

Task Name turn to(?s, ?d new, ?d prev)

Parameters ?s : satellite, ?d new: direction, ?d prev:direction

Pre-condition pointing(?s, ?d prev)

effects ¬pointing(?s, ?d prev), pointing(?s, ?d new)

Task Name switch on(?i, ?s)

Parameters ?i : instrument, ?s: satellite

Pre-condition on board(?i, ?s), power avail(?s)

effects power on(?i), calibrated(?i), ¬power avail(?s)

Task Name switch off(?i, ?s)

Parameters ?i : instrument, ?s: satellite

Pre-condition on board(?i, ?s), power on(?i)

effects ¬power on(?i), power avail(?s)

Task Name calibrate(?s, ?i, ?cd)

Parameters ?s: satellite, ?i : instrument, ?cd: calib direction

Pre-condition on board(?i, ?s), calibration target(?i, ?cd),

pointing(?s, ?cd), power on(?i)

effects calibrated(?i)

Task Name take image(?s, ?d, ?i, ?m)

Parameters ?s:satellite, ?d:image direction, ?i :instrument, ?m:mode

Pre-condition calibrated(?i), pointing(?s, ?d), on board(?i, ?s),

power on(?i), supports(?i, ?m)

effects have image(?d, ?m)
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Figure 4.11 The Satellite domain: Different levels of the decompostion of the abstract
task do observation.

further constraints such as limited transportation means, unavailability of transportation routes, etc.

• RegularTruck: This is the problem of transporting a normal package such as parcels from

one city to another.

• RegularTruck-3Location: This is an instance of the RegularTruck problem, but the decom-

position methods are used to perform further route planning over an intermediate locations

in the city.

• RegularTruck-2: The RegularTruck-2 problem is an instance of RegularTruck transporting

two different packages.
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• HopperTruck: The hopper truck is the problem of transporting a special kind of package

such as sand. Transportation requires a special kind of truck containing container. This truck

is loaded and unloaded via a chute that has to be connected to the truck during loading and

unloading.

• FlatbedTruck: This kind of truck is used to transport a special package such as lumber.

Flatbed truck requires a fixed equipment “crane” for loading and unloading the required

package.

• AutoTruck: This is a special kind of truck attached by a trailer to transport cars.

• ArmoredRegularTruck: Valuable packages such as money or valuable art is transported

by a special truck which is required to be an armored transportation vehicle being under

surveillance of special guards during loading and unloading.

• TankerTruck: This kind of truck is used to transport hazardous packages. A permission is

required for transporting this kind of package. In addition, warning signs have to be affixed

to truck and trailer. Additionally, filling and emptying have to be accomplished under safety

measures.

• MailTraincar: In this problem, an instance of regular package so-called mail is transported

by train. Using a train for transportation requires a suitable car and a locomotive to which

the car can be connected.

• RefrigeratedTraincar: This is used to transport food (i.e. should kept cool) by train.

• AutoTraincar: Like auto truck problem but using a train. The locomotive has to move to

the customer site first.

• AutoTraincar-bis: Another version of AutoTraincar problem, but the locomotive already is

at the customer site.
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• Airplane: Requires conveyor ramp for loading packages into the plane. Then the plane has

to be moved to the destination airport and unloaded there.

Planning Problems in the Satellite Domain

Compared to the UM-Translog domain which has a deep decomposition hierarchy , the Satellite

domain is a shallow structure. The satellite planning problems become more difficult by mod-

elling a repetition of observations, which means that a small number of methods is used multiple

times in different context of a plan. Therefore, the problems in our satellite domain experiment are

variations over the number of observation tasks, the number of available satellites, and the proper-

ties of the required image. All satellite planning problems are solvable, that means, the required

image mode is supported by at least one instrument of at least one satellite and each instrument

has identified a calibration target. It is important to mention that the decision whether to perform

the observations sequentially on one satellite or to distribute them over different satellites is made

during the process of developing the plan.

The following items show the satellite problems with x-observations, y-satellite, and z-modes.

• 1obs-1sat-1mod: This problem has one observation, one satellite and the required image has

one mode. In order to find a solution, the satellite is moved in a unique calibration direction.

Then, the instrument that is attached to the satellite is calibrated, and finally, the image is

taken.

• 1obs-2sat-1mod: This models the problem of one observation, two satellites, and the re-

quired image has one mode. The solution of this problem includes competition between

two satellites in order to accomplish the required task. Therefore, the winner satellite will

perform the required observation as in problem 1obs-1sat-1mod.

• 2obs-1sat-1mod: Similar to 1obs-1sat-1mod problem this problem covers two observations
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using one satellite and one mode. The solution is found sequentially. For one of these

observations, the solution of 1obs-1sat-1mod is used. Then, the satellite is moved towards

the other target in order to take the second image, yet without additional calibration.

• 2obs-1sat-2mod: In this problem two observations are performed by one satellite which

supports two different modes. The solution for one observation is found as with the first

problem, followed by changing the satellite direction and making a new calibration for the

second instrument in order to take the new image with the required mode.

• 2obs-2sat-1mod: This problem deals with two observation tasks which are performed by

two satellites the required images having the same mode. This problem can be solved by

two alternative solutions: either similar to the solution of the problem 2obs-1sat-1mod or

two symmetric 1obs-1sat-1mod solutions for each satellite.

• 2obs-2sat-2mod: This problem involves alternative solutions to solve the problem of two

observations, two different satellites and each observation has a special mode. First option is

similar to the 2obs-1sat-1mod problem, that means, two observations are accomplished by

one satellite. Of course this solution includes applying the necessary calibration procedure.

The second alternative contains two 1obs-1sat-1mod sub-solutions for every satellite, that

means, images are taken concurrently.

4.5.3 Experimental Planning Strategies

In order to quantify the practical performance gained by our hierarchical landmark technique, we

conducted a series of experiments with a number of planning strategies [8]. Therefore, we will

briefly review the ones on which we based our experiments.

Modification selection functions determine the shape of the search space, because they decide the

(priority of the) newly added plan refinements. We thereby distinguish selection principles that are
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based on a priorization of certain flaw or modification classes and strategies that opportunistically

choose from the presented set. The latter ones are called flexible strategies.

Representatives for inflexible strategies are the classical HTN strategy patterns that try to balance

task expansion with respect to other plan refinements.

The second branch in the planning strategy is a plan selection strategy. Plan selection functions

control the traversal through the refinement space that is provided by the modification selection

functions.

Flexible Strategies

Flexible strategies are capable of operating on a more general level by exploiting information about

the flaw and modification. They are neither flaw-dependent as they do not primarily rely on a flaw

type preference schema, nor modification-dependent as they do not have to be biased in favor of

specific modification types.

As for the flexible modification selections, we included the well established Least Committing

First (LCF) paradigm, a generalization of POCL strategies [78,79] that select those modifications

that address flaws for which the smallest number of alternative solutions has been proposed. It is

identified by the following equation:

〈ωi, ωj〉 ∈ fModSel
LCF (P, {f1, · · · , fm}, {ω1, · · · , ωn})

if ωi ∈ModsFor(fa, P ), ωj ∈ModsFor(fb, P )

and |ModsFor(fa, P )| < |ModsFor(fb, P )|

As we see, the LCF strategy does not depend on the types of issued flaws and modifications, it

compares the different alternatives of the modification plan in order to keep the branching factor

in the search space low.

The more recent strategies are HotSpot-based strategies: HotSpots denote those components in

a plan that are referred to by multiple flaws, thereby quantifying to which extent solving one
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deficiency may interfere with the solution options for coupled components. The Direct-Uniform-

HotSpot (DU) strategy consequently avoids those modifications which address flaws that refer to

HotSpot plan components.

〈ωi, ωj〉 ∈ fModSel
DU (P, {f1, · · · , fm}, {ω1, · · · , ωn})

if ωi ∈ModsFor(fa, P ), ωj ∈ModsFor(fb, P )

and
∑

f∈({f1,··· ,fm} fa) |f ∩ fa| <
∑

f∈({f1,··· ,fm} fb) |f ∩ fb|

For simplicity suppose we have the following example: The flaw class open pre-condition has two

flaws f1 = {tea, φa} and f2 = {teb, φb} and the abstract task flaw f3 = {tea}. Then, by applying

the DU strategy, we found that both flaws f1 and f3 refer to the same plan step tea. Therefore, they

have the same HotSpot values which equal 1, while the HotSpot value of flaw f2 is 0 because it

does not appear in another flaw class. Therefore, the DU function selects the plan modification of

flaw f2 first.

As a generalization of singular HotSpots to commonly affected areas of plan components, the

HotZone (HZ) modification selection takes the connections between HotSpots into account and

tries to avoid selecting modifications that deal with these clusters.

On the other hand, the plan selection strategies in our experimental evaluation were based on the

following strategies:

The least commitment principle on the plan selection level is represented in three different ways: (i)

The Fewer Modifications First (FMF) strategy, which prefers plans for which a smaller number of

modification (mods) options has been announced, (ii) The Less Constrained Plan (LCP) strategy,

which is based on the ratio of plan steps to the number of constraints on the plan, and (iii) The

Smaller Detection Ratio (SDR) strategy, which relates the number of detected flaws to the number

of plan steps.

〈Pi, Pj〉 ∈ fPlanSelFMF (P1, · · · , Pn) if |mods(Pi)| < |mods(Pj)|
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〈Pi, 〉 ∈ fPlanSelLCP (P1, · · · , Pn) if |≺i|+|V Ci|+|CLi|
|TEi| <

|≺j |+|V Cj |+|CLj |
|TEj |

〈Pi, Pj〉 ∈ fPlanSelSDR (P1, · · · , Pn) if |flaws(Pi)|
|TEi| <

|flaws(fj)|
|TEj |

According to the definition of the A∗ heuristic function7 that is dependent on the sum of actual

and estimated future costs, Gerevini et al. [80, 81] identified two planning strategies. The first

strategy, the so-called CLOC, uses the number of causal links (CL) as the actual cost and the

number of open pre-conditions (OC) as the estimation cost. While the second strategy, SOC, uses

the number of plan steps (S) instead of CL as the actual cost.

〈Pi, Pj〉 ∈ fPlanSelSOC (P1, · · · , Pn) if
|TEi|+|flaws(Pi)∩FOpenPrec|
|TEj |+|flaws(Pj)∩FOpenPrec| < 1

〈Pi, Pj〉 ∈ fPlanSelCLOC (P1, · · · , Pn) if
|CLi|+|flaws(Pi)∩FOpenPrec|
|CLj |+|flaws(Pj)∩FOpenPrec| < 1

Schattenberg [46] developedCLOC and SOC strategies to take into account wide-ranging changes

of task expansions modifications to the plan structure. This development is done by extending the

flaw census to the abstract task class (A). Consequently, considering abstract tasks requires some

effort because of the need to deal with future tasks and to maintain the causal structure of the

expansion networks. Schattenberg’s strategies SOCA and CLOCA are represented as follows:

〈Pi, Pj〉 ∈ fPlanSelSOCA (P1, · · · , Pn) if
|TEi|+|flaws(Pi)∩(FOpenPrec∪FAbstractTask)|
|TEj |+|flaws(Pj)∩(FOpenPrec∪FAbstractTask)| < 1

〈Pi, Pj〉 ∈ fPlanSelCLOCA(P1, · · · , Pn) if
|CLi|+|flaws(Pi)∩(FOpenPrec∪FAbstractTask)|
|CLj |+|flaws(Pj)∩(FOpenPrec∪FAbstractTask)| < 1

The strategy SOCA depends on the number of plan steps that includes abstract tasks, but it does

not take into consideration that the expansion of an abstract task introduces several plan steps.

Therefore, it has been improved into a new strategy, the so-called PSAOCA. PSAOCA strategy

depends on a new heuristic function called PSA to retrieve the number of plan modifications in a

plan’s history that have added a task expression.
7A∗ search will expand nodes that have the lowest value for g(n) +h(n), where g(n) is the (exact) cost of the path

from the initial state to the current node and h(n) is an estimate of the cost of the cheapest path from node n to the

goal node.
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〈Pi, Pj〉 ∈ fPlanSelPSAOCA(P1, · · · , Pn) if
PSA(Pi)+|flaws(Pi)∩(FOpenPrec∪FAbstractTask)|
PSA(Pj)+|flaws(Pj)∩(FOpenPrec∪FAbstractTask)| < 1

The HotSpot concept can be lifted to the level of plan selection: The Fewer HotZone (FHZ) strat-

egy prefers plans with fewer HotZone clusters. The rationale for this search principle is to focus

on plans in which the flaws are more closely related and are hence candidates for an early decision

concerning compatibility of the refinement options. For (FHZ) we use

〈Pi, Pj〉 ∈ fPlanSelFHZ (P1, · · · , Pn) if |clusters(flaws(Pi))| < |clusters(flaws(Pj))|

where the clusters function considers a set of flaws in its input and returns a set of sets of flaws.

Each set represents the inter-connected members of one HotZone.

The next planning search strategy operates on the HotSpot principle implemented on plan modifi-

cations. The Fewer Modification-based HotSpots (FMH) function summarizes for all refinement-

operators that are proposed for a plan the HotSpot values of the corresponding flaws. It prefers

those plans for which the ratio of plan modifications to accumulated HotSpot values is less. By

doing so, this search schema focuses on plans that are expected to have less interfering refinement

options.

Inflexible Strategies

Inflexible strategies are a set of strategies representing a fixed preference schema on the flaw type

they want to get eliminated primarily and then select appropriate modification methods. In this

subsection, we will give a short systematic overview of the possible instances of inflexible selection

schemas for the modification selection strategy and the corresponding plan selection strategy.

The first strategy is a strategy for HTN planning systems called UMCP. The UMCP strategy prefers

to decompose abstract tasks until the primitive plan level is reached. We can simply represent it by

the following function:

fModSel
UMCP = fModSel

Pref−MExpandTask

8

8Refer to Definition 8 in Chapter 3 which defines the modification selection strategy function
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There are several plan selection strategies that can be used in a UMCP planner to decide which

plan will be selected from plan space refinement such as:

1. Breadth-first Search: The plans are picked up from the induced search space in the order

in which they are inserted: first in, first out.

fPlanSelUMCP = fPlanSelPref−First P lan

where 〈Pi, Pj〉 ∈ fPlanSelF irst P lan(P1, · · · , Pn) for 1 ≤ i < j ≤ n

2. Depth-first Search: The plans are picked up from the refinement search space in the reverse

order in which they are inserted: last in, first out.

fPlanSelUMCP = fPlanSelPref−Last P lan where

〈Pi, Pj〉 ∈ fPlanSelLast P lan(P1, · · · , Pn) if i = n or1 ≤ i < j < n

3. Best-first Search: The plans in the refinement search space are ranked using a heuristic

evaluation function and the plan which has the lowest rank is picked up first.

In later work Tsuneto [82] developed a UMCP planner strategy by introducing the fewest alter-

natives first heuristic technique for selecting task expansions which has the minimal number of

alternatives9. Therefore, the new UMCP selection strategy is:

fModSel
UMCP = fModSel

Pref−MExpandTask
+ fModSel

Pref−LCF

with the same plan selection functions.

It is furthermore important to mention that the strategy functions can be combined into selection

cascades (denoted by the symbol +) in which succeeding components decide those cases for which

the result of the proceeding ones is a tie.

9All possible decomposition methods.
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The SHOP10 modification selection strategy prefers task expansion for the abstract tasks in the

order in which they are to be executed. The SHOP planning system has a greater expressiveness

than other HTN systems because its current world state is tracked and modified, beginning at the

initial state until the task that is bound to be decomposed next. The SHOP system’s strategy is

represented as follows:

fModSel
SHOP = fModSel

Pref−≺ + fModSel
Pref−MExpandTask−1

with fPlanSelSHOP = fPlanSelPref−first P lan + fPlanSelPSAOCA

Modification selection strategy fModSel
Pref−≺ reasons about the ordering of the plan steps. Examples for

doing this ordering range from using heuristics for flaw selection strategies [83, 84] over doing

resource planning [85] to using planning algorithms that depend on an early addressing flaws

[72, 86]. The modification selection strategy fModSel
Pref−≺ is identified by the following equation:

〈ωi, ωj〉 ∈ fModSel
Pref−≺(P, {f1, · · · , fm}, {ω1, · · · , ωn})

ifωi ∈ModsFor(fa, P ), ωj ∈ModsFor(fb, P )

and ∀tea ∈ (fa ∩ TE), ∀teb ∈ (fb ∩ TE) :

(fa ∩ TE 6= φ ∧ fb ∩ TE 6= φ)⇒ tea ≺ teb ∈≺

Note that the inverse of a strategy, e.g. plan or modification selection strategy, means that the

results of said strategy are inverted.

The third inflexible strategy is the expand-then-make-sound (EMS) schema which alternates task

expansion modifications with other classes of modifications, e.g. expanding an abstract task in

case no other flaws are issued. It is formalized by simply preferring resolving threats and open

pre-conditions over the task expansion of tasks [41, 87].

fModSel
EMS = fModSel

Pref−FThreat
+ fModSel

Pref−FOpenPrec
+ fModSel

Pref−MExpandTask

with fPlanSelEMS = fPlanSelPref−first P lan

10It is the well-known hierarchical planning system
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4.5.4 Evaluation Results In The UM-Translog Domain

The set of UM-Translog domain problems 4.5.2 is used as experimental environment to evaluate

our approach. Each problem runs three times on the same configuration (same modification selec-

tion strategy and plan selection strategy). We calculated the average values of three runs. Every

run of the planning system was limited to a real time consumption of 9,000 seconds and an explo-

ration of at most 5,000 plans. If a run of the planning problem failed to find a solution within these

limits it was considered a non-terminating run and excluded from the computation of the average.

Dashes indicate that the run of a planning problem exceeded the previous limitation.

The experimental results are categorized according to the modification selection strategy: In-

flexible strategy, Flexible strategy and a combination of different strategies.

The inflexible strategy set includes the three basic strategies: fModSel
UMCP , fModSel

EMS , and fModSel
SHOP with

corresponding plan selection as mentioned before.

Table 4.5 shows the runtime behavior of our hierarchical Landmark system (HLM) in terms of

the size of the average search space and CPU time consumption for problems in the UM-Translog

domain. Note that the CPU-time denotes the total running time of the planning system in seconds,

including the pre-processing phase. The column labeled PANDA shows the reference system’s be-

havior, the column labeled HLM shows the performance of a version performing a pre-processing

phase.

Reviewing the overall result in table 4.5, it is quite obvious that the landmark pre-processing pays

off in all inflexible strategy configurations and problems. It does so in terms of search space size

Space as well as in terms of runtime CPU-Time. The average performance improvement over all

inflexible strategies and over all problems in the UM-Translog domain is about 52% in search space

size and about 49.2% in planning time as is documented in table 4.5.

The biggest gain is achieved by the UMCP strategy. It saves about 11% more than other inflexible

strategies (i.e., EMS and SHOP strategies).



4.5 Experimental and Empirical Analysis 101

Table 4.5 Results for the UM-Translog domain with inflexible strategies.

Problem Inflexible Modification Strategy
PANDA HLM

Space CPU-Time Space CPU-Time

Hopper Truck

UMCP 96 187 58 122

EMS 351 696 147 295

SHOP 160 323 89 212

Flatebed Truck

UMCP 164 344 63 149

EMS – – 1571 3797

SHOP 243 595 98 257

Auto Truck

UMCP 216 535 137 408

EMS 854 1889 405 976

SHOP 226 558 164 433

Regular Truck3 Location

UMCP 216 551 177 506

EMS 592 1278 211 507

SHOP 163 479 146 406

Regular Truck 2 Region

UMCP 150 293 111 219

EMS 498 918 127 262

SHOP 146 283 106 241

Regular Truck 2

UMCP 1396 4893 308 1263

EMS – – – –

SHOP – – 926 4005

Regular Truck 1

UMCP 110 215 57 127

EMS 443 876 114 235

SHOP 409 911 80 177

Mail Traincar

UMCP 397 994 92 229

EMS 1314 2641 879 1806

SHOP 632 1911 121 274

Refrig. RegularTraincar

UMCP 400 952 90 244

EMS 1030 2056 500 1048

SHOP 777 1735 173 353

Auto Traincarbis

UMCP 413 1168 161 543

EMS – – 2558 6447

SHOP 541 1282 247 963

AirPlane

UMCP 91 253 70 215

EMS – – 784 2517

SHOP 335 821 150 450
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On the other hand, the flexible strategy set includes the following strategies: fModSel
LCF , fModSel

HZ ,

fModSel
DA and fModSel

DU . All these strategies implementations use fPlanSelFMF as the plan selection strat-

egy.

The results of our approach using flexible strategy are shown in tables 4.6 and 4.7. The average

performance improvement over all flexible strategies and over all problems in the UM-Translog

domain is about 39.3% in search space size and 34.27% in planning time.

As documented in tables 4.6 and 4.7, the LCF strategy is the strategy that benefits the most from

our pre-processing approach. It saves about 35% more time than other flexible planning strategies

(i.e., HZ, DA and DU strategies).The LCF strategy is not only the best performing strategy, but

also maintains its performance across the domains.

In general, the flexible and inflexible strategies profit from the hierarchical landmark technique.

The flexible planning strategies are very powerful general-purpose procedures and in addition offer

potential to be improved by pre-processing methods.

The candidate set of strategy combinations includes:

fModSel
LCF + fModSel

HZ with fPlanSelFMH + fPlanSelFMF

fModSel
LCF + fModSel

EMS with fPlanSelFMH + fPlanSelFMF

fModSel
HZ + fModSel

LCF with fPlanSelFMH + fPlanSelFMF

fModSel
LCF + fModSel

DU with fPlanSelFHZ + fPlanSelFMF

fModSel
HZ + fModSel

LCF with fPlanSelFMZ + fPlanSelLCP + fPlanSelFMF

fModSel
EMS + fModSel

LCF with fPlanSelSOCA

fModSel
EMS + fModSel

LCF with fPlanSelFMH + fPlanSelFMF

fModSel
HZ + fModSel

LCF with fPlanSelPSAOCA

Tables 4.8, 4.9 and 4.10 show the runtime behavior of our hierarchical Landmark system (HLM)

with a lot of strategy comboinations.

As documented in tables 4.8, 4.9 and 4.10, our HLM system profits from the strategy combi-
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Table 4.6 Results for the UM-Translog domain with flexible strategies-1.

Problem Inflexible Modification Strategy
PANDA HLM

Space CPU-Time Space CPU-Time

Hopper Truck

LCF 100 187 55 118

HZ 71 149 55 121

DA 243 598 144 352

DU 339 692 101 225

Flatebed Truck

LCF 120 264 62 179

HZ 294 700 159 399

DA 181 395 99 237

DU – – 1047 2601

Auto Truck

LCF 211 593 155 470

HZ 223 547 197 527

DA 1250 4695 644 2077

DU 742 1904 459 1304

Regular Truck-3 Location

LCF 255 630 162 463

HZ 299 745 191 474

DA 257 615 239 562

DU – – 1508 4097

Regular Truck-2 Region

LCF 100 198 78 173

HZ 75 155 55 117

DA 157 350 114 257

DU 447 859 160 460

Regular Truck 2

LCF 1479 5047 327 1278

HZ – – – –

DA – – 723 2560

DU – – – –

Regular Truck 1

LCF 139 267 127 222

HZ 75 171 55 137

DA 252 578 148 352

DU 198 391 117 258
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Table 4.7 Results for the UM-Translog domain with flexible strategies-2.

Problem Inflexible Modification Strategy
PANDA HLM

Space CPU-Time Space CPU-Time

Mail Traincar

LCF 759 1819 79 209

HZ 104 311 81 224

DA 873 2604 641 2032

DU 446 1193 424 1090

Refrig. Regular Traincar

LCF 752 1878 90 225

HZ 104 273 76 196

DA 812 2414 588 1958

DU 536 1319 307 775

Auto Traincar bis

LCF 1280 3573 227 926

HZ 751 1712 701 1616

DA 216 732 184 705

DU 1700 4609 1390 4018

AirPlane

LCF 287 827 247 798

HZ 509 1517 345 1323

DA 282 799 172 620

DU – – 643 2135

nations procedure. It saves between 36% and 61% in search space size, and between 26% and 58%

in planning time.

In general, our experiments show that transportation tasks that include special goods and trans-

portation means, e.g., the transport of auto-mobiles, frozen goods, and mail via train, achieve

better performance than other transportation tasks. Here the gain is between 32% and 69%.

4.5.5 Evaluation Results In The Satellite Domain

Next, we will look at the performance of our Hierarchical landmark pre-processing technique used

on planning problems in the Satellite domain. Each problem includes a different number of ob-

servations, a number of satellites and a number of modes. As mentioned before, the experimental
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Table 4.8 Results for the UM-Translog domain with strategy combinations-1.

Problem Mod. Sel. Plan Sel.
PANDA HLM

Space CPU-Time Space CPU-Time

Hopper Truck

LCF+HZ FMH+FMF 72 147 41 95

LCF+EMS FMH+FMF 101 211 72 174

HZ+LCF FMH+FMF 239 724 47 166

LCF+DU FHZ+FMF 75 155 46 99

HZ+LCF FHZ+LCP+FMF 71 143 54 115

EMS+LCF SOCA 505 974 225 525

EMS+LCF FMH+FMF – – 1290 3811

HZ+LCF PASOCA 82 211 59 156

Flatebed Truck

LCF+HZ FMH+FMF 81 182 58 140

LCF+EMS FMH+FMF 120 269 90 216

HZ+LCF FMH+FMF 85 235 53 260

LCF+DU FHZ+FMF 96 216 54 129

HZ+LCF FHZ+LCP+FMF 130 299 69 162

EMS+LCF SOCA – – 927 2826

EMS+LCF FMH+FMF – – 1791 5214

HZ+LCF PASOCA 131 388 69 206

Auto Truck

LCF+HZ FMH+FMF 119 301 85 236

LCF+EMS FMH+FMF 191 443 114 298

HZ+LCF FMH+FMF 221 724 161 691

LCF+DU FHZ+FMF 129 314 92 251

HZ+LCF FHZ+LCP+FMF 183 469 157 413

EMS+LCF SOCA 1629 3949 374 1498

EMS+LCF FMH+FMF – – 1268 3314

HZ+LCF PASOCA 312 969 201 696

Regular Truck-3 Location

LCF+HZ FMH+FMF 149 377 73 203

LCF+EMS FMH+FMF 234 613 105 206

HZ+LCF FMH+FMF 112 411 80 278

LCF+DU FHZ+FMF 241 483 131 370

HZ+LCF FHZ+LCP+FMF 190 458 115 307

EMS+LCF SOCA 1317 3053 327 987

EMS+LCF FMH+FMF 3163 8448 300 868

HZ+LCF PASOCA 292 1161 87 290
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Table 4.9 Results for the UM-Translog domain with strategy combinations-2.

Problem Mod. Sel. Plan Sel.
PANDA HLM

Space CPU-Time Space CPU-Time

Regular Truck-2 Region

LCF+HZ FMH+FMF 70 142 42 98

LCF+EMS FMH+FMF 106 216 81 182

HZ+LCF FMH+FMF 60 154 45 141

LCF+DU FHZ+FMF 83 160 46 105

HZ+LCF FHZ+LCP+FMF 75 152 54 122

EMS+LCF SOCA 670 1470 129 308

EMS+LCF FMH+FMF – – 1260 3283

HZ+LCF PASOCA 111 298 59 166

Regular Truck 2

LCF+HZ FMH+FMF – – 275 1237

LCF+EMS FMH+FMF – – 293 1144

HZ+LCF FMH+FMF – – 429 2327

LCF+DU FHZ+FMF 753 2755 295 1262

HZ+LCF FHZ+LCP+FMF – – 787 3544

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF – – – –

HZ+LCF PASOCA – – – –

Regular Truck 1

LCF+HZ FMH+FMF 72 149 41 92

LCF+EMS FMH+FMF 109 225 78 179

HZ+LCF FMH+FMF 140 388 45 138

HZ+LCF FHZ+LCP+FMF 74 153 54 120

LCF+DU FHZ+FMF 84 173 46 104

EMS+LCF SOCA 495 657 141 314

EMS+LCF FMH+FMF – – 304 790

HZ+LCF PASOCA 79 202 59 203

Mail Traincar

LCF+HZ FMH+FMF 380 1241 89 221

LCF+EMS FMH+FMF 590 1805 138 313

HZ+LCF FMH+FMF 94 296 84 279

LCF+DU FHZ+FMF 559 1450 64 160

HZ+LCF FHZ+LCP+FMF 93 213 70 171

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF – – 2131 7937

HZ+LCF PASOCA 214 621 172 602
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Table 4.10 Results for the UM-Translog domain with strategy combinations-3.

Problem Mod. Sel. Plan Sel.
PANDA HLM

Space CPU-Time Space CPU-Time

Refrig. Regular Traincar

LCF+HZ FMH+FMF 384 1240 89 215

LCF+EMS FMH+FMF 634 1861 138 315

HZ+LCF FMH+FMF 178 621 74 260

LCF+DU FHZ+FMF 446 1074 64 159

HZ+LCF FHZ+LCP+FMF 92 198 70 172

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF – – – –

HZ+LCF PASOCA 208 723 172 554

Auto Traincar bis

LCF+HZ FMH+FMF 342 1137 144 421

LCF+EMS FMH+FMF 460 1425 177 477

HZ+LCF FMH+FMF 466 1587 456 1362

LCF+DU FHZ+FMF 365 1044 107 328

HZ+LCF FHZ+LCP+FMF 357 958 278 770

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF – – 2074 7347

HZ+LCF PASOCA 683 2411 615 2076

AirPlane

LCF+HZ FMH+FMF 164 507 141 435

LCF+EMS FMH+FMF 142 413 167 471

HZ+LCF FMH+FMF 158 588 99 422

LCF+DU FHZ+FMF 257 749 200 621

HZ+LCF FHZ+LCP+FMF 280 777 240 700

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF – – – –

HZ+LCF PASOCA 349 1853 271 1006
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Table 4.11 Results for the Satellite domain with inflexible strategies.

Problem Inflexible Modification Strategy
PANDA HLM

Space CPU-Time Space CPU-Time

1Obs-1Sat-1Mod

UMCP 83 91 83 91

EMS 68 74 65 60

SHOP 61 67 57 61

1Obs-2Sat-1Mod

UMCP 31 36 34 38

EMS 49 55 47 53

SHOP 103 109 105 111

2Obs-1Sat-1Mod

UMCP 1132 1336 883 1035

EMS 1942 2856 1586 2608

SHOP 251 270 237 264

2Obs-1Sat-2Mod

UMCP 3072 4151 278 1097

EMS – – 1219 1579

SHOP – – – –

2Obs-2Sat-1Mod

UMCP 458 1215 278 1097

EMS – – 1219 1579

SHOP – – 1406 1780

2Obs-2Sat-2Mod

UMCP 4376 5891 1062 1270

EMS – – – –

SHOP – – – –

results are categorized according to the modification selection strategies: Inflexible strategy, Flex-

ible strategy and finally a combination of different strategies.

Although the problem instances of the Satellite domain appear to be very small, the resulting

search space is surprisingly large. Therefore, the evaluation of the satellite observation planning

problems are very difficult.

In general, the Satellite domain does not benefit significantly from the landmark technique due

to its shallow decomposition hierarchy. We are able, however, to solve problems for which the

participating strategies do not find solutions within the given resource bounds such as problems

2Obs-1Sat-1Mod,2Obs-2Sat-1Mod and 2Obs-2Sat-2Mod with HZ strategy.
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Table 4.12 Results for the Satellite domain with flexible strategies.

Problem Inflexible Modification Strategy
PANDA HLM

Space CPU-Time Space CPU-Time

1Obs-1Sat-1Mod

LCF 90 95 86 93

HZ 62 76 61 64

DA 57 67 56 60

DU 137 146 100 107

1Obs-2Sat-1Mod

LCF 144 154 71 77

HZ 120 132 57 62

DA 65 75 68 78

DU 239 270 139 150

2Obs-1Sat-1Mod

LCF 1355 1551 1120 1338

HZ – – 1281 4764

DA 1239 2136 782 1131

DU – – – –

2Obs-1Sat-2Mod

LCF – – 3022 4069

HZ – – – –

DA – – 832 1301

DU – – – –

2Obs-2Sat-1Mod

LCF – – 608 1174

HZ – – 1094 1338

DA 2190 6850 2186 6841

DU – – – –

2Obs-2Sat-2Mod

LCF – – – –

HZ – – 871 1114

DA 1155 1672 142 175

DU – – – –
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Table 4.13 Results for the Satellite domain with strategy combinations-1.

Problem Mod. Sel. Plan Sel.
PANDA HLM

Space CPU-Time Space CPU-Time

1Obs-1Sat-1Mod

LCF+HZ FMH+FMF 38 41 37 42

LCF+EMS FMH+FMF 46 51 46 53

HZ+LCF FMH+FMF 44 53 35 38

LCF+DU FHZ+FMF 67 72 67 72

HZ+LCF FHZ+LCP+FMF 58 62 53 60

EMS+LCF SOCA 55 61 53 59

EMS+LCF FMH+FMF 31 36 29 33

HZ+LCF PASOCA 63 68 35 37

1Obs-2Sat-1Mod

LCF+HZ FMH+FMF 142 159 77 95

LCF+EMS FMH+FMF 38 42 28 39

HZ+LCF FMH+FMF 82 90 70 82

LCF+DU FHZ+FMF 126 137 117 132

HZ+LCF FHZ+LCP+FMF 118 131 116 128

EMS+LCF SOCA 46 52 42 48

EMS+LCF FMH+FMF 46 52 45 50

HZ+LCF PASOCA 120 131 112 120

2Obs-1Sat-1Mod

LCF+HZ FMH+FMF 602 788 539 708

LCF+EMS FMH+FMF 964 1631 903 1428

HZ+LCF FMH+FMF 394 480 321 374

LCF+DU FHZ+FMF 1135 1319 901 1030

HZ+LCF FHZ+LCP+FMF 1468 1699 1216 1474

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF 645 1215 642 1211

HZ+LCF PASOCA – – – –

2Obs-1Sat-2Mod

LCF+HZ FMH+FMF – – – –

LCF+EMS FMH+FMF – – – –

HZ+LCF FMH+FMF – – – –

LCF+DU FHZ+FMF – – – –

HZ+LCF FHZ+LCP+FMF – – – –

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF – – 2615 3848

HZ+LCF PASOCA – – – –
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Table 4.14 Results for the Satellite domain with strategy combinations-2.

Problem Mod. Sel. Plan Sel.
PANDA HLM

Space CPU-Time Space CPU-Time

2Obs-2Sat-1Mod

LCF+HZ FMH+FMF – – – –

LCF+EMS FMH+FMF – – – –

HZ+LCF FMH+FMF – – – –

LCF+DU FHZ+FMF – – 4252 5294

HZ+LCF FHZ+LCP+FMF – – – –

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF 1482 2957 1470 2893

HZ+LCF PASOCA – – – –

2Obs-2Sat-2Mod

LCF+HZ FMH+FMF – – – –

LCF+EMS FMH+FMF – – 489 646

HZ+LCF FMH+FMF – – – –

LCF+DU FHZ+FMF – – – –

HZ+LCF FHZ+LCP+FMF – – – –

EMS+LCF SOCA – – – –

EMS+LCF FMH+FMF 1230 1839 992 1625

HZ+LCF PASOCA – – – –
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Chapter 5

Landmark Planning Strategies

An AI planning system searches a space of partially-developed plans in order to find a solution

plan that solves a given planning problem. In general, for a given planning problem, a planner

considers a goal as a skeletal plan and successively refines it (i.e. by adding/deleting plan steps or

constraints in/from the current plan) until a plan (solution) that satisfies the given planning prob-

lem is created. Since the search space might be infinite, it is important to search for a solution plan

in an efficient way. The efficiency of a planning system depends on the planner’s search strategy

(refinement strategy).

In order to understand how refinement strategies can improve the efficiency of hierarchical plan-

ners, we will address plan refinement strategies for hierarchical planning in this chapter. After that,

we will introduce novel refinement strategies for hierarchical planning, inspired by the idea of the

hierarchical landmarks.

5.1 Refinement Strategy

A lot of AI planning systems rely on the idea of refinement search. This means that the planner

steadily refines partially-developed plans into more detailed plans, until it finds a final solution plan

113
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that achieves the problem requirments. To this end, the refinement search strategy depends on de-

tecting flaws (i.e., violations of the solution criteria) and proposing possible ways or modifications

(i.e., change in the current plan data structure) that can solve them. In general, planning systems

explore only a fraction of the search space which is theoretically reachable (See Figure 5.1). One

always wants to keep this fraction as small as possible, since the runtime of a planning system

correlates to the number of explored search nodes.

Initial plan

Explored search space

Solution plan

Reachable search space 

Figure 5.1 Graphical representation of search process

For example, in order to transform the current partial plan plan i (See Figure 5.2) into a more

specific plan (plan refinement), a planner refines plan i by decomposing task t1 or task t2 by apply-

ing the appropriate method, by binding variable constraints X , by adding an ordering constraints

between tasks, or by solving a causal link thread. Suppose the planner chooses to refine the vari-

able constraints X first. In this case, there are three different partial plans in the refinement search

space. In each plan, the variable X has different values. As shown in figure 5.3, these plans are

plan ia, plan ib and plan ic.

Suppose the planner concludes, by examining the resulting partial plans that the partial plan

Plan ic can not lead to a consistent plan. The planner can therefore, prune or omit the partial plan

Plan ic. Now, we assume that the planner carries on with the partial plan Plan ia and chooses
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An items that need 
to be refined

Possible ways to  

refine task t1

t1
t2

t111 t112 t113

Plan_i

11m11 12m12 21m21 22m22

Possible ways to 
refine task t2

constraint XX
Variable 

constraint XX

X = v1 X = v2 X = v3

Possible ways to 
refine variable Xrefine task t2
refine variable X

Figure 5.2 Possible ways to refine partial plan plan i

to refine task t1 by applying methods m11 and m12. This refinement produces two different partial

plans Plan iam11 and Plan iam12. Therefore, a refinement search strategy helps a planner to

compare the available plan refinement options in order to focus more efficiently towards a solution

plan. In general, refinement search strategies identify how and in what order these refinements are

done.

Plan_i

Plan_ia Plan_ib Plan_ic

11
Plan_iam11

Plan_i
12

Plan_iam12

Refine task t1

Figure 5.3 Part of a refinement search space of concerning the partial plan plan i
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5.2 Least Commitment Strategies

In general, a lot of refinement search strategies for both action-based planning and hierarchical

planning use a ’least commitment strategy’ technique. This is any refinement search strategy that

tries to avoid unnecessary branching in the search tree by either postponing specific refinements

or performing the necessary changes in the current partial plans. A lot of contributions have been

made regarding least commitment techniques. In this section we will illustrate them.

Sacerdoti is considered the be first researcher who introduced the notion of least commitments

[16]. In his planner NOAH, instead of using a linear sequence of plan steps in partial plans, he

used a partially-ordered graph to identify the step ordering between plan steps in a partial plan.

His experiments proved that using a partially-ordered graph avoids unnecessary commitments to

a particular step ordering when achieving sub-goals. This will cause a reduction of search space

and thus an improvement in planning efficiency [6]. In order to keep a plan that has un-ordered

plan steps consistent, Chapman [15] introduced the Model Truth Criterion(MTC) to evaluate con-

ditions in his planner. The evaluation value of a condition c determines if the condition c should

be achieved at the moment or be postponed. Chapman’s planner terminates and returns a solution

plan when all conditions in the plan are satisfied. Another way to evaluate the value of condition c

is to use causal links which was introduced by Tate [18]. MTC handles threats by inserting another

establishing plan step between the threatening step and the consuming step. The causal links in a

plan however, should not be violated by another plan step. If the causal link is violated, the plan is

considered inconsistent and pruned from the search space [16].

On the other hand, least commitment techniques can rely on variable binding. In action-based

planning such as [10, 18], once the operator has been introduced in a partial plan, the operator

variables are instantiated immediately into constant values. In contrast to that, Yang et al. [88],

Stefik [89] and Veloso et al. [90] preferred to postpone instantiating variables until it becomes

absolutely necessary, Because instantiating operator variables directly after introducing operator
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in the plan will produce a huge search space (i.e., if a variable has 20 possible values, then this

will create 20 branches in the search space). Therefore, the planner can delay a variable binding

decision until the variables are more constrained.

On the other hand, SNLP uses least commitment technique as follows: at every refinement cy-

cle, all threats are resolved before satisfying the next open condition in the current partial plan.

In general, threats are solved by three different methods: the Demotion process which moves the

threatening step before the step that produces the protected literal in the causal link. The Promo-

tion process that moves the threatening step behind the step whose pre-condition the causal link

protects. Finally, Separation binds variables so that the effects of the threatening step and the cor-

responding condition of the causal link will not unify.

After that, Joslin et al. [78] proposed a new technique,LCFR1. The LCFR strategy is considered

a generalization of the Delay-Unforced threats (DUnf) strategy [91]. DUnf prefers to solve threat

flaws before openCondition flaws. LCFR strategy has a uniform mechanism to handle all kinds of

flaws. LCFR strategy prefers a flaw that has the lowest possible repair cost at a given node. The re-

pair cost is defined as the number of generated nodes which represent all the possible ways to solve

the corresponding flaw. Peat et al. [92] found that delaying threat removal is better than solving

it immediately because performing other necessary planning operations may cause a threatening

situation to go away. Their results have been picked up by Schubert et al. [80] who proposed

simple but effective plan metrics for an A∗ heuristic.

On the other hand, planning strategies of the hierarchical paradigm differ in the ways they select

appropriate methods and interleave the decomposition of tasks with measures to resolve causal

interactions between tasks.

In general, there are some considerations that help to choose a commitment strategy for hierar-

chical planning.

1LCFR =⇒ Least-Cost Flaw Repair
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1. Refine abstract tasks first or refine constraints first? In this least commitment strategy,

the process of constraint refinements is postponed until the planner gets a primitive plan.

Since some variable constraints and ordering constraints might not be fully instantiated while

the plan still has abstract tasks. Therefore, earlier constraint refinement helps the planner to

eliminate the redundancy of working on the same constraints several times and of course to

prune the search space such as RVBS2 which does least commitment to variable bindings.

On the other hand, expanding an abstract task can be delayed as much as possible. This is

done by EVIS3 which delays the expansion of an abstract task until all variable constraints

are committed. Finally, the DVCS 4 chooses between RVBS and EVIS according to which

one looks best for the task at hand (i.e., it minimizes the branching factor in the search space

by selecting the strategy which returns the smallest value) [93, 94].

2. Which abstract tasks to refine? This is analogous to the problem of goal selection in

classical state-based planning. Any systematic expansion can be used. One can prefer to use

a depth first expansion or a breadth first expansion.

Tsuneto et al. [95] described the fewest alternatives first heuristic for selecting task expansions

in the UMCP system as well as identifying and handling some kinds of external conditions auto-

matically [9]. The external conditions strategy is a task selection strategy that specifies the order

in which a planner will prefer to expand abstract tasks. McCluskey [87] introduced the Expand-

then-Make-Sound method in which the expansion of an abstract task is followed by repairing the

plan’s causal structure. Finally, some planning systems of the SHOP-family, like SHOP2, expand

tasks in the order in which they are to be executed and consider causality only on primitive levels

[39]. The process of deciding which commitment strategy is best is a hard problem because this

decision relies on the kind of application domain as well as on the planning problem being solved
2RVBS =⇒ Reluctant Variable Bindings Strategy
3EVIS =⇒ Eager Variable Instantiation Strategy
4RVBS =⇒ Dynamic Variable Commitment Strategy
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in that domain.

In general, all planning systems have a refinement strategy implicitly defined and indirectly con-

trolled via parameters. In contrast to that, the modularity of the component of our refinement

planning framework [7] allows us to completely separate the computation of flaws (Definition 6)

from the computation of plan modifications (Definition 7) and in turn both computations can be

separated from control search strategy. This separation allows us to define not only a single plan-

ning strategy function, but also define a combination of planning strategy functions.

The use of landmarks in hierarchical planning is quite new. In classical state-based planning the

concept of landmarks enabled the development of strong heuristics [70,96]. LAMA, the currently

best performing classical planner uses such a landmark heuristic [66]. Therefore, the information

about landmarks which are extracted by applying our hierarchical landmark algorithm can be ex-

ploited in two ways: first, the reduction of domain models or, more precisely, the transformation

of a universal domain model into one that includes problem-specific pruning information. Second,

deducing heuristic guidance from knowledge about which tasks have to be decomposed on refine-

ment paths that lead towards a solution.

In the next section, we will focus on the latter by presenting novel domain-independent strategies

(modification selection strategies) that exploit landmark information to speed up the hierarchical

planning process.

5.3 Landmark-aware Strategies

Making landmark information operational is generally based on the idea that properly identify-

ing or anticipating the landmarks along the refinement paths perfectly guides the search process

because the landmarks are known to be in some sense “inevitable” elements on the way to any so-

lution. The mandatory sets in our landmark table do not contribute directly to the identification of a
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solution path in this way because our approach over-approximates landmarks in primarily dealing

with local landmarks.

They do, however, allow to estimate upper and lower bounds for the number of expansion

refinements that an abstract task implicitly requires before a solution is found. Given a landmark

table entry 〈t(τ̄),M(t(τ̄)), O(t(τ̄))〉, the situation can be characterized as follows: If the planning

system decomposes the task t(τ ), all tasks in the mandatory set M(t(τ̄)) are introduced into the

refinement plan, no matter which method is used. The optional tasks now make the difference

and with the information at hand we can infer that in the most optimistic case, a solution can be

developed straight from the implementation of the method with the “smallest” remains according

to O(t(τ̄)). Following a similar argument, the upper bound for the “expansion effort” can be

obtained by adding the efforts for all implementations that are stored in the optional set.

From the above considerations, two essential properties of our landmark-aware strategies emerge:

First, since the landmark exploitation will be defined in terms of measuring expansion alternatives,

the resulting strategy will be a modification ordering function and not a plan ordering one. Sec-

ond, the landmark table entries can be normalized in some sense by focusing on the modification

preference on the optional sets in the landmark table entries, we implement an abstract view on the

method definition that realizes the least-commitment principle.

Concerning the first two strategies below, we interpret the term “expansion effort” literally and

therefore define “smallest” method to be the one with the fewest abstract tasks in its implementing

plan. This kind of heuristic is obviously a rough over-estimation for the search effort because the

landmark table typically contains a number of tasks that turn out to be un-achievable in the given

problem; this is due to the relaxation of the reachability analysis. The strategy also does not take

into account the refinement effort that it takes to make an implementation operationable on the

primitive level by establishing causal links, resolving causal threats, and grounding tasks. For the

time being, we assume that all methods deviate more or less to the same amount in terms of both
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factors. We will see that this simplification already yields a heuristic with good performance. To

this end, we define the cardinality of a set of tasks in terms of the number of corresponding entries

that a given landmark table does contain.

Definition 15 (Landmark Cardinality). Given a landmark table LT , we define the landmark car-

dinality of a set of tasks O = {t1(τ̄1), . . . , tn(τ̄n)} to be

|O|LT := |{t(τ̄) ∈ O| 〈t(τ̄),M(t(τ̄)), O(t(τ̄))〉 ∈ LT}|

5.3.1 Landmark-aware Strategy(lm1)

Based on Landmark Cardinality definition(Definition 15), the ’LT Options ordering lm1’ strategy

is defined as follows:

Definition 16 (Landmark-aware strategy lm1). For a given plan P = 〈TE,C〉 where C =

〈≺, V C,CL〉, let ti(τ̄i) and tj(τ̄j) be ground instances of two abstract tasks in TE that are com-

patible with the (in-) equations in V C and that are referenced by two abstract task flaws fi and fj ,

respectively, that are found in plan P. Let a given landmark table LT contain the corresponding

entries 〈ti(τ̄i),M(ti(τ̄i)), O(ti(τ̄i))〉 and 〈tj(τ̄j),M(tj(τ̄j)), O(tj(τ̄j))〉.

The modification ordering function lm1 then orders a plan modification ωi before ωj (ωi ≺ ωj) if

and only if ωi addresses flaw fi, ωj addresses flaw fj , and

∑

o∈O(t(τ )i)

|o|LT <
∑

o∈O(t(τ )j)

|o|LT

As has been introduced above, this strategy implements a rationale that is similar to the least

commitment principle, because it favors those plan refinements that impose less successor plans,

that means, it reduces the effective branching factor of the search space (cf. fewest alternatives first

heuristic in HTN planning [95]). The proper choice of the grounded task instances ti(τ̄i) and tj(τ̄j)

in the above definition is crucial for the actual performance, however, because the plan modifica-

tions typically operate on the lifted abstract tasks and method definitions. For our experiments,
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we implemented a random choice on the compatible grounded landmark table entries, future work

will however focus on a better informed candidate selection.

Landmark Mandatory(M) Options(O)

T1 · · · · · · · · · {{T11, T12}m 1, {T21}m 2, {t31, T32}m 3}
T11 · · · · · · · · · {{t111, t112}m 111, {T113}m 112, {t114, t115}m 113}
T12 · · · · · · · · · {{t121, t122}m 121}
T21 · · · · · · · · · {{t211, t212}m 211, {T213}m 212}
T32 · · · · · · · · · {{t321, t322}m 321}
T113 · · · · · · · · · {{T1131, t1132}m 1131}
T213 · · · · · · · · · {{t2131, t2132}m 2131}
T1131 · · · · · · · · · {{t11311, t11312}m 11311}

T2 · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

Table 3: A schematic landmark table

of method level i that decompose t are collected (lines 6-8). The
common task set I(t) of all methods in M is computed according
to Definition 1. Please note that if there is only one method m that
can decompose t, then I(t) is just the set of plan steps of the partial
plan provided by m. In a next step the remaining task sets O(t) are
obtained by processing the methods in M according to Definition 2.
Afterwards, each task tst of a task set T ofO(t) is investigated (lines
9-14). If tst is primitive and unreachable, then all sub-trees with roots
ta ∈ T are pruned from the task decomposition tree and the option T
is removed from O(t). The reason is that those decompositions will
never lead to a solution of the abstract task t under consideration. The
reachability test estimates the achievability of the preconditions of
tst. Like in [7], it is based on the type structure of the domain model
of the planning problem and detects whether some preconditions of
a primitive task can never be satisfied.

Algorithm 1: Landmark Extraction
Initialize: LT ←− null, i←− 1
input : TDT : Task Decomposition Tree,

i : Index of the current level in TDT, LT : LandmarkTable
output: a LandmarkTable
begin

2 if (i ≥ maxlevel(TDT)) then
return LT

4 else
foreach ((abstract task t in task level i)&(t /∈ LT)) do

6 {m1, m2, · · · , mn} ←− Methods(TDTi(t))
I(t)←− ∩̂n

i=1mi

8 O(t)←− ∪̂n
i=1mi

foreach (set T ∈ O(t)) do
10 foreach (task tst ∈ T) do

if ((tst is a primitive task)&(tst is unreachable)) then
12 TDT ←− Remove(TDT, T ): ∀ tasks ta ∈ T

O(t)←− (O(t)− T )
14 continue with next set T from O(t).

LT ←− Append(LT, (t, I(t), O(t)))

16 return Landmark Extraction(TDT, i + 1, LT)

end

Finally, the current landmark table LT is updated by inserting the
current abstract task t and the related sets I(t) andO(t), respectively.
Then the landmark extraction algorithm is called recursively with the
(modified) task decomposition tree and updated landmark table to in-
spect the next level of the tree.
In order to illustrate our algorithm, let us consider a simple example
from the UM-Translog domain. Assume a package P1 is at location
L1 in the initial state and we would like to transport it to a customer
location L3 in the same city by using truck T1, which initially is lo-

cated at L1. Figure 2 shows part of the task decomposition tree of
this example.
The Landmark Extraction algorithm detects that the first level
in the TDT has only one abstract task t = transport(P1, L1,
L3) and that there is only one method, Pi ca de, that can
decompose the task into a partial plan, which has subtasks
pickup(P1), carry(P1, L1, L3), and deliver(P1). I(t) becomes
{pickup(P1),carry(P1, L1, L3),deliver(P1)} and O(t) = ∅. The
current abstract task and sets I(t) and O(t) are entered as the first
row of the landmark table as shown in Table 2.
Then the Landmark Extraction algorithm takes the (unchanged) TDT
and the modified landmark table to investigate the next tree level.
The abstract tasks to be inspected on this level are pickup(P1),
carry(P1, L1, L3), and deliver(P1). Suppose, we choose the task
t = pickup(P1) first. As shown in Figure 2 the task decompo-
sition tree accounts for three methods to decompose this task:
Pickup hazardous, Pickup normal, and Pickup valuable.
By computing the common task set and remaining task sets
we get I(t)={collect fees(P1)}, and O(t)={{have permit(P1)},
{collect insurance(P1)}}.
At this point, reachability has to be tested for each primitive task
in each set of O(t). Assume that the primitive task have permit(P1)
is reachable, whereas collect insurance(P1) is unreachable. The task
set which contains collect insurance(P1) has therefore to be omitted
from O(t). After that, the current abstract task t = pickup(P1), the
set I(t), and the modified set O(t) are added to the landmark table.

Task Intersection(I) Options(O)

transport(P1, L1, L3)
{pickup(P1), carry

-(P1, L1, L3), deliver
(P1)}

pickup(P1) {Collect fees(P1)} {{have permit
(P1)}p Hazardous}

carry(P1, L1, L3) - {{c direct(T1, P1,
L1, L3)}c normal}

Table 4: Landmark table of the transportation task

In the second iteration the abstract task t = carry(P1, L1,
L3) is supposed to be considered. Methods Carry normal
and Carry via hub are available to decompose this task.
We obtain I(t)=∅, O(t)={{c direct(T1, P1, L1, L3)},
{carry via hub, go through tcenters}}. Suppose the primitive
task go through tcenters is unreachable. The sub-tree with root
carry via hub has then to be removed from the TDT and the set
which contains the unreachable task go through tcenters is removed

3

Figure 5.4 Part of landmark table

For example, as depicted in figure 5.4, suppose a current partial plan includes an abstract task

flaw T1 which has three option sets {{T11, T12}m 1, {T21}m 2, {t31, T32}m 3} in LT and suppose an

abstract task flaw T2 has two option sets in LT . By applying our search strategy lm1 we found

that the landmark cardinality of abstract task flaw T1 is |O(T1)|LT = |T11, T12| + |T21| + |T32|.

Then, the cardinality value of task T1 is 4. Assume the cardinality value of task T2 is 5. Then, the

lm1 strategy will prefer to expand abstract task T1 before decomposing abstract task T2 because

|O(T1)|LT < |O(T2)|LT .

While the above heuristic focuses on the very next level of refinement, a strategy should also take

into account estimates for subsequent refinement levels, thus minimizing the number of refinement

choices until no more decompositions are necessary. To this end, we will introduce the landmark-

aware strategies lm∗1.
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5.3.2 Landmark-aware Strategy(lm∗1)

In order to compute the cardinality value of an abstract task flaw according to subsequent refine-

ment levels, we assume that the set O∗(t(τ̄)) be the “transitive closure of the optional set” on a

recursive traversal of the table entries, beginning in t(τ̄). More formally:

Definition 17 (Closure of the Optional Set). The closure of the optional set for a given ground task

t(τ̄) and landmark table LT is defined as

O∗(t(τ )) =





∅ if t(τ̄) is a primitive task

O(t(τ )) ∪
⋃

o∈O(t(τ ))

( ⋃
t′(τ ′)∈o

O∗(t′(τ ′))
)

Otherwise

with 〈t(τ ),M(t(τ )), O(t(τ ))〉 ∈ LT

We would like to point out that O∗(t(τ̄)) is always finite due to the finiteness of the landmark

table, even for cyclic method definitions. In the following definition, the landmark-aware strategy

lm∗1 traces the entries in the optional task sets into the related entries of the landmark table.

Definition 18 (Landmark-aware strategy lm∗1). Given a plan P = 〈TE,C〉whereC = 〈≺, V C,CL〉,

let ti(τ̄i) and tj(τ̄j) be ground instances of two abstract tasks in TE that are compatible with

the (in-) equations in V C and that are referenced by two abstract task flaws fi and fj , respec-

tively, that are found in plan P . Let a given landmark table LT contain the corresponding entries

〈ti(τ̄i),M(ti(τ̄i)), O(ti(τ̄i))〉 and 〈tj(τ̄j),M(tj(τ̄j)), O(tj(τ̄j))〉.

The modification ordering function lm∗1 then orders a plan modification ωi before ωj (ωi ≺ ωj) if

and only if ωi addresses flow fi, ωj addresses flaw fj , and

∑

o∈O∗(t(τ )i)

|o|LT <
∑

o∈O∗(t(τ )j)

|o|LT

For example, by applying our search strategy lm∗1 in figure 5.4, we found that the landmark car-

dinality of abstract task flaw T1 is |O(T1)|LT = |T11, T12|+ |T21|+ |T32|+ |T113|+ |T213|+ |T1131|.

Then, the cardinality value of abstract task T1 is 7. Assume the cardinality value of abstract task T2
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is 6. Then, the lm∗1 strategy will prefer to decompose abstract task T2 before decomposing abstract

task T1 because |O(T2)|LT < |O(T1)|LT .

So far, the “expansion effort” has been measured in terms of decomposition refinements that have

to be applied to the current plan until a solution plan is obtained.

The following two strategies take into account that primitive task in a decomposition also con-

tributes to the costs for developing the current plan into a solution. The cost measure is thereby a

unified one, that means, solving the flaws concerning a primitive task are regarded as expensive as

the expansion of an abstract task.

5.3.3 Landmark-aware Strategy(lm2)

Definition 19 (Landmark-aware strategy lm2). For a given plan P = 〈TE,C〉 where C =

〈≺, V C,CL〉, let ti(τ̄i) and tj(τ̄j) be ground instances of two abstract tasks in TE that are com-

patible with the (in-) equations in V C and that are referenced by two abstract task flaws fi and fj ,

respectively, that are found in plan P . Let a given landmark table LT contain the corresponding

entries 〈ti(τ̄i),M(ti(τ̄i)), O(ti(τ̄i))〉 and 〈tj(τ̄j),M(tj(τ̄j)), O(tj(τ̄j))〉.

The modification ordering function lm2 then orders a plan modification ωi before ωj (ωi ≺ ωj) if

and only if ωi addresses flaw fi, ωj addresses flaw fj , and

∑

o∈O(t(τ )i)

|o| <
∑

o∈O(t(τ )j)

|o|

By applying our search strategy lm2 in the running example (see Figure 5.4), we found that the

landmark cardinality of abstract task flaw T1 is |O(T1)|LT = |T11, T12| + |T21| + |t31, T32|. Then,

the cardinality value of task T1 is 5. Assume the cardinality value of abstract task T2 is 3. Then, the

lm2 strategy will prefer to expand abstract task T2 before decomposing abstract task T1 because

|O(T2)| < |O(T1)|.

As we did for the landmark-aware strategies lm1 above, we now define a variant for the heuristic
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landmark-aware strategy lm2 that examines the transitive closure of optional sets.

5.3.4 Landmark-aware Strategy(lm∗2)

Definition 20 (Landmark-aware strategy lm∗2). Given a plan P = 〈TE,C〉whereC = 〈≺, V C,CL〉,

let ti(τ̄i) and tj(τ̄j) be ground instances of two abstract tasks in TE that are compatible with

the (in-) equations in V C and that are referenced by two abstract task flaws fi and fj , respec-

tively, that are found in plan P . Let a given landmark table LT contain the corresponding entries

〈ti(τ̄i),M(ti(τ̄i)), O(ti(τ̄i))〉 and 〈tj(τ̄j),M(tj(τ̄j)), O(tj(τ̄j))〉.

The modification ordering function lm∗2 then orders a plan modification ωi before ωj (ωi ≺ ωj) if

and only if ωi addresses flaw fi, ωj addresses flaw fj , and

∑

o∈O∗(t(τ )i)

|o| <
∑

o∈O∗(t(τ )j)

|o|

For example, by applying our search strategy lm∗2 in figure 5.4 we found that the landmark

cardinality of abstract task flaw T1 is |O(T1)|LT = |T11, T12| + |T21| + |t31, T32| + |T111, T112| +

|T113|+ |t114, t115|+ · · ·+ |t11311, t11312|. Then, the cardinality value of task T1 is 23. Assume the

cardinality value of abstract task T2 is 26. Then, the lm∗2 strategy will prefer to expand abstract

task T1 before decomposing abstract task T2 because |O(T1)| < |O(T2)|.

Then, the lm∗2 strategy will prefer to expand abstract task T1 before decomposing abstract task T2

because |O(T1)| < |O(T2)|.

Since the landmark information can be extracted from any input domain model and problem in

an automated pre-processing step, the above strategies are conceptually domain- and problem-

independent heuristics. In addition, our landmark-aware strategies are intended to operate on their

own local view on the planning domain and problem, that means, the remaining parts and mod-

ules of the hierarchical planning system do not necessarily have to adopt the landmark-centered

view and to incorporate an accordingly reduced domain model. As a consequence, the presented
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strategies can be easily combined with any kind of hierarchical or hybrid search schemata as, e.g.,

shown by [8] and they are completely compatible with other pre-processing techniques. It is

furthermore worth noting that this also implies that our strategy principles can be translated into

search controllers for any hybrid planning system.

5.4 Experimental and Empirical Analysis

Since our strategies merely specify the order in which a planner will prefer to decompose tasks,

they have no affect on the planner’s soundness and completeness. However, they do affect the

planner’s efficiency. In order to quantify the practical performance gained by the landmark-aware

strategies, we conducted a series of experiments on two distinguished hierarchical planning do-

mains: the UM-Translog domain and the Satellite domain.

As mentioned before, we ran our experiments on the set of planning problems with a lot of plan-

ning strategies from literature in order to measure the run time behavior of our planner in terms of

the size of the average search space(Space) and CPU-Time(Time). The SHOP and UMCP strate-

gies denote strategy function combinations that simulate the respective search procedures, all other

strategy implementations use FMF as the plan selection strategy.

5.4.1 Evaluation Results in the UM-Translog Domain

The evaluation results are shown in Table 5.1: lm1, lm∗1, lm2, and lm∗2 do outperform the other

strategies on practically all problems in the UM-Translog domain (See Table 5.1) in terms of both

size of the explored search space and computation time. This is quite surprising because the land-

mark table does not reveal any information about causal dependencies on the primitive task level

and the strategies hence cannot provide a focused guidance. An adequate selection of the de-

composition refinements obviously pays off well enough to compensate for random choice on the
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causality issues. Another interesting facet is that the strategies lm∗1 / lm∗2 being the better informed

heuristic while repeatedly performing worse than lm1 / lm2. Furthermore, the same anomaly oc-

curs when comparing lm2 / lm∗2 with the more abstract but also more successful lm1 / lm∗1. We

suppose these phenomena result from two sources: First, the random choice of ground candidates

for the lifted task instances is relatively unreliable and this effect gets amplified by traversing along

the landmark closures and into the primitive task level. Second, the most important choice points

are on the early decomposition levels, i.e. once a method has been chosen for implementing the

transport, this refinement puts more constraints on the remaining decisions than the strategy can

infer from the feasibility analysis underlying the landmark table.

5.4.2 Evaluation Results in the Satellite Domain

On the Satellite domain our landmark-aware strategies show only poor performance (See Ta-

ble 5.2), as there is hardly any landmark information available due to the shallow decomposition

hierarchy of this domain and any landmark centered strategy is bound to be uniformed given lim-

ited landmark information.

In general, the experimental results indicate that the novel strategies outperform their conventional

counterparts on practically all problems if the decomposition hierarchy of the underlying domain

is of non-trivial depth.
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Table 5.1 This table shows the impact of the deployed modification selection strategies on
the planning problems of the UM-Translog domain. The best result for a given problem
is emphasized bold, the second best bold and italic.

Modification Hopper Truck Auto Truck Airplane Reg. Truck-2 Region Reg. Truck 1 Reg. Truck 2 Flatbed Truck

fModSel Space Time SpaceTime Space Time Space Time Space Time Space Time Space Time

DA 144 352 644 2077 172 620 114 257 148 352 723 2560 99 237

DU 101 224 459 1304 643 2134 160 460 117 258 – – 1047 2601

HZ 55 121 197 527 345 1323 55 117 55 137 – – 159 399

lm1 52 111 133 329 142 441 62 135 53 122 291 1172 63 155

lm∗1 51 109 135 462 189 676 52 112 65 142 266 1162 61 144

lm2 62 162 135 464 104 320 53 123 55 151 339 1128 109 315

lm∗2 124 340 146 489 114 436 57 148 51 122 305 1318 110 308

LCF 55 118 155 470 247 798 78 173 127 222 327 1278 62 179

EMS 147 295 405 976 784 2517 127 262 114 235 – – 1571 3797

SHOP 89 212 164 433 150 450 106 241 83 190 926 4005 98 257

UMCP 58 122 156 474 70 215 55 113 57 127 308 1263 63 149

Modification Armored R-Truck Reg. Truck-3 Location Auto Traincar Auto Traincar-bis Mail Traincar Refr. Reg. Traincar

fModSel Space Time Space Time Space Time Space Time Space Time Space Time

DA 120 359 239 562 – – 184 705 641 2031 588 1958

DU 75 201 1508 4079 – – 1390 4018 424 1090 307 775

HZ 122 355 191 473 – – 701 1616 81 224 76 196

lm1 71 177 145 374 158 596 183 608 75 184 72 180

lm∗1 61 155 154 430 304 1473 158 543 78 205 89 212

lm2 73 199 141 469 420 1519 211 888 84 248 91 256

lm∗2 81 228 137 413 367 1446 142 511 87 238 84 226

LCF 86 198 162 463 – – 227 926 79 209 90 225

EMS 113 269 211 507 – – 2558 6447 879 1806 500 1048

SHOP 95 227 146 406 – – 247 963 121 274 173 353

UMCP 75 172 177 506 220 739 161 546 92 229 90 244
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Table 5.2 This table shows the impact of the deployed modification selection strategies
on the planning problems of the Satellite domain. The best result for a given problem is
emphasized bold, the second best bold and italic.

Modification 1Obs-1Sat-1Mod 1Obs-2Sat-1Mod 2Obs-1Sat-1Mod 2Obs-1Sat-2Mod 2Obs-2Sat-1Mod 2Obs-2Sat-2Mod

fModSel Space Time Space Time Space Time Space Time Space Time Space Time

DA 56 60 68 78 782 1131 832 1301 2186 6841 142 175

DU 100 107 139 150 – – – – – – – –

HZ 61 60 57 62 1281 4764 – – 1094 1338 871 1114

lm1 73 80 194 208 560 652 352 400 693 785 295 362

lm∗1 78 85 34 37 847 969 1803 2569 739 813 619 1228

lm2 78 86 128 140 4890 5804 200 251 – – 483 965

lm∗2 73 80 91 99 – – 1905 2553 – – 146 161

LCF 86 93 71 77 1120 1338 3022 4069 407 701 – –

EMS 65 64 47 53 1586 2608 – – 1219 1579 – –

SHOP 62 66 105 111 138 155 – – 1406 1780 – –

UMCP 83 91 36 41 883 1035 1558 1894 278 1097 1062 1270
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Chapter 6

Hybrid Multi-agent Planning

All planners that have were been introduced in chapter 2 study the problem of constructing plans

for a single agent. They define an agent as an entity that is able to make changes in its envi-

ronment. Today, the complexity of real world domains led AI researchers to establish algorithms

more closely matching realistic planning environments in which planning activities are often dis-

tributed and both plan generation and plan execution happen concurrently. Therefore, several

researchers from different fields such as cognitive science, economics, etc, discussed different is-

sues in multi-agent based planning, which are considered to be major and important issues in the

field of distributed AI. Therefore, we will describe in this chapter what multi-agent planning is as

well as illustrate common multi-agent planning approaches. Then we will introduce a novel hybrid

approach that integrates a multi-agent based planning approach with our landmark pre-processing

technique in the context of hierarchical planning [97].

6.1 Multi-Agent Planning

Multi-agent planning has been used to solve large planning problems. It works by splitting the

given planning problem into sub-problems. Each sub-problem is solved individually in order to

131
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produce a solution, the so-called sub-plan. Then, these sub-plans have to be combined in order to

construct a final solution plan for the original planning problem [33]. It is important to note, that

the multi-agent planning is not only reasoning about actions but also involves some fundamental

questions about the role of the agents in the planning society. Therefore, in the next section, we

will discuss the characteristics that distinguish multi-agent planning from single-agent planning.

6.1.1 Characterization of Multi-agent Planning

Multi-agent planning (MAP) systems have several characteristics: First, they consist of a set of

agents, where each agent has various skills and communication which may be limited. Second,

the set of agents has a set of tasks. These tasks need to be decomposed into a set of sub-tasks and

the sub-tasks to have to be assigned appropriate agents. Finally, each agent has partial knowledge

and has limited resources to produce a local plan. To this end, a MAP system should perform the

following interleaved phases in order to solve a planning problem in a distributed paradigm:

1. Decomposition phase : One of the most important phases in MAP systems is the decompo-

sition phase. It discusses how the original planning problem Π = 〈I, O,G〉 or global tasks

can be decomposed into sub-problems Πi = 〈Ii, Oi, Gi〉, where Oi ⊆ O, Ii ⊆ I , Gi ⊆ G,

and
⋃n
i=1 Πi = Π and n is the number of sub-problems. The symbol O represents the set of

actions that can be applied to the world state in order to transform the current world state to a

new world state. I and G are sets of facts which represent initial and goal states respectively.

The decomposition phase is considered the crucial issue in MAP, because it determines the

efficiency of the resolution process and complexity of the plan combination technique. The

complexity of plan combination is determined by identifying the interactions that may appear

between plan steps in the sub-plans of different agents. In general, there are two different

types of interactions: negative interactions which occur between two actions when the post-

condition of one action violates (negates) the post-condition of another action or when one
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action deletes the pre-condition of another action, and positive interactions which occur

between two actions when both need the same pre-condition and at least one of them does

not remove it or one action can be used to support the pre-condition of another action. Intu-

itively, the negative interactions among the different sub-plans cause great complexity in the

process of combining sub-plans. We have to be careful when designing the decomposition,

because it may cause that solving sub-problems (i.e., merging sub-plans) is more costly than

solving the original planning problem itself. Due to the difficulty of finding good automatic

decompositions, the most MAP systems use manual decomposition of the problem or de-

compose it automatically by splitting a compound goal into sub-goals. One of the common

techniques for decomposing planning problems into sub-problems with limited interactions

is the interaction graph technique. It can be built automatically in low order polynomial

time [98].

2. Task-allocation phase : The problem of allocating sub-problems to an appropriate agent are

handled during the task-allocation phase. There are several techniques that discuss the task

assignment as a distributed way in order to give agents a higher degree of autonomy. For

example, in the auction technique, each agent make one bid and then sub-goals are assigned

to the highest bidder [99]. The decomposition and task allocation phases are often merged

into one phase due to the existing relationships between the agent’s capabilities and task

decomposition.

3. Coordination phase : Reducing redundant in planning tasks, increasing the system per-

formance, and eliminating conflicts that prevent agents from achieving their goals are the

objectives of the coordination phase. Therefore, the coordination phase is the process of

managing dependencies between plan steps or sub-plans in different agents. Note that the

conflict resolution is the essential and necessary part to achieve the coordination process.

Of course, there is a difference between the conflict resolution and coordination process.
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The coordination process is a continuous process in the system, while conflict resolution is

triggered once a conflict is detected. Most researchers dealing with MAP have focused on

coordination, communication, cooperation, and negotiation processes among various agents.

4. Individual planning phase : In this phase, the problem of accomplishing sub-problems in-

dividually with different agents is discussed. Generally, in muli-agent planning any planning

technique can be used by different agents in order to produce a solution plan.

Attention should be paid to the fact that the coordination process and the individual plan-

ning phases are tightly interleaved. The coordination process requires both an adequate plan

representation and efficient interaction methods between agents. The process of solving in-

teractions among agents is based on exchanging information between agents and each agent

updates its own plan according to the exchanged information. In general, the coordination

process has two advantages: it eliminates negative interactions and takes advantage of pos-

itive interactions such as handling redundant actions. Consequently, the coordination phase

is done before, after or during individual planning phase as follows:

• Coordination phase before planning phase

In this case, all the dependencies between agents are discovered and resolved before

any planning takes place. One of the most well-known techniques in this case is a social

law technique [100]. The social law is a mechanism for resolving conflicts over shared

resources among a group of agents. It propagates general rules that each agent has to

follow in order to resolve conflicts among agents. If these rules have a large enough

scope to prevent such conflicts occurring among agents, each agent can achieve its

goals by executing its plan according to these laws without coordination with other

agents. It is difficult to define social laws to achieve all efficient alternative actions

for each agent. It is also difficult to define social laws to avoid cases where agents

are unnecessarily coordinating in case no conflicts exist. However, social laws reduce
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the costs of communication, planning, and coordination time because no exchange of

information between agents is needed.

• Coordination phase after planning phase : In this approach, the coordination process

is constructed after the individual planning process has been completed. It assumes that

agents work independently on their sub-problems to achieve solution plans for these

sub-problems. Therefore, the conflicts between these sub-plans are resolved after the

planning process by exchanging and revising parts of the sub-plans.

• Coordination phase during planning phase : Coordination during planning is dif-

ferent from other coordination methods (either coordination before or after planning)

where planning and coordination steps are interleaved [101]. In this method, agents

continuously work by exchanging planning information in order to reach to a consistent

joint solution plan. The main difference to the coordination process before planning

phase is that interferences between individual partial plans are resolved before each

agent produces its own partial plan. While in the coordination process during planning

phase, all agents are cooperative in the sense that they have the ability to exchange

planning information with other agents and change their current plans if necessary.

5. Synthesis or joint plan execution phase : This discusses the problem of plan synthesis and

execution. It involves the re-planning due to a failure and implies to backtrack to phases 1,

2 and 3. It is considered slightly different topic.

In general, as we show in figure 6.1, the standard multi-agent planning approaches can be cat-

egorized into centralized multi-agent planning and distributed multi-agent planning. In the next

section, we will briefly discuss these different categories.
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Multi-agent Planning Approach

Centralized Planning Distributed Planning

Local Planning
and Merging

Hierarchical
Planning

Partial Global 
Planning

Figure 6.1 Multi-agent planning taxonomy.

6.1.2 Centralized Multi-agent Planning

In general, any of the techniques in classical state-based planning can be applied to the centralized

multi-agent planning paradigm. For simplicity we will say centralized planning instead of central-

ized multi-agent planning. As shown in figure 6.2, the process of centralized planning consists of

three steps:

1. Pooling goals – The agents’ goals are collected into a single set of joint goals and then

passed to the planning system. In case the set of goals are independent i.e. non conflicting,

the collecting process is very simple. It is done by unifying the different goals. Otherwise

agents may have to select a subset of goals that are achievable. Rosenschein et al. [102,103]

introduced bidding and negotiation protocols that can be applied to such problems. Their

emphasis is on efficiency, simplicity, and fairness. Domain dependent aspects of negotiation,

such as agent preferences for plans that achieve a maximum number of goals or that are

robust with respect to environmental events, are typically encoded as measures of cost or

worth of goals and plans, which are fed into the protocols in a domain independent way.

Note that agents might not be able to determine goal conflicts until some planning has been

performed i.e. collecting goals has to be revisited after planning has started [104].
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2. Planning system – In order to generate a global plan for the collected goals in the previous

step, any single agent planning technique can be used.

3. Synchronized Plans – The global plan should be split into a set of coordinated individual

plans. Individual plans are distributed among relevant agent executives [105, 106]. There-

fore, this technique is sometimes called centralized planning for distributed plans.

Centralized Agent
Agent_1 goals

Agent_2 goals

Agent_n goals

Collection 
of goals

Global 
Plan

Coordinated Plan_1

Coordinated Plan_2

Coordinated Plan_n

pooling
goals

Planning 
system

Synchronized
plans

Figure 6.2 The centralized multi-agent planning process.

Georgeff [107] is the first researcher who proposed synchronization among individual plans.

He assumes that the set of original agents’ goals are collected and the global plan which solves the

set of goals is generated. Then, the problem is how to synchronize among individual plans. To

this end, he inserts primitives synchronization into individual plans in order to avoid unsafe (i.e.,

interaction) situation. His method collects individual plans and analyzes them to identify potential

interactions, such as conflicts between the agents over limited resources. For example, in case of

actions ai and bj are the next actions to be executed by agents A and B respectively. These actions

can be executed in parallel if the pre-conditions and post-coditions of each are consistent at the

same time, then these actions can commute and are essentially independent. Otherwise, all unsafe

situations are collected in order to create critical regions. Finally, communication commands such

as Semaphore are inserted into individual plans to solve synchronization between agents.

Cammarata et al. [108] have also introduced a centralized planning system. Their system is de-

veloped for an Air-traffic control domain. It depends on selecting one agent from a set of agents
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and considering it as a coordinator or centralized agent. Afterwards, the centralized agent collects

different goals from different airplanes in order to constructs a multi-agent plan that achieves all

of the requirements of the airplanes’ goals, as well as including those actions that specify coordi-

nation between airplanes to avoid collisions.

In general, centralized planning approaches have some advantage such as: (1) planning techniques

like SHOP [72] or PANDA [46] can be used without any modification because the planning

process itself is located in a single agent, (2) There is no additional communication cost in the

planning process because the planning process is executed in a single agent. Nevertheless, cen-

tralized planning approaches have drawbacks such as: (1) All planning process steps are executed

sequentially, none of them are performed in parallel, so more time for execution is needed, (2) All

knowledge is located in one agent i.e. central point of failure.

6.1.3 Distributed Multi-agent Planning

In contrast to the centralized planning paradigm, the distributed multi-agent planning paradigm

does not have a single node with oversight over network activities. The planning process itself is

distributed among a set of agents. Therefore, the process of detecting and resolving interactions

between agents is much more difficult. As depicted in figure 6.1, there are three different direc-

tions in the distributed planning paradigm: Local Planning and Merging, Distributed Hierarchical

Planning and Partial Global Planning.

Local Planning and Merging

Local planning and merging is a popular approach in the context of distributed planning. The idea

of this approach is quite simple. As shown in figure 6.3, individual plans are created by different

agents each having just a local view of the overall problem. Therefore, the conflicts among these

individual plans have been discovered and resolved by adding ordering constraints, adding variable
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bindings and eliminating redundant actions in order to generate a single coordinated global plan

using a merging agent. In local planning and merging, several individual plans can be merged into

a single global plan which is considered a general solution for the original planning problem or

the global plan can be split into a set of coordinated individual plans as we have seen with the

centralized approach. Each individual plan involves a set of tasks for achieving the goals of a

single agent, while the global plan is a combination of individual plans of several agents. In the

plan separation phase, the global plan is separated into a set of coordinated individual plans and

passed to the relevant executive agents. Note that synchronization information has to be inserted

into the individual plans to ensure successful execution.

Individual Planning_1

Individual Planning_2

Individual Planning_n

Agent_1-goals

Agent_2-goals

Agent_n-goals

Merging Agent Global 
Plan

Global 
Plan

Plan 
Separation

Coordinated Plan_1
Coordinated Plan_2

Coordinated Plan_n

Figure 6.3 The local planning and merging structure

In general, merging plans has several meanings in the multi-agent planning field:

• Merging redundant tasks that achieve the same effect in separate sub-goals into a single plan

step.

• Incorporating individual plans for new goals into a plan that achieves current goals.

• Distributing the goals of the planning problem to agents that cooperatively solve them.

• Resolving conflicts among the individual plans of separate agents.
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Merging plans in a single agent has a rich history. Many researchers have developed methods

for preventing or exploiting redundancies in the plans of a single agent either during the actual

planning process or when integrating the separated sub-plans.

Ephrati et al., proposed a technique to merge distributed individual plans [109]. The idea of their

technique depends on a dynamic generation of alternative plans that identify the global plan. In

each step, every agent adds information about its own current plan to the set of global plans, and

hence the current set of global plans is refined according to this information in order to produce a

new set of global plans. This process is repeated recursively until the solution global plan is found.

Later, Yang discussed the problem of merging several independent plans that were established by

different agents in order to generate a single plan [110]. Yang introduced a formal definition of

plan merging states, where the set of plan steps Σ can be merged with a plan step Ω (meaning Ω can

replace Σ in the plan), if the union of pre-conditions of Ω subsume those of Σ, the post-conditions

of Ω subsume the useful effects of Σ, and the cost of Ω is less than the cost of Σ. Useful effects are

defined as the post-conditions that establish conditions that are pre-conditions of other plan steps

in the overall plan. Yang’s definition is flexible, it allows for any single plan step in a partial order

plan to merge with any possible subset. However, Yang’s merging criterion suffers from the fact

that there are not always intuitive groupings of plan steps in an arbitrary partial-order plan and that

the number of possible groupings is quite large. His merging algorithm is complex and incomplete.

Tsamardinos et al. [111] presented a new plan merging algorithm for partial order plans that can

handle simple conditional branching, quantitative time, and actions with temporal duration. Their

algorithm merges new goals into existing single agent plans in three phases. First, it uses a new

data structure, the so-called Conditional Simple Temporal Network (CSTN), which was extended

from simple temporal networks [112] in order to identify conflicts between plan steps. CSTN

consists of a set of nodes that represent the start and end points of the plan steps and a set of arcs

that represent the temporal constraints. Second, their algorithm uses the Yang algorithm [110] to
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solve conflicts between plan steps. Finally, CSTN has been built again in order to check whether

the proposed resolutions achieve all temporal constraints and ensure that there are no more conflicts

in the resulting plans.

Iwen et al, [113] developed GRAPHPLAN planner [27] further into a distributed planning system

by decomposing the initial and goal states into sub-goals. The decomposition process depends on

a new representation, the so-called interaction graph [98].

In the planning problem, the interaction graph is an undirected and simple bipartite graph. It

consists of a set of vertices which represents the propositions that are true in the initial state and

each proposition that needs to be true in the goal state. Hence, two vertices are connected by an

edge if the corresponding propositions have a common object. This graph is decomposed into sub-

graphs by detecting the disconnected parts. After that, each sub-problem is allocated to an agent,

then each agent uses GRAPHPLAN to solve its own sub-problem and generate individual solutions

for its own sub-problems. Once all sub-problems have been solved the global plan is obtained by

taking a union of sets of actions at respective steps in individual plans. In this technique, conflict

resolutions are resolved by applying a progression search technique, where the action selection is

restricted by the actions from the corresponding action levels in the individual planning graph.

Adriann tel Mors et al, [114] proposed a new method that guarantees that: (1) the set of agents

work independently, (2) the individually constructed plans can be joined into a general or global

plan without refinement in any individual plan i.e., there is no need for additional re-planning for

any agent. Their method occurs at the task level and is independent from the planning process and

allows reusing the existing single-agent planning software in multi-agent planning. They solved

the coordination problem by adding new constraints (∆i) to each agent i to ensure that all feasible

individual plans constructed by agents can always be joined in order to produce a feasible global

solution plan for the given planning problem. Although this method handles coordination and

planning separately, it leads to the addition of more precedence restrictions on the set of tasks.
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Therefore, the feasibility of finding cheaper plans is reduced.

In general, local-planning and merging techniques suitable for both competitive and cooperative

agents to improve plans by removing incompatibilities and exploiting positive interactions. The

quality of the resulting plan is dependent upon the cooperativeness of the participating agents and

the quality of the individual plans. However, local-planning and merging has two major drawbacks:

(1) The success of the plan merging process is dependent on the process of merging the individual

plans into a coordinated joint plan. Sometimes, this process is impossible due to lack of time and

memory capacity or unsolvable conflicts between plan steps in different individual plans. (2) The

isolation between agents during the planning process prevents agents to be benevolent.

Hierarchical Planning

Hierarchical planning is an alternative approach for cooperative distributed planning that exploit

the hierarchical structure of the plan space to perform distributed hierarchical planning. The main

advantage of this approach is that the conflicts may be detected at more abstract levels which lead

to pruning big portions of the more detailed search space.

The general approach in distributed hierarchical planning relies on attaching to each agent model

of other agents plans. Corkill [19] has studied interleaved planning and merging in a distributed

version of NOAH1 planner. In the NOAH system, each agent has a picture of other agent’s so-

called MODEL node and message passing was used to synchronize plan execution. Each agent

generates his plan level by level such that each agent builds local plans at one level of detail, and

then constructs suitable models of each other’s by exchanging the shared resources needed for

their goals. The agents proceed to the next level when the conflicts in their current plans have been

resolved.

Clement et al. [115, 116] have developed a new method to detect and resolve conflicts not only at

1NOAH =⇒ Nets Of Action Hierarchies
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the primitive task levels, but also at the abstract levels. This is done by computing and reasoning

about summary information. Summary information is a process of computing abstract task re-

sources which are derived from decomposition methods and sub-tasks to detect possible conflicts

between abstract tasks in non-recursive propositional HTN domains. Therefore, summary infor-

mation is defined as knowledge about pre-conditions, in-conditions, and post-conditions for a plan

p. Summary pre-conditions of plan p are a set of all pre-conditions of sub-plans that must be met

to execute plan p successfully. Summary post-conditions of a plan p are the set of all effects that

are generated by sub-plans which must be performed before executing plan p. While, summary

in-conditions of a plan p are any proposition that must hold within the interval of the execution

time of plan p. Clement used summary information as a heuristic guide in order to avoid branches

of search space that lead to inconsistent or sub-optimal plans. Their planning mechanism called

Concurrent Hierarchical Plans (CHIPs).

Afterwards, Desjardins et al. used SIPE-2 in order to produce a new system, the so-called DSIPE-

2 [117]. This development was done by focusing on efficient communication among planners

and creating a common partial view of sub-plans, where the coordinator agent distributes sub-

goals among the planning agent in the system. Each planning agent expands its own sub-plans

separately, while relevant information and constraints are shared between them. At the end, the

coordinator agent merges the generated sub-plans together to produce a general plan for the given

planning problem.

A novel approach that suggests synergy between hierarchical planning agents is introduced by Jef-

fery et al. [118]. They define synergy as a process of identifying the overlapping or subsuming

effects between hierarchical planning agents when trying to achieve their goals. The reasoning

of synergy concentrates on abstract plan steps instead of reasoning between primitive plan steps.

They used Clement’s algorithm that propagates such conditional information from the bottom up

the plan hierarchy in order to identify relationships between abstract plan steps of different agents
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[119]. Later, Jeffery et al, [120] proposed a general framework to extend the partial order causal

link plan representation to multi-agent planning and deal with the coordination problem as a form

of iterative repair of plan flaws that cross agents.

Recently, Hisashi [121] proposed an architecture that arranges the set of agents in a stratified form

as parent and children planning agents. The parent planning agent and its child planning agents

work together to achieve the goal. This is done by producing a rough plan for a goal by the par-

ent planning agent and producing detailed plans for sub-goals by child planning agents. Stratified

multi-agent planning reduces the search space of HTN planning because once the parent planning

agent makes plans and selects a plan from them, the other alternative plans of the parent planning

agent are not taken into consideration. The child planning agents produce a detailed plan for the

selected plan which is constructed by the parent agent.

Partial Global Planning

In partial global planning, agents communicate parts of their individual plans in order to construct

plans that are partially global. These partially global plans specify the relations between actions

and can be used by agents to adapt their individual plans to other agent’s actions. This direction

allows exchanging crucial information about individual plans between agents in order to prevent

conflicts.

Mathijs et al. proposed an incomplete algorithm to study the interleaving between planning process

and coordination process [122]. Their algorithm provides a distributed way for a set of agents to

construct coordinated plans for a large set of autonomous multi-agent planning problems through

exchanging a resource during the planning process by propagating two artificial actions, the so-

called get and put actions. These two actions organize the way to transfer resources from agent

ai to agent aj , where get action represents receiving resources from another agent and put action

represents sending resources to another agent. In the final solution plan these actions only come
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in pairs. Consequently, the resources that are exchanged are deleted from the state of the agent ai

and added to the state of the agent aj .

Krogt et al. introduced a new method to coordinate plans in different agents without exchanging

explicit information or constructing a global set of constraints, but by combining a propositional

plan repair algorithm for each agent using a blackboard that auctions sub-goals on behalf of the

agents [123]. In contrast to a batch system which pushes all goals at the same time, this method

channels the goals one-by-one through the plan repair system that observes change in the world

state and updates its state by re-planning according to the current information. With the one-by-

one-goal strategy, failure of adding a goal to the plan is discovered easily and put up for auction.

The strategy One-by-one-goal accelerates the process of determining the goal which should be

announced for auction, but positive interactions between goals cannot be exploited easily. It takes

more time than constructing a one shot plan for all goals.

Different aspects of coordination and cooperation problems of multiple agents that have individual

goals and operate in the same environment have been studied [124]. In the coordination process,

each agent has the ability to generate and execute its plan independently and coordination is needed

to solve harmful interactions between individual plans in different agents. The set of agents are

coordinated by exchanging messages that contain the candidate sub-plan of a joint plan. The

receiving agent checks the consistency between its own plan that achieves the local goal and the

incoming plan. After that, the received agent responds with “fail”, if the candidate plan cannot be

part of a joint plan, or its sends a message indicating that the candidate plan can be a part of joint

plan. The coordination algorithm terminates, when the agent has received replies to all its own

sub-plans. It does not have more proposed plans and does not expect any other sub-plans from

other agents.

In the cooperation process, each agent asks some other agent to construct pre-conditions of actions

that appear in its plan. The cooperation process between agents is very similar to the coordination
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process with the main differences being in form and meaning of the exchanged messages. These

messages consists of the current plan of the sender agent and the request to achieve some resources.

Consequently, the receiver agent looks for a plan to achieve its own goal and achieves the requested

resources as well as checks the consistency between local individual plan and the received plan.

6.2 Hybrid Multi-agent Planning

Although several approaches have been constructed for multi-agent planning, solving large plan-

ning problems is still quite difficult. In this section, we present a novel approach called Hybrid

Multi-agent Planning which integrates the landmark pre-processing technique in the context of

hierarchical planning approaches with a multi-agent planning approach.

Figure 6.4 depicts the components of our hybrid multi-agent planning architecture. It consists of

the pre-processing agent, the planning agents, and the shared constraints set. The pre-processing

agent analyzes a given hierarchical planning problem by systematically analyzing the ways in

which relevant abstract tasks can be decomposed. The planning agents construct a set of hier-

archical planning problems (Clusters). Each agent generates a solution plan (individual plan)

individually. After that, the set of individual plans are merged in order to generate a final solution

plan. All planning agents have complete knowledge about the initial state of the planning problem.

The Shared Constraints set (SC) includes a set of constraints between the set of abstract tasks

in different clusters. The shared constraints set (SC) provides a great service for the process of

merging individual plans. In the following section we will illustrate the key features of our agents.
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Figure 6.4 Hybrid multi-agent based planning architecture

6.2.1 Pre-processing Agent

A pre-processing technique will be used to perform some pruning of the search space before the

actual search is performed in order to reduce the planning effort. Very recently, we introduced

a landmark technique which restricts the domain and problem description of a Hierarchical Task

Network (HTN) problem to a smaller subset, because some parts of the domain description might

be irrelevant for the given planning problem [71, 125, 126].

Since the landmark extraction algorithm (Algorithm 3) has already been described in detail before,

we will only briefly sketch the outcome of landmark extraction algorithm, the so-called landmark

table, which is the central means for exploiting landmark information.

Let T = (VM , VT , E) be the TDT after methods that contain infeasible tasks have been pruned.

VM is the set of method vertices, VT is the set of task vertices, and E is the set of edges connecting

the methods with its tasks. Then, for each abstract task t(τ ) ∈ VT , the landmark table LT contains

an entry 〈t(τ ),M(t(τ )), O(t(τ ))〉, where mandatory sets M(t(τ )) and optional sets O(t(τ )) are
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calculated as follows:

M(t(τ )) = {t′(τ ′) ∈ VT | f.a. 〈t(τ ), 〈S,≺, V, CL〉〉 ∈ VM

with t′(τ ′) ∈ Ground(TE, V)}

O(t(τ )) = {Ground(TE, V) \M(t(τ )) |

〈t(τ ), 〈S,≺, V, CL〉〉 ∈ VM}

How a landmark table entry for an abstract task looks like, in particular, how many tasks are

contained in the mandatory set M , clearly depends on the pruning that has been performed before

the calculation of M and O.

Once the landmark table LT has been constructed, the pre-processing agent terminates itself after

sending landmark table LT to the master agent. The information about landmarks can be exploited

in two ways: first by reducing the domain model by ignoring infeasible method decompositions or,

more precisely, by transforming a universal domain model into one that includes problem-specific

pruning information [71]. The second application of the landmark table is to serve as a reference

for the planning strategy to deduce heuristic guidance from the knowledge about which tasks have

to be decomposed on refinement paths that lead towards a solution [125,126]. In our hybrid multi-

agent planning we will focus on the former way in order to construct individual solution plans with

each agent.

6.2.2 Planning Agents

Our planning scenario includes a set of planning agents. The planning agents integrate in order to

cooperate a general solution plan for the given hierarchical planning problem. To this end, the set

of planning agents are divided into two different types: a master agent and a set of non-cooperative

agents, the so-called slave agents.
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Master Agent

The master agent takes a hierarchical planning problem Π and a landmark table LT as input and

generates the final solution plan (Algorithm 7). To this end, in line 4, a given planning problem Π

is decomposed into a set of clusters (i.e., sub-problems). We will come back to the decomposition

process later in this section. In lines 6 and 7, the master agent initiates a number of slave agents

based on the number of clusters. Then, it distributes these clusters among slave agents in order

to construct individual solution plans for these clusters. Afterwards, in lines 8 to 11, the master

agent receives a Termination-Message2 from the slave agent. The individual plan in the

Termination-Message is preserved in a set, the so-called IndPlan. Then, the communica-

tion channel between master and slave agents is closed when the value of Terminator counter,

which counts the number of Termination-Messages, equals to the number of the created

clusters. After that, the master agent checks the components of the IndPlan. If there exists at

least one empty plan in the set IndPlan, the master agent returns failure (lines 12 to 14). This

means that one of the set of slave agents fails to find a solution for its sub-problem . Otherwise, in

line 15, a merged plan MPlan is constructed by calling the Merging algorithm which combines

the set of individual plans in MPlan. Finally, the master agent terminates successfully with the

merged plan MPlan as a solution, if MPlan satisfies the solution criteria. Otherwise, it terminates

with failure (lines 16 to 19).

The master agent breaks up a given planning problem Π into a set of clusters according to two

different algorithms: Dependent and Independent algorithms.

In each iteration of the Dependent algorithm (Algorithm 8), a set of tasks that are not preceded

by any other tasks are separated in one cluster. The set of constraints between tasks in different

clusters is inserted in the shared constraints set (SC).

2Termination-Message includes the individual plan which is produced by slave agent.
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Algorithm 7: Master Agent Algorithm
Input : Π = 〈D, sinit, pinit〉 : Planning problem,

LT : LandmarkTable

Output: Solution Plan or Failure

Terminator←− 01

Create an empty set Γ = 〈Πγ, SC〉2

Create an empty set, called IndPlan, to preserve the individual plans3

Γ←− Dependent(Π, LT,Γ)4

NSA←− Number of clusters5

Initiates a set of slave agents6

Distributes the set of clusters among the set of slave agents7

while (Terminator 6= NSA ) do8

if (Termination-Message from slave agent is received) then9

IndPlan←− individual plan10

Terminator←− Terminator + 111

foreach (p ∈IndPlan) do12

if (p is empty) then13

return Failure14

MPlan←− Merge(IndPlan,SC)15

if (MPlan is a solution) then16

return MPlan17

else18

return Failure19
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Algorithm 8: Dependent Algorithm
input : Π = 〈D, sinit, pinit〉 : Planning problem,

LT : LandmarkTable, Γ = 〈Πγ, SC〉

output: Γ

Γ = 〈Πγ, SC〉 ←− null1

if (TE == ∅) then return Γ2

Select tasks tei that are pre-request-free from pinit.3

Create new cluster Πγi
= 〈D, sinit, pγinit

, LTγi
〉.4

Add these tasks tei to partial plan Pγinit
in cluster Πγi

.5

Let TE ←− (TE − tei)6

foreach (task t ∈ tei) do7

Attach the relevant information of the task t in the LT to the LTγi
in cluster Πγi

8

Add all constraints (≺t, V Ct, CLt) that relate task t with the other tasks in tei to the9

partial plan Pγinit
in cluster Πγi

.

Let V C ←− (V C − V Ct)10

Let ≺←− (≺ − ≺t)11

Let CL←− (CL− CLt)12

Insert all constraints V Ct̄, ≺t̄ and CLt̄ that relate task t with other tasks t̄, where t̄ /∈ tei13

to the shared constraints set SC.

Let V C ←− (V C − V Ct̄)14

Let ≺←− (≺ − ≺t̄)15

Let CL←− (CL− CLt̄)16

Γ = 〈Πγ, SC〉 ←− 〈(Πγ ∪ Πγi
), SC〉17

return Dependent(Π, LT,Γ)18

As shown in algorithm 8, the Dependent algorithm takes the planning problem Π = 〈D, sinit, pinit〉,
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a landmark TableLT =〈t(τ ),M(t(τ )), O(t(τ ))〉 i.e., theLT is computed by pre-processing agent,

and a set Γ = 〈Πγ, SC〉 as input and computes the final set of clusters Γ. Note that a set Γ consists

of a set of clusters Πγ =
⋃n
i=0{Πγi

}, where n is the number of clusters. Each cluster Πγi
will be

considered as a sub-problem. SC is a shared memory that includes a set of constraints between

tasks in different clusters Πγi
. In order to identify different clusters, Dependent algorithm runs

recursively through all tasks of sub-tasks in the initial plan pinit until all tasks have been traversed.

Each cluster Πγi
= 〈D, sinit, pγinit

, LTγi
〉 includes a domain modelD, an initial state sinit, a partial

plan pγinit
which represents initial partial plan for cluster Πγi

, and LTγi
which represents relative

pre-processing information of the set of tasks in partial plan Pγinit
.

Now we will have a look at how the set Γ is constructed by Dependent algorithm. First, the set

Γ is initialized (line 1). Afterwards, the set of tasks tei which are pre-request-free are collected

(line 3). In lines 4 to 6 a new cluster Πγi
is created, and the set of tasks in tei are added to the task

network of Pγinit
in cluster Πγi

. Then, the tasks tei are removed from the task network TE of plan

Π. For the current set of tasks tei at hand, lines 7 to 16 illustrate iterative loops to extend the cre-

ated cluster Πγi
by adding different constraints and then updating SC by inserting new constraints.

For each task t in the set of tasks tei, the pre-processing information in LT which is relevant to the

current task t is attached to the current cluster Πγi
. This information in LTγi

will help the planner

(slave) agent to reduce the planning effort in order to find the individual solution plan for its own

cluster (line 8). In lines 9 to 12 the partial plan pγinit
in the current cluster Πγi

is extended by

adding all variable V C, ordering ≺ and CL constraints that point to the relation between the cur-

rent task t and other tasks in the set of tasks tei. After that, these constraints are removed from the

current plan Pinit in Π. The shared constraints set SC and the current partial plan pinit are updated

by inserting and removing all constraints that relate the task t to other tasks outside the set of tasks

tei respectively (lines 13 to 16). Finally, the current set Γ is updated by adding the current new

cluster Πγi
to the set of clusters Πγ as well as updating the shared constraints set SC (line 17). The
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Dependent algorithm is called recursively with the modified plan and the updated Γ in order to

inspect a new cluster (line 18).

On the other hand, the idea of the Independent algorithm depends on separating the set of

tasks that are ordered together in the initial plan in one cluster, thus the shared constraints set (SC)

becomes empty. Therefore, in order to split the planning problem Π into a set of clusters according

to Independent algorithm, we will replace line 3 in algorithm 8 for the following line ”Select

tasks tei that are dependent”. Due to this replacement the set of clusters which are produced are

explicitly independent and the shared constraints set SC will be empty.

As mentioned before, once the set of clusters has been generated either by Dependent or Independent

algorithm, the master agent initiates a set of slave agents based on the number of clusters and dis-

tributes these clusters among slave agents in order to construct individual solution plans for them.

Afterwards, the master agent collects the individual solution plans which are generated by slave

agents and starts to perform the merging process in order to construct a general solution plan.

Slave Agents

The slave planning agents are a set of identical agents working concurrently in order to solve the set

of clusters which passed from the master agent. There is no communication among slave agents.

As shown in the algorithm 9, each slave agent considers a sub-problem Πγ = 〈D, sinit, pγinit
, LTγ〉

as input and returns Termination-Message. The Termination-Message encapsulates

the individual solution plan pγ or an empty plan which represents failure in its context.
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Algorithm 9: Slave Agent Algorithm
Input : Πγi

= 〈D, sinit, pγinit
, LTγi

〉 : Cluster (sub-problems)

Output: Termination-Message(pγ) : Message

pγ ←− Refinement-Planning(Πγi
)1

if (pγ is a solution) then2

Send Termination-Message(pγ) to the master agent3

Deactivate itself4

else5

pγ ←− slave agent acts as master agent6

Send Termination-Message(pγ) to the master agent7

Deactivate itself8

Each slave agent implements the refinement planning algorithm (Algorithm 2) in order to gen-

erate its own individual plan(line 1). Our refinement planning algorithm takes the initial plan Pγinit

of the assigned cluster as an input and refines it stepwise until the individual solution plan is found.

Each slave agent sends a Termination-Message which includes the individual solution plan

(pγ) to the master agent and terminates itself(lines 2 to 4).

Special attention should be paid to the fact that, if the refinement planning algorithm returns fail-

ure, the slave agent works as a master agent in order to split its own cluster into a set of new

clusters and then initiates a set of new slave agents in order to find an individual solution for the

new clusters (lines 5 to 8).
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6.3 Merging Methodology

Of course, dividing a large planning problem into a number of smaller individual problems or

sub-problems, solving them concurrently and then joining their individual solutions in order to

generate a general solution plan for the original planning problem, can sometimes achieve high

performance. The time taken to create individual plans can be significantly reduced because the

joint problem is broken down into smaller components. An overall speed gain is achieved if the re-

duction in individual planning time is more significant than the time taken to merge the individual

plans into a joint plan. Otherwise, if the individual plans have many redundancy and conflicting

actions, the plan merging technique may be prohibitively expensive. The approaches which depend

on the merging technique strongly depend on two factors: the ability of planning agents to produce

individual plans without communication and the ability of the merging process to construct a gen-

eral plan from the set of individual plans.

In general, the merging algorithms are limited because they can not add tasks to the joint plan. If

the planning slave agents generate individual plans with unresolvable conflicts, the merging pro-

cess could not be able to find a solution even if there is an alternative set of non-conflicting tasks

that could be chosen. If the problem can not be solved by the merging process because of the con-

flicts that arise during the merging process, it is said to be a non-mergeable problem [127, 128].

Our merging methodology depends on the notion of Fragments which encapsulate individual

plans with in their context. Our merging methodology proceeds in two processes (See Algo-

rithm 10): First, dividing the set of individual plans (i.e., which are produced by slave agents) into

a set of Fragments (line 3). Second, merging the individual plans in each fragment in order to

produce a plan, the so-called Merge-Fragment-Plan(MFP) (line 5), and then merges all MFPs in

order to construct a general solution plan(line 7).
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Algorithm 10: Merge Algorithm
Input : PΓ = {pγ1 , pγ2 , · · · , pγn} : Individual Plans,

SC: Shared Memory

Output: Plan

Create an empty set MFPlans to preserve the merged plans1

MFP←− empty plan2

Fragments←− Divide(PΓ, SC)3

forall (f ∈ Fragments ) do4

MFP←− Combines(P1, · · · , Pn) | Pi ∈ f and 1 ≤ i ≤ n5

MFPlans←− MFPlans ∪MFP6

Final Plan←− Combines(MFP1, · · · ,MFPk)|MFPj ∈ MFPlans and 1 ≤ j ≤ k7

return Final Plan8

In order to construct the Fragments, the set of individual plans PΓ = {pγ1 , pγ2 , · · · , pγn}

is divided into sets according to the ordering constraints in SC. Accordingly, each set is called

Fragment. Furthermore, each Fragment is represented by a tuple F = 〈Pγ, Oγ〉, where Pγ

is a set of individual plans (Pγ ⊆ PΓ) and Oγ is a set of order constraints on Pγ . For exam-

ple, suppose the ordering constraints in SC are {T1 ≺ T2, T2 ≺ T3, T4 ≺ T5}. Suppose a set

of individual plans PΓ = {p1, p2, · · · , p7} are respectively a solution plan for the abstract plan

steps T1, T2, · · · , T7 as shown in figure 6.5(a). Then, according to the ordering constraints in

the shared constraints set SC, these individual plans in PΓ constitute three different fragments

F1 = 〈{p1, p2, p3}, {p1 ≺ p2, p2 ≺ p3}〉, F2 = 〈{p4, p5}, {p4 ≺ p5}〉, and F0 = 〈{p6, p7}, {∅}〉

(See Figure 6.5(b),(c),(d)). In general, there are two types of fragment plans: Related-Fragment

which includes those individual plans that are dependent such as F1 and F2, and Zero-Fragment

which includes those individual plans that do not have explicit dependency such as F0.

Second, the set of individual plans in each fragment are merged in two phases: Detecting de-
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T1 P1

T2      P2

T3 P3
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T4 P4
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T2               P2,T1               P1, T3               P3, T4               P4, T5               P5, T6               P6, T7               P7

(a)
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Figure 6.5 Fragment plans

pendency and detecting redundancy.

Phase 1: Detecting Dependency: Through this phase, the implicit dependency between individ-

ual plans in Zero-Fragment is determined. In our approach, the plan dependency is determined

by matching pre-conditions and effects of the tasks in individual plans. This means that certain

post-condition of plan pγi
tasks are required as pre-conditions for plan pγj

tasks.

There are two reasons for determining the dependency between individual plans: canceling the

negative interactions (i.e. one task deletes an effect or pre-condition of another task), and benefit

from the positive interactions (i.e. two different tasks need the same pre-condition and at least one

of them does not remove it or one task generates pre-conditions of another task). Intuitively, if we

have a set of independent plans that can be executed concurrently, they then are performed directly

by integrating them into one large plan.

If the implicit dependency between individual plans in Zero-Fragment is detected, the master agent

updates this fragment by adding new order constraints between these plans.

Despite the order dependency between plans, some tasks in these plans can be performed con-

currently. Tasks can not take place concurrently if the pre- or post-conditions of the tasks in the

successor plan are inconsistent with the post-conditions of the tasks in the predecessor plan [120].

Therefore, in order to determine the concurrent tasks, we will establish a comparison between pre-

and post-conditions of tasks in the successor plan and the post-conditions of the tasks in the prede-
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cessor plans. The comparison process will be started by checking pre- and post-conditions of the

first task in the successor plan pγj with post-conditions of different tasks in the predecessor plan

pγi . If a pre- or post-condition of the first task in pγj
is violated (i.e. deleted), this task will be

executed sequentially in the plan pγi
, and the procedure in case-1 will be performed. Otherwise,

the first task in pγj
will be executed concurrently to the predecessor plan pγi

and the procedure in

case-2 will be performed.

Case-1:

1. Create a new order constraint <last task in pi, current task in pj >

2. Remove the order constraint <last task in pi, goal() task in pi >

3. Remove the goal() task from the predecessor plan pi

4. Remove the order constraint <initial() task in pj , current task in pj >

5. Remove the initial() task from the successor plan pj

6. Stop the comparison process

Case-2:

1. Remove the order constraint <initial() task in pj , current task in pj >

2. Remove the initial() task in the successor plan pj

3. Create a new order constraint < initial() task in pi, current task in pj >

4. Continue the comparison process to the next task in the successor plan pj .

Note that the comparison process in case-2 will go further in the successor plan pγj
in order to

repeat the comparison with the next task. At this point, we neither need case-2 nor steps number 4

and 5 in case-1.

For example, as depicted in figure 6.6-(a) – suppose we have two individual plans pi and pj where

plan pi is the predecessor plan and plan pj is the successor plan. Suppose the post-conditions of the

first task te11 in the successor plan pj is violated by another task in the predecessor plan pi. Then
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Figure 6.6 Dependency propagation

the steps in case-1 will be performed to generate figure 6.6-(b). Otherwise, the steps in case-2 will

be performed to generate figure 6.6-(c).

Phase 2: Detecting Redundancy: In this phase, we detect the possible plan steps that can be

merged and we update their constraints. A pair of plan steps in different individual plans is merged

if their post-conditions are matched and there is no another task that is ordered after them that

could violate these post-conditions. More formally,

Definition 21 (Merging Plan steps merge(tei, tej)). ∀ plan steps tei ∈ Pγi
and tej ∈ Pγj

,

merge(tei, tej) iff (post(tei) = post(tej)) ∧(¬∃tek ∈ Pγj
violate post(tej) s.t. (tej ≺ tek))

Once a pair of plan steps has been merged, the related constraints of the removed or joined plan

step should be modified. This means, the replacement of the plan step will inherit all constraints

of the merged plan steps as well as adding new constraints. As shown in figure 6.7, for all merged

plan steps tej ∈ Pγj
and tei ∈ Pγi

:

1. The plan step tej is replaced by plan step tei.

2. ∀ tek, tel, tej ∈ Pγj
and ∃ 〈tek, tej〉 , 〈tej, tel〉 ∈≺ of plan Pγj

add new order constraints

〈tek, tel〉 to plan Pγj
.
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3. Remove the ordering constraints 〈tek, tej〉 , 〈tej, tel〉 from plan Pγj
.

These rules ensure that the whole ordering constraints of the merged plan step are preserved. On

the other hand, the causal link constraints that include the merged plan step in its components

should be updated.

tej

tek < tel

Initial( ) Goal( )tek

(a) Before Merging (b) After Merging

tej tel tek telInitial( ) Goal( )

Figure 6.7 Local dependency propagation.

For all merged plan steps tej ∈ Pγj
and tei ∈ Pγi

: ∀ tek, tel ∈ Pγj

1. ∀ causal link tej
Φ→ tel ∈ CL of plan Pγj

add new causal link tei
Φ→ tel to CL of plan Pγj

.

2. Remove causal link tej
Φ→ tel from CL of plan Pγj

.

3. Remove causal link tek
Φ→ tej from CL of plan Pγj

.

6.4 Experimental and Empirical Analysis

In order to evaluate the introduced hybrid multi-agent planning approach, we consequently per-

formed our experiments on qualitatively different problems by specifying various transportation

means and goods. The number of transportation task in these planning problems ranged from one

to six tasks. Each problem runs three times on the same configuration. We calculated the average

values of three runs. Every run of the planning system was limited to a real time consumption of

18,000 seconds and an exploration of at most 10,000 plans. If a run of the planning problem failed

to find a solution within these limits, it was counted as a non-terminating run and excluded from

the average computation. A dash indicates that the run over a planning problem exceeded the lim-

itation. CPU-Time is computed as the time of dividing the given planning problem plus the time
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of pre-processing phase and the time which used to solve the largest cluster. While the Merg-Time

denotes the running time of the merging process in seconds.

Consequently, in tables 6.1, 6.2 and 6.3 the column PANDA refers to the reference system’s

behavior, the column HLM refers to the PANDA version that performs a pre-processing phase

and finally the column HMAP refers to the version that performs the integration between a MAP

with pre-processing techniques. The column HMAP considers clustering the planning problem

by two different methods Dependent and Independent. The experimental results which are

done in tables 6.1, 6.2 and 6.3 use fModSel
LCF + fModSel

DU as the modification selection strategy and

fPlanSelFHZ + fPlanSelFMF as the plan selection strategy.

6.4.1 Hybrid Multi-agent Planning Evaluation in the UM-translog Domain

For planning problems with one transportation task, the difference between planning systems with

pre-processing (HLM) and hybrid multi-agent planning approach (HMAP) is not big. As we have

documented in table 6.1, the average performance improvement over all one transportation task

problems in the UM-Translog domain is about 51% compared to the PANDA planner. The HLM

planner achieves an improvement of about 2% compared to HMAP.

Our experiments in the UM-Translog domain show poor performance (See Tables 6.2) of the

PANDA and HLM versions, because it is difficult to solve planning problems which have a large

number of abstract tasks in the initial plan.

The experiments show that the clusters which are obtained from our decomposition techniques

either Dependent or Independent are easier to solve than the original planning problem.

Solving clusters concurrently can save an important amount of time. Consequently, our hybrid

multi-agent planning system is able to solve the problems for which the competing systems could

not find a solution within the given resource bounds. For example, the average performance im-

provement of HMAP regarding all UM-Translog problems that have more than one abstract task in
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Table 6.1 UM-Translog domain: The evaluation results of HMAP (one transportation
task).

Problem
PANDA HLM

HMAP

Dependent Independent

CPU-Time CPU-Time CPU-Time Mer-Time Total CPU-Time Mer-Time Total

Translog-P1 180 104 115 0 115 113 0 113

Translog-P2 155 99 103 0 103 105 0 105

Translog-P3 1450 151 159 0 159 157 0 157

Translog-P4 772 621 630 0 630 625 0 625

Translog-P5 1074 159 160 0 160 155 0 155

Translog-P6 483 318 320 0 320 323 0 323

Translog-P7 216 129 130 0 130 135 0 135

Translog-P8 165 101 105 0 105 105 0 105

Translog-P9 348 245 246 0 246 243 0 243

the initial plan is about 72% in comparison to PANDA. HMAP achievies an improvement of about

48% comapred to HLM as documented in table 6.2. Not surprisingly, the performance improve-

ments will increase dramatically if the number of abstract tasks in the initial plan is raised. Our

experiments proved that when there is an interaction between tasks in the plan, the Independent

decomposition technique is more efficient than Dependent decomposition technique such as in

UM-Translog domain where the Independent technique achieves an average improvement of

21% over the Dependent technique as documented in table 6.2.

6.4.2 Hybrid Multi-agent Planning Evaluation in the Satellite Domain

We also performed our experiments on qualitatively different problems in the satellite domain by

specifying various observations with different properties. The evaluated scenarios are therefore

defined as observations on one to six satellites. Each problem runs with the same specification as

we mentioned before in section 6.4.
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Table 6.2 UM-Translog domain: The evaluation results of HMAP (More than one trans-
portation task).

Problem
PANDA HLM

HMAP

Dependent Independent

CPU-Time CPU-Time CPU-Time Mer-Time Total CPU-Time Mer-Time Total

Translog-P10 170 102 103 0 103 105 0 105

Translog-P11 853 153 159 0 159 157 0 157

Translog-P12 621 229 231 0 231 235 0 235

Translog-P13 1184 639 358 179 537 512 0 512

Translog-P14 - 3437 476 956 1432 1794 964 2758

Translog-P15 - - 1413 2397 3810 703 1967 2670

Translog-P15 - - 4562 6094 10656 1587 6731 8318

Translog-P16 - - 454 148 602 450 0 450

Translog-P17 1284 583 451 941 1392 627 878 1505

Translog-P18 - 3930 2954 2769 5723 750 2343 3093

Translog-P19 - - 3335 5981 9316 1218 3622 4840

Translog-P20 - - 4370 6327 10697 1463 7250 8713

Translog-P21 - - 770 223 993 673 351 1024

Translog-P22 - - 1705 1440 3145 2109 1345 3454

Translog-P23 - - 547 418 965 4785 578 5363

Translog-P24 - - 3366 5921 9287 1328 4364 5692

Translog-P25 3268 1287 1079 0 1079 698 392 1090

Translog-P26 - 4184 3417 1002 4419 489 835 1324

Translog-P27 - - 3692 2015 5707 1123 1910 3033

Translog-P28 - - 4007 3842 7849 1379 4808 6187

Translog-P29 - - 4705 5841 10546 1777 6370 8147

Translog-P30 5238 1211 832 0 832 383 376 759

Translog-P31 - 10006 3227 1045 4272 537 833 1370

Translog-P32 - - 3445 2614 6059 686 1939 2625

Translog-P33 - - 3874 5637 9511 1040 5481 6521

Translog-P34 - - 4739 6627 11366 1521 5904 7425

Translog-P35 - 2623 1047 0 1047 2045 753 2798

Translog-P36 - - 6008 697 6705 5069 3471 8540

Translog-P37 - - 3237 940 4177 540 1014 1554
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Table 6.3 Satellite domain: This table shows the evaluation results of HMAP.

Problem
PANDA HLM

HMAP

Dependent Independent

CPU-Time CPU-Time CPU-Time Merg-Time Total CPU-Time Merg-Time Total

Satellite-P1 62 60 65 0 65 69 0 69

Satellite-P2 788 708 14 3 17 272 5 277

Satellite-P3 2035 2027 29 7 36 327 26 353

Satellite-P4 - - 42 10 52 342 26 369

Satellite-P5 - - 582 26 608 512 26 539

Satellite-P6 - - 483 19 502 557 26 582

Satellite-P7 - - 473 27 501 593 34 627

Satellite-P8 - - 28 7 35 386 23 409

Satellite-P9 1699 1474 247 0 247 15 0 15

Satellite-P10 3053 3062 356 6 362 26 4 31

Satellite-P11 - - 364 12 376 30 6 36

Satellite-P12 - - 529 9 538 37 7 44

Satellite-P13 - - 820 35 855 52 11 63

Satellite-P14 - - 643 50 693 70 23 93

Although the satellite domain does not benefit significantly from the landmark pre-processing

technique, as there is hardly any landmark information available due to the shallow decompo-

sition hierarchy of this domain, it achieves good performances with clustering techniques. As

documented in table 6.3, solving the observation planning problems using the cluster technique

Independent achieves an average improvement of about 29% over solving the same observa-

tion problems with the cluster technique Dependent.
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Conclusion

7.1 Research Contributions

The goal of this dissertation is developing methods to systematically reduce the search effort and

to improve the efficiency of planning systems. We have developed a novel pre-processing tech-

nique to extract knowledge from a hierarchically structured planning domain and a current prob-

lem description which is used to significantly improve planning performance. Our pre-processing

technique enables us to prune parts of the search space by identifying tasks that are not achievable

from a certain initial situation. Furthermore, it is used to guide the hierarchical planning processes

more efficiently towards a solution of a given planning problem. Finally, our approach supports

the combination of a multi-agent based planning approach with the pre-processing technique in

the context of hierarchical planning. In each chapter the technical details have been collected by

an Experimental and Empirical Analysis in which we have tested our approach with established

planning strategies from literature.

The following sections will therefore briefly discuss our approach. This chapter will conclude by

suggesting future developments that may build on our work.

165



166 Chapter 7 Conclusion

7.1.1 Extracting Hierarchical Landmarks

In recent years, the exploitation of knowledge gained by pre-processing a planning domain and/or

problem description has proven to be an effective means to reduce planning effort. A lot of different

pre-processing procedures have been proposed for classical state-based planning, where they serve

to compute strong search heuristics. As opposed to this, pruning the search space of a hierarchical

planner by pre-processing the underlying HTN-based domain description has not been considered

so far. Therefore, We have presented an effective landmark technique for hierarchical planning.

Hierarchical landmarks are those tasks that occur in the decomposition refinements on every plan

development path. It analyzes the planning problem by pre-processing the underlying domain and

prunes those regions of the search space where a solution cannot be found.

Our experiments on a number of representative hierarchical planning domains and problems give

reliable evidence for the practical relevance of our approach. The performance gain went up to

about 60% for problems with a deep hierarchy of tasks. Our technique is domain- and strategy-

independent and can help any hierarchical planner to improve its performance.

7.1.2 Search Strategies

The problem which addressed in this contribution is how to systematically construct strategic guid-

ance in order to improve the search efficiency of hierarchical planning systems in terms of explored

search nodes. For a given planning problem description, an initial search node is successively

expanded until a search node is created that describes a solution to the planning problem (a so-

lution plan). Planning systems explore only a fraction of the search space which is theoretically

reachable. One always wants to keep this fraction as small as possible, since the runtime of a plan-

ning system correlates to the number of explored search nodes. In order to guide the search (i.e.,

to decide which fraction to explore), planning systems use heuristics, so-called search-strategies.

Therefore, we used the knowledge extracted from the pre-processing phase to introduce four search
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strategies for hierarchical planning. Through these strategies, we compute the expansion effort of

the problem – a heuristic to guide the selection of methods with which we can reduce the effective

branching factor of the search space.

We have made a number of experiments to compete these search-strategies with a set of represen-

tative search procedures from literature. The results showed that the new strategies outperformed

the established ones on all relevant problems.

7.1.3 Hybrid Multi-agent Planning

The knowledge which we obtained during the pre-processing process could be used in multiple

ways. One would be to prune parts of the search space and to identify tasks that are not achievable

from a certain situation. Another way would be to build a hybrid system that integrates the pre-

processing technique with a multi-agent based planning approach. Our approach introduces the

ability to break up the given planning problem into a set of clusters (i.e. sub-problems) using two

different techniques: Dependent and Independent. Our hybrid approach guarantees that (1)

the set of agents work independently in order to solve the set of clusters, (2) the individually con-

structed solution plans are merged in order to generate a global plan without additional refinement

in any individual plan, and (3) the problems are solved in shorter time.

In hybrid multi-agent planning, we have performed a number of experiments on qualitatively dif-

ferent problems in the UM-Translog and Satellite domains. The number of tasks in each planning

problem ranges between one and six tasks. Through out this experiment, our hybrid approach com-

peted with non-pruning and pruning planners. The results give evidence for the practical relevance

of our approach.
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7.2 Future Work

The techniques discussed in this dissertation directly apply to hierarchical planning approaches.

However, there are various extensions possible that apply to the hybrid planning approach:

• One of the main differences between those two approaches is that in hybrid planning, not

only primitive tasks show preconditions and effects, but also abstract tasks. This allows

to test even the abstract tasks for reachability. Another difference is that hybrid planning

problems also specify a goal state that has to be accomplished. Using this goal state, one can

use techniques from classical planning in order to generate classical landmarks which can

be used in the hybrid setting.

• Some complex planning domains such as crisis management domain often cause intractable

efforts in modeling the domain as well as a huge search space to be explored by the system.

A way to overcome these problems is to impose a structure not only according to tasks but

also according to relationships between properties of the objects involved, thereby using so-

called decomposition axioms. One of our future work is modifying our landmark extraction

algorithm to support decomposition axioms.

• Our empirical evaluation has also shown the success of the introduced landmark-aware

search strategies which use the calculated landmarks in order to guide the search process.

Future work will be devoted to the construction and evaluation of other types of landmark-

aware strategies and to the investigation of those domain model and problem features that

suggest their deployment.

• Plan coordination in our hybrid multi-agent planning depends on the utilized plan merging

technique. However, the plan merging technique has two major drawbacks: (1) The success

of the whole process is dependent on the ability of the merger process to join individual
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solution plans into a general solution plan. This may be impossible because of the conflicts

between individual plans that the merger process can not resolve. If the mering process

fails, time spent planning will be wasted. (2) slave agents can not give each other assistance

during the planning process because they plan individually. This means that for example

an agent with exclusive control over a resource can not assist other agents in their planning

of related tasks. Therefore, future work will focus on additional cooperation between slave

agents during the planning process.

• In future work, the merging process can be modified by performing it inside the planner

environment. To this end, all individual solution plans which are produced by slave agents

are combined in a large plan. After that, the master agent submits the created plan to the

planner environment as a new planning problem. Thus, the planner can solve conflicts in the

new planning problem inside the planning environment by removing tasks or inserting new

tasks.
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